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Abstract 

The sheep industry has to face many challenges to become more sustainable. Enhancing 

feed efficiency may reduce the environmental footprint of the industry, improve the income 

of farmers and mitigate the feed-food competition. However, feed efficiency is scarcely 

selected in meat sheep because measuring feed intake individually is expensive. One 

solution could be to predict feed efficiency or intake. Studying omics may highlight proxies 

of feed efficiency, which would ease its selection. 

The present thesis focused on the prediction of feed efficiency in meat sheep. The aim was 

to predict feed efficiency and intake from fixed effects, body weight, pedigree and various 

omics. Data were collected in Romane lambs between 2018 and 2020. Lambs were part of 

two divergent lines selected for residual feed intake. Production traits and the rumen 

microbiota were analyzed both under a concentrate diet and a mixed diet including forages, 

later. Host genomics, the rumen lipidome, faecal near-infrared spectra, rumen and plasma 

metabolomes were analyzed under a concentrate diet only.  

First, principal component analyzes evidenced the main variation patterns of potential 

predictors of feed efficiency. Pedigree and genomics highlighted the genetic population 

structure. The rumen microbiota composition, faecal spectra and metabolome were 

influenced by the environment (i.e. the year or period of phenotyping). Second, the rumen 

microbiota could not reliably predict feed intake when the reference and target populations 

were raised a different year (correlations between predicted and real phenotypes ≤ 0.35). 

Third, fixed effects and body weight could predict sheep production traits more accurately 

or as well as microbiota data. Fourth, studying multiple omics and years highlighted that 

the best predictors were: the host genetics for residual feed intake (0.54); fixed effects and 

body weight for feed conversion ratio (0.48) as well as feed intake (0.85). On the opposite, 

rumen data did not predict well feed efficiency and intake traits. Finally, the integration of 

heterogeneous datasets (omics and non-omics) was carried out by weight averaging or 

regressing the predictions of models previously fitted on a single set of predictors. 

Integrating data significantly increased the prediction accuracy of feed efficiency (≤ 0.59) 

and intake (≤ 0.88). 

The thesis opens up new perspectives to mine omics data and identify feed efficiency 

predictors. More research is needed to integrate and understand interactions between 

omics, which may improve our understanding of sheep feed efficiency. 

Keywords: feed efficiency, omics, data integration, proxies, genetics, sheep. 
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Thesis introduction 

On the opposite of monogastrics - such as humans, pigs, or poultry - ruminants may digest 

cellulose thanks to their rumen microbiota (Russell et al., 2009). Thus, ruminants may 

convert inedible resources for humans into valuable products. Compared to cattle, sheep 

are often raised on lower quality feed. Thus, sheep waste less human-edible resources for 

the same meat output, than cattle (Mottet et al., 2017). Many sheep (Ovis aries) breeds 

were created and provide meat, milk, wool and skin products since the sheep domestication 

around 11,000 years ago (Zeder, 2008; Mazinani and Rude, 2020). Nonetheless, the present 

thesis will focus on meat sheep production mainly. 

The meat sheep industry has to face environmental, economic and societal challenges. With 

meat sheep raised in Western Europe, the greenhouse gas emission intensity is equal to 

109.1 kilograms of equivalent carbon dioxide per kilogram of produced protein (FAO, 2017). 

Around 55.5% of these greenhouse gas emissions are associated with enteric fermentation 

and 36.0% to feed production (FAO, 2017). It highlights the importance of animal nutrition 

to tackle environmental impacts. Feed is also highly important to secure the income of 

farmers rearing meat sheep: feeding costs may represent around 64% of  operational costs 

(Benoit et al., 2019). Then, ruminant meat production might contribute to the feed-food 

competition between animals and humans: on average 2.8 kg of human-edible feed are used 

to produce 1 kg of ruminant meat worldwide (Mottet et al., 2017). These burning issues 

illustrate why the production of meat sheep has to become more sustainable. To improve 

the production sustainability, the present thesis will examine one solution: increase feed 

efficiency.  

Selecting feed-efficient sheep would decrease the needs for feed resources without 

decreasing the production (Koch et al., 1963). Thus, selection for feed efficiency would help 

tackle sustainability issues. Several studies evidenced that feed efficiency could be selected 

since they proved that feed efficiency is partially determined by sheep genetics (Mucha et 

al., 2022). However, sheep are scarcely selected for feed efficiency because it would require 

expensive measurements of individual feed intakes (Snowder and Vleck, 2003). Predicting 

feed efficiency instead of measuring it, could ease the selection of meat sheep for efficiency. 

Therefore, the present thesis does not aim to characterize feed efficiency, it aims to predict 

it. 
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Omics, such as metabarcoding and metabolomics, were previously assessed to identify feed 

efficiency biomarkers in cattle and sheep. For instance, the rumen microbiota was 

sequenced for the 16S ribosomal RNA gene (Ellison et al., 2019; Marie-Etancelin et al., 

2021), or the 18S (Zhang et al., 2020; Clemmons et al., 2021) to identify microorganisms 

associated with feed efficiency. Blood and ruminal metabolite biomarkers were also cited 

for feed efficiency (Artegoitia et al., 2017; Goldansaz et al., 2020; Touitou et al., 2022) . 

Faecal near-infrared spectroscopy was proposed to predict voluntary intake under different 

diets (Andueza et al., 2017). The predictive ability of omics, pedigree, fixed effects and 

body weight is assessed in the present thesis. The goal is to identify the best predictors 

of feed efficiency. 

Improving feed efficiency of meat sheep is under international scrutiny. The SMARTER 

project aims at increasing the resilience and efficiency of small ruminants through genetic 

selection, across 13 countries (‘SMARTER’, 2018). The GrassToGas project aims at decreasing 

the greenhouse gas emissions of ruminants, across 7 countries (‘GrassToGas’, 2019). One 

task of GrasstoGas is to examine how improving feed efficiency could affect greenhouse gas 

emissions. The thesis work is a part of both SMARTER and GrassToGas projects.  

To highlight why predicting feed efficiency is promising, Chapter 1 will first define feed 

efficiency in meat sheep. Then, discussing drivers of feed efficiency and omics will highlight 

plausible predictors. Finally, the review will focus on statistical tools to ascertain the 

predictive ability of predictors. 

Chapter 2 will detail the material and methods used throughout the thesis. The chapter will 

describe which Romane sheep population was studied and how sheep phenotypes were 

gathered. Protocols used to collect omics data are detailed, as well as the statistical 

analyzes. 

Exploratory analyzes will be featured in Chapter 3. Two questions will be explored: (1) what 

are the range and variation patterns of lamb production traits and omics data; (2) has 

divergently selecting for feed efficiency altered traits and omic profiles?  

Chapter 4 will assess whether lamb feed intake can be predicted from rumen prokaryotes 

abundances, when the training and testing populations are raised different years. The 
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second goal is to assess whether estimated breeding values of predicted intake are close to 

breeding values of real intake. 

Compared to the previous chapter, more traits are predicted from microbiota data in 

Chapter 5. Prediction accuracies of feed efficiency, intake, growth and body composition 

traits were assessed under a concentrate diet and then, a mixed diet. Furthermore, 

prokaryotes and eukaryotes abundances are investigated thanks to 16S and 18S 

metabarcoding. 

Chapter 6 will focus on data integration of multiple omics to predict lamb feed efficiency 

and intake. The first goal is to identify the best predictors (genomics, metabolomics, 

lipidomics, phenomics or the microbiota) by sampling different biological matrices (the 

blood plasma, rumen fluid and faeces). The second goal is to assess if integrating data with 

different omics collected over 3 years improved the prediction accuracies. 

Finally, the thesis results will be discussed in Chapter 7. Consequences of divergent selection 

for feed efficiency will be pondered. Then, the best and worst proxies of feed efficiency and 

intake will be discussed. The chapter will also identify perspectives of data integration to 

predict and select animal traits.
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Selecting for feed efficiency is promising when it comes to improving the sustainability of 

meat sheep production. However, feed efficiency is rarely selected in sheep since recording 

feed intake is challenging. To understand these challenges, feed efficiency will be defined. 

Then, omics may reflect biological processes underlying feed efficiency and the review will 

highlight plausible omic predictors. Finally, this chapter will address statistical tools which 

may be convenient for the prediction of feed efficiency. 

I – Assessing feed efficiency in growing sheep 

The first subsection will define feed efficiency criteria in growing meat sheep. Associations 

between feed efficiency and other traits will be discussed based on the ruminant literature, 

if references in meat sheep lack. Finally, feed efficiency drivers will be reviewed similarly.  

A. What is feed efficiency? 

As reviewed by Berry and Crowley (2013), a multitude of criteria were proposed to quantify 

feed efficiency in growing animals,  raised for meat production. These criteria differ in their 

definitions, pros and cons. Nonetheless, all subsequent criteria require several phenotypic 

measures over one period of time. 

A.1 The diversity of feed efficiency criteria in growing animals  

Indirect criteria 

When feed efficiency criteria are discussed, some indirect traits are regularly mentioned. 

The relative growth rate can be estimated from the difference between the logarithms of 

the start and end body weights, divided by the test duration and multiplied by 100 (Fitzhugh 

and Taylor, 1971). Kleiber’s ratio is estimated thanks to the average daily gain (ADG) divided 

by the metabolic weight - metabolic weight being defined as the body weight at the power 

of 0.75 (Kleiber, 1961). 

These indirect criteria are not rigorously feed efficiency criteria: they rely upon the 

comparison of growth traits without considering feed intakes (Berry and Crowley, 2013). 

Therefore, indirect criteria will not be discussed subsequently.  
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Direct criteria, ratios 

In animal nutrition, feed requirements are traditionally classified in two categories: 

maintenance requirements or production requirements. Maintenance requirements 

encompass needs for thermoregulation, basal metabolism and physical activity (Gonzalez 

et al., 2018). On the other hand, production requirements mainly correspond to tissue 

accretion in growing meat lambs. Thus, production requirements can be estimated from 

weight gain.  

Partial efficiency of growth (PEG) denotes feed efficiency as the amount of growth 

compared to the feed intake while accounting for maintenance requirements  (Kellner, 

1909): 

𝐏𝐄𝐆 =
ADG

ADFItotal − ADFImaintenance
 

Where ADG stands for average daily gain (in body weight). ADFItotal stands for the total 

average daily feed intake, while ADFImaintenance stands for the amount required to cover 

maintenance needs. ADFImaintenance can be estimated from the metabolic weight, a proxy 

of maintenance requirements in growing lambs (Garrett et al., 1959). Feed efficient animals 

have high PEG phenotypes. 

Feed conversion ratio (FCR) denotes feed efficiency as the amount of feed needed to gain 

one unit of weight (Brody, 1945): 

𝐅𝐂𝐑 =
ADFI

ADG
 

Feed efficient animals low FCR phenotypes. 

Direct criteria, residuals 

Residual Feed Intake (RFI) denotes feed efficiency as the difference between real feed intake 

and expected feed intake - based on the animal needs. To estimate expected feed intake 

(i.e. animal needs), one can regress feed intakes over energy sinks as proposed by Byerly 

(1941) in laying hens, and Koch et al. (1963) in cattle. Few other authors use a pre-

established equation to estimate needs, and compute the difference between actual and 

expected intake. Most authors use regression models including at least the metabolic 
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weight and weight gain, while some advocate for the inclusion of body composition 

indicators (Berry and Crowley, 2013). In growing meat sheep, the following equation will be 

implemented throughout the thesis (adaptation from Tortereau et al., 2020): 

ADFI = µ + β1 ADG + β2 MD + β3 BFT + β4 final BW
0.75 + 𝐑𝐅𝐈 

Where µ stands for the mean ADFI. β1 to β3 respectively stand for the effects associated 

with ADG, muscle depth (MD) and back fat thickness (BFT). These effects account for 

production requirements in lambs gaining weight, according to their body composition. 

β4 denotes the effect of the metabolic weight (final BW0.75) measured at the end of the 

trial, to account for maintenance requirements. RFI corresponds to the regression 

residuals, therefore phenotypes are centered around 0. Moreover, negative values are 

obtained for feed efficient animals, and positive values for inefficient ones. Computing RFI 

from tables does not ensure similar distribution properties. 

Residual gain (RG) denotes feed efficiency as the difference between real weight gain and 

expected gain – based on feed intake and metabolic weight (Koch et al., 1963). 

ADG = µ + β1 ADFI + β2BW
0.75 + 𝐑𝐆 

RG corresponds to the regression residuals. Thus, feed efficient animals have positive RG 

values, against negative values for inefficient ones. 

In 2012, Berry and Crowley proposed a new efficiency criterion for growing cattle: the 

residual intake and body weight gain, which is a linear combination of RFI and RG.  

Note: Feed efficiency traits are not strictly equivalent even if they are related. For instance, 

FCR and RFI are phenotypically and genetically correlated in Romane lambs 

(rphenotypic=0.49±0.03, rgenetic=0.65±0.12) (Tortereau et al., 2020). 

Refining direct criteria of feed efficiency 

Previous direct feed efficiency criteria can be tweaked to account for feed differences. To 

do so, the animal intake can be expressed according to feed properties rather than the 

ingested mass. Dry matter intake (DMI) is useful to account for differences in feed 

moistures. Similarly, energy intakes can be used to account for differences in feed energy 

densities. Energy density of feeds can be estimated from their chemical composition and 
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tables. Energy is traditionally partitioned in different levels (Figure 1, Inra et al., 2018) but 

the thesis will focus on net energy. Net energy is the difference between the ingested 

amount of gross energy and the energy lost in faeces, urine, respiratory gases and heat. 

 
Figure 1: Energy partioning in animal nutrition 

Feed efficiency criteria can also be tweaked to account for dynamics across time. Most 

criteria are computed from a few trait values: either averages, or punctual observations. 

However, feed efficiency criteria could be computed from times series too (Martin et al., 

2021b). Leveraging repeated measures would improve the estimation of feed efficiency 

components: it would better account for the dynamics of efficiency components across 

time. However, a trade-off must be found between the number of repeated numbers and 

the trial duration: short disruptions may introduce too much noise if efficiency is estimated 

over short periods of time.   

A.2 Challenges in recording feed intakes 

All direct feed efficiency criteria – ratios or residuals - present the same challenge: they 

require individual records of feed intake over period of 6-8 weeks on average. In beef, a trial 

over 42 days was proposed as an adequate compromise between an accurate estimation of 

the regular intake and costs (Manafiazar et al., 2017). In Romane sheep, trials of six weeks 

are already implemented in the National Breeding program to index growth and 

conformation traits in growing male lambs (Tiphine et al., 2011). Indoors, individual intake 
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recording often relies on expensive automatic feeders. Cost of infrastructures may explain 

why feed efficiency is seldom selected (Snowder and Vleck, 2003; Hayes et al., 2013).  

More investments can be needed when animals are not fed a single standardized feed – 

such as a pelleted feed. Most ruminants are fed with mixed diets, sooner or later. Then, it 

would be justified to record individual intakes per feed: ruminants can sort mixed feeds 

(Cooper et al., 1995; Duncan and Young, 2002). Feed resources may even be more 

heterogeneous when animals graze because feed resources vary in quality and quantity 

across time and space (Mialon et al., 2022). Smith et al. (2021) reviewed the methods 

allowing the study of feed intake by grazing animals: there are plenty of approaches ranging 

from manual measures, to digital technologies and markers which differ in cost, practicality 

and accuracy. 

A.3 Pros and cons of feed efficiency criteria 

Direct criteria, ratios 

Feed efficiency ratio criteria, such as PEG and FCR, are easily interpretable. For instance, 

FCR denotes the amount of feed required to produce one kilogram of body weight. 

Moreover, most ratio criteria can be computed on an animal-by-animal basis, without 

inferring parameters on a population basis. Thus, most ratio traits can be easily compared 

between different populations (Berry and Crowley, 2013). FCR is commonly used in research 

with individual records, or in farms based on pen average intakes. 

However, one disadvantage is the strong correlation between ratio traits and the production 

traits used as numerators or denominators. In fattening Romane sheep, FCR and ADG are 

phenotypically and genetically correlated (rphenotypic=-0.77±0.01; rgenetic=-0.77±0.09) 

(Tortereau et al., 2020). FCR and ADFI are also correlated (rphenotypic=-0.27±0.03; rgenetic=-

0.10±0.21) (Tortereau et al., 2020).  Therefore, in animal breeding, one important 

disadvantage of ratio traits is the difficulty in anticipating responses to selection: numerator 

and denominator components can be under different selection pressures (Gunsett, 1984). 

For instance, FCR can be improved by increasing growth, by decreasing feed intake, or both. 
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Direct criteria, residuals 

When feed efficiency criteria are computed via least-squares regressions, regression 

coefficients are population-specific. Residual phenotypes such as RFI and RG cannot be 

compared directly between studies. 

However, the use of regressions has one virtue: residual efficiency traits are phenotypically 

independent from the regression explaining variables (Berry and Crowley, 2013). In Romane 

sheep for example, the estimated phenotypic correlation between RFI and ADG is equal to 

0.02±0.04. Thus, using production traits as regressors allows a fair comparison between 

animals with different production levels (Knott et al., 2008). When ranking animals for feed 

efficiency, trials are usually set between two calendar dates and not between two ages. So, 

animals will likely vary in production levels and also in maturity during a trial. In practice, 

breeding companies set protocols to minimize age differences during the genetic 

evaluation. 

Residual traits are correlated to the regressed variable: for instance, RFI is phenotypically 

and genetically correlated with feed intake (rphenotypic=0.58, rgenetic=0.59±0.13), while RG is 

correlated to ADG (rphenotypic=0.70, rgenetic=0.82±0.05) in growing cattle (Berry and Crowley, 

2012). Selecting for RFI will likely decrease feed intake while maintaining production, when 

selecting for RG should increase growth while maintaining feed intake.  

Nonetheless, independence between feed efficiency and the regressed production traits 

does not ensure a genetic independence. For instance, a moderate genetic correlation exists 

between RFI and muscle depth in Romane fattening lambs (-0.30±0.15) (Tortereau et al., 

2020). A regression based on genetic estimates can ensure genetic independence (Kennedy 

et al., 1993).  

RFI has an increasing popularity in the ruminant scientific literature (Berry and Crowley, 

2013). However, Berry and Crowley (2012) hypothesized that RFI is not widely adopted by 

producers because they are afraid that animals with good RFIs may have a low growth rate 

associated with a low intake. On the other hand, Snowder and Vleck (2003) suggested that 

breeders may prefer a direct selection for ADG to get a higher economic response to 

selection, compared to a direct selection for RFI. They also highlighted that it may depend 
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on the scenario since selection for RFI becomes more interesting when feed costs increase 

while the lamb prices decrease. 

B. How is feed efficiency associated to other traits? 

Selecting for feed efficiency was proposed to mitigate sustainability issues of meat sheep 

production. However, meat sheep may already be selected for other traits having an 

economic interest, such as: growth, body composition, body conformation, meat qualities 

and maternal abilities (Tiphine et al., 2011). Furthermore, new traits might be selected in 

the future to cope with environmental issues, such as greenhouse gas emissions. Thus, 

studies assessing associations between feed efficiency and other traits are necessary to 

anticipate responses to selection for feed efficiency. The review will focus mainly on 

associations with RFI and FCR. 

B.1 Production and body composition traits 

As discussed in the Chapter 1 subsection A.2, FCR is correlated to growth by construction, 

since its denominator is ADG. Contrastingly, RFI is phenotypically independent from growth 

and liveweight when feed intake is regressed over metabolic weight and ADG (Zhang et al., 

2017; Tortereau et al., 2020).  

Results about associations between body composition traits and RFI may be conflicting 

when RFI is defined by different models. When RFI is computed without regressing intakes 

over body composition, feed efficiency is phenotypically associated with a decreased eye 

muscle area and a decreased back fat thickness in Hu lambs (Zhang et al., 2017). When RFI 

is computed by regressing intakes over the longissimus dorsi depth and back fat thickness, 

feed efficiency is not phenotypically associated with body composition in Romane lambs 

(rphenotypic=0.00±0.04 with muscle depth, rphenotypic=0.02±0.04 with back fat thickness) 

(Tortereau et al., 2020). However, muscle depth might be genetically negatively correlated 

to RFI in Romane lambs (rgenetic=-0.30 ± 0.15) (Tortereau et al., 2020). Thus, selection 

consequences over body composition will depend on the model used to compute RFI: the 

model may account for body composition or not; it may regress phenotypic values or genetic 

values.  
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In Pelibuey lambs, RFI was not phenotypically associated with carcass characteristics, 

chemical composition and meat quality - except for cooking loss with higher percentages 

found for efficient animals (Arce-Recinos et al., 2022). 

Results are conflicting about visceral organs. Meyer et al. (2015) suggested that diets had a 

greater effect over organ masses than feed efficiency phenotypes, but efficient animals 

tended to have bigger spleens and pancreas (p-value=0.09). Another study had discrepant 

results and highlighted associations between RFI classes and other organs: feed efficient 

sheep had bigger testis, a lighter intestinal tract, a decreased total stomach weight, a lighter 

liver and lighter lungs (Zhang et al., 2017). In the Romane breed, the most efficient lambs 

tended to have larger rumens after three generations of divergent selection for feed 

efficiency (p-value=0.09) (Conington et al., 2022). 

B.2 Health and reproduction traits 

According to the resources allocation theory, improving feed efficiency may affect health, 

reproduction traits or responses to environmental stressors (Gilbert et al., 2017; Douhard 

et al., 2021). The assumption is based upon the hypothesis that resources are limited and 

that trade-offs may exist between different expenditures - such as parasite resistance. In 

animal breeding contexts, it may be difficult to highlight trade-offs between resources 

allocations when animals are selected with few nutrient restrictions (Douhard et al., 2021). 

To our knowledge, references about associations between sheep feed efficiency and health 

traits mainly focused on parasite resistance. In Corriedale lambs, RFI phenotypes were 

neither significantly associated with nematode resistance, nor lines genetically selected for 

resistance (Ferreira et al., 2021; Navajas et al., 2022). In Romane lambs, no association was 

found between nematode resistance and lines selected for RFI (Douhard et al., 2022a). 

However a synergy was found between feed efficiency and resistance in lines genetically 

selected for parasite resistance (Douhard et al., 2022b). Thus, results are conflicting 

between studies, but they do not accredit the hypothesis of a trade-off as expected with 

resources allocation. In meat sheep, there is also a lack of references assessing relationships 

between feed efficiency, reproductive and maternal traits. Kenny et al. (2018) reviewed the 

cattle literature and highlighted conflicting results about the relationship between bull 

fertility and feed efficiency. Studies in cattle, suggested that RFI is not associated with 

calving difficulty (Basarab et al., 2011; Lawrence et al., 2013). Finally, Kenny et al. (2018) 
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underlined a lack of consensus about reproductive performances: papers highlighted either 

the presence or absence of associations between RFI and reproductive traits (rates of 

pregnancy, calving and weaning). 

B.3 Environmental traits 

Feed efficiency was proposed as a trait to indirectly select against greenhouse gas emissions 

(Boadi et al., 2004). However, when farmers and experts are consulted and have to rank the 

most efficient and practical measures to mitigate greenhouse gas emissions, selecting for 

feed efficiency is not seen as one of the preferred mitigation measures (Jones et al., 2013). 

Furthermore, relationships between efficiency and emissions are inconsistent from  one 

study to another. In lambs from three different breeds, no significant phenotypic correlation 

was found between RFI and daily methane emissions (Johnson et al., 2022; Navajas et al., 

2022; Marques et al., 2022). On the opposite, Paganoni et al. (2017) found significant 

phenotypic correlations between RFI and daily methane, but correlations were alternatively 

positive in growing sheep or negative in adults. Finally, two Romane divergent lines were 

selected for RFI and most efficient lambs emitted more methane daily than inefficient 

animals (Tortereau et al., 2023). 

Differences in emissions might partly be explained by rumen and microbiota differences. 

Romane lambs from the feed efficient line tended to have bigger rumens (Conington et al., 

2022). Bigger rumens and higher retention times were previously associated with higher 

emissions (Goopy et al., 2014; Conington et al., 2022). One hypothesis is that higher 

methane emissions are associated with rumen microbial communities producing more 

hydrogen which is the substrate of methanogens producing methane (Kittelmann et al., 

2014). Kamke et al. (2016) hypothesized that higher retention rates could be associated with 

slow degrading microorganisms producing more hydrogen.  

Apart from greenhouse gas emissions, literature is scarce about relationships between feed 

efficiency and excretion in sheep. In cattle, feed efficient animals were associated with 

lower manure excretion, partly thanks to lower intakes (Basarab et al., 2013; Berry and 

Crowley, 2013). Dairy cows fed pasture excreted less nitrogen in faeces if they were feed 

efficient (Rius et al., 2012). Thus, these studies suggest that improving feed efficiency would 

reduce environmental impacts associated to manure and its degradation. It remains to 

check how feed efficiency is associated with urinary excretion. However, feed efficiency and 
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water ingestion are tied. In steers, RFI was favorably and genetically correlated with water 

intake (rgenetic=0.33±0.11) (Ahlberg et al., 2019). 

C. What drives feed efficiency in ruminants? 

Feed efficiency traits are multifactorial: many environmental and biological factors may 

underly feed efficiency (Cantalapiedra-Hijar et al., 2018; Kenny et al., 2018).  

Ruminants stand out from many livestock species thanks to the symbiotic relationships 

between the host and its microbiota in the upper gut (Morgavi et al., 2015). A 

superorganism including one host and its symbiont can be called a holobiont (Margulis and 

Fester, 1991). Thus, the host and its ruminal microbiota will be referred as an holobiont in 

the thesis. Next sections will address how feed efficiency is the result of the interplay 

between holobiont and environmental determinants (Figure 2). 

 
Figure 2: Main sources of feed efficiency variations  

(adapted from Cantalapiedra-Hijar et al., 2018; Kenny et al., 2018) 

C.1 External effects: maternal effects, climate and farming conditions 

Feed efficiency may be partially driven by external factors. These external factors may be 

related to maternal non-genetic effects or environmental effects. Maternal genetic effects 

will be presented in paragraph C.5. 
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Maternal effects 

In meat sheep, maternal effects may influence the offspring feed efficiency through 

pregnancy and fostering. Maternal effects over offspring efficiency may persist after 

weaning. These effects may be evidenced through the nutrition of dams. For instance, lambs 

tended to be more feed-efficient when ewes were not feed restricted during gestation 

(Piaggio et al., 2018). Then, nutrition of beef dams during lactation may alter their offspring 

feed efficiency after weaning. Allocating dams to low-quality or high-quality pastures during 

lactation explained 2.5% of FCR variations: dams on high-quality pastures had more feed 

efficient offspring (Robinson et al., 2013). The interaction between allocation duration and 

pasture explained 3.6% of offspring RFI variations  (Robinson et al., 2013). More studies are 

mandated to confirm and assess maternal effects, such as nutrition.   

Climate and farming conditions 

Ambient conditions such as temperatures, may affect feed efficiency. For instance, heat 

stress decreased feed intakes and degraded feed conversion ratio in Suffolk lambs (Padua 

et al., 1997). High temperatures require more efforts from sheep to regulate their body 

temperature and heat also reduces their appetite (Marai et al., 2007). Furthermore, 

temperatures may also alter the digestibility of feed by bacteria (Hyder et al., 2017). 

Sensitivity to temperatures in sheep depends on the fleece length (Armstrong et al., 1959), 

and by extension shearing practices. 

Farming practices can be quick and practical means to improve feed efficiency. For example, 

feed distribution or availability may influence feed efficiency. After feed restrictions, lambs 

fed ad libitum had an improved feed efficiency than counterparts which did not undergo a 

restricted diet (Butler-Hogg and Tulloh, 1982; Kamalzadeh et al., 1997).  During feed 

restrictions, growth decreases but it rebounds higher when restrictions end. The 

phenomenon is known as compensatory growth. 

Feed quality could also be considered as a lever. All feed efficiency criteria may not account 

for differences in dry matter content, energy density, digestibility, or metabolizability. Then, 

differences in feed dietary characteristics may sway feed efficiency calculations. A good 

illustration is the forage-to-concentrate ratio in diets: concentrates have a higher energy 

density and digestibility than forages. Studies observed that lambs fed a higher amount of 

concentrates were more feed-efficient than lambs receiving more forages, when FCRs were 
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computed from dry matter intake or digestible matter intake (Haddad and Husein, 2004; 

Jacques et al., 2011; Papi et al., 2011; Claffey et al., 2018). However, using concentrates to 

increase feed efficiency might not be sustainable. Concentrates may contain human-edible 

resources and contribute to the feed-food competition between animals and humans.  

When the diet changes and animals age, mechanisms underlying feed efficiency may change 

too. For example, there were null to moderate phenotypic correlations when sheep RFI was 

recorded under a diet rich in concentrates, and later under a diet rich in fiber 

(0.02≤rphenotypic≤0.51) (Redden et al., 2011; Ellison et al., 2022; Marie-Etancelin et al., 2023).  

C.2 Behavior: physical activity and feeding 

Behavior may differ between feeding systems (pasture, individual or collective troughs): for 

example, grazing animal have to explore their environment to feed. Thus, it was 

hypothesized that physical activity may be a bigger determinant of feed efficiency when 

ruminants graze (Muir et al., 2020). Most studies assessed the relationship between feed 

efficiency and behavior indoors, with individual troughs. Two kinds of behaviors are 

regularly mentioned in the literature: feeding behavior and physical activity. Both behaviors 

represent energy expenditures and may influence feed efficiency. 

Variations in physical activity may alter feed efficiency since activity is not accounted in 

most cases. For instance, low RFI steers tended to spend more time idle and lying (Gomes 

et al., 2013). Then, efficient animals would save energy since standing instead of lying would 

increase energy expenditures by 16-29% (Lobley, 1990). However, other authors reported 

no significant difference in posture activities between efficient and non-efficient cows, 

when tied in stalls (De La Torre et al., 2019). 

Feeding contributes to physical activity through movements and postural changes. Feeding 

behavior encompasses several traits. Feed intake and duration can be expressed per day or 

visit. Both traits were genetically associated to RFI in Romane lambs: intake per visit was 

correlated negatively to RFI (rgenetic=−0.33 ± 0.14) same as feed duration 

(rgenetic=−0.22 ± 0.17) (Marie-Etancelin et al., 2019). These results underlined that feed 

efficient sheep had larger meals per visit. Besides, several studies demonstrated that feed 

efficient sheep ate less and visited less often feeders at the genetic and phenotypic levels 

(Muir et al., 2018; Marie-Etancelin et al., 2019; Sepulveda et al., 2022). Thus, efficient sheep 
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might save energy by moving less often to visit feeders and eating more per visit. It could 

decrease the physical activity required by the feeding behavior.  

Finally, feeding behavior may vary between sexes and diets (Vandenheede and Bouissou, 

1993; Abijaoudé et al., 2000). When sheep are offered several feeds, animals may select 

feeds to maintain the rumen pH and osmolality (Cooper et al., 1995). Extreme pH and 

osmolality can lead to metabolic diseases and alter the microbiota.  

C.3 Digestion: an interplay between the microbiota and its host 

The holobiont symbiosis is particularly important for digestion. Digestibility is the ability to 

degrade feed into nutrients. That digestive ability may depend on host and microbiota 

determinisms.    

Digestibility of the holobiont 

Feed efficiency and digestibility are often associated, but it might be difficult to distinguish 

cause-and-effect relationships. Sauvant and Nozière (2016) carried out a meta-analysis and 

showed that decreasing DMI results in a higher dry matter digestibility. Thus, Cantalapiedra-

Hijar et al. (2018) stressed that improving feed efficiency could cause a higher dry matter 

digestibility by decreasing feed intake. So, changes in digestibility might be the consequence 

and not the cause of feed efficiency variations. However, two reviews underlined that in 

most studies, the dry matter digestibility did not significantly differ between the most a nd 

least efficient cattle (Cantalapiedra-Hijar et al., 2018; Kenny et al., 2018). Discrepancies 

between studies may arise from diet differences and level of feeding.  

The symbiosis underlying the digestion 

Generally, the symbiosis is mutually beneficial to the host and its microbiota . The balance 

between the metabolism and immunity of the host and its symbiont is called eubiosis 

(Ponziani et al., 2017). We will focus on one symbiont throughout the thesis: the rumen 

microbiota. The rumen microbiota is a complex ecosystem encompassing: prokaryotes (e.g. 

bacteria and archaea), eukaryotes (e.g. protozoa and fungi), and viruses. Bacteria are 

abundant, diverse and considered as the most active among the rumen microorganisms 

(Sanjorjo et al., 2023) (Table 1). Archaea are less abundant and are mainly considered for 

methane production (Sanjorjo et al., 2023). Protozoa constitute a large part of the rumen 

microbial biomass (up to 60%), but their contribution to the host nutrition is still under 
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discussion (Newbold et al., 2015). Protozoa may have their own symbionts: associated 

archaea can be found inside or outside protozoa. Similarly fungi are not the most abundant 

microorganisms, however they are known for their high ability to degrade complex fibers 

(Sanjorjo et al., 2023). Viruses are abundant, contribute to interspecific genetic exchanges 

and they may lyse other microorganisms, but are rarely studied (Sanjorjo et al., 2023).  

Table 1: Abundance of microorganisms in sheep ruminal fluids 

Microorganisms 
Number of DNA copies or particles 

per mL of sheep rumen fluids 
Studies 

Bacteria 108 to 109 

(Belanche et al., 2019) 
(Pei et al., 2010) 

(Stiverson et al., 2011) 
(Yanagita et al., 2000) 

Archaea 105 to 107 
(Belanche et al., 2019) 
(Stiverson et al., 2011)  

Protozoa 105 to 108 

(Belanche et al., 2010) 
(Belanche et al., 2019) 

(Lettat et al., 2012) 
(Skillman et al., 2007) 

 

Fungi 104 to 106 
(Belanche et al., 2019) 

(Lwin et al., 2011) 

Viruses 107 to 1010 (Klieve and Bauchop, 1988) 
(Klieve and Swain, 1993) 

Ruminants have to rely on the microbiota fermentation to degrade the cellulose and 

hemicellulose -which are abundant fibers in plant cell walls (Selinger et al., 1996). The 

microbial fermentation produces volatile fatty acids (VFAs) as by-products. These VFAs 

represent sources of energy for ruminants, and they can fulfill more than 70% of ruminant 

energy requirements (Bergman, 1990). Rumen microorganisms also contribute to the 

degradation of lipids, and proteins. Microorganisms produce their own proteins and then, 

they are digested by the ruminant. Microbial proteins provide 60-85% of the amino acids 

available in the small intestine (Storm et al., 1983), where amino acids can be assimilated 

by the host. 

On the other hand, ruminants provide an adequate habitat for the microbiota in the foregut. 

Around 60-70% of the digestive tract volume is associated with a fermentative activity 

(Parra, 1978), which denotes the importance of microbial digestion. Ruminants are called 

polygastrics because they have three successive forestomachs and one stomach (Figure 3). 
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The rumen is the first and largest out of the four components (75% of the “stomachs” 

volume in sheep), then feed goes through the reticulum (8%), the omasum (4%), and the 

abomasum (13%) (Membrive, 2016). Studies often focused on the fermentative activity in 

the rumen due to its large volume, and its physical properties favorable to fermentation – 

such as its pH, temperature, humidity, and anaerobic conditions. 

 

Figure 3: Anatomy of the ruminant foregut 

In the rumen, abundances of some microorganisms were associated to feed efficiency. 

However, studies in cattle and sheep are conflicting: the same microbial genus could be 

positively and negatively associated to feed efficiency (Lovendahl et al., 2018). It suggests 

that members of a microbial taxa may contribute differently to digestion. On the opposite, 

different taxa may have the same function and contribute similarly to digestion: such taxa 

are functionally redundant (Weimer, 2015). In most studies, microorganisms could not be 

accurately affiliated at the species level, which hinders interpretations. Moreover, many 

species are not cultivated and their functions may be unclear. Nonetheless, associations 

were found between feed efficiency and bacteria contributing to the digestion of plant cell 

walls, protein, and aromatic compounds in the rumen of sheep and cattle (Ellison et al., 

2019; McGovern et al., 2020; Marie-Etancelin et al., 2021). Several studies also suggested 

that microorganisms producing specific volatile fatty acids might result in lower energy 

losses – through lower methane emissions.   

Production of methane by the symbiont 

Hydrogen ions are produced by the microbial fermentation and have to be eliminated: an 

excess may acidify the rumen and impair its function (Domingues Millen et al., 2016). In the 
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rumen, methane is produced by archaea which contributes to the elimination of hydrogen 

ions (Domingues Millen et al., 2016). Methane emissions represent an energy loss: from 2 

to 12% of the ingested energy, depending on the diet (Johnson and Johnson, 1995). 

Fermentation may result in the production of different VFA profiles. Producing propionate 

from fiber does not lead to methane production, while producing butyrate and acetate 

usually leads to methane production (Van Soest, 1994). However, bacteria such as the 

Acetitomaculum genus can also produce acetate from CO2 and H2, which decreases methane 

emissions (Le Van et al., 1998). Thus, it was hypothesized that feed efficient sheep might 

lose less energy when the rumen microbiota composition produces less methane, during 

digestion (Ellison et al., 2017; Marie-Etancelin et al., 2021). However, studies found 

alternatively positive, negative or no association between feed efficiency and methane 

emissions (Paganoni et al., 2017; Johnson et al., 2022; Navajas et al., 2022; Marques et al., 

2022). Differences in diets may partially explain the discrepancies in greenhouse gas 

emissions: diets affect both the rumen microbiota composition and the fermentation 

profile. Ellison et al. (2017) observed that more propionate is produced under concentrate-

based diets, while more acetate is produced under forage-based diets. Further investigation 

is needed to elucidate how the ruminal microbiota, feed efficiency, the diet and greenhouse 

gas emissions are related together.  

Dysbiosis 

The microbiota functions, composition or distribution may shift and create an imbalance. 

The imbalance is called a dysbiosis and it can be detrimental for the host (Stecher et al., 

2013). It may be caused by feeding practices, such as the distribution of a diet with a high 

energy density causing an acidosis (Khafipour et al., 2009). 

In cattle and sheep, it has been hypothesized that dysbiosis may be associated to feed 

efficiency (Khiaosa-ard and Zebeli, 2014; Perea et al., 2017). First, dysbiosis may alter the 

digestion. Then, dysbiosis may also enable the growth of pathogens and the release of 

toxins, which would induce an immune reaction from the host (Khiaosa-ard and Zebeli, 

2014). It would increase the amount of the host energy allocated to non-productive 

processes. However, experiments did not yet prove a relationship between feed efficiency 

and dysbiosis. 
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C.4 Metabolism: efficiency of maintenance and growth 

If we consider growing ruminants, feed efficiency might be explained by differences in 

maintenance or production requirements. Holobiont physiological processes may influence 

those requirements such as energy production and protein metabolism.  

Energy production in mitochondria 

Maintaining homeostasis and growing require energy. Mitochondria supply energy to cells, 

by producing adenosine triphosphate thanks to respiration. Results in steers suggested that 

efficient animals had a higher rate of mitochondrial respiration, thanks to more efficient 

electron transfers (Kolath et al., 2006). In growing lambs, it was also suggested that a higher 

feed efficiency is associated to an enhanced mitochondrial respiration (Rajaei Sharifabadi 

et al., 2012; Giráldez et al., 2021; Touitou et al., 2022). 

Protein metabolism 

Proteins have to be continuously renewed to ensure maintenance, since proteins are 

degraded over time. The process is called protein turnover. Synthesis of proteins represent 

25 to 42% of heat production, and around 19% of all energy spent by growing lambs 

(Millward et al., 1976; Davis et al., 1981; Gill et al., 1989). Most synthesized proteins 

contribute to the protein turnover: up to 94% of the proteins synthesized by growing bulls, 

depending on the breed and production level (Lobley, 1990). 

Cantalapiedra-Hijar et al. (2018) reviewed the bovine literature and found conflicting results 

between protein metabolism and feed efficiency. They hypothesized that a lower protein 

degradation rate could improve feed efficiency. Authors also hypothesized that a higher 

protein synthesis rate could improve efficiency, if it leads to a higher protein retention. A 

lower protein degradation or a higher synthesis rate could both explain feed efficiency in 

growing lambs: concentrations of blood amino acids could be higher in feed efficient lambs 

(Giráldez et al., 2021), or lower (Touitou et al., 2022). 

Maintenance and growth requirements 

In lambs weighing 30 kg, maintenance represent 62% of net energy requirements when 

lambs grow by 100 g per day, against 42% when they gain 400 g per day (Noziere et al., 

2018). Herd and Arthur (2009) postulated that feed efficient cattle might have lower 

maintenance energy requirements. Literature in cattle and pigs also suggests that feed 
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efficient animals may have a higher efficiency of growth (Barea et al., 2010; Cantalapiedra-

Hijar et al., 2018). More studies are warranted to establish that maintenance requirements 

and efficiency of growth are related, and how they might affect feed efficiency in ruminants.  

Physiological processes, such as protein and energy production, may be associated to 

variations in requirements for maintenance or growth. Body composition and organ sizes 

may also affect requirements, depending on the age and maturity. During growth, protein 

deposition is more energetically efficient than fat deposition (Herd and Arthur, 2009). On 

the opposite, higher amounts of proteins would be associated to higher maintenance 

requirements in adults (Herd and Arthur, 2009). 

C.5 Genetics 

Feed efficiency traits are complex traits, meaning that they  are partially determined by 

polygenic determinisms - i.e. multiple genes (Goddard et al., 2016). The genome determines 

the potential of an animal for feed efficiency, while genetic expression ultimately affect the 

phenotype, in conjunction with the environment.  

Differences between breeds underline that different genetic backgrounds may result in feed 

efficiency variations in sheep (Notter et al., 1984) and cattle (Crowley et al., 2010). 

Depending on the criterion, the most feed efficient breed varies (Notter et al., 1984).  

A meta-analysis in meat sheep found low to moderate estimates for feed efficiency 

heritabilities: 0.12±0.03 for FCR, against 0.32±0.15 for RFI over 7 heritability estimates 

(Mucha et al., 2022). In Romane lambs, heritabilities were relatively important: 0.30±0.08 

for FCR, 0.45±0.08 for RFI (Tortereau et al., 2020). It underlines that feed efficiency could 

be selected since it is partly inherited. For instance, lambs from efficient sires grew as much 

but ate 3% less concentrates than lambs from inefficient sires after one generation of 

divergent selection for RFI (Tortereau et al., 2020). 

Dams transmit part of their genetic information to their offspring. The combination of 

alleles transmitted by dams and sires determine the genetic potential of offspring: the direct 

additive genetic effect. In meat sheep and beef, dams care for their offspring during the pre-

weaning period which might affect feed efficiency too. Maternal caring might be inherited 

and determined by the dam genetics. Studies are discordant in growing beef: RFI could be 

either significantly (h2
maternal=0.09±0.04; Crowley et al., 2010) or insignificantly associated 
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to maternal effects (Hoque et al., 2007). However, maternal heritability was not evidenced 

when RFI was analyzed in New Zealand maternal sheep (Johnson et al., 2022). More studies 

are warranted, since it can be difficult to disentangle herd effects from maternal effects. 

Various genomic mechanisms were associated to feed efficiency, through genome-wide 

association studies, variant analysis and gene expressions. Cantalapiedra-Hijar et al. (2018) 

reviewed the beef literature and proposed several categories of biological functions. In 

sheep, several of these functions may also explain feed efficiency:  

- Cell cycle, growth and proliferation (Cockrum et al., 2012); 

- Development and morphology (Cockrum et al., 2012); 

- Cell transport and signaling (Jonas et al., 2016; Yang et al., 2022); 

- Protein, carbohydrate and lipid metabolisms (Giráldez et al., 2021; Zhang et al., 2021); 

- Energy production (Giráldez et al., 2021); 

- Immunity, inflammation, and oxidative stress (Giráldez et al., 2021; Lin et al., 2023). 

Different traits may share similar genetic determinisms. Saatchi et al. (2014) suggested that 

a pleiotropic quantitative locus may affect feed efficiency but also production and 

reproduction traits, on the 6th chromosome in cattle. It may partially explain why feed 

efficiency can be genetically correlated to other traits. However, further studies are needed 

to confirm if only one gene is determinant and which one.  

Holobiont genetics may drive feed efficiency through host and microorganisms’ genetics. In 

addition to the above-mentioned effects, host genetics may shape the ruminal microbiota 

composition.  Heritabilities of rumen bacterial abundances varied between 0 and 0.29±0.07, 

with an average of 0.04±0.03 in dairy sheep (Martinez Boggio et al., 2022). QTLs were 

identified for a minority of ruminal bacteria in sheep, with candidate genes associated to 

immune reactions and metabolism (Mani et al., 2022; Martinez Boggio et al., 2022). These 

experiments demonstrated that a small part of the rumen microbiota was genetically 

determined, even if further experiments are needed to ascertain the genetic mechanisms. 

The same conclusion was reached in cattle, where some rumen microorganisms were 

heritable and associated to feed efficiency (Li et al., 2019b). Thus, feed efficiency might be 

driven by host genetics directly and indirectly, to a lesser extent, by its influence over the 

microbiota composition. The combination of host genome and its microbiota genomes is 

called the hologenome. 
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Genetic determinisms of feed efficiency may vary across different environments  and ages. 

For instance, the genetic correlation between grower and finisher diets was moderate for 

RFI in steers (rgenetic=0.50± 0.48) (Durunna et al., 2011). More studies are needed to confirm 

results with lower standard errors in cattle and sheep. However, it suggests that one animal 

will be ranked differently from one environment to another, based on its genetic potential 

for feed efficiency. 

C.6 Relative importance of feed efficiency determinants 

Finally, previous sections underlined the plurality of feed efficiency determinants. It might 

be difficult to pinpoint some determinants: efficiency variations might be explained by a 

wide-variety of determinants, but not all at once. Furthermore, feed efficiency is context-

dependent: discrepancies might be due to feed efficiency criteria, breeds (Notter et al., 

1984), physiological states (Jonas et al., 2016) and genotype by environment interactions 

(Durunna et al., 2011). Thus, the importance of feed efficiency determinants is likely 

context-dependent. 

Nonetheless, studies attempted to assess the importance of feed efficiency determinants 

in cattle growing in feedlot (Herd et al., 2004, 2019; Richardson and Herd, 2004). 

Figure 4: Estimated contributions of biological mechanisms to residual feed intake, in studies 
involving beef cattle. 
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The biggest sources of variations in RFI were (Figure 4): body composition, digestion, 

activity, tissue metabolism and stress. However, new determinants of feed efficiency have 

yet to be discovered since 27 to 67% of RFI variations remained unexplained in feedlot cattle 

(Figure 4). New technologies might provide deeper or new insights into feed efficiency by 

studying metabolites, microbiota and genotypes for instance. These new sets of variables 

might also provide predictors of feed efficiency. 

 

 

 

 

 

• Take-home messages about feed efficiency: 

• Various feed efficiency traits were defined. All direct criteria require individual feed 

intake records, which require expensive investments. 

• In subsequent analyses of the manuscript, two traits will be retained since they are often 

reported in the literature: feed conversion ratio (FCR), and residual  feed intake (RFI). The 

two traits present different advantages. FCR can be easily interpreted and values can be 

compared between different populations. RFI’s computation makes RFI phenotypically 

independent from size and growth phenotypes. 

• Few or conflicting results exist about associations between feed efficiency and other 

traits: such as body composition, organ sizes, health traits or greenhouse gas emissions. 

• A large proportion of feed efficiency variations remains unexplained.  

• Feed efficiency is complex since it is driven by many factors. There are interplays 

between the holobiont and its environment. The diversity of possible biological 

determinisms suggests that studying the genomes and metabolisms of the ruminal 

microbiota and the host might highlight predictors of feed efficiency. 
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II – Predicting feed efficiency from omics 

The previous section highlighted that feed efficiency is rarely selected because recording 

feed intake is expensive. Predicting feed efficiency could help circumvent the record of feed 

intakes. Thus, the present section will explore options to predict complex traits such as feed 

efficiency. First, the literature review will highlight omics as predictors of feed efficiency. 

Then, the review will briefly introduce statistical challenges and integration strategies. 

A. The omics potential as feed efficiency predictors 

Terms with the -omics suffix refers to the study of a specific -ome field, i.e. a subset of 

biological information. For instance, genomics refers to the study of the genome. The term 

“genome” was first coined in the 20s (Lederberg and McCray, 2001), and now stands for the 

information carried by the genetic make-up of an organism. Various -ome terminologies 

were coined to name different layers of biological information, from genetics to 

phenotypes. Thus, studying different omics will highlight different biological questionings 

(Dettmer et al., 2006). 

Previously, the review pointed out that feed efficiency is a complex trait with many 

determinants. Many omic fields exist and keep emerging: 29 omic fields were already 

identified in 2010 (Prohaska and Stadler, 2011). Many determinants could be studied 

through the lens of omics: e.g. the microbiota composition, the holobiont metabolism and 

host genetics. Nonetheless, the review will focus on the most used or promising omics to 

predict feed efficiency. 

Discussing omics will underline why they are promising to predict feed efficiency.  Next 

subsections will underline what information omics represent, how they are obtained and 

their use to predict sheep feed efficiency.   
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A.1 Genomics 

What is the host potential? – The genome is the set of DNA sequences of an organism 

(Alberts et al., 2002). That DNA set encodes the biological information which might be 

expressed by the individual. Thus, genomics can help to predict the potential phenotypes.  

In domestic animals, the use of genomics was partly motivated by marker assisted selection 

and then genomic selection (Blasco and Toro, 2014). Markers are variations of the DNA 

sequence scattered across the genome. When a marker is close to a gene controlling a trait, 

both are in linkage disequilibrium: marker and gene will likely segregate together as few 

genetic recombination between them can be expected. Thus, the marker should remain 

associated to the gene, and by extension to variations of the trait controlled by the gene.  

Nowadays, the most commonly used markers are single-nucleotide polymorphisms (SNPs): 

variations of the DNA sequence by one nucleotide base. DNA microarray chips are a cost-

effective solution to collect SNP data and genotype a high number of animals (Meuwissen 

et al., 2016). Whole-genome sequencing is less cost-effective but allows to discover and 

detect more SNPs. Overall, many genomic marker effects can be modelled simultaneously 

to predict traits thanks to technological and statistical progresses.  

Meuwissen et al. (2001) helped popularizing genomic selection by including thousands of 

markers scattered across the genome. Genomic prediction was recommended for traits too 

expensive or complex to record routinely, such as feed efficiency (Hayes et al., 2013). In 

growing cattle, the accuracy of RFI genomic predictions varied between -0.01 and 0.67 

depending on the population, cross-validation strategy, model and SNP panel (Pryce et al., 

2012; Lu et al., 2016; Silva et al., 2016; Brunes et al., 2021). It demonstrates the potential 

of genomics to predict feed efficiency. Studies are warranted in sheep.  

Note: Genetic expression partially depends on the genome, on the DNA sequence. However, 

the epigenome also influences genetic expression. Epigenetics focuses on the changes of 

DNA expression without any DNA sequence change, such as cytosine methylation. The 

methylome refers to the methylation profile. The influence of epigenetics over feed 

efficiency was recently evidenced in lactating cows: efficient cows had less methylated sites 

(López-Catalina et al., 2022).  
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Additional note: Accuracy of genomic predictions are often expressed as a ratio: the 

correlation between adjusted phenotypes and genomic breeding values, divided by the 

square-root of the trait heritability. On the other hand, prediction accuracy of other omics 

is often expressed directly as the correlation between phenotypes and predictions.  

A.2 Metabarcoding / metagenomics 

During the last decade, microbiota data have been proposed to predict animal complex 

traits (Ross et al., 2013). As the review showed (section I.C.3), the microbiota may 

contribute to digestion and feed efficiency. Therefore, the microbiota may be relevant to 

predict feed efficiency. 

Moreover the microbiota composition could also help predict efficiency indirectly, by 

signing for systematic effects (He et al., 2022a). For instance, the microbiota composition is 

heavily affected by farming and geographical conditions (Henderson et al., 2015; Belanche 

et al., 2019; Li et al., 2019c; Anderson et al., 2021; Marie-Etancelin et al., 2021; Wei et al., 

2021). Thus, when environmental factors affect both efficiency and the microbiota 

composition, metabarcoding and metagenomics data could be indirectly associated to feed 

efficiency.  

Microbiota data are currently mainly obtained from metabarcoding and metagenomics. 

Both techniques rely on different sequencing strategies, briefly discussed subsequently.  

Metabarcoding 

Who is part of the microbiota? – Metabarcoding the microbiota allows to assess the 

microbiota composition. The goal is to count the number of sequences affiliated to a 

phylogenetic taxon, which is why metabarcoding is also called metataxonomics. 

Metabarcoding may help predicting feed efficiency by knowing who may contribute to 

digestion. 

Metabarcoding is carried out by sequencing a targeted genomic sequence - i.e. a barcode. 

Metabarcoding may target: the prokaryote 16S ribosomal RNA (rRNA) gene for bacteria 

and/or archaea abundances, the eukaryote 18S rRNA gene mainly for protozoa and 

marginally for fungi, while the internal transcribed spacer is preferred for fungi (Breitwieser 

et al., 2019). Viruses are largely ignored by metabarcoding studies since no universal 

barcode gene was identified in viruses (Breitwieser et al., 2019). Today, short-read 
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sequencing is the most commonly used strategy in metabarcoding. Short-reads contribute 

to the cost-effectiveness of metabarcoding but it also decreases the reliability of taxonomic 

affiliations (Fuks et al., 2018; Callahan et al., 2019).  

In sheep, predicting feed efficiency from rumen metabarcoding looks promising: Ellison et 

al. (2019) found a strong correlation between actual sheep RFI and predictions from 16S 

data (r=0.71). In dairy cows, the correlation between REI and 16S predictions was lower 

(r=0.55) (Tapio et al., 2023). These metabarcoding results still have to be confirmed in larger 

populations. 

Metabarcoding is a fast and cost-effective approach to get an approximate census of 

microorganisms, but it does not capture information about the microbiota genetic potential 

(Breitwieser et al., 2019). 

Metagenomics 

What is the microbiota potential? – Metagenomics allows to study the “second genome” of 

the holobiont, by sequencing a wide variety of microbial DNA fragments. Metagenomics 

may help by depicting how the microbiota can contribute to digestion.  

Metagenomics does not target a specific genomic sequence or microbial group. Whole-

genome shotgun sequencing can sample all microorganisms’ DNAs (bacteria, archaea, fungi 

and viruses), but also host and feedstuffs DNAs. Thus, metagenomics may help 

characterizing the functional potential of the microbiota without selecting any particular 

gene (Scholz et al., 2016). Compared to metabarcoding, metagenomics requires a high 

coverage, i.e. a lot of sequences per sequenced locus. Thus, metagenomics is much more 

expensive and is rarely used in large animal populations. 

Predicting feed efficiency from rumen metagenomics is also promising: Hess et al. (2022, 

preprint) found moderate correlations between actual sheep RFI and predictions (from 

0.19±0.05 to 0.47±0.17). Accuracies varied with the age and diet of sheep. In dairy cows, 

both metabarcoding and metagenomic studies underlined the potential of the ruminal 

microbiota to predict sheep feed efficiency. 
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Note: Metagenomics can be cost prohibitive. Thus, inference models were created to infer 

the abundance of microbial genes or functions from metarcoding data (Picrust, 2013). 

Results might be less accurate, but more animals can be studied with metabarcoding.  

A.3 Transcriptomics / Metatranscriptomics 

Transcriptomics  

What seems to happen? – The transcriptome encompasses all RNA transcripts expressed in 

one host cell or tissue: coding RNA such as messenger RNA, or noncoding RNA such as 

ribosomal RNA (Vailati-Riboni et al., 2017). RNA is produced based on a DNA sequence 

during transcription. Thus, studying RNA may indicate which parts of the genome are 

expressed and how much. RNA can also mediate the genome expression (Romao et al., 

2011). Then, transcriptomics could help predict complex traits by shedding light on active 

genetic mechanisms. 

Many technologies exist and keep emerging in transcriptomics. While microarrays allow the 

study of predetermined sets of RNA, next-generation sequencing allows the discovery of 

new transcripts (Schneider and Orchard, 2011). RNA-seq is a cost-effective solution, which 

generally relies on the conversion of RNA into DNA copies prior to sequencing (Schneider 

and Orchard, 2011).  

Past studies suggested that transcriptomics could contribute to feed efficiency prediction. 

In Hu lambs, the liver transcriptome revealed that coding and non-coding RNA were 

significantly associated to RFI In Hu lambs (Zhang et al., 2019b, 2022). In pigs, liver 

transcriptomics predicted RFI breeding values well (0.63 ≤ R2 ≤ 0.65) (Messad et al., 2019). 

In dairy sheep, non-invasive samplings identified associations between the milk 

transcriptome and feed efficiency (Suárez-Vega et al., 2023). In meat sheep, studies are still 

needed to assess how well feed efficiency can be predicted from transcriptomics, 

particularly from non-invasive sampling. 

Metatranscriptomics  

The host and microbiota transcriptomes -called metatranscriptome- could be relevant to 

predict feed efficiency too. Metatranscriptomics would unravel which microbiota and host 

genes are expressed (Aguiar-Pulido et al., 2016). In cattle, feed efficiency groups were 

associated to different rumen metatranscriptomic profiles (Li and Guan, 2017; Li et al., 
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2019a; Xue et al., 2022). However, the prediction accuracy of feed efficiency from 

metatranscriptomics is not or scarcely documented in ruminants. 

A.4 Proteomics / metaproteomics 

Proteomics 

What makes it happen? – The proteome is the set of proteins found in one host cell or tissue 

(Vailati-Riboni et al., 2017). Proteins are synthesized based on RNA sequences, during 

translation. Proteins are involved in every biological process: recognizing signals, catalyzing 

reactions, regulating the metabolism, shaping structures, and motion (Vihko and Wagenerb, 

1992). Thus, the proteome may help predict complex phenotypes by studying the proteins 

underlying all the biological processes which eventually lead to the observed trait.  

Proteomics may focus on the expression level, structure or function of proteins (Vaz and 

Tanavde, 2018). While predicting complex traits in animal science, most studies relied on 

expression-based proteomics: quantitative profiles of proteins are compared between 

samples. A pre-separation step, such as electrophoresis or chromatography, can be carried 

out to separate proteins before identification and quantification (Vailati-Riboni et al., 2017).  

Then, mass spectrometry is often at the core of high-throughput quantitative profiling 

(Aebersold and Mann, 2003).  

Studies showed that proteomics could supply feed efficiency markers. In dairy heifers and 

Merino lambs, studies highlighted that the hepatic proteome was associated to diet 

differences (Santos et al., 2018; Zhang et al., 2019a). In both studies, feed efficiencies were 

contrasted between the diet treatments. But studies still have to assess the proteome 

predictive ability when ruminants are fed the same diet.  

Metaproteomics 

 The host and microbiota proteomes -called metaproteome- could also predict feed 

efficiency. In 12 dairy cows, the rumen proteome accurately predicted the feed efficiency 

group (error rates as low as 0.17), better than metagenomics and 16S metabarcoding (as 

low as 0.25) (Sasson et al., 2022). Larger independent studies are needed to confirm results. 



 Review: Assessing and predicting feed efficiency in meat sheep 

49 

A.5 Metabolomics 

What happens and happened? – The metabolome corresponds to the set of metabolites 

found in a cell or tissue: metabolites are small molecules (<1500 daltons) produced by the 

metabolism (Wishart, 2007). Metabolites can be intermediate molecules or end products. 

Thus, metabolomics may help predict complex traits by studying what was and what is 

produced by metabolic reactions. 

Metabolomic profiling may be done by coupling separation techniques (chromatography, 

electrophoresis) and mass spectrometry (Vailati-Riboni et al., 2017). Same as proteomics, 

mass spectrometry is used to quantify and identify metabolites. The metabolome is also 

frequently investigated thanks to NMR and infrared spectroscopy (van der Greef et al., 

2004). Human expertise or automatic software may identify the molecules attributable to 

spectral peaks (Lefort et al., 2019). In ‘black-box’ models, spectral variables may be directly 

used without attributing metabolites. For instance, NMR spectra may be d ivided into slices 

called bins or buckets. Then, the area under the curve of buckets can be used as quantitative 

variables. 

Past studies proved the potential of metabolomics to predict sheep feed efficiency. Plasma 

metabolites could discriminate the efficient line from the inefficient one: the area under 

the receiver operating characteristic curve (AUROC) ranged from 0.81 to 0.87 (Touitou et 

al., 2022). Serum metabolites could predict whether a lamb had a high or low RFI phenotype 

(AUROC=0.80) (Goldansaz et al., 2020). While studies in cattle suggested that the rumen 

metabolome may also provide feed efficiency biomarkers (Artegoitia et al., 2017; Clemmons 

et al., 2020), results were less optimistic in the trial involving Romane divergent lines 

(Touitou et al., 2022). It remains to check the accuracy of quantitative predictions of 

efficiency phenotypes from metabolomics. 

To date, no consensus term is used to specifically refer to the host and microbiota 

metabolomics (unlike metagenomics, metatranscriptomics or metaproteomics). Host and 

microbiota metabolites may also pass through different tissues: microorganisms release 

volatile fatty acids in the ruminal fluid which may pass into the host bloodstream 

(Membrive, 2016). Thus, plasma, serum and rumen metabolomes will be seen as the result 

of the holobiont metabolism throughout the thesis.  
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Note: Metabolomics covers a wide range of molecules: vitamins, carbohydrates, nucleic 

acids, amino acids, fatty acids and more (Vailati-Riboni et al., 2017).  Molecular subsets may 

also be studied: for instance, the lipidome was coined to refer to the study of lipids.  

A.6 Phenomics 

What is observed? – The definition of phenomics varies depending on authors. Soule (1967) 

introduced the word phenome to refer to “the phenotype as a whole”. The phenome 

encompasses all phenotypes of an individual across time, organs, tissues and cells (Houle 

et al., 2010). Thus, Houle et al. (2010) defined phenomics as large-scale phenotyping. One 

has to prioritize a set of phenotypes, so let’s focus on the “spectral phenome”. As defined 

by O’Reilly-Wapstra et al. (2013), the spectral phenome is the set of reflectances, 

absorbances or transmittances of near-infrared spectra (NIRS). NIRS allows to rapidly dress 

the physico-chemical profile of a biological sample (O’Reilly-Wapstra et al., 2013).  

Metabolomics and phenomics technologies and goals are close. However, the thesis makes 

the distinction between metabolomics and phenomics, since faeces are analyzed with NIRS. 

The fecal composition does not solely depend on host excreted metabolites: undigested 

feedstuffs are also excreted. Phenomic variables are quantitative phenotypes, representing 

physico-chemical properties of samples (Rincent et al., 2018). Thus, spectral phenomics may 

help predict feed efficiency by indirectly capturing molecular phenotypes contributing to 

efficiency. 

 Few studies tried to predict feed efficiency from NIRS data. However, Kneebone and Dryden 

(2014) used faecal NIRS to predict sheep intake and digestibility under several diets: R2 

varied from 0.76 to 0.90 depending on units (dry, organic, digestible matter or crude 

proteins). Studies are needed under a single diet to see how accurately faecal NIRS may 

capture inter-individual variations, instead of diet variations. In dairy cows, the prediction 

accuracy of RFI from milk mid-infrared spectra varied with lactation stages and cross-

validation strategies: R2 varied from 0.08 to 0.46 (Shetty et al., 2017). Therefore, infrared 

spectra may help predict feed efficiency but further investigations are required in meat 

sheep: a sampling location and prediction strategy have yet to be defined.  
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A.7 The cascade of omics 

As previous sections hinted, all omics are related and represent a cascade of events 

(Dettmer et al., 2006, Figure 5). The cascade begins with the genome and metagenome, 

then continues with the transcriptomes, proteomes, metabolome. Finally, phenotypes are 

the end result of the cascade.  

 

Figure 5: Omics commonly studied, from the genetic make-up to the phenotype 

Different omic layers are connected through the omic cascade of events, but also because 

of host and microbiota interactions. For example, the development of the rumen epithelium 

is the result of a cross-talk between lambs and their microbiota. The rumen epithelium 

growth is mediated by host gene expression (transcriptome) and volatile fatty acids ( rumen 

metabolome) produced by the microbiota (metabarcoding and metagenomics) (Lin et al., 

2019). Moreover, ruminant genetics partially determines the rumen microbiota 

composition (Li et al., 2019b; Martinez Boggio et al., 2022). On the opposite, the 

metagenome has virtually no influence over the host genome over short period of times. 

That assumption does not hold over long time spans: ruminants and their microbiota co-

evolved for millions of years (Selinger et al., 1996). Co-evolution occurred thanks to natural 

selection, genetic drift and horizontal genetic transfers – gene transfers between different 

the host and different microbial species (Rosenberg, 2021). 
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B. Statistical tools to predict feed efficiency from omics 

Previous section highlighted that omics provide different layers of information, from the 

genome to the phenotype. Thus, combining different omics may yield a more 

comprehensive understanding of the biological system in order to decipher feed efficiency 

(Widmann et al., 2015).  However, different omics may also provide redundant information 

due to the connectedness of omics. Therefore, several challenges must be addressed by 

statistical tools when it comes to pinpoint signals out of the omic haystack.  

The review of statistical tools will focus on supervised statistical learning. Indeed, the aim 

of the thesis is to predict feed efficiency. Statistical models will be used to mine omics and 

identify biological signatures predicting sheep feed efficiency. That is why the review will 

focus on supervised models, rather than unsupervised approaches used to unravel unknown 

patterns. 

First, statistical challenges of omics data analysis will be reviewed. Then, the review will 

linger on modelling possibilities to predict complex traits from omic patterns. Finally, data 

integration will be discussed to understand how multi-omics can be combined to predict 

traits. 

B.1 The statistical challenges of omics 

Analyzing omics offer several challenges: omics are noisy, highly dimensional, and 

heterogeneous. All these challenges may factor in pre-processing and during statistical 

learning. 

Noisy data 

Omics data are noisy (Picard et al., 2021): meaning that omic variables are the reflect of 

biological signals and artifacts. Too much noise may even mask biological signals (Ning and 

Lo, 2010). 

First, missing values can be a source of noise in any dataset: there is no record, whether a 

biological signal exists or not. Missing values may arise at random or arise from technologies  

(e.g. low sequencing coverage, low detection sensitivity of molecules, faulty measurements) 

(Mirza et al., 2019). When records are incomplete, all individuals with missing records may 

be discarded or missing values can be imputed. Imputation may be preferred to avoid 
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wasting data when samples are scarce. Song et al. (2020) reviewed imputation techniques. 

Briefly, imputation may rely on single omics data: missing genotypes can be imputed from 

a reference population and genetic algorithms making use of genetic properties such as 

linkage disequilibrium (Song et al., 2020). In multi-omics settings, missing values can also 

be inferred from different omics: for instance, missing transcriptomics could be deduced 

from genomics  thanks to machine learning models, transfer learning or matrix factorization 

(Song et al., 2020). Imputation of missing values may be done prior to supervised learning. 

Nonetheless, some approaches may handle missing values directly. The single-step 

framework in genomic selection may include individuals without genotypes, by updating 

the genomic relationship matrix thanks to pedigree (Legarra et al., 2014).  The single-step 

approach was then applied to different omics: e.g. to missing transcriptomics data, thanks 

to genomics or pedigree data (Westhues et al., 2019). 

Batch effects may also be a source of noise. Batch effects may be classed into several 

categories: biological effects (e.g. age or sex), experimental (e.g. housing or diet), technical 

(e.g. sampling condition, technician or technology) or computational (e.g. software and 

parameters) (Wang and Lê Cao, 2020). Wang and Lê Cao (2020) reviewed strategies to either 

account for batch effects, or correct for batch effects – sometimes referred to as 

normalization. Prior to statistical learning, options to correct batch effects include: 

correcting the distribution of variables per batch (e.g. center variables within batches) or 

modelling batch effects (e.g. Bayesian, linear or partial least-squares models) (Wang and Lê 

Cao, 2020). All options are not listed, and options must be selected based on their 

assumptions. 

Finally, it may be difficult to accurately pinpoint or select relevant variables when 

collinearity exists between variables. Collinearity arises from associations, correlations 

between different variables. One signal may overlap over several variables. Redundancy 

may exist in single-omics and multi-omics studies, as suggested for transcriptomics and 

genomics (Westhues et al., 2019). 

The curse of dimensionality  

Omics data are often highly dimensional: datasets include many variables. For instance, 

genotyping animals with DNA chips may yield dozens of thousands of SNPs per individual. 

The number of variables often largely exceed the number of samples for practical or 
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economic reasons (Picard et al., 2021). When machine learning is used to predict an 

outcome, models may overfit by capturing random noise when the model is trained. 

Overfitting may be exacerbated with highly dimensional datasets (Domingos, 2012): when 

there are more variables, it is more likely to find random variable combinations spuriously 

associated to an outcome observed in few samples. However, capturing these random 

combinations is not interesting because model predictions will not be generalizable to new 

independent datasets.  

When it comes to omics, “more is better” according to Huang et al. (2017). Multi-omics 

provide more layers of information. However, it may also aggravate the curse dimensionality 

by drastically increasing the number of variables. It may bring more noise or redundant 

information (Picard et al., 2021). 

One solution is to decrease dimensionality by extracting features. The aim of feature 

extraction is to transform the original set of variables into a smaller set of combined 

variables, without losing too much information (Mirza et al., 2019). Principal component 

analysis is the most widely used technique to extract features: the analysis is applied to 

define linear combinations of variables and then principal components coordinates are used 

as the new variables (Picard et al., 2021). Meng et al. (2016) provide a more thorough review 

on dimension reduction techniques. 

Another solution is to decrease the dimensionality by selecting variables. Only a subset of 

the most informative variables can be kept. Selection methods are classified into three 

categories: 

- Filter methods applied prior to model building: variables may be filtered based on 

univariate statistics (e.g. correlation analysis, differential analysis) (Mirza et al., 

2019); 

- Wrapper methods repeatedly used while building successive model versions: a 

multivariate model is trained several times and the simplest model optimizing 

accuracy is kept (e.g. recursive feature elimination discards the least important 

variables successively until accuracy decreases too much) (Picard et al., 2021); 

- Embedded methods are included in models having a built-in variable selection (e.g. 

multivariate penalized regressions such as Lasso, Bayesian approaches) (de los 

Campos et al., 2018). 
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Variable selection and feature extraction can be used jointly to reduce d imensionality. 

Dimensionality reduction alleviate computational intensity but also improves 

interpretability (Brouard et al., 2022). 

Reducing the dataset dimension can also decrease the complexity of subsequent models 

too. Let’s consider a model whose complexity depends on the number of variables. Training 

a model from many variables may give it more flexibility. More flexible models capture more 

information and the variance of predictions increases. Assumptions of flexible models may 

fit more closely to the data and the prediction bias decreases. The tradeoff bias-variance 

will affect how well a model can be generalized to new data (Figure 6): 

- The model is underfitted when it captures too few signals (the variance is low and 

the bias high); 

- The model is overfitted when it captures too much noise (the variance is high and 

the bias is low) (Hastie et al., 2021). 

Figure 6: Model goodness of fit and the underlying trade-off between bias and variance 

Selecting a dimension reduction strategy may be done thanks to a validation dataset. 

Validation sets can be study subsets left out during cross-validation, or independent studies. 

The goal is to train a model (on a training set), which generalizes well to new data (validation 

set). 
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Data heterogeneity and compositionality 

Heterogeneity of data may be challenging, especially in multi-omics experiments. 

Heterogenous datasets differ based on their distribution (sparsity, normality, …), on their 

dimension (high or small number of variables per dataset) or data type (continuous, 

discrete, …). Fusing kernels, projecting to a common latent subspace, using networks or 

deep learning algorithms are popular approaches to incorporate heterogeneous datasets 

(Mirza et al., 2019). 

Another source of heterogeneity often overlooked by biologists is compositionality. 

Pondering the nature of variables is not the same as pondering whether variables are 

compositional. Genotypes can be encoded by allele counts, while transcriptomics and 

metabarcoding may be encoded by sequence counts. However, genotypes are not 

considered compositional while transcriptomics and metabarcoding data are. If the relevant 

information is relative, then data are compositional (Aitchison, 1982). In compositions, the 

information resides in ratios between parts. For instance, one may ask if having 80 

sequences attributed to bacteria 3 is a lot, in samples 2 and 3 (Figure 7)? It depends on how 

many sequences were attributed to other microorganisms: bacteria 3 is the most abundant 

in sample 3, while it is not in sample 4. It underlines that information is relative. 

A difficulty with compositional data is applying classic statistics which may turn out 

impractical. For instance, in Figure 7 a mock microbial community is composed of bacteria 

and archaea. Sequencing the 16S rRNA for the regions V4-V5 would allow to detect bacteria 

and archaea, while the regions V3-V4 would allow to detect bacteria only. Whatever the 

sequencing, let’s imagine that we would get the same number of sequences per bacteria 

and sequences (an unrealistic hypothesis). Then, the result of the first sequencing would be 

a composition (with bacteria and archaea), and the result of the second sequencing would 

be its subcomposition (with bacteria only). Counts must be converted into relative 

abundances since sequencing depth varies: the total number of sequences is uneven across 

samples. Finally, if one applied Pearson correlations, strong discrepancies would be found 

between bacteria correlations (Figure 7). Correlation analysis is unsound with compositional 

data because correlations cannot range freely: the constant sum of parts  impedes 

correlations from ranging between -1 and 1 (van den Boogaart and Tolosana-Delgado, 2013). 
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Figure 7: Illustration of correlation discrepancies between a composition and one 
subcomposition 
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Compositional data require specific treatments. If a dataset is compositional, each sample 

may be defined as a vector with N composition parts. The compositional vector 𝑥 =

(𝑥1, . . . , 𝑥𝐷) is defined in a geometrical space called simplex 𝑆𝐷 (Aitchison, 1982): 

𝑆𝐷  =  {𝑥 =  (𝑥1, . . . , 𝑥𝐷):      𝑥𝑖 ≥ 0, ∑ 𝑥𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐷

𝑖=1
 } 

where all parts 𝑥1 to 𝑥𝐷 have null or positive values.  And the sum of all parts is equal to a 

constant. 

Note: A dataset may be compositional even if the sum of raw data is not constant. When 

sequencing depth varies, the total number of sequences is not constant in metabarcoding 

and transcriptomics. However, information remains relative: raw counts must be 

interpreted as relative abundances (percentage, proportion…). And the sum of relative 

abundances is a constant. It is how data are interpreted that determines whether the 

dataset is compositional. Not raw data. 

Besides transcriptomics and metabarcoding abundances, proteomic and metabolomics 

concentrations are compositional too. Same as metabolomic buckets which represent parts 

of the area under the spectrum curve.  

Specific transformations are necessary to export compositional data from the simplex space 

𝑆𝐷 to a real space where Euclidean geometry applies. Logratios consist in logarithms applied 

to ratios between several parts of a composition. The centered logratio is the most 

commonly used transformation and is carried out sample-wise (Gloor et al., 2017):  

𝑐𝑙𝑟 (𝑥) = [ln (
𝑥1
𝑔(𝑥)

) , . . . , (
𝑥𝐷
𝑔(𝑥)

)] 

Where 𝑥  is  a vector of D composition parts (𝑥1, . . . , 𝑥𝐷). The sample geometric mean is 

denoted by 𝑔(𝑥). 

After a logratio transformation, compositional data may be used in appropriate standard 

multivariate statistical analyzes: principal component analysis or partial least-squares, for 

example.  



 Review: Assessing and predicting feed efficiency in meat sheep 

59 

B.2 Data integration in statistical learning 

Multi-omics experiments may help understand complex traits and predict them more 

accurately. Indeed, multi-omics would provide several layers of information between 

genetics and phenotypes. However, integrating omics does not guarantee a better 

understanding or better predictions. Not all studies managed to improve the prediction 

accuracy of complex traits from several omics. In ewes and cows, two studies evidenced 

that omics integration improved the prediction of all examined methane-related traits, 

compared to the best omic dataset (Ross et al., 2020; Qadri et al., 2022). In lambs and ewes, 

another study showed the opposite: combining genomics and metagenomics did not 

improve the prediction of the three respiratory traits assessed  (Hess et al., 2022). In pigs, 

the integration of genomics and microbiota improved the prediction of ADG and FCR (Qadri 

et al., 2022). In pigs again, predictions of ADFI and digestive coefficients were not improved 

by omics integration (Qadri et al., 2022; Carillier-Jacquin et al., 2022). 

Data integration strategies may be classified into distinct categories. Categories may be 

defined according to the integration goal: do we integrate different individuals or different 

variables? On the other hand, categories may be defined according to the strategy: how do 

we integrate data? 

Difference between P and N integration 

P and N integration refer to which data are integrated. Abbreviations comes from standard 

notations: P is used to denote the number of variables, while N denotes the number of 

individuals or samples.  

P-integration attempts to combine several studies recording the same set of P variables  

(Rohart et al., 2017b, Figure 8). Integrating data from different studies may increase the 

number of observations and the reproducibility of the model (Rohart et al., 2017a). Studies 

may correspond to experiments led by different teams, or correspond to batch effects. The 

Multivariate INTegrative sparse Partial Least-Squares (MINT-sPLS) is an example of P-

integration framework, implemented in mixOmics (Rohart et al., 2017a). 
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Figure 8: Difference between N and P integration (adapted from Lê Cao and Welham, 2021) 

N-integration tries to combine different data variables recorded on the same N samples or 

animals (Rohart et al., 2017b, Figure 8). Combining different data variables may uncover 

more biological signals, by simultaneously examining different layers of information or 

uncovering associations between the different variables (Singh et al., 2019).  Different data 

variables (several omics or non-omics data) may be grouped per kind into ‘blocks’. The block-

sPLS is an instance of N-integration, available in mixOmics (Rohart et al., 2017b). 

NP-integration is also feasible: it integrates different studies and different blocks of omics 

altogether (Rohart et al., 2017b). The MINT.block-sPLS was implemented in mixOmics 

(Rohart et al., 2017a). Few other integration techniques exist for NP-integration: literature 

focuses more on N-integration, on multi-omics. 

The diversity of integration strategies 

Integration strategies may be distinguished by when and how the different variables are 

combined. Picard et al. (2021) proposed 5 categories for integration strategies (Figure 9). 

1- Early integration 

Also called integration by concatenation, early integration is done before modelling. All 

blocks of variables are concatenated together, to get a single matrix. Any single-omics 

approach can be applied to the concatenated matrix: from deep learning, Bayesian, tree -

based, kernel to linear mixed models and more.   
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Early integration is the most simple approach (Rappoport and Shamir, 2018). Furthermore, 

mixed graphical models may be applied to the concatenated matrix to unravel the 

relationships between all variables (Picard et al., 2021). A disadvantage is that early 

integration does not account for data heterogeneity (Picard et al., 2021). Another drawback 

of concatenation is that some omics may be overlooked  and unused by the model (Rohart 

et al., 2017b): a single block of omics may overshadow others if it presents the strongest 

signals. 

Figure 9: Integration strategies (adapted from Picard et al., 2021) 
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2- Mixed integration 

Also called transformation integration, mixed integration can be seen as a two-step 

procedure. Each dataset may be transformed separately. Kernel, graph and deep learning 

may be used to transform each set of omics  into a simpler representation (Picard et al., 

2021). Then, the transformed blocks are modelled together. 

Compared to early integration, mixed integration may reduce the heterogeneity existing 

between different blocks of omics. 

3- Intermediate integration 

Intermediate integration encompasses methods which do not transform or concatenate 

variables (Picard et al., 2021). Intermediate methods can handle multiple datasets jointly 

and directly. Such methods may rely on a common latent space, such as matrix factorization 

or multi-omics factor analysis  (Picard et al., 2021). For instance, MINT-sPLS models 

integrate different studies by defining global components (also called latent variables in 

mixOmics), which are common to all integrated studies (Rohart et al., 2017a). 

4- Late integration 

Also called model integration, late integration can be seen as a two-step procedure. Any 

single-omics approach is applied to each dataset separately, from deep learning to mixed 

models (Rappoport and Shamir, 2018). Later, results of all models are aggregated together 

to get an overall result (by averaging predictions, weighting votes, …). 

Late integration allows to choose the most suitable model per dataset, based on its 

characteristics (dimension, compositionality, distribution…). It may help dealing with 

heterogeneous data (Picard et al., 2021). Modelling each set of omics separately alleviate 

the dimensionality curse too: working with all omics together would require to estimate 

more model parameters simultaneously. However, a major drawback of late integration is 

that it cannot account for interactions between different blocks of omics (Picard et al., 

2021).  
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5- Hierarchical integration 

Briefly, hierarchical models are based on prior knowledge. Knowledge can be incorporated 

to account for regulatory relationships between omics layers (Picard et al., 2021). Reference 

databases and literature may provide such information.  

An advantage is that hierarchical integration may highlight regulatory networks across 

several blocks of omics (Picard et al., 2021). However, a drawback is the need for knowledge. 

Some omics and organisms can be poorly documented. Thus, too much knowledge might 

lack when many omics are integrated. Hierarchical integration seems compromised to 

predict feed efficiency from genomics, metabarcoding, metabolomics, lipidomics and 

phenomics data in sheep.  

 

 

• Take-home messages about omics and statistical tools: 

• Omics may potentially help predict feed efficiency by representing biological  

information. Multi-omics may represent intermediate layers, from genetics of the 

holobiont to its phenotypes. 

• The omics cascade illustrates that different omics are connected and may share patterns.  

• Predicting from omics present several challenges: the noise which may mask biological 

signals; the curse of dimensionality arising from many variables and few samples; the 

data heterogeneity which complicates the selection of a modelling strategy.  

• P-integration might be useful to improve reproducibility by integrating data of 

individuals from different studies or batches. On the other hand, N-integration might 

prove useful to detect new signals by integrating different blocks of omics. 

• Late N-integration might be suitable for experiments with few samples and many 

different omics. Building models separately per omics may help accounting for data 

heterogeneity. It may also help alleviate the curse of dimensionality.  
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Chapter 2 - Material and methods 

Material and methods 

 

Chapter 2 is adapted from the “Material and methods” sections published by Le Graverand 

et al. (2022, 2023).  Reprinted parts are highlighted with quotation marks. Complements 

were added to fully cover the thesis work.  
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The present section covers all material and methods employed throughout the manuscript 

(Chapters 3 to 7): from the population under study, to the phenotyping of sheep production 

traits, collection of omics data, and statistical methods. 

I-Population 

A. Breed 

Data were collected in Romane sheep, a breed formerly known as INRA 401. The Romane is 

a synthetic breed obtained by crossing two others: the Russian Romanov and the French 

Berrichon du Cher (Tchamitchian et al., 1986). The crossbreeding goal was to combine the 

prolificacy and maternal qualities of the Russian breed with the carcass qualities of the 

French breed (Moreno et al., 2001). The Romane population is considered as fixed and 

under selection since 1980 (Tchamitchian et al., 1986). 

“The present study was conducted from 2018 to 2020 on Romane male lambs, at the 

INRAE Experimental Unit P3R (UE 332 agreement D18-174-01; Osmoy, France, 

https://doi.org/10.15454/1.5483259352597417E12)” (Le Graverand et al., 2023). 

B. Divergent lines 

“The studied animals were part of a larger design of divergent selection on RFI. Since 2009, 

feed efficiency was phenotyped in Romane male lambs under a 100% concentrate diet. In 

2015, a divergent selection experiment started: two divergent lines were sele cted for an 

increased RFI (least feed efficient line, RFI+) or a decreased RFI (most efficient line, RFI -) 

as described in Tortereau et al. (2020). Briefly, animals were divergently selected for RFI 

under a 100% concentrate diet. For the genetic evaluation, the RFIs of 1 900 male and 

female lambs phenotyped since 2009 were calculated according to Tortereau et al. (2020). 

Estimated breeding values (EBVs) were then computed with PEST software (Groeneveld et 

al.), considering a heritability of 0.45 (Tortereau et al., 2020) and a pedigree of 6 419 

sheep. The mixed model accounted for the pen, suckling method (maternal or artificial), 

litter size, year of phenotyping and sex as fixed effects.  

https://doi.org/10.15454/1.5483259352597417E12
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Every year since 2015, ten to fourteen rams with the lowest and highest  RFI breeding 

values under a concentrate diet were selected for breeding to produce the next generation 

of selection. Mating was planned within divergent lines: rams with extreme RFI values 

were selected and mated with ewes chosen to minimize inbreeding. Two years were 

necessary to complete one generation of selection.  

The present study focused only on a subset of Romane male lambs from the divergent 

lines described above. Part of the second generation was phenotyped in 2018 (103 lambs), 

while the third generation was phenotyped in 2019 (101 lambs) and 2020 (73 lambs). Part 

of the lambs phenotyped in 2018 sired lambs studied in 2020. On average, 7.7 male lambs 

shared the same sire in the study” (Le Graverand et al., 2023). 

II- Phenotyping production traits 

Figure 10 illustrates the experimental design. “Animals were reared indoors with wood 

chip litter and fed successively with two different diets: the first one with concentrates 

exclusively and the second one with a mixed diet” (Le Graverand et al., 2023). 

 

Figure 10: Experimental design of lamb phenotyping (adapted from Le Graverand et al., 2023) 
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A. Concentrate diet 

“Every year, lambs born in the experimental unit were gathered in the experimental barn 

at approximately 10 weeks of age. Then, lambs were adapted to a 100% concentrate ad 

libitum diet and to its distribution by automatic feeders (for feed nutritional values, see  

Table 2)” (Le Graverand et al., 2023). 

Table 2: Dietary characteristics of lamb feeds under the concentrate diet  
(reprinted from Le Graverand et al., 2023) 

1: DM: Dry Matter (grams per kilogram of feed); NE: Net Energy (megajoules per kilogram of dry 
matter) 

“Feed intake was recorded using automatic concentrate feeders during six weeks, between 

17 and 23 weeks of age on average (Figure 10). Depending on the year, lambs were 

grouped into four to six pens of approximately 20 lambs with homogeneous body weights 

to prevent fights. One concentrate feeder was available per pen. From 2018 to 2020, a 

total of 277 lambs were phenotyped under a concentrate diet.  

To account for annual variations of feed compositions, net energy intake was computed 

from feed intake and feed energy densities. Energy densities of feed were estimated with 

the INRA 2007 system (Baumont et al., 2007) in megajoules of net energy. The average 

daily energy intake of concentrate (ADEIC) was calculated as the average of daily energy 

intakes over the six-week period. At the end of the recording period, back ultrasound 

measurements were carried out to assess the longissimus dorsi muscle depth (MDC) and 

back fat thickness (BFTC). Starting and final body weights were recorded and used to 

compute the average daily gain (ADGC) over six weeks. Two feed efficiency traits were 

computed: the feed conversion ratio (FCRC) as the ratio of ADEIC over ADGC and, REIC as 

the residuals of the linear regression of ADEIC over characterized energy sinks (Equation 

1): 

ADEIC = µC + β1,C ADGC + β2,C final BWC
0.75 + β3,C MDC + β4,C BFTc + REIC (Eq. 1) 

  Feed characteristics1 

Feed Year DM (g/kg) NE (MJ/kg of DM) 

Concentrate 2018 905.05 5.78 

Concentrate 2019 888.11 5.89 

Concentrate 2020 892.5 5.86 
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where µC is the mean ADEIC. β1,C to β4,C respectively stand for the four following covariate 

effects: ADGC, final metabolic weight (𝐟𝐢𝐧𝐚𝐥 𝐁𝐖𝐂
𝟎.𝟕𝟓), MDC and BFTC. Finally, REIc is the 

residual energy intake expressed as megajoules of ingested net energy per day” (Le 

Graverand et al., 2023). 

Rumen fluids, blood and faeces were sampled at the end of trials: around 23 weeks of age, 

under a concentrate diet. “Every year, rumen fluid samples were collected at the end of 

each feed intake recording trial. Sampling was carried out by trained staff, with a medical 

gastric tube coupled to a vacuum pump. Ruminal samples were immediately frozen in 

liquid nitrogen” (Le Graverand et al., 2023). The jugular vein blood was sampled with two 

different vacutainer tubes. One of the animal’s blood samples was kept in EDTA tubes. The 

second blood sample was centrifuged (2400 × g during 10 minutes) in heparin lithium 

tubes, before retrieving and freezing the plasma. Faeces were collected directly from the 

rectum.  

B. Mixed diet 

“After the first six-week trial, animals were adapted for 6 weeks to a mixed diet delivered 

by automatic feeders. In 2018, no restricted concentrate feeder was available; thus, forage 

feeders delivered an ad libitum total mixed ration (33% concentrates, 67% hay). In 2019 

and 2020, automatic concentrate feeders ensured restricted access to concentrates (up to 

700 g/day), and forage feeders delivered ad libitum hay separately (see Table 3 for feed 

nutritional values)” (Le Graverand et al., 2023). 

Table 3: Dietary characteristics of lamb feeds under mixed diet (1/3 concentrate and 2/3 forage 
approximately, reprinted from Le Graverand et al., 2023) 

1: DM: Dry Matter (grams per kilogram of feed); NE: Net Energy (megajoules per kilogram of dry 
matter) 

  Feed characteristics1 

Feed Year DM (g/kg) NE (MJ/kg of DM) 

Concentrate 2018 882.2 6.41 

Concentrate 2019 874.2 6.39 

Concentrate 2020 894.1 6.33 

Orchard hay 2018 914.1 3.95 

Orchard hay 2019 (1st period) 913.5 4.22 

Orchard hay 2019 (2nd period) 915.6 4.17 

Orchard hay 2020 899.5 3.89 
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“Due to facility limitations (maximum of 35-40 lambs simultaneously), only lambs having 

extreme RFI EBVs under a concentrate diet were then phenotyped under a mixed diet. In 

2018 and 2019, animals were split during two different periods per year: during summer 

(period 1, from 29 to 35 weeks of age) or during fall (period 2, from 37 to 43 weeks of age) 

(Figure 10). In 2020, only one group was phenotyped during fall (period 2). Within on e 

period, animals were allocated by body weight into two pens with 16 animals per pen, on 

average. Each pen was equipped with two forage feeders and one concentrate feeder in 

2019 and 2020. Over the three years, 166 lambs were phenotyped under a mixed diet . 

ADEIM, ADGM and REIM were estimated under the mixed diet as it was done under the 

concentrate diet before. However, no FCRM was calculated under the mixed diet because 

some individuals had a null or negative ADGM over this 6-week period” (Le Graverand et 

al., 2023). 

Rumen fluids were sampled at the end of trials: around the age of 35 weeks (Period 1) or 

43 weeks (Period 2), under a mixed diet.  

C. Zootechnical data cleaning 

“Under one diet, outliers were identified based on feed efficiency (REI, FCR), energy intake 

(ADEI), growth rate (ADG) and body composition (MD, BFT) traits. The animal was removed 

from the diet data subset when one of the phenotypes was outside the range [µ - 3 SD; µ 

+ 3 SD], where µ is the mean phenotype and SD its standard deviation. Eight animals were 

filtered out under a concentrate diet (out of 277 lambs), and three were filtered out under 

a mixed diet (out of 166 animals)” (Le Graverand et al., 2023).   
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III- Omics data acquisition and processing 

A. Genotyping 

DNA was extracted from blood samples by LABOGENA (Jouy-en-Josas, France). Genotyping 

was carried out with the Illumina Ovine SNP50 chip (54 241 SNPs) by LABOGENA. 

A.1 Quality control and imputation 

SNP quality control was not stringent (step 1, Figure 11), in order to impute missing 

genotypes later (step 2, Figure 11). Samples, with an individual genotyping call rate lower 

than 0.80 were discarded. Out of 570 samples, 567 were kept. SNPs were discarded if they 

had a call frequency lower than 0.90, a minor allele frequency lower than 0.01 or a p-value 

lower than 10-6 for the Hardy-Weinberg equilibrium test. Finally, SNPs were left out if they 

were not placed on the 26 autosomes, based on the oar_v3.1 reference genome assembly 

(Jiang et al., 2014). Out of 54 241 SNPs, 42 759 were retained. 

 

Figure 11: Workflow of genomics data handling 

No reference population was available to impute missing genotypes in Romane sheep. 

Missing genotypes were imputed with the FImpute software (step 2, Figure 11) (Sargolzaei 

et al., 2014). Family imputation was first carried out with pedigree data and 6 428 related 
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individuals. Then, population imputation relied on the haplotypes defined with 567 

genotyped individuals. Mendelian errors -mismatches between progeny and parent 

genotypes- were checked and corrected with FImpute default parameters (error rates equal 

to 0.01 and 0.005 to identify mismatches and matches, respectively). 

A.2 Data filtering and transformation 

After imputation and prior to statistical learning, SNPs with a minor allele frequency lower 

than 0.20 were filtered out (step 3, Figure 11). Retaining 29 830 SNPs decreased the 

computational burden in subsequent statistical learning analyses.  

Prior to principal component analysis only, VanRaden’s first genomic relationship matrix 

(VanRaden, 2008) was computed from retained SNPs with the R package AGHmatrix 

(Amadeu et al., 2016) (step 4, Figure 11). 

B. Rumen microbiota 

B.1 DNA extraction and sequencing 

“DNA extraction, amplification and sequencing of microbial fluid samples were carried out 

in two different batches: one batch with 2018 and 2019 samples and another with 2020 

samples. Within each batch, a bead-beating step was carried out with a FastPrep device 

(MP Biomedicals, Illkirch, France). Then, DNA was extracted with the QIAamp DNA Stool 

Mini Kit (Qiagen Ltd, West Sussex, UK) from 85 μL of ruminal fluid. 

The V4-V5 region of the 16S ribosomal RNA gene was amplified with the forward 515F (5’-

CTTTCCCTACACGACGCTCTTCCGATCTGTGYCAGCMGCCGCGGTA-3’) and reverse 928R 

primers (5'-GGAGTTCAGACGTGTGCTCTTCCGATCTCCCCGYCAATTCMTTTRAGT-3') (Wang and 

Qian, 2009) for 30 PCR cycles. To barcode samples, an index of 6 base pairs was added to 

928R primers during a second amplification (12 cycles) with forward (5’-GTGYCAGCMGCC-

3’) and reverse primers (5’-CCCCGYCAATT-3’), plus adapters. Overlapping paired-end reads 

of 250 base pairs were produced and aligned to obtain full-length reads with Illumina 

MiSeq technology (Illumina, San Diego, CA, USA).  

The V4 region of the 18S ribosomal RNA gene was amplified with the forward 566F (5’-

CTTTCCCTACACGACGCTCTTCCGATCTCAGCAGCCGCGGTAATTCC-3’) and reverse 1200R 
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primers (5'-GGAGTTCAGACGTGTGCTCTTCCGATCTCCCGTGTTGAGTCAAATTAAGC-3') 

(Hadziavdic et al., 2014) for 30 PCR cycles. To barcode samples, an index of 6 base pairs 

was added to 1200R primers during a second amplification (12 cycles) with forward (5’-

CAGCAGCCGCGGTAATTCC-3’) and reverse primers (5’-CCCGTGTTGAGTCAAATTAAGC-3’). 

Overlapping and non-overlapping paired-end reads of 250 base pairs were produced.  

After multiplexing and amplifications, 16S and 18S reads were purified and loaded on an 

Illumina MiSeq cartridge (Illumina, San Diego, CA, USA) to be sequenced at the Genomic 

and Transcriptomic Platform (INRAE, Toulouse, France) ” (Le Graverand et al., 2023). 

B.2 Bioinformatic processing of microbiota data 

Clustering into operational taxonomic units 

“After sequencing, 16S and 18S reads were processed separately with FROGS tools 

(version 4.0.1) (Escudié et al., 2018). However, within both sets of sequences, reads from 

different diets and sequencing batches were treated together (step 1, Figure 12). Read 

processing was performed with the following pipeline: (i) demultiplexing; (ii) 

reconstruction with 18S amplicon sequences only, (iii) quality control of amplicons based 

on the presence of primers, ambiguous bases and size (>380 and <500 base pairs for 16S 

amplicons; >200 and <490 base pairs for 18S amplicons); (iv) clustering into operational 

taxonomic units (OTUs) with the Swarm algorithm using a difference of 1 between 

sequences in each aggregation step (Mahé et al., 2014); (v) chimaera removal; (vi) pre-

filtering, by removing OTUs aggregating less than 0.005% of all sequences; and (vii) 

taxonomic affiliation with BLAST+ (Camacho et al., 2009) and the Silva 132 16S reference 

database for bacteria and archaea, or the Silva 138.1 18S database for fungi and protozoa 

(Quast et al., 2013) ” (Le Graverand et al., 2023).  

Functional inference 

Functions of 16S OTUs were inferred under a concentrate diet only, by Guibert et al. 

(Unpublished). Briefly, inference was carried out thanks to FROGSFUNC tools built upon the 

PICRUSt2 method (Douglas et al., 2020; Darbot et al., 2022). FROGSFUNC affiliates OTUs to 

a reference phylogenetic tree. Then, the number of 16S gene copies per OTU is determined. 

Finally, the number of function copies is inferred from the phylogenetic affiliation, the 

number of 16S gene copies and the abundance of OTUs.  
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OTUs were excluded from functional inference when their taxonomic affiliation was 

unreliable. Affiliations were deemed unreliable when: the alignment identity was low (<90% 

between the OTU seed and the reference sequence), the coverage was low (<90%), or the 

nearest sequenced taxon index was high (>1.0). 

  

Figure 12: Workflow of microbiota data handling (adapted from Le Graverand et al., 2023) 

B.3 Microbiota data cleaning and transformations 

“For data cleaning and subsequent analyses (steps 2 to 6, Figure 12), four distinct 

compositional datasets were considered: one per diet (concentrate or mixed diet) and 

amplified gene (16S or 18S). Then, sequencing data were filtered at the sample and OTU 

levels. […] Samples with a [sequencing] depth smaller than 7 500 reads were discarded 

(step 2, Figure 12). OTU filtering was performed by removing OTUs with a prevalence lower 

than 20% under the considered diet (step 3, Figure 12) ” (Le Graverand et al., 2023). The 

richness (numbers of OTUs) is reported per sample, before and after data filtering (Table 

4).  
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Table 4:  Number of OTUs and functions detected in the rumen fluid, prior and posterior to data 
cleaning (adapted from Le Graverand et al., 2023) 

 1: C-diet: animals phenotyped under a 100% concentrate diet; M-diet: phenotyped under a mixed 
diet. 
2: Number of samples 
3: Operational taxonomic units 
4: Inferred microbial functions (FROGSFUNC). Inference was only carried out with 16S data collected 
under a concentrate diet 

 “Several pre-processing steps were carried out to account for compositionality and 

sequencing effects. Null abundances of OTUs were imputed with the geometric Bayesian 

multiplicative replacement procedure (step 4, Figure 12) (Martín-Fernández et al., 2015).  

Before data cleaning 

  
  

Diet1 C-diet  M-diet 

Sequencing (n2) 16S (277) 18S (275)   16S (163) 18S (166) 

OTUs3 

Total per dataset 1 298 263  1 527 269 

Mean per sample 325 60  744 99 

Min per sample 185 8  374 34 

Max per sample 476 153   993 176 

Functions4 

Total per dataset 301 -  - - 

Mean per sample 268 -  - - 

Min per sample 236 -  - - 

Max per sample 292 -  - - 

After data cleaning 

  
Diet1 C-diet  M-diet 

Sequencing (n2) 16S (269) 18S (205)   16S (160) 18S (161) 

OTUs3 

Total per dataset 582 124  1 148 183 

Mean per sample 296 57  720 91 

Min per sample 145 8  363 33 

Max per sample 415 95   918 152 

Functions4 

Total per dataset 281 -  - - 

Mean per sample 266 -  - - 

Min per sample 236 -  - - 

Max per sample 280 -  - - 
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Then, a centered logratio (CLR) transformation was carried out with OTU abundances (step 

5, Figure 12). CLR coordinates values were adjusted univariately for sequencing effects 

with a robust MM regression (Maechler et al., 2017) (Equation 4, step 6,  Figure 12). 

Robust MM regression was preferred as it is less sensitive to outlying values than least 

squares linear regressions.  

CLR(X)i = β0,i + β1,i seqdepth + β2,i seqbatch + β3,i seqbatch|plate + εi  (4) 

where 𝐶𝐿𝑅(𝑋)𝑖 stands for the CLR values of the ith OTU. Then, 𝛽0,𝑖 stands for the intercept. 

For the ith OTU, 𝛽1,𝑖 to 𝛽3,𝑖 represent the effects of sequencing depth, sequencing batches 

(n=2) and sequencing plates nested in batches (n=5), respect ively. Finally, 𝜀𝑖 stands for 

residuals” (Le Graverand et al., 2023). 

C. Rumen and plasma metabolomics 

Touitou et al. (2022) previously described the plasma and rumen metabolomes in the same 

sheep population. Metabolite quantifications were assessed under a concentrate diet and 

mixed diet by Touitou et al. (2022). On the other hand, the present thesis will only focus on 

metabolite quantifications and buckets, under a concentrate diet only. 

C.1 Nuclear magnetic resonance spectroscopy 

Rumen and plasma samples were unfrozen and centrifuged (3000× g at 4°C during 5 

minutes). Then, 200 μL of sample supernatant were mixed with 500 μL of phosphate buffer 

(pH=7). Subsequently, 600 μL of the mix were centrifuged again (4190 × g at 4°C during 15 

minutes). The last centrifugation was repeated again for ruminal samples only, to further 

dilute rumen fluids. 

Rumen and plasma samples were analyzed through Nuclear Magnetic Resonance (NMR) 

spectroscopy in two different batches. Sample spectra of 2018 and 2019 were acquired 

together, while samples of 2020 were processed in a second batch. NMR spectroscopy was 

carried out at the MetaToul-AXIOM platform (MetaboHUB-ANR-11-INBS-0010, 2011). 

Spectra were obtained with the Bruker AVANCE III HD 600 MHz spectrometer (Bruker 

Biospin, Rheinstetten, Germany) and the cpmgpr1D Bruker pulse program. More details are 

available in Touitou et al.  (2022). 
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C.2 Bioinformatic processing of NMR spectra 

Pre-processing was carried out separately for rumen and plasma samples. Spectra were first 

processed with Bruker’s TopSpin® software (version 4.0.9, Billerica, MA, USA) to correct the 

zero-order phase and the baseline (step 1, Figure 13). Depending on the biological fluid, 

chemical shift calibration relied on two different molecules: D-glucose in plasma samples 

(naturally present), or trimethylsilylpropanoic acid (present in the phosphate buffer) in 

rumen samples. 

 

Figure 13: Workflow of metabolomics data handling 

Then, metabolomic data were processed with the ASICS R package (Lefort et al., 2019). First, 

spectra areas were normalized to a constant sum, and solvent signals were removed from 

analysis (water region between 4.5 and 5.1 ppm). ASICS allowed to treat metabolomic data 

in two different ways (step 2 and 2’, Figure 13). First, the “binning” function was used to get 

buckets from metabolomic data: spectra were divided into parts of equal width (bin option 

equal to 0.01 ppm). Buckets represent the area under the spectral curve. Second, the 

“ASICS” function was used to identify metabolites from spectra through deconvolution 

(maximum chemical shift option equal to 0.01 ppm, noise option equal to 0.02). Identified 
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metabolites were quantified with ASICS. Metabolite quantifications are expressed as 

relative concentrations, relatively to the highest concentration (Tardivel et al., 2017). 

C.3 Metabolomic data cleaning and transformations 

Under a concentrate diet, four distinct compositional datasets were considered during data 

cleaning (steps 3 to 6, Figure 13): one per fluid (rumen or plasma) and bioinformatic 

treatment (buckets or metabolites). Then, metabolomic data were filtered: buckets and 

metabolites were discarded when they were detected in less than 20% of animals (step 3, 

Figure 13). The numbers of metabolites and buckets are reported in Table 5, before and 

after data cleaning. 

Table 5: Number of metabolites and buckets above the detection limit, prior and posterior to 
data cleaning 

1: C-diet: animals phenotyped under a 100% concentrate diet. Under the mixed diet, metabolomic 
data were not analyzed during the thesis. 
2: Number of samples 
3: Buckets defined with ASICS (fixed width of 0.01 ppm) 
4: Metabolite quantifications inferred with ASICS. 

Like microbiota data, metabolome buckets and metabolite quantifications were deemed 

compositional. Thus, similar pre-processing steps were carried out: null values were 

imputed with the Multiplicative simple replacement procedure (Martín-Fernández et al., 

2015), and the CLR was applied (steps 4 and 5, Figure 13). CLR values were adjusted with 

robust MM regressions (Maechler et al., 2017), see Equation 5 for all four metabolomic 

datasets (steps 6,  Figure 13): 

 Before data cleaning  After data cleaning 

  Diet1 C-diet  C-diet 

  
Fluid  
(n2) 

Rumen 
(275) 

Plasma 
(275) 

 Rumen 
(275) 

Plasma 
(275) 

Buckets3 

Total per dataset 880 879  871 863 

Mean per sample 851 857  850 856 

Min per sample 820 848  818 848 

Max per sample 871 864  866 863 

Metabolites4 

Total per dataset 72 57  25 25 

Mean per sample 15 21  13 19 

Min per sample 2 13  2 13 

Max per sample 31 29  22 23 
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CLR(X)i = β0,i + β1,i Batch + β2,i Fasting + εi  (5) 

where 𝐶𝐿𝑅(𝑋)𝑖 stands for the CLR values of the ith metabolite or bucket. Then, 𝛽0,𝑖 stands 

for the intercept, and 𝛽1,𝑖 for the spectroscopy batch effect (n=2). 𝛽2,𝑖  denotes the fasting 

effect (n=2): animals were supposed to fast at least 10 hours prior to rumen and 

metabolome sampling. However, in 2019, feeders kept delivering feed and animals did not 

fast. Finally, 𝜀𝑖 stands for residuals. 

D. Rumen lipidomics 

Touitou (2023) described the rumen lipidome in the same sheep population. The lipidome 

will be analyzed under a concentrate diet only, in this thesis.  

The rumen lipidome was analyzed through two angles: volatile fatty acids (VFAs) and long-

chain fatty acids (LCFAs). Lipidome profiling protocols are summarized below, whereas 

details are provided in Touitou (2023).  

D.1 Gas chromatography and mass spectrometry 

VFA and LCFA analyses relied on gas chromatography first. LCFAs were additionally analyzed 

through mass spectrometry. 

Volatile fatty acids 

Rumen samples were unfrozen and centrifuged (2  880 x g, during 20 minutes at 4°C). Then, 

1mL of supernatant was analyzed according to the protocol of Playne (1985). Gas 

chromatography was carried out thanks to a chromatograph equipped with a flame 

ionization detector and a column of 30 meters (Agilent 7890A and column n°125-3232, 

Agilent Technologies, Santa-Clara, USA). 

VFAs concentrations were determined thanks to internal standard solutions (with 4-

methylvaleric acid), and the Chromeleon software (version 7.2.10, ThermoFisher Scientific, 

Waltham, USA).  
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Note: Note that pseudo-quantifications of metabolites were obtained with NMR spectra 

and ASICs (quantifications were expressed relatively to the highest one). Actual 

concentrations were obtained for VFAs and LCFAs with chromatography and an internal 

standard (concentrations expressed in mmol/L). 

 

Long-chain fatty acids 

Rumen samples were lyophilized, before analyzing 250 mg according to the protocol 

described in Alves et al. (2013). Gas chromatography was performed with a chromatograph 

(Shimadzu GC 2010 Plus, Shimadzu, Kyoto, Japan) coupled with a flame ionization detector, 

a column of 100 meters (Supelco FS CAP SLB-IL111, Sigma-Aldrich, Saint-Louis, USA) and a 

mass spectrometric detector. 

LCFAs were quantified thanks to an internal standard (nonadecanoic acid) and the 

GCsolution software (Shimadzu, Kyoto, Japan). 

D.2 Fatty acids data cleaning and transformations 

 

Figure 14: Workflow of lipidomics data handling 

Fatty acids were not filtered according to their detected prevalence: all VFAs and LCFAs were 

detected in more than 20% of the samples. Then, fatty acids concentrations were pre-

processed exactly like metabolite quantifications (section III.C.3): zeroes were imputed, 

concentrations were transformed by the CLR and adjusted for batch and fasting effect (steps 

1 to 3, Figure 14). VFAs and LCFAs were processed separately. No fatty acid was filtered 

during data cleaning (all prevalences were higher than 20%), the number of fatty acids is 

reported in Table 6 per dataset.  
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Table 6: Number of fatty acids above the detection limit, prior and posterior to data cleaning 

  Before and after data cleaning 

  Diet1 C-diet 

  
Fluid  
(n2) 

Rumen (277) 

VFA3 

Total per dataset 6 

Mean per sample 6 

Min per sample 6 

Max per sample 6 

LCFA4 

Total per dataset 70 

Mean per sample 68 

Min per sample 62 

Max per sample 70 
1: C-diet: animals phenotyped under a 100% concentrate diet. Under the mixed diet, metabolomic 
data were not analyzed during the thesis. 
2: Number of samples 
3: Volatile fatty acids 
4: Long-chain fatty acids 

E. Faecal phenomics 

In the present thesis, the faecal spectral phenome will be analyzed under a concentrate diet 

only. The faecal phenome was characterized thanks to near-infrared spectroscopy (NIRS). 

E.1 Near-infrared spectroscopy 

Details about the NIRS protocol can be found in Andueza et al. (2017). Succinctly, faecal 

samples were homogenized and dried. Then, around 5 g of samples were scanned thanks to 

the NIRSystems model 6500 spectrometer (Foss NIRSystems, Silver Spring, MD, USA) and 

the NIRS3 software (Infrasoft International, Port Matilda, PA, USA). Every spectrum was 

obtained by time-averaging 32 scans. Reflectance was recorded between 400 and 2500 nm, 

with an interval of 2 nm, and converted into absorbance. 

E.2 NIR spectra data cleaning and transformations 

No variable was discarded, since all absorbance values were non-null. Thus, 1050 variables 

were kept and recorded over 275 faecal samples. NIRS absorbances were either analyzed 

directly as raw data, or transformed (Figure 15). When transformed, data were first 

normalized thanks to the standard normal variate transformation and de-trending 
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correction (Barnes et al., 1989). Then, the first-order derivative was computed (over gaps 

of 4 points, with 4 points in the first smoothing) (Andueza et al., 2017). 

 

Figure 15: Workflow of phenomics data handling 

IV-Statistical analyses 

Statistical analyses filled two purposes. The first section, details how the dataset was 

explored. The second section describes how sheep lines and production traits were 

predicted.  

A. Data overview  

Data overview relied on univariate and multivariate statistical analyses. First, the overview 

of sheep production traits relied on univariate inferential statistics: the objective is to test 

if the two divergent feed efficiency lines significantly differed. Then, the overview of omics 

relied on multivariate unsupervised learning: the aim is to visualize what were the main 

patterns of omics variations. 

A.1 Sheep production traits 

First, least square means were computed per line and host trait to test if lines diverged 

significantly. The tested host traits were: feed efficiency (REI, FCR), energy intake (ADEI), 

body weight, growth (ADG) and body composition (MD, BFT). “Linear regressions were 

fitted with the lm function included in R software (version 4.1.2) (R Core Team, 2021). All 

traits recorded under a concentrate diet (TraitC) were regressed as follows (Equation 6): 
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TraitC  =  μTraitC  +  β1,C line + β2,C age + β3,C suckling + β4,C year + β5,C pen|year +

                    εC  (6) 

Where μTraitC   denotes the trait mean. β1,C to β5,C respectively stand for the effects of the 

line, age, suckling, year and pen nested in the year. Finally, εC denotes the model residuals. 

Traits recorded under a mixed diet (TraitM) were regressed similarly (Equation 7): 

TraitM  =  μTraitM  +  β1,M line + β2,M age + β3,M year + β4,M period|year +

                    β5,M pen|period|year + ε M (7) 

Where μTraitM   denotes the trait mean. β1,M to β5,M respectively stand for the effects of 

the line, age, year, period nested in the year, and pen nested in the period and the year. 

εM denotes the model residuals.  

Then, regression solutions (Equations 6 and 7) were used to compute least square means 

per line and host trait with the emmeans R package (version 1.7.3) (Lenth, 2022). 

Comparison of traits between RFI lines were carried out with the Tukey test. To account 

for multiple testing, p-values were corrected per diet with Benjamini‒Hochberg procedure 

(Benjamini and Hochberg, 1995) (7 traits under a concentrate diet and 6 under a mixed 

diet)” (Le Graverand et al., 2023). 

A.2 Omics data 

Unsupervised learning was applied to identify the main patterns of omics variations 

(Analysis A, Figure 16). The analyzed omics were: genomics, rumen metataxonomics, rumen 

and plasma metabolomics, rumen lipidomics and fecal phenomics. All omics were pre-

processed separately prior to analyses (see section III). Principal component analyses (PCAs) 

were carried out per omics block and diet, with the mixOmics R package (version 6.18.1) 

(Rohart et al., 2017b). Recorded environmental, physiological and technical effects were 

compared to data projections on the first principal components (PCs), to label the main 

variation patterns. 
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Figure 16: Workflow of statistical learning with omics data 

B. Prediction of sheep lines and production traits 

Predictions relied on multivariate supervised learning: either discriminant analyses or 

regressions. The goal of discriminant analyzes was to predict the RFI line from systematic 

effects (i.e. year, pen, suckling, age and body weight effects), pedigree and/or omics data. 

The goal of regressions was to predict either feed efficiency, energy intake, growth or body 

composition. This section will first detail how cross-validation was used to select the model 

hyperparameters and assess the predictive accuracy of models. Then, models will be 

detailed including the integration of heterogeneous variables and years. Finally, the genetic 

evaluation of predicted traits will be detailed.  

B.1 Cross-validating and testing the difference between prediction 
accuracies 

Cross-validation strategies varied between studies. Statistical tests were carried out to 

assess the difference in prediction accuracy, between models trained on different 

predictors. Choosing a test depended on the cross-validation strategy. With repeated cross-

validation, tests had to account for the violation of one assumption: all accuracy estimates 

are not independent. Indeed, one animal can be part of different testing sets when cross-

validation is repeated. 
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Repeated k-fold cross-validation (Chapters 3 and 5) 

The first strategy relied on 5-fold cross-validation repeated 50 times. The dataset was split 

into 5 folds. Four folds -the training set- were used to build the model. The fifth fold -the 

testing set- was used to select model hyperparameters and evaluate the model accuracy. 

Thanks to a custom function, cross-validation was stratified per feed efficiency line, year 

and pen: i.e. proportions of each line, year and pen were approximately equal in all training 

and testing sets. The operation was repeated 50 times, which led to 250 estimates of 

prediction accuracy per model. 

With repeated k-fold cross-validation, accuracy differences between models fitted on 

different predictors were tested with Bouckaert and Frank’s corrected t-test (Bouckaert and 

Frank, 2004) (Analysis C, Figure 16). Comparisons were made per predicted trait and diet. 

Benjamini-Hochberg’s procedure was applied to adjust p-values (Benjamini and Hochberg, 

1995). 

Leave-one-group-out cross-validation (Chapter 4) 

The second strategy relied on leave-one-group-out cross-validation, where groups were 

defined by the year of phenotyping. Data collected during two different years served as the 

training set, to build the model. Data of a third independent year was used as the testing 

set, to select hyperparameters and evaluate the model accuracy.  The testing set was either 

constituted of 2019 or 2020 data. 2018 was not used as a testing set because many animals 

raised in 2020 had sires phenotyped in 2018. The prediction accuracy was estimated once 

per year. 

With leave-one-group-out cross-validation, differences between accuracies were assessed 

with Dunn and Clark’s z test (Dunn and Clark, 1969). Tests were carried out per testing set. 

Bonferroni’s procedure was used to adjust p-values (Dunn, 1961). 

Repeated random subsampling (Chapter 6) 

The third strategy relied on random subsampling repeated 100 times. The dataset was split 

into three parts: 60% of the dataset were used as the training set to build the model; 30% 

constituted the validation set to select the model hyperparameters; 10% were used as the 

testing set to evaluate the predictive accuracy. The dataset subsampling was stratified per 
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feed efficiency line, year and pen. The predictive accuracy was assessed 100 times per 

model. 

With repeated random subsampling, differences between accuracies were tested with 

Nadeau and Bengio’s corrected t-test (Nadeau and Bengio, 2003). Models were compared 

per predicted trait. P-values were adjusted with the Benjamini-Hochberg’s procedure. 

B.2 Supervised learning models 

Data were preprocessed (see section III) prior to regressions and discriminant analyses. 

Discriminant analyses were carried out to check whether divergent lines could be predicted 

from omics data. Regressions were carried out to predict sheep production trait . 

Discriminant analyses 

Discriminant analyzes predicted lines from systematic effects and/or omics. Systematic 

effects included the year, pen, suckling, age and final body weight effects. Sparse partial 

least-squares discriminant analysis (sPLSDA) and multivariate integrative sPLSDA (MINT-

sPLSDA) were carried out with the mixOmics R package (Rohart et al., 2017b). Discriminant 

analyses relied on the LASSO algorithm to select predictors in training sets (Tibshirani, 

1996). sPLSDA components were built by linearly combining the selected predictors. In 

MINT-sPLSDA, the construction of components additionally accounted for the year of 

phenotyping to perform P-integration (Rohart et al., 2017a).  

“With sPLSDA [and MINT-sPLSDA], two hyperparameters were tuned thanks to cross-

validation: the component number and the number of selected variables per component. 

The tuning criterion was the Balanced Error Rate (BER), calculated as the average of error 

rates over the RFI lines (Equation 8):  

BER =  
1

2
   (

a

a+b
 + 

c

c+d
) (8) 

[with a, b, c and d the numbers of RFI- false predictions, RFI+ true predictions, RFI+ false 

predictions and RFI- true predictions, respectively].  

The following rule of thumb was used to select the final hyperparameters: a more complex 

model (i.e., with more components and/or more selected variables) was retained if the 
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averaged BER decreased by one standard error (Kuhn and Johnson, 2013). The average 

BERs of the selected models are reported” (Le Graverand et al., 2023). 

Regressions 

Regression analyses were performed on raw traits ( i.e. not adjusted for experimental, 

physiological or technical effects), given that a genetic evaluation of predicted traits will be 

carried out later and will account for these effects. 

Sparse partial least-squares discriminant regression (sPLSR) and multivariate integrative 

sPLSR (MINT-sPLSR) were carried out with mixOmics to predict feed efficiency, energy 

intake, growth and body composition phenotypes (Rohart et al., 2017b). sPLSR and MINT-

sPLSR relied on the LASSO approach to select the best proxies in training sets. The number 

of components and variables per component were tuned through cross-validations to 

maximize the prediction accuracy - defined by the coefficient of determination in Chapter 

4, the root mean square error in Chapter 5, or the Pearson correlation in Chapter 6. 

Support vector regression (SVR) was implemented thanks to the e1071 R package (Meyer 

et al., 2019). In Chapter 4, two hyperparameters were chosen by cross-validating: the kernel 

(sigmoid, linear, or polynomial of second or third degree) and the regression type (epsilon 

or nu). 

RandomForest regressions (RFR) was fitted thanks to the randomForest R package (Liaw and 

Wiener, 2002). In Chapter 4, one RFR hyperparameter had to be tuned thanks to cross-

validation: the number of variables randomly kept as candidates to define decision tree 

nodes. 

B.3 Blending models trained on different blocks of predictors (Chapter 6) 

In Chapter 6, a custom NP-integration strategy proposed to predict sheep feed efficiency 

(Figure 17). The thesis approach relied on a late integration strategy (Picard et al., 2021): 

the goal was to blend predictions of several models, instead of variables. The strategy was 

inspired by the block.sPLSR approach implemented in mixOmics (Singh et al., 2019).  

In mixOmics, cross-validation only partitions data into training and testing sets. In the 

thesis, validation sets were added. Random subsampling was repeated 100 times. 

Subsampling was stratified per pen, year, and RFI line. First, all omics blocks were modelled 
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separately: variables were selected and submodels were fitted on training set data (60% of 

samples). All of these submodels were MINT-sPLSRs. 

 

Figure 17: Blending models built on different variables  

Then, MINT-sPLSRs’ hyperparameters were selected to retain submodels maximizing the 

prediction accuracy in validation sets (30%). Validation sets were also used to fit a meta-

model: the meta-model was trained on submodels’ predictions. Thus, the meta-model 

learned which submodels predicted well data unseen during the training. The meta-model 

was either a weighted mean or a MINT-sPLSR (details below). Finally, the overall 

performance was assessed by computing the Pearson correlations in testing sets. 
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Weighted mean 

Mean weights were computed from the Pearson correlation between validation phenotypes 

and predictions. Pearson correlations were then set to the exponent k. The exponent k 

ranged from 1 to 10 and its value was selected to maximize the validation accuracy. Higher 

exponents increased the gap between weights of blocks having a good predictive ability, 

and weights of blocks having a low predictive ability. 

To assess how much a block contributes to the final prediction, the relative contribution 

was computed as the relative weight of the block (as a percentage of the total sum). One 

contribution was computed per block and subsampling repetition. 

MINT-sPLSR 

The number of MINT-sPLSR components could vary from 1 to 5, while the number of 

selected variables varied from 1 to the number of blocks. The two hyperparameters were 

selected with nested cross-validations. An inner loop was run in validation sets, to repeat 

5-fold cross-validation 10 times per validation set. 

To assess how much a block contributes to the final prediction, the value importance in the 

projection was computed (Tenenhaus, 1998). Then, values were expressed relatively to the 

highest one. One contribution was computed per block and subsampling repetition.  

B.4 Genetic evaluation of predicted feed intake (Chapter 4) 

In Chapter 4, a genetic evaluation was carried out to estimate the breeding value of feed 

intake predicted from fixed effects, bodyweight and/or the rumen microbiota. “Breeding 

values were estimated with PEST (Groeneveld et al., 1990), considering a feed intake 

heritability of 0.28 (Tortereau et al., 2020). Two sets of populations were used to estimate 

breeding values: an entire Romane population named E (born from 2009 to 2020), with 

6,419 animals in the pedigree including 1,900 with ADFI records; one subset population 

named S (2018 to 2020), with 4,102 animals in the pedigree including 277 wi th records. 

The model included the fixed effects of year, pen, early life traits (litter size, suckling 

method), sex and body weight as a covariate. EBVs of actual ADFI and EBVs of predictions 

are estimated. EBVs were only estimated for phenotypic ADFI predicted with accurate 

strategies (R2> 0.7)” (Le Graverand et al., 2022).  
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Table 7: Summary of analyzes carried out per thesis chapter 

  Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Diet 
Concentrate diet ✓ ✓ ✓ ✓ 

Mixed diet ✓  ✓  

Predicted 
groups or 

phenotypes 

RFI lines ✓  ✓  

Feed efficiency   ✓ ✓ 

Feed intake  ✓ ✓ ✓ 

Growth   ✓  

Body composition   ✓  

Predictors 

Fixed effects and body weight ✓ ✓ ✓ ✓ 

Genotypes ✓   ✓ 

Plasma NMR buckets ✓   ✓ 

Plasma metabolite quantifications ✓   ✓ 

Rumen eukaryote abundances ✓  ✓ ✓ 

Rumen prokaryote abundances ✓ ✓ ✓ ✓ 

Rumen prokaryote functions ✓   ✓ 

Rumen buckets ✓   ✓ 

Rumen metabolite quantifications ✓   ✓ 

Rumen VFA concentrations ✓   ✓ 

Rumen LCFA concentrations ✓   ✓ 

Spectral absorbances ✓   ✓ 

Spectral first derivative ✓   ✓ 

Models 

sPLSDA ✓    

MINT-sPLSDA ✓    

sPLSR  ✓ ✓  

MINT-sPLSR ✓   ✓ 

SVR  ✓   

RFR  ✓   

Cross-validation 
(statistical test) 

Repeated k-fold  
(Bouckaert and Franck’s t-test) ✓  ✓  

Leave-one-year-out  
(Dunn and Clark's z test) 

 ✓   

Repeated random subsampling 
(Permutation test) ✓   ✓ 

Abbreviations: LCFA: Long-chain fatty acid; MINT-sPLSDA: Multivariate integrative sparse partial 
least squares discriminant analysis; MINT-sPLSR: Multivariate integrative sparse partial least 
squares regression; NMR: Nuclear magnetic resonance; RFI: Residual feed intake; RFR: Random 
forest regression; sPLSDA: Sparse partial least squares discriminant analysis; sPLSR: sparse partial 
least squares regression; SVR: Support vector regression; VFA: Volatile fatty acid. 
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Chapter 3 - Study: Divergence between feed efficiency lines and omics overview 

Study: Divergence between feed 

efficiency lines and omics overview 

 

Chapter 3 is adapted from the “Results” section published in animal by Le Graverand et al. 

(2023).  Reprinted parts are highlighted with quotation marks. Complements were added 

to cover all omics analyzed during the thesis. 
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Rationale 

Research is undergoing to identify the consequences of selection for feed efficiency in 

sheep. Omics may provide new insights into feed efficiency determinants and selection 

consequences. 

Chapter 3 included exploratory analyses of lamb production traits. The first goal was to 

present the range of production traits, by computing descriptive statistics. The second goal 

was to assess whether divergent selection for RFI had an effect over production traits, by 

estimating least-square means per production trait and line. 

Chapter 3 also included exploratory analyses of the potential predictors of feed efficiency. 

Fixed effects, covariates, pedigree and omics were tested during the thesis. Proxies may 

help predict feed efficiency by signing for biological determinants, the population structure, 

experimental or environmental effects. The rumen microbiota (prokaryote or eukaryote 

abundances) was assessed in animals fed a concentrate and then, a mixed diet. Pedigree 

relatedness, genomics, microbial functions, rumen metabolomics, plasma metabolomics, 

rumen lipidomics and faecal spectra were analyzed under a concentrate diet only. Variation 

patterns of potential predictors were explored, by fitting principal component analyses on 

pre-processed data. Then, discriminant analyses were carried out to predict RFI divergent 

lines from different predictors. sPLSDAs were fitted on fixed effects, body weight and 

microbiota data. MINT-sPLSDAs were carried out with pedigree data and all omics. The 

prediction accuracy of discriminant analyzes was evaluated by calculating the BER and cross-

validating. sPLSDA models were evaluated by repeating 5-fold cross-validation 50 times. 

MINT-sPLSDA models were assessed by repeating random subsampling 100 times. 

Results 

The first section details exploratory results of production phenotypes, including: feed 

efficiency (REI, FCR), energy intake (ADEI), body weight, growth (ADG) and body 

composition (MD, BFT). Traits are denoted with a C subscript under a concentrate diet; while 

a M subscript is used under a mixed diet. 
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The second section focuses on exploratory analyses of potential predictors of feed 

efficiency, with an emphasis on omics data. 

A. Production phenotypes in lambs of feed efficiency lines 

“For feed efficiency traits and their components, descriptive statistics are provided in   

Table 8, along with least square means computed for the two RFI divergent lines.  

Under a concentrate diet (17 to 23 weeks of age), lambs ingested an average of 10.98 MJ 

of net energy per day and grew by 330.91 g/day. It resulted in an average  FCRC of 0.03 

MJ/g. Under a mixed diet (29 to 35, or 37 to 43 weeks of age), sheep consumed an average 

of 8.06 MJ of net energy per day. No FCR was computed with a mixed diet because of some 

negative and null ADGM values. Regardless of the diet, RFI- animals had significantly lower 

intakes: with decrease of -0.95 MJ of net energy/day under a concentrate diet and -0.46 

MJ/day under a mixed diet) 

Considering the animals under study, the divergence between the two RFI lines was equal 

to 1.86 genetic standard deviations of RFIC least square means. Regardless of the diet, RFI- 

animals were more feed efficient, with a difference in residual energy intake between the 

RFI lines equal to 0.69 MJ of net energy/day under a concentrate diet against 0.33 MJ/day 

under a mixed diet. Under a concentrate diet, the difference in FCR c was also significant, 

with RFI+ animals ingesting 0.31 MJ of net energy/day more than RFI- animals to grow by 

100 g/day.  

Regardless of the diet, no significant difference was found between the two RFI lines for 

growth (ADGC or ADGM) and most body composition traits (BFTC, BFTM, or MDM). Only MDC 

significantly differed between the two lines: RFI- animals had a lower MD by 0.56 mm. 

Regarding the final body weight under a concentrate diet, the RFI- line was significantly 

lighter (-1.8 kg on average, at approximately 23 weeks of age). Later in life, under the 

mixed diet, the difference between the body weights of both lines was no longer 

significant (adjusted p-value = 0.196)” (Le Graverand et al., 2023).  
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Table 8: Statistical summary of lamb traits and least square means for residual feed intake lines  
(reprinted from Le Graverand et al., 2023) 

  Population statistics4  
Line least square 

means5 

 

Diet1 

(n2) 
Trait3 Mean SD Min Max  RFI- RFI+ Adj. p6 

C-diet 

(269) 

REIC, MJ/day 0.000 0.756 -1.701 2.070  -0.353 0.337 <0.001 

FCRC, MJ/g 0.034 0.006 0.021 0.055  0.032 0.035 <0.001 

ADEIC, MJ/day 10.98 1.38 7.37 14.14  10.50 11.45 <0.001 

Final BWC, kg 56.62 6.71 39.74 78.85  55.69 57.49 <0.001 

ADGC, g/day 331 58 150 501  333 331 0.927 

BFTC, mm 5.7 0.8 3.9 8.3  5.8 5.8 0.927 

MDC, mm 28.1 2.2 22.1 35.0  28.0 28.6 0.029 

M-diet 

(163) 

REIM, MJ/day 0.000 0.899 -2.740 2.222  -0.203 0.125 0.013 

ADEIM, MJ/day 8.06 1.22 4.31 10.50  7.77 8.23 0.008 

Final BWM, kg 64.49 5.80 47.80 77.90  63.74 64.72 0.196 

ADGM, g/day 123 67 -58 264  121 128 0.386 

BFTM, mm 4.5 0.8 2.9 6.9  4.6 4.4 0.196 

MDM, mm 27.3 2.4 20.8 34.0  27.0 27.5 0.196 

Abbreviations: ADEI: average daily energy intake; ADG: average daily gain; BFT: back fat thickness; 
C-diet: concentrate diet; FCR:  feed conversion ratio; M-diet: mixed diet; MD: muscle depth; REI: 
residual energy intake; RFI-: efficient line with a low residual feed intake; RFI+: inefficient line with 
a high residual feed intake. 
1: C-diet: sheep were fed a 100% concentrate diet; M-diet: sheep were fed a mixed diet including 
2/3 of forage and 1/3 of concentrate 
2: Number of animals 
3: Subscripts denote the trait diet: C for the C-diet; M for the M-diet.  
4: Descriptive statistics based on raw phenotypes, without adjusting for confounding effects  
5: Least squares means were computed for lamb lines divergently selected for residual feed intake. 
Traits were adjusted for the age, suckling method (under the C-diet only), year, pen and phenotyping 
period (under the M-diet only). 
6: Tukey’s test adjusted p-values. The Benjamini-Hochberg procedure was applied per diet. 
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B. Exploration of potential feed efficiency predictors 

B.1 Main variations patterns 

The genetic background of lamb lines 

Lambs were part of two divergent lines, selected during 2-3 generations for RFI. Genetic 

lines were associated to the first PCs when PCAs were fitted on genomic and pedigree 

relatedness matrices (11% and 10% of explained variance, respectively) (Figure 18 A and B 

respectively). Projection on the first two PCs also highlighted the existence of familial 

clusters, i.e. siblings and half-siblings born the same year and sharing the same sire.  On the 

opposite of the familial population structure, generations of selection were not noticeable 

on the projections defined by the first PCs. The second generation was studied in 2018 and 

2019, while the third generation was phenotyped in 2020.  

 

Figure 18: Principal component analyses of lamb genomic and pedigree relatedness matrices 
Abbreviations: expl. var: explained variance; PC: principal component; RFI -: line selected for a 
decreased residual feed intake; RFI+: line selected for an increased residual feed intake.  Analyses 
were carried out per relatedness matrix. (A) Genomic relatedness (VanRaden’s matrix); (B) Pedigree 
relatedness (additive genetic relationship). The RFI- and RFI+ lines are denoted by blue and red 
symbols, respectively. Animals phenotyped in 2018, 2019 and 2020 are represented by dots, crosses 
and diamonds, respectively.  

The rumen microbiota compositions, in lambs fed a concentrate and a mixed diet later 

“After data cleaning, 582 and 1148 OTUs of 16S sequencing remained under the 

concentrate and mixed diets, respectively, whereas for 18S sequencing, 124 and 183 OTUs 

were kept under the two diets, respectively )” (Le Graverand et al., 2023). 
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 “OTUs were clustered according to their phylum affiliations, and mean phylum relative 

abundances are reported in Figure 19. With 16S sequencing, the most abundant phyla 

were Bacteroidetes under a concentrate diet (Figure 19 A) and Firmicutes under a mixed 

diet (Figure 19 C), while Euryarchaeota was the third most abundant phylum under both 

diets. With 18S sequencing and regardless of the diet (Figure 19 B, D), the Ciliophora 

phylum was largely predominant, with relative abundances ranging between 87 and 96%)” 

(Le Graverand et al., 2023). 

 

Figure 19: Mean phylum abundances per sequencing and diet, in lamb ruminal fluids  (reprinted 
from Le Graverand et al., 2023) 

“Relative phylum abundances were computed after data cleaning, per diet and sequencing. (A) 16S 
sequencing under a concentrate diet; (B) 18S under a concentrate diet; (C) 16S under a mixed diet; 
(D) 18S under a mixed diet. Taxonomic affiliations were based on the Silva 132 16S and Silva 138.1 
18S databases. Taxa affiliated with archaea, bacteria, fungi and protozoa are represented in blue ‒
green, purple, blue, and red, respectively” (Le Graverand et al., 2023). 

“PCA allowed the identification of the main variation patterns of microbiota compositions 

(Figure 20). Under a concentrate diet, the variability of the second PC was associated with 

the year of lamb phenotyping with 16S data (5% of the variance explained,  Figure 20 A). 

Rumen - Prokaryotes Rumen - Eukaryotes
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Figure 20: Principal component analyses of lamb ruminal microbiota, per diet and sequencing 
(reprinted from Le Graverand et al., 2023) 

“Abbreviations: expl. var: explained variance; OTU: operational taxonomic unit; PC: principal 
component. Per diet and sequencing, analyses were carried out with OTU centered logratio values, 
adjusted for sequencing effects. (A) 16S sequencing under a concentrate diet; (B) 18S under a 
concentrate diet; (C) 16S under a mixed diet; (D) 18S under a mixed diet. Animals phenotyped in 
2018, 2019 and 2020 are represented by dots, crosses and diamonds, respectively. Under a mixed 
diet, animals phenotyped during the first and second periods are represented in dark blue and red, 
respectively” (Le Graverand et al., 2023). 

Under a mixed diet and regardless of the sequencing, the first PC variability seemed to be 

mostly tied to the phenotyping period and then the year to a lesser extent (Figure 20 C, 

D). None of the recorded variables (age at sampling, age at weaning, sampling order, pen, 

suckling method or RFI line) were associated with the other PCs. No main factor of 

variability could be identified for 18S data under a concentrate diet (Figure 20 B)” (Le 

Graverand et al., 2023). 

The functional profile of the prokaryotic microbiota, in lambs fed a concentrate diet  

Functions were inferred from 16S data under a concentrate diet, only. After filtering, 281 

prokaryote functions were kept. Two groups could be distinguished by the first PC (32% of 

the explained variance) (Figure 21). Eleven functions were highly correlated with the first 

Rumen - Prokaryotes Rumen - Eukaryotes
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PC coordinates (correlations >90%) and had relatively high loadings (>0.27). These functions 

were attributed to various pathways: Krebs’s cycle, glyoxylate cycle, glycolysis, amino acid 

biosynthesis, and biodegradation of aromatic compounds. The relative abundance of one 

bacterial cluster was mainly associated to the eleven functions and the first PC: the OTU 

647 affiliated to the Oribacterium genus. On average, the OTU 647 was the 261 th most 

abundant OTU out of the 582 retained clusters. The year of study is moderately 

discriminated by the second PC with transformed abundances of prokaryote functions (25% 

of variance explained). 

 

Figure 21: Principal component analysis of ruminal prokaryote functions, under a concentrate 
diet 

Abbreviations: expl. var: explained variance; OTU: operational taxonomic unit; PC: principal 
component. Analyses were carried out under a concentrate diet only, with centered logratio values 
of function abundances adjusted for sequencing effects. Animals phenotyped in 2018, 2019 and 
2020 are represented by dots, crosses and diamonds, respectively. Animals denoted by blue 
symbols had a relative abundance of OTU 647 superior to 0.01%, while purple symbols denoted 
abundances inferior to 0.01%. 

Rumen and plasma metabolomics, in lambs fed a concentrate diet  

Under a concentrate diet, 871 ruminal buckets and 25 ruminal metabolites concentrations 

were kept after data cleaning. After logratio transformation and adjusting for fasting and 

spectroscopy batch effects, PCA projections were compared to recorded factors (Figure 22 

A and B). Variations explained by the first PCs could not be associated with the spectroscopy 

batch, sampling order, fasting effect, pen, suckling method, RFI line, sampling or weaning 

age.  
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Figure 22: Principal component analysis of rumen metabolomics, under a concentrate diet 
Abbreviations: expl. var: explained variance; PC: principal component. Analyses were carried out 
under a concentrate diet only, with centered logratio values of bucket areas or metabolite 
quantifications adjusted for fasting and spectroscopy batch effects. (A) NMR buckets; (B) Metabolite 
quantifications. Animals phenotyped in 2018, 2019 and 2020 are represented by green dots, blue 
crosses and purple diamonds, respectively. 

Under the same diet, 863 plasmatic buckets and 25 plasmatic metabolites were retained 

after filtering. With plasmatic buckets, no known effect could explain the variations 

represented by the first PCs (Figure 23 A). On the opposite, two groups could be 

distinguished based on inferred concentrations of plasma metabolites, according to the first 

PC (23% of explained variance) (Figure 23 B). The two groups were associated with L-

threonine concentrations (loading of 0.96 on the first component). On average, L-threonine 

had the 16th highest concentration out of 25 retained metabolites. Individual having null to 

low concentrations of L-threonine concentrations were part of the group having negative 

coordinates on the first PC. The L-threonine concentration of these individuals may be 

below or close to the detection limit. Intra L-threonine groups, animals phenotyped in 2018 

were associated with higher coordinate values on the first PC, compared to animals of 2020. 

Animals phenotyped in 2019 had intermediate coordinates on the first PC. 
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Figure 23: Principal component analysis of plasma metabolomics, under a concentrate diet 
Abbreviations: expl. var: explained variance; PC: principal component. Analyses were carried out 
under a concentrate diet only, with centered logratio values of bucket areas or metabolite 
quantifications adjusted for fasting and spectroscopy batch effects. (A) NMR buckets (fixed width 
of 0.01 ppm); (B) Metabolite quantifications (inferred from NMR spectra by ASICS). Animals 
phenotyped in 2018, 2019 and 2020 are represented by dots, crosses and diamonds, respectively. 
In subplot B, blue shades denote the lowest concentrations of L-threonine, red and purple shades 
denote the highest concentrations.  

Rumen lipidomics, in lambs fed a concentrate diet  

Under a concentrate diet, 6 ruminal VFAs and 70 LCFAs were retained for analysis. After 

adjusting for analysis batch and fasting effects, no recorded variable could be associated 

thanks to PCAs fitted on VFA or LCFAs concentrations (Figure 24 A and B). 

Faecal phenomics, in lambs fed a concentrate diet  

Under a concentrate diet, 1050 NIRS absorbances were recorded and their first derivative 

was computed. The year of study was hardly distinguishable when PCA was applied to 

absorbances: animals phenotyped in 2020 tended to have slightly higher values on the first 

PC and lower values on the second PC (83% and 11% of the explained variance, respectively) 

(Figure 25 A). No other recorded variable could be tied to absorbance variations 

represented by the first PCs. On the opposite, the year of study was easily visualized when 

PCA was carried with the first derivative: the three years of study were highlighted by the 

first two PCs (33% and 20% of the explained variance, respect ively) (Figure 25 B). 
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Figure 24: Principal component analysis of rumen lipidomics, under a concentrate diet 
Abbreviations: CLR: centered logratio; expl. var: explained variance; PC: princ ipal component. 
Analyses were carried out under a concentrate diet only, with CLR values of fatty acid concentrations 
adjusted for fasting and analysis batch effects. (A) Volatile fatty acids; (B) Long-chain fatty acids. 
Animals phenotyped in 2018, 2019 and 2020 are represented by green dots, blue crosses and purple 
diamonds, respectively. 

 

Figure 25: Principal component analyses of near-infrared spectroscopy of lamb faeces, under a 
concentrate diet 

Abbreviations: expl. var: explained variance; PC: principal component. Analyses were carried out 
under a concentrate diet only. (A) Near-infrared spectroscopy absorbances; (B) First derivative of 
near-infrared spectroscopy absorbances. Animals phenotyped in 2018, 2019 and 2020 are 
represented by green dots, blue crosses and purple diamonds, respectively. 
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B.2 Predicting the feed efficiency lines of lambs from potential 
predictors 

Feed efficiency lines were predicted from different sets of predictors. Depending on omics, 

the number of phenotyped lambs varied. Thus, lines were also predicted from routine 

systematic effects – i.e. year, pen, suckling, age and final body weight effects – to set a 

comparable baseline in all population subsets.  

Predicting lamb lines from the microbiota composition and systematic effects, under 
two diets 

sPLSDAs were evaluated by repeating 5-fold cross-validation 50 times. “Regardless of the 

predictors, diet and sequencing, the BERs of sPLSDA were always high (from 0.35 to 0.55) 

when predicting RFI lines (Table 9). [Predictions of the RFI line from fixed effects and body 

weight were more accurate or as accurate as predictions from microbiota data only]. The 

addition of the microbiota data to the fixed effects and body weight data never decreased 

BERs significantly” (Le Graverand et al., 2023). 

Table 9: Balanced error rates when lamb feed efficiency lines were predicted from systematic 
effects and/or microbiota data (reprinted from Le Graverand et al., 2023) 

  Set of predictors3 

Diet1 Sequencing (n2) M S S+M 

C-diet 
16S (269) 0.46a (0.06) 0.38 a (0.05) 0.46 a (0.06) 

18S (205) 0.47 b (0.07) 0.35 a (0.06) 0.43 ab (0.06) 

M-diet 
16S (160) 0.55 a (0.08) 0.47 a (0.07) 0.53 a (0.08) 

18S (161) 0.45 a (0.08) 0.49 a (0.07) 0.45 a (0.08) 

“Abbreviations: C-diet: concentrate diet; M-diet: mixed diet; M: microbiota; S: systematic effects; 
S+M: microbiota plus systematic effects. 
Predictions were carried out with sparse partial least squares discriminant analyses. Balanced error 
rates were averaged over 5-fold cross-validations repeated 50 times. Standard deviations are given 
in brackets. 
1: Diets. C-diet: sheep were fed a 100% concentrate diet; M-diet: sheep were fed a mixed diet (2/3 
of forage and 1/3 of concentrate) 
2: Number of samples 
3: Sets of predictors. M: adjusted centered logratio values of 16S or 18S operational taxonomic 
units; S: systematic effects, i.e., fixed effects and final body weight; S+M: systematic effects and 
adjusted centered logratio values of 16S or 18S operational taxonomic units  
a,b: Balanced error rates with different letters significantly differ (corrected t-test p-value < 0.05 
after adjustment). Comparisons and Benjamini-Hochberg adjustments were made per diet and 
sequencing” (Le Graverand et al., 2023). 
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Predicting lamb lines from systematic effects, pedigree and omics, under a 
concentrate diet 

Other potential predictors of feed efficiency were assessed under a concentrate diet only 

(Table 10). MINT-sPLSDA models were assessed by repeating random subsampling 100 

times. 

The prediction accuracy of RFI lines was very low when predictions were made from the 

functions of rumen prokaryotes (BER = 0.45), same as predictions from rumen 

metabolomics and lipidomics (0.46 ≤ BERs ≤ 0.51). Predicting from faecal phenomics data 

(0.43 ≤ BERs ≤ 0.44), plasma metabolomics (0.42 ≤ BERs ≤ 0.43) and systematic effects 

(BER=0.37) was hardly more accurate. 

As expected in a divergent population, RFI lines were accurately predicted from genotypes 

and pedigree relatedness: averaged BERs were equal to 0.00. 

Table 10: Balanced error rates when lamb feed efficiency lines were predicted from systematic 
effects, pedigree or omics data under a concentrate diet 

 Predictors  Prediction accuracy 

Diet1  
(n2) 

Source Variables p3   Average BER (SD) 

C-diet 
(255) 

Farm records 
Fixed effects + body weight 20  0.37 (0.09) 

Pedigree relatedness matrix 255  0.00 (0.01) 

Blood 

Genotypes 29 830  0.00 (0.01) 

Plasma buckets 863  0.42 (0.09) 

Plasma metabolite quantifications 25  0.43 (0.10) 

Rumen 

Prokaryote abundances 582  0.46 (0.08) 

Prokaryote functions 281  0.45 (0.10) 

Rumen buckets 871  0.50 (0.09) 

Rumen metabolite quantifications 25  0.48 (0.09) 

Rumen VFA concentrations 6  0.46 (0.08) 

Rumen LCFA concentrations 70  0.51 (0.10) 

Faeces 
Spectral absorbances 1050  0.43 (0.08) 

Spectral first derivative 1050  0.44 (0.09) 
Abbreviations: C-diet: concentrate diet; BER: balanced error rate; SD: standard deviation; LCFA: 
long-chain fatty acids; VFA: volatile fatty acids. 
Predictions were carried out with multivariate integrative sparse partial least squares discriminant 
analysis. BERs were averaged over testing sets, defined by repeating random subsampling 100 times 
(training=60% of data, validation=30%, testing=10%). SDs are given in brackets. 
1: C-diet: sheep were fed a 100% concentrate diet. 
2: Number of samples 
3: Number of predictor variables 
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• Take-home messages about Chapter 3: 

• Feed efficiency traits (REI, FCR) and energy intake (ADEI) significantly differed between 

RFI divergent lines, when lambs were fed a concentrate or a mixed diet.  

• Final BWC and MDC were significantly lower in the feed efficient line only when lambs 

were fed with concentrates, around 23 weeks of age. 

• PCAs clearly highlighted that pedigree and genomics data reflect the population 

structure, in terms of lines and families. 

• PCAs underlined that abundances of microorganisms, plasma metabolite quantifications 

and faecal phenomics can sign temporal effects – i.e. the year or period of phenotyping. 

• Inferring microbial functions from 16S metabarcoding, or inferring plasmatic metabolite 

quantifications from NMR spectra introduced new data structures: animals could be 

clustered into groups, based on one microorganism or metabolite by PCAs.  It may 

represent inference artefacts. 

• Feed efficiency lines could not be predicted accurately from either the rumen 

microbiota, rumen metabolome, plasma metabolome, faecal phenome or systematic 

effects.  

• Genomics and pedigree can accurately predict the feed eff iciency lines. 
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Chapter 4 - Study: Predicting feed intake of independent sheep cohorts from their rumen microbiota 

Study: Predicting feed intake of 

independent sheep cohorts from their 

rumen microbiota 

 

Chapter 4 is adapted from the “Results” section published in the proceeding of the 2022 

WCGALP congress, by Le Graverand et al. (2022).  Reprinted parts are highlighted with 

quotation marks. Complements were added to introduce the study goal and summarize 

results.  
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Rationale 

Feed intake is rarely recorded by sheep breeding companies, on the opposite of fixed effects 

and body weights which are routinely documented. However, feed intake records are 

essential to estimate feed efficiency. Thus, predicting intake could help select for feed 

efficiency. 

Chapter 4 focused on the prediction of average daily feed intake under a concentrate diet 

(ADFIC) from systematic effects and/or microbiota abundance data. Systematic effects 

included the year, pen, suckling, age and final body weight effects. The matrices were 

concatenated to integrate microbiota data and systematic effects. The first goal was to train 

predictive models on a reference population and then, predict ADFIC
 in lambs raised a 

different year. Several machine learning algorithms were used to predict ADFIC phenotypes: 

sparse partial least square regression (sPLSR), support vector regression (SVR) and random 

forest regression (RFR). Prediction accuracy was assessed by carrying out a leave-one-year 

out cross-validation. Two training sets and testing sets were used: models were trained on 

2018 and 2020 to predict 2019 phenotypes; or models were trained on 2018 and 2019 to 

predict 2020. Since rams phenotyped in 2018 sired lambs in 2020, 2018 was never us ed as 

a testing set. The accuracy measure was the Pearson correlation between testing set 

predictions and real phenotypes. 

The second goal was to check whether EBVs of predicted ADFIC were close to EBVs of 

observed ADFIC. EBVs of real and predicted ADFIC were computed with mixed models, before 

computing the Pearson correlation between EBVs. “Two sets of populations were used to 

estimate breeding values: an entire Romane population named E (born from 2009 to 2020), 

with 6 419 animals in the pedigree including 1 900 with ADFI records; one subset population 

named S (2018 to 2020), with 4,102 animals in the pedigree including 277 with records ” (Le 

Graverand et al., 2022). 
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Results 

A. Comparison of different predictors and machine 
learning approaches for phenotypic ADFIC 

“Table 11 details accuracies of ADFIC predictions for the three machine learning models 

carried out with 16S data, animal traits and a concatenation of both. Considering 

correlations between actual and predicted ADFIC phenotypes, there was no significant 

difference between sPLSR, SVR and RFR accuracies whatever the testing set or the 

predictors.  

With all testing sets and machine learning techniques, correlations were significantly 

lower [and variable] when only 16S data was used as the feature set. Whatever the testing 

set [(ranging from -0.11 to +0.35)] and the machine learning model, combining animal 

traits and 16S data together as predictors did not significantly increased correlations  

[compared to animal traits alone]” (Le Graverand et al., 2022). 

Table 11: Pearson correlations between predicted and actual ADFIC phenotypes of testing set 
animals (reprinted from Le Graverand et al., 2022) 

a,b: Within one testing set, correlations with no common letter significantly differ (adjusted P<0.05, 
Dunn and Clark’s z test). 

B. Relationship between EBVs of predicted ADFIC and EBVs 
of actual ADFIC 

“The quality of predicted ADFIC EBVs is presented in Table 12. Within one machine learning 

approach and regardless of the testing set, correlations between EBVs are significantly 

  Testing sets 

Models Features 2019  2020 

sPLSR 

16S -0.12a  0.19a 

Animal  0.76b  0.81b 

Animal+16S  0.73b  0.82b 

SVR 

16S -0.04a  0.35a 

Animal  0.77b  0.80b 

Animal+16S  0.76b  0.82b 

RFR 

16S  0.03a  0.31a 

Animal  0.78b  0.77b 

Animal+16S  0.71b  0.74b 
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higher when a full set of records (E) is used during the genetic evaluation compared to a 

partial set (S).  

In 2020, no significant difference could be found between machine learning approaches. 

However, when only animal traits were used as 2019 ADFIC predictors, sPLSR performed 

significantly better than SVR, with RFR having intermediate performances. Finally, the 

combination of animal traits and 16S data as predictors did not significantly improve 

correlations between actual and predicted ADFIC EBVs” (Le Graverand et al., 2022).  

Table 12: Pearson correlations between estimated breeding values of predicted and actual 
ADFIC, in testing sets (reprinted from Le Graverand et al., 2022) 

1 Populations differ in the number of records used for EBVs estimation. S: subset population; E: 
entire population. 
a,b,c,d: Within one testing set (2019 or 2020), correlations with no common letter significantly differ 
(adjusted P<0.05, Dunn and Clark’s z test).  

  Testing sets 

  2019  2020 

Models Features S E  S E 

sPLSR 
Animal 0.681a 0.868c  0.843a 0.954b 

Animal+16S 0.698ab 0.876cd  0.852a 0.956b 

SVR 
Animal 0.624b 0.814d  0.848a 0.962b 

Animal+16S 0.650ab 0.817cd  0.839a 0.956b 

RFR 
Animal 0.731ab 0.891cd  0.863a 0.952b 

Animal+16S 0.698ab 0.880cd  0.848a 0.959b 
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• Take-home messages about Chapter 4: 

• The prediction accuracy of feed intake phenotypes did not vary significantly between 

the tested machine learning methods (sPLSR, SVR, RFR). 

• When ADFIC phenotypes were predicted from microbiota data only, the prediction 

accuracy was unstable and varied between years (-0.12 ≤ correlations ≤ 0.35). 

• Predictions of ADFIC phenotypes from fixed effects and body weight were quite accurate 

(0.76 ≤ correlations ≤ 0.81), significantly more than predictions from the rumen 

prokaryotic microbiota. 

• Concatenating microbiota data with fixed effects and body weight did not improve 

predictions of ADFIC phenotypes. It also did not improve the correlation between EBVs 

of real intake and EBVs of predicted intake. 

• The correlation increased between EBVs of predicted ADFIC and EBVs of real ADFIC, when 

the number of pedigree individuals (6 419 vs 4 102) and the number of records (1 900 

vs 277) both increased. Concomitantly, the correlation increase was also due to the 

smaller proportion of predicted phenotypes in records (maximum 5% against 36%). 
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Chapter 5 - Study: Predicting production traits of contemporaneous sheep from their rumen microbiota 

Study: Predicting production traits of 

contemporaneous sheep from their 

rumen microbiota 

 

 Chapter 5 is adapted from the “Results” section published by Le Graverand et al. 

(2023).  Reprinted parts are highlighted with quotation marks. Complements were added 

to introduce the study goal and summarize results.
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Rationale 

Predictors of feed efficiency are actively researched, including the rumen microbiota. Due 

to the major environment’s influence over the ruminal microbiota and sheep traits, we may 

have to profile the microbiota of several sheep each year. 

Chapter 5 focused on the prediction of production traits from microbiota data. This study 

differed from the previous one by its ambition: more diets were considered (concentrate 

and mixed diet), more traits were predicted (feed efficiency, intake, growth, and body 

composition) and prokaryote and eukaryote abundance proxies were tested (16S and 18S 

metabarcoding). Chapter 5 also differed by its cross-validation strategy: every year, 

phenotypes of several sheep are known and used to train predictive models. 

The goal was to assess the accuracy of sPLSRs predicting lamb traits from systematic effects 

and/or microbiota data. Systematic effects included year, pen, suckling, age and body 

weight effects. Microbiota data included transformed microorganisms’ abundances, with 

16S and 18S metabarcoding. Prediction accuracy was estimated by calculating the Pearson 

correlation and repeating 5-fold cross-validation 50 times. 

Results 

A. Predictions from microbiota data only 

“Under a concentrate diet, when host feed efficiency was predicted from 16S (Figure 26 

A) or 18S (Figure 26 B) data, the average correlations between actual traits and predictions 

were almost null for REIC (0.11 for 16S compared to 0.06 for 18S data) or low to moderate 

for FCRC (0.35 for 16S, 0.16 for 18S). Under a mixed diet, predicting REI M led to moderate 

average correlations (0.35 with 16S, 0.17 with 18S) (Figure 26 C, D)” (Le Graverand et al., 

2023). 
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Figure 26: Average Pearson correlations between lamb feed efficiency, production traits and 
predictions from systematic effects and/or microbiota data (reprinted from Le Graverand et al., 

2023) 
“Abbreviations: ADEI: average daily energy intake; ADG: average daily gain; BFT: back fat thickness; 
FCR: feed conversion ratio; M: microbiota; MD: muscle depth; REI: residual energy intake;  S: 
systematic effects; S+M: microbiota plus systematic effects. Predictions were carried out with 
sparse partial least squares regressions. Pearson correlations were averaged over 5-fold cross-
validations repeated 50 times. Error bars are equivalent to 1 standard deviation. (A) 16S sequencing 
under a concentrate diet; (B) 18S under a concentrate diet; (C) 16S under a mixed diet; (D) 18S 
under a mixed diet. Three sets of predictors were tested, with M: adjusted CLR values of 16S or 18S 
operational taxonomic units (green); S: systematic effects including fixed effects and final body 
weight (blue‒green); S+M: systematic effects and adjusted CLR of 16S or 18S operational taxonomic 
units (purple). Traits were recorded under a concentrate diet (C subscript) or a mixed diet (M 
subscript). a,b,c: Correlations with different letters significantly differ (corrected t-test p-value < 0.05 
after adjustment). Comparisons and Benjamini‒Hochberg adjustments were made per trait, diet 

and sequencing” (Le Graverand et al., 2023). 
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Predicting energy intake, growth and body composition “also led to varying average Pearson 

correlations, depending on the diet and the sequencing dataset. Predicting intakes (ADEIC, 

ADEIM) with 16S or 18S data led to a large range of correlations: from 0.05 with 18S under 

a concentrate diet to 0.56 with 16S under a mixed diet. Similar results were obtained for 

growth traits (ADGC or ADGM), with correlations ranging from 0.15 with 18S data under a 

concentrate diet to 0.38 with 18S data under a mixed diet. Finally, average correlations 

between body composition traits (BFTC, BFTM, MDC and MDM) and microbiota predictions 

fluctuated between almost null and moderate values: from -0.07 for BFTC predicted from 

18S data to 0.45 for BFTM predicted from 16S data” (Le Graverand et al., 2023). 

B. Predictions from systematic effects only 

“Regardless of [the diet and trait], average correlations for predictions from systematic 

effects ranged from 0.31 to 0.84. Furthermore, for almost all recorded traits, correlations 

were significantly higher than predictions derived from 16S or 18S data only. There were 

only three exceptions: similar accuracies were reached when FCRC and MDM were 

predicted from 16S or systematic effects, same as ADGM predicted from 18S or systematic 

effects” (Le Graverand et al., 2023). 

C. Predictions from microbiota and systematic effects 

“Finally, combining microbiota data with fixed effects and final body weight never 

significantly improved correlations compared to predictions from fixed effects and body 

weight. Most of the correlations were not significantly different. However, some 

correlations significantly decreased when 16S data and systematic effects were combined 

to predict: ADEIC
 (by -0.05 units on average), ADEIM

 (-0.11) and ADGC (-0.19). Similar 

decreases were observed with 18S data when predicting FCRC (-0.18), ADEIC (-0.04) and 

ADGC (-0.24)” (Le Graverand et al., 2023).  
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• Take-home messages about Chapter 5: 

• Accounting for the environment is essential to assess the predictive ability of traits by 

the rumen microbiota. To do so, spatio-temporal variables (pen, year, period) were part 

of the fixed effects used to predict traits. 

• Predictions of production traits – feed efficiency, intake, growth and body composition- 

from fixed effects and body weight were more accurate or as accurate as predictions 

from microbiota data only. 

• With microbiota data, the highest prediction accuracies were obtained for energy intake 

(correlations ranging between 0.05 and 0.56). Predictions accuracies were low to 

moderate for feed efficiency (0.06-0.35), for daily gain (0.15-0.38) and body composition 

traits (-0.07-0.45). Slightly higher prediction accuracies were obtained under a mixed 

diet, compared to a concentrate diet. 

• Integrating fixed effects, body weight and microbiota data by concatenating matrices 

never improved prediction accuracies significantly. Sometimes, concatenation 

integration significantly degraded the prediction accuracy compared to models fitted on 

systematic effects only. 
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Chapter 6 - Study: Predicting feed efficiency of sheep from multi-omics 

Study: Predicting feed efficiency of 

sheep from multi-omics 

 

Chapter 6 presents unpublished results. Part of the work was done thanks to a 

collaboration with Kim-Anh Lê Cao, at the School of Mathematics and Statistics ( internship 

from October to December 2023, University of Melbourne, Australia).  
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Rationale 

Omics may provide different insights into variations of feed effic iency. Few studies 

compared predictions of feed efficiency from different omics, in the same population. Thus, 

the most promising predictors of feed efficiency still have to be identified . Moreover, few 

studies integrated data in animals raised during different years. It remains unclear if we can 

identify suitable proxies when cohorts are raised at different times. Chapter 6 focused on 

the prediction of feed efficiency or intake under a concentrate diet only. 

First, traits were predicted from different blocks of proxies separately: either systematic 

effects, pedigree or omics. Omics included genomics, rumen metabarcoding, rumen 

metabolomics, rumen lipidomics, plasma metabolomics, and faecal phenomics. The first 

goal was to identify the best predictors by fitting one MINT-sPLSR per block (single-block, P 

integration). Prediction accuracy was computed as the Pearson correlation, by repeating 

random subsampling 100 times. 

Second, predictions from each block of proxies were integrated to predict traits. The goal 

was to assess how integration influenced the prediction accuracy (multi-block, NP-

integration). Feed efficiency and intake were predicted thanks to meta-models trained on 

the predictions of the single-block regressions above-mentioned. The same strategy was 

applied to assess the prediction accuracy for single-block and multi-block models, i.e. by 

repeating random subsampling 100 times. 

Results 

The first section details prediction accuracies of feed efficiency and intake from single-block 

models. The second section details accuracies from multi-blocks models. 
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Table 13: Prediction accuracy when lamb feed efficiency and energy intake were predicted from single-block and multi-block models 

 Predictors 
 

Prediction accuracy (SD)4 

Diet1  
Modelling  Source Variables p3 REIC FCRC ADEIC 

(n2) 

C-diet 
(255) 

Single-block            

MINT-sPLSR   

Farm 
records 

Fixed effects + body weight 20  0.35de (0.13) 0.48g (0.13) 0.85f (0.05) 

Pedigree relatedness matrix 255   0.54g (0.13) 0.40ef (0.16) 0.58e (0.13) 

Blood 

Genotypes 29 830   0.54g (0.13) 0.42f (0.15) 0.58e (0.12) 

Plasma buckets 863   0.37ef (0.14) 0.41f (0.14) 0.54cd (0.13) 

Plasma metabolite quantifications 25   0.34d (0.15) 0.32ab (0.14) 0.57e (0.10) 

Rumen 

Prokaryote abundances 582   0.20ab (0.15) 0.35bcd (0.17) 0.51bcd (0.12) 

Prokaryote functions 281  0.18a (0.17) 0.35bcd (0.18) 0.52cd (0.11) 

Rumen buckets 871   0.23b (0.17) 0.41ef (0.16) 0.46a (0.11) 

Rumen metabolite quantifications 25  0.27c (0.17) 0.34bc (0.15) 0.49b (0.11) 

Rumen VFA concentrations 6   0.24b (0.13) 0.37de (0.14) 0.51c (0.10) 

Rumen LCFA concentrations 70   0.23b (0.15) 0.31a (0.14) 0.45a (0.13) 

Faeces 
Spectral absorbances 1050   0.39f (0.14) 0.32ab (0.15) 0.54d (0.11) 

Spectral first derivative 1050   0.39f (0.14) 0.36cd (0.15) 0.52c (0.12) 

Multi-block            

Weighted mean   

  
All 

Single-block predictions 13   0.58h (0.11) 0.52h (0.12) 0.86g (0.05) 

MINT-sPLSR Single-block predictions 13   0.59h (0.12) 0.49g (0.15) 0.88h (0.04) 
Abbreviations: ADEIC: average daily energy intake; C-diet: concentrate diet; FCRC: feed conversion ratio; LCFA: long-chain fatty acids; MINT-sPLSR: 
multivariate integrative sparse partial least-squares regression; REIC: residual energy intake; SD: standard deviation; VFA: volatile fatty acids. 
Single-block predictions were carried out with MINT-sPLSRs. Multi-block predictions were carried out by weight averaging the single-block predictions or 
regressing them with MINT-sPLSR. Pearson correlations between predicted and actual phenotypes were averaged over testing sets. Testing sets were 
defined by repeating random subsampling 100 times (training=60% of data, validation=30%, testing=10%). Standard deviations are given in brackets. 
1: C-diet: sheep were fed a 100% concentrate diet. 
2: Number of samples 
3: Number of predictor variables 
4: Average Pearson correlation and standard deviation in brackets  
a,b,c,d,e,f,g,h: Column-wise, average correlations with different letters significantly differ (p-value < 0.05 of permutation test, after Benjamini‒Hochberg 
adjustment). Comparisons and adjustments were made per trait . 
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A. Single-block prediction of lamb feed efficiency and 
intake 

Under a concentrate diet, low to moderate prediction accuracies were obtained for feed 

efficiency traits (REIC and FCRC): average Pearson correlations ranged between 0.18 and 

0.54. For REIC, the best predictors were either genotypes or pedigree relatedness (average 

correlations equal to 0.54). On the other hand, the worst predictors of REI C were ruminal 

variables: the rumen microbiota, metabolome and lipidome alone did not predict well REIC 

(0.20-0.27). For FCRC, the best predictors were fixed effects and body weight (0.48). Then, 

the next best predictors of FCRC were the pedigree and genotypes (0.40-0.42), or the rumen 

and plasma metabolome buckets (0.41).  

Whatever the set of predictors, ADEIC was more or as accurately predicted as feed efficiency 

traits. Prediction accuracies were moderate to high for ADEIC (0.45-0.85). Fixed effects and 

body weight were the best predictors of ADEIC, followed by host genetics (0.58) and 

concentrations of plasma metabolites (0.57). 

Whatever the trait, inferring new variables (i.e. prokaryote functions, metabolite 

quantifications and the first derivative of faecal NIRS) gave mixed results. Sometimes, 

prediction accuracies marginally increased or decreased compared to predictions drawn 

from the original variables (i.e. prokaryote abundances, NMR buckets, NIRS absorbances).  

B. Multi-block prediction of lamb feed efficiency and 
intake 

When different sets of predictors were integrated, the best prediction accuracies were 

obtained for ADEIC (average correlations: 0.86-0.88), followed by REIC (0.58-0.59) and FCRC 

(0.50-0.52) (Table 13). To perform NP integration, using a MINT-sPLSR was the best strategy 

to predict ADEIC, while weight averaging was the best strategy for FCRC. Similar prediction 

accuracies were obtained when a weighted mean and a MINT-sPLSR were used to integrate 

multi-block and predict REIC.  
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Figure 27: Distribution of block contributions to the prediction of feed efficiency and intake  
Abbreviations: ADEIC: average daily energy intake; BW: body weight; FCRC: feed conversion ratio; 
REIC: residual energy intake; LCFA: long-chain fatty acids; VFA: volatile fatty acids; MINT-sPLSR: 
multivariate integrative sparse partial least-squares regression; NIRS: near-infrared spectroscopy. 
Feed efficiency and intake traits were predicted separately, under a concentrate diet. Block 
integration was carried out with weighted means or MINT-sPLSRs. Relative contributions of blocks 
were computed over each validation set. Validation sets were defined by repeating random 
subsampling 100 times (training=60% of data, validation=30%, testing=10%). Violin plots represent 
the density curves. Boxplots represent the 25th, 50th and 75th percentiles. 

However, contributions of predictor blocks varied between predicted traits (Figure 27). 

Contributions were not compared between different integration strategies, since the 

computation of contributions differ. Moreover, when the integration strategy relied on a 

weighted mean, no block selection was made and all 13 blocks contributed to predictions. 

When the strategy involved a MINT-sPLSR, 6.64 blocks were selected on average to predict 

REIC, 8.91 for FCRC and 8.81 for ADEIC. Blocks scarcely selected by the MINT-sPLSR had low 

average contributions.
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Table 14: Average block contributions to the prediction of feed efficiency and intake  
 

   
 

Average contribution4 per trait and integration 

    REIC 
 

FCRC 
 

ADEIC 
Diet1  

Source Predictors p3 

  

(n2)  Weighted 
mean 

MINT- 
sPLSR 

 Weighted 
mean 

MINT- 
sPLSR 

 Weighted 
mean 

MINT- 
sPLSR 

C-diet 
(255) 

 
Fixed effects + body weight 20 

 
  7.5   9.4  21.5 21.3  66.9 41.8 

Pedigree relatedness matrix 255   23.7 29.4    7.9 10.8    5.0   8.7 

Blood 

Genotypes 29 830   21.5 21.0  14.6 17.2    6.3 11.3 

Plasma buckets 863     9.0   8.5    6.8   5.8    4.6   8.0 

Plasma metabolite quantifications 25     6.1   4.4    2.0   2.5    3.3   5.2 

Rumen 

Prokaryote abundances 582     1.7   1.0    7.0   5.8    2.3   3.4 

Prokaryote functions 281    1.8   1.6    8.6   7.4    2.5   2.9 

Rumen buckets 871     2.7   1.3  10.0   8.4    1.2   2.5 

Rumen metabolite quantifications 25    2.2   1.1    4.2   4.8    1.2   1.8 

Rumen VFA concentrations 6     2.1   0.6    3.9   3.5    1.4   1.6 

Rumen LCFA concentrations 70     2.2   1.4    4.3   3.9    1.0   1.7 

Faeces 
Spectral absorbances 1050     9.6   9.1    3.7   3.8    2.3   6.5 

Spectral first derivative 1050     9.8 11.2    5.5   4.9    2.1   4.6 
Abbreviations: ADEIC: average daily energy intake; C-diet: concentrate diet; FCRC: feed conversion ratio; LCFA: long-chain fatty acids; MINT-sPLSR: 
multivariate integrative sparse partial least-squares regression; REIC: residual energy intake; SD: standard deviation; VFA: volatile fatty acids . 
Single-block predictions were carried out with MINT-sPLSRs. Multi-block predictions were carried out by weight averaging the single-block predictions or 
regressing them with MINT-sPLSR. Pearson correlations between predicted and actual phenotypes were averaged over testing sets. Testing sets were 
defined by repeating random subsampling 100 times (training=60% of data, validation=30%, testing=10%).  
1: C-diet: sheep were fed a 100% concentrate diet. 
2: Number of samples 
3: Number of predictor variables 
4: Relative contribution averaged over the 100 repetitions (relative weight in weighted means, or value importance in the projection of MINT-sPLSR). 
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Whatever the integration strategy, blocks were almost ranked in the same order according 

to their average contribution (Table 14). When REIC was predicted, the blocks having the 

highest contribution were: the pedigree, genotypes, NIRS variables and plasma buckets to 

predict REIC. When FCRC was predicted, the most important blocks were the fixed effects 

and body weight, the genotypes, the pedigree and rumen buckets. Depending on the feed 

efficiency criterion, different buckets had the highest contribution when all blocks were  

integrated. When ADEIC was predicted, the block including fixed effects and body weight 

had by far the greatest contribution.  

 

 

• Take-home messages about Chapter 6: 

• Feed efficiency and intake were predicted from single-block models (either systematic 

effects, pedigree or one set of omics). For feed efficiency, average prediction accuracies 

varied between 0.18 and 0.54.  For energy intake, accuracies were higher: from 0.46 to 

0.85. 

• For REIC, the best predictors were the host genotypes or pedigree, prior to NP-

integration. After, the best model was a MINT-sPLSR fitted 6.64 predictor blocks on 

average. 

• For FCRC, the best predictors were the fixed effects and body weight, without NP-

integration. Then, the best model was the weighted mean fitted on all blocks.  

• For ADEIC, the best proxies were fixed effects and body weight, prior to NP-integration. 

After, the best model was a MINT-sPLSR fitted on 8.81 blocks on average. However, one 

block had the highest contribution by far: the block with fixed effects and body weight.  

• The rumen microbiota and lipidome did not predict well feed efficiency and intake. The 

plasma metabolome and faecal phenome contributed moderately to predictions. 

• The prediction accuracy of multi-block models was marginally higher than the best 

single-block models (+0.05 maximum for REIc; +0.04 for FCRc; +0.03 for ADEIc). 
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Chapter 7 - Thesis discussion 

Thesis discussion 

 

In Chapter 7, a few elements were adapted from the “Discussion” section published in 

animal (Le Graverand et al., 2023).  Reprinted parts are highlighted with quotation marks. 

Most parts were added to cover all the thesis work. 
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In sheep, finding proxies of feed efficiency would widespread its selection. The literature 

suggests that proxies might be identified by profiling the host and its microbiota thanks to 

omics (Karisa et al., 2014; Shetty et al., 2017; Zhang et al., 2020; Marie-Etancelin et al., 

2021). The thesis assessed the potential of various proxies: fixed effects, body weight, 

pedigree, genomics, rumen metabarcoding, rumen and plasma metabolomics, rumen 

lipidomics or faecal phenomics. The main goal was to identify the best predictors of feed 

efficiency and intake, in meat sheep. 

The thesis relied on one original experimental design: no study has ever collected as many 

omics data in the same sheep population (8 techniques, 34 927 retained variables). 

Furthermore, the sheep number is relatively high compared to studies investigating several 

omics (around 250 lambs). Moreover, the rumen microbiota was studied under two 

successive diets: a concentrate diet and later a mixed diet.  

Compared to the literature, the experimental design also stands out thanks to two sheep 

lines genetically selected for a higher or a lower feed efficiency. Divergent selection can help 

identify feed efficiency determinants by exacerbating the genetic differences between the 

most and least efficient sheep. Divergently selecting also helps explore how correlated traits 

will respond to selection (Gilbert et al., 2017; Tortereau et al., 2020). 

First, the discussion will ponder the consequences of the divergent selection for feed 

efficiency over production traits and omics profiles. Then, the most promising predictors of 

feed efficiency will be reviewed. Finally, this chapter will underline the potential of data 

integration to predict animal traits. 
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I- The consequences of feed efficiency selection 

The present section will assess the consequences of selection for feed efficiency over 

production traits first and omics profiles later. 

A. Selection altered several lamb traits 

A.1 Feed efficiency and intake 

Selecting for a lower residual feed intake should increase efficiency by reducing feed intake 

and maintaining the production (Koch et al., 1963). Under a concentrate diet, we did 

observe a significant difference between the feed efficiency and intake least-square means 

of the two Romane divergent lines. As expected, efficient lambs had lower REIC, FCRC and 

ADEIC (adjusted p-values <0.001, Chapter 3 Table 8). Similar results were observed in cattle 

and pigs divergently selected for RFI, as well as rabbits selected for a decreased RFI  (Arthur 

et al., 2001; Gilbert et al., 2017; Garreau et al., 2019). 

In Romane male lambs, we observed an indirect and favorable response to selection when 

animals switched to a mixed diet. The feed efficient line still had a significantly higher feed 

efficiency and a lower intake under the mixed diet (adjusted p-values < 0.05, Chapter 3  

Table 8). In whether lambs, Ellison et al. (2022) observed a positive correlation between RFI 

under a concentrate diet and a pelleted forage-based diet. Nowadays, most breeding 

companies select rams under a concentrate diet, during the growing period. Results 

suggests that if these companies selected for feed efficiency, it would also improve the 

efficiency in growing animals eating concentrates and forages. However, more lambs may 

graze or consume low-quality forages in the future. 

Only growing male lambs were studied during the thesis. The diet and physiological 

determinants of feed efficiency likely differ between lambs and mature ewes. Mature ewes 

do not grow but they may mate, gestate, suckle and mobilize their body reserves. In dairy 

cattle, Macdonald et al. (2014) selected the 10% least efficient growing Holstein calves and 

the 10% most efficient. While heifer calves RFIs differed by 17.0% during growth, later, the 

difference was reduced to 2.4% during the first lactation (Macdonald et al., 2014). It 

suggests that feed efficiency may remain weakly and favorably correlated at different 
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physiological stages. More research is needed to assess the association between feed 

efficiency in growing lambs and mature ewes. Ewes constitute most of the mature sheep 

population. 

A.2 Final body weight and muscle depth under a concentrate diet  

Final body weight and muscle depth significantly differed between the two lines , under a 

concentrate diet only (adjusted p-value < 0.05, Chapter 3  Table 8). Selection for RFI could 

directly result in a body weight decrease: a similar selection experiment in rabbits showed 

that selecting for a decreased RFI during 10 generations significantly decreased body 

weights of young animals too (Garreau et al., 2019). Even if we regress feed intake 

phenotypes over the metabolic weight and muscle depth to compute RFI, it does not ensure 

that regressors and RFI are genetically independent (Kennedy et al., 1993). However, the 

genetic correlation was almost null between RFIC and final BWC in Romane sheep (rgenetic= 

−0.03±0.19), while the correlation was moderate between RFIC and MDC (rgenetic= −0.30±0.15) 

(Tortereau et al., 2020). Results still have to be checked with more data and more 

generations. 

Changes in body weight and MDC might also be indirect consequences of selection. Only 10-

12 sires mated per year which may result in a bottleneck effect. It takes two years to 

phenotype a complete generation of selection, thus only 1.5 generations were phenotyped 

between 2018 and 2020. The difference between body weight and muscle depth might not 

remain significant when different sires mate and produce the next generations.  

Under a mixed diet, final body weight and muscle depth differences decreased and were 

not significant anymore. Differences may decrease because male lambs are getting close to 

the end of growth, around 43 weeks age. Compensatory growth phenomena might also 

affect differently the two lines’ growth. Differences might also be less pronounced under a 

mixed diet, since selection was carried out under a concentrate diet.   
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B. Selection structured the study population 

In our experiment, the divergent selection clearly structured the lamb population. PCA 

evidenced that lines and families could be easily distinguished by their genetic (pedigree 

relatedness) and genomic backgrounds (genomic relatedness). The result was expected: the 

goal of divergent selection is to exacerbate the difference between extreme animals’ 

genetics. In Romane lambs, the divergence was equal to 1.86 genetic deviations after 

selecting for RFIC during almost three generations. In pigs, the divergence reached 3.84 

deviations after selecting for RFI during nine generations (Gilbert et al., 2017).  

In our experiment, the predictive ability of genotypes and pedigree data is likely high (see 

section II B.2 for the prediction of phenotypes). We studied a population strongly structured 

by family, with two divergent lines part of one flock. Discriminant analyzes easily predicted 

the Romane efficiency line from genotypes and pedigree data (average BERs=0.00, Chapter 

3 Table 10). Such results are unlikely if we predict extreme phenotypic groups, in a 

commercial population where animals may be less related. For instance, Shirzadifar et al. 

(2022) picked beef cattle to retain the top 15% and the worst 15% RFI phenotypes, from 

commercial and research populations. They observed a moderate error rate (0.39) when the 

RFI group was predicted from beef genotypes with a k-nearest neighbor classifier. 

C. Rumen, plasma and faecal omic profiles scarcely 
diverged between selected lines 

The thesis assessed whether the rumen microbiota, metabolome and lipidome / the plasma 

metabolome / the faecal NIR spectra diverged between the two selected lines.  

First, discriminant analyzes highlighted that the examined rumen, plasma and faecal omics 

could not predict accurately the Romane divergent line. When we looked for rumen, plasma 

and faecal signatures of selection, the BERs of discriminant analyzes were very high: from 

0.42 to 0.51 (Chapter 3 Table 10). Thus, divergently selecting for feed efficiency had little 

effect over rumen, plasma and faecal omics. However, it does not mean that selection had 

no effect at all. It only suggests that divergence between the rumen, plasma and faecal 

profiles are not sufficient to discriminate lines. 
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Second, fitting PCAs on rumen microbiota abundances, plasma metabolite concentrations 

and the first derivative of faecal NIR spectra variations showed that the year or period of 

phenotyping were associated with the first components. Thus, it may be difficult to identify 

microbiota, metabolomic and phenomic variables discriminating efficiency groups when 

animals are raised at different times or under different diets.  

C.1 The spectral phenome of faeces 

Faecal NIRS may not discriminate feed efficiency categories well when all animals are fed 

the same diet. In lambs, the faecal NIRS poorly discriminated feed efficiency lines, under a 

concentrate diet (0.43 ≤ BER ≤ 0.44, Chapter 3 Table 10). In beef steers, faecal NIRS (error 

rate = 0.46) also poorly discriminated extreme RFI groups, under a mixed diet (Meale et al., 

2017).  Previously, faecal NIR spectra were used to estimate the feed quality, digestibility or 

intake in sheep eating different diets (Andueza et al., 2017). However, breeding companies 

select rams under the same diet. 

C.2 The rumen and plasma metabolomics 

Under a concentrate diet, Romane divergent lines were better discriminated by plasma 

metabolomics (0.42 ≤ BERs ≤ 0.43, Chapter 3 Table 10) than rumen metabolomics (0.48 ≤ 

BERs ≤ 0.50). In the same population, Touitou et al. (2022) evidenced it before by computing 

the AUROC: 0.81 for plasma, against 0.70 for rumen metabolomics. Very similar results were 

obtained when extreme RFI groups were discriminated from steers’ plasma NIRS (error rate= 

0.46) (Meale et al., 2017), or lambs’ serum metabolome (AUROC=0.80) (Goldansaz et al., 

2020). 

If the objective is to discriminate extreme feed efficiency groups, it suggests that the plasma 

or serum metabolomes may discriminate just as well. If the objective is to understand how 

the metabolism influences feed efficiency, plasma and serum may provide different insights. 

No common metabolite was pinpointed in both studies, but similar biological pathways 

were proposed:  Touitou et al. (2022) highlighted metabolites involved either in the energy 

production by mitochondria or the protein turnover; while Goldansaz et al. (2020) identified 

proxies involved either in the energy regulation or protein synthesis. Discrepancies may also 

be explained by differences in diet, analysis, and group partition: one study attempted to 
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discriminate genetic lines (Touitou et al., 2022), while the other examined phenotypic 

groups (Goldansaz et al., 2020). 

C.3 The rumen microbiota 

The rumen microbiota hardly discriminated Romane feed efficiency lines. It would suggest 

that selecting for feed efficiency did not impair the microbiota. In dairy sheep, divergently 

selecting for either milk persistency or somatic cell count scarcely altered the rumen 

microbiota too: BERs of discriminant analyzes ranged from 0.50 to 0.71, on average 

(Martinez Boggio et al., 2021). In the future, longer-term selection could further alter the 

rumen microbiota composition of sheep. “In monogastrics, divergent selection of pigs for 

RFI during 9-10 generations resulted in significant differences in the abundances of 52 faecal 

bacterial genera between the RFI lines (Aliakbari et al., 2021). With rabbits, discriminant 

analysis of principal components was able to discriminate a line selected for a decreased 

RFI during 9 generations and the ancestral line based on their caecal bacterial phylotypes 

(Drouilhet et al., 2016). The discrepancy between these monogastrics results and ours may 

be due to much more advanced divergence” (Le Graverand et al., 2023). Discrepancies may 

also be explained by which microbiota was studied: ruminal in sheep, faecal in pigs, caecal 

in rabbits. Furthermore, the microbiota composition was assessed by cross-validating 

discriminant analyzes in sheep. Therefore, slight microbiota differences were overlooked if 

they were not sufficient to discriminate lines accurately. In rabbits and pigs, slight 

microbiota differences could be picked up by differential analyzes and unvalidated 

discriminant analyzes. 

Furthermore, environmental effects might exceed the host genetics influence. Past studies 

underlined the dramatic effect of the diet over the microbiota composition. Four times more 

rumen OTUs differed between diets than lamb RFI categories (Ellison et al., 2017). Similarly, 

the abundance of 91 genera out of 114 differed between two diets, while no genera was 

associated with Romane lamb RFI (Marie-Etancelin et al., 2021). 

C.4 The rumen lipidome 

The rumen lipidome was partially studied in Romane divergent lines: VFAs and LCFAs hardly 

discriminated the two lines (0.46 ≤ BER ≤ 0.51, Chapter 3 Table 10). Thus, it suggests that 

lipidome profiles diverged little between the two efficiency lines.  
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Fregulia et al. (2021) reviewed 14 studies in cattle and highlighted discrepancies. Depending 

on experimental conditions, the same VFA could be alternatively associated with the most 

efficient cattle, the least efficient animals or none at all. Thus, it may be difficult to pinpoint 

discriminant variables when lambs are raised in different conditions.   

 

 

 

 

 

 

• Take-home messages about the consequences of divergent selection: 

• Production traits, rumen, plasma and fecal omics were investigated in lambs divergently 

selected for feed efficiency. 

• Divergent selection altered both efficiency and intake under a concentrate diet and a 

mixed diet later. Muscle depth and final body weight decreased in the feed efficient line, 

under a concentrate diet only. Such decreases could result from indirect responses 

dictated by genetic correlations, or a bottleneck effect. 

• Rumen microbiota, metabolomics and lipidomics hardly discriminated feed efficiency 

lines. Plasma metabolomics and faecal NIR spectra could discriminate lines slightly 

better. 

• On the other hand, divergent lines could be easily discriminated from genotypes and 

pedigree data. It highlights that their prediction accuracy is high in divergent 

experiments, where the population has a strong familial structure. Lower accuracies 

could be expected when animals are less closely related, such as in commercial 

populations. 
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II- Proxies of feed efficiency and intake 

This section will focus on proxies of feed efficiency and intake phenotypes. The thesis did 

not assess whether EBVs could be predicted from omics. While phenotypes are directly 

measured, EBVs are estimations. We studied the last divergent lines generations, which had 

few or no descendants. Thus, we deemed that the reliability of EBVs was not high enough 

to assess models predicting EBVs from omics. For instance, coefficients of determination of 

feed intake breeding values were low: 0.41 on average (range: 0.34 to 0.66). Nevertheless, 

EBVs from predicted phenotypes are discussed later (section III B.2). 

Next sections will discuss how we assessed potential proxies of feed efficiency and intake: 

the fixed effects, body weight, pedigree and omics data. Then, best potential proxies will be 

discussed based on the thesis results and the literature. Proxies will be considered 

separately, without N-integration. 

A. Assessing the worth of proxies 

Feed efficiency and intake phenotypes are partially determined by environment and 

experiment conditions, such as the diet and climate (Butler-Hogg and Tulloh, 1982; 

Kamalzadeh et al., 1997; Padua et al., 1997). These conditions may have an incidence on 

potential proxies too, as highlighted before (Chapter 7, section I. C). Thus, studying lambs 

raised during different years (e.g. in different environments) may help assess the worth of 

proxies.  

Most papers assess the generalizability of proxies: they are promising if predictive models 

generalize well. A model is generalizable when it is fitted on one dataset (training) and the 

model may predict well the same outcome on a new dataset (testing) (Kuhn and Johnson, 

2013). The testing set must be unseen during the training. Computing the prediction 

accuracy with testing sets is necessary to check whether proxies could predict new data, or 

results only overfits. 

Most papers do not assess if proxies are practical: new proxies are not useful if they do not 

bring new insights into traits. New proxies may be redundant with variables which are easier 
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to collect. Integrating redundant variables is just counterproductive: multiplying the 

number of proxies is a waste of resources if it does not improve the prediction accuracy.  

In breeding companies, several variables are already recorded: the experimental conditions 

such as the age; and production traits such as the live weight. It is less expensive to record 

these variables routinely, than to collect omics data. Per sample, analysis costs can range 

between 24€ for genotypes to 211€ for LCFAs. To justify expenses, models including omics 

must predict better than regressions fitted on cheaper variables only. For instance, Maltecca 

et al. (2019) and Velasco-Galilea et al. (2021) assessed the predictive ability of the 

microbiota with and without spatiotemporal fixed effects: such as the pen or batch of 

animals. In rabbits, authors showed that adding microbiota data and systematic effects 

improved the prediction of RFI (Velasco-Galilea et al., 2021). In swine, a similar observation 

was reached for growth and carcass traits (Maltecca et al., 2019). 

During the thesis, we considered the following cheap and routine variables: the pen, the 

age, the body weight, the year and/or period of sampling. All these variables may already 

help predict feed efficiency and intake. Indeed, male lambs could not be grouped 

randomly: the body weight had to be homogeneous per pen to prevent excessive fighting.  

Then, conditions slightly varied between years despite all attempts: lambs were slightly 

older in 2018; feeders did not stop in 2019 the day before sampling; the diet chemical 

composition varied; and weather conditions changed from year to year. 

So, lambs’ weights and ages were spuriously correlated with the spatiotemporal 

environment (Figure 28). Microbiota, metabolomics, lipidomics, phenomics and lamb 

traits are indirectly correlated because of environmental effects. The correlation may exist 

even if there are no causal relationship between omics and traits.  Thus, conclusions about 

omics might be overoptimistic when correlations are ignored with experiment conditions. 

Intermediate omics were suggested to replace unregistered environmental effects. He et 

al. (2022b) proposed the microbiota metabarcoding as an indicator of animals’ raising 

conditions (more perspectives are discussed in the section III. B). 
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Figure 28: Associations between the environment, intermediate omics and production traits 

B. Most and least promising proxies 

Since determinisms differed between efficiency and intake traits, the best proxies varied 

accordingly. Here, the predictive abilities of proxies examined during the thesis will be 

discussed separately - without data integration. 

B.1 Fixed effects and body weight were the best proxies for weight-
dependent traits 

In Romane lambs, fixed effects and final body weight were the best proxies of feed intake, 

whatever the diet: Pearson correlations varied between 0.76 and 0.85 (Chapter 5 Figure 26 

and Chapter 6 Table 13). Fixed effects and body weight predicted FCRC less well, but they 

remained its best predictors: Pearson correlations ranged between 0.40 and 0.48. On the 

opposite, fixed effects and body weight did not predict REIC as accurately as feed intake and 

FCRc: correlations ranged from 0.31 to 0.35. Similar conclusions were reached in rabbits for 

feed intake and efficiency (Velasco-Galilea et al., 2021).  
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Such results were expected: feed intake and FCRC vary with the animal weight. Phenotypic 

correlations evidenced this relationship in Romane lambs: 0.78±0.01 between ADEIC and 

final BWC; -0.77±0.01 between FCRC and final BWC (Tortereau et al., 2020). 

On the opposite, REIC phenotypes are independent of animal weight differences (Koch et 

al., 1963). Indeed, REIC is a composite trait computed by regressing intake over the 

metabolic weight, growth and body composition effects. It explains why models fitted on 

fixed effects and body weight do not generalize well to predict REIC. It stresses the need for 

new proxies to predict residual efficiency traits, such as pedigree and omics data. 

B.2 Genetics and genomics were the best proxies of residual feed intake 
in divergent lines 

In Romane divergent lines, the best REIC proxies were genotypes and pedigree relatedness: 

average correlations were both equal to 0.54 (Chapter 6 Table 13). Compared to our 

experiment population, animals may be less closely related in commercial populations. 

Thus, genomic prediction accuracies might be lower in commercial populations. In cattle for 

example, past studies observed lower genomic prediction accuracies: average correlations 

between RFI phenotypes and genomic EBVs reached a maximum of 0.19, in growing 

Australian Holsteins or Nellores (Pryce et al., 2012; Silva et al., 2016). However, RFI 

heritabilities were low in these cattle populations: h2 =0.22±0.07 in Holstein, and 0.17±0.07 

in Nellore (Pryce et al., 2012; Silva et al., 2016). On the other hand, heritability was higher 

in one Romane flock: h2=0.45±0.08, before divergent selection (Tortereau et al., 2020).  

Genotypes and pedigree relatedness were also the second-best proxies for FCRC and ADEIC: 

with average correlations ranging between 0.40 and 0.42 for FCRC, against 0.58 for ADEIC 

(Chapter 6 Table 13). 

Given that heritabilities are significant, genomic and genetic selections seem feasible in 

Romane sheep.  However, accuracies and reliabilities have to be checked more thoroughly 

in a commercial population. Furthermore, the thesis experimental design and results cannot 

demonstrate whether genomic selection should be preferred over genetic selection: MINT-

sPLSRs performed similarly when regressions were fitted on pedigree relatedness or 

genotypes allelic counts. Finally, only SNPs with a minor allele frequency higher than 0.20 

could be retained to carry out sPLS models. Otherwise, sPLS models did not always 
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converge. Mixed models and Bayesian models may include more SNPs and help compare 

genetic and genomic accuracies. 

B.3 Rumen omics were the least promising proxies  

Before, the rumen microbiota, metabolome and lipidome seemed promising since the 

digestion of plants by rumen microorganisms is essential in ruminants (Domingues Millen 

et al., 2016).  

In lambs, however, the rumen microbiota did not predict well phenotypes. Predictions from 

the rumen microbiota were less or as accurate as predictions from fixed effects and/or 

production traits, whatever the sequencing (16S or 18S rRNA gene), the regression model 

and the cross-validation strategy (Chapter 4 Table 11 and Chapter 6 Table 13). For REI, 

correlations were null to low between actual phenotypes and predictions from microbiota 

data (0.06-0.35). Prediction accuracies seemed a bit higher under a mixed diet. Differences 

between diets might be explained by fiber content differences, or the experimental design: 

lambs were phenotyped during summer or fall under a mixed diet, and the rumen 

microbiota composition differed between periods (Chapter 5 Figure 26). Our accuracy 

results contradicts Ellison et al. (2019):  they observed a correlation of 0.71 between lamb 

RFI and predictions from 16S data (against 0.35 for REIM). Ellison et al. (2019) picked a small 

subset of animals to get three groups: one with average RFI phenotypes and two with 

extreme RFI values (16 lambs to train the model, 20 to test it). Thus, the retained 

phenotypes do not follow the same distribution as the whole original population. Having 

contrasting groups may inflate the Pearson correlation between phenotypes and predictions 

(Aggarwal and Ranganathan, 2016).  

We do not advocate for rumen metabarcoding to predict feed efficiency and intake . 

However, untargeted analyses could help identify better proxies, by censing all kinds of 

microorganisms. For instance, shotgun sequencing or restriction enzyme-reduced 

representation sequencing can detect bacteria, archaea, fungi, protozoa and viruses (Hess 

et al., 2020). Even if the rumen microbiota did not predict well feed efficiency, rumen 

metagenomics and metabarcoding data could help predict methane emissions. Methane 

is a direct by-product of rumen microorganisms which degrade fiber by fermenting (Hill et 

al., 2016). Furthermore, additive models assessed how much phenotypic variance was 



Thesis discussion 

138 

associated with genetics and the rumen microbiota.  In dairy cattle, microbiabilities  varied 

between 0.13 and 0.31 for methane production (Difford et al., 2018; Saborío-Montero et 

al., 2021). However, high microbiabilities do not guarantee that microbiota data can 

predict traits accurately. Models may overfit. In sheep, microbiabilities ranged between 

0.78 and 0.96 for methane emissions, but prediction accuracies ranged from 0.29 to 0.38 

(Hess et al., 2022).  

Rumen metabolome and fatty acids did not predict well REIC: correlations between actual 

and predicted phenotypes ranged from 0.23 to 0.27 (Chapter 6 Table 13). Thus, all models 

fitted on rumen data did not generalize well to predict REIC.  

The low repeatability of rumen proxies might explain why ruminal traits cannot be 

considered as accurate proxies of host traits. Fresco et al. (2022) studied several rumen 

omics in dairy ewes sampled two weeks apart. Most microbiota abundances, metabolites 

and fatty acids were unstable from one week to another. The median repeatabilities were 

low: 0.15 for OTUs (range of OTU repeatabilities : 0 - 0.93); 0.44 for VFAs (0.21 to 0.57); 0.21 

for LCFAs (0.02-0.86) (Fresco et al., 2022). Correlations between variables were also 

unstable. Twenty OTUs were correlated with rumen LCFAs the first week, but only 3 

correlations remained significant the second week (Fresco et al., 2022). Low repeatabilities 

and correlation instabilities suggest that rumen omics are sensitive to random, 

environmental, technical and/or analysis parameters. For instance, saliva and different 

rumen fractions may be found in rumen fluid samples collected with gastric tubes 

(Henderson et al., 2013; Terré et al., 2013).  

Thus, the thesis suggests that the rumen is not the best gut location to sample, if the goal 

is to predict feed intake and efficiency in growing lambs. Other gut locations, such as the 

rectum, might provide better proxies. 

B.4 Faecal and plasma omics may provide non-invasive proxies 

Sampling faeces and blood is less invasive than sampling the rumen. Non-invasive 

sampling is primordial to collect data routinely.  
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Faeces can be collected directly from the rectum. In pigs, such sampling was performed 

to predict feed efficiency, growth and carcass traits from the faecal microbiota (Maltecca 

et al., 2019; Aliakbari et al., 2022).  

Besides the faecal microbiota, faecal NIRS might provide feed efficiency proxies too. In 

Romane divergent lines, average correlations between real REIC and predictions were 

equal to 0.39 (Chapter 6 Table 13). First derivative or absorbances were the second-best 

proxies of REIC, right after pedigree and genotypes. Faecal NIRS may predict traits strongly 

related with the physico-chemical profile of samples. In pigs for example, faecal NIRS could 

accurately predict digestibility coefficients: correlations varied between 0.82 for crude 

fiber digestibility, and 0.95 for the nitrogen digestibility (Labussière et al., 2019). In 

ruminants, faecal NIRS is mainly used to predict diet characteristics . Lamb FCR could not 

be predicted under a single diet accurately (R2≤0.15), however the accuracy increased 

when lambs were fed two different diets (R2=0.69) (SMARTER Deliverable 1.1, 

unpublished) In dairy cows however, milk mid-infrared spectroscopy was proposed to 

predict RFI: coefficients of determination were as high as 0.46 at the beginning of lactation 

(Shetty et al., 2017). 

In Romane lambs, the plasma metabolome moderately predicted REI C: correlations 

ranging from 0.34 to 0.37 (Chapter 6 Table 13). Accuracies were intermediate between 

faecal NIRS and rumen variables. In beef, 32% of RFI phenotypic variation could be 

explained by regressing RFI on three plasma metabolites (creatine, carnitine and 

hippurate) (Karisa et al., 2014). In Romane lambs however, the plasmatic concentrations 

of creatine and carnitine were quantified with ASICS but they were not associated with 

feed efficiency (VIP<1) (Touitou et al., 2022). Hippurate is part of the ASICS reference 

library, but it could not be detected and quantified from NMR spectra in Romane lambs . 

B.5 Data inference and transformation 

In machine learning, feature engineering consists in selecting and transforming an original 

set of variables into a new set of variables (Kuhn and Johnson, 2013). Inference is an 

instance of feature engineering based on knowledge. Inference may be useful to get more 

interpretable predictors.  
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Inference was used to estimate the abundance of prokaryote functions from the abundance 

of prokaryote microorganisms. Original variables (transformed prokaryote abundances) and 

inferred data (function abundances) had similar prediction accuracies, when feed efficiency 

and intake were predicted. Correlations did not significantly differ (Chapter 6). We expected 

that inferred data would be more interesting for predictions, since different bacteria may 

have redundant functions (Weimer, 2015). Furthermore, in cows metagenomics 

discriminated feed efficiency groups better than metataxonomics (AUROC>0.9, AUROC>0.8 

respectively) (Kruger Ben Shabat et al., 2016). However, inference models are only as good 

as the available knowledge. Picrust2 relies on a phylogenetic tree to infer the abundance of 

genes from the abundance of microorganisms (Douglas et al., 2020). Picrust2’s tree is less 

exhaustive than the latest SILVA databases releases (Darbot et al., 2022). Therefore, while 

the OTU 647 belonged to the Christensenellaceae R-7 group based on SILVA’s classification, 

the closest match in Picrust2’s tree belonged to the genus Alicyclobacillus. The two genera 

are not closely related since they do not belong to the same class taxa. It may have 

introduced an inference artefact, which explains why two lamb groups were evidenced after 

the functional inference of prokaryotes (Chapter 3). Shotgun metagenomics would likely 

provide a more accurate census of microbial functions than inference could. 

Inference was used to infer the concentration of metabolites from NMR spectra. No trend 

was clear: original variables (transformed bucket areas) could predict feed efficiency or 

intake traits better than, worse than or as well as inferred data (metabolite quantifications). 

The accuracy of metabolite concentrations relies on the exhaustiveness of the reference 

library. For instance, the ASICS library does not include urea (Lefort et al., 2019). Thus, urea 

quantifications could not be inferred from NMR spectra, even if the metabolite could help 

assess nitrogen cycles. 

Transformation is another instance of feature engineering. The first derivative of NIRS was 

computed from spectra absorbances. NIRS absorbances and the first derivative could 

predict REIC with the same accuracy, but absorbances predicted ADEIC better and the first 

derivative predicted FCRC better.  

Thus, the thesis does not allow to conclude whether data inference and data transformation 

are preferable to predict feed efficiency and intake from microbiota data, metabolomics and 

phenomics. 
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B.6 Using other phenotypes to predict feed efficiency 

While the thesis scrutinized omics a lot, they might not be the easiest and cheapest proxies 

of feed efficiency and intake. Some other trait phenotypes could be easier to collect and 

analyze. Many traits were associated with feed efficiency and could represent valuable 

proxies: such as heat production, behavior, and respiratory traits. However, caution is 

advised: few papers carried out cross-validation to check how accurately these traits could 

predict feed efficiency. 

Heat production was proposed as a proxy for feed efficiency. When bull RFI is computed by 

regressing feed intake over weight gain and metabolic weight, 24% of efficiency variations  

may be explained by infrared thermography - with temperatures measured at 6 body 

locations (Montanholi et al., 2010). Feed efficient bulls had a significantly lower cheek, eye 

and feet temperatures. It was hypothesized that feed efficient ruminants may produce less 

heat thanks to a higher efficiency of mitochondrial respiration, or a lower protein turnover 

(Cantalapiedra-Hijar et al., 2018). Lines et al. (2014) found no association between cattle 

lines divergently selected for RFI and CO2 entry rate - used as a proxy of heat production. 

However, Lines et al. (2014) underlined that heat production varies with the amount of 

ingested energy. Thus, feed efficient ruminants may produce less heat when they ingest less 

energy, not because they have a more efficient metabolism.  

Behavioral traits may also provide valuable proxies of feed efficiency. Lamb feeding behavior 

was associated with feed efficiency under a concentrate diet: efficient Romane lambs visited 

less often feeders, spent less time eating per meal and ate when less animals were accessing 

feeders (Marie-Etancelin et al., 2023). It suggests that efficient animals might save energy 

by moving less to feed. On the other hand, inefficient animals might spend more energy 

moving or dominating other animals (Marie-Etancelin et al., 2023). Sepulveda et al. (2022) 

observed a strong correlation in ewes between RFI and the eating duration per visit 

(correlationgenetic= -0.50 ± 0.19). Such results and modelling responses to selection 

suggested that selecting ewes for longer meal duration would improve RFI (Sepulveda et al., 

2022). However, in Romane lambs the genetic correlation seemed lower and less 

interesting: -0.22 ± 0.17 (Marie-Etancelin et al., 2019). In both cases, standard errors were 

relatively high. Bigger populations may be used to estimate more accurately feed efficiency 

gains if longer eating durations are selected per visit.  Water intake behavior might also 



Thesis discussion 

142 

provide proxies: RFI and water intake were genetically correlated in steers 

(rgenetic=0.33±0.11) (Ahlberg et al., 2019). Radio frequency identification and accelerometers 

could help measure behavioral traits, without investing as much as in automatic feeders. 

Furthermore, such systems may be used to phenotype new traits and putative proxies: such 

as study social traits and physical activity. 

Respiratory gases were also considered as feed efficiency proxies: they may vary with the 

ingested feed, the physical activity and metabolism phenomena. In dairy cows, methane 

and carbon dioxide concentrations were examined as proxies of RFI respiratory gases 

(Difford et al., 2020). However, correlations between RFI and respiratory gases could be 

alternatively null, positive or negative: values differed between populations (Dutch or 

Danish cows) and RFI computations (phenotypic, genetic, single-step RFI) (Difford et al., 

2020). In lambs and ewes, daily methane emissions could also be either insignificantly, 

positively or negatively correlated with RFI (Paganoni et al., 2017; Muir et al., 2020; Johnson 

et al., 2022; Navajas et al., 2022; Marques et al., 2022; Tortereau et al., 2023). These results 

clearly demonstrate that proxies of feed efficiency may be context-dependent. 

Still, combining respiratory gases and production traits is promising: a PCA was fitted on 

body weight, ADG, CO2, O2 and CH4 emissions in Uruguayan Merinos, then the first 

component could predict feed intake in Corriedale and Dohne flocks (correlations=0.73; 

SMARTER Deliverable 1.1, unpublished).  

In Romane lambs fed a mixed diet, FCR was correlated with the difference between plasma 

and diet abundances of the 15N isotope (correlations=-0.67; SMARTER Deliverable 1.1, 

unpublished). However, correlations were negligible under a concentrate diet. Correlations 

were also negligible with RFI.  
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• Take-home messages about the proxies of feed efficiency and intake: 

• During the thesis, the best proxies of REI were genotypes and pedigree relatedness. 

However, the family structure is strong in our divergent selection experiment.  Thus, the 

potential of genetic and genomic selection should be assessed in a commercial 

population, where animals may be less closely related. The best proxies of ADEIC and 

FCRC were fixed effects and body weight during the thesis.  

• Plasma metabolomics and fecal NIR spectra showed intermediate prediction accuracies 

for feed efficiency and intake. 

• Collecting and analyzing omics require much resources, while the literature showed that 

several traits could be used as feed efficiency and intake proxies: such as heat 

production, behavior, respiratory traits.  The predictive ability of many traits still has to 

be checked with cross-validations. Otherwise, claims might be overoptimistic.  

 

 

III- Integration perspectives to predict and select 
animal traits 

As discussed before, past studies evidenced that the potential of proxies to predict animal 

traits could vary from one context to another. P-integration could help identify proxies 

which are generalizable in different contexts, by integrating different experimental 

conditions. Furthermore, the previous section lingered on the best potential proxies of feed 

efficiency and intake, but each kind of proxy was considered separately. N-integration could 

help predict animal traits more accurately by integrating different proxies. 

Now the discussion will focus on the perspectives of N and P integration, to predict animal 

traits. First, the discussion will highlight the contributions and flaws of strategies used 

during the thesis. Then, the discussion will focus on how data integration could help select 

animals for complex traits.  
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A. Integration strategies 

Several integration approaches were tried throughout the thesis. The first subsection will 

discuss the prediction accuracies, opportunities and drawbacks of the thesis integration 

attempts. The second subsection will underline how the attempted integration strategies 

could be improved. 

A.1 Prediction accuracies, opportunities and drawbacks of strategies 
implemented in the thesis 

Integration of data collected during different years 

The effect of P-integration over prediction accuracies may only be assessed for 16S data. In 

Chapter 5, sPLSR were carried out and did not account for the year of lambs’ rearing. On 

the opposite, in Chapter 6,  MINT-sPLSR accounted for the three different years. Prediction 

accuracies were close when sPLSR or MINT-sPLSR predicted traits from 16S data. However, 

the difference between models was not be tested, because cross-validation strategies 

differed. 

The aim was not necessarily to increase the prediction accuracy. Compared to classic sPLS 

discriminant analyzes, past studies showed that MINT discriminant analyzes could either 

improve the prediction accuracy (Rohart et al., 2017a)  or decrease it (Poirier et al., 2020). 

The goal of MINT-sPLSR was to account for batch effects, in order to identify generalizable 

proxies. For instance, feeders in 2019 kept delivering feed when animals were supposed to 

fast for the night, prior to blood and rumen sampling in the morning. Fasting duration has 

a major incidence on metabolomic profiles. Thus, P-integration provides the opportunity to 

try to account for a batch effect, instead of discarding a faulty batch dataset.   

Integration of fixed effects, covariates and microbiota data 

In the first thesis studies (Chapter 4 and Chapter 5), early integration was attempted by 

concatenating the matrices: the incidence matrix of fixed effects and covariates and the 

transformed microbiota abundance matrix.  

Few authors performed an early integration to predict host traits simultaneously from fixed 

effects, covariates and prokaryote abundances. Chapter 5 (Figure 26) prediction accuracies 

were consistent with past studies. Indeed, correlations between phenotypes and 
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predictions were equal to: 0.11 in sheep against 0.17 in rabbits for REIC; 0.79 in sheep 

against 0.73 in rabbits for ADEIC; 0.79 in sheep against 0.73 in rabbits for ADGC, 0.62 in sheep 

against 0.50 in pigs for BFTC (Maltecca et al., 2019; Velasco-Galilea et al., 2021).  

“Therefore, low to high prediction accuracies can be reached when systematic effects and 

microbiota are combined as predictors of host traits. However, it does not demonstrate 

that predictions benefit from the inclusion of microbiota variables. Prediction models may 

rely more on systematic effects, such as the live weight, than microbiota variables. Indeed, 

the present study illustrates that models integrating microbial predictors and systematic 

effects never significantly outperformed predictions from systematic effects only. 

Therefore, microbiota predictors did not provide any added value to improve predictio n 

accuracies. Prediction accuracies did not benefit from any [complementarity] between 

microbial, fixed effects and body weight predictors. In addition, systematic effects ( i.e., 

fixed effects and body weight here) represented less-expensive predictors than 

metabarcoding variables. In contrast, Velasco-Galilea et al. (2021) demonstrated that 

sPLSR models predicted rabbit RFI more accurately when microbiota variables were 

included than models with systematic effects only. Similarly, Maltecca et al. (2019) showed 

that machine learning accuracy was improved by including microbiota data to predict 

swine growth and carcass traits. This was not the case in our study, regardless of the trait, 

microbiota sequencing or diet.  

The sheep rumen microbiota may not have a negligible predictive ability for feed efficiency 

or its components. However, the present study suggests that recording systematic effects, 

such as animal weight and environmental effects, might be more effective than sampling 

and metabarcoding the rumen fluid. Most studies did not consider the predictive ability 

of systematic effects to establish a baseline and prove the utility of the microbiota in host 

trait predictions. We conclude that host trait predictions did not benefit from the  inclusion 

of microbiota predictors because these were compared to cheaper predictors that proved 

to be more or as effective” (Le Graverand et al., 2023). 

The advantage of early integration by concatenation is its simplicity. But concatenating 

fixed effects, covariates and microbiota data, might be flawed. Singh et al. (2019) observed 

that training models on concatenated data may favor the most predictive variable blocks, 

and overlook other integrated blocks. Moreover, concatenating data increases the data 
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dimensionality. A higher number of variables may increase the noise and exacerbate the 

dimensionality curse, especially when there are few samples (Picard et al., 2021). Thus, if 

the goal is to integrate many blocks, other integration strategies could be more 

appropriate. 

Integration of fixed effects, covariates, pedigree and omics collected during different 
years 

Fixed effects, covariates, pedigree and omics were integrated via a late integration (Chapter 

6). First, one MINT-sPLSR submodel was trained per block of predictors. Second, a 

metamodel was trained to get the final prediction estimates: either a weighted mean or a 

MINT-sPLSR. MINT-sPLSRs are convenient, as they can account for the experiment design 

(the three different years) and handle correlated variables. Indeed, estimates from different 

blocks may be correlated: predictions from genotypes and pedigree relatedness coefficients 

are expected to be close, for example. 

Then, the thesis integration strategy voluntarily differed from the block sPLSR implemented 

in mixOmics (Singh et al., 2019). In mixOmics, estimates are either averaged or weight 

averaged. Block weights are defined by the correlation between latent variables and the 

outcome to predict. However, mixOmics computes the correlation with latent variables 

defined during the training. Thus, values of latent variables could be sensitive to overfitting. 

Thus, we postulated that the block sPLSR implemented in mixOmics may give too much 

importance to overfitting blocks. That is why, a cross-validation design with training, 

validation and testing sets was developed in this thesis. Furthermore, cross-validation 

stratification per year, pen and RFI lines was introduced in the thesis. The weighted mean 

and MINT-sPLSR metamodels were trained on validation sets to give more importance to 

blocks which predict well data unseen during the training of submodels. The integration 

strategy and data partitioning are directly inspired by examples set in competitive machine 

learning (Töscher and Jahrer, 2009). 

Models integrating different omics may predict traits slightly better. In Romane lambs, fixed 

effects, covariates, pedigree and omics predicted feed efficiency and intake better than 

models fitted on a single block of predictors. The most challenging trait to predict was REI, 

since fixed effects and body weight could predict ADEI and FCR well. Integration, showed 

that pedigree, genotypes, faecal NIRS data and plasma buckets were the most promising 



Thesis discussion 

147 

predictors – i.e. with the highest average contributions. Compared to the best single-block 

model, multi-block models had slightly but significantly higher prediction accuracies: the 

average correlation increased by 0.03 units for ADEIC (from 0.85 to 0.88), by 0.04 for FCRC 

(0.48 to 0.52), by 0.05 for REIC (0.54 to 0.59). In Romane divergent lines, the prediction 

accuracy of REIC from pedigree or genomics was already high (correlations = 0.54). In a 

commercial population, lower prediction accuracies could be expected before and after 

integration. Hess et al. (2022) integrated genomics and metagenomics to predict sheep RFI 

with mixed models: compared to genomic predictions, integration improved accuracies by 

0.03 units maximum (from 0.28 to 0.31) (Hess et al., 2022). Similarly, integrating genomics 

with microbiota or metabolomic data increased the prediction accuracy of sheep residual 

methane emissions by 0.07 units maximum (from 0.20 to 0.27) (Ross et al., 2020). 

As Huang et al. (2017) suggested, having more omics is better. However, no breeding 

company might actually consider collecting more omics data to predict and select traits: the 

prediction accuracy improvement is too marginal.  Collecting more omics could be useful to 

identify novel trait determinisms by pinpointing proxies. The thesis focused on the 

prediction accuracy but it would be interesting to explore the feed efficiency determinism s 

underlying the selected predictors. The explaining variables of MINT-sPLSR could be 

assessed thanks to their value importance in the projection (Tenenhaus, 1998). Variables 

having the highest values may highlight feed efficiency determinisms. As in any late 

integration, each block was analyzed separately. A random forest mixed graphical model 

could be used to identify associations between the best predictors of different blocks 

(Fellinghauer et al., 2013).  

Late integration might not be the optimal approach when it comes to understand trait 

determinisms. Indeed, late integration may not evidence interactions between different 

omics (Picard et al., 2021). However, late integration is an easy solution to pre-process and 

model each set of omics separately. 

A.2 Possible improvements 

The thesis focused on NP integration to rank best proxies of feed efficiency and intake. 

Several leads could be pursued to improve the integration of different blocks of predictors. 

Other models or cross-validation strategies might be used. 
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Refining the blending strategy 

The multi-block integration developed in the thesis consisted in building one MINT-sPLSR 

per block, before using a meta-model to aggregate block predictions. This strategy is called 

“blending” because the meta-model is trained on validation data (Nti et al., 2020). Another 

strategy exists: the “stacking” strategy where the metamodel is fitted on training or testing 

data (Singh et al., 2019; Nti et al., 2020). We preferred to implement the blending strategy, 

since we expected that meta-models fitted on training data may favor overfitting 

submodels. On the other hand, it is not possible to assess if meta-models overfit when they 

are trained on testing data. Thus, blending was preferred over stacking. 

While a MINT-sPLSR was fitted on all blocks of predictors, a different submodel could be 

applied per omics type. This change would account for data heterogeneity between 

different blocks. During the thesis, different kinds of models were tried only with microbiota 

data. Feed intake was predicted from microbiota data with random forest, sparse partial 

least squares and support vector regressions. None of these three models performed 

significantly better than the other, when phenotypes were predicted (Chapter 4 Table 11). 

However, R packages selbal (Rivera-Pinto et al., 2018) and predomics (Prifti et al., 2020) 

were introduced to predict outcomes from compositional microbiota data. In both 

packages, models may define balances: ratios between microbial groups.  

Fitting MINT-sPLSR on microbiota data did not pose any computational issue, compared to 

genotypes. During the thesis, MINT-sPLSR models did not converge well when genotypes 

had a low minor allele frequency: genotypes with frequencies below 0.20 were filtered out. 

However, rare variants could help predict phenotypes and diseases. Thus, other models 

could be more suited for genomics: mixed models, Bayesian regressions and other machine 

learning techniques – such as gradient boosting and random forest (González-Recio and 

Forni, 2011). 

The thesis blending strategy could be adapted to fit several models per block. In competitive 

machine learning, Töscher and Jahrer (2009) predicted multimedia ratings by building linear 

and non-linear submodels on the same predictors. Authors observed that aggregating 

predictions of different models improved the overall prediction accuracy. Thus, we could try 

to combine multiple omics and multiple models per omics. Furthermore, Töscher and Jahrer 



Thesis discussion 

149 

(2009) also used a training set to determine the submodel hyperparameters, and a 

validation set to define the metamodel hyperparameters. After selecting all 

hyperparameters, Töscher and Jahrer (2009) proposed to retrain submodels and metamodel 

on the concatenated training and testing sets. 

Finally, only linear and additive models were used as metamodels during the thesis: a 

weighted mean or a MINT-sPLSR. Non-linear models accounting for interactions might help 

when predictions made from different blocks of predictors are collinear. For instance, 

predictions from inferred data (i.e. prokaryote functions) and the original data (i.e. 

prokaryote abundances) are likely correlated. 

Switching from late integration to another strategy  

Stacking is an example of late integration strategy. Sometimes stacking does not imp rove 

the prediction accuracy, compared to models fitted only on the best block of predictors. In 

growing pigs, stacking SNPs with genomic EBVs of feed intake, ADG and body composition 

traits did not improve the prediction of RFI (Mora et al., 2023). In dairy cows, stacking 

behavior, metabolomic and production traits also did not improve the prediction of RFI 

(Martin et al., 2021a). However, two early or mixed integrations performed better with 

behavior, metabolomic and production traits. Indeed, the prediction accuracy of RFI 

improved slightly when an artificial neural network was used (early or mixed integration): 

R2 increased from 0.01 to 0.08 (Martin et al., 2021a). Accuracy also increased when a 

multiple linear regression was carried out (early integration):  from 0.02 to 0.13 (Martin et 

al., 2021a). Thus, late integration might not always be the best integration to optimize the 

prediction accuracy. 

Early and mixed integration can be carried out with various models: with deep learning, 

tree-based, kernel and graph models for example (Picard et al., 2021). Such models may 

account for interactions between omics. However, it would considerably increase the 

complexity of models, which may be problematic with few samples. No study has ever 

attempted to fit models accounting for interactions, between as many omics as the thesis 

examined. The thesis focused on late integration because 250 phenotyped animals would 

not be enough to account for interactions between all kinds of omics. 
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B. Perspectives in animal breeding 

Recently, studies assessed whether omics could help select animals or plants. The inclusion 

of omics provides several opportunities, it also requires additional considerations to collect 

data. 

B.1 Why include omics data? 

Using omics as phenotype proxies 

Omics were already proposed to phenotype larger populations for traits difficult and 

expensive to record. In dairy cows, milk mid-infrared spectroscopy was proposed to predict 

milk composition or cheese-making traits (Grelet et al., 2021; Sanchez et al., 2022). In pigs, 

coefficients of digestibility could be estimated from near-infrared spectra (Labussière et al., 

2019). As long as prediction accuracies are high enough, selecting predicted traits may be 

advantageous if larger populations can be selected. However, the thesis compared and 

ranked several omics based on their predictive ability. Alone, no omic block could predict 

REI accurately (0.28 ≤ correlations ≤ 0.54, Table 13). Thus, no model was proposed during 

the thesis to predict feed efficiency from omics. Similarly, no model was proposed to predict 

feed intake from omics: fixed effects and production traits were better predictors. However, 

if feed intake is predicted from production traits, predicted intake cannot be used to 

estimate feed efficiency. 

 Even if we cannot use omics to completely replace feed efficiency and intake 

measurements, the inclusion of omics could present other advantages. 

Increasing the genomic prediction accuracy 

In plants and animals, combining genotypes and other omics was proposed to increase the 

genomic prediction accuracy. In wheat, multi-trait genomic predictions were carried out 

with bivariate genomic models:  the two explained variables were the measured trait and 

the predicted trait from either NIR or NMR spectroscopy (Hayes et al., 2017). Multi-trait 

predictions were most often more accurate than single-trait predictions. Higher prediction 

accuracies could help select faster. The genetic correlation between the measured trait and 

the predicted trait can help increase the prediction accuracy. After genomics, the best omics 

to predict REI were the fecal NIR spectra and plasma metabolomic buckets , in Romane 
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divergent lines. Thus, fecal phenomics and plasma metabolomics might be used to try to 

increase the genomic prediction accuracy. Phenotypic correlations were rather low between 

real REI phenotypes and predictions from fecal NIR spectra (correlation = 0.39) and plasma 

metabolomic buckets (correlation = 0.37) (Chapter 6 Table 13). It remains to check whether 

genetic correlations are high enough between real REI and predicted REI. If genetic 

correlations are high enough, the inclusion of predictions from omics may improve the 

genomic prediction accuracy in bivariate models. 

Coping with missing phenotypes 

Including omics may help when some phenotypes are missing, when they are not recorded 

in a fraction of the population. Christensen et al. (2021) developed models to perform a 

genetic evaluation and handle incomplete input records: records of phenotypes, genotypes 

and/or omics. With simulated data, authors observed that including omics improved the 

genetic evaluation accuracy for candidates without recorded phenotypes.  Christensen et al. 

(2021) hypothesized that the improvement is possible thanks to the correlation between 

the omics used and the evaluated trait. Again, thesis results advocate for testing the 

inclusion of fecal NIR spectra or plasma buckets, when REI is evaluated in lambs fed a 

concentrate diet. However, it remains to check if the improvement is worth the cost of 

collecting phenomics or metabolomics. 

Studying the hologenome 

Including omics can also help dissect a trait, by studying the holobiont: the trait expression 

is the result of host and microbiota determinisms. The goal was to study the holobiont 

microorganisms, metabolites and fatty acids. The more the microbiota influences the trait, 

the more important it is to have insights into the holobiont.  When it comes to the methane 

production of dairy cows, holobiont effects (0.38 ≤ proportion of phenotypic variance ≤ 

0.59) accounted for more variance than host additive genetic effects (0.15 to 0.22) and 

rumen microbiota (0.15 to 0.31) (Saborío-Montero et al., 2021). Variance proportions varied 

with the linear model formula and the relatedness matrix calculation. More research is 

needed to choose how the relatedness matrix can be computed from different omics. 

Authors advocated for selection indices including methane and microbiome traits  to reduce 

the environmental footprint (Gonzalez-Recio et al., 2023). The microbiota composition 
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could be partially inherited vertically, thanks to genetics and physical contacts between 

parents and offspring (David et al., 2019). In pigs, selection for microbiota enterotypes 

during three generations increased the prevalence of the most abundant genera per 

enterotype (Larzul et al., 2023). It proved that the pig fecal microbiota could be partially 

inherited and partially selected. Finally, high microbiabilities do not prove that the inherited 

microbiota can explain a large part of the phenotypic variance in traits. 

However, when the RFI of sheep is predicted, combining genomics and rumen 

metagenomics did not always perform better than genomic models (Hess et al., 2022). 

Authors showed that holobiont effects predicted RFI better (correlations up to 0.49 ± 0.06) 

than genotypes alone (0.29 ±0.08) only in lambs fed with alfalfa. However, there was no 

significant improvement in lambs and adults fed grass (Hess et al., 2022). In pigs, RFI 

variance was assessed to decompose the genetic variance into two components: the direct 

effect of host additive genetics over RFI and, the indirect effect via the inherited fecal 

microbiota affecting RFI (Weishaar et al., 2020). Authors found a moderate ratio between 

the microbiota additive variance and the host additive variance: 0.31. In pigs, it evidenced 

that the fecal microbiota can be partially inherited and, that it can also determine feed 

efficiency. 

Holobiont effects over residual feed efficiency traits likely depend on which gut microbiota 

is studied, under which diet and physiological stage. In sheep fed concentrates, the rumen 

microbiota very poorly predicted REI (Chapter 5 and Chapter 6). Thus, we do not advocate 

for rumen metabarcoding. As suggested above, the faecal microbiota could bring new 

insights into ruminants’ feed efficiency. Moreover, faeces sampling could be carried out on 

a larger scale than rumen sampling. Large-scale sampling and phenotyping are important to 

constitute reference populations to enable genomic selection programs.  

B.2 The collection of omics to predict feed efficiency 

The goal of the thesis was to identify feed efficiency predictors to ease the genetic selection 

of feed efficiency. Thus, the husbandry protocol was close to protocols implemented in the 

national breeding program: each year 75-100 growing lambs were raised and phenotyped 

together for feed efficiency, under a concentrate diet.  
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The previous section concluded that large-scale sampling and phenotyping are essential in 

animal breeding. Genotypes, growth, weight, body conformation and composition 

phenotypes are already collected routinely in breeding companies. On the other hand, feed 

efficiency phenotypes and many omics are rarely collected. Thus, the discussion will focus 

on feed efficiency and omics data. The data collection strategy must be well-thought to get 

exploitable results. The thesis and the literature highlighted several points to be taken into 

consideration: how data are collected and, which animals are phenotyped. 

How to sample and phenotype 

Where? – This might be the first question which comes to mind when omics data are 

collected, except for genomics. Invasive sampling is not suited for animal breeding, 

especially if it requires sacrificing animals… Even if Zhang et al. (2019b) found associations 

between sheep efficiency and liver RNAs, it would be difficult to profile the liver 

transcriptome in large animal cohorts. Similarly, rumen sampling is challenging: even if 

tubing is less invasive than cannulating (da Cunha et al., 2023), both sampling methods 

would not be convenient in breeding companies. Tubing and cannulating may not remain 

authorized by European ethical regulation too. Furthermore, the rumen metabolome and 

microbiota vary between the different rumen fractions: solid, epithelial, and liquid (Su et 

al., 2022; da Cunha et al., 2023). When animals are tubed, it may be difficult to ensure how 

solid and liquid fractions are sampled. Anyway, rumen omics poorly predicted REI in Romane 

lambs (0.18 ≤ correlations ≤ 0.27, in Chapter 6 Table 13). Sampling other gut locations might 

be more encouraging. “Monteiro et al. (2022) suggested that the dairy cow faecal 

microbiota was less correlated with feed intake than the rumen microbiota and that the 

faecal microbiome was more correlated with production effic iency. They hypothesized that 

more efficient animals could be associated with a different fermentation profile in the 

rumen. Then, the host uptake of nutrients might lead to differences in nutrient availability 

for microorganisms in the lower gut (Monteiro et al., 2022). In addition to the rumen, it 

might be the accumulation throughout the whole digestive tract of differences in digestion 

or assimilation that influences the host efficiency.” (Le Graverand et al., 2023). Faecal 

sampling would be much less invasive than rumen sampling. Similarly, blood sampling is less 

invasive, plus it is already used for genotyping. Blood samples could also be used to quantify 

feed proxies by carrying out NMR or NIR spectroscopy (Meale et al., 2017; Touitou et al., 

2022). 
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When? – Timing may also influence how well feed efficiency can be predicted from omics. 

First, feed efficiency determinisms likely vary between different ages and physiological 

stages, as discussed in section II B.6. Second, the predictive ability of omics may vary 

depending on when samples are collected, relatively to when phenotypes are recorded. 

Ross et al. (2020) predicted more accurately sheep methane emissions when metabolomic 

data were collected during the same trial, compared to trials carried out 7- 8 months sooner 

or later. Then, Maltecca et al. (2019) predicted more accurately pig growth and carcass traits 

when microbiota faecal samples were collected in the middle of the growth trial , rather 

than the beginning or end. Thus, sampling time may affect the microbiota or metabolome 

composition over large time spans. Sampling time could also affect omics profiles over short 

time spans: sampling time may affect how long the animal fast since its last meal. When 

dairy Lacaune sheep were sampled over a day, the sampling hour significantly affected more 

than 10% of the rumen bacterial abundances (Martinez Boggio et al., 2021). When Romane 

lambs were all sampled in the morning, the hour and sampling order effects were negligible 

over the rumen microbiota (Chapter 5). Nonetheless, microbiota variations over time might 

be worth considering, especially if traits have a diurnal pattern. For instance, greenhouse 

gas emissions varied according to sheep grazing activities: emissions reached a peak around 

sunset (Lockyer, 1997). 

How often? – No or few papers looked into how often omics data can be collected to predict 

feed efficiency. During the thesis, no biological replicate was used to collect omics data. 

Collecting omics data once downsizes costs and allows to phenotype more animals. 

However, sampling only once could limit the prediction accuracy of feed efficiency which is 

estimated over 6 weeks. Sampling more often might help cope with the low repeatability of 

some omics data. Bacteria abundances and fatty acids concentrations had low 

repeatabilities (medians ranged from 0.15-0.44), in Lacaune dairy ewes sampled two weeks 

apart (Fresco et al., 2022). Similarly, the median of 6 blood metabolites repeatabilities was 

equal to 0.27, in heifers sampled during the growing and finishing periods (Kelly et al., 

2010). Low repeatabilities may be explained by biological, random and technical factors.  

Technical replicates consist in analyzing several times the same sample, while biological 

replicates correspond to several samples. Technical replicates would be the easiest solution, 

as they require less animal handling and potentially less invasive procedures. In RNA-seq, 
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Liu et al. (2014) showed that focusing the efforts on the number of biological replicates may 

be more interesting than privileging technical settings: increasing the sequencing depth 

improved the power of differential analysis until a limit was reached, while increasing the 

number of biological replicates kept increasing the power. Thus, biological replicates should 

not be dismissed. Furthermore, if biological samples were taken at different times, 

longitudinal analysis might help understand relationships between the phenotype and 

omics data (Maltecca et al., 2019). It could be particularly interesting for traits recorded 

over a large period of times, such as feed efficiency. Martin et al. (2021b) advocated for 

longitudinal analysis of feed efficiency, since it is estimated from several traits which vary 

dynamically across time. 

Who to sample and phenotype 

Partitioning datasets into training (or reference) and testing (target) populations is essential 

when traits are predicted. In dairy cows, the correlation between cows’ dry matter intake 

and predictions from rumen metagenomics was equal to 0.39, when the training and testing 

populations were raised in different countries  (Delgado et al., 2019). During the thesis, feed 

intake was predicted from microbiota data by splitting data in two different ways. In Romane 

lambs, the correlation between feed intake and predictions from 16S data varied from -0.12 

to 0.35, when training and testing populations were raised during different years (Chapter 

4, Table 11). Average correlations between energy intake and 16S predictions ranged 

between 0.38 and 0.52, when training and testing populations included contemporaneous 

lambs (Chapter 5 Figure 26 and Chapter 6 Table 13). Thus, connections between training 

and testing populations may affect the predictive ability of omics data. 

Having contemporaneous animals might enable models to learn which omic profile is 

associated to which environment: omics such as metataxonomics can sign for environmental 

effects (He et al., 2022b, Chapter 5). The microbiota composition is susceptible to 

environmental parameters such as the climate, the country location, the animal pen, the 

diet and the farming system (Thompson and Holmes, 2009; Henderson et al., 2015; 

Belanche et al., 2019; Marie-Etancelin et al., 2021). When predicted traits and omics are all 

associated to environmental variations, it seems ideal to mix contemporaneous animals in 

training and testing sets. However, it requires more resources to phenotype animals in each 

environment. 
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Nonetheless, continuous phenotyping is already advised for genomic selection. The 

association between markers and quantitative trait loci decays over generations (Blasco and 

Toro, 2014). However, it remains unclear how many feed efficiency phenotypes should be 

collected to constitute a proper training set. For instance, the correlation between EBVs of 

predicted ADFIC and EBVs of actual intake varied with the number of animals having real 

records, predicted records and registered in the pedigree (Chapter 4 Table 12). Research is 

needed to optimize the ratio between measured and predicted phenotypes, in terms of 

genetic evaluation accuracy.  
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• Take-home messages about the perspectives: 

• P-integration may be useful to account for batch effects and identify proxies 

generalizable across the different batches. 

• N-integration of fixed effects, body weight and microbiota data in sheep, illustrated that 

microbiota data did not bring new information to predict feed efficiency or feed intake. 

Microbiota proxies were associated to spatiotemporal variations (across years, period 

and pens). However, fixed effects could help predict the environmental variations of feed 

efficiency and intake at a lower cost. 

• NP-integration showed that integrating systematic effects, pedigree, as well as rumen, 

plasma and faecal omics improved significantly the prediction accuracy of feed efficiency 

and intake. However, improvements were marginal. Thus, multi-omic integration might 

not be interesting in breeding companies, but it may help understand trait variations 

better. 

• During the thesis, the NP-integration was customized to blend predictions from 

submodels built on each block of predictors. A MINT-sPLSR submodel was fitted on all 

blocks. However, the submodel could be chosen per block, to better account for omics 

heterogeneity. A different integration strategy could be tried to model inter-omics 

interactions. However, the number of samples could hinder the use of complex models 

accounting for interactions. 

• In the future, omics such as plasma metabolomics and faecal NIRS could potentially help 

increase the prediction accuracy of genomic models and, cope with missing phenotypes. 

Omics could also help understand the molecular dialogue between the host and its 

microbiota, which partially shapes feed efficiency and intake phenotypes.  
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Conclusion 

Improving feed efficiency is one key towards a more sustainable sheep industry. Feed 

efficiency has many known and unknown determinisms. Thus, the thesis assessed and 

ranked different potential proxies of feed efficiency and intake. The best proxies of feed 

intake were fixed effects and animal production traits. However,  predicting feed intake from 

such proxies would not allow to infer feed efficiency from the predicted intake.  The best 

examined proxies of residual feed intake were the host genetics and genomics (correlations 

between real and predicted phenotypes = 0.54). However, the thesis relied on two Romane 

lines genetically selected for feed efficiency. Thus, genomic and genetic prediction 

accuracies were likely exaggerated in divergent lines. Then, the next best proxies of feed 

efficiency were the plasma metabolomics and faecal near-infrared spectra. Rumen fatty 

acids, metabolites and microbiota poorly predicted feed efficiency, despite the rumen 

importance for the ruminant’s nutrition.  

The fecal microbiota might be more convenient to sample and study feed efficiency. In 

addition, the literature showed that omics are not the only promising efficiency proxies: 

respiratory gases, heat production, and behavior could be used as predictors. 

The thesis showed that integrating pedigree, systematic effects and multiple omics , 

significantly improved the prediction accuracy of feed efficiency phenotypes. However, the 

accuracy gain was marginal. Thus, integrating as many omics as the thesis (8 techniques) 

cannot be justified in breeding programs. New studies could focus on a few omics: such as 

plasma metabolomics and faecal NIRS, which were the most promising proxies after 

genomics. Studies could test if including plasma and faecal omics would improve the 

genomic evaluation of feed efficiency. Including these omics could increase the accuracy of 

genomic predictions, or help cope with missing phenotypes. 

Multi-omic integration remains promising to study and understand the biological 

determinants of feed efficiency. Omics remain useful to disentangle holobiont 

determinisms: the molecular dialogue between the host and its microbiota partially 

determines feed efficiency.  
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Appendix 1: Congress abstract 

Appendix 1 is based upon the analyzes of Anaïs Marquisseau, a master 2 trainee supervised 

by Flavie Tortereau, Christel Marie-Etancelin, and me during 6 months. The following 

abstract was accepted at the EAAP 2023 congress. 

“Prediction of feed efficiency related traits from plasma NMR spectra 

Anaïs Marquisseau1, Flavie Tortereau1, Nathalie Marty-Gasset1, Christel Marie-Etancelin1, 

Quentin Le Graverand1 

1 GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France   

Feed efficiency is a key trait to integrate in breeding programs, particularly in order to 

limit the feed-food competition and the environmental impact of livestock production. 

The calculation of feed efficiency criteria requires individual feed intakes to be recorded, 

which is too expensive in small ruminants to be reasonably proposed. An option to make 

this trait more affordable is to predict feed intake or efficiency from a variety of predictors 

that can be easily recorded. As it has been evidenced that the animal metabolism is one 

of the main biological function underlying feed efficiency, we propose to examine the 

predictability of feed efficiency related traits from plasma metabolome. Plasma samples 

from 265 Romane male lambs fed a 100% concentrate diet were analyzed with NMR. NMR 

spectra were divided into 877 buckets of 0.01 ppm, and the considered values were the 

area under the curve of each bucket. These variables were CLR transformed before 

multivariate analyses (sparse Partial least squares, sPLS) used for prediction. Prediction 

performances of feed intake and RFI were assessed through 5-fold nested cross-validation 

repeated 50 times, i.e. over 250 models. Accuracies of prediction from NMR buckets were 

compared to the accuracy obtained from body weights, growth, body composition (ca lled 

zootechnical traits hereafter). As a result, we highlighted that buckets did not improve the 

prediction of feed intake from zootechnical traits: an average R² of 0.7 was obtained from 

zootechnical traits with or without buckets, against 0.2 from buckets only. For RFI, R² were 

below 0.1 whatever the set of predictors. Considering whole spectra did not help predict 

feed efficiency nor feed intake. However, the main buckets involved in RFI prediction were 

consistent with metabolites previously associated to feed efficiency: such as beta-

hydroxyisovaleric acid or L-tyrosine” (Marquisseau et al., 2023).
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Appendix 2: Congress abstract 

The following abstract was accepted at the EAAP 2023 congress, for an oral presentation. 

“Blending multivariate models to predict feed efficiency and explore multiple omics in 

meat sheep  

Le Graverand, Q.1, Tortereau, F.1, Marie-Etancelin, C.1, Meynadier, A.1, Weisbecker, J.L.1, Lê 

Cao, K.A.2 

1 GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France; 

2 School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia  

Selecting sheep for feed efficiency would improve the sustainability of sheep farming by 

decreasing feeding needs. However, due to the costs of recording feed intake, feed 

efficiency is rarely selected in sheep. Identifying feed efficiency biomarkers could help 

resolve this issue. A total of 258 Romane male lambs were phenotyped in the growing 

period for Residual Feed Intake (RFI)-in three different batches. Rumen fluid and blood 

were sampled as potential sources of biomarkers for feed efficiency. Multivariate analyses 

were performed with six distinct 'blocks' of predictors: fixed effects and covariates (FC), 

genotypes (SNPs), plasma NMR spectra (NMR), ruminal volatile fatty acids (VFAs), long-

chain fatty acids (LFAs), bacteria and archaea abundances (16S amplicon sequencing). We 

modified a Partial Least Square regression approach (PLS) to account for the three batches 

while selecting biomarkers of feed efficiency (Rohart et al., 2017). Cross -validation was 

repeated to fit one model per block on our training data (60% of the samples). Then, 

predictions for the validation set (30% of the samples) were obtained by using a weighted 

aggregation-based on the performance on each validation set. Testing data (10%) were 

independently used to assess the overall prediction accuracy based on Pearson 

correlations. When RFI was predicted from separate blocks, the average accuracy was low 

to moderate: 0.08 (standard deviation: 0.17) from VFAs to 0.44 (0.13) from SNPs. When 

RFI was predicted with our approach combining different omics, accuracy increased and 

reached an average of 0.55 (0.11). Based on weights attributed to blocks of predictors, we 

were able to rank the most predictive blocks to explain RFI: SNPs, FC, NMR, 16S, LFA and 

VFA. Furthermore, within each block we identified variables that were highly associated 

with feed efficiency RFI, including β-hydroxyisovaleric acid and a SNP located on the 

chromosome 3. To conclude, blending models is useful to integrate heterogeneous omics 

data: from predicting efficiency, to identifying associations between multi -omics 

predictors.”
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Appendix 3: Training 

Several courses were undertaken, to develop skills during the thesis. 

Personal development 

• EDEN21 – Workshop for PhD students and supervisors (October 12, 2021 – October 15, 

2021, Satillieu, EDEN) – 28 hours 

Ethics and scientific integrity 

• Ethics and scientific integrity (February 10, 2021 - February 10, 2021, Toulouse, Université 

Fédérale de Toulouse Midi Pyrénées) - 6 hours 

Literature review and publication methodology  

• Writing and Presenting Scientific Papers (August 29, 2021 - August 29, 2021, Davos, EAAP 

2021) - 8 hours 

Career development 

• PhDOOC - MOOC PhD and Career development (January 12, 2022 - February 28, 2022, 

online, PhDOOC) - 12 hours 

Pedagogy for the University 

• Design: how to integrate digital technology into teaching (March 28, 2023, Toulouse, 

Université Fédérale Toulouse Midi Pyrénées) - 3.5 hours 

• Evaluate: The functions and objectives of evaluation (May 25, 2023, Toulouse, Université 

Fédérale Toulouse Midi Pyrénées) - 3 hours 

• MOOC Dyslexic students in my lecture hall: understanding and helping (January 17, 2023, 

online, FUN MOOC) - 12 hours 

• Training to teach in higher education (February 01, 2021, online, FUN MOOC) - 24 hours 

Scientific 

• Compositional Data Analysis with CoDaPack and R (October 05, 2020 - September 16, 

2021, online, Coda Association) - 25 hours 

• First steps in AWK programming (March 25, 2021, online, Génotoul) - 6 hours 

• FROGS: tools for bioinformatics and statistics analyses with amplicon metagenomics data 

(March 15, 2021, online, Génotoul) - 26 hours 

• Data integration with mixOmics and mixKernel (June 08, 2021, online, Génotoul) - 12 

hours 
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• mixOmics R Essentials for Biological Data Integration (October 11, 2021, online, The 

University of Melbourne) - 40 hours 

• MOOC Bioinformatics: algorithms and genomes (February 01, 2021, online, FUN MOOC) 

- 13 hours  

• Practicals on machine learning and deep learning (October 18, 2021, Castanet-Tolosan, 

Génotoul) - 9 hours  

• RNAseq alignment, quantification and transcript discovery with statistics (November 02, 

2020, online, Génotoul) - 24 hours  

• Using sed and AWK to modify large text files (March 24, 2021, online, Génotoul) - 6 hours 

• Care and use of Laboratory animals (Function B) (March 01, 2021, Toulouse, ENVT) - 56 

hours 
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Appendix 4: Teaching and supervising 

Teaching 

As a PhD student, I taught at « Prépa des INP » (undergraduate preparatory classes) and at 

ENSAT (agriculture engineering school) in Toulouse. 

Animal breeding (56 hours) 

• Practical courses: Population effective size and inbreeding (ENSAT – Licentiate 3rd year); 

Relatedness, genetic evaluation and genetic progress (ENSAT – Master 1st year). 

Population genetics (8 hours) 

• Practical courses: Allele and genotype frequencies under the Hardy-Weinberg 

equilibrium, or migration and genetic drift scenarios (ENSAT – Licentiate 3rd year).  
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_____________ Résumé _____________ 

L’élevage ovin doit relever de nombreux défis pour améliorer sa durabilité. Améliorer 

l'efficience alimentaire pourrait réduire l'empreinte environnementale de l’élevage, améliorer 

les revenus des éleveurs et atténuer la concurrence entre l’alimentation humaine et animale. 

Cependant, l'efficience alimentaire est rarement sélectionnée chez l’ovin allaitant car mesurer 

l'ingestion d'aliments individuellement coûte cher. Prédire l'efficience alimentaire serait une 

solution. L'étude des omiques pourrait identifier des prédicteurs qui faciliteraient la sélection 

des ovins pour l'efficience alimentaire. 

La thèse s'est concentrée sur la prédiction de l'efficience alimentaire et de l'ingestion chez 

l’ovin allaitant. Les prédicteurs potentiels comprenaient des effets fixes, le poids vif de 

l’animal, le pedigree et des données omiques collectées chez des agneaux Romane entre 2018 

et 2020. Les agneaux faisaient partie de lignées divergentes sélectionnées pour la 

consommation résiduelle. Les caractères de production et le microbiote du rumen ont été 

analysés avec des animaux nourris avec des concentrés, puis avec des fourrages. Les génotypes 

des animaux, le lipidome ruminal, le spectre proche-infrarouge fécal, les métabolomes ruminal 

et plasmatique ont été analysés seulement avec des concentrés. 

Tout d'abord, les analyses en composantes principales ont mis en évidence les principaux 

facteurs de variation des potentiels prédicteurs de l'efficience. La généalogie et la génomique 

ont mis en évidence la structure de population. D'autre part, la composition du microbiote 

ruminal, les spectres fécaux et le métabolome sont influencés par l'environnement (c'est-à-

dire l'année ou la période de phénotypage). Deuxièmement, le microbiote ruminal ne pouvait 

pas prédire l’ingestion de façon fiable si les populations de référence et cible ont été élevées 

lors d’années distinctes (corrélations entre les phénotypes prédits et réels ≤ 0,35). Par rapport 

au microbiote ruminal, les effets fixes et le poids corporel pouvaient prédire les caractères de 

production aussi précisément si ce n’est plus. L'étude de données omiques et non-omiques 

collectées sur plusieurs années a mis en évidence que les meilleurs prédicteurs étaient : la 

génétique de l'hôte pour la consommation résiduelle (0,54) ; les effets fixes et le poids pour 

l'indice de consommation (0,48) ainsi que la consommation (0,85). En revanche, les données 

ruminales prédisaient mal l'efficience alimentaire et la consommation. Enfin, l'intégration de 

données hétérogènes (omiques ou non) a été réalisée en pondérant la moyenne des 

prédictions de modèles entrainé sur un seul jeu de prédicteurs, ou en régressant les 

prédictions. L'intégration a significativement augmenté la précision de prédiction de 

l'efficience (≤ 0,59) et de l'ingestion (≤ 0,88). 

La thèse ouvre de nouvelles perspectives pour l'exploitation des données omiques et 

l’identification de prédicteurs de l'efficience alimentaire. Des recherches sont nécessaires pour 

intégrer et comprendre les interactions entre les différentes omiques, ce qui pourrait 

améliorer notre compréhension de l'efficience alimentaire des moutons. 

Mots-clés : efficience alimentaire, omiques, intégration de données, prédicteurs, génétique, 

ovin. 
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