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Titre: Statistiques d’extrêmes et problèmes d’optimisation de processus stochastiques
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Résumé: Cette thèse est consacrée à l’étude
des statistiques des valeurs extrêmes dans les
processus stochastiques et de leurs applica-
tions.
Dans la première partie, nous obtenons des ré-
sultats analytiques exacts sur les statistiques
des valeurs extrêmes des marches aléatoires
en temps discret et en temps continu. En
particulier, nous nous concentrons sur les
statistiques de gaps des marches aléatoires
et révélons leur universalité asymptotique par
rapport à la distribution des sauts dans la lim-
ite d’un grand nombre de pas. De plus, nous
calculons le comportement asymptotique de
la valeur moyenne du maximum de marches
aléatoires en présence d’une contrainte de
pont et révélons un comportement riche dans
leur correction de taille finie. De plus, nous
calculons la longueur moyenne de l’enveloppe
convexe du mouvement Brownien confiné
dans un disque et montrons qu’elle converge
lentement vers le périmètre du disque avec

une décroissance exponentielle étirée.
Dans la deuxième partie, nous nous in-
téressons à l’échantillonnage numérique des
trajectoires rares des processus stochas-
tiques. Nous introduisons une méthode ef-
ficace pour échantillonner des marches aléa-
toires en temps discret. Nous l’illustrons et
l’appliquons sur divers exemples. Nous éten-
dons ensuite la méthode à d’autres proces-
sus stochastiques, à la fois markoviens et non
markoviens. Nous appliquons notre méthode
pour échantillonner des particules survivantes
en présence d’un environnement de piégeage
périodique.
Enfin, nous discutons plusieurs problèmes
d’optimisation dans les processus stochas-
tiques impliquant des statistiques de valeurs
extrêmes. En particulier, nous introduisons
une nouvelle technique pour contrôler de
manière optimale les systèmes dynamiques
soumis à une politique de réinitialisation.

Title: Extreme value statistics and optimization problems in stochastic processes
Keywords: Stochastic processes, extreme value statistics, Brownian motion

Abstract: This thesis is devoted to the study
of extreme value statistics in stochastic pro-
cesses and their applications.
In the first part, we obtain exact analyti-
cal results on the extreme value statistics of
both discrete-time and continuous-time ran-
dom walks. In particular, we focus on the
gap statistics of random walks and exhibit
their asymptotic universality with respect to
the jump distribution in the limit of a large
number of steps. In addition, we compute
the asymptotic behavior of the expected max-
imum of random walks in the presence of a
bridge constraint and reveal a rich behavior
in their finite-size correction. Moreover, we
compute the expected length of the convex
hull of Brownian motion confined in a disk and
show that it converges slowly to the perime-

ter of the disk with a stretched exponential
decay.
In the second part, we focus on numerically
sampling rare trajectories of stochastic pro-
cesses. We introduce an efficient method
to sample bridge discrete-time random walks.
We illustrate it and apply it to various ex-
amples. We further extend the method to
other stochastic processes, both Markovian
and non-Markovian. We apply our method
to sample surviving particles in the presence
of a periodic trapping environment.
Finally, we discuss several optimization prob-
lems in stochastic processes involving extreme
value statistics. In particular, we introduce a
new technique to optimally control dynamical
systems undergoing a resetting policy.



Contents

Acknowledgments i

List of publications iii

1 Introduction and presentation of the main results 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Presentation of a selection of the main results . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Universal order statistics for random walks . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Expected maximum of discrete-time bridge random walks . . . . . . . . . . . . . . 12
1.3.3 Generating discrete-time constrained trajectories . . . . . . . . . . . . . . . . . . . 16

2 Extreme value statistics in stochastic processes 19
2.1 Introduction to extreme value statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Independent and identically distributed random variables . . . . . . . . . . . . . . 19
2.1.2 Strongly correlated random variables: the case of random walks . . . . . . . . . . . 21

2.2 Order statistics for random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Expected maximum of bridge random walks . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Convex hull of Brownian motion in confined geometries . . . . . . . . . . . . . . . . . . . 42

3 Constrained stochastic processes 51
3.1 Constrained Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Constrained discrete-time random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Generalizations to other constrained stochastic processes . . . . . . . . . . . . . . . . . . 59

3.3.1 Brownian bridge and random walks with a fixed area . . . . . . . . . . . . . . . . 59
3.3.2 Constrained run-and-tumble particles . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Application to a trapping problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4 Stochastic optimization problems 82

4.1 Optimal resetting bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Resetting in stochastic optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Optimization in first-passage resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusion 99

A Appendix 102
A.1 Universal survival probability of a run-and-tumble particle in an open linear half-space . . . 102
A.2 Derivation of the Pollaczek-Spitzer formula . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Funding acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3



Abstracts of articles not discussed in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Bibliography 118

4



Acknowledgments

First, I express my profound gratitude to Grégory Schehr who supervised this thesis with great care and
invaluable advice. Along with Satya Majumdar, they have spent a generous amount of time guiding me.
Time flew by so fast along their side, both in and out of the office. I also thank their collaborators and in
particular Pierre Le Doussal for sharing with me his drive for research.

I am indebted to Pierpaolo Vivo and Eric Bertin for accepting to review this thesis. I extend my sincere
thanks to Martin Evans, Kilian Raschel, and Cécile Monthus for being part of the jury of this thesis.

I thank all the members of the LPTMS for their hospitality and kindness. I warmly thank Claudine
Le Vaou and Karolina Kolodziej for their valuable administrative support, and the lab directors Alberto
Rosso and Emmanuel Trizac. I address special thanks to Francesco Mori, with whom I shared the rewarding
pleasure of working together. LPTMS has a pleasant atmosphere which is in particular sustained by the
permanents and by the students Alessandro, Charbel, Federico, Félix, Flavio, Gabriel, Jules, Lara, Lenart, Li,
Lorenzo, Louis, Luca, Lucas, Marco, Mathieu, Matteo, Mert, Pierre. Special thanks to Lenart for hosting
countless pool parties with Fabian, Marco, Mauro, Miha, Saptarshi, Saverio, Valerio, Vanja, and Vincenzo.
I am also grateful to Ana with whom I shared more than an office.

I thank the members of my “comité de suivi”, Christophe Texier, Frédéric Van Wijland, and in particular
Olivier Bénichou, who has become a collaborator. I acknowledge the LPTHE for hosting me and Andriani,
Léo, Mathis, Max, Réa, and Yann for sharing the office. Special thanks to Andrei and Francesco for the
pleasant coffee breaks. I also thank friends from the neighboring labs, Aurélien, Jérémie, Léo, Ludwig,
Marc, and Gabriel. I am grateful to my collaborators David Dean, Henri Orland, Julien Randon-Furling,
with whom it was a pleasure to work, and in particular Gaia Pozzoli, who I was fortunate to meet and work
with her after a summer school. I am also grateful to Pierpaolo Vivo for inviting me to King’s College and
thank him and Bertrand for the pleasant time there. I have a special thought for Jean-Michel Gillet and Sid
Redner who initiated me to research.

I thank my friends who I met in Paris, Andrea, Enrico, Juan, Lorena, Lorenzo, Michelle, Pati, and
Tommaso, for encouraging me to pursue my direction. I thank El Mehdi and Théo for the pleasant math
workshops. I thank friends from the CDI, Alexandre, Aurélien, Erwan, Maxime, Mazzarine, and Sophie. I
extend my thanks to friends from Belgium, Adrien, Charlotte, Donovan, Emelyne, Gilles, Lucas, Marianne,
Pieter, Sophie, and Vincent for their unconditional support. Special thanks to Emma and Xavier who hosted
me countless times in an always kind atmosphere. I extend my thanks to friends who I met in Canada,
Alex, Anne-Catherine, Beata, Elizabeth, Haoxing, Jérémy, Julia, Maxence, Rémi, and Tim who I hope will
understand some parts of this thesis.

I thank my family for their unfaltering love and support, in particular my parents who advised me to
follow my path and my sister who regularly challenged me. I thank Simon, Antoine, Lou Anne, Jean-Marc,
France, Igne, Jan, Christophe, Lisa, Margo, Michael for the pleasant family times in Belgium. I have a
particular thought for my grandparents, Jacques, Juliette, and Walther. I extend my thanks to my host
families and friends in New Zealand, who are far but close to my heart, Hamish, Chris, John, Rhonda,
Michael, Michelle, John, Sharon, Merv, Jill, and Juliette. Finally, I thank Fanny from the bottom of my
heart. She has filled the last year with love and compassion. This thesis is dedicated to her.

i





List of publications

1. Optimization and growth in first-passage resetting, B. De Bruyne, J. Randon-Furling and S.
Redner, J. Stat. Mech., 013203 (2020).

2. Survival probability of a run-and-tumble particle in the presence of a drift, B. De Bruyne, S.
N. Majumdar and G. Schehr, J. Stat. Mech., 043211 (2021).

3. Wigner function for noninteracting fermions in hard wall potentials, B. De Bruyne, D. S. Dean,
P. Le Doussal, S. N. Majumdar and G. Schehr, Phys. Rev. A 104, 013314 (2021).

4. Generating discrete-time constrained random walks and Lévy flights, B. De Bruyne, S. N.
Majumdar and G. Schehr, Phys. Rev. E 104, 024117 (2021).

5. Expected maximum of bridge random walks & Lévy flights, B. De Bruyne, S. N.. Majumdar
and G. Schehr, J. Stat. Mech., 083215 (2021).

6. Generating constrained run-and-tumble trajectories, B. De Bruyne, S. N. Majumdar and G.
Schehr, J. Phys. A: Math. Theor. 54, 385004 (2021).

7. A Tale of Two (and More) Altruists, B. De Bruyne, J. Randon-Furling and S. Redner, J. Stat. Mech.,
103405 (2021).

8. Survival probability of random walks leaping over traps, G. Pozzoli and B. De Bruyne, J. Stat. Mech.,
123203 (2021).

9. Generating stochastic trajectories with global dynamical constraints, B. De Bruyne, S. N.
Majumdar, H. Orland and G. Schehr, J. Stat. Mech., 123204 (2021).

10. Statistics of the maximum and the convex hull of a Brownian motion in confined geometries,
B. De Bruyne, O. Bénichou, S. N. Majumdar and G. Schehr, J. Phys. A: Math. Theor. 55, 144002
(2021).

11. Resetting in Stochastic Optimal Control, B. De Bruyne and F. Mori, Phys. Rev. Res. 5, 013122
(2023).

12. Optimal Resetting Brownian Bridges, B. De Bruyne, S. N. Majumdar and G. Schehr, Phys. Rev. Lett.
128, 200603 (2022).

13. First-Passage-Driven Boundary Recession, B. De Bruyne, J. Randon-Furling and S. Redner,
J. Phys. A: Math. Theor. 55, 354002 (2022).

14. Universal order statistics for random walks & Lévy flights, B. De Bruyne, S. N. Majumdar and
G. Schehr, J. Stat. Phys. 190, 320 (2023).

15. Transport properties of diffusive particles conditioned to survive in trapping environments,
G. Pozzoli and B. De Bruyne, J. Stat. Mech., 113205 (2022).

iii





1 - Introduction and presentation of the main results

1.1 . Introduction

One of the remarkable facts in Physics is that one can attempt to find simple laws to
describe natural phenomena at a given scale without knowing the microscopic laws governing
its constituents at smaller scales. This allows us to advance our understanding of systems on
a macroscopic scale, and to achieve technological breakthroughs in society, without having a
complete understanding of the fundamental laws that govern the world in which we live. This
beautiful concept is one of the main reasons why many laws in Physics work remarkably well in
describing what we observe. The universal nature of those laws is rather appealing and is one
of the reasons why Physics is worth studying.

The reasons underlying the concept of universality are rather deep and have fascinated the
Physics community for a long time. The seminal work of Kadanoff in 1966, and further pursued
by Wilson in 1971, shed some light on this phenomenon and explained it as a consequence of
an extensively large number of elements interacting together [1,2]. Their discovery constituted
a major step forward in our understanding of the phases of matter and transitions between
them, such as when water boils and turns into vapor. Since then, this emerging universality
has been widely observed in a variety of complex systems and constitutes a cornerstone of
modern statistical physics. Anderson sums it up very well in his seminal paper entitled “More is
different” [3], where he shows that the behavior of large systems cannot be simply extrapolated
by the properties of its constituents, and that entirely new properties appear at each level of
complexity. He particularly highlights the importance of symmetry in the laws of nature.

Large and complex systems appear in a wide variety of fields in natural sciences as well
as applied sciences. Although intrinsically different from each other, they share the common
pattern of being driven by many interacting parts with a high number of degrees of freedom.
Despite being deterministic systems on the microscopic scale, i.e. at the level of the interacting
parts, they effectively behave stochastically at the coarse-grained level. Extracting relevant
information on the macroscopic behavior of such systems is one of the rather challenging tasks
to which the field of Statistical Physics is devoted. While the field was originally focused on
systems originating from Physics, it has now become an interdisciplinary field with applications
ranging from biology to finance. Paradigmatic examples of complex systems are the financial
markets which have become an active field of research in the community [4].

While complex systems usually behave in a typical way, they sometimes display atypical
behaviors which can yield to extreme events such as earthquakes, extreme floods, and large
wildfires. These events, which are ubiquitous in nature, can have devastating consequences,
which makes them worth studying. Some natural questions about them are: (a) what is the
magnitude of the largest event? (b) when does it occur? (c) is it isolated, or are there other
similar events? The field of extreme value statistics (EVS) is devoted to the study of such
questions and has found a wide variety of applications ranging from environmental sciences [5,6]
to finance [7,8]. EVS also plays a key role in physics, especially in the description of disordered

1



systems [9–14], fluctuating interfaces [15–19], and random matrices [20,21] (for a recent review
see [22–24]). On the practical side, extreme events are related to situations of serious hazard for
which it is important to gauge the risks, such as in the construction industry, the energy sector,
agriculture, territorial planning, logistics, and the financial markets [25]. On prominent example
is the case of weather and climate extremes, whose number of occurrences has increased in the
recent years [26–28]. Sometimes, these extremes arise as a result of strongly correlated events,
such as when intense precipitations occur at the same time within the same river basin and
cause dangerous floods [29,30]. On the theoretical side, the EVS of independent and identically
distributed (i.i.d.) random variables have been thoroughly investigated [31,32], but much less is
known about the EVS of strongly correlated random variables, which often appear in practical
contexts. Several specific models of correlated random variables have been studied and have
shown to exhibit very rich behaviors as well as universal features [13,18,33–51]. In particular, it
was shown that one-dimensional discrete-time random walks constitute a very useful playground
to investigate EVS of strongly correlated random variables [33, 40–43,46,50–59].

When it is too hard to obtain analytical results on EVS, a natural way to proceed is to study
them numerically. However, this is not an easy task as their occurrences are rare by definition. A
natural question that arises then is: “How do we efficiently sample rare events?”. In general, rare
trajectories are important as they capture specific information about the system that cannot be
seen in the typical trajectories where observables concentrate around their mean. For instance,
in the context of glasses, rare trajectories are key to understanding the slow structural relaxation
dynamics close to the glass transition where fluctuations are important [60]. Numerical methods
to sample them are of primary interest and several methods, such as Monto-Carlo Markov chains
and importance sampling, have been developed for both equilibrium and out-of-equilibrium
systems [61–80].

Closely related to extreme value questions, the concept of first-passage has been extensively
investigated both in mathematics [81, 82] and in physics [83–88]. This concept refers to the
rather general problem of finding the time it takes for a particular event to happen for the first
time. It plays a crucial role in various phenomena such as chemical reactions, animals searching
for food, financial stocks reaching a stop price, or rivers overflowing their banks. As for the EVS,
this observable is usually quite difficult to compute analytically. However, when it is possible, it
usually exhibits rich features. For instance, interesting behaviors already arise at the level of one
of the simplest stochastic processes, namely the one-dimensional Brownian motion, for which
the first-passage event is certain but will take on average an infinite amount of time to happen.
This apparent paradox arises from the fact the probability distribution of the first-passage time
is normalized but has a power law tail such that the first moment is infinite [84,88]. One way to
alter this behavior is to introduce resetting in the dynamics, in which the process is reset to its
starting position at a constant rate [89–91]. This renders the mean first-passage time finite and
even minimized at a critical resetting rate. This feature has found natural applications in the
optimization of search processes, where the search begins anew if the target is not found within
a certain amount of time [92–96]. More generally, resetting alters the motion in fundamental
ways and has sparked much research on its rich consequences [97–104].

In this thesis, we obtain new analytical results on the EVS of a class of stochastic processes
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that are representatives of strongly correlated random variables. In some cases, we obtain
universal results, which have the merit of remaining valid for a wide range of models. Further-
more, they allow for a better understanding of the relevant features that govern the EVS and
sometimes reveal unexpected transitions. Additionally, we provide new methods to numerically
sample rare trajectories for a wide class of stochastic processes. These methods are illustrated
in numerous examples and are shown to be very efficient in practice. Finally, we present a few
applications of EVS in some stochastic optimization problems. All the new results that were
published in this thesis are surrounded by a box. Since most of these results are analytical, they
sometimes require rather lengthy computations. We decided not to provide the full details of
the derivations in this thesis but rather to give an overview and some perspectives on the results.
Many parts of this thesis have been taken from the published articles and we will regularly refer
to them where detailed calculations can be found.

1.2 . Overview of the thesis

This thesis is organized as follows. In the remaining of Chapter 1, we present a selection
of the main results of this thesis. We present some analytical results on the order statistics
of discrete-time random walks. We reveal their asymptotic universal behavior in the limit of a
large number of steps. Then, we present further analytical results on the expected maximum of
bridge random walks. We discuss their asymptotic limit, as well as their finite-size correction,
which exhibits rich features depending on the tail of the jump distribution. Finally, we introduce
an efficient method to generate bridge random walks, and discuss generalizations to other types
of rare trajectories.

In Chapter 2, we focus on the EVS of some class of stochastic processes. In Section 2.1,
we provide an introduction to classical results in EVS. In Section 2.2, we investigate the order
statistics of discrete-time random walks and sketch the derivation of their universal behavior
in the limit of a large number of steps. In Section 2.3, we study the expected maximum of
bridge discrete-time random walks and discuss its rich asymptotic behavior. In Section 2.4,
we turn to continuous-time processes and derive the distribution of the length of the convex
hull of Brownian motion in a confined domain. The results in this chapter have led to several
publications whose abstracts can be found on p. 38, p. 41, and p. 50.

In Chapter 3, we are interested in numerically sampling rare trajectories. In Section 3.1, we
recall some known results to generate rare trajectories for Brownian motion. In Section 3.2, we
introduce an efficient method to sample bridge discrete-time random walks. We illustrate our
method and apply it to various examples. In Section 3.3, we generalize our method to other
types of rare trajectories and extend it to other types of stochastic processes, both Markovian
and non-Markovian. In Section 3.4, we apply our method to sample diffusive particles in the
presence of a periodic trapping environment. We briefly discuss the effective transport properties
of the surviving particles. The results in this chapter have led to several publications whose
abstracts can be found on p. 58, p. 65, p. 72 and p. 81.

In Chapter 4, we discuss several optimization problems in stochastic processes. In Section
4.1, we introduce a resetting Brownian bridge as a simple model to study search processes in the
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presence of a bridge constraint. We highlight a surprising mechanism induced by resetting that
enhances the fluctuations of the process. In Section 4.2, we combine the notion of resetting
and optimal control into an analytical framework, analogous to the Hamilton-Jacobi-Bellman
paradigm, to optimally control dynamical systems undergoing a resetting policy. We illustrate
our method with various examples. In Section 4.3, we investigate classic diffusion with the added
feature that a diffusing particle is reset to its starting point each time the particle reaches a
specified threshold. We define and solve a non-trivial optimization in which a cost is incurred
whenever the particle is reset and a reward is obtained when the particle stays near the reset
point. The results in this chapter have led to several publications whose abstracts can be found
on p. 87, p. 94, and p. 98.

Due to the number of articles written during this thesis, it would not have been reasonable
to present all of them. A choice had to be made and some papers have been left aside in the
Appendix. We briefly mention them here and will not discuss them further in this thesis.

• The paper entitled “Survival probability of a run-and-tumble particle in the presence of
a drift” discusses the survival probability of a persistent random walk with an arbitrary
speed distribution, not necessarily symmetric, in the presence of an absorbing boundary
located at the origin. We obtain a general formula, which we apply to the case of a two-
states particle with velocity ±v0 in the presence of a constant drift, known as the drifted
run-and-tumble particle, and obtain rich behaviors with three distinct phases depending
on the intensity of the drift. The abstract can be found on p. 113.

• The paper entitled “Survival probability of random walks leaping over traps” studies the
survival probability of a random walk in the presence of finite-size traps over which it can
jump. We show that the decay rate of the survival probability depends non-trivially on
the size of the trap. We generalize the model to random walks with power-law distributed
waiting times and derive some diffusive limits of the model. The abstract can be found
on p. 114.

• The paper entitled “A Tale of Two (and More) Altruists” presents a minimalist dynamical
model of wealth evolution and wealth sharing among N agents. We compare the effects
of an altruistic policy versus an individualistic one. We show that the best policy depends
on the criterion chosen. While altruism leads to more global median wealth, the longest-
lived individualists accumulate most of the wealth and live longer that the altruists. The
abstract can be found on p. 115.

• The paper entitled “First-Passage-Driven Boundary Recession” investigates a moving
boundary problem for a Brownian particle on the semi-infinite line in which the boundary
moves by a distance proportional to the time between successive collisions of the particle
and the boundary. We find that the tail of the distribution of the nth hitting time becomes
progressively heavier as n increases. In addition, we find a slow double logarithmic growth
of the number of hits. The abstract can be found on p. 116.

• The paper entitled “Wigner function for noninteracting fermions in hard wall potentials”
discusses the quantum fluctuations in phase space of N non-interacting fermions in a d
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dimensional box. We obtain scaling functions of these fluctuations close to the Fermi surf
in the limit of N → ∞ and show that they are universal with respect to the dimension
d of the box. The abstract can be found on p. 117.
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1.3 . Presentation of a selection of the main results

In this section, we present a selection of the main results obtained in this thesis. These
results concern discrete-time random walks (RWs). We present the model and the observables
in the remainder of this section and discuss the main results in the following sections of this
chapter.

In its simplest form, a one-dimensional discrete-time random walk xm evolves according to
the Markov rule

xm = xm−1 + ηm , (1.1)
starting from x0 = 0 where the jumps ηm’s are independent and identically (i.i.d.) distributed
random variables drawn from a jump distribution f(η). The random walk defined in (1.1) is
a rather general model and the sequence of positions xm’s could correspond to a wide variety
of physical observables, such as the trajectory of a tagged particle in a random environment,
the evolution of the height of a river, the logarithm of a stock price, etc. Even if the random
jumps ηm’s are rarely i.i.d. in practical applications, this model serves as a basis to obtain exact
analytical results that constitute a benchmark for more complex models.

The jump distribution f(η) in the RW defined in (1.1) is kept generic but is assumed to be
symmetric f(η) = f(−η). It could be a Gaussian distribution f(η) = e−η2/2/

√
2π, a discrete

distribution such as f(η) = 1
2δ(η−1)+ 1

2δ(η+1), a Cauchy distribution f(η) = 1/[π(1+η2)],
etc. In particular, it may not have a finite second moment, such as in Lévy flights where
f(η) ∼ |η|−1−µ for large |η|, with 0 < µ < 2 denoting the Lévy index. Generically, we
refer to these discrete-time Markov jump processes as “random walks”. Discrete-time RWs
with finite variance jump distributions converge to Brownian motion in the limit n → ∞ due
to the Donsker theorem, which is a functional extension of the central limit theorem. When
the variance is not finite, they converge to Lévy processes and are generally much harder to
study. While Brownian motion and Lévy processes are interesting by themselves, RWs are also
important to study, especially in the limit of large but finite n where they display finite-size
effects that are lost in the n → ∞ limit.

Discrete-time RWs constitute a very useful playground to investigate EVS of strongly corre-
lated variables. Indeed, the set of positions {x1, . . . , xn} is strongly correlated and constitutes
a simple, yet non-trivial, example of correlated random variables. For instance, for a random
walk with a jump distribution with a finite variance σ2, the two-point correlation function is
given by ⟨xmxn⟩ = σ2min(m,n). While the set of positions {x1, . . . , xn} are usually ordered
in the direction of time, we need to order them in the direction of space to study their EVS.
We arrange them in decreasing order of magnitude and define the kth maximum Mk,n of the
set of positions {x1, . . . , xn} with k = 1, 2, . . . , n such that (see figure 1.1)

M1,n > M2,n > . . . > Mn,n . (1.2)
Therefore M1,n and Mn,n are respectively the global maximum and minimum of the walk

(excluding the initial position x0 = 0). While the marginal distribution of the global maximum
and minimum are well-known and have been thoroughly studied [52, 53], for instance by using
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Figure 1.1: Left panel: A trajectory of a random walk of n = 5 steps. The positions areordered by ascending order M1,n > . . . > Mn,n, where Mk,n is the kth maximum of theset of positions {x1, . . . , xn}. Note that the initial position x0 = 0 is not included. Right
panel: One-dimensional representation along the x-axis of the ordered positionsMk,n ofthe trajectory of the randomwalk in the left panel. The gap∆k,n is the difference betweentwo consecutive maxima∆k,n = Mk,n −Mk+1,n.

the Pollaczek-Spitzer formula [54,56], the statistics of the k-th maximum are much less known.
They can however be characterized through the Pollaczek-Wendel identity [55,56], which inter-
estingly relates, in distribution, the kth maximum to the global maximum and minimum of two
independent copies of the random walk (see equation 2.44 below). This identity provides an
explicit expression, valid for any continuous and symmetric jump distribution, for the Fourier
transform of the double generating function, with respect to k and n, of the marginal proba-
bility distributions of Mk,n [55,56]. This identity has been revisited in several other works and
has been employed to study α-quantiles, i.e., the statistics of Mk,n with k = αn in the limit
n → ∞ with 0 < α < 1 [105–109].

While the statistics of the global maximum M1,n is already of great interest on its own,
it is sometimes necessary to know whether this maximum is an isolated event or if there exist
other events with a similar magnitude. A natural observable to describe how close the global
maximum is to the second maximum is the gap between them ∆1,n = M1,n − M2,n. More
generally, we define the kth gap ∆k,n as the difference between the kth and (k+ 1)th maxima:

∆k,n = Mk,n −Mk+1,n , k = 1, . . . , n− 1 . (1.3)
By definition, ∆k,n are positive random variables. Along the x-axis, the ordered positions Mk,n

can be seen as a one-dimensional gas of strongly interacting particles with the gaps ∆k,n being
the inter-particle distances (see the right panel in figure 1.1).

In addition to being discrete in time, some RWs are also constrained. A prominent example
is the bridge random walk Xm which is a RW that evolves locally as in (1.1) with the constraint
that it has to return to the origin after a fixed amount of time n (see figure 1.2):

X0 = Xn = 0 . (1.4)
For example, bridge random walks appear in many applications ranging from computer science
to graph theory [85,110–117]. Bridge random walks also appear frequently in physics problems
such as in fluctuating interfaces [15,17–19,37,118–120], record statistics in time series [121,122]
or in anomalous diffusion of cold atoms [123,124].
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Figure 1.2: A bridge RW of n steps is a RW that is constrained to start at the origin andreturn to the origin after n steps. The maximum of the bridge RW of n steps is denoted
Mn.

In the remainder of this section, we present three main results regarding the EVS of discrete-
time RWs. In Section 1.3.1, we present some results on the statistics of the gaps ∆k,n in (1.3)
and unveil their universal behavior in the limit of a large number of steps. In Section 1.3.2, we
discuss the effect of the bridge constraint (1.4) on the expected value of the global maximum
M1,n and show that it displays a rich behavior in the limit of n → ∞. Finally, in Section 1.3.3,
we introduce an efficient method to numerically sample RW bridge trajectories as well as other
types of rare trajectories.

1.3.1 . Universal order statistics for random walks
In this section, we present our results on the distribution of the gaps of discrete-time RWs.

We assume a general expansion of the Fourier transform of the jump distribution f̂(q) of the
form

f̂(q) =

∫ ∞

−∞
dη eiηqf(η) ∼ 1− |q|µ +O(|q|2µ) , q → 0 , (1.5)

where 1 ≤ µ ≤ 2 is the Lévy index and where we have set the typical jump to one by rescaling
the distribution. While µ = 2 corresponds to finite variance distributions, µ < 2 corresponds
to infinite variance distributions, with heavy tails that decay like f(η) ∼ η−1−µ for η → ∞.
We leave aside jump distributions with µ < 1 as they yield to transient random walks where
the gap statistics behave quite differently [59].

Obtaining the distributions of the gaps ∆k,n in (1.3) is quite challenging as it does not
suffice to know the marginal distributions of Mk,n and Mk+1,n to devise their distribution of
∆k,n as Mk,n and Mk+1,n are correlated. Recently, it has nevertheless been possible to obtain
some analytical results for the statistics of ∆k,n. By using the linearity of the expectation
value, one can connect the expected gap to the expected kth maximum through ⟨∆k,n⟩ =

⟨Mk,n⟩ − ⟨Mk+1,n⟩, where ⟨·⟩ denotes the average over all random walk trajectories. Using
this identity, it was shown that, for symmetric and continuous jump distributions with finite
variance (µ = 2), the expected gap has a well-defined stationary limit ⟨∆k⟩ given by [40]

⟨∆k⟩ = lim
n→∞

⟨∆k,n⟩ =
1

k

∫ ∞

0

dq

πq2

[
1− f̂(q)k

]
, (1.6)

8



where f̂(q) is the Fourier transform of the jump distribution defined in (1.5). This expression
was later proved rigorously and shown to remain valid for heavy-tailed distributions as long as
µ > 1 [51]. The expression (1.6) is strikingly simple and can be computed explicitly for a few
notable distributions, e.g.,

⟨∆k⟩ =
Γ
(
k + 1

2

)
√
πkΓ(k)

, for f̂(q) =
1

1 + q2
(double-sided exponential) ,

⟨∆k⟩ =
1√
πk

, for f̂(q) = e−q2 (Gaussian) ,

⟨∆k⟩ = Γ

(
1− 1

µ

)
k

1
µ
−1

π
, for f̂(q) = e−|q|µ (stable with µ > 1) ,

(1.7)

where Γ(z) is the standard Gamma function. Although the expression in (1.6) depends on the
full details of the jump distribution f(η), it becomes universal in the limit k → ∞ and behaves
as

⟨∆k⟩ ∼ Γ

(
1− 1

µ

)
k

1
µ
−1

π
, k → ∞ , (1.8)

which depends only on the Lévy index µ > 1 of the jump distribution. This universal decay is
quite remarkable and raises the question of whether this universal behavior of the first moment
extends to the full PDF Pk,n(∆). This question turns out to be quite challenging given the
absence of analytical tools to go beyond the first moment. In Ref. [40], the full gap distribution
Pk,n(∆) was computed in the special case of the double-sided exponential distribution f(η) ∝
e−|η|, using a backward Fokker-Planck approach. It was indeed shown in this case that Pk,n(∆)

converges towards a limiting distribution as n → ∞, i.e.,

lim
n→∞

Pk,n(∆) = Pk(∆) , (1.9)
where the generating function of Pk(∆) (with respect to k) was computed explicitly. Further-
more, in the scaling limit k → ∞, ∆ → 0 keeping

√
k∆ fixed, it was shown that the stationary

PDF Pk(∆) takes the scaling form [40]

Pk(∆) ∼
√
kP2

(√
k∆
)
, k → ∞ , (1.10)

where P2(x) is given by

P2(x) = 2

[
2√
π
(1 + x2)− ex

2
x(2x2 + 3)erfc(x)

]
, (1.11)

with erfc(z) = (2/
√
π)
∫∞
z e−t2 dt being the complementary error function. For x → ∞, the

scaling function behaves as P2(x) ∼ (3/
√
π)x−4.

Remarkably, it was conjectured in [40], based on numerical simulations, that the limiting
behaviors in (1.9) and (1.10) actually hold for any continuous and symmetric jump distribution
with finite variance (µ = 2), with the same universal scaling function P2(x) as given in (1.11).
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This conjecture was later on corroborated by exact analytical results for a rather wide class of
jump distributions, namely Erlang distributions of the form f(η) ∝ |η|pe−|η|, with p being an
integer [46].

This conjecture attracted some attention in the probability literature. In [51], it was proved
that the stationary distribution limn→∞ Pk,n(∆) = Pk(∆) as in (1.9) exists for any continuous
jump distribution [see Proposition 1.2 in [51]]. In addition, for the case of the double-sided
exponential distribution, the result in (1.10) and (1.11) was proved rigorously [50] in the frame-
work of fluctuation theory for random walks [33]. However, the question of the universality of
these results in (1.10) and (1.11) for symmetric and continuous jump distributions with finite
variance σ2, beyond the cases of Erlang distributions, remained open. Furthermore, much less
was known for the case of a jump distribution which has heavy tails with µ < 2.

Our contribution to this line of work is twofold: (i) we showed that the conjecture on the
universal behavior of the limiting distribution of the gaps is indeed true for µ = 2, (ii) we
extended these results and obtained the limiting distribution for heavy-tailed distributions and
showed that it is also universal, i.e., it depends only on 1 ≤ µ < 2. Furthermore, we unveiled
the existence of a “condensation” phenomenon which is absent for µ = 2. Our method extends
an original idea developed by Spitzer in a paper [125] which seems to have attracted little
notice.

As it was conjectured for the case of finite variance distributions, we find that the limiting
probability distribution Pk(∆) becomes universal, not only for µ = 2 but also for 1 ≤ µ ≤ 2. In
the scaling limit k → ∞ with ∆ = O(k1/µ−1), we find that, for µ > 1, the distribution Pk(∆)

behaves as

Pk(∆) ∼ 1

k
1
µ
−1

Pµ

(
∆

k
1
µ
−1

)
, ∆ = O

(
k

1
µ
−1
)
, k → ∞ , (1.12)

where Pµ(x) is a universal scaling function given by (see the left panel in figure 1.3)

Pµ(x) =
µBµ

(µ− 1)2

[
µEµ−1

µ
,− 1

µ
(−Bµx) + (2µ− 1)Eµ−1

µ
,µ−1

µ
(−Bµx)

]
, (1.13)

where

Bµ =

[
sin

(
π

µ

)]−1

and Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, (1.14)

is the two-parameter Mittag-Leffler function (sometimes called Wiman’s function). The ex-
pression (1.13) simplifies for µ = 2 and we recover the expression in (1.11). The asymptotic
behaviors of the universal scaling function Pµ(x), for 1 < µ < 2, are given by

Pµ(x) ∼



2

sin
(
π
µ

)
Γ
(
2− 1

µ

) , x → 0 ,

2 sin2
(
π
µ

)
Γ
(

2
µ − 1

) 1

x3
, x → ∞ .

(1.15)
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Figure 1.3: Left panel: Gap distribution Pk,n(∆) in the stationary limit n → ∞ and in thescaling regime k → ∞ with ∆ → 0 as a function of the scaling variable x = k1−1/µ∆.The theoretical prediction (blue line) in (1.13) is compared to numerical distributions for
k = 104, n = 106 obtained for various jump distributions: the Student’s t distribution,the inverse gamma distribution and the beta prime distribution. The Lévy index has beenset to µ = 1.8 and the histograms have been obtained by sampling over 107 realizations.
Right panel: Scaling function Mµ(u) as a function of u for µ = 1.3. The theoretical pre-diction for the tail (dashed blue line) in (1.20) is compared to numerical simulations for
k = 102 and n = 105 obtained for various jump distributions: the Student’s t distribution,the inverse gamma distribution and the beta prime distribution. The histograms havebeen obtained by sampling over 107 realizations.

Note that the 1/x3 tail is universal for all 1 < µ < 2. However, exactly at µ = 2, the tail
behaves as 1/x4, as in (1.11). Thus there is a discontinuous jump in the exponent from 3

to 4 as µ approaches 2. This is consistent with the fact that in the second line of (1.15) the
amplitude vanishes as µ → 2 and then the leading order decay comes from the subleading term
scaling as 1/x4.

When µ = 1, the scaling form in (1.12) is no longer valid and the typical scale of ∆ changes
from k1/µ−1 to 1/ ln k as µ → 1. In this case, the scaling form of the distribution Pk(∆) reads

Pk(∆) ∼ ln(k)P1 (ln(k)∆) , ∆ = O[ln(k)−1] , k → ∞ , (1.16)
where we find that the scaling function P1(x) is given explicitly by

P1(x) =
2π2

(π + x)3
. (1.17)

One can check that the scaling function Pµ(x) is normalized to unity, i.e.,
∫∞
0 Pµ(x)dx = 1,

which indicates that Pµ(x) indeed describes the typical behavior of Pk(∆), corresponding to
∆ = O(k1/µ−1) for large k. However, the first moment of Pµ(x) reads

∫ ∞

0
dxxPµ(x) =

sin
(
π
µ

)
Γ
(

1
µ

) , (1.18)
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which, together with the scaling form in (1.12) does not yield the correct value for the expected
stationary gap given in (1.8) for 1 < µ < 2. This apparent paradox can be resolved by noticing
that, for µ < 2, there are atypically large gaps of scale k1/µ that are not captured by the scaling
form in (1.12), which only describes the typical gaps, of order k1/µ−1. More precisely, we find
that for 1 < µ < 2, the distribution of the gap for large k has two parts: a typical one where
∆ = O(k

1
µ
−1

) described as in (1.12) and an additional atypical one where ∆ = O(k
1
µ ), e.g.,

Pk(∆) ∼


1

k
1
µ−1

Pµ

(
∆

k
1
µ−1

)
, ∆ = O(k

1
µ
−1

) , (typical gap/“fluid”)

1

k
1+ 1

µ
Mµ

(
∆

k
1
µ

)
, ∆ = O(k

1
µ ) , (atypical large gap/“condensate”)

k → ∞ ,

(1.19)
where Pµ(x) is given in (1.13) and Mµ(u) is a universal scaling function (see the right panel
in figure 1.3). Note that the contribution of Mµ(u) to the normalization vanishes in the limit
k → ∞, while its contribution to the average value is of the same order as the scaling function
(1.12). This is actually reminiscent of the “condensation” phenomena in the distribution of the
mass in a class of mass transport models, such as in zero-range processes [126–129] or even
in the active run-and-tumble particles and related models [130–133]. Here, the gaps play the
role of “mass” at a given site in the transport models or the “runs” in run-and-tumble models.
In this condensed phase, there is a coexistence of a “fluid” regime where the masses (or the
runs) are of the typical size and a “condensation” part which contains atypically large masses
or runs. In our model, for µ < 2, we also see the coexistence of the “fluid” regime, consisting
of typical gaps of order ∆ = O(k1/µ−1) and a “condensate” consisting of large gaps of order
∆ = O(k1/µ). The scaling function Mµ(u) in (1.19) that describes the condensate part is
hard to compute analytically. Fortunately, we still managed to extract the asymptotic tail of
Mµ(u) which behaves as

Mµ(u) ∼
µ

Γ
(
1− µ

2

)2 1

uµ+1
, u → ∞ . (1.20)

Interestingly, the amplitude in (1.20) is the same as the one for the distribution of the first
gap obtained in [41, 42]. As in (1.15), the amplitude in (1.20) vanishes for µ → 2 signaling
a different tail behavior (for the double-sided exponential jump distribution, corresponding to
µ = 2, this tail is actually exponential and not algebraic [40,46]).

1.3.2 . Expected maximum of discrete-time bridge random walks
In this section, we present our results on the expected maximum of bridge RWs (see figure

1.2). Let us first recall some results on the maximum of free RWs. We define the maximum
Mn after n steps

Mn = max{x0, . . . , xn} . (1.21)
At variance with our previous definition in (1.2), we include the initial position x0 in the set of
positions. The maximum Mn is an observable that is commonly studied in the mathematics
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literature [53, 134–139] as well as in natural and practical contexts, such as animal foraging
where the spatial extent of their territory can be characterized by the extreme points of their
trajectories [140–146]. For a free random walk starting from the origin x0 = 0, it is well-known
that the expected maximum ⟨Mn⟩ is simply given by [134,135]

⟨Mn⟩ =
n∑

m=1

1

m

∫ ∞

0
dy y pm(y) , (1.22)

where pm(y) is the forward propagator of the free random walk, i.e., the probability density
that the position y is reached in m steps given that it started at the origin. It is simply given by

pm(y) =

∫ ∞

−∞

dk

2π

[
f̂(k)

]m
e−i k y , (1.23)

where f̂(k) is the Fourier transform of the symmetric jump distribution f(η). For jump dis-
tributions with finite variance, such that f̂(k) behaves as in (1.5) with µ = 2, the expected
maximum ⟨Mn⟩ grows, to leading order for large n, as 2

√
n/π, a result that can be easily

obtained from the diffusive (i.e., Brownian) limit. In contrast, the second leading order term in
the asymptotic limit of the expected maximum is non-trivial to obtain and contains the leading
finite-size correction [36]. This finite-size correction is actually important as it appears as a
leading order term in the thermodynamic limit of various geometrical properties such as the
difference between the expected maximum ⟨Mn⟩ and the average absolute position of the RW
⟨|xn|⟩ [36]. In addition, it turns out that it also has applications in various algorithmic prob-
lems [147,148]. This leading finite-size correction was obtained in [36] where it was shown that,
for finite variance jump distributions (with additional regularity properties [36]), this correction
is a constant γ such that

⟨Mn⟩ ∼ 2

√
n

π
+ γ , n → ∞ , (1.24)

where γ is given by [36]

γ =
1

π

∫ ∞

0

dk

k2
ln

[
1− f̂ (k)

k2

]
, (1.25)

where f̂(k) is the Fourier transform of the jump distribution. Interestingly, the constant γ

depends on the full details of the jump distribution and takes non-trivial values (e.g., for
Gaussian jump distributions, γ = ζ(1/2)/

√
π where ζ is the Riemann zeta function). The

analog of the asymptotic expansion (1.24) for free RWs with heavy tails is given in [36,144].
Our contribution to this line of work is threefold: (i) we obtain an expression for the expected

maximum after n steps of bridge RWs which is valid for all n and extends the expression (1.22),
(ii) we extract its asymptotic limit for n large and obtain the analog for bridge RWs of the
expression (1.24), (iii) we extend our results to heavy-tailed distributions with Lévy index µ < 2.

In the remaining of this section, Mn refers to the maximum of a bridge random walk (1.4)
as in figure 1.2, and no more to the one of a free random walk. We find that the expected
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maximum of a bridge RW after n steps is given by

⟨Mn⟩ =
n∑

m=1

1

m

∫ ∞

0
dy y

pm(y)pn−m(y)

pn(0)
, (1.26)

where now the average is over all the bridge trajectories and where pm(y) is the propagator of
the free random walk (1.23). This expression nicely extends the one for the expected maximum
of a free random walk (1.22). Our derivation of the expected maximum (1.26) is based on
the celebrated Spitzer’s formula [54] (see equation 2.72 below). It recovers, using a differ-
ent method, a result obtained in the mathematics literature [134] derived using combinatorial
arguments.

For jump distributions whose Fourier transform behaves as in (1.5), we find that the ex-
pected maximum of bridge RWs grows for large n as

⟨Mn⟩ ∼ h1(µ)n
1
µ , (1.27)

where the amplitude h1(µ) is given by

h1(µ) =
µπ

8Γ
(
1 + 1

µ

) , (1.28)

where Γ(z) is the standard Gamma function. Note that the asymptotic expression (1.27) is
universal with respect to the jump distribution, i.e. it only depends on the Lévy index µ. A
plot of this function h1(µ) is shown in figure 1.4. It is interesting to compare the asymptotic
large n expansion of the expected maximum of a bridge RW (1.31) with the one of a free RW
obtained previously in [36, 144]. While the leading power in n are identical in both cases, the
results for the bridge RW differ from the free RW in two ways: (i) ⟨Mn⟩ for the bridge RW
is finite even for Lévy flights with Lévy exponent 0 < µ ≤ 1 while it is infinite for a free RW:
this is due to the bridge constraint that pins the initial and final positions to the origin, (ii)
the amplitude h1(µ) is different from the one obtained for the free random walks h∗1(µ) given
by [36,144]

h∗1(µ) =
µ

π
Γ

(
1− 1

µ

)
. (1.29)

Comparing the amplitude h1(µ) and h∗1(µ) (see figure 1.4), we see that the amplitude of the
free RW (for µ > 1) is larger than the one for the bridge RW, which is expected as the bridge
RW cannot go as far as the free RW due to its constraint to return to the origin.

The second leading order term in the large n limit of the expected maximum ⟨Mn⟩ is slightly
more subtle as it depends on the next order terms in the expansion of the Fourier transform of
the jump distribution in (1.5). We assume that f̂(k) behaves as

f̂(k) ∼ 1− |k|µ + b |k|ν +O(|k|2µ) , k → 0 , (1.30)
where 0 < µ ≤ 2, µ < ν ≤ 2µ, and b is a constant. We find that the second leading order
term of the expected maximum ⟨Mn⟩ displays a rich behavior depending on the two exponents
µ and ν (see figure 1.5):

14



0.0 0.5 1.0 1.5 2.0
µ

0

1

2 h1(µ)

h∗1(µ)

Figure 1.4: Amplitudes h1(µ) in (1.28) and h∗1(µ) in (1.29) of the leading order term of thelarge n limit of the expected maximum ⟨Mn⟩ of a bridge random walk and a free randomwalk, respectively as a function of the Lévy index 0 < µ ≤ 2. Contrary to free RWs, bridgeRWs with µ < 1, have a well-defined expectedmaximum due to the bridge constraint thatpins the initial and final positions to the origin. This explains why the blue curve is definedfor µ < 1 while the red one diverges upon approaching µ = 1.

• Phase I (1 < µ ≤ 2 and µ+ 1 < ν ≤ 2µ)

⟨Mn⟩ ∼ h1(µ)n
1
µ +

1

2π

∫ ∞

−∞

dk1
k21

ln

(
1− f̂(k1)

|k1|µ

)
, n → ∞ , (1.31a)

• Phase II (0 < µ ≤ 2 and µ < ν ≤ 2µ and ν < µ+ 1)

⟨Mn⟩ ∼ h1(µ)n
1
µ + b h2(µ, ν)n

1+µ−ν
µ , n → ∞ , (1.31b)

• Phase III (1 ≤ µ ≤ 2 and ν = µ+ 1)

⟨Mn⟩ ∼ h1(µ)n
1
µ − b

π µ
ln(n) , n → ∞ , (1.31c)

where the amplitude h1(µ) is given in (1.28) and h2(µ, ν) is given by

h2(µ, ν) =
−1

2Γ
(
1 + 1

µ

)
 π Γ

(
ν+1
µ

)
4Γ
(
1 + 1

µ

) +
(ν − µ) csc

(
πν
µ

)
µΓ
(
− ν

µ

) ∫ ∞

0
dv

(vν − 1) (vµ−ν − 1)

(v2 − 1) (vµ − 1)

 .

(1.32)
Note that the amplitude h2(µ, ν) diverges as ν approaches µ+1 as expected as it corresponds
to approaching the red line in figure 1.5. The amplitude h2(µ, ν) can be exactly evaluated for
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Figure 1.5: The parameters µ and ν are the exponents of the expansion of the Fouriertransform of the jump distribution f̂(k) such that f̂(k) ∼ 1 − |k|µ + b |k|ν for k → 0. Thesecond leading order term in the large n limit of the expected maximum ⟨Mn⟩ dependson the phase in which the couple (µ, ν) is located (I, II or III). The second leading orderterm of each phase is given in (1.31). As a reference, the couple (µ, ν) for Gaussian andCauchy jump distributions are indicated at (µ = 2, ν = 4) and (µ = 1, ν = 2), respectively.

µ = 1 and µ = 2, leading to

h2(µ = 1, ν) =
π2 − 2(ν − 1)[π(2ν − 1) cot(πν) + π csc(πν)− 2]

8 sin(πν)Γ(−ν)
, (1.33a)

h2(µ = 2, ν) =

√
π(ν − 2)(ν − 1) sec

(
πν
2

)
4Γ
(
−ν

2

) − 1

2
Γ

(
ν + 1

2

)
. (1.33b)

In the specific case of a jump distribution with finite variance σ in phase I, the asymptotic
limit of the expected maximum of the bridge random walk is given by

⟨Mn⟩ ∼
1

2

√
π n+ γ , n → ∞ , (1.34)

where, remarkably, γ is the same constant correction (1.25) as in the expected maximum of
the free RW obtained in [36] discussed in the introduction.

1.3.3 . Generating discrete-time constrained trajectories
In this section, we discuss a method that we have introduced to generate bridge RWs,

i.e. RWs that evolve locally as in (1.1) but with the global constraint (1.4) such that they
have to return to the origin at a time n (see figure 1.2). This method is the discrete-time
version of the continuous-time effective Langevin dynamics developed in [62, 70, 71], which
is discussed in Section 3.1. Generating bridge RWs is a challenging problem since a general
prescription is not known for arbitrary jump distribution f(η) in (1.1). In the special case when
the jump distribution is a pure Gaussian, i.e., f(η) = e−η2/2/

√
2π, one can still generate bridge

trajectories by using the discrete-time path transformation

Xm = xm − m

n
xn , (1.35)
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which maps a free trajectory xm to a bridge trajectory Xm of length n. One can check that
the right-hand side in (1.35) indeed vanishes at m = n and that the two-point correlation
function corresponds to the bridge one. As this is a linear transformation between two Gaussian
processes, this guarantees that Xm is indeed a Gaussian bridge RW. However, this prescription
does not work when f(η) is not Gaussian. Another example where one can easily generate
a bridge configuration corresponds to the ±1 random walk, where the jump distribution is
f(η) = (1/2)δ(η + 1) + (1/2)δ(η − 1) [76, 149]. It is therefore important to develop an
algorithm that does not depend on the specific form of the jump distribution. One possibility
is to perform Markov chain Monte-Carlo simulations which consist in sampling the full joint
jumps distribution {η0 , . . . , ηn−1} with the global bridge constraint that the total sum of the
jumps is

∑n−1
m=0 ηm = 0 (see e.g. [116]). This Monte-Carlo method can also be computationally

costly and requires advanced techniques to probe the tails of distributions as the Monte-Carlo
algorithm sometimes struggles to equilibrate the system. Given this absence of generic and
efficient methods to generate constrained random walks, it is then highly desirable to derive
an effective discrete-time jump process valid for arbitrary jump distributions f(η). Our main
contribution to this line of work is that we found that bridge trajectories can be generated by
effective dynamics

Xm = Xm−1 + ηm,n(Xm−1) , (1.36)
where the effective jump ηm,n(Xm−1) at time m of the bridge of length n is drawn from the
effective jump distribution f̃(η |X,m, n) which is given by

f̃(η |X,m, n) = f(η)
Q(X + η, n−m− 1)

Q(X,n−m)
, (1.37)

where Q(x,m) is the backward propagator of the free process defined by

Q(x,m) =

∫ ∞

−∞

dk

2π

[
f̂(k)

]m
ei k x , (1.38)

where f̂(k) is the Fourier transform of the jump distribution f(η) (which is not necessarily
symmetric). The effective distribution is therefore the free distribution that is modified in such
a way that steps that take the walker closer to its final destination (here the origin) are more
likely to happen. Note that this effective distribution is parametrized by the current position X

of the bridge and moreover is non-stationary, i.e., it depends on the current time m and also
the total duration n. At the last step, when m = n− 1, the numerator in (1.37) simplifies to
Q(X + η, 0) = δ(X + η) and constraints the particle to return to the origin. Note that (1.37)
can be viewed as an explicit representation of the generalized Doob transform which has been
used previously [70,76].

For certain specific jump distributions f(η), it is possible to compute f̃(η |X,m, n) explicitly
and sample directly from it. For such cases where one has a direct sampling method to sample
from f̃(η |X,m, n), one can easily draw a random number η from this distribution to generate
the bridge configuration numerically. However, in some cases, no direct sampling methods
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Figure 1.6: Left panel (a): Typical trajectories of a Cauchy bridge random walk of n = 100steps generated using the acceptance-rejection sampling method on the effective distri-bution in (1.40). Right panel (b): Position distribution at m = 75 for a Cauchy bridgeof n = 100 steps generated from the effective distribution. The position distribution
Pbridge(X,m|n) obtained numerically by sampling 105 trajectories using the acceptance-rejection sampling on the effective distribution in (1.40) is compared with the theoreticalprediction.

exist. In these cases, one can rely upon “acceptance-rejection sampling” (see e.g. [150]). As
an example, we sampled Cauchy random walk bridges. The normalized free jump distribution
is symmetric with divergent moments and is given by

f(η) =
1

γ π

1[
1 +

(
η
γ

)2] , (1.39)

where γ is a parameter that provides the typical scale of the jumps. The effective step distri-
bution at the mth step (1.37) is therefore given by

f̃(η |X,m, n) =
1

γ π

n−m

(n−m− 1)

1[
1 +

(
η
γ

)2] 1 +
(

X
γ(n−m)

)2[
1 +

(
X+η

γ(n−m−1)

)2] . (1.40)

Note that, unlike the free distribution f(η) in (1.39), the effective distribution in (1.40) is
asymmetric, has a power law tail f̃(η |X,m, n) ∝ 1/η4 as |η| → ∞ and consequently has a
finite second moment. In figure 1.6, we show a sampled bridge Cauchy random walk (left panel)
and a comparison between the numerical and theoretical position distribution at an intermediate
time to check the sampling method.

In Chapter 3, we extend the method to other types of constrained RWs, and in particular to
RWs with a fixed area below their trajectory. We also generalize the method to a non-Markovian
process and discuss applications to a survival problem.
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2 - Extreme value statistics in stochastic processes

In this chapter, we focus on the EVS of some class of stochastic processes. We first provide
an introduction and present some classical results. Then, we discuss the order statistics and
the expected maximum of random walks and sketch the derivation of the results presented in
the introduction. Finally, we turn to continuous time stochastic processes and study the convex
hull of Brownian motion in confined geometries.

2.1 . Introduction to extreme value statistics

2.1.1 . Independent and identically distributed random variables
Let us start by recalling some well-known results on the EVS of a set {η1, . . . , ηn} of

i.i.d. random variables drawn from a continuous probability distribution f(η). The cumulative
distribution of the maximum of the set max{η1, . . . , ηn} reads

Prob. (max{η1, . . . , ηn} < M) = Prob. (η1 < M, . . . , ηn < M) =

(∫ M

−∞
dη f(η)

)n

, (2.1)
where we used that the random variables are i.i.d in the last equality. One can analyze the
expression (2.1) to find that the maximum of the set of i.i.d. random variables asymptotically
behaves, in the limit of n → ∞, as

max{η1, . . . , ηn} ∼ an + bn χ , n → ∞ , (2.2)
where an and bn are scaling coefficients, and χ is a random variable of order O(1). Note
that the asymptotic relation in (2.2) between the random variables max{η1, . . . , ηn} and χ

is valid “in distribution”. The coefficients an and bn respectively describe the typical value of
the maximum and the typical size of its fluctuations. While these scaling coefficients naturally
depend on the parent distribution f(η), the random variable χ turns out to be universal, in the
sense that it does not depend on the full details of f(η) but only on its tail behavior. It turns
out that there exist exactly three distributions for χ which are

• the Gumbel distribution, Prob. (χ < z) = e−e−z
, if the parent distribution has unbounded

support with a tail that decays faster than any power law,

• the Fréchet distribution, Prob. (χ < z) = Θ(z)e−z−µ
, if the parent distribution has un-

bounded support with a tail that decays as a power law f(η) ∼ η−1−µ as η → ∞,

• Weibull distribution, Prob. (χ < z) = Θ(z)e−zα , if the parent distribution has a finite
edge in η∗ such that f(η) ∝ (η∗ − η)α−1 as η → η∗,

where we denoted by Θ(z) the Heavyside step function such that Θ(z) = 1 if z > 0 and
Θ(z) = 0 otherwise. Note that in the case where f(η) has a finite support and decays faster
than a power law at the upper edge, the distribution of the maximum is given by the Gumbel
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law. Further discussions on the maximum of i.i.d. random variables, and in particular on how
to find the coefficients an and bn can be found in the original work of Gumbel [5] and in the
pedagogical reviews [22,24]. In addition, note that (2.2) only describes the “typical fluctuations”
of the maximum but does not describe “atypical” fluctuations which are rather described by
large deviation tails (see [23] for a pedagogical review).

A natural extension of the results above is to not only consider the global maximum of the
set {η1, . . . , ηn} but also the second maximum, the third, etc [31, 32]. Let us arrange the set
of variables in decreasing order of magnitude and define the kth maximum Mk,n of the set of
variables {η1, . . . , ηn} with k = 1, . . . , n such that

M1,n > M2,n > . . . > Mn,n . (2.3)
Obviously, M1,n and Mn,n are respectively the global maximum and minimum of the set. The
cumulative distribution of the kth maximum Mk,n reads

Prob. (Mk,n < M) =

k−1∑
m=0

(
n

m

)(∫ ∞

M
dηf(η)

)m(∫ M

−∞
dηf(η)

)n−m

, (2.4)
which simply states that for the kth maximum to be less than M , there must be at most k− 1

variables above M and the remaining ones below M . One can analyze the expression (2.4) and
find that the kth maximum of the set of i.i.d. random variables asymptotically behaves, in the
limit of n → ∞, as

Mk,n ∼ an + bnχk , n → ∞ , (2.5)
where an and bn are scaling coefficients and χk is a random variable of order O(1). Remarkably,
the random variable χk turns out to be universal and its cumulative distribution is given by

Prob. (χk < z) = Prob. (χ < z)

k−1∑
j=0

[− ln (Prob. (χ < z))]j

j!
, (2.6)

where χ is the random variable describing the fluctuations of the global maximum in (2.2). In
particular, for k = 1, the expression (2.6) recovers the distribution of the global maximum.

Another natural aspect to study is how close the maxima are to each other. One observable
that describes this is the gap ∆k,n between two consecutive maxima defined as

∆k,n = Mk,n −Mk+1,n , k = 1, . . . , n− 1 . (2.7)
In the limit n → ∞, it asymptotic behaves as

∆k,n ∼ bnδk , n → ∞ , (2.8)
where bn is the same scaling coefficient as in (2.5) and δk is a random variable of order O(1)

whose cumulative probability distribution is given by [22]

Prob. (δk < z) =
Θ(z)

(k − 1)!

∫ ∞

−∞
dxg′(x) [− ln (g(x))]k−1

[
1− g(x− z)

g (x)

]
, (2.9)
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where g(x) = Prob. (χ < x) and χ is the random variable describing the fluctuations of the
global maximum in (2.2). In particular, if χ is Gumbel distributed, the distribution of the gap
is simply exponential Prob. (δk < z) = Θ(z)

(
1− e−kz

)
.

Let us end this section with three comments. First, the asymptotic limit in (2.4) and in
(2.8) are such that n → ∞ with k fixed. It turns out that there exists also another interesting
limit where n → ∞ with k = αn with 0 < α < 1 (see for instance [151]). Second, the gaps
defined in (2.7) have a nice telescopic structure such that their sum gives

n−1∑
k=1

∆k,n = M1,n −Mn,n . (2.10)
This property has been exploited in several works to investigate the statistics of sums of strongly
correlated random variables (see for instance the pedagogical review [152]). Finally, physical
systems are rarely described by i.i.d. random variables. Correlations are ubiquitous in nature.
Fortunately, for the case of weakly correlated random variables, one can still make use of
the above results to study their EVS. To see this, let us consider the problem of finding the
distribution of the maximum of a set of dependent random variables {x1, . . . , xn} with short-
range correlations ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ ∝ e−|i−j|/ξ, where ξ is a finite correlation length. The
key idea is to group the random variables in blocks of length ξ, such that random variables
belonging to different blocks are considered to be approximately uncorrelated. Then, we see
that the problem reduces to finding the distribution of the maximum of n′ = n/ξ independent
random variables which are the local maxima of each block. Of course, one might ask what
happens to the EVS of strongly correlated random variables? This will be the topic of the next
section.

2.1.2 . Strongly correlated random variables: the case of random walks
In the previous section, we discuss the EVS of i.i.d. random variables and their universality

classes. The case of strongly correlated random variables is much less understood and no general
theory currently exists. In the absence of a general framework, there has been a common interest
to study exactly solvable cases in the hope of gaining some general insights. In this section, we
will discuss the EVS of discrete-time random walks which turns out to be a very useful model
of strongly correlated random variables.

Let us consider the one-dimensional discrete-time RW defined in (1.1) with a continuous
and symmetric jump distribution f(η) and starting from x0 = 0. Before discussing the EVS of
such model, let us briefly recall some basic results on RWs. One central quantity in the study
of RWs is the propagator pn(x) which is the probability that the random walk is located x at
step n given that it started from x0 = 0 (see figure 2.1). From the Markov rule (1.1), one can
derive the following integral equation for the evolution of the propagator:

pn(x) =

∫ ∞

−∞
dy pn−1(y)f(x− y) , (2.11)

which simply states that for the particle to be located at x at step m, it must have been at some
y at step n− 1 and jumped from y to x. The probability of this event is then summed over all
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Figure 2.1: The propagator pn(x) is the probability that the random walk is located at x atstep n given that it started from x0 = 0. The Spitzer formula in (2.72) gives the generatingfunction of the double Laplace-Fourier transform of the joint distribution of themaximum
Mn and the final position xn of a discrete-time RW of n steps.

y and weighted by the jump distribution f(η). The initial condition of (2.11) is p0(x) = δ(x)

which fixes the particle at the origin initially. The integral equation (2.11) is easily solved in
Fourier space and gives (1.23). For regular jump distributions, whose Fourier transform behaves
as f̂(q) ∼ 1−|q|µ when q → 0 (1.5), one can analyze the expression (1.23) in the large n limit
and find that it takes the scaling form

pn(x) ∼
1

n
1
µ

Lµ

(
x

n
1
µ

)
, n → ∞ , with Lµ(z) =

∫ ∞

−∞

dk

2π
e−ikz−|k|µ , (2.12)

where µ is the Lévy index of the jump distribution (1.5). For µ = 2, which corresponds to
finite variance jump distributions, the scaling function L2(z) is a Gaussian distribution L2(z) =

1/
√
2πe−z2/2, which a consequence of the Central Limit Theorem. When µ = 1, which

corresponds to jump distributions which decay as f(η) ∼ |η|−2 when η → ±∞, the scaling
function L1(z) is a Cauchy distribution L1(z) = 1/[π(1+ z2)]. In general, the scaling function
Lµ(z) does not have an explicit form and is referred to as a stable law of index µ. Random
walks with different Lévy index µ behave very differently as µ becomes lower than µ = 2, as
the second moment of the jump distribution is infinite, and as it becomes lower than µ = 1 as
the first moment becomes infinite as well (see figure 2.2). One salient feature is that random
walks with Lévy index µ ≥ 1 are recurrent, which means that they return to the origin infinitely
many times with probability one, whereas random walks with µ < 1 are transient, which means
that the probability that they return to the origin infinitely many times is zero.

One of the simplest EVS questions that one can ask is “What is the probability that the
minimum of the set of positions {x1, . . . , xn} is positive ?”. This is a rather natural question
to ask as it corresponds to the fraction of all the RW trajectories that do not cross the origin
up to step n (see figure 2.3). This probability is usually called “survival probability” as it is the
probability that the RW survives on the positive axis. The survival probability Sn is therefore
defined as the probability that all the positions are positive up to step n (see figure 2.3):

Sn = Prob. (x1 ≥ 0, . . . , xn ≥ 0 |x0 = 0) . (2.13)
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Figure 2.2: Sample paths of random walks during n = 103 steps with different Lévy index
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Figure 2.3: The survival probability Sn of a randomwalk up to step n is the probability thatthe random walk did not cross the origin up to step n given that it started from x0 = 0.

In terms of the jump distribution ηm’s defining the jumps in the RW in (1.1), the survival
probability reads explicitly as

Sn =

∫ ∞

−∞

[
n∏

i=1

dηif(ηi)

]
Θ(η1)Θ(η1 + η2) . . .Θ(η1 + . . .+ ηn) , (2.14)

where the product of Heavyside step functions encodes the constraints that the positions are
positives and the term in brackets weights each jump. Naively, by looking at (2.14), the survival
probability of a RW seems difficult to compute and will a priori depend on the jump distribution
f(η) as it appears explicitly in the multi-dimensional integral. However, a remarkable result in
the theory of RWs, which is due to Sparre Andersen [81], states that the survival probability in
(2.14) is universal and given by

Sn =

(
2n

n

)
2−2n . (2.15)

For large n, the survival probability decays as Sn ∼ 1/
√
πn. This result is valid for any

symmetric and continuous jump distribution f(η). This result is a very nice example of the
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Figure 2.4: In the η1–η2 plane, the weight function f(η1)f(η2) has four symmetry lines
η1 = 0, η2 = 0, η1 + η2 = 0 and η1 − η2 = 0 (depicted in red). These lines split the planeinto 8 wedges. The integration domain of the integral in (2.17) exactly overlaps three ofthe wedges (shaded blue area).

concept of universality and how symmetry plays a crucial role. To illustrate this, let us check
this result for the first values of n. For n = 1, the expression (2.14) reads

S1 =

∫ ∞

0
dη1f(η1) . (2.16)

As the jump distribution is symmetric and that it is normalized to unity, the integral directly
evaluates to S1 = 1/2, independently of f(η). When n = 2, the expression (2.14) reads

S2 =

∫ ∞

0
dη1

∫ ∞

−η1

dη2f(η1)f(η2) . (2.17)
The weight function f(η1)f(η2) has two types of symmetries: (i) reflection symmetry ηi ↔ −ηi
for i = 1, 2 since the jump distribution is symmetric (ii) permutation symmetry η1 ↔ η2 which
is due to the fact the weight function takes a product form as the jumps are independent.
In the η1–η2 plane, these symmetries split the plane into 8 wedges (see figure 2.4). Due
to the symmetries, integrating the weight function over any of these wedges yield the same
value. Because the weight function is normalized to unity over the whole plane, this gives
that the integral over any of these wedges is exactly 1/8. Because the integration domain
in (2.17) covers exactly three of these wedges, this gives S2 = 3/8, which matches with the
general expression (2.15) evaluated at n = 3. Extrapolating this reasoning to arbitrary n, we
qualitatively understand that it is the role of the symmetries of the weight function in brackets
in (2.14) which are strong enough to constraint the value of the integration to become (2.15).
A full proof for (2.15) involving combinatorial arguments can be found in the original paper [81].

Let us mention a recent extension of the Sparre Andersen result to higher dimensions. It
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considers a random walk xm in d dimensions which evolves according to

xm = xm−1 + ηm , (2.18)
where x0 = 0 and ηm are i.i.d. random vectors drawn from a radially symmetric distribution
f(ηm). A natural extension to the survival probability problem in d dimensions is to consider
the following question: “What is the probability that the RW trajectory remains in some open
linear half-space?". In other words, this is the probability that the origin is not included in the
convex hull of the RW trajectory (the convex hull being the smallest polygon that contains its
trajectory). Remarkably, it was shown that this probability is universal and given by [153,154]

Prob. (0 /∈ Conv (x1, . . . ,xn)) =
2

2nn!

⌈d/2⌉∑
k=1

B(n, d− 2k + 1) , (2.19)
where B(n, k) are the coefficient of the polynomial

(t+ 1)(t+ 3) . . . (t+ 2n− 1) =

n∑
k=0

B(n, k)tk . (2.20)
Setting d = 1, we recover the Sparre Andersen result in (2.15). In the limit of large n, the
absorption probability (2.19) decays as [154]

Prob. (0 /∈ Conv (x1, . . . ,xn)) ∼
1

2d−2(d− 1)!
√
π

ln(n)d−1

√
n

, n → ∞ . (2.21)
Note that the generalization of Sparre Andersen result in (2.19) is not much known in the
physics literature. In particular, one can use it to study the survival probability of continuous-
time persistent random walks and extend some recent results on the universal survival probability
of the run-and-tumble particle [155,156] (see Appendix A.1).

The survival probability is not the only quantity that exhibits universality. For instance, the
number of steps spent above the origin Tn is also universal for random walks with symmetric
and continuous jump distributions starting from x0 = 0. One way to see this is to rely on the
Sparre Andersen result as we briefly show now. Let us express Tn in terms of the positions xn’s
as

Tn =

n∑
i=1

Θ(xi) , (2.22)
which simply counts the number of the n steps which are above the origin. Let us compute the
generating function ⟨zTn⟩ of the random variable Tn. By using its definition in (2.22), we find

⟨zTn⟩ = ⟨
n∏

i=1

zΘ(xi)⟩ = ⟨
n∏

i=1

[1 + (z − 1)Θ(xi)]⟩ , (2.23)
where we used that Θ(x) is a binary variable. Expanding the product in (2.23), we find

⟨zTn⟩ =
n∑

k=0

(z − 1)k
∑

0<i1<...<ik≤n

⟨Θ(xi1) . . .Θ(xik)⟩ . (2.24)
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Figure 2.5: The average ⟨Θ(xi1) . . .Θ(xik)⟩ is the probability that the randomwalk is abovethe origin at the intermediate times i1, . . . , ik given that it started at x0 = 0. Note that therandom walk is allowed to propagate freely in between those times.

Explicitly writing the average over all trajectories gives (see figure 2.5)

⟨Θ(xi1) . . .Θ(xik)⟩ =
∫ ∞

0
dxi1 . . . dxikpi1(xi1)pi2−i1(xi2 − xi1) . . . pik−ik−1

(xik − xik−1
) ,

(2.25)
where pk(x) is the propagator of the random walk in (1.23). Recognizing the convolution
structure over the summation indices in (2.24), we take a generating function with respect to
n which gives

∞∑
n=0

sn⟨zTn⟩ =
∞∑
k=0

(z − 1)k

1− s

∫ ∞

0
dx1 . . . dxkp̄s(x1)p̄s(x2 − x1) . . . p̄s(xk − xk−1) , (2.26)

where p̄s(x) =
∑∞

n=1 s
npn(x) is the generating function of the propagator. We now show that

the expression in (2.26) can be interpreted as an effective random walk. To see this, we define
an effective jump distribution, parameterized by s, which reads

fs(η) =
(1− s)

s
p̄s(η) , (2.27)

where the prefactor (1 − s)/s in the definition of (2.27) has been added for normalization.
One can check by using that

∫∞
−∞ dη p̄s(η) =

∑∞
n=1 s

n
∫∞
−∞ dη pn(η) = s/(1 − s), that the

distribution fs(η) is properly normalized. The expression (2.26) now reads

∞∑
n=0

sn⟨zTn⟩ =
∞∑
k=0

[s(z − 1)]k

(1− s)k+1

∫ ∞

0
dx1 . . . dxk fs(x1)fs(x2 − x1) . . . fs(xk − xk−1) . (2.28)

Upon changing variables ηi = xi − xi−1, (2.28) becomes

∞∑
n=0

sn⟨zTn⟩ =
∞∑
k=0

[s(z − 1)]k

(1− s)k+1

∫ ∞

−∞

[
k∏

i=1

dηi fs(ηi)

]
Θ(η1)Θ(η1 + η2) . . .Θ(η1 + . . .+ ηk) .

(2.29)
We now recognize that the multiple integrals in (2.29) is the survival probability after k steps
of a random walk with a symmetric and continuous jump distribution fs(η). Due to the Sparre
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Figure 2.6: Distribution of the time spent above the origin Tn after n = 100 steps for arandom walk with a continuous and symmetric jump distribution (see equation (2.32)).

Andersen theorem, this survival probability is independent of the jump distribution and is given
by (2.15). Therefore (2.29) reads

∞∑
n=0

sn⟨zTn⟩ =
∞∑
k=0

[s(z − 1)]k

(1− s)k+1
Sk , (2.30)

where Sk is given in (2.15). Using that
∑∞

k=0 z
kSk = 1/

√
1− z, we find

∞∑
n=0

sn⟨zTn⟩ = 1√
(1− s)(1− sz)

, (2.31)
Note that the double generating function (2.31) can be inverted and gives

Prob. (Tn = m) =

(
2m

m

)(
2(n−m)

n−m

)
2−2n , (2.32)

which is the discrete-time version of the arc-sine law [33, 157] and is remarkably independent
of the jump distribution. A plot of the distribution is shown in figure 2.6. Note that (2.32) has
a well-defined continuous time limit in which n → ∞ and m = O(n), which is the well-known
“arc-sine law”:

Prob. (Tn = m) ∼ 1

π
√
m(n−m)

, n → ∞ , m = O(n) . (2.33)
Note that the derivation above, which involves an effective random walk, is original and has
not been seen elsewhere up to our knowledge. The idea of using an effective random walk will
be used again in the next section.

Another universal quantity is the time τn at which a random walk of n steps reaches its
maximum. To see this, let us fix the location of the maximum at Mn and decompose the
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trajectories into two parts: (I) the first one which goes from the origin to Mn in τn steps
while staying below Mn, (II) the second one which goes from Mn and stays below it during
the remaining n− τn steps (see figure 2.7). Upon using space translation invariance and time-

τ
n

0

x

n

III

M
n

Figure 2.7: The maximumMn and the time τn at which it is achieved are two examples ofEVS for discrete-time randomwalks of n steps. Notice that the trajectories can be decom-posed into two parts: (I) a path that propagates from the origin to the maximumMn in τnsteps while staying belowMn, (II) a second path that stays belowMn during n− τn steps.

reversal symmetry, the first part can be seen backward in time as the survival probability of
a random walk during τn steps with a initial position located at Mn. The second part (seen
forward in time) can be seen as the survival probability during n− τn steps starting from Mn.
Due to the Markov nature of the random walk, the two parts are independent. Upon integrating
over all possible values of the maximum Mn, we find that the distribution of the time of the
maximum τn is given by the product of two survival probabilities:

Prob. (τn = m) = SmSn−m . (2.34)
Upon inserting the expression of Sn given in (2.15), we find

Prob. (τn = m) =

(
2m

m

)(
2(n−m)

n−m

)
2−2n , (2.35)

which, interestingly, is the same distribution as for Tn in (2.32). Note that by requiring that the
probability distribution (2.34) is normalized to unity, one can recover Sparre Andersen result in
a simple way [158].

We saw that the symmetry condition of the jump distribution is crucial for the Sparre Ander-
sen result in (2.15) to hold. A natural question to ask is what happens if the jump distribution
is not symmetric? As expected, the survival probability will not be universal anymore. However,
there exists a generalization of (2.15) to asymmetric (but still continuous) jump distribution
which reads

S̄(s) =

∞∑
n=0

sn Sn = exp

[ ∞∑
n=1

sn

n
Prob. (xn ≥ 0)

]
, (2.36)
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where Prob. (xn ≥ 0) is the probability that the nth step is positive. Note that if the jump
distribution is symmetric, this probability is exactly 1/2 and (2.36) becomes S̄(s) = 1/

√
1− s

which is exactly the generating function of (2.15).
Another way to “break” the universality of the Sparre Andersen result in (2.15) is to consider

a random walk not starting from x0 = 0 but from a strictly positive initial position x0 > 0, but
still with a symmetric and continuous jump distribution. In this case, we naturally extend the
survival probability in (2.13) to an arbitrary initial position x0 ≥ 0 as

Sn(x0) = Prob. (x1 ≥ 0, . . . , xn ≥ 0|x0) . (2.37)
As for the propagator in (2.11), the survival probability Sn(x0) satisfies an integral equation
which reads

Sn(x0) =

∫ ∞

0
dy Sn−1(y) f(y − x0) , (2.38)

which states that for the particle to survive during n steps starting from x0, it must jump to
some positive y and survive from y in the remaining n−1 steps. The probability of this event is
then summed over all y ≥ 0 and weighted by the jump distribution f(η). The initial condition
of (2.38) is S0(x0) = Θ(x0) which says that the survival probability is initially one if x0 ≥ 0

and zero otherwise. The integral equation (2.38) belongs to the Wiener-Hopf class of integral
equations and turns out to be much harder to solve than the one in (2.11) as the integration
only takes place on the positive axis. However, because the kernel f(η) is a probability density,
it has a solution known given by the so-called Pollaczek-Spitzer formula. The formula for the
generating function of the Laplace transform of the survival probability after n steps for a
random walk (with a symmetric jump distribution) starting from x0 is given by

∞∑
n=0

sn
∫ ∞

0
dx0 Sn(x0)e

−px0 =
1

p
√
1− s

exp

[
− p

π

∫ ∞

0
dk

ln(1− sf̂(k))

p2 + k2

]
, (2.39)

where f̂(k) is the Fourier transform of the jump distribution (1.5). An original derivation of this
formula is given in Appendix A.2. As expected, the expression (2.39) explicitly depends on the
jump distribution. While the survival probability starting from x0 > 0 is not universal anymore
for all n, one might ask if there are any universal features in the limit of a large number of
steps n → ∞? It turns out that the expression (2.39) possesses rather rich limiting behaviors,
depending if the initial position x0 is scaled with n or is kept fixed [58]. For smooth jump
distributions which behaves as in (1.5), the two scaling behaviors are given by [58]:

Sn(x0) ∼
{ 1√

n
U(x0) , x0 = O(1) ,

Vµ

(
x0

n1/µ

)
, x0 = O(n

1
µ ) ,

n → ∞ , (2.40)
where the function U(x0) is non-universal and given by∫ ∞

0
dx0e

−λx0U(x0) =
1

λ
√
π
exp

[
−λ

π

∫ ∞

0

dk

λ2 + k2
ln(1− f̂(k))

]
, (2.41)
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and, in contrast, Vµ(z) is universal, in the sense that it only depends on the Lévy index µ of
the distribution (1.5), and is given by the following double integral transform [53,58]∫ ∞

0
dye−yy

1
µ

∫ ∞

0
dzVµ(z)e

−wy
1
µ z =

1

w
Jµ(w) , with Jµ(w) = e

− 1
π

∫∞
0

du
1+u2

ln(1+wµuµ)
.

(2.42)
For finite variance distributions µ = 2, the scaling function Vµ(z) can be computed explicitly
and evaluates to V2(z) = erf(z/2), which is the well-known survival probability of Brownian
motion [84, 88]. The asymptotic behavior in (2.40) is in agreement at x0 = 0 with the Sparre
Andersen result in (2.15) as U(x0 = 0) = 1/

√
π. In addition, the two regimes in (2.40)

match smoothly as U(x0) behaves as U(x0) ∼ Aµx
µ/2
0 for x0 → ∞ and Vµ(z) behaves as

Vµ(z) ∼ Aµz
µ/2 for z → 0, with the constant Aµ given by Aµ = 1/[

√
πΓ(1 + µ/2)] [58].

To make a connection with the results of the previous section on the maximum of i.i.d. ran-
dom variables, we would like to know what is the distribution of the maximum Mn = max{x0, . . . , xn}
of a random walk of n steps (see figure 2.1)? The answer to this question turns out to be
closely related to the survival probability discussed above. Indeed, notice that for a random
walk with a symmetric jump distribution, we have, for M ≥ 0,

Prob. (Mn ≤ M |x0 = 0) = Prob. (x1 ≤ M, . . . , xn ≤ M |x0 = 0)

= Prob. (x1 ≤ 0, . . . , xn ≤ 0|x0 = −M)

= Prob. (x1 ≥ 0, . . . , xn ≥ 0|x0 = M)

= Sn(M) , (2.43)
where we used space translation invariance in the second line, space reflection invariance in the
third line and recognized the survival probability in (2.13) starting from x0 = M . One can then
analyze the Sparre-Andersen formula (2.39) to obtain insights on the statistics of the maximum
Mn, such as the ones discussed in Section 1.3.2.

Going beyond the global maximum, one might ask about the statistics of the kth maximum
of the set of positions {x0, . . . , xn} which are strongly correlated (see figure 1.1). Interestingly,
there exists an identity that relates the kth maximum Mk,n with the maximum and the minimum
of two independent copies of the same random walk. This identity was explicitly derived by
Wendel in [55] (but was probably previously known to others) and reads

Mk,n = M
(1)
n−k +m

(2)
k , (2.44)

where M
(1)
n−k is the maximum of a random walk after n− k steps and m

(2)
k is the minimum of

another independent copy of the random walk after k steps. The equality between the random
variables in (2.44) is valid in distribution. Since the identity (2.44) involves two independent
copies of the global maximum and global minimum, it is sufficient to study the statistics of
the global maximum Mn (resp. global minimum mn) of a single random walk to obtain some
results on the kth maximum Mk,n [105–109].

The statistics of the gaps ∆k,n between two consecutive maxima Mk,n and Mk+1,n were
not known until recently (see Section 1.3.1). The main difficulty to study them is that it does
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not suffice to know the marginal distribution of Mk,n and Mk+1,n to devise the distribution
of the gaps as Mk,n and Mk+1,n are strongly correlated. Their study required a new method
which is discussed in the next section.

Finally, let us mention that there are other extreme observables that are interesting to study
in the case of discrete-time random walks. For instance, the study of records, which arise when
an event is of a larger magnitude than all the previous one, has attracted a lot of attention
recently. The study of records attempts to answer some natural questions: “How many records
occur in a given time?”, “How long do they survive?”, “What is the longest and shortest age of
a record?”, etc. While records are well understood for i.i.d. random variables [159], much less
is known for strongly correlated variables. It turns out that discrete-time random walks serve
again as a convenient toy model to study them. Recently, important progress has been made
and has shown that they display rather rich and sometimes universal behaviors with respect to
the jump distribution (see for instance the pedagogical reviews [22,122]).

2.2 . Order statistics for random walks

In this section, we present the main idea that was used to obtain the results on the order
statistics of random walks in Section 1.3.1. This idea originates from a paper by Spitzer entitled
“On Interval Recurrent Sums of Independent Random Variables” [125]. We will first explain the
problem he was interested in and how he solved it. Then, we will briefly show how we extended
his idea to obtain the results presented in Section 1.3.1. The detailed derivations can be found
in the paper whose abstract is given at the end of this section on p. 38.

In [125], Spitzer focused on discrete-time random walks as in (1.1) with continuous and
symmetric jump distributions f(η) with a Lévy index µ ≥ 1 [see equation 1.5]. He was interested
in the number of times νn(a,∆) a random walk of n steps visits the interval centered on a of
width ∆ (see figure 2.8):

νn(a,∆) =
n∑

i=1

Θ

(
∆

2
− |xi − a|

)
. (2.45)

Because random walks with Lévy index µ ≥ 1 are recurrent, they will eventually visit any
interval at least once with probability 1, which means that

lim
n→∞

Prob. [νn(a,∆) = 0] = 0 . (2.46)
The result (2.46) holds for any interval of fixed width ∆. However, if one scales ∆ with n, such
that ∆ → 0 as n → ∞, one should find an interesting limiting behavior. Spitzer was interested
in this limiting behavior and found that

lim
n→∞

Prob. [νn(a,Cn,µ∆) = 0] = E1−1/µ(−∆) , (2.47)
where

Cn,µ =

{
µ sin

(
π
µ

)
n1/µ−1 , 1 < µ ≤ 2 ,

π(lnn)−1 , µ = 1 ,
(2.48)
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Figure 2.8: For a random walk of n steps, the quantity νn(a,∆) counts the number oftimes it visits the interval centered on a of width∆, and the quantity κn(a,∆) counts thenumber of times it goes above that interval. In the trajectory represented, the randomwalk of n = 10 steps visits the interval ν10(a,∆) = 4 times (red dots) and goes above it
κ10(a,∆) = 2 times (green dots).

and Ep(x) = Ep,1(x) is the Mittag-Leffler function (1.14). The result (2.47) is quite remarkable
as it does not depend on a (as long as it is fixed) and is universal as it does not depend on
the full details of the jump distribution f(η), but only on its Lévy index µ. In particular, in the
case µ = 2 (corresponding to jump distributions with finite variance), the result (2.47) reads

lim
n→∞

Prob.
[
νn

(
a,

2∆√
n

)
= 0

]
= e∆

2
erfc(∆) , (2.49)

where erfc(z) = 2√
π

∫∞
x e−t2 dt is the complementary error function. In the case of µ = 1, the

limiting distribution (2.47) becomes

lim
n→∞

Prob.
[
νn

(
a,

∆

π ln(n)

)
= 0

]
=

1

1 +∆
. (2.50)

Let us now sketch how Spitzer showed this result. His derivation is similar to the one that
was used to derive the distribution of the occupation time in (2.22). We consider the generating
function ⟨zνn(a,∆)⟩ of the random variable νn(a,∆). Following similar steps as in (2.23)-(2.24),
we find

⟨zνn(a,∆)⟩ =
n∑

k=0

(z − 1)k
∑

0<i1<...<ik≤n

〈
Θ

(
∆

2
− |xi1 − a|

)
. . .Θ

(
∆

2
− |xik − a|

)〉
.

(2.51)
Explicitly writing the average over all trajectories gives (see figure 2.9)〈

Θ

(
∆

2
− |xi1 − a|

)
. . .Θ

(
∆

2
− |xik − a|

)〉

=

∫ a+∆
2

a−∆
2

dxi1 . . . dxikpi1(xi1)pi2−i1(xi2 − xi1) . . . pik−ik−1
(xik − xik−1

) , (2.52)
where pk(x) is the propagator of the random walk in (1.23). Recognizing the convolution
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Figure 2.9: The average ⟨Θ(∆/2− |xi1 − a|) . . .Θ(∆/2− |xik − a|)⟩ is the probability thatthe random walk visits the interval located at a of width ∆ at the intermediate times
i1, . . . , ik given that it started at x0 = 0. Note that the random walk is allowed to propa-gate freely in between those times.

structure over the summation indices in (2.51), we take a generating function with respect to
n which gives

∞∑
n=0

sn⟨zνn(a,∆)⟩ =
∞∑
k=0

(z − 1)k

1− s

∫ a+∆
2

a−∆
2

dx1 . . . dxkp̄s(x1)p̄s(x2 − x1) . . . p̄s(xk − xk−1) ,

(2.53)
where p̄s(x) =

∑∞
n=1 s

npn(x) is the generating function of the propagator. We now need to
take the limit n → ∞, which corresponds to taking the limit s → 1 in (2.53). In this limit, the
generating function of the propagator in (1.23) behaves, for µ > 1, as

p̄s(x) =
∞∑
n=1

sn
∫ ∞

−∞

dk

2π
e−ikxf̂(k)n =

∫ ∞

−∞

dk

2π
e−ikx sf̂(k)

1− sf̂(k)

∼ 1

µ sin
(
π
µ

) 1

(1− s)
1− 1

µ

, s → 1 , (2.54)

where we derived the asymptotic behavior by rescaling k by (1− s)
1
µ and by using the small k

expansion of f̂(k) in (1.5) along with the following identity
∫∞
0

dk
1+kµ = π/[µ sin (π/µ)]. Note

that the asymptotic behavior in (2.54) does not depend on x anymore (as long as it is kept
fixed). Inserting the asymptotic expansion (2.54) into (2.53), we find, for µ > 1,

∞∑
n=0

sn⟨zνn(a,∆)⟩ ∼
∞∑
k=0

(z − 1)k

1− s

 ∆

µ sin
(
π
µ

) 1

(1− s)
1− 1

µ

k

, s → 1 . (2.55)

Inverting the generating function with respect to s by using the Tauberian theorem

∞∑
n=0

znan ∼ 1

(1− z)α
, z → 1 , ⇐⇒ an ∼ nα−1

Γ(α)
, n → ∞ , (2.56)
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we find, for µ > 1,

⟨zνn(a,∆)⟩ ∼
∞∑
k=0

(z − 1)k

Γ
(
1 + k − k

µ

) ( ∆

Cn,µ

)k

∼ E1− 1
µ

(
(z − 1)∆

Cn,µ

)
, ∆ → 0, n → ∞ ,

(2.57)
where we recognized Cn,µ in (2.48) and the Mittag-Leffler function Ep(x) = Ep,1(x) defined
in (1.14). Further setting z = 0, we recover Spitzer’s result in (2.47) for µ > 1. Note that the
marginal case of µ = 1 can be obtained similarly by analyzing the asymptotic behavior of the
propagator in (2.54) in this case.

Let us now sketch how we used similar ideas to derive our results on the order statistics of
random walks presented in Section 1.3.1. We start by introducing the random variable

κn(a,∆) =
n∑

i=1

Θ

(
xi − a− ∆

2

)
, (2.58)

which counts the number of times the random walk has been above the level a+∆/2 (see figure
2.8). It turns out that the probability distribution Pk,n(∆) of the kth gap of a random walk
of n steps, discussed in Section 1.3.1, is related to the joint distribution of the two counting
random variables νn(a,∆) and κn(a,∆) defined in (2.45) and (2.58). Indeed, one can show
that [59]

Pk,n(∆) = ∂2
∆

∫ ∞

−∞
Prob. [κn(a,∆) = k, νn(a,∆) = 0] da , k = 1, . . . , n− 1 . (2.59)

From the relation (2.59), we see that to obtain the distribution of the gap Pk,n(∆), we need
to study the joint distribution of the two random variables κn(a,∆) and νn(a,∆). To do so,
we consider the double generating function ⟨zνn(a,∆)wκn(a,∆)⟩. Following similar steps as in
(2.23)-(2.24), we find

⟨zνn(a,∆)wκn(a,∆)⟩ =
n∑

k=0

n−k∑
l=0

(w − 1)k(z − 1)l
∑

0<i1<...<il≤n

∑
0<j1<...<jk≤n〈

Θ

(
∆

2
− |xi1 − a|

)
. . .Θ

(
∆

2
− |xil − a|

)
×

Θ

(
xj1 − a− ∆

2

)
. . .Θ

(
xjk − a− ∆

2

)〉
. (2.60)

The probability on the right-hand side in (2.60) is the probability that the random walk is above
the level a+∆/2 at the intermediate times j1, . . . , jk and in the interval ]a−∆/2, a+∆/2[ at
the intermediate times i1, . . . , il (see figure 2.10). The expression (2.60) has some similarities
with the generating function of the occupation time above the origin in (2.24). The additional
difficulty here is the presence of the double sum over the i’s and the j’s, which are ordered
among themselves, i.e. i1 < . . . < il and j1 < . . . < jk, but not among each other. We choose
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Figure 2.10: The average in brackets in (2.60) corresponds to all the trajectories of n stepsthat start at the origin and are above the level a+∆/2 at the intermediate times j1, . . . , jkand in the interval ]a−∆/2, a+∆/2[ at the intermediate times i1, . . . , il.
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Figure 2.11: The propagator Ki(x2, r|x1) is the probability that a random walk startingfrom x1 reaches x2 after i steps with r steps at times t1, . . . , tr above a+ ∆
2 summed overall possible locations of the r steps.

to order the sum over the j’s with respect to the sum over the i’s. To do so, we denote by rq
the number of j′s between iq−1 and iq (with i0 = 1 and il+1 = n). By the Markov property
of the random walk, one can write the probability in (2.60) as

∑
0<j1<...<jk≤n

〈
Θ

(
∆

2
− |xi1 − a|

)
. . .Θ

(
∆

2
− |xil − a|

)
×

Θ

(
xj1 − a− ∆

2

)
. . .Θ

(
xjk − a− ∆

2

)〉

=
∑

r1+...+rl+1=k

∫ a+∆
2

a−∆
2

dxi1 . . . dxilKi1(xi1 , r1|0)Ki2−i1(xi2 , r2|xi1) . . .

×Kil−il−1
(xil , rl|xil−1

)Hn−il(rl+1|xil) , (2.61)

where Ki(x2, r|x1) is the propagator from x1 to x2 during i steps with r steps above a + ∆
2

summed over all possible locations of the r steps (see figure 2.11), which reads
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Ki(x2, r|x1) =
∑

1≤t1<...<tr<i

∫ ∞

a+∆
2

dyt1 . . . dytrpt1(yt1 − x1)pt2−t1(yt2 − yt1) . . .

ptr−tr−1(ytr − ytr−1)pi−tr(x2 − ytr) , (2.62)
where we recall that pj(x) =

∫∞
−∞

dq
2πe

−iqx[f̂(q)]j is the free propagator of the original random
walk starting from the origin. In equation (2.61), Hi(r|x1) =

∫∞
−∞ dx2Ki(x2, r|x1) is the

propagator with a free end. Taking advantage of the convolution structure over the i’s and the
j’s, and shifting all integration variables xi1 , . . . , xil by a + ∆

2 , we take a generating function
of (2.60) with respect to n, which gives

∞∑
n=0

sn⟨zνn(a,∆)wκn(a,∆)⟩ =
∞∑
l=0

(z − 1)l
∫ 0

−∆
dx1 . . . dxlK̄s

(
x1, w

∣∣∣∣ − a− ∆

2

)
K̄s(x2, w|x1) . . .

× K̄s(xl, w|xl−1)H̄s(w|xl) , (2.63)
where K̄s(x1, w|x0) and H̄s(w|x) are the generating functions of Ki(x1, r|x0) and Hi(r|x)
which, after shifting the integration variables yt1 , . . . , ytr in (2.62) by a+ ∆

2 , are given by

K̄s(x2, w|x1) =
s

1− s

∞∑
r=0

ur
∫ ∞

0
dy1 . . . dyrfs(y1 − x1)fs(y2 − y1) . . . fs(x2 − yr) , (2.64)

H̄s(w|x1) =
1

1− s

∞∑
r=0

ur
∫ ∞

0
dy1 . . . dyrfs(y1 − x1)fs(y2 − y1) . . . fs(yr − yr−1) , (2.65)

where we again introduced the effective jump distribution fs(η) from (2.27) and defined u =

s(w − 1)/(1− s) to ease notation. We now interpret the multiple integrals (2.64) and (2.65).
The former one can be expressed in terms of the excursion probability Es(r+1, x2|x1) of r+1

steps for a random walk with a jump distribution fs(η) from x1 to x2, i.e.,

Es(r + 1, x2|x1) =
∫ ∞

0
dy1 . . . dyrfs(y1 − x1)fs(y2 − y1) . . . fs(x2 − yr) . (2.66)

The excursion probability Es(r, x2|x1) is the probability that a random walk, starting from x1,
reaches x2 after r steps while remaining above the origin during the intermediate steps (see
the right panel in figure 2.12). Note that, contrary to the usual definition of the excursion
where the initial and final positions are positive x1, x2 > 0, the current computation requires
extending it to a negative initial and final positions. The latter one in (2.65) is the survival
probability Ss(r|x1) during r steps for a random walk with a jump distribution fs(η) starting
from x1:

Ss(r|x1) =
∫ ∞

0
dy1 . . . dyrfs(y1 − x1)fs(y2 − y1) . . . fs(yr − yr−1) . (2.67)

The survival probability Ss(r|x1) is the probability that the random walk, starting from x1, did
not cross the origin during r steps except at the first step (see the right panel in figure 2.12).
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Figure 2.12: Left panel: The excursion probability Es(n,−b | − a) is the probability that arandom walk starting from −a < 0 with a jump distribution fs(η) reaches −b < 0 after nsteps while remaining above the origin during the intermediate steps. Right panel: Thesurvival probability Ss(n| − a), is the probability that a random walk starting from−a < 0with a jump distribution fs(η) did not cross the origin except at the first step.

Note again that the current computation requires extending it to a negative initial position.
Using their generating functions

Ẽs(w, x2|x1) =
∞∑
r=1

wrEs(r, x2, x1) , (2.68)

S̄s(w|x1) =
∞∑
r=0

wrSs(r|x1) , (2.69)
the expressions in (2.64) and (2.65) can be re-written as [59]

K̄s(x2, w|x1) =
1

z − 1
Ẽs (u, x2|x1) , (2.70a)

H̄s(w|x1) =
1

1− s
S̄s (u|x1) , (2.70b)

where we used again the notation u = s(w− 1)/(1− s). Upon using (2.59) and performing a
few manipulations, one can show that the generating function of the gap distribution is given
by

∞∑
n=0

n−1∑
k=1

snwkPk,n(∆) = ∂2
∆

[
u

(1− s)

∞∑
l=1

1

(1− w)l

∫ 0

−∆
dx1 . . . dxlS̄s (u, x1) Ẽs (u, x2|x1) . . .

Ẽs (u, xl|xl−1) S̄s (u, xl)

]
. (2.71)

It turns out that the generating functions S̄s (u, x) and Ẽs (u, x2|x1) can be explicitly evaluated
by using Sparre Andersen result in (2.39) and another formula due to Pollaczek and Spitzer (see
Appendix E in [59]). By performing the appropriate asymptotic analysis in (2.71), we obtain
the results discussed in Section 1.3.1. The full derivation can be found in the paper whose
abstract is given on p. 38.
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Universal order statistics for random walks
& Lévy flights

B. De Bruyne, S. N. Majumdar and G. Schehr, J. Stat. Phys. 190, 320 (2023).

Abstract:

We consider one-dimensional discrete-time randomwalks (RWs) of n steps, start-ing from x0 = 0, with arbitrary symmetric and continuous jump distributions f(η),including the important case of Lévy flights. We study the statistics of the gaps
∆k,n between the kth and (k + 1)th maximum of the set of positions {x1, . . . , xn}.We obtain an exact analytical expression for the probability distribution Pk,n(∆)valid for any k and n, and jump distribution f(η), which we then analyze in thelarge n limit. For jump distributions whose Fourier transform behaves, for small
q, as f̂(q) ∼ 1 − |q|µ with a Lévy index 0 < µ ≤ 2, we find that the distribu-tion becomes stationary in the limit of n → ∞, i.e. limn→∞ Pk,n(∆) = Pk(∆). Weobtain an explicit expression for its first moment ⟨∆k⟩, valid for any k and jumpdistribution f(η) with µ > 1, and show that it exhibits a universal algebraic de-cay ⟨∆k⟩ ∼ k1/µ−1Γ (1− 1/µ) /π for large k. Furthermore, for µ > 1, we showthat in the limit of k → ∞ the stationary distribution exhibits a universal scalingform Pk(∆) ∼ k1−1/µPµ(k

1−1/µ∆)which depends only on the Lévy index µ, but noton the details of the jump distribution. We compute explicitly the limiting scal-ing function Pµ(x) in terms of Mittag-Leffler functions. For 1 < µ < 2, we showthat, while this scaling function captures the distribution of the typical gaps on thescale k1/µ−1, the atypical large gaps are not described by this scaling function sincethey occur at a larger scale of order k1/µ. This atypical part of the distribution isreminiscent of a “condensation bump” that one often encounters in several masstransport models.

Abstract of article 1 : Universal order statistics for random walks & Lévy flights.
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2.3 . Expected maximum of bridge random walks

In the previous section, we focused on the EVS of random walks that could evolve freely.
In this section, we study the EVS of constrained random walks, for which there exist very few
results. We will focus on the global maximum Mn of bridge random walks, as defined in (1.4),
that are constrained to return to the origin (see figure 1.2). The main results are presented in
Section 1.3.2 and we make use of this section to briefly sketch how we obtained them. Our
derivation is based on an extension of the Pollaczek-Spitzer’s formula presented in (2.39), which
involves the joint distribution of the global maximum Mn = max{x0, . . . , xn} and the final
position xn of a random walk of n steps (see figure 2.1). The formula provides the generating
function of the double Laplace-Fourier transform of the joint distribution which, for a symmetric
jump distribution, reads [54,160]

∞∑
n=0

zn ⟨e−αMn+ikxn⟩ = exp

[ ∞∑
n=1

zn

n

∫ ∞

0
dy pn(y)

(
e(ik−α)y + e−iky

)]
, (2.72)

where pn(y) is the propagator of the random walk given in (1.23). In order to extract the
maximum of bridge random walks, which return to the origin after n steps as in (1.4), we will
have to set xn = 0. Before doing this, let us first extract the expected maximum from the joint
distribution in (2.72). To do so, we take a derivative with respect to α and set α = 0. After a
few steps, we obtain [48]:

∞∑
n=0

zn ⟨Mne
ikxn⟩ =

∞∑
l=0

∞∑
m=1

zm+l f̂(k)
l

m

∫ ∞

0
dy y pm(y)eiky . (2.73)

Upon identifying the powers in z, we get

⟨Mn e
ikxn⟩ =

n∑
m=1

1

m

∫ ∞

0
dy y pm(y) eiky f̂(k)n−m . (2.74)

Note that by setting k = 0 and using that f̂(0) = 1 by normalization, we recover the expression
for the expected maximum in (1.22). Performing an inverse Fourier transform on (2.74), setting
xn = 0, and normalizing by pn(0) which sums over all the bridge trajectories, we obtain

⟨Mn⟩ =
n∑

m=1

1

m

∫ ∞

0
dy y

pm(y) pn−m(y)

pn(0)
, (2.75)

which is the result presented in the introduction in (1.26). The asymptotic behavior of ⟨Mn⟩ for
large n discussed in Section 1.3.2 was obtained by carefully analyzing (1.26) up to the second
leading order n. The details of the derivation can be found in the paper whose abstract is given
on p. 41.

Let us end this section by illustrating our results on one application. We consider a bridge
version of the “lamb-lion” problem [84, 161–164] where the lions are constrained to return to
their initial position after their hunt. The setting is illustrated in figure 2.14. An immobile lamb
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position

lamb lions
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steps

Figure 2.14: “Lamb-lion” problem. The lamb is an immobile target located at the origin(blue). The lions, performing random walks, are initially uniformly distributed on the pos-itive line with density ρ0. The lions are further constrained to return to the origin at the
nth step. The survival probability Sn is the probability that none of the lions have encoun-tered the lamb during n steps.

is located at the origin and N lions, performing random walks, are initially uniformly distributed
on the segment [0, L]. Quite remarkably, in the limit N → ∞ and L → ∞ with the density
ρ0 = N/L fixed, the survival probability Sn that none of the lions have encountered the lamb
is related to the expected maximum of a random walk by the following relation [164]

Sn = exp(−ρ0 ⟨Mn⟩) . (2.76)
For large n, using our first order results on the expected maximum of a bridge random walk,
we find that the survival probability of the lamb decays like

Sn ∼ exp(−ρ0 h1(µ)n
1
µ ) , n → ∞ , (2.77)

where h1(µ) is the amplitude given in (1.28) and µ is the Lévy index of the jump distribution
of the lions (1.30). Our results show that the second leading order correction to the expected
maximum E[Mn] does not necessarily decay when n is large. This means that the leading
finite-size correction, therefore, plays an important role as it will contribute to the amplitude
of the decay of the survival probability. For instance, if the jump distribution of the lions is a
Cauchy distribution with scale γ (1.39), one needs to include the leading finite-size correction,
given in (1.31c), to find that the survival probability decays as

Sn ∼ n
1
2π

ρ0 γ e−
1
8
ρ0 γ π n , (2.78)

up to a constant prefactor which would require an asymptotic analysis of the expected maximum
up to the third order to be determined. Further applications on the convex hull of tethered
Rouse polymer chains and the run-and-tumble particle can be found in the paper whose abstract
is given on p. 41.
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Expected maximum of bridge random
walks & Lévy flights

B. De Bruyne, S. N. Majumdar and G. Schehr, J. Stat. Mech., 083215 (2021).

Abstract:

We consider one-dimensional discrete-time random walks (RWs) with arbitrarysymmetric and continuous jump distributions f(η), including the case of Lévyflights. We study the expected maximum ⟨Mn⟩ of bridge RWs, i.e., RWs startingand ending at the origin after n steps. We obtain an exact analytical expression for
⟨Mn⟩ valid for any n and jump distribution f(η), which we then analyze in the large
n limit up to second leading order term. For jump distributions whose Fouriertransform behaves, for small k, as f̂(k) ∼ 1 − |a k|µ with a Lévy index 0 < µ ≤ 2and an arbitrary length scale a > 0, we find that, at leading order for large n,
⟨Mn⟩ ∼ a h1(µ)n

1/µ. We obtain an explicit expression for the amplitude h1(µ) andfind that it carries the signature of the bridge condition, being different from itscounterpart for the free random walk. For µ = 2, we find that the second leadingorder term is a constant, which, quite remarkably, is the same as its counterpartfor the free RW. For generic 0 < µ < 2, this second leading order term is a growingfunction of n, which depends non-trivially on further details of f̂(k), beyond theLévy index µ. Finally, we apply our results to compute the mean perimeter of theconvex hull of the 2d Rouse polymer chain and of the 2d run-and-tumble particle,as well as to the computation of the survival probability in a bridge version of thewell-known “lamb-lion” capture problem.

Abstract of article 2 : Expected maximum of bridge random walks & Lévy flights.
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2.4 . Convex hull of Brownian motion in confined geometries

In the previous sections, we discussed some EVS of discrete-time random walks in one spatial
dimension. In this section, we will study some EVS of continuous time stochastic processes in
higher dimensions. We will focus on the d-dimensional Brownian motion x(t) with diffusion
coefficient D, which, in its simplest form, evolves according to the Langevin equation

ẋ(t) =
√
2D η(t) , (2.79)

where x(0) = 0 is the initial position and where η(t) is a d-dimensional white noise with zero
mean ⟨η(t)⟩ = 0 and delta correlated independent components ⟨ηi(t)ηj(t′)⟩ = δi,jδ(t − t′).
As for discrete-time random walks, Brownian motion (BM) serves as a natural model to study
the EVS of strongly correlated systems. For instance, the analog of the global maximum Mn

of discrete-time random walks for one-dimensional Brownian motion is the maximum M(t) of
the Brownian path x(t) over the time interval [0, t], defined as

M(t) = max
0≤τ≤t

[x(τ)] , (2.80)
for which the cumulative probability distribution is given by a half-Gaussian [88]

Prob. (M(t) < M) = Θ(M) erf
(

M

2
√
Dt

)
. (2.81)

In particular, from the distribution (2.81), one can easily obtain that the average maximum
M(t) of a free Brownian motion which is given by

⟨M(t)⟩ = 2
√
Dt√
π

. (2.82)
EVS have found a particularly nice application in the description of the convex hull of a Brownian
motion and other stochastic processes [134,135,140–143,143–146,153,154,165–171]. It serves,
for instance, as a simple model to describe the extension of the territory of foraging animals
in behavioral ecology [172–176]. This connection has been made possible due to a method
developed in [141, 142, 166] which relies on Cauchy’s formula [140] for convex curves. To
explain this connection, let us first briefly recall Cauchy’s formula. This formula concerns the
convex hull of a set of n points {x1, . . . ,xn} on the two-dimensional plane R2. The convex hull
is defined as the smallest polygon enclosing all of the n points (see figure 2.16). The formula
states that the length L of the perimeter of the convex hull of the points {x1, . . . ,xn} is given
by

L =

∫ 2π

0
dθ max

1≤i≤n
[xi · eθ] , (2.83)

where eθ is the unit vector whose angle with the x-axis is θ. Cauchy’s formula in (2.83) has been
extended to stochastic trajectories and, in particular, states that the average length ⟨L(t)⟩ of
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Figure 2.16: The convex hull of a set of n = 8 points is shown. The length L of the convexhull can be computed with Cauchy’s formula in (2.83). The formula involves themaximumprojectionmax1≤i≤n[xi · eθ] which is shown here for a particular direction eθ and is max-imized at the point xk.

the convex hull of a stochastic process x(t) in d = 2 can be expressed in terms of the expected
maximum ⟨max0≤τ≤t[x(τ) · eθ]⟩ in the direction eθ as [141,142]:

⟨L(t)⟩ =
∫ 2π

0
dθ

〈
max
0≤τ≤t

[x(τ) · eθ]
〉

. (2.84)
Using the isotropy of BM in d = 2, one finds directly from (2.82) and (2.84) that the mean
perimeter of a free BM grows as ⟨L(t)⟩ = 2π⟨max0≤τ≤t[x(τ) · ex]⟩ =

√
8πDt [166]. Most

of the current results on the convex hull of BM concern isotropic processes in an unconfined
two-dimensional geometry. Nevertheless, in many practical situations, the process takes place
in the presence of boundaries that may limit the growth of the convex hull, such as a river in the
context of foraging animals. Recently, the effect of such a boundary was studied for a planar
Brownian motion in the presence of an infinite reflecting wall. It was shown that the presence
of the wall breaks the isotropy of the process and induces a non-trivial effect on the convex
hull of the Brownian motion [168, 169]. However, the question of the growth of the convex
hull of a stochastic process, and more generally of its EVS, in a closed confining geometry
remains largely open. Our main contribution to this line of research is to address this question
for Brownian motion in one of the simplest, yet non-trivial, geometry, namely the d-dimensional
ball.

We study a Brownian motion (2.79) confined in a d-dimensional ball of radius R with
reflecting boundaries. We investigate the growth of the maximum of the process Mx(t) =

maxt[x(t) · ex] in an arbitrary direction (see figure 2.17), which we set to be the x-direction
without loss of generality due to the rotational symmetry. It is clear that in the limit t → ∞,
the maximum will tend toward the radius of the ball, namely

Mx(t) → R , t → ∞ . (2.85)
However, for large but finite t, the maximum will fluctuate below this limiting value and the
fluctuations ∆(t) can be described by the relative difference between the radius of the ball and
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Figure 2.17: Schematic representation of a planar Brownian motion x(t) (blue line) in
d = 2 evolving in a disk (black line) of radius R with reflecting boundary conditions. Thelength of the convex hull L(t) is the length of the convex envelope of the motion up totime t (green line). The maximum in the x-direction of the processMx(t) = maxt[x(t) ·ex]is depicted by the red dash. For t → ∞, the maximum tends to the radius of the circle
Mx(t) → R. The distribution of the fluctuations∆(t) = [R−Mx(t)]/R follows a non-trivialbehavior (see expressions (2.87) for d = 2 and also (2.90) for d ≥ 3).

the maximum:

∆(t) =
R−Mx(t)

R
. (2.86)

This observable is a priori difficult to study for an arbitrary dimension d as it cannot be reduced
to a one-dimensional problem, due to the reflecting boundaries of the ball. Nevertheless, by
establishing a connection with a similar albeit different problem, which concerns the narrow
escape time [177–184], we obtain exact analytical expressions for the distribution of ∆(t) in
the large t limit. After deriving these results for an arbitrary dimension d, we will focus on the
special case of d = 2, where we will use Cauchy’s formula to study the growth of the convex
hull of a Brownian motion confined in a disk (see figure 2.17).

Let us first present our results on the growth of the maximum Mx(t) in the direction x for
a Brownian motion confined in a d-dimensional ball. We find that the decay of the fluctuations
(2.86) displays a rich behavior depending on the dimension d of the ball. Our main results can
be summarised as follows:

• Exponential decay in d=2. In the case of d = 2, the maximum Mx(t) along the x-
direction of a Brownian motion in a disk of radius R, starting from the origin, will reach
R in an infinite amount of time. We find that the typical fluctuations decay exponentially
with time as

∆(t) ∼ A2 e
−2Dt

R2 χ2 , t → ∞ , (2.87)
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where χ2 is a random variable of order O(1) whose probability distribution f2(χ2) is
given by

f2(χ2) =
1

χ2
2

e
− 1

χ2 , χ2 ≥ 0 . (2.88)
In equation (2.87), the amplitude A2 is difficult to compute exactly. Below, we give a
heuristic argument, leading to A2 = 2 e

1
4 , which is in good agreement with our simu-

lations (see figure 2.18). Note that the asymptotic relation (2.87) between the random
variables ∆(t) and χ2 is valid “in distribution”. Despite the exponential decay of the
fluctuations in (2.87), we find that the average fluctuations decay anomalously as a
stretched exponential with time, i.e.,

⟨∆(t)⟩ ∼ 21/4
√
π A2

(
Dt

R2

)1/4

e
−23/2

√
Dt
R2 , t → ∞ . (2.89)

The average fluctuations (2.89) therefore behave differently from the typical fluctua-
tions (2.87). This originates from the fact that the distribution f2(χ2) has a heavy tail
f2(χ2) ∼ χ−2

2 for χ2 → ∞ such that its first moment does not exist.

• Power law decay in d ≥ 3. In the case of d ≥ 3, the maximum Mx(t) along the
x-direction of a Brownian motion in a d-dimensional ball of radius R, starting from the
origin, will reach R in an infinite amount of time. We find that the typical fluctuations
decay algebraically as

∆(t) ∼ Ad

(
R2

Dt

) 2
d−2

χd , t → ∞ , (2.90)
where χd is a random variable of order O(1) whose distribution fd(χd) is given by

fd(χd) =
d− 2

2

e−χ
d−2
2

d

χ
4−d
2

d

, χd ≥ 0 . (2.91)

Here also, the asymptotic relation (2.90) between the random variables ∆(t) and χd is
valid “in distribution”. For d = 3, we have found that the amplitude is given by A3 =

π2

18

but we did not find an expression for Ad for d > 3. From the distribution (2.90), we find
that the average fluctuations decay as a power law with time:

⟨∆(t)⟩ ∼ Ad Γ

(
d

d− 2

)(
R2

Dt

) 2
d−2

, t → ∞ , (2.92)
where Γ(z) is the gamma function. The case of d ≥ 3 is therefore quite different from
the case of d = 2 as the average fluctuations (2.92) and the typical ones (2.90) scale
similarly since the first moment of χd is finite for d ≥ 3. Furthermore, note that all
moments of ∆(t) for d ≥ 3 in (2.90) decay algebraically in time.
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Figure 2.18: Left panel: Evolution of the mean fluctuations ⟨∆(t)⟩ =
〈
R−Mx(t)

R

〉 of a
d = 2 Brownian motion in a disk of radius R with reflecting boundaries. The numericaldata (red dots) have been obtained by averaging over 105 trajectories with dt = 10−6

and are compared to the theoretical prediction (2.89) with D = 1, R = 1 and A2 = 2 e
1
4 .

Right panel: Distribution of the rescaled fluctuations χ2 =
R2

2Dt

[
1
4 − ln

(
∆(t)
2R

)] computed
numerically (red dots), averaged over 106 realizations with dt = 10−9 and compared to
the theoretical prediction (blue line), given in (2.88) with A2 = 2 e

1
4 for D = 1, R = 1 and

t = 8. The plot is limited to χ2 < 1 where the discretization step is much smaller than thedifference R−Mx.

In the special case of d = 2, by making use of Cauchy formula (2.84), we studied the growth
of the convex hull of a Brownian motion in a disk (see figure 2.17). We find that the average
length of the convex hull ⟨L(t)⟩ approaches slowly the perimeter of the disk 2πR as a stretched
exponential:

2πR− ⟨L(t)⟩ ∼ 25/4π3/2A2R

(
Dt

R2

)1/4

e
−23/2

√
Dt
R2 , t → ∞ . (2.93)

Having presented our main results, let us now briefly explain how we derived them. Our
results rely on recent works on the “narrow escape problem” [177–184], which is as follows.
Consider a d-dimensional Brownian motion in a closed domain Ω. Let the boundary of the
domain ∂Ω be reflecting everywhere except for a small opening ∂Ωa, which is absorbing (see
figure 2.19). The narrow escape problem is then: “What is the time required for a Brownian
motion to escape through the small opening ∂Ωa?”. This time is known as the narrow escape
time (NET) and has received much attention recently due to its importance in various appli-
cations such as in biochemical reactions [178, 185]. To describe the NET, it is convenient to
introduce the ratio ϵ of the size of the opening window over the total size of the boundary:

ϵ =
|∂Ωa|
|∂Ω| ≪ 1 . (2.94)

Clearly, as ϵ → 0, the mean time to absorption ⟨T (ϵ |x0)⟩ starting from x0 diverges:

⟨T (ϵ |x0)⟩ → ∞ , ϵ → 0 , (2.95)
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Figure 2.19: The narrowescape time ⟨T (ϵ |x0)⟩ for Brownianmotion in a diskΩof radiusRis the mean first-passage time for the process, starting from x0 ∈ Ω, to reach the arc ∂Ωaspannedby the angle 2ϵ (blue arc) in the limit of ϵ → 0, while the complementary boundary
∂Ω\∂Ωa is reflecting. To study the fluctuations of the maximum in the x-directionMx, weassume that whenMx → R, the first-passage time for the process to reachMx (red line)is asymptotically equal to the first-passage time to reach the arc spanned by the angle 2ϵ

with ϵ = arccos
(
R2−M2

x
R2

)
∼

√
2(R−Mx)√

R
.

when the initial position x0 of the Brownian walker is located sufficiently far away from the
opening window. As it was shown in a series of papers [177–184], one can obtain the asymptotic
behavior of ⟨T (ϵ |x0)⟩ as ϵ → 0 for a wide range of geometries and in various dimensions. We
summarize below the different cases that are relevant to the present work.

• In d = 2, it was found that for regular domains Ω that can be conformally mapped to a
disk, the NET diverges logarithmically as [178]

⟨T (ϵ |x0)⟩ =
|Ω|
Dπ

[
ln

(
1

ϵ

)
+O(1)

]
, (2.96)

where |Ω| is the size of the domain. In the particular case when Ω is a disk of radius R,
it is possible to obtain the next-to-leading order correction in the asymptotic expansion
(2.96). This correction depends on the initial position of the process. When the process
starts at the origin of the disk, the NET ⟨T (ϵ) |x0 = 0⟩ is given by [178]

⟨T (ϵ) |x0 = 0⟩ = R2

D

[
ln

(
1

ϵ

)
+ ln(2) +

1

4
+O(ϵ)

]
. (2.97)

On the other hand, the NET averaged over an initial uniform distribution for x0 in the
disk ⟨T (ϵ |x0)⟩ is given by [178]

⟨T (ϵ |x0)⟩ =
R2

D

[
ln

(
1

ϵ

)
+ ln(2) +

1

8
+O(ϵ)

]
. (2.98)
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• In d = 3, it was found that for regular bounded domains Ω with a smooth boundary, the
NET through a small disk of radius ϵR located on the boundary diverges algebraically
as [177]

⟨T (ϵ |x0)⟩ =
|Ω|

4DRϵ
+O[ln(ϵ)] , ϵ → 0 . (2.99)

This result was extended to higher dimensions d > 3 in [181] where it was shown that

⟨T (ϵ |x0)⟩ ∼
Cd |Ω|

DRd−2 ϵd−2
, ϵ → 0 , (2.100)

but the amplitude Cd was not computed.

Recently, it was also argued that the cumulative distribution Prob.
[
T̃ (ϵ |x0) > t

]
of the mean

first-passage time T̃ (ϵ |x0) to a small target of size ϵ located inside a domain Ω behaves in the
limit of t → ∞ as [182,183]

Prob.
[
T̃ (ϵ |x0) > t

]
∼ ⟨T̃ (ϵ |x0)⟩

⟨T̃ (ϵ |x0)⟩
exp

(
− t

⟨T̃ (ϵ |x0)⟩

)
, ϵ → 0 , t → ∞ , (2.101)

where ⟨T̃ (ϵ |x0)⟩ is the mean first-passage time to the target from the initial position x0 and
⟨T̃ (ϵ |x0)⟩ is the same quantity but averaged over an initial uniform position in the domain
Ω. It is natural to extend this result to the CDF of the NET which can be considered as a
first-passage time to a target located on the boundary of the domain, as it was done in [184]
for the case of a spherical domain. To make the connection with our setting, we assumed that
the asymptotic behavior (2.101) is also valid for the CDF of the NET Prob. [T (ϵ |x0) > t].

We now show how our problem is related to the NET. We will restrict ourselves to the
case of d = 2 as the case of d ≥ 3 can be done in a similar way [49]. To obtain the
distribution of Mx(t) for the case of a two-dimensional Brownian motion in a disk of radius
R with reflecting boundaries starting from the origin, we make the following observation: the
cumulative distribution Prob. (Mx(t) < Mx) is equal to the probability that the diffusive particle
did not reach Mx up to time t:

Prob. (Mx(t) < Mx) = Prob. (TMx > t) , (2.102)
where TMx is the first-passage time to Mx starting from the origin. We now use the NET
results presented above to compute Prob. (TMx > t) in the limit of t → ∞ by relying on the
following assumption (see figure 2.19)

Prob. (TMx > t) ∼ Prob.

[
T

(
ϵ =

√
2(R−Mx)

R

∣∣∣∣0
)

> t

]
, t → ∞ , (2.103)

where TMx is the first-passage time to Mx starting from the origin and T (ϵ|x0) is the NET to
reach an arc of angle 2ϵ in a circular domain, given that the Brownian motion started at x0. In
other words, the assumption (2.103) can be stated as follows: the probability to hit the arc of
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angle 2ϵ for the first time is asymptotically equal to the probability to hit the chord subtended
by this angle for the first time in the limit of ϵ → 0 (see figure 2.19). The assumption (2.103)
is an approximation for any finite t but we expect it to be asymptotically exact in the limit
t → ∞. Under this assumption, we can further use the identity (2.102) and the CDF of the
NET (2.101) to obtain that

Prob. (Mx(t) < Mx) ∼
⟨T (ϵ |0)⟩
⟨T (ϵ |x0)⟩

exp

(
− t〈

T
(
ϵ
∣∣x0

)〉)
∣∣∣∣∣
ϵ=

√
2(R−Mx)

R

, t → ∞ , (2.104)

where ⟨T (ϵ|x0)⟩ is the NET averaged over an initial uniform position in the disk. We now recall

the expressions of the NET for a disk given in (2.97)-(2.98) evaluated at ϵ =
√

2(R−Mx)√
R

:

⟨T (ϵ |0)⟩
∣∣∣∣
ϵ=

√
2(R−Mx)

R

∼ R2

2D
ln

(
1

R−Mx

)
+O(1) , Mx → R , (2.105a)

⟨T (ϵ |x0)⟩
∣∣∣∣
ϵ=

√
2(R−Mx)

R

∼ R2

2D
ln

(
1

R−Mx

)
+O(1) , Mx → R . (2.105b)

Inserting the NETs (2.105) in the cumulative distribution (2.104), we find

Prob. (Mx(t) < Mx) ∼ exp

− 2Dt

R2 ln
(

1
R−Mx

)
+O(1)

 , t → ∞ . (2.106)

By taking a derivative with respect to Mx of the cumulative distribution (2.106) and by denoting
χ2 = [R2 ln

(
1

R−Mx

)
+ O(1)]/(2Dt), one obtains the distribution (2.87) displayed in the

introduction with an unknown amplitude A2. In principle, this amplitude can be obtained
from the order O(1) term in (2.105b), which is, unfortunately, not known. If we assume that
this next-to-leading order term is the same as the one in the expansion of the NET given in
(2.97)-(2.98), we obtain that A2 = 2 e

1
4 . However, it is not clear that we are allowed to do so

as the first-passage time to reach the arc of angle 2ϵ and the first-passage time to reach the
chord subtended by this angle might differ by finite-size corrections in the limit of ϵ → 0 (see
figure 2.19). Nevertheless, this result is in good agreement with numerical data (see the right
panel in figure 2.18). From the distribution (2.87), one can compute the average value of the
fluctuations which gives

⟨∆(t)⟩ = A2

∫ ∞

0

dχ2

χ2
2

exp

[
−
(
2Dt

R2
χ2 +

1

χ2

)]
. (2.107)

This integral can be computed in the limit t → ∞ by the saddle point method (see [49]) and we
recover the stretched exponential decay in (2.89) displayed in the introduction. This result is in
good agreement with numerical simulations (see the left panel in figure 2.18). The derivation
for arbitrary dimensions and other geometries, such as the ellipse, can be found in the paper
whose abstract is given on p. 50.
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Statistics of the maximum and the convex
hull of a Brownian motion in confined

geometries

B. De Bruyne, O. Bénichou, S. N. Majumdar and G. Schehr,J. Phys. A: Math. Theor. 55, 144002 (2021).

Abstract:

We consider a Brownian particle with diffusion coefficient D in a d-dimensionalball of radius R with reflecting boundaries. We study the maximumMx(t) of thetrajectory of the particle along the x-direction at time t. In the long time limit, themaximum converges to the radius of the ball Mx(t) → R for t → ∞. We inves-tigate how this limit is approached and obtain an exact analytical expression forthe distribution of the fluctuations∆(t) = [R−Mx(t)]/R in the limit of large t in alldimensions. We find that the distribution of ∆(t) exhibits a rich variety of behav-iors depending on the dimension d. These results are obtained by establishing aconnection between this problem and the narrow escape time problem. We applyour results in d = 2 to study the convex hull of the trajectory of the particle in a diskof radius R with reflecting boundaries. We find that the mean perimeter ⟨L(t)⟩ ofthe convex hull exhibits a slow convergence towards the perimeter of the circle
2πR with a stretched exponential decay 2πR − ⟨L(t)⟩ ∝

√
R(Dt)1/4 e−2

√
2Dt/R. Fi-nally, we generalize our results to other confining geometries, such as the ellipsewith reflecting boundaries. Our results are corroborated by thorough numericalsimulations.

Abstract of article 3 : Statistics of the maximum and the convex hull of a Brownian mo-tion in confined geometries.
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3 - Constrained stochastic processes

In the previous chapter, we discussed some analytical results on EVS in stochastic processes.
The models and the observables that we considered were sufficiently simple to study them
analytically. However, in many practical situations, it is not possible to obtain exact analytical
results and one needs to resort to numerical simulations. When dealing with EVS, this can be
particularly challenging as they are rare, by definition, and are therefore difficult to observe, even
numerically. This highlights the need for specific numerical methods to study EVS. The goal
of this chapter is to study some of these methods to generate stochastic processes which are
constrained to rare events. In Section 3.1, we will first review some existing methods to sample
rare trajectories for Brownian motion. In Section 3.2, we will extend one of these methods to
discrete-time random walks. Finally, in Section 3.3, we will generalize it to other stochastic
processes and various rare trajectories.

3.1 . Constrained Brownian motion

Let us consider a Brownian motion x(t) in one dimension which evolves according to the
Langevin equation (2.79). Simulating a free Brownian motion is easy: one just discretizes the
time with increments ∆t in the Langevin equation (2.79), which gives

x(t+∆t) = x(t) +
√
2Dη(t)∆t . (3.1)

One then draws independently, at each step, a jump length
√
2Dη(t)∆t distributed as a Gaus-

sian with zero mean and variance 2D∆t. In the limit ∆t → 0, this will converge to a Brownian
trajectory.

This simple procedure however does not work when the Brownian motion is constrained
on some (rare) event. Examples of constrained Brownian motions are abundant. For instance,
there have been several studies on Brownian bridges, Brownian excursions, Brownian meanders,
reflected Brownian motion, etc [85, 186–189]. These constrained Brownian motions appear
naturally in many applications, ranging from ecology to finance and statistics [8, 141, 142,
190–194]. A prominent example is the Brownian bridge X(t), which is the diffusive limit of
the discrete-time bridge random walks in (1.4). The Brownian bridge is a Brownian motion
evolving according to (2.79) with the constraint that it must return to the origin at a fixed time
tf (see figure 3.2):

X(0) = X(tf ) = 0 . (3.2)
These bridge trajectories are in principle difficult to obtain numerically as the probability that
they occur is small. A natural question then arises: ‘How do we generate such Brownian bridges
efficiently ?” Fortunately, there is a simple way to generate a trajectory which consists in a
path transformation from a free trajectory x(t) to a bridge trajectory X(t) given by

X(t) = x(t)− t

tf
x(tf ) , t ∈ [0, tf ] , (3.3)
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where x(t) is a free Brownian motion starting at the origin x(0) = 0. Note that the bridge
condition X(tf ) = X(0) = 0 is manifestly satisfied by the construction (3.3). In addition,
it is easy to show from (2.79) that the covariance of the process X(t) is ⟨X(t)X(t′)⟩ =

2Dmin(t, t′) − 2Dtt′/tf , which corresponds to the Brownian bridge one. Because (3.3) is a
linear mapping between two Gaussian processes, this is sufficient to show that X(t) is indeed a
Brownian bridge. However, this construction is very specific to the continuous-time Brownian
bridge and cannot be easily generalized to generate other constrained Brownian motions. It
would then be nice to have a general method to generate constrained Brownian motions that
are not specific to a particular type of constraint. Indeed, in probability theory, there exists
the well-known Doob transforms [62, 63] that provide a prescription to construct constrained
Markov trajectories [70,76].

Recently, for continuous-time Markov processes, this transform was explicitly studied and
led to an effective Langevin equation with a constraint-force term [70,71,195]. For instance, a
Brownian bridge with X(0) = X(tf ) = 0 is generated by the effective Langevin equation [70,71]

Ẋ(t) = −∂XUeff(X, t) +
√
2Dη(t) , (3.4)

where the effective potential is given by

Ueff(X, t) =
X2

2(tf − t)
, (3.5)

and where η(t), as before, is a Gaussian white noise with zero mean and which is delta-correlated.
On the right-hand side in (3.4), the first term is an effective constraint-force that drives the
particle to the final position X(tf ) = 0 at time tf . The potential in (3.5) is a confining
harmonic potential whose intensity grows and ultimately pins the particle back at the origin.
Trajectories can then be easily generated by time-discretizing the effective Langevin equation
(3.4) as in the case of the free Brownian motion in (3.1). This construction of an effective
Langevin equation is rather versatile and can be extended to other constrained continuous-time
Markov processes [70, 71, 196], such as Brownian excursions, Brownian meanders, Ornstein-
Uhlenbeck bridges and more recently to non-intersecting Brownian motions [197]. For instance,
for Brownian excursions, which must return to the origin at t = tf and remain on the positive
axis during the whole duration, the effective potential is given by [71]

Ueff(X, t) =
X2

2(tf − t)
− 2D ln

(
X√

4D(tf − t)

)
. (3.6)

For Brownian meanders, which just remain positive during the whole duration, the effective
potential is given by [71]

Ueff(X, t) = − ln

[
erf

(
X√

4D(tf − t)

)]
. (3.7)

Numerical realizations of Brownian bridges, excursions, and meanders are given in figure 3.1.
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Figure 3.1: Realizations of a Brownian bridge (left panel), Brownian excursion (centerpanel), and Brownian meander (right panel), generated with the effective Langevin equa-tion (3.4) along with the respective effective potentials in (3.5), (3.6), and (3.7). In the threepanels, we have setD = 1 and tf = 1.

Let us now briefly sketch the derivation of the effective Langevin equation (3.4) for the
case of the Brownian bridge (the case of the meander and excursion can be done similarly).
The main idea is as follows. We consider a bridge trajectory of duration tf and ask what is the
probability that the process is located at X at an intermediate time t? Given that the process is
Markovian, we observe that this probability is the product of the probability of two independent
events: (i) the event that the process reaches X at time t given that it started from the origin
initially, (ii) the event that the process reaches the origin at time tf given that it was located
at X at time t. Due to the time invariance of Brownian motion, it can be written as (see figure
3.2)

Pb(X, t|tf ) =
P (X, t)Q(X, tf − t)

P (0, tf )
, (3.8)

where P (x, t) and Q(x, t) are respectively the forward and backward propagators of free Brown-
ian motion. The index b in Pb(X, t|tf ) refers to the “bridge” propagator. The forward propagator
P (x, t) is the probability that a free Brownian motion is located at x at time t given that it
started from the origin. It satisfies the well-known forward Fokker-Plank equation

∂tP (x, t) = D∂2
xP (x, t) , (3.9)

with the initial condition P (x, 0) = δ(x). The backward propagator Q(x, t) is the probability
that a free Brownian motion reaches the origin in a time t given that it is located at x. By
time and space reflection invariance, it is simply given by Q(x, t) = P (x, t). Note that the
name of forward and backward propagators refers to the fact that x is the final position in the
former one and is the initial position in the latter one. Upon taking a time derivative of the
bridge propagator in (3.8) and using the equation (3.9), we find that the bridge propagator also
satisfies the Fokker-Plank equation given by [71]

∂tPb(X, t|tf ) = D∂X [∂XPb(X, t|tf )− 2Pb(X, t|tf )∂X ln(Q(X, t))] . (3.10)
From this equation, we see that the Fokker-Plank equation originates from the following
Langevin equation

Ẋ(t) = 2D∂X ln(Q(X, t)) +
√
2Dη(t) . (3.11)
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Figure 3.2: Schematic representation of a Brownian bridge of duration tf . Due to theMarkov property, a Brownian bridge can be decomposed into two independent parts: aleft part over the interval [0, t], where it propagates from 0 toX , and a right part over theinterval [t, tf ], where it propagates fromX to 0.

This equation was initially obtained in the probability literature by Doob [62], and upon replacing
Q(X, t) = e−X2/(4Dt)/

√
4πDt, which is the solution of (3.9), we recover the effective Langevin

equation in (3.4) with the effective potential in (3.5). The effective potentials in (3.6) and (3.7)
for the excursions and meanders can be obtained by inserting the appropriate expression for the
backward propagator in (3.11).

This construction of an effective Langevin equation works very nicely for continuous-time
Markov processes. However, it is not immediately clear how to extend it to discrete-time random
walks. This will be the topic of the next section.

3.2 . Constrained discrete-time random walks

In this section, we present the main idea that was used to obtain the results on bridge
random walks discussed in Section 1.3.3. We consider a bridge discrete-time random walk Xm

locally evolving according to (1.1) with the bridge constraint (1.4). As in the continuous-time
Brownian bridge, we show that discrete-time bridges can be generated by an effective Markov
jump process as in (1.1), but the jumps ηm have to be drawn from an effective distribution
that depends on the bare jump distribution f(η) and that effectively accounts for the bridge
constraint. The derivation of the effective jump process for discrete-time random walk bridges
follows closely the approach used for the continuous time Brownian bridge in section 3.1.

Consider a bridge random walk trajectory in figure 1.2 where the walk starts at the origin,
returns to the origin after n steps, and arrives at X at an intermediate time m. Using the
Markov property, this trajectory can be decomposed into a left part over the time interval
[0,m] and a right part over the interval [m,n]. Clearly, as in the continuous-time case in (3.8),
the probability Pb(X,m |n) that the bridge random walk is located at X at step m can then
be written as

Pb(X,m |n) = P (X,m)Q(X,n−m)

P (0, n)
, (3.12)

where P (x,m) and Q(x,m) are respectively the forward and backward propagators of free
discrete-time random walks. The forward propagator P (x,m) is the probability that the random
walk is located at x at step m given that it started from the origin. It satisfies the integral
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equation

P (x,m) =

∫ ∞

−∞
dyP (y,m− 1)f(x− y) , (3.13)

with the initial condition P (x, 0) = δ(x). The equation (3.13) can be obtained by stating that
for the particle to be located at x at step m, it must have been at some y at step m− 1 and
jumped from y to x. This event is then summed over all y weighted by the jump distribution
f(x − y). The forward propagator in this section is denoted P (x,m), instead of pm(x) as in
(2.11), for convenience of notation. The backward propagator Q(x,m) is the probability that
the random walk reaches the origin in m steps given that it is located at x. It satisfies the
backward Fokker-Plank equation

Q(x,m) =

∫ ∞

−∞
dy Q(y,m− 1)f(y − x) , (3.14)

which has to be solved with condition Q(x, 0) = δ(x). The equation (3.14) can be obtained
by stating that for the particle to reach the origin from x in m steps, it must first jump to
some y and reach the origin in m − 1 steps. This event is then summed over all y weighted
by the jump distribution f(y − x). Note that, unlike in the forward case, where one varies the
“final position”, in the backward case, one varies the initial position. Note that both equations,
(3.13) and (3.14), are valid even when the jump distribution f(η) is non-symmetric.

Our goal now is to write a forward Kolmogorov-type equation for the bridge propagator
Pb(X,m |n) in (3.12). To do so, we replace Q(X,n − m) in (3.12) by using the backward
equation in (3.14) and find that Pb(X,m |n) satisfies the following integral equation [78]

Pb(X,m |n) =
∫ ∞

−∞
dY Pb(Y,m− 1 |n) f̃(X − Y |Y,m− 1, n) , (3.15)

where the effective jump distribution f̃(X − Y |Y,m, n) at time m of the bridge of length n

is given in (1.37). One can then generate bridge random walks by using the effective Markov
rule in (1.36) with jumps drawn from the effective jump distribution f̃(X − Y |Y,m− 1, n).

To illustrate this result, we now discuss a simple application of our method to the case of
a lattice bridge random walk of n steps. The free jump distribution is

f(η) =
1

2
δ(η − 1) +

1

2
δ(η + 1) , (3.16)

as it jumps to +1 or −1 with probability 1/2. The backward propagator Q(Y,m), in this case,
is well-known and can be easily computed as follows. Let n+ and n− denote the number of
positive and negative jumps respectively that bring the walker from the initial position Y to
0 in m steps. Clearly n+ + n− = m and n+ − n− = −Y . Consequently n+ = (m − Y )/2

and n− = (m + Y )/2. Note that Y has to be such that both n+ and n− are integers. The
probability that n− out of m steps are negative is simply given by the binomial distribution
P (n−|m) =

(
m
n−

)
2−m. Hence, replacing n− by (m+ Y )/2 gives the backward propagator

Q(Y,m) =

(
m

m+Y
2

)
2−m , (3.17)
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Figure 3.3: Left panel: A typical trajectory of a lattice bridge randomwalk of n = 100 stepsgenerated by the effective jump distribution in (3.18). Right panel: Position distributionat m = 75 for a lattice bridge of n = 100 steps. The position distribution Pb(X,m|n)obtained numerically by sampling 105 trajectories using the effective distribution (3.18) iscompared with the theoretical prediction in (3.19).

where (m + Y ) is even (otherwise Q(Y,m) vanishes). We now substitute (3.17) in (1.37),
giving the effective jump distribution

f̃(η |Y,m, n) =
1

2

(
1− Y

n−m

)
δ(η − 1) +

1

2

(
1 +

Y

n−m

)
δ(η + 1) . (3.18)

One can directly sample the jumps from the effective jump distribution in (3.18) to generate
bridge trajectories (see the left panel in figure 3.3). In the right panel in figure 3.3, we computed
numerically the probability distribution of the position at some intermediate time by generating
bridge trajectories from (3.18). This is compared to the theoretical position distribution for
the bridge which can be easily computed by substituting the free propagators P (X,m) =( m

X+m
2

)
2−m and Q(X,m) from (3.17) in (3.12), which gives

Pb(X,m|n) =
( m

m+X
2

)( n−m
n−m+X

2

)(
n
n
2

) , (3.19)

which is nonzero only if (m + X) as well as n are both even numbers. Note that, for the
particular case of the lattice walk, the effective jump distribution (3.18) was already known in
the mathematics literature, see for instance [149]. We discuss another example of a Cauchy
bridge random walk in Section 1.3.3.

The method outlined above extends nicely to other types of rare trajectories. Another
natural constraint is the meander in which a random walk must stay above the origin (see
figure 3.4). It is described by the equation of motion (1.1) along with the constraints

X0 = 0 , (3.20a)
Xm ≥ 0 , m = 1, . . . , n . (3.20b)

One can show that meander trajectories can be generated by relying on an effective jump
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distribution f̃M (η |X,m, n) which is given by [78]

f̃M (η |X,m, n) = f(η)
Sn−m−1(X + η)

Sn−m(X)
, (3.21)

where f(η) is the free jump distribution and Sm(X) is the survival probability of the free random
walk, which is the solution of the Wiener-Hopf equation (2.38). An interesting feature of (3.21)
is that it has a well-defined limit when n → ∞. Indeed by using the asymptotic results (2.40)
obtained in [58], we find that one can generate trajectories that survive infinitely long by using
the time-independent effective distribution

f̃M (η |X) = lim
n→∞

f̃M (η |X,m, n) = f(η)
U(X + η)

U(X)
, (3.22)

where the function U(X) is given in terms of its Laplace transform in (2.41). This function can
be made explicit in a few cases. For instance for the double-sided exponential jump distribution
f(η) = e−|η|/a/(2a), this function is given by U(X) = (1 + X/a)/

√
π [58]. Inserting this

expression in (3.22), we find that, in the case of the double-sided jump distribution, the effective
jump distribution in (3.22) is given by

f̃M (η |X) =
1

2a

a+X + η

a+X
e−

|η|
a , η > −X . (3.23)

Another interesting fact about the effective jump distribution (3.22) is that for power-law
distributions f(η) ∝ η−1−µ where µ is the Lévy index, the effective distribution has a heavier
tail f̃M (η |X) ∝ η−1−µ/2 for η → ∞. This can be seen from the asymptotic behavior U(X) ∝
Xµ/2 for X → ∞ given in [58].

Further examples of excursions and meanders bridge random walks can be found in the
paper whose abstract is given on p. 58. In addition, an acceptance-rejection sampling method
is also provided in order to numerically sample the effective jump distribution from the free
jump distribution.
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Generating discrete-time constrained
random walks and Lévy flights

B. De Bruyne, S. N. Majumdar and G. Schehr, Phys. Rev. E. 104, 024117 (2021).

Abstract:

We introduce a method to exactly generate bridge trajectories for discrete-timerandom walks, with arbitrary jump distributions, that are constrained to initiallystart at the origin and return to the origin after a fixed time. The method is basedon an effective jump distribution that implicitly accounts for the bridge constraint.It is illustrated on various jump distributions and is shown to be very efficient inpractice. In addition, we showhow to generalize themethod to other types of con-strained random walks such as generalized bridges, excursions, and meanders.

Abstract of article 4 : Generating discrete-time constrained random walks and Lévyflights.
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3.3 . Generalizations to other constrained stochastic processes

In the previous section, we saw that the concept of an effective evolution equation for
constrained processes is quite robust and can be extended to discrete-time random walks. Up
to now, we have discussed rather local constraints, such as fixing the endpoint for the bridge
processes. One might ask if it is possible to deal with more global constraints, such as fixing
the total area below the trajectory? In addition, up to now, we have only dealt with Markovian
processes and one might wonder if something can be said for non-Markovian ones? In this
section, we work along these lines and provide further extensions of this method. We will first
show that it allows us to generate Brownian trajectories with a fixed area below its curve, as
well as trajectories with other “global” constraints. Then, we will show that the method can
also be extended to a non-Markovian process, namely, the run-and-tumble particle, which we
will introduce then.

3.3.1 . Brownian bridge and random walks with a fixed area
Let us consider a one-dimensional Brownian motion x(t) evolving according to (2.79). While

the effective Langevin equation has proven to be a successful technique to generate constrained
paths with local constraints, such as the initial and final points in the Brownian bridge (see
Section 3.1), it is natural to ask if one can write an effective Langevin equation for paths with
a global constraint, such as constraints on time-integrated quantities. One prominent example
of a time-integrated quantity for Brownian motion is the area A(t) under its trajectory

A(t) =

∫ t

0
dt′ x(t′) . (3.24)

An interesting question to ask is: “How to generate Brownian paths that return to the origin
after a fixed amount of time tf with a fixed area Af under their trajectory?”. The area
under a Brownian motion has received sustained interest and attention in various fields such
as mathematics [110, 115] and computer science due to its relation to algorithmic problems
[85, 112–114]. In physics, the area under a Brownian motion plays a central role in many
problems, including (1+1)-dimensional fluctuating interfaces. Before explaining how to generate
bridge Brownian trajectories with a fixed area, we will discuss further the motivations for such
trajectories.

An extensively studied model of (1 + 1)-dimensional fluctuating interfaces is governed by
the celebrated Kardar-Parisi-Zhang (KPZ) equation which, in its simplest form, describes the
spatio-temporal evolution of a height function H(x, t) of an interface on a linear substrate of
length L [198]:

∂tH(x, t) = ∂2
xH(x, t) + λ (∂xH(x, t))2 + ξ(x, t) , (3.25)

where ξ(x, t) is a Gaussian white noise of zero mean with a correlator ⟨ξ(x, t)ξ(x′, t′)⟩ =

δ(x − x′)δ(t − t′). When the non-linear term is absent (λ = 0), the KPZ equation reduces
to the well-known Edwards-Wilkinson (EW) interface model [199]. On a substrate of finite
size L, the KPZ equation displays two regimes: (i) a growing regime for time t ≪ Lz (where
the dynamical exponent is z = 3/2) and (ii) a stationary regime when t ≫ Lz [200, 201].
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While there have been extensive recent studies on the growing regime, which is connected to
random matrix theory [202–204], here our focus is on the stationary regime. For t ≫ Lz, the
joint distribution of the heights {H(x, t)}, for 0 ≤ x ≤ L, does not reach a time-independent
stationary state, since the mean height H(x, t) = 1

L

∫ L
0 dxH(x, t) keeps growing with time.

However, if one defines the relative heights as

h(x, t) = H(x, t)−H(x, t) , (3.26)
then the joint distribution of the relative heights h(x, t) for t ≫ Lz does reach a stationary
state. For periodic boundary conditions h(0) = h(L), this stationary distribution is given
by [17,18]

Pstat[{h(x)}] =
1

ZL
e−

1
2

∫ L
0 [∂xh(x)]

2 dx δ(h(0)− h(L)) δ

(∫ L

0
h(x) dx

)
. (3.27)

While the first delta-function represents the periodic boundary conditions, the second one
reflects the constraint satisfied by the relative heights in (3.26). Indeed, the definition in (3.26)
imposes the global constraint that the total area under the relative heights is exactly zero. In
(3.27), ZL is the partition function that normalizes the probability measure. Note that this
stationary measure (3.27) holds both for the KPZ as well as the EW interface (λ = 0). With the
identification h(x) → x(t) and x ∈ [0, L] transposing to t ∈ [0, tf ] with tf = L, the stationary
measure in (3.27) corresponds to a Brownian bridge (x(0) = x(tf )) with the global constraint
that the area under the bridge is exactly zero. To sample the distribution Pstat[{h(x)}] in
(3.27), one then needs to generate Brownian bridges constrained by the zero area condition.
This is a concrete physical example of a Brownian bridge with a global constraint. This global
constraint played a crucial role in the behavior of many stationary observables, such as on the
distribution of the maximal relative height [17, 18] and on the spatial persistence [119]. The
effect of this global zero area constraint on the relative heights was also studied in various
generalizations of interfaces with a non-Brownian stationary measure [37,205].

Another generalization of the stationary measure of the Brownian interface with a zero
area constraint (3.27) corresponds to studying (1 + 1)-dimensional solid-on-solid models on a
discrete lattice of size L with periodic boundary conditions of the form [116]

Pstat[{hi}] =
1

ZL
e−K

∑L
i=1 |hi+1−hi|α δ(hL+1 − h1) δ

(
L∑
i=1

hi

)
, (3.28)

where hi represents the stationary height of the interface at site i and α > 0. Here, instead
of a Brownian motion in space, the interface height in the stationary state performs a random
walk in space

hi+1 = hi + ηi , (3.29)
where ηi’s are independent and identically distributed (IID) random noises, each drawn from a
PDF f(η) ∝ e−K |η|α . More generally, the stationary measure reads [116]

Pstat[{hi}] =
1

ZL

[
L∏
i=1

f(hi+1 − hi)

]
δ(hL+1 − h1) δ

(
L∑
i=1

hi

)
, (3.30)
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where f(η) may have a heavy tail corresponding to a Lévy interface in space. In these discrete
cases also, to sample the stationary measure (3.30), one needs to generate discrete time random
walk bridges with the global zero area constraint, upon the identification hi → xi and the space
index i in the interface model identified with the time step of the random walk bridge. This
is then a discrete-time random walk analog of its continuous-time counterpart, namely the
Brownian bridge in the presence of the zero area constraint.

Our main contribution to this line of work is to provide a method to generate Brownian and
discrete-time random walk bridges with a fixed area below their trajectory. An effective Langevin
equation for a continuous-time Brownian bridge path with a fixed total area A under it up to
time t was recently derived by Mazzolo [206] by applying a technique developed for general
continuous-time Gaussian processes by Sottinen and Yazigi [207]. However, for a discrete-time
random walk bridge with arbitrary symmetric jump distribution, as required to study the solid-on-
solid models discussed above, it is not clear how to generate an effective discrete Markov process
for the paths with a fixed area A under it. We proposed an alternative approach that allows
us (i) to re-derive exactly the effective Langevin equation for the continuous-time Brownian
bridge with a fixed area under it and (ii) to extend it to a discrete-time random walk bridge
with arbitrary jump distributions. In addition, we showed how the effective Langevin equation
can be generalized to other constraints, such as a fixed occupation time on the positive axis or
a fixed quadratic area under the trajectory.

We now consider a Brownian motion up to some fixed time tf and with a total fixed area
under the curve Af =

∫ tf
0 xc(t) dt where xc(t) denotes the position of the Brownian motion at

some intermediate time t and the subscript c refers to the fact that the motion is “constrained”.
To proceed, it is convenient to define a dynamical area variable Ac(t) =

∫ t
0 xc(t

′) dt′. Now
we consider the process (xc(t), Ac(t)) jointly. The constraint on the trajectory is that it must
start and return to the origin after a fixed amount of time tf with a given area Af under its
trajectory, namely

xc(0) = xc(tf ) = 0 , Ac(tf ) = Af . (3.31)
Thus we can think of this joint process as a bridge in the plane, going from the initial value
(xc(0) = 0, Ac(0) = 0) to the final value (xc(tf ) = 0, Ac(tf ) = Af ).

The derivation of the effective Langevin equation for this joint process then closely follows
the derivation for a one-dimensional bridge in Section 3.1 and can be found in [80]. We find
that the effective Langevin equations read [80]

ẋc(t) =
√
2Dη(t)− 6 (Ac(t)−Af )

(tf − t)2
− 4xc(t)

tf − t
, (3.32a)

Ȧc(t) = xc(t) . (3.32b)
This effective Langevin equation is the generalization of equation (1.37) presented in the

introduction, with the additional area constraint. This result coincides with the result of Mazzolo
in [206] where this equation was derived using a different method. Note that this result was also
obtained for the Ornstein-Uhlenbeck process in [208]. By discretizing the effective Langevin
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Figure 3.6: Left panel: A typical trajectory xc(t) vs t (top) and Ac(t) vs t (bottom) for abridge Brownian motion of duration tf = 1 with a zero area constraint Af = 0 generatedby the effective Langevin equation (3.32) for D = 1. Right panel: Marginal position (top)and area (bottom) distributions at t = tf/2 for a bridge Brownianmotion of duration tf =
1 with a zero area constraint Af = 0. These marginal distributions, obtained numericallyby sampling the trajectories from the effective Langevin equation (3.32), are comparedwith the theoretical predictions given in [80].

equations (3.32) over small time increments, it can be used to generate constrained trajectories
(see the left panel in figure 3.6). In the right panel in figure 3.6, we computed numerically
the marginal probability distributions of the position and the area at some intermediate time
t = tf/2, by generating trajectories from (3.32). This is compared to the theoretical marginal
distributions of the position and area for the bridge, which are computed in [80].

Going beyond the area, one could ask the more general question: How to generate Brow-
nian paths x(t) of duration tf with the value of a general observable O(tf ) =

∫ tf
0 dt V [x(t)]

fixed where V (x) can be any arbitrary function? Such observables are usually referred to as
functionals of Brownian motion (see for instance [85,117]). While it seems difficult to provide
an exact answer for an arbitrary V (x), there exist two specific examples, beyond the area where
V (x) = x, for which we can make analytical progress: the occupation time of Brownian motion
on the positive axis, which corresponds to V (x) = Θ(x), where Θ(x) is the Heaviside step
function, and a “generalized area” which corresponds to V (x) = xn, where n is an integer.
Below, we show how to generate Brownian bridges with a fixed occupation time on the positive
axis. The latter case, which is of interest in the context of characterizing the roughness of
fluctuating (1 + 1)-dimensional interfaces [209,210], is presented in [80].

The occupation time on the positive axis T (t) =
∫ t
0 dt

′Θ[x(t′)] of a Brownian path x(t′)
corresponds to the total amount of time it has spent on the positive axis. For a free Brownian
motion, the distribution of this time follows the well-known “Lévy’s arcsine law” [157] – for
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generalizations to other stochastic processes see [211]. In physics, this observable is important
in the context of stationary processes [212], coarsening dynamics [213,214], anomalous diffusive
processes [215–217], blinking quantum dots [218–220] and spin glasses or disordered systems
[221–224]. Below, we show how to generate exactly Brownian bridges xc(t) of duration tf with
a fixed occupation time Tc(tf ) = Tf . The constraints on the trajectories read

x(0) = x(tf ) = 0 , Tc(tf ) = Tf . (3.33)
Following similar steps as in Section 3.1, we find that the effective Langevin equations read [80]

ẋc(t) =
√
2Dη(t) +

2 sign(xc(t))
√
D√

tf − t
× G (y, ν) , (3.34a)

Ṫc(t) = Θ[xc(t)] , (3.34b)
where the function G(y, ν) is given by

G(y, ν) =
√
πνy

(
y2 − 6

)
e

y2

4ν erfc
(

y
2
√
ν

)
− 2ν

(
y2 − 2

)
− 4

4νy − 2
√
πν (y2 − 2) e

y2

4ν erfc
(

y
2
√
ν

) , (3.35)

and where y = |xc(t)|√
D(tf−t)

and ν =
(

Tf−Tc(t)
(tf−t)−(Tf−Tc(t))

)sign(xc(t))
. This effective Langevin equa-

tion can be used to generate constrained trajectories (see figure 3.7). In the right panel in
figure 3.7, we computed numerically the marginal probability distributions of the position and
the occupation time at some intermediate time t = tf/2, by generating trajectories from (3.34).
This is compared to the theoretical marginal distributions of the position and the occupation
time for the constrained process which are computed in [80].

Further extensions to discrete-time random walks with global constraints and detailed com-
putations can be found in the paper whose abstract is given on p. 65.
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Figure 3.7: Left panel: A typical trajectory xc(t) vs t (top) and Tc(t) vs t (bottom) of a bridgeBrownian motion of duration tf = 1 with a fixed occupation time of Tf = 0.6 generatedby the effective Langevin equation (3.34) for D = 1. Right panel: Marginal position (top)and occupation time (bottom) distributions at t = tf/2 for a bridge Brownian motion ofduration tf = 1 with a fixed occupation time of Tf = 0.6. The distributions, obtainednumerically by sampling the trajectories from the effective Langevin equation (3.34), arecompared with the theoretical predictions given in [80].
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Generating stochastic trajectories with
global dynamical constraints

B. De Bruyne, S. N. Majumdar, H. Orland and G. Schehr, J. Stat. Mech., 123204(2021).

Abstract:

We propose a method to exactly generate Brownian paths xc(t) that are con-strained to return to the origin at some future time tf , with a given fixed area
Af =

∫ tf
0

dt xc(t) under their trajectory. We derive an exact effective Langevinequation with an effective force that accounts for the constraint. In addition, wedevelop the corresponding approach for discrete-time random walks, with ar-bitrary jump distributions including Lévy flights, for which we obtain an effec-tive jump distribution that encodes the constraint. Finally, we generalize ourmethod to other types of dynamical constraints such as a fixed occupation timeon the positive axis Tf =
∫ tf
0

dtΘ [xc(t)] or a fixed generalized quadratic area
Af =

∫ tf
0

dt x2
c(t).

Abstract of article 5 : Generating stochastic trajectories with global dynamical con-straints.
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3.3.2 . Constrained run-and-tumble particles
As we have seen above for Markov processes, such as the Brownian motion, the effects of

constraints (e.g., bridges, excursions, meanders, etc) can be included in an effective Langevin
equation (alternatively in effective transition probabilities for discrete-time processes). For non-
Markovian processes, which are however abundant in nature [225], a similar effective Langevin
approach is still lacking. For such processes, there are two levels of complexity: (i) the non-
Markovian nature of the dynamics indicating temporal correlations in the history of the process
and (ii) the effects of the additional geometrical constraints such as the bridge constraint.
This two-fold complexity renders the derivation of an effective Langevin equation rather chal-
lenging for such processes. Our contribution to this line of work is to study an example of a
non-Markovian process for which we show that the effective Langevin equation, ensuring the
geometric constraints, can be derived exactly.

Our example of a non-Markovian stochastic process is the celebrated run-and-tumble dy-
namics of a particle in one dimension, also known as the persistent random walk [226–228],
which is of much current interest in the context of active matter [229–231]. The run-and-
tumble particle (RTP) is a simple model that describes self-propelled particles such as the
E. coli bacteria [229], that can move autonomously rendering them inherently different from
the standard passive Brownian motion. Active noninteracting particles, including the run-
and-tumble model, have been studied extensively in the recent past, both experimentally and
theoretically [229–233]. Even for such noninteracting systems, a plethora of interesting phe-
nomena have been observed, arising purely from the “active nature” of the driving noise, which
typically induces a ballistic motion on short time scales, and diffusive motion on long time
scales. These phenomena include, e.g., non-trivial density profiles [234–241], dynamical phase
transitions [130,132,242], anomalous transport properties [242–245], or interesting first-passage
and extremal statistics [155,156,246–262].

In its simplest form, a free one-dimensional RTP moves (runs) with a fixed velocity v0
in the positive direction during a random time ∆t drawn from an exponential distribution
p(∆t) = γ e−γ∆t after which it changes direction (tumbles) and goes in the negative direction
during another random time. The process continues and the particle performs this run-and-
tumble motion indefinitely. The position of the particle x(t) evolves according to the Langevin
equation

ẋ(t) = v0 σ(t) , (3.36)
where σ(t) is a telegraphic noise that switches between the values 1 and −1 with a constant rate
γ (see figure 3.9). During an infinitesimal time interval dt, the particle changes direction with
probability γ dt or remains in the same direction with the complementary probability 1− γ dt:

σ(t+ dt) =

{
σ(t) with prob. = 1− γ dt ,

−σ(t) with prob. = γ dt .
(3.37)

Consequently, the time between two consecutive tumbles ∆t is drawn independently from an
exponential distribution p(∆t) = γ e−γ∆t and the sequence of tumbling times follows a Poisson
process with a constant rate γ (see figure 3.9). The autocorrelation function of the telegraphic
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Figure 3.9: Telegraphic noise σ(t) driving the sign of the velocity of the RTP. The signalswitches with a constant rate γ. The time between two consecutive switches∆t is drawnindependently from an exponential distribution p(∆t) = γ e−γ∆t. The sequence of tum-bling times t1, . . . , tn follows a Poisson process of constant rate γ.

noise is given by ⟨σ(t1)σ(t2)⟩ = e−2γ(t2−t1) and has a finite persistence time γ−1. This
persistence, also called activity, renders the process non-Markovian and hence does not fall into
the universality class of the Brownian motion, which makes this process challenging to study.
Nevertheless, it is possible to recover the Brownian diffusive regime by taking the scaling limit

γ → ∞ , v0 → ∞ ,
v20
2 γ

≡ D , (3.38)
such that the effective diffusion coefficient D is finite. In this limit, the persistence time γ−1

tends to zero and the run-and-tumble particle behaves like a Brownian motion. Indeed, in this
limit, the driving noise in the equation of motion (4.1) becomes

⟨v0 σ(t1) v0 σ(t2)⟩ = v20 e
−2γ(t2−t1) → 2D δ(t2 − t1) , (3.39)

which is the well-known uncorrelated white noise.
To generate a trajectory x(t) of a free RTP starting from the origin with a given initial

velocity

x(0) = 0 , ẋ(0) = σ0 v0 , (3.40)
where σ0 = ±1, one simply generates a sequence of tumbling times t1, . . . , tn that follow a
homogeneous Poisson process of constant rate γ:

tm+1 = tm +∆tm , (3.41)
where ∆tm are independently drawn from an exponential distribution p(∆t) = γ e−γ∆t. Then,
the trajectory x(t) of the particle is simply obtained by integrating the equation of motion
(3.36) which yields the piecewise linear function:

x(t) = σ0 v0 (−1)n (t− tn) +

n−1∑
m=0

σ0 v0 (−1)m (tm+1 − tm) , (3.42)
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where n is such that tn is the latest tumbling time before t, i.e. such that tn < t < tn+1.
The sum in (3.42) accounts for all complete runs that happened before t and the first term
corresponds to the last run that is not yet completed at time t. This sampling method works
well to generate free run-and-tumble trajectories. However, as in the case of Brownian motion,
some applications require sampling only specific trajectories, such as bridge trajectories where,
in addition to satisfying the initial condition (3.40), the particle must also return to the origin
after a fixed time tf with a given velocity σf v0:

x(tf ) = 0 , ẋ(tf ) = σf v0 , (3.43)
where σf = ±1. Note that the final position need not necessarily be the origin but any fixed
point in space – here for simplicity we only consider the case where the final position coincides
with the origin. One possible application of run-and-tumble bridge trajectories is in the context
of animal foraging, where animals typically return to their nest after a fixed time, and one could
study the persistence and memory effects in their trajectories [141,142,172,193,263]. As in the
case of Brownian motion, obtaining realizations of bridge trajectories using the free sampling
method would be computationally wasteful. One, therefore, needs an efficient algorithm to
generate run-and-tumble bridge trajectories, in a similar spirit as the effective Langevin equation
(3.4) for Brownian motion.

Using a similar path decomposition of a bridge trajectory (see figure 3.10) as in the previous
sections, as well as the fact that the RTP becomes a Markovian process in phase space, i.e. in
the (x, ẋ) space, we derived an exact effective Langevin equation for RTPs to generate bridge
trajectories efficiently. Let us simply present the final results, the full derivation is similar to the
one in the previous sections (it can be found in [79]). We showed that the effective process,
that automatically takes care of the bridge constraints (3.40) and (3.43) can be written as

ẋ(t) = v0 σ
∗(x, ẋ, t |σ0, tf , σf ) , (3.44)

where σ∗(x, ẋ, t |σ0, tf , σf ) is now an effective telegraphic noise that switches between the
values 1 and −1 with a space-time dependent rate γ∗B(x, ẋ, t |σ0, tf , σf ), which we compute
exactly. We find that the transition rates γ∗B(x, ẋ = σv0, t |σ0, tf , σf ) for a particle that is
located at x with a velocity ẋ = σv0 at time t, given that it started at the origin with velocity
ẋ = σ0v0 and must return to the origin with velocity ẋ = σfv0 at time tf , are given by

γ∗B(x, ẋ = +v0, t |σ0, tf , σf ) = γ
Q(x, τ,− |σf )
Q(x, τ,+ |σf )

, (3.45a)

γ∗B(x, ẋ = −v0, t |σ0, tf , σf ) = γ
Q(x, τ,+ |σf )
Q(x, τ,− |σf )

, (3.45b)
where τ = tf −t and Q is the free backward propagator satisfying the backward Fokker-Planck
equations:

∂tQ(x, t,+) = +v0 ∂xQ(x, t,+)− γ Q(x, t,+) + γ Q(x, t,−) , (3.46a)
∂tQ(x, t,−) = −v0 ∂xQ(x, t,−)− γ Q(x, t,−) + γ Q(x, t,+) . (3.46b)
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The backward propagator Q(x, t, σ|σf ) is the probability density of the free particle to reach
the origin at time t with velocity ẋ = σf v0 given that it started at x with velocity ẋ = σ v0. It
can be obtained analytically by solving the differential equations (3.46) on the real line along
with the initial condition Q(x, t = 0, σ|σf ) = δσ,σf

δ(x). Physically, the effective tumbling rate
in (3.45) is the free tumbling rate that is modified in such a way that tumbling events that
bring the particle closer to the origin are more likely to happen. Using the expression of the
free backward propagator (given in [79]), we find the exact expressions of the transition rates.
For example, when σ0 = +1 and σf = −1, we get

γ∗B(x, ẋ = +v0, t |+, tf ,−) = 2 γ δ[f(τ, x)] + γ

√
g(τ, x)

f(τ, x)

I1[h(τ, x)]

I0[h(τ, x)]
, (3.47a)

γ∗B(x, ẋ = −v0, t |+, tf ,−) = γ
1

2 δ[f(τ, x)] +
√

g(τ,x)
f(τ,x)

I1[h(τ,x)]
I0[h(τ,x)]

, (3.47b)

where τ = tf − t. In the expressions (3.47), I0(z) and I1(z) denote the modified Bessel
functions while the functions f , g, and h are defined as

f(t, x) = γ t− γ x

v0
, g(t, x) = γ t+

γ x

v0
, h(t, x) =

√
f(t, x) g(t, x) . (3.48)

The Dirac delta terms in the effective rates (3.47) enforce the particle to remain in the double-
sided light cone defined as (see figure 3.10){

|x| ≤ v0 t , when 0 ≤ t ≤ tf
2 ,

|x| ≤ v0 (tf − t) , when tf
2 ≤ t ≤ tf ,

(3.49)
which is a natural boundary induced by the combination of the finite velocity of the particle
along with the bridge constraint. In practice, when performing numerical simulations, these
Dirac delta terms can be safely removed from the effective tumbling rates and can be replaced
by hard constraints such that the particle must remain in the double-sided light cone (3.49).

RTPs with space and time dependent tumbling rates are relatively easy to simulate and there
have been quite a few recent studies on them [238, 242, 243, 252]. Unlike these models where
the space and time dependency of the tumbling rates are “put in by hand”, here we see from
first principle how geometric constraints, such as the bridge condition, naturally generate space-
time dependent tumbling rates. To generate trajectories of RTPs with space-time dependent
tumbling rates, one proceeds as follows. Instead of generating a sequence of tumbling times that
follow a homogeneous Poisson process with a constant rate γ, as presented in the introduction,
one needs to generate a sequence of times that follow a non homogeneous Poisson process with
a variable rate. There exist several methods to generate non homogeneous Poisson processes
(see [264] for a review). A quick and simple method is to discretize the effective equation
(3.44) over small time increments ∆t. One then obtains the bridge trajectories by repeating
the following two steps
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Figure 3.10: A sketch of a run-and-tumble bridge trajectory that starts at the origin witha positive velocity ẋ = +v0 and returns to the origin at a fixed time tf with a negativevelocity ẋ = −v0. Due to the Markov property in phase space (x, ẋ), the bridge trajectorycan be decomposed into two independent parts: a left part over the time interval [0, t](dark blue), where the particle freely moves from the point (0,+v0) to the point (x,−v0)at time t and a right part over the time interval [t, tf ] (light blue), where it moves fromthe point (x,−v0) at time t to the point (0,−v0) at time tf . The combination of the finitevelocity of the particle and the bridge condition induces a double-sided light cone in whichthe particle must remain (shaded red region). In addition to the double-sided light cone,the trajectory of the particle is further locally constrained by the initial and final conditionson its velocity.

1. evolve the discretized equation of motion according to

xB(t+∆t) = xB(t) + v0∆t σ∗
B(xB, ẋB, v0, t) , (3.50)

2. evolve the telegraphic signal according to

σ∗
B(xB, ẋB, v0, t+∆t)=

{
σ∗
B(xB, ẋB, v0, t) with prob. =1− γ∗B(xB, ẋB, t)∆t ,

−σ∗
B(xB, ẋB, v0, t) with prob. =γ∗B(xB, ẋB, t)∆t ,

(3.51)
where we have omitted the conditional dependence in the telegraphic noise and switching rates.
This method is very simple to implement but nevertheless requires choosing the time increments
∆t sufficiently small such that the switching probabilities in (3.51) do not exceed unity. It can be
an issue if one is interested in regimes close to the light cone structure where the effective rates
become large, as can be seen in (3.47), and might require more advanced sampling techniques,
such as events-based methods [264]. Nevertheless, this method effectively generates run-and-
tumble bridge trajectories and works well in practice (see the left panel in figure 3.11) and is
more efficient than the naive method. In the right panel in figure 3.11, we computed numerically
the probability distribution of the position at some intermediate time t = tf/2, by generating
bridge trajectories from the effective tumbling rates (3.47) and compared it to the theoretical
position distribution for the bridge propagator given in [79].
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Figure 3.11: Left panel: A typical bridge trajectory of a RTP starting at the origin with apositive velocity ẋ = +v0 and returning to the origin after a time tf = 5 with a negativevelocity ẋ = −v0. The trajectory was generated using the effective tumbling rates (3.47)with v0 = 1 and γ = 1. Right panel: Position distribution at t = tf/2 for a RTP starting atthe origin with a positive velocity ẋ = +v0 and returning to the origin after a time tf = 5with a negative velocity ẋ = −v0. The position distribution PB(x, t,+ |+, tf ,−) obtainednumerically by sampling from the effective tumbling rates (3.47) is compared with thetheoretical prediction given in [79].

Note that in the diffusive limit (3.38), the effective tumbling rates (3.47) both become the
same constant γ which is independent of x and t. The signature of the bridge constraint can
be found in the second-order term of this limit which gives

γ∗B(x, ẋ = +v0, t |+, tf ,−) ∼ γ +
x

τ
√
2D

γ
1
2 +O(γ−1), (3.52a)

γ∗B(x, ẋ = −v0, t |+, tf ,−) ∼ γ − x

τ
√
2D

γ
1
2 +O(γ−1) , (3.52b)

where we used the asymptotic expansion of the Bessel function I0,1(x) ∼ ex /
√
2πx for x → ∞

and the expressions of the functions f , g, and h defined in (3.48). Note that one needs to
retain the subleading terms up to order O(

√
γ) to capture the nontrivial x-dependence, which

indeed ensures the bridge condition. Upon using the asymptotic expansion of these rates, one
can recover the effective Langevin equation for the Brownian bridges in (3.4) [79].

The detailed calculations as well as extensions to meander and excursion constraints can
be found in the paper whose abstract is given on p. 72.

71



Generating constrained run-and-tumble
trajectories

B. De Bruyne, S. N. Majumdar and G. Schehr, J. Phys. A: Math. Theor. 54, 385004(2021).

Abstract:

Wepropose amethod to exactly generate bridge run-and-tumble trajectories thatare constrained to start at the origin with a given velocity and to return to the ori-gin after a fixed timewith another given velocity. Themethod extends the conceptof effective Langevin equations, valid for Markovian stochastic processes such asBrownian motion, to a non-Markovian stochastic process driven by a telegraphicnoise, with exponentially decaying correlations. We obtain effective space- timedependent tumbling rates that implicitly account for the bridge constraint. We ex-tend the method to other types of constrained run-and-tumble particles such asexcursions andmeanders. Themethod is implemented numerically and is shownto be very efficient.

Abstract of article 6 : Generating constrained run-and-tumble trajectories.
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3.4 . Application to a trapping problem

Let us end this chapter with an application of rare trajectory sampling to a trapping problem.
Trapping problems have a long-standing interest in the physics community and beyond as they
govern the behavior of a variety of applications ranging from target searching strategies [265] to
chemical kinetics and diffusion-limited reactions [266–271]. Such problems have been studied
with various dynamics for the particle and in a wide variety of static, dynamic and random
environments [272–283]. From a theoretical point of view, they have shown to exhibit quite a
rich behavior with non-trivial features such as a slower-than-exponential decay of the survival
probability in the case of randomly distributed traps [284–289].

The trapping problem we study is as follows. We consider a diffusive particle, undergoing
Brownian motion, in the presence of periodically distributed partially absorbing point traps
with intensity β and separated by a distance L. While the limit β → ∞ corresponds to fully
absorbing traps where the particle is absorbed upon its first encounter with a trap, the case of a
finite β corresponds to partially absorbing traps where the particle can cross a trap several times
before being absorbed (see figure 3.13). In [290], we initially studied the survival probability of
the particle, namely the probability that it did not get absorbed up to a certain time. Then,
we went beyond the survival probability and analyzed the transport properties of the surviving
particle, i.e. conditioned on the fact that it did not get absorbed, which turns out to exhibit
rich features. In particular, we were interested in the effective diffusion coefficient Deff of the
surviving particles, i.e.

Deff = lim
t→∞

[⟨x2(t)⟩ − ⟨x(t)⟩2
2t

]
, (3.53)

where ⟨x(t)⟩ and ⟨x2(t)⟩ are respectively the conditional first moment and second moment
given by

⟨x(t)⟩ =
∫∞
−∞ dxx p(x, t)

S(t)
, ⟨x2(t)⟩ =

∫∞
−∞ dxx2 p(x, t)

S(t)
, (3.54)

where S(t) =
∫∞
−∞ dx p(x, t) is the survival probability of the particle at time t, which was

studied in [290], and p(x, t) is the unconditional probability distribution function of the position
x of the Brownian motion in the presence of the traps at time t. The propagator p(x, t) satisfies
the forward Fokker-Planck equation

∂tp(x, t) = D∂2
xp(x, t)− β

∞∑
m=−∞

δ

(
x− L

2
−mL

)
p(x, t) , (3.55)

where the last term on the right-hand side accounts for the partially absorbing traps of intensity
β separated by a distance L and evenly spaced around the initial position x0 = 0. The
differential equation (3.55) must be solved with the initial condition p(x, t = 0) = δ(x) as the
particle starts from the origin x0 = 0. This is a rather difficult task since the initial condition
breaks the periodic symmetry x → x + L. Nevertheless, by establishing a connection with a
similar albeit different problem, which concerns the winding statistics of a Brownian motion on
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Figure 3.13: Schematic representation of trajectories of particles diffusing in the presenceof periodically distributed partially absorbing point traps (red dashed lines) with intensity
β separated by a distance L and evenly spaced around the initial position of the particles.As the traps are partially absorbing, the particles can cross a trap several times beforebeing absorbed. Within the four depicted trajectories, only two particles (green and blue)survived up to time t. The effective diffusion coefficient in (3.53) is computed by aver-aging only over the surviving trajectories at time t. The surviving particles typically stayin-between the traps and the effective diffusion coefficient follows a non-trivial behavior
Deff = H(βL/D), whereH is a scaling function given in (3.60).

a ring [291], we obtained an exact closed-form expression for the effective diffusion coefficient
in (3.53). Furthermore, we provided a rejection-free algorithm, based on an effective Langevin
equation, to generate surviving particles, which is particularly useful for numerical purposes.
We showed that the point absorbers induce an effective repulsive potential on the surviving
particles. We will first present our results and then sketch the derivation of the effective
diffusion coefficient. The full derivation can be found in [292].

Let us first present the effective Langevin equation used to generate trajectories that survive
up to t → ∞. Upon using similar ideas as in the previous sections, we found that the effective
Langevin equation that governs the evolution of the surviving particles is given by [292]

ẋs(t) =
√
2Dη(t)− ∂xsUeff(xs) , (3.56)

where the subscript s in xs(t) refers to “surviving” trajectories and the effective potential Ueff(x)

induced by the infinite number of traps is defined as

Ueff(x) = −2D ln

[
cos

(
x

L

√
G
(
W =

βL

D

))]
, −L

2
≤ x ≤ L

2
, (3.57)

and is L-periodic Ueff(x) = Ueff(x + L). The scaling variable W = βL/D in (3.57) is the
Sherwood number and the scaling function G(W) is given implicitly as the first zero of the
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Figure 3.14: Scaling function G(W) in (3.58) as a function of the Sherwood number W =
βL/D. Its asymptotic behaviors are shown in dashed lines.

transcendental equation

cot

(√
G(W)

2

)
=

2
√
G(W)

W . (3.58)
The Sherwood number W is a dimensionless number in fluid mechanics that represents the
ratio of convective mass transfer over diffusive mass transport [293]. Interestingly, the scaling
function defined in (3.58) is the same as the one found in [290] which governs the decay rate
of the survival probability. A plot of the function G(W), along with its asymptotic behavior,
is given in figure 3.14. The effective potential in (3.57) takes a remarkably simple form with
cusps located at the positions of the point absorbers (see figure 3.15). Indeed, close to x∗ =

(2m+ 1)L/2, with m ∈ Z, the effective potential in (3.57) behaves as

Ueff(x) ∼ −2D ln

[
cos

(
1

2

√
G (W)

)]
− β |x− x∗| , x → x∗ , (3.59)

where W = βL/D.
Let us now present our results on the effective diffusion coefficient (3.53) of the surviving

particles. We find that it is given by

Deff = DH
(
W =

βL

D

)
, (3.60)

where the scaling function H (W) is

H(W) =

[
sin2

(√
G(W)

2

)(
2

G(W)
+

2

W +
W

2G(W)

)]−1

, (3.61)
and the scaling function G(W) is given in (3.58). The asymptotic behaviors of H(W) are given
by

H(W) ∼


1 , W → 0 ,

2π2

W , W → ∞ .

(3.62)
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Figure 3.15: Effective potential Ueff(x) induced by the periodically distributed partially ab-sorbing traps on the surviving particles as a function of x for several trap intensities β(3.57). As the trap intensity tends to infinity β → ∞, the potential diverges at the locationof the traps. In this plot, we have setD = 1.

A plot of the scaling function (3.61) is shown in figure 3.16. As one can see, the effective
diffusion coefficient is always less than D, as the particle tends to stay in-between traps, hence
having a smaller diffusion coefficient than the original one.

We now briefly outline how we obtained the results in (3.60) and (3.61). We relied on an
idea developed in [291] on a seemingly different problem concerning the winding statistics of
a Brownian motion on a ring. The main idea is as follows. We map the periodic structure
of the environment to a circle of perimeter L with a single partially absorbing trap located
at arc length ±L/2 (see figure 3.17). As time increases, the particle turns around the circle
either in a clockwise or anti-clockwise fashion until it is absorbed by one of the traps. The
presence of the point absorbers makes this problem inherently different from [291]. Using a
similar notation as in the original paper [291], we denote by m+(t) the total number of complete
counter-clockwise turns and m−(t) the total number of complete clockwise turns after time t.
Furthermore, we denote by m(t) = m+(t)+m−(t) the absolute number of complete turns and
by k(t) = m+(t)−m−(t) the net number of full revolutions after time t. Then we introduce
the probability distribution R(k, t) of the net number of complete turns k after time t:

R(k, t) = Prob. (k(t) = k) . (3.63)
Due to the presence of the traps, the distribution R(k, t) is not normalized to unity and is in
fact normalized to the survival probability S(t) with the initial position set equal to x0 = 0.
The normalization reads

S(t) =

∞∑
k=−∞

R(k, t) . (3.64)
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Figure 3.16: Normalized effective diffusion coefficient Deff/D as a function of the Sher-wood numberW = βL/D for a diffusive particle, starting from the origin, conditioned tosurvive in the presence of infinitely many partially absorbing traps with intensity β, peri-odically distributed with a period L and evenly spaced around the origin. The blue line isthe theoretical prediction in (3.61), whereas data points are obtained by simulating 3 · 108trajectories. The time increment is set to τ = 0.001, with D = 1 and the point absorbersbecome trapping intervals of length βτ separated by a distance L = 10. In the inset, thenormalized effective diffusion coefficient is shown for large values ofW and is comparedto the theoretical prediction of its asymptotic behavior in the limitW → ∞.

The net number of complete laps is directly related to the position of the particle on the real
line by

k(t) =

⌊
x(t)

L

⌋
, (3.65)

where ⌊a⌋ denotes the floor operation returning the highest integer lower or equal to a. In the
long time limit, we expect that the unconditional second moment on the real line behaves as∫ ∞

−∞
dxx2 p(x, t) ≈ L2

∞∑
k=−∞

k2R(k, t) , t → ∞ . (3.66)
In fact, in this limit, one can neglect the dynamics inside a box of length 2L and record the
trajectory on a large scale as jumps between the centers of these intervals, enumerated by the
net winding number k. By symmetry of the trapping environment, it is clear that ⟨x(t)⟩ = 0,
and inserting the expressions (3.64)-(3.66) into (3.54), we find that the effective diffusion
coefficient (3.53) can be written as

Deff = lim
t→∞

L2
∑∞

k=−∞ k2R(k, t)

2 t
∑∞

k=−∞R(k, t)
. (3.67)

We will now show how to compute R(k, t) using a similar approach as in [291]. It is first
convenient to analyze a more general quantity, P (m, k, t), which is the joint distribution of the
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Figure 3.17: Left panel: Mapping of the periodic trapping environment in figure 3.13to a circle of perimeter L with a single partially absorbing trap (red dot) located at arclength ±L/2. As time grows, the surviving particle crosses several traps in figure 3.13,which corresponds to several turns around the circle. More precisely, when the particleis exactly in the middle of two point absorbers and propagates to the middle of one ofthe two neighboring regions in figure 3.13, it makes a full turn around the circle and theprocess starts anew. Depending on which direction it goes, the particle turns either in aclockwise or anti-clockwise fashion. We track the position on the x-axis in figure 3.13 bycounting the net number of full revolutions around the circle. Right panel: Each completeturn of the circle in a time tf in the left panel is associated with a first-exit event of a box
[−L,L] at time tf with two partially absorbing traps located at±L/2. A full clockwise turncorresponds to exiting the box at +L, whereas a full anti-clockwise turn corresponds toexiting the box at −L. The distribution of the exit time tf , either at +L or −L, is denotedby f(tf ). The survival probability at time τ , where the particle does not exit the box norgets trapped until time τ , is denoted by Sbox(τ).

absolute number m and the net number k of complete turns after time t:

P (m, k, t) = Prob. (m(t) = m, k(t) = k) . (3.68)
From this joint distribution, we obtain R(k, t) by summing over all values of m, i.e.

R(k, t) =
∞∑
j=0

P (2j + |k|, k, t) , (3.69)

where we used the fact that the absolute number m of turns can be written as a sum of an even
number 2j of turns plus the absolute value of the net number of turns |k|. To obtain P (m, k, t),
we first count the total number of turns m completed before the particle gets absorbed by a
trap, say after a time t, and the corresponding durations {τ1, . . . , τm} between consecutive
windings. We denote by τlast = t −∑m

i=1 τi the duration of the last incomplete turn. The
number of absolute turns m and the durations {τ1, . . . , τm, τlast} are random variables whose
joint probability distribution is given by

P(m, {τ1, τ2, . . . , τm, τlast}, t) = f(τ1)f(τ2) . . . f(τm)Sbox(τlast)δ

(
t− τlast −

m∑
i=1

τi

)
,

(3.70)
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where f(τ) is the first-exit probability from a box [−L,L], with a centered initial position
and partially absorbing traps of strength β located at ±L/2, whereas Sbox(τ) is the survival
probability in the box, i.e. the probability that the particle did not exit the box and did not get
trapped (see figure 3.17). The first m terms on the right-hand side of (3.70) refer to the first
m laps, the factor Sbox(τlast) refers to the time spent after the last complete turn, and the final
Dirac delta term imposes the constraint that t = τlast +

∑m
i=1 τi. The marginal distribution

of the total number of complete turns P(m, t) can be obtained by integrating over all possible
durations {τ1, . . . , τm, τlast}:

P (m, t) =

∫ ∞

0
dτ1 . . . dτmdτlastf(τ1)f(τ2) . . . f(τm)Sbox(τlast)δ

(
t− τlast −

m∑
i=1

τi

)
.

(3.71)
From the distribution of the absolute number of complete turns in (3.71), we obtain the joint
distribution P (m, k, t) with the net number of complete laps k using the following argument.
Given that the particle made m absolute number of complete turns, the particle will have made
m+ counter-clockwise turns with probability (1/2)m+ and m− clockwise turns with probability
(1/2)m− , as when the particle exits the box, it is located in the middle of the neighboring
interval (see figure 3.17). By using the relations m+ = (m+ k)/2 and m− = (m− k)/2, and
summing over all possible combinations of m and k, we find that

P (m, k, t) = P (k|m, t)P (m, t) =

(
m

m+k
2

)(
1

2

)m

P (m, t) , (3.72)
where the binomial coefficient counts the number of ways to make m+ = (m+ k)/2 counter-
clockwise turns among m turns and the factor

(
1
2

)m is the probability of each configuration.
Inserting the expression (3.71) into (3.72) and noting that the convolution structure over time
of this integral is well suited to a Laplace transform, we find that in Laplace domain P (m, k, t)

reads

P̃ (m, k, s) =

∫ ∞

0
dte−stP (m, k, t) =

(
m

m+k
2

)(
1

2

)m

f̃m(s)S̃box(s) , (3.73)
where f̃(s) and S̃box(s) are the Laplace transforms of f(t) and Sbox(t) respectively. Thus, taking
a Laplace transform of the expression (3.69), we find that in Laplace domain the probability
R(k, t) for a net winding number k in a time t is given by

R̃(k, s) =

∞∑
m=0

(
2m+ |k|

m

)(
f̃(s)

2

)2m+|k|

S̃box(s) . (3.74)

More explicitly, using the identity [294]

∞∑
m=0

(
2m+ |k|

m

)
zm =

1√
1− 4z

(
1−

√
1− 4z

2z

)|k|
, |z| < 1

4
,
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we get

R̃(k, s) =
S̃box(s)√
1− f̃2(s)

1−
√
1− f̃2(s)

f̃(s)

|k|

. (3.75)

Using (3.75), we find that the Laplace transform of the numerator and denominator in (3.67)
are given by ∫ ∞

0
dt e−st

∞∑
k=−∞

k2R(k, t) =
∞∑

k=−∞
k2R̃(k, s) =

f̃(s)S̃box(s)

[1− f̃(s)]2
, (3.76)

∫ ∞

0
dte−st

∞∑
k=−∞

R(k, t) =
∞∑

k=−∞
R̃(k, s) =

S̃box(s)

1− f̃(s)
. (3.77)

The expressions of the first-passage distribution f̃(s) and the survival probability S̃box(s) can be
computed straightforwardly from a Fokker-Planck approach [292]. By analyzing the asymptotic
behavior of these expressions in the limit s → 0, which corresponds to t → ∞, we recover the
effective diffusion coefficient in (3.60) [292].

The detailed derivation of these results and extensions to other trapping environments can
be found in the paper whose abstract is given on p. 81.
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Transport properties of diffusive particles
conditioned to survive in trapping

environments

G. Pozzoli and B. De Bruyne, J. Stat. Mech., 113205 (2022).

Abstract:

We consider a one-dimensional Brownian motion with diffusion coefficient D inthe presence of n partially absorbing traps with intensity β, separated by a dis-tance L and evenly spaced around the initial position of the particle. We studythe transport properties of the process conditioned to survive up to time t. Wefind that the surviving particle first diffuses normally, before it encounters thetraps, then undergoes a period of transient anomalous diffusion, after which itreaches a final diffusive regime. The asymptotic regime is governed by an effec-tive diffusion coefficient Deff, which is induced by the trapping environment andis typically different from the original one. We show that when the number oftraps is finite, the environment enhances diffusion and induces an effective dif-fusion coefficient that is systematically equal to Deff = 2D, independently of thenumber of the traps, the trapping intensity β and the distance L. On the contrary,when the number of traps is infinite, we find that the environment inhibits diffu-sion with an effective diffusion coefficient that depends on the traps intensity βand the distance L through a non-trivial scaling function Deff = DH(βL/D), forwhich we obtain a closed-form. Moreover, we provide a rejection-free algorithmto generate surviving trajectories by deriving an effective Langevin equation withan effective repulsive potential induced by the traps. Finally, we extend our re-sults to other trapping environments.

Abstract of article 7 : Transport properties of diffusive particles conditioned to survivein trapping environments.
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4 - Stochastic optimization problems

In this section, we present some optimization problems involving stochastic processes and
extreme value statistics. These problems are largely independent of each other but have some
connections with the previous chapters of this thesis. In Section 4.1, we introduce resetting
Brownian bridges as a search process and reveal an interesting mechanism, induced by reset-
ting, which enhances the search performances of the process. In Section 4.2, we present a
general framework to determine the optimal policy to operate dynamical systems undergoing
restart. In Section 4.3, we combine the notion of first-passage and resetting to define an opti-
mization problem in which one wants to operate a system close to maximum capacity without
experiencing too many breakdowns.

4.1 . Optimal resetting bridges

The first optimization problem we consider is in the context of search processes. These pro-
cesses appear in a wide range of situations ranging from foraging animals [295,296], biochemical
reactions [297–300] and all the way to behavioral psychology [301–303]. Search problems ex-
hibit rich features [304–309] and finding an optimal search strategy in a given context is an
interesting problem with multiple applications across disciplines [310,311]. In recent years, there
has been a surge of interest in the effect of resetting in search processes (for a recent review
see [91]). Stopping and starting from scratch has shown to be an efficient search strategy in
several contexts such as in optimization algorithms [312–316], chemical reactions [100, 317],
animal foraging [97,99,318–320] and catastrophes in population dynamics [321–328]. Perhaps,
the effect of resetting is best seen in the simple model of diffusion introduced by Evans and
Majumdar [89, 90]. In this resetting Brownian motion (RBM) model, the position x(t) of a
Brownian motion, e.g. in one dimension, is reset to the origin randomly in time according to
a Poisson process with a constant rate r. In a time interval dt, the position x(t) follows the
stochastic rule

x(t+dt)=

{
x(t)+

√
2Dη(t)dt, with prob. 1−r dt,

0, with prob. r dt,
with x(0) = 0 , (4.1)

where D is the diffusion coefficient and η(t) is an uncorrelated white noise with zero mean
⟨η(t)⟩ = 0 and delta correlator ⟨η(t)η(t′)⟩ = δ(t− t′). The dynamics, therefore, consists of a
combination of pure diffusion with intermittent resets to the origin (see the left panel in figure
4.1). When r = 0, we recover the purely diffusive dynamics in (2.79). The effect of resetting
on the search process can be simply measured by the mean first-passage time ⟨T (M)⟩ to a level
M , which is the mean time the searcher takes to find a target located at a position M . For pure
diffusion without resetting, it is well-known that this quantity is infinite [84, 88]. In contrast,
resetting leads to the striking result that the mean first-passage time ⟨T (M)⟩ becomes finite

82



0

position

M

T(M)

time
0 10

r

2

3

〈T
(M

)〉

Figure 4.1: Left panel: Schematic representation of a resetting Brownianmotion evolvingaccording to (4.1). At a constant rate r, the process is reset to the origin (dashed redarrows). The first-passage time T (M) is the first time that the process reaches the level
M . Right panel: Mean first-passage time ⟨T (M)⟩ to the level M as a function of theresetting rate r (4.2). The mean first passage time is minimized at a critical resetting rate(red dot). In this plot, we have setD = M = 1.

and is given by [89]

⟨T (M)⟩ = 1

r

(
e
√

r
D
M − 1

)
. (4.2)

Not only does it become finite, but it also becomes minimal at an optimal resetting rate
r∗ (see the right panel in figure 4.1). The mechanism behind this result is that resetting
suppresses the trajectories that diffuse far away from the target and makes them restart from
the origin, hence increasing their chances to find the target. This model is straightforward
to generalize to higher dimensions and an optimal resetting rate has been shown to exist in
all dimensions [329]. Since the original model, the existence of an optimal resetting rate has
been studied extensively for various stochastic processes, leading to a tremendous amount of
activities [90, 94, 96, 98, 101, 102, 255, 329–341] – see [91] for a review. The existence of this
optimal resetting rate has also been confirmed in experiments with optical traps in both one
and two dimensions [342–344].

In this section, we study a Brownian bridge model with a fixed duration tf , but in the
presence of resetting at a constant rate r to its initial position. We call this a resetting
Brownian bridge (RBB), with xB(t) denoting its coordinate at time 0 ≤ t ≤ tf with the bridge
conditions xB(0) = 0 and xB(tf ) = xf (see figure 4.2). The general question we address
is: is resetting still a good search strategy in the presence of a bridge constraint? In other
words, does the paradigm of an optimal resetting rate r∗ still hold for RBB? We find, rather
surprisingly, that there is an interesting trade-off between resetting and the bridge constraint
such that a small resetting rate, in the presence of a bridge constraint, actually enhances bridge
fluctuations, rather than reducing it as naive expectations would suggest.

We compute three observables illustrating the “enhanced fluctuations mechanism” (EFM)
exhibited by the RBB as a search process. Let us start with the mean-square displacement.
Alike the case of Brownian bridges in (3.8), the probability density function (PDF) of the
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Figure 4.2: A typical RBB trajectory xB(t) with resetting rate r = 10, diffusion constant
D = 1 and duration tf = 1. The resetting events are denoted by red dashed lines witharrows. The trajectories have been generated with a time step of dt = 10−3 and by usingan effective Langevin equation given in [345].

position xB(t) of an RBB at some intermediate time 0 ≤ t ≤ tf is given by

PB(x, t | tf ) =
Pr(x, t)Qr(x, tf − t)

Pr(0, tf )
, (4.3)

where Pr(x, t) is the forward propagator of RBM, namely the probability that it reaches x

at time t given that it started from the origin, and Qr(x, t) is the backward propagator of
RBM, namely the probability that it reaches the origin at a time t given that it started from
x. The denominator is just a normalization constant that “counts” all the trajectories of the
RBM of duration tf , starting and ending at 0. The two quantities Pr(x, t) and Qr(x, t) satisfy
respectively the forward and backward Fokker-Plank equations of RBM respectively given by
(see [345] for details)

∂tPr(x, t)=D∂2
xPr(x, t)−rPr(x, t)+rδ(x), (4.4a)

∂tQr(x, t)=D∂2
xQr(x, t)−rQr(x, t)+rQr(0, t), (4.4b)

with the initial conditions Pr(x, 0) = δ(x), Qr(x, 0) = δ(x). The mean position ⟨xB⟩(t | tf )
vanishes by symmetry. Hence the minimal quantity that characterizes the spatial fluctuations is
the second moment of the PDF, i.e., the mean-square displacement ⟨x2B⟩(t|tf ). We compute
⟨x2B⟩(t|tf ) from (4.3) analytically, leading to

⟨x2B⟩(t | tf ) =
∫ ∞

−∞
dxx2PB(x, t|tf ) = 2D tf f

(
a =

t

tf

∣∣∣∣R = r tf

)
, (4.5)

where the scaling function f(a|R) can be obtained explicitly (see [345]). A plot of the function
f(a|R) vs. a ∈ [0, 1], for different values of R, is given in the left panel in figure 4.3. As the
rescaled resetting rate R = r tf varies from 0 to ∞, the function f(a|R), crosses over from a
parabolic to a flat shape, i.e.,

f(a|R → 0) = a(1− a) and f(a|R → ∞) ≈ 1/R . (4.6)
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Figure 4.3: Left panel: The function f(a|R) plotted vs. a is evaluated numerically by us-ing the effective Langevin equation in [345] (symbols) and is compared to the theoreticalprediction (plain lines), given in (4.5), for different values of R. This function is clearlyasymmetric around a = 1/2. Only when R → 0, it approaches to the symmetric form
f(a|R → 0) = a(1 − a). For any R, the function f(a|R) has a unique maximum at
a = a∗(R). Right panel: The maximal value f(a∗(R)|R) plotted vs. R. It has a uniquemaximum at R∗ ≈ 0.895 (red dot).

For a general R, the function f(a|R) is not symmetric around a = 1/2, since resetting breaks
the time-reversal symmetry. For a given R, the function f(a|R) has a unique maximum at
a = a∗(R) and this maximal mean square displacement f(a∗(R)|R) varies nonmonotonically
with R: it first increases with increasing R, achieves a maximum at R = R∗ ≈ 0.895 and then
decreases again with increasing R (see figure 4.3). Thus, interestingly, a nonzero resetting rate,
when it is not too large, actually enhances the bridge fluctuations and maximizes them at an
optimal value R∗, thus enabling the particle to explore more space. This is a rather surprising
result, as one would naively think that resetting would suppress fluctuations, but this is only
true for large resetting rates. Before explaining the reasons for such enhancement, let us first
check that other search observables can also be enhanced by resetting.

To illustrate further the EFM in the context of a search of a target located at M , we next
compute the hitting probability, i.e., the probability that the RBB (searcher) finds the target at
M before time tf . The hitting probability can be computed from the relation

phit(tf ,M) =

∫ tf

0
dtFB(t |M, tf ) , (4.7)

where FB(t |M, tf ) is the first-passage probability density of the RBB at level M with t ≤ tf .
This can be computed by decomposing the RBB trajectories into two parts: one in the time
interval [0, t] where it first hits the level M at a time t < tf , another one in the time interval
[t, tf ] where it propagates from M to the origin. One gets

FB(t |M, tf ) =
Fr(t |M)Qr(M, tf − t)

Pr(0, tf )
, (4.8)

where Fr(t |M) is the first-passage time distribution of a RBM [89], Qr(x, t) is the backward
propagator satisfying (4.4b) and the denominator is a normalization factor that “counts” all the
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Figure 4.4: Left panel: The theoretical prediction (solid line) of the hitting probabil-ity in (4.9) with m = 1 (more explicit form given in [345]), compared with the oneevaluated numerically from the effective Langevin equation (symbols) with D = 1 and
tf = 1. For a given m, it exhibits a unique maximum at R = R∗ ≈ 1.671 (red dot).
Right panel: The theoretical prediction (solid line) of the rescaled expected maximum
⟨M(tf )⟩ =

√
πD tf q(R = rtf ) given in [345] compared with the one evaluated numeri-cally (symbols) with D = 1 and tf = 1. The function q(R) has a maximum at R∗ ≈ 2.153.In both panels, we sampled 106 trajectories.

bridge trajectories. Using the known results for Fr(t |M) and the propagator [89] we get

phit(tf ,M) = h

(
R = rtf ,m =

M√
2Dtf

)
, (4.9)

where the scaling function h(R,m) can also be computed analytically [345]. When R = 0, we
recover the hitting probability of a Brownian bridge h(R = 0,m) = e−2m2

. For a given target
position m, the function h(R,m) varies nonmonotonically with R and achieves a maximum
at R = R∗(m). A plot of h(R,m) vs R for m = 1 is shown in the left panel in figure 4.4.
Thus the paradigm of an optimal resetting rate R∗(m) is also manifest in the behavior of the
hitting probability. Another observable that also confirms this optimal paradigm is the expected
maximum of the RBB as a function of the rescaled resetting rate R that we have computed
exactly in [345] (as shown in the right panel in figure 4.4).

The origin of EFM can be qualitatively understood as follows. In the absence of resetting,
the particle cannot go too far away from the origin, since it has to come back to the final
position close to the origin at time tf , by a slow diffusing process. However, when a small
amount of resetting rate r is switched on, the particle can go further away from the origin since
it can come back close to the origin at time t = tf by a “last minute” instantaneous resetting.
Hence there is a subtle trade-off between the resetting and the bridge constraint. Clearly, this
argument, which is different from the one in the free RBM, is rather general and is expected
to hold in any dimension, as illustrated in [345]. Further details on this mechanism, as well as
on effective Langevin equations to generate RBB trajectories in arbitrary dimensions, can be
found in the paper whose abstract is given on p. 87.
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Optimal Resetting Brownian Bridges

B. De Bruyne, S. N. Majumdar and G. Schehr, Phys. Rev. Lett. 128, 200603 (2022).

Abstract:

We introduce a resetting Brownian bridge as a simple model to study search pro-cesses where the total search time tf is finite and the searcher returns to its start-ing point at tf . This is simply a Brownian motion with a Poissonian resetting rate
r to the origin which is constrained to start and end at the origin at time tf . Weunveil a surprising general mechanism that enhances fluctuations of a Brownianbridge, by introducing a small amount of resetting. This is verified for different ob-servables, such as themean-square displacement, the hitting probability of a fixedtarget and the expected maximum. This mechanism, valid for a Brownian bridgein arbitrary dimensions, leads to a finite optimal resetting rate that minimizes thetime to search a fixed target. The physical reason behind an optimal resetting ratein this case is entirely different from that of resetting Brownian motions withoutthe bridge constraint. We also derive an exact effective Langevin equation thatgenerates numerically the trajectories of a resetting Brownian bridge in all dimen-sions via a completely rejection-free algorithm.

Abstract of article 8 : Optimal Resetting Brownian Bridges.
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4.2 . Resetting in stochastic optimal control

In the previous section, we saw that the resetting rate can be tuned to optimize a given
search observable. In this section, we discuss a slightly more general problem in which the
resetting rate r(x, t) is allowed to depend on the position x of the system at time t. The scalar
optimization problem now becomes a functional one. A convenient framework to address such
a problem is optimal control theory, which we will introduce now.

Since the seminal works of Pontryagin [346] and Bellman [347], optimal control theory has
received renewed interest due to its applications in a wide range of contexts, such as artificial
intelligence [348] and finance [349]. In a typical setting, optimal control considers a system
whose state at time t can be represented by a d-dimensional vector x(t). For instance, the
state x(t) could correspond to the degrees of freedom of an autonomous robot or the asset
values in a financial portfolio. The system typically evolves in time following a deterministic law,
e.g., the laws of motion for mechanical systems or the law of supply and demand for financial
markets. Oftentimes, the mathematical modeling of these laws is prohibitively expensive and one
introduces a stochastic contribution to account for the missing information on the environment.
Given the laws of motion, optimal control aims at operating the system in the best possible
way by using an external control, e.g., actuators for robots or market orders in finance.

One of the simplest ways to describe analytically the evolution in time of the system x(t)

is a first-order differential equation of the form ẋ(t) = f(x, t). This law is often a simplified
description of the system and a source of Gaussian white noise η(t) is introduced to capture
the fluctuations around the deterministic model. In addition, the external control on the system
is usually modeled as a drift u(x, t). Summing up these contributions, the full mathematical
description of the system is given by

ẋ(t) = f(x, t) +
√
2D η(t) + u(x, t) , (4.10)

where
√
2D is the strength of the noise. The external control u(x, t) can be tuned to achieve

a given goal, e.g., performing a task for a robot or generating profits in finance. Of course,
controlling the system will generate operating costs, such as electrical consumption or transac-
tion fees. Optimally controlling the system requires balancing a trade-off between high rewards,
measured over time by a function R(x, t), and low operating costs, often taken to be propor-
tional to u2(x, t). To be precise, for a system located at position x at time t, the reward in a
small time interval dt is R(x, t)dt and the cost is u2(x, t)dt/2.

In principle, solving this optimization problem is intrinsically difficult due to the high di-
mensionality of the space of solutions. Remarkably, Bellman introduced a general way to solve
this problem, known as dynamical programming, which consists in breaking down the optimiza-
tion into simpler subproblems in a recursive manner such that the present action is taken to
maximize the future outcome. In doing so, the key quantity to keep track of is the optimal
payoff J(x, t), defined as the expected payoff for an optimally controlled system located at x

at time t. Using this framework, one can show that the optimal control is simply given by
u∗(x, t) = ∇xJ(x, t), driving the system towards the direction in which the payoff increases
the most. The optimal payoff J(x, t) satisfies the celebrated Hamilton-Jacobi-Bellman (HJB)
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equation [350]

−∂tJ(x, t) = D∆xJ(x, t) + f(x, t) · ∇xJ(x, t) +
1

2
(∇xJ(x, t))

2 +R(x, t) , (4.11)
where ∆x and ∇x are respectively the Laplacian and the gradient operators. The quadratic
term (∇xJ)

2 renders this equation nonlinear and difficult to solve for arbitrary reward functions.
Nevertheless, there exist few analytically solvable cases. For instance, in the case of d=1, where
f(x, t) = 0 and R(x, t) = −α(x − xf )

2δ(t − tf )/2, the optimal control has the simple form
u∗(x, t)=−α(x−xf )/[1+α(tf −t)], which, in the limit α → ∞, is reminiscent of the effective
force to generate bridge Brownian motion [71]. This optimal control continuously drives the
system to maximize the final reward by arriving close to the target xf at time tf . In more
realistic systems, one has to rely on numerical methods to solve (4.11) [351].

Ideas from optimal control have also been proven successful in different areas of physics
[352–354]. Moreover, stochastic optimal control has been applied to a variety of systems, such
as supply-chain planning [355], swarms of drones [356], and fluctuating interfaces [357]. These
systems all have in common that the optimal control can be orchestrated as a coordinated
sequence of infinitesimal local changes. However, numerous systems do not fall in this class
and require global changes to be optimally managed. Examples of such instances arise in the
contexts of search processes, both in the cases of computer algorithms [358] and time-sensitive
rescue missions [359]. In the latter situations, a common and widely observed strategy is to stop
and resume operations from a predefined location. Unfortunately, the HJB framework is not
well suited to study such resetting protocols. Indeed, as we have seen in the previous chapter,
resetting is known to be quite different from a local force and exhibits interesting features,
including out-of-equilibrium dynamics [96, 360, 361], dynamical phase transitions [94, 99, 330],
and nontrivial first-passage properties [89, 90]. This observation naturally called into question
the existence of an analytical framework to devise the optimal resetting control policy.

In our work, we combined the notions of stochastic resetting and optimal control into
resetting optimal control, which provides a natural framework to operate systems through
stochastic restarts. Our goal is not to provide an accurate description of a specific system,
but rather to consider a minimal model to explore resetting in optimal control. To model
resetting policies, we exchange the control force u(x, t) for a resetting rate r(x, t). In a small
time interval dt, the state of the system is reset to a predefined location xres with probability
r(x, t)dt and evolves freely otherwise. In sum, the dynamical system evolves according to

x(t+dt)=

{
xres , prob.=r(x, t)dt ,

x(t)+f(x, t)dt+
√
2Dη(t)dt, prob.=1−r(x, t)dt ,

(4.12)
where the subscript “res” in xres stands for “resetting location”. Note that (4.12) is a gener-
alization of the resetting dynamics in (4.1). As in the HJB framework, we aim at finding the
optimal resetting rate r(x, t), as a function of x and t, that balances the trade-off between high
rewards, measured over time by the function R(x, t), and low operating costs, which depend on
r(x, t). To pose the optimization problem, we naturally extend the HJB paradigm and define
the following payoff functional

Fx0,t [r]=

〈∫ tf

t
dτ [R (x(τ), τ)−c(x(τ), τ) r(x(τ), τ)]

〉
x0

, (4.13)
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where c(x, τ) is the cost associated with resetting, tf is the time horizon up to which the system
is controlled, and the symbol ⟨. . .⟩x0 indicates the average over all stochastic trajectories starting
from x0 at time t and evolving according to (4.1). Note that the payoff Fx0,t [r] is a functional
and depends on the full function r(x, t).

We find that the optimal resetting policy r∗(x, t) that maximizes Fx0,t [r] is bang-bang
resulting in an impulsive control strategy [350]: the system is reset with probability one if its
state is outside of a time-dependent domain Ω(t) and evolves freely otherwise

r∗ (x, t) dt =

{
0 if x ∈ Ω(t) ,

1 if x /∈ Ω(t) .
(4.14)

The domain Ω(t) evolves according to

Ω(t) = {x : J(x, t) ≥ J(xres, t)− c(x, t)} , (4.15)
where the optimal payoff function J(x, t) = maxr Fx,t [r] is the solution of the differential
equation

−∂tJ(x, t) = D∆xJ(x, t) + f(x, t) · ∇xJ(x, t) +R(x, t) , x ∈ Ω(t) . (4.16)
Note that (4.16) must be solved jointly with (4.15) starting from the final condition J(x, tf ) = 0

and evolving backward in time with the Neumann boundary condition ∇xJ(x, t) · n(x) = 0,
where n(x) is the normal unit vector to the boundary. Outside of the domain Ω(t), the solution
is given by J(x, t) = J(xres, t)−c(x, t). The definition of the domain Ω(t) in (4.15) has a clear
interpretation: at any given time the optimal policy is to restart the system if its expected payoff
is less than the one at the resetting location minus the cost incurred for a restart. The emerging
framework outlined in (4.14), (4.15), and (4.16) is the main result of our work and provides a
general method to optimally control stochastic systems through restarts. The derivation of this
result is presented in [341].

Going from (4.13) to (4.16), we have reduced a functional optimization problem to a partial
differential equation, which is often easier to solve. Note however that the mathematical
problem in (4.15) and (4.16) is of a special kind as the evolution of the domain of definition
Ω(t) is coupled to the solution J(x, t) of the differential equation. This kind of equations
belongs to a class known as Stefan problems [362], which often arise in the field of heat
transfer, where one studies the evolution of an interface between two phases, e.g., ice and
water on a freezing lake. In this context, one must solve the heat equation for the temperature
profile with an interface between the water and ice phases, which moves according to the
temperature gradient. The interface is therefore to be considered as an additional unknown
function, which must be jointly solved with the differential equation. To draw an analogy with
our case, the optimal payoff function J(x, t) plays the role of the temperature and the boundary
of the domain Ω(t) corresponds to the water-ice interface. Note however that the two Stefan
problems have different boundary conditions. The domain Ω(t) can be obtained by solving the
Stefan problem in (4.15) and (4.16) numerically. This can be achieved, for instance, by using
an Euler explicit scheme with a space-time discretization and updating the domain Ω(t) at each
time step according to (4.15).
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The Stefan problem in (4.16) is the analog of the HJB equation (4.11) for a resetting
control. Despite the moving boundary, (4.15) and (4.16) have a linear dependence in J . One
might therefore wonder if exactly solvable models exist within this framework. Interestingly, we
have found a time-independent formulation in the infinite time horizon limit tf → ∞ which
allows for exact analytical solutions to be found. This is achieved by considering discounted
rewards and costs of the form R (x, t) = e−βtR (x) and c (x, t) = e−βtC (x), where β > 0 is the
discount rate. Accordingly, we also consider the drift to be time-independent f(x, t) = f(x).
Discounted payoffs are common in the control theory literature [363] and capture situations in
which the effect of the payoff decays over a typical timescale 1/β. Such an effect is for instance
observed in financial contexts, where β is related to interest rates and is used to compare future
and present benefits. Using the ansatz J (x, t) = e−βtJ (x), we find that (4.16) becomes a
time-independent ordinary differential equation of the form

βJ (x) = D∆xJ (x) + f (x) · ∇xJ (x) +R (x) , x ∈ Ω , (4.17)
where the domain Ω = {x : J (x) ≥ J (xres) − C(x)} is also independent of time. This
equation can be explicitly solved in the absence of external forces by choosing a quadratic
reward R(x) = −αx2 and a constant resetting cost C(x) = c to the origin xres = 0. Note
that R(x) ≤ 0 and is maximized at x = 0, rewarding the system for being close to the origin.
Solving (4.17), we obtain, for β=D=1, the exact expression for the optimal payoff

J (x) = α

[
−2− x2 +

2u(v) cosh(x)

sinh(u(v))

]
, x ∈ Ω , (4.18)

where u(v) is the boundary of the symmetric domain Ω, i.e.,

Ω = {x : |x| < u(v)} . (4.19)
The boundary u(v) is the unique positive solution of the transcendental equation v − u2(v) +

2u(v) tanh (u(v)/2) = 0, where v = c/α is the cost-reward ratio. The optimal strategy thus
corresponds to resetting the system if |x| > u(v). When v ≪ 1, the cost of resetting is
much smaller than the reward, therefore the boundary is close to the origin u(v) ∼

√
2 (3v)1/4,

allowing the state of the system to remain close to the optimal location x = 0. On the other
hand, when v ≫ 1, the cost of resetting is much larger than the running cost and the boundary
is set far away from the origin u(v) ∼ √

v+1. Beyond the optimal resetting policy, our approach
predicts the function J (x), measuring the expected payoff upon starting from x and following
the optimal strategy. In figure 4.6, J (x) is shown for |x| < u(v) and for various values of
the cost-reward ratio v. As a function of x, J (x) has a symmetric bell shape centered around
the origin, where the reward is maximal. As |x| increases, J (x) decreases since the reward
decreases and the resetting boundary comes closer.

Our previous example focused on the case of an infinite time horizon, corresponding to
tf → ∞. We now investigate the effect of a finite time horizon. One of the simplest settings
where such an effect can be studied is the case of a one-dimensional Brownian motion with a
Dirac delta final reward R(x, t) = α δ(x− xf )δ(t− tf ), with α > 0, and a constant resetting
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Figure 4.6: The optimal expected payoffJ (x) for a one-dimensional randomwalk startingat x for the discounted rewardR(x) = −αx2 and cost C(x) = c and for different values ofthe cost-reward ratio v=c/α. The continuous lines correspond to the exact result in (4.18)while the symbols correspond to numerical simulations performed with β = D = 1. Theoptimal strategy is to reset for |x| > u(v), where u(v) is defined in the text. For |x| < u(v),the system is let free to evolve and its payoff depends continuously on x.

cost c(x, t) = c. Such parameters correspond to rewarding the system by a finite amount α

for arriving at the target position xf at time tf , while penalizing it with a constant cost c

for each resetting event. Note that the system needs to arrive at the location xf exactly at
time tf to get the reward while earlier visits do not provide any additional benefits. Before
presenting the optimal policy for this problem, it is instructive to consider two limiting cases.
For α → 0, one should never reset as the reward is not worth the resetting cost. On the other
hand, for α → ∞, the cost of resetting becomes negligible and the optimal strategy is to reset if
restarting would bring the system closer to xf , independently of time. Interestingly, we observe
that the crossover between these two regimes occurs as a sharp transition at the critical value
α = αc, where αc = xfc

√
2πe ≈ 4.13273 xfc, which we predict analytically (see [341]). For

α < αc, the optimal policy is to never reset, corresponding to Ω(t) = R for all 0 ≤ t ≤ tf . The
situation is more subtle for α > αc, where resetting is only favorable in a specific time window
before tf . To describe this window, it is convenient to introduce the backward time τ = tf − t.
We find that no boundary is present for τ < τ∗, where τ∗ is the smallest positive solution
of the transcendental equation αe−x2

f/(4Dτ∗) = c
√
4πDτ∗. At τ = τ∗, a boundary appears

and one must resort to numerical integration techniques to find the solution for τ > τ∗ (see
figure 4.7). We observe numerically that the boundary evolves with τ , i.e., backward in time,
in a non-monotonic way and eventually disappears. This optimal policy can be understood as
follows. Close to tf , where τ < τ∗, it is unlikely for the system to reach the target location
xf from the origin in the remaining time. Thus, it is not convenient to reset. On the other
hand, for very early times it is not yet necessary to reset since, after resetting, the system would
typically evolve away from the target.

It is possible to extend our framework to other resetting dynamics and cost functions. The
details of these extensions can be found in the paper whose abstract is given on p. 94.
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Figure 4.7: Space-time illustration of the optimal resetting policy for a one-dimensionalBrownian motion (green line) to reach the target location xf = 1 (filled circle) exactly attime tf = 1. A reward α is received upon reaching the location xf at the final time while aunit cost is incurred upon resetting (red dashed arrows) to the origin xres = 0 (grey dashedline). The optimal strategy that maximizes the expected payoff is to reset upon touchingthe blue region and to evolve freely in the white region, which we denote Ω(t) in the text.The domain Ω(t) is obtained by numerical integration of the Stefan problem in (4.15) and(4.16), with R(x, t) = αδ(t− 1)δ(x− 1), f(x, t)=0, α = 10 andD=1. The boundary of thedomain Ω(t) guides the particle to the location xf at time tf while avoiding resetting asmuch as possible. The shape of Ω(t) depends nontrivially on the reward value α. Furtherexplanations for this shape are given in the text.
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Resetting in Stochastic Optimal Control

B. De Bruyne and F. Mori, Phys. Rev. Res. 5, 013122 (2023).

Abstract:

“When in a difficult situation, it is sometimes better to give up and start all overagain”. While this empirical truth has been regularly observed in a wide range ofcircumstances, quantifying the effectiveness of such a heuristic strategy remainsan open challenge. In this Letter, we combine the notions of optimal control andstochastic resetting to address this problem. The emerging analytical frameworkallows not only to measure the performance of a given restarting policy but alsoto obtain the optimal strategy for a wide class of dynamical systems. We apply ourtechnique to a systemwith a final reward and show that the reward valuemust belarger than a critical threshold for resetting to be effective. Our approach, analo-gous to the celebrated Hamilton-Jacobi-Bellman paradigm, provides the basis forthe investigation of realistic restarting strategies across disciplines. As an applica-tion, we show that the framework can be applied to an epidemic model to predictthe optimal lockdown policy.

Abstract of article 9 : Resetting in Stochastic Optimal Control.
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4.3 . Optimization in first-passage resetting

In this section, we study a simple optimization problem in which one would like to operate
a system close to maximum performance without having too many breakdowns. To do so, we
combine the notions of first passage and resetting into first-passage resetting, in which the
particle is reset whenever it reaches a specified threshold. Contrary to standard resetting, the
time at which first-passage resetting occurs is defined by the motion of the diffusing particle itself
rather than being imposed externally [89–91]. Feller showed that such a process is well-defined
mathematically and provided existence and uniqueness theorems [364], while similar ideas were
pursued in [365]. First-passage resetting was initially treated in the physics literature for the
situation in which two Brownian particles are biased toward each other and the particles are
reset to their initial positions when they encounter each other [366]. In addition, first-passage
resetting shares some similarities with stress rearrangement mechanisms in elastoplastic models
(such as the Hébraud–Lequeux model) [367–371].

We treat first-passage resetting on a finite interval, which has a natural application to
reliability theory. Here the particle is restricted to the interval [0, L] where x = L is again the
boundary where resetting occurs and the particle is immediately reinjected at x = 0 when it
reaches x = L (see figure 4.9). We may view this mechanism as characterizing the performance
of a driven mechanical system [372–375], with the coordinates x = 0 and x = L indicating poor
and maximal performance, respectively. While one ideally wants to operate the system close
to its maximum performance level (x = L), there is a risk of overuse, leading to breakdowns
whenever x = L is reached. Subsequently, the system has to be repaired and then restarted
from x = 0. This dynamics corresponds to resetting that is induced by a first passage to the
boundary x = L. While the dynamics of the operating coordinate is typically complicated and
dependent on multiple parameters, we view the coordinate x as undergoing a drift-diffusion
process for the sake of parsimonious modeling, so that it evolves inside the interval as

ẋ(t) =
√
2Dη(t) + v , (4.20)

where D is the diffusion coefficient and v is the drift. For the system to be close to x = L,
the drift should be positive. On the other hand, breakdowns of the system are to be avoided
because a cost is incurred with each breakdown. This suggests that the drift velocity should
be negative. The goal is to determine the optimal operation that maximizes the performance
of the system as a function of the cost for each breakdown and the drift velocity. Although
the analogy between first-passage resetting and a mechanical system is naive, this formulation
allows us to determine the optimal operation in a concrete way. A preliminary account of some
of these results was given in [339].

The basic control parameter is the magnitude of the drift velocity v. If the velocity is large
and negative, the system is under-exploited because it operates far from its maximum capacity.
Conversely, if the velocity is large and positive, the system breaks down often. We seek the
optimal operation by maximizing an objective function F(v) that rewards high performance
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Figure 4.9: Schematic illustration of first-passage resetting in the interval [0, L] with a re-flecting boundary at 0 and a resetting boundary at L. Inside the interval, the particleundergoes drift-diffusion with velocity v as in (4.20). Each time the particle reaches thethreshold L, it is reset to the origin, which represents a breakdown (dashed red lines). Inthis illustration, the particle has been reset N (T ) = 2 times. The times of the resettingevents are denoted by t1, t2, . . ..

and penalizes breakdowns. A natural choice for F(v) is

F(v) = lim
T→∞

1

T

〈(
1

L

∫ T

0
x(t) dt

)
− CN (T )

〉
, (4.21)

where T is the total operation time, N (T ) is the number of breakdowns within a time T , and C

is the cost of each breakdown. The dependence on v on the right-hand side lies in the average
over all trajectories evolving according to (4.20) inside the interval with a reflecting boundary
at 0 and a resetting boundary at L (see figure 4.9). As defined, this objective function rewards
operation close to the maximum point L and penalizes breakdowns.

We now compute explicitly the average in (4.21). To do so, we use the linearity of the
expectation value and find

F(v) = lim
t→∞

⟨x(t)⟩
L

− C lim
T→∞

⟨N (T )⟩
T

. (4.22)
The first term on the right-hand side in (4.22) is the average position of the particle in its steady-
state, which can be computed by standard Fokker-Plank techniques and is given by [339,340]

lim
t→∞

⟨x(t)⟩
L

=

(
2Pe2 − 2Pe + 1

)
e2Pe − 1

2Pe [(2Pe − 1) e2Pe + 1]
, (4.23)

where Pe = vL/(2D) is the Péclet number (the dimensionless bias velocity). The average
number of resets ⟨N (T )⟩ can be computed using a renewal approach, which is common in
stochastic resetting computations [89,90]. We note that ⟨N (T )⟩ satisfies the equation

⟨N (T )⟩ =
∫ T

0
dt′F (L, t′)[1 + ⟨N (T − t′)⟩] , (4.24)

where F (L, t′) is the distribution of the first-passage time to L. The renewal equation (4.24)
states that to have an average of ⟨N (T )⟩ resets at time T , there must have been a first reset
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at a time t′, and then the process starts anew and will have ⟨N (T − t′)⟩ average number of
resets. The renewal equation (4.24) can be solved by standard Laplace transform techniques,
and gives

⟨N (T )⟩ ∼ 4Pe2

2Pe − 1 + e−2Pe
T

L2/D
, T → ∞ . (4.25)

Inserting (4.23) and (4.25) into the objective function gives

F(v) =

(
2Pe2 − 2Pe + 1

)
e2Pe − 1

2Pe [(2Pe − 1) e2Pe + 1]
− C ′ 4Pe2

2Pe − 1 + e−2Pe , (4.26)
where Pe = vL/(2D) is the dimensionless bias velocity, and C ′ = CD/L2 is the dimensionless
cost per breakdown. Representative plots of the objective function versus Pe are shown in
figure 4.10. For a given cost of a breakdown, there is an optimal drift velocity or optimal
Péclet number. The higher this cost, the smaller the optimal bias and the value of F(v).
Moreover, the optimal bias is not necessarily negative. Indeed, if the cost of a breakdown is
relatively small, then it is advantageous to operate the system close to its limit L and absorb
the (small) cost of many breakdowns. On the contrary, if the cost of a breakdown is high, it is
better to run the system at low level and with a negative bias to avoid breakdowns.
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Figure 4.10: The objective function (4.26) versus the Péclet number Pe = vL/(2D) fordifferent normalized cost values C ′ = C/(L2/D). Indicated on each curve is the optimaloperating point.
Generalizations to other more realistic models, including delay as well as higher dimensions,

can be found in the paper whose abstract is given on p. 94.
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Optimization and growth in first-passage
resetting

B. De Bruyne, J. Randon-Furling and S. Redner, J. Stat. Mech., 013203 (2020).
Abstract:

We combine the processes of resetting and first-passage to define first- passage
resetting, where the resetting of a random walk to a fixed position is triggered bya first-passage event of the walk itself. In an infinite domain, first-passage reset-ting of isotropic diffusion is non-stationary, with the number of resetting eventsgrowing with time as √

t. We calculate the resulting spatial probability distribu-tion of the particle analytically, and also obtain this distribution by a geometricpath decomposition. In a finite interval, we define an optimization problem that iscontrolled by first-passage resetting; this scenario is motivated by reliability the-ory. The goal is to operate a system close to its maximum capacity without ex-periencing too many breakdowns. However, when a breakdown occurs the sys-tem is reset to its minimal operating point. We define and optimize an objectivefunction that maximizes the reward (being close to maximum operation) minus apenalty for each breakdown. We also investigate extensions of this basic modelto include delay after each reset and to two dimensions. Finally, we study thegrowth dynamics of a domain in which the domain boundary recedes by a spec-ified amount whenever the diffusing particle reaches the boundary after which aresetting event occurs. We determine the growth rate of the domain for the semi-infinite line and the finite interval and find a wide range of behaviors that dependon how much the recession occurs when the particle hits the boundary.

Abstract of article 10 : Optimization and growth in first-passage resetting.
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5 - Conclusion

In this thesis, we investigated the extreme value statistics of some class of stochastic
processes. In Chapter 2, we obtained several exact analytical results for the statistics of various
extreme observables. Let us summarize them and discuss perspectives for further research. In
Section 2.2, we studied a one-dimensional discrete-time random walk model where the walker
starts at the origin and its position is incremented at each step independently by adding a noise
drawn from a symmetric and continuous distribution f(η). This includes Lévy flights, where
f(η) ∼ |η|−1−µ has a power law tail, with the Lévy index 0 < µ ≤ 2. We observe the walk
up to n steps and order the positions at different times (discarding the initial position x0 = 0)
and denote the ordered positions by M1,n > M2,n > . . . > Mn,n. Our first interesting result
was to show that in the limit n → ∞, the distribution of the gap ∆k,n = Mk,n − Mk+1,n

approaches an n independent limit, which still depends on k. In the stationary limit, we could
also compute the distribution of the typical gap, with size ∆k = O(k1/µ−1), in the scaling limit
for large k, for all 1 ≤ µ ≤ 2. We unveiled the existence of an anomalous “condensate part” in
the distribution that describes large atypical gaps of order O(k1/µ), which are much larger than
the typical gaps of size O(k1/µ−1). An interesting question is to investigate the gap statistics
when the gaps are deep inside the “bulk”, i.e., when k = αn, with α ∈ [0, 1] fixed. Here, we
have focused on the “edge” limit, where we took the limit where n → ∞ but keeping k fixed
of order O(1). The bulk limit would correspond to taking both k and n large simultaneously,
with their ratio α = k/n fixed, as it was done for the case of finite variance jump distributions
in [43].

In Section 2.3, we first obtained an explicit formula for the expected maximum of bridge
discrete-time random walks of length n with arbitrary jump distributions. This formula nicely
extends an existing formula for free random walks. We then derived the asymptotic limit of
the expected maximum for large n up to second leading order and found a rich phase diagram
depending on the jump distribution. In particular, we showed that, contrary to free random
walks, bridge random walks with infinite first moment jump distributions with a Lévy index
µ < 1 have a well-defined expected maximum. We have also demonstrated that the leading
finite size correction displays a rich behavior depending on the power law tail of the jump
distribution. Going beyond the expected value of the global maximum studied here, it would
be interesting to investigate the full distribution of the global maximum as well as its order
statistics in the limit of large but finite n. Furthermore, it would be interesting to generalize
our results to bridge random walks in higher dimensions, where one would for instance measure
the maximum of the radial extent of the walk, and study how the leading finite size corrections
are affected.

In Section 2.4, we studied the evolution of the maximum of a diffusive particle in confined
environments in arbitrary dimensions. We first focused on the case of a particle confined in
a d-dimensional ball of radius R. By relying on results on the NET, we showed that the
behavior of the fluctuations of the maximum for t → ∞ and close to R exhibits a rich variety
of behaviors depending on the dimension d. We then focused on the particular case of d = 2
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and applied our results to study the growth of the convex hull of Brownian motion in a disk
with reflecting boundaries. Interestingly, we showed that it converges slowly to 2πR with a
stretched exponential behavior. It would be interesting to investigate further the extreme value
statistics of Brownian motion in confined geometries. For instance, one could study the effect
of confinement on the growth of the area of the convex hull. Another possible extension of this
work would be to extend our results to the case of Lévy flights and study how the fluctuations
of the maximum are affected.

In Chapter 3, we introduced an efficient method to sample rare trajectories numerically. In
Section 3.2, we studied discrete-time random walk bridges, where the random walk starts at the
origin and is constrained to return to the origin after a fixed number n of steps. We have derived
an exact formula for an effective jump distribution, which accounts for the bridge constraint, and
computed it explicitly for a few examples of bare jump distributions. Going beyond the simple
bridges, we have further extended our method to other constrained discrete-time random walks,
such as excursions and meanders. One interesting application of our method is in the context
of extreme value statistics for constrained discrete-time random walks. For such walks, there
have been a lot of interesting analytical results that have been derived recently for arbitrary
jump distribution. Another example is the exact distribution of the maximal relative height of
a one-dimensional discrete solid-on-solid model in the stationary state with periodic boundary
condition [19]. In order to verify such analytical predictions numerically, one needs to generate
efficiently the discrete-time bridge trajectories with the correct statistical weight. The method
presented in this section will be useful for this purpose. Finally, it would be interesting to extend
the sampling method to generate constrained trajectories in higher dimensions and particular
geometries, such as two-dimensional cones [376–380].

In Section 3.3, we extended our sampling method to continuous-time and discrete-time
bridge random walks in the presence of a time-integrated constraint. In the case of continuous-
time, we developed a new approach to derive the effective Langevin equation to generate
Brownian bridges with fixed time-integrated constraints, such as the area, or the occupation time
on the positive axis. We note that our approach has recently been generalized by Monthus [381]
to provide a general framework for the so-called “micro-canonical conditioning” of Markov
processes on time-additive observables, which led to further applications where the processes
are conditioned with absorbing boundary conditions, first encounter times, killing rates, and local
times [382–386]. Finally, we studied run-and-tumble bridge trajectories, which is a prominent
example of a non-Markovian constrained process. We provided an efficient way to generate
them numerically by deriving an effective Langevin equation for the constrained dynamics. We
showed that the tumbling rate of the RTP acquires a space-time dependency that naturally
encodes the bridge constraint. We derived the exact expression of the effective tumbling rate
and showed how it yields to an efficient sampling of run-and-tumble bridge trajectories.

In Section 3.4, we applied our method to sample a one-dimensional Brownian particle con-
ditioned to survive in the presence of periodically distributed point absorbers with a fixed trap
intensity β . We showed that, in the long time limit, the effective diffusion coefficient of the
surviving particles is a non-trivial function of the trapping strength β. Going beyond the asymp-
totic regime, it would be interesting to characterize the transient regime at intermediate times,
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and in particular the existence of extrema in the evolution of the mean-square displacement.
In Chapter 4, we studied various optimization problems involving stochastic processes and

extreme value statistics. In Section 4.1, we introduce resetting Brownian bridges as a search
process. The main result of this work was the uncovering of an unexpected mechanism of
enhanced fluctuations, caused by the combined effect of the bridge condition and a small
resetting rate. This mechanism is very general and holds in arbitrary dimensions. This enhanced
fluctuation mechanism also leads to the existence of a resetting rate r∗ that optimizes the search
process. This optimal paradigm holds in all dimensions but the mechanism for it is different
from that of a standard resetting Brownian motion. It would be interesting to investigate other
types of constrained resetting Brownian motion and see if similar enhancing mechanisms are
present.

In Section 4.2, we combined optimal control and stochastic resetting to address the effec-
tiveness of restarting policies. The emerging framework provided a unifying paradigm to obtain
the optimal resetting strategy for a wide class of dynamical systems. It would be interesting
to investigate extensions to optimal stopping problems and to study cost functions that are
first-passage functionals [85], for instance where the time horizon is a first-passage time. This
would be particularly relevant in the context of search processes.

In Section 4.3, we defined an optimization problem that describes, in a schematic way,
aspects of the repeated breakdown of a driven mechanical system. The operation domain of
the system is a finite interval. The resetting boundary corresponds to the system reaching
its operating limit, after which a breakdown occurs and the system has to be restarted from
scratch. The control parameter is the bias velocity, which may either drive the system toward
breakdown or toward minimal-level operation. We showed that there exists an optimal bias
velocity that optimizes the performance of the system. This optimum balances the gain by
operating close to maximum performances while minimizing the number of breakdowns.

Some of the results presented in this thesis lead to new questions on which it would be
interesting to work in the future. Our results on the order statistics in Chapter 2 seem to suggest
that there exists a stationary process describing the random walk close to its global maximum
in the limit of a large number of steps. It would be interesting to unveil the existence of such
process and to describe its statistical properties. Moreover, one could numerically study this
process using the tools from Chapter 3 and in particular rely on the effective jump distribution
(3.22) of meander random walks in the limit of a large number of steps.

Another research direction concerns the extension of the results presented in Section 3.4 to
the transport properties of Brownian motion conditioned to survive in a random environment. It
would be interesting to generalize our results to the case where the trap intensities or distances
are themselves random variables.

Finally, the analytical approach of effective random walks developed in Section 2.2 has
shown to be successful in describing the EVS of random walks and may be extended further to
other stochastic processes and extreme observables.
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A - Appendix

A.1 . Universal survival probability of a run-and-tumble particle in an open
linear half-space

In this appendix, we show how the generalization of Sparre Andersen theorem in (2.19) can
be used to extend some recent results on the universal survival probability of the run-and-tumble
particle (RTP) in d dimensions. In [155,156], it was shown that the survival probability that the
x-component of the RTP does not change sign up to time t is independent on the dimension
d for any finite time t, as a consequence of the Sparre Andersen theorem in (2.15). Moreover,
it was shown that the universality holds for a large class of RTP models in which the speed v

of the particle after each tumbling is drawn from an arbitrary probability distribution W (v).
Here, we will compute the survival probability Sd(t) that the particle remains in an open

linear half-space up to time t and show that it is independent of the speed distribution W (v)

but depends on the dimension d. In contrast to [155,156], we do not focus on the x-component
of the particle, but instead, focus on the full trajectory of the particle and ask that it remains
in an open linear half-space. Note that the half-space is not fixed, the trajectory just has to
remain in any half-space for the particle to survive.

The RTP was introduced in its simplest version in one dimension d = 1 in Section 3.3.2.
Here we consider a more general class of RTP in arbitrary d dimensions in which the particle
tumbles at a constant rate γ, after which it chooses a new direction uniformly at random and
moves at a constant velocity v drawn from a probability distribution W (v) (see figure A.1).
We are interested in the survival probability Sd(t) that the particle remains in an open linear
half-space up to time t. As shown in figure A.1, this is equivalent to the probability that the
origin is not included in the convex hull of the tumbling locations x1, . . . ,xn(t) and the current
position x(t):

Sd(t) = Prob.
(
0 /∈ {x1, . . . ,xn(t),x(t)}

)
, (A.1)

where n(t) is the number of tumblings that occurred up to time t. By relying on the general-
ization of Sparre Andersen theorem in (2.19), we will show that Sd(t) is independent of W (v)

and is given by

Sd(t) =
∞∑
n=1

γn−1tn−1e−γt

2n−1n!(n− 1)!

⌈d/2⌉∑
k=1

B(n, d− 2k + 1) , (A.2)

where B(n, k) is defined in (2.20). Moreover, we will show that the survival probability (A.2)
behaves, for t → ∞, as

Sd(t) ∼
1

2d−2(d− 1)!
√
π

ln(γt)d−1

√
γt

, t → ∞ . (A.3)
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Figure A.1: Illustration of a RTP trajectory in d = 2 dimensions (blue curve). The RTPtumbles at a constant Poisson rate γ and chooses a new direction uniformly at randomand travels at a random constant velocity v. Up to time t, the particle will have tumbled
n(t) times at the tumbling locations x1, . . . ,xn(t), and will be currently located at x(t). Therunning times τ1, . . . , τn(t)+1 are i.i.d. random variables following a Poisson process withrate γ. The survival probability Sd(t) is the probability that the trajectory remains in anopen linear half-space. The illustrated particle is still alive as its trajectory is inside a linearhalf-space, for instance, the one defined by the green dashed line. This event is equivalentto the event that the origin is not included in the convex hull of the tumbling locations andthe current position, Conv{x1, . . . ,xn(t),x(t)} (red dashed line).

We will now sketch the derivation of the result (A.2). The derivation is similar to the one
in [155]. As the running times τ1, . . . , τn(t)+1 are i.i.d. random variables following a Poisson
process with rate γ (see figure A.1), their joint distribution is given by

P ({τi}, n | t) =
[

n∏
i=1

γe−γτi

]
e−γτn+1δ

(
t−

n+1∑
i=1

τi

)
, (A.4)

where the terms in bracket correspond to the n runs after which the particle has tumbled, and
the term e−γτn+1 =

∫∞
τn+1

dτγe−γτ is the probability of no tumbling events during the last
run. The joint distribution of the running times and the positions x1, . . . ,xn(t),x(t) can be
obtained by using (A.4) and integrating over the speed distribution W (v):

P ({xi}, {τi}, n | t) = γn
∫ ∞

0

[
n+1∏
i=1

dviW (vi)e
−γτi

δ(||xi − xi−1|| − τi vi)

Ωd(τi vi)d−1

]
δ

(
t−

n+1∑
i=1

τi

)
,

(A.5)
where Ωd = 2πd/2/Γ(d/2) is the surface area of the unit sphere in d dimensions, and where
x0 = 0 and xn+1 = x(t). The fraction in (A.5) states that if the particle travels at a speed
vi during a time τi in a direction chosen uniformly at random, the probability distribution of
its new position xi+1 is a sphere of radius viτi centered on its previous position xi. The
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denominator is the normalization coefficient of this probability distribution. By integrating over
the τi’s in (A.5), we obtain the joint distribution of the positions xi’s and the number n of
tumbling events

P ({xi}, n | t) =
∫ ∞

0

[
n+1∏
i=1

dτi

]
P ({xi}, {τi}, n | t) . (A.6)

Recognizing the convolution structure in the integration over the τi’s in (A.6), we take a Laplace
transform of P ({xi}, n | t) with respect to t which gives∫ ∞

0
dte−st P ({xi}, n | t) = 1

γ

(
γ

γ + s

)n+1 n+1∏
i=1

p̃s(xi − xi−1) , (A.7)
where we defined

ps(η) = (γ + s)

∫ ∞

0
dτ e−(γ+s)τ

∫ ∞

0
dvW (v)

δ(||η|| − τ v)

Ωd(τ v)d−1
. (A.8)

Note that we added a (γ+s) prefactor in (A.8) so that ps(η) can be interpreted as a probability
distribution as it is normalized: ∫

Rd

dη ps(η) = 1 . (A.9)
The survival probability (A.1) can now be obtained by integrating over all possible positions
and summing over all number of tumbling events:

Sd(t) =

∞∑
n=1

∫
Rd

[
n+1∏
i=1

dxi

]
10/∈{x1,...,xn+1} P ({xi}, n | t) , (A.10)

where 10/∈{x1,...,xn+1} such that it is equal to unity if its argument is true, and zero otherwise.
Taking a Laplace transform of (A.10) and inserting (A.7) gives∫ ∞

0
dte−st Sd(t) =

∞∑
n=0

1

γ

(
γ

γ + s

)n ∫
Rd

[
n∏

i=1

dxi

]
10/∈{x1,...,xn}

n∏
i=1

p̃s(xi − xi−1) , (A.11)
where we have shifted the summation index n by one. We now interpret the multiple integrals in
(A.11) as the probability that the origin is not inside the convex hull of a discrete-time random
walk of n steps with a jump distribution p̃s(η) indexed by s, which also depends on W (v) [see
equation A.8]. By the generalization of the Sparre Andersen theorem in (2.19), this probability
is universal, i.e. it does not depend on s or on W (v), and is given by∫

Rd

[
n∏

i=1

dxi

]
10/∈{x1,...,xn}

n∏
i=1

p̃s(xi − xi−1) =
2

2nn!

⌈d/2⌉∑
k=1

B(n, d− 2k + 1) , (A.12)
where B(n, k) is given in (2.20). Inserting (A.12) in (A.11) gives∫ ∞

0
dte−st Sd(t) =

∞∑
n=0

1

γ

(
γ

γ + s

)n 2

2nn!

⌈d/2⌉∑
k=1

B(n, d− 2k + 1) . (A.13)
By inverting this Laplace transform, we recover the result announced in (A.2). By using the
asymptotic expansion (2.21), we obtain the asymptotic behavior (A.3).
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A.2 . Derivation of the Pollaczek-Spitzer formula

In this appendix, we sketch the derivation of the Pollaczek-Spitzer formula (2.39) for a
discrete-time random walk (1.1) with a symmetric jump distribution f(η). To do so, it is
convenient to introduce the concave majorant of a random walk, which is the top part of its
convex hull [387]. We denote by y1, . . . , yl and k1, . . . , kl the increments and the durations
respectively of the l faces of the concave majorant (see figure A.2). By definition of the concave

Figure A.2: Concavemajorant of a randomwalk of n steps (blue dashed line). The numberof faces of the concavemajorant is denoted by l. The increments and the durations of thefaces are respectively denoted y1, . . . , yl and k1, . . . , kl, with∑l
i=1 ki = n. The maximumof the random walk up to step n is denoted byMn.

majorant, one has that the sequence of slopes of the faces are decreasing :
y1
k1

>
y2
k2

> . . . >
yl
kl

. (A.14)
Due to the Markovian property of the random walk, the joint distribution pk1,...,kl(y1, . . . , yl)

of the increments, the durations, and the number of the faces is given by

pk1,...,kl(y1, . . . , yl) =

l∏
i=1

qki(yi) , with
y1
k1

>
y2
k2

> . . . >
yl
kl

, (A.15)
where qk(y) is the probability that the random walk propagates from 0 to y in k steps while
remaining below the straight line between (0, 0) and (k, y). By cyclic permutation symmetry,
one can show that

qk(y) =
1

k
pk(y) , (A.16)

where pk(y) is the free propagator of the random walk (1.23), i.e. the probability that it
propagates from 0 to y in k steps without any constraints. Inserting (A.16) in (A.15) gives

pk1,...,kl(y1, . . . , yl) =
l∏

i=1

1

ki
pki(yi) , with

y1
k1

>
y2
k2

> . . . >
yl
kl

. (A.17)
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One can check that, upon summing over all possible number of faces l and their durations and
increments, this distribution is normalized, i.e.

n∑
l=1

∑
k1+...kl=n

∫
y1
k1

>...>
yl
kl

dy1 . . . dyl pk1,...,kl(y1, . . . , yl) = 1 . (A.18)

Using these variables, the maximum Mn of the random walk is simply given by (see figure A.2)

Mn =
l∑

i=0

yiΘ(yi) , (A.19)
where Θ(x) is the Heaviside function such that Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise.
The distribution of the maximum therefore reads

⟨δ(Mn −m)⟩ =
n∑

l=1

∑
k1+...kl=n

∫
y1
k1

≥...≥ yl
kl

dy1 . . . dyl pk1,...,kl(y1, . . . , yl) δ

(
m−

l∑
i=1

yiΘ(yi)

)
.

(A.20)
Inserting (A.15) in (A.20), changing coordinates wi = yi/ki, and taking a Laplace transform
gives

⟨e−sMn⟩ =
n∑

l=1

∑
k1+...kl=n

∫
w1≥...≥wl

dw1 . . . dwl

l∏
i=1

[
pki(kiwi)e

−swikiΘ(wi)
]
. (A.21)

Using the permutation symmetry of the integrand gives

⟨e−sMn⟩ =
n∑

l=1

1

l!

∑
k1+...kl=n

l∏
i=1

[∫ ∞

−∞
dw pki(kiw)e

−swkiΘ(w)

]
. (A.22)

Taking a generating function with respect to n gives

∞∑
n=0

zn⟨e−sMn⟩ = 1 +
∞∑
l=1

1

l!

[ ∞∑
k=1

zk
∫ ∞

−∞
dwpk(kw)e

−swkΘ(w)

]l
, (A.23)

= exp

( ∞∑
k=1

zk
∫ ∞

−∞
dwpk(kw)e

−swkΘ(w)

)
. (A.24)

where the additional term 1 in the first line originates from the term n = 0 in the left-hand
side, and where we recognized the exponential function in the series to go to the second line.
Changing coordinates y = wk and separating the integral over the negative and positive axis
gives

∞∑
n=0

zn⟨e−sMn⟩ = 1√
1− z

exp

( ∞∑
k=1

zk

k

∫ ∞

0
dypk(y)e

−sy

)
, (A.25)
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where we used that
∫ 0
−∞ dy pk(y) = 1/2 and that

∑∞
k=1 z

k/k = − ln(1− z). Upon using the
Fourier transform of the propagator (1.23), the expression (A.25) becomes

∞∑
n=0

zn⟨e−sMn⟩ = 1√
1− z

exp

( ∞∑
k=1

zk

k

∫ ∞

−∞

dq

2π

[f̂(q)]k

s+ iq

)
,

=
1√
1− z

exp

(
−
∫ ∞

−∞

dq

2π

ln[1− f̂(q)]

s+ iq

)
,

=
1√
1− z

exp

(
−s

∫ ∞

0

dq

π

ln[1− f̂(q)]

s2 + q2

)
, (A.26)

where we used again that
∑∞

k=1 z
k/k = − ln(1− z) and separated again the integral over the

positive and negative axis. By relying on the identity (2.43) between the maximum and the
survival probability, we recover the Pollaczek-Spitzer formula (2.39). Note that the derivation
above is original and has not been seen elsewhere up to our knowledge.
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Résumé en français

Un des faits remarquables de la Physique est que l’on peut tenter de trouver des lois simples
pour décrire un phénomène naturel à une échelle donnée sans connaître les lois microscopiques
régissant ses constituants à des échelles plus petites. Cela nous permet de faire progresser notre
compréhension des systèmes à l’échelle macroscopique, et de réaliser des percées technologiques
dans la société, sans avoir une compréhension complète des lois fondamentales qui régissent
le monde dans lequel nous vivons. Ce beau concept est l’une des principales raisons grâce
auxquelles de nombreuses lois en physique fonctionnent remarquablement bien pour décrire ce
que nous observons. La nature universelle de ces lois est plutôt fascinante et est l’une des
raisons pour lesquelles la Physique vaut la peine d’être étudiée.

Les raisons qui sous-tendent le concept d’universalité sont assez profondes et fascinent
la communauté de la Physique depuis longtemps. Les travaux fondateurs de Kadanoff en
1966, puis poursuivis par Wilson en 1971, ont permis d’éclairer ce phénomène et de l’expliquer
comme la conséquence d’un très grand nombre d’éléments en interaction [1,2]. Leur découverte
a constitué une avancée majeure dans notre compréhension des phases de la matière et des
transitions entre elles, comme lorsque l’eau bout et se transforme en vapeur. Cette universalité
émergente a été largement observée dans une variété de systèmes complexes et constitue une
pierre angulaire de la physique statistique moderne. Anderson le résume très bien dans son
article intitulé “More is different” [3], où il montre que le comportement des grands systèmes ne
peut pas être simplement extrapolé par les propriétés de ses constituants, et que des propriétés
entièrement nouvelles apparaissent à chaque niveau de complexité. Il souligne particulièrement
l’importance de la symétrie dans les lois de la nature.

Des systèmes vastes et complexes apparaissent dans une grande variété de domaines des
sciences naturelles ainsi que des sciences appliquées. Bien qu’intrinsèquement différents les uns
des autres, ils partagent en commun le fait d’être composés de nombreux constituants en inter-
action avec un nombre élevé de degrés de liberté. Bien qu’il s’agisse de systèmes déterministes
à l’échelle microscopique, c’est-à-dire au niveau des parties en interaction, ils se comportent
effectivement de manière stochastique au niveau agrégé. Extraire des informations pertinentes
sur le comportement macroscopique d’un système à partir de ses propriétés microscopiques est
l’une des tâches plutôt difficiles auxquelles le domaine de la physique statistique est consacré.
Alors que le domaine était à l’origine axé sur les systèmes issus de la physique, il est maintenant
devenu un domaine interdisciplinaire avec des applications allant de la biologie à la finance. Un
exemple paradigmatique de systèmes complexes sont les marchés financiers qui sont devenus
un domaine de recherche actif dans la communauté [4].

Alors que les systèmes complexes se comportent généralement de manière typique, ils présen-
tent parfois des comportements atypiques qui peuvent donner lieu à des événements extrêmes
tels que des tremblements de terre, des inondations extrêmes et de grands incendies de forêt.
Ces événements, qui sont omniprésents dans la nature, peuvent avoir des conséquences dé-
vastatrices. Des questions naturelles que l’on peut se poser sont: (a) quelle est la grandeur
du plus grand des éléments ? (b) quand se produit-il ? (c) est-il isolé, ou y a-t-il beaucoup
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d’autres éléments de même grandeur ? Le domaine des statistiques des valeurs extrêmes (SVE)
est consacré à l’étude de ces questions et a trouvé une grande variété d’applications allant des
sciences de l’environnement [5, 6] à la finance [7, 8]. Les SVE jouent également un rôle clé
en physique, notamment dans la description des systèmes désordonnés [11–14], des interfaces
fluctuantes [15–19] et des matrices aléatoires [20, 21] (pour une revue récente, voir [22–24]).
Alors que les SVE des variables aléatoires i.i.d. a été étudiée en profondeur [31, 32], on en
sait beaucoup moins sur les SVE des variables aléatoires fortement corrélées, qui apparaissent
souvent dans des contextes pratiques. Plusieurs modèles spécifiques de variables aléatoires
corrélées ont été étudiés et ont montré des comportements très riches ainsi que des caractéris-
tiques universelles [13, 18, 33–51]. En particulier, il a été montré que les marches aléatoires
unidimensionnelles en temps discret constituent un terrain de jeu très utile pour étudier les SVE
de variables aléatoires fortement corrélées [33,40–43,46,50–59].

Lorsqu’il est trop difficile d’obtenir des résultats analytiques sur les SVE, une façon naturelle
de procéder est de les étudier numériquement. Cependant, ce n’est pas une tâche facile car leurs
occurrences sont rares par définition. Une question naturelle qui se pose alors est : “Comment
échantillonner des événements rares de manière efficace ?”. En général, les trajectoires rares
sont importantes car elles capturent des informations sur le système qui ne peuvent pas être vues
dans les trajectoires typiques où les observables se concentrent autour de leur moyenne. Par
exemple, dans le contexte des verres, les trajectoires rares sont essentielles pour comprendre la
dynamique lente de relaxation structurale proche de la transition vitreuse où les fluctuations sont
importantes [60]. Les méthodes numériques pour les échantillonner sont d’un intérêt primordial
et plusieurs méthodes, comme celles de Monte-Carlo par chaines de Markov et l’échantillonnage
d’importance, ont été développées pour les systèmes à l’équilibre et hors équilibre [61–80]. .

Étroitement lié aux questions de valeurs extrêmes, le concept de premier passage a été
largement étudié à la fois en mathématiques [81, 82] et en physique [83–88]. Ce concept fait
référence au problème plutôt général de trouver le temps qu’il faut pour qu’un événement partic-
ulier se produise. Il joue un rôle crucial dans divers phénomènes tels que les réactions chimiques,
les animaux à la recherche de nourriture, les actifs financiers atteignant un prix limite ou les
rivières débordant de leur lit. Comme pour les SVE, cette observable est généralement assez dif-
ficile à calculer analytiquement. Cependant, lorsque cela est possible, il présente généralement
des comportements riches. Par exemple, des comportements intéressants apparaissent déjà au
niveau de l’un des processus stochastiques les plus simples, à savoir le mouvement Brownien uni-
dimensionnel, pour lequel l’événement de premier passage est certain mais prendra en moyenne
un temps infini pour se produire. Ce paradoxe apparent provient du fait que la distribution de
probabilité du temps de premier passage est normalisée mais a une queue de loi de puissance
telle que le premier moment est infini [84, 88]. Une façon de modifier ce comportement est
d’introduire une remise à zéro dans la dynamique, dans laquelle le processus est réinitialisé à sa
position de départ à un taux constant [89–91]. Cela rend le temps de premier passage moyen
fini et même minimisé à un taux de réinitialisation critique. Ce comportement a trouvé des ap-
plications naturelles dans l’optimisation de processus de recherche, où la recherche recommence
si la cible est introuvable dans un certain délai [92–96]. Plus généralement, la réinitialisation
modifie le mouvement de manière fondamentale et a suscité de nombreuses travaux sur ses
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conséquences [97–104].

Dans cette thèse, nous obtenons de nouveaux résultats analytiques sur les SVE des proces-
sus stochastiques, qui sont des modèles paradigmatiques de variables fortement corrélées. Dans
certains cas, on obtient des résultats universels, qui ont le mérite de rester valables pour une
large gamme de modèles. De plus, ils permettent une meilleure compréhension des caractéris-
tiques pertinentes qui régissent les SVE et révèlent parfois des transitions de phase inattendues.
De plus, nous fournissons de nouvelles méthodes pour échantillonner numériquement des tra-
jectoires rares pour une large classe de processus stochastiques. Ces méthodes sont illustrées
sur de nombreux exemples et se révèlent très efficaces en pratique. Enfin, nous présentons
quelques applications des SVE dans certains problèmes d’optimisation stochastique. Tous les
nouveaux résultats qui ont été publiés dans cette thèse sont entourés d’un encadré. La plupart
de ces résultats étant analytiques, ils nécessitent parfois des calculs assez longs. Nous avons
décidé de ne pas fournir tous les détails des dérivations dans cette thèse mais plutôt de fournir
un aperçu et quelques perspectives sur les résultats. Nous nous référerons régulièrement aux
articles publiés où se trouvent les calculs détaillés.

Cette thèse est organisée comme suit. Dans la suite du chapitre 1, nous présentons une
sélection des principaux résultats de cette thèse. Nous présentons quelques résultats analy-
tiques sur les statistiques d’ordre des marches aléatoires en temps discret. Nous révélons leur
comportement universel asymptotique dans la limite d’un grand nombre de pas. Ensuite, nous
présentons d’autres résultats analytiques sur le maximum moyen de marches aléatoires avec
une contrainte dite de “pont”. Nous discutons sa limite asymptotique, ainsi que sa correction
de taille finie, qui présente des caractéristiques riches en fonction de la queue de la distribution
des sauts. Enfin, nous introduisons une méthode efficace pour générer des marches aléatoires
avec cette contrainte, et discutons des généralisations à d’autres types de trajectoires rares.

Dans le chapitre 2, nous nous concentrons sur les SVE de processus stochastiques. Dans la
section 2.1, nous fournissons une introduction aux résultats classiques à propos des SVE. Dans
la section 2.2, nous étudions les statistiques d’ordre des marches aléatoires en temps discret
et esquissons la dérivation de leur comportement universel dans la limite d’un grand nombre
d’étapes. Dans la section 2.3, nous étudions le maximum moyen de marches aléatoires en temps
discret de pont et discutons son comportement asymptotique riche. Dans la section 2.4, nous
nous tournons vers les processus en temps continu et dérivons la distribution de la longueur
de l’enveloppe convexe du mouvement Brownien dans un domaine confiné. Les résultats de ce
chapitre ont donné lieu à plusieurs publications dont les résumés se trouvent p. 38, p. 41 et
p. 50.

Dans le chapitre 3, nous nous intéressons à l’échantillonnage numérique des trajectoires
rares. Dans la section 3.2, nous introduisons une méthode efficace pour échantillonner des
marches aléatoires en temps discret. Nous illustrons notre méthode et l’appliquons à différents
exemples. Dans la section 3.3, nous généralisons notre méthode à d’autres types de trajec-
toires rares et l’étendons à d’autres types de processus stochastiques, à la fois markoviens et
non markoviens. Dans la section 3.4, nous appliquons notre méthode à l’échantillonnage de
particules diffusives en présence d’un environnement de piégeage périodique. Nous discutons
brièvement des propriétés de transport effectives des particules survivantes. Les résultats de ce
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chapitre ont donné lieu à plusieurs publications dont les résumés se trouvent p. 58, p. 65, p. 72
et p. 81.

Dans le chapitre 4, nous discutons de plusieurs problèmes d’optimisation dans les processus
stochastiques. Dans la section 4.1, nous introduisons un pont Brownien à réinitialisation comme
modèle simple pour étudier les processus de recherche en présence d’une contrainte de pont.
Nous mettons en évidence un mécanisme surprenant induit par la réinitialisation qui amplifie
les fluctuations du processus. Dans la section 4.2, nous combinons la notion de réinitialisation
et de contrôle optimal dans un cadre analytique, analogue au paradigme Hamilton-Jacobi-
Bellman, pour contrôler de manière optimale les systèmes dynamiques soumis à une politique
de réinitialisation. Nous illustrons notre méthode sur différents exemples. Dans la section
4.3, nous étudions la diffusion classique avec la fonctionnalité supplémentaire qu’une particule
diffusante est réinitialisée à son point de départ chaque fois que la particule atteint un seuil
spécifié. Nous définissons et résolvons une optimisation non triviale dans laquelle un coût est
encouru chaque fois que la particule est réinitialisée et une récompense est obtenue lorsque la
particule reste près du point de réinitialisation. Les résultats de ce chapitre ont donné lieu à
plusieurs publications dont les résumés se trouvent p. 87, p. 94 et p. 98.

En raison du grand nombre d’articles écrits au cours de cette thèse, il n’aurait pas été
raisonnable de les présenter tous. Il fallait faire un choix et certains articles ont été laissés de
côté en annexe. Nous les mentionnons brièvement ici et ne les aborderons pas davantage dans
cette thèse.

• L’article intitulé “Survival probability of a run-and-tumble particle in the presence of a
drift” traite de la probabilité de survie d’une marche aléatoire persistante avec une distri-
bution de vitesse arbitraire, pas nécessairement symétrique, en présence d’une frontière
absorbante. Nous obtenons une formule générale, que nous appliquons au cas d’une
particule à deux états de vitesse ±v0 en présence d’une force constante, et obtenons des
comportements riches avec trois phases distinctes selon l’intensité de la force. Le résumé
se trouve en p. 113.

• L’article intitulé “Survival probability of random walks leaping over traps” étudie la prob-
abilité de survie d’une marche aléatoire en présence de pièges de taille finie par-dessus
lesquels elle peut sauter. Nous montrons que le taux de décroissance de la probabilité
de survie dépend non trivialement de la taille du piège. Nous généralisons le modèle aux
marches aléatoires avec des temps d’attente distribués en loi de puissance et dérivons
certaines limites diffusives du modèle. Le résumé se trouve en p. 114.

• L’article intitulé “A Tale of Two (and More) Altruists” présente un modèle dynamique
minimaliste d’évolution et de partage des richesses entre N agents. Nous comparons les
effets d’une politique altruiste par rapport à une politique individualiste. Nous montrons
que la meilleure politique dépend du critère choisi. Alors que l’altruisme conduit à une
richesse médiane plus globale, les individualistes qui vivent le plus longtemps accumulent
la majeure partie de la richesse et vivent plus longtemps que les altruistes. Le résumé se
trouve en p. 115.
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• L’article intitulé “First-Passage-Driven Boundary Recession” étudie un problème de fron-
tière mobile pour une particule Brownienne sur la ligne semi-infinie dans laquelle la fron-
tière se déplace d’une distance proportionnelle au temps entre les collisions successives de
la particule et de la frontière. Nous constatons que la queue de la distribution du n-ième
temps de frappe devient progressivement plus épaisse à mesure que n augmente. De
plus, nous constatons une double croissance logarithmique lente du nombre de rencontre
avec la frontière. Le résumé se trouve en p. 116.

• L’article intitulé “Wigner function for noninteracting fermions in hard wall potentials”
traite des fluctuations quantiques dans l’espace des phases de N fermions sans interaction
dans une boîte de dimension d. Nous obtenons des fonctions d’échelle de ces fluctuations
proches de la “Fermi surf” dans la limite de N → ∞ et montrons qu’elles sont universelles
par rapport à la dimension d de la boîte. Le résumé se trouve en p. 117.
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Abstracts of articles not discussed in this thesis

Survival probability of a run-and-tumble
particle in the presence of a drift

B. De Bruyne, S. N. Majumdar and G. Schehr, J. Stat. Mech., 043211 (2021).

Abstract:

We consider a one-dimensional run-and-tumble particle, or persistent randomwalk, in the presence of an absorbing boundary located at the origin. After eachtumbling event, which occurs at a constant rate γ, the (new) velocity of the parti-cle is drawn randomly from a distributionW (v). We study the survival probability
S(x, t) of a particle starting from x ≥ 0 up to time t and obtain an explicit ex-pression for its double Laplace transform (with respect to both x and t) for an
arbitrary velocity distribution W (v), not necessarily symmetric. This result is ob-tained as a consequence of Spitzer’s formula, which is well-known in the theoryof random walks and can be viewed as a generalization of the Sparre Andersentheorem. We then apply this general result to the specific case of a two-stateparticle with velocity ±v0, the so-called persistent random walk (PRW), and in thepresence of a constant drift µ and obtain an explicit expression for S(x, t), forwhich we present more detailed results. Depending on the drift µ, we find a richvariety of behaviours for S(x, t), leading to three distinct cases: (i) subcritical drift
−v0 <µ< v0, (ii) supercritical drift µ < −v0 and (iii) critical drift µ = −v0. In thesethree cases, we obtain exact analytical expressions for the survival probability
S(x, t) and establish connections with existing formulae in the mathematics lit-erature. Finally, we discuss some applications of these results to record statisticsand to the statistics of last-passage times.

Abstract of article 11 : Survival probability of a run-and-tumble particle in the presenceof a drift.
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Survival probability of random walks
leaping over traps

G. Pozzoli and B. De Bruyne, J. Stat. Mech., 123203 (2021).

Abstract:

We consider one-dimensional discrete-time random walks (RWs) in the presenceof finite-size traps of length ℓ over which the RWs can jump. We study the survivalprobability of such RWswhen the traps are periodically distributed and separatedby a distance L. We obtain exact results for the mean first-passage time and thesurvival probability in the special case of a double-sided exponential jump distri-bution. While such RWs typically survive longer than if they could not leap overtraps, their survival probability still decreases exponentially with the number ofsteps. The decay rate of the survival probability depends in a non-trivial way onthe trap length ℓ and exhibits an interesting regime when ℓ → 0 as it tends tothe ratio ℓ/L, which is reminiscent of strongly chaotic deterministic systems. Wegeneralize our model to continuous-time RWs, where we introduce a power-lawdistributed waiting time before each jump. In this case, we find that the survivalprobability decays algebraically with an exponent that is independent of the traplength. Finally, we derive the diffusive limit of our model and show that, depend-ing on the chosen scaling, we obtain either diffusion with uniform absorption, ordiffusion with periodically distributed point absorbers.

Abstract of article 12 : Survival probability of random walks leaping over traps.
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A Tale of Two (and More) Altruists

B. De Bruyne, J. Randon-Furling and S. Redner, J. Stat. Mech., 103405 (2021).

Abstract:

We introduce a minimalist dynamical model of wealth evolution and wealth shar-ing amongN agents as a platform to compare the relative merits of altruism andindividualism. In our model, the wealth of each agent independently evolves bydiffusion. For a population of altruists, whenever any agent reaches zero wealth(that is, the agent goes bankrupt), the remaining wealth of the otherN − 1 agentsis equally shared among all. The population is collectively defined to be bankruptwhen its total wealth falls below a specified small threshold value. For individu-alists, each time an agent goes bankrupt (s)he is considered to be “dead” and nowealth redistribution occurs. We determine the evolution of wealth in these twosocieties. Altruism leads to more global median wealth at early times; eventually,however, the longest-lived individualists accumulate most of the wealth and arericher and more long lived than the altruists.

Abstract of article 13 : A Tale of Two (and More) Altruists.
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First-Passage-Driven Boundary Recession

B. De Bruyne, J. Randon-Furling and S. Redner, J. Phys. A: Math. Theor. 55,354002 (2022).

Abstract:

We investigate a moving boundary problem for a Brownian particle on the semi-infinite line in which the boundary moves by a distance proportional to the timebetween successive collisions of the particle and the boundary. Phenomenolog-ically rich dynamics arises. In particular, the probability for the particle to firstreach the moving boundary for the nth time asymptotically scales as t−(1+2−n). Be-cause the tail of this distribution becomes progressively fatter, the typical timebetween successive first passages systematically gets longer. We also find thatthe number of collisions between the particle and the boundary scales as ln ln t,while the time dependence of the boundary position varies as t/ ln t.

Abstract of article 14 : First-Passage-Driven Boundary Recession.
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Wigner function for noninteracting
fermions in hard wall potentials

B. De Bruyne, D. S. Dean, P. Le Doussal, S. N. Majumdar and G. Schehr,Phys. Rev. A. 104, 013314 (2021).

Abstract:

The Wigner function WN(x,p) is a useful quantity to characterize the quantumfluctuations of an N -body system in its phase space. Here we studyWN(x,p) for
N noninteracting spinless fermions in a d-dimensional spherical hard box of ra-diusR at temperature T = 0. In the largeN limit, the local density approximation(LDA) predicts that WN(x,p) ≈ 1/(2πℏ)d inside a finite region of the (x,p) plane,namely for |x| < R and |p| < kF where kF is the Fermimomentum, whileWN(x,p)vanishes outside this region, or “droplet”, on a scale determined by quantum fluc-tuations. In this paper we investigate systematically, in this quantum region, thestructure of the Wigner function along the edge of this droplet, called the Fermisurf. In one dimension, we find that there are three distinct edge regions along theFermi surf and we compute exactly the associated nontrivial scaling functions ineach regime. We also study the momentum distribution ρ̂N(p) and find a strikingalgebraic tail for very large momenta ρ̂N(p) ∝ 1/p4, well beyond kF , reminiscentof a similar tail found in interacting quantum systems (discussed in the context ofTan’s relation). We then generalize these results to higher d and find, remarkably,that the scaling function close to the edge of the box is universal, i.e., independentof the dimension d.

Abstract of article 15 : Wigner function for noninteracting fermions in hard wall poten-tials.
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