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Résumé Étendu

La paralysie cérébrale (PC) est définie comme un ensemble de troubles perma-
nents du développement du mouvement et de la posture, responsables de limita-
tions d’activité, causés par des lésions non progressives au cours du développe-
ment du cerveau chez le foetus ou le nourrisson. [132] Elle entraîne un ensemble
de déformations musculo-squelettiques, comme l’équin, l’une des conséquences les
plus courantes chez les patients atteints de PC. La déformation est causée par la
spasticité des muscles et modifie la morphométrie musculaire, et peut entraîner une
déformation osseuse par l’interaction os-muscle. La pratique clinique a signalé la
déviation par rapport à la norme des torsions fémorales et tibiales ou de l’angle
cervico-diaphysaire pendant la croissance des patients. Cependant, pour l’articu-
lation de la cheville, les changements morphométriques osseux liés à l’équin sont
moins étudiés. Peu d’informations sont disponibles. Pour une meilleure compré-
hension de la déformation en équin, l’analyse morphologique de l’articulation de
la cheville, incluant le calcaneus, le talus et l’extrémité distale du tibia, est essen-
tielle. L’objectif de cette thèse est d’étudier la déformation osseuse morphologique
de l’articulation de la cheville dans la population PC.

Avant de caractériser la déformation anormale de la forme de l’os, il faut ré-
pondre à une question : comment définir la forme normale de l’os? La modélisation
de la normalité fournira les informations anatomiques de la population de TD (ty-
pique en développement). La modélisation statistique de la forme (SSM) est un ou-
til pour comprendre les formes en utilisant des méthodes statistiques, y compris la
forme moyenne et la variation de la forme. Il a été largement utilisé dans le domaine
médical pour analyser les structures anatomiques. Dans [99] et [92], les auteurs ont
analysé la morphométrie de l’articulation tibiotalaire et de l’articulation subtalaire
de l’adulte avec l’outil SSM. Dans le cas des données pédiatriques, l’analyse mor-
phologique reste un domaine ouvert. La première contribution de cette thèse est
d’analyser la forme de l’os de la cheville d’enfants avec une approche SSM basée
sur les voxels. Grâce à l’analyse de la forme, un modèle moyen de l’IRM de l’articu-
lation de la cheville des enfants, également appelé atlas, est construit. La variation
de la forme chez les enfants en bonne santé est analysée, et la corrélation avec les
mesures cliniques est étudiée, ce qui fournit des informations sur la variation ana-
tomique des os d’intérêt et une explication qualitative du modèle.

Une fois la normalité définie, les questions suivantes se posent : existe-t-il une
différence morphologique entre les os de la cheville du TD et du CP? Si oui, où se
situent ces différences? Une anomalie est une observation qui s’écarte considéra-
blement de la normalité [133]. Dans le contexte de l’analyse des formes, une ano-
malie peut être définie par des paramètres morphologiques locaux qui s’écartent
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considérablement de la distribution normale de la forme moyenne. Les trois prin-
cipales classes d’algorithmes permettant de détecter les anomalies sont les modèles
probabilistes, la classification à une classe et les modèles de reconstruction [133].
Dans le contexte considéré dans ce travail, un élément clé réside dans la petite
taille de l’échantillon qui détermine le choix des méthodes de détection appropriées.
Deux techniques complémentaires de détection d’anomalies, l’une basée sur une
approche statistique et l’autre sur un critère de reconstruction, sont agrégées pour
combiner les informations statistiques et biomécaniques. Le pipeline de la méthode
proposée est illustré dans la Figure 1.

FIGURE 1 : Pipeline d’analyse des anomalies de l’articulation de la che-
ville basé sur la déformation pour les équins.

En raison de la variabilité des réponses individuelles au traitement conçu sur
la base de l’analyse de groupe, une approche personnalisée des soins médicaux est
actuellement nécessaire [37]. Une approche personnalisée pour comprendre la va-
riation inter-sujet devient nécessaire pour une réadaptation orientée vers le patient.
Par conséquent, le troisième objectif de cette thèse est d’analyser la forme des os à
la fois au niveau du groupe et au niveau personnel, afin de déterminer si le modèle
de déformation personnel correspond au modèle de déformation de la population.

Une étude récente [62] a montré l’importance de l’évaluation et de la validation
de ces outils dans les applications cliniques. Les résultats quantitatifs et qualitatifs
montrent que les outils SSM ont différents niveaux de cohérence et différentes ca-
pacités à capturer la variabilité au niveau de la population. Ce qui ressort de cette
étude est la nécessité de comparer les résultats obtenus à l’aide de plusieurs mé-
thodes d’analyse de forme. Nous adoptons une approche basée sur les surfaces et
une approche basée sur les voxels. Les deux méthodes capturent des régions de dé-
formation similaires au niveau du groupe (voir la Figure 2).

Cette thèse est organisée comme suit :

Le chapitre 1 présente le contexte clinique, notamment la PC et la déforma-
tion en équin spastique, l’anatomie de l’articulation de la cheville et la déformation
musculo-squelettique dans la PC. La technologie pertinente, notamment le SSM et
la détection des anomalies, est également présentée.
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FIGURE 2 : Analyse comparative de la forme de l’articulation de la che-
ville avec une méthode basée sur les surfaces et une méthode basée sur

les voxels.

Le chapitre 2 modélise la forme du calcaneus, du talus et du tibia. Tout d’abord,
l’acquisition et le prétraitement des données utilisées dans cette thèse sont présen-
tés. Ensuite, la forme des os de la population TD est modélisée avec une méthode
SSM basée sur les voxels et la variation de la forme parmi la population TD est
présentée. En outre, la corrélation entre les paramètres de forme du modèle et les
coefficients cliniques est analysée pour évaluer et comprendre le modèle construit.

Le chapitre 3 présente l’analyse des anomalies morphologiques de l’articulation
de la cheville. Dans ce chapitre, nous analysons les déformations osseuses anor-
males de manière multi-résolution : à l’échelle globale, par région et par voxel. Di-
verses métriques quantifiables pour mesurer la morphométrie sont introduites pour
l’analyse globale et régionale. Nous avons proposé un pipeline d’analyse des ano-
malies adapté à la taille limitée de l’ensemble de données pour l’analyse basée sur
les voxels. Des expériences sur des données IRM synthétiques et réelles sont présen-
tées afin d’évaluer la méthode proposée et d’étudier les différences de forme des os
entre les populations.

Le chapitre 4 présente une analyse personnalisée complète de la forme des os
des articulations de la cheville. Tout d’abord, l’analyse de groupe est réalisée avec
deux méthodes SSM différentes afin de comparer les résultats obtenus avec diffé-
rentes méthodes. Ensuite, l’analyse personnalisée de la forme est exécutée avec une
méthode SSM basée sur les voxels, qui permet de comprendre au niveau du patient.

Le chapitre 5 conclut cette thèse et présente les perspectives de travaux futurs,
notamment l’analyse des anomalies cinématiques basée sur l’IRM dynamique, l’in-
terprétation des résultats de l’analyse des anomalies et le recalage d’images basé sur
l’apprentissage profond.
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1.1 Motivation

Cerebral palsy (CP) is a group of disorders that affect a persons ability to move
and maintain balance and posture. It causes a set of musculoskeletal deformities,
such as the equinus, one of the most common consequences that occurs to patients
with CP. The deformity is caused by the spasticity of muscles and changes the mus-
cle morphometry, and may lead to bone deformation through the bone-muscle inter-
action. The clinical practice has reported the deviation from the norm of the femoral
and tibial [87], [98] or the cervico-diaphysial angle [52] during the growth of the pa-
tients. However for the ankle joint, the bone morphometry changes related to the
equinus are less studied. Little information is available. For a better understanding
of the equinus deformity, the morphological analysis of the ankle joint, including
the calcaneus, talus and distal end of the tibia, is essential.

Before the characterization of abnormal bone shape deformation, one question
needs to be answered: how to define the normal bone shape. Modeling the normal-
ity with Statistical Shape Modeling (SSM) can provide the anatomical information of
the typical developing (TD) population. SSM is a powerful tool for understanding
shapes using statistical methods, including the mean shape and the shape variation.
It has been widely used in the medical field to analyze anatomical structures. With
the help of SSM, the normality of ankle joint bones can be accessed.

Once the normality is defined, then the following questions will be asked: Is
there any morphological difference existing between TD’s and CP’s ankle joint bones?
If yes, where are the differences located? An anomaly is an observation that deviates
considerably from the normality [133]. In the context of shape analysis, an anomaly
can be defined by local morphological parameters that deviate significantly from
the normal distribution to the mean shape. Anomaly detection is a technology that
aims to localize abnormal samples based on probability, which enables us to detect
the possible shape difference between two groups.
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Due to the variability of individual responses to the treatment designed based
on the group analysis, a personalized approach to medical care is currently re-
quired [37]. A personalized approach provides the possibility for patient-oriented
rehabilitation. Therefore the third aim of this thesis is to analyze the bone shape at
both group level and personal level, to figure out if the personal deformation pattern
corresponds to the pattern of the population.

1.2 Thesis overview

The ultimate objective of this thesis is to investigate the morphological bone de-
formation of ankle joint in children with CP. The main contributions of this thesis
are:

• A shape analysis of the ankle joint bone of children with a voxel-based SSM
approach and the construction of atlas of children ankle joint.

• A multi-resolution children ankle joint morphometry analysis to compare the
morphological difference between the TD population and the CP population.
A small-dataset-adapted pipeline for voxel-based anomaly analysis is devel-
opped to localize the abnormal bone deformation in voxel scale.

• A comprehensive personalized shape analysis allowing a morphometry anal-
ysis in the subject level.

• A comparison between different SSM tools in order to confirm the robustness
and the reliability of the obtained results.

1.3 Thesis organisation

This thesis is organized as follows:

Chapter 2 briefly introduces the clinical background, including the CP and the
spastic equinus deformity, the ankle joint anatomy and the musculoskeletal defor-
mation in CP. The relevant technology, including SSM and anomaly detection, is
also presented.

Chapter 3 models the shape of the calcaneus, talus and tibia. Firstly, we intro-
duce the acquisition and the preprocessing of the data used in this thesis. Then the
bone shape of the TD population is modeled with a voxel-based SSM method and
the shape variation analysis among the TD population is presented. In addition, to
evaluate and understand the constructed model, the correlation analysis between
the shape parameters of the model and the clinical coefficients is performed.

Chapter 4 presents the ankle joint morphological anomaly analysis. In this chap-
ter, we analyze abnormal bone deformation in a multi-resolution way: global-scale,
region-based, and voxel-based. For global and regional analysis, some quantifica-
tional metrics to measure morphometry are introduced. For voxel-based analysis,
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we propose an anomaly analysis pipeline adapted to the limited-size dataset. Ex-
periments on our MRI data reveals the possible bone shape differences between
populations.

Chapter 5 presents a comprehensive personalized bone shape analysis of ankle
joints. Firstly, the group analysis is performed with two different SSM methods to
compare the results obtained with different approaches. Secondly, the personalized
shape analysis is executed with a voxel-based SSM method, which provides the
understanding of the pathology at the patient level.

Chapter 6 concludes this thesis and presents the perspectives for future works,
including the In vivo kinematic anomaly analysis based on dynamic MRI, interpre-
tation of anomaly analysis results, and the deep-learning-based registration.
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2.1 Clinical context

2.1.1 Cerebral palsy and spastic equinus deformity

Cerebral palsy (CP) is the most common physical disability in childhood, affect-
ing 1-4 out of every 1000 newborns and 17 million people worldwide are affected
by CP [186], [65]. Cerebral palsy is defined as a set of "permanent disorders in the
development of movement and posture, responsible for activity limitations, caused
by non-progressive damage during brain development in the fetus or infant." [132]
This non-progressive neurological damage results in a set of movement and posture
disorders.

According to the type of motor dysfunction and activity restriction, three classes
of CP are distinguished: spastic, ataxic and dyskinetic [65]. The mixture of three
types also exists. These classifications reflect the areas of the brain that are dam-
aged. The spasticity is the most common symptom of CP that appears in 70% of
patients. Foot equinus is the most common deformity in children with spastic cere-
bral palsy [110], which is typically defined as the inability to dorsiflex the foot above
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plantigrade, with the hindfoot in neutral position and the knee in extended posi-
tion [83], [156]. In children with bilateral cerebral palsy, equinus prevalence is 83.3%
and tends to increase with age [77]. It manifests poor muscle control and weakness
around the ankle and foot, leading to abnormal gait patterns and bone deformations
during growth.

2.1.2 Anatomy of ankle

FIGURE 2.1: Bones of ankle joint. The ankle joint consists of 4 bones:
calcaneus, talus, tibia and fibula. In this thesis, we focus on the calca-

neus, talus, tibia. Extracted from [66].

The ankle joint consists of 4 bones: calcaneus, talus, tibia and fibula, as illustrated
in Fig. 2.1. The articulation between calcaneus and talus is subtalar joint, also called
talocalcaneal joint. This joint enables the inversion and exversion of the foot. The
talocrural joint is the articulation between bone of the leg (tibia and fibula) and talus,
permitting dorsiflexion and plantarflexion of the foot. It consists of tibiotalar joint
and tibiofibula joint. In this thesis, we focus on calcaneus, talus and tibia, also the
subtalar joint and tibiotalar joint.

2.1.2.1 Bones of interest

The calcaneus, as known as the heel bone, is the largest bone of human foot. The
anatomy of calcaneus is illustrated in Figure 2.2.

The talus connects with two bones of lower leg, the tibia and the fibula. At the
foot end, it articulates with the calcaneus to form the subtalar joint. The anatomy of
talus is illustrated in Figure 2.3. It can be divided into three parts: the head, the neck
and the body.

The distal end of tibia is the end contributing to the ankle joint. The distal end
has five surfaces: anterior, posterior, medial, lateral and distal. The lateral surface
exhibits a triangular notch which attaches to the fibula. The distal articular surface
connects to the talar dome. The medial side is a projection called medial malleolus.
The anatomy of tibia is illustrated in Figure 2.4.
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FIGURE 2.2: Anatomy of calcaneus. Figure source: Case courtesy of Dr
Matt Skalski, Radiopaedia.org, rID: 23709 [176]

2.1.2.2 Tendons and ligaments of ankle joint

Tendons are fibrous tissues and play a role of connection between bone and mus-
cle. It is able to transmit the mechanical forces of muscle contraction to the skeletal
system and withstand significant amounts of tension. An illustration of foot tendons
is shown in Figure 2.5.

Ligaments are fibrous tissues that are similar to tendons but they connect bone
to bone. They either attach to the surface of the bone or fuse with the outer layer
of the joint capsule to strengthen the stability of the joint. The lateral, medial and
posterior view of ankle and foot ligaments are presented in Figure 2.6.

2.1.3 Musculoskeletal deformation in CP

A common cause of equinus deformity is the imbalance between the plantar
flexor muscles and the ankle’s dorsal flexor muscles. It is possible that this imbal-
ance is caused by spasticity, which can affect the entire triceps surae muscle complex
or perhaps the isolated gastrocnemius muscle. Literature reports that fixed equinus
deformity is not initially present but develops during adolescence. In [2], experi-
ments revealed the slower muscles and bones growth in CP than their TD siblings.
At first, the equinus is presented as dynamic contracture of muscles and impact to
gait pattern. Over the time dynamic tightness can develop into fixed deformity oc-
curs in soft tissue, articulars and bones. In [113], authors reported the correlation of
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FIGURE 2.3: Figure source: Case courtesy of Dr Matt Skalski, Radiopae-
dia.org, rID: 31891 [16]

FIGURE 2.4: Anatomy of tibia. Figure source: Case courtesy of Open-
Stax College, Radiopaedia.org, rID: 42753 [89]
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FIGURE 2.5: Tendons of foot. Reproduced from [66].

FIGURE 2.6: Ligaments of ankle joints. Reproduced from [66].

rocker-bottom deformity and subluxation of the talonavicular joint with equinus de-
formity. In [142], authors reported the morphological muscle changes related to CP.
The muscles of children and adolescents with spastic CP were significantly smaller
than those with typically developing muscles. Hence little information is available
to the bone morphological changes regarding to the ankle joint.

The muscle quality has influence to the bone growth. It has been demonstrated
that several myokines are involved in bone metabolism, whose secretion appears
to be related to exercise and muscle contraction [123], [182]. For instance, IL-6 acts
on osteoclastic activity and activates bone resorption. Muscle also seems to have a
paracrine action on bone metabolism. Studies have shown that muscle hypertro-
phy and bone anabolism are coupled. A powerful bone anabolic stimulus is also
provided by exercise-induced alterations in the plasma membrane of myofibers via
FGF2.

Therefore, one hypothesis can be proposed that the morphological differences
may exist between children with equinus deformity and the typical developing chil-
dren. Investigating this difference will enable a better understanding of CP and a
suitable rehabilitation program.
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2.1.4 Magnetic resonance imaging (MRI) in the study of ankle joint

MRI is a medical imaging technique used in radiology to visualize anatomy. Un-
like the technologies working with ionizing radiation, such as CT, MRI scanners use
strong magnetic fields, magnetic field gradients, and radio waves to generate im-
ages of the organs in the body. The basic principles of MRI are introduced in [68].
The hydrogen nucleus possesses the property of spin that results in the rotation or
process of the nucleus when applying a strong external static magnetic field B0. The
velocity of the rotation and the process is the Larmor frequency ω0, and proportional
to the field strength ω0 = γ0B0. A second radio frequency (RF) magnetic field B1 is
applied to the nuclei under the B0. The RF energy is usually applied in short pulses
at the resonant frequency which equals ω0. The RF pulses excite the nucleus and
cause an energy transition. The absorption and the relaxation of the energy induces
an electromagnetic signal that can be detected by a suitably tuned coil of wire. Dif-
ferent tissues produce different electromagnetic signals. The location information
is provided by using the magnetic field gradients. The non-invasive and ionizing
radiation-free nature of MRI plays an irreplaceable role in pediatric studies, as in
this thesis.

2.1.4.1 Static MRI

Static MRI techniques have been used for accurate diagnosis of ankle joint dis-
orders and ankle joint morphological analysis. In [46], Elstob et al. examined the
MRI features of the ankle related to genetic hemochromatosis, which are numerous
and large cysts on ankle MRI, large osteophytes and the presence of extensive full-
thickness cartilage loss in the ankle joint and middle subtalar articulation. In [147],
the effect of long-distance running on the ankle cartilage has been studied with the
help of T2w MR images scanned by a 1.5T MRI on a mobile unit. Also, MRI is used
to diagnose and grade the osteoarthritis of the ankle [1].

MRI is not only applied in bone analysis but also the soft tissues such as the liga-
ments and tendons in ankle joint studies. In [28], authors studied the ligament dam-
age and the medial joint line bone bruising following an acute ankle inversion injury
with MRI examinations. In [157] and [127], the mechanics of the ankle joints have
been studied with 3D stress MRI, and the effect of the ligament damage. MRI can
be used to evaluate the quality of ankle ligaments, such as anterior talofibular lig-
ament, lateral fibulotalocalcaneal ligament complex, and calcaneofibular ligament
in chronic lateral ankle instability [185], [116], [115], [31]. It is also used for the de-
tection of early architectural changes in cartilage and subchondral bone for chronic
lateral ankle instability patients [167]. In [194], authors identified the risk factor for
chronic ankle instability following an acute lateral ankle sprain with MRI, includ-
ing age, BMI, posterior talofibular ligament injury, large bone marrow lesion of the
talus and Grade 2 effusion of the tibiotalar joint. In [80], Ishimatus et al. reported
the relationship between ankle morphology and the size of non-trauma-related os-
teochondral lesions of the talus.

Static MRI is a mature technique for both clinic and research proposes in bone
analysis. However, one challenge in the acquisition is that it requires the subject to
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be examined to remain stationary during the scan in order to obtain an image with
high resolution. The acquisition lasts normally for minutes. It may be a challenge
for subjects. Figure 2.7 illustrates the example of static T1w MRI of the ankle joint.

(A) (B) (C)

FIGURE 2.7: Example of static MR image: (A) sagittal plane, (B) coronal
plane, (C) axial plane.

2.1.4.2 Dynamic MRI

For physiologically better represent the dynamic musculoskeletal system, re-
searchers have developed the dynamic MRI technique, which enables the in vivo
analysis of joint mechanics. It has been successfully applied in the quantification
of patellofemoral cartilage contact kinematics [22], in vivo quantification of ankle
joint space width [105] and ankle joint kinematic analysis and motion reconstruc-
tion [106].

Some technologies are based on the motion-triggered principle, i.e. data are con-
tinuously collected over many cycles and then retrospectively sorted with a syn-
chronization trigger [154]. The cine MRI [95] and cine-PC (cine Phase Contrast)
MRI [153], or fast-PC MRI, belong to this category. The limitation of this technique
is the requirement of a long acquisition time. In [152], authors analyzed the foot
joint kinematics, including talocrural and subtalar joints, with cine-PC MRI. Also
in [126], knee joint kinematics has been studied with cine-PC MRI.

Another category of dynamic MR imaging is real-time sequences. Contrary to
the motion-triggered technology, it achieves the imaging of examined anatomy tra-
jectory in one motion cycle by exploiting spatio-temporal redundancy. In [34], the
ultra-fast turbo gradient echo sequences have been used in the muscle moment arm
measurement method, which is demonstrated in the human ankle joint and Achilles
tendon. The dynamic images with 20 frames are acquired in 50 seconds. Real-time
Fast Field Echo (FFE) sequence is another technique of real-time MRI. As presented
in [106], the dorsi-plantar flexion of the ankle joint is scanned in 18 seconds to ac-
quire a dynamic image of 15 frames and the resolution is 0.56 × 0.56 × 9mm. In
Figure 2.8, one example of real-time T1w FFE sequence of ankle joint dorsi-plantar
flexion is presented.
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The main challenges of dynamic MRI are the low resolution of acquired images
and the artifacts induced by motion, which require processing including the super-
resolution and the removal of artifacts.

FIGURE 2.8: 4 frames of a sequence of dynamique MRI of ankle joint.

2.2 Statistical shape modeling (SSM)

SSM is a tool to analyze the geometric properties of a given set of shapes. It uses
statistical methods to compute the quantitative representation of shapes. SSM de-
scribes the mean shape and the principle modes of variation of the shapes, therefore
it facilitates the population-wise shape comparison and structure reconstruction and
has been widely applied in the medical field. In neuroscience, it enables the analysis
of the relation shape between brain morphometry and the brain disorders [82], [192],
[20]. In skeletal applications, SSM helps the 3D bone reconstruction, pathology di-
agnosis, implant design, and surgery planning. A review of SSM and its application
in bone shape analysis is available in [139].

A shape is the external boundary, outline, or external surface of an object. Let
A1, A2, . . . , AN be the set of N shapes. The correspondence between these shapes
can be computed by registration technique and a deformation field Di is obtained
which represents the morphological information of Ai. The key technology to build
the correspondence between shapes is therefore the registration, a technology to
transform images from their original space to another space.

2.2.1 Image registration

Image registration is a process to transform several different data into one coor-
dinate system and is widely applied in different domains including medical image
processing [118]. The image to which the other images are transformed is consid-
ered as the reference Ire f and the other images are called as moving images Imov.
The objective of registration is therefore to find the transformation T that will max-
imize the similarity between the reference image and the transformed moving im-
age Imov ◦ T ∼ Ire f . To this end, the registration procedure consists of 4 elements:
features of the image, similarity or distance between images, transformation, and
optimization.

According to the application context, medical image registration can be divided
into intra-individual registration and inter-individual registration. In intra-individual
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registration, the reference image and the moving image belong to the same subject,
and in inter-individual registration, where 2 images are from different subjects.

2.2.1.1 Image features and inter-image distance

The first step of the registration is to extract the features of images, which is used
to measure the distance between 2 images during the optimization and to guide the
registration. Based on the features extracted, it can be distinguished into 2 cate-
gories: geometric approaches and iconic approaches.

The geometric approaches work with some geometric features such as points
(also called landmarks) [170], curves [40] and surfaces [107]. The features can be
defined by experts according to anatomy or automatically detected. Denote the
Gn (n = 1, 2, . . . , N) is the geometric features, the estimation of transformation is
performed by minimizing the distance map of Gn (n = 1, 2, . . . , N) between Ire f and
Imov:

T̂ = arg min
N

∑
n=1

∥Gn(Ire f )− Gn(Imov)∥2 (2.1)

such as ICP (Iterative Closest Point) [17] algorithm.

The geometric methods are often based on the anatomy which enables the med-
ical explanation and discrimination. However, the accuracy of automatic feature
extraction needs to be taken into consideration and the error of feature detection
may lead to wrong correspondence. Also, the local registration accuracy is related
to the distance to the pre-defined geometric feature. It only guarantees accuracy
near the region of features.

Instead of using geometric features, the iconic approaches focus entirely on the
features based on the voxel intensity of the image and optimize the transformation
by maximizing the similarity criterion between Ire f and Imov.

T̂ = arg max sim(Ire f , Imov ◦ T) (2.2)

Based on the hypothesis of relationship between Ire f and Imov, the similarity mea-
sures can be divided into 4 categories [129]:

• Identical relationship: this category assumes that the density of voxel in cor-
respondence between Ire f and Imov is identical. Therefore the similarity can
be defined as the mean squares difference. This category of methods is only
applied in mono-modality registration.

• Affine relationship: since the identical relationship is rarely met in practice,
the affine relationship is often used to measure the linear similarity, such as
the linear correlation coefficient.
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• Functional relationship: this category of relationship is less strict. It assumes
that the relationship can be described with a continuous function and not lim-
ited to a linear relationship, thus suiting the multi-modality cases. Correlation
ratio [130] and its normalized version belong to this category.

• Statistical relationship: such as mutual information [183] and normalized mu-
tual information, it is based on information theory and calculates the statistical
dependence with the joint histogram.

2.2.1.2 Linear registration

In linear registration, the transformation can be described with a linear model:

Ire f = Rx + t (2.3)

For 3D application, R is a 3× 3 rotation matrix, and t is a 3D translation vector. Thus
the transformation matrix T can be defined as a 4 × 4 matrix:

T =

[
R t
0 1

]
(2.4)

The linear transformation consists mainly of rigid transformation, similarity, affine
transformation, and projective transformation.

• Rigid transformation: the rigid transformation contains only rotation and trans-
lation. The number of DOFs is 6 for 3D images. This type of transformation
only suits the intra-subject registration, i.e. Ire f and Imov are from the same
subject.

• Similarity: in addition to translations and rotations, the similarity possesses
an isotropic scale factor. Thus the number of DOFs for 3D images is 7. It
preserves angles, parallelism, and length ratio. This type of transformation is
also applied in intra-subject registration of different modalities.

• Affine transformation: the affine transformation allows the rotation, transla-
tion, reflection, scaling, and shearing. It is able to preserve the parallelism.
The number of DOFs is 12 in 3D. It is often used in simple inter-subject situ-
ations but for more complicated cases it is not able to capture the anatomical
variability.

• Projective transformation: the projective transformation does not preserve par-
allelism, length, and angle. But it still preserves collinearity and incidence.
Among the applications for this type of transformation are medical imaging
for which a point source generates radiation that interacts with the object be-
ing imaged in a plane to produce a projection image of the object, as well as
virtual reality applications.
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projective

FIGURE 2.9: Linear transformation applied on 2D square.

2.2.1.3 Non-linear registration

Due to the large and delicate anatomical variability among population, using
linear transformations that apply the same transform matrix to all voxel is not flex-
ible enough to match the anatomy of a single person whose anatomy has changed
locally. In this case, the transform matrix can be replaced by a deformation field D
that associates a 3D displacement vector v(x, y, z) = [dx, dy, dz] with voxel located at
(x, y, z). In practice, the registration begins normally with a linear stage to roughly
align the image and then is followed by a non-linear registration for refined match-
ing.

For biomedical applications, it is crucial to apply constraints to the transforma-
tion in order to exhibit special properties including inverse consistency, symmetry,
topology preservation, diffeomorphism, etc. [161]. The constraints are achieved by
adding a regularisation term during the optimization process. Two reviews of non-
linear registration are available in [75] and [161]. According to Sotiras et al. [161], the
deformable transformation model can be classified into 4 groups.

Transformations derived from physical models [112]: five sub-categories are
contained in this group: elastic body models, viscous fluid flow models, diffusion
models, curvature registration, and flows of diffeomorphisms.

The elastic body algorithms model the images as an elastic body and use the
Navier-Cauchy Partial Differential Equation to describe the deformation [32]. In
viscous fluid flow models, the image under deformation is modeled as a viscous
fluid and the transformation is governed by the Navier-Stokes equation [33]. The
diffusion models execute the regularisation by a diffusion equation with Gaussian
kernel [169]. Curvature-based registration models the deformation by an equilib-
rium equation [53]. The flows of diffeomorphisms model the deformation as the
integration of velocity of voxel over time [173].

Given two manifolds M and N, a differentiable map f : M → N is called diffeo-
morphism if f is bijective and f−1 is also differentiable. The properties of diffeomor-
phism such as smoothness, invertibility and topology-preservation fit the constrains
for the registration task and thus some frameworks based on diffeomorphism have
been proposed.
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Under the Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work [33], a diffeomorphism ϕ ∈ Di f f (M), M ∈ R3 can be parameterized with a
time-varying velocity field υ(t), therefore the diffeomorphisms are the flow of vec-
tor fields γ(t) initiated at the identity given by the following ordinary differential
equation (ODE):

∂γ(x, t)
∂t

= υ(t, γ(x, t)), γ(x, 0) = 0 (2.5)

The transformations is generated by the integration of this ODE:

ϕ(x) = γ(x, 1) = x +
∫ 1

0
υ(t, γ(t))dt (2.6)

FIGURE 2.10: Illustration of non-linear registration: the moving image
is transformed by the deformation field under LDDMM framework to

align with the reference.

Transformations derived from interpolation theory: Interpolation theory or
approximation theory are used to build models of this class. The approximation
theory assumes that displacement estimates are inaccurate. Thus, instead of tak-
ing exact values of known displacements, the transformation approximates them
smoothly. The methods in this category include radial basis functions [190], elastic
body splines [39], free form deformations [149] and signal representation [32].

Knowledge-based geometric transformations: In medical image analysis, the
registration may be performed to a specific target image or may involve a specific
anatomical organ. Thus it is possible to introduce knowledge about the deforma-
tions. There are two ways to introduce the knowledge of deformations. One is
performed by learning the statistic based on training data and serves as prior to con-
strain the registration, such as applying principle component analysis (PCA) [35] or
Gaussian mixture model (GMM) [60]. The other method is based on biomechani-
cal or biophysical knowledge and adds the biomechanical or biophysical model to
regularize the transformation [91].
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Task-specific constraints: Some methods were proposed with a specific goal,
such as topology preservation [117], volume preservation [67] and rigidity con-
straints [162]. The constraints for specific tasks often are used in conjunction with
physics-based models and interpolation-based models.

2.2.1.4 Deep-learning-based registration

The use of deep learning techniques in medical image analysis has increased sig-
nificantly over the past few years. Deep-learning-based methods have changed the
landscape of medical image processing research in a number of fields and attained
state-of-the-art performance in a variety of areas, including medical image registra-
tion tasks. A review of deep-learning-based medical image registration has been
reported in [71]. The authors proposed to divide the deep-learning-based methods
into three categories: deep iterative registration, supervised transformation estima-
tion and unsupervised transformation estimation.

The deep iterative registration consists of deep-similarity-based registration and
reinforcement-learning-based registration. The deep-similarity-based registration
inserts the similarity into a conventional registration framework with pre-processing,
transformation estimation and optimization. The deep network aims to learn a sim-
ilarity metric with the backward propagation [188]. Instead of learning similarity
metrics, the reinforcement-learning-based approaches use a trained agent to replace
the pre-defined optimization algorithm [94].

Recent works have confirmed the performance of deep iterative registration al-
gorithms. However, the iteration requires a large resource of computation and leads
to the difficulty of real-time implementation, especially in high-dimensional de-
formable registration. Therefore the deep transformation estimation approaches are
proposed.

The fully supervised registration uses a neural network to estimate the transfor-
mation and optimize with a loss function determined by ground truth data. The
ground truth data can be real transformation generated by classical methods [189],
synthetic transformation [159]. For cases lacking the ground truth transformation,
Fan et al. [50] proposed a dual supervision strategy where the loss function is deter-
mined by the similarity and the ground truth. Hu et al. applied the GAN structure
and optimized the network by simultaneously maximizing the similarity term and
minimizing an adversarial loss term [78].

The supervised methods require a high number of manually annotated ground
truths. Also, the reliability of ground truth significantly influences the performance
of the trained model. This motivated the appearance of unsupervised models. Some
works proposed to utilize the similarity metric to train the models. In [36], Dalca et
al. combined transformer with diffeomorphism to obtain the velocity and the model
is optimized with mean squared error. In [49], Fan et al. proposed a model based on
GAN and used the discriminator to qualify the registration performance, instead of
the utilization of manually crafted metrics. On the other hand, some works applied
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a feature-based strategy. Such as in [101], Liu et al. proposed a tensor-based MIND
method using a principle component analysis-based network.

It has been reported the outperformance of the deep-learning-based registration
methods to the conventional registration models. However, the limitations of this
type of approach may limit the application in the real world. Firstly, the large dataset
is obligatory for the training of deep neural networks which is challenging for med-
ical applications. Secondly, the training of deep neural networks has a high demand
on computational resources.

2.2.1.5 Construction of atlas

The construction of atlas is one special application of inter-subject registration
where all subjects are registered to a common reference, which can be an initial ref-
erence, the other subjects or a common template space. Thus, the atlas is an average
model of all subjects used in the construction and therefore a powerful tool to un-
derstand shape variability and population-wise difference by computing statistics
of [184].

To produce an atlas, two main categories of algorithms exist: template-based
approach and template-free approach.

The template-based algorithms require an image as the initial template and the
other images are registered to this image. The workflow of the template-based
method (see Figure 2.11), as presented in [69], begins with affine and non-linear
registration to the initial. The transformation of image Ii to template Ire f denotes as
Ti. Then all transformations Ti, i = 1, 2, . . . , N are averaged and the mean transfor-
mation T̄ is produced. The T̄ is inversed and denotes as T̄−1. The inversed mean
transformation T̄−1 is applied to each transformed image Ii,R = Ii ◦ Ti ◦ T̄−1 and
the new reference IR is produced by averaging the transformed images. By iterating
this procedure, the bias towards the initial template will be eliminated, as reported
in [69].

The template-free algorithms do not rely on an initial reference and therefore
avoid the bias towards the reference. The approach in this category can be divided
into 2 sub-groups: pairwise method and groupwise method.

The pairwise method has been proposed by [102]. The principle idea of this
method is to exhaustively calculate the transformation Ti,j between all the pairs of
images Ii, i = 1, 2, . . . , N and Ij, j = 1, 2, . . . , N. For each image Ii, i = 1, 2, . . . , N,
we calculate the average transformation T̄i by averaging the Ti,j, j = 1, 2, . . . , N.
Then the average transformation T̄i

−1 is applied on image Ii to produce images Ii,R
and the final atlas will be produced by averaging Ii,R. The workflow of pairwise
method is illustrated in Figure 2.12. The pairwise method is unbiased but requires
a quadratic amount of registrations with respect to the number of subjects.

For groupwise method, all images are simultaneously registered to a common
space instead of on a specific image space (see Figure 2.13). Therefore this unbiased
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FIGURE 2.11: Overview of 2-iteration template-based atlasing meth-
ods.

FIGURE 2.12: Overview of pairwise atlasing method.
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approach requires only one single groupwise registration and has less demand of
computation resource. One state-of-the-art implementation of this method is Ad-
vanced Normalization Tools (ANTS) software [11], [12].

FIGURE 2.13: Overview of groupwise atlasing method.

2.2.2 Voxel-based shape analysis

In biomedical applications, the shapes are originally extracted by volumetric
images. In voxel-based approaches, the correspondence is established by align-
ing the volumetric representation, such as MRI, to an atlas. The morphometry can
be spatially quantified with the help of the deformation fields (deformation-based
morphometry, DBM) or their Jacobian/log-Jacobian determinant (tensor-based mor-
phometry, TBM) generated from the registration procedure, which represents the
local volume change between the source image and atlas [7].

The Jacobian determinant of a deformation field encodes the local volume change
between the source and target image, i.e., a value of 0.9 refers to 10% of volume re-
duction, and 1.1% denotes 10% of volume augment. Since no folding appears in
medical image registration, the values in the Jacobian matrix are asymmetric that
range from [0,+∞]. The logarithmic transformation of the Jacobian matrix makes
the distribution symmetric and is often applied in practice [100]. In the following
sections, we will refer to the log-Jacobian determinant as log-Jacobian.

The goal of DBM and TBM is then to detect significant differences between
groups, which can be achieved with voxel-by-voxel statistical models. The patho-
logical area is then identified by the p-value map. In neuroscience, Studholme et al.
analyzed the relation between semantic dementia and the tissue contraction in the
left temporal pole, the hippocampus, occipitotemporal gyrus and parahippocampal
gyrus with B-spline-based method [165]. In [160], authors analyzed the deep brain
structure based on brain MRI and TBM. In [25], Cao et al. applied the framework of
DBM to analyze brain shape differences.

Another voxel-based shape analysis approach is voxel-based morphometry (VBM).
This technique is mainly used in neuroscience. In VBM [9], all images are spatially
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normalized into an atlas with a registration procedure. Then the segmentation of
tissues (gray matter, white matter and cerebrospinal fluid) is smoothed and the sta-
tistical analysis is performed on the masks to localize the volume change. However,
VBM is more sensitive to artifacts [8].

2.2.3 Surface-based shape analysis

The shapes can also be represented as surfaces with a set of points distributed
across the surface extracted from volume data, i.e. Ai = {αk

i ∥ αk
i ∈ R3, k = 1, 2, . . . , n}.

αi are n landmarks of the shape Ai. The shape Ai is therefore described as a vec-
tor α, where the coordinates of each landmarks αk

i = (xk
i , yk

i , zk
i ) are concatenated:

α = (x1
i , y1

i , z1
i , . . . , xn

i , yn
i , zn

i ). In order to reconstruct the surface, connectivity in-
formation between the points is stored. A point set with connectivity information
constitutes a surface mesh. For surface-based SSM, various open-source tools based
on pairwise or groupwise methods have been developed. In this section, we intro-
duce three state-of-the-art tools that are adapted to all anatomical structures, called
SPHARM-PDM, Deformetrica and ShapeWorks.

SPHARM-PDM: SPHARM-PDM is an SSM tool with a parameterization-based
correspondence construction method adapted to the anatomies with spherical topolo-
gies. Each shape is registered to a unit sphere by using a spherical harmonic (SPHARM)
basis function to obtain the spherical parameterization. This procedure is optimized
with area preservation and distortion minimization. The SPHARM basis functions

Ym
l are defined with degree l and order m: Ym

l (θ, ϕ) =
√

2l+1
4π

(l−m)!
(l+m)! P

m
l (cosθ)eimϕ,

where θ ∈ [0, π], ϕ ∈ [0, 2π], and Pm
l the associated Legendre polynomials. The

SPHARM expression of a surface is obtained by decomposing the three coordinate
functions and the surface is transformed from v(θ, ϕ) = (x(θ, ϕ), y(θ, ϕ), z(θ, ϕ))T to
the form of v(θ, ϕ) = ∑∞

l=0 ∑l
m=−l cl,mYm

l (θ, ϕ), where cl,m is 3D coefficient vector ob-
tained by using a least-square optimization. Then the correspondence is established
by using a first-order ellipsoid from the coefficient obtained through the spherical
parameterization.

ShapeWorks: ShapeWorks is an SSM tool based on a groupwise particle-based
shape modeling algorithm. In particle-based shape modeling, each shape is treated
as a collection of interacting dynamic particles with mutually repelling forces to op-
timally cover. The correspondence is constructed by optimizing the shape space
and the particle position. For N shapes A1, A2, . . . , AN, each shape has M parti-
cles Ai = α1

i , α2
i , . . . , AM

i ∈ R3, the correspondence between shapes is estimated by
a rigid or similarity transformation to transform the particles to the common co-
ordinate system. Two types of random variables are involved in the optimization
of correspondence: a shape space variable S ∈ R3M and a particle position vari-
able Ai ∈ R3. The objective of optimization is therefore to minimize the function
Q = H(S)− ∑N

i=1 H(Ai) where H is an entropy estimation under the assumption of
Gaussian distribution in the shape space and Euclidean inter-particle repulsion in
the configuration space.
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Deformetrica: Deformetrica is an SSM tool based on LDDMM framework and
requires an initial template to estimate the final atlas and the correspondence be-
tween shapes and the atlas. The construction of atlas of Deformetrica is performed
with a Bayesian framework [63]. The shape instance An is modeled as deformation
and a residual, which is defined as An = Tn + ϵn, where Tn is the deformation be-
tween n-th shape and the atlas and ϵn is the residual. The deformation of each shape
is characterized by a set of parameters βn. We assume that the parameters follow a
Gaussian distribution with a covariance matrix Γβ. Therefore the objective is maxi-
mizing the joint posterior distribution of shapes. For the i-th iteration, the objective
function is M i, Γβ

i = arg maxMi−1,Γβ
i−1 p(Mi−1, Γβ

i−1 ∥ {An}N
n=1). The optimization

is constrained by the fact that the residual should be small and the deformed tem-
plate should match the shapes.

2.2.3.1 Benchmark of surface-based SSM tools

SSM tool assessment and understanding of the consequences of SSM tools is crit-
ical for the biomedical scenario, since different tools may give different results on
synthetic nonclinical data [56]. In [62], authors evaluated the SSM tools previously
introduced in the context of clinical application. More specifically, the SSM is evalu-
ated with the classical quantitative and qualitative evaluation metrics, as well as the
validation with the landmarks/measurements inference and the lesion screening.

Quantitative evaluation The quantitative metrics to evaluate the model are com-
pactness, generalization and specificity.

The compactness measures the ability to cover as much as possible of variation
with as few as possible of parameters. The compactness of m mode is defined as

C(m) =
∑m

j=1 λj

∑n−1
i=1 λi

, where n is the number of shapes used for modeling. The faster the

compactness converges to 1, the more compact the model is.

The generalization quantifies the ability to generate the valid instance under
the same distribution as training set but not in it. The generalization of m mode
is defined as G(m) = 1

n ∑n
i=1 |z′i(m) − zi|, where s′i is the reconstruction of the un-

seen sample si, i.e. the generalization is the reconstruction error of an unseen valid
instance. Lower this error is, more general the model is.

The specificity is to evaluate the ability of generate new valid instance by ran-
domly generating the parameters. The specificity of m mode is defined as S(m) =
1
k ∑k

i=1 |z”i(m) − z′i|, where z”i(m) is the new generated instance with m principal
components and z′i is the nearest shape in the training set. k is the number of new
generated samples which need to be large. Smaller the distance between generated
sample and its nearest sample is, more specific the model is.

Results: For left atrial appendage (LAA) and Scapula, ShapeWorks outperformed
Deformetrica and SPHARM-PDM in compactness. For Humerus, SPHARM-PDM
produced a compact model with one split of the data and ShapeWorks obtained a
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compact model with the split of the data. For femur, SPHARM-PDM performed bet-
ter in compactness. In the aspect of generalization, ShapeWorks performed better
in the LAA, humerus and femur dataset. For scapula, Deformetrica and Shape-
Works were comparable. For specificity, ShapeWorks outperformed in the LAA, the
humerus and the femur dataset. Deformetrica and ShapeWorks achieved compara-
ble results in the scapula dataset.

Qualitative evaluation The authors assessed qualitatively the model with the modes
of variation of PCA, and cluster analysis. The modes of variation can reflect clini-
cally relevant patterns. Therefore the model can be assessed based on their ability to
discover the relevant modes. The clustering is an approach to find natural groups in
populations based on the similarity. In clinical context, it can be used for diagnosis
such as distinguishing the different levels of illness.

Results: For the LAA, the scapula and the femur shapes, Deformetrica and
ShapeWorks was able to capture the clinically relevant variation modes, and cor-
rectly identify the clinical differences between control and pathology groups. How-
ever, SPHARM-PDM could neither produce the clinically relevant modes of vari-
ation, nor detect the group-wise differences. For humerus dataset, all three SSM
tools discovered clinically relevant modes of variation, and were able to encode the
differences between groups. But the differences detected by SPHARM-PDM has a
visible bias.

Landmarks/measurements inference SSM is able to execute the personalized anatom-
ical landmarks and measurements inference by mapping the mean shape to patient
space with the correspondence. For ShapeWorks and Deformetrica, the patient-to-
mean correspondence is constructed by using thin plate splines (TPS) to generate
the mean landmarks. Then the patient-specific predicted landmarks are obtained
by using a TPS warp built with the mean-to-patient correspondence. For SPHARM-
PDM, the tool does not provide the patient-to-mean correspondence. Therefore, the
landmarks on the mean shape are manually annotated. The patient-specific predic-
tion from SPHARM-PDM is performed with Procrustes fit to align the annotated
landmarks to patient space. Paired sample t-test is used to compare the distance
between the ground truth and the prediction. The landmarks/measurements infer-
ence validation was performed with the LAA, the scapula and the humerus dataset

Results: For all three dataset, Deformetrica and ShapeWorks achieved a compa-
rable performance and better than that of the SPHARM-PDM.

Lesion screening Lesion screening aims to locate the abnormal changes in subject-
specific anatomy and classifies the subject’s anatomy to two groups control and
pathology, based on the extent of the lesion. The lesion screening can be performed
with the deviation between the original pathological shape and its reconstruction
based on the model of the control group, i.e., the pathological shape is projected to
the PCA subspace of the control population and reconstructed from this projection.
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More details of reconstruction-based lesion detection will be introduced in section
2.3.3. The lesion screening is performed on the femur and humerus datasets.

Results: For the lesion identification, ShapeWorks and Deformetrica correctly
identified the differences of the femur dataset, while SPHARM-PDM failed it. For
humerus, all models succeeded in the identification but SPHARM-PDM detected
false positives. For lesion classification, ShapeWorks and Deformetrica were com-
parable on femur dataset and better than SPHARM-PDM. On humerus dataset, the
performance of ShapeWorks is better than Deformetrica and SPHARM-PDM.

2.3 Anomaly detection

An anomaly (also called outlier or novelty) is an observation that deviates con-
siderably from some concept of normality [133]. The normality is defined as the
distribution P+ on X which is the ground truth law of normal behavior in the given
task. An observation that deviates significantly from P+ is a data point x ∈ X
that lies in a low probability region under P+. Denoting the probability distri-
bution function of normality as p+(x), the set of anomalies is defined as A =
{x ∈ X | p+(x) ≤ τ} , τ ≥ 0, where τ is a detection threshold that defines the low
probability region under P+.

The fundamental assumption of anomaly detection is the concentration assump-
tion [145], [29]. The data space X is unbounded in most application situation, while
the distribution of normal data is bounded by a threshold τ. However, the law of
normality P+ is known in certain applications. In most situations, the P+ remains
unknown due to the complex underlying process. Therefore the P+ needs to be
estimated from the given data. And under the distribution estimated, we could
predict whether a new instance x̃ ∈ A. The anomaly detection objective is now to
estimate the low-density regions (or equivalently high-density regions), which can
be achieved by the statistical hypothesis test [174], [148] in data space X . Given a
density level α, a corresponding threshold τα will be determined to decide whether
the instance x̃ is an anomaly or not.

As presented in Figure 2.15, according to the methods of normality estimation,
three classes of algorithms to perform anomaly detection have been introduced [133]:
probabilistic models, one-class classification and reconstruction models. Also, with
the development of deep learning, many deep anomaly detection methods appeared
in recent years. Due to the limitations we have presented in section 2.2.1.4, in this
work, we focus more on classical shallow methods.

2.3.1 Probabilistic models

The target of probability-based methods is to estimate the distribution of nor-
mal data, which meets the need of anomaly detection problems. Methods in this
category include statistical hypothesis tests, density estimation and deep statistical
models.
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FIGURE 2.14: An illustration of density level α and its threshold τα

FIGURE 2.15: Anomaly detection methods arranged by depth of fea-
ture map and the principle of models. Based on the depth of feature
map, the methods can be divided into conventional shallow methods
and deep methods. Based on the principle of models, three common-
used classes of approaches are identified: one-class classification, prob-
abilistic models and reconstruction-based models. According to the
feature map, algorithms can be divided in to traditional shallow meth-
ods and novel deep methods. Additionally, distance-based methods
are available as a complement to these three groups. Figure extracted

from [133]
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A statistical hypothesis test is a method of statistical inference that associates the
value of probability with the decision-making in order to quantify confidence in a
hypothesis. In a hypothesis test, two types of hypotheses exist:

- H0 is the null hypothesis and is for being accepted, which means the difference
is caused by sampling error or inter-subjects variability

- H1 is the alternative hypothesis and is for being rejected which indicates the
significant difference.

To decide whether H0 is accepted or rejected, the significance level α which is a
probability threshold for rejecting the null hypothesis. As shown in Figure 2.14, if
p(x̃) ≤ τα, i.e. it is located in rejection region (red zone), it will be regarded as an
anomaly. The selection of density level α requires the specialization to application.
The common choice of α is 0.05 or 0.01. To make the decision, the p-value of the test
hypothesis is calculated. If p < α, then H0 is accepted, else reject H0 and accept H1.

truth
decision H0 H1

H0 1 − α (true positive) β (type II error)
H1 α (type I error) 1 − β (true negative)

TABLE 2.1: Possible choices for decision making in anomaly detection:
α and β correspond to type I error and type II error.

Two types of errors exist in statistical hypothesis tests: type uppercasei error
and type II error. As presented in table 2.1, the type I error is the false positive
findings and the type II error is the false negative findings. To eliminate the type I
error, multi-test correction is required, such as with the false discovery rate (FDR)
method. For the type II error, one way to correct it is to augment the number of
samples.

The common used tests include Hotelling’s T2 test [54], analysis of variance
(ANOVA) [85], analysis of covariance (ANCOVA) [85] and their multivariate ver-
sion MANOVA [85], [79], MANCOVA [79], etc. Hotelling T2 distribution is a multi-
variate probability distribution, a generalization of the Student’s T-distribution and
tightly related to the F-distribution. For 2-sample Hotelling T2 statistic, we assume
that 2 groups of data follow multivariate normal distributions with the same mean
and covariance. Suppose the deformation vector Wij(x) matches the structure at the
position x in atlas of subject i in group j, the T2 statistic is defined as [171], [25]:

T2(x) =
{

N1N2

(N1 + N2)(N1 + N2 − 2)

} [
Wµ

2 (x)− Wµ
1 (x)

]T
Ψ−1(x)

[
Wµ

2 (x)− Wµ
1 (x)

]
(2.7)

N1 and N2 are the number of subjects of group 1 and group 2. µ1 and µ2 are the
respective mean of two groups. Ψ is the covariance matrix between two groups.
At each point, let v = (N1 + N2 − 2) and d = dimension so d = 3 in our case,
then the T2 statistic can be transformed to a F statistic to calculate the p-values:
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F(x) = ((v − d + 1)/d)T2(x) ∼ Fd,(v−d+1). Two examples of anomaly detection
with Hotelling’s T2 test are illustrated in Figure 2.16, subfigure (a).

To model more complex distributions, non-parametric density estimators have
been introduced, such as kernel density estimators (KDE) [121], [70], histogram esti-
mators, and Gaussian mixture models (GMMs) [128], [19]. GMM is an extension of
the Gaussian model, with a finite number of K mixtures to describe the distribution
of data. It can also be viewed as a clustering method that assumes K prototypi-
cal modes. KDE is the most widely used non-parametric density estimator. For
(x1, x2, ..., xn) which are independent and identically distributed samples, f is their
density function. f can be estimated as follows:

f̂ =
1

nh

n

∑
i=1

K(
x − xi

h
),

where K is a non-negative kernel function whose integral is 1. Various kernel func-
tions exist such as Gaussian kernel, Epanechnikov kernel, etc. h is a positive param-
eter called bandwidth. 1

h K( x
h ) is scaled kernel function. As for Hotelling’s T2 test,

examples of KDE with Gaussian kernel are available in Figure 2.16, subfigure (b).

The early deep statistical models are based on energy-based models (EBMs) [48],
[76], [96], such as Deep Belief Networks [73] and Deep Boltzmann Machines [137].
EBMs characterize the density by an energy function Eθ(x) with

pθ(x) =
1∫

exp(−Eθ(x))dx
exp(−Eθ(x))

Recently, Generative Adversarial Network (GAN) [61] is proposed to deal with
anomaly detection problems. GAN consists of 2 neural networks: a generator net-
work ϕ : Z → X is trained in competition with an adversary that challenges it to
generate samples whose distribution is similar to the training samples. A discrim-
inator network ψ : X → (0, 1) is trained to discriminate between the generated
samples and real data. Using the discriminator directly has been suggested as one
approach to using GANs for anomaly detection which has a similar principle as
one-class classification [136]. The other approach is to use the generator to perform
a reconstruction-based anomaly detection [41]. Also in [141], authors defined the
anomaly score as the combination of the reconstruction loss and the discrimination
loss.

2.3.2 One-class classification

One-class classification is based on the same principle of probabilistic methods
which is to study a statistical threshold between normal data and anomaly but one-
class classification learns the boundary directly instead of learning the distribution
as an intermediate step. The most well-known methods are support vector data de-
scription (SVDD) [168] and one-class support vector machine (OCSVM) [146]. The
objective of SVDD is to learn a hypersphere of minimum volume to separate normal
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data from outliers. Therefore, the optimization of SVDD can be defined as

min
a,R,ξ

R + C
n

∑
i=1

ξi s.t. ∥Φ(xi)− a∥2 < R2 + ξi, ξi ≥ 0 = 1, 2, . . . , n (2.8)

where R and a are the radius and center of the hypersphere respectively. ξ is the
vector of slack variables and C is the regularization parameter to set a boundary to
the fraction of allowed outliers. Φ(x) is a kernel function mapping the data from
the original space to the feature space.

In comparison, OCSVM uses a hyperplane to separate data in feature space with
a maximum margin from the origin:

min
ω,ρ,ξ

1
2
∥ω∥2 +

1
νn

n

∑
i=1

ξi − ρ s.t. ω · Φ(xi) > ρ − ξi, ξi ≥ 0 = 1, 2, . . . , n (2.9)

ω and ρ define the character of hyperplane and ν plays the same role as C in SVDD
to set the fraction of allowed outliers. In subfigure (c) of Figure 2.16, examples with
ball dataset and double moon dataset solved by OCSVM is presented.

Also, for more complex data, there exist deep one-class classification methods
such as Deep SVDD [134] and Deep OCSVM [47], etc.

2.3.3 Reconstruction-based methods

Reconstruction-based methods learn a model that is optimized to well recon-
struct normal data, thereby aiming to detect anomalies by failing to accurately re-
construct them under the model. The pipeline of reconstruction consists of 2 parts:
decomposition and reconstruction. The decomposition is realized by an encoding
function ϕe which maps data from data space to a latent space. The reconstruc-
tion is the procedure that reconstructs data from the latent representation obtained
in decomposition. It is realized by a decoding function ϕd. Therefore, for data
(x1, x2, . . . , xn), the objective of the model is

min
1
n

n

∑
i=1

∥xi − (ϕd ◦ ϕe)(xi)∥2 + R (2.10)

where R is the regularization term. Principle component analysis (PCA) [172], Au-
toencoders (AEs) [122], [30], VAEs [88], [191] and GANs [3], [140] are common used
methods in this category. The reconstruction error can be simply defined as Eu-
clidean distance, Mahalanobis distance [109] or using some Machine Learning clas-
sification algorithm such as clustering [5] or OCSVM [4].

PCA [172] is one of the most-used classic dimension reduction algorithms. Thanks
to its natural out-of-sample extension and inherent reconstruction, it can be adapted
for reconstruction-based anomaly detection. The objective of PCA is to seek an or-
thogonal principal basis W in data space over which data can be linearly projected
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with the maximized empirical variance:

max
n

∑
i=1

∥Wxi∥2 s.t. WWT = I (2.11)

For reconstruction, the objective is to find an orthogonal projection WTW to a high-
dimension linear space with a minimized reconstruction error:

min
n

∑
i=1

∥xi − WTWxi∥2 s.t. WWT = I (2.12)

Linear PCA is only able to represent linear features. The disability of encod-
ing the non-linear features will result in the mis-decomposition and reconstruction.
Therefore, the kernel PCA [144],is introduced. As a non-linear extension of PCA, it
introduced a non-linear kernel function ϕ(x) which maps data from original space
to feature space, such as RBF kernel, etc. Thus, the objective of decomposition and
reconstruction becomes:

max
n

∑
i=1

∥Wϕ(xi)∥2 s.t. WWT = I (2.13)

min
n

∑
i=1

∥ϕ(xi)− WTWϕ(xi)∥2 s.t. WWT = I (2.14)

Examples for unimodal and bimodal anomaly detection with the ball dataset and
double moon dataset are presented in Figure 2.16, subfigure (d) and (f).

For this type of methods, we can also identify their probabilistic interpretation.
For linear PCA, the data distribution follows from the linear transformation of a
d-dimensional latent Gaussian distribution with noise. And for KPCA with RBF
kernel it can be considered as equivalent to kernel density estimation.

Autoencoder is a non-linear reconstruction model based on a neural network,
consisting of two parts: encoder and decoder. The encoder is aimed at learning a
low-dimensional representation of original data and the decoder is for the recon-
struction. Different ways to regularize autoencoders have been introduced such as
sparse autoencoders [104], [193], and denoising autoencoders [180], [181], [108], etc.

Variational autoencoders (VAEs) is a generative model whose architecture is
based on autoencoder. VAEs constrain the latent space by leveraging the encoder
and decoder of AEs to parameterize an approximation to the posterior distribu-
tion. The input vector x are parameterized on latent space Q as an latent sample
z by encodeing the posterior qϕ(z|x) ∼ N (µx, σx). The decoder parameterizes the
mean and the variance of an isotropic Gaussian distribution, therefore pθ(x|z) ∼
N (x; µ(z), σ2(z)I). The loss function is the combination of reconstruction error and
the KL-divergence: Lϕ,θ = L1(x, x̂) + DKL(q(z), p(z)). This method combines the
principle of the probabilistic approach and the reconstruction-based model.
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FIGURE 2.16: Example of anomaly detection with different methods:
(a) Hotelling’s T2 test of the probabilistic model; (b) KDE of the prob-
abilistic model; (c) OCSVM of one-class classification; (d) PCA of the
reconstruction-based model; (e) Kernel PCA of reconstruction model.
The yellow points are detected as normal samples and the black points
are detected as abnormal samples. The parametric Hotelling’s T2 statis-
tic is limited to an ellipsoidal unimodal density, which has difficulty in
modeling double-moon data. KDE with an RBF kernel is more flexible.
OCSVM with RBF kernel has a similar effect of KDE. PCA finds a linear
orthogonal subspace that is able to deal with unimodal data yet is less
efficient for bimodal double-moon data. Kernel PCA introduced a non-
linear kernel which enables an optimal reconstruction from non-linear

components in input space.
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2.4 Discussion

In this chapter, we first introduce the definition of CP and the spastic equinus
deformity in the patient’s ankle joint, and the anatomy of the human ankle, in order
to better understand the background of this thesis. As described in section 2.1.3, CP
causes abnormal muscle development and leads to bone deformation. Yet little in-
formation is available on this deformation. The investigation of bone morphological
deformation will enable a better comprehension of pathology and rehabilitation of
patients. To this end, a morphological analysis needs to be performed.

SSM is a powerful tool to analyze the morphological properties of given shapes.
It statistically describes the mean shape and the variation between the given shapes.
One key element of SSM is to build the correspondence between shapes, which can
be processed by the image registration technique. Many algorithms have been de-
veloped to align two shapes. Under the medical application context, for the registra-
tion between the images or meshes of the same subjects, linear registration is often
adopted. For cases more complex such the inter-subject registration, the non-linear
transformation will provide more flexibility.

The SSM can be performed with voxel-based approaches and surface-based ap-
proaches. In voxel-based approaches, the shapes are in a volumetric representation
such as images. It aligns the images into the mean template image and the mor-
phological analysis is performed voxel-wisely with the deformation fields or their
log-Jacobian. As consequence, the voxel-based analysis can be performed theoreti-
cally without the manual segmentation of target anatomy. And this category is able
to examine not only the surface but also the inner tissue of the anatomy to be stud-
ied. However, the required computation resources are augmented with the increase
of the image resolution for the registration and the following analysis step.

In surface-based methods, the shapes are represented as the surface with a set of
points. The surface is generated from the segmentation of the target anatomy. Then
the correspondence is estimated based on the registration between surface meshed.
In ShapeWorks, the transformation is estimated with a global linear step and a non-
linear step with a physical model. In Deformetrica, the transformation is obtained
by using the LDDMM framework. Compared to the voxel-based method, in bone
shape analysis, the surface-based method is able to focus on the shape contour and
ignore the osseous substance inside the bone, which can reduce the computation re-
source requirement. However the precision of the manual segmentation influences
the precision of the surface representation. The generation and the processing of
the surface mesh also play an important role in the following analysis. Moreover,
the effect of different shape representations in shape analysis is under-studied and
remains to be investigated.

To investigate the abnormal deformation of bone shape that occurs in children
with CP, the anomaly detection technique will be applied for the population-wise
comparison. Anomaly detection is based on statistic theory which aims to find the
set that has a low probability in the normal sample distribution. According to [133],
three classes of algorithms exist: probabilistic model, one-class classification and
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reconstruction-based model. Due to the scarcity of pediatric MRI data, careful selec-
tion of the model is required.
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3.1 Introduction

As presented in Chapter 2, the equinus deformity caused by CP probably leads
to muscle weakness, spasticity and passive amplitude limitation of dorsiflexion, and
furthermore, the change of bone morphology, which is still unreported in literature
and requires to be explored. Pediatric MRI studies remain challenging to conduct
due to complex acquisition settings [111], [106]. However, visualizing and analyzing
morphological changes in ankle bones could provide a better understanding of CP
pathology and therefore a more adapted setting up of rehabilitation for patients.

For this purpose, understanding the normality is a pre-requisite procedure, thus
requiring us to study the shape of the ankle bone of TD population. Without the
definition of standard bone shape as a reference, abnormal deformation would not
be defined and detected. Statistical shape modeling (SSM) is a popular tool that pro-
vides the mean representation of the population as well as the shape variation [103].
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One way to perform the SSM is to compute the mapping of 3D images of each sub-
ject into a common reference image space. A series of deformation fields describes
then the spatial transformations required to match the different shapes to the same
atlas [7]. Information about the individual shapes is encoded in the deformation
fields. Such a voxel-based approach is performed directly from scanned images and
avoids the extraction and reconstruction of surface mesh [56].

The shape variation of ankle bones can be related to demographic characteristics,
such as age, weight, height, and length of the lower limb. In addition, muscle qual-
ity influences bone morphology. Thus the shape variation may also be explained
by the muscle strength and the passive dorsiflexion. A correlation analysis between
these clinical coefficients and the model parameters is able to create a connection
with clinical measurement and interpret the shape from a clinical view. For the
further morphological comparison between the two populations, such a correlation
analysis will facilitate the localization of disorders, understand the biomechanical
interaction between bone morphology and muscle development, and result in a bet-
ter treatment.

In this chapter, we study the ankle bone shape of a healthy population using
voxel-based statistical shape modeling methods. Firstly, the data for this thesis, as
well as the acquisition, are introduced. Secondly, the shape model of typical devel-
oping children is constructed, and the variation is analyzed with PCA. Thirdly, the
correlation between clinical measurement and shape model parameters is analyzed,
and thus the clinical interpretation of the model is derived.

3.2 Materials and methods

3.2.1 Populations

In this thesis, the prime objective is to investigate the bone morphometry of the
ankle joint (calcaneus, talus and tibia) relevant to equinus caused by cerebral palsy.
To this end, eleven TD children and nine children with CP with age ranging from 6
to 14 years old is involved in this study which was approved by the regional ethics
committee. The CP group includes seven males and two females, and the TD group
consists of seven males and four females with no history of the pathology of the
lower limbs. The demographic characteristics, including age, weight, height and
BMI of the two groups, are demonstrated in Table 3.1. The T-test is performed on
these characteristics and no significant inter-group difference is noticed (p > 0.05).
All children were selected with no MRI contraindications and no history of lower
limb musculoskeletal injury or surgery in the past six months.

3.2.2 Clinical coefficient measurement

In order to determine the factors linked with the bone shape, the muscular strength,
the spasticity of CP subjects and the passive range of motion are measured accord-
ing to the measurement in [14].
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TABLE 3.1: Demographic characteristics of the children included per
group.

Age (years) Weight (kg) Height (cm) Leg Length (cm)
TD (mean±std) 10.38±1.95 38.89±13.21 146.55±14.75 77.50±9.11
CP (mean±std) 10.35±2.39 32.7±6.65 140.39±11.01 74.50±6.78
p-value 0.97 0.22 0.48 0.37

Muscular Strength: The muscles accessed relevant to ankle joints are tibialis an-
terior, triceps sural, peroneus long and short and tibialis posterior. Two experienced
examiners assessed the muscle strength with a dynamometer (Powertrack II Com-
mander MMT, JTECH Medical). The assessment is performed with "make test": the
dynamometer is kept in a static position, and the subject has to push against this
resistance [45]. Three trials are conducted sequentially, separated by periods of rest.
The variation coefficient of three values given by the dynamometer has to be less
than 10% and the maximum value is kept [45]. The strength value is normalized by
dividing the lower limb’s length [13].

Spasticity: The spasticity of tibialis anterior, triceps sural, peroneus long and
short and tibialis posterior is assessed by an experienced examiner with modified
Ashworth scale. The 1+ rating was replaced by 1.5 for statistical analysis [114].

Passive range of motion: The passive joint examination of the lower limb was
performed at the ankle by two experienced examiners. Dorsiflexion was measured
with the knee flexed and then with the knee extended. The subject was installed in
the supine position [179] and the measurement was performed using a manual go-
niometer. The goniometer branches were aligned with the axis of the tibial segment
(marked by the lateral malleolus and the head of the fibula) and with the axis of the
5th metatarsal.

The results of measurement of two groups are presented in Table 3.2 as well as
the T-test results for each coefficient.

3.2.3 3D image acquisition and bone-of-interest segmentation

3D MRI data were acquired in a single visit after parents signed informed con-
sent forms, using a 3T MR scanner (Achieva dStream, Philips Medical Systems, Best,
Netherlands) with a resolution of 0.26× 0.26× 0.8 mm3 and resampled to 0.5× 0.5×
0.5 mm3 for the purpose of adaptation to the clinic (T1-weighted gradient-echo, flip
angle 10, matrix 576×576, FOV 150 mm × 150 mm, TR/TE 7.81/2.75 ms, mean
acquisition duration: 424.32s). Images of the ankle were taken on the CP group’s
paretic lower limb and the non-dominant lower limb for the TD group. The acqui-
sition protocol is detailed in [106] and [57].

In order to extract the shape of the three bones of interest, we make use of
a semi-automatic segmentation approach. Age variability induces developmental
variability of bones and cartilages. To overcome such shape variability, the consid-
ered regions of interest include bones and growth cartilages. First, three subjects of
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TABLE 3.2: Muscle strength, spasticity and dorsiflexion of TD and CP
groups.

TD CP p-value

Normalized
muscle
strength
(N/cm)

Tibialis
anterior 1.76±0.66 0.78±0.54 0.0015

Tricep
sural 2.82±0.83 1.31±0.86 0.00078

Peroneus 1.40±0.42 0.52±0.42 0.00016
Tibialis
posterior 1.45±0.63 0.74±0.50 0.055

Spasticity

Tibialis
anterior 0±0 0±0

Tricep
sural 0±0 1.44±0.86 5.10 × 10−5

Peroneus 0±0 0±0
Tibialis
posterior 0±0 0.31±0.59 0.14

Dorsiflexion
(degree)

Knee
extented 12.2±4.78 -3.75±6.94 9.94 × 10−6

Knee
flexion 20.5±5.99 7.5±6.55 0.00028

different ages (7, 10 and 12) are manually segmented by an expert. A registration-
based label propagation method is then used to segment the subjects of the data sets,
with manual correction if necessary. Newly segmented subjects are included at each
propagation stage. Finally, smooth segmentation maps are computed by training a
standard patch-based U-net network [131] trained on the expert-based segmentation
maps and manually corrected if required. The MR images and their segmentations
of all subjects are illustrated in Figure 3.1. The 3D renderings of bones of interest
are in Figure 3.2.

3.2.4 3D voxel-based shape modeling

3.2.4.1 Atlas construction and deformation fields computation

To achieve the 3D shape modeling with a voxel-based approach, we make use of
a registration-based framework to compute a mean image model of the TD popula-
tion, called atlas. To deal with the high variability in shape and appearance of the
bones, we propose to estimate the TD atlas using a group-wise diffeomorphic mul-
tivariate algorithm [11] by not only considering image intensity but also bone seg-
mentation maps and Chamfer distance maps. Such a multivariate approach ensures
realistic atlas estimation with sharp details of cortical bones and cartilage. Then, for
each subject of the dataset, deformation fields are estimated by non-linear multivari-
ate registration (using segmentation and Chamfer distance maps) onto the mean TD
atlas previously computed. The atlas estimation and the patient-to-atlas registration
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(A) (B)

FIGURE 3.1: MRI and bone of interest segmentation of each subject: (A)
TD subjects, (B) CP subjects. The title of each sub-figure indicates the
number of the subject and the age of the subject. In the segmentation

mask: blue: calcaneus; yellow: talus; green: tibia.

stages are performed with ANTS1.

3.2.4.2 Statistical deformation variation analysis with PCA

PCA is one of the most-used dimension reduction algorithm. The objective of
PCA is to seek an orthogonal principal basis in data space over which the data can be
linearly and decorrelatedly projected with the maximized empirical variance, thus
eliminating information redundancy.

In our hypothesis, we assume that a deformation field D follows a multivariate
normal distribution D ∼ N (D, Σ), where D is the mean and the Σ is the covariance
matrix. During the decomposition procedure, the shape is decomposed into n − 1
principal components, also called eigenmode. Therefore, the new representation of
a deformation field D is described as:

D = D +
n−1

∑
i=1

biϕi (3.1)

where ϕi are eigenvectors of covariance matrix Σ, and bi is a shape parameter, whose
value is often defined as −3

√
λi ≤ bi ≤ 3

√
λi. λ is the eigenvalues of covariance

matrix thus it represents the variance. Under the hypothesis of D ∼ N (D, Σ), we
have P(|bi| ≤ 3

√
λi) = 99.7%. Each principal component represents one linearly

uncorrelated shape variation mode, and the principal components are arranged in
the order of the importance, which means the first mode represents the largest vari-
ation of bone shape. With PCA, it is possible to visualize the principle variation
exists in the dataset from a statistical view.

1http://stnava.github.io/ANTs/

http://stnava.github.io/ANTs/
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(A) (B)

FIGURE 3.2: 3D rendering of each subjects: (A) TD subjects, (B) CP
subjects. The title of each sub-figure indicates the number of subject

and its age.

3.2.5 Clinical coefficient correlation analysis

To better understand the constructed shape model, as well as each eigenmode
derived from PCA, we analyse the correlation between the shape parameters λ and
the clinical coefficients, including demographic characteristics (age, height, weight,
leg length), muscular strength (tibialis anterior, triceps sural, peroneus and tibialis
posterior) and the dorsiflexion range (knee extended and flexed). The correlation is
analysed with Pearson correlation coefficient, defined as ρ = cov(XTD,XCP)

σTDσCP
.

3.3 Experiments and results

3.3.1 Evaluation of atlas construction and deformation field gener-
ation

The estimated atlas, presented in Figure 3.3, provides visually realistic anatomy
of the ankle in the region of the bones of interest (calcaneus, talus and tibia), includ-
ing crisp details for the contour of bones and cartilages. To quantitatively evaluate
the performance of atlas building and registration between each subject and the es-
timated atlas, the Dice coefficient which measures the overlap between regions of
interest is used: Dice(A, B) = 2(|A|∩|B|)

|A|+|B| . Experiments report that the 3D Dice coeffi-
cient for every bones of each subject is greater than 0.97 (Table 3.3), demonstrating
high accuracy of shape matching. Examples of obtained deformation field of three
bones are illustrated in Figure 3.4
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(A) (B) (C)

FIGURE 3.3: Estimated ankle atlas of TD population using the voxel-
based approach: (A) sagittal view, (B) segmentation, (C) 3D rendering.

(A) (B) (C)

FIGURE 3.4: Example of deformation fields of one slice: (A) calcaneus,
(B) talus, (C) tibia.

TABLE 3.3: DICE of region of interest between atlas and subject’s seg-
mentation

Subject TD01 TD02 TD03 TD04 TD05 TD06 TD07 TD08 TD09 TD10 TD11
DICE 0.990 0.993 0.991 0.994 0.993 0.974 0.991 0.992 0.991 0.976 0.974
Subject CP01 CP02 CP03 CP05 CP06 CP08 CP09 CP10 CP13
DICE 0.997 0.994 0.992 0.975 0.997 0.996 0.996 0.993 0.995
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3.3.2 Quantitative evaluation of model

To evaluate the robustness of the shape model, some quantitative metrics are
applied, including compactness, generalization and specificity. The introduction of
these metrics can be found in Section 2.2.3.1.

The compactness of calcaneus, talus and tibia is reported in Figure 3.5-(A). The
first mode captures most shape variations. For calcaneus and talus, it contains ap-
proximately 30% of shape variance (29.48% for calcaneus and 33.66% for talus). For
tibia, the first mode includes 53.42% variations. The first four modes captured over
70% of variation for all three bones (76.08% for calcaneus, 72.95% for talus and
84.51% for tibia). To explain 90% of shape variation, calcaneus and talus require
7 principal components and tibia needs 5 eigenmodes. The evaluation of compact-
ness indicates that the obtained model has the ability to represent the shapes in a
compact way, especially for tibia, which is the most simple shape among the three
bones. For calcaneus and talus, based on their anatomical complexity, they require
more complex model than tibia.

To evaluate the generalization of our model, the leave-one-out evaluation is per-
formed. The results of generalization of three bones are presented in Figure 3.5-(B).
For all three bones, the curve of G(m) starts from a higher value (2.37mm for calca-
neus, 1.56mm for talus and 1.60mm for tibia), and then the error gradually decreases
as the number of modes increases. When n reaches to 9, the generalization is 1.85mm
for calcaneus, 1.32 for talus and 1.17 for tibia. However, it is possible to notice that
the curves do not converge, indicating that the model requires to re-train on a large
dataset to improve the effectiveness.

The specificity is calculated, in our experiment, with 50 generated samples. The
specificity of our models are in Figure 3.5-(C). The specificity of calcaneus, the most
complex in anatomy, is found average, ranges from 1.46mm to 1.82mm. For talus
and tibia, the specificity values are similar to each other and better than calcaneus,
ranges from 1.00mm to 1.23mm. However, the curves are still fluctuating at the end
of the experiment (number of modes equals to 10), which indicates the curves do
not reach to convergence.

3.3.3 Shape variation analysis

3.3.3.1 Calcaneus

In Figure 3.6- 3.11, we present the anterior (Figure 3.6), lateral (Figure 3.7), supe-
rior (Figure 3.8), inferior (Figure 3.9), medial (Figure 3.10) and posterior (Figure 3.11)
view of first four eigenmode of calcaneus. The first eigenmode represents the bone
size globally. At −3

√
λ1, the reconstructed calcaneus has a larger volume with an

edge more rounded and less obvious. At 3
√

λ1, the bone appears flat, with a smaller
volume, more sharp angles at the inflection points and clearer edges. In the visual-
ization of deformation magnitude, the highlighted area with a magnitude over 2mm
is extensively observed on the superior, lateral and inferior surfaces. On the lateral
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(A) (B)

(C)

FIGURE 3.5: Quantitative evaluation of model: (A) compactness, (B)
generalization, (C) specificity.
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margin of the inferior surface, the magnitude is over 3mm. It confirms the represen-
tation of volume variation of the first mode. On the anterior view, the sustentaculum
tali is highlighted with a magnitude over 4mm, illustrating that the first mode also
includes the prominence of sustentaculum tali. The second mode mainly shows
the size difference between the anterior surface (facet for cuboid) and the posterior
surface (calcaneal tuberosity). At −3

√
λ2, the reconstruction tends to have a large

cuboid facet and the tuberosity is small and flat, while at 3
√

λ2, the cuboid facet is
thinner, with inward-recessed superior and inferior margin, and the tuberosity is
thicker and more rounded. It can be visualized in the deformation magnitude of
the inferior surface. The anterior and posterior areas of this surface are highlighted
with a magnitude over 4mm, which signifies the change in thickness. As in the first
mode, the second mode also represents the prominence of sustentaculum tali. The
third mode includes the variation of the back tilt of the posterior facet. The −3

√
λ2

demonstrates a large tilt while the 3
√

λ2 shows a erect appearance. The deformation
magnitude of the posterior margin of the posterior facet of the subtalar joint is over
4mm. Also, the third mode represents the change in cuboid facet thickness change.
The fourth mode contains the variation of the depression of the tarsal sinus, which
also influences the shape of the cuboid facet, and the curvature of the superior facet
of the tuberosity. These deformations are marked with a magnitude over 2mm.

FIGURE 3.6: Anterior view of first four eigenmodes of calcaneus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

3.3.3.2 Talus

The visualization of six views of the first four modes of the talus is in Figure 3.12
- 3.17 (lateral view: Figure 3.12; medial view: Figure 3.13; superior view: Figure 3.14;
inferior view: Figure 3.15; anterior view: Figure 3.16; posterior view: Figure 3.17).
The visualization of the other two views is in Appendix A. The first mode contains
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FIGURE 3.7: Lateral view of first four eigenmodes of calcaneus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.8: Superior view of first four eigenmodes of calcaneus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi
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FIGURE 3.9: Inferior view of first four eigenmodes of calcaneus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.10: Medial view of first four eigenmodes of calcaneus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi
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FIGURE 3.11: Posterior view of first four eigenmodes of calcaneus:
Each row represents one eigenmode and is arranged in order from top
to bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

the most variation, mainly consisting of the length of the talar neck (see the supe-
rior view, a large area with deformation magnitude over 2mm, long at 3

√
λ1 and

short at −3
√

λ1), anterior and medial facet shape of subtalar joint (see the inferior
view, deformation magnitude over 3mm, sharp at −3

√
λ1 and squared at 3

√
λ1),

lateral process (see the lateral and inferior view, deformation magnitude over 2mm,
processing at −3

√
λ1 and flat at 3

√
λ1) and the curvature of sulcus tali (see the me-

dial view, deformation magnitude over 3mm, curved at −3
√

λ1 and flat at 3
√

λ1).
Meanwhile, the first mode represents the global volume of the talus, as in calcaneus.
The second mode consists of the variation of the curvature of the medial process. At
−3

√
λ2, the medial process tend to depress and at 3

√
λ2, the medial process is pro-

cessing. And the prominence of the lateral process and the location of the posterior
process are included in the second mode. In mode 3, the variation is mainly lo-
cated at the medial margin of the talar neck (flatter at 3

√
λ3 and more curved at

−3
√

λ3), and the prominence of the posterior process (processing at −3
√

λ3 and flat
at 3

√
λ3). The fourth mode represents mainly the width of the talar neck and head,

and it influences the shape of the talar dome, while the deformation is less visible
(magnitude around 2mm).

3.3.3.3 Tibia

The five view of the first four modes of the tibia is presented in Figure 3.18- 3.22
(anterior view: Figure 3.18; posterior view: Figure 3.19; distal view: Figure 3.20; lat-
eral view: Figure 3.21; medial view: Figure 3.22). The other two views are presented
in Appendix A. The first mode consists of numerous anatomical differences, includ-
ing the global volume, the distal surface shape and the medial malleolus shape. At
−3

√
λ1, the reconstructed bone has a large volume, rounded processes on the lateral

surface, a short and rounded medial malleolus and a triangular distal surface. At
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FIGURE 3.12: Lateral view of first four eigenmodes of talus: Each row
represents one eigenmode and is arranged in order from top to bot-
tom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.13: Medial view of first four eigenmodes of talus: Each row
represents one eigenmode and arranged in order from top to bottom. In
each row from left to right: reconstructed shape at −3

√
λi, mean shape

with deformation magnitude of 3
√

λi, reconstructed shape at 3
√

λi
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FIGURE 3.14: Superior view of first four eigenmodes of talus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.15: Inferior view of first four eigenmodes of talus: Each row
represents one eigenmode and arranged in order from top to bottom. In
each row from left to right: reconstructed shape at −3

√
λi, mean shape

with deformation magnitude of 3
√

λi, reconstructed shape at 3
√

λi
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FIGURE 3.16: Anterior view of first four eigenmodes of talus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.17: Posterior view of first four eigenmodes of talus: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi
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3
√

λ1, the reconstructed bone is small, with pointed processes on the lateral surface,
large, squared and pointed medial malleolus and respectively squared distal sur-
face. It can be observed that the first and the second modes represent the length of
the tibia. Hence in this thesis, we only focus on the distal end instead of the whole
tibia. Therefore the size, as well as the proximal end deformation, is not taken into
consideration, and the manual segmentation causes the variation in length. The
second mode contains similar features as the first mode and mainly focuses on the
shape of the process and malleolus. The third mode primarily represents the shape
of the medial malleolus, as in the first and second modes. And the fourth mode con-
tained less variation and the visible shape change is similar to the first three modes.
One highlighted deformation is located at the posterior margin of the distal surface,
which changes the curvature of the respective bone edge.

FIGURE 3.18: Anterior view of first four eigenmodes of tibia: Each row
represents one eigenmode and is arranged in order from top to bottom.
In each row from left to right: −3

√
λi, mean shape with deformation

magnitude of 3
√

λi, 3
√

λi

3.3.4 Correlation analysis between shape parameters and clinical
coefficients

In the previous section, we visualize the shape variations captured by each eigen-
mode of the shape model. But how to explain these variations remains to be discov-
ered. The first eigenmode of each bone is assumed to relate to age, yet not proved.
To access the factors influencing the bone shape, we calculate the Pearson corre-
lation coefficient between the eigenvalues of covariance matrix λ and the clinical
coefficients. The clinical coefficients include age, height, weight, leg length, tibialis
anterior strength, peroneus and tricep sural, and the passive movement range with
the knee extended and flexion.

In the first step, the correlation inter-clinical-coefficient is analyzed to avoid the
influence of this correlation in the shape-clinical correlation analysis. The correlation
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FIGURE 3.19: Posterior view of first four eigenmodes of tibia: Each
row represents one eigenmode and is arranged in order from top to
bottom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.20: Distal view of first four eigenmodes of tibia: Each row
represents one eigenmode and is arranged in order from top to bot-
tom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi
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FIGURE 3.21: Lateral view of first four eigenmodes of tibia: Each row
represents one eigenmode and is arranged in order from top to bot-
tom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi

FIGURE 3.22: Medial view of first four eigenmodes of tibia: Each row
represents one eigenmode and is arranged in order from top to bot-
tom. In each row from left to right: reconstructed shape at −3

√
λi,

mean shape with deformation magnitude of 3
√

λi, reconstructed shape
at 3

√
λi
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matrix is reported in Figure 3.23. The absolute value of Pearson correlation coeffi-
cient |ρ| between clinical coefficients varies from 0.037 to 0.98. The demographic
characteristics, including age, height, weight and leg length, are highly correlated,
with ρ ≥ 0.82. The strength of muscles is also positively related to age, height,
weight and leg length with 0.48 ≤ ρ ≤ 0.91, especially the strength of tibialis
anterior, which is strongly related to demographic characteristics (ρ ≥ 0.72). The
strength coefficients are also positively correlated (0.47 ≤ ρ ≤ 0.87). In comparison,
dorsiflexion is rarely related to demographic characteristics and muscle strength
(|ρ| ≤ 0.4, except the correlation between dorsiflexion and weight). The dorsiflexion
range with the knee extended and knee flexion are strongly correlative (ρ = 0.83).

FIGURE 3.23: Correlation matrix betweens clinical coefficients.

After figuring out the correlation between the clinical coefficients, in the next
step, the correlation analysis is performed between the clinical coefficients and the
shape parameters λ. The correlation analysis results (see Figure 3.24, 3.25, 3.26) con-
firm our assumption in shape variation visualization that the first mode of all three
bones is strongly related to age (calcaneus: -0.65; talus: -0.68; tibia: -0.72). As a con-
sequence, the age-correlated coefficients, including demographic characteristics and
muscle strength, are also statistically relevant to the first mode. For all three bones,
the correlation with demographic characteristics is moderate to strong. The muscle
strength values are weakly to strongly related to the first mode, except the tibialis
posterior strength for calcaneus, where the ρ is nearly 0. No obvious correlation
between the first mode and the dorsiflexion range.



3.4. Discussion 71

The second mode of the calcaneus is strongly related to tibialis posterior strength,
with a correlation coefficient of 0.95. The correlation with the strength of the other
muscles and demographic characteristics are moderate to high, i.e., the second mode
is similar and somehow complementary to the first mode. In the talus model, sim-
ilar results are visible. The dorsiflexion range is mainly explained by the seventh
mode of calcaneus and tibia, with a high correlation coefficient of over 0.5 and 0.64,
respectively. For talus, it is related to the sixth mode (negative and moderate corre-
lation) and the tenth mode (positive and strong correlation).

FIGURE 3.24: Correlation matrix between clinical coefficients and
shape parameters of calcaneus.

3.4 Discussion

SSM provides an access to study the morphometry of anatomical structures. As
reported in the literature, it is widely applied to bony structures, including but not
limited to femur [44], [10], [23], [155], pelvis [177], [155], tibia [155], [143], fibula [155]
and scapula [125], [23], [138]. In [99] and [92], authors analysed the adult tibiotalar
joint and subtalar joint morphometry with SSM tool. In the case of pediatric data,
morphological analysis is still an open area that needs to be explored. An ankle bone
morphometry study of typical developing children is presented in this chapter using
a voxel-based SSM approach, which is a first step in understanding how cerebral
palsy influences ankle joint morphometry.

SSM correspondences are constructed using a voxel-based approach. By com-
pleting this step, an ankle joint atlas for children is created. Atlas depicts visually
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FIGURE 3.25: Correlation matrix between clinical coefficients and
shape parameters of talus.

FIGURE 3.26: Correlation matrix between clinical coefficients and
shape parameters of tibia.
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realistic structures of the calcaneus, talus, and distal end of the tibia. The quantita-
tive evaluation of deformation fields with DICE indicated that images of all subjects
had a high degree of accuracy in the deformation field generation procedure.

The analysis of shape variation reveals the anatomical variation in the calca-
neus, talus and tibia of typically developing children. The quantitative evaluation of
model compactness indicates that the model achieves a compact representation of
ankle bone shape. 70% of variation is encoded in the first four principal components,
and the first mode of all three bones contains the most variation and represents the
overall volume. First four modes capture the shapes of subtalar joint surfaces on cal-
caneus and talus, tibiotalar joint surfaces on tibia and talus, cuboid facet on anterior
calcaneus, and calcaneal tuberosity. The bone shape can be affected by joint stabil-
ity or pathology. A flatter talar dome has been identified to result in a lower level
of tibiotalar stability [93], [55], and the chronic ankle instability flatter talar joint
surfaces and a flattened calcaneal groundcontact surface [175]. The shape model
with normative parameters can help clinicians locate the significant morphological
changes for diagnosis.

Certain studies have accessed the relationship between shape parameters and
anatomical coefficients [27], [158]. Accordingly, under the hypothesis that demo-
graphic characteristics and muscle quality influence bone shape, the correlation
between demographic characteristics, muscle strength and dorsiflexion is investi-
gated. The first mode of all three bones is strongly correlated with age. The second
mode of calcaneus and talus also has a correlation with age. A strong correlation
between the second mode and tibialis posterior strength is visible for calcaneus.
Visually, the second mode represents the shape of the facet for cuboid, where the
plantar portion of the tibialis posterior inserts into, and the sustentaculum tali, at
which the recurrent portion of the muscle inserts into. The model has interpretabil-
ity from a clinical perspective, which offers the possibility to detect the location of
functional disability and facilitate the rehabilitation setting.

Limitations of this study are three folds. Firstly, the generalization and speci-
ficity do not converge with all principal components. It indicates the requirement
for a larger dataset to improve the model’s robustness. A large number of data will
statistically facilitate the model’s learning of more accurate distributions, enhancing
the model specificity and introducing more shape variation, improving generaliza-
tion. Models with sufficient specificity and generalization can handle generative
tasks such as predicting the missing part of a shape based on partial observations
and augmenting data with the model. Secondly, due to children’s growth, the bone
shape is variable longitudinally. Even if we take growing cartilage into account, it
does not accurately represent the accurate picture of bone development. With real
3D pediatric scanning of a large population, longitudinal modeling of ankle bone
shape will provide information on ankle joint development. Thirdly, only the distal
end of the tibia is analyzed in this thesis. By taking the entire tibia into considera-
tion, the shape will be better modeled.

The purpose of this chapter is to present a voxel-based model of the typical
developing child’s ankle joint. An atlas is constructed, which can be used as an
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anatomical reference in future studies. The shape variation among healthy children
is analyzed and the correlation with clinical measurements is studied. It can provide
information for clinical routines, such as the diagnosis of some musculoskeletal dis-
orders. In the following chapters of this thesis, we will continue our investigation
in ankle bone morphometry based on the data and results obtained in this chapter.
The inter-population morphological difference will be accessed.
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4 Ankle bone morphological anomaly
analysis of children with cerebral
palsy using MRI
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4.1 Introduction

After the normal bone shape of the ankle joint is studied and the atlas of chil-
dren’s ankle joint is constructed, these deformities need to be characterized and
visualized through the anomaly analysis of the shape of the ankle bones. Therefore,
this work aims to provide informative bone shape maps.

To perform the morphometry analysis with the volumetric representation of
shapes, two types of methods based on the images have been developed, accord-
ing to the scale to study: region-scale analysis and voxel-scale morphometry. For
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region-scale analysis, some anatomically defined regions of interest are manually
labeled, therefore it has the strength of anatomical validity. However, the time con-
sumption and the reliability of manual labeling need to be treated with care. The
voxel-scale morphometry is an automated method that examines the whole anatom-
ical structure with a voxel-wise measurement to localize the morphological change.
Researchers have performed comparative studies of these two methods in the de-
tection of gray matter abnormalities [150], [59]. In [150], authors report that the
voxel-scale method is more sensitive to morphological change and it is highly rec-
ommended to use voxel-scale morphometry. However in [59], authors suggest that
the two methods provide different types of information and should be used in tan-
dem. Therefore in this study, both region-scale analysis and voxel-scale method will
be explored, in order to see the consistency and the difference between these two
methods.

In the context of shape analysis, an anomaly can be defined by local values of de-
formation fields that deviate significantly from the normal distribution to the tem-
plate space. The main classes of algorithms to perform anomaly detection are prob-
abilistic models (such as density estimation or neural generative models), one-class
classification, and reconstruction models [133]. One key element in the context con-
sidered in this work lies in the small sample size driving the choice of appropriate
detection methods.

In this chapter, we investigated the bone morphometry difference between TD
and CP populations from a multi-scale view. From a global scale, the analysis is per-
formed with bone volume comparison. For region-scale analysis, some anatomical
regions is defined and the local distribution of deformation characters is analysed.
The voxel-wise analysis inspects the morphological difference with a voxel-scale
anomaly detection from voxel scale, by using a comprehensive voxel-scale ankle
joint bone shape analysis pipeline between TD population and CP population with
equinus. Through this study, we initially analyzed abnormal changes in bone mor-
phometry that occur in children with equinus. This study allows us to understand
further the pathological mechanism providing a targeted reference for individual-
ized clinical decision-making.

FIGURE 4.1: voxel-scale ankle joint anomaly analysis pipeline for pop-
ulation with equinus.
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4.2 Methods

The clinical data and its pre-processing, the template estimation and the defor-
mation field computation are presented in Chapter 3. Thus in this section, we skip
these steps and focus on the morphological anomaly analysis in global, regional and
voxel scales.

4.2.1 Global scale analysis – volumetric measurement

The bone volume is an anatomical indice that is related to muscle quality and
thus the function [178], [86]. In this study, we compare the volume of calcaneus
and talus, including their growth cartilage, according to age. The quantification is
performed with the software itk-SNAP1.

4.2.2 Region-scale morphometry analysis

To better understand the bone deformity on a regional scale, and obtain the mor-
phometry information based on the anatomically valid regions, we divide calcaneus
in 7 regions: lateral, medial, superior, inferior, cuboid facet, subtalar facet and pos-
terior region; talus in 5 regions: lateral, medial, superior, inferior and head region;
tibia in 3 regions: fibula notch, malleolus, distal surface regions (see Figure 4.2). The
regions are defined based on the anatomy of the bones of interest [42].

(A) calcaneus

(B) talus

(C) tibia

FIGURE 4.2: Illustration of regions of calcaneus, talus and tibia. (A):
calcaneus: lateral (dark blue), medial (turquoise), superior (green), in-
ferior (blue), cuboid facet (orange), subtalar facet (dark red) and poste-
rior (yellow). (B): Talus: lateral (turquoise), medial (orange), superior
(blue), inferior (dark red), head (yellow). (C): Tibia: fibular notch (red),

malleolus (yellow) and distal surface (turquoise).

1https://itksnap.org/

https://itksnap.org/
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In order to find out the difference in each region from a statistical perspective
and based on TBM, for each region, we analyze the regional log-Jacobian determi-
nant (called log-Jacobian) difference by measuring the Wasserstein distance of the
log-Jacobian distribution of TD and CP groups. Wasserstein distances are metrics
to measure the distance between probability distributions that are inspired by the
problem of optimal transportation [120]. It represents the minimum energy cost to
transform a pile of soil from the shape of one probability distribution to the shape
of the other distribution, and it is also called Earth Movers distance. Compared
to the other distance to measure two distributions, such as Euclidean distance and
Hellinger distance, the Wasserstein distance can measure the distance not only of
continuous distributions but also of discrete. Moreover, it is able to preserve the
geodesic structures when transforming one distribution to the other one.

For probability measures µ and ν, x and y are d-dimensional vectors distributed
as µ and ν, the p-Wasserstein distance is defined as Wp(µ, ν) = inf(E∥x, y∥p)1/p. If
the sample vectors are 1-dimensional and p = 1, the Wasserstein distance can be
calculated as W1(x, y) =

∫
R
∥Fx(t), Fy(t)∥dt, where Fx(t) and Fy(t) are cumulative

distribution functions of x and y.

4.2.3 Voxel-scale anomaly detection

To focus on bone shapes, the deformation field analysis is restricted on bone
edges (computed using Sobel filters). The overall objective is to provide a visually
interpretable anomaly map robust to the limited size of the data sets. Given two de-
formation fields (denoted as {DTD

i }i=1,2,...n for TD group and {DCP
i }i=1,2,...m for CP

group), we investigate 2 complementary anomaly detection techniques, one based
on a statistical approach and another based on a reconstruction criterion.

4.2.3.1 Statistical map

The statistical map is based on Hotelling’s T2 test. Hotelling’s T2 distribution is
the multivariate analogue of Student’s t-distribution. The T2 score of a subject i at
location x is given as follows:

T2(x) = [di(x)− µTD(x)]TΣ−1
TD(x)[di(x)− µTD(x)] (4.1)

where µTD and ΣTD are the mean and covariance matrix of the deformation fields
based on the TD samples, and di is the deformation field of the subject i. To provide
statistical maps highlighting significant differences in deformation fields, a p-value
map is calculated. Using the following link between the Hotelling’s T distribution
and the F-distribution ( nTD−3

3(nTD−1)T2(x) ∼ F3,nTD−3), we can compute the p-value cor-
responding to a given location, which comes from the F-distribution.

4.2.3.2 Reconstruction-based map

The reconstruction-based map is computed using kernel PCA [74], which is a
non-linear extension of PCA algorithm introducing a non-linear kernel function
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ϕ(x), to enable the decomposition and reconstruction of non-linear data such as
non-linear deformation fields. The kernel PCA model is trained with deformation
fields of TD subjects {DTD

i }i=1,2,...n. Firstly, DTD
i is decomposed from original space

to feature space with an orthogonal principal basis W with the following objective:

max
n

∑
i=1

∥Wϕ(DTD
i )∥2 s.t. WWT = I (4.2)

Then the reconstruction of DTD
i is performed as follows:

min
n

∑
i=1

∥ϕ(DTD
i )− WTWϕ(DTD

i )∥2 s.t. WWT = I (4.3)

In this work, ϕ is a Gaussian kernel. Once a model is trained, it can be applied on
the deformation field Di of each subject to obtain a model-based reconstructed field
Re(Di). The reconstruction error of subject i at location x is defined as:

Ei(x) =

√√√√ 3

∑
j=1

∥Di(xj)− Re(Di(xj))∥2 (4.4)

From a biomechanical perspective, such an error map provides physical informa-
tion (reconstruction error of the deformation field in mm), complementary to the
statistical approach previously described. From an algorithmic point of view, kernel
PCA is implemented with scikit-learn library 2. In order to combine this informa-
tion with the statistical detection based on the Hotelling T2 test, the reconstruction
error is transformed into p-values (i.e. by converting the error into a z-score using
the deformation fields of the TD subjects and then by transforming the z-score into
a p-value).

4.2.3.3 Combined anomaly map computation

To provide an anomaly map of significant bone deformations related to cere-
bral palsy from this limited-size dataset, we propose to combine the statistical maps
with the reconstruction errors calculated from the kernel PCA decomposition. More
specifically, we propose to combine the two p-value maps (denoted as pstat and
precon) using Fisher’s method.

We compute a voxel-wise anomaly map of every TD subject and the population
anomaly map denoted as AnoMap is then derived by the mean of individual maps,
as follows:

AnoMap(x) =
1

nCP

nCP

∑
i=1

F (pstat, precon)(x) (4.5)

2https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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where F is the Fisher’s method which combines the p-value maps into one χ2 test
statistic with the formula χ2

2 sin−2log(pstat precon). The p-values map is corrected for
multiple tests using FDR3.

4.2.4 Filtering of deformation fields

Deformation fields provide the local transformation map describing the voxel-
wise volumetric and positional change of subjects. However, due to the geometric
constraints, the alignment process is challenging to give an utterly optimal map-
ping. There may still be a residual error between the aligned source and reference
images or the regional discontinuity in the deformation fields. On the other hand,
the disease may impact one region but different voxel on a subject scale. Therefore
as mentioned in [164], the analysis scale is one key point to reveal a consistent pat-
tern among the population while it is hard to decide. In this section, we investigate
the application of filters on deformation fields and their log-Jacobian determinant.

4.2.4.1 Gaussian filter

Gaussian filter is a filter widely used for signal smoothing and denoising. Its
filter function is a Gaussian kernel f (x) = 1√

2πσ
exp(−x2

2σ2 ). The advantage of the
Gaussian filter in statistical morphology analysis is that it can force the deformation
fields towards Gaussian random fields, as described in [58], [164].

4.2.4.2 Statistics filter

One disadvantage of the conventional Gaussian filter is the tendency to lose edge
information, which may cause trouble in distinguishing different tissues and iden-
tifying different anatomical structures. The statistics filter considers the neighbor-
hood statistics by weighting the original image with the local mean and variance
[97]. The estimated despeckled value f̂ of neighborhood (x, y, z) can be described
as:

f̂ (x, y, z) = f̄ (x, y, z) + k( f (x, y, z)− f̄ (x, y, z)) (4.6)

where f̄ (x, y, z) is the mean of the voxel in the window and k is a weighting function:

k =
σ2(x, y, z)

σ2(x, y, z) + f̄ (x, y, z)σ2 (4.7)

σ2(x, y, z) is the local variance and σ2 is the variance of whole image. With the help
of local statistics, statistic filter is able to enhance the edge effect.

3https://www.statsmodels.org

https://www.statsmodels.org
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4.3 Experiments and results

4.3.1 Global scale analysis – volumetric quantification

In the first step, we perform a global bone volumetric quantification of calcaneus
and talus, from a global perspective, to provide a global view of bone morphological
differences caused by equinus. The mean calcaneus volume of TD and CP group
are 48172.9mm3 and 41001.6mm3, and for talus are 29404.1mm3 and 25138.3mm3.
Both calcaneus and talus volume are decreased by 15% in CP group compared to
TD group. The gap between the two groups is increased with age, as presented in
Figure 4.3.

(a) (b)

FIGURE 4.3: Bone and growth cartilage volumes according to age: (a):
Calcaneus; (b): Talus.

4.3.2 Region-scale analysis

For region-scale analysis, the Wasserstein distance is employed to measure the
log-Jacobian distribution distance between the two groups. As reported in Table 4.1,
the distance between TD and CP in regions ranges from 0.010 to 0.083. The cuboid
facet region of calcaneus possesses the most discrepancy, with a distance equal to
0.083. The maximum dissimilarity of the talus is observed in the lateral region with
a distance of 0.060. The distance in the inferior region of the talus is also more
notable than the other regions (0.041). In the tibia, the distance in all regions is less
than 0.018.
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TABLE 4.1: Regional Wasserstein distance of calcaneus, talus and tibia

Calcaneus lateral medial superior inferior cuboid
facet

subtalar
facet posterior

0.023 0.014 0.023 0.019 0.083 0.025 0.011

Talus lateral medial superior inferior head
0.060 0.010 0.014 0.041 0.023

Tibia distal surface malleolus fibula notch
0.018 0.017 0.017

4.3.3 Voxel-scale anomaly analysis

Finally, to locate morphological abnormalities more accurately, we performed
morphological anomaly analysis from the voxel scale using our pipeline. The opti-
mization of the registration is based on not only the image intensity but also the seg-
mentation map and the distance map. The different segmentation map and Cham-
fer distance map may result in a different final deformation fields. In the first step,
to concentrate on the shape of one bone, the independent bone shape analysis is
performed. The independent bone segmentation and distance map is able to well
perserve the single bone shape, and may leads to a more precise anomaly analysis.
However, if we use the joint bone shape analysis, i.e. the construction of atlas and
the deformation field computation is executed with the mask of the three bones to-
gether, instead of one bone at one time, the anatomical information of the subtalar
joint and the tibiotalar joint can be taken into consideration. Therefore, we also test
the joint analysis and compare the results with the independent bone analysis.

4.3.3.1 Independent bone shape analysis

In the first step, the independent bone shape analysis is performed. In this sec-
tion, the atlas is created separately for each bone. The registration and the genera-
tion of deformation fields, as well as the anomaly analysis, is only for one specific
bone at one time.

Figure 4.4 shows our pipeline’s voxel-wise anomaly analysis results. The voxel-
wise analysis is executed with all CP subjects and the atlas of the CP population,
i.e., the results are given by the mean of anomaly analysis between TD subjects and
each CP subject and between TD subjects and the CP atlas. The analysis based on
the subjects’ mean and the atlas demonstrates consistency. The areas with a low p-
value are similar in the two types of analysis. The possible impacted areas reported
by the pipeline in the lateral and the anterior view of the calcaneus are the lateral
margin of the facet for cuboid, and the anterior, middle and posterior facet for the
subtalar joint. In the medial and the posterior view, the medial side of calcaneal
tuberosity is mildly marked, and some scattered areas close to the sustentaculum
tali. In the talus, the lateral process, the head and the anterior facet for calcaneus
is the most marked region, as well as the head, neck and the anterior facet for cal-
caneus. Besides, some scattered regions on the dome region are observed only in
the subject analysis, which was the only difference between the results of the subject
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and the atlas analysis. In the tibia, few anomalies are reported. The voxel-wise anal-
ysis corresponded to the regional analysis that the possible anomalies are located in
the anterior calcaneus, and the lateral talus, and there is approximately no anomaly
in the tibia.

(A) Calcaneus

(B) Talus

(C) Tibia

FIGURE 4.4: Anomaly detection results: The first row is the mean of
each CP individual analysis and the second row is the analysis between

TD atlas and CP atlas.

4.3.3.2 Joint analysis

For joint analysis, the atlas is constructed with the segmentation and distance
map of three bones instead of 3 bones independently. The generation of deforma-
tion fields is also performed with the whole joint and then the anomaly analysis is
independently executed for each bone.

It can be observed in Figure 4.5 that the joint analysis tends to detect fewer possi-
ble anomalies than the independent analysis. The morphological changes reported
by joint analysis are the lateral margin of the facet for cuboid and the lateral margin
of the posterior facet of the subtalar joint surface in the calcaneus. In the talus, the
highlighted region is the lateral process. All possible anomalies are less significant
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than independent analysis. The joint registration optimizes the entire region of in-
terest, i.e., the three bones. Thus the inner anatomical margin, such as the subtalar
surfaces for calcaneus and talus and the tibiotalar surfaces for talus and tibia, is not
the optimization priority, which may cause the mixing of anatomically distinct but
geometrically close voxels. It may indicate that the joint scale is too coarse to analyze
the bone morphological changes in our case.

(A) Independent Analysis

(B) Joint Analysis

FIGURE 4.5: Comparison between independent analysis and joint anal-
ysis.

4.3.4 Effect of filtering

To examine the effect of the filtering, we apply the two filters on the deformation
field of all subjects and the CP atlas to the TD atlas and its log-Jacobian map. The
full width at half maximum (FWHM) of the gaussian kernel is ranged from 4mm,
8mm and 12mm.

4.3.4.1 Visualization of filtered log-Jacobian map and deformation field magni-
tude

To examine the smoothing effect and contrast provided by filtering, we visualize
the log-Jacobian map and the magnitude of the deformation field between the CP at-
las and the TD atlas of the talus. The results are illustrated in Figure 4.6. Both Gaus-
sian filtering and statistical filtering achieved the smoothing of images. Gaussian
filtering has a more substantial smoothing effect and is able to effectively remove
noise, while the loss of edge information is also visible. The bone edge is difficult
to be identified after Gaussian filtering, and the loss of high-frequency information
is more significant as the number of neighborhood voxels increases. The statistics
filtering is less efficient in removing noise, as the discontinuity of the deformation
field still exists after smoothing. However, the edge of the bone is better perserved.
In addition, increasing the neighborhood area does not change the statistics filtering
results significantly.

4.3.4.2 Effect on anomaly detection of filtering

We applied the anomaly detection pipeline on the original deformation fields
and the filtered version to explore how the filtering influences the detection results.
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FIGURE 4.6: Filtered deformation field magnitude and log-Jacobian
Map: The first row is the magnitude of filtered deformation field and

the second row is the filtered log-Jacobian map.

As displayed in Figure 4.7, the Gaussian filter removes the scatter regions, such as
detected red points on the superior face of the talus. The detection of the Gaussian
filter emphasizes the lateral process and anterior facet, which are also the most high-
lighted regions in the initial analysis. The hint on the talus head is also diminished.
The statistics filter results are highly similar to the results without filtering. No sig-
nificant difference is visible. The results of detection correspond to the results of
visualization of deformation fields.

(A) (B) (C) (D) (E) (F) (G)

FIGURE 4.7: Anomaly detection results of talus with original and fil-
tered deformation fields: The first row is the lateral view. The second
row is the superior view. The third row is the view of head. In each
row, the sub-figures follow this order: (A) the original, (B) 4mm Gaus-
sian filtered, (C) 8mm Gaussian filtered, (D) 12mm Gaussian filtered,
(E) 4mm statistics filtered, (F) 8mm statistics filtered, (G) 12mm statis-

tics filtered.

4.4 Discussion

The aim of this study was to investigate the bone morphology relevant to fixed
equinus caused by cerebral palsy. To this end, a global volumetric quantification, a
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region-scale and a voxel-scale analysis were performed. Experiments revealed the
abnormal deformation pattern of ankle joint bone which is the first illustration to
our best knowledge. Firstly, the results of global volumetric measurement reported
that the volume of calcaneus and talus in CP population is 15% smaller than TD
population. Secondly, in the results of region-scale and voxel-scale analysis, the
morphometry in region scale and voxel scale is analyzed.

4.4.1 Global volumetric analysis

The growth of the rearfoot bone appears to be limited in children with cere-
bral palsy and fixed equinus ankles. A similar result was reported by Wren et al.
[187], who reported a smaller vertebral size in children with cerebral palsy com-
pared to TD population. The volumetric reduction of ankle short bone may indicate
the growth problem of children with cerebral palsy. One point of further study is to
confirm this hypothesis and figure out the factors relevant to volumetric reduction,
which will provide a guide for prevention and treatment.

4.4.2 Region-scale and voxel-scale anomaly analysis

The region-scale and voxel-scale morphometry provided the results with con-
sistency. In region-scale analysis, the Wasserstein distance reports the cuboid facet
of calcaneus and lateral talus are the regions with more morphological changes. In
voxel-scale analysis, the possible abnormal areas are localized at the anterior-lateral
calcaneus, posterior facet of subtalar joint of calcaneus, the talar neck and lateral pro-
cess of talus. Two methods can provide mutually complementary information. The
region-scale analysis provides a view from a more coarse scale and has an anatom-
ical explanation. The voxel-scale analysis provides more precise information in an
accurate and efficient way.

Equinus deformity is primarily caused by contracture of the gastrocsoleus mus-
cle. These muscles are connected to the calcaneus through the Achilles tendon at cal-
caneal tuberosity and are involved in plantar flexion of the ankle [77]. Thus the cal-
caneal tuberosity may be impacted by pathology and corresponds to the voxel-wise
analysis results on the medial and posterior view of calcaneus. The tight gastroc-
soleus muscle also causes the compensation of the foot or leg during gait. During
this compensation, the hindfoot severely pronates through the subtalar joint, allow-
ing the midtarsal joint to unlock and dorsiflexion to increase through the oblique
axis of the midtarsal joint [64]. The pronation of subtalar joint may finally lead to
the bone deformation with growth, as detected in calcaneus and talus. Researchers
have reported that the compensation in the sagittal plate through dorsiflexion at the
naviculocuneiform joint, leading to pes planus [6], [81], [124], which may cause the
deformation at the talar lateral process and the calcaneal cuboid facet. The litera-
ture also reports that the equinus led to a change in tibiotalar angle and resulted in
a small-dome and flatter talus deformation [151], [90]. This deformation was po-
tentially detected on the tibiotalar surface of talus. In the future study, it would
be interesting to explore the correlation between our results and the gait parame-
ters such as muscle strength and spasticity, as well as dorxiflexion range, to figure
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out the interaction of muscle and bone morphology and how they affect gait from
biomechanical aspect.

4.4.3 Filtering of deformation fields

The deformation fields describe the volumetric change in voxel scale. However,
the scale of analysis is still difficult to decide, even if the regional analysis has been
performed. Equinus may change the bone morphometry in a scale finer than voxel
but coarser than the defined regions. In order to adjust the analysis scale, as well
as to eliminate the registration error, two types of filter have been tested on the log-
Jacobian maps and the deformation fields. Experiments report that Gaussian filter is
efficient in noise removal while loses the edge information. The effect of statistic fil-
ter is non-significant. The filtering achieves the enhancement of deformation tensor
map in brain shape analysis [164]. Hence, the brain is a more complex anatomical
structure with different tissues. The filtering is able to take into account informa-
tion from the neighborhood so that the analysis can be adaptively scaled to the size
of a particular anatomical structure by adjusting the FWHM without providing a
segmentation map. In our case, the bones are simpler and can be considered as a
whole anatomy structure, i.e. few anatomical margin inside the bone. Moreover, we
performed separate registration and independent shape analysis for each bone, and
the registration is with segmentation map and distance map. It ensures the main-
tenance of bone shape edge to distinguish the different anatomical structure. Thus
the filtering in our case obtained less effectiveness in our skeletal study.

4.4.4 Limitations and perspectives

Despite the fact that this study offers exciting new information concerning the
bone morphology of children with cerebral and equinus, there are some limitations
that must be considered in order to make a meaningful interpretation of the find-
ings. First of all, children in TD group tends to have larger BMI than those in CP
group. In the context of bone volume comparisons, these non-significant differ-
ences may have an impact on the results but it is hard to explain a large gap of 15%
bone volume reduction. Lower BMI may be another consequence of the growth
problem caused by cerebral palsy. Secondly, this study was performed on a limited-
size dataset due to the scarcity of pediatric datasets. The lack of data can cause
the mis-estimation of distribution which will lead to an inaccurate detection result.
Although we revealed some deformation pattern from our dataset, it is better to con-
firm our results by increasing the number of subjects included. Due to the limitation
of acquisition settings of pediatric MRI, an alternative way to evaluate the analysis
results is to perform the comparative study with SOTA methods. Thus in the next
chapter, we will introduce the shape analysis with one SOTA tool and our method.
Thirdly, the group mean difference is reported in this chapter. However, in clinical
practice, intervention designed based on population analysis may not be adapted
to each individual. Therefore, in the next chapter, we will present a comprehensive
personalized shape analysis for each individual.
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cerebral palsy
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5.1 Introduction

To determine whether an intervention is effective, studies report mean differ-
ences between groups in clinical trial settings. However, even in the case of statisti-
cally significant mean group effects, the intervention may not be effective for every
participant in the study [37]. As pointed out in the review [37], CP is a very hetero-
geneous population with a large variation in the disorder distribution, character and
severity. It may also be the case that even for interventions deemed highly effective
in CP, a range of individual responses may be observed, from a negative response
to a strong positive effect. Studies [38], [163] have reported that lower extremity
strengthening can both alleviate abnormal gait posture and exacerbate it, depend-
ing on the individual degree of muscle spasticity. A mean group response may not
be informative in individual medical decision-making.
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The concept of personalized medicine is developed based on the measurement
of biomarker – a characteristic that is objectively measured and evaluated as an in-
dicator of normal biological processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention [18]. In pharmacogenomics, it has been rec-
ognized that differences in response from benefit to serious side-effect exists and
the importance of personalized medication is pointed out [72]. The personalized
medicine can be now generalized to the other domains of health care such as pre-
cision psychiatry [51]. However in the rehabilitation of musculoskeletal disorders
caused by CP, personalized bone morphometry has not been adequately investi-
gated. The large standard deviation of inter-subject responses to therapy in the
clinic is ineligible and a personalized approach to medical care is currently required.
In order to better respond to the various needs of patients, it appears necessary to
develop tools that allow a personalized approach based on a fine morphological
analysis to propose a dedicated, effective follow-up.

For this purpose, it is required to rely on a dedicated analysis of the morphology
of the ankle joint for each subject with the help of the SSM. In the last chapter, the
population scale shape analysis is presented. Such an analysis of the shape of the
ankle bones provides access to identify and visualize the deformities in the view of
the whole group. Thus the main objective of this chapter is to develop a personal-
ized approach, which could provide a better understanding of CP at the individual
level as well as a more suitable rehabilitation program for those individuals [84].
However, a recent study [62] has shown the importance of the evaluation and vali-
dation of these tools in clinical applications. Specifically, this study compared three
widely used state-of-the-art SSM tools, namely ShapeWorks [26], Deformetrica [43],
[21] and SPHARM-PDM [166]. The quantitative and qualitative results show that
the SSM tools have different levels of consistency and different abilities to capture
variability at the population level. What becomes apparent through this study is the
need to compare results obtained using multiple shape analysis methods.

In order to propose a customized approach, we focus on tools to provide infor-
mative deformation maps at a population level and also for each CP child based on
shape analysis approaches. Morphometry, which is the study of the geometry of
shapes, can be performed using voxel-based methods or surface-based approaches.
In this chapter, we propose to investigate both types of approaches to provide the
most comprehensive analysis possible at the patient level. Shape analysis relies on
mapping (also called registration or matching) between subjects (or templates). Us-
ing a reference template, information about the individual shapes can be encoded
in the deformation fields [7]. In such a context, personalized shape analysis is the
study of the deformation fields for each subject.

In this chapter, we study the shape of the ankle joint of children with CP from
high-resolution MRI data using two shape analysis approaches. More specifically,
our contributions are three-fold: 1) a group analysis using two SSM methods, 2)
an analysis of three ankle bones for a complete visualization of the joint, and 3) a
subject analysis for a fine study of the deformation patterns for each child.
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5.2 Methods

The overall flowchart is shown in Figure 5.1. In this work, the analysis is per-
formed both on the surface-based approach and the voxel-based approach.

FIGURE 5.1: Comparative ankle joint shape analysis with surface-based
method and voxel-based method.

5.2.1 Surface-based shape analysis

Statistical Shape Modeling is a mathematical approach to quantify 3D shape
variation. One approach for SSM is to analyze meshes computed for image seg-
mentation. In this work, we rely on the surface-based SSM software called Shape-
works [26]1 that has been recently used for ankle joint analysis using weightbear-
ing computed tomography [92], [99]. A recent benchmarking study has shown the
potential of Shapeworks with respect to other surface-based SSM [62], which has
been introduced in Section 2.2.3.1. As presented in Section 2.2.3, ShapeWorks is
a groupwise particle-based shape modeling method that does not rely on surface
parameterization. Shapeworks handles each surface mesh as a set of particles that
describe the surface geometry. Such a particle-based representation avoids many
of the problems inherent in parametric representations (i.e. limitation to specific
topologies for instance). Shapeworks takes as input binary segmentation of each
bone of every subject. Correspondences between surfaces (relying on particles) are
estimated using signed distance images. Procrustes analysis is used to remove scal-
ing (i.e. size) from the shape modeling analysis. Mean shapes are generated for CP
and TD groups and deformation fields between the two groups are used to study
the shape differences. In this work, the calcaneus is modeled with 2048 particles
and the other two bones are modeled with 1024 particles. The length of the tibia is
normalized with a cutting plane perpendicular to the tibial shaft.

1https://sciinstitute.github.io/ShapeWorks

https://sciinstitute.github.io/ShapeWorks
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5.2.2 Voxel-based shape analysis

The details of our voxel-based approach are introduced in Chapter 2. As a re-
minder, we briefly present this approach in this section.

For the voxel-based approach, we make use of an image registration-based frame-
work to compute a mean image model of the TD population by using a group-wise
diffeomorphic algorithm [11] with image intensity, bone segmentation maps and
signed distance maps. Then, for each CP subject of the dataset, deformation fields
are estimated by non-linear multivariate registration onto the mean TD template
previously computed. The template estimation and the patient-to-template regis-
tration stages are performed with ANTS2.

For the group level analysis, a template of CP group is constructed in the same
way as the TD template. The deformation field represents the correspondence be-
tween two groups, which is computed by registering the CP template to the TD
template.

5.3 Results

To analyze the similarity and the variation between two different SSM methods,
in this section, we first compare the results obtained in each bone at group level,
and visualize the whole joint results in order to provide an overall view. To further
understand bone morphometry from a personalized view, a subject-level analysis
is performed. The subject-level analysis aims also to investigate the difference be-
tween group mean results and personalized results.

5.3.1 Analysis at group level

Our first objective is to provide a comparison between the two groups of interest
(CP and TD), with the voxel-based and particle-based methods. Figure 5.2 shows
the magnitude of the deformation fields for the 3 bones of interest from the CP group
toward the TD group. These deformations correspond to the average shape varia-
tions between the two populations. This figure indicates that the two SSM methods
studied in this work provide similar results regarding the main deformation regions
of talus and calcaneus. These results tend to show that both SSM methods capture
the same patterns of shape variation at the group level for these two bones.

Figure 5.3 shows a group-wise deformation zone in the lateral process of the
talus and a deformation zone on the anterolateral aspect of the calcaneus. These
two areas are anatomically opposite each other. A zone of deformity is also seen on
the inferolateral aspect of the tibial malleolus.

2http://stnava.github.io/ANTs/

http://stnava.github.io/ANTs/
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(A)

(B)

(C)

FIGURE 5.2: Magnitude of deformation fields at group level (CP vs TD)
using ShapeWorks and voxel-based methods: (A) calcaneus, (B) talus,

(C) tibia.

FIGURE 5.3: Deformation of ankle joint at group level (CP vs TD) using
the voxel-based analysis.
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5.3.2 Analysis at subject level

The group-level analysis shows shape differences in some regions of the bones
of interest. However, the group-level analysis only provides average deformation
patterns, without allowing a personalized analysis for each child. An analysis at
the individual level is necessary to propose a more personalized approach. Fig-
ures 5.4, 5.5, 5.6 show the magnitude of the deformation fields between each CP
subject (ordered by age) and the TD atlas using the voxel-based method for respec-
tively, the calcaneus, the talus and the tibia in one view. The other views can be
found in Appendix A. The main deformation patterns revealed by the group anal-
ysis may be observed in some subjects, but not necessarily in all subjects. Age does
not seem to be related to the observed deformation patterns.

FIGURE 5.4: Subject-level shape analysis of calcaneus in lateral view of
CP population.

5.4 Discussion

Motivated by the observed volume difference of calcaneus and talus between
TDs and CPs, this study is aimed to investigate the ankle joint bone morphology
relevant to fixed equinus caused by cerebral palsy. To understand population-wise
pathological change and to adjust patient-adapted rehabilitation program, the mor-
phological analysis was performed on both on population level and individual level.
To this end, we make use of two SSM methods. Such an analysis provides the pos-
sibility to analyse the morphological properties and detect large deformations than
can be caused by pathology [135], [24].

5.4.1 Cross-approach comparison

In [56] and [62], authors described different levels of consistency between SSM
tools and stressed the importance of validating these tools in medical applications.
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FIGURE 5.5: Subject-level shape analysis of talus in lateral view of CP
population.

FIGURE 5.6: Subject-level shape analysis of tibia in lateral view of CP
population.
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Different SSM methods can lead to results with large variations. Under these condi-
tions, a comparison between several shape analysis methods is necessary.

In this study, we adopt a surface-based approach and a voxel-based approach.
Both methods capture similar group-level deformation regions for talus and calca-
neus. Indeed, both methods reveal deformations of the anterior lateral edge of the
calcaneus, which is located near the cuboid facet and the anterior facet of the sub-
talar joint, as well as the posterior-lateral edge of the posterior facet of the subtalar
joint and the lateral process of the calcaneal tuberosity. In the talus, the area show-
ing obvious deformity in both methods is the lateral process, as well as the neck of
the talus. Compared to the calcaneus and the talus, the results for the tibia show
less similarity between the methods. However, deformities of the infero-lateral part
of the tibial malleolus are evident, which in relation to the deformities found in the
calcaneus and talus can be explained by the valgus deformity of the hindfoot fre-
quently found in children with CP and equinus gait. This deformity, exacerbated by
weight-bearing, causes dislocation of the hindfoot with malalignement of the ankle
bones, increasing local mechanical stress [119]. The increase in stress is consistent
with the deformities seen in the lateral-anterior border of the calcaneus, the lateral
process of the talus and the tibial malleolus.

However, differences still exist between two methods. In calcaneus, the calca-
neus tuberosity and its medial process have large deformation magnitude in surface-
based approach, while this change is not reported by voxel-based approach. In talus,
the lateral side of posterior facet is reported by voxel-based approach but not by
mesh-based approach. In tibia, the fibula notch region obtained with mesh-based
method has a magnitude of 1mm while approximately 0.5mm in voxel-based anal-
ysis.

5.4.2 Subject-level analysis

The subject-level analysis reveals the deformation pattern of each CP subject. As
presented in section 5.3.2, the subject-level analysis may correspond to the group
analysis, but not necessarily.

Interestingly, the talus appears to be the bone with the least variation in inter-
subject deformation. At the same time, it appears to be the bone of the ankle com-
plex with the most deformation. This may be related to its anatomical-physiological
characteristics (absence of muscle insertion, poor vascularisation and its anatomical
position at the crossroads of the mechanical constraints of the talus and tibia [42].
Just as it is more sensitive to osteochondral lesions in sportsmen and women [15],
it seems to be more sensitive to deformation in CP individuals with equinus gait.
This suggests that the evolution of the shape of the talus should be monitored more
closely.

Despite this trend, no precise deformation pattern is observed for any of the three
bones of the ankle complex. Although individual #3 (age 9.87) appears to be closest
to the deformation pattern described above at the group level and some individuals



5.4. Discussion 97

are close to it in some deformations, alternative patterns are found for each individ-
ual. This does not mean that these individuals do not have deformities that could be
explained by their loaded foot position or their gait. Further exploration is required
to establish these relationships. The presence of major deformities at the individual
level means that individualised diagnostic imaging assessment, in conjunction with
gait analysis, should be encouraged in order to provide specific and personalized
treatment.

5.4.3 Perspectives

This study offers exciting new information concerning the bone morphology of
children with cerebral palsy and equinus. However, it is necessary to continue such
a study in order to confirm these results. Firstly, this study is performed on a limited-
size dataset due to the scarcity of pediatric datasets. Although the similar deforma-
tion pattern is revealed from our dataset with different tools, it would be better to
confirm our results by increasing the number of subjects included. Secondly, as
already highlighted in [56] and [62], this work confirms the need to analyze the
results obtained with SSM methods with care and a future line of research must be
the understanding of the potential variability of the results obtained by SSM tools. It
is essential to provide simple and efficient tools for shape analysis in a personalized
context.
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6 Conclusion and Perspectives
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6.1 Conclusion

Under the assumption that the fixed equinus deformity may impact the bone
morphology of the ankle joint, in this thesis, we investigate the bone shape of the
ankle joint of children with CP and fixed equinus deformity. More specifically, the
scientific questions are three-fold: 1) how to define the normal bone shape of TD
children; 2) is there any shape difference between TD and CP populations; 3) if yes,
where is the difference located; 4) whether the results at patient-level are consistent
with the results at population-level.

To answer the first question, Chapter 2 shows the shape of the calcaneus, talus
and tibia with the help of SSM. We present a voxel-based model of the TD popu-
lation. Through the model, an atlas of TD children’s joints, i.e., the mean image of
children’s ankle joint MRI, is first constructed. The atlas represents the children’s
ankle joint anatomy and can be used as a reference in future studies. The shape
variation among healthy children is analyzed, and the correlation with clinical mea-
surements is studied, which provides information about the anatomical variation of
the bones of interest and a qualitative explanation of the model.

To cope with the second and the third questions, we perform a multi-resolution
analysis in Chapter 3, including global volumetric analysis, regional analysis and
voxel-scale analysis, which reveals the morphological difference from different lev-
els. The global volumetric measurement reports a volume reduction in CP group,
indicating that the equinus deformity may cause the limited growth of the rear-
foot bone. The region-based analysis and the voxel-scale analysis are based on a
deformation-based approach. In region-based analysis, we compare the regional
mean Wasserstein distance of log-Jacobian between TD and CP groups. It demon-
strates that the cuboid facet of the calcaneus and the lateral surface of the talus
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are the regions with more significant differences than the other regions. For voxel-
scale analysis, we implement an anomaly analysis method adapted to a limited-size
dataset that aggregates two different approaches. The aggregation enables the com-
bination of statistics and biomechanics to understand the population-wise morpho-
logical difference. The analysis reports that the most possible areas impacted by the
pathology are the anterior-lateral calcaneus and the lateral process of the talus.

Regarding the fourth question, we analyze the deformation pattern of equinus
at a subject level in Chapter 4. Results have certain consistency, but the variation
among subjects is more visible. No precise pattern is observed for any of the three
bones, which suggests a personalized treatment in clinical practice.

Another contribution presented in Chapter 4 is cross-SSM-tool comparison. Two
different SSM tools are applied to our data: our voxel-based approach and one state-
of-the-art SSM tool, ShapeWorks. Inter-approach consistency can be observed, while
differences still exist. Both methods report the cuboid facet of the calcaneus and the
lateral surface of the talus but ShapeWorks points out the calcaneal tuberosity in
addition. Therefore the results obtained with SSM tools need to be treated with
care.

6.2 Perspectives

6.2.1 In vivo Kinematic Analysis Based On Dynamic MRI

Equinus deformity results in the abnormal deformation of bone and muscle mor-
phometry, as well as ankle kinematics. In this thesis, the 3D shape of the calcaneus,
talus and distal end of the tibia is analyzed. Future studies could investigate the
inter-population difference in the aspect of kinematics. With the help of 3D+time
dynamic MRI sequences, the dorsiflexion movement is captured, and the 3D kine-
matics is estimated (Fig. 6.1-6.3) [106]. The analysis of these sequences will enable
the understanding of the pathology in a dynamic view.

6.2.2 Interpretation of Anomaly Analysis Results

In this thesis, the possible area of calcaneus and talus impacted by the equinus
deformity is reported. But It still lacks interpretation from an anatomical and clinical
view. For a better understanding of the causes and the effects of the pathology,
future studies should investigate the correlation with the clinical measurements and
the gait parameters, in order to find the determinant coefficient affecting the bone
shape.

6.2.3 Deep-learning-based Image Registration

The diffeomorphic registration algorithm succeeded in our MR image registra-
tion task. However, the execution time is not negligible. A faster registration method
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FIGURE 6.1: 3D normative kinematics of tibio-talar joint.

FIGURE 6.2: 3D normative kinematics of calcaneal-tibial complex.
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FIGURE 6.3: 3D normative kinematics of subtalar joint.

is highly required for the real-world application. Many one-step deep-learning-
based transformation estimation algorithms have been proposed and successfully
applied in the medical context [71]. In future studies, the deep-based registration
methods need to be explored.
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A Supplementary Views of
Subject-level Shape Analysis

To complete the visualization of subject-level analysis, the other views except
the lateral visualization angle are presented here. Fig. A.1 to A.5 are the anterior,
inferior, medial, posterior and superior views of the calcaneus. The talus of all these
five views is represented by Figure A.6 to A.10. Figure A.11 to A.14 are of tibia
without the proximal end, since this study focuses on the distal end of the tibia
which contributes to ankle joint function. Same as in the lateral view, the subject-
level analysis shows the similarity to the group analysis, as well as the variation in
different CP subjects. Group analysis cannot accurately represent the deformation
patterns of all subjects. A patient-specific treatment program is necessary.

FIGURE A.1: Subject-level shape analysis of calcaneus in anterior view
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FIGURE A.2: Subject-level shape analysis of calcaneus in inferior view

FIGURE A.3: Subject-level shape analysis of calcaneus in medial view
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FIGURE A.4: Subject-level shape analysis of calcaneus in posterior view

FIGURE A.5: Subject-level shape analysis of calcaneus in superior view
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FIGURE A.6: Subject-level shape analysis of talus in anterior view

FIGURE A.7: Subject-level shape analysis of talus in inferior view
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FIGURE A.8: Subject-level shape analysis of talus in medial view

FIGURE A.9: Subject-level shape analysis of talus in posterior view
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FIGURE A.10: Subject-level shape analysis of talus in superior view

FIGURE A.11: Subject-level shape analysis of tibia in anterior view
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FIGURE A.12: Subject-level shape analysis of tibia in inferior view

FIGURE A.13: Subject-level shape analysis of tibia in medial view
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FIGURE A.14: Subject-level shape analysis of tibia in posterior view
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Résumé/Abstract
Titre : Analyse de la forme de l’articulation de la cheville chez les enfants atteints de
paralysie cérébrale avec l’IRM pédiatrique

Mots clés : Paralysie cérébrale, IRM, Analyse de forme, Articulation de la cheville, Mor-
phométrie

Résumé : La paralysie cérébrale (PC), un
handicap physique fréquent chez l’enfant, en-
traîne souvent des anomalies dans les mou-
vements et la posture, ce qui se traduit par
une morphométrie musculo-squelettique anor-
male. Cependant, la déformation osseuse
qui se produit dans la population atteinte de
la PC reste peu claire. Afin de mieux com-
prendre la pathologie et d’améliorer la réédu-
cation des patients, l’objectif principal de cette
thèse est d’analyser de manière exhaustive
les changements morphologiques chez les
enfants atteints de PC en se basant sur des
études d’images. Dans un premier temps,
la forme osseuse normale des enfants au
développement typique (TD) est modélisée
à l’aide de la modélisation statistique de la
forme (SSM). Un modèle de forme moyenne
appelé atlas de la population TD est créé

comme référence. Pour localiser les éven-
tuelles zones anormales, nous analysons la
morphométrie osseuse de la population CP
de manière multi-résolution. La forme des os
est analysée à l’échelle globale, à l’échelle ré-
gionale et à l’échelle du voxel. Pour l’analyse
à l’échelle du voxel, nous introduisons une
méthode de détection des anomalies ba-
sée sur le voxel, adaptée à la taille limitée
de l’ensemble de données pédiatriques. De
plus, en raison de la variabilité entre les in-
dividus et de l’exigence de soins médicaux
personnalisés, nous étudions la forme des os
à la fois au niveau de la population et au ni-
veau personnel. En outre, nous comparons
les résultats de notre approche basée sur les
voxels et d’un outil de SSM de pointe appelé
ShapeWorks. La comparaison démontre la
cohérence entre les méthodes, confirmant la
fiabilité des résultats obtenus.

Title: Ankle joint morphometry analysis of children with cerebral palsy from pediatric MRI

Keywords: Cerebral palsy, MRI, Shape analysis, Ankle joint, Morphometry

Abstract: Cerebral palsy (CP), a common
physical disability in childhood, often causes
abnormal movement patterns and posture, re-
sulting in an abnormality in musculoskeletal
morphometry. However, the bone deforma-
tion occurring in the CP population remains
unclear. To better understand the pathology
and improve the rehabilitation of patients, the
main objective of this thesis is to comprehen-
sively analyze the morphological change in
children with CP based on image studies. In
the first step, the normal bone shape of typi-
cal developing (TD) children is modeled with
statistical shape modeling (SSM). A mean
shape template called atlas of TD population
is created as a reference. To locate the pos-
sible abnormal area, we analyze the bone

morphometry of the CP population in a multi-
resolution manner. The bone shape is ana-
lyzed from the global, region-based and voxel-
based scales. For voxel-based scale analysis,
in order to cope with the limited size of the
pediatric dataset, we introduce a voxel-based
anomaly detection method adapted to the
small dataset. Moreover, due to the variabil-
ity between individuals and the requirement
of personalized medical care, we study bone
shape at both populational and personal lev-
els. Besides, we compare the results of our
voxel-based approach and one state-of-the-art
SSM tool called ShapeWorks. The compar-
ison demonstrates the consistency between
methods, confirming the reliability of the ob-
tained results.
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