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Résumé de la thèse en français

Dans cette thèse, nous nous intéressons à des modèles déterministes visant à mieux com-
prendre les mécanismes biologiques et chimiques à l’origine de l’hétérogénéité phénotypique
de populations cellulaires. Cette étude est motivée par des travaux d’oncologie montrant
que l’hétérogénéité au sein des populations de cellules cancéreuses est un facteur jouant
un rôle clé dans la croissance et le développement des métastases.

La première partie de notre travail est consacrée à l’étude de systèmes EDO (Équations
Différentielles Ordinaires) modélisant les interactions entre différentes molécules au sein du
cytoplasme d’une cellule. Ces systèmes, appelés Réseaux de Régulation Génique, sont très
utilisés dans le domaine de la biologie des systèmes et visent à modéliser les mécanismes
à l’origine de la plasticité cellulaire, autrement dit de l’évolution d’un trait phénotypique
au cours du temps. Comprendre le comportement asymptotique, et plus précisément le
nombre et le type des attracteurs d’un système permet d’en évaluer la pertinence en le
confrontant aux observations biologiques. Nous étudions ici des cas particuliers de ces
modèles appelés Boucles de rétroaction cycliques, et déterminons, pour un large éventail
de paramètres, le nombre exact de points d’équilibre stables, ainsi que l’existence éventuelle
d’orbites.

En partant de ces EDO, nous construisons un modèle EDP (Équation aux dérivées par-
tielles) structuré en phénotype modélisant le comportement d’une population de cellules
au cours du temps. L’équation considérée comporte un terme d’advection, modélisant la
plasticité cellulaire, et un terme de sélection, modélisant la croissance et la compétition
entre les différentes cellules. Nous prouvons que cette équation admet deux régimes de
convergence, qui dépendent des paramètres des termes d’advection et de sélection : la con-
vergence vers une masse de Dirac (nous parlons alors de phénomène de concentration), ou
la convergence vers une fonction régulière. Biologiquement, ces deux régimes correspon-
dent respectivement à la sélection d’un unique trait phénotypique, et à la préservation d’un
ensemble continu de traits au cours du temps. Ce second scénario, qui correspond au main-
tien d’une population hétérogène, est possible grâce à l’action conjointe des phénomènes
d’advection et de sélection ; en effet, des études antérieures prouvent que, en considérant
seulement l’un de ces deux termes, la solution converge nécessairement vers une somme
de masses de Dirac.

Nous proposons ensuite un modèle plus complet prenant en compte, en surcrôıt de
l’advection et de la sélection, l’instabilité phénotypique, par le biais d’un terme intégral.
Afin d’approcher les solutions de ce modèle, nous développons un schéma numérique de
la famille des méthodes particulaires. Ce type de schéma, qui repose sur la résolution
d’EDO et un processus de régularisation, a pour avantage d’être facilement adaptable en
cas de modification du modèle. Nous prouvons la convergence du schéma, et évaluons son
ordre de convergence, notamment dans le cas où l’advection est non locale. Nous nous
intéressons également à son comportement en temps long, en exhibant des conditions sous
lesquelles le schéma préserve le comportement asymptotique de la solution, et des exemples
où il ne le préserve pas.

L’équation et le schéma sont enfin utilisés dans le cadre d’une collaboration avec des
biologistes des systèmes de l’Institut des Sciences de Bangalore : en se focalisant sur un
phénomène précis, la plasticité épithélio-mésenchymateuse, pour laquelle différentes EDO
ont déjà été développées, nous proposons une EDP structurée en phénotype pour une
population de cellules. Nous montrons que ce modèle préserve plusieurs des propriétés
clés des modèles EDO, et évaluons l’effet des différents paramètres sur la population, et
en particulier la manière dont ils influencent son hétérogénéité.





Remerciements
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Il est impossible de mentionner tous les membres du Laboratoire Jacque-Louis Lions,
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Glossary

Throughout this document, we denote

• R+ the set non-negative numbers, i.e. [0; +∞).

• R∗
+ the set of positive numbers, i.e. (0,+∞).

• For all m,n ∈ N, with m < n, Jm,nK the set of integers between m and n,
i.e. {m,m+ 1, ..., n}.

• ∇· the divergence operator.

• For any set S ⊂ Rd, S̄ its closure, S◦ its interior and Sc its complement.

• For any function u : Rd → R, supp(u) its support, i.e. {x ∈ Rd : u(x) ̸= 0}.

• Cc(Rd) the set of continuous functions from Rd onto R with a compact support.

• M(Rd) the set of Radon measures on Rd, i.e. measures µ which are

(i) Inner regular, i.e for all open set O ⊂ Rd,
µ(O) = sup{µ(K), K compact set included in O}.

(ii) Outer regular, i.e for all Borel set B ⊂ Rd,
µ(B) = inf{µ(U), U open set containing B}.

(iii) Locally finite, i.e for all x ∈ Rd, there exists Vx a neighbourhood of x such that
µ(Vx) < +∞.

• ⇀ the weak-⋆ convergence in the space of Radon measures: if (µk)k∈N is a sequence
of M(Rd), and µ̄ ∈ M(Rd) then µk ⇀

k→+∞
µ̄ if and only if for all ϕ ∈ Cc(Rd)∫

Rd

ϕ(x)dµk(x) −→
k→+∞

∫
Rd

ϕ(x)µ̄(x).

• G : s 7→ 1√
2π
e−

s2

2 the Gaussian function.

• K := 103.

ix





Chapter 1

General Introduction

1.1 ODE models for single cells: Gene Regulatory Networks

1.1.1 General statements and mathematical approach

In a same environment, genetically identical cells may assume different functional fates [6].
This process, known as cellular decision-making, provides an explanation to the epigenetic
heterogeneity of cell populations, and has therefore been the subject of extensive study for
over half a century. This notion of cell-fate decision cannot be explained with the former
view of the cells as a passive system which changes states only in response to environmental
stimuli [87, 120]. The necessity to consider internal regulations between molecules within
cells has thus arisen, giving birth to gene regulatory networks [37, 45,65,121].

Due to the lack of a clear definition of the term cell type, we will avoid using it and
prefer the term ‘cell state’ to designate cell characteristics and functions [36,155,163]. The
state of a cell is usually characterised by the level of certain proteins in its cytoplasm. The
purpose of gene regulatory networks is to describe how the levels of these proteins evolve
over time, potentially leading to cell state transition. Such networks, which are generally
modelled by Ordinary Differential Equations (ODEs) are notably built to explain the
following two empirical observations:

• In a same environment, two cells can adopt different states.

• A transient change of the environment may produce a stable change in cell state [152].

Let us start with a very naive model sufficient to justify why one should consider
regulation between proteins.

Independent molecule. As a starting point, we consider a molecule of interest B
present in the cytoplasm of a cell, with a synthesis rate of g > 0 which is assumed to
depend solely on the external environment. The level of B does not increase indefinitely:
it is subject to spontaneous decay due to degradation, which is assumed to be proportional
to the concentration of this substance itself. Thus, by denoting y(t) the concentration of
B at time t ≥ 0, the net rate of synthesis of B at time t is given by g − ky(t) (with k > 0
a kinetic constant), and y thus solves

ẏ(t) = g − ky(t) t ≥ 0. (1.1)

The solution of this equation is explicitly given by

y(t) = e−kt
(
y0 − g

k

)
+
g

k
,

1



2 Chapter 1. General Introduction

where y0 = y(0) is the initial concentration of B. It is clear that y converges toward g
k ,

regardless of the initial level y0, which means that the long-time behaviour of the level B
is entirely determined by the cell environment. Therefore, this simplistic model does not
account for phenotypic diversity observed in a given environment, nor for the fact that a
transient change in the environment can permanently affect the cell state [152].

Principle of regulation. As mentioned above, the idea of gene regulatory networks is
to consider, in addition to the environment seen as an external input, internal regulation
between several kinds of molecules. Regulation means that the level of a given molecule
(say A) may impact the synthesis rate of another one (say B). With the formalism of (1.1),
if x denotes the concentration of A, and y that of B, this means that g is a function of x.
Regulation can be positive (if A promotes the synthesis of B) in which case g is increasing
with respect to x, or negative (if A inhibits the synthesis of B) in which case g is decreasing
with respect to x.

At this stage, a few reminders about gene expression are in order. A gene is a segment
of DNA composed of a nucleotide sequence which codes for a specific protein. Gene
expression takes place in two main steps [43,44]:

• Transcription: A messenger RNA (mRNA) is synthesised from the DNA sequence
corresponding to the gene.

• Translation: The mRNA serves as a model for the synthesis of a specific protein.

Thus, regulatory functions are essentially of two types:

• Linear regulation, which notably covers translational regulation. Indeed, the number
of synthesised proteins is usually assumed to be proportional to the number of its
associated mRNA. Thus, g(x) writes g(x) = αx, where α corresponds to the quantity
of protein produced by mRNA. These linear regulations are sometimes omitted to
simplify models when they do not alter their qualitative behaviour.

• Non-linear regulation, which is usually used to model transcriptional regulation.
Molecules (usually proteins), called transcription factors, regulate the rate of tran-
scription by binding to specific DNA sequences [99]. This regulation can be positive
(in which case they are called activators) or negative (in which case they are called
repressors) [96, 98]. This type of regulation is usually of little effect under a certain
threshold, and reaches a plateau for high concentrations [150]. This observation has
led to use step functions, giving rise to models known as piecewise linear differen-
tial equations, and, in an even more schematic way, to boolean models [149, 151].
Nevertheless, a more common and relevant choice derives from the Hill–Langmuir
equation [63,75] which leads to model transcriptional regulations with so-called Hill
functions, i.e. functions of the shape

H−(x) =
θr

θr + xr
or H+(x) =

xr

θr + xr
, (1.2)

with θ > 0, r > 1, or more generally, shifted Hill functions

Hλ(x) = H−(x) + λH+(x) =
θr + λxr

θr + xr
, (1.3)

which offer an additional degree of freedom via the variable λ ≥ 0 [3, 35]. The
function g then writes g(x) = αH(x), where H is one of these three functions, and
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Figure 1.1: Effect of the Hill coefficients on the ‘stiffness’ of Hill functions. The step
function to which they tend when r goes to +∞ is represented by a black dashed line.

α > 0 is a positive parameter such that αH(0) is the rate of synthesis of B in the
absence of A.

Note that H− is a particular case of Hλ with λ = 0, and that H+ = 1−H−. Thus,
we will only describe the properties of Hλ, for λ ≥ 0 from which we can deduce
those of H− and H+. First, we note that Hλ is increasing if λ > 1, which thus
corresponds to a positive regulation (A is an activator), decreasing if λ < 1 (A is a
repressor), and constant if λ = 1 (A does not regulate B). Moreover, except in this
last case, if r > 1, then Hλ is a sigmoid function i.e. it is bounded and has a unique

inflection point, which is given by xinfl =
(
r−1
r+1

)1/r
θ. Hence, θ linearly influences

the value of the inflection point, and is therefore interpreted as an action threshold
of transcription factors [152]. The shift parameter λ reflects the maximal action the
regulation has, since lim Hλ(x) = λ as x→ +∞. Lastly, the so-called Hill coefficient
r determines the ‘stiffness’ of the function, as illustrated by Figure 1.1: for r = 1,
Hλ is concave; conversely, for any fixed θ > 0, λ ≥ 0, Hλ converges pointwise to the
step function 1[0,θ) +

1+λ
2 1{θ} + λ1(θ,+∞) as r goes to +∞, which means that the

larger r is, the closer Hill functions are to step functions.

Multiregulatory network. Of course, the synthesis rate of a molecule may depend on
the level of several other molecules, and even on its own level [8]. Thus, by considering a
network of d kinds of molecules A1, . . . , Ad, and by denoting x1(t), . . . , xd(t) their respec-
tive concentrations at time t ≥ 0 (and x(t) the vector (x1(t), . . . , xd(t))), we obtain the
general regulatory network

∀i ∈ {1, . . . , d}, t ≥ 0, ẋi(t) = gi(x(t))− kixi(t). (1.4)

Such systems can stabilise in different ways, depending on the initial conditions. Each
cell state is identified with one possible long-time behaviour of the system. In order to
define these notions rigorously, some mathematical formalism is required.

Let F : Rd → Rd a vector field, and let us consider the ODE

ẋ(t) = F (x(t)), t ≥ 0 (1.5)

which is a generalisation of (1.4). We assume that there exists an non-empty set E ⊂ Rd
such that for any initial condition x0 ∈ Rd, ODE (1.5) has a unique solution, which is
defined on R+ and remains in E, that we denote X(·, x0) (X is thus the flow of F ).
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For biological relevance, we assume that E ⊂ Rd+ (since the level of each protein is non-
negative), and that there exists a compact attractor set, i.e. a compact set K ⊂ E such
that for any x0 ∈ E, there exists T ≥ 0 such that X(t, x0) ∈ K for all t ≥ T .

For any x0 ∈ E, we define the ω−limit set of x0 as

ω(x0) =
⋂
t≥0

X([t,+∞), x0) =
⋂
t≥0

⋃
s≥t

{X(s, x0)},

which is a non-empty, connected and compact subset of K [130].

Lastly, we say that a set S ⊂ K is an attractor1 for (1.5) if there exists x0 ∈ E such
that S = ω(x0). Moreover, we call basin of attraction of S the set{

x0 ∈ E : ω(x0) = S
}
,

and we say that S is an asymptotically stable attractor if there exists a neighbourhood of
S included in its basin of attraction and that it is a non-negligible attractor if its basin of
attraction has a positive Lebesgue measure. Note that an asymptotically stable attractor
is a non-negligible attractor, but that the converse assertion is false. However, in the case
of hyperbolic equilibrium points, these two notions are equivalent.

The mathematical study of gene regulatory networks essentially consists of determin-
ing the number, nature and stability (or more generally if they are negligible or not) of
the attractors of the ODE system (1.4). Indeed, the number of non-negligible attractors
corresponds to the number of possible cell states the model has. In particular, multista-
bility (i.e. existence of at least two stable attractors) is likely to explain distinct cell-fate
decisions. The nature of the attractors is also of great significance: theoretically, they may
be of various kinds, and notably be so-called strange attractors when the dimension d is
greater than two [66]. Nevertheless, essentially two kinds of attractors have a biological
relevance: equilibrium points and periodic orbits:

• A point x̄ ∈ K is an attractor for (1.5) if and only if it satisfies F (x̄) = 0. It is
then called an equilibrium point. The basin of attraction of an equilibrium point
corresponds to the set of x0 for which t 7→ X(t, x0) converges to x̄. Biologically
speaking, equilibrium points correspond to stable cell states, for which the level of
the molecules under consideration shows little fluctuation.

• A periodic orbit, also called cycle, is the trajectory of a non-constant periodic solution
of (1.5), i.e. a set of the form

X([0, T ], x0),

with x0 ∈ K, T > 0 such thatX(0, x0) = X(T, x0). Periodic orbits correspond to cell
states whose molecule levels undergo continuing undamped oscillations [25,37,52].

The theoretical study of the attractors is out of reach for general networks such as
(1.4): we will therefore focus on a particular case: the cyclic feedback loop.

1.1.2 Cyclic feedback loops

We call Cyclic feedback loops [152] the gene regulatory network (1.4), with the additional
hypothesis that for all i ∈ {0, . . . , d}, gi only depends on xi and xi−1, with the convention

x0 = xd

1There are various definitions of attractors [119]; we opt for this one because it allows to count them,
contrarily to other definitions where the union of several attractors is itself an attractor.
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which will be used throughout this section. In other words, the cyclic feedback loops writes

∀i ∈ {0, . . . , d}, t ≥ 0, ẋi(t) = gi(xi(t), xi−1(t))− kixi(t). (1.6)

This model is of special interest because it often serves as the building block for more
complex models. It also relies on the notion of biological feedback, which is involved in a
large number of phenomena and seems to play a central role in gene expression [64,152,158].
Biological feedback refers to the fact that molecules regulate their own synthesis rate. This
feedback is twofold: direct, since gi depends on xi, and indirect, since Ai regulates Ai+1

which regulates Ai+2... and so on, until finally Ai−1 regulates Ai.

To fully understand the phenomena due to indirect feedback and the ones due to
direct feedback, it is useful to study simple feedback loops, which corresponds to the cyclic
feedback loop without direct regulation, i.e.

∀i ∈ {0, . . . , d}, t ≥ 0, ẋi(t) = gi(xi−1(t))− kixi(t), (1.7)

where for all i ∈ {1, . . . , d}, gi is decreasing if the regulation of xi−1 on xi is negative, and
increasing if it is positive.

Figure 1.2: Schematic representation of a simple feedback loop: the blue disks represents
the molecules of the network, and the arrow interactions between them. On the left, the
two-dimensional case, which is the subject of Chapter 2, and, on the right, the general
network with d molecules, studied in Chapter 3.

Despite its simplicity, this model has sparked interest because it suffices to explain
experimental observations in Escherichia coli: oscillatory behaviours [53] as well as bista-
bility [60].

Our contribution is a theoretical study of this model, for a large range of functions
g1, . . . , gd, which encompass several previous studies made in particular cases with a re-
duced number of non-linear functions [7,102,122,143,146,147,153,161]. Our work is divided
in two parts: we first propose a complete analysis of the model in the two-dimensional
case, in Chapter 2, before applying the method developed for any superior dimension, in
Chapter 3.

In the two dimensional case d = 2, the Poincaré-Bendixson theorem and the Poincaré-
Dulac theorem ensure that any attractor is an equilibrium point [130]. When d ≥ 3,
these theorems cannot be applied, and the existence of oscillatory behaviours has been
uncovered for large ranges of parameters [57, 154]. Nevertheless, two important results
have been established, and provide a kind of equivalence. The first one, due to Mallet-
Paret and Smith [113], states that if the functions gi are monotonous, then the attractors
of (1.7) are either equilibrium points or periodic orbits. In the case where d is even, this
result can be completed by that of [147], which shows that the basins of attraction of the
periodic orbits are negligible.
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Thus, the number of the equilibrium points depends on d (the number of variables)
and n (the number of negative regulations).

Following the formalism of Cherry and Adler [26], we study the system

∀i ∈ {1, . . . , d}, t ≥ 0, ẋi(t) = αifi(xi−1(t))− xi(t), (1.8)

where α = (α1, . . . , αd) ∈ (R∗
+)

d and f1, . . . , fd are non-negative, strictly monotonous and
at least one of them is bounded. By taking, for all i ∈ {1, . . . d}, αi := 1/ki, this system
has the sames equilibrium point as the simple cyclic feedback loop (1.7).

We introduce the quantity

D :=
d∏
i=1

sup
x>0

∣∣∣∣xf ′i(x)fi(x)

∣∣∣∣ ∈ (0,+∞], (1.9)

which will be used to characterise the attractors the system has. Note that this quantity
can usually be explicitly computed: if l is a linear (or more generally affine) and non-
constant function, then

sup
x>0

∣∣∣∣xl′(x)l(x)

∣∣∣∣ = 1,

and if H−, H+ and H are the Hill functions defined by (1.2) and (1.3), then

sup
x>0

∣∣∣∣∣xH−′
(x)

H−(x)

∣∣∣∣∣ = sup
x>0

∣∣∣∣∣xH+′
(x)

H+(x)

∣∣∣∣∣ = r,

and

sup
x>0

∣∣∣∣xH ′(x)

H(x)

∣∣∣∣ = r

∣∣∣∣∣1−
√
λ

1 +
√
λ

∣∣∣∣∣ .
Even number of decreasing functions. As mentioned above, if there is an even num-
ber of decreasing functions in the network, then the only possible non-negligible attractors
are equilibrium points. Thus, it is enough to compute the solutions of the system

∀i ∈ {1, . . . , d}, αifi(x̄i−1) = x̄i, (1.10)

which is equivalent to {
f̃(x̄d) := αdfd ◦ . . . ◦ α1f1(x̄d) = x̄d

∀i ∈ {1, . . . , d− 1}, αifi(x̄i−1) = x̄i
, (1.11)

and to determine their stability. The stability study of the ODE thus consists in deter-
mining the number of fixed points of the function f̃ .

The first part of our study is to bound the possible number of fixed points of (1.7), i.e.
the number of solutions of (1.11). For this purpose, we introduce a notion that we call
γ1/2−convexity: We say that a function f ∈ C3(R+) is (strictly) γ1/2−convex if |f ′| > 0
and |f ′|−1/2 is (strictly) convex. We easily check that linear (or more generally affine)
functions and Hill functions are γ1/2−convex, and that Hill functions with Hill coefficients
greater than one are strictly γ1/2−convex, as well as most of the usual sigmoid functions.
We show γ1/2−convex functions have two interesting properties:

• They are stable by composition: in other words, if f and g are two γ1/2−convex
functions, then f ◦ g is also γ1/2−convex. Moreover, if (at least) one of them is
strictly γ1/2−convex, then f ◦ g is strictly γ1/2−convex.
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• A strictly γ1/2−convex function has at most three fixed points.

Thus, combining these two properties ensures that if f1, . . . , fd are γ1/2−convex, then
f̃ has at most three fixed points, and thus that (1.7) has at most three equilibrium points.
Further analyses show that, except in rare cases which occur only for a set of parameters
of measure zero in the α-parameter space, the system is either monostable, i.e. has a
unique equilibrium point which is globally asymptotically stable, or bistable, i.e. has
exactly three equilibrium points among which two are asymptotically stable, and one is
hyperbolic and asymptotically unstable, and thus negligible.

Moreover, we identify a set of values for α for which this system is monostable, and
the set for which it is bistable. The union of these two set has of complement of Lebesgue
measure zero in (R∗

+)
d.

The result obtained can be summarised as follows:

Theorem 1. We assume that f1, . . . , fd ∈ C3(R+) are non-negative, monotonous and
γ1/2− convex functions, and that at least one of them is bounded. Moreover, we assume
that an even number of these function is decreasing. With D defined by (1.9), we have the
following alternative:

(i) If D < 1, then for any α ∈ (R∗
+)

d system (1.7) has a unique equilibrium point which
is globally asymptotically stable.

(ii) If D > 1, then there exists a non-empty set Abis ⊂ (R∗
+)

d such that

• If α ∈ Abis, then system (1.7) has exactly two asymptotically stable equilibria,
and the union of their basins of attraction is an open subset of Rd+ with a
complement of Lebesgue measure zero.

• If α ∈ Abis
C
, then system (1.7) has a unique equilibrium point which is globally

asymptotically stable.

We complete this result by proving that, if d ≥ 5 and D > cos(2πd )
−d, then there exists

a non-empty set Aper ⊂ Abis such that if α ∈ Aper, then system (1.7) has (negligible)
periodic orbits. Moreover, Abis and Aper can be explicitly expressed as a function of
f1, . . . , fd.

Odd number of decreasing functions. In the case where n, the number of decreas-
ing functions, is odd, we easily check that system (1.7) has a unique equilibrium point:
indeed, the function f̃ as defined in (1.11) is then decreasing, with f̃(0) > 0. If d ≥ 3,
the ‘ Poincaré-Bendixson theorem for monotone cyclic feedback systems’ [113] yields the
existence of an asymptotically stable periodic orbit when this equilibrium point is asymp-
totically unstable. Determining the number of orbits seems out of reach, even if numerical
studies suggest that there exists only one which is globally asymptotically stable in this
case. Likewise, in the case where this point is asymptotically stable, we have not been
able to exclude the existence of periodic orbits, although these have never been detected
in this case, up to our knowledge.

For given functions f1, . . . , fd, the stability of the unique equilibrium point depends on
the values of D and α, as summarised in this second theorem.

Theorem 2. We assume that f1, . . . , fd ∈ C3(R+) are non-negative, monotonous and
γ1/2−convex functions, and that at least one of them is bounded. Moreover, we assume
that an odd number of these function is decreasing, and we recall that D refers to (1.9).
We have the following alternative:



8 Chapter 1. General Introduction

(i) If D < cos(πd )
−d, then for any α ∈ (R∗

+)
d, this equilibrium point is asymptotically

stable, and all the solutions of (1.7) either converge to this point or to a periodic
orbit.

(ii) If D > cos(πd )
−d, then there exists Aunst ⊂ (R∗

+)
d a non-empty set such that

• If α ∈ Aunst, then this equilibrium point is asymptotically unstable, and there
exists a finite number of periodic solutions, among which at least one is asymp-
totically stable. Moreover, the set of initial conditions for which the solution
converges to a periodic solution is an open subset of Rd+, and its complement,
which is the set of initial conditions for which the solution converges to the
equilibrium point, has Lebesgue measure zero.

• If α ∈ Aunst
C
, this equilibrium point is asymptotically stable, and all the solu-

tions of (1.7) either converge to this point or to a periodic orbit.

The condition D ≥ cos
(
π
d

)−d
seems necessary for the existence of orbits: as an exam-

ple, one of the simplest models with three variables and one decreasing regulatory function
(d = 3, n = 1), with two linear functions and one decreasing Hill function (x 7→ 1

1+xr ) has

a cyclic behaviour only for r ≥ 8 = cos
(
π
3

)−3
[126,137].

1.2 PDE models for cell populations

In the first section of this introduction, we explained how ODE systems could account
for the phenotypic evolution of a cell. The purpose now is to develop Partial Differential
Equations (PDEs) describing the dynamics of a population over time. These PDE models
are structured by a continuous variable, which is typically a phenotypic trait x ∈ Rd such as
the concentration of several molecules of interest, as in the first part of this introduction.
We thus study the evolution of a function x 7→ u(t, x) over time, which represents the
density of cells of trait x.

Throughout this section, we will assume that the evolution of the phenotypic trait of
a single cell is driven by a given ODE

ẋ = f(x). (1.12)

Starting from this model, let us see how we can build a PDE model for a cell population.

1.2.1 Construction of the models

Advection equation. Let us consider a population of cells initially composed of m1 cells
of phenotypic trait x1,0 ∈ Rd, m2 cells of phenotypic trait x2,0 ∈ Rd,..., and mN cells of
phenotypic trait xN,0

∫
Rd. We describe this initial population with the sum of weighted

Dirac masses

µ0 :=
N∑
i=1

m0
i δxi,0 . (1.13)

Thus, the location of each Dirac mass indicates a possible phenotypic trait, and each
associated weight the number of cells of this phenotypic trait.

We momentarily assume that these cells evolve independently of each other, and only
according to ODE (1.12). This population can then be described at any time t ≥ 0 by the
measure

µt :=

N∑
i=1

miδxi(t), (1.14)
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where, for all i ∈ {1, . . . , N}, xi is the solution of{
ẋi(t) = f(xi(t)) t ≥ 0

xi(0) = xi,0
.

Another way to characterise (µt)t≥0 can be obtained by noting that it satisfies, for all
t ≥ 0

∀ϕ ∈ C1
c (Rd),

d

dt

∫
Rd

ϕ(x)dµt(x) =

∫
Rd

f(x).∇ϕ(x)dµt(x), (1.15)

(where C1
c (Rd) denotes the set of functions in C1(Rd) with a compact support) together

with the initial condition µ0 (1.13).

This characterisation allows to define solutions in a much larger space. Indeed, if
f ∈ C1(Rd,Rd), solutions of (1.15) can be found in the dual space of Cc(Rd), which
corresponds to the space of Radon measures [15,55].

We are particularly interested in the case where µ0 has a density in L1(Rd) ∩ C1(Rd)
with respect to the Lebesgue measure. In this case, problem (1.15) is equivalent to the
advection equation defined by{

∂tu(t, x) +∇ · (f(x)u(t, x)) = 0 t ≥ 0, x ∈ Rd

u(0, ·) = u0
, (1.16)

in the sense that u(t, ·) is a solution of (1.15) if and only if it is a solution of (1.16).

Advection-selection equation. The advection equation does not take into account
other phenomena than internal regulations described by ODE (1.12). As such, it does
not model anything more than this ODE applied to a large number of cells distributed
according to a density.

We would now like to take into account cell growth. It means that in the discrete

description µt =
N∑
i=1

mi(t)δxi(t), the terms ‘mi’ are not longer constant, but also solve an

ODE, which generically writes

∀i ∈ {1, . . . , N}, t ≥ 0, ṁi(t) = R(xi(t),m(t))mi(t), (1.17)

where for all x ∈ Rd, R(x,m) denotes the net growth rate of the cells of trait x. This
term does not only depend on x but also on m = (m1, . . . ,mN ), which means that the
growth rates are influenced by the population size. Such a choice is motivated by the
fact that cells are in competition for resources. Hence, R(x,m) can be interpreted as the
fitness of individuals with trait x inside the environment created by the total population.
A model usually used for the population size of homogeneous population is Verhulst’s
logistic equation [116, 160]: denoting U the size of the population, the latter is described
by the ODE

U̇(t) = r

(
1− U(t)

K

)
U(t), (1.18)

where r > 0 is called the birth rate of the population and K > 0 the carrying capacity,
which corresponds the maximum number of individuals that the environment can support.

The net growth rate of this model at any time t ≥ 0 is given by r
(
1− U(t)

K

)
, and corre-

sponds to the birth rate r from which we subtract a death rate r
KU(t), which is assumed

to be proportional to the size of the population.
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Based on this model, the net growth rate for a heterogeneous population typically
writes

R(x,m) = r(x)− d
N∑
j=1

mj , (1.19)

where for all x ∈ Rd, r(x) represents the growth rate of cells of trait x, and d
N∑
j=1

mj the

death rate, which is proportional to the total population size given by
N∑
j=1

mj .

In order to more precisely quantify the contribution of each phenotypic trait to the
death rate, this model can be generalised with a growth term of the shape

R(x,m) = r(x)−
N∑
j=1

ψ(xj)mj , (1.20)

where the function ψ is positive and bounded. Note that (1.19) is a particular case of
(1.20), with ψ ≡ d.

To summarise, with this model, a cell population initially represented by the measure
µ0 (1.13) is described at any time t ≥ 0 by the measure

µt =
N∑
i=0

mi(t)δxi(t), (1.21)

where for all i ∈ {1, . . . , N}, xi and mi are the solutions of
ẋi(t) = f(xi(t))

ṁi(t) =

(
r(xi(t))−

N∑
j=0

ψ(xj(t))mj(t)

)
mi(t), t ≥ 0

. (1.22)

As previously, one can check that
(
µt
)
t≥0

solves

∀ϕ ∈ Cc(Rd), t ≥ 0,

{
d
dt

∫
Rd ϕ(x)dµ

t(x) =
∫
Rd (f(x).∇ϕ(x) + r(x)− ρψ(t)) dµ

t(x)

ρψ(t) =
∫
Rd ψ(x)dµ

t(x)
.

(1.23)
Once again, if the initial condition µ0 = u0 ∈ L1(Rd) ∩ C(Rd), then u is a solution of

(1.23) if and only if it is a solution of the advection-selection equation defined by
∂tu(t, x) +∇ · (f(x)u(t, x)) = (r(x)− ρψ(t))u(t, x)

ρψ(t) =
∫
Rd ψ(x)u(t, x)dx

u(0, ·) = u0
. (1.24)

Advection-selection-mutation equation. The advection-selection model does not
consider mutations. In other words, when cells divide, the daughter cells are assumed
to adopt the same phenotype as the mother cell. Now, let us assume that this is not the
case, and let us denote, when a cell of trait x ∈ Rd divides

• ν(x) ∈ [0, 1] the probability that the daughter cells keeps the phenotype x.

• y 7→M(x, y) the density corresponding to the probability that the daughter cells are
of phenotype y, given that it is not of phenotype x.
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It is now necessary to sum cells from other traits which mutate and adopt trait x in
models (1.24), in addition to the cells that do not mutate [23]. Thus, we add a integral
term to get the Advection-selection-mutation equation
∂tu(t, x) +∇ · (f(x)u(t, x)) = (ν(x)r(x)− ρψ(t))u(t, x) +

∫
Rd (1− ν(y))r(y)M(x, y)u(t, y)dx

ρ(t) =
∫
Rd ψ(x)u(t, x)dx

u(0, ·) = u0
.

(1.25)

This thesis contributes to the understanding of these models in two ways:

• By the theoretical study of the long-time behaviour of the advection-selection equa-
tion (1.24), detailed in Chapter 4.

• By developing a numerical scheme that belongs to the family of particle methods,
allowing to approach the solutions of advection-selection-mutation equations of the
type (1.25). This method is developed in Chapter 5.

1.2.2 Long-time behaviour of the advection-selection advection

We are interested in the long-time behaviour (when t → +∞) of the solutions of equa-
tion (1.24). In order to reduce the number of parameters, let us note that (t, x) 7→ u(t, x)
is a solution of this equation if and only if (t, x) 7→ v(t, x) := ψ(x)u(t, x) satisfies the
problem

∂tv(t, x) +∇ · (f(x)v(t, x)) =
(
r(x) + ∇ψ(x)

ψ(x) .∇f(x)− ρ(t)
)
v(t, x)

ρ(t) =
∫
Rd v(t, x)dx

v(0, ·) = ψ(·)u0
. (1.26)

Thus, the function ψ can be incorporated into the growth term, and we will therefore
limit ourselves to studying the problem

∂tu(t, x) +∇ · (f(x)u(t, x)) = (r(x)− ρ(t))u(t, x)

ρ(t) =
∫
Rd u(t, x)dx

u(0, ·) = u0
, (1.27)

which depends on three parameters: the initial distribution u0, the advection function f ,
and the growth function r.

In particular, we are interested in elucidating whether solutions converge to a sum of
weighted Dirac masses (in which case we will speak of concentration), which means that
only a finite number of trait is selected, or if, on the contrary, they converge to a regular
measure, which corresponds to a continuous set of traits being preserved over time.

Since we expect to obtain either one of these two regimes, the space of Radon measures
is a natural setting. More precisely, we will use the notion of weak-∗ convergence in this
space (denoted ⇀).

In order to develop some intuition as to the role played by the advection term and
the growth term, we will recall known results about the long-time behaviour of simpler
models considering only one of these two phenomena: the advection equation, which writes
∂tu(t, x) + ∇ · (f(x)u(t, x)) = 0, and the selection equation, which corresponds to PDE
(1.27) with f ≡ 0.
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Long-time behaviour of the advection equation. We recall that the advection
equation writes {

∂uu(t, x) +∇ · (f(x)u(t, x)) = 0

u(t, ·) = u0
(1.28)

and we assume that f is a globally Lipschitz continuous vector field, and that u0 ∈
C1(Rd) ∩ L1(Rd), u0 ≥ 0.

As shown by (1.15), this advection equation is the PDE equivalent to the ODE (1.12).
Thus, we expect to find the same type of asymptotic behaviour. The link between these
equations is done by means of the so-called method of characteristics [51]: by denoting
the flow (also called characteristic curves) of (1.12) by X, defined as the solution of{

Ẋ(t, y) = f (X(t, y))

X(0, y) = y,
(1.29)

and by computing

d

dt
u (t,X(t, y)) = −∇ · f(X(t, y))u (t,X(t, y)) ,

we get an explicit expression for u, given for all y ∈ Rd, t ≥ 0 by

u (t,X(t, y)) = e−
∫ t
0 ∇·f(X(s,y))dsu0(y).

Here, we will focus on the convergence towards equilibrium points, and leave aside the
other types of attractors: thus, we make the hypothesis that for almost every y ∈ supp(u0),
X(·, y) either converges, or ∥X(t, y)∥ goes to +∞ when t goes to +∞. This assumption
always holds in dimension 1 (x ∈ R), since any solution of (1.29) is then monotonous
(possibly constant). Moreover, we assume that f has a finite number of roots. Then, by
denoting x̄1, . . . , x̄m the roots of f , B(x̄1), . . . , B(x̄m) their respective basins of attraction,
and for all i ∈ {1, . . . ,M}, m̄i :=

∫
B(x̄i) u

0(y)dy, one can prove that

u(t, ·) ⇀
t→+∞

M∑
i=1

m̄iδx̄i .

In other words, u(t, ·) concentrates around the equilibrium points of (1.12) having a basin
of attraction of positive Lebesgue measure.

This result is expected biologically: indeed, this model only includes the differentiation
phenomenon described by the vector field f : thus, cells contained in the basins of attraction
of each of the equilibrium points (whose quantity is given by the associated ‘m̄i’) move
toward this point.

Long-time behaviour of the selection equation. The selection equation writes
∂tu(t, x) = (r(x)− ρ(t))u(t, x)

ρ(t) =
∫
Rd u(t, x)dx

u(0, ·) = u0
, (1.30)

and corresponds to model (1.27) in the absence of advection (f ≡ 0), which means that the
cell trait of a given cell is neither influenced by the environment nor by internal regulations.

Yet, cells of different traits are nevertheless in competition with the whole population,
via the non-local term ρ, and we thus expect that only the most efficient phenotypic traits
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survive over time. This is indeed what happens, since the solution concentrates around
the points where r reaches its maximum [131]. This problem has been studied in detail
in [106], and the following result has been proved: denoting rM the maximum of r over
supp(u0) and assuming that there exist x̄1, . . . , x̄N such that argmax

supp(u0)

(r) = {x̄1, . . . , x̄N}

and for all i ∈ {1, . . . , N}, x̄i is nondegenerate,

u(t, ·) ⇀
t→+∞

rM

N∑
i=1

aiδx̄i ,

where the weights a1, . . . , aN sum to 1 and depend on the value of u0 and on the concavity
of r at the points x̄1, . . . , x̄N , respectively.

Hence, both the advection and selection equations, under reasonable assumptions, lead
to convergence to sums of weighted Dirac masses. Nevertheless, the points on which the
population concentrates can be different. To summarise:

• The advection term pushes the solution toward the roots of f with a non-negligible
basin of attraction (such as asymptotically stable equilibrium points),

• The growth term pushes the solution towards the points where r reaches its maxi-
mum.

Guessing the long term behaviour of the advection-selection advection is hardly obvious
since it is difficult to predict which of these two phenomena will prevail. We answer the
question by showing that solutions of the advection-selection equation can either converge
to a weighted Dirac mass at a root of f , or to a regular function.

The main results we have developed are only valid in the one-dimensional case: there-
fore, we now assume that x ∈ R. Each results requires some minimal regularity hypotheses
which we omit here but are given in detail in Chapter 4.

The advection-selection equation with a single root. Let us start with a simple
hypothesis satified by f : assume that there exists a closed and bounded interval of R,
denoted I, such that supp(u0) ⊂ I, that there exists a unique x̄ ∈ I such that f(x̄) = 0,
and that f is decreasing in a neighbourhood of x̄. These hypotheses imply that there exist
a, b ∈ R\supp(u0), with a < b such that f > 0 on [a, x̄) and f < 0 on (x̄, b], and thus,
in particular, that t 7→ X(t, a) is increasing, t 7→ X(t, b) decreasing, and that these two
functions converge to x̄.

As for the advection equation, we can solve the problem directly with the method of
characteristics in this case. Indeed, by computing

d

dt
u(t,X(t, y)) =

(
r(X(t, y))− f ′(X(t, y))− ρ(t)

)
u (t,X(t, y)) ,

we get, for any x ∈ R,

u (t,X(t, y)) = e
∫ t
0 r(X(s,y))−f ′(X(s,y))−ρ(s)dsu0(y). (1.31)

In particular, since, by hypothesis, u0(y) = 0 for all y ≤ a and all y ≥ b, and since,
X(·, a) and X(·, b) are respectively increasing and decreasing, then for all t ≥ 0

supp(u(t, ·)) ⊂ [X(t, a), X(t, b)].

Since X(·, a) and X(·, b) both converge to x̄, the support of u(t, ·) formally becomes
{x̄} when t goes to +∞. Using this argument, we show that

u(t, ·) ⇀
t→+∞

r(x̄)δx̄.
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Hence, in the presence of a single equilibrium point for (1.12) which is asymptotically
stable, the solution concentrates onto this point, regardless of the growth function r.

The advection-selection equation on a segment between two roots of f . Sur-
prisingly, and contrary to the advection equation, this result no longer holds when adding
an unstable equilibrium point. Let us now assume that the function f has two roots, that
we denote x̄u and x̄s, (with x̄u < x̄s, the case x̄u > x̄s being symmetric), such that

f(x̄u) = f(x̄s) = 0, f ′(x̄u) > 0, f ′(x̄s) < 0, f > 0 on (x̄u, x̄s), (1.32)

which ensures that x̄u and x̄s are respectively asymptotically unstable and asymptotically
stable for ODE (1.12), and let us assume that

supp(u0) ⊂ [xu, xs]. (1.33)

Let us note that the method of characteristics proves that for all t ≥ 0, u(t, ·) ⊂ [xu, xs].
Moreover, if x̄u is not in the support of u0 (supp(u0) ⊂ [xu + ε, xs] for some ε > 0), then
the reasoning of the previous paragraph can be applied, and u(t, ·) converges to r(x̄s)δx̄s .
In contrast, if x̄u is an equilibrium point of (1.12), i.e. for all t ≥ 0, X(t, x̄u) = xu, then
x̄u ∈ supp(u0) implies that for all t ≥ 0, xu ∈ supp (u(t, ·)). This does not mean, however,
that the solution does not converge to a weighted Dirac mass on x̄s. In fact, we show that,
depending on the value of r and u0 on x̄u, u(t, ·) can either converge to a weighted Dirac
mass on x̄s, or to a regular function in L1(x̄u, x̄s). Precisely, we show the following result:

Theorem 3. Let us assume that conditions (1.32) and (1.33) hold, and that u0(x̄u) > 0.
The following alternative holds:

(i) If r(x̄u)− f ′(x̄u) < r(x̄s), then ρ converges to r(x̄s), and u(t, ·) ⇀
t→+∞

r(x̄s)δx̄s.

(ii) If r(x̄u) − f ′(x̄u) > r(x̄s), then ρ converges to r(x̄u) − f ′(x̄u), and u(t, ·) −→
t→+∞

ū∞

in L1(xu, xs), where ū∞(x) = De
∫ x
x̄u

r̃(s)−r̃(x̄u)
f(s)

ds
, with r̃ = r − f ′, and D > 0 is such

that
∫ x̄s
x̄u
¯̄u∞(x)dx = r(x̄u)− f ′(x̄u).

If x̄u ∈ supp(u0) and u0(x̄u) = 0, i.e. x̄u is at the boundary of supp(u0), then we show
a similar result: the ‘toggle value’ between the two regimes of convergence, as well as the
possible regular function which is reached depends on the asymptotic behaviour of u0 at
the neighbourhood of x̄u.

The method used to prove these two theorems is based on the following two ideas:

(i) Let us denote Y the inverse of the characteristic curves, i.e. for all t ≥ 0,
Y (t, ·) = X(t, ·)−1 = X(−t, ·), which satisfies the ODE{

Ẏ (t, x) = −f (Y (t, x))

Y (0, x) = x
. (1.34)

Then, by replacing y by Y (t, x) in (1.31), we get

u(t, x) = u0(Y (t, x))e
∫ t
0 r(Y (s,x))−f ′(Y (s,x))ds e−

∫ t
0 ρ(s)ds. (1.35)

We call this formula semi-explicit expression of u since it relates u with ρ, and ensures
that determining the long-time behaviour of ρ yields that of u.
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Figure 1.3: Possible regimes of convergence of the solutions of (1.27): In all three cases, we
have chosen f(x) = x(1−x), and we work on the segment [0, 1] (hence x̄u = 0, x̄s = 1). The
three figures above (in red) show the time evolution of the solution in the case where u0 ≡ 6
and r(x) = 6− 0.5x (and thus 5.5 = r(1) > r(0)− f ′(0) = 5), which implies, according to
Proposition 3, that the solution converges to a weighted Dirac mass at 1. The three figures
in the middle (in blue) show the time evolution of the solution in the case where u0 ≡ 6
(and thus u0(0) > 0) r(x) = 6− 4x, (and thus 2 = r(1) < r(0)− f ′(0) = 5), which implies
that the solution converges to a continuous function in L1. The three figures below (in
green) show the time evolution with the same functions r as in the previous case, but with
u0(x) = x (and thus u0(0) = 0), which leads to convergence to a different limit function.
In the two last figures, the black dashed curve represents the limit function.

(ii) By integrating the semi-explicit expression of u (1.35) on (x̄u, x̄s), taking the loga-
rithm, and then differentiating on both sides the equality obtained, we show that ρ
satisfies the non-autonomous logistic equation

ρ̇(t) = (R(t)− ρ(t)) ρ(t), (1.36)

where

R(t) =
Ṡ(t)

S(t)
, with S(t) =

∫ x̄s

x̄u

u0(Y (t, x))e
∫ t
0 r(Y (s,x))−f ′(Y (s,x))dsdx. (1.37)

We call the function R time-depending carrying capacity, because it plays an analogous
role to that of K in the logistic model (1.18). Indeed, if R converges to a certain R̄ (with
an exponential speed), then ρ converges to R̄ (with an exponential speed). Because of the
definition of R, computing its limit means studying parameter-dependent integrals. This
analysis has been possible in the one-dimensional case, thanks to the changes of variables
‘s′ = X(s, y)’ and ‘s′ = Y (s, y)’: Since f > 0 on (x̄u, x̄s), for all y ∈ (xu, xs), s 7→ X(s, y)
and s 7→ Y (s, y) are indeed C1diffeomorphism from (0, t) onto (y,X(t, y)). Unfortunately,
this change of variables does not hold in higher dimension, preventing us to generalise the
approach.
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The advection-selection equation in the general case. The method presented in
the previous paragraph can be adapted in order to study the long-time behaviour of (1.26)
under more general hypotheses.

Let us consider that f has exactly N roots, that we denote x̄1, . . . , x̄N . For simplicity,
we assume that supp(u0) ⊂ [x̄1, x̄N ], which guarantees that the support of u(t, ·) remains
in this segment for all t ≥ 02.

Let us denote, for all i ∈ {1, . . . , N − 1}, ρi(t) :=
∫ x̄i+1

x̄i
u(t, x)dx, which corresponds to

the population size in each segment [x̄i, x̄i+1]. For all i ∈ {1, . . . , N − 1}, ρi satisfies the
ODE

ρ̇i(t) = (Ri(t)− ρ(t)) ρi(t), (1.38)

where ρ(t) =
∫ x̄N
x̄1

u(t, x)dx =
N∑
i=1

ρi(t), and

Ri(t) =
Ṡi(t)

Si(t)
, with Si(t) =

∫ x̄i+1

x̄i

u0(Y (t, x))e
∫ t
0 r(Y (s,x))−f ′(Y (s,x))dsdx. (1.39)

As previously, the limit of the functions ‘Ri’ can be computed for a large range of
functions, and depends on the values of r, f ′ and u0 at the equilibrium points x̄1, . . . , x̄N .
In particular, if f ′(xi) > 0, f ′(xi+1) < 0, and u0(x̄i) > 0, we find ourselves in the same
situation as in Theorem 3, and thus

• If r(x̄i)− f ′(x̄i) < r(x̄i+1), then Ri converges to r(x̄i+1).

• If r(x̄i)− f ′(x̄i) > r(x̄i+1), then Ri converges to r(x̄i)− f ′(x̄i).

In the cases where u0(x̄i) = 0, a similar alternative holds, which is fully detailed in
Chapter 4. The case where f ′(x̄i) < 0 and f ′(x̄i+1) > 0, is symmetric, and the limit is
thus obtained by switching ‘x̄i’ and ‘x̄i+1’.

Because of the ODE satisfied by the functions ‘ρi’, if all the functions ‘Ri’ converges
to a certain R̄i ≥ 0, and if for all i ∈ {1, . . . , N − 1}, ρi(0) > 0, we get that

• ρ converges to ρ̄M := max(R̄1, . . . , R̄N−1).

• If R̄i < ρ̄M , then ρi converges to zero.

Moreover, if all the functions ‘Ri’ converge toward their limit with an exponential
speed, then ρ converges to ρ̄M with an exponential speed. As a result, we can use the
semi-explicit expression of u (1.35) to determine the long-time behaviour of the solutions
of (1.26). We prove that, depending on the values of r, f and u0 at the roots f , u(t, ·)
either converges to a weighted Dirac mass at a stable equilibrium point, or to a regular
function with a support between two roots of f .

Open problems. The method used to determine the asymptotic behaviour of the solu-
tions of (1.27) is entirely based on the computation of the limit of the functions ‘Ri’. For
this reason, we did not manage to deal with some limit cases, such as non-hyperbolic equi-
libria, i.e. x̄ ∈ R which satisfy f(x̄) = f ′(x̄) = 0, or the equality case r(x̄u)−f ′(x̄u) = r(x̄s)
under the hypotheses of Theorem 3.

In the same way, studying this PDE in higher dimension (x ∈ Rd, d ≥ 2) has not been
possible with this method. As shown by the semi-explicit expression (1.35), the behaviour

2In Chapter 4, we show that the long-time behaviour of this equation can be determined even when
this assumption is dropped.
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of u is closely linked to that of the solutions of ODE ẋ = f(x), and we can therefore expect
cyclic behaviours, or even chaotic behaviours (if d ≥ 3) in this case.

Another interesting perspective would be to study this problem with an additional
mutation term (such as a Laplacian or as an integral term). Such problem might be
tackled with entropy methods [118], contrary to the present work where the absence of
mutations means that the entropy does not dissipate.

1.2.3 A particle method for advection-selection-mutation equations

The purpose of Chapter 5 is to develop a numerical scheme in order to approach the
solutions of equations such as (1.25). Upon relabeling the parameters, this equation can
be rewritten

∂tu(t, x) +∇ · (f(x)u(t, x)) = (r(x)− ρψ(t))u(t, x) +
∫
Rd m(x, y)u(t, y)dy

ρ(t) =
∫
Rd ψ(x)u(t, x)dx

u(0, ·) = u0
. (1.40)

We have chosen to develop and study a scheme from the family of particle methods,
which are based on solving ODEs in order to approximate the solution of PDEs. Particle
methods are particularly adapted for the equation with an advection term, and have been
the subject of several studies for problems which mostly come from physics [46,81].

Particle approximation. The main idea of particle method is to seek a sum of weighted
Dirac masses in order to approach the solution of a given equation [27]. Such measure is
called particle solution, which we denote

uN (t) =

N∑
i=1

mi(t)δxi(t), (1.41)

where the weights mi and the points xi are solutions of a suitably defined ODE system.
To start, let us take as an example the advection-selection equation studied in Chap-

ter 4 (we do not consider mutations for the moment), which writes
∂tu(t, x) +∇ · (f(x)u(t, x)) = (r(x)− ρψ(t))u(t, x)

ρψ(t) =
∫
Rd ψ(x)u(t, x)dx

u(0, ·) = u0
.

We have seen in section 1.2.1 of this introduction that any solution of this equation
also satisfies the weak formulation (1.23)

∀ϕ ∈ Cc(Rd)

{
d
dt

∫
Rd ϕ(x)dµ

t(x) =
∫
Rd (f(x).∇ϕ(x) + r(x)− ρψ(t)) dµ

t(x)

ρψ(t) =
∫
Rd ψ(x)dµ

t(x)
,

and that any measure of the form

N∑
i=0

mi(t)δxi(t), (1.42)

solves this problem if for all i ∈ {1, . . . , N}, t ≥ 0, xi and mi satisfy the ODE
ẋi(t) = f(xi(t))

ṁi(t) =

(
r(xi(t))−

N∑
j=0

ψ(xj(t))mj(t)

)
mi(t)

. (1.43)
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Hence, since u and µ satisfy the same equation, we expect that if µ0 ≃ u0 (in a sense
that will be clarified later), then µt remains close to u(t, ·) for any t ≥ 0.

When considering a mutation term, as in (1.40), things are a little bit more subtle. In
order to approximate the term ‘

∫
Rd m(x, y)u(t, y)dy’, we need to introduce a third family

of ODEs, solved by what we call the volumes wi [46], namely

ẇi(t) = ∇ · f(xi(t))wi(t) t ≥ 0. (1.44)

Indeed, according to Liouville’s formula, for any function g ∈ L1(Rd) and any t ≥ 0,
there holds ∫

Rd

g(x)dx =

∫
Rd

g(X(t, y))W (t, y)dy,

where for all y ∈ Rd, X and W satisfy{
Ẋ(t, y) = f (X(t, y))

X(0, y) = y
and

{
Ẇ (t, y) = ∇ · f (X(t, y))W (t, y)

W (0, y) = 1.
(1.45)

We can therefore approximate such an integral with the sum

N∑
i=1

g(xi(t))wi(t) ≈
∫
Rd

g(x)dx, (1.46)

where for all i ∈ {1, . . . , N}, t ≥ 0, xi and wi are solutions of{
ẋi(t) = f(xi(t))

ẇi(t) = ∇ · f(xi(t))wi(t).
(1.47)

The weights of the Dirac masses then write mi = νiwi, where νi satisfies

ν̇i(t) =

(
r(xi(t))−∇·f(xi(t))−

N∑
j=0

νj(t)wj(t)

)
νi(t)+

N∑
j=1

m(xi(t), xj(t))νj(t)wj(t). (1.48)

The initial condition of this ODE must of course be chosen carefully so that they
approximate u0 properly. Assuming that u0 has a compact support, a way of choosing
these values is to take a finite collection of subsets Ω0

i ⊂ supp
(
u0
)
satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃

i∈{1,...,N}

Ω0
i = supp

(
u0
)
,

and to take, for any i ∈ {1, . . . , N}

xi,0 ∈ Ω0
i , w0

i = |Ω0
i |, ν0i = u0(xi,0) αi = νiwi.

One can check that this choice ensures that for any ϕ ∈ C0
c (Rd),

N∑
i=1

α0
iϕ(x

i,0) −→
N→+∞

∫
Rd

ϕ(x)u0(x)dx,

which means that

N∑
i=1

ν0i w
0
i δxi,0 ⇀

N→+∞
u0 in the space of Radon measures.
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Regularisation of the particle approximation. We would now like to find an ap-
proximation of u(t, ·) which is a regular function rather than a sum of weighted Dirac
masses. In order to do so, the particle solution is regularised through convolution with a
so-called cut-off function φε. We obtain a regular approximation of u(t, ·) which writes

uNε (t, x) =
N∑
i=1

mi(t)φε(x− xi(t)). (1.49)

The cut-off functions φε typically writes φε = 1
εd
φ
( ·
ε

)
, where φ satisfies some sym-

metric and regularity properties, and the parameter ε > 0 is chosen as functions of N .
Determining the optimal ε > 0 for a given N > 0 is intricate: if ε is too large, then the
solution is ‘over-regularised’, and the scheme loses its accuracy. Conversely, if ε is too
small, then some of the particles will be neglected, and the scheme may fail to converge.

Main results. In Chapter 5, we study a more general model than (1.40), which takes
into account possible non-local terms for all three terms modelling mutations, growth and
advection. This model writes


∂tu(t, x) +∇x · (a(t, x, ρa(t))u(t, x)) = R(t, x, ρg(t))u(t, x) +

∫
Rd

m(t, x, y, ρd(t))u(t, y)dy

ρl(x, t) =
∫
Rd

ψl(t, x, y)u(t, y)dy, l = a, g, d

u(0, ·) = u0

.

(1.50)

The particle method we develop for this model is adapted from [46]: the main novelties
with respect to that work is

• to allow for non-local terms, their presence posing significant technical difficulties
(especially when it comes to the advection),

• to study asymptotic preserving properties of such schemes. These guarantee that,
under specific hypotheses, the long-time behaviour of the solution is preserved at
the discrete level.

We first show that this problem is well-posed, i.e. that is if the parameters satisfy
some regularity properties, then this problem has a unique solution in C(R+, L

1(Rd)). We
use a classical fixed point argument to prove this result with some regular parameters,
before considering a more general family of initial conditions. The main difficulty comes
from the non-local advection term, which does not allow for an explicit definition of the
flow, and therefore requires further estimates. We then prove that the regularity of u(t, ·)
is linked to that of u0: more precisely, if u0 ∈ W k,∞(Rd) with compact support, then
u ∈ C([0,+∞),W k−1,1(Rd)). This result can be improved if the advection is local, i.e.
a(t, x, I) = a(t, x): In this case, for any initial condition in W k,1(Rd), the solution u is in
C([0,+∞),W k,1(Rd)).

After defining the ODE satisfied by the xi, wi and νi is this general case, we prove the
convergence of the particle method toward the solution of (1.50). More precisely, we show
the following estimate

∥u(t, ·)− uhε (t, ·)∥L1(Rd) ⩽ C
(
εr +

(
h
ε

)κ
+ hκ

)
∥u0∥Wµ,1(Rd), for all 0 ⩽ t ⩽ T,
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(a) Bistability

(b) Quadstability

Figure 1.4: Numerical simulations obtained with the particle method for a non-local ad-
vection equation studied in [59]. The lines (a) and (b) respectively show the convergence
to a single weighted Dirac mass, and a sum of four weighted Dirac masses, and have been
obtained by choosing the parameters of Figures 10 and 11 of [59].

which yields a convergence rate of h
κr
κ+r after choosing the optimal value of ε(h) ∼ h

κ
κ+r .

Lastly, we investigate in which cases this method is asymptotic preserving, i.e. uN (t)
and u(t, ·) have the same limit when t goes to +∞. We have seen in section 1.2.2 of this
introduction that in the absence of mutations, solutions with close initial conditions may
have drastically different long-time behaviours. As an example, we have seen that in the
one-dimensional case, if the advection function f has exactly two roots (that we denote
x̄u < x̄s), and if f ′(x̄u) > 0, f ′(x̄s) < 0, and r(x̄u)− f ′(x̄u) > 0, then:

• If x̄u /∈ supp(u0), then u(t, ·) ⇀
t→+∞

r(x̄s)δx̄s .

• If u0(x̄u) > 0, then u(t, ·) converges to a regular function in L1.

Consequently, particle methods cannot be expected to preserve the asymptotics in
general. We show, however, that in some specific cases, the scheme is asymptotic preserv-
ing. Due to the discrete nature of particular solutions, they tend to concentrate toward
attractors and thus to converge towards Dirac masses. However, we highlight conditions
which ensure the convergence to both u(t, ·) and uN (t) (and thus uNε (t, ·)) to the same
weighted Dirac mass, which means that the scheme is asymptotic-preserving in this case.

1.3 Application to Epithelial-Mesenchymal Plasticity

This last section deals with work carried out within a collaboration between mathemati-
cians at Laboratoire Jacques-Louis Lions and systems biologists from the Cancer Systems
Biology Laboratory (Indian Institute of Science at Bangalore), led by Mohit Kumar Jolly.

The aim is to propose PDE models for cells undergoing a specific cell differentiation
phenomenon, which plays a crucial role during embryonic development, wound healing,
tissue regeneration, but also for the spread of metastases: the Epithelial-Mesenchymal
Plasticity [94,124].
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Epithelial-mesenchymal Plasticity. Epithelial-mesenchymal transition is a cell dif-
ferentiation process during which epithelial cells (E), characterised by a tight cell-to-cell
adhesion and a low mobility, lose these characteristics to become mesenchymal cells (M),
characterised by a low cell-to-cell adhesion and a high mobility [103, 142]. During this
process called Epithelial-Mesenchymal Transition (EMT), some cells undergo partial tran-
sition, which means that they retain some epithelial traits such as cell-to-cell adhesion,
and gain mesenchymal traits, such as migratory properties. These cells are referred to
as hybrid (E/M), and have special properties such as the ability to move collectively as
clusters [93].

The epithelial–mesenchymal transition is a reversible phenomenon, which means that
mesenchymal cells can also differentiate into epithelial ones (MET). Nevertheless, during
this reverse process, cells directly become epithelial, without passing through the hybrid
state. The notion of epithelial-mesenchymal plasticity refers to the combination of these
two phenomena [29].

Transitions between epithelial and mesenchymal states play an important role in tu-
mourigenesis: epithelial cells of the primary tumour can lose their cell-to–cell adhesion and
apico-basal polarity, hence becoming prone to migrate individually and invade basement
membranes and blood vessels. This then allows them to reach some distant organs to
seed micrometastases. During seeding, they undergo the reverse of EMT to regain their
epithelial characteristics and form secondary tumours [34]. The hybrid phenotype seems
to play a key role in the spread of metastases. Indeed, cancer cells can migrate as dispersed
individual mesenchymal cells, or collectively, as hybrid cells. Collective migrations obviate
the need for all cells to detect extrinsic signal for migration, enabling them to adapt to
different microenvironments [58].

ODE model for EMP. The team of Mohit Kumar Jolly has developed a comprehensive
expertise in designing ODE models for EMT.

A gene regulatory network composed of six molecules, called Core EMT Network, has
been proposed in order to model EMT at the level of a single cell [110]. Here, we will use a
two-dimensional reduction of this model (developed in the supplementary material of the
aforementioned article), which considers interactions between a transcription factor ZEB
(denoted Z) and a micro-RNA miR-200 (denoted µ200). ZEB promotes EMT whereas
miR-200 maintains the epithelial phenotype by targeting ZEB molecules. This model
writes:{

µ̇200 = gµ200HZ,µ200(Z)HS,µ200(S)− gmZHZ,mZ
(Z)HS,mZ

(S)Q(µ200)− kµ200µ200

Ż = gZgmZHZ,mZ
(Z)HS,mZ

(S)P (µ200)− kZZ
,

(1.51)
where

• gµ200 , gZ , gmZ , kµ200 , kZ are positive parameters;

• HZ,µ200 , HS,µ200 , HZ,mZ
, HS,mZ

are shifted Hill functions of the form (1.3);

• Q and P are complex functions defined in Appendix A.

All relevant parameters are given in Appendix A. The variable S represents a third
molecule, SNAIL, which is seen in our case as an external signal characterising the extra-
cellular environment. Within this framework, the three cell states (E, E/M, and M) are
characterised as follows:

• The epithelial state corresponds to a high level of miR-200, and a low level of ZEB
and SNAIL;
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• The mesenchymal state corresponds to a low level of miR-200 and high level of ZEB
and SNAIL;

• The hybrid state corresponds to a medium level of miR-200, ZEB and SNAIL.

The transcription factor SNAIL (S) activates ZEB and inhibits miR-200, and is thus
able to induce the epithelial-mesenchymal transition. Depending on the value of S, sys-
tem (1.51) can have 1, 2 or 3 stable equilibrium points, as illustrated by the bifurcation
diagram of Figure 1.5 A.

This bifurcation diagram highlights two essential properties of cancer cell populations:

(i) Heterogeneity : For intermediate values of S, cells populations can be highly hetero-
geneous, with distinct subpopulations corresponding to different states [6].

(ii) Hysteresis: During EMT (which corresponds to the increase of S), epithelial cells
become hybrid, and then mesenchymal, while mesenchymal cells directly differentiate
into epithelial cells during MET (i.e. when S decreases) [109].

The aim of the collaboration is to develop and simulate PDE models for cell popu-
lations undergoing EMT. These models must account for heterogeneity and hysteresis,
while in addition incorporating growth and epigenetic instability. This in turn contributes
to understanding how these different phenomena interact and shape the dynamics and
asymptotics of cell populations.

Hysteresis. We begin by reproducing the hysteretic behaviour of the ODE model at the
scale of a cell population. We temporarily neglect cell growth and epigenetic instability.
As seen in the previous section of this introduction, the PDE equivalent of a given ODE
‘ẏ = f(y)’ is the advection equation

∂tu(t, y) +∇ · (f(t, y)u(t, y)) = 0.

Thus, by denoting F (µ200, Z, S) the right-hand side of (1.51), we take as structure
variable y = (µ200, Z), and as advection function f(t, y) = F (y, S(t)), where S is a function
which linearly increases and then decreases at the same rate, as shown in Figure 1.5 A.
Figure 1.5 Ci highlights the asymmetric behaviour of the population. When S increases,
the population, initially uniformly distributed, quickly becomes uniformly epithelial, then
becomes hybrid and finally mesenchymal; when S decreases, the population transits from
the mesenchymal state to the epithelial one without passing through the hybrid state.

We then slightly modify our framework in order to take into account heterogeneity
within the population, and more specifically the fact that the signal S can be interpreted
in a different way for each cell. In order to do so, we incorporate S into the structure
variable, which becomes y = (µ200, Z, S). The variation of the level of SNAIL is ex-
pressed in the advection term, which becomes f(t, y) = (F (y), fS(t)), where fS is the step
function corresponding to the derivative of S in Figure 1.5 B, implying that the level of
S of each cell increases and decreases at the same rate. As initial population, we take
u0(µ200, Z, S) =

1
σG(

S−160K
σ ), with σ = 20K, and G representing the Gaussian function

(see Glossary). The results are shown in Figure 1.5: contrarily to the previous simula-
tions, we observe, in addition to heterogeneity in the population, the coexistence of several
traits for intermediate values of S. Hysteresis is still present: when S increases, we see
the co-existence of the three states, whereas no hybrid population appears for low values
of S when it decreases.
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Figure 1.5: The advection equation reproduces hysteresis at the population level. A)
EMT gene regulatory network (inset) and the bifurcation of cell states resulting from
the network dynamics with increasing input signal (SNAIL) levels, B) Variation in the
external input (SNAIL) levels with time to capture hysteresis in C. C) Hysteresis (non-
symmetric trajectories) in cell state transition during one cycle of EMT and MET by
varying SNAIL levels as shown in Figure 1B while considering – i) Homogeneous population
and ii) Heterogeneous population.

Parameter space analysis for heterogeneous populations. We then consider a
more complete equation in order to model heterogeneity within a population, taking into
account growth and epimutations. In order to ease the computational burden of simula-
tions, we use dimension reduction thereby going from 3D to 2D. More precisely, we define
a new advection function, which now depends only on S, and on a new variable that we
denote x, and can which can be seen as an equivalent of µ200: indeed, this new advection
function, that we denote fr : R2 → R, has exactly the same bifurcation diagram as F
(Figure 1.5 A).

With the new structural variable writing y = (x, S), we are led to the model
∂tu(t, y) +∇ · (fr(y)u(t, y)) = (r(y)− d(y)ρ(t))u(t, y)

+
∫
R2 M(y, z)u(t, z)dz −

∫
R2 M(z, y)dz u(t, y)

ρ(t) =
∫
R2 u(t, y)dy

, (1.52)

where

• The advection function f writes f(y) = f(x, S) = (fr(x, S), fS(S)), where fS(S) =
δ(1 − S

S0
), with S0 ∈ [150K, 250K] corresponding to the mean of the SNAIL dis-
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tribution, and δ := S0 ln(2)
α , with α > 0 which represents the characteristic time of

convergence of SNAIL to the mean S0.

• r(y) and d(y) respectively represent the birth and death rate of a cell of phenotype y.

• The mutation function M writes M(y, z) = r(z)
τ P (y − z). Here, P (x) = P (y, S) :=

1
ηxηS

G( xηx )G(
S
ηS
), where G is the Gaussian function. Variables ηx and ηS are the

standard deviations for x and S respectively.

We explore the parameter space for this equation in order to better understand their
role in the model. As shown by the bifurcation diagram (Figure 1.5 A), and the definition of
fS , the value of S0 determines the phenotypes that can be adopted by the cell population.
However, due to the difference in size between the basins of attraction of the three states,
the behaviours of the population are highly assymetric: for low values of S0 (S0 = 175K),
the population is purely epithelial, while for high values of S0 (S0 = 190K), a part
population remains hybrid, even for the smallest values of ηx.

The parameter α, captures the characteristic time of convergence of SNAIL levels to its
equilibrium S0. In Figure 1.6, we reproduce epithelial-mesenchymal transition by starting
from an epithelial population and taking a high value of S0 (S0 = 225K) for different values
of α, and simulations show that α impacts the speed at which the population becomes
heterogeneous.

We then investigate the impact of growth on the population, by choosing three different
growth functions (Figure 1.7) A ii. We show that, in the case where r is not constant, the
initial population influences the growth of the total population.

Figure 1.6: Simulations of the advection-selection-mutation (PDE (1.52)) with reduced
function fr. Temporal changes in cell state distribution of the population for decreas-
ing value of input signal SNAIL’s perturbation recovery rate (increasing values of the
characteristic time ‘α’). Parameters used to generate plots, unless stated otherwise, are
ηx = 1000, ini pop Epi, time point 20, S0 = 225K molecules, and per-capita growth rate
(r) of all phenotype (E, hybrid E/M, and M) = 0.0182/hr.
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Figure 1.7: Effect of growth rate differences among E, hybrid E/M and M phenotypes on
overall growth dynamics. Ai) Support of the different initial populations; in all cases, initial
population is uniformly distributed on its support, and such that the total population
is equal to 100 cells. Aii) Profile of the three growth functions. B) Population growth
dynamics for different combinations of growth scenarios and initial population distribution;
’epi hyb mes’ corresponds ti an initial population supported on the three colored domains
of Ai), while uni is uniformly distributed on the whole rectangle [0, 25K]× [150K, 250K].
The input SNAIL mean (S0) levels used are mentioned for all the individual plots. Other
parameters used to generate plots are α = 120hrs, ηx = 1000, and per-capita growth rate
(r) of epithelial phenotype is 0.0182/hr.
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Chapter 2

Monostability and bistability of
biological switches

Cell transitions can be modelled by ordinary differential equations, called gene regula-
tory networks which describe the behaviour of several molecules in interaction, and for
which each stable equilibrium corresponds to a possible state (or ‘biological trait’). In
this chapter, we focus on simple ODE systems modelling two molecules which each neg-
atively (or positively) regulate the other. It is well-known that such models may lead to
monostability or multistability, depending on the selected parameters. However, extensive
numerical simulations have led systems biologists to conjecture that in the vast majority
of cases, there cannot be more than two stable points. Our main result is a proof of this
conjecture. More specifically, we provide a criterion ensuring at most bistability, which is
indeed satisfied by most commonly used functions. This includes Hill functions, but also
a wide family of convex and sigmoid functions. We also determine which parameters lead
to monostability, and which lead to bistability, by developing a more general framework
encompassing all our results.

This work, jointy written with Nastassia Pouradier Duteil and Camille Pouchol, is the
subject of a publication in the Journal of Mathematical biology [68].

29
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2.1 Introduction

A same cell environment may lead to different cell-fate decisions. In most cases, it is con-
sidered that the phenotype adopted by a cell is determined by the concentration of several
molecules in interaction [67]. It is now well documented that such ‘biological switches’
can be accurately modelled by multistable ordinary differential equations (ODEs), where
each stable state represents a possible phenotype [150].

These models have been widely used in order to describe different cellular processes
such as the epithelial-mesenchymal transition (EMT) [16, 92, 144], hematopoietic stem
cells [84, 97, 138], embryonic stem cells [28] or other cell-fate differentiation phenomena
involved in Xenopus [54, 125], Drosophila [129] or Escherichia coli [60, 102,127].

The development of a relevant ODE model hence benefits from a priori knowledge of
the possible number of stable states, and how this number evolves in the parameter space.
As an example, the epithelial-mesenchymal transition phenomenon involves three different
phenotypes, and it is thus crucial to be able to determine minimal conditions allowing the
system to be tristable [110].

A general theoretical answer to finding the number of stable states is certainly out
of reach for high-dimensional ODEs with a large number of parameters. Understanding
the more simple building blocks of these complex models, however, remains of paramount
importance, even more so with the advent of synthetically-built switches where, to some
extent, the model may be chosen and kept simple [60].

A widely used starting ODE model writes as follows{
ẋ = αf(y)− x

ẏ = βg(x)− y,
f ′, g′ < 0 or f ′, g′ > 0 (2.1)

where x and y stand for the (normalised) concentrations of the two molecules (A and B
on Figure 2.1), α > 0 and β > 0 their synthesis rates. Here, f and g are two mono-
tonic functions which model the interactions between these two molecules, and are both
strictly increasing or strictly decreasing, depending on whether the system is cooperative
or competitive. A classical choice for f and g are Hill functions, i.e., functions of the form

x 7→ 1

1 + xr
,

with r ≥ 1. More generally, molecule interactions are usually considered to behave sig-
moidally [150,152].

Figure 2.1: Schematic representations of system (2.1): the arrows represent activation (f
and g increasing) and the bar inhibition (f and g decreasing). Under the hypothesis of
Theorem 4, we prove that such systems are either monostable or bistable. When bistability
holds, the system on the left (cooperative system) has two stable points corresponding to
(high A/ high B) and (low A/ low B), while the one on the right (cooperative system)
leads to (high A/ low B) and (low A/ high B) stable equilibria.
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State of the art. The seminal paper of Cherry and Adler [26] is the main breakthrough
towards understanding when multistability occurs for such models. Under the condition

sup
y>0

(∣∣∣∣yf ′(y)f(y)

∣∣∣∣) sup
x>0

(∣∣∣∣xg′(x)g(x)

∣∣∣∣) > 1,

it is proved that there exist parameters α and β such that system (2.1) is multistable.
When applied to Hill functions, this shows that multistability will occur for some param-
eters α, β whenever r ∈ N, r ≥ 2 for f or g. Interestingly, the authors noted that the
sigmoid shape of f and g is not a necessary condition for bistability.

The numerical investigation of systems such as (2.1) suggests that they are in fact al-
ways either monostable or bistable. This has led some authors to claim that self-regulation
is required in order to get a tristable ODE, i.e., at least one of the cells must have a positive
feedback on itself [60, 91,112].

Up to our knowledge, this conjecture of at most bistability is yet to be proved. More-
over, for given functions f and g, determining the exact set of parameters (α, β) for
which this system is monostable or bistable remains difficult without the help of numer-
ical simulations. Let us mention the very recent paper [102] which, by means of direct
computations, solves the specific case of f : x 7→ 1

1+x and g : x 7→ 1
1+xn .

In the present work, we therefore address the following two key questions.

• Under which conditions is system (2.1) at most bistable?

• For given functions f and g, which parameters α, β lead to monostability, and which
ones lead to bistability?

A natural way to answer the first question is to note that a point (x̄, ȳ) ∈ R+ is an
equilibrium of (2.1) if and only if {

αf(βg(x̄)) = x̄

ȳ = βg(x̄)
.

Hence, studying the equilibria of (2.1) is equivalent to studying the fixed points of x 7→
αf(βg(x)). The main difficulty lies in the fact that, even if f and g are two ‘simple’
functions, there is no reason for x 7→ αf(βg(x)) to be as well. As an example, with Hill
functions of integer orders n and m, determining the fixed points of x 7→ αf(βg(x)) is
equivalent to investigating the positive roots of a polynomial of degree nm + 1, which
proves to be difficult as soon as nm ≥ 3.

Main results. Working around this difficulty, our main result is a simple and general
result ensuring at most bistability.

Theorem 4. If the functions
1√
|f ′|

and
1√
|g′|

are strictly convex, then, for any α, β > 0, system (2.1) has at most three equilibria, among
which at most two stable equilibria.

Not only does this result apply to all classically-used functions we are aware of (in-
cluding Hill and shifted Hill functions), it may easily be checked visually for more involved
functions.

Following an approach reminiscent of that of [26], we go further and develop a general
method for the identification of which parameters α, β lead to either monostability or
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bistability. For this purpose, we develop a framework yielding a condition under which
system (2.1) has at most or at least n equilibria, for all n ∈ N. The obtained criterion
is not completely explicit, but the resulting formula makes it numerically straightforward
to check if some chosen parameters induce a monostable or a bistable system. We hence
bypass any computationally-expensive grid-search through the parameter space. We show
that the method in [26] corresponds to the case n = 1 of this general framework. With the
same framework, Theorem 4 corresponds to studying the case n = 2. For higher values
of n, however, we have not been able to apply this theoretical framework as the resulting
computations prove to be too intricate.

We also prove that when bistability occurs, the separatrix between the two basins of
attraction is a one-dimensional curve. Note that our proof is implicit and does not provide
a formula for the curve, unless some specific symmetry assumptions are made.

Taken together, our results show that system (2.1) will generically lead to either one
of the pictures of Figure 2.2, i.e., we fall into one of these two cases:

• system (2.1) is monostable, and all the solutions converge to the unique equilibrium,

• system (2.1) is bistable, and, in this case, the basins of attraction of the two stable
points are separated by a one-dimensional separatrix which contains the unique other
(unstable saddle) equilibrium point.

Figure 2.2: Typical phase planes for system (2.1). In both simulations, we have taken
f : x 7→ 1

1+x2
and g : x 7→ 1

1+x6
, and α = 10. The value of β is 3 in the left diagram, and

12 in the right one.

Outline of the chapter. This chapter is organised as follows. Section 2.2 is devoted
to setting the mathematical framework and some general results which prove to be useful
throughout. Next, we prove our main Theorem 4, in Section 2.3, which involves defining
an appropriate class of functions and studying it in detail. We then turn our attention to
finding the parameters for which the system of interest is either monostable or bistable in
Section 2.4. We present a generalising framework, and then apply it to the cases of mono
and bi-stability. We also compute the parameters for the cases of interest found in the
literature, such as the toggle switch of [60].
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2.2 Preliminary results

Throughout this chapter, we study systems of the form{
ẋ = αf(y)− x

ẏ = βg(x)− y,
(2.2)

starting from an initial condition (x0, y0) with x0 ≥ 0, y0 ≥ 0. Here

• α, β are two positive parameters,

• f, g ∈ C1(R+,R+) are two increasing or two decreasing functions, and at least one
of these functions is bounded.

If f and g are increasing, system (2.2) is called cooperative. Examples of cooperative
systems include two-species interactions that benefit both species, a kind of interaction
often referred to as mutualism [159]. On the other hand, if f and g are decreasing, system
(2.2) is called competitive. A simple example of a competitive system is the well-studied
“genetic switch” of two proteins that each repress the synthesis of the other [26,91].

Without loss of generality, one can assume that f, g > 1 on R+ (in the case where f and
g are increasing) or f, g < 1 on R+ (in the case where f and g are decreasing). Under these
conditions, since f or g is bounded, all the solutions of this ODE are bounded, regardless
of its initial condition. It is well-known that any solution of such a system converges to
an equilibrium point [77].

Thus, the analysis of system (2.2) requires studying its equilibrium points. In this
section, we begin by providing important results on how the equilibrium points are ordered,
as well as on their basins of attraction. These will be the starting point of our investigation
of the system’s multistability.

2.2.1 Ordering of stable points

Since the functions f and g are one-to-one, it is clear that (x̄, ȳ) ∈ R2
+ is an equilibrium

point of (2.2) if and only if {
αf(βg(x̄)) = x̄

ȳ = βg(x̄)
.

Hence, the number of equilibria of (2.2) is equal to the number of fixed points of

F : x 7−→ αf(βg(x)).

Moreover, if (2.2) has a finite number of equilibria, that we denote (x1, y1), (x2, y2), ...
(xn, yn), with x1 < x2 < ... < xn, then

• y1 < y2 < ... < yn if system (2.2) is cooperative (i.e. if f and g are increasing);

• y1 > y2 > ... > yn if system (2.2) is competitive (i.e. if f and g are decreasing).

Let us give the single notion of stability of an equilibrium point that we shall make
use of throughout.

Definition 1. We say that an equilibrium point (x̄, ȳ) is asymptotically stable if for all
ε > 0 there exists a neighborhood U of (x̄, ȳ) such that if (x0, y0) ∈ U , the trajectory
(x(t), y(t)) starting from (x0, y0) satisfies

∀t ≥ 0, |x(t)− x̄|+ |y(t)− ȳ| ≤ ε and lim
t→+∞

(x(t), y(t)) = (x̄, ȳ).
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We will abusively refer to stable equilibrium points when dealing with asymptotic stable
points.

From the applicative point of view, in particular, the ordering of equilibrium points
means the following. If (2.2) is bistable, the two stable points will be of the type (low x/
low y) and (high x/ high y) if the system is cooperative, and of the type (low x/ high y)
and (high x/ low y) if it is competitive (see Figure 2.2).

We also observe that for any (x, y) ∈ R+, the Jacobian matrix of the right-hand side
of this ODE in (x, y) is

J(x,y) =

(
−1 αf ′(y)

βg′(x) −1

)
.

Since Tr(J(x,y)) = −2 and det(J(x,y)) = 1 − αβf ′(y)g′(x), a fixed point (x̄, ȳ) is stable if
αβf ′(ȳ)g′(x̄) < 1 and unstable if αβf ′(ȳ)g′(x̄) > 1. In other words, under the hypothesis
“for any fixed point (x̄, ȳ), αβf ′(ȳ)g′(x̄) ̸= 1”, the number of stable equilibria of (2.2)
is equal to the number of time F crosses the identity line ‘from above’, and the number
of unstable equilibria to the number of times F crosses the identity line ‘from below’.
Therefore, since F is positive, increasing and bounded, system (2.2) has d stable equilibria
if and only if it has d− 1 unstable equilibria. This result is proved rigorously in the next
section.

2.2.2 Basins of attraction

Due to the particular shape of the system that we study, we have a precise result regarding
the basins of attraction: if the system is monostable, then all solutions converge to the
stable point, meaning that it is globally asymptotically stable. If it is bistable, then the
two basins of attractions are separated by a separatrix, which is the curve of an increasing
function if (2.2) is competitive and of a decreasing function if (2.2) is cooperative (see
Figure 2.2). This result relies on the following proposition.

Proposition 1. Let us consider the ODE system{
ẋ = F (y)− x

ẏ = G(x)− y
, (2.3)

where F and G are either both increasing or both decreasing, and at least one of them is
bounded. We assume that there exists (x̄u, ȳu) ∈ R2

+ an equilibrium point of (2.3) such
that

G′(x̄u)F
′(ȳu) > 1

Then, the basin of attraction of (x̄u, ȳu) has measure zero in R2
+. More precisely, this

basin of attraction is included in a curve of the shape

{(x, γ(x)), x ∈ (a, b)},

where a ≥ 0, b ∈ R+ ∪ {+∞} and γ : (a, b) → R+ is a continuous function. This function
is decreasing if F and G are increasing, and increasing if F and G are decreasing.

Proof. We prove this result only in the competitive case: the arguments can easily be
adapted to the cooperative case. First, let us note that (2.3) is strictly competitive, in the
sense that when we rewrite (2.3) as ż = Γ(z), the vector field Γ = (Γ1,Γ2) underlying the
ODE satisfies for all z ∈ R2,

∂Γ1

∂z2
(z) < 0,

∂Γ2

∂z1
(z) < 0.
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The strict competitiveness of the system implies that it satisfies the comparison principle,
which writes as follows. Let z, w be two solutions such that{

z1(0) ≤ w1(0) (resp. z1(0) ≥ w1(0))

z2(0) > w2(0) (resp. z2(0) < w2(0)).

Then, for any t > 0 such that z and w are defined on [0, t],{
z1(t) < w1(t) (resp. z1(t) > w1(t))

z2(t) > w2(t) (resp. z1(t) < w1(t)).

Let (xu, yu) be a solution of system (2.3) which converges to some equilibrium point
(x̄u, ȳu), and (x, y) a solution of (2.3) such that{

x(0) < xu(0)

y(0) ≥ yu(0).

We assume that (x, y) converges to (x̄u, ȳu). An application of the comparison principle
entails

∀t > 0, w1(t) := xu(t)− x(t) > 0, w2(t) := y(t)− yu(t) > 0.

Hence, we may write

ẇ1 = ẋu − ẋ = F (yu)− xu − F (y) + x =
F (yu)− F (y)

y − yu
w2 − w1.

Likewise,

ẇ2 =
G(x)−G(xu)

xu − x
w1 − w2.

Since (x, y) and (xu, yu) both converge to (x̄u, ȳu), and F ′(ȳu)G
′(x̄u) > 1, there exist

c, d > 0 which satisfy cd > 1, and T > 0 such that for all t ≥ T :

F (yu(t))− F (y(t))

y(t)− yu(t)
> c and

G(x(t))−G(xu(t))

xu(t)− x(t)
> d.

Therefore, for all t ≥ T , ẇ1(t) ≥ cw2(t) − w1(t) and ẇ2(t) ≥ dw1(t) − w2(t). We now
consider

W := (1 + d)w1 + (1 + c)w2.

According to the previous computations, we have, for all t ≥ T ,

Ẇ (t) ≥− (1 + d)w1(t) + c(1 + d)w2(t) + d(1 + c)w1(t)− (1 + c)w2(t)

= (cd− 1)︸ ︷︷ ︸
>0

(w1(t) + w2(t))︸ ︷︷ ︸
>0

> 0.

Hence, W does not converge to zero, which contradicts the fact that w1 and w2 converge
to zero. With the same reasoning, we prove that if x(0) > xu(0) and y(0) ≤ yu(0), then
(x, y) does not converge to (x̄u, ȳu).

In particular, for all x0 ∈ R+, there exists at most one y0 ∈ R+ such that (x0, y0) is in
the basin of attraction of (x̄u, ȳu), which proves the existence of γ. Moreover, if (x0, y0)
and (x′0, y

′
0) are two points of this basin of attraction such that x0 < x′0, then y0 < y′0,

which shows that γ is increasing. The continuity of γ and the connectedness of the set
follow from the continuity of the solutions.
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2.3 A criterion which ensures at most bi-stability

The main purpose of this section is to prove the following theorem:

Theorem 5. Let f, g ∈ C3(R+,R+) two functions such that f ′ > 0, g′ > 0 or f ′ < 0, g′ < 0
on R+. We recall that system (2.2) refers to{

ẋ = αf(y)− x

ẏ = βg(x)− y
. (2.2)

Then

(i) If 1√
|f ′|

and 1√
|g′|

are convex (we say that f and g are γ1/2-convex), and at least one

of these functions is strictly convex, then for any α, β > 0 system (2.2) has at most
three equilibria, and is either monostable or bistable.

(ii) If 1√
|f ′|

and 1√
|g′|

are concave (we say that f and g are γ1/2-concave), and at least

one of these functions is strictly concave, then for any α, β > 0, system (2.2) is
monostable.

In order to determine if a given function is γ1/2-convex or γ1/2-concave, we provide
different properties about these functions, which are summarised below.

• A function f is γ1/2-convex (resp. γ1/2-concave) if and only if f ′f (3) ≤ f ′′2 (resp.
f ′f (3) ≥ f ′′2).

• If f and g are γ1/2-convex (resp. γ1/2-concave), then f ◦ g is γ1/2-convex (resp.
γ1/2-concave).

• x 7→ xa is strictly γ1/2-convex if |a| > 1, strictly γ1/2-concave if 0 < |a| < 1.

• The only functions which are both γ1/2-convex and γ1/2-concave are the affine and
the homographic functions.

• A strictly monotonic function f is γ1/2-convex if and only if f−1 is γ1/2-concave.

The rest of this section is devoted to proving Theorem 5 and the above properties regarding
γ1/2-convexity.

2.3.1 A priori bounds on the number of fixed points

In what follows, I will denote an arbitrary (possibly unbounded) interval of R.
The first proposition and its corollary prove an intuitive fact about the fixed points

of a function and the sign of its derivative at this point. As explained in the preliminary
results, this proposition is the basis for all the results of this section.

Proposition 2. Let f ∈ C1(I,R). If f has 2n fixed points or more (n ∈ N∗), then there
exist x−1 < x−2 < . . . < x−n and x+1 < x+2 < . . . < x+n some fixed points of f such that, for
any i ∈ {1, . . . , n}:

f ′(x−i ) ≤ 1 and f ′(x+i ) ≥ 1.

Conversely, if there exist n fixed points of f , denoted x1 < x2 < . . . < xn such that

∀i ∈ {1, . . . , n}, f ′(xi) < 1 or ∀i ∈ {1, . . . , n}, f ′(xi) > 1,

then f has at least 2n− 1 fixed points.
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Proof. The first implication can clearly be proved by induction. The main difficulty lies
in the base case, i.e. in the case n = 1. Let us denote

F := f − id.

If F has a finite number of roots, or more generally, if the set of the roots of F does
not have an accumulation point, the result immediately holds, since F reaches it roots
‘from above’ and ‘from below’ alternatively. Otherwise, we consider a bounded sequence
of roots of F , denoted (cn), and we assume that for any n ∈ N, F ′(cn) < 0 (or F ′(cn) > 0).
Since (cn) is bounded, we can extract a convergent subsequence, and we denote c its
limit. According to the continuity of F , F (c) = 0 and, according to its differentiability,

F ′(c) = lim
n→+∞

F (c)−F (cn)
c−cn = 0, which proves the result.

The converse implication simply stems from applying the intermediate value theorem
to the function F .

Corollary 3. Let us assume that I = R (or R∗
+) and that f is positive and bounded. If f

has 2n fixed points or more (n ∈ N∗), then there exist x−1 < . . . < x−n+1 some fixed points
of f such that for any i ∈ {1, . . . , n+ 1}

f ′(x−i ) ≤ 1.

Conversely, if there exist n fixed points of f (denoted x1, . . . , xn) such that

∀i ∈ {1, . . . , n}, f ′(xi) > 1,

then f has at least 2n+ 1 fixed points.

Proof. We note that

E := {x ∈ R : f(x) = x}

is a closed and bounded set, and thus that it is compact. Hence, it has a minimum and
a maximum element, that we denote xm and xM . Since for all x < xm and all x > xM ,
f(x) > x, then f ′(xm) ≤ 1, f ′(xM ) ≤ 1.

Therefore, if f has at least 2n fixed points, then it has at least 2n− 2 fixed points on
(xm, xM ). Likewise, if there exist x1, . . . , xn such that f ′(xi) > 1 for all i ∈ {1, . . . , n},
then x1, . . . , xn ∈ (xm, xM ).

We conclude by applying the previous proposition on (xm, xM ).

2.3.2 Properties of γ1/2-convex functions

We now use these two results (in the specific cases n = 1 and n = 2) in order to establish
a convexity criterion related to the derivative of the function of interest. It ensures that
this function cannot have more than three fixed points.

Proposition 4. Let f ∈ C1(I,R). Let us assume that there exists Ψ : f ′(I) → R a
function which satisfies the four following conditions:

(i) Ψ(1) = 1

(ii) ∀x ≤ 1,Ψ(x) ≥ 1

(iii) ∀x ≥ 1,Ψ(x) ≤ 1
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(iv) Ψ ◦ f ′ is strictly convex or strictly concave.

Then, f has at most three fixed points. In the case where Ψ ◦ f ′ is strictly concave, if we
make the stronger assumption that I = R or R+ and f is bounded, then f has a unique
fixed point.

In particular, if f ′ > 0 and if there exists α > 0 such that

γαf :=

(
1

f ′

)α
is strictly convex or strictly concave, then f has at most three fixed points.

Proof. We show the contrapositive. Let us assume that f has four fixed points or more,
and let Ψ be a function which satisfies the first three points of the proposition. According
to Proposition 2, there exist x1, x2, y1, y2 four distinct points such that, for i ∈ {1, 2}

f(xi) = xi and f(yi) = yi

f ′(xi) ≥ 1 and f ′(yi) ≤ 1.

According to the mean value therorem, there exists θ, θ′ ∈ (0, 1) such that

f ′(θx1+(1− θ)x2) =
f(x1)− f(x2)

x1 − x2
= 1 and f ′(θ′y1+(1− θ′)y2) =

f(y1)− f(y2)

y1 − y2
= 1.

Thus,

θΨ(f ′(x1)) + (1− θ)Ψ(f ′(x2)) ≤ θ + (1− θ) = 1 = Ψ(f ′(θx1 + (1− θ)x2))

and

θ′Ψ(f ′(y1)) + (1− θ′)Ψ(f ′(y2)) ≥ θ′ + (1− θ′) = 1 = Ψ(f ′(θ′y1 + (1− θ′)y2)),

which proves that Ψ ◦ f is neither strictly convex nor strictly concave.
When f is bounded and positive, we argue similarly but with the help of Corollary 3.

We recall and extend the definition of γαf for any α > 0 and function f ∈ C1(I,R)
such that |f ′| > 0 :

γαf : I −→ R+

x 7−→
(

1

|f ′(x)|

)α
.

The following lemma provides a straightforward way to decide whether a given function
f satisfies one of the ‘γα-properties’.

Lemma 1. Let f ∈ C3(I,R) a strictly monotonic function. Then γαf is convex (resp.
concave) if and only if

f ′f (3) ≤ (α+ 1)f ′′
2

(resp. f ′f (3) ≥ (α+ 1)f ′′
2
)

on I, and strictly convex (resp. strictly concave) if and only if

f ′f (3) < (α+ 1)f ′′
2

(resp. f ′f (3) > (α+ 1)f ′′
2
)

on a dense subset of I.
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Proof. First, let us note that for any f which satisfies the hypotheses, we have γα−f = γαf .
We may hence assume f ′ > 0 without loss of generality.

We recall that a function F ∈ C2(I,R) is strictly convex (resp. strictly concave) if and
only if F ′′ > 0 (resp. F ′′ < 0) on a dense subset of I. Computing the second derivative of
γαf , we find

γαf
′′ = −αf

′f (3) − (α+ 1)f ′′2

f ′α+2 .

The result immediately follows.

In general, if γαf and γαg are convex (or concave), γαf◦g has no reason to be. The case

α = 1
2 stands out since the property is stable under composition, as we shall see. Since

γ
1/2
f will play a crucial role in what follows, we recall its definition here:

Definition 2 γ1/2-convex function. Let f ∈ C3(I,R) be a strictly monotonic function.
We recall that

γ
1/2
f : I −→ R

x 7−→ 1√
|f ′(x)|

.

We say that

• f is γ1/2-convex if γ
1/2
f is convex ( ⇐⇒ f ′f (3) ≤ 3

2f
′′2 on I).

• f is strictly γ1/2-convex if γ
1/2
f is strictly convex ( ⇐⇒ f ′f (3) < 3

2f
′′2 on a dense

subset of I).

• f is γ1/2-concave if γ
1/2
f is concave ( ⇐⇒ f ′f (3) ≥ 3

2f
′′2 on I).

• f is srictly γ1/2-concave if γ
1/2
f is strictly concave ( ⇐⇒ f ′f (3) > 3

2f
′′2 on a dense

subset of I).

Proposition 5. Let g ∈ C3(I,R), f ∈ C3(g(I),R). Then

f, g γ1/2-convex (resp. γ1/2-concave) =⇒ f ◦ g γ1/2-convex (resp. γ1/2-concave).

Furthermore, if in the above either f or g is strictly γ1/2-convex (resp. γ1/2-concave), then
f ◦ g is strictly γ1/2-convex (resp. γ1/2-concave).

Proof. Let us denote h := f ◦ g and compute its third-order derivative:

h(3) = g(3)(f ◦ g) + 3g′g′′(f ′ ◦ g) + g′
3
(f ′′ ◦ g).

Thus

h′h(3) − (α+ 1)h′′
2
=g′

4[
(f ′ ◦ g)(f (3) ◦ g)− (α+ 1)(f ′′ ◦ g)2

]
+ (f ′ ◦ g)2

[
g′g(3) − (α+ 1)g′′

2]
+ (3− 2(α+ 1))g′

2
g′′(f ′ ◦ g)(f ′′ ◦ g).

In the particular case where α = 1
2 , 3 − 2(α + 1) = 0, which shows that the last term

vanishes. The previous lemma concludes the proof since the other two terms have the
appropriate signs.
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We now give examples of γ1/2-convex/concave functions. The main point is that a
function f is γ1/2-convex/concave if and only if, for any affine or homographic function h,
the composite functions h ◦ f and f ◦ g are also γ1/2-convex/concave.

Example. 1. f is both γ1/2-convex and γ1/2-concave if and only if f is an affine func-
tion or a homographic function, i.e., if there exist a, b, c, d ∈ R such that

f = x 7−→ ax+ b

cx+ d
.

2. We consider, for all ν ∈ R, the function x 7→ xν on R∗
+.

• If |ν| > 1, then x 7→ xν is strictly γ1/2-convex on R∗
+.

• If |ν| < 1, then x 7→ xν is strictly γ1/2-concave on R∗
+.

3. x 7→ ex is strictly γ1/2-convex on R.

Remark. According to Proposition 5, all the functions of the form

x 7−→
(
axν + b

cxν + d

)µ
,

with ν, µ ≥ 1 and ν > 1 or µ > 1 are strictly γ1/2-convex. Many common sigmoid functions
are γ1/2-convex, as shown in Appendix B.3.

Proof. 1. First, let us assume that f : x 7→ ax+b
cx+d (which is defined on R if c = 0 and on

(−∞,−d/c) ∪ (−d/c,+∞) otherwise).

Then, for any x in its domain,

f ′(x) =
ad− cb

(cx+ d)2
, f ′′(x) = −2c

ad− cb

(cx+ d)3
, f (3)(x) = 6c2

ad− cb

(cx+ d)4
.

Thus,

f ′(x)f (3)(x)− 3

2
f ′′(x)2 = 0.

Hence, f is indeed γ1/2-convex and γ1/2-concave.

Conversely, let us assume that f is both γ1/2-convex and γ1/2-concave, i.e., that
1√
|f ′|

is an affine function. Then, there exist α, β ∈ R such that for all x ≥ 0

1√
|f ′(x)|

= αx+ β. Thus,

f ′(x) = ± 1

(αx+ β)2
.

Integrating, we conclude that f is of the announced form x 7→ ax+b
cx+d .

2. We recall that the function x 7→ xβ is strictly convex on R∗
+ if and only if β > 1 or

β < 0 and strictly concave if and only if β ∈ (0, 1).

Hence, since the derivative of x 7→ xν is x 7→ νxν−1, x 7→ xν is strictly γ1/2-convex if
and only if |ν| > 1. Likewise, x 7→ xν is strictly γ1/2- concave if and only if |ν| < 1.

3. Since, for all x ∈ R,
1√
(ex)′

= e−
1
2
x,

the result immediately follows, owing to the strict convexity of x 7→ e−
1
2
x.



2.3. A criterion which ensures at most bi-stability 41

Non-local characterisation. The γ1/2-convexity/concavity of a function can surpris-
ingly be written under a non-local form. Although this characterisation is generally less
suitable to check if a given function is γ1/2-convex/concave, it can be useful to understand
why the γ1/2-convexity/concavity is especially adapted to our problem. Indeed, the fact
that the ‘γ1/2-properties’ are stable by composition and that they ensure that a function
has at most three fixed points can easily be proved by considering this non-local form.

Proposition 6. Let f ∈ C3(I,R). Then

• f is γ1/2-convex (resp. γ1/2-concave) if and only if for any x, y ∈ I, x ̸= y,

f ′(x)f ′(y) ≤
(
f(x)− f(y)

x− y

)2

(resp. f ′(x)f ′(y) ≥
(
f(x)− f(y)

x− y

)2

).

• f is strictly γ1/2-convex (resp. strictly γ1/2-concave) if and only if for any x, y ∈ I,
x ̸= y,

f ′(x)f ′(y) <

(
f(x)− f(y)

x− y

)2

(resp. f ′(x)f ′(y) >

(
f(x)− f(y)

x− y

)2

).

Proof. We only prove the γ1/2-convex case. Let us assume that f is γ1/2-convex, and let
y ∈ I. We define I−y = {x ∈ I : x < y} and I+y = {x ∈ I : x > y}, and we introduce the
homographic function

hy(x) :=
f ′(y)

x− f(y)

which is well defined on (−∞, f(y)) and on (f(y),+∞). As seen in the examples, and
according to Proposition 5, hy ◦ f is γ1/2-convex on I−y and on I+y . In other words,

γ
1/2
hy◦f = 1√

|(hy◦f |)′
is convex on I−y and on I+y , and for all x ∈ I\{y},

γ
1/2
hy◦f (x) =

|f(x)− f(y)|√
f ′(x)f ′(y)

.

We observe that γ
1/2
hy◦f can be extended by continuity at y by defining γ

1/2
hy◦f (y) = 0. We

now assume that f ′ > 0 (the case f ′ < 0 is similar). Then, for any x ∈ I\{y},

γ
1/2
hy◦f

′
(x) = sgn(x− y)

(√
f ′(x)

f ′(y)
− (f(x)− f(y))

f ′′(x)

2(f ′(x)f ′(y))3/2

)
.

Thus,

γ
1/2
hy◦f

′
(x) −→

x→y−
−1 and γ

1/2
hy◦f

′
(x) −→

x→y+
1.

Since γ
1/2
hy◦f is convex on I−y and on I+y , γ

1/2
hy◦f lies above its tangent at y on these two

intervals, i.e.,

• For all x ∈ I+y , γ
1/2
hy◦f ≥ −(x− y).

• For all x ∈ I−y , γ
1/2
hy◦f ≥ (x− y).
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Therefore, for all x ∈ I\{y},

|f(x)− f(y)|√
f ′(x)f ′(y)

≥ |x− y|,

which proves

f ′(x)f ′(y) ≤
(
f(x)− f(y)

x− y

)2

.

If f is strictly γ1/2-convex, then these inequalities become strict, which proves the second
point.

Now, let us prove the converse assertion. We assume that for any x, y ∈ I, x ̸= y,

f ′(x)f ′(y) ≤
(
f(x)− f(y)

x− y

)2

.

Then for any x > 0, ε ∈ R small enough,

f ′(x)f ′(x+ ε)−
(
f(x+ ε)− f(x)

ε

)2

≤ 0.

A Taylor-expansion of the left-hand side leads to

ε2
(
1

6
f ′(x)f (3)(x)− 1

4
f ′′(x)2

)
+ o(ε2) ≤ 0,

which implies the inequality

f ′(x)f (3)(x) ≤ 3

2
f ′′(x)2.

In the case where, for any x ̸= y

f ′(x)f ′(y) <

(
f(x)− f(y)

x− y

)2

,

this inequality becomes strict in a dense subset of I. Indeed, let us assume that there
exists a segment J ⊂ I such that

f ′f (3) =
3

2
f ′′2 on J.

Then, according to the examples, f|J is a homographic or an affine function, i.e., there
exist a, b, c, d ∈ R such that:

∀x ∈ J, f(x) =
ax+ b

cx+ d
.

Then, for all x, y ∈ J ,

f ′(x)f ′(y) =

(
(ad− cb)

(cx+ d)(cy + d)

)2

=

(
f(x)− f(y)

x− y

)2

,

which contradicts the strict inequality.

We now use this non-local characterisation in order to prove the last result concerning
the γ1/2-convexity/concavity.

Proposition 7. A strictly monotonic function f is (strictly) γ1/2-convex if and only if
f−1 is (strictly) γ1/2-concave.
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Proof. By applying the formula for the derivative of an inverse function, we have, for any
x ̸= y,

f−1′(x)f−1′(y) =
1

f ′(f−1(x))f ′(f−1(y)).

If f is γ1/2-convex, then, according to the non-local characterisation,

f ′(f−1(x))f ′(f−1(y)) ≤
(
f(f−1(x))− f(f−1(y))

f−1(x)− f−1(y)

)2

=

(
x− y

f−1(x)− f−1(y)

)2

.

Hence,

f−1′(x)f−1′(y) ≥
(
f−1(x)− f−1(y)

x− y

)2

.

We prove the converse with the same method.

Let us finally come to the proof of our main theorem 5, namely:

Theorem 5. Let f, g ∈ C3(R+,R+) be two functions such that f ′ > 0, g′ > 0 or f ′ <
0, g′ < 0 on R+. We recall that system (2.2) refers to{

ẋ = αf(y)− x

ẏ = βg(x)− y
. (2.2)

Then

(i) If f and g are γ1/2-convex, and (at least) one of these functions is strictly γ1/2-
convex, then for any α, β > 0 system (2.2) has at most three equilibria, and is either
monostable or bistable.

(ii) If f and g are γ1/2-concave, and (at least) one of these functions is strictly γ1/2-
concave, then for any α, β > 0, system (2.2) is monostable.

Proof. (i) As evidenced by the examples, composing with an affine function does not
change the γ1/2-convexity/concavity of the functions. Hence, according to Proposi-
tion 5, under the first hypothesis, x 7→ αf(βg(x)) is strictly γ1/2-convex. According
to Proposition 4, this function has at most three fixed points, which shows that
system (2.2) has at most three equilibria.

Moreover, it is well-known that the basins of attraction of stable equilibrium points
are open sets. Indeed, if x̄s is a stable equilibrium of a differential equation, then,
by definition, there exists an open set U which contains x̄s and which is included
in the basin of attraction. Let x0 be a point of this basin. By denoting ΦT the
flow associated to this ODE at time T , we get ΦT (x0) ∈ U for T large enough, and
Φ−1
T (U) is thus a neighborhood of x0 which is included in the basin of attraction of

x̄s.

Hence the system cannot be tristable, and is thus at most bistable.

(ii) Under this second hypothesis, x 7→ αf(βg(x)) is γ1/2-concave. According to Propo-
sition 4, this proves that x 7→ αf(βg(x)) has a unique equilibrium, and thus that
system (2.2) is monostable.
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2.4 Determining the parameters for mono/bistability

In the previous section, we have shown that, under general hypotheses on f and g, the
system {

ẋ = αf(y)− x

ẏ = βg(x)− y
(2.2)

is either monostable or bistable. The purpose of this section is, once the functions f, g are
fixed, to determine which parameters α, β induce a monostable system, and which ones
induce a bistable system.

To answer this question, we introduce a general framework that will encompass this
particular result. Using this framework, we will also recover the result of the third section,
which states that, under some hypotheses, system (2.2) cannot have more than two stable
equilibria.

2.4.1 General framework

We introduce a family of sets: for n ∈ N∗, let

En :=

{
(x, y) ∈ (Rn+)2 : ∀i ̸= j,

xi
f(yi)

=
xj
f(yj)

,
yi

g(xi)
=

yj
g(xj)

, xi ̸= xj

}
.

Notice that, since f and g are one-to-one, En can also be written

En =

{
(x, y) ∈ (Rn+)2 : ∀i ̸= j,

xi
f(yi)

=
xj
f(yj)

,
yi

g(xi)
=

yj
g(xj)

, yi ̸= yj

}
.

By convention, we take E1 = R2
+. We also introduce two subsets of the above sets En:

E>n :=

{
(x, y) ∈ En : min

i∈{1,...,n}

(
xig

′(xi)

g(xi)

yif
′(yi)

f(yi)

)
> 1

}

E≥
n :=

{
(x, y) ∈ En : min

i∈{1,...,n}

(
xig

′(xi)

g(xi)

yif
′(yi)

f(yi)

)
≥ 1

}
We note that, in the particular case n = 1, E≥

1 is the closure of E>1 .
We also introduce

Gn : En −→ R2
+

(x, y) 7−→
(

xi
f(yi)

,
yi

g(xi)

)
,

for some i ∈ {1, . . . , n}. Remark that by the definition of En, the function Gn is well-
defined since the choice of i is arbitrary.

The following property explains how the sets E>n and E≥
n and the function Gn can be

used to study the number of equilibria of (2.2).

Proposition 8. Let n ∈ N∗.

• If (α, β) ∈ Gn(E
>
n ), then system (2.2) has at least 2n+ 1 equilibria.

• If system (2.2) has 2n equilibria or more, then (α, β) ∈ Gn(E
≥
n ) .
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Here is a direct and useful consequence of this proposition:

Corollary 9. If E>n = ∅, then for any choice of α, β, system (2.2) has at most 2n − 1
equilibria.

Proof of Proposition 8. Let us assume that E>n ̸= ∅, and let (α, β) ∈ Gn(E
>
n ). Then, there

exists (x, y) ∈ En such that, for all i ∈ {1, . . . , n},

xig
′(xi)

g(xi)

yif
′(yi)

f(yi)
> 1, and α =

xi
f(yi)

, β =
yi

g(xi)
.

In other words, all the points (xi, yi) are equilibria of the system, and satisfy αβf ′(yi)g
′(xi) >

1. According to Corollary 3, this proves that x 7→ αf(βg(x)) has at least 2n+1 fixed points,
and thus that system (2.2) has at least 2n+ 1 equilibria.

Now, let us assume that system (2.2) has at least 2n equilibria. According to Proposi-
tion 2, there exist at least n of these equilibria (denoted (x̄1, ȳ1), . . . , (x̄n, ȳn)) which satisfy
αβf ′(ȳi)g

′(x̄i) ≥ 1. Since each (x̄i, ȳi) is an equilibrium of (2.2), then for all i ∈ {1, · · · , n},

α =
x̄i
f(ȳi)

, β =
ȳi

g(x̄i)
,

which proves that (α, β) ∈ Gn
(
E≥
n

)
.

2.4.2 Application to n=1: determining the parameters for mono/bistability

General statement

In [26], Cherry and Adler state conditions on f , g which ensure that, for some values of
α, β, system (2.2) is multistable. As seen in Section 2.2, under the hypotheses of Theorem
5, this system is at most bistable, which means that multistability actually simplifies to
mere bistability.

In the following theorem, we improve this result in order to identify, depending on f
and g, the spaces of parameters (α, β) for which the system is monostable or bistable.
From now on, A denotes the closure of a set A ⊂ R2, and AC its complement.

Theorem 6. Let us define

E>1 :=

{
(x, y) ∈ R2

+ :

(
xg′(x)

g(x)

yf ′(y)

f(y)

)
> 1

}
and

G1 : (x, y) 7−→
(

x

f(y)
,
y

g(x)

)
for (x, y) ∈ R2

+.

Let us assume that f and g are both γ1/2-convex, and that at least one of them is strictly
γ1/2-convex. We have the following alternative:

• If (α, β) ∈ G1(E
>
1 ), then (2.2) has exactly three equilibria, among which exactly two

stable equilibria.

• If (α, β) ∈ G1(E
>
1 )

C
, then (2.2) has a unique equilibrium, which is stable.

Proof. This is a direct consequence of Proposition 8, applied with n = 1.
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Remark. We note that, if E>1 = ∅, i.e., if

sup
x>0

(∣∣∣∣xg′(x)g(x)

∣∣∣∣) sup
y>0

(∣∣∣∣yf ′(y)f(y)

∣∣∣∣) < 1,

then (2.2) is monostable for any α, β, which is nothing but the theorem of Cherry and
Adler in [26].

In general, this criterion does not lead to an explicit expression of G1(E
>
1 ), but it does

for E>1 . Hence, the set G1(E
>
1 ) is numerically easily derived. These computations may be

significantly facilitated by assuming that the system is symmetric, i.e., of the form{
ẋ = αf(y)− x

ẏ = αf(x)− y.
(2.4)

In this very special case, we are led to studying the fixed points of x 7→ αf(αf(x)). Since
any fixed point of αf is also a fixed point of αf ◦αf , this system has at least one ‘diagonal’
equilibrium, i.e., an equilibrium of the form (x̄, x̄). The search for fixed points is thus made
much simpler, and we obtain the following proposition.

Proposition 10. Let us define

E>s :=

{
x ∈ R+ :

∣∣∣∣xf ′(x)f(x)

∣∣∣∣ > 1

}
and

Gs : E
>
s −→ R+

x 7−→ x

f(x)
.

Gs is increasing if f is decreasing, and decreasing if f is increasing. Moreover,

• If α ∈ Gs(E
>
s ), then system (2.4) has three equilibria, and is bistable.

• If α ∈ Gs(E>s )
C
, then system (2.4) is monostable.

Using Theorem 6, this result can be easily proved:

Proof. If f is strictly decreasing, then Gs is the product of two positive and increasing
functions, and is thus increasing. If f is strictly increasing, since the derivative of Gs is
equal to

x 7→ f(x)− xf ′(x)

f(x)2
,

the results holds according to the definition of E>s .
Let us now prove the second part of the proof. First, let us note that (α, α) ∈ G1(E

>
1 )

if and only if α ∈ Gs(E
>
s ). Indeed, if (α, α) ∈ G1(E

>
1 ), then there exists (x, y) ∈ E>1 such

that
(α, α) = G1(x, y).

Since G1(x, y) = G1(y, x) for all (x, y) and G1 is injective, then x = y, which proves that

(α, α) = G1(x, x) = (Gs(x, x), Gs(x, x)).

The converse inclusion is obvious from this last equality. We conclude by applying Theo-
rem 6.
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Remark. In the case where the system is symmetric and cooperative (i.e., f is increasing
in (2.4)), all the equilibria are exactly the points of the form (x̄, x̄), where x̄ is a root of
fα : x 7→ αf(x). Indeed, let us assume that there exists x̄ a root of fα ◦ fα which is not
a root of fα. Then, ȳ := fα(x̄) ̸= x̄ is also a root of fα ◦ fα. Let us assume that ȳ < x̄
(the case x̄ < ȳ is similar). Since fα is increasing, x̄ = fα(ȳ) < fα(x̄) = ȳ. This leads to a
contradiction, which proves the result.

On the contrary, if the system is competitive, there exists at most one ‘diagonal equi-
librium’, since αf has at most one fixed point if f is decreasing.

Examples with Hill functions

We now illustrate the previous two theorems, in the case where f and g are two Hill
functions (shifted or not), i.e., that f and g are defined on R+ by

f : z 7−→
1 + λ1(

z
z01

)a

1 + ( z
z01

)a
g : z 7−→

1 + λ2(
z
z02

)b

1 + ( z
z02

)b
,

with λ1, λ2 ∈ [0, 1), a, b ≥ 1, z01, z02 > 0.

First, we note that, for all α, β > 0,{
αf(y)− x = 0

βg(x)− y = 0
if and only if

{
αf̃( y

z01
)− x = 0

βg̃( x
z02

)− y = 0
,

where

f̃ : z 7−→ 1 + λ1z
a

1 + za
and g̃ : z 7−→ 1 + λ2z

b

1 + zb

and that

αβf ′(y)g′(x) =
( α
z01

)( β
z02

)
f̃ ′
( y
z01

)
g̃′
( x
z02

)
,

which shows that we can choose, without loss of generality, z01 = z02 = 1.

For conciseness, we present the result only in the case where λ1 = λ2 = 0: the complete
result for general values of λ1, λ2 as well as the proof can be found in Appendix B.1.

Proposition 11. Let us assume that λ1 = λ2 = 0 and let ρ := ab. If ρ < 1, then E>1 = ∅.
If ρ ≥ 1, we define

x− : =

(
1

ρ− 1

)1/b

, y− :=

(
1

ρ− 1

)1/a

,

r−(x) : =

(
1 + xb

(ρ− 1)xb − 1

)1/a

, s−(y) :=

(
1 + ya

(ρ− 1)ya − 1

)1/b

.

Then

E>1 = {(x, y) ∈ (x−,+∞)× (y−,+∞) : y > r−(x)}
= {(x, y) ∈ (x−,+∞)× (y−,+∞) : x > s−(y)}.

(2.5)

Together with Theorem 6, this allows us to identify where, in the parameter space
defined by (α, β), we have bistability or monostability. These results are illustrated by
Figure 2.3 for various choices of a, b, λ1 and λ2.
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Figure 2.3: The parameter spaces for system (2.2) with Hill functions. The blue fields
represent the parameters (α, β) for which the system is bistable, and the white one the
parameters for which it is monostable. The problem remains unsolved only for the values
at the boundary of the blue field. The parameters of the Hill functions are indicated above
each graph.

We now study the symmetric case. Still assuming that f is a (shifted) Hill function,
i.e.,

f : z 7→
1 + λ( zz0 )

a

1 + ( zz0 )
a
,

with z0 > 0, a > 1, λ ∈ R+\{1}, we now consider that the system is symmetric. Then,
with the notations of Proposition 10, we can identify Es and Gs(Es). Again, for clarity
of presentation and because this is the most standard case in applications, we assume
that λ = 0: the complete result for the other values of λ and the proof are gathered in
Appendix B.2.

Proposition 12. Let us assume that λ = 0 and a > 1. We define: α−
0 := z0

(
1

a−1

)1/a a
a−1 .

Then,

Gs(E
>
s ) = (α−

0 ,+∞).
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Figure 2.4 illustrates the symmetric case by showing the monostable and bistable
regions of the parameter space (λ, α), for various choices of a. Notice that for λ = 0, the
stable region for α is indeed of the form (α−

0 ,+∞), as shown in the previous proposition.

Figure 2.4: The parameter spaces (λ, α) is the case of a symmetric system (2.4) with Hill
functions. The blue set stands for the values of (λ, α) which ensure bistability, and the
white fields represent the parameters for which this system is monostable. As for the
general case, the question of the number of equilibria remains unsolved for the values at
the boundary of the blue field. All the Hill functions involved have a parameter z0 equal to
one; the value of the parameter a is specified above each graph. The vertical dashed line
indicates the highest λ for which a symmetric system can be bistable (the smallest one on
the fourth graphic, which exemplifies the cooperative case). This value can be explicitly
computed, as shown in the Appendix.

2.4.3 Application to n=2

We now apply Proposition 8 in the specific case where n = 2, in order to retrieve the result
of the second section. When n = 2, we get

E2 =

{
(x1, x2, y1, y2) ∈ R4

+ :
x1
f(y1)

=
x2
f(y2)

,
y1

g(x1)
=

y2
g(x2)

, x1 ̸= x2

}
,

and, since for any (x1, x2, y1, y2) ∈ E2,

xi
f(yi)

=
x1 − x2

f(y1)− f(y2)
and

yi
g(xi)

=
y1 − y2

g(x1)− g(x2)

we can rewrite

E≥
2 =

{
(x1, x2, y1, y2) ∈ E2 :

|x1 − x2|
|g(x1)− g(x2)|

|y1 − y2|
|f(y1)− f(y2)|

min
(
g′(x1)f

′(y1), g
′(x2)f

′(y2)
)
≥ 1

}
⊂
{
(x1, x2, y1, y2) ∈ R4

+ min
(
g′(x1)f

′(y1), g
′(x2)f

′(y2)
)
≥ |g(x1)− g(x2)|

|x1 − x2|
|f(y1)− f(y2)|

|y1 − y2|

}
.



50 Chapter 2. Monostability and bistability of biological switches

Thus, if f and g are γ1/2-convex, and one of these functions is strictly γ1/2-convex, as seen
with Proposition 6, we get, for any (x1, x2, y1, y4) ∈ R4

+,

f ′(y1)f
′(y2) ≤

(
f(y2)− f(y1)

y2 − y1

)2

and g′(x1)g
′(x2) ≤

(
g(x2)− g(x1)

x2 − x1

)2

,

(and one of this inequality is in fact strict) and thus

g′(x1)f
′(y1)f

′(y2)g
′(x2) <

(
|g(x1)− g(x2)|

|x1 − x2|
|f(y1)− f(y2)|

|y1 − y2|

)2

,

which proves that

g′(x1)f
′(y1) <

|g(x1)− g(x2)|
|x1 − x2|

|f(y1)− f(y2)|
|y1 − y2|

or g′(x2)f
′(y2) <

|g(x1)− g(x2)|
|x1 − x2|

|f(y1)− f(y2)|
|y1 − y2|

,

and therefore that E≥
2 = ∅ under this hypothesis.

2.5 Discussion

Ordinary differential equations (ODE) are widely used in order to model ‘biological switches’
representing cell-fate decision phenomena. This work was dedicated to studying ODEs of
the form {

ẋ = αf(y)− x

ẏ = βg(x)− y,
f ′, g′ < 0 or f ′, g′ > 0 (2.6)

which model the behaviour of two molecules which are mutually inhibiting or activating.
Such models are essential as basic elements of more complex models for cellular processes,
but they have been little studied from a theoretical point of view.

Each stable equilibrium is usually associated with a given cell phenotype. As a result,
any estimate for the number of equilibria these models can have is valuable to the field.
This seemingly simple question (at least for the case of (2.6)) has remained up to our
knowledge a vastly open question, even if numerical simulations all concur to conjecture
that they cannot be more than bistable.

The seminal paper dealing with these ODE models from a theoretical point of view
is due to Cherry and Adler [26]. The main result is a criterion which ensures that this
model is multistable (i.e., has at least two stable equilibria), for some parameters α and
β, leaving open the question of which parameters. More importantly, the conjecture of
at most bistability was yet to be confirmed. These two problems have only recently been
tackled by Li and Zhang [102], in the very particular case where f and g are two specific
Hill functions.

In this chapter, we have provided a general answer to these questions. Firstly, we have
established a criterion on f and g ensuring that the system has at most three equilibria,
among which at most two are stable. More precisely, we have proved that if the functions
|f ′|−1/2 and |g′|−1/2 are strictly convex, then, for any α, β > 0, system (2.6) has at most
three equilibria, among which at most two are stable. The hypothesis regarding f and
g is satisfied by all Hill functions, i.e., functions of the shape x 7→ 1

1+xr , but also by a
wide number of usual functions and sigmoid functions. This result confirms the crucial
role of self-regulation in cell differentiation phenomena, in particular when it comes to the
co-existence of three different phenotypes or more. Secondly, we have developed a general
method allowing to specify the parameters leading to either monostability or bistability.
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We have thus proved that, with any standardly used function, system (2.6) cannot have
three stable equilibria or more. The property on f and g can be used in order to ensure
the monostability or bistability of more complex ODEs with three variables or more, even
if, in this case, we cannot ensure the convergence of all the trajectories (some of them may
be periodic).

We have also developed a framework which subsumes the result of Cherry and Adler
and ours. Theoretically, it allows to find some bounds for the number of equilibria of (2.6).
Nevertheless, we have not been able to clarify the conditions allowing tristability for even
slightly more complex models. With the current framework, system with self-regulation,
i.e., systems of the shape: {

ẋ = αϕ(x)f(y)− x

ẏ = βψ(y)g(x)− y,
(2.7)

seem out of reach, even if numerical simulations have proved that such systems can lead to
tristability [91]. Finding a criterion ensuring the tristability of (2.7), and determining the
maximal number of stable equilibria it can have is certainly a next exciting and relevant
step in the understanding of biological switches.





Chapter 3

Bistability and oscillatory
behaviours of cyclic feedback loops

This chapter is a generalisation, in higher dimensions, of the results of the previous chapter.
We study the stability of an Ordinary Differential Equation (ODE) usually referred to as
Cyclic Feedback Loop, which typically models a biological network of d molecules where
each molecule regulates its successor in a cycle (A1 → A2 → . . . → Ad−1 → Ad →
A1). Regulations, which can be either positive or negative, are modelled by increasing
or decreasing functions. We make a complete analysis of this model for a wide range of
functions (including affine and Hill functions) by determining the parameters for which
bistability and oscillatory behaviours arise. These results encompass previous theoretical
studies of gene regulatory networks, which are particular cases of this model.

This chapter has been submitted for publication.

53
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3.1 Introduction

We aim to characterise the stability of the ODE system
ẋ1 = α1f1(xd)− x1

ẋ2 = α2f2(x1)− x2
...

ẋd = αdfd(xd−1)− xd

(3.1)

where f1, ..., fd ∈ C1(R+,R+) (with R+ = [0,+∞)) are non-negative functions, at least
one of them is bounded, and α1, ..., αd are positive parameters. Throughout this chapter,
we use the convention x0 = xd, which allows us to write (3.1) under the compacted form

∀i ∈ {1, ..., d}, ẋi = αifi(xi−1)− xi.

Figure 3.1: Schematic representation of the cyclic feedback loop (3.1): The blue circles
represent the molecules of the network, and the arrows between them regulation, which
can be positive (fi increasing) or negative (fi decreasing).

This model is a generalisation of a gene regulatory network initially proposed by Good-
win [64, 65], usually referred to as Cyclic feedback loop, which represents interactions be-
tween genes, mRNAs, enzymes and proteins called repressors which have the ability to
inhibit the expression of some genes. In system (3.1), x1, ..., xd represent the concentration
of each of the molecules involved in the network (denoted A1, ..., An), and f1, ..., fd the
regulation between them. The system is assumed to be cyclic (Ai regulates Ai+1 and only
Ai+1, as illustrated by Figure 3.1), and each regulation can be positive (fi increasing)
or negative (fi decreasing). The relevance of these cyclic models has been established
in [5] and [60] where some theoretical predictions (oscillatory phenomena and bistability)
have been observed experimentally. This highlights the importance of understanding the
dynamical behaviour of such systems i.e. determining the number of stable equilibrium
points and their basins of attraction, as well as the possible existence of periodic solutions
or chaotic behaviours.

System (3.1) has been, for some specific choices of fi, the subject of several theoretical
studies [7, 122, 143, 146, 147, 161]. In these papers, restrictions on the functions fi were
notably imposed by the necessity to compute the value of the equilibrium points of the
system, which is intricate when more than two functions are not affine, and are not identi-
cal. In the present chapter, we follow a method initiated by Cherry and Adler [26] allowing
to avoid explicitly computing the equilibrium points. In the two dimensional case, which
writes
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{
ẋ1 = α1f1(x2)− x1

ẋ2 = α2f2(x1)− x2
, (3.2)

the following results have already been established:

1. If f1 and f2 are both increasing or both decreasing, and if

sup
x>0

∣∣∣∣xf ′1(x)f1(x)

∣∣∣∣ sup
x>0

∣∣∣∣xf ′2(x)f2(x)

∣∣∣∣ > 1, (3.3)

then there exist values of (α1, α2) ∈ R∗
+
2 such that system (3.2) is multistable i.e.

there exist at least two equilibrium points which are asymptotically stable [26].

2. If f1 and f2 are both increasing or both decreasing, and if

1√
|f ′1|

and
1√
|f ′2|

are strictly convex 1, (3.4)

then system (3.2) is either monostable or bistable, i.e. there exist exactly one or
exactly two equilibrium points which are asymptotically stable. Moreover, it is
possible to determine, up to a set of measure zero, the set of parameters for (α1, α2)
for which the system is monostable and the set of parameters for which it is bistable
[68].

3. All the solutions to system (3.2) converge (even without assuming any monotonicity).

This last result is a direct application of the Poincaré-Bendixson theorem and the Dulac-
Bendixson theorem [130].

A natural question at this stage is which of these properties generalise to higher dimen-
sions (d ≥ 3). A major result was achieved by Mallet-Paret and Smith in [113], showing
that the Poincaré-Bendixson theorem can be adapted to monotone feedback systems, in-
cluding (3.1). Furthermore, a series of results of Hirsch [77–79] generalised and summarised
in [147], has shown that in the case where an even number of functions fi is decreasing,
the solutions of (3.1) converge to an equilibrium point for almost every initial condition.
It is well-known that this property does not hold when the number of decreasing functions
is odd (in which case the system is often called ‘repressilator’), and that there can there
exist stable orbits [19,122].

In this chapter, we prove the following result, which is a generalisation of the result of
Chapter 2:

Theorem 7. Let us assume that f1, ..., fd ∈ C3(R+,R∗
+) are monotonous, non-negative,

and that (at least) one of them is bounded. Moreover, let us assume that the functions
1√
|f ′1|
, ..., 1√

|f ′d|
are defined and convex, and that (at least) one of them is strictly convex.

Lastly, let us denote by n the number of these functions which are decreasing, and let

D :=

d∏
k=1

sup
x>0

∣∣∣∣xf ′k(x)fk(x)

∣∣∣∣ ∈ (0,+∞]

1. If n is even, then

(i) If D < 1, then for any α ∈
(
R∗
+

)d
system (3.1) has a unique equilibrium point

which is globally asymptotically stable.

1It is in fact sufficient to assume that these two functions are convex, and that at least one of them is
strictly convex.
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(ii) If D > 1, then there exists a non-empty set Abis ⊂
(
R∗
+

)d
such that

• If α ∈ Abis, then system (3.1) has exactly two asymptotically stable equi-
libria, and the union of their basins of attraction is a dense open subset of
Rd+, with a complement of Lebesgue measure zero.

• If α ∈ Abis
C
, then system (3.1) has a unique equilibrium point which is

globally asymptotically stable.

(iii) If d ≥ 5 and D > 1

cos( 2π
d )

d , then there exists a non-empty set Aper ⊂ Abis such

that if α ∈ Aper, then system (3.1) has periodic solutions.

2. If n is odd, then system (3.1) has a unique equilibrium point. Moreover, if d ≥ 3,
then

(i) If D < 1

cos(π
d )

d , then for any α ∈
(
R∗
+

)d
, this equilibrium point is asymptotically

stable, and all the solutions of (3.1) either converge to this point or to a periodic
orbit.

(ii) If D > 1

cos(π
d )

d , then there exists Aunst ⊂
(
R∗
+

)d
a non-empty set such that

• If α ∈ Aunst, then this equilibrium point is asymptotically unstable, and
there exists a finite number of periodic solutions, among which at least one
is asymptotically stable. Moreover, the set of initial conditions for which
the solution converges to a periodic solution is a dense open subset of Rd+,
and its complement, which is the set of initial conditions for which the
solution converges to the equilibrium point, has Lebesgue measure zero.

• If α ∈ Aunst
C
, this equilibrium point is asymptotically stable, and all the

solutions of (3.1) either converge to this point or to a periodic orbit.

In each of these cases, the sets Abis, Aper, Aunst can be explicitly expressed, as we will
show in Sections 3.3 and 3.4. Moreover, note that any Hill function (even shifted), i.e.
function of the form x 7→ 1+λxr

1+xr , with λ ∈ R+\{1} and r ≥ 1, as well as linear functions,
satisfy the convexity hypothesis of this theorem, which means that this result encompasses
the other theoretical studies mentioned above [7, 122,143,146,147,161].

It is worth noting that, when n is even, the set of initial conditions for which the
solution converges to a periodic orbit has Lebesgue measure zero, and can therefore hardly
be reached numerically. Nevertheless, we highlight this result since, up to our knowledge,
the question of the existence of such periodic solution remained open, as mentioned in [147].
Moreover, the proof of this result, which uses the stable manifold theorem, seems to us non-
trivial and worthwhile. We also note that condition 1 (iii) is sufficient, but perhaps not
necessary for the existence of periodic solution: in particular, this question for d ∈ {3, 4}
remains open. Lastly, we do not know if periodic solutions do exist under the hypotheses
of 2 (i) and in the second point of 2 (ii), but our study does not rule out this possibility.

This article, entirely dedicated to the proof of Theorem 7, is organised as follows: after
characterising the equilibrium points of system (3.1) in Section 3.2, we prove the theorem
when n is even (Section 3.3), before dealing with the case where n is odd, which is simpler,
in the last section.

3.2 Characterisation of fixed points

Throughout this chapter, we assume that f1, ..., fd ∈ C3(R+,R∗
+) are non-negative,

monotonous and that at least one of these functions is bounded. Note that, according
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to the regularity of these functions, the Cauchy-Lipschitz theorem ensures the local exis-
tence and the uniqueness of the solution of this equation for any initial condition x0 ∈ Rd+.
Furthermore, the positivity of the functions guarantees that the solutions remain in Rd+.
Lastly, using the fact that one of them is bounded, we easily prove the global existence
of solutions and the existence of a compact attractor set,i.e. the existence of a compact
set K ⊂ Rd+ such that for any initial condition x0 ∈ Rd+, there exists T ≥ 0 such that
x(t) ∈ K for all t ≥ T .

We now make the additional assumption that f1, ..., fd are γ1/2−convex, and that at
least one of them is strictly γ1/2−convex, i.e. they satisfy the following definition:

Definition 3 (γ1/2−convexity). Let f ∈ C3 (R+,R+) a non-negative and monotonous
function. We say that f is (strictly) γ1/2− convex if |f ′| > 0 and 1√

|f ′|
is (strictly) convex.

Note that this definition can be related to the definition of the Schwartzian derivative

of f defined by S(f) = f ′′′

f ′ − 3
2

(
f ′′

f ′

)2
by noting that ( 1√

|f ′|
)′′ = −1

2
1√
|f ′|
S(f).

We relate here the equilibrium points of system (3.1) to the fixed points of an auxiliary
function f̃ . The γ1/2−convexity of the functions fi ensures that the number of equilib-
rium points cannot exceed three, and provides a criterion which characterises this exact
number of equilibria. A similar approach was used, (with the Schwartzian derivative) for
a particular case of this system in [122].

We start by recalling some key properties of the γ1/2−convexity, which have been
established in Chapter 2.

Proposition 13. Let f, g be two γ1/2−convex functions, c > 0.

(i) f ◦ g and cf are γ1/2−convex. Moreover, if f or g is strictly γ1/2−convex, then f ◦ g
is strictly γ1/2−convex.

Let us now assume that f is strictly γ1/2−convex. Then:

(ii) cf is strictly γ1/2−convex.

(iii) f has at most three fixed points.

(iv) If all the fixed points x of f satisfy f ′(x) < 1, then f has a unique fixed point.

(v) If there exists a fixed point of f (denoted x) such that f ′(x) > 1, then f has exactly
three fixed points and the other two fixed points (denoted y, z) satisfy f ′(y) < 1 and
f ′(z) < 1.

Example. For any r ≥ 1, a, b, c, d ≥ 0 such that ad − bc ̸= 0, the function x 7→ axr+b
cxr+d

is γ1/2−convex. Moreover, if r > 1, then it is strictly γ1/2−convex. In particular, affine
functions and Hill functions are γ1/2−convex.2

By definition, the point x̄ = (x̄1, ..., x̄d) ∈ Rd+ is an equilibrium point of (3.1) if and
only if


x̄1 = α1f1(x̄d)

x̄2 = α2f2(x̄1)
...

x̄d = αdfd(x̄d−1)

⇐⇒



x̄1 = α1f1(x̄d)

x̄2 = α2f2(x̄1)
...

x̄d−1 = αd−1fd−1(x̄d−2)

x̄d = αdfd ◦ αd−1fd−1 ◦ ... ◦ α1f1(x̄d)

.

2In the Appendix of Chapter 2, we show that many other usual sigmoid functions are strictly
γ1/2−convex.
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Thus, the number of equilibrium points of (3.1) is equal to the number of fixed points
of f̃ := αdfd ◦ ... ◦ α1f1. Since f̃(0) > 0 and f̃ is bounded, it proves in particular that
(3.1) has at least one equilibrium point. Note that, according to the first two properties
of Proposition 13, f̃ is strictly γ1/2− convex, and a direct computation shows that

f̃ ′(x̄d) =
d∏
i=1

αif
′
i(x̄i−1).

We can thus apply the fourth and the fifth properties of Proposition 13 to f̃ to derive
the following lemma:

Lemma 2. Let us denote, for all α, x ∈ Rd+, pαx =
d∏
i=1

αif
′
i(xi−1).

• If all the equilibrium points of system (3.1) satisfy pαx̄ < 1, then this system has a
unique equilibrium point.

• If there exists an equilibrium point of system (3.1) (denoted x̄) such that pαx̄ > 1, then
this system has exactly three equilibrium points, and the other two points (denoted
ȳ, z̄) satisfy pαȳ < 1, pαz̄ < 1.

Hence, the value of pαx̄ characterises the number of fixed points the system has. In the
following section, we show that it also determines the dimension of the basin of attraction
of x̄.

3.3 Even number of decreasing functions

In the case where n is even, one easily checks that system (3.1) is an irreducible type K
monotone system in the sense defined in [147]. As seen in the previous section, this system
has a finite number of equilibrium points (at most three), and a compact attractor set:
thus, we can apply Theorem 2.5 and Theorem 2.6 of [147] which prove that the union of
the basins of attraction of the equilibrium points is dense, and that the complement of
this set has Lebesgue measure zero.

In this section, we complete this result in two ways:

• We determine, for given functions f1, ..., fd, a set of parameters Abis such that system
(3.1) is bistable (i.e. has exactly two asymptotically stable equilibrium points) if
α ∈ Abis, and monostable (i.e. has exactly one asymptotically stable equilibrium

point) if α ∈ Abis
C
.

• We determine a set Aper ⊂ Abis such that system (3.1) has some periodic solutions
if α ∈ Aper.

Note that this last point does not mean that periodic solutions do not exist when α /∈ Aper,
and that, in all cases, the set of initial conditions for which the solution converges to a
periodic solution has Lebesgue measure zero (as a corollary of [147]).

In order to prove these two points, we determine the dimension of the basin of attraction
of an equilibrium point x̄, as a function of pαx̄ . For any equilibrium point x̄, we denote its
basin of attraction Bx̄. Our reasoning is based on the stable manifold theorem (the proof
of which can be found for instance in [130]), that we recall:

Theorem (Stable manifold). Let F ∈ C1(Rd,Rd) a vector field, and let x̄ ∈ Rd such that
F (x̄) = 0Rd. If x̄ is a hyperbolic equilibrium point, i.e. if all the eigenvalues of JacF (x̄)
have a non-zero real part, then the basin of attraction of x̄ is a manifold of dimension m,
where m is the number of eigenvalues of JacF (x̄) with a negative real part.



3.3. Even number of decreasing functions 59

In order to apply this theorem, we need to compute the eigenvalues of the Jacobian
matrix associated to system (3.1) which writes, at a given point x ∈ Rd

Mα
x =


−1 0 · · · 0 α1f

′
1(xd)

α2f
′
2(x1) −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 αdf

′
d(xd−1) −1

 .

Thus, the characteristic polynomial of Mα
x is easily computed to be

(−1)d

(
(λ+ 1)d −

d∏
i=1

αif
′
i(xi−1)

)
= (−1)d

(
(λ+ 1)d − pαx

)
Since n is even, pαx > 0 and hence the spectrum of Mα

x is given by

Sp (Mα
x ) =

{
(pαx)

1/de2kπi/d − 1, k ∈ {0, ..., d− 1}
}
.

We deduce that

(i) If pαx < 1, then all the eigenvalues of Mα
x have a negative real part.

(ii) If d ∈ {3, 4} and pαx > 1, or if d ≥ 5 and pαx ∈
(
1, 1

cos( 2π
d )

d

)
, then Mα

x has exactly

d− 1 eigenvalues with a negative real part, and one with a positive real part.

(iii) If d ≥ 5, and if pαx >
1

cos( 2π
d )

d , then M
α
x has at most d−3 eigenvalues with a negative

real part. Moreover, if d ≤ 8, or d ∈ J4j + 1, 4j + 4K (j ∈ N\{0, 1}), and for any
k ∈ {2, ..., j}, pαx ̸= 1

cos( 2πk
d )

d , then all eigenvalues of Mα
x have a non-zero real part

(where for all a, b ∈ R, a < b, Ja, bK = [a, b] ∩ N.)

Thus, the stable manifold theorem yields

Lemma 3. Let us assume that n is even, and let x̄ ∈ Rd be an equilibrium point of (3.1).

(i) If pαx̄ < 1, then dim (Bx̄) = d, i.e. Bx̄ is an open set.

(ii) If d ∈ {3, 4} and pαx̄ > 1, or if d ≥ 5 and pαx̄ ∈
(
1, 1

cos( 2π
d )

d

)
, then dim (Bx̄) = d− 1.

(iii) If d ≥ 5, pαx̄ >
1

cos( 2π
d )

d , and p
α
x̄ /∈ Sd, with

Sd :=

 ∅ if d ∈ {5, 6, 7, 8}{
1

cos( 2πk
d )

d , k ∈ {2, ...j}
}

if d ∈ J4j + 1, 4j + 4K, j ≥ 2
,

then dim (Bx̄) ≤ d− 3.

Moreover, we easily check that, in all cases, Mα
x̄ has an odd number of eigenvalues

with a positive real part. Thus, since n is even, we get from the main theorem of [113]
that any solution converges to an equilibrium point or to a periodic orbit.
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We will now use Lemmas 3 and 4 to prove Theorem 7 in a more precise form which
specifies the sets Abis and Aper, in the case where n is even. Before stating it, we give
a last lemma linking the dimension of the basin of attraction of the unstable equilibrium
point to the existence of divergent solutions (which thus converge to periodic solutions),
in the bistable case.

Lemma 4. Let ‘ẋ = F (x)’ be an ODE which has exactly three equilibrium points, (denoted
x̄, ȳ, z̄) assumed hyperbolic, and let us assume that for all initial condition x0 ∈ Rd, the
solution of this ODE is defined on R+ and converges. If ȳ, z̄ are asymptotically stable,
then dim (Bx̄) = d− 1.

Proof. First, let us note that, according to the stable manifold theorem, Bȳ and Bz̄ are
two open sets, and that Bx̄ is a manifold. Since, by hypothesis, all the solutions converge,
Rd+ = Bx̄∪Bȳ ∪Bz̄, which means that Bx̄ separates Rd+ in two open sets. As shown in [85]
(Corollary 1 of Theorem IV 4), and by the connectedness of Rd+, this is possible only if
dim (Bx̄) = d− 1.

Before stating our theorem, let us introduce the functions Γ and G, defined for any

x ∈ Rd+ by Γ(x) =
(

x1
f1(xd)

, x2
f2(x1)

, ..., xd
fd(xd−1)

)
and G(x) =

d∏
i=1

xif
′(xi)

f(xi)
, and the sets Ebis ={

x ∈ Rd+ : G(x) > 1
}
and if d ≥ 5, Eper =

{
x ∈ Rd+ : G(x) > 1

cos( 2π
d )

d , G(x) /∈ Sd

}
. Note

that Eper ⊂ Ebis.

Theorem 8. Let us assume that n is even.

(i) If α ∈ Γ(Ebis)
C
, then (3.1) has a unique equilibrium point which is globally asymp-

totically stable.

(ii) If α ∈ Γ(Ebis), then (3.1) has exactly three equilibrium points, among which two are
asymptotically stable and one is asymptotically unstable. Moreover, the union of the
basins of attraction of the two stable equilibria is a dense open subset of Rd+.

(iii) If d ≥ 5, and if α ∈ Γ(Eper), then there exist periodic solutions of (3.1).

Proof. First, let us note that, according to the definitions of Γ and G, x̄ ∈ Rd+ is a fixed
point of system (3.1) if and only if α = Γ(x̄), and that for any equilibrium point x̄ of (3.1),

pαx̄ = p
Γ(x̄)
x̄ = G(x̄).

(i) Let us assume that α ∈ Γ(Ebis)
C
, and let x̄ be a fixed point of (3.1). Since Γ(Ebis) ⊂

Γ(Ebis), and α = Γ(x̄), x̄ ∈ Γ(Ebis)
C
, which means, by definition of Ebis, that

pαx̄ = G(x̄) < 1. Since this equality holds for any equilibrium point, we conclude by
Lemma 2, that system (3.1) has a unique equilibrium point, which is asymptotically
stable, by Lemma 3. Since (3.1) is an irreducible type K monotone system, this
unique equilibrium is in fact globally asymptotically stable [147].

(ii) Let us assume that α ∈ Γ(Ebis). Then, there exists x̄ ∈ Ebis such that α = Γ(x̄).
The point x̄ is thus an equilibrium point of (3.1) which satisfies pαx̄ = G(x̄) > 1.
Therefore, Lemmas 2, 3 and the result of [147] mentioned at the beginning of the
section yield the result.

(iii) Let us assume that α ∈ Γ(Eper). Since Eper ⊂ Ebis, (3.1) has exactly three equilib-
rium points, denoted x̄, ȳ and z̄, with x̄ ∈ Eper, and ȳ and z̄ which are asymptotically
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stable. By definition of Eper, dim (Bx̄) ≤ d− 3. By the contrapositive of Lemma 4,
system (3.1) has some divergent solutions, which thus converge to a periodic orbit,
according to [113].

Remark. As mentioned above, this theorem is a more precise version of Theorem 7: we
find the statement of the latter by defining Abis = Γ (Ebis) and Aper = Γ (Eper), and by
noting that Ebis (resp. Eper) is empty if and only if D ≤ 1 (resp. D ≤ 1

cos( 2π
d )

d ).

3.4 Odd number of decreasing functions

We now deal with the case where n is odd. This case is simpler, since the system has a
unique equilibrium point under this hypothesis. Nevertheless, we make weaker conclusions
regarding the global behaviour of the system, since it is not an irreducible type K monotone
system (see [147]). Thus, we simply study the linearised system at the neighbourhood of
the equilibrium point, and we conclude with [113], which guarantees that the solutions
either converge to this equilibrium point, or to a periodic orbit.

Let us denote Eunst :=

{
x ∈ Rd : G(x) < − 1

cos(π
d )

d

}
.

We get the following result:

Theorem 9. Let us assume that n is odd, and that d ≥ 3. Then, system (3.1) has a
unique equilibrium point. Moreover,

(i) If α ∈ Γ (Eunst)
C
, then this equilibrium point is asymptotically stable. Moreover, all

the solutions of (3.1) either converge to this point or to a periodic orbit.

(ii) If α ∈ Γ(Eunst), then this equilibrium point is asymptotically unstable, Moreover, the
set of initial conditions for which the solution converges to a periodic solution is a
dense open subset of (R∗

+)
d, and its complement, which is the set of initial conditions

for which the solution converges to the equilibrium point, has Lebesgue measure zero.

Proof. We use the same notations as in the previous section. Since n is odd, f̃ is de-
creasing with f̃(0) > 0, it has a unique fixed point, which implies that system (3.1) has a
unique equilibrium point, that we denote x̄. This point is asymptotically stable if all the
eigenvalues of Mα

x̄ have a negative real part, and asymptotically unstable if at least one
of these eigenvalues has a positive real part. Since n is odd,

Sp (Mα
x̄ ) =

{
(|pαx |)1/de(2k+1)πi/d − 1, k ∈ {0, ..., d− 1}

}
,

which implies that x̄ is stable if |pαx̄ | < 1

cos(π
d )

d , and unstable if |pαx̄ | > 1

cos(π
d )

d . We conclude

by noting that |pαx̄ | = −pαx̄ = −pΓ(x̄)x̄ = −G(x̄), and by applying the main theorem of [113]
for the first point, and Theorem 4.3 of this same article for the second one.

We recover the result of Theorem 7 by defining Aunst = Γ(Eunst).





Chapter 4

Long-time behaviour of an
advection-selection equation

We study the long-time behaviour of the advection-selection equation

∂tn(t, x) +∇ · (f(x)n(t, x)) = (r(x)− ρ(t))n(t, x), ρ(t) =

∫
Rd

n(t, x)dx t ≥ 0, x ∈ Rd,

with an initial condition n(0, ·) = n0. In the field of adaptive dynamics, this equation
typically describes the evolution of a phenotype-structured population over time. In this
case, x 7→ n(t, x) represents the density of the population characterised by a phenotypic
trait x, the advection term ‘∇ · (f(x)n(t, x))’ a cell differentiation phenomenon driving
the individuals toward specific regions, and the selection term ‘(r(x)− ρ(t))n(t, x)’ the
growth of the population, which is of logistic type through the total population size ρ(t) =∫
Rd n(t, x)dx.

In the one-dimensional case x ∈ R, we prove that the solution to this equation can
either converge to a weighted Dirac mass or to a function in L1. Depending on the pa-
rameters n0, f and r, we determine which of these two regimes of convergence occurs, and
we specify the weight and the point where the Dirac mass is supported, or the expression
of the L1-function which is reached.

This Chapter has been written with the collaboration of Nastassia Pouradier Duteil
and Camille Pouchol, and has been submitted for publication.
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4.1 Introduction

4.1.1 Advection-selection equation

We consider the asymptotic behaviour of the advection-selection equation
∂tn(t, x) +∇ · (f(x)n(t, x)) = (r(x)− ρ(t))n(t, x), t ≥ 0, x ∈ Rd

ρ(t) =
∫
Rd n(t, x)dx, t ≥ 0

n(0, x) = n0(x), x ∈ Rd.
(4.1)

This type of model typically comes up in the field of adaptive dynamics. The aim is to
understand how, among heterogeneous populations of individuals structured by a so-called
continuous trait or phenotype x, the distribution of the density x 7→ n(t, x) evolves over
time, and which phenotypes prevail in large times t→ +∞.

In the model above (4.1), the partial differential equation (PDE) takes into account

• advection via the term ∇ · (f(x)n(t, x)), whereby individuals follow the flow associ-
ated with f ,

• growth via the term (r(x) − ρ(t))n(t, x), which is of logistic type through the total
population size ρ(t) =

∫
Rd n(t, x) dx.

The literature concerning so-called phenotype-structured partial differential equations
for adaptive dynamics is abundant [1, 10, 14, 20, 21, 30, 42, 50, 105, 107, 131, 132]. These
models usually take into account selection, which favors individuals with the most adapted
traits in terms of growth, and mutations, which induce a slight phenotypic change upon
reproduction. Mutation is often assumed to be rare and small compared to selection,
[49,62,117]. Models with no mutation at all have also been the subject of several studies [2,
48,69,86,106,134].

One way to analyse how the population adapts is to study the long-time behaviour
for solutions of such PDE models. In particular, determining if the population becomes
monomorphic (i.e. the solution concentrates around a certain trait, called Evolutionary
Stable Strategy (ESS) [76]), or if phenotypic diversity is preserved is a fundamental question
when studying such models. Broadly speaking, it has been shown that selection leads
to concentration (around a finite number of phenotypic traits), while mutations, on the
contrary, tend to regularise solutions, and, possibly, their limits [13,69].

However, less emphasis has been put on studying the effect of advection, except for
the recent few examples [30,31,104] where most results are of numerical nature, or assume
a very specific form of the functions r and f .

Yet, considering advection is relevant in various contexts. From the phenomenological
point of view, it may represent how the environment drives the individuals towards specific
regions, as opposed to more random mutations. It is also the rigorous way to model
phenotype changes that are intrinsic to the individual, mediated by an ordinary differential
equation (ODE) of the form

ẋ(t) = f(x(t)), (4.2)

where x(t) ∈ Rd denotes the phenotypic trait of the individual at time t ≥ 0. As is well
known, the PDE for the density of individuals corresponding to the sole model (4.2) is
indeed the advection equation ∂tn(t, x) + ∇ · (f(x)n(t, x)) = 0. Our original motivation
is that of cell differentiation, for which very refined ODE models have been developed in
systems biology (see for instance [67,150,157,165]).
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The goal of the present article is to investigate the combined effect of selection and
advection, assuming that mutations are absent or sufficiently small to be neglected. We
hence study the long-time behaviour of the PDE (4.1), where n0 is the initial population
distribution, and ρ(t) is the size of the population at time t ≥ 0. The equation incorporates
advection with the flow f of the corresponding ODE, and selection (or growth) through the
non-linear and non-local term (r(x)−ρ(t))n(t, x). Here, r(x)−ρ(t) can be interpreted as the
fitness of individuals with trait x inside the environment created by the total population,
where the individuals are in a blind competition with all the other ones, regardless of their
phenotype. We note that such models can rigorously be derived from stochastic individual
based-models, in the limit of large populations [23,24].

In the absence of differentiation (f ≡ 0), the long-time behaviour of this model has been
studied in detail by Benôıt Perthame [131], Tommaso Lorenzi and Camille Pouchol [106],
and it has been proved that, in general, solutions typically concentrate onto a single trait.
This result is rather intuitive, since this model does not take mutations into account.
Solutions of the advection equation alone are also known to converge to weighted Dirac
masses located at the roots of f which are asymptotically stable for the ODE (4.2) [51]. On
the contrary, when considering both selection and advection as in equation (4.1), the long-
time behaviour is not known, to the best of our knowledge. Intuitively, two antagonistic
effects will compete:

• advection will push the solution towards the asymptotically stable equilibria of ODE
(4.1).

• growth will push the solution towards regions where r is maximised.

When coupling these two phenomena, our aim is to uncover whether the solution of (4.1)
converges to a weighted Dirac mass, or if it converges to a smooth function. We show
that both phenomena can occur, depending on the parameters n0, f and r. Perhaps
surprisingly, the model (4.1) features convergence to smooth functions even in the absence
of terms modelling mutations.

Determining which parameters lead to convergence to a continuous function seems
rather intricate in full generality. In particular, this problem cannot be addressed with
traditional entropy methods as developed in [118], since in the absence of mutations, there
is no decrease of entropy.

4.1.2 Main results

In this chapter, we thus develop a different strategy allowing to reduce this problem to the
study of parameter-dependent integrals, which is mainly applied to the one-dimensional
case (x ∈ R). In this case, we elucidate the asymptotic behaviour for a large class of
parameter values, and we show that there exist many different subcases depending on
the number of zeros of the function f . A general statement encompassing all our results
is hence rather convoluted. In order to illustrate our main results, we here focus on a
few example cases which highlight the main two parameter regimes encountered for the
asymptotic behaviour of (4.1).

Proposition 14. Let us assume that the parameter functions f , n0 and r are smooth
enough, that f has a unique root (that we denote xs), and that f ′(xs) < 0 (which means that
xs is asymptotically stable for ODE (4.2)). Then, ρ converges to r(xs), and n converges
to a weighted Dirac mass at xs, when t goes to +∞.

Hence, in the presence of a single asymptotically stable equilibrium point for ODE (4.2),
the solution of PDE (4.1) converges to a Dirac mass at this point. In other words, the
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selection term is dominated by the advection term, which determines the point in which
the solution concentrates. As soon as f has at least two roots, the situation is much
more complex and solutions may converge to L1 functions, as illustrated in Figure 4.1 and
exposed in the following proposition:

Proposition 15. Let us assume that the functions f , n0 and r are smooth enough, that
f has exactly two roots (that we denote xu and xs, with xu < xs), such that f ′(xu) > 0
and f ′(xs) < 0, which means that the points xu and xs are respectively asymptotically
unstable and asymptotically stable for the ODE (4.2). Moreover, let us assume that n0

has its support in [xu, xs], and that n0(xu) > 0. Then, the following alternative holds:

• If r(xs) > r(xu)−f ′(xu), n converges to a weighted Dirac mass at xs, and ρ converges
to r(xs).

• If r(xs) < r(xu) − f ′(xu), n converges to a function in L1(xu, xs), and ρ converges
to r(xu)− f ′(xu).

This proposition can be interpreted as follows: since f is positive on (xu, xs), the
advection term drives the solution towards xs. On the other hand, since xu is an equilib-
rium, albeit unstable, it acts as a counterweight by controlling the speed of the transition
towards xs in the neighbourhood of xu. Hence, in the case where r(xu) − f ′(xu) is large
enough (r(xu)−f ′(xu) > r(xs)), the growth rate around xu is large enough to compensate
for the advection term, leading to the convergence of n to a continuous function. In the
other case, the advection term is dominant, and n converges to a weighted Dirac mass at
xs. If n0(xu) = 0, the toggle value between the two regimes (i.e. the convergence to a
smooth function or to a Dirac mass) changes, depending on how n0 vanishes at xu, and
other limit functions can be reached: the complete result is detailed in Proposition 22.
The method of analysis proposed in this article allows in fact to solve this problem for any
function f with a finite number of roots, as detailed in Proposition 23. The case where f
is equal to zero on a whole interval can also be studied with our method, as highlighted
by Proposition 24.

4.1.3 Discussion

Open problems. Some limit cases of the problem remain unclear: we do not deal with
the case of non-hyperbolic equilibria, i.e. x̄ ∈ R which satisfy f(x̄) = f ′(x̄) = 0, and we
are not able to determine what happens in the case where several carrying capacities, as
defined in Section 4.3, converge to the same maximum limit. This last case might lead to
other asymptotic behaviours, such as convergence to a sum of weighted Dirac masses, or
a sum of weighted Dirac masses and L1-functions. Lastly, we did not manage to elucidate
the equality cases (of the form r(xs) = r(xu)− f ′(xu)).

Furthermore, even if the framework introduced in Section 4.3 could theoretically be
applied in any dimension, computing the limits of the carrying capacities seems out of
reach in the multidimensional case. As shown by the semi-explicit expression introduced
in Subsection 4.3.1, the behaviour of n is closely linked to that of the solutions of ODE
ẋ = f(x), which suggests that other asymptotic behaviours, such as convergence to a limit
cycle, or chaotic behaviours (if the dimension is greater than or equal to 3) might occur.

These behaviours may be excluded by making specific assumptions regarding the func-
tion f , for example by requiring in the 2D case that ODE ẋ = f(x) be competitive or
cooperative. Additionally if the roots of f are hyperbolic and none of them is a repellor,
then n cannot converge to a L1-function (Proposition 26). Nevertheless, the question of
the asymptotic limit of n in this case remains open, and might be, in the presence of
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Figure 4.1: The two possible regimes of convergence stated in Proposition 15. In both
cases, we have chosen f(x) = x(1− x), n0 ≡ 6, and we work on the segment (0, 1) (hence
xu = 0, xs = 1). The three figures above (in red) show the time evolution of the solution
in the case where r(x) = 6− 0.5x (and thus 5.5 = r(1) > r(0)− f ′(0) = 5), which implies,
according to Proposition 15, that the solution converges to a weighted Dirac mass at 1.
The three figures below (in blue) show the time evolution of the solution in the case where
r(x) = 6 − 4x, (and thus 2 = r(1) < r(0) − f ′(0) = 5), which implies that the solution
converges to a continuous function in L1. The black dashed curve represents this limit
function, which can explicitly be computed (see Proposition 22).

a saddle point, a singular measure which is not a sum of weighted Dirac masses. This
situation is commonplace for some applications, since toggle switches used to model cell
differentiation phenomena are usually competitive or cooperative ODE models.

Perspectives. A natural generalisation for the model would be to model mutations,
either by means of a Laplacian term or an integral term. Because of their smoothing
effect, convergence to Dirac masses will typically be lost. The method developed in this
chapter does not seem to handle such cases well. However, it is an interesting perspective
to tackle the asymptotic behaviour with entropy methods when mutations are added [118].

From the numerical point of view, we have proved that the solution of this equation
could be approximated with a particle method, with which we obtained the plots of Figure
4.1. The details of the scheme, and the proof of its convergence are detailed in Chapter 5.

Outline of the chapter. This chapter is organised as follows: Section 4.2 introduces
the measure-theoretic framework in which convergence is considered, and includes several
important reminders regarding ODE theory which will be used throughout the article.
Section 4.3 details the method used to determine the asymptotic behaviour of (4.1), and
Section 4.4 corresponds to a direct application of this method to several examples in the
one-dimensional case. Lastly, section 4.5 presents two results in higher dimension which
allow to determine, in some specific cases, if some initial solution can lead to a convergence
to a smooth function or not.
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4.2 Framework and reminders

We consider the asymptotic behaviour of the integro-differential PDE
∂tn(t, x) +∇ · (f(x)n(t, x)) = (r(x)− ρ(t))n(t, x), t ≥ 0, x ∈ Rd

ρ(t) =
∫
Rd n(t, x)dx, t ≥ 0

n(0, x) = n0(x), x ∈ Rd.
(4.1)

All along this chapter, we make the following regularity hypotheses

• f is Lipschitz-continuous, and is in C2(Rd).

• r is positive, is in L1(Rd) ∩ C1(Rd), and goes to zero when ∥x∥ goes to +∞. Let us
note that these hypotheses imply that r is bounded.

• n0 is in C1
c (Rd) (the space of C1 functions with a compact support), is non-negative

and is not the zero function.

Whenever possible, we will indicate whether these hypotheses can be weakened for a given
specific result. If not specified, it will be assumed that these three hypotheses hold.

From the modelling point of view, they can be justified as follows: n0 denoting the
initial density, it is reasonable to consider that a bounded range of phenotypic traits is
initially represented; the hypothesis on r at +∞ is made in order to prevent an unlikely
proliferation of individuals with more and more extreme (∥x∥ → +∞) phenotypic traits.

Under the above hypotheses, we can prove that there exists a unique solution n ∈
C
(
R+, L

1(R)
)
for this Cauchy problem by coupling the well-known method of characteris-

tics for the advection equation [51] with the method applied in [131] for the case f ≡ 0. We
do not elaborate further here on the issue of existence and uniqueness, that is addressed
in a more general framework in Chapter 5.

Since we are concerned with the long-time behaviour of the PDE (4.1) and we expect
to obtain convergence either to Dirac masses or to regular functions, the space of Radon
measures is a natural setting. We start with a few usual reminders.

4.2.1 The space of Radon measures

We recall that the space of finite Radon measures can be identified with the topological
dual space of Cc(Rd), i.e. the space of continuous functions on Rd with a compact support.
Thus, we say that a sequence of finite Radon measures (µk)k∈N weakly converges to a
finite Radon measure µ (denoted uk ⇀ µ) if

∀φ ∈ Cc(Rd),
∫
Rd

φ(x)dµk(x) −→
k→+∞

∫
Rd

φ(x)dµ(x).

In this chapter, we will be confronted mainly with convergence to Dirac masses or to
L1 functions. It is clear that the convergence in L1 to a certain function implies the weak
convergence to this function. The following standard lemma provides a sufficient condition
to prove the weak convergence to a single Dirac mass. For completeness, we provide a
proof.

Lemma 5. Let u : R+ × Rd → R be a non-negative mapping such that u(t, ·) ∈ L1(Rd)
for all t ≥ 0, and u(t, ·) is compactly supported, uniformly in t ≥ 0. We assume
that there exists x̄ ∈ Rd, such that for all compact set Kx̄ which does not contain x̄,∫
Kx̄
u(t, x)dx −→

t→+∞
0, and that there exists Vx̄ a compact neighbourhood of x̄ and C ∈ R

such that
∫
Vx̄
u(t, x)dx −→

t→+∞
C. Then, u(t, ·) ⇀

t→+∞
Cδx̄.
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Proof. Let φ ∈ Cc(Rd), and let K be a compact set such that, for all t ≥ 0, supp(u(t, ·))∪
Vx̄ ⊂ K. Then,∣∣∣∣ ∫

Rd

φ(x)u(t, x)dx− Cφ(x̄)

∣∣∣∣ = ∣∣∣∣ ∫
K
φ(x)u(t, x)dx−

∫
K
φ(x̄)u(t, x)dx

+

∫
K
φ(x̄)u(t, x)dx− Cφ(x̄)

∣∣∣∣
≤
∫
K
|φ(x)− φ(x̄)|u(t, x)dx+ |φ(x̄)|

∣∣∣∣ ∫
K
u(t, x)dx− C

∣∣∣∣.
The second term tends to 0 since K contains Vx̄. It remains to prove that
t 7→

∫
Rd |φ(x)− φ(x̄)|u(t, x)dx converges to zero. Let ε > 0 be given. Since φ is con-

tinuous, there exists Bx̄ a neighbourhood of x̄, which can be chosen as a subset of Vx̄, such
that |φ(x)− φ(x̄)| ≤ ε, for all x ∈ Bx̄. Thus, for all t ≥ 0,∫

K
|φ(x)− φ(x̄)|u(t, x)dx =

∫
K\Bx̄

|φ(x)− φ(x̄)|u(t, x)dx+

∫
Bx̄

|φ(x)− φ(x̄)|u(t, x)dx

≤ 2∥φ∥∞
∫
K\Bx̄

u(t, x)dx+ ε

∫
Bx̄

u(t, x)dx.

This concludes the proof, since t 7→
∫
K\Vx̄ u(t, x)dx converges to zero and for any t large

enough,
∫
Bx̄
u(t, x)dx ≤

∫
Vx̄
u(t, x)dx ≤ C + ε.

4.2.2 General statement regarding the characteristics curves

We are led to consider the characteristics curves associated with the advection term.
In this section, we introduce some notations and state some classical results from ODE
theory, that will prove to be useful later on.

Since f is assumed to be Lipschitz-continuous, the global Cauchy-Lipschitz theorem
ensures the global existence on R+ and the uniqueness of the characteristic curves related
to f defined for all y ∈ Rd as the solution to the ODE{

Ẋ(t, y) = f(X(t, y)) t ≥ 0

X(0, y) = y
. (4.3)

It is well-known that for all t ≥ 0, y 7→ X(t, y) is a C1-diffeomorphism between Rd and
itself [51], and that the inverse function of X(t, ·), that we denote x 7→ Y (t, x), is the
unique solution of {

Ẏ (t, x) = −f(Y (t, x)) t ≥ 0

Y (0, x) = x
. (4.4)

Moreover, Liouville’s formula states that for all t ≥ 0 and y ∈ Rd,

det (JacyX(t, y)) = e
∫ t
0 ∇·f(X(s,y))ds. (4.5)

It follows from the uniqueness of solutions to (4.3) that for all 0 ≤ s ≤ t,

X(s, Y (t, x)) = Y (t− s, x). (4.6)

Specific results in R. Let us note that the behaviour of the characteristic curves is
particularly simple in R. Indeed, an elementary ODE analysis shows that for all x, y ∈ R,
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t 7→ X(t, y) and t 7→ Y (t, x) are monotonic functions. This implies that these characteristic
curves either converge to a root of f , or go to ±∞ as t→ +∞. More precisely, if f has a
finite number of roots, then for all y ∈ R such that f(y) > 0, t 7→ X(t, y) converges to the
closest root of f which is greater than y, or to +∞ if y is greater than the greatest root
of f . Similarly, for all y ∈ R such that f(y) < 0, t 7→ X(t, y) converges to the closest root
of f which is lesser y, and to −∞ if y is lesser the smallest root of f .

Moreover, if each of these roots are hyperbolic equilibrium points for the ODE ẋ =
f(x), i.e. if f ′(x̄) ̸= 0 for all x̄ root of f , then a given root of f is either asymptotically
unstable (i.e. f ′(x̄) > 0), which implies that its basin of attraction is limited to itself,
or asymptotically stable (i.e. f ′(x̄) < 0), which implies that its basin of attraction in an
open interval containing x.

Lastly, let us recall that under these hypotheses, the convergence to an asymptotically
stable point happens with an exponential speed, which means that for all y ∈ R, x̄ root
of f ,

X(t, y) −→
t→+∞

x̄ ⇒ ∃δy > 0 : X(t, y)− x̄ = O
t→+∞

(e−δy t)

Since the reverse characteristic curves satisfy (4.4), the same results hold for Y (t, x),
provided that we replace f by −f . In brief, the asymptotically stable equilibria become
unstable for the reverse ODE, and vice versa, and if t 7→ X(t, y) is increasing (respectively
decreasing), then t 7→ Y (t, x) is decreasing (respectively increasing).

4.3 Resolution method

The method of resolution to determine the asymptotic behaviour of n that we propose
here is based on the following two propositions, which are developed in the following two
subsections, respectively:

1. For all t ≥ 0, x ∈ Rd, we can express n(t, x) as a function which only depends on
t, x, on the functions n0, f and r, on the inverse characteristic curves Y (t, x), and
on the population size ρ. Therefore, knowing the limit of Y (t, x) and ρ(t) as t goes
to +∞ is enough to understand the long-time behaviour of n.

2. The population size ρ is the solution of a non-autonomous ODE, and its long-time
behaviour may be inferred from the limit of some parameter-dependent integrals.

Combining these two propositions allows us to reduce the study of the asymptotic
behaviour of n to that of parameter-dependent integrals.

4.3.1 Semi-explicit expression of the solution

According to the definition of the characteristic curves (4.3), for all t ≥ 0 and all y ∈ Rd,

d

dt
n(t,X(t, y)) =

(
r(X(t, y))−∇ · f(X(t, y))− ρ(t)

)
n(t,X(t, y)),

i.e.

n(t,X(t, y)) = e
∫ t
0 (r(X(s,y))−∇·f(X(s,y))−ρ(s))dsn0(y).

Replacing y by Y (t, x) in this last expression, we get a semi-explicit expression for n,
which is expressed as a function of t, x and ρ:

n(t, x) = n0(Y (t, x))e
∫ t
0 ((r−∇·f)(X(s,Y (t,x)))−ρ(s))ds

= n0(Y (t, x))e
∫ t
0 ((r−∇·f)(Y (s,x))−ρ(s))ds,

(4.7)
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The second equality holds according to equality (4.6) and the change of variable s′ = t−s.
Beyond the non-negativity of n, this semi-explicit expression shows that determining

the asymptotic behaviour of ρ and Y is enough to uncover that of n. In the following
section, we show that ρ is the solution of a non-autonomous ODE, and that its asymptotic
behaviour is related to that of parameter-dependent integrals.

This expression also provides exhaustive information about the support of of n(t, ·):
indeed, it ensures that for all t ≥ 0,

supp (n(t, ·)) = supp
(
n0 ◦ Y (t, ·)

)
= X

(
t, supp

(
n0
))
. (4.8)

Since n0 is assumed to have a compact support, then so does n(t, ·) for any t ≥ 0.
We recall that a set E ⊂ Rd is said to be positively invariant for the ODE ẋ = f(u)

if for all t ≥ 0, X(t, E) ⊂ E .
With this definition in mind, it becomes clear, according to (4.8), that if supp

(
n0
)
is

positively invariant for the ODE ẋ = f(x), then supp (n(t, ·)) ⊂ supp
(
n0
)
, for all t ≥ 0,

and, more generally, that if there exists E ⊂ Rd a set which is positively invariant for this
ODE such that supp

(
n0
)
⊂ E , then supp (n(t, ·)) ⊂ E , for all t ≥ 0. Hence, even if PDE

(4.1) is defined for all x ∈ Rd, if the support of n0 is included in a compact subset of
Rd which is positively invariant, then everything happens as if we were working in this
compact set. In particular, the functions f and r do not need to be defined outside this
set.

4.3.2 ODE satisfied by the population size

Let us start with a basic lemma which ensures that the population size ρ does not blow
up as t tends to +∞.

Lemma 6 Bounds on ρ. Let ρ be defined as in (4.1). Then for all t ≥ 0, ρ(t) ≤
max (∥r∥∞, ρ(0)).

Proof. According to (4.8), since, n0 is assumed to have a compact support, n(t, ·) has a
compact support for all t ≥ 0. Hence, when integrating the fist line of (4.1), the advection
term vanishes, and we get

ρ̇(t) =

∫
Rd

(
r(x)− n(t, x)

)
n(t, x)dx ≤ (∥r∥∞ − ρ(t)) ρ(t).

In other words, ρ is a sub-solution of the logistic ODE u̇ = (∥r∥∞ − u)u, which proves
the result.

In the remainder of this section, we show that ρ is in fact the solution to a non-
autonomous logistic equation, which can be written in different forms. In order to lighten
the future expressions, we now denote

r̃ := r −∇ · f.

Let E ⊂ Rd be any measurable subset of Rd, and let us denote

ρE(t) :=

∫
ε
n(t, x)dx,

which is well-defined and bounded, according to Lemma 4.3.2. By integrating the semi-
explicit expression (4.7) of n over E , we obtain the equality

ρE(t) = SE(t)e
−

∫ t
0 ρ(s)ds, (4.9)
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where

SE(t) :=

∫
E
n0(Y (t, x))e

∫ t
0 r̃(Y (s,x))dsdx

is a function which only depends on the parameters f, r and n0. This function is well-
defined, and differentiable, thanks to our regularity assumptions, and since for all t ≥ 0
n0(Y (t, ·)) has compact support. Thus, under the hypothesis that for all t ≥ 0, SE(t) > 0,
we obtain

ln (ρE(t)) = ln (SE(t))−
∫ t

0
ρ(s)ds,

and finally, by differentiating and multiplying by ρE on both sides,

ρ̇E(t) =

(
ṠE(t)

SE(t)
− ρ(t)

)
ρE(t). (4.10)

At this stage, one might be tempted to choose E = Rd to obtain, denoting S := SRd(t),

ρ̇(t) =

(
Ṡ(t)

S(t)
− ρ(t)

)
ρ(t). (4.11)

This proves that ρ is the solution to a non-autonomous logistic equation, and the study of

such equations [70] proves that if the time-dependant carrying capacity t 7→ Ṡ(t)
S(t) converges,

then ρ converges to the same limit. Unfortunately, computing the limit of t 7→ Ṡ(t)
S(t) is

intricate (except in very specific cases). This brings us to introducing a more general
framework, which involves simpler functions whose limit can be computed (at least in the
case x ∈ R). The idea is to partition the space Rd into several well-chosen subsets, and
to consider the size of the population on each of these sets. As seen above, to obtain
equations of the type (4.10), we must be cautious when choosing these subsets in order for
the corresponding functions SE to be positive. All this leads us the following proposition:

Proposition 16. Let U ⊂ Rd be a set such that

X(R+ × supp(n0)) ⊂ U (4.12)

and let (Oi)i∈{1,...,N} be a finite family of open subsets of U such that

(i) ∀i ̸= j, Oi ∩ Oj = ∅.

(ii) ν

(
U\

N⋃
i=1

Oi

)
= 0, where ν denotes the Lebesgue measure.

(iii) ∀i ∈ {1, ...N}, ∀t ≥ 0, X
(
t, supp

(
n0
) )

∩ Oi ̸= ∅.

Then, by denoting for all i ∈ {1, ..., N}

ρi(t) :=

∫
Oi

n(t, x)dx, (4.13)

Si(t) :=

∫
Oi

n0(Y (t, x))e
∫ t
0 r̃(Y (s,x))dsdx, (4.14)

Ri(t) :=
Ṡi(t)

Si(t)
, (4.15)
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the following equation holds:
ρ̇i(t) = (Ri(t)− ρ(t)) ρi(t) ∀t ≥ 0, ∀i ∈ {1, ..., N}

ρ(t) =
N∑
i=0

ρi(t) ∀t ≥ 0

ρi(0) > 0 ∀i ∈ {1, ..., N}

. (4.16)

Remark. Note that a sufficient condition for the third condition (iii) to hold is the fol-
lowing: for any i ∈ {1, ..., N}, there exists xi in the closure of Oi such that f(xi) = 0 and
n0(xi) > 0.

Proof. As a consequence of the discussion at the beginning of this section, it is enough to
prove that

1. For all i ∈ {1, ..., N} and all t ≥ 0, Si(t) > 0

2. For all t ≥ 0, ρ(t) =
N∑
i=1

ρi(t).

First, notice that hypothesis (iii) is equivalent to supp
(
n0
)
∩ Y (t,Oi) ̸= ∅ for all

i ∈ {1, ..., N} and all t ≥ 0. Moreover, Oi is an open set, which ensures, thanks to the
continuity of n0, that {x ∈ Oi : n

0(Y (t, x)) > 0} has a positive measure for all t ≥ 0. This
proves the first point by definition of Si. Since ρi(0) = Si(0), we also infer ρi(0) > 0.

The second point is due to hypothesis (4.12): Indeed, for any t ≥ 0, according to the
semi-explicit expression of n provided by (4.7), n(t, x) = 0 if Y (t, x) /∈ supp(n0) i.e. if
x /∈ X(t, supp(n0)), which ensures that

ρ(t) =

∫
Rd

n(t, x)dx =

∫
U
n(t, x)dx.

The first two hypotheses satisfied by the sets Oi ensure that ρ(t) =
N∑
i=1

ρi(t).

Proof of the remark: Let xi be a root of f . A classical ODE result ensures that for
all t ≥ 0, x ∈ Rd, ∥Y (t, x) − xi∥ ≤ eLt∥x − xi∥, with L > 0 the Lipschitz constant of f .
Since n0(xi) > 0 and n0 is continuous, there exists ε > 0 such that B(xi, ε) ⊂ supp(n0).
Let t ≥ 0, x ∈ Oi ∩ B(xi, εe

−Lt/2) (such a point does exist, by definition of the closure).
Then, Y (t, x) ∈ B(xi, ε) ⊂ supp(n0), which ensures that x ∈ X

(
t, supp

(
n0
) )

, and thus
concludes the proof.

In the one-dimensional case, assuming that f has a finite number of roots, an efficient
choice for the sets Oi is to take the segments between the roots of f which interseect the
support of n0, as the following result shows.

Lemma 7. Let x ∈ R and assume that f : R → R has a finite number of roots, that we
denote x1 < x2 < ... < xN . Let us denote

O0 := (−∞, x1), Oi := (xi, xi+1), i ∈ {1, ..., N − 1}, ON := (xN ,+∞),

and, among these segments, let us consider Oi1 , ...OiM those which have an non-empty in-
tersection with supp

(
n0
)
. Then, the set U :=

⋃
1≤j≤M

Oij and the family of sets
(
Oij

)
1≤j≤M

satisfy the hypotheses of Proposition 16.
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Proof. By applying the results stated at the end of Section 4.2.2, we note that for all i ∈
{1, ..., N}, Oi is positively invariant for the ODE ẋ = f(x). Thus, for all y ∈ supp(n0) ⊂
U , t ≥ 0, X(t, y) ∈ U , which ensures that X(R+ × supp(n0)) ⊂ U . Moreover, the
same results show that for all j ∈ {1, ...,M}, X(t, supp(n0) ∩ Oij ) ⊂ Oij , and thus that
X(t, supp(n0)) ∩Oij ̸= ∅. The other two points are automatically satisfied, thanks to the
definition of U and the sets Oi.

Proposition 16 shows us that ρ satisfies ODE (4.16). Our next result shows that the
long-time behaviour of this ODE depends on the long-time behaviour of the functions
Ri. In particular, it states that if all the functions Ri converge, then ρ converges to the
maximum of their limit. Before stating the result, we introduce some notations.

Notation. For any function g : R+ → R, we denote:

g := lim inf
t→+∞

g(t) and g := lim sup
t→+∞

g(t),

and we say that g converges to l ∈ R with an exponential speed if there exist δ > 0
such that

g(t)− l = O
t→+∞

(
e−δt

)
.

Proposition 17. The coupled system of ODEs (4.16) has the following properties:

(i) For all i ∈ {1, ..., N} and all t ≥ 0, ρi(t) > 0.

(ii) ρ ≥ min
1≤i≤N

(
Ri
)

and ρ ≤ max
1≤i≤N

(
Ri
)
.

(iii) Let j ∈ {1, ..., N}. If there exists i ∈ {1, ..., N} such that Rj < Ri, then ρj(t) −→
t→+∞

0.

(iv) Let us assume that there exists l ∈ R+ ∪ {+∞}, and a non empty set I ⊂ {1, ..., N}
(where potentially I = {1, ..., N}) such that for all i ∈ I, Ri(t) −→

t→+∞
l, and Rj < l

for all j /∈ I. Then, ρ(t) −→
t→+∞

l.

(v) Under the hypotheses of (iv), if moreover 0 < l < +∞ and for all i ∈ I the function
Ri converges to l with an exponential speed, then ρ converges to l with an exponential
speed.

Proof. (i) According to the first line of ODE (4.16), ρi(t) = e
∫ t
0 Ri(s)−ρ(s)dsρi(0), which

is positive according to the third line.

(ii) If min
1≤i≤N

(
Ri
)
= 0, there is nothing to prove: we assume min

1≤i≤N

(
Ri
)
> 0 and let

m < min
1≤i≤N

(
Ri
)
. There exists Tm ≥ 0 such that for all t ≥ Tm, and all i ∈ {1, ..., N},

Ri(t) ≥ m. Thus

ρ̇(t) =
N∑
i=1

ρ̇i(t) =
N∑
i=1

(Ri(t)− ρ(t)) ρi(t) ≥ (m− ρ(t)) ρ(t),

which means that ρ is a super-solution of a logistic equation which converges to m,
and thus that ρ ≥ m. Since this inequality holds for any m < min

1≤i≤N

(
Ri
)
it proves

that ρ ≥ min
1≤i≤N

(
Ri
)
. By proceeding in the same way with the limit superior, we get

the second inequality.
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(iii) Let i, j ∈ {1, ..., N} such that Rj < Ri. The latter inequality is written with the
convention that if Ri = +∞, then Rj ∈ R. Using the first point, ρj , ρi > 0 on R+.
We can compute

d

dt
ln

(
ρi(t)

ρj(t)

)
= Ri(t)−Rj(t) > ε,

for a certain ε > 0 and t large enough. Thus, ρ(t) ≥ ρi(t) ≥ Ceεtρj(t), for a certain
constant C > 0, which yields

ρ̇j(t) ≤
(
sup
t>0

Rj(t)− Ceεtρj(t)

)
ρj(t),

with sup
t>0

Rj(t) < +∞ by hypothesis, and thus ρj goes to zero as t goes to +∞.

(iv) Let us denote ρJ :=
∑
j /∈I

ρj . (This first step is not necessary in the case I = {1, ..., N}).

According to the previous property, ρJ converges to zero. By denoting R̃i := Ri−ρJ ,
we can thus rewrite system (4.16) as:

ρ̇i(t) =
(
R̃i(t)− ρI(t)

)
ρi(t) ∀t ≥ 0, ∀i ∈ I

ρI(t) =
∑
i∈I

ρi(t) ∀t ≥ 0

ρi(0) > 0 ∀i ∈ {1, ..., N}

.

Applying Property (ii) to this new system proves the desired result, since

min
i∈I

(
R̃i

)
= max

i∈I

(
R̃i

)
= l.

(v) Let l ∈ (0,+∞). According to the previous point, ρ is bounded by two positive
constants (and so is ρI), that we denote ρm < ρM . Using the same argument as
in the proof of the third point, one proves that for all j /∈ I, there exists ε > 0
such that ρJ(t) ≤ Ce−εtρM , and thus that ρJ converges to 0 with an exponential
speed. Thus, it remains to prove that the convergence of ρI to l also occurs with
an exponential speed. By hypothesis, there exists C, δ > 0 such that for all t ≥ 0,∑
i∈I

|R̃i(t)− l| ≤ Ce−δt. Thus, by denoting C ′ := C∥ρI(·)− l∥∞ ρM , we find

d

dt

1

2

(
ρI(t)− l

)2
= (ρI(t)− l)

∑
i∈I

((R̃i(t)− l)− (ρI(t)− l))ρi(t)

≤ C ′e−δt − ρm (ρI(t)− l)2 ,

which concludes the proof, according to Grönwall’s lemma.

4.4 Results in the one-dimensional case

4.4.1 Asymptotic behaviour of the carrying capacities

As evidenced by the previous section and in particular by Proposition 17, the long-time
behaviour of ρ is completely determined by that of the functions Ri, which we call car-
rying capacities by analogy with the logistic equation. As their definition suggests,
computing the limit of these functions is a delicate issue: this section is dedicated to these
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computations. The multidimensional case seems out of reach with this method, because,
as we shall see, we use a change of variable that requires to be working in 1D.

In order to simplify the notations, we will now denote R instead of RE or Ri, when
there is no ambiguity as to which sets we are working with. We are thus interested in the
asymptotic behaviour of the function

R(t) =
Ṡ(t)

S(t)
, with S(t) =

∫
E
n0(Y (t, x))e

∫ t
0 r̃(Y (s,x))dsdx, (4.17)

where E ⊂ Rd is an open set which satisfies supp(n0) ∩ Y (t, E) ̸= ∅ for all t ≥ 0.
First, let us note that for all l ∈ R,

R(t)− l =
d
dt

(
S(t)e−lt

)
S(t)e−lt

. (4.18)

Thus, in order to prove that R converges to l ∈ R with an exponential speed, it in enough
to prove that:

(a) lim inf
t→+∞

S(t)e−lt > 0.

(b) t 7→ eδt ddt
(
S(t)e−lt

)
is bounded for a certain δ > 0.

Indeed, we immediately deduce from (4.18), and the fact that S is positive, according to
its definition (4.14), that these two hypotheses imply that for any δ′ ∈ (0, δ),

R(t)− l = O
t→+∞

(
e−δ

′t
)
.

Integral formulae for the carrying capacities

This section aims at listing several alternative formulae of S. In the following section, we
will use one or the other, depending on the studied case.

We recall that S is defined as

S(t) =

∫
E
n0(Y (t, x))e

∫ t
0 r̃(Y (s,x))dsdx, (4.19)

with r̃ := r −∇ · f .
As seen in the first section, for any t ≥ 0, x 7→ Y (t, x) is a C1-diffeomorphism from E

to Y (t, E). Thus, the change of variable y = Y (t, x), and Liouville’s formula which ensures

that |det(Jac(Y (t, x)))| = e
∫ t
0 −∇· f(Y (s,x))ds provide a second expression for S, namely

S(t) =

∫
Y (t,E)

n0(y)e
∫ t
0 r(X(s,y))dsdy. (4.20)

Moreover, in the one-dimensional case x ∈ R, if E is an interval on which f ̸= 0,
then for all y ∈ E , t 7→ X(t, y) is also a C1-diffeomorphism from (0, t) to (y,X(t, y)) or
(X(t, y), y). This allows us to make the change of variable s′ = Y (s, x) and s′ = X(s, y)
in the two expressions for S, thereby obtaining two new formulations

S(t) =

∫
E
n0(Y (t, x))e

∫ x
Y (t,x)

r̃(s)
f(s)

ds
dx =

∫
Y (t,E)

n0(y)e
∫X(t,y)
y

r(s)
f(s)

ds
dy, (4.21)

and, in the same way, for all l ∈ R,

S(t)e−lt =

∫
E
n0(Y (t, x))e

∫ x
Y (t,x)

r̃(s)−l
f(s)

ds
dx =

∫
Y (t,E)

n0(y)e
∫X(t,y)
y

r(s)−l
f(s)

ds
dy. (4.22)
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Likewise, by differentiating expressions (4.19) and (4.20), we are led to several formulae
for d

dt

(
S(t)e−lt

)
, namely

d

dt

(
S(t)e−lt

)
=

∫
E
m(Y (t, x))e

∫ t
0 r̃(Y (s,x))−l dsdx =

∫
E
m(y)e

∫ t
0 r(X(s,y))−l dsdx, (4.23)

with

m(y) := n0(y) (r̃(y)− l )− f(y)n0
′
(y). (4.24)

In the one-dimensional case x ∈ R, assuming that E is an interval in which f ̸= 0, we
get the additional expressions

d

dt

(
S(t)e−lt

)
=

∫
E
m(Y (t, x))e

∫ x
Y (t,x)

r̃(s)−l
f(s)

ds
dx =

∫
E
m(y)e

∫X(t,y)
y

r(s)−l
f(s)

ds
dy. (4.25)

Lastly, in the particular one-dimensional case where E is an interval such that Y (t, E) = E
for all t ≥ 0, and f ̸= 0 on E , (which is the case if E is an interval delimited by two
consecutive roots of f) one can differentiate (4.20) to get

d

dt

(
S(t)e−lt

)
=

∫
E
n0(y) (r(X(t, y))− l) e

∫ t
0 r(X(s,y))−l dsdy (4.26)

and the second expression of (4.22) to get

d

dt

(
S(t)e−lt

)
=

∫
E
n0(y) (r(X(t, y))− l) e

∫X(t,y)
y

r(s)−l
f(s)

ds
dy (4.27)

=

∫
E
n0(Y (t, x))(r(x)− l)e

∫ x
Y (t,x)

r̃(s)−l
f(s)

ds
dx. (4.28)

An important estimate

The lemma stated in this section will be crucial in computing limits of the relevant
parameter-dependent integrals in the next section.

Notation. Let x0 ∈ R∪{±∞}, and h and g be two functions defined in the neighbourhood
of x0. If there exist C1, C2 > 0 such that

C1|g(x)| ≤ |h(x)| ≤ C2|g(x)|

for any x close enough to x0, we write

h(x) = Θ
x→x0

(g(x)).

Remark. According to the definition of Θ, is is clear that for any x0 ∈ R ∪ {±∞}, g, h
defined in the neighbourhood of x0, f such that h(x) = Θ

x→x0
(g(x)), h is integrable near

x0 if and only if g is integrable near x0.

Lemma 8. Let x0, y ∈ R, with x0 < y, and let β ∈ C2([x0, y]) such that β(y) = 0,
β′(y) ̸= 0 and β ̸= 0 on [x0, y), and α ∈ C1([x0, y]). Then,

e
∫ x
x0

α(s)
β(s)

ds
= Θ

x→y−

(
|y − x|

α(y)

β′(y)

)
.

Similarly, if x0 > y, β ∈ C2([y, x0]) is such that β(y) = 0, β′(y) ̸= 0 and β ̸= 0 on
[y, x0), and α ∈ C1([y, x0]), then

e
∫ x
x0

α(s)
β(s)

ds
= Θ

x→y+

(
|y − x|

α(y)

β′(y)

)
.
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Proof. we show only the first equivalence: the proof of the second is analogous. According
to the regularity of α and β, the integral

∫ x
x0

α(s)
β(s) is well-defined for any x ∈ (x0, y), and

for all s ∈ (x0, y),

α(s) = α(y) +O(s− y), and β(s) = (s− y)β′(y) +O((s− y)2).

Thus,

α(s)

β(s)
− α(y)

(s− y)β′(y)
=
α(s)(s− y)β′(y)− α(y)β(s)

β(s)(s− y)β′(y)
=

O(s− y)2

β′(y)2(s− y)2 +O((s− y)3)
= O(1).

Hence,

e
∫ x
x0

α(s)
β(s)

ds
= e

∫ x
x0

α(y)

β′(y)
1

s−y
+O(1)ds

= eO(1)|y − x|
α(y)

β′(y) ,

which proves the result of this lemma.

Asymptotic behaviour of the carrying capacity in one dimension

We here focus on the one-dimensional case. We recall that we assume that n0 ∈ Cc(R),
f ∈ C2(R) ∩ Lip(R), r ∈ C1(R) ∩ L1(R), and that r(x) goes to 0 as x goes to ±∞ In this
section, we further assume that f ∈ BV(R), i.e f ′ ∈ L1(R), and that f converges to a
non-zero limit at ±∞.

In order to apply Proposition 17 (as explained in Lemma 7), the most insightful division
is to consider each segment between the roots of f . Hence, we must first compute the limit
of the function R when the chosen set E is such a segment.

To be more precise, we must therefore distinguish between several cases, depending on
whether the considered interval is bounded (delimited by two consecutive roots of f) or
not (delimited by the smallest or the greatest root of f), and the sign of the derivative at
these boundary roots.

In fact, when n0 vanishes at a given root a, the limit may depend on how fast n0

vanishes, i.e. on the value α > 0 such that n0(y) vanishes like (y − a)α. For our method
of proof to accommodate this case, we will need to make a slightly stronger assumption
involving the derivative of n0.

We will see in the next section that a slight change in the limit of R may have a drastic
impact on the long-time behaviour of n. We also deal with cases where f does not have
any root (which ensures, as one might expect, that R converges to 0), and the case where
f is zero on a whole interval. Hence, this result can be seen as a generalisation of the one
stated in [106].

Proposition 18. In each case, we assume that E ∩ supp(n0) ̸= ∅.

(i) If E = (a,+∞), f < 0 on E, f(a) = 0 and f ′(a) < 0, then R converges to r(a).

(ii) If E = (−∞, a), f > 0 on E, f(a) = 0 and f ′(a) < 0, then R converges to r(a).

(iii) If E = (a,+∞), f > 0 on E, f(a) = 0, f ′(a) > 0, then

• If n0(a) > 0, then

– If r(a)− f ′(a) > 0, then R converges to r(a)− f ′(a).

– If r(a)− f ′(a) < 0, then R converges to 0.

• If n0(a) = 0, and if there exist C,α > 0 such that n0
′
(y) = Cα(y − a)α−1 +

O
y→a+

((y − a)α), then

– If r(a)− (1 + α)f ′(a) > 0, then R converges to r(a)− (1 + α)f ′(a).
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– If r(a)− (1 + α)f ′(a) < 0, then R converges to 0.

• If n0(a) = 0, and if there exists ε > 0 such that n0(·) = 0 on [a, a+ ε], then R
converges to 0.

(iv) If E = (−∞, a), f < 0 on E, f(a) = 0, f ′(a) > 0, then

• If n0(a) > 0, then

– If r(a)− f ′(a) > 0, then R converges to r(a)− f ′(a).

– If r(a)− f ′(a) < 0, then R converges to 0.

• If n0(a) = 0, and if there exist C,α > 0 such that n0
′
(y) = −Cα(a − y)α−1 +

O
y→a−

((a− y)α), then

– If r(a)− (1 + α)f ′(a) > 0, then R converges to r(a)− (1 + α)f ′(a).

– If r(a)− (1 + α)f ′(a) < 0, then R converges to 0.

• If n0(a) = 0, and if there exists ε > 0 such that n0(·) = 0 on [a− ε, a], then R
converges to 0.

(v) If E = (a, b), f > 0 on (a, b), f(a) = f(b) = 0, f ′(a) > 0, f ′(b) < 0, then

• If n0(a) > 0, then

– If r(b) > r(a)− f ′(a), then R converges to r(b).

– If r(b) < r(a)− f ′(a), then R converges to r(a)− f ′(a).

• If n0(a) = 0, and if there exist C,α > 0 such that n0
′
(y) = Cα(y − a)α−1 +

O
y→a+

((y − a)α), then

– If r(b) > r(a)− (α+ 1)f ′(a), then R converges to r(b).

– If r(b) < r(a)− (α+ 1)f ′(a), then R converges to r(a)− (α+ 1)f ′(a).

• If n0(a) = 0, and if there exists ε > 0 such that n0(·) = 0 on [a, a+ ε], then R
converges to r(b).

(vi) If E = (a, b), f < 0 on (a, b), f(a) = f(b) = 0, f ′(a) < 0, f ′(b) > 0, then

• If n0(b) > 0, then

– If r(a) > r(b)− f ′(b), then R converges to r(a).

– If r(a) < r(b)− f ′(b), then R converges to r(b)− f ′(b).

• If n0(b) = 0, and if there exist C,α > 0 such that n0
′
(y) = −Cα(b − y)α−1 +

O
y→b−

((b− y)α), then

– If r(a) > r(b)− (α+ 1)f ′(b), then R converges to r(a).

– If r(a) < r(b)− (α+ 1)f ′(b), then R converges to r(b)− (α+ 1)f ′(b).

• If n0(b) = 0, and if there exists ε > 0 such that n0(·) = 0 on [b − ε, b], then R
converges to r(a).

(vii) If E = R, and f > 0 on R, then R converges to 0.

(viii) If E = R, and f < 0 on R, then R converges to 0.

(ix) If E is a interval in which f ≡ 0, and n0 > 0, and argmax
Ē

r = {x1, ..., xp} ⊂ E, with

r′(xi) = 0, r′′(xi) < 0 for all i ∈ {1, ..., p},

then, R converges to r̄ := max
x∈E

r(x).
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Moreover, except in this last case, R converges with an exponential speed whenever it does
not converge to 0.

Proof. As explained at the beginning of this section, whenever we show that R converges
with an exponential speed, we must prove successively that

(a) lim inf
t→+∞

S(t)e−lt > 0

(b) t 7→ eδt ddt
(
S(t)e−lt

)
is bounded for a certain δ > 0,

where l is the expected limit. By Fatou’s lemma, the point (a) can be proven by showing
that the integrand involved in the expression of S (which depends on the chosen for-
mula) converges pointwise to a non-negative function which is positive on a set of positive
Lebesgue measure. Depending on the case, we will use different expressions for S and S′

among those determined in Section 4.4.1. In order to lighten the proof, we assume without
loss of generality that a = 0 and b = 1, and we denote

r̃ = r − f ′ and r̃α := r̃ − αf ′ = r − (α+ 1)f ′ for α ∈ R.

Moreover since the cases (ii), (iv), (vi) and (viii) are symmetric to the cases (i), (iii), (v)
and (vii) respectively, we omit their proof.

(i) Note that, according to the hypotheses satisfied by f , for all y ∈ (0,+∞), t 7→ X(t, y)
converges to 0.

(a) According to (4.20),

S(t)e−r(0)t =

∫ +∞

0

n0(y)e
∫ t
0
r(X(s,y))−r(0)dsdy =

∫ M

0

n0(y)e
∫ t
0
r(X(s,y))−r(0)dsdy,

for a certain M > 0, since n0 has a compact support. Since f ′(0) < 0, there ex-
ist C, δ > 0 such that X(t, y) ≤ Ce−δt for all y ∈ [0,M ], t ≥ 0. This proves that
for all y ∈ [0,M ], s 7→ r(X(s, y)) − r(0) is integrable on (0,+∞), and thus that

y 7→ n0(y)e
∫ +∞
0

r(X(s,y))−r(0)ds is well-defined on [0,M ]. Since this function is pos-
itive on a sub-interval of [0,M ], its integral on this segment is positive. Moreover,

t 7→ n0(y)e
∫ t
0
r(X(s,y))−r(0)ds converges pointwise to this function.

(b) As seen in the first point, there exist C, δ > 0 such that for all y ∈ [0,M ] and all t ≥ 0,
0 ≤ X(t, y) ≤ Ce−δt. Thus, using expression (4.26), and the mean value theorem,∣∣∣∣eδt ddt (S(t)e−r(0)t

) ∣∣∣∣ = eδt
∣∣∣∣ ∫ M

0

n0(y)
(
r(X(t, y))− r(0)

)
e
∫ t
0
r(X(t,y))−r(0)dsdy

∣∣∣∣
≤ 2∥n0∥∞∥r∥L∞(0,M)C

∫ M

0

e
∫ t
0
|r(X(s,y))−r(0)|dsdy

≤ ∥n0∥∞∥r′∥L∞(0,M)CMe
∫ t
0
C∥r′∥L∞(0,M)e

−δsds

which is bounded.

(iii) Note that, according to the hypothesis on f , for all x, y ∈ (0,+∞), t 7→ X(t, y) is increasing
and goes to +∞, and t 7→ Y (t, x) is decreasing and converges to 0.

• Let us assume that n0(0) > 0. We distinguish two cases:

– Case r(0)− f ′(0) > 0:

(a) According to (4.22),

S(t)e−r̃(0)t =

∫
E
n0(Y (t, x))e

∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

dsdx.

For all x ∈ (0,+∞), n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

ds −→
t→+∞

n0(0)e
∫ x
0

r̃(s)−r̃(0)
f(s)

ds,

which is well defined since s 7→ r̃(s)−r̃(0)
f(s) is continuous on [0, x), thanks to the

regularity of r and f , and positive, since n0(0) > 0 by hypothesis.
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(b) Let δ ∈
(
0,min(r̃(0), f ′(0))

)
. Since δ − r̃(0) < 0, r goes to 0 at +∞ and f is

positive, we can find M ≥ 0 such that r(s)−r̃(0)+δ
f(s) ≤ 0 for all s ∈ [M,+∞),

and supp
(
n0
)
∩ E ⊂ [0,M ]. Thus, for all t ≥ 0, and all y ∈ (0,M),∫ X(t,y)

y

r(s)− r̃(0) + δ

f(s)
ds ≤

∫ M

y

∣∣∣∣r(s)− r̃(0) + δ

f(s)

∣∣∣∣ds.
According to (4.25),

eδt
d

dt

(
S(t)e−r̃(0)t

)
=

∫ +∞

0

m(y)e
∫ X(t,y)
y

r(s)−r̃(0)+δ
f(s)

dsdy.

Thus, since supp(m)∩E = supp(n0)∩E ⊂ [0,M ], and by the previous inequal-
ity, ∣∣∣∣eδt ddt (S(t)e−r̃(0)t

) ∣∣∣∣ ≤ ∫ M

0

|m(y)|e
∫ M
y

|r(s)−r̃(0)+δ|
f(s)

dsdy.

Sincem(y) = n0(y)(r̃(y)−r̃(0))−f(y)n0′(y), |m(y)| = O
y→0

(y). Moreover, since

|r(0)−r̃(0)+δ| = f ′(0)+δ, Lemme 8 yields e
∫ M
y

|r(s)−r̃(0)+δ|
f(s)

ds = O
y→0

(y−1−δ/f ′(0)).

Therefore,

|m(y)|e
∫ M
y

|r(s)−r̃(0)+δ|
f(s)

ds = O
y→0

(y−δ/f ′(0)),

and is thus integrable since δ < f ′(0).

– Case r(0)− f ′(0) < 0: in this case, we do not show that convergence occurs with
an exponential speed. Thus, we do not prove the two points as before, but simply
that

lim sup
t→+∞

S(t) > 0 and lim
t→+∞

S′(t) = 0,

which will imply, by definition of R (4.17), that R converges to 0. According to
(4.22),

S(t) =

∫ +∞

0

n0(y)e
∫ X(t,y)
y

r(s)
f(s)

dsdy.

By hypothesis, f converges to a positive limit. Thus, for all y > 0, there exist

εy > 0 such that f(s) > εy, for all s ≥ y. Thus, for all y > 0,
∫ +∞
y

r(s)
f(s)ds ≤

1
εy
∥r∥L1 < +∞. This implies that y 7→ n0(y)e

∫ +∞
y

r(s)
f(s)

ds is well defined on R+.

Moreover, this function is positive at any y such that n0(y) > 0, hence its integral

is positive. Finally, t 7→ n0(y)e
∫ X(t,y)
y

r(s)
f(s)

ds converges to this function pointwise,.
Owing to (4.26) (with l = 0),

S′(t) =

∫
supp(n0)

n0(y)r(X(t, y))e
∫ X(t,y)
y

r(s)
f(s)

dsdy.

By hypothesis, there exist ε,M > 0 such that f(s) ≥ ε for all s ≥M . Thus, for all
y > 0,∫ X(t,y)

y

r(s)

f(s)
ds ≤

∫ +∞

y

r(s)

f(s)
ds ≤

∫ +∞

M

r(s)

f(s)
ds︸ ︷︷ ︸

≤
∥r∥

L1
ε

+

∫ M

y

r(s)

f(s)
ds 1(0,M)(y).

Since r ∈ L1(R+), by hypothesis, this proves that there exists a constant K > 0
such that for all t ≥ 0, y > 0,∣∣∣∣n0(y)r(X(t, y))e

∫ X(t,y)
y

r(s)
f(s)

ds

∣∣∣∣ ≤ ∥n0∥∞∥r∥∞eKe
∫ M
y

r(s)
f(s)

ds 1(0,M)(y).
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By virtue of Lemma 8, this last quantity in integrable, since

e
∫ M
y

r(s)
f(s)

ds = O
y→0

(
y
− r(0)

f′(0)

)
,

with r(0) < f ′(0), by hypothesis. Moreover, since t 7→ r(X(t, y)) converges to

0 as t goes to +∞ for any y > 0, n0(y) r(X(t, y)) e
∫ X(t,y)
y

r(s)
f(s)

dsdy converges to 0
pointwise. According to the dominated convergence theorem, S′ thus converges to
0.

• Let us assume that n0(a) = 0, and that the hypothesis of the theorem regarding n0
′

holds. We follow exactly the same steps and use the same formulae as in the case
‘n0(0) > 0’, by adapting the computations. We distinguish again two cases.

– Case r̃α(0) > 0:

(a) According to (4.22),

S(t)e−r̃α(0)t =

∫
E
n0(Y (t, x))e

∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

dsdx.

For all x ∈ (0,+∞),

n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃α(0)
f(s)

ds =
n0(Y (t, x))

Y (t, x)α
e
∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

ds

× Y (t, x)αe
∫ x
Y (t,x)

αf′(0)
f(s)

ds.

Let x > 0. On the one hand,

n0(Y (t, x))

Y (t, x)α
e
∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

ds −→
t→+∞

Ce
∫ x
0

r̃(s)−r̃(0)
f(s)

ds

which is well defined since s 7→ r̃(s)−r̃(0)
f(s) is continuous on [0, x), according to

the regularity assumptions on r and f , and positive. On the other hand, by
rewriting

Y (t, x)αe
∫ x
Y (t,x)

−αf′(0)
f(s)

ds = eα(ln(Y (t,x))−ln(x))xαe
∫ x
Y (t,x)

αf′(0)
f(s)

ds

= xαe
∫ x
Y (t,x)

αf′(0)
f(s)

−α
s ds,

and by noting that s 7→ αf ′(0)
f(s) − α

s is continuous at 0, since

αf ′(0)

f(s)
− α

s
=
αf ′(0)s− αf(s)

sf(s)
(4.29)

=
αf ′(0)s− αf ′(0)s+ f ′′(0)/2s2 + o(s2)

f ′(0)s2 + o(s2)
−→
s→0

−αf
′′(0)

2f ′(0)
(4.30)

we show that

Y (t, x)αe
∫ x
Y (t,x)

−αf′(0)
f(s)

ds −→
t→+∞

xαe
∫ x
0

αf′(0)
f(s)

−α
s ds,

which is also well defined, and positive.

(b) Let δ ∈
(
0,min(r̃α(0), f

′(0))
)
. Since δ − r̃α(0) < 0, r goes to 0 at +∞ and f

is positive, we can find M ≥ 0 such that r(s)−r̃α(0)+δ
f(s) ≤ 0 for all s ∈ [M,+∞),

and supp
(
n0
)
⊂ [0,M ]. Thus, for all t ≥ 0, and all y ∈ (0,M),∫ X(t,y)

y

r(s)− r̃α(0) + δ

f(s)
ds ≤

∫ M

y

∣∣∣∣r(s)− r̃α(0) + δ

f(s)

∣∣∣∣ds.
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According to (4.25),

eδt
d

dt

(
S(t)e−r̃α(0)t

)
=

∫ +∞

0

m(y)e
∫ X(t,y)
y

r(s)−r̃α(0)+δ
f(s)

dsdy.

Thus, since supp(m) ∩ E = supp(n0) ∩ E ⊂ [0,M ], and thanks to the previous
inequality,∣∣∣∣eδt ddt (S(t)e−r̃α(0)t

) ∣∣∣∣ ≤ ∫ M

0

|m(y)|e
∫ M
y

|r(s)−r̃α(0)+δ|
f(s)

dsdy.

Let us prove that this integral is bounded. First, let us note that

m(y) = n0(y)(r̃(y)− r̃α(0))− f(y)n0
′
(y) = O

y→0+
(yα+1)

Indeed, since n0(y) = Cyα + O
y→0+

(yα+1) and n0
′
(y) = Cαyα−1 + O

y→0+
(yα),

|m(y)|
yα+1

≤ n0(y)

yα
|r̃(y)− r̃(0)|

y
+

|αf ′(0)n0(y)− f(y)n0
′
(y)|

yα+1

≤ n0(y)

yα
∥r̃′∥∞ +

|Cαf ′(0)yα − Cαf ′(0)yα +O(yα+1)|
yα+1

= O
y→0+

(1).

Moreover, according to Lemma 8, since |r(0)− r̃α(0) + δ| = (α+ 1)f ′(0) + δ,

e
∫ M
y

|r(s)−r̃α(0)+δ|
f(s)

ds = O
y→0+

(y−α−1−δ/f ′(0)).

Therefore,

|m(y)|e
∫ M
y

|r(s)−r̃(0)+δ|
f(s)

ds = O
y→0+

(y−δ/f ′(0)),

and is thus integrable since δ < f ′(0).

– Case r̃α(0) < 0: again, we just prove that

lim sup
t→+∞

S(t) > 0 and lim
t→+∞

S′(t) = 0.

According to (4.22),

S(t) =

∫ +∞

0

n0(y)e
∫ X(t,y)
y

r(s)
f(s)

dsdy.

By hypothesis, f converges to a positive limit. Thus, for all y > 0, there exist

εy > 0 such that f(s) > εy, for all s ≥ y. Hence, for all y > 0,
∫ +∞
y

r(s)
f(s)ds ≤

1
εy
∥r∥L1 < +∞. This ensures that y 7→ n0(y)e

∫ +∞
y

r(s)
f(s)

ds is well defined on R+.

Moreover, this function is positive for every y such that n0(y) > 0, which ensures

that its integral is positive, and t 7→ n0(y)e
∫ X(t,y)
y

r(s)
f(s)

ds converges to this function
pointwise. According to (4.26), (with l = 0),

S′(t) =

∫
supp(n0)

n0(y)r(X(t, y))e
∫ X(t,y)
y

r(s)
f(s)

dsdy.

By hypothesis, there exist ε,M > 0 such that f(s) ≥ ε for all s ≥M . Thus, for all
y > 0,∫ X(t,y)

y

r(s)

f(s)
ds ≤

∫ +∞

y

r(s)

f(s)
ds ≤

∫ +∞

M

r(s)

f(s)
ds︸ ︷︷ ︸

≤
∥r∥

L1
ε

+

∫ M

y

r(s)

f(s)
ds 1(0,M)(y).
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Since r ∈ L1(R+), this proves that there exist a constant K > 0 such that for all
t ≥ 0, y > 0,∣∣∣∣n0(y)r(X(t, y))e

∫ X(t,y)
y

r(s)
f(s)

ds

∣∣∣∣ ≤ ∥r∥∞eKn0(y)e
∫ M
y

r(s)
f(s)

ds 1(0,M)(y).

By hypothesis, and according to Lemma 8,

n0(y) = O
y→0+

(yα) and e
∫ M
y

r(s)
f(s)

ds = O
y→0+

(
y
− r(0)

f′(0)

)
.

Thus,

n0(y)e
∫ M
y

r(s)
f(s)

ds = O
y→0+

(
y
α− r(0)

f′(0)

)
,

with α − r(0)
f ′(0) > −1. Moreover, since t 7→ r(X(t, y)) converges to 0 as t goes to

+∞ for any y > 0, n0(y) r(X(t, y)) e
∫ X(t,y)
y

r(s)
f(s)

dsdy converges to 0 pointwise. By
the dominated convergence theorem, S′ thus converges to 0.

• We can prove this point exactly as we treat the case f > 0 on R. We therefore leave it
to the reader and refer to the proof of (vii).

(v) Let us note that, for any x, y ∈ (0, 1), t 7→ X(t, y) is increasing and converges to 1, and
t 7→ Y (t, x) is decreasing and converges to 0.

• Let us assume that n0(a) > 0. We distinguish again between two cases:

– Case r(1) > r̃(0):

(a) Let us use the second expression (4.22) for S, i.e.

S(t)e−r(1)t =

∫ 1

0

e
∫ X(t,y)
y

r(s)−r(1)
f(s)

dsdy.

For all y ∈ (0, 1), n0(y)e
∫ X(t,y)
y

r(s)−r(1)
f(s)

ds −→
t→+∞

n0(y)e
∫ 1
y

r(s)−r(1)
f(s)

ds, which is

well-defined for all y ∈ (0, 1), since s 7→ r(s)−r(1)
f(s) is continuous on (0, 1], and

positive on a set of non-zero measure, since it is positive where n0 is positive.

(b) Let δ ∈
(
0,min (r(1)− r̃(0),−f ′(1))

)
. Since r̃(0)− r(1) + δ < 0, there exists

m ∈ (0, 1) such that r̃(s)− r(1) + δ for all s ∈ (0,m]. Thus, for all x ∈ (0, 1),
t ≥ 0, ∫ x

Y (t,x)

r̃(s)− r(1) + δ

f(s)
ds ≤

∫ x

m

|r̃(s)− r(1) + δ|
f(s)

ds 1(m,1)(x).

Thus, using expression (4.28),

eδt
d

dt

(
S(t)e−r(1)t

)
=

∫ 1

0

n0 (Y (t, x)) (r(x)− r(1)) e
∫ x
Y (t,x)

r̃(s)−r(1)+δ
f(s)

dsdx

≤ ∥n0∥
∫ 1

0

|r(x)− r(1)|e
∫ x
m

|r̃(s)−r(1)+δ|
f(s)

ds 1(m,1)(x)dx

< +∞.

This last integral is finite since |r̃(1) − r(1) + δ| = −f ′(1) + δ, and thus

e
∫ x
a

|r̃(s)−r̃(0)|
f(s)

ds = O
x→1

(
|x− 1|

δ
f′(1)−1

)
, by Lemma 8) |r(x)− r(1)| = O

x→1
|x−1|,

and δ
f ′(1) > −1 by hypothesis.

– Case r̃(0) > r(1):

(a) Using (4.22), we find

S(t)e−r̃(0)t =

∫ 1

0

n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

dsdx.
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For all x ∈ (0, 1), n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃(0)
f(s)

ds −→
t→+∞

n0(0)e
∫ x
0

r̃(s)−r̃(0)
f(s)

ds, which

is well-defined since s 7→ r̃(s)−r̃(0)
f(s) is continuous on [0, 1), and positive by

hypothesis on n0.

(b) Let δ ∈
(
0,min(r̃(0) − r(1), f ′(0))

)
. Since r(1) − r̃(0) + δ < 0, there exists

M ∈ (0, 1) such that r(s)− r̃(0)+ δ < 0 for all s ≥M . Thus, for all y ∈ (0, 1),

t ≥ 0,
∫X(t,y)

y
r(s)−r̃(0)+δ

f(s) ≤
∫M

y
|r(s)−r̃(0)+δ|

f(s) ds 1(0,M)(y). Thus,∣∣∣∣eδt ddt (S(t)e−r̃(0)t
) ∣∣∣∣ = ∣∣∣∣ ∫ 1

0

m(y)e
∫ X(t,y)
y

r(s)−r̃(0)+δ
f(s)

ds

∣∣∣∣
≤
∫ 1

0

|m(y)|e
∫ M
y

|r(s)−r̃(0)+δ|
f(s)

ds 1(0,M)(y)dy,

which is a finite integral, since |r(0)− r̃(0) + δ| = f ′(0) + δ, and thus

e
∫ b
y

|r(s)−r̃(0)+δ|
f(s)

ds = O
y→0

(
y
− δ

f′(0)−1)
(by Lemma 8),

m(y) = n0(y) (r̃(y)− r̃(0))− f(y)n0
′
(y) = O

y→0
(y) ,

and δ
f ′(0) < 1 thanks to our choice for δ.

• Let us assume that n0(a) = 0, and that the hypothesis on n0
′
of the theorem holds. As

usual, we distinguish two cases.

– Case r(1) > r̃α(0):

(a) This first point is exactly the same as in the case n0 > 0. Let us use the second
expression (4.22) for S, i.e.

S(t)e−r(1)t =

∫ 1

0

e
∫ X(t,y)
y

r(s)−r(1)
f(s)

dsdy.

For all y ∈ (0, 1), n0(y)e
∫ X(t,y)
y

r(s)−r(1)
f(s)

ds −→
t→+∞

n0(y)e
∫ 1
y

r(s)−r(1)
f(s)

ds, which is

well-defined for all y ∈ (0, 1), since s 7→ r(s)−r(1)
f(s) is continuous on (0, 1], and

positive on a set of measure non-zero, since it is positive where n0 is positive.

(b) Let δ ∈
(
0,min (r(1)− r̃α(0),−f ′(1))

)
. First, let us note that we can rewrite

Y (t, x)α = eln(Y (t,x))−ln(x)xα = xαe
∫ x
Y (t,x)

−α
s ds.

Thus, by using expression (4.28), we get

eδt
d

dt

(
S(t)e−r(1)t

)
=

∫ 1

0

n0 (Y (t, x)) (r(x)− r(1)) e
∫ x
Y (t,x)

r̃(s)−r(1)+δ
f(s)

dsdx

=

∫ 1

0

n0(Y (t, x))

Y (t, x)α
xα(r(x)− r(1))e

∫ x
Y (t,x)

φ(s)
f(s)

dsdx,

with

φ(s) := r̃(s)− r(1) + δ − αf(s)

s
.

By hypothesis on n0, f and r, ñ0 : y 7→ n0(y)
yα and φ are both continuous on

[0, 1]. Moreover, since φ(0) = r̃α(0)− r(1) + δ < 0, there exists ε ∈ (0, 1) such
that φ(s) < 0 for all s ∈ [0, ε]. Thus,∣∣∣∣eδt ddt (S(t)e−r(1)t

) ∣∣∣∣ ≤ ∥ñ0∥∞
∫ 1

0

|r(x)− r(1)|xαe
∫ x
ε

|φ(s)|
f(s)

ds1(ε,1)(x)dx.
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since |φ(1)| = δ − f ′(1), Lemma 8 yields

e
∫ x
ε

|φ(s)|
f(s)

ds = O
x→1

(|x− 1|
δ

f′(1)−1
).

Since |r(x)− r(1)| = O
x→1

(x) and δ
f ′(1) > −1 (by hypothesis on δ), this proves

that this last integral is bounded.

– Case r̃α(0) > r(1):

(a) According to (4.22),

S(t)e−r̃α(0)t =

∫ 1

0

n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃α(0)
f(s)

dsdx

=

∫ 1

0

n0(Y (t, x))

Y (t, x)α
Y (t, x)αe

∫ x
Y (t,x)

r̃(s)−r̃α(0)
f(s)

dsdx.

By rewriting Y (t, x)α = xαe−
∫ x
Y (t,x)

α
s ds, we get

S(t)e−r̃α(0)t =

∫ 1

0

n0(Y (t, x))

Y (t, x)α
xαe

∫ x
Y (t,x)

r̃(s)−r̃α(0)
f(s)

−α
s dsdx.

Since n0(Y (t,x))
Y (t,x)α xαe

∫ x
Y (t,x)

r̃(s)−r̃α(0)
f(s)

−α
s ds converges pointwise to

C xα e
∫ x
0

r̃(s)−r̃α(0)
f(s)

−α
s ds, which is well-defined, since s 7→ r̃(s)−r̃α(0)

f(s) − α
s is con-

tinuous at 0 and positive, we are done.

(b) Let δ ∈
(
0,min(r̃α(0) − r(1), f ′(0))

)
. Since r(1) − r̃α(0) + δ < 0, there exists

M ∈ (0, 1) such that r(s)− r̃α(0)+δ < 0 for all s ≥M . Thus, for all y ∈ (0, 1),
t ≥ 0, ∫ X(t,y)

y

r(s)− r̃α(0) + δ

f(s)
≤
∫ M

y

|r(s)− r̃α(0) + δ|
f(s)

ds 1(0,M)(y).

Hence, using expression (4.25), we get∣∣∣∣eδt ddt (S(t)e−r̃(0)t
) ∣∣∣∣ = ∣∣∣∣ ∫ 1

0

m(y)e
∫ X(t,y)
y

r(s)−r̃(0)+δ
f(s)

ds

∣∣∣∣
≤
∫ 1

0

|m(y)|e
∫ M
y

|r(s)−r̃(0)+δ|
f(s)

ds 1(0,M)(y)dy,

which is a finite integral, since |r(0)− r̃α(0) + δ| = (1+ α)f ′(0) + δ. Lemma 8
leads to

e
∫ b
y

|r(s)−r̃(0)+δ|
f(s)

ds = O
y→0

(
y
− δ

f′(0)−α−1
)
.

The integrability follows from

m(y) = n0(y) (r̃(y)− r̃α(0))− f(y)n0
′
(y) = O

y→0

(
yα+1

)
(as seen previously), and δ

f ′(0) < 1 thanks to our choice for δ.

• We prove this case with exactly the same arguments that for the case of a unique root
which is asymptotically unstable. We therefore apply the proof of (i).

(vii) In this case, since f > 0, X(t, y) −→
t→+∞

+∞, for all y ∈ R. Let us prove that

lim inf
t→+∞

S(t) > 0 and lim
t→+∞

S(t) = 0.

According to (4.21),

S(t) =

∫
supp(n0)

n0(y)e
∫ X(t,y)
y

r(s)
f(s)

dsdy.
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The integrand n0(y)e
∫ X(t,y)
y

r(s)
f(s)

ds converges pointwise to n0(y)e
∫ +∞
y

r(s)
f(s)

ds, which is well de-
fined (with values in [0,+∞]), and positive for all y ∈ supp(n0), since r

f is positive. According

to (4.28),

S′(t) =

∫
supp(n0)

n0(y)r(X(t, y))e
∫ X(t,y)
y

r(s)
f(s)

dsdy.

Since f is continuous, positive, and converges to positive constants at ±∞, ε := min
s∈R

f(s) > 0.

Thus, for all y ∈ R, t ≥ 0,∣∣∣∣n0(y)r(X(t, y))e
∫ X(t,y)
y

r(s)
f(s)

ds

∣∣∣∣ ≤ ∥n0∥∞∥r∥∞e
∥r∥

L1
ε < +∞.

Combined with the fact that r(X(t, y)) converges to 0 as t goes to +∞ pointwise, we deduce
that S′ converges to 0 by the dominated convergence theorem.

(ix) Since f ≡ 0 on E , Y (t, x) = x for all (t, x) ∈ R+ × E . Thus, according to formula (4.20),

S(t) =

∫
E
n0(x)er(x)tdx and S′(t) =

∫
E
n0(x)r(x)er(x)tdx.

By Laplace’s formula (see [162]),

S(t) ∼
t→+∞

√
2π

(
p∑

i=1

n0(xi)√
|r′′(xi)|

)
er̄t√
t

and

S′(t) ∼
t→+∞

√
2π

(
p∑

i=1

n0(xi)r(xi)√
|r′′(xi)|

)
er̄t√
t
=

√
2π r̄

(
p∑

i=1

n0(xi)√
|r′′(xi)|

)
er̄t√
t

∼
t→+∞

r̄ S(t).

Thus, R(t) = S′(t)
S(t) −→

t→+∞
r̄.

4.4.2 Applications

Summary of the method. The method that we propose in order to study the asymptotic
behaviour of PDE (4.1) can be summarised by the following three steps:

1. Choose an appropriate family of set (Oi) which satisfies the assumptions of Proposi-
tion 4.12, and such that we can compute the asymptotic behaviour of the functions
Ri: a good choice when f has a finite number of roots is to take the interval between
the roots, as suggested in Lemma 7.

2. Use Proposition 17 in order to determine the limit of ρ, and its speed of convergence
when possible.

3. Use the semi-explicit expression of n provided by equation (4.7), and eventually
Proposition 5 to deduce the asymptotic behaviour of n.

In each of the following subsections, we apply the three points detailed in this summary
to study the asymptotic behaviour of n in different cases.

Remark regarding the regularity of parameter functions. As in subsection
4.4.1, we make the further assumptions that f ∈ BV(R), and that f converges to a non-
zero limit at ±∞. Moreover, we easily check that all the results of this previous section
remain true if we assume that n0 is C1 on each interval between the roots of f , and not
necessarily on the whole of R. As far as f is concerned, it is enough to assume that it
is globally Lipschitz, and C2 only on a neighbourhood of its roots. It will sometimes be
advisable to make these two additional assumptions: we will indicate this at the beginning
of each statement whenever this is the case.
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Case of a unique stable equilibrium

We start by assuming that f has a unique root (denoted a), which is asymptotically stable
for the ODE u̇ = f(u). In this case, solutions converge to a weighted Dirac mass at a,
regardless of the functions r and n0. The weight in front of the Dirac mass is determined
by the value of r at a. Note that this result can be generalised to higher dimensions, see
Proposition 25.

Proposition 19. Let us assume that f has a unique root (denoted a), and that f ′(a) < 0.
Then, ρ converges to r(a) and n(t, ·) ⇀

t→+∞
r(a)δa.

Proof. We apply the three points detailed in the summary:

1. Let us denote O1 := (−∞, a), O2 := (a,+∞), which satisfy the assumptions of
Proposition 16, by Lemma 7. By proposition 18, R1 and R2 both converge to r(a)
(with an exponential speed).

2. By Proposition 17, ρ converges to r(a) with an exponential speed.

3. According to to the semi-explicit expression (4.7), n(t, x) = n0(Y (t, x))e
∫ t
0 r̃(Y (s,x))−ρ(s)ds.

Let δ > 0. Since ∥Y (t, x)∥ −→
t→+∞

+∞ for all x ∈ Rd\{a}, and n0 has a compact sup-

port, there exists T0 such that n(t, x) = 0 for all t ≥ T0, x ∈ Rd\[a− δ, a+ δ]. Since
ρ(t) =

∫
supp(n0) n(t, x)dx converges to r(a), Propositions 5 allows us to conclude that

n(t, ·) ⇀
t→+∞

r(a)δa.

Case of a unique unstable equilibrium

We now assume that f has a unique root (denoted a) which is asymptotically unstable
for the ODE u̇ = f(u). Under theses hypotheses, the growth term can counterbalance the
advection term: there exist two regimes of convergence, depending on how r(a) and f ′(a)
compare.

Proposition 20. Let us assume that f has a unique root (denoted a), and that f ′(a) > 0,
Then:

• If r(a) < f ′(a), then ρ(t) −→
t→+∞

0 and n(t, ·) −→
t→+∞

0 in L1(R).

• If r(a) > f ′(a), and n0(a) > 0, then ρ(t) −→
t→+∞

r(a) − f ′(a), and n(t, ·) −→
t→+∞

n̄ in

L1(R), where
n̄(x) := Ce

∫ x
a

r̃(s)−r̃(a)
f(s)

ds
,

with r̃ = r − f ′ and C such that
∫
R n̄(x)dx = r(a)− f ′(a).

Proof. We apply the three points detailed in the summary:

• Let us assume that r(a) < f ′(a):

1. Let us denote O1 := (−∞, a), O2 := (a,+∞), which satisfy the assumptions
of Proposition 16, by Lemma 7. Proposition 18 shows that R1 and R2 both
converge to 0.

2. By Proposition 17, ρ converges to 0.
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3. We immediately deduce from the previous point that n(t, ·) −→
t→+∞

0 in L1(R),
by definition of ρ.

• Let us assume that r(a) > f ′(a):

1. With the same choice for O1 and O2, Proposition 18 shows that R1 and R2

both converge to r(a)− f ′(a).

2. By Proposition 17, ρ converges to r̃(a) with an exponential speed.

3. By the semi-explicit expression (4.7),

n(t, x) = n0(Y (t, x))e
∫ t
0 r̃(Y (s,x))−ρ(s)ds

= n0(Y (t, x))e
∫ t
0 r̃(Y (s,x))−r̃(a)dse

∫ t
0 r̃(a)−ρ(s)ds

= n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃(a)
f(s)

ds
e
∫ t
0 r̃(a)−ρ(s)ds

(we use the change of variable s′ = Y (s, x) in the first integral to get this last
expression). Thus, n(t, ·) converges pointwise to

x 7→ n0(a)e
∫ x
a

r̃(s)−r̃(a)
f(s)

ds
e
∫+∞
0 r̃(a)−ρ(s)ds,

which is well-defined, since ρ converges to r̃(a) with an exponential speed, f > 0

on (a,+∞) and s 7→ r̃(s)−r̃(a)
f(s) is continuous at a.

Moreover, since r(x) −→
x→+∞

0, and f converges to a positive limit, there exist

M,d > 0 such that r(s)−r̃(a)
f(s) < −d for all s ≥ M. Thus, for all t ≥ 0, x ∈

(a,+∞),∫ x

Y (t,x)

r̃(s)− r̃(a)

f(s)
ds ≤

∫ M

a

|r̃(s)− r̃(a)|
f(s)

ds︸ ︷︷ ︸
:=C1

+

∫ x

M

r̃(s)− r̃(a)

f(s)
ds 1(M,+∞)(x)

≤ C1 +

∫ x

M

r(s)− r̃(a)

f(s)︸ ︷︷ ︸
≤−d

ds 1(M,+∞)(x)

+

∫ x

M

f ′(s)

f(s)
ds 1(M,+∞)(x)

≤ C1 − d(x−M)1(M,+∞) +

∫ +∞

M

|f ′(s)|
f(s)

ds︸ ︷︷ ︸
:=C2

,

with C1, C2 < +∞, by the regularity of r̃, f ∈ BV (R), and the fact that f
converges to a positive constant at infinity.

By proceeding in the same way for all x ≤ a, we show that for all x ∈ R, t ≥ 0,

n(t, x) ≤ Ce−d|x|

for some constants C, d > 0, which ensures, according to the dominated conver-

gence theorem, that t 7→ n(t, ·) converges to x 7→ n0(a)e
∫ x
a

tr(s)−r̃(a)
f(s)

ds
e
∫+∞
0 r̃(a)−ρ(s)ds

in L1(R).
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Two equilibria

In this section we assume that f has exactly two roots, a < b, which satisfy f ′(a) > 0
and f ′(b) < 0 (hence f > 0 on (a, b)). The case f ′(a) < 0, f ′(b) > 0, f < 0 on (a, b) is
similar. Depending on the functions r and n0, n will either converge to a function in L1,
or converge to a Dirac mass at b. We split this result into two propositions: the first one
assumes that the support of n0 crosses a, which means that n0 > 0 in a neighbourhood
of a. The second one assumes that supp(n0) ⊂ [a,+∞), and we consider the case where
n0(a) = 0, which leads to other regular functions being reached.

Proposition 21. Let us assume that f has exactly two roots, a < b, which satisfy f ′(a) >
0, f ′(b) < 0, and that n0(a) > 0. Then:

• If r(b) > r(a)− f ′(a), then ρ(t) −→
t→+∞

r(b) and n(t, ·) ⇀
t→+∞

r(b)δb.

• If r(b) < r(a) − f ′(a), then ρ(t) −→
t→+∞

r(a) − f ′(a), and n(t, ·) −→
t→+∞

n̄ in L1(R),
where

n̄(x) := De
∫ x
a

r̃(s)−r̃(a)
f(s)

ds
1(−∞,b),

with r̃ = r − f ′, and D > 0 is such that
∫
R n̄(x)dx = r(a)− f ′(a).

Proof. Note that since n0 is assumed to be continuous on R, n0 > 0 on a neighbourhood
of a.

• Let us assume that r(b) > r(a) − f ′(a). We again follow the three points of the
method outlined in the beginning of the subsection.

1. Let us denote O1 = (−∞, a), O2 = (a, b), O3 = (b,+∞). One easily checks
that these sets satisfy the hypotheses of Proposition 16, thanks to Lemma 7.
According to Proposition 18, R1 converges to max(0, r̃(a)) < r(b) and R2 and
R3 both converge to r(b) with an exponential speed.

2. By Proposition 17, ρ converges to r(b) with an exponential speed, and ρ1(t) =∫ a
−∞ n(t, x)dx converges to 0.

3. Let x ∈ (a, b). Using (4.7), we find n(t, x) = n0(Y (t, x))e
∫ t
0 r̃(Y (s,x))−ρ(s))ds, for

all t ≥ 0. Let K ⊂ (a, b) be a compact set, δ ∈
(
0, 12 (r(b)− r̃(a))

)
, and let us

denote d := r(b) − r̃(a) − 2δ > 0. Since ρ converges to r(b), and (Y (s, x))s≥0

converges to a uniformly on K, there exists T0 such that for all s ≥ T0 and all
x ∈ K,

ρ(s) ≥ r(b)− δ and r̃(Y (s, x)) ≤ r̃(a) + δ,

Thus, ∫
K
n(t, x)dx ≤ ∥n0∥∞

∫
K
e
∫ T0
0 r̃(Y (s,x))−ρ(s)dsdx e−d(t−T0) −→

t→+∞
0.

LetK ′ be a compact subset of (b,+∞). Since n0 has compact support, there ex-
ists T0 such that n0(Y (t, x)) = 0 for all t ≥ T0, x ∈ K ′. Thus, t 7→

∫
K′ n(t, x)dx

converges to 0. By Proposition 5, n(t, ·) ⇀
t→+∞

r(b)δb.

• Let us now assume that r(b) < r(a)− f(a).

1. With the same choice for O1,O2 and O3, Proposition 18 shows that R1 and R2

converge to r̃(a), and that R3 converges to r(b) < r̃(a).



4.4. Results in the one-dimensional case 91

2. We then apply Proposition 17 to infer that ρ converges to r̃(a) with an expo-
nential speed, and ρ3(t) =

∫ +∞
b n(t, x)dx converges to 0.

3. Let x ∈ (−∞, b), t ≥ 0. By the semi-explicit expression (4.7),

n(t, x) = n0(Y (t, x))e
∫ t
0 r̃(Y (s,x))−ρ(s))ds

= n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃(a)
f(s)

ds
e
∫ t
0 r̃(a)−ρ(s)ds,

where we used the change of variable ‘s′ = Y (t, x)’. The latter function con-
verges pointwise to

n0(a)e
∫ x
a

r̃(s)−r̃(a)
f(s)

ds
e
∫+∞
0 r̃(a)−ρ(s)ds.

As for the case of a unique unstable equilibrium (proof of Proposition 20) one
can find C, d ≥ 0 such that n(t, x) ≤ Ce−d|x| for all x ≤ a. Moreover, for all
x ∈ (a, b),

n(t, x) ≤ ∥n0∥∞ e
∫+∞
0 |r̃(a)−ρ(s)|ds e

∫ x
a

r̃(s)−r̃(a)
f(s)

1{r̃(s)>r̃(a)}(s)ds,

which provides an L1-domination, since e
∫ x
a

r̃(s)−r̃(a)
f(s) = O

x→+∞

(
|x− b|

r̃(a)−r(b)

−f ′(b) −1
)
,

thanks to Lemma 8. By the dominated convergence theorem, combined with
the fact that ρ converges to r̃(a) and ρ3 converges to 0, this ensures that n(t, ·)
converges to the expected limit.

In the following proposition, we assume that n0 is C1 on (a, b) and on (b,+∞), and
not necessarily on the whole of R.

Proposition 22. Let us assume that f has exactly two roots, a < b, which satisfy f ′(a) >
0, f ′(b) < 0, and that supp(n0) ⊂ [a,+∞). We distinguish between several cases:

• If n0(a) > 0, then

– If r(b) > r(a)− f ′(a), then ρ(t) −→
t→+∞

r(b), and n(t, ·) ⇀
t→+∞

r(b)δb.

– If r(b) < r(a) − f ′(a), then ρ(t) −→
t→+∞

r(a) − f ′(a), and n(t, ·) −→
t→+∞

n̄0 in

L1(R), where
n̄0(x) := D0e

∫ x
a

r̃(s)−r̃(a)
f(s)

ds
1(a,b),

with r̃ = r − f ′, and D0 > 0 is such that
∫
R n̄0(x)dx = r(a)− f ′(a).

• If n0(a) = 0, and if there exist C,α > 0 such that n0
′
(y) = Cα(y − a)α−1 +

O
y→a+

((y − a)α), then

– If r(b) > r(a)− (1 + α)f ′(a), then ρ(t) −→
t→+∞

r(b), and n(t, ·) ⇀
t→+∞

r(b)δb.

– If r(b) < r(a)−(1+α)f ′(a), then ρ(t) −→
t→+∞

r(a)−(1+α)f ′(a), and n(t, ·) −→
t→+∞

n̄α in L1(R), where

n̄α(x) := Dα(x− a)αe
∫ x
a

r̃(s)−r̃α(a)
f(s)

− α
s−a

ds
1(a,b),

where r̃ = r − f ′, r̃α = r − (1 + α)f ′, and Dα > 0 is such that
∫
R n̄α(x)dx =

r(a)− (1 + α)f ′(a).
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• If n0(a) = 0, and if there exists ε > 0 such that n0(y) = 0 for all y ∈ [a, a+ ε], then
ρ(t) −→

t→+∞
r(b), and n(t, ·) ⇀

t→+∞
r(b)δb.

Proof. Since the proof of this proposition is very similar to the one of Proposition 21, we
do not write it in full detail, but we simply underline the points that must be adapted.

• In the case where n0(a) > 0, and supp(n0) ⊂ [a,+∞), the proof is the same, but by
considering only the two sets O2 = (a, b), and O3 = (b,+∞), and not O1 = (−∞, a).
We easily check using Lemma 7 that (O2,O3) satisfy the hypotheses of Lemma 7,
since supp(n0) ∩ O1 = ∅

• The case where n0(a) = 0 and the hypothesis on n0
′
holds is quite similar, except that

Proposition 18 now shows that R2 converges to max (r̃α(a), r(b)), with an exponential
speed (if r̃α(a) ̸= r(b)). Thus, we treat the case r(b) > r̃α(a) in exactly the same
way; the case r(b) < r(a) − (1 + α) is a little more intricate: recalling that for all
x ∈ (a, b), t ≥ 0,

n(t, x) = n0(Y (t, x))e
∫ x
Y (t,x)

r̃(s)−r̃α(a)
f(s)

ds
e
∫ t
0 r̃α(a)−ρ(s)ds

and

(Y (t, x)− a)α = (x− a)αe
−

∫ x
Y (t,x)

α
s−a

ds
,

one notes that

n(t, x) =
n0(Y (t, x))

(Y (t, x)− a)α
e
∫ t
0 r̃α(a)−ρ(s)ds(x− a)αe

∫ x
Y (t,x)

r̃(s)−r̃α(a)
f(s)

− α
s−a

ds

converges pointwise to

Ce
∫+∞
0 r̃α(a)−ρ(s)ds(x− a)αe

∫ x
a

r̃(s)−r̃α(a)
f(s)

− α
s−a

ds
,

which is well-defined, since ρ converges to r̃α(a) with an exponential speed, and

s 7→ r̃(s)−r̃α(s)
f(s) − α

s−a is continuous on a, as seen in the proof of Proposition 18.
Moreover,

x 7→ ∥ n0(·)
(· − a)α

∥∞e
∫+∞
0 |r̃α(s)−ρ(s)|ds e

∫ x
a

φ(s)
f(s)

1{φ(s)≥0}ds,

with φ(s) = r̃(s)−r̃α(s)−α f(s)s−a is clearly a domination of n, and is in L1, since φ(b) =

r(b)−r̃α(a)−f ′(b), which implies by Lemma 8 that e
∫ x
a

φ(s)
f(s)

ds
= O

x→b−

(
(b− x)

r(b)−r̃α(a)

f ′(b) −1
)
,

with r(b)−r̃α(a)
f ′(b) > 0.

• This last point is the simplest, and is in fact analogous to the case of a single
equilibrium point. According to Proposition 18, R2 and R3 converge to r(b): we
deduce the result by following the steps of Proposition 19.

Remark. Since Proposition 22 provides a completely explicit expression for the limit
functions n̄α, α ≥ 0, one can easily determine their asymptotic behaviour at the boundary
of the segment (a, b). Since for all α > 0, x ∈ (a, b),

n̄α(x) = Dα(x− a)αe
∫ x
a

r̃(s)−r̃α(s)
f(s)

− α
s−a

ds
,
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Figure 4.2: Continuous limit functions n̄α, for different values of α > 0, as defined in
Proposition 22. In this example, we have chosen f(x) = x(1−x), and r(x) = b− ax (with
b = 6, a = 4). With this choice, we easily compute that, for all α ∈ [0, a − 1), and all
x ∈ (0, 1) n̄α(x) = Dαx

α(1 − x)a−α−2, for the appropriate constant Dα. This illustrates
the variety of limit functions that can be reached depending on the initial condition, as
detailed in Proposition 22.

and s 7→ r̃(s)−r̃α(a)
f(s) − α

s is continuous on [a, b), it is clear that n̄α(x) = Θ
x→a+

((x− a)α).

In particular, n̄α can be extended by continuity at 0, with n̄α(a) = 0 if α > 0, and
n̄0(a) ∈ (0,+∞).

Moreover, since r̃(b) − r̃α(a) − αf(b)
b−a = r(b) − r̃α(a) − f(b), Lemma 8 ensures that

n̄α(x) = Θ
x→b−

(
(b− x)

r(b)−r̃α(a)

f ′(b) −1
)
. In particular

lim
x→b−

n̄α(x) =


0 if r̃(b) < r̃α(a)

l > 0 if r̃(b) = r̃α(a)

+∞ if r̃(b) > r̃α(a)

.

These different cases are illustrated by Figure 4.2.

The case where f has two roots a < b with f ′(a) < 0 and f ′(b) > 0 is symmetric to the
cases here, and thus lead to the same results, by switching a and b in the Propositions.

4.4.3 More than two equilibria

In this subsection, we deal with the cases where f has more than two equilibria. As
evidenced by the previous result, listing all possible scenarios when there are two roots
already is cumbersome: this is why we will not do so in a more general case, and will focus
on the case where n0 is positive on the neighbourhood of the unstable equilibrium points.
The other cases can of course be treated as seen above, keeping in mind that this changes
the value of the limits reached by the R functions.
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Proposition 23. Let us assume that f has a finite number of roots, which are all hyper-
bolic equilibrium points for the ODE u̇ = f(u), i.e. f ′ has a sign at each root of f , and let
us denote x1u, ..., x

p
u the asymptotically unstable equilibria, and x1s, ..., x

1
s the asymptotically

stable one. Moreover, let us denote Mu := max{r(x1u) − f ′(x1u), ...r(x
p
u) − f ′(xpu)}, and

Ms := max{r(x1s), ..., r(xms )}, and let us assume that these two maxima are both reached
at a unique point. Lastly, let us assume that n0(xiu) > 0 for all i ∈ {1, ..., p}.

• If Ms > Mu, then ρ(t) −→
t→+∞

Ms, and n(t, ·) ⇀
t→+∞

Msδxis, with x
i
s the unique stable

equilibria such that Ms = r(xis).

• If Ms < Mu, then ρ(t) −→
t→+∞

Mu, and n(t, ·) −→
t→+∞

n̄i∗ in L1, where

n̄i∗(x) = Ci∗e
∫ x

xi
∗
u

r̃(s)−r̃(xi
∗
u )

f(s)
ds
1Ii∗ (x),

with r̃ = r−f ′, i∗ the unique integer of {1, ..., p} such that r̃(xi
∗
u ) =Mu, Ii∗ the open

interval delimited by the two stable equilibria which enclose xi
∗
u (or −∞ or +∞ if

xi
∗
u is the smallest or the greatest root of f), and Ci∗ a positive constant such that∫
Ii∗
n̄i∗(x)dx =Mu.

Proof. The proof of this proposition is in similar to that of Proposition 21: we denote
O0, ...,Op+m, the intervals between each roots of f , which satisfy the hypotheses of Propo-
sition 16, according to Lemma 7, and, using Proposition 18, we are able to compute the
limit of the function Ri, for all i ∈ {0, . . . , p + m}, and thus determine the long-time
behaviour of ρ by Proposition 17. We conclude by using the semi-explicit expression (4.7)
for n.

This method also allows to deal with the case where f ≡ 0 on a whole segment: we do
not return to the case f ≡ 0 on R, which has already been studied in [131] and [106], but
we consider the case where f ≡ 0 on an interval, and then becomes positive.

To make the assumption of the following proposition possible, we assume that f is C2

on (−∞, a) and on (a,+∞), but not necessarily on the whole of R.

Proposition 24. Let us assume that there exists a ∈ R such that f ≡ 0 on (−∞, a),
f > 0 on (a,+∞), f ′(a+) > 0, and that supp(n0) = [s−, s+], with s− < a < s+. Then,

• If there exists a unique xM ∈ (s−, a) such that r(xM ) = max
x∈[s−,a]

r(x), and f ′′(xM ) <

0, then ρ converges to r(xM ), and n(t, ·) ⇀
t→+∞

r(xM )δxM .

• If r|[s−,a]
reaches its maximum at a (and only at a), then ρ converges to r(a), and

n(t, ·) ⇀
t→+∞

r(a)δa.

Proof. • 1. Let us denoteO1 := (s−, a), O2 := (a,+∞), which satisfy the hypothesis
of Proposition 16, according to Lemma 7. By Proposition 18, R1 converges to
r(xM ) and R2 converges to r(xM )− f ′(xM ).

2. From Proposition 17, ρ and ρ1 converge to r(xM ), and ρ2 converges to 0.

3. Let K ⊂ [s−, a] be a compact set that does not contain xM . Thanks to the
semi-explicit expression (4.7), and using the fact that f ′(x) = 0 and Y (t, x) = x
for all x ∈ K and all t ≥ 0,

n(t, x) = n0(x)e
∫ t
0 r(x)−ρ(s)ds ≤ n0(x)e

∫ t
0 rK−ρ(s)ds,
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with rK := max
x∈K

r(x) < r(xM ).

Thus, ∫
K
n(t, x)dx ≤

∫
K
n0(x)dxe

∫ t
0 rM−ρ(s)ds,

which converges to 0, since rM − ρ(s) is negative for any s large enough. This
proves the result thanks to Proposition 5.

• 1. Here we have to make a slightly more subtle choice of subsets than usual. Let
ε > 0, and let us denote Oε

1 := (s−, a−2ε), Oε
2 := (a−2ε, a−ε), Oε

3 := (a−ε, a),
O4 := (a,+∞). We easily check that these four sets satisfy the hypotheses of
Proposition 16. Moreover, since f ≡ 0 on [s−, a] for all i ∈ {1, 2, 3},

Rεi (t) =

∫
Oε

i
r(x)er(x)tdx∫
Oε

i
er(x)tdx

.

Thus, for all t ≥ 0, i ∈ {1, 2, 3},

min
x∈Ōε

i

r(x) ≤ Rεi (t) ≤ max
x∈Ōε

i

r(x).

In particular,

R̄ε1 ≤ max
x∈[s−,a−2ε]

r(x) and Rε3 ≥ min
x∈[a−ε,a]

r(x).

Finally, Proposition 18 shows that R4 converges to r(a)− f ′(a+).

2. Since r reaches its unique maximum at a, for any ε small enough, we get

Rε3 > R̄ε1 and Rε3 > lim
t→+∞

R4(t).

Thus, according to Proposition 17, ρε1 and ρ4 converge to 0, for all ε > 0. The
choice of ε being arbitrary, it also proves that ρε2 converges to 0. Thus, ρ̄ = ρ̄ε3,
and ρ = ρε3, for all ε > 0. Since for all t ≥ 0

min
x∈[a−ε,a]

r(x) ≤ Rε3(t) ≤ r(a),

we prove that ρ converges to r(a) by making ε tend to 0.

3. We have proved that t 7→
∫ a
s− n(t, x)dx converges to r(a), that t 7→

∫ +∞
a n(t, x)dx

converges to 0 and that for all ε > 0,
∫ a−ε
s− n(t, x)dx converges to 0. The hy-

potheses of Proposition 5 are therefore met, which concludes the proof.

Note that the methods of Propositions 23 and 24 can be coupled to treat more complex
cases, where, for example, f ≡ 0 on several disjoint segments.

4.5 Some results in higher dimensions

As seen in the previous sections, our entire method is based on the computation of the
limit of the Ri functions defined in Section 4.3. Unfortunately, these computations seem
out of reach in the multidimensional case Rd, d ≥ 2.

In this section, we nevertheless address the question of the possible convergence to
smooth or singular measures in higher dimensions in some specific simple cases. We first
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analyse how the solution support evolves over time. This allows us to conclude that
that the solution converges to a Dirac mass in the case of a unique equilibrium which is
asymptotically stable for the ODE u̇ = f(u), and provide hypotheses under which the
solution cannot converge to a smooth function. We then characterise which stationary
measures may or may not be limits for solutions of (4.1), before providing a criterion
ensuring the existence of continuous stationary solutions.

4.5.1 Limit support

Definition 4 Limit support. We define the limit support of n as:

σ∞ =
⋂
t≥0

⋃
s≥t

supp (n(s, ·)).

Recalling the semi-explicit expression (4.7),

n(t, x) = n0(Y (t, x))e
∫ t
0 (r−∇·f)(Y (s,x))−ρ(s)ds,

and that for all t ≥ 0, supp
(
n0(Y (t, ·))

)
= X(t, supp(n0)), we get

σ∞ =
⋂
t≥0

⋃
s≥t

supp (n0 (Y (s, ·))) =
⋂
t≥0

⋃
s≥t
X (s, supp (n0)). (4.31)

In the cases where we are able to determine the latter set, we gather information about
possible limits for n.

Lemma 9. If the limit support of n is of measure zero, then n does not converge (weakly)
to a non-zero function in L1(Rd).

Proof. Let us argue by contradiction. By denoting ν the Lebesgue measure, let us as-
sume that ν(σ∞) = 0, and that n converges weakly to n̄ ∈ L1(Rd), n̄ ̸≡ 0. Since
lim sup
t→+∞

supp (n (t, ·)) =
⋂
t≥0

⋃
s≥t

supp (n(s, ·)) ⊂ σ∞,

lim sup
t→+∞

ν (supp(n(t, ·))) ≤ ν
(
lim sup
t→+∞

supp (n(t, ·))
)
≤ ν(σ∞) = 0,

which contradicts the initial hypothesis.

Proposition 25. Let us assume that f has a unique root, denoted x̄, which is globally
asymptotically stable for the ODE u̇ = f(u) over Rd, and that the set

⋃
t≥0
X(t, supp(n0))

is bounded. Then, n(t, ·) ⇀
t→+∞

r(x̄)δx̄, and ρ converges to r(x̄).

Proof. Since the support of n0 is compact, and x̄ is globally asymptotically stable, we
easily check, according to (4.31), that σ∞ = {x̄}. By Lemma 5, it is hence enough to
prove that ρ converges to r(x̄). As seen in the proof of Lemma 4.3.2, ρ satisfies, for all
t ≥ 0,

ρ̇(t) =

∫
Rd

(
r(x)− ρ(t)

)
n(t, x)dx =

∫
supp(n(t,·))

(
r(x)− ρ(t)

)
n(t, x)dx.

Let ε > 0. Since σ∞ = {x̄} is the intersection of compact decreasing sets, there exists
Tε > 0 such that, for all t ≥ Tε, supp(n(t, ·)) ⊂ B(x̄, ε). Thus, by denoting

rεm := min
x∈B(x̄,ε)

r(x) and rεM := max
x∈B(x̄,ε)

r(x),
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we get, for all t ≥ Tε,

(rεm − ρ(t))ρ(t) ≤ ρ̇(t) ≤ (rεM − ρ(t))ρ(t),

which ensures that

lim inf
t→+∞

ρ(t) ≥ rεm and lim sup
t→+∞

ρ(t) ≤ rεM .

Since these inequalities hold for any ε > 0, and rεm and rεM both converge to r(x̄) when ε
goes to 0, it concludes the proof.

Because of the diversity of possible behaviours of ODE systems, it is difficult to com-
pute the limit support for a given f , unless very strong assumptions are made about the
ODE u̇ = f(u). This is what we do in the following proposition, motivated by a family of
ODE systems commonly used in systems biology.

We say that the two-dimensional system{
ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(4.32)

is competitive if ∂2f1 ≤ 0 and ∂1f2 ≤ 0, and cooperative if ∂2f1 ≥ 0 and ∂1f2 ≥ 0. For
instance, such systems are commonly used to model the interactions between two proteins
in the context of cell differentiation [60,67,91,150], and are known to have an interesting
property: trajectories either go to +∞, or converge [77], i.e. for all x ∈ Rd,

∥Y (t, x)∥ ̸−→
t→+∞

+∞ ⇒ t 7→ Y (t, x) converges . (4.33)

Note that if the ODE (4.32) is competitive (or cooperative), then the reverse ODE u̇ =
−f(u) is cooperative (or competitive). This motivates the hypothesis of the following
proposition. Before giving its statement, we recall that if x̄ is a root of f , x̄ is called a
hyperbolic equilibrium if all the eigenvalues of Jac f(x̄) have a non-zero real part, and
is called a repellor if all these eigenvalues have a positive real part. Lastly, we recall that
the unstable set of x̄ is defined by {x ∈ Rd : Y (t, x) −→

t→+∞
x̄}.

Proposition 26. Let us assume that f has a finite number of roots, and is such that
identity (4.33) holds. Then, the limit support of n is included in the closure of the union
of the unstable sets of the roots of f , i.e. by denoting x̄1, ....x̄N the roots of f ,

σ∞ ⊂
⋃

1≤i≤N

{
x ∈ Rd : Y (t, x) −→

t→+∞
x̄i

}
.

Moreover, if all the roots of f are hyperpolic points, and if none of them is a repellor, then
the limit support of n is of measure 0. In particular, n does not converge (weakly) to a
function in L1.

Proof. The inclusion is clear: by hypothesis for all x ∈ Rd such that t 7→ Y (t, x) does not
converge, t 7→ ∥Y (t, x)∥ goes to +∞, and since the support of n0 is bounded, the points of
the limit support are necessary in the unstable set of one of the equilibria. The second part
of the proposition is a consequence of the stable manifold theorem [130], which ensures
that the unstable set of an equilibrium which is not a repellor is a smooth manifold of
dimension at most d− 1, hence a set of measure zero. We conclude with Lemma 9.
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4.5.2 Stationary solutions

In this subsection, we define the stationary solution in the weak sense, which allows to
include measures. As seen in the previous section, under appropriate hypotheses on f ,
the presence of a repellor is necessary to hope for solutions which converge to smooth
functions. In this section, we prove that, under appropriate hypotheses, the presence of a
repellor ensures the existence of smooth stationary solutions.

Definition 5 Weak stationary solution. Let µ be a finite positive Radon measure. We
say that µ is a weak stationary solution of equation (4.1) if it satisfies

∀φ ∈ C1
c (Rd),

∫
Rd

(
f(x).∇φ(x) + (r(x)− µ(Rd))φ(x)

)
dµ(x) = 0. (4.34)

Remark. If x̄ is a root of f , let us note that r(x̄)δx̄ is a weak stationary solution of (4.1).

The following proposition shows, as we might expect, that convergent solutions of (4.1)
(in the weak sense) necessarily converge to a weak stationary solution.

Proposition 27. Let us assume that r ∈ C0(Rd), and let n(t, ·) be a solution of (4.1)
which converges in the weak sense in the space of Radon measure. Then its limit is a weak
stationary solution of equation (4.1).

Proof. We let µ be the limit of n(t, ·). Let us first prove that, under these conditions,
ρ(t) =

∫
Rd n(t, x)dx converges when t goes to +∞.

Let us denote ψ(t) :=
∫
Rd r(x)n(t, x)dx, which is non-negative, according to the non-

negativity of r and n, and converges to ψ̄ :=
∫
Rd r(x)dµ(x)dx, by definition of the weak

convergence, and since r ∈ C0(Rd). Let us assume that ψ̄ > 0. Let ε ∈ (0, ψ̄). Since ψ
converges to ψ̄, and since ρ satisfies the ODE

ρ̇(t) = ψ(t)− ρ(t)2,

there exists Tε > 0 such that for all t ≥ Tε,

ψ̄ − ε− ρ(t)2 ≤ ρ̇(t) ≤ ψ̄ + ε− ρ(t)2.

In other words, ρ is a super-solution of u̇ = ψ̄−ε−u2, and a sub-solution of u̇ = ψ̄+ε−u2.
Since the solutions of these equations converge to

√
ψ̄ − ε and

√
ψ̄ + ε respectively,

lim inf
t→+∞

ρ(t) ≥
√
ψ̄ − ε and lim sup

t→+∞
ρ(t) ≤

√
ψ̄ + ε.

Since these inequalities hold for any ε ∈ (0, ψ̄), it proves that ρ indeed converges to
√
ψ̄.

If ψ̄ = 0, we prove that lim sup ρ ≤ 0 with the same method, and the non-negativity
of ψ ensures that lim inf ρ ≥ 0.

Let φ ∈ C1
c

(
Rd
)
, and let us denote ρ̄ := lim

t→+∞
ρ(t). We recall that if a differentiable

function converges, then its derivative is either divergent or converges to 0. Hence, since
t 7→

∫
Rd φ(x)n(t, x)dx converges (by hypothesis), and

d

dt

∫
Rd

φ(x)n(t, x)dx = −
∫
Rd

∇ · (f(x)n(t, x))φ(x)dx
∫
Rd

(r(x)− ρ(t))φ(x)n(t, x)dx

= +

∫
Rd

f(x).∇φ(x)n(t, x)dx+

∫
Rd

(r(x)− ρ(t))φ(x)n(t, x)dx

−→
t→+∞

∫
Rd

f(x).∇φ(x) + (r(x)− ρ̄)φ(x)dµ(x),
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the equality ∫
Rd

f(x).∇φ(x) + (r(x)− ρ̄)φ(x)dµ(x) = 0 (4.35)

holds for any φ ∈ C1
c (Rd).

It remains to prove that µ(Rd) = ρ̄. If ρ̄ = 0, then the non-negativity of n and the
definition of ρ lead to µ = 0. Let us now assume that ρ̄ > 0, and let ε > 0. Since µ is a
finite measure, r ∈ C0(Rd), and owing to the definition of ψ and ρ̄, there exists K ⊂ Rd a
compact set such that

• µ(K) ≥ µ(Rd)− ε

•
∫
K r(x)dµ(x)dx ≥

∫
Rd r(x)dµ(x)dx− ε = ρ̄2 − ε.

Let φK ∈ C1
c (Rd) such that φK ≡ 1 on K, 0 ≤ φ ≤ 1 on Rd. Since ∇φK ≡ 0 on K,∣∣∣∣ ∫

Rd

f(x).∇φK(x)dµ(x)

∣∣∣∣ ≤ ∥f.∇φK∥∞µ(Rd\K) ≤ ε∥f.∇φK∥∞.

Moreover, according to the choice of φK∫
Rd

r(x)φK(x)dµ(x) ∈ [ρ̄2 − ε, ρ̄2], and

∫
Rd

φK(x)dµ(x) ∈ [µ(Rd)− ε, µ(Rd)].

Hence, injecting these inequalities in (4.35), we obtain

−Cε ≤ ρ̄(ρ̄− µ(Rd)) ≤ Cε

for some C ≥ 0. Since this equality holds for any ε, and ρ̄ is positive, it proves that
µ(Rd) = ρ̄.

Weak stationary solutions which are smooth enough (at least in C1(Rd)) are in fact
stationary solutions in the strong sense, as defined in the following lemma, and can be
further characterised.

Lemma 10. Let n̄ ∈ C1(Rd). Then, n̄ is a weak stationary solution of (4.1) if and only
if for all t ≥ 0, y ∈ Rd, {

n̄(X(t, y)) = e
∫ t
0 r̃(X(s,y))−ρ̄ ds n̄(y)∫

Rd n̄(x)dx = ρ̄
.

Proof. First, let us note that, since n̄ ∈ C1(Rd), one can integrate by parts in the expression
(4.34) in order to prove that n̄ is a weak stationary solution if and only if for any φ ∈
C1
c (Rd), ∫

Rd

(−∇ · (f(x)n̄(x)) + (r(x)− ρ̄) n̄(x))φ(x)dx = 0,

with ρ̄ =
∫
Rd n̄(x)dx, which means that n̄ is a weak stationary solution if and only if it is

a stationary solution in the strong sense, i.e

−∇ · (f(x)n̄(x)) + (r(x)− ρ̄) n̄(x) = 0 for all x ∈ Rd.
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The result follows, since for any y ∈ Rd

d

dt

(
n̄(X(t, y))e−

∫ t
0 r̃(X(s,y))−ρ̄ ds

)
=

(
f(X(t, y)).∇n̄(X(t, y))− (r̃(X(t, y)− ρ̄) n̄(X(t, y))

)
e−

∫ t
0 r̃(X(s,y))−ρ̄ ds

= −
(
−∇ · (f(X(t, y))n̄(X(t, y))) + (r(X(t, y))− ρ̄)n̄(X(t, y))

)
e−

∫ t
0 r̃(X(s,y))−ρ̄ ds = 0.

Lemma 10 allows us to conclude that in the case where the ODE u̇ = f(u) has a
repellor with a bounded unstable set, there exists a smooth stationary solution for (4.1).

Corollary 28. Let xu ∈ Rd be a repellor point for the ODE ẋ = f(x), and let us assume
that

n̄(x) :=
r̃(xu)

α
e
∫+∞
0 r̃(Y (s,x))−r̃(xu)ds1B(x)

is well-defined, and that n̄ ∈ C1(B)∩L1(B), where B = {x ∈ Rd : Y (t, x) −→
t→+∞

xu} is the

unstable set of xu. Then, n̄ is a C1 stationary solution.

Proof. For all y ∈ R, t ≥ 0,

n̄(X(t, y)) =
r̃(xu)

α
e
∫+∞
0 r̃(X(t−s,x))−r̃(xu)ds =

r̃(xu)

α
e
∫ t
−∞ r̃(X(s,y))−r̃(xu)ds,

with the change of variable s′ = t− s and

n̄(y) =
r̃(xu)

α
e
∫ 0
−∞ r̃(X(s,y))−r̃(xu)ds,

with the change of variable s′ = −s. Thus, the equality of Lemma 10 holds, which
concludes the proof.







Chapter 5

A particle method for an
advection-selection-mutation
equation

We study a non-local advection-selection-mutation problem deriving from adaptive dy-
namics models. We prove well-posedness for a large family of initial data. We then
develop a particle method to approximate the solution of such problem by a regularised
sum of weighted Dirac masses whose characteristics solve a suitably defined ODE system.
We establish the convergence of the particle method over any finite time interval, pro-
viding an explicit rate of convergence. Finally, we investigate the asymptotic-preserving
properties of the method in large times, providing sufficient conditions for it to hold true
as well as examples and counter-examples. Finally, we illustrate the method in two cases
taken from the literature.

This work has been done with Frank Ernesto Alvarez and has been submitted for
publication.
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5.1 Introduction

Presentation of the model

The goal of this chapter is to develop a numerical method allowing to approximate the
solutions of equations of the form
∂tv(t, x) +∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x) +

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ], L1(Rd)),
v(0, ·) = v0(·) ∈W 1,1(Rd),

(5.1)

where

(Ilu)(t, x) =

∫
Rd

ψl(t, x, y)u(t, y)dy, l = a, g, d

are non-local terms and a, R, m and ψl are smooth functions.
This general formulation aims to bring together a wide family of PDE models typi-

cally used in the field of adaptive dynamics. In this context, x represents a phenotypic
trait (usually simply called ‘phenotype’ or ‘trait’) which is a characteristic inherent to
individuals, and x 7→ v(t, x) represents the density of the studied population at time
t ≥ 0. One purpose of adaptive dynamics is to understand the combined effect of se-
lection and mutations (which are usually assumed to be rare and small [49, 62, 117]) on
living populations [18]. The literature concerning phenotype-structured equations is abun-
dant [10, 42, 50, 86, 107, 131, 132]. The model proposed in this chapter (which includes,
among others, the equations studied in [13,21,48,59,106]) takes into account

• Selection and growth, via the term ‘R(t, x, Igv(t, x))v(t, x)’, where R can be inter-
preted as the instantaneous growth rate, which depends on the trait x and the whole
population.

• Mutation, via the term ‘
∫
Rd m(t, x, y, Idv(t, x))v(t, y)dy’, where the function m can

be seen as the probability density for a cell of trait y to mutate into a cell of trait x.

• Advection, via the term ‘∇x · (a(t, x, Iav(t, x))v(t, x))’. This term models how the
environment drives the individuals towards specific regions, as opposed to random
mutations. Among others, this term can be used in order to model a cell differenti-
ation phenomenon.

Mutations can also be modelled through a second order differential operator such as in [32]
and [4]. Laplacian-like terms can be approximated by integral operators, as shown in [46],
which means that, after choosing an appropriate integral approximation, our analysis
could be extended to deal with second order equations. The other two non local-terms
(Ia and Ig) allow to take into account the influence of the environment, created by the
whole population, over the behaviour of the individuals [59, 164], or competition between
individuals [131].

The long time behaviour of models considering only one phenomenon among selection,
advection and mutation is well-known: broadly speaking, it has been shown that con-
sidering selection alone, or advection alone, leads to concentration phenomena (towards
a finite number of traits) [51, 106, 131], meaning that the density converges to a sum of
Dirac masses, while mutations by themselves have a smoothing effect [69]. Neverthe-
less, the combined effects of these terms remains unclear, and may lead to different and
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non-intuitive behaviours. As an example, considering both selection and advection can
lead to convergence either to a Dirac mass or to a continuous function (see Chapter 4,
cooney2022long), and considering mutation and selection leads either to convergence to a
non-smooth measure or to a continuous function [13]. Note that this model also includes
the equation studied in [9], which was also approximated with a particle method.

Upon establishing the well-posedness of (5.1), this chapter is concerned with the deriva-
tion of a particle method inspired by [46], the analysis of its convergence and asymptotic-
preserving properties. However, we must emphasise the two main novelties with respect
to that work: First, the use of non local terms, which as we will show, poses technical dif-
ficulties and affects the existence of smooth solutions in certain cases. Secondly, the study
of the asymptotic preserving property, which guarantees that, under certain hypotheses,
the long time behaviour of the solution is conserved. As will be seen, these equations
are naturally posed in the space of Radon measures, making particle methods a natural
tool to approximate then. Compared to finite volume or finite element methods, they are
more easily implemented. Furthermore, a change in model leads to very few changes in
the corresponding code, a clear advantage over other methods.

Particle method

Particle methods use ODE resolution in order to approximate the solution of PDEs. This
makes them particularly easy to implement, as they only require a classical ODE solver.
The main idea is to seek a sum of weighted Dirac masses, called particle solution, which
is denoted

vN (t) =
N∑
i=1

αi(t)δxi(t), (5.2)

where the weights αi and the points xi are solutions of a suitable ODE system.
In order to recover a smooth function close to the solution of the studied PDE, the

particle solution needs to be regularised: this is usually done by means of a convolution
with a so-called ‘cut-off function’ φε which must satisfy some specific properties. We
denote this regular solution

vNε (t, x) =

N∑
i=1

αi(t)φε(x− xi(t)), (5.3)

where the scaling parameter ε is a function of N .
This method is especially adapted for the linear advection equation ‘∂tv(t, x) + ∇ ·

(a(x)v(t, x)) = 0’, but has been generalised to many other kinds of equations which mostly
come from physics [81], such as diffuson equations [22,47,100,101,140], advection-diffusion
equations [74,111], convection-diffusion equations [46], the Navier-Stokes equation [33,41]
or the Vlasov-Poisson equation [40,136].

We apply the particle method by following its main three steps, as described in [27]:

(i) Particle approximation of the initial data. This first step consists of approach-
ing the initial condition of v0 with a sum of weighted Dirac masses, i.e. choosing
N ∈ N, x01, ..., x0N ∈ Rd, α0

1, ..., α
0
N ∈ R such that

vN0 :=
N∑
i=1

α0
i δx0i

∼ v0,

in the sense of Radon measures, which means that, for any ϕ ∈ C0
c (Rd),

N∑
i=1

α0
iϕ(x

0
i ) −→

N→+∞

∫
Rd

ϕ(x)v0(x)dx.
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Assuming that v0 has a compact support, a canonical way of choosing these values
is to choose a finite collection of subsets Ω0

i ⊂ supp
(
v0
)
satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃

i∈{1,...,N}

Ω0
i = supp

(
v0
)
,

and to take, for any i ∈ {1, ..., N}

x0i ∈ Ω0
i , w0

i = |Ω0
i |, ν0i = v0(x0i ) αi = νiwi.

(ii) Time-evolution of the particles. By using a weak formulation of the PDE, we
determine the ODE satisfied by the positions (denoted xi), the volumes (denoted
wi) and the weights (denoted νi) associated to each of the N particles, with initial
conditions (x0i , w

0
i , ν

0
i ) given at the previous step. The exact ODE, and the way the

particles are correlated with each other depends on the complexity of the PDE. In
the case where the advection term is local (a(t, x, I) = a(t, x)), the positions and the
volumes satisfy

ẋi(t) = a(t, xi(t)), ẇi(t) = ∇x · (a(t, xi(t)))wi(t) (5.4)

and the formula for the νi depends on the selection and the mutation terms. The
method described in the core of this chapter also allows to use this method in the
case of a non-local advection, which modifies the ODE satisfied by the positions of
the particles. Full formulas are given in Section 5.3.

Rewriting αi = νiwi, with the volumes wi which satisfy (5.4) is required for the
approximation of the different integral terms. Indeed, by Liouville’s formula [73], for
any f smooth enough,

∫
Rd

f(x)dx ∼
N∑
i=1

f(xi(t))wi(t).

Formally, v and vN (as defined by (5.2)) are both solution of (5.1) in the weak sense,
with vN (0) ∼ v0, which implies that, assuming that the parameters of the PDE are
smooth enough, for any given time T > 0, vN (T ) ∼ v(T, ·).

(iii) Regularisation. In order to transform the discrete measure vN into a smooth
function, we use a regularisation process based on convolution, which writes as a
sum, shown in (5.3), since the convoluted measure is a sum of Dirac masses. The
function

φε :=
1

εd
φ
( ·
ε

)
,

depending on a parameter ε > 0, is a scaling of the so-called cut-off function φ,
which must satisfy some regularity and symmetry properties (which we specify in
Section 5.4.1). The choice of ε, which intimately depends on the choice of N , is
intricate: if ε is too large, then the solution is ‘over-regularised’, and the scheme
loses its accuracy. Conversely, if ε is to small, then some of the particles will be
neglected, and the scheme does not converge towards the solution. Choosing the
optimal ε as a function of N is thus not a trivial question, and it is possible in some
cases to optimise the convergence rate by improving this regularisation step [38,83].
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Main results

Well-posedness. We first prove that problem (5.1) is well-posed, i.e. that for any
family of parameters satisfying some regularity properties, defined in C([0,+∞), L1(Rd)).
The proof heavily relies on the use of the characteristic curves Xu(t, y), solution to the
equation{

Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)), t ∈ [0, T ],

Xu(0, y) = y,

for y ∈ Rd and u ∈ C([0, T ], L1(Rd)). The main difference with respect to the approach
taken for similar problems, as in [46], is the need for continuity results for Xu(t, y), not
only with respect to the trait variable y, but with respect to u as well. The required results
are stated in Section 5.2.1 and proved in Appendix C.1.

The well posedness of the problem for smooth initial data is proved in Section 5.2.2 us-
ing a standard fixed point argument. Moreover, in Section 5.2.3, we consider a more general
family of initial conditions and we prove that the regularity of v(t, ·) is linked to that of v0:
more precisely, if v0 ∈W k,∞(Rd) with compact support, then v ∈ C([0,+∞),W k−1,1(Rd)).
This result can be improved if the advection is local, i.e. a(t, x, I) = a(t, x): In this case,
for any initial condition in W k,1(Rd), the solution v is in C([0,+∞),W k,1(Rd)).

Particle method: definition and well-posedness. In Section 5.3, we define the par-
ticle method corresponding to this PDE, by deriving the ODE system satisfied by the
particles (xi, wi and νi). For the non-local case, the equation we obtain is a coupled sys-
tem with infinitely many equations and unknowns. We generalise some classical results
from the Cauchy-Lipschitz theory in order to deal with this problem, and prove that the
ODE system is well posed.

Convergence of the particle method. Section 5.4 is structured as follows: in Section
5.4.1 we prove the following estimate, detailed in Theorem 14:

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), for all 0 ⩽ t ⩽ T.

Nevertheless, in general this scheme is not asymptotic preserving. Therefore, in subsection
5.4.2, we show examples for which the scheme is asymptotic preserving, and others for
which it is not. In general, the asymptotic behaviour of a solution is preserved when it
converges to a sum of Dirac masses, and is not when it converges to a smooth solution.

Perspectives and open problems

Although a loss of regularity appears to be taking place when advection is non local, we do
not know whether such a loss of regularity does happen in certain cases. The construction
of such an example or, on the contrary, the improvement of our results in order to prove
that, in fact, no regularity is lost could be a first way to extend our work.
Another open problem is the optimisation of the order of convergence for the numerical
solution, improving upon the order κr

κ+r obtained in the present work. The approach
from [38], where the local averages are viewed as point values of an approximation of the
solution, and the regularisation of the solution at time t > 0 is performed by interpolation
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rather than convolution, could be a suitable choice.
Lastly, as mentioned before, another direction could be the extension of our results in
order to deal with second order equations, as done in [46], where the Laplacian operator
is approximated by an appropriate sequence of mutation kernels.

5.2 The problem

For T > 0 and k ∈ N we consider the functions

(t, x, I) 7→ a(t, x, I) ∈W 1,∞
(
[0, T ], (W k+1,∞(Rd+1))d

)
, (5.5)

(t, x, I) 7→ R(t, x, I) ∈ C
(
[0, T ]× Rdx,W

k+1,∞
loc (RI)

)
∩ C

(
[0, T ]× RI ,W k+1,∞(Rdx)

)
.

(5.6)

We consider as well (t, x, y, I) 7→ m(t, x, y, I) such that m ≥ 0 and

m ∈ C
(
[0, T ]× Rdx × Rdy,W k+1,∞(RI)

)
∩ C

(
[0, T ]× Rdx × RI , L∞(Rdy)

)
∩ C

(
[0, T ]× Rdy × RI , Ckc (Rdx)

)
,

which is globally Lipschitz with respect to the non local variables and uniformly com-
pactly supported with respect to the x variable. That is, we suppose m to satisfy the
following hypotheses:

• There exists µ > 0 such that

sup
t,x,y

k∑
i=1

∑
|α|=i

k∑
j=1

|∂αx ∂
j
Im(t, x, y, I)− ∂αx ∂

j
Im(t, x, y, J)| ⩽ µ|I − J |. (5.7)

• There exists a compact set K such that the function

M(x) := sup
t,y,I

k∑
i=1

∑
|α|=i

k∑
j=1

|∂αx ∂
j
Im(t, x, y, I)|, (5.8)

satisfies

supp M(x) ⊂ K. (5.9)

Furthermore, we assume that

∥M∥L∞(Rd) ⩽M <∞. (5.10)

From a modelling point of view, assuming m to be uniformly compactly supported
reflects the fact that some traits are realistically out of reach for a given population,
and that, in general, mutations are rare and small.

We remark that hypotheses (5.9) and (5.10) imply that

∥M∥L1(Rd) ⩽ |K|M =: K <∞. (5.11)
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For all functions u ∈ C([0, T ], L1(Rd)) we consider the linear mappings Ia, Ig and Id which
satisfy, for all t ∈ [0, T ], x ∈ Rd,

(Iau)(t, x) :=

∫
Rd

ψa(t, x, y)u(t, y)dy, (5.12)

(Igu)(t, x) :=

∫
Rd

ψg(t, x, y)u(t, y)dy, (5.13)

(Idu)(t, x) :=

∫
Rd

ψd(t, x, y)u(t, y)dy, (5.14)

where

ψa ∈W 1,∞
(
[0, T ]× Rdx, L∞(Rdy)

)
∩ C

(
[0, T ]× Rdy,W k+1,∞(Rdx)

)
, (5.15)

0 < ψg ⩽ ψg ∈ C
(
[0, T ]× Rdx, L∞(Rdy)

)
∩ C

(
[0, T ]× Rdy,W k+1,∞(Rd)

)
, (5.16)

ψd ∈ C
(
[0, T ]× Rdx, L∞(Rdy)

)
∩ C

(
[0, T ]× Rdy,W k+1,∞(Rd)

)
, (5.17)

for a certain ψg > 0. We remark that Iau, Igu, Idu ∈ C([0, T ], L∞(Rd)). The functions ψa
and ψd do not need to be positive, reflecting this way how different traits have different
impacts (which are not always beneficial) on the environment, and ultimately on the pop-
ulation itself. On the other hand, ψg has to be bounded away from zero. This hypothesis
reflects the fact that, at least for the growth term, all interactions between individuals are
of the same type. These interactions may be interpreted as either strictly competitive or
strictly cooperative. In particular, this means that only “very” non-local dependence with
respect to u are allowed. This excludes partial densities, for instance on part of the traits.
Lastly, we assume that there exist non-negative constants I∗ and r∗ such that, for all
t ∈ [0, T ], x ∈ Rd, and I ⩾ I∗,

R(t, x, I) +K < −r∗, (5.18)

uniformly on t and x. It is somewhat natural to assume that R is negative for a large
population: for example, if a carrying capacity is assumed to exist, and the population
size is approaching such value, then the growth rate will inevitably drop to levels where
no amount of mutations will be able to compensate for it.
For a given function v0 ∈ L1(Rd), we will study the existence and uniqueness of solution
for the problem

∂tv(t, x) +∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x)

+

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ), L1(Rd)),
v(0, ·) = v0(·).

(5.19)

We will show that, under additional hypotheses, either over a or v0, we can guarantee the
well-posedness of this problem. In particular, we provide the results regarding the cases
of local advection (∂Ia = 0) and non-local advection (∂Ia ̸= 0). We will see that this
distinction directly affects the set of initial data v0 for which the existence of solutions is
guaranteed.
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5.2.1 Some bounds over the characteristics

Consider a satisfying (5.5) and ψa satisfying (5.15) for some k ⩾ 1. For all y ∈ Rd and
u ∈ C([0, T ], L1(Rd)) we define the characteristic curve t 7→ Xu(t, y) as the unique solution
the following ODE{

Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)), t ∈ [0, T ],

Xu(0, y) = y,
(5.20)

where (Iau)(t, x) is defined in (5.12). Since the function ψa belongs to
W 1,∞ ([0, T ]× Rdx, L∞(Rdy)

)
, then (Iau)(t, x) belongs toW

1,∞ ([0, T ]× Rdx
)
⊂ C0,1([0, T ]×

Rdx). The regularity of a then implies that Au(t, x) is a Lipschitz function with respect to
the x variable, uniformly with respect to t, guaranteeing this way the global existence of
solution for (5.20).

For all u ∈ C([0, T ], L1(Rd)), we define the norms

∥u∥1 := ∥u∥L1([0,T ]×Rd) =

T∫
0

∫
Rd

|u(t, x)|dxdt and ∥u∥ := sup
t∈[0,T ]

∥u(t, ·)∥L1(Rd).

We present some results involving the characteristics. The proofs for such results are given
in Appendix C.1.

The first property we describe is the continuity of the family of characteristics with
respect to the spatial variables and the function u.

Lemma 11. Let ψa satisfy (5.15) and a satisfy (5.5) for k = 0. Consider y1, y2 ∈ Rd
and u1, u2 ∈ C([0, T ], L1(Rd)). Then there exists a positive constant C(T, ∥u1∥, ∥u2∥), such
that the solutions Xu1 and Xu2 of (5.20) satisfy for any t ∈ [0, T ],

d∑
j=1

|Xj
u1(t, y1)−Xj

u2(t, y2)| ⩽ C(T, ∥u1∥, ∥u2∥) (|y1 − y2|+ ∥u1 − u2∥1) .

Secondly, we claim that the spatial derivatives of the characteristics remain bounded
by a constant only depending on T and ∥u∥. We also claim that the spatial derivatives
are continuous with respect to the spatial variables and the function u.

Lemma 12. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider u ∈
C([0, T ], L1(Rd)). Then there exists a positive constant C(T, ∥u∥), such that the solution
Xu(t, y) of (5.20) satisfies, for all t ∈ [0, T ] and y ∈ Rd,

k∑
i=1

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t, y)| ⩽ C(T, ∥u∥). (5.21)

Furthermore, for any two points y1, y2 ∈ Rd, and any two functions u1, u2 ∈ C([0, T ], L1(Rd)),
there exists a positive constant C2(T, ∥u1∥, ∥u2∥), such that the solutions Xu1 and Xu2 of
(5.20) satisfy for any t ∈ [0, T ]

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u1(t, y1)−∂

α
yX

j
u2(t, y2)| ⩽ C(T, ∥u1∥, ∥u2∥)(|y1−y2|+∥u1−u2∥1). (5.22)
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Since for all t ∈ [0, T ], y 7→ Xu(t, y) is a C1-diffeomorphism from Rd onto itself, we may
define its inverse as the function satisfying Xu(t,X

−1
u (t, x)) = x for all (t, x) ∈ [0, T ]×Rd.

We have the following results for X−1
u .

Lemma 13. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider u ∈
C([0, T ], L1(Rd)). Then there exists a positive constant C̃(T, ∥u∥), such that the inverse of
the solution Xu(t, y) of (5.20) satisfies, for all t ∈ [0, T ], x ∈ Rd

k∑
i=1

∑
|α|⩽i

d∑
j=1

|∂αx
(
X−1
u

)j
(t, x)| ⩽ C̃(T, ∥u∥). (5.23)

Lemma 14. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider any two
functions u1, u2 ∈ C([0, T ], L1(Rd)). Then there exists a positive constant C̃(T, ∥u1∥, ∥u2∥),
which satisfies lim

T→0
C̃(T, ∥u1∥, ∥u2∥) = 0 and such that the inverses of the solutions Xu1

and Xu2 of (5.20) satisfy, for all t ∈ [0, T ] and x ∈ Rd

k−1∑
i=0

∑
|α|⩽i

d∑
j=1

|
(
∂αxX

−1
u1

)j
(t, x)− ∂αx

(
X−1
u2

)j
(t, x)| ⩽ C̃(T, ∥u1∥, ∥u2∥)∥u1 − u2∥1. (5.24)

We remark that thanks to the relation ∥u∥1 ⩽ T∥u∥, the relations (5.22) and (5.24)
also hold true when replacing ∥u1 − u2∥1 by ∥u1 − u2∥. Lastly, we give a result regarding
the regularity of Xu(t, x) with respect to t.

Lemma 15. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider u ∈
C1([0, T1)×Rd) such that sup

t∈[0,T1)
(∥u(t, ·)∥L1(Rd)+∥∂tu(t, ·)∥L1(Rd)) < +∞. Then Xu(t, y) ∈

C1([0, T1], Ck(Rd)). As a consequence, X−1
u (t, x) ∈ C1([0, T1], Ck(Rd)).

Proof. Thanks to Lemma 12, we know that under these hypotheses, for all T < T1, Xu(t, y)
exists and belongs to C1([0, T ], Ck(Rd)). Consider 0 < t1, t2 < T1, then

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t1, y)− ∂αyX

j
u(t2, y)| =

k∑
i=0

∑
|α|⩽i

d∑
j=1

|
∫ t2

t1

∂αy Ẋ
j
u(s, y)ds|

=

k∑
i=0

∑
|α|⩽i

d∑
j=1

|
∫ t2

t1

∂αy aj(s,Xu(s, y), (Iau)(s,Xu(s, y)))ds|.

Thanks to the regularity of a and ψa, the bounds given in Lemma 12 for the derivatives
of Xu(t, y) and the uniform bound for ∥u∥L1(Rd) we conclude that there exists a positive
constant such that

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t1, y)− ∂αyX

j
u(t2, y)| ⩽ C|t1 − t2|.

Similarly, we have

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy Ẋj
u(t1, y)− ∂αy Ẋ

j
u(t2, y)| =

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy (Au)j(t1, y)− ∂αy (Au)j(t2, y)|,

where

(Au)j(t, y) := aj(t,Xu(t, y), (Iau)(t1, Xu(t, y))).
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Again, the regularity up to order k+1 of the involved coefficients allow us to conclude
that

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy Ẋj
u(t1, y)− Ẋj

u(t1, y)| ⩽ C|t1 − t2|.

We have shown that Xu(t, ·) is a Cauchy sequence in Ck(Rd) when t goes to TM , therefore,
there exists X∗(x) ∈ Ck(Rd) and Y ∗(x) ∈ Ck(Rd) such that

lim
t→TM

∥Xu(t, ·)−X∗∥Ck(Rd) + ∥Ẋu(t, ·)− Y ∗∥Ck(Rd),

which is the desired result.

5.2.2 Existence of solution for smooth initial data

We first provide the proof of existence and uniqueness of solution for problem (5.19) when
the initial condition v0 is a smooth enough function. We still assume hypotheses (5.5)
through (5.18) hold. For a smooth initial condition v0 we denote by classical solution any
function v ∈ C1([0, T ]× Rd) which satisfies problem (5.19).
The following a priori estimate will allow us to guarantee the global existence of a classical
solution given that such solution exists over a certain interval [0, T1].

Lemma 16. Let v0 ∈ C1
c (Rd) and T1 > 0 be such that a classical solution v ∈ C1([0, T ]×Rd)

exists for problem (5.19) for all T < T1, which is positive and has compact support with
respect to the x variable. Then, such solution satisfies the estimate

sup
t∈[0,T1]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}. (5.25)

Proof. Let v be the aforementioned positive solution. Denoting ρ(t) := ∥v(t, ·)∥L1(Rd), we
see directly from equation (5.19) that

ρ̇(t) =

∫
Rd

(
R(t, y, (Igv)(t, y)) +

∫
Rd

m(t, x, y, (Idv)(t, x))dx

)
v(t, y)dy.

If there exists t such that ρ(t) > I∗

ψg
, then (Igv)(t, y) ⩾ ψgρ(t) > I∗, which allows us to use

hypothesis (5.18) in order to conclude

ρ̇(t) < −r∗ρ(t) < 0.

This way, we see that either ρ(t) is smaller than I∗

ψg
or ρ(t) is decreasing, which in turn

implies the bound (5.25).

A fixed point argument together with estimate (5.25) will allow us to conclude the
existence of solution for problem (5.19) for smooth initial conditions.

Theorem 10. Consider k ⩾ 1 and T > 0. Under hypotheses (5.15) through (5.18), for all
non-negative functions v0 ∈ Ckc (Rd), there exists a unique non-negative classical solution
v ∈ C1([0, T ], Ckc (Rd)) to problem (5.19). Furthermore, such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (5.26)

sup
t∈[0,T ]

∥v(t, ·)∥Wk,1(Rd) ⩽ CT ∥v0∥Wk,1(Rd). (5.27)
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Proof. Consider v0 ∈ Ckc (Rd). For t ≥ 0 and the function M introduced in (5.8) we define
rt := 2∥a∥L∞t, Brt the open ball centred at 0 and of radius rt,

Ot := supp (v0) ∪ supp (M) +Brt ,

and for α > 1 we define ρα := max{α∥v0∥L1(Rd),
I∗

ψg
}. We consider

u ∈ DT
α :=

{
u ∈ C([0, T ]× Rd) : u ⩾ 0, supp (u(t, ·)) ⊂ Ot,

∫
Rd

u(t, x)dx ⩽ ρα, ∀t ∈ [0, T ]

}
.

We denote as Φu the mapping defined by v = Φu, where v is the solution of
∂tv(t, x) +∇x · (a(t, x, (Iau)(t, x))v(t, x)) −R(t, x, (Igu)(t, x))v(t, x)

=
∫
Rd m(t, x, y, (Idu)(t, x))u(t, y)dy

v(0, ·) = v0(·).

Let us denote, for any y ∈ Rd, as Xu(·, y) the unique solution of{
Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)) t ≥ 0,

X(0, y) = y.

As stated before, for any t ∈ [0, T ], x 7→ Xu(t, x) is a C1-diffeomorphism, therefore, for all
t ≥ 0 and all x ∈ Rd there exists a unique y ∈ Rd such that x = Xu(t, y), which we denote
y = X−1

u (t, x).
We see that,

d

dt
v(t,Xu(t, y)) =

[
R(t,Xu(t, y), (Igu)(t,Xu(t, y)))− div Au(t,Xu(t, y))

]
v(t,Xu(t, y))

+

∫
Rd

m(t,Xu(t, y), z, (Idu)(t,Xu(t, y)))u(t, z)dz,

and thus, denoting

Gu(t, y) := R(t,Xu(t, y), (Igu)(t,Xu(t, y)))− div Au(t,Xu(t, y)),

we get

Φu(t,Xu(t, y)) =v(t,Xu(t, y))

=v0(y) exp

(∫ t

0

Gu(s, y)ds

)
+

∫ t

0

∫
Rd

m(s,Xu(s, y), z, (Idu)(s,Xu(s, y)))u(s, z)dz exp

(∫ t

s

Gu(τ, y)dτ

)
ds

or, equivalently

Φu(t, x) =v(t, x)

=v0(X−1
u (t, x)) exp

(∫ t

0

Gu(s,X
−1
u (t, x))ds

)
+

∫ t

0

∫
Rd

m(s,Xu(s,X
−1
u (t, x)), z, (Idu)(s,Xu(s,X

−1
u (t, x))))u(s, z)dz

exp

(∫ t

s

Gu(τ,X
−1
u (t, x))dτ

)
ds.

The solution v is thus non-negative, according to the non-negativity of v0, u and m.
Thanks to Lemma 13, v belongs to C1([0, T ], Cκ(Rd)) ⊂ C([0, T ] × Rd). Furthermore, the
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fact that for all t ∈ [0, T ], |X(t, y)− y| ⩽ ∥a∥L∞t implies that supp (v(t, ·)) ⊂ Ot.
Additionally, directly from its definition, we see that

Gu(s,X−1
u (t, x)) ⩽ γ := ∥R∥L∞

t,x,I
+ ∥a∥

W 1,∞
x L∞

t,I
+ ∥a∥

W 1,∞
I L∞

t,x
∥ψa∥W 1,∞

x L∞
y
ρα,

and consequently, for all u ∈ DT
α , we have

∥Φu(t, ·))∥L1(Rd) ⩽ eγT

∫
Rd

v0(X−1
u (t, x))dx

+

∫ t

0

∫
Rd

∫
Rd

m(s,Xu(s,X
−1
u (t, x)), z, (Idu)(s,Xu(s,X

−1
u (t, x))))u(s, z)dzdxds

)

⩽eγT

∫
Rd

v0(X−1
u (t, x))dx+

∫ t

0

∫
Rd

M(s,Xu(s,X
−1
u (t, x)))dx

∫
Rd

u(s, z)dzds

 .

Making the changes of variables y = X−1
u (t, x) and y = Xu(s,X

−1
u (t, x)) respectively on

each of the integrals on the last expression, recalling that, according to Liouville’s formula

|JXu(t,y)| = e
∫ t
0 div Au(s,Xu(t,y))ds,

|JXu(t,X
−1
u (s,y))| = e

∫ t
0 div Au(τ,Xu(t,X

−1
u (s,y)))dτ−

∫ s
0 div Au(τ,y)dτ ,

and using the hypotheses over a and m we obtain that for all t ∈ [0, T ],

∥Φu(t, ·)∥L1(Rd) ⩽ e(γ+2ã)T
(
∥v0∥L1(Rd) +KT∥u∥L1(Rd)

)
,

where ã := ∥a∥
W 1,∞

x L∞
t,I

+ ∥a∥
W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρα. Finally, using the hypothesis over

v0 and u we see that

∥Φu(t, ·)∥L1(Rd) ⩽ e(γ+2ã)T

(
1

α
+KT

)
ρα.

Thanks to the condition α > 1 there exists Tα (only depending on α and on the coef-
ficients of the problem) such that ∥Φu∥L1(Rd) ⩽ ρα for all t ∈ [0, Tα]. In other words,

Φ : DTα
α → DTα

α .

We now claim that the mapping Φu is a contraction on some DT1
α , 0 < T1 ⩽ Tα, with

respect to the usual norm in C([0, T ] × Rd). For two functions u1, u2 ∈ DTα
α and any

t ∈ [0, Tα], thanks to Lemma 11 and Lemma 14, we have

|Φu1 − Φu2| ⩽Ceγt|X−1
u1 (t, x)−X−1

u2 (t, x)|
⩽Ceγt∥u1 − u2∥1
⩽Ceγt|Ot|t∥u1 − u2∥C([0,t]×Rd).

Clearly, for t = T1 small enough, Φu is a contraction, and therefore, thanks to the Ba-
nach fixed point theorem, there exists a unique v ∈ DT1

α such that Φv = v. Such v is a
solution of (5.19) over [0, T1]. Furthermore, directly from the relation v = Φv we see that
v ∈ C1([0, T ], Cκc (Rd)).

Let us now assume that there exists TM , a finite maximal time such that a solution
exists in BT

α for all T < TM , and let v be such solution. Directly from Lemma 16,
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the solution v satisfies estimate (5.25) over [0, TM ). Furthermore, thanks to the relation
v = Φv, we are able to show that

sup
[0,TM )

(∥v(t, ·)∥L1(Rd) + ∥v̇(t, ·)∥L1(Rd)) < +∞.

From Lemma 15 we get then that X−1
v (t, x) ∈ C1([0, TM ], Ck(Rd)), and by composition of

functions, so is v = Φv. We can then iterate the previous ideas using v(TM ) ∈ Ck(Rd)
as a starting point in order to obtain the existence of solution over a certain interval
[TM , TM + δ), contradicting this way the maximal character of TM . Hence, there exists a
classical solution of (5.19) for all t > 0.

The uniqueness on C([0, T ], Cκc (Rd)) comes from the fact that every other solution on
D∞
α will coincide with v at least over a small interval (0, t0) and then, by continuity, the

same would hold for all t.

To obtain the W k,1(Rd) estimates, we differentiate the relation v = Φv and notice that
for all multi-index β such that |β| ⩽ k

∂βxv =exp

(∫ t

0
Gv(s,X−1

v (t, x))ds

) ∑
|γ|⩽|β|

∂γxv
0(X−1

v (t, x))F γ1 (t, x)

+

∫ t

0

∫
Rd

F2(s, x, y)v(s, y)dy exp

(∫ t

s
Gv(τ, x)dτ

)
ds

where the functions F γ1 and F2 are combinations of sums and multiplications of the deriva-
tives up to order |β| of X−1

v , R, m, Ig and Id. Taking absolute values, integrating over Rd
and using the boundedness of all the involved coefficients we arrive at

∥v(t, ·)∥Wk,1(Rd) ⩽ C1
T ∥v0∥Wk,1(Rd) + C2

T

∫ t

0
∥v(s, ·)∥Wk,1(Rd)ds

and thanks to Grönwall’s lemma we get (5.27).

5.2.3 Existence of solution for more general initial data

Depending on whether ∂Ia = 0 or ∂Ia ̸= 0, we will have a different class of initial data for
which we are able to guarantee existence of solution for problem (5.19). Furthermore, the
regularity of such solution might also be affected.
We first prove that, when ∂Ia ̸= 0, a solution exists (in a sense that will be defined below)
for any initial condition v0 ∈W k,∞(Rd), with compact support. However, we do not prove
that the regularity of the solution is preserved over time, even if we did not manage to
highlight the existence of cases where a loss of regularity is observed. Secondly, we will
show that, when ∂Ia = 0, not only the set of initial conditions for which we can claim
existence of solution is more general (v0 ∈ W k,1(Rd)), but the regularity of such solution
is preserved for all t > 0.
We introduce the definition of weak solution for problem (5.19). We say that v is a weak
solution of problem (5.19) associated to v0 ∈ Lp(Rd) if

v ∈ L∞([0, T ], Lp(Rd)),

and it satisfies the equation in the following weak sense∫ T

0

∫
Rd

vL∗
vφdxdt =

∫
Rd

v0φdx,
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for any φ ∈ C1
c ([0, T )× Rd), where we define the operator L∗

v by

L∗
vφ(t, x) = −∂tφ(t, x)− a(t, x, (Iav)(t, x)) · ∇φ(t, x)−R(t, x, (Igv)(t, x))φ(t, x))

−
∫
Rd

m(t, y, x, (Idv)(t, y))φ(t, y)dy,

for all t ∈ [0, T ], y ∈ Rd. We remark that a classical solution is always a weak solution.

Theorem 11. Under hypotheses (5.5) through (5.18), for all k ⩾ 1 and any non-negative
functions v0 ∈ W k,∞(Rd) with compact support, there exists a unique non-negative weak
solution v ∈ C([0, T ], Ck−1

c (Rd)) to problem (5.19). Furthermore, such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (5.28)

sup
t∈[0,T ]

∥v(t, ·)∥Wk−1,1(Rd) ⩽ CT ∥v0∥Wk−1,1(Rd), (5.29)

and, for k ⩾ 2, v ∈ C1([0, T ], Ck−1
c (Rd)).

Proof. Directly fromMorrey’s inequality, we get the relation v0 ∈W k,∞(Rd) ⊂ Ck−1,1(Rd).
If k ⩾ 2, we are able to apply Theorem 10 in order to get the desired result.
Consider now k = 1. The compact support of v0 and the W 1,∞(Rd) regularity imply that
v0 ∈W k,1(Rd). This means that, there exists a sequence of compactly supported functions
v0ε ∈ C1

c (Rd) such that

supp (v0)ε ⊂ supp (v0),

∥v0ε∥W 1,∞(Rd) ⩽ ∥v0∥W 1,∞(Rd),

lim
ε→0

∥v0 − v0ε∥W 1,1(Rd) = 0.

We denote as vε the solution of problem (5.19) associated to v0ε , and we claim that vε is
a Cauchy sequence in C([0, T ], L1(Rd)).
We recall that for all ε,

sup
t∈[0,T ]

∥vε∥L1(Rd) ⩽ ρε := max{∥v0ε∥L1(Rd),
I∗

ψg
}.

Furthermore, the equality vε = Φvε holds true, where Φ was defined on the proof of
Theorem 10. Consequently, for ε1, ε2 > 0 we have the relation

∆Vε1ε2 :=vε1 − vε2

=Φvε1 − Φvε2

=

(
v0ε1(X

−1
vε1

(t, x))− v0ε2(X
−1
vε2

(t, x))

)
exp

(∫ t

0
G1(τ, t, x)dτ

)
− v0ε2(X

−1
vε2

(t, x))

(
∆E(0, t, x)

)
+

∫ t

0

∫
Rd

(
M1(s, t, x, z)−M2(s, t, x, z)

)
vε1(s, z)dz exp

(∫ t

s
G1(τ, t, x)dτ

)
ds

+

∫ t

0

∫
Rd

M2(s, t, x, z)

(
∆Vε1ε2(s, z)

)
dz exp

(∫ t

s
G1(τ, t, x)dτ

)
ds

+

∫ t

0

∫
Rd

M2(s, t, x, z)vεj (s, z)dz

(
∆E(s, t, x)

)
ds,
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where

Gi(τ, t, x) = Gvεi
(τ,X−1

vεi
(t, x)),

∆E(s, t, x) := exp

(∫ t

s

G1(τ, t, x)dτ

)
− exp

(∫ t

s

G2(τ, t, x)dτ

)
,

Mi(s, t, x, z) := m(s,Xvεi
(s,X−1

vεi
(t, x)), z, (Idvεi)(s,Xvεi

(s,X−1
vεi

(t, x)))).

We write

v0ε1(X
−1
vε1

(t, x))− v0ε2(X
−1
vε2

(t, x)) = v0ε1(X
−1
vε1

(t, x))− v0ε2(X
−1
vε1

(t, x))

+v0ε2(X
−1
vε1

(t, x))− v0ε2(X
−1
vε2

(t, x)).
(5.30)

Thanks to the change of variables y = X−1
vε1

(t, x) and the relations

|JXvε1
(t,y)| =e

∫ t
0 div Avε1

(s,Xvε1
(t,y))ds,

G(s,X−1
vε1

(t, x)) ⩽γ := ∥R∥L∞
t,x,I

+ ∥a∥
W 1,∞

x L∞
t,I

+ ∥a∥
W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρ,

div Avε1
(s,Xvε1

(t, y)) ⩽ã := ∥a∥
W 1,∞

x L∞
t,I

+ ∥a∥
W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρ,

we conclude that∫
Rd

(
v0ε1(X

−1
vε1

(t, x))− v0ε2(X
−1
vε1

(t, x))

)
exp

(∫ t

0
G1(τ, t, x)dτ

)
dx

=

∫
Rd

(
v0ε1(y)− v0ε2(y)

)
exp

(∫ t

0
Gvεi (τ, y)dτ

)
|J−1
Xvε1

(t,y)|dy

⩽e(γ+α̃)T ∥v0ε1 − v0ε2∥L1(R). (5.31)

On the other hand, the compactness of the support of v0ε2 , together with the relation

|Xvε(t, y)− y| ⩽ ∥a∥L∞t,

implies that

v0ε2(X
−1
vε1

(t, x))− v0ε2(X
−1
vε2

(t, x)) = 0, for all x ̸∈ Ot := supp v0 +Brt ,

where Brt is the ball of radius ∥a∥L∞t. Hence, we obtain∫
Rd

(
v0ε2(X

−1
vε1

(t, x))− v0ε2(X
−1
vε2

(t, x))

)
exp

(∫ t

0
G1(τ, t, x)dτ

)
dx

⩽|Ot|∥v0ε2∥W 1,∞(Rd)e
γT |X−1

vε1
(t, x)−X−1

vε2
(t, x)|

⩽C̃T ∥vε1 − vε2∥1, (5.32)

where we have used (5.24) on the second line1.
From the definition of Gu(t, x), we observe that

|∆E(s, t, x)| ⩽eγT
∫ t

s
|G1(τ, t, x)− G2(τ, t, x)|dτ

⩽C̃T ∥vε1 − vε2∥1, (5.33)

1This term is responsible for the possible loss of regularity for t > 0: In order to prove that vε is a
Cauchy sequence in C([0, T ],W 1,1(Rd)), we would need a W 2,∞(Rd) estimate over v0ε , which we do not
have.
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where C̃T depends on ρ, T , the derivatives of R, a and ψa, and on the constant appearing
in (5.24).
Using the change of variables y = Xvε2

(s,X−1
vε2

(t, x)) and recalling that

|JXvε2
(t,X−1

vε2
(s,x))| = e

∫ t
0 div Au(τ,Xvε2

(t,X−1
vε2

(s,x)))dτ−
∫ s
0 div Avε2

(τ,x)dτ ,

we see that∫
Rd

M2(s, t, x, z)dx =

∫
Rd

m(s, y, z, (Idvε2)(s, y))|JXvε2
(t,X−1

vε2
(s,y))|

−1dy

⩽ e2ãT
∫
Rd

sup
s,z,I

mεi(s, y, z, I)dy ⩽ e2ãT |K|M.

Therefore, we have the bounds∫
Rd

v0(X−1
vε2

(t, x))|∆E(0, t, x)|dx ⩽ eα̃T ∥v0∥L1(Rd)C̃T ∥vε1 − vε2∥1, (5.34)

t∫
0

∫
Rd

∫
Rd

M2(s, t, x, z)

(
∆Vε1ε2(s, z)

)
dz exp

 t∫
s

G1(τ, t, x)dτ

 dxds ⩽ e(γ+2ã)T

× |K|M∥vε1 − vε2∥1,
(5.35)

t∫
0

∫
Rd

∫
Rd

M2(t, x, z)vεj (s, z)dz

(
|∆E(s, t, x)|

)
dxds ⩽ e2ãT |K|MρTC̃T ∥vε1 − vε2∥1. (5.36)

The function m(t, x, z, I) having a compact support on the x variable, leads to

M1(s, t, x, z)−M2(s, t, x, z) = 0, for all x ̸∈ K +B2rt .

On the other hand, the function m being differentiable and Lipschitz, implies that, for all
x ∈ K +B2rt

|M1(s, t, x, z)−M2(s, t, x, z)| ⩽ ∥m∥
W 1,∞

x
|Xvε1

(s,X−1
vε1

(t, x))−Xvε2
(s,X−1

vε2
(t, x))|

+ µ|(Idvε1)(s,Xvε1
(s,X−1

vε1
(t, x)))− (Idvε2)(s,Xvε2

(s,X−1
vε2

(t, x)))|

⩽ (∥m∥
W 1,∞

x
+ ∥ψd∥W 1,∞

x
ρ)|Xvε1

(s,X−1
vε1

(t, x))−Xvε2
(s,X−1

vε2
(t, x))|

+ ∥ψd∥L∞∥vε1 − vε2∥L1(Rd).

Using first Lemma 11 and then Lemma 14, we conclude that there exists a constant C̃T
such that

|M1(s, t, x, z)−M2(s, t, x, z)| ⩽C̃T

(
|X−1

vε1
(t, x)−X−1

vε2
(t, x)|+ ∥vε1 − vε2∥1 + ∥vε1 − vε2∥L1(Rd)

)
⩽C̃T

(
∥vε1 − vε2∥1 + ∥vε1 − vε2∥L1(Rd)

)
.
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Therefore, we have the bound

t∫
0

∫
Rd

∫
Rd

(
M1(s, t, x, z)−M2(s, t, x, z)

)
vε1(s, z)dz exp

(∫ t

s
G1(τ, t, x)dτ

)
dxds

⩽|K +B2rT |ρC̃T e
γT ∥vε1 − vε2∥1. (5.37)

Putting together the bounds (5.31) through (5.37), we get

∥vε1 − vε2∥L1(Rd) ⩽ C̃T

(
∥v0ε1 − v0ε2∥L1(R) +

∫ T

0
∥vε1 − vε2∥L1(Rd)ds

)
.

Thanks to Grönwall’s lemma, we have then the relation

sup
t∈[0,T ]

∥vε1 − vε2∥L1(Rd) ⩽ C̃T ∥v0ε1 − v0ε2∥L1(Rd)

for some C̃T independent of ε1 and ε2, which proves that, up to the extraction of a
sub-sequence, vε is a Cauchy sequence in C([0, T ], L1(Rd)). Therefore, there exists v ∈
C([0, T ], L1(Rd)) such that

lim
ε→0

sup
t∈[0,T ]

∥vε − v∥L1(Rd) = 0.

Furthermore, such function satisfies the bounds (5.25) and (5.27).
We claim now that the sequence L∗

vεφ converges to L∗
vφ in L∞([0, T ] × Rd) for all φ ∈

C1
c ([0, T )× Rd). This is a direct consequence of the relation

|L∗vεφ− L∗vεφ| ⩽ (Lr∥ψg∥L∞ + µ∥ψd∥L∞)∥φ∥L∞(Rd)∥vε − v∥L1(Rd).

In order to conclude, we recall that all classical solutions are weak solutions, and therefore,
for all ε > 0 ∫ T

0

∫
Rd

vεL
∗
vεφdxdt =

∫
Rd

v0εφdx,

and taking the limit when ε goes to 0 we see that v is a weak solution of problem (5.19).

Considering initial data with compact support might be enough in order to model most
of the biological scenarios found in nature. However, the hypothesis v0 ∈W k,∞(Rd) might
be too restrictive for some real life scenarios. Furthermore, the study of the problem when
more general initial conditions are present, is of theoretical interest. We show below that,
when ∂Ia = 0, a solution exists for any initial data v0 ∈W k,1(Rd), k ⩾ 1.

Theorem 12. Under hypothesis (5.15) through (5.18), if ∂Ia = 0, for all non-negative
functions v0 ∈ W k,1(Rd), there exists a unique non-negative weak solution
v ∈ C([0, T ],W k,1(Rd)) of problem (5.19). Furthermore, such a solution satisfies

sup
t∈[0,T ]

∥v∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (5.38)

sup
t∈[0,T ]

∥v∥Wk,∞(Rd) ⩽ CT ∥v0∥Wk,1(Rd). (5.39)

Proof. As in the proof for k = 1 when ∂Ia ̸= 0, we can approximate any function v0 ∈W k,1

by a smooth, compactly supported sequence of functions v0ε . The same arguments as in
the previous proof will show that vε, the sequence of solutions associated to v0ε , is a Cauchy
sequence in C([0, T ], L1(Rd)). Furthermore, given that the second term in (5.30), which is
responsible for the possible loss of regularity in the previous case, is equal 0 when ∂Ia = 0,
we show that vε is a Cauchy sequence in C([0, T ],W k,1(Rd)) as well. We prove as in
Theorem 11 that the limit of vε is the required weak solution.
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Given that the regularity of the solution varies depending on whether ∂Ia = 0 or
∂Ia ̸= 0, and that such regularity will be of importance in the upcoming sections, we
define the parameter

κ :=


k − 1, if ∂Ia ̸= 0,

k, if ∂Ia = 0,

which encompasses the information over said regularity.

We remark that if we had ∂Im = 0, we might obtain existence for a larger class of
mutation functions m. For conciseness, we will however not consider such cases in the
present work.

5.3 Particle Method

The particle method basically consists in searching for an approximate solution of problem
(5.19) which is a sum of weighted Dirac masses.
Throughout the following section we suppose

ψa ∈ C
(
[0, T ]× Rdx,W 1,∞(Rd)

)
∩ C

(
[0, T ]× Ry, C2(Rdx) ∩W 2,∞(Rdx)

)
, (5.40)

0 < ψg ⩽ ψg ∈ C
(
[0, T ]× Rdx,W 1,∞(Rdy)

)
∩ C

(
[0, T ]× Rdy, C1(Rdx) ∩W 1,∞(Rdx)

)
(5.41)

ψd ∈ C
(
[0, T ]× Rdx,W 1,∞(Rdy)

)
∩ C

(
[0, T ]× Rdy, C1(Rdx) ∩W 1,∞(Rdx).

)
(5.42)

Notice that, unlike the set of hypotheses (5.15)-(5.17), we have imposed W 1,∞(Rd) reg-
ularity for the y variable, which is needed in order to approximate the integral terms by
sums over a countable set.
Consider as well m ≥ 0,

m ∈ C
(
[0, T ]× Rd

x × Rd
y,W

1,∞(RI)
)
∩C
(
[0, T ]× Rd

x × RI ,W
1,∞(Rd

y)
)
∩C
(
[0, T ]× Rd

y × RI , C1
c (Rd

x)
)

(5.43)

satisfying hypotheses (5.7) through (5.18).
For h > 0, consider a countable set of indices Jh ∈ Zd, points x0i ∈ Rd and weights w0

i for
i ∈ Jh. The weights w0

i can be regarded as the respective masses of a collection of subsets
Ω0
i ⊂ Rd satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃
i∈Jh

Ω0
i = Rd. (5.44)

For example, we may choose the Ω0
i as the set of all non intersecting cubes of side length

equal h having the points hi as centers , i ∈ Zd. This way, w0
i = hd, with each of the x0i

being a point in Ω0
j . In general we assume that there exist positive constants c and C such

that

ch ⩽ |x0i − x0j | ⩽ Ch, ∀i ̸= j, (5.45)

chd ⩽ w0
i ⩽ Chd, ∀i ∈ Jh. (5.46)

Following [46], the particle method then consists in looking for a measure νh of the form

νh(t) =
∑
i∈Jh

νi(t)wi(t)δxi(t),
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where (ν := {vi(t)}i∈Jh
, w := {wi(t)}i∈Jh

, x := {xi(t)}i∈Jh
), is the solution of the following

system 

ẋi(t) = Aν,w(t, xi),

ẇi(t) = div Aν,w(t, xi(t))wi(t),

ν̇i(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)

+
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)),

xi(0) = x0i , wi(0) = w0
i , νi(0) = v0(x0i ),

(5.47)

where
Aν,w(t, x) = a(t, x, Ia(t, x, ν, w)),

and

Il(t, x, ν, w) :=
∑
j∈Jh

νj(t)wj(t)ψl(t, x, xj(t)),

with l ∈ {a, g, d}.
In what follows we assume that h and x0k are chosen in such a way that

∥v0∥1,h :=
∑
i∈Jh

v0(x0i )w
0
i <∞. (5.48)

We define the subset of indices

Jm
h := {i ∈ Jh : x0i ∈ supp m+B∥a∥L∞T },

where B∥a∥L∞T is the ball of radius ∥a∥L∞T . The compact support of m implies that
|Jm
h | <∞.

For a positive value of h and a set of indexes Jh we define the functional spaces

l1(Jh) :=
{
u = {ui}i∈Jh

:
∑
i∈Jh

|ui| < +∞
}
,

l∞(Jh) :=
{
w = {wi}i∈Jh

: sup
i∈Jh

|wi| < +∞
}
.

We equip these spaces with the norms

∥u∥l1 :=
∑
i∈Jh

|ui| and ∥w∥l∞ := sup
i∈Jh

|wi|

respectively. It is clear that for all u ∈ l1(Jh) and v ∈ l∞(Jh), then uv ∈ l1(Jh). For
T > 0 we define as well the spaces

XT
h := C([0, T ], l1(Jh)) and Y T

h := C([0, T ], l∞(Jh)),

equipped with the norms

∥u∥1,h := sup
t∈[0,T ]

∥u(t)∥l1 and ∥w∥∞,h := sup
t∈[0,T ]

∥w(t)∥l∞ .
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Problem (5.47) is a strongly coupled system of ODEs, with an infinite number of unknowns
and equations. In some cases the system becomes uncoupled (for example if ∂Ia = 0) or
with a finite number of equations and unknowns (for example if v0, a and m have compact
support), however, for the sake of generality, we present below the proof of existence of
solution in the general case, and later discuss briefly these particular scenarios.
We start by giving two results that will be of great use for the proof of existence for
problem (5.47). First, we deal with the existence of solution for a simpler system of
infinite equations with infinitely many unknowns:

Lemma 17. Consider a ∈ C([0, T ], (W 1,∞(Rd+1)))d, u ∈ XT
h , w ∈ Y T

h and ψa satisfying
hypothesis (5.40). Then there exists a unique family of functions x := {xi}i∈Jh

, xi ∈
C1([0, T ]) for all i ∈ Jh which is solution of the system of equations

ẋi(t) = Au,w(t, xi), t ∈ [0, T ], xi(0) = x0i . (5.49)

When ∂Ia = 0, system (5.49) becomes uncoupled, each individual equation has a
solution, thanks to the classic Cauchy-Lipschitz theory. The proof of the general case is
given in Appendix C.2.
The second auxiliary result comes from approximation theory, and it will also be of great
use in Section 5.4:

Lemma 18.

∀φ ∈W k,1(Rd),
∣∣∣∣ ∫

Rd

φ(x)dx−
∑
i∈Jh

wi(t)φ(xi(t))

∣∣∣∣ ⩽ Chk∥φ∥k,1,

where C is a constant which depends on a, ψa, ∥vw∥1,h and T .

This result is a direct corollary of Lemma 8 in [115]. More details regarding its proof
are given in Appendix C.3.
From now on, we suppose h to be small enough so that for any t ∈ [0, T ],∑

i∈Jh

wi(t)m(t, xi(t), y, Id(t, xi(t), ν, w)) < K +
r∗

2
, (5.50)

where the values of K and r∗ are given in (5.11) and (5.18) respectively. Such a choice is
always possible thanks to Lemma 18.

Theorem 13. Under hypothesis (5.5) through (5.18) and (5.40) through (5.46), for all
T > 0 and all non-negative initial data v0 ∈ l1(Jh,Ω0) there exists a unique solution xi ∈
C1([0, T ]), for all i ∈ Jh, w := {wi(·)}i∈Jh

∈ C([0, T ], l∞(Jh)) and 0 ⩽ ν := {νi(·)}i∈Jh
∈

C([0, T ], l1(Jh)) of problem (5.47). Furthermore, there exist positive constants cT and CT
such that the solution satisfies, for all t ∈ [0, T ]

cTh ⩽ |xi(t)− xj(t)| ⩽ CTh, ∀i, j ∈ Jh, i ̸= j, (5.51)

cTh
d ⩽ wi(t) ⩽ CTh

d, ∀i ∈ Jh, (5.52)

∥νw∥1,h ⩽ max{∥v0hd∥l1 ,
I∗

ψg
}. (5.53)

Proof. Consider v0 ∈ l1(Jh,Ω0), satisfying v0 ⩾ 0. Consider as well α > 1, and define

ρα := max{αhd∥v0∥l1 ,
I∗

ψg
},

ã := ∥a∥
W 1,∞

x L∞
I,t

+ ∥a∥
W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x
Cα.
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For T > 0 we define the set

DT
α := {(u,w) ∈ XT

h × Y T
h : ∥uw∥1,h ⩽ ρα,∀t ∈ [0, T ], u(t) ⩾ 0, w(t) ⩾ 0, hde−ãt ⩽ wk(t) ⩽ hdeãt}.

For any (u,w) ∈ DT
α we introduce the problem, for t ∈ [0, T ],

ẋi(t) = Au,w(t, xi),

ω̇i(t) = div Au,w(t, xi(t))ωi(t),

ν̇i(t) =
(
− div Au,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), u, w))

)
νi(t)

+
∑
j∈Jh

ωj(t)uj(t)m(t, xi(t), xj(t), Id(t, xi(t), u, w)),

xi(0) = x0i , ωi(0) = w0
i , νi(0) = v0(x0i ).

(5.54)

We denote (ν, ω) = Φ(u,w).

For each pair (u,w), the existence and uniqueness of xi is immediate from Lemma 17.
Furthermore, for all values of i, we have the following explicit expression for ωi

ωi(t) = w0
i e

∫ t
0 div Au,w(s,xi(s))ds,

which satisfies, for any t ∈ [0, T ]

hde−ãt ⩽ ωi(t) ⩽ hdeãt.

On the other hand, for all (u,w) ∈ DT
α and all values of i, the right-hand side of the

differential equation in (5.54) is well defined, as we have for all t ∈ [0, T ]∑
j∈Jh

wj(t)uj(t)m(t, xi(t), xj(t), Id(t, xi(t), u, w)) ⩽M
∑
j∈Jh

wj(t)uj(t) ⩽Mρα.

Therefore, the expression for νi is given by

νi(t) = v0(x0i )e
∫ t
0
Gi(s)ds +

t∫
0

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))e
∫ t
s
Gi(τ)dτds,

(5.55)

where

Gi(t) := −div Au,w(s, xi(s)) +R(s, xi(s), Ig(s, xi(s), u(s), w(s))),

satisfies

sup
t∈[0,T ]

|Gi(t)| ⩽ γ := ∥R∥L∞
t,x,I

+ ∥a∥
W 1,∞

x L∞
t,I

+ ∥a∥
W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρα.

The positiveness of ν is immediate from the positiveness of v0 and m.

Furthermore, given that |xi(t)− x0i | ⩽ ∥a∥L∞T , for all k ∈ Jh and t ∈ [0, T ], we have

m(t, xi(s), y, I) = 0,
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for all i ̸∈ Jm
h , t ∈ [0, T ], y ∈ Rd and I ∈ R. As a result, multiplying (5.55) by ωi(t) for

each i and adding for all values of i, we obtain∑
i∈Jh

νi(t)ωi(t) ⩽ e(γ+α̃)T
(∑
i∈Jh

v0(x0i )h
d

+ hd
t∫

0

∑
i∈Jh

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))ds

)

= e(γ+α̃)T
(∑
i∈Jh

v0(x0i )h
d

+ hd
t∫

0

∑
i∈Jm

h

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))ds

)

⩽ e(γ+α̃)T
(∑
i∈Jh

v0(x0i )h
d + hd|Jm

h |M
t∫

0

∑
j∈Jh

wj(s)uj(s)ds

)

⩽ e(γ+α̃)T (
1

α
+ TKh)ρα,

where Kh := hd|Jm
h |M2. Thanks to the condition α > 1 there exists Tα (only depending

on α and on the coefficients of the problem) such that Φ : DT
α → DT

α , for all T ⩽ Tα.
We now prove that there exists T ∈ (0, Tα) such that Φ is a contraction over DT

α .
Step 1: Bounds over x = {xi}i∈Jh

Let (u1, w1) and (u2, w2) be two pairs in DT
α , and let x1, x2 be the respective solutions of

˙
xji = Auj ,wj (t, x

j
i ).

By following the same ideas as in the proof of Lemma 11 (see Appendix C.1), we obtain
that for all t ∈ [0, T ],

∥x1(t)− x2(t)∥∞,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
,

where the constant C(T, h) satisfies lim
T→0

C(T, h) = 0.

Step 2: Bounds over ω = {ωi}i∈Jh

From the expression for ω, we get, for all t ∈ [0, T ]

|ω1
i (t)− ω2

i (t)| ⩽hdTeãT
(
∥a∥

W 2,∞
x,I

(1 + |∂xIa(t, x2i , u2, w2)|)∥x1 − x2∥∞,h

+ ∥a∥
W 2,∞

x,I
(1 + |∂xIa(t, x2i , u2, w2)|)|Ia(t, x1i , u1, w1)− Ia(t, x

2
i , u

2, w2)|

+∥a∥
W 1,∞

I
|∂xIa(t, x1i , u1, w1)− ∂xIa(t, x

2
i , u

2, w2)|
)
.

On the other hand we have

|∂xIa(t, x2i , u2, w2)| ⩽∥ψa∥W 1,∞
x

ρα,

|Ia(t, x1i , u1, w1)− Ia(t, x
2
i , u

2, w2)| ⩽ρα∥ψa∥W 1,∞
x,y

∥x1 − x2∥∞,h,

+ ∥ψa∥L∞
x,y
eãT (hd∥u1 − u2∥1,∞ +

ρα
hd

∥w1 − w2∥∞,h),

2Notice that hd|Jm
h | ≈ |supp m+B∥a∥L∞T |
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and

|∂xIa(t, x1i , u1, w1)− ∂xIa(t, x
2
i , u

2, w2)| ⩽ρα∥ψa∥W 2,∞
x,y

∥x1 − x2∥∞,h

+ ∥ψa∥W 1,∞
x

eãT (hd∥u1 − u2∥1,∞ +
ρα
hd

∥w1 − w2∥∞,h).

In conclusion, there exists a constant C(T, h), satisfying lim
T→0

C(T, h) = 0 such that

∥ω1 − ω2∥∞,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
.

Step 3: Bounds over ν = {νi}i∈Jh

Using the expression for ν, the regularity of m and bounds similar to those used for ω, we
see that there exists a constant C(T, h) satisfying lim

T→0
C(T, h) = 0 such that

∥ν1 − ν2∥1,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
.

Consequently, there exists a constant C(T, h) satisfying lim
T→0

C(T, h) = 0, such that

∥ω1 − ω2∥∞,h + ∥ν1 − ν2∥1,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
,

which implies that, for 0 < T1 ⩽ Tα small enough, Φ is a contraction over DT1
α , and

therefore it has a unique fixed point. Such fixed point is a solution of problem (5.47) over
[0, T1).
We now claim that the solution exists for T arbitrary, and furthermore, it satisfies the
relation (5.53). Let Tf be the maximal time of existence of solution. Suppose that there
exists t0 ∈ (0, Tf ] such that ∥νw∥1,h > ρα. This implies that there exist δ ⩾ 0 and t∗ > 0
such that for a certain finite subset of Jh, that we denote as Kh, the following statements
are true: ∑

i∈Kh

νi(t)wi(t) ⩽ ρα, ∀ t ∈ [t∗ − δ, t∗],

∑
i∈Kh

νi(t)wi(t) > ρα, ∀ t ∈ (t∗, t∗ + δ].

This implies the existence of t1 ∈ [t∗, t∗+δ] such that the following properties are satisfied
simultaneously ∑

i∈Kh

νi(t1)wi(t1) ⩾ ρα and

∑
i∈Kh

νiwi

′

(t1) ⩾ 0. (5.56)

Multiplying the equation satisfied by νi(t) by wi(t) we get the relation

ν̇i(t)wi(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)wi(t)

+ wi(t)
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Ig(t, xi(t), ν, w)),

while, directly from the equation for wi(t) we deduce

νi(t)ẇi(t) = div Aν,w(t, xi(t))νi(t)wi(t).
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Therefore, adding both relations for i ∈ Kh and using (5.50), we get∑
i∈Kh

νiwi

′

(t) =

∑
i∈Kh

R(t, xi(t), Ig(t, xi(t), ν, w))νi(t)wi(t)


+
∑
j∈J

wj(t)νj(t)
∑

i∈Kh∩Jm
h

m(t, xi(t), xj(t), Id(t, xi(t), ν, w))wi(t)

⩽

∑
i∈Kh

R(t, xi(t), Ig(t, xi(t)))νi(t)wi(t)

+ (K +
r∗

2
)
∑
j∈Kh

wj(t)νj(t).

Given that ∥ν(t1)w(t1)∥l1 ⩾ ρα ⩾ I∗

ψ
g

, then Ig(t1, xi(t1), ν(t1), w(t1)) ⩾ I∗, and conse-

quently

R(t1, xi(t1), Ig(t1, xi(t1), ν(t1), w(t1))) < −r∗ −K,

for all values of i, which in turn implies that∑
i∈Kh

νiwi

′

(t1) ⩽ −r
2

2

∑
i∈Kh

νi(t1)wi(t1) < 0,

which contradicts (5.56). Therefore, ∥νw∥1,h ⩽ ρα for all values of α > 1 and for all
t ∈ (0, Tf ). We can then iterate the arguments used to prove existence of a solution, and
conclude that the solution can be extended to any interval [0, T ]. As ∥νw∥1,h ⩽ ρα for all
t, independently of α, taking the limit when α goes to 1, we obtain (5.53).

5.4 Convergence of the numerical solution towards a weak
solution

We study now the conditions under which a solution of problem (5.54) converges towards
a solution of problem (5.19), in a certain sense that will be defined later. We split our
analysis in two cases: first, the study of convergence on a finite interval of time [0, T ]. We
will see that for any T > 0, the solution obtained through the particle method converges
towards the solution of the PDE (5.19). However, the speed of convergence might be
affected by the value of T . The second case we study is the asymptotic proximity of both
solutions when t goes to ∞. This is a far more complex and interesting issue, and we show
different examples exposing some of the behaviours that can be observed.

Directly from the study of existence of solutions for each problem, we notice that the
sets of hypotheses we have used, do not coincide. We give a set of hypotheses which
simultaneously guarantees the existence of solution for both problems, while taking into
account the distinction of cases involved in the definition of κ.
For a certain T > 0 and k > 0, we consider the functions

ψa ∈ C([0, T ]× Rdx,W 1,∞(Rdy)) ∩ C
(
[0, T ]× Rdy, Ck+1(Rdx) ∩W k+1,∞(Rdx)

)
,

(5.57)

0 < ψg ⩽ ψg ∈ C
(
[0, T ]× Rx,W 1,∞(Rdy)

)
∩ C

(
[0, T ]× Ry, Cκ(Rdx) ∩W κ,∞(Rdx)

)
, (5.58)

ψd ∈ C
(
[0, T ]× Rdx,W 1,∞(Rdy)

)
∩ C

(
[0, T ]× Rdy, Cκ(Rdx) ∩W κ,∞(Rdx)

)
. (5.59)
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As in Section 5.2 we introduce

a ∈ C([0, T ],W k+1,∞(Rd+1)), (5.60)

R ∈ C
(
[0, T ]× Rx,W κ,∞

loc (Rdy)
)
∩ C

(
[0, T ]× Ry, Cκ(Rdx) ∩W κ,∞(Rdx))

)
(5.61)

We consider as well m ≥ 0,

m ∈ C
(
[0, T ]× Rd

x × Rd
y,W

κ,∞(RI)
)
∩C
(
[0, T ]× Rd

x × Rd
I ,W

κ,∞(Rd
y)
)
∩C
(
[0, T ]× Rd

y × Rd
I , Cκ

c (Rd
x)
)
.

(5.62)

satisfying hypothesis (5.7) through (5.18).
Finally, we consider v0 ∈ W k,1(Rd) if ∂Ia = 0 and v0 ∈ W k,1(Rd) ∩ W k,∞(Rd) with
compact support otherwise.

5.4.1 Convergence on a finite time interval

We recall that the function v represents the solution of problem (5.19) while xi, wi and
νi, i ∈ Jh represents that of problem (5.54). We recall as well that

max{∥v∥, ∥νw∥1,h} ⩽ max{∥v0∥L1(Rd), ∥v0hd∥l1 ,
I∗

ψg
} =: ρ.

Let ε > 0, r ∈ R and φ ∈ Cc(Rd) satisfy the following conditions∫
Rd

φ(x)dx = 1, (5.63)∫
Rd

xαφ(x)dx = 0, ∀ α ∈ Nn, |α| ⩽ r − 1. (5.64)

. We define, for all t ∈ [0, T ], x ∈ Rd

i)

vh(t, x) =
∑
i∈Jh

νi(t)wi(t)δ(x− xi(t)), (5.65)

a time dependent measure obtained as a sum of weighted Dirac deltas at xi(t),

ii)

vhε (t, x) = (vh(t) ∗ φε)(x) =
∑
i∈Jh

νi(t)wi(t)φε(x− xi(t)), (5.66)

a regular function obtained as the space convolution of vh(t, x) and φε(x), where

φε :=
1

εd
φ(

·
ε
).

We also introduce the following operator, for any function v ∈ L∞(0, T ;L1(Rd)):(
Πhε (t)v

)
(x) =

∑
i∈Jh

wi(t)v(t, xi(t))φε(x− xi(t)).

We recall a direct corollary of the Theorem 3 in [115]:

Proposition 29. Let k, r be two integers, with k > d, and let us assume that a ∈
L∞ (0, T ;W k+1,∞(Rd)d

)
, and that φ ∈ C1

c (Rd) ∩ W k+1,1(Rd) satisfies conditions (5.63)
and (5.64). Then, for any p ∈ [1,+∞], there exists C = C(T ) > 0 such that, for any
u ∈Wµ,1(Rd) (µ = max(r, k)),

∥u−Πhε (t)u∥Lp(Rd) ⩽ C
(
εr∥u∥W r,p(Rd) +

( ε
h

)k∥u∥Wk,p(Rd)

)
.
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We seek to prove the following approximation result between vhε and v, the solution of
problem (5.19).

Theorem 14. Assume that hypotheses (5.57) through (5.62) are satisfied, and that φ ∈
C1
c (Rd)∩W k+1,1(Rd) satisfies (5.63) and (5.64). Then, there exists C = C(T, a,R,m, ρ) >

0, a positive constant which depends on T , a, R, m and ρ such that

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), ∀ 0 ⩽ t ⩽ T,

where µ = max(r, κ).

The proof of Theorem 14 strongly relies on Proposition 29 and the following result:

Proposition 30. Under hypotheses (5.57) through (5.62), there exists a constant CT > 0,
depending only on T and on the parameters of problems (5.19) and (5.54), such that their
respective solutions satisfy, for all t ∈ [0, T ],∑

i∈Jh

|v(t, xi(t))− νi(t)|wi(t) ⩽ CTh
k−1∥v0∥Wµ,1(Rd). (5.67)

Proof. Consider βε as in (C.1). We define e = {ei(·)}i∈J where for all i ∈ J and t ∈ [0, T ],

ei(t) := v(t, xi(t))− νi(t),

eε,i(t) := βε(ei(t))wi(t),

and compute
ėε,i(t) = β′ε(ei(t))ėi(t)wi(t) + βε(ei(t))ẇi(t). (5.68)

We recall that

ėi(t) =

(
Gν,w(t, xi(t))− Gv(t, xi(t))

)
νi(t) +

(
Aν,w(t, xi(t))−Av(t, xi(t))

)
∇v(t, xi(t))

− Gv(t, xi(t))ei(t) + ∆M(t, xi(t)),

where

Gν,w(t, xi(t)) := div Aν,w(t, xi(t))−R(t, xi(t), Ig(t, xi(t), ν, w)),

Gv(t, xi(t)) := div Av(t, xi(t)) +R(t, xi(t), (Igv)(t, xi(t))),

∆M(t, xi(t)) :=

∫
Rd

m(t, xi(t), y, (Idv)(t, xi))v(t, y)dy

−
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)).

The functions a and R being Lipschitz, there exists a constant C depending on the pa-
rameters of the problem and the value ρ, such that∣∣∣∣Gν,w(t, xi(t))− Gv(t, xi(t))

∣∣∣∣ ⩽C(|(Iav)(t, xi(t))− Ia(t, xi(t), ν, w)|

+ |∂x(Iav)(t, xi(t))− ∂xIa(t, xi(t), ν, w)|

+ |(Igv)(t, xi(t))− Ig(t, xi(t), ν, w)|
)
.
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Notice that

|(Iav)(t, xi(t))− Ia(t, xi(t), ν, w)| =
∣∣∣∣∫
Rd

ψa(t, xi(t), y)v(y)dy −
∑
j∈Jh

ψa(t, xi(t), xj(t))νj(t)wj(t)

∣∣∣∣
⩽

∣∣∣∣∫
Rd

ψa(t, xi(t), y)v(y)dy −
∑
j∈Jh

ψa(t, xi(t), xj(t))v(t, xj(t))wj(t)

∣∣∣∣
+

∣∣∣∣∑
j∈Jh

ψa(t, xi(t), xj(t))

(
v(t, xj(t)− νj(t))

)
wj(t)

∣∣∣∣
⩽ C

(
hκ∥v∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)

)
,

where in the last line we have used Lemma 18 and theW κ,1(Rd) regularity of v. Similar re-
sults are true for |∂x(Iav)(t, xi(t))−∂xIa(t, xi(t), ν, w)| and |(Igv)(t, xi(t))−Ig(t, xi(t), ν, w)|.
In conclusion, thanks to (5.27), there exists a constant CT , only depending on T , the pa-
rameters of the problem and the value ρ, such that∣∣∣∣Gν,w(t, xi(t))− Gv(t, xi(t))

∣∣∣∣ ⩽ CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (5.69)

Again, using the Lipschitz regularity of a, we see that∣∣∣∣Aν,w(t, xi(t))−Av(t, xi(t))

∣∣∣∣ ⩽C|(Iav)(t, xi(t))− Ia(t, xi(t), ν, w)|

⩽CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (5.70)

The boundedness of a and R implies the existence of a constant G such that for all i ∈ J
and t ∈ [0, T ],

|Gv(t, xi(t))| ⩽ G. (5.71)

We recall from the previous section that

∆M(t, xi(t)) = 0, ∀i ̸∈ Jm
h ,

where the set of indexes Jm
h has a finite number of elements, which depends on T . On

the other hand, for those i ∈ Jm
h , we have

|∆M(t, xi(t))| ⩽
∣∣∣∣∫
Rd

m(t, xi(t), y, (Idv)(t, xi(t)))v(t, y)dy

−
∑
j∈Jh

wj(t)v(t, xj(t))m(t, xi(t), xj(t), (Idv)(t, xi(t)))

∣∣∣∣
+
∑
j∈Jh

wj(t)v(t, xj(t))

∣∣∣∣m(t, xi(t), xj(t), (Idv)(t, xi(t)))

−m(t, xi(t), xj(t), Id(t, xi(t), ν, w))

∣∣∣∣
+
∑
j∈Jh

wj(t)|ej(t)|m(t, xi(t), xj(t), (Idv)(t, xi(t)))

⩽C

(
hκ∥v∥Wκ,1(Rd) + µ|(Idv)(t, xi(t))− Id(t, xi(t), ν, w)|

∑
j∈Jh

wj(t)v(t, xj(t))

+M
∑
j∈Jh

|ej(t)|wj(t)
)
,
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where we have used again Lemma 18, the W κ,1(Rd) regularity of m(t, x, y, I)v(t, y) with
respect to the y variable, and the Lipschitz regularity of m. Furthermore, Lemma 18 gives
us the bound ∑

j∈Jh

wj(t)v(t, xj(t)) ⩽ ∥v∥L1(Rd) + Chκ∥v∥Wκ,1(Rd),

which together with manipulations similar to those made for |(Iav)(t, xi(t))−Ia(t, xi(t), ν, w)|,
and the bound (5.27), gives

|∆M(t, xi(t))| ⩽ CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (5.72)

We denote as K an arbitrary finite subset of Jh. If we add (5.68) for all values of i ∈ K,
and use bounds (5.69) through (5.72), together with the equation for wi, we get(∑

i∈K
eε,i(t)

)′

⩽CTB(t)

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
,

where
B(t) :=

∑
i∈K

(νi(t) + |∇v(t, xi(t))|)wi(t) +G+ |K ∩ Jm
h |hdeãT + ã.

Given that ∑
i∈K

νi(t)wi(t) ⩽ ρ,

and ∑
i∈K

wj(t)|∇v(t, xj(t))| ⩽ ∥∇v∥L1(Rd) + Chκ−1∥∇v∥Wκ−1,1(Rd),

thanks to (5.27), we conclude that there exists a constant BT , independent of the choice
of K and h, such that B(t) ⩽ BT . Consequently, for all values of t ∈ [0, T ], h small enough
and any finite subset of Jh, we have the relation(∑

i∈K
eε,i(t)

)′

⩽ CT

(
hκ +

∑
j∈Jh

|ej(t)|wj(t)
)
.

Integrating between 0 and t, taking the limit when ε goes to zero, and using Grönwall’s
lemma, we obtain that there exists a constant CT , independent of K such that∑

i∈K
|ei(t)|wi(t) ⩽ CTh

κ∥v0∥Wκ,1(Rd).

Being CT independent of K and h, (5.67) is immediate.

In other words, we proved in Proposition 30 that the piece-wise constant functions that
take values v(t, xk(t)) and vk(t) respectively over the intervals Ωk(t) are close in L1(Rd).

Proof of Theorem 14. According to the triangle inequality,

∥v − vhε ∥L1(Rd) ⩽ ∥v −Πhε (t)v∥L1(Rd) + ∥Πhε (t)v − vhε ∥L1(Rd), (5.73)

it only remains to bound both terms on the right hand side.

i) According to Proposition 29 with p = 1, and bound (5.27)

∥v −Πhε (t)v∥L1(Rd) ⩽ C(εr +
( ε
h

)κ
)∥v∥µ,p ⩽ CT (ε

r +
( ε
h

)κ
)∥v0∥µ,p.
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i i) On the other hand, one computes

∥Πhε (t)v − vhε ∥L1(Rd) =

∫
Rd

∣∣ ∑
i∈Jh

wi(t)φε(x− xi(t))
(
v(t, xi(t))− νi(t)

)∣∣dx
⩽
∑
i∈Jh

(
wi(t)|v(t, xi(t))− νi(t)|

∫
Rd

|φε(x− xi(t))|dx
)
.

According to the definition of φε, with the change of variable x′ = x−xk(t)
ε , we note

that ∫
Rd

|φε(x− xk(t))|dx =

∫
Rd

|φ(x)|dx < +∞,

by hypothesis on φ. We have then, according to Proposition 30, that

∥Πhε (t)v − vhε ∥L1(Rd) ⩽ CTh
κ∥v0∥κ,1 ⩽ Chκ∥v0∥µ,1,

which concludes the proof of Theorem 14.

5.4.2 Asymptotic preserving properties

The study of the asymptotic behaviour of the solution for adaptive dynamics models,
such as (5.19), is one of the main interests often treated in the literature (see [10, 13, 21,
39, 42, 48, 59, 86, 106]). For this reason, the design of numerical methods which preserve
the asymptotic behaviour, or at least, the identification of the problems for which the
asymptotics are preserved under a certain numerical scheme, is a priority. In other words,
given that v(t, ·) converges to a measure µ when t goes to infinity, we expect to identify
the conditions under which lim

h→0
lim

t→+∞
vhε(h)(t, ·) = µ, that is, ensuring the commutativity

of diagram (5.74):
v(t, ·)

t→∞
// µ

h→0

x xh→0

vhε(h)(t) t→∞
// µh

(5.74)

In what follows, we formally define the concept of an asymptotic preserving approxima-
tion, and give examples and counter-examples of this concept.

We recall that, according to the Riesz representation theorem, the space of finite Radon
measures can be identified with the topological dual space of Cc(Rd). Hence, we say that
a sequence of finite Radon measures {µn}n∈N converges weakly to a finite Radon measure
µ (denoted µn ⇀

n→+∞
µ) if for all ϕ ∈ Cc(Rd),∫

Rd

ϕ(x)dµn(x) −→
n→+∞

∫
Rd

ϕ(x)dµ(x).

This leads us to introduce the following definition:

Definition 6. We say that the particle solution vhε defined in (5.66) is an asymptotic
preserving approximation of v, the solution to (5.19), if for all ε : (0, 1] → R∗

+ which
converges to 0 when h goes to 0, and all ϕ ∈ Cc(Rd),

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)v(t, x)dx

∣∣∣∣ −→h→0
0.
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The following lemma ensures that, in the previous definition, vhε(h), introduced in (5.66),

can be replaced by vh, introduced in (5.65).

Lemma 19. The function vhε is an asymptotic preserving approximation of v if and only
if

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)dvh(t, x)−
∫
Rd

ϕ(x)v(t, x)dx

∣∣∣∣ −→h→0
0.

Proof. Let us prove that for all ε : (0, 1] → R∗
+ which converges to 0 as h goes to 0, and

all ϕ ∈ Cc(Rd),

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ −→h→0
0.

Let h > 0. According to the definitions of vh and vhε , and since
∫
Rd φε(h)(x− xi(t))dx =

1 for all i ∈ Jh we get, for all t ⩾ 0,∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ =
∣∣∣∣∣
∫
Rd

∑
i∈Jh

νi(t)wi(t)
(
ϕ(x)− ϕ(xi(t))

)
φε(h)(x− xi(t))dx

∣∣∣∣∣
⩽
∑
i∈Jh

|νi(t)wi(t)|
∫
Rd

∣∣(ϕ(x)− ϕ(xi(t))
)
φε(h)(x− xi(t))

∣∣dx.
With the change of variable ‘y = x−xi(t)

ε(h) ’, we get, for all i ∈ Jh,∫
Rd

∣∣(ϕ(x)− ϕ(xi(t))
)
φε(h)(x− xi(t))

∣∣dx =

∫
K

∣∣(ϕ(ε(h)y + xi(t))− ϕ(xi(t))
)
φ(y)

∣∣dy,
where K is the support of φ. Let η > 0. Since ϕ is continuous with a compact support,
and thus uniformly continuous, then |ϕ(ε(h)x+xi(t))−ϕ(xi(t))| ⩽ η for all i ∈ Jh, x ∈ K,
t ⩾ 0 and any h small enough. Therefore, for any h small enough,∣∣∣∣∫

Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ ⩽ η
∑
i∈Jh

νi(t)wi(t),

which concludes the proof, since there exists ρ > 0 such that 0 ⩽
∑
i∈Jh

νi(t)wi(t) ⩽ ρ for

all h > 0, t ⩾ 0, as proved in Theorem 13.

The problem of determining if vhε is an asymptotic preserving approximation of v is
generally a difficult question. In what follows, we deal with cases where we are able to
determine the asymptotic behaviour of both v and vh, and we check if the necessary
and sufficient condition from Lemma 19 holds. From now on, we assume that a is local
and not time dependent, i.e. a(t, x, I) = a(x) and that that the functions m, R, ψg and
ψd are not time-dependent. We assume as well that the function (x, y, I) 7→ m(x, y, I)
is not only uniformly compactly supported as a function of the x variable, but relative
to the y variable as well. That is, there exist two compact sets Kx and Ky such that
sup
y,I

m(x, y, I) = 0 for all y outside of Kx and sup
x,I

m(x, y, I) = 0 for all x outside of Ky.

We denote Kxy := Kx ∪Ky. Finally, we assume ψg and ψd to be compactly supported as
functions of the y variable.
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Necessary conditions of convergence towards a Radon measure

With the help of necessary conditions, we would be able to rule out those cases where
v does not converge towards certain types of Radon measures, which are the object of
our interest. We start by giving a general result, involving the necessary conditions of
convergence towards any Radon measure.

Lemma 20. Let us assume that v(t, ·) ⇀
t→+∞

µ in the weak sense in the space of finite

Radon measures. Then, for γ ∈ {g, d},

Iα(t, x) −→
t→+∞

∫
Rd

ψα(x, y)dµ(y) =: Iα(x) ∀x ∈ Rd,

and for all ϕ ∈ C1
0(Rd),∫

Rd

(
a(x) · ∇ϕ(x) +R

(
x, Ig(x)

)
ϕ(x)

)
dµ(x)+

∫
Rd

(∫
Rd

m
(
x, y, Id(x)

)
ϕ(x)dx

)
dµ(y) = 0.

Proof. Let us assume that v(t, ·) ⇀
t→+∞

µ. By definition of the weak convergence in the

space of finite Radon measure, for any ϕ ∈ C1
c (Rd),∫

Rd

ϕ(x)v(t, x)dx →
t→+∞

∫
Rd

ϕ(x)dµ(x).

The first identity is thus a direct consequence of the definition of the weak convergence,
applied with ϕ = ψγ(x, ·), γ ∈ {g, d}.

Let ϕ ∈ Cc(Rd). One computes

d

dt

∫
Rd

ϕ(x)v(t, x)dx =−
∫
Rd

ϕ(x)∇ · (a(x)v(t, x)) +
∫
Rd

R(x, Ig(t, x))ϕ(x)v(t, x)dx

+

∫
Rd

(∫
Rd

m(x, y, Id(t, x))v(t, y)

)
ϕ(x)dx

=

∫
Rd

(
a(x) · ∇ϕ(x) +R(x, Ig(t, x))ϕ(x)

)
v(t, x)dx

+

∫
Rd

(∫
Rd

m(x, y, Id(t, x))ϕ(x)dx

)
v(t, y)dy

−→
t→+∞

∫
Rd

(
a(x) · ∇ϕ(x) +R

(
x, Ig(x)

)
ϕ(x)

)
dµ(x)

+

∫
Rd

(∫
Rd

m
(
x, y, Id(x)

)
ϕ(x)dx

)
dµ(y).

Thus, t 7→
∫
Rd ϕ(x)v(t, x)dx is a convergent function with a convergent derivative, which

ensures that the limit of its derivative is zero, which concludes the proof.

The following proposition provides a necessary condition for the convergence to a sum
of Dirac masses.

Proposition 31. Let us assume that v(t, ·) ⇀
t→+∞

N∑
i=1

Ciδxi, with x1, . . . , xN ∈ Rd, C1, . . . , CN >

0. Then, for α = g, d, Iα(t, x) →
t→+∞

N∑
i=1

Ciψα(x, xi) =: Iα(x). Moreover, for all i ∈

{1, . . . , N}, a(xi) = 0, R
(
xi, Ig(xi)

)
= 0, and for all x ∈ Rd, m(x, xi, Id(x)) = 0.
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Proof. According to the previous lemma, for all ϕ ∈ C1
c (Rd),

N∑
i=1

Cia(xi) · ∇ϕ(xi) +
N∑
i=1

CiR
(
xi, Ig(xi)

)
ϕ(xi) +

N∑
i=1

Ci

∫
Rd

m
(
x, xi, Id(x)

)
ϕ(x)dx = 0.

Let ε > 0. For any non-negative function ϕε ∈ C1
c (Rd) with a support on Rd\

⋃N
i=1B(xi, ε),

we have that ∫
Rd

N∑
i=1

Cim
(
x, xi, Id(x)

)
ϕε(x)dx = 0,

which proves that x 7→
N∑
i=1

Cim
(
x, xi, Id(x)

)
is 0 on Rd\

⋃N
i=1B(xi, ε). Since m is a non-

negative function, for all i ∈ {1, ...N}, x 7→ m
(
x, xi, Id(x)

)
is 0 as well on Rd\

⋃N
i=1B(xi, ε),

and therefore on Rd, since the result holds for any ε > 0. Hence,

N∑
i=1

Cia(xi) · ∇ϕ(xi) +
N∑
i=1

CiR
(
xi, Ig(xi)

)
ϕ(xi) = 0,

for any ϕ ∈ C1
c (Rd). By choosing ϕ1j such that

ϕ1j (xi) = δij and ∇ϕ1j (xi) = 0, i, j ∈ {1, ...N},

where δij represents the Kronecker delta, one proves that R
(
xi, Ig(xi)

)
= 0 for all i ∈

{1, ...N}.
Finally, by choosing ϕ2ij such that

∇ϕ2jl(xi) = δijel, i, j ∈ {1, ...N}, l ∈ {1, ...d},

where {el}dl=1 represents the euclidean basis in Rd, one proves that a(xi) = 0, for any
i ∈ {1, . . . , N}.

Limit identification and asymptotic preserving approximations

In some cases, it is possible to guarantee the existence of a limit for vh and identify it.
Assume that there exists x̂ ∈ Rd an asymptotically stable equilibrium for the ODE ‘ẋ =
a(x)’ and that there exists C, δ > 0 such that

∀y ∈ supp(n0), t ≥ 0, ∥X(t, y)− x̂∥ ≤ Ce−δt. (5.75)

Moreover, let us assume that there exist positive values D, Im and IM such that

R(x, Im) ⩾ 0, R(x, IM ) ⩽ 0 and ∂IR(x, I) ⩽ −D, ∀x ∈ supp(v0). (5.76)

Then, we can compute the limit of vh when t goes to +∞, whatever the value of m, as
stated in the following proposition.

Proposition 32. Let us assume that supp
(
v0
)
is a compact set such that hypotheses

(5.75) and (5.76) hold. Then, vh converges to ρ̂h δx̂ in the weak sense in the space of
Radon measures, where ρ̂h is the unique solution of

R(x̂, ψg(x̂, x̂)ρ̂h) = 0.
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The following lemma, proved in Appendix C.4, is required in the proof of this result.

Lemma 21. Let u ∈ C2 (R+,R) be a bounded function, and let us assume that there exist
p0 > 0, p : R+ → R+ a function which satisfies p ⩾ p0 and B ∈ L1(R+) an integrable
function such that

ü(t) ⩾ −p(t)u̇(t) +B(t).

Then, there exists u∞ ∈ R such that lim
t→+∞

u(t) = u∞.

Proof of Proposition 32. Given that supp
(
v0
)
∪ Kxy is a compact set which is strictly

contained in the basin of attraction of x̂ we will have the existence of J 0
h ⊂ Jh, with

|J 0
h | < +∞ such that νh(t) ̸≡ 0 only for i ∈ J 0

h .
Let us denote, for all i ∈ J 0

h , αi(t) := νi(t)wi(t), and

ρh(t) :=
∑
i∈Jh

αi(t) =
∑
i∈J 0

h

αi(t).

Let us note that, according to the hypotheses on a, for all i ∈ J 0
h , xi(t) converges to x̂.

Thus,
vh(t)− ρh(t)δx̂ ⇀

t→+∞
0.

Hence, it only remains to prove that ρh converges to the expected limit. According to the
definition of ρh,

ρ̇h(t) =
∑
i∈J 0

h

R(xi(t), Ig(t, xi(t)))αi(t) +
∑
i,j∈J 0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

︸ ︷︷ ︸
:=ε(t)

.

(5.77)

According to hypothesis 5.75, there exist C, δ > 0 such that

∥xi(t)− x̂∥ ⩽ Ce−δt, ∀i ∈ J 0
h , ∀t ⩾ 0.

Thus, for all i ∈ J 0
h ,

wi(t) = e
∫ t
0 div a(xi(s))dswi(0) ⩽ e

∫ t
0 div a(xi(s))−div a(x̂)ds︸ ︷︷ ︸

⩽C̃

ediv a(x̂)twi(0),

which proves, since div a(x̂) < 0, that there exist C ′, δ′ such that for all t ⩾ 0,

0 ⩽ max
i∈J 0

h

wi(t) ⩽ C ′e−δ
′t. (5.78)

In particular, it proves that t 7→ ε(t) defined in (5.77), converges to zero with an exponen-
tial speed, since

|ε(t)| ⩽ max
i∈Jh

wi(t)|J 0
h |∥m∥L∞ρh(t),

and ρh is bounded, according to Theorem 13.
Moreover, according to the hypothesis on ψg, ψg ρ(t) ⩽ Ig(t, xi(t)) ⩽ ∥ψg∥∞ ρ(t). Thus,

according to the hypotheses (5.76) on R, the relation

ρ̇h(t) ⩾

(
min
i∈J 0

h

(R(xi(t), Ig(t, xi(t))))

)
ρh(t)
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implies that, as soon as ρh becomes small, and so does Ig, ρh becomes increasing, which
proves that ρh is lower bounded by a positive constant. Moreover, since ρh and ε are
bounded, and

∥α̇∥l1 =
∑
i∈J 0

h

|α̇(t)| ⩽
∑
i∈J 0

h

(2|div a(xi(t))|+ |R(xi(t), Ig(t, xi(t)))|)αi(t) + ε(t)

⩽
(
2∥a∥W 1,∞(Rd) +R

)
ρh(t) + ε(t),

where
R := max

t∈R,i∈J 0
h

|R(xi(t), Ig(t, xi(t)))|,

then ∥α̇∥l1 is also bounded.
Now, let us prove that ρh satisfies the equality of Lemma 21. First, for γ ∈ {g, d}, we

compute

∣∣∣∣ ddtIγ(t, xi(t))− ψγ(x̂, x̂)ρ̇h(t)

∣∣∣∣ ⩽
∣∣∣∣∣∣
∑
j∈J 0

h

(
a(xi(t))∂xψγ(xi(t), xj(t)) + a(xj(t))∂yψγ(xi(t), xj(t))

)
αj(t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈J 0

h

(
ψγ(xi(t), xj(t))− ψγ(x̂, x̂)

)
α̇j(t)

∣∣∣∣∣∣
⩽2max

i∈J 0
h

|a(xi(t))|∥ψγ∥W 1,∞(Rd)ρh(t)

+ max
i,j∈J 0

h

|ψγ(xi(t), xj(t))− ψγ(x̂, x̂)|∥α̇∥l1 .

Since hypothesis (5.75), is satisfied, the functions t 7→ max
i∈J 0

h

|a(xi(t))| and

t 7→ max
i,j∈J 0

h

|ψγ(xi(t), xj(t)) − ψγ(x̂, x̂)| converge to zero with an exponential speed. Since

|J 0
h | < +∞, this proves that, for γ ∈ {g, d},∑

i∈J 0
h

∣∣∣∣ ddtIγ(t, xi(t))− ψγ(x̂, x̂)ρ̇h(t)

∣∣∣∣ = O(e−δt), (5.79)

for a certain δ > 0.
Thus, by differentiating (5.77), we get

ρ̈h(t) =
∑
i∈J 0

h

a(xi(t))∂xR(xi(t), Ig(t, xi(t)))αi(t) +
∑
i∈J 0

h

(
d

dt
Ig(t, xi(t))

)
∂IR(xi(t), Ig(t, xi(t)))αi(t)

+
∑
i∈J 0

h

α̇i(t)R(xi(t), Ig(t, xi(t))) +
∑

i,j∈J 0
h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t)

+
∑

i,j∈J 0
h

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t) +
∑

i,j∈J 0
h

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t),

where

i)
∑
i∈J 0

h

a(xi(t))∂xR(xi(t), Ig(t, xi(t)))αi(t) = O(e−δt), since max
i∈Jh

|a(xi(t))| converges to

zero with exponential speed, and ∂xR and ρh are bounded,

ii) according to (5.79),
∑
i∈J 0

h

(
d
dtIg(t, xi(t))

)
∂IR(xi(t), Ig(t, xi(t)))αi(t) = −p(t)ρ̇h(t) +

O(e−δt), where

p(t) = −ψg(x̂, x̂)
∑
i∈J 0

h

∂IR(xi(t), Ig(t, xi(t)))αi(t) ⩾ Dψgmin
t⩾0

ρh(t) > 0,
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iii) ∑
i∈J 0

h

α̇i(t)R(xi(t), Ig(t, xi(t))) =
∑
i∈J 0

h

R(xi(t), Ig(t, xi(t)))
2αi(t)

︸ ︷︷ ︸
:=P (t)⩾0

+
∑
i,j∈J 0

h

wi(t)R(xi(t), Ig(t, xi(t)))αj(t)m(t, xi(t), xj(t), Id(t, xi(t)))

︸ ︷︷ ︸
=O(e−δt)

.

where the relation for the second term was proved thanks to the bound∣∣∣∣∣∣
∑

i,j∈J 0
h

wi(t)R(xi(t), Ig(t, xi(t)))αj(t)m(t, xi(t), xj(t), Id(t, xi(t)))

∣∣∣∣∣∣ ⩽M Rρh(t)|J 0
h |max

i∈Jh

wi(t),

the boundedness of ρh and inequality (5.78),

iv) ∑
i,j∈J 0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t) +
∑
i,j∈J 0

h

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

+
∑
i,j∈J 0

h

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t)

= O(e−δt),

since for all t ≥ 0,∣∣∣∣∣∣
∑
i,j∈J 0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t)

∣∣∣∣∣∣ ⩽M |J 0
h |∥α̇∥l1 max

i∈J 0
h

wi(t),

∣∣∣∣∣∣
∑
i,j∈Jh

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

∣∣∣∣∣∣ ⩽Mρh(t)|J 0
h |∥a∥W 1,∞(Rd)max

i∈J 0
h

wi(t),

and ∣∣∣∣∣∣
∑
i,j∈Jh

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t)

∣∣∣∣∣∣
⩽M

(
∥a∥L∞(R) +

∣∣ d
dt
Ig(t, xi(t))

∣∣) ρh(t)|J 0
h |max

i∈J 0
h

wi(t),

where d
dtId(t, xi(t)) is bounded thanks to (5.79). For these three inequalities, we

conclude with (5.78).

Hence, ρ̈h(t) ⩾ −p(t)ρ̇h(t) + O(e−δt). According to Lemma 21, ρh has a limit when t
goes to ∞, which we denote ρ̂h. Since ρ̇h(t) =

∑
i∈J 0

h

R(xi(t), Ig(t, xi(t)))αi(t) + ε(t), which

converges to R(x̂, ψg(x̂, x̂)ρ̂h)ρ̂h, we deduce that R(x̂, ψg(x̂, x̂)ρ̂h) = 0, since ρ̂h > 0.
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When m ≡ 0 and under the same assumptions for the remaining coefficients of the
problem as in Proposition 32, we are able to identify the limit of v and prove that it coin-
cides with the limit of vh. According to Lemma 19, this ensures that vhε is an asymptotic
preserving approximation of v.

Theorem 15. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable
equilibrium for the ODE ẋ = a(x) such that hypothesis (5.75) holds. We assume as well
that m ≡ 0 and that hypotheses (5.76) hold. Then, v converges to ρ̂ δx̂ in the weak sense
in the space of Radon measures, where ρ̂ is the unique solution of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

Proof. Let us recall that

ρ(t) =

∫
Rd

v(t, x)dx.

We recall as well that, the function a being only dependent of x, the characteristic lines
Xt(x) := X(t, x) satisfy X−1

t (x) := X−1(t, x) = X−t(x) and Xt(Xs(x)) = Xt+s(x). By
using the fact that, for any x ∈ Rd,

v(t, x) = v0(X−t(x))e
G(0,t,x),

where

G(s, t, x) :=
∫ t

s
R(Xτ−t(x), (Igv)(τ,Xτ−t(x)))− div a(Xτ−t(x))dτ,

and that, by hypothesis, K := supp(v0) is a compact set included in the basin of attraction
of x̂, one proves that supp(v(t, ·)) is the image of supp(v0) by Xt(·). Since Xt(y) converges
to x̂ for all y ∈ supp(v0), we prove that Kt := supp(v(t, ·)) = Xt(supp(v

0)) = Xt(K) is a
compact set included in the basin of attraction of x̂, for all t ⩾ 0. By (5.75), there exist
C > 0 and δ > 0 such that

∥Xt(y)− x̂∥ ⩽ Ce−δt, ∀y ∈ K, ∀t ⩾ 0.

Let ϕ ∈ Cc(Rd). By definition of ρ and by using the change of variable ‘x = Xt(y)’ we
get ∣∣∣∣ ∫

Rd

ϕ(x)v(t, x)− ρ(t)ϕ(x̂)

∣∣∣∣ ⩽ ∫
Kt

|ϕ(x)− ϕ(x̂)|v(t, x)dx

=

∫
K
|ϕ(Xt(y))− ϕ(x̂)|v(t,Xt(y))e

∫ t
0 div a(Xt(y))dy

⩽ max
y∈K

|ϕ(Xt(y))− ϕ(x̂)|
∫
K
v(t,Xt(y))e

∫ t
0 div a(Xt(y))dy

= max
y∈K

|ϕ(Xt(y))− ϕ(x̂)|ρ(t).

Since ρ is bounded, this proves that

v(t, ·)− ρ(t)δx̂ ⇀
t→+∞

0. (5.80)

Hence, it only remains to prove that ρ converges to the expected limit. We see that

ρ̇(t) =

∫
Rd

R(x, (Igv)(t, x))v(t, x)dx. (5.81)
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First, let us note that ρ has a positive lower bound. Indeed, according to the hypothesis
on ψg, for all x ∈ Rd, ψg ρ(t) ⩽ (Igv)(t, x) ⩽ ∥ψg∥L∞ ρ(t). Thus,

ρ̇(t) ⩾

(
min
x∈Kt

(R(x, (Igv)(t, x))

)
ρ(t).

Hence, as soon as ρ(t) becomes small, and so does Ig(t, x), ρ becomes increasing, which
proves that ρ is lower bounded by a positive constant. We get an upper bound for |ρ̇(t)|
from the relation

|ρ̇(t)| ⩽
(
max
x∈Kt

(R(x, (Igv)(t, x))

)
ρ(t),

and the boundedness of ρ(t).
We introduce now the function

ṽ(t, y) = v(t,Xt(y))e
∫ t
0 div a(Xs(y))ds,

which satisfies ∫
K
ṽ(t, y)dy =

∫
Kt

v(t, x)dx = ρ(t).

Moreover,

∂tṽ(t, y) =R(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y). (5.82)

Before proving that ρ satisfies the equality of Lemma 21, we observe that the following
relation holds for all y ∈ K:∣∣∣∣ ddt(Igv)(t,Xt(y))− ψg(x̂, x̂)ρ̇(t)

∣∣∣∣ ⩽ ∣∣∣∣∫
Kt

a(Xt(y)) · ∇xψg(Xt(y), z)v(t, z)dz

∣∣∣∣
+

∣∣∣∣∫
Kt

(
ψg(Xt(y), z)− ψg(x̂, x̂)

)
∂tv(t, z)dz

∣∣∣∣ . (5.83)

From the equation satisfied by v, we see that

∫
Kt

(
ψg(Xt(y), z)− ψg(x̂, x̂)

)
∂tv(t, z)dz =

∫
Kt

∇zψg(Xt(y), z)a(z)v(t, z)dz

+

∫
Kt

(
ψg(Xt(y), z)− ψg(x̂, x̂)

)
R(z, (Igv)(t, z))v(t, z)dz

=

∫
K

∇zψg(Xt(y), Xt(z̄))a(Xt(z̄))ṽ(t, z̄)dz̄

+

∫
K

(
ψg(Xt(y), Xt(z̄))− ψg(x̂, x̂)

)
R(Xt(z̄), (Igv)(t,Xt(z̄)))ṽ(t, z̄)dz̄

which allows us to conclude that∣∣∣∣∫
Kt

(
ψg(Xt(y), z)− ψg(x̂, x̂)

)
∂tv(t, z)dz

∣∣∣∣ ⩽max
z̄∈K

∥a(Xt(z̄))∥∥ψg∥W 1,∞(Rd)ρ(t)

+ max
y,z̄∈K

|ψg(Xt(y), Xt(z̄))− ψg(x̂, x̂)|Rρ(t).

Using this relation in (5.83) gives∣∣∣∣ ddt(Iγv)(t,Xt(y))− ψγ(x̂, x̂)ρ̇(t)

∣∣∣∣ ⩽2max
z̄∈K

∥a(Xt(z̄))∥∥ψγ∥W 1,∞(Rd)ρ(t)

+ max
y,z̄∈K

|ψγ(Xt(y), Xt(z̄))− ψγ(x̂, x̂)|Rρ(t),
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which proves, according to hypothesis (5.75), that for all y ∈ K

d

dt
Ig(t,X(t, y)) = ψg(x̂, x̂)ρ̇(t) +O(e−δt)), (5.84)

for a certain δ > 0.
Differentiating (5.81) we get

ρ̈(t) =
d

dt

(∫
Kt

R(x, (Igv)(t, x))v(t, x)dx

)
=
d

dt

(∫
K
R(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

)
=

∫
K
a(Xt(y)) · ∇xR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

+

∫
K

d

dt
(Igv)(t,Xt(y))∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

+

∫
K
R(Xt(y), (Igv)(t,Xt(y)))∂tṽ(t, y)dy.

Let us note that

i) Since a(Xt(y)) converges uniformly to zero with an exponential speed, then∫
Rd

a(Xt(y)) · ∇xR (Xt(y), (Igv)(t,Xt(y))) ṽ(t, y))dy = O(e−δt),

thanks to the boundedness of ∇xR and ρ(t).

ii) According to (5.84),∫
K

d

dt
(Igv)(t,Xt(y))∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy = −p(t)ρ̇(t) +O(e−δt),

with

p(t) := −ψg(x̂, x̂)
∫
K
∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy ⩾ ψg(x̂, x̂)Dmin

t⩾0
ρ(t) > 0.

iii) Directly from (5.82),∫
K
R(Xt(y), (Igv)(t,Xt(y)))∂tṽ(t, y)dy =

∫
K

(
R(Xt(y), (Igv)(t,Xt(y)))

)2
ṽ(t, y)dy

=: P (t) ⩾ 0.

Thus, ρ̈(t) ⩾ −p(t)ρ̇(t) +O(e−δt), hence, ρ converges, thanks to Lemma 21.
Recalling (5.80), v(t, ·) thus converges to ρ̂δx̂, where ρ̂ is the limit of ρ. We conclude,

according to Proposition 31, that ρ̂ satisfies the expected equality.
Having proved that v and vh share the same limit is enough then to conclude, thanks to
Lemma 19, that vhε is an asymptotic preserving approximation.

If m is not 0, under very specific hypotheses over its support, we can extend the
result of Theorem 15. The explanation behind this is simple: as long as the population is
composed of traits that are not prone to mutatations, it will evolve as in the case where
mutations are not possible at all.
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Theorem 16. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable
equilibrium for the ODE ẋ = a(x) such that (5.75) holds. Moreover, let us assume that
supp

(
v0
)
∪Kx is a compact set such that there exist C ′, δ′ > 0 such that

∀y ∈ supp
(
v0
)
∪Kx, t ≥ 0, ∥X(t, y)− x̂∥ ≤ C ′e−δ

′t,

that
⋃
s⩾0

(
Xs(supp(v

0) ∪Kx)
)
∩Ky = ∅ and that hypothesis (5.76) holds. Then, v converges

to ρ̂ δx̂ in the weak sense in the space of Radon measures, where ρ̂ is the unique solution
of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

Proof. By using the fact that, for any x ∈ Rd,

v(t, x) = v0(X−t(x))e
G(0,t,x) +

∫ t

0

∫
Rd

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dze
G(s,t,x)ds,

where

G(s, t, x) :=
∫ t

s
R(Xτ−t(x), (Igv)(τ,Xτ−t(x)))− div a(Xτ−t(x))dτ,

we observe that supp(v(t, x)) ⊂ Xt(supp(v
0)) ∪

⋃
0⩽s⩽t

Xs(Kx) ⊂
⋃
s⩾0

(
Xs(supp(v

0) ∪Kx)
)
,

therefore

v(t, x) =v0(X−t(x))e
G(0,t,x) +

∫ t

0

∫
Rd

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dze
G(s,t,x)ds

=v0(X−t(x))e
G(0,t,x)

+

∫ t

0

∫
supp(v(t,x))∩Ky

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dze
G(s,t,x)ds

=v0(X−t(x))e
G(0,t,x).

Therefore, we can replicate the proof for the case m ≡ 0.

The result of Theorem 15 does not generalize when supp
(
v0
)
is not strictly contained

in the basin of attraction of xs, as shown in the following result:

Proposition 33. Let us consider the one-dimensional PDE
∂tv(t, x) +∇x · (a(x)v(t, x)) = (r(x)− ρ(t))v(t, x),

ρ(t) =
∫
R v(t, x)dx,

n(0, ·) = n0(·),
(5.85)

which is a particular case of (5.19), and let us assume that there exist xu < xs such that
a(xu) = a(xs) = 0, a′(xu) > 0, a′(xs) < 0, supp(n0) ⊂ [xu, xs], n

0(xu) = 0, and that there
exists α > 0 such that n0

′
(x) = O

x→x+u

((x− xu)
α) and that r(xu)− (1 + α)f ′(xu) > r(xs).

Then, vhε is not an asymptotic preserving approximation of v.

Proof. The long-time behaviour of the solution of (5.85) has been studied in detail in
Chapter 4, and it has been proved, under the hypotheses of Proposition 33, that v converges
to a function in L1. Let us now compute the limit of vh. Since n0(xu) = 0, we can assume,
without loss of generality, that for all i ∈ Jh, x0i ∈ (0, 1]. Thus, since a > 0 on (xu, xs),
for all t ⩾ 0, xi(t) converges to xs. As seen in the proof of Proposition 32, vh therefore
converges to r(xs)δxs , and v

h
ε is therefore not a asymptotic preserving approximation of

v.
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5.5 Simulations

In this section, we present some simulations obtained with the particle method developed
throughout the chapter. In Figure 5.1, we deal with the non-local advection equation
presented in [59], which writes

∂tv(t, x) +∇x (a(t, I1v(t, x), I2v(t, x)) = 0, x ∈ Rd, t ≥ 0, (5.86)

with Ijv(t, x) =
∫
R2 xjv(t, x)dx, for j ∈ {1, 2}. Note that this equation is not exactly a

particular case of (5.1), since there are two non-local terms involved for advection, but the
particle method can straightforwardly be adapted to this case. As in this paper, we show
that, depending on the parameters, the solution of this PDE can converge to a single Dirac
mass, to a sum of two Dirac masses, or to the sum of four Dirac masses. The parameters
used for the simulations are the same as the one detailed in Figures 9, 10 and 11 of [59].

Figure 5.2 illustrates different scenarios for the equation
∂tv(t, x) +∇x (a(x)v(t, x)) = (r(x)− ρ(t)) v(t, x),

ρ(t) =
∫
R v(t, x)dx,

n(0, x) = n0(x),

(5.87)

with a(x) = x(1 − x), and an initial solution supported in [0, 1]. This equation has been
studied in Chapter 4 where it has been proved that its solution can either converge to a
function in L1, (which depends on the initial condition), or to a Dirac mass on 1, depending
on the functions r and n0.
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(a) Monostability

(b) Bistability

(c) Quadstability

Figure 5.1: The three possible regimes of convergence for equation (5.86), obtained with
the particle method. The lines (a), (b) and (c) respectively show the convergence to a
single Dirac mass, two Dirac masses and four Dirac masses, and have been obtained by
choosing the parameters of Figures 9, 10 and 11 of [59]. In the three cases, we have chosen
N = 100, h = 2./100, ε = h0.8, and the cut off function φ is a Gaussian.
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(a) Solution of (5.87) at different time steps, with n0(x) = 1− x, r(x) = 6− 4x.

(b) Solution of (5.87) at different time steps, with n0(x) = x(1− x), r(x) = 6− 4x.

(c) Solution of (5.87) at different time steps, with n0(x) = x2, r(x) = 6− 4x.

(d) Solution of (5.87) at different time steps, with n0(x) = 6, r(x) = 6− 0.5x.

Figure 5.2: Different possible regimes of convergence for the solution of (5.87). The first
three lines (green, blue and orange curves), show the convergence to a function in L1,
which can be explicitly computed (see Chapter 4), and is represented by a black dashed
line. Note that the limit function is different when the initial condition changes. The
last line (red curves) shows the convergence to a Dirac mass in 1. In the four cases, we
have chosen a(x) = x(1 − x), N = 5000, h = 1

N , ε =
√
h and the cut-off function φ is a

Gaussian.







Chapter 6

An advection-selection-mutation
model for epithelial-mesenchymal
plasticity

ƒ Epithelial-mesenchymal plasticity is a cell differentiation phenomenon which plays a
crucial role in cancer development, by allowing them to form metastases (when in the
epithelial state), and to spread in the organism (when in the mesenchymal state). Starting
from an ODE model which accounts for the cell phenotype of a single cancer cell, we
develop an advection-selection-mutation PDE model, in line with the previous chapters,
that we solve numerically with a particle method. We first verify that the proposed model
reproduces the known behaviours of the associated ODE model, such as hysteresis. We
then explore the parameter space for the full model, uncovering the intertwined roles
played by different phenomena in a heterogeneous population of cells.

This work, carried out with Paras Jain, Mohit Kumar Jolly, Camille Pouchol and
Nastassia Pouradier Duteil, is the subject of an article.

147
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6.1 Introduction

Intra-tumour heterogeneity – the co-existence of multiple distinct cellular phenotypes in
a tumour – is being increasingly reported to associate with poor patient outcomes. It
contributes to both metastasis and therapy resistance – two major unsolved clinical chal-
lenges [88, 114]. Such heterogeneity can arise at a genetic level over the course of tumour
evolution and manifests as different clonal populations. However, over the last two decades,
non-genetic or phenotypic heterogeneity among cancer cells has been identified as a key
driver of disease aggressiveness [11, 133]. Such heterogeneity is often characterised by
single-cell measurements showing diversity among cells in a population at different levels.
A canonical example of non-genetic heterogeneity is along the Epithelial-Mesenchymal (E-
M) phenotypic spectrum. Given the implications of E-M heterogeneity in cancer metastasis
and patient outcomes, various in vitro, in vivo and in silico attempts have been focused
on understanding its underlying mechanisms [17,89,95,141].

An iterative cross-talk among in silico and in vitro studies has contributed enormously
to understanding how non-genetic heterogeneity emerges in a population. Mathematical
modelling of regulatory networks underlying Epithelial - Mesenchymal Plasticity (EMP)
have reported the co-existence of multiple cellular phenotypes – Epithelial (E), Mesenchy-
mal (M) and one or more hybrid (E/M) cell states [56,71,82,135,148]. Their co-existence
has been experimentally reported in varying ratios in multiple cell lines and primary tu-
mours [61, 95]. The relative stability of cells in different phenotypes, and consequently
the phenotypic distribution at a given time, is governed by the underlying topology of
the regulatory network involving transcriptional and translational control [72]. Thus, a
diversity of regulatory interactions within and among cells can contribute to shaping the
E-M heterogeneity patterns in a cell population.

Another milieu of factors such as asymmetric cell division [80, 156], stochastic bio-
chemical noise [123], differences in cellular microenvironment [128], and variable cell-cycle
dynamics [108] can amplify dynamic heterogeneity in a cellular population. These factors
alter cell-to-cell variability in protein levels in a population, thus contributing to their
functional heterogeneity when these cells are exposed to external factors. Despite exten-
sive efforts in investigating above-mentioned regulatory and stochastic processes in E-M
plasticity and heterogeneity, only a few computational models have incorporated these pro-
cesses within a growing and dividing heterogeneous cellular population. Broadly speaking,
two modelling approaches are employed:

1. Agent-based models, where each cell is modelled individually,

2. PDE models, which describe densities of cells.

The former approach is more precise since one can follow the fate of each cell, but sim-
ulating agent-based models leads to prohibitive computational costs for large number of
cells.

We here follow the latter approach to study the population dynamics of E-M het-
erogeneity. We note that PDE models have widely been adopted because their output
(cell density) can be related directly to flow cytometry experiments conducted at multiple
timepoints for a population.

Using PDE models, we demonstrate how heterogeneity along the Epithelial - Mesenchy-
mal axis emerges at a population level. First, we show that, as expected, the advection
equation reproduces previously reported dynamical features of hysteresis for cells under-
going an Epithelial-Mesenchymal Transition (EMT) followed by a Mesenchymal-Epithelial
Transition (MET). Second, we report how cellular heterogeneity depends on the charac-
teristic of epimutations leading to stochastic changes in cell phenotype, whether in the
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case of the external EMT-inducing signal (SNAIL), or the E-M state variable (miR200 or
ZEB levels). Third, we highlight how differences in the relative growth rates among E,
E/M and M states impact how the cell density evolves over time.

All simulations are performed following the particle method detailed in Chapter 5.

6.2 Advection equation and hysteresis

6.2.1 ODE model and corresponding advection equation

In vitro and in silico studies on EMP have demonstrated a hysteretic behaviour as cancer
cells undergo one cycle of EMT and MET, i.e., an asymmetry in EMT and MET tra-
jectories. For our further analyses, we choose a minimal EMT regulatory network with
canonical epithelial (microRNA-200 (miR200)) and mesenchymal (ZEB) players that mu-
tually inhibit each other. An EMT-inducing transcription factor SNAIL that activates
ZEB and inhibits miR-200 represents the cumulative effect of the extracellular environ-
ment [110]. The model writes{

µ̇200 = gµ200HZ,µ200(Z)HS,µ200(S)− gmZHZ,mZ
(Z)HS,mZ

(S)Q(µ200)− kµ200µ200

Ż = gZgmZHZ,mZ
(Z)HS,mZ

(S)P (µ200)− kZZ
.

(6.1)
We denote F the right-hand side of this ODE model, which models interactions between
a transcription factor ZEB (denoted Z), and a micro-RNA miR-200 (denoted µ200). The
variable S represents a third molecule, SNAIL, which is seen in our case as an external
signal characterising the extracellular environment. All the parameters of this model are
given in Appendix A.

Within this framework, the three cell states (E, E/M, and M) are characterised as
follows:

• The epithelial state corresponds to a high level of miR-200, and a low level of ZEB;

• The mesenchymal state corresponds to a low level of miR-200 and high level of ZEB;

• The hybrid state corresponds to a medium level of miR-200 and ZEB.

Depending on the value of S, system (6.1) exhibits monostability, bistability or tristability,
as illustrated by the bifurcation diagram (Figure 6.1 A).

The bifurcation diagram depicts the different possible stable states, each characterised
by specific ranges of miR200 levels (solid lines) for increasing levels of SNAIL, resulting
from the network dynamics (Figure 6.1 A). As a cell undergoes EMT (i.e. SNAIL levels
increase), it switches from high to intermediate to low levels of miR200 which corresponds
to the E, E/M and M states respectively. However, during MET, the cell switches directly
from low (M) to high (E) miR200 levels without passing through the hybrid E/M state,
thus displaying hysteresis.

Homogeneous population. To reproduce the hysteretic behaviour of EMP, i.e. asym-
metry in EMT and MET trajectories, we first consider the advection equation

∂tu(t, y) +∇ · (f(t, y)u(t, y)) = 0,

where y = (µ200, Z), and f(t, µ200, Z) = F (µ200, Z, S(t)), and t 7→ S(t) is the piecewise-
affine function which connects the points (0, 160K), (5000, 240K) and (10000, 160K), as
represented in Figure 6.1 B.
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Heterogeneous population. In order to account for heterogeneity within the pop-
ulation, and more specifically for the fact that the signal S can be interpreted in a
different way by each cell, we incorporate S within the structure variable, which be-
comes y = (µ200, Z, S). SNAIL level variation then impacts the advection term, which
becomes f(t, y) = (F (y), fS(S)), where fS is the step function corresponding to the
derivative of the function S introduced in the previous paragraph, i.e. fS(S) = 40 if
S ∈ [0, 5000), and fS(S) = −40 if S ∈ (5000, 10000]. As initial condition, we take
u0(µ200, Z, S) =

1
σG(

S−160K
σ ), with σ = 20K, and G denotes the Gaussian function.

6.2.2 Results

When sticking to the exact PDE analogue of the ODE (6.1), i.e., the advection equation,
we recover the hysteretic phenomenon at the cell population level. In this case, we insist
that cell growth and epimutations are not taken into account. The SNAIL dynamics used
to obtain hysteresis are shown by the blue curve (Figure 6.1 B).

We simulate the dynamics for homogeneous and heterogeneous cell populations with
respect to their distribution of SNAIL levels. For a homogeneous cell population (Figure
6.1 C, i), we see that cells reside in three distinct miR200 states (high, intermediate, and
low) for time 0 to 5000 hours, but make a quick transition from low to high miR200
levels for time 5000 to 10000 units without spending much time in the intermediate state
(decreasing SNAIL levels). The unexpected intermediate miR200 levels seen during MET
can be explained by considering it as a sample timepoint where miR200 level is responding
to changes in SNAIL levels before settling to its equilibrium (high) state.

Similar observation of hysteresis is made while considering a heterogeneous cell pop-
ulation (Figure 6.1 C, ii). Particularly, the cell distribution along ZEB and miR200 axis
during MET shows that the transient intermediate miR200 peak in homogeneous popu-
lation turns into little dispersed transient peaks which are clearly distinct from the in-
termediate peak arising during EMT (Figure A.1). This observation recapitulates the
experimental data on different partial states seen during EMT vs. during MET [95]. Also,
in the heterogeneous population case, some cells fail to complete a full EMT but rather
undergo a partial transition and then return to an epithelial state upon reduced SNAIL
levels (Figure 6.1 C, ii).

6.3 Effect of epimutations and growth

In a population exhibiting growth, the cell-state (characterised by levels of a set of specific
biomolecules) is dynamically evolving due to stochasticity in biochemical reactions, thus
causing heterogeneity. To evaluate how these stochastic processes influence the popula-
tion distribution of E, M and E/M states, we next observe cell state distribution as a
result of epimutations in a regulatory network for a population where cell division rate
is independent of cell-state (i.e. EMT does not impact cell cycle). Because the levels of
EMT-inducing signal SNAIL are also evolving due to noise, its levels are distributed in
the population around the mean environmental characteristics S0 (Figure 6.2 A, i).

6.3.1 Model

Reducing the dimensions of the structure variable. When incorporating growth
and mutations into the model, computation times becomes significant. To ease the burden,
we use dimension reduction by further simplifing the advection function: we consider the
phenotype y = (x, S) rather than (µ200, Z, S), where x is roughly equivalent to µ200.
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Figure 6.1: The advection equation reproduces hysteresis at the population level. A)
EMT gene regulatory network (inset) and the bifurcation of cell states resulting from
the network dynamics with increasing input signal (SNAIL) levels, B) Variation in the
external input (SNAIL) levels with time to capture hysteresis regulation of cell states in
C. C) Hysteresis (non-symmetric trajectories) in cell state transition during one cycle of
EMT and MET by varying SNAIL levels as shown in Figure 1B while considering – i)
Homogeneous population and ii) Heterogeneous population.

This requires to choose a function fr such that the dynamics of x for any S is given
by ẋ = fr(x, S). Our main requirement in choosing this new function is to preserve
the bifurcation diagram given in Figure 6.1 A, which means that, for a given value of
S ∈ [150K, 250K], fr(·, S) has the same number of zeros as F (·, S), and are such that
fr(x, S) = 0 if and only if there exists Z > 0 such that F (x, Z, S) = 0.

Since infinitely many functions satisfy this property, one must make further assump-
tions in order to select an adapted one. For simplicity and to avoid overfitting, we assume
that, for any S, fr(·, S) is piecewise affine (with one segment by root) and that the rate
of change is constant on each piece. Under these constraints, the function is defined up to
a multiplicative constant, which has been chosen in order to minimise the value∫ T

0

∫ 250K

150K

∫ 25K

0

∫ 800K

0
|x(t, S, x0)− µ(t, S, x0, Z0)|dt dS dx0 dZ0, (6.2)

where for all x0 ∈ [0, 25K], S ∈ [150K, 250K], x(·, S, x0) solves{
ẋ(t, S, x0) = fr (x(t, S, x0))

x(0, S, x0) = x0
,
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and for all Z0 ∈ [0, 800K], (µ(·, S, x0, Z0), Z(·, S, x0, Z0)) satisfies (6.1).
The value of the multiplicative constant which minimises (6.2) depends on T but we

establish that, for T ∈ {10, 100, 1000} its value is rather insensitive to that of T : it is close
to 0.02, which it the value that we select. The obtained function is shown in Figure A.2
for various S values.

We first assess the accuracy of our dimension reduction approach, establishing similar-
ity between the dynamics of system (6.1) with two variables (full EMT) and that of the
reduced system. We compare the distribution of miR200 levels for a given SNAIL distribu-
tion with the distribution of the cell population along the state x (Figure 6.2 A and Figure
A.2 B). For example, with a SNAIL distribution with a mean value (S0) of 200K molecules,
the bifurcation diagram depicts the possibility for the cell population to be distributed
in all three states (Figure 6.2 A, i). We observe that the asymptotic distribution of the
state variable x from the reduced system dynamics exhibits tri-modality, showing the co-
existence of all three states, irrespective of the initial condition (Figure 6.2 A, ii – initial
condition: all cells as epithelial, Figure A.2 B – initial condition: all cells as hybrid or mes-
enchymal). Similarly for a SNAIL distribution with mean S0 ∈ {190K, 225K, 150K, 250K}
molecules, we observe respective combinations of phenotypes as in bifurcation diagram of
the full EMT network – co-existence of E and E/M (bimodal), co-existence of hybrid E/M
and M (bimodal), epithelial (unimodal) and mesenchymal (unimodal) (Figure 6.2 A), thus
providing further evidence that EMT dynamics are preserved with the sole variable x.

Considering growth and epimutations. The full model incorporating growth and
epimutations writes

∂tu(t, y) +∇ · (f(y)u(t, y)) = (r(y)− d(y)ρ(t))u(t, y)

+
∫
R2 M(y, z)u(t, z)dz −

∫
R2 M(z, y)dz u(t, y)

ρ(t) =
∫
R2 u(t, y)dy

, (6.3)

where

• The structure variable y ∈ R2 writes y = (x, S).

• The advection function f writes f(y) = f(x, S) = (fr(x, S), fS(S)), where fS(S) =
δ(1 − S

S0
), with S0 ∈ [150K, 250K] corresponding to the mean of the SNAIL distri-

bution, δ := S0 ln(2)
α , and α > 0 representing the characteristic time of convergence

of SNAIL to the mean S0.

• r(y) and d(y) respectively represent the birth and death rate of a cell of phenotype y.
In all our simulations, the death rate is constant (d ≡ 1.82× 10−7cell/hr).

• The mutation function M writes M(y, z) = r(z)P (y − z). Here, P (x) = P (y, S) :=
1

ηxηS
G( xηx )G(

S
ηS
), where G is the Gaussian function. Variables ηx and ηS are the

standard deviations for x and S respectively.

6.3.2 Focus on epimutations

We now turn to simulations for the full model (6.3) where we investigate the effect of
epimutations; growth functions r and d are kept constant.

For multi-modal distributions of state variable x, the exact phenotypic composition
depends on relative stability of the multiple co-existing phenotypes. For example, we see
a reduced share of hybrid E/M (intermediate x levels) cells for distribution of SNAIL
levels that overlap significantly with those that have mean SNAIL levels corresponding
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to monostable E or monostable M regions (S0 = 190K, 225K molecules respectively),
especially for a reduced standard deviation ηx of epimutations in state x (Figure 6.2 Bi,
ii). Similarly, for distribution of SNAIL levels with mean S0 = 175K molecules, although
both E and M states co-exist (Figure 6.2 A, i), the relative stability of the E state is much
greater than that of the M state, thus disallowing cells to make transition to the M state
even at higher levels of ηx (Figure 6.2 B, iii). As mentioned previously, the distribution of
SNAIL levels and correspondingly that of cell state x in a population can be attributed
to stochasticity in biochemical reactions.

Another type of perturbation in cellular variables (here, x and SNAIL) can arise when
certain subpopulations are isolated and re-cultured independently. For instance, when the
E, M and hybrid E/M prostate cancer subpopulations are segregated, they exhibit very
different distributions after two weeks [139]. Similarly, the segregated EpCAM-high and
EpCAM-low subpopulations in breast cancer have varied recovery dynamics [12]. Thus, in
case of either internal (epimutations) or external (microenvironmental factors) perturba-
tions, the rate at which the cellular variables recover towards the characteristic distribution
can differ even though they eventually converge to the same equilibrium distribution.

Thus, we next modulate the rate of recovery of SNAIL levels to mimic the scenario
of extrinsic perturbation to the cell population by isolating distinct subpopulations and
simulating (re-culturing) them independently. The rate of recovery to perturbations in
SNAIL levels is inversely proportional the parameter α in our model, which captures the
characteristic time of convergence of SNAIL levels to its equilibrium S0 [90,145]. Starting
from a mostly mesenchymal population (high values of x) the convergence to a mostly
epithelial population slows down with increasing values of α (Figure 6.2 C).

Furthermore, the slowed down dynamics increases cellular heterogeneity by making
the population to be distributed in all three states for a considerable interval of time, as
quantified by Renyi entropy (Figure 6.2 D), defined for a positive function u ∈ L1(Rd)
as −

∫
Rd ũ(x) ln(ũ(x))dx, with ũ := u/∥u∥L1 . In the example shown, the population

heterogeneity first increases as the population shifts from majority epithelial to more
uniformly distributed among the three phenotypes in the intermediate time points and
then decreases as the population turns to majority M cells. Similar observations can be
made for any combination of initial condition and mean S0 values of SNAIL distribution
(Figure A.3, Figure A.4).

Overall, the interplay between deterministic and stochastic dynamics of cellular
biomolecules shapes the population heterogeneity. This is done both by distributing cells
in all plausible states permitted by the underlying ODE model, and by slowing down the
kinetics of cells towards equilibrium when perturbed by the external signal S.

6.3.3 Focus on growth

So far, we considered all three phenotypic states (E, M and hybrid E/M) to divide at equal
rates. To observe the additional influence of growth rate differences on E-M heterogeneity
we considered three possible scenarios – a) case ‘r1’: all the three phenotypes divide at
same rate, b) case ‘r2’: both E and hybrid E/M cells divide at equal rates, while M cells
divide at half the rate of E cells; and c) case ‘r3’: both E/M and M divide at equal rates,
which is half the rate of division of E cells. In practice, this means considering three
different possible piecewise-constant functions r, as illustrated in Figure 6.3 A ii.

Across all these cases, the E state divides at either an equal or a faster rate than hybrid
E/M and/or M cells. This constraint recapitulates the current experimental understanding
that EMT may suppress cell cycle to varying extents, thus reducing the division rate of
hybrid E/M and/or M cells.

First, we investigate how the phenotypic composition of the population changes with
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Figure 6.2: Simulations of the advection-selection-mutation (PDE (6.3)) with reduced
function fr. Empirical reduced single cell state variable x. Ai) Bifurcation diagram show-
ing stable (blue) and unstable (red) levels of miR200 (y axis on left) for increasing levels
of SNAIL levels; and distribution of input SNAIL levels among the cells (y axis on right)
for different mean characteristics levels S0. Aii) Distribution of cells along the state x
of reduced EMT system for different distributions of SNAIL shown in Ai. B) Changes
in population’s phenotypic distribution with increasing levels of epigenetic noise ηx for
SNAIL distributions with mean S0 = 190K (Bi) and 225K (Bii). For S0 = 175K (Bii),
the population remains invariant to increasing noise. C) Temporal changes in cell state
distribution of the population for decreasing value of input signal SNAIL’s perturbation
recovery rate (increasing values of the characteristic time ‘α’). D) Changes in population’s
heterogeneity (measured by Renyi entropy) with time for different α parameter values. Pa-
rameters used to generate plots, unless stated otherwise, are α = 120hrs, ηx = 1000, ini
pop Epi, time point 20, S0 = 225K molecules, and per-capita growth rate r is constant
across phenotypes, given by r = 0.0182/hr.

different growth rate scenarios (Figure 6.3 , Figure A.5). For input condition as SNAIL
distribution with mean S0 = 190K or 200K molecules that predominantly enables an
E state with/without hybrid E/M state, the reduced growth of M cells has very slight
effects on phenotypic composition over the time course, as expected (Figure 6.3 B, i).
The initial peak in hybrid cell fraction for the ‘r2’ growth scenario is the combined effect
of M to hybrid E/M state transition and a relatively higher growth rate of hybrid E/M
cells. However, when hybrid E/M cells also have reduced proliferation (growth scenario
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‘r3’), we see a lasting change in the phenotypic composition as E cells become dominant
because of higher division frequency (Figure 6.3 B, i - S0 = 200K). For the input SNAIL
distribution with a mean value S0 of 225K molecules that majorly supports hybrid E/M
and M phenotypes, in the case ‘r2’, the growth advantage provided to hybrid E/M cells
enables their dominance in the population on the long run, when compared to the growth
scenarios of ‘r1’ or ‘r3’ where both E/M and M cells proliferate at equal rates (Figure 6.3
Bi, S0 = 200K). The initial peaks in hybrid E/M fractions are combined effects of E to
hybrid E/M transitions with either growth similarity or advantage of hybrid E/M cells
over M cells.

The overall change in phenotypic composition can be calculated using Renyi entropy
as a heterogeneity score (Figure 6.3 B, ii). Although, growth scenarios ‘r1’ and ‘r2’ have
the same phenotypic composition and an equal heterogeneity score eventually, the growth
scenario ‘r1’ shows a much smoother change in heterogeneity values from the initial levels
because of all three phenotypes being equally proliferative.

Next, we look at the effects of increasing level of epigenetic noise level ηx in cell
state x on phenotypic composition laid down by growth rate differences (Figure A.6 A-
D). For S0 = 190K and 200K, where hybrid E/M state is less dominant than the E
state (Figure 6.3 B), increasing the noise levels (from ηx = 1000 to ηx = 5000) in state
x causes more cell-state transitions, raising the frequency of hybrid E/M phenotype in
population for all growth scenarios (Figure A.6 B). However, as for S0 = 225K and
growth scenario ‘r2’ where hybrid phenotype is the dominant state, increasing the noise
ηx level (from ηx = 1000 to ηx = 5000) raises M fractions in the population even though M
cells are dividing slowly (Figure 6.3 B,i; Figure A.6 B-C). Overall, we observe an increase
in population heterogeneity with higher noise levels in state variable ‘x’, irrespective of
the growth scenario (Figure 6.3 Bii, Figure A.6 D).

After observing changes in phenotypic composition for different growth scenarios, we
move on to see how total cell population grows for combinations of initial conditions and
growth scenarios. We consider six different conditions – isolated E, hybrid E/M, and
M population, uniform mixture of either E and M or E, E/M and M cells, and uniform
distribution of cells in all possible cell states x and input SNAIL levels.

When all the phenotypic states are dividing at equal rates, the total number of cells
does not vary across different initial conditions. However, with M dividing slower than
E and hybrid E/M cells (growth scenario ‘r2’), we see that an initially mesenchymal
population has slower population growth compared to other initial conditions. Similarly,
with both hybrid E/M and M cells dividing slower than E (growth scenario ‘r3’), initial
conditions having component of either E/M or M cells divide slower than isolated (pure) E
cells. Also, as transition from hybrid E/M to E is much probable than M to E transitions,
presence of hybrid cells in the populations increases the overall growth rate (Figure 6.3 C
compare ‘hyb vs mes’, and ‘epi mes’ vs ‘epi hyb mes’ initial conditions for S0 = 200K,
‘r3’ growth scenario). Further, increasing the level of epigenetic noise (from ηx = 1000
to ηx = 5000) causes more state transitions rendering lesser variability in the growth
dynamics by quickly equalising the effect of differences in the initial conditions (Figure
A.6 E).
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Figure 6.3: Effect of growth rate differences among E, hybrid E/M and M phenotypes
on population’s heterogeneity and overall growth dynamics. Ai) Support of the different
initial conditions: In each case, the initial condition is uniformly distributed on its support,
and such that the total population is equal to 100 cells. Aii) Profile of different growth
functions: ‘r1’: All three phenotypes divide at same rate; ‘r2’: E and E/M divide at
equal rates, while M divide at half the rate of E cells; and ‘r3’: Both E/M and M divide
at equal but half the rate of E cells. Bi) Temporal changes in hybrid cell fraction in the
population for different growth scenarios among phenotypes. Bii) Changes in population’s
heterogeneity (measured by Renyi entropy) with time. C) Population growth dynamics for
different combinations of growth scenarios and initial condition; ’epi hyb mes’ corresponds
to an initial condition uniformly distributed on the three colored domains of A1), and uni
to a uniform population on the whole rectangle [0, 25K]× [150K, 250K]. For panel B, the
initial condition is uniformly distributed in all states. The input SNAIL mean (S0) levels
used are mentioned for all the individual plots. Other parameters used to generate plots
are α = 120hrs, ηx = 1000, and the per-capita growth rate (r) of the epithelial phenotype
is 0.0182/hr.
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Appendix A

Appendix of Chapter 6

A.1 Supplementary figures

Figure A.1: Hysteresis (non-symmetric transition) in cell density (z-axis) along the two cell
state variables miR200 and ZEB during one cycle of EMT and MET caused by increasing
and decreasing levels of input SNAIL levels (Figure 1B blue curve) for A) homogeneous
and B) heterogeneous cell population.



160 A. Appendix of Chapter 6

Figure A.2: Reduced function fr underlying the ODE with single variable cell state x and
single input SNAIL; and distribution of the cell population for different distributions of
SNAIL shown in Figure 2Ai. A) Function x 7→ fr(x, S), showing the existence of mono-, bi-
and tri-stable states for varying levels of SNAIL inputs S. B) Cell population distribution
at the end point of simulations started with hybrid and mesenchymal populations for
increasing levels of input signal SNAIL’s mean (S0) levels. Parameters used to generate the
above plots, unless stated otherwise, are α = 120 hrs, ηx = 1000, ini pop Epi, S0 = 200K
molecules, and the per-capita growth rate (r) is constant = 0.0182\hr.
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Figure A.3: Population dynamics and changes in population heterogeneity (measured
using Renyi Entropy) with time for several combinations of S0 and α parameters. The
intermediate S0 values of 200K molecules where a cell can either attain a stable epithelial,
hybrid, and mesenchymal, has highest heterogeneity score. Further, as we go towards
smaller or larger values of S0 where only epithelial, and mesenchymal states are possible,
respectively, the population has least heterogeneity. And, by increasing the residence time
of cells in a state x, cells get enough time to populate the cell state they reside in, and
thereby, contribute to a significant fraction in the overall population. For the above plots,
the initial condition population is epithelial, and ηx = 1000, and per-capita growth rate r
is constant = 0.0182/hr.
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Figure A.4: Changes in population heterogeneity (measured using Renyi Entropy) with
time for several combinations of S0 and α values while starting with a population of A)
Hybrid cells, and B) Mesenchymal cells. For the above plots, ηx = 1000, and per-capita
growth rate r of all subpopulation = 0.0182/hr.
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Figure A.5: Effect of growth rate differences among E, hybrid E/M and M phenotypes
on population’s heterogeneity. Temporal changes in E cell fraction (panel A) and M cell
fraction (panel B) in the population for different growth scenarios among phenotypes –
‘r1’: All three phenotypes divide at same rate; ‘r2’: E and E/M divide at equal rates, while
M divide at half the rate of E cells; and ‘r3’: Both E/M and M divide at equal but half
the rate of E cells. For the above results, the initial condition is uniformly distributed in
E, hybrid E/M and M state. The input SNAIL mean S0 levels used are mentioned for all
the individual plots. Other parameters used to generate plots are α = 120 hrs, ηx = 1000,
and per-capita growth rate r of epithelial phenotype is 0.0182/hr.
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Figure A.6: Effect of growth rate differences among E, hybrid E/M and M phenotypes on
population’s heterogeneity and overall growth dynamics. A-C) Temporal changes in E,
hybrid E/M, and M cell fraction in the population for different growth scenarios among
phenotypes – ‘r1’: All three phenotypes divide at same rate; ‘r2’: E and E/M divide at
equal rates, while M divide at half the rate of E cells; and ‘r3’: Both E/M and M divide at
equal but half the rate of E cells. D) Changes in population’s heterogeneity (measured by
Renyi entropy) with time. E) Population growth dynamics for different combinations of
growth scenarios and initial conditions. For panel A-D, the initial condition is uniformly
distributed in E, hybrid E/M and M state. The input SNAIL mean S0 level used are
mentioned for all the individual plots. Other parameters used to generate plots are α = 120
hrs, ηx = 5000, and per-capita growth rate r of epithelial phenotype is 0.0182/hr.
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A.2 Parameters for ODE (6.1)

We detail the parameters underlying ODE (6.1):{
µ̇200 = gµ200HZ,µ200(Z)HS,µ200(S)− gmZHZ,mZ

(Z)HS,mZ
(S)Q(µ200)− kµ200µ200

Ż = gZgmZHZ,mZ
(Z)HS,mZ

(S)P (µ200)− kZZ
.

The functions HZ,µ200 , HS,µ200 , HZ,mZ
and HZ,mZ

are shifted Hill functions which
writes under the form

H(X) =
1 + λ

(
X
X0

)n
1 +

(
X
X0

)n .

The associated parameters are given in Table A.1.

Molecules Molecules.Hour−1 Hour−1

n 6 µ0 10K

nZ,µ200 3 λZ,µ200 0.1 Z0
µ200 220K gµ200 2.1K kµ200 0.05

nS,µ200 2 λS,µ200 0.1 S0
µ200 180K gZ 0.1K kZ 0.1

nZ,mZ
2 λZ,mZ

7.5 Z0
mZ

25K gmZ 11 kmZ 0.5

nS,mZ
2 λS,mZ

10 S0
mZ

180K

Table A.1: Parameters of the Hill functions.

The functions Yµ, Ym and L are defined by

Yµ(µ) :=

n∑
i=1

iγµi

(
n

i

)
M i
n(µ)

Ym(µ) :=
n∑
i=1

γmi

(
n

i

)
M i
n(µ),

L(µ) :=
n∑
i=0

li

(
n

i

)
M i
n(µ),

where M i
n := (µ/µ0)i

(1+µ/µ0)n
.

P (µ) :=
L(µ)

Ym(µ) + kmZ

Q(µ) :=
Yµ(µ)

Ym(µ) + kmZ

The parameters of these three functions are given in Table A.2.

i 0 1 2 3 4 5 6

li 1.0 0.6 0.3 0.1 0.05 0.05 0.05

γmi 0.04 0.2 1.0 1.0 1.0 1.0

γµi 0.005 0.05 0.5 0.5 0.5 0.5

Table A.2: Parameters for the functions L, Yµ and Ym
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B.1 Complement of Proposition 2.5

Here is the complement and the proof of Proposition 2.5.

Proposition 34. We define: ϕ : λ 7→ 1−
√
λ

1+
√
λ

and ρ := abϕ(λ1)ϕ(λ2). If ρ < 1, then

E>1 = ∅.
If ρ ≥ 1, we define:

• If λ1 > 0 and λ2 > 0 :

x± : =

[
1√
λ2

+
1

2λ2
(1 +

√
λ2)

2
√
ρ− 1

(√
ρ− 1±

√
ρ− ϕ(λ2)2

)]1/b
y± : =

[
1√
λ1

+
1

2λ1
(1 +

√
λ1)

2
√
ρ− 1

(√
ρ− 1±

√
ρ− ϕ(λ1)2

)]1/a
α(x) : = (1 + λ1)− (1 +

√
λ1)

2(1 +
√
λ2)

2ρ
xb

(1 + xb)(1 + λ2xb)

β(y) : = (1 + λ2)− (1 +
√
λ1)

2(1 +
√
λ2)

2ρ
ya

(1 + ya)(1 + λ1ya)

r±(x) : =

[
−α(x)±

√
α(x)2 − 4λ1

2λ1

]1/a
s±(y) : =

[
−β(y)±

√
β(y)2 − 4λ2

2λ2

]1/b
.

Then,

E>1 = {(x, y) ∈ (x−, x+)× (y−, y+) : r−(x) < y < r+(x)}
= {(x, y) ∈ (x−, x+)× (y−, y+) : s−(y) < x < s+(y)}.
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• If λ1 = 0 and λ2 > 0 :

x± : =

[
1√
λ2

+
1

2λ2
(1 +

√
λ2)

2
√
ρ− 1

(√
ρ− 1±

√
ρ− ϕ(λ2)2

)]1/b
y− : =

(
1

ρ− 1

)1/a

r−(x) : =

[
(1 + xb)(1 + λ2x

b)

−λ2x2b + (ab(1− λ2)− (1 + λ2))xb − 1

]1/a
β(y) : = (1 + λ2)− (1 +

√
λ1)

2(1 +
√
λ2)

2ρ
ya

(1 + ya)(1 + λ1ya)

s±(y) : =

[
−β(y)±

√
β(y)2 − 4λ2

2λ2

]1/b

E>1 = {(x, y) ∈ (x−, x+)× (y−,+∞) : y > r−(x)}
= {(x, y) ∈ (x−, x+)× (y−,+∞) : s−(y) < x < s+(y)}.

• If λ1 = λ2 = 0 :

x− :=

(
1

ρ− 1

)1/b

, y− :=

(
1

ρ− 1

)1/a

r−(x) :=

(
1 + xn2

(ρ− 1)xb − 1

)1/a

, s−(y) :=

(
1 + ya

(ρ− 1)ya − 1

)1/b

E>1 = {(x, y) ∈ (x−,+∞)× (y−,+∞) : y > r−(x)}
= {(x, y) ∈ (x−,+∞)× (y−,+∞) : x > s−(y)}.

In order to prove this proposition, we will need this very simple lemma.

Lemma 22. Let P (X) := aX2 + bX + c be a polynomial of degree two. We assume that
a > 0 and c > 0. If P has two real roots, then they have the same sign. Moreover, P has
two positive roots if and only if b+ 2

√
ac < 0.

Proof of Proposition 2.5. Let (x, y) ∈ R2
+.

xg′(x)

g(x)

yf ′(y)

f(y)
= ab(1− λ1)(1− λ2)

xbya

(1 + xb)(1 + λ2xb)(1 + ya)(1 + λ1ya)
.

We denote

ω : = xb

δ : = ya

C : = ab(1− λ1)(1− λ2) = (1 +
√
λ1)

2(1 +
√
λ2)

2ρ

C1(δ) : = (1 + δ)(1 + λ1δ)

C2(ω) : = (1 + ω)(1 + λ2ω)

P (ω, δ) : = λ1C2(ω)δ
2 + (C2(ω)(1 + λ1)− Cω)δ + C2(ω)

= λ2C1(δ)ω
2 + (C1(δ)(1 + λ2)− Cδ)ω + C1(δ).
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Then,

(x, y) ∈ E>1 ⇐⇒ xg′(x)

g(x)

yf ′(y)

f(y)
⇐⇒ P (ω, δ) < 0.

We now assume that λ1 > 0 and λ2 > 0: the proof for λ1 = 0 or λ2 = 0 is similar and
simpler, as P becomes a polynomial of degree 1 for the variable ω or γ.

According to lemma 22, there exist ω, δ > 0 such that P (ω, δ) < 0 if and only if

Q2(ω) := C2(ω)(1 + λ1)− Cω + 2
√
λ1C2(ω) < 0

⇐⇒ C2(ω)(1 +
√
λ1)

2 − Cω < 0

⇐⇒ λ2ω
2 + (1 + λ2 −

C

(1 +
√
λ1)2

)ω + 1 < 0

⇐⇒ λ2ω
2 + (1 + λ2 − (1 +

√
λ2)

2ρ)ω + 1 < 0.

According to lemma 22, there exists ω > 0 such that Q2(ω) < 0 if and only if

(1 +
√
λ2)

2 − (1 +
√
λ2)

2ρ < 0 ⇐⇒ ρ > 1.

Therefore, Q2(ω) < 0 if and only if ρ > 1 and ω ∈ (ω−, ω+), where ω−, ω+ (which depend
on n1, n2, λ1 and λ2), denote the two positive roots of Q2.

Lastly, P (ω, δ) < 0 if and only if ρ > 1, ω ∈ (ω−, ω+), and δ ∈ (r̃−(ω), r̃+(ω)), where,
for all ω ∈ (ω−, ω+), r̃−(ω), r̃+(ω) denote the two positive roots of δ 7→ P (ω, δ).

With the same reasoning, by denoting δ−, δ+ the two positive roots of Q1(δ) :=
C1(δ)(1 + λ2) − Cδ +

√
λ2C1(δ) < 0, and, for all δ ∈ (δ−, δ+), s̃−(δ) and s̃+(δ), the

two positive roots of ω 7→ P (ω, δ), P (ω, δ) < 0 if and only if ρ > 1, δ ∈ (δ−, δ+), and
ω ∈ (s̃−(δ), s̃+(δ)).

We denote

x− : = (ω−)1/b, x+ := (ω+)1/b

y− : = (δ−)1/a, y+ := (δ+)1/a

r−(x) : = (r̃−(ω))1/a, r+(ω) := (r̃+(ω))1/a

s−(y) : = (s̃−(δ))1/b, r+(δ) := (r̃+(δ))1/b.

The values of x−, x+, y−, y+, r+, r−, s− and s+ are directly computed from the formula of
Q1, Q2 and P .

B.2 Complement of Proposition 12

Proposition 35. Let us denote λ−0 :=

(
a− 1

a+ 1

)2

and λ+0 =

(
a+ 1

a− 1

)2

.

• If λ ∈ (λ−0 , λ
+
0 ), then Es = ∅. In other words, system (2.4) is monostable, for any

value of g.

• If λ = 0, we define: α−
0 := z0

( 1

a− 1

)1/a a

a− 1
. Then, E>s = (α−

0 ,+∞).
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• If λ ∈ (0, λ−0 ], we define:

ω−
λ :=

a− 1− (a+ 1)
(
λ+

√
(1− λ)(λ−0 − λ)

)
2λ

ω+
λ :=

a− 1− (a+ 1)
(
λ−

√
(1− λ)(λ−0 − λ)

)
2λ

α−
λ := z0(ω

−
λ )

1/a 1 + ω−
λ

1 + λω−
λ

, α+
λ := z0(ω

+
λ )

1/a 1 + ω+
λ

1 + λω+
λ

.

Then, Gs(E
>
s ) = (α−

λ , α
+
λ ).

• If λ ≥ λ+0 , we define:

τ−λ :=
−(a+ 1) + (a− 1)

(
λ−

√
(λ− 1)(λ− λ+0 )

)
2λ

τ+λ :=
−(a+ 1) + (a− 1)

(
λ+

√
(λ− 1)(λ− λ+0 )

)
2λ

β−λ := z0(τ
+
λ )1/a

1 + τ+λ
1 + λτ+λ

, β+λ := z0(τ
−
λ )1/a

1 + τ−λ
1 + λτ−λ

.

Then, Gs(E
>
s ) = (β−λ , β

+
λ ).

Proof. With the same reasoning as for the asymmetric system, we can assume that z0 = 1.
Let x ∈ R+. We denote: ω := xa and

P (ω) := (1 + λω)(1 + ω)− n|λ− 1|ω = λω2 + (λ+ 1− a|λ− 1|)ω + 1.

Since ∣∣∣∣xf ′(x)f(x)

∣∣∣∣ = a|λ− 1|xa

(1 + λxa)(1 + xa)
,

we clearly have: x ∈ E>s ⇐⇒
∣∣xf ′(x)
f(x)

∣∣ > 1 ⇐⇒ P (ω) < 0.

If λ = 0, then: P (ω) = 1−(a−1)ω. Thus, P (ω) < 0 ⇐⇒ ω > 1
a−1 ⇐⇒ x > ( 1

a−1)
1/a.

Since Gs(
(

1
a−1

)1/a
) = ( 1

a−1)
1/a a

a−1 := a−0 , the result follows.
We now assume that λ > 0. Denoting ∆ the discriminant of P, we get

∆ = (λ+ 1)2 + a2(λ− 1)2 − 2a(λ+ 1)|λ− 1| − 4λ = |λ− 1|
(
|λ− 1|(1 + a2)− 2a(λ+ 1)

)
.

We distinguish two cases:

• If λ < 1, recalling that λ−0 = (a−1
a+1)

2, we have

∆ = (1− λ)
(
(1− a)2 − λ(1 + a)2

)
= −(1− λ)(1 + a)2(λ− λ−0 ).

Hence, if λ > λ0, then P (ω) > 0, and thus x /∈ E>s .

If λ ∈ (0, λ0], then P has two roots, and we have

P (ω) < 0 ⇐⇒ ω ∈ (ω−
λ , ω

+
λ ) ⇐⇒ x ∈ ((ω−

λ )
1/a, (ω+

λ )
1/a).

Hence, E>s = ((ω−
λ )

1/a, (ω+
λ )

1/a). Since Gs is increasing, we get

Gs(Es) = (Gs((ω
−
λ )

1/a), Gs(ω
+
λ )

1/a) = (α−
λ , α

+
λ ).
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• If λ > 0, the reasoning is exactly the same. In this case

∆ = (λ− 1)
(
λ(a− 1)2 − (a+ 1)2

)
= (λ− 1)(a− 1)2

(
λ− λ+0

)
,

where λ+0 = (a+1
a−1)

2. We get E>s = ((τ−λ )1/a, (τ+λ )1/a), and, lastly, since Gs is de-
creasing in this case,

Gs(E
>
s ) = (G(τ+λ , ), G(τ

−
λ )) = (β−λ , β

+
λ ),

which ends the proof.

B.3 Other sigmoid functions which are γ − 1/2-convex

The following sigmoid functions are strictly γ1/2-convex:

(i) The logistic function, and more generally, the general logistic functions, i.e., all the
functions of the shape

x 7→
(

1

1 + e−x

)α
, α > 0.

(ii) The hyperbolic tangent:

x 7→ ex − e−x

ex + e−x
.

(iii) The arctan function.

(iv) The Gudermannian function:

x 7→
∫ x

0

1

cosh(t)
dt.

(v) The error function

x 7→ 2√
π

∫ x

0
e−t

2
dt.

Proof. (i) We note that the result is immediate if we assume α ≥ 1, because the function

happens to be the composite of γ1/2-convex functions in this case. Surprisingly, the
results holds true if α < 1. This result is equivalent to showing that f : x 7→
−1
α (1 + ex)−α is strictly γ1/2-convex, for any α > 0 (the result is in fact true for any
α ̸= 1). We indeed compute

f ′(x) = ex(1+ex)−(α+1), f ′′(x) =
1− αex

1 + ex
f ′(x), f (3)(x) =

αe2x − (3α+ 1)ex + 1

(1 + ex)2
f ′(x)2,

and find

f (3)(x)f ′(x)− 3

2
f ′′(x)2 = − f ′(x)2

2(1 + ex)
(α2e2x + 2ex + 1) < 0.
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(ii) We rewrite
ex − e−x

ex + e−x
=

(ex)2 − 1

(ex)2 + 1
.

The hyberbolic tangent is thus the composite function of the exponential function,
the square function and a homographic function, which proves that it is strictly
γ1/2-convex as the composition of γ1/2-convex functions, one of which is strictly
γ1/2-convex.

(iii) It is equivalent to proving that the tangent function is strictly γ1/2-concave on
(−π/2, π/2). Since tan′ = 1

cos2
, the result follows according to the positivity and

the concavity of the cosine function on this interval.

(iv) Since this function may be rewritten as

x 7→
∫ x

0

1

cosh(t)
dt = 2arctan(tanh(

x

2
)),

this result is true according to the γ1/2-convexity of arctan and tanh.

(v) The result is obvious.



Appendix C

Appendix of Chapter 5

C.1 Proof of the results over the characteristics

In order to prove results which involve the use of absolute values, we introduce a smooth
re-normalizing sequence of functions. Consider a sequence of smooth positive functions βε
satisfying βε(0) = 0, βε(s) > 0 for all s ̸= 0, βε(s) ⩽ |s|, βε(s) → |s| almost everywhere,
|β̇ε(s)| ⩽ 1 and sβ̇ε(s) → |s| almost everywhere. For example we may choose

βε(s) =


−s− ε(1− 2

π ) if s ⩽ −ε,

2ε
π

(
1− cos( π2εs)

)
if −ε < s < ε,

s− ε(1− 2
π ) if s ⩾ ε.

(C.1)

Proof of Lemma 11. We introduce the notation

∆Xj(t) := Xj
u1(t, y1)−Xj

u2(t, y2).

For all t ∈ [0, T ], the function

Uε(t) :=

d∑
j=1

βε(∆Xj(t))

satisfies then the relation

U̇ε(t) =

d∑
j=1

β̇ε(∆Xj(t)) (aj(t,Xu1
(t, y1), (Iau1)(t,Xu1

(t, y1)))− aj(t,Xu2
(t, y2), (Iau2)(t,Xu2

(t, y2))))

⩽
d∑

j=1

(
∥aj∥W 1,∞

x

d∑
i=1

|∆Xi(t)|+ ∥aj∥W 1,∞
I

|(Iau1)(t,Xu1(t, y1))− (Iau2)(t,Xu2(t, y2))|

)

⩽d∥a∥W 1,∞
x,I

(
d∑

i=1

|∆Xi(t)|+ |(Iau1)(t,Xu1
(t, y1))− (Iau2)(t,Xu2

(t, y2))|

)

⩽d∥a∥W 1,∞
x,I

(
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u1∥)

d∑
i=1

|∆Xi(t)|+ ∥ψa∥L∞∥u1 − u2∥L1(Rd)

)
.

Integrating between 0 and t we get

Uε(t, y)− Uε(0, y)

⩽ d∥a∥
L∞
t W 1,∞

x,I

(
(1 + ∥ψa∥L∞

t,yW
1,∞
x

∥u1∥)
∫ t

0

d∑
i=1

|∆Xi(t)|ds+ ∥ψa∥L∞

∫ t

0
∥u1 − u2∥L1(Rd)ds

)
.

172
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Taking the limit when ε goes to 0 and applying Grönwall’s lemma we get the desired
result.

Proof of Lemma 12. We explicitly give the proof for k = 1. The proof for higher values
of k follows the same ideas.
Thanks to the hypothesis over a, the function Xu is one time differentiable with respect
to y, and directly from (5.20) we get the system of equations{

˙∂yiXu(t, y) = Ja(t,Xu(t, y))∂yiXu(t, y), t ∈ [0, T ],

∂yiXu(0, y) = ei,
(C.2)

for all values of i ∈ {1, . . . , d}, where

[Ja(t, x)]ij := ∂xiaj(t, x, (Iau)(t, x)) + ∂Iaj(t, x, (Iau)(t, x))

∫
Rd

∂xiψa(t, x, y)u(t, y)dy,

(C.3)
is the Jacobian matrix of the function a(t, x, (Iau)(t, x)) and the ei represent the canonical
basis of Rd.
The function

Vε(t, y) :=

n∑
i,j=1

βε(∂yiX
j
u(t, y))

satisfies then

V̇ε(t, y) =
n∑

i,j=1

β̇ε(∂yiX
j
u(t, y))

d∑
k=1

[Ja(t,Xu(t, y))]kj ∂yiX
k
u(t, y)

and consequently

V̇ε(t, y) ⩽ d∥a∥
W 1,∞

x,I
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u∥)

n∑
i,j=1

|∂yiXj
u(t, y)|.

Integrating between 0 and t, we obtain the relation

Vε(t, y)− Vε(0, y) ⩽ d α̃1

∫ t

0

n∑
i,j=1

|∂yiXj
u(s, y)|ds

with α̃1 := sup
t∈[0,T ]

∥a∥
W 1,∞

x,I
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u∥), which after taking the limit when ε goes

to 0 leads to
n∑

i,j=1

|∂yiXj
u(t, y)| ⩽ d+ dα̃1

∫ t

0

n∑
i,j=1

|∂yiXj
u(s, y)|ds.

We obtain (5.21) thanks to Grönwall’s lemma.
In order to prove (5.22) we adopt the notation

∆∂ykX
j(t) := ∂ykX

j
u1(t, y1)− ∂ykX

j
u2(t, y2)

and define
[JXu(t, y)]jk := ∂ykX

j
u(t, y),

which satisfies the relation

˙JXu(t, y) = Ja(t,Xu(t, y))JXu(t, y), JXu(0, y) = Id,
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with Ja(t, x) as defined on (C.3). Consequently, we have that

Dε(t) :=
d∑
j=1

d∑
k=1

βε
(
∆∂ykX

j(t)
)

satisfies for all t ∈ [0, T ]

Ḋε(t) =

d∑
j=1

d∑
k=1

β̇ε
(
∆∂yk

Xj(t)
) d∑
i=1

(
[Ja(t,Xu1(t, y1))]ij∂yk

Xi
u1
(t, y1)− [Ja(t,Xu2(t, y2))]ij∂yk

Xi
u2
(t, y2)

)
⩽

d∑
j=1

d∑
k=1

d∑
i=1

∣∣[Ja(t,Xu1
(t, y1))]ij∂yk

Xi
u1
(t, y1)− [Ja(t,Xu2

(t, y2))]ij∂yk
Xi

u2
(t, y2)

∣∣
⩽

d∑
j=1

d∑
k=1

d∑
i=1

|[Ja(t,Xu1(t, y1))]ij |
∣∣∆∂yk

Xi(t)
∣∣

+

d∑
j=1

d∑
k=1

d∑
i=1

|[Ja(t,Xu1
(t, y1))]ij − [Ja(t,Xu2

(t, y2))]ij |
∣∣∂yk

Xi
u2
(t, y2)

∣∣ .
From the hypothesis over a and ψa we see that

|[Ja(t,Xu1(t, y1))]ij | ⩽ ∥a∥
W 1,∞

x,I
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u1∥).

Furthermore, from the definition of Ja(t, x) we conclude that there exists a constant C,
depending only on ∥a∥

W 2,∞
x,I

, ∥ψa∥W 2,∞
x L∞

y
and ∥ui∥ such that

|[Ja(t,Xu1(t, y1))]ij − [Ja(t,Xu2(t, y2))]ij | ⩽ C(
d∑
j=1

|Xj
u1(t, y1)−Xj

u2(t, y2)|+ ∥u1 − u2∥L1(Rd))

⩽ C(|y1 − y2|+ ∥u1 − u2∥1 + ∥u1 − u2∥L1(Rd)),

where we have used the results from Lemma 11 on the second line.
Putting all estimates together, we conclude that there exist constants C1 and C2 only
depending on ∥a∥

W 2,∞
x,I

, ∥ψa∥W 2,∞
x L∞

y
and ∥ui∥, such that

Ḋε(t) ⩽ C1

d∑
j=1

d∑
k=1

|∂ykX
j
u1(t, y1)−∂ykX

j
u2(t, y2)|+C2(|y1−y2|+∥u1−u2∥1+∥u1−u2∥L1(Rd)).

Integrating in time, using Grönwall’s lemma and taking the limit when ε goes to zero, we
obtain (5.22).

Proof of Lemma 13. We explicitly give the proof for k = 1. The proof for higher values
of k follows the same ideas.
Differentiating once each component of the equality Xu(t,X

−1
u (t, x)) = x with respect to

each of the variables xk, we obtain the family of relations

d∑
i=1

∂yiX
j
u(t,X

−1
u (t, x))∂xk

(
X−1
u

)i
(t, x) = δjk, j, k = 1, . . . , d,

where δjk represents the Kronecker’s delta. Written in matrix form, this equality reads

JXu(t,X
−1
u (t, x))JX−1

u
(t, x) = Id.
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It is known that the matrix JXu(t, y) is invertible for all values of x, furthermore, its
determinant is given by the expression

det(JXu(t, y)) = e

∫ t
0 ∇x·a(s,y,(Iau)(s,y))+∂Ia(s,y,(Iau)(s,y))·

∫
Rd

∇xψa(s,y,z)u(s,z)dzds

⩾ cT > 0

for all values of t ∈ [0, T ] and y ∈ Rd.
We conclude by writing

JX−1
u

(t, x) = J−1
Xu

(t,X−1
u (t, x)),

and noticing that all of the components of J−1
Xu

(t,X−1
u (t, x)) are a combination of sums

and multiplications of the components of JXu(t,X
−1
u (t, x)), divided by det(JXu(t, y)). The

bound (5.21) from Lemma 12, together with the lower bound for the determinant of
JXu(t, y) gives the bound (5.23) over the components of JX−1

u
(t, x).

Proof of Lemma 14. We explicitly give the proof for k = 1. The proof for higher values
of k follows the same ideas.
Differentiating with respect to t the relation Xui(t,X

−1
ui (t, x)) = x, for i = 1, 2, we see

that

a(t, x, (Iaui)(t, x)) + JXui
(t,X−1

ui (t, x))Ẋ
−1
ui (t, x) = 0,

which gives

Ẋ−1
ui (t, x) = −J−1

Xui
(t,X−1

ui (t, x))a(t, x, (Iaui)(t, x)). (C.4)

From now on we adopt the notations

Ai(t, x) := a(t, x, (Iaui)(t, x)),

Ki(t, x) := −J−1
Xui

(t,X−1
ui (t, x)),

∆X−1
j (t, x) :=

(
X−1
u1

)j
(t, x)−

(
X−1
u2

)j
(t, x).

The function

Wε(t, x) :=
d∑
j=1

βε(∆X
−1
j (t, x))

satisfies the relation

Ẇε(t, x) =

d∑
j=1

d∑
k=1

β̇ε(∆X
−1
j (t, x))

(
K1
jk(t, x)A

1
k(t, x)−K2

jk(t, x)A
2
k(t, x)

)
⩽

d∑
j=1

d∑
k=1

|K1
jk(t, x)A

1
k(t, x)−K2

jk(t, x)A
2
k(t, x)|.

From Lemma 13 we know that all components of Ki are uniformly bounded by a constant
only depending on T and ∥ui∥. We deduce from the hypothesis over a that the components
of Ai are uniformly bounded by ã := ∥a∥L∞ . Therefore

Ẇε(t, x) ⩽ dC̃(T, ∥u1∥)
d∑

k=1

|A1
k(t, x)−A2

k(t, x)|+ ã
d∑
j=1

d∑
k=1

|K1
jk(t, x)−K2

jk(t, x)|.

The function a being L-Lipschitz with respect to the I variable, we have that, for all values
of k

|A1
k(t, x)−A2

k(t, x)| ⩽ L∥ψa∥L∞∥u1 − u2∥L1(Rd).
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On the other hand, from the definition of Ki and Lemma 12 we conclude that there exists
C, depending on T , ∥a∥

W 2,∞
x,I

, ∥ψa∥W 2,∞
x L∞

y
and ∥ui∥ such that

|K1
jk(t, x)−K2

jk(t, x)| ⩽


0, if ∂Ia = 0,

C

(
d∑

j=1

|
(
X−1

u1

)j
(t, x)−

(
X−1

u2

)j
(t, x)|+ ∥u1 − u2∥1

)
, if ∂Ia ̸= 0.

Putting everything together, integrating between 0 and t, taking the limit when ε goes
to 0 and applying Grönwall’s lemma we get (5.24).

C.2 Existence of solution for a system of ODEs with in-
finitely many unknowns and equations

Proof of Lemma 17. For all u ∈ XT
h , there exists a sequence of elements uδ ∈ XT

h such
that:

1) Kδ
h := {k ∈ Jh : uδk ̸= 0} has a finite number of elements.

2) lim
δ→0

∥u− uδ∥1,h = 0.

We denote Kδ := |Kδ
h| and notice that the system

ẋδk(t) = Auδ,w(t, x
δ
k), x

δ
k(0) = x0k, (C.5)

is composed of a coupled system of Kδ equations and unknowns (corresponding to those
k ∈ Kδ

h), and an uncoupled infinite number of equations, corresponding to those k ̸∈ Kδ
h.

Therefore, thanks to the classic Cauchy-Lipschitz theory, the system (C.5) has a unique
solution xδk ∈ C1([0, T ]), k ∈ Jh.
We claim that for all values of k, the sequence xδ1k −xδ2k is a Cauchy sequence in C1([0, T ]),
therefore is has a limit that we will call xk(t), which is solution to (5.49).
We first remark that xδ1 − xδ2 ∈ Y T

h due to the fact that |xδk(t) − x0k| ⩽ ∥a∥L∞T for all
values of k and δ.
Consider now βε as defined in (C.1), then

β̇ε(x
δ1
k − xδ2k ) ⩽ |Auδ1 ,w(t, x

δ1
k )−Auδ2 ,w(t, x

δ2
k )|

∥a∥
W 1,∞

x
|xδ1k − xδ2k |+ ∥a∥

W 1,∞
I

|Ia(t, xδ1k , u
δ1 , w)− Ia(t, x

δ1
k , u

δ2 , w)|.

Noticing that

|Ia(t, xδ1k , u
δ1 , w)− Ia(t, x

δ1
k , u

δ2 , w)| = |
∑
j∈Jh

(
uδ1j (t)ψa(t, x

δ1
k , x

δ1
j (t))− uδ2j (t)ψa(t, x

δ2
k , x

δ2
j (t))

)
wj(t)|

⩽ (∥ψa∥L∞∥uδ1 − uδ2∥1,h
+ ∥uδ2∥1,h∥ψa∥W 1,∞

x,y
∥xδ1 − xδ2∥∞,h)∥w∥∞,h,

we deduce the existence of two constants1, C1 and C2, only depending on a, ψa, u and
w, such that

β̇ε(x
δ1
k − xδ2k ) ⩽ C1∥xδ1 − xδ2∥∞,h + C2∥uδ1 − uδ2∥1,h.

1Notice that in order to obtain the estimate over Ia, we used the hypothesis of differentiability over
both variables on ψa
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Integrating between 0 and t, taking the maximum over k and t and using Grönwall’s lemma,
we conclude that there exists a constant CT , only depending on T and the coefficients of
the problem, such that

∥xδ1 − xδ2∥∞,h ⩽ CT ∥uδ1 − uδ2∥1,h.

Proceeding in a similar way with the absolute value of ẋδ1 − ẋδ2 we obtain that

∥ẋδ1 − ẋδ2∥∞,h ⩽ CT ∥uδ1 − uδ2∥1,h.

Recalling that uδ is a Cauchy sequence on XT
h , then so it is xδk on C1([0, T ]), for each k.

Let x := {xk}k∈Jh
be the limit of xδ when δ goes to 0. With a simple continuity argument

we conclude that x is a solution of (5.49) over [0, T ]. The uniqueness can be obtained by
assuming the existence of two solutions, deriving the equation satisfied by the difference
and using Grönwall’s lemma to conclude that they have to be equal.

C.3 A result from approximation theory

As mentioned before, Lemma 18 is a direct corollary of Lemma 8 in [115], that we recall
here

Lemma 23. Let k > d an integer. Assume that

a ∈ (L∞(0, T ;W k+1,∞(Rd)))d.

Then, there exists a constant C > 0 such that for all functions φ ∈W k,p(Rd), 1 ⩽ p ⩽ +∞,
and t ∈ [0, T ],

∥φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t))∥W−k,p(Rd) ⩽ Chk∥φ∥Wk,p(Rd).

Given that for fixed functions ν ∈ XT
h and w ∈ Y T

h we have the inclusion

Aν,w : (t, x) 7→ a(t, x, Ia(t, x, ν, w)) ∈ (L∞(0, T ;W k+1,∞(Rd)))d,

then Lemma 23 holds true as well for the values of xi obtained in Section 5.3.

Proof of Lemma 18. We recall that W−k,1(Rd) is the dual space of W k,∞(Rd). Thus, for
any ψ ∈W−k,1(Rd) we have

∥ψ∥−k,1 = sup
f∈Wk,∞(Rd)

|⟨ψ, f⟩|
∥f∥k,∞

.

Since the function f ≡ 1 belongs to W k,∞(Rd), and has norm equal to 1 in this space, we
get for all φ ∈W k,p(Rd)∣∣∣∣ ∫

Rd

φ(x)dx−
∑
i∈Jh

wi(t)φ(xi(t))

∣∣∣∣ = ∣∣∣∣⟨φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t)), 1⟩
∣∣∣∣

⩽ ∥φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t))∥−k,1.

We conclude by applying Lemma 23 with p = 1.
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C.4 Proofs of convergence results from ODE theory

This appendix is dedicated to the proofs of lemma 21, used in subsection 5.4.2. In order
to prove this lemma, we use the following result:

Lemma 24. Let α > 0 and B ∈ L1(R+). Then, all the solutions of the ODE

u̇(t) = −αu(t) +B(t)

are in L1(R+).

Proof of lemma 24. The solution of this ODE is explicitly given by

u(t) = u(0)e−αt +

∫ t

0
e−α(t−s)B(s)ds.

Hence, ∫ +∞

0
|u(t)|dt ⩽ |u(0)|

∫ +∞

0
e−αtdt+

∫∫
R2
+

e−α(t−s)|B(s)|1{s⩽t}dsdt.

With the change of variables y = s, z = t− s, we get∫∫
R2
+

e−α(t−s)|B(s)|1{s⩽t}dsdt ⩽
∫ +∞

0
|B(y)|dy

∫ +∞

0
e−αzdz,

which concludes the proof.

Proof of Lemma 21. First, let us note that if u̇ is a BV function, i.e. if
∫ +∞
0 |u̇(t)|dt < +∞,

then u is a Cauchy function, and thus converges. Let us denote v := u̇. Since u is assumed
to be bounded, and |v| = v + 2v−, where v− denotes the negative part of v, it is enough
to prove that v− ∈ L1(Rd). By hypothesis,

v̇(t) = −p(t)v(t) + P (t) +B(t),

which implies that
˙v−(t) ⩽ −p0 v−(t) +B(t).

We conclude, according to lemma 24, that v− ∈ L1(Rd), which implies that u converges.
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[20] Angel Calsina and Śılvia Cuadrado. Stationary solutions of a selection mutation
model: The pure mutation case. Mathematical Models and Methods in Applied
Sciences, 15(07):1091–1117, 2005.
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