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sex; sure, it may give some practical results, but that's not why we do it.

First and foremost, I would like to sincerely thank Philippe. Thank you for your supervision, for your pedagogy and your advice. Thank you for your availability, it makes our collaboration so much more natural when I can simply knock at your door and discuss for a short or a long while. Thank you for your suggestions when I get confused -and I now know how easy it is to feel lost when dealing with numerical experiments. You also helped me get some impulse and encouraged me to try things out when I would probably overthink them. I think I have earned your trust regarding Kadath and its implementation and I must say I am proud of it. I can't forget your reaction one of the first times I told you that there might be an error in the library, which doesn't affect its usual behavior, but was prohibitive for the evolution code. Even though you were first startled, no longer than ten minutes later the change was made. I want to say, I learned so much about the library, and Numerical Relativity more generally, at your contact. You really know how to expose a balanced and relevant amount of information at a suited rate.

Thank you also for your flawless support, especially in the past few weeks. We both know how hard these four years have been at times -not to mention the pandemic -and that the project turned out to be more involved than expected. Still we are starting to see the payoff and I hope it will be pushed further in the future. I also deeply appreciate our more light-hearted conversations, even when they're not directly related to my thesis work. It's always enjoyable to hear your many anecdotes, and I hope to keep hearing more of them. So once again I would like to warmly thank you for being my advisor, and above all, for being you! This work has benefited from the scientific inputs of David Hilditch. David, thank you so much for the time you dedicated to me. I greatly enjoy our discussions about physics and beyond (which, it seems, we very easily lean towards). Your insight has really helped me progressing and has led to significant improvements of my evolution code, both from your papers but also following our discussions and interactions. Your enthusiasm is highly communicative and I do really hope that we will be able to collaborate more closely in the future.

I also want to thank Gaël, to whom I feel really strongly befriended. It is surely telling that we have somewhat similar trajectories and share many common interests in physics, math, music, but most importantly, puns -to the deepest despair of iii the other students! Beyond our chitchatting, you never refuse a look at some Math exercise which puzzles me when preparing my teaching duties. Moreover, our discussions about our respective thesis works and struggles have triggered much inspiration and have very practically contributed to the successes of this work. I cannot omit the mention of your contribution to the proofreading of parts of this manuscript and your indefectible support during its writing. I wish you a very successful thesis and career! Of course, I am not forgetting the other students of the lab. I have built a cheerful group of friends, who allowed me to go through the many difficulties of the pandemic. I have a particular thought for Anna, Gaëtan and Tam, with whom the coffee break routine really kicked off. I feel like it was the first step towards building some group dynamics within the students at the lab and I hope it will stay steady. Thank you also for your tips with Python, for the drinks and dinners, and for your help and initiative when organizing the students' day. I also want to thank the other students who have shared some part of my time in Meudon: Karim, Anton and Aurélien; David (with memorable culinary, axe-throwing and Covid experiences in Portugal), Lami, Iñigo and Ève. Even though I didn't meet him during his time here but once he was already away, I would like to thank Grégoire for our encounter before I started working with Philippe -and his indirect help with L A T E X through his manuscript! Beyond students, I really appreciated the atmosphere at LUTH and especially in the ROC team. Thanks to you all, it has been a renewed pleasure to come to work and to be part of the community. I would like to thank Jérôme and Éric for their help and suggestions about my work and for their kindness (and thank you Éric for the pastries at group meetings!). Thank you Micaela for your help and support regarding postdoc announcements and applications. Laura, I am very grateful for the opportunity you gave me to visit the Centra group in Lisbon -and I hereby thank Miguel Zilhão for his welcome as well! I more generally want to thank Alexandre, Zakaria and Yann too.

I am really thankful to Fabrice and Stéphane for their assistance with numerical and computer issues. Fabrice, thank you for your general support and advice, and more particularly your help with optimizations of Kadath and the first attempts of a parallelization. I really enjoyed the times we worked together. Stéphane, thank you for your technical help but also for your solicitude. I hope maybe every now and then you will miss the times when you had to wait for me at lunch because I took three different desserts! I cannot thank Marie enough for all of her help with administrative procedures. You really smoothed things out, whether it came to travels abroad or to turmoils about financial aspects related to my teaching duties. But beyond that, you have always been kind to me and open to discussion, and I sincerely appreciate your interest in my work. Thank you once again! I would like to stress next the chance I have been given by the Math Department v of Université Paris Cité to join their team. I am grateful for the opportunity to teach during my PhD thesis, this has been an invaluable and enjoyable experience. In particular, I am very thankful for the recruitment as ATER this year, which allowed me to apply for a fourth year -while not being as overwhelmed as I feared. Thank you so much for providing me with an office and making everything run seamlessly. This has undoubtedly made possible the successful results which I present here. Thank you also to all of the colleagues who I have met in the process and who welcomed me warmly in their teaching teams.

I would additionally like to acknowledge financial support from the 80|PRIME project of the CNRS, which funded the first three years of my thesis.

I also want to emphasize the constant support of Monia Mestar and Philippe Lafarge from the doctoral school. A big thank you to Yann Rasera and Karim Noui for being part of my monitoring committee.

I would like to thank the many people who have paved the way for me to come this far. This obviously starts with the support and encouragement from my parents and family, ever since my young age. They fostered my passion for astronomy and science in general and after some exploration of other fields in physics, I more or less came back to it. I also dedicate a thought to my grandmother who passed away during my thesis and who never missed an opportunity to tell me about space-related news she had heard of.

I also want to warmly thank Françoise Roulleau, who as a highschool Physics teacher took my passion to another level and always pushed me forward. I am delighted that we have kept in touch and I am very grateful for your continuous support and interest.

This list is not exhaustive, still I also wish to thank Yann Brunel, Christine Bogicevic, Laurent Bellaïche, Charles Paillard, Thomas Antoni and Hervé Moutarde, who have all contributed to bring me further down the path of carrying out research in physics.

Finally, I want to thank all of my friends who have helped me maintain my balance in this endeavor. I have a special thought for Gaétan, Stéphane, Julien, Marie, Céline, Auriane, and more recently Lina. I met you all in our volleyball club but our friendship has grown well beyond that common interest. Let me not forget Anatole, Gautier, Lucas and Pierre who have also enjoyed the pleasure of the Physics major in Centrale and the adventures of a PhD thesis.

I would like to mention my gratitude to all friends and friends of friends who, at one point, expressed curiosity about my work. Popularizing what I am working about, the motivation, the context, the broad ideas, showed me repeatedly that deep within my passion and excitement were still intact, despite the day-to-day challenges I was facing. I also want to thank Céline L. for her support and advice all along. vi Last but not least, I want to genuinely thank Lise. I don't have much more to say that I haven't already, and something tells me I'll have plenty of opportunities to catch up if I miss out, because we're not getting rid of each other anytime soon.

Well, as the title of one of Tim Minchin's songs goes, it seems that I've already Talked too much, stayed too long. No wonder I apparently particularly bond with talkative people. It won't surprise my close friends who like to tease me about it. They know well that most often the journey of my narration carries more than the destination, and I hope that this one will not disappoint. So please bear with me, because, as I would say in French:

"Ça me fait penser à une histoire. . ." aucun doute que de nombreuses nouvelles détections seront annoncées suite aux prochaines campagnes d'observation ; sans compter sur les détecteurs de nouvelle génération et les projets d'interféromètres spatiaux. Ainsi, le domaine de l'astronomie gravitationnelle, et avec elle de l'astronomie multi-messagers, sont en plein essor.

Toutefois, ces ondes gravitationnelles, qui ont pour effet de modifier légèrement les longueurs sur leur passage, ont des intensités extrêmement ténues. Leur détection représente un accomplissement physique et technique de taille, et nécessite une connaissance a priori de la forme des ondes émises par les binaires d'objets compacts, afin d'extraire le signal du bruit dans le détecteur. Des patrons d'onde gravitationnelles sont constitués à partir des différentes phases de la coalescence. Il est possible de traiter analytiquement la phase spiralante et la phase post-coalescence par des méthodes perturbatives, mais celles-ci ne rendent pas compte de la dynamique hautement non-linéaire, relativiste et en champ fort qui caractérise les dernières orbites et la fusion. Il n'est en effet possible de résoudre les équations d'Einstein de façon exacte que dans certaines situations très précises, car elles représentent un système de dix équations aux dérivées partielles du second ordre, couplées et non linéaires. Seule une résolution numérique permet de résoudre ces équations sans approximation supplémentaire et de nous informer sur la phase de fusion : c'est le domaine de la Relativité Numérique. Si la Relativité Numérique ne s'affaire pas seulement à générer des formes d'ondes gravitationnelles de systèmes binaires, cet objectif a été le moteur principal de la communauté dans les années 1990 et 2000, qui ont abouti à la première simulation réussie par Pretorius en 2005.

Dans le chapitre 1, nous rappelons ce contexte général dans lequel la Relativité Numérique s'inscrit. Nous rappelons également les bases du formalisme 3+1, à la fondation de notre travail, et qui consiste à décomposer l'espace-temps en une succession de feuilles de type espace, indexées par une coordonnée de temps. Par ce biais, les équations d'Einstein sous forme covariante peuvent être exprimées comme des équations d'évolution d'une part, et comme des équations de contrainte d'autre part (contraintes Hamiltonienne et impulsionnelle). Dans ce processus, la métrique de l'espace quadridimensionnel est découpée en trois contributions : la fonction lapse, qui incarne le feuilletage (c'est-à-dire la coordonnée temporelle) ; le vecteur shift, associé au choix de coordonnées spatiales ; et la métrique tridimensionnelle, décrivant la géométrie intrinsèque de chacune des hypersurfaces. Ces quantités sont complétées par le tenseur de courbure extrinsèque, qui donne la façon dont les feuilles en trois dimensions sont incluses dans l'espace à quatre dimensions. Ces quantités sont les variables fondamentales de la décomposition 3+1.

Dans le chapitre 2, nous nous affairons à donner les principaux ingrédients nécessaires à la réalisation des évolutions en Relativité Numérique. Il est en effet loin d'être évident de résoudre les équations d'Einstein numériquement, et de nombreux éléments sont à prendre en compte. Ceux-ci sont le sujet de thématiques de recherche à part entière et les bibliothèques numériques utilisées pour les simula-tions de binaires compactes sont l'aboutissement d'années de travail de la part de communautés entières.

Nous nous concentrons d'abord sur la formulation des équations d'Einstein. Nous avons vu avec le formalisme 3+1 qu'il est possible de transcrire le système comme des équations d'évolution sous contraintes : c'est une première étape pour une résolution numérique. Toutefois, ce n'est pas suffisant car sous la forme traditionnelle, le système d'équation est faiblement hyperbolique et donc mal posé. Différentes formulations alternatives ont donc été proposées. Celles-ci sont au moins fortement hyperboliques, garantissant l'aspect bien posé ; voire symétriques hyperboliques, ce qui permet de contrôler davantage le comportement des solutions. Nous décrivons les trois formulations qui ont eu le plus de succès au sein de la communauté. La première repose sur une jauge harmonique généralisée. La seconde, appelée BSSN du nom des auteurs Baumgarte-Shapiro-Shibata-Nakamura, s'appuie sur une décomposition conforme du formalisme 3+1 et l'introduction d'une variable auxiliaire additionnelle, le vecteur de connexion conforme. Enfin, la formulation Z4 introduit une nouvelle variable représentée par un 4-vecteur, ce qui permet d'obtenir uniquement des équations d'évolution -les contraintes de la Relativité Générale sont satisfaites si ce vecteur s'annule.

Nous commentons ensuite les autres aspects importants tels que les choix de jauge et la génération de données initiales pour l'évolution. Il est important que les données initiales satisfassent les contraintes car bien souvent, ces dernières ne sont pas résolues pendant l'évolution (on parle d'évolutions libres). Nous mentionnons ensuite la question des conditions au bord du domaine numérique, puis les aspects numériques tels que le schéma d'intégration en temps, la discrétisation de l'espace, ainsi que les techniques supplémentaires comme les filtres. Bien que différentes bibliothèques numériques soient capables aujourd'hui d'établir des formes d'ondes précises et des simulations performantes, il convient de rappeler qu'elles mobilisent d'importantes ressources numériques, tant en quantité de mémoire qu'en temps de calcul, et elles doivent donc être lancées sur des centres de calcul haute-performance. Nous évoquons également les implications particulières liée à la gestion des systèmes physiques, notamment comment prendre en compte les singularités des trous noirs ou comment extraire le signal d'ondes gravitationnelles. Enfin, nous discutons des moyens existants pour comparer différentes implémentations avec des tests standard et nous brossons un aperçu rapide des différents codes d'évolution de la communauté.

Projet

Cela nous amène à la bibliothèque Kadath. Il s'agit d'un outil capable de résoudre des systèmes d'équations aux dérivées partielles en usant de méthodes spectrales pour la discrétisation de l'espace, et d'un algorithme Newton-Raphson pour la résolution des équations. La bibliothèque est gratuite et en accès libre, se veut modulaire et simple d'accès pour les utilisateurs, en particulier en ce qui concerne la flexibilité dans la donnée des équations. Notons également qu'elle est efficacement parallélisée.

Cependant, elle se restreint à l'étude de systèmes possédant certaines symétries en temps, par exemple qui sont stationnaires ou périodiques. Elle peut également servir à générer des données initiales pour l'évolution. Le projet dans lequel s'inscrit la thèse consiste donc premièrement à implanter des schémas d'évolution dans Kadath, grâce à des méthodes numériques usuelles, et en tirant parti de ses spécificités. Ces nouvelles capacités de la bibliothèque doivent être validées et c'est ce à quoi s'attache cette thèse. À plus long terme, la flexibilité de Kadath permettra à la fois de s'intéresser à l'étude de nouveaux systèmes physiques, mais aussi au potentiel développement de méthodes numériques originales. Si l'accès à une nouvelle bibliothèque indépendante, qui n'utilise pas nécessairement les mêmes combinaisons de méthodes que les autres codes d'évolution, reste un objectif majeur de ce projet, précisons que nous n'envisageons pas, dans un premier temps, d'être compétitifs avec les simulations de binaires compactes les plus élaborées.

Présentation des méthodes et validation sur un modèle simplifié

Ainsi, nous présentons par la suite le fruit de notre travail. Nous commençons par examiner un modèle simple d'équation d'onde, qui reste cependant pertinent dans le cadre d'évolutions en Relativité Générale. Nous nous intéressons principalement à une réduction au premier ordre du système car il reflète mieux le comportement de nos évolutions relativistes, mais nous incluons une section dédiée à quelques résultats sur le système du second ordre. Le principe d'une réduction au premier ordre est de faire en sorte d'éliminer les dérivées secondes des équations, en remplaçant les dérivées premières par de nouvelles variables indépendantes. Cette procédure est naturelle en ce qui concerne les dérivées temporelles, mais pour les dérivées spatiales elle introduit une contrainte supplémentaire dans le système d'équations.

L'étude de ce modèle dans le chapitre 3 a diverses vertus. D'abord, il permet d'un point de vue pratique de vérifier la bonne implémentation des méthodes numériques dans un cas connu et maîtrisé. Cela nous permet d'établir des premiers résultats de convergence numérique, à la fois en ce qui concerne le schéma temporel, mais aussi vis-à-vis de la résolution spatiale. Dans les deux cas, nous retrouvons la convergence attendue, ce qui nous fournit donc un modèle de référence validé.

Il nous semble important de détailler un peu le cas de la convergence spatiale. Les méthodes (pseudo-)spectrales sont fondées sur un principe de dualité. Pour discrétiser une fonction, il est d'abord possible de s'intéresser à ses valeurs en certains points, nommés points de collocation. Par ailleurs, il est possible d'étendre cette fonction comme combinaison de fonctions de bases choisies à l'avance. Dans ce cas, la fonction est représentée par les coefficients apparaissant dans cette combinaison linéaire. Pour les fonctions angulaires, il s'agit simplement d'une décomposition en série de Fourier. Les fonctions radiales sont quant à elles développées sur une base de polynômes de Tchebychev. La résolution spatiale correspond donc à la fois au nombre de points de collocation, mais aussi au nombre de coefficients. Une propriété capitale des méthodes spectrales reste la convergence spectrale : pour des fonctions indéfiniment dérivables, l'approximation converge vers la fonction exacte plus vite que n'importe quelle loi de puissance lorsque la résolution croît. En pratique, cela se traduit par une réduction exponentielle des erreurs lorsque le nombre de points augmente. Nous recherchons ce comportement dans nos simulations et il s'agit de notre principal critère pour valider nos résultats numériques.

Le modèle simplifié du chapitre 3 nous permet aussi de présenter plus en détails les propriétés de la bibliothèque utiles pour comprendre ce manuscrit, ainsi que certaines méthodes numériques capitales. Nous décrivons notamment la façon dont il est possible d'amortir la contrainte liée à la réduction au premier ordre. Nous explicitons la structure caractéristique du système d'équations, qui représente comment les informations se propagent dans le domaine numérique. Typiquement, pour une onde en une dimension, il s'agit de la partie de l'onde qui se déplace vers la gauche et de la partie de l'onde qui se déplace vers la droite. Connaître les champs caractéristiques et les vitesses associées est crucial pour pouvoir appliquer des conditions aux bords : seuls les champs caractéristiques entrant dans le domaine nécessitent une condition aux limites.

Nous présentons ensuite différentes méthodes pour imposer ces conditions au bord. En particulier, deux possibilités s'offrent à nous. La première impose les conditions au bord en remplaçant l'équation d'évolution par une nouvelle équation uniquement utilisée aux frontières du domaine (conditions fortes). La seconde, appelée méthode par pénalité, inclut la condition au bord dans l'équation d'évolution par un terme de pénalité. L'objectif est d'imposer cette condition de façon approchée, mais cohérente avec la discrétisation, de sorte à retrouver la condition exacte pour une résolution infinie. Ces méthodes par pénalités s'intègrent plus naturellement à des systèmes du premier ordre et sont bien adaptées aux méthodes spectrales. Ces différents concepts sont primordiaux pour les simulations plus complexes en Relativité Générale et le système simplifié permet donc de mieux les appréhender.

Finalement, nous décrivons les problèmes rencontrés lorsque l'onde n'est pas à symétrie sphérique. En particulier, des divergences apparaissent d'un manque de régularité à l'origine des coordonnées sphériques. Bien que l'origine soit un unique point physique, elle est représentée par plusieurs points de collocation. Nous observons que les champs prennent différentes valeurs en ces différents points. Pour obtenir des évolutions satisfaisantes, nous avons eu recours d'une part à des filtres qui annulent les derniers coefficients dans chaque direction, et d'autre part à une nouvelle opération de régularisation détaillée dans la section dédiée. Cette régularisation s'applique à l'opération de division d'une fonction par le rayon et agit sur le dernier coefficient de cette fonction. Il s'agit à notre connaissance d'une nouveauté qui s'avère cruciale pour la stabilité de nos simulations.

Simulations en Relativité Générale

Nous nous attelons ensuite aux simulations en Relativité Générale. Dans le chapitre 4, nous décrivons le cadre de ces simulations, en premier lieu la formulation des équations. Nous avons recours à une réduction au premier ordre du système BSSN, et nous rappelons les variables dynamiques ainsi que les contraintes présentes dans cette formulation. Puisque nous effectuons des évolutions libres, ces contraintes forment une bonne mesure de l'erreur numérique et nous surveillons donc leur convergence. Nous les classons en quatre types : les contraintes relativistes (GR, General Relativity) provenant des équations d'Einstein ; les contraintes de trace, liées au fait que certains champs doivent garder une trace nulle ; deux contraintes liées au système BSSN ; et enfin les contraintes introduites par la réduction au premier ordre (FO, first-order).

Nous décrivons également le schéma d'intégration temporelle. Nous utilisons principalement deux types d'intégrateurs explicites courants, un schéma Runge-Kutta d'ordre 4 et un schéma Adams-Bashforth d'ordre 3. Nous commentons également les filtres utilisés pendant la simulation, et qui sont appliqués à la fois au second membre des équations d'évolution, mais aussi à tous les champs dynamiques à la fin de chaque pas de temps. Pour les angles, nous annulons les coefficients des fonctions de base de plus haute fréquence, à raison d'un tiers des coefficients. Pour la direction radiale, les coefficients sont multipliés par une exponentielle, de sorte à ce que la plupart restent inchangés, que le dernier coefficient soit annulé, et que la transition soit lisse. Ce type de filtre est utilisé par d'autres codes d'évolution reposant sur les méthodes spectrales. Enfin, faisons remarquer qu'à la fin de chaque pas de temps, et avant le filtre, nous soustrayons les traces des champs concernés par la contrainte sus-mentionnée, comme il est d'usage dans la littérature pour maintenir un problème bien posé.

Nous détaillons également le domaine numérique, qui est de type sphérique et contient un noyau incluant l'origine, puis des coquilles sphériques. Les conditions au bord peuvent être imposées soit fortement, soit grâce à des pénalités sur les champs caractéristiques entrants. Nous décrivons deux variantes de pénalités conçues pour assurer la cohérence avec l'amortissement des contraintes du premier ordre. En ce qui concerne la communication entre les sous-domaines dans le cas de calculs multidomaines, nous recourons uniquement aux pénalités sur les champs caractéristiques.

Le formalisme et les méthodes détaillées dans le chapitre 4 sont appliquées dans les chapitres suivants à deux systèmes distincts : un trou noir de Schwarzschild et des ondes gravitationnelles. Dans chacun de ces chapitres, nous précisons les éléments spécifiques aux simulations de ces systèmes physiques et nous présentons les résultats obtenus.

Trou noir de Schwarzschild en jauge stationnaire

Le chapitre 5 concerne de ce fait des simulations d'un trou noir de Schwarzschild, exprimé dans des coordonnées de type Kerr-Schild, pour lesquelles nous rappelons l'expression analytique des différents champs. Nous donnons également le choix de la jauge utilisée pour l'évolution, qui consiste en une adaptation d'un feuilletage harmonique pour le lapse et d'un Γ-driver pour le shift. Des termes sources sont inclus dans ces jauges afin d'ajuster les dérivées temporelles, ce qui a pour conséquence de rendre le système stationnaire. L'objectif de nos simulations est donc de maintenir cet état stationnaire sur des échelles de temps longues, de l'ordre de plusieurs milliers de fois la masse du trou noir en unités géométriques (ce qui est comparable à la littérature). Même si nous partons de la solution analytique, les erreurs numériques causent de légères fluctuations, qui doivent rester modérées, et en particulier tendre vers zéro exponentiellement lorsqu'on augmente la résolution.

Outre la stationnarité, étudier ce problème présente plusieurs intérêts : nous connaissons la solution analytique, fournie par les données initiales, et donc nous pouvons nous en servir comme comparaison et mesure de l'erreur. De plus, le trou noir de Schwarzschild présentant une symétrie sphérique, nous pouvons réduire la dimensionalité du système en ne considérant que les dépendances radiales dans un premier temps. Enfin, nous traitons la singularité du trou noir par une technique d'excision, qui vise à extraire du domaine numérique une région située à l'intérieur de l'horizon. De ce fait, d'éventuelles irrégularités à l'origine ne nous impactent pas. Cependant, cette excision doit être réalisée convenablement, en s'assurant que tous les champs caractéristiques rentrent dans le trou noir (et sortent du domaine numérique). Nous montrons que dans les cas considérés jusqu'à présent, les simulations avec une excision correcte et une excision incomplète fournissent en réalité des performances similaires.

Nos résultats démontrent la possibilité d'effectuer, sous ces conditions, des évolutions de trous noirs probablement illimitées dans le temps. Pour des raison pratiques, nous arrêtons les simulations au bout de 5000 unités de temps, ce qui remplit l'objectif annoncé. Pour atteindre ces performances, certains éléments se sont révélés essentiels, notamment les filtres et l'amortissement de contraintes. Par ailleurs, les simulations stables requièrent l'utilisation des pénalités pour la condition au bord extérieur -une condition de Sommerfeld (radiative) imposée fortement aboutit à des divergences en des temps beaucoup plus courts, même si repousser la frontière vers l'extérieur améliore légèrement les choses. Les variantes de pénalités décrites dans le chapitre 4 sont nécessaires pour pouvoir utiliser à la fois les pénalités et l'amortissement de contraintes. Par ailleurs, nous expérimentons avec un type de régularisation sur l'axe similaire à ce que nous appliquons à l'origine, pour des fonctions se développant en cosinus impairs. Nous montrons que nous obtenons bien la convergence spectrale des différents types d'erreur lorsque nous augmentons la résolution radiale. La convergence est mise en défaut uniquement pour une des variantes, lorsque la régularisation est omise. Nous montrons de même la conver-gence spectrale pour des simulations effectuées dans deux coquilles sphériques, ce qui valide la communication entre domaines. Nous constatons cependant qu'il reste quelques incompatibilités à éclaircir vis-à-vis de l'amortissement de contraintes et de la régularisation évoquée.

Enfin, nous présentons des résultats pour lesquels les données initiales contiennent du bruit dans les directions angulaires. Lorsque le bruit dépend uniquement de la coordonnée θ, nos simulations restent stables et témoignent une fois encore de convergence spectrale. En revanche, l'ajout supplémentaire de bruit dans la coordonnée φ provoque des divergences que nous ne sommes pas encore en mesure de contrôler. Nous avons mené diverses tentatives afin de régler ce souci, notamment pour nous assurer de la régularité des champs sur l'axe, mais sans succès probant jusqu'à maintenant. Une piste pour des recherches futures provient d'une simulation préliminaire d'un trou noir de Kerr, qui ne contient pas de dépendance en φ mais qui montre pourtant le même type de divergence.

Propagation d'ondes gravitationnelles

Le second système physique auquel nous nous intéressons pour valider les schémas d'évolution de Kadath en Relativité Générale est le suivant. Nous partons d'un profil initial d'une onde gravitationnelle (nous ne cherchons pas à la produire par des sources physiques comme lors d'une coalescence de binaire compacte) et nous observons sa propagation jusqu'à ce que l'onde quitte le domaine numérique.

Les données initiales sont obtenues à partir d'une onde de Teukolsky, avec un profil radial de type gaussien non centré, et momentanément statique. L'onde de Teukolsky correspond à une solution des équations d'Einstein à l'ordre linéaire, nous utilisons donc la bibliothèque Kadath et le formalisme Conformal Thin Sandwich pour résoudre les contraintes à un niveau plus bas. La symétrie en temps implique que l'onde se sépare en une partie qui se propage vers l'extérieur et une partie qui converge vers l'origine. À l'origine, celle-ci subit une forme de rebond et se propage ensuite vers l'extérieur, jusqu'à sortir du domaine.

Pour l'évolution, nous utilisons la jauge dite moving puncture, éprouvée dans les simulations employant la formulation BSSN. Il s'agit d'une combinaison d'un feuilletage 1 + log et d'une condition Γ-driver. Le domaine numérique se compose d'un noyau central et de trois coquilles sphériques. Au bord extérieur, nous imposons fortement des conditions de Sommerfeld. Nous illustrons la pertinence de notre régularisation à l'origine.

Nos résultats concernent deux types d'ondes : une onde axisymétrique et une onde non-axisymétrique. Pour l'onde axisymétrique, nous montrons que l'onde se propage correctement et sort du domaine numérique, sans signe de croissance d'erreur par la suite. En revanche, l'ajout de bruit en φ conduit à l'apparition de divergences, comme pour le trou noir de Schwarzschild. Ces divergences causent l'arrêt de la simulation au bout d'environ 15 unités de temps, alors que l'onde sort du domaine autour de 12 unités de temps. Elles sont caractérisées notamment par la crois-xix sance exponentielle, dès le début de la simulation, des composantes azimutales des contraintes. Nous obtenons des résultats similaires pour l'onde non-axisymétrique. Précisons que nous n'avons jusque là pas étudié la convergence spectrale dans le cas spécifique des évolutions d'ondes gravitationnelles. De même que pour le trou noir, nous avons essayé de creuser les questions de régularité et d'user de filtres pour corriger d'éventuelles irrégularités. Ces efforts ne sont pas encore soldés de réussite, mais notons que ces derniers résultats sont relativement récents.

Conclusion

Pour conclure, nous avons implanté dans la bibliothèque Kadath des schémas d'intégration temporelle afin de réaliser des évolutions libres en Relativité Générale. Nous avons d'abord étudié un modèle simple d'équation d'onde afin de valider l'implémentation du code et d'éprouver diverses méthodes numériques pertinentes pour les systèmes gravitationnels. Ces techniques adaptées à une formulation du premier ordre des équations BSSN nous ont menés à des simulations réussies de trous noirs de Schwarzschild stationnaires et d'ondes gravitationnelles axisymétriques. Cependant, nos schémas d'évolution souffrent encore de divergences rédhibitoires dans le cas de dépendance des champs en l'angle φ.

Ce sera donc le point principal d'attention de notre travail futur, afin de parvenir à une validation complète du code d'évolution en trois dimensions d'espace. Cela permettra l'utilisation de Kadath pour examiner avec confiance de nouvelles applications en physique, par exemple en étudiant les modes d'oscillations de trous noirs en les perturbant avec une onde scalaire ou gravitationnelle ; ou pour éprouver ou construire de nouvelles méthodes numériques originales pour la résolution des équations d'évolution en Relativité Générale.

Ce travail est complété par trois annexes. La première (annexe A) rappelle les principaux résultats liés à la réduction au premier ordre du système BSSN, en particulier l'expression des équations d'évolution et des champs caractéristiques. La deuxième (annexe B) prodigue une vue d'ensemble de la bibliothèque Kadath et de son fonctionnement, en parcourant brièvement les différentes classes utiles pour notre travail. Précisons ici qu'à l'heure actuelle, le code d'évolution n'est pas parallélisé, contrairement au solveur usuel. Enfin, la dernière annexe (annexe C) décrit succinctement notre contribution à un travail publié dans la revue Physical Review D, consacré à l'établissement d'un ensemble de conditions aux limites pour simuler des trous noirs stationnaires. Nous avons réalisé le travail concernant l'application de ce formalisme à des trous noirs statiques couplés à un champ scalaire, dans un espace asymptotiquement anti-de Sitter. 
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Notations

Notations

In most of this work, we use geometric units. This means that unless we make them appear explicitly, we consider that the gravitational constant G, and the speed of light in vacuum c, satisfy G = c = 1.

We often refer to tensors by their components in a tensor basis. We use Greek indices (µ, ν, . . . ) for tensors in 4 dimensions, and the 4-metric is noted g µν . The corresponding covariant derivative is ∇ µ . On the contrary, we use Latin indices (i, j, . . . ) for 3-dimensional tensors, and the 3-metric is written γ ij , with covariant derivative D i . The connection coefficients are Γ i kl and the Ricci tensor R ij . If we need to invoke the 4D Ricci or connection, we add a superscript as in (4) R µν to avoid confusion. The 4-metric has signature (-, +, +, +) and we use Einstein's summation convention for repeated upper and lower indices.

Given coordinates x µ , we write the partial derivatives with respect to these as

∂ µ ≡ ∂ ∂x µ .
The same goes for coordinate systems in 3 dimensions. In practice, we most encounter ∂ t , ∂ r , ∂ θ and ∂ φ , where t is time and r, θ and φ are the standard spherical coordinates (respectively radius, colatitude and azimuth).

When giving a triad, we use bold font to represent the (co)vector without indices. Mostly, this appears for the spherical orthonormal triads: (dr, rdθ, r sin θdφ)

Introduction

This work presents the first results obtained with the new evolution schemes which we implemented in the Kadath library. Before outlining the contents of this manuscript, let us recall the motivation behind such an endeavor.

Einstein's theory of General Relativity, which describes gravitation as a curvature of spacetime, improves over Newton's theory to take into account the finite speed of the interaction. It has been tested to exquisite precision in various regimes. Most interestingly, it deviates from Newton's theory when strong gravitational fields or high velocities are involved. Two key predictions ensued from General Relativity. First, the existence of black holes, regions of spacetime where the gravitational field is strong enough that nothing can escape infinitely far from it. Both mathematically and physically, black holes are astounding and mesmerizing objects. Even more inspiring are the recent popular images obtained by the Event Horizon Telescope Collaboration, which capture the surroundings of two supermassive black holes, M 87 * and Sagittarius A * .

The second elusive manifestation of Einstein's theory is the existence of gravitational waves, often dubbed ripples of spacetime. Those propagate at the speed of light in vacuum and are extremely tenuous. Binary systems of compact objects, such as black holes or neutron stars, remain primary sources for such signals. After years of efforts, and just in time to celebrate the 100th anniversary of General Relativity, gravitational waves were detected directly by the LIGO-Virgo collaboration on September 14, 2015. This groundbreaking detection has been followed by many more during the subsequent observing runs, adding up to almost a 100 by the end of the third campaign. All these marvelous developments in gravitational science and astrophysics led to many awards and several Nobel prizes. They really only mark the beginning of a new epoch in the study of gravitation, and they have kicked off multi-messenger astronomy, which aims at combining signals from different channels (electromagnetic, gravitational, neutrinos, . . . ).

Successful detection of gravitational waves by laser interferometers requires the joint contribution of many fields of research, from instrumentation to data analysis to modeling. In particular, the intensity of most gravitational waves is so low that asserting their passage necessitates correlating the observed signal to templates, a technique called matched filtering. These templates represent the signal expected from, for instance, an equal-mass black hole binary coalescence. Generating such template banks constitutes a whole area of research, and it brings together the input from three phases in the coalescence: the inspiral, when the two bodies are far apart; the merger, when they get closer until there's only one body left; and the ringdown, when the remnant vibrates away perturbations to reach a stationary state. While the inspiral and ringdown schematically rely on some kind of perturbation theories, the only access to the merger phase lies within Numerical Relativity, which solves on the computer the full non-linear regime of Einstein's equations.

Evolving the late inspiral and merger of binary black holes was the main motivation behind Numerical Relativity for years. After breakthroughs in 2005 and the famous first success by Pretorius, significant improvements occurred in the next few years, effectively providing a base for template construction and calibration. Yet it is primordial to stress that even to date, state-of-the-art simulations require humongous numerical resources. Obtaining functioning evolutions stays far from easy and the main libraries have been developed by large teams and collaborations over many years. These evolutions also beg for constant refinement to appropriately participate in future observations and stay up-to-date with detector upgrades and new facilities.

In this context dominantly ruled by the generation of numerical waveforms by a couple of dedicated libraries, we would like to offer an alternative for more generic studies in Numerical Relativity. To that purpose, we set out to implement time integration schemes in the Kadath library. This project first aims at reproducing standard methods for evolutions in General Relativity, and at validating them. The evolution code builds on the existing structures of the library and notably relies on multidomain spectral methods for the space discretization. It still features the possibility to enter the equations as L A T E X-like character strings. It also keeps the philosophy of staying generic and modular, and it will be made free and opensource.

Besides providing an independent tool for numerical evolutions, the library will allow users to investigate strong-field configurations in General Relativity and possibly in modified gravity, furthering understanding of gravitation and compact objects. Additionally, due to the complexity and intricacy of challenges faced for compact binary evolutions, there has been a sort of rush into the fruitful recipes. Still, there is room and need for improvement, whether it leads to increased accuracy or reduced stress on resources. The library may thus serve as a playground for the development of original numerical methods directed to these goals.

In Chapter 1, we recall the generic framework of General Relativity. We also briefly depict the scientific context of Numerical Relativity, its motivation and the various connected fields. Then in Chapter 2 we give an overview of the various ingredients required for the numerical resolution of Einstein's evolution equations. Chapter 3 is dedicated to the scalar wave equation, a simple toy-model which allows us to illustrate relevant numerical methods, introduce the key features of our evolution code, and show some first results of validation. In this chapter, we give a very brief overview of the context of this work. We recall the main elements of General Relativity (GR) and importantly we introduce the 3+1 formalism and our notations. Then we mention the main physical predictions of GR, with an emphasis on gravitational waves and black holes since they are the focus of our numerical simulations. Finally we highlight motivations for Numerical Relativity (NR) and summarize the connected areas of research.

General Relativity in a nutshell

Einstein's equations

On November 25, 1915, Albert Einstein presented the final version of his new theory of gravitation to the Prussian Academy of Sciences [START_REF] Einstein | Die Feldgleichungen der Gravitation[END_REF]. His results, known as General Relativity (GR), were then published in 1916 in [START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF]. The main achievement of General Relativity is to reconcile gravitational interactions with Special Relativity. Newton's theory indeed has the drawback that the gravitational interaction is instantaneous, whatever the distance separating the gravitating bodies. Still, it behaves well for weak gravitational fields and slow velocities, and as such, General Relativity boils down to Newton's theory in those limits.

The strength of GR however is to tackle strong gravitational fields as well. To do so, it introduces the language of differential geometry and describes the 4-dimensional spacetime as a manifold M endowed with a metric g µν . It has a Lorentzian signature which we choose to be (-, +, +, +). Note that we will mostly refer to tensors as the set of their components in a given tensor basis (tetrad in 4D, triad in 3D).

The metric generalizes the Pythagorean theorem and allows to measure distances in spacetime with the line element ds 2 = g µν dx µ dx ν . As a symmetric nondegenerate bilinear form, the metric defines a scalar product. Along with its inverse g µν , it makes the link between vectors V ν and forms V µ as V µ = g µν V ν (we refer to this operation as index manipulation). Note that because of the signature, at any given point a vector V µ can be of three different types according to the sign of its norm g µν V µ V ν . If the norm is negative, the vector is timelike; it is null if the norm vanishes; and it is spacelike when the norm is positive. The type of a vector field can vary at different points of the manifold. Hypersurfaces of M will locally have one of these three types according to the type of their normal.

The metric is the fundamental object of General Relativity: it describes the geometry of spacetime. Gravitation is no longer seen as a force but rather as a manifestation of the curvature of spacetime. The common picture is to state that objects only subject to gravity (in free-fall) move on straight lines, in a curved spacetime. At the heart of General Relativity lies the equivalence principle, which affirms that gravitation and acceleration are indistinguishable (we don't discuss the different forms of the equivalence principle).

Einstein's equations then bridge the gap between the curvature of spacetime and its matter and energy content, through the celebrated formula:

G µν = 8πG c 4 T µν . (1.1)
The left-hand side is the Einstein tensor, expressed as

G µν = R µν - 1 2 Rg µν , (1.2)
where R µν is the 4D Ricci tensor and R = g µν R µν its trace, is the Ricci scalar. They are expressed as combinations of the metric and its derivatives, with a maximum of second-order derivatives. The Einstein tensor embodies the curvature of spacetime.

On the right-hand side appear the gravitational constant G and the velocity of light in vacuum c. From now on, we use geometrical units, which means that G = c = 1. In this system, lengths, durations and masses have the same unit. T µν is the stress-energy tensor and it characterizes the matter and energy content of spacetime. Therefore, Equation (1.1) describes both how the movement of matter is affected by the curvature of spacetime, and conversely how spacetime is deformed by the imprint of matter.

Note that Einstein's equations are a system of 10 coupled, non-linear, at most second-order partial differential equations. It makes their resolution extremely involved in general, and analytic solutions are known only in very specific cases (symmetry assumptions, perturbative approach in specific regimes, ...). This work, and Numerical Relativity in general, sets out to solve the full system numerically.

Finally, an introduction to General Relativity cannot omit a short mention of gauge choices. All relations expressed so far use tensors: they are general covariant. General covariance translates the invariance of the theory under spacetime diffeomorphisms -in simpler terms, changes of spacetime coordinates. It translates the principle of relativity: the laws of physics are unchanged in different frames. This means that from the physical point of view, any choice of coordinate or frame (gauge choice) is equivalent. In practice, different coordinate systems may suit better different purposes (such as analytic or numerical computations). As a consequence of this freedom, physical properties should preferably be gauge-invariant quantities, so that they don't rely on the specific gauge choice.

For more than an introduction, we refer to the classical textbooks for General Relativity [START_REF] Misner | Gravitation[END_REF][START_REF] Wald | General Relativity[END_REF].

3+1 formalism

A very insightful way to rewrite Einstein's equations is the 3+1 formalism. It has many advantages both theoretically and numerically. We highly recommend the monograph by Gourgoulhon on this topic [START_REF] Gourgoulhon | 3+1 formalism in general relativity: bases of numerical relativity[END_REF], which is our reference for this section.

Foliation of spacetime

As the name suggests, the main program of the 3+1 formalism is to introduce back a clearer difference between time and space. Notably, this allows to express Einstein's equations as an initial-value (or Cauchy) problem, a critical process to solve the equations numerically (as discussed in Section 2.1). In the 3+1 formalism, the manifold M is assumed to be globally hyperbolic, which means that it admits a Cauchy surface Σ -in practical terms, a spacelike hypersurface on which initial data for the evolution can be provided. Such a manifold can be decomposed into a succession of spacelike hypersurfaces Σ t , where t is a smooth scalar field. This partition is called foliation or slicing: each slice Σ t corresponds to the constant t hypersurface, and two such slices don't intersect. As expected, t is our time coordinate.

The gradient of t defines the normal to the slices, and its length is called the lapse function α:

1 n µ = -α∇ µ t , (1.3) such that n µ is the unit future-pointing normal. As n µ is timelike, n µ n µ = -1.
Note that an observer whose 4-velocity is n µ is called Eulerian. Physically, the lapse measures how the coordinate time t relates to the proper time of such an observer. In other words, it describes how time elapses from a slice to the "next". Another consequence is that the relevant vector for evolutions is instead m µ = αn µ (it will appear through Lie derivatives L m ). The shift vector2 β i is then introduced as ∂ t = αn+β. It is tangent to the slices Σ t and thus is a 3D vector. It represents how the spatial coordinates x i vary for Eulerian observers, when moving from Σ t to Σ t+δt . See Figure 1.1 for an illustration of the lapse and shift.

Finally, the 4-metric g µν defines an induced metric on the slices γ µν . It represents the projection onto these hypersurfaces:

g µν = γ µν + n µ n ν .
(1.4)

We refer to this induced metric as the 3-metric γ ij with spatial indices. It is used to manipulate indices of spatial tensors (for instance, β i = γ ij β j ). It defines a covariant derivative noted D i and connection coefficients Γ i kl . We note its Ricci tensor R ij . Hereafter, should we need to refer to the 4D connection or Ricci/Riemann tensors, we will use a superscript such as (4) R. The 4-metric will still be noted g µν and the related covariant derivative ∇ µ , which should avoid ambiguity.

We can know fully express the 10 components of the 4D metric with the lapse Figure 1.1: Illustration of the lapse N and shift β i in the 3+1 formalism. Credits: Eric Gourgoulhon. Source: [START_REF] Gourgoulhon | 3+1 Formalism and Bases of Numerical Relativity[END_REF] https://arxiv.org/abs/gr-qc/0703035. α, the shift vector β i and the 3-metric γ ij :

g µν dx µ dx ν = -α 2 dt 2 + γ ij dx i + β i dt dx j + β j dt (1.5) = -α 2 + β i β i dt 2 + 2β i dtdx i + γ ij dx i dx j . (1.6)
The inverse metric is, in matrix form, given by

g µν =           - 1 α 2 β j α 2 β i α 2 γ ij - β i β j α 2           . (1.7)
In particular, notice that g ij ̸ = γ ij (while g ij = γ ij ). Note also that the determinants g and γ, of g µν and γ ij respectively, relate as √ -g = α √ γ. The components of the normal read:

n µ = (-α, 0) (1.8) n µ = 1 α , - β i α .
(1.9)

The last missing piece is the extrinsic curvature tensor K ij . While the 3-metric describes the geometry of each slice, the extrinsic curvature translates how slices are embedded in the full spacetime -how the geometry varies between neighboring hypersurfaces. Since our foliation is indexed by the time, it tells how the metric evolves and it can be expressed as

K ij = - 1 2 L n γ ij = - 1 2α L m γ ij (1.10) = - 1 2α (∂ t -L β ) γ ij . (1.11)
Although we have given back specific roles to time and space coordinates, it is important to keep in mind that the choice of foliation is not unique. In this respect it would be delusional to think that some kind of absolute time is introduced by the formalism. Moreover, gauge freedom translates into the choice of the 4 components α and β i , therefore called gauge functions. As explained above, α relates to the slicing and β i to the spatial coordinates on each hypersurface. There exist various choices with different properties. A few of them are described in chapter 10 of [START_REF] Gourgoulhon | 3+1 formalism in general relativity: bases of numerical relativity[END_REF]. We discuss the relevant choices for evolutions in Section 2.2.

3+1 decomposition of Einstein's equations

The Einstein equations in the 3+1 formulation are obtained by projecting the trace-reversed form of Einstein's equation (1.1):

(4) R µν = 8π T µν - 1 2 T g µν (1.12)
with T = g µν T µν . The projections are performed along the normal n µ and on the slices with γ µν . It also makes use of the Gauss-Codazzi relations. We need to define the projections of the stress-energy tensor:

E ≡ n ρ n σ T ρσ , (1.13) p µ ≡ -γ ρ µ n σ T ρσ , (1.14) S µν ≡ γ ρ µ γ σ ν T ρσ . (1.15)
E is the energy density, p i the momentum density and S ij the stress tensor. Note that we have switched to Latin indices, as these quantities are tangent to the slices. We also introduce the trace S ≡ γ ij S ij = g µν S µν . Einstein's equations then take the form:

(∂ t -L β ) γ ij = -2αK ij , (1.16) (∂ t -L β ) K ij = -D i D j α + α R ij + KK ij -2K ik K k j + 4π ((S -E)γ ij -2S ij ) , (1.17) H ≡ R -K ij K ij + K 2 -16πE = 0 , (1.18) M i ≡ D j K ij + D i K -8πp i = 0 . (1.19)
Importantly, the covariant Einstein equations split into two qualitatively (and mathematically) different sets of equations. Equations (1.16) and (1.17) are evolution equations: they prescribe how the metric and extrinsic curvature change between hypersurfaces. From a physical point of view, starting from a initial configuration of γ ij and K ij , these equations dictate how these field behave at later time. Mathematically, these are hyperbolic equations (put loosely, propagation equations).

On the contrary, Equations (1.18) and (1.19) are constraint equations, named respectively the Hamiltonian and momentum constraints. An Einstein solution must satisfy these constraints on each slice -at each time. Note indeed that they don't include the evolution operator (∂ t -L β ). Mathematically, they are elliptic equations and must be solved globally on each Σ t .

The 3+1 decomposition reveals that Einstein's equations are evolution equations under constraints. It is similar to Maxwell's equations in this respect. Using this rewriting was a key to proofs of well-posedness of the Cauchy problem for instance [START_REF] Fourès-Bruhat | Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires[END_REF]. The resolution of these two types of equations involves different numerical techniques. As explained in Section 2.1, most evolution codes perform free evolutions, which means that only the evolution equations are solved. This is justified by the propagation of constraints by the evolution equations: if initial data satisfy the constraints (1.18) and (1.19), and are evolved with (1.16) and (1.17), then the constraints are satisfied at all times.

These equations are often dubbed ADM formulation in the literature, from the names Arnowitt, Deser and Misner. It may allow to disambiguate with other formulations which use the 3+1 decomposition of the metric. However this derivation is not owed to these authors. Their contribution was the development of a Hamiltonian formulation of Einstein's equations [START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF]. In the Hamiltonian, the lapse and shift appear to be Lagrange multipliers respectively of the Hamiltonian constraint and momentum constraint. The authors also gave their name to global quantities such as the ADM mass contained in a slice (there are several ways to properly define masses in GR but we don't discuss it here).

Physical predictions of General Relativity

General Relativity predicts phenomena beyond Newton's gravity and its validity can therefore be tested. Historical validations include the following. First, relativistic corrections accurately fix the discrepancy in the advance of Mercury's perihelion obtained with Newton's gravity. Through spacetime curvature, General Relativity describes how gravitation affects the propagation of light. In particular, massive objects such as the Sun deflect light, and such deflections were measured in a campaign led by Eddington during a solar eclipse in 1919. Dense matter distributions can also create gravitational lensing and magnify objects behind them. Moreover, light which escapes a gravitational field is redshifted: it loses energy to leave the gravitational well and its frequency thus decreases. This can be observed in spectral rays from stars. Taking into account the corrections due to the gravitational redshift around the Earth was crucial to the best-known everyday-life application of GR: navigation utilities and the Global Positioning System (GPS).

The advent of General Relativity also renewed the field of cosmology, by applying Einstein's equations to the whole universe. This most notably led to the Friedmann-Lemaître-Robertson-Walker metric and Friedmann-Lemaître equations.

General Relativity is well tested, from Solar System dynamics [START_REF] Nordtvedt | Verification of general relativity: tests in the Solar System[END_REF] through tests of the equivalence principle with the MICROSCOPE experiment [START_REF] Touboul | MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle[END_REF] or in triple systems with a pulsar [START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF], to gravitational waves detections [START_REF] Abbott | Tests of General Relativity with GW170817[END_REF][START_REF] Abbott | Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog[END_REF].

In the next paragraphs, we put the emphasis on the most relevant predictions for this work: gravitational waves (GW) and black holes (BH). We refer to the recent review by Barack et al. [START_REF] Barack | Black holes, gravitational waves and fundamental physics: a roadmap[END_REF], published in the wake of the first detections by laser interferometers.

Gravitational waves

Gravitational waves are often popularized as ripples of spacetime. They represent the two dynamical degrees of freedom in the metric, which can propagate.

Gravitational waves are constructed as a linearization of the metric around a flat background. The metric is decomposed as

g µν = η µν + h µν (1.20)
where η µν is the Minkowski metric and h µν a small perturbation. The indices of h µν are manipulated with η µν since quadratic terms are neglected.

Introducing the trace h = η µν h µν and the quantity hµν = h µν -1 2 hη µν , the linearized Einstein equations greatly simplify. Further imposing the harmonic gauge condition ∂ µ hµν = 0, they read (in vacuum)

□ hµν = 0 (1.21)
with □ the flat d'Alembert operator.

Looking for plane-wave solutions

hµν = A µν exp (ik ρ x ρ ) (1.22)
-where A µν and k µ are constant -, the wave vector must satisfy

k µ A µν = 0 , (1.23) k µ k µ = 0 . (1.24)
This means that the amplitude tensor is orthogonal to the propagation vector; and that the wave propagates at the speed of light in vacuum.

Further gauge fixing conditions allow to find a transverse-traceless gauge, where

u µ A µν = 0 , (1.25)
η µν A µν = 0 . (1.26)
Here, u µ is a constant vector such that u µ k µ ̸ = 0. All these conditions add up to 8 independent constraints, leaving two independent polarizations of the gravitational wave. For tensors given in the natural Cartesian coordinate basis, a wave propagating along the z direction, and inertial observers u µ = (1, 0, 0, 0), then these two independent sinusoids appear as h + and h × in the expression of the metric perturbation:

h µν =      0 0 0 0 0 h + h × 0 0 h × -h + 0 0 0 0 0      . (1.27)
The passage of such a gravitational wave stretches and shrinks distances along orthogonal directions. The relative length variation is of order of the amplitude of h ij , which is thus called strain. The h + contribution alternatively stretches lengths in the x and y directions, while h × stretches the diagonals.

Sources

Because of the conservation of mass and momentum, monopole and dipole matter distributions don't generate gravitational waves. Quadrupolar distributions do emit gravitational waves and an order of magnitude can be obtained by considering a rigid rod of mass M , length L and rotating at angular frequency ω. Then the strain and emitted power are of order

h ∼ G M L 2 ω 2 c 4 r (1.28) P ∼ G M 2 L 4 ω 6 c 5 (1.29)
Gravitational waves emitted by terrestrial sources are by far negligible and undetectable. More realistic sources are binary systems of compact objects, such as black holes, neutron stars and white dwarves. The frequency of the emitted wave is twice the orbital frequency. When these objects are close together, they lose enough energy through gravitational radiation, so that they transition from quasi-circular inspiralling orbits to a final plunge and merger, leaving only one remnant compact object behind. These compact binaries have high masses (and importantly, high compactness) and can reach relativistic speeds, hence the radiated power is huge. However, they reside at astrophysical distances from us and therefore the expected strain on Earth is around 10 -22 , making their detection a challenge (see Section 1.3). Indeed, the strain typically represents the relative variation in distances during the passage of the wave. The main sources of transient gravitational waves for direct detection are stellar-mass compact binary mergers and supermassive black hole binary mergers. Binary systems can also be considered as continuous sources when they are far from merger, such as galactic white dwarf binaries and EMRIs (Extreme Mass Ratio Inspirals), where a smaller compact object orbits a much larger black hole and hence probes a strong-field background. Other possible sources of gravitational waves are neutron star asymmetries, supernovae events and cosmological gravitational waves.

Black holes

Black holes are not only interesting because they are sources of gravitational waves. Physically, they are the endpoint of stellar evolution for massive stars. Most galaxies host a supermassive black hole at their hearts, if not all. In the past few years, the Event Horizon Telescope collaboration revealed astounding images of the vicinity of two supermassive black holes: the black hole hosted by the galaxy M 87 was showcased first in 2019; and then in 2021, they unveiled the black hole at the very center of our galaxy. Their work was published in the series of papers [START_REF] Akiyama | First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. II. Array and Instrumentation[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. III. Data Processing and Calibration[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. VII. Polarization of the Ring[END_REF][START_REF] Akiyama | First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon[END_REF][START_REF] Akiyama | First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way[END_REF][START_REF] Akiyama | First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration[END_REF][START_REF] Akiyama | First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole[END_REF][START_REF] Akiyama | First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass[END_REF][START_REF] Akiyama | First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole[END_REF][START_REF] Akiyama | First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric[END_REF]. We show the awe-inspiring images on Figure 1.2.

There are many reasons why black holes are so fascinating. They represent regions of spacetime from which nothing can escape, not even light. The boundary of this region is called the event horizon. Note that the notion of event horizon is global on the whole 4D spacetime. By definition it is not possible to receive light directly from a black hole, and therefore the images presented by the Event Horizon Telescope rather represent the emission by matter surrounding the black holes. Moreover, the intense gravitational field generated by the black hole causes distortions in the propagation of light, thus the shadow of the black hole does not directly correspond to its horizon. Some of these supermassive black holes can be powerful engines for matter ejections (called jets) and subsequent radiation: they are called Active Galactic Nuclei.

Black holes are very universal objects. First, their mass ranges at least from a few solar masses, to billions of solar masses for supermassive black holes. The hypothetical primordial black holes may also have lower masses. Second, stationary black holes in asymptotically flat spacetime can be completely described by only three parameters: their mass, their angular momentum and their electric charge. This is known as the no-hair theorem -also uniqueness theorems -and relies on a few further assumptions and results not detailed here (see for instance [START_REF] Bekenstein | Novel "no-scalar-hair" theorem for black holes[END_REF][START_REF] Heusler | Black Hole Uniqueness Theorems[END_REF][START_REF] Alexandru | Rigidity results in general relativity: A review[END_REF][START_REF] Mavromatos | Eluding the No-Hair Conjecture for Black Holes[END_REF][START_REF] Pawel | Black Uniqueness Theorems[END_REF]). Astrophysical black holes are not expected to have a significant electric charge, so their properties can only depend on their mass M and angular momentum J. A consequence is that the radius (and the area) of the horizon are fully determined by these two quantities.

Schwarzschild black hole

In the case of a non-rotating (i.e. static) black hole, the only typical scale is the Schwarzschild radius

R S = 2M G c 2 .
(1.30)

Soon after Einstein published General Relativity, Schwarzschild came up with an exact solution of the field equations in vacuum which is spherically symmetric and static. It represents the metric outside of a sphere which contains a mass M and reads:

ds 2 = -1 - 2M r dt 2 + 1 - 2M r -1 dr 2 + r 2 dΩ 2 , (1.31)
where dΩ 2 = dθ 2 +sin 2 θdφ 2 is the line element of the 2-sphere. This metric diverges for r → R S and thus if all the mass is encompassed within the Schwarzschild radius, it describes a Schwarzschild black hole. For instance, the Schwarzschild radius of the Sun is around 3 km for an actual radius of around 700 000 km, and the Schwarzschild radius of the Earth is about 9 mm, for an actual radius of 6400 km.

The black hole horizon is located at r = 2M in these coordinates. Note that black holes are indeed vacuum solutions of Einstein's equations: there is no matter and thus no stress-energy tensor. Besides the horizon located at r = 2M , the Schwarzschild metric admits stable circular orbits for radii larger than the so-called ISCO (Innermost Stable Circular Orbit) located at r = 6M . There is also a photon sphere at r = 3M .

Even though the metric is singular on the horizon in the Schwarzschild coordinates, the singularity is not physical: other choices of coordinates can smoothly penetrate the horizon, such as the Eddington-Finkelstein coordinates or the Kerr-Schild coordinates which we use in this work (see Section 5.1.1). Still there is a physical singularity (visible in the divergence of the Kretschmann scalar K ≡ (4) R µνρσ (4) R µνρσ for instance) located at r = 0 in the Schwarzschild coordinates.

Black holes in rotation are described by the Kerr metric. Such black holes are stationary and parameterized by their mass M and angular momentum J. The latter is often given as a dimensionless parameter J/M 2 which takes values in [-1, 1]. The Schwarzschild metric is recovered when J = 0. Kerr black holes (which are more physically relevant) display additional features such as an ergoregion, a Cauchy horizon and frame dragging. In Section 5.1.1, we recall the expression of the Kerr metric in the 3+1 language, with coordinates which penetrate the event horizon.

Other results about black holes include the cosmic censorship conjecture, which states that physical singularities of spacetime must "hide" behind a horizon. Hawking radiation is a semi-classical model which shows that black holes can indeed lose mass and "evaporate", and the smaller the black hole, the faster the evaporation. It is possible to link it to black hole thermodynamics. The mathematical aspects of horizons are another interesting topic. We refer to public lecture notes by Gourgoulhon for a coverage of many aspects of black hole physics [START_REF] Gourgoulhon | Geometry and physics of black holes[END_REF].

Finally, let us mention our participation to a peer-reviewed article describing a novel method to impose boundary conditions for stationary black holes in Numerical Relativity [START_REF] Grandclément | Boundary conditions for stationary black holes: Application to Kerr, Martínez-Troncoso-Zanelli, and hairy black holes[END_REF]. Our contribution is summarized in Appendix C.

Other compact objects

At the end of their lives, stars which don't collapse to a black hole still form other types of compact objects, such as white dwarves and neutron stars. The latter are the second most compact objects observed in the universe after black holes. They are very interesting laboratories for dense matter as they reach nuclear densities. A major task in the study of neutron stars is to determine the equation of state of the matter which composes them. For instance, different equations of state yield different mass-radius relations, and different maximum masses for neutron stars in equilibrium. Observations can then reject equations of state which predict too low of a maximal mass. The typical mass of a neutron star is between 1 and 2 solar masses, for a radius of around 12 km. Neutron stars are extreme objects, as they also exhibit very large magnetic fields and surface temperatures 3 .

A specific class of neutron stars which is vastly studied is pulsars. These are rotating neutron stars which emit intense radio beams along their magnetic poles. These beams are detectable when they cross our line of sight, resulting in a very regular periodic source.

Finally, let us mention that some studies investigate exotic compact objects (ECOs) such as boson stars. Boson stars are described by a self-gravitating complex scalar field. They can reach high compactness without forming a horizon. Even though they may not be astrophysically relevant, they remain a valuable tool to understand better the physics of strong-field gravity with simple matter content. By contrasting their properties with those of black holes, they may enable us to pinpoint more of their characteristics and more trustfully identify black holes. See for example the recently updated review [START_REF] Liebling | Dynamical boson stars[END_REF].

The Kadath library is tailored to the study of strong-field gravity and compact objects, and thus was not only used to study black holes in GR, but also boson stars [START_REF] Grandclément | Models of rotating boson stars and geodesics around them: New type of orbits[END_REF], geons in asymptotically anti-de Sitter spacetime [START_REF] Martinon | Gravitational geons in asymptotically anti-de Sitter spacetimes[END_REF] and black holes in modified gravity [START_REF] Van Aelst | Hairy rotating black holes in cubic Galileon theory[END_REF]. The evolutions presented in this work only deal with vacuum spacetimes.

Numerical Relativity and connected fields

In this section we summarize the motivations for Numerical Relativity and mention the closely-related scientific fields. We mostly center the discussion around the detection of gravitational waves. However, Numerical Relativity stays as tied to theoretical physics that it is useful for observations. This remark is especially meaningful regarding the Kadath library, because on the one hand it is very flexible in terms of systems of equations it can solve; and on the other hand, it doesn't aim at outperforming libraries which generate state-of-the-art waveforms. Instead, it may be used to investigate original physical systems and numerical methods.

Direct detection of gravitational waves

Even though there were indirect indications of the existence of gravitational waves, in the form of the variation of the period of the Hulse-Taylor binary pulsar [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF], their direct detection by the LIGO-Virgo collaboration in 2015 marked a significant breakthrough [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. The detected signal was emitted by the coalescence of a black hole binary with estimated masses for the components of around 36 and 29 solar masses. The mass of the remnant is estimated at 62 solar masses, with 3 solar masses worth of energy emitted in gravitational waves. This event is dubbed GW150914 and its name is built from the date of detection.

The next invaluable direct detection was that of a binary neutron star coalescence, GW170817 [START_REF] Abbott | Multi-messenger Observations of a Binary Neutron Star Merger[END_REF][START_REF] Abbott | Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF]. The fact that electromagnetic counterparts were detected shortly after the arrival of the gravitational signal and in the following weeks make it the first (and so far only) multi-messenger detection involving gravitational waves, opening the era of multi-messenger astronomy. Such a detection is crucial because it allows to test models for gravitation (compliance with General Relativity) but also the physical models of neutron stars and their mergers [START_REF] Abbott | Tests of General Relativity with GW170817[END_REF]. Hopefully, more detections of this kind will allow to refine the inferred value of the Hubble constant and maybe release the Hubble tension [START_REF] Abbott | A gravitational-wave standard siren measurement of the Hubble constant[END_REF]. Since these first detections, a little less than 100 compact binary mergers have been observed by the LIGO-Virgo-Kagra collaboration during 3 observing runs [START_REF] Abbott | GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run[END_REF].

We illustrate the first detection GW150914 on Figures 1.3 and 1.4, taken from [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. The first figure represents the typical gravitational wave signal from a black hole binary coalescence. In a first phase, the black holes orbit each other in quasicircular orbits. They emit gravitational waves at a relatively low rate, but still lose energy and therefore come closer to each other. This is the inspiral. At this stage, the low velocity and the separation of the black holes allow a perturbative treatment, such as a post-Newtonian expansion, which can be done analytically. When the black holes become too close to each other, the perturbative hypothesis breaks down and Numerical Relativity is needed to solve the strong-field regime of the full Einstein equations. This is the final plunge and the merge phase, when the two black holes become one. In the process, the frequency quickly increases and its behavior is described as a chirp. Finally, the remnant, which is in an excited state, relaxes and reaches a stationary state. It is called the ringdown phase and the study of the quasi-normal modes of the black hole can be treated as perturbations of the Kerr metric. Figure 1.4 illustrates the actual signal in the two LIGO detectors on the first line; on the second line, the Numerical Relativity waveform computed from the retrieved parameters is depicted, with residuals on the third line. Finally, the bottom panel shows the detection in a time-frequency diagram. The chirp is this typical curve with increasing frequency as time passes. This figure goes to show that the detected signal is meddled with noise (and it was a rather loud event). Note also the scale, with strains (i.e. relative length variations) of order 10 -21 .

Detecting such low signals is truly a remarkable feat and involves cutting-edge research and technology on many aspects, briefly overviewed below. Successive detector upgrades (and future detectors), as well as improvements in modeling, push back the maximum distance of detectability of gravitational wave events along with the frontiers of our knowledge. Credits: [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. License CC BY 3.0.

Numerical Relativity

Even though Numerical Relativity (NR) generically sets out to solve Einstein's equations on the computer, a major driver for the community was the generation of gravitational waveforms from binary mergers, which could be used for the direct detections introduced in the previous paragraphs. This led for example to the community effort known as the Binary Black Hole Grand Challenge in the 90s. First successful simulations of a neutron star binary were obtained in 2000 [START_REF] Shibata | Simulation of merging binary neutron stars in full general relativity: Γ = 2 case[END_REF]. As far as black holes are concerned, the breakthrough simulation of half an orbit before merger was achieved by Pretorius in 2005 [START_REF] Pretorius | Evolution of Binary Black-Hole Spacetimes[END_REF]. Not long after, both Baker et al. [START_REF] Baker | Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes[END_REF] and Campanelli et al. [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF] achieved similar feats with different techniques. From there on, many improvements ensued and in a sense, computing binary black hole waveforms could -almost -be called routine today. The various ingredients and techniques involved for the evolution problem in Numerical Relativity are the object of Chapter 2.

Still, there remains limitations to such waveform generations by Numerical Relativity. First, the numerical evolution problem is far from trivial, the numerical methods and implementations are cumbersome and they necessitate humongous numerical resources (in memory and computation time). The corresponding numerical libraries have been (and are still) developed by large communities over the course of many years. Because of their computational costs, Numerical Relativity simulations cannot evolve systems for arbitrarily large numbers of orbits before merger. Moreover, they effectively cannot span the parameter space with as many points as required by bayesian inference for parameter estimation. However, numerical evolutions can be used a posteriori to generate the waveform corresponding to the set of inferred parameters of a detection.

Finally, only a portion of the parameter space is accessible to Numerical Relativity. NR is well-suited for problems with one typical scale. Multi-scale problems are challenging, since both small scales and large scale phenomena need to be captured, resulting in prohibitive resolution needs. This primarily impacts the range of mass ratios of the binary components that can be computed from NR.

For these reasons, improving the accuracy of NR evolutions, their scope, and developing more efficient numerical methods, are still very much active topics in GR research.

Waveforms

We mentioned that the various phases of the coalescence rely on different techniques to describe them. When the binary separation is large enough that the compact objects can be modeled by point particles, and relative velocities are still fairly small, the post-Newtonian expansion can inform on the binary evolution. It consists in a perturbative development, the successive orders of which are given by power of the small parameter v c 2 . As the name suggests, this development adds corrections to Newton's gravity. It gives the gravitational wave phase and the energy flux. See [START_REF] Blanchet | Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries[END_REF] for a review and [START_REF] Trestini | The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics[END_REF] for recent results at 4th post-Newtonian order. Another possible expansion is in powers of the gravitational constant G (post-Minkowskian expansion).

On the other hand, the ringdown phase employs black hole perturbation theory to examine the ringing modes of a perturbed black hole, called quasi-normal modes. A review is given in [START_REF] Kokkotas | Quasi-Normal Modes of Stars and Black Holes[END_REF]. Recent studies advocate for the inclusion of non-linearities in the ringdown phase as well [START_REF] Ho-Yeuk | Nonlinear Effects in Black Hole Ringdown[END_REF].

Another kind of perturbative approach is the small mass ratio limit, relevant for Extreme Mass Ratio Inspirals (EMRIs). Such systems typically consist in a smaller compact object (neutron star, stellar mass or intermediate mass black hole) orbiting a supermassive black hole. EMRIs can also be studied through the selfforce approach [START_REF] Barack | Self-force and radiation reaction in general relativity[END_REF], which examines the backreaction of a background spacetime due to the motion of the object of interest (here the smaller object). Computing EMRI waveforms is a very hot topic [START_REF] Hughes | Adiabatic waveforms for extreme mass-ratio inspirals via multivoice decomposition in time and frequency[END_REF] and will be extremely important for the LISA mission.

The two-body problem can also be studied through the lens of the effective one-body (EOB) formalism introduced in [START_REF] Buonanno | Effective one-body approach to general relativistic two-body dynamics[END_REF]. It maps the evolution of two bodies to the motion of an effective single body in a modified background. It has the advantage of grouping all of the coalescence phases in a single formalism. EOB waveforms are calibrated using Numerical Relativity waveforms [START_REF] Taracchini | Effective-one-body model for black-hole binaries with generic mass ratios and spins[END_REF]. [START_REF] Le | The overlap of numerical relativity, perturbation theory and post-Newtonian theory in the binary black hole problem[END_REF] discusses how these different methods can be compared to each other. Waveforms used in data analysis may be generated by the EOB formalism, phenomenological waveforms [START_REF] Pratten | Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes[END_REF] and surrogate models [START_REF] Varma | Surrogate models for precessing binary black hole simulations with unequal masses[END_REF]. The purpose of such alternatives to Numerical Relativity, whether they are given in time or frequency domain, is that they can be computed more efficiently and cover the whole Inspiral-Merger-Ringdown. Still, they don't fully disqualify Numerical Relativity, which either serves as a calibration or as a validation reference.

Data analysis

Even though instruments increase their sensitivities as much as possible and reduce the various sources of noise, typical GW signals don't easily stand out. Thus, signal detection, and the subsequent parameter estimation, rely on the matched filtering technique. The basic idea is as follows: it is possible to correlate known waveforms to the measured signal. A significant correlation indicates the passage of a gravitational wave. In other words, it is easier to find the needle in the haystack when you know what the needle looks like. It justifies the need for accurate waveforms which cover as much as possible of the parameter space.

The latter can be rather large: for a binary black hole, intrinsic parameters basically include the masses and spins of the black holes. On top of that, additional extrinsic parameters characterize the sky location and orientation with respect to the line of sight, for example.

In the detection process, there are first rapid searches which aim at quickly noticing any possible detection on the fly and potentially trigger alerts for follow-up observations. Then there is a slower process of a more precise parameter estimation. They follow bayesian inference principles and show likelihood distributions obtained from Monte-Carlo algorithms, sampled over hundreds of thousands of waveforms (this greatly exceeds the number of available NR waveforms). For example, one search pipeline is described in [START_REF] Samantha A Usman | The PyCBC search for gravitational waves from compact binary coalescence[END_REF].

Note that a downside of matched filtering is the potential restriction to the discovery of unknown signals, or poorly modeled sources (binaries with eccentricity or spin precession for example). Performing unmodeled searches, with minimal assumptions, remains relevant [START_REF] Bacon | Driving unmodeled gravitational-wave transient searches using astrophysical information[END_REF][START_REF] Abbott | Observing gravitational-wave transient GW150914 with minimal assumptions[END_REF].

Moreover, data analysis needs to account for possible glitches (noise transients), non-gaussianity in the noise, and ultimately the impossibility to know the noise exactly, since it is impossible to prevent gravitational waves from interacting with the detector and to get measurements which undoubtedly contain only noise.

Finally, note that current detectors are primarily concerned with non-overlapping transient sources. However, as sensitivity improves, and with the advent of new detectors, signal superposition, and continuous waves, will become part of the game. The spaceborne LISA detector will even be signal-dominated and the challenge is to disentangle the different contributions.

Instrumentation

To detect gravitational waves, the main instrumental devices rely on laser interferometry. Schematically, laser light is sent in a Michelson interferometer to produce some destructive interference. When a gravitational wave passes through the detector, it stretches the length of the arms and the two beams are no longer in phase, thus changing the interference pattern. There are many refinements and advanced engineering and physics which make the observations possible -recall the smallness of the measured strain! -, for instance about optics (laser, cavities, squeezed light), mechanics (mirror suspension), material science (mirror surface), . . . LIGO is an American detector, with two facilities (Hanford and Livingston). It detected the first event GW150914. Each facility consists in L-shaped 4-km-long arms. It was then joined by the European Virgo detector located in Italy, and more recently by Kagra in Japan [START_REF] Akutsu | Overview of KAGRA: Detector design and construction history[END_REF]. Having multiple detectors, widely separated and oriented differently, makes it possible to locate sources in the sky with better accuracy. Indeed, gravitational wave detectors are all-sky surveys (they don't point to a particular direction or object), even though their sensitivity depends on their orientation. A LIGO detector should be built in India in the future. These ground-based detectors are sensitive to signals in the frequency band ranging from 10 Hz to 10 kHz [START_REF] Martynov | Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF]. It makes them able to detect coalescences of stellar mass compact binaries. For neutron star binaries, they can detect many cycles of the inspiral but not really resolve the late stages which happen at high frequency, and from which interesting physics could be extracted. Future groundbased interferometers, such as the European Einstein Telescope (ET) [START_REF] Maggiore | Science case for the Einstein telescope[END_REF] or the American Cosmic Explorer (CE) [START_REF] Reitze | Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO[END_REF], aim at extending the frequency band and lower the sensitivity curve.

Other frequency ranges can also be investigated. The spaceborne LISA mission (Laser Interferometer Space Antenna), scheduled for a launch in the 2030s, will detect gravitational waves in the 0.1 mHz -0.1 Hz band [START_REF] Danzmann | LISA Laser Interferometer Space Antenna -A proposal in response to the ESA call for L3 mission concepts[END_REF]. It will be constituted of 3 spacecrafts, trailing the Earth on its orbit around the Sun. Each arm is 2.5 million kilometers long. This mission will face instrumental and data analysis challenges different to ground-based detectors; in particular they will not be reachable for repairs or upgrades after their launch.

Typical relevant physical sources for LISA are supermassive binary black hole mergers, Extreme-Mass-Ratio Inspirals, but also galactic white dwarf binaries [START_REF] Amaro-Seoane | Astrophysics with the Laser Interferometer Space Antenna[END_REF]. The latter are numerous in our galaxy; some of them are already known and can serve as verification binaries; and not all of them will be resolved, resulting in physical noise due to the stochastic accumulation of signals.

Finally, let us mention that Pulsar Timing Array (PTA) aims at measuring gravitational waves in the nanoHertz band, by correlating signals from pulsars. These pulsars act as clocks separated by astronomical distances and can therefore indicate the passage of gravitational waves over these large scales. However, this technique requires years of data accumulation to exhibit such low frequency signals.

See for example the results of the NANOGrav collaboration [START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF].

Exploitation of data

Ultimately, observations can then be exploited to study physics. Beyond an additional proof of the existence of black holes and gravitational waves, these mergers inform us on their properties. As we mentioned, being able to infer constraints on the neutron star equation of state from mergers would be a great leap forward. LIGO/Virgo detections have also revealed some more peculiar events, for instance GW190521 which produced an intermediate mass black hole and probably involves a precursor black hole sitting in the mass gap [START_REF] Abbott | A Binary Black Hole Merger with a Total Mass of 150 M ⊙[END_REF]. Gravitational wave detections challenge scientists to find models demonstrating how such black holes come to existence, how the binaries can come closer in sufficiently short time scales, and more generally to explain or infer the distribution of the events that we observe. The catalog of all events detected in the three first observing campaigns already allow to better describe the observed distributions of masses and spins of black holes [START_REF] Abbott | The population of merging compact binaries inferred using gravitational waves through GWTC-3[END_REF], but only increased statistics and new observation windows will improve our source population and formation channels models.

As previously stated, gravitational wave detections, especially multi-messenger observations of binary neutron stars or mixed binaries, may also inform us on the equation of state of neutron stars and nuclear matter in conditions we cannot reproduce on Earth. They also put further constraints on deviations from GR or on the value of the Hubble constant [START_REF] Abbott | Tests of General Relativity with GW170817[END_REF][START_REF] Abbott | Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog[END_REF][START_REF] Abbott | A gravitational-wave standard siren measurement of the Hubble constant[END_REF]. To obtain a successful computation, you need a handful of ingredients, mixed together in a delicate and sometimes empirical manner. Put the dough in the oven of High Performance Computing for thousands of CPU hours. Make sure that the result is presentable and can be swallowed. It's ready to be published on the menu! In this chapter, we give a coarse summary of the many intertwined elements which enter the recipe of a successful evolution in Numerical Relativity, and we mention a few of the possible variations. Each of these sub-task generates its dedicated field of research and would be worth whole chapters, if not books. All of them were examined in details as teams across the world strove to obtain the first simulations of mergers. Our choice is to give the gist of why they are relevant and important for simulations. We also point out the key features for our own work. We don't intend to be exhaustive nor provide in-depth reviews or understanding. For a very accessible and relatively short overview of this topic, see for instance the review by Brügmann [START_REF] Brügmann | Fundamentals of numerical relativity for gravitational wave sources[END_REF]. For more material see this other longer review for example [START_REF] Cardoso | Exploring New Physics Frontiers Through Numerical Relativity[END_REF].

Chapter 2

Overview of the key ingredients for evolutions in Numerical Relativity

Thereafter we consider that we stay within General Relativity, but Numerical Relativity may also be extended to tackle problems in modified theories or even with a non-zero cosmological constant. A few examples are [START_REF] Bantilan | Cauchy evolution of asymptotically global AdS spacetimes with no symmetries[END_REF][START_REF] Bezares | No Evidence of Kinetic Screening in Simulations of Merging Binary Neutron Stars beyond General Relativity[END_REF].

Formulation of the equations

The first task is to determine a suitable formulation for the equations, one which is appropriate for solving them numerically. The system should be turned into a well-posed Initial-Boundary Value Problem. This means that when initial data and a set of boundary conditions (BC) are provided, there exists a unique solution, which depends smoothly on those. In other words it is possible to integrate the equations forward in time. [START_REF] Friedrich | The Initial Boundary Value Problem for Einstein's Vacuum Field Equation[END_REF] shows some results about the well-posedness of the Initial-Boundary Value Problem for Einstein's equations. See also the review by Sarbach and Tiglio [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF]. Mostly, results for the existence of solutions are local in time.

In particular, using the general covariant form G µν = 8πT µν of Einstein's equations is very impractical for a numerical integration, and one has to restore some time dependence to perform an evolution. The 3+1 formalism exposed in Section 1.1.2 is one possibility to achieve this.

Generic features

Einstein's equations are a set of 10 coupled second-order semi-linear partial differential equations on the metric g µν . It appears from the 3+1 decomposition that they correspond to 4 constraint equations and 6 evolution equations. In the process, we actually set the 4-metric aside and trade it with the lapse function α, the shift vector β i and the 3-metric γ ij :

g µν dx µ dx ν = -α 2 dt 2 + γ ij dx i + β i dt dx j + β j dt . (2.1)
This illustrates a first common feature of reformulation, which is the choice of dynamical variables. This will be further exemplified when giving other standard formulations of Einstein's equations.

A closely-related question is the order of equations. Most time integration scheme are designed for first-order time derivatives. It is based on the simple argument that a second-order-in-time differential equation can be recast as a system of two first-order equations. In the case of 3+1 variables, it takes the form

(∂ t -L β ) γ ij = -2αK ij , ( 2.2) 
(∂ t -L β ) K ij = -D i D j α + α R ij + KK ij -2K ik K k j + 4π ((S -E)γ ij -2S ij ) . ( 2.3) 
This first-order reduction of time derivatives is analogous to the familiar second law of Newton:

∂ t x = v , ( 2.4 
)

∂ t v = F m . (2.5)
Here the metric plays the role of the position, and the extrinsic curvature tensor K ij can be seen as an intermediate quantity, just like the velocity. The first equation represent kinematics; the second dynamics.

While writing the equations with first-order time-derivatives stays almost mandatory, it is worthwhile to consider the introduction of reduction variables for spacederivatives as well. When mentioning first-or second-systems in the following, it is understood that it regards space derivatives. We illustrate the first-order reduction with the simple wave equation toy-model in Chapter 3, where the original equation can be sequentially reduced:

∂ 2 tt N = c 2 ∂ 2 rr N , ∂ t N = cV ∂ t V = c∂ 2 rr N ,      ∂ t N = cV ∂ t V = c∂ r G ∂ t G = c∂ r V . (2.6)
The notation c stands for the wave velocity and it is not the speed of light in vacuum.

Now the evolution equation for the new reduction variable, G ≡ ∂ r N , doesn't come from the very definition of the variable but from interchanging space and time derivatives. Instead, it creates an additional constraint that the first-order system must satisfy

C ≡ G -∂ r N = 0 . (2.7)
Fully reducing Einstein's equations to first-order may have benefits but it then comes at the cost of many additional dynamical variables and evolution equations, consuming more numerical resources, and of putting more constraints in the system. As we will see with the BSSN system shortly (Section 2.1.3), setting up any new dynamical variable really brings new constraints on board. All these constraints should be satisfied if we want the equivalence with Einstein's equations. They also add to the constraints directly coming from General Relativity, namely the Hamiltonian and momentum constraints (Section 1.1.2):

H ≡ R -K ij K ij + K 2 -16πE = 0 , ( 2.8) 
M i ≡ D j K ij + D i K -8πp i = 0 . (2.9)
There are several strategies to deal with the constraints. One option is to perform free evolutions. This method is what we describe the most, and what we choose for our own work. It consists in solving only the evolution equations without solving directly for the constraints. Instead, constraint violations constitute measures of the numerical error, and should converge to 0 when the numerical resolution is increased. For free evolutions, it remains important to ensure that the constraint subsystem, derived from the evolution equations, is indeed propagated. This means that in the continuum limit, data which satisfy the constraints initially, will satisfy them at later times as well. One caveat to keep in mind though: constraint violations may enter the numerical domain through boundary conditions.

To reduce or remove these considerations altogether, constrained formulation offer an alternative where constraints are solved during the evolution. They are embedded in the formulation and the solving algorithm. Examples of work about fully constrained schemes can be found in many papers by Cordero-Carrión and collaborators [START_REF] Bonazzola | Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates[END_REF][START_REF] Cordero-Carrión | Analysis of the Characteristics in the Meudon Constrained Evolution Scheme[END_REF][START_REF] Cordero-Carrión | Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue[END_REF][START_REF] Cordero-Carrión | Gravitational waves in dynamical spacetimes with matter content in the fully constrained formulation[END_REF][START_REF] Cordero-Carrión | Mathematical issues in a fully constrained formulation of the Einstein equations[END_REF].

Note that in any case, constraints can be cleverly incorporated in the design of a formulation, so that it inherits a better numerical behavior. One example of such a manipulation is the use of constraint damping (CD). It consists in adding terms proportional to the constraints in the evolution equations, such that any numerical constraint violation gets dynamically damped. In the case of the scalar wave equation introduced above, it yields:

∂ t G = c∂ r V -κ CD C .
(2.10)

More details and illustration in the case of the wave equation toy-model are given in Equations (3.13) to (3.15) and Section 3.3.3. Constraint damping can be enforced in the different formulations discussed below [START_REF] Alic | Conformal and covariant formulation of the Z4 system with constraint-violation damping[END_REF][START_REF] Alic | Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars[END_REF][START_REF] Brodbeck | Einstein's equations with asymptotically stable constraint propagation[END_REF][START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF][START_REF] Gundlach | Constraint damping in the Z4 formulation and harmonic gauge[END_REF][START_REF] Lindblom | A new generalized harmonic evolution system[END_REF][START_REF] Owen | Constraint damping in first-order evolution systems for numerical relativity[END_REF][START_REF] Weyhausen | Constraint damping for the Z4c formulation of general relativity[END_REF].

Hyperbolicity

It is possible to define hyperbolicity for second-order systems; for that, see the work by Gundlach and Martín-García [START_REF] Gundlach | Hyperbolicity of second order in space systems of evolution equations[END_REF]. Here we consider hyperbolicity of first-order systems, which is more easily explained.

In essence, a hyperbolic system of partial differential equations is a system which can be evolved in time. The first-order system is written as

∂ t u + A i ∂ i u = S , (2.11)
where u is the state vector, S is a source term, and A i are matrices. These matrices may depend on the state vector u for a semi-linear system such as Einstein's equations. They are called the principal symbol of the system, or characteristic matrices [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF][START_REF] Shinkai | Formulations of the Einstein Equations for Numerical Simulations[END_REF]. Depending on the diagonalization properties of the contraction of matrices A i with any spatial normal s i , the system is deemed a different type of hyperbolicity [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF][START_REF] Shinkai | Formulations of the Einstein Equations for Numerical Simulations[END_REF]. This analysis can be first performed on systems with constant coefficients, and then extended to variable coefficients by freezing the field values in the principal symbol. This corresponds to studying the linearized behavior around some background. If the principal symbol has only real eigenvalues, then the system is weakly hyperbolic.

In order to yield a well-posed problem, the system needs instead to be strongly hyperbolic. This is achieved if all matrices A i s i are diagonalizable with real eigenvalues [START_REF] Hilditch | Hyperbolicity of physical theories with application to general relativity[END_REF][START_REF] Reula | STRONGLY HYPERBOLIC SYSTEMS IN GENERAL RELATIVITY[END_REF][START_REF] Shinkai | Formulations of the Einstein Equations for Numerical Simulations[END_REF]. It further relates to the existence of a symmetrizer, that is a symmetric, positive definite matrix H(s i ) such that H(s i )A i is symmetric [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF][START_REF] Reula | STRONGLY HYPERBOLIC SYSTEMS IN GENERAL RELATIVITY[END_REF][START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF]. Finally, if this symmetrizer is independent of the direction s i , then the system is symmetric hyperbolic. The wave equation presented in Chapter 3 is a an example of symmetric hyperbolic system.

For a strongly hyperbolic system, the eigenvalues of A i s i are called characteristic speeds and the corresponding eigenvectors are characteristic fields. These intuitively correspond to how information is propagated in the numerical domain and can be used for boundary conditions. In particular, the number of incoming characteristics gives the number of boundary conditions that should be provided. In addition, for symmetric hyperbolic systems, an energy estimate (not necessarily interpreted as a physical energy) can be constructed. This allows to derive additional information and bounds on the solution [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF] and lies at the foundation of the derivation of penalty coefficients for penalty boundary conditions [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF][START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF].

Numerical evolutions therefore require formulations which are at least strongly hyperbolic. Hyperbolicity is a crucial criteria and thus it has been widely studied, especially in conjunction with gauge choices, as illustrated by the selection of references above.

In the case of Einstein's equations, the ADM formulation with fixed lapse and shift is only weakly hyperbolic [START_REF] Nagy | Strongly hyperbolic second order Einstein's evolution equations[END_REF], but according to [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF] dynamic gauge conditions can lead to strongly hyperbolic versions. However, other strongly or even symmetric hyperbolic formulations have been preferred for evolutions, and we mention the main ones in the next section.

Most widespread formulations

In the following, we present a brief summary of the formulations which are most widely used in evolutions.

Generalized Harmonic Gauge

The Generalized Harmonic Gauge (GHG) formulation is well described in [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF]. This work by Lindblom et al. gives an introduction to the generalized harmonic formulation and presents a first-order reduction. The Spectral Einstein Code (SpEC) and bamps are two examples of evolution codes which employ this formulation (along with spectral methods) [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF][START_REF] Szilágyi | Simulations of binary black hole mergers using spectral methods[END_REF]. We sketch the main ideas below.

Harmonic coordinates x µ of the 4-dimensional spacetime are defined such that

□ g x µ ≡ g αβ ∇ α ∇ β x µ = 0 , (2.12)
with g αβ the 4-metric and ∇ α the associated covariant derivative. With Christoffel symbols (4) Γ µ αβ and the contraction (4) Γ µ = g αβ (4) Γ µ αβ , this can be rewritten

0 = □ g x µ = -(4) Γ µ . (2.13)
As reminded in the introduction of [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF], harmonic coordinates have many uses, for instance in proofs of well-posedness by Choquet-Bruhat [START_REF] Fourès-Bruhat | Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires[END_REF].

It is a generalization of such coordinates which allowed Pretorius to obtain the celebrated first successful evolution of a binary black hole merger [START_REF] Pretorius | Evolution of Binary Black-Hole Spacetimes[END_REF][START_REF] Pretorius | Numerical relativity using a generalized harmonic decomposition[END_REF]. The inclusion of constraint damping also played a crucial role. Instead of considering the homogeneous Equation (2.13), a gauge source term is added as:

H µ = g µν □ g x ν = -(4) Γ µ .
(2.14)

The source terms H µ are functions of the coordinates and the metric (but not its derivatives). This yields the constraint C µ ≡ H µ + (4) Γ µ = 0. Then vacuum Einstein's equations are obtained as [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF]:

g αβ ∂ α ∂ β g µν = -2∇ (µ H ν) + 2g αβ g ρσ ∂ ρ g αµ ∂ σ g βν -(4) Γ µαρ (4) Γ νβσ . (2.15)
As shown by [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF], the gauge condition can be translated into evolution equations for the lapse α and the shift β i . Brown also gives the generalized harmonic system in the 3+1 language and in a covariant form [START_REF] Brown | Generalized harmonic equations in 3 + 1 form[END_REF]. Equation (2.15) reveals that the principal symbol of the system is the same as the wave equation. Lindblom and collaborators then operate a first-order reduction and add constraint damping, finally resulting in a symmetric hyperbolic system [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF]. Its dynamical variables are g µν , Φ iµν = ∂ i g µν and Π µν . The latter is originally defined from ∂ t g µν as

∂ t g µν -β k ∂ k g µν = -αΠ µν .
(2.16)

The actual evolution equation for the metric includes terms proportional to the constraints and substitutes the space derivatives by Φ iµν .

BSSN formulation

Another prominent formulation of the equations is called BSSN, for the names of the main contributors to this formalism: Baumgarte-Shapiro-Shibata-Nakamura. It is sometimes complemented with OK for Oohara and Kojima for their work with Nakamura in [START_REF] Nakamura | General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes[END_REF]. Shibata and Nakamura introduced this formalism in [START_REF] Shibata | Evolution of three-dimensional gravitational waves: Harmonic slicing case[END_REF] and Baumgarte and Shapiro then slightly modified the choice for the connection variable in [START_REF] Baumgarte | Numerical integration of Einstein's field equations[END_REF]. Brown also presented the system in a spatially covariant form in [START_REF] Brown | Covariant formulations of Baumgarte, Shapiro, Shibata, and Nakamura and the standard gauge[END_REF], which is also how the system is given in [START_REF] Gourgoulhon | 3+1 formalism in general relativity: bases of numerical relativity[END_REF] for instance.

Before giving more details about this formulation, let us mention that Brown and collaborators provide a first-order (FO) reduction of the system (dubbed FOB-SSN) in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]. This is the formulation which we use for our own work as explained in 4.1.1. We recall the main features of the FOBSSN system in Appendix A. We present the second-order BSSN system in the notations of the FOBSSN reference.

The BSSN formulation relies on the 3+1 formalism (see Section 1.1.2) but instead of using γ ij and K ij as the dynamical variables, a conformal decomposition is performed. For spatial covariance, a reference metric γij is introduced, along with its covariant derivative Di and connection Γi jk . In addition to the lapse α and shift β i , the independent variables are defined as

ϕ = 1 12 log γ γ , (2.17a) γij = e -4ϕ γ ij , (2.17b) K = γ ij K ij , (2.17c) Ãij = e -4ϕ K ij - 1 3 γ ij K , (2.17d) Λi = γjk Γi jk -Γi jk ≡ γjk ∆ Γi kj .
(2.17e) γij is the conformal metric and ϕ is the conformal factor. There exist alternative variants for the choice of conformal factor. Quantities with a tilde are related to this conformal metric (index manipulation, covariant derivative, connection). Then the extrinsic curvature is split into its trace K and the conformal transformation of the traceless part, Ãij . Finally, Λi is the conformal connection vector, usually noted Γi , which can also be computed as Λi = -Dj γij [START_REF] Baumgarte | Numerical integration of Einstein's field equations[END_REF][START_REF] Gourgoulhon | 3+1 formalism in general relativity: bases of numerical relativity[END_REF]. Shibata and
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Nakamura instead used as variable F i = Dj γij . These definitions lead to the following additional constraints in the system:

γ -γ = 0 , (2.18a) Ãi i ≡ γij Ãij = 0 , ( 2.18b) 
G i ≡ Λi -γjk ∆ Γi jk = 0 . (2.18c)
The Ricci tensor is separated into two contributions: R ij = Rij +R ϕ ij . Promoting the connection vector to an independent variable makes it possible to write the Ricci tensor of the conformal metric, Rij , as a Laplace operator acting on the metric, by use of the identity mentioned above. These two quantities are computed as:

Rij = - 1 2 γkl Dk Dl γij + γk(i Dj) Λk + γlm ∆ Γk lm ∆ Γ(ij)k + γkl [2∆ Γm k(i ∆ Γj)ml + ∆ Γm ik ∆ Γmjl ] , (2.19a) R ϕ ij = -2 Di Dj ϕ -2γ ij Dk Dk ϕ + 4 Di ϕ Dj ϕ -4γ ij Dl ϕ Dl ϕ . (2.19b)
Finally we recall the evolution equations in vacuum as given in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]:

(∂ t -L β ) ϕ = 1 6 Di β i - 1 6 αK , (2.20a) 
(∂ t -L β ) γij = - 2 3 γij Dk β k -2α Ãij , ( 2.20b) 
(∂ t -L β ) K = α Ãij Ãij + 1 3 K 2 -γ ij D i D j α , (2.20c) (∂ t -L β ) Ãij = - 2 3 Ãij Dk β k + α K Ãij -2 Ãik Ãk j + e -4ϕ [αR ij -D i D j α] TF , (2.20d) (∂ t -L β ) Λi = γkl Dk Dl β i + 2 3 γjk ∆ Γi jk Dl β l + 1 3 Di ( Dk β k ) -2 Ãik Dk α + 2α Ãkl ∆ Γi kl + 12α Ãik Dk ϕ - 4 3 α Di K , ( 2.20e) 
where the TF superscript is the trace-free part and D i D j α = Di Dj α -∆Γ k ij Dk α. There only remains the task to provide gauge conditions. Reference [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF] underlines that a common choice for the BSSN formulation is the moving puncture gauge, composed of 1+log slicing and a hyperbolic Gamma-driver shift evolution:

∂ t α = β k Dk α -2αK , (2.21a) ∂ t β j = β k Dk β j + 3 4 B j , (2.21b) ∂ t B j = β k Dk B j + ∂0 Λj -ηB j , (2.21c)
where η is a damping parameter. They mention that typically η = 3/(4M ) where M is the relevant mass scale. We discuss the value of η in our simulations in due time.

Finally, it is worth stating that in usual gauges, the BSSN system is strongly hyperbolic [START_REF] Beyer | Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF][START_REF] Sarbach | Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations[END_REF], which contributes to explaining its success as opposed to the standard 3+1 formulation.

Z4 formulation

In [START_REF] Bona | General-covariant evolution formalism for numerical relativity[END_REF], Bona et al. developed the system now known as Z4. The name comes from the addition of a new 4D dynamical field Z µ . It is incorporated into Einstein's equations (here written in vacuum) as

(4) R µν + ∇ (µ Z ν) = 0 .
(2.22)

A solution with Z µ = 0 is a solution to the original Einstein system. This extension has the advantage to be general covariant. On top of that, its projections don't yield constraint equations. Indeed, writing its 3+1 decomposition only yields evolution equations (which are symmetric hyperbolic with suitable gauge choices):

(∂ t -L β ) γ ij = -2αK ij , (2.23a) 
(∂ t -L β ) K ij = -D i D j α + α R ij + D i Z j + D j Z i -2K ik K k j + (K -2Θ)K ij , (2.23b) 
(∂ t -L β ) Θ = α 2 R + K 2 -K ij K ij H -2ΘK + 2∇ k Z k -2 D k α α Z k , (2.23c) (∂ t -L β ) Z i = α ∇ k (K i k -δ i k K) M i +D i Θ - D i α α Θ -2K i k Z k . (2.23d)
See for instance [START_REF] Bona | Symmetry-breaking mechanism for the Z4 general-covariant evolution system[END_REF] where matter is included. The 3+1 counterparts of Z µ are Θ ≡ -n µ Z µ = αZ 0 (n µ is the future-pointing unit normal to t = cst slices [START_REF] Gundlach | Constraint damping in the Z4 formulation and harmonic gauge[END_REF]) and Z i is the spatial projection. The Hamiltonian and momentum constraints are recovered by setting Θ = Z i = 0 in Equations (2.23c) and (2.23d). This is made clearer by the underbraces we used, or when rewritten like in [START_REF] Gundlach | Constraint damping in the Z4 formulation and harmonic gauge[END_REF].

For the gauge evolution, the seminal reference [START_REF] Bona | General-covariant evolution formalism for numerical relativity[END_REF] discusses two choices. The first one is obtained from □ g x µ = 2Z µ , which yields the harmonic gauge when Z µ vanishes. Note that it resembles the gauge source prescription of the GHG formalism, except that now Z µ are variables. A second choice is described: harmonic slicing in normal coordinates: β i = 0 and □ g x 0 = 2Z 0 . This can be turned into an evolution equation for the lapse, which has been generalized in [START_REF] Bona | Symmetry-breaking mechanism for the Z4 general-covariant evolution system[END_REF]:

(∂ t -L β ) α = α 2 (f K -mΘ) .
(2.24)

For f = 1 and m = 2, the system is symmetric hyperbolic [START_REF] Bona | General-covariant evolution formalism for numerical relativity[END_REF] and corresponds to harmonic slicing. For f > 0 but f ̸ = 1, the system is only strongly hyperbolic [START_REF] Bona | Symmetry-breaking mechanism for the Z4 general-covariant evolution system[END_REF][START_REF] Gundlach | Constraint damping in the Z4 formulation and harmonic gauge[END_REF].

There have been plenty of subsequent works on the Z4 system: [START_REF] Bona | Dynamical shift conditions for the Z4 and BSSN formalisms[END_REF] investigates dynamical shift conditions, [START_REF] Gundlach | Constraint damping in the Z4 formulation and harmonic gauge[END_REF] adds constraint damping. A conformal version of Z4 (named Z4c), coupled to the puncture gauge, is presented in [START_REF] Bernuzzi | Constraint violation in free evolution schemes: Comparing the BSSNOK formulation with a conformal decomposition of the Z4 formulation[END_REF] and is compared to the BSSN formulation. Notably, this formulation propagates Hamiltonian constraint violations where BSSN doesn't. The BSSN formulation is recovered from Z4c for Θ = 0. In addition to previous remarks, this goes to show that the Z4 system may be interpreted as a generalization of both the GHG and BSSN formulations. This is precisely the argument made in the introduction of [START_REF] Alic | Conformal and covariant formulation of the Z4 system with constraint-violation damping[END_REF], where Alic et al. introduce yet another variant, the conformal and covariant Z4 system (CCZ4), which also includes constraint damping. See the work by Daverio et al. for comparisons of these versions of Z4 and BSSN [START_REF] Daverio | Apples with Apples comparison of 3+1 conformal numerical relativity schemes[END_REF]. Finally, Dumbser et al. provide a first-order reduction of the CCZ4 system [START_REF] Dumbser | On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations[END_REF][START_REF] Dumbser | Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes[END_REF]. Let us also mention these other works for reference, some of which exhibit enhanced behavior and smaller errors than the BSSN formulation: [START_REF] Alic | Towards a gaugepolyvalent numerical relativity code[END_REF][START_REF] Alic | Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars[END_REF][START_REF] Cao | Numerical stability of the Z4c formulation of general relativity[END_REF][START_REF] Hilditch | Compact binary evolutions with the Z4c formulation[END_REF][START_REF] Ruiz | Constraint preserving boundary conditions for the Z4c formulation of general relativity[END_REF][START_REF] Weyhausen | Constraint damping for the Z4c formulation of general relativity[END_REF].

Other formulations

We hope the reader is now convinced that finding a good formulation is a critical step towards successful simulations. This justifies the amount of work devoted to this topic by the community. There also exist other formulations, for example the KST formulation (Kidder-Scheel-Teukolsky) [START_REF] Kidder | Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations[END_REF], and we don't aim at providing a list here. There are still more recent work on the matter of formulation, for instance [START_REF] Olivares | New first-order formulation of the Einstein equations exploiting analogies with electrodynamics[END_REF], or also [START_REF] Teukolsky | Formulation of discontinuous Galerkin methods for relativistic astrophysics[END_REF] for formulations adapted to discontinuous Galerkin methods. A number of works also compare formulations, see for instance [START_REF] Brown | Generalized harmonic equations in 3 + 1 form[END_REF][START_REF] Shinkai | Formulations of the Einstein Equations for Numerical Simulations[END_REF] or the Z4 papers cited in the previous paragraph, which often compare their results to BSSN.

Gauge conditions

Choosing an appropriate gauge is a key element of computations in General Relativity and evolutions are no exception. We need some kind of time coordinate to perform evolutions, and different gauge choices can have different benefits. It may also have a deep impact on well-posedness, as mentioned already. For instance, [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF] recalls that the ADM formulation is not strongly hyperbolic with fixed lapse and shift but can be with evolution equations for them. Suitable gauge choices for numerical evolutions have thus been investigated and they lie at the heart of some formulations (for example the Generalized Harmonic Gauge formulation, see Section 2.1.3). The elation between the hyperbolicity of the gauge subsystem and the total system is examined in [START_REF] Hilditch | Hyperbolicity of physical theories with application to general relativity[END_REF].

In the GHG system, the gauge conditions amount to specifying the gauge sources H µ . For the SpEC code, the following choice is considered [START_REF] Szilágyi | Key elements of robustness in binary black hole evolutions using spectral methods[END_REF][START_REF] Szilágyi | Simulations of binary black hole mergers using spectral methods[END_REF]:

H µ = µ L log √ g α n µ -µ S g µi β i α , ( 2.25 
)

µ S = µ L = µ 0 log √ g α 2 .
(2.26)

Here µ 0 is a constant and n µ is the unit future-pointing normal to constant t hypersurfaces. For bamps, Hilditch et al. use a variation of these gauge functions [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF]. See also [START_REF] Lindblom | Gauge drivers for the generalized harmonic Einstein equations[END_REF] for driver conditions on the gauge functions.

There have been many works about gauge conditions for the BSSN and Z4 formalisms as well. Common choices for the lapse evolution are related to the family of slicings [START_REF] Bona | New Formalism for Numerical Relativity[END_REF] given by:

∂ t α -β k ∂ k α = -α 2 f (α)K.
(2.27)

Setting f = 1 leads to harmonic slicing (where □ g t = 0) while f = 2/α corresponds to the so-called 1 + log slicing. Both have singularity avoidance properties (for the 1 + log see for instance [START_REF] Anninos | Three-dimensional numerical relativity: The evolution of black holes[END_REF]). This slicing condition can also accommodate for a replacement of K by K -K(t = 0), referred to as hyperbolic K-driver, as shown in [START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF]5,[START_REF] Baiotti | Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole[END_REF][START_REF] Bona | Dynamical shift conditions for the Z4 and BSSN formalisms[END_REF]. For the Z4 system, it additionally contains a term proportional to Θ [START_REF] Beyer | Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF][START_REF] Bona | General-covariant evolution formalism for numerical relativity[END_REF].

On the other hand, early works would stick with a fixed prescribed shift. For example, it can be set to a normal shift β i = 0 [START_REF] Baumgarte | Numerical integration of Einstein's field equations[END_REF][START_REF] Shibata | Evolution of three-dimensional gravitational waves: Harmonic slicing case[END_REF], the analytical shift for single black hole simulations [START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Yo | Improved numerical stability of stationary black hole evolution calculations[END_REF], or by Gamma-freezing solutions [START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF][START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF]. Still it is possible to employ dynamical conditions for the shift as well, and [START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF] suggested Gamma-driver equations, of the typical form:

∂ t β i = F ∂ t Γi , or (2.28a) ∂ 2 tt β i = F ∂ t Γi -η∂ t β i . (2.28b)
The first version is called parabolic and the second hyperbolic. F and η are positive functions.

The hyperbolic version is written in a first-order form in [START_REF] Beyer | Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF], which studies the well-posedness of the BSSN formulation with frozen and dynamical shift, as

∂0 β j = α 2 G(α, ϕ, x µ )B j , (2.29) ∂0 B j = e -4ϕ H(α, ϕ, x µ ) ∂0 Λj -η j (B i , α, x µ ) , (2.30)
We have used the notations of [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF] for consistency within the manuscript. Here ∂0 ≡ ∂ t -β k Dk , and G, H and η are the gauge functions. Equations (2.21b) and (2.21c) correspond to G = 3/(4α 2 ), H = e 4ϕ and η i = ηB i , with η now a constant. This choice is also mentioned in [START_REF] Sarbach | Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations[END_REF].

Shift evolution equations are further discussed in [START_REF] Van Meter | How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture[END_REF], where the authors advocate for the first-order evolution equation:

∂0 β i = 3 4 Λi -ηβ i . (2.31)
Finally, note that [START_REF] Bona | Dynamical shift conditions for the Z4 and BSSN formalisms[END_REF] also discusses dynamical shift conditions in the context of the Z4 and BSSN formulations.

Initial data

Providing initial data for the evolution is not an easy task. In addition to the inclusion of the relevant physics, initial data need to satisfy the constraints present in the chosen formulation. This is crucial for free evolutions, which don't solve the constraints later in the integration. More specifically, the Hamiltonian and momentum constraints of General Relativity need to be satisfied. Other constraints which come from changes of variables for instance, may be trivially satisfied by construction at the initial time.

[104] presents two main strategies to obtain initial data, both based on a conformal decomposition: the conformal transverse traceless method, and the (extended) conformal thin sandwich ((X)CTS) method. In both cases, the Hamiltonian and momentum constraints are cast as elliptic equations. Each method allows for freely specifiable variables, and solving the constraints yields the missing quantities to construct the 3+1 quantities. See also the dedicated chapter in [START_REF] Baumgarte | Numerical Relativity: Solving Einstein's Equations on the Computer[END_REF].

We give further detail about the CTS method in Section 6.1.2, since we use this approach to construct initial data for gravitational wave simulations. The strategy is similar to what is exposed in [START_REF] Pfeiffer | Initial data for Einstein's equations with superposed gravitational waves[END_REF], where the CTS formalism is used to construct initial data from linear gravitational waves. It ensures that those data keep the qualitative physical properties of the linear wave while solving the constraint to a better extent.

The Meudon group has been a major force in the resolution of the initial data problem [START_REF] Gourgoulhon | Binary black holes in circular orbits. I. A global spacetime approach[END_REF][START_REF] Gourgoulhon | Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: Method and tests[END_REF][START_REF] Grandclément | Binary black holes in circular orbits. II. Numerical methods and first results[END_REF], especially with the development of the numerical library LORENE [START_REF] Gourgoulhon | LORENE: Spectral methods differential equations solver[END_REF]. It is accessible at the website: https://lorene.obspm.fr/ and it is free and open-source.

The Kadath library [START_REF] Grandclément | KADATH: A spectral solver for theoretical physics[END_REF], also developed in the Meudon group, is in some ways the successor of LORENE and tries to build on its strengths and overcome its weaknesses. The more recent FUKA (Frankfurt University/Kadath) Initial Data solver is especially dedicated to the construction of initial data for compact binaries [START_REF] Papenfort | New public code for initial data of unequal-mass, spinning compact-object binaries[END_REF]. Although LORENE and FUKA both rely on spectral methods, some interfaces exist for their use in the Einstein Toolkit for instance.

Assumpção et al. offer an alternative to the generation of initial data by solving elliptic equations in [START_REF] Assumpção | Fast hyperbolic relaxation elliptic solver for numerical relativity: Conformally flat, binary puncture initial data[END_REF]. They suggest to solve instead a hyperbolic relaxation system where the late-time stationary solution is the looked-after configuration.

Although not as time-efficient as established initial data solvers, they argue that the framework may be more accessible than elliptic solvers and that initial data generation represents a small fraction of the computational time of the full evolution.

Boundary conditions

Another source of constraint violations lies at the boundary of the numerical domain. Some evolutions try to include infinity by compactifying the coordinate system (such as the simulation by Pretorius [START_REF] Pretorius | Evolution of Binary Black-Hole Spacetimes[END_REF]). Other specific formalisms reach future null infinity, where gravitational waves are properly defined (see Section 2.6.2). Nonetheless, representing faithfully an infinite unbounded domain with finite numerical resources stays challenging; especially to resolve properly the propagation of waves. It may be possible with characteristic formulations, but those are not well-adapted to the evolution in the source zone; and matching Cauchy and characteristic evolutions has proved difficult. Hence in most cases, the numerical domain doesn't extend up to infinity and has to be truncated at a finite radius (this is not specific to Numerical Relativity [START_REF] Semyon | Numerical solution of problems on unbounded domains. A review[END_REF]). There, appropriate boundary conditions need to be provided. This has several implications.

First, there is the question of well-posedness. Boundary conditions fully enter the analysis, just like gauge choices. The number of independent boundary conditions should equal the number of incoming characteristics. The aspects of well-posedness, including boundary conditions, are discussed for the BSSN system in [START_REF] Beyer | Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF]. They also examine the relation to constraint violations entering through the boundary and argue that a tangential shift on the boundary is desirable.

There have been some works on constraint-preserving boundary conditions. The premise is that simple boundary conditions, such as Sommerfeld radiative conditions, introduce constraint violations which can propagate inside the numerical domain (see for instance [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]). Still, these boundary conditions, which are usually imposed on all fields (to the potential exception of the conformal connection) in BSSN evolutions, shine by their simplicity of implementation and their actual good performance. The further out, the better this condition is, and the longer it takes for violations to reach the inner parts which are of physical relevance. This provides a good leverage for performance: to obtain better evolutions, it should be enough to place the outer boundary at a larger radius. Then there is a trade-off between accuracy and numerical resources. Examples of works which use Sommerfeld boundary conditions for BSSN are [START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF][START_REF] Bernuzzi | Constraint violation in free evolution schemes: Comparing the BSSNOK formulation with a conformal decomposition of the Z4 formulation[END_REF][START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Yo | Improved numerical stability of stationary black hole evolution calculations[END_REF]. For further discussion of boundary conditions for BSSN, see [START_REF] Núñez | Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF]. Reference [START_REF] Kreiss | Problems which are well posed in a generalized sense with applications to the Einstein equations[END_REF] discusses Sommerfeld-like conditions in the harmonic formulation.

Another fairly straightforward possibility is to freeze the incoming characteristics to their initial value. This can be relevant for the evolution of stationary spacetimes such as a single black hole [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF][START_REF] Lindblom | A new generalized harmonic evolution system[END_REF][START_REF] Rinne | Testing outer boundary treatments for the Einstein equations[END_REF]. Still this may introduce con-straint violations too, as explained in [START_REF] Luisa | Towards absorbing outer boundaries in general relativity[END_REF]. Therefore, some work dedicated to developing constraint-preserving boundary conditions has been carried out.

In addition to these features, boundary conditions at finite radius should also have physical relevance. In the context of gravitational field evolution, this can often be expressed as preventing gravitational radiation from entering the numerical domain, with conditions on the Weyl scalar Ψ 0 . This statement itself may be hard to define and makes sense in the linear regime, where non-linear reflections are negligible. The boundary conditions should limit the amount of spurious reflections. These are described as absorbing boundary conditions (see [START_REF] Sarbach | Absorbing boundary conditions for Einstein's field equations[END_REF] for a review). This requirement comes in addition to the constraint preservation and was investigated in many references, for various formulations: [START_REF] Luisa | Towards absorbing outer boundaries in general relativity[END_REF][START_REF] Luisa | Improved outer boundary conditions for Einstein's field equations[END_REF][START_REF] Kidder | Boundary conditions for the Einstein evolution system[END_REF][START_REF] Lindblom | A new generalized harmonic evolution system[END_REF][START_REF] Novak | Absorbing boundary conditions for simulation of gravitational waves with spectral methods in spherical coordinates[END_REF][START_REF] Núñez | Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF][START_REF] Rinne | Testing outer boundary treatments for the Einstein equations[END_REF][START_REF] Ruiz | Constraint preserving boundary conditions for the Z4c formulation of general relativity[END_REF][START_REF] Seiler | Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations[END_REF]. Though these better boundary conditions might improve the mathematical and numerical behavior of the evolution, they may also be harder to set up.

Finally, several numerical methods can be implemented for boundary conditions, such as strongly-imposed boundary conditions or penalty methods. Those are explained in more details in the dedicated sections of the following chapters (Sections 3.2 and 4.2.2).

Numerical treatment 2.5.1 Time integration

The standard framework for time evolutions in General Relativity is the method of lines. For an evolution equation on a field u(r): ∂ t u = S(t, r, u, ∂ r u, . . . ), the space discretization is applied first, yielding the so-called semi-discrete system. It can be written as

∂ t u i = S i (t, r, {u j }) (2.32)
where u i are the discrete values of the fields1 . Any partial derivatives of u are also expressed in terms of these values with the chosen space discretization. The semi-discrete system is thus a system of ordinary differential equations with respect to time and it can be integrated with usual dedicated schemes. A very common choice is the explicit 4th-order Runge-Kutta scheme, but alternatives such as Crank-Nicholson [2] or partially implicit Runge-Kutta can be found [25].

In Kadath, we implemented three time schemes: the usual 4th-order Runge-Kutta (RK4), a third-order Adams-Bashforth scheme (AB3) [START_REF] Dale | The Third-Order Adams-Bashforth Method: An Attractive Alternative to Leapfrog Time Differencing[END_REF], and an adaptive RK scheme with adaptive time step using the Dormand-Prince method [119]. However, the latter has not been maintained with newer features of the library so far and we don't use it in this work.

As mentioned already, most of the time a free evolution is employed. Constrained schemes may need to modify the integration algorithm to insert the constraint equation resolution. Even free evolutions actually deviate from the basic integration schemes. For instance, BSSN implementations may enforce the trace and determinant constraints at the end of substeps or full time steps. Evolution codes may also apply filters or regularization procedures at this stage.

Space discretization

To the best of our knowledge, there are primarily three main methods to discretize the numerical domain.

The one which we consider in this work is the (pseudo-)spectral approach. We give more details about it below and in the relevant sections of the next chapters (for instance Section 3.1.3). Just like time, space can also be discretized using finite differences of various orders. Those are generally more straightforward to implement, and can rely on additional techniques such as Kreiss-Oliger dissipation [START_REF] Kreiss | Methods for the approximate solution of time dependent problems[END_REF] (for instance in McLachlan within the Einstein Toolkit). There can also be variations in the positioning of various fields (especially for conservation laws), such as cell-centered, edge-centered, face-centered. Finally, there have been more recent impulses to use discontinuous Galerkin methods. They are a form of finite elements discretization, which can allegedly combine best of both worlds: fast convergence in smooth regions and ability to capture shocks [START_REF] Teukolsky | Formulation of discontinuous Galerkin methods for relativistic astrophysics[END_REF]. Examples of evolutions with discontinuous Galerkin methods can be found in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF][START_REF] Dumbser | Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes[END_REF][START_REF] Field | Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators[END_REF][START_REF] Kidder | SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics[END_REF][START_REF] Jonah | An operator-based local discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations[END_REF].

We emphasize now a few of the general principles and key features of spectral methods. For references on the subject, see for instance the textbooks by Canuto et al. [START_REF] Canuto | Spectral Methods: Fundamentals in Single Domains[END_REF][START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF][START_REF] Canuto | Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics[END_REF], the article by Gottlieb and Hesthaven dedicated to hyperbolic problems [START_REF] Gottlieb | Spectral methods for hyperbolic problems[END_REF] or the Living Review of Grandclément and Novak for Numerical Relativity [START_REF] Grandclément | Spectral Methods for Numerical Relativity[END_REF]. On the more precise topic of spectral penalty methods for boundary conditions, see for instance [START_REF] Dettori | On the Chebyshev penalty method for parabolic and hyperbolic equations[END_REF][START_REF] Hesthaven | Spectral penalty methods[END_REF]. For an example of comparison between pseudospectral methods and finite differences, we refer to [START_REF] Aviles | Pseudospectral vs finite differences methods in Numerical Relativity[END_REF].

Spectral methods rely on a dual representation of a function by its values at a discrete set of points (named collocation points) and its coefficients in a given basis of functions. The collocation points are not chosen arbitrarily: they depend on the basis functions and the choice of quadrature. Moreover, let us note that the functional approximant coincides with the function at collocation points.

Probably, the best-known example of such spectral expansion is the Fourier decomposition for periodic functions. It can be used for functions of angular coordinates or for boxes with periodic boundary conditions. For a generic non-periodic function (often defined with a numerical coordinate in [-1, 1]), common choices are expansions on Chebyshev or Legendre polynomials. These are not the only possibilities (see for instance [START_REF] Livermore | Spectral radial basis functions for full sphere computations[END_REF]) but they offer some advantages. From theoretical grounds, Legendre polynomials may ease some calculations, especially for summation by parts for penalty methods [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF][START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF]. On the other hand, Chebyshev spectral methods can benefit from Fast Fourier Transforms to navigate between the collocation values and the coefficient space.

We heavily rely on both representations of functions: some operations such as products are performed in the collocation space2 , while approximants of derivatives are obtained in the coefficient space (by expressing the known derivatives of basis functions in said basis -this is the derivation matrix). The truncation can be linked either to the number of collocation points or to the number of basis functions -we refer to both as the resolution.

The most important takeaway message from this succinct description of spectral methods is spectral convergence. For smooth functions, the approximation will converge to the true function faster than any power law. It translates the exponential decrease of coefficients of increasing index. In practice, this offers a criterion to assess the validity of a numerical solution: when increasing the resolution, we should observe an exponential decrease of errors (potentially up to a certain threshold which relates to round-off precision). We primarily rely on spectral convergence to demonstrate the good behavior of our results throughout this work.

Note that spectral convergence is lost if smoothness is not guaranteed. This can be seen as a weakness, especially for the treatment of shocks or physical discontinuities, but it can be worked around. It is indeed possible to perform multidomain computations: the whole numerical domain is divided into smaller subdomains. Discontinuities are placed at subdomain boundaries, thus preserving smoothness in each of them. The multidomain approach is also useful to set up higher a resolution in relevant zones of the numerical domain (for instance, near the compact objects in binary systems).

We would like to conclude this section by mentioning that the space discretization also encompasses the choice of coordinates. The most common choice is to use Cartesian coordinates since they are regular and simplify some computations. However, Kadath instead employs spherical coordinates, which are better adapted to physical problems of interest. These coordinates can introduce complications due to regularity issues at the origin r = 0 or on the axis θ = 0. Another limitation of spherical coordinates is the accumulation of points near the poles which can constrain the time step due to the Courant-Friedrichs-Lewy stability condition (CFL).

To overcome these difficulties, some implementations choose to stagger points off the origin and/or the axis. As made explicit in Section 3.1.3, this is not the case of Kadath.

Related to this matter, the choice of triad for tensor components can prove important as well. Note that there is no necessity to use the natural coordinate basis associated to the choice of coordinates. For instance, Kadath can use either a Cartesian triad or an orthonormal spherical triad -but in each case, tensor components are functions of the spherical coordinates.

High-performance computing

As can be inferred from all the previous discussions, evolution codes demand vast numerical resources. The equations themselves are involved and formulations introduce additional dynamical fields. For binary coalescences, the code must afford enough resolution near the compact objects while accomodating a grid large enough to extract gravitational waves far away from the sources (and potentially reduce the impact of boundary conditions). Note that the difference in scales is also the cause of limitations in the parameter space accessible to Numerical Relativity simulations: this restrains the range of possible mass ratios for instance, and makes Extreme Mass Ratio Inspirals out of the current scope of Numerical Relativity. To manage these different needs in resolution, libraries often rely on Adaptive Mesh Refinement to increase resolution where it's needed. However this adds an additional layer of technicalities.

Solving the evolution equations requires large numerical resources, both in memory and time, to reach the desired accuracy. They need to be run with some form of parallelism on High-Performance Computing facilities. Splitting and splicing the numerical domain and calculations between several computing cores must be taken into account and dealt with properly. Any kind of further optimization is obviously valuable as well. Since evolutions are so long and computationally expensive, it is primordial to implement a checkpointing system to make sure that any interruption (such as walltime limits on clusters) doesn't imply to start from scratch again.

Finally, the large size of generated data must be handled and processing may need to be performed on the fly. It is practically impossible for realistic simulations to save the entirety of the state vector at every time step (and it may not be useful anyway). Thus, data processing needs to be targeted and thought about prior to the evolution. Visualization of results is a part of processing which can also resort on dedicated skills and tools.

Physics management 2.6.1 Black holes

Tackling the physics within evolutions in General Relativity may be quite challenging. For instance, even with careful gauge choices to avoid coordinate singularities, black hole spacetimes include physical singularities. Those cannot be dealt with directly by numerical codes.

A first option is to use excision: some part of the physical space inside the black hole is cut off the numerical domain. This technique is used for single black holes in [START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF][START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] for example, and we rely on it in our work. Because event horizons are defined on the global spacetime, they are not helpful in numerical computations. Instead, the notion of apparent horizon is used and can be defined on each constant time slice. The review by Thornburg [START_REF] Thornburg | Event and Apparent Horizon Finders for 3 + 1 Numerical Relativity[END_REF] recalls the main properties of event and apparent horizons, and describes numerical methods to find them in simulations (so-called apparent horizon finders). Importantly, apparent horizons are contained within event horizon, and for stationary spacetimes they coincide.

Excising some part of the numerical domain implies the introduction of new boundaries. To perform excision properly, there should be only outgoing characteristics on this surface -that means all characteristics fall into the black hole. This is not necessarily satisfied as some gauge modes may propagate out (see the discussion of excision in our simulations in Section 5.1.2). While excising further in may be feasible for a single Schwarzschild black hole, things get more involved for binaries and dynamical spacetimes in general. Beyond indicating the merger of the two components of a binary, apparent horizon finders are therefore critical in maintaining the excision surfaces within apparent horizons. Some description of the management of excision in the Spectral Einstein Code can be found in [START_REF] Scheel | Solving Einstein's equations with dual coordinate frames[END_REF][START_REF] Szilágyi | Key elements of robustness in binary black hole evolutions using spectral methods[END_REF][START_REF] Szilágyi | Simulations of binary black hole mergers using spectral methods[END_REF].

While excision was employed by Pretorius in his first successful binary black hole merger [START_REF] Pretorius | Evolution of Binary Black-Hole Spacetimes[END_REF], the other common technique was instead featured by [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF] simulations with LazEv [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF]: the moving puncture approach. It has given its name to the combination of gauge choices used in this reference and which we described in Section 2.2, 1 + log slicing and Gamma-driver shift evolution. Similar results were obtained at the same time by [START_REF] Baker | Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes[END_REF]. The moving puncture technique has been widely used in subsequent evolutions (even outside binary black hole evolutions) because it precisely doesn't involve excision and the related implementation complications (see for instance [START_REF] Brügmann | Calibration of moving puncture simulations[END_REF][START_REF] Dumbser | Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes[END_REF][START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF][START_REF] Hilditch | Compact binary evolutions with the Z4c formulation[END_REF][START_REF] Van Meter | How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture[END_REF]).

The idea is very clearly summarized in [START_REF] Baumgarte | Numerical Relativity: Solving Einstein's Equations on the Computer[END_REF] (section 13.1.3): "The key idea of the puncture method is to decompose the metric as a sum or product of one term that contains the singularity, but is analytic, and a correction term that must be obtained numerically, but is regular". The location of the puncture can be tracked and even placed outside of the numerical grid by using staggered points (such as in [START_REF] Baker | Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes[END_REF]). One caveat for these moving punctures is that fields belong to lower smoothness classes [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF] and therefore they are not as well-suited for spectral methods, which is why we don't investigate them in our work. Still for the generation of initial data spectral methods are used by carefully changing coordinates [START_REF] Ansorg | Single-domain spectral method for black hole puncture data[END_REF].

Yet another alternative, which we don't discuss in more detail here, is the turduckening approach [START_REF] Brown | Excision without excision[END_REF]. Let us also mention that providing satisfactory initial data for binary black hole is not so straightforward, especially when it comes to eccentricity reduction [START_REF] Pfeiffer | Initial data for Einstein's equations with superposed gravitational waves[END_REF].

Gravitational waves

The extraction of gravitational waveforms is another relevant yet not straightforward task for evolution codes. Gravitational waves are well-defined at future null infinity, or more loosely speaking, far away from the sources, thus constraining the size of the numerical domain. Another complication is that numerical gauges are not necessarily those in which the two gravitational degrees of freedom appear. Thus a widely-used way to inform gravitational wave propagation is by examining Weyl scalars, more precisely Ψ 4 , within the Newman-Penrose formalism. The Weyl scalars are 5 complex-valued scalars representing projections of the Weyl tensor on a null tetrad. Ψ 0 and Ψ 4 can be interpreted respectively as ingoing and outgoing radiations. We refer to section 9.4.2 of Baumgarte and Shapiro's textbook [START_REF] Baumgarte | Numerical Relativity: Solving Einstein's Equations on the Computer[END_REF] for an introduction to this question.

A possible way to interpolate the waveform at infinity is to extract the waves at two different radii within the numerical domain, and perform a spherical 1/r interpolation. On the contrary, other formulation have been designed to try to include future null infinity directly in the grid. Then the gravitational waves and boundary conditions can be represented more faithfully. A first possibility is the use of characteristic formulations, potentially joint to Cauchy evolutions for the source: this is known as Cauchy-characteristic matching and it is reviewed in [START_REF] Winicour | Characteristic Evolution and Matching[END_REF]. Characteristic formulations are also adopted for evolutions in anti-de Sitter spacetimes [START_REF] Chesler | Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes[END_REF]. Even though Cauchy-characteristic matching evolutions may not have been so successful, the gravitational signal can be obtained from standard evolutions with Cauchy-characteristic extraction [START_REF] Barkett | Spectral Cauchy-characteristic extraction of the gravitational wave news function[END_REF]. A different option is to resort to hyperboloidal slices, which are spacelike everywhere but end at future null infinity. They are discussed for instance in [START_REF] Frauendiener | Conformal Infinity[END_REF][START_REF] Gasperín | The hyperboloidal numerical evolution of a good-bad-ugly wave equation[END_REF][START_REF] Gautam | Summation by parts and truncation error matching on hyperboloidal slices[END_REF][START_REF] Hilditch | The evolution of hyperboloidal data with the dual foliation formalism: mathematical analysis and wave equation tests[END_REF][START_REF] Husa | Numerical Relativity with the Conformal Field Equations[END_REF].

Matter

As we mentioned in Section 1.2.1, black hole binaries are not the only targeted and detected sources of gravitational waves. There are a lot of expectations from detections of neutron star binaries as well, such as the celebrated GW170817 event and its multimessenger coverage. Therefore it remains a main objective of numerical evolutions to simulate neutron star or mixed binary mergers as well [START_REF] Foucart | Gravitational waveforms from spectral Einstein code simulations: Neutron star-neutron star and low-mass black hole-neutron star binaries[END_REF][START_REF] Francois Foucart | Black-hole-neutron-star mergers at realistic mass ratios: Equation of state and spin orientation effects[END_REF]. A lot of progress has been made since the first full GR simulation of Shibata and Uryū [START_REF] Shibata | Simulation of merging binary neutron stars in full general relativity: Γ = 2 case[END_REF]. Even individual neutron star or supernova evolutions can be involved and require similar treatments.

The main challenge of such simulations is the inclusion of matter and the hydrodynamics equations. A possibility is to evolve hydrodynamics on a different grid than the metric, and communicate source terms between both of them. In a sense, black holes are simpler objects as they are described by a smaller parameter space and the equations are solved in vacuum. On the contrary, neutron star evolutions need to take into account the equation of state of matter (which itself is a hot research topic). Numerical codes which evolve neutron stars must be able to tackle shocks, which may prove challenging for spectral methods if those are not located on subdomain boundaries. Being able to bridge the gap between the merger and subsequent electromagnetic counterparts or the launching of jets, for instance, would be of interest for models of multimessenger observations.

Beyond neutron star evolutions, let us recall that the most simple addition of matter in GR evolutions takes the form of an additional scalar field. This still presents theoretical interests for investigations about black hole perturbations, extensions of GR and exotic compact objects such as boson stars (or Proca stars for a vector field). For more information we refer to the Living Review on this topic [START_REF] Liebling | Dynamical boson stars[END_REF].

Testbeds

Due to the variety of theoretical and numerical methods available, it may be hard to assess the validity of a given library or implementation. In particular, different numerical methods pair more naturally with different formulations. For instance, puncture black holes are not well-suited for spectral methods, in which case excision might be preferred. Hence it complicates direct comparisons between different codes.

To overcome this challenge, a dedicated workshop named Apples with Apples was organized in Mexico in the early 2000s and led to the following publications [2,[START_REF] Babiuc | Implementation of standard testbeds for numerical relativity[END_REF]. The goal was to design standardized tests that most 3D evolution codes should be able to reproduce, whatever their implementation. A new library can then be proof tested on such testbeds to show validation and ensure trust in later results.

The proposed tests described in [2] are the following (all in vacuum):

• robust stability: evolve small random perturbations of Minkowski spacetime;

• gauge wave: evolve Minkowski spacetime with a dynamic gauge;

• linear wave: evolve a linear wave;

• polarized Gowdy wave: this is an exact solution which stresses the strong-field regime.

The procedure also specifies standardized values for numerical parameters and for outputs, in order to make comparisons meaningful and straightforward. Those are updated in [START_REF] Babiuc | Implementation of standard testbeds for numerical relativity[END_REF].

To remove boundary conditions from the mix, these tests are performed with periodic boundary conditions. Note however that this can be limiting; for example, it is not straightforward to impose relevant periodic boundary conditions in 3D in Kadath because of the spherical nature of the numerical domain.

Still, these testbeds provide an interesting foundation for code testing and have been employed for example in [START_REF] Alic | Towards a gaugepolyvalent numerical relativity code[END_REF][START_REF] Babiuc | Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations[END_REF][START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF][START_REF] Cao | Numerical stability of the Z4c formulation of general relativity[END_REF][START_REF] Daverio | Apples with Apples comparison of 3+1 conformal numerical relativity schemes[END_REF][START_REF] Kiuchi | Numerical experiments of adjusted Baumgarte-Shapiro-Shibata-Nakamura systems for controlling constraint violations[END_REF][START_REF] Meringolo | A spectral method algorithm for numerical simulations of gravitational fields[END_REF][START_REF] Zlochower | Accurate black hole evolutions by fourth-order numerical relativity[END_REF].

Main libraries

We don't aim at providing a comprehensive list of all evolution codes in the community. We would like to mention the main ones that we know of and exhibit a few of their features. Hopefully, this shows how our own library places itself in the environment of evolution codes. For a similar overview, see the presentation by Kidder at the 33rd Institut d'Astrophysique de Paris Colloquium [START_REF] Kidder | Gravitational waveforms from numerical simulations of binary-black-hole mergers[END_REF].

Spectral Einstein Code (SpEC)

The library used by the Caltech/Cornell collaboration to build the SXS3 catalog [START_REF] Boyle | The SXS collaboration catalog of binary black hole simulations[END_REF][START_REF] Mroué | Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy[END_REF]. The webpage of the code is https: //www.black-holes.org/code/SpEC.html (accessed April 22, 2023) and its main features are described in [START_REF] Szilágyi | Key elements of robustness in binary black hole evolutions using spectral methods[END_REF][START_REF] Szilágyi | Simulations of binary black hole mergers using spectral methods[END_REF]. It relies on multidomain spectral methods, implements the GHG system and uses excision for black holes. It is not public. SpECTRE An open-source code which uses discontinuous Galerkin methods [START_REF] Deppe | SpECTRE[END_REF][START_REF] Kidder | SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics[END_REF]. It is linked to the SXS collaboration as well. Website: https://spectre-code.org/index.html (accessed April 22, 2023).

Einstein Toolkit

A composite open suite of tools based on the Cactus infrastructure and made of individual thorns [START_REF] Haas | The Einstein Toolkit[END_REF][START_REF] Löffler | The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics[END_REF]. The Toolkit itself includes a number of thorns but other modules which draw from it exist (whether public or not). Visit the website here: https://einsteintoolkit.org/index.html (accessed April 22, 2023). As described on the About page, it "includes three vacuum spacetime solvers (McLachlan, Lean, Baikal), two relativistic hydrodynamics solvers (GRHydro and IllinoisGRMHD), along with components for initial data, analysis and computational infrastructure". The relevant references for these are: McLachlan [START_REF] Brown | Turduckening black holes: An analytical and computational study[END_REF][START_REF] Mclachlan | a public BSSN code[END_REF], Lean [START_REF] Sperhake | Binary black-hole evolutions of excision and puncture data[END_REF], Baikal [START_REF] Etienne | nrpytutorial: the NRPy+ GitHub repository[END_REF], GRHydro [START_REF] Giacomazzo | WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics[END_REF][START_REF] Hawke | Excision methods for high resolution shock capturing schemes applied to general relativistic hydrodynamics[END_REF][START_REF] Mösta | GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit[END_REF], IllinoisGRMHD [START_REF] Del Zanna | An efficient shockcapturing central-type scheme for multidimensional relativistic flows: II. Magnetohydrodynamics[END_REF].

These evolutions use the BSSN formulation and rely on finite differences for the space discretization.

LazEv The evolution code developed at Rochester Institute of Technology (RIT) which led to one of the first moving punctures binary black hole evolutions [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF]. It is described in [START_REF] Zlochower | Accurate black hole evolutions by fourth-order numerical relativity[END_REF] and its website can be accessed at https://ccrg.rit.edu/ content/software/lazev (accessed April 22, 2023). It uses the BSSN formulation, finite differences and the moving puncture approach. It can be connected to the Einstein Toolkit and gives rise to the RIT catalog [START_REF] Healy | The RIT binary black hole simulations catalog[END_REF].

BAM This evolution code relies on the moving puncture method, finite differences and can evolve the BSSN system [START_REF] Brügmann | Calibration of moving puncture simulations[END_REF] and the Z4c system [START_REF] Vivekanandji Chaurasia | Black hole-neutron star simulations with the BAM code: First tests and simulations[END_REF].

bamps bamps is a follow-up to BAM inspired by SpEC and uses pseudo-spectral methods along with the GHG system [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF].

GRchombo This code uses either of BSSN or CCZ4 formulations, the moving puncture technique and finite differences [START_REF] Clough | GRChombo : Numerical relativity with adaptive mesh refinement[END_REF].

Kadath

The Kadath library implements multidomain spectral methods and black holes are dealt with through excision [START_REF] Grandclément | KADATH: A spectral solver for theoretical physics[END_REF] (website: https://kadath.obspm.fr/, accessed April 22, 2023). Evolutions are performed with a first-order reduction of the BSSN scheme (introduced in Appendix A), but technically other formulations could be implemented, such as versions of the Z4 system. In the current state of the library, the only requirement is to be in a 3+1 form. We would like to stress too that unlike many libraries, our code uses spherical coordinates (and a spherical orthonormal triad) even around the origin r = 0, and that the origin and the axis are both included in the numerical grid.

We introduce the relevant numerical methods for this work in Chapter 3 on the wave equation toy-model, and in Chapter 4 for the evolutions in GR. The main structures of the library are briefly described in Appendix B, along with a simple example of simulation file. Though the library is free and open-source, the evolution code is not public yet (but its full integration to the library is planned). This thesis presents the first results obtained with this new evolution code; an article about them is in preparation.

There are other evolutions codes which implement the BSSN formulation while using spectral methods, such as SGRID [START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] or the work in [START_REF] Meringolo | A spectral method algorithm for numerical simulations of gravitational fields[END_REF] for instance.

Unlike many of the libraries mentioned previously, the evolution schemes in Kadath cannot be run in parallel on clusters, and the library doesn't implement Adaptive Mesh Refinement (although a multidomain setup can account for higher resolution in some parts of the numerical domain). Finally, note that most of the large community-driven libraries also integrate analysis and/or visualization tools. This chapter is dedicated to the introduction of a valuable toy-model for evolution schemes: the scalar wave equation. We first motivate the use of such a simple model and describe its benefits. We give the notations that we use and describe the formulation of the equations that we solve. We then discuss the numerical setup for such evolutions and explain a few generic features of the library which are relevant also for evolutions in General Relativity (GR).

Boundary conditions (BC) are mentioned in a second part: conditions imposed strongly, and then penalty methods. We also take this opportunity to comment on the second-order formulation.

Then, we show a selection of results in one and three dimensions (1D/3D), in spherical symmetry. We illustrate the wave propagation in numerical solutions and show numerical convergence tests. We also mention the possibility to apply constraint damping (CD).

Finally, we bring up results of 3D simulations beyond spherical symmetry. Most notably, we faced the need to implement filters and certain regularization operations to prevent divergences. We state a few conclusions before moving on.

An example of simulation file is provided in Appendix B.3.

Motivation, framework, notations

Motivation and physical system

A prototypical example of hyperbolic system of partial differential equations (PDEs) is the advection equation, given here in the most simple case:

∂ t u + c∂ r u = 0 , ( 3.1) 
where u(r, t) is the unknown field depending on time t and a space coordinate r. c is a constant and represents the velocity at which the initial profile is transported. Indeed, a solution to such a system is

u(r, t) = u 0 (r -ct) (3.2)
with u 0 (r) = u(r, 0) the initial profile. This basic example can be complexified by considering a velocity field or by introducing source terms.

In order to obtain the concurrent propagation of two fields with velocities ±c, one can instead study the wave equation:

∂ 2 tt u -c 2 ∂ 2 rr u = 0 . (3.3)
Solutions to such a system can indeed be written as the superposition of a left-and right-moving contributions: u(r, t) = f (r -ct) + g(r + ct).

In more than one dimension, and in curved space-time (with metric g µν and covariant derivative ∇ µ ), the wave equation is written using the d'Alembert operator:

□ g u ≡ g µν ∇ µ ∇ ν u = 0 . (3.4)
It reduces, in flat spacetime with 3+1 dimensions, to

1 c 2 ∂ 2 tt u -∆u = 0 (3.5)
with ∆u the Laplacian of u.

It is also possible to add source terms on the right-hand side. We performed such tests at early stages, as a proof of concept, but we will not discuss them here. The system corresponds to work on oscillons presented in [START_REF] Fodor | Oscillons and quasibreathers in the ϕ 4 Klein-Gordon model[END_REF]. Although Einstein's equations are significantly more complicated than this simple wave equation, they share some of its hyperbolicity properties (see the Generalized Harmonic formulation in Section 2.1.3). The equations of GR can be seen as very sophisticated wave equations. Therefore, an evolution code for GR should first be able to solve this toy-model. Besides, nothing prevents us from incrementing difficulty, for example by solving non-linear versions of the wave equation [START_REF] Suárez Fernández | Semilinear wave model for critical collapse[END_REF].

The main motivation for the study of the wave equation is that it makes it possible to confidently test the implementation of the evolution schemes and any new feature of the library. It also serves as a playground for the investigation about different numerical methods, and eases familiarization with them. Those same methods can then be better understood and applied to physical systems of interests. For example, as we show in the following sections, it helps grasping various types of boundary conditions and how to enforce them; or constraint damping. If some issue was to arise in GR evolutions, trying to detect it and then cure it on the wave equation is a much simpler task. In the context of this manuscript, we also take the opportunity to introduce the main ingredients of the library necessary for understanding our results. Some additional technical details about the structure and methods used in the Kadath library, as well as in the new evolutions schemes, are presented in Appendix B.

Formulation and notations

As written above, the wave equation that we want to solve is

∂ 2 tt N -c 2 ∆N = 0 , ( 3.6) 
where we rename N the unknown field, depending on time t and spatial coordinates x i . ∆ is the Laplace operator in flat spacetime. It can also be written ∆ = η ij D i D j = D i D i with η ij the flat 3-metric and D i the associated covariant derivative. We intentionally don't write D i = ∂ i to be consistent with the implementation. Further explanations are provided in Section 3.1.3 where we introduce the numerical setting.

We then define

V = 1 c ∂ t N , ( 3.7) 
G i = D i N . (3.8)
We chose the name V as in velocity and G as in gradient. Note also that the sign convention in the definition of V differs from what is usually done in the literature (for instance in [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF]). The factor of c allows V and G i to have the same dimension.

In one space dimension, for which we purposefully use the notation r, we simply get G = ∂ r N . In the following, for pedagogical purposes, we often unfold explanations by alluding to the 1D system with G, because the extension to the 3D case is rather direct and it simplifies notations and intuition. These fields allow us to reduce the order of derivatives in the system, by promoting them to independent variables. The explicit time integration schemes that we use (Section 3.1.4) rely on equations which are first order in time, hence the use of V . The wave equation is then represented by the so-called second-order (in space) system:

∂ t N = cV ∂ t V = c∆N . (3.9)
It is possible to further eliminate space derivatives of second order by also promoting G i to a dynamical field, yielding the (fully) first-order system:

     ∂ t N = cV ∂ t V = cD i G i ∂ t G i = cD i V . (3.10)
In 1D, it takes the simpler form:

     ∂ t N = cV ∂ t V = c∂ r G ∂ t G = c∂ r V . (3.11)
It is important to notice that the definition of G i (Equation (3.8)) doesn't appear explicitly in Equation (3.10). It actually introduces a constraint in the system:

C i ≡ G i -D i N = 0 .
(3.12)

A solution of Equation (3.10) is a proper solution for the wave equation (3.6) if and only if the constraint is satisfied. For a smooth function, we can interchange time and space derivatives and the evolution equation of the constraint is

∂ t C i = ∂ t G i -∂ t (D i N ) = cD i V -D i (cV ) = 0 , (3.13)
meaning that the constraint surface is propagated by the system. In other words, initial data which satisfy the constraint, will satisfy it at all times. This is a result in the continuum limit, but obviously, we are dealing with a discretization of the system. This means that numerical constraint violations might appear. They might not be an issue in themselves. We are more concerned of their convergence properties: for healthy evolutions, we want the constraint to tend to zero as resolution is increased. The constraint is thus a good error indicator for the first-order system.

Still, constraint violations might make the integration depart from the desired physical solution. To thwart such undesired behavior, it is possible to add a term proportional to the constraint in the evolution equations. This ensures that a solution with a vanishing constraint solves the original system too. This strategy is named constraint damping (CD). It modifies Equation (3.10) (and hence Equation (3.13)) so that any occurring constraint violation decays exponentially:

     ∂ t N = cV ∂ t V = cD i G i ∂ t G i = cD i V -κ CD C i , ( 3.14) 
where κ CD = 1/τ is the constraint damping coefficient. With this modification, Equation (3.13) becomes

∂ t C i = -κ CD C i . (3.15)

Characteristic decomposition

An other very important concept that this toy-model enables us to introduce is the characteristic decomposition. Characteristic fields are combinations of dynamical variables which, intuitively, represent the left-and right-moving parts of the wave mentioned earlier. Their respective evolution equations are actually like the simple advection equation (3.1). In general, when the system doesn't have constant coefficients or is non-linear, characteristic fields are obtained as a linearization, a perturbation, around some background value.

Mathematically, characteristic fields are computed in the following way. Consider the vector u of dynamical variables and write the first-order system in the following form:

∂ t u + A i ∂ i u = S , (3.16)
where A i are matrices and S is a source term. As discussed in Section 2.1.2, notions of hyperbolicity, and consequently characteristic fields, are related to the principal symbol of the system, linked to the diagonalization properties of the matrices s i A i , along any spatial normal s i . They can also be considered for secondorder systems [START_REF] Gundlach | Hyperbolicity of second order in space systems of evolution equations[END_REF]. In practice, let us illustrate how it applies here on the 1D system:

∂ t    N V G    +    0 0 0 0 0 -c 0 -c 0    A r ∂ r    N V G    =    cV 0 0    .
(3.17)

The characteristic fields are the eigenvectors of A r and the characteristic speeds are the corresponding eigenvalues, noted respectively with u and µ here. We implicitly take the normal to always be in the direction of increasing r. In this case, we get

u 0 = N , µ 0 = 0 , (3.18) u ± = G ∓ V , µ ± = ±c , ( 3.19) 
where u + , with speed µ + = +c, relates to the "right-moving part" f (r -ct) mentioned previously, u -with speed -c corresponds to g(r + ct) and u 0 is a zero-speed mode. The principal symbol of their evolution equations is indeed

     ∂ t N ≃ 0 ∂ t u + + c∂ r u + ≃ 0 ∂ t u --c∂ r u -≃ 0 . (3.20)
The converse transformation which gives dynamical variables from characteristic fields is

             N = u 0 G = u -+ u + 2 V = u --u + 2 (3.21)
In 3D, the characteristic fields are obtained by replacing G by its normal projection G s = s i G i . There are two additional independent zero-modes given by the transverse projections of G i : G ⊥,i ≡ G i -G s s i . For the second-order system, G i is simply replaced by D i N .

Numerical domain

The Kadath library implements multidomain spectral methods for the space discretization. It offers a few possibilities for numerical domains, but in this work we only use one type which we describe below. We explain the key pieces here, but some more details about the architecture of the library are given in Appendix B. The library is also introduced in this publication [START_REF] Grandclément | KADATH: A spectral solver for theoretical physics[END_REF].

The numerical domain is of spherical type, which means that spherical coordinates r, θ, φ are used. For the spectral expansion in the coefficient space, Kadath implements the following nesting: the third coordinate is expanded first; each coefficient is then a function of the first two coordinates, and is expanded on the second coordinate. Finally, the expansion for the first coordinate is performed. In our case, this can be written as

f (r, θ, φ) = i,j,k a ijk f (r),jk i (r) f (θ),k j (θ) f (φ) k (φ) . (3.22)
In general, the basis functions for θ depend on the specific φ coefficient considered. We reflect this with the k superscript for the basis functions f (θ) . Similarly, the basis functions for r depend on both the θ and φ coefficient at hand. It turns out however that for spherical spaces, the r function basis actually doesn't depend on θ but only on which φ function is involved. Given this coordinate choice, decomposing tensors in a spherical basis seems appropriate. The library actually offers two options for the tensor triad1 : the orthonormal spherical triad and the usual Cartesian triad (but tensor components are still expressed in spherical coordinates). The first one is given by (dr, rdθ, r sin θdφ) for forms and ∂ r , 1 r ∂ θ , 1 r sin θ ∂ φ for vectors. In both cases, the flat metric is simply f ij = δ ij with δ ij the Kronecker delta symbol. This justifies the use of D i instead of ∂ i in the previous paragraphs.

Spatial resolution

Although it is possible to set different numbers of points in each subdomain of the numerical space, we generically set the same resolution in each. We note the number of points in r, θ and φ respectively N r , N θ and N φ . We may write N = (N r , N θ , N φ ) when we refer to all three resolutions together2 . Note that Kadath uses the FFTW library [START_REF] Frigo | The Design and Implementation of FFTW3[END_REF] (website 3 ). Along with the Gauss-Lobatto quadrature, which means that there are collocation points at the boundaries of the interval, this guides the admissible values for the number of points. N r and N θ should be odd integers, preferably of the form 2 a 3 b 5 c 7 d + 1 (see for example this page of the FFTW manual4 ). N φ should be an even number with similar constraints (without +1).

The Kadath library requires N φ ≥ 4, therefore it is not possible to consider φ-independence by just using one point in the φ direction. Similarly, we use a minimum of N θ = 5. For problems in spherical symmetry, or even 1D, the point is to set all the relevant coefficients to 0. We stress that the library was designed to tackle full 3D problems and thus it is not optimized towards such symmetries.

Basis functions

The library affects automatically the spectral bases according to the kind of field at hand, and the desired symmetries for it. It is based on the premise that a regular scalar field can be expanded as a power series of Cartesian coordinates x, y and z:

f (x, y, z) = n,p,q a ′ npq x n y p z q . (3.23)
Although transforming to spherical coordinates yields a spherical harmonics expansion, the library develops the angular part on a double Fourier basis. A caveat is that not all Fourier modes correspond to spherical harmonics.

The φ functions, defined on [0, 2π[, are the first cosines and sines in the Fourier series: cos(0 φ), cos(1 φ), sin(1 φ) ... We may also write them as cos(mφ) and sin(mφ) with m = k//2 (// representing integer division). The collocation points are uniformly placed in [0, 2π[:

φ k = 2π k N φ , 0 ≤ k ≤ N φ -1 . (3.24)
The θ basis then depends on the value of m. For instance, for a scalar field, even values of m give cosines for θ. However, the library imposes an additional symmetry, with respect to the equatorial plane z = 0 (also referred to as (Oxy)). This means that only even cosines survive this condition:

f m=2p (θ) = N θ -1 j=0 a j cos(2jθ) . (3.25)
Similarly, odd m give rise to odd sines. The actual basis (even/odd cosines/sines) depends on the particular field we are looking at, especially what is the triad and the specific tensor component. It is also possible, for instance, to set antisymmetric bases for a scalar. Even if the library deals with the bases on its own as much as possible, it is crucial for the user to set them correctly where they have to (for instance, if defining the exponential of a scalar field, for which the library doesn't know what to do).

The collocation points in the θ direction are given by

θ j = π 2 j N θ -1 , 0 ≤ j ≤ N θ -1 . (3.26)
They cover the interval 0, π 2 uniformly (and not [0, π] bacause of the equatorial plane symmetry) and there are points both on the axis and in the equatorial plane (endpoints of the interval).

Finally, regarding the r expansion, the library offers the choice between Chebyshev and Legendre polynomials. We mostly use Chebyshev (unless otherwise specified), which we note T i . Both use numerical coordinates x ∈ [-1, 1] in general, but for clarity in formulas, we may abusively write T i (r) when giving a radial expansion. The more precise type of basis and the corresponding collocation points depend on the kind of subdomain, and we describe this in the following paragraphs.

Subdomains

The numerical domain (called space in the library) can be decomposed into several subdomains (also called domains when there is no ambiguity).

In the spherical space which we are using, there is first a ball at the center which represents points with r ≤ r nuc . It is also called nucleus. To ensure regularity at the origin, any function of r is expanded onto either even or odd polynomials. The radial collocation points are placed in the following way:

r i = r nuc × sin π 2 i (N r -1) , 0 ≤ i ≤ N r -1 . (3.27)
There is a point at the origin and on the outer boundary of the nucleus. Points are not equally spaced and are closer together near the boundary of the domain. The numerical coordinate spans [0, 1] instead of [-1, 1], consistently with halving the full polynomial basis by parity. It is denoted as x in the library and here is given by x i = r i /r nuc . To be explicit, an even function of r will be written

f (r) = Nr-1 i=0 a i T 2i r r nuc (3.28)
and the highest polynomial in the expansion is T 2(Nr-1) .

Let's give a few basic examples to illustrate the spectral bases. To keep it simple, consider r nuc = 1 so that the radial coordinate r and numerical coordinate x coincide. First, a unit constant field corresponds to

1 = 1 × T 0 (r) × cos(0 θ) × cos(0 φ) , ( 3.29) 
so a 000 = 1 and other a ijk = 0. Then, the field corresponding to coordinate y is

y = r sin θ sin φ = T 1 (r) × sin(1 θ) × sin(1 φ) . (3.30)
This represents the y component of a vector in the Cartesian triad, and we see that for m = 1 (k = 3), the r function is odd and the θ basis is composed of odd sines. We get then a 003 = 1 and all other a ijk = 0. Finally, consider the field r 2 = x 2 + y 2 + z 2 . We have

r 2 = 1 2 (2r 2 -1) + 1 2 = 1 2 T 2 (r) + 1 2 T 0 (r) × cos(0 θ) × cos(0 φ) , (3.31)
meaning that the non-zero coefficients are a 000 = a 100 = 1 2 . Notice that once again we only have even polynomials there.

Next there is an arbitrary number of adjacent spherical shells. Each one represents a region r in ≤ r ≤ r out . In shells, both even and odd Chebyshev polynomials are used in the expansion:

f (r) = Nr-1 i=0 a i T i (x) , ( 3.32) 
where the numerical coordinate x is related to r by

r = αx + β , α = r out -r in 2 , β = r in + r out 2 . (3.33)
The collocation points are then placed at r i corresponding to

x i = -cos π i N r -1 , 0 ≤ i ≤ N r -1 , ( 3.34) 
There are points on the boundaries and at the middle too (N r is odd). Once again, points are not equally spaced in [-1, 1]. They are gathered close to the boundaries of the domain, with a minimal spacing which approximately scales as 1/N 2 r (obtained from x 1 -x 0 ).

Finally, there is the option to add a compactified domain, which covers space from the last shell (or from the nucleus if there are no shells) to spatial infinity. This region has the form r in ≤ r. The collocation points are still given by Equation (3.34) but now the relation between the numerical and radial coordinates is

r = 1 α(x -1) , α = - 1 2r in . (3.35)
There are points on the inner boundary and at r = +∞, hence the name compactified.

The evolution schemes are not yet implemented for such a compactified domain. However, the architecture of the library makes it very easy to adapt what has been done for the nucleus and shell domains.

We refer to domains by their numbers, starting at 0 for the nucleus and increasing with r. For scalar wave evolutions, we may consider different configurations: a single nucleus (0), a single shell (1), multiple shells (1 and 2), or a nucleus with one or two shells (0 and 1, or 0 to 2). We note the boundary locations with these numbers: r m,n is the boundary between domains m and n. For this spherical type of space, n = m + 1. Our most frequent setup is r 0,1 = 1, r 1,2 = 2 and r 2,3 = 4.

The number of points in each domain depends on the situation, but in general we don't take more than N θ = 19, N φ = 18. For 1D or spherical symmetry, we use the minimum N θ = 5 and N φ = 4. For r, a frequent choice is N r = 21, but we may take other values, especially for convergence tests.

Time integration scheme

Initial data

The initial profile for the wave is chosen such that it is encompassed in the first shell (domain 1), except if we decide to center it at the origin. To do so, a natural choice is a gaussian

N (r, t = 0) = A exp - (r -r 0 ) 2 2σ 2 . (3.36)
A is the amplitude, r 0 is the center of the gaussian and σ represents its spread.

In order to get both field values and derivative which vanish numerically at the boundary of domain 1, we also experimented with the followig profile:

N (r, t = 0) = A exp - σ 1 -x 2 (3.37) with x = r -r 0 r 1,2 -r 0,1 .
The difficulty with representing such functions with spectral methods is the following. We want the profile to be thin enough that it basically vanishes at the domain boundary. On the other hand, it makes it look more and more like a Dirac distribution and it is hard to represent it, even with large number of points. In particular, it will exhibit oscillations and the derivative will not vanish at the boundary, thus breaking potential boundary conditions. To solve this potential issue, we manually set two offsets to cancel the value and derivative at the shell boundaries. The profile then becomes consistent with identical vanishing in domain 0 and spares us parity considerations at the origin.

A typical choice we make, considering the space parameters describe above, is

r 0 = r 1,2 -r 0,1 2 
and σ = 0.1. The amplitude doesn't play much of a role as the system is linear with respect to A. The value for the speed in the equations is also somewhat arbitrary but links the time and space characteristic scales. Due to history of experiments and tentative consistency, the latest values we used are A = 0.2 and c = 0.2. Some of the results discussed in the following sections were obtained with different parameters, but this doesn't alter conclusions or consequent insight.

To go beyond spherical symmetry, we may also want to multiply this radial profile by a spherical harmonic. Though we performed some tests with different harmonics, an interesting choice is Y 2,2 as it introduces both θ and φ variations:

Y 2,2 = 1 4 15 π sin 2 θ cos(2φ) . (3.38)
The advantage of introducing a single spherical harmonic is that it is an eigenfunction of the Laplacian. Therefore, we can replace ∆N byl(l + 1) r 2 N in the evolution equation of V , to proof test the numerical calculation of the Laplacian (second-order system, l is the degree of the harmonic). We also expect the time evolution to remain proportional to this same harmonic and we can check for deviations.

Finally, we most often use time-symmetric data, meaning that V (t = 0) = 0, resulting in both the advanced and retarded time contributions (left-moving/ingoing part and right-moving/outgoing part). It is possible, though, to select only one of those two waves by changing the initial value of V . The characteristic decomposition explained in Section 3.1.2 teaches us that for instance, we can isolate the right-moving wave by choosing u -= 0. This means that initializing V (t = 0) = -G(t = 0) will select only this contribution.

Evolution

The time evolution is computed with the method of lines. This consists in first considering the semi-discrete system, where only space has been discretized. Instead of a couple of fields, the unknowns are now as many as there are collocation points, for each field, and the system is an ordinary differential system with respect to time. It can thus be integrated using standard algorithms.

We rely on well-known explicit schemes as a first implementation. (Semi)implicit schemes may be work for the future to improve stability and deal with regularity issues with spherical coordinates, especially in the context of the BSSN formulation of Einstein's equations [25,[START_REF] Pedro | BSSN equations in spherical coordinates without regularization: spherically symmetric spacetimes[END_REF]. In the past, the library was used in some preliminary tests to solve quasi-periodic systems in 1+1 dimensions using time spectral methods (unpublished), but we don't use this method here.

We perform a free evolution, which means that we don't solve the constraint. To advance in time, we use either a 4th order Runge-Kutta scheme (RK4) or a 3rd order Adams-Bashforth scheme (AB3) 5 . It is not a limitation in the library but we always use a constant time step. We adapt the value of the time step so that it is compliant with the Courant-Friedrichs-Lewy (CFL) condition. We don't set a specific Courant factor which changes the time step when we change resolution. For parameters discussed previously, a typical choice is ∆t = 10 -3 . Note that even if it doesn't satisfy the CFL condition for larger resolutions, ∆t = 0.01 still seemed to work properly for a number of RK4 simulations. For instance, from Equation (3.27) we get that the minimum radial spacing in the nucleus, with N r = 31, is ∆r min ≈ 1.4×10 -3 . Even with c = 0.2, the Courant factor for ∆t = 0.01 is around 1.5.

Field configurations are saved at a custom frequency. In general, we save every 0.5 in units of time (for example, for ∆t = 10 -3 , this is every 500 time steps). Even though the wave should have left the numerical domain within a few units of time (depending on how many subdomains we use), we also performed simulations with final times of order 100 to witness the decay of residual errors, and ensure that there is no divergence occurring on long time scales.

Boundary conditions and domain matching

Generic features

The characteristic decomposition introduced in Section 3.1.2 is a key tool for imposing boundary conditions. Indeed, in a given domain, the number of incoming characteristics informs us about the number of boundary conditions that we need to provide. Essentially, an outgoing characteristic represents information which is about to leave the numerical domain. All data required for its evolution are self-contained with the equations of motion from inside the numerical domain, and needs no additional prescription. On the contrary, an incoming characteristic field represents information which comes from outside the domain and tries to enter into it. Therefore, its value (or derivative) has to be provided under the form of boundary conditions. This reasoning is applicable at the edges of the whole numerical domain. It also plays an important part in subdomain communication, or matching. From the point of view of a subdomain, there is no difference between being at the edge of the whole space or not: outgoing characteristics leave and incoming characteristics need to be specified. The only difference lies in that consistency guides us and demands that an incoming characteristic on a shared domain boundary equal the corresponding outgoing characteristic from the other side of the boundary.

To know whether a characteristic is incoming or outgoing, we need to assess the sign of the corresponding characteristic speed. In the simple wave equation formulation, these speeds have constant sign (in time and space). u + always has speed +c and u -always has speed -c. Zero-speed characteristics don't contribute. The question is now, which comes in and which goes out. In general, it may depend on sign conventions and how the principal part is placed (on the same side than ∂ t of the equality or not in Equation (3.16)). Moreover, it might seem sensible to always consider the outward-pointing normal s i to generate characteristic fields (like [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF] for instance).

Even if the work presented by Taylor and collaborators in [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF] has been of great importance in our own understanding (see for instance Section 3.2.4), we depart from this choice to better suit the functioning of our library. Indeed, in Kadath, fields are defined over the whole domain and not only on the boundary 6 . Hence, it is more natural to always consider the same normal s i = (dr) i = (1, 0, 0) (in the orthonormal spherical triad), and the related characteristic fields built from V and

G or G s = G r .
At the outer boundary of the nucleus and of shells, s i correctly points outwards. There, the outgoing characteristic is the outgoing part of the wave (in the sense moving towards increasing r), and u + has positive speed +c. Conversely, the incoming characteristic u -has negative speed. This contrasts with our GR simulations, because in the characteristic decomposition of the FOBSSN system, Brown et al.

write ∂ t u ≃ A i ∂ i u [44].
On the other hand, at the inner boundary of shells, s i points inwards and the supposedly correct normal would be the opposite one. This would have the simple effect of reverting all the signs for characteristic speeds. Then, with our definitions, u + is now the incoming field, with positive speed; and u -, which is the ingoing part of the wave (traveling towards decreasing r), is the outgoing characteristic with negative speed.

If these relations between signs and direction seem confusing, there is a very simple way to envision it and which further encourages us in this choice. To illustrate, think of u + . It always corresponds to the part of the wave which satisfies u + (r, t) = f (r -ct), meaning that it propagates in the direction of increasing r. Now, put an arbitrary subdomain boundary in the numerical domain. It is natural that for the innermost subdomain (with lower values of r), u + seems to go out. In the same way, it seems to go into the outermost subdomain, from its inner boundary. The advantage of consistently defining u + in the same way at both types of boundaries is that the matching of characteristics is just translating the very definition of the characteristic in the original undivided numerical domain. In other words, u + in domain 2 is matched to u + in domain 1.

Strong boundary conditions

To impose boundary conditions, a first option is to replace the evolution equation by another evolution equation on the boundary. This method is called imposing the boundary condition strongly. The library allows the implementation of such boundary conditions on the dynamical fields. If no such equation is provided, it automatically uses the bulk equation instead. Once again, note that the library computes the terms in the whole subdomain anyway and not only on the boundary.

Such boundary conditions can take multiple forms. For instance, it is possible to impose reflective conditions by choosing

∂ t N = 0 or ∂ t V = 0.
It is also possible to write radiative, or Sommerfeld, boundary conditions (Equation (3.40)). Consider that N is an outgoing spherical wave:

N (r, t) = f (r -ct) r . Then we get ∂ r N = f ′ (r -ct) r - f (r -ct) r 2 = f ′ (r -ct) r - N (r, t) r , ( 3.39) 
∂ t N = -cf ′ (r -ct) r = -c ∂ r N + N r . ( 3.40) 
If we don't consider the inverse r dependence, this simplifies to ∂ t N = -c∂ r N (which can also be applied to V instead).

Of course, it is also possible to specify source terms on the boundary which drive the subsequent evolution inside the domain. This is a useful tool to emulate domain communication by first solving only one domain and giving time-dependent entries at the boundary.

As stated in the previous Section 3.2.1, it is natural to use characteristic fields for boundary conditions. Say we examine the inner boundary and want no incoming contributions. This corresponds to u + = 0 on the boundary, or actually, ∂ t u + = 0 in general. ∂ t u -is unconstrained and is computed thanks to the equations of motion within the domain. We refer to these boundary conditions as outgoing wave in the following, when

             (∂ t N = cV ) ∂ t V = ∂ t u -- ¨∂ t u + 2 = c 2 (∂ r V + ∂ r G) ∂ t G = ∂ t u -+ ¨∂ t u + 2 = c 2 (∂ r V + ∂ r G) (3.41)
is applied on the boundary. For the 3D system, we would get

∂ t G i = ∂ t G ⊥,i + ∂ t u - 2 , (3.42) ∂ t G ⊥,i = ∂ t G i -s i s j ∂ t G j . (3.43)
Let us remind that these boundary conditions can be used to perform domain matching too. In this case, we would have, for instance,

∂ t u + (2) (r 1,2 ) = ∂ t u + (1) (r 1,2 ) , ( 3.44) 
where the subscript indicates in which domain the field is computed. Recall that u + propagates from domain 1 to domain 2. Therefore, it is computed with the equations of motion in domain 1, and the value on the boundary is then imported7 to domain 2.

Penalty methods

Another way to impose boundary conditions is through penalty methods. Those are well-suited for spectral methods [START_REF] Hesthaven | Spectral penalty methods[END_REF]. The idea is the following. The numerical solution is an approximation to the continuum solution. Thus, it is not necessary to impose an exact boundary condition on an approximate solution. Using an approximate boundary condition is enough, as long as the exact boundary condition is recovered in the continuum limit.

To do so, the boundary condition is included in the equations of motion through a penalty term

∂ t u = EOM(u) + κ pen δ(r -r BC )BC(u) ≡ EOM(u) + P (u) , ( 3.45) 
where EOM(u) refers to the usual equations of motion for the dynamical fields u; κ pen is a penalty coefficient; the location function is the Kronecker delta of the boundary radius (in the equation above, the space discretization is implicit and we represent it with the Dirac distribution); and BC(u) gives the boundary condition. P (u) gathers all the contributions outside of the equations of motion and we refer to it as the penalty term. Notice that setting κ pen ----→ Nr→∞ +∞ forces the continuum limit to satisfy BC(u) = 0 as desired. The goal is then to impose boundary conditions on the incoming characteristic fields through such penalties, with

P (u) ∝ (u inc BC -u inc ) . (3.46)
For true boundary conditions, we may want to set the prescription u inc BC = 0 or u inc BC = u inc (r = r BC , t = 0). For domain matching -say we match u + between domains 1 and 2 like previously -, it would be

u inc BC,(2) = u inc (1) (r = r 1,2 ).
In the following of this subsection, we discuss the case of the first-order system, for which the procedure is straightforward (comments on that and the second-order system in Section 3.2.4). It is explained, for instance, in the work by Taylor et al. on penalties for the second-order system, which inspired and provided insight for our own work.

In principle, the penalty should be added only in the evolution equation of the relevant incoming characteristic field, for instance as:

     ∂ t u 0 = cV ∂ t u + = ∂ t G -∂ t V + P (u + ) ∂ t u -= ∂ t G + ∂ t V . (3.47)
We need to transform back to dynamical variables though, which leads to

                       ∂ t N = cV ∂ t V = ∂ t u --∂ t u + 2 = c∂ r G - P (u + ) 2 ∂ t G = ∂ t u -+ ∂ t u + 2 = c∂ r V + P (u + ) 2 . (3.48)
The penalty for u -is included in the same way. We give them explicitly below. Unlike with strong boundary conditions, this system is solved everywhere in space (although the penalty term may appear only on the relevant boundary thanks to the Kronecker delta) and does not require an additional equation.

To find the correct value for the penalty coefficient κ pen , an analysis of the semi-discrete system is needed. It is based on symmetric hyperbolicity, as the non-increasing character of the energy estimate is the decisive requirement. Here, the energy density is the usual

1 2 (V 2 + G i G i ).
In general, this process leads to a lower bound on the penalty coefficient. However, additionally requiring subdomain matching fixes the value [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF]. In practice, we found that some range around the expected value is acceptable.

It is also noteworthy to mention that these semi-discrete analyses rely on Legendre discretization, as they make calculations tractable. From there, several choices are possible:

• use Legendre polynomials for evolutions;

• use the Legendre penalties with Chebyshev discretization. This is known as the Chebyshev-Legendre method. In this case, the Kronecker delta which appears in the penalty term is the polynomial which evaluates to 1 on the corresponding boundary, and to 0 at all other Legendre collocation points. This polynomial is now represented on the Chebyshev basis. In general, it will not vanish at collocation points anymore.

• Use the Chebyshev spectral basis with the Legendre penalty coefficient (which notably involves the Legendre weights of collocation points). Although not proved to be correct, empirical experience shows that it works well, in our work and others' [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF][START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF].

In early tests, we have investigated and compared all three options, which agreed well. From a practical point of view, the first and last options are easier to implement. However, the Kadath library is better optimized (and proof tested) for Chebyshev polynomials, especially thanks to the use of the fast Fourier transform and the analytical position of the collocation points. Thus, we kept working with Chebyshev polynomials and penalty coefficients derived from Legendre analysis.

We give explicitly the penalty terms for our simulations, consistent with our definitions:

                       ∂ t N = cV ∂ t V = c∂ r G + cκ pen 2 -δ in × u + BC -u + + δ out × u - BC -u - ∂ t G = c∂ r V + cκ pen 2 δ in × u + BC -u + + δ out × u - BC -u - . (3.49)
Here, δ in is the Kronecker delta for the inner boundary of the domain: 1 if the collocation point is on the inner boundary, else 0; for the nucleus, there is no such term. δ out is defined similarly at the outer boundary. Notice that we have factored the absolute value of the characteristic speed out of the penalty factor, which is given by:

κ pen = N r (N r -1) 2 × 2 r max -r min . (3.50)
The first term is the inverse of the weight of boundary collocation points in the Legendre-Gauss-Lobatto quadrature. The second term stems from the transformation from numerical coordinates in [-1, 1] for which the penalty is designed, to the actual numerical domain (named µ ′ in [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF]). In our tests, we also found that in the nucleus, this coefficient should be multiplied by 2. We haven't investigated this lately as we have no indication of improper behavior. Further, we have not derived penalties properly for a nucleus-like domain (and with numerical coordinates in [0, 1]. We have simply assumed that the nucleus behaves similarly, and tuned empirically the coefficient.

Second-order system

Working with characteristic fields as described above lends itself more naturally to evolution in a full first-order reduction. As demonstrated, it is fairly straightforward, at least conceptually, to impose boundary conditions on characteristic fields (strongly or with penalties) and then deduce boundary conditions directly on the dynamical fields -through extended bulk evolution equations, or by providing a new evolution equation at the boundary. It all fits within the same numerical framework.

Still, first-order reductions introduce new dynamical fields and their lot of additional computational and memory toll, as well as constraints in the system. For this reason, the BSSN formulation of Einstein's equations is actually often used in its second-order version, unlike what we present in this work. But it is then not used in the context of multidomain spectral methods. Such simulations are instead carried out with the first-order reduction of the Generalized Harmonic Gauge (GHG) equations of [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF]. In the thesis manuscript [START_REF] Taylor | Numerical Simulations Of Black Hole Binaries: Second Order Spectral Methods[END_REF], Taylor describes an extension of their work on the wave equation to the second-order GHG, but to our knowledge this has not led to a publication in a peer-reviewed journal in the end. This effort still seems interesting to us and finding ways to construct penalties for the BSSN system (although it is not symmetric hyperbolic as such) or alike offers potential research plans for the future.

But for now, let us go back to the wave equation and let us assume that we want to impose a condition on characteristic fields. From Sections 3.2.2 and 3.2.3, it seems that some information is expressed through ∂ t G, but we don't have this equation anymore. So, we would like to impose conditions on ∂ r N , but only have access to N . Spectral methods provide a natural connection between a field and its derivative through coefficients: for instance, the condition on ∂ r N could be translated into a prescription on the last coefficient of N by the use of the taumethod. Doing so for every boundary (and potentially including regularity issues at the origin for instance) yields a matrix, which, once inverted, gives the last coefficients of N in the various subdomains. This would have to be done at each time step (and probably RK substep). It would probably be achievable with the Kadath library but it is fairly different to the current implementation and therefore we yearn for an alternative (one of which is a full first-order reduction).

Taylor et al. offer a framework for second-order penalty methods in [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF]. Much like for the first-order system, they derive penalties by analyzing the stability of the semi-discrete system. The final result, which we give explicitly for our settings below, involves a penalty in ∂ t V similar to the first-order case. The novelty however, is that the same kind of penalty appears in the evolution equation of N (there was none in the first-order system). Moreover, this penalty involves functions which are not just Kronecker deltas but which are non-zero on the whole numerical domain (even for Legendre discretization).

We redid the calculations for our notations and sign conventions and this yields the following equations8 :

           ∂ t N = cV + c 2 -p × u + BC -u + (r BC ) + q × u - BC -u -(r BC ) ∂ t V = c∆N + cκ pen 2 -δ in × u + BC -u + (r BC ) + δ out × u - BC -u -(r BC )
.

(3.51) The penalty coefficient κ pen is still given by Equation (3.50). We would like to emphasize here that u inc BC represents the prescribed target value for the incoming characteristic field; whereas u inc (r BC ) is the value of the characteristic field computed on the boundary 9 . We need to pay attention and disambiguate this now because the value on the boundary is not enforced by the Kronecker symbols any longer for the evolution equation of N .

As stated previously, we need to introduce two new penalty functions p and q (noted f and g in the reference; their p and q are the whole penalties). In the derivation, they appear as combinations of the two Legendre polynomials with highest degree L Nr-1 and L Nr-2 . This degree requirement ensures the vanishing of some inner products. Additionally, p and q are constructed such that p(-1) = 1 and q(-1) = 0 and vice versa at

x = 1. Since L k (1) = 1 and L k (-1) = (-1) k , this results in p = 1 2 (-1) Nr-1 (L Nr-1 -L Nr-2 ) , (3.52a) q = 1 2 (L Nr-1 + L Nr-2 ) . (3.52b)
Implementing these functions is very easy in the coefficient space. Just like the first-order system, we have tested this for Legendre, Chebyshev-Legendre and Chebyshev configurations. For the latter, we set the coefficients of p and q just like for the Legendre derivation. Contrarily to Taylor's work, it extends directly to our 3D simulations because our numerical domain still only has boundaries along the r direction. Thus there is no need for us to take into account edges or corners, nor the length of the normal, which is already 1.

During the development of the evolution schemes and testing of various numerical methods, we have used the second-order system a lot, as it was faster than the first-order counterpart and introduces no constraint. Both seemed pretty much interchangeable. Nevertheless, we left the second-order system aside at some point, for several reasons. First, it was easier to focus on issues within only one system, and the first-order reduction better relates to the first-order reduction of the BSSN equations that we use for GR simulations (Chapter 4). Second, we started to encounter some issues seemingly specific to the second-order system. For one, we haven't re-derived the correct penalties for the nucleus. In the beginning, using q as is seemed fine, but does it actually make sense? In particular, there's only one degree of freedom left at the outer boundary, so q should probably only involve the polynomial of highest degree L 2(Nr-1) (keeping Legendre notations for consistency).

Moreover, we started considering filters on the r coordinate and the first implemented filter canceled the top third coefficients. In this context, it seems that p and q surely should be defined with respect to the highest non-vanishing coefficient and not the absolute highest. Now that we actually use the filter with exponential cutoff given in Section 4.1.3, this is probably less of a problem, but it wasn't implemented at the time.

For all these reasons, we decided to focus our efforts only the first-order system. The questions raised above still deserve an answer and we hope to return to investigations about second-order systems in the future.

Selection of results in spherical symmetry and convergence

As a preliminary disclaimer, we would like to warn that the various results presented for the scalar wave may not have the exact same settings. This toymodel has indeed drawn a lot of our attention and dedication and its treatment has evolved along with progress in our work, realizations and experimentation, and new features of the code. In the context of this manuscript, and consistently with the motivation for solving the wave equation, we rather present it as a demonstration of the library capabilities and show how it can shed light on key numerical methods. We are not aiming at a consolidated comparison or in-depth review of all of our attempts.

Therefore, we first illustrate the wave propagation in a few situations: 1D and 3D, and with different boundary conditions. We then proceed to demonstrate spatial (spectral) and time-step convergence of the scheme. Finally, we discuss constraint damping, its action and how to deal with it in boundary conditions.

First few examples

In one space dimension (1D), the initial wave profile splits into a left-moving part and a right-moving part. Provided it has a vanishing time-derivative at initial time ∂ t N (r, t = 0) = 0, the solution is written as

N (r, t) = 1 2 (N 0 (r -ct) + N 0 (r + ct)) , ( 3.53) 
with N 0 (r) = N (r, t = 0). We show this behavior on Figure 3.1a. This evolution was performed in a single shell with a centered initial profile and strong outgoing boundary conditions. The color code depicts the evolution: dark blue is the initial profile, it then lightens, turns to green and then orange and red at late times (but the wave has left the numerical domain by then). This evolution is one of the first successful ones we performed and as announced, the parameters are actually different to what we described (and the labels not quite visible). Once again, we just want to illustrate the behavior of the wave: the amplitude doesn't matter because of linearity, and time and space scales are bound together by the velocity c.

On Figure 3.1b, we show a similar example where the left boundary condition is reflective: ∂ t V = 0. Then for all t we get V = 0 at this point r 0,1 , which we can re-express as u + = u -. The latter expression may be used in penalties for example to obtain this kind of behavior. For a solution to the system, we infer from V (r = r 0,1 ) = 0 that N (r = r 0,1 ) = 0 for all times as well. For simplicity, take r 0,1 = 0. If we write N (r, t) = 1 2 (f (r -ct) + g(r + ct)), this implies g(ct) = -f (-ct), hence the change of sign during the reflection. Finally, Figure 3.1c shows a situation where all fields are zero-initialized. The boundary condition is a time-dependent source which emulates the propagation of a wave from a neighboring subdomain on the left.

We don't show it here but we would like to mention what happens in a nucleus in 1D. The domain contains the origin and imposes parity on functions. Unlike in 3D, this wouldn't lead to a kind of physical reflection off the origin. In 1D, the origin doesn't play any particular role as the Laplacian is simply a double radial derivative. The consequence of parity is that it acts as if there was a mirrored wave coming from -r. Much like what happens on Figure 3.1a, the "two" contributions superpose at the origin and continue their propagation, although we only see what happens for non-negative values of r. We also show an example of propagation in 3D for a spherically symmetric profile centered at the origin on Figure 3.2a. The evolution is performed in the nucleus alone. The most noticeable difference with 1D simulations is that the amplitude decreases with increasing r. It is also possible to perform simulations with an initial off-centered profile, once again resulting in an ingoing part -which bounces at the origin -and an outgoing part. This is shown on Figure 3.2b. In this simulation, there are two shells around the nucleus.

Here, the outer boundary conditions induce some artificial reflection on the outer boundary. Those are visible, for instance, on Figure 3.2c, where the analytic solution has been subtracted. The latter is given by (recalled in the general case in [START_REF] Suárez Fernández | Semilinear wave model for critical collapse[END_REF] for example): Illustration of the propagation of a 3D scalar wave with penalty boundary conditions. The color code represents the time evolution: dark blue for initial times, then green, orange, red for late times. In the first panel, the wave is initially centered at the origin and there is only a nucleus. In the second panel, the wave is initially off-centered and there are two shells in addition to the nucleus (mind that parameters are not the same that in the first panel). The last panel shows the spurious reflections on the outer boundary by subtracting the analytic solution to the second panel. The color code between the second and third panels are consistent.

N ana (r, t) = 1 r [F (ct -r) -F (ct + r)] . ( 3 
Having ∂ t N (t = 0) = 0 forces F ′ to be even. Letting the integration constant vanish, F is odd. It can be related to the initial profile N 0 (r) by10 

F (X) = -X 2 [N 0 (X) + N 0 (-X)] . (3.55)
These parity conditions are important both for the consistency of spectral bases, and for good accountability of the reflection at the origin. The library can handle divisions through coefficients, but we test the analytic solution on a point-by-point basis, therefore we need to provide the value at the origin. As F (0) = 0, we use

1 r [F (ct -r) -F (ct + r)] ∼ r→0 -2F ′ (ct) , ( 3.56) 
where F ′ is computed from Equation (3.55).

We further illustrate the errors on Figure 3.3. It corresponds to the same simulation as Figures 3.2b and 3.2c. On Figure 3.3a, we focus on the difference between the numerical solution and the analytical solution,

ϵ(r, t) ≡ N -N ana , (3.57) 
and plot the evolution of its infinity norm (which is the maximum of |ϵ| evaluated at all collocation points). An exponential decay can be observed on long time scales and it is consistent with residual reflections leaving the domain gradually. It can be noticed that the two peaks around t ≈ 50 correspond to the moment when the first reflection arrives at the origin and bounces back, on Figure 3.2c. The middle panel Figure 3.3b shows the infinity norm of the constraint violation, for each component (in the orthonormal spherical triad). After some initial decay, it reaches a plateau. This can be used for spectral convergence tests. A way to reduce this constraint violation is to use constraint damping (see Section 3.3.3). Finally, the bottom panel Figure 3.3c shows the energy contained in the whole numerical domain. There is a first small step down, around t ≈ 10 -15 which can be associated with the departure of the outgoing contribution from the domain (the energy is halved).

There is then a most substantial step around t ≈ 30 when the initially ingoing part also leaves. This is consistent with the profiles shown in Figure 3.2b. Then, similar phenomena appear at later times, when the spurious reflections generated by both these contributions leave the domain as well.

Convergence

We now move on to the demonstration of convergence properties of the scheme. The results presented in this section cover a 1D wave in a single spherical shell, with 

E(t) = 1 2 V 2 + G i G i d 3
x Energy (c) Evolution of the energy within the domain In the first panel, the error is the infinity norm of the difference between the numerical and analytical solutions. On the second panel, errors are the infinity norms of the three constraint components C i in the orthonormal spherical triad. On the bottom panel, we show the total energy contained in the numerical domain. We illustrate spectral convergence on Figure 3.4. For various numbers of radial points, the infinity norm of the constraint violation C and of the difference to the analytic solution ϵ are computed. Field configurations are sampled at regular intervals of time (here every 100 time steps), for a total of 11 samples including the initial data. At late times the wave has left the numerical domain. The infinity norm covers all collocation points and all time samples (although the curves for each time sample are similar, not shown). We obtain spectral convergence for both error indicators, with saturation.

We then proceed to argue for time-step convergence. We gather on Figure 3.5 a handful of simulations performed with various space resolutions and time steps. Each colored line corresponds to a given N r . The graph represents, at a given instant, the infinity norm of the error ϵ computed over all collocation points. In this particular case, we pick t = 2, when the wave is still within the domainsimilar graphs were obtained for other choices. Not all curves are properly visible because they superpose. Notice once again spectral convergence (it is the same set of resolutions than Figure 3.4; beware N r are not uniformly spaced). The dashed black line is not a fit: it is built as a line of slope 4 passing through the bottom left point with ∆t = 10 -2 . Still it is striking that all curves lean on this 4th power law, We compute the infinity norm (over all collocation points, at a given time) of the difference to the analytic solution ϵ, as a function of the time step ∆t. Each colored line corresponds to a given radial resolution (notice spectral convergence). The dashed black line is not a fit: it is built as a line of slope 4 passing through the bottom left point with ∆t = 10 -2 . Therefore we recover 4th order convergence of the RK4 scheme.

confirming the expected convergence properties of the RK4 integration. Another interesting remark is that often, space resolution is actually the limiting factor, since a decrease in the time step doesn't impact the error level. While we routinely examine spectral convergence, we haven't reproduced such a thorough study of time-step dependence. First, we take the results of this section as strong evidence for a correct implementation (even though only time and variety of contexts and uses can strengthen our confidence). Second, this validated example can serve as a control reference when implementing new features or methods, to build new reference simulations. Finally, as it appears, spatial resolution is most often the limiting factor. We seldom try to choose an optimal time step at this stage 11 . Experimentation with the time step value in GR evolutions tends to confirm this trend.

Another witnessed effect which we nicely exhibit below is the Courant-Friedrichs-Lewy (CFL) stability condition. A consequence of this condition is that increasing the spatial resolution too much leads to divergences, which can be cured by reducing the time step. We have indeed observed it in other contexts (see for instance Section 5.2.2). Recall that for Chebyshev collocation points, we expect the minimum spacing to scale as 1/N 2 r . This is a consequence of Equation (3.34) and

1 -cos x ∼ x→0 x 2 /2 . ( 3.58) 
Therefore, at a given resolution, the critical (maximum) admissible time step ∆t c should scale accordingly. We depict just that on Figure 3.6. In practice, we look for critical simulations the other way around. We fix the time step and vary N r to find the maximum resolution leading to stable evolution. The data points are well fitted by an inverse square law, as the fitted line's slope is -2.02. Notice that the CFL condition is reflected on Figure 3.5: lines corresponding to higher resolutions (for example N r = 71) don't have data points for larger time steps.

Constraint damping

As mentioned in Section 3.1.2 with Equations (3.14) and (3.15), it is possible to add a term proportional to the constraint in the evolution equations, with the purpose of reducing any constraint violation. This process is known as constraint damping (CD). Some of our earliest tests in 1D in a single domain already showed the success of constraint damping, with the exponential decay expected from Equation (3.15) changing according to the value of the damping time τ . Here, we compare more recent runs in a single shell in 3D. More specifically, for simulations which have all other parameters equal, we show on Figure 3.7 the evolution of the infinity norm of 

E(t) = 1 2 V 2 + G i G i d 3
x Energy (c) Energy, no CD 

E(t) = 1 2 V 2 + G i G i d 3
x Energy (d) Energy, with CD the constraint (for each component in the Cartesian triad) and the energy within the domain. When applicable, the damping time is τ = 0.1 -the time step is ∆t = 10 -3 , the shell has a range of 1 ≤ r ≤ 2 and c = 0.2. The constraint shows a faster and deeper decrease. The energy within the numerical domain also plummets to a much lower level.

These simulations with constraint damping where actually performed without modifying the characteristic fields, and we observe that it behaves as expected. However, adding the constraint damping terms in the system actually modifies the characteristic structure (written in 1D for simplicity):

∂ t    N V G    +     0 0 0 0 0 -c - 1 τ -c 0     A r ∂ r    N V G    =     cV 0 - 1 τ G     . (3.59)
The characteristic fields are now

u 0 = N, µ 0 = 0 (3.60) u ± CD = G ∓ V + N cτ , µ ± = ±c (3.61)
and the converse transformation is

N = u 0 , (3.62) G = 1 2 u + CD + u - CD , (3.63) V = 1 2 u - CD -u + CD - 1 cτ u 0 . (3.64)
Nevertheless, using these characteristic fields in penalty boundary conditions, as though they were the usual ones, proved disastrous. By that, we mean that the boundary condition is u ± CD = 0 depending on which boundary we are looking at. We illustrate the impact of this modification on Figure 3.8. On the top panel Figure 3.8a, the unphysical behavior is evident: instead of flowing out of the numerical domain, the wave experiences some kind of reflection on the boundaries, with a very slow attenuation. Consistently, Figure 3.8b shows the slow reduction of the energy content, which severely contrasts with Figures 3.7c and 3.7d for instance. Note that the time sampling in the top panel is very coarse: there are many intermediate reflections.

If we examine more closely the boundary condition, it is actually no surprise. Say, for instance, that we consider u - CD = 0 at the outer boundary. The physical ingoing characteristic now sees u -= -N cτ . When the physical outgoing characteristic brings about a non-vanishing N at the outer boundary, it is compensated by a sourced incoming mode, thus preventing the wave to leave and mimicking a reflection.

In the future, it would be interesting to further investigate the relation between constraint damping and the characteristic fields for multidomain simulations. Indeed, we showed that outer boundary conditions should avoid the constraint damping terms. Should matching characteristics include them? It is sensible to keep them there as it is how information propagates within the system of equations, but we have shown that they can lead to an unphysical behavior.

It is all the more interesting to understand what happens for the wave equation, in order to be able to extend it for our simulations in GR, which exhibit some difficulties with constraint damping (see for instance Sections 4.2.2 and 5.2.3). What we did here coincides with the modified penalty variant, still it seems to be yet another variant which groups best of both worlds. It is different from the modified κ CD variant because the constraint damping coefficient doesn't vanish in the equations of motion. But let's imagine we needed a penalty on N . Since 

E(t) = 1 2 V 2 + G i G i
V = 1 2 u - CD -u + CD - 1 cτ u 0
, an additional contribution would ensue from the last term. Would we include it in the penalty for V , because of the constraint damping term? Whether it's desirable is unclear, but the modified penalty variant for GR simulations does keep it. What we are essentially doing here is to completely ignore constraint damping in the characteristic structure.

This work on the wave equation predates the introduction of penalty variants in GR evolutions and directed our attention to constraint damping terms. In GR runs, we started with what was most simple to implement, but no doubt that it can be perfected and that the wave equation toy-model can shed renewed light on this matter.

Beyond spherical symmetry

Presentation of the problem

When moving away from spherical symmetry, we encountered regularity issues at the origin which were spoiling the stability of evolutions. This was clear for gravitational wave simulations, see for instance Section 6.2.3 and the related Figure 6.3. To summarize the problem, recall from Equation (3.27) that there is a radial collocation point at the origin. It is actually duplicated for every point in the θ and φ directions.

These various numerical points are evolved independently of each other, despite representing the same physical point 12 . In spherical symmetry, each angular direction is equivalent and no issues were encountered. On the contrary, for angledependent data, a discrepancy between redundant points emerges and amplifies dramatically. Even scalar fields would become multivalued at the origin.

We focused on evolutions in the central nucleus which contains the origin. When testing non-spherically symmetric wave evolutions, the same issues were observed. Increasing the angular resolutions only made the divergence worse. We concluded that it wasn't related to the GR system or implementation but was a more profound consequence of the library implementation or numerical methods. Luckily, it was easier (but not easy) to tackle this challenge on the more simple toy-model.

To do so, we quantified the error by computing the value (or derivative) at the origin of the various angular contributions in the field coefficients. Recall the spectral expansion from Equation (3.22):

f (r, θ, φ) = i,j,k a ijk f (r),jk i (r) f (θ),k j (θ) f (φ) k (φ) . ( 3.65) 
For each θ and φ function, we get a function of r, which is expanded either on even or odd Chebyshev polynomials. In the case of even polynomials, we can compute the value at the origin of this function:

val_origin(j, k) = Nr-1 i=0 (-1) i a ijk , (3.66) as T 2i (0) = (-1) i .
When the function is odd, the value at the origin is 0 by construction, and we are interested in its radial derivative instead:

der_origin(j, k) = Nr-1 i=0 (-1) i (2i + 1) a ijk .
(3.67)

In the implementation, it is still abusively named val_origin, because for any given (j, k), we are interested in only one of those functions depending on the r parity. See Appendix B.3 for an example of implementation of this function.

For a true scalar, we expect some of these numbers to be unconstrained (for instance val_origin(j = 0, k = 0) which is the value of f at the origin). But for regularity reasons, most of them must actually vanish (to numerical precision); else the function would be multivalued at the origin. The regularity conditions can be derived from the spherical harmonics expansion. The mode Y m l should be preceded by a r l term.

In diverging evolutions, we observed exponential growths of these indicators. We tried to act on them through filters or penalties, to no avail. They still constitute a good barometer to monitor simulations.

Before discussing the successful remedies to these divergences, let us add a few more remarks on how to measure errors in this setting. Theoretically, we could still compare to the analytic solution. For instance, [START_REF] Suárez Fernández | Semilinear wave model for critical collapse[END_REF] recalls how to obtain it. Still, it is not as straightforward as in spherical symmetry to infer the seed function F from the initial profile of the field, for instance in the case of a Y 2,2 mode. What could be done is to choose a seed and derive the corresponding initial profile, and evolve it, but we haven't implemented that to date.

It is still possible to get a grip on the performance of the evolution, by setting initial data proportional to one spherical harmonic. Then it should remain proportional to this same harmonic and it is possible to assess deviations of the angular dependence. This latter method yields poor results however when the physical content has left the numerical domain and only noise remains. An other possibility is to exploit symmetries of the chosen profile. For example, a Y 2,2 mode should vanish on the axis θ = 0. Any significant finite value -or worse, growing mode -may hint at some unwelcome divergence.

In tests, we tried various spherical harmonics (even and odd). Lately, the Y 2,2 has been a go-to choice because it introduces both θ and φ variations. To remove φ, one could consider the Y 2,0 harmonic instead.

Filters

We dedicated attention to filters, as they are widespread in the literature [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF]. We attempted to impose regularity at the origin with them, acting on the val_origin contribution explained above. Sadly, even if it benefited regularity, divergences would leak somewhere else and persist. Even if the main remedy to divergences is a regularization introduced in Section 3.4.3, it turned out that filters also play a beneficial role.

What we first found efficient was to filter angular coefficients. We use the common Orszag "2/3 rule" [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF][START_REF] Orszag | On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components[END_REF]. It consists in canceling the coefficients of the modes with the top third largest wavenumbers. This method is exact for products, but we don't actually apply it for every product (see below). For a function

f (θ, φ) = i,j,k a ijk f (r),jk i (r) f (θ),k j (θ) f (φ) k (φ) , the filter sets a ijk = 0 for j > 2 3 N θ or k > 2 3 N φ .
In practice, the threshold can be given as an argument of the filter and it is counted from the top coefficient, so that inputting 0 yields no filter.

After some tests, we settled with the following calculation of the top "1/3": 1 + (N θ -1)//3 with // the integer division. The same rule is used for φ, the filter takes into account to last extra coefficient added by the library. For N θ = 13, the first filtered coefficient has index j = 8 and 5 coefficients are filtered. The first filtered coefficient may be decremented depending on the θ spectral basis. For instance, if a function is expanded over odd cosines, it automatically vanishes in the equatorial plane. Therefore there is one less degree of freedom and Kadath always sets the last coefficient to zero for this basis (similar for odd sines; for even sines, there is one further less degree of freedom). To be consistent with this already vanishing coefficient, we reduce the index of the first filtered coefficient by one.

We carried out experiments in various configurations (filtering only φ, canceling one half instead of one third . . . ). Although we first only filtered coefficients in the nucleus, we ended up filtering them in all domains. The same filter is actually employed in two situations:

• coefficients of all dynamical fields (all components, whatever the triad) are filtered at the end of each full time step.

• The whole right-hand side (RHS) of each evolution equation is filtered as well.

We noticed that either of these solutions led to different performance in various situations. For example, one was more beneficial in a nucleus than in a shell and vice versa. Therefore, we conservatively chose to apply them both to get best of both worlds.

Later on in our investigations, we also enforced the same one-third rule on r coefficients. This was overturned while progressing on black holes evolutions, to be replaced by a r filter with exponential cutoff like the one used in the SpEC code [START_REF] Szilágyi | Key elements of robustness in binary black hole evolutions using spectral methods[END_REF] and bamps [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] for instance. The coefficients a ijk are multiplied by the following quantity:

exp -36 i N r -1 64 , ( 3.68) 
effectively setting the last coefficient to 0 at machine precision, keeping most of the coefficients unchanged, and performing a smooth transition in between. It incidentally allows us to reduce by a third the number of points in r.

Filters on spherical harmonics

Since we still experienced difficulties with GR evolutions, we tried to apply enhanced filters which act on spherical harmonics, inspired for example by developments in [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]. A simple filter would just project on spherical harmonics and back to Fourier, thus eliminating non-physical modes which may exist in the double Fourier decomposition. Additionally, it is possible to cancel modes above a certain spherical harmonic degree l max . Unlike our Fourier filter, when doing so, we also make sure that a given spherical harmonic degree has all orders m represented, from which conditions on N θ and N φ ensue. We may differentiate the highest allowed angular momentum number according to valence, as does [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] for instance. This filter on spherical harmonics was used only with the Cartesian triad. For tensors in the spherical triad, spin-weighted spherical harmonics should be the way to go, like in [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF], but these are not implemented in Kadath. There is no plan so far to do so.

Indeed, the filter on spherical harmonics seems to function properly on the wave equation toy-model, but has performed very poorly in black hole evolutions. This is possibly due to the need to use the Cartesian triad, although the hope was that spherical harmonics would actually fix the related divergences.

Even for the wave equation, our filter on spherical harmonics doesn't seem to perform better than the Fourier filter, if not worse in a sense. In tests that we ran with the Y 2,2 harmonic, we monitored the maximum of the field, the constraint violation, the energy in the numerical domain and the value on the axis (which should be 0). We noticed that the latter indicator gives kind of worse results with the spherical harmonics filter: it is around 10 -9 , instead of 10 -17 with the Fourier filter. The difference stems from a Y 0 contribution created by the filter on spherical harmonics. Still, we agree that this is negligible anyway and what truly matters is convergence properties. We cannot test angular convergence in this context. Radial spectral convergence was checked on tests with Y 0 initial data.

Regularization

In the upcoming paragraphs we describe the most crucial and beneficial modification which cured the multivaluation issues. It is still related to regularity at the origin. In order to narrow down the possible sources of errors, we worked with the second-order system. Instead of letting the library compute the Laplacian by itself, we decomposed it by hand and examined the various terms and different ways of rewriting it. If the Laplacian operator is called, the library computes the spherical partial derivatives, combines them so as to get ∂ x , ∂ y and ∂ z , does that again and computes the sum

∂ 2 xx + ∂ 2 yy + ∂ 2 zz .
The Laplacian can also be replaced by D i D i as mentioned previously, in both triads. We can further rewrite it by hand as

∆f = 1 r 2 ∂ r r 2 ∂ r f + 1 r 2 sin θ ∂ θ (sin θ∂ θ f ) + 1 r 2 sin 2 θ ∂ 2 φφ f (3.69)
for example. The angular part can even be replaced byl(l + 1) r 2 f when using a spherical harmonic of degree l. It is possible to test the radial and angular evolutions separately too (even if the equations are not physical).

Exploring various such rewritings allowed to pinpoint the terms at fault, by regularizing only some part of the Laplacian: they originate, obviously, from the angular part, but importantly only when divided by r 2 . Further detailed inquiry revealed that the issue occurred specifically because of the division by r for functions which expand on an even basis and don't properly vanish at the origin.

The link with multivaluation is as follows. For a scalar, the contribution which may have f (r = 0) ̸ = 0 must not depend on angles and is canceled by ∂ θ , ∂ φ : it is not divided by r. On the other hand, non-constant angular contributions have to vanish at the origin to avoid multivaluation. Our experiments show that deviations from this at the numerical level cause divergences. Therefore we regularize, when dividing a function f (r) by r, by making sure that f (0) = 0 at a better level.

Let us explain it in further detail. Let's write once again the spectral expansion for an even Chebyshev basis:

f (r) = N i=0 a i T 2i (r) = a 0 + a 1 T 2 (r) + • • • + a N T 2N (r) . (3.70)
For the sake of clarity and brevity here, we consider r as the numerical coordinate in [0, 1] directly, and use N + 1 points, dropping the r index at the same occasion.

On the other hand, we can write

f (r) = f (0) + rg(r) ⇐⇒ g(r) = f (r) -f (0) r . (3.71)
When the library is asked to compute the division of f by r, what it does is actually compute g, automatically removing the finite contribution at the origin. This operation is performed in coefficient space by making use of the recursion relation of Chebyshev polynomials:

T n+2 (X) = 2XT n+1 (X) -T n (X) , (3.72)
as f has contributions from T n and T n+2 and g will get the related T n+1 contribution. It is best to show it in action on a small-dimension example. We start from the highest coefficients and work our way recursively down to the low degree polynomials.

f (r) = a 0 T 0 (r) + a 1 T 2 (r) + a 2 T 4 (r) = a 0 T 0 (r) + a 1 T 2 (r) + a 2 (2rT 3 (r) -T 2 (r)) = a 0 T 0 (r) + (a 1 -a 2 )T 2 (r) + 2a 2 rT 3 (r) = a 0 T 0 (r) + (a 1 -a 2 ) [2rT 1 (r) -T 0 (r)] + 2a 2 rT 3 (r) = (a 0 -a 1 + a 2 ) T 0 (r) + r [2(a 1 -a 2 )T 1 (r) + 2a 2 T 3 (r)] .
From this point, recall that T 0 (r) = 1 and

f (0) = N i=0 (-1) i a i = a 0 -a 1 + a 2 . (3.73)
It naturally appears in the computation above and finally,

f (r) = f (0) + r [2(a 1 -a 2 )T 1 (r) + 2a 2 T 3 (r)] g(r) . (3.74)
This is indeed how the library computes the coefficients of g from those of f and it is instructive here to see f (0) naturally appear. This means that the finite value at the origin is removed as a constant, as acting on T 0 : g(r) = f (r) -f (0)T 0 (r) r . In the spirit of the tau-method which acts on the last coefficient -this method has guided the regularization attempts -, we instead decide to remove the value at the origin by acting on the last coefficient:

f (r) ← f (r) -f (0) T 2N (r) T 2N (0) ⇐⇒ a N ← -a N -(-1) N N i=0 (-1) i a i (3.75)
before applying the same usual routine. Doing this turned out to be crucial and very effective. This is the new regularization procedure which we implement and which cures the divergences linked to multivaluation at the origin. Notice that this operation yields a function which indeed vanishes at the origin, but now we're subtracting a whole r-dependent function. The rationale is that f (0) should be small anyway beforehand (if not, something else is wrong because it implies singular terms f (0)/r) and that spectral coefficients decrease exponentially, so touching the last one is preferred (it disrupts less of the content of the function). Also note that all coefficients of g are modified by the trick, because a N recursively appears in each of them.

While in the process of looking up how to impose regularity through filters, we tried to regularize only specific terms, or kind of terms (say, for example, regularize every time ∂ θ is called). Beside its positive consequences on stability, the main advantage of this new regularization technique is that is doesn't involve fine tuning of what terms should or should not be regularized. It is applied in all circumstances, when an even function of r is divided by r in a domain which contains r = 0. This doesn't depend on the peculiar system at hand. It is very generic in this sense and is concordant with the philosophy of the library. Arguably, a similar situation is encountered on the axis13 when dividing by sin θ. As a matter of fact, the Fourier and Chebyshev bases are closely related. The equivalent of even Chebyshev functions, which have a value at the origin, are cosines, which have a value on the axis.

Even though it didn't seem critical, our next target was thus to implement the same type of regularization in the division by sin θ for functions expanded on even cosines (cos_even basis in Kadath). The procedure is exactly the same, we remove the value on the axis θ = 0 on the last coefficient. Despite not being as critical and groundbreaking, it seemed to marginally improve simulations and we thus kept it. Every now and then we have tried to remove it again but it didn't seem beneficial to do so.

As discussed in the part about GR evolutions, especially BH simulations (Sections 4.2.1 and 5.2), we also more recently experimented with the same kind of regularization for the odd cosines basis (cos_odd). Some additional complications may occur, as the axis contribution may not vanish for individual terms, but rather simplify with other contributions. This new routine has no way to know however, and removing a large axis value on the last coefficient may be detrimental. Some preliminary testing to work around this challenge has been started. For instance, such canceling appears in covariant derivative like in Equation (4.8). The derivative could be rewritten by multiplying everything by sin θ first, yielding regular fields, and then divide again. We don't have definitive results or answers relative to the pertinence of this one regularization.

Should we find out in the future that all those new regularization operations are indeed crucial, or on the contrary, were just limiting damage, we may re-evaluate the relevance of their inclusion in the library. In the meantime, they remain one of the key elements of this work and as far as we know, a novelty.

Conclusions

In conclusion, the wave equation is a very useful toy-model. It first allows to check the implementation of the library. When new features are added, it is convenient to check their behavior on this simple system. We have demonstrated good convergence properties of the scheme thanks to it. Furthermore, it remains a valuable tool to understand the numerical methods relevant for evolutions in GR. For instance, several types of boundary conditions can be tested, whether it is the physical requirement (outgoing, reflective) or the way to impose them (strongly, with penalties). Other numerical techniques such as constraint damping may also be investigated and better understood, especially when it comes to the consequences on the characteristic structure.

Finally, dissecting the wave equation toy-model beyond spherical symmetry enabled us to cure divergences first encountered in the much more complex evolutions in General Relativity. Being able to spot issues is a first step towards solving them, and the toy-model facilitates this procedure. In our case, this resulted in two main remedies for divergences: the implementation of filters and a new regularization operation (crucial at the coordinate origin).

Although the toy-model works fine with the current settings, we still struggle with some aspects of GR evolutions, as presented in the next chapters. Therefore we may need to come back to it, potentially gear it more specifically or increase its complexity, by making it non-linear, or by adding a curved background for instance. Let us also note that we performed some work on the second-order version and we would like to dig deeper into that matter in the future. Since the goal of the evolution code presented here is ultimately to be applied to gravitational systems, especially in the strong-field regime, it is necessary to validate its behavior on standard testbeds within General Relativity (GR). Examples of such tests are the robust stability test, in which random noise is applied on top of flat spacetime; or a gauge wave, which tests gauge evolution for flat spacetime as well (see Section 2.7).

Chapter 4

Framework of the simulations in General Relativity

Two main sets of simulations have been performed to test our code, both in vacuum. The first one, which is the subject of Chapter 5, concerns the evolution of individual black holes (BH). Most notably, we want to obtain long and stable quasi-stationary evolutions for a Schwarzschild black hole. In Chapter 6, we focus on the propagation of a gravitational wave (GW). Those are the first steps to demonstrate the correct behavior of our code for the evolution of gravitational systems, then opening the way to new physical applications or the investigation of different numerical methods.

The rationale behind this procedure is the following: we want to increase complexity progressively. Starting with Schwarzschild black holes allows us to take advantage of symmetries: spherical symmetry (which can be perturbed) and stationarity. At the cost of dealing with the horizon, it also makes it possible to avoid regularity issues at the origin of coordinates. The black hole can be first studied in a single numerical domain, avoiding multidomain issues and related numerical methods. On the other hand, the gravitational wave is a natural follow-up to the scalar wave equation in the context of GR. Through increasing amplitudes, it can range from the linear to the non-linear regime. It is still possible to start from symmetric configurations (axisymmetric) before simulating the renowned l = m = 2 modes. Ultimately, dealing with black holes and gravitational waves is a key motivation for such evolution codes.

The purpose of this chapter is to give an overview of the generic settings and methods used for our simulations in General Relativity (GR). We introduce the framework, settings and numerical methods which we used in most of our numerical evolutions, both for black hole simulations (Chapter 5) and gravitational wave simulations (Chapter 6). This especially covers information about the evolution scheme, formulation of the equations, numerical domain and boundary conditions.

Formulation and evolution scheme

Formulation of Einstein's equations

The evolution is performed with the first-order reduction of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of Einstein's equations, also called FOBSSN hereafter. This system of equations was introduced by Brown et al. in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], and is described in more details in Appendix A. Let us recall here the main features of this system and the motivation to use it. The BSSN formulation, as mentioned in Chapter 2, is a successful way to solve Einstein's equations numerically. It relies on a careful choice of the dynamical variables as well as a subsequent rewriting of the equations, and especially the Ricci tensor, as well as the use of constraints. The gauge variables from the 3+1 decomposition, the lapse function α and the shift vector β i , remain dynamical variables. The 3-metric γ ij is decom-posed with a conformal factor ϕ (the logarithm version is used in FOBSSN) and a conformal metric γij . The extrinsic curvature tensor K ij is split into its trace K, promoted to an independent variable, and a conformal traceless part Ãij . Finally, a new independent variable is added to the system to help reexpress the Ricci tensor of the conformal metric, that is the conformal connection vector, noted as Λi in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF] (we stick to this notation). To make the process covariant, a fiducial metric γij (along with fiducial connection coefficients Γi jk and the associated covariant derivative Di ) are introduced. They are not dynamical, but can depend on space. In what follows (and in compliance with the hypotheses from [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]), we use the flat metric in the selected triad as fiducial metric. In particular, within the Kadath library, we can either use a Cartesian triad, or an orthonormal spherical triad. This implies that the determinant γ is 1.

Starting from the 3+1 quantities given above, these FOBSSN variables are obtained as1 :

ϕ = 1 12 log γ γ , (4.1a) γij = e -4ϕ γ ij , (4.1b) 
K = γ ij K ij , (4.1c) Ãij = e -4ϕ K ij - 1 3 γ ij K , (4.1d) Λi = γjk Γi jk -Γi jk . ( 4.1e) 
Furthermore, the first-order reduction implies that only first-order derivatives are allowed in the equations. To achieve this, new independent variables (along with constraints) are introduced: α i , β j i , ϕ i and γkij . They are respectively constructed from the fiducial covariant derivatives ( Di ) of α, β j , ϕ and γij . Finally, as the gauge used involves also two time derivatives of the shift, the variable B i is introduced as related to ∂ t β i :

∂ t β j = β k Dk β j + α 2 GB j + S j β , (4.2a) ∂ t B j = β k Dk B j + e -4ϕ H ∂0 Λj -ηB j + S j B . (4.2b)
For initial data, we construct B i such that ∂ t β i = 0. The choices for gauge functions G, H, S j β and S j B are given in Sections 5.1.1 and 6.2.1. The value of η is discussed below.

The solution to the FOBSSN system is also an Einstein solution as long as the constraints resulting from the system are satisfied. We refer to them in the following manner (see definitions in Appendix A.1.1):

• GR constraints: the Hamiltonian and momentum constraint coming from Einstein's equations, noted H and M i . In the evolution, they are given by

H = e -4ϕ R -8 Di ϕ i -8γ ij ϕ i ϕ j + 2 3 K 2 -Ãij Ãij = 0 , ( 4.3a) 
M i = Dj Ãij + 6 Ãij ϕ j - 2 3 Di K = 0 . (4.3b)
Details about how to compute the conformal Ricci scalar are given in Appendix A.1.1.

• BSSN constraints: the determinant constraint γ = γ (= 1 in our case) and the connection constraint dubbed G i :

γ -1 = 0 , (4.4a)

G i = Λi -γkl Γi kl -Γi kl = 0 . (4.4b)
• Trace constraints, as some quantities are supposed to be traceless:

Ãi i ≡ γij Ãij = 0 , (4.5a) γ k ik ≡ γjk γijk = 0 . (4.5b)
The latter is a consequence of the determinant constraint.

• First-order (FO) constraints, introduced by the first order reduction:

A i = α i -Di α = 0 , ( 4.6a) 
B j i = β j i -Di β j = 0 , ( 4.6b) 
C i = ϕ i -Di ϕ = 0 , ( 4.6c) 
D kij = γkij -Dk γij = 0 . (4.6d)
The FOBSSN system implements constraint damping for those. This means that terms proportional to these constraints are added to the evolution equations, in order to reduce any constraint violation which may occur numerically. Constraint damping is illustrated for the scalar wave equation in Section 3.3.3.

We perform exclusively free evolutions, meaning that we don't solve the constraints during the evolution 2 . In the continuum limit, provided that initial data satisfy the constraints, and that correct boundary conditions are provided, Brown and collaborators show that constraints are propagated by the evolution. As such, they constitute good measures of the numerical errors. Indeed, because of finite numerical precision, they don't actually vanish identically, but rather should converge to 0 when increasing resolution. More precisely, we expect spectral convergence (see Section 2.5.2). In the results we present, we mostly resort to convergence with respect to the infinity norm (denoted as ∥.∥ ∞ ), that is the maximum of the absolute value of a given field evaluated at all collocation points. It could be feared that outliers may spoil insight that could be obtained with, say, the L 2 norm. But since spectral methods are global through the intricacy between coefficients and configuration spaces, the infinity norm still gives an insight on global behavior. Note also that these errors are given in code units throughout our work. We consider settings where relevant scales are of order one: for instance, the black hole mass, or characteristic length scales for the Teukolsky wave (and we have c = G = 1). Moreover, we are more interested in convergence properties than in exact values, so it matters more how errors compare or evolve, not how large they are out of context. We also limit quantitative comparisons within settings with the same physical content, so that scaling the magnitude is not an issue. Finally, please be aware as well that when we talk about building initial data, we rather refer to the ADM quantities. In this context, the Hamiltonian and momentum constraints are computed from those, as

H = R -K ij K ij + K 2 , ( 4.7a) 
M i = D j K ij -D i K , ( 4.7b) 
where the Ricci scalar R and the covariant derivative D i are computed by Kadath with the 3-metric γ ij (with which indices are raised and lowered too). Because these quantities are calculated before generating the FOBSSN variables, it may lead to small differences on the precise values between them and their counterpart at the start of the integration. The evolution equations in the FOBSSN formulation, as well as the expression of characteristic fields (and the converse transformations to retrieve dynamical variables from them), are recalled in Appendix A.1 in the way they are presented in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]. We are particularly interested in using this first-order reduction of the BSSN system because it allows us to envision multidomain simulations. Indeed, as presented in Section 2.5.2, and exemplified with the wave equation in Chapter 3 (Section 3.1.3), multidomain computations make it possible to split the whole numerical domain into smaller portions, which can be considered as individual initial-boundary value problems. However, we want that these subdomains communicate and that information be transferred smoothly between them. To achieve this, the characteristic decomposition of the system provided by Brown et al. turns out to be very helpful and allows us to implement domain matching with penalties on incoming characteristic fields. Obviously, they can also be of interest for regular boundary conditions at the edge of the global numerical domain. Though multidomain simulations might not be critical in the first applications that we present in this work, they are very relevant to situations where increased resolution is needed in some regions of the computational domain -say, for example, around black holes in a binary -or to be able to tackle discontinuity while still using spectral methods, by placing these discontinuities at domain boundaries.

In the FOBSSN system, we use σ = 1 in ∂ t Λi to be consistent with the characteristic structure exhibited in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]. The gauge parameter η is set to 2 [START_REF] Van Meter | How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture[END_REF]; for example, the corresponding parameter is set to 2/M in [START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF][START_REF] Bernuzzi | Constraint violation in free evolution schemes: Comparing the BSSNOK formulation with a conformal decomposition of the Z4 formulation[END_REF][START_REF] Hilditch | Compact binary evolutions with the Z4c formulation[END_REF]; in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], Brown and collaborators instead mention η = 3/(4M ), and the fact that it can vary in space so that M is the relevant mass scale locally. Unless otherwise specified, the constraint damping coefficients are κ α = κ β = κ γ = 1 and κ ϕ = 0 (as explained in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], this last one is required for strong hyperbolicity).

Time integration scheme

The library currently offers two main possibilities for the integration scheme: a 4th-order Runge Kutta scheme (RK4) and a 3rd-order Adams-Bashforth scheme (AB3) 3 . For a given time step, the AB3 scheme is 4 times faster because it doesn't involve substep computations4 . It could be expected that RK4, which is supposed to be more stable, could handle larger time steps at a given resolution (and thus a larger Courant factor), but we haven't checked that. In general, we have not thoroughly investigated the time step dependence or the influence of the scheme. In a few tests with different time steps, the main limitation seemed to be coming from the spatial resolution. Additionally, we are still in the process of obtaining stable simulations and not trying to reach most effectively a certain precision. Within this purpose, we haven't noticed qualitative differences between the two schemes, which could encourage us to favor one over the other.

The time integration can be stopped early if some criteria are met. A few of such criteria are already implemented in the library (see Appendix B.2). The user can either select an existing criterion, or, if need be, implement their own in the library. In our case, we check every ten time steps that the maximum of all dynamical fields at all points doesn't exceed 10 3 (with NaN checking) -which would indicate undesirable divergences. This situation is what we refer to as a crash, and the corresponding time of crash (thus precise within 10 time steps).

At the end of each time step, some additional processing is performed. Just like a number of references (notably Brown et al. [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF] and Tichy [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]), we subtract the trace of Ãij -and respectively γij γkij as well -, so that the trace constraints are satisfied even if numerical noise make them depart from the tracefree state. For Runge-Kutta evolutions, this is performed at the end of the full time step, and not at each substep. Additionally, like Meringolo et al. [START_REF] Meringolo | A spectral method algorithm for numerical simulations of gravitational fields[END_REF], we could enforce the determinant constraint as well, by dividing the conformal metric by the inverse third power of the determinant 5 . In experiments so far, we have found that enforcing the determinant constraint this way was rather detrimental to black hole (BH) simulations and rather beneficial for gravitational wave (GW) simulations.

Filters

Just like for the wave equation (Chapter 3), some filters are applied. We have found them crucial when experimenting with GR simulations, and to turn down some divergences, as widely suggested by the literature (see for instance [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF][START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF][START_REF] Meringolo | A spectral method algorithm for numerical simulations of gravitational fields[END_REF][START_REF] Szilágyi | Key elements of robustness in binary black hole evolutions using spectral methods[END_REF][START_REF] Szilágyi | Simulations of binary black hole mergers using spectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]). The same kind of filter is actually applied at two different stages: the whole right-hand side of each evolution equation is filtered (having an effect in RK substeps), and at the end of each full time step, every component of every tensor (in the given triad) is also filtered. We would like to emphasize here that because the filter is applied after the trace removal, the trace constraints are not satisfied to machine precision, as could be expected from an algebraic operation. They rather experience the same kind of convergence than the other constraints. It was checked that without filter, the traces are actually removed properly, with values reflecting machine precision noise. Following Orszag's 2/3 rule [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF][START_REF] Orszag | On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components[END_REF], the filter that we use cancels the higher third of angular coefficients (θ and φ independently, in Fourier decomposition). Let us mention that we don't choose, in general, the number of angular points to be related to each other, like it is done for instance in works which rely on filters on spherical harmonics, such as [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] or [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF]. So far, our few tests with such kind of relationships have not exhibited better behavior.

The filter also applies an exponential cutoff on the r coefficients, as performed for example in the SpEC code [START_REF] Szilágyi | Simulations of binary black hole mergers using spectral methods[END_REF] and reproduced in bamps [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF]. The i r -th r coefficient is multiplied by exp -36 i r N r -1 64 with 0 ≤ i r ≤ N r -1. This effectively means that most of the coefficients are unchanged, the last coefficient is zero to machine precision, and the transition is fairly smooth. Before starting the integration, the trace removal operation and the filters are applied a first time 6 . Some inconclusive additional experiments have been performed with filters supposed to guarantee regularity of the fields. We have tried to use the spherical harmonics decomposition on Cartesian components of tensors (motivated by [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] for instance). In this case, we make sure that the highest allowed l number has all m spherical harmonics accessible with the selected number of points in φ. We also tried other regularization enforcements inspired by Galerkin bases implemented in Kadath's elliptic solver and/or to cancel coefficients under a given threshold. The aim of such filters was to prevent remaining divergences but they haven't proved successful yet and thus will not be further described here (see Section 5.2.4).

Numerical domain and space discretization

We now turn our attention to the settings that we used for the numerical domain: type of space and coordinates, resolution, and boundary conditions.

Type of numerical domain

Both the black hole and gravitational wave simulations are performed with the Space_spheric class of the Kadath library. This class of Space object represents space in a spherical manner, with spherical coordinates r, θ and φ. Unless otherwise specified, tensors are decomposed in the corresponding spherical orthonormal triad:

(dr, rdθ, r sin θdφ) for forms and ∂ r , 1 r ∂ θ , 1 r sin θ ∂ φ for vectors. We write tensor components with indices r, θ and φ, but it is understood that these are not the components in the natural coordinate tensor basis. Note that even when employing the Cartesian triad, spherical coordinates are used for the space dependence of fields. Spherical coordinates and the spherical triad are actually better adapted to the physical problems that we are dealing with. Tensors with Cartesian components would require additional multiplication by trigonometric functions, and therefore additional coefficients to represent them faithfully. The higher the rank of the tensor, the more coefficients needed, the more resources required.

The whole numerical domain is built from several subdomains (detailed in Section 3.1.3), which we also call domains when there is no ambiguity:

• a central nucleus, extending up to r = r in (we adopt this notation which is well-suited for BH simulations due to excision). The peculiarity of this domain is that regularity at the origin r = 0 needs to be tackled;

• a certain number of contiguous non-overlapping spherical shells, each one satisfying r i ≤ r ≤ r i+1 where r i 's are given by the user at object construction (there are collocation points on the boundaries);

• possibly a last domain which uses compactified coordinates in order to range from the second-to-last domain to radial infinity.

We sometimes refer to these subdomains by their respective number (especially for multidomain simulations), starting at 0 for the nucleus and increasing with r. We actually don't use the compactified type of domain and thus the numerical domain stops at a certain r = r out , at which we need to provide boundary conditions. Note that in these kinds of domains, the library imposes a symmetry with respect to the equatorial plane (either symmetric or antisymmetric). This means that the θ coordinate spans 0, π 2 (with evenly spaced points, including boundary values). The corresponding spectral basis is accordingly composed of either sines or cosines of a given parity (for example only even cosines). Meanwhile, φ spans [0, 2π[ with evenly spaced points; the spectral basis includes all cosines and sines.

Following early experiments with the GW simulations, which incentivized further work on the scalar wave equation (see Sections 3.4.3 and 6.2.3), we keep the resulting regularized operations for GR evolutions: the regularized division by r for an even Chebyshev basis (relevant at the origin) and the regularized division by sin θ for an even cosine basis (relevant on the axis). We shall further experiment with a regularization in case the function of θ expands in a basis of odd cosines (abbreviated "reg cos_odd") and test its impact (consistency would argue for the inclusion of that regularization as well). In the odd cosines basis, the coefficient involved is still the first one, namely the coefficient of cos θ (which cannot be divided by sin θ). Once again, in the division by sin θ, we choose to first remove the value on the axis from the last coefficient, before following the usual division operation. For a function f (θ) = N j=0 a j cos((2j + 1)θ), the value on the axis is the sum of coefficients: f (0) = N j=0 a j . The process accounts to replacing a N by a N -f (0) before computing the division normally. 7 This is done every time the division by sin θ is performed, which, within the library, can occur for terms which have a non-vanishing value on the axis. It has been checked that this case arises only in terms that, once combined with others, vanish on the axis. An example of such a situation is in the computation of the covariant derivative of a rank-2 tensor, say Dφ γθφ : 8Dφ γθφ = 1 r

1 sin θ ∂ φ γθφ + γrθ + cos θ sin θ (γ θθ -γφφ ) . (4.8)
Individually, the γθθ and γφφ terms don't vanish on the axis -and they are computed separately in Kadath -but their difference does.

When presenting results, we specify whether this regularization is used, and discuss its impact.

Boundary conditions and domain matching

We need to provide boundary conditions at the outer boundary of the numerical domain. As mentioned in Section 2.4, formulating appropriate boundary conditions for evolutions in GR can be daunting, especially if these conditions are to preserve the constraints. In our work, we have not yet implemented constraint-preserving boundary conditions and have stuck with simpler ones. We leave this possibility as a later refinement, because in the most advanced results that we present, they don't seem to be the limiting factor. It is indeed possible to check this, for example by pushing the boundary further out. Just like the evolution equations, boundary conditions are provided by the user in the simulation input file, as character strings passed to the System_evo object, and as such, should be of the form ∂ t u = . . . , where u is one of the dynamical fields. More elaborate boundary conditions which don't satisfy this requirement should be implemented in the library first.

The easiest boundary condition to implement, and which could potentially be relevant for the BH simulations, is a strongly-imposed static, or freezing, boundary condition. It consists in replacing the evolution equation on the outer boundary by the condition ∂ t u = 0, for each dynamical field u. The next type of condition that we use is a strongly-imposed radiative condition, or Sommerfeld condition. In its basic version (which we rely on), it expands on the assumption that the field u(r, t) can actually be cast as an outgoing spherical wave u(r, t) = f (r -t) r . Computing partial derivatives leads to:

∂ t u = -∂ r u + u r . (4.9)
This kind of boundary condition is often used in BSSN evolutions. In our setting, it means that we apply this to every component of every dynamical field, in the selected triad (so mostly the orthonormal spherical triad). To be more precise, the reference value for a given field has to be included within the boundary condition, and it's the difference u -u ref which is radiated away. The reference is specified in the corresponding chapters.

Penalty boundary conditions

As we have described in previous chapters, boundary conditions can not only be enforced through strong conditions, but rather using penalties which are wellsuited to spectral methods. See for example the simpler case of the wave equation in Section 3.2.3. The penalty method, which we recall below, can be employed at the outer boundary, but foremost it is the way we implement multidomain communication. Subdomain matching is nothing but boundary conditions, except that the source is coming from the neighboring subdomain. In this framework, the boundary condition is included as a penalty term inside the bulk evolution equation, as

∂ t u = EOM(u) + κ pen δ(r -r BC )BC(u) ≡ EOM(u) + P (u) , ( 4.10) 
where EOM(u) refers to the usual equations of motion for the dynamical fields u; κ pen is a penalty coefficient described below; the location function is the Kronecker delta of the boundary radius (in the equation above, the space discretization is implicit and we represent it with the Dirac distribution); and BC(u) gives the boundary condition (such that in the continuum limit, BC(u) = 0). P (u) gathers all the contributions outside of the equations of motion and we refer to it as the penalty term.

The choice of a first-order system precisely allows us to resort to such penalty methods on characteristic fields. Incoming characteristic fields must be provided with a source term (either from the corresponding field in the neighboring domain, or as a boundary prescription). On the other hand, outgoing fields don't have a boundary condition, their evolution equation is enough.

As explained in the case of the wave equation (Section 3.2.3), it is easier for us to always consider the same normal pointing to increasing r. This is because fields are always defined in the whole subdomain. As a consequence, the normal points outwards at the outer boundary of a domain, and into the domain at the inner boundary. Hence the sign of the characteristic speed of incoming fields differs between the inner boundary and outer boundary of the domain. With the signs chosen for the characteristic decomposition in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], at the inner boundary, outgoing fields have positive speeds. Conversely, a positive speed at the outer boundary corresponds to an incoming field. This is natural when reminded that the domain boundary is arbitrary and could be removed.

Before computing the penalty for a characteristic field, the sign of the related speed has to be checked. In practice, we implement this through a structure within Kadath called user-defined operators (class Ope_user), which permits the call in the System_evo object to a function defined by the user. In the present case, for each characteristic field, the function checks the sign of the corresponding characteristic speed at every point on the boundary and returns either 0 or the chosen penalty P (u). Because fields are defined in the whole numerical subdomain anyway, the user-defined operator takes care of the Kronecker delta function at the same time. Here, for an incoming characteristic field u c , the boundary condition is BC(u c ) = u BC c -u c , where u BC c is either the boundary condition prescription, or, for domain matching, the value of the same characteristic field, taken at the same point in the neighboring domain 9 .

As a side note, we choose to perform all of the projections in the native domain, before importing them in the neighboring domain. To understand the point, consider for example the reconstruction of the normal part of B i , B s (Equation (A.17e)).

It involves the penalty for the normal projection of the shift β s . The matter is, the whole shift β i is a characteristic field, we could thus build a penalty on it: (2) -β i, (1) , assuming it is supposed to go from domain 2 to domain 1. By doing so, the final penalty for B s involves a term s (1) i β i, (2) -β i, (1) .

P (2)→(1) (β i ) ∝ β i,
On the other hand, if we first project, we get a penalty with s (2) (1) . The later solution seems more appealing and consistent, although for functioning simulations the difference should be small. The few tests performed with both did not show much difference, and at least it doesn't seem to be the cause for our main concerns, so we leave a thorough investigation of this matter for a later time.

i β i,(2) -s (1) i β i,

Penalty coefficient

To derive the value of the penalty coefficient, an analysis of the semi-discrete system is required. It is based on a non-growing energy argument, and examines consistency with the continuum limit and of multidomain settings. Such derivations are performed in [START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF] for the wave equation and in Section IV of [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] for the first-order GHG system for example. However the BSSN system is not symmetric hyperbolic in the common gauges and therefore there is no energy estimate in the first place. Still, just like these derivations are established for Legendre polynomials but used with the Chebyshev expansion nonetheless, we employ the given penalty factor and empirically observe its relevance. It is expressed as follows:

κ pen = |µ c | × γ ij s i s j × N r (N r -1) 2 × 2 r max -r min . (4.11)
Here, µ c is the characteristic speed of the corresponding field and s i = (dr) i is the normal to the boundary and appears through its length, computed with the inverse physical metric γ ij . The third term represents the inverse of the Legendre spectral weight of boundary points, N r being the number of points in r. The last term is a scale factor, appearing as an inverse, taking into account the transformation from numerical to physical coordinates: r min and r max are the minimum and maximum values taken by r in the given subdomain. For the nucleus, as a legacy of early tests, we additionally multiply this penalty coefficient by a factor of 2. We have not proved that this is legitimate or expected, nor that this is crucial at the current stage. Let us finally mention that some experiments were performed without realizing the need for the first two terms, and incorporating them did not significantly change our results. This leans towards some flexibility regarding the exact value of these penalty coefficients (within a range), rather than a single predetermined and necessary value.

Reconstruction

Once penalties on characteristic fields are computed, the penalty terms for the dynamical variables are retrieved through the converse transformations giving dy-namical fields from characteristic fields (Equations (A.17) to (A. [START_REF] Baiotti | Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole[END_REF])). As explained in [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] or [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF], it can be seen as a matrix multiplication on the state vector of dynamical fields. We wish to emphasize that [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] was a very helpful resource to understand the concrete procedure to apply penalty methods on characteristic fields. In simplified notations, let us write the state vector u, the vector of characteristic fields u c . A is the matrix multiplying radial derivatives, S the source vector for the differential equations, such that EOM(u) = A∂ r u + S. Let M be the transition matrix from u to u c : u = M u c . Then, penalties on characteristic fields

P c (u c ) are applied to M -1 ∂ t u: M -1 ∂ t u ← -M -1 A∂ r u + M -1 S + P c (u c ) . (4.12)
Finally, multiplying by the matrix M leads us back to

∂ t u ← -M M -1 A∂ r u + M M -1 S + M P c = EOM(u) + P (u) (4.13)
with the penalty P (u) = M P c (u c ) being simply added to the usual equations of motion. Note that this procedure is fully coherent with a linear system with constant coefficients, where matrices A and M can be moved inside partial derivatives, thus yielding the evolution equations for the characteristic fields (with M -1 AM the diagonal matrix of characteristic speeds). Although in our case A, S and M depend on the fields u, recall that the characteristic decomposition represents a linear perturbation around a fixed background anyway.

Penalty variants

At the outer boundary, we actually use two variants of these penalty conditions, in order to make the use of constraint damping (CD) possible and consistent. This was motivated by work on BH simulations which remained unsuccessful when combining penalty methods at the outer boundary, and constraint damping. Because the constraint damping terms are part of the evolution equations, they contribute to characteristic fields (as can be seen from their expressions in Equations (A.15) and (A.16)). Leaving those CD terms in the boundary condition however, would result in a different physical condition which can act like a reflection. It is illustrated in Section 3.3.3 for the wave equation. As discussed in the results section, ignoring this prevented us from fully using constraint damping. Hence, we consider two alternatives:

• "modified κ CD ": the constraint damping coefficients10 κ α , κ β and κ γ , referred to generically as κ CD , can depend on space and are chosen to vanish on the outer boundary. They are taken as constant everywhere else. The system is otherwise unchanged.

• "modified penalty": the CD coefficients are unchanged and remain constant throughout the numerical domain. However, characteristic fields are split into a CD and a no CD parts:

u c = u CD c + u no CD c
, the CD part being composed of terms with κ CD . Instead of using the total characteristic field u c in the boundary condition, the "no CD" part is used instead, with the penalty being proportional to u no CD c (t = 0) -u no CD c . The difference between both approaches is that in the second one, κ CD = 1 on the outer boundary, hence the constraint damping terms still appear in the bulk part of the evolution equation, and are present in the reconstruction of penalties for the dynamical variables. So far, we haven't used these variants for domain matching though, as domain boundaries are not physical.

Additional numerical treatment on initial data

In order to increase complexity progressively, we might be interested in removing the dependency in one or more coordinates. For instance, in the case of the m = 0 Teukolsky wave (see details in Sections 6.1.1 and 6.1.3), there should be no dependence in φ. However, because the fields are obtained numerically, some small coefficients in φ might appear. Moreover, some tensor components expected to vanish might also have negligible values. In order to avoid undesirable sources of noise, we clean the data by canceling those coefficients and tensor components. To do so, we remove all φ coefficients except for the constant φ ones. For tensor components, we actually rely on the m = 0 Teukolsky-like wave to empirically check which ones are supposed to be null. These are the following: φ components of rank-1 tensors β φ , B φ , Λφ , α φ , ϕ φ ; off-diagonal φ-components of rank-2 tensors γrφ , γθφ , Ãrφ , Ãθφ , β φ r , β φ θ , β r φ , β θ φ ; components of γkij with exactly one occurrence of φ, plus γφφφ . In an improper manner, we refer to such refined initial data as the axisymmetric case. It is improper because we haven't based our treatment on theoretical definitions of axisymmetry, and for instance the Kerr black hole, which is axisymmetric, doesn't satisfy γrφ = 0. Still, as it appears from numerical results, this treatment is currently a key for stability of our simulations.

The same kind of treatment was applied to obtain what we call axisymmetric data for the Schwarzschild black hole. In the case of Schwarzschild, we could also apply the recipe to remove θ contributions (and we know exactly the expression for the fields so we can retrieve spherical symmetry by suppressing the right contributions). This was relevant for early runs of Schwarzschild evolutions, whose initial data were not devoid of noise (although it seems more straightforward, noise-free data were constructed afterwards). Ultimately, we want Schwarzschild evolutions (and GW simulations) to be performed in full 3D and to be robust to noise. The library was designed for generic 3D problems and is thus not optimized towards, say, spherical symmetry. Note that in Kadath, it is not possible to use a single point in φ, the minimum is 4. Likewise, we use at least 5 points in θ.

To add noise to initial data (only done for Schwarzschild so far), here is how we proceeded. The numerical domain for the 3+1 quantities was not the same as the numerical domain for the evolution. We first compute all fields in the departure grid and call the spectral expansion to evaluate them at the collocation points of the target numerical domain. When doing so, Kadath actually needs to navigate with Cartesian coordinates, for compatibility issues between various possible coordinate systems. This introduces a little bit of error, which then translates into field values which are no longer exactly angle-independent. In turn, those dependencies populate tensor components that initially vanish during the evolution. In the initial data, this noise can be seen as small coefficients for the non-constant angular functions.

Note on numerical resources

The evolution schemes are only implemented for sequential calculations so far. We wish to make it parallel, and preliminary work has been devoted to it (with support from a research engineer). However we are facing technicalities and keep it as a future project.

It is thus technically possible to run these evolutions on a work station, or even a laptop. This is what we did for scalar wave evolutions. For GR simulations, we performed a number of them on a work station as well. There are two main limitations however, which encouraged us to use the local cluster Tycho (despite it being slower).

The first advantage of running on a cluster is the possibility to parallelize by sending several jobs simultaneously. This can be used to vary the spatial resolution for instance.

The other drawback of a local work station is the disk usage limitation. As an example, the prototypical BH simulation presented in Section 5.2.1, which takes place in a single spherical shell with N = (91, 5, 4), generates save files of around 3.3 M B each. These files contain the field configurations for all FOBSSN variables. Since we save the fields every 100 time steps and the simulation completes (10 6 AB3 time steps), the 10000 files add up to around 32 GB. The library prints a computational duration of 457404 s ≈ 127 h ≈ 5.3 d. The human elapsed time can sometimes be larger than that because of occupation of the node by other processes. Still the cluster provides a generous wall-time of 15 days.

Changing space and time resolution is the prominent leverage for modifications of the computation's duration, along with going multidomain. Multidomain computations involve many more calculations for characteristic field penalties. When importing data from the neighboring domain, using direct copy of configurations instead of spectral interpolation for compatible grids reduced the computational time by a factor 2 to 3. A typical m = 2 GW calculation, such as shown in Section 6.3.4, lasts 154098 s ≈ 42.8 h ≈ 1.8 d. It is performed with 4 subdomains with N = [START_REF] Bantilan | Cauchy evolution of asymptotically global AdS spacetimes with no symmetries[END_REF][START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF][START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF] in each, and crashes after 14740 RK4 time steps. The typical file size is 15 M B, for a total of 22 GB.

For completeness, let us give an example for the scalar wave on our work station. The configuration is the first-order system, in the Cartesian triad, with Y 2,2 initial data, in a single shell with N = [START_REF] Bantilan | Cauchy evolution of asymptotically global AdS spacetimes with no symmetries[END_REF][START_REF] Baiotti | Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole[END_REF][START_REF] Bacon | Driving unmodeled gravitational-wave transient searches using astrophysical information[END_REF]. This is a fairly large angular resolution. We used the 1/3 filter on angular coefficients and exponential cutoff on r coefficients. The boundary conditions are enforced through penalties. The time step is 10 - This chapter is dedicated to simulations of black holes (BH). We build upon the generic framework presented in Chapter 4. In a first section, we focus on the specific framework and details for black hole simulations. Then we present the results that we obtained, mostly for a Schwarzschild black hole where all evolution equations, including the gauge, vanish to numerical precision. Finally, we discuss these results and give a glimpse of preliminary simulations which go beyond this simplified context and hint at further development for the library and its applications.

Setup for the black hole simulations

In order to obtain successful simulations, we follow a number a choices consistent with the results published by Tichy in [START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]. These references feature Schwarzschild black hole simulations using pseudospectral methods in spherical coordinates with the BSSN formulation of Einstein's equations. The work presented there exhibits many similarities with the methods we are willing to implement, and it is thus a valuable inspiration. It provides indications towards working simulations and thus can guide and inform us. Note however, a few differences:

• we use a first-order reduction of the BSSN system, and all variables are evolved (in Tichy's work, the shift is kept constant),

• tensor components are expressed in a spherical orthonormal triad,

• our spherical coordinates are not staggered at the pole and we don't use double covering (in fact, we even have symmetry with respect to the equatorial plane, so that θ runs from 0 to π 2 ),

• we don't use filters involving spherical harmonics (although some tests in this direction have been performed, they don't incentivize us to routinely use spherical harmonics at this point),

• we mostly resort to penalty methods on incoming characteristic fields for outer boundary conditions (although a few results with strongly imposed radiative conditions similar to Tichy's will be mentioned).

The goals that we want to achieve with our simulations are the following. We want to obtain long-lasting evolutions of a Schwarzschild black hole, which show no or little signs of instability growing in time. In units of the black hole mass M , we are aiming at time scales of the order of hundreds or thousands of M , to be comparable to the literature [START_REF] Alic | Towards a gaugepolyvalent numerical relativity code[END_REF][START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF][START_REF] Kidder | Black hole evolution by spectral methods[END_REF][START_REF] Lindblom | A new generalized harmonic evolution system[END_REF][START_REF] Meringolo | A spectral method algorithm for numerical simulations of gravitational fields[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]. We first use a gauge where all time derivatives vanish (numerically speaking) at initial time. We expect the numerical solution to reach a state which is almost stationary up to small numerical fluctuations; this state should be fairly close to the initial conditions. We would also like to assess the stability of such simulations against noise in initial data; in particular, as the analytic solution is spherically symmetric, we would like to introduce noise in the angular directions and witness no growing error modes. Of course, the logical trail of subsequent complexification would be to include a dynamical gauge on top of the black hole, and/or to have physical perturbations, in the form of a scalar field or gravitational waves, and analyze quasi-normal modes and dispersion. However, we have not achieved that yet and these prospects are discussed in Section 5.3.

Physical solution and gauge choice Analytic solution and initial data

Just as in Tichy's papers [START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF], or also [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF] for example, our initial data consist in a Schwarzschild black hole given in Kerr-Schild coordinates, within the 3+1 formalism. The main advantage of such coordinates is that they are regular all the way through the horizon, unlike, for instance, the Schwarzschild coordinates. Let us mention that this solution is a special case of the Kerr solution, as reminded in Appendix D of [START_REF] Gourgoulhon | A 3+1 perspective on null hypersurfaces and isolated horizons[END_REF]. The Kerr solution depends on two parameters, M and a, with M representing the mass of the black hole, and a its angular momentum (with a = J/M , J being the angular momentum). The dimensionless parameter a/M varies between -1 and 1, 0 corresponding to the Schwarzschild solution.

We recall below the expression of the 3+1 metric quantities: the lapse α, the shift vector β i and the 3-metric γ ij . These expressions are implemented using the Kadath library. The library is then used to compute the initial extrinsic curvature tensor through

K ij = 1 2α (D i β j + D j β i ) . (5.1)
Indices of the shift are lowered by the library with γ ij , and we use that ∂ t γ ij = 0. To comply with our numerical setup for the evolution (see Section 4.2), we use spherical coordinates (t, r, θ, φ) and tensor components are given in the spherical orthonormal triad.

With the notations ρ2 = r 2 + a 2 cos 2 θ (ρ = r for a = 0) and f = 2M r ρ 2 f = 2M r for a = 0 , we obtain:

α = 1 √ 1 + f (5.
2)

β i = f 1 + f 0 0 (5.3) γ ij =         1 + f 0 - a r (1 + f ) sin θ 0 ρ 2 r 2 0 - a r (1 + f ) sin θ 0 1 + a 2 r 2 (1 + f sin 2 θ)        
.

(5.4)

In the Schwarzschild case, the 3-metric reduces to a diagonal matrix with components (1 + f, 1, 1). Let us also mention that the horizon is located at constant

r = r H = M + √ M 2 -a 2
, which is r H = 2M when a = 0. From these, we obtain the initial data for the FOBSSN variables following the procedure described in Sections 4.1.1 and 4.2.3. Unless otherwise stated, we keep the orthonormal spherical triad for FOBSSN variables and for the evolution. We examine three types of initial data for the Schwarzschild black hole: usual initial data which are spherically symmetric1 (when nothing is stated); "axisymmetric" initial data; and data with "no symmetry", that is with θ and φ noise (see Section 4.2.3 for explanations). Other types of configurations are mentioned in Section 5.3.1.

Evolution equations and gauge choice

In Appendix A.2.1, the evolution equations from the FOBSSN system are given again in a more specific form which corresponds to our black hole simulations. In particular, we specify the gauge functions, in order to follow Tichy's prescription [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] for the lapse evolution 2 :

∂ t α = β k Dk α -α 2 K + S α , (5.5)
where S α is a function of space chosen such that ∂ t α = 0 at t = 0 (namely, it is the opposite of the remaining terms). According to Tichy's article, such a gauge choice for the lapse was a key to obtaining more stable evolutions and perform excision without boundary conditions more consistently. At early stages of our own work, switching to this gauge seemed to improve stability as well. However, much more work, along with many additions and corrections, were still missing, and we have not performed recent black hole simulations using another gauge (for example, the 1+log slicing used in Chapter 6). This kind of investigation could be an interesting track for future work.

For the shift, we follow the Gamma-driver prescription mentioned in Brown et al. [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], with G = 3/(4α 2 ) and H = e 4ϕ :

∂ t β j = β k Dk β j + 3 4 B j , (5.6a) ∂ t B j = β k Dk B j + ∂0 Λj -ηB j + S j B , (5.6b)
Like for the lapse, we keep the source term involved in the evolution equation of B j , S j B , chosen to make the corresponding evolution equation vanish at initial time. Note that we don't use such a source-term for β j (S j β = 0) because we actually initialize B j by using the shift's evolution equation, with the additional premise that ∂ t β j = 0. As stated in Section 4.1.1, we take η = 2. These gauge choices have the following consequence: at initial time, all evolution equations are vanishing (valid for Schwarzschild as well as Kerr of course). Along with suitable boundary conditions, this should ensure that it remains so, and that the system is actually stationary.

Just like the constraints, the evolution equations are vanishing only up to numerical error, even at initial time. Thus we expect to see some evolution, though it should be limited. Time derivatives should stay small, and the right-hand side of the system approximates a stationary solution, so we expect to reach a steady state. Reaching such a quasi-stationary state, and see it last, would be a good indication of the performance of our code. It is indeed a decent requirement for an evolution code to be able to properly tackle physically (but not numerically) non-evolving data. Finally, since we know the analytic solution -which is represented, at a given resolution, by the initial configuration -we can also use the deviation to the initial values as measures of the error.

Numerical setting Inner boundary and excision

To tackle the physical singularity and related divergences, we rely on the excision method, which means that we only evolve the fields within a numerical domain which excludes the singularity. In practice, this excised region corresponds to the nucleus of the spherical space described in Section 4.2 (hence the notation r in , which corresponds to the inner radius of the actual numerical domain of interest here). To be physically relevant, this excision boundary should be placed inside the horizon of the black hole, reflecting the popularized statement that nothing comes out of a black hole, and therefore we don't need to care about what's inside to know what happens outside. Dealing with excision numerically can be tricky though, especially for dynamical spacetimes, and may involve apparent horizon finders. We won't need such tools here as we are dealing with individual stationary black holes, for which we know the exact solution and we don't expect the horizon to move. What we still need to pay attention to, is the boundary conditions to apply at this inner boundary. Sensibly, we don't want to impose any, as all characteristic fields should be headed inwards (into the black hole and out of the numerical domain) and implying that no information should enter the numerical domain through the inner boundary. The slicing suggested by Tichy, which we adopt as previously stated, works in this direction. We still need to check that all characteristic speeds have the correct sign at the inner boundary -in our setup, at the inner boundary, outgoing fields have positive speeds. Thus, the inner radius of our domain should be chosen such that all characteristic speeds are positive. While physical characteristic speeds µ (±) = β s ± α comply with this requirement when we excise inside of the horizon, restraints come from the gauge sector, with the most stringent constraint occurring for characteristic field µ (β,-) = β s -e 2ϕ (see Appendices A.1.3 and A.2.1 for definitions and notations). It can be computed from the analytical solution and is given by, with the notations of Section 5.1.1:

γ = ρ 2 r 2 (1 + f ) 1 + a 2 r 2 cos 2 θ (5.7a) µ (β,-) = ρ r f √ 1 + f 1 √ γ φφ -γ 1/6 (5.7b) which reduces, for Schwarzschild, to µ (β,-) = f √ 1 + f -(1 + f ) 1/6
(which is a decreasing function of r). In the latter situation, we can even extract a critical linear relationship between r in and M such that the characteristic speed vanishes, approximated by r ≈ 2M 2.15 . For a mass M = 1, this gives r in < 0.93 (and for M = 0.8, r in < 0.74). Since we would like to have a unified setting with Kerr black holes, we also checked the value of this characteristic speed for several values of the Kerr parameter, keeping M = 1. The concern here is that, on the one hand, µ (β,-) no longer diverges to +∞ when r → 0, spoiling the insurance that excising sufficiently far in is enough to keep the signs right. Furthermore, the function is no longer monotonic, and might not have positive values when the Kerr parameter is too high. This behavior is depicted on Figure 5.1.

For a black hole with unit mass (M = 1), choosing r in = 0.75 satisfies the positivity condition for admissible Kerr parameters (approximately a ≤ 0.15). Let us also anticipate a little bit over the sections presenting results (5.2) and prospects (5.3), where the following remarks will be emphasized again. A significant amount of time and work was actually spent before realizing the potential importance of that condition on the characteristic speeds. During that period, the numerical setting was different: the black hole mass was M = 0.8 and the inner radius was r in = 1.5 = 1.875M (close to Tichy's choice for the inner boundary, r in = 1.85M [208]). The outer boundary was placed at r out = 60M , as described in the following paragraph. With these values however, the characteristic speeds µ (β,-) and µ (⊥,-) are negative, meaning that inner boundary conditions have to be provided. Still we used no boundary conditions and were able to obtain satisfactory results with this set up. Moreover, more recent work with a supposedly correct setup, has not shown better performance so far in comparable physical situations. Worse, placing the inner boundary further in for Schwarzschild increases the numerical constraint violation of the initial data, thus requiring us to increase the radial resolution (and increasing computational time and resources). This is true even at fixed M , as the initial profile for the Hamilton constraint violation (for example) is a decreasing function of r (see Figure 5.2). This is also evidenced by the difference in orders of magnitude in errors between subdomains in multidomain settings (Figure 5.12).

For those reasons, we indeed present a number of results in this improper excision setup. It seems reasonable to trust these results, given that the system is stationary, but this limitation should be kept in mind for future developments. A way to circumvent the limitation with Kerr could be to change gauge, or even to use a reformulation of the FOBSSN system which doesn't involve the variable B i (with a first-order-in-time shift evolution equation such as in [START_REF] Van Meter | How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture[END_REF] for instance).

Outer boundary

Let us now discuss the outer boundary of the numerical domain. In our strive to obtain stable simulations, we first tested r out = 10M , but soon changed to r out = 60M in order to get a configuration closer to some of Tichy's results [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] and still be within realistic features of the Kadath library. A few numerical experiments were carried out in order to assess the influence of the type of boundary condition and the position of the outer boundary on evolutions (see the end of the paragraph on space resolution). The corresponding results are given in the relevant section. Apart from those, unless otherwise specified, we use r out = 60M as outer boundary of the numerical domain along with penalty methods on incoming characteristic fields. In any case, we use the initial configuration as a reference for the boundary conditions, as it is the analytic solution. More explicitly, for radiative boundary conditions, the function radiated away is the perturbation u -u(t = 0) for every dynamical field u. This is the same choice as the work by Tichy [START_REF] Tichy | Black hole evolution with the BSSN system by pseudospectral methods[END_REF][START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] and others [START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF][START_REF] Yo | Improved numerical stability of stationary black hole evolution calculations[END_REF], except that we do it on Λi too, instead of keeping it constant at the boundary. Alcubierre and Brügmann [START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF] suggest that applying the radiative condition on Λi is fine when using a Gamma-driver evolution for the shift. The few experiments that we performed along the way with a constant conformal connection vector on the boundary did not show better performance. Thus we kept the radiative condition, but we haven't done a systematic check (especially because penalty methods showed better performance anyway, as discussed in the results section). For penalty methods, the incoming characteristic fields u c, inc are driven to their initial values with penalties proportional to (u c, inc (t = 0) -u c, inc ). This kind of freezing of incoming characteristic is also reported in [START_REF] Brügmann | A pseudospectral matrix method for time-dependent tensor fields on a spherical shell[END_REF] for example (citing numerical tests on Schwarzschild done in [START_REF] Lindblom | A new generalized harmonic evolution system[END_REF]), although they use the firstorder GHG system. The work towards successful black hole simulations led us to the two variants discussed in Section 4.2.2, and we specify which one is used when presenting results and discuss their performance.

A noteworthy remark at this stage is that at a given (radial) resolution, and everything else fixed, the initial constraint violation crucially depends on the position of the outer boundary, as illustrated by Table 5.1. It is not surprising per se, but further encourages us to consider multidomain simulations instead of very large numbers of points (limiting comparisons with other configurations of Tichy's work [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF]). For the elliptic solver within Kadath, a rule of thumb is to keep the ratio of shell boundaries within a factor 2. Still, we first want to test the scheme within a single numerical domain. We refer to these as the shell case, as the equations are solved in a single spherical shell. On the other hand, multidomain simulations involve multiple shells and necessitate subdomain communication. The latter is performed using penalty methods on characteristic fields (see Section 4.2.2). In the results section, we recall the domain boundaries used in such simulations. We dedicate the most attention to simulations with 2 shells, separated at r mid , with domain boundaries r in = 1.5, r mid = 30M and r out = 60M (M = 0.8), although simulations respecting the rule of thumb of radius doubling will be mentioned.

r out 5M 10M 20M 40M 60M ∥H∥ ∞ 1.

Space resolution

As mentioned previously, we use at least 5 points for θ and 4 for φ. In the case of Schwarzschild evolutions without noise, we actually stick to this minimum. For simulations with θ noise, we keep N φ = 4 but we explore N θ ∈ {5, 9, 13}. Finally, the basic setting that we use for the Schwarzschild black hole with full angular noise is N θ = 13 and N φ = 12, although a few tests were performed with N θ = 5 and N φ = 6. The radial resolution is mostly chosen in the following set: N r ∈ {21, 31, 41, 51, 61, 71, 91, 121, 151}, which have the correct form for the FFT.

We performed only few experiments with Kerr configurations so far. However, note that we can take N φ = 4 as there is no φ-dependence. There are still φ-components of tensors, and constraints, for instance M φ ̸ = 0 (as opposed to spherically symmetric or axisymmetric Schwarzschild). Regarding the number of θ-coefficients, we chose N θ = 9. This is motivated by the following observation for M = 1, a/M = 0.2, in a single spherical shell satisfying r ∈ [0.75, 60M ], with N = [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF][START_REF] Amaro-Seoane | Astrophysics with the Laser Interferometer Space Antenna[END_REF][START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF]. Looking at the coefficients of the Hamiltonian constraint H, we noticed that coefficients of index i θ = 4 are of order 10 -8 already. For index i θ = 6, which is the first filtered coefficient in the evolution, the order of magnitude is 10 -11 . The precision is hence limited by the radial resolution for such configurations with fairly low Kerr parameter. For clarity, because here there is no φ-dependence, we look at the constant φ coefficients3 . i θ = 0 then represents the constant θ coefficients, i θ = 1 corresponds to coefficients of cos (2θ) and so on.

Coming back to Schwarzschild, let us illustrate in Table 5.2 spectral convergence for initial data, with the infinity norm of the Hamiltonian constraint H and the radial component of the momentum constraint M r . It corresponds to a single spherical shell ranging from r in = 0.75 to r out = 60M , for M = 1. There are no (non constant) angular coefficients and the θ and φ components of vectors and forms, especially the momentum constraint, vanish identically. Additionally, plotting the coefficients of the lapse α (in absolute value and logarithmic scale), for a configuration with a large number of points, illustrates exponential decay of the coefficients (Figure 5.3). From that, it can be noticed that machine precision is reached for coefficients of index around i r ≈ 130. It suggests that increasing the number of points beyond this value won't improve much numerical results. It is also worth mentioning that a black hole M = 1 in two shells such that r in = 0.75, r mid = 30M and r out = 60M , with N r = 31 in each shell, has ∥H∥ ∞ = 1.6 × 10 -2 and ∥M r ∥ ∞ = 5.7 × 10 -3 , making it comparable to a resolution in a single shell between N r = 41 and N r = 51. Although it's less than double the number of points, the constraints have different orders of magnitude in both shells, and it might still be beneficial to use multidomain. Note that increasing resolution still yields spectral convergence for multidomain initial data, and for initial data with M = 0.8 (indeed, the potential issues with the corresponding parameters come from the evolution and not initial data).

Finally, let us explain the setup for the comparison between different positions for the outer boundary. The reference simulation is a M = 1 Schwarzschild black hole, in a single shell with r in = 0.75M and r out = 60M , and N r = 91 points in the radial direction. As already explained, keeping the same resolution while changing the boundaries of the numerical domain would affect error levels, and may blur any conclusions on the effect of the boundary position. In order to get a sensible comparison, we chose to vary both r out and N r , in order to get similar errors at initial time. It also correlates to the minimum spacing between two collocations points ∆r min , which is given, by

∆r min = r out -r in 2 1 -cos π N r -1 . (5.8)
The retained parameters, as well as the errors and minimum spacing, are summed up in Table 5 Table 5.3: Parameters chosen for the comparison between various positions for the outer boundary, for a shell simulation of a M = 1 Schwarzschild black hole (radial resolution N r and location of the outer boundary r out ). They are chosen such that GR errors H and M r are of the same order of magnitude. Coincidentally, the respective minimum spacings between collocation points ∆r min are also commensurate.

Time integration scheme

For most of the simulations presented in this chapter, the integration is performed using the third-order Adams-Bashforth scheme (AB3) with a time step of 5 × 10 -3 (in code units). Though a complete comparison with the fourth-order Runge-Kutta (RK4) scheme has not been performed, tests performed in the course of this work have shown no significant difference between the both of them for black holes simulations.

This choice for a time step is compatible with most of the runs that we performed, in various settings, while not being prohibitively low. Note also that we don't adjust the time step with the black hole mass at this stage, mainly because simulations were performed with only two different masses of order 1 (M = 1 and M = 0.8), and the main reason for changing the time step is rather the spatial resolution. When possible, the runs are performed for 10 6 time steps, which is the maximal number of steps allowed by the library at this stage. This is merely a parameter in the library that could be modified eventually and is not an actual limitation. Still, for complete runs, this means that we can reach a final time of 5000 in this context, which we deem satisfactory for black holes of mass of order 1 as it fulfills the goal we set. In most cases, we save all dynamical fields every 100 time steps (every 0.5 in time code units). Then when we describe results of long runs, we sample every 100 saves (every 50 in time code units).

As mentioned in Section 4.1.2, we enforce the trace constraints, but not the determinant constraint, at the end of each time step, and apply the filters as described there.

Numerical results for Schwarzschild black holes in a stationary gauge

In this section, we present the results of our black hole simulations, as introduced in the previous section. Here, only the case of a Schwarzschild black hole, in the fully stationary gauge, is discussed. We first compare the various types of boundary conditions and argue for the use of penalty methods. We also give a prototypical example of simulation and explain how the analysis is performed from there. Then, we showcase spectral convergence for simulations in a single shell, with initial data in spherical symmetry. Results of multidomain runs are introduced next. The impact of additional angular noise in the initial data is the topic of the final part of this section.

All along, we shall recall whether we're using the setup with proper excision (M = 1, r in = 0.75M ) or the earlier setup (M = 0.8, r in = 1.5 = 1.875M ); as well as the regularization in the division by sin θ for the odd cosines (dubbed "reg. cos_odd").

Outer boundary conditions and prototypical example

We test the influence of the outer boundary condition by performing the same runs with strongly imposed static boundary conditions, strongly imposed radiative boundary conditions and penalties on incoming characteristic fields with the modified κ CD variant (see Section 4.2.2). More discussion on the variants for penalty boundary conditions in Sections 5.2.2 and 5.2.4. In each case, we simulate a M = 1 Schwarzschild black hole, with the outer boundary at r out = 20M (N r = 51), r out = 40M (N r = 73) and r out = 60M (N r = 91). In this whole subsection, we don't use the cos_odd regularization. The time of crash in each case is reported in Table 5.4. An entry ≥ 5000 indicates that the run completed successfully. We haven't restarted it to push it further. In particular, by looking at the errors and some fields, no divergence is visible, hinting at an incoming crash It is immediately noticeable that strong static boundary conditions (BC) perform very poorly, whatever the position of the boundary. This is consistent with a remark in [START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF], but could be surprising at first since the system is supposed to be stationary, and the BC to be exact. It could become better when increasing resolution, but due to the bad performance, we haven't checked that. The strong radiative condition performs a bit better already, and as expected, improves when the boundary is further out. We illustrate the case of r out = 60M (N r = 91). Figure 5.4 shows the evolution of the Hamiltonian constraint and Figure 5.5 depicts the behavior of the lapse difference ∆α ≡ |α -α(t = 0)| at different collocation points, represented by different colors. Dark blue is the point on the inner boundary and the color gradient goes to dark red/brown for the outer boundary. Collocation points are regularly sampled, but this doesn't correspond to equally spaced points in the physical space. Although it might be hard to absolutely tell, it seems from the behavior of various fields that the outer boundary triggers the divergence, though it doesn't happen right from the start. An additional argument in favor of this interpretation is the improved behavior for a boundary placed further out.

We will soon discuss the case of penalty methods, but let us already emphasize how much better they perform. A possible contribution to this fact is that we impose the correct number of boundary conditions. Indeed, Tichy argues that imposing radiative conditions might actually be too many conditions, and that it is actually astonishing how well these perform in BSSN implementations [START_REF] Tichy | Long term black hole evolution with the BSSN system by pseudospectral methods[END_REF] (also citing work in [START_REF] Beyer | Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations[END_REF]). Using penalties instead of strongly imposed conditions may also be helpful. Let us mention that these results are also very consistent with early runs and experiments with M = 0.8 (although some additional corrections were missing). Indeed, in our very first tests, we got incremental progress with the following steps. We started with static conditions, and changed from 1+log slicing to the current slicing. We then changed to radiative conditions, and further improved longevity by moving the outer boundary from 10M to 60M (and paradoxically at the time, putting a more moderate radial resolution). At this stage, an additional benefit was to use the filter with exponential cutoff rather than the previously-employed onethird hard-cutoff filter (similar to what is applied to angles). For completeness, note also that the time step was 1 × 10 -3 and a few tests on the time step value were Collocation points are regularly sampled, but don't correspond to equally-spaced points in the physical space.

r out 20M 40M 60M ∥H∥ ∞ 1.15 × 10 -5 8.38 × 10 -6 8.30 × 10 -6 ∥M r ∥ ∞ 2.86 × 10 -5 2.31 × 10 -5 1.57 × 10 -5
Table 5.5: GR errors with penalty methods, for different outer boundary positions r out , for a Schwarzschild black hole of mass M = 1, in a single shell with r in = 0.75M . Although around one order of magnitude higher than for initial data, they are still commensurate.

carried out. Despite exponential divergences, first hints at spectral convergence were extracted from temporary plateaus in the errors. For spatial resolutions of N r = 51, 61, the simulation crashed between t = 600 and t = 700, that is the order of 800M . Still, the behavior was similar to what is depicted on Figures 5.4 and 5.5. Even though we wished to decouple difficulties and first avoid employing characteristic fields, the longevity of simulations only skyrocketed when resorting to them. We discuss more about "historical" progress with penalties in the next subsection.

As can be noticed from Table 5.4, imposing the boundary conditions through penalties makes long-lasting runs possible, up to a couple thousands M 's of time, and probably much longer. The prototypical stable evolution can be illustrated with the r out = 60M case. Later examples of stable runs qualitatively coincide with this one (while diverging ones look like the evolution with radiative boundary conditions). We thus give some details about it and explain how we extract the error indicators from it, as the procedure is to be repeated in the other configurations. Before fully delving into that, let us compare the performance with different boundary positions. As summed up in Table 5.5, the position of the outer boundary in this configuration doesn't seem to curtail or improve error levels, as they are of the same order (just like for initial data, see Table 5.3).

Figures 5.6 and 5.7 depict the results of the prototypical computation mentioned above. On the one hand, we show the infinity norm of the various errors (GR, traces, BSSN and FO, see Section 4.1.1), with time in logarithmic scale (the code units coincide with units of M here). For clarity about the procedure, we also show the GR constraints with time in linear scale. These plots show that there is some dynamics at "early" times (for a few hundreds of M 's), but then a fairly stationary state is reached. For this steady state, we define the error value to be the time average of the infinity norm. We arbitrarily set the starting time for the average at t = 1000 (some tests with, for instance, t = 2000, don't significantly alter the results). We show this with the vertical dash-dot magenta line on the graphs. The vertical dashed black line indicates a transition for the sampling period of data plotted on the graph (which causes the apparent qualitative change). In addition to these results about the constraint violations, Figure 5.8 shows the lapse difference ∆α, similarly to the radiative BC case. Like the constraints, the dynamical fields reach a steady state, which doesn't exactly match the initial analytic profile.

Spectral convergence in a single shell and spherical symmetry Convergence results

The prototypical simulation presented in the previous section is actually part of a suite of simulations which demonstrates spectral convergence of the scheme. Let us describe the setting for these simulations before showing convergence plots. The numerical domain is a single shell with r in = 0.75M and r out = 60M , with the black hole mass M = 1. Consistently with the results exhibited in the previous section, we stick with penalty methods for the outer boundary conditions. The initial data are the proper spherically symmetric data, therefore we don't apply any angular filter. The space resolution is N θ = 5, N φ = 4 and we vary N r . We then experiment with the two variants for penalties: modified κ CD and modified penalty (see Section 4.2.2). We also perform both sequences of runs with and without the cos_odd regularization.

Errors are estimated with the constraint violations, as explained in the previous section (5.2.1). They are gathered as convergence plots in Figures 5.9 to 5.11. Note that for clarity, we plot on the one hand GR, trace and BSSN errors, for which each component is given (although the θ or φ components of vectors and forms may vanish identically and thus be omitted). On the other hand, for FO constraint violations, the infinity norm additionally aggregates all components of the corresponding tensor. We comment and complement the depicted results below.

First and foremost, notice that when using the cos_odd regularization, a θ component appears (for instance, M θ ). As a matter of fact, even though initial data are devoid of such components and angular dependence, the expected cancellations in the regularization procedure don't quite succeed, hence creating small θ noise. However, even without the angular filter, this noise remains negligible and doesn't spoil the expected spectral convergence. As the level of this noise is already close to machine precision and relates to the θ dependence, it is not worrisome that θ component don't exhibit spectral convergence themselves. Some more comments about the θ dependence are developed in the section with initial data containing such noise (Section 5.2.4).

Configurations with N r = 31, 41, 51 are very short-lived (crash for t of order unity). Then, configurations with N r = 61, 71, 91 show no diverging behavior (just like in Figure 5.6. Simulations with N r = 121 have a different outcome depending on the use of the cos_odd regularization. Without regularization, they are stable and reach t = 5000. With regularization however, they stop very soon (t ≈ 100 for modified κ CD ; t ≈ 30 for modified penalty). Adding the angular filter doesn't cause improvement. Finally, configurations with N r = 151 only survive for about a hundred time steps when the step is ∆t = 5 × 10 -3 . This could be due to the CFL condition, so we tried to reduce the time step to ∆t = 2.5 × 10 -3 . With the smaller time step, we recover long-lasting runs with no divergence. Note however that now the expected final time is also reduced (t = 2500), due to the fixed number of time steps. For the sake of completeness and transparency, it should be mentioned that due to an electric power shortage, runs with N r = 151 did not complete. They were stopped at the following times (still showing no divergence): t ≈ 2050 for modified κ CD without regularization; t ≈ 1150 for modified κ CD with regularization; t ≈ 1250 for modified penalty and with regularization; the modified penalty without regularization had not been performed yet. We still computed the average from t = 1000, so there's only a limited number of points which contribute to it. Based on the other existing results and the initial trend of these runs, and because they are rather lengthy due to the higher resolution, we didn't deem worthy to restart the runs and bring them to an end. For all these reasons, in Figures 5.9 to 5.11, they are connected to the other points with dashed lines. We still include these points as being indicative.

Our results show very good spectral convergence for all the errors, except for the modified penalty variant, without the cos_odd regularization. In this setup, the GR errors, FO errors as well as the G r constraint, don't exhibit spectral convergence (Figures 5.10a and 5.11c). It seems that in this situation, increasing the radial resolution doesn't reduce the errors (and can even worsen them). Stated differently, this observation could be an argument either for the use of the regularization, or for the use of the other variant.

Penalty variants and constraint damping

As heralded in Section 4.2.2, the introduction of these variants for penalty methods at the outer boundary were motivated by the compatibility with constraint damping (CD). It was first noticed with the improper excision setting (M = 0.8): simulations combining κ CD = 1 with usual penalties on the whole characteristic fields would crash around t = 0.45, whatever the other settings. On the contrary, putting constraint damping aside by choosing κ CD = 0 permitted runs crashing after a few thousands of M . In addition to spectral convergence, increasing N r led to later crash, as illustrated by Table 5.6. Recall that in this alternative setting, a smaller radial resolution is required to achieve similar error levels and longevity. This is probably partly due to the smaller black hole mass, but also to the position of the excision boundary which is further in for proper excision (see Section 5.1.2 and Fig. 5.

2).

Further experiments, incorporating the three κ CD coefficients separately, yielded the following results. All runs with κ α ̸ = 0 crashed very soon, though decreasing κ α by orders of magnitude would slightly increase the duration. A run with only κ β = 1 and resolution N r = 41 ended at t = 2102, i.e. about 40% gain in duration. Using only κ γ = 1 resulted in the first full run with final time t = 5000 (= 6250M ) Table 5.6: Time of crash, in code units, for simulations of a Schwarzschild black hole of mass M = 0.8 in a single shell such that 1.875M ≤ r ≤ 60M . The simulations don't implement constraint damping (κ CD = 0) and impose outer boundary conditions with usual penalties on incoming characteristic fields.

with no signs of divergences. Adding κ β on top only improved error levels and stability, as for instance, N r = 31 also reached t = 5000. New indications of spectral convergence were obtained at this point, and for a short while we couldn't find how to consistently include κ α in the picture. We could not find errors in the implementation of the equations which could cause that either. Inputs and suggestions from David Hilditch, assistant professor at Instituto Superior Técnico in Lisbon (Portugal), must be acknowledged here, for he suggested to modify penalties at the outer boundary. Subsequent related discussions and experiments led to the two variants presented above. It also revealed an important algorithmic discrepancy, which turned out to have no consequences at this point. Even though simulations seemed fine with the usual penalty for κ β and κ γ terms, consistency encouraged us to apply the variants to all constraint damping contributions. With that, κ α = 1 no longer causes unsuccessful runs in a single shell.

Multidomain simulations

It appears, however, that the issue with κ α and characteristics and/or penalties might be more profound, as we haven't been able to obtain long multidomain black hole simulations with κ α = 1. This assertion holds whether we use, at the outer boundary, radiative boundary conditions, or the two penalty variants. Let us remind here that multidomain communication is ensured by providing, through penalties, the incoming characteristic fields from the neighboring domain. For these penalties, we use the whole characteristic fields, and don't implement the variants like for the outer boundary condition, as it doesn't seem appropriate. It might prove decisive but so far, we haven't tried to use the variants for domain matching. Note also that in the limits of success for gravitational wave simulations, usual characteristic fields seem correct there (see Chapter 6). Another feature which thwarts multidomain simulations is the cos_odd regularization, even with κ α = 0, and whatever the outer boundary condition. Corresponding simulations end after only a few M 's of time.

For these reasons, the results for multidomain presented here don't include the regularization, and have κ α = 0. As suggested by results in a single shell, and because some runs were already performed in the improper excision context, Table 5.7: Spectral convergence of errors on the lapse in multidomain simulations of a M = 0.8 Schwarzschild black hole. The numerical domain is composed of two shells. For each resolution N r , the table gives the maximum of the difference to the analytic solution ∆α, as well as the discontinuity at the subdomain boundary, δ (1,2) α.

we consider here the configuration with M = 0.8 and r in = 1.5 (= 1.875M ). The outer boundary is located at r out = 60M and we use two shells separated at r mid = 30M . As a first step, we choose a moderate resolution of N r = 31 in each subdomain (recall that N r = 31 is already stable for a single shell which spans the whole numerical domain). Consistently with our results in a single shell, we find that penalty methods (both variants) prove superior at the outer boundary, with final times of t = 5000 (= 6250M ). Meanwhile, imposing strong radiative outer boundary conditions leads to a crash at t ≈ 1884 (≈ 2355M ), which improves upon similar simulations in a single shell by almost a factor 3 (cf. Section 5.2.1).

With the modified κ CD variant, we check that we recover spectral convergence when varying N r . A low N r = 21 fails early (t ≈ 160), but Figure 5.12 exhibits convergence for N r = 31, 41, 51 in each shell. The infinity norm is computed separately in each subdomain, and depicted as full lines for the inner shell (domain 1) and dashed lines for the outer shell (domain 2). It furthers illustrates that constraint violations stay larger when closer to the horizon and the singularity. It is not only the maximum, there is actually of drop by orders of magnitude in the profile at the domain boundary (not shown here) -this is consistent with the global behavior of spectral methods (within a subdomain).

An additional indication of the good behavior of our multidomain simulations was derived from analyzing dynamical fields themselves. We exemplify it with the lapse α. Recall that we note ∆α = |α -α(t = 0)| the lapse difference with the analytical solution. Let us also note δ (1,2) α = |α (1) (r mid ) -α (2) (r mid )| the lapse discontinuity at the domain boundary r = r mid , with superscripts indicating in which domain the value is taken. Table 5.7 sums up their values for the various resolutions, once again retrieving spectral convergence. The reported values are computed as an average for t ∈ [2000, 5000]. We would like to emphasize that this advocates for a good implementation of domain matching and consistency of the penalties. Note also that the lapse discontinuity converges faster than the lapse difference, hence the relative error at the domain boundary also converges to zero.

Finally, let us mention that some tests were performed with 5 shells which satisfy the rule of thumb of radius doubling. Starting from the inner boundary, the following boundary is placed at a radius twice as large. Notice that it very conveniently works for r in = 1.5 and r out = 60M = 48, as 48/1.5 = 32 = 2 5 . For these simulations, we use N r = 13, 17 in each domain. From our tests, it performs just as well, and not better, than other simulations presented in this work.

Adding angular noise

Finally, we want to discuss and present results when the initial data contain angular noise. The noise is added as described in Section 4.2.3. We start with θ noise only, which is the situation that we dub "axisymmetric". We then include φ noise as well. The work performed in this section takes place in the setting with M = 0.8, in a single shell such that 1.875M ≤ r ≤ 60M , and we rely on the two penalty variants for the outer boundary conditions. We perform a filter on the top third of angular coefficients as described in Section 4.1.3.

Adding noise in θ: the "axisymmetric" case

In this part, we use N φ = 4. Our experiments with the two penalty variants, and the inclusion or not of the cos_odd regularization, gave the following results. First, just like in a single shell, the modified κ CD variant shows good performance irrespective of the regularization choice. Moreover, including the regularization stabilized simulations with the modified penalty variant. Despite reaching t = 5000, modified penalty simulations without regularization exhibit a slowly-growing exponential error mode on the θ components, such as M θ . This divergence would eventually lead to a crash, although on time scales of tens of thousands of M . With the help of the regularization, these growing modes disappear and both variants yield comparable results. Once again, this either encourages us to use the modified κ CD variant or to use the regularization.

We once again performed convergence tests for both variants, only with the regularization. The radial resolution was taken as N r = 31, 41, 51 and the latitudinal resolution as N θ = 5, 9, 13. At fixed radial resolution, increasing the number of points in θ actually deteriorates the outcome, resulting in faster and faster error growths. At fixed angular resolution, larger radial resolutions perform better, as expected. This is schematically summed up in Table 5.8. Note that this is not a CFL limitation, as the configuration with both highest resolutions is fine. It isn't too troubling either, because the θ dependence is only noise, so we don't really expect spectral convergence. We would expect convergence for a physical signal which is a smooth function of θ, such as fields in a Kerr spacetime. Even for Kerr, as was mentioned in Section 5.1.2 (paragraph on the space resolution), at low a/M we don't expect to actually see spectral convergence in θ as the contribution is negligible compared to the radial resolution.

For N θ = 5, the three radial resolutions give satisfactory results. We can thus investigate convergence properties with respect to N r . The according results are presented in Figures 5. [START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF] The outer boundary conditions are imposed with penalties in the modified κ CD variant.

A i B j i C i D kij FO constraints ||.|| ∞ (b) FO errors
N θ N r 31 41 51 5 ✓ ✓ ✓ 9 ✗ ✓/ ✗ ✓ 13 ✗ ✗ ✓
Table 5.8: Summary of successful "axisymmetric" M = 0.8 Schwarzschild black hole simulations, in a single shell with r in = 1.875M and r out = 60M . Results are similar for both penalty variants and we use the cos_odd regularization. A cross indicates that there are error growths at some point, even if the final time of t = 5000 is reached. A check means that there were no such error growths. Mitigated results feature both signs.

penalty variants. Once again, we obtain strong evidence of spectral convergence, proving that the scheme is robust against θ noise with some settings.

Adding θ and φ noise: no symmetry

We are now adding noise in the φ direction as well. Our basic setting uses resolution N = [START_REF] Campanelli | Accurate Evolutions of Orbiting Black-Hole Binaries without Excision[END_REF][START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF][START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF]. Unfortunately, we haven't been able to obtain lasting evolutions in this context. We could at most run until t ≈ 140 (≈ 175M ). In all of our attempts, the φ errors grow exponentially, and more or less seem to bring about θ errors as well. This is illustrated with GR errors in Figure 5.15 -the other errors behave similarly. It corresponds to a configuration with N = (51, 5, 6) which uses the cos_odd regularization and the modified κ CD variant. The final time is t = 142.55.

Despite our best efforts, we haven't been able so far to curtail the growth and postpone it by much. We have tried a number of actions:

• running with and without regularization for cos_odd (using the regularization postpones the θ errors);

• using a smaller angular resolution N = (51, 5, 6), as the "axisymmetric" case suggests it might be preferable;

• relying on radiative outer boundary conditions rather than penalties;

• enforcing the determinant constraint like we do with traces;

• implementing the traditional second-order BSSN system;

• instead of the regularization, re-implementing the covariant derivative to better take into account the division by sin θ (note that this also didn't improve the issue with multidomain evolutions using the cos_odd regularization) The cos_odd regularization is used, along with the modified κ CD variant for the outer boundary conditions.

• filtering data by changing to the Cartesian triad, apply a filter on spherical harmonics, and change back to the spherical triad -for spherical harmonics, we tried to project back and forth, and on the other hand to also remove the higher harmonics -;

• filtering data such that any undesirable axis contribution is removed, thanks to Galerkin basis treatment (see text below);

• filtering data such that coefficients smaller that a threshold (10 -14 ) are suppressed -but in this case, they are suppressed at the initial step because the initial noise is small enough.

The same kind of instability is also triggered when adding noise in a single harmonic of a single field. Note that we experience the same kind of issues with gravitational wave simulations, and it's especially clear for the m = 0 wave (Section 6.3.3). Therefore, some similar tests have been performed for GW simulations, to no avail. Note also that any of our attempts using the Cartesian triad for the evolution also fails (even when starting from unnoised data).

For the filter relying on Galerkin bases mentioned above, the idea is the following. Say we have a function of θ expanding onto even cosines:

f (θ) = N θ -1 j=0 a j cos(2jθ).
We would like to impose that this function f vanishes on the axis θ = 0. Instead of expanding it on functions cos(2jθ), we could instead expand it on the basis of (cos(2jθ) -1) for instance:

f (θ) = N θ -1 j=0 b j (cos(2jθ) -1).
Any such function automatically satisfies f (0) = 0. It is easy to check that in this case, we can simply obtain such an expansion by setting a 0 ← -a 0 -

N θ -1 j=0 a j .
This choice for a Galerkin basis actually relies on the first coefficient, but we could also act on the last (unfiltered) coefficient in the exact same manner. We actually experimented more with these ideas for the m = 2 gravitational wave. We thus have to deal with the coordinate singularity at the origin as well. It involves 2D Galerkin bases if we need the function to vanish both at the origin and on the axis, of the likes of (T 2i (r)-1)(cos(2jθ)-1) for example (T i is a Chebyshev polynomial). Additional care must be taken in order to avoid double counting of coefficients, and because T 2i (0) = (-1) i . To prevent double counting, we first regularize all r coefficients (seen as functions of θ) but the last, and then regularize all θ coefficients. This way, the coefficient of index N r -1 and N θ -1 gets the right correction. We apply this filter for φ coefficients which are of high enough order, depending on the number of r indices in the tensor component at hand, and the resulting θ spectral basis (following the implementation of the elliptic solver). In the elliptic solver however, it is not implemented for the central nucleus in the spherical triad. Therefore, an underlying assumption of our procedure is that imposing regularity on the axis implies imposing regularity at the origin, which may be insufficient or incorrect.

Further results, discussion and prospects

Now that we have introduced our main results and demonstrated the good performance of our code in a variety of situations, we would like to use this section to take a step back, comment, summarize and highlight possible future developments. We first mention simulations which don't fall under the stationary Schwarzschild label. Then, we synthesize our results and try to draw some conclusions. Finally, some prospects are discussed.

Beyond stationary Schwarzschild numerical evolutions

While writing this manuscript, we performed a few additional simulations as proofs of principle. Unfortunately they don't show the maturity of previous results yet, but still constitute promising extensions of our work. They could also provide a crucial playground for tracking down the remaining instabilities. We thus would like to shed light on these preliminary results and discuss possible improvements.

We first address the simulation of a Kerr black hole. Second, we try to evolve a Schwarzschild black hole in a non-stationary gauge by removing the gauge source functions.

Kerr black hole

Just like for Schwarzschild evolutions, we use the gauge source terms in the evolution equations such that all of them vanish initially (numerically speaking). Fields also don't depend on φ, but have a physical θ dependence. Because new tensor components are populated, φ-errors don't actually vanish, even without contributions from φ partial derivatives.

We chose to first experiment with a configuration with low angular momentum a/M = 0.05. The black hole mass is M = 1 and the numerical domain is a single shell with the proper excision boundary r in = 0.75M . The outer boundary is located at r out = 60M and we use the modified κ CD penalty conditions. The resolution is a moderate one with N = [START_REF] Dumbser | Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes[END_REF][START_REF] Amaro-Seoane | Astrophysics with the Laser Interferometer Space Antenna[END_REF][START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF]. As argued in Section 5.1.2, N θ = 9 is enough even with the one-third filter for low Kerr parameters, the limitation being the radial resolution. We tested the simulation with and without the cos_odd regularization, both leading to comparable results. Figure 5.16 illustrates the behavior of the GR constraints without the regularization. The evolution crashes at t = 427.1. It can be noticed that in a fashion similar to Schwarzschild with full angular noise, M φ seems to drive the error growth, impacting all others. However, it may be harder to spot at early times because there is also some "physical" contribution before divergences take over. We tried to run a similar evolution with higher resolution N = [START_REF] Field | Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators[END_REF][START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF][START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF]). However, it failed very quickly (t ≈ 1.5). To try to eliminate the impact of the CFL condition, we reduced the time step to ∆t = 2.5 × 10 -3 and ∆t = 1 × 10 -3 . Both gave very similar results. We might need to further lower the time step but haven't done so yet. In particular, using ∆t = 5 × 10 -4 along with the maximum of a million time steps, would mean a very long calculation just to reach t = 500 like the previous tests. We therefore leave that for future investigation. Obviously, the CFL condition is a severe downside for spectral methods. As can be seen from Equation (5.8), radial collocation points are gathered close to the edges and the minimum spacing scales as 1 N 2 r . Spherical coordinates add insult to injury especially because of the accumulation of points near the poles of the numerical domain (think of the various φ points for the first value of θ off of the axis). Filters are a part of the alleviation of these constraints.

Non-stationary gauge

In some experiments, we tried to remove the gauge sources S α and S i B , in order for the system to exhibit some dynamics. Incentivized by the results from Section 5.2, we safely use the modified κ CD penalties and don't use the cos_odd regularization. Unfortunately, completing removing the gauge sources only caused the evolutions to crash pretty soon. For the M = 1 Schwarzschild black hole in a single shell -so with proper excision, at least at initial time -the evolution was terminated at t = 3.9. The resolution was N = (71, 5, 4) and we also filter angles just in case. Reiterating with 95% of the usual gauge sources, on the other hand, led to a successful evolution which reaches a stationary case.

It is worth mentioning that the same tests in the improper excision setting give the same results. In this case we used N = [START_REF] Brown | Excision without excision[END_REF]5,[START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF]. When there is no gauge sources, the final time is t = 9.9. With 95% of the gauge sources, the evolution completes. This is striking, as evolving dynamical spacetimes was a main motivation for a better excision inner boundary.

Finally, we would like to point out that outer boundary conditions may cause issues there. Indeed, we are still using penalties on characteristic fields of the form P (u c ) ∝ (u c (t = 0) -u c ). In particular, the lapse and the shift are both characteristic fields with speed β s , and they are now dynamical. It might induce a discrepancy between the boundary conditions and the physical problem. Improving outer boundary conditions may be a key to progress on this matter.

Discussion on the performed BH simulations

We have demonstrated in the previous section that we are able to obtain longlasting simulations of a Schwarzschild black hole, in a stationary gauge. These simulations last for durations of thousands of the black hole mass M , with no signs of error growth. What's more, we retrieve spectral convergence when increasing the radial resolution. We were able to obtain such results both in a single spherical shell, but also in multidomain evolutions. These results extend to initial data which contain noise in the θ coefficients (what we call the "axisymmetric" case).

To obtain such stable evolutions, several ingredients have played a key role. First, penalty methods on incoming characteristic fields proved crucial for the outer boundary conditions. They perform much better that strongly-imposed radiative conditions. On top of penalties, the use of constraint damping was a significant improvement. In particular, using a non-vanishing κ γ (constraint D kij ) was primordial to prevent exponential divergences. On the other hand, the inclusion of a finite κ α was a struggle and incited us to consider two variants for our penalties at the outer boundary. Filters also proved very useful and improved the global behavior.

There are still some limitations though, or mitigated results. For instance, we cannot manage multidomain simulations with κ α ̸ = 0 so far. This may suggest that further work is needed regarding penalties, even for domain matching. Another ambiguous ally is the cos_odd regularization. It apparently improves evolutions with the modified penalty variant, both by enabling spectral convergence and by curtailing divergences in the θ-components of constraints (which it may create, at machine precision level, due to lack of cancellation in the algorithm). Still, it seemingly has no impact on the modified κ CD variant, and prohibits multidomain evolutions, even with radiative outer boundary conditions (there are still penalties for domain matching though). Although it slightly improves θ errors, it is not enough to run stable evolutions with φ noise. It is still unclear whether it is beneficial to implement such a regularization and whether it is a key ingredient, or barely a band-aid on a bullet wound.

This naturally leads us to the greatest limitation of our simulations to date. Including noise in φ coefficients creates unrecoverable divergences. This also concerns simulations in the Cartesian triad, as well as preliminary Kerr evolutions. Interestingly, the Kerr black hole actually doesn't depend on φ, which may give clues towards finding the source of these divergences -this would be a significant step forward already and half the problem solved. A possible insightful test (yet to perform) would be to consider a Schwarzschild black hole (with proper spherical symmetry) and add a noise in γrφ which doesn't depend on φ. Rather than pure φ dependence, it may boil down to the role of certain non-vanishing tensor components, spectral bases or specific operations. A number of tentative cures have already been implemented with no success (see Section 5.2.4). They comprise for example some filters designed to ensure more regularity (with spherical harmonics or with Galerkin bases).

Finally, let us remind that most of our work was performed with an inner boundary at which excision should fail. However, most probably thanks to the stationarity of the problem, they perform astonishingly well. They also have the advantage of requiring less numerical resources thanks to lower error levels for a given resolution. Still, there's no lack of motivation for implementing proper excision, which we did. We showed that we still obtain relevant results, but that at this stage, such simulations don't perform better where their counterparts fail. In particular, having a dynamical gauge proves to be a strain for our code, but this may also be a consequence of unsuitable outer boundary conditions.

Prospects

As suggested by the previously drawn conclusions and gradually disseminated remarks, there is plenty of room for improvement and further development of our black hole simulations. One major work direction is to achieve long-lasting evolutions with φ. This will bring us closer to successful Kerr black hole simulations, as well as to the capability of studying full 3D problems. Some possible work is related to boundary conditions. In particular, how to reconcile constraint damping (more precisely κ α ) with penalty methods fully, and obtain consistent multidomain runs? Can we evidence that an improper excision fails where a proper one succeeds? What kind of outer boundary conditions would be more relevant for a dynamical gauge? Is it worth implementing constraintpreserving boundary conditions?

Talking about the gauge, there are many related investigations which go beyond removing the gauge sources. Gauge choices are a wide topic and there's surely a lot to learn. It could be envisioned to rewrite the FOBSSN system with a evolution equation for the shift which is first-order in time. This would get rid of the variable B i (saving computations and resources) and potentially of our excision issue altogether. It would also be interesting to experiment with the 1+log slicing used for our gravitational wave computations.

Putting all these contributions together may enable us to simulate perturbations of Schwarzschild or Kerr black holes, for example with quasi-normal modes analyses. The perturbation could be caused by scattering a scalar field or a gravitational wave on the black hole. If difficulties with φ should persist, this may still be realized in the "axisymmetric" context. In this chapter, we further present the capabilities of our code by evolving gravitational waves data. We don't consider that these waves are generated by sources, but rather give an initial profile and see the subsequent wave propagation. As discussed in the first section, the initial profile is computed from a Teukolsky wave. Note that, for instance, Baumgarte and Shapiro [START_REF] Baumgarte | Numerical integration of Einstein's field equations[END_REF] report evolutions of m = 0 Teukolsky waves, and that Bonazzola et al. [START_REF] Bonazzola | Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates[END_REF] evolve an m = 2 wave with a constrained scheme. The radial shape is similar to the prescription in [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] and consists in an off-centered Gaussian. The wave is at moment of time symmetry (also called momentarily static data in [START_REF] Gourgoulhon | Construction of initial data for 3+1 numerical relativity[END_REF]), leading to both an ingoing and an outgoing part. Proper GR initial data are obtained with the Conformal Thin Sandwich (CTS) formalism. In the following section, we describe the numerical setup for these evolutions: the chosen gauge, boundary conditions and relevant settings for the evolution scheme. Finally, we show the results that we obtain in various configurations. We evolve both m = 0 and m = 2 data. Results and future work directions are discussed.

Initial data

As opposed to the previous chapter about Schwarzschild black hole evolutions (Chapter 5), we don't rely directly on a known analytic solution to the full nonlinear Einstein equations here. We would like to evolve some kind of gravitational wave, possibly exploring the non-linear regime. To do so, we apply a method similar to works by Pfeiffer et al. [START_REF] Pfeiffer | Initial data for Einstein's equations with superposed gravitational waves[END_REF], who give the construction method for such data, and Hilditch et al. [START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF][START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] who use it as well.

We first briefly recall what a Teukolsky wave is and how it is constructed. We specify the seed function and relevant combinations. Then, we introduce the Conformal Thin Sandwich (CTS) method and why it is useful in this context. Finally we expose our numerical resolution of the CTS equation and the retained values for the various parameters.

Teukolsky waves

Teukolsky waves were given explicitly in a 1982 paper by the eponymous author [START_REF] Teukolsky | Linearized quadrupole waves in general relativity and the motion of test particles[END_REF]. They are quadrupolar linear perturbations of the metric around Minkowski spacetime, in the transverse-traceless gauge. Given a seed function F which is evaluated at advanced or retarded time, metric components are explicitly given. They involve combinations of derivatives of F and angular functions, which we shall recall shortly. Teukolsky exhibits both even-and odd-parity waves, each of which may have a quantum number m such that |m| ≤ 2. In this work, we use the even-parity metric, with azimuthal numbers m = 0 and m = 2, and hence we only reproduce the formulas for those. Note that the m = 0 wave has no φ-dependence. In Teukolsky's paper, the seed function F stands for F (t -r) for an outgoing solution, and can be adapted into an ingoing solution by using F (t+r) and changing some signs in the derivatives F (n) . The total seed is then a sum of both such solutions F(r, t) = F 1 (t -r) + F 2 (t + r). To get the moment of time symmetry, we need ∂ t F(t = 0) = 0:

F ′ 1 (-r) + F ′ 2 (r) = 0 . (6.1)
Absorbing the integration constant in the functions, we can take F 2 (X) = F 1 (-X) and this also implies F(r, -t) = F(r, t) for all times. Following [START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF][START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF] and Exercise 9.4 in [START_REF] Baumgarte | Numerical Relativity: Solving Einstein's Equations on the Computer[END_REF], we consider that F 1 and F 2 are two sides of the same coin, and are related to the same odd function F , as

F (X) = F 1 (X) = -F 2 (X) . (6.2)
Instead of using F as such, we prefer to work with f (X) ≡ F (-X). In this case, we get F(r, t = 0) = 2f (r). We compute the n-th derivative at t = 0:

F (n) = 2 (-1) n f (n) (r)
. This effectively changes signs for odd derivatives of F in the formulas from [START_REF] Teukolsky | Linearized quadrupole waves in general relativity and the motion of test particles[END_REF], just like for the ingoing wave. We are only interested in the expressions evaluated at t = 0 so in the following we substitute the generic variable X = r.

Taking an odd function is required by regularity conditions at the origin and it is consistent with the spectral bases that we need to use in the central domain in Kadath. We will take the factor 2 into account in the end, but for now we reproduce Teukolsky's formulas without it. The metric involves the following combinations:

a = 3 f (2) r 3 - 3f (1) r 4 + 3f r 5 = 3 r   1 r f r (1)   (1) 
, (6.3a)

b = -- f (3) r 2 + 3f (2) r 3 - 6f (1) r 4 + 6f r 5 = 1 r f r (3) , (6.3b) c = 1 4 f (4) r - 2f (3) r 2 + 9f (2) r 3 - 21f (1) r 4 + 21f r 5 (6.3c) yielding 4c = f r (4) + 2 r f r (3) + 3 r 2 f r (2) - 3 r 3 f r (1) = f r (4)
+ 2b + a .

The alternative expressions for the combinations a, b and c were found while trying to rearrange terms in order to obtain better numerical results with derivatives and divisions 1 . Nonetheless, we ended up simply computing these expressions analytically for the chosen seed, instead of choosing the seed freely and letting the library compute these numerically.

Taking a gaussian profile is a common choice [START_REF] Baumgarte | Numerical integration of Einstein's field equations[END_REF][START_REF] Bonazzola | Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates[END_REF][START_REF] Pfeiffer | Initial data for Einstein's equations with superposed gravitational waves[END_REF]. As stated previously, we take an off-centered gaussian-like profile for the seed function, following [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF]:

f (r) = - A 2 r 2p+1 σ exp - r -r 0 σ 2 + exp - r + r 0 σ 2 (6.4) 
= -r 2p+1 (g + (r) + g -(r)) , (6.5)

with g ± (r) ≡ A 2σ exp - r ± r 0 σ 2 .
f is indeed odd, and compared to [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF], we rename the positive integer power of r to reflect that, with the parameter p. r 0 controls the centering of the gaussian, σ its spread, and A is the amplitude. Their values are given in Section 6.1.3.

From such a seed, we can compute the respective "plus" and "minus" contributions:

a ± = 3g ± (r) -4 (r ± r 0 ) 2 σ 4 r 2p-2 + 2(4p -1) (r ± r 0 ) σ 2 r 2p-3 + 2 σ 2 r 2p-2 -4p(p -1)r 2p-4 , (6.6a) b ± = g ± (r) 8 (r ± r 0 ) 3 σ 6 r 2p-1 -24p (r ± r 0 ) 2 σ 4 r 2p-2 -12 (r ± r 0 ) σ 4 r 2p-1 + 12p(2p -1) (r ± r 0 ) σ 2 r 2p-3 + 12p σ 2 r 2p-2 -4p(p -1)(2p -1)r 2p-4 , (6.6b) c ± = g ± (r) 4 -16 (r ± r 0 ) 4 σ 8 r 2p + 16(4p + 1) (r ± r 0 ) 3 σ 6 r 2p-1 + 48 (r ± r 0 ) 2 σ 6 r 2p -12(8p 2 + 1) (r ± r 0 ) 2 σ 4 r 2p-2 -24(4p + 1) (r ± r 0 ) σ 4 r 2p-1 + 2(4p -1)(8p 2 -4p + 3) (r ± r 0 ) σ 2 r 2p-3 - 12 σ 4 r 2p + 6(8p 2 + 1) σ 2 r 2p-2 -16p(p -1)(p 2 -p + 1)r 2p-4 . (6.6c)
Putting all contributions together and reintegrating the factor 2 for the odd function, we finally get

a = 2(a + + a -) , (6.7a) b = 2(b + + b -) , (6.7b) c = 2(c + + c -) . (6.7c)
The metric has the following generic expression, which is very well-suited for our orthonormal spherical triad: ds 2 = -dt 2 + (1 + af rr )dr 2 + (bf rθ )(2dr.rdθ) + (bf rφ )(2dr.rdφ)

+ 1 + cf (1)
θθ + af (2) θθ (rdθ) 2 + (a -2c)f θφ (2rdθ.r sin θdφ) + 1 + cf (1) φφ + af (2) φφ (r sin θdφ) 2 . (6.8)

The f pq terms are angular functions which depend on the azimuthal quantum number m. We recall their expressions, respectively for m = 0 and m = 2, which are the two values we implement.

(m=0) (m=2)
f rr = 2 -3 sin 2 θ = sin 2 θ cos(2φ) , (6.9a)

f rθ = -3 sin θ cos θ = sin θ cos θ cos(2ϕ) , ( 6.9b 
)

f rφ = 0 = -sin θ sin(2φ) , (6.9c) f (1) θθ = 3 sin 2 θ = (1 + cos 2 θ) cos(2φ) , (6.9d) f (2) θθ = -1 = -cos(2φ) , (6.9e 
)

f θφ = 0 = cos θ sin(2φ) , (6.9f 
)

f (1) φφ = -f (1) θθ = -f (1) 
θθ , (

f (2) φφ = 3 sin 2 θ -1 = cos 2 θ cos(2φ) . (6.9h)

Conformal Thin Sandwich

Note that as such, since the metric scales like the amplitude A, the Hamiltonian and momentum constraints scale like A 2 . Starting from this ansatz for the metric, we would like to obtain initial data which satisfy the constraints at a better level than that. As proposed by [START_REF] Pfeiffer | Initial data for Einstein's equations with superposed gravitational waves[END_REF], the constraints can be solved, in the non-linear regime, with the Conformal Thin Sandwich approach (CTS). The same procedure is used by [START_REF] Bonazzola | Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates[END_REF][START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF]. The idea is to obtain initial data which satisfy the constraints while preserving the qualitative properties of the provided linearized metric.

To explain the method, we follow the lecture notes by Eric Gourgoulhon [START_REF] Gourgoulhon | Construction of initial data for 3+1 numerical relativity[END_REF]. As the name suggests, the Conformal Thin Sandwich relies on a conformal decomposition of the fields. Most notably, the physical metric γ ij is computed as

γ ij = ψ 4 γij , (6.10)
where ψ is the conformal factor and γij the conformal metric. This is the same kind of decomposition as in the FOBSSN system, but we must emphasize that here, the conformal factor and conformal metric are not those used in the evolution. The other relevant quantities are:

Ãij = ψ -4 K ij - 1 3 γ ij K , ( 6.11a) 
Ẽ = ψ 8 E , (6.11b) pi = ψ 10 p i , (6.11c) α = ψ -6 α , (6.11d) with α the lapse, E and p i the projections of the energy-momentum tensor, and the tilde indicates their conformal counterparts. Ãij is the conformal traceless part of the extrinsic curvature tensor.

Rewriting the Hamiltonian and momentum constraints ultimately leads to the following system:

Di Di ψ - R 8 ψ + 1 8 Âij Âij ψ -7 + 2π Ẽψ -3 - K 2 12 ψ 5 = 0 , (6.12) Dj 1 α Lβ ij + Dj 1 α γij - 4 3 ψ 6 Di K -16π pi = 0 . (6.13)
Here, γij is the time-derivative ∂ t γij , Di and R are respectively the covariant derivative and Ricci scalar associated with the conformal metric, Lβ ij is a linear operator acting on the shift and Âij is another conformal decomposition of A ij , given by:

Lβ ij = Di β j + Dj β i - 2 3 γij Dk β k , (6.14a) Âij = 1 2α γij + Lβ ij . (6.14b)
The unknowns of the system are the conformal factor ψ and the shift β i . The freely specifiable inputs are γij , γij , K, α, Ẽ and pi .

Instead of choosing the conformal lapse, the formalism can be extended (XCTS) by further including the evolution equation. This makes α an unknown as well, with a new free input instead: K = ∂ t K. The additional equation to solve is:

Di Di (αψ 7 ) + ( K -β i Di K)ψ 5 -αψ 7 1 8 R + 5 12 K 2 ψ 4 + 7 8 Âij Âij ψ -8 + 2π( Ẽ + 2 S)ψ -4 = 0 , ( 6.15) 
with S the conformal refactoring of the trace of the last projection of T µν .

We want to solve the system in the entire space and therefore recover, at spatial infinity, the following boundary conditions: α = 1 , (6.16a)

β i = 0 , ( 6.16b 
)

γ ij = f ij , ( 6.16c) 
with f ij the flat metric in the given triad.

The system of Equations (6.12), (6.13) and (6.15) can be solved with the Kadath library. As complicated as it may seem, these equations actually simplify to a great extent in our case. The key of the method is to set the conformal metric as the Teukolsky wave. We are in vacuum so all energy-momentum contributions vanish. Consistently with the time-symmetry that we want, we set K = K = γij = 0. The following steps demonstrate why it is easier to start from time-symmetric data than to try to keep, say, only an outgoing wave. In this case, the momentum constraint is consistent with no shift: β i = 0, and thus Âij = 0 as well.

This actually decouples the first equation (Equation (6.12)) from the rest and it simply reads: it appears that a constant lapse makes it redundant with Equation (6.17). The boundary condition fixes α = 1. Out of the whole XCTS system, we can thus take α = 1, β i = 0, which is consistent with the metric of the Teukolsky wave (Equation (6.8)). The only equation left to solve is the linear equation on the conformal factor ψ, Equation (6.17). The metric γ ij is then computed with Equation (6.10) and K ij = 0 because of Equation (6.11a).

Di Di ψ - R 8 ψ = 0 , ( 6.17 

Numerical resolution

Parameters of the seed function

We examine the cases m = 0 (no dependence in φ, to start "easy") and m = 2. We choose the following values for the parameters in the seed function (6.4) (recalled here)

f (r) = - A 2 r 2p+1 σ exp - r -r 0 σ 2 + exp - r + r 0 σ 2 .
We imitate [START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF] and set r 0 = 2 and σ = 0.5 (although the code allows us to consider other values). According to [START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF], we choose p = 4 (corresponding to p = 9 in the reference). This high power impacts the profile by seemingly shifting the center of the gaussian to the outwards direction, and by granting larger values for the fields. They argue that such a high power is needed in order to ensure regularity of the metric on the axis -still, thanks to the choice of parameters, they trust their previous results as fields decay very quickly towards to origin. Even without this consideration, the expressions in Equation (6.6) suggest that all contributions from the seed function appear when p ≥ 2, as can be seen from terms r 2p-4 . It is also worth noticing that this specific power of lengths is the exponent that should be used for σ in the seed in order to have a dimensionless amplitude A, as f has to have units of r 5 . Note that in [START_REF] Suárez Fernández | Comparison of linear Brill and Teukolsky waves[END_REF] (more recent work by Suárez Fernández et al., involving Hilditch), the adequate power of σ (noted λ there) is used. At a given numerical value for A however, dividing by (1/2) 4 (p = 4) instead of 1/2 would only make the initial constraint violation bigger, and the initial guess more non-linear. For consistency with the work by Hilditch et al. and for reasons exposed shortly, we keep the simple first power of σ in the seed function and absorb any other contributions in A.

Even though [START_REF] Baumgarte | Numerical integration of Einstein's field equations[END_REF][START_REF] Bonazzola | Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates[END_REF][START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF] use amplitudes of order 10 -3 -in [START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF], the critical amplitude for collapse is around 1.5 × 10 -3 -, we find that we actually need much lower amplitudes to get sensible perturbations of flat spacetime. In order to get a conformal (Teukolsky) metric which deviates from the flat metric by around 1%, we need to use A = 10 -7 (we check that in the Cartesian triad so that all components deviate by a comparable amount). For m = 0, the corresponding deviation is around 2 × 10 -2 and the maximum violation of H is 4.5 × 10 -2 . Consistently with the linear scaling, A = 10 -6 (resp. A = 10 -8 ) yields a deviation of around 0.24 and a constraint violation of 5.4 (resp. 2.4 × 10 -3 and 5.1 × 10 -4 ).

This difference with the work by Hilditch et al. in their 2013 paper may actually come from the power of x in f (x). As mentioned, having a high power raises the magnitude of the seed function. As for Bonazzola et al., some further contribution might be caused first by the choice of m = 2, which dampens a bit the profile; and the fact that the wave is centered initially. It only has an outgoing contribution and by the time the "center" of the radial profile reaches values of order of our r 0 , the effective amplitude has reduced. Those are only qualitative arguments to try to explain the discrepancy though.

In the evolution, we keep the amplitude A = 10 -7 . Early tests were performed with A = 10 -8 , but the higher amplitude (while still not too high) makes it possible to stress the code, amplify errors and, practically, to make it crash sooner.

Numerical domain, resolution and convergence

Equation (6.17) is solved with the Kadath library [START_REF] Grandclément | KADATH: A spectral solver for theoretical physics[END_REF] (see Appendix B.1). It is run on the MesoPSL cluster, in parallel, with typically 72 or 96 cores.

The equation is linear in ψ so the Newton-Raphson scheme only takes one iteration to converge. The initial guess for ψ is simply a unit constant field. We provide the conformal metric as exhibited in Section 6.1.1 and the library computes the related quantities automatically. Even though the analytic expression is implemented with the orthonormal spherical triad, the library requires the Cartesian triad for the resolution in the central subdomain which contains the origin r = 0. Indeed, the regularity conditions and related treatment of spectral coefficients at the origin are only implemented for Cartesian components so far. The change back to the spherical triad -which is employed for the evolution -is performed when building the FOBSSN variables.

In the overall process of initializing the FOBSSN variables from the Teukolsky wave data, numerical noise is generated (for example because of the numerical resolution, interpolation, . . . ). Thus we may also want to clean the m = 0 data as explained in Section 4.2.3. Like for the Schwarzschild black hole, we refer to these cleaner data as the "axisymmetric" case. It has the effect, for instance, of completely removing any φ-components in (co)vector constraints.

We set the numerical domain according to the chosen values for the parameters r 0 and σ. These give the characteristic lengths of the simulation, as well as the characteristic time and mass scales (even though the ADM mass is around a few 10 -3 ). The numerical domain for initial data generation is built of 4 subdomains: This choice ensures that most of the Teukolsky wave is enclosed in the two spherical shells, with slightly more resolution around r 0 . Recall that due to the high x power in the seed function, the initial profile is actually shifted outwards. See for instance Figure 6.1 illustrating, for m = 0 and m = 2, the radial profiles of Convergence is achieved with respect to the radial resolution (in each subdomain) N r , with angular resolution [START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF][START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF]. The infinity norm is computed over the whole space (all subdomains). m = 2. For the first three resolutions, spectral convergence is clean. The points for N r = 31 deviate a little.

We also tried to reduce the angular resolution to [START_REF] Amaro-Seoane | Astrophysics with the Laser Interferometer Space Antenna[END_REF][START_REF] Alic | Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars[END_REF]. For m = 2, a test at N r = 21 showed that the error on the Cartesian metric components -relative to the solution with the higher angular resolution -was around 10 -6 (the difference is around a few 10 -8 , while for instance γ xx -1 is of order 10 -2 ). For m = 0, the difference is even smaller, of order 10 -12 for diagonal Cartesian components. Anyway, the angular dependence should not be really different from the analytic Teukolsky wave, and 8 φ-points allow us to represent up to cos(4φ), which should be enough to encapsulate the physical variation in φ and the change of basis for rank-2 tensors. This is even more valid when back in the spherical triad.

Hence, in each subdomain, we use a resolution of N = [START_REF] Bantilan | Cauchy evolution of asymptotically global AdS spacetimes with no symmetries[END_REF][START_REF] Amaro-Seoane | Astrophysics with the Laser Interferometer Space Antenna[END_REF][START_REF] Alic | Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars[END_REF]. Should any doubts persist, this should at least be more than enough for m = 0. When generating the FOBSSN fields, we then artificially raise the angular resolution to [START_REF] Arzoumanian | The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background[END_REF][START_REF] Arnowitt | Republication of: The dynamics of general relativity[END_REF] by zero-padding coefficients. This is done in anticipation of the one-third angular filter for the evolution. From a practical point of view, having less points (and no more than necessary) quickens computations for the evolution.

Setup for the gravitational wave evolutions

We now describe the numerical settings for the evolution. The general framework is the same than for black hole evolutions, and is introduced in Chapter 4. We only explain the characteristic features of GW simulations. The specific rewriting of the FOBSSN equations are given in Appendix A.2.2.

Gauge choice

We start by discussing the choice of the gauge functions2 f , G and H from the FOBSSN gauge evolution equations (Equations (A.12a), (A.12c) and (A.12d)). We follow the puncture gauge prescription given in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], which gives f = 2/α, G = 3/(4α 2 ) and H = e 4ϕ . Unlike our black hole simulations, we are not looking for the vanishing of time derivatives at initial time and hence don't have any gauge source terms:

S α = S i β = S i B = 0 . (6.19)
Moreover, the lapse evolution now corresponds to the so-called 1+log slicing:

∂ t α = β k Dk α -2αK . ( 6.20) 
In the shift evolution (more precisely the evolution equation for B i ), we keep η = 2, as for black hole evolutions (Section 4.1.1). Even though the enclosed ADM mass is not of order 1 (it is smaller), the relevant length scales, σ and also r 0 , are of order 1. As mentioned previously, this also sets the characteristic time and mass scales for the numerical integration, as we use c = G = 1. This justifies why our results are given in code units as well. We haven't investigated much more on the influence of the η value, but quick tests on the value of η didn't perform better where our setup fails.

Boundary conditions

Even though initial data are computed in the whole space, we have to truncate at finite radius r out for the evolution (see Sections 2.4 and 2.6.2). We choose to do so by keeping the first three domains unchanged (nucleus and two shells, up to r = 4). The compactified domain is now replaced by an additional spherical shell, whose outer radius is twice the inner radius: r out = 8. At this outer boundary, we rely on strongly imposed radiative conditions of the form ofEquation (4.9). The reference here is flat spacetime, and therefore for all dynamical fields u we use Equation (4.9)

∂ t u = -∂ r u + u r , ( 6.21) 
except for the lapse and the conformal metric (which identifies with the physical one as the reference value for ϕ is 0):

∂ t α = -∂ r α + α -1 r , ( 6.22a 
)

∂ t γij = -∂ r γij + γij -f ij r , ( 6.22b) 
where f ij = δ ij is the flat metric in the given triad. For the evolution, we use the spherical orthonormal triad.

We have performed a few evolutions with penalty outer boundary conditions but they did not seem to perform better. However, like for the dynamical gauge in Schwarzschild black hole simulations, this may be because of an inadequate formulation, since we ask the incoming characteristic fields to match their initial values (and we hope that characteristic speeds don't change sign during the evolution so that this makes sense).

In order to assess trust in our boundary conditions, we tried to push the boundary further out. Over the course of our work, we tested an evolution with yet an additional shell doubling the outer radius: 8 ≤ r ≤ 16. This didn't improve the behavior of the evolution and didn't make it last longer, so we concluded that improving boundary conditions was not the first action to take.

Finally, just like for black hole simulations, domain communication is performed with penalties on characteristic fields (details in Section 4.2.2).

Coordinate origin

The BH simulations don't have to deal with the origin of spherical coordinates as some region in the black hole interior is excised. On the contrary, these GW simulations include r = 0, which is part of the central subdomain (nucleus). Note that in this type of numerical domain in the Kadath library, functions of r are either expanded onto even or odd polynomials. To reflect the parity of the r basis functions, numerical coordinates are taken in [0, 1] instead of [-1, 1]. Likewise, collocation points are given by

r i = r nuc × sin iπ 2(N r -1) , (6.23)
where r nuc is the radius of the nucleus (see also Section 3.1.3). This parity condition on spectral bases may cause some issues especially when defining the normal s i from the form dr, which is not well-defined at the origin. In the implementation, we circumvent those issues by multiplying the r component of dr by r/r nuc (and having set the r component of dr to a unit even scalar field). The normal is actually only used at the boundary of the nucleus for characteristic fields computations. Crucially, only the collocation values enter those calculations (and not coefficients nor spectral bases).

Still, the more important challenge coming with the nucleus is the presence of the origin of coordinates as a collocation point, as can be seen from Equation (6.23). Even though it corresponds to a single physical point, there are several numerical points representing it (one for each value of θ and φ). The axis θ = 0 is also degenerate (with multiple φ-points), though to a lesser extent3 . As a consequence, fields can become multivalued at the origin, even though they are not supposed to, in particular scalar fields -orthonormal spherical components of tensors don't suffer from the same restrictions exactly.

This multivaluation problem arose fairly early in our investigations (compared to the rest of the results presented in this manuscript). It was first spotted with GW simulations, where the dispersion of K values at the origin would ultimately lead to divergences in the metric. This is illustrated by Figure 6 The bottom panel shows the evolution of the variable K in logarithmic scale. The red and cyan curves, which start with a sort of concave bending, correspond to the infinity norm in domain 0 (nucleus) and 1 (first shell) respectively. The two other lines, which diverge exponentially, measure the multivaluation of K at the origin in two different manners. One ("max-min") shows the difference between the maximum and minimum values of K among all points with r = 0. The other one is the standard deviation of those N θ × N φ values (and is labeled accordingly). Now, it can be noticed that these exponential divergences become dominant over the physical signal around t = 0.3, and drive their later evolution.

The top panel shows similar errors for the metric component γ φφ . The last (red) curve examines the value of this field at the origin point for θ = 0 and φ = 0, and compares it to its initial value. For t ≤ 0.3, there is no sign of multivaluation for γ φφ . Once the errors become dominant on K, they also transfer to γ φφ which starts being multivalued and diverging as well. Incidentally, notice that evolutions crash pretty early.

To cure these divergences, we dedicated additional work to the wave equation beyond spherical symmetry. After multiple unsuccessful attempts to ensure regularity, for example through filters and tentative numerical boundary conditions at the origin, the best remedy turned out to be the regularization in the division by r explained in Section 3.4.3. Applying a similar regularization to the division by sin θ for even cosines also seemed beneficial on early m = 0 evolutions, despite not being as dramatic. Due to the state of BH simulations at the time, m = 2 evolutions also include the regularization for cos_odd, while m = 0 runs don't. We haven't investigated in more depth the impact of the cos_odd regularization for GW runs. The only direct conclusion, like for black hole evolutions, is that it doesn't suffice in itself to remove the remaining divergences.

Evolution scheme

The evolution is performed with the Runge-Kutta 4 (RK4) scheme, with a time step of 10 -3 . A few tests were carried out with the AB3 scheme but they necessitated a much lower time step, which wasn't worth keeping. This time step is compliant with a CFL factor less than 1. Indeed, the overall minimal spacing in the numerical domain is attained near the outer boundary of the nucleus along the radial direction and is

∆r min = r nuc × 1 -cos π 2(N r -1) ≈ 4.6 × 10 -3 . (6.24)
The minimal spacing in shells is obtained in the first shell in the radial direction and is ≈ 6.2 × 10 -3 . Along θ, the minimum spacing is at the first non-zero r and the value is given by

∆x θ = 2r nuc sin π 2(N r -1) × sin π 4(N θ -1) ≈ 1.5 × 10 -2 . (6.25)
Finally, the minimum spacing between points with different φ is given for the first non-zero r and θ by:

∆x φ = 2r nuc sin π 2(N r -1) ×sin π 2(N θ -1) ×sin π N φ ≈ 1.2×10 -2 . (6.26)
Dynamical fields are saved every 10 time steps (0.01 in units of time) and most of the results that we show sample saves every 10 files (0.1 in units of time). When possible, we run the evolution until t=100. Note that most of the wave has left the numerical domain around t ≈ 12, as illustrated in Section 6.3.

As described in Section 4.1.2, we subtract the traces Ãi i and γ i ki at the end of each time step. We then also project the determinant constraint, which seemed to help a little bit, by replacing γij ← -γij /γ 1/3 . (

Finally, filters are applied on the right-hand side of evolution equations as well as on every component of every dynamical field at the end of each time step, as explained in Section 4.1.3. A crash occurs if the maximum value of any field rises above 10 -3 . This is checked every 10 time steps.

Numerical results

We now present the results of gravitational wave evolutions. We first give general results regardless of the value of m. We take this opportunity to show a few typical profiles to better grasp the system. Then, more specific results, especially regarding errors, are discussed separately for the m = 0 wave, with and without removing φ-noise, and then the wave with m = 2. Finally we conclude on these simulations and discuss future work directions.

It is understood hereafter that when we mention the whole space for error computations, we refer to the whole numerical domain stopping at r = 8.

General comments and profiles

Let us start by mentioning that all results are given in the numerical gauge. At this stage, these simulations consist more in a proof of concept. As will appear shortly in the following paragraphs, the evolutions are hindered by the same kind of divergences than BH simulations in the presence of φ. Therefore we haven't put effort yet in computing gauge-independent quantities, or properly extracting gravitational wave signals.

As stated previously, we also work in code units for space and time. As expected, the wave has both an ingoing and an outgoing part. The ingoing part, which travels towards decreasing r, experiences a bounce off the origin of coordinates, for times around 2 ≲ t ≲ 3. It subsequently propagates outwards as well, and reaches the outer boundary (r = 8) at times t ≈ 11. Qualitatively, we thus consider that the wave has mostly left the numerical domain for t ≥ 12. Obviously, there might still remain some wave content, either due to non-linearities or, most probably, reflections on the outer boundary. Except for the "clean axisymmetric" case, the main contribution that is left however is noise. A good illustration of this is provided by Figure 6.4. It represents the evolution of the physical metric component γ φφ , on the x-axis (θ = π 2 and φ = 0), for a wave with m = 0 (and with noise in φ). The horizontal axis of the graph is time, and each line represents a different collocation point. The color code groups them by subdomain. Most notably, notice that the physical oscillation stops for points in domain 3 around said time of t ≈ 11 (orange lines). Simultaneously, there starts to be non-negligible oscillations in the nucleus (dark blue), which eventually blow up.

We further illustrate the propagation of the wave on Figure 6.5. It represents the same data given as a radial profile, plotted thanks to spectral expansion (not collocation points). We sample radii uniformly with a step ∆r = 0.01. The figure is split in 3 parts, for times comprised between 0, 3, 6 and 9 respectively. The color code is global and represents the passage of time. It starts with black and dark blue, goes lighter, transitions through green before turning to orange and red for late times. The left-moving part is the ingoing wave, while the right-moving one is the outgoing contribution.

Although it is not visible on these graphs, there might be small discontinuities at domain boundaries. We notice that in general when such discontinuities appear, radial derivatives are still fairly continuous. The discontinuities in themselves are not necessarily worrisome, as long as they dwindle with increasing resolution. Contrarily to BH simulations, we have not performed convergence tests yet with GW evolutions, but multidomain black hole simulations give us confidence in the methods and implementation (Section 5.2.3). Still, when errors and constraint violations grow too large, fields in different domains look very noisy and uncorrelated (not shown here).

In order to try to give additional intuition of the dynamics, we show yet an other instance of γ φφ , this time computed in the whole equatorial plane. Hopefully this helps grasping the droplet-like bounce at the origin. We still use spectral expansion and sample 20 points in the φ direction. Figures 6.21 and 6.22 correspond to m = 0 and m = 2 respectively (the figures are placed at the end of the chapter). They take the form of patchworks of snapshots taken at 1 unit of time of each other. We actually plot γ φφ -1 on the z-axis and use a symmetric logarithmic diverging color code accordingly (blue is positive and red negative). For adequate comparison, the color code as well as the scales and framing are the same for all snapshots of both waves. It can be noticed that the apparent mean value is higher for m = 0 (darker blue) and the wave mostly explores a larger range of amplitudes, although the actual maximum and minimum values obtained from the data are very similar (around ±0.1). The most striking feature of this comparison remains the φ-symmetry: it is clear that the m = 0 wave exhibits full rotational symmetry. Meanwhile, the cos(2φ) dependence of the m = 2 wave is distinctly visible. Larger individual versions of some of these pictures are replicated in the corresponding sections (Figures 6.7 to 6.10 and 6.15 to 6.18).

Wave m = 0 with the axisymmetric treatment

In a fashion similar to black hole evolutions, when φ-dependence is removed from the initial data, simulations of m = 0 gravitational waves perform satisfactorily. The wave leaves the numerical domain and there is no sign of diverging errors still growing. We are able to run the simulation up to t = 100 and haven't tried to go further. It already takes a considerable amount of computation time, as characteristic field and penalty evaluations are numerous. Just like for Schwarzschild black holes, the φ-components of rank-1 tensors vanish identically in this configuration.

For completeness, let us mention that this run was performed before an important correction in the algorithm -which seemingly didn't impact results, based on our checks. Moreover, we use κ α = 0, as this simulation was run when there still existed doubts about it (see Section 5.2.2). We have also carried a similar run with penalties on characteristic fields at the outer boundary (also κ α = 0), which yielded similar results. In Figure 6.6, we show the various errors, first for 0 ≤ t ≤ 20 and then for 0 ≤ t ≤ 100. The infinity norm is computed over the whole numerical domain (all subdomains). It is interesting to see that some errors, like traces and the determinant constraint, very clearly decay when the wave is no longer in the numerical domain. On the other hand, some errors, like H, actually reach a plateau and seem frozen (at least their maximum). It would be relevant to check if these plateaus converge to 0 when the number of points increases.

Wave m = 0 with φ noise

Before discussing and showing the evolution of errors which eventually cause a crash of the simulation, let us showcase a few snapshots of γ φφ in the equatorial plane, as promised in Section 6.3.1. Let us recall that the height of the 3D view, as well as the color code, embody the deviation of the physical metric to 1 (blue for positive, red for negative). The field values are computed with the spectral summation for points uniformly spanning radii (with step 0.01) and azimuth (step π/10). The axial symmetry is clearly visible. We show the configuration at t = 0, 1, 2 and 5 (Figures 6.7 to 6.10).

As foreshadowed by the results obtained with the Schwarzschild black hole in Section 5.2.4 and the introductory Figure 6.4, the presence of noise in φ coefficients and tensor components spoils the stability of our evolutions. Recall that such noise is inherent to the generation of our initial data, and robustness against small perturbations would be a decent expectation for a reliable evolution code.

For this simulation, the evolution fails at t = 14.94. From Figure 6.4, it could be thought that this is caused by divergences at the origin, just like in pre-regularization runs (Figure 6.3). We could not find enough evidence of this assertion though, and the larger contribution near the origin might just be linked to some inverse power of r behavior. To illustrate this, we show in Figure 6.11 the evolution of β r θ on the z-axis. While scanning the behavior of all fields, we found this quantity to be very helpful to measure errors and divergences, since it is expected to vanish (according to simulations without φ-noise). Each line corresponds to a different collocation point, starting from the origin and sampling every 7 points. There is actually no line for the point at the origin as the field vanishes exactly there. The color code groups collocation points by subdomain, and the error is lower for larger radii. The amplitude put aside, the growth is fairly consistent across the whole z-axis and starts very early.

The same kind of divergence can be easily spotted on the φ-components of constraints, which used to vanish in Section 6.3.2. We give the evolution of the infinity norm of the various constraints, computed over all subdomains, in Figure 6.13. The infinity norm is computed over the whole space (all domains). Constraints reach a steady state or decay. For FO constraint violations, the norm additionally aggregates all components of the corresponding tensor. When M φ -violations become of the order of the other constraints, they drive their growths as well. This tends to happen in the central nucleus first, as the errors are larger there. The details of the infinity norm in each domain is given for H and M φ in Figure 6.14. This goes to show that the exponential divergence in M φ happens in all domains, just like the divergence of β r θ in Figure 6.11. It also demonstrates that H stagnates in every domain and not just at the origin.

Evolution of FO constraints (whole space)
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Finally, Figure 6.12 demonstrates constraint damping in action in the nucleus. Before the divergence at late times, an exponential damping of ∥A i ∥ ∞ and ∥B j i ∥ ∞ can be observed. It is not visible in all domains nor for ∥D kij ∥ ∞ in this context.

Wave m = 2

We finally address the m = 2 simulations. They are some of our most recent runs. Unlike early attempts at such evolutions, which failed significantly faster than m = 0, both are now comparable (provided we include noise in φ of course). This is, in itself, quite a milestone for us. The main simulation which we describe crashes at t = 14.74 (versus 14.94). In contrast with the m = 0 evolution, we cannot rely anymore on errors such as ∥M φ ∥ ∞ or β r θ (Oz) to provide early information about divergences. For instance, M φ has an order of magnitude similar to the other components from the start.

Once again, before showing and commenting the evolution of errors, we start with the exhibition of γ φφ in the equatorial plane, for times t = 0, 1, 2 and 5 (Figures 6.15 to 6.18). The settings are the same than for Figures 6.7 to 6.10. We would like to emphasize the conspicuous cos(2φ) behavior, as expected from Equation (6.8) and the terms f (1,2) φφ from Equations (6.9g) and (6.9h). On the figure, it translates into antipodal peaks (in blue) and corresponding antipodal troughs, shifted by 90 degrees. Besides, notice that after the reflection at the origin (Figure 6.18), peaks and troughs have been reverted. It can be compared to the part of the wave which is initially outgoing, most visible in the initial configuration (Figure 6.15). If you consider, say, the bottom-left to top-right axis, the initial wave experiences positive, negative, positive. After the bounce, it is negative, positive, negative.

Even though the divergence is not as clear from the beginning, it eventually appears and makes the evolution crash. It can be seen from the infinity norm of the errors, computed over the whole numerical domain (Figure 6.19). Although it is not shown here, note that for instance for GR errors, the overall maximum matches the maximum in the nucleus. Most notably, the Hamiltonian constraint grows until it reaches a fairly high plateau H ≈ 2. We discuss this in a little bit more depth in the following paragraph (Section 6.3.4).

With Figure 6.20, we would like to draw attention to the fact that constraint violations can track the propagation of the wave. We already saw with Figure 6.6, According to simulations without noise, this quantity should vanish. The closer to the origin, the higher the error, although the growth is pretty consistent across the whole space. 
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.13: Evolution of constraint violations for a m = 0 gravitational wave, with φ-noise. The infinity norm is computed over the whole space (all domains). M φ grows exponentially and eventually causes a crash. For FO constraint violations, the norm additionally aggregates all components of the corresponding tensor. for instance, that trace constraints experience a significant drop when the wave has left the numerical domain. Here, we show the infinity norm of M r and M φ computed in each domain separately. With some scrutiny, a bump starting from the inner part (domain 0) around t ≈ 2.5 moves towards the outer part (domain 3). It is especially remarkable for M r (Figure 6.19). The top of the bump links smoothly the curves for each subdomain (blue, then orange, then green, then red) in a decaying line which breaks at t ≈ 11 -12.

As a side remark, let us mention that we performed a simulation with an additional cutoff in filters. When applying filters (on the RHS of the evolution equations and on dynamical fields), coefficients below 10 -14 are canceled. This resulted in a longer simulation which crashed at t ≈ 42. Unfortunately, it doesn't stem from slower divergences but rather a somewhat lucky stabilization. Indeed, constraint violations very much grow like in the previous graphs, but they don't directly blow up when they are of order 1. At this stage (starting around t ≈ 15), fields are completely unphysical. They are no longer smooth, in particular at domain boundaries. Therefore, we don't show more details about this and we don't deem it an improvement despite the later crash.

Tentative additional regularization

We examined more closely the source of the Hamiltonian constraint violation, which manifests as the plateau in Section 6.3.4. It appears that the maximum is reached at the origin, and that H actually has different values at the various numerical points for r = 0. More precisely, the maximum is obtained for points of indices (0, 0, 3) and (0, 0, 9), corresponding to r = 0, θ = 0 and φ = ± π 2 . They are followed by points which either move one point away on the axis: (1, 0, 3 & 9) or closely-related points at the origin (0, 1, 3 & 9). On the one hand, the regularization in divisions explained in Section 3.4.3 and recalled in Section 6.2.3 doesn't seem to fully prevent multivaluation. On the other hand, multivaluation doesn't seem to cause as much trouble as it did in Figure 6.3. It has not been checked but it might just shrink when increasing spatial resolution, just like we want the plateau to converge. Still, we have tried to enforce further regularity through filters, as explained at the end of Section 5.2.4. Inspired by Galerkin bases from the elliptic spectral solver, we try to remove (consistently) contributions of functions at the origin and on the axis. We can either act on the first coefficients (constant values) or last coefficients (more like tau-methods).

Our preliminary tests might not correctly impose the proper regularities though. As a matter of fact, runs crash very early (t ≤ 2). Out of a few experiments, the only one which lasted longer than that, was when only imposing regularity on the axis (and not at the origin) with the first coefficient, along with the 10 -14 cutoff.

In this situation the evolution ended at t = 20.69, but late time configurations are highly non-physical. Although the global qualitative behavior remained unchanged, the regularization filter indeed caused a reduction of multivaluation (for instance of K). In a fashion similar to the origin regularity exposed in Section 3.4.1, this was evaluated by computing the value (or derivative, see example below) on the axis of each r and φ coefficient function:

val_axis(i, k) = N θ -1 j=0 a ijk f (θ),k j (0) , ( 6.28) 
where the function f is expanded as

f (r, θ, φ) = i,j,k a ijk f (r),jk i (r) f (θ),k j (θ) f (φ)
k (φ). In our case, the r basis functions actually don't depend on the j-th θ coefficient, which justifies the inversion of sums needed for Equation (6.28).

As a concrete example, let's consider a simple scalar. For even cosines and sines of φ (k ≡ 0 or 1 mod 4), the θ basis functions are even cosines:

f (θ),k j (θ) = cos(2jθ). Then we get val_axis(i, k) = N θ -1 j=0 a ijk . (6.29)
For odd cosines and sines of φ (k ≡ 2 or 3 mod 4), the θ basis functions are odd sines: f (θ),k j (θ) = sin((2j + 1)θ). This naturally vanishes on the axis. The regularity condition in this case is the vanishing of the θ derivative on the axis, in this case we compute (abusively called val_axis in the code):

der_axis(i, k) = N θ -1 j=0 (2j + 1)a ijk . (6.30)
For a scalar, these functions are expected to be numerically zero, except for k < 2 for even cosines of θ and k < 4 for odd sines of θ.

The other qualitative consequence of this additional regularization was a decrease of the plateau of H from around H ≈ 2 to H ≈ 0.07. It further allows other constraints to reach back down: for instance, the maximum of M φ goes back under 10 -2 in the nucleus, which it didn't do previously. The angular components M θ , as well as G θ and G φ , experience similar improvements; while other constraints don't seem affected. Although these effects seem encouraging and might reveal some working paths, the results remain inconsistent so far, the generic trend is unaffected, and it hasn't yielded better black hole evolutions either.

Discussion and future work

We conclude this chapter with a discussion and summary of results for gravitational wave evolutions, and possible future work. 
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Other attempts

In this paragraph, we would like to bring up a few other numerical experiments which were carried out during our work. As a disclaimer, let us acknowledge that not all of them have been tried again recently with the latest additions and improvements, and in all possible configurations of parameters.

First of all, we tried to evolve the system with the Cartesian triad instead of the spherical one. This has the potential to facilitate regularity conditions, as every tensor component behaves like a scalar. Nevertheless, it seems that the divergences related to the φ angle don't spare such evolutions and doom them.

In order to assess the potential impact of the boundary conditions, we also extended the numerical domain with another shell, which doubles the outer radius to r out = 16. It was tested on a m = 0 wave and the results were very similar to the reference simulation. Hence we have kept r out = 8 and the same boundary conditions for subsequent investigations.

Also, as quickly alluded to, we have tried a few simulations with penalties on incoming characteristic fields. However, the actual boundary condition of driving incoming characteristic fields to their initial values might not be well-suited to this physical situation.

Conclusions and future work

Let's conclude on these Teukolsky wave evolutions. Despite the remaining constraint violations and the current lack of convergence study on GW runs, they provide a nice complement to the BH simulations. Both are consistent in the sense that evolutions don't develop exponentially-growing error modes if and only if there is no dependence in φ, be it numerical noise or physical contributions, direct or indirect. When initial data (for m = 0) are devoid of the undesired φ contributions, we obtain evolutions where the wave not only propagates out of the numerical domain, but also leaves behind no growing divergences.

On the other hand, when noise is included, or more interestingly for the m = 2 wave, exponentially growing error modes become dominant in time scales comparable to the crossing time. Otherwise, propagation and domain communication seem functional.

It is still unclear what causes these divergences and hence how to cure or curtail them. Regularity at the origin has been a crucial cornerstone for (more) stable evolutions, and might still play a role in reducing constraint violations. The origin is not involved in black hole simulations though and such divergences still occur. Thus regularity on the axis may be a point of focus.

From black hole simulations, we also learn that we can probably trust multidomain communication for GW runs and expect spectral convergence when increasing spatial resolution.

In the future, the main objective will be to obtain full 3D evolutions without divergences. This would open the way to simulations of gravitational collapse for example (and potentially critical phenomena like [START_REF] Suárez Fernández | Evolution of Brill waves with an adaptive pseudospectral method[END_REF][START_REF] Hilditch | Collapse of nonlinear gravitational waves in moving-puncture coordinates[END_REF][START_REF] Hilditch | Pseudospectral method for gravitational wave collapse[END_REF]). It could also be interesting to study the scattering or absorption of a gravitational wave by a black hole. More generally, we could try to implement better boundary conditions (such as constraint-preserving boundary conditions) and to extract the gravitational signal more precisely. 

Conclusion

This work is dedicated to the numerical resolution of the evolution equations of General Relativity (GR). In Chapter 1 we have recalled the context and motivation behind such simulations. Most notably, the community was largely driven by the need to generate gravitational waveforms for the coalescence of compact binaries. Indeed the merger phase is only accessible to such numerical evolutions. Along with the other relevant techniques, Numerical Relativity played a key role in the first direct detections of gravitational waves by laser interferometers. Gravitational wave science and multi-messenger astronomy are blooming and expanding fields. Then in Chapter 2 we have explained why it is challenging to perform such simulations. Many intricate and non-trivial ingredients need to be processed, each of them worthy of being its own research area. We shall recall a few here. Let us first mention the formulation of Einstein's equations, which need to be suitable for numerical integration; and the choice of gauge and boundary conditions. Obviously, numerical methods also have their fair share, from the choice of spatial discretization, to the time integration scheme, and high-performance computing. Other relevant topics are the management of horizons for black holes, shocks for neutron star mergers, or gravitational wave extraction. Finally, the generation of initial data should not be forgotten, and it has been a specialty of the Meudon group hosting this project.

Within this context, the Kadath library offers a multidomain pseudospectral solver of partial differential equations. It is restricted to systems with some time symmetry and as such can mostly be used to study stationary and periodic systems or generate initial data. We set out to complement the library with time integration schemes, which would make it suitable for numerical evolutions as well. The bigger picture is to start with the implementation of standard methods and their validation. Once achieved, this opens the door to investigation of new physical problems (possibly beyond General Relativity) or to development of original numerical methods.

We thus have implemented explicit time integration schemes in the library, faithful to its philosophy and building on the existing structures. In Chapter 3, we describe a wave equation toy-model, which conveniently allows us to test the implementation and to get familiar with various numerical techniques. To name a few, we explain how to use characteristic fields and penalty methods to impose boundary conditions; and we illustrate constraint damping. Rather than a thor-ough investigation of this toy-model, we rely on it to expose the numerical setup of our simulations, introducing the key features of the library, and showcasing a few results. We demonstrate space and time convergence properties of the discretization. Most importantly, a new regularization operation is explained. The latter has been of utmost importance in curing divergences of our evolutions.

We then proceed to set the framework of our evolutions in General Relativity in Chapter 4. A first-order reduction of the Baumgarte-Shapiro-Shibata-Nakamura (FOBSSN) formulation is employed. The generic numerical features and parameters of evolutions are given, regarding the time scheme, filters, the numerical domain and boundary conditions. For multidomain simulations, we use penalty methods on characteristic fields to convey information between neighboring patches. This allows us to show the results of the evolution of a Schwarzschild black hole in Chapter 5, after having detailed the specificity of such simulations. The gauge choice ensures that the system is stationary, and our purpose is to obtain long-lasting runs which display no signs of divergences. This we achieve, both for black holes in a single spherical shell or in a multidomain context. We reach times of a few thousands of the black hole mass without instability, and exhibit spectral convergence of the solutions, testifying their validity. Finally, in Chapter 6 we present evolutions of gravitational waves. We first explain how initial data are built from Teukolsky waves with an off-centered profile. The propagation of the wave is depicted and two physical configurations are examined: axisymmetric (m = 0) and non-axisymmetric (m = 2) waves.

Despite our encouraging results, the most severe limitation to date is the appearance of exponential error modes when there is content related to the φ spherical coordinate in GR simulations. This appears clearly in various contexts: when φnoise is added to the Schwarzschild black hole or the m = 0 gravitational wave; for the m = 2 wave which has a physical φ-dependence; and even in preliminary evolutions of a Kerr black hole, which doesn't depend on φ but involves φ-components of tensors. To tackle this problem, we have turned our attention back to regularity issues, on the axis and at the origin or coordinates, as it has been crucial in previous progress. As suggested by the Kerr black hole simulation, it would be interesting to add some φ-independent noise to the γ rφ component of the metric and see if divergences are triggered. Finally, we might need to construct more sophisticated versions of the wave equation toy-model which mimic these instabilities. This simple model remains a reliable and invaluable tool to detect and correct misbehavior of the code.

Even before considering the application of the library to new physical systems or to the elaboration of original numerical methods, there are plenty of refinements and investigations which can be performed from our base work. A large part of it consists in determining the key elements which make our simulations working (when we have a 3D fully operational implementation). It would be interesting to have a more in-depth analysis of the time schemes and time-step convergence.

It could be fruitful to test new schemes such as partially implicit methods [25] or time spectral methods. Playing around with filters may be relevant, and assessing the exact needs for and consequences of regularization techniques would be pertinent. Improving boundary conditions by using constraint-preserving forms could be envisioned. We would also like to solve the last discrepancies between constraint damping coefficients and characteristic fields that appear in black hole simulations, and sort out the benefits of penalty variants.

Gauge conditions also constitute a compelling avenue of work. Despite a tentative at a better treatment of excision in black hole simulations, it seems that we cannot obtain stable runs in fully dynamical gauges so far. Although this may be caused by boundary conditions, it would be stimulating to achieve those evolutions. We could also try the 1+log slicing again in black hole runs. Moreover, we could slightly rework the FOBSSN formulation to enforce a first-order-in-time condition on the shift, thus getting rid of the reduction variable B i and potentially alleviating excision constraints. Going even further, it would technically be possible to use a wholly different formulation of Einstein's equations in the library, such as a version of Z4 or the Generalized Harmonic system in 3+1 form. We are also keen to delve back into second-order formulations, and potentially extend the work done on it to develop second-order penalties for GR evolutions.

From the point of view of the implementation, the library could further be enriched by a variety of tools such as an apparent horizon finder or gravitational wave extraction tools, along with many minor additions. To increase performance, we would like to make the code parallel and possibly optimize it. Some work has been done in this direction already. As long as we're out of the high-performance computing game -which could also lead to techniques resembling Adaptive Mesh Refinement -there is no point in even considering generating competitive gravitational waveforms. Self-awareness and honesty force us to acknowledge that it is not happening any time soon provided the human and material resources at hand, and this was explicit from the beginning of this project.

Still, there is plenty of interesting physics and research to carry out outside the scope of traditional binary mergers. A close follow-up to our work would be to obtain stationary Kerr black hole evolutions. The black hole can then be perturbed, either by a scalar field or by scattering gravitational waves. The excitation modes of the black hole can be studied. This would represent a nice convergence of both of our current applications, as well as an interesting playground for black hole physics. Including matter content is a possibility as well. It would also be nice to take advantage of the bispheric spaces implemented in the library for the study of binary spacetimes.

Finally, the evolution schemes added to the library could allow the investigation of exotic compact objects, such as boson stars. They could also shed light on gravitational systems in modified gravity: for instance, with the examination of how compact objects behave in extensions of General Relativity. The evolution code could be employed for asymptotically anti-de Sitter spacetimes as well, with the potential need for additional developments to tackle the time-like boundary. For instance, we could try to evolve gravitational geons obtained by the group in the past [START_REF] Martinon | Gravitational geons in asymptotically anti-de Sitter spacetimes[END_REF].

In conclusion, our work only marks the first step on a long way of possible investigations in Numerical Relativity, regarding numerical methods and physical systems alike. Once the library is fully validated, applications will be manifold. With the renewed booming interest in gravitational physics, evolution codes have a bright future ahead and a decisive role to play in understanding our universe.

The TF superscript indicates the trace-free part with respect to the conformal metric γij .

Based on considerations about the constraint subsystem, Brown and collaborators also suggest to add the following term to the evolution equation for γkij (Equation (A.13e)), which we do: 

A.1.3 Characteristic decomposition

The main purpose of using this formulation of Einstein's equations is the possibility to use, in a straightforward manner, penalty methods on characteristic fields. The reference discusses hyperbolicity and the eigenvalue problem. Here we only give the expressions of the characteristic speeds µ and the characteristic fields u c , once again separated as gauge and non-gauge blocks. But let us first introduce notations and recall the assumptions of [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]. They use σ = 1, find that κ ϕ = 0 for the system to be strongly hyperbolic, and assume the gauge functions f , G and H to be positive. The background around which the linearization is performed is symbolized by a circle above the corresponding fields, for instance α, which is called the frozen lapse. The frozen physical metric is used to lower indices of β i and β j i .

A condition for hyperbolicity is that the function λ ≡ 4 G H 3 verifies λ 2 ̸ = f . Finally, the characteristic decomposition is performed in a given (arbitrary) direction, represented by the normal form s i . We choose to change the notation from [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF] here to reflect that it is a purely spatial normal. Its indices are manipulated with the frozen physical metric and it is normalized: γij s i s j = 1. It is necessary to project along and transverse to the normal, with the projection (or 2D transverse metric) qij = γij -s i s j . Projections along the normal have an "s" index, for instance β s = s i β i . Transverse components of tensors are written with uppercase indices like A and B. In Kadath, we actually don't have 2D tensors, so these transverse components are really 3D tensors from which the normal component has been subtracted 4 . For example, β A would actually be β ⊥,i ≡ q A i β A = β i -β s s i . We also give more precise names to the characteristic speeds, which are hopefully selfexplanatory.

tation can be found on the website of the conference https://sites.google.com/ view/eetm2022/programme.

B.1 The Kadath library B.1.1 Principle and algorithm

The Kadath library is presented in [START_REF] Grandclément | KADATH: A spectral solver for theoretical physics[END_REF]. It is a free and open-source software and all the information for its download and installation, along with a reference manual and tutorials, can be found at https://kadath.obspm.fr/. The library is written in C++, is object-oriented and it uses multidomain spectral methods (see Sections 2.5.2 and 3.1.3). It is designed to be user-friendly and modular. In particular, we stress that there is no need to dive into the implementation of the library to start using it: the library is compiled once and for all, and users generate executables by compiling a separate simulation file of their design. A prominent feature is that this simulation file contains the equations to be solved (not the library) and these are given by the user in a L A T E X-like character string. Usually, results are saved at the end of the simulation file (or in the course of the main program) and are analyzed by Kadath in a separate "reader" file.

Before the implementation of evolution schemes, Kadath was used to solve systems of partial differential equations with a Newton-Raphson algorithm, which is efficiently parallelized. It was limited to the generation of initial data for evolutions, or to systems with some time-symmetry (stationary or periodic for example).

The system of equations is discretized with the method of weighted residuals. Starting from a discretized function in coefficient space,

u(x) = N i=0 a i T i (x) (B.1)
and an equation H(u, ∂u, . . . ) = 0, it is possible to compute the expansion of this equation in the basis of T i 's. Then the scalar products (H|T j ) yield the residuals of the equation. This is the tau-method mostly used in Kadath. At this stage, it can be checked that a given function has small residuals (and thus is a satisfactory solution to the system).

To actually solve the system, the library performs Newton-Raphson iterations: minimizing the residuals accounts to finding the zero of a function of multiple variables. Let us illustrate first with a 1D example. To find the zero of a function f , the Newton method starts from an initial guess x 0 . The function is approximated by the tangent and the vanishing point of this tangent provides the next value for x:

f ′ (x 0 )(x 1 -x 0 ) + f (x 0 ) = 0 . (B.2)
This procedure is repeated until a criterion is reached: a threshold ϵ is given by the user and the approximation for the solution of f (x) = 0 is the first iteration such that |f (x i )| < ϵ. In a neighborhood of the zero, these iterations should converge to it. In practice, it can either converge to another point, or not converge at all (especially in multi-dimensional problems). The extension to higher dimensions is as follows: the function f is replaced by the field equations ⃗ H(⃗ u) = 0 and the derivative corresponds to the Jacobian,

J = δ ⃗ H δ⃗ u
. The iterations are the same than before: start from an initial configuration ⃗ u 0 ; solve J (⃗ u 0 )⃗ x + ⃗ H(⃗ u 0 ) = 0 ; (B.3) evaluate the error with the weighted residuals at the new ⃗ u 1 = ⃗ u 0 + ⃗ x and iterate if needed. Note that for linear systems, only one iteration is required to converge (the tangent is not an approximation).

Computational time is mostly spent for two tasks: computing the Jacobian and inverting Equation (B.3), which is done with external libraries. The former task relies on automatic differentiation of the system of equations with the help of dual numbers: ⟨⃗ u, δ⃗ u⟩. To illustrate, consider the product of two such numbers (the • notation is not a scalar product): 

B.1.2 Key classes

We list and quickly describe a few of the main classes of the library, which are relevant for the resolution explained in the previous section, as well as for the evolution schemes.

Space discretization

Domain A subdomain, or patch, of the global numerical domain. This class is virtual and only its derived classes are accessible. Many of the methods within this class are re-implemented for the relevant derived classes.

There are quite a number of specialized Domain classes, but the ones of interest to this work are Domain_nucleus, Domain_shell and Domain_compact. These correspond to the different types of domains described in Section 3.1.3. They impose a symmetry of fields with respect to the equatorial plane θ = π 2 .

The Domain classes make the link between numerical coordinates and physical coordinates. Any operation related to coordinates therefore goes through these classes (for instance, the division by r). This allows for different treatments according to the specific type of domain. For example, the division by r is regular in shells but extra care is needed in the nucleus, as explained in Section 3.4.3.

The Domain classes also manage the spatial resolution (number of points and coefficients) as well as the correct affectation of spectral bases. They deal with coefficients when using the tau-method.

As a side note, we would like to mention the existence of similar derived classes of Domain which can have an adaptive boundary, in the sense that the boundary location is an unknown in the system of equations.

Space The total numerical domain (which we hereafter call space). It groups together several Domain objects, according to the specific derived class called by the user. The most relevant derived class for this work is Space_spheric. In our case, it is composed of a Domain_nucleus, an arbitrary number of Domain_shell, and possibly a Domain_compact, as described in Section 3.1.3.

Note that Kadath features bispheric spaces to deal with binary systems.

Fields

Val_domain This class represents a field in a given Domain. It contains the values at collocation points and/or the coefficients (according to what has been computed already), as well as the methods to call to compute them. For operations like the division by r, this is the last interface between the user and the counterpart in Domain (meaning that the user can call the method of Val_domain but not the method of Domain).

Scalar Scalar is a derived class of Tensor but has a special role. It is composed of several Val_domain and is constructed from a Space. It is the basic field object that the user should manipulate (more so than Val_domain). The Scalar objects must not be thought of as true scalars but rather as fields without indices that can be expanded as a power series of the Cartesian coordinates. Most operations on Scalar will propagate the correct spectral bases, and users should be extra careful if they need to provide the basis themselves. A safe option is to build a unit Scalar, affect the standard spectral basis to it, and use the many available operations to build from there (multiplication, division or derivatives with respect to coordinates...).

Tensor A collection of Scalar components. It has the further information of the type of indices (covariant or contravariant) and the triad (Cartesian or orthonor-mal spherical). Note the other derived classes: Vector for a rank-1 tensor, and Metric_tensor for a symmetric rank-2 tensor.

System of equations

System_of_eqs

The class which contains the system of equations that needs to be solved. This is the interface through which users enter the equations as L A T E X-like character strings. At construction, the range of domains for the resolution of the system is provided by the user (for instance, the nucleus is not included there for the excision of black holes). The Newton-Raphson iterations are called by a method of System_of_eqs. Internally, it orchestrates the computation of the Jacobian and its inversion.

Before writing out the equations, users need to add the unknown fields to the system, along with the name by which they are called in equations (as well as other constant auxiliary fields if need be).

For convenience and efficiency, users may also add definitions in the system. Those are computed only once and can be referred to in subsequent definitions and equations. Users can retrieve the values of definitions through a dedicated method give_val_def().

Equation The derived classes of Equation are not accessible by the user and are managed by System_of_eqs. These objects contain the sequence of operations that need to be performed to evaluate the equation, and may have different behaviors according to their specific role (bulk equation, boundary condition, matching, ...).

Metric

Based on a Metric_tensor which represents the actual field, the Metric classes have a special role in the System_of_eqs. A Metric associated to the system (there can be only one) allows index manipulation, as well as automatic computation of usual derived quantities: the inverse metric, connection coefficients ("Gam_klˆi"), covariant derivative ("D_i") and Ricci tensor ("R_ij").

Note that the connection coefficients actually correspond to ∆Γ i kl = Γ i kl -Γi Ope_eq The class which represents operations in the system. Like Term_eq objects, they are used in the internal functioning of System_of_eqs. For example, an object of the derived class Ope_add is created if "+" is encountered in the equation string. When evaluating the whole equation, it will request the result of its two operands and return the Term_eq containing the result.

An important and peculiar derived class of Ope_eq is Ope_def, which manages definitions in the system and thus has a slightly different behavior (such as checks for the names of indices of tensor components).

A substantial number of operators are pre-defined in Kadath with specific (generally transparent) character strings and they can be examined in the definition of the method of System_of_eqs called give_ope(). Still, an interesting feature of the library is that users can provide their own custom operator. Such an operator is created by the System_of_eqs object by providing a function of one or two Term_eq which returns a Term_eq. In evolutions, we rely on this structure to apply filters on the right-hand side of the equations but also to test characteristic fields and compute penalties accordingly.

Utilities

Array The library's implementation of arrays. They are used internally but can also be of interest to users, for instance when providing the domain boundaries at the creation of a Space object. Index A utility to navigate arrays, tensors components and most importantly field values or coefficients.

B.2 Evolutions with Kadath

B.2.1 Reminder of the main features

We don't go into much detail about the numerical techniques used in this work here, as they are presented in greater detail in the main chapters. We recall that we perform free evolutions (to the extent that we remove traces) for first-order-intime systems. We implemented three explicit time integration schemes: 4th-order Runge-Kutta (RK4), 3rd-order Adams-Bashforth (AB3) and Runge-Kutta with adaptive time step (Dormand-Prince method). The latter has not been maintained since the addition of the Step_Ope structure described below (used for filters for instance), because as such it breaks the first-same-as-last property. Moreover, it may prove more difficult to debug and infer reliable information from such adaptive time step algorithms.

In addition to the direct structure needed for time integration, we implemented stopping criteria and post-step operations (such as filters, trace removal). We also needed to complement existing classes such as Domain with the appropriate structures (see below).

As much a possible we build on the existing infrastructure of Kadath and try to stay truthful to it while extending it. We don't mention all of our contributions; some of them also regard details and additions to the main library.

Finally, let us recall that so far, evolution schemes don't support parallel computations. The most natural way to make the library parallel would be to use tasks and threads to compute the definitions and equations in the correct order (since they may depend on each other, it is crucial to update them consistently). There have been tests in this direction but some challenges are being faced.

B.2.2 Key classes Additions to the existing classes

Domain

The most noteworthy additions concern domains: just like Domain classes deal with coefficients for System_of_eqs, we need them to deal with the state vector. In particular, the state vector is a 1D Array organized in a certain order, which the new methods know of. In order to deal with bulk and boundary evolution equations in a homogeneous framework, we also added attributes and methods which deal with the so-called sectors of the domain (bulk, inner boundary, outer boundary, ...).

Note that beyond the generic methods, the specific pieces of implementation have only been added to Domain_nucleus and Domain_shell so far, but their replication to other cases should be straightforward and seamless.

We would like to add that we designed an infrastructure which allows the code to differentiate between redundant points (several numerical points for one physical point, such as the points on the axis or at the origin). Even though we were unsuccessful with these attempts and ended up treating each numerical point independently, the related architecture is still present. Miscellaneous A few miscellaneous contributions which we want to mention are the management of Nan, an important correction on names of indices in definitions and an extension of the "import" operator in System_of_eqs useful for matching conditions, not to mention the regularization exposed in Section 3.4.3.

New classes

System_evo, Eq_evo_1st_order, Metric_evo These are the counterparts for evolutions of the related classes in Kadath. System_evo derives from System_of_eqs and adds the relevant attributes and methods. The time integration function is called from the System_evo object. Importantly, the system also deals with the saves, which can be customized with a dedicated function. It is possible to save dynamical fields and definitions from the system, every n time steps (n is provided by the user).

Eq_evo_1st_order corresponds to the evolution equations, and provides a uniform treatment of both bulk and boundary equations, which must all be of the form ∂ t u = RHS where u is one of the dynamical fields.

Metric_evo has all the features of the usual Metric_gnl used in Kadath, but is treated as a dynamical field. Time Classes for the representation of time. The basic usage is to rely on the derived class Time_cst_step for a constant time step between an initial and a final time. Time_Integ This class represents the time scheme and is probably the most important and the most involved part of the new implementation. We don't aim at explaining how it works here. Note the derived classes Time_Integ_rk4 and Time_Integ_ab. They are built from a Time object and must be associated to a System_evo.

The stopping criterion and step processing operations are added by calling the corresponding method of Time_Integ.

Note also that the integrator performs a number of checks and initialization before the integration actually starts.

Stop_Crit Stopping criteria for the integration. A few criteria have been implemented and it should be straightforward to implement new ones by mimicking the existing examples. The most relevant (and useful) criterion to date is Stop_Crit_maxabsval, which stops the integration if the infinity norm of any field surpasses a certain threshold chosen by the user (with NaN checking). We typically use a threshold of 1000 and check it every 10 time steps. Other criteria were implemented for the adaptive time step integrator, such as a lower bound for the time step.

Potentially, this kind of structure could be used in the future to check that a given surface is a proper excision boundary, by assessing signs of characteristic fields; and stop the integration if not.

Step_Ope This class represents post-step processing of fields after time steps. There are two kinds of such operations so far, both of which are crucial for evolutions. First, filters on dynamical fields are applied at the end of each time step through such objects, for instance with Step_Ope_filter_cutoff_expR_sharpAng. This filter applies the exponential cutoff on r coefficients and sharp cutoff on angular coefficients (set to cancel the top third of each).

Second, the class Step_Ope_replace_var_evo allows to replace a given dynamical field by another expression. This is used to remove traces, for instance by using the command: time_integ.add_step_ope_replace_var_evo ("A_ij = A_ij -A_k^k*gtild_ij → /3.");

B.3 Example of simulation file

We give below a simulation file for the evolution of the 3D wave equation. For details on this kind of evolutions, see Chapter 3.

The initial radial profile is

f (r) = A exp - σ 1 -x 2 (B.7)
with x = r -r 0 r 1,2 -r 0,1

, A = 0.2, σ = 5. This radial profile is multiplied by the real spherical harmonic Y 2,2 .

The numerical domain contains two shells with boundaries at r 0,1 = 1, r 1,2 = 2 and r 2,3 = 4. There is no compactified domain and the equations are not solved in the nucleus. The velocity of the wave is c = 0.2, the time step ∆t = 10 -3 . We set initial and final times at t = 0 and t = 200.

We use the filter with exponential cutoff on r coefficients and "2/3" rule for angular coefficients, both on the RHS of the equations and at the end of each time step. We add a stopping criterion with a threshold of 200, checked every 10 time steps. Dynamical fields and the constraint are saved every 500 time steps.

Matching and boundary conditions are imposed with penalties. For illustration, a version with strong Sommerfeld conditions on V at the outer boundary are given in comments. We don't use constraint damping.

Finally, we leave, at the very beginning, an example of implementation of the function val_origin defined in Section 3.4.1.

horizon. Einstein's equations are then solved with Kadath for three different physical systems: the Kerr black hole, Martínez-Troncoso-Zanelli (MTZ) black holesour contribution -and hairy black holes (there is a massive complex scalar field minimally coupled to gravity). In the applications with a scalar field, the system is supplemented with the Klein-Gordon equation. Note that we solve a modified system based on the maximal slicing K = 0 and spatial harmonic coordinates which satisfy

V i ≡ γ kl Γ i jk -Γi jk = 0 . (C.1)
The fiducial connection coefficients Γi kl are fixed and well-chosen depending on the physical problem. To assess the validity of numerical solutions, we need to check a posteriori that these gauge conditions are satisfied; in every case, we recover spectral convergence as expected.

In a nutshell, those boundary conditions are derived from:

• the fact that the location of the horizon is fixed;

• it has a vanishing expansion Θ;

• it has no shear;

• there remains gauge freedom because the choices above are differential conditions;

• there is a level of degeneracy in Einstein's equations.

Let us convey the meaning of the last point with a simple 1D example. We call degenerate on the the boundary x = -1 a differential equation on unknown function f defined on [-1, 1]:

a(x)f ′′ (x) + b(x)f ′ (x) + c(x)f (x) + d(x) = 0 (C.2)
such that a(-1) = 0. In this case, notice that the differential equation reduces to a first-order condition on the boundary and therefore is its own boundary condition.

The system composed of the 10 Einstein field equation in 3+1 form is 3 times degenerate, yielding 3 of the 10 boundary conditions. Note that interestingly, the Klein-Gordon equation is also degenerate on the horizon and thus we don't provide boundary conditions for the scalar field there.

MTZ black holes

Our contribution was to apply this formalism to the case of Martínez-Troncoso-Zanelli (MTZ) black holes, from the names of the authors of [START_REF] Martínez | Exact black hole solution with a minimally coupled scalar field[END_REF]. In this reference, they give an analytic solution for static black holes with a minimally coupled scalar field in asymptotically anti-de Sitter (ADS) spacetime. This means that there is µ can be interpreted as a mass parameter and is linked to the radius of the horizon. These coordinates are similar to Schwarzschild coordinates in the sense that they are singular on the horizon, to the difference of our numerical gauge.

A particularly interesting feature of this solution is that the 2D line element dσ 2 represents a surface of constant negative curvature. Although the reference considers a compact such surface, in practice we use the metric for the hyperbolic plane:

dσ 2 = 1 cos 2 θ (dθ 2 + sin 2 θ dφ 2 ) . (C.6)
We build the reference 3-metric with it as

γ ref ij = dr 2 + r 2 dσ 2 (C.7)
and we consider the associated (non-flat) orthonormal triad for tensor components.

Numerical treatment of the ADS boundary

We devise a radial change of coordinates such that the ADS boundary is placed at finite radius r = R ADS in the numerical domain. In the new coordinates, the ADS metric reads:

ds 2 = - cos 2 log R ADS r sin 2 log R ADS r dt 2 + ℓ 2 ADS r 2 sin 2 log R ADS r γ ref ij dx i dx j . (C.8)
This compactification is designed such that the spatial part is conformally related to the reference metric exhibited above: This conformal factor absorbs the divergences due to the ADS boundary. It enables us to regularize the equations by extracting the proper powers of Ω from the metric quantities. Note also that the fiducial connection for the spatial harmonic gauge is constructed from the 3-metric γ ADS ij . More details can be found in the reference [START_REF] Grandclément | Boundary conditions for stationary black holes: Application to Kerr, Martínez-Troncoso-Zanelli, and hairy black holes[END_REF].

γ ADS ij = ℓ 2 ADS r 2 sin 2 log R ADS

Results and discussion

We perform the resolution of the system in two spherical shells. The outer shell includes the regularization procedure to account for the ADS boundary. We checked that the location of the subdomain boundary did not affect the results. As an illustration, we include the profiles of the lapse N , shift B i , components of the metric γ rr and γ θθ and the scalar field ϕ, shown in the reference, on To further assess the validity of our numerical black holes, we compared them to the analytic solution of [START_REF] Martínez | Exact black hole solution with a minimally coupled scalar field[END_REF]. The gauge invariant quantity which we examine is the value of the 4D Ricci scalar on the horizon, which depends on the parameter µ. So does the value of the scalar field on the horizon ϕ H . Inverting the relation, we can plot the 4D Ricci scalar as a function of ϕ H . The results are shown on Each numerical point is computed from a specific value of the horizon radius in the simulation. They range from r H = 6.5 (right) to r H = 10 (left). In the numerical gauge, larger radii correspond to lower curvature and scalar field values.

The goal of this work was to go further and exploit the formalism to obtain numerical solutions in rotation. Unfortunately we could not achieve this and suspect the following causes. First, as mentioned above, our 2D manifold of constant negative curvature with line element dσ 2 is not compact. This might suggest that an infinite amount of energy is needed to rotate it. However, finding appropriate coordinates for a numerical implementation of a compact counterpart does not seem straightforward.

Second, the inclusion of rotation in the formalism relies on the fact that ∂ φ is a conformal Killing vector of the 2-sphere. It is no longer the case with the 2D manifold at hand here.

Finally, the line element dσ 2 contains 1 cos 2 θ terms which diverge in the equatorial plane. Those terms may need to be regularized just like the ADS boundary.

For all these reasons, we have not investigated this subject further and have focused on the evolution schemes. 
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 12 Figure 1.2: First images of the vicinity and shadows of supermassive black holes by the Event Horizon Telescope Collaboration. Images are not scaled with respect to each other. Credit: Event Horizon Telescope Collaboration. Sources: https://www.eso. org/public/images/eso1907a/ (left); https://www.eso.org/public/images/ eso2208-eht-mwa/ (right). License CC BY 4.0.
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 13 Figure 1.3: Representation of the Inspiral-Merger-Ringdown sequence for the first binary black hole coalescence GW150914 detected by the LIGO Scientific Collaboration and Virgo Collaboration. It is shown along with the estimated strain in one LIGO detector. The bottom panel shows the relative velocity and the separation of the black holes in the process. Credits: [145]. License CC BY 3.0.
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 14 Figure 1.4: Visualization of signals depicting the first binary black hole coalescence GW150914 detected by the LIGO Scientific Collaboration and Virgo Collaboration. It shows time series for the event, both observed and simulated by Numerical Relativity, as well as the residuals. The bottom panels show the chirp in a timefrequency diagram. Credits: [145]. License CC BY 3.0.
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 5431 Figure 3.1: Illustration of the propagation of a 1D scalar wave, in a single shell, with strongly imposed boundary conditions. The color code represents the time evolution: dark blue for initial times, then green, orange, red for late times. In the first two panels, the wave splits into a left-moving part (advanced time) and rightmoving part (retarded time) and leaves the numerical domain. For the second panel, we impose a reflection on the left boundary. The last panel represents a situation where fields are zero-initialized and a time-dependent source-term is applied at the left boundary.

  Difference between Figure 3.2b and analytic solution

Figure 3 . 2 :

 32 Figure3.2: Illustration of the propagation of a 3D scalar wave with penalty boundary conditions. The color code represents the time evolution: dark blue for initial times, then green, orange, red for late times. In the first panel, the wave is initially centered at the origin and there is only a nucleus. In the second panel, the wave is initially off-centered and there are two shells in addition to the nucleus (mind that parameters are not the same that in the first panel). The last panel shows the spurious reflections on the outer boundary by subtracting the analytic solution to the second panel. The color code between the second and third panels are consistent.

  Evolution of the infinity norm of the constraint C i

Figure 3 . 3 :

 33 Figure 3.3: Evolution of various errors for a 3D spherically symmetric scalar wave.In the first panel, the error is the infinity norm of the difference between the numerical and analytical solutions. On the second panel, errors are the infinity norms of the three constraint components C i in the orthonormal spherical triad. On the bottom panel, we show the total energy contained in the numerical domain.
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 34 Figure 3.4: Spectral convergence for the 1D wave equation, in a single spherical shell, with strongly-imposed outgoing wave boundary conditions (Equation (3.41)).We compute the infinity norm (over all collocation points and a few time samples) of two error indicators, as a function of the space resolution N r : the constraint violation (left) and the difference to the analytic solution (right).
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 35 Figure 3.5: Time-step convergence for the 1D wave equation, in a single spherical shell, with strongly-imposed outgoing wave boundary conditions (Equation (3.41)).We compute the infinity norm (over all collocation points, at a given time) of the difference to the analytic solution ϵ, as a function of the time step ∆t. Each colored line corresponds to a given radial resolution (notice spectral convergence). The dashed black line is not a fit: it is built as a line of slope 4 passing through the bottom left point with ∆t = 10 -2 . Therefore we recover 4th order convergence of the RK4 scheme.
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 36 Figure 3.6: CFL condition for the 1D wave equation, in a single spherical shell, with strongly-imposed outgoing wave boundary conditions (Equation (3.41)). The maximum admissible time step ∆t c is plotted against the space resolution N r . The dashed black line is a fit of the data points, with slope -2.02. It is consistent with the expected 1/N 2 r scaling.
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 37 Figure 3.7: Comparison of 3D waves in a shell, without (left) and with (right) constraint damping (CD). All others features and parameters are equal. The damping time is τ = 0.1. With constraint damping, the constraint violations decrease faster and reach lower levels. The plateau of the residual energy is also reduced by orders of magnitude.
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 38 Figure 3.8: Evolution of a 3D wave in a shell, with CD terms in characteristic fields. The top panel shows the profile of the field at different times. The boundary conditions cause a kind of reflection on each boundary, which is slowly damped. The bottom panel shows the energy content, which ever so slightly decreases over the course of 200 units of time (to be compared with Figures 3.7c and 3.7d).
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 13088888351 Figure 5.1: Radial profile (analytic computation) of the characteristic speed µ (β,-) , for several values of the Kerr parameter a (with M = 1). For a ̸ = 0, the profile for different values of θ is depicted. When the Kerr parameter is too high, the characteristic speed is never positive for some angles (most drastic in the equatorial plane).
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 52 Figure 5.2: Initial radial profile of the numerical Hamiltonian constraint violation for a Schwarzschild black hole of mass M = 1. It is computed in a single shell with r in = 0.75M , r out = 60M and N r = 91. The graph is drawn from values at the collocation points.
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 251 87 × 10 -10 1.05 × 10 -7 9.51 × 10 -5 6.44 × 10 -3 3.33 × 10 -Maximum of the Hamiltonian constraint H for a Kerr black hole of mass M = 1 and Kerr parameter a/M = 0.2. H is computed in a single spherical shell ranging from r in = 0.75M to r out = 60M , with resolution N = (51, 9, 4).
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 16531961252 Figure 5.3: Absolute value, in logarithmic scale, of r coefficients of the lapse α at initial time, for a Schwarzschild black hole of mass M = 1. The numerical domain is a spherical shell with r ∈ [0.75M, 60M ] with resolution N r = 151. Exponential decay is ensured and round-off precision is reached for coefficients of index around i r ≈ 130.
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 54 Figure 5.4: Evolution of the infinity norm for the GR constraints H and M r , in linear and logarithmic scales for time. It corresponds to a simulation of a M = 1 Schwarzschild black hole, in a single shell 0.75M ≤ r ≤ 60M , with N r = 91 and radiative outer boundary conditions.
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 55 Figure 5.5: Evolution of the lapse difference, in linear and logarithmic scales for time. It corresponds to a simulation of a M = 1 Schwarzschild black hole, in a single shell 0.75M ≤ r ≤ 60M , with N r = 91 and radiative outer boundary conditions. Each line is drawn from values at a given collocation point, indicated by the color gradient (dark blue for the inner boundary, dark red for the outer boundary). Collocation points are regularly sampled, but don't correspond to equally-spaced points in the physical space.
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 56575859 Figure 5.6: Evolution of constraint violations for a prototypical black hole simulation, in logarithmic time scale. The fields and constraints reach a steady state.Error indicators are computed as the average of the infinity norm for t ≥ 1000 (vertical dash-dot magenta line). The vertical dashed black line at t = 100 indicates a change in the sampling of data. For FO constraint violations, the infinity norm additionally aggregates all components of the corresponding tensor.

  Modified penalty, with cos_odd

Figure 5 . 10 :

 510 Figure 5.10: Spectral convergence of GR, trace and BSSN errors for a M = 1 Schwarzschild black hole in a single shell with various radial resolutions N r and such that 0.75M ≤ r ≤ 60M . The outer boundary conditions are imposed with penalties in the modified penalty variant. The top and bottom panels show results without and with the cos_odd regularization respectively. When present, runs with N r = 151 are linked to others with dashed line to emphasize the slightly different conditions (see text).
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 511 Figure 5.11: Spectral convergence of FO errors for a M = 1 Schwarzschild black hole in a single shell with various radial resolutions N r and such that 0.75M ≤ r ≤ 60M , with penalty methods for the outer boundary conditions. The top and bottom panels show results for the modified κ CD and modified penalty variants respectively. The left and right panels show results without and with the cos_odd regularization. When present, runs with N r = 151 are linked to others with dashed line to emphasize the slightly different conditions (see text).

  and 5.14, for the various error indicators and for both

Figure 5 . 12 :

 512 Figure 5.12: Spectral convergence for a M = 0.8 Schwarzschild black hole in a multidomain setting, with various radial resolutions N r . The numerical domain is composed of two shells with boundaries r in = 1.875M , r mid = 30M and r out = 60M . The top panel shows the GR, trace and BSSN errors. Full and dashed lines represent results for the inner (domain 1) and outer (domain 2) shell respectively. The bottom panel shows the FO errors, for which left and right plots depict each subdomain. The outer boundary conditions are imposed with penalties in the modified κ CD variant.

Figure 5 . 13 :

 513 Figure 5.13: Spectral convergence of GR, trace and BSSN errors for an "axisymmetric" M = 0.8 Schwarzschild black hole in a single shell with various radial resolutions N r , with N θ = 5 and such that 1.875M ≤ r ≤ 60M . The outer boundary conditions are imposed with penalties in the modified κ CD (top panel) and modified penalty (bottom panel) variants. The regularization with cos_odd is always used.
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 514 Figure 5.14: Spectral convergence of FO errors for an "axisymmetric" M = 0.8 Schwarzschild black hole in a single shell with various radial resolutions N r , with N θ = 5 and such that 1.875M ≤ r ≤ 60M . The outer boundary conditions are imposed with penalties in the modified κ CD (left panel) and modified penalty (right panel) variants. The regularization with cos_odd is always used.
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 515 Figure 5.15: Evolution of the GR constraint violations for a M = 0.8 Schwarzschild black hole in a single shell such that 1.875M ≤ r ≤ 60M and N = (51, 5, 6). Initial data contain noise in θ and φ, which leads to exponential error growths. The cos_odd regularization is used, along with the modified κ CD variant for the outer boundary conditions.
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 516 Figure 5.16: Evolution of the GR errors, in linear and logarithmic scales for time, for a Kerr black hole. It corresponds to a simulation with M = 1 and a/M = 0.05, in a single shell 0.75M ≤ r ≤ 60M , with N = (71, 9, 4), with the modified κ CD variant and without the cos_odd regularization.
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  )with the boundary condition ψ = 1 at spatial infinity.Moreover, if we rewrite Equation (6

Domain 0 :

 0 a central nucleus with boundary at r 0,1 = 1.5; Domain 1: a first shell with boundaries such that 1.5 ≤ r ≤ 2.5; Domain 2: a second shell with range 2.5 ≤ r ≤ 4; Domain 3: a compactified domain starting at r 2,3 = 4 (replaced by a shell in the evolution).

γ

  φφ on the (Ox) and (Oz) axes (respectively θ = π 2 , φ = 0 and {θ = 0, φ = 0}). The domain boundaries are depicted with vertical dashed black lines. We actually show initial data as of starting time integration, hence the truncation at r = 8 and the chosen resolution (details below). Even though these profiles look similar, first notice the difference on the z-axis between m = 0 and m = 2. Note also that the actual range of values is different.Back to solving the CTS equation, we first perform spectral convergence tests on N r at an angular resolution N θ = 13 and N φ = 12. The radial resolution in each domain is chosen as N r = 11, 17, 21, 31. The corresponding violation of the Hamiltonian constraint on the whole numerical domain, and computed from the physical metric with Equation (4.7a), is reported in Figure6.2 for m = 0 and m = 2, (Oz) axis

Figure 6 . 1 :Figure 6 . 2 :

 6162 Figure 6.1: Initial profile of γ φφ for the m = 0 (top) and m = 2 (bottom) waves on the x-and z-axes (left and right panels respectively). These are actually data right before time integration, therefore the numerical domain is truncated at r = 8. The resolution in each subdomain is N = (21, 13, 12) and domain boundaries appear through vertical dashed black lines.

. 3 .

 3 Let us explain what is depicted.

Figure 6 . 3 :

 63 Figure 6.3: Illustration of diverging multivaluation at the physical origin. The bottom panel shows the evolution of K and the multivaluation errors in logarithmic scale. The top panel shows the evolution of the metric component γ φφ at the origin, as compared to its initial value, as well as multivaluation errors. When errors become dominant in K (around t = 0.3), they clearly cause divergences in the metric as well. See text for details.

Figure 6 . 4 :

 64 Figure 6.4: Time-dependence of γ φφ (Ox) at collocation points for a m = 0 wave, with φ-noise. The color code groups collocations points by subdomain. Most of the wave has left the numerical domain for t ≳ 11. Errors, dominant near the origin (domain 0), blow up at late times.

Figure 6 . 5 :

 65 Figure 6.5: Evolution of the radial profile of γ φφ (Ox) for a m = 0 wave (with φ-noise), for times 0 ≤ t ≤ 9. The graph is plotted with spectral expansion, and points are equally spaced in the radial direction (∆r = 0.01). The color code corresponds to different instants in time. It starts with black and dark blue, to green, to red for late times. Note the change of y scale between the top and middle panels.
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 66 Figure 6.6: Evolution of constraint violations for a m = 0 gravitational wave, without φ-noise, for 0 ≤ t ≤ 20 (left panels) and 0 ≤ t ≤ 100 (right panels).The infinity norm is computed over the whole space (all domains). Constraints reach a steady state or decay. For FO constraint violations, the norm additionally aggregates all components of the corresponding tensor.
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 67 Figure 6.7: γ φφ in the xy-plane at t = 0 (m = 0).
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 6869 Figure 6.8: γ φφ in the xy-plane at t = 1 (m = 0).

Figure 6 .

 6 Figure 6.10: γ φφ in the xy-plane at t = 5 (m = 0).

Figure 6 . 11 :

 611 Figure 6.11: Time dependence of β r θ (Oz) at different collocation points for a m = 0 wave, with φ-noise. The color code groups collocations points by subdomain.According to simulations without noise, this quantity should vanish. The closer to the origin, the higher the error, although the growth is pretty consistent across the whole space.
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 612 Figure 6.12: Evolution of FO constraints for a m = 0 gravitational wave, with φnoise. The infinity norm is aggregated for all components, but only in the central domain (domain 0). Constraint damping on A i and B j i is visible for 3 ≲ t ≲ 8-10.
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 614 Figure 6.14: Evolution of H and M φ for a m = 0 gravitational wave, with φ-noise. The infinity norm is computed for each subdomain separately.
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 615 Figure 6.15: γ φφ in the xy-plane at t = 0 (m = 2).
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 6 Figure 6.16: γ φφ in the xy-plane at t = 1 (m = 2).
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 617 Figure 6.17: γ φφ in the xy-plane at t = 2 (m = 2).
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 6 Figure 6.18: γ φφ in the xy-plane at t = 5 (m = 2).
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 619620 Figure 6.19: Evolution of constraint violations for a m = 2 gravitational wave. The infinity norm is computed over the whole space (all domains). For FO constraint violations, the norm additionally aggregates all components of the corresponding tensor.
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 621 Figure 6.21: Evolution of γ φφ in the equatorial plane (m = 0). The height corresponds to the value of γ φφ -1 computed

Figure 6 . 22 :

 622 Figure 6.22: Evolution of γ φφ in the equatorial plane (m = 2). The height corresponds to the value of γ φφ -1 computed

  ⟨⃗ u, δ⃗ u⟩ • ⟨⃗ v, δ⃗ v⟩ = ⟨⃗ u • ⃗ v, ⃗ u • δ⃗ v + δ⃗ u • ⃗ v⟩ . (B.4)When applied to the whole system, it yields⟨ ⃗ H(⃗ u), J (⃗ u)δ⃗ u⟩ . (B.5)Setting δ⃗ u = T (0 . . . 1 . . . 0) for each position of the 1 -which can be done in parallel -allows Kadath to compute the Jacobian automatically, for any system of equations. It enhances flexibility for users.

  Dk γ jl + Dl γ kj -Dj γ kl (B.6) with Γi kl and Di the connection and covariant derivative associated to the flat metric f ij in the selected triad. Term_eq The class which represents a term in the equations (number or field). These objects can be seen as auxiliaries for computations by the system. For a field, it basically holds a Tensor object which represents the field values in one domain. If needed, it also contains the derivative field for automatic differentiation (see Appendix B.1.1).

a negative cosmological constant Λ = - 3 ℓ 2 ADS.

 2 The scalar field ϕ is subject to the potential

Figure C. 1 .

 1 Our results demonstrated spectral convergence, as can be seen from Figure C.2.

Figure C. 3

 3 and show perfect agreement.

Figure C. 1 :

 1 Figure C.1: Radial profiles of different fields for simulation with horizon radius r H = 8 and resolution N r = 21 in each domain. The lapse and 3-metric diverge near the ADS boundary, located at r = R ADS = 40.

Figure C. 2 :

 2 Figure C.2: Spectral convergence of the infinity norm of the gauge quantities K (blue) and V r (red) when increasing the radial resolution N r . This validates the procedure and assesses the physical character of the solution. The saturation is due to the chosen threshold in the Newton-Raphson scheme.

Figure C. 3 :

 3 Figure C.3: Comparison of the numerical (red circles) and analytic (blue solid line) 4D Ricci scalar on the horizon, with respect to the value of the scalar field on the horizon (gauge invariant comparison). The numerical points correspond to configurations with different horizon radii. Smaller radii (right-hand data points) correspond to more relativistic configurations.
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	r out	20M	40M	60M
	N r	51	73	91
	∆r min (M units)	1.90 × 10 -2	1.87 × 10 -2	1.80 × 10 -2
	∥H∥ ∞	1.45 × 10 -6	1.17 × 10 -6	8.30 × 10 -7
	∥M r ∥ ∞	8.14 × 10 -7	6.59 × 10 -6	4.70 × 10 -7

Table 5 .

 5 4 . 4: Time of crash for different outer boundary conditions (BC type) and positions (r out ), for a Schwarzschild black hole of mass M = 1 and inner boundary at r in = 0.75M . The ones which attained t = 5000 show no signs of divergences.

	BC type	r out	20M	40M	60M
	strong static		5.85	5.45	5.3
	strong radiative	126.5	223.4	260.2
	modified κ CD penalty	≥ 5000	≥ 5000	≥ 5000

As is the case in Gourgoulhon's book, it is sometimes noted N .

Sometimes noted B i or N i .

Still, equations of state may model neutron stars as objects with 0 temperature, because the nuclear energy scales are way higher.

In general, the field values at grid points u i = u(r i ). But technically this could be another representation, such as coefficients for spectral methods.

This is often called pseudo-spectral methods when collocation values are actively used in computations.

Website of the Simulating eXtreme Spacetimes (SXS) collaboration: https://www. black-holes.org/ (accessed April 22, 2023).

There is a third choice in fact, mentioned in Appendix C.

N φ represents the number of collocation points in the φ direction. For simplicity, the library actually uses (N φ + 2) φ-coefficients. The reason for this choice is that the basis functions are all cosines and sines, and they are arranged with increasing frequency. It is thus helpful to consider that coefficient k = 1 represents sin(0 φ) and k = N φ + 1 represents sin(m max φ) with m max = N φ /2. The corresponding coefficients are always set to 0.

https://www.fftw.org/ . Main page of the FFTW website. Accessed on April 12, 2023.

https://www.fftw.org/fftw3_doc/Introduction.html . FFTW website, HTML version of the manual, section "Introduction". Accessed onApril 12, 2023. 

The first two steps are performed with RK4.

This forces us to be careful with spectral bases of characteristic fields in the nucleus.

In general, this is performed through spectral interpolation in the neighboring domain. An optimization has been implemented for the spherical spaces if all subdomains have the same angular resolution. In this configuration, collocation points actually coincide on both sides of the boundary, and the value can be copied directly. This optimization leads to a huge gain in computation time, as the spectral interpolation else represents a significant fraction of the total computation time.

With the notations of[START_REF] Taylor | Spectral methods for the wave equation in second-order form[END_REF], we find that the coefficient a is different at points of index 0 and N r -1: a 0 = -1/2 and a Nr-1 = +1/2. There may also be a typo in the reference, in Equation[START_REF] Cordero-Carrión | Mathematical issues in a fully constrained formulation of the Einstein equations[END_REF], where the sign should be +1/2.

In the implementation, we design a user-defined operator which builds a radially constant field from the boundary values.

(a) Outgoing wave (b) Wave reflected on the left (c) Source-term on the left

We consider N 0 (r) = 0 for r < 0. It is also possible to write it F (X) = -X 2 f (X) where f is even and f (r) = N 0 (r) for r ≥ 0.

The implemented adaptive time step algorithm could have circumvented this issue, but it implied other complications and it has not been made compatible with filters in the library so far.

We have tried to implement a routine in the library which evolves only one of these points and applies the result to duplicates. This actually lead to divergences. The architecture of the library still has the feature but each point is considered independent.

It could also be significant in the plane when dividing by cos θ. However, in general this operation never appears, except maybe in the context of the work described in Appendix C. We haven't explored that possibility so far, and we're not envisioning evolutions of the MTZ black holes yet.

All the FOBSSN variables are computed from the ADM quantities using the Kadath library, in a dedicated input file.

This assertion will be mitigated in the following, because we actually enforce the trace -and potentially the determinant -constraints during the evolution.

A Runge-Kutta scheme with an adaptive time step is also available, but has not been made compatible with filters yet.

Except for the first two steps which are computed with RK4.

In practice, we do it after the trace removal, because the metric-related quantities (in particular the inverse metric here) are not updated immediately. Conceptually, doing it in any order is fine because the trace term involves the product of the metric and its inverse, and thus the corrections of their determinants cancel out at first order.

[START_REF] Alic | Towards a gaugepolyvalent numerical relativity code[END_REF] This is optional in the library, so that we don't do it if we have to restart from a checkpoint for instance.

In practice, for the cos_odd basis, Kadath sets the last coefficient to 0 for the consistency of the number of degrees of freedom. Hence we modify the penultimate coefficient.

Recall that we are in the orthonormal spherical triad and Di is associated to the flat metric.

In general, this is performed through spectral interpolation in the neighboring domain. An optimization has been implemented for the spherical spaces if all subdomains have the same angular resolution. In this configuration, collocation points coincide on both sides of the boundary, and the value can be copied directly. This optimization leads to a huge gain in computation time, as the spectral interpolation else represents a significant fraction of the total computation time.

Recall that for hyperbolicity reasons, κ ϕ = 0[START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF].

In which case, we make sure that the numerical space used for the ADM variables is the same than the one for the evolution.

Without the source term S α , this would correspond to harmonic slicing.

Recall that in Kadath, especially for spherical types of spaces, a function is first decomposed on the φ-basis. Each of these functions is then expanded in a θ-basis which depends on the index in the φ-expansion. Finally, each angular function is developed on the r-basis, which in general depends on the (i θ , i φ ) index couple. In spherical spaces, it actually depends only on the φ-index.In spherical shells, it actually doesn't vary at all and is always the full Chebyshev basis.

In other contexts, for example with θ noise, we have witnessed such slowly-growing error modes, which are noticeable but slow and small enough that the run reaches t =

It also makes easier to spot that if a metric has the form (6.8), then a necessary condition for the existence of a seed f is that 4c -3b -a = rb[START_REF] Akutsu | Overview of KAGRA: Detector design and construction history[END_REF] . Another such condition is 3(a -b) = ra[START_REF] Akutsu | Overview of KAGRA: Detector design and construction history[END_REF] .

Beware that f in this paragraph is the gauge function from the FOBSSN system, not the seed function of the Teukolsky wave discussed before.

The architecture of the evolution schemes in the library was actually designed in order to evolve only one occurrence of any physical point, and to update the duplicates accordingly. However, this introduced instabilities and therefore we consider all numerical points as independent.

Some of the equations have been extracted and reworked from the sources available at the arXiv page of the reference arXiv:1202.1038.

In Kadath, the difference between the connection coefficients in Equation (A.[START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF]) is what the library actually refers to as the connection. It is used in systems via string "Gam_klˆi".

In simulations and resulting analyses, we resort to these definitions, and don't compute the Ricci tensor and scalar with Kadath's internal methods.

In the implementation, in particular in the system of equations, we append a "N" or a "T" to indicate the normal and transverse parts respectively.

Acknowledgments

In this appendix, we give the equations of the first-order reduction of the Baumgarte-Shapiro-Shibata-Nakamura (FOBSSN) formulation of Einstein's equations, established by Brown et al. [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF]. Moreover, we recall the expressions of the characteristic fields given in the same reference -as well as the converse relation, providing the dynamical fields in terms of the characteristic fields 1 .

In the subsequent sections, we specialize to the gauge chosen respectively for the Schwarzschild black hole simulations of Chapter 5 and the gravitational wave simulations of Chapter 6. The goal is to give explicitly the equations that are used in the simulation files, in a form as close as possible to the actual implementation.

A.1 The FOBSSN system A.1.1 Variables and constraints

In [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], Brown and collaborators present a first-order (in space) reduction of the traditional BSSN system. Let us first recall the dynamical fields considered. From the BSSN system, we get the conformal metric γij , the conformal factor ϕ; the trace of the extrinsic curvature tensor, K, and the conformal traceless part of the extrinsic curvature Ãij ; and finally the conformal connection vector Λi , also noted Γi in other references [START_REF] Gourgoulhon | 3+1 formalism in general relativity: bases of numerical relativity[END_REF]. The gauge fields are the lapse α and the shift vector β i . The gauge condition considered in their work involves a second-orderin-time derivative of the shift, hence the introduction of a first reduction variable: B i , which is defined through the time-derivative of the shift.

In what follows, quantities with a tilde have their indices raised and lowered with the conformal metric γij . This is compliant with the use of the conformal metric as the Metric associated with the System_evo object within Kadath. However, in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF] the physical metric is used for projections and characteristic decomposition of most fields. In the actual implementation of the system, we thus need to define the physical metric (both covariant and contravariant) as auxiliaries, and pay special attention to index manipulation for these quantities. We recall here the relation between the conformal and physical metric:

In order to obtain a full first-order system and get rid of second-order-in-space derivatives, 4 more reduction variables need to be defined. They represent the spatial covariant derivatives, with respect to a fixed fiducial metric γij , of respectively α, ϕ, β j and γij , and are noted: α i , ϕ i , β j i and γkij . Because they are now considered as independent variables, they yield 4 additional constraints:

In order to reduce the violation of these constraints, they can be added in the evolution equations, with constraint damping coefficients, written respectively κ α , κ β , κ ϕ and κ γ .

Note that in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], the fiducial metric γij is chosen to be flat and time-independent. It is associated with fiducial connection coefficients Γi kl and covariant derivative Di . We choose this metric to be the flat metric, either in a Cartesian tensor basis or, more often, in a spherical orthonormal triad, consistently with the Kadath implementation. In any case, its determinant satisfies γ = 1. The BSSN formulation contains other constraints, coming from the definition of the variables 2 : γ = γ (= 1) , (A.3)

)

Moreover, the determinant constraint (A.3) implies an additional trace constraint

Another prominent feature of the BSSN formulation is the way to express the Ricci tensor, which is separated into a contribution from the conformal factor and a contribution from the conformal metric. The latter is computed as

where Q ij contains only quadratic terms in the first derivative of the metric in the original equations (notation following [START_REF] Gourgoulhon | 3+1 formalism in general relativity: bases of numerical relativity[END_REF]):

The conformal Ricci scalar is given 3 by R = γij Rij .

We can now give the remaining constraints, which come directly from Einstein's equations, namely the Hamiltonian and momentum constraints:

A.1.2 Evolution equations

We give the set of evolution equations for the 12 dynamical fields. The timederivative operator is defined as ∂0 ≡ ∂ t -β j Dj . Brown and collaborators separate the whole set of equations into a gauge-block and a non-gauge block. The gauge block has the following evolution equations:

There are several gauge parameters introduced in these equations: the constant η; functions f , G and H which can depend on α and ϕ in general; their derivatives with respect to those variables, denoted with respective subscripts; and gauge sources which can depend on space, S α , S i β and S i B . The evolution equations for the non-gauge sector read:

The characteristic fields and respective speeds for the gauge block are:

For the non-gauge block, let us emphasize, as in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], that Λk = e -4 φγ kl Λl . Moreover, the superscript tf corresponds to the 2D transverse trace-free part:

Similarly, the trace β AB δ AB is computed as γkl β ⊥⊥,kl . The characteristic fields are then:

The converse transformations, from which we reconstruct penalties on dynamical fields from the penalties on characteristic fields (see Section 4.2), are given in the reference's appendices. For the gauge block, they read:

)

)

The non-gauge block dynamical variables are recovered with:

Finally, we retrieve tensors with relations of the likes of (we leave both β ij and Ãij like in the reference because the latter is symmetric and traceless):

)

A.2 Specialization to our simulations

Several simplifications occur when writing the equations specifically for our simulations. First, for hyperbolicity reasons, κ ϕ has to vanish. We also include the modification (A.14) in the evolution equation of γkij . As in [START_REF] Brown | Numerical simulations with a first-order BSSN formulation of Einstein's field equations[END_REF], we use σ = 1 (this assumption is used in the characteristic decomposition given in the reference). In the following sections, we recall the gauge functions chosen for BH and GW evolutions, and we rewrite explicitly the corresponding equations.

Moreover, in the characteristic decomposition, we substitute the frozen fields by their local values. This impacts the expression of the characteristic fields. Once again, we give explicitly the equations with the most drastic changes.

Because the reverse transformation is applied on penalties, we do not take into account such simplifications in general, except for the following remark. The frozen field replacement yields in particular:

The corresponding term are removed from the Equations (A. [START_REF] Babiuc | Implementation of standard testbeds for numerical relativity[END_REF]) and (A.18).

A.2.1 Black hole evolutions Evolution equations

As explained in Section 5.1.1, we use the following gauge functions for black hole evolutions: f = 1, G = 3/(4α 2 ) and H = e 4ϕ . The sources are S i β = 0 and S α ̸ = 0, S i B ̸ = 0, such that ∂ t α(t = 0) = 0 and ∂ t B i (t = 0) = 0. The gauge block of the FOBSSN system is simplified as:

The non-gauge block is given by Equation (A.13) and is almost unchanged, except for the separation of ∂0 = ∂ t -β k Dk , κ ϕ = 0 and σ = 1. The modification of Equation (A.13e) reads:

Characteristic fields

Equation (A.15) is rewritten as:

The inverse transformation reads:

)

α s , (A.24e)

Λi -B i and ΛA = e -4ϕ (Z A +B A ), Λs = e -4ϕ (Z s +B s ). We emphasize once again that even though we have removed the ring symbols, these inverse relations should be understood as applying to penalties, for instance

A.2.2 Gravitational wave evolutions

The only differences with the black hole evolutions and the equations of the previous section are the gauge choice (1 + log slicing) f = 2/α and taking out the gauge source S α = S j B = 0. This yields:

For the characteristic fields, we get:

And finally:

) The purpose of this apppendix is to briefly describe the main methods used in the Kadath library and the architecture of the code. In a first part we expose the main features of the standard Kadath library. Then we describe our contribution to the library, which results in the evolution code. Finally we give an example of simple simulation file for the evolution of a wave equation. For the interested reader, we gave a generic introduction to Kadath and the evolution schemes at the European Einstein Toolkit Meeting 2022 in Dublin and the presen- ----------------------------// USER-DEFINED OPERATORS //- ----------------------------/ 

APPENDIX B. THE KADATH LIBRARY AND EVOLUTION SCHEMES

} } } valdom.coef_i() ; } return res ; } ////////////////////////////////////////////////////////////// int main () { //-----------------------------// CONSTANTS AND PARAMS //-----------------------------// Boundaries of the shells double rin = 1 ; double rout = 2 ; double rext = 4 ; double rmid = rin + 0.5*(rout-rin) ; double ampl = 2e-1 ; double sigma = 5 ; double vel = 0.2 ; //-----------------------------// SPACE //--- --------------------------/ ----------------------------// PENALTIES //---------------------------- → mult_sin_theta()* (unit.mult_cos_phi().mult_cos_phi() -unit.mult_sin_phi().mult_sin_phi()) ; // -------SCALAR FIELD -------Scalar lapse (space) ; lapse.annule_hard() ; // -------Radial seed ------lapse.set_domain(1) = ampl *exp(-sigma/(1-pow((rr(1)-rmid)/(rout-rin)*2, 2))) ; lapse.std_base () ; // ----Remove value of derivative at the borders ------Index idx_cl (res) ; idx_cl.set(0) = res(0) -1 ; Index idx_cf (space.get_domain(1)->get_nbr_coefs()) ; idx_cf.set(0) = 2 ; double valder = lapse(1).der_r()(idx_cl) ; double offsetT2 = valder/4.*(space.get_domain(1)->get_rmax() -space.get_domain(1)->get_rmin())/2 ; lapse.set_domain [START_REF] Akutsu | Overview of KAGRA: Detector design and construction history[END_REF].set_coef(idx_cf) -= offsetT2 ; double offsetT0 = lapse(1)(idx_cl) ; lapse.set_domain(1) -= offsetT0 ; // Clean coefficients lapse.coef() ; for (int ir=1 ; ir<res(0) ; ir+=2) { idx_cf.set(0) = ir ; lapse.set_domain [START_REF] Akutsu | Overview of KAGRA: Detector design and construction history[END_REF].set_coef(idx_cf) = 0 ; } // ------Angular part -------lapse *= Y2_2 ; // -------REDUCTION FIELDS -------// V Scalar speed (space) ; speed.annule_hard() ; speed.std_base() ; // G_i Metric_flat faux (space, basis) ; System_of_eqs systaux (space) ; // Change the range if needed faux.set_system (systaux, "f") ; systaux.add_var("N", lapse) ; systaux.add_def("G_i=D_i(N)") ; Vector gradient (systaux.give_val_def("G")) ; gradient.coef_i() ; //-----------------------------// USER-DEFINED OPERATORS //-----------------------------// Filter // Function defined above: regul_filter // Each int corresponds to a coordinate: r, theta, phi; then alpha → and power in exp // Exponential cutoff on r, higher third on angles // SpEC values : exp(-36*(i/(Nr-1))^64) Param parfilt_expR_sharpAngthird_spec ; parfilt_expR_sharpAngthird_spec.add_int (0, 0) ; // imax = Nr-1 parfilt_expR_sharpAngthird_spec.add_int ((res(1)-1)/3+1, 1) ; parfilt_expR_sharpAngthird_spec.add_int ((res(2)-1)/3+1, 2) ; parfilt_expR_sharpAngthird_spec.add_int [START_REF] Bona | New Formalism for Numerical Relativity[END_REF][START_REF] Alcubierre | Simple excision of a black hole in 3 + 1 numerical relativity[END_REF] ; // alpha parfilt_expR_sharpAngthird_spec.add_int [START_REF] Cordero-Carrión | Mathematical issues in a fully constrained formulation of the Einstein equations[END_REF][START_REF] Alcubierre | Gauge conditions for long-term numerical black hole evolutions without excision[END_REF] ; // power //-----------------------------// TIME and INTEGRATOR //--- ------------------------- ----------------------------// SYSTEM //-----------------------------// ----METRIC ----------------// Flat metric, for index manipulation Metric_flat fmet (space, basis) ; // ----SYSTEM - ---------------// Evolution in two shells, no nucleus System_evo syst (space, 1, 2) ; syst.set_time_integrator (time_integ) ; fmet.set_system(syst, "f") ; // ----CONSTANTS ------------syst.add_cst("c", vel) ; syst.add_cst("ampl", ampl) ; syst.add_cst("U", unit) ; syst.add_cst("er", normal) ; syst.add_cst("kpen", pencoef) ; syst.add_cst("DelIn", DelIn) ; syst.add_cst("DelOut", DelOut) ; // ----EVO VARIABLES --------syst.add_var_evo ("N", lapse) ; syst.add_var_evo ("V", speed) ; syst.add_var_evo ("G", gradient) ; // ----DEFINITIONS ----------syst.add_def ("Gr=er_i*G^i") ; syst.add_def ("C_i=G_i-D_i(N)") ; // Definitions can also be added in domains individually for (int dd=1 ; dd<=syst.get_dom_max() ; dd++) { syst.add_def (dd,"upl=Gr-V") ; // U^+ syst.add_def (dd,"umi=Gr+V") ; // U^-} // ----FILTERS - -------------- 

Framework

As the name suggests, this article introduces a set of boundary conditions which are used for numerical simulations of stationary black holes. Applying these conditions at the inner boundary of the numerical domain ensures that it is the apparent 213