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Introduction

The immune system is a complex network of organs, tissues and cells that protects the host from foreign pathogens or cancer cells. A crucial role in immune response is played by the adaptive immune system, composed of specialized cells that can recognize and respond to infections: B and T lymphocytes. These cells are able to track down pathogens thanks to their unique receptors that bind antigens, which are proteins derived from pathogens. Once binding takes place, lymphocytes such as T cells activate the chain of signaling processes that coordinate the immune response and eventually lead to the elimination of the threat.

The countless number of possible threats requires a way to produce a large number of different T cell receptors (TCRs), which will then constitute the repertoire of an individual. This diversity is not achieved by genetically encoding the sequences of the receptors in the DNA, but rather by generating the sequence in a stochastic fashion, through a process of somatic rearrangement called V(D)J recombination (1; 2). To reduce the risk of self-reactivity of such randomly generated receptors, T cells develop in the thymus, a specialized organ located in the chest, where self-reactive T cells get eliminated upon presentation to self-antigens (3; 4; 5; 6).

But if selection perfectly eliminates all self-reactive TCRs, should this not create a potential breach in the adaptive response for pathogens to break in [START_REF] Vidović | Unresponsiveness to a foreign antigen can be caused by self-tolerance[END_REF]? Are self-antigens sufficiently different from pathogen-derived-antigens to enable identification of the threatening T cells inside the thymus [START_REF] Mayer | How different are self and nonself?[END_REF]? Is thymic maturation alone sufficient to ensure self-tolerance in an individual or are there other mechanisms [START_REF] Mora | Towards a quantitative theory of tolerance[END_REF]? Many questions remain unanswered about the processes that govern T cell maturation in the thymus and more in general self-tolerance (10; 11). It is physically impossible to sample all self-antigens [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF] and self-reactive T cells have been reported outside of the thymus (13; 14). This leakiness of the maturation is justified by different theories, emphasizing the regulatory roles of certain sub-classes of T cells (15; 16) or of the collective nature of the response (12; 17).

The intrinsic stochastic nature of the phenomenons involved in the development of TCR repertoires makes statistical analysis a potent tool for studying the biology of the adaptive immune response [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF]. The large amount of data provided by modern techniques of high-throughput sequencing of the adaptive immune repertoire [START_REF] Robins | Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells[END_REF], in turn opened the way to novel statistical methods (20; 21). In this thesis we try to understand more about the role of thymic maturation using such statistical methods to investigate the features of T cell repertoires that are involved in selection.

At the same time we are interested in estimating information theoretic quantities used for the characterization of categorical data. Beyond providing tools to assess the diversity of a system, we ask ourselves how to estimate the statistical divergences between two given samples.

In chapter 3 we introduce the adaptive immune system and in particular the role of T cells: we discuss the different types of T cells, their functions and the mechanisms by which they recognize and respond to antigens. We then focus on the concept of selftolerance, presenting the process of thymic maturation and the mechanisms that govern T cell differentiation before discussing the facts and theories about their response in the periphery.

In chapter 4 we describe the mathematical tools used throughout the manuscript, introducing briefly the concept of statistical inference and its application to TCR repertoire analysis (22; 23; 24). At the same time we discuss techniques for the estimation of the Shannon entropy [START_REF] Shannon | A Mathematical Theory of Communication[END_REF], with particular attention to Bayesian estimation [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF].

We then analyze in chapter 5 the data from a sequencing experiment of thymic repertoires, belonging to different stages of maturation. This chapter is a published paper [START_REF] Camaglia | Quantifying changes in the T cell receptor repertoire during thymic development[END_REF]. In this work, it was not possible to discriminate individual TCRs, which seems incompatible with an idea of thymic development involving a series of binary decisions based uniquely on TCR features. However, statistical properties of repertoires are sufficient to achieve discrimination of sub-populations undergoing opposite fates, which is reminiscent of T cell response models involving collective behavior.

In chapter 6 we develop a Bayesian framework for the estimation of the Kullback-Leibler divergence [START_REF] Kullback | On Information and Sufficiency[END_REF] between categorical systems. This chapter is a pre-print [START_REF] Camaglia | Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors[END_REF]. We characterize the dependence of our methods on the sample sizes and the number of categories of the underlying distribution. Performing our tests on synthetic histograms drawn from Dirichlet-multinomial distributions or generated as random strings of letters according to Markov chains, we find that our methods converge faster as a function of sample size than alternative methods.

Finally, in chapter 7 we conclude this thesis by summarizing its contributions and we discuss possible directions for future research.

Resumé

Le système immunitaire est un réseau complexe d'organes, de tissus et de cellules qui protège l'hôte contre les agents pathogènes étrangers ou les cellules cancéreuses. Le système immunitaire adaptatif, qui joue un rôle crucial dans la réponse immunitaire, est composé de cellules spécialisées capables de reconnaître les infections et d'y répondre : les lymphocytes B et T. Ces cellules sont capables de traquer les agents pathogènes grâce à leurs uniques récepteurs qui se lient aux antigènes, qui sont des protéines dérivées des agents pathogènes. Une fois la liaison est effectuée, les lymphocytes tels que les cellules T activent la chaîne de processus de signalisation qui coordonne la réponse immunitaire et conduit à l'élimination de la menace.

Le nombre élevé de menaces possibles nécessite un moyen de produire un grand nombre de différents récepteurs de cellules T (TCR), qui constitueront alors le répertoire d'un individu. Cette diversité n'est pas obtenue en codant génétiquement les séquences des récepteurs dans l'ADN, mais plutôt en générant la séquence de manière stochastique, par un processus de réarrangement somatique appelé recombinaison V(D)J (1; 2). Pour réduire le risque d'autoréactivité de ces récepteurs générés au hasard, les cellules T se développent dans le thymus, un organe situé dans la poitrine, où les cellules T autoréactives sont éliminées lors de la présentation d'antigènes du soi (3; 4; 5; 6).

Mais si la sélection élimine parfaitement tous les TCR autoréactifs, cela ne devrait-il créer une brèche potentielle dans la réponse adaptative permettant aux agents pathogènes de s'infiltrer [START_REF] Vidović | Unresponsiveness to a foreign antigen can be caused by self-tolerance[END_REF] ? Les auto-antigènes sont-ils suffisamment différents des antigènes dérivés de pathogènes pour permettre l'identification des cellules T menaçantes à l'intérieur du thymus [START_REF] Mayer | How different are self and nonself?[END_REF] ? La maturation thymique suffit-elle à assurer l'autotolérance dans un individu ou existe-t-il d'autres mécanismes [START_REF] Mora | Towards a quantitative theory of tolerance[END_REF] ?

De nombreuses questions restent sans réponse sur les processus qui régissent la maturation des cellules T dans le thymus et plus généralement l'autotolérance (10; 11). Il est physiquement impossible d'échantillonner tous les antigènes du soi [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF] et des cellules T autoréactives ont été signalées en dehors du thymus (13; 14). Cette imperfection de la maturation est justifiée par différentes théories, soulignant les rôles régulateurs de certaines sous-classes de cellules T (15; 16) ou la nature collective de la réponse (12; 17).

La nature stochastique intrinsèque des phénomènes impliqués dans le développement des répertoires TCR fait de l'analyse statistique un outil puissant pour étudier la biologie de la réponse immunitaire adaptative [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF]. La grande quantité de données fournies par les techniques modernes de séquençage à haut débit du répertoire immunitaire adaptatif [START_REF] Robins | Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells[END_REF], a à son tour ouvert la voie à de nouvelles méthodes statistiques (20; 21). Dans cette thèse, nous essayons de mieux comprendre le rôle de la maturation thymique en utilisant de telles méthodes statistiques pour étudier les caractéristiques des répertoires de cellules T qui sont impliquées dans la sélection.

Parallèlement, nous nous intéressons à l'estimation des quantités de la théorie de l'information utilisées pour la caractérisation des données catégorielles. Au-delà des outils permettant d'évaluer la diversité d'un système, nous nous demandons comment estimer les divergences statistiques entre deux échantillons. Dans le chapitre 3, nous présentons le système immunitaire adaptatif et en particulier le rôle des cellules T : nous discutons des différents types de cellules T, de leurs fonctions et des mécanismes par lesquels elles reconnaissent les antigènes et y répondent. Nous nous concentrons ensuite sur le concept d'autotolérance, en présentant le processus de maturation thymique et les mécanismes qui régissent la différenciation des cellules T, avant de discuter des faits et des théories concernant leur réponse dans la périphérie.

Nous analysons ensuite dans le chapitre 5 les données d'une expérience de séquençage des répertoires thymiques, appartenant à différents stades de maturation. Ce chapitre est un article publié [START_REF] Camaglia | Quantifying changes in the T cell receptor repertoire during thymic development[END_REF]. Dans ce travail, il n'a pas été possible de discriminer les TCR individuels, ce qui semble incompatible avec l'idée d'un développement thymique impliquant une série de décisions binaires basées uniquement sur les caractéristiques des TCR. Cependant, les propriétés statistiques des répertoires sont suffisantes pour atteindre la discrimination de sous-populations subissant des destins opposés, ce qui rappelle les modèles de réponse des cellules T impliquant un comportement collectif.

Dans le chapitre 6, nous développons un cadre bayésien pour l'estimation de la divergence de Kullback-Leibler [START_REF] Kullback | On Information and Sufficiency[END_REF] entre les systèmes catégoriels. Ce chapitre est un pre-print [START_REF] Camaglia | Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors[END_REF]. Nous caractérisons la dépendance de nos méthodes par rapport à la taille des échantillons et au nombre de catégories de la distribution consideré. En effectuant nos tests sur des histogrammes synthétiques tirés de distributions Dirichlet-multinomiales ou générés comme des chaînes aléatoires de lettres selon des chaînes de Markov, nous constatons que nos méthodes convergent plus rapidement en fonction de la taille de l'échantillon que les méthodes alternatives.

Enfin, dans le chapitre 7, nous concluons cette thèse en résumant ses contributions et nous discutons des directions possibles pour la recherche future.

The T cells and the adaptive immune system

The immune system is a vital defense mechanism which protects the individual against pathogens and other potentially harmful substances. It is composed of two major components: the innate and the adaptive immune systems, which are characterized by substantially different levels of specialization.

In this chapter, we briefly introduce the reader to the adaptive immune system, with a major focus on the role of the T cells and the processes that allow for a discrimination between the "foreign" and the "self". After having presented the process of T cell receptor generation and the mechanisms for checking its functionality and self-tolerance during maturation in the thymus, we discuss some recent theories of tolerance induction. On top of that, we present the role of the regulatory T cells in the periphery for mounting a safe immune response, mentioning the local biases induced to the resident T cell population and the quorum sensing hypothesis. Finally, the chapter closes with the description of modern techniques for the sequencing of the T cell receptor repertoires, used for the experiment analyzed in chapter 5.

The adaptive immune system

When the barriers of skin or mucous membranes are breached, the innate immune system provides immediate nonspecific protection by responding to conserved molecular features of the invading objects. While the innate system is present in all animals, humans as all other jawed vertebrates are equipped with an additional level of defense called the adaptive immune system. The adaptive immune system is an extremely specialized and complex network of cells and molecules that provides specific protection against invading pathogens or other potentially harmful cells. This system is activated in response to a wide range of threats, including viral, bacterial, fungal and parasitic infections, as well as cancer cells or other abnormal cells. Cells of the innate immune systems, such as dendritic cells, process these pathogens and subsequently present them to the adaptive immune system. They operate as antigen-presenting cells (APCs), where by antigen we mean all molecular structures that trigger lymphocyte response. The key components of the adaptive immune system are B and T lymphocytes, which transit through lymphoid tissues, bloodstream and other organs. These lymphocytes are able to recognize specific antigens upon exposure thanks to their specialized receptors. This initiates the adaptive immune response which causes a cascade of events that results in the activation and expansion of antigen-specific B and T cells, as well as the production of signaling molecules that recruit and activate other immune cells.

T lymphocytes are specialized cells that recognize and respond to specific antigens only if presented by APCs. They cover major roles of the adaptive response, from the direct killing of the infected cells, to the coordination of the response thanks to the large production of cytokines, small signaling proteins that can activate other immune cells. They owe their specificity to their unique T cell receptor (TCR), composed of two distinct protein chains, respectively α and β chain. The TCR specificity is genetically encoded in the complementary determining region 3 (CDR3), a hypervariable protein loop present in both TCR chains [START_REF] Davis | T-cell antigen receptor genes and T-cell recognition[END_REF]. Each T cell is covered by ∼10 4 copies of such transmembrane receptor [START_REF] Perdue | Immune system -T-cell antigen receptors | Britannica[END_REF]. The T cell do not always have a unique TCR and cells with two distinct α chains have been observed for about 30% of the T cell population [START_REF] Heath | Expression of two T cell receptor alpha chains on the surface of normal murine T cells[END_REF], with the role of dual TCR T cells still to be investigated [START_REF] Schuldt | Dual TCR T Cells: Identity Crisis or Multitaskers?[END_REF]. There also exist "non-traditional" T cells which show a less diverse kind of receptor called the γδ TCR, but their role is believed to be more marginal compared to traditional αβ T cells and we will not treat them in this manuscript [START_REF] Sompayrac | How the Immune System Works[END_REF].

Differently from T cells, B cells receptors undergo somatic hypermutation to increase their receptor affinity towards the pathogen. This process allows for changes in the already generated receptors of the B cells, which are then better suited to respond to the infection. Upon encountering to pathogens, B cells undergo clonal expansion and differentiation into plasma cells, which can secrete large quantities of antibodies, specific proteins that recognize and bind to antigens, the immunogenic regions of the pathogen. The antibodies produced by B cells can neutralize pathogens by blocking their entry into host cells, activating processes of pathogen lysis or promoting phagocytosis by other immune cells. Since in this thesis we focus on T lymphocytes, the role of B cells will not be further discussed in the rest of the manuscript.

Understating the mechanism of the adaptive immune system is essential for the development of new strategies for the prevention and treatment of not only viral, but also autoimmune diseases. The adaptive immune response is highly specific, but also highly destructive. It must be able to distinguish between self and non-self antigens, since a priori also protein structures derived from the host tissues could be targeted by the adaptive immune system. In principle, autoimmunity can affect any tissue or organ in the body, leading to a wide range of clinical manifestations, from mild and self-limiting (e.g. gluten intolerance or alopecia) to severe and life-threatening (e.g. multiple sclerosis). Involving the adaptive immune system, autoimmunity is a complex and multifactorial disease, with several ways in which T cells can contribute to its initiation and maintenance, even though they are not the only cells involved.

Weak self-reactivity is normally achieved through a process of tolerance induction which ensures that T cells do not respond to self-antigens, a concept proposed for the first time in 1900 as "horror autotoxicus" (avoidance of autoimmunization) by Paul Ehrlich [START_REF] Oppezzo | Autoanticorps, tolérance et auto-immunité[END_REF]. For T cells, this process happens predominantly in the thymus, a lymphoiod organ where T cells mature and which gives the name "T" to T cells. The task of tolerance induction is extremely complex and not fully understood [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]: how does the population of TCRs ensure a response towards all threatening ligands without resulting in a too broad response also to self components?

The basis of the presentation mechanism

Antigen-presenting cells (APCs) play a central role in the initiation and modulation of adaptive immune responses since they can internalize and process the pathogen, exposing it outside of the APC membrane. The APC performs a decomposition of the ingested pathogen into peptides, short chunks of the full amino acid sequence to be presented. We call epitopes (or antigenic determinats) all those peptides that interact with T cells, which subsequently respond initiating the cascade of signals leading to the adaptive immune The membrane of the T cell is covered by different transmembrane protein, such as the αβ TCR (responsible for the epitope recognition) and co-receptors, like CD4 and CD8 which ensure the binding to the MHC class II and class I, respectively. The binding occurs when the αβ TCR enters in contact with an MHC molecule exposing the epitope outside of an antigen presenting cell. In this cartoon we are representing a single copy per molecule, but in reality the interaction should be pictured as a velcro strap [START_REF] Sompayrac | How the Immune System Works[END_REF]. (B) Details of the TCR-peptide-MHC interaction from the example highlighted in blue in Fig. 3.1A. The conserved CDR1 and CDR2 loops of the TCR α and β chains interact with the MHC molecule, allowing for the hypervariable CDR3 regions to get closer to the presented peptide. The MHC molecule fits the presented peptide in a groove of protein helices.
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There exist several types of APCs, including phagocytes or B cells themselves, with the dendritic cells (DCs) being the most potent APCs, specialized in capturing and processing antigens while taking up positions beneath the skin or other epithelial tissues. Usually, DCs remain in the infection site collecting antigens through phagocytosis for about six hours, after which they travel through the lymphatic system to reach the nearest lymph node, allowing for the recruitment of lymphocytes [START_REF] Sompayrac | How the Immune System Works[END_REF].

The molecules of the APC that enable the presentation form the Major Histocompatibility Complexes (MHC). These molecules are membrane docks that bring the peptides out of the membrane in order to show them to T cell receptors, as illustrated in Fig. 3.1A. To allow for the binding to a peptide presented on a MHC molecule (for brevity pMHC), a TCR typically bears certain biochemical properties of affinity to that protein structure [START_REF] Garcia | How the T Cell Receptor Sees Antigen-A Structural View[END_REF]. The backbone of the TCR are the conserved CDR1 and CDR2 loops of both α and β chains, biochemically biased to bind with the protein helices that form the structure of the MHC [START_REF] Blevins | How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire[END_REF]. The intensity of the interaction between TCR and MHC is not sufficient to activate a T cell, but is meant to facilitate the engagement of the CDR3 hyper-variable region with the presented peptide, contained in the proteic groove of the MHC molecule [START_REF] Cole | T-cell Receptor (TCR)-Peptide Specificity Overrides Affinityenhancing TCR-Major Histocompatibility Complex Interactions[END_REF]. The CDR1 and CDR2 are germline encoded in the V genes. An example of a T cells interaction with an APC is shown in Fig. 3.1B. The T cell receptor is a rather flexible structure which is the chemical reason behind the non-unicity of the TCR-pMHC interactions [START_REF] Wong | Comparative Analysis of the CDR Loops of Antigen Receptors[END_REF]. There exist several TCRs that can bind to the same pMHC and vice versa, the same TCR can recognize multiple pMHCs, a phenomenon known as cross-reactivity.

The MHC gene locus is highly polymorphic, with many different alleles that vary in their antigen-presenting capacity and their ability to interact with T cell receptors. For example, the genes from the human leukocyte antigen (HLA) complex (the human version of the genomic MHC) are extremely variable across patients. It was uncovered in 1958 by Jean Dausset (39). This is an example of what in biology is referred to as "heterozygote advantage", since the more unique the set of MHC alleles the higher the fitness of an individual due to the larger number of presentable peptides, in other words the easier the recognition of pathogens [START_REF] Mcclelland | Major Histocompatibility Complex Heterozygote Superiority during Coinfection[END_REF]. Because of this huge diversity, humans rarely share the same HLA which makes responses to infections, vaccines or transplanted tissues highly variable between individuals. It turns out that T cells are particularity reactive to MHC molecules that do not belong to the host HLA type, which is why matching the HLA type between donors and recipients is a critical factor to avoid rejection of a graft.

T cell subtypes: to be a helper or a killer

MHC molecules exist in two different classes: MHC class I and MHC class II. These different structures require distinct co-receptors on the membrane of the T cells, which exist in two major subtypes: the CD4 co-receptor for helper T cells and the CD8 coreceptor for cytotoxic (or "killer") T cells. The differences between CD4 + and CD8 + T cells are induced by distinct signaling pathways during T cells maturation in the thymus, which leads to the activation of different transcription factors.

The helper T cells express the CD4 co-receptor which interacts only with the MHC class II molecule and "help" to activate and coordinate the immune response. For example, CD4 + T cells secrete chemokines, a spacial type of cytokines capable of inducing a chemotactic gradient towards the site of infection.

3.1 The adaptive immune system CD4 + T cells can differentiate into several subtypes, like helper T cells Th1, Th2 and Th17, or regulatory T cells (Tregs), each having a distinct role in the immune response. All of their decisions to trigger a response are not made by the single T cell, but rather by the combination of the signals from APCs and T cells. Their function of helper T cells is critical in regulating the activation and differentiation of B cells or CD8 + T cells.

CD8 + cytotoxic T cells recognize antigens presented by MHC class I molecules on the surface of the infected or cancerous cells. They are able to kill directly the target cells with cytotoxins: killer cells release a toxin called perforin which pierces the membrane of the target cell and through these holes it introduces granzymes, enzymes which induce apoptosis. This form of "assisted suicide" is very destructive, because it gets rid of the virus together with the virus-infected cell [START_REF] Sompayrac | How the Immune System Works[END_REF].

A subtype of CD8 + T cells performs the opposite task, i.e. it kills the cells that do not show recognizable MHC molecules. These are the natural killer T cells (NKTs) which, regardless of their TCR, induce apoptosis of encountered cells unless inhibited by the presence of MHC class I molecules on the surface of the target cell.

Receptor generation and consequent diversity

The number of possible threats is enormous, which translates into a very large number of protein structures against which TCRs should be prepared.

As all transmembrane proteins, in principle the T cell receptor could be encoded in DNA, but this would require a cell nucleus with a very big volume, since the number of different TCRs observed is much larger than the number of genes in the human genome [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF]. Rather than encoding all TCRs in the DNA, the huge diversity of receptors comes from an intrinsically stochastic process of TCR generation for both the α and β chain of the receptor. This stochastic process of genomic template rearrangements is known as VJ recombination for the α chain and VDJ for the β chain, depending on the chain specific templates involved. The discovery of this somatic recombination process resulted in a Nobel prize for its discoverer Susumu Tonegawa in 1987 [START_REF] Hozumi | Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions[END_REF].

The V(D)J recombination occurs in a stepwise fashion, with each rearrangement event picking a new gene segment of the resulting DNA sequence coding for the TCR chain. In addition, at the junctions of the genomic templates, a DNA polymerase (called terminal deoxynucleotidyl transferase, or TdT) inserts and deletes nucleotide bases [START_REF] Gilfillan | Mice Lacking TdT: Mature Animals with an Immature Lymphocyte Repertoire[END_REF], which is the most relevant contribution to the chain diversity since the nucleotides are non templeted [START_REF] Mora | Systems Immunology, An Introduction to Modeling Methods for Scientist[END_REF]. These insertions-deletions happen in the TCR hypervariable central region, the CDR31 , which is the portion of the receptor which is closer to the peptide, while the remaining regions code for structural properties allowing the TCR to come into contact with MHC molecules. These non-templated nucletoide insertions and deletions are down regulated in human newborns, correlated to the low TdT expression during pregnancy. The number of insertions is also very small in mice embryos and increases considerably after birth, when newborn mice start expressing TdT [START_REF] Sethna | Insights into immune system development and function from mouse T-cell repertoires[END_REF].

The initial step of the TCR generation is the rearrangement of the TCRβ chain genes (TRB), which involves the joining of a "variable" (V), "diversity" (D), and "joining" (J) gene segment. When the resulting DNA sequence is translated into a productive sequence ("in-frame" sequence without stop codons), the resulting TCR β chain is then paired with a "pre-TCR" α chain and ceases to proliferate. On the contrary, if the sequence does not translate into codons or it contains a stop codon ("out-of-frame sequence"), a few other attempts of recombination are performed, eventually accessing the genes of the second allele. If all attempts to recombine the TRB fail, the cell goes through apoptosis. This part of the generation process, called β-selection, is known to kill ∼70% of the T cells progenitors [START_REF] Pénit | Cell expansion and growth arrest phases during the transition from precursor (CD4-8-) to immature (CD4+8+) thymocytes in normal and genetically modified mice[END_REF].

The T cells passing β-selection receive a signal to stop rearranging TRB gene and to initiate the generation of their TCRα. The process of α chain gene rearrangement involves the joining of a V and J gene segment from the α locus (TRA) and, if succesful, results in the expression of a functional αβ TCR. Similarly to the β-selection, the rearrangement of the TRA allows for multiple attempts to generate a productive TCR α chain, otherwise the cell is discarded [START_REF] Petrie | Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes[END_REF]. Potentially, the human TCR generation process could produce up to ∼10 61 distinct receptors, but in practice within each individual is expressed a much smaller number: an adult human being carries 10 9 -10 11 clonotypes, i.e. groups of clones that share the same phenotype and the same TCR [START_REF] Mora | Systems Immunology, An Introduction to Modeling Methods for Scientist[END_REF]. This large difference in orders of magnitude is principally due to the fact that the somatic recombination events are not all equally probable [START_REF] Murugan | Statistical inference of the generation probability of T-cell receptors from sequence repertoires[END_REF]. We refer to a clone as the ensemble of T cells sharing the same clonotype since originated by a common ancestor via cell duplication. It is important also to take into account that T lymphocytes undergo clonal expansion so healthy patients present ∼10 11 T lymphocytes distributed across their organism [START_REF] Mora | How many different clonotypes do immune repertoires contain?[END_REF].

The generation of diverse and functional TCRs is essential for the recognition and the response to pathogens. The V(D)J recombination is the most relevant process in the definition of the TCR repertoire, dominating also later modulations due to tolerance induction or even pathogen encounter [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF]. While defects in the process of generation can lead to severe immunodeficiency, at the same time self-reactive T cells can also be generated, potentially leading to autoimmune disease. The mechanism that prevents this risk is commonly believed to be the T cell maturation inside the thymus (5).

Checking for functionality and self-tolerance during thymic maturation

The hematopoiesis of naïve T cells starts with their differentiation from stem cells into T cell progenitors. Subsequently, they enter the thymus, a lymphoid organ located in the mediastinum, a cavity of heterogeneous connective tissues in the thorax, consisting of two main compartments: the cortex and the medulla. The cortex compartment is mainly involved in T cell development, with the self-tolerant selection occurring mainly in the medulla. The anatomy of the compartments also plays a role in the process, with the cortex of the thymus being densely populated by immature T cells that undergo positive selection, while the medulla contains mature T cells that undergo negative selection, as illustrated in Fig. 3.2.

In the cortex, after some further differentiation from the progenitor, the cell turns into a thymocyte and starts generating its TCR through the V(D)J recombination process. This is a consequence of the interaction with the thymic epithelial cells of the cortex (cTECs). At this time, on the lymphocyte membrane appear the CD4 and CD8 coreceptors and the cell is said to transit from a double negative stage (DN) to a double The lymphoid progenitors reach the thymic cortex from the bone marrow and here specialize into thymocytes. In the cortex they find an environment crowded by thymic epithelial cells (cTECs) and other immature T cells. After having differentiated through the double negative stage (DN), the thymocytes start selecting for the two chains of their receptors. At the same time, the DN cells express CD4 and CD8 coreceptors and become double positive T cells (DP). The cells that succeeded in β and α-selection have now generated a functional TCR which enables them to interact with the self-MHC in the surroundings. The DP cells subsequently migrate in the medulla, where they undergo negative selection upon exposure to self-peptides by dendritic cells (DCs) and medullary thymic epitelial cells (mTECs). At the end of the process, the DP cells have already stopped expressing one of the two co-receptors and transitioned to the single positive stage (SP). The naïve T cells that survived all maturation steps are then released into peripheral lymphoid organs. Readapted from Klein et al. [START_REF] Klein | Antigen presentation in the thymus for positive selection and central tolerance induction[END_REF]. [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]. When the lymphoid progenitor enters the thymus, it starts specializing in the cortex. At this point the cell gets to the DN stage (CD4 -CD8 -which means it does not show CD4 and CD8 coreceptors) and the β-selection starts to take place. If the selection succeeds, the thymocyte also recombines its TRA to produce the TCR α chain. In the meanwhile the T cell has expressed both co-receptors and it is said to be at the double positive stage (CD4 + CD8 + ). With a fully productive αβ TCR, the receptor is tested for functionality through positive selection. Subsequently the DP cell migrates to the thymic medulla and, at the time of this passage, it has already started undergoing negative selection. At the end on negative selection, just one between the two co-receptors remains expressed, leaving the thymocyte in the single positive stage (CD4 + or CD8 + ), ready to be released as a naïve T cell. Readapted from Yates et al. [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF].
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3.2 Checking for functionality and self-tolerance during thymic maturation positive stage (DP). A scheme of the relations between the various maturation stages is shown in Fig. 3.3. Different quantitative experiments involving dyeing of thymocytes showed limited agreement in the estimated dynamical features of thymic selection, with rates of cell differentiation, proliferation or apoptosis potentially spanning different order of magnitude [START_REF] Robert | Modeling the Dynamics of T-Cell Development in the Thymus[END_REF]. Ultimately, the role of the minor non-thymocyte populations in the thymus, including recirculating mature T cells, B cells, innate lymphoid cells and others remains unknown [START_REF] Suo | Mapping the developing human immune system across organs[END_REF].

In order to establish tolerance, DP cells are believed to undergo a process of selection, in which the only thymocytes that survive must express functional TCRs and thus can bind to self-peptides presented by MHC molecules. This first step is known as positive selection. Positive selection starts inside the cortex, where the thymocyte performs a random exploration of the porous tissue and it encounters self-MHC on the epithelial cells of the thymic cortex. If the cell is assessed to be functional, it moves toward the medulla, in the center of the thymus where it encounters self-MHC on top of medullary thymic epithelial cells (mTECs), macrophages and dendritic cells [START_REF] Witt | Directed migration of positively selected thymocytes visualized in real time[END_REF]. The mTECs are very singular APCs since they are able to present peptides from the self-proteome thanks to a specific transcription factor called autoimmune regulator (AIRE) (4). These cells are responsible for clonal deletion, the complex network of signals that induce apoptosis in thymocytes recognized as self-reactive. At the end of this transition, thymocytes have undergone negative selection, which tested for their self-tolerance against all presented self-MHCs. At the same time, one of the two co-receptors decays, leaving the DP cell with a single co-receptor: the resulting single positive cell (SP) is now a naive CD4 + or CD8 + T cell ready to be released into the periphery as a naïve T cell. It has been established that in the thymus of many species, the ratio between CD8 and CD4 cells is roughly 1 to 4 [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF].

Many aspects of thymic maturation are still poorly understood. For example, the high local density of differentiating cells suggest a role for T cell -T cell interactions during the signaling process [START_REF] Suo | Mapping the developing human immune system across organs[END_REF]. Some theories propose that single positive thymocytes can reduce the number of available self-peptides in the thymus, thus limiting the efficacy of the negative selection process, unbalancing the ratio between cells in the DP stage and SP stage [START_REF] Mehr | Feedback regulation of T cell development in the thymus[END_REF]. In addition, it seems that the majority of the selection occurs while lymphocytes are at the DP stage (with estimates of ∼90% of DP cells being lost) [START_REF] Sinclair | Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system[END_REF]. However, the estimation of the exact relative T cell abundances across the stages of development is complicated by the fact that cells are clearly differentiating and undergoing apoptosis while at the DP stage [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]. Some studies suggest that positive and negative selection with high probability take place at the same moment (51; 10).

The generation of T cells by the thymus varies considerably across different stages of life and it is thus strongly dependent on the age of the individual. The human thymus has a large size at birth and is most active until puberty. However, as one ages, the thymus gradually shrinks and transforms into adipose tissue, suggesting that the maturation of T cells within the thymus is essential during fetal development and early years of life, but it becomes less crucial during adulthood [START_REF] Thapa | The Role of the Thymus in the Immune Response[END_REF].

Humans have a greater number of T cells present in their circulation and lymphoid tissues at birth compared to mice. This is reflected by the different age-related thymic output between the two species: while in mice the thymus releases most of the peripheral naïve T cells throughout their lifetime, in adult humans only 10-20% of naïve T cells are produced by the thymus, with the rest being the result of proliferation in the periphery [START_REF] Den Braber | Maintenance of Peripheral Naive T Cells Is Sustained by Thymus Output in Mice but Not Humans[END_REF]. This and other studies suggest that crucial events in human thymus-dependent T cell development are predominantly established during the prenatal and at the early postnatal phases (52).

Theories of tolerance on top of receptor and antigenic space

Tolerance in conventional T cells is established during lymphocyte development through the process of deletion of self-reactive cells and anergy2 induction, later maintained throughout life by regulatory T cells and other mechanisms. Nevertheless, the decision between a state of activation or of anergy is a matter of binding duration and intensity of the stimulation [START_REF] Yamamoto | Induction of T-cell activation or anergy determined by the combination of intensity and duration of T-cell receptor stimulation, and sequential induction in an individual cell[END_REF] and not a well established binary mechanism.

Exploring the extremely diverse landscape of receptor vs antigen interaction is additionally complicated by the presentation mechanism which introduces an extra layer of complexity to the "many-to-many" TCR-pMHC problem of understanding which receptor binds to which peptide, exhibited by which MHC molecule [START_REF] Bradley | Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition[END_REF]. The similarities observed in patterns indicate that machine learning has the potential to provide a promising approach for defining a metric between T cell receptors [START_REF] Dash | Quantifiable predictive features define epitope specific T cell receptor repertoires[END_REF]. Datasets of paired antigen-TCR raised interest for machine learning approaches which use sequence features to predict which TCR bind to the given epitope, with potential role in drug design. The limited size of these datasets does not allow for a complete evaluation of the current algorithms, but it seems established that including information about V and J gene usage increases the prediction performance [START_REF] Meysman | Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report[END_REF].

For the sake of discussion, we can imagine to represent the diverse TCRs that compose the repertoire of an individual as points of a multi-dimensional space we will call the "TCR shape space". The dual version of the TCR space would be constituted by the "antigenic shape space", populated by all possible pMHC, some of which pathogenic (e.g. derived from viruses), others foreign but non-pathogenic (e.g. derived from food), others selfderived. In this framework, the binding relations between antigens and receptors can be interpreted as a function between the receptor shape space and the antigenic one [START_REF] Perelson | Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-non-self discrimination[END_REF]. An illustration of this concept can be seen in Fig. 3.4.

The notion of metric in the TCR space is hard to define, but one could think of proximity between TCR points as due to shared biochemical features, leading to similar binding properties. At the same time, we can say that "close" antigens have similar immunogenic properties because they are similar molecules. It has been observed that to target the same epitope, receptor chains often share the same V and J genes [START_REF] Dash | Quantifiable predictive features define epitope specific T cell receptor repertoires[END_REF]. Furthermore, some observations suggests that a few differences in the CDR3 of the TCRβ do not change the reactive property of a receptor towards a specific pMHC [START_REF] Mayer | Measures of epitope binding degeneracy from T cell receptor repertoires[END_REF].

The relation that links the two shape spaces can be imagined as due to the TCR-pMHC binding properties, with each receptor mapped towards its cognate epitope. However, this mapping cannot be thought as one-to-one because of the cross-reactivity properties of the TCRs which allow them to interact with a set of different epitopes. Cross-reactivity can be represented as a ball on the multidimensional antigenic space, each associated to a TCR, with the center corresponding to the epitope that ideally perfectly binds to the TCR and The T cells of an individual constitute a repertoire of functional and self-tolerant TCRs which can be visualized as a set of points on the high dimensional space of possible receptors. Similarly, one can imagine that antigens constitute an independent space of peptide-MHC, mapped to the TCR space according to binding properties. This mapping is known to not be a one-to-one relation, since the same TCR can bind to multiple peptides (cross-reactivity), presumably because these peptides are "close", in the sense that they share certain biochemical properties. Each TCR from the repertoire is thus associated to the ball of peptides it recognizes, in principle covering the antigenic space avoiding self-peptides. Conversely, the TCR shape space should presents "holes" in the position of self-reactive TCRs.

causes its activation, while the strength of the interaction decreases towards the radius of the ball. One can visualize how thymic negative selection should restrict the coverage induced by TCRs in antigenic space in order to ensure self-tolerance, still allowing for the produced repertoire to be as broad as possible and prepared to face threats yet to be encountered [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]. In 1957, Frank Macfarlane Burnet (the first to introduce the concepts of "self" and "non-self"), originally theorized clonal deletion of self-reactive clonotypes as the mean to avoid autoimmunity [START_REF] Burnet | A Modification of Jerne's Theory of Antibody Production using the Concept of Clonal Selection[END_REF]. According to this vision, negative selection of T cells operates as a pruning mechanism that deletes all TCRs that cover with their cross-reactive balls a region of the antigenic space containing self-peptides, also known as "TCR space hole hypothesis" [START_REF] Vidović | Unresponsiveness to a foreign antigen can be caused by self-tolerance[END_REF]. However, Mark Davis and collaborators [START_REF] Yu | Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes[END_REF] verified the presence of significant fractions of self-reactive CD8 + T cell in the periphery, arguing that there must be other non-TCR related mechanisms to induce tolerance in such cells, to be searched in a weakened reactive profile. Their argument shifts the paradigm away from the idea of a dangerous presence of holes in the antigenic shape space, leaving the possibility to recognize all combinations of pMHC. In that sense, it is remarkable to notice that preliminary observations suggest that the peptides derived from the self-proteome bear no striking feature which distinguishes them from non-self peptides [START_REF] Mayer | How different are self and nonself?[END_REF].

Defects in thymic maturation can lead to severe autoimmune disorders. Nevertheless, mice genetically modified not to develop a thymus have proven to not have a significantly shorter life expectancy compared to healthy mice, if bred in sterile environments [START_REF] Piantanelli | Long-live euthymic BALB/c-nu mice. I. Survival study suggests body weight as a life span predictor[END_REF]. Attempts to resolve this riddle call into question the complex network that regulates the T cells behavior in the periphery.

A T cell class devoted to pair-regulation

Another fascinating aspect of thymic maturation concerns the differentiation of CD4 + lymphocytes into regulatory T cells (Tregs), a specialized subtype of CD4 + T cells that play a critical role in the modulation of the adaptive immune response 3 . In certain cases the CD4 + T cells with highly self-reactive TCRs can avoid suppression and differentiate instead into Tregs, recognizable thanks to the expression of a transcription factor called Foxp3 [START_REF] Li | TCRβ repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition[END_REF]. Tregs have an important dynamical role of regulation of the adaptive immune response. They are able to inhibit the activation and proliferation of other immune cells, including T cells, B cells and APCs, thereby preventing excessive immune activation and the development of autoimmune diseases. It is important to notice that mutation of Foxp3 or loss of Tregs have been correlated to the abrupt onset of autoimmunity [START_REF] Bennett | The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3[END_REF]. The Treg suppression mechanism is known to be local, directly inducing anergy in the surrounding conventional T cells [START_REF] Wong | A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells[END_REF]. This depends on the specific binding properties of the Treg TCRs, even though they are generated and selected in a similar way to other CD4 + T cells.

What actually triggers the differentiation into Tregs is still obscure, but it has been observed that the CDR3 region of their β chain is on average enriched in hydrophobic amino acids with respect to conventional T cells (64; 65). However, it is well known that hydrophobic interactions are stronger than other molecule-molecule interactions (e.g. van der Walls forces) (66), thus it is not easy to understand why self-peptides should require 3.3 Beyond thymus: from secondary lymphoid organs to infected tissues more hydrophobic residues to bind.

Tregs can also be induced outside the thymus, in response to specific environmental cues: for example, T cells can develop Foxp3 and thus turn into Tregs by the presence of certain signaling patterns or by exposure to specific antigens [START_REF] Coombes | A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[END_REF]. We also know that Tregs can convert back, actively loosing expression of Foxp3 according to certain environmental signals, but little is known about the reasons behind this instability [START_REF] Junius | Unstable regulatory T cells, enriched for naïve and Nrp1neg cells, are purged after fate challenge[END_REF].

Common experience tells us that the adaptive immune system is tolerant to many peptides that are not presented in thymus where the bulk of the Tregs are generated (food derived peptides or other gut microbes for example), which could be explained by this mechanism [START_REF] Coombes | A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[END_REF]. The challenge of self vs non-self discrimination is further complicated by the need for the immune system to effectively react to small amounts of antigens during an infection, while remaining resilient to significant fluctuations in self-peptide concentrations which occur in the tissue in healthy conditions (69).

Beyond thymus: from secondary lymphoid organs to infected tissues

The process of eliminating self-reactive T cells during thymic maturation is not perfect: some self-reactive T cells can still exit from the thymus. This incomplete negative selection suggests that T cells require additional control within secondary lymphoid organs, which include the lymph nodes, the spleen, the tonsils and certain tissues within mucous membranes. Dendritic cells within these organs may present self-peptides on their MHCs in the absence of an infection, consequently being able to stimulate T cells that were not effectively filtered and potentially leading to tissue damage. This outcome is presumably prevented by Tregs populating the secondary lymphoid organ, which can restrain T cell response to self-antigens: it has been observed that Tregs induce anergy in T cells restraining early autoimmune and weak foreign responses with a negative feedback process following T cell activation [START_REF] Wong | A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells[END_REF].

T cells that migrate to different tissues encounter different antigenic environments and different APCs which influence activation and proliferation, eventually biasing local TCR repertoire composition. These biases in the T cell repertoire have important functional consequences for host defense and immune surveillance because tissue-resident memory T cells (long-lasting clones that survive after an infection) allows for rapid and effective protection against pathogens that may re-emerge in the same tissue. Different tissues have unique cytokine environments that further shape the T cell repertoire in healthy conditions. For instance, memory T cells specific to influenza were found in significantly higher concentrations within the lungs of healthy patients, while memory T cells responsive to systemic viruses dominate multiple sites [START_REF] Kumar | Human T cell development, localization, and function throughout life[END_REF].

Based on these observations, T cell activation is likely to be regarded as dependent on both the environment and the particular engaging event, rather than depending solely on the TCR identity.

Effector and memory T cells response

According to the particular phase of the adaptive immune response, the T cells can also perform different tasks beyond their naïve role of killer or helper. Some of the observations presented in the previous section suggest that lymph nodes biases their populations of long-term resident naïve T cells, inducing clonal expansion with broad signaling pathways [START_REF] Kumar | Human T cell development, localization, and function throughout life[END_REF]. However, the main role of secondary lymphoid organs is to initiate the differentiation of the epitope-reactive naïve T cells into effectors, upon encounter with dendritic cells migrating from the infection sites. Unlike naïve T cells, effector cells are able to perform their function producing inflammatory cytokines (helpers) or cytotoxins (killers). For example, CD4 + helper T cells that received instructions to proliferate and differentiate from APCs can specialize in several effector types, like Th1 cells which are devoted to intracellular microparasites, or Th2 cells, more specific to extracellular macroparasites [START_REF] Kara | Tailored Immune Responses: Novel Effector Helper T Cell Subsets in Protective Immunity[END_REF].

The common view for CD4 + T cells is that as a result of APC encounters in lymph nodes, effectors move toward the infection site and get activated by the danger and alarm signals present at the site. This theory stresses the importance of the context and is known as "danger model" [START_REF] Matzinger | Tolerance, Danger, and the Extended Family[END_REF]. However, this raises doubts about the mechanisms of tolerance: how come self-reactive CD4 + T cells do not also get activated by these aspecific signals [START_REF] Al-Yassin | Does T Cell Activation Require a Quorum of Lymphocytes?[END_REF]? A possible solution to this intricate problem could be represented by the hypothesis of a "quorum sensing" feedback [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF], which states that a robust adaptive response can be reached even with potentially self-reactive T cells if the response is triggered only when a certain threshold number of cells are activated 4 . Several analyses have highlighted the advantage of reaching a critical local density of consenting effectors. Swarming strategy within the context of helper T cells activation, where the information provided by APCs is often rare, fluctuating and for certain parasites even at risk of disruption, is indeed theoretically robust and common to many analogous biological interactions [START_REF] Schrom | Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells[END_REF].

Alongside effector cell response, a subset of activated T cells turns into long-lived memory T cells, able to persist in the body for years or even decades after the initial infection, which is the principle behind disease immunity realized by vaccination. Memory cells rapidly respond to re-infection with the same antigen, leading to a better immune response than the primary naïve response. Which survival signals or cell interactions code for the activation of a memory T cell profile are still a matter of debate. Experimental results show that a systematic differentiation of effectors into memory precursors is modulated by collective mechanisms of local and short-range interaction between activated T cells, with ∼30 interacting cells sufficient to induce the memory compartmentalization [START_REF] Polonsky | Induction of CD4 T cell memory by local cellular collectivity[END_REF].

Recent studies show that memory T cells clone sizes are distributed according to a power law, with early life immune activity dominating the distribution if compared to the effect of pathogen encounters [START_REF] Gaimann | Early life imprints the hierarchy of T cell clone sizes[END_REF]. The absence of a substantial difference in older people suggested that clone sizes in the memory repertoire do not necessarily reflect expansion in the response repertoire. Nonetheless, large clones in the repertoire are potentially harmful because they could cause iterative wrong decisions throughout the lifetime of the host. Experiments with spalax, a rodent living significantly longer than mice, detected a more uniform distribution of clone sizes, accompanied by reduced fractions of Tregs [START_REF] Izraelson | Distinct organization of adaptive immunity in the longlived rodent Spalax galili[END_REF]. Once again, this might indicate a central role for regulatory feedbacks to avoid pathological states induced by unbalances within the healthy repertoire. Each sequence of transcribed cDNA is associated to a unique molecular identifier (UMI) before being replicated with various rounds of PCR amplification. The resulting sequences are then collected into machines that use libraries of primers to bind to the strand and return the read of nucleotide bases. Reads with the same UMI are collapsed into a single one and they are associated to a read count. Different UMI with the same collapsed sequence return the UMI count of the given nucleotide read.

The TCR repertoire and its sequencing

The TCR repertoire is a complex set of different T cell clonotypes that are capable of recognizing and responding to a wide range of foreign antigens. The diversity of the T cell repertoire is a crucial component of the adaptive immune system, as it allows the immune system to respond to an enormous variety of potential threats. It is further shaped by ongoing interactions with other immune cells and with foreign antigens encountered throughout the lifetime of the individual. In conclusion, immune protection arises from the complex interactions between multiple components, which suggests that a T cell repertoire can be interpreted as an emerging property 5 of the immune system.

Given the large number of clonotypes within an individual, the task of studying such an immunological property turns out to be a challenge for quantitative experiments. In addition, in vitro experiments constrain the system into much more controlled conditions than in vivo environments.

High-throughput adaptive immune receptor repertoire sequencing

Modern advances in high-throughput repertoire sequencing (RepSeq) have allowed for a more detailed characterization of the TCR repertoires and its diversity [START_REF] Robins | Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells[END_REF]. Repertoire sequencing is able to obtain the nucleotide sequence of non-paired TCR chains from bulk, providing on average ∼10 6 distinct chains.

The protocol starts with the isolation of the mRNA from the cells of interest that is then transcribed into complementary DNA (cDNA). During this process of reverse transcription, each mRNA molecule is barcoded with a unique molecular identifier (UMI), which is a random nucleotide sequence that has the purpose of uniquely tagging the sequence. The resulting barcoded cDNA is purified, amplified by the Polymerase Chain Reaction (PCR) and finally sequenced. Similar procedures can be followed if instead of mRNA, the protocol starts from the isolated genomic DNA (gDNA). The advantage of gDNA is that it does not need to be reverse transcribed and it has not expression biases, while mRNA can be present in multiple copies inside a single cell [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF]. On the other hand, it is not possible to tag gDNA with UMI.

In general, mRNA sequencing requires a primer, a short stretch of nucleotide basis that targets a specific region of the genome to be used as a starting point. When it comes to RepSeq, a common strategy is to provide a library of forward primers (that read the 5' to 3' DNA segment) complementary to all known V genes, plus a library of reverse primers for J genes (for the 3' to 5' segment). The mRNA then undergoes multiple rounds of PCR amplification (multiplex PCR), which generates many copies of the mRNA strands using the libraries of primers. Thanks to the UMI barcoding we can control the biases induced by PCR amplification since sequences with the same UMIs have to be counted only once. In addition, we can reduce PCR sequencing errors inferring the correct sequence from the group that shares the same UMI [START_REF] Pai | High-throughput and single-cell T cell receptor sequencing technologies[END_REF]. The steps of this experimental procedure are schematically presented Fig. 3.5.

With the choice of these primers one obtains in a single reading the variable region of the TCR, which is just a portion of the full receptor. Since the TdT operates only at the V and J gene junctions (eventually also D gene for the β chain), the gene usage for the somatic recombination can be reconstructed afterwards using an alignment algorithm, granting the possibility to read only short chunks of about 100-150 nucleotide bases centered around the CDR3 region [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF].

RepSeq is limited by the fact that it operates on bulks, which only allows for the sequencing of the two decoupled chains. This single chain sequencing lacks the information about the full αβ TCR, but different techniques are being explored, opening the possibility for single-cell TCR and genomic sequencing [START_REF] Klein | Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[END_REF]. However, the cost for experiments of single-cell sequencing remains very high which is currently a limitation to their diffusion and a cap to the size of the samples [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF]. New methods as well as better control of synthetic organoids, will hopefully ensure the quantitative environment-dependent information required for a more complete characterization of the TCR repertoire [START_REF] Suo | Mapping the developing human immune system across organs[END_REF].

Statistical tools

When dealing with the analysis of real observations, we usually lack the information about the underlying process that generated our data. The generating processes of many biological systems are inherently stochastic, much like other complex systems, requiring models that reflect this properly. In addition, as a result of spurious random signals, all measurements are accompanied by an additional source of variability which is the experimental noise. We need a reliable method to model processes to make predictions or to estimate the parameters that govern the system.

The branch of statistics involved in these analyses is called statistical inference: using probability theory and mathematical models, statistical inference draws conclusions based on the sampled data. When the tasks is more oriented on forecasting, somehow neglecting the details of the model as long as it helps us making prediction, we typically use techniques of statistical learning. In this chapter, we will introduce the fundamental concepts of statistical inference and supervised learning, with the intention of applying these methods to the study of T cell receptor repertoires in chapter 5.

After an introduction to the principles of inference, in section 4.4 we present techniques for the estimation of the Shannon entropy which we use as a measure of diversity associated to distributions of TCR motifs in a repertoire (subsection 5.2.4). In section 4.5 we provide a brief background to supervised learning used to classify TCR sequences from different repertoires (subsection 5.2.3). Finally, we describe models of generation and selection (section 4.6) used for the analysis of TCR repertoires throughout chapter 5.

In chapter 6 we use principles of Bayesian inference and entropy estimation (section 4.3 and 4.4) to study the case of the statistical divergences.

An introduction to statistical inference

Every learning problem starts from a data set containing certain empirical observations. Assume that the sample collects N independent identically distributed (i.i.d.) variables

x i with i = 1, • • • , N which we represent as a vector x = (x 1 , • • • , x N ).
Here N is the size of the sample. Variables can be quantitative or categorical. For instance, if we are interested in a certain physical property (e.g. velocity) we would typically work with quantitative measures (e.g distances). If we want to study the nationality of the fastest athletes, we will consider countries as categories, variables with the only purpose of labelling an event (e.g. the country of the winner) and thus without any numerical ordering.

Our goal is typically to understand which statistical model P best fits to our data. If we expect our distribution to be defined in terms of a parameter θ, the statistical model is a parametric model and all considered models can be represented P X (x|θ) with θ belonging to the space of all possible parameters. The vertical bar that separates the variable x from the parameter θ in P X (x|θ) has different meanings depending on the interpretation of probability: in this manuscript we interpret it as a conditional probability of the variable given the parameter.

In general, the present discussion holds also if there is a finite number of parameters, which we will still represent with the symbol θ for brevity.

Point estimation for parametric models

The inference problems addressed in these thesis mostly deal with point estimation, where we are interested in providing a single guess of our quantity of interest, which will represent our best estimate of that quantity. For instance, if we need to provide a value to the true (unknown) parameter θ true that most likely generated our sample given our model, we want to produce a point estimator θ. This quantity θ is a function of our data, a random variable distributed according to a certain "sampling distribution", thus it comes with a variance V θ which can also be estimated in certain cases.

Our estimate will be perfect if there is no any bias, i.e. bias θ = 0 where the bias is

bias θ = E θ -θ true , (4.1)
where E is the expected value according to the model P X (x|θ). In addition, we also need to take into account the fact that an estimator depends on the sample size, which we express as θ N . A broader property which we would like our estimator to satisfy is consistency, where an estimator θ N is consistent if

θ N P -→ θ true , (4.2) 
where the symbol "P" above the limit means that the sequence θ N converges in the sense of probability for growing sample sizes N , formally

P | θ N -θ true | > N →∞ ----→ 0 ∀ > 0. (4.3)
With the symbol P we indicate the probability of the event in brackets given the model. The probability of having a large bias decreases for large samples, eventually converging to an unbiased estimate [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF]. In practice, this does not ensure the validity of our model, but just that if our parametric model represents a reasonable approximation of the real process, we can learn something about the parameter θ. Additionally, once we provide an estimation of the model parameter θ, we can also provide a point estimation of all of its functions G as G( θ). Thanks to the assumption of i.i.d. variables, the choice of a statistical model associates to our sample a probability that expresses how "likely" it is to observe the sample given our model as

P (x|θ) = N i=1 P X (x i |θ), (4.4) 
which is the associated likelihood function 1 . Given a fixed data set, the likelihood becomes uniquely a function of its parameter θ. 1 For practical reasons, we usually work with the logarithm of the likelihood, the loglikelihood L = log P

L(x|θ) = N i=1 log PX (xi|θ). (4.5)

Maximum likelihood estimation

Since there are different interpretations of the probability (81), statistical inference inherits these distinctions and employs different tools. The two major schools of thought of statistical inference are the frequentist and the Bayesian. Frequentist inference (also called "classical") postulates that probabilities are real properties of the world and frequencies are finite representations that tend asymptotically to the probabilities. In this sense, the parameter θ of the model is fixed and unknown. On the contrary, Bayesian interpretation states that a probability is a degree of belief, so it does not have to be defined in terms of repetitions. At the same time a parameter is free to fluctuate and we can make probability statements about its distribution before inferring it.

Maximum likelihood estimation

In the context of frequentist inference, it is useful to introduce a risk R associated to our estimator. The mean squared error is defined as

R θ, θ true = E ( θ -θ true ) 2 . (4.6)
We would be interested in finding a point estimator θ best that minimizes the risk no matter the true value of the parameter θ true . In other words, the risk associated to an any arbitrary estimator θ should be higher than R θ best , θ true :

R θ best , θ true ≤ R θ, θ true . ( 4.7) 
Unfortunately, there exist no estimator that satisfies this condition for all sample sizes [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF]. Instead, we can decide to choose an estimator if it satisfies Eq. 4.7 asymptotically. In this sense, a good candidate is the maximum likelihood (ML) estimator θ ML which returns as an estimate of the parameter, the value that maximizes the likelihood P (x|θ) (Eq. 4.4) given the data x :

θ ML (x) = arg max θ P (x|θ) . ( 4.8) 
Maximum likelihood estimation became extensively applied thanks to the works of Ronald Fisher in the 20s [START_REF] Fisher | On the mathematical foundations of theoretical statistics[END_REF]. The reason for ML's popularity is that the ML estimator is associated to the smallest variance in the limit of large samples N if compared to other methods (the dependence on N is omitted for brevity). More precisely, if the model P satisfies reasonable conditions of regularity like smoothness of P X (x|θ), the ML estimator θ ML has the following properties (we refer to (80) for all demonstrations): 1. consistency: θ ML P -→ θ true ; 2. equivariance: if θ ML is the ML estimator of θ, then λ( θ ML ) is the ML estimator of the transformation λ(θ); 3. asymptotic normality: for N 1 we have θ ML ∼ N (θ true , V θ ), with the symbol "∼" meaning "distributed according to" and N (µ, σ 2 ) being the Gaussian distribution of mean µ and variance σ 2 ; 4. asymptotic efficiency: this corresponds to the fact that

V θ ML ≤ V θ for N 1,
where θ is an arbitrary estimator. To understand the last two asymptotic behaviors of the ML estimator, first we need to introduce the Fisher information I Θ :

I Θ (θ) = E (∂θ log P X (x|θ)) 2 = -E ∂θ 2 log P X (x|θ) , ( 4.9) 
where the quantity s = ∂ θ log P X (x|θ) is also known as the Fisher score 2 . It can be shown [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF] that for large sample sizes the ML estimator is distributed as N (θ true ,

1 N I Θ (θtrue) ), which implies E ( θ ML -θ true ) 2 = R θ ML , θ true N 1 ---→ 1 N I Θ (θ true ) . (4.11)
It is now important to notice that for an arbitrary estimator θ the mean squared error can be decomposed as

E ( θ -θ true ) 2 = V θ + bias 2 θ , ( 4.12) 
which means that it equals the variance of the estimator only if the estimator is unbiased.

In addition, the mean squared error for an estimator satisfies the Cramér-Rao bound, which in the case of an unbiased estimator reduces to:

E ( θ -θ true ) 2 ≥ 1 N I Θ (θ true ) . (4.13)
The Cramér-Rao bound tells us that the variance of a parameter estimator is bounded from below. For this reason we call efficient all estimators that saturate this bound, which is the case for the maximum likelihood estimator.

The expectation maximization algorithm

Sometimes the loglikelihood L(x|θ) (Eq. 4.5) is a tractable object and it is possible to compute the ML estimator analytically. More often this task is too hard and we need to obtain the estimate with a numerical approach.

For certain models, we can make the assumption that it is never possible to observe certain variables, which correspond to dealing with missing data or hypothetical inaccessible variables. If we call these "hidden" variables h, then the model P X (x|θ) for the visible variables x, can be interpreted as the marginal over h of a "larger" model P XH (x, h|θ) and the new likelihood will look as

P (x|θ) = h P (x, h|θ) = N i=1 h i P XH (x i , h i |θ). (4.14)
If the introduction of the hidden variables brings us to a tractable likelihood, a popular numerical approach to find a local maximum is the Expectation-Maximization (EM) algorithm [START_REF] Dempster | Maximum Likelihood from Incomplete Data via the EM Algorithm[END_REF]. The EM algorithm consists of two main steps, repeated iteratively after the choice of an initial guess for the parameter(s) θ (0) . Introduced the iteration label 2 The equality between these two expression holds under the assumption of a regular model PX , because where the expectation is done over the hidden variables h given the current model θ (t) and the (fixed) visible variables x. This quantity is the expected value of the loglikelihood of the full model over the conditional distribution of h given the visible variables and the parameters [START_REF] Altan-Bonnet | Quantitative immunology for physicists[END_REF]. For this reason, L t can be interpreted as a pseudo loglikelihood.

E ∂ θ 2 PX (x|θ) PX (x|θ) = dx ∂ θ 2 PX (x|θ) = 0. ( 4 
In the first step of the EM algorithm (the "Expectation" step), we compute L t (θ|θ (t) ) given the current estimates of the parameters θ (t) and the visible variables. In the second step (the "Maximization" step), we find the parameters that maximize L t (θ|θ (t) ) as obtained from the previous step. The result, that can be found using various optimization techniques, is then used to update the estimates of the parameter:

θ (t+1) = arg max θ L t (x|θ). (4.16)
The iterations are repeated until the parameters converge. We can show that

L(x|θ (t+1) ) -L(x|θ (t) ) = L t (x|θ (t+1) ) -L t (x|θ (t) ) + D KL θ (t+1) θ (t) , ( 4.17) 
where the last term is a contraction for the Kullback-Leibler divergence (see Chapter 6)

D KL θ (t+1) θ (t) = D KL P h|x, θ (t+1) P h|x, θ (t) , (4.18) 
a quantity that satisfies Gibbs inequality D KL ≥ 0. Since the difference L t (x|θ (t+1) ) -L t (x|θ (t) ) ≥ 0 by construction, Eq. 4.17 shows that the likelihood L(x|θ (t) ) is a nondecreasing succession in t under EM prescription. This property ensures that the EM algorithm converges to a local maximum for the loglikelihood of interest L(x|θ).

Principles of Bayesian inference

When dealing with parametric inference in a Bayesian context, all the unknown parameters become variables, thus can be described by a distribution. Again, we will omit any graphical difference between a single variable and a set of variables, but the following discussion holds for both cases.

We start by recalling Bayes rule3 which states that conditional probabilities satisfy

P X (x|θ)P (θ) = P Θ (θ|x)P (x). (4.19)
We can extend Bayes rule also to the data likelihood P (x|θ) (Eq. 4.4) to obtain a posterior probability P (θ|x) of the parameters given the data

P (θ|x) = P (x|θ) P prior (θ) Z , ( 4.20) 
where the quantity Z, also known as the evidence, is the normalization

Z = P (x) = dθ P (x|θ) P prior (θ). (4.21)
Since it depends on the fixed data set, it is in practice a constant that can always be retrieved at the end of all computations. The central point of Bayesian inference is instead the choice of the prior distribution P prior (θ) that expresses our a priori belief about the parameter θ, independently of the observed data x.

Once a prior is given, we can use the posterior distribution in Eq. 4.20 to obtain a point estimate of the parameters, for example by computing the mode of the distribution, also called the maximum a posteriori estimator. Alternatively, we can consider the a posteriori expected value of the distribution which we indicate as θ|x = dθ P (θ|x) θ.

(4.22)

In the limit of large N , under regularity conditions, the mean posterior estimator θ|x is equivalent to the ML estimator θ ML (Eq. 4.8) since it is approximately distributed as N ( θ ML , 1 N I ), where I is the Fisher information associated to the model (Eq.4.9) (80). This property ensures the consistency of the mean posterior estimator and, in practice, it ensures that frequentist and Bayesian frameworks provide approximately the same results for parametric models when samples are large.

The choice of a prior

Bayesian inference requires choosing a prior suitable for our task. Subjectivists propose to define the prior based on the subjective opinion about the nature of the data, for example when there exists reasonable assumptions about the generation process. Alternatively, objectivists think priors should as "non-informative" as possible, trying to avoid to introduce spurious constraints to the model. Flat priors as the uniform P prior (θ) ∝ 1 serve this purpose, assuming the parameter θ to be uniformely distributed in its domain. Another example is the log-uniform prior P prior (θ) ∝ 1 θ (85), which intuitively means that all scales are equally possible. A first issue with such choice of prior distributions is that they are not normalizible, thus they are pseudo-distributions. In practice this problem is overcome at the moment of normalization in Eq. 4.20 and the posteriors are proper distributions.

Another problem with flat priors is that they are "flat" only for the parameter θ and not on any arbitrary transformation λ(θ) since P prior (λ) = |∂ λ θ|P prior (θ). A way to impose an objective prior which satisfies transformation invariance is the Jeffreys prior (86)

P prior (θ) ∝ I Θ (θ), (4.23) 
where I is the Fisher information defined in Eq. 4.9. Transformation invariance of the prior can be shown in the one-dimensional case

P prior (λ) = |∂ λ θ|P prior (θ) ∝ (∂ λ θ) 2 I Θ (θ) = E (∂ λ θ) 2 (∂ θ log P X (x|θ)) 2 = = E (∂ λ log P X (x|θ(λ))) 2 = I Λ (λ), (4.24) 
where the expected value here is meant with respect to the model P X (x|θ), as for the frequentist case. For example, assuming that the data is governed by a Bernoulli distribution, our model for the variable X = 0, 1 is

P X (x|θ) = θ x (1 -θ) 1-x , ( 4.25) 
with the parameter θ ∈ [0, 1] here playing the role of the unknown probability of sampling X = 1. The Jeffreys prior in this case is given by

P prior (θ) ∝ E -∂ 2 θ log P X (x|θ) = 1 θ(1 -θ) . (4.26)
Sometimes for the sake of the computation, it is convenient to pick a conjugate prior with respect to the model, i.e. that returns a posterior in the same family of functions of the chosen prior. Using the same example of Eq. 4.25, we can observe that a prior of the following family is conjugate to the model:

P prior (θ) = θ α 1 -1 (1 -θ) α 0 -1 B(α 0 , α 1 ) , ( 4.27) 
which is a Beta distribution of concentration parameters α 0 , α 1 > 0, where B is the Beta function 4 . Since the model is a Bernoulli distribution, the likelihood given n 0 and n 1 observations of the two variables will be a binomial distribution

P (x|θ) = n 0 + n 1 n 1 θ n 1 (1 -θ) n 0 . (4.29)
Finally, the posterior takes the form

P (θ|x) = θ n 1 +α 1 -1 (1 -θ) n 0 +α 0 -1 B(n 1 + α 1 , n 0 + α 0 ) , ( 4.30) 
which is analogous to the prior in Eq. 4.27. This remarkable property tells us that if we know how to compute analytically all a priori expected values, we can easily compute all expected values under the posterior. However, the choice of a conjugate prior is dictated by pure algebraically convenience and its implications to the inference should be studied case by case. In addition this procedure has a cost: we had to introduce two "hyperparameters" (here the concentration parameters α 0 , α 1 ), which in principle complicates the inference task. 4 The 2-dimensional Beta function is defined as

B(α0, α1) = Γ(α0)Γ(α1) Γ(α0 + α1) , ( 4.28) 
where Γ(x) = ∞ 0 dt e -t x t-1 is the Euler gamma function.

Shannon entropy and methods for its estimations

We are now interested in the case of categorical data, where variables do not possess a meaningful order and just represent the occurrence of a certain category. Given a sample N of i.i.d. variables x = {x j } N j=1 , with x j = 1, . . . , K and K the number of all possible categories, we can build the histogram of counts n = {n i } K i=1 where :

n i = N j=1 I [x j = i] . (4.31) By construction n 1 = i n i = N .
The most straightforward choice for such a sample is a categorical model (which generalizes the Bernoulli model in Eq. 4.25 to the case K > 2). This implies a multinomial likelihood of our vector of counts n, with the unknown parameters q = {q i } K i=1 being the set of probabilities per category:

P (n|q) = N ! K i=1 n i ! K i=1 q i n i . (4.32)
The normalization condition of the probabilities q 1 = 1 will be implicitly assumed for the rest of the discussion.

We focus on the entropy associated to the underlying discrete probability distribution, introduced by Claude Shannon in 1948 ( 25)

S(q) = - K i=1 q i log q i , ( 4.33) 
which reaches its maximum value when the distribution is uniform (S = log K if q i = 1 K ) and minimum when the distribution is peaked on a single category (S = 0 if q i = δ ij ). The Shannon entropy is at the core of information theory. For example, we can think of encoding some information in L-grams, sequences produced by a certain source joining together L characters from a given alphabet of A symbols. If any character can be followed by any other, then all L-grams are allowed, implying that the maximum number of possible L-grams will be equal to K = A L . However, if the source is not uniform, it will introduce biases towards certain symbols (in the worst case scenario on a single one) which in general result in a smaller effective number of typical sequences. We can use the Shannon entropy S L associated to the distribution of L-grams to quantify the "complexity" of the sequence source, or in other words its predictability [START_REF] Cencini | Chaos: from simple models to complex systems[END_REF]. For regular sources it can be shown that the following limit exists

h S = lim L→∞ S L L , ( 4.34) 
where h S is called the Shannon entropy rate and provides the average information per symbol emitted by the source. The Shannon-McMillan theorem [START_REF] Mcmillan | The Basic Theorems of Information Theory[END_REF] states that effective number K eff of L-grams that can be observed in practice is approximately

K eff e Lh S , (4.35) 
4.4 Shannon entropy and methods for its estimations with K eff ≤ K, where the equality holds only for a uniform source.

The properties here presented makes the Shannon entropy a suitable measure of the diversity associated to the system.

Maximum likelihood and other classical entropy estimators

In order to characterize the TCR repertoires in subsection 5.2.4, we look at the distributions of sequence motifs and we ask which method suits best for the estimation of the Shannon entropy associated. When it comes to real systems, all the asymptotic properties discussed in this chapter do not necessarily hold because the sample sizes N are typically small. This makes estimation of the Shannon entropy a difficult task, with many different approaches having been developed in the last two decades [START_REF] Zhang | Entropic Statistics: Concept, Estimation, and Application in Machine Learning and Knowledge Extraction[END_REF]. For some classes of probability distributions, a reasonable estimate of the entropy can still be possible if the number of coincidences (categories seen more than one time) is significant, way before all single categories have been sufficiently sampled [START_REF] Sk | Calculation of entropy from data of motion[END_REF]. This intuitively happens when N K eff .

To estimate the Shannon entropy we can start considering the maximum likelihood method (Eq. 4.8). To do so, we consider the loglikelihood L, as the logarithm of the multinomial likelihood in Eq. 4.32 and we maximize with respect to q i . We impose the condition of normalization q 1 = 1 with a Lagrange multiplier λ

∂ q i L(n|q) + ∂ q i   λ(1 - j q j )   = ∂ q i ( j n j log q j ) -λ = n i q i -λ = 0. (4.36) 
If we repeat this procedure for all categories i imposing the normalization, we obtain that λ = N and so the ML estimator for the probability q i is

q i = n i N , (4.37)
which is the frequency of the category i in our sample.

A possible estimator of the Shannon entropy can be obtained by plugging the frequencies from Eq. 4.37 in Eq. 4.33

S ML = - K i=1 n i K log n i N . ( 4.38) 
We will refer to this kind of as to the "naïve" estimator. It can be proven that all naïve estimators G = G({ q M L}) are consistent, if G is a function of the distribution q that can be expressed as G(q) = G 0 ( K i=1 g i (q i )) with g i arbitrary non-negative functions [START_REF] Antos | Convergence properties of functional estimates for discrete distributions[END_REF]. However this is just an asymptotic property and the naïve estimator of the Shannon entropy has been shown not to be well suited for practical applications. Intuitively, one problem is associated to the fact that the ML estimator returns zero probability for all unseen categories (the "tail" of the distribution), which biases the estimation of the Shannon entropy, especially in the limit of small N . Many classical techniques try to address this issue correcting for the zero probabilities, for example with additive smoothing or coverage adjusted techniques which we here discuss.

Additive smoothing probability estimators Additive smoothing simply states that a pseudocount α > 0 should be added to the count of each category as if the actual sample was to be composed of N + Kα variables, each counted at least α times:

q i = n i + α N + Kα . (4.39)
This corresponds to the Bayesian a posteriori expected value of q i under a symmetric Dirichlet prior with concentration parameter α. The Dirichlet distribution is a generalization of the Beta distribution in Eq. 4.27 to the case of multiple categories, i.e. K > 2.

Here α plays the role of a hyper-parameter which is chosen independent from the category i as a way to remain not too informative. The choice for this hyper-parameter is not straightforward. A classical option is the "add-one smoothing" that takes α = 1, which derives from Laplace's rule of succession

P (x N +1 = i|x) = n i + 1 N + K , ( 4.40) 
basically a Bayesian a posteriori expected value when the prior has been chosen to be uniform 5 . Notice that a symmetric Dirichlet distribution with concentration parameter α = 1 corresponds to a uniform distribution. If we keep following a Bayesian approach, another possibility is to justify α = 1 2 with the choice of a Jeffreys prior. Alternatively, one can borrow a "minimax" rule from decision theory, which looks for the functional form of the estimator q which minimizes the maximum risk R, formally arg min q max qtrue R [ q, q true ]. Assuming the estimator to be linear and the risk the mean squared error (Eq. 4.6), Trybula [START_REF] Trybula | Some Problems of Simultaneous Minimax Estimation[END_REF] showed that

q T = n i + √ N K N + √ N . (4.41)
This solution implies a sample size dependence for the pseudo-count.

Coverage corrected probability estimators

Different approaches deal with the problem of unseen categories introducing the concept of "sample coverage", the total probability of occurrence of observed categories. The coverage associated to our dataset n is defined as:

C = K i=1 q i I [n i > 0] , (4.42)
with the idea that the ML estimator of the probabilities should be adjusted to be normalized to the coverage C ≤ 1. This can be done by taking

q i = C n i N , ( 4.43) 
Such a choice allows for a non-zero probability for all the unseen categories since the probability of observing a new category i given a sample x of size N (also known as 4. [START_REF] Derbinski | Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self[END_REF] Shannon entropy and methods for its estimations "noncoverage probability") is equal to

P (x N +1 = i / ∈ x|x) = 1 -C = K j=1 q j I [n j = 0] = c 0 . (4.44)
Classically, the quantity c 0 is estimated with the Good-Turing formula ( 93) for unseen categories

6 c 0 = 1 N K i=1 I [n i = 1] , ( 4.45) 
i.e. the fraction of singletons are observed in our sample 7 . Estimating the coverage in Eq. 4.43 as C = 1 -c 0 , we obtain the desired coverage adjusted estimators.

Chao-Shen entropy estimator

While these approaches try to improve the estimate of the probabilities q, we can hope to obtain a better estimation of the Shannon entropy S itself. A possibility is for example to develop a Horvitz-Thompson estimator [START_REF] Horvitz | A Generalization of Sampling Without Replacement From a Finite Universe[END_REF], which adds a weight to the contribution to each category as the inverse of the probability of that category to belong to the sample Λ i (q i ) = P (i ∈ x|q) = 1 -(1 -q i ) N . Such an estimator is defined as

S HT = - K i=1 1 Λ i ( q i ) q i log q i . (4.47)
Plugging in the coverage adjusted estimator for the probabilities q i (Eq. 4.43) in the previous formula (Eq. 4.47), one obtains the Chao-Shen estimator [START_REF] Chao | Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample[END_REF].

Bias corrected entropy estimators

Different approaches tried to address directly the biases of the ML estimator at finite sample sizes. It has been shown [START_REF] Harris | The Statistical Estimation of Entropy in the Non-Parametric Case[END_REF] that at the first order the bias of ML estimator is equal to bias

S ML = - K -1 2N + O(N -2 ), (4.48) 
where the symbol O is the Bachmann-Landau notation for the order of approximation. This last result suggests a simple correction to the naïve estimator, due to Miller and Madow (99):

S MM = S ML + K -1 2N . (4.49)
More advanced computations due to Shurmann and Grassberger (100) had lead to the 6 This formula was developed in the context of cryptanalysis during World War II by Alan Turing and Irving Good. The texts ciphered by the Enigma machine were composed by L-grams, words of length L and it was necessary to understand the frequency of each word to perform a known-plaintext attack to break the code [START_REF] Balabdaoui | The Enigma behind the Good-Turing formula[END_REF]. 7 An improved estimator for the noncoverage probability co has been provided by Zhang and Huang (95), who developed a bias corrected version of Good-Turing formula as

c0 = N n=1 (-1) n+1 N n -1 νn, ( 4.46) 
where νn = i I [ni = n] is the multiplicity of n in the histogram n, i.e. how many categories have been observed exactly n times following bias corrected estimator

S SG = K i=1 n i N [ψ(N ) -ψ(n i )] , (4.50) 
where ψ(x) = ∂ x log Γ(x) is the digamma function. For large sample sizes this quantity approximately tends to Eq. 4.49.

Notably, the same estimator in Eq. 4.50 was obtained independently by Zhang (101) starting from principles derived from Good-Turing analysis on unseen categories (Eq. 4.45), who showed that the bias associated to this estimator is exponentially decaying as bias

S SG = O 1 N e -N min i {q i : q i >0} , (4.51)
under the hypothesis of finite number of categories K.

Bayesian methods for entropy estimation

We present a different method based on Bayesian inference, introduced for the first time by Nemenman, Shafee and Bialek (NSB) in 2001 [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF]. We use an approach analogous to the NSB method for the estimation of the Kullback-Leibler divergence in chapter 6.

As discussed in previous examples, the Dirichlet distribution Dir(q|α) (104) represents the conjugate prior of a categorical model (see Eq. 4.26), where α = {α i } i with α i > 0 ∀i are the concentration parameters. In addition, we noticed that a Fisher prior corresponds to the case of a symmetric Dirichlet distribution with α i = α = 1 2 ∀i (Eq. 4.27). At the same time, we already observed that the a posteriori expected value of the probabilities under such a prior is a pseudo-count corrected estimator (Eq. 4.39). This suggests that a symmetric Dirichlet distribution can be a reasonable choice:

Dir(q|α) = 1 B(α) K i=1 q i α i -1 , (4.52)
where B is now the multivariate Beta function

B(x) = K i=1 Γ(x i ) Γ ( i x i ) . (4.53)
This prior leads to the following a posteriori expected value of the Shannon entropy

S|n; α = dq P (q|n; α) S(q) = K i=1 n i + α N + Kα [ψ(N + Kα + 1) -ψ(n i + α + 1)] .
(4.54) More details on this kind of computations are provided in subsection A.2.1. Notice that the Shurmann-Grassberger estimator S SG (Eq. 4.50) corresponds to the limit

S|n; α α→0 ---→ S SG - K -1 N . (4.55)
However, it can be shown that the choice of the concentration parameter α biases the estimate in Eq. 4.54 for finite sample sizes [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF]. In order to provide a non-informative prior with respect to the entropy, a possibility is to take a mixture of symmetric Dirichlet priors with metaprior ρ(α) P prior = dα ρ(α)Dir(q|α), (4.56) such that the resulting prior is uniform with respect to the a priori expected value of the Shannon entropy S|α = A(α), which is equal to

A(α) = dq Dir(q|α)S(q) = ψ(Kα) -ψ(α). (4.57)
We observe that this is an invertible relation

A : α ∈ (0, ∞) → A(α) ∈ [0, log K].
By chosing a metaprior ρ(α) ∝ |∂ α A|, we can impose P prior (Eq. 4.56) to be uniform with respect to A. This can be seen by computing

dq ∞ 0 dα |∂ α A|Dir(q|α)S(q) = log K 0 dA = log K. (4.58)
This prescription corresponds to the NSB prior, which is used to compute the NSB Shannon entropy estimator

S NSB = 1 Z dα |∂ α A|P (n; α) S|n; α , (4.59) 
where P (n|α) ∝ B(n + α)/B(α) is the evidence for the simple Dirichlet prior8 and the normalization is equal to Z = dα |∂ α A|P (n; α). It has been pointed out that the NSB estimator relies on the assumption of an exponentially decaying tail for the rank distribution [START_REF] Hernández | Low-probability states, data statistics, and entropy estimation[END_REF]. When the system has a long tail, the choice of the Dirichlet prior is not suitable anymore and we might need to use a prior that allows for power-law tails, like the Pitman-Yor mixture proposed by Archer et al. [START_REF] Archer | Bayesian Entropy Estimation for Countable Discrete Distributions[END_REF].

A comparison between the discussed methods is reported in Fig. 4.1. The NSB method shows better performances than the alternatives when the rank system has an exponentially decaying tail in the rank distribution (Fig. 4.1A and C), but it is no necessarily the case for different systems (Fig. 4.1B and D).

Prediction and classification with supervised learning

We here introduce concepts of supervised learning used in section 4.5 to discriminate TCR from different repertoires. Suppose that each variable x i is associated to a response or a label y i so that our data now looks paired as (x 1 , y 1 ), . . . , (x N , y N ). We can interpret each variable x i as an input, a collection of features that functions as a "predictor" of the corresponding output y i , assuming that the pairing must be due to a relation between the two objects. The task of supervised learning would be to use the paired input-outputs in order to provide a prediction of the output to a new variable. If the labels are discrete variables used to identify distinct categories, we usually call the task classification. We can think for example at task of predicting which repertoire a given TCR belongs to (output) 4.5 Prediction and classification with supervised learning based on the amino acids of its sequence. Vice versa, when the prediction is meant to be for quantitative outputs, the prediction is called regression.

The prediction tasks can be formalized as the research of the relation f between the input X and output Y , under the simple assumption that errors are additive

Y = f (X) + . (4.60)
In order to "fit" our model to the data, we implement learning by an example process, where a certain empirical risk between predictions f (x i ) and outputs y i is minimized. This implies that our model contains parameters that can be adapted by our algorithm according to the different examples provided case by case. In addition, inputs comprise qualitative or quantitative features (or both), so different models and learning methods may be suitable.

We typically randomly divide the data into a training set on top of which we optimize our risk (error) which is later computed on a test set, in order to asses generalization. When the error on our training set is sufficiently small and when it generalizes also on the data in the test set, we can expect that given an equally likely input, the predicted output will be close to the true value (106).

Linear models of prediction

Suppose that each variable x i is described by a set of D features x i = (x i (1), . . . , x i (D)). This implies that our inputs are in fact D-dimensional vectors X ∈ R D . The simplest model of prediction is the linear model, where the dependency on the set of parameters θ = (θ(1), . . . , θ(D)) is linear

f (x) = θ 0 + D d=1 θ(d)x(d) = θ • x. (4.61)
We here used the convention of assuming the parameter θ 0 = θ(0) (the intercept) as associated to a unitary feature of the variable x(0) = 1, which returns the former expression when performing the scalar product (symbolised by the dot). To train a linear model we observe that we just need to learn D + 1 parameters.

There are arguably few real systems that behave according to linear interactions, however, the ease to learn linear models, makes them very useful to define a benchmark method or even to provide a first approximation.

Linear regression

When the outputs associated to our inputs are quantitative variables y ∈ R, we are in the case of linear regression. For example, if we choose the risk R to be the mean squared error (see Eq. 4.12), estimated with the empirical mean as

R = 1 N K i=1 (y i -f (x i )) 2 (4.62)
and we minimize it with respect to the parameters θ in Eq. 4.61, we obtain the classical linear least-squares fit.

Logistic regression

When interested in classification, a popular linear model is logistic regression9 (107). The main goal of logistic regression is to return a class probability P (y = k|x, θ), of the given variable x with label y to belong to class k, so that k P (y = k|x, θ) = 1. In this way the predicted output of x can be chosen to be the class k associated to probability of the largest class.

For simplicity we consider here a binary system of only two classes (with labels y = 0, 1), but the model can be easily generalized to the case of multiple classes. Observing that normalization implies that P (y = 0|x, θ) = 1 -P (y = 1|x, θ), the (binary) logistic regression model is then given in terms of the statement that the log-odds y = 1 vs y = 0 follow a linear relation

f (x) = log P (y = 1|x, θ) 1 -P (y = 1|x, θ) = θ • x. (4.63)
Imposing this model implies that our class probability is a logistic function

P (y = 1|x, θ) = exp(θ • x) 1 + exp(θ • x) . (4.64)
In order to perform the training, we still need to design a risk to minimize. It is useful to realize that the statistical model implicitely associated to each variable is a Bernoulli distribution of parameters P (x i |θ) (see example in Eq. 4.25). Thereby, the likelihood associated to our dataset is

P (y|x, θ) = N i=1 P (y = 1|x i , θ) y i (1 -P (y = 1|x i , θ)) 1-y i . (4.65)
If we then choose the risk to be the negative loglikelihood R = -L(x, y|θ), we recover ML estimation. In the binary case, the loglikelihood is the binary cross-entropy

L(x, y|θ) = N i=1 y i log P (y = 1|x, θ) + (1 -y i ) log(1 -P (y = 1|x, θ)). (4.66)
Injecting Eq. 4.64 and performing the optimization over θ, we finally obtain the model parameters (106).

Decision trees and the random forest algorithm

Different approaches which are able to identify nonlinear effects without loosing flexibility, make use of decision trees. A decision tree is a structure that partitions the data according to its features in a hierarchical way. This is done through a series of questions (typically true or false) so that at each branch of the tree the question splits the data into smaller subsets. An example is shown in Fig. 4.2.

The final partitions of the data correspond to the end points, the "leaves" of the decision tree. The goal is to retrieve the class labels from the set of questions about the features of the data that appear at each branch, with the advantage of being interpretable. Other advantages of decision trees are the relative speed of training and the possibility We can assign a class to each T cell thanks to a series of yes/no questions, which constitute the branches of our decision tree. The T cell class is given by the leaves of the tree, i.e. the endpoints of such a questionnaire.

of functioning on mixtures of quantitative and categorical features for the output, since there are no constraints on the branching questions. On the other hand, decision trees are prone to "over-fitting", which means that they tend to perfectly fit to the details of training samples ultimately not generalizing to unseen inputs [START_REF] Hastie | The Elements of Statistical Learning[END_REF]. This empirically requires some control on the complexity of the tree, for example limiting the number of branches at the cost of a larger variance.

In general, a single decision tree is a weak classifier, but nonetheless it can be used alongside other independent trees to provide an output by consensus [START_REF] Dietterich | Ensemble Methods in Machine Learning[END_REF]. Thus, to reduce the correlations between the different trees, we must introduce a certain level of randomness in the procedure. In the first place, this is done by bootstrapping the sample, i.e. randomly selecting subsets of the training data for each tree to build. The second step requires a bootstrap on the input features instead, so that at each branch different features are considered. This choice reduces the possibility of having correlations due to a few strongly predictive class features [START_REF] Mehta | A high-bias, low-variance introduction to Machine Learning for physicists[END_REF]. Finally, the outcomes of this randomized decision trees are combined, usually by averaging the predicted values. The random selection of data and features that creates the diverse set of decision trees, in turn reduces the chance of over-fitting. This algorithm takes the name of "Random Forest" (110).

Statistical models for the T cell receptor repertoires

As discussed in chapter 3, the adaptive immune system relies on the large variety of T cell receptor (TCR) that make up the repertoire of each individual. The V(D)J recombination is the stochastic process of DNA editing which generates both TCR chains, α and β. Subsequently, we know that T cells undergo a process of maturation inside the thymus where their TCRs get tested against many self-derived peptides. In addition, throughout the lifetime of an individual, pathogen encounters as well as residency in specific tissues naturally bias the composition of the TCR repertoire.
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sequencing errors We present here some of the statistical models used to characterize the single chain repertoires in chapter 5, from their generation to their later selection. These models borrow techniques from maximum likelihood estimation. They are data-driven since they are inferred directly from data, typically derived from RepSeq experiments. In addition, they have the advantage of being biologically interpretable and also generative, which enables the analysis of synthetic repertoires.
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Inference of a Generation Model with IGoR

Each TCR chain sequence is the result of two major intrinsically probabilistic biochemical events, the TRA VJ recombination for the α chain and the TRB VDJ recombination for the β chain. From the large amount of TCR sequences provided by high-throughput repertoire sequencing techniques, we are able to access informations about the underlying biochemical events and assign a probability to each single realization of V(D)J recombination.

At this point we are just interested in the intra-cellular biases leading to generation, so we need to get rid of all other external effects coming from selection. This can be done considering just the receptor sequences that are nonproductive, the result of a recombination process that produced an incomplete codon or a stop codon, implying that the nucleotide chain cannot be translated into amino acids. This corresponds to the first attempt of generation on the first allele, to product of which is stored in the DNA even when it fails.

Statistical models for the T cell receptor repertoires

The final goal behind a quantitative analysis is to obtain the actual probability for a sequence to be generated (P gen ), which has to take into account the multiple recombination scenarios that can give birth to the same nucleotide sequence 10 . We can formalize this as if each nucleotide sequence σ is compatible with a series of scenarios S contained in the subspace of all events S(σ). If we call P rec (S) the probability for any recombination scenario, the P gen of the sequence is equal to

P gen (σ) = S∈S(σ)
P rec (S).

(4.67)

The P gen represents an important benchmark, telling us if a TCR sequence is more likely to be found just because it is generated with higher probability from the V(D)J recombination process.

We seek a recombination model as a joint probability over the set of different biochemical events that compose the single recombination scenario S. For instance, the choice of the V gene template might not be uniform, but peaked on a particular gene, thus we need to include as parameters of our model the set of all possible V genes (as listed in public repositories like IMGT [START_REF] Lefranc | IMGT®, the international ImMunoGeneTics information system® 25 years on[END_REF]).

The following model for the VJ recombination of the TCRα has been originally proposed in [START_REF] Murugan | Statistical inference of the generation probability of T-cell receptors from sequence repertoires[END_REF] and widely tested:

P (α) rec (S) =P VJ (V, J)P delV (d V |V )P delJ (d J |J)P insVJ ( VJ )× × w VJ (n 1 ) VJ i=2 W VJ (n i |n i-1 ), (4.68) 
which is based on a set of parameters that define the probabilities for the events of deletion ("del") and insertion ("ins"), as well as the probabilities of each V, D, and J gene segment being used in the recombination process. The different terms describe the following:

• the choice for the V and J gene templates from the respective families P VJ (V, J);

• the numbers of nucleotide deletions d V , d J at the gene edge of the V gene P delV (d V |V ) and of the J gene P delJ (d J |J); • the number of nucleotides VJ inserted in the VJ junction P insVJ ( VJ ); • the actual composition of the nucleotides inserted from J to D, modeled as a hidden Markov chain w VJ (n 1 ) VJ i=2 W VJ (n i |n i-1 ) of Markov Matrix W VJ over the 4 nucleotide basis.

A schematic representation of two convergent recombination scenarios and their parametrization is shown in Fig. 4.3.

Similarly, a model for the VDJ recombination of the β chain can be defined taking into account the presence of the additional D segment. This creates two sites for insertions and deletions, the VD junction and the DJ junction, with the D gene segment that can be trimmed on both left and right edges, modeled by the term P delD (d D , d D |D). The β model is:

P (β) rec (S) =P V (V )P DJ (D, J)P delV (d V |V )P delJ (d J |J)P delD (d D , d D |D)× × P insVD ( VD )P insDJ ( DJ )× × w VD (n 1 ) VD i=2 W VD (n i |n i-1 )w DJ (m DJ ) DJ -1 j=1 W DJ (m j |m j+1 ). (4.69)
In addition, these models require to be expanded in order to take into account the fact that some differences from the experimentally sampled read and the actual sequence could be introduced by sequencing errors and variations across alleles.

The complicated point estimation task of the parameters of these models can be treated via ML estimation and Expectation-Maximization, which is done with the IGoR software (Inference and Generation of Repertoires) [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. We start with the alignment of each nucleotide read with a finite number of V and J genes (also D for β chains), which are compatible to scenarios that gave birth to the given sequence. This is done at the level of each single gene with the Smith-Waterman alignment algorithm [START_REF] Smith | Identification of common molecular subsequences[END_REF], where the mismatches are also stored. The algorithm is initiated from these preliminary alignments, the model P rec uniform in all its variables (Eq. 4.68) and a small sequencing error rate. Once the categorical marginal distributions of the model are learnt, we can use the model to associate to each TCR chain a probability of being generated in the first place.

Sequence Generation with OLGA

We now have a way to infer a generation model and use it to evaluate the probability of nucleotide sequences, hence a way to simulate them (e.g. by Monte Carlo sampling). However, biological applications deal with productive amino acid sequences, which add another level of complexity due to convergent recombination, which depends on codon degeneracy. In fact, the 4 nucleotide basis combine to produce 61 non stop codons that code for the 20 amino acids, meaning that each amino acid TCR is consistent with a number of nucleotide sequences that grows exponentially with the sequence length. This tells us that we need to expand Eq. 4.67 to take this into account when dealing with amino acids a, which can can be done as follows

P (aa) gen (a) = σ a P (nt) gen (σ), (4.70) 
where the symbol " " indicates that the nucleotide sequence σ "is consistent with" (or "translates into") a. On the other hand, summing over all consistent nucleotide sequences is numerically demanding given their large number.

The OLGA algorithm (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences) was explicitly developed to speed up this kind of computations [START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. The optimization is done through dynamic programming, which is a method of computer science to take advance of recursion. Breaking down a complex optimization problem into a set of smaller sub-problems, each solved just once and stored into look-up tables avoids redundant computations, since the stored solutions to the sub-problems can be accessed at anytime without further computation costs. 

Inference of a selection model with SONIA

Thanks to the OLGA software we have an efficient way to evaluate the generation probability of amino acid sequences and to simulate synthetic repertoires. However, we have seen in chapter 3 that the TCR repertoire composition is biased by thymic maturation and later by pathogen-encounter and tissue-residency. Once a generation model P gen has been inferred from nonproductive sequences, we aim at learning a model for the selected repertoire, composed of all productive TCRs.

We start assigning to each single chain sequence a a set of boolean features f ∈ F(a), which can be grouped in three categories:

1. the V and J gene usage; 2. the length of the CDR3 amino acid sequence 11 ; 3. composition of the amino acid sequence per position (left to right and right to left). The productive TCRs are then used to measure the frequency of features P data (f ) in the repertoire, with the idea that we can seek for a post-selection model P post that reproduces exactly such frequencies [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF]. This is often called the minimum discriminatory information principle (MDI) and in our case translates into the condition for each fixed feature f a f P post (a) = P data (f ).

(4.71)

Here the symbol " " indicates that the feature f is present in the amino acid sequence a. Ideally, if we do not see any difference in the frequency of the feature f in our sample with respect to the generation model, we would consider f not relevant for the selection and viceversa.

We look for the model P post "closest" to P gen that satisfies the MDI principle [START_REF] Elhanati | Quantifying selection in immune receptor repertoires[END_REF]. We start by introducing the functional L 

L[P ] = D KL (P P gen ) + ζ a P (a) -1 + f (f )   a f P (a) -P data (f )   , ( 4 
with

E post (a) = f ∈F (a) (f ) , (4.74) 
where (f ) are the weights per feature f . To incorporate the effects of selection, we can thus imagine selective pressure as an energy contribution that modifies the probability for an amino acid sequence from the benchmark of generation P gen towards P post , which is given by the observed sample. A scheme of the training process is shown in Eq. 4.4. This model does not guarantee a unique choice for the energy term E post though. In order to make the models comparable we need to fix the "gauge", in other words we reduce the degeneracy of the model. We can do so by imposing the gauge at the moment of the minimization of the loglikelihood, while at the same time enforcing the gauge Z = 1 and a (a|x) = 0 ∀x on the linear weights, where the feature f = (a|x) is the amino acid a used at position x.

The point estimation of the parameters in Eq. 4.74 can be performed by the software package SONIA [START_REF] Sethna | Population variability in the generation and selection of T-cell repertoires[END_REF] which follows the workflow proposed in Fig. 4.4. Alternatively, the choice of the energy term E in Eq. 4.73 can employ a deep learning oriented approach, involving a model architecture similar to machine learning deep neural networks. This approach has the advantage of allowing for non-linear dependencies between the features of the selection. The software soNNia (Neural Network SONIA) was developed for this reason, with the model architecture that treats the three feature categories with separate networks, later combined in a terminal network [START_REF] Isacchini | Deep generative selection models of T and B cell receptor repertoires with soNNia[END_REF].

Quantifying changes in the T cell receptor repertoire during thymic development

This chapter was previously published [START_REF] Camaglia | Quantifying changes in the T cell receptor repertoire during thymic development[END_REF] in:

• Francesco Camaglia, Arie Ryvkin, Erez Greenstein, Shlomit Reich-Zeliger, Benny Chain, Thierry Mora, Aleksandra Walczak and Nir Friedman, 2023. Quantifying changes in the T cell receptor repertoire during thymic development. eLife 12, e81622. The section "Supplementary Figures" has been moved to the Appendix A. The supplementary tables are available online at the following links: Table S1 and Table S2.

One of the feats of adaptive immunity is its ability to recognize foreign pathogens while sparing the self. During maturation in the thymus, T cells are selected through the binding properties of their antigen-specific T-cell receptor (TCR), through the elimination of both weakly (positive selection) and strongly (negative selection) self-reactive receptors. However, the impact of thymic selection on the TCR repertoire is poorly understood. Here, we use transgenic Nur77-mice expressing a T-cell activation reporter to study the repertoires of thymic T cells at various stages of their development, including cells that do not pass selection. We combine high-throughput repertoire sequencing with statistical inference techniques to characterize the selection of the TCR in these distinct subsets. We find small but significant differences in the TCR repertoire parameters between the maturation stages, which recapitulate known differentiation pathways leading to the CD4+ and CD8+ subtypes. These differences can be simulated by simple models of selection acting linearly on the sequence features. We find no evidence of specific sequences or sequence motifs or features that are suppressed by negative selection. These results favour a collective or statistical model for T-cell self non-self discrimination, where negative selection biases the repertoire away from self recognition, rather than ensuring lack of self-reactivity at the single-cell level.

Introduction

In order to protect themselves against infection, jawed vertebrates have evolved an adaptive immune system. T lymphocytes play a leading role in this system. Each T lymphocyte expresses a unique T-cell receptor (TCR) capable of binding short protein fragments presented by the host's Major Histocompatibility Complexes (MHC), subsequently triggering clonal expansion and differentiation of immune effector function. The T cell system discriminates pathogen derived "foreign" proteins from the body's own "self" proteins, in such a way that an immune response is usually triggered only by peptides from exposure to a potentially harmful threat. We ask if we can identify specific TCR features which allow the system to discriminate foreign and self-peptides.

Quantifying changes in the T cell receptor repertoire during thymic development [START_REF] Mora | How many different clonotypes do immune repertoires contain?[END_REF] TCRs are generated in a stochastic assembly process based on random recombinations of genomic templates and additional non-templated insertions and deletions [START_REF] Hozumi | Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions[END_REF]. The ability to discriminate between self and non-self targets cannot therefore be exclusively inherited, but must at least in part be learned afresh in each individual. This process is widely believed to occur during the development of haemopoetic precursors into mature T cells, which occurs in a specialized microenivironment within the thymus. This process has been studied in considerable detail. T cells precursors first produce a β chain and if the generated chain is functional, the cell proliferates and an α chain is generated. While the TCR chains are being assembled, CD4 and CD8 surface markers are expressed as precursor cells transit to the Double Positive state (DP). DP TCR are subject to thymic selection, a process that tests receptor binding by presenting them with the organism's own proteins, and eliminates very weak binders (positive selection), but also too strongly self-reactive receptors (negative selection) [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]. During thymic selection, DP cells differentiate into CD4 + or CD8 + cells by keeping expression of only one of these molecules, which determines their function. While this picture is well-established and the maturation trajectory has a well established gene expression signature [START_REF] Park | A cell atlas of human thymic development defines T cell repertoire formation[END_REF], the TCR sequences removed during thymic selection, which should be manifested as "holes" in the repertoire, have never been directly observed. The lack of quantifiable signatures of thymic selection, differentiation and proliferation hinders a dynamic description of TCR maturation [START_REF] Robert | Modeling the Dynamics of T-Cell Development in the Thymus[END_REF].

Positive and negative selection imposes upper and lower boundaries on the binding energy of the interaction between TCR and self peptide-MHC complexes [START_REF] Košmrlj | Thymic Selection of T-Cell Receptors as an Extreme Value Problem[END_REF]. However, it remains unclear whether every thymocite is exposed to every self-antigen, or how efficient the process of selection is. Negative selection is known to be leaky [START_REF] Yu | Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes[END_REF], letting auto-reactive cells differentiate into regulatory cells (115; 116). The efficiency of negative selection for the naive conventional (non-regulatory) effector T cell compartment remains unclear (13; 117). Partial or incomplete negative selection may limit its impact on the repertoire.

The difficulty of characterizing selection is partly due to survivor bias when sampling functional immune repertoires in the periphery (118; 119; 120; 43). To overcome this limitation, we sequenced the TCR repertoire of thymocyte subpopulations isolated from mice carrying a reporter transgene linked to Nur77, a marker of T cell activation both within the thymus and in the periphery. Nur77 expression, in combination with Annexin V, a marker of cell death, allows us to identify cells that are more likely to pass thymic selection, and those that are most likely not to pass selection. Although the CD4+CD8+ Annexin V population may still contain some cells which will be negatively selected, but have not yet expressed Annexin V, the overall strategy provides us with a window into the repertoire at various stages of selection. By comparing the sequenced repertoires to statistical models of mouse TCR generation [START_REF] Sethna | Insights into immune system development and function from mouse T-cell repertoires[END_REF], and subset-specific models of thymic selection, we searched for specific TCR sequence features that correlate with the different stages of intra-thymic T-cell developement.

Results

Tracking T cell development stages by flow cytometry

To identify specific sequence features of TCR during each step of thymic selection, we performed high-throughput sequencing of TCR repertoires from different subpopulations Quantifying changes in the T cell receptor repertoire during thymic development [START_REF] Witt | Directed migration of positively selected thymocytes visualized in real time[END_REF] of thymocytes from transgenic Nur77 reporter expressing mice. These mice carry a fluorescent reporter gene which is co-expressed with Nur77, a marker of T cell activation [START_REF] Liebmann | Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity[END_REF]. Three genetically identical Nur77 reporter mice were sacrificed at the age of 6 weeks, when thymus development is completed and its cell population is stable [START_REF] Gray | Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells[END_REF]. All animals were handled according to Weizmann Institute's Animal Care guidelines, in compliance with national and international regulations. Thymus and spleen were removed, and stained for fluorescence-activated cell sorting (see Materials and Methods). The cells were sorted based on Nur77 reporter expression (to detect activation), Annexin V (to detect early apoptosis) in combination with CD3, CD4, and CD8 cell surface markers. We used the gating strategy illustrated in Fig. 5.1A, B, C to isolate double positive DP cells preceding selection (CD4 + CD8 + , Nur77 -, Annexin V -: DP pre), DP cells in the process of being positively selected (CD4 + CD8 + , Nur77 + Annexin V -: DP pos), DP cells dying by neglect or possibly by damage during the preparation (CD4 + CD8 + , Nur77 -Annexin V + : DP dbn); and single positive (SP) cells: CD4 + CD8 -, Annexin V + (CD4 apo), and CD4 -CD8 + , Annexin V + cells (CD8 apo). The Annexin V staining was not very strong and did not give a very clear separation between positive and negative populations. In addition, Annexin V + subsets may be contaminated by cells that are dying for other reasons than negative selection. Nevertheless, we may still assume that the two apo subsets are enriched in negatively selected cells. In addition, we sequenced the repertoires of mature (post-selection) single positive SP CD4 + and CD8 + cells from the spleen (CD4 spl and CD8 spl). The proposed differentiation pathway between these populations at different maturation stages are schematically represented in Fig. 5.1D. Together, these seven repertoires should contain both the selected thymocytes and the pre-selection repertoires, as well as the thymocytes that fail either positive or negative selection and die in the thymus.

TCR repertoire sequencing

We sequenced and annotated the TCR repertoires of each subset as described in Materials and Methods. The cDNA of individual α and β genes (TRA and TRB) were barcoded with unique molecular identifiers (UMI) in order to allow for correction of sequencing errors and PCR bias. However, in this analysis we focused on unique sequences (discarding count information) to avoid expression and amplification biases. As a quality control of the whole procedure, we showed that the number of α and β sequences within each population was highly correlated (Fig. A1A). We further verified that the relative fraction of TCRα sequences associated with iNKT cells (identified by TRAV11 and TRAJ18 genes ( 123)) is higher in CD4 than in CD8 cells (see Fig. A1B).

We obtained seven datasets for both chains and for each of the 3 mice. A small fraction of sequences contain stop codons, usually because of a frameshift in the CDR3. These sequences likely come from transcription from a chromosome carrying a nonproductive chain, which is known to persist despite allelic exclusion acting on the TRB locus. The rest of the sequences are assumed to be productive. Since nonproductive TCR owe their survival to the productive gene on the other chromosome, they are not affected by selection. We combined all nonproductive sequences from all subsets to infer a generative mechanistic model of the V(D)J recombination process using IGoR [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. Once trained, the model can be used to assign a generation probability P gen to any TCR sequence observed (20; 22) (see Materials and Methods and Fig. 5.1E).

The datasets contain ∼ 1,000-50,000 unique productive sequences per subset (Fig. A1C 5.2 Results

for the αchain and Fig. A1D for the β chain). Since the 3 mice were isogenic and shared the same MHC haplotype, we expect their repertoires to be subject to the same processes of recombination and selection [START_REF] Madi | T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity[END_REF]. Unless specified otherwise, all downstream analyses were therefore carried out on pooled productive TCR sequences from each population from the three individuals to increase statistical power.

Repertoires from different T cell populations have different statistical parameters.

To assess how selection acts at the different maturation stages, we studied the distribution of sequence features in TCRα repertoires. We compared TRAV and TRAJ gene usage at the different maturation stages with each other and with their excepted frequency from the generation model learned from nonproductive sequences, which we will refer to as the pre-selection model or P gen . TRAV usage broadly follows the pattern of the pre-selection model (Fig. 5.2A), although SP CD4 + repertoires have a lower proportion of TRAV12-2, and most populations have an increased proportion of TRAV7-2. TRAJ gene usage also broadly agrees with the pre-selection model predictions (Fig. A3A), although SP CD8 + repertoires have a lower proportion of TRAJ31, SP CD4 + repertoires have an increased proportion of TRAJ27 and TRAJ32 which is underrepresented in all cell types. For both V and J genes, we see little difference between the repertoires of spleen CD4 and CD8 cells, and their discarded counterparts in the thymus (apo). We also observe strong similarities between all the DP subsets. TRB gene usage follows similar trends, although there are some differences in J gene usage between selected and unselected SP CD4 + and CD8 + cells. Overall the biases of the recombination process dominate any effects of selection on V and J region usage (Figs. A2A,A3B).

For both chains, CDR3 amino acid length of SP CD4 + and CD8 + has a sharper distribution compared to earlier maturation stages (DP) (see Figs. 5.2B, A2B and A4). This has previously been interpreted as a signature of selection due to structural constraints on the pMHC-TCR complex (119; 124; 125). We also compared the single amino acid usage (excluding the constant regions) across the different repertoires (Fig. 5.2C for α chain, Fig. A2C for β chain). We observe similarities between the DP stages, the CD4 stages and the CD8 stages, as observed for the gene usage. The repertoires from different maturation stages cannot be distinguished by any one individual feature discussed above. However, Principal Component Analysis (PCA) on the TRAV gene usage distributions in individual mice at different stages identified clusters of related cell types (Fig. 5.2D). The DP Nur77 -populations cluster with the pre-selection model, the SP CD4 + and CD8 + populations form distinct clusters, and the DP pos Nur77 + cells, which we hypothesise are cells in the process of positive selection, occupy an intermediate position between these three clusters. This pattern is consistent with the known developmental trajectory as illustrated by the arrows in Fig. 5.2D. PCA of TRAJ usage also shows similar clustering patterns (Fig. A3C). The PCA of TRBV and TRBJ usage also discriminates between SP CD4 + and CD8 + populations, and from the pre-selection populations, although the overall pattern is less clear (Figs. A2D andA3D). The overall distribution of TCR generation probabilities, P gen , does not change from the pre-selection and post-selection thymic stages to the mature peripheral SP repertories (Figs. A3E andF), consistent with previous reports comparing thymic and peripheral repertoires [START_REF] Sethna | Insights into immune system development and function from mouse T-cell repertoires[END_REF]. In summary, the effects of selection impose subtle changes on the pattern of TCR variable gene usage, which cannot be adequately captured by looking at any single V or J gene, but only by a combination of features.

V and J gene usage, and CDR3 length are coarse grained measures of a TCR repertoire. We therefore explored whether the repertoires of different maturation stages could be linked to more precise features of the TCR sequence, in particular incorporating the sequence of the CDR3. We encoded each TCR as a sparse {0,1} binary vector σ which captures V gene, J gene and CDR amino acid sequence (for details see Materials and Methods). We then trained a logistic regression model on the set of σ from repertoires of different subsets. We trained and tested the classifier to distinguish pairs of repertoires from different subsets. The classifier achieved only moderate Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) scores (Fig. 5.3A for TCRα, and Fig. A5A for TCRβ), in agreement with previous studies (126; 113). We verify that this result is not an artifact introduced by pooling repertoires of different mice, by testing the same techniques on the individual with the largest datasets (mouse 3). The AUC scores for the α and β repertoires are shown respectively in Fig. A5C andD.

Controls in which population labels were shuffled, resulted in AUC close to 0.5 (Fig. A6A and B for the α chain, Fig. A6C andD for β). The results shown in Fig. 5.3 indicate that the TCR populations differ at a statistical level (i.e. have different distributions of sequence features), but that each individual TCR is only a weak predictor of repertoire class. However, better classification efficiencies can be achieved by combining the predictions from sets of TCRs. For example, multiplying the predictions from 30 TCR sequences from the same repertoire (Fig. 5.3B), we can distinguish CD4 spl and CD4 apo TCRα with an AUC score of >0.85; see Fig. A5B for TCRβ. Thus statistical properties of a repertoire can distinguish it from another repertoire, even when the feature distributions of individual TCRs are largely overlapping.
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Selection models and n-grams capture the relations between the stages of thymic development

A number of studies have highlighted the importance of short amino acid motifs (kmers or n-grams) within the CDR3 sequence in determining TCR specificity (127; 128; 129) (see Fig. 5.4A). Specifically, n-grams can be used to reduce the dimensionality of the TCR space, while capturing amino acid correlations or patterns which might play a role in antigen recognition. We therefore counted the frequency of n-grams in each repertoire. We excluded from the analysis the most conserved regions (the first two positions in the CDR3 that are usually a cysteine and alanine, and the last one, typically a phenylalanine). We then used these n-gram frequency distributions to calculate the diversity of the repertoire as quantified by the Shannon entropy S (see Materials and Methods). In practice, the Shannon entropy is computationally too expensive to calculate exactly for very large data sets, and we therefore restricted our analysis to n-grams of length 4 or less, using the approximate Nemenman-Shafee-Bialek (NSB) entropy estimator [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF] to correct for finite sampling bias (see Materials and Methods). This estimator outcompetes alternative entropy estimators on synthetic data (Fig. A7A andB). Our analysis combines together CDR3 of different amino acid lengths which may influence the entropy measurements. However, detailed analysis of the entropy of DP repertoires, using different CDR3 lengths separately, demonstrated that the differences observed due to to lengths effects were small compared to error due to sequencing (Fig. A7C andD). Another advantage of the Nemenman-Shafee-Bialek estimator is that it was shown to converge at the sizes of the smallest datasets (∼ 10 3 -10 4 clonotypes), as reported in Fig. A8. Once computed the set of entropy measurements based on n-gram frequencies for each different repertoire, we compared the data-derived entropy measurements with the prediction of a simple generative model of each repertoire which treated each feature of each TCR (V gene, J gene and each CDR3 amino acid) as independent. Taking the set of TCR vectors σ we fitted a set of parameters E stage by maximising the posterior probability over all of the TCRs for each repertoire separately P stage (σ) = (1/Z)e -Estage(σ) P gen (σ), where P gen (σ) are the pre-selection generative probabilities for all the TCRs, E stage (σ) is a linear function of the features (21; 24), and Z is a normalization factor (Fig. 5.1E and Materials and Methods). The enrichment factors E stage (σ) encode the intuition that due to selection, a given TCR in a given repertoire is seen with higher or lower frequency than expected by the preselection generation model. Once we had learnt the enrichment factors for each repertoire, we used the resulting model to generate in silico synthetic repertoires of 3 × 10 6 TCRs, and recalculated n-gram frequency distributions and entropy estimates for each synthetic repertoire.

The comparison of the estimated entropy for each n-gram length, and each subpopulation of T cells, using both directly data-derived and model-derived repertoires is illustrated for TCRα (Fig. 5.4B) and TCRβ (Fig. A9A) chains. An upper bound for the entropy is given by uniformly distributed amino acids, S max /n = log 2 20 ∼ 4.3 bits, while amino acids distributed according to their frequency in the overall vertebrate proteome gives a slightly smaller value of ∼ 4.2 bits per position [START_REF] King | Non-darwinian evolution[END_REF]. Both the observed and model-derived entropies are less than this maximum even for single amino acids (n-grams of length n = 1), and decrease further with n-gram length (see Fig Fig . A9B andC). This reflects strong bias on the abundance of individual amino acids, and strong correlations between amino acids within the CDR3 which are observed in all CDR3 repertoires, and are captured by Quantifying changes in the T cell receptor repertoire during thymic development 54

the frequency distribution of the longer n-grams. Two additional important points can be observed. First, the entropy of the repertoires after selection and lineage commitment (in the single positive populations) is less than the earlier pre-selection DP repertoires, which match closely the entropy of the pre-selection generative model (shown by the dotted line for each n-gram length). This decrease becomes more evident with longer n-gram length (the circles lie below the dotted lines). Thus, as predicted, selection does impose some decrease in repertoire diversity, although this is a much smaller effect than the decrease in diversity imposed by the generation process itself. The second key observation is that the entropy calculated directly from n-gram frequency in the data is very similar to that of the synthetic repertoires generated using the linear generative models in which individual TCR amino acids are treated as independent variables. Thus, at least at the level of diversity of n-grams, there is no evidence that selection at any step involves complex sequence motifs, or amino acid interactions, which would not be captured by the linear model. We looked in more detail at the n-gram (n = 3) distributions derived by the linear selection models for the different maturation stages. A plot of the Jensen-Shannon divergences (JSD) between all pairwise comparisons largely recapitulated the expected relationships between the subsets, with DP pre and DP dbn clustering with the pre-selection generative model, while the single positive CD4 and CD8 populations clustered separately, and DP pos have an intermediate position (Fig. 5.4C). A comparision for both TCRα and β for different n is shown in Fig. A10). Since some differences between populations were seen even for amino acid usage (n = 1), we compared the discriminatory power of models based on n-grams with n = 1 and n = 3 (Fig. A11). The 3-gram model outperformed the 1-gram model in almost all cases. We can go beyond n-grams and use the subset-specific P stage models to predict the entropy of the full sequence (Materials and Methods), shown in Fig. A12A for α and Fig. A12C for β. This entropy is substantially reduced from generation to the DP stages, and further reduced in the single positive stages, especially in CD4 + subsets. We also computed the JSD of the distributions P stage between subtypes (Fig. 5.4C for TCRα and Fig. A12D for TCRβ). These JSD showed similar patterns as with n-grams, except for CD8 + spleen cells showing more similarity to the P gen distribution in TCRβ. Note that the absolute values of the entropies and JSD are larger, since they include information about longer sequences, with additional V and J gene usage information. In summary, we fitted the data with a set of stage-specific generative models based on linear weighted combinations of TCR sequence features. The repertoires generated by this model accurately estimate the sequence and n-gram entropy derived directly from the data, and generate repertoires which differ in a small but reproducible manner from each other. The magnitude of these differences reflect the expected developmental relationships between the different populations.

Models capture modulations of hydrophobic residues in different subpopulations

We inspected single amino acid usage in terms of the model marginals to check for relative positional enrichments between pairs of repertoires (Eq. 5.3), but we did not observe any striking signal for amino acid charge properties. The logo plots with a visualization of this results are shown in Fig. A13. Hydrophobic residues in the central positions of the CDR3 have been reported to be enriched in the TCRs of regulatory versus conventional T cells [START_REF] Lagattuta | Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate[END_REF]. This suggests hydrophobicity may function as a proxy for auto-reactivity,

Results

and might be enriched in cells selected for negative selection (131; 132). To test this idea, we defined a stage-specific hydrophobicity score U , obtained by summing the enrichment factors of hydrophobic residues CFILMWY at central positions of the CDR3 as learnt by our model at each stage (see Eq. 5.4 in Materials and Methods).

We observe a clear increase of this score from DP pre to DP pos, suggesting that positive selection introduces a bias towards more hydrophobic TCRs (Fig. A14A andB). The score also decreases in the single positive sets (CD4 and CD8), in agreement with the known role of negative selection to prune too strongly self-reactive T cells [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF]. Finally, AnnexinV+ single positive sets ("apo") show a slightly higher score than their respective spleen ("spl") sets (with the exception of the CD8 α chain scores). Overall, these changes in hydrophobicity are consistent with the hypothesised position of the different populations defined in out study in the stages of TCR selection.

Note that this score (like other scores found in the literature (113; 65)) is statistical and can not be used to classify individual sequences. To assess how much of single-sequence discriminability is explained by the presence of hydrophobic residues, we then introduced an empirical "hydrophobicity index" u, here defined as the number of hydrophobic residues (again CFILMWY) contained in the CDR3, normalized by its amino acid length (see Materials and Methods, Eq. 5.5). The classifiers using this feature yielded poor performance (Fig. A14C andD), worse than the 1-gram models (Fig. A11A andB).

Discriminatory power of thymic selection

The stage-specific enrichment factors in the generative models described above can be considered as capturing the combination of features which drives a particular selection step. A prediction of this idea is that, at each selection point, the TCRs which are selected and those which are not would have a distribution of model probabilities (P stage ) which are anti-correlated. For example, a TCR that is present in the DP pos repertoire but "forbidden" from the CD4 repertoire (e.g. because of cross-reactivity to a Class II self pMHC) would be expected to have a large positive P DP pos and a P CD4 spl ≈ 0, reflecting the large enrichment factor between these two populations. A toy example illustrating this idea is illustrated in (Fig. 5.5A). We consider a simple model in which TCRs are selected according to their CDR3 length into a "long" population with probability P (long|L) = L h /(L h + L h 0 ) and into a "short" population otherwise. We apply this selection process in silico to P gen -generated TCRs, and fit a separate P population model on the synthetic sequences found in each subset. We then calculate E population for each TCR according to both subset models, and plot these values against each other. The distribution of enrichment strengths according to the two models are clearly anti-correlated (Fig. 5.5A). In other words, if a TCR is more likely to be classified as a "long" sequence, it is in general less likely to be classified as a "short" one. Interestingly, however, the enrichment strengths distributions from the two models are significantly overlapping. As a result, attempts to classify individual TCRs according to their enrichment strengths is poor, AUC∼ 0.57. We then consider a different toy model where TCRs are selected according to the empirical hydrophobicity index u (Eq. 5.5). Similarly, we choose to generate a synthetic "high hydrophobicity" (HH) population filtering P gen -generated TCRs with a probability P (HH|u) = u h /(u h + u h 0 ), otherwise "low hydrophobicity". Repeating the analysis performed with the length example, we observe in the corresponding scatterplot that enrichment strengths are again anti-correlated (Fig. 5.5B). 

Discussion

We extended this approach to look for relationships between enrichment strengths for TCRs at different developmental stages. Since all cells pass through a preceding selection stage, we must consider it as a common background distribution for all the successive thymic stages. We therefore considered the differential enrichment parameter E stage -E pre-stage , a linear operator which predicts whether a sequence is more or less likely to be present in a particular developmental stage as compared to the previous stage. We generated a set of sequences using the generation model P gen (thus with no selection bias), and then computed differential enrichment parameters for each TCR according to all the stage specific models. The full set of pairwise correlations between enrichment values for the different populations relative to P DP pre are shown in (Fig. A15A for TCRα and Fig. A15C for TCRβ). The DP dbn repertoire showed a narrow distribution of values, which was uncorrelated to any other subset, in particular to DP pos (Fig. 5.5C). This would be consistent with the DP dbn repertoire containing a random sample of the DP pre repertoire, unrelated to its TCR sequence. To check if the signal coming from DP pos stage is the principal cause of the high correlation between the single positive stages, we repeated the analysis for CD4 and CD8 using P DP pos as the common background distribution (the full set of scatterplots for TCRα is shown in Fig. A15B, in Fig. A15D for TCRβ). There was therefore no evidence of selection pressure operating on TCR sequence to distinguish these two populations. The correlation between the CD4 + and CD8 + subsets was negligible (r ∼ 0), suggesting that the selection pressures operating on the two populations are distinct (Fig. 5.5D). The spleen SP and the thymic apo populations were also highly correlated for both CD4 + and CD8 + cells (r = 0.79 for CD4 spl vs CD4 apo, in Fig. 5.5E; r = 0.66 for CD8 spl vs CD8 apo, in Fig. 5.5F). Similar results are obtained for the sequences of the β chain (Fig. A15C,D). In contrast to the examples illustrated above, most plots showed a positive correlation between enrichment values for two models. Thus a common dominant selection process is driving the repertoire shift between the DP pos and all subsequent stages, which dominates the impact of individual stage specific selection processes.

In summary, the TCR enrichment value distributions differ between different thymic populations, but do not show evidence of dominant exclusive sequence-based selection operating at any step of the selection process.

Discussion

Thymic selection is often portrayed as a simple discrimination process that eliminates TCRs capable of strongly binding any self-peptide, while promoting TCRs that bind them weakly. However, this simple picture has been challenged and the fidelity of the negative selection process and the proportion of the self-repertoire which can effectively be scanned by each individual thymocyte during the window of negative selection remains incompletely understood (13; 117). If significant number of T cells escape negative selection and enter the peripheral repertoire, no sequence feature will unambiguously distinguish TCRs from pre and post-selection repertoires. Many efforts have been made to connect TCR sequences to peptide recognition (133; 134; 113). However, these approaches cannot yet be used to define the target peptidome of entire repertoires. Here we take the complementary approach, by looking for TCR sequence features that are linked to thymic selection.

Although there has been a lot of work on understanding and modeling thymic devel-Quantifying changes in the T cell receptor repertoire during thymic development 58 opment (10; 11) our study presents the first comprehensive analysis of TCR repertoire of different developmental stages of thymic maturation. By incorporating a reporter for the activation marker Nur77, which is activated during thymic selection, and an early marker of apoptosis, Annexin V, we were able to enrich for identifying subpopulations during the process of positive or negative selection. Although this more sophisticated strategy in principal allows the unbiased isolation of the major stages of thymic selection, some limitations remain. For example, the time interval during which negatively selected cells survive after they received their instruction to go into apoptosis may depend on signal strength. If strong TCR signal strength translates into short subsequent lifetime, then the AnnexinV+ cells sorted may be enriched for cells receiving a rather weaker negative signal. We examined the repertoires from two perspectives. In the first part of the paper, we compare statistical properties of the sequences of the repertoires using features of different dimensionalities, which include V gene, J gene and CDR3 length frequency distributions, and individual CDR3 sequences represented as sparse {0,1} binary vectors. The analysis incorporated both coarse-grained (V,J and CDR3 length) and fine-grained (individual CDR3 sequence) features, and the results were remarkably consistent. No single feature adequately discriminated between any pair of repertoires. Combination of features when averaged across a repertoire did show subtle but reproducible differences between repertoires, which could be used to discriminate between subpopulations using both unsupervised (PCA) and supervised (logistic regression) analysis. Furthermore, the difference between these statistical parameters captured the known developmental trajectory of thymic development, illustrated schematically in Fig. 5.1D. Interestingly, the smallest distances observed were between mature CD4 or CD8 cells, and their thymic SP negatively selected (apo) counterparts. This suggests that negative selection of single positives is only weakly associated with the sequence properties of single TCRs, or at least single chains. It is in principle possible that larger differences exist in the paired α-β repertoires, which would not be detectable in either the alpha or beta repertoires alone, but previous work on the functional alpha-beta repertoire has suggested that pairing was largely random, with weak associations between some germline genes (135; 136). An additional possibility which must be considered is that Annexin V staining does not exclusively capture the negatively selected population, but also identifies cells which were damaged during the preparation. Contamination of the AnnexinV+ population by these damaged or dying cells will weaken the selection signature observed, although the fact we do manage to discriminate between the apo and spleen subpopulations (Fig. 5.3A) indicates that these differences, however small, do exist. Conversely, cells marked for deletion may not have the time to express Annexin V, so that the DPpos subset may contain cells that are being negatively selected against, in addition to cells that are being positively selected [START_REF] Stritesky | Murine thymic selection quantified using a unique method to capture deleted T cells[END_REF].

A limitation of our sorting strategy is that we do not identify Treg from conventional CD4+ T cells. It has been suggested that regulatory T cells (Tregs), which are more autoreactive and should thus bear the same marks as the cells that fail negative selection, have distinctive TCR features, notably the presence of hydrophobic residues at key positions (131; 132). TCR scores based on more detailed features than hydrophobicity have been proposed (113; 65). We note that these scores are statistical and do not classify individual sequences. Consistent with these previous results, we can project our model parameters to build a single hydrophobicity index, which we observe to be significantly increased in 5.3 Discussion positively selected cells (DP pos) versus DP pre, and decreased in single positive sets (Fig. A14). Beyond hydrophobicity, it remains an open question whether the features that drive Treg fate are the same that drive negative selection.

Although the statistical properties of the repertoires differed between subpopulations, it was not possible to classify individual TCRs at high accuracy. As discussed above, this may in part be due to the fact that the populations we define only imperfectly correlate with their fate and self-reactivity. However, the differences between CD4+ and CD8+ repertoires, which are much less likely to be affected by issues of functional or physical cross-contamination, are also seen only at a statistical population level, and not an individual TCR sequence level. Learning the collective properties of at least a few dozen TCRs was required in order to achieve good discrimination between repertoires.

The statistical population-level differences between populations of thymocytes and mature T cells which we observe is reminiscent of previous models emphasising the importance of collective, rather than individual T cell behaviour. Butler et al. [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF] proposed that a minimum number of T-cells must collectively recognize a peptide to trigger a response, proposing quorum sensing as a mechanistic explanation of this collective decision making. Recent experiments have confirmed that quorum sensing between TCRs can occur, mediated via cytokine signaling [START_REF] Polonsky | Induction of CD4 T cell memory by local cellular collectivity[END_REF], and estimating a minimum quorum size of activated T cells to be 30. Our results suggest that thymic selection imposes only a rather weak selective pressure on the repertoire, which is consistent with Butler et al. ( 12)'s hypothesis that most self-peptides are not screened by TCR during negative selection. Our results are consistent with their model, in which even a subtle depletion, rather than complete elimination of non-self TCRs, may still translate into robust self/non-self discrimination in populations of reactive TCRs. Self versus foreign peptide discrimination by TCR is somewhat the conjugate task of self-reactive versus a non self-reactive T cell discrimination during negative selection. While the performance of the two tasks cannot be directly compared at first sight, they are related in that both are impaired by a factor (1-f ) due to partial screening of self peptides, where f is the fraction of self-peptides that are presented during thymic developement. The common point is that even when f is small, the law of large numbers can rescue the discrimination task when there are multiple observations. In Materials and Methods, we argue using the model of ( 12) how the idealized performance of repertoire discrimination using multiple (m) TCR (akin to the task of Fig. 5.3B) may be compared to the task of telling self from foreign peptides in the periphery, when the number of T cells specific to one particular peptide and recruited to the site of infection is m× n, where n is the average number of self-peptides recognized by a random TCR. While those numbers cannot be applied directly to the results of Fig. 5.3B, which are based on an imperfect classifier from a single chain, they give a sense of how the same principle of discrimination apply to both cases.

In the second part of the study we explore in more detail whether we can discover any evidence that thymic selection depends on specific sequence motifs (i.e. a strong correlative structure between CDR3 amino acids). For this purpose, we build on our previous work which have established a framework for the development of generative statistical models of repertoire generation, based firmly on a mechanistic understanding of TCR generation and selection. Specifically, we construct models which incorporate only linear combinations of CDR3 sequences to capture the selective process which can transform one repertoire into another. These models produce an "enrichment factor" for each TCR which estimates its Quantifying changes in the T cell receptor repertoire during thymic development 60

relative likelihood of being in a particular stage-specific population. Intuitively, one can consider these factors as capturing the probable enrichment or depletion of a TCR with a particular sequence when comparing two repertoires. We demonstrate that these linear models effectively capture the progressive decrease in repertoire diversity which we observe in the preselected DP to the SP transition. They also effectively capture the known developmental relationships between the thymic subpopulations. Thus we find no evidence that complex non-linear amino acid sequence interactions are required to explain the observed changes in repertoire observed in our data. We also compared the distributions of enrichment factors between populations. We demonstrate that, contrary to the predictions of a strong binary selection model, we do not observe any negative correlation between enrichment factor distributions between selected and non-selected repertoires. Instead, we observe a set of positive correlations, revealing a dominant conserved selection process spanning the developmental stages between pre-selection DP and mature SP. Consistent with the clustering data discussed above, we find strong correlation between the enrichment factor distributions of mature SP and thymic negatively selected population, and no evidence of binary selection between these two populations.

In conclusion, we report a comprehensive analysis of the TCR repertoire at various stages of thymic development. We then combine data-driven and model-based analysis of these repertoires. Our conclusions are incompatible with a model of thymic developments which involves a sequence of clear-cut binary selection processes, based on TCR sequence features. Rather, our data suggest a probabilistic fuzzy decision making process at each selection step. We propose that this model is compatible with robust self/non-self discrimination, if T cell responses to antigen are governed by collective quorum based decision making. Further experimental and theoretical work is required to test these hypotheses, which have fundamental implications for strategies to modulate the immune response for prophylaxis or therapy of human disease.

Materials and Methods

Animals

The experiment was carried out using three 6-weeks old male inbred Nur77-GFP/Foxp3-mCherry (C57BL/6 background) [START_REF] Moran | T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse[END_REF]. The cross was bred and maintained at the Weizmann institute.

This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#21661115-2) of the Weizmann Institute of Science. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Weizmann Institute of Science. Every effort was made to minimize suffering.

Sample preparation and T cell isolation

Thymocytes and splenocytes were isolated from Nur77-GFP/Foxp3-mCherry 6-weeks old mice. Erythrocytes were removed by hypotonic lysis in ammonium chloride. Thymocytes were stained with fluorescent antibodies, and sorted using a flow cytometer as described below. Splenic CD4 and CD8 cells were purified in two steps: (1) CD4+ positive selection (CD4 (L3T4) MicroBeads, mouse, # 130-117-043, Miltenyi) to generate the 61 5.4 Materials and Methods "CD4 spl" samples (2) the negative cells fraction were further selected for the CD8+ positive cells (CD8a (Ly-2) MicroBeads, mouse, # 130-117-044, Miltenyi Biotec) to generate "CD8 spl" samples.

Flow cytometry analysis and cells sorting

The following fluorochrome-labeled mouse antibodies were used according to the manufacturers' protocols: PerCP/Cy5.5 anti-CD4, PB anti-CD8, PE/cy7 anti-CD3, APC an-nexinV (Biolegend). UV LIVE/DEAD TM (ThermoFisher Scientific, # L23105). Labelled cells were sorted on a SORP-FACS-AriaII using a 70 µm nozzle to 5 populations (see Table 1). Cell counts are reported in Table S2 

Library preparation for TCR-seq

All libraries in this work were prepared according to the published method [START_REF] Oakes | Quantitative Characterization of the T Cell Receptor Repertoire of Naïve and Memory Subsets Using an Integrated Experimental and Computational Pipeline Which Is Robust, Economical, and Versatile[END_REF], with minor adaptations as described below. Briefly, total RNA was extracted from each of the seven populations using RNeasy Micro Kit (# 74004, Qiagen) and cleaned from excess DNA with DNAse 1 enzyme (# M6101, Promega). RNA samples were reverse transcribed to cDNA (SuperScript™ III, # 12574026, Invitrogen) using primers for the mouse α chain (mAlpha_RC2) and for the mouse beta chain (mBeta_RC2) (see Table S1). Following reverse transcription the samples were purified on minielute spin columns (# 28004, QI-AGEN) . The cDNA was ligated to an oligonucleotide containing a unique 12 basepair molecular identifier (UMI) (6N_I8.1_6N_I8.1_SP2, see Table S1) using T4 RNA ligase (M0204S, NEB). Ligation products were purified using Agencourt AMPure XP beads (# A63881, BeckmanCoulter). Next, three rounds of extension PCR were executed (using KAPA HiFi DNA Polymerase, KAPA Biosystems) to add illumina sequencing adaptors and Illumina sample indices for multiplex sequencing (see Table S2). The thermal cycler parameters are an initial denaturation step (3 minutes at 95 • C) followed by cycles of denaturation (98 • C for 20 seconds), annealing (61 • C for 15 seconds), and extension 72 • C for 30 seconds. The final extension step was at 72 • C for five minutes. The lid was maintained at 105 • C . After the first round PCR (5 cycles), PCR products were purified using Agencourt AMPure XP beads and split in two, and α and β TCR genes were processed separately in subsequent steps. After the second PCR (8 cycles), PCR products were again purified using Agencourt AMPure XP beads. The final amplification using the adapter sequences P5 and P7 were carried out on a real-time qPCR machine, and the amplification was tracked by the incorporation of SYBR green. The cycler was stopped manually when the fluorescent signal reached a predetermined threshold, thus preventing Quantifying changes in the T cell receptor repertoire during thymic development 62

overamplification.

The final library concentration was measured using Qubit Fluorometric Quantification (ThermoFisher Scientific) and the presence of the correct 600-700 bp product confirmed by electrophoresis on a High Sensitivity D1000 ScreenTape cassette using a 4200 TapeStation System (Agilent). Multiple samples were pooled in equal molarity, and then sequenced using NextSeq 550 (200 bp forward read, 100 bp reverse) (Illumina).

Pre-Processing and Error Correction for Raw Reads

Data were processed using an in-house pipeline, coded in R. First, UMI sequences were transferred from read 2 to read 1. Trimmomatic was used to filter out the raw reads containing bases with Q-value ≤ 20 and trim reads containing adaptors sequences [START_REF] Bolger | Trimmomatic: a flexible trimmer for Illumina sequence data[END_REF]. The remaining reads were separated according to their barcodes and reads containing the constant region for α or β chain primers sequences were filtered (CAGCAGGTTCTGGGTTCTG-GATG / TGGGTGGAGTCACATTTCTCAGATCCT α and β chain, respectively), allowing up to three mismatches. To correct for possible sequence errors, we cluster the sequences UMIs' in two steps; (1) The UMIs with the highest frequency are grouped within a Levenshtein distance of 1 (141). ( 2) Out of these sequences, CDR3AA sequences (starting from the most frequent sequence in a group) were clustered using a Hamming distance threshold of 4 [START_REF] Hamming | Error detecting and error correcting codes[END_REF]. Finally, the UMI of each CDR3 sequence was counted.

Annotation and Generation Model

From the raw nucleotide reads, we performed a preliminary annotation using the python module PyIR (version 1.3.0) [START_REF] Soto | PyIR: a scalable wrapper for processing billions of immunoglobulin and T cell receptor sequences using IgBLAST[END_REF], which provides a wrapper and parser of the open source software IgBlast [START_REF] Ye | IgBLAST: an immunoglobulin variable domain sequence analysis tool[END_REF]. We then separated the productive clonotypes from the out of frame reads and/or reads containing stop codons. We define a clonotype as TCRs sharing V genes, J genes, and the same CDR3 nucleotide sequence. If different reads are annotated as the same clonotype in the same dataset, only the read with highest UMI counts is considered.

For our models, we use a reduced set of genes from the IMGT free online repository [START_REF] Lefranc | IMGT®, the international ImMunoGeneTics information system® 25 years on[END_REF]) in order to have a single allele per gene, preferring functional alleles to open reading frame or pseudo genes. A further reduction is done for the V genes of the α chain, clustering to a single representative all of the those genes that result indistinguishable in the region from the maximum observed V offset for the annotation to the conserved cysteine. Two genes are said to be indistinguishable if the Hamming distance (142) between the considered regions is equal to 0. For each TRAV cluster, we choose as the representative the most frequent gene in the preliminary annotation. In this way we obtain 76 V genes and 51 J genes for the α chain, 26 V genes, 2 D genes and 14 J genes for the β chain.

In order to infer a generation model we use the open source software IGoR (22) on all out-of-frame clonotypes pooled from all maturation stages of all mice. The generation model associates to each α (β) read a probability P gen of being generated through the VJ (VDJ) recombination process. After learning a generation model, we annotate the reads using the most probable alignment scenario using the IGoR software, as the clonotype (V, J gene choice, CDR3 nucleotide sequence) with the highest P gen among all possible recombination scenarios.

The PCA was computed in R (version 3.6.0) using the function "PCA" from the FactoMineR package (version 2.4).

Statistical Classification

The features are assigned to each α chain as a binary vector σ, where each entry is equal to 1 if the feature is observed, 0 otherwise. In this study the set of features is encoded using the "SoniaLeftposRightpos" class (from the Python package Sonia version 0.0.45) which provides 5033 features: 30 for the CDR3 amino acid lengths, 25 left to right positions for each of the 20 amino acids (500 features), 25 right to left positions (500), the joint V/J gene usage (76 × 51=3876) and the independent usage (76+51=127). Analogously for the β we obtain 1434 features (without considering D genes).

To learn the models for the statistical classification of two stages, we first remove all sequences that share the same features between the two sets (i.e. same amino acid CDR3, V and J gene). Then, we balance the size of the sets sub-sampling the larger one so that its size does not exceed 25% of the size of the smaller. Each of the resulting sets is divided into a train and a test set by a ratio 70%/30% ("StratifiedShuffleSplit", module "model_selection" from the Python package scikit-learn, version 0.24.2). The classifiers are learned with linear models, defined by a single layer with binary cross entropy as a loss function, binary accuracy as metrics, a sigmoid as activation function , coded using the "keras" module from the Python package tensorflow (version 2.4.1). We obtained similar performance for the classification task by learning with a random forest algorithm as provided by the function "RandomForestModel" in the module "keras" from the package tensorflow_decision_forests (version 0.2.4).

Selection Model

To learn a P stage selection model for each maturation stage, we pooled together the annotated sequences from all mice for the given maturation stage, discarding all clonotypes annotated with non-functional and pseudo genes. We learn a selection model using the open source software Sonia for each maturation stage. Sonia performs a linear regression over the features of the sequences in the dataset to infer the enrichment ratio between the maturation specific dataset and the generation model. The feature choice for the enrichment model is similar, except for the fact that only independent gene usage is considered, reducing features to 1157 for α chain (1070 for β chain). The probability of observing a sequence in a stage is modeled as

P stage (σ) = 1 Z e -Estage(σ) P gen (σ) (5.1)
where Z is a normalization factor and the energy E stage (σ) for a sequence showing a set of features F(σ) is defined as

E stage (σ) = f ∈ F (σ) (f ) stage (σ) (5.2)
Here (f ) is a weight associated to the feature f and is learnt from data. To look at specific enhanced features between stages a and b one can obtain the average weights difference from the respective P stage models as

(f ) a - (f ) b = p (f ) a + p (f ) b 2 • (f ) a - (f ) b (5.3) 
Quantifying changes in the T cell receptor repertoire during thymic development [START_REF] Košmrlj | Thymic Selection of T-Cell Receptors as an Extreme Value Problem[END_REF] where p

(f )
stage is the marginal associated by the model to the feature. The limited amount of clonotypes for certain maturation stages precludes using deep neural network based selection models, although we do not expect the conclusions to change with the DNN SoNNia model [START_REF] Isacchini | Deep generative selection models of T and B cell receptor repertoires with soNNia[END_REF].

Hydrophobicity Score

To study the hydrophobicity increase with respect to the generation, we define a stagewide score as

U = a ∈ hydro x ∈ CDR3cr (a|x) • p (a|x) gen (5.4)
where (a|x) is the weight associated by the model to the amino acid a at position x; the marginal p

(a|x)
gen is obtained by the generation model on the same feature (see Materials and Methods). The sum runs over the hydrophobic amino acids CFILMWY, following the definition from [START_REF] Lagattuta | Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate[END_REF], considering just the positions of our model which correspond to the central region p108-p114 of the CDR3 in IMGT convention (model positions (4:10) from the left, and, (-11:-5) from the right). We also define an index u for hydrophobicity which can now be associated to each sequence as follow

u = 1 L a ∈ hydro x ∈ CDR3cr 1 (5.5) 
i.e. the number of hydrophobic residues found in the central region (same choices as above), normalized by the CDR3 length L.

n-gram Shannon Entropy Estimation

As a diversity measure we consider the Shannon entropy defined as :

S = - i p(i) log 2 p(i) (5.6) 
where p(i) is the probability of finding a clonotype in the data. Since n-grams are sampled from 20 n possible motifs, undersampling could bias a naive estimation of the entropy. We overcome this bias by estimating the Shannon entropy using the Nemenman-Shafee-Bialek (NSB) estimator [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF]. The NSB estimator is computationally tractable and calculates an estimation error. We implement the entropy and variance estimators as given in [START_REF] Archer | Bayesian Entropy Estimation for Countable Discrete Distributions[END_REF]. To check for convergence we subsample the clonotypes in the dataset at increasing sizes and estimate the entropy for each sub-sample (Fig. A8). Convergence sets a limit of n = 4 due to sample size constraints of the smallest dataset. We repeat the same computation for synthetic repertoires. We verified the NSB estimators better performance for our datasets compared to other non-parametric estimators (Fig. A7A andB), consistently with previous reports (105).

Full Model Shannon Entropy Estimation

The Shannon entropy in Eq. 5.6 associated to the full p = P stage (σ) model requires summing over all possible clonotypes i = σ. Practically we evaluate the entropy by producing synthetic sequences according to the selection model P stage and averaging the with clonotypes σ * k sampled from the P stage distribution. Because of sequencing errors, the entropy of n-grams is systematically overestimated in the data. To estimate and correct for this bias, we measured the error rate from the data, provided as a byproduct of the IGoR training procedure [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF]. We used this rate to produce synthetic sequences with simulated sequencing errors. The difference in n-gram entropy between error-prone and error-free sequences was then applied as a subtractive correction factor to the data.

n-gram Jensen-Shannon Divergence

To quantify the distance between two distributions p a and p b defined on the same support, we use the symmetric Jensen-Shannon divergence JSD:

JSD (p a , p b ) = 1 2 i p a (i) log 2 2p a (i) p a (i) + p b (i) + + (a ↔ b) (5.8)
where the sum runs over all possible observables i and the term (a ↔ b) corresponds to the same expression in the first one with a and b inverted. The Jensen-Shannon divergence is bounded between 0 and 1 bits, with JSD = 0 bits if the distributions are identical and a maximal difference of JSD = 1 bit. We use JSD to asses the divergence between n-gram distributions and between selection models.

Full Model Jensen-Shannon Divergence

To compare selection models of complete clonotypes at two maturation stages, the divergence between the P stage distribution of model a and the model b is:

JSD (P a , P b ) 1 2N N k=1 log 2 2e -Ea(σ a k ) e -Ea(σ a k ) + e -E b (σ a k ) + + (a ↔ b) (5.9)
where the clonotypes σ a k are sampled from the P a distribution. In Eq. 5.9, we used the fact that a given sequence has the same background generation probability P gen in both selection models.

Discrimination in the thymus vs discrimination in the periphery

Here we show a formal link between discrimation of negatively selected vs non-negatively selected TCR on the one hand, and foreign vs self-peptide recognition on the other.

We start by considering (negative) thymic selection. Following [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF], we assume that a random TCR will recognize any peptide with probability p. Then the number of recognized self-peptides n by a random TCR is distributed according to a Poisson law of mean n = pN , where N is the number of self-peptides,

P (n) = Poiss[pN ](n) ≡ e -pN (pN ) n /n!.
If each TCR only screens M = f N self-peptides, with f < 1, then the probability of Quantifying changes in the T cell receptor repertoire during thymic development 66

passing selection (and ending up in spleen) is P (spleen|n) = (1 -n/N ) M ≈ e -nf , and P (apo|n) = 1 -e -nf for the probability of ending up in apo (as apoptosis, i.e. singlepositive cells expressing Annexin V as in our experiments). We assume that the discriminator of apo vs spleen single positives is perfect, in the sense it can perfectly deduce n from the TCR sequence. In this idealized case, discrimination errors are entirely attributable to the partial screening of self-peptides. Using Bayes' law, one can show that the distributions of n in spleen and apo read:

P (n|spleen) = P (spleen|n)P (n) P (spleen) = Poiss[pN (1 -f )](n) (5.10) P (n|apo) = P (apo|n)P (n) P (apo) = (1 -e -nM/N )(pN ) n e -pN n!(1 -e -pM ) = ≈ nf pN f (pN ) n e -pN n! = Poiss[pN ](n -1) (5.11) 
where the first equation results from direct algebra, and the second is obtained in the limit of small f . The AUC of the discrimination task is then given by the probability that drawing a random number from a Poisson of mean n(1 -f ) yields a smaller number than drawing a random number from a Poisson of mean n, and adding 1 to it. If we now use the observation of m TCRs from the same subset (apo or spleen) instead of a single one, the task becomes easier: we can form a collective score by adding up the n's of each TCR (since they are independent draws from either the apo or spleen ensembles) so that the two Poisson distributions, of respective means mn(1 -f ) and mn, become better separated. This is qualitatively the result of Fig. 5.3B, which is based on the learned score, rather than on an idealized one.

We now turn to the case of self vs foreign peptide discrimination by a group of R T cells recruited to a site of infection. If the peptide is from the self, then the probability for a given circulating TCR to recognize it is p(1 -f ) [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF]. Then the number of specific TCR is Poisson distributed with mean p(1 -f )R. If the peptide is foreign, that number is also Poisson distributed, but with mean pR. Again, the AUC of the discrimination task is given by the probability of drawing a smaller number from the former distribution than from the latter. This task is expected to be at least as hard as that of apo vs spleen TCR discrimination when pR ≈ mn, where pR is the expected number of TCR specific to the foreign antigen.

Other Software for Statistical Analysis

The Jensen-Shannon dendrograms linkage is computed by the Ward method as provided by the function "linkage", reordered according to the function "optimal_leaf_ordering", both from the Python module "cluster.hierarchy" in scipy package (version 1.7.3). The Pearson correlation coefficient is computed with the Python function "pearsonr" as contained in the module "stats" in the scipy package. The coefficient of determination R 2 is computed with the Python function "r2_score" as contained in the module "metrics" in the sklearn package.

Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors

This chapter is a pre-print (29):

• Francesco Camaglia, Ilya Nemenman, Thierry Mora, Aleksandra Walczak (2023). Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors. arXiv:2307.0420. The sections "Supplementary information" and "Supplementary figures" have been moved to the Appendix A.

In many applications in biology, engineering and economics, identifying similarities and differences between distributions of data from complex processes requires comparing finite categorical samples of discrete counts. Statistical divergences quantify the difference between two distributions. However their estimation is very difficult and empirical methods often fail, especially when the samples are small. We develop a Bayesian estimator of the Kullback-Leibler divergence between two probability distributions that makes use of a mixture of Dirichlet priors on the distributions being compared. We study the properties of the estimator on two examples: probabilities drawn from Dirichlet distributions, and random strings of letters drawn from Markov chains. We extend the approach to the squared Hellinger divergence. Both estimators outperform other estimation techniques, with better results for data with a large number of categories and for higher values of divergences.

Introduction

Understanding of the structure and function of a large number of biological systems requires comparison between two probability distributions of their states or activities, generated under different conditions. For example, one may be interested in how the distribution of neural firing patterns underlying typical vocalizations in a song bird is different from patterns used to drive atypical, exploratory vocal behaviors [START_REF] Hernández | Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries[END_REF]. One can similarly ask how different are the distributions of stimuli encoded by two different firing patterns; the difference then can be viewed as a measure of semantic similarity between these patterns [START_REF] Ganmor | A thesaurus for a neural population code[END_REF]. In the context of immunology, one is often interested in information theoretic quantities in order to quantify diversity or to assess differences between distributions of immune receptors (42; 27). In these and similar examples, the Kullback-Leibler (KL) divergence D KL , also known as relative entropy, is often used as a measure of dissimilarity. It is a non-symmetric measure of the difference between two probability distributions with a wide range of applications in information theory [START_REF] Kullback | On Information and Sufficiency[END_REF]. While not a distance in the mathematical sense, it is often the choice measure of dissimilarity since it can be applied to categorical (non-ordinal) data, when the usual statistical moments such Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors 68 as the mean and variance are not well defined. Indeed, like other "information theoretic quantities", the KL divergence is not associated to the category itself, but rather to the underlying probability distribution [START_REF] Zhang | Entropic Statistics: Concept, Estimation, and Application in Machine Learning and Knowledge Extraction[END_REF]. Estimation of information theoretic quantities is a hard problem, with a lot of attempts in the recent literature. Most of these have focused on the entropy and mutual information, but estimation of the KL divergence has also been investigated [START_REF] Zhang | Nonparametric Estimation of Küllback-Leibler Divergence[END_REF]. When faced with data without any knowledge of the true underlying distribution, empirical approaches (typically referred to as "naive" [START_REF] Strong | Entropy and Information in Neural Spike Trains[END_REF] or "plugin" (91)) are often used. These methods approximate the true probabilities of events with their empirical frequencies, with an optional pseudocount. These types of estimators have been investigated thoroughl. The consensus is that, for all entropic quantities, these estimates are typically strongly biased (91; 149; 101; 150). To overcome this limitation, other approaches have been proposed to estimate the Shannon entropy (or the mutual information) of categorical data. These techniques include Bayesian methods (26; 105), coverage adjusted methods [START_REF] Chao | Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample[END_REF] and bias corrected methods (149; 100; 101). In the case of the KL divergence, the crossentropy term, which diverges due to contributions where one distribution has samples and the other does not, makes it difficult to extend these methods in the absence of information about the joint distribution. The bias-corrected "Z-estimator" [START_REF] Zhang | Nonparametric Estimation of Küllback-Leibler Divergence[END_REF], proposed for KL divergence estimation, tackles these issues. However, it has a strong dependence on the sample size.

Here we propose a Bayesian estimator of the DKL for systems with finite number of categories using a mixture of symmetric Dirichlet priors (Dirichlet Prior Mixture, or DPM). This approach is the generalization of the main idea from (26) that, to produce unbiased estimators, one needs to start with Bayesian priors that are (nearly) uniform not on the space of probability distributions, but directly on the quantity being estimated. Here we extend this idea beyond the estimation of entropy, for which it was first developed. We check that, for data distributed according to a Dirichlet prior, our new approach for estimation of the KL divergence consistently converges faster to the true value than other methods. We provide an algebraically equivalent expression for the Z-estimator (following [START_REF] Schürmann | A Note on Entropy Estimation[END_REF]), which makes it applicable to large sample sizes. We also test the DPM technique on sequences generated by Markov chains, which are not typical within the DPM prior, obtaining better performance for datasets with many categories. We then focus our analysis on another measure of similarity between categorical distributions, the Hellinger divergence [START_REF] Hellinger | Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen[END_REF], which, unlike the DKL, is a well defined bounded distance between distributions. To show the generality of our approach, we also develop a DPM estimator for the squared Hellinger divergence. In computational tests, we show the DPM approach to be accurate for this quantity as well. Since no estimation method can be guaranteed to estimate entropic quantities without a bias for an arbitrary underlying probability distribution, we finish by discussing the method's reliability when applied to real experimental data, where the true values of the divergences are not known a priori.

Results

Bayesian framework for the estimation of the divergence

Our goal is to derive an estimate of the Kullback-Leibler divergence between the distributions of categorical variables t and q, D KL (q t). We consider a discrete set of K 6.2 Results

n 1 n 2 n 3 … n K Mult(n | q) Mult(m | t) m 1 m 2 m 3 … m K s Dir(t | β) prior 2
Dir(q | α) categories labeled with i = 1, . . . , K. Examples of categorical variables include "words" defined assequences of neuron firing patterns (spike counts in time windows),sets of coexisting ecological or molecular species or a sequence of amino acids or nucleotides. Each category i has a certain (unknown) probability q i in the first condition, and t i in the second condition. We observe this category n i times in an experiment done in the first condition, and collect the data in the histogram n = {n i } K i=1 . An experiment in the second condition returns the counts m = {m i } K i=1 . We want to estimate the Kullback-Leibler divergence between t and q (28), defined as:

D KL (q t) = H(q t) -S(q) = K i=1 q i log q i t i , ( 6.1) 
where we defined the cross entropy between t, and q, H(q t) = -K i=1 q i log t i , and the Shannon entropy, S(q) = -K i=1 q i log q i (25).

Taking inspiration from Nemenman et al. [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF], we choose to estimate the D KL in a Bayesian framework. The approach is summarized in Fig. 6.1. We do not have access to the true probability distributions t and q, only to the empirical histograms n and m. The simple method consisting in approximating q i ≈ n i / j n j and likewise for t into Eq. 6.1 is known to work very poorly (101; 150). The issue comes from the presence of categories never observed in one sample, while they are present in the other, resulting in divergence of the logarithmic term. To go beyond that, we construct a prior of the true distributions Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors 70 P prior (q, t) and weight the estimate of the divergence by posterior over q and t: D KL (q, t)|n, m = dqdt P post (q, t)D KL (q t), (6.2) where P post (q, t) = 1 Z P prior (q, t)P (n, m|q, t), (6.3) with Z = P (n, m) = dqdt P prior (q, t)P (n, m|q, t) a normalization.

The empirical observations n and t are assumed to be independent samples of q and t respectively, and are thus distributed according to a multinomial distribution:

P (n, m|q, t) = Mult(n|q)Mult(m|t), (6.4) 
with

Mult(n|q) = N ! K i=1 n i ! K i=1 q i n i = 1 B(n + 1) K i=1 q i n i , ( 6.5) 
where N = K i=1 n i , and B(x) is the multivariate Beta function:

B(x) = K i=1 Γ(x i )/Γ( K i=1 x i )
, where Γ(x) is the gamma function.

A natural choice for the prior on q and t is the Dirichlet distribution, which is the conjugate prior of the multinomial distribution, and is defined as

Dir(q|α) = δ K i=1 q i -1 B(α) K i=1 q i α-1 , ( 6.6) 
where α ∈ (0, ∞) is the "concentration parameter", α = {α} K i=1 and δ(x) is the Dirac's delta function imposing normalization. Rank plots associated to Dir(q|α) are shown in Fig. 6.3A. For α → ∞, the prior tends to a uniform distribution q i = 1/K. For small concentration parameters α, the distribution is peaked with weights given to just a few categories.

As noted in Ref. [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF], entropies of distributions drawn from a Dirichlet with the same α all have similar entropies, strongly biasing the Shannon entropy estimate, especially in the large K limit. To reduce the bias, one then uses a mixture of Dirichlet distributions at different α, allowing substantially different values of the entropy a priori. For a certain choice of the mixture distribution (the prior over α, ρ(α)), one can achieve a nearly-uniform a priori distribution of entropies and, consequently, a much smaller estimation bias (26; 103). We expect D KL also to have very similar values for all distributions generated from the Dirichlet priors with fixed α and β. We then expect that a good estimator may be produced by using a mixture of Dirichlet distribution that allows to span different values of the expected D KL :

P prior (q, t) = ∞ 0 ∞ 0 dαdβ ρ(α, β)Dir(q|α)Dir(t|β), ( 6.7) 
where ρ(α, β) is a "hyper-prior", i. e., a prior over the hyper parameters α and β. Plugging The expected value of the D KL inside the integral may be computed analytically (see subsection A.2.1):

D KL |n, m; α, β = = dqdtP (q, t|m, n, α, β)D KL (q t) = i n i + α N + Kα {∆ψ(M + Kβ, m i + β) -∆ψ(N + Kα + 1, n i + α + 1)}. (6.11) 
where ∆ψ(z 1 , z 2 ) = ψ(z 1 )-ψ(z 2 ) is the difference of digamma functions ψ (i. e., polygamma function of order 0, see Eq. A.4).

Similarly we can calculate D 2 KL |n, m , which we can use to compute the posterior standard deviation of our method (subsection A.2.1). For a given choice of ρ(α, β), the DPM estimate for D KL in Eq. 6.8 can be computed numerically (same for D 2 KL in Eq. A.31), as described in detail in subsection A.2.4. The code is available on github as specified in subsection A.2.5.

We expect that, in the limit of large data (N, M K), the integral of Eq. 6.8 will be dominated by the values of α and β that maximize the likelihoods P (n|α) and P (m|β), regardless of the hyper-prior ρ(α, β). The dominant role of the likelihood P (n|α) for increasing N was equivalently observed for the NSB entropy estimator [START_REF] Nemenman | Coincidences and Estimation of Entropies of Random Variables with Large Cardinalities[END_REF]. By contrast, we expect the prior ρ(α, β) to play a role in the low-sampling regime, as can be seen from Fig. 6.2.

A simplified approach for the estimation of the D KL would then be to provide a choice for the concentration parameters that maximizes the likelihoods P (n|α) and P (m|β) (see Eq. 6.9). We refer to the application of Eq. 6.11 with the maximum-likelihood values of α and β as the Dirichlet Prior (DP) estimator.

Choosing the hyper-prior

To finalize the D KL estimation, we need to choose a functional form for the hyper-prior ρ(α, β) in such a way that the resulting ensemble has an evenly distributed D KL . In the limit of large numbers of categories (K 1), both contributions of the D KL , S(q) and Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors 72 Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors 74 H(q t) are very peaked around their mean values, which can be computed analytically (subsection A.2.1):

A(α) ≡ S|α = ∆ψ(Kα + 1, α + 1) ≤ log K, (6.12) and B(β) ≡ H|α, β = ∆ψ(Kβ, β) ≥ log K (6.13) (which only depends on β), at fixed concentration parameters. These mean values are shown in Fig. 6.3B, and the corresponding D KL = H -S in Fig. 6.3C as a function of α and β. We are interested in finding a hyper-prior such that the resulting prior over D KL is not peaked. This results in the following inverse problem for finding the hyper-prior ρ z (z), where we denote D KL by z

ρ z (z) ≈ ∞ 0 dα ∞ 0 dβ ρ(α, β) δ (B(β) -A(α) -z) , ( 6.14) 
with the choice ρ z (z) to be made. Because we have a one-dimensional target distribution ρ z (z), but a 2-dimensional hyper-prior ρ(α, β), there are infinitely many solutions to this inverse problem. Without losing generality, we can make the change of variable from α and β to A and B: Then a natural choice is to pick the Ansatz imposing that all values of A and B with the same D KL are equiprobable:

ρ z (z) ≈ log K 0 dA +∞ log K dB ρ AB (A, B) δ (B -A -z) , (6.15) 
ρ AB (A, B) = φ(B -A). (6.17) 
Then φ(z) satisfies:

ρ(z) = φ(z) log K 0 dA θ(z + A -log K) = φ(z){z θ(log K -z) + log K θ(z -log K)}, ( 6.18) 
where θ(x) = 1 if x ≥ 1 and 0 otherwise (Heaviside function), or after inversion:

φ(z) =      ρ(z)z -1 z < log K ρ(z) 1 log K otherwise. (6.19)
Eqs. 6.16, 6.17, and 6.19 give us the final form of the hyper-prior ρ(α, β). We are left with the choice of the distribution of the D KL , ρ(z). We pick a log-uniform (also known as "reciprocal") distribution, ρ(z) ∝ z -1 (85), allowing to evenly span over different orders of magnitude of the D KL . The resulting hyper-prior is represented in Fig. 6.3D. Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors 76

Tests on synthetic Dirichlet samples

To assess the properties of the DPM estimator, we test it on data generated from distributions drawn from Dirichlets q ∼ Dir(q|α), t ∼ Dir(q|β) (Eq. 6.6), for various values of α and β. Having in mind applications to polypeptide sequences, we perform our tests for three different numbers of categories K = 20 2 , 20 3 , and 20 4 , the numbers of all possible 2-mers, 3-mers and 4-mers that can be produced with an alphabet of 20 letters (e. g., amino acids). For each choice of q and t, samples n and m are generated from these distributions. This application may be viewed as a the consistency check for the estimator, since the estimator relied on the Dirichlet hypothesis, which is satisfied by the data.

We know that standard Bayesian consistency applies, ensuring that DPM (and DP) estimators converge to the true value in the limit of large samples. To understand how DPM estimator converges to the true value, we extract subsamples of increasing sizes N = M from a larger sample of size 2 • 10 7 . Fig. 6.4 compares our D KL estimate to several state-of-the-art estimators: the additive smoothing method with different values of the pseudo-count (see below for details), the Z estimator, and the simplified version of our method, the DP estimator, obtained by fixing α and β to their maximum-likelihood values.

Additive smoothing estimators are defined as: D KL (q t), with qi = (n i + a)/(N + Ka), and ti = (m i + b)/(M + Kb). We use 4 choices for the pseudo-counts a and b, summarized in Table 1. To avoid infinite values, in the case b = 0 we set to zero the terms for which m i = 0. name a b reference "naive" 0 0 -"Jeffreys" 0.5 0.5 (86) "Trybula"

√ N /K √ M /K (92) "Perks" 1/K (obs) 1/K (obs) (154) 
Table 1: List of choices for the pseudo-counts used to define alternative estimators of the D KL [START_REF] Hausser | Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks[END_REF]. K (obs) ≤ K is the number of observed categories, for which n i > 0 in each distinct sample.

It has been shown that naive estimators converge to the true value in the limit of large samples, but have an infinite bias due to low-probability categories [START_REF] Zhang | Nonparametric Estimation of Küllback-Leibler Divergence[END_REF]. The "Zestimator" (147) was introduced to remove this bias asymptotically. Although its original definition was given as a series, one can show following (151) that its expression reduces to (Appendix A.2.2):

D (Z) KL = K i=1 n i N [∆ψ(M + 1, m i + 1) -∆ψ(N, n i )] , ( 6.20) 
where the first term in the sum corresponds to an estimator of H(q t), and the second term is the classic Schurmann-Grassberger estimator of the entropy S(q) (100). In Appendix A. 4A), we see that the DPM performs better than other estimators. To assess how performance depends on the concentration parameters, we repeated this convergence analysis for different values of α and β. We measure convergence through N * , defined as the sample size where the estimator get within 5% of the true value (Fig 6 .4B). This measure of accuracy has the advantage to be applicable to all considered estimation methods.

Our estimator consistently performs well and compares favorably to other methods when data was generated from distributions drawn from symmetric Dirichlet. In most cases, the proposed DPM estimator converges faster than all other considered methods (Fig 6 .4C). The better performance is striking also for larger numbers of categories, K = 20 3 and 20 4 (Fig. S1).

Tests on synthetic Markov chain sequences

To test the performance of DPM on a different synthetic system that does not satisfy the Dirichlet assumption, we generated L-long sequences (or "L-grams") from a Markov chain described by the transition matrix Ŵ ∈ M 20 with 20 states µ = 1, • • • , 20. We choose each transition probability P (µ → ν) from a uniform distribution in (0, 1) and then impose that the transition matrix is a right stochastic matrix, P (µ → ν) = W νµ by normalizing to 1 each column of the transition matrix. An illustration where the states are the 20 amino acids is shown in Fig. 6.5A. With this choice for the Markov transition matrix, all states communicate and are non absorbing. We verify there exists a stationary probability vector π = {π µ } L µ=1 that satisfies π = Ŵ π. The number of categories is K = 20 L and each category i corresponds to the L-gram (x 1 , • • • , x L ) with the stationary probability q i equal to

q i = π x 1 W x 2 x 1 • • • W x L x L-1 .
We analytically compute the entropy associated to the stationary distribution q of L-grams to get:

S (L) (q) = S(π) -(L -1) µν W νµ π µ log W νµ . (6.21)
Typical values for the Shannon entropy of L-grams are shown in Fig. 6.5B along with the convergence curve of the NSB estimator. We assume that the L-grams of a second system are generated by a similar Markov process but with a transition matrix V and stationary probabilities of the σ = {σ µ } states. The cross-entropy between the t and q distributions reads:

H (L) (q t) = H(π σ) -(L -1) µν W νµ π µ log V νµ . (6.22)
Similarly to the analysis in the previous section, we generate a large sample of L-grams from each distribution, with N = M = 2 • 10 8 . We subsample this dataset at different sample sizes and estimate the D KL and its standard deviation for L = 2, 3, 4. To study the average behavior, we divide the estimate by the expected result (Eq. 6.22) and we average over 30 simulations.

We observe that, in the case of small numbers of categories (K = 20 2 , Fig. 6.5C top panel), DPM (and DP) perform quite similar to the best alternative (Jeffreys), but with different sign biases. However, the DPM estimator performance greatly improves for larger K (Fig. 6.5C middle and bottom panels). In all cases, the standard deviation associated to the DPM estimator (red bars in Fig. 6.5C) captures the spread across the different repetitions of the convergence curve (red shade in Fig. 6.5C). (Eq. 6.21) estimated with the NSB method (26) for sub-samples of size N , averaged over 30 repetitions normalized by the true value of the entropy and rescaled by the asymptotic value. The highlighted yellow region corresponds to a ±5% error range with respect to the average true value (dashed black line). C. D KL estimate and its standard deviation as a function of relative subsample size N/K, for K = 20 2 , 20 3 , 20 4 . For K = 20 2 , the DP and DPM estimators perform comparably to the best alternative ("Jeffreys" for all K), while they work better for larger K. The error bars represent the average posterior standard deviation of the D KL estimate associated to the DPM method. The red shade is the standard deviation of the DPM D KL estimates across the repetitions.

Bayesian estimation of the

6.2 Results

Estimator for the Hellinger divergence

Lastly, we extend the DPM method to estimate the Hellinger divergence D H between the discrete distributions q and t [START_REF] Hellinger | Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen[END_REF]. The Hellinger divergence is a symmetric statistical distance that satisfies the triangular inequality, making it a true distance in the mathematical sense [START_REF] Liese | Statistical Decision Theory: Estimation, Testing, and Selection[END_REF]: with

D H (q, t) 2 = 1 2 K i=1 √ q i - √ t i 2 = 1 - K i=1 √ q i t i . ( 6 
D 2 H |n, m; α, β = = 1 - K i=1 B( 1 2 , N + Kα) B( 1 2 , n i + α) B( 1 2 , M + Kβ) B( 1 2 , m i + β) , ( 6.25) 
where Z = dαdβ ρ H (α, β)P (n|α) P (m|β) and B(x 1 , x 2 ) = Γ(x 1 )Γ(x 1 )/Γ(x 1 + x 2 ) is the two-dimensional Beta function.

We test the Hellinger divergence D H estimator on the same synthetic datasets as in Fig. 6.4B (Fig. 6.6). For datasets generated with Dirichlet-multinomial distributed samples, the DPM outperforms all considered plugin estimators 1-K i=1 qi ti , with qi and ti defined as before with pseudo-counts a, b chosen according to Table 1 (Fig. 6.6A). As for the case of KL divergence, the performance improves for larger categories (Fig. S2). Tests on the synthetic Markovian L-grams (see previous paragraph) show the DPM estimator performs better for larger numbers of categories K, with comparable performance to the best alternative (Jeffreys) for K = 20 2 (Fig. 6.6B). H estimators, tested on the same synthetic data as in Fig. 6.4B. We consider 100 pairs of histograms drawn from Dirichlet-multinomial process with α and β concentration parameters. B. We compare to the score of the best alternative method to the DP and DPM, chosen as pseudo-count estimators with pseudo-count given by Table 1. These alternative methods perform worse for all values of the parameters. C. Convergence of the DP and DPM D 2 H estimators tested on the same Markov datasets as in Fig. 6.5C for different sub-sample sizes N . Each repetition is normalized by its true value, averaged and then rescaled by the asymptotic value (average of the true values). Red shade: the standard deviation across repetitions.

Bayesian estimation of the

Discussion

Correctly estimating statistical divergences between two distributions is an open problem in the analysis of categorical systems. Alongside the entropy, divergences such as the Kullback-Leibler and the Hellinger distance, are an important tool in the analysis of categorical data [START_REF] Zhang | Entropic Statistics: Concept, Estimation, and Application in Machine Learning and Knowledge Extraction[END_REF].

We focused on categorical distributions with finite numbers of categories K (bounded domain), where K is a known quantity. We proposed a way (DPM) to extend the approach of Nemenman et al. [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF] developed for Shannon entropy estimation, to Kullback-Leibler estimation. DPM introduces a mixture of symmetric Dirichlet priors with a log-uniform a priori expected divergence distribution (Eq. 6.19). We restricted our analysis to the case of the two finite samples of the same size N , although the method works for different sample sizes. We also propose a simplified estimator (DP), which assumes a Dirichlet prior with concentration parameter fixed to the maximum value of the likelihood. This estimator is faster to compute as it does not require to integrate over the concentration parameters.

We showed that the DPM method outperforms the tested empirical plugin techniques in terms of D KL estimation for synthetic data sampled from a Dirichlet-multinomial distribution with fixed concentration parameters. The estimation task gets harder for distributions with larger concentration parameters, i. e., closer to a uniform distribution, but easier for large numbers of categories K.

These convergence trends were confirmed by tests on sequences of L states generated by Markov chains. In this case, DPM compares well to the best plugin estimator in the low sample size regime of K = 20 2 and outperforms it for K ≥ 20 3 . Similar results were obtained for the DPM estimate of the Hellinger divergence for both Dirichlet-multinomial and Markov chain datasets. To our knowledge, DPM estimator of the Hellinger divergence is the first attempt to extend the ideas of Ref. [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF] and to build a uniform prior estimator for a non-entropy-like quantity.

Our tests were restricted to categorical systems with rank distributions having exponentially decaying tails. As previously discussed for the case of the NSB entropy estimator, the Dirichlet prior has major limitations in capturing the Shannon entropy if the system rank distribution is not decaying fast (105; 103). Many real systems exhibit long-tailed rank distributions that decay as power-laws [START_REF] Zipf | Human behavior and the principle of least effort, Human behavior and the principle of least effort[END_REF], which are not well captured by a Dirichlet prior. Preliminary (unpublished) tests of the DPM method for such systems show poor performance. Similarly to the case of entropy estimates, we speculate that the limitations of this method are related to issues with the poor representation of long tails by Dirichlet priors. Introducing a Pitman-Yor prior [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF] could overcome this problem, as has been shown for entropy estimation by Archer et al. [START_REF] Archer | Bayesian Entropy Estimation for Countable Discrete Distributions[END_REF], and offers a direction to generalize the applicability of the DPM method. Extending the Pitman-Yor prior to the case of statistical divergences would require to compute expected values over the probabilities of both systems, but to the best of our knowledge this is not possible because of the lack of an analytical expression for the Pitman-Yor distribution. Another difficulty may lie in the difficulty to encode correlations between the ranks of categories in the two distributions. Our priors assume that the two unknown distributions q and t are drawn independently. However in real data they are generally correlated, which could have an impact on the quality of estimators when the distribution of frequencies becomes very broad.
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In view of these complications, it is important to have practical criteria to ascertain if the output of the DPM estimator can be trusted for a specific dataset, or if it remains biased. Similar questions exist for estimation of many quantities, and specifically of entropic quantities, on categorial data since no estimator can be universally unbiased for them, and the decay of the bias with the sample size may be excruciatingly slow (91; 149). For entropy and mutual information, the standard approach is to observe if the empirical output drifts systematically as the sample size changes. One then declares the estimator trustworthy if the bias does not drift by more than the posterior standard deviation over about an order of magnitude change in the amount of data (148; 159). We expect this approach to transfer nearly verbatim to the D KL and the Hellinger divergence context, easily detecting whether the DPM approach can be used for a specific dataset, or if other analysis methods should be sought.

Conclusions

The role of thymic maturation and its link to self-tolerance

Thymic maturation is a process of selection involved in the elimination of T cell receptors (TCRs) that bind too strongly to self-peptides and ultimately could induce autoimmunity. Briefly, during their passage through the thymus, functional T cells that survived positive selection are released in the periphery if they do not bind to self-peptides presented by thymic epithelial cells [START_REF] Kappler | T cell tolerance by clonal elimination in the thymus[END_REF].

The vision of negative selection as a series of binary self-reactive tests over the selfproteome is much debated [START_REF] Davis | Not-So-Negative Selection[END_REF]. For example, it does not explain the experimental evidence of CD4 + T cells specific to their tissue of residency [START_REF] Legoux | CD4+ T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion[END_REF]. In addition, self-reactive CD8 + T cells have been reported in healthy individuals [START_REF] Yu | Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8+ T Lymphocytes[END_REF]. From a different perspective, we may believe that a robust TCR selection is possible if the differences between self and foreign derived peptides were large. However, this is in contrast with the observations that a single amino acid mutation from a self-peptide could generate a strong adaptive immune response (161; 162; 163).

Since negative selection depends on the expression of self-peptides restricted to host tissues, it is important to understand which and for how long self-peptides are expressed in the thymus [START_REF] Klein | Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see)[END_REF]. The medullary thymic epithelial cells express a specifc gene (AIRE) that enables them to produce thousand of self-peptides. The fact that antigen presenting cells expressing AIRE have been found in secondary lymphoid organs suggests that selftolerance may also be induced outside of the thymus (165; 166).

While the selection in the thymus is thought to be TCR-specific, in chapter 5 we discuss the difficulties in identifying TCR features that can predict whether a given T cell will pass thymic maturation or not. In our study, we analyzed repertoires of TCR sequences at different developmental stages in the thymus, obtained using a marker for activation (Nur77) and a marker for apoptosis (AnnexinV). Using statistical tools, we compared the properties of the respective repertoires and although we identified some differences that discriminate between two populations, no single sequence could be correctly assigned to any sub-repertoire. The smallest differences were observed between mature CD4 or CD8 cells in the spleen and their apoptotic counterparts in the thymus. These quantitative observations seem in contrast with the classical view of thymic maturation as the dominant event in the induction of self-tolerance (5). One possible interpretation is that most of negative selection takes place before the thymocytes reach the single positive stage [START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]. However in our results we observe that the difference between cells that pass positive selection and cells that die by neglect is mainly due to the similarities of the latter to the sub-repertoire of cells preceding selection. Assuming that negative selection happens at this stage would then suggests that T cells are discarded randomly.

Limitations of the sorting strategy due to the potential presence of damaged or dying T cells in the AnnexinV + population, may weaken the selection signal observed. In addition, the large diversity of self-peptides and the need to analyze both α and β chains together could also compromise our ability to identify such features. If binding to a given selfpeptide is possible only with a particular combination of α and β chains, the same β chain sequence could still be found in the promoted TCRs, just paired with a different TCRα.

However, the efficiency of negative selection and the proportion of the self-proteome scanned by each thymocyte during negative selection remains unclear. If we think that each thymocyte should be screened against every self-peptide-MHC, thymocytes probably do not spend enough time in the thymus to ensure encounter with them all [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF]. A first attempt to solve this puzzle calls on collective decision making, suggesting that if a sufficient number of cells are activated, then the collective decision of the "quorum" of cells will ultimately lead to the correct immune response [START_REF] Butler | Quorum sensing allows T cells to discriminate between self and nonself[END_REF]. The "quorum sensing" model allows for the existence of insufficiently trained T cells in the periphery, additionally providing an ecological explanation for the robustness of the response [START_REF] Schrom | Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells[END_REF]. The model also implicitly assumes that cross-reactivity is homogeneous across all TCRs and that the local-site distribution of the peptide-specific T cell clones is almost uniform for all peptides. Other theoretical studies suggest that the presentation of a fraction of the selfproteome could still lead to self-tolerance: implementing laws that distinguish self from non-self, TCRs could potentially "generalize" their incomplete knowledge in the peripheral population. These models rely on the hypothesis that self and non-self peptides belong to similar distributions, which was shown to be the case: statistical differences between self-peptide and pathogen-derived peptides are in fact small (167; 8). However, these observations raise the question of whether we will ever be able to find motifs that can distinguish self-reactive from self-tolerant TCRs. Further studies will probably help to understand the properties that match TCR sequences to cognate peptide-MHCs (57), but limitations will remain in defining what is the target of an entire repertoire.

Another caveat of our experiment is that the Treg population was not sorted out from the CD4 repertoire. Tregs are known to be selected in the thymus according to higher self-reactivity than conventional T cells [START_REF] Li | TCRβ repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition[END_REF]. Despite being a small sub-population of CD4 T cells, Tregs exert an important regulatory role inducing anergy in immune cells, meaning that cells do not react even if the bound TCR-antigen takes place. This process is dynamical and suppresses T cell response or excites it depending on the intensity of the local reactions [START_REF] Wong | A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells[END_REF]. Theoretical studies suggest that the interactions between conventional T cells and Tregs can constitute a local mechanism to inhibit self-reactivity while remaining sensitive towards foreign threats [START_REF] Marsland | Tregs self-organize into a computing ecosystem and implement a sophisticated optimization algorithm for mediating immune response[END_REF]. For these reasons, the function of resident Tregs could explain the "imperfect" selection in the thymus and maybe contaminate our CD4 repertoires [START_REF] Legoux | CD4+ T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion[END_REF]. In general, further investigation is needed to determine if the features that drive Treg fate are the same that drive negative selection of self-reactive TCRs.

In conclusion, the limitations of the analyzed experiment and the underlying complexity of the biological process do not allow for a final statement about the role of thymic maturation. The inefficiency of negative selection, manifested in the lack of discriminability, would be rescued by the existence of additional processes that ensure self-tolerance at the moment of activation in the periphery. Some current theories of self-tolerance rely on combinations of mechanisms other than just removal of self-reactive T cells in the thymus [START_REF] Mora | Towards a quantitative theory of tolerance[END_REF]. Preliminary experiments suggest that advances in the development of artificial tissues and single-cell sequencing could provide more complete thymic datasets, eventually leading to further insights on the complex decision making that controls T cells 7.2 Estimation of entropy and divergence in categorical systems maturation [START_REF] Suo | Mapping the developing human immune system across organs[END_REF]. As it has been argued that positive selection has the potential to introduce biases towards self-reactivity [START_REF] Koncz | Self-mediated positive selection of T cells sets an obstacle to the recognition of nonself[END_REF], it would be useful to concentrate attention on positive selection to establish a benchmark to use later for the study of negative selection. Repertoires of thymocytes from AIRE deficient cohorts could be an interesting candidate [START_REF] Ossart | Breakdown of Immune Tolerance in AIRE-Deficient Rats Induces a Severe Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy-like Autoimmune Disease[END_REF], inhibiting thymic epithelial cells to express self-peptides. Alongside experiments, immunologists will certainly take advantage of additional theoretical models able to mimic the process of selection: using numerical simulations could teach us what is actually learnable from the synthetic sequences and lead to more refined statistical tools. Theoretical efforts should be put into the production of a comprehensive framework able to include all recent theories of self-tolerance. This would help establishing a hierarchy across the involved mechanisms, allowing experimental research to decide which features to focus on and which to neglect.

Estimation of entropy and divergence in categorical systems

In the last years the analysis of TCR repertoires has benefited from tools borrowed from information theoretic measures (42; 59). For the adaptive immune system, a diverse repertoire constitutes an effective protection against unseen threats. To characterize diversity in our repertoires of developing stages in the thymus, in chapter 5 we started considering the distribution of n-grams, short amino acid motifs within the CDR3 sequence of single TCR chains. We verified that our models were sufficient to explain changes in the n-gram diversity derived from the data across stages. The diversity was defined as the Shannon entropy (25) associated to n-gram distributions. Shannon entropy is important to characterize the diversity of complex systems, alongside other quantities such as Simpson diversity indexes [START_REF] Simpson | Measurement of Diversity[END_REF] or Rényi entropies [START_REF] Rényi | On Measures of Entropy and Information[END_REF]. Ours results required to go beyond the naive entropy estimator and were possible thanks to the NSB method [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF], a Bayesian approach based on mixtures of Dirichlet priors (DPM) which ensured convergence for small sample sizes, as in the case of our datasets.

A practical question that remained open was how to estimate the statistical difference between the n-gram distribution of our sub-repertoires. The naive estimation of statistical divergences between large samples generated by our models showed that motifs have the potential to summarize the relations between sub-repertoires. However, this naive estimation could not be extended to the real samples given their small sizes.

Motivated by these results, in chapter 6 we developed a method analogous to NSB for the Kullback-Leibler divergence, the Hellinger distance and extendable to other statistical divergences for categorical systems. Our DPM framework uses mixtures of symmetric Dirichlet priors with a log-uniform condition on the distribution of the a priori expectation of the divergence. We show that when considering synthetic data drawn from Dirichletmultinomial distributions or Markov chain models, our method outperforms all known alternatives in terms of sample sizes required to converge. We performed this analysis with an original software package which collects all discussed methods for the estimation of entropies and divergences of categorical systems.

In general, the problem of the estimation of statistical divergences between arbitrary distributions remains open [START_REF] Zhang | Entropic Statistics: Concept, Estimation, and Application in Machine Learning and Knowledge Extraction[END_REF]. Different approaches have tried to approach the estimation of information theoretic quantities imposing a bound to the bias of the naive estimator (100; 89). To our knowledge these methods have not been extensively tested. However, we show that bias-corrected estimator for the D KL [START_REF] Zhang | Nonparametric Estimation of Küllback-Leibler Divergence[END_REF] has worse performance than our methods for the systems studied in this work.

Real systems typically show power-law rank plot distributions (157; 172), which is not the case for rank plots drawn from a symmetric Dirichlet prior.

The DP and DPM approaches inherit this limitation, which was pointed out for the NSB method for the estimation of the Shannon entropy associated with rank plot distributions with non-exponential tails (105; 103). Archer et al. [START_REF] Archer | Bayesian Entropy Estimation for Countable Discrete Distributions[END_REF] overcame this limitation for the case of the entropy introducing a Pitman-Yor prior on the probabilities [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF], which generalized the Dirichlet prior to fat-tailed rank plot. The extension of the Pitman-Yor prior to statistical divergences is however not straightforward, mainly because there exist no analytic expression for its distribution [START_REF] Ishwaran | Gibbs Sampling Methods for Stick-Breaking Priors[END_REF]. Additionally, the unknown rank ordering of the categories also poses challenges to the introduction of a prior for systems with fattailed rank distributions. The DPM method will probably benefit from further theoretical research on its asymptotic properties, as for the case of the NSB method [START_REF] Nemenman | Coincidences and Estimation of Entropies of Random Variables with Large Cardinalities[END_REF].

The estimation of statistical divergences between categorical systems seems to remain strongly system-dependent, with the choice of the estimation method to be validated case by case. represents the average difference between weights associated to amino acid aa at the given position by P stage models (see Materials and Methods). Analogously with the energy difference, a negative difference implies the feature is favoured in stage 1, vice versa for stage 2. We follow the color scheme from [START_REF] Tubiana | Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins[END_REF] to highlight the charge properties (red for positive charge, blue for negative charge). On the left is shown the weights difference between stages DP pos and DP dbn for the α chain. 
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 31 Figure 3.1: Scheme of the interaction between the T cell and antigen presenting cell. Figure readapted from (35), license by Elsevier and Copyright Clearance Center. (A) The membrane of the T cell is covered by different transmembrane protein, such as the
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 232 Figure3.2: Anatomical representation of the T cells maturation in the thymus. The lymphoid progenitors reach the thymic cortex from the bone marrow and here specialize into thymocytes. In the cortex they find an environment crowded by thymic epithelial cells (cTECs) and other immature T cells. After having differentiated through the double negative stage (DN), the thymocytes start selecting for the two chains of their receptors. At the same time, the DN cells express CD4 and CD8 coreceptors and become double positive T cells (DP). The cells that succeeded in β and α-selection have now generated a functional TCR which enables them to interact with the self-MHC in the surroundings. The DP cells subsequently migrate in the medulla, where they undergo negative selection upon exposure to self-peptides by dendritic cells (DCs) and medullary thymic epitelial cells (mTECs). At the end of the process, the DP cells have already stopped expressing one of the two co-receptors and transitioned to the single positive stage (SP). The naïve T cells that survived all maturation steps are then released into peripheral lymphoid organs. Readapted from Klein et al.[START_REF] Klein | Antigen presentation in the thymus for positive selection and central tolerance induction[END_REF].
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 33 Figure 3.3: Outline of the developmental stages of T cell in the thymus[START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF]. When the lymphoid progenitor enters the thymus, it starts specializing in the cortex. At this point the cell gets to the DN stage (CD4 -CD8 -which means it does not show CD4 and CD8 coreceptors) and the β-selection starts to take place. If the selection succeeds, the thymocyte also recombines its TRA to produce the TCR α chain. In the meanwhile the T cell has expressed both co-receptors and it is said to be at the double positive stage (CD4 + CD8 + ). With a fully productive αβ TCR, the receptor is tested for functionality through positive selection. Subsequently the DP cell migrates to the thymic medulla and, at the time of this passage, it has already started undergoing negative selection. At the end on negative selection, just one between the two co-receptors remains expressed, leaving the thymocyte in the single positive stage (CD4 + or CD8 + ), ready to be released as a naïve T cell. Readapted from Yates et al.[START_REF] Yates | Theories and Quantification of Thymic Selection[END_REF].
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 234 Figure 3.4: Schematic representation of the concept of TCR and antigenic shape spaces.The T cells of an individual constitute a repertoire of functional and self-tolerant TCRs which can be visualized as a set of points on the high dimensional space of possible receptors. Similarly, one can imagine that antigens constitute an independent space of peptide-MHC, mapped to the TCR space according to binding properties. This mapping is known to not be a one-to-one relation, since the same TCR can bind to multiple peptides (cross-reactivity), presumably because these peptides are "close", in the sense that they share certain biochemical properties. Each TCR from the repertoire is thus associated to the ball of peptides it recognizes, in principle covering the antigenic space avoiding self-peptides. Conversely, the TCR shape space should presents "holes" in the position of self-reactive TCRs.
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 2135 Figure 3.5: Schematic representation of high throughput repertoire sequencing. The mRNA strains from the selected cell are collected in bulk eliminating the cell membrane.Each sequence of transcribed cDNA is associated to a unique molecular identifier (UMI) before being replicated with various rounds of PCR amplification. The resulting sequences are then collected into machines that use libraries of primers to bind to the strand and return the read of nucleotide bases. Reads with the same UMI are collapsed into a single one and they are associated to a read count. Different UMI with the same collapsed sequence return the UMI count of the given nucleotide read.

29 4. 3
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 41 Figure 4.1: Comparison between the discussed methods for the estimation of the Shannon entropy for categorical systems with K = 8000. A. We generate a probability mass function according to a stick-breaking process (102) (concentration parameter α, discount parameter d, we refer to (103) for further details). The associated rank plot is here represented. B. Rank plot for a different choice of the process parameters. C. We generate a large sample of size 100 × K according to the distribution in Fig. 4.1A and we subsample it at different sizes N . For each subsample we estimate the Shannon entropy according to the method discussed in this section (M.-M. short for Miller-Madow, S.-G. for Shurmann-Grassberger). Here are shown the average results over 10 repetitions. The dashed line represents the exact value and the region highlighted in yellow correspond to a relative error of ±1%. D. Analogous estimation of Fig. 4.1C, but with the probability mass function chosen equal to Fig. 4.1B.
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 42 Figure 4.2:An example of a decision tree. We can assign a class to each T cell thanks to a series of yes/no questions, which constitute the branches of our decision tree. The T cell class is given by the leaves of the tree, i.e. the endpoints of such a questionnaire.
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 43 Figure 4.3: Example of two recombination scenarios producing the same TCRα read. A. The nucleotide read (in yellow) is centered around the CDR3α, which is the region contained between the conserved amino acid positions C and F, respectively the cysteine and phenylalanine. A possible VJ recombination scenario for its generation includes V =TRAV7-2 (with delV = 4 deletions), J =TRAJ23 (delJ = 10) and insVJ = 16 nucleotide inserted at the junction. B. The same nucleotide read could have been produced by a different scenario, V =TRAV7D-2, delV = 5, J =TRAJ23, delJ = 2 and insVJ = 10. However, in such a scenario we are allowing for two mismatches (in green) which we assume are due to sequencing errors. Readapted from Murugan et al. (20).
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 44 Figure 4.4: Workflow of the SONIA model. A. We separate the nucleotide sequences from in our data into productive and nonproductive sequences. Since nonproductive sequences do not have selection biases, they can be used to infer the generation model P (nt) gen . This is done with sing the IGoR software. Productive sequences instead translate into amino acid sequences and are not free from selection effects. We use them to learn the selection model E post with the SONIA software, which matches the statistics of the productive data with synthetic productive sequences (generated using the OLGA software), weighted by the term exp -E post . B. Each amino acid sequence a is associated to its post-selection probability P post (a) computing P (aa) gen (a) with OLGA, E post (a) with SONIA and multilying the two. Readapted from Sethna et al. (24).

  .72) where ζ and { (f ) } f are Lagrange multipliers, with ζ = log Z -1 ensuring normalization. Seeking for post-selection distribution P post = arg min P L[P ], we obtain P post (a) = 1 Z e -Epost(a) P (aa) gen (a),
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 51 Figure 5.1: Experiment outline and repertoire sampling. (A) Flow cytometry scatterplots of T cell population from the thymus according to the markers CD4 and CD8. (B) The DP population is separated from DN according to CD3 expression (insert). Cells are then FACS sorted according to the expression of Nur77 and AnnexinV. (C) CD4 cells in the spleen (above) and CD8 (below) are FACS sorted according to the expression of CD3 and AnnexinV. (D) Schematic evolution of the sampled cell types during thymic maturation. (E) Analysis workflow: annotated reads in sampled repertoires are input for model inference (see Materials and Methods). Out-of-frame TCR sequences are pooled from all mice and stages to learn a generation model. In-frame sequences are used to learn maturation stage specific selection models with the generation model as background.
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 5253 Figure 5.2: Properties of the α chain sequence (the analogous plot for the β chain is showed in Fig. A2). The color code is common to all subplots. (A) TRAV gene distribution at different maturation stages compared to the pre-selection model distribution P gen (see Fig. A3A for TRAJ). Only the most frequent according to the P gen model are reported. Errorbars correspond to the empirical standard deviation across the three different mice. (B) CDR3 length distribution of TCRα sequences. The errors associated with mouse variability are minor and illustrated via the shaded curves. See Fig. A4A for individual curves. The dashed line is the average CDR3 length from the P gen model. Standard deviations of the average length distributions are shown at right. (C) Distribution of the most frequent amino acids at different maturation stages. The counts correspond to the number of observations within the CDR3 (i.e. excluding the first two and the last positions), summed for all the sequences in the subpopulation. Error bars represent the empirical standard deviation across mice. (D) Principal component analysis of the TRAV gene distribution at each maturation stage. Insert: projection on the principal axis of the five most abundant TRAV genes (see Materials and Methods). Analogous results for TRAJ are shown in Fig. A3C.
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 54 Figure 5.4: n-gram frequency discriminates between repertoires. (A) n-gram definition. We count how many times n-gram amino acid subsequences are seen in the CDR3 across a repertoire. (B) Shannon entropy S of the n-gram distributions normalized by n for the maturation stages. The entropy is estimated with the Nemenmann-Shafee-Bialek (26) estimator and it is expressed in bits. The error on the estimated Shannon entropy from data is estimated from the sequencing error (see Materials and Methods). (C) Clustering according to Jensen-Shannon divergence between the 3-gram distributions computed from the selection model P stage on synthetic repertoires. Dendrogram are computed with the Ward method (see Materials and Methods). (D) Clustering based on Jensen-Shannon divergence for the full P stage selection model using P stage .
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 55 Figure 5.5: Density scatter-plots of TCRα sequences comparing the selection energies learnt at two different stages. (A) Synthetic example of soft discrimination between "short" and "long" CDR3, where sequences are randomly assigned into either of the two populations with a bias that depends on their CDR3 length. The density scatter plot shows a clear anti-correlation between the selection energies learnt from these two populations. Yet, sequence classification is imprecise, as quantified by the low AUC=0.57. The parameters chosen for the filter in this example are L 0 = 13 and h = 2. (B) Synthetic example of soft discrimination between "low" and "high hydrophobic" CDR3 showing clear anti-correlation between these two populations. Sequence classification is again poor AUC=0.60. The parameters chosen for the filter on the hydrophobic index u in this example are u 0 0.2 (the median value over a set of P gen -distributed sequences) and h = 1. (C) The differential enrichment parameter of each TCR calculated according to P DP dbn model is plotted against the energy calculated against the P DP pos model. To correct for bias imposed by the TCRα generation process, the DP pre energy, which encodes background selection common to both stages, is subtracted. The black line is the direction of the major eigenvector of the dots moments matrix. The value r reported in each plot is the Pearson's correlation coefficient (see Materials and Methods). (D) Differential enrichment parameter according to CD4 spl and CD8 spl models, relative to DP pos. (E) Differential enrichment parameter according to CD4 spl and CDd apo models, relative to DP pos. (F) Differential enrichment parameter according to CD8 spl and CD8 apo models, relative to DP pos.
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 61 Figure 6.1: Schematic representation of the Bayesian approach for the inference of the Kullback-Leibler divergence. Given two independent samples n and m of categorical data, we model the true distribution q and t as drawn from a mixture of Dirichlet distribution with unknown concentration parameters α and β. The DPM estimation of the D KL is then obtained by averaging over all values of these parameters, weighted by the likelihood of the samples n and m (multinomial distributions).
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 2 Resultsthis prior into Eq. 6.2 and 6.3 gives:D KL |n, m = = 1 Z dαdβ P (n|α) P (m|β) ρ(α, β) D KL |n, m; α, β ,(6.8)withP (n|α) = dq Mult(n|q) Dir(q|α) = B(n + α) B(α)B(n + 1)(6.9)and likewise for P (m|β). The normalization now reads Z = dαdβ P (n, m|α, β).(6.10) 
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 62 Figure 6.2: Dependency on the concentration parameters α and β of the two main factors appearing in the average performed by the DPM estimator (Eq. 6.8): the posterior ∝ P (n|α) P (m|β) ρ(α, β), and the expected value D KL |n, m; α, β . For reasons of accuracy, integrals are numerically computed in logarithmic space, so that it's more informative to introduce the posterior density in log α and log β, so that we define: L DPM (α, β) ≡ log 10 P (n|α)P (m|β)ρ(log α, log β). We compare it with the log-likelihoods L DP (α) ≡ P (n|α) and L DP (β) ≡ P (m|β) in the left and bottom subplots. The central panel shows the relative error associated to D KL |n, m; α, β as a function of the two concentration parameters α and β. The samples n and m of sizes N = M = 1 4 K were generated from two distinct Dirichlet-multinomial processes with concentration parameters α true = 1.0 and β true = 1.0 with K = 400 (black star on the central panel). The dashed black line corresponds to 0 error. Blue cross: maximum of L DP (α) + L DP (β). Red circle: maximum of L DPM (α, β). Red lines are standard deviations associated to L DPM around its maximum.
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 63 Figure 6.3: A. Average rank-frequency plots for probabilities drawn from a Dirichlet prior Dir(q|α) for different choices of concentration parameters α. B. Expected values of the cross-entropy H|β and the entropy S|α under Dirichlet priors as functions of the concentration parameters. C. Expected value of the D KL divergence under Dirichlet priors D KL |α, β as a function of the two concentration parameters. D. Log-metaprior log 10 ρ(α, β) as a function of the two concentration parameters. Dashed black line represents the level D KL |α, β = log K. K = 20 2 for all plots.

  with ρ(α, β) = |∂ α A| |∂ β B| ρ AB (A(α), B(β)). (6.16) 
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 64 Figure 6.4: Convergence of the D KL estimates for increasing sample sizes. A. We draw two independent histograms from Dirichlet-multinomial distributions with parameters α and β. We obtain subsamples of different sizes N = M and we estimate the D KL divergence for each of them. We compare the DP and DPM results to those obtained with the known alternative estimators (Table1and Eq. 6.20), as a function of N/K. Here we plot the average over 100 repetitions for concentration parameters α = β = 1 and K = 202 . The highlighted region in yellow corresponds to an error of ±5% relative to the average true value, represented by the dashed black line. B. Convergence of D KL estimators for different (log-spaced) concentration parameters α, β. We plot the N * /K score for the size at which the best between the DP and DPM estimators reach the true value up to a relative error of ±5% (highlighted region in A). Lower N * /K scores correspond to faster converge of the estimator. C. The method with the best convergence score among the alternative methods is represented (first letter of its name). A dash symbol "-" indicates that no alternative has a score N * /K < 50. The DP and DPM estimators shows faster convergence compared to all other methods for all parameters.

  2.2 we observe that D KL |n, m, α, β → D (Z) KL in the limit α → 0, β → 1, N K and M K. Comparing the convergence of the different estimators to the true D KL value as a 6.2 Results function of the subsample size N/K for α = β = 1 and K = 20 2 (Fig 6.
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 65 Figure 6.5: A. Schematic representation of the generation process of a L = 3-gram using a Markov chain with 20 states. B. We generate a random Markov matrix and draw a sample of 2 • 10 8 independent L-grams, for L = 2, 3, 4. The Shannon entropy S (L)(Eq. 6.21) estimated with the NSB method (26) for sub-samples of size N , averaged over 30 repetitions normalized by the true value of the entropy and rescaled by the asymptotic value. The highlighted yellow region corresponds to a ±5% error range with respect to the average true value (dashed black line). C. D KL estimate and its standard deviation as a function of relative subsample size N/K, for K = 20 2 , 20 3 , 204 . For K = 20 2 , the DP and DPM estimators perform comparably to the best alternative ("Jeffreys" for all K), while they work better for larger K. The error bars represent the average posterior standard deviation of the D KL estimate associated to the DPM method. The red shade is the standard deviation of the DPM D KL estimates across the repetitions.
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 66 Figure 6.6: Squared Hellinger divergence convergence. A. Convergence score N * /K of the DP and DPM D 2H estimators, tested on the same synthetic data as in Fig.6.4B. We consider 100 pairs of histograms drawn from Dirichlet-multinomial process with α and β concentration parameters. B. We compare to the score of the best alternative method to the DP and DPM, chosen as pseudo-count estimators with pseudo-count given by Table1. These alternative methods perform worse for all values of the parameters. C. Convergence of the DP and DPM D 2 H estimators tested on the same Markov datasets as in Fig.6.5C for different sub-sample sizes N . Each repetition is normalized by its true value, averaged and then rescaled by the asymptotic value (average of the true values). Red shade: the standard deviation across repetitions.
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 A1A2A3 Figure A1: Summary of the RepSeq datasets. (A) Number of reads for the alpha chain vs the number for the beta chain within the same dataset. In the box is shown the Pearson correlation coefficient. Distribution of iNKT clonotypes for the α chain. (B) The relative amount of (TRAV11, TRAJ18) clonotypes is significantly higher for all CD4 stages in all mice. (C) Numbers of unique productive (in-frame and with no stopping codons) single chain obtained for the maturation stages in each mouse after annotation for the α chain. (D) Numbers of unique productive for the β chain.
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 A99715A1099A12A13 Figure A5: AUC scores for the pooled βdatasets and for an individual mouse. (A) AUC values computed from the ROC curves of the linear classifiers for TCRβ sequences between pairs of maturation stages. The training/testing set is a random subsample containing 70%/30% of the full dataset at a given maturation stage. (B) Illustration of the improvements of group discriminability between the stafes CD4 spl and CD4 apo. (C) AUC values computed from the ROC curves of the linear classifiers for TCR sequences for the unpooled largest dataset for an individual (mouse 3). We observe that the score is never higher than for the pooled case and in fact it's tipically worse for the α chain. (D) Analogous for the β chain.

101 AFigure A14 :

 101A14 FigureA14: Hydrophobic score at different stages and AUC scores of classifiers on hydrophobic features. (A) We measure the increase of hydrophobicity from the generation benchmark using a stage-wide score defined from the inferred P stage models (see Materials and Methods, Eq. 5.4). As a control, we compute the same quantity over a set of models learnt on P gen -generated repertoires of the same sizes (in blue). The score is showed at the various stages for the α chain. We observe a clear increase from DP pre to DP pos and a subsequent decrease for the single positive sets, in agreement with the role of positive and negative selection. (B) Analogous analysis for the β chain. In this case we also observe AnnexinV+ sets with a higher score than the spleen sets. (C) AUC scores computed from the ROC curves of the logisitc regression classifiers learnt over an empirical hydrophobic index of the α repertoires (see Materials and Methods, Eq. 5.5). (D) AUC scores for the classifiers on on hydrophobic features for the β chain.
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 A15 Figure A15: Differential increments scatterplots for all pairs of stages. The differential enrichement parameters assigned by the stage specific selection models relative to the the preceding stage (i.e. energy differences from DP pre or DP pos). Each dot represents one of the 3 • 10 6 synthetic sequences generated according to the generation model P gen , here shown according to a dot density plot. Each figure uses the same set of synthetic sequences. (A) Density scatterplots of the energy differences between the energies of the TCRα models and the energy of DP pre. (B) Density scatterplots for TCRα where DP pos energy is subtracted instead. (C) Density scatterplots for TCRβ where DP pre energy is subtracted. (D) Density scatterplots for TCRβ where DP pos energy is subtracted.

Table 1 :

 1 . Cells were analyzed using FlowJo (Tree Star) software. Cell sorting based on fluorochrome-labeled mouse antibodies.

	Sample\Marker CD4 CD8 CD3 AnnexinV Nur77
	DP pre	+	+	+	-	-
	DP pos	+	+	+	-	+
	DP dbn	+	+	+	+	-
	CD4 apo	+	-	+	+	
	CD8 apo	-	+	+	+	

Table 1 :

 1 Biological abbreviations.

		AutoImmune REgulator
	APC	Antigen Presenting Cell
	cDNA	complementary DNA
	CDR3	Complementary Determining Region 3
	DC	Dendritic Cell
	DN	Double Negative thymocyte
	DP	Double Positive thymocyte
	HLA	Human Leukocyte Antigen
	MHC	Major Histocompatibility Complex
	mRNA messenger RNA
	mTEC medullary Thymic Epithelial Cell
	NKT	Natural Killer T cell
	pMHC peptide and MHC molecule
	RepSeq Repertoire Sequencing
	SP	Single Positive thymocyte
	TCR	T Cell Receptor
	TdT	Terminal deoxynucleotidyl Transferase
	TRA	T cell Receptor α gene locus
	TRB	T cell Receptor β gene locus
	Treg	regulatory T cell
		AUC Area Under the Curve
		DP	Dirichlet Prior
		DPM Dirichlet Prior Mixture
		EM	Expectation Maximization
		ML	Maximum Likelihood
		NSB Nemenman-Shafee-Bialek
		ROC Receiver-Operator Curve

Table 2 :

 2 Mathematical glossary.

The CDR3 region is easily recognizable thanks to the conserved amino acid at the edges: a cystein (C) at the beginning (in the region coded by the V gene) and a phenylalanine (F) at the end (within the J region).

The state of induced tolerance in T cells is usually referred to as anergy, a sort of quiescent transitory state where the T cells does not activate even if the TCR is binding to its cognate antigen.

Tregs were first discovered in 1995 by Shimon Sakaguchi[START_REF] Sakaguchi | Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[END_REF].

The quorum sensing idea is inspired from the Condorcet's jury theorem[START_REF] Jandc | Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix[END_REF]. If a group has to make a decision according to a quorum where each vote is for the correct decision with a probability p, increasing the number of voters is beneficial to reach a correct decision if p >[START_REF] Hozumi | Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions[END_REF] 2 .

In physics, an emerging property denotes a phenomenon that arises from the interplay among various components of a system and is not readily foreseeable based on the actions of its individual constituents, instead it is a novel property that emerges from their collective behavior.

Bayesian statistics (and actually the Bayes rule itself) is largely due to Pierre-Simon Laplace who developed the theory at the end of the 18th century(84).

This rule is used in Laplace popular "sunrise problem", which estimates the probability of the sun rising tomorrow given that it has already risen N times. The model being a Bernoulli distribution (the sun rises or not, hence K = 2), the solutions in Eq. 4.40 says that it will rise with probability (N + 1)/(N + 2).

The analytical expression of the evidence comes from conjugacy as the normalization of Dir(q|α)P (n|q) ∝ Dir(q|n + α).

Here the term "regression" is maintained for historical reasons, even if it is a classification task.

It has been estimated that a typical CDR3β is compatible with ∼30 recombination scenarios[START_REF] Murugan | Statistical inference of the generation probability of T-cell receptors from sequence repertoires[END_REF].

In order to treat the length as a boolean variable, we define a finite set of possible lengths (e.g. {1, . . . , 30}) and only the feature corresponding to the given CDR3 is set to 1.
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Appendix 1.1. Supplementary figures for Chapter 5

This section contains the "Supplementary Figures" to the published paper [START_REF] Camaglia | Quantifying changes in the T cell receptor repertoire during thymic development[END_REF]:

• Francesco Camaglia, Arie Ryvkin, Erez Greenstein, Shlomit Reich-Zeliger, Benny Chain, Thierry Mora, Aleksandra Walczak and Nir Friedman, 2023. Quantifying changes in the T cell receptor repertoire during thymic development. eLife 12, e81622. The main text of the paper is reported in chapter 5. The supplementary tables are available online at the following links: Table S1 and Table S2. The errorbars are estimated with the NSB method, while the shaded curve represent the sequencing error. We notice how the difference between the different choices is greatly covered by the sequencing error. We prefer then to use all CDR3 lengths for the higher statistics. (D) Analogous for the β chain.
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Supplementary information for Chapter 6

This section contains the "Supplementary information" to the pre-print (29):

• Francesco Camaglia, Ilya nemenman, Thierry Mora, Aleksandra Walczak and Nir Friedman, 2023. Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors. arXiv:2307.0420. The main text of the paper is reported in chapter 6.

A.2.1 Mathematical relations

We first introduce mathematical relations and notations that are used for the computation of the DP and DPM estimators for D KL and D H 2 .

Wolpert-Wolf integrals

Given a vector x = {x i } K i=1 , where x i ∈ (0, ∞) for all i = 1, . . . , K, where K is a finite number of categories, the Wolpert-Wolf (174) integral is a multivariate Beta function

where X = i x i and the function Γ is the Euler Gamma function Γ(x) = ∞ 0 dt e -t t x-1 . All Bayesian calculations with multinomial likelihoods and multivariate Dirichlet priors involve the integral:

where the f i are regular functions, L is the Laplace transform in q (which is a function of s) and L -1 is the inverse Laplace transform (which is a function of q ).

Partial derivative operation

The "partial derivative operator" for the i-th dimension

where the function ψ is the polygamma function of order 0. The polygamma function of order is defined as

In order to simplify the calculations, we define the following quantities related to the Appendix 104 partial derivative operation (Eq. A.3):

where we make use of the contraction ∆ψ(z 1 , z 2 ) = ψ(z 1 )-ψ(z 2 ). Iterating this derivation on the function B, one can express the double derivatives as follows:

where the derivative

Shift Operation

The "shift operator" e λ∂ i of parameter λ ∈ R for the i-th dimension acts on the function B as follows:

where i = {δ ij } K j=1 indicates the i-th versor in the K-dimensional space of categories, with the condition x i + λ > 0. The function B (z 1 , z 2 ) is the regular (two-dimensional) Beta function :

When λ = n ∈ N + , the shift simplifies to

as an immediate consequence of the recurrence relation Γ(x + 1) = xΓ(x). Similarly to the case of partial derivatives, we introduce a class of functions to deal with the shift:

from which we compute two-dimensional shifts

Composed operations

For the sake of this work, another useful class of functions are the first order derivatives of the functions Ω defined as

and, for the two-dimensional shift,

Similarly for the second order derivatives:

and

Using all these definitions, we compute the following quantities:

which are used to reconstruct all estimators presented in this work.
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A priori and a posteriori expected values

The operations presented in the previous sections are used compute the posterior expected values F (q, t)|n, m; α, β for all the functions that can be expressed as :

Since the concentration parameters α, β are independent, for fixed concentration parameters the expected value of F factorizes:

with

For all functions f i that can be expressed in terms of partial derivative (Eq. A.3) and/or shift operators (Eq. A.7), a factor B(n + α) appears and the expected value is obtained explicitly simplifying the constant factors. Specifically:

and

The a priori expected values are computed in the same way, noticing that f j |α = f j |n = 0; α .
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KL divergence estimation

We can use the previous results to compute the a posteriori expected value for the D KL . We start by computing the a posteriori expected value for the crossentropy H which is given by

where we took advantage of independence and used the relations Eq. A. [START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF] 

Squared KL divergence estimation

In order to compute the posterior standard deviation of the Kullback-Leibler divergence estimator, we calculate the expected value of the squared KL divergence:

Similarly to the case of D KL , we can compute explicitly

which requires to rewrite q i q j log q i t i log q j t j = q i q j log q i log q j -2q i q j log q i log t j + q i q j log t i log t j .

(A.33)

The explicit expression computed using Wolpert-Wolf properties (Eqs. A. 

where we have introduced the following notation to contract the expression:

The factor (i ↔ j) means taking the term that it multiplies with inverted indexes i and j.

A.2.2 Zhang-Grabchak divergence estimator

In Ref. [START_REF] Zhang | Nonparametric Estimation of Küllback-Leibler Divergence[END_REF] Zhang and Grabchak proposed an estimator for the Kullback-Leibler divergence, defined as:

where v and s are dummy variables.

Expression of the Z-estimator

Schurmann (151) has shown that, in the entropy term of Eq. A.35, the summation in v of the i-th element can actually be expressed in a more concise way as

times a factor n i /N . The sum of these terms returns the Shurman-Grassberger entropy estimator S SG = i=1 n i N ∆ψ(N, n i ) (100). If we simply plug N = M + 1 and n i = m i + 1 in Eq. A.36, we can show that the analogous i-th crossentropy term in Eq. A.35 is equal to the following:

Finally, if we substitute Eq. A.36 and A.37 in Eq. A.35, we obtain:

which is the expression in Eq. 6.20 of the main text.

A.2 Supplementary information for Chapter 6

Relation between the DP and the Z estimator

The Z-estimator can be expressed as an a posteriori expected value of the D KL at α = 0 and β = 1, up to an additive constant. We start by showing the following relation

which makes use of the fact that ψ(x + 1) = ψ(x) + 1 x . Considering now the crossentropy term with β = 1, and performing the same limit as before, we observe that

where we used the fact that ∆ψ(x, x) = ψ(x)-ψ(x) = 0 to add the term ∆ψ(M +1, M +1) in the sum.

Recognizing the two terms in Eq. A.38 we subtract Eq. A. 

A.2.3 The DPM squared Hellinger divergence estimator

We compute the DPM estimator for the squared Hellinger divergence D 2 H (Eq. 6.23). We do so by starting from the Bhattacharyya coefficient BC ( 175)

Its a priori expected value under the assumption of the prior

is equal to :

where we used the shift property (Eq. A.7) with parameter λ = 1 2 . Following the derivation of the D KL in the main text, we choose a metaprior ρ H (α, β) to control the a priori squared

, which is a function g : R → [0, 1). Using a similar Ansatz of the one in the main text, we obtain ρ

H |α, β ), where the condition in Eq. A.45 imposes

We choose ρ H (z) to be log-uniform. Finally, knowing that the calculation for the posterior expected squared Hellinger divergence is analogous to the a priori expectation, we obtain the DPM squared Hellinger estimator in Eq. 6.24 and 6.25.

A.2.4 Numerical implementation

Computations with multiplicities

In the low sampling regime (sparse data), there is a limited number of values the counts can take, which means that many categories will see the same pairs of values x i = (n i , m i ). To reduce the computational cost associated to summation over the K categories, we introduce a set of "multiplicities" (149) contained in the vector ν x , where each entry is the number of instances that appear n times in the first sample and m in the second. Since by construction the dimension of ν x ≤ K, we expressed all summation in terms of the multiplicities vector. Given a function of the two counts f , the sum over all categories is:

where the last sum runs over the ensemble of distinct pairs of observed counts. In the case of double sums (e.g. for D 2 KL ), one needs to re-express the function as:

where f and f ⊥ is the function f for i = j and i = j. The summation over the terms in δ ij is calculated as before, and the double summation is

These formulas allow us to exploit vectorial expressions in the numerical calculations.

Numerical integrations

Similarly to Ref. [START_REF] Nemenman | Coincidences and Estimation of Entropies of Random Variables with Large Cardinalities[END_REF], to compute numerically the quantities D KL |n, m (Eq. 6.8) and D KL 2 |n, m (Eq. A.31), we first seek for the maximum (α * , β * ) of the quantity L(α, β) (see Fig. 6.2 for further details). For accuracy, we perform this computation in logarithmic space of log α and log β. Rescaling L(α, β) by its maximum, integrands are O(1) for (α, β) ∼ (α * , β * ). To find the maximum of the log-evidence (minimum of the 111 A.2 Supplementary information for Chapter 6 opposite), we use the "Limited-memory BFGS" optimization algorithm as coded in the function "minimize", module optimize of the Python package scipy (version 1.7.3). We evaluate the integrals using the trapezoidal rule. From the Hessian at the maximum of the log-evidence, we compute the standard deviation in the α and the β-direction as if the posterior was Gaussian. We use this standard deviation to pick a range of parameters spanning 3 standard deviations on both sides of the maximum. We heuristically chose the number of bins within the ranges for the integration, to be equal to 10 K 

A.2.5 Code availability

The software for the DP, DPM and alternative estimators of the Kullback-Leibler and the Hellinger divergence presented in this article are collected in a Python package which can be found in the repository at https://github.com/statbiophys/catede. In addition, the package provides a Python version for the NSB entropy estimator [START_REF] Nemenman | Entropy and Inference, Revisited[END_REF], and a NSB estimator for the Simpson index [START_REF] Simpson | Measurement of Diversity[END_REF]. Appendix 112
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This section contains the "Supplementary figures" to the pre-print (29):

• Francesco Camaglia, Ilya nemenman, Thierry Mora, Aleksandra Walczak and Nir Friedman, 2023. Bayesian estimation of the Kullback-Leibler divergence for categorical sytems using mixtures of Dirichlet priors. arXiv:2307.0420. The main text of the paper is reported in chapter 6. 

MOTS CLÉS

maturation dans le thymus, tolérance au soi, inférence statistique, divergence de Kullback-Leibler, données catégorielles RÉSUMÉ Le système immunitaire adaptatif offre un mécanisme de défense hautement complexe contre les pathogènes. Un rôle clé dans ce processus est joué par les cellules T, des lymphocytes capables d'identifier les fragments de protéines d'origine étrangère grâce à leur unique récepteur (TCR). Après la génération stochastique de leur TCR, les cellules T sont éliminées dans le thymus en fonction de leurs propriétés de liaison aux peptides du soi, si celles-ci sont trop faibles ou trop fortes. Cependant, l'impact de la sélection thymique sur le répertoire des TCR reste mal compris. Nous utilisons des souris Nur77 pour obtenir des séquences de répertoire à haut débit des thymocytes pour différentes étapes de développement que nous utilisons pour déduire des modèles statistiques. Nous ne trouvons aucune preuve de caractéristiques de séquences uniques supprimées. Combinés aux biais observés au niveau du répertoire, ces résultats suggèrent que la discrimination entre soi et non-soi est davantage une propriété émergente qu'une caractéristique des TCR individuels.

Dans le contexte de l'analyse de systèmes catégoriques, une mesure importante pour évaluer les différences entre les systèmes est fournie par les divergences statistiques. Nous développons une approche bayésienne pour une telle tâche en utilisant des distributions de probabilitté symétriques de Dirichlet, qui montrent de meilleures performances que d'autres estimateurs lorsqu'ils sont testés sur des données générées avec des processus Dirichlet-multinomiaux ou sur des sequences de lettres aléatoires générées par de chaînes de Markov.

ABSTRACT

The adaptive immune system provides a highly complex mechanism of defence against pathogens. A leading role in this process is played by T cells, which are lymphocytes able to identify protein fragments of foreign origin through their unique receptor (TCR). After the stochastic generation of their TCR, T cells are discarded in the thymus according to their binding properties to self-peptides, if they are too weak or too strong. However, the impact of thymic selection on the TCR repertoire is poorly understood. We use Nur77-mice to obtain high-throughput repertoire sequences of thymic T cells for different developmental stages which we use to infer statistical models and we find no evidence for suppressed single-sequence features. Combined with the observed biases at the repertoire level, these results suggests that self non-self discrimination is more of an emerging property, rather than a feature of single TCRs. In the context of the analysis of categorical systems, an important measure to assess differences between systems is provided by statistical divergences. We develop a Bayesian approach for such a task making use of symmetric Dirichlet priors, which shows better performances than other considered estimators when tested on data generated with Dirichlet-multinomial processes or as random strings of letters from Markov chains. KEYWORDS thymic maturation, self-tolerance, statistical inference, Kullback-Leibler divergence, categorical data