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ABSTRACT

The increasing proliferation of Wireless Fidelity (WiFi) and Bluetooth
Low Energy (BLE) networked devices broadcasting over-the-air unencrypted
public packets has raised growing concerns regarding users’ privacy. Such
public packets consist of management frames, like probe-requests and bea-
cons, necessary for devices to discover available wireless networks and en-
hance user experience. Revealing the MAC address of a device through
public packets allows adversaries to follow the device and do behavioral pro-
filing. Modern devices periodically change/randomize their advertised MAC
addresses. Nevertheless, attacks on MAC address randomization have been
carried out, demonstrating that randomized addresses from a device can be
associated with as little information as the timestamps of their advertised
public packets.

In this thesis, we identify key flaws that lead to the MAC association.
To measure the severity of identified flaws by looking at the performance of
current MAC association attacks, we need large-scale traces of public packets
with ”ground truth” information regarding randomized addresses from the
same device. We assert the flaws by employing our proposed simulation
framework to generate large-scale WiFi and BLE passive sniffing traces. We
reveal that current device randomization is ineffective and needs revision.

In addition to key flaws identifications, we address the unreliability of
existing association frameworks with respective trace collection scenarios to
understand the factors contributing to variable association performance. We
conduct case studies and introduce benchmarks for evaluating the perfor-
mance of any association framework. We show the need for a new and effec-
tive WiFi MAC association framework, and finally, we develop and bench-
mark a novel association framework to determine its expected performance
with any new input probe-request dataset.

Once achieving effective MAC association, we reveal the inference of user
locations from passively sniffed probe-requests. In this thesis, we identify the
limitations of the Received Signal Strength Indicator (RSSI) in accurately
inferring user trajectories as a series of timestamped locations due to its high
variability. Considering this, we propose a novel concept called ”bounded
trajectories.” Bounded trajectory refers to an area where a particular user
is probable to be present across time. We analyze and model the errors
associated with radial-distance estimation to derive bounded trajectories
that offer high inclusiveness of users’ actual trajectory and narrow width
throughout its course.



RÉSUMÉ

La prolifération croissante des dispositifs réseau WiFi (Wireless Fidelity) et
Bluetooth Low Energy (BLE) diffusant des paquets publics non chiffrés par
voie hertzienne a suscité de plus en plus de préoccupations concernant la con-
fidentialité des utilisateurs. Ces paquets publics se composent de trames de
gestion, telles que les trames probe-requests et les trames beacons, nécessaires
aux appareils pour découvrir les réseaux sans fil disponibles et améliorer
l’expérience utilisateur. La révélation de l’adresse MAC d’un appareil à
travers les paquets publics permet de suivre l’appareil et de réaliser un pro-
filage comportemental.

Les appareils modernes changent périodiquement leur adresse MAC an-
noncée, de manière aléatoire (randomization). Néanmoins, des attaques
contre la randomisation des adresses MAC ont été menées, démontrant que
des adresses aléatoires provenant d’un appareil peuvent être associées avec
aussi peu d’informations que les horodatages de leurs paquets publics. Des
vulnérabilités ont été découvertes dans les champs d’information des pa-
quets qui pourraient révéler des informations privées sur l’utilisateur, telles
que la détection de la langue des SSID WiFi diffusés et même des aspects
sociologiques des personnes, comme la nationalité, l’âge et le statut socio-
économique. L’état de l’écran allumé/éteint du smartphone peut être clas-
sifié en utilisant les motifs des sondes WiFi. De même, en utilisant les balises
BLE, montre que le profilage de l’utilisateur, le détournement des balises,
l’inférence de présence et même le harcèlement de l’utilisateur sont possibles.

Dans cette thèse, nous identifions les principales failles qui peuvent con-
duire à l’association des adresses MAC. Afin de mesurer la gravité des
failles identifiées en examinant les performances des frameworks d’attaques
d’association MAC existantes, nous avons besoin de traces d’écoute passive
à grande échelle des paquets publics avec une ”vérité terrain” concernant
les adresses aléatoires générés par le même équipement. Finalement, nous
mettons en évidence ces défauts et en proposons un outil de simulation pour
générer des traces d’écoute passive WiFi et BLE à grande échelle. Nous
révélons que la randomisation actuelle des appareils n’est pas suffisamment
efficace et doit être révisée.

En plus de l’identification des failles clés, nous abordons l’imprécision des
frameworks d’association existants avec des scénarios de collecte de traces
respectifs pour comprendre les facteurs contribuant aux performances de
l’association. Nous avons mené des études de cas afin d’en tirer des bench-
marks pour évaluer les performances de tout framework d’association. Fi-
nalement, nous proposons et évaluons un nouveau framework d’association
afin de déterminer ses performances attendues avec divers ensemble de traces
en entrée.
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Une fois l’association MAC obtenue, nous révélons l’inférence des em-
placements des utilisateurs à partir des trames probe-requests captées pas-
sivement. Nous identifions les limites de l’indicateur de force du signal reçu
(RSSI) dans l’inférence précise des trajectoires des utilisateurs en raison de
sa grande variabilité. En tenant compte de cela, nous proposons un nouveau
concept appelé ”trajectoires bornées”. Une trajectoire bornée désigne une
zone où un utilisateur particulier est probablement présent dans le temps.
Nous analysons et modélisons les erreurs associées à l’estimation de la dis-
tance radiale pour déduire des trajectoires bornées qui offrent une grande
inclusivité de la trajectoire réelle des utilisateurs et une largeur suffisamment
étroite tout au long de son parcours.

Après une association MAC réussie, de nouvelles opportunités pour tirer
des informations précieuses à partir de paquets publics deviennent disponibles.
Une inférence très recherchée implique l’extraction d’informations sur la
mobilité des utilisateurs par le biais de la surveillance passive des données
réseau. En utilisant des dispositifs de reniflage grand public tels que le Rasp-
berry Pi, il est possible de capturer des paquets publics à grande échelle.
Par exemple, en déduisant les emplacements des utilisateurs et, finalement,
leurs trajectoires à partir des demandes de sondage WiFi, des applications
précieuses peuvent être trouvées dans divers domaines tels que l’utilisation
de l’espace urbain dans la prévention des épidémies, la réponse aux catas-
trophes, et l’activité socio-économique.
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Chapter 1

Introduction

Contents

1.1 Thesis Challenges . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . 5

1.2.1 Are there privacy concerns from public wireless frames? 5

1.2.2 Are current WiFi MAC association frameworks reliable? 7

1.2.3 Can we infer user locations from WiFi probe-requests? 9

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . 9

The rapid growth of WiFi and BLE networked devices has led to increas-
ing concerns about user privacy. This thesis investigates the various privacy
issues associated with these devices, ranging from the protection of receiver
location to anonymity and traceability. Sniffing public wireless traffic, par-
ticularly probe-requests and beacon messages, has become a straightforward
task, raising questions about user privacy.

Public packets are management frames that are necessary for the de-
vices to find available networks and improve the user experience. Although
initial measures were taken, such as MAC address randomization, recent
studies have highlighted doubts about the effectiveness of these measures.
In modern randomized WiFi devices, MAC addresses periodically change in
order to avoid tracking from adversaries listening to their packets. Devices
that perform MAC address randomization can hide the device’s identity to
some extent. This feature has been the backbone of user privacy in wireless
networks, especially BLE and WiFi.

MAC address randomization in mobile devices has been thoroughly stud-
ied. It has been shown that it is not enough to safeguard user privacy. There
have been attacks on fingerprinting devices using as minimal information as
the timestamps of advertised public packets [6]. Further vulnerabilities have
been discovered in the information fields of the packets that could reveal pri-
vate information of the user like language detection on the broadcast WiFi
SSIDs and even the sociological aspects of the people like nationality, age,
and socioeconomic status [7]. Smartphone Screen ON/OFF State can be
classified using WiFi Probe patterns [8]. Similarly, using BLE beacons, [9]
show that user profiling, beacon hijacking, presence inference, and even user
harassment are possible. Combining both BLE and WiFi’s public packets

1



2 CHAPTER 1. INTRODUCTION

of the same user could lead to more devastating breaches in privacy. Both
communities need to jointly come up with improved regulations and recom-
mendations in the standard to ensure user privacy.

Defeating MAC address randomization allows the association of ran-
domized addresses from the same device. Martin et. al claim to effectively
defeat randomization for around 96% of android devices [10]. An artificial
intelligence-based approach shows that 91% of the WiFi devices could be
tracked [11]. Bluetooth Classic (BT) does not randomize the addresses and
has already been shown to be de-anonymized [12]. Even MAC address ran-
domization in BLE has been claimed to be defeated specifically for Apple
devices [13] and generalized devices [1]. 100% device association for a small
set of devices on sniffing public packets in a controlled environment (inside
Faraday cage) is claimed [1]. We need to identify the validity of association
approaches in large-scale real-world sniffing scenarios. Large-scale network
traces with ground truth of devices generating the randomized MACs need
to be collected or generated in order to ensure the reliability of such asso-
ciation frameworks in literature. If proven unreliable, we urgently need an
efficient state-of-the-art address association framework.

Finally, after an effective MAC association, new avenues of utility infer-
ences can be explored from public packets. One of the coveted inferences in
obtaining user-mobility information from passive sniffing of network data.
Public packets can be listened to on a large scale using off-the-shelf snif-
fers such as Raspberry Pi. Inferring user positions and eventually trajectory
fromWiFi probe-requests, for instance, can help out a lot of domains such as
urban space usability in epidemic prevention [14,15], disaster response [16],
and socioeconomic activity [17].

1.1 Thesis Challenges

We begin by formulating three overarching questions, as depicted in Figure
1.1. The challenges associated with these questions form a central focus of
this thesis. In the subsequent subsections, we explore the specific contribu-
tions that address these challenges.

Q1 Are there privacy concerns from public wireless frames? -
In the thesis, our initial inquiry revolves around examining the level
of privacy risks associated with the existing design of public wireless
frames. We specifically concentrate on identifying vulnerabilities in
the design of two types of frames: WiFi probe-requests and BLE bea-
cons. These frames pose potential threats to user privacy because they
include the device’s MAC address. Despite the periodic randomization
of MAC addresses in these frames, there remains a possibility of es-
tablishing correlations or associations between a single user-device and
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Figure 1.1: Thesis challenges.

their respective MAC addresses, primarily due to the current design
and implementation of these frames.

The challenge lies in identifying the flaws in the current design of pub-
lic frames. We need to gain further insights from the content and
randomization behavior of probes. We need to generate large-scale
passive sniffing BLE and WiFi traces. Collecting large-scale traces
in the real-world requires permission from the authority in most ge-
ographical locations, along with financial and deployment overheads.
Most importantly, in the passive real-world collection, we lack the
ground-truth of randomized addresses from the same device. In order
to validate any concerns in the design leading to the successful associa-
tion of MACs, we need this ground-truth. New simulation frameworks
must be introduced to generate realistic traces. Once flaws are iden-
tified and addressed, we can have recommendations/suggestions for
current WiFi and BLE standards.
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Q2 Are current WiFi MAC association frameworks reliable? -
The second question that we raise is investigating the already present
MAC association frameworks in literature. We focus on the association
concerning WiFi probe-requests from hereon in the thesis. The ques-
tion of reliability arises from two implications of the current privacy
provisions in WiFi:

(a) Current literature claims high but variable performances in MAC
association either with their own small-scale controlled probe-
request datasets or using indirect accuracy measures. For in-
stance, [2] obtains a discrimination accuracy > 80% inside a
shopping mall while [3] gets an accuracy of up to 75% in labora-
tory settings. [18] construct transmitter fingerprint that is 80%
to 67.6% percent unique for 50 to 100 observed devices in a music
festival and laboratory scenarios with a varied number of devices.

The high accuracy, if true makes the user more susceptible to be-
ing tracked by an adversary. Frameworks lack large-scale traces
with ground-truth for their evaluation. We need to conduct case
studies to identify this unreliability, understand the cause of vari-
able association performance with respect to input datasets, and,
introduce benchmarks for any generic frameworks performance.

(b) If current MAC association frameworks are unreliable, we need a
new and effective association framework. The framework should
use direct accuracy metrics over large-scale real-world traces.
Moreover, it should be bench-marked in order to know its ex-
pected performance with respect to any new input probe-request
dataset.

Q3 Can we infer user-locations/trajectories from WiFi probe-
requests? - Assuming we have an effective MAC association frame-
work, we ask the third question regarding the possibility of inferring
user locations from passively sniffed WiFi probe-request frames. The
received signal strength indicator (RSSI) of collected packets is the
commonly used metric for passive user localization in literature. Be-
sides offering the possibility to approximate the source-distance [19],
RSSI has hardware generality, which brings measurement flexibility
from any generic off-the-shelf hardware like Raspberry Pi. However,
most current works in literature for RSSI-based localization focus on
indoor scenarios [20–23], rather than outdoor. Outdoor settings have
relatively high user mobility as well as incur unpredictable mobile ob-
stacles like vehicles, which makes the trajectory inference harder.

When focusing on outdoor scenarios, there has been an attempt to use
machine learning techniques to lower the distance estimation error [24].
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Nevertheless, errors still go up to 16m, even when considering semi-
controlled environments like an isolated field, with a custom probe-
request emitter. Hence, distance-estimation errors given by current
related literature result in the significantly imprecise inference of users’
locations. Such imprecision results in the location approximations of
users that are uncertain, which is amplified in dense scenarios, with
highly variable RSSI values.

We need to conduct a thorough examination of existing literature
about the inference of user trajectories from network resources, with
a specific focus on utilizing the RSSI as a potential means to lever-
age spatial information from captured frames. We have to ascertain
the limitations of current solutions in accurately inferring user tra-
jectories. Consequently, we need to introduce a novel framework to
address this limitation. The new framework should circumvent the
issue of uncertainty in RSSI-based location inference, enabling the de-
termination of correct trajectories even in scenarios with unfavorable
sniffer deployment conditions.

1.2 Thesis Contributions

In the following, we dig deeper into the identified questions while elaborating
more on the thesis contributions.

1.2.1 Are there privacy concerns from public wireless frames?

Most of the existing related works suggest flaws in randomization [10] [11]
[1] [6] or suggest inferring insights [25] [13] [9] from the transmitted public
data in the packets. Encryption-based defense of WiFi 5 packets is suggested
by [26], but as we discuss later in this thesis, such solutions are not feasible
due to resource constraints. To the best of our knowledge, none of the
current work gives a global view of the privacy issues in the design of public
wireless packets itself. Current works do not look into countermeasures of
timing-based attacks, which are more generic and effective than we will see in
the upcoming sections. We find out key design flaws in WiFi probe-requests
and BLE beacons.

To validate the above flaws, we need to first look into the issue of the
lack of large-scale traces with ground truth of randomized MACs from the
same device. We focus on BLE in the subsection.

We address a similar ground-truth issue for WiFi by introducing the
framework WiSurve, which we detail in Chapter 6 while discussing an im-
portant use case of large-scale traces: inferring bounded trajectories from
WiFi probe requests. There, we address the issue of getting a full-fledged
ground truth of mobile user locations. Such ground-truth is almost impos-
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sible in passive monitoring using WiFi sniffers: It requires knowing, in ad-
vance, the position of a representative number of mobile devices (i.e., the
ground truth) passing by the deployed sniffers.

Coming back to BLE, amidst raising privacy intrusion findings, there
has been an absence of frameworks to test these suggestions in scalable real-
world conditions. Current BLE simulators are mostly focusing on through-
put, latency, and signal-to-noise ratio (SNR) features rather than the se-
curity and privacy aspects of the standard. There has been an inability
to incorporate real-world device parameters into the simulation framework.
Without these advancements, it is impossible to generate a realistic BLE
trace that considers integral factors like MAC address randomization. This
is because the implementation of address randomization is dependent on the
device manufacturer. Lack of controlled simulated traces presently halts the
retrieval of ground truth in large-scale scenarios which is needed to success-
fully evaluate device fingerprinting solutions and propose adjustments in the
standard to guarantee the user’s privacy.

We develop the BLE simulator, SimBle to circumvent the current lack.
To the best of our knowledge, none of the current available BLE simulators
support and consider privacy aspects, specifically MAC address random-
ization. In this thesis, we first study and present different privacy guide-
lines across released Bluetooth standards. SimBle incorporates standard-
compliant MAC address randomization, that is capable of emulating any
BLE device. This is made possible as SimBle introduces the notion of device
class, which differentiates various kinds of devices like phones, smartwatches,
and headsets based on the frequency of transmitted beacons.

Additionally, existing simulation tools are not designed to generate sniffed
public BLE traces. This limitation arises from the fact that simulation time
drastically increases when handling a large number of devices, as the number
of simulation events grows. However, our focus is solely on the complete pro-
cessing of broadcast packets at the sniffer. To tackle this challenge, SimBle
proposes optimized sniffing techniques that eliminate exponential run-time
while generating an identical trace (cf. Chapter 3.2.1.1). The successful
conquest of large-scale traces with ground-truth helps us in effectively ad-
dressing Q1.
Contribution #1 [P3]

1. Classification of current attacks in the literature based on different
broad methodologies utilized by adversaries.

2. Revealing key design flaws in current WiFi and BLE public packets.

3. Validating the flaws in BLE utilizing large-scale realistic traces gener-
ated using our simulation framework.

4. Solutions and recommendations to rectify the flaws we detect in the
design.
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Contribution #2 [P4][P5]

1. Analysis of various privacy features in the BLE standard that are
essential to be incorporated into simulations.

2. Design, implementation, and, the release of a new BLE simulation
stack called SimBle in NS-3, which prioritizes user privacy and accu-
rately represents the devices within the simulation.

3. Investigation of the only existing generic BLE MAC address associa-
tion algorithm in the literature using SimBle for large-scale scenarios.

4. Development of an open-source simulator called WiSurve, capable of
generating passively sniffed WiFi traces with ground-truth of user-
locations.

1.2.2 Are current WiFi MAC association frameworks reli-
able?

Recent literature heavily investigates the MAC address association, i.e. co-
relating randomized MAC addresses emitted by a particular device [2, 3,
18, 27, 28]. MAC association opens critical issues on users’ privacy and
henceforth brings the necessity for the understanding of such association,
giving insights on the potential improvement to currently vulnerable WiFi
standards, thus bringing stronger user privacy protection. The challenging
issue concerning association strategies is identifying their weaknesses and
effectiveness, which are not available. This thesis deals with this lack, which
to the best of our knowledge, is the first work in literature.

Despite the promise shown by these address association frameworks,
we show in this thesis their performances are highly sensitive to the in-
put datasets, also showing there is space for WiFi standard’s improvement.
In this context, the unreliable nature of association frameworks calls for the
need for benchmarks for measuring their real ability in providing a certain
level of performance with respect to any new datasets (scenarios). This
ensures WiFi users’ privacy in a given scenario. After identifying the relia-
bility of current association frameworks and obtaining benchmarks, we need
a generic characterization of MAC association and a new robust algorithm.

The major hurdle in the probe request association happens in dense
scenarios, resulting in higher simultaneous changes (complexity) in MAC
addresses that we observe. The probability of a disappearing trail being
successfully associated with an appearing trail decreases as the number of
new address trails appearing in the sniffing zone is high. It increases the am-
biguity, i.e., decreases the effectiveness of used signatures for distinguishing
the correct association. This thesis identifies this unreliability and intro-
duces a novel framework, named Bleach. It is efficient in run-time and
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deployment and ensures its performance (accuracy greater than 60%) with
growing complexities in the input probe-request dataset with randomized
MAC addresses.
Contribution #3 [P1]

1. We introduce the benchmarks for WiFi privacy by giving a general
characterization of the effectiveness of MAC address association. We
explore and verify this unreliability and identify its causes. We show
the impact of such causes on MAC address randomization.

2. We introduce a novel metric (conflict size) to ensure the reliability of
frameworks. We use this metric to formalize the complexity that a
framework is handling with respect to an input dataset. We discuss
and validate the potential of randomization complexities in acting as
an association framework’s performance benchmarks.

3. The introduced randomization complexity distributions in the last step
act as a yardstick for the level of user-privacy breach, when an adver-
sary utilizes a particular address association framework. Benchmarks
enable the understanding of the usefulness of MAC association frame-
works while knowing their limitations, which are privacy-preserving
for users.

Contribution #4 [P6]

1. We investigate and identify unreliability issues in state-of-the-art and
call for the need for awareness to improve current address associa-
tion frameworks. We generically characterize the MAC association to
make the understanding better and the comparison feasible among the
existing and future works in the MAC association.

2. Using metrics that we introduce to evaluate a signature, we identify
effective time and frame-based signatures, in order to co-relate probes
with randomized MACs originating from a single device.

3. Bleach associates randomized probe requests based on the obtained
signatures and the distance metrics between them. We evaluate our
framework for a wide range of scenarios, varying the degree of observed
conflicts. We henceforth also investigate the performance of any as-
sociation framework, to predict performances in any new dataset that
we encounter.

4. We plan to release the open-source code of our framework on usage
demo and potentially a few anatomized datasets too. We showcase
that Bleach works reasonably well in scenarios with a high degree of
complexity, i.e. extensive changes of MAC addresses in the sniffing
zone.
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1.2.3 Can we infer user locations from WiFi probe-requests?

Assuming successful MAC association, we move forward to accomplish the
challenge of inferring user locations from WiFi probe-requests. Trajectory
estimation of individuals is a cornerstone for different fields [29–31]. Local-
izing users in space and time is the first step toward trajectory inference,
which involves spatiotemporal network data collection. This collection may
focus on data directly extracted from smart devices [32] or carried-on dedi-
cated beaconing devices [33] that depend on volunteer recruiting. This later
is a time-consuming and non-scalable task. Alternatively, collection may be
performed at Base Stations or Access Points [34], but suffers from access
regulations by operators to access their infrastructure and recorded logs.

Using non-intrusive (passive) wireless measurements is a solution to cir-
cumvent the aforementioned issues [35]. It consists of deploying some sniffers
in a particular area to passively measure the wireless activities therein –i.e.,
to collect public traffic (e.g., probe-requests) intrinsically sent by users’ mo-
bile WiFi interfaces.

RSSI is the most widely used metric for user-location inference from
passive sniffing of WiFi probe-requests. Although considered the “Achilles
heel” of RSSI-based user-localization solutions, we transform localization
errors induced in RSSI measurements into allies, the first work of this type
in literature to the best of our knowledge.

Our framework named Allies relies on an in-depth investigation and
novel modeling of (i) the severity, (ii) the non-stationary behavior, and (iii)
the variability of RSSI-based distance-estimation errors in outdoor passive
measurements. The resulting error’s comprehension leads us to identify and
formalize a span of possible user locations associated with measurements in
different time intervals. We denominate such span of possibilities as bounds
of locations of a user. Bounded locations are then used to infer bounds
of users’ full-fledged trajectories over time that we designate as the user’s
bounded trajectory.

Contribution #5 [P2]

1. We carefully review the literature on inferring user trajectories from
network resources and using RSSI as a potential candidate to exploit
spatial information from captured frames. We identify the inability of
current solutions in inferring accurate user trajectories. Henceforth,
we introduce the novel concept of bounded trajectories

2. We characterize errors in radial-distance estimation. We find out that
errors can broadly be divided into two major components: i) Span
error and ii) Environment error, and could be modeled. While Span
error showcases growing average estimation errors with increasing dis-
tance from the sender, environment error captures the error variability
during short periods of time.



3. We build upon the modeled radial-distance errors to find bounded
trajectories with a high degree of inclusiveness and low width. The
resulting bounds circumvent the issue of uncertainty in RSSI-based
location inference and give correct trajectories’ bounds even in worst
sniffer deployment scenarios.

1.3 Thesis outline

After the introduction, the thesis is divided into seven chapters.

• Chapter 2 explains the state-of-the-art and the prerequisite notions
for the rest of the thesis.

• Chapter 3 focuses on interrogating privacy concerns in public WiFi
and BLE frames. It starts with classifying the current attacks. Then
it proposes key design flaws in public frames and introduces method-
ologies to obtain large-scale passively sniffed traces with ground-truth.
Following, it validates the proposed flaws to finally give recommenda-
tions/suggestions to the standard/device manufacturers. [Contribution
#1 and #2]

• Chapter 4 first attempts to answer the question about the relia-
bility of current WiFi address association frameworks. Following, it
conducts case studies to validate the unreliability. To come up with
performance benchmarks, it investigates the reason behind the vari-
ability in the performance of used signatures. Next, it introduces
and discusses benchmarks that aid in predicting the performance of a
framework with respect to a new input dataset. [Contribution #3]

• Chapter 5 comes with state-of-the-art WiFi MAC association frame-
work which is efficient and reliable. [Contribution #4]

• Chapter 6 proposes a new framework that is capable of inferring
bounded trajectory of users using WiFi probe-requests. The proposed
bound are correct and exhibit a high degree of utility. [Contribution
#5]

• Chapter 7 provides overall conclusions and directions for future work.
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Threats to user privacy through public wireless packets encompass a
wide range of personal aspects. To begin with, we examine the existing
privacy measures in two prominent wireless network protocols: BLE and
WiFi. Both protocols rely on MAC address randomization as a fundamen-
tal safeguard for user privacy. However, the effectiveness of MAC address
randomization has been challenged by the technique known as MAC address
association, which allows the correlation of randomized MAC addresses with
their originating devices.

While MAC association in WiFi has been extensively studied, the reli-
ability of such association frameworks remains uncertain. This is primarily
due to their limited scope of association and the absence of reliable refer-
ence data for randomized MAC addresses originating from the same device.
To ensure the validity of these frameworks, it is crucial to utilize diverse
and large-scale data sources for performance validation. Additionally, there
exists the potential for passive inference of user trajectories from public
wireless frames, a topic we delve into in this chapter.

In this thesis, we focus on WiFi probe-requests when considering the
MAC association frameworks and the passive trajectory inference as BLE
MAC addresses have already been shown to be associated with high accu-
racy [1]. WiFi MAC association is relatively more challenging due to the
higher density of active devices in a region as well as the more frequent MAC

11
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randomization. In this chapter, we also discuss the state-of-the-art related
to the thesis-related topics.

2.1 Wireless network protocols

BLE and WiFi are prominent wireless protocols that complement each other
in the wireless communication landscape. BLE excels in low-power, short-
range applications that require periodic data exchange, while WiFi offers
higher data rates and an extended range for internet connectivity and data-
intensive tasks. In the following, we briefly look at both protocols while
giving attention to their public packets which could potentially raise privacy
concerns due to the advertisement of the device’s MAC address.

2.1.1 BLE

Bluetooth has been there for quite some time now, but it is the Bluetooth
Low Energy (BLE) variant [36] that is used by the majority of IoT devices.
BLE has undergone significant evolution since its introduction. BLE was
introduced as a part of the Bluetooth 4.0 specification in 2010. It was
designed to address the need for low-power wireless connectivity for small
devices, such as wearables, sensors, and Internet of Things (IoT) devices.

One of the primary goals of BLE was to provide improved power effi-
ciency compared to classic Bluetooth. BLE achieved this by optimizing the
protocol and introducing energy-saving modes. This made it suitable for
battery-powered devices with limited power resources.

BLE initially introduced a set of core Bluetooth profiles that defined
standardized ways for devices to communicate and interact. These profiles
covered common use cases like data transfer (Generic Attribute Profile -
GATT), heart rate monitoring, and proximity sensing.

Bluetooth 4.1 and 4.2 updates brought enhancements to BLE. Bluetooth
4.1 introduced features like improved coexistence with WiFi and LTE, while
Bluetooth 4.2 added security enhancements and introduced the concept of
Internet Protocol Support Profile (IPSP) for IP-based communication over
BLE. Introduced in 2016, Bluetooth 5 brought significant improvements to
BLE. It offered higher data transfer speeds, extended range, and enhanced
advertising capabilities. Bluetooth 5 also introduced the concept of Blue-
tooth Mesh, enabling large-scale device networks for applications like smart
lighting and home automation.

Overall, the evolution of BLE has focused on improving power efficiency,
expanding functionality, increasing data transfer speeds, enhancing security
and privacy, and enabling new use cases. These advancements have made
BLE a crucial technology for various applications in the IoT, wearables,
healthcare, smart home, and industrial sectors.
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BLE beacons: When a particular BLE device communicates, it keeps
sending advertising beacons on three public channels specified by the stan-
dard. These packets include a link-layer MAC address, which acts as an
identifier of the device[ [37], p. 69]. Various addressing modes have been
specified in the standard [ [38], p. p. 2988] which are briefly described next.

In BLE, we identify the devices using a device address and an address
type [ [38], p. 2988]. This means that whenever we compare two device
addresses, the same 48-bit addresses do not guarantee the same device. This
is because the two addresses could have different types. The address type
could either be a public device address or a random device address, which
are both 48 bits long. The device has the freedom to use at least one or
both types of device addresses. Public device addresses are traditional MAC
addresses that are created in accordance with Universal addresses section
of the IEEE 802-2014 standard [39].

2.1.2 WiFi

WiFi began with the introduction of the IEEE 802.11 standard in 1997 [40].
The initial version, 802.11, supported a maximum data rate of 2 Mbps using
frequency bands in the 2.4 GHz range. In 1999, the 802.11b standard was
released, offering a significant improvement with a maximum data rate of
11 Mbps. It gained widespread adoption due to its higher speed and com-
patibility with existing 802.11 devices. The 802.11a standard operates in
the 5 GHz frequency band and provides a maximum data rate of 54 Mbps.
In 2003, the 802.11g standard combined the best features of 802.11a and
802.11b, operating in the 2.4 GHz band and offering a maximum data rate
of 54 Mbps.

The 802.11n standard, released in 2009, brought significant advance-
ments in speed and range. It introduced MIMO (Multiple Input Multi-
ple Output) technology, allowing for multiple antennas to transmit and re-
ceive data simultaneously. 802.11n supported maximum data rates of up
to 600 Mbps, providing better coverage and improved reliability. In 2013,
the 802.11ac standard was introduced, operating in the 5 GHz band and
offering even higher data rates than 802.11n. It introduced wider chan-
nel bandwidths, advanced MIMO techniques, and beamforming technology
to improve performance. 802.11ac supports maximum data rates of up to
several gigabits per second.

The 802.11ax standard, also known as WiFi 6, was released in 2019. It
focuses on improving network efficiency in crowded environments, offering
higher data rates, reduced latency, and increased capacity. WiFi 6 intro-
duces OFDMA (Orthogonal Frequency Division Multiple Access) to enable
simultaneous data transmission to multiple devices, as well as other ad-
vanced features like Target Wake Time (TWT) for power efficiency.

The evolution of WiFi has continuously focused on increasing data rates,
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improving coverage and range, enhancing network efficiency, and addressing
the needs of emerging applications. Each new generation of WiFi brings
faster speeds, lower latency, and better performance, enabling a wide range
of wireless communication and connectivity scenarios in homes, offices, pub-
lic spaces, and various industries.

WiFi probe-requests: WiFi-enabled devices discover nearby wireless
networks / access points using a method called active scanning. With the
active scan, mobile devices find available networks by sending management
frames known as probe-request frames. These frames are broadcasted peri-
odically to reduce energy drainage.

The main components and information contained in a typical WiFi
probe-request frame are as follows:

• Frame Control: This field includes control information about the
frame, such as the frame type, subtype, and various flags. For a
probe-request frame, the type would be ”Management” (0x0) and the
subtype would be ”Probe-Request” (0x4).

• Duration/ID: This field specifies the duration for which the medium
should remain reserved for this frame or an association identifier if
used in an association process.

• Destination MAC Address: The MAC address of the receiving
device, which would typically be a broadcast address (ff:ff:ff:ff:ff:ff)
since the probe-request is sent to all nearby APs.

• Source MAC Address: The MAC address of the client device that
is sending the probe-request frame.

• BSSID: The Basic Service Set Identifier (BSSID) is the MAC address
of the AP that the client is associated with or the broadcast address
if the client is not currently associated with any AP.

• Sequence Control: This field is used for frame sequencing and ac-
knowledgment purposes.

• Timestamp: A timestamp value that represents the time at which
the probe-request was sent.

• Beacon Interval: This field indicates the time interval between bea-
con frames sent by the AP.

• Capability Information: This field contains information about the
capabilities of the client device, such as supported data rates, encryp-
tion methods, and power management capabilities.
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• SSID Information Element: This is a variable-length field that
contains the Service Set Identifier (SSID) of the network that the client
is seeking. It can include the SSID itself or be left empty to indicate
a wildcard request for all available networks.

• Supported Rates Information Element: This field specifies the
data rates supported by the client device.

• Extended Supported Rates Information Element: This field
provides additional information about supported rates, including higher
data rates that the client device can handle.

• Vendor-Specific Information Element: This field allows for the
inclusion of vendor-specific information or additional parameters for
specific purposes.

These are the main components of a WiFi probe-request frame. When a
client device sends a probe-request, nearby APs can receive and respond to it
with a probe response frame, providing information about their capabilities,
supported rates, and other network parameters.

2.2 Privacy provisions in public packets

The backbone for protecting user privacy in public wireless packets is the
continuously changing advertised MAC addresses of a device which we also
call MAC randomization. Next, we focus on BLE beacons and WiFi probe-
requests in terms of their privacy provisions.

2.2.1 BLE beacons

To avoid the user leaking the identifier to the world, recent BLE standards
have continuously forced all devices to update their publicly advertised MAC
addresses. Public device addresses are more prevalent, but it is the random
device address that is privacy-preserving. Random device addresses could
either be static or private. A static address is a 48-bit randomly generated
address meeting specific standard requirements. On the other hand, private
addresses are again either resolvable or non-resolvable[ [38], p. 2991]. These
specific subtypes are identified by the two most significant bits of the random
device address, as shown in the Table 2.1.

BLE device’s Identity Address is one of a Public device address or a
Random static device address. When a device is continuing with Resolvable
private addresses, it must also possess an Identity Address.

The key to privacy provided by the BLE link layer is using private ad-
dresses, which we described in the previous sub-section[ [38], p. 3201]. BLE
recommends devices to generate a resolvable private address. The link layer
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Address [47:46] Address Sub-Type

0b00 Non-resolvable private address

0b01 Resolvable private address

0b10 Reserved for future use

0b11 Static device address

Table 2.1: Sub-types of random device addresses

corresponding to the host sets a timer and regenerates a new resolvable pri-
vate address when the timer expires. Moreover, once the Link Layer is reset,
a new resolvable private address is generated, and the timer is allowed to
start with an arbitrary value in the allowed range. To maintain the efficiency
of connection establishment, the standard recommends setting the timer to
15 minutes.

BLE [41] [38] does not allow private devices to use its Identity Address in
any advertising packet. The Host could instruct the Controller to advertise,
scan, or initiate a connection using a resolvable private address after enabling
the resolving list.

The state machine for the link layer of BLE consists of various states[ [38],
p. 2985]. A device could be found in either of these states. For instance,
advertising, scanning, and initiation states have different guidelines by the
standard. In the advertising state, the link layer is allowed to perform
device filtering based on the device address of the peer device to minimize
the number of devices to which it responds. This could be done according
to a local white list which contains a set of records comprising of both the
device address and the device address type (public or random) [ [38], p.
3202]. If the device is in a scanning or initiating state, it is recommended to
use private addresses. The scanning device should use the resolvable or non-
resolvable private address as the device address. Whenever a scanning device
receives an advertising packet that contains a resolvable private address for
the advertiser’s device address, after address resolution, the scanner’s filter
policy decides whether to respond with a scan request or not.

Despite the above privacy provisions in BLE, it has been exposed to
the MAC address association. MAC association refers to defeating the
anonymization techniques used by the devices and being able to track a
particular device. Recently many strategies have been suggested to achieve
this goal of associating different private addresses advertised publicly from
the same device [1] [42] [43] [13]. For instance, [42] [43] show that manu-
facturers like Apple and Microsoft leak partial identifiers in the data field
of public packets, which can be easily exploited. In [13], authors reverse
engineer continuity protocol messages of Apple devices. They show that
fingerprinting the device, as well as behaviorally profiling users, is possible
by using the contents of public BLE messages. They also demonstrate that
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predictable frame sequence numbers in them leave the possibility of tracking
Apple devices across space and time.

2.2.2 WiFi probe-requests

WiFi MAC address randomization is a privacy provision implemented in
some devices and operating systems to enhance user privacy and security
while connecting to wireless networks. The MAC address is a unique iden-
tifier assigned to network interfaces, including WiFi adapters, by the man-
ufacturer.

Fig. 2.1 illustrates the active scanning process from a WiFi device over
time, when searching for a connection. Mobile devices send probe-requests
on each available channel to obtain replies from all accessible access points.
Each device does multiple rounds of active scanning over the available chan-
nels. Active scanning rounds last for a duration in the order of a few seconds
depending upon the number of known access points that it could direct
to and the available channels. By default, when devices transmit probe-
requests, they use their physical or true MAC address, which can be easily
tracked and used to identify and track the device and its user. However, with
MAC address randomization, the device generates a random MAC address
for each WiFi connection, effectively concealing the true MAC address.

The purpose of MAC address randomization is to prevent the long-term
tracking of a device’s movements and activities by various entities, such as
WiFi network operators, advertisers, and malicious actors. It helps protect
user privacy by making it difficult to associate a specific MAC address with
a particular device or individual.

MAC2MAC1 MAC3

Burst

Time

Inter-burst
time (IBT)

Figure 2.1: A device’s randomised probe-requests.

As we notice in Fig. 2.1, multiple rounds contain a burst of probe-
requests with the MAC address of individual probes within a burst remain-
ing consistent. At the same time, the MAC is likely to change (randomize)
in subsequent or after a certain number of bursts. The number of bursts ad-
vertising a MAC is variable and is generally dependent on the manufacturer
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and the device’s state. The period between successive bursts, and inter-
burst time (IBT) is variable. Most modern WiFi devices do not advertise
their true MAC address unless they broadcast the randomized one.

Legacy devices though could still send their true MAC addresses. The
availability and implementation of MAC randomization may vary depending
on the manufacturer and the specific WiFi adapter in use. As we see in the
subsequent subsection, Literature already suggests that randomized MAC
addresses in probe-requests could be co-related to the sender device using
various attack methodologies.

2.3 WiFi MAC address association

WiFi MAC address association refers to co-relating multiple randomized
MACs emitted from the same device. As illustrated in Fig. 2.2, two MAC
addresses advertised from the same device, MAC1 and MAC2 in probe-
requests could be associated. It could utilize various metrics associated
with the probe-request transmission and reception at the sniffer. The met-
rics could include information such as the received signal-strength (RSSI1
and RSSI2), information elements contained in the probe-requests (IE1 and
IE2), the difference between the sequence numbers of two frames (SEQ1 and
SEQ2), as well as the frame reception timings of various probe bursts.

MAC2MAC1

Time

IE1 IE2SEQ1 SEQ2

RSSI1 RSSI2

Figure 2.2: MAC association of WiFi probe-requests

The literature for address association exploits two main directions: i) the
leaks in system design or protocols and ii) device signatures extracted from
the probe-request transmission itself. Signatures are information extracted
from metrics obtained from probe-request transmission, which are capable
of distinguishing a device successfully from a population.

Early works in address association utilize the information leaks in pro-
tocols or system design to co-relate randomized MAC addresses. [28] and
[44] do the reverse engineering of the universally unique identifier-enrollees
(UUID-Es) of probe-requests to find the true MAC addresses using precom-
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puted hash tables. [28] exploit the auto-connect feature of certain devices to
malicious but popular SSID names, as they could potentially leak their true
MAC address. Certain devices assign consecutive MAC addresses for BLE
and WiFi, which can be exploited to reveal the WiFi MAC address [10]. But
these schemes are not generic and rely upon flaws in the system design which
is usually fixed by the manufacturer upon attention. As already illustrated
in Fig. 2.2, recent association frameworks broadly use four metrics for sig-
natures, namely: the information element (IE), the temporal information,
the sequence numbers, and, the RSSI.

The first metric leveraged by the frameworks is the content in the infor-
mation element (IE) field of the probe-requests to fingerprint devices [28],
[18], [45], [46]. The field contains information regarding device capabili-
ties [45] or the service set identifier (SSID) [18], [46], which is exploited for
the association. Works select specific combinations of IE fields to maximize
the effectiveness of the used signature [28].

On the other hand, some works extract the temporal information from
the received probe-requests, such as inter-arrival times in order to distinguish
various devices with randomized MACs. The hypothesis is that various
devices will have different unique patterns of this temporal behavior due to
manufacturer differences and builds [47], [48], [3], [49], [50].

Alternatively, works also exploit the continuity of sequence numbers to
distinguish between various randomized MACs that change during a partic-
ular duration. These frameworks rely upon the range of sequence numbers
that could potentially be advertised in the next frame from different trans-
mitting devices [28], [51], [52]. Finally, there are works that utilize the RSSI
vectors recorded by various sniffers listening to the same frame. The idea
is devices that change MAC addresses, will have similar and unique RSSI
vectors, eventually helping in address association [2].

2.4 Trajectory inference from public wireless frames

Trajectory investigation has attracted considerable literature attention. With
mobile phones becoming proxies for human presence, network resources have
been exploited to investigate users’ mobility [53]. Spatio-temporal mobility
datasets are nowadays acknowledged as a common tool to study users’ tra-
jectories: e.g., mobile phone records [54,55], GPS [56], WiFi [15,29,30], and
BLE data [57].

The pioneering work [55] uses anonymous call detail records (CDRs)
from mobile phones to infer human mobility patterns in an urban area.
The study analyzes CDRs from millions of individuals to understand move-
ment patterns, commuting flows, and predict future locations. The study
by [58] proposes a trajectory inference method based on user mobility fea-
tures extracted from mobile phone records. The authors apply clustering
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algorithms to identify significant places and predict users’ next locations
using their historical mobility patterns. While [59] focuses on trajectory
similarity analysis and matching in large-scale spatial networks using mo-
bile phone records. The authors propose efficient algorithms for trajectory
similarity joins, enabling the identification of similar movement patterns and
trajectory associations.

The work by [60] focuses on inferring transportation modes from GPS
data collected from smartphones. They show that using information from
pervasive WiFi access points and Bluetooth devices can enhance GPS and
geographic information to improve transportation detection on smartphones.
When broken out by individual modes, WiFi features improve the detec-
tion accuracy of bus trips, train travel, and driving compared to GPS fea-
tures alone and can substitute for GIS features without decreasing perfor-
mance. [61] use the time- and geo-coordinates associated with a sequence
of posts/tweets, to discover people and community behavior. They infer in-
teresting locations and frequent travel sequences among these locations in a
given geo-spatial region, as shown from the detailed analysis of the collected
geo-tagged data.

However, mobile phone records are only accessible through network in-
frastructure and service providers. Inferring trajectories based on GPS data
requires access to users’ devices. User location sharing is privacy-sensitive
and hence is a difficult task to infer mobility through it on a large scale.
Moreover, the majority of works that require the active collection of traces
through mobile devices require volunteer recruiting which is cumbersome
and lacks scalability.

Instead, we base our investigation on datasets that are non-intrusive
and independent of third parties. We focus on collection performed via
WiFi passive sniffing. Passive sniffing refers to the wide-scale deployment of
sniffers in public spaces which listen to WiFi public management frames on
multiple frequency channels. Management frames are legal to capture with
the user’s consent in most geographical locations. We stick to public frames
for inferring user trajectories. Merging different views of sniffers capturing
the same frame from a user device helps to localize the device which in time
can be extended to infer the mobility.

RSSI is the most widely used localization metric, with no hardware-
specific requirements. In the indoor controlled environment, previous works
attempt to localize users through RSSI-based distance measurements [20,
22, 24, 62]. On the other side, in outdoor scenarios, equal attempts mainly
focus on Zigbee [63] and LoRa [64] technologies. The literature lacks works
leveraging RSSI for outdoor users’ localization, mainly due to its imposed
uncertainties. Uncertainties incur significant errors in distance estimation,
making users localization a challenging task.

Solutions using RSSI for estimating users’ trajectories contain localiza-
tion errors arising from inaccurately measured distances between the user
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and the regarded sniffer. Past works have tried to mitigate such errors to
some extent using various smoothing techniques for RSSI [65–68]. How-
ever, smoothing itself causes bias (cf. Section 6.1.2). Another approach [69]
adapts the path-loss model parameters by deploying fixed reference nodes
and reference tags placed at known positions. This approach requires extra
hardware and is primarily developed for indoor localization.

Although the employed effort, errors remain an issue. Without effective
modeling and characterization of localization errors, inference of user’s mo-
bile trajectories through passive sniffing is imprecise and unreliable. To the
best of our knowledge, none of the literature solutions focus on (i) the char-
acterization of localization errors in outdoor scenarios and (ii) its leveraging
for users’ trajectory inference.

2.5 Literature datasets

Majority of MAC association frameworks in literature use datasets for eval-
uation which are collected in controlled environments [3, 18, 28, 45, 46, 51]
like a laboratory and are not public. Own collected datasets specifically on
small-scale leads not only to replicability issues but also makes the frame-
work unreliable with respect to a new input dataset with a large number of
devices.

In this thesis, we utilize a highly diverse and public Sapienza dataset
as well as a recent large-scale collection inside a big shopping mall, named
HongKong dataset. There is a labeled dataset [5] that we utilize too.

1. Sapienza dataset: Wireless probe-requests were gathered in Rome
from February to May 2013, during which mobile devices sought to switch
to WiFi connectivity whenever available automatically. To facilitate this
process, devices stored a list of the network names (SSID) to which the user
typically connected. Periodically, these SSIDs were broadcasted through
probe-Requests to search for accessible networks. Several intriguing ques-
tions naturally emerged as a consequence: ”What information can be in-
ferred from smartphone probes?” and ”Can meaningful relationships among
individuals be deduced solely from their smartphones’ probes?”

To address these inquiries comprehensively, [70] conducted a probe col-
lection campaign in Rome, specifically targeting a university campus as well
as city-wide, national, and international events. The campaign spanned
three months and relied solely on commodity hardware to amass approx-
imately 11 million probes sent by approximately 160 thousand unique de-
vices. The released dataset contains anonymized traces in .pcap format,
allowing for further analysis and investigation.

The data collection campaign specifically targeted various scenarios to
gather diverse datasets. These scenarios included: i) events for national
audiences, such as political meetings (Politics1 and Politics2 ); ii) events for
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international audiences, such as the Pope’s Angelus at St. Peter’s Square,
Vatican (Vatican1 and Vatican2 ); iii) a shopping mall (mall), iv) a train
station (trainstation), and v) a university campus (university). The first
four scenarios comprised one-shot events, each lasting from 40 minutes to
6 hours. For these events, a team of 5 researchers conducted the physical
data collection using their laptops. The fifth dataset was obtained through
a fixed hardware setup positioned within a university campus. This setup
allowed for continuous data collection over a period of 6 weeks. [70] use scapy
to dissect and anonymize all MAC addresses and SSIDs in the dataset.

2. HongKong dataset: HongKong dataset is derived from the collection
performed by a customized sniffing system used in [2]. The system comprises
multiple WiFi sensors and a centralized server. For the sensors, they utilized
commercial WiFi Access Points (APs) specifically GL-AR150 with OpenWrt
18.06. These sensors capture probe-requests using the libpcap library. The
captured frames are then transmitted via Ethernet to the server for storage
and further processing. The server itself is built on a PC equipped with an
Intel Core i7 3.6 GHz CPU and 16 GB RAM.

Experiments were conducted in a large shopping mall located in Hong
Kong. The experiments encompassed an entire floor with an area of approxi-
mately 8000 m2. Figure 9 illustrates the floor plan, indicating the placement
of the WiFi sensors, totaling 21 sensors. These sensors were installed on the
ceiling and operated on channel 1 of the 2.4 GHz frequency band. The
system has been operational for over three months, collecting data continu-
ously. During a typical business hour on a weekend day, the system captured
approximately 20,000 frames, corresponding to around 5,000 unique MAC
addresses.

3. Labeled dataset: Unlike Sapienza datasets, the labeled probe-request
dataset [5] provides a wide range of current mobile devices with additional
information such as the device’s mode when transmitting. This dataset has
22 popular device models in practice, which were sniffed when present in
various device modes (see Tab. 2.2). This is the first open-source probe-
requests dataset, labeled with the ground truth of randomized addresses. It
contains 20-minute duration captures of known devices using a Raspberry
Pi-based sniffer.

Mode Screen ON Power-saving ON WiFi ON

A Yes No Yes

S No No Yes

PA Yes Yes Yes

PS No Yes Yes

WA Yes No No

WS No No No

Table 2.2: Device’s modes [5]
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There are active-screen modes (A, PA, and WA) and inactive-screen
modes (S, PS, and WS). In power-saving modes (PA and PS), the device
additionally keeps the power-saving setting active, while in WA and WS
modes, the device also has the WiFi interface switched off. Each device
configuration is observed in the three non-overlapping channels (1,6, and,
11) of the 2.4 GHz frequency band. The details of capture conditions for
each device mode can be found in [5]. In the following, we discuss the metrics
concerning WiFi probe-request emissions that facilitate the association.

Awareness requirement: Despite the above three major probe-request
datasets in the literature that we use, there is a necessity of developing
new simulators to come up with synthetic datasets. These datasets make it
possible to have the flexibility of sniffer deployments, user density, and, mo-
bility; when replicating real-world passive sniffing. Synthetic datasets help
in replicating MAC address randomization and related privacy provisions
to yield large-scale traces with ground-truth of randomized MACs from the
same device. Moreover, an effective simulation solution for passive sniffing
could potentially tackle the issue of ground-truth of user-device locations
when transmitting probe-requests. This helps in validating the solutions
related to the inference of user trajectories from public wireless frames.

2.6 Conclusion

BLE and WiFi are widely deployed wireless protocols that transmit public
frames, such as beacons and probe-requests, which contain MAC addresses
and can make users vulnerable to tracking. BLE provides privacy through
the use of private addresses generated through MAC address randomiza-
tion. WiFi devices utilize active scanning with MAC address randomization
in probe-requests, but research suggests the potential for MAC address as-
sociation attacks.

WiFi MAC address association involves correlating randomized MAC
addresses using metrics like received signal strength, information elements,
sequence numbers, and RSSI vectors. Evaluation of association frame-
works often relies on limited-scale datasets, posing challenges for scalability
and replicability. Trajectory investigation utilizes various spatiotemporal
datasets, but accessing certain data sources like mobile phone records and
GPS data can be challenging due to privacy concerns.

WiFi passive sniffing provides localization through RSSI, but errors in
outdoor scenarios and lack of modeling and characterization of localization
errors remain challenges. Future research should focus on addressing these
challenges and leveraging localization error characterization for accurate tra-
jectory inference in passive sniffing scenarios.

In the next chapters, we address all the above-mentioned issues ranging
from i) investigating privacy flaws in current wireless packets, ii) generat-



ing large-scale datasets with ground-truth, iii) questioning the reliability of
current MAC association frameworks, iv) developing a novel and reliable as-
sociation framework, and v) inferring trajectories effectively from passively
collected probe-requests.
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With growing privacy concerns over the last decade, two of the most
notable wireless technologies – i.e., BLE andWiFi – are being more and more
investigated regarding privacy vulnerabilities. The literature suggests that
using various attack methodologies, randomized MAC addresses in beacons,
and probe-requests could be co-related to the sender device. This process is
called the MAC address association. The majority of user-privacy attacks
in BLE and WiFi are concerned with MAC association.

In this thesis, we explore this problem, prospect the related consequences,
and alert the need for privacy-preserving public frames. We identify key
flaws in the current design of public frames. We discuss them as the cause
of privacy issues that require the community’s attention. We address the
flaws and discuss potential solutions that facilitate the devices to protect
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user privacy. We also give recommendations based on the findings to the
standard in Section 3.4.

3.1 Flaws in BLE and WiFi public frames

Before investigating the current flaws in BLE andWiFi public frames leading
to MAC association, we look at the classification of current attacks, majorly
MAC association. Literature can be classified into three broad categories
based on the attack methodology used by the adversary:

1. Timing-based attacks: These kinds of attacks rely upon the tem-
poral information that could be extracted from the observed public packet
sequence from a device [6]. The adversary’s aim here is to extract metrics
that are characteristic of a device and remain consistent over a period of
time irrespective of address randomization. Examples of such metrics are
Inter-frame space (IFS), inter-burst duration, etc.

2. Frame-field attacks: Here, an attacker learns the information fields
in the frames that are generally sent in the clear to classify and subsequently
fingerprint devices [26]. There are flags, client capability information, Man-
ufacturer names, frame type, etc., which possess the potential of being part
of a fingerprint.

3. Inference attacks: In the case of inference attacks, an adversary
observes the activity of a user along with frames it sends over a period of
time to infer private information [7] [8]. Preferred network list(PNL) in the
WiFi probe requests, variation in two attempts of probes, etc., are some of
the information that helps the attacker to learn regarding the user under
threat.

3.1.1 Key design flaws

Learning from the above-classified attacks, we identify the following key
flaws in the current design and implementation of public frames.

1. Ineffective address randomization - MAC address randomization, if
implemented effectively, can prevent user tracking to some extent. The
current implementation of randomization is not adaptive to the user’s
surroundings and is predictive.

2. Uniform timing parameters - Parameters specific to the timing of ad-
vertised public frames are uniformly distributed across the device pop-
ulation. Most of them are manufacturer-specific and even vary within
a brand. This makes users fall prey to fingerprinting and profiling.

3. Inadequate privacy measures in clear-text frames - The majority of
current public packet fields are sent in plain text. They lack necessary
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privacy measures to prevent inference, even though many of these fields
contain potentially private-intruding information.

The first flaw of the ineffective MAC address randomization in current
BLE and WiFi devices is the most prominent vulnerability that needs to be
addressed. The second flaw of the presence of uniform timing parameters
in public frames is also closely knit to the ease of address association or,
conversely, defeating MAC randomization. We need first to replicate real-
world sniffed traces that an adversary could potentially acquire to associate
randomized addresses from a target device. The third flaw questions the
presence of plain text information in different fields of public packets and
questions the feasibility of various encryption techniques.

3.1.2 Asserting the flaws

After identifying the flaws, we need to assert them through various means
such as i) looking at the potential of literature attacks on available public
datasets, ii) analyzing the current MAC randomization schemes, and iii)
investigating the packet content of probe-requests and beacons.

While the last two means are relatively straightforward, the availabil-
ity of public datasets which are passively sniffed and are on a relatively
large-scale remains an open issue in the literature. The issue lies in govern-
ment regulations on passive sniffing and the non-feasibility of large sniffer
deployments. If we successfully develop a device-specific privacy-preserving
simulation, we could easily produce traces that resemble real passive-sniffing
scenarios. This has profound implications.

It enables us to practically evaluate any MAC address-based device-
fingerprinting or privacy-intrusion solutions that are suggested in the lit-
erature. It is essential in validating the ineffectiveness of current MAC
randomization. Specifically for BLE, where high association accuracy has
been claimed for controlled environments [1], we design SimBle, a simulator
based on top of NS-3, that provides large-scale traces with ground-truth of
randomized MAC addresses from a device. We emulate devices that follow
network and device privacy provisions of BLE.

While asserting the flaws, we utilize all three means that we mention
before though we give major attention to evaluating the effectiveness of lit-
erature attacks on MAC randomization. This chapter primarily focuses on
BLE, while also including recommendations for WiFi. Subsequent chapters
will discuss in detail the efficiency of current WiFi MAC association frame-
works and propose a benchmark for such frameworks with respect to input
datasets (cf. Chapter 4). We continue to propose a new MAC association
framework that is efficient and reliable across a set of input datasets (cf.
Chapter 5).

In the next sections, we first develop and validate SimBle to verify the
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ineffectiveness of current address randomization in BLE. Then, in Section
3.4, we come back to discuss the key design flaws in detail, considering both
BLE and WiFi. We further proceed to provide solutions/recommendations
based on the observed flaws.

3.2 Asserting flaws in BLE beacons

To assert the identified flaws in BLE beacons, we first address the need for
large-scale datasets with ground-truth, for evaluating the potency of BLE
MAC association attacks. The designed simulation framework SimBle is
capable of generating a wide range of real-world passive-sniffing scenarios
while incorporating the standard compliant and device-specific MAC ran-
domization provisions.

3.2.1 SimBle: Obtaining BLE traces with ground-truth

The framework of Simble generates real-world privacy-preserving traces and
uses them to test the BLE standard’s privacy. The framework can be di-
vided into three major components: 1) Formalisation, 2) Simulation, and
3) Evaluation. Formalisation handles two main issues: capturing the de-
vice heterogeneity in the population and emulating a particular standard’s
privacy provisions.

Simulation takes care of deploying real-world nodes belonging to dif-
ferent manufacturers, incorporating device mobility and most importantly,
optimizing the run-time of the sniffer-capture to practical bounds. Evalu-
ation collects per-sniffer traces, extracts the ground truth information and
subsequently evaluates standard’s privacy-intruding solutions. We detail
Formalisation in this section while we describe Simulation and Evaluation
in 3.2.3. SimBle accepts any user-specific parameters like those related to
mobility and address randomization.

In the following, we first look at different design aspects of Simble and
then we present our Simble architecture. We present a study of privacy
provisions currently proposed by the standard. Finally, we identify the fac-
tors that must be taken into account for designing a simulator that respects
user privacy. The simulator should not only care about including resolvable
private addresses that are integral to BLE privacy but also bring together
other MAC address randomization-related aspects. The proposed simula-
tion stack Simble, is thus designed in such a manner that adding further
privacy-specific features in the future is relatively straightforward.

3.2.1.1 Design considerations

The first aspect that we should take into consideration is the device hetero-
geneity. The second aspect that we focus on is to make sure that the gener-
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ated traces are realistic. Finally, we also want to ensure that the framework
is efficient and capable of generating large-scale traces in practical time.

A. Device heterogeneity: As discussed earlier in the previous section,
different vendors have the freedom with some bounds in the implementation
of the BLE stack in the device. For example, Apple picks from the range
of values to decide how frequently the device changes a randomized MAC
address. We need to distinguish each device introduced in Simble so that
the simulation would be able to replicate its behavior in terms of privacy
features. In the following, we define the device’s type through two points:
the device’s class and the supported standard version.

1. Notion of Device Class: We find a property to classify the device into
various groups where the behavior is similar irrespective of manufac-
turer. This property is the frequency of transmitting beacons, which
is characteristic of a device with a maximum variation of 10ms [41,
p. 2751]. The base value of the beacon transmission period is between
[20 ms; 10.24 s]. Based on this property, we classify BLE devices into
the following device classes:

• Frequent Emitters: For this class, the frequency of transmitting
beacons is from a normal distribution of mean 50 ms and stan-
dard deviation 10 ms. This represents a highly active device like
earbuds. We expect these kinds of devices to also swap their
randomized MAC address quickly.

• Moderate Emitters: These are devices with a moderate frequency
of advertisements. We describe them to be from a normal dis-
tribution of mean 300 ms and standard deviation 25 ms. From
our experimentation, most smartphones, especially iPhones, are
falling into this category.

• Semi-Moderate Emitters: These are devices that are still active in
transmitting regular beacons on broadcast channels. They follow
a normal distribution of mean 500 ms and standard deviation
25 ms. This class again mainly includes phones.

• Low Emitters: These are devices that are least active in sending
out advertisements. We define them to have inter-beacon trans-
mission intervals from a normal distribution of mean 2 s and
standard deviation 500 ms. Smartwatches generally fall in this
category.

A user, when instantiating a node in Simble could choose any of the
stated device classes. If the user enables beacons, nodes automatically
set their behavior to that of the specified class. However, we give the
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flexibility to specify the exact beacon frequency of a device if a user
knows it beforehand through experimentation.

2. BLE standards: The frequency of changing a randomized MAC ad-
dress does depend on the standard. In the most prevalent release
currently in terms of the number of devices, the BLE 4.0, for instance,
devices change their MAC addresses every 15 minutes [37]. In recent
releases like BLE 5.2, devices are allowed to change their address be-
fore 15 minutes too. Therefore, it is crucial to specify a BLE node
with its standard before using its privacy features in the simulation.
Simble gives the user the option to mention the standard they want to
run on top of the declared node, which enables controlling the privacy
features associated.

B. Realistic trace generation: BLE passive sniffing generally refers to
listening on public channels using sniffers. SimBle introduces a framework
for the user to deploy an arbitrary number of sniffers and nodes to be placed
in a sniffing zone. On top of it, different mobility models could be installed
on BLE nodes’ varying densities, which enables recreating realistic environ-
ments. Hence, we could emulate real-world BLE sniffing. Finally, introduc-
ing privacy in BLE simulation automatically answers the search of ground
truth of randomized-address traces. The framework generates ground truth
trace by matching each device’s generated private addresses to the Node ID,
which acts as a unique identifier to the device in simulation time.

C. Optimizing trace generation: We identify a major issue in the gen-
eration of real-world traces inside a simulation. As the number of nodes
increases, the number of simulation events due to processing inter-node
frames also increases quadratically. This has a significant impact on the
time and resources needed for simulation. But we are only interested in the
node-sniffer interaction in the case of public packet capture.

Simble addresses this problem and gives the user the flexibility to specify
a flag in simulation, which induces filtered and optimized handling of broad-
cast frames at nodes. This reduces the simulation duration significantly and
thus makes trace collection feasible. We discuss more on this and look at
the obtained gain in performances in Section 3.2.2.3.

3.2.1.2 Architecture

After having figured out the design, we have a brief look into the architecture
of a BLE Node inside Simble in Figure 3.1. As discussed earlier in Section
1.2.1, we use the base BLE stack of [71]. Components of NetDevices except
the PrivacyManager were defined in the base stack. Application and Packet
socket interface are NS-3 wide entities not specific to BLE. We created the
new component, PrivacyManager that takes care of all BLE privacy features.
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A node in Simble carries the same meaning as in NS-3. It is a physical
entity with a unique integer ID and contains NetDevices and Applications.

In this thesis, we could think theNode to be equivalent to a device/hardware
in the real world. We show in Figure 3.1 a single instance of Application and
NetDevice for illustration but could be multiple in principle. NetDevice is
an integral object of a node representing a physical interface on it. Here, we
are interested in the Bluetooth interface. NetDevice communicates with the
help of interfaces to the Application. Packet socket interface connects the
application interfaces to the NetDevice here. IPv4/IPv6 stack could also be
installed by the user on the node in parallel. Let’s have a brief look at the
roles of other components of NetDevice which were already present in the
base BLE stack [71].

Application

Packet Socket
Interface

NetDevice

PHY Link Controller

Broadband
Manager

Link
Manager

Privacy
Manager

Figure 3.1: Architecture of a node in Simble

BroadbandManager helps add a link to the list of links that can be as-
sociated with a NetDevice. A link here refers to a BLE association between
two nodes. It also handles checking if there are new frames in the NetDevice
queue and forwards them to the right LinkManager’s queue. LinkManager
is the entity associated with a particular BroadbandManager. It setups a
link to a specific receiver with the role(Master/Slave) as expected at the end
of the setup process. LinkManager also manages TransmitWindow which is
the next time the device can send a packet over the associated link.

LinkController is majorly responsible for monitoring and handling the
re-transmissions and state changes in the link. It checks if the ACK was re-
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ceived for the sent packet and also fires a list of callbacks to other NetDevice
objects if the link changes. Lastly, PHY mainly takes the responsibility of
handling link bandwidth, bit-rates, transmission power, and bit errors. We
introduce a new module, PrivacyManager in Simble which takes care of all
the privacy-related aspects of a device. In the forthcoming section, we dis-
cuss how MAC address randomization is managed by the PrivacyManager.

3.2.1.3 Privacy provisions in SiMBle

Hereafter, we describe the PrivacyManager implementation and the MAC
address randomization of BLE. We describe in detail the implementation
of PrivacyManager or, to be specific, the MAC address randomization. All
the introduced algorithms follow the BLE standard guidelines [38].

UPDATE

GENERATE

RESOLVE

CHECKVALIDATION

Main

On device startup

Packet reception || Checking the link

Current Address expires

(IRK)

(Private address)

(isValid, Identity address)

(Resolvable private
address)

Figure 3.2: PrivacyManager in Simble

An overview of the PrivacyManager is illustrated in Figure 3.2. Main in
the figure represents the base class of the PrivacyManager from which mem-
ber functions are called. We could observe in the figure that the function
UPDATE is called on the device startup. UPDATE generates new Resolv-
able private addresses for the calling node using the function GENERATE.
It recursively calls itself after the expiration of the time associated with
the current private address. In the event of packet reception or checking
of the existence of a link to a destination, CHECKVALIDATION is called.
On every call, it checks with RESOLVE with a particular private address.
RESOLVE returns in turn the validity status and the device’s identity ad-
dress, which generated the private address. In the following, we describe the
functions of PrivacyManager in detail.
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KEY generation and distribution: PrivacyManager focuses on sup-
porting Resolvable private addresses – the center of all privacy provisions
in current BLE release [38] (cf. Section 2.2.1) For a node to generate a
resolvable private address, it must have either the Local Identity Resolving
Key (IRK) or the Peer Identity Resolving Key (IRK). This 128-bit key is
proof of possession of a particular private address. In real devices, IRKs
are exchanged through specific control messages. In Simble, we generate
IRK randomly at each Node when it is initialized in the simulation. The
delay caused in the key exchange for real hardware is emulated by swapDe-
lay which we describe in the next section. Simultaneously, the Node also
generates an Identity Address, which is a unique identifier of the device.

In this thesis, the Node or the NetDevice essentially means the same in
terms of BLE-associated parameters. This is because the remaining modules
inside the node (i.e., the socket and the application modules), are not de-
pendent on the BLE standard itself. Finally, before creating links in Simble

and installing an application on top declared nodes, each node updates a
list in their respective NetDevice. This list contains (IRK: Identity Address)
pairs of each of the fellow BLE nodes instantiated in the simulator.

We detail the randomized address generation and resolution inside SimBle
in A.1 and A.2 respectively.

3.2.2 Validating SimBle

In the following, we focus on validating the private address generation and
resolution, as well as the optimized trace collection which enables us to use
SimBle in validating BLE flaws in Section 3.2.3.

3.2.2.1 Private address generation

To know if Simble can emulate a real-world trace, we first collect real traces
obtained from real experimentation. Then, we compare the difference be-
tween real traces obtained from capturing public frames from actual devices
to that of traces generated from initializing similar behavior devices inside
the simulator. This comparison aims to show that Simble could emulate
the same behavior in terms of randomized MAC advertisements and the
transmission of public frames.

As a sniffer, we use the Bluetooth chipset of the Raspberry Pi 4B to
capture Bluetooth public frames. Capture is done in a controlled environ-
ment inside a Faraday cage. We choose two devices Apple iPad Pro 3 and
iPad Mini 2, emitting public frames in the cage for 40 minutes using BLE
4.1, which is captured by the Raspberry Pi. We are mainly interested in
captured timestamps and LAP (lower address part) of the advertised bea-
cons in the collected traces. LAP refers to the least significant 24 bits of
a BLE MAC address. Even though we do trace collection in non-public
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Parameter Value

Simulation area 10*10

Packet size 20 bytes

Simulation duration 2410 seconds

Packet sending Duration 2400 seconds

Path loss model nakagami

Num of nodes N

Mobility model(nodes) static

Num of sniffers M

Mobility model(sniffer) static

beacon interval 2 seconds

Connection Interval 6.25ms

Swap delay 10* beacon interval

BLE standard BLE 4.1

Table 3.1: Simulation parameters for Simble validation

environments, we still present hashed values to protect the device’s privacy.

While for the devices inside the simulator, we assign the BLE standard
in initialization as release 4.1, which fixes the interval of MAC address re-
generation to 15 minutes. Afterward, we install a broadcast application on
top of spawned nodes. We assign the frequency of beacon transmissions
in the application as the mean device broadcast interval observed from the
real-world sniffer capture. We found this value to be 2 seconds. Moreover,
we place a sniffer at the center of a square area of 10 meters in which ini-
tialized emitting devices are statically present. Sniffer captures three public
BLE channels. The chosen area’s size is kept small to avoid transmission
errors because of the distance between the devices and the sniffer. This is
because errors are not present in the Faraday cage real-world experiment
described earlier. The simulation parameters are illustrated in Table 3.1.

The first observation is related to the changing of the MAC addresses.
In this case, for the real experiments, we turn on the Bluetooth of the
two IPad devices at the start of sniffing since the otherwise first change in
MAC address would be random, and it would be hard to use that trace for
validation. As we can see in Figure 3.3a, randomized MAC addresses change
every 15 minutes along with the capture duration. Like real IPad devices,
IPads emulated inside the simulation change their MAC addresses after 15
minutes, shown in Figure 3.3b.

After validating the role of PrivacyManager in private address genera-
tion, we validate if the rest of the BLE stack could emulate the chosen real
device. We do this by looking at the inter-packet times for public frames
observed at the sniffer inside the Simble and the real world. We maintain
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Figure 3.3: Observed public packet addresses in real-world vs Simble by
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the same experimental setup and generated traces. We observe in Figure
3.4 that for both the devices, real-world and Simble inter-packet intervals at
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the sniffer have the mean value of 2 seconds. A deviation of 20 milliseconds
is expected for the sniffers as they capture on either of three public BLE
channels at random and may miss some public frames on one of the three
channels. A public packet on Bluetooth is broadcasted on all three public
channels within a time frame of 20 milliseconds. This validates the overall
working of public frames in Simble.
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Figure 3.5: Sent and received data frames by two paired BLE devices

inside Simble

3.2.2.2 Private address resolution

To validate the resolution of private addresses in Simble, we consider a
simple scenario, where a transmitter and receiver nodes are paired inside it.
This allows us to look into global trace obtained by send and receive logs
and deduce if the data communication was continuous in spite of the sender
and receiver changing their MAC addresses.

As we can see in Figure 3.5, the sender changes its private address around
13 minutes. However, the receiver BLE application continues to process and
receive frames as it could resolve the new private address to the sender’s
Identity Address, having possession of its IRK. Similarly, around 32 min-
utes, we observe that the receiver changes its private address. Still, it is
communicated to the sender through beacons, and hence, the sender this
time around resolves and verifies the receiver’s private address. Therefore,
the sender could be seen sending its data to the receiver seamlessly. This
experiment thus ensures that Simble’s [Alg. 9] is functional in handling
BLE MAC randomization.

3.2.2.3 Optimized trace-collection

We discussed in Section 3.2.1.1 the need to optimize the trace-collection pro-
cedure to obtain traces in a reasonable time. We validate the improvement
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brought by Simble in terms of run-time by increasing the density of devices
up to 1 device per square meter around a sniffer for a simulation duration
of 30 seconds. The density is varied by increasing the number of devices up
to 100 in 100 square meters around the sniffer. As we can observe, in Fig-
ure 3.6, optimized sniffing gives a performance gain in simulation run-time
up to a factor of 100. In conclusion, since we generally have to simulate a
considerably longer duration to test BLE privacy provisions as most MAC
addresses change around 15 minutes, Simble can optimize the sniffing to
generate traces in a reasonable amount of time.

Figure 3.6: Performance gain in run-time with optimized sniffing inside

simulation

3.2.3 Using Simble to assert BLE flaws

Contrary to the above BLE strategies [42] [13] [43] which target specific de-
vices like Apple, [1] propose a method which associates MAC addresses from
a device based on emitted public frames. This makes [6] independent of the
device vendor and generic for any BLE device as it just relies on beacons
and whatever the used application. They identify devices across time using
an identifier that discriminates a subset of devices at a given time, that is, a
weak identifier, and achieve close to 100% accuracy for controlled environ-
ments. Therefore, we decided to implement and study performances of [1]
when using SimBle, since to the best of our knowledge, it is the only generic
BLE MAC address association strategy currently available in the literature.
We evaluate it using the traces and the ground truth generated by SimBle.

The association strategy proposed in [1] involves three steps. Firstly,
when analyzing sniffed traces of public BLE frames, the authors identify
conflicts where multiple devices change their randomized MAC addresses
simultaneously, forming conflict clusters. They also define conflict clusters
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as the time that separates consecutive private addresses from a device. Sec-
ondly, they use Linear Assignment with distances between weak identifiers,
specifically the characteristic time derived from the fixed part of the time
between advertising frames, to associate appearing and disappearing MAC
addresses within the dswap interval. Finally, they resolve MAC address con-
flicts to establish associations between randomized addresses. We evaluate
the effectiveness of the association strategy with respect to the number of de-
vices, the diversity of devices, and the degree of mobility in the sniffing zone.

Evaluation: In the following, we evaluate the accuracy of MAC address
association and growth of conflict cluster size for various realistic scenarios.
In scenario 1, we choose BLE 4.1, since it is the most prevalent BLE release
in devices today. We also choose a single device class, which is smartphones.
Smartphones largely fall into the device class moderate emitters as stated
earlier in Section 3.2.1.1. The randomization interval in BLE 4.1 is set to 15
minutes. In scenario 2, we consider BLE 5.2 and multiple device classes.
Here we emulate a diverse range of devices supporting the latest release, BLE
5.2, in them. We choose this BLE standard because, unlike BLE 4.1, vendors
can keep private address generation intervals to be less than 15 minutes.
Though standard advises avoiding smaller values for randomization intervals
than 15 minutes as it could affect performance due to connection times. We
deliberately keep the randomization interval a uniform distribution in the
range (3, 15) minutes to observe how [1] performs when more and more
vendors start to quicken private address generation. We evaluate all the
scenarios for the following mobility profiles:

1. Static-Confined: Here the devices are static and are always present
in the sniffing zone.

2. Mobile-Free: In this profile, devices are mobile and are free to leave
and enter the sniffing zone. We try to mimic human mobility by using
a random-walk mobility model with a speed of 1.5 m/s and direction
change after every 2 s.

We generate all the traces and associated ground truth by simulating
several BLE devices and a sniffer for 40 minutes using Simble. We prefer a
longer duration than multiple simulation runs of a small duration as it gives
detailed insight into how conflicts evolve with time. It is essential to note
how accurately [1] resolves the MAC addresses from a single device in the
capture duration. For Static-Confined mobility-profile, we place a sniffer in
the center of a square of 100 square meters and vary the number of BLE
devices/nodes up to 100. We choose this area to make sure that nodes are
always in the sniffing range of the sniffer. As shown in Table 3.1, we use
the Nakagmi path loss model and consider the successful BLE transmission
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range to be around 20 meters. While in the case of Mobile-Free mobility-
profile, we deliberately take a square of 2500 square meters and place the
sniffer in the middle of it. BLE nodes are performing random-walk in that
area and thus move in and out of the sniffing range.
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Figure 3.7: Accuracy of MAC address associations and average conflict size

observed by MAC association strategy [1] on Simble generated traces.

Results:

1. Scenario 1: First, we observe how well the algorithm [1] can de-
feat MAC randomization and correctly associate private addresses for
BLE 4.1 with moderate emitters. MAC addresses change after every
15 minutes in BLE 4.1. For average conflict sizes below 10, we ex-
pect the algorithm to perform well both in run-time and accuracy. We
observe in Figure 3.7a that the accuracy of association is above 98%
for Static-Confined mobility-profile. Even in the case of Mobile-Free
nodes, minimum accuracy of around 91% is seen for 100 devices. Av-
erage conflicts increase with an increase in the number of devices as
expected in Figure 3.7b, but they are well beneath the bound of 10
conflicts. Hence, the accuracy of MAC address association is very high
for both mobility profiles.

2. Scenario 2: We go for multiple device classes but with private ad-
dress changes possible before the interval of 15 minutes. We expect
the conflict sizes to rise and hence a decrease in accuracy for a large
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number of devices. For 100 devices accuracy of MAC address asso-
ciations decrease to around 89% for both mobility profiles as seen in
Figure 3.7c. Conflict sizes increase to a maximum value of 13 as seen
in Figure 3.7d, but it is still not large enough to degrade the efficiency
of the association strategy [1].

The case study shows that the current MAC address randomization pro-
posed by the BLE standard is not enough to safeguard user privacy. The
association strategy [1] can successfully defeat the randomization procedure
and correctly fingerprint close to 90% of the devices even in highly dense and
mobile scenarios. An adversary could set up multiple sniffers strategically
and easily track a particular user’s device.

The works that do BLEMAC address association or device-fingerprinting
are threats to privacy provisions of BLE [1] [42] [43] [13] as these strategies
lead to tracking of users. Only Simble can allow the community to compare
the effectiveness of any two of these available solutions. This is because we
need exact/identical conditions for comparing the evaluations. It is not only
hard for experiments/test beds to emulate identical conditions but are also
not scalable. Moreover, as discussed earlier, finding ground truth for exper-
imentally obtained traces is practically impossible for large-scale testing. In
the following section, we address each of the identified design flaws in detail.

3.3 Asserting flaws in WiFi probe-requests

To assert the flaws in WiFi prone-requests, we use the same methodology as
BLE. We focus on assessing the literature attacks’ viability on a wide range
of datasets while also examining existing MAC randomization methods, and
exploring the content of probe-requests in detail.

We dig deeper into asserting WiFi flaws in Chapter 4 where we evalu-
ate two address association frameworks in literature which we refer to as 1)
Infocom2021 [2] and ii) WiSec16 [3]. The chosen attacks cover all associa-
tion strategies such as the usage of sequence numbers (SEQ), information
elements (IE), packet-reception timings, and RSSI - based signatures. We
utilize various data-collection scenarios to see the effective MAC association
threats possessed by the current frameworks.

The current frameworks do associate with considerable accuracy though
we observe a substantial discrepancy between the performances obtained
by these frameworks when confronting them with different contextual en-
vironments. As with BLE, where we use SimBle to generate passively-
sniffed traces with ground-truth, we pseudo-randomize publicly available
large probe-request datasets by manually changing the device’s MAC ad-
dress every four bursts (cf. Chapter 2.2.2) of probes. We introduce a novel
MAC association framework for WiFi in Chapter 5 which indeed achieves



3.4. MITIGATING BLE AND WIFI FLAWS 41

high accuracy in defeating MAC randomization, asserting the flaws that we
identify in this chapter.

In the next section, while discussing solutions to mitigate flaws related
to WiFi probe-requests, we rather use analytical methods and the available
public datasets to assert our arguments.

3.4 Mitigating BLE and WiFi flaws

We address the design flaws concerning current standard provisions that we
identify in the previous section and discuss solutions to them, respectively.
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Figure 3.8: BLE MAC association [1] with randomization interval of 3

minutes

1. Choice of randomization interval: Timing-based attacks on BLE
MAC address randomization take the benefit of the current interval after
which a device changes the public identifier. The more frequently we perform
the randomization, the more probable it is for a higher number of devices
in the population to change their MAC addresses around the same time.
We denote this number by Conflict size. The higher this average value,
the more difficult it is to associate MAC addresses from the same device
for the adversary. We redefine the notion of conflict size for WiFi MAC
randomization too in Chapter 4.

When considering WiFi, there are quite different MAC randomization
schemes for Linux, iOS, and Windows [6]. Linux lets the driver or firmware
generate per-burst randomMAC addresses. In iOS, randomization is limited
to probing and only happens when the device is unassociated and in sleep
mode. Windows 10 changes the MAC address when the device connects or
disconnects from a network and when it restarts. As timing attacks in WiFi
also defeat randomization by up to 75% [6], the standard needs to have a
consensus on making randomization mandatory for the manufacturers while
specifying lower duration, preferably every few bursts.

In BLE, the standard currently recommends keeping the random MAC
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address for at least 15 minutes [38]. We look at the performance of [1]
with respect to the size of the randomization interval. We use Simble for
reducing the randomization interval of the device population to 3 minutes
and evaluate the performance against the standard 15-minute duration. We
pick 3 minutes as the optimal lower value, as a much smaller interval will
cause longer connection times in real devices. We vary the number of devices
inside Simble up to 100, for static-confined and mobile-free mobility profiles.

We observe in Figure 3.8 that, indeed, accuracy decreases to a minimum
of around 91% to 78% with conflict size growing from 6 to 97 when decreas-
ing the randomization interval. Based on this observation, we recommended
lowering the BLE randomization interval while caring for slightly increased
connection times as a consequence. Thus, we can optimize the current IRK
(Identity resolving key) [38] exchange, for instance, in BLE, to allow devices
to change addresses frequently without compromising performance.

2. Discriminating power of weak identifiers: Weak identifiers are the
features deduced from the advertised frames which are capable of discrim-
inating a subset of device-population. The majority of the works rely on
timing-based signatures to differentiate two devices that change their MAC
at the same time, as it works as a fingerprint per device [6] [1]. Inter-frame
space(IFS) in WiFi and inter-beacon interval in BLE are the most promising
weak identifiers that comprise timing-based signatures.

Inter-beacon interval in BLE consists of a constant part plus a pseudo-
random value in the range [0, 10] ms. [41, p. 2751] The device regenerates
the random value every burst, but the constant part seldom changes and
could be estimated [1]. We call in this thesis this weak identifier as the
characteristic time or Tint. We collect a highly dense dataset that contains
more than 2500 MAC addresses in less than 10 seconds to evaluate the
vulnerability of the current BLE against this identifier. A powerful weak
identifier should be as uniform over a set of values as large as possible. The
Shannon entropy is a direct measure of the uniformity of the distribution.

Figure 3.9a displays the entropy of the characteristic time distributions,
over the space of devices, per brand, as a function of the number of charac-
teristic times used. For each brand, a bigger circle signifies multiple devices
of the same brand in conflict more probable. The more characteristic times
a brand possesses, the more devices could be simultaneously differentiated.
Contrary to the intuitive belief that more identifier means more individ-
ual privacy, introducing many characteristic times increases identification
chances. With the result in Figure 3.7b we see that, in most cases, the
characteristic time is sufficient as a weak identifier, as conflict clusters rarely
grow past the 10 devices with current provisions. For such small clusters, [1]
already defeating BLE MAC randomization by up to 100%

For WiFi, we also investigate the IFS in a probe-request burst using the
Bologna probe-request university dataset that captures probe requests from
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Figure 3.9: Behavior of Weak identifiers (Better seen in color)

3917 MAC addresses. Signatures deduced from the IFS could discriminate
up to 75% We see in Figure 3.9b that mean IFS is almost uniformly dis-
tributed in the range [0, 10] ms for various traces in the dataset. But at
the same time, the standard deviation of mean IFS per burst is less than
1 ms for around 80 percent of devices, as seen in Figure 3.9c. This makes
means IFS per burst is susceptible to being used as a fingerprinting solution
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in WiFi. Again, we recommend the WiFi standard to force manufacturing
brands to use similar probe-request bursts in IFS.

3. Confidential packet information fields: To stop the frame field
and inference attacks, encryption is the most intuitive solution for limiting
device fingerprinting using public frames. We need the following key prop-
erties for encrypting public frames: 1) Universality- The solution should be
compatible across various wireless standards. 2) Un-correlation- We have to
ensure that two different frames from the device across time are not linked to
the same source. 3) Efficiency- To save time and energy, a minimum num-
ber of exchanges should happen in the control information transfer phase
of the proposed protocol. Also, each exchange must happen within realistic
bounds to ensure the usability of the control frames. 4) Conformity- The
structure of the frames must still conform to that of the standard format to
hide the presence of security measures from the attacker.

We require an efficient key exchange protocol to establish a symmet-
ric key for further exchanges, while we need different keys for successive
frames from a source to ensure the property of un-correlation. We analyze
next the need and the feasibility of encryption to ensure confidentiality in
BLE and WiFi, respectively. BLE beacons contain very weak identifiers like
manufacturer names and event types. We test these identifiers’ potential to
discriminate among the randomized MAC addresses. We find out that the
manufacturer information and the advertisement type can only resolve less
than 5 percent of MAC address conflicts seen in the dataset. Therefore, we
conclude that it is not necessary to pseudonymize any packet fields in the
BLE Beacons.

On the contrary, in WiFi, we have a significant number of attacks on user
privacy based on inferring from public frames like probe requests. McKinion
et. al [72] do a widespread evaluation of existing frameworks for security pit-
holes in probe requests. Probe-request-based device identification on IEEE
802.11ac is reduced considerably after the application of stream cipher-based
encryption [26]. They test the solution with Two Dell OptiPlex 3600 mini
Workstations are used as a client device and AP. We notice that Diffie-
hellman key exchange takes 2.4− 2.6s, while transmission of the encrypted
packet needs 0.4− 0.6s [26].

As we already see in Figure 3.9b, the mean IFS per burst of probe
requests in a real dataset is in the order of a few milliseconds. The burst
duration is around 10ms practically, and we know that most of the devices
change their mac addresses after every few bursts. Active scans in WiFi are
meant for fast re-connection to known networks. The overhead of 500ms
in sending encrypted probes, even in basic exchanges of a stream cipher, is
not realistic. The protocols will get heavier if we introduce more security
guarantees to stop replay attacks, for instance. We should also consider
the packet losses during the key exchange and the timeouts that it would



induce. Moreover, we must support the broadcast probe requests from the
client too. Due to these resource constraints, we argue the un-feasibility
of classical encryption as a contender for providing confidentiality in WiFi
probes.

Instead, we propose the exploration of the following solutions in the
future to ensure the practicality and usability of WiFi probe requests:

1. Introducing controlled noise to the information fields in the probe re-
quests can effectively diminish the success rate of fingerprinting at-
tacks.

2. Replacing the entries in Preferred Network Lists (PNLs) advertised
by the probe requests with pseudo-identifiers, agreed upon by each
client-AP pair beforehand, presents another viable option.

3.5 Conclusion

In this chapter, we focus on investigating potential vulnerabilities, partic-
ularly in the context of MAC address association, which involves linking
randomized MAC addresses in beacons and probe-requests to their sender
devices. This association poses a considerable threat to user privacy.

We delve into this problem, thoroughly exploring its implications and
highlighting the pressing need for privacy-preserving public frames. We
identify crucial flaws in the current design of public frames, which contribute
to privacy issues requiring immediate attention from the community. By
addressing these flaws and discussing potential solutions, we aim to empower
devices to better safeguard user privacy. We present our recommendations
based on the findings.

In literature, the majority of association frameworks utilize the identified
flaws to associate MAC addresses. Before identifying more potential vulner-
abilities and proposing a better-performing association framework, we need
to assess the current frameworks and their accuracy with respect to vary-
ing input datasets. In the next chapters, we focus on WiFi probe-requests
datasets for MAC association for two reasons. First, the BLE device’s MAC
addresses have already been shown to be associated with very high accu-
racy in literature [1]. Second, effective MAC association is relatively more
challenging in WiFi than BLE due to the higher density of WiFi devices
in public spaces, implying a larger number of observed randomized public
frames.
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MAC randomization is a backbone for preserving user privacy in WiFi, as
devices change their identifiers (MAC addresses). MAC association frame-
works in the literature are able to associate randomized MAC addresses with
a device. Such frameworks facilitate the continuation and validity of works
based on device-based identifiers.

In this chapter, we first question and verify the reliability of MAC as-
sociation frameworks with respect to the datasets (scenarios) used for their
validation. We define the reliability as the ability of a MAC association
framework to accurately identify MAC addresses belonging to the same
device independently of the contextual scenarios described in the testing
datasets.

Indeed, we observe a substantial discrepancy between the performances
obtained by association frameworks when confronting them with different
contextual environments, revealing their unreliability. We identify the de-
vice heterogeneity in the input scenario as the cause of varying accuracy
obtained by association frameworks. Henceforth, we propose a novel met-
ric: randomization complexity, capable of successfully catching the degree of
randomization in evaluated datasets. Existing and new frameworks can thus

45
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be benchmarked using this metric to ensure their reliability for any datasets
with similar or lower randomization complexities. Finally, we open discus-
sions on the potential impact of the benchmarks in the domain of MAC
randomization.

4.1 Identifying frameworks unreliability

We follow a four-step methodology for establishing and addressing the re-
liance on current address association frameworks:

1. Detecting the unreliability: First, we detect and verify the unre-
liability of current association frameworks when tested with different
contextual environments. We carefully select frameworks to evaluate
in this thesis along with the input datasets to represent various real-
world passive sniffing scenarios. The datasets contain varying degrees
(complexities) of MAC address changes in small intervals of time, po-
tentially challenging the association accuracy of chosen frameworks.
(cf. Section 4.1.1)

2. Reasoning the unreliability: Second, we investigate the reason
for the varying performance of association frameworks. We find the
factors which cause the heterogeneity in input datasets causing the
variance and degradation of performances. The probe-request genera-
tion in terms of timings and content in the dataset causes the difference
in complexities that an association framework faces. (cf. Section 4.1.3)

3. Introducing the benchmarks: Third, we find a generic metric that
could capture the effects of all the identified factors in the previous
step. We observe that indeed, the complexities induced by an input
probe-request trace can be modeled and used as benchmarks when
evaluating an association framework. (cf. Section 4.3)

4. Showcasing the effectiveness of benchmarks: Finally, we show-
case the potency of benchmarks in capturing the effectiveness of a
framework. We show that the accuracy behavior of frameworks across
input datasets follows the trends shown by the corresponding bench-
marks. Benchmarks allow frameworks’ reliability verification providing
insights into their association behavior (cf. Section 4.3.2).

4.1.1 Case-Studies

We consider two literature works as case studies for testing the resilience of
address association frameworks, i.e., (i) Infocom2021 [2] and (ii) WiSec16 [3],
which are validated upon a set of heterogeneous datasets: HongKong (cf.
Chapter 2.5) and probe-request collection inside a laboratory. The case
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studies cover all association strategies: usage of sequence numbers (SEQ),
information elements (IE), packet-reception timings, and RSSI - based sig-
natures.

Infocom2021 case-study: Using diverse scenarios, we evaluate two major
components of the signature introduced by authors in [2]: the IE and the
SEQ. We do not consider the third component: RSSI, as it requires mul-
tiple geographically-known sniffers around each transmitting device while
contributing very less (drops up to 10%) to the effectiveness of the signature
(Fig. 13, [2]). The effectiveness metric utilized in Infocom2021 is discrim-
ination accuracy. Authors define discrimination accuracy as the ratio of
the correct association, estimated from 1000 randomly selected probes (Pi)
and their previous probes in the Period ([ti − τ, ti]). They vary the period
between (0, 600s).

WiSec16 case-study: Similarly, we proceed with the performance analysis
of the timing-based signature introduced in [3], under different scenarios.
They propose distance metrics based on timing (inter-frame arrival time)
and use them together with an incremental learning algorithm to group
probes. It claims up to 75% partially randomized traces collected in a lab-
oratory environment.

Lack of comparability: Infocom2021 uses probe-requests captured inside
a shopping mall for evaluation by deploying multiple sensors. It consists of
around 5000 unique MACs per hour. However, only the devices transmit-
ting their true (physical) MAC address are considered for evaluating the
framework. On the other hand, authors evaluate WiSec16 on a dataset col-
lected inside a laboratory consisting of probe-requests with non-randomized
addresses. They partially randomized their dataset (100 out of 550 captured
devices) by manually changing MAC addresses in four bursts (cf. Section
4.2.1) of probe-requests. Both frameworks analyze distinct datasets, and
for a meaningful comparison between the two case studies, it is essential to
evaluate them using the same input probe-request dataset.

4.1.2 Need for benchmarks

We need a ground truth of randomized MAC addresses emitted from the
same device to compute the association accuracy of the chosen frameworks .
Hence, we use the public anonymized Sapienza trace 1, consisting of about 11
million probe-requests, passively collected in eight different contextual sce-
narios. We choose datasets from five scenarios: trainstation, themall, vatican
1, and, vatican 2. The first two showcase highly frequented public spaces,

1https://crawdad.org/sapienza/probe-requests/20130910

https://crawdad.org/sapienza/probe-requests/20130910
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while the remaining denote dense outdoor environments. The dataset con-
sists of the true MAC addresses of devices. We randomize the dataset by
changing the addresses every 4 bursts while considering various percentages
of captured MAC addresses and keeping the ground truth of original ad-
dresses. Next, we look at the performance of both frameworks with respect
to varied scenarios of this dataset.

Regarding Infocom2021, we can observe in Fig. 4.1a and 4.1b that
discrimination accuracy of IE and SEQ-based signatures vary significantly
across input datasets. For instance, we can see that in relatively more static
environments (train-station) the performances are good for small periods.
However, when the environment starts to be more dynamic the performances
fall considerably. The accuracy of IE in vatican2 drops to 23 percent while
it goes close to zero when considering probes in the period of 600s. The
reported discrimination accuracy for the same period, in Infocom2021 is
44% and 19%, for IE and SEQ-based signatures, respectively. This shows
that the parameter period highly impacts the results in all scenarios.

Considering WiSec16, we notice in Fig. 4.1c that the proposed asso-
ciation framework performs variably to the difference in scenarios and the
degree of MAC randomization present in the collected probe-requests trace.
Also, the achieved accuracy is significantly lower than the claimed best per-
formance (75%) in fully randomized datasets.

Awareness requirement: We observe that the performance of the studied
association frameworks is considerably variable. We argue this variability
induces unreliability in the obtained accuracy. Such observation leads us to
the essential need for phenomena inference in input datasets, i.e., contextual
inference of scenarios.

4.1.3 Causes of unreliability

We identify a major issue in the validation of current association frameworks:
a lack of characterization of the heterogeneity in terms of the burst’s
and the randomization’s behavior (cf. Sec. 4.2.1) in utilized probe-request
datasets. The model and the user-usage patterns of a device introduces this
heterogeneity that influences the generation of probe-request packets (cf.
Sec. 4.2). The model of devices denote the class of devices along with its
manufacturer (e.g., smart watches, mobile phones with Android, iOS) while
the usage patterns of users refer to the mode of the device when emitting a
probe-request (e.g., screen ON/OFF).

The reason for the variation in the probe-request sending rates and the
MAC randomization is that every manufacturer independently decides these
behaviors to ensure a good trade-off between the network experience for
users and the device’s performance (e.g., battery life).

The main issues we identify are as follows:



4.1. IDENTIFYING FRAMEWORKS UNRELIABILITY 49

0 200 400 600
Period(s)

0

50

100

Di
sc

rim
in

at
io

n 
ac

cu
ra

cy mall
trainstation

vatican1
vatican2

(a) Information elements (IE)

0 200 400 600
Period(s)

0

50

100

Di
sc

rim
in

at
io

n 
ac

cu
ra

cy mall
trainstation

vatican1
vatican2

(b) Sequence numbers (SEQ)

m
al

l
tra

in
st

n.
va

tic
an

1
va

tic
an

2

m
al

l
tra

in
st

n.
va

tic
an

1
va

tic
an

2

Scenario

10
20
30

A
cc

ur
ac

y

50%randomised 100%randomised

(c)

Figure 4.1: Case studies: (a-b) Infocom2021 [2], (c) WiSec16 [3].

1. The literature does not use the same dataset (to ensure homogeneity)
or any kind of benchmark to show the trustworthiness of the obtained
framework’s performance (cf. Sec. 4.3).

2. There is a general lack of ground truth of randomized MAC addresses
with respect to the sending device. The first issue causes looking only
at a selective view to the framework’s performance. In contrast, the
second issue leads to the usage of indirect accuracy metrics such as
discrimination accuracy (as in Infocom2021).
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3. There is a lack of analysis of the performance with respect to varying
intensity of MAC address changes that a data-collection scenario can
capture (cf. Sec. 4.3.2). The more the intensity of address swaps, the
more difficult, in general, it is for a framework to associate MACs.

The need: We claim the need for a metric to characterize the device het-
erogeneity in terms of the burst’s and randomization’s behaviors. Hence, we
introduce the randomisation complexity to bring the notion of benchmarks
for validating the reliability of association frameworks.

4.2 Impact of heterogeneity

We investigate the variability of MAC randomization in WiFi probe-requests
with respect to heterogeneity introduced by the pool of current mobile de-
vices. The three identified factors making the emission of probe-requests
heterogeneous and subsequently having an impact on the address random-
ization in WiFi are: i) the device’s model, ii) the device’s mode, and, iii) the
transmission channel. While the model captures the device heterogeneity
with respect to randomization behavior, we observe that the mode is the
one that has the highest impact on the probe-request generation. Hence,
in the following, we will focus mainly on the device mode for characterizing
probe-requests.

The probe-requests are susceptible to fingerprinting due to: 1) the nature
of their bursts and 2) the randomizing strategy of their MAC addresses.
In the following, we evaluate probe-request susceptibility with respect to
heterogeneity introduced by the device’s models, modes, and, transmission
channels.

4.2.1 Probe-request bursts

We can not analyze probe-requests behavior using Sapienza datasets used
for the case studies (cf. Sec. 4.1.1) as we need a wide range of current mobile
devices with additional information such as device’s mode when transmit-
ting. Therefore, we used the probe-request dataset [5]. This dataset has
22 popular device models in practice, which were sniffed when present in
various device modes (see Tab. 2.2). This is the first open-source probe-
requests dataset, labelled with the ground truth of randomized addresses. It
contains 20-minute duration captures of known devices using a Raspberry
Pi-based sniffer.

There are active-screen modes (A, PA, and WA) and inactive-screen
modes (S, PS, and WS). In power-saving modes (PA and PS), the device
additionally keeps the power-saving setting active, while in WA and WS
modes, the device also has the Wi-Fi interface switched off. Each device
configuration is observed in the three non-overlapping channels (1,6, and,
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Figure 4.3: Analysis of probe-requests burst behaviors – i.e., size,

duration, Inter-burst time, and Intra-burst time – under varying Device

model’s.

11) of the 2.4 GHz frequency band. The details of capture conditions for
each device mode can be found in [5]. In the following, we discuss the metrics
concerning Wi-Fi probe-request emissions that facilitate the association.

Fig. 4.2 illustrates the probe-requests sent from a device over time in the
active scanning process. Devices send probes on every available channel to
discover available networks in proximity. Each probing round consists of a
burst of frames. The burst size is variable, depending mainly on the number
of available channels. The period between successive bursts, inter-burst time
(IBT), is variable to devise models and its operating modes.

In essence, the temporal behavior of WiFi probe-requests can be char-
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Figure 4.4: Analysis of probe-requests burst behaviors – i.e., size,

duration, Inter-burst time, and Intra-burst time – under varying Device

modes.

acterized by four metrics:

Bursts’ size: The average number of frames in a burst when considering
all device types (models) varies considerably with the mean value of 7 (see
Fig. 4.3a). We further analyze a device’s behavior per mode in Fig. 4.4a.
We observe that devices send many frames in modes (A and PS). Intuitively,
devices reduce the burst sizes to the minimum in the mode with active-screen
and power saving mode (PA).

Bursts’ duration: The average duration of a probe-request burst, across
device types varies around 1s − 3s, as shown in Fig. 4.3b. It is interesting
to note in Fig. 4.4b that burst duration is relatively lower in active-screen
modes (A and PA) than in static-screen modes (S and WS). This can be
attributed to devices conserving energy when under constraints.

Inter-burst time (IBT): The inter-burst time is typical to devise man-
ufacturers’ factory configurations. Hence, across all metrics we consider to
characterize probe-requests, it shows the most variation across the device
types. Fig. 4.3c illustrates that IBT alters from a few seconds to more than
200 seconds. Moreover, we notice in Fig. 4.4c that IBT is the lowest in
active-screen mode (A) while the highest when the power-saving mode is
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Figure 4.5: Analysis of probe-requests burst behaviors – i.e., size,

duration, Inter-burst time, and Intra-burst time – under varying Channels.

additionally turned ON (PA).

Intra-burst time: Finally, we investigate the time between frames in a
single burst. We observe in Fig. 4.3d that it goes up to 0.8s. When looking
at the effect of device modes on the intra-burst time, we could notice in Fig.
4.4d that devices tend to send frames quickly in a burst in the active-screen
mode (A) than in the static-screen mode (S).

We also observe a slight variation in the burst’s size and duration as well
as IBT and intra-burst time with respect to transmission channels (see Fig.
4.5a - 4.5d).

4.2.2 Randomization behavior of WiFi MAC addresses

In addition to the amount of probe-requests generated by WiFi devices, the
temporal patterns of advertised MAC addresses also impact the accuracy of
association frameworks. In WiFi, most of the current devices change their
MAC identifiers after a period of time. We notice that 18 of 22 considered
major device types in the dataset [5] do randomize their MAC addresses.
Fig. 4.6a illustrates that most devices change their MAC address after a
burst, irrespective of device modes. Moreover, the average address swap
times are low and almost similar across device modes, except when the
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WiFi interface is switched OFF (WA and WS), as shown in Fig. 4.6b.
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Figure 4.6: Behaviour of MAC addresses

We have two key conclusions:

• 1st conclusion: The device heterogeneity does play a major role in
WiFi MAC address randomization. We could see that all broad types
of signatures are based on metrics that vary with device types and
modes. Signatures based on temporal information of probe-requests [3]
rely upon the behavior of bursts, while those based on frame fields [2]
depend upon device-specific frame fields. Finally, sequence numbers-
based signatures [2,27] also subsequently depend upon the burst’s size
and IBT of individual devices, as it dictates the probability of sniffers
recording a device’s frames.

• 2nd conclusion: MAC association frameworks need a representative
evaluation. As we just discussed, we must catch device’s population
(models) as well as modes present at the time of dataset collection. We
have to ensure that this dataset used for the evaluation of an address
association framework should maintain the performance in similar sce-
narios. Hence, we need a metric that quantifies this similarity between
data collection scenarios.

In the following section, we introduce randomization complexity, a metric
that enables us to compare two datasets with respect to the difficulty that
a framework has to face while associating contained MAC addresses. This
metric hence allows the evaluation of various association frameworks to be
comparable.
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4.3 Benchmarks for association frameworks

We build upon our conclusions to introduce the formalization on bench-
marks for the evaluation of MAC association frameworks. The proposed
benchmarks are generic and are representative of the complexity in the used
input dataset.

We believe such formalization: (i) Brings new ways of interpreting de-
vices’ randomization behavior, (ii) Opens paths for designing adaptive ran-
domization techniques by the standard. For instance, devices can random-
ize more frequently in situations with sparse nearby device populations to
maintain a high complexity for an adversary, and, (iii) And off-course allow
association frameworks to be more robust and reliable.

4.3.1 Defining benchmarks

To associate observed randomized MAC addresses to respective sender de-
vices, correct mapping of address pairs representing the same user has to
be performed. The adversary has to choose among multiple possible MAC
pairs seen during the same time interval. We utilize this intuition to define
MAC association as the resolution of conflicts.

Conflicts (C) refer to changing MAC addresses in a given time period.
They are either caused by devices that stop emitting during the MAC chang-
ing process or due to their entry/exit from the sniffing range. We refer to
this time period as conflict period (Tc). We illustrate conflict periods in
Fig. 4.7. Dotted lines in different colors represent different appearing and
disappearing MAC addresses sent by devices, in a Tc.

Any address association framework in essence has to resolve these con-
flicts and perform correct assignment between the disappearing and appear-
ing MAC from individual devices. Each MAC address M is a bunch of
probe-requests with a start (M start) and a stop (M stop). For instance, a
disappearing MAC, Mj is said to be in conflict (illustrated in Fig. 4.7) with
an appearing MAC, Mk if:

C : Mk,Mj 7→ (i− 1)Tc < M stop
j ,M start

k ≤ iTc (4.1)

We obtain benchmarks from the following three steps:

1. Determining the conflict period : We denote the set of modes asM,
the set of device models D, and the transmitting channels (frequency bands)
as F . The conflict period (Tc) should be such that we let the association
framework consider possible associations. We observe in Sec. 4.2.2 that a
device is likely to change its MAC after a burst. Hence, we must consider
Tc to be at least of the inter-burst time (IBT).

First, we vary the device types (dj) and channels (f) while keeping
the mode fixed to obtain the min., max. and, avg. values of IBT per
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Time

Figure 4.7: An illustration of conflict periods (Tc)

mode (IBTm) [Eq. 4.2]. Then, we vary modes and take the correspond-
ing min., max. and, avg. of the union set, to obtain the Tc’s minimum,

maximum, and, average values [Eq. 4.3]. We find the T
(min.,avg.,max.)
c to be

(5.00s, 95.72s, 365.42s) using the labelled dataset [5].

IBTm
(min.,avg.,max.) = (min., avg.,max.)

⋃
dj∈D,f∈F

IBT(dj ,f)m
(4.2)

T (min.,avg.,max.)
c = (min., avg.,max.)

⋃
m∈M

IBTm
(min.,avg.,max.) (4.3)

2. Obtaining the conflict size: We introduce a global metric: con-
flict size (CS), which is capable of catching the ”complexity” of any input
network trace. We define conflict size as half the number of address trails
(M start’s and M stop’s), in a conflict period (Tc). For instance, as shown in
Fig. 4.7, the conflict size (CS) is 6 for Tc

ti . Higher CS makes it difficult for
frameworks to resolve conflicts.
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Figure 4.8: Randomisation complexities

3. Inferring the randomization complexity : We define the corre-
sponding minimum, maximum, and, average: randomization complexities

(RC(min.,avg.,max.)) as the set of conflict sizes ( CS(T (min.,avg.,max.)
c ) ) when

considering corresponding conflict periods (ti), overall slots (S) in the con-
sidered dataset [Eq. 4.4].

RC(min.,avg.,max.) =
⋃
i∈S
CS(T (min.,avg.,max.)

c )
ti

(4.4)

The randomization complexities act as a benchmark for the lower, up-
per, and, average performance limits of address association frameworks. The

calculated values of T
(min.,avg.,max.)
c in this thesis can be used to obtain ran-

domization complexities of any input dataset by just following steps (2) and
(3) above. New frameworks in literature, can accompany their frameworks
with our benchmarks to ensure their reliability for any new scenarios with
similar or lower complexities.

4.3.2 Showcasing benchmarks

In Fig. 4.8, we report the min., max., and avg. values in complexity of
Infocom2021 dataset and of the Sapienza datasets. We notice that the
randomization complexity and the framework’s performance are inversely



proportional, as expected. We observe that scenarios: vatican2 and mall
have relatively higher complexities than the other ones.

When considering Infocom2021, we can observe in Fig. 4.1a and 4.1b
that the discrimination accuracy obtained by both signature metrics: IE
and SEQ, degrade with increasing randomization complexities. The scenario
trainstation for instance, obtains the best relative performance as it exhibits
the lowest randomization complexity in Fig. 4.8. We observe a similar trend
of the high and low accuracy in WiSec16, for the scenarios: trainstation and
vatican2 as shown in Fig. 4.1c. These two scenarios show relatively lower
and greater randomization complexities respectively, as expected.

This certifies our benchmarks of adequately catching the complexity of
the dataset. Both frameworks are expected to have the same association
accuracy when evaluated with another input dataset with similar random-
ization complexity.

4.4 Conclusion

MAC association frameworks in the literature have demonstrated the ability
to associate randomized MAC addresses with specific devices, which raises
concerns about the effectiveness of privacy preservation. In this chapter,
we question and verify the reliability of MAC association frameworks con-
cerning the datasets used for their validation. The reliability of an address
association framework is defined as its ability to achieve consistent accuracy
across varying contexts where the input probe-requests datasets were col-
lected. Through our analysis, we have observed a significant discrepancy in
the performances of these frameworks when confronted with different con-
textual environments. We propose a novel metric that effectively captures
the degree of randomization in evaluated datasets. This metric can be used
to benchmark existing and new frameworks, ensuring their reliability for
datasets with similar or lower randomization complexities.

Benchmarks play a crucial role in pinpointing weaknesses and gaps in
the existing literature, enabling the design of a new association framework
that effectively selects and combines signatures. In the following chapter, we
present our novel MAC association framework, called Bleach, which achieves
notably high accuracy across various input probe-request trace collections,
bridging the reliability gap in the current literature. We also discuss the
benchmarks introduced in this chapter concerning our new framework.
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Bleach framework
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Having identified and addressed the unreliable nature of current MAC
association frameworks, we introduce a new framework that obtains high as-
sociation accuracy for a large range of input datasets. The effectiveness and
generality of utilized signatures must be carefully investigated and validated
to ensure reliability. The address association framework should be able to
correctly associate randomized addresses even in scenarios where there is a
large and varying number of simultaneous MAC changes/arrival observed in
the input probe-request trace.

In this chapter, we first propose the Bleach framework to overcome the
limitations of current frameworks that we highlighted in the last chapter.
Bleach utilizes effective time and frame content-based signatures and em-
ploys a novel MAC association algorithm based upon a logistic regression
predictor. We finally evaluate our framework , present our results, and give
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a generic understanding of MAC address-association accuracy. We bench-
mark the framework with respect to the input datasets (cf. Chapter 4)
and show that we obtain better performance than the literature for varied
contextual scenarios.

5.1 Bleach framework

The framework Bleach takes probe-request trace with randomized MAC
addresses as input and yields a dictionary (A) of randomized addresses (Mj)
associated with particular devices (Un). A can be represented as:

A = {U1(Mi,Mj , ...,Mk), . . . , Un(Ma,Mb, ...,Mz)}

It consists of four major steps as shown in Figure 5.1.

F1 (MAC1)
F2 (MAC2)
F3 (MAC1)
F4 (MAC3)
F5 (MAC4)

Probe Request
Trace

Appearing And
Disappearing
MAC Trails

Gather
Conflicts

Time And
Frame-Based
Signatures

MAC Association MAC1 --- MAC3 ---

MAC2 --- MAC4 ---

F1

F2

F3

F4

F5

Associated probes

Figure 5.1: Bleach framework.

1. We transform the input probe-request trace into a set of MAC address
trails. Each MAC trail can be viewed as an instance of the appearance
or the disappearance of a MAC address in the sniffing zone. This re-
duces the problem of MAC association to that of correctly associating
each disappearing MAC trail from a device with an appearing trail
from the same device. We detail the process of MAC trail generation
in Section 5.2.

2. We separate the trails into disjoint subsets comprising conflicts (C)
(cf. Sec. 5.3). The conflict denotes the set from which a disappearing
MAC trail could be possibly associated, with any of the appearing
MAC trails present in the dataset, within a period (T τi

c ) from the
end of the disappearing trail. We identify this period as the conflict
period. The right value of the conflict period allows us to consider all
potential associations while making the decision of linking the MAC
address trail pairs.

Conflicts are either caused by devices that change their MAC addresses
or by their entry/exit from the sniffing range. Any address associa-
tion framework, in essence, has to resolve conflicts to perform correct
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assignments between the disappearing and appearing MAC from in-
dividual devices. After obtaining conflicts of MAC address changes
and a generic formulation of the MAC association problem, we take a
step further toward the association itself. We need to obtain effective
signatures for resolving conflicting MAC address trails.

3. We define and extract the time and frame-based signatures (St,Sf )
from the collected MAC trails (cf. Sec. 5.4). We consider two types
of signatures in this paper: i) time-based signatures, which utilize
the information from the temporal behavior of received probe-request
frames, and ii) frame-based signatures, which use the control field infor-
mation present in the captured frame itself to form effective signatures
that have the potential of discriminating a device from the rest of the
population.

4. We introduce a novel MAC association algorithm capable of resolving
the conflicts observed in the input dataset accurately. It uses extracted
signatures (S) to fingerprint and differentiates randomized MACs in
each conflict duration in order to finally associate them (cf. Sec. 5.5)

The following sections detail each of the above-mentioned steps of the
Bleach framework.

5.2 Step 1: Extracting MAC trails

We divide the input dataset into MAC address trails, trj . A MAC address
trail (cf. Sec. 5.3 and 5.5) comprises a group of probe-requests sent from
a device with a particular MAC. For each MAC address (Mj) seen in the
dataset, we extract two trails from it, as illustrated in Figure 5.2. One
denotes the start of the Mj which we label as an appearing trail (trjin),
while the other showcases the end of the advertisement of Mj , which we

name as a disappearing MAC trail (trjout).
Trails of both natures though contain the same bursts (bn) of probe-

requests emitted by the device, with the MAC address as Mj as described
in Equation 5.1. Each burst contains varying number of probe-requests
(pm), i.e. bn = {p1, p2, ..., pm}.

trjin, tr
j
out = {b1, b2, ..., bn} (5.1)

We consider the appearing MAC trail for association at timestamp (trjin)
start,

while we consider the disappearing trail for subsequent association at the
timestamp (trjout)

stop as shown in Figure 5.2.
This distinction in the nature of trails eases the formulation of the ad-

dress association problem by simplifying it into the correct matching of each
disappearing MAC trail (with address Mj) to an appearing MAC trail (with
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Time

Appearing MAC trail

Probe-requests with MAC:

Disappearing MAC trail

Figure 5.2: Breaking probe-request sequences (with address Mj) into MAC

trails

address Mk). Each trail additionally has its characteristic features describ-
ing its temporal characteristics (transmission duration, frequency of probes
e.t.c.), its nature, and subsequently, the information about composing the
signatures from probe-request groups. We denote the set of appearing trails
in the dataset as Tin and the set of disappearing trails as Tout.

5.3 Step 2: Obtaining conflicts

After the preliminary step of our framework Bleach, we have a set of ap-
pearing and disappearing MAC trails from the input dataset. In the second
step, Bleach identifies MAC association as the resolution of conflicts (also
hinted in Chapter 4.3.1). A preliminary idea of MAC conflicts in the context
of BLE is also discussed by [1]. We redefine it comprehensively with respect
to WiFi probe-requests. Next, we describe the characteristics of conflicts
and the methods to obtain them.

MAC conflicts: For each disappearing MAC trail (trjout), we denote a
time period (T τi

c ) starting from the end of trjout, called as conflict periods
(T τi

c ). We illustrate conflict periods in Figure5.3 where dotted lines in dif-
ferent colors represent different appearing and disappearing MAC address
trails of devices in a T τi

c .

Formally, we define a conflict (cf. Figure 5.3) between a disappearing
MAC trail, trjout and an appearing MAC, trkin, if the two trails satisfy the
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Time

Figure 5.3: An illustration of conflict periods (T τi
c )

condition mentioned in Equation 5.2.

C : trkin, tr
j
out 7→ (T τi

c )begin < (trjout)
stop, (trkin)

start ≤ (T τi
c )end (5.2)

Here (trkin)
start and (trjout)

stop are the start and stop timestamps of the trails

trkin and trjout. (T
τi
c )begin and (T τi

c )end are the beginning and end timestamps
of a particular conflict period T τi

c .
As we already know, each MAC trail (trj) consists of bursts of probe-

requests. In order to isolate individual bursts from respective devices, we
investigate burst-related parameters. Isolating and investigating individual
and adjacent bursts is critical in choosing the right value of conflict period,
T τi
c as MAC addresses from a single device only change on a new burst of

probe-requests. A small value of T τi
c will cause Bleach to miss a potential

correct association of a disappearing MAC trail to the appearing one as
the new burst will start after the chosen T τi

c . A very large value would
mean considering unnecessary associations, as it is highly unrealistic for the
duration between two consecutive bursts from a device to be too big. These
unnecessary associations lead to higher time complexity of the framework.

Choosing burst parameters: We identify two burst-related parameters:
i) Burst duration (tb) and ii) Conflict period (T τi

c ). Knowing the burst
duration is critical as each of the trails of MAC addresses (trj) in Figure
5.3 represents a sequence of bursts, with each burst containing two or more
frames. Isolating bursts eventually help in developing signatures too (cf.
Sec. 5.4.1.1). On the other hand, T τi

c allows isolating conflicts that Bleach
has to consider in associating a particular disappearing MAC address that
has potentially been randomized.

We look at the histogram of inter-frame duration (IFS), observed in
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captured frames of HongKong and Sapienza datasets. IFS is the time dif-
ference between two consecutive probe-requests sent by a particular device,
as observed by the sniffer.
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Figure 5.4: Inter-frame duration(s) (IFS) in: Accumulation of all devices

in a) HongKong dataset, b) Sapienza datasets

In Figure 5.4a, we observe two clear peaks in IFS bin counts. The first
peak is in the order of milliseconds, while the second small peak is in the
order of seconds. Similarly, in Figure 5.4b, which is the accumulation of all
scenarios in Sapienza datasets, we observe two distinct peaks in the order of
milliseconds and a few small peaks in the order of seconds. This is expected
as probe-requests are sent in bursts by devices across various channels in
the hope of getting a response from the nearby access point.

Indeed, IFS inside bursts are expected to be small as they happen con-
secutively, while the IFS denoting a new burst from the same device denotes
a new probing round, which generally happens after a certain period of time
(a few seconds). Hence, the frames within a duration of less than 1 second
are likely to be part of a single burst, as suggested by the major peaks.
All the frames with IFS lying between the period of 1 to 10s consist of the
inter-bursts times (IBT), as shown by smaller peaks.

Henceforth, we choose the burst duration (tb) to be 1s. The conflict
period (Tc) is set to be 10s, as this allows the MAC address changes (that
happen with a new burst from a device) to be noticed inside a conflict (C)

5.4 Step 3: Obtaining signatures

Signatures (S) are deductions from exhibited characteristics of a device or
entity, which allows isolating it from the rest of the population. We propose
and use two signatures extracted from captured probe-requests to associate
randomized MAC addresses from a device.

In the following, we first present our choice of signatures for associating
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randomized WiFi MAC addresses inside Bleach framework. Then, we pro-
ceed to present details for computing the chosen signatures. Finally, we end
the section by justifying the choice of considered signatures.

5.4.1 Chosen signatures

We choose i) Time-based signatures and ii) Frame-based signatures for
our association framework. Time-based signatures utilize the timing-related
information obtained from the frame reception by a sniffer from respective
devices. These signatures are effective choices as they are generic and inde-
pendent of the device type.

We combine the time-based signatures with the frame-based signatures.
Frame-based signatures supplement the cases where the timing information
from the frames is not representative of a device due to fewer probes or the
high variability in timing information per user device. Next, we discuss the
choice and effectiveness of these two signatures in detail.

5.4.1.1 Time-based signature

We already illustrate the behavior of IFS in Figure 5.4 when analyzing probe-
request bursts. The properties of a burst could be extracted that are unique
for an observed device in the dataset. We choose the timing information:
mean inter-frame time (IFS) across individual probe-request bursts as the
time-based signature (St) for the device advertising a particular MAC ad-
dress. Mean IFS is the average interval between subsequent probe-request
frames received from a device inside a burst while considering all the bursts
from that device. The idea is that the frequency of sending probes during
an active scan of networks is likely to differ across devices while remaining
unique for the same device. Hence,

St = µIFS

For the calculation of µIFS in a MAC trail, we take the mean of IFS
values inside a burst while considering all observed probe-request bursts in
the trail.

5.4.1.2 Frame-based signature

For frame-based signatures, we investigate the information elements (IE)
[Section 9.4.2.1, [73]] contained inside a probe-request frame. This field de-
picts the abilities of the sending device, which is used for its negotiation with
the access point. There are multiple IE fields referred to by their Element
IDs which range from 0 to 255 [73]. We take a look at around 500,000 frames
from the HongKong dataset and investigate specific capabilities advertised
by the probe-requests as a part of IE.
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The inclusion of Information Elements (IEs) within the probe request is
not obligatory, but they are necessary for specifying the supported function-
alities of the device. Each device could send all the IEs or only a subset of
them, depending upon the context where the WiFi device is situated, the
manufacturer, etc. We take the maximum occurring elements of IE in the
probes that we investigate. The top 8 most probable metrics that are likely
to be consistent in terms of presence are shown in Tab. 5.1. Hence, we select
frame-based signature as:

Sf = {e1, e2, e3, e4, e5, e6, e7, e8}

We investigate the potential of this signature in being discriminative in
Section 5.4.3.

Name IE element Percent occurrence

e1 SSID 100

e2 Supported Rates & BSS Membership 100

e3 Extended Supported Rates 99.51

e4 HT Capabilities 82.60

e5 Vendor Specific 62.56

e6 Extended Capabilities 54.52

e7 Interworking 13.5

e8 VHT Capabilities 2.43

Table 5.1: Most frequent IE elements

5.4.2 Computing MAC trail signatures

After obtaining the formulations for time and frame-based signatures, we
proceed to finally give details for computing them for each MAC address
trail in the input dataset (cf. Algorithm 2). In Alg. 2, we illustrate the
application of the first step of Bleach too for completeness.

We first isolate/group probe-requests per MAC (Mj) to collect all the
individual probe-requests bursts to advertise that address. Grouping into
bursts takes into account the burst duration (tb) that we calculated earlier
(cf. Sec. 5.3). For each burst group with MAC Mj , we add an instance of
appearing and disappearing MAC trails in (Tin) and (Tout) respectively.

For each MAC trail in trin and trout, we randomly select a representative
frame for that trail (fin and fout). We use fin and fout for calculating the

frame-based signatures (Sfinf and Sfoutf ) of the considered MAC trail.
We finally obtain trail signatures (S[trin] and S[trout]) as a tuple com-

prising of frame-based signatures and the mean inter-frame space (µIFS) of
the considered appearing (trin) and disappearing trail (trout) respectively.
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Algorithm 2 Computing signatures

1: procedure ComputeSignatures(tb,Sf ) ▷ input variables

2: B ← ϕ // Dictionary of probe bursts

3: S ← ϕ // Dictionary of signatures

4: Tin ← ϕ // Appearing MAC trail

5: Tout ← ϕ // Disappearing MAC trail

6: for Mj ← Σ do

7: P ← GroupProbes(Σ,Mj , tb)

8: Tin, Tout ← TrailMACs(P)
9: B[Mj ]← P

10: for trin, trout ← Tin, Tout do
11: fin, fout ← RandSamples(trin), RandSamples(trout))

12: S[trin]← (Sfinf , µIFS
trin)

13: S[trout]← (Sfoutf , µIFS
trout)

14: return S

5.4.3 Evaluating chosen signatures

We have to formulate the effectiveness of a signature to ensure that the
association is likely to be the correct one. The two factors that we identify
as generic indicators for a signature’s performance are: i) Consistency and
ii) Discriminating power.

Consistency measures the ability of a signature to be uniform for a single
entity, across multiple instances of itself in the population. In our case,
the population is the set of WiFi devices emitting probe-requests while a
single entity is a particular WiFi device. The multiple instances are multiple
probe-requests/probe-request bursts with randomized MACs from the same
device. The intuition is that the signature should not be volatile for a single
device itself in the first place, and should be able to ideally associate all
MACs from a device. Hence, a high consistency value is essential for an
effective signature.

Once a signature validates consistency per device, the second factor we
should complement it with is the discriminating power. It implies that the
signature values should be variable across devices in the dataset. Ideally,
the larger the size of the range from which the device’s signature exhibit its
values, the higher the chances of it to be correctly associating randomized
MAC addresses among those in the population. Multiple devices with sim-
ilar signature values are likely to lower the accuracy with which a signature
correctly associates addresses.

Time-based signatures: We illustrate the consistency of the time-based
signatures. We first compute the signatures for each burst of probe-requests
by an individual device with MAC, Mj in the collected trace. We normalize
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the signature values between 0 and 1. Finally, the consistency in time-based
signatures, CS for Mj is defined as:

CSMj = 1− σ(
St

maximum(St)
) (5.3)
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Figure 5.5: Consistency in time-based signatures

We look at the range of consistencies shown by observed MACs in mul-
tiple datasets. Figure 5.5 shows the results for the consistency of chosen
time-based signatures. We could observe that St demonstrates high consis-
tency in each of the scenarios. On average, the consistency is greater than
75%, and up to 100% for MAC addresses in the datasets. The stability of St
across bursts from the same datasets is essential for it to be considered as
an effective signature. We observe that for all scenarios, we achieve a high
consistency, enforcing the stability of St.

To finalize the mean IFS as the time-based signature, we also check its
discrimination power. We have a look at the difference between mean IFS
for each pair of MAC address pairs observed in various datasets. We observe
in Figure 5.6 that difference in mean IFS takes a wide range of values in the
interval (0, 0.2) seconds. This ensures the high discrimination power of St
as a signature. Finally, the last observation is that the Mean IFS inside a
burst is device-specific and similar across various datasets.

The mean IFS has a high consistency with respect to a particular device
while is variable over a large range of values when considering different
devices. This affirms the ability of the signature to discriminate the MAC
from a device from the rest of the population.

Frame-based signatures: To compare multi-dimentional frame-based
signatures (Sf ), we define a similarity metric (Z) which demonstrates and
validates its Consistency and the Discriminating power. For two MAC ad-
dresses emitted from devices A and B and their respective frame-based sig-
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Figure 5.6: Difference in mean IFS.

natures, SAf and SBf the similarity, Z is:

Z(SAf ,SBf ) =

8∑
i=1

isEqual(SAf [i],SBf [i]) (5.4)

The function isEqual checks if the corresponding elements of either sig-
nature are equal and are not absent (ϕ). If this is satisfied, it returns 1, else
0. Intuitively, Z(SAf ,SBf ) indicates the extent of similar elements transmit-
ted by both devices.
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Figure 5.7: Similarity between frame-based signatures.

We investigate the similarity across a large number probe-requests pairs
transmitting the same and different MAC addresses while considering frames
transmitting their real MACs in the Sapienza and HongKong datasets. We
look at the distribution of Z(SAf ,SBf ) for both the cases in Figure 5.7. We
observe that the similarity is very high for probes from the same device
(MAC), while it is practically zero for different MACs. HongKong dataset
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has relatively diverse values for the same MACs as Sapienza scenarios due
to the absence of certain IE fields in some of the frames. The absence leads
to the highest attainable value of similarity as lower than 8 for some frames.

There is a considerable gap in similarities between a potential true and
false association by the signature, demonstrating the high Discriminating
power of Sf . The higher the gap, the easier it is for the signature to dis-
tinguish between the true and the false associations. Moreover, signatures
from the same MAC, or in this case, the device, shows a high degree of
similarity. This also showcases the high consistency of Sf , hence validating
its effectiveness.

5.5 Step 4: MAC Association

We utilize Algorithm 4 to associate randomized probe-request addresses.
It takes as input the set of appearing and disappearing trails along with
the obtained collection of signatures (S). Algorithm 4 yields a dictionary
of MAC pairs (A) , denoting the associated randomized addresses. The
association relies on the correctness of predictions for accurate associations
when considering pairs of disappearing and appearing MAC trails.

We start with no associated MAC addresses. We sort the appearing
and disappearing trails in time so that we could match each disappearing
trail with a corresponding appearing trail if its the same advertising device
(Tin

′
, Tout

′
). We also keep track of associated appearing trails that are al-

ready paired in order to avoid comparing them again while resolving another
conflict (associated).

Logistic regression predictor: We opted to utilize a logistic regression
model for predicting the degree to which a potential MAC trail pair rep-
resents a correct association. To train this model, we combined frame and
time signatures as features. The first feature, denoted as f1, is computed
by determining the similarity between the representative frames of the con-
flicting MAC address trail pair using Equation 5.4. We perform this process
for each possible pair of disappearing and appearing MAC trails observed
in the training dataset (Sfinf ,Sfoutf ). The second feature, denoted as f2, is
derived by calculating the absolute difference between the mean Inter-Frame
Spacing (IFS) periods observed in the trail pair.

The logistic regression predictor is likely to be efficient as we only have a
couple of features with the two classes (true and false associations) distinctly
different due to the high discriminative power of both features (cf. Section
5.4.3).

Resolving randomized MACs: We examine each disappearing trail (trout)
one by one from the set of trails that have been previously sorted in chrono-
logical order (T ′

out). To ensure the significance of the signatures, we filter
out trails that are too short by considering only those with at least 4 frames
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Algorithm 4 Address association

1: procedure AddressAssociation(S, Tin, Tout) ▷ input variables

2: A ← ϕ

3: Tin
′
, Tout

′ ← TimeSort(Tin), T imeSort(Tout)
4: associated← [False]xlength(T ′

in)

5: f1 = Similarity(Sfinf ,Sfoutf )

6: f2 = |µIFS
trin − µIFS

trout |
7: L ← LogisticRegression((f1, f2))

8: for trout ← Tout
′
do

9: if trout.length > MIN TRAIL LENGTH then

10: C ← Conflicts(Tin
′
, trout, T

τi
c )

11: V ← ϕ

12: for ctrail← C do

13: fvect← LogisticFeatures(trout, ctrail)

14: V ← PredictionProb(L, fvect)
15: V ′ ← Sort(V)
16: for ctrail← C do

17: dseq ← SeqNumGap(trout, ctrail)

18: if dseq < SEQ TH & associated[ctrail] !=True then

19: A ← (trout, ctrail)

20: associated[ctrail] = True

21: ExitTheLoop()

22: return A

(MIN TRAIL LENGTH). Subsequently, we identify the set of appearing
trails that conflict (C) during the duration (T τi

c ) following the disappearance
of the considered MAC trail, trout.

For each conflict trail, we obtain the corresponding feature vector (fvect)
to derive the prediction probabilities from the trained logistic regression
model, L. This yields a probability vector of the size of conflicts (V), in-
dicating the likelihood of the MAC trail pairs being transmitted from the
same device. We then sort this vector in descending order of probabilities
to select the best feasible match.

While it is plausible that some associations might involve a new device
in the sniffing zone rather than a randomized MAC from a previously seen
device, we present a methodology to address this issue. For each conflicting
upcoming trail (ctrail), we calculate the gap in sequence numbers (dseq)
between this trail and the disappearing trail under consideration. To avoid
erroneous comparisons, we also establish a threshold for this sequence num-
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ber gap (SEQ TH), which plays a crucial role in the association algorithm.

To determine the appropriate threshold, we examine the gap in sequence
numbers among all the MAC trails observed in various datasets, as depicted
in Figure 5.8. We find that approximately 85% of the trails have a sequence
number gap of less than 64. We opt to set the value of SEQ TH to 64.

Regarding larger gaps between 64 and 4095, the proportion of sequence
numbers in Figure 5.8 gradually and uniformly increases between 64 and
4095, possibly indicating the re-entry of the device into the sniffing zone after
missing a significant number of consecutive bursts. Moreover, numerous
new devices emerge in the dataset, with their first frame having a sequence
number randomly distributed within the range [0, 4095]. Hence, we ignore
sequence number gaps from 64 onwards in Bleach.

At last, we can proceed with the final step of the MAC association al-
gorithm, which involves linking a newly detected randomized MAC trail to
a previously seen one. If we encounter a conflicting appearing trail (consid-
ered based on their prediction probabilities) that meets the sequence number
threshold and hasn’t been associated before, we label this MAC as associ-
ated and exit the loop to continue with the next disappearing MAC. If none
of the conflicting appearing MACs meet the SEQ TH criterion, we assume
it to be a disappearing MAC, representing the last trail observed by that
device in the sniffing zone.
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Figure 5.8: Sequence number gap between MAC trails.
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5.6 Evaluation

In this section, we present the evaluation methodology utilized for Bleach
framework before presenting the evaluation of its effectiveness in associating
randomized WiFi MAC addresses.

5.6.1 Evaluation methodology

We first investigate the efficiency of chosen signatures that were used as
features to train the logistic regression classifier. Then, we proceed to assess
the MAC association capabilities of Bleach.

To evaluate the Bleach’s association performance, we use a variety of
datasets. The first dataset is where we have a ground-truth of MACs from
the same device. These datasets are part of the Sapienza collection and
comprise scenarios like university, mall, trainstation, vatican1, and politics1
(cf. Chapter 2.5). After validating the framework Bleach with ground-
truth datasets, we utilize the HongKong dataset, which consists of captur-
ing randomized MACs of devices in a shopping Mall using a large number
of sniffers. This dataset is dense and contains both devices that transmit
their true (non-randomized) MAC addresses and randomized MACs. We
associate the randomized MAC of HongKong dataset, thus generalizing the
performance of Bleach to the cases with no ground-truth of random MAC
addresses from the same sender.

5.6.2 Performance of signatures

Since the base of our association framework is the logistic regression classifier
trained with features comprising of the time and the frame-based signature,
the first step of the evaluation process is to evaluate the performances of
such signatures.

Training/test datasets: We train the logistic regression model over the
two features, using the Sapienza datasets due to the access of gound-truth.
For obtaining the ground-truth, we manually randomize the Sapienza datasets
by grouping the MAC addresses per device into a sequence of bursts using
the burst duration (tb). We assign new unique identifiers to a device after
every 4 bursts. We opt for the same number of bursts per MAC address as
in literature [3] to keep a ground-truth of appearing and disappearing trails
in the dataset. We isolate positive (true association) and negative (false as-
sociation) MAC pairs to eventually train the logistic regression model (L).

We train the model on university and mall scenarios and observe the
accuracy of the classifier on test sets comprising of the remaining three
datasets: trainstation, vatican1, and, politics1. IE fields and the mean IFS
in the frame and time-based signatures are device-specific and hence are not
heavily dependent on the choice of training scenarios. We chose 50k random
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MAC trails from each dataset for the test. The accuracy depicts the model’s
effectiveness in correctly separating the true and false associations among
the respective disappearing and appearing MAC trails.
Evaluation metrics: We use three metrics to look at the performance on
the test set: i) Precision, ii) Recall, and iii) F1-score. Precision is the ratio
between the True Positives and all the positives, while Recall shows the
proportion of actual positives that were identified correctly. F1-score is the
Harmonic mean of the Precision and Recall.

Case Precision Recall F1-score Dataset

False association (negative) 0.79 0.65 0.71 trainstation

0.99 0.67 0.80 vatican1

0.91 0.61 0.73 politics1

True association (positive) 0.70 0.82 0.76 trainstation

0.75 0.99 0.86 vatican1

0.70 0.94 0.81 politics1

Table 5.2: Performance of signatures

Evaluation results: We observe in Tab. 5.2 that we achieve an F1-score up
to 86% with a minimum of 71%. This certifies relatively high Precision and
Recall achieved by our signature-based logistic regression classifier, both
in false and true associations. It shows that the model produces a lower
number of false positives and negatives, demonstrating its effectiveness. The
accuracy of association across a dataset could vary depending on the number
of MAC addresses in a conflict that Alg. 4 has to resolve. We next discuss
this in detail.

5.6.3 Datasets with ground-truth

In Tab. 5.3, we illustrate the accuracy of association obtained in differ-
ent contextual scenarios of Sapienza datasets . We define accuracy as the
percent of correct association of the disappearing trail with respect to the
total number of disappearing trails that Bleach considered for the address
resolution. Considering different scenarios helps the framework to be ro-
bust against i) a variety of mobile devices with specific temporal behavior of
probe-request bursts, ii) high densities of mobile devices around the sniffer,
and iii) diverse address randomization strategies by the manufacturer.

We observe that the accuracy of association is variable across datasets,
demonstrating the heterogeneity that we expect each of them to possess. In
university scenario, we resolve close to 99% of randomized address trails,
while the train station to exhibits a high accuracy of close to 95 %. Even,
the highly dense outdoor setting of Vatican city square (vatican1 ) achieves
a modest accuracy of around 75%. Finally, the majorly indoor scenario of
mall and political meeting hall obtains relatively low accuracy of around 61
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Scenario Accuracy Scenario Accuracy

university 99.14 trainstation 94.82%

mall 60.89 vatican1 74.80%

politics1 69.14

Table 5.3: Accuracy in Sapienza datasets.

and 69%, respectively. We next explore and reason the performance vari-
ability for Bleach and, in general, any association framework in detail.

Interpreting association accuracy: In the following, we aim to under-
stand the heterogeneity of datasets as an input to MAC association frame-
works, which cause the fluctuation in performance in time and across sce-
narios. As we propose and illustrate in Sec. 5.3, MAC association can be
abstracted into the resolution of address conflicts C. C showcase all possi-
ble appearing MAC trails that could be associated with disappearing ones
during various conflict periods T τi

c of the input dataset. The size of con-
flicts, |C(T τi

c )| in the dataset captures the complexity that an association
framework has to face.
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Figure 5.9: Conflict sizes of datasets.

|C(T τi
c )| acts as a generic metric that captures various phenomena that

could potentially affect the performance of address association like: i) Inter-
arrival times of probe-requests, ii) Mobility patterns of users across the
capturing sniffers, iii) Heterogeneity of hardware (mobile devices), and, iv)
State of devices transmitting probe-requests (like idle screen, WiFi switched
off, power-saving mode on, number of known access points) [74].

While lower inter-arrival times of frames at sniffer are likely to inflate
the conflict size, short-term stay of the mobile device or repeated entry-exit
in the sniffing zone will make the |C(T τi

c )| high and volatile. This induces er-
rors in the association as resolution means successfully isolating correct MAC
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trails among a large number of possible pairs. Similarly, various datasets
could have differences in the kinds of mobile devices and their state during
the probe-request collection. These factors affect the frequency and pat-
tern of transmitted probes, leading to variable conflict sizes faced by the
resolution framework (cf. Section 4.2). Instead of looking at individual phe-
nomena, conflict sizes act as a common metric to compare and benchmark
the performance of our framework.
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Figure 5.10: Association accuracy in different conflict sizes bins.

Consequently, we look at the performance of Bleach with respect to
|C(T τi

c )| seen in various input datasets. In Figure 5.9, we observe the distri-
bution of conflict sizes resolved in various scenarios. University and train-
station have relatively lower value of |C(T τi

c )|, which should transform in to
better accuracy of association. Indeed, Tab. 5.3 validates the claim as we
achieve overall accuracy of 99.14% and 94.82%, respectively. Vatican1 and
politics1 have mid-range conflict sizes resulting in slightly lower but good
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accuracy. In contrast, highly dense shopping mall scenarios like mall, HK
dataset 1, and HK dataset 2 face considerably high conflict sizes for address
resolution resulting in lower accuracy among the input datasets.

Next, we investigate the variability in association accuracy inside a single
scenario across time. The hypothesis is that even with higher overall conflict
sizes, there might be periods with low |C(T τi

c )|, which could be exploited by
the adversary to resolve randomized addresses of target user devices. We
indeed observe in Figure 5.10 that all scenarios generally have periods with
low conflict sizes that yield better accuracy. While scenarios like university
and trainstation perform reasonably well in all low |C(T τi

c )|, vatican1 and
politics1 see a wide range of high conflict sizes causing a depletion in achieved
correct MAC associations.

This characterization acts as a benchmark for Bleach in any new input
datasets to the framework with similar or higher expected values of |C(T τi

c )|.
It ensures the reliability of our framework, unlike other existing frameworks
in the literature, which perform variably in different contextual scenarios in
proprietary datasets.

5.6.4 Datasets without ground-truth

For datasets with no ground-truth (here HongKong dataset), we propose an
alternate metric that denotes the correct association of the MAC addresses.
The proposed metric is the sojourn time of a particular device around the
sniffer zone. In the case of MAC randomization, the sojourn time is the sum
of the sojourn times of all associated randomized MACs plus the time gaps
between the associated MAC trails. More specifically, the device’s sojourn
time is the difference between the timestamps of the first frame of the first
associated MAC trail and the last frame of the last associated MAC trail.

In the case of randomized MACs, which are not associated, the sojourn
times correspond to the lifetimes of each random MAC address that the de-
vice advertises. While in the case of true or non-randomized MAC addresses,
the sojourn time is the time for which the device was seen in the sniffing zone.

Hypothesis: We propose the hypothesis that for a large number of users
observed by the sniffers, the distribution of the sojourn times of correctly
associated MAC addresses and the true MACs advertised by users should
demonstrate similar behavior in a scenario during a given period of time.
To recall, the true MACs are the physical MAC addresses of devices that
remain static across all sent probe-requests. The consistent nature of human
mobility during that short period, and the uniform randomization nature of
the device’s MAC address for the large population, ensures that the sojourn
times of devices are independent of MAC randomization.

Observations: In Figure 5.11, we present the probability densities of
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Figure 5.11: MAC sojourn times before and after association.

sojourn times observed when considering probe-requests from HongKong
dataset that advertise non-randomized, randomized, and associated MAC
addresses. Here, we consider around 9000 randomized and non-randomized
MACs. We observe that randomized MAC addresses have quite lower so-
journ times than the other two, as expected. Devices change MAC addresses
frequently, lowering the time for which one of its random MAC was seen in
the sniffing zone. Next, to validate the effectiveness of MAC association in
Bleach, we look at the closeness between the sojourn time of devices of non-
randomized MAC addresses of a device and the associated randomized ones.
We notice that the sojourn times of devices after association and those of
non-randomized ones are indeed very similar in their distributions. Perfect
overlap is not possible because of the limits of the association algorithms in
highly dense (in terms of probe-requests) and mobile scenarios like shopping
malls (cf. Figure 5.9).

5.7 Conclusion

MAC address randomization is used by modern WiFi devices, where ran-
domly generated virtual MAC addresses are used in probe-requests, instead
of true MAC addresses. We find out that current address association frame-
works underperform and are unreliable with respect to new input datasets.
We henceforth present Bleach, a framework capable of associating ran-
domized probe-requests advertised in the observation zone. We implement
Bleach and used extensive datasets in different contextual scenarios which



shows that Bleach is robust and greatly outperforms the state-of-the-art
works in terms of accuracy.

In the next chapter, we build upon the WiFi MAC association to show
that users’ trajectories can successfully be obtained by just utilizing the
RSSI values of the transmitted probe-requests. Knowing the associated
MAC addresses from a target device and the possible locations from which
the probe-requests were subsequently sent, we reveal the reconstructed tra-
jectory of the user. This poses a serious privacy concern for user devices
communicating on WiFi in public spaces.
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Having associated randomized WiFi MAC addresses through Bleach in
the previous chapter, we proceed to reveal user trajectories through non-
intrusive methods. Non-intrusive methods refer to approaches that do not
require the use of GPS, installed applications, or any active participation
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from the user. Instead, these methods rely solely on passive measure-
ments/sniffing of public packets and signal characteristics. Passive sniffing-
based trajectory inference has proven to be challenging, primarily due to sig-
nificant errors in user localization. The prevalent localization metric based
on received signal strength (RSSI) often suffers from inaccuracies that have
been shown in the existing literature.

Henceforth, we perform a thorough assessment of RSSI-based trajectory
inference in Section 6.1. Recognizing the severity and non-stationary behav-
ior of localization errors, we introduce the notion of bounds. In this chapter,
we propose Allies, a novel framework that introduces the concept of a
user’s bounded trajectory, leveraging the signal strength of observed WiFi
probe-requests from the user.

To deduce bounds of trajectories, we perform a novel characterization
of errors in RSSI-based radial-distance estimation between the user and the
sniffer (cf. Section 6.4) that make their modeling possible. We then leverage
this error characterization and approximated radial distances to estimate
the bounds associated with a user position. We can infer a user’s bounded
trajectory by considering the spatiotemporal bounds of user positions over
time (cf. Section 6.5). Our approach ensures that the bounds enclose a user
position in both space and time with a high level of confidence and a low
margin of error (cf. Section 6.7) [75].

This chapter demonstrates the effectiveness of the Allies framework in
mitigating localization errors and providing reliable insights into user tra-
jectories. By addressing the challenges posed by non-intrusive methods and
localization inaccuracies, Allies offers a promising solution for understand-
ing and tracking user movements in various passive sniffing scenarios.

6.1 Assessing RSSI-based trajectory inference

The trajectory Trajj of user j can be described as shown in Equation 6.1.

Trajj = {(x0
j , y

0
j , t

0
j ), (x

1
j , y

1
j , t

1
j ), ..., (x

p
j , y

p
j , t

p
j ), ..., (x

N
j , yNj , tNj )} (6.1)

It is the set of tuples consisting of X, Y coordinates and timestamps, with
elements ordered in time. Each of the elements in Trajj denotes the ob-
tained location of a user at a particular time. It is a sequence of spatial
coordinates or positions that indicate the changing locations over a specific
period. Hence, this section investigates location inference from RSSI as a
basis for trajectory inference. RSSI is the only information that we have
that we can use to infer the distances separating the off-the-shelf sniffers
from the device.

To investigate raw RSSI credibility, we look at the measured RSSI of col-
lected probe-requests. To figure out its potential for 2D spatial estimation of
users’ location, we build upon literature solutions [76] to the radial-distance
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estimation (i.e., distance in meters separating users from sniffers) from pack-
ets’ RSSI. The methodology employed is as follows.

We use the public anonymized Sapienza dataset [70], describing a large
number of WiFi probe-requests passively collected in eight different contex-
tual scenarios (cf. Section 2.5). We choose datasets from five scenarios:
vatican1, vatican2, university, trainstation, and mall. The three first sce-
narios denote dense outdoor environments, and the last two showcase ample
public spaces highly frequented. There are other notable distinctions among
the data with respect to attributes such as user density, sojourn times, etc.
The datasets contain the timestamps of received probe-requests and RSSI
values observed by the capturing sniffer. There is no MAC randomization in
Sapienza datasets which allows the inference of per-user behavior in terms
of distances from sniffers.

Next, we proceed with estimating radial distances from the recorded
RSSI values from the probe-requests and look at the correctness of obtained
location inferences. Results validate our assumption on the inaccuracy of
RSSI to give accurate user trajectories which leads us to model the under-
lying errors in distance-estimation and eventually propose effective bounded
trajectories.

6.1.1 Estimating radial distances

Using the raw RSSI values described in the aforementioned datasets, we
estimate radial distances through the log-distance path-loss model [76] (cf.
Equation 6.3) configured with standard parameters and varying path-loss
exponent γ. The γ controls the “severity” of the losses in datasets environ-
ments where probes were collected and keep changing with space and time.
We vary γ over a range of practical limits as we do not know the actual
extent of losses beforehand. The chosen γ signifies the average value of the
exponent in a particular scenario.

As for the Sapienza datasets, no ground truth with actual device-sniffer
radial distances is available for large-scale, passively collected datasets. In
addition, information on the orientation direction of mobile users is not
available, which hardens the distance estimation’s accuracy. Hence, to ver-
ify the correctness of the computed radial distances, we first obtain the
corresponding range values of (i) instantaneous speeds –, indicating users’
changing behaviors in estimated radial distances over time – and (ii) acceler-
ations –, indicating the geographical dynamism of users’ mobility, per time
window of 50ms. We then compare the resulting minimum values of speed
and acceleration with the corresponding realistic values of human mobility
given in [77]: 1m/s for walking, 2.3m/s for walk-run mixture, and 3m/s for
running.

Figure 6.1a, 6.1c, and 6.1e reveal the range of minimum speeds issued
from the radial distances estimated from datasets’ raw RSSI values, consid-
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(c) Moderate losses (γ = 3.0).
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Figure 6.1: min. speed (a), (c), (e) and min. acceleration. (b), (d), (f)

from raw RSSI values.

ering path-loss severity of γ = [2.5, 3.0, 4.0]. Similarly, Figure 6.1b, 6.1d,
and 6.1f show the range of minimum accelerations. The density values give
the proportion of the instantaneous speed and acceleration values that we
observe in the considered dataset. We note that even in the highest severity
context, i.e., γ = 4.0, the minimum speed and acceleration values reach up
to 80m/s and 200m/s2 (Figure 6.1e and 6.1f). Those are unrealistic human
values of speed and acceleration, indicating the presence of errors in the
radial-distance estimations associated with the datasets’ raw RSSI values.

6.1.2 Can literature handle errors in distance estimation?

The primary cause of distance-estimation errors is the significant fluctua-
tions in RSSI values over short periods of time. To reduce fluctuations,
various filters have been suggested in the literature to smooth noisy raw
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RSSI values that cause distance-estimation errors [53,65,78–81]. The works
discuss and evaluate various smoothing algorithms for the RSSI observed in
passive sniffing. Smoothing approaches include feedback, moving-average,
or median filters, among others.
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(c) Moderate losses (γ = 3.0).
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(d) Moderate losses (γ = 3.0).
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(f) High losses (γ = 4.0).
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Figure 6.2: min. speed ((a),(c), (e)), min. acceleration ((b), (d), (f)) from

smoothed RSSI values, and (g) Distance estimations computed from

EWMA [4] smoothed RSSI values, with smoothing factor α=0.1.
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We choose the Exponentially Weighted Moving Average (EWMA) fil-
ter [4] with a smoothing factor of α = 0.1, which gives exponentially de-
creasing weights for already observed raw RSSI values. The α value ranges
between 0 and 1, and selecting a value closer to zero results in a stronger
smoothing effect, making the system less sensitive to recent fluctuations in
RSSI. EWMA is considered the state-of-the-art model and is more effective
than other classical moving average filters. Finally, as for the raw values,
we estimate the radial distances related to the smoothed RSSI values and
obtain mobile users’ corresponding smoothed speeds and acceleration.

Figure 6.2a, 6.2c, and 6.2e reveal the range of minimum smoothed speeds
for various scenarios and varying loss severity (γ). Similarly, Figure 6.2b,
6.2d, and, 6.2f show the corresponding range of minimum accelerations.

With the highest severity value of γ = 4.0, the minimum smoothed speed,
and corresponding acceleration reach out to around 15m/s and 40m/s2 (Fig-
ure 6.2e and 6.2f). Although still not corresponding to realistic human speed
and acceleration, smoothed results bring a considerable improvement with
respect to non-smoothed values computed from raw RSSI measurements.
Still, most obtained results for smoothed speeds and corresponding acceler-
ations of users are unrealistic.

In the next, we discuss the potency of location inference when utilizing
RSSI along with literature methods. We discuss the current challenges in
RSSI exploitation which leads us to a new framework proposed in Section
6.2.

6.1.3 Discussing the effectiveness of location inference

Unrealistic induced minimum speed and acceleration values show that radial-
distance estimation is incorrect. The incorrect estimation is attributed to
the noisy RSSI observations in dense outdoor scenarios. The errors vary with
scenarios and are non-stationary (change with time for different users). Fur-
thermore, when localizing a user in 2-dimensions, distance-estimation errors
from multiple references will further deteriorate the estimated coordinates
accuracy of the users positioning. In addition, errors also contribute to the
choice of γ in the path-loss estimation, which makes the precise inference of
users’ locations impossible through RSSI observations.

Although reducing the RSSI’s fluctuations and the unrealism of derived
speeds and acceleration, radial distances computed from smoothed RSSI
values (using EWMA filter with α = 0.1) are still inaccurate, presenting
smoothing-induced errors that can reach up to 50m (cf. Figure 6.2g) in dense
scenarios. Such observations stress the difficulties in using RSSI values to
estimate users’ locations and trajectories accurately.

The following section demonstrates how the introduced framework: Allies,
addresses these challenges. Moreover, we adopt a unique approach to utilize
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RSSI (Received Signal Strength Indicator), showing that although errors
may be present, they can be effectively modeled to infer trajectories with a
level of precision that allows for extracting valuable information.

6.2 Allies overview

Consider the context of a passive and non-intrusive wireless measurement
where no precise location of a user is possible to be collected in the measure-
ment. As previously mentioned, we rely on RSSI measurements captured
from public frames, which will be later used for location estimation. RSSI
values are highly unstable per se due to environmental variability as seen
in the last chapter. Variations in the strength of the reception of electro-
magnetic waves are due to factors like path-losses and multi-path fading.
Besides, there are errors in distance estimation from the observed RSSI.
Hence, (xpj , y

p
j , t

p
j ) in Equation 6.1 is just an estimate of the actual user

co-ordinates.

This inevitably raises the question of the certainty of the estimated user
trajectory, Tj . Any method that we use to specify the locations of a user
must be accompanied by a limit on the deviation from every (xpj , y

p
j , t

p
j ) in

Trajj , in order to make sense of the trajectory. To find this limit, we need
to solve major challenges, knowing the behavior of errors in the location
estimation while considering human mobility. We also need to know the
evolution of errors incurred in distance estimation in time from multiple
sniffers, as well as the maximum guarantee that we can possibly provide,
given the measurement conditions. We introspect these open questions in
the introduced framework: Allies and find a limit to the obtained locations
in Trajj . We call this limit on user locations in small time intervals as bounds
of locations.

Bounds of locations: We define bounds of locations (Ltn) as a set of
timestamped points describing the possible locations of a user during the
interval tn = [t0 + δt ∗ (n− 1), t0 + δt ∗ n] as:

Ltn = [(t1, x1, y1), (t2, x2, y2), ..., (tn, xn, yn)]

Here, δt is the size of time intervals in which we divide the duration of an
observed user. The idea is that the if we know the exhaustive list of probable
locations, the area encircling the respective locations across various δts will
yield the bounded trajectory.

Combining all time intervals during the period we observe a user, results
in what we call a bounded trajectory.

Bounded trajectory: This trajectory Buserj is defined as the sequence of
successive convex hulls1 ordered in time, spanning the trajectory. We decide

1https://mathworld.wolfram.com/ConvexHull.html

https://mathworld.wolfram.com/ConvexHull.html
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to divide the user-trajectory into multiple convex hulls to capture the turns
(changes in direction) that a user takes over time. Formally, a bounded
trajectory, Buserj , of user j, is defined as:

Buserj = {CHj1, CHj2, CHj3, ..., CHjk, ..., CHjM}

where:
CHjk = {Lt1 ,Lt2 , ...,LtN }

where CHjk represents the kth member of the sequence of convex hulls of
the trajectory of the jth user. Hull contains coordinates with timestamps.
Hence, CHjk gives the ”bounded area” for finding the jth user with a sense
of ”time.”

Still, the following question remains: What is an ideal bound of a user
trajectory? Larger bounds of users’ locations in terms of covered geograph-
ical area intuitively ensure inclusiveness, as, on average, the probability of
finding users inside the specified wide bounds is high. However, an ideal
user’s bound of location must ensure correctness – i.e., must include the
real precise user’s location – and be narrow – i.e., must limit the width of
possible locations inside the bound. Unfortunately, given the highly unsta-
ble nature of RSSI measurements, achieving such ideal bounds of locations
is a challenging task.

Allies addresses the above challenges and comprises the following three
steps:

1. Generating observation Sets: We illustrate the first step in Fig-
ure 6.3. The aim of this step is to obtain observation Set containing
“views” of different sniffers for a particular user in a small time interval
(δt). An entry in an observation set is a group of 3-tuples (timestamp,
RSSI, sniffer id) for all probe-requests that we see in the input dataset.
We detail more on the definition in Section 6.3.

2. Error Characterization: We characterize the radial-distance errors
from observation sets as illustrated in Figure 6.4. For the first time in
literature, we identify that estimation errors can be viewed as a sum
of two additives error components. The first component denotes the
mean error behavior incurred in radial distances estimations, which
we call span error. The second component captures the fluctuations
in distance estimations originating from the changing RSSI values of
a user in short time intervals, which we call environment error. We
quantify these fluctuations and estimate their distribution for each
observation set in the user trajectory.

3. Generating bounded Trajectories: The objective of the last step
is to obtain bounded trajectories of users observed in the sniffing zone,
as illustrated in Figure 6.5. First, we do a Gaussian fit to environment
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Figure 6.3: Step 1: Generating observation sets

error distributions. Then, to obtain the total estimation error, we
sample multiple times from the resulting fitted distribution and add
the error samples to the corresponding span error. Next, we add the
obtained total errors to users’ radial-distances and feed them to our
multilateration-based location estimator. Depending on the number
of samples drawn from the fitted environment error, we obtain a set of
user positions named bounds of locations. Finally, we aggregate these
bounds of locations per observation set to get the bounded trajectories
of a user. We detail the second step in Sec. 6.4 and the last step in
Sec. 6.5.

For evaluation of Allies, we need a full-fledged ground-truth of mobile
user-locations, which is almost impossible in passive monitoring using WiFi
sniffers. No large public dataset in literature has the ground-truth, with the
new data-collection facing additional challenges such as government regu-
lations, scaled sniffer deployment, and high user mobility. We address this
huge issue concerning user-localization works by introducing WiSurve sim-
ulation framework in Section 6.6. WiSurve provides controllability in the
setup of the user mobility and sniffers deployment. WiSurve enables ob-
taining real-world, passive sniffing environments for WiFi which eventually
makes possible the evaluation of our proposed bounds. We also complement
it with two real-world collections named Campus dataset 1 and Campus
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dataset 2 that we use for calibration purposes.

After already briefing the steps of Allies and having WiSurve datasets
for the justification of the framework’s design choices, we next proceed to
detail each step of our framework.

6.3 Step 1: Generating Observation sets

We define observation set Ob Settn in a particular time interval tn = [t0 +
δt ∗ (n− 1), t0 + δt ∗ n] as shown in Equation 6.2.

Ob Settn = {(timei, RSSIi, snifferIDi)} (6.2)

To tackle the variation of localization errors incurred by environment
changes associated with users’ mobility, we divide the duration for observing
a user into time intervals, noted as δt.

We meticulously select the value of δt to meet several requirements.
Firstly, to achieve accurate 2-dimensional localization and effectively rep-
resent variations in environmental errors, δt needs to be sufficiently large
for:

1. Accommodating multiple reference points capturing a user’s presence
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Figure 6.5: Step 3: Generating bounded Trajectories

2. Gathering an adequate number of probe-request samples within its
time interval.

However, it is also essential to restrict the value of δt to avoid signifi-
cant changes in the user’s position. We satisfy this trade-off utilizing WiFi
probe-request rates in the dataset and the best error characterization of en-
vironment errors (cf. Section 6.4.2) to set the value of δt. We empirically
set the value of δt as 4 s.

6.4 Step 2: Characterizing estimation errors

We next characterize and approximate the errors in radial-distance estima-
tion. To account for errors in radial-distance estimation, the following steps
are taken:

1. RSSI values are converted into approximate distances through path
loss models with optimal parameters. A error calibration methodology
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is proposed to ensure the best choice of model inputs. (cf. Section
6.4.1)

2. Errors in distance estimation are analyzed and formulated using the
optimal path-loss model. (cf. Section 6.4.2)

3. The errors are further separated into two components with distinct be-
havior, namely span errors and environment errors, which are utilized
for error characterization. (cf. Section 6.4.3)

6.4.1 Converting RSSI to approximate radial-distances

We use a path-loss model to estimate the losses incurred in the wireless
medium. As we can see in Eq. 6.3, Allies uses the state-of-the-art log-
distance path loss model [76] to capture losses (PL) encountered for signals
in densely populated areas.

PL = PTxdBm
− PRxdBm

= PL0 + 10γ log
rji
r0

+ Xg (6.3)

PL is the total path loss in decibels (dB) at a distance rji between the
user j and the sniffer i. PTxdBm

and PRxdBm
are the transmitted and received

power in dBm. PL0 is the path-loss (dB) at reference distance, r0. γ is the
path loss exponent that depends on the propagation characteristics of the
received signal. Finally, Xg is a normal random variable that takes into
account the losses (due to obstructions caused by buildings, pedestrians,
etc.) from shadow-fading in outdoor scenarios.

We set the reference distance r0 to be 1m for which we know the path-
loss PL0. Using Eq. 6.3, we then compute the approximate radial distances
(rji) between users and sniffers by using RSSI values directly observed from
real WiFi probe-requests, as in Eq. 6.4.

rji = 10
PTxdBm

−PRxdBm
−PL0−Xg

10γ (6.4)

Choice of path-loss model parameters: To obtain the radial distance
rji, we need to estimate the optimal values of γ and Xg, as in Eq. 6.4. The
other inputs to the equation are either standard: PTxdBm

(set to 23 dBm)
and PL0 (set to 46.67 dB), or known: PRxdBm

(observed RSSI).
Values of γ vary from around 2 in line-of-sight (LoS) environment to 3.5

in dense urban scenarios [82]. Hence, we set the range of γ values, i.e., Rγ ,
to be [2.0, 4.0], corresponding to the range of values of path-loss exponents
considered in optimal parameter search.

To consider shadow fading, we model Xg as the random variable with a
Gaussian distribution [76] with zero mean (µ) and standard deviation (σ)
in decibels. The σ varies from close to 0 in free space to around 5 [83]. We
set the search-space for the standard deviation of the random variable, i.e.,
RXg , to be [0, 5].
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Optimal parameters in real-world scenarios vary with the chosen deploy-
ment areas. We have to calibrate the parameters in the area where we set-up
sniffers. Next, we propose an one-time calibration step to obtain γopt and
Xgopt . We further demonstrate the calibration methodology using specific
datasets collected in real and simulated environments.

Calibrating loss-parameters in the deployment area: We propose a
calibration methodology that considers a real sniffers deployment, as de-
scribed in Alg. 5. Furthermore, we design the calibration such that we can
obtain optimal path-loss parameters for real (Campus dataset 1 and Campus
dataset 2 ) environments but could be extended to simulated environments
(WiSurve dataset) too.

For Campus dataset 1 and Campus dataset 2, during the collection proce-
dure inside a busy university campus’ open spaces, a controlled WiFi probe-
request generation device and a nearby passive sniffer were placed at fixed
and known positions to have the knowledge of source-to-sniffer distances.
The generated probe-requests did not randomize their MACs allowing us to
recognize packets from the generator at the receiving sniffer.

The source (i.e., Sprobes) of WiFi probe-requests is kept at a fixed loca-
tion. Sniffers are placed at known regular distances (i.e., Dsniffers) from
the source, and probe-requests are sent for a particular duration at each of
the distances (i.e., sink dist).

After having the calibration’s per-distance traces, we then find optimal
path-loss parameters. We generate a number (i.e., Size) of uniformly-spaced
samples (i.e., Sγ and SXg) from the Rγ and RXg (cf. line 10). For each com-
bination (i.e., Sγ,Xg) of drawn samples, we calculate the distance-estimation
error. We define the error as the average of the differences between the
distances calculated from the RSSI values (see Eq. 6.4) and correspond-
ing ground-truth distances (i.e., sink dist) (cf. line 15). Finally, we obtain
optimal parameters (γopt,Xgopt) by finding the combination minimizing the
distance-estimation error (i.e., AllErrors) (cf. line 17).

6.4.2 Formalising the distance-estimation error

Having the estimation and calibration, we finally can obtain user distances
using Equation 6.4, which has embedded estimation errors. In the follow-
ing, we form two hypotheses for the behavior of distance-estimation errors
in outdoor door scenarios. The ”intuitions” behind the two hypotheses were
obtained from our study of error causes and our observations while calibrat-
ing the path-loss model.

• Hypothesis 1: The average estimation error increases with an in-
crease in the radial-distance.

The average error depends on fitting the optimal path-loss model with
the distribution of the RSSI propagation in the deployment area. We
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Algorithm 5 Calibration & Optimal path-loss parameters.

1: procedure GetOptModelParams(Dsniffers, Sprobes, Rγ , RXg , Size)

2: Traces = [] ▷ Initialising trace collection

3: SetPacketGenerator(Sprobes)

4: for sink dist← Enumerate(Dsniffers) do. ▷ Calibration trace collection

5: DeploySniffers(sink dist)

6: StartPacketGenerator()

7: Traces.Add( CollectRssiTrace(sink dist) )

8:

9: AllErrors = [] ▷ Average distance-estimation errors

10: Sγ = GenUniSamples(Rγ , Size) ▷ Finding optimal parameters

11: SXg = GenUniSamples(RXg , Size)

12: for Sγ,Xg ← JointSamples(Sγ , SXg ) do

13: Error = 0

14: for tr ← Enumerate(Traces) do

15: Error = Error+[ CalcDistFromRSSI

(tr, Sampleγ,Xg ) - sink disttr ]

16: AllErrors.Add( (Mean(Error), Sγ,Xg ) )

17: γopt,Xgopt = FindMinimum(AllErrors, (γ,Xg))

return (γopt, Xgopt)
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Figure 6.6: (a) Calibration of path-loss parameters. (b)-(d): Errors in

radial-distance estimation.
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can see the illustrated optimal path-loss fit, which we obtain using
Campus dataset 2 in Figure 6.6a. As signal degradation varies con-
siderably after an initial threshold distance, the optimal path-loss fit
must react to more ”severe” RSSI fluctuations at increasing distances.
This should cause an increase in the average estimation error.

• Hypothesis 2: The error fluctuations in an observation set (δt) grow
with increasing radial-distances. Their distribution can be modeled in
small intervals of time.

The shadowing and muti-path fading increase with the signal propa-
gation distance. This should result in a higher range of RSSI values
that we observe at a given distance, leading to an increasing variabil-
ity of estimation errors. Moreover, environment errors result from the
interaction of multiple individual error ”sources”. We assume indi-
vidual errors from these ”sources” to be independent and identically
distributed. Also, with user-mobility, the error ”sources” associated
with a user are likely to change due to physical environment changes.
Given a large number of error ”sources” that cause RSSI fluctuations
in δt, the distribution of the resulting sum (i.e., environment error)
should converge to the normal distribution [84].

Hypotheses validation: To attest our hypotheses, we extensively inves-
tigate using two case studies and three datasets, the behavior of radial-
distance errors when approximated with the log-distance path-loss model
with optimum parameters (cf. Section 6.4.1) using two case studies.

In the first case study, we extract RSSI values from two real-world passive
sniffing datasets: Campus dataset 1 and Campus dataset 2. Then, we infer
the related radial-distance errors. These datasets represent a unique static
user that a unique sniffer captures. This static and simple case evaluates
errors’ behaviors when fixed and discrete distances between the user and the
sniffer are considered. Figure 6.6b and 6.6c show the obtained results where
we visualize the behavior of errors in distance estimation.

In the second case study, we exploit large-scale WiSurve dataset to in-
troduce a mobile scenario with varying distances between multiple users
and sniffers. Here, we have 100 users that move with a walking speed of
1m/s in the sniffing zone (cf. Section 6.6.1) while emitting probe-requests.
Here, Figure 6.6d depicts the behavior of estimation errors in this dynamic
large-scale deployment case study.

From the results obtained from the two previous case studies, we can
validate our hypothesis through the following observations. The first obser-
vation, related to Hypothesis 1, is that we note a consistent trend followed
by the average error with respect to the radial-distance, as shown in Figure
6.6b, and 6.6c, and, 6.6d. As stated inHypothesis 1, we do see that estima-
tion error grows with increasing radial-distances. We further show that this
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error-growing trend can be predicted through a polynomial approximation.

The second observation, related to the Hypothesis 2, can be spotted in
Figure 6.6d. We can notice that the fluctuations in the distance-estimation
error increase with larger distances. Moreover, when comparing the mag-
nitude of fluctuations in Figure 6.6b, 6.6c, and 6.6d, we observe that they
do change with varying environments. In the next section, we detail their
estimation in each δt and their ability to be modeled by a distribution in
Section 6.5.3.

6.4.3 Characterizing distance-estimation errors

Having formulated and validated the hypotheses, we now take the next
step into characterizing them, which eventually helps in predicting distance-
estimation errors. We divide the error into components based on the behav-
ior stated in the two hypotheses. We call the first error component as Span
error, which relies mainly on the span of the user from the sniffer. We
name the second component as Environment error, as it depends upon the
environment for signal propagation in the user’s vicinity. Correctly char-
acterizing and then combining these two components allows us to bind the
user between two radial-distances where it is likely to be present. We es-
timate the two components of the radial-distance estimation errors using
WiSurve dataset.

Estimating the span error: We estimate the span error after calibrating
loss-parameters (cf. Section 6.4.1). Due to the relative stationarity of the
sniffing zone (in terms of positioning and density of obstacles like buildings,
bridges, etc.) with respect to the obtained optimal path-loss model, we con-
sider that the mean behavior of errors (span error) does not vary noticeably
with time.

It is the environment error that represents the fluctuations in RSSI in
short periods of time due to changes in channel conditions (movement of cars,
fellow pedestrians, e.t.c). We see this behavior in Figure 6.6d when observing
the total error in distance-estimation across the course of user-trajectories.
As shown in the figure, we can get the span error for a user, given its
approximate radial-distance (span) using the procedure GetSpanError of
Alg. 6.

The procedure utilizes calibration traces obtained during calibration,
such as Campus dataset 1 and Campus dataset 2 (refer to Section 6.4.1).
For each element in the RSSI trace (tr), we compute the error (Errors) by
taking the difference between the distance obtained from the RSSI using the
optimal path-loss model estimated in Section 6.4.1 and the corresponding
ground-truth distances (sink disttr) in the input calibration trace (line 4).

Finally, we estimate the average error, i.e., the span error, by using
a polynomial fit of order (Order) using ridge regression (cf. line 5) [85].
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Algorithm 6 Error characterization

1: procedure GetSpanError(γopt, Xgopt , Traces, Order)

2: Errors = [] ▷ Initialising distance-estimation errors

3: for tr ← Enumerate(Traces) do

4: Errors.Add( ( CalcDistFromRSSI

(tr, γopt,Xgopt) - Sink disttr, Sink disttr ) )

5: Span error = GetPolynomialFit(Errors, Order)

6: return Span error

7:

8: procedure GetEnvError(CollectedTraces, DT )

9: Env error = {}. ▷ Initialising environment errors

10: Users = GetAllUsers(CollectedTraces)

11: for user ← Enumerate(Users) do

12: User tr = GetUsertrace(CollectedTraces)

13: Obs sets = DiscretizeTrace(User tr,DT )

14: for ob set← Enumerate(Obs sets) do

15: Obs err = {}. ▷ Initialising observation set

16: for obs← Enumerate(ob set) do

17: Obs err[SniferID(obs)].Add

(DistRSSI (obs, γopt,Xgopt))

18: for s id← Enumerate(Keys(Obs err)) do

19: av dist = Mean(Obs err[s id])

20: Obs err[s id] = SubtAll(Obs err[s id], av dist)

21: Env error[user].Add(Obs err)

22: return (Obs sets, Env error)

We find that polynomials of order 3 are the best fit to characterize span
errors. Higher orders fail to catch the rate of change of error with distance
in outdoor environments.

Estimating the environment error: In terms of the total error in the
estimation of the distance between a user and a sniffer, environment error
can be interpreted as a “complement” to the span error in the corresponding
observation set. The environment error varies with each observation set in
the user-trajectory. Hence, we define this error for each user across all
observation sets per sniffer. We obtain environment errors for individual
sniffers and, due to their different spatial positioning, we observe different
environment fluctuations in an observation set.

To obtain the environment error, we first obtain per-sniffer traces for
each user that we capture in the trace using the procedure GetEnvError of
Alg. 6. Then, we discretize the per-user trace in time to get the observation
sets of size DT (cf. line 13). For each observation set, we calculate the
distance between the user and sniffer (cf. line 17). Finally, we subtract the
mean error per sniffer from the user-distances observed in an observation set
(cf. line 20). This ”residue” captures the fluctuation of estimation errors in
an observation set.
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6.5 Step 3: Obtaining bounded trajectories

Until now, we have formulated and estimated errors in radial-distance es-
timation in RSSI. In the following, we utilize the estimated approximate
radial-distances for inferring user locations. First, we formalize the localiza-
tion error and deduce the optimal user location per time interval, by solv-
ing an optimization problem. Then, we propose a novel method to leverage
radial-distance errors to infer the bounds of users’ locations (cf. Figure 6.5).

6.5.1 Formalizing the localization error

Since the environment error and user location are likely to change with
every δt due to propagation conditions and mobility changes, we decide to
consider the formulation of localization error per observation set, using a
multi-lateration technique. We suppose for the k’th observation set Obsjk;
we have a number Ns of sniffers receiving probe-requests of a user, j. We
use multi-lateration, a technique utilizing the intersection of circles, for the
positioning of a user based on measured distances between users and multiple
known reference points (sniffers) [86]. We represent the references’ locations
in two-dimensions as Si = (xs, ys). We define the estimated position of a
user j as Tj = (xu, yu). We define the radial-distance between user j and
sniffer i in k′th observation set as Rk

ji:

Rk
ji = d(Tj , Si) =

√√√√ 2∑
m=1

(
Tm
j − Sm

i

)2
(6.5)

We define the measured distance from the probe-request RSSI’s between
user j and sniffer i in the observer set as rkji. Finally, we state the localization

error as LocErrkj :

LocErrkj =

√√√√ Ns∑
i=1

(
Rk

ji − rkji
)2

(6.6)

6.5.2 Getting the optimal user-location

To find the optimal user-location in an observation set, we need to minimize
the localization error. We have to solve a non-linear least squares problem
for minimizing LocErrkj . We formulate the optimum location T ∗

j of user j
for the observer set k in Eq. 6.7.

T ∗
j = argmin

Tj

LocErrkj (6.7)

Literature brings several approaches to solving Eq. 6.7 for optimal user-
location [87–93]. One option is a closed-form solution, which generally can-
not be considered when circles in multi-lateration do not intersect at one
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common point [87–89]. However, numerical methods provide a stronger
argument for the quest for an optimum solution. They give the best ap-
proximate solution, even in the condition of not-intersecting circles [90–93].
Numerical methods provide various search-based optimization algorithms
such as the gradient descent, the Newton-Raphson, the simulated anneal-
ing, and the genetic algorithm that provide candidate solutions [94]. We
use simulated annealing (SA) to obtain the global minimum with sufficient
iterations [95].

6.5.3 Finding bounded trajectories

To obtain the bounds of users’ locations, we utilize the formulated radial-
distance errors while finding the optimal user-location (Alg. 7) . For each
observation set δt′, we initially compute r user for a user j using Equation
6.8. Here, r user represents the set of approximate distances rji between
the user j and each sniffer i that detects it (see line 6).

r user = {rji}∀i ∈ δt′ (6.8)

Next, we proceed to model the distribution of environment errors.
We discuss the behavior of the environment error in Section 6.4 within
small intervals (δt). However, one potential issue we may encounter is the
limitation on the length of δt, which could result in an insufficient number of
probe-request samples in the dataset for accurately characterizing the error
distribution.

To tackle the scarcity of samples, we find out that the actual distribution
(µ = 0, σ = σN distr) of environment errors can be estimated through best
Normal fit (cf. line 12). This distribution estimation allows us to sample
and add extra localization errors in δt. The sampling is done multiple times
(Depth) to obtain the bounds of user locations in the considered observation
set. We validate the effectiveness of Normal fit in Section 6.6.2.

To offer a probabilistic guarantee that encompasses the actual user
locations within bounds, we introduce the concept of Depth in Equation
6.9. This parameter accounts for both the level of confidence (Z) and the
margin of error (MOE) [75] in defining the bounds.

Depth =
Z2σ2

N distr

MOE2
(6.9)

The value of σN distr varies with every δt. We fix the level of confidence
to 95 % and the margin of error to 10%.

Lastly, we proceed to derive the bounds of user-locations. As
demonstrated in Algorithm 7 and discussed in Section 6.4.2, we calculate
the span error (SpanE) and environment error (EnvE) per sniffer for each
observation set. The sum of SpanE and samples drawn from the fitted
Normal distribution (Dtr) yields the total error (MesE).
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This enables us to deduce the possible user distances (r
′
user) by adding

the total error (MesE) to the approximate radial distances (ruser). To
obtain the target location of the user (Opt target) from the possible user-
sniffer distances, we employ Simulated Annealing (SA) (see line 15). The
resulting set of target coordinates (Opt target) represents the bounds of user
locations in each observation set (see line 17).

Algorithm 7 Generating localisation bounds

1: procedure GenMobiltyBounds(User trace,Obs sets, Init pt) ▷ input variables

2: Bounds = [] ▷ Initialising bounds of user-locations

3: for user ← Enumerate(User trace) do

4: User bounds = [] ▷ Per-user localisation bounds

5: for obs← Enumerate(Obs sets) do

6: r user = DistPerSniff(obs)

7: Depth = GetNumSamples(σN distr)

8: for k ← 1 to Depth do

9: for sid← Enumerate(obs) do

10: EnvE[sid] = EnvErrObs(obs, sid)

11: SpanE[sid] = SpanEr(µ(r user[sid]))

12: Dtr = NormalFit(EnvE[sid])

13: MesE[sid] = SpanE[sid] + GetS(Dtr)

14: r
′
user = ruser +MesE

15: Opt target = SolOptLoc(Init pt, r
′
user)

16: User bounds.ADD(Opt target)

17: Bounds.ADD(user bounds)

18: return Bounds

With the set of obtained optimal-target points, we construct the bounded
trajectory by creating a sequence of convex hulls, as detailed in Section
6.2.

Subsequently, we proceed to evaluate the performance of the Allies

framework. For evaluating the effectiveness of the framework, we first intro-
duce, showcase the generation, and validate the utilized WiSurve datasets.
Next, we detail the WiSurve framework and various parameters related to
the generation of large-scale probe-request datasets.

6.6 WiSurve framework

The WiSurve dataset serves as a valuable resource for evaluating the per-
formance of the Allies framework in large-scale passive sniffing scenarios
with ground-truth information of user-positions. By leveraging this dataset,
we can assess the accuracy and effectiveness of Allies in realistic WiFi en-
vironments, providing valuable insights into user trajectory inference and
localization accuracy.

In this chapter, we rely on three real-world datasets as well as realistic
synthetic datasets obtained from the WiSurve framework as shown in Table
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6.1. The first two real-world datasets are non-public and fully anonymized
datasets named Campus dataset 1 and Campus dataset 2 while the third
one is Sapienza dataset (cf. Section 2.5). While real-datasets are used for
the calibration (cf. Sec. 6.4.1) and the validation in real-world conditions,
the WiSurve datasets allow us to have a comprehensive evaluation of Allies
with the ground-truth. WiSurve provides controllability in the setup’s wire-
less environment, user mobility, and sniffers deployment.

Name Type Scenario Mobility Ground truth

Campus dataset 1 Real-world Outdoor No Yes

Campus dataset 2 Real-world Outdoor No Yes

Sapienza dataset Real-world Mixed (indoor and outdoor) Yes No

WiSurve dataset Emulated Outdoor Yes Yes

Table 6.1: Used datasets

In the following, we give details related to the generation and the vali-
dation of large-scale WiSurve dataset, which is need for the large-scale eval-
uation of Allies.

6.6.1 Generating datasets

The nature of bounded trajectories in Allies depends upon the quality of
probe-requests data we capture. The quality is expressed by: (i) the density
of probe-requests captured by the deployed sniffers, (ii) the number of missed
packets, on average, and (iii) the amount of time for which a sniffer perceives
a user in an observation set.

The density of captured probe-requests increases with the number of
deployed sniffers. Furthermore, the average number of missed packets in-
creases with the increase in user density since sniffers are limited to listening
one channel at a time. Finally, the time spent by a user in the sniffer view
is a function of her mobility behavior. High mobile users will likely be seen
for a shorter time by sniffers. Considering such issues, we generate datasets
using WiSurve by varying the above metrics, namely: (i) the number of
sniffers, (ii) the number of users, and (iii) the speed of users.

In Table 6.2, we detail the deployment parameters with the considered
range of values and the default value. When varying a specific metric, we
fix the values of the other metrics with the default values. We consider a
passive-sniffing zone of size 600m x 600m. We generate pedestrian trajecto-
ries with varied individual characteristics using SUMO [96], a traffic simu-
lation tool. We generate trajectories with users performing a random walk
in a Manhattan area tessellated in grids of size 20m x 20m. To ensure con-
nectivity, we keep the grid size smaller than the WiFi range inside WiSurve,
which is more than 50m. We deploy sniffers on randomly-chosen vertices
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while APs are randomly placed in the overall zone. A user-trajectory is com-
prised of all the probe-requests sent by the device advertising a particular
MAC address, across the simulation time.

We set devices to use 802.11n (2.4 GHz) WiFi standard with a simulation
duration of 40min. For accurate emulation of real-world outdoor environ-
ments, we employed a real-world data-based outdoor path-loss model [97]
that represents a typical suburban setting in China (Shanghai), completed
with various outdoor features such as buildings, bridges, vehicles e.t.c., that
could impact signal transmission. As in Table 6.2, we vary the number of
mobile users and sniffers in the simulation over a range of values. We also
vary user speeds from walking (1m/s) to running (2.6m/s). We go for long
traces, rather than multiple runs of small duration, to catch the influence of
users’ wireless encounters in time. Each trajectory in the trace is at least of
length 300m.

Parameter Value Default Range Parameter Value Default Range

Zone 600x600m - - Standard 802.11n - -

Grid size 20m - - Path-loss Kun [97] - -

N(sniffers) - 80 25-100 User speed - 1m/s 1-2.6m/s

N(APs) 25 - - Duration 40 mins - -

N(users) - 150 50-200

Table 6.2: WiSurve’s deployment parameters.

6.6.2 Validating datasets

Once we generate the dataset, we evaluate the realistic nature of the WiSurve
dataset by comparing it with real datasets. The degree of realism is assessed
according to the behavior of prove-request generation and the obtained en-
vironment error distribution.

Probe-request generation: We first ensure that there is no bias intro-
duced in the simulation regarding probe-requests frequency emitted by user
devices and the error behavior. We look at probe-requests captured per
min in WiSurve dataset, shown in Figure 6.7a to certify this first aspect.
We observe that the probe rate follows the same trend measured in various
real mobile devices as in [74], i.e., around 50 probe-requests per min on av-
erage. Regarding the bias in error behavior, we already show in Section 6.4
that the behavior of span and environment errors using WiSurve dataset is
similar to those obtained from the real-world ones.

Environment error distribution: The second validation concerns the
assessment of the Normal-fit environment error distributions (Hypothesis
2). In this case, we calculate the Hellinger distance [98] between the actual
and the Normal-fit environment error distributions in an observation set. We
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Figure 6.7: (a): Probe-request rate for five random users. (b)-(d): Using

Normal-fit on environment errors.

empirically compare the “similarity” of distributions over varying Hellinger
distances and a large number of test cases and observe the distributions to
be “similar” for Hellinger distances less than 0.4. As discussed in Section
6.5.3, we model and fit a distribution to the environment errors due to the
possibility of lacking enough samples in an observation set. Small deviations
from the fitted Normal distribution are expected.

In the evaluation, we first look at the real-world environment errors
observed in the five heterogeneous scenarios of Sapienza datasets (cf. Sec-
tion 6.1.2). We see in Figure 6.7d that the Hellinger distance is below 0.4 for
around 80% of observation sets in vatican 1, vatican 2, and university out-
door scenarios. Then, we extend our evaluation to the large-scale WiSurve
dataset. We observe in Figure 6.7b and 6.7c that despite increasing the user
density and the speed, the distance between actual and fitted distributions
is less than 0.4 for about 90% of the observation sets. It attests that for both
real and simulated datasets, the environment errors are effectively emulated
by Normal-fit, echoing the realistic nature of WiSurve.

Having obtained and validated large-scale passive sniffed WiFi probe-
request traces, we proceed to the evaluation of bounded trajectories.
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6.7 Assessing bounded trajectories

Finally, after having a large-scale passive sniffed probe-request dataset through
WiSurve, we proceed to assess the obtained bounded trajectories. In this sec-
tion, we first illustrate our concept of bounded user-trajectories. Then, we
proceed to evaluate our results against its inclusiveness and effectiveness.

The general observation is that Allies does give inclusive bounds even
in worse wireless medium conditions and, at the same time, maintains a high
degree of effectiveness.

6.7.1 Illustrating bounded trajectories

Figure 6.8a illustrates the bounded user-trajectories in the default scenario
(cf. Table 6.2). We observe that convex hulls completely bound the actual
trajectory of the user for its entire duration in the sniffing zone (521s to
696s). Figure 6.8c certifies the successful identification of bounds of the
user trajectory even for a reduced number of sniffers (25) when having a
higher number of missed packets.
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Figure 6.8: Bounded trajectories’ illustration.

Although overshadowed by the points that convex hulls enclose, Figure
6.8 shows that the actual (ground-truth) trajectories inside the sniffing zone
are fully captured within the revealed bounds. We also verify our framework
against an increased number of users (200) (Figure 6.8b) and for higher
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speeds (2.6m/s) (Figure 6.8d).

6.7.2 Quality of inferred bounds

We state the quality of bounded trajectory is expressed through two metrics
(i) correctness and (ii) width. Correctness brings the intuition of ”inclusive-
ness,” where a user’s bound of locations includes its real precise locations.
The width captures how narrow the bounded trajectory is to limit the extent
of possible user locations.

6.7.2.1 Bounds’ correctness

We infer the “inclusiveness” of bounds as the length (in terms of the period
of time) of the actual trajectory enclosed by the convex hulls (CHjk) of a user
j. Given time intervals for which a user was observed during its ideal tra-
jectory, we define “ideal inclusiveness” as the length of the actual trajectory
enclosed between the minimum and maximum timestamps of CHjk. Note
that the “ideal inclusiveness” acts as ground-truth for “inclusiveness”. Fi-
nally, we compute the Correctness as the distance between the distributions
of resulting bounds’ “inclusiveness” and “ideal inclusiveness”.

Figure 6.9a, 6.9c, and 6.9e investigate the length of actual trajectories
inside the bounded ones (per hull), which depict “inclusiveness”. In Figure
6.9a and 6.9c, the distributions of enclosed trajectory lengths are practically
the same irrespective to varying sniffers and users in the zone. This validates
the resilience of our framework against sniffer and user densities. Figure 6.9e
demonstrates that the enclosed length of the actual trajectories decreases
when increasing user speeds, as highly mobile users stay in the sniffers’ range
for shorter periods.

We find the Hellinger distance between distributions of inclusiveness and
ideal inclusiveness for the quantitative analysis of the correctness. We get
distances below 0.22 for all the scenarios; showing that the corresponding
distribution pairs are very similar. This validates the correctness of our
framework’s bounded trajectories.

6.7.2.2 Bounds’ width

To ensure the “utility” of the bounded trajectories, it’s resulting width has
to be relatively narrow. We define the width of the bounded trajectory of a
user j, as:

Width
(
Buserj

)
=

∑M
k=1 (ActualTrajDist(CHjk))

M
(6.10)

where ActualTrajDist calculates the distance between each of the enclosed
points of the hull to the corresponding closest-in-time point on the actual
trajectory. It gives us a measure of how “spread” are the hulls’ enclosed
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Figure 6.9: (a), (c), (e): Inclusiveness per hull. (b), (d), (f): Bounds’

width.

points, i.e., bounded trajectory around the actual trajectory. We average
out the “spread” over all the hulls of a user j to obtain the width.

Figure 6.9b, 6.9d, and 6.9f report the width of bounded trajectories, for
scenarios with varying number of deployed sniffers, user-densities, and user
speeds. We simultaneously have a look at the average total localization
(distance-estimation) error for a user (cf. Alg. 7, line 13) in Fig. 6.10a,
6.10b, and 6.10c. It gives us an understanding of the behavior of width with
changing parameters.

Fig. 6.10a shows a significant impact of the number of sniffers on the
localization errors and, henceforth, the width. With the small number of
sniffers in the deployment zone, we observe fewer user-probe requests in
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Figure 6.10: Average total localization error.

an observation set and a more significant span error on average. This
leads to higher errors and increased width of bounds. Nevertheless, Fig-
ure 6.9b shows the resilience of bounds’ width to the variation of average
total distance-estimation errors as bounds’ widths are almost the same for
more than 25 sniffers.

Increasing the number of users and speed increases the magnitude of
localization errors due to the higher number of missed probe-requests and
lower observation sets, respectively. Figure 6.9d and 6.9f show that this
increase in error amounts has a negligible decrease in the width. In essence,
Figure 6.9b demonstrates that the width of bounded trajectories is less than
10m for 70% of users, when considering enough sniffers (i.e., 50 or more).
This width is 8.3% of the maximum WiFi range (140m) seen in utilized
large-scale WiSurve dataset. These results certify the “utility” of bounded
trajectories.

6.8 Conclusion

Estimating trajectories of mobile users through non-intrusive measures re-
mains an open problem. This leverages RSSI as a localization metric and
transforms related errors in distance-estimation into an ”insightful metric”.
We show distance-estimation errors are a combination of two distinct com-



ponents, i.e., span and environment errors. We then use this classification
to find the bounds of a user location in short time intervals, which are
then exploited to reveal the bounds of the user’s trajectory. We observe
that Allies’ bounded trajectories do exhibit high inclusiveness and a small
width of less than 10m for 70% of bounds. Allies can strengthen a wider
range of privacy-compliant services, applications, and socioeconomic activi-
ties leveraging human mobility.

We believe that Allies framework can produce output directly usable
by pervasive computing services. Furthermore, obtaining the user’s bounded
trajectory supports a range of applications such as human contact tracing,
recommendation systems, human mobility analysis, and urban planning.





Chapter 7

Contributions conclusion and

future perspectives

Contents

7.1 Contributions summary . . . . . . . . . . . . . . . . . . 107

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Privacy regulations in data collection . . . . . . . . . . 109

7.2.2 Lack of ground-truth . . . . . . . . . . . . . . . . . . . 110

7.3 Future perspectives . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Short-term perspectives . . . . . . . . . . . . . . . . . 111

7.3.2 Long-term perspectives . . . . . . . . . . . . . . . . . 112

This thesis tackles privacy concerns related to the broadcast of public
packets by WiFi and BLE devices, which expose users’ MAC addresses,
leading to tracking and behavioral profiling. The research presented in this
thesis contributes to the field of privacy and security in wireless networks,
shedding light on potential threats and proposing solutions to enhance user
privacy in the context of MAC address associations.

7.1 Contributions summary

There were three objectives of the thesis, related to the three research ques-
tions that we pose in Section 1.1:

Objective 1: The first objective of the thesis was to investigate the level
of privacy risks associated with the existing design of public wireless frames,
specifically WiFi probe-requests and BLE beacons.

We delved into the examination of potential vulnerabilities, with a spe-
cific focus on MAC address association. The association of randomized
MAC addresses in beacons and probe-requests to their sender devices poses
a significant threat to user privacy. Through a thorough exploration of this
problem, we have highlighted the urgent need for privacy-preserving public
frames. During our investigation, we identified crucial flaws in the current

107
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design of public frames that contribute to privacy concerns demanding im-
mediate attention from the community.

By addressing these flaws and proposing potential solutions, our aim is to
empower devices to effectively safeguard user privacy. The recommendations
we have presented are rooted in the findings of our research.

In the existing literature, it is evident that the majority of association
frameworks exploit the identified flaws to associate MAC addresses. How-
ever, before we proceed to identify additional potential vulnerabilities and
propose a better-performing association framework, it is essential to assess
the accuracy of current frameworks concerning varying input datasets.

We focused on WiFi probe-requests for MAC association because it
presents a more challenging scenario for MAC association compared to BLE,
primarily due to the high density of WiFi-enabled devices in public spaces.
Moreover, it is worth noting that the MAC addresses of BLE devices have
already been associated with very high accuracy.

Objective 2: The second objective was to enquire about the already present
WiFi MAC association frameworks in literature for their effectiveness and
reliability.

Our investigation into MAC association frameworks presented in the
literature has raised concerns about the effectiveness of privacy preservation.
These frameworks have demonstrated the capability to associate randomized
MAC addresses with specific devices, potentially compromising user privacy.

We aimed to assess the reliability of these MAC association frameworks,
particularly concerning the datasets used for their validation. We defined
the reliability of a framework as its ability to maintain consistent accuracy
across varying contexts where input probe-request datasets were collected.
Our analysis revealed a significant discrepancy in the performances of these
frameworks when faced with different contextual environments.

To address this issue, we introduced a novel metric that effectively mea-
sures the degree of randomization in evaluated datasets. This metric serves
as a benchmark to assess the reliability of existing and new MAC association
frameworks for datasets with similar or lower randomization complexities.

Subsequently, we proposed our own framework called Bleach, designed
to associate randomized probe-requests advertised in the observation zone.
The implementation of Bleach was rigorously tested using extensive datasets
from various contextual scenarios. The results showed that Bleach is robust
and significantly outperforms state-of-the-art works in terms of accuracy.

The findings of our research highlight the importance of considering the
reliability of MAC association frameworks and their potential impact on
user privacy. With Bleach, we present a promising solution that addresses
these concerns and provides improved accuracy in associating randomized
probe-requests. As wireless networks continue to evolve, preserving user pri-
vacy becomes increasingly crucial, and we believe that our work contributes
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to the advancement of privacy-preserving technologies in this domain.

Objective 3: The last goal of the thesis, was to infer user locations/trajectories
from passively sniffed WiFi probe-request frames, utilizing our already devel-
oped effective MAC association framework, Bleach.

Estimating the trajectories of mobile users through non-intrusive mea-
sures has been an ongoing challenge. This research tackles this problem by
utilizing Received Signal Strength Indicator (RSSI) as a localization metric
and transforming related errors in distance estimation into a novel insightful
metric.

Through our study, we have identified that distance-estimation errors
consist of two distinct components: span errors and environment errors.
This classification has allowed us to determine the bounds of a user’s location
in short time intervals, which in turn, enables us to reveal the bounds of the
user’s trajectory.

Our proposed approach called Allies, has been evaluated and demon-
strated promising results. The bounded trajectories generated by Allies

exhibit a high degree of inclusiveness, indicating the accuracy in capturing
the user’s actual trajectory. Additionally, the small width of less than 10
meters for 70% of the bounds further validates the precision and reliability
of our method.

The capabilities of Allies hold great potential for enhancing privacy-
compliant services, applications, and socioeconomic activities that leverage
human mobility. It contributes to addressing the challenge of estimating user
trajectories while not being intrusive. The insights gained from this research
can pave the way for improved location-based services, benefiting various
domains that rely on human mobility information for decision-making and
resource allocation.

7.2 Limitations

In this thesis, we indeed provide insights and showcase that privacy-related
flaws in current public wireless frames can be exploited. However, there are a
couple of limiting factors that we try to tackle our best through simulation
frameworks: SimBle and WiSurve. Nonetheless, by acknowledging these
limitations, we aim to provide a clear context for the scope and validity of our
findings, while also highlighting the importance of further advancements in
evaluating privacy-preserving techniques in wireless communication systems.

7.2.1 Privacy regulations in data collection

Collecting network traces through active methods that require user partic-
ipation can be impractical for several reasons. First, it involves the cum-
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bersome task of recruiting volunteers willing to participate in the data col-
lection process. Additionally, specific applications need to be installed on
the users’ devices to enable the necessary data capture, which may deter
many potential participants. These factors can lead to limited and biased
data collection, making it challenging to obtain comprehensive and diverse
datasets. To effectively address the challenges of this thesis, the availability
of more real-world traces becomes critical.

Passive sniffing emerges as a promising alternative for trace collection
in such scenarios. Passive sniffing involves listening to packets transmitted
by devices without actively engaging with them. The collection process ad-
heres to the principle of ”legal capture” to ensure compliance with privacy
and data protection laws in different countries. These regulations typically
restrict the sniffing of packets without the proper authorization to safeguard
user privacy and prevent unauthorized data interception . It requires col-
lection advertisements for passing-by people, to give them the possibility
to decide about their data being collected. As a result, passive sniffing on
public channels too is difficult to achieve. This hinders the availability of
large-scale traces needed to design and develop works in this thesis such as
the benchmarks for MAC association and eventually the new association
framework itself.

7.2.2 Lack of ground-truth

In this thesis, our research is constrained by two types of essential ground-
truth information. The first type of ground-truth pertains to having precise
knowledge of the history of randomized MAC addresses emitted by a device.
This information plays a critical role in the evaluation of MAC association
algorithms and device fingerprinting methods [1] [13] [12]. Without this
ground-truth, accurately assessing the performance and efficacy of these
proposed methods becomes challenging, potentially leading to biased or in-
accurate conclusions.

The second type of ground-truth that we require for our research relates
to obtaining real insight into the actual positions of users when they transmit
probe-requests. It is very complicated to retrieve these ground-truth posi-
tions in real-world passive sniffing environments. This ground-truth is in-
dispensable for evaluating the correctness and effectiveness of the ”bounded
trajectories” that we introduce in this thesis. Bounded trajectories play a
crucial role in analyzing user movement patterns and tracking their positions
over time. To properly validate the accuracy and reliability of these bounded
trajectories, we need genuine user trajectories as ground-truth references.
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7.3 Future perspectives

In this section, we discuss the potential research perspectives in the context
of our analytical insights and technical contributions.

7.3.1 Short-term perspectives

1. Implementing suggestions for confidentiality: In this thesis, we
suggest adding controlled noise to the information fields in the probe
requests to reduce the effectiveness of fingerprinting attacks. We also
recommend replacing entries in Preferred network lists (PNLs) adver-
tised by the probe requests with pseudo-identifiers, which are already
agreed upon by each client-AP pair. We could test and evaluate these
suggestions in real hardware or in simulation, for ensuring confiden-
tiality.

2. New datasets for benchmarks: We could demonstrate the com-
plexities of our address association framework, Bleach over new data-
collection scenarios and benchmark its performance. We could perform
probe-request collection in dense public spaces, given the regulations
are permitting.

3. Studying the impact of conflicts on WiFi MAC association:
It would be interesting to investigate the rate of degradation of an
association framework’s performance with respect to randomization
complexities (size of MAC conflicts) in the future when considering
various classes of MAC association strategies. We could gradually
increase the number of devices in the simulation or in controlled en-
vironments and see the evolution and fluctuations in the association
accuracy over time.

4. Realizing a real-world small-scale probe-request dataset: The
ground-truth for MAC addresses emitted from the same device is also
lacking for passively collected datasets, which hinders the usage of a di-
rect association accuracy metric. We need a data generation method-
ology to vary these devices’ modes and models while preserving the
identity of the sending device. We can linearly combine traces (in
time) of different individual devices captured inside a Faraday cage
(labeled dataset, cf. Section 2.5) while considering realistic packet
losses and the sojourn time of devices. Using this methodology, we
could obtain a real-world small-scale probe-request dataset with de-
sired levels of heterogeneity. We could hence be able to realize direct
accuracy metric and benchmarks, over custom scenarios, by varying
the linear combinations.
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7.3.2 Long-term perspectives

1. A more robust and adaptive MAC randomization: For a
robust MAC randomization devices could be more collaborative and
adaptive. Currently, in WiFi and BLE standards, the identifiers like
MAC addresses change after a fixed interval regardless of the surround-
ings. It would be nice to have a model which adapts or predicts the
timestamps of future changes, dynamically based on the surroundings
that it listens to. For example, when fewer devices are around, the
intuition is that devices should change their identifiers faster. This
makes the tracking by the adversary more and more challenging. The
model could either be analytical or artificial intelligence-based which
considers based on the number of nearby public frames that a device
perceives in recent time intervals.

2. Integrating simulation frameworks with hardware provisions:
The simulation frameworks introduced in the thesis such as WiSurve
and SimBle could be enriched with more hardware-related provisions
to make the obtained traces more realistic. The key distribution for
MAC randomization, for instance, could be done by using control
messages (as done in BLE hardware) rather than the current pre-
installation at the node. BLE stack could be enriched by the addition
of different device pairing modes. As one of the aims is to emulate any
real device, more and more vendor-specific information such as the
time intervals between the subsequent MAC changes could be added.

3. Combining BLE and WiFi for MAC association: Currently the
frameworks in literature as well as our proposal Bleach, focus on one
of the wireless technologies (BLE and WiFi) for MAC address associ-
ation. We could potentially combine the information from WiFi and
BLE public frames to increase the success rate of association frame-
works. Generally, a user might use BLE-based connected devices such
as smartwatches and wireless headphones along with his mobile phone.
The combined view of information from all devices both spatially in
terms of receiving sniffers and temporally, could yield much more effec-
tive signatures. The resolution of conflicts for the MAC association is
relatively easier as we could use the information if available from either
technology to complement and reduce the size of effective conflicts, by
discarding unlikely association pairs.

4. Inferring contacts from bounded trajectories: In this thesis,
we stick to the formulation and the realization of bounded trajectories.
Bounded trajectories can potentially solve the problem of passively in-
ferring human contact tracing used for controlling and managing pan-
demics. Deploying sniffers for listening to emitted public packets by



devices in dense spaces could help us in obtaining the temporal and
spatial overlap of bounded trajectories. The inferred contacts, assum-
ing the MAC association, is likely to be more effective than current
solutions such as applications actively sending beacons for contact-
tracing [99, 100]. WiFi devices keep on sending probe-requests even
when connected to an AP as they constantly look for better connec-
tions. This behavior aids the scale at which bounded trajectories could
be retrieved from the area where passive sniffing is deployed.
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Appendix A

SimBle: technical details

A.1 Address generation

The format of a Resolvable private address is shown in Figure A.1. The
resolvable private address is generated with the IRK and a 24-bit number
known as prand. We see that it could be mainly divided into two blocks of 24
bits each. The first block consists of a 24-bit hash introduced in [Alg. 8 line
7]. Simble incorporates the AES (Advanced Encryption Standard) support
as it is recommended by the standard [38] for encrypting the plain-text data
into ciphered block [101] [102] in the process of randomized MAC address
generation.

hash
(24 bits)

prand
(24 bits)

Random part of prand 1    0

LSB MSB

Figure A.1: Format of a Resolvable Private Address

The second block consists of prand. Prand in the case of Resolvable
private address has two most significant bits as 1 and 0 as shown in Figure
A.1. The random part of prand must consist of at least one bit as 0 and
one bit as 1. We discover in detail the generation of the Resolvable private
address by PrivacyManager in [Alg. 8].

Each of the nodes in Simble has an instance of PrivacyManager as
illustrated earlier in Figure A.1. [Alg. 8] performs two major functions.
GENERATE in [Alg. 8 line 1], takes as input the IRK and generates a
resolvable private address for that node. While UPDATE [Alg. 8 line 1]
take care of necessary calls to update a device’s MAC address according
to the user-specified BLE standard and device class that we are trying to
emulate.

Whenever GENERATE is called we generate a 24 bits value with the
two most significant bits as 10. The rest of the bits are random and we
use this value as prand, the trailing half a resolvable private address [Alg.
8 line 2]. This generated prand is then padded by 104 null bits such that
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Algorithm 8 SimBle’s Resolvable Private Address generation

1: procedure Generate(IRK) ▷ Input variable

▷ Prepare encryption inputs

2: prand← genPrand()

3: padding ← genPaddingBits(104)

4: plaintext← Concatenate(padding, prand)

▷ AES encryption

5: aesobj ← AES(IRK)

6: ciphertext← aesobj.getEncrypt(plaintext)

▷ Getting MAC address

7: prunedcipher ← getLeastSigBits(ciphertext, 24)

8: macstr ← Concatenate(prunedcipher, prand)

9: macaddr ← toMacHex(macstr)

10: return ▷ Returns a Resolvable Private Address

11: procedure Update(randInterval, swapDelay, IRK) ▷ Input

variables

12: roundIndex = getCurrentRoundIndex()

13: macDevice = Generate(IRK)

▷ Check if this call is just after device initialization

14: if roundIndex == 1 then ▷ Calculate time offset for recursive

callback

15: nextUpOffset← getURV (0, randInterval) + swapDelay

16: else

17: nextUpOffset← randInterval + swapDelay

▷ Schedule a callback after offset expires

18: incRoundIndex()

19: Schedule(Update, nextUpOffset)

the most significant byte of the prand becomes the most significant byte
of padding [Alg. 8 line 4]. We call this value plaintext as it is given as
input for encryption. Then, we generate an instance of the AES algorithm
initialized with the IRK of the current node [Alg. 8 line 5]. AES instance
then encrypts the plaintext to generate 128 bits of ciphertext [Alg. 8 line 6].
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We take 24 most significant bits of ciphertext [Alg. 8 line 7] and concatenate
to the earlier generated prand to generate a string of 48 bits [Alg. 8 line 4].
The generated string is then finally formatted in IEEE 802.11 MAC address
format to produce a resolvable private address [Alg. 8 line 9].

Once the randomized MAC address is generated, the next step is to
change this address dynamically while respecting the standard. This is done
by the UPDATE function of PrivacyManager which takes three arguments.
One of them is IRK, the identity resolving key of the node, which we have
already discussed. The other two arguments are device-dependent with the
freedom to users for allocating any specific values. They are as follows:

• randInterval: This is the time after which a specific device generates
a new resolvable private address. In BLE 4.1 standard [37], the most
prevalent Bluetooth standard in current mobile devices, this interval is
fixed to 15 minutes. However, in the most recent release, BLE 5.2 [38],
the vendor is flexible to randomize the MAC address before the mark
of 15 minutes. But standard recommends not to update the addresses
too frequently as it might affect the paired devices’ performance. It
is due to an increase in the number of control messages that need to
be exchanged after generating a new address. Simble takes the BLE
standard and device class as input from the user at the initialization
of nodes to calculate the respective randInterval value.

• swapDelay: It is introduced to emulate the behavior of the device
in practice. We see from the experiments that devices take some time
before they develop a new randomized address and advertise. This
delay is caused due to resources used in address generation and in
updating the current MAC level state. swapDelay could be device-
specific. We empirically choose the value to be 10 times the frequency
of transmitting beacons. We do this after measuring the value of this
delay in experiments done on a large set of BLE devices broadcasting
beacons.

On receiving the input arguments, UPDATE first checks the iteration
index of this call and stores it as roundIndex [Alg. 8 line 12]. For calls to
UPDATE, roundIndex has the value greater than or equal to 1. It distin-
guishes the two states in which a node can generate a new address. The first
state(roundIndex=1) is when a node goes for obtaining a new address just af-
ter spawning inside the simulation. While the second state(roundIndex>1)
is when the node requests an address after the expiration of the old one.
GENERATE is called from UPDATE to assign the device a new resolvable
private address [Alg. 8 line 13].

After assigning the randomized address, UPDATE calculates the dura-
tion for which this address would be valid. If the device has called UPDATE
for the first round, then we calculate this duration by taking a random value
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out of uniform random variable distribution in [0, randInterval ] and adding
the swapDelay to this value [Alg. 8 line 15].

We do this to respect the standard guidelines for setting the address
expiration timers as discussed in Section 2.2.1. Else if the device has already
changed its MAC address since spawning, then we assign the offset to be
the sum of randInterval and swapDelay [Alg. 8 line 17].

Finally, we increase the roundIndex and schedule a recursive callback to
UPDATE after the expiration of offset that we just calculated above [Alg.
8 line 19] in order to get resolvable private addresses during the simulation
time.

A.2 Address resolution

Generation of MAC address is not sufficient for a BLE device. The receiving
node must be able to ”resolve” or associate the private address with the
sending device’s identity. A Resolvable private address may be resolved if the
sending device’s IRK is available to the receiver. If the address is resolved,
the receiving device can associate this address with the peer device.

To support this privacy-preserving feature, we need to figure out solu-
tions to two major questions inside a device; how to resolve a private address
of a device? And, where do we need to check the validity of the private ad-
dress in the packet being handled inside Simble?

The solution to the first question is given by RESOLVE [Alg. 9 line 1]
while CHECKVALIDATION [Alg. 9 line 16] answers the second question
that we arise above.

As briefly stated earlier, RESOLVE returns a tuple consisting of (re-
solved, resIDAdd). Here resolved states if the resolution attempt of the
privateAddress was successful or not. If the private address is resolved then
resIDAdd consists of the Identity Address of the node creating the private
address, else it is an empty string in the returned pair.

Whenever a node receives a resolvable private address, the corresponding
PrivacyManager calls RESOLVE with privateAddress and irkIAddPairList
as input. While privateAddress is the sending device’s randomized MAC
address, irkIAddPairList is the locally maintained list of (IRK, Identity Ad-
dress) pairs at the resolving node, as described in section 3.2.1.3.

RESOLVE first extracts hash and prand part of the private address
[Alg. 9 line 3] as described earlier in Figure A.1. We pad 104 null bits
to the extracted senderPrand such that the most significant byte of the
senderPrand becomes the most significant byte of plaintext, which is the
resulted byte array after padding.

Before considering a privateAddress to be resolved, the handling node
checks the validity of the address. The valid private address refers to the
address which was resolved using one of the IRK’s in the list available at the
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Algorithm 9 SimBle’s Resolvable Private Address resolution

1: procedure Resolve(privateAddress,

irkIAddPairList) ▷ Input variable

▷ Extract hash and random part of privateAddress

2: senderHash← extractHash(privateAddress)

3: senderPrand← extractPrand(privateAddress)

4: padding ← genPaddingBits(104)

5: plaintext← Concatenate(padding, senderPrand)

6: resolved← FALSE

7: resIDAdd← NULLSTR

▷ Check if Sender hash is valid

8: for IRK, IDAdd in irkIAddPairList do

9: aesobj ← AES(IRK)

10: ciphertext← aesobj.getEncrypt(plaintext)

11: localHash← getLeastSigBits(ciphertext, 24)

12: resolved← isEqual(localHash, senderHash)

13: if resolved == TRUE then

14: resIDAdd← IDAdd

▷ Return resolved status & Identity Address

15: return (PAIR(resolved, resIDAdd))

16: procedure CheckValidation

▷ Call RESOLVE to validate private address if any of the function

calls below is triggered in Simble

17: if

18: BroadbandManager:LinkExists(),

GetLinkManager(), GetLink()

19: LinkController:CheckReceivedAckPacket()

then

20: Resolve(privateAddress, irkIAddPairList)

resolving node. To get this verification, we first take out a (IRK : Identity
Address) pair from the irkIAddPairList. We generate an instance of the AES
algorithm initialized with the IRK from the current pair [Alg. 9 line 9]. AES
instance then encrypts the plaintext to generate 128 bits of ciphertext [Alg.
9 line 10]. We take 24 most significant bits of ciphertext to generate the
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localHash. If the value of localHash matches the earlier extracted senderHash
[Alg. 9 line 2] for any of the iterations, RESOLVE successfully returns the
(TRUE, Identity Address) pair. Otherwise, resolution is considered a failure
and RESOLVE returns the (FALSE, ” ”) pair.

After resolving a private address, we look into the framework of Simble
to investigate the modules that need address resolution. We identify two
modules that need to call PrivacyManager ’s RESOLVE procedure: Broad-
bandManager and LinkController through CHECKVALIDATION [Alg. 9
line 18]. Whenever BroadbandManager receives a packet from the NetDe-
vice, RESOLVE is recalled in two cases. The first is when it checks/tries
to fetch the link. The second is when it requests the LinkManager to the
destination node. We do this to ensure that the identity address resolved by
the node suggested by the destination address matches the identity address
of the existing link. Finally, CHECKVALIDATION also needs to check if
the sender address of the correctly received packet by the LinkController
could be resolved using one of the stored IRK ’s at the receiver [Alg. 9 line
19].

For validation of Simble, it is fundamental to evaluate the functionalities
of the introduced PrivacyManager. Therefore resolvable private address
generation and resolution must be validated. Specifically, we must show that
generated randomized addresses are very close to what real-world devices
advertise. Also, we have to show that BLE data communication continues
flawlessly between the paired devices even when they change their advertised
MAC address. In this case, we assume that the devices have exchanged each
other’s IRK during initialization. All the MAC addresses shown in the thesis
are hashed using SHA-256 and truncated to the first 8 bytes for illustration
purposes.
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tifs réseau WiFi (Wireless Fidelity) et Bluetooth Low
Energy (BLE) diffusant des paquets publics non
chiffrés par voie hertzienne a suscité de plus en
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échelle des paquets publics avec une ”vérité ter-
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sed public packets.
In this thesis, we identify key flaws that lead to the
MAC association. To measure the severity of identified
flaws by looking at the performance of current MAC
association attacks, we need large-scale traces of pu-

blic packets with ”ground truth” information regarding
randomized addresses from the same device. We as-
sert the flaws by employing our proposed simulation
framework to generate large-scale WiFi and BLE pas-
sive sniffing traces. We reveal that current device ran-
domization is ineffective and needs revision.
In addition to key flaws identifications, we conduct
case studies and introduce benchmarks for evalua-
ting the performance of any association framework.
We show the need for a new and effective WiFi MAC
association framework, and finally, we develop and
benchmark a novel association framework to deter-
mine its expected performance with any new input
probe-request dataset.
Once achieving effective MAC association, we reveal
the inference of user locations from passively sniffed
probe-requests. We propose a novel concept called
”bounded trajectories.” Bounded trajectory refers to an
area where a particular user is probable to be present
across time.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Introduction
	Thesis Challenges
	Thesis Contributions
	Thesis outline

	Background
	Wireless network protocols
	Privacy provisions in public packets
	WiFi MAC address association
	Trajectory inference from public wireless frames
	Literature datasets
	Conclusion

	Privacy concerns from MAC association
	Flaws in BLE and WiFi public frames
	Asserting flaws in BLE beacons
	Asserting flaws in WiFi probe-requests
	Mitigating BLE and WiFi flaws
	Conclusion

	Benchmarks for association frameworks
	Identifying frameworks unreliability
	Impact of heterogeneity
	Benchmarks for association frameworks
	Conclusion

	Bleach framework
	Bleach framework
	Step 1: Extracting MAC trails
	Step 2: Obtaining conflicts
	Step 3: Obtaining signatures
	Step 4: MAC Association
	Evaluation
	Conclusion

	Inferring users' bounded trajectories from WiFi
	Assessing RSSI-based trajectory inference
	Allies overview
	Step 1: Generating Observation sets
	Step 2: Characterizing estimation errors
	Step 3: Obtaining bounded trajectories
	WiSurve framework 
	Assessing bounded trajectories
	Conclusion

	Contributions conclusion and future perspectives
	Contributions summary
	Limitations
	Future perspectives

	SimBle: technical details
	Address generation
	Address resolution

	List of Publications

