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Foreword 
 

The last century witnessed an exponential increase of world population and an 

industrial revolution that consumed without limit the resources provided by our planet. 

Speculations expected that world population will exceed 9 billion by the end of this century, 

with an increase in life expectancy to 85 years per person. Moreover, due to the unlimited 

use of fossil fuel, estimations expected a complete depletion of these resources in 2050. This 

dangerous anthropogenic interference with the climate system resulted in unprecedented 

increase in global temperature, increase in oceans level, increase in natural disasters and 

other catastrophes. With this dynamic, our planet is incapable of holding this pressure 

anymore, and alternative measures are strongly required to prevent additional catastrophes in 

the future. 

 

 Biofuels are part of these measures. These plant-based liquid combustibles are readily 

obtained from starch or sugars (1st generation bio-ethanol) or from vegetable oils (1st 

generation bio-diesel). Due to their competition with food applications, intensive research 

has been done on 2nd generation fuels (bio-ethanol and bio-diesel from cellulosic 

compounds). Nevertheless, many difficulties hindered their industrial development, which 

requires alternative renewable resources. 

 

Microalgae are promising microorganisms that can take part of these measures, due 

to their important diversity and the numerous benefits they can provide; they can grow in 

autotrophy in fresh or marine water, with few geographical or weather limitations, they 

multiply rapidly and accumulate large amounts of organic components. For instance, 

Chlorella vulgaris can accumulate within two weeks twice as much oil as a soy plant can 

accumulate during three months. Moreover, non-arable lands can be used for industrial 

installations and deforestation can be avoided as well.  

 

During the last two decades, interest in microalgal technology has been mainly 

focused on bio-energy purposes. But considering all the benefits this biomass can provide, it 

will be unfortunate to limit the outputs; especially that, so far, the production dedicated to 

bioenergy is uncompetitive in the market. 

 



 
 

 

 

Nowadays scientists are convinced that the biorefinery concept (i.e., a sequence of 

unit operations to achieve the whole fractionation and/or transformation of biomass to 

produce multiple products) applied to microalgae would render this sector profitable. As it 

will be demonstrated later, a microalgae biorefinery could generate ten-fold more profit than 

the single use in biofuels. 

 

For this study we will consider a model microalga: Chlorella vulgaris. The 

challenge dwells in successfully separating each fraction with minimum cost (equipment and 

process) and minimum environmental footprint. The solution must be compatible with 

industrial realities. This challenge is not only ours but global for the microalgae community. 

Our work does not pretend to solve the whole problem but it will contribute to pursue this 

main goal. 

 

*   *   * 

!

This PhD thesis was done within the framework of the French project 

“ALGORAFFINERIE”, financed by the French National Research Agency (ANR). It has 

been conducted at Laboratoire de Chimie Agro-industrielle (LCA) located in the Institut 

National Polytechnique Toulouse in France. It was conducted under the supervision of 

Professor Carlos Vaca-Garcia and Doctor Pierre-Yves Pontalier.  

 

Part of this work was done in close collaboration with Université Blaise Pascal 

(Polytech) - Clermont Ferrand, partner of the ANR project. In addition, a successful 

collaboration was created with the Biomolecular and Bioengineering department of The 

University of Melbourne (Australia) with Doctor Gregory Martin who hosted me during four 

months in his laboratory. 

 
The manuscript is dressed with four chapters accessorised with seven publications 

(published, accepted or submitted by the time of writing) that reflect the fruit of the results 

obtained: 

 
 Chapter one presents an overview on Chlorella vulgaris under the form of a review 

paper followed by a discussion of the algorefinery challenges and concludes on the adopted 

strategy of our work. 

 



 
 

 

 

 Chapter two is composed of one publication related to the extraction of lipids 

from Chlorella vulgaris investigating whether it is necessary to conduct a cell disruption 

before applying a supercritical carbon dioxide extraction. 

 

Chapter three compiles four publications that deal with the characterization and 

extraction of Chlorella vulgaris proteins (other microalgae were also analysed for 

comparison). 

 
 Chapter four includes one publication, and it is concentrated on fractionating the 

aqueous phase by ultrafiltration after breaking its cell wall. The study was conducted on 

Tetraselmis suecica for the reasons that will be described in the introduction of this chapter. 

 

*   *   * 

 

Albert Einstein quoted: “The grand aim of all science is to cover the greatest number of 

empirical facts by logical deduction from the smallest number of hypothesis or axioms”. 

This quote mirrors my scientific convictions and had inspired the spirit of the following 

research. 
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Chapter 1: State of the art on 

microalgae: scopes and challenges 
 

 

1.1 Introduction 
 

 Considering all microalgal species in the bibliography is almost an impossible task, 

due to their wide diversity that exceeds one million species. Indeed, microalgae and their 

technological advancements are still in their infancy, but so far 40.000 have been already 

isolated and analysed. Therefore, we cannot afford to talk into details about all these species. 

Consequently, we voluntarily limited the global bibliography in the introduction of the 

submitted review that gives a general history on microalgae and then detailed bibliography 

related to all the aspects of Chlorella vulgaris. This species has been long exploited and is 

one of the most grown and consumed microalga in the world. It appears in almost all the 

publications exposed in this manuscript.  
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1.2 Morphology, Composition, Production, Processing and 

Applications of Chlorella vulgaris: A review 
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Abstract 
 
Economic and technical problems related to the reduction of petroleum resources require the 

valorisation of renewable raw material. Recently, microalgae emerged as promising 

alternative feedstock that represents an enormous biodiversity with multiple benefits 

exceeding the potential of conventional agricultural feedstock. Thus, this comprehensive 

review article spots the light on one of the most interesting microalga Chlorella vulgaris. It 

assembles the history and a thorough description of its ultrastructure and composition 

according to growth conditions. The harvesting techniques are presented in relation to the 

novel algorefinery concept, with their technological advancements and present and potential 

applications in the market. 

 

Keywords Chlorella vulgaris, Algorefinery, Growth conditions, Morphology, Primary 
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1.3 Introduction 
 

Microalgae have an ancient history that left a footprint 3.4 billion years ago, when the 

oldest known microalga, belonging to the group of cyanobacteria, fossilised in rocks of 

Western Australia. Studies confirmed that until our days their structure remains unchanged 

and, no matter how primitive they are, they still represent rather complicated and expertly 

organised forms of life [1]. Nevertheless, other reports estimated that the actual time of 

evolution of cyanobacteria is thought to be closer to 2.7 billion years ago [2, 3]. Hence, 

evolutionary biologists estimate that algae could be the ancestors of plants. Thus, through 

time algae gave rise to other marine plants and moved to the land during the Palaeozoic Age 

450 millions years ago just like the scenario of animals moving from water onto the land. 

However, evolutionists need to overcome multiple obstacles (danger of drying, feed, 

reproduction, protection from oxygen) to definitely confirm this scenario complemented with 

more scientific evidence.  

 

Like any other phytoplankton, microalgae have a nutritional value. The first to 

consume the blue green microalga were the Aztecs and other Mesoamericans, who used this 

biomass as an important food source [4]. Nowadays, these microscopic organisms are still 

consumed as food supplement such as Chlorella vulgaris and Spirulina platensis [5] and 

their products are also used for different purposes like dyes, pharmaceuticals, animal feed, 

aquaculture and cosmetic. For the last two decades, microalgae started to take a new course 

with enlarging applications motivated by the depletion of fossil fuel reserves, the consequent 

increase in oil prices and the global warming concern. These dramatic thresholds are forcing 

the world to find global strategies for carbon dioxide mitigation by proposing alternative 

renewable feedstocks and intensifying researches on third-generation biofuels. In this 

context, microalgae are regarded nowadays as a promising sustainable energy resource due 

to their capacity to accumulate large quantities of lipids suitable for biodiesel production that 

performs much like petroleum fuel [6, 7]. They also proved to be a source of products such 

as proteins, carbohydrates, pigments, vitamins and minerals [8]. In addition, microalgae 

capture sunlight and perform photosynthesis by producing approximately half of atmospheric 

oxygen on earth and absorbing massive amounts of carbon dioxide as a major feed. 

Therefore, growing them next to combustion power plants is of major importance due to 
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their remarkable capacity to absorb carbon dioxide that they convert into potential biofuel, 

food, feed and highly added value components [9-14].  

Microalgae can grow in both fresh and marine water as well as in almost every 

environmental condition on earth from frozen lands of Scandinavia to hot desert soil of the 

Sahara [15]. If production plants were installed in an intelligent way, microalgae would not 

compete with agricultural lands, no conflict with food production [16] and especially would 

not cause deforestation.  

 

Microalgae represent an enormous biodiversity from which about 40.000 are 

already described or analysed [17]. One of the most remarkable is the green eukaryotic 

microalga Chlorella vulgaris, which belongs to the following scientific classification: 

Domain: Eukaryota, Kingdon: Protista, Divison: Chlorophyta, Class: Trebouxiophyceae, 

Order: Chlorellales, Family: Chlorellaceae, Genus: Chlorella, Species: Chlorella vulgaris. 

Hence, Martin Willem Beijerinck, a Dutch researcher, first discovered it in 1890 as the first 

microalga with a well-defined nucleus [18]. The name Chlorella comes from the Greek word 

chloros (Χλωρός), which means green, and the latin suffix ella referring to its microscopic 

size. It is a unicellular microalga that grows in fresh water and has been present on earth 

since the pre-Cambrian period 2.5 billion years ago and since then its genetic integrity has 

remained constant [1]. By the early 1900s, Chlorella protein content (>55% dry weight) 

attracted the attention of German scientists as an unconventional food source. In the 1950s, 

the Carnegie Institution of Washington [19] took over the study and managed to grow this 

microalga on a large scale for CO2 abatement. Nowadays, Japan is the world leader in 

consuming Chlorella and uses it for medical treatment [20, 21] because it showed to have 

immune-modulating and anti-cancer properties [22-26]. After feeding it to rats, mice and 

rabbits in the form of powder, it showed protection properties against hematopoiesis [27] 

age-related diseases like cardiovascular, hypertension, and cataract; it lowers the risk of 

atherosclerosis and stimulates collagen synthesis for skin [28, 29]. Furthermore, C. vulgaris 

is also capable of accumulating important amounts of lipids especially after nitrogen 

starvation with a fatty acid profile suitable for biodiesel production [30, 31].  

 

The available reviews have focused so far on evaluating microalgae as an important 

source of lipids for biofuel production [32, 33] and also explained in details the different 

production processes and harvesting techniques. The following review covers larger 
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information about C. vulgaris, including not only production and harvesting techniques 

already conducted on this microalga, but also detailed information about its ultrastructure 

and chemical composition accompanied by cell wall breaking techniques and extraction 

processes. The last section focuses on the multiple applications and potential interests of this 

microalga in different areas and not only on the production of fatty compounds. 

 

1.4 Morphology  
 

Chlorella vulgaris is a spherical microscopic cell with 2-10 mm diameter [33-35] 

and has many structural elements similar to plants (Fig 1). 

 
Figure 1: Schematic ultrastructure of C. vulgaris representing different organelles 

!

1.4.1 Cell wall 
 

The rigidity preserves the integrity of the cell and is basically a protection against 

invaders and harsh environment. It varies according to each growth phase. During its early 

formation in its autosporangia, the newly formed cell wall remains fragile forming a 2 nm 

thin electron-dense unilaminar layer [33, 36]. The cell wall of the daughter cell gradually 

increases in thickness until it reaches 17-21 nm after maturation [33, 35], where a 

microfibrillar layer is formed representing a chitosan-like layer composed of glucosamine 

[36, 37], which accounts for its rigidity. In the mature stage, cell wall thickness and 

composition are not constant because they can change according to different growth and 

environmental conditions. Furthermore, some reports [38, 39]explained the rigidity of the 

cell wall by focusing on the presence of a sporopollenin layer, even though it is generally 
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accepted that C. vulgaris has a unilaminar cell wall that lacks sporopollenin,which is an 

extremely resistant polymerised carotenoid found on the cell wall of Haematococcus 

pluvialis [40] and Chlorella fusca [41]. However, a contradictory study conducted on C. 

vulgaris by Martinez et al. [42] reported the presence of sporopollenin by observing an outer 

trilaminar layer and by detecting resistant residues after being submitted to acetolysis.  

 
1.4.2 Cytoplasm 

 
It is the gel-like substance residing within the cell membrane and composed of 

water, soluble proteins and minerals. It hosts the internal organelles of C. vulgaris such as 

mitochondria, a small nucleus, vacuoles [43], a single chloroplast and the Golgi body [44].  

 
1.4.3 Mitochondrion 

 
Every mitochondrion contains some genetic materials, the respiratory apparatus and 

has a double-layer membrane; the outer membrane surrounds the whole organelle and is 

composed of an equal ratio of proteins and phospholipids. Nevertheless, the inner membrane 

is composed of thrice more proteins than phospholipids; it surrounds the internal space called 

the matrix, which contains the majority of mitochondrial proteins [44]. 

 

1.4.4 Chloroplast  
 

C. vulgaris has a single chloroplast with a double enveloping membrane composed 

of phospholipids; the outer membrane is permeable to metabolites and ions, but the inner 

membrane has a more specific function on proteins transport. Starch granules, composed of 

amylose and amylopectin, can be formed inside the chloroplast, especially during 

unfavourable growth conditions. The pyrenoid contains high levels of Ribulose-1,5-

bisphosphate carboxylase oxygenase (RuBisCO) and is the centre of carbon dioxide fixation. 

The chloroplast also stores a cluster of fused thylakoids where the dominant pigment 

chlorophyll is synthesised masking the color of other pigments such as lutein. During 

nitrogen stress, lipid globules mainly accumulate in the cytoplasm and the chloroplast [15, 

45].  
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1.5 Reproduction 
 

Chlorella vulgaris is a non-motile reproductive cell (autospore) that reproduces 

asexually and rapidly. Thus, within 24 h, one cell of C. vulgaris grown in optimal conditions 

multiplies by autosporulation, which is the most common asexual reproduction in algae. In 

this manner, four daughter cells having their own cell wall are formed inside the cell wall of 

the mother cell (Fig 2,3) [33, 35]. After maturation of these newly formed cells, the mother 

cell wall ruptures allowing the liberation of the daughter ones and the remaining debris of the 

mother cell will be consumed as feed by the newly formed daughter cells. 

 

 
Figure 2: Drawings showing the different phases of daughter cell-wall formation in Chlorella vulgaris. a 

Early cell-growth phase. b late cell-growth phase. c Chloroplast dividing phase. d Early protoplast dividing 

phase. e Late protoplast dividing phase. f Daughter cells maturation phase. g Hatching phase [35]. 

 

 
Figure 3: Newly formed cells emerging outside the cell wall of the mother cell after hatching [33]. 

 

1.6 Production 
 

Annual production of Chlorella reached 2000 tonnes (dry weight) in 2009, and the 

main producers are Japan, Germany and Taiwan [46]. This microalga has a rapid growth rate 

and responds to each set of growth condition by modifying the yield of a specific component. 

C. vulgaris is ideal for production because it is remarkably resistant against harsh conditions 

and invaders. On the one hand, lipid and starch content increases and biomass productivity 

ceases or decreases [47] during unfavourable growth conditions such as nitrogen and 
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phosphorus limitation, high CO2 concentration, excessive exposure to light [30, 48-50], 

excess of iron in the medium [51], or increase in temperature [52]. On the other hand, protein 

content increases during normal and managed growth conditions (nitrogen supplementation). 

Therefore, many growth techniques have been tested in order to voluntarily target biomass 

productivity, lipid, proteins, carbohydrates and pigments content.  

 
1.6.1 Autotrophic growth 

 
1.6.1.1 Open pond systems 

 
Open ponds are the most common way of production and are the cheapest method 

for large-scale biomass production. These systems are categorised into natural waters (lakes, 

lagoons and ponds) or wastewater or artificial ponds or containers. They are usually built 

next to power plants or heavy industry with massive carbon dioxide discharge where the 

biomass absorbs nitrogen from the atmosphere in the form of NOx. The optimal pond depth 

is 15 to 50 cm [46, 52] in order to allow easy exposure of all the cells to sunlight, especially 

at the end of the exponential growth phase. On the other hand, open pond systems have some 

limitations because they require a strict environmental control to avoid the risk of pollution, 

water evaporation, contaminants, invading bacteria and the risk of growth of other algae 

species. In addition, temperature differences due to seasonal change cannot be controlled and 

CO2 concentration and excess exposure to sunlight are difficult to manage. Moreover, near 

the end of the exponential growth phase, some cells are not sufficiently exposed to sunlight 

because other cells floating near the surface cover them, leading to lower mass yields. 

Therefore, stirring of the medium is preferable and currently practiced. 

 
1.6.1.2 Closed photo-bioreactor 
 

This technology was implemented mainly to overcome some limiting factors in the 

open pond systems, thus, growing the biomass in a managed environment (pH, light 

intensity, temperature, carbon dioxide concentration) to obtain higher cell concentration as 

well as products that are more suitable for the production of pure pharmaceuticals, 

nutraceuticals and cosmetics. In addition, these systems are more appropriate for sensitive 

strains that cannot compete and grow in harsh environment. Feeding the biomass with CO2 

comes by bubbling the tubes. Fluorescent lights are used in case the tubes are not or not 

sufficiently exposed to sunlight. The tubes, are generally 20 cm or less in diameter [32] and 



"#$%&'(!)*!+&$&'!,-!&#'!$(&!,.!/01(,$23$'*!41,%'4!$.5!1#$22'.3'4!

 
 

 

 

+678!9:);! )A!

the thickness of their transparent walls is few millimetres allowing appropriate light 

absorption. Hence, multiple designs have been used and tested: flat-plate photo-bioreactor 

[53, 54], tubular photo-bioreactor [55] and column photo-bioreactor [56]. Degen et al. [57] 

achieved 0.11 g.L-1.h-1 dry biomass productivity after growing the cells of C. vulgaris in a 

flat panel airlift photobioreactor under continuous illumination (980 mE m-2.s-1). 

Nonetheless, the main disadvantages of closed system are the cost of the sophisticated 

construction, small illumination area and sterilizing costs [58].  

 

1.6.2 Heterotrophic growth 
 

This technique does not require light and the biomass is fed with organic carbon 

source. Thus, microalgae are grown in a stirred tank bioreactor or fermenter where higher 

degree of growth are expected as well as low harvesting cost due to the higher dry biomass 

productivity achieved (up to 0.25 g.L-1.d-1) and high accumulation of different components 

such as lipids 22-54 mg.L-1.d-1 [42, 59, 60]. The carbon sources used for C. vulgaris are 

glucose, acetate, glycerol and glutamate with maximum specific growth rate obtained with 

glucose. Nevertheless, the major disadvantage of this system is the price and availability of 

sugars, which compete with feedstocks for other uses such as food and biofuel productions. 

 

1.6.3 Mixotrophic growth 

 
C. vulgaris is capable of combining both autotrophic and heterotrophic techniques 

by performing photosynthesis as well as ingesting organic materials such as glucose, which 

is the most appropriate for C. vulgaris [59-63]. Hence, the cells are not strictly dependent on 

light or organic substrate to grow. This technique competes favourably with autotrophic 

systems and according to Yeh and Chang [63] mixotrophic conditions showed high dry 

biomass productivity (2-5 g.L-1.d-1) and lipids productivity (67–144 mg.L-1.d-1). The main 

advantages of mixotrophic metabolism are limiting the impact of biomass loss during dark 

respiration and reducing the amount of organic substrates used for growing the biomass. 

 
1.6.4 Other growth techniques 
 

Growth of C. vulgaris can take an additional growth dimension by co-immobilizing 

it with plant growing bacterium Azospirillum brasilense in alginate beads [64, 65]. This 
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technique has been extrapolated to C. vulgaris and other microalgae from the hypothesis that 

A. brasilense promotes terrestrial plant growth performance by interfering with the host plant 

hormonal metabolism and provides O2 for the bacteria to biodegrade pollutants and then the 

microalga consumes CO2 released form bacterial respiration [66]. Consequently, depending 

on the strain of C. vulgaris [67] this technique has an impact on prolonging its life span, 

enhancing biomass production, cell size (62% larger), pigments and lipids accumulation. 

Simultaneously, uptake of zinc, cadmium, phosphorus, nitrogen and other heavy metals from 

wastewater increases. On the other hand, growing C. vulgaris with its associative bacterium 

Phyllobacterium myrsinacearum also has a different impact by ceasing its growth or cell 

death [68]. Furthermore, mixing and shear stress has an effect on increasing the 

photosynthetic activity and growth of C. vulgaris. Thus, optimal conditions (tip speed of 126 

cm.s-1 and friction velocity 2.06 cm.s-1) increased the photosynthetic activity by 4-5% with 

48-71% stronger growth compared to null tip speed or friction velocity. Nevertheless, higher 

tip speed and friction velocity decreased both photosynthetic activity and growth to the value 

of the unstirred condition and even lower [69]. 

 

1.7 Harvesting 

 
1.7.1 Centrifugation 

 
This process contributes to 20-30% of the total biomass production cost [55]. The 

most common harvesting technique for C. vulgaris is centrifugation (5000 rpm, 15 min) [30, 

70] because it is highly efficient (95% recovery), not time consuming, and treats large 

volumes. In addition, the morphology of C. vulgaris permits high centrifugal stress without 

damaging its structure during the process. Other techniques are also applied such as 

flocculation, flotation, and filtration or by combining two techniques to maximize recovery 

of the biomass. 

 
1.7.2 Flocculation 
 

During the exponential growth phase, the algal cells have high negative surface 

charge and are difficult to neutralize, and thus the cells remain dispersed. After reaching the 

stationary or the declining phase, the negative charge decreases allowing the cells to 

aggregate and to form lumps resulting in a process called auto-flocculation. This 
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phenomenon is associated with elevated pH due to CO2, nitrate and phosphate assimilation 

[71]. Moreover, auto-flocculation can occur by interactions between algae and bacteria or 

excreted organic molecules or by simply cutting CO2 supply; this method is less expensive 

but time-consuming. In general, culture of microalgae is very stable and auto-flocculation 

probability is negligible and sometimes misleading. In order to accelerate coagulation, it is 

necessary to increase the pH by adding a base. The most effective is sodium hydroxide, 

which induces more than 90% flocculation at pH 11 and requires less quantity (9 mg of 

NaOH per g of dry biomass) [71, 72]. But on an industrial scale, lime seems to be the most 

cost-efficient. This mechanism is associated to Mg2+ from hydrolysed Mg(OH)2, which 

precipitates attracting with it the negatively charged microalgal cells. Chitosan is also an 

interesting flocculating agent [73], which showed maximum efficiency at pH 7 with 90% 

microalgal recovery. Further on, using bioflocculants like Paenibacillus sp. with the 

presence of a co-flocculant (CaCl2) also showed an efficient flocculation (83%) at pH 11 

[74]. Flocculation is sometimes considered as a pre-harvesting step in order to facilitate or 

complement other harvesting methods like centrifugation or filtration [75, 76]. 

 
1.7.3 Flotation 

 

To our knowledge, there is very limited evidence of its feasibility, but this method 

consists of trapping the cells using a dispersed micro-air bubbles. Flotation can also occur 

naturally when the lipid content in microalgae increases. Cheng et al. [77] induced effective 

flotation on C. vulgaris by using dispersed ozone gas (0.05 mg.g-1 biomass). Thus, unlike 

flocculation, this method does not require synthetic chemicals, but its economic viability is 

not yet known, especially on an industrial scale. 

 
1.7.4 Filtration    

 

This method involves continuous passing of the broth with the microalga across a 

filter on which algal cells will concentrate constantly until it reaches a certain thickness. Due 

to the small size of C. vulgaris, conventional filtration is not an adequate method to be 

applied. Instead, ultrafiltration or microfiltration are more efficient. Fouling generated by 

soluble compounds like exopolysaccharides of some microalgae such as Porphyridium is one 

of the major limitations during ultrafiltration process, but with Chlorella this phenomenon is 
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negligible, and thus its structure provides more important permeation flux without the need 

of an additional unit operation like swirling while filtering [78, 79]. Moreover, 

microfiltration and ultrafiltration are affected by different parameters such as filter type, 

transmembrane pressure, flow velocity, turbulent cross-flow and growth phase, and therefore 

a compromise that takes into consideration these parameters should be made. Furthermore, 

they can be accompanied by another harvesting technique (flotation or flocculation) that 

improves the process [75, 76, 80]. 

 

1.8 Primary composition 

 
1.8.1 Proteins  
 

Proteins are of central importance in the chemistry of microalgae. They are involved 

in capital roles such as growth, repair, and maintenance of the cell as well as serving as 

cellular motors, chemical messengers, regulators of cellular activities and defence against 

foreign invaders [44].  

 

Total proteins content in mature C. vulgaris represents 42-58% of biomass dry weight 

[81-85], and varies according to growth conditions. Proteins have multiple roles, and almost 

20% of total proteins are bound to the cell wall, more than 50% are internal and 30% migrate 

in and out of the cell [86]. Their molecular weight revealed by SDS-PAGE is comprised 

between 12 to 120 kDa, with the majority between 39-75 kDa after growing C. vulgaris 

under autotrophic or heterotrophic conditions. Nevertheless a higher intensity peak is 

observed for cells grown in autotrophic conditions [82, 87]. 

 

Protein nutritional quality is determined according to its amino acid profile [81, 88], 

and like the majority of microalgae, the amino acid profile of C. vulgaris compares 

favourably and even better to the standard profile for human nutrition proposed by WHO 

(World Health Organisation) and FAO (Food and Agricultural Organisation), because the 

cells of C. vulgaris can synthesise essential and non-essential amino acids (Table 1). 
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Amino acids C. vulgaris
b
 

C. 

vulgaris
a
 

C. 

vulgaris
c
 

Recommendation 

from 

FAO/WHO b 

Eggsb Soyab 

Aspartic acid 9.30 10.94  9.80 N/A 11.00 1.30 

Threonine 5.30 6.09   5.15 4.00 5.00 4.00 

Serine 5.80 7.77  4.32 N/A 6.90 5.80 

Glutamic acid 13.70 9.08  12.66 N/A 12.60 19.00 

Glycine 6.30 8.60  6.07 N/A 4.20 4.50 

Alanine 9.40 10.90  8.33 N/A n.d 5.00 

Cysteine n.d 0.19  1.28 3.50 2.30 1.90 

Valine 7.00 3.09  6.61 5.00 7.20 5.30 

Methionine 1.30 0.65  1.24 N/A 3.20 1.30 

Isoleucine 3.20 0.09  4.44 4.00 6.60 5.30 

Leucine 9.5 7.49  9.38 7.00 7.00 7.70 

Tyrosine 2.80 8.44  3.14 6.00 4.20 3.20 

Phenylalanine 5.50 5.81  5.51 N/A 5.80 5.00 

Histidine 2.00 1.25  1.97 N/A 2.40 2.60 

Lysine 6.40 6.83  6.68 5.50 5.30 6.40 

Arginine 6.90 7.38  6.22 N/A 6.20 7.40 

Tryptophan n.d 2.21  2.30 1.00 1.70 1.40 

Ornithine n.d 0.13  n.d N/A n.d n.d 

Proline 5.00 2.97  4.90 N/A 4.20 5.30 

 Table 1: Amino acid profile of Chlorella vulgaris compared to other resources. 

  n.d: not detected 

  N/A: not available 

   a[83] 

   b[89, 90]  

     c [91] 

Protein extraction process is technically the same for all microalgae and is mainly 

conducted by solubilisation of proteins in alkaline solution (pH 10-12) with NaOH [83, 92, 

93]. Further purification can follow by precipitating the solubilised proteins with 

trichloroacetic acid (25% TCA) [94, 95] or hydrochloric acid (0.1 N HCl) [96]. 

Quantification is carried out by elemental analysis, Kjeldahl, Lowry assay, Bradford assay or 

dye binding method. However, the first two analyses take into consideration total nitrogen 

present in the microalga, and multiplying it by the standard nitrogen to protein conversion 

factor (NTP) 6.25 may lead to overestimation or underestimation of the true protein quantity. 

Therefore, many studies calculated from an amino acid profile and recommended a new NTP 

lower then the standard 6.25 [97-101]. Nevertheless, a study conducted by Safi et al. [83] 

correlated the evaluation of the NTP to the rigidity of the cell wall by evaluating the NTP of 

five crude microalgae including C. vulgaris and their protein extract, and concluded that no 
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universal conversion factor could be recommended for multiple reasons such as cell wall 

rigidity, growth conditions, growth media and environmental uncertainty. Gonzalez-Lopez et 

al.  [98] determined the NTP using a different technique that correlates protein content 

(Lowry assay) to total nitrogen content (Kjeldahl and elemental analysis) and also estimated 

that Kjeldahl method correlates better with Lowry assay. In addition, Servaites et al. [84] 

quantified proteins of 12 different microalgae including C. vulgaris by staining the protein 

isolate with Coomassie brilliant blue R-250 (CBB) on a paper and then eluting the remaining 

stained proteins in 1% sodium dodecyl sulphate (SDS) followed by measuring the 

absorbance at 600 nm. This method gave almost similar results compared to Dumas method. 

On the other hand, the colorimetric method of Lowry [102] was also considered as one of the 

most accurate methods to quantify proteins [103], but with time this method showed to only 

quantify hydro-soluble proteins [83, 88, 102-106], which represents the major part of 

teins. Lowry assay is more acceptable then Bradford assay because the latter does not react 

with all amino acids present in the extract and thus giving lower protein concentrations [94].  

 
1.8.2 Lipids  
 

Lipids are heterogeneous group of compounds that are defined, not by their 

structure, but rather by the fact that they are soluble in non-polar solvents and relatively 

insoluble in water [92]. During optimal growth conditions C. vulgaris can reach 5-40% lipids 

per dry weight of biomass [81], and are mainly composed of glycolipids, waxes, 

hydrocarbons, phospholipids, and small amounts of free fatty acids [15, 17]. These 

components are synthesised by the chloroplast and also located on the cell wall and on 

membranes of organelles (chloroplast and mitochondrion membranes). Nevertheless, during 

unfavourable growth conditions, lipids content (mainly composed of triacyglycerols) can 

reach 58% [8, 81, 107]. Unlike other lipids, triacylglycerols do not perform structural role 

but instead they accumulate as dense storage lipid droplets in the cytoplasm and in the inter-

thylakoid space of the chloroplast [17].  

 

Liu et al. [51] optimised a method that detects the accumulation of lipid droplets in 

C. vulgaris after each growth phase, by staining the cells with Nile red dye and then 

observing the accumulation of lipids with fluorescence microscope by emitting blue light 

that reveals lipid droplets, especially neutral lipids. This technique showed a correlation 
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between the quantity of neutral lipids accumulated and fluorescence intensity. However, 

according to Chen et al. [108] without cell disruption, this method could be ineffective due to 

the presence of a thick cell wall of some microalgae that can prevent complete access of the 

reagent inside the cell. Thus, cell disruption is a necessity to prevent wrong measurements 

and quantification. 

 

The extraction process of total lipids from C. vulgaris is generally conducted by the 

method of Bligh and Dyer using a mixture of chloroform and methanol, or by hexane, or 

petroleum ether [31, 49, 51, 58, 109-111]. Quantification of total lipids is conducted 

gravimetrically after evaporating the extracting solvent, in addition column chromatography 

is applied in order to separate different lipid constituents followed by evaporating the solvent 

and then weighing the remaining lipid extract [112]. Indeed, these solvents are not be used 

on an industrial scale because they are harmful for the environment, toxic, highly flammable, 

and they can contaminate the extract [110]. Supercritical carbon dioxide (SC-CO2) extraction 

has been identified as an alternative for a greener extraction since it gives pure extracts free 

of contamination. Moreover, in order to increase the yield of extraction, a co-solvent to SC-

CO2 such as ethanol can be used or a preliminary cell disruption technique can be performed 

[113]. 

 

The fatty acid profile changes according to each growth condition and is suitable for 

different applications. For instance, according to Yeh and Chang [63], the fatty acid profile 

of C. vulgaris grown under mixotrophic growth conditions can accumulate 60-68% saturated 

and monounsaturated fatty acids composed of palmitic acid C16:0, stearic acid C18:0 fatty 

acids, palmitoleic acid C16:1 and oleic acid C18:1 [31]. Such profile is more suitable for 

biodiesel production [114]. On the contrary, if it is grown under favourable growth 

conditions, its fatty acid profile is unsuitable for biodiesel [107] but more suitable for 

nutritional uses because it is more concentrated in polyunsaturated fatty acids such as linoleic 

acid C18:2, linolenic acid C18:3, and eicosapentaenoic acid C20:5 [108]. 
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1.8.3 Carbohydrates  

 
Carbohydrates represent a group of reducing sugars and polysaccharides such as 

starch and cellulose. Starch is the most abundant polysaccharide in C. vulgaris. It is generally 

located in the chloroplast and is composed of amylose and amylopectin, and together with 

sugars they serve as energy storage for the cells. Cellulose is a structural polysaccharide with 

high resistance, which is located on the cell wall of C. vulgaris as a protective fibrous barrier. 

In addition, one of the most important polysaccharides present in C. vulgaris is the 

β1!3 glucan [115], which has multiple health and nutritional benefits. 

 

Total carbohydrates are generally quantified by the sulphuric-phenol method [116, 

117], yielding simple sugars after hydrolysis at 110°C, then quantification of the latter by 

HPLC (especially HPIC). Starch quantification is much better using the enzymatic method 

compared to the acidic method [118, 119]. During nitrogen limitation, total carbohydrates 

can reach 12-55% dry weight.[120, 121]. Moreover, Chlorella vulgaris has a remarkably 

robust cell wall [122] , mainly composed of a chitosan like layer,  cellulose, hemicellulose, 

proteins, lipids and minerals [123-125].  

The sugar composition (Table 2) of the cell wall is a mixture of rhamnose, galactose, 

glucose, xylose, arabinose and mannose [126-130], rhamnose being the dominant sugar [128, 

131, 132]. 

 

Neutral sugars Percentage 

Rhamnose 45-54 

Arabinose 2-9 

Xylose 7-19 

Mannose 2-7 

Galactose 14-26 

Glucose 1-4 
                Table 2: Simple sugars composition of the cell wall [131]. 

  

1.8.4 Pigments  
 

The most abundant pigment in C. vulgaris is chlorophyll, which can reach 1-2% dry 

weight and is situated in the thylakoids. C. vulgaris also contains important amounts of 

carotenoids (Table 3) that act as accessory pigments by catching light; β-carotene for 
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instance is associated to the lipid droplets in the chloroplast, and primary carotenoids are 

associated with chlorophyll in thylakoids where they trap light energy and transfer it into the 

photosystem. However, as in terrestrial plants, some pigments act as photo-protectors by 

protecting chlorophyll molecules from degradation and bleaching during strong exposure to 

radiation and oxygen [44].  

 

Pigments µg.g-1 (dw) References 

β-carotene 
7-12000 

[20, 65, 70, 133, 134] 
 

Astaxanthin 550000  [134-136] 

Cantaxanthin 362000 [133-135, 137] 

Lutein 

52-3830 

[20, 65] 

[67, 70] 
[133] 
[134] 

Chlorophyll-a 

250-9630 

[65] 

[20, 67] 

[68, 133] 

Chlorophyll-b 

72-5770 

[65] 

[20, 67] 

[70, 133] 

Pheophytin-a 2310-5640 [70] 

Pheophytin-b N/A [70] 

Violoxanthin 
10-37 

[65] 

[67] 

Table 3: Potential pigments content in C. vulgaris under different growth conditions. 

    N/A: not available 

 

These pigments have multiple therapeutic properties, such as antioxidant activities 

[138], protective effect against retina degeneration [139, 140], regulating blood cholesterol, 

prevention from chronic diseases (cardiovascular and colon cancer) and fortifying the 

immune system  [141, 142]. Pheophytins are biochemically similar to chlorophyll but 

lacking Mg++ ion, they can form after chlorophyll degradation during growth of microalgal 

cells or during harsh extraction conditions. In addition, these pigments are lipophilic and 

their extraction is generally associated to lipid extraction. 

 

Many studies worked on optimizing the extraction process of pigments using 

solvents (dimethyl formamide, dichloromethane, acetone, hexane, ethanol), soxhlet, 

ultrasound-assisted extraction [70, 143-146], and pressurised liquid extraction (PLE) that 
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showed useful simultaneous extraction of carotenoids and chlorophyll, and also minimised 

the formation of pheophytins [70, 133] at high temperature (>110°C). Moreover, SC-CO2 

extraction was also carried out to enhance carotenoids recoveries, and the best conditions 

were 35 MPa and 40-55°C on crushed cells, and under these conditions the extract was 

golden and limpid unlike solvents extraction, thus by using SC-CO2, higher selectivity can be 

achieved [133, 144]. This hypothesis is confirmed by Kitada et al. [20], using different 

optimum conditions (50 MPa and 80 °C) because the study was conducted on whole cells, 

thus stronger conditions were required. In addition, co-solvent such as 5% ethanol has been 

added as a booster to increase the extraction yield. Analyses and quantification of pigments 

are conducted by high performance liquid chromatography (HPLC) and spectrophotometry 

using specific equations [137] or by plotting the calibration curve for each pigment. 

 
1.8.5 Minerals and Vitamins 

 

Minerals are determined after incinerating the biomass and then analysis by atomic 

absorption spectrophotometry (Table 4). They play important functional roles in humans 

[44]. For instance, potassium cation is principal for human nutrition; it is associated with 

intracellular fluid balance, carbohydrate metabolism, protein synthesis and nerve impulses. 

In addition, it is used as chemical fertilizer in agriculture in the form of chloride (KCl), 

sulphate (K2SO4) or nitrate (KNO3). Magnesium is important in maintaining normal and 

constant nervous activity and muscle contraction; hence magnesium deficiency in human 

organism can lead to depression and symptoms of suicidal behaviour. Zinc is an essential 

component of enzymes, which participate in many metabolic processes including synthesis 

of carbohydrates, lipids, proteins and it is also a cofactor of the superoxide dismutase 

enzyme, which is involved in the protection against oxidative processes and reducing the 

severity of strong diarrhea. 
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                                  Mineral content (g.100g-1) 

Minerals Maruyama et al. [91] Tokusoglu and Unal [147] Panahi et al. [148] 

Microelements    

Na N/A 1.35 N/A 

K 1.13 0.05 2.15 

Ca 0.16 0.59 0.27 

Mg 0.36 0.34 0.44 

P N/A 1.76 0.96 

Macroelements    

Cr N/A tr tr 

Cu N/A tr 0.19 

Zn N/A tr 0.55 

Mn N/A tr 0.40 

Se N/A tr N/A 

I N/A N/A 0.13 

Fe 0.20 0.26 0.68 
       Table 4: Minerals profile of C. vulgaris 

        tr: traces 

        N/A: not availbale 

 

Vitamins are classified as water-soluble (C, B) and fat-soluble (A, D, E, K). C. 

vulgaris has an important vitamin profile (Table 5) that are key elements for cell growth and 

differentiation in human body (Vitamin A), and have antioxidant activity that acts as radical 

scavenger together with improving blood circulation and controlling muscle functions 

(vitamin E and C) [149]. Vitamin B complex occupies the largest number in living organisms 

and is major actor for enzymes activity in metabolism [150], promotes red blood cells 

growth, reduce the risk of pancreatic cancer, and maintain healthy skin, hair and muscles. 

Vitamins profile is sensitive to growth conditions, thus the best concentration was achieved 

after 24h autotrophic growth with 10% CO2, but during heterotrophic conditions vitamins 

content was higher than autotrophic due to the presence of glucose in the medium and used 

as carbon source to produce organic compounds [87]. Another possible explanation for the 

high content of vitamins may be the alterations in the ultrastructure of the photosynthetic 

apparatus which were found to be associated with changes in cellular components [151].  
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 Content (mg.100g-1) 

Vitamins Maruyama et al. [91] Yeh et al. [114] Panahi et al. [148]  

B1 (Thiamine) 2.4 N/A 1.5 

B2 (Riboflavin) 6.0 N/A 4.8 

B3 (Niacin) N/A N/A 23.8 

B5 (Pantothenic acid) N/A N/A 1.3 

B6 (Pyridoxine) 1.0 N/A 1.7 

B7 (Biotin) N/A N/A 191.6 

B9 (Folic acid) N/A N/A 26.9 

B12 (Cobalamin) Tr N/A 125.9 

C (Ascorbic acid) 100.0 39.0 15.6 

E (Tocopherol) 20.0 2787.0 N/A 

A (Retinol) N/A 13.2 N/A 

      Table 5: Vitamins profile of C. vulgaris 

        N/A: not available 

 

 

1.9. Cell disruption techniques 
 

Chlorella vulgaris has a resistant cell wall, which is a major barrier for digestibility 

and extraction process of all internal components. Breaking the cell wall is an important 

challenge and a costly unit operation. Multiple techniques have been carried out on C. 

vulgaris (Table 6). Cooling the system during mechanical cell breaking is always required 

because the high-energy input overheats the broken microalga and jeopardise the integrity of 

target components by damaging or oxidising them. The enzymatic treatment is a promising 

technique that requires a deep understanding of the ultrastructure and composition of the cell 

wall in order to select the appropriate enzyme and to reduce the enzyme concentration 

required to hydrolyse the cell wall. According to Lee et al. [109] and Zheng et al. [31] the 

best cell disruption techniques with 30% dry weight lipid recovery of C. vulgaris grown 

under autotrophic conditions were autoclaving, microwave, enzymatic and grinding with 

liquid nitrogen. 

The success of cell disruption techniques is generally assessed by conducting 

microscopic observations or by comparing the extracted yield of a component before and 

after applying the cell disruption. 
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Cell disruption  Time Experimental set-up References 

Acid treatment 25 min Hot Ac2O + H2SO4 (9:1, v:v) [70] 

Alkaline treatment 60 min 2 N NaOH [83] 

Autoclaving 5 min 125°C + 1.5 MPa [109] 

Bead milling 20 min Beads: 0.4 - 0.6 mm 
[31] 

Rotational speed 1500 rpm 
5 min Beads: 0.1 mm,  

[109] 
Rotational speed 2800 rpm 

2 min Beads: 1 mm [59] 

Electroporation       N/A Electric field: 3 kV/cm 
[73] 

Electrode 2 cm 

Enzymatic lysis 60 min Snailase (5 mg. L-1), 37°C 
[31] 

10 h Cellulase or Lysozyme (5 mg.L-1), 55°C 
N/A 4% Cellulase+1% others (w/v) 

 [152] 
25 mM Sodium Phosphate buffer 

pH 7.0 

0.5 M Mannitol 
10 h 4% Cellulase + 1% Macerozyme R10 + 1% 

Pectinase (w/v) 

[93] pH 6.0 

25 mM Phosphate buffer 

0.6 M Sorbitol/Mannitol (1:1) 
24 h Cellulase 0.5 mg.L 

[153] 
   0.5 M Mannitol 

French Press  N/A 138 MPa [154] 
N/A N/A [78] 

Manual grinding  1-10 min With liquid nitrogen or quartz [31] 
N/A With dry ice [155] 

High pressure 

homogenizer 

N/A 
N/A [156] 

Microwaves 5 min 100°C, 2450 MHz  [31, 109] 
5 min 40-50°C, 2450 MHz [110] 

Osmotic shock  48 h 10% NaCl [109] 
60 min 2 N NaOH [83] 

Ultra-sonication 6 min 10 W [84] 

20 min 600 W [31] 

5 min 10 kHz [109] 

15-60 min N/A [50] 

   
            Table 6: Different cell disruption techniques carried out on C. vulgaris 

                N/A: not available 
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1.10 Applications and potential interests 

 
1.10.1 Biofuel 

 
Dependency on energy sources is growing faster especially with the exponential 

increase in demand, which is leading to more dramatic consequences for the environment. 

Third generation biofuel form algae or microalgae is considered as one of the alternatives to 

current biofuel crops such as soybean, corn, rapeseed and lignocellulosic feedstocks because 

it does not compete with food and does not require arable lands to grow [16]. However, 

biofuel from microalgae is promising on the long term because it is now accepted that the 

production cost is still high and cannot yet compete with conventional fuel. But it competes 

favourably with crops by their potential of producing 10-20 times more oil [157] within a 

shorter period of time. As mentioned previously, C. vulgaris has the potential to accumulate 

high amounts of lipids especially while growing it under mixotrophic conditions. Its fatty 

acid profile showed to be suitable for biodiesel production with an oxidative stability after 

transforming it to biodiesel, and has properties [158] that complies with the US Standard 

(ASTM 6751), European Standard (EN 14214), Brazilian National Petroleum Agency (ANP 

255) and Australian Standard for biodiesel [159] and also compared favourably with (ASTM 

and EN) and Indian biodiesel standard [61]. After lipid extraction the remaining residue is 

rich in proteins, carbohydrates and minor amounts of lipids. Thus, Wang et al. [158] applied 

fast pyrolysis on C. vulgaris remnants using an atmospheric-pressure fluidised bed reactor at 

500 °C and obtained bio-oil and biochar representing 94% of energy recovery from the 

remnant, without forgetting the small amount of biogas recovered. However, the quality of 

bio-oil was poor when intended to be catalytically upgraded to fuels due to high nitrogen 

presence (12.8% dry weight). Besides, C. vulgaris has high starch content and algal starch 

proved to be a good source for bioethanol production. Hirano et al. [160] extracted starch 

from C. vulgaris and achieved 65% ethanol-conversion rate after saccharification and 

fermentation with yeast. Hydrothermal liquefaction is another alternative route for biofuel 

production from microalgae. It involves the reaction of biomass in water at high temperature 

with or without the presence of a catalyst to obtain bio-crude [161]. The main advantage of 

this method is that it improved 10-15% the energetic value of C. vulgaris by acting on the 

whole biomass suggesting that oil is also derived from carbohydrates and proteins [162], and 

thus no need to stress the microalgae to increase lipid content. Hence, the best conditions 

applied on C. vulgaris in a batch reactor were 300-350 °C, with 150-200 bar in water or with 
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the presence of an organic acid or heterogeneous catalysts, and the results indicate that bio-

oil formation follows the trend lipids > proteins > carbohydrates [161-163].   

Nowadays, algal biofuel is suffering from several drawbacks jeopardising its 

commercialisation on an industrial scale due to high production cost that is far from being 

competitive with fossil fuel, and also questioning the sustainability of this production. Hence, 

different studies considered life cycle assessment analysis as an effective tool to identify the 

reasons leading to production deficit and exploring its environmental impact [164-171]. 

Therefore, it was agreed that the major costs come from infrastructure, production set-up, 

fertilizers, harvesting, drying the biomass, transportation, water footprints, cell disruption 

and oil extraction process. For instance, Lardon et al. [172] performed an analysis by taking 

into account all the energetic debt for 1 MJ biodiesel production from C. vulgaris. The only 

positive balance obtained was 0.57 MJ for wet oil extraction with low nitrogen for cell 

growth (Table 7), and all the other revealed negative balance. Hence, microalgal biofuel 

production still needs efficient improvement to reduce energy input needed in order to reach 

competitive prices with petroleum in the market, and more important to be an overall 

sustainable production. 

Oil Extraction 

Nitrogen for 

culture Energy Production (MJ) Cumulative Energy Demand (MJ) Yield (MJ) 

Dry Sufficient 2.7 5.29 -2.59 

Wet Sufficient 3.84 3.99 -0.15 

Dry Low 1.57 2.32 -0.75 

Wet Low 2.23 1.66 0.57 
Table 7: Cumulative Energy Demand and energy production associated with the production of 1 MJ of 

biodiesel from C. vulgaris [172]. 

1.10.2 Human nutrition 
 

 C. vulgaris is one of the few microalgae that can be found in the market as a food 

supplement or additive [5, 145], colorant (C. vulgaris after carotenogenesis) and food 

emulsion [119]. These products come in different forms such as capsules, tablets, extracts 

and powder [173, 174]. Nevertheless, despite all the healthy benefits that C. vulgaris and 

other microalgae can provide, and their remarkable richness in proteins, lipids, 

polysaccharides, pigments and vitamins, they are rather considered as nutraceuticals instead 

of food products due to the lack of clear common official legislations in terms of quality and 

requirements regarding microalgae [175, 176]. Moreover, C. vulgaris extract proved to have 
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preservative activity higher than those obtained synthetically, i.e., BHA (butylated 

hydroxyanisole) and BHT (butylated hydroxytoluene) [177]. 

1.10.3 Animal feed 
 

It is estimated that about 30% of microalgal production is sold for animal feed 

purposes [178] due to the increasing demand for food with natural composition instead of 

synthesised ingredients. This has triggered intensive research into finding natural ingredients 

that improve the quality of animal food products [119]. Thus, while stressing C. vulgaris, it 

accumulates important amount of carotenoids and after feeding it to animals such as fish and 

poultry it showed interesting pigmentation potential for fish flesh and egg yolk in poultry, 

together with enhancing health and increasing life expectancy of animals [134, 155, 174, 

178-181]. Moreover, C. vulgaris showed a protective effect against heavy metals and other 

harmful compounds (Lead, Cadmium, Naphtalene) by reducing significantly the oxidative 

stress induced by these harmful compounds, and increasing the antioxidant activity in the 

organisms of tested animals [182-184]. 

1.10.4 Wastewater treatment  

 
Many studies demonstrated the remarkable potential of C. vulgaris in fixating up to 

74% carbon dioxide when grown in a photobioreactor [185], and in absorbing 45-97% 

nitrogen, 28-96% phosphorus and reducing the chemical oxygen demand (COD) 61-86% 

from different type of wastewater such as textile, sewage, municipal, agricultural and 

recalcitrant [186-192]. Microalgae provide a pathway for the removal of vital nutrients 

(nitrogen and phosphorus), carbon dioxide, heavy metals and pathogens present in 

wastewaters and necessary for their growth. In addition, saving and requirements for 

chemical remediation and possible minimisation of fresh water use for biomass production 

are the main drivers for growing microalgae as part of a wastewater treatment process [46]. 

Thus, a faster growth rate accompanied with decreasing or eliminating water-contamination 

level are promising and advantageous process. Furthermore, performance of C. vulgaris in 

synthesised wastewater was improved when co-immobilised in alginate beads with 

microalgae growth-promoting bacteria, and removed 100% of ammonium (NH4
+) during 

four consecutives cycles of 48 h, and 83% for phosphorus after one cycle of 48h [193]. Thus, 

C. vulgaris is considered as one of the best microalga for bioremediation of wastewater with 
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an impressive potential to completely remove ammonium and sometimes-modest potential 

for removal of phosphorus present in the medium [194]. 

1.10.5 Agrochemical applications 
 

Blue-green algal extract excretes a great number of substances that influence plant 

growth and development [195]. These microorganisms have been reported to benefit plants 

by producing growth promoting regulators, vitamins, amino acids, polypeptides, antibacterial 

and antifungal substances that exert phytopathogen biocontrol and polymers, especially 

exopolysaccharides, that improve plant growth and productivity [196].  

 
The bio-fertilization effect using algae extract are recommended for increasing the 

growth parameters of many plants [197, 198]. This is due to the biochemical profile of algae 

extract rich in nitrogenase, nitrate reductase, and minerals, which are essential nutrients for 

plant growth. The effect of the aqueous extract of C. vulgaris as foliar feeding on nutrients 

status, growth, and yield of wheat plant (Triticum aestivum L. var. Giz 69) has been 

investigated [199]. Thus, this study found that a concentration of 50% (v/v) algae extract as 

one time foliar spray (25 days after sowing) increased growth yield and weight gain 140% 

and 40% respectively. Moreover, another study showed the bio-fertilization impact of C. 

vulgaris on growth parameters and physiological response of Lactuca sativa germination 

seeds in culture medium containing microalga grown for 3, 6, 9, 12 and 15 days [200]. As a 

result, the addition of C. vulgaris to the culture medium or soil significantly increased fresh 

and dry weight of seedlings as well as pigments content. The best treatments were 2 and 3g 

dry alga kg-1 soil. All these studies were conducted on the liquid extract of C. vulgaris as bio-

fertilizer for plant growth. Therefore, further studies should be carried out to estimate costs 

on a large scale of the algae cell extract as foliar fertilizer, compared to other commercial 

foliar fertilizers present in the market.  

 
1.11 Algorefinery concept 
 

The concept of biorefinery has been inspired from the petroleum refinery concept. It 

reflects a platform that integrates a process to fractionate the components of a biomass [201, 

202] to produce multiple products, and thus biorefinery takes advantage of the various 

components in the biomass in order to improve the value derived from each component and 

also generating its own power, which maximises profitability and preserve the environment. 
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Hence, C. vulgaris with all its potential and richness in proteins, carbohydrates, lipids, 

pigments, minerals and vitamins described previously deserves to be completely refined (Fig 

4) without forgetting that every operation unit should take into account the next stage and 

preserve the integrity of all components of interest in the downstream process.  

 
Figure 4: Algorefinery concept from production to valorisation 

 

1.12 Conclusion 
 

This review reflects a broader image about potential interest of Chlorella vulgaris, 

and gives an insight about the technological advancements already conducted. Chlorella 

vulgaris can easily be cultured with inexpensive nutrient regime and has faster growth rate as 

compared to terrestrial energy crops and high biomass productivity. However, production-
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processing cost remains too high to compete in the market. Indeed, this is the major problem 

facing the microalgal industry nowadays, but it should be recognised that a lot of 

improvements have been achieved during the last decade and expectations are estimating that 

the nearest future of microalgal industry will be strongly competitive on different levels in 

the market. The remarkable values of Chlorella vulgaris sets the groundwork to additional 

research for futuristic applications where it will be represented as a strong candidate for 

tomorrow's bio-industry. 
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1.13 Considerations on the algorefinery 

 
The concept of biorefinery has been inspired from the petroleum refinery concept. It 

reflects a platform that integrates a process to fractionate the components of a biomass to 

produce multiple products, and thus biorefinery takes advantage of the various components 

in the biomass in order to improve the value derived from each component and also 

generating its own power, which maximises profitability and preserve the environment. 

 

The concept requires a sequence of unit operations starting from pre-treating the 

biomass by a chemical depolymerisation of the microalgal cell wall polysaccharides or by a 

mechanical disruption of the cell wall integrity. This allows an easier intracellular access of 

the extraction solvent, and contributes in enhancing the recovery yield of the dedicated 

biomolecules.  

 

On the one side, depolymerisation via hydrolysis of glycosidic bonds is ubiquitous 

in both nature and industry. However, to become a viable process for microalgae, hydrolysis 

must be carried out both energy-efficient and under mild conditions to preserve the chemical 

integrity of all the constituents or at least their functional properties in order to ensure 

broader commercial possibilities. 

 

On the other side, and because of the reasons exposed above, nowadays the most 

efficient methods are bead milling and high-pressure homogenization. Mechanical methods 

are often preferred due to the short residence time and lower operating costs. Nevertheless, 

these mechanical methods generate friction that overheats the medium, which should be 

constantly cooled all along the process to avoid denaturation of proteins or thermal 

degradation of lipids.  

 

All these biomolecules can generate important profit (Table 1) compared to 

biodiesel. Proteins can be sold at about 0.75 €/kg for feed protein, and at 5 €/kg for food 

proteins. Carbohydrates are sold in the market at about 1 €/kg, and if antiviral properties are 

identified, the price can be extremely high. Lipids for biofuels generate the lowest profit 

(about 0.5 €/kg), which is an additional reason for not simply focusing on producing biofuels 

from microalgae. But instead, it will be more profitable if these biomolecules are valorised 
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for their fatty acids (especially the unsaturated ones, sold at more than 2 €/kg). Finally, the 

pigments are also a valuable resource and their price can largely fluctuate depending on the 

purity of the sample and the target market (cosmetics or fish food for instance).  

 

Primary 

compounds 

Approximate 

content (%) 

Unitary price of 

compound (€/ton) 

Value for  

a biofuel case  

(€/ton microalgae) 

Value for  

a multimarket case 

(€/ton microalgae) 

Lipids 50 
300 for biofuel without 

State aid 
2000 for chemicals 

150 1000 

(Food) proteins 20 5000 0 1000 
Carbohydrates 30 1000 0 300 

Pigments  

(e.g. astaxanthin) 
1 5 000 000 0 50 000 

Total 150 52 300 

        Table 1: Approximate value generated for biofuel compared to the profit for multimarket in the ideal case 

 

 The process that we will study is a “primary algorefinery” that will deal with the 

primary components of microalgae (lipids, proteins, carbohydrates and pigments). A 

sequence of unit operations will be implemented in order to obtain separated enriched 

fractions of the biomolecules described previously. By “enriched fraction” we understand the 

degree of purity equivalent to the “technical grade” of commercial chemical compounds. 

 

 Once that the scope of our work has been defined, we are now going to present the 

different challenges relative to the possible options from which an algorefinery could be 

carried out. 

 

Option 1: with humid biomass (Fig 1) 

This process starts with breaking the cell wall in an aqueous medium containing 

between 2 and 25% of dry matter depending on the cell disruption method applied. After 

separation of the solid (e.g. filtration or centrifugation), it would be obtained an emulsified 

mixture mainly composed of: 

• Reserve lipids (triglycerides) 

• Hydro-soluble proteins 

• Polysaccharides 

• Pigments 
whereas the solid would be mainly composed of structural biomolecules (polysaccharides, 

phospholipids and proteins) as well as reserve polysaccharides (insolubilized starch). Each 
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fraction should undergo additional unit operations to properly fractionate their composition 

into enriched fractions.  

!

Figure 1: Process scheme for the first possible option, which starts from humid biomass 

 

 

Option 2: with dry biomass (Fig 2) 

 After reducing the water content below 2%, an extraction with an organic solvent 

could be performed to recover in the liquid phase two types of lipids (reserve and structural) 

as well as liposoluble pigments. The solid fraction would be composed of defatted cells 

requiring further disruption to liberate the intracellular hydrophilic components. Contrarily to 

option 1 the liquid fraction after cell wall lysis would not be emulsionated. The downstream 

process would be therefore easier to implement. 
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!

Figure 2: Process scheme for the second possible option, which starts from dry biomass 

 

Globally we recognize that both options are feasible and possess distinctive 

advantages. The first process is more economic in terms of energy input (no drying), but the 

compositions of the solid and the emulsionated liquid are more complex and less selective, 

since they both contain hydrophilic and hydrophobic components. This is not the case for the 

second process in which the organic phase gathers both types of lipids (structural and 

reserve) in a single fraction, leaving all the hydrophilic biomolecules in the pellet. For these 

reasons, we decided to adopt option 2 as the model process for the rest of the study. 

However, a major limitation for this process is the use of an organic solvent. This drawback 

could be solved if we use a green solvent such as supercritical carbon dioxide. 

!  
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1.14 Chapter conclusion 
 
All along this chapter we could demonstrate or set the following points: 

• Microalgae are a complex family with a wide biochemical and physiological 
variety.  

• Chlorella vulgaris is a species that has been largely exploited for biodiesel or for its 
nutritive value. 

• This microalga has a rigid cell wall and will require a cell disruption to liberate its 
inner richness. 

• Chlorella vulgaris is a reservoir of highly added value biomolecules; it is necessary 
to recover them in an “integrated process” in order to insure the economical 
sustainability for industrial production. 

• Process 2, which implies a first defatting step to separate all the lipophilic 
molecules, was selected because a priori it will be easier to separate the different 
hydrophilic components in the downstream process. 

• In order to improve the compliance of this process with the twelve principles of 
green chemistry, supercritical carbon dioxide was chosen as solvent for the 
extraction of lipids. 

 
To summarize, our model process is the following (Fig 1):  

 
Figure 1: Process reflecting the main unit operation (in yellow) on which our work will be focused 

 

 



"#$%&'(!)*!+&$&'!,-!&#'!$(&!,.!/01(,$23$'*!41,%'4!$.5!1#$22'.3'4!

 
 

 

 

+678!9:);! <;!

In this figure we have highlighted (in yellow) the topics that could be studied within the 36 

months of this thesis work. Therefore, it will be impossible to discuss and conclude on the 

economic and environmental sustainability of the whole process. The results generated will 

be however useful in the construction of an algorefinery scheme with the help of other 

researchers. The global task will take many years to be accomplished. 

 

*   *   * 

 

Before passing to the next chapter, it is necessary to point out that:  

• The biomass was produced by the industry (Algosource Technology-ANR partner), 

which means we do not control the production process. For the same reason, we did 

not have the chance to work on stressed microalgae.   

• The biomass was directly freezed prior to harvesting, and then sent to our 

laboratory. Therefore, we worked with the available pre-treated biomass. 

• During the downstream process, the biomass was freeze-dried and then rehydrated 

with respect to the unit operations chain of the process selected. In other cases, the 

biomass was thawed and used directly afterwards. 

!  
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Chapter 2: Recovery of the lipophilic 

fraction 
 

 

2.1 Introduction 
 

It has been mentioned previously that our biomass was not stressed and therefore 

grown under normal growth conditions. This implies that the microalga did not accumulate 

important amounts of reserve lipids (triglycerides). Hence, the major part of the available 

lipids in our microalga are polar (phospholipids), and are mainly structural lipids located on 

the cell wall and the intracellular membranes (chloroplast, mitochondria, thylakoids). The 

extraction of these components outside the rigid cell wall of Chlorella vulgaris would require 

a specific treatment in order to facilitate their extraction and increase the recovery yield. 

 

It is generally agreed that one of the unit operations that adds almost 30% additional 

cost input on the total production cost is the extraction unit operation of that includes the step 

of cell disruption [1]. Thus, the chapter is composed of one publication accepted in Journal 

of Applied Phycology, and which inspects whether it is possible to bypass the cell disruption 

unit operation before conducing supercritical CO2 extraction of the lipophilic fraction. 

Therefore, it analyses different aspect of extraction before and after complete disruption by 

bead milling or with and without the presence of an entrainer.  
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Abstract 

The influence of bead milling on the extraction of lipids and pigments by supercritical 

carbon dioxide was investigated in this study. Different operating parameters for the 3 h 

process were first tested on raw Chlorella vulgaris; 600 bar was the optimum pressure at 

60°C with a 30 g.min-1 carbon dioxide flow rate. Under these operating conditions, 10% of 

total lipid containing chlorophyll and carotenoids with 1.61 and 1.72 mg/g dry weight of 

microalga respectively has been recovered. Microscopic observation was used to assess cell 

wall breakage through bead milling, which produced positive results in terms of increasing 

the yield of the biomolecules of interest. Thus, under the same operating conditions, the yield 

of total lipid extract, chlorophyll and carotenoids increased significantly. Moreover, the 

addition of a polar co-solvent to the raw microalga had considerable effect on the final 

extract. Overall, the addition of 5% w/w ethanol to raw microalga increased the total extract 

yield by 27%, and bead milling increased the total extract yield by 16%. Chlorophyll and 

carotenoids were also significantly affected by the addition of ethanol, with an 81% and 65% 

increase with the raw microalga, and 61% and 52% increase using bead milling, respectively.  

 

Keywords Lipids, chlorophyll, carotenoids, bead milling, supercritical carbon dioxide and 

co-solvent. 
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2.2.1 Introduction 

 

Microalgae represent considerable feedstock diversity in terms of isolation of 

natural biomolecules of significant commercial interest [2] for the pharmaceutical [3], 

cosmetics [4], animal nutrition and aquaculture [5] and bioenergy [6-9] industries. Thus, they 

reflect a biomass composed of multiple added value components. Over the last decade, many 

different industries have become increasingly interested in natural products that are 

beneficial for human health and environmentally friendly, and, microalgae are potential 

candidates that could contribute to satisfying this growing demand.  

 

Chlorella vulgaris, a green microscopic microalga with a rigid cell wall [10], is an 

important species with an interesting composition that has attracted the attention of scientists 

over the last century. It is rich in chlorophyll and proteins, and if it is grown under specific 

conditions, it can accumulate large amounts of lipids [11-13], and valuable carotenoids such 

as astaxanthin, β-carotene and cantaxanthin [14]. Like all microalgae, there are two types of 

lipids in Chlorella vulgaris, neutral and polar. Phospholipids and glycolipids are polar lipids 

that are present on the cell wall as well as on the membranes of internal organelles such as 

the chloroplasts and the mitochondria. Conversely, neutral lipids such as triacylglycerol are 

in the form of lipid droplets in the chloroplast matrix, and can also be present in the 

cytoplasm if the microalga is grown under nitrogen starvation and other harsh conditions. 

Chlorophyll and primary carotenoids are concentrated in the thylakoids, but some 

carotenoids such as β-carotene exist inside lipid droplets. These biomolecules are of great 

nutritional interest because they are known to have antioxidant activities, can reduce the risk 

of cardiovascular diseases, and have antitumor activities [15] and other health benefits [16].  

Demand from the food industry for additives natural in origin, and with 

characteristics contributing to increased health benefits, is growing every year. In addition, 

legislation has imposed further quality enhancement on products destined for human 

consumption, while systematically restricting the use of conventional methods with 

potentially harmful consequences on human health. Thus, obtaining a product free from 

contaminants and solvents is extremely important to maintain the added value of the final 

product. In this respect, supercritical CO2 extraction is a processing technique that respects 

the requirements imposed by the legislation as well as the environment, and improves the 
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quality of the final product by providing an additional argument for commercializing a 

healthy product without the expected side effects. Hence, several studies have reported 

results of lipid fraction extraction using the supercritical CO2 process, by focusing on 

different aspects and the ultimate parameters that would maximize yield [17].   

The literature covers a range of studies that have used supercritical carbon dioxide, 

in order to determine the best parameters for extracting valuable biomolecules such as lipids 

and pigments from microalgae. Among the latter should be noted two studies that aimed to 

show the beneficial effect of cell crushing before supercritical extraction [8, 14], and 

succeeded in at least doubling the extraction yield. The article of Crampon et al. (2011) 

presents an overview of compounds of interest obtained from supercritical CO2 extraction of 

microalgae. The present study proposes the use of ethanol as co-solvent in supercritical 

extraction, to avoid additional energy input in terms of a supplementary unit operation of cell 

disruption. 

2.2.2 Materials and methods 

 
2.2.2.1 Microalga and materials 
 

Sueoka culture medium was used for growing C. vulgaris (strain SAG 211-19) in 

batch mode in an indoor tubular Air-Lift PhotoBioReactor (PBR, 10 L) at 25°C, inoculated 

from a prior culture in a flat panel Air-Lift PBR (1 L). Culture homogenization was achieved 

by sterile air injection at the bottom of the PBR. The pH and temperature were recorded 

using a pH/temperature probe (Mettler Toledo SG 3253 sensor) monitored using LabVIEW 

acquisition software. The pH was maintained at 7.5 with CO2 bubbling. The microalgae were 

harvested by centrifugation during the exponential growth phase and supplied as frozen paste 

from Alpha Biotech (Asserac, France). The harvested biomass contained 20.0% dry matter; 

total lipids represented 15.2% of dry matter (obtained by Bligh and Dyer method), 

chlorophyll 1.8% of dry matter (UV-Vis spectroscopic analysis) and carotenoids 1.3% of dry 

matter (UV-Vis spectroscopic analysis).  

2.2.2.2 Mechanical cell disruption 

 
Cells were treated in a stirred bead mill (LABSTAR-NETZCH). Disruption was 

conducted using 0.3-0.5 mm Y2O3-stabilized ZrO2 grinding beads. Milling time for both 
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trials was 1-60 min with a 1/13 solid water ratio (w/v). The process was performed in batch 

mode. The initial cell suspension was placed in a pre-dispersion tank, and stirred at 350 rpm 

in order to avoid cell sedimentation and ensure a good homogeneity of the solid 

concentration. During the experiments, the suspension was continuously pumped from the 

tank to the mill inlet using a peristaltic pump at a flow rate of about 30L/h, and sent back 

again into the dispersion tank through a cartridge to keep the beads inside the chamber. 

Stirring speed of the cell suspension and the beads within the grinding chamber was 2500 

rpm. The bead mill contained an integrated cooling system to prevent overheating, and thus 

after 1 h milling the temperature did not exceed 33°C. At the end, the broken cells were 

recovered for further processing. 

2.2.2.3 Freeze-drying  
 

The frozen paste of raw microalga and cells treated by bead milling were introduced 

directly into a Fisher Bioblock Scientific Alpha 2-4 LD Plus device (Illkirch, France). The 

pressure was reduced to 0.010 bar, the temperature further decreased to -80°C and freeze-

drying was conducted under vacuum for 48 h to give a completely dry biomass. After freeze-

drying, the mean diameter of particles, measured using a Mastersizer 2000 granulometer 

(Malvern Instruments Ltd.) was around 250 µm. Freeze-dried aggregates were then slightly 

crushed with a laboratory knife grinder to give a final size of 200 µm. 

2.2.2.4 Supercritical carbon dioxide pilot 
 

The experimental set-up used for supercritical extraction was an SFE100 from 

Separex Chimie fine (France). It was composed of a 25 mL tubular extractor (internal 

diameter 2 cm, height 8 cm) which could be operated up to 1000 bar and 200°C. One 

separator was connected to the extractor outlet, and the pressure in the extractor was adjusted 

by a backpressure regulator. At the beginning of the experiment, the extractor was filled with 

powdered freeze-dried microalgae (6 g) and CO2 introduced at the bottom. The sample was 

left for 20 min at the desired operating temperature and pressure and CO2 then introduced at 

a constant flow-rate. Ethanol can be used as a co-solvent and mixed with CO2 at the extractor 

inlet  and can also be used as a washing co-solvent. In this case, it is mixed with the extract 

(CO2 and solutes) at the extractor outlet. This procedure gives efficient solute recovery in the 

separator, and extraction time was set at 180 min for all samples. The extracts were collected 
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in the separator and then stored in the dark at 4°C to prevent degradation of samples awaiting 

analyses. The extractor and the separator were cleaned after each run. Extraction yield is 

calculated after isolation of lipid extract using: 

Y (%)= 
!!!!"#$%&#!!!!

!!!"#!!"#$%&'(&)!!!!
!!!!"" 

As supercritical CO2 is a non-polar solvent, the extract is assumed to contain only neutral 

lipids and pigments, and in view of the very low amount of pigments, the global yield is thus 

assumed to be the neutral lipid yield. When ethanol is used as co-solvent, the polarity of the 

mixture is increased and therefore polar lipids are presumed to be extracted at the same time, 

in which case, the global yield is assumed to be the total lipid yield.  

!
Figure 2: Description of the supercritical dioxide pilot 

2.2.2.5 Pigments analysis 

 
200 µL of aqueous extract were mixed with 1300 µL acetone and then incubated in the dark 

for 1h at 45°C. The samples were then centrifuged at 10000 g for 10 min at 20°C. The 

organic phase containing the pigments was then recovered and analysed using the following 

equations [18]: 

Total chlorophyll (µg/mL) = 24.1209!!!"# ! !!!!""#!!"# ! !!!"#$!!!" ! !!!""!!!"! 

Total carotenoids (µ2 /mL) = !! !"!!!"" 
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2.2.2.6 Confocal microscopy 
 

Cells were observed using an SP2-AOBS confocal laser-scanning microscope from 

Leica microsystems (Nanterre-France). Fluorochrome calcofluor white that binds to the cell 

wall was added to the samples. With an excitation wavelength of 488 nm, the cell walls 

appear light blue and at 633 nm the internal parts of the cells are red.  

 

2.2.3 Results and discussion 

 
2.2.3.1 Supercritical extraction of raw C. vulgaris 

 
The present study focuses on using supercritical CO2 on C. vulgaris, to assess the 

influence of operating parameters and pre-treatment of the cell by bead milling on the 

recovery of lipids and pigments. Supercritical extraction was carried out on raw cells, and 

cells treated by bead milling, and both were extracted using only CO2 and CO2 with ethanol 

as a co-solvent. To our knowledge, these three aspects have been tested separately on C. 

vulgaris but not in a single study, and the main objective of this work was to analyse whether 

bead milling can be used to break down the cell wall efficiently before submitting C. 

vulgaris to supercritical carbon dioxide extraction.  

Firstly, the operating conditions for supercritical extraction were determined. By 

changing its density, pressure and temperature define the extraction power of supercritical 

carbon dioxide. While an increase of pressure directly improves solvent power by increasing 

CO2 density, the effect of temperature is not equally predictable. Indeed, temperature is 

influencing solvent density as solute vapour pressure. Thus, the solubility of solute in CO2 

may be positively or negatively influenced by a temperature increase, depending on the 

pressure. In the present study, the pressure selected is high (more than 350 bar) and at the 

same time, the operating temperature set at 60°C, is expected to have a positive influence on 

the extraction yield [14]. The extraction kinetics of lipids and pigments (carotenoids and 

chlorophyll) obtained at 600 bar and 60°C, are shown on Figure 2.  
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Figure 2: Influence of pressure on the extraction process of total lipids and pigments. !  Raw microalga (350 

bar, 30 g.min-1 CO2 flow rate, 60°C), " Raw microalga (600 bar, 30 g.min-1 CO2 flow rate, 60°C).  

 

The shape of the curves is typical of supercritical extraction processes, comprising a 

first linear part where extraction is limited by apparent solubility of solute(s) into scCO2 

(constant rate of extraction) and a second part where the rate of extraction is diminishing 

progressively mostly limited by internal mass transfer of the solute out of the cell. 

Considering the slope of the linear part of the curve (very restricted here), it can be assumed 

that the lipids are loosely linked to the structure of the cell.  After 180 min of extraction, the 

recovery yield is 9%w/w, which means that, as expected, total lipids (15.2% w/w) are not 

being recovered. Moreover, without specific pre-treatment of the raw material, it is well 

known that, because of the cell structure [19], a part of the lipids remains inaccessible to the 

solvent. The shape of the curves corresponding to the extraction kinetics of pigments, are 

very similar to those for lipid extraction. As expected from the literature, a part of lipophilic 

carotenoids are extracted, although the yield is quite low (0.17% w/w compared to 1.3% w/w 

obtained using Soxhlet extraction), and a very similar result is obtained for chlorophyll 

(0.18%w/w compared to 1.8% w/w). Although it is well known that the latter compound is 

not soluble in scCO2 its extraction from microalgae has already been reported at high 

pressure [20]. In addition, it can be observed that at 600 bar the extraction yield obtained 

after 180 min increased by 46% compared to that at 350 bar. At the latter pressure, the 

plateau is not reached after 180 min of extraction, which is still in progress. The gradient of 

the linear part is lower, which is consistent with lower lipid solubility at this pressure. The 

significant improvement in the total yield observed at high pressure, may be because of 

modifications of the algal wall due to high-pressure extraction of some structural 

components. The carotenoid yield is slightly improved at 600 bar (8%), and the pressure has 

no significant influence on the chlorophyll extraction yield.  
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2.2.3.2 Pre-treatment by bead milling 

 
 One of the important characteristics of C. vulgaris is the rigidity of its cell wall; it is 

composed of cellulose, hemicellulose, glucosamine, proteins, lipids and ash [21, 22]. Thus, 

breaking this cell wall allows solvent accessibility to the intracellular compartments 

generally leading to an increase in the total extract yield. Microscopic observations revealed 

complete disruption of the cell wall as shown on Figure 3, where it can be seen that the cells 

have completely lost their globular shape after bead milling for 1 h.  

 

!

!

Figure 3: Confocal microscopic observations before bead milling (upper pictures), and after bead milling 

(lower pictures). The pictures on the left with a 488 nm excitation wavelength show the cell walls in light blue. 

The pictures on the right at 633 nm show the internal parts of the cells in red.!

Microalga treated by bead milling have then been extracted using pure scCO2 under 

the same operating conditions as for raw microalga, and the extraction kinetics for lipids and 

pigments are shown on Figure 4. Although final global yields are almost the same (slightly 

higher than 10%), the extraction kinetics is clearly improved by bead milling. At 600 bar, the 

maximum yield is obtained after 90 min although 180 min are necessary for raw material, 

and the same behaviour is observed for pigments. This result confirms the hypothesis 

concerning the efficiency of cell disruption with bead milling, because solutes become easily 

accessible to the solvent and diffusion limitations are alleviated. Pigment recovery is also 
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significantly affected by bead milling, meaning that this unit operation allows the solvent to 

access the phospholipid bilayer of the chloroplast where the pigments are mainly located in 

the thylakoids. Moreover, the global extraction kinetics observed at 350 and 600 bar are, in 

the case of bead milling, very similar, supporting the hypothesis of extraction being limited 

by internal diffusion within the cell. Indeed, when the cells are broken open, the lipids are 

more easily accessible to the solvent, in which case the influence of pressure concerns solute 

solubility only.  Results obtained after bead milling, also confirm conclusions from other 

studies using different cell disruption methods to crush the C. vulgaris cell wall before 

conducting the extraction by supercritical carbon dioxide [14, 23, 24]. 

 
Figure 4: Assessing the effect of bead milling on the extraction of the biomolecules: - Bead milling (600 bar, 

30 g.min-1 CO2 flow rate, 60°C), " Bead milling (350 bar, 30 g.min-1 CO2 flow rate, 60°C), !  Raw 

microalga (600 bar, 30 g.min-1 CO2 flow rate, 60°C). 

 
 
2.2.3.3 Extraction with ethanol as a co-solvent 

 
It should be mentioned that the C. vulgaris was grown under normal growth 

conditions, and was thus expected to have a low lipid content mainly composed of polar 

lipids. Therefore, given the relatively high polarity of the lipid fraction, it seems pertinent to 

consider the addition of ethanol as a co-solvent to enhance the solubility of these 

biomolecules (Fig 5) as well as that of pigments. 
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Figure 6: Comparison the effect of different treatments on the extraction of the biomolecules:  " Crude 

microalga (600 bar, 30 g.min-1 CO2 flow rate, 5% ethanol, 60°C), !  Crude microalga (600 bar, 30 g.min-1 

CO2 flow rate, 60°C), # Bead milling (600 bar, 30 g.min-1 CO2 flow rate, 60°C). 

 Thus, by using the same operating conditions as previously, the addition of 5% w/w 

ethanol to scCO2 when treating raw microalga, increased the total extract yield by 27% and 

16% compared to the experiment conducted on raw microalga (without ethanol) and 

disrupted cells (by bead milling) respectively. Chlorophyll and carotenoids were also 

significantly affected by the addition of the co-solvent on the raw microalga, with 81% and 

65% enhancement respectively compared to the experiment using raw microalga without 

ethanol, and by 61% and 52% respectively compared to cells disrupted by bead milling. 

Furthermore, the concentration of both pigments in the final extract changed according to the 

treatment applied, and in this respect the increasing concentration of chlorophyll in the 

extract followed the trend: no pre-treatment (18%) < bead milling (33%) < co-solvent (78%). 

Similarly, the increasing concentration of carotenoids followed the same trend but with lower 

concentrations: no pre-treatment (18%) < bead milling (22%) < co-solvent (37%). The 

effectiveness of adding a co-solvent was also covered in other studies. For instance, these 

results parallel those by Kitada et al. (2010) on C. vulgaris, where the effect of co-solvent on 

the solubility of a carotenoid was explained by the presence of highly polar alcohol with 

carbon dioxide, that modifies the characteristics of the solvent leading to an enhancement of 

pigment recovery. In addition, although use of supercritical carbon dioxide without a co-

solvent leads to lower extraction yields, the selectivity for carotenoids such as lutein can be 

slightly improved. 
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2.2.4 Conclusion 

 
According to the results described above, it can be deduced that high pressure 

inflicts some damage to the cell wall allowing supercritical carbon dioxide to reach the 

intracellular space as well as the intra-organelle matrix where the target biomolecules are 

located. Bead milling is a very effective cell disruption technique that completely breaks 

down the cells, but requires high-energy input that must be considered in the case of future 

process development. Optimisation of milling conditions is thus necessary to minimize 

production costs. Supercritical carbon dioxide is an interesting and selective extraction 

process, which is still considered costly compared to conventional methods. However, the 

degree of selectivity is an extremely important factor since it is a key element to bypass 

multiple unit purification operations that would decrease the final production cost, and 

simultaneously increase the added value of the final product, and compensate for its high 

production cost. Moreover, regarding the cleanliness of the final product, which is highly 

important, the presence of ethanol in trace quantities presents no problems as to its 

implementation in nutritional or pharmaceutical applications.   

The study also gathered additional information regarding the necessity for 

conducting a preliminary cell disruption operation before supercritical carbon dioxide 

extraction. It was shown that the addition of 5%w/w ethanol into the supercritical device 

allowed better recovery of the lipid extract, chlorophyll and carotenoids, compared to the use 

of preliminary bead milling of C. vulgaris.  These results were obtained at 600 bar, with a 

flow rate 30 g.min-1, at 60°C, with a 3 h extraction time.  However, optimization of 

extraction conditions may lead to shorter extraction times, and such a perspective will have 

to be considered with regard to the energy required by the entire purification process. Thus it 

would appear worthwhile to conduct additional studies, concerning optimization and 

implementation of the coupling of both bead milling and supercritical technology on a large 

scale, in order to achieve reasonable production costs in the near future. 
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2.3 Chapter Conclusion 

 
 Taking into account the set-up parameters fixed (pressure, CO2 flow rate, 

temperature) for the extractor, and despite the efficiency of bead milling to break the cell 

wall of Chlorella vulgaris, it is possible to bypass the unit operation of cell disruption before 

conducting scCO2 extraction by the addition of ethanol on raw microalga. Results showed 

that with the presence of ethanol, almost 90% of lipids were recovered. The lipid extract also 

included the lipophilic pigments that were better recovered compared to the extractions 

conducted after bead milling.  

 

 The next chapter will focus on proteins extraction with regard to cell disruption and 

the morphological role of the microalgal cells. Therefore, in order to compare different cell 

wall and morphological characteristics, different Chlorella vulgaris and other renowned 

microalgae were implemented in some studies. Taking into account the structure and the 

ultrastructure of the species should be helpful for better understanding the release of proteins. 
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Chapter 3: Recovery of proteins: understanding 

the morphological role of the cells 
!

!

3.1 Introduction 
 
! One of the specificities of microalgae is their cell wall characteristics, which undergo 

structural modifications according to the growth conditions and also undergo additional 

changes during different growth periods, and play an important role in regulating the passage 

of biomolecules through.  This matter took much of our attention in this chapter due to the 

important role of the cell walls on permitting the intracellular and the intra-organelles access 

to the solvent for the recovery of biomolecules of interest. Therefore, the main objective of 

this chapter is to highlight the role of different cell wall structures of five different 

microalgae on the quantification of proteins, and on the recovery of biomolecules in the 

aqueous phase before and after applying a treatment that basically targets the cell wall. The 

microalgal species selected for this chapter represents a specimen of morphological diversity 

among microalgae. The species are: Arthrospira platensis, Chlorella vulgaris, 

Haematococcus pluvialis, Nannochloropsis oculata and Porphyridium cruentum.  

 
The work described in this chapter is exposed in the form of four publications. The 

first publication already published in Journal of Applied Phycology reflects the work on 

determining the role of the cell wall on evaluating the nitrogen to protein conversion factor 

for each microalga mentioned previously, and whether it is possible to recommend a global 

conversion factor for the quantification of microalgal proteins. It should be mentioned that 

the same batch for each microalga was used during our work, and therefore the nitrogen to 

protein conversion factors obtained in this publication were considered for the next 

publications included in this chapter. 

 

The second publication submitted to Algal Research intervenes on conducting a 

chemical treatment or a mechanical treatment on the cell walls of the five microalgae, and 

looks on differentiating the amino acid profile especially by evaluating the fraction of 

essential and non-essential amino acids that would bring a clearer insight on showing 

whether or not the same proteins are released by means of cell wall treatment method.  
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The third publication submitted to Algal Research, deals with inspecting the 

extractability of proteins in water by conducting different cell disruption methods on 

microalgae, in order to evaluate the role of the cell walls as well as the internal organelles on 

the release of proteins in water. 

 

The fourth publication submitted to Bioresource Technology allows us to have a 

better understanding of the mechanisms involved in the biomolecules recovery during the 

process. 
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3.2 Influence of microalgae cell wall characteristics on protein 

extractability and determination of nitrogen-to-protein 

conversion factors 
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Abstract 
!
Additional evidence about the influence of the cell wall physical and chemical characteristics 

on protein extractability was determined by calculating the conversion factors of five 

different microalgae known to have different cell wall composition, and their protein 

extracts. The con- version factors obtained for crude rigid cell walled Chlorella vulgaris, 

Nannochloropsis oculata and Haematococcus pluvialis were 6.35, 6.28 and 6.25, 

respectively, but for their protein extracts the values were lower with 5.96, 5.86 and 5.63. On 

the other hand, conversion factor obtained for fragile cell walled microalgae Porphyridium 

cruentum and Arthrospira platensis was 6.35 for the former and 6.27 for the latter, with no 

significant difference for their protein extract with 6.34 for the former and 6.21 for the latter. 

In addition, the highest hydro-soluble protein percentage recovered from total protein was for 

P. cruentum 80.3 % and A. platensis 69.5 % but lower for C. vulgaris with 43.3 %, N. 

oculata with 33.3 % and H. pluvialis with 27.5 %. The study spotted the light on the 

influence of the cell wall on evaluating the conversion factor and protein extractability. In 

addition, it showed the necessity of finding the conversion factor everytime accurate protein 

quantification is required, and proved that there is not a universal conversion factor that can 

be recommended. 

Keywords Amino acid profile, cell wall, conversion factor, nitrogen, protein extract. 
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3.2.1 Introduction 
!

Microalgae have been consumed long time ago by the Aztecs and other 

Mesoamericans who used this biomass as an important food source [1]. Nowadays, in Japan 

for instance, Chlorella vulgaris is added to food such as noodles and pasta [2] to improve the 

nutritional quality of the meal.!

Microalgae are gaining interest due to their capacity to accumulate important 

amounts of multiple components (proteins, lipids, carbohydrates and pigments) compared to 

any other sources, and therefore protein content is considered as one of the cardinal 

components determining their nutritional value. For instance, Arthrospira (Spirulina) 

maxima can accumulate proteins up to 71 % dry weight [3]. Thus, analysing and quantifying 

the protein content are key factors that should be thoroughly investigated. A capital point is 

to calculate precisely the nitrogen-to-protein conversion factor (NTP). While the standard 

value of 6.25 is used, Kjeldahl or elemental analysis may lead to an overestimation or 

underestimation of the protein quantity. Moreover, these two methods take into account the 

totality of the nitrogen present in the biomass from which 59–98 % [4-7] of total nitrogen 

belongs to protein and the rest comes from pigments, nucleic acids and other inorganic 

components. It is true that the colorimetric method of Lowry [8] is an accurate method for 

protein quantification [5, 9] and it does not require a conversion factor. Nevertheless, this 

method determines only the hydro- soluble proteins [10, 11] and not the total protein content. 

In addition, the extraction of proteins can be diminished by the cell wall barrier, which can 

prevent the solubilisation of all the intracellular proteins affecting thus the value of the 

nitrogen-to-protein conversion factor. Therefore, the impact of the cell wall characteristics on 

protein extractability should be taken into account and analysed in order to prevent an 

incorrect estimation of the protein content. 

Multiple studies have focused on finding a method to recommend the right 

conversion factor; for instance, Gonzalez Lopez et al. (2010) focused on obtaining the 

conversion factor of five microalgae after breaking the cell wall, and then finding a 

correlation between protein content and total nitrogen content (elemental analysis or 

Kjeldahl). As a result, among five micro- algae a new mean conversion factor was estimated 

to 4.44 (elemental analysis) and 5.95 (Kjeldahl). Another study [12] determined the 

conversion factor for 19 tropical seaweeds harvested directly from the beach; and in a second 
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study [7], 12 marine microalgae were analysed under different growth phases and a mean 

value of 4.58 was found. The following study assesses the impact of the cell wall on the 

protein extractability and the evaluation of the NTP for five microalgae intensively grown 

worldwide and having wide taxonomic diversity. 

3.2.2 Materials and methods 
!

The microalgae used are: the cyanobacterium Arthrospira platensis (strain PCC 

8005), two Chlorophyceae Chlorella vulgaris (strain SAG 211-19), Haematococcus pluvialis 

(unknown strain), one Rhodophyta Porphyridium cruentum (strain UTEX 161) and the 

Eustigmatophyceae Nannochloropsis oculata (unknown strain). Each microalga was 

cultivated in a different culture medium: Hemerick medium for P. cruentum, Sueoka 

medium for C. vulgaris, Basal medium for H. pluvialis, Conway medium for N. oculata, and 

Zarrouk medium for A. platensis. All were grown in batch mode in an indoor tubular air-lift 

photobioreactor (PBR, 10 L) at 25 °C [13] after inoculation from a prior culture in a flat 

panel air-lift PBR (1 L). Culture mixing was by sterile air injection at the bottom of the PBR. 

The pH and temperature were recorded by a pH/temperature probe and pH was regulated at 

7.5 with CO2. The algae were harvested during the exponential growth phase and 

concentrated by centrifugation, and then supplied as a frozen paste from Alpha Biotech 

(Asserac, France). The biomass contained 20 % dry weight. The frozen paste of crude 

microalgae was freeze-dried in a Fisher Bioblock Scientific Alpha 2–4 LD Plus device 

(Illkirch, France). 

3.2.2.1 Protein extraction 
 

Stock solutions were prepared with approximately 500 mL of ultrapure water and 

some drops of 2 N NaOH to adjust the solution to pH 12. A sample of 1 g of freeze-dried 

biomass was added to 50 mL of stock solution. The mixture was heated to 40 °C with stirring 

for 1 h followed by centrifugation at 5,000×g for 10 min. Samples were taken for analysis by 

the colorimetric method of Lowry et al. (1951), elemental analysis and amino acid analysis. 

3.2.2.2 Lowry method 

 
A calibration curve was prepared using a concentration range of bovine serum 

albumin from 0 to 1.500 µg.mL-1. In order to measure the protein content, 0.2 mL of each 
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standard or samples containing the crude protein extract were withdrawn and then 1 mL of 

modified Lowry reagent was added to each sample. Each sample was then vortexed and 

incubated for exactly 10 min. After incubation, 100 µL of Folin Ciocalteu reagent (1 N) were 

added and again vortexed and incubated for exactly 30 min. The absorbance was then 

measured at 750 nm [8]. 

3.2.2.3 Elemental analysis 
 

Total nitrogen of the freeze-dried biomass was evaluated using a PerkinElmer 2400 

series II elemental analyser. Samples of 2 mg were placed in tin capsules and then heated at 

925 °C using pure oxygen as the combustion gas and pure helium as the carrier gas, then 

evaluating the nitrogen percentage and converting it into protein percentage by using the 

conversion factors calculated for each microalga in this study. 

3.2.2.4 Amino acid analysis and NTP calculation 

 
The determination of the amino acid composition of the biomass was performed 

according to a widely used standard method [14]. The samples were hydro- lysed with 6 N 

hydrochloric acid at 103 °C for 24 h. Then, the hydrolysed material was adjusted to pH 2.2 

with 6 N NaOH and stabilised with a pH 2.2 citrate buffer solution. The final solution was 

then filtered with 0.45 µm PTFE membrane to remove any residual solids remaining in the 

solution. The analysis was performed by using an amino acid analyser Biochrom Ltd 32 + 

(Cambridge, UK) equipped with a high pressure PEEK “column + pre-column” (size, 200 × 

4.6 mm) packed with Ultropac cation exchange resin containing sodium. The separation of 

amino acids is carried out by elution with loading buffers (flow rate 25 mL.h-1) at different 

pH. After reaction with ninhydrin (flow rate 35 mL.h-1), amino acids are detected with a UV 

detector at a wavelength of 570 nm, with the exception of proline, for which detection occurs 

at 440 nm. Calculation of NTP was carried out according to the method (kA) of Mossé (1990) 

and Sriperm et al. (2011). It should be mentioned that ammonia was added to compensate the 

value of some less resistant amino acids that disappeared after the strong acid hydrolysis. In 

addition, the strong hydrolysis of the peptide bonds generates one molecule of water from 

each amino acid and therefore during the quantification of total amino acid one molecule of 

water was subtracted from each amino acid in order to get the total amino acid residue, 

which represents the exact quantity of all amino acids [4, 7]. 
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3.2.2.5 Confocal laser scanning microscopy 

 
Cells were observed with an SP2-AOBS confocal laser- scanning microscope 

(Leica). The fluorochrome calcofluor white that binds to the β→1–4 linkages in the cell wall 

polysaccharides was added to the samples. Excited at 488 nm, the cells are identified 

coloured in light blue. 

3.2.2.6 Statistical analysis 
 

Three experiments were conducted separately on all micro- algae and their protein 

extract. Statistical analyses were carried out on Microsoft Excel. Measurements of three 

replicates for each sample were reproducible for ±5 % of the respective mean values. 

3.2.3 Results 

 
An amino acid analyser was used to obtain the amino acid profile of the crude 

microalgae (Table 1) and their protein extract (Table 2). The protein primary composition 

was reconstituted in order to find the conversion factor (Table 3) that takes into account only 

the protein nitrogen. The highest conversion factor evaluated for the crude biomass was 6.35 

for C. vulgaris and P. cruentum and the lowest was 6.25 for H. pluvialis. If we compare the 

NTP value of the crude micro- algae and the protein extract, we observe that there is no 

significant difference for P. cruentum and A. platensis. However, a significant difference was 

measured for the other three species, which correspond to green microalgae (Table 3). 
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Crude microalgae amino acid composition 

Amino acids P. cruentum A. platensis C. vulgaris N. oculata H. pluvialis 

Aspartic acid 11.21 ± 0.45 11.82 ± 0.11 10.09 ± 0.02 9.14 ± 0.05 8.85 ± 0.10 

Threonine 6.25 ± 0.25 6.16 ± 0.10 5.62 ± 0.01 5.91 ± 0.03 5.21 ± 0.06 

Serine 8.11 ± 0.29 6.85 ± 0.02 7.17± 0.04 6.52 ± 0.01 6.63 ± 0.05 

Glutamic acid 8.17 ± 0.29  10.50 ± 0.09 8.37 ± 0.01 10.30 ± 0.02 9.47 ± 0.11 

Glycine 6.86 ± 0.28 7.76 ± 0.06 7.93 ± 0.01 9.00 ± 0.01 9.05 ± 0.09 

Alanine 6.67 ± 3.67 9.91 ± 0.08 10.05 ± 0.03 10.92 ± 0.01 11.28 ± 0.12 

Cysteine 0.33 ± 0.01 0.18 ± 0.02 0.18 ± 0.01 0.19 ± 0.01 0.22 ± 0.01 

Valine 2.50 ± 0.10 2.86 ± 0.02 2.85± 0.01 3.29 ± 0.02 3.32 ± 0.04 

Methionine 2.78 ± 0.11 1.72 ± 0.02 0.60 ± 0.01 1.50 ± 0.01 0.64 ± 0.01 

Isoleucine 5.25 ± 0.24 0.12 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 4.53 ± 0.04 

Leucine 5.83 ± 0.21 7.02 ± 0.02 6.91 ± 0.02 8.11 ± 0.05 8.09 ± 0.10 

Tyrosine 4.43 ± 0.18 4.83 ± 0.05 7.78 ± 0.01 3.40 ± 0.02 2.80 ± 0.04 

Phenylalanine 5.00 ± 0.20 4.82 ± 0.04 5.36 ± 0.01 5.05 ± 0.01 4.92 ± 0.07 

Histidine 1.11 ± 0.04 0.90 ± 0.01 1.16 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 

Lysine 5.50 ± 0.21 5.10 ± 0.62 6.30 ± 0.07 5.70 ± 0.01 5.72 ± 0.08 

Arginine 7.78 ± 0.29 7.69 ± 0.07 6.81 ± 0.03 5.93 ± 0.02 6.10 ± 0.08 

Tryptophan 1.39 ± 0.05 1.22 ± 0.01 2.04 ± 0.01 1.24 ± 0.01 1.72 ± 0.02 

Ornithine 0.27 ± 0.01 0.16 ± 0.09 0.12± 0.01 0.16 ± 0.01 0.07 ± 0.01 

Proline 2.53 ± 0.17 1.95 ± 0.05 2.74 ± 0.07 4.20 ± 0.07 2.94 ± 1.15 

Ammonia 8.02 ± 0.30 8.41 ± 0.09 7.82 ± 0.02 8.38 ± 0.08 7.52 ± 0.08 

Table 1: Results of total amino acids of 5 microalgae expressed in g per 100 g of algal protein representing 3 

replicates for 3 experiments ± SD (n=3). 

! !
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Protein extract amino acid composition 

Amino acids P. cruentum A. platensis C. vulgaris N. oculata H. pluvialis 

Aspartic acid 10.71 ± 0.02 9.70 ± 0.02 6.81 ± 0.28 4.47 ± 0.05 6.54 ± 0.07 

Threonine 4.45 ± 0.01 5.54 ± 0.04 4.16 ± 0.19 3.18 ± 0.04 3.70 ± 0.02 

Serine 7.49 ± 0.02 7.25 ± 0.03 5.73 ± 0.27 3.16 ± 0.06 5.66 ± 0.01 

Glutamic acid 9.05 ± 0.01  11.65 ± 0.02 11.63 ± 0.51 22.60 ± 0.19 13.55 ± 0.01 

Glycine 7.68 ± 0.01 8.42 ± 0.02 9.75 ± 0.42 8.79 ± 0.10 11.00 ± 0.01 

Alanine 10.46 ± 0.02 10.94 ± 0.02 16.82 ± 0.75 14.02 ± 0.13 19.12 ± 0.03 

Cysteine 0.27 ± 0.01 0.20 ± 0.01 0.24 ± 0.01 0.38 ± 0.01 0.40 ± 0.01 

Valine 3.15± 0.01 3.31 ± 0.01 3.66 ± 0.15 2.36 ± 0.03 2.80 ± 0.01 

Methionine 2.37± 0.01 1.71 ± 0.01 1.28 ± 0.04 1.23 ± 0.03 1.04 ± 0.01 

Isoleucine 5.34± 0.02 0.12± 0.01 2.32 ± 1.87 1.08 ± 1.44 3.06 ± 0.01 

Leucine 7.30 ± 0.01 8.02± 0.02 7.15 ± 0.33 4.11 ± 0.04 4.99 ± 0.03 

Tyrosine 3.69 ± 0.01 4.33 ± 0.01 2.56 ± 0.10 2.15 ± 0.07 1.91 ± 0.02 

Phenylalanine 4.12 ± 0.01 4.26 ± 0.01 2.74 ± 0.12 1.63 ± 0.02 2.63 ± 0.01 

Histidine 0.79 ± 0.03 0.73 ± 0.01 0.53 ± 0.03 0.28 ± 0.01 0.43 ± 0.01 

Lysine 5.60 ± 0.01 5.39 ± 0.01 6.16 ± 0.27 2.35 ± 0.01 3.48 ± 0.01 

Arginine 6.63 ± 0.02 6.84 ± 0.01 5.85 ± 2.71 1.96 ± 0.09 6.88 ± 0.01 

Tryptophan 0.72 ± 0.02 1.07 ± 0.01 0.49 ± 0.02 0.18 ± 0.01 0.31 ± 0.01 

Ornithine 0.22 ± 0.01 0.23 ± 0.01 0.50 ± 0.02 0.55 ± 0.03 0.43 ± 0.01 

Proline 1.87 ± 0.02 1.86 ± 0.08 2.11 ± 0.13 14.41 ± 0.33 1.61 ± 0.04 

Ammonia 8.05 ± 0.04 8.39 ± 0.01 9.47 ± 0.44 11.09 ± 0.31 10.37 ± 0.06 

Table 2: Results of total amino acids of the protein extract extracted at pH 12 and 40°C of 5 microalgae 

expressed in g per 100 g of algal protein representing 3 replicates for 3 experiments ± SD (n=3). 

!
The total nitrogen content of crude microalgae was determined by elemental 

analysis. The hydro-soluble proteins were quantified by the Lowry method. By using the 

NTP values from Table 3, the total proteins and the corresponding fraction of hydro-soluble 

proteins were accurately determined starting from the results of elemental analysis (Table 4). 

A small difference was observed between the essential and non-essential amino acids total 

percentage for P. cruentum, A. platensis and C. vulgaris and their protein extract, and an 

important difference was observed for N. oculata and H. pluvialis with a noticeable increase 

in non-essential amino acids percentage in the protein extract and a decrease in essential 

amino acids percentage (Table 5). 
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NTP 

Microalgae Crude microalgae Protein extract % Relative difference 

P. cruentum 6.35 ± 0.03 6.34 ± 0.04 0.16 

A. platensis 6.27 ± 0.02 6.21 ± 0.07 0.96 

C. vulgaris 6.35 ± 0.07 5.96 ± 0.23 6.14 

N. oculata 6.28 ± 0.06 5.86 ± 0.32 6.69 

H. pluvialis 6.25 ± 0.07 5.63 ± 0.18 9.92 

  Table 3: Nitrogen-to-protein conversion factors for the crude microalgae and their protein isolate based on 3  

replicates for 3 experiments ± SD (n=3). 

         Finally, the laser scanning confocal microscopic images presented in Fig. 1 showed 

that in the case of P. cruentum and A. platensis a total disruption of the cell wall occurred 

after the alkaline treatment, whereas C. vulgaris, N. oculata and H. pluvialis maintained their 

globular form indicating that at least a part of their cell wall was intact. 

 
Figure 1. Laser scanning confocal microscopic observation before (left) and after (right) alkaline treatment 

for each microalga. A&B) P. cruentum, C&D) A. platensis, E&F) C. vulgaris, G&H) N. oculata, I&J) H. 

pluvialis. 
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3.2.4 Discussion 

 
The present study contributes original individual NTP con- version factors for five 

current species of microalgae. Indeed, direct comparison of our results with literature values 

can only be done for N. oculata [7]; the report from Gonzalez Lopez et al. (2010) combines 

all the cyanobacteria and P. cruentum in a global result. To our knowledge, NTP data for C. 

vulgaris and H. pluvialis have never been reported. Moreover, according to Mossé (1990), 

there are three kinds of NTP conversion factors called k, kA and kP [15-17]. In this study, kA 

was calculated for all species, and this kind of conversion factor is larger than kP and k. For 

this reason, there is a significant difference between the conversion factors calculated for N. 

oculata in this study (6.28) and the one calculated for the same microalga (4.87) in the 

Lourenço et al. (1998) study. 

 Neaa (%) 
Total protein= 

Nea x NTPb (%) 

Hydro-soluble 

protein= 

PLowry
c (%) 

Proportion of hydro-

soluble protein in total 

protein= 
!"#$%&

!"#!!!!"#
!!"" (%) 

P. cruentum 9.04 ± 0.69 57.33 ± 3.84 46.06 ± 0.97 80.34 ± 1.69 

A. platensis 8.53 ± 0.20 53.51 ± 1.10 37.19 ± 2.67 69.50 ± 5.00 

C. vulgaris 7.81 ± 0.18 49.59 ± 1.04 21.50 ± 0.34 43.35 ± 0.62 

N. oculata 7.41 ± 0.39 46.55 ± 2.14 15.52 ± 0.42 33.34 ± 0.90 

H. pluvialis 8.27 ± 0.07 51.73 ± 0.43 14.22± 0.69 27.48 ± 1.34 

Table 4: Different protein contents in crude microalgae. 
aNea: Total nitrogen % (d.w) obtained by elemental analysis. 
bNTP: Nitrogen-to-protein conversion factor from Table 3. 
cPLowry: Hydro-soluble protein % (d.w) at pH 12 and 40°C calculated by Lowry method. 

!
The NTP conversion factor of the crude microalgae and their protein extract 

depended on the type of microalgae. If we calculate the relative difference between these two 

values for a single species, we observe that there is almost no difference in the case of red 

algae and cyanobacteria, whereas it reached almost 10 % for green microalgae (Table 3). 

These differences can be correlated to the rigidity of the cell wall. Indeed, it is generally 

accepted that green microalgae possess a more rigid cell wall than red algae or 

cyanobacteria. More in detail, P. cruentum does not have a true cell wall but instead 

encapsulated by a layer of sulfurized polysaccharides [18-23]. A. platensis has a relatively 

fragile cell wall mainly composed of murein without cellulose [24, 25]. As far as the green 

microalgae, the chlorophycean C. vulgaris and the eustigmatophycean N. oculata, both have 

a cell wall mainly composed of cellulose and hemicelluloses [26]. The highest difference 
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perceived was for H. pluvialis, which has a thick trilaminar cell wall composed of cellulose 

and sporopollenin in the aplanospore stage [27-29]. The composition of its cell wall makes 

this microalga less permeable and extremely mechanically resistant [30]. 

Taking into account the standard deviation of the three samples considered for each 

microalga, we could affirm that, at 95 % of confidence level, all the values of total protein 

content shown in Table 4 are statistically equivalent. This fact is noteworthy, because when 

we consider the extracted hydro-soluble proteins (Table 4), we observe that their amounts 

decrease following the same correlation than the differences in NTP value: high extraction 

for the micro- algae with no real cell wall and very low extraction for the most rigid of all. 

Therefore, the hydro-soluble protein capable to be extracted under alkaline conditions from 

inside the cell is correlated to the cell wall characteristics and to the freeze-drying process 

that conserves well the samples but it makes the protein extraction more difficult for some 

algal species. In addition, the high values of hydro-soluble proteins extracted especially for 

P. cruentum and A. platensis could be explained by the possible presence of peptides and 

free amino acids because no precipitation was carried out [31, 32]. 

Further evidence was found in the variation in composition relative to essential and 

non-essential amino acids (Table 5) in the protein extract of the green microalgae. There was 

a significant drop in the percentage of essential amino acids ranging from 13.9 % for C. 

vulgaris to 49.1 % for N. oculata and an increase in non-essential amino acids from 6.7 % 

for the former to 25.2 % for the latter. On the contrary, only small changes in the com- 

position of the proteins were detected for fragile cell wall microalgae, with a percentage 

difference ranging from 4.5 % for A. platensis to 4.8 % for the essential amino acids of P. 

cruentum, whereas non-essential amino acids difference ranged from 3.5 % for the former to 

4.8 % for the latter. 

 Crude microalgae Protein extract 

 Essential Non-essential Non identified Essential Non-essential Non identified 

P. cruentum 46.81 44.89 8.29 44.58 47.15 8.27 
A. platensis 41.76 49.67 8.57 39.87 51.50 8.62 
C. vulgaris 41.02 51.03 7.94 35.32 54.70 9.97 
N. oculata 41.00 50.46 8.53 20.88 67.47 11.64 
H. pluvialis 43.91 48.50 7.58 29.01 60.17 10.81 

      Table 5: Percentage (d.w) of essential and non-essential amino acids for each microalga and its protein extract. 
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These correlations with the relative hardness of the cell wall can integrate a 

chemical dimension as well. Indeed, the sporopollenin contained in the most rigid cell wall 

(H. pluvialis) is known to be extremely resistant to chemical agents [30]. But in the case of 

cellulose-rich cell walls, such as C. vulgaris and N. oculata, the sodium hydroxide is able to 

penetrate the microcrystalline structure of cellulose to form alcoholates in a process similar 

to mercerisation. Sodium hydroxide can also dissolve the hemicelluloses attached to 

cellulose. The partial permeation of this kind of cell wall can therefore occur by alkaline 

action. Finally, A. platensis has a cell wall rich in amino sugars cross-linked with 

oligopeptide chains. The former are labile in alkaline conditions by deamidation of the N-

acetylglucosamine and the latter are soluble in alkaline conditions. The cell wall becomes 

therefore very permeable allowing the alkaline extraction of proteins. In summary, the 

chemical action acts in synergy with the mechanical characteristics of the cell wall. 

Extraction of proteins together with the evaluation of the conversion factor brought 

additional evidence that the cell wall of any microalga plays an important role in protein 

quantification. This means that not taking it into consideration may lead to wrong 

quantification of the protein con- tent. In addition, for microalgae, there is not a universal 

conversion factor that can be recommended for all species as demonstrated by comparison of 

our study with many studies which have been carried out on dozens of different microalgae. 

Therefore, every time accurate quantification of protein is needed, it will be required to 

evaluate the conversion factor. In addition, this study showed a correlation between the cell 

wall rigidity and/or the chemical structure and the differences in NTP conversion value. 

Microalgae with fragile cell wall did not show significant differences with their protein 

extract, which was the complete opposite for the microalgae having a rigid cell wall that 

showed noticeable difference on evaluating the conversion factor of their protein extract, and 

therefore, breaking or permeabilize the rigid cell wall of C. vulgaris, N. oculata and H. 

pluvialis is strongly required to prevent underestimation of the protein content after 

extraction. Logically, there is no need for cell wall breaking for P. cruentum since it does not 

have a cell wall and concerning A. platensis soft cell wall disruption technique is needed to 

make sure that its fragile cell wall will not hinder the extraction of any intracellular 

components. 
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Abstract 
 

In order to release proteins in the aqueous phase, high-pressure homogenization and alkaline 

treatments were applied to rupture the cell walls of five intensively grown microalgae. 

Protein characterisation was carried out by analysing the amino acid profiles of both the 

crude microalgae and the protein extracts, obtained after both types of treatment. Results 

showed that the proportion of proteins released from microalgae following both treatments 

was, in descending order: Porphyridium cruentum > Arthrospira platensis > Chlorella 

vulgaris > Nannochloropsis oculata > Haematococcus pluvialis, reflecting the increasingly 

protective, cell walls. Nonetheless, mechanical treatment released more proteins from all the 

microalgae compared to chemical treatment. The highest yield was for the fragile cell walled 

P. cruentum with 88% hydro-soluble proteins from total proteins, and the lowest from the 

rigid cell walled H. pluvialis with 41%. The proportion of essential and non-essential amino 

acids in the extract was assessed and compared to the crude microalgae profile. It was higher 

after alkaline treatment and much higher after high-pressure homogenization. These results 

suggest that non-essential amino acids are more concentrated actually inside the cells and 

that different types of proteins are being released by these two treatments.  

Keywords Microalgae, chemical treatment, mechanical treatment, proteins, amino acids 

profile. 
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3.3.1 Introduction 

 
In the 9th century AD the Kanem Empire in Chad discovered the benefits of the 

cyanobacterium Arthrospira platensis and used it as food (called dihé) for human 

consumption [33]. Later on in the 14th century AD, the Aztecs harvested the same species 

from Lake Texcoco and used it to make a sort of cake called tecuilatl. They also used these 

microorganisms as fodder, fertilizers and remedies. Nowadays, additional species are being 

industrially and profitably marketed worldwide for the same purposes.  

 

The microalgal industry has grown rapidly over the last decade. Primarily, this is 

due to the capacity of these micro-organisms to produce lipids suitable for the biodiesel 

industry, and to grow in a wide variety of geographical and environmental locations, thus 

precluding competition with arable lands as well as intensive deforestation. Therefore, the 

major part of microalgal studies has concentrated on enhancing this bioenergy production to 

the detriment of other high-value biomolecules, but forgetting ancient history and the other 

advantages of these species.  

 

 Today the microalgal bioenergy industry is struggling to find a place in the market 

due to its uncompetitive cost and its overall unsustainable production [34-38] sometimes 

leaving negative footprints on the environment, and public opinion. 

 

Microalgae were originally considered as an important source of protein, a major 

fraction of their composition; on a dry weight basis the Cyanobacterium Arthrospira 

platensis is composed of 50-70% proteins [39, 40], the Chlorophycea Chlorella vulgaris 38-

58% [41-43], the Eustigmatophyceae Nannochloropsis oculata 22-37% [44], the 

Chlorophycea Haematococcus pluvialis 45-50% [39], and the Rodophyta Porphyridium 

cruentum 8-56% [3, 45]. They have a profile composed of a set of essential and non essential 

amino acids [42], with relatively similar ratio between species and are generally unaffected 

by growth phase and light conditions [33]. To the best of our knowledge, studies on 

microalgal proteins have generally either concentrated on finding and proposing the nitrogen 

to protein conversion factor [5-7, 11, 42], in order to prevent incorrect estimations of 

microalgal total proteins content, or focused on determining the best method for protein 

quantification using colorimetric techniques [31, 46, 47]. However, for some species such as 
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the green microalgae C. vulgaris, N. oculata and H. pluvialis, maximising the recovery of 

proteins requires a unit operation leading to cell disruption to overcome the barrier of their 

rigid cell wall and release the intracellular biomolecules. Thus, many cell disruption methods 

were used to break the cell wall of these microalgae, such as bead milling, ultrasonication, 

microwave, enzymatic treatment and high-pressure homogenization [28, 48-51]. Conversely, 

fragile cell walled microalgae like P. cruentum and A. platensis require milder techniques to 

enhance recovery.  

 

The main objective of this study is to evaluate the effect of two different cell 

disruption techniques on aqueous phase proteins extractability, in five microalgae having 

different cell wall characteristics, while simultaneously evaluating and comparing the profile 

of amino-acids after subsequent to these two cell disruption methods.  

 

3.3.2 Materials and methods 
 
3.3.2.1 Microalgae and materials 

 

The selected microalgae were supplied as frozen paste from Alpha Biotech 

(Asserac, France): the Cyanobacteria Arthrospira platensis (strain PCC 8005), two different 

Chlorophyceae Chlorella vulgaris (strain SAG 211-19), and Haematococcus pluvialis 

(unknown strain), one Rhodophyta Porphyridium cruentum (strain UTEX 161), and the 

Eustigmatophyceae Nannochloropsis oculata (unknown strain).  

Each microalga was cultivated in a different culture media; Hemerick media was used for P. 

cruentum, Sueoka media for C. vulgaris, Basal media for H. pluvialis, Conway media for N. 

oculata and Zarrouk media for A. platensis. All grown in batch mode in an indoor tubular 

Air-Lift PhotoBioReactor (PBR, 10 L) at 25°C inoculated from a prior culture in a flat panel 

Air-Lift PBR (1 L). Culture homogenization was achieved by sterile air injection at the 

bottom of the PBR. The pH and temperature were recorded by a pH/temperature probe 

(Mettler Toledo SG 3253 sensor) monitored by the acquisition software LabVIEW. The pH 

was regulated at 7.5 with CO2 bubbling. Microalgae were harvested during the exponential 

growth phase, concentrated by centrifugation, and the biomass which contained 20% dry 

weight, was then frozen.  
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3.3.2.2 High-pressure cell disruptor 

 
A “TS Haiva series, 2.2-kW” homogenizer from Constant Systems Limited 

(Northants, UK), was used. For each experiment, a biomass concentration of 2% dry weight 

(0.5 g of freeze-dried cells dispersed in 25 mL distilled water) was passed through the 

machine twice at a pressure of 2700 bar.  

3.3.2.3 Alkaline treatment 
 

Mother solutions were prepared with approximately 500 mL of ultrapure water and 

some drops of 2 N NaOH to adjust the solution to pH 12. A sample of 1 g of freeze-dried 

biomass was added to 50 mL of mother solution and the mixture was heated at 40°C with 

stirring for 1 h. Separation of the solid-liquid mixture was conducted by centrifugation at 

5000g for 10 min. Samples of the supernatant were taken for analysis by the colorimetric 

method of Lowry, elemental analysis and amino acid analysis. 

 

3.3.2.4 Lowry method 
 

The procedure involves reaction of proteins with cupric sulphate and tartare in an 

alkaline solution, leading to the formation of tetradentate copper protein complexes. The 

addition of the Folin-Ciocalteu reagent leads to the oxidation of the peptide bonds by 

forming molybdenum blue with the copper ions. Therefore, a calibration curve was prepared 

using a concentration range of bovine standard albumin from 0 to 1500!µg mL-1. In order to 

measure the protein content, 0.2 mL of each standard or samples containing the crude protein 

extract were withdrawn and then 1 mL of modified Lowry reagent was added to each 

sample. Each sample was then vortexed and incubated for exactly 10 min at room 

temperature. After incubation, 100! !µL of Folin-Ciocalteu Reagent (1 N) were added and 

again vortexed and incubated for exactly 30 min at room temperature. The blue colour 

solution absorbance was then measured at 750 nm with a UV-1800 Shimadzu 

spectrophotometer, previously zeroed with a blank sample containing all the reagents minus 

the extract [8]. 

3.3.2.5 Elemental analysis 
 

Total nitrogen was evaluated by LCC (Laboratoire de Chimie de Coordination, 
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Toulouse-France) using a PerkinElmer 2400 series II elemental analyser. Samples of 2 mg 

were placed in thin capsules and then heated at 925 °C using pure oxygen as the combustion 

gas, and pure helium as the carrier gas. The percentage nitrogen was evaluated and converted 

into protein percentage by using the conversion factors obtained for each microalga in 

another study [42]. 

3.3.2.6 Amino acid analysis 
 

The biomass amino acid composition was determined using a well known standard 

method (Moore and Stein 1948). The samples were hydrolysed with 6 N hydrochloric acid at 

103 °C for 24 h in an oven. Then, the hydrolysed material was adjusted to pH 2.2 with 6 N 

NaOH and stabilised with a pH 2.2 citrate buffer solution. The final solution was then 

filtered with 0.45 µm PTFE membrane to remove any residual solids remaining in the 

solution. The analysis was performed by using an amino acid analyser Biochrom Ltd 32+ 

(Cambridge, UK) equipped with a high pressure PEEK “column+pre-column” (size, 200 × 

4.6 mm) packed with Ultropac cation exchange resin containing sodium. The separation of 

amino acids was carried out by elution with loading buffers (flow rate 25 mL.h-1) at different 

pH. After reaction with ninhydrin (flow rate 35 mL.h-1), amino acids were detected with a 

UV detector at a 570 nm wavelength, except for proline, where detection was at 440 nm. 

Ammonia was added to compensate for the value of some less resistant amino acids, broken 

down by the strong acid hydrolysis.  

3.3.2.7 Statistical analysis 
 

Three experiments were conducted separately on every microalgae. Measurements 

of three replicates for each sample were repeatable at maximum ±5% of the respective mean 

values. 

!

3.3.3 Results 

 
The total protein content of crude microalgae was determined from the value of total 

nitrogen obtained through elemental analysis, and the conversion factor found for each crude 

microalga in a separate study (Safi et al. 2012b). In all cases, the total protein content was 

high and consistent with the literature values, ranging from 49 to 58% dry weight (Table 1). 

The fraction of hydro-soluble proteins released in water after both cell disruption techniques 
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was presented in Figure 1, after quantification by the Lowry method in cases where the 

mechanical method recovered more proteins compared to the alkaline treatment.  

!
Figure 3 Protein % d.w of biomass in water after cell disruption of five microalgae by a mechanical and 

chemical method. Results are based on 3 replicates for 3 experiments ± SD (n=9). 

!
The hydro-soluble protein fraction of total proteins present in the microalgae was also 

evaluated, and all these results are shown in Table1.  

   
Alkaline treatment High-pressure cell disruption 

Microalgae NEA
a (%) NTPb P TOTAL (%) 

 

PLowry
c (%) 

!"#$%&

!"#"$%
!!"" (%)  

PLowry
c (%) 

!"#$%&

!"#"$%
!!"" (%) 

P. cruentum 9.18 ± 0.61 6.35 58.29 ± 3.78 44.34 ± 0.97 76.07 ± 1.48 51.60 ± 2.45 88.52 ± 1.17

A. platensis 8.76 ± 0.16 6.27 54.92 ± 1.10 37.19 ± 2.67 67.72 ± 1.64 41.75 ± 2.82 76.02 ± 0.75 

C. vulgaris 7.98 ± 0.16 6.35 50.67 ± 1.02 21.50 ± 0.34 42.43 ± 0.52 26.18 ± 3.99 51.68 ± 2.03 

N. oculata 7.83 ± 0.31 6.28 49.17 ± 2.13 15.52 ± 0.42 31.56 ± 1.06 24.34 ± 0.58 49.50 ± 1.51 

H. pluvialis 8.30 ± 0.04 6.25 51.87 ± 0.43 14.23 ± 0.69 27.43 ± 0.49 21.23 ± 3.66 40.93 ± 1.97 

Table 1: Proportion of hydro-soluble protein in total protein for different microalgae 
aNea: Total nitrogen % (d.w) obtained by elemental analysis. 
bNTP: Nitrogen-to-protein conversion factors of Safi et al. (2012b) for each microalga. 
cPLowry: Hydro-soluble protein % (d.w) at pH 12 and 40°C and by high-pressure cell disruption calculated by Lowry 

method. 

P TOTAL: Total protein in microalgae = NEA x NTPb 

 

The amino acid profile was first determined for the crude microalgae with Aspartic 

acid being the highest member for P. cruentum, A. platensis and C. vulgaris and Alanine for 

N. oculata and H. pluvialis (Table 2). In addition, this profile was evaluated after alkaline 
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treatment, and here Aspartic acid was the highest for P. cruentum, Alanine for A. platensis, 

C. vulgaris and H. pluvialis, Proline for N. oculata (Table 3). However, with high-pressure 

cell disruption Proline was the highest for P. cruentum, A. platensis and N. oculata and 

Alanine for C. vulgaris and H. pluvialis (Table 4). Furthermore, the percentages of essential 

and non-essential amino acids before and after both cell disruption treatments, were also 

evaluated and are shown in Table 5. The proportion of non-essential amino acids was higher 

than that of essential amino acids for all the microalgae after both treatments. Nevertheless, it 

can be seen (Table 5) that the proportion of non-essential amino acids was much higher with 

high-pressure homogenization than with the alkaline treatment.  

3.3.4 Discussion 
 
This study used two different cell wall treatments on five different microalgae followed by a 

quantification of the proteins [8] released in the aqueous phase, and then assessed the amino 

acid profile of these proteins for each treatment. The characteristics of the microalgal cell 

walls play an important role in the release of these biomolecules. Nonetheless, regardless of 

cell wall characteristics we have shown that at the 95% confidence level using three 

replicates for each microalga, all the latter have statistically equivalent protein values (Table 

1). It should however be noted that the total nitrogen estimation includes other obtained by 

elemental analysis was essential to calculate total proteins in the microalgae using the 

conversion factors adapted by the previous study of Safi et al. (2012b). Therefore, regardless 

of the specificities of their cell walls and taking into consideration three replicates for each 

microalga, we could affirm that at 95% of confidence level all the microalgae have 

statistically equivalent proteins value (Table 1). It should be noted that estimation of total 

nitrogen includes other nitrogenous compounds, such as intracellular inorganic materials [7] 

pigments, nucleic acid, glucosamine and amines that can account to about 10% of total 

nitrogen content in microalgae [39, 52]. After conducting both cell wall treatments, the 

highest content of hydro-soluble proteins in the extract was from P. cruentum, which has a 

pseudo-cell wall composed of exopolysaccharide mucilages [20-22] making it very fragile 

and offering very little resistance to any treatment. Conversely, the lowest microalgae protein 

content in this study was obtained from H. pluvialis, known for its cell wall composed of 

cellulose and sporopollenin, which is remarkably resistant to chemical and mechanical 

treatment [28, 42]. Moreover, if we observe the decrease in protein recovery, we can see that 

this mirrors the increasing rigidity of the cell walls (Table 1) in all the microalgae. 
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Nonetheless, compared to alkaline treatment, mechanical treatment gave more aqueous phase 

protein recovery for all the microalgae, with the lowest increase reserved for the fragile cell 

walled microalgae; 11% and 14% calculated for A. platensis and P. cruentum respectively. 

Indeed, both of these offer very little resistance to cell disruption treatment, and this small 

increase in protein recovery suggests more effective disruption of protein aggregates by 

high-pressure homogenization, leading to better solubilisation of hydro-soluble proteins in 

the aqueous phase. Similarly, a higher increase in protein recovery for the rigid cell walled 

microalgae was also detected, with 18%, 33% and 36% for C. vulgaris, H. pluvialis and N. 

oculata respectively. Here, the mechanical treatment applied in this study, is more effective 

at breaking the cell walls and protein aggregates, allowing more protein to be solubilised.  

 

Furthermore, the alkaline treatment does have an effect on protein recovery, because 

the chemical action acts in synergy with the mechanical characteristics of the cell wall (Safi 

et al. 2012b). Similarly, as mentioned earlier, the sporopollenin contained in the most rigid 

cell wall (H. pluvialis) is known to be extremely resistant to chemical agents [30]. But for 

cellulose-rich cell walls, such as in C. vulgaris and N. oculata, the sodium hydroxide is able 

to penetrate the cellulose microcrystalline structure to form alcoholates in a process similar 

to mercerisation, and can also dissolve the hemicelluloses attached to the cellulose. Partial 

permeation of this kind of cell wall can therefore occur by alkaline action, favouring 

solubilisation of cell wall proteins but making it difficult to recover cytoplasmic and 

chloroplastic proteins. Finally, A. platensis is a gram-negative cyanobacteria with a thin cell 

wall rich in amino sugars cross-linked with oligopeptide chains. Under alkaline conditions, 

the former are labile by deamidation of the N-acetylglucosamine while the latter are soluble. 

Therefore the cell wall becomes highly permeable allowing alkaline extraction of proteins by 

penetration of the cytoplasmic and chloroplastic space, enhancing protein recovery. 

 

 The proteins’ amino acid profile was also evaluated by analysing the crude 

microalgae (Table 2), the alkaline treatment protein extracts (Table 3) and the high-pressure 

homogenization extracts (Table 4). The proportion of essential and non-essential amino acids 

was also evaluated (Table 5), and showed that the percentage of non-essential amino acids 

derived from both treatments was higher than essential amino acids. This suggests that non-

essential amino acids are more concentrated inside the cell wall barrier, and also that it is not 

the same proteins being released in the aqueous phase when comparing both treatments. 
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However, compared to the alkaline treatment, high-pressure homogenization increased the 

percentage of the non-essential amino acids for the fragile cell walled species from 20% to 

26% for A. platensis and P. cruentum respectively. Similarly, for the rigid cell walled green 

species, they increased by 7%, 10% and 12% for N. oculata, H. pluvialis and C. vulgaris 

respectively. Moreover, for the latter species it is noteworthy that after alkaline treatment, the 

proportions of essential to non-essential amino acids was statistically the same compared 

with those for the crude fragile microalgae, and this was not the case after mechanical 

treatment of the same species. However, from the literature, few studies have distinguished 

between cell wall and intracellular amino acids of microalgae. It has been reported for 

instance, that after isolating and purifying the cell wall of C. vulgaris from the cytoplasmic 

medium, this contained peptides rather then proteins, although the amino acid profile was 

limited to their detection without quantifying the proportions [53]. 

 

Freeze-dried microalgae amino acid composition 

Amino acids P. cruentum A. platensis C. vulgaris N. oculata H. pluvialis 

Aspartic acid 12.41 ± 0.45 13.10 ± 0.11 11.20 ± 0.02 10.13 ± 0.05 9.76 ± 0.10 

Threonine 6.91 ± 0.25 6.83 ± 0.10 6.24 ± 0.01 6.55 ± 0.03 5.75 ± 0.06 

Serine 8.98 ± 0.29 7.59 ± 0.02 7.97± 0.04 7.23 ± 0.01 7.31 ± 0.05 

Glutamic acid 9.04 ± 0.29  11.64 ± 0.09 9.30 ± 0.01 11.41 ± 0.02 10.44 ± 0.11 

Glycine 7.59 ± 0.28 8.60 ± 0.06 8.81 ± 0.01 9.97 ± 0.01 9.98 ± 0.09 

Alanine 7.39 ± 3.67 10.99 ± 0.08 11.17 ± 0.03 12.11 ± 0.01 12.44 ± 0.12 

Cysteine 0.37 ± 0.01 0.20 ± 0.02 0.20 ± 0.01 0.22 ± 0.01 0.25 ± 0.01 

Valine 2.76 ± 0.10 3.17 ± 0.02 3.17 ± 0.01 3.65 ± 0.02 3.67 ± 0.04 

Methionine 3.08 ± 0.11 1.91 ± 0.02 0.66 ± 0.01 1.66 ± 0.01 0.71 ± 0.01 

Isoleucine 5.81 ± 0.24 0.13 ± 0.01 0.09 ± 0.01 0.13 ± 0.01 4.99 ± 0.04 

Leucine 6.46 ± 0.21 7.79 ± 0.02 7.68 ± 0.02 8.99 ± 0.05 8.92 ± 0.10 

Tyrosine 4.90 ± 0.18 5.35 ± 0.05 8.63 ± 0.01 3.76 ± 0.02 3.08 ± 0.04 

Phenylalanine 5.54 ± 0.20 5.34 ± 0.04 5.96 ± 0.01 5.59 ± 0.01 5.42 ± 0.07 

Histidine 1.22 ± 0.04 1.00 ± 0.01 1.29 ± 0.01 1.04 ± 0.01 0.99 ± 0.01 

Lysine 6.09 ± 0.21 5.65 ± 0.62 6.99 ± 0.07 6.32 ± 0.01 6.31 ± 0.08 

Arginine 8.62 ± 0.29 8.52 ± 0.07 7.57 ± 0.03 6.58 ± 0.02 6.73 ± 0.08 

Proline 2.80 ± 0.17 2.16 ± 0.05 3.04 ± 0.07 4.65 ± 0.07 3.24 ± 1.15 
Table 2: Results of total amino acids of 5 microalgae expressed in g per 100 g of algal protein representing 3 

replicates for 3 experiments ± SD (n=9). 

!

!
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Protein extract amino acid composition after alkaline treatment 

Amino acids P. cruentum A. platensis C. vulgaris N. oculata H. pluvialis 

Aspartic acid 11.65 ± 0.02 11.27 ± 0.02 7.52 ± 0.34 5.02 ± 0.04 7.30 ± 0.09 

Threonine 5.88 ± 0.01 6.05 ± 0.05 4.60 ± 0.23 3.57 ± 0.05 4.92 ± 0.02 

Serine 8.15 ± 0.03 7.92 ± 0.03 7.42 ± 0.33 4.38 ± 0.09 6.32 ± 0.02 

Glutamic acid 9.85 ± 0.01  12.71 ± 0.02 12.85 ± 0.63 25.42 ± 0.30 15.13 ± 0.03 

Glycine 8.35 ± 0.01 9.19 ± 0.02 10.77 ± 0.52 9.89 ± 0.14 12.28 ± 0.02 

Alanine 11.38 ± 0.02 11.95 ± 0.02 18.58 ± 0.92 15.77 ± 0.20 21.34 ± 0.04 

Cysteine 0.30 ± 0.01 0.22 ± 0.01 0.27 ± 0.02 0.42 ± 0.01 0.45 ± 0.01 

Valine 3.43 ± 0.01 3.62 ± 0.01 4.04 ± 0.20 2.66 ± 0.04 3.13 ± 0.01 

Methionine 2.58 ± 0.01 1.86 ± 0.01 1.42 ± 0.06 1.38 ± 0.03 1.16 ± 0.01 

Isoleucine 5.81 ± 0.02 0.14 ± 0.01 2.60 ± 0.07 1.21 ± 0.01 3.42 ± 0.02 

Leucine 7.94 ± 0.01 8.75 ± 0.02 7.90 ± 0.40 4.62 ± 0.06 5.58 ± 0.03 

Tyrosine 4.00 ± 0.01 4.74 ± 0.01 2.83 ± 0.13 2.42 ± 0.09 2.13 ± 0.02 

Phenylalanine 4.50 ± 0.01 4.65 ± 0.01 3.03 ± 0.16 1.84 ± 0.03 2.94 ± 0.01 

Histidine 0.86 ± 0.03 0.81 ± 0.01 0.59 ± 0.03 0.32 ± 0.01 0.48 ± 0.01 

Lysine 6.08 ± 0.01 6.88 ± 0.01 6.81 ± 0.33 2.64 ± 0.10 3.88 ± 0.01 

Arginine 7.21 ± 0.03 7.46 ± 0.01 6.46 ± 2.96 2.20 ± 0.11 7.68 ± 0.01 

Proline 2.03 ± 0.02 2.03 ± 0.09 2.33 ± 0.14 16.21 ± 0.44 1.80 ± 0.04 
Table 3: Results of total amino acids of 5 microalgae expressed in g per 100 g of algal protein representing 3 

replicates for 3 experiments ± SD (n=9).  

!  
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Amino acid composition in the protein extract after high-pressure cell disruption 

Amino acids P. cruentum A. platensis C. vulgaris N. oculata H. pluvialis 

Aspartic acid 12.15 ± 0.14 8.67 ± 0.02 7.47 ± 0.01 7.27 ± 0.34 8.26 ± 0.10 

Threonine 3.39 ± 0.03 4.66 ± 0.25 5.13 ± 0.02 4.45 ± 0.26 4.36 ± 0.09 

Serine 5.57 ± 0.07 5.00 ± 0.03 5.46 ± 0.01 4.43 ± 0.05 5.59 ± 0.12 

Glutamic acid 9.76 ± 0.51  13.85 ± 0.05 10.23 ± 0.06 11.51 ± 0.12 11.41 ± 0.11 

Glycine 6.72 ± 0.09 7.67 ± 0.01 10.07 ± 0.05 9.15 ± 0.13 10.62 ± 0.09 

Alanine 11.69 ± 0.02 10.10 ± 0.04 16.93 ± 0.11 10.28 ± 0.04 17.05 ± 0.14 

Cysteine 1.21 ± 0.05 0.42 ± 0.01 0.39 ± 0.01 0.74 ± 0.20 0.87 ± 0.03 

Valine 7.06 ± 0.20 5.63 ± 0.02 6.19 ± 0.05 5.36 ± 0.02 5.33 ± 0.10 

Methionine 4.34 ± 0.10 1.09 ± 0.01 1.05 ± 0.02 1.43 ± 0.11 0.92 ± 0.41 

Isoleucine 3.91 ± 0.06 4.14 ± 0.04 3.19 ± 0.03 3.05 ± 0.26 2.52 ± 0.33 

Leucine 5.59 ± 0.06 7.13 ± 0.01 7.03 ± 0.04 7.14 ± 0.07 5.10 ± 0.17 

Tyrosine 1.74 ± 0.07 2.27 ± 0.03 2.31 ± 0.01 1.09 ± 0.10 1.35 ± 0.02 

Phenylalanine 2.01 ± 0.07 2.90 ± 0.04 2.74 ± 0.03 3.07 ± 0.08 2.31 ± 0.02 

Histidine 0.92 ± 0.02 1.15 ± 0.01 0.98 ± 0.02 1.48 ± 0.03 0.96 ± 0.01 

Lysine 3.13 ± 0.04 3.12 ± 0.04 4.95 ± 0.04 3.37 ± 0.18 3.61 ± 0.04 

Arginine 4.26 ± 0.02 4.06 ± 0.03 3.89 ± 0.03 3.20 ± 0.27 5.92 ± 0.05 

Proline 16.52 ± 0.80 18.11 ± 0.17 11.98 ± 0.15 22.93 ± 0.47 13.79 ± 0.19 
Table 4: Results of total amino acids of 5 microalgae expressed in g per 100 g of algal protein representing 3 

replicates for 3 experiments ± SD (n=9). 

!

!

 
No treatment Alkaline treatment 

High-pressure 

homogenization 

Microalgae Essential AA Non-essential AA Essential AA Non-essential AA Essential AA Non-essential AA 

P. cruentum 50.29 49.71 48.48 51.28 30.36 69.64 

S. platensis 44.94 55.06 43.53 56.22 29.83 70.17 

C. vulgaris 44.07 55.93 39.02 60.43 31.26 68.74 

N. oculata 43.30 56.70 33.48 65.90 29.36 70.63 

H. pluvialis 46.52 53.48 32.37 67.14 25.13 74.87 
Table 5: Proportion of amino acids before and after treatment for five microalgae. 

 

In conclusion, it has been noticed that after both treatments, essential and non-

essential amino acids were present but in different ratios, suggesting that the quality and 

quantity of proteins in the extract depends on the effectiveness of the cell disruption method, 

and also on the structural morphology of each microalgal cell wall. Therefore, mechanical 

treatment is more effective than chemical treatment due to its capacity to disrupt the cell 
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walls and protein aggregates. And the logical next step will be to conduct high performance 

liquid chromatography in order to identify the type of proteins released after cell disruption.  

 

  At present, the FAO and WHO recommend microalgal proteins for human 

consumption because they contain all the necessary amino acids, however, the reported 

presence of toxins in microalgae [34], re-opens the debate on this biomass as a 

supplementary food product. Notwithstanding, microalgal technology is still in its infancy 

and has a promising future in tomorrow’s food industry, although additional clarification is 

required to include microalgae in the daily food intake. 

 

Acknowledgments 

This study was supported by the French National Research Agency (ANR) in the framework 
of “the Algoraffinerie” project. The authors would like to thank Alpha Biotech for providing 
the biomass and are also thankful to Pr. Philippe Michaud, Pr. Gholamreza Djelveh and Dr. 
Sébastien Jubeau for their support. 
  



"#$%&'(!;*!B'1,C'(D!,-!%(,&'0.4*!E.5'(4&$.50.3!&#'!/,(%#,2,301$2!(,2'!,-!&#'!1'224!

 
 

 

 

+678!9:);! A?!

3.4 Aqueous extraction of proteins from microalgae: Effect of 

different cell disruption methods 

 
Carl SAFI 

1,2, Alina Violeta URSU 3, Céline LAROCHE 3, Bachar ZEBIB 1,2, Othmane 
MERAH1,2, Pierre-Yves PONTALIER 1,2, Carlos VACA-GARCIA 1,2,4 

 

1 Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro-industrielle),  
F-31030 Toulouse, France 

2 INRA, UMR 1010 CAI, F-31030 Toulouse, France 
3 Université Blaise Pascal, Polytech, Institut Pascal UMR CNRS 6022, 24, Avenue des Landais,  

63174 Aubière, France 
4 King Abdulaziz University, Jeddah, Saudi Arabia 

E-mail : +:'1#7:<,f9%7,:+9&#<' 

!
This publication has been submitted and accepted in Algal Research 

!

 

Abstract 

 
The microalgal structure has been considered in this study to evaluate the release of proteins 

in aqueous medium from five microalgae after conducting different cell disruption 

techniques: manual grinding, ultrasonication, alkaline treatment, and high-pressure treatment. 

After conducting cell disruption, proteins concentration in water was determined for all the 

microalgae and results were discussed with regard to their cell wall structure. It was found 

that the aqueous medium containing most proteins concentration followed the order: high-

pressure cell disruption > chemical treatment > ultrasonication > manual grinding. Fragile 

cell-walled microalgae were most attacked according to the following order: Haematococcus 

pluvialis < Nanochloropsis oculata < Chlorella vulgaris < Porphyridium cruentum ≤ 

Arthrospira platensis.

 

Keywords: Cell disruption, microalgae, proteins extraction, aqueous medium, cell wall 

structure 

!  
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3.4.1 Introduction 
 

Microalgae were first exploited for their capacity to accumulate proteins and 

through time, interest in this biomass took a new course especially during the last two 

decades with increasing demand for sustainable energy. This biomass proved to be an 

important source of lipids suitable for biodiesel production. Hence, the majority of studies 

were concentrated on lipids extraction for energetic purposes, neglecting in way the potential 

of microalgae to produce proteins and other highly added value components. However, up 

till now all studies and estimations confirmed that production of biodiesel from microalgae 

cost remains high [55, 56] and far from being competitive with fossil fuel. Researchers are 

since then turning towards valorising other components present in the microalgae such as 

proteins, pigments, dyes, sugars and other valuable components. 

 

Extracting the totality of a specific component is often prevented by the intrinsic 

rigidity of cell wall of microalgae. To overcome this barrier, a preliminary operation unit of 

cell disruption is required to permit complete access to the internal components and facilitate 

the extraction process. Hence, many cell disruption techniques have been tested to break the 

cell wall of microalgae such as bead milling [50, 57], ultrasonication [49, 58, 59], microwave 

radiation [51], enzymatic treatment (Fleurence 1999), cell homogenizer [28] and high-

pressure cell disruption [60] to recover different components. The efficiency of cell 

disruption was usually evaluated by extracting a single component especially lipids before 

and after applying the treatment or by microscopic observation. To our knowledge, studies 

on microalgal proteins were focused on evaluating the nitrogen to protein conversion factor 

[5-7, 42, 45] or finding the best method to analyse proteins and differentiate between soluble 

and non-soluble proteins [31] or analysing the behaviour of proteins at the air/water interface 

[40]. Therefore, the present study focuses on evaluating the effect of different cell disruption 

techniques on protein extractability in water of five different microalgae having different cell 

wall ultrastructures. Namely, the Cyanobacteria Arthrospira platensis, which has a relatively 

fragile cell wall, composed mainly of murein and no cellulose [24, 25]. Then the 

Chlorophycea Chlorella vulgaris and the Eustigmatophyceae Nanochloropsis oculata, which 

have a cell wall mainly composed of cellulose and hemicelluloses [26]. Another 

Chlorophycea Haematococcus pluvialis has a thick trilaminar cell wall composed of 

cellulose and sporopollenin [27-29]. The composition of its cell wall, similar to that of 
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spores, makes this microalga less permeable and extremely mechanically resistant [30]. The 

Rodophyta Porphyridium cruentum lacks a true cell wall but instead it is encapsulated by a 

layer of sulfurized polysaccharides [18-23]. In addition, the microalgae selected in this study 

have a cytoplasm containing soluble proteins, and they all have a chloroplast except for A. 

platensis which instead has thylakoids bundles circling the peripheral part of the cytoplasm 

with their associated structures, the phycobilisomes (containing the phycobiliproteins) 

present on the surface of the thylakoids like in the chloroplast of P. cruentum [24]. 

Furthermore, the chloroplast also contains soluble proteins and a central pyrenoid, which is a 

non-membrane, bound organelle composed of RubisCO. 

 
Proteins released in the aqueous medium were evaluated and commented in 

accordance with the cell wall ultrastructure of each microalga together with the effect of each 

cell disruption technique used in this study. 

 

3.4.2 Materials and methods 
 
3.4.2.1 Microalgae 

 
The microalgae selected are: the Cyanobacteria Arthrospira platensis (strain PCC 

8005), two different Chlorophyceae Chlorella vulgaris (strain SAG 211-19), and 

Haematococcus pluvialis (unknown strain), one Rhodophyta Porphyridium cruentum (strain 

UTEX 161), and the Eustigmatophyceae Nanochloropsis oculata (unknown strain).  

Each microalga was cultivated in a different culture medium, and therefore Hemerick 

medium was used for P. cruentum, Sueoka medium for C. vulgaris, Basal medium for H. 

pluvialis, Conway medium for N. oculata and Zarrouk medium for A. platensis. All grown in 

batch mode in an indoor tubular Air-Lift PhotoBioReactor (PBR, 10 L) at 25°C [13] 

inoculated from a prior culture in a flat panel Air-Lift PBR (1 L). Culture homogenization 

was achieved by sterile air injection at the bottom of the PBR. The pH and temperature were 

recorded by a pH/temperature probe (Mettler Toledo SG 3253 sensor) monitored by the 

acquisition software LabVIEW. The pH was regulated at 7.5 with CO2 bubbling. Microalgae 

were harvested during the exponential growth phase and concentrated by centrifugation, and 

then supplied as frozen paste from Alpha Biotech (Asserac, France). The biomass contained 

20-24% dry weight.  
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3.4.2.2 Reagents  

 
Lowry kit (prepared mixture of Lowry reagent and BSA standards and 2 N Folin-

Ciocalteu reagents) from Thermo Scientific. NaOH granules and HCl 37% were purchased 

from Sigma Aldrich and used as received. 

!
3.4.2.3 Microalgae pre-treatment   

 
3.4.2.3.1 Freeze-drying   
 

The frozen paste of crude microalga (about 70 grams) was directly introduced to a 

Fisher Bioblock Scientific Alpha 2-4 LD Plus device (Illkirch, France). The pressure was 

reduced to 0.010 bar and the temperature was further decreased to -80°C and freeze-drying 

was conducted under vacuum for 48 h. Dry biomass was stored under anhydrous conditions. 

Before any disruption treatment, the cells were vigorously rehydrated in distilled water to 

insure a good homogeneity of the sample. 

3.4.2.4 Microlagae treatments 
 

3.4.2.4.1 Blank 
 

Cells (0.5 g) were dispersed for 2 h in 25 mL distilled water and the supernatant was 

recovered by centrifugation at 10000g for 10 min at 20°C for protein analysis. This treatment 

was considered as a blank to compare with the other extraction treatments. 

!

3.4.2.5 High-pressure cell disruptor 

 
The “TS Haiva series, 2.2-kW” disrupter from Constant Systems Limited 

(Northants, UK), was used with two passages at the pressure of 2700 bar, with a biomass 

concentration of 2% dry weight. (0.5 g of dry cells dispersed in 25 mL distilled water).  

3.4.2.6 Ultrasonication 
 

This treatment was carried out using a VC-750HV (20 kHz, probe 13 mm) 

ultrasonic processor, where 0.5 g of dry cells were dispersed in 25 mL distilled water. Total 

treatment time was 30 min in cycles of 5 seconds of ultrasonication and 15 seconds of resting 

time in order to prevent overheating the sample.  
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3.4.2.7 Manual grinding 

 
Dry microalgae were manually ground using a mortar for 5 min, and then 0.5 g were 

dispersed in 25 mL distilled water for 2 h. Samples were taken for protein analysis. 

3.4.2.8 Chemical treatment 
 

Mother solutions were prepared with approximately 500 mL of distilled water and 

some drops of 2 N NaOH to adjust the solution to pH 12 for maximum protein solubility. A 

sample of 0.5 g of freeze-dried biomass was added to 25 mL of mother solution. The mixture 

was then stirred for 2 h at 40°C. The separation of the supernatant from the pellet was 

conducted by centrifugation at 10000g for 10 min at 20°C. The supernatant was then 

adjusted to pH 3 with 0.1 M HCl in order to precipitate the proteins. The protein isolate was 

collected after centrifugation at 10000g for 10 min at 20°C and the pellet was neutralised 

with 0.01 M NaOH [40]. Samples were taken for protein analysis. 

 
3.4.2.9 Lowry method  

 
After every disruption treatment, the liquid/solid separation was conducted by 

centrifugation at 10000g for 10 min at room 20°C and the supernatant was analysed by the 

Lowry method. A calibration curve was prepared using a concentration range of bovine 

standard albumin from 0 to 1500 µg mL-1. In order to measure the protein content, 0.2 mL of 

each standard or samples containing the crude protein extract were withdrawn and then 1 mL 

of modified Lowry reagent was added to each sample. Each sample was then vortexed and 

incubated for exactly 10 min. After incubation, 100  mL of Folin-Ciocalteu Reagent (1 N) 

were added and again vortexed and incubated for exactly 30 min. The blue colour solution 

was then measured at 750 nm with a UV-1800 Shimadzu spectrophotometer after being 

zeroed with blank sample containing all the chemicals without the extract [8]. 

 
3.4.2.10 Elemental analysis 

 
Total nitrogen was evaluated by using a PerkinElmer 2400 series II elemental 

analyser. Microalgal samples of 2 mg were placed in thin capsules and then heated at 925°C 

using pure oxygen as the combustion gas and pure helium as the carrier gas, and then 

evaluating the nitrogen percentage. For all the previous analyses, three experiments were 
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conducted separately on all the microalgae. Measurements of three replicates for each sample 

were reproducible within ± 5% of the respective mean values. 

3.4.2.11 Confocal laser scanning microscopy 
 

Cells were observed with an SP2-AOBS confocal laser-scanning microscope from 

Leica microsystems (Nanterre-France). The fluorochrome calcofluor white that binds to the 

cell wall was added to the samples. Excited at 488 nm, the cells are identified coloured in 

light blue.   

3.4.3 Results  
!

The total proteins content of crude microalgae was determined by obtaining total 

nitrogen through elemental analysis and converting it into protein percentage by using the 

conversion factor found for each crude microalga in the study conducted by Safi et al. 

(2012b). In all cases, the total protein content was high, ranging from 46 to 57%w (Table 1). 

 

Microalga Total nitrogen (%.dw-1) Total proteins (%.dw-1) 

H. pluvialis 8.27±0.08 51.73±0.43 

N. oculata 7.41±0.40 46.55±2.14 

C. vulgaris 7.81±0.18 49.59±1.04 

A. platensis 8.53±0.20 53.51±1.10 

P. cruentum 9.04±0.70 57.33±3.84 
                       Table 1: Protein and nitrogen content for each microalga based on three replicates  

           for three experiments ±SD (n=9).  

 

The fraction of hydro-soluble proteins released in water after each cell disruption 

technique was presented in Fig 1 after being quantified by the Lowry method. The fraction of 

hydro-soluble proteins from total proteins present in the microalgae was also evaluated and 

all these results are gathered in Table 2. 
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Microalga Water 

Manual 

grinding Ultrasonication Chemical Disintegration 

H. pluvialis 6.46±0.23 7.43±0.06 8.47±0.04 15.78±0.11 41.04±3.66 

N. oculata 8.09±0.05 9.75±0.03 13.53±0.07 31.09±2.02 52.28±0.58 

C. vulgaris 9.71±0.48 8.97±0.09 18.15±0.03 33.20±0.02 52.78±0.58 

A. platensis 19.01±0.06 35.05±1.16 47.13±0.96 53.36±0.22 78.02±2.82 

P. cruentum 24.83±0.32 49.48±0.67 67.01±0.90 73.50±1.19 90.00±2.45 
Table 2: Fraction of hydro-soluble proteins from total proteins released in the aqueous phase after each cell disruption 

based on three replicates for three experiments ±SD (n=9). It was calculated according to the following equation:  

*Proportion of hydro-soluble protein in total protein!"!
!"#$%&

!"#!!!!"#
!!""!#$%!

*Nea: Total nitrogen % (d.w) obtained by elemental analysis. 

*NTP: Nitrogen-to-protein conversion factor from (Safi et al. 2012b). 

*PLowry: Hydro-soluble protein % (d.w) calculated by Lowry method after each cell disruption method 

applied. 

 
Five cell disintegration techniques were compared, with a probe done with distilled 

water in order to evaluate the effect of water on protein exiting by diffusion through the 

membranes and walls. The recovery yield ranges from 6.5%w with H. Pluvialis to 25%w 

with P. cruentum. The latter is considered as fragile and the former as resistant. Among the 

tested techniques, high-pressure cell disintegration was the best technique for all the 

microalgae with a recovery yield from 41% to 90%. Moreover, the lowest protein 

concentration for all microalgae was obtained by water treatment and manual grinding 

especially for rigid cell walled microalgae. A relative difference was noticed in the 

concentration of proteins released between the microalgae with fragile and rigid cell walls. P. 

cruentum released the most compared to A. platensis. After ultrasonication a minor increase 

in protein concentration is noticeable for the green microalgae especially for C. vulgaris, and 

a more important increase was observed for the A. Platensis and P. cruentum. Furthermore, 

the chemical treatment showed an important increase of protein concentration released in 

water for all microalgae without forgetting that statistically, N. oculata and C. vulgaris 

released the same protein concentration (Fig 1).  
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!
Figure 1: Percentage of proteins released in water after each cell disruption technique per dry 

weight of biomass based on three replicates for three experiments ±SD (n=9). 

 
In order to better interpret these results, microscopic observation was carried out. 

The laser scanning confocal microscopic images presented in Fig 2 showed that in the cases 

of P. cruentum and A. platensis a total disruption of the cell wall occurred after high pressure 

cell disruption, whereas for C. vulgaris, N. oculata and H. pluvialis, the majority of cells 

were completely disrupted, but few cells maintained their globular form. 
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!

Figure 2: Confocal laser scanning microscopy of five microalgae before (right) and after (left) high-pressure cell 

disintegration. A and B C. vulgaris, C and D A. platensis, E and F P. cruentum, G and H H. pluvialis, I and  J N. 

oculata. 

 

3.4.4 Discussion 
!

The goal of the present study was to highlight the release of proteins in the aqueous 

medium after different cell disruption techniques by attributing the results not only of the 

mechanical rigidity of the cell wall of each microalga but also to its chemical structure. 

Indeed, having a deep insight on the ultrastructure is necessary in order to evaluate the 

release of components after any treatment conducted on the cells. This approach has been 

considered in a study conducted by Jubeau et al. (2012) in order to selectively extract 

intracellular components such as proteins and phycoerythrin after cell disruption of P. 

cruentum. Thus, the release of proteins in the aqueous medium depends on the cell disruption 

technique used as well as the ultrastructure of every species.  

 
 Osmosis is the net movement of solvent (water) molecules through a partially 

permeable membrane into a region of higher solute concentration. Water usually travels 

through the membrane, the vacuole, the chloroplast, the mitochondria by diffusing across the 
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phospholipid bilayer via water channels (aquaporins), which are proteins embedded in the 

cell membrane that regulate the flow of water. Hence, water treatment is not considered as a 

cell disruption technique, but it was carried out in this study as a reference for the other 

techniques conducted in water. Surprisingly, the dispersion of cells in water released up to 

19-25% of total proteins per dry weight (Table 2) from A. platensis and P. cruentum, and 

colouring the water in light blue for the former and light red for the latter. This indicates that 

water not only did not face resistance from the cell walls of both microalgae but also 

succeeded to penetrate the intra-thylakoids space of A. platensis and permeated the 

chloroplast of P. cruentum to slightly dissolve the phycobilisomes present on the thylakoids 

membranes. On the contrary, osmosis phenomenon was not strongly effective for the green 

microalgae, which are known to have rigid cell walls that kept resisting water to permeate 

the structure leading thus to only 6-10% proteins recovery (Table 2). 

 
 Taking into account the standard deviation of three samples considered for the green 

microalgae (C. vulgaris, N. oculata and H. pluvialis), we could affirm that at 95% of 

confidence level, all the values of released proteins after water treatment and manual 

grinding shown in Fig 1 are statistically equivalent indicating again the resistance of their 

cell walls after manual grinding. This was not the case for the A. platensis and P. Cruentum 

due to the stronger coloration of water in phycobilisomes, accompanied with increase in 

proteins concentration designating that the internal structure of both microalgae is being 

more altered, and simultaneously facilitating the penetration of water to dissolve more 

proteins. 

 
 Ultrasonication produces cavitation in cells and facilitates cell disintegration; it did 

not make any significant change for H. pluvialis, but showed minor effect on the cell wall of 

N. oculata and C. vulgaris by possibly giving difficult access for water to extract 

cytoplasmic proteins without altering the structure of their chloroplast. Concentration of 

proteins and coloration kept increasing for the fragile cell-walled microalgae by releasing 47-

68% of protein from total proteins per dry weight. 

 
Chemical treatment was a key treatment that showed significant increases in 

proteins concentration compared to the previous treatments. P. cruentum lacks a well-defined 

cell wall and since protein solubility is dependent of pH, the high pH easily solubilised 

proteins without any resistance from its pseudo-cell wall. But in the case of the green 
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microalgae, the sodium hydroxide is able to perform a process similar to mercerisation, by 

penetrating the microcrystalline structure of the cellulosic cell walls of the green microalgae. 

The alkaline solution can also easily dissolve the hemicelluloses attached to cellulose as it 

has been demonstrated during the refining of lignocellulosic substrates (straw, bran, wood). 

In addition, it indicates that this treatment gave more access to their cytoplasmic proteins and 

at 95% of confidence level, chemical treatment recovered the same concentration of proteins 

from N. oculata and C. vulgaris (Fig 1). However, the sporopollenin contained in the most 

rigid cell wall (H. pluvialis) is known to be extremely resistant to chemical agents [30]. A. 

platensis has a cell wall rich in amino sugars cross-linked with oligopeptide chains. The 

former are labile in alkaline conditions by deamidation of the N-acetylglucosamine and the 

latter are soluble in alkaline conditions. The cell wall becomes therefore permeable allowing 

the alkaline extraction of proteins (Safi et al. 2012b). Hence, all these results demonstrate 

that the chemical action acts in synergy with the mechanical characteristics of the cell wall.  

 

High-pressure cell disruption was the most efficient technique for all microalgae; at 

95% confidence level the concentration of proteins was statistically the same for the green 

microalgae with evidence that the majority of the cells were broken while some of them 

remained intact (Fig 2). The chloroplast of these species was also partially damaged as it is 

revealed by the coloration in light green (chlorophyll) of the aqueous extract. Indeed, 

chlorophyll is a hydrophobic pigment; its presence in the aqueous phase indicates the 

formation of micellar structures and signals an alteration of the chloroplast. The other 

indication is that some cell debris containing the green pigment were extremely reduced in 

size and did not precipitate in the pellet after centrifugation at 10000g leading to a greenish 

colour of the supernatant as it occurred in a previous work by Gerde et al. (2012). Hence, 

after two passages, water had access to cytoplasmic proteins and partially infiltrated the 

chloroplast to recover almost half of proteins from total proteins present inside the rigid cell-

walled microalgae (Table 2) signalling again the resistance of their cell wall. On the 

contrary, as expected according their fragile cell wall (Table 2), A. platensis and P. cruentum 

did not show much resistance, and the protein concentration yielded 78% for the former and 

90% for the latter complemented with an important coloration of the aqueous extract for both 

microalgae and a pellet having lost its red coloration for P. cruentum. This explanation was 

also supported by microscopic observation showing that their structure was completely 

altered (Fig.2). 
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The same order of rigidity was obtained in the study of Safi et al. (2012b) that took 

into account the values of the conversion factors before and after proteins extraction and then 

attributed them to the rigidity of the cell walls. This result shows that to compare the 

efficiency of cell disruption technology, it is more accurate to use fragile cell like P. 

cruentum. 

 
The present study brings additional insight on understanding the recovery of 

proteins after different cell disruption. Hence, among all the techniques used the cell 

disruptor was the most efficient but not enough to recover more than 50% of the proteins for 

the green microalgae indicating that more passages are required to completely disrupt their 

ultrastructure, and thus more energy input will be necessary. The process would also require 

a life cycle assessment to evaluate the cost input and its environmental impact. 

 

 

 

Acknowledgments 

This study was supported by the French National Research Agency (ANR) in the framework 
of “Algoraffinerie” project. The authors would like to thank Alpha Biotech for providing the 
biomass and are also thankful to Pr. Philippe Michaud, Pr. Gholamreza Djelveh and Dr. 
Sébastien Jubeau for their support. 
  



"#$%&'(!;*!B'1,C'(D!,-!%(,&'0.4*!E.5'(4&$.50.3!&#'!/,(%#,2,301$2!(,2'!,-!&#'!1'224!

 
 

 

 

+678!9:);! ):A!

3.5 Understanding the effect of cell disruption methods on the 

diffusion of Chlorella vulgaris proteins and pigments in the 

aqueous phase 
 

Carl SAFI 
1,2, Christine FRANCES 3,4, Alina Violeta URSU 5, Céline LAROCHE 5,  

Cécile POUZET 6, Carlos VACA-GARCIA 1,2,7, Pierre-Yves PONTALIER 1,2 
 

1 Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro-industrielle),  
31030 Toulouse, France 

2 INRA, UMR 1010 CAI, F-31030 Toulouse, France 
3 Université de Toulouse; INP, UPS; LGC (Laboratoire de Génie Chimique); B.P. 84234,  

4, Allée Emile Monso, F-31432 Cedex 4, France 
4 CNRS; LGC; F-31432 Cedex 4, France 

5 Université Blaise Pascal, Polytech, Institut Pascal UMR CNRS 6022, 24, Avenue des Landais, 
63174 Aubière, France 

6 Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale,  
F-31320 Castanet-Tolosan, France 

7 King Abdulaziz University, Jeddah, Saudi Arabia 

E-mail : +:'1#7:<,f9%7,:+9&#<' 
 

!
This publication has been submitted to Bioresource Technology 

 

Abstract 

The following study brought additional insight on understanding the diffusion behaviour of 

proteins and pigments of Chlorella vulgaris in the aqueous medium, after testing different 

cell disruption methods. Results were revealed by microscopic observations, by quantifying 

the concentration of the biomolecules of interest, and by calculating their diffusion 

coefficient. Hence, microscopic observations showed intact cells after applying chemical 

hydrolysis and ultrasonication. However, the majority of cells lost their globular shape after 

bead milling and high-pressure homogenization. Additionally, the concentration of proteins 

increased by following the order: ultrasonication < chemical hydrolysis < high-pressure 

homogenization < bead milling. On the other hand, their diffusion followed a different order: 

chemical hydrolysis > bead milling > ultrasonication > high-pressure homogenization. 

Pigments were not detected in the aqueous phase after chemical hydrolysis, but for the 

mechanical treatments their concentration and their diffusion followed the similar order like 

proteins. 
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Hence, based on these results, diffusivity of these biomolecules is not directly related to the 

increase of their concentration in the aqueous phase. This suggests that even if cells were 

completely broken, the diffusivity can follow the phenomenon of hindered biomolecules 

diffusion, which implies that somehow cells were not completely disrupted. 

 

Keywords: Cell wall, ultrastructure, release kinetics, aqueous medium, cell disruption 
!  
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3.5.1 Introduction 

 
Several years of intensive research for biofuel production from microalgae and the 

main obstacle remained the same; the overall production cost is too high to be competitive in 

the market and is unsustainable according to many life cycle assessment (LCA) [34-38, 61-

64]. Thus, the last few years the question for the possibility of finding a solution to reduce 

the production cost became preponderant. Nowadays, it is agreed that microalgae would 

bring more benefits if they were completely valorised for their multiple highly added value 

components in the framework of a biorefinery, which will possibly inverse the slope from 

deficit to profit. However, the selection of the species is a major criterion, and one of the 

microalga that took much attention during the last century is Chlorella vulgaris. 

  

It is a unicellular microscopic species with a mean diameter ranging from 2 to 10 

mm [65, 66]. It is easy to grow, multiplies rapidly, resistant to harsh conditions and invaders, 

and accumulates a variety of highly added components. The high protein content was the 

main signal to increase interest on this microalga as an unconventional protein source. The 

comparison of its protein content to reference food protein recommended by World Health 

Organisation [67] and Food and Agriculture Organization [68] is favourable and even better 

since its protein content is higher then some reference food protein and also contains an 

interesting set of essential and non-essential amino acids [3, 42]. Proteins are located in the 

different parts of the cells; they represent part of the cell wall as well as the cytoplasm, the 

chloroplast and all the other organelles inside the barrier of the cell wall. Additionally, when 

C. vulgaris is grown under favourable conditions, it is capable to accumulate 1-2% 

chlorophyll of its dry weight, which gives it the dense green colour masking the colour of 

less concentrated pigments such as astaxanthin and other carotenoids. These pigments are 

located in the thylakoids (chlorophyll and some carotenoids) of the chloroplast and some (β-

carotene) are associated to the lipid droplets synthesised in the chloroplast [69].   

 

C. vulgaris has a rigid cell wall, mainly composed of cellulose, hemicellulose, β1-3 

glucan, glucosamine, proteins, lipids and ash [70-72]. As in terrestrial plants, the most 

common skeletal polysaccharide is cellulose, but during maturation the cell wall gradually 

increases in thickness reaching 17-21 nm [73], where a microfibrillar layer is detected 

representing a chitosan-like layer [74, 75], which brings additional rigidity to its cell wall. 
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The thickness and composition are not constant because they can change based on different 

growth and environmental conditions [76-78]. 

 

Many studies considered breaking the cell wall of C. vulgaris by using different 

methods such as bead milling [50, 79], ultrasonication [51, 80], lysing buffer [81], high-

pressure homogenization [82], microwaves [83] and enzymatic treatment [84, 85] in order to 

liberate the internal components especially lipids to transform them into biodiesel. However, 

a deep understanding on the interaction of the cell wall with the cell disruption technique 

leading to the release of the internal components has not been evoked yet. To our knowledge 

the attribution of the ultrastructure of the cells to the release of a specific component was 

never been deeply considered except in the study of [60] where this approach was considered 

for the release of proteins and phycoerythrin from Porphyridium cruentum after applying 

high-pressure cell disruption. 

 

The main purpose of this study is to understand the diffusion behaviour of proteins 

and pigments (chlorophylls and carotenoids) in the aqueous phase after applying different 

cell disruption methods. Pigments quantification was used as marker for chloroplast 

alteration in order to explore the effect of each cell disruption technique on the integrity of 

the cell wall as well as the chloroplast of C. vulgaris. The techniques used are chemical 

hydrolysis, ultrasonication, bead milling and high-pressure homogenization. 

 

3.5.2 Materials and methods 

 
3.5.2.1 Microalga and materials 

 
Sueoka culture medium was used for growing C. vulgaris (strain SAG 211-19) 

grown in batch mode in an indoor tubular Air-Lift PhotoBioReactor (PBR, 10 L) at 25°C, 

inoculated from a prior culture in a flat panel Air-Lift PBR (1 L). Culture homogenization 

was achieved by sterile air injection at the bottom of the PBR. The pH and temperature were 

recorded by a pH/temperature probe (Mettler Toledo SG 3253 sensor) monitored by the 

acquisition software LabVIEW. The pH was regulated at 7.5 with CO2 bubbling. The 

microalga was harvested by centrifugation during the exponential growth phase and supplied 

as frozen paste from Alpha Biotech (Asserac, France). The biomass contained 28% dry 

matter constituted of 55% proteins, 2% Chlorophyll and 1% carotenoids. 
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Glucanex was purchased from Sigma Aldrich. Chemicals were purchased from different 

distributor: Methanol 99.9%, HCl 37%, NaOH beads, H2SO4 97% and sodium phosphate 

buffer (pH 6.5) from Sigma Aldrich, Lowry kit (prepared mixture of Lowry reagent and BSA 

standards and 2 N Folin-Ciocalteu reagent) from Thermo Scientific. 

 

3.5.2.2 Chemical hydrolysis 
 

Mother solutions were prepared with approximately 500 mL of distilled water and 

some drops of 2 N NaOH were added to adjust the solution to pH 12 for maximum protein 

solubility. A sample of 0.5 g of freeze-dried biomass was added to 25 mL of mother solution. 

The mixture was then stirred for 2 h at 40°C. The separation of the supernatant from the 

pellet was conducted by centrifugation at 10000g for 10 min at 20°C. The supernatant was 

then adjusted to pH 3 with 0.1 M HCl in order to precipitate the proteins. The protein isolate 

was collected after centrifugation at 10000g for 10 min at 20°C and the pellet was 

neutralised with 0.01 M NaOH. Samples were taken for protein and pigments analysis. 

 

3.5.2.3 Bead milling 
 

Cells were treated in a stirred bead mill (LABSTAR-NETZCH). Disruption was 

conducted using 0.3-0.5 mm Y2O3-stabilized ZrO2 grinding beads. Milling time for both 

trials was 1-60 min with a 1/13 solid water ratio (w/v). The process was performed in a batch 

mode. The initial cell suspension was put into a pre-dispersion tank, stirred at 350 rpm in 

order to avoid cell sedimentation and ensure a good homogeneity of the solid concentration. 

During the runs, the suspension was continuously pumped from the tank to the mill inlet 

thanks to a peristaltic pump at a flow rate of about 30L/h and sent back again into the 

dispersion tank through a cartridge maintaining the beads inside the chamber. Agitation 

speed of the cell suspension and the beads within the grinding chamber was 2500 rpm. The 

bead mill contained an integrated cooling system to prevent overheating and thus after 1 h 

milling the temperature did not exceed 33°C. At the end of the runs, the broken cells were 

recovered for further processing. 
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3.5.2.4 Ultrasonication 

 
This treatment has been carried out using a VC-750HV (20 kHz, probe 13 mm) 

ultrasonic processor, where 0.5 g of dry cells were dispersed in 25 mL distilled water. 

Ultrasonication time was 30 min with 5 s of ultrasonication and 15 s of resting time to 

prevent overheating the sample. The separation was conducted by centrifugation at 10000g 

for 10 min at 20°C and the supernatant was analysed for proteins. 

3.5.2.5 High-pressure homogenization 
 

The “TS Haiva series, 2.2-kW” disrupter from Constant Systems Limited, 

Northants, UK, was used. The operating parameter is the pressure (2700 bars), cell 

concentration (2% dry weight) and number of passages (two passages). Before treatment the 

cells were well mixed in distilled water to insure a good homogeneity of the sample. All the 

tests were performed in triplicate. After disruption, samples were centrifuged at 10000g for 

10 min at 20 °C. The separation was conducted by centrifugation at 10000g for 10 min at 

20°C and the supernatant was analysed for proteins.!

3.5.2.6 Lowry method  
 

The procedure involves reaction of proteins with cupric sulphate and tartare in an 

alkaline solution, leading to the formation of tetradentate copper protein complexes. The 

addition of the Folin-Ciocalteu reagent leads to the oxidation of the peptide bonds by 

forming molybdenum blue with the copper ions. Therefore, a calibration curve was prepared 

using a concentration range of bovine standard albumin from 0 to 1500 mg mL-1. In order to 

measure the protein content, 0.2 mL of each standard or samples containing the crude protein 

extract were withdrawn and then 1 mL of modified Lowry reagent was added to each 

sample. Each sample was then vortexed and incubated for exactly 10 min. After incubation, 

100  mL of Folin-Ciocalteu Reagent (1 N) were added and again vortexed and incubated for 

exactly 30 min. The blue colour solution is then! measured at 750 nm with a UV-1800 

Shimadzu spectrophotometer after being zeroed with blank sample containing all the 

chemicals without the extract [8]. 
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3.5.2.7 Pigments analysis 

 
Conducted by using the equations of. Thus, 200 mL of aqueous extract were mixed 

with 1300 mL pure methanol and then incubated in dark for 1h at 45°C. Further on, the 

samples were centrifuged at 10000 g for 10 min at 20°C. The organic phase containing the 

pigments was recovered and analysed using the following equations [86]: 

X(&:1!+01('(/0311!µ2_6P!g!\"K4ABBA!L!;DC-]!h!\B4ABG"!L!;DDC]!!!!!

X(&:1!+:'(&9%(,)7!µ2_6P!g!B!L!;BGN!!

3.5.2.8 Diffusivity 
 

In order to understand the behavior of the biomolecules after cell disruption, it is 

possible to evaluate the experimental diffusivities. Diffusion of neutral macromolecules in 

dilute solution is well described by an expression that employs the frictional coefficient of 

the molecule, such as Stokes-Einstein equation. However for biological macromolecules, 

such a simple equation cannot be used, because they show a strongly non-ideal behavior, in 

diluted solutions [87]. Nevertheless, the experimental results are not so far from the models 

and give for lysozyme a value of about 1.1 10-10 m2/s [88]. In the present work, it is difficult 

to define a standard value because our analysis was carried out on total proteins. 

!

J9%+9! :! 21(@:1! ),<<*7,(%! +(9<<,+,9%&! ?:7! +:1+*1:&9)! *7,%2! &09! <(11(?,%2! 9M*:&,(%>!

  
∆C
∆t

=D
∆C*

∆x
!?09'9>!!

!

∆&!is laps time (s) 
∆5! is the concentration difference obtained with regard to time (∆t) for a considered solute 
(kg/m3) 
∆5i! is the gradient concentration between the concentration at equilibrium in the liquid 
phase, and the concentration at the instant t (kg/m3)!
∆L!is the length of the co-called boundary layer (m) 
Y!is the diffusivity of the macromolecule (m2/s) 
Definition of the boundary layer thickness is rather difficult in this case since because of the 

change in the cell size and of the hydrodynamic conditions. Its calculation used the classic 

equation in the case of laminar flow: 
  
∆x =

5.L
Re

!jGKk!
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Where L is the diameter of the particle (m) and Re the Reynolds number. Since the 

hydrodynamic conditions are different for all the apparatus and the size of the cell can 

change with time, and therefore an available standard condition has been defined for all the 

conditions with a Reynolds number of 0.2 and a particle size of 10-6m. Hence, the 

comparison of the value between all the extraction procedures will be difficult especially 

when the mixing of the solution is intense and when the cell size is highly reduced (as in 

bead milling). The diffusion was calculated for protein and, when possible, for chlorophyll 

and carotenoids. 

 

3.5.2.9 Confocal microscopy 
 

Cells were observed with an SP2-AOBS confocal laser-scanning microscope from 

Leica microsystems (Nanterre-France). The fluorochrome calcofluor white that binds to the 

cell wall was added to the samples. Excited at 488 nm, the cell walls are identified coloured 

in light blue and at 633 nm where the internal part of the cells are coloured in red.  

!

3.5.3 Results and discussion 

 
The cell wall is a complex entity with unique characteristics related to the growth 

phase of a given microalga species; it differs in thickness, rigidity and constituents. A 

microalga cannot long exist unless its body is firmly covered and its organelles possess the 

collective mechanical strength of the cell walls in order to insure a defence mechanism as 

well as controlling the intracellular and extracellular transport of the biomolecules. The 

multiple variations observed in microalgae cell walls, ultrastructures and compositions 

distinguish them from each other. Thus, C. vulgaris is basically distinguished by its rigid cell 

wall, its high chlorophyll and protein concentration. Therefore, conducting a treatment on its 

cell wall is necessary to increase assimilation and bioavailability of the intracellular 

biomolecules into the extraction solvent. Nonetheless, the unit operation of cell disruption 

cannot be applied without considering the integrity of the biomolecules of interest in the 

downstream process. Hence, all the techniques applied on C. vulgaris in this study 

considered the temperature to preserve the integrity the biomolecules.  

 

Microscopic observations represent a qualitative approach for the success of 

different cell disruption techniques. Thus, before treatment cell wall appeared ring like shape 
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at 488 nm colored in blue and surrounding the internal part excited at 633 nm and appears 

colored in red at this wavelength (Fig 1). Their diameter ranged from 3-7 µm, which 

corresponds to the findings in the literature [65, 66, 73].  

!
Figure 1: Isolated cell of Chlorella vulgaris before applying a cell disruption treatment. 

 
3.5.3.1 Chemical hydrolysis  
 

It is estimated that 20% of C. vulgaris proteins are bound to the cell wall [90], and 

overall proteins of this species have molecular weights ranging from 12-120 kDa [91, 92]. 

During chemical hydrolysis, the concentration of hydro-soluble proteins in the aqueous 

phase increased in terms of stirring time and reached 26 ± 0.8 % on a dry weight basis after 

24 h. This suggests that the alkaline solution slowly weakened the cell wall of C. vulgaris by 

partially penetrating its structure, and by firstly recovering the proteins bound to the cell 

wall. Further on, it hardly recovered some small sized cytoplasmic proteins that managed to 

pass through the pores of the weakened membrane that hindered in the same time the 

diffusion of larger size proteins. Furthermore, the lack of pigments in the aqueous phase 

implies that the alkaline solution was not capable to penetrate the phospholipid bilayer of the 

chloroplast in which pigments such as chlorophyll and carotenoids are embedded inside the 

thylakoids. Moreover, the analysis of their diffusivity in the aqueous phase reinforced the 

previous approach toward proteins. Hence, by following the evolution of proteins diffusivity 

in terms of time, a first set of proteins diffuses rapidly (after 10 s) in the aqueous phase. 

However, few minutes afterwards, the proteins diffusion became very slow, with a very low 

value (4.10-9 m2/s) for the diffusion coefficient that is lower than the diffusion coefficient of 

proteins in water [87, 88]. A decreasing of the diffusion coefficient is also discussed when 

the protein concentration increase in the extract, which was not the case. Therefore, a 

plausible explanation must be with regard to the decreasing of the gradient concentration. 

Hence, it appears that the extraction leads to the solubilization of surface proteins, which 
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diffuse rapidly in the solution. When the pool of accessible proteins decreases, the recovery 

rate decreases simultaneously as presented in figure 2. Through this assessment, it can be 

supposed that sodium hydroxide does not completely hydrolyze the cell wall of C. vulgaris, 

which explains the low recovery yield as well as the lack of pigments in the solution. Such 

values usually describe hindered proteins diffusion inside a pore, and confirm that no cell 

disruption occurred due to the resistance of the rigid cell wall. Moreover, microscopic 

observations at different wavelengths showed intact cells that maintained their globular 

shape after chemical hydrolysis (Fig 2). This observation supports the assessment mentioned 

previously for this method. 

         A     B 

!
!!!!!!!!!!!C 

!
Figure 2: Assessment of chemical hydrolysis. A- Percentage of hydro-soluble protein concentration 

per dry weight of biomass. B- evolution of proteins diffusion coefficients in terms of extraction time. 

C- Microscopic observation of the cells after treatment.  

 
3.5.3.2 Ultrasonication 

 
The functionality of ultrasonication dwells in creating cavitation on the cell wall. In 

another term, it occurs when vapor bubbles of a liquid form in an area where pressure of the 

liquid is lower than its vapor pressure. These bubbles grow when pressure is negative and 

compress under positive pressure, which causes a violent collapse of the bubbles. If it occurs 
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close to cell walls, possible damage can occur and the intracellular components are released 

[83]. Nonetheless, some points such as the characteristics of the cell wall of the species 

(thickness, composition, rigidity) prohibit or contribute to the effectiveness of this 

technology, and therefore after 30 min of ultrasonication (Fig 3), the concentration of hydro-

soluble proteins in the aqueous phase followed the same trend compared to the chemical 

hydrolysis but with lower quantity of proteins liberated (9% per dry weight after 25 min). 

Moreover, the presence of pigments indicated that the treatment produced small cavities on 

the cell wall as well as on the chloroplast allowing some proteins to penetrate through the 

membrane of the cells. Furthermore, taking into account the diffusivity of all the 

biomolecules, proteins exit rapidly and then the diffusion coefficient to a value of 2.10-9 

m2/s. This suggests, that this behavior is linked to the diffusion of soluble proteins after cell 

wall disruption. After 500s of treatment, the pigments diffusion coefficients increase, 

indicating an alteration of the membrane of the chloroplast. Diffusion of both molecules is 

rapid for hydrophobic molecules, similar to the value obtained for proteins. Usually, these 

molecules are linked to the proteins in a complexes, that are much more hydrophilic and 

increase the diffusion rate. Diffusion coefficient of these complexes was evaluated in the cell 

membrane at about 3.10-14 m2/s but with very faster transfer from grana to stroma in a few 

seconds [93]. 
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A               B 

!!!! !

C D   

!!!!!! !

Figure 3: Assessment of ultrasonication. A- Percentage of hydro-soluble protein concentration per 

dry weight of biomass. B- Quantification of pigments released in the aqueous phase. C- 

Microscopic observation of the cells. D- evolution of proteins and pigments diffusion coefficients in 

terms of extraction time. 

 

Our quantitative assessment of the results supported by microscopic observations 

indicated that ultrasonication was not a reliable method to increase recovery of the 

biomolecules of interest. This matches the assessment of other studies that used this 

technology for cell disruption on C. vulgaris [50, 94, 95] to recover lipids for bioenergy 

purposes. These studies concluded that this technology was poorly effective to increase the 

lipid recovery yield and to break the cell wall. On the other hand, ultrasonication was 

effective on other species having different cell wall characteristics such as Spirulina 

platensis [58].  
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3.5.3.3 Bead milling 

 
As expected, bead milling proved to be effective to inflict heavy damages to the cell 

wall of C. vulgaris. It can be noticed in figure 4 that the concentration of proteins and 

pigments started to increase after 5 min, and kept increasing in concordance to bead milling 

time by reaching a maximum recovery at 40 min (96% proteins from total proteins), which 

implies that water had access to the different intracellular organelles and recovered the 

majority of proteins. In addition, the strong concentration of pigments especially chlorophyll 

in the aqueous phase signals a strong alteration of the chloroplast allowing the release of the 

intra-thylakoids pigments. Moreover, microscopic observations revealed some broken cells 

after 5 min of bead milling and total disruption was observed after 30 min where debris of 

cell wall are noticeable colored in blue and the interior fragments colored in red lost their 

blue cover. Furthermore, the results indicate that the biomolecules of interest are rapidly 

diffusing out of the cells, which signal that cell wall together with the intracellular 

membranes are disrupted for some cells. Nonetheless, the diffusion coefficient remains low 

since it might be hindered by the media organization. This also supposes that the 

concentration gradient is low, and it increases with respect to the increasing number of 

disrupted cells.  Indeed, chlorophyll and carotenoids are hydrophobic pigments; their 

presence in the aqueous phase indicates the formation of micellar structures and it points to 

an alteration of the chloroplast. The other indication is that some cell debris containing the 

green pigment were extremely reduced in size and did not precipitate in the pellet after 

centrifugation at 10000 g leading to a greenish colour of the supernatant as it occurred in a 

previous work [59]. 
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!! !!A                 B 

!!!!!!!! !
!! C                D 

!!!! !
Figure 4 : Assessment of bead-milling. A- Percentage of hydro-soluble protein concentration per 

dry weight of biomass. B- Quantification of pigments released in the aqueous phase. C- 

Microscopic observation of the cells after 30 min of bead milling. D- Evolution of proteins and 

pigments diffusion coefficients in terms of extraction time. 

 

This method remains highly efficient especially for microalgae having a rigid cell 

wall like Chlorella vulgaris, due to the high contact surface between the microalgal cells and 

the beads. The setup parameters such as beads diameter and composition, agitation speed, 

and bead milling time also play a key role for the efficiency of cell disruption. Nevertheless, 

despite its efficiency, this method has a major drawback for microalgae research since it is 

considered a highly energetic method that increases the final production cost of the process. 

 

3.5.3.4 High-pressure homogenization 

 
High-pressure cell disruption is also a reliable method for cell disruption [96, 97]. It 

acts according to high pressure applied on the piston that violently and rapidly smashes the 

cells on the top of the feeding chamber. Hence, after two passages, water had access to 
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cytoplasmic proteins and infiltrated the chloroplast to recover 66% of proteins from total 

proteins present inside the rigid cell wall (Fig 5). The presence of chlorophyll in the aqueous 

phase was 12 fold lower than bead milling, which suggests that the intensity of the 

chloroplast alteration was lower compared to bead milling. In addition, microscopic 

observations revealed that the majority of the cells were broken while some of them 

remained intact, which brings additional insight that explain the lower concentration of 

proteins and pigments in the aqueous phase (Fig 5).  

A                        B 

!!!!!!!!!!!!! !
! ! C                        D 

!!!!!! !
Figure 5: Assessment of high-pressure homogenization. A- Percentage of hydro-soluble protein 

concentration per dry weight of biomass. B- Quantification of pigments released in the aqueous 

phase. C- Microscopic observation of the cells after cell disruption treatment. D- evolution of 

proteins and pigments diffusion coefficients in terms of extraction time.  

 

Contrarily to all the methods assessed previously, it can be noticed that the results obtained 

after high-pressure homogenization showed that the mechanical action of this method rapidly 

(300 s) increased the diffusion of the proteins and the chlorophyll out of the cells while the 

diffusion of the carotenoids was not significantly changed in terms of contact time. Within 

few minutes, the biomolecules were found in the aqueous phase and their concentration was 
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almost unchanged with regard to contact time and the diffusion becomes zero afterwards.  It 

appears that the cells are rapidly destroyed allowing a faster recovery of the components and 

metabolites, and therefore the molecules transfer is not hindered by any structures. 

Furthermore, the high values of the diffusivities coefficients indicate that the initial 

hypothesis for their calculation is not available anymore. Particularly, the hydrodynamic 

conditions for the calculation of the boundary layer are not the same during high-pressure 

homogenization or chemical extraction, and the size of the particles are different in size 

compared to the initial cell. In the case of extraction, mass transfer limits the recovery rate 

while it is not the case anymore during high-pressure homogenization. Therefore, it seems 

that with this method, the diffusion of the biomolecules acts by means of velocity of the cell 

disruption method, allowing a faster diffusion in the aqueous phase compared to all the other 

methods tested in this study.  

 

3.5.4 Conclusion 
 

Our study pointed out that despite the efficiency of a cell disruption method on 

breaking the cell wall and maximizing the recovery of intracellular biomolecules, the 

diffusion of the latters does not follow the same trend. Hence, the results showed that 

chemical hydrolysis leads to a sharp decrease of the diffusion coefficient, but the mechanical 

disruption methods allow a higher recovery yield, and also improve the diffusion efficiency. 

Therefore, the transfer of the biomolecules is not any more limited by the membrane. 

Nevertheless, mass transfer seems to occur according to hindered internal diffusion, as if the 

cell lyses were not complete. From these results, it seems that even if the mechanical action 

allows an efficient cell disruption, it is not enough to have a free diffusion of the molecules 

out of the cells. 

 

While focusing on the extraction part of the process it is worthwhile to take into 

account the ultrastructure of the cells and the diffusion kinetics of the biomolecules in order 

to understand more closely the behavior of these biomolecules by means of different cell 

disruption conditions. Therefore, additional studies are required to understand more in depth 

the diffusion phenomenon and additional studies should be conducted to understand the 

morphological changes of the cells after being submitted to a cell disruption technique, 
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which can bring additional insights and explanations on the release kinetics of the 

intracellular components.  
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3.6 Chapter conclusion 
!
 This chapter spotted the light on the diversity of the cell walls of microalgae as well 

as the role they are capable to play on releasing proteins with respect to cell disruption 

methods. Therefore, it has been noticed that a correlation exist between the cell wall 

characteristics and the quantification of proteins by means of nitrogen to protein conversion 

factors, which suggests that each time accurate protein quantification is required it would be 

necessary to calculate the conversion factor. Thus, it is not coherent to recommend a 

universal nitrogen to protein conversion factor for all microalgae except for global 

description of the recovery yield. 

 

The amino acids profile reflects the quality of proteins and the operation unit of cell 

disruption has its benefits on releasing intracellular biomolecules, and can also have multiple 

faces. Hence, a mechanical and a chemical treatment were applied in order to follow up on 

the quality of proteins released in the aqueous medium with respect to the essential and non-

essential amino acids fractions. Thus, it was concluded that the difference in quality of 

proteins released after each treatment was increasing following the rigidity of the species. 

Which suggests that the quality of proteins is strongly affected by the method of cell 

disruption applied. 

 

While extracting intracellular biomolecules such as proteins, the ultrastructure 

should be also considered to understand their release. Nonetheless, different cell disruption 

methods were applied and for the first time the ultrastructures of five different microalgal 

species was strongly considered in order to show that beside the cell wall characteristics the 

internal organelles also play a role and express some resistance against releasing proteins in 

the aqueous phase.  

  

It was also noticed that among all the methods tested, bead milling released the 

highest concentration of proteins and pigments in the aqueous phase. However, the diffusion 

of both biomolecules was 6 fold slower compared to high-pressure homogenization that 

released lower concentrations of both biomolecules. This suggests that the diffusion velocity 

of the biomolecules of interest is not directly related to the effectiveness of the method of 

cell disruption applied. 
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Nevertheless, the next chapter covers another problematic. It deals with the 

fractionation of the aqueous phase by a continuous process in order to separate proteins, 

sugars and starches in different fractions.  

!  
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Chapter 4: Fractionation of the aqueous phase 

of Tetraselmis suecica 
 

 
4.1 Introduction 
 

Extraction and fractionation of microalgal lipids for bioenergy production 

dominated the major part of the studies conducted during the last decade. This area of studies 

has recently hurt a rigid wall of what we stressed on previously, which is the high cost and 

the unsustainable overall production. Around the world, many industries concentrating their 

work on biodiesel from microalgae bankrupted or shifted their work toward the so-called 

Algorefinery in order to compensate their losses by valorising the numerous highly added 

value biomolecules present in microalgae, and therefore maximizing the value of the biomass 

and possible transformation of the deficit to profit. Hence, the algorefinery concept emerged 

recently and it consists on refining the biomass in order to obtain bioenergy and bioproducts 

for food and other applications.  

 

To our knowledge, there are no published studies regarding this concept on 

microalgae. In this respect, we decided to break the monotonous and repetitive focus on the 

area of biodiesel production and showed some interest to other scientific possibilities that lie 

within microalgae family. In chapter 2, we have showed the possibility to extract lipids at 

high yield. Thus, fractionation can be restricted to aqueous separation between 

polysaccharides and proteins and pigments.  

 

The main goal of this chapter is to add some building blocks to the Algorefinery 

concept in terms of a continuous fractionation process of an aqueous phase containing 

different biomolecules after applying a cell disruption unit operation. Nonetheless, the 

species was specifically chosen in order to find an intermediate microalga among all the 

species that we already studies in our work. Therefore, Tetraselmis suecica was the best 

compromise for many reasons; it lacks an exopolysaccharides layer that would increase the 

risk of fouling phenomenon, it has intermediate cell wall rigidity and it was grown under 

normal growth conditions, which limits heavy accumulation of lipids. 
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The chapter is composed of a single publication mirroring the concept defined 

previously. The process consists of breaking the cell wall of the microalga selected by high-

pressure homogenization without overheating the medium in order to preserve the integrity 

of the biomolecules and followed afterwards by a centrifugal recovery of the supernatant 

containing the biomolecules (starches, sugars, proteins and pigments). Further on, the 

supernatant was ultrafiltrated through a two-stage process in order to fractionate the 

supernatant. All the unit operations of the process were carried out with respect to green 

chemistry principles by avoiding the use of harmful and toxic solvents. 
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4.2 Two-stage ultrafiltration process for separating multiple 

components of Tetraselmis suecica after cell disruption 
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Abstract 
 
A two-stage ultrafiltration process was applied on the aqueous phase of Tetraselmis suecica 

after breaking its cell wall via high-pressure homogenization. Microscopic observations 

revealed that the cells were completely disrupted from 600 bar and fragmentation of the cells 

was also noticeable after 800 bar. In addition, the highest concentration of all the molecules 

of interest in the aqueous phase was observed at 1000 bar and the temperature was 46°C 

while preserving the integrity of the molecules of interest in the downstream process. After 

centrifugation the aqueous phase was submitted to ultrafiltration through two consecutive 

membranes with different molecular weight cut-offs. Complete retention of starch was 

possible with a 100 kDa membrane and separation of sugars from proteins with a 10 kDa 

membrane on the remaining mixture. After testing the process with model solutions, the 

transmembrane pressure selected was 30 psi succeeding to retain starch and pigments during 

the first part of the process, and proteins during the second part. A linear correlation between 

the flow rate and the pressure were observed in both parts of the process. 

 

Keywords High-pressure homogenization, proteins, pigments,  sugars, starch, ultrafiltration. 
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4.2.1 Introduction 
 

Microalgae are considered as a promising feedstock for biofuel production due to 

their ability to convert carbon dioxide into carbon rich-lipids [1]. They grow rapidly and do 

not need arable land. However, the feasibility of this new technology has not yet been 

exploited on an industrial scale due to its currently uncompetitive high production cost and 

its overall unsustainable production [2-6]. The potential for large scale commercial 

exploitation of these micro organisms is possible if they are completely valorised in the 

framework of a biorefinery [1, 7].  

 

The majority of research into microalgal biotechnology has been focused on the 

production and accumulation of lipids [8-10], methods for extraction [11-14], analysis [9, 15] 

and transformation of lipids to biofuel [16, 17]. Some studies have also considered isolating 

other principal microalgal components such as proteins by solubilisation in alkaline solution 

followed by a precipitation with acid [18, 19], or polysaccharides by precipitation with 

ethanol [20-22].  

 

In order to avoid using solvents and chemicals, alternative techniques to separate 

components by ultrafiltration already exist and can be scaled-up to an industrial level [23, 

24]. For microalgae this technique has so far been used mainly for harvesting the cells [25-

27], but its use in separating microalgal biomass components in an integrated process is yet 

to be established. A few studies to date have investigated this technique on microalgae to 

purify a single component such as the polysaccharides of Porphyridium cruentum [28], 

Spirulina platensis and Chlorella pyrenoidosa [21], or to examine the role of 

exopolysacharides of Chlorella sp. and Porphyridium purpureum in the fouling of 

ultrafiltration membranes [29]. However, there is a current lack of literature on the separation 

of multiple components of microalgal biomass.  

The microalga implemented in this study is Tetraselmis suecica, which is an ovaloid 

unicellular green flagellated specie of 9-13 mm in length and 7-8 mm in width [30]. Its 

biochemical composition contains a variety of potentially valuable components. In particular, 

its protein content can be high (up to 44% dry weight) and has a balanced amino acid profile 

that includes both essential and non-essential amino acids [31-33]. Carbohydrates represent 

8-57% dry weight, [30, 34, 35] with starch being the dominant component when 
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accumulated under nitrogen starvation and low irradiance [36]. Glucose is the predominant 

intracellular monosaccharide, followed by galactose, xylose, rhamnose, mannose and 

arabinose that are present in the polysaccharide components of the cell wall [31, 33, 35]. 

Lipids can represent between 7-30% of its dry weight with a fatty acid composition suitable 

for biodiesel production [37-39]. Like all microalgae, its composition varies according to the 

growth conditions, which will affect the accumulation of the components of interest.  

 

The following study investigates the effectiveness of two-stage ultrafiltration 

process for separating internal cell components of T. suecica disrupted by high-pressure 

homogenization. Two membranes with different molecular weight cut-offs are used to 

separate starch from proteins and sugars in the first step and then proteins from sugars in the 

second step. The process was first tested on model solutions containing starch, proteins and 

sugars, and then applied to T. suecica.  

 

4.2.2 Methods 
 

            All chemicals and biomolecules including soluble starch (C12H22O11) and milk 

proteins (12-250 kDa) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used 

as received. The Lowry assay kit was purchased from Fisher Scientific. 

  

4.2.2.1. Microalga 
 

Tetraselmis suecica (strain CS 187) was grown in outdoor photobioreactors in 

medium with a modified ‘f-medium’ nutrients and trace elements [40]. This medium 

consisted of 200 mg.L−1 NaNO3, 25 mg.L−1 KH2PO4, 9.0 mg.L−1 iron (III) citrate, 

9.0 mg.L−1 citric acid, 0.360 mg.L−1 MnCl2·4H2O, 0.044 mg.L−1 ZnSO4·7H2O, 

0.022 mg.L−1 CoCl2·6H2O, 0.020 mg.L−1 CuSO4·5H2O, 0.008 mg.L−1 Na2MoO4·2H2O and 

trace levels of vitamins B12, biotin, and thiamine. Mixing in the photobioreactors was 

achieved by compressed air aeration. Temperature and illumination intensity were dependent 

on local weather conditions in Melbourne, Victoria, Australia.  

 
Suspensions of Tetraselmis suecica used in this study were made by mixing frozen 

microalgal paste (containing 5.5% dry weight) in distilled water to a concentration of 
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approximately 17 g.L-1 dry weight. Aggregates in suspension were dispersed by stirring up to 

an hour prior to homogenization. 

 
4.2.2.2. High-pressure homogenization 

 
A GEA Panda2K NS1001L high-pressure homogenizer (GEA Niro Soavi, Parma, 

Italy) with a cell disruption valve (Re+ valve) attached was used for cell disruption. T. 

suecica cells were suspended in distilled water at 17 g.L-1 and then passed through the 

homogenizer at different pressures ranging from 200 to 1000 bar. Temperature of the 

homogenized suspension was monitored to avoid the denaturation of components in the 

medium. The aqueous extracts (supernatants) were recovered after centrifugation at 10000 g 

for 10 minutes at 21°C for subsequent process and analyses.  

 

4.2.2.3. Model suspensions 
 

Model suspension 1 was composed of 40% milk proteins (12-250 kDa), 35% starch 

and 25% sugars. The model suspension 2 was composed of 60% milk proteins (15-250 kDa) 

and 40% sugars. Both suspensions were vigorously stirred for 2 h to ensure maximum 

solubilisation in distilled water (ratio 1:5 w:v). However, both suspensions were not limpid 

indicating that the biomolecules were dispersed and not completely solubilised in water. 

 

4.2.2.4. Ultrafiltration (UF) 
 

Model suspensions and supernatant of homogenized aqueous phase of Tetraselmis 

suecica were fractionated by two-steps ultrafiltration using a LabscaleTM TFF system 

(Millipore, Billerica, MA). The TFF system includes a 500 mL acrylic reservoir with a 

system base containing a magnetic stirrer and diaphragm pump. It also includes two pressure 

gauges; the retentate gauge indicates the pressure of the fluid exiting the Pellicon XL 50 

(cm2) device. Two different Pellicon XL 50 (cm2) polyethersulfone membranes cartridges 

were used with different molecular weight cut-offs (100 kDa and 10 kDa). 

 
Two modes were tested for the model solutions, the recycling mode and the 

concentration mode. During the recycling mode both retentates and permeates were recycled 

in order to select the appropriate transmembrane pressure from 10 to 30 psi. Further on, 

during the concentration mode, the retentate was recycled while the permeate was recovered 
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until reaching two thirds of the initial injected volume. During this step, samples were taken 

from both phases for further analysis. During both modes, the feed solution for each step of 

the process was filtrated and then followed by the necessary analysis of the retentate and 

permeate. During both modes, the feeding solution is constantly stirred in the feeding 

chamber to ensure the complete solubilisation of the components in the extract. The flow rate 

was 

evaluated according to the following equation: 
 

Flow rate (kg.h-1.m-2) = 
!"#$"%&"!!"##!!"#$%"!"&!!!"!

!"#$! ! !!!!"!#$%&"!!"#$%&'!!!!!
!!

 
After each run, the membranes were cleaned according to the following procedure: 

flushing with distilled water, then cleaning with 0.1 M NaOH solution during 60 min and 

then rinsing with distilled water for 30 min at 20 psi. 

 

4.2.2.5. Pigments analysis 
 

200 µP!of supernatant was mixed with 1300 µL pure methanol and then incubated in 

dark for 1h at 45°C. Further on, the samples were centrifuged at 10000 g for 10 min at 20°C. 

The organic phase (methanol) containing the pigments was recovered, and were determined 

using the equations proposed by Ritchie (2006). 

(1)  Total chlorophyll µg.L-1 = !!!""!!!!!"#$ ! !!!!"#$!!!!""#! 
(2)  Total carotenoids µg.L-1 = !!!!!"#$ 

 
4.2.2.6.  Sugar analysis 
 

The procedure consists of adding 0.25 mL of the sample to 0.75 mL distilled water 

and 2 mL of DNS reagent. The mixture is vortexed then heated at 90°C for 5 minutes. 

Immediately after, 2 mL distilled water are added, and then the mixture is cooled at room 

temperature for 2-3 minutes after being vortexed. The color of the mixture should be dark 

red and measure by spectrophotometer (Varian Cary 3E UV visible spectrophotometer) at 

570 nm after being zeroed with the blank solution, which consists of the same mixture only 

distilled water replaces the sample.  
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4.2.2.7. Starch-iodine assay 

 
The analysis consists of mixing 0.25 mL of supernatant sample with 5 mL of iodine 

reagent. The mixture is then vortexed for 5 seconds then stranded for 2-5 minutes for the 

color to stabilize. Absorbance is measured at 620 nm against a blank of distilled water and 

iodine reagent. 

 
4.2.2.8. Proteins analysis  

 
4.2.2.8.1. Lowry assay  

 
The procedure involves reaction of proteins with cupric sulphate and tartare in an 

alkaline solution, leading to the formation of tetradentate copper protein complexes. The 

addition of the Folin-Ciocalteu reagent leads to the oxidation of the peptide bonds by 

forming molybdenum blue with the copper ions. Therefore, a calibration curve was prepared 

using a concentration range of bovine standard albumin from 0 to 1500 µg.mL-1
#!In order to 

measure the protein content, 0.2 mL of each standard or samples containing the crude protein 

extract were withdrawn and then 1 mL of modified Lowry reagent was added to each 

sample. Each sample was then vortexed and incubated for exactly 10 min. After incubation, 

100!µL of Folin-Ciocalteu reagent (1 N) were added and again vortexed and incubated for 

exactly 30 min. The blue colour solution is then measured at 750 nm with a UV-1800 

Shimadzu spectrophotometer after being zeroed with blank sample containing all the 

chemicals without the extract. 

4.2.2.8.2. SDS-PAGE 

 
The protein content of the supernatants, the permeates and the retentates were 

analysed by SDS–PAGE using a BioRad Criterion Cell electrophoresis unit (BioRad Labora-

tories, Richmond, CA). The SDS–PAGE was performed by diluting the samples four times 

with distilled water. First, 20 µL of diluted samples were mixed with 22 µL of BioRad 

Laemmli buffer containing 5% beta mercaptoethanol and placed in a boiling water bath for 5 

min. Next aliquots (10 µL) of samples were loaded into 8–16% linear gradient precast Tris–

HCl Criterion 18 well gels and run at 100 V for 130 min. Gels were stained with Biosafe 

Coomassie Blue (BioRad) and digitally scanned and quantified using a BioRad Gel Doc XR 

+ Imager (BioRad Laboratories, Richmond, CA). 
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4.2.2.9. Optic microscopy  

 
All observations were performed using an Olympus BX51 light microscope with a 

DP72 digital camera attachment (Olympus, Mt Waverly, VIC, Australia) under white light 

without dyes. 

 

4.2.3 Results and discussion 
 
4.2.3.1 High-pressure homogenization 

 
High-pressure homogenization was used to disrupt T. suecica to allow recovery and 

subsequent fractionation of its internal components. The efficiency of cell disruption as a 

function of homogenization pressure was examined microscopically (Fig 1). 

!
 Figure 4: Microscopic observation before and after cell disruption of T. suecica.  

 1) Before disruption, 2) 200 bar, 3) 400 bar, 4) 600 bar, 5) 800 bar, 6) 1000 bar. 

!
The cells were resistant at pressures up to 400 bar while the temperature increased 

only from 21 to 32°C. However, the efficiency of high-pressure homogenization started to be 

observed from 600 bar with broken cells losing their globular shape. Further on, besides 

being broken, it was observed that cells were also severely fragmenting after applying 800 or 

1000 bar with a continuing increase in temperature up to 46°C. The complete disruption of 

the cell wall might be accompanied by possible alteration of the phospholipid bilayers of its 

internal organelles. In correspondence to the increase in cell rupture as a function of 

pressure, there was an expected increase of intracellular components (starch, sugars, proteins 

and pigments) remaining in supernatants of centrifuged lysates (Fig 2). The elevation of 

1 2 3 

4 5 6 
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temperature resulting from homogenization (32°C at 400 bar, 46°C at 1000 bar) may have 

also played a role in solubilising some components especially starch and protein. Without 

sufficient solubilisation resulting from heating of the medium the starch granules would 

remain in pelleted cell debris after centrifugation. Even at 1000 bar the temperature rise to 46 

°C was below that required for protein denaturation and starch gelatinization. 

Homogenization at 1000 bar was effective at achieving cell disruption to release part of the 

intracellular components into the aqueous phase while not damaging the protein component. 

The increase in chlorophyll released as a function of homogenization pressure indicates that 

the chloroplast was broken allowing water to penetrate the inter-thylakoid space where the 

green pigment and some carotenoids are located. However, these pigments have hydrophobic 

nature, and their presence in the aqueous phase involves adsorption onto very small cell 

debris that did not decanted with the pellet after centrifugation or present inside small lipid 

droplets (emulsion), or even attached to amphiphilic structures (phospholipids). 

!
Figure 2: Concentration of the components present in the aqueous phase after cell disruption and before 

ultrafiltration. Results are the mean of three replicates for three experiments ± SD (n=9). 

!

4.2.3.2 Ultrafiltration process 
 

The aim of this part was to study the fractionation between a large polymer as 

starch, proteins and small sugars. As the size of starch is superior to 100 kDa, the first step of 

the ultrafiltration process employing a 100 kDa membrane is to retain starch while allowing 

proteins and sugars to pass into the permeate. Further on, according to Schwenzfeier et al. 

(2011) proteins size of T. suecica is between 15-50 kDa, and therefore the second step 

employs a 10 kDa membrane in order to retain proteins while allowing sugars to be 

concentrated in the permeate. The process was first conducted on the concentrated model 
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solutions in order to verify its feasibility on a highly concentrated suspension and to obtain 

the necessary parameters. Afterwards, the process was extrapolated on the microalgal extract 

obtained after breaking the cell wall of T. suecica by high-pressure homogenization. 

Nonetheless, after each trial the concentration of the different biomolecules was calculated 

for the retentates and the permeates to follow-up with the mass balance. 

 
4.2.3.3 Model suspensions 

 
A membrane of 100 kDa was used with model suspension 1 (proteins, starch and 

sugars), whereas model suspension 2 (proteins and sugars) was filtrated over a 10 kDa 

membrane. For both membranes, flow rate decreased with time during 30 min to reach a 

steady state condition. The flow stabilised at 50-70% of the initial value with the 100 kDa 

membrane, while only 10-20% for the 10 kDa membrane. For the first case, the decrease 

seems to be related to a polarisation concentration layer, and thus the formation of an 

asymptotic curve. For the second case, the decrease is lower maybe due to a less important 

influence of the polarisation layer. The difference between the compositions of both layers is 

the presence of starch, which can have gelling properties that may hinder the filtration. 

Nevertheless in both cases, the steady flow rate increases almost linearly with pressure 

indicating the lack of a gel layer.  

 

Correlation between the flow rate and the different transmembrane pressures (TMP) 

was R2 = 0.88 (Fig 3), which is relatively low and confirms the action of the large size 

polysaccharides [41] that get retained by the 100 kDa membrane and strongly contribute to 

the fouling phenomenon [29]. As the flow rate during 30 min was greatest at 30 psi with a 

flow rate of 47.83 kg.h-1.m-2, and the fouling was not more severe than at lower pressures, 30 

psi was used for subsequent tests performed in concentration mode. In the latter tests, the 

concentration was managed until getting a volumetric concentration ratio of 2.32 ± 0.04 

obtained after 30 min, with a final flow rate 42.8 ± 1.3 kg.h-1.m-2. A complete retention of 

starch was achieved, with no starch observed in the permeate.  

 

Further on, a more linear relationship between flow rate and TMP was observed 

when operating the 10 kDa membrane in recycling mode using the second model solution 

that contains sugars and milk proteins (Fig 3) with no starch. The highest initial flow rate of 

55.43 kg.h-1.m-2 was obtained at a TMP of 30 psi. This flow rate decreased to 50.39 kg.h-1.m-
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2 after 30 min of processing. Concentration mode was again operated at 30 psi with a stable 

flow rate of 44.30 ± 1.2 kg.h-1.m-2 obtained during the 30 min of operation to reach a 

volumetric concentration ratio of 3.01 ± 0.05. The mass balance indicated that 4 to 5% of the 

sugars were detected in the membrane due to the high concentration of these components in 

the solution, but protein loss was negligible (< 1%) according to Lowry assay measurements 

of the permeate. Nearly complete retention of the protein was also verified by SDS-PAGE 

analysis of the permeates that showed only a very low intensity band of low molecular 

weight protein, close in size to the cut-off of the membrane (Fig 4). As for sugars, the 

operation in concentration mode for 30 min at 30 psi allowed 63% of the sugars to be 

transferred to the permeate. 

 

  

  
Figure 3: Recycling mode of both model solutions. Model 1 with 100 kDa and model 2 with 10 kDa. Results 

are based on the three replicates for three experiments ± SD (n=9). 

 

 Nearly complete retention of the protein was also verified by SDS-PAGE analysis 

of the permeates that showed only a very low intensity band of low molecular weight 

protein, close in size to the cut-off of the membrane (Fig 4). As for sugars, the operation in 
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concentration mode for 30 min at 30 psi allowed 63% of the sugars to be transferred to the 

permeate.  

 

 
         Figure 4: SDS-PAGE after ultrafiltration of the second  

           model solution with 10 kDa membrane. 

 
4.2.3.4 Aqueous phases before/after cell disruption of T. suecica 

Having demonstrated the effectiveness of a two-stage filtration process for 

fractionating biomass components in model solutions, experiments were performed on actual 

lysates from microalgal material obtained at different homogenization pressures by 

conducting the concentration mode for 30 min. For lysates obtained at all homogenization 

pressures, neither starch nor pigments were detected in the Permeate 1, indicating complete 

retention of these components in Retentate 2 (Table 1). While the retention of the starch was 

expected given the size of the granule, the retention of the pigments could be explained by 

their presence in small lipid droplets or in very small cell debris remaining in the aqueous 

medium and both are larger than the cut off of the 100 kDa membrane. In addition, given the 

highly hydrophilic characteristics of the membrane (Polyethersulfone), it retains the former 

that are hydrophobic. 
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Figure 5: Correlation between the flow rate and the different pressures applied for cell disruption. Results 

are based on the three replicates for three experiments ± SD (n=9). 

  

While maintaining the TMP constant at 30 psi the flow rate decreased when samples 

obtained at higher homogenization pressure were tested by the concentration mode during 30 

min, with volumetric concentration ratio of 3.06 ± 0.04 (Fig 5). Despite of this fact and 

despite of the fact that the lysate obtained at 1000 bar homogenization pressure contains two-

fold more proteins than the lysate obtained at 200 bar (Fig 2), the amount of protein in 

Permeate 1 increased only from 50 to 80% in the range. This suggests that the proteins are 

more aggregated at low homogenization pressure and are therefore retained more by the 

membrane.  The fraction of sugars that was passed through the membrane increased from 

about 75% to 90% between 200 and 600 bar of homogenization pressure, and decreased to 

about 75% for lysates produced at 1000 bar. 

 

Table 1: Composition of Permeate 1 after ultrafiltration with 100 kDa membrane of the aqueous phases after cell 

disruption of T. suecica. Results are the mean of three replicates for three experiments ± SD (n=9). 

High-pressure 

homogenization 

(bar) 

Sugars 

(g GlcEq.L-1) 

Proteins  

(g.L-1) 

Starch  

(g.L-1) 

Chlorophyll 

(mg.L-1) 

Carotenoids 

(mg.L-1) 

0 n.d. 0.10±0.01 n.d. n.d. n.d. 

200 3.45±0.04 0.23±0.01 n.d. n.d. n.d. 

400 3.66±0.04 0.26±0.01 n.d. n.d. n.d. 

600 4.55±0.01 0.33±0.03 n.d. n.d. n.d. 

800 5.42±0.01 0.46±0.01 n.d. n.d. n.d. 

1000 5.98±0.16 0.70±0.03 n.d. n.d. n.d. 
*n.d. not detected 

 
At a TMP of 30 psi the highest final flow rate was 262 ± 2 kg.h-1.m-2 for the 100 

kDa membrane. This flow decreased constantly as a function initial homogenization 

pressure, falling to reach 174 ± 2 kg.h-1.m-2 for lysates obtained at 1000 bar (Fig 5). A decline 
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in flow rate as a function of disurption pressure was similary observed for UF with the 10 

kDa membrane. The maximum flow was 229 ± 2 kg.h-1.m-2 for samples homogenized at 200 

bar, decreasing to 181 ± 1 kg.h-1.m-2 for lysates obtained at 1000 bar. In any cases, these 

fluxes are higher than those obtained with the model solution because of a lower initial 

concentration and also may be because of the presence of others compounds. 

 

Permeate 1 was subsequently ultrafiltrated using a 10 kDa membrane until a 

volumetric concentration ratio of 2.57 ± 0.03. According to Lowry assay measurements and 

SDS-PAGE analysis of the permeates (Fig 6), no proteins were found in Permeate 2 but in 

Retentate 2 for all the samples obtained at different homogenization pressures. 

 
    Figure 6:  SDS-PAGE after ultrafiltration  

    of the aqueous extract of the 1000 bar trial  

    for cell disruption with 10 kDa membrane.  

 

The permeation rate of the sugars is approximately 90% through the 10 kDa 

membrane regardless of the pressure used for cell rupture, and 65% of total sugars present in 

the supernatant were found in permeate 2. This indicates that at least 65% of saccharides 

having an aldehyde function have a size inferior to 10 kDa (Table 2). These results are 

consistent with the study conducted by Schwenzfeier et al. (2011), which showed that the 

proteins of T. suecica have a molecular weight range between 15 and 50 kDa. Most of the 

proteins were enzymes with multiple polypeptide chains, including Rubisco that has two 

subunits of 50 kDa and 15 kDa [33, 42]. Full retention of the proteins is therefore expected 

from ultrafiltration with a 10-kDa membrane. The results indicates that the separation 

between sugars and proteins is efficient. Nevertheless, under these conditions the sugar 
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recovery yield is about 50%, but should be increase by diafiltration with fresh water of the 

retentate. 

Table 2: Concentration of the  sugars in the Permeate 2 after ultrafiltration at 10 kDa. Results are the mean of 

three replicates for three experiments ± SD (n=9). 

High-pressure 

homogenization 

(bar) 

Sugars 

(g GlcEq.L-1) 

Proteins  

  (g.L-1) 

Starch  

(g.L-1) 

Chlorophyll 

(mg.L-1) 

Carotenoids  

(mg.L-1) 

0 n.d . n.d. n.d. n.d. n.d. 

200 3.09±0.01 n.d. n.d. n.d. n.d. 

400 3.34±0.05 n.d. n.d. n.d. n.d. 

600 4.09±0.02 n.d. n.d. n.d. n.d. 

800 4.65±0.03 n.d. n.d. n.d. n.d. 

1000 5.18±0.05 n.d. n.d. n.d. n.d. 
*n.d. not detected 

 
The global process on T. suecica was not jeopardised by major hurdles, starting 

from breaking the cell wall untill separating the components of interest by ultrafiltration (Fig 

7). These results show it is possible to achieve good separation of intracellular microalgal 

biomass components using a two stage sequential UF process. This process could be applied 

to other microalgae, and could be used with various cell disruption techniques and 

membranes with different molecular weight cut-offs depending on the properties of the algae 

such as the cell strength and protein composition. For instance, Chlorella vulgaris proteins 

are mostly within a molecular weight range of 12 to 120 kDa [43] and Haematococcus 

pluvialis 10-100 kDa [44-46], and both have more resistant cell walls [47].  
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Figure 7: Overall process reflecting all the steps from growth to fractionation after homogenization at 

1000 bar. Colours represent relative quantities: red is for sugars, blue for starch, yellow for proteins and 

green for pigments. 
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4.2.4 Conclusion 
 

In this study multiple microalgal components were fractionated using an integrated 

process that does not require solvents or environmently harmful chemicals. The overall 

process was shown to be effective on T. suecica, resulting in three streams, enriched in 

pigments and starch, proteins, and  sugars respectively. Indeed, additional work is required to 

optimise the process especially on finding better conditions to maximise the solubilisation of 

some components of interest without denaturing the rest in the downstream process. In 

addition, life cycle assessment of the process would be necessary to evaluate the energy input 

and to ensure the sustainability and feasibility of the process on an industrial scale. 
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4.3 Chapter conclusion 
!
 The process integrated multiple goals, but attaining them will not be without 

consequences. Indeed the major objective of this study was the continuous fractionation of 

the aqueous phase, which was basically attained according to expectations. Another objective 

was to preserve the integrity of the biomolecules in the downstream process, which explains 

the reason cell disruption by means of high-pressure homogenization was stopped at 1000 

bar to prevent overheating the medium that will denature proteins and pigments. 

Consequently, considering this approach together with implementing only water as the sole 

extraction solvent will reduce the complete recovery of the target molecules especially 

proteins and starches. In this sense, this new process brought additional building blocks for 

the Algorefinery concept without neglecting that it is possible to extrapolate it to other 

species but with minor changes especially by considering the modification of the membrane 

cut-off with regards to proteins size. Simultaneously the process opened some perspectives 

for further studies especially on finding better operational compromises to increase the 

concentration of the biomolecules in the aqueous medium, scaling up the process to an 

industrial level and conducting life cycle assessments in order to verify the feasibility and the 

sustainability of the process. 
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General Conclusions 
 

Besides bioenergy, the valorisation of the bio-products became of major importance, and 

it will be unfortunate to neglect them, due to their highly added value. Therefore, algae 

scientists worldwide are largely agreeing the concept of algorefinery for the following 

reasons: 

• Overall, they are economically viable, and it is possible to transform the deficit 

haunting this technology into profit. 

• They can target multiple areas in the market (bioplastics, cosmetics, 

pharmaceuticals, nutrition, aquaculture and animal feed). 

The strategy of the “Algoraffinerie project” was to implement a primary biorefinery in order 

to extract and fractionate the major biomolecules in an integrated process. Hence, at 

Laboratoire de Chimie Agro-Industrielle (LCA), we showed major interest on recovering the 

lipophilic and the hydrophilic fraction by taking into account the important role the cell wall 

and the ultrastructure can play on different levels, and on the fractionation of the aqueous 

phase obtained after cell disruption. Our additional challenge at LCA was to respect during 

our work the principles of “green chemistry”, by avoiding the use of harmful solvents during 

the extraction and fractionation processes.  

 

 Since multiple microalgae attracted our attention in the sequence of studies 

conducted, and since the characteristics of the cells changed according to the species, it was 

important to have a deep understanding on the composition of the cell walls, the 

ultrastructure and the intra/extracellular location of the biomolecules composing the cells. 

This morphological and structural diversity influenced the calculation of the nitrogen to 

protein conversion factor (NTP) for each species, especially for the rigid cell walled 

microalgae that showed significant difference between the NTPs obtained for the raw 

microalgae and their protein extract. Furthermore, taking into account the recovery of 

proteins after testing different cell disruption methods on the same species, it could be 

noticed that the internal organelles can also show some resistance toward cell disruption. 

Nonetheless, depending on the cell disruption methods, the quality of proteins is likely to be 

different according to their amino acid profile, which suggests that not the same proteins are 

released and also brings additional insight that the morphological characteristics of the cells 

would hinder the liberation of these biomolecules.  
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 The previous set of studies gave us a broader idea on the role of the cell wall on the 

release of the proteins. However, it is interesting to look more in depth on their diffusion 

behaviour based on different cell disruption methods. Hence, while the efficiency and non-

efficiency of some cell disruption to break the cell wall was expected, the diffusion 

behaviour was not unexpected since slow diffusion was detected for almost all the methods 

applied. This implies that the success of a cell disruption method does not necessarily allow a 

faster diffusion of the biomolecules of interest in the aqueous phase. Moreover, it is possible 

to bypass the unit operation of cell disruption to extract lipids and pigments by adding 

ethanol with supercritical carbon dioxide, and by setting the optimum parameters for the 

extractor. Our results showed that lipids recovery (ethanol + scCO2) from raw Chlorella 

vulgaris was significantly higher compared to the extraction after bead milling. 

 

 The last part of our work consisted of a continuous fractionation process that also 

takes into account the integrity of the biomolecules in the downstream process. The process 

was first tested on model suspensions and then extrapolated to the aqueous phase of the 

microalga. Hence, following cell disruption by high-pressure homogenization, the aqueous 

phase of Tetraselmis suecica contained starches, proteins, sugars and pigments. The highest 

concentration of these biomolecules was after homogenization at 1000 bar. Thus, it is 

worthwhile fractionating it to obtain separate fractions. The fractionation process is based on 

a two-stage ultrafiltration using two different molecular weights cut off for the membranes. 

Therefore, the first stage completely retained starches and pigments with the 100 kDa. The 

remaining filtrate was only composed of proteins and sugars. Further on, the second stage of 

the process succeeded to completely retain proteins of the filtrate using a 10 kDa membrane, 

and sugars were the only biomolecules detected in the second filtrate.    

 

The following points could summarize the strong force of our work:  

• The principles of “green chemistry” were respected in terms of the extracting 

solvent used. 

• It has been shown that is not relevant to recommend a universal nitrogen to protein 

conversion factor, since many factors including the cell wall of the species could 

affect its calculation. 
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• It has been pointed out that despite the renowned role of the cell wall on 

biomolecules recovery, the ultrastructure of some microalgae could also show a 

resistance against some mechanical and chemical agents.   

• New insight was brought on understanding the diffusion behaviour of some 

biomolecules after applying a cell disruption method. 

• The unit operation of cell disruption could be avoided before supercritical carbon 

dioxide extraction of lipids. 

• A groundwork has been set for a fractionation process that could be scaled up to an 

industrial level.    

 

Theoretically every process has its advantages and inconveniences; some parts of our work 

represent different drawbacks for the following reasons: 

• The most efficient cell disruption methods tested in our work such as bead milling 

and high-pressure homogenization remain costly in terms of energy input.  

• The technique of scCO2 is still considered energetic.    

• Despite the success of the fractionation process, the recovery of the biomolecules of 

interest in the aqueous phase was not total.  

 

George Bernard Shaw (1925 winner of the Nobel Prize of literature) quoted: “Science never 

solves a problem without creating ten more”. This quote is inspiring, it could be read and 

understood in different contradictory ways. To my personal point of view, it reflects the 

beauty and richness of science that dwell in solving problems, innovating, creating, 

proposing new hypothesis and opening future perspectives. Therefore, taking into account 

the numerous investigations carried out during this research, additional scientific aspects can 

be further investigated: 

• A life cycle assessment will be necessary to estimate the cost and the sustainability 

of the fractionation process. 

• It will be interesting to understand more closely the diffusion phenomenon of the 

biomolecules in the aqueous phase. For instance: 

$ Tracking which type of proteins is diffusing as a function of time after 

applying a method of cell disruption.  

$ Obtaining more sophisticated microscopic images that would follow up 

with the morphological modifications during the process of cell disruption 
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• For the rigid cell walled microalgae, it is a serious challenge to find a cell 

disruption method that does not require high-energy input. 

•  It is worthwhile conducting a supercritical carbon dioxide extraction on wet 

microalgae, which will save us the cost of drying the biomass before the extraction. 

• Define the optimal conditions for the biomolecules fractionation by membrane. 

Particularly, it should be define if appropriate diafiltration condition could produce 

more refined (pure) fractions. 
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Abstract 
A primary algorefinery, concept that deals with the main components of microalgae 

(lipids, proteins, carbohydrates and pigments), has been studied. A sequence of unit 

operations has been implemented in order to obtain separated enriched fractions of these 

biomolecules by conserving their integrity in the downstream process. The study was mainly 

centred on Chlorella vulgaris, a species known for its rigid cell wall. Most of the lipophilic 

fraction (lipids and pigments) was recovered using supercritical carbon dioxide with ethanol 

as a co-solvent, without a preliminary unit operation of cell disruption. The hydrophilic 

fraction (proteins and polysaccharides) was recovered in the aqueous phase after bed milling 

as cell disruption method. Subsequently, the aqueous phase was fractionated into three 

fractions by means of a process of two-stage ultrafiltration. Thus, starches, pigments, 

proteins and sugars were successfully separated from each other. A life cycle assessment will 

be necessary to estimate the cost and the sustainability of the fractionation process. 

Keywords: biorefinery, microalgae, fractionation, ultrafiltration, cell disruption, nitrogen-to-
protein conversion factor, Chlorella vulgaris 

 

Résumé 
Le concept d’une algoraffinerie primaire traitant les principaux composants de 

microalgues (lipides, protéines, glucides et pigments) a été étudié. Une séquence d'opérations 

unitaires a été mise en œuvre afin d'obtenir des fractions enrichies de ces biomolécules tout 

en conservant leur integrité dans le procédé en aval. L'étude a été principalement centrée sur 

Chlorella vulgaris, une espèce connue pour sa paroi cellulaire rigide. La majorité de la 

fraction lipophile (lipides et pigments) a été récupérée en utilisant du dioxyde de carbone 

supercritique avec de l'éthanol en tant que co-solvant, sans opération unitaire de cassage 

cellulaire préalable. La fraction hydrophile (protéines et polysaccharides) a été récupérée 

dans la phase aqueuse après broyage à billes comme méthode de cassage cellulaire. Par la 

suite, la phase aqueuse a été séparée en trois fractions par un procédé d'ultrafiltration en deux 

étapes. Ainsi, les amidons, les pigments, les protéines et les sucres ont été séparés les uns des 

autres avec succès. Une analyse du cycle de vie sera nécessaire pour estimer le coût et la 

durabilité du procédé de fractionnement. 

Mots clés: bioraffinerie, microalgues, fractionnement, ultrafiltration, cassage cellulaire, 
facteur de conversion azote-protéines, Chlorella vulgaris 
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Résumé général 

 
Chapitre 1 : Etat de l’art 

 

Le XXe siècle a connu une augmentation exponentielle de la population mondiale et 

une révolution industrielle qui a consommé sans limite les ressources fournies par notre 

planète. On estime que la population mondiale dépassera les 9 milliards d’habitants d'ici la 

fin de ce siècle, et que l'espérance de vie atteindra 85 ans. En outre, l'utilisation des 

combustibles fossiles de manière incontrôlée devrait mener à leur épuisement complet en 

2050. Cette dangereuse interférence anthropique avec le système climatique, démontrée 

définitivement par le 5ème rapport du GIEC en 2013, a déjà entraîné une élévation sans 

précédent de la température, qui a contribué au réchauffement climatique, à l'augmentation 

du niveau des océans, à l’augmentation des catastrophes naturelles, et à d'autres catastrophes 

qui témoignent de l’ampleur de ces changements. Or, notre planète semble incapable de tenir 

cette pression, et des mesures seront donc requises pour limiter ces modifications. 

 
La valorisation des microalgues en raison de leur importante diversité et des 

nombreux avantages qu'elles recèlent pourrait faire partie de ces mesures. Ces deux dernières 

décennies, cette biomasse a attiré l’attention de nombreux chercheurs autour du monde pour 

sa capacité à accumuler des lipides pour la production de biodiesel. Les microalgues peuvent 

en outre se développer dans l'eau à la fois douce et marine ainsi que dans presque toutes les 

conditions environnementales. Ainsi, elles n’entrent pas en concurrence avec les terres 

agricoles et ne provoquent pas de conflit avec la production alimentaire. De plus comme les 

microalgues consomment le dioxyde de carbone, elles peuvent être cultivées près des 

cheminées industrielles. Ce serait un moyen de traitement des effluents tout en produisant de 

biocarburants potentiels. Pour toutes ces raisons, la majorité des études se sont concentrées 

sur l’optimisation des techniques d’extraction et de production des lipides pour les 

transformer en biodiesel, mais ont ainsi négligé indirectement l’importance des autres 

biomolécules de hautes valeurs ajoutées présentes dans les microalgues. Or, la production de 

lipides est confrontée depuis le début à un mur freinant ses  perspectives de développement 

car toutes les analyses de cycle de vie présentent cette production comme coûteuse, loin 

d’être compétitive dans le marché et non-durable. S’il est vrai que les biocarburants de 
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troisième génération à partir de microalgues sont un sujet passionnant et une technologie 

innovante, il serait regrettable, compte tenu de tous les avantages de cette biomasse, de se 

concentrer uniquement sur les objectifs bioénergétiques et de négliger les autres 

biomolécules. 

 
Les microalgues reflètent une ancienne histoire qui a laissé une empreinte datant de 

3,4 milliards d'années. Les plus vieilles microalgues connues, appartenant au groupe des 

cyanobactéries, ont été trouvées fossilisées dans des roches d'Australie occidentale. Les 

biologistes évolutionnistes estiment que les algues pourraient être les ancêtres des plantes. 

Ainsi, à travers le temps les algues ont donné lieu à d'autres plantes marines et ont colonisé la 

terre pendant l'ère paléozoïque il y a 450 millions d'années. Des études ont confirmé que 

jusqu'à nos jours leur structure est restée inchangée. Mais bien qu’elles soient anciennes, les 

microalgues sont des formes complexes et organisées. 

 
Comme tout autre phytoplancton, ces micro-organismes ont une valeur 

nutritionnelle importante. Les premiers à consommer cette biomasse en tant que source de 

nourriture étaient les Aztèques et d'autres populations mésoaméricaines. Aujourd'hui, ces 

organismes microscopiques sont consommés en tant que complément alimentaire (Chlorella 

vulgaris et Spirulina platensis par exemple) et leurs biomolécules sont utilisées dans les 

colorants, les produits pharmaceutiques, l'alimentation animale, l'aquaculture et la 

cosmétique. Durant ces deux dernières décennies, la transformation a pris une nouvelle 

direction avec des applications motivées par l'épuisement des réserves de pétrole fossile. Les 

puissances mondiales se sont vu forcées à trouver des stratégies globales pour diminuer les 

rejets de dioxyde de carbone et proposer des ressources renouvelables alternatives, et à 

intensifier les recherches sur les biocarburants de troisième génération. Néanmoins une autre 

approche peut être envisagée, combinant la récupération des lipides et d’autres biomolécules, 

c’est le concept d’algoraffinage. 

 
Nos travaux entrent dans le cadre du projet Algoraffinerie financé par l’Agence 

nationale de la recherche (ANR) et porte des enjeux scientifiques pour casser l’approche 

classique et surtout le cercle limitant dans lequel la recherche sur les microalgues continue de 

se focaliser, pour la production des biocarburants. Ainsi, l’objectif principal de ce projet est 

de mettre en place une bioraffinerie de première génération tout en prenant en compte 

l’intégrité des biomolécules dans le procédé en aval.  
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L’esprit de ce manuscrit demeure au sein des multiples publications publiées ou 

soumises dans des périodiques internationaux à comité de lecture.  
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1.1 Enjeux et considérations 
 

Le concept de bioraffinage a été inspiré du concept de la raffinerie pétrolière. Il se 

conçoit comme une plate-forme qui intègre les procédés de fractionnement des différents 

composants d'une biomasse. Ainsi une bioraffinerie valorise les divers composants de la 

biomasse, afin de maximiser sa rentabilité. Toutes ces biomolécules peuvent générer des 

profits importants par rapport au biodiesel. Les protéines peuvent être vendues à environ 

0,75 €/kg pour l’alimentation animal, et à 5 €/kg pour la nutrition humaine. Les glucides sont 

vendus sur le marché à environ 1 €/kg, et si des propriétés antivirales sont identifiées, le prix 

peut être extrêmement élevé. Les lipides pour les biocarburants génèrent le bénéfice le plus 

faible (environ 0,5 €/kg), ce qui est une raison supplémentaire pour ne pas se concentrer 

uniquement sur la production de biocarburants à partir de microalgues. Mais à la place, il 

sera plus rentable si ces biomolécules sont valorisées pour leurs acides gras insaturés (surtout 

les plus courts, vendus à plus de 2 €/kg). Enfin, les pigments sont aussi une ressource 

précieuse et leur prix peut largement varier en fonction de la pureté de l'échantillon et le 

marché cible (cosmétiques ou alimentaires des poissons par exemple). 

 

Le concept d’algoraffinage nécessite une séquence d'opérations unitaires commençant 

par le prétraitement de la biomasse, par exemple en dépolymérisant chimiquement les 

polysaccharides de la paroi cellulaire des microalgues ou en effectuant un cassage 

mécanique. Ceci facilite l’accès du solvant d’extraction aux zones intracellulaires, et 

contribue à améliorer le rendement de récupération des biomolécules. 

 

D'un côté, la dépolymérisation par hydrolyse des liaisons glycosidiques est 

omniprésente dans la nature et l'industrie. Toutefois, pour devenir un processus viable, 

l'hydrolyse doit être effectuée à la fois dans des conditions douces pour préserver l'intégrité 

chimique de tous les constituants, ou du moins leurs propriétés fonctionnelles. 

 

Actuellement, les méthodes les plus utilisées sont le broyage à billes et 

l'homogénéisation à haute pression. Ces méthodes mécaniques sont souvent préférées en 

raison de la courte durée de séjour et les coûts d’exploitation. Néanmoins, ces méthodes 

génèrent des frictions qui surchauffent le milieu, qui doit être constamment refroidi tout au 

long du processus afin d'éviter la dénaturation des protéines ou de la dégradation thermique 

des lipides. 
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Le processus que nous avons étudié est une « algoraffinerie primaire » qui portera sur 

les principaux composants des microalgues (lipides, protéines, polysaccharides et pigments). 

Une séquence d'opérations unitaires sera mise en œuvre afin d'obtenir séparément des 

fractions enrichies de ces biomolécules. Par "fraction enrichie" nous comprenons le degré de 

pureté équivalent à la qualité « technique » des composés chimiques commerciaux. 

 

Une fois que la portée de notre travail a été définie, nous allons maintenant présenter les 

différents défis relatifs aux options possibles parmi lesquelles une algoraffinerie pourrait être 

effectuée. 

 

Option numéro 1 : 

Ce processus commence par la rupture de la paroi de la cellule dans un milieu aqueux 

contenant entre 2 et 25% de la matière sèche en fonction de la méthode de lyse de la cellule 

appliquée. Après séparation de la matière solide (par exemple, filtration ou centrifugation), il 

serait obtenu un mélange émulsionné composé principalement de : 

• Lipides de réserve (triglycérides) 

• Protéines hydrosolubles 

• Polysaccharides 

• Pigments 

Le solide serait composé principalement de biomolécules structurelles non libérées et des 

molécules solubilisées restées bloquées dans la matrice. Chaque fraction liquide doit subir 

des opérations unitaires supplémentaires de purification afin de produire des fractions 

enrichies des différentes molécules d’intérêt. 

Option numéro 2 : 

Après réduction de la teneur en eau à moins de 2%, une extraction par un solvant 

organique peut être effectuée pour récupérer dans la phase liquide les deux types de lipides 

(réserves et structurelles) ainsi que des pigments liposolubles. La fraction solide résiduelle 

serait composée de cellules dégraissées nécessitant une extraction pour libérer les 

composants hydrophiles intracellulaires. Contrairement à l’option numéro 1, la fraction 

aqueuse obtenue après cassage cellulaire ne serait pas émulsionnée. Le processus en aval 

serait donc plus facile à mettre en œuvre. 
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Globalement, nous reconnaissons que les deux options sont possibles et possèdent des 

avantages distinctifs. Le premier procédé est plus économique en termes d'apport d'énergie 

(pas de séchage), mais les compositions de la matière solide et le liquide émulsionné sont 

plus complexes, car ils contiennent tous les deux des composants hydrophiles et 

hydrophobes. Ce n'est pas le cas pour le second procédé dans lequel on recueille dans la 

phase organique, les deux types de lipides (structurelles et réserves) en une seule fraction, 

laissant toutes les biomolécules hydrophiles dans le culot. Pour ces raisons, nous avons 

décidé d'adopter l'option numéro 2 (Figure 1) pour le reste de l'étude. Toutefois, une 

limitation importante de ce processus est l'utilisation d'un solvant organique. Cet 

inconvénient pourrait être résolu en utilisant un solvant vert tels que le dioxyde de carbone 

supercritique. 

!

Figure 1 : Procédé de fractionnement sélectionné pour le reste de l'étude

!! !
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Chapitre 2 : Récupération de la fraction 

lipophile 
 
2.1 Publication # 2 
 

La biomasse mise à notre disposition était cultivée dans des conditions de 

croissance normales. Cela implique que la microalgue n'a pas accumulé d'importantes 

quantités de lipides de réserve (triglycérides) comme elle le fait lorsqu’elle est soumise à des 

stress de croissance. Par conséquent, la majeure partie des lipides disponibles dans notre 

microalgue sont polaires (phospholipides), et sont principalement des lipides structuraux 

situés sur la paroi cellulaire et les membranes intracellulaires (chloroplastes, mitochondries, 

thylakoids). L'extraction de ces composants à l'extérieur de la paroi rigide de Chlorella 

vulgaris exigerait un traitement particulier afin de faciliter leur extraction et augmenter le 

rendement de récupération. 

 

Il est généralement admis que l'une des opérations unitaires qui ajoute près de 30% 

supplémentaire sur le coût total de production est le cassage cellulaire. Ainsi, le chapitre est 

composé d'une publication soumise à Journal of Applied Phycology, et qui examine s'il est 

possible d’éviter l’utilisation de cette opération unitaire avant l’extraction de la fraction 

lipophile au CO2 supercritique. Par conséquent, différents aspects de l’extraction ont été 

évalués, avant et après cassage par broyage à billes, ou avec et sans la présence d’un co-

solvant. 

 

L'extraction des lipides et d’autres molécules lipophile à l’aide de méthodes 

respectant l'environnement et sans solvant est un grand défi pour l'industrie d'aujourd'hui. 

Une méthode verte prometteuse pour récupérer la fraction lipidique, y compris une partie des 

pigments, semble être le CO2 supercritique. L’extraction des biomolécules à l’aide du CO2 

supercritique comme solvant, présente de nombreux avantages, dont le plus important est la 

non exposition du produit final à des solvants toxiques, qui apporte également une dimension 

supplémentaire pour la qualité du produit. 

 

La littérature contient une série d'études qui déterminent les meilleurs paramètres 

pour extraire des lipides et des pigments à partir de microalgues. Deux études visaient à 
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démontrer les avantages de la rupture des cellules avant l'extraction par CO2 supercritique. 

Par ce moyen, ils ont réussi à augmenter le rendement d'extraction d’un facteur 2. Notre 

étude propose l'utilisation de l'éthanol comme co-solvant afin d’éviter un apport énergétique 

élevé lié au cassage cellulaire. 

 

L’extraction au CO2 supercritique a été réalisée sur des lots de Chlorella vulgaris 

lyophilisés. Les essais ont été réalisés pendant 3 h de processus à 600 bar de pression, à 60°C 

et avec un débit de 30 g.min-1 de dioxyde de carbone. Dans ces conditions le rendement 

d’extraction des lipides est de 67%, et les extraits contiennent 1,61 et 1,72 mg/g de 

chlorophylle et de caroténoïdes respectivement. Le broyage à bille, en brisant la paroi 

cellulaire permet d’augmenter les rendements d’extraction au CO2 supercritique des 

biomolécules d’intérêt. Ainsi, dans les mêmes conditions, le rendement de l'extrait lipidique 

total, la chlorophylle et des caroténoïdes sont augmentés respectivement de 16%, 61% et 

52%. Des essais d’extraction avec un co-solvant polaire ont également été effectués dans les 

mêmes conditions sur la microalgue brute non broyée. Les résultats montrent que  l'addition 

de 5% d'éthanol sur la microalgue brute a augmenté de 27% le rendement total de l'extrait 

lipidique par rapport à l’essai sans broyage. La chlorophylle et les caroténoïdes ont 

également été affectés de façon significative par l'addition d'éthanol avec 81% et 65% 

d'augmentation par rapport à la microalgue brute. Cet effet est plus élevé que celui du 

broyage.  

Selon les résultats décrits précédemment, il est possible d’en déduire qu’une 

pression de 600 bar permet au CO2 supercritique d’atteindre l'espace intracellulaire, ainsi que 

la matrice intra-organites où les biomolécules cibles sont situées. Le débit de CO2 est 

également un paramètre important qui devra être étudié afin d’optimiser les résultats obtenus. 

Le broyage à billes est une technique de cassage des cellules très efficaces qui permet 

d’augmenter le rendement de manière significative, mais comme elle nécessite de l’énergie 

qui augmente le coût de production, il ne semble pas pertinent de l’inclure dans le procédé.  

L’ajout d’un co-solvant polaire, dans les conditions opératoires testées, augmente 

significativement le rendement et extrait des lipides et des pigments. Ce serait une technique 

alternative au broyage de cellules, avec un rendement plus élevé et un coût énergétique plus 

faible. 
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Les résultats obtenus montrent que l’extraction au CO2 supercritique avec un 

solvant polaire est une technique d’extraction très sélective. Elle pourrait être utilisée comme 

une première étape d’un fractionnement sélectif, pour limiter le nombre d’étapes de 

purification dans le cas d’un procédé de bioraffinerie. Néanmoins, il est nécessaire de mieux 

définir les conditions optimales de fractionnement. En effet, le CO2 supercritique est toujours 

considéré comme coûteux par rapport aux méthodes conventionnelles, et le degré de 

sélectivité est le paramètre clé à optimiser car il permet de réduire le nombre d’opération 

unitaire du procédé en aval. Ce sont des perspectives d’approfondissement de cette étude. 
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Chapitre 3 : Récupération de la fraction 

hydrophile : lumière sur le rôle morphologique 

des microalgues 
 

Les microalgues représentent une grande biodiversité dépassant un million d'espèces. 

Elles appartiennent à différentes classes, et représentent une variété morphologique entre ces 

classes et dans les classes elles-mêmes. Ainsi, enquêter sur toutes les microalgues est une 

tâche complexe qui exige des décennies de recherche scientifique tout en sachant que la 

morphologie de ces espèces est susceptible de subir des modifications structurelles et ultra-

structurelles en fonction des conditions de croissance et aussi au cours de leur croissance. 

 
La paroi cellulaire joue un rôle important dans la régulation du transfert de 

biomolécules. Cette question représente une grande partie de ce chapitre en raison du rôle 

déterminant que les parois cellulaires jouent pour contrôler l’accès du solvant d’extraction 

des biomolécules intracellulaire d'intérêt. L'objectif principal de ce chapitre est de souligner 

le rôle des différentes structures de la paroi cellulaire de cinq microalgues différentes sur la 

quantification des protéines, et sur la récupération des biomolécules dans la phase aqueuse 

avant et après l'application d'un traitement de cassage qui cible essentiellement la paroi 

cellulaire. Les espèces de microalgues sélectionnées pour ce chapitre représentent un 

échantillon de la diversité morphologique des microalgues: Arthrospira platensis, Chlorella 

vulgaris, Haematococcus pluvialis, Nannochloropsis oculata et Porphyridium cruentum. 

 

Les travaux décrits dans ce chapitre sont exposés sous forme de quatre publications. 

La première publication, déjà parue dans le Journal of Applied Phycology, reflète le travail 

sur la définition du rôle de la paroi cellulaire lors de l'évaluation du facteur de conversion de 

l'azote en protéines des microalgues sélectionnées, et s’il est possible de recommander un 

facteur de conversion universel pour la quantification des protéines des microalgues. Il 

convient de mentionner que le même lot de chaque micro-algue a été utilisé au cours de notre 

travail, et donc les facteurs de conversion obtenus dans la présente publication ont été pris en 

considération pour les publications suivantes incluses dans ce chapitre. 

 
La seconde publication (acceptée dans Algal Research) intervient sur la réalisation 

d'un traitement chimique ou un traitement mécanique sur les parois cellulaires des cinq 
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microalgues, et s’intéresse à différencier le profil d'acides aminés obtenus notamment par 

l'évaluation de la fraction d'acides aminés essentiels et non essentiels qui clarifie si les 

mêmes protéines sont libérées en fonction de la nature du traitement appliqué sur la paroi 

cellulaire. 

 
La troisième publication (acceptée dans Algal Research), étudie la libération des 

protéines dans l'eau selon différentes méthodes de rupture cellulaires, afin d'évaluer le rôle 

des parois cellulaires ainsi que les organelles internes sur la libération de protéines dans de 

l'eau. 

 

La quatrième publication (soumise à Bioresource Technology) évalue la diffusivité 

des protéines et pigments dans le milieu aqueux suite au cassage cellulaire. Différentes 

méthodes de cassage ont été testées afin de comparer entre l’efficacité de la méthode et son 

impact sur la diffusivité. 

 
Tous les traitements effectués sur les microalgues de ce chapitre ont été appliqués 

sans l'utilisation de produits chimiques nuisibles à l'environnement ou de solvants toxiques. 

Par conséquent, travailler dans ces conditions nous rapproche des principes de la chimie 

verte, qui est un de nos principaux objectifs qui se marie aussi avec les objectifs du "projet 

Algoraffinerie". 

 

3.1 Publication # 3 
  
 L'analyse et la quantification de la teneur en protéines sont des facteurs clés qui 

méritent d’être examinés minutieusement. Il est vrai que la méthode colorimétrique de 

Lowry est une méthode précise pour la quantification des protéines et ne nécessite pas un 

facteur de conversion. Néanmoins, cette méthode ne détermine que les protéines 

hydrosolubles et non le contenu protéique total. En outre, l’efficacité de l'extraction des 

protéines risque d’être confrontée à la paroi cellulaire, ce qui peut empêcher la solubilisation 

de l'ensemble des protéines intracellulaires affectant ainsi la valeur du facteur de conversion. 

Par conséquent, l'impact des caractéristiques de la paroi cellulaire sur l'extractibilité des 

protéines doit être pris en compte et analysé afin d'éviter une mauvaise estimation de la 

teneur en protéines. Un point capital est de calculer précisément le facteur de conversion 

pour transformer l’azote en protéine. Ainsi, quand le facteur de conversion standard de 6,25 
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est utilisé, la méthode de Kjeldahl ou une analyse élémentaire conduisent à une surestimation 

ou sous-estimation de la quantité de protéines. En effet, ces deux méthodes prennent en 

compte la totalité de l'azote présent dans la biomasse à partir de laquelle 59 à 98% de l'azote 

total appartient aux protéines et le reste provient des pigments, des acides nucléiques et des 

minéraux.  

 
Plusieurs études se sont focalisées à déterminer une méthode pour recommander le 

facteur de conversion; par exemple, une étude a porté sur l'obtention du facteur de 

conversion de cinq microalgues après la rupture de la paroi cellulaire, puis de trouver une 

corrélation entre la teneur en protéines et la teneur en azote total (Kjeldahl ou une analyse 

élémentaire). En conséquence, parmi les cinq microalgues un nouveau facteur de conversion 

a été estimé à 4,44 (analyse élémentaire) et 5,95 (Kjeldahl). Une autre étude a déterminé le 

facteur de conversion pour 19 algues tropicales récoltées directement de la plage et dans une 

seconde étude, 12 microalgues marines ont été analysées sous différentes phases de 

croissance et une valeur moyenne de 4,58 a été estimée. L'étude suivante évalue l'impact de 

la paroi cellulaire sur l'extractibilité des protéines et de l'évaluation du facteur de conversion 

pour cinq microalgues intensivement cultivées dans le monde et ayant une large diversité 

taxonomique. 

 

Ces cinq microalgues différentes ayant des caractéristiques de parois cellulaires 

différentes, et leurs extraits protéiques. Les facteurs de conversion que nous avons obtenus 

grâce à la détermination du profil d’acides aminés pour les espèces brutes rigides comme 

Chlorella vulgaris, Nannochloropsis oculata et Haematococcus pluvialis étaient 6,35, 6,28 et 

6,25, respectivement, mais pour leurs extraits protéiques les valeurs étaient de 5,96, 5,86 et 

5,63. D'autre part, les facteurs de conversion obtenus pour les espèces brutes ayant une paroi 

fragile comme Porphyridium cruentum et Arthrospira platensis étaient 6,35 pour le premier 

et 6,27 pour le second, sans différence significative avec leur extrait protéique avec 6,34 pour 

le premier et 6,21 pour le second. En outre, le pourcentage de protéines hydrosoluble 

récupéré des protéines totales était de 80,3% pour P. cruentum et 69,5% pour A. platensis, 

mais inférieur pour C. vulgaris avec 43,3%, N. oculata avec 33,3% et H. pluvialis avec 

27,5%.  
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En conclusion, l’extraction des protéines ainsi que l'évaluation du facteur de 

conversion apportent une preuve supplémentaire que la paroi cellulaire joue un rôle 

important dans la quantification des protéines. Cela implique que ne pas considérer cette 

approche pourra conduire à une fausse quantification de la teneur en protéines. En outre, 

pour les microalgues, il n’est pas possible de recommander un facteur de conversion 

universel pour toutes les espèces comme le montre notre étude et les nombreuses autres 

réalisées sur des dizaines de microalgues. Par conséquent, le facteur de conversion devra être 

évalué à chaque fois lorsqu’une quantification précise des protéines est nécessaire. De plus, 

cette étude a montré une corrélation entre la rigidité de la paroi cellulaire et/ou sa structure 

chimique et les différences de valeur des facteurs de conversion. Ce sera le cas par exemple 

lors de l’extraction de protéines à partir de microalgues ayant une paroi rigide. En effet alors 

que les microalgues avec une paroi cellulaire fragile n'ont pas montré de différences 

significatives avec leur extrait protéique, les microalgues ayant une paroi cellulaire rigide ont 

montré une différence notable de leur extrait protéique. Ces résultats montrent que pour ces 

derniers, l’extraction des protéines correspond à la sortie des protéines solubles qui ont une 

composition très différente des protéines structurales. Par conséquent, la rupture ou la 

perméabilisation de la paroi cellulaire de C. vulgaris, N. oculata et H. pluvialis  est 

indispensable pour la récupération des protéines. Logiquement, il n'est pas nécessaire 

d’exercer une opération unitaire de cassage cellulaire pour P. cruentum car elle n’a pas une 

paroi cellulaire bien défini, et concernant A. platensis un cassage souple de la paroi cellulaire 

serait suffisant. 

 

3.2 Publication # 4 

 
L'objectif principal de cette étude est d'évaluer l'effet du cassage cellulaire sur 

l’extractabilité des protéines hydrosolubles de cinq microalgues ayant des caractéristiques de 

paroi cellulaire différentes. Deux techniques de cassage différentes ont été évaluées afin de 

caractériser le rôle de la paroi sur la libération des protéines. 

 

Afin de relarguer les protéines dans la phase aqueuse, des traitements par 

homogénéisation haute pression ou sous conditions alcalines ont été appliquées pour 

fragiliser la paroi cellulaire de cinq microalgues. La caractérisation des protéines a été 

réalisée par l'analyse des profils d'acides aminés des microalgues brutes et de leurs extraits 

protéiques obtenus suivant les deux types de traitements. Les résultats ont montré que la 
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proportion de protéines libérées à partir de microalgues après deux traitements suivait l'ordre 

suivant: Porphyridium cruentum > Arthrospira platensis > Chlorella vulgaris > 

Nannochloropsis oculata > Haematococcus pluvialis, qui correspond à l'ordre de fragilité de 

la paroi cellulaire. De plus, le traitement mécanique a libéré plus de protéines pour toutes les 

microalgues par rapport au traitement chimique. Le rendement le plus élevé était pour P. 

cruentum ayant la paroi cellulaire la plus fragile avec 88% de protéines hydrosolubles des 

protéines totales, et le plus faible a été attribué à H. pluvialis ayant une paroi cellulaire très 

fragile avec 41% de protéines hydrosolubles. Le rapport entre les acides aminés essentiels et 

non essentiels, a été évaluée dans l'extrait et comparé au profil d'acides aminés des 

microalgues brutes. Le rapport de ce dernier est plus important après traitement alcalin et 

beaucoup plus élevé après rupture des cellules par homogénéisation haute pression. Ces 

résultats suggèrent que les acides aminés non essentiels sont plus concentrés à l'intérieur des 

cellules et confirment que ce ne sont pas les mêmes protéines qui sont libérées ou qui 

constituent la paroi.  

 

3.3 Publication # 5 
 

L’étude suivante évalue l'effet de cinq méthodes de destruction cellulaire sur 

l'extractibilité des protéines dans l'eau de cinq microalgues ayant différentes structures et 

ultrastructures. Ces cinq microalgues sont : La cyanobactérie Arthrospira platensis, qui 

contient une paroi cellulaire relativement fragile principalement composée de muréine. La 

Chlorophycée Chlorella vulgaris et l’Eustigmatophyceae Nannochloropsis oculata, qui ont 

une paroi cellulaire composée principalement de cellulose et d’hémicelluloses. La 

Chlorophycée Haematococcus pluvialis contenant une paroi cellulaire tridermique épaisse 

composée de cellulose et de sporopollénine. La composition de la paroi cellulaire, semblable 

à celui des spores, rend cette micro-algue moins perméable et très résistante aux traitements 

mécaniques et chimiques. La Rhodophycée Porphyridium cruentum est principalement 

composée d’une pseudo-paroi d’exopolysaccharides sulfurés. En outre, les microalgues 

sélectionnées dans cette étude ont un cytoplasme contenant des protéines solubles, et elles 

possèdent toutes un chloroplaste, sauf pour A. platensis qui est composée de faisceaux de 

thylakoïdes orbitant la périphérie du cytoplasme, les phycobilisomes (contenant les 

phycobiliprotéines) présents à la surface des thylakoïdes comme dans les chloroplastes de P. 
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cruentum. En outre, le chloroplaste contient également des protéines solubles et une 

pyrénoïde centrale composée de Rubisco. 

 

La libération des protéines dans le milieu aqueux a été évaluée en lien avec la 

structure et l'ultrastructure des microalgues après avoir appliqué différentes techniques de 

cassages cellulaires : broyage manuel, ultrasons, traitement alcalin et homogénéisation haute 

pression. La concentration de protéines dans l'extrait a été déterminée pour toutes les 

microalgues et les résultats ont été examinés en tenant compte de la structure de la paroi 

cellulaire. L’augmentation de la concentration en protéines dans le milieu aqueux suivait 

l'ordre suivant: rupture des cellules à haute pression > traitement chimique > ultrasons > 

broyage manuel.  

 

3.4 Publication # 6 
 

L'étude suivante apporte un aperçu supplémentaire sur la compréhension de la 

diffusion des protéines et des pigments de Chlorella vulgaris dans le milieu aqueux, après 

avoir appliqué les différentes méthodes de cassage cellulaires. Les résultats sont obtenus par 

des observations microscopiques, par la quantification de la concentration des biomolécules 

d'intérêt, et par le calcul de leur coefficient de diffusion. Les observations microscopiques 

ont montré des cellules intactes après l'application de l'hydrolyse chimique et de l’ultrason. 

Cependant, la majorité des cellules ont perdu leur forme globulaire après le broyage à billes 

et l’homogénéisation à haute pression. En outre, la concentration en protéines augmente en 

suivant l'ordre: ultrasonication < hydrolyse chimique < homogénéisation à haute pression < 

broyage à billes. D'autre part, leur diffusion a suivi un ordre différent: l'hydrolyse chimique > 

broyage à billes > ultrasons > d'homogénéisation à haute pression. Les pigments n'ont pas été 

détectés dans la phase aqueuse après hydrolyse chimique, mais pour les traitements 

mécaniques leur concentration et leur diffusion ont suivi le même ordre que celui des 

protéines. 

 

Ainsi, en se basant sur ces résultats, la diffusivité de ces biomolécules n'est pas 

directement corrélée à la concentration finale de l’extrait. Ces résultats montrent que les 

techniques chimiques testées libèrent uniquement les protéines de surface de la paroi, que la 

diffusion des protéines est donc libre, mais conduit à une faible extraction. 
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 Les techniques de cassage de la paroi cellulaire qui permettent de maximiser la 

récupération des biomolécules intracellulaires, présentent des diffusions plus lentes. Il 

semble que même si l'action mécanique permet de détruire la cellule, elle n’est pas suffisante 

pour permettre une libre diffusion des molécules hors des cellules. 

!  
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Chapitre 4 : Procédé de fractionnement du 

milieu aqueux 

 
4.1 Publication # 7 
 

Dans le deuxième chapitre, il a été démontré qu’il était possible de réaliser une 

extraction efficace des molécules organique (lipides et pigments) par CO2 supercritique sur 

des microalgues brutes. Dans le contexte de l’étude de l’algoraffinerie, les étapes en avales 

auront pour principal objectif l’extraction et la purification de fractions enrichies en 

polysaccharides et protéines. En effet, ce sont les principales fractions restant dans la cellule 

après extraction au CO2 supercritique. 

 

 Il n’existe que peu d’études réalisées sur cette séparation dans le domaine des 

microalgues, et généralement elles utilisent des procédés à membranes. Les travaux de ce 

chapitre se focalisent donc sur cette technique. L’objectif de l’étude (soumise à Separation 

and Purification Technology) est de montrer qu’il est possible de fractionner ces molécules 

après broyage de la microalgue. La sélection de l’espèce de microalgue est basée surtout 

pour une question de disponibilité (stage en Australie) mais aussi, sur le fait de trouver une 

espèce ayant des caractéristiques intermédiaires à comparer avec toutes les espèces déjà 

étudiées dans ce manuscrit. Ainsi, Tetraselmis suecica était le meilleur compromis à notre 

disposition pour plusieurs raisons : le manque d’une couverture d’exo-polysaccharides qui 

risque d’augmenter le phénomène de colmatage ; la rigidité intermédiaire de la paroi 

cellulaire, et l’absence de lipides qui correspond à l’état des microalgues après extraction au 

CO2 supercritique. 

 

Dans un premier temps les conditions d’extraction ont été étudiées et différents 

extraits ont été produits. Un procédé d'ultrafiltration en deux étapes a été appliqué sur la 

phase aqueuse de Tetraselmis suecica après la rupture de sa paroi cellulaire par 

l'intermédiaire d'un homogénéisateur à haute pression. Mais avant d’appliquer le procédé de 

séparation sur la phase aqueuse de T. suecica, deux suspensions reconstituées contenant les 

biomolécules d’intérêt (amidons, sucres, protéines) étaient préparées afin de vérifier d'abord 

la faisabilité du procédé et d’obtenir les conditions nécessaires au fractionnement avec un 

extrait. Sachant que la taille des amidons est supérieure à 100 kDa, la première étape du 
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procédé d'ultrafiltration utilise une membrane de 100 kDa pour retenir l’amidon tout en 

permettant aux protéines et les sucres de passer dans le filtrat. De plus, selon la littérature la 

taille des protéines de T. suecica est comprise entre 15 à 50 kDa, et donc la seconde étape 

utilise une membrane de 10 kDa afin de retenir les protéines, tout en permettant de 

concentrer les sucres dans le filtrat. Les essais sur solution reconstituée ont permis de définir 

les conditions optimales de filtration. Par conséquent, le processus a été extrapolé sur la 

phase aqueuse de l’hydrolysat T. suecica avec une pression transmembranaire de 2 bars (30 

psi) pendant 30 minutes après avoir effectuer une homogénéisation haute pression de 200 à 

1000 bar pour casser la paroi cellulaire. Des observations microscopiques ont révélé des 

cellules complètement cassées à partir de 600 bar et la fragmentation des cellules était 

également perceptible après 800 bar. Mais, la concentration la plus élevée dans la phase 

aqueuse de toutes les biomolécules d'intérêt a été obtenue après 1000 bar à une température 

de 46°C. La filtration a été réalisée après centrifugation de l’extrait. Après chaque essai, la 

concentration des différentes biomolécules a été calculée pour les rétentats pour assurer le 

bilan matière. Les résultats ne montrent pas de pertes significatives des biomolécules à 

signaler entre les deux membranes. La rétention totale de l'amidon et des pigments a été 

possible avec une membrane de 100 kDa et les protéines ont été retenues avec une membrane 

de 10 kDa tout en permettant aux sucres d’être concentrés dans le filtrat.  

 

Ces résultats montrent donc qu’il est envisageable de produire des fractions 

enrichies en utilisant deux étapes de filtration sur membranes. Néanmoins, les conditions 

doivent encore être optimisées afin d’augmenter la pureté des fractions obtenues, en utilisant 

une étape de diafiltration par exemple. 
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Conclusion générale 
 

La valorisation des bioproduits des microalgues est devenue d’une importance capitale 

aussi importante que les biocarburants. Il serait une erreur de les négliger car ils présentent 

une haute valeur ajoutée, qui peut conditionner le développement du procédé de 

fractionnement. Cette vision contribue au développement de l’application du concept de 

bioraffinerie aux plantes. 

!

La stratégie du projet Algoraffinerie est de mettre en œuvre une bioraffinerie de 

première génération afin d’extraire, fractionner et purifier les principales biomolécules dans 

un procédé intégré.  Ainsi, au Laboratoire de Chimie Agro-Industrielle (LCA), nous nous 

sommes focalisés sur le rôle important que la paroi cellulaire et l’ultrastructure sont capables 

de jouer à différentes échelles. De plus, nous sommes aussi intéressé au fractionnement de la 

phase aqueuse obtenue après cassage cellulaire. Notre défi supplémentaire au LCA était de 

respecter au cours de nos travaux les principes de la « chimie verte », en évitant l’utilisation 

des solvants toxiques durant les procédés d’extraction et de fractionnement. 

 

 Au cours de nos recherches bibliographiques, plusieurs microalgues avaient attiré 

notre attention. Mais comme les caractéristiques morphologiques des cellules changent en 

fonction des espèces, nous avons essayé de caractériser la composition des parois cellulaires, 

des ultrastructures et la localisation intra/extracellulaire des biomolécules. Cette diversité 

morphologique nous a permis de déduire qu’il n’est pas pertinent de recommander un facteur 

de conversion (NTP) universel pour la quantification des protéines des microalgues à  partir 

d’une analyse élémentaire, surtout celles qui possèdent une paroi rigide. Ces dernières ont 

montré une différence significative entre le NTP obtenu pour les microalgues brutes et leur 

extrait protéique. De plus, compte tenu de la récupération des protéines suite aux différentes 

méthodes de cassage cellulaire, il est possible de déduire que les organelles intracellulaires 

jouent également un rôle de résistance face aux méthodes de cassage. Néanmoins, selon la 

méthode de cassage, la qualité des protéines libérées est susceptible d’être différente en 

fonction du profile d’acides aminés. Ce qui laisse supposer que selon les conditions, ce ne 

sont pas les mêmes protéines qui sont récupérées. Les résultats montrent que les 

caractéristiques morphologiques des cellules entraveraient la libération de ces biomolécules. 

Il convient de mentionner que l’efficacité de toutes les méthodes de cassage a été évaluée par 
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des observations microscopiques confocales à balayage laser, et par la quantification des 

biomolécules d’intérêts avant et après l’application de la méthode. 

 

La précédente série d’études nous a donné une idée plus claire sur le rôle de la paroi 

cellulaire sur la libération des protéines. Cependant, il serait intéressant de se pencher de 

manière approfondie sur la diffusion des biomolécules dans le milieu aqueux suite au cassage 

cellulaire. En effet alors que, l’efficacité des différentes méthodes de cassage était attendue, 

la cinétique de diffusion lente des ces biomolécules était surprenante. Ceci suggère qu’en 

dépit de l’efficacité d’une méthode de cassage, la diffusion des biomolécules n’est pas 

directement corrélée à l’efficacité de la méthode. De plus, les résultats indiquent qu’il est 

possible d’éviter l’opération unitaire de cassage avant d’extraire les lipides. L’étude montre 

qu’après avoir défini les paramètres d’extraction au pilote de CO2 supercritique, l’extraction 

effectuée sur Chlorella vulgaris lyophilisée par le CO2 supercritique et 5% d’éthanol avait 

permis d’obtenir un rendement significativement supérieur a celle obtenu après cassage par 

broyage à billes.  

 

La dernière partie de nos travaux de recherche consistait à mettre en place un procédé 

de fractionnement continu, qui prend en compte l’intégrité des biomolécules. Premièrement, 

le procédé avait été testé sur des suspensions modèles contenant les mêmes biomolécules qui 

nous intéresse, et ensuite extrapolé sur le milieu aqueux de Tetraselmis suecica obtenu après 

cassage par homogénéisation haute pression. Différentes pression de cassage avaient été 

testées. La plus forte concentration de biomolécules libérées dans l’eau était obtenue à 1000 

bar, et après centrifugation le surnageant contenait des protéines, des pigments, des amidons 

et des sucres.  

 

Le fractionnement de cet extrait est basé sur l’ultrafiltration en deux étapes en utilisant 

deux membranes ayant des seuils de coupures différents. La première étape a entièrement 

retenu les amidons et les pigments avec une membrane de 100 kDa, tout en laissant passer 

les protéines et les sucres dans le filtrat. Les pigments, de nature hydrophobe, semblent être 

rejetés par la nature hydrophile de la membrane (Polyethersulfone), ce qui expliquerait leur 

forte rétention. La deuxième étape du procédé a retenu les protéines par une membrane de 10 

kDa, tout en permettant aux sucres seuls d’être concentrés dans le deuxième filtrat. 
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Les points suivants pourraient résumer la force de notre travail : 

• Les principes de la “chimie verte“ ont été respecté en ce qui concerne le solvant 

d’extraction utilisé. 

• Une quantification des protéines de microalgues précise nécessite le calcul du 

facteur de conversion. Il n’est donc pas pertinent de recommander un facteur de 

conversion universel pour les microalgues. 

• Malgré le rôle connu de la paroi cellulaire sur la récupération des composants, 

l’ultrastructure de certaines microalgues pourrait également résister aux méthodes 

de cassage mécaniques ou chimiques. 

• La vitesse de diffusion des biomolécules n’est pas nécessairement corrélée à 

l’efficacité de la méthode de cassage. 

• Il est possible d’extraire de manière sélective les composés organiques (lipides et 

pigments) sans broyage des cellules.  

• Il est possible de séparer l’amidon et les protéines contenus dans un extrait de 

microalgue par procédé sur membranes. 

 

Théoriquement, chaque procédé a ses avantages et ses inconvénients; certaines parties de nos 

travaux représentent des inconvénients pour les raisons suivantes : 

• Les méthodes de cassage les plus efficaces comme le broyage à billes et 

l’homogénéisation haute-pression restent coûteuses en termes d’apport énergétique. 

• La technique du CO2 supercritique est toujours considérée coûteuse. 

• Malgré la faisabilité du procédé de fractionnement, le rendement de récupération 

des biomolécules extraites après cassage reste faible, surtout au niveau des 

protéines.  

 

George Bernard Shaw (Lauréat du prix Nobel de littérature en 1925) a cité : “La science 

ne résout jamais un problème sans en soulever dix autres“. Cette citation peut être 

interprétée de différentes manières contradictoires. Mais de mon point de vue personnel, elle 

reflète la beauté et la richesse de la science qui résident dans la résolution des problèmes, 

l’innovation, la création, la proposition d’hypothèses et d’ouvrir de nouvelles perspectives. 

Par conséquent, tenant compte des nombreuses études menées au cours de nos recherches, 

les aspects scientifiques supplémentaires peuvent encore être étudiés : 
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• Une évaluation du cycle de vie sera nécessaire pour estimer le coût et la durabilité 

du procédé de fractionnement. 

• Il sera intéressant de comprendre de plus prêt le phénomène de diffusion des 

biomolécules dans la phase aqueuse. Par exemple : 

$ Etablir une méthode de suivi de diffusion des différents types de protéines 

en fonction du temps après cassage. 

$ Obtenir des images plus précise des modifications morphologiques subies 

à la paroi cellulaire après cassage. 

• Un grand défi sera de trouver une méthode de cassage pertinente et rapide, tout en 

évitant qu’elle soit coûteuse en terme d’énergie. 

• Il sera utile de procéder à une extraction par le CO2 supercritique sur des 

microalgues humides, afin d’économiser le coût de séchage de la biomasse avant 

l’extraction. 

• Optimiser les conditions de fractionnement des biomolécules sur membrane. En 

particulier, il convient de définir des conditions appropriées de diafiltration pour 

obtenir des fractions plus raffinées. 
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