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Abstract

A typical aero engine is a complex mechanical structure made of many assemblies
whose components are connected by mechanical joints. These joints introduce interfaces
that are subjected to various static and dynamic loads during the engine’s operational life.
These conditions can lead to high structural vibrations and cycle fatigue failures, resulting
in energy losses and reduced performance. The damages could be increased especially
when the operating frequencies of the system are close to the resonant frequencies of the
structure. Some common friction joints in turbomachines, such as interfaces between disk
and blade, shroud contacts and friction under-platform dampers, are designed to undergo
relative micro-sliding motion at the interfaces and provide friction damping at the contact
interfaces to reduce the amplitude vibration levels by dissipating energy. However, dry
friction is also one of the most critical sources of nonlinearities and uncertainty for
predicting the global dynamic behaviour of assembled structures. The vibrations induced
by repeated dynamic loads can cause fretting wear.

Friction and wear problems are multi-scale and multi-physical by nature. Fretting
wear occurs at the micro-scale level of the asperities, over a long period, deteriorating
the contact surface geometry by producing wear debris through material removal and
dissipating energy. The worn geometry can affect the dynamic response of the whole
system over time and limit the operating lifetime. With this aim, improving numerical
simulation methods and developing predicting tools is essential to prevent when opera-
tional vibration levels become critical for anticipating potential failures in the first design
phases and planning appropriate maintenance.

In this context, this PhD work aims at improving the understanding of the physics
of frictional contacts by evaluating the effect of fretting wear on dynamics. This is
achieved by validation through experimental evidence of an efficient prediction tool
developed to simulate the nonlinear dynamic behaviour arising from friction contact.
The proposed numerical method allows calculating simultaneously vibrational behaviour
and wear evolution in fretting wear problems. The coupling between dynamics and wear
is implemented through a multi-scale approach by considering two-time scales: a fast
scale for dynamics and a slow scale for tribological phenomena. The numerical study
of fretting wear under dynamic loading is based on a fretting test campaign performed
at Imperial College London. In particular, the experimental test rig reproduces the
dynamic behaviour observed in friction dampers. Hence, it can give an additional detailed
description of contact interfaces and allow more accurate modelling of these elements.

The results obtained are consistent with those given from experimental evidence mak-
ing it possible to demonstrate the method’s applicability and evaluate the dynamic/wear
coupling, with some limitations related to the assumptions used. In addition, numerical
simulations enable the evaluation of local scenarios for quantities not directly measured
by experiments, such as the distribution of wear over the interface and the evolution
of the wear volume during the time, pointing out that the constant dialogue between
experiments and updated simulations can enable one to go beyond the measurements or
calculations alone.

Keywords: nonlinear dynamic, friction contact, fretting wear, multi-scale problem
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Résumé

Un moteur d’avion est une structure mécanique complexe composée de nombreux
assemblages dont les composants sont reliés par des jonctions mécaniques. Ces jonctions
introduisent des interfaces qui sont soumises à diverses charges statiques et dynamiques
au cours de la vie opérationnelle du moteur. Ces conditions peuvent entraîner des
vibrations structurelles de niveau élevé et des défaillances causées par des chargements
cycliques, entraînant des pertes d’énergie et des performances réduites. Les dommages
pourraient être accentués surtout lorsque les fréquences de fonctionnement du système
sont proches des fréquences de résonance de la structure. Certaines jonctions utilisées
dans les turbomachines, tels que les surfaces entre l’aube et le disque et les d’amortisseurs
par frottement sec situés sous les plate-formes, sont conçus pour subir un mouvement
de microglissement relatif aux interfaces et fournir un amortissement de friction aux
interfaces afin de réduire les niveaux vibratoires en dissipant l’énergie. Cependant, le
frottement sec est également l’une des sources les plus critiques de non-linéarités et
d’incertitude pour prédire le comportement dynamique global des structures assemblées
et les vibrations induites par des charges dynamiques répétées peuvent provoquer une
usure par fretting.

Les problèmes de frottement et d’usure sont multi-échelles et multiphysiques par
nature. L’usure par frottement se produit au niveau microscopique des aspérités, sur
une longue période, détériorant la géométrie de la surface de contact en produisant des
débris d’usure par enlèvement de matière et par dissipation d’énergie. La géométrie
usée peut affecter la réponse dynamique du système global et limiter sa durée de vie.
Dans ce but, l’amélioration des méthodes de simulation numérique et le développement
d’outils de prédiction sont essentiels pour prévenir le moment où les niveaux de vibration
opérationnels deviennent critiques pour anticiper les dommages potentiels déjà dans les
premières phases de conception.

Dans ce contexte, cette thèse vise à améliorer la compréhension de la physique des
contacts frottants en évaluant l’effet de l’usure par fretting sur la dynamique vibratoire.
Ceci est réalisé à travers la validation par des essais expérimentaux d’un outil de prédiction
numérique efficace développé pour simuler le comportement dynamique non linéaire. La
méthode numérique proposée permet de calculer simultanément le comportement en
vibration et l’évolution de l’usure. Le couplage entre dynamique et usure est mis en
œuvre à travers une approche multi-échelle en considérant deux échelles de temps : une
échelle rapide pour la dynamique et une échelle lente pour les phénomènes tribologiques.
En particulier, l’étude numérique de l’usure par fretting vibratoire est basée sur une
campagne d’essais de fretting réalisée à l’Imperial College London. Le banc d’essai
expérimental reproduit le comportement dynamique observé dans les amortisseurs à
friction. Par conséquent, il peut donner une description détaillée supplémentaire des
interfaces de contact et permettre une modélisation plus précise de ces éléments.

Les résultats obtenus de prévision numérique sont cohérents avec ceux donnés par les
essais permettant de démontrer l’applicabilité de la méthode et d’évaluer le couplage
dynamique/usure, avec quelques limitations liées aux hypothèses utilisées. De plus,
des simulations numériques supplémentaires ont permis d’évaluer des scénarios locaux
pour des grandeurs non directement mesurées par les essais, comme l’observation locale
au niveau de la zone de contact c’est-à-dire la répartition de l’usure sur l’interface et
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l’évolution du volume usé au cours du temps. Les résultats obtenus pourront aussi
servir aux expérimentateurs pour proposer des protocoles expérimentaux pour l’étude
du fretting sous chargement dynamique. Pour finir, la validation numérique d’un essai
expérimental a permis de souligner l’importance d’un dialogue constant entre essais
expérimentaux et simulations numériques pour aller au-delà des mesures et des calculs.

Mots-clés: dynamique non-linéaire, frottement, usure par fretting, problème multi-
échelle
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Introduction

Industrial context

Engineering systems consist of many assembled parts made up of several contacting
elements. In particular, modern gas turbines are critical components whose design
and manufacturing processes are optimised to improve performance, efficiency and
safety/work-ability respecting the increasingly stringent environmental criteria. Due to
the relatively high loads to which they are subjected, the structural and mechanical
integrity of the rotating components strongly affects the successful operations of these
machines [1]. However, a major problem with assembled components is that these

are highly stressed and subjected to severe conditions in terms of pressure and
temperature, as well as to various static and dynamic loads, during the whole engine’s
operational life. These conditions can lead to high structural vibrations and cycle fatigue
failures, resulting in energy losses and reduced performance. Vibrations can be induced
by various sources, classified as structural and aeroelastic [1]. The maximum vibration
amplitude at resonances must be controlled and maintained below a certain threshold to
keep a reasonable service life and avoid premature failure.

A primary objective of the design process is to ensure structural and mechanical
integrity. Hence, vibrations are a central problem in the design of aircraft engines.
Predicting the lifetime of engine components as early as possible in the first design phases
is a crucial step for manufacturers. Therefore, having tools to prevent when operational
vibration levels become critical is crucial for anticipating potential failures and planning
appropriate maintenance.

Different strategies have been devised to prevent the excitation of resonant frequencies
and aeroelastic instabilities in the operative range. It is possible to act on the mechanical
configurations by adjusting the system’s dynamic characteristics, for example, by varying
the number of blades or the natural frequencies, with appropriate design solutions. If
resonances are not avoided despite these adjustments, it is necessary to ensure that the
vibration response remains within acceptable limits. For this purpose, the damping of
the system can be exploited. Damping in rotating turbine blades is mainly composed of
aerodynamic and mechanical damping. The latter includes viscous and material hysteresis
damping and damping due to mechanical joints. The best option at the moment is to
provide external sources of damping, for example, in the form of dry friction devices. In
such systems, friction is provided by adding special passive devices, so-called friction
dampers, located at specifically selected points of the structures that need to be damped
[2, 3]. Once adequately modelled, the parameters describing these friction interfaces can
be optimised to achieve friction benefits. Hence, the joint damping by friction is the most
considered and implemented [4]. Despite the significant reduction in maximum vibration

1



2 Introduction

levels over the operating range, one of the main disadvantages of friction damping is that
friction also introduces micro and/or macro slip at the contacts that can accompany
fretting wear and energy dissipation. Fretting wear over a large number of cycles leads
to High Cycle Fatigue (HCF), a dominant failure mode of turbomachinery components
during operation. The energy dissipation accumulated leads to material loss, modifying
the contact conditions. Moreover, a worn geometry induces a change in the vibration
level [5], altering the dynamic response.

Some common friction joints in turbomachines include the surfaces between root-
blade and slot-disk, shroud contacts and bolted flange joints, friction under-platform
dampers, gears, bearing, and dovetail joints. The design of these devices provides friction
damping undergoing relative micro-sliding motion at the contact interfaces, useful to
reduce amplitude vibration levels [6–8].

Scientific context

Damping systems are based on friction energy dissipation and have a positive effect
representing an effective means to reduce significant resonant stresses. However, dry
friction in contact interfaces is one of the most critical sources of nonlinearities and
uncertainty for predicting the global dynamic behaviour of built-up structures. Energy
dissipation leads to fretting wear and material loss. Fretting wear is an alternating
motion of small amplitude occurring between two surfaces in contact. It can be found
in almost all mechanical connections subject to variable vibrations and represents one
of the most critical surface premature failures of engine components, that may lead to
severe engine damage. This phenomenon can modify the interfaces at a micro-scale level,
influencing the dynamic response of the global system. For this reason, it is crucial to
study the long-term effects of wear, its evolution, and its impact on dynamic response.
Thus, the manufacturers need to understand and predict the wear effects on dynamics
to estimate the performance and improve the design standards.

Faced with the complexity of such interactions at the interface, tribology, a science
dedicated to the study of lubrication, friction and wear [9], provides a fundamentally
scientific approach to understanding these phenomena at the contacting surfaces. Friction
is a dissipative phenomenon; part of the energy dissipated by friction is worn out through
various processes (physics-chemical processes, material transformations, formation of
third bodies debris) that lead to wear. The investigation and modelling of fretting wear
represent an acknowledged field of research. Many studies have been conducted for
quasi-static problems, as examined in [10], but very few attempts have been made to
include fretting wear in dynamic analysis and evaluate its influence on the dynamic
response of a frictional contact system [11–17]. Improving numerical simulation methods
and developing predicting tools are essential to achieve an optimised design in the first
phases and verify the resistance and integrity of the different parts to the various loads.

More experimental studies are needed to validate numerical prediction and improve
the understanding of these phenomena, numerically replicating the physics of the problem.
The challenge is to investigate the impact of wear on the dynamics of structures having
access to elements of scenarios under the scope of experimental tests and perform a more
detailed local analysis. The design of industrial systems is too complex and difficult
to understand through full-scale testing. Their cost is prohibitive for design phases,



Introduction 3

with tests reserved for validation. The design of simplified experimental setups can help
reproduce industrial components’ configurations at a laboratory scale. Therefore, it is
necessary to control all the physical phenomena from the design phase onward.

Research objectives

The main objective of this work is to improve the understanding of the physics of
frictional contacts by evaluating the effect of fretting wear on the dynamics. This is
achieved by developing and validating advanced models for dynamic simulations with
experimental evidence. The numerical study of the fretting wear under dynamic loading
is based on a fretting test campaign. In particular, the vibratory friction rig designed
in the Dynamic group of the Imperial College London [18] and the series of fretting
wear experiments published in [19] are considered here. The test rig reproduces the
dynamic behaviour observed in friction dampers. Thus, it can give an additional detailed
description of the contact interfaces, allowing more accurate modelling of these elements.
Figure 1 illustrates an example of an industrial structure and its interfaces subjected
to fretting wear and the corresponding test experiment at a laboratory scale.

(a) Turbine blade with a zoom on a dovetail joint.

(b) Fretting test rig [19] with a zoom on the contact joint.

Figure 1: Example of an industrial structure and their interfaces subjected to fretting
wear (a) and the corresponding at a laboratory scale (b).

More specifically, the following objectives are defined:

1. Validate through experimental evidence an efficient prediction tool to simulate
the nonlinear dynamic behaviour arising from friction contact, implementing the
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coupling between wear phenomena and dynamics.

2. Evaluate local scenarios numerically for quantities not directly measured by experi-
ments, such as a local observation at the contact zone, the distribution of the wear
over the interface and the evolution of the wear volume during the time. Additional
numerical investigations point out where the constant dialogue between experiments
and updated simulations can enable one to go beyond the measurements.

EXPERTISE project: an overview. This thesis has been funded by the Euro-
pean Commission’s Framework Program Horizon 2020 through the Marie Sklodowska-
Curie Innovative Training Networks (ITN) EXPERTISE [20] (EXperiments and high-
PERformance computing for Turbine mechanical Integrity and Structural dynamics
in Europe) grant agreement. The project, based on the collaboration between various
academic and industrial partners from across Europe, has the ultimate goal of devel-
oping advanced tools for the dynamic analysis of large-scale models of turbomachinery
components to pave the way for the virtual simulation of the whole engine. For this
purpose, the EXPERTISE project is divided into four work packages as indicated in
Figure 2. These relate to 1. Modelling of friction contact - 2. Joint identification - 3.
Structural dynamics - 4. High-Performance Computing (HPC). The current research is
part of work package 1 concerning advanced friction contact modelling. Improving the
understanding of the physics of frictional contact interfaces is the first step required to
develop highly efficient friction models, which, coupled with more efficient and accurate
nonlinear dynamic analysis tools, enable much faster and more reliable computations. To
further reduce computational costs and extend the analysis capabilities to much larger
engineering structures, the final goal is to integrate the developed analysis framework
with high-performance computing techniques, allowing more accurate dynamic analysis
of a large-scale turbomachinery model.

Figure 2: Work packages distribution in the EXPERTISE project.
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Outlines

This manuscript is organized into five chapters.

Chapter I is dedicated to bibliographic research introducing the basic principles that
will be considered in the manuscript. First, a review of the advances in dynamic analysis
considering nonlinearities arising from friction contact, and then different wear models
and fretting wear approaches are presented, with the most significant findings in fretting
wear (definition, sliding modes, wear mechanisms and fretting maps). Finally, a review
of the analytical formulations and numerical methods to solve contact problems is given,
emphasising the influence of wear on the nonlinear dynamic analysis and highlighting
the importance of experimental tests.

Chapter II is concerned with solving the dynamic problem with contact nonlin-
earities. Different resolution methods are presented, focusing on the frequency method
of harmonic balance. For the nonlinear contact problem, not having expression in a
frequency domain, a method for calculating the contact forces in the time domain based
on the dynamic Lagrangians is considered. Due to the high computational times caused
by a nonlinear dynamic resolution, the models’ size is reduced using a substructuring
method.

Chapter III introduces the numerical strategy to account for wear in a nonlinear
dynamic problem. The system evolution is studied by splitting time into two scales:
a fast scale for dynamics and a slow scale for wear phenomena. The chosen approach
simultaneously calculates the wear evolution and the vibration response. An academic
numerical example is used to validate the method and introduce various aspects and
quantities concerning the evolution of contact interface (hysteresis loops, wear volume
and forced dynamic response).

Chapter IV focuses on the description and the pre-test calibration of the Imperial
College vibratory test rig. First, by performing a finite element modelling of the experi-
ments, followed by an efficient reduction of the problem’s size and then by conducting
a sensitivity analysis to justify the choice of the numerical and physical parameters.
Finally, the nonlinear dynamic analysis of the unworn system is performed and evaluated
to validate the model.

Chapter V provides a numerical investigation of the series of fretting wear tests
performed by the vibratory test rig previously introduced. The numerical results are
compared with the experimental ones, making it possible to demonstrate the method’s
applicability and evaluate the dynamic/wear coupling. In addition, numerical simulations
enable the evaluation of the change of specific parameters not directly provided by
experimental evidence, such as the wear depth distribution over the interface, and the
wear volume over time.

Finally, the conclusion summarises the main contributions and findings achieved.
Areas for further development are identified with a perspective on how the current
work, supported by experimental results, fits into the general framework of the nonlinear
dynamic analysis with friction contact.
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Chapter I

State-of-the-art of contact modelling

This chapter provides a brief literature review concerning the dynamic analysis of
generic structures with friction contact nonlinearities. Starting from an introductory
description of classical contact models, the first part goes on to present different wear
models and fretting wear approaches with the most significant findings in fretting wear.
The second part moves on to describe the modelling of friction and wear in contact
mechanics and discuss the effect of wear on the nonlinear dynamic analysis, highlighting
the importance of experimental tests.
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1.1 Research topics addressed in this manuscript

Tribology. Modelling a tribological interface is a very complex task due to the multi-
physical and multi-scale nature of the various phenomena involved. Understanding and
evaluating this type of problem requires the consideration of multiple aspects: loading
conditions, different mechanical behaviours of the materials of the contacting surfaces,
debris production and loss of material, as well as thermodynamic and physico-chemical
processes, which lead to surface modifications and, consequently, to a degradation of the
performance of the structures. In the Figure I.1, proposed by Vakis [21], the different
nature of all variables implied in these kinds of problems is illustrated, providing an
overview of the many aspects to be addressed in tribological issues. However, the context
of turbomachinery components involves only some of the effects indicated, but these
result in significant contributions to introducing difficulty in modelling their impact on
the dynamic response of the whole engine.

Figure I.1: A schematic representation of the multi-physical nature of tribological
interfaces: two bodies into contact under different loading conditions [21].

Generally, wear is defined as the progressive loss of material from the surface of a
body, occurring as a result of a relative movement over another one [22]. Different classes
of wear can be distinguished, including adhesive, abrasive, surface fatigue, corrosive
and erosive wear, cavitation and fretting wear. Of all these different types of wear,
fretting wear is the dominant one observed experimentally during the series of fretting
tests performed at the Imperial College London and published in [19]. Fretting wear
is a kind of damage in contact surfaces caused by oscillatory relative displacements of
small amplitude between them. This phenomenon is difficult to quantify: it produces
modifications of the surfaces caused by material removal and debris flow in and out of
the contact interface.

Dynamics. The interaction between vibrations and tribological mechanisms has only
rarely been investigated. The dynamic response of a system can normally be considered a
macro-scale problem of short duration. Instead, the fretting wear, caused by the dynamic
response, occurs at the micro-scale level of the asperities over a long period, deteriorating
the contact surface geometry by producing wear debris through material removal and
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dissipating energy. Therefore, the worn geometry can affect the dynamic response of the
whole system over time and limit the operating lifetime for a large number of industrial
applications characterized by vibrating interfaces. Almost all engine vibrating interfaces
are susceptible to failure due to fretting if not well designed. In the case of under-platform
dampers, for example, the alternating displacements at friction interfaces can cause a
strongly nonlinear dynamic response and lead to fretting wear at the contact.

Experimental tests help researchers better understand the phenomenon and find
the best way to predict it with more certainty and confidence. Wear effects should be
considered early in the design process of the components because:

1. wear phenomena occur in service. Thus, it would be appropriate to predict the
behaviour of the structures to take solutions in advance by reducing wear rates to
an acceptable level within the economic and design constraints imposed;

2. an understanding of the factors that control wear phenomena can help manufac-
turers propose palliative methods for minimising the problem.

The challenges aim to ensure the safety and integrity of components, optimizing mainte-
nance and technological innovation. The difficulty arises because of the multi-scale and
multi-physics nature of the interactions occurring on contact. Hence, the importance
of developing prediction tools able to couple tribological and dynamic problems. The
durability and reliability of mechanical structures are significant in industry, especially
in the aerospace field, where environmental and technological challenges are constantly
increasing.

Contact is a nonlinear and non-regular phenomenon, being the contact’s laws dis-
continuous. Several contact and friction laws have been developed in the literature,
some of them discontinuous to get closer to the real physics of a frictional contact,
others regularized to enhance their integration in the numerical solvers and improve the
convergence of the solution algorithm. The next section aims to explain the classical
contact and friction laws used in the rest of this manuscript.

1.2 Classical contact modelling

Contact laws establish the relationships between local contact loadings (pressure or force)
and local kinematics (gap or velocity). In general, they should be as simple as possible,
involving only a small number of empirical parameters derived from measurements or
experience, without losing the main tribological characteristics of the interacting surfaces.
Thus, contact laws identify the contact’s status: the separation, stick or slip between
two solids. From these statuses, the contact forces can be evaluated.

1.2.1 Contact law in the normal direction (Signorini conditions)

When two bodies are in contact, the unilateral interactions at the interface are funda-
mentally modelled by a unilateral contact’s law that states the relationship between the
normal forces and the relative motion in the normal direction. The so-called Signorini
conditions [23] are illustrated in Figure I.2. From a mathematical standpoint, these
constraints may be defined as a set of complementary conditions as follows:
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δN ≥ 0

fN ≥ 0

δNfN = 0

(I.1)

where fN are the normal contact forces (chosen to be positive by convention) and δN is
a gap representing the non-negative normal distance between surfaces in contact. These
contact conditions or boundary conditions are:

• the first inequality in (I.1) represents the geometric condition of no-penetration:

δN ≥ 0 ⇔

{
δN > 0 no contact,
δN = 0 contact,

(I.2)

• the second inequality in (I.1) represents a static condition of non-sticking:

fN ≥ 0 ⇔

{
fN > 0 contact,
fN = 0 no contact,

(I.3)

• the third condition in (I.1) is a mechanical complementarity condition, indicating
that there may be contact or separation at one point:

δNfN = 0 ⇔

{
fN = 0 separation,
δN = 0 contact.

(I.4)

In a more compact form, the Signorini conditions can be expressed as:

0 ≤ δN ⊥ fN ≥ 0. (I.5)

This law is strongly irregular. Its implementation in the different numerical methods for
resolving a nonlinear problem is very complex, but it has the advantage of being exact.
To avoid the numerical problems caused by non-regular laws, a contact stiffness kN (i.e.
a penalty factor) at the contact interface [24] is used to linearly regularize the unilateral
contact’s law This regularized law, represented in Figure I.2b can be expressed as:

fN =

{
kNδN if δN ≤ 0,

0 if δN > 0.
(I.6)

Other regularized laws have been introduced, including an exponential law [25], as shown
in Figure I.2c, more regular than the linear one.

1.2.2 Contact law in the tangential direction (Coulomb friction)

The interface behaviour has been modelled [26] through free energy and a specific pseudo-
potential, including thermal effect and wear phenomena. Strömberg [27, 28] formalised
the laws at the interface, taking into account thermodynamic principles and all possible
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(a) Unilateral (b) Linear (c) Exponential

Figure I.2: Contact laws representation.

wear mechanisms. Theoretical developments will not be repeated here, but readers may
refer to them in [27, 28]. Here, the different adhesion and sliding regimes between dry
surfaces are commonly distinguished in the tangential contact plane. Friction can be
defined as the resistance (friction force) encountered by one body in a relative tangential
movement (sliding) over another. Friction is a dissipative phenomenon and is the leading
cause of damping in mechanical joints.

In the same way, as for the contact laws, several models have been developed to
capture the behaviour at the contacting interface and integrate it into the structural
response. Most of them are empirically based and need to be calibrated with experimental
results to be considered valid for a specific contact. The most basic dry-friction model
available in the literature is the Coulomb friction law or, more accurately, the Amontons-
Coulomb friction law. It was initially based on two postulates by Amontons [29] to
which, later, Coulomb [30] added a third one: (1) friction force is directly proportional
to the applied load (Amontons 1st law, 1699); (2) friction force is independent of the
apparent contact area (Amontons 2nd law, 1699); (3) kinetic friction is independent of
the sliding velocity (Coulomb friction law, 1790). In 1833, Morin found that the static
friction, i.e. the friction at zero sliding speed, is larger than the Coulomb one [31]. With
regard to static friction, Coulomb friction is also called dynamic friction.

According to the Coulomb friction model, it is impossible to have a relative motion if
the tangential force fT is less than the Coulomb limit force flim = µ|fN |. The Coulomb
law for dry friction can be formulated as follow:{

δ̇T = 0 if ||fT || ≤ flim,

fT = −µ|fN | δ̇T
||δ̇T || if ||δ̇T ||>0,

(I.7)

where µ is the friction coefficient, δT and δ̇T are the vectors of the relative tangential
displacement and velocity, respectively. Coulomb’s friction law does not include asperities
interactions. Figure I.3a shows the Coulomb friction law without any softening.

As well as the contact laws, alternative formulations for the friction laws are gener-
ally developed to simplify the numerical solutions [25, 32]. It is possible to regularize
Coulomb’s law by adding tangential stiffness kT , which is representative of the elasto-
plastic behaviour of the asperities of the interface. This stiffness enables a nonzero
tangential relative displacement when the tangential force at the interface is lower than
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the Coulomb limit. The Coulomb law is then modified, taking this form:

fT =

{
kT (δT − z) if ||fT || ≤ flim,

−µ|fN | δ̇T
||δ̇T || if ||δ̇T ||>0,

(I.8)

in which z is the relative displacement of the contact point. Its value is calculated
by respecting that fT ≤ flim. This formulation thus allows elastic displacement when
the tangential stress at the interface is less than the Coulomb limit as illustrated in
Figure I.3b. It is also possible to regularize Coulomb’s friction law by following an
arc-tangent evolution, Figure I.3c.

(a) Coulomb (b) Linear regularization (c) Arc-tangent regularization

Figure I.3: Friction laws representation.

In 1886, Reynolds introduced the concept of viscous friction in relation to lubricants
[33]. In the viscous model, the friction force is a linear function of the sliding velocity.
This model is often combined with the Coulomb friction model. In 1901, Stribeck
observed that the friction force decreases with increased sliding velocity from the static
friction (µsfN) to the Coulomb friction (µfN) [34], as represented in Figure I.4.

Figure I.4: Stribeck friction model.

Several frictional models have been developed and used to capture interface behaviour
and integrate it with structural response models [35]. Among them, the Bouc-Wen
differential model [36, 37] allows to represent the microscopic behaviours of the micro-slip
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type through macroscopic models. This model provides a gradient in the frictional force,
not present in the Coulomb one. It is also possible to mention the Dahl [38] and LuGre
[39] models, also expressed in a differential form but simpler than the Bouc-Wen model.
These models do not take into account wear or plasticity.

1.3 Fretting wear

Friction has the positive effect of dampening vibrations, but it also introduces micro
and/or macro slip that may be accompanied by fretting wear. This section introduces
the phenomenon of fretting wear from its definition to the classical configurations and
parameters defined for testing, with the classification of the different fretting regimes.

1.3.1 Fretting phenomena

Definitions. Fretting can be defined as a micro-displacement oscillatory motion occur-
ring between two loaded surfaces in contact. The sliding between the two contacting
surfaces can lead to various surface damage phenomena, such as wear (fretting wear),
crack propagation (fretting-fatigue) and corrosion (fretting-corrosion), depending on the
amplitude of slip, frequency of vibration, and loading. The magnitude of the movement
is typical of the order of micrometres.

Fretting wear indicates a surface degradation process that leads to material removal
at the contact interface, for which the small displacements result from external vibrations.
If the displacements resulting from the deformation of one of the two surfaces in contact
are subjected to cyclic loading, the phenomenon is called fretting fatigue, which causes
crack propagation. A sequential oxide formation causes fretting corrosion by chemical
reactions and its destruction by wear. Thus, the slipped interface undergoes corrosion.
Fretting wear, which will be the subject of this study, is encountered in many industrial
contexts where vibrations occur, including the surfaces between root-blade and slot-disk,
shroud contacts and bolted flange joints, friction dampers under the platform, gears,
bearing, and dovetail joints. Thus, the manufacturers need to understand and predict the
wear effects on dynamics to estimate the performance and improve the design standards.

The different contact configurations studied in fretting. The fretting phe-
nomenon is primarily a contact problem. The interface geometry of the two opposing
bodies plays an essential role in the redistribution of stresses, influencing their damage.
Real mechanical interfaces in industrial components are normally complicated. Hence,
it is more suitable for experimental fretting wear studies to refer to simplified geome-
tries able to model degradation mechanisms. The three most common configurations,
illustrated in Figure I.5, are:

(a) Sphere/plane. The contact between a sphere and a flat surface reproduces a
punctual contact, as described by Hertz [40] for the first study of fretting phenomena,
normal contact indentation. The evaluation of the elastic load distribution in the
contact plan was introduced by Hamilton [41, 42] and later deepened by Sackfield
and Hills [43]. This contact set, not requiring a particular alignment device, is often
used in experiments. However, this configuration needs 3D modelling, resulting in
costly computational time.
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(b) Cylinder/plane. The contact between a cylinder and a flat surface reproduces a
linear 2D contact. Analytical solutions in the presence of tangential loads were
proposed by Cattaneo [44], and Midlin [45], and the characterization of the stress
distributions by McEwen [46]. A 2D contact problem is easier to model. This
contact configuration allows to carry out of experimental tests, requiring specific
devices to align the cylinder’s axis with the plane. Indeed this configuration is
often used to analyze cracking phenomena [47–49].

These first two contact settings are similar to most industrial configurations, such
as the contact in the blade-disk interface or between rolling elements and the race
of a bearing.

(c) Plane/plane. This configuration consists of two flat surfaces in contact. This type
of contact is the most complicated to set up because of the difficulty of assessing
the imposed load correctly. Moreover, the pressure distribution is characterized by
an indeterminate discontinuity in the pressure and shear stress fields at the edges
of the contact area. Analytical solutions were proposed by Ciavarella et al. [50].

Figure I.5: Contact geometry configurations used in fretting wear tests.

Fretting modes. In the framework of a sphere-on-flat contact configuration and
defining the parameters of contact as fN the imposed normal load, fR the radial force
and δ the tangential displacement, three fretting modes have been defined by Mohrbacher
et al. [51] and by Blampain et al. [52]:

• Mode I: linear tangential displacements

• Mode II: radial displacements

• Mode III: circumferential displacements

These three fretting modes are shown in Figure I.6, where the arrows represent the
sliding zones while the white areas are the adherent zones. The work in this manuscript
refers only to linear fretting (Mode I), which is undoubtedly the most studied mode due
to many industrial applications for which it can be taken as a reference.

Fretting loops. A typical fretting (or hysteresis) loop is illustrated in Figure I.7. It
represents the relationship between the friction force fT and the amplitude of relative
displacements δT occurring between contacting surfaces during a fretting cycle. The
shape of a hysteresis loop for the frictional force is due to the oscillatory nature of the
excitation.

From the study of the fretting loop, it is possible to define the following parameters:
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Figure I.6: Fretting modes (adapted from Blamplain et al. [52]).

Figure I.7: Schema of a typical fretting loop and its parameters.

• f ∗
T is the maximum tangential force amplitude. It allows calculating the friction

coefficient µ via the normal applied force fN as:

µ =
f ∗
T

fN
. (I.9)

• δ∗T is the maximum displacement amplitude reached in a cycle. This is the parameter
directly controlled in the fretting wear tests. This amplitude is measured as close
as possible to the contact.

• δ0 is the sliding amplitude also defined as the cycle aperture, representing the
residual relative displacement when fT = 0.

• kT is the tangential contact stiffness. It is evaluated as the slope of the fretting
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loop following the sliding direction and estimated as:

kT =
∆fT
∆δ

. (I.10)

• Ed is the dissipated energy due to friction [53, 54] during a fretting loop and is
represented by the area enclosing the fretting cycle. It is estimated as:

Ed =

∫ δ∗

−δ∗
fT (δ) dδ ≈ 4 f ∗

T δ0. (I.11)

The energy dissipation occurs through various mechanisms such as the creation of
wear debris, increase of temperature, cracking, plastic deformation, and physico-
chemical transformation. For a rectangular fretting cycle, the energy dissipated is
equal to: Ed = 4 f ∗

T δ∗T .

Figure I.8 illustrates the hysteresis loops for the Coulomb friction model, for a regu-
larized Coulomb friction model and for the Bouc-Wen model, previously mentioned in
section I.1.2.2.

Figure I.8: Hysteresis loop for different friction models.

Parameters defining a test. During a test, the evolution of the parameters derived
from the fretting loop can provide indications about the nature of the contacting surface
and give information about potential damages.

The characterisation of the fretting in experimental tests is mainly carried out for the
Mode I illustrated in Figure I.6. Indeed, as it is close to most industrial configurations,
it allows simple testing, especially for fretting wear. A classic test consists of imposing a
normal force fN on a sphere or cylinder in contact with a plane. A tangential displacement
is then imposed on one of the solids, being the other fixed. The measured tangential
force is noted as fT .

A distinction must be made between fretting and alternating sliding conditions
associated with larger amplitudes. In order to formalise this transition, the fretting
test is characterised by the sliding ratio e [54] between the sliding amplitude δ0 and the
contact size in the sliding direction as, such as:

e =
δ0
as
. (I.12)
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If the sliding ratio is smaller than 1 (e < 1), whatever the contact geometry, the central
zone of the interface is always in contact, and other zones periodically change between
contact and no contact. This situation is called fretting. If the sliding ratio is larger
than 1 (e > 1), the whole contact surface is out of contact during a part of a sliding
cycle. This corresponds to an alternating sliding condition.

Figure I.9: Identification of the transition states between fretting and alternating
sliding.

1.3.2 Fretting regimes classification

According to the magnitude of the displacement δT for a given normal force fN , the fretting
phenomenon leads to three different regimes, which impose a particular degradation
of the materials in contact. Each regime corresponds to different sliding conditions,
characterised by a different fretting loop shape. In Figure I.10 the three different
fretting regimes and the related fretting loop shapes are illustrated according to the
following classification:

(a) Stick regime. The full contact is adherent (low damage). This condition is
encountered in several types of situations, such as minimal relative displacement of
the contacting bodies, high normal force, high friction coefficients or low stiffness
of the device. In this case, there is no hysteresis, and the fretting loop has a closed
linear shape.

(b) Partial slip regime. As soon as the friction force locally reaches the Coulomb
threshold µfN , there is a local slip of the surfaces around a stuck zone. This means
that the centre of the contact area remains adherent, but slip occurs at the edges.
The fretting loop assumes an elliptical shape with a slight opening of the cycle and
the linear parts curving slightly at the ends of the contact.

(c) Gross slip regime. For larger displacement amplitudes, there is no more stick
behaviour at the interface, but the whole contacting surface is in sliding. According
to Coulomb’s law, the tangential force reaches its limit value f ∗

T = µfN and is no
longer proportional to the displacement (fretting wear). The tangential force is
constant during the period of sliding. The fretting loop assumes a trapezoidal
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shape. Typically, it has an approximately flat top and bottom where the friction
force has reached its limiting value, as predicted by Coulomb’s law.

Figure I.10: Representation of the fretting loops and corresponding sliding conditions:
(a) stick, (b) partial slip, (c) gross slip.

Fretting maps. After having performed fretting experiments for a contact configuration
sphere/plane, Vingsbo and Söderberg [55] established the concept of fretting maps to
plot the different wear regimes and transitions between them observed in practice. A
fretting map consists of a 2D graph where the normalised applied pressure is plotted
against the normalised relative displacement amplitude, as illustrated in Figure I.11,
where three regimes are mapped.Later, Vincent et al.[53] introduced an experimental
mapping of the material response, showing the significant dependence of the evolution of
fretting damage on the type of fretting regime. This map is shown in Figure I.12.

1.4 Tools for wear prediction at local scale

Fretting wear is a complex phenomenon involving a critical number of mechanisms.
It requires considering debris formation, surface modifications, and thermodynamic
and physical-chemical phenomena. Quantifying wear is difficult because of the lack of
universal and well-formulated wear models. To define wear kinetics, in 1995, Meng and
Ludema reviewed some 5466 articles and listed more than 300 different formulations
for wear [10], providing an exhaustive summary of a large number of wear models and
equations existing in literature, achieving that each model or equation refers to particular
experimental conditions, generally not transferable to industrial problems.

1.4.1 Approaches for wear kinetics evaluation

Archard’s wear law. In 1953, Archard [56] proposed a wear formulation which
quantifies the adhesive wear of sliding contact. A typical measure of wear is the volume
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Figure I.11: Fretting map in terms of normal load N vs. displacement amplitude ∆
[55].

Figure I.12: Material response fretting map [53].

of material removed per unit of sliding distance. In particular, Archard’s wear equation
states that the volume of lost material, as a result of a tribological interaction, denoted
as Vw, is directly proportional to the product of the applied normal load N and the total
relative sliding distance L. Therefore, since less wear is observed when the hardness H
of the softer material in contact increases, the worn volume Vw can also be considered
inversely proportional to the hardness H of the material to be worn. The Archard’s wear
equation is then expressed as

Vw =
kw
H

NL, (I.13)

or, in terms of the worn volume per unit sliding distance, as:

Vw

L
=

kw
H

N, (I.14)

where kw is the dimensionless Archard’s wear coefficient which represents the probability
that an asperity interaction results in the production of wear particles. This coefficient,
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determined experimentally, depends on material properties and operating conditions.
Noting that if the sliding distance L is the result of sliding at a constant velocity vr,

it is given by L = vrt, where t is the sliding time, for an infinitesimal time increment dt,
Eq. (I.13) can be expressed in a differential form:

dVw

dL
=

kw
H

N (t), (I.15)

where dVw, dL and N (t) are the wear volume increment, the sliding distance increment
and the normal interface contact force, at the time instant t, respectively.

Assuming that the wear depth increment on the microelement area ∆A is dw, the
instantaneous wear volume increment dVw can be expressed as:

dVw = ∆A · dw. (I.16)

To simulate the evolution of wear along the contact surface and substituting Eq. (I.16)
in Eq. (I.15), this latter can be reformulated in terms of wear rate, i.e. the increment of
local wear depth dw for increment of local slip dL as:

dw

dL
= KwPN , (I.17)

where PN = N (t)/∆A is the contact pressure at the contact microelement ∆A and Kw is
the dimensional Archard’s wear coefficient [57] or specific wear rate, usually expressed in
[mm3m−1N−1]. This coefficient replaces the kw/H previously defined. The wear rate Kw

changes drastically in the range of 10−15 − 10−1 [mm3m−1N−1], depending on operating
conditions and type of material in contact ([56, 58–60]). Since the relative sliding distance
dL is the integral of the relative velocity vr versus time t, Eq. (I.17) can be rewritten as:

dw = KwPNvr dt. (I.18)

One should observe that this law does not consider the friction coefficient µ. Indeed,
it is noted that Archard’s law is well adapted to provide wear predictions of tribosystems
showing a stable friction behaviour.

Energy-based models. Mohrbacher [51] was the first to introduce the concept of
cumulative dissipated energy in the study of fretting wear. Later, specific wear laws,
formulated in terms of energy from the sliding on the whole interface, were developed by
a team from the LTDS [54, 61]. In order to evaluate the total worn volume, Fouvry et al.
[54] proposed a wear law based on the friction dissipated energy during a fretting test of
Nc cycles. The dissipated energy Ed, defined in Section I.1.3.1, is equal to the sum of
the work of the tangential forces fT during each fretting cycle:

Ed =
Nc∑
c=1

Ed(c) =
Nc∑
c=1

fT δT . (I.19)

Following the relationship (I.19), the total worn volume Vw, due to friction, is assumed
to be proportional to the accumulated energy Ed, dissipated by friction, after Nc cycles:



CHAPTER I. State-of-the-art of contact modelling 21

V = αu

Nc∑
c=1

Ed(c), (I.20)

where αu is a wear coefficient, the so-called energy wear rate, experimentally determined
and associated with the material. It is defined as the slope of the wear volume versus the
cumulative energy dissipated. Indeed, a linear relationship has been found several times
in experiments ([61, 62]) between the worn volume and dissipated energy as illustrated
in Figure I.13.

Figure I.13: Evolution of the wear volume as a function of the cumulative dissipated
energy [63].

The energy-based approaches are widely used in the literature because they provide
an accurate estimation of the wear in sliding contact.

It is interesting to observe that the energy wear approach is equivalent to Archard’s
wear approach for a constant coefficient of friction µ:

Kw = µ αu. (I.21)

However, these two descriptions do not explicitly consider the debris layer entrapped in
the interface.

Thermodynamic approach. There are also attempts to model wear from a ther-
modynamic standpoint. Dragon-Louiset et al. [64] considered wear as a dissipative
phenomenon linked to the process of particle detachment. They proposed a thermody-
namic model for wear analysis of two bodies with a fluid-contact interface, and then a
wear criterion is formulated based on the energy release. The thermodynamic approach
mesoscopically models the third body. The difficulties are linked to the passage from the
microscopic aspects of the wear (third body scale) to the mesoscopic model.

1.4.2 Approaches for wear mechanisms description

Third body concept. In the 1970s, Godet [65] was the first to introduce the concept
of "third body" to understand and unify the friction and wear behaviour of sliding
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materials. This concept is based on the particles detachment mechanism [66] that arises
when two bodies, the so-called "first bodies", are in sliding or fretting contact, generating
at the interface an intermediate heterogeneous layer composed of wear debris or particles,
the so-called "third body", results of the tribo-mechanical reactions between the first
two contacting bodies. The mechanical properties of the third body are separated from
those of the two first bodies. Figure I.14 provides a simplified scheme of this concept.
The third body performs three main functions:

Figure I.14: Progression from conventional two bodies wear to three-body wear concept.

1. it separates the first bodies and transmits the load (normal force);
2. it accommodates the relative velocities (tangential forces) at the contact interface;
3. it separates the surfaces in contact, avoiding direct interactions and allowing heat

dissipation from the contact.
According to Godet’s approach, it is more realistic to associate degradation with the
amount of debris ejected from the contact, calculated from the debris flow, rather than
the complete wear volume.

The third body concept was then extended by Berthier [67] who proposed the
additional conceptual tool of "tribological circuit", illustrated in Figure I.15. This
concept physically explains the third body phenomenon. The different contributions to
the tribological circuit are defined as follows: Qs is the source flow, corresponding to the
particles’ detachment mechanism between the first bodies (such as adhesion, abrasion or
cracking); it is composed of two contributes: the internal source flow Qs,i, representing
the flow of particles from the surfaces of the first bodies and Qs,e, the external source
flow, due to the introduction of an artificial lubricant; Qr is the re-circulation flow or
flow of third body re-introduced into the contact; Qw is the wear flow, related to the
particles ejected from the interface. This phenomenological model can be written in the
form of the mass balance equation inside the contact interface.

Figure I.15: Tribological circuit (simplified form, from [67]).



CHAPTER I. State-of-the-art of contact modelling 23

dMi

dt
= Qs −Qw. (I.22)

In more recent studies, Denape [68] has shown the validity of such phenomenological
methods for practical applications. However, these approaches are not predictive models,
but they can help to identify the multi-physics and multi-scale interactions occurring in
a tribological interface.

Another possibility is modelling the third body as a granular material due to its highly
heterogeneous nature. Granular materials are defined as a large collection of discrete,
macroscopic particles. In this case, the physical particle detachment, a consequence of
the degradation of the materials, can be described as the movement of these particles
within the contact and their ejection. The length scale is of great importance in this

Figure I.16: Discrete element modelling of interface [69].

type of problem. In particular, two length scales can be distinguished: a microscopic
scale, related to the interactions of the particles, and a macroscopic scale, corresponding
to the global behaviour of the bodies in contact. In this regard, a different approach can
be found in the literature for solving a three-body frictional system with a granular third
body, which corresponds to contact homogenization [70], where a macroscopic contact
law based on micro-scale information such as the topography and constitutive properties
of the surfaces in contact, is formulated.

To mitigate the scale problem between the first two bodies and the third body, it
is also interesting to refer to an asymptotic approach. Studies have been conducted
by Bayada [71] and developed by Linck [72]. This approach focused on evaluating the
asymptotic behaviour of the third body, considered a thin layer, between an elastic
body and a rigid one with a zero-displacement condition, as shown in Figure I.17.
The introduction of a specific contact law allows taking into account the thin layer’s
behaviour to evaluate its thickness’s influence.

Despite these approaches being very complicated to formalise and do not facilitate
the introduction of all variables able to compare the material behaviour, they can help to
identify the multi-scale interactions occurring in a tribological process. The third body
approach provides a more physical description of wear processes. Furthermore, it is not
as clear how to incorporate the effect of wear debris into a mathematical model. In cases
where wear debris is more easily removed from the contact area, and the metal-to-metal
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Figure I.17: Thin layer: asymptotic approach.

contact is kept, the influence of debris can be reasonably neglected.

1.5 Modelling of friction and wear in contact mechanics

Special friction conditions exist in fretting contacts. Two frictional sliding regimes have
been introduced in section I.1.3.2: a total sliding regime, for which the two bodies are in
a gross sliding contact during the cyclic movement, and a partial sliding regime for which
only a part of the contact surface slides while others remain in a stuck condition during
the entire fretting cycle. Only when the whole contact area is in a sliding condition a
coefficient of friction can be obtained by measuring the tangential force and the normal
load during a fretting test. Many efforts were made to find a realistic model of friction
modelling.

1.5.1 Solution approaches for contact problems

Different contact resolution methods have been developed. It is possible to separate
them into two main categories: analytical and numerical.

Analytical solutions. The first solution to the problem of contact between two elastic
bodies was developed by Hertz [40] on elliptical and non-conforming contacts without
friction within the framework of the assumptions of semi-infinite elastic massifs. Hertz’s
theory results as quite restrictive because of its assumptions. This non-conformity
indicates that the non-deformed surfaces of the two bodies are not superimposable other
than at a point (punctual contact) or a line (linear contact), as seen in Figure I.5.
Following this study, many analytical formulations for non-Hertzian contact problems
have been developed. A detailed description of them can be found in Johnson’s reference
book [73].

The contact with friction was later considered, using Coulomb’s law. First analytical
solutions of the stress field for sliding contacts were provided by McEwen [46] for
cylindrical contact, and Hamilton [41] for spherical contact. These solutions are extended
to elliptical contacts by Sackfields and Hills [74]. Cattaneo [44], and Mindlin [45]
expanded these problems to the case of partial slip by considering a sphere under normal
and tangential loads. Later, in a 2D formulation, Ciavarella et al. [50] proposed an
analytical solution for a more realistic flat punch with rounded edges. Nowell and Hills
[75] proposed closed-form analytical solutions for shear traction distribution at different
positions in a fretting cycle. Goryacheva et al. [76] presented an analytical solution
evaluating the wear profile in fretting under partial slip conditions.
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In more recent analytical formulations, Andresen et al. [77] proposed closed-form
solutions for general asymmetrical half-plane contact problems with normal and shear
loads and moments. Then, they also considered [78] half-plane frictional contact problems
subjected to alternating normal and shear loads in the steady-state and, in the following
study [79], the steady state cyclic behaviour of a half-plane contact with partial slip
subject to a combination of normal and shear load, moment and differential bulk tension.
Latest, Chauda and Segalman [80] proposed a 2D contact analysis using trigonometric
polynomials. Analytical formulations give a theoretical basis. However, they are limited
to simple contact geometries, which are difficult to apply to more complex industrial
structures.

Numerical methods. In continuum mechanics, the Finite Element Method (FEM)
[81] is the most popular method in the static and dynamic analysis of structures. It
consists of discretizing the system and proving good accuracy and robustness. All aspects
related to the finite element method in the field of contact mechanics have been given in
[82]. The FEM is the most commonly adopted numerical tool to deal with wear, based on
the local implementation of Archard’s wear law or the energy wear approach. Johansson
[83] used FEM to simulate the evolution of the contact pressure in fretting. McColl et
al. [84] used a FEM for simulating the fretting wear considering an incremental wear
approach based on Archard’s law equation. Paulin et al. [85] used FEM considering an
energy wear approach to model the progressive evolution of the wear.

An alternative is the Boundary Element Method (BEM) [86]. In the BEM, only
the boundary variables of the domain are considered so that this method can be less
expensive in terms of computational time. Several works exist on the application of
BEM to sliding wear problems [87]. Sfantos et al. [88, 89] proposed a wear simulation
using an incremental sliding BEM. More recent applications for fretting wear prediction
can be found in [90, 91]. However, BEM is based on solving partial differential equations
that require a formulation in the form of integral equations [92], which is not always
possible. When it is difficult to obtain analytical solutions, it is possible to discretize the
interface and solve the global problem numerically by summing the analytical solutions
of the elementary problem for each discretized element. This latter is the semi-analytical
method (SAM), derived from the BEM.

A discrete element method (DEM) is the most appropriate to model discontinuous
and heterogeneous media, such as the third body in a worn contact. Another numerical
approach, taking into account the thin layer of a third body at the contact interface,
can be found in the literature. This approach has been developed by Iordanoff [69] and
extended by Fillot [93] to simulate a third granular body layer. An interesting extension
to this method is the FDEM [94, 95], a multi-scale method coupling the FEM, used to
model the first contact bodies, with the DEM, used to model the third body particles as
spherical rigid elements.

1.5.2 Wear and nonlinear dynamic analysis

Most research has been conducted on fretting wear modelling for quasi-static load
conditions [12, 84, 96–98]. Further detailed discussion about these methods can be found
in [10].
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Due to its complexity, few studies have attempted to model the coupling between
dynamics and fretting wear. Thus, modelling fretting wear and its effects on the dynamics
response is becoming a significant challenge in the field of joint structures. The main goal
of modelling contact problems in fretting wear is to obtain the most accurate results by
reducing the calculation time and evaluating the mechanical behaviour at the interface
and the effect of wear on the global system after a certain number of cycles. Archard’s
law, or energy formulations for wear, is almost systematically used to determine wear
rates.

The first studies about the effect of fretting wear on nonlinear impact oscillators were
performed by Knudsen [99, 100]. However, in these works, a Newmark’s time integration
technique was used for dynamic analysis, while the wear damage was quantified with
the impact work rate. The analysis was limited to small systems, with a few DOFs,
having this methodology high computational costs. Jareland and Csaba [11] investigated
friction damper wear for a tuned bladed disk, using a wear energy approach to estimate
the worn volume at the damper interface. The works done by Salles et al. [13, 14,
101] are one of the first studies to use a numerical analysis of coupling dynamics and
wear. The dynamic response is evaluated using approximated methods, such as the
Harmonic Balance Method (HBM) [102]. Within the HBM framework, the Dynamic
Lagrangian Frequency-Time (DLFT) method, developed by Nacivet [103], is considered,
and a multi-scale approach is introduced to analyze the effect of wear and its influence
on the dynamic behaviour of under-platform dampers and at the blade root joints
simultaneously. Also, Petrov [15] studied the impact of wear on realistic turbine-bladed
discs equipped with friction dampers, showing the progressive damper loss caused by
wear generated at the contact. The HBM has also been coupled with a semi-analytical
contact solver to study the contact interface behaviour. In this regard, Gallego et al.
[104] proposed a computational method based on a three-scale analysis to solve a fretting
wear problem based on a semi-analytical formulation, applied to a test case of turbine
blades equipped with an under-platform damper. Semi-analytical methods have been
used to evaluate fretting wear in dovetail joints at the turbine blade-disk interface [17].
In the context of the dynamic study of under-platform dampers, Armand et al. [16, 105]
implemented a multi-scale approach using a semi-analytical method coupling the BEM,
used for fretting wear predictions, and the HBM technique, used for the prediction of
the effect of wear on the dynamic response. In a subsequent study, they also included
the roughness in the contact area [106].

1.6 Need for experimental studies

Nevertheless, the numerical investigations mentioned in the previous section represent
preliminary attempts to model the effects of fretting wear on the forced dynamic response
of jointed structures and are, so far, only numerical predictions. There is still a lack
of experimental results [19], which limits the understanding of how joints deteriorate
at work and reduces the possibility of optimising the design and maintenance of joint
structures. Due to the high costs of a full-scale experimental observation, the design
of simplified experimental setups is essential for reproducing the configurations of the
industrial components at a laboratory scale. Moreover, experimental results are useful
for validating numerical predictions.
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Several experimental academic test rigs have been designed and found in the literature
to reproduce the dynamic behaviour of low-pressure rotating turbine blades, whose
behaviour is nonlinear due to frictional contact. Some test rigs were designed in the
1970s to study the damping of the frictional contact on a simplified blade [107–109].
These test rigs made it possible to compare the experimental results with the analytical
results and study the influence of the amplitude of the frictional force on the structure’s
response according to the state of the contact at the interface (sliding or stuck conditions).
Experimental validations also exist to investigate the dynamic response of systems with
friction contact, mainly focused on friction damping in bladed disks assemblies [110–113],
However, all these approaches did not account for the presence of a third body layer
entrapped in the interface.

Concerning the wear phenomenon, various studies have provided methods to describe
fretting wear using different numerical approaches relying on experimental evidence.
Arnaud et al. [114] proposed a new FEM strategy with a friction energy wear model to
predict gross slip fretting wear profiles, taking account of the presence of a third body
layer evolving over time. Li et al. [115] investigated the effect of fretting wear on the
behaviour of bolted joint interfaces and discussed the impact of fretting wear on the
tangential contact stiffness. In more recent work, Li et al. [116] analysed the evolution
of contact parameters of bolted joint interfaces under tangential random vibrations but
without studying the changes in wear volume and wear rate. These correlated models
can be used effectively to develop predictive tools and integrate parametric sensitivity
studies with adequate confidence.

Additionally, most studies coupling fretting wear and vibrations investigate wear
due to the structure’s vibrations rather than wear’s effects on the structural dynamics
[117–119]. Nevertheless, certain experimental studies have investigated the effect of
frequency on fretting wear [95, 120, 121]. Recent research that experimentally studies
the impact of fretting wear on the evolution of the system dynamic with friction contact
was performed by Fantetti et al. [19]. In this study, fretting tests were performed to
capture the evolution of hysteresis loops and the correspondent contact parameters of a
flat-on-flat contact pair.

Anticipating and incorporating the contact condition changes due to wear in the
dynamics prediction tools is necessary. Experimental evidence can help researchers to
better understand the phenomenon, validate the numerical methods and find the best
way to predict these phenomena more confidently. The importance of experimental
observations has mainly the following purposes:

• validating the numerical methods;
• developing efficient dynamic prediction tools;
• studying the evolution of the wear "at work".

To this aim, it is increasingly necessary to progress in both numerical prediction and
experimental observation combining the wear and dynamics.

1.7 Retained strategy for the present work

This chapter has introduced different existing methods for contact problems and wear
modelling. The coupling between fretting wear and dynamics was discussed, highlighting
experimental evidence’s importance in validating and improving numerical simulations.
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As part of the EXPERTISE collaboration, in this manuscript, the series of fretting
experiments, published in [19] and provided by the Imperial College test rig built at
Imperial College of London [122], are considered to verify and validate the results and
the conclusions of the numerical investigations. The test rig dynamics [19] reproduces
the dynamic behaviour observed in friction dampers and may give a detailed frictional
description of contacting interfaces, to allow more accurate modelling of assembled
structures.

State-of-the-art in contact modelling has confirmed the choice of using the finite
element method to model the experiments. In particular, a fined mesh of the contact
interface is performed to obtain a complete understanding of the interface behaviour.
Vibration and wear phenomena present very different scales in both time and space. The
challenge, therefore, lies in finding methods that allow the nonlinear problem to be solved
with a good compromise between the approximations made to the dynamic aspects and
those related to the wear problems. The multi-scale aspect in space is treated by assuming
the wear is localized only at the contact interface nodes. Thus, wear is considered as
a gap between corresponding nodes. This strategy avoids expensive remeshing of the
interface. The multi-scale aspect in time is treated by considering dedicated methods for
each time scale. This approach allows the use of frequency methods to solve the dynamic
problem.

A review of methods for solving nonlinear dynamic problems follows in chapter II.
Due to the complexity of a nonlinear system, the dynamic response is evaluated using
approximated methods, such as the Harmonic Balance Method [102], assuming the
periodic system’s response under periodic excitation. Within the framework of the HBM,
the numerical treatment of fretting wear, under vibratory loading proposed by Salles
[101] is performed. The method is based on the Dynamic Lagrangian Frequency-Time
(DLFT) method [123] and models contact using the unilateral contact law (I.1) and the
Coulomb friction law (I.7) without any softening. A local form of Archard’s law [56]
is used and embedded in the nonlinear dynamic solver to include wear, being simple
enough to be integrated into numerical simulations. The idea of this method consists of
separating time into two scales, a slow scale for tribological phenomena (wear) and a
fast scale for dynamics (vibrations). The first example treated by the DLFT with wear
method can be found in [124], where a model stemming from the literature is proposed.

This manuscript applies the DLFT with wear method increasing wear depth over time,
developed by Salles in [101]. In addition to these studies, in this work, numerical results
are validated and verified with experimental evidence. Furthermore, by adding some
new numerical simulations, this analysis proposes local interface evaluation scenarios for
quantities not directly measured by experiments.



Chapter II

Numerical method of resolution for a
nonlinear dynamic problem

This chapter aims to explain the choice of the methods adopted in this manuscript
for solving the dynamic problem. First, some methods for solving and finding periodic
solutions are introduced, highlighting their interest and limitations, with a particular
emphasis on the frequency approach, complemented by various tools such as continuation
techniques. Then, a sub-structuring method to reduce the size of the system to be solved
is presented. Finally, the method for resolving the nonlinear dynamic problem with
friction contacts is detailed before applying it in the next chapter, including the wear
phenomenon.
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2.1 Reference problem: governing equations

In this section, the contact problem with friction is formulated in the context of continuum
mechanics. Two types of nonlinearities are considered: one is related to the unilateral
contact and concerns the direction normal to the contact surface; the other is related to
the friction and occurs in tangential directions. The materials are considered linear, and
the assumption of small displacements and strains is made. For the contact interface,
the unilateral contact law is used for the normal direction, and Coulomb’s law is chosen
to model friction.

2.1.1 Continuous formulation

Let s = [1, 2] be two continuous bodies in contact with friction, occupying two distinct
domains Ωs defined in R3, as illustrated in Figure II.1. For each body, the continuously
differentiable boundary, denoted as ∂Ωs, is divided into three disjoint parts such that:

∂Ωs = Γs
u ∪ Γs

f ∪ Γs
c.

More precisely, Γs
u denotes the parts where displacements Us are prescribed, Γs

f the parts
where traction forces fT

s are applied, and Γs
c represents the frictional contact interface,

so that Γc = Γ1
c = Γ2

c , on which the contact conditions are imposed. ns designates the
outward normal unit vector to ∂Ωs. ns

c designates the outward normal unit vector to Γc

so that n1
c = −n2

c . The elastodynamics problem consists of finding a displacement field

Figure II.1: Problem of two elastic bodies in contact.

us(x, y, z, t) satisfying the equilibrium equations. The law of conservation of momentum
allows establishing the equation of motion (II.1) in both solids. Using the classical laws
of continuum mechanics in the framework described above, the strong formulation of
a contact problem in dynamics in the presence of inertial forces can be expressed as
follows.

• Dynamic equilibrium equations in Ωs:

divσs + fT
s = ρsüs in Ωs, (II.1)
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with ρs the density of the bodies and the symbol div representative of the divergence
operator of a tensor σ is the Cauchy stress tensor, related to displacements through
a constitutive equation.

• Boundary conditions on displacements:

us = Us on Γu. (II.2)

• Boundary conditions on surface forces:

σsn = f sT on Γf . (II.3)

• Initial conditions for displacements and velocities in Ωs:{
us(0) = us

0

u̇s(0) = u̇s
0

(II.4)

• Material behaviour law: in the hypothesis of small deformations and considering
an isotropic linear elastic material for the bodies in contact, the Green-Lagrange
strain tensor ε is expressed as:

ε(us) =
1

2

[
∇us + (∇us)T

]
. (II.5)

Thus, the law describing the material’s behaviour is the classical Hooke’s linear
relation between the Cauchy stress tensor σ and the strain tensor ε, through
Hooke’s tensor Es:

σs(us) = Esε(us). (II.6)

• In the presence of a discontinuity surface Γc it is necessary to add the discontinuity
relation given by:

σ1n1
c = −σ2n2

c = −p on Γc, (II.7)

where p represents the constraints of contact. On the frictional interface Γc the
displacement field is expressed in terms of relative displacements ur = u1 − u2

between the two bodies. Contact forces p and displacements ur are decomposed
into normal (index N) and tangential (index T ) components:

pN = p · nc, pT = (I− nc ⊗ nc)p, (II.8)
uN = u · nc, uT = (I− nc ⊗ nc)u. (II.9)

• The contact constraints given by the unilateral contact law (I.1) and the Coulomb
friction law (I.7), defined in section I.1.2, are included in the discontinuity relation
(II.7) and must be verified.

However, the strong formulation of an elastodynamic problem can only be solved in
certain classical cases. Thus, it is necessary to refer to a weak formulation.
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2.1.2 Variational or weak formulation

The weak or variational formulation can be used as a basis for a future discretization of
the elastodynamic problem presented in section II.2.1.1. It is obtained by applying the
principle of virtual work.

By integrating over the domain Ω the scalar product of the balance Eq. (II.1) with a
compatible virtual displacement v ∈ V, with V a suitable function space that satisfies
the displacement boundary conditions.∫

Ω

ρüivi dΩ
s +

∫
Ω

Eijkl
∂uk

∂xl

∂vi
∂xj

dΩ +

∫
Γc

pivi dΓc +

∫
Γf

fivi dΓf = 0 ∀v ∈ V . (II.10)

Thus, the principle of virtual work can be written as follows:

∀v ∈ V (ρü,v) + a(u, v̇) = L(v̇) + ⟨fc, v̇⟩ , (II.11)

where the different terms represent:
- the virtual work of inertial forces:

(ρü,v) =
2∑

s=1

∫
Ω

ρsüs · v̇sdΩs, (II.12)

- the virtual work of the internal forces:

a(u, v̇) =

∫
Ω

Eijkl
∂uk

∂xl

∂vi
∂xj

dΩ, (II.13)

- the virtual work of the external forces:

L(v̇) =

∫
Γf

fivi dΓf , (II.14)

- the virtual work of the contact forces, which need to be divided into normal and
tangential components:

⟨fc, v̇⟩ =
∫
Γc

pivi dΓc. (II.15)

Regarding these formulations, a more detailed description of a generalized standard
model for contact, including friction and wear, will be presented in chapter III.

2.1.3 Finite element discretization

Within the framework of the study of vibrations of mechanical structures subjected
to nonlinear forces, the objective is to determine the displacement field u(x, y, z, t) of
a structure at any point (x, y, z) and for any time t. The knowledge of the field of
displacement will make it possible thereafter to reach the stress field.

This type of system generally involves a discretization for solving differential equations
(Finite Element discretization, Rayleigh-Ritz’s method, Galerkin’s method [125]), which
leads to a search for the displacement field in the form U(x, y, z, t) = N(x, y, z)u(t),
where N is the matrix of the shape functions used for the discretization, and u is the
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vector of the degrees of freedom. The partial differential equations are projected onto the
space generated by the shape functions to obtain a discretized version of the equations of
motion that only involves time derivatives. Capital letters indicate the FEM counterpart
of the variables designated by small letters before: they represent vectors of nodal
quantities.

For an elastic structure with n degrees of freedom, after finite element discretization,
the equations take the following second-order differential form in time:

MÜ(t) +CU̇(t) +KU(t) + Fnl(U(t), U̇(t)) = Fex(t), (II.16)

where U is a vector of displacements (n× 1), which are the unknowns of the problem, U̇
and Ü are its first (velocity) and second (acceleration) time derivatives, respectively. M,
C and K are the structural matrices (n× n), i.e. mass, damping and stiffness matrices,
respectively.

The inclusion of nonlinear phenomena, such as contact or friction, results in the
addition of the term Fnl in the spatially discretized equations of motion. This term is
representative of non-proportional and dissipative effects on nodal displacements and
velocities. The Fnl vector (n×1) refers to the nonlinear forces generated between coupled
nodes. Wear is not yet considered in the nonlinear term for the moment. It will be
introduced in chapter III. Fex is the vector (n× 1) of the applied external forces acting
on the system and assumed to be periodic with a period T = 2π/ω.

Excitation forces. In the present manuscript, the external excitation forces Fex are
expressed as harmonic excitation forces of period T . This type of force corresponds to
typical forces applied in experimental tests. The corresponding term in Eq. II.16 takes
the following generic form:

Fex(t) = fA cos(ωt), (II.17)

where ω = 2π/T is the pulsation of the excitation and fA is the spatial distribution of
the forcing amplitudes.

Structural damping. The matrices of mass and stiffness (resp. M and K) are built by
assembling the mass and stiffness matrices of the substructures, and they are most often
available from finite element software. The structural damping matrix C is introduced
using the classical Rayleigh damping model [126], as a linear combination of the mass
M and stiffness K matrices.

C = αM+ βK, (II.18)

where α and β are two arbitrary positive coefficients determining the influence of the
mass and the stiffness on the system, respectively. For a given mode i, the modal
damping ξi can be expressed in terms of the damping factors α and β as [126]:

2ξi(ωi) =

(
α

ωi

+ βωi

)
, (II.19)
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where ωi is the natural frequency at this mode i. By selecting two vibration modes i
and j as a reference and after having obtained their damping ratios ξi and ξj through
measurements or reliable test data evaluation, using their frequencies ωi and ωj, the
coefficients α and β can be determined. The Eq. (II.19) implies that generally speaking,
the mass proportional Rayleigh damping, α, damps the lower frequencies and the stiffness
proportional Rayleigh damping, β damps the higher frequencies. The efficiency of the
Rayleigh damping and its simplicity of implementation leads to adopting this method to
evaluate the damping matrix C in the following of this study.

Nonlinearities. As introduced in the previous chapter, assembled mechanical systems
are often complex structures in the field of dynamics. The elements and the connections
between the different parts are generally sources of nonlinearities. These nonlinearities
appearing in the nonlinear term fnl can be of various origins, such as:

• Material nonlinearities. Material nonlinearity involves the nonlinear behaviours
of material based on deformation history, current deformation, pressure, and
temperature. The widely used materials encountered in turbomachinery and
aerospace fields, such as titanium or nickel alloys, can be a source of nonlinearities
if plasticity is considered in the models. More recently, the introduction of composite
materials, mainly for fan blades, has presented a considerable technological advance,
but requires working with non-isotropic material, more difficult to characterise,
and whose constitutive laws may be nonlinear [127].

• Geometrical nonlinearities. In structural dynamics, numerical simulations
are based mainly on a linearisation of the model using the hypothesis of small
displacements. Geometric nonlinearities concern structures whose stiffness depends
on displacements to which they are subjected. In aero engines, these include blade
stiffening due to centrifugal forces. In the case of fan blades, which are the largest,
these forces can lead to large displacements that must be taken into account to
predict the actual behaviour of the structure. From an algebraic point of view,
the nonlinear force Fnl is, in this case, expressed in the form of quadratic or cubic
polynomial terms, generating an entirely new phenomenology compared to the
linear case [128].

• Nonlinearities resulting from contact. The models associated with contact
nonlinearities, of type unilateral and frictional contact, have been introduced in
section I.1.2. Some dedicated numerical techniques have been developed to consider
these constraints. In this regard, a detailed description can be found in [48].

– Regularisation techniques or penalisation methods aim at approximating
the contact force/displacement (gap distance) relationship, which typically
takes the form of a linear or exponential function as previously described in
Figure I.2. Thanks to this approximation, the numerical implementation is
easier. Nevertheless, it causes the presence of residual penetrations and/or
"non-physical" contact forces.

– On the other hand, non-regulated techniques aim at completely satisfying
the non-penetration conditions of Eq. (I.5) using an implicit calculation of
the contact forcing term. In this case, the numerical implementation is
computationally more expensive and the contact forces are calculated to
ensure that no residual penetrations occur.
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2.2 Solution estimation methods

Solving the nonlinear equation of motion (II.16) can be complex and very expensive in
terms of computational time. However, within the framework of vibrational dynamics,
one is often brought to find the steady state of the dynamical system. Different resolution
methods can be considered to obtain an approximate solution to the system of differential
equations (II.16). This section presents two categories of methods: time domain and
frequency domain methods of the Galerkin type.

2.2.1 Time resolution methods

Direct time integration. A way of solving the problem in the time domain is to
integrate the equation of motion directly from a given initial condition. This approach
uses few hypotheses. Therefore it is often used as a reference to validate the other
methods.

Several numerical integration schemes are available to resolve first-order differential
equations systems. Time integration methods are mainly formalized for systems of
first-order differential equations in time. It is then convenient to convert the second-order
differential Eq. (II.16) into a system of first-order differential equations (state-space
formulation) of size 2n, as follows:

ẏ(t) = f(t,y(t)), (II.20)

with

y(t) =

(
u(t)

u̇(t)

)
, (II.21)

f(t,y(t)) =

(
u̇(t)

−M−1[Cu̇(t) +Ku(t) + fnl(u̇(t),u(t))− fex(t)]

)
. (II.22)

Eq. (II.21) is the state-space vector, and Eqs. (II.22) represents the consequently first-
order system equations. The most classical approach for solving a time-dependent system
of differential equations is to use a direct time integration [129], whereby the solution
is successively approximated over time using a step-by-step procedure. Firstly, it is
necessary to discretize the time range [0, T ] over which the analysis is performed. This
interval is discretized in nt + 1 time instants tk, such that:

0 = t0 < t1 < tk < . . . < tnt = T with k = 0, 1, . . . , nt − 1. (II.23)

The time step between two successive time instants is ∆tk = [tk, tk+1]. The purpose is
then to determine the solution at each instant tk as a function of one or more instants,
previous to or after the considered one.

In the framework of a direct time integration, the most basic of the single-step
algorithm is the Euler integration scheme for which, denoted as y(tk) = yk, the following
expression gives the formulation:

yk+1 = yk +∆tk(1− θ)ẏk +∆tkθẏk+1. (II.24)

The choice of the parameter θ affects the scheme’s quality, and properties [129].
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• The choice θ = 0 in the expression (II.24) gives an explicit Euler scheme. In explicit
schemes, solutions at the time instant tk+1 are expressed in terms of the previously
known solution at the time instant tk enabling a quick estimation of the solution
since it only requires a simple computation. On the other hand, this scheme is
conditionally stable, depending on the length of the time step between two instants
to ensure the stability of the scheme.

• The choice θ = 1 expression (II.24) gives an implicit Euler scheme. In implicit
schemes, the solution is reached from the equation of the motion itself at time
instant tk+1. For the latter scheme, the stability is assured, allowing even larger
time steps, but the determination of the solution requires the resolution of a system
of algebraic equations at each time step, which can considerably increase the
computational cost.

• The choice θ = 1/2 gives an approximation of the integral by the trapezoidal
method and allows better accuracy. This scheme is called the Cranck-Nicolson
scheme.

These schemes are single-step schemes. This means that the search for a solution
at time tk only involves the quantities of the previous step at most. These schemes are
of order 1, which means that the error committed is of the order of tk+1 − tk. These
schemes are generally exposed to problems of precision and stability. Thus, it is preferred
to refer to multi-step schemes, more complex but more stable. The most commonly used
error reduction is the Runge-Kutta scheme in the fourth order (RK4) [130]. This scheme
ensures good accuracy, despite a longer computation time, due to the four evaluations of
the function f per instant.

When the nonlinear forces contained in the vector Fnl are reasonably regular or the
laws defining them are regularised, there are also methods capable of dealing directly with
the second-order problems. This has the advantage of eliminating the need to switch to
a state system avoiding doubling the number of unknowns of the problem. Among these
methods, one can be mentioned in particular, the family of Newmark algorithms [131],
which allows an approximation of the time derivatives using the finite difference method,
avoiding the doubling of the number of variables induced by the state representation.

However, for any integration scheme, it is necessary to study the stability and
consistency of the solution to ensure convergence. Time integration methods have the
advantage of applying to any system, particularly to studying nonlinear models. In
addition, they are generally easy to implement as they are included in the great majority
of calculation software. On the other hand, the research of the periodic solution based
on a direct time integration can be prohibitive in terms of computational time, especially
for calculating the transient phase until a steady state is established, particularly in the
case of systems with a large number of DOFs. This point makes them unsuitable for
the study of industrial systems characterized by a large number of DOFs. Due to these
limitations, frequency methods are an interesting alternative for the search for periodic
solutions to nonlinear systems. They are based on transposing the differential problem
into the frequency domain, which generates smaller systems than temporal methods.
However, time methods can be used as a reference to validate the frequency methods.

Time integration will be used in the following as a reference for some numerical
solutions.
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Shooting method. Shooting methods are time-based methods used to search for
periodic solutions. The principle of this method is to reformulate the boundary condition
problem into a problem with initial conditions. The objective of shooting methods is to
avoid the calculation of the transient response of the system by iteratively correcting the
initial conditions of the problem. Each step involves a time integration over a period
[0, T ] allowing the evaluation of the solution in a state formulation using one of the
previous schemes. The time integration is performed by correcting the initial conditions
of the problem [132]. The correction process is applied to the initial conditions until
these correspond to a periodic solution. Generally, this method is more efficient in terms
of computational time than direct time integration. However, shooting methods result in
being efficient in the case of systems with a small number of variables. For large systems,
the computation time can quickly become high due to the iterative nature of the method.

2.2.2 Formulation and resolution in frequency domain

Methods in the frequency domain transform the nonlinear problem expressed in the time
domain into a nonlinear algebraic problem formulated in the frequency domain. Most
of these methods belong to the family of Ritz-Galerkin methods. The principle of this
method is to approximate the solution of Eq. (II.16) into a series of time-dependent
functions:

U(t) =
N∑
k=1

Hkxk(t), (II.25)

where xk are approximated functions fixed a priori and Hk are unknown coefficients
to determine. By differentiating Eq. (II.25) and replacing the expression in the general
Eq. (II.16), the following expression as a residual r(H,x) can be obtained:

r(H,x) =
N∑
k=1

[MHkẍk +CHkẋk +KHkxk] + Fnl(H,x)− Fex(t). (II.26)

For an harmonic response of period T the coefficients Hk are determined by orthogo-
nalizing the residual r with respect to a basis of test functions [ηk(t)]k=1,...,N by finding
those that satisfy the following projection equations:∫ T

0

r(H,x(t))ηk(t)dt, ∀k ∈ J1, NK. (II.27)

If the test functions are equal to the functions used for the approximation that is xk = ηk

(with k = 1..N), one talks of Galerkin’s projection. Different basis functions can be
used depending on the type of case to be treated. In the search for periodic solutions,
trigonometric functions are often used as approximation functions. For non-regular
impact contact problems, for example, it has been considered to use wavelet bases as
approximation functions [133].

Harmonic Balance Method. When only the steady-state is of interest, frequency-
domain resolution methods are an alternative to the time-domain numerical integration.
In the Fourier space, it is possible to have direct access to periodic solutions, which
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generally allow a significant reduction in computational costs compared to the time-
domain numerical integration. The frequency method presented here is the Harmonic
Balance Method (HBM) [102], which is the widely used method for researching periodic
solutions in the frequency domain. The HBM is a direct application of the Galerkin
procedure [134]. It consists of projecting the dynamic residual on a trigonometric basis
to remove the time dependency from the system. This strategy allows finding periodic
solutions to the dynamic behaviour of a system subjected to a single-frequency harmonic
excitation of frequency ω. This method has been improved thanks to many variants,
among which the Incremental Harmonic Balance Method (IHBM) [135], the Multi-
frequency dimensional Harmonic Balance Method (MHBM) [136], and the Adaptive
Harmonic Balance Method (AHBM) [137],

The influence of wear on dynamic behaviour will not be considered for now.

Theoretical principle. The principle is to approximate the T -periodic solution of
the system (II.16) as a truncated Fourier series (II.28). This assumption ensures the
solution’s periodicity, imposed here a priori.

U(t) ≃ a0 +

Nh∑
k=1

(ak cos (kωt) + bk sin (kωt)), (II.28)

with Nh the number of retained harmonics in the HBM resolution. a0 represents the
constant coefficients of the Fourier series, the terms (ak)k∈[0,Nh] and (bk)k∈[0,Nh] are the
coefficients of the Fourier decomposition. Each Fourier coefficient is a vector of size
n. This solution is, therefore, an approximation since it is truncated at a particular
order Nh. The more significant the number of harmonics Nh retained, the closer the
approximate solution will be to the exact solution.

Substituting the Eq. (II.28) and its derivatives into the general Eq. (II.16) of mo-
tion gives a solution error or residual r(t), resulting from the error generated by the
approximation of u(t). The residual r(t) is then expressed in the following form:

r(t) =

Nh∑
k=1

[(K− (kω)2M)ak + (kωC)bk] cos(kωt)+

+

Nh∑
k=1

[(K− (kω)2M)bk − (kωC)ak] sin(kωt)+

+Ka0 + Fnl − Fex.

(II.29)

The principle of the HBM is based on the removal of the time dependence of the residual
by expressing the relation (II.29) in the frequency domain. By applying the Galerkin
procedure, the residual r(t) is projected on trigonometric basis (i.e. the Fourier basis)
B(t):

B(t) = [1 cos (kωt) sin (kωt) . . . ]T , ∀k ∈ [1, Nh], (II.30)

by means of the inner product ⟨· | ·⟩, defined on the set of continuous functions C over
the interval [0, T ] of R:
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∀(f, g) ∈ C([0, T ]), ⟨f(t) | g(t)⟩ = 2

T

∫ T

0

f(t)g(t)dt. (II.31)

Denoted as c0 = 1, ck = cos(kωt) and sk = sin(kωt) and considering the orthogonality
of the basis functions with respect to the chosen scalar product, the Eq. (II.29) can be
simplified, yielding a system of nonlinear algebraic equations:

⟨r | c0⟩ = (2K)a0 + ⟨Fnl | c0⟩ − ⟨Fex | c0⟩
⟨r | ck⟩ = (K− (kω)2M)ak + (kωC)bk + ⟨Fnl | ck⟩ − ⟨Fex | ck⟩
⟨r | sk⟩ = (K− (kω)2M)bk − (kωC)ak + ⟨Fnl | sk⟩ − ⟨Fex | sk⟩ .

(II.32)

In a more compact form, the system of equations (II.29) becomes:

r(ũ) = Zũ+ f̃nl(ũ)− f̃ex, (II.33)

where ∼ denotes a multi-harmonic frequency-domain vector. According to this notation,
ũ, f̃nl and f̃ex are then the multi-harmonic vectors of displacements, nonlinear forces and
external forces, respectively. Z is a block-diagonal matrix, the so-called dynamic stiffness
matrix, defined as:

Z =



2K
Z1

. . .
Zk

. . .
ZNh


, (II.34)

whose each kth block defines the dynamic stiffness matrix for the kth harmonic:

Zk =

[
K− (kω)2M kωC

−kωC K− (kω)2M

]
k = 1, . . . , Nh. (II.35)

The HBM allows to transform the system of differential equations (II.16) into a system
of (2Nh + 1)ndofs algebraic equations, with ndofs the number of DOFs of the structure.

In the Eq. (II.33), external forces are generally periodic excitations which can be
easily decomposed into a sum of cosine and sine functions and the associated harmonic
coefficients f̃ex arise naturally from this decomposition. The determination of the Fourier
coefficients of the nonlinear forces f̃nl(ũ) can be done either analytically or numerically.
In the case of simple nonlinearity, where analytical expressions can be derived, the
nonlinearity can be processed directly in the frequency domain, as for the external forces.
In the case of more complex nonlinearity, such as the nonlinearities of contact or friction,
numerical methods are needed to evaluate the harmonic coefficients of the nonlinear
forces in the time domain. This aspect will be detailed in the next paragraph.

Evaluation of the nonlinear terms. The transposition of the initial differential
problem (II.16) into the frequency domain (II.29) yields the harmonic vector f̃nl(ũ, ω)
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containing the coefficients of the Fourier series of the nonlinear forces Fnl(U̇(t),U(t)).
The expression of these coefficients is not readily computable analytically, except for
simple cases, since the relationship relating nonlinear forces f̃nl to frequency variables
ũ and ω is in most cases not directly known, being given only the laws relating the
nonlinear forces Fnl to the time variables U and U̇. There are several methods for
assessing contact forces in the time domain. The simplest procedure is by regularising the
sign function with another continuous function for evaluating the Coulomb force, enabling
a direct computation of the nonlinear friction forces [138]. The penalty method is another
widely used strategy [24, 139]. It softens the contact at the interface with additional
stiffnesses in the normal (unilateral contact condition) and tangential (Coulomb friction
law) direction.

In the case of nonlinearities explicitly expressed in the time domain, two methods
are particularly well suited to overcome this difficulty: the trigonometric collocation
method and the Alternating Frequency-Time (AFT) procedure, introduced by Cameron
and Griffin [140]. The trigonometric collocation method, described in detail in [141],
assumes the accuracy of the solution to be found at a fixed number of time instants.
However, it relies on a least squares inversion, which forces the use of a pseudo-inverse
matrix that can be expensive in terms of numerical cost. In the following, the alternating
Frequency-Time approach will be preferred. The Alternating Frequency-Time (AFT)
method consists of transposing the frequency vector of unknowns ũ into the time domain
to determine the nonlinear forces as a function of time, and then re-evaluate these forces
in the frequency domain using a Fourier transform. This approach takes advantage of the
fact that the relationship between the vector of unknowns in the time domain F(t) and
the nonlinear forces Fnl(U̇(t),U(t)) is generally known. The use of Fourier transforms
takes place to the extent that nonlinear forces inherit the periodicity of the researched
solution and can therefore be expressed into a form similar to (II.28) as follows:

Fnl(U̇(t),U(t)) ≃ c0 +

Nh∑
k=1

(ck cos (kωt) + dk sin (kωt)), (II.36)

where c0 are the constant Fourier coefficients, ck and sk the coefficients of the Fourier
decomposition.

Starting from the vector ũ the transformation from the frequency to the time domain
is accomplished through an Inverse Discrete Fourier Transform (IDFT) matrix denoted
as F̄ .

U(t) = F̄ ũ, (II.37)

where the IDFT matrix F̄ is built as:

F̄ =


1 cos (ωt1) sin (ωt1) . . . cos (Nhωt1) sin (Nhωt1)
...

...
...

...
...

1 cos (ωtk) sin (ωtk) . . . cos (Nhωtk) sin (Nhωtk)
...

...
...

...
...

1 cos (ωT ) sin (ωT ) . . . cos (NhωT ) sin (NhωT )

⊗ Indofs
, (II.38)

in which ⊗ is the Kronecker product and Indofs
is the identity matrix of size ndofs x ndofs.
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This step allows the signal u(t) to be sampled into nt time instants of the period T ,
denoted tk and generally equidistant. They are defined as:

tk =
k

nt

T with k = 0, . . . , nt. (II.39)

More specifically, the discretization of the period T is based on the compromise between
the computational time, the convergence of the iterative solver, and the capability to
capture nonlinear effects. To capture all the information from a continuous-time signal
of finite bandwidth, it is appropriate that the discretization of the signal satisfies the
criteria of the Nyquist-Shannon theorem [142], which states that the frequency sampling
of a signal must be greater than twice the maximum frequency contained in this signal.

Similarly, it is possible to determine the sampled vectors in the time domain of
velocity u̇(t) and acceleration ü(t) using a differential operator ∇, expressed as:

∇ =



0
∇1

. . .
∇k

. . .
∇Nh


, (II.40)

whose each kth block defines the derivative operator for the kth harmonic:

∇k =

[
0 kω

−kω 0

]
⊗ Indofs

, ∀k ∈ J1, NhK. (II.41)

Thus, the sampled vectors for velocity and acceleration are derived using the following
relationships:

U̇(t) = F̄∇ũ, (II.42)

Ü(t) = F̄∇2ũ. (II.43)

Once the nonlinear forces Fnl(U(t)) are calculated in the time domain, their expression
in the frequency domain is computed using a Direct Fourier Transform (DFT) matrix,
denoted as F , whose expression is:

F =
2

nt



1/2 . . . 1/2 . . . 1/2
cos (ωt1) . . . cos (ωtk) . . . cos (ωT )
sin (ωt1) . . . sin (ωtk) . . . sin (ωT )

...
...

...
cos (Nhωt1) . . . cos (Nhωtk) . . . cos (NhωT )
sin (Nhωt1) . . . sin (Nhωtk) . . . sin (NhωT )


⊗ Indofs

. (II.44)

The general AFT procedure is summarized as follows:

ũ
IDFT−−−→ U(t) −−−→ Fnl(U(t))

DFT−−→ f̃nl(ũ) (II.45)

and graphically illustrated in Figure II.2. Moreover, it is important to note that the
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Figure II.2: Scheme of the Alternating Frequency-Time (AFT) procedure.

Fourier matrices are not dependent on ω, considering that ωtk = 2kπ/nt. Thus, it is
not necessary to recalculate them at each iteration, representing a significant numerical
advantage.

Numerical resolution by an iterative method. The solution of the algebraic
system (II.33), obtained by harmonic balance, is usually done using iterative solving
methods. Several optimization algorithms are described in [143]. The Newton-Raphson
method is one of the most commonly used for solving nonlinear algebraic systems. Other
approaches present in the literature also allow for solving this type of problem. For
example, one can mention the methods based on Krylov spaces [144], techniques based
on trust-region algorithms [145] and approaches using pseudo-time [5].

Within the framework of the HBM, the iterative Newton-Raphson type algorithm,
initially introduced by Lau [146], is commonly used. Assuming the rewriting of the
system (II.33) in the form:

r(ũ) = Zũ+ f̃nl(ũ)− f̃ex = 0, (II.46)

the principle of the method is to determine the solution iteratively, denoted ũs, of the
Eq. (II.46), starting from an initial value ũ(0). A correction ∆ũ(i) is evaluated at each
iteration (i) and added to ũ(i) to get closer to the solution. The iterative procedure of
Newton, written at each step (i), is:

ũ(i+1) = ũ(i) +∆ũ(i), (II.47)

where ũ(i+1) is the solution at the iteration (i+ 1) and ũ(i) is the known solution at the
iteration (i). In Newton-Raphson’s algorithm, the calculation of the corrective increment
∆ũ(i) is based on the first-order Taylor expansion of the Eq. (II.46):

r(ũ(i) +∆ũ(i)) = r(ũ(i)) +
∂r(ũ(i))

∂ũ
∆ũ(i) + o(∆ũ(i)) ≈ 0, (II.48)

from which the expression of the correction ∆ũ(i) is obtained as:
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∆ũ(i) = −
[
∂r(ũ(i))

∂ũ

]−1

r(ũ(i)). (II.49)

The presence of the Jacobian matrix in the Eq. (II.49) gives to the Newton-Raphson
algorithm the notation of gradient method. An approximation of this matrix can be
obtained using finite differences. However, the numerical costs can be greatly reduced
if an analytical expression of the Jacobian matrix is provided to the solver. Generally,
obtaining an analytical expression for the Jacobian matrix in the Eq. (II.49) does not
pose any particular problem, except for the terms related to the components of the
nonlinear forces f̃nl(ũ), whose treatment requires some attention. The evaluation of the
analytical Jacobian matrix is detailed in Appendix A.

The Newton-Raphson iterative process may be repeated as many times as necessary
to get the desired accuracy, which verifies an arbitrary stopping criterion set by the user
and generally based on the norm of the residue. For example∥∥∆r(ũ(i))

∥∥ ≤ ε, (II.50)

with ε the tolerance of the stop tests of the iterative process.
The speed of convergence of the Newton-Raphson algorithm depends on the accuracy

of the initial condition. Initialising the algorithm accurately is the whole point of the
prediction methods, this aspect will be considered in the next section.

2.3 Continuation of the solution

Contrary to the dynamic study of a linear system, a nonlinear analysis may often exhibit
multiple solution branches featuring bifurcation points, so that the convergence of the
algorithms can be complicated. Thus, continuation methods are effective for dealing
with this type of phenomenon. This approach enhances the following solution branches,
according to the evolution of a so-called control parameter, optimizing the time-cost
reduction, and allowing to overcome the problem of multiple solutions. In the context of
an application to the algebraic system of the HBM, this parameter corresponds to the
system excitation pulsation ω. The left-hand side of the system (II.29) is rewritten in
the following form to show the dependence on the control parameter ω:

r(ũ, ω) = Z(ω)ũ+ f̃nl(ũ, ω)− f̃ex. (II.51)

The most widely used continuation or path-following techniques are based on a
parametrization of the solution branches, using the curvilinear abscissa s of the solution
path and a prediction-correction type algorithm. First, the prediction step approximates
the solution at the next iteration. Then, this solution is iteratively corrected in the
correction step until it converges towards the desired solution.

2.3.1 Continuation algorithms

The inclusion of the control parameter ω as an unknown of the system (II.51) makes the
system under-determined: the problem is composed of ((2Nh + 1)ndofs + 1) unknowns
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correspondent to the (2Nh+1)ndofs Fourier coefficients of the displacements plus the con-
trol parameter ω. The following paragraphs describe the main prediction and correction
methods used.

Prediction step. The nonlinear resolution depends on the prediction, which is chosen
as the initialisation of the nonlinear solver. Assuming known the solution (ũ, ω)i, the
prediction step consists in finding an approximation of the next solution (ũ, ω)i+1 from
the previous one. For this purpose, various predictors can be used. The ones presented
in the following are also shown in Figure II.3.

• Secant predictor. This type of method consists of estimating the prediction
by building a polynomial interpolation on the two previously calculated points
(ũ, ω)i and (ũ, ω)i−1. The number of required points depends on the degree of the
considered polynomial. In the case of first-order interpolation, the last two points
are necessary. In this way, the predicted point, noted as (ũ, ω)pred, belongs to the
path passing through the points (ũ, ω)i and (ũ, ω)i−1. The norm of the prediction,
corresponding to the continuation step ds, determines the direction of the predicted
point on the path. The prediction is determined by the following equation:

(ũ, ω)pred = (ũ, ω)i + ds
(ũ, ω)i − (ũ, ω)i−1

∥(ũ, ω)i − (ũ, ω)i−1∥
. (II.52)

The secant predictor is simple to implement as it does not require the evaluation of
the Jacobian matrix. However, this method requires at least two previous points,
and it can lead to predictions far from the solution in areas of high curvature,
which implies more iterations to converge.

• Tangent predictor. It consists of estimating the Jacobian of the residual, as
expressed in the Eq. (II.53), evaluated at the last calculated point, to determine
the direction of the prediction. In this regard, only one calculation point is needed
to obtain a tangent prediction direction.

∂r

∂ũ
(ũi, ωi)∆ũ+

∂r

∂ω
(ũi, ωi)∆ω = 0. (II.53)

Thus, starting from the solution pair (ũi, ωi), it is necessary to obtain the two
increments ∆ũ and ∆ω of the solution and the control parameter, respectively, to
estimate the solution pair at the next point, so that:

ũpred = ũi +∆ũ,

ωpred = ωi +∆ω.
(II.54)

The increment between two successive points of the response curve is approximated
by ds2, defined as:

ds2 = ∥∆ũ∥2 + |∆ω|2 , (II.55)

in which ∥∆ũ∥ = ∥ũi+1 − ũi∥ and |∆ω| = |ωi+1 − ωi|. From the combination of
the Eqs. (II.55) and (II.53), the two increments obtained are the follows:



CHAPTER II. Numerical method of resolution for a nonlinear dynamic problem 45

Figure II.3: Different prediction methods.

∆ũ = −
[
∂r

∂ũ

]−1
∂r

∂ω
∆ω,

∆ω =
±ds√

1 +
∥∥∥[ ∂r∂ũ]−1 ∂r

∂ω

∥∥∥2 .
(II.56)

Although very efficient, this method produces high numerical costs, especially due
to the inversion of the Jacobian matrix of the system with respect to the variables
ũ for the calculation of the increments.

• Prediction by the previous point. It consists of using the previous value as
a prediction point for the next one, ũi+1 = ũi. This method is the simplest to
implement and is used when it is not expected to handle nonlinear responses with
bifurcation points.

Correction step. The previous paragraph has presented the main predictors used
in the continuation algorithms. In most cases, the predicted point is not a solution of
the Eq. (II.29), so the prediction step is completed by a correction one. The correction
step iteratively corrects the predicted point to satisfy the system (II.51). This consists
in constraining the system by adding an equation characterising the type of correction.
The main methods are described in the following and illustrated in Figure II.4.

• Sequential continuation. This technique consists of fixing one of the unknowns,
the control parameter ω and calculating the solution for this chosen predictive
value. The value of the control parameter can be set in different ways, the simplest
one is to divide the range of interest Ω = [ω1, . . . , ωnω ] into nω calculation points,
regularly spaced. Thereby, the system’s dependence on ω can be ignored, and the
equations to be solved are then:{

ωi ∈ Ω

r(ũ) = Z+ f̃nl(ũ)− f̃ex = 0
(II.57)

The last converged solution is usually used to calculate the next one. The sequential
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(a) Sequential continuation (b) Arc-length continuation

Figure II.4: Different types of continuation techniques.

continuation is illustrated in Figure II.4(a). This continuation technique is very
simple and convenient to implement, but it is not practical when handling nonlinear
responses with turning points, which can be encountered in the case of nonlinearities.
However, reversal phenomena are mainly present for nonlinearities involving strong
changes in modal characteristics [128], which are not observed in the type of study
conducted in this manuscript for which this continuation will be retained.

• Arc-length continuation. In the presence of bifurcation points, an arc-length
continuation is preferred. This continuation technique considers the control param-
eter ω as a variable. Consequently, an additional equation must be added to the
nonlinear system. The equations to be solved are then:{

p(ũ, ω) = ∥ũi+1 − ũi∥2 + (ωi+1 − ωi)
2 − ds2 = 0

r(ũ, ω) = Z(ω) + f̃nl(ũ, ω)− f̃ex = 0
(II.58)

The objective is to find the solution on a hyper-sphere of radius ds and centred
on the last converged solution (ũi, ωi). The arc-length continuation is illustrated
in Figure II.4(b). Since the hyper-sphere has at least two intersection points
with the desired solution path, it may happen that the convergent solution is
not the desired one. To force the convergence to the desired point, it is possible
to modify the previous equation by looking for the solution on the hyperplane
orthogonal to the tangent plane of the curve. In this case, the technique is called
pseudo-arc-length continuation [147].

Continuation through Asymptotic Numerical Method. An alternative continu-
ation technique can be found in literature, the so-called Asymptotic Numerical Method
(ANM) [148, 149]. This method is based on the development of the solution into a
high-order Taylor series expansion of a path parameter α, truncated at the order Np and
given by:
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uANM(α) =

Np∑
p=0

αpup. (II.59)

To compute the series coefficients up, the vector of the equation in the form of a residual
needs to be reformulated in a polynomial and quadratic form:

rANM = L0 + L1(u) +Q(u,u) = 0, (II.60)

where L0, L1 and Q are a constant vector, a linear function with respect to u and a
quadratic function with respect to u, respectively. One new contribution to the field is
described in a recent work co-authored by the present author in Woiwode et al. [150].
This paper presents the comparison between two algorithms for Harmonic Balance
solutions and path continuation for different mechanical systems. These two algorithms
are the AFT scheme with a predictor-corrector procedure, performed using the open-
source Matlab tool NLvib [102, 151] that implements the pseudo-arc-length technique
for the continuation of a single-parameter family, and the ANM, performed using the
Matlab tool MANLAB [152], also freely available online. The main findings of this study
are summarized as follows. The ANM can only be implemented when the derivatives for
the Taylor series expansion exist. It can only be applied to differential equation systems
containing analytical terms or sufficiently smooth nonlinearities. A regularization would
be necessary to approximate the non-smooth terms with analytic ones. Moreover, it is
necessary to consider a high number of harmonics for convergence [150]. In these cases,
the ANM can outstand very high performance. Further, even if many nonlinear systems
can be represented in a quadratic form by introducing new variables, the size of the
resulting system can quickly become significant, especially for systems with many DOFs
and consequently prohibitive in terms of computational cost. On the contrary, the AFT
with a predictor/corrector continuation technique is well-adapted to treat non-smooth
nonlinearities resulting from contact constraints, such as impacts or friction. Moreover,
a very low truncation order can already achieve reasonable accuracy.

In this manuscript, the modelling of an experimental vibratory test rig involving two
structures with a common contact interface where dry friction occurs will be performed.
The introduction of the wear in the numerical simulations makes the problem even
more computationally complex. The AFT scheme with a sequential continuation will
be preferred since the experimental results considered do not show reversal phenomena.
In addition, when large finite element models with a fine mesh at the contact interface
are required, as in this case, a reduction of the problem’s size is needed to perform
dynamic analysis in reasonable computational times. The following section briefs on
performing a Craig-Bampton Component Mode Synthesis (CB-CMS) reduced order
modelling technique for a generic system with friction contact. The system is condensed
to a small set of DOFs, retaining the dynamic properties of the structure.

2.4 Reduced-order modelling technique

The finite element method is commonly applied to simulate the dynamic behaviour
of industrial mechanical systems featuring complex geometries. However, industrial
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finite element models often handle millions of DOFs [153]. Consequently, the sparse
matrices describing these systems can become very large, especially if a fine mesh is
required, making the dynamic response calculation very time-consuming. This problem
is even more evident with contact or friction nonlinearities for which the evaluation of
the iterative solution and the corresponding updates are computationally costly, both
for resolution by time integration and frequency-based methods, such as the HBM.
Considering that the main challenge in solving such complex systems is to compromise
between low computational costs and high accuracy, substructuring methods, also known
as Component Mode Synthesis (CMS), have been developed. These substructuring
methods in dynamic calculation can be divided into two main families: methods with
fixed interfaces developed by Hurty [154] and of which the Craig-Bampton approach
[155] is among the most popular, and the free interface methods initiated by Hou [156]
and generalised by MacNeal [157].

The first step in applying a substructuring method is to divide the complete structure
into smaller substructures. The next step is the partitioning of the full set of DOFs of
each substructure into two subsets:

• the set of boundary or interface DOFs (index b);
• the set of internal DOFs (index i).

The boundary DOFs correspond to those physically retained after the reduction, denoted
as master DOFs; the internal DOFs are all the remaining ones, approximated by chosen
mode shapes, denoted as slave DOFs. This distinction is significant when handling
contact problems since the contact forces are directly applied to the interface DOFs of
the reduced model. As a result of the DOFs partitioning, it is possible to reorganize
the displacement vectors and the structural matrices of the isolated substructures. The
equations of motion can be written in the following form (damping is not mentioned for
simplification): ([

Kii Kib

Kbi Kbb

]
− ω2

[
Mii Mib

Mbi Mbb

])(
ui

ub

)
=

(
fi
fb

)
. (II.61)

2.4.1 Dynamic condensation with fixed interfaces

The Craig-Bampton method [155] is a well-known component mode synthesis technique.
The first step of a CB reduction is the repartition of the DOFs in internal (ui) and
boundary (ub), as detailed in (II.61). The second step consists in building the reduced
basis on which to project the equation of motion. The reduced basis of the Craig-
Bampton method requires the definition of two types of modes, each one associated with
a type of unknown, i.e. internal (ui) and boundary (ub), for each substructure. They
are defined as follows.

• The first one includes the constrained modes, which represent the static modes.
Static modes are the displacements of the substructure’s internal DOFs (ui),
obtained by successfully imposing unitary displacements on each boundary DOFs
(ub) when all the other boundary DOFs remain fixed. Thus, considering the static
problem associated with the Eq. (II.61) with ω = 0 and fi = 0, it is then possible
to evaluate the static modes of the substructure, using the first line of this equation
as:
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ΨCB = −K−1
ii Kib. (II.62)

The matrix ΨCB contains the static modes on each column.

• The second ones are the fixed-boundary eigenmodes computed by solving the
internal eigenvalue problem (II.63), by imposing that the displacements of the
boundary DOFs are null (ub = 0).

(Kii − ω2Mii)ΦCB = 0. (II.63)

The matrix ΦCB contains the fixed-interface modes shape, arranged by columns.
The reduction of the system is carried out via the transformation matrix TCB, defined
by:

TCB =

[
ΦCB ΨCB

0 I

]
, (II.64)

where I is the identity matrix. Using the transformation matrix as defined above gives
an exact result. The reduction is then performed by retaining only the first Nm modes of
the substructure, i.e. the first Nm columns of the CB matrix. The terms of the equations
of motion are reduced by projecting them into the reduced basis of Craig-Bampton using
the transformation matrix TCB, leading to:

MCB = TT
CBMTCB, (II.65)

KCB = TT
CBKTCB, (II.66)

fCB = TT
CBf . (II.67)

Once the matrices are reduced, solving the problem in terms of reduced variables is
possible. The vector of reduced coordinates is indicated as v = [qNm ;ub]

T , where qNm

are the generalized coordinates corresponding to the Nm fixed interface modes considered
in ΦCB and ub are the displacements preserved from the original equations of motion as
boundary physical DOFs. The initial system can be reduced using the Craig-Bampton
transformation matrix TCB, defined by:(

ui

ub

)
= TCB

(
qNm

ub

)
= TCBv. (II.68)

The Craig-Bampton method offers a good approximation, provided that a sufficient
number of modes are used. The modes are usually chosen using a frequency criterion
[129]. It is particularly suitable for studying systems with localized nonlinearities because
the size of the reduced system essentially depends on the size of the boundary DOFs
between the considered substructures [25]. The interfaces are related according to the
chosen laws of contact or friction, and the conservation of physical DOFs at the interfaces
makes it possible to apply the forces directly to them. Because of its simplicity of
implementation in the case of localized nonlinearities, such as the friction treated in this
manuscript, and its efficiency, the Craig-Bampton method with fixed interfaces will be
retained in the following.
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2.4.2 Convergence of the reduced model

Several indicators can be considered to evaluate the performance of a reduced order
technique and estimate the quality of the reduced solution with respect to the solution of
the global problem. The number of component modes assembled in the transformation
matrix should be as large as necessary to capture the vibrational behaviour in the
dynamic regime of interest with sufficient accuracy and as small as possible to perform a
significant model order reduction.

Criterion based on the natural frequencies. The easiest and fastest criterion to
assess the reduced model quality consists of calculating the natural frequencies of the
reduced model fred and comparing them to the natural frequencies of the full model ffull.
The error is then expressed as a frequency deviation as follows:

∆f =
fred − ffull

fred
(%). (II.69)

Criterion based on the mode shapes. It is also possible to compare the modal
vectors of the reduced model with the modal vectors of the full model through the Modal
Assurance Criterion (MAC) [158]. From a mathematical standpoint, consider two vectors
{ϕred} and {ϕfull}, representing the mode shapes of the reduced model and the full
model, respectively, the MAC matrix is expressed as the normalized scalar product of
the two defined sets of vectors:

MAC({ϕred} , {ϕfull}) =

∣∣∣({ϕred}T {ϕfull})
∣∣∣2

({ϕred}T {ϕred})({ϕfull}T {ϕfull})
. (II.70)

The MAC value ranges between 0 and 1. A value close to 1 represents a fully consistent
mode shape. A low value of the MAC indicates that the modes are not consistent.

2.5 Contact problem resolution by the DLFT

In this study, the Dynamic Lagrangians Frequency-Time procedure proposed by Nacivet et
al. [103, 123] is performed. This method uses augmented Lagrangians to calculate without
softening the non-smooth frictional contact laws, as will be detailed in section II.2.5.3.
This avoids approximation enabling the simulation of real physical behaviours. Compared
to the conventional contact penalty approach, the advantage of the DLFT method is
that, at convergence, results do not depend on any penalty coefficient; thus, the term
"pseudo-penalty" is used to indicate the control coefficient of the approach. Moreover,
the contact handling is done directly on the mesh of the contacting interface without
remeshing. Following its development, the DLFT method has been successfully employed
to study friction-damping blade attachments of rotating bladed disks [159], evaluate the
contribution of friction ring dampers on the forced response of blisks [160], as well as to
estimate the influence of wear related to friction at the blade root [161].
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2.5.1 Contact hypothesis

The problem is limited to small displacements and small deformations. The DLFT
method is based on the following contact hypotheses:

• a compatible mesh at the contact interface is needed (Figure II.5);
• each contact element is constrained by the unilateral contact condition defined by

Eq. (I.1), illustrated in Figure II.6(b), and by the Coulomb friction defined by
Eq. (I.7), represented in Figure II.6(c).

• the contact zone is defined by a node-to-node frictional contact element, as il-
lustrated in Figure II.6(a) and a relative displacement is defined between the
corresponding nodes;

Figure II.5: Compatible mesh at the interface.

(a) (b) (c)

Figure II.6: DLFT - Contact hypothesis: (a) zoom on the contact element, (b) unilateral
contact condition, (c) Coulomb friction law.

By noting s the number of the solids under consideration such that s = [1, 2] in
contact, the equations of motion in time (II.16), written for each solid s are:

Msüs(t) +Csu̇s(t) +Ksus(t) + f sc(u
s(t), u̇s(t)) = f sex(t), (II.71)

where the matrices Ms, Cs, and Ks are, respectively, the mass, damping, and stiffness
matrices. f sc represent the nonlinear contact forces due to friction and f sex are the external
forces. us(t) is the displacement vector, the unknown of the problem. Assuming steady
state periodic response, the system of equations (II.71) is transformed to the frequency
domain, as detailed in section II.2.2.2. Thus, after reduction to the nonlinear DOFs, as
presented in section II.2.4, for both solids s it can be written in the frequency domain as

Zs
rũ

s
r + λ̃

s
= f̃ sr , (II.72)
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with Zs
r the dynamic stiffness matrix, and λ̃

s
, f̃ sr and ũs

r the multi-harmonic vectors of
the contact forces, external forces and displacements, respectively, of the solid s.

2.5.2 Condensation of the model in frequency domain

In the case of localised nonlinearities, such as contact problems at interfaces, the size
of the problem expressed by Eq. (II.72) can be reduced using a condensation in the
frequency domain, as introduced by Nacivet in [123]. This condensation is made for both
solids s = [1, 2] in contact. In the next paragraphs, the s-index referring to the solids is
omitted for simplicity of reading.

Condensation on the nonlinear degrees of freedom. The DOFs of the system can
be distinguished into linear (index l) and nonlinear (index nl). The first exact reduction
in the frequency domain consists of condensation on the nonlinear DOFs, coinciding with
the DOFs on which the contact forces act. The reduced system (II.72) can be partitioned
as: [

Znl,nl Znl,l

Zl,nl Zl,l

] [
ũnl

ũl

]
+

[
f̃cnl

0

]
=

[
0

f̃exl

]
, (II.73)

where, clearly, for each solid in contact, the nonlinear forces are zero for the linear DOFs,
f̃cl = 0. f̃exl

is the vector of the external forces (periodic excitation at frequency ω).
Thus, Eq. (II.73) can be reduced to the nonlinear DOFs only as:

Zredũnl + f̃cnl
= f̃red, (II.74)

where Zred and f̃red are, respectively, the reduced dynamic stiffness matrix and the
reduced external force vector:

Zred = Znl,nl − Znl,l(Zl,l)
−1Zl,nl, (II.75a)

f̃red = f̃exnl
− Znl,l(Zl,l)

−1f̃exl
. (II.75b)

The unknowns of the system (II.74) are now equal to (2Nh + 1)nnl, where Nh is the
number of harmonics and nnl is the number of nonlinear DOFs.

Once the displacements of the nonlinear DOFs are known, ũl can be simply obtained
by isolating the second line of the Eq. (II.73), corresponding to the linear part, as:

ũl = (Zl,l)
−1(̃fexl

− Zl,nlũnl). (II.76)

Condensation on relative displacement. Because the computational time increases
rapidly with the number of nonlinear unknowns, a further reduction is proposed to divide
the size of the nonlinear system by two. This condensation consists of pairing the contact
nodes at the interface and solving the system only in relative displacement. The mesh is
therefore assumed to be coincident at the contact interface between the two solids.

Considering the Eq. (II.74), obtained for the two solids s = [1, 2], the contact problem
can be express as:
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Z
(1)
redũ

(1)
nl + f̃ (1)cnl

= f̃
(1)
red, (II.77)

Z
(2)
redũ

(2)
nl + f̃ (2)cnl

= f̃
(2)
red. (II.78)

The multi-harmonic vector of the Lagrange multipliers λ̃ is defined as:

λ̃ = f̃ (1)cnl
= −f̃ (2)cnl

. (II.79)

The Lagrange multipliers can be expressed as the tangential contact forces due to friction
and the normal contact forces that ensure no interpenetration. The relative displacement
vector is given by:

ũr = ũ
(1)
nl − ũ

(2)
nl = (Z

(1)
red)

−1(̃f
(1)
red − λ̃)− (Z

(2)
red)

−1(̃f
(2)
red + λ̃). (II.80)

Thus, the Eq. (II.80) can be reformulated in terms of relative variables. The final system
condensed on the nonlinear relative DOFs is as follows:

Zrũr + λ̃ = f̃r, (II.81)

where Zr is the dynamic stiffness matrix reduced to relative displacements and f̃r is the
vector of the external forces reduced to relative displacements:

Zr =
[
(Z

(1)
red)

−1 + (Z
(2)
red)

−1
]−1

, (II.82)

f̃r = Zr

[
(Z

(1)
red)

−1f̃
(1)
red − (Z

(2)
red)

−1f̃
(2)
red

]
. (II.83)

The final size of the harmonic system is equal to (2Nh + 1)(nnl/2).
Solving the system (II.81) by the nonlinear resolution algorithm yields the relative

displacements ũr and the contact forces λ̃. Thus, using the relation (II.79) in Eqs. (II.77)
and (II.78), it is possible to obtain the displacements on each of the contacting surfaces
ũ
(1)
nl and ũ

(2)
nl .

These two reduction steps do not lead to any approximation of the dynamics of
the system. Nevertheless, the numerical quality of Zr and f̃r may be affected as their
expressions given by Eq. II.82 and Eq. II.83 involve the inversion of matrices, introducing
numerical errors.

2.5.3 Evaluation of the contact forces by AFT

Solving the previous algebraic system (II.81) requires a prior computation of the contact
forces λ̃. Unfortunately, it is difficult to develop a strategy in which the nonlinear forces
are handled in the frequency domain because of their dependence on the state of each
contact node (stick, slip, or separation) which is, a priori, unknown. Thus, an alternating
Frequency-Time (AFT) procedure is used to estimate the contact forces in the time
domain, using a discrete Fourier transform, before going back to the frequency domain
to evaluate the Eq. (II.81). This procedure, called Dynamic Lagrangian Frequency-
Time (DLFT), uses a prediction-correction process to determine the contact state and
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the associated forces. It enables the verification of Coulomb’s friction law, as well as
the ensuring of the non-interpenetration condition between the contacting bodies, as
presented in section I.1.2. Because of the prediction-correction process performed by the
DLFT, it allows to ensure the exact verification of the non-regular contact laws without
adding an approximation due to the use of regularised contact laws.

Formulation of the dynamic Lagrangians. This method is based upon the aug-
mented Lagrangians approach but adapted to a frequency-domain framework. In the
DLFT method developed by Nacivet [103], the nonlinear contact forces are implemented
with a time-domain procedure by introducing a dynamic Lagrangian formulation based
on penalising the difference between the relative displacements at the interface, calculated
by the nonlinear solver in the frequency domain, and the relative displacements calculated
in the time domain from the nonlinear contact forces by verifying the Coulomb friction
and non-penetration conditions. Indeed, these nonlinearities cannot be dealt with a
simple AFT procedure since they cannot be written as analytical expressions in the time
domain.

Remembering the reduced equation of the system Eq. (II.81) in the frequency domain,
expressed in terms of relative displacements and defined in section II.2.5.2:

Zrũr + λ̃ = f̃r,

its solution consists in minimizing the following residual function:

r(ũr) = Zrũr + λ̃− f̃r. (II.84)

In the framework of the DLFT method, the unknown contact forces λ̃ are expressed
as dynamic Lagrangians, formulated as penalisation of the equations of motion in the
frequency domain, using a pseudo-penalty coefficient ε, used to enforce the correspondence
between the time and frequency descriptions of displacements, as follows:

λ̃ = f̃r − Zrũr + ε(ũr − x̃r). (II.85)

A new unknown vector of relative displacements x̃r is introduced. To calculate λ̃, it is
necessary to calculate x̃r. This vector is evaluated in the time domain, as will be detailed
in section II.2.5.4, to ensure compliance with contact and friction conditions. When the
convergence is reached, x̃r verifies:

ũr = x̃r. (II.86)

The value of ũr provides a prediction of the contact state, while the verification of the
contact laws is imposed by x̃r, which represents the term of correction.

More precisely, the contact forces in Eq. (II.85) are computed in the normal and
tangential directions, as follows:

λ̃N = f̃Nr − (Zrũr)
N + εN(ũ

N
r − x̃N

r ), (II.87a)

λ̃T = f̃Tr − (Zrũr)
T + εT (ũ

T
r − x̃T

r ). (II.87b)

According to the formulations of Nacivet [123], it is also possible to formulate the
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problem in terms of pseudo-penalisation on the relative velocities.

Choice of the pseudo-penalty coefficient. The pseudo-penalty coefficient ε can
be chosen arbitrarily since, at convergence, the results do not depend on it. However,
its value influences the speed of convergence and the quality of the result [159]. To
ensure good convergence of the nonlinear algorithm, it is necessary to select a suitable
value for ε. In this regard, the value of the pseudo-penalty coefficient ε should be chosen
to balance in the Eq. (II.85), the contributions of the equation of motion (f̃r − Zrũr)
and the contributions of the contact constraints ε(ũr − x̃r). Charleux [110] proposed to
take ε of the same order of magnitude of the spectral radius ϱ1 of the stiffness matrix
Zr corresponding to the predominant harmonic, i.e. the harmonic of the excitation, so
denoted as Zr(ex):

ε ≈ ϱ(Zr(ex)). (II.88)

2.5.4 Prediction/correction procedure

The contact forces λ̃, both in normal and tangential directions (the exponents N and T
are omitted for simplicity of notation), can be split as follows:

λ̃ = λ̃u − λ̃x, (II.89)

with

λ̃u = f̃r − Zrũr + εũr, (II.90a)

λ̃x = εx̃r. (II.90b)

In the Eq. (II.89), the term λ̃u, dependent on ũr, represents the term of prediction
used to determine the stick or slip behaviour of the system since every term is known.
The term λ̃x, dependent on x̃r, is the correction term. The correction is applied by
imposing its value to ensure the validation of Coulomb’s friction law and unilateral
contact law.

The pair of unknowns (λ̃, x̃r) in the Eq. (II.85) is computed through an AFT
procedure. For this purpose, the period T is divided into nt time steps. An iDFT is used
to transform the multi-harmonic vectors λ̃, λ̃u and λ̃x in the time domain, where they
assume the form of the vectors

{
λk
}
k=1,...,nt

,
{
λk

u

}
k=1,...,nt

and
{
λk

x

}
k=1,...,nt

, respectively.
These vectors represent the values of the contact forces for each time instant, denoted
with the exponent k, over the period T . The dimension of the vector of the contact
forces in the time domain is (n x nt).

(a) Initialisation at the first time instant. The contact forces are calculated with
a prediction-correction process using an iterative method. However, it is necessary to
initialise the value of the contact forces at the first time instant k = 0. The initialisation
can be chosen arbitrarily. To correct the initialisation error contact forces are calculated

1 Let (λ1, ..., λn) be the eigenvalues of a matrix A ∈ Cnxn the spectral radius ρ of A is defined as:
ρ(A) = max{|λ1|, ..., |λn|}
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at each instant over one period T , and then one can use the last value λT
x , to recompute

over another complete period 2T .

(b) Contact state prediction. In the time domain, it is easier to check the transition
criteria between the three possible contact states: separation, stick, and slip. The
prediction step consists in evaluating a first predictive value of the contact forces λk

pred.
This evaluation is done by assuming a stick contact state at each contact node as the
initial condition. In this condition, the relative displacement in the normal direction is
null xNr = 0, and the vector of relative displacements in the tangential directions xTr is
constant between two-time steps tk and tk−1. This means that the node does not move.
Consequently, the prediction is done by:{

λk,N
pre = λk,N

u

λk,T
pre = λk,T

u − λk−1,T
x

(II.91)

(c) Correction of the contact forces. The contact forces at each instant k, are then
determined by correcting the prediction λk

pre, by evaluating λk
x to verify the unilateral

and the Coulomb friction laws.

λk = λk
u − λk

x. (II.92)

The correction term λk
x is determined by the function of the predicted contact state:

separation, stick or slip.
• Separation: λk,N

pre ≥ N0t, where N0t is the static pre-load.
If the predicted normal force is positive, it corresponds to a tensile force. This
means a separation between the contact nodes, i.e. the contact is lost, and the
contact forces should be zero: {

λk,N
x = λk,N

u

λk,T
x = λk,T

u

(II.93)

• Stick: λk,N
pre < N0t and ||λk,T

pre || < µ
∣∣λk,N

pre −N0t

∣∣.
If the predicted normal force is negative, it corresponds to a compressive force.
This means a contact assured between contact nodes. According to Coulomb’s law,
the second condition implies that the contact is in a stuck condition. In this case,
the prediction is correct since the relative displacements in the normal direction xNr
are null, and the relative displacements in the tangential direction xTr are constant,
between two consecutive time steps. Thus, according to the Eq. (II.90b):{

λk,N
x = 0

λk,T
x = λk−1,T

x

(II.94)

• Slip: λk,N
pre < N0t and ||λk,T

pre || ≥ µ
∣∣λk,N

pre −N0t

∣∣.
Also, in this case, contact is ensured between correspondent nodes. The second
condition means that the solid is sliding according to the Coulomb friction law.
The normal relative displacement is null xk,Nr = 0, so that the correction of the
normal force is:
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λk,N
x = 0

λk,T
x = λk−1,T

x +

(
1− µ

∣∣λk,N
pre −N0t

∣∣ λk,N
pre∥∥λk,T
pre

∥∥
)
λk,T

pre

(II.95)

About the correction of the tangential contact forces λk,T
x , its evaluation is based

on the Coulomb friction law that imposes the value ||λk,T
pre || = µ

∣∣λk,N
pre −N0t

∣∣ and
its direction, which is the same of the relative tangential velocities, defined as:

u̇k,T
r =

uk,T
r − uk−1,T

r

tk − tk−1
. (II.96)

Thus, Coulomb’s law enables to write of the vector of the tangential contact forces
as a function of the tangential relative velocities and in the same directions:

λk,T = µ
∣∣λk,N

pre −N0t

∣∣ u̇k,T
r∥∥∥u̇k,T
r

∥∥∥ . (II.97)

Using the Eq. (II.91) and the Eq. (II.92), it is possible to express:

λk,T
pre − λk,T = λk,T

u − λk−1,T
u . (II.98)

Then, combining the Eqs. (II.96), (II.97), (II.98) and (II.90b) it results:

λk,T
pre =

µ

∣∣λk,N
pre −N0t

∣∣∥∥∥u̇k,T
r

∥∥∥ + ε(tk − tk−1)

 u̇k,T
r . (II.99)

The last equation shows the co-linearity relation between the vectors λk,T
pre and u̇k,T

r ,
so it can be written that:

u̇k,T
r∥∥∥u̇k,T
r

∥∥∥ =
λk,T

pre∥∥λk,T
pre

∥∥ , (II.100)

so that the Eq. (II.97) becomes:

λk,T = µ
∣∣λk,N

pre −N0t

∣∣ λk,T
pre∥∥λk,T
pre

∥∥ . (II.101)

Finally, by substituting the Eq. (II.101) into the Eq. (II.98) the second condition
of the system (II.95) is obtained.

As the last step, the updated Lagrangians, expressed in time domain
{
λk
}
k=1,...,nt

, are
transformed back in the frequency domain λ̃, using a DFT. In addition, to reduce the
computational time of the Newton-Raphson algorithm, in this work, the Jacobian matrix
of the contact forces has been computed analytically. The calculation of this matrix is
proposed in the Appendix A.
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2.6 Concluding remarks

After having discretized the variational equations of the problem, this chapter has
described different methods for solving and studying the periodic solutions of the
nonlinear equations. First with attention to time integration schemes and then with
reliable methods for finding periodic solutions in the frequency domain, with a focus on
the Harmonic Balancing Method. These methods are complemented by various tools,
such as continuation techniques, enabling to study of the evolution of systems dynamics
as a function of a chosen control parameter. The Craig-Bampton reduction method has
been presented to reduce the system’s size to be solved. Finally, the last section focuses
on solution methods for contact problems. The Dynamic Lagrangian Frequency-Time
(DLFT) method is chosen for solving the dynamic problem with friction contacts. The
following advantages support this choice: the DLFT method uses augmented Lagrangians,
which directly allow the non-smooth frictional contact law without any softening, avoiding
approximation and simulating real physical behaviour. In addition, compared to the
conventional contact penalty methods, the convergence results do not depend on any
penalty coefficient (hence the term pseudo-penalty coefficients used to enforce the contact
constraints).

The wear phenomenon will be introduced and coupled with dynamics in chapter III.
The evaluation of wear will be embedded in the DLFT algorithm, splitting time into two
scales: a fast one associated with vibratory phenomena and a slow one related to wear.



Chapter III

Wear introduction strategy in a
nonlinear dynamics problem

This chapter aims to present the method chosen for the numerical treatment of contact
problems with wear under dynamic loading. The first part introduces a strategy for
coupling fretting wear and dynamics. It is based on the Dynamic Lagrangian Frequency-
Time method (DLFT) developed by Nacivet et al. [123] and on a multiscale approach
to reduce computational costs: the DLFT with wear method, developed and validated
by Salles [13, 124]. It consists of studying the system evolution, splitting the time into
two scales: a fast scale for dynamics and a slow scale for wear phenomena. An academic
numerical model will be considered and evaluated to (i) serve as a phenomenological
example to understand basic phenomena at work when coupling wear and dynamics
and (ii) introduce various concepts concerning the evolution of contact interface, worn
volume, hysteresis loops and forced response dynamics. This chapter’s conclusions will
be useful for studying an experimental test case in the following.
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3.1 Reference problem with wear: governing equations

Moreau [26, 162] has shown that it is possible to include discontinuous phenomena
such as friction in the class of generalized standard materials by selecting a convex
but not necessarily differentiable dissipation potential, called pseudo-potential. In this
regard, a generalized standard model has been developed by Strömberg [27] for studying
interface phenomena in the situation of fretting wear. It is derived from the principle
of virtual power and the fundamental thermodynamics laws. The local constitutive
equations are built by defining two specific surface potentials: a free energy potential
Ψ, which corresponds to the Signorini unilateral contact condition, and a dissipation
pseudo-potential Φ, which corresponds to the Coulomb’s friction and Archard’s wear
laws. This approach allows the construction of laws representing the mechanics of the
interface by respecting the thermodynamics laws. The derivation of all equations and
conditions for developing the constitutive model at the interface and the definition of the
free energy and dissipation potentials are detailed in the works of Strömberg [27, 28] and
Klarbring [163], whose studies originate from the works of Lemaitre and Chaboche [164].

Following the works of Salles [13, 161] and Strömberg [27], two state variables uT and
w are introduced to represent friction and wear. These variables define the tangential
displacement and the wear depth at the interface. Wear mechanisms occur at the
microscopic scale. At a macroscopic scale, wear is characterised by debris detachment
and a modified contact profile. In the proposed model, wear is therefore identified as a
variable w, interpreted as a gap in the normal direction between the contacting surfaces.

3.1.1 Variational or weak formulation

The reference contact problem of two elastic bodies with a frictional contact interface,
previously defined in section II.2.1.1 and illustrated in Figure II.1, is considered. The
variational formulation associated with the dynamical fretting wear problem is defined by
three integral equations (III.1a), (III.1b),(III.1c), and one constitutive law (III.3). These
equations originate respectively from the principle of virtual work, the weak formulation
of Signorini’s unilateral contact conditions, Coulomb’s complementary law and Archard’s
wear local law.

For each time instant t ∈ [0, T ], the displacement field u(x) for each point x of
both solids Ωs (with uN and uT its normal and tangential components) and the contact
pressure field p (with pN = W and pT its normal and tangential components), are
searched. W has the same physical meaning as pN . It indicates the dual of w, i.e. the
driving force for wear. Defined v, p′ and W ′ the test fields related to u, p and W,
respectively, the variational equations are then expressed as:∫

Ωs

ρüivi dV +

∫
Ωs

Eijkl
∂uk

∂xl

∂vi
∂xj

dV +

∫
Γc

pivi dA−
∫
Γs
f

fivi dA = 0 ∀v ∈ V , (III.1a)∫
Γc

(uN − w − g)(p′N − pN) dA ≤ 0 ∀p′N ∈ KN , (III.1b)∫
Γc

(u̇Tα(p
′
Tα

− pTα) + ẇ(W ′ −W)) dA ≤ 0 ∀(p′T ,W ′) ∈ F(pN). (III.1c)

The dual spaces are defined as follows:
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V = {v|v(x) = 0, x ∈ Γu} ,
KN = {pN |pN(x) ≥ 0, x ∈ Γc} ,

F(pN) = {(pT,W)|(pT(x,W(x)) ∈ F (PN), x ∈ Γc} .

F (pN) is the closed convex set which describes the friction and the wear limit criterion.
It is expressed as:

F (pN) = {||pT || − µpN +KwpNW −Kwp
2
N ≤ 0},

with µ and Kw the Coulomb’s friction coefficient and Archard’s wear constant, respectively.
In Eq. (III.1c), the components of each vector are represented in an orthonormal basis
nα (with α = 1, 2), perpendicular to nc. The constitutive law expressing Archard’s local
formulation is the following:

ẇ = KwpN ||u̇T||, (III.3)

in accordance with Eq. (I.18) defined in section I.1.4.1.

3.1.2 Finite element discretization

A finite elements discretization of Eq. (III.1a) is performed to numerically solve the
problem defined above. This strategy, introduced in section II.2.1.3, is coupled with a
component mode synthesis, reducing the size of the problem. In the considered case, all
the DOFs where friction and wear occur must be retained as physical coordinates. In
addition to the Eqs. (II.16) obtained for the problem without wear (studied in chapter II),
the wear contribution Ws(t) is here introduced in the nonlinear terms Fs

c. The governing
equations of both structures (s = 1, 2) with a common contact interface are then the
following:

MsÜs(t) +CsU̇s(t) +KsUs(t) + Fs
c(U

s(t), U̇s(t),Ws(t)) = Fs
ex(t). (III.4)

Wear is calculated at each interface node (index m) through the following equation:

Ẇm =
Kw

Im
|Pm

N |||U̇m
T ||, (III.5)

where Pm
N is the nodal normal force and U̇m

T is the tangential velocity of each node m.
Im is a weighting factor for node m. It depends on the quadrature rule used to calculate
the integrals on each elementary contact area.

In the FEM formalism, the constraints introduced by Eqs. (III.1b) and (III.1c) and
correspondent to Signorini’s unilateral contact condition and Coulomb’s friction law,
respectively, become:

(UN −W −G)(P′
N −PN) ≤ 0 ∀P′

N ∈ Kh
N , (III.6a)

U̇T(P
′
T −PT) ≤ 0 ∀P′

T ∈ Fh(PN), (III.6b)
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where Kh
N and Fh(PN) are the finite element approximations of KN and F(pN), respec-

tively.

Time homogenization of the wear problem under dynamic loading. Wear
phenomena under dynamic loads are multi-scale in time. The idea is to separate time
into slow and fast time to overcome this added difficulty. The slow time is related to
tribological phenomena, while the fast time is the scale of the dynamic problem.

Following the formalism used in [165], where the problem of fatigue life prediction
is modelled as a multi-scale phenomenon in the time domain using a mathematical
homogenization theory with two-time coordinates, Salles [161] proposed a time homogeni-
sation of the wear problem under dynamic loading. Noted as ϕ, a generic response field
(displacement, strain or stress) can be defined as:

ϕ(x, t) = ϕ(x, τ, η), (III.7)

where τ is the fast time scale, such that τ = ωt and η is the slow time scale related to
the time t, such that η = ξt where ξ is a very small parameter (ξ ≪ ω). By calculating
the first and second derivatives of ϕ with respect to the time, one can obtain:

ϕ̇(x, t) = ω
∂ϕ

∂τ
+ ξ

∂ϕ

∂η
, (III.8a)

ϕ̈(x, t) = ω2∂
2ϕ

∂τ 2
+ 2ωξ

∂2ϕ

∂η∂τ
+ ξ2

∂ϕ

∂η2
. (III.8b)

This strategy can be applied to the dynamic wear problem III.4 (the s-index is omitted
for ease of reading). Thus, the following system for displacements can be obtained:

M(ω2∂
2U

∂τ 2
+ 2ωξ

∂2U

∂η∂τ
+ ξ2

∂U

∂η2
) +C(ω

∂U

∂τ
+ ξ

∂U

∂η
) +KU+ Fc(x, τ, η) = Fex(x, τ),

and then noted that the wear process is much slower than the vibratory phenomenon, it
is possible to neglect the terms associated with ξ compared to the ones in ω:

ω2M
∂2U

∂τ 2
+ ωC

∂U

∂τ
+KU+ Fc(x, τ, η) = Fex(x, τ), (III.9)

in which the term Fc(x, τ, η) allows to couple wear and dynamics.

3.2 DLFT method with wear

The solution of Eq. (III.4) is studied in the frequency analysis framework. The solution
method follows the same steps as the nonlinear dynamic problem without wear defined
in section II.2.2.2.

3.2.1 Hypotheses to introduce wear

The hypotheses on the contact zone have been presented in section II.2.5.1. In addition
to the assumptions made and illustrated in Figure II.6, wear is introduced. Wear is
identified as a gap distance between corresponding nodes, which increases over time and,
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(a) Zoom on contact element (b) Unilateral contact law (c) Coulomb friction law

Figure III.1: DLFT - Contact hypothesis with wear.

as such, comes to correct the expressions of the relative displacements in the normal
directions, as shown in Figure III.1.

Archard’s wear formulation is integrated over the interface. This approach makes
it possible not to mesh the interface with too fine elements, which would increase time
due to remeshing and calculation. This study does not directly consider the roughness
of the surfaces and all the microscopic effects like asperities and deformations. These
phenomena are taken into account globally through the macroscopic wear coefficient
Kw introduced in section I.1.4.1 in Archard’s wear law. As previously mentioned, this
coefficient is obtained from experiments and its value depends on material properties and
operating conditions. The temperature effects are neglected, and the friction coefficient
is assumed unaffected by the wear evolution.

Wear is a very slow phenomenon, and wear depths are very small compared to the
characteristic dimensions of the structures in contact. Thus, the modifications of the
mass and stiffness matrices due to wear are neglected.

Harmonic Balance Method with two-time scales. This method belongs to the
family of multi-scale approaches described by Meirovitch [125] for a single harmonic
balance. The Harmonic Balance Method is used to solve the system (III.9), considering
two-time scales to couple the dynamics and wear phenomena. Thus, the approximate
periodic solution (II.28), expressed in the form of a truncated Fourier series, becomes:

u(τ, η) = ũ0(η) +

Nh∑
k=1

(ũk,c(η)cos(kτ) + ũk,s(η)sin(kτ)) , (III.10)

where τ represents the "fast" time scale related to vibrations and η the "slow" time scale
related to wearing. η can therefore be regarded as a significant multiple of the period
T = 2π/ω of the fretting wear cycles.

It is therefore supposed that wear does not change the appearance of the periodic
response during a short lapse of time during which it is possible to evaluate displacements
and forces with the Fourier series of τ . For a longer duration, Fourier coefficients evolve
as functions of η, being η associated with a much longer time scale than the time period
T = 2π/ω of the fretting wear cycles. Subsequently, Eq. (III.10) can be expressed as a
multi-harmonic vector:
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ũ(η) = [ũ0, ũ1,c, . . . , ũNh,c, ũ1,s, . . . , ũNh,s], (III.11)

where the index c and s indicate the cosine and sine functions.

Calculation of the contact forces. Contact forces are treated by the DLFT method
as presented in section II.2.5.3. Thus, the introduction of Eq. (III.10) into Eq. (III.4)
and the application of a Galerkin procedure, give the following set of nonlinear algebraic
equations:

f(ũ(η)) = Zrũr(η) + λ̃(η)− f̃r = 0, (III.12)

where ũr and f̃r are respectively the multi-harmonic vectors of relative displacements and
reduced external forces. λ(η) is the vector of the Lagrange multipliers, which represents
the unknown contact force vector in the frequency domain, as defined in section II.2.5.3.

The system (III.12) has been condensed on the nonlinear DOFs and then on the
relative displacements. It is solved by a nonlinear Newton-type solver in the same way as
presented in the previous chapter, and the Jacobian matrix used to compute Eq. (III.12)
is evaluated analytically as indicated in Appendix A, obtaining a significant reduction
in the computational time.

The contact forces are then computed in normal and tangential directions, as detailed
in section II.2.5.3. More precisely, to introduce the presence of wear, the normal contact
forces previously expressed by Eq. (II.87a), are modified as follows:

λ̃N = f̃Nr − (Zrũr)
N + εN(ũ

N
r −G− x̃N

r ), (III.13)

where the wear depth is implemented as an interface gap G = W̃N in normal direction.

3.2.2 Wear depth calculation

After having updated ũr, as the nonlinear solver has converged (internal loop of the
algorithm shown in Figure III.3), the wear depth is calculated locally at each interface
node. The nodal (index m) wear is calculated by integrating the wear rate defined by
Eq. (III.5). As mentioned in section III.3.2.1, the wear depth W does not depend on τ
because it does not evolve too much in a single period. For this reason, the wear depth
depends only on η (slow time scale):

Wm = Wm(τ, η) = Wm(η). (III.14)

Thus, by integrating for a single fretting cycle, the evolution of wear after one period for
each contact node is:

δWm(η) =

∫ η+T

η

Kw|Pm
N (τ, η)| ∥u̇m

T(τ, η)∥ dτ, (III.15)

in which η = nT , with T is the time period of the harmonic excitation and η the time
scale related to wear. Kw is the Archard’s wear coefficient, defined by Eq. (I.17). Pm

N
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and u̇m
T are, respectively, the normal local load and the relative tangential velocity at

each node m, calculated through Eq. (III.12).
The local Archard’s formulation adequately represents the wear problem while re-

maining relatively simple to integrate within the numerical simulations.

Calculation by wear increment. The DLFT with wear method developed by Salles
in [13] is implemented. This approach is chosen to represent an improvement compared to
previous ones performed in [124], where an arbitrary number of cycles was chosen before
updating wear depth. This strategy consists of implementing a cycles jump strategy to
decrease the computational costs and the number of slow-time steps, by increasing the
wear depth instead of the time. This cycles jump strategy has also been used for the
computation of fretting wear coupling a semi-analytical (SA) contact solver with the FE
method in [17, 166].

A maximum authorized total wear depth, denoted as W tot
max, is set heuristically for

the considered duration up to the period T . This value is divided into c intermediate
slow wear steps ∆W ∗. Also, c is chosen heuristically to provide a good compromise
between good accuracy and a reasonable calculation time. The interface gap can be
updated using Eq. (III.15). η is chosen equal to Nc, the number of fretting cycles. The
relation between the jumped cycles ∆Nc and W tot

max is:

∆Nc(η) =
W tot

max

c max
m

(δWm(η))
. (III.16)

The wear nodal depth Wm, ∆Nc(η) cycles later, is obtained by integrating the following
explicit scheme:

Wm(Nc + 1) = Wm(Nc) + ∆NcδW
m(η). (III.17)

The integration following the explicit scheme is shown in Figure III.2:

Figure III.2: Explicit scheme for wear depth calculation.

Once the maximum number of cycles Nctot has been reached, the calculation stops.
Physically, this means that the wear rate becomes too small, and it no longer wears out,
or it wears out at a constant wear rate if it exists. The algorithm of the DLFT with
wear is illustrated in Figure III.3.
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Figure III.3: DLFT with wear algorithm.

The next section uses an academic numerical example to apply the methodology,
assessing difficulties or correcting implementation problems. This model serves as a
phenomenological example and guide to understanding basic phenomena at work when
coupling wear and dynamics. Moreover, it introduces various concepts concerning the
evolution of contacting interfaces, worn volume, hysteresis loops and forced response
dynamics, which are helpful for studying an experimental test case in the following
chapters. Concerning the methodology, it gives information about the robustness of
the calculation and looks at what scenarios it is possible to reconstruct to feed the
test-calculation dialogue, which will be considered in chapter IV and chapter V.
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3.3 Academic numerical example

3.3.1 Description of the model

The first examples treated by the DLFT with wear method were reported in [13, 101].
The academic example proposed in [101] is reconsidered here, but adding a more detailed
parametric analysis and evaluating some variables to build, for example, the numerical
hysteresis cycles, introduced in section I.1.3.1. The model comprises two masses in
contact with friction, as illustrated in Figure III.4. The equations of the motion of the

Figure III.4: 2-DOFs contact friction model.

system are only in the tangential directions and expressed as follows:

m1ü1 + c1u̇1 + k1u1 + fc = fex,

m2ü2 + c2u̇2 + k2u2 − fc = 0,
(III.18)

where fc are the tangential friction forces which must respect the unilateral contact
and Coulomb conditions. The external excitation force is imposed in cosine, such as
fex = Fex cos (ωt). The 2-DOFs model is reduced in a relative displacement system,
becoming a 1-DOF system. In the normal direction, a displacement u0N, which constrains
a spring kN , is imposed. Thus, the normal force fN, due to the preload of kN per u0N, is:

fN = kNu0N. (III.19)

Thus, the wear occurs in the normal direction at the interface. The wear depth conducts
to the relaxation of the spring kN , leading to the decrease of the normal contact force.
The choice of relaxing the normal force when wear increases is because, in a real 3D
problem, the entire contact surface is not in a stick-slip situation, so some surfaces
remain without wear (total sticking zone). As a result, the normal force in the worn
area decreases. The simulations with a phenomenological model aim at determining the
influence of friction and wear on the dynamic behaviour.

3.3.2 Preliminary studies: parametric analysis

The system consists of two unit masses m1 = m2 = 1 kg, with k1 = π2 N.mm−1 and
k2 = 7π2 N.mm−1 and a viscous damping ratio of ξ1 = ξ2 = 0.1%. An initial normal
load fN = 10 N, as defined by Eq. (III.19), is applied (kN = 1 · 104 N.mm−1 and
u0N = 1 · 10−3 mm). Preliminary simulations are performed without friction (µ = 0)
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and wear (Kw = 0). The input parameters of the 2-DOFs model are summarised in
Table III.1.

m1 k1 ξ1 m2 k2 ξ2 kN u0N

1 π2 0.1 1 7π2 0.1 1 · 104 1 · 10−3

[kg] [N.mm−1] [%] [kg] [N.mm−1] [%] [N.mm−1] [mm]

Table III.1: 2-DOFs input parameters.

First, two linear states are evaluated, corresponding to two significant modes. Then
the system’s dynamic behaviour is studied by referring to them. These two modes,
illustrated in Figure III.5, can be distinguished as follows:

• the first one corresponds to the mass m1 free, indicating a total sliding state, at
0.5 Hz;

• the second one corresponds to the case when the two masses m1 and m2 are
in a stick situation at 1 Hz, which is equivalent to studying a model of mass
m = m1 +m2.
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Figure III.5: Linear displacement response amplitudes.

Once the two linear cases have been calculated, these will represent the two asymptotic
cases from which to start studying the system’s dynamic behaviour as the numerical
(number of harmonics, amplitude of the external excitation force) and physical (friction
coefficient) parameters vary.

Influence of the excitation force. It is possible to study the model’s behaviour
between the two asymptotic states, previously described, by varying the amplitude Fex of
the external force. A friction coefficient µ = 1 is imposed. Figure III.6 and Figure III.7
illustrate the influence of the amplitude of the external force on the frequency response,
in terms of displacement of the mass m1 and relative displacement, respectively. Starting
from a low amplitude value, the two masses m1 and m2 are always in a predominant
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sticking situation. In this case, it can be observed (see Figure III.7) that there is no
relative displacement. As the amplitude of the excitation force increases the two masses
start to slip. As a result, the response amplitude decreases the natural frequency moves
toward the left, and the system becomes less stiff. For very high values of the excitation
force, the response tends to overlap the FRF curve correspondent to the mass m1 free.

For these simulations, Nh = 7 harmonics were considered. This choice will be justified
in the next paragraph.
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Figure III.6: Influence of the external excitation force on the FRFs of the mass m1 for
Nh = 7 and µ = 1.
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Figure III.7: Influence of the external excitation force on the FRFs of the relative
displacement for Nh = 7 and µ = 1.

Influence of the number of harmonics. One of the parameters to be fixed when
setting up a harmonic balance resolution method is the number of harmonics Nh to
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approximate the solution. The objective is to estimate the minimum number of harmonics
to retain to ensure reasonable computation times and accuracy of the results, as introduced
in section II.2.2.2.

The 2-DOFs system illustrated in Figure III.4 is reconsidered, with an excitation
force of amplitude Fex = 10 N imposed in cosine on the mass m1. In this regard, it
is advisable to consider an intermediate situation between the two asymptotic states
because these two situations correspond to linear behaviours. An intermediate situation
is rather constraining from the point of view of the number of harmonics to keep since it
corresponds to most irregular responses due to sliding/stacking behaviour and it will
require more harmonics to be represented accurately.

Figure III.8 shows the forced response of the mass m1 for different numbers of
harmonics Nh retained. The number of harmonics given in the figure’s legend refers to
the maximum order of the harmonics considered. The reference is here given by a direct
time integration.

In the case of keeping only one harmonic, the result is considerably overestimated,
being the nonlinear displacements represented only by a sinusoidal oscillation. The
convergence of the solution becomes slower when more harmonics are considered to
approach the reference solution given by the time integration. Thus, the choice of 7
harmonics, represents a good compromise in terms of convergence and time of calculation.
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Figure III.8: Influence of the number of harmonics on the FRFs of the mass m1 for
Fex = 10 N and µ = 1.

Influence of the friction coefficient. Figure III.9 shows the influence of the friction
coefficient µ on the nonlinear forced response for a given excitation amplitude Fex = 10 N.
It can be observed that when the friction coefficient is low, there is a predominant slip
behaviour. Then, as the friction coefficient increases, the response amplitude decreases.
If it increases too much, the system behaves as when there is no friction, tending to the
limit behaviour of the two masses glued together.
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Figure III.9: Influence of the friction coefficient on the FRFs of the mass m1 for Nh = 7
and Fex = 10 N.

3.3.3 Influence of wear on dynamics

The 2-DOFs friction contact model illustrated in Figure III.4 is now considered to
understand the coupling between dynamics and wear. The DLFT method with wear,
detailed in section III.3.2, is applied. In addition to the equations of motion in the
tangential directions previously expressed by Eqs. (III.18), it is necessary to consider
the wear contribution by adding to the system the following equations in the normal
direction:

fN = kN (u0N − w), (III.20a)

∆W (η) = Kw

∫ η+T

η

fN ∥u̇2 − u̇1∥ dτ, (III.20b)

where fN is the normal force acting on the first mass m1. Concerning the normal force, for
Eq. (III.19), the variable w is introduced. It represents the gap in the normal direction
increasing due to the wear. u̇2 and u̇1 are the tangential velocities of the mass m1 and
m2, respectively.

Simulations, including wear, are carried out with a friction coefficient µ = 1. Regard-
ing Archard’s wear coefficient Kw, it calculates the wear rate over a cycle. Its value is
quite arbitrary in the resolution strategy since the wear levels are updated in wear steps.
It is important to note that depending on the wear kinetics (wear depth as a function of
the number of cycles) on Kw, its value needs to be re-calibrated by experiments. Thus,
not having for this example a value obtained from experiments, it is taken arbitrarily
equal to Kw = 1 · 10−11 Pa−1, as suggested by Strömberg in [28]. It should be observed
that this value chosen for the wear coefficient, i.e. the wear rate, is indicative of a very
slow wear rate. Consequently, the wear evolution is rather slow, and a high number of
cycles is required to evaluate the wear evolution. However, this value has proved useful
in [101] for representing the results of the academic example.



72 CHAPTER III. Wear introduction strategy in a nonlinear dynamics problem

Dynamic response and wear evolution. The dynamic response of the system in
presence of wear and the evolution of the wear depth will be studied for three amplitudes
of excitation force: Fex = [6 N, 10 N, 16 N]. This choice is related to three states of
interest which modify the system’s dynamic response and give information about the
wear evolution corresponding to a fully sticking state, an intermediate condition and a
fully sliding state, as detailed in studying the influence of the external excitation force
on the model’s dynamic response (see Figure III.6).

In the following, the evolution of wear is plotted at multiple frequencies over a given
frequency range. Starting from a condition without wear, the dynamic response is
computed at a first prescribed frequency up to maximum wear. Then the solver proceeds
to the subsequent frequency with unworn surfaces, and so on.

For an imposed amplitude Fex = 6 N, the evolution of wear as a function of the
number of cycles and frequencies is shown in Figure III.10b. In this condition, the two
masses m1 and m2 are mostly stuck. The wear does not occur over the whole frequency
range but increases approaching the adherent mode at about 1 Hz. After a certain
number of cycles, wear evolution stops since, with an imposed displacement constrained
a spring, the more the masses wear out, the more the normal force tends towards zero
because of the release of the spring. Figure III.10a illustrates the influence of wear on
the dynamic response. During the first fretting cycles the wear evolution is very slow,
then it accelerates reaching the stuck mode, beyond which the system returns to an
adherent state.

For an imposed amplitude Fex = 10 N, the evolution of wear as a function of the
number of cycles and frequencies is shown in Figure III.11b. This represents an
intermediate situation. During the first few fretting cycles, the wear process is more
important for frequencies close to the resonance at 1.1 Hz, for which the two masses are
stuck together. Figure III.11a illustrates the influence of wear on the dynamic response.
The increase of wear produces a transfer of the maximum of the vibration amplitude
from the stuck mode to the sliding mode at about 0.5 Hz. The vibration amplitude
becomes very large at 0.5 Hz. This behaviour has also been observed in [13] for bladed
disk interfaces.

For an imposed amplitude Fex = 16 N, the evolution of wear as a function of the
number of cycles and frequencies is shown in Figure III.12b. In this case, it can be
observed that wear appears in a frequency range more important than the previous ones.
In particular, there is a frequency where wear evolution is faster at about 0.5 Hz where
the system’s behaviour is in a sliding situation (see Figure III.12a).

Fretting loops evolution with wear. The evolution of the fretting loop with wear
for the case (Fex = 10 N) is shown in Figure III.13. It can be observed that a decrease
of the friction force leads to an increase of the relative displacement. This behaviour is
expected for the proposed example because simulations started with a displacement u0N

which constrains a spring kN imposed in the normal direction.
This behaviour is confirmed by studying the evolution of the wear depth as a function

of the number of cycles. In Figure III.14, this evolution is represented for different
Nh. As the number of cycles increases, an asymptotic behaviour corresponding to the
imposed displacement u0N can be reached. The mass m1 wears in the normal direction,
that is, the direction of the imposed displacement u0N. The increase of the wear depth
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(a) (b)

Figure III.10: For an imposed amplitude Fex = 6 N: (a) frequency response of the
vibration amplitude of the mass 1, (b) wear depth evolution.

(a) (b)

Figure III.11: For an imposed amplitude Fex = 10 N: (a) frequency response of the
vibration amplitude of the mass 1, (b) wear depth evolution.

(a) (b)

Figure III.12: For an imposed amplitude Fex = 16 N: (a) frequency response of the
vibration amplitude of the mass 1, (b) wear depth evolution.

w leads to slackness of the spring and consequently to a decrease of the normal contact
force fN, as expressed by Eq. (III.20a). In Figure III.14, it can also be observed that
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the choice of Nh = 7 is good for the convergence of the results.
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Figure III.13: Fretting loops for the case Fex = 10 N with Nh = 7.
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3.4 Concluding remarks

This chapter has described an approach for the numerical treatment of contact problems
with wear under dynamic loading. The vibrational behaviour is analysed in the frequency
domain using the harmonic balance method and AFT procedure. The wear evolution
is integrated on a slow time scale through an explicit scheme coupled with a strategy
in which a jumps cycles strategy is applied. More particularly, a DLFT with wear
method is retained for simultaneously calculating the vibrational behaviour, and the
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wear in situations of fretting wear is retained based on the assumption that dynamics
and tribological phenomena can be separated into two-time scales.

Wear kinetics and their influence on dynamics have been studied using a simple
numerical academic example. Results show that although the wear depths are minimal
(a few microns), they significantly alter the vibratory behaviour of the system. The
considered method to simulate the evolution of wear in frictional contacts confirms its
adequacy for coupling dynamic and wear as demonstrated in [13]. The present study
confirms previous findings and contributes additional results. The example has made
it possible to numerically introduce critical parameters of the phenomenon, such as
fretting cycles, contact states, and the influence of excitation levels. It also allows an
understanding of where numerical simulations need special requirements, such as the
values of wear constant and friction coefficient. Thus, the support of experimental input
is essential, and calibration tests must be carried out to ensure that the life expectancy
calculations are accurate to reality. In this regard, as part of the collaboration between
the members of the EXPERTISE project, in chapter IV the experimental test rig built
at the Imperial College London [18] will be modelled and its experimental data will be
used to identify the parameters for the simulations of the nonlinear dynamics. Next, in
chapter V, the DLFT with wear numerical approach will be applied for coupling wear
and dynamics and evaluating the impact of fretting wear. Numerical simulations provide
access to what measurement cannot be done locally and allow useful perturbation studies
of some key parameters, which would be costly in the experiments.
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Chapter IV

Pre-test calibration of a vibratory test
rig

This chapter presents the vibratory test rig, designed at Imperial College London
[167]. After a brief description of the design, instrumentation used, and setup of the
vibratory test rig, a finite element modelling of the test rig and the fretting specimens
is performed, using the design parameters of the test rig and the preliminary dynamic
tests results, performed in [19]. Once modelled, an appropriate reduction method is
applied to reduce adequately the problem’s size. This chapter aims at identifying the
parameters for the simulations of the nonlinear dynamics, performing sensitivity analysis
of numerical and physical parameters and validating the numerical investigations for the
unworn system.

Outline of the chapter
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4.1 Experimental setup

Due to the high cost of full-scale industrial systems, the design of simplified experimental
setups is essential for reproducing the configurations of industrial components at a
laboratory scale. This section briefly describes the vibratory friction rig built in the
Dynamic group of the Imperial College London [18]. This rig typically provides input
contact parameters for aero engine applications by measuring friction hysteresis loops.
More specifically, it allows the reproduction of the dynamic behaviour observed in friction
dampers. Essential contacts, such as blade-root joints, under-platform dampers and
bladed disk shroud contacts, are also carefully designed to ensure friction damping by
allowing micro-slip at these contacts, which naturally leads to unwanted fretting wear.
The rig gives then a more detailed description of the friction at the contact interfaces to
allow more accurate modelling of these elements.

The experimental tests performed by Fantetti et al. [19] study the impact of fretting
wear on the forced response of systems with dry friction contact. In this chapter, these
series of fretting experiments are considered to validate the numerical simulations to be
done in the next chapter.

4.1.1 Description of the Imperial College test rig

A simplified scheme of the test rig is illustrated in Figure IV.1. It consists of a moving
block sliding on a static arm. The moving block is composed of a moving arm with a low
mass, connected to a bigger moving mass by a knife edge, required to avoid any bending
resulting from the normal load applied by a pneumatic actuator. This bigger moving
mass is linked to the ground by two very flexible leaf springs, allowing purely horizontal
displacements at the scale of fretting studies.

Figure IV.1: Simplified scheme of the test rig (adapted from [19]).

The photo of the test rig is shown in Figure IV.2 and the specimens’ contact is
zoomed in Figure IV.3. The contact couple is made of two cylindrical specimens rotated
about their axis such that the two flat rectangular surfaces (visible in Figure IV.3a)
become orthogonal, generating a flat-on-flat square contact configuration: the specimens
form a 1 mm x 1 mm contact interface when assembled. The resulting nominal contact
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area is then 1 mm2. This arrangement is illustrated in Figure IV.3a. The top specimen
is clamped to the moving arm, and the bottom specimen is fixed to the static arm.

Figure IV.2: Photo of the Imperial College friction rig [19].

(a) (b)

Figure IV.3: Specimens contact [19]: (a) 90° orthogonal arrangement ensuring a squared
nominal contact area, with a photo of an original specimen. (b) Close view of the two
friction specimens, showing the laser measurement points.

The following criteria are adopted for the justification of the design of the test rig:
(i) the capability to measure displacements and contact forces close to the contact area
allows for capturing more accurate measurement data at the interface concerning the
stick-slip behaviour to determine the hysteresis loops at each fretting cycle; (ii) the
resonance peaks are well separated in the dominant sliding direction to isolate and study
the effect of wear on the mode of interest; (iii) the tangential relative displacements are
large enough to dissipate high energy per cycle and introduce wear effect.

The normal load is applied through a pneumatic actuator placed on the top of the
moving block, ensuring continuous contact between the two specimens. The load is
transmitted through rods pushing the specimens against each other; the rod located
below the bottom specimen is used to complete the load path and avoid significant
bending moments in the static arm (see Figure IV.1).
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The excitation for the shaker is generated at the required frequency, and its amplitude
is adjusted to control the relative displacement between the contact surfaces. The
excitation frequency was fixed at 100 Hz, which represents the best working frequency
for the test rig [122] i.e., relative movement amplitude allows to have the expected
tribological conditions.

As specified above, the test rig provides measurements of the two parameters needed
to obtain hysteresis loops: the relative displacement between the specimens and the
friction force exchanged during this interaction. More precisely:

• the relative displacements between the two sliding specimens are measured through
two Laser Doppler Vibrometers (LDVs) at points very close to the contact area,
less than 1 mm above and below the interface, as illustrated in Figure IV.3b.
These Laser Doppler Vibrometers measure the velocities, which are then integrated
to obtain the displacements. This accurate measurement method does not affect
the bulk elastic deformation of the specimens.

• The friction force is derived from dynamic load cell measurements attached to the
static support, as illustrated in Figure IV.1.

For more details about the test rig’s configuration, readers can refer to [18, 122].

4.1.2 Test rig and fretting specimens finite element modelling

An equivalent FE model of the whole test rig is generated using a 3D CAD model to
perform the numerical analysis. The idea is to create a numerical model to reproduce
the geometry and simulate equivalent tests, boundary conditions and external excitation
dynamics. More specifically:

• The rig is modelled with a lumped-element model to approximate the rig’s dynamic
behaviour (i.e. the natural frequencies). Lumped parameter models have been
widely used to investigate the dynamic system at the initial design stage because
they can provide a basic understanding of the system with low computational costs.

• The specimens are modelled with a FE model to study the contact interface
behaviour more accurately.

Test rig modelling. The rig dynamics is modelled through a simple 2-DOFs lumped
mass model with two springs, as illustrated in Figure IV.4. Thus, the mass matrix
Mrig and the stiffness matrix Krig of the rig are expressed as:

Mrig =

[
m1 0
0 m2

]
, Krig =

[
k1 + k2 −k2
−k2 k2

]
. (IV.1)

A summary of the parameters characterising the 2-DOFs model of the test rig is given
in Table IV.1. Solving the typical eigenvalue problem ([Krig] − ω2

i [Mrig]) {ϕ}i = 0,
it is possible to find both eigenvalues ωi and eigenvectors {ϕ}i. ωi is the angular
frequency related to the natural frequency by fi = ωi/2π in Hz. {ϕ}i is the mode shape
corresponding to fi. It refers to the deformation pattern at certain natural frequencies.
The two natural frequencies are f1 = 39.7 Hz and f2 = 2467.6 Hz.

Specimens modelling. The specimens geometry is detailed in Figure IV.5. The
main dimensions are listed in Table IV.2.
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Figure IV.4: 2-DOFs Lumped model of the test rig.

Parameter Value

Moving Mass m1 21.2 [kg]
Moving Arm m2 1.2 [kg]

Leaf spring stiffness k1 1.4.106 [N.m−1]
Knife edge stiffness k2 273.106 [N.m−1]

Table IV.1: 2-DOFs lumped model parameters.

Figure IV.5: Photo of a real specimen with its geometrical dimensions.
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Parameter Value

l 33 [mm]
a 1 [mm]
d 8 [mm]
γ 10◦

Table IV.2: Specimens geometry.

The specimens are made of standard stainless steel (SS304). The material’s mechanical
properties are detailed in Table IV.3.

Parameter Value

Young’s modulus E 190 · 109 [Pa]
Hardness H 1700 · 106 [Pa]
Density ρ 7800 [kg.m−3]

Poisson’s ratio ν 0.3

Table IV.3: Mechanical properties - Specimens Material: Stainless Steel (SS304).

First, a CAD model for the specimens is realised, as illustrated in Figure IV.6.

Figure IV.6: Specimen modelling: CAD model.

Then a detailed FE model is created to evaluate the system’s dynamic behaviour
at the interface. The commercial software employed for mesh generation is Ansys
APDL. The specimens are modelled separately and meshed with 8-nodes quadratic brick
elements. The contact area is modelled with a finer mesh of 10x10 elements with 121
contact nodes. The choice of the meshing done for the contact area for both specimens
considers that the increment in the number of elements increases the computational
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time for solving the nonlinear dynamic problem. Thus, to perform nonlinear dynamics
calculations, this choice represents a good compromise between the accuracy of results
and time calculations. At the interface, the mesh for each specimen is compatible at
each contact node. The loss of compatibility due to movement will be considered to be
negligible. Figure IV.7 shows the Finite Element Model of the specimens. The mesh of

Figure IV.7: Specimens modelling: FE model.

the top and bottom specimens is detailed in Figure IV.8, where it is possible to note
the orthogonality of the specimens, which forms a square contact area with a finer mesh.
The specimen’s inner mechanical behaviour is studied in the linear elastic field in the
hypothesis of small deformations. In this numerical study, the roughness is neglected so
that the contacting surfaces are assumed to be perfectly smooth.

The mass and stiffness matrices of the bottom and top specimens are previously
calculated using the commercial FE solver Ansys APDL. At this stage, the number
of DOFs equals 7278 DOFs for each specimen. The original mesh generated in Ansys
and the mass and stiffness matrices of the specimens are then imported from Ansys to
Matlab, where:

1. the boundary conditions are imposed to replicate the ones imposed experimentally;
2. the size of the model is appropriately reduced to gain numerical efficiency;
3. the frequency-time alternation based on dynamic Lagrangians is fully coded and

implemented. The method aims at solving the contact problem under the nonlinear
constraints defining the contact forces expressed in the time domain, as detailed
in section II.2.5. The contact conditions are implemented between pairs of corre-
sponding nodes over the interface. The results then being returned to the frequency
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(a) (b)

Figure IV.8: Finite element modelling: (a) top specimen and (b) bottom specimen.

domain using discrete Fourier transforms to study the vibrational behaviour in the
frequency domain.

Boundary and load conditions. The boundary conditions have been chosen to
approach as the ones imposed experimentally. The system’s configuration is clearly
illustrated in Figure IV.4. The top specimen is rigidly linked to the moving arm m2

and, together with the test rig’s two masses m2 and m1, slides in the horizontal direction
(y) over the bottom one, which is clamped to the static arm. However, the top specimen
would not be constrained in the vertical direction (z) in this case. To avoid any numerical
problem in Matlab simulations, due to the presence of a rigid body motion, a dummy
spring kd, with very low stiffness, is added in the vertical direction (z).

The normal load is constant and controlled during the whole test duration. Thus, the
normal pressure is applied on the top face of the top specimen to simulate the experiment
as closely as possible to reality. The external excitation force is applied on the mass m1

allowing a motion in the horizontal direction (y) depending on the tribological conditions.

4.1.3 Reduction of the model’s size

First, a reduction of the model is required to limit the high numerical costs induced
by nonlinear phenomena in large FE models. To save computational time and capture
the essential dynamic response, the FE model is reduced through the Craig-Bampton
method with fixed interfaces [155]. The reduction has been realised with the help of the
Craig-Bampton super-element, as detailed in section II.2.4. This method considerably
reduces the number of DOFs in the model by keeping only the nodes of interest as well as
the dynamic and static modes representing the behaviour of the full model. The first step
for the reduction is the partitioning of the complete set of DOFs of the system into two
subsets: the interface (denoted as master DOFs), corresponding to the ones physically
retained after the reduction, and the internal (indicated as slave DOFs), corresponding



CHAPTER IV. Pre-test calibration of a vibratory test rig 85

to the remaining ones, approximated by chosen mode shapes. In this way, it is possible
to reorganise the structural matrices. Thanks to this distinction, it is easier to manage
contact problems since the contact forces are applied directly to the physical DOFs of
the reduced model (i.e. the contact DOFs).

The super-elements retain as physical nodes the contact nodes necessary for the
nonlinear analysis (corresponding to 121 nodes x 3 DOFs = 363 DOFs for each specimen),
an excitation node, on which the external excitation is applied later (corresponding to
the mass m1 of the rig) and an observation node, on which the amplitude results of the
global behaviour of the test rig will be observed (located at 1 mm above the contact
interface of the top specimen). The bottom and top specimens’ super-elements are
constructed independently to deal afterwards with the contact problem between pairs
of corresponding nodes at the interface using the DLFT strategy (see section II.2.5.1).
The remaining internal DOFs are reduced to Nm modal participation controlling the
accuracy of the reduction basis. More specifically, Nm = 16 dynamic modes for the
bottom specimen and Nm = 19 dynamic modes for the top specimen, ranging beyond
the operating frequencies, have been retained on a reduced basis, for the analysis.

Precision of the reduced model. The convergence criteria presented in section II.2.4
are applied to assess the quality of the reduced models.

• Criterion based on the eigenfrequencies. The first natural frequencies of the
reduced model are compared with the natural frequencies of the full-size model
to validate the considered super-elements. The error is expressed as a frequency
discrepancy ∆f(%). For the bottom specimen, the frequency error for the first 16
modes is displayed in Figure IV.9a. It is less than 0.01%, which validates the
sufficiency of the conservation of 16 dynamic modes in the reduction. For the top
specimen, the choice of keeping the first 19 modes beyond the operating frequencies
is validated since the relative discrepancy remains under the 1% as illustrated in
Figure IV.9b.

• Criterion based on eigenvectors. The second most common criterion for
evaluating the convergence of the reduced model is the Modal Assurance Criterion
(MAC), allowing for comparison of the reduced model’s mode shapes with the
full one’s modal vectors. The results obtained from the calculation of the MAC
criterion are usually presented in a matrix form. It should be remembered that
there is a very good correlation between the eigenvectors when the diagonal of this
matrix is equal to or close to 1. For both specimens, a value of 1 on the diagonal
indicates a very good correlation between the first mode shapes considered, as
illustrated in Figure IV.10a and in Figure IV.10b

Reduction in the frequency domain. The system can be further reduced in the
frequency domain, following the steps detailed in section II.2.5.2. A first condensation
is performed on the nonlinear DOFs. In this case, the nonlinear DOFs are the contact
DOFs. The linear DOFs are those retained as linear modes in Craig-Bampton reduction.
It is always possible to determine the linear displacements of the rest of the structure
from the displacements of the contact nodes through the Eq. (II.76).

Finally, a second condensation is applied to express the problem by means of the
relative variables. This step is particularly well-suited when a node-to-node formulation
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Figure IV.9: Precision of the reduced model: criterion based on eigenfrequencies.
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Figure IV.10: Precision of the reduced model: MAC criterion.

for the contact laws is used. Thus, the system is reduced by a further factor 2, becoming
a system of 363 (contact or interface) DOFs.

4.2 Preliminary dynamic analysis and update of the test rig
global behaviour

4.2.1 Input parameters updating for dynamic analysis

The input data referring to test 1, arbitrarily chosen as reference for numerical simulations,
are summarised in Table IV.4. The properties of the material remain those of a stainless
steel, listed in Table IV.3.

Parameter Value

Normal load N 60 [N]
Excitation frequency f 100 [Hz]
Excitation amplitude Fex 53 [N]

Table IV.4: Summary test 1.

Non-frictional damping. In the reference experiments, damping is not due only to
friction contact. There is also a dissipation of energy in materials and in instrumentation.
All these other sources of damping are represented by an equivalent viscous damping
ratio. For numerical simulations, an average value of ζ = 0.7% is used, with reference to
the experimental ones obtained pre-wear, given in [19]. It is in practice introduced in
the reduced model in the form of a Rayleigh damping matrix C, expressed by Eq. II.18.
The Rayleigh model approximates the damping coefficient as a linear combination of
mass and stiffness matrices, as introduced in section II.2.1.3.

Normal forces over the interface. The normal static load is required to initialize
the dynamic analysis. The normal load applied over the top specimen is 60 N. This
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value is kept constant during all the tests. The average contact pressure is then 60 MPa.
The normal nodal forces over the full contacting surface are calculated by performing a
static analysis on the specimens assembled by coupling a corresponding pair of nodes
at the interface. The normal forces repartition obtained over the interface is shown in
Figure IV.11a. This distribution is the typical one expected for a flat-to-flat contact
configuration [50], as previously mentioned in section I.1.3.1, with higher values exhibited
on the corners of the interface, given the singularity of the stress fields at these locations.
This behaviour is shown in Figure IV.11b which represents the nodal forces along the
sliding direction (x) for the middle nodes of the interface (indicated by a dotted line in
Figure IV.11a).
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Figure IV.11: Nodal forces over the interface: (a) 2D distribution: the white dotted
line indicates the middle nodes in the sliding horizontal direction (x), (b) normal forces
along the dotted line.

The normal forces over the contact interface are calculated locally on each node. The
sum of all the nodal forces over the interface gives the normal load applied on the top
specimen equal to 60 N, as expected.

4.2.2 Description of the test rig dynamics

The test rig dynamic behaviour has been preliminary modelled by means of a simple 2
DOFs lumped parameter model, which reproduces the two main modes of the friction rig.
The specimens have been modelled with a FE approach (see section IV.4.1.2). Thus, it is
essential to verify that the modal situation of the test rig is close to what the numerical
analysis would predict.

Before and after every wear test, a hammer test was conducted [122] to get information
about the rig’s dynamic behaviour and identify the FRFs over a wide frequency range.
Experimental results for a normal load N = 7 N are illustrated in Figure IV.12. The
hammer hit was made at the excitation point placed at the shaker attachment and
an accelerometer was set on the moving arm to measure the fretting rig response (see
Figure IV.1). This analysis served to complete the knowledge of the test rig and specify
the range of excitation frequencies for the forced response tests so that the accuracy of
the contact force measurement system would not be influenced by resonance frequencies.
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Figure IV.12: Hammer test experimental results: FRF in m/s2/N for a normal load
N = 7 N (from [19]).

In this regard, a preliminary numerical analysis is performed to simulate the hammer
test. The lumped element model of the rig with the two specimens always in contact
pressed together with an applied normal load of N = 7 N. Numerical results are displayed
in terms of accelerance (units of acceleration over external force) to be coherent with
the experimental results produced by the hammer test, as shown in Figure IV.13.
The numerical FRF is evaluated only in the longitudinal direction, i.e. the direction of
application of the external excitation force. Numerically, two main natural frequencies
can be distinguished in the sliding direction:

• the first one is the in-phase mode corresponding to the rig’s first longitudinal
mode, for which the moving mass m1 and the moving arm m2 move in the same
direction, at about 39.7 Hz;

• the second one is the out-of-phase mode corresponding to the rig second longitu-
dinal mode, for which the moving mass m1 and moving arm m2 move in opposite
directions, at about 2456 Hz.

The mathematical model created for the test rig effectively reproduces the two main
modes of the friction rig (in-phase and out-of-phase modes) and the natural frequency
values of this model coincide with the experimentally measured ones. Experimental
results also exhibit an out-of-plane mode at about 700 Hz, linked to a lateral rotation of
the moving arm (see Figure IV.12), that does not affect the sliding of the specimens
[19]. The 2-DOFs test rig model can not reproduce it because it corresponds to an
additional dynamic range that remains outside the field of this study.

These results can be used as a linear reference to highlight nonlinearities due to
friction contact and fretting wear’s impact on the system dynamics’ evolution. It is
expected that the longitudinal modes will be affected by wear. The influence of the wear
on the dynamics will be studied in chapter V.
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Figure IV.13: Numerical FRF in m/s2/N for a normal load N = 7 N

4.3 Nonlinear dynamic analysis of the unworn system

4.3.1 Influence of the numerical analysis parameters

Before performing nonlinear numerical analyses, it is advisable to evaluate the best
parameters to choose related to the Fourier transforms, namely the number of time
instants Nt per period and the number of harmonics Nh to retain for the calculations, as
performed in section III.3.3.2 for the academic numerical example. For this purpose, in
this section, a study of the influence of these parameters is performed to fix them for the
following calculations.

Number of time instants. Figure IV.14 shows the linear forced response and the
nonlinear forced responses for different numbers of time instants Nt considered, over
a period T . The simulations are performed for Nh = 3. This choice will be justified
in the following paragraph. The limitation to Nt = 32 time instants per period does
not capture all the dynamic behaviour generating a significant error during the Fourier
transform to return to the frequency domain. The forced response for Nt = 64 time
instants also presents errors. However, these are much smaller. The error between the
results is negligible between Nt = 128 and Nt = 256. Thus, Nt = 128 time instants will
be kept for the following calculations, taking the results obtained with Nt = 256 time
instants as a reference.

Harmonic order. It is advisable to consider an intermediate situation between the
fully sliding and fully stuck conditions to study the dynamic behaviour of the test
rig because these two situations correspond to relatively linear behaviours. Instead,
the solution will be much less regular in an intermediate situation with alternately
sliding/stacking behaviour. It will require more harmonics to be represented accurately.
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Figure IV.14: Influence of the number of time instants Nt on the forced response, for
Nh = 3.

Considering the Fex = 50 N, Figure IV.15 shows the forced responses for different
numbers of harmonics Nh. In the case of keeping only one harmonic, the nonlinear
displacements are represented only by a sinusoidal oscillation, so the results are underes-
timated. From Nh = 3 harmonics, the forced response of the system seems to converge
well. There is still a slight underestimate compared to the results for Nh = 5 and Nh = 7.
However, taking the results obtained with Nh = 7 harmonics as a reference, Nh = 3
harmonics will be considered for the numerical simulations because this value represents
a good compromise in terms of convergence and calculation time.
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Figure IV.15: Influence of the number of harmonics Nh on the forced response, for
Nt = 128.
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4.3.2 Influence of excitation and contact parameters

Following the study of the numerical parameters for calculating the forced response
in the previous section, Nh = 3 harmonics will be used in the DFT procedure, with
Nt = 128 time instants.

The influence of the external excitation level and the friction coefficient on the
frequency response is evaluated to determine the predominant influencing factors for the
following nonlinear dynamic analysis with wear, which will be performed in chapter V.

Effect of the external excitation amplitude. The mode of interest is the first
longitudinal one. Different contact conditions (stick, slip or a combination) can be
distinguished by varying the amplitude of the external forces. Figure IV.16 shows the
FRFs in terms of the ratio between the relative displacement and the external force, for
the range of Fex = [1 N, 10 N, 30 N, 50 N, 70 N, 90 N].
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Figure IV.16: Influence of the external amplitude Fex on the FRFs plotted as the ratio
between the relative displacement amplitude and the externally applied force in N/mm.

It can be observed how the first mode varies between f ≈ 39 Hz, corresponding
to a fully sliding condition, and f ≈ 190 Hz, corresponding to a fully stuck condition.
The contact behaviour over the interface is evaluated at the resonance frequency for
these 3 cases, related to external amplitudes Fex = [1 N, 50 N, 90 N] and illustrated in
Figure IV.17. Figure IV.17 describes the corresponding hysteresis loops.

The stick case in Figure IV.17a is characterized by very small relative displacement
(in this case, tending to zero). There is no hysteresis, and the fretting loop has a closed
linear vertical shape, following the DLFT contact conditions. The case in Figure IV.17b
represents an intermediate case characterized by a stick-slip behaviour over the interface,
for which the centre of the contact area remains adherent (fT ≤ µN) and slip occurs
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at the edges (where fT = µN). The fretting loop tends to assume a trapezoidal shape.
In the case displayed in Figure IV.17c the curve tends almost to overlap the free case
at 39 Hz. There is no more stuck behaviour at the interface for larger displacement
amplitudes, but the whole interface is in sliding. According to Coulomb’s law, the
tangential force reaches its limit value fT = µN and remains constant during sliding. The
fretting loop assumes a classical rectangular shape following the Coulomb and unilateral
contact conditions.
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Figure IV.17: Contact states at the interface for different external excitation forces,
evaluated at the resonance frequencies: • stick • slip.
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Figure IV.18: Hysteresis loops at the interface for different external excitation forces,
evaluated at the resonance frequencies.

Effect of the friction coefficient. Figure IV.19 displays the influence of the friction
coefficient µ on the FRF for a case where contacts slip during one vibration period. It is
observed that the expected value of the FRF amplitude is different for different values of
µ, for a given value of the excitation force equal to Fex = 50 N. When the coefficient of
friction is low, sliding is facilitated. A higher coefficient of friction tends to minimise the
slip behaviour.
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Figure IV.19: Influence of the friction coefficient µ on the FRFs plotted as the ratio
between the relative displacement amplitude and the external applied force in mm/N.

4.4 Concluding remarks on the validation of the rig’s model

A model of the experimental Imperial College test rig was built, and numerical results
were obtained without considering wear phenomena. Firstly, the number of DOFs was
reduced by the Craig-Bampton component modes synthesis method. In the first step,
the dynamic study of the model was carried out using the harmonic balance method
and the DLFT procedure for solving the nonlinear contact problems, demonstrating the
effectiveness and applicability of this numerical method to updated simulations, as well
as the consistency of the results obtained.

The evaluation of the results and the study of the influence of the various parameters
involved have allowed to (i) calibrate the vibrating test rig and (ii) validate the expected
behaviour of the model, highlighting the effectiveness of the methods considered for the
dynamic analysis. The nonlinear behaviour observed experimentally at resonances was
reproduced well. The 2-DOFs test rig model replicates the impact tests from a dynamic
point of view (see Figure IV.12 and Figure IV.13) and an acceptable correlation was
found with experimental resonant frequencies.

The dynamic response presented in this chapter will be now coupled with the wear
using as input parameters the results of the experiments and applying the resolution
strategy introduced in chapter III. This coupling strategy will enable to study of the
behaviour at the interfaces and the impact of the wear on the dynamics.
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Chapter V

Fretting wear parameters identification
and numerical investigation

In this chapter, the prediction tool for the coupled calculation of both the wear kinetics
and dynamics has been applied to study the impact of fretting wear on the Imperial
College test rig dynamics, investigated within the framework of the EXPERTISE project.
The influence of fretting wear on dynamics and the local behaviour at the interface,
including wear phenomena, are studied. In addition to enabling cross-comparison and
model updating and validation, these numerical investigations propose local scenarios
for quantities not directly measured by experiments.
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5.1 Identification of input fretting wear parameters for simula-
tions

5.1.1 Overview of fretting wear experiments

In the recent past, several test rigs have been designed to extract contact parameters,
namely friction coefficient and contact stiffness, in controlled laboratory conditions, by
measuring relative displacement and tangential force for oscillating contacts harmonically
excited [168–170]. An experimental setup in [168] was set to determine the hysteresis
between two surfaces as a result of a small-amplitude tangential relative motion. One
dimensional friction rig in [169] was used to measure the relative displacement and
friction force with a normal load applied on the contact to study the effect of the normal
stress distribution on the micro-slip behaviour over the contact area.

Another experimental test rig was designed at Politecnico di Torino [170] to extract
contact parameters and study the influence of a large number of wear cycles on friction
coefficient, contact stiffness and energy dissipation, even at high temperatures Another
group of experimental rigs were previously developed to experimentally investigate
the effect of under-platform dampers on the blade dynamics and the periodic contact
forces [171, 172]. A significant limitation of these studies is the assumption that the
contact interface does not change over time and therefore the dynamic response remains
unchanged. More recently, a novel test rig simulating contacts similar to the type present
between the shrouds at the blade tip has studied the effect of fretting wear on the forced
dynamic response with a friction contact and changing preload [173].

An experimental set-up specially designed at LTDS [98, 174] was developed in order
to broaden the understanding of fretting mechanisms, focusing on the characterisation
of the contact damage and surface degradation process induced by mall-amplitude
oscillatory movements. A global energy wear law was experimentally defined in [174]
for a given contact and locally implemented in a finite element modelling, giving an
efficient prediction of the contact durability and geometrical changes of the two contacting
surfaces. Nevertheless, fretting wear occurring at the interface leads to a change in the
contact conditions and hysteresis modifying the surface geometry and impacting the
dynamic response.

The test rig built by the Dynamics Group of Imperial College London [169] includes
the two aspects previously mentioned, allowing to measure experimentally and extract
the contact parameters, leading to the evaluation of hysteresis loops for typical materials
used in aero engine applications, and to investigate the effect of the fretting wear on
the dynamic response. The series of experimental fretting tests performed in [19] are
here taken into account for performing numerical simulations to evaluate the influence
of fretting wear on dynamics and propose local scenarios for quantities not directly
measured by experiments. In the next section, these experiments are briefly described.

5.1.2 Description of Imperial College fretting wear experiments

To carry out the experiments, the system described in section IV.4.1.1 is excited by
a harmonic force and undergoes a large number of friction wear cycles. The series of
experimental fretting tests performed in [19] are briefly described.

A series of five fretting tests, ranging from 3 to 9 hours in duration, was conducted
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using different couples of specimens. For each test, an unworn pair of stainless-steel
(SS304) samples were tested for different test duration. Experiments were performed
at room temperature and under a harmonic excitation of 100 Hz. This frequency is of
interest because leads to high-quality hysteresis loops [122] in terms of the realism of
tribological conditions and because is far from the resonance frequencies in order to reduce
the interference of test rig dynamics. Also, this frequency is in the middle of the range
of frequencies which characterize the first mode behaviour (between 39 Hz and 190 Hz).
The fretting test rig operates under a constant normal load throughout the duration of
the tests, without the possibility to study the effect of changing normal load conditions
within the experimental tests. In difference to the academic example, illustrated in
section III.3.3.3, here the normal pressure is kept constant at 60 N throughout the
duration of the tests. Two tangential excitation forces were imposed: two tests were
conducted at 53 N, on average 14 µm of full relative sliding (for about 5.5 h each) and
three tests were conducted at 73 N, on average 22 µm of full relative sliding (for 0.6, 3.6
and 9 h respectively), in order to assess the repeatability of the experiments.

Test 1 was considered in [19] as a reference for the numerical simulations. The same
one is retained in this work. Data referring to test 1 are summarised in Table V.1

Parameter Value

Normal load P 60 [N]
Excitation amplitude Fex 53 [N]

Steady Friction Coefficient µ 0.88
Average Sliding Distance d ±7 = 14 [µm]

Fretting cycles 1.9 · 106
Running time 5.3 [h]

Total Energy Dissipated Ed 2800 [J]
Total Wear Volume Vw 4.6 [µm mm2]

Table V.1: Test 1: summary of experimental fretting wear results.

5.1.3 Friction coefficient updating

The friction coefficient has been introduced in section I.1.2. This parameter is obtained
experimentally. Several recent studies [18, 84, 175] have focused on the friction coefficient
evolution with fretting wear. Most of these researches have confirmed that the friction
coefficient increases quickly during the first hundred fretting cycles (the running-in
period) before reaching a steady state value. It was observed experimentally [61, 176]
that during the first hundred fretting cycles, a specific transformed structure, called
Tribologically Transformed Surface (TTS), from which debris is made, forms. It is due
to the plastic deformation of the metals in contact. Then, there is a quick increase
of the friction coefficient due to the removal of these layers (of different nature, such
as oxide layers, adsorbed gas layers, nature pollution films, etc.), which increases the
metal-to-metal adhesion between the contacting surfaces [84, 177, 178].

In the case of the fretting tests used as a reference, the friction coefficient increases
rapidly at the beginning of each test until reaching a convergence towards a stable value
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Figure V.1: Test 1: Identification of the friction coefficient (from [19]). The steady-state
value reached after about 40000 fretting cycle corresponding to a cumulative dissipated
energy of 50 J.

after about 40000 fretting cycles, following the previously observed fretting trends. The
friction coefficient used here to perform the numerical investigation is the steady value
reached, µ = 0.88. In the following, for the numerical simulations, this value will be
considered constant, assuming that it is unaffected by the wear evolution. It should be
noted that in numerical simulations, the friction law focuses on a local friction coefficient,
whereas a full-scale laboratory system refers to the macro scale, as macroscopic geometries
and resulting total forces are considered.

5.1.4 Identification of the wear coefficient

The wear coefficient denoted as Kw has been introduced in section I.1.4.1. This parameter
is evaluated experimentally. Commonly, one of the most used methods for determining
the value of Kw is to press a stationary pin on the surface of a rotating disc, using a normal
load P [179]. Given the normal preload P , the total sliding distance L can be calculated
from the rotational speed and the disc’s rotation time. Despite its limitations, the values
of wear coefficients determined by the pin-on-disk method are accurate enough to be
used in engineering analysis. Quantification of the wear coefficient Kw is conventionally
performed by evaluating the change in mass (weight) and the worn volume Vw.

In the reference paper [19], Fantetti et al. represent the evolution of the wear volume
as a function of the dissipated energy at the contact, as defined by Fouvry’s studies
in [61]. These results are shown in Figure V.2 and summarized in Table V.2. An
almost linear relationship can be defined for the tests 3-4-5 conducted at 22 µm of sliding
distance, indicating that the total wear volume is proportional to the cumulative energy
dissipated. The slope of the best-fit line represents a wear energy coefficient α, as defined
in [61]. Results of tests 1 and 2, conducted at 14 µm of sliding distance, show an almost
similar wear volume of 4.6 µm mm2 and 5.2 µm mm2 respectively, since they dissipated
almost the same amount of energy. The variability is less than 20% and this fairly small
difference gives an idea of the variability of measurements. It could be caused by the
difficulty in measuring the wear volume accurately due to such small quantities and
irregularly worn area distributions.
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Figure V.2: Wear volume as a function of energy dissipated at the contact. Test
conditions: excitation frequency f = 100 Hz, normal load fN = 60 N (from [19]).

Test Running time Vw Ed

[h] [µm mm2] [J]

1 5.3 4.6 2800
2 5.5 5.2 2900
3 0.6 3.2 500
4 3.6 7.3 2900
5 9 12.7 7000

Table V.2: Wear volume and energy dissipated for all the tests (from [19]).

Several numerical studies in the literature use the wear energy approach [61, 63].
In this work, the Archard model [56] is applied to quantify wear. In this formulation,
the specific wear rate Kw is calculated as a ratio of wear volume to sliding distance
multiplied by the applied load.

Kw =
Wear volume

Normal load · Total sliding distance
.

As a reminder, the expression of Archard’s law defined by Eq. (I.13) is given by:

Kw =
Vw

PL
.

Kw is the dimensional wear coefficient in [m3m−1N−1] or the specific wear rate (the wear
per unit load per unit sliding distance). In this regard, the added value for this numerical
analysis is the possibility of having experimental data available. For test 1, data are
listed in Table V.1, in particular:

- L represents the total sliding distance covered during the whole duration of the
test corresponding to 5.3 hours;
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- P is the normal load equal to 60 N;
- Vw is the total wear volume equal to 4.6 µm mm2.

Kw is found equal to 5.76 · 10−15 m3m−1N−1 and it is supposed not to evolve as wear
increases. This coefficient represents a global parameter referred to the entire test 1.

This order of magnitude is comparable with that found experimentally for the same
category of materials in recent works [180]. In the next section, the value of Kw obtained
for test 1 will be used to evaluate the wear rate over one fretting cycle. In this regard, it
should be noted that a local formulation of the Archard wear equation will be applied
later. For this reason, it will be necessary to scale the quantities to the local contact
area.

A limitation of this approach is that it does not consider microscopic effects such as
asperity deformations and material tearing. The effects of temperature are neglected
as well as plastic deformations and the influence of friction on the contact pressure
distribution. However, some reasons for preferring this formulation in this work are
outlined as follows. First, the Archard wear formulation includes all surface conditions in
only one parameter. Also, it ignores surface details (for example, asperities), assuming
that the entire surfaces are in contact, which is similar to the common assumption
for contact in finite element modelling, where the surfaces are supposed to be smooth.
Moreover, this formulation assumes that the direction of the load is constant and the
load is unchanging, which may be the case with the experimental conditions under
analysis. On the other hand, the presence and the effect of a third body layer, composed
of particles or wear debris, are not taken into account within this approach. Hence,
numerical investigations will be based on the assumption that the worn material is
ejected out of the contact zone during the fretting wear tests.

Using the same procedure as for reference test 1, the values of the wear constants are
derived for all 5 tests. They are listed in Table V.3. From an analysis of the values of
Kw obtained for all tests, it can be noticed that the value of Kw changes according to
the test considered. In accordance with what is shown in Figure V.2, the wear rates
Kw for tests 1 and 2 are comparable. These two tests are conducted at the same sliding
distance (14 µm) and have approximately the same duration. Also, test 4 has a similar
wear rate but it is conducted at a highly sliding distance (22 µm), so a higher wear
volume value is expected, according to Archard’s law.

It is interesting to observe that the energy wear approach is equivalent to Archard’s
wear approach for a constant coefficient of friction µ which is the case assumed, as
anticipated in section I.1.4.1. Both formulations do not explicitly consider the debris
layer entrapped in the interface.

In the following numerical simulations, the wear volume will be evaluated during the
whole duration of the test.

5.2 Numerical investigations strategy

Recently, various numerical investigations referring to these fretting wear tests have
been performed [19, 181]. In [19], in addition to the experimental setup and the surface
characterization of the samples, a numerical validation was proposed using a constitutive
numerical modified Bouc-Wen model. This model allows the incorporation of the contact
parameters extracted from experiments, in order to replicate the evolution of hysteresis
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Test Kw

1 5.76 · 10−15

2 5.63 · 10−15

3 1.94 · 10−14

4 5.53 · 10−15

5 9.22 · 10−15

Table V.3: Identification of the wear coefficients Kw expressed in [m3m−1N−1] for all
the tests.

loops. Further numerical analysis was performed introducing three different constitutive
friction models modelled using the elastoplastic friction framework in [181].

In this work, the HBM coupled with the Dynamics Lagrangian Frequency-Time
scheme (DLFT) with wear, described in chapter III, is used to perform the numerical
simulations and coupling fretting wear and dynamics. As a reminder, a node-to-node
contact element defines the contact zone. For each contact element, this method directly
considers the Coulomb friction’s law and the non-interpenetration condition to compute
the contact forces in the time domain, without considering the tangential contact stiffness,
extracted from test as used in [19]. The contacting surface is assumed to be perfectly
flat and smooth. The initial contact state is supposed to be adherent.

Numerical simulations are carried out starting from a condition without wear so that
the starting gap in the normal direction is

G = 0.

The added value compared to previous numerical works using this strategy is the
possibility of having experimental data available. The aim is mainly the experimental
validation of the results obtained numerically. Indeed, in case of a lack of experimental
evidence, the use of numerical calculations gives the possibility to go further and propose
more plausible scenarios, assessing cases not foreseen by the tests.

5.2.1 Wear depth calculation for one fretting cycle

The strategy consists of incrementing the wear depth instead of time and involves the
following steps. The first step consists in determining the nodal wear depth after a single
fretting cycle, denoted as δWm

(1). This is obtained by wear integration over a period Tex.
Eq. III.15 is used and written for one cycle as follows:

δWm
(1)(η) =

∫ η+Tex

η

Kw|Pm
N (τ, η)| ∥u̇m

rT(τ, η)∥ dτ, (V.1)

where Pm
N is the local contact pressure at node m and u̇m

rT is the relative tangential
velocity at node m, both obtained by the frequency resolution of the dynamic problem.
Tex is the period of the harmonic excitation. Eq. V.1 is a local formulation of the Archard
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law and more specifically:

Wear volume

Contact area
= Kw

Local normal load

Elementary contact area
· Local velocity · Time increment.

The order of magnitude of the wear depth after a single vibration cycle results: δWm
1 =

10−7 µm. The wear depth map for the first fretting cycle is illustrated in Figure V.3.
This order of value is so small that it would not result in any appreciable change in
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Figure V.3: Test 1: wear depth in µm over the interface, calculated after 1 vibration
cycle.

the contact conditions and would have no significant impact on the nonlinear dynamic
response if an iteration of wear was performed at each vibration cycle. This justifies the
use of a jumped cycles strategy.

First, a wear acceleration factor is used, multiplying the wear depth calculated for
one cycle by a given number of cycles ∆Na. The use of this factor implies that wear has
no significant impact on the contact behaviour before the ∆Na cycles are considered.
For this analysis, an acceleration factor equal to ∆Na = 6 · 104 is chosen to begin the
evaluation beyond the run-in period corresponding to the steady-state reached after
about 50 J of cumulative energy dissipated for every test (see Figure V.1). Therefore,
this acceleration factor will only be kept for the first wear depth update. For the rest of
the calculations, the acceleration factor will be chosen according to a limited wear depth
∆W ∗ to be reached, as explained in the following.

5.2.2 Wear depth implementation by wear increment

The value of δWm
1 for one fretting cycle, calculated using Eq. V.1, is used to set

heuristically the maximum allowable wear depth increment ∆W ∗ during a wear iteration
k. The maximum allowable wear depth is limited to ∆W ∗ = 5 · 10−2 µm. This fixed
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value makes it possible to fix the number of cycles ∆Nc to be skipped through Eq. III.16:

∆Nc(η) =
∆W ∗

max
m

(δWm(η))
.

The maximum wear depth after one cycle was found within the corners, with a value
of δWm

1(max) = 8.7 ·10−7 µm (see Figure V.3) and the maximum total number of fretting
cycles, corresponding to the total test running time of 5.3 hours, is Nctot = 1.9 · 106.
These values allow a maximum indicative cumulative wear depth of 1.7 µm.

All nodal wear depths Wm are updated after ∆Nc cycles, defined so that the maximum
wear increment is ∆W ∗ compared to the previous cycle. The updating is computed
through the explicit scheme shown in Figure III.2 and given by Eq. III.17:

Wm(Nc +∆Nc) = Wm(Nc) + ∆NcδW
m(η).

As demonstrated in [161], the explicit scheme has the advantage of not changing the
number of equations and not requiring a Jacobian computation of the wear law. Conse-
quently, the contact conditions are modified, due to the implementation of the nodal wear
depths in the normal direction as defined by Eq. (III.13), and a return to the beginning
of the prediction/correction process is required to re-balance them (see Figure III.3).

Generally, once a suitable number of Nc has been calculated the analysis stops. In
this case, the procedure is repeated until the maximum total number of fretting cycles
Nctot = 1.9 · 106, corresponding to the total test running time of 5.3 hours, is reached
(see Table V.1), given the duration of a vibratory period at the considered frequency of
100 Hz. For this analysis, the number of wear increments necessary to reach the number
of total fretting cycles is c = 58.

It is important to note that according to this jumping cycle strategy, each wear
increment k corresponds to a different number of fretting cycles ∆Nc. The factor
∆Nc is a critical parameter for the analysis because it determines the contact analysis
computational cost and the stability of the explicit scheme. A high value of the factor
∆Nc can reduce the calculation time but may lead to a reduction in the accuracy of the
results. The number of allowable wear steps k, i.e. the steps in which an appropriately
chosen limit wear depth ∆W ∗ is fixed, is the second critical parameter of the analysis,
as it also determines the computational cost of the system. It results in very challenging
finding a priori the appropriate value for these parameters, mainly because they can
change over time, depending on wear dynamics.

5.3 Local contact evolution analysis

As previously described, the amount of wear that occurs is very small during only one
vibration cycle and a certain running-in period is required to observe a loss of material
at the contact and visualize the effect of wear on the system’s dynamic response. This
section refers to a local description of the wear evolution at the contact interface.
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5.3.1 Wear profile over the contacting interface

In experimental investigations, an optical interferometer was used to characterise worn
surfaces before and after testing. Results in Figure V.4 shows an apparent material
transference between the top and bottom surfaces. This trend was present in all tests
[19]. First, it is important to note that, at resonance, the vibration amplitude reaches

(a) (b) (c)

Figure V.4: Worn surface images highlighting the material transfer between the top
and bottom specimens for test 1 after 5.3 hours of wear (from [19]): (a) Before wear; (b)
Top specimen (moving); (c) bottom specimen (stationary).

the maximum and consequently, the maximum frictional dissipated energy would be
observed. However, operating conditions will not always be excited at resonance. Thus,
computing wear at resonance frequency would not be representative of the conditions
experienced by the system. In this work, wear depths can be computed at each frequency.
More specifically, being not conservative to use the resonance as a loading case, wear
depths are computed at the excitation frequency 100 Hz, which represents the operating
frequency of the test rig. Also, according to the test protocol detailed in [19], the contacts
are never opened during the experiments. This prevents the possibility of obtaining an
intermediate wear depth profilometry in the course of tests.

Numerically, the wear depth is identified as a variable w increasing the initial gap
G between the contacting surfaces, so the wear profile, in terms of wear depth over the
interface, and its evolution during the test, can be found. A limitation of this numerical
strategy is that the presence of particles or wear debris is not considered, with the
assumption that the worn material is ejected out of the contact zone. Thus, it gives
us no information on how the debris was formed or removed. For these reasons, the
calculations performed should be compared with precautions to the results provided by
experiments.

Figure V.5 shows the wear depths over the contact interface observed after (a)
4.2 · 105, (b) 8.2 · 105 fretting cycles, (c) 1.2 · 106 fretting cycles and (d) 1.9 · 106 fretting
cycles, at the end of the calculation.

From an analysis of the results, one can note that only after 4.2 · 105 fretting cycles,
wear starts to be mainly localised within the corners of the contact interface, as shown
in Figure V.5a. Then, intermediate results where this behaviour is more evident are
displayed in Figure V.5b and Figure V.5c, after 8.2 · 105 fretting cycles and 1.2 · 106
fretting cycles respectively. Wear increases along the edges, continuing to be more



CHAPTER V. Fretting wear parameters identification and numerical investigation 107

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Edge x [mm]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
E

d
g
e 

y
 [

m
m

]
Total wear depth after N fretting cycles: 425407

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[ m]

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Edge x [mm]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
d

g
e 

y
 [

m
m

]

Total wear depth after N fretting cycles: 826327

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[ m]

(b)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Edge x [mm]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
d

g
e 

y
 [

m
m

]

Total wear depth after N fretting cycles: 1241720

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[ m]

(c)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Edge x [mm]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
d
g
e 

y
 [

m
m

]

Total wear depth after N fretting cycles: 1913608

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[ m]

(d)

Figure V.5: Test 1. Wear depth over the contact interface in µm after various updated
cycles: (a) after 4.2 · 105 fretting cycles, (b) after 8.2 · 105 fretting cycles, (c) after 1.2 · 106
fretting cycles, (d) after 1.9 · 106 fretting cycles, corresponding to the end of the test.

localized within the corners of the contact interface and tending to be more distributed
over the whole contact area. Finally, at the end of the test, after 1.9 · 106 fretting cycles,
wear results more uniformly distributed over the whole contact interface and wear in
the corners seems not to increase more, see Figure V.5d. However, it can be seen that
the worn numerical profiles are qualitatively similar to the experimental ones, with wear
localised along the edges and mainly in the corners.

5.3.2 Local normal pressure

The pressure applied is constant during the whole test and equal to 60 Nmm−2. The
local distribution of the normal load at the interface continuously changes due to wear.
As observed in the previous, results show wear concentrated along the four edges of the
contacting area, mainly on the corners. The wear depth evolution over the interface
contributes to changing the normal contact conditions at each updated wear depth,
creating a new local normal load distribution for the next calculation.
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Figure V.6a displays the evolution of the contact load pressure at the fretting cycles
4.2 · 105 and Figure V.6b at the final fretting cycles 1.9 · 106. Initially, the local normal
force distribution is that expected for a flat-on-flat contact, as calculated in the previous
chapter and illustrated in Figure IV.11b. Then, increasing the number of fretting
cycles, the local normal force distribution leads to a slight increase at the centre of the
contact interface, tending towards a more uniform forces distribution (see Figure V.6).
However, the global behaviour remains consistent with the previous calculations, due
to the more global distribution of forces over the contact area. Once the edges of the
contact area are worn out, the normal load distribution tends to be no longer singular at
these locations. This means that wear is rounding the edges, simultaneously decreasing
the load’s localisation.
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Figure V.6: Normal load distribution over the interface at (a) 4.2 · 105 fretting cycles
and at (b) 1.9 · 106 fretting cycles.

5.3.3 Evolution of the wear volume

Wear kinetics as a function of the number of cycles is numerically evaluated for studying
the evolution of the wear volume during the whole test duration. The wear volume
evolution is illustrated in Figure V.7. Numerical results show a continuously worn
volume increment, with a wear rate quick enough from 0.1 · 105 fretting cycles, due to
the first jumped cycles imposed, corresponding to the running-in phase. The total wear
volume numerically obtained at the end of the test after Nc = 1.9 · 106 fretting cycles
(5.3 hours of duration), is Vw = 3.8 µm mm2. It is notable that this value results lower
than the experimental one Vw = 4.6 µm mm2. This result remains within the range of
experimental uncertainty. However, as mentioned in the previous section the assumption
for numerical investigations is that the worn material, composed of particles and debris,
is considered ejected out of the contact zone during the fretting wear tests. Thus, this
underestimation could be explained as the presence of wear debris was not taken into
account, as well as the plasticity of the material.

Also, this is probably because the wear is very localised and calculated on each
node, and the maximum wear rate is not always found on the same node. Figure V.9
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illustrates the evolution of the wear rate per cycle for some nodes of the contact interface.
Some critical nodes over the interface and marked in Figure V.8 are considered. In fact,
from the first fretting cycles, the node on the corner wears more than the other ones.
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Figure V.7: Test 1. Evolution of the wear volume at 100 Hz.

Figure V.8: Test 1. Some nodes at the interface.
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Figure V.9: Test 1. Evolution of the wear rate per cycle for some worn nodes.

5.4 Friction rig dynamics with wear

After having analysed the evolution of wear at the local contact interface, this section
proposes to study the impact of wear on the structure’s vibratory behaviour, evaluating
the coupling between fretting wear and dynamics. The numerical update of the wear
depth in the normal contact law used by the DLFT has been explained above in section
V.5.2. From a purely numerical standpoint, Nh = 3 harmonics have been retained,
with 128 time-step in the DFT procedures, as evaluated in the previous chapter, in
section IV.4.3.1

5.4.1 Impact of wear on the dynamic response

Experimental FRFs before and after wear test 1 are illustrated in Figure V.10. The
normal load for wear test 1 is N = 60 N. Results confirm that the modes of interest are
the longitudinal ones, which are those influenced by the wear evolution at the specimens’
contact interface. More specifically, of the two longitudinal modes, the first one is of
most interest because it is the tangential mode in the same direction as the excitation
input. The second mode does not exhibit notable variation due to wear. Numerical
FRFs before and after wear test 1 are shown in Figure V.11. Numerical results are
displayed in terms of accelerance (units of acceleration over external force) to be coherent
with the experimental ones. Only the frequency range related to the first longitudinal
mode, which is of most interest, is considered. The numerical prediction indicates a
trend similar to the experimental results. As it can be observed, the wear produces a
shift of the first mode (the in-phase mode) with an increase of its first natural frequency
from 175 Hz to 205 Hz. This behaviour suggests an increase in the rigidity of the system
with wear. This may be caused by an increased sticking of the contacting surfaces due
to the presence of wear debris and/or surface damage. This represents a good result,
considering the assumptions made for the friction coefficient and the identification of the
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Figure V.10: Experimental FRFs for test 1: Normal load = 60 N (from [19]).
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Figure V.11: Numerical FRFs for test 1: Normal load = 60 N.

5.4.2 Hysteresis loops

A hysteresis or fretting loop describes the force-displacement curve resulting from the
vibratory movement of two contacting surfaces (see section I.1.3.1).

Observing the dynamic response before and after wear in Figure V.11, the system
before wear is close to a stick regime, occurring during the early phase of the relative
motion. This phase is characterised by a situation where the contact surfaces are still
stuck. The contact undergoes stick and full slip each cycle according to the loading
conditions. As the load increases, some asperities remain adhered to, while others start
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to slip relatively, leading to the micro-slip regime. According to Coulomb’s law, the
entire interface results in a gross slip regime when the force reaches the friction limit.
Figure V.12 shows the evolution of the numerical hysteresis loops with the progressing
wear up to 1.9 ·106 cycles. The numerical hysteresis loops obtained during the first phases
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Figure V.12: Test 1. Excitation frequency = 100 Hz, normal load = 60 N, average
sliding distance s = ±7 µm, total fretting cycles = 1.9 · 106. (a) Experimental hysteresis
loops (from [19]). (b) Numerical hysteresis loops.

of running-in are ignored as the main interest is in the quasi-steady-state behaviour
achieved in the first few hundred cycles of the start of the fretting wear test. As the
number of cycles increases, the relative displacement is continuously decreasing and the
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upper and lower friction limits (±µN) decrease. As this study assumes, when the friction
coefficient is constant, the only other variable is the normal load. The results obtained
are consistent with those given from experiments making it possible to demonstrate the
method’s applicability and evaluate the dynamic/wear coupling, with some limitations
related to the assumptions used for calculating the wear updating.

5.5 Concluding remarks

After a description of the Imperial College test rig tests performed to experimentally
study the effect of fretting wear on the forced response dynamics, this chapter provided
a numerical prediction of the equivalent experimental results for validation. The ex-
perimental test rig made it possible to demonstrate the method’s applicability and to
evaluate the dynamic/wear coupling. Experimental results are given regarding hysteresis
loops, the evolution of frequency response and wear volume at various wear conditions.
The confocal images of the sample’s surface are also provided and allow for qualitative
scan tracking of the real worn area and its evolution. Concerning the numerical results,
the phenomenology is quite well respected in terms of dynamics response before and
after wear: with the resonance frequencies slightly increasing with wear; in terms of wear
distribution over the interface, with the maximum amplitude in the corners as well as
the order of magnitude of the wear depth are quite well replicate. Also, the final value of
the total worn volume is in agreement with experiments, with the possibility to evaluate
its evolution during the test. Moreover, the numerical results presented also include the
evolution of the wear depth over the interface, the variation of the local normal load and
the evolution of wear volume.

In addition, numerical simulations can provide guidance for new tests. For example,
using different sample and contact area geometries, conducting parametric material
studies of the contact samples, performing close-to-resonance tests, opening the contacts
to evacuate the debris, and foreseeing infrared cameras. New experimental results can
be used to update numerical models. The continuous iteration between experimental
tests and numerical validation has the positive effect of developing the robustness of
prediction tools.

The design of experimental test rigs is suitable for running several experimental
campaigns and building a database of test results for the future exploitation and validation
of currently existing numerical solvers studying the nonlinear forced response with friction
contacts in the presence of fretting wear.
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Conclusion and prospects

Brief overview of the present work

The main objective in the framework of the Work Package within the EXPERTISE project
was to model interfaces under complex dynamic loading to integrate different physical
phenomena like friction and wear occurring at the contact interfaces and implement
them in numerical solvers. In fact, in the design of industrial assembled components,
these phenomena play a relevant role in contact interfaces. Thus, it is crucial to correctly
predict the nonlinear dynamic behaviour in the first phase of the design process to
prevent damage and implement maintenance.

The current work aimed to study the effect of fretting wear on the dynamics of
structures with friction contacts. Research has recently highlighted the need for predictive
wear models and their shortcomings. Fretting wear occurs at the micro level but can
have a significant impact on the response at the global system level. For this purpose, a
numerical prediction tool coupling dynamics and wear phenomenon is used to validate
the series of fretting tests performed with the experimental friction rig developed at the
Imperial College London. Supported by experimental results, the numerical strategy is
validated.

The numerical study of the dynamic behaviour was performed using a frequency
method, the harmonic balancing method (HBM), allowing the direct analysis of the
periodic regime without the need for transient calculations. The system’s size was
reduced by a substructuring method, the Craig-Bampton method with fixed interfaces, to
avoid high computational costs generated by a nonlinear resolution. Since the frictional
contact problems are nonlinear and have no expression in the frequency domain, a
time-domain estimation procedure of the contact forces has been applied using Fourier
transforms, allowing the passage between time and frequency domains. The Lagrangians
Frequency-Time method is based on dynamic Lagrangians [123] and is coupled with the
harmonic balance method, making it possible to study the forced response.

The multi-scale approach coupling fretting wear and dynamics, developed by Salles
[161], is applied to evaluate the influence of the fretting wear on the dynamic response.
This method simultaneously calculates the system’s vibrations and the wear’s evolution
in fretting-wear situations by considering these two phenomena into two-time scales: a
fast scale for the dynamics and a slow scale for tribological phenomena. The vibrations
are analyzed in the frequency domain by using the harmonic balance method and AFT
procedures. The evolution of the wear is integrated into the DLFT method on a slow time
scale through an explicit scheme. A jump cycles strategy is implemented for updating
wear, allowing a significant reduction of the computational time.

The numerical investigations are validated with the experimental results of the test
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rig, demonstrating confidence in the method, whose implementation and computational
benefits have already been demonstrated [13, 17, 124].

Concluding remarks and perspectives

This work contributes to the ongoing research in predicting the dynamic response of
structures with friction contact nonlinearities in the presence of fretting wear. The test
rig dynamic is a relevant industrial test since it is representative of the behaviour of
friction dampers, which are known to wear significantly during their operational life. The
influence of the wear phenomenon on the dynamics is investigated numerically, referring
to a series of experimental data.

The numerical results highlight the sensitivity of the nonlinear dynamic response
to changes at the contact interface. The wear contributes to a redistribution of the
normal contact pressure, which changes the underlying nonlinear mechanisms at the
interface from sliding localised at the edges to sliding over a more significant part of
the contact area. Moreover, numerical investigations confirm that wear can affect the
system’s dynamic behaviour, leading to shifts in natural frequencies. In particular,
wear mainly influences the sliding modes (i.e. the modes in the same direction of the
fretting excitation), which activate the contact mechanisms. Consequently, wear must
be included in the numerical analysis to accurately predict an assembled structure’s
nonlinear dynamic response during its operational life.

Concerning the numerical method, the DLFT procedure, coupled with a multi-scale
approach in time to include wear, has shown its effectiveness and precision for the study
of the dynamic behaviour of the system. In particular:

• the method allows the calculation of forced responses as functions of the wear
depth. Numerical results appear in good agreement with the experimental ones,
demonstrating the adequacy of the method used for coupling nonlinear dynamics
and wear phenomena, which are computed simultaneously;

• the method can predict the evolution of wear depth and worn volume during the
whole test duration.

The added value is the dialogue between experiments and updated simulations. This
aspect enables verification for data comparable to measurements and the possibility of
performing tests of the model fidelity. The possibility of referring to an experimental
test has several advantages:

• having calibration tests enables the prediction of the dynamic behaviour to guar-
antee that the life expectancy calculations are faithful to reality. The model is
calibrated by iteratively changing input values until the simulated output values
match the observed data selecting parameters to optimise. In this case, a sensitivity
analysis of a certain number of harmonics and time samples (a compromise between
time calculation accuracy) and an evaluation of the reduction parameters keep the
dynamic behaviour of the model. In model calibration (in terms of calculation
parameters such as the number of harmonics or the mesh refining), the validation
of the optimal number of elements is required to reach the targeted level of fidelity
in predictions at reasonable costs.

• improving the understanding of these phenomena at work, reproducing the physics
of the problem numerically. The choice to access elements of scenarios under the
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scope of experiments because intrusive sensors prevent very local measurements;
at the same time, calculations propose more detailed information at this level.
In this case, the possibility to perform local analysis at the interface, studying
the evolution during the local wear depth time to predict the worn geometry and
estimate the wear volume.

Finally, the work presented in this thesis opens the way to several perspectives
presented in the following and organised in three parts: the possible improvements that
can be obtained regarding computational methods and costs, the refinement related
to the experiments to improve the possible industrial fields of application, and some
possible recommendations for further research, to better understand the coupling between
dynamics and tribology.

• For the dynamic resolution of the contact via DLFT, some different simplifications
have been introduced to facilitate the numerical simulations. The friction coefficient
has been considered constant, but it is theoretically a function of loading, sliding
speeds, temperature and other parameters. It could be interesting to consider a
variable friction coefficient to better represent the real behaviour at the interface
and offer, especially in the presence of experimental data, a better correlation with
tests. Also, assuming the plasticity in the contact zone would enable a better
prediction of contact pressures at the interfaces, considering that slip and wear
levels in the contact zones depend on a good assessment of the local contact
pressures. The accuracy of results is conditioned by the number of contact elements
retained. Due to geometrical complexity, structural components and assembly
models require a finer three-dimensional discretization of the contact zone and,
therefore, a larger number of degrees of freedom. The order of the model becomes
so large that the frequency response assumes a very high computational cost.
The dynamic response is generally desired at more than one frequency, adding
different folds to the computational effort. Additional efforts will be needed to
speed up HBM solvers to reduce the computation time by implementing numerical
techniques such as Finite Element Tearing and Interconnect (FETI) [182, 183],
Domain Decomposition Methods (DDM), Substructuring [8], to reduce the problem
into smaller parts and distribute it over more calculation nodes.

• The experiments considered in this manuscript for the numerical simulations have
been performed for specimens with a flat-to-flat contact area. It may be helpful to
consider different geometries, for instance, curved samples, and potentially perform
test campaigns on more realistic geometries very close to industrial cases. The
predictive tools validated for coupling dynamics and wear could then be applied
to many other industrial cases, allowing the possibility to predict the dynamics
behaviour and obtain a detailed evaluation of the interface. Given the lack of
experimental tests rig studying the influence of wear on dynamics, it would be
advisable to create numerical simulation models, which update and change as their
physical counterparts change with variable parameters providing a basis for several
configurations for the experimental tests. A numerical model can provide a valuable
tool for performing sensitivity analyses and exploring design solutions, referring to
data not experimentally tested. A numerical model makes it possible to evaluate
the influence of several parameters to provide a basis for different test configurations
to readjust the model about the experimental results and obtain a numerical-test
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correlation. It can be beneficial and can be a guide to the optimisation process.
• The evolution of wear here evaluated numerically allows validating an experimental

test. Still, it does not consider that fretting wear generates an intermediate
heterogeneous layer composed of wear debris or particles (the so-called third body)
at the interface. If expectancy calculations are faithful to reality, it would also be
helpful to refer to an asymptotic approach to evaluate the asymptotic behaviour of
this layer (and consequently of the worn geometry) directly, without time instants
integration. In future works, it could be interesting to include explicit modelling of
debris and implement the mass transfer [184] in dynamic simulations to develop
an optimisation process aimed at rapidly detecting asymptotic worn geometry, if it
exists.
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Appendix A

Evaluation of the analytical Jacobian
matrix

1 Analytical Jacobian matrix of a nonlinear problem

The evaluation of the Jacobian matrix can be done numerically by finite differences.
However, this strategy is computationally expensive because it needs to be repeated at
each iteration of the resolution algorithm. The compact form in the frequency domain of
the nonlinear dynamic system to solve is:

r(ũ, ω) = Z(ω)ũ+ f̃nl(ũ, ω)− f̃ex. (A.1)

The analytic Jacobian matrix J is calculated from the partial derivatives of the system
(A.1), with respect to the variables u and ω and is given by:

J(ũ, ω) =

(
∂r(ũ, ω)

∂ũ

∂r(ũ, ω)

∂ω

)
(A.2)

. The partial derivatives of the residual function r(ũ, ω) are then expressed as:

∂r(ũ, ω)

∂ũ
= Z(ω) +

∂ f̃nl(ũ, ω)

∂ũ
, (A.3)

∂r(ũ, ω)

∂ω
=

∂Z(ω)

∂ω
ũ+

∂ f̃nl(ũ, ω)

∂ω
, (A.4)

in which the partial derivatives of the vector f̃ex do not appear in Eqs. (A.3) and (A.4),
since the excitation force depends neither on ũ neither on ω in the frequency domain.

Dynamic stiffness matrix. The partial derivative of the dynamic stiffness matrix
with respect to ω keeps the block-diagonal form of the dynamic stiffness matrix Z. Its
expression is:
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∂Z(ω)

∂ω
=



0
∂Z1(ω)

∂ω
. . .

∂Zk(ω)
∂ω

. . .
∂ZNh

(ω)

∂ω


, (A.5)

whose each kth block defines the derivative of the dynamic stiffness matrix for the kth
harmonic:

∂Zk(ω)

∂ω
=

[
−2k2ωM kC
−kC −2k2ωM

]
k = 1, . . . , Nh. (A.6)

Nonlinear terms. The terms of the Jacobian matrix relating to the derivation of the
nonlinear forces f̃nl are evaluated by derivating directly its temporal analytical expression
fnl(u(t), u̇(t)), with respect to the variables u and u̇.

∂ f̃nl(ũ, ω)

∂ũ
= F ∂fnl

∂u
F̄ + F ∂fnl

∂u̇
F̄∇(ω), (A.7)

∂ f̃nl(ũ, ω)

∂ω
= F ∂fnl

∂u̇
F̄ ∂∇(ω)

∂ω
ũ. (A.8)

The Direct F and Inverse F̄ Discrete Fourier Transforms, defined by Eqs. (II.38) and
(II.44) respectively, can be taken out of the partial derivatives, since not dependant on
ω, as already mentioned in section II.2.2.2. The partial derivative of the differential
operator ∇ with respect to ω presents also a block-diagonal form whose each kth block,
defined for each kth harmonic, is written as:

∂∇k(ω)

∂ω
=

[
0 k
−k 0

]
⊗ Indofs , ∀k ∈ [1, Nh]. (A.9)

Solution continuation. The solution’s continuation techniques have been defined in
section II.2.3.1. The use of a sequential continuation expressed by the system (II.57)
to follow the evolution of the control parameter ω does not require the evaluation of
the partial derivatives of the residual r for ω since it is fixed at each iteration. On
the contrary, an arc-length continuation defined by the system (II.58), in addition to
requiring the evaluation of the partial derivatives of r for ω, needs the partial derivatives
of the closure equation p, here recalled:

p(ũ, ω) = ∥ũi+1 − ũi∥2 + (ωi+1 − ωi)
2 − ds2 = 0, (A.10)

∂p(ũ, ω)

∂ũ
= 2ũ, (A.11)

∂p(ũ, ω)

∂ω
= 2ω. (A.12)
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2 Analytical Jacobian matrix in DLFT formulation

The analytical Jacobian matrix in DLFT is necessary to reduce the computational time
of a Newton-Raphson-type resolution algorithm. Remembering the residual function
expressed in the section II.2.5.3 by Eq. (II.84):

r(ũr) = Zrũr + λ̃− f̃r (A.13)

and the splitting of the contact forces into two terms of prediction λ̃u and correction λ̃x,
as defined by Eq. (II.92):

λ̃ = λ̃u − λ̃x, (A.14)

the Jacobian matrix with respect to the relative displacement ũr of the residual func-
tion (A.13) is defined as follows:

J =
dr(ũr)

dũr

, (A.15)

from which, considering the Eq. A.14:

J = Zr +
dλ̃

dũr

= Zr +

(
dλ̃u

dũr

− dλ̃x

dũr

)
. (A.16)

The correction term λ̃x is determined in the time domain as a function of the predicted
contact state: separation, stick or slip as defined in section II.2.5.4 by Eqs. (II.93),(II.94)
and (II.95), respectively. For each time instant, the three components of the vector
λk

x are λk,N
x in the normal direction, λk,T1

x and λk,T2
x in the tangential directions (in

an orthonormal basis of the tangential contact plane, perpendicular to the normal nc,
defined in section II.2.1.1).

Following the same scheme introduced in the section II.2.5.4 for each contact condition:
• Separation: λk,N

pre ≥ N0t, where N0t is the static pre-load.

dλk,N
x

dũr

=
dλk,N

u

dũr

dλk,T1
x

dũr

=
dλk,T1

u

dũr

dλk,T2
x

dũr

=
dλk,T2

u

dũr

(A.17)

• Stick: λk,N
pre < N0t and ||λk,T

pre || < µ
∣∣λk,N

pre −N0t

∣∣.

dλk,N
x

dũr

= 0

dλk,T1
x

dũr

=
dλk−1,T1

u

dũr

dλk,T2
x

dũr

=
dλk−1,T2

u

dũr

(A.18)
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• Slip: λk,N
pre < N0t and ||λk,T

pre || ≥ µ
∣∣λk,N

pre −N0t

∣∣.

dλk,N
x

dũr

= 0

dλk,T1
x

dũr

=
dλk−1,T1

u

dũr

+
dλk,T1

pre

dũr

(
1− µ

∣∣λk,N
pre −N0t

∣∣
||λk,T

pre ||

)
+ µ

dλk,N
pre

dur

λk,T1
pre

||λk,T
pre ||

+µ
∣∣λk,N

pre −N0t

∣∣λk,T1
pre

λk,T1
pre

dλk,T1
pre

dũr

+ λk,T2
pre

dλk,T2
pre

dũr

||λk,T
pre ||3

dλk,T2
x

dũr

=
dλk−1,T2

u

dũr

+
dλk,T2

pre

dũr

(
1− µ

∣∣λk,N
pre −N0t

∣∣
||λk,T

pre ||

)
+ µ

dλk,N
pre

dur

λk,T2
pre

||λk,T
pre ||

+µ
∣∣λk,N

pre −N0t

∣∣λk,T2
pre

λk,T1
pre

dλk,T1
pre

dũr

+ λk,T2
pre

dλk,T2
pre

dũr

||λk,T
pre ||3

(A.19)

Having calculated
dλk,T

u

dũr

and
dλk,T

x

dũr

, it is possible to evaluate:

dλk,T
pre

dũr

=
dλk,T

u

dũr

− dλk,T
x

dũr

. (A.20)

In the frequency domain:

•
dλ̃

T

x

dũr

is calculated through the Discrete Fourier Transform (DFT) of
dλk,T

x

dũr k=1···nt

,

•
dλ̃

T

u

dũr

is calculated by:

dλ̃
T

u

dũr

= IDFT(−Zr + εI), (A.21)

where I is the identity matrix (of the same size as Zr).
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