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Résumé 

La formation des fruits charnus est un processus de développement impliquant trois stades 

principaux : (i) la transition fleur/fruit ou nouaison, (ii) la croissance et enfin (iii) la 

maturation des fruits. Chacune de ces étapes correspond à une transition 

développementale associée à d'importants changements physiologiques et structurels. 

Parmi toutes les hormones, l'auxine est connue pour jouer un rôle important dans 

l‟initiation et la coordination du processus de nouaison et des phases précoces de  

développement du fruit. La mise en place de la réponse à l‟auxine nécessite l‟intervention 

de facteurs de transcription appartenant à la famille des ARF (Axin Response Factor) 

connus pour réguler l‟expression des gènes de réponse précoce à l‟hormone en se liant 

aux Cis-éléments de type AuxRE (Auxin Response Element) possédant le motif conservé 

de réponse à l‟auxine. Les ARF sont de ce fait des candidats forts pour faire partie du 

mécanisme moléculaire par lequel l'auxine intervient dans le processus de nouaison. Le 

projet de recherche réalisé au cours de la thèse a permis d‟isoler et de caractériser au total 

22 gènes Sl-ARF chez la tomate (Solanum lycopersicum), la plante modèle pour l'étude 

du développement et de la maturation des fruits charnus. Les gènes Sl-ARF montrent des 

profils d‟expression distincts selon les tissus et organes considérés, suggérant des 

fonctions spécifiques pour les membres de cette famille multigénique. Il est de plus 

montré que certains gènes Sl-ARF sont régulés à la fois par l'auxine et par  l'éthylène, 

suggérant qu‟ils participent potentiellement au dialogue entre les voies de signalisation 

des deux hormones. L'expression transitoire a révélé la capacité des Sl-ARF à agir comme 

activateur ou répresseur transcriptionnel des gènes de réponse à l'auxine. L‟étude des 

profils d'expression globale, réalisée par RNA-seq à l‟échelle du génome entier, a révélé 

pour la première fois l‟existence d‟un niveau important de régulation par épissage 

alternatif des ARFs pendant la transition fleur-fruit. La localisation nucléaire des 

protéines Sl-ARF8A / B a été déterminée par fusion avec le gène rapporteur GFP puis 

expression dans un système "signle cell". L‟étude d'expression a révélé des profils 

distinctifs entre ARF8A et ARF8B avec une augmentation notable des transcrits Sl-

ARF8A suite à la pollinisation des fleurs. Le rôle physiologique du gène Sl-ARF8A a été 

par la suite abordé par une approche de génétique inverse fournissant un nouvel éclairage 

sur les événements moléculaires qui sous-tendent la mise à fruit. La surexpression de Sl-

ARF8 dans la tomate engendre des phénotypes pléiotropiques touchant la croissance 
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végétative (réduction de la taille des plantes, altération du développement racinaire et des 

tiges  latérales) et l‟appareil reproducteur avec la formation de fruits parthénocarpiques 

(absence de graines). L'analyse histologique a révélé une modification notable du placenta 

et des ovules chez les lignées de sur-expression de  Sl-ARF8 et les études par RNA-Seq 

ont identifié plus de 2632 gènes différentiellement exprimés chez les surexpresseurs par 

comparaison avec les lignées non transformées.  Au total, l‟étude réalisée au cours de la 

thèse fournit une description exhaustive de la famille des ARF chez la tomate et une 

caractérisation fonctionnelle du gène Sl-ARF8 qui souligne son rôle comme figure 

centrale du mécanisme de contrôle de la nouaison des fruits. 
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Abstract 
The making of a fleshy fruit is a developmental process involving three main stages 

known as (i) fruit set, (ii) fruit growth and (ii) fruit ripening each corresponding to a 

transition step associated with major physiological and structural changes. Among other 

hormones, auxin is known to play a dynamic role in triggering and coordinating the 

changes associated with the process of fruit set and early fruit development. Auxin 

responses are mediated at the transcriptional level by Auxin Response Factors (ARFs) 

which regulate early auxin-responsive genes by specific binding to TGTCTC Auxin 

Response Elements (AuxREs). ARFs are therefore good candidates for being among the 

components of the molecular mechanism by which auxin mediates the fruit set. In the 

present study, a total of 22 Sl-ARF genes have been isolated and characterized in tomato 

(Solanum lycopersicum), a model plant for the study of fleshy fruit development and 

ripening. Expression profiling revealed distinctive patterns for Sl-ARF genes in different 

tomato tissues. Hormone treatment indicated that Sl-ARFs can be regulated both by auxin 

and ethylene with Sl-ARF2B, 5 and 9 likely to be involved in the cross-talk between the 

two hormones. Transient expression using a single cell system uncovered the ability of Sl-

ARFs to act either as transcriptional activator or repressor in regulating the expression of 

auxin-responsive genes. Genome-wide expression profiling performed by deep RNA-

Sequencing revealed for the first time the importance of the alternative splicing mode of 

regulation of ARF genes during tomato fruit set. The physiological significance of two 

closely related Sl-ARFs, Sl-ARF8A and Sl-ARF8B, was addressed in the present study via  

a reverse genetics approach providing new insight on the molecular events underlying 

tomato fruit set. Fusion to GFP reporter gene indicated that both Sl-ARF8A/B proteins are 

nuclear localized. Expression analysis by RT-qPCR revealed some distinctive features 

between Sl-ARF8A and Sl-ARF8B with a notable increase in Sl-ARF8A transcript upon 

flower pollination. Over-expression of Sl-ARF8A/B in tomato resulted in pleiotropic 

phenotypes, including dwarf plants, altered root and lateral shoot development and 

parthenocarpic fruits (seedless). Histological analysis revealed altered placenta and ovules 

development in SlARF8A-OX flowers and RNA-Seq profiling identified over 2632 

differentially expressed (DE) genes in SlARF8A-OX flower buds compared to wild type 

control plants. Considering the dramatic change in gene expression of genes related to 

auxin, jasmonate and ethylene displayed in SlARF8A-OX lines, these phytohormones are 

likely to play an active role in coordinating the fruit set process. Altogether, the present 
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study provided a comphensive description of the tomato ARF gene family and a 

functional characterization of Sl-ARF8 defining this ARF member as a central figure of 

the control mechanism of the fruit set process.  
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中文摘要 
植物浆果的发育包括三个主要的过程，即坐果，发育和成熟，其中，每一个过程都

有相应的生理和结构变化。植物激素生长素是公认的在坐果和果实早期发育过程中

起着重要的作用。生长素反应是通过生长素响应 因子 (ARF) 特异性的结合到 

TGTCTC 生长素响应原件(AuxRE) 调节的. 因此，ARF 是很好的候选基因用于解释

生长素调节坐果的分子机理。在本研究中，一共有 22 个 ARF 基因从模式植物番茄

中被分离和鉴定。表达模型分析揭示了 Sl-ARF 在不同的番茄组织有独特的表达模

式。激素诱导处理表明 ARF 基因对生长素和乙烯有着显著的相应，其中 3 个基因

Sl-ARF2B，Sl-ARF5 和 Sl-ARF9 可能包含在生长素和乙烯之间的通路反应中。单细

胞转化表达表明 Sl-ARF 家族成员具有激活或抑制生长素早期相应基因的功能。另

外，通过 RNA 测序分析第一次成功揭示了包含 Sl-ARF 家族在坐果过程中的选择性

剪接调节机制。为了提高对番茄 ARF 家族的认识，通过反向遗传学的方法进一步

分析了 Sl-ARF8A 和 Sl-ARF8B 两个同源基因的生理功能。GFP 融合基因表达显示

Sl-ARF8A 和 Sl-ARF8B 两个蛋白是定位于细胞核内的。定量 RT-PCR 分析表明，

Sl-ARF8A 基因在授粉后呈现高水平表达，而 Sl-ARF8B 基因在开花授粉前已呈现出

高水平表达。超表达 Sl-ARF8A 和 Sl-ARF8B 基因在番茄中产生了多效性影响，比如

矮化植株，侧芽发育，侧根生长和单性结实的果实等。通过组织切片学分析显示，

在 Sl-ARF8A 超表达的转基因系中发现了异常发育的胎座和胚珠。通过对转基因和

野生型花苞进行 RNA 测序，揭示了超过 2632 个差异性表达的功能基因。进一步对

生长素，茉莉酸和乙烯信号通路基因表达分析显示这些基因是差异性表达在 Sl-

ARF8A 超表达系中，表明植物激素在坐果过程中发挥了很重要的作用。总之，该研

究全面分析和鉴定了番茄 Sl-ARF 家族，揭示了 Sl-ARF8A／8B 作为一个中心角色

在坐果过程中发挥着关键性的控制性作用。 
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Main components of the thesis 
Plant development relies on organ and tissues differentiation processes that are triggered and 

coordinated by a complex interplay between exogenous and endogenous factors among which 

hormones are the most prominent players. In this regard, fruit development offers a unique 

example of a series of developmental shifts tightly regulated by intricate signaling pathways 

that remain largely unknown. Indeed, the making of a fleshy fruit involves three main stages 

known as fruit set, fruit growth and fruit ripening. Understanding the molecular and genetic 

basis of the transition leading from flower to fruit may have an important implication on yield 

and fruit quality traits. Therefore, elucidating the fundamental mechanisms underpinning fruit 

set is essential for designing new approaches to improve crop yield and fruit quality. 

The plant hormone auxin is known to play a key role in triggering the flower-to-fruit 

transition and recent studies enlarged our understanding of the auxin-dependent mechanism 

underlying the fruit set process. Transcriptional regulators such as ARFs (Auxin Response 

Factors) and Aux/IAAs (Auxin/Indole Acetic Acid factors) emerged as main actors in 

mediating auxin responses during the fruit set process. However, the components of these 

important mechanisms and their role in driving developmental processes in crop species 

remain largely unknown. 

The aim of the thesis project is to better characterize the auxin signaling pathways in 

tomato, a model species for fleshy fruit research and an economically important crop, during 

the flower-to-fruit transition, the so-called fruit set. This developmental process strongly 

impacts fruit yield and quality. To further improve our understanding on how auxin regulates 

fruit initiation it is essential to better unveil the functional role of the molecular components 

involved in auxin responses. Auxin Response Factors are the last known downstream 

components of the auxin signal transduction pathway. These transcription factors are encoded 

by a large gene family and as such they are well suited to contribute to the diversity and 

specificity of auxin responses. Using tomato (Solanum lycopersicum) as a model plant, my 

PhD research project aimed at identifying and characterizing the tomato Sl-ARF family 

members and using advanced reverse genetics and genomics methodologies, it addresses the 

specific role of Sl-ARF8 in controlling the flower-to-fruit developmental transition. 

The thesis manuscript comprises four main chapters. The first chapter is a general 

introduction to the topic providing a bibliographic review on auxin. It presents the actual 

knowledge regarding the biosynthesis, perception and signal transduction of the 

phytohormone. The main roles of auxin in regulating different plant growth and development 
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processes and the interaction with other phytohormones are also described. The last section of 

this chapter is dedicated to emphasizing the advantages of using tomato as plant model for my 

research project. It also summarizes the actual knowledge of the mechanisms regulating fruit 

set and early development. 

Chapter II is presented in the form of an article recently published in PLoS ONE and 

deals with the comprehensive identification of the entire members of the ARF family in 

tomato with structural and functional features of the genes and encoded proteins. The work 

allows renaming of the tomato ARF family members to provide a consensus nomenclature for 

all ARF genes across plant species. The data brings new insight on the complexity of their 

expression control at the post-transcriptional level. The data shed new light on the distinctive 

spatio-temporal pattern of expression of ARF genes in the tomato using RT-qPCR and 

describes their differential responsiveness to auxin and ethylene. Transactivation assays 

defined tomato ARFs as repressors or activators of auxin-dependent gene transcription and in 

silico search predicted the putative target site for small interfering RNAs and identified 

potential small uORF regulatory elements in their 5‟-leader sequences. In addition, RNA-seq 

revealed that some Sl-ARF genes undergo alternative splicing mode of regulation. All 

together, the data bring new insight on the complexity of the expression control of Sl-ARF 

genes at the transcriptional and post-transcriptional levels. 

Chapter III is dedicated to the characterization of Sl-ARF8 and shows that two functional 

copies of the gene (Sl-ARF8A and Sl-ARF8B) are present in the tomato genome. The 

overexpression of both Sl-ARF genes via stable genetic transformartion of tomato results in 

vegetative and reproductive phenotypes including the initiation of the fruit set process 

independently from pollination/fertilization. Expression studies carried out both by RT- qPCR 

analysis and through the analysis of Sl-ARF8A/B promoter-GUS fusion plants revealed that 

Sl-ARF8A is up-regulated upon pollination/fertilization and that in contrast to Sl-ARF8B its 

expression is negatively regulated by auxin and positively regulated by ethylene. Moreover, 

analysis of RNA-sequencing revealed over 2632 differently expressed genes in Sl-ARF8A 

overexpressing lines. Altogether, the data bring new insight into the ARF8-mediated control 

of the fruit set process and point out to the interactive role of Sl-ARF8 and Sl-IAA9 in 

relaying auxin signalling during the flower to fruit transition. 

Chapter IV, summarizes in short the main scientific outcome of the thesis project and 

outline some perspectives open by the work. 
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Chapter I 
Bibliographic review and general introduction  

 
I.Auxin 

The study of auxin is one of the oldest fields of plant experimental research. Early in 

19th century, Charles Darwin carried out an interesting experiment and proposed that the 

plant growth was regulated by a matter which transmits its effects from one part of the plant 

to another [1]. After that, the term auxin was firstly found from human urine as calledauxin A 

and B and then the structural distinct compound was isolated from fungi called heteroauxin, 

which was finally determined to be indole-3-acetic acid (IAA) [2].  

 
 

Auxin is a central hormone proved to play critical roles in a number of plant 

developmental and physiological processes, such as embryogenesis, apical dominance, 

gravitropism, phototropism, lateral root initiation, leaf elongation, shoot branching, flowering, 

fruit development and ripening [3]. Indole-3-acetic acid (IAA), which is the predominant 

naturally occurring auxin, coordinates plant growth and developmental responses through 

transcriptional regulation of gene expression. Some synthetic auxins, including 2,4-

dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA), picolinic acid-type 

auxins (picloram) and benzoate-type auxins(dicamba)  have been developed and are being 

widely used in agronomical practices [4]. 

 
II.The auxin biosynthesis pathway in plants 

Auxin biosynthesis is fairly complex in plants (Fig. 1) and multiple pathways have been 

postulated to contribute to de novo auxin biosynthesis. As different plant species have specific 

strategies to regulate their metabolic pathways, it is likely that plants would share 

evolutionarily conserved core mechanisms for auxin biosynthesis for the reason that IAA is a 

fundamental substance in the plant life cycle. To date, two major pathways for IAA 

biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent 
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pathways [5]. In Trp-dependent IAA biosynthesis, four pathways have been postulated in 

plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) 

pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) 

pathway. For the Trp-independent IAA biosynthesis, little is known about the molecular or 

biochemical pathway to IAA despite that many genes have been found in the Trp-dependent 

IAA biosynthesis [6]. In addition, among the pathway of Trp-dependent IAA biosynthesis, 

IAM or IPA is the major route(s) to IAA in flowering plants.  

Fig. 1 Presumptive pathways for IAA biosynthesis in plants. Green arrows indicate the tryptophan synthetic pathway in the
chloroplast.A thin dashed black arrow denotes the tryptophan-independent IAA biosynthetic pathway. Blue arrows indicate steps
for which the geneand enzymatic function are known in the tryptophan-dependent IAA biosynthetic pathway. Red arrows indicate
the indole alkaloid andserotonin biosynthetic pathway. Mustard-coloured arrows indicate the Brassicaceae species-specific
pathway. Black arrows indicatesteps for which the gene(s) and enzymatic function(s) are unknown. Dashed mustard-coloured
arrows indicate steps for which the geneand enzymatic function(s) remain poorly understood. Letters in italics show genes
involved in the conversion process. Lower case lettersin italics indicate bacterial genes [6] .

         II. 1 The indole-3-acetamide pathway 

The IAA biosynthetic pathway via IAM was found to be in a bacteria-specific pathway. 

In hairy roots, where the plant pathogen Agrobacterium rhizogenes harbours, IAA is 

synthesized from Trp by a two-step reaction as a result of the expression of the integrated 

genes aux1 (iaaM/tms1) and aux2 (iaaH/tms2) of Ri TR-DNA [7]. Based on overexpression 

of aux1 gene of the Ri plasmid, the indole-3-acetamide hydrolase gene (GenBank accession 
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number AB457638) was isolated from Nicotiana sp. and named NtAMI1[8]. Fusion proteins 

of AtAMI1 and NtAMI1 have the enzyme activity which converts IAM to IAA, suggesting 

that AMI1 genes encode indole-3-acetamide hydrolase. In addition, the fusion protein of 

AMI1–GFP shows the AMI1 protein was confirmed to be located in the cytoplasm of plant 

cells [9]. So far, the AMI1 family has been found to be widely distributed in plants, including 

tobacco, tomato, grape, poplar, Arabidopsis , maize, sorghum, rice, and wheat [10].  

 

II. 2 The indole-3-pyruvic acid pathway 

The Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) gene, encoding an amino 

transferase converting Trp to IPA was isolated based on the characterization of mutants that 

were defective in shade avoidance [11] and in ethylene responses [12]. Mutations in TAA1 

gene result in dramatic reduction in IAA levels, which indicates that IPA-dependent IAA 

biosynthesis could be a critical pathway for the biosynthesis of free IAA. Furthermore, 

overexpression of TAA1–YFP and TAA1–GFP fusion proteins shows the TAA1 protein was 

located in the cytoplasm of plant cells [11,12]. In addition, Yamada et al. revealed that the 

Transport Inhibitor Response 2 (TIR2) gene was identical to the TAA1 gene [13]. 

Overexpression of TIR2 does not lead to some growth defects and the plants display normal 

sensitivity to exogenous Trp, which indicates that increasing endogenous IPA levels does not 

result in the synthesis of more IAA [13].  

 

III. Auxin transport and the role of PIN proteins 
Auxin molecules, like indole-3-acetic acid (IAA), function as mobile signals between 

cells, tissues and organs and, as such, they are involved in spatial and temporal coordination 

of plant morphogenesis and in plant responses to their environment. Auxin is actively moved 

around the plant by a series of transmembrane pumps or pump components [14]. Auxins, both 

native ones and their synthetic analogues, are weak organic acids. Their molecules undergo 

reversible dissociation, the equilibrium of which is pH dependent. Auxin molecules are partly 

dissociated when the pH value is about 5.5 at the extracellular space [15] (Fig 2).  As such it 

can freely diffuse into the cell, where the pH is higher, resulting in ionisation. The auxin ions 

are then trapped in the cell and can only leave through active transport, energised by the 

electrochemical gradient across the plasma membrane. A widely discussed example of this is 

the so-called PAT-„polar transport stream‟, in which auxin synthesised in the young 

expanding leaves at the shoot apex is pumped in cell files associated with the plant vascular 
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system down the stem, into the roots, and to the root tip.The polar transport stream is a highly 

stable route for auxin movement down the plant, supplemented by phloem transport, which 

can be considered to be an expressway that delivers auxin in bulk to the root tip [16,17]. 

Fig. 2 Reversible dissociation of the molecule of native auxin – indole-3-acetic acid (IAA) [15].

PH=5.5

 
As a result, auxin physiology has benefited from the use of drugs that act specifically to 

inhibit polar auxin transport. Of which naphthylphthalamic acid (NPA) is the most response-

specific chemical and has been widely used in agronomy. 

 

III.1 The efflux carriers: PIN proteins 

The PIN-FORMED (PIN) protein family is a group of plant transmembrane proteins 

with a predicted function as auxin transporters. In A. thaliana, there are eight sequences 

assigned to PIN proteins [18]. PIN are transmembrane proteins that belong to the group of 

secondary transporters. AtPINs share a limited sequence similarity with some prokaryotic and 

eukaryotic transporters [19,20]. PINs have a crucial role in the polar auxin efflux machinery: 

some pin mutants were shown to have serious defects in polar auxin transport [21,22]. PIN 

proteins are localized in the cells in a polar manner corresponding to the direction of the auxin 

flow [23,24,25]. The polar auxin transport inhibitors can phenocopy loss-of-function pin 

mutations in wild type plants [21,24,26]. Today, the auxin transporting activity of PINs had 

not been biochemically demonstrated [27]. However, the heterologous expression of AtPIN1 

protein with GFP fusion demonstrated its preferential localization at transversal PMs [28]. 

Moreover, the auxin-specific efflux was shown to be directly proportional to the degree of 

PIN expression and this AtPIN related auxin efflux was sensitive to polar auxin transport 

inhibitors NPA [27]. These evidences for the auxin-efflux-catalyzing role of PINs points to 

their crucial role in polar-auxin-transport-regulated physiological processes. 

 

III.2 A flexible PIN network 

PIN proteins are transporters excreting compounds and functional redundancies between 

individual members of the PIN family and all PIN proteins seem to be subject to a multi-level 

regulation. As shown in Fig 3, various transporters, such as auxin influx carrier permease 
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AUX1; auxin efflux carriers of the PIN and PGP (P-glycoprotein part) type, are depicted 

together with PIN constitutive cycling. Plasma membrane H+-ATPase, involved in 

maintenance of the proton gradient across the plasma membrane, is included. The vesicle 

trafficking itself may serve as an auxin transport pathway as suggested by the question marks 

accompanying the arrows representing auxin flow into vesicles. NBP (NPA Binding Protein) 

is a hypothetical protein, which binds 1-naphthylphthalamic acid, the non-competitive 

inhibitor of auxin efflux of the phytotropin type and possibly also other polar auxin transport 

inhibitors, PATIs with high affinity. 

 

Fig. 3 Scheme for the role of PINs in the polar auxin transport machinery in plant cells. pm, plasma
membrane; vc, vacuole; nu, nucleus; er, endoplasmic reticulum; ga, Golgi apparatus; tgn, trans-Golgi
network [15].

NBP is believed to be connected with actin filaments and its interaction with auxin efflux 

carriers may be mediated by another, metabolically very unstable component. Protein BIG 

seems to be a part of the endocytic path of constitutive cycling of PINs. PINs may interact 

with alternative auxin efflux carriers of the PGP type; however, the mechanism of such 

interaction is still not clear. Taken together, the PIN network underlies the directional auxin 

flux (polar auxin transport) providing any cell in the plant, which together with auxin 

signalling system, coordinates the plant growth and development. 
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IV. The auxin perception and signalling pathway in plants 
According to the current model, auxin signal is transduced by the SCF class E3 ubiquitin 

ligase-proteasome pathway. Firstly, auxin binds to TIR1/AFB nuclear receptors, which are F-

box subunits of the SCF ubiquitin ligase complex, to promote Aux/IAA protein ubiquitination 

and subsequent degradation. Thereafter, the auxin signal is controlled by the quantitative and 

qualitative responses between Aux/IAA repressors and Auxin Response Factors (ARFs). 

ARFs regulate the downstream auxin-responsive genes by specific binding to auxin-response 

elements (AuxRE), located in their promoters. When auxin concentration is low, the 

regulatory complex of Aux/IAAs binding with ARFs inhibits the activity of ARF factors. 

Increased auxin accumulation promotes the degradation of Aux/IAA repressors and 

consequently activates auxin-responsive gene expression by removing the inhibition of ARF 

activity (Fig. 4). An alternative hypothesis is that Aux/IAAs prevent ARFs from reaching 

their AuxRE target sites by dimerizing with ARFs at low auxin concentrations. In the latter 

hypothesis, Aux/IAA proteins would be degraded when auxin concentrations are increased, 

allowing the binding of dimerized ARFs to AuxREs, and subsequently the activation of early 

auxin-response genes [29,30]. 

In addition, multiple pathways have been postulated that contribute to de novo auxin 

response. Auxin Binding Protein 1 (ABP1), as a candidate protein of auxin receptor [31,32], 

may control the local auxin distribution by regulating the localization of PIN transporters that 

are responsible for interdigitated growth. Nevertheless, the downstream components and 

molecular action of the ABP1 pathway remain poorly understood. Recently, S-Phase Kinase-

Associated Protein 2A (SKP2A), has been identified as another candidate for a F-box-type 

auxin receptor [33], its binding to auxin might regulate the proteolysis of cell cycle 

transcription factors, such as E2FC and DPB [34] to trigger cell division. Another SKP2A-

like protein might also be involved in the auxin signal pathway [33].  
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Fig. 4 The auxin response pathway in plants. Auxin-responsive genes are activated by members of the
ARF family with Q-richtranscriptional activation domains. (A) Activationis blocked by dimerisation with
members of the Aux/IAA family, which have a powerful transcriptional repression domain. (B) Auxin
promotes degradation of the Aux/IAAs by binding directly to the F-box protein (TIR1 or its close
relatives), promoting interaction between the F-box protein and the Aux/IAAs, releasing ARFs to form
homodimers and promote transcription [17].

 

IV.1 Auxin receptors: TIR1 the heart of auxin signalling 

The Transport Inhibitor Response 1 (TIR1) gene was firstly identified in a genetic screen 

for Arabidopsis plants tolerant to NPA, the auxin transport inhibitor [35]. Nevertheless, it was 

soon indicated that TIR1 functioned in auxin responsiveness, not auxin transport [36]. The 

TIR1 contained some recognisable motifs, which were an F-box domain and a set of leucine-

rich repeats. F-box protein TIR1 contributes to a familiar and important protein degradation 

pathway, the ubiquitination pathway [37,38]. TIR1 is a component of a cellular protein 

complex known as SCFTIR1 (Skp1/Cullin/F-box) involved in ubiquitin-mediated protein 

degradation. In auxin-mediated transcriptional control, the F-box protein TIR1 binds to ASK1 

to determine the specificity for the protein to be ubiquitinated. Ubiquitins are added from the 

activated RBX1 and, once the target proteins are polyubiquitinated, they are recruited by the 

COP9 signalosome and the 26S proteasome where they are degraded [39] (Fig 5). The SCF 

regulatory proteins, auxin resistant 1 (AXR1), ECR1 and Ras-converting enzyme 1 (RCE1), 

are involved in the conjugation of CUL1, and mutations in these components confer auxin-

resistant phenotypes and lead to defects in auxin-related developmental processes [40,41]. 

Tan et al. (2007) have demonstrated that auxin enhanced the binding of an Aux/IAA protein 
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to the complex and they obtained crystal structures for the complex alone and for complexes 

bound to IAA along with an Aux/IAA peptide [42]. The crystal structures showed that the 

TIR1–ASK1 complex had a mushroom shape, with the leucine-rich-repeat domain of TIR1 

forming the cap, and the F-box of TIR1 along with ASK1 forming the stem. 

Fig. 5 The plant SCFTIR1 complex ubiquitinates Aux/IAA transcription factors [39].

Auxin acts like “molecular glue” to stabilize the interaction between TIR1 (gray) and domain 

II of the Aux/IAA (orange) (Fig 6). Gain-of-function mutations in domain II of several 

Aux/IAAs result in reduced binding to TIR1 and stabilization of the Aux/IAA. A variety of 

loss-of-function mutations in TIR1/AFB proteins have been characterized, T-DNA insertions 

and point mutations, that results in an auxin-resistant phenotype.  

A number of genetic and biochemical analyses have revealed that TIR1 itself binds auxin 

and acts directly as a receptor in this response. Indeed, partial or complete loss of function 

mutants in TIR1 subunits or its regulators exhibit auxin resistant phenotypes, suggesting that 

the targets of TIR1 are negative regulators of auxin signalling [43,44]. 
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Fig. 6 Schematic diagram of auxin functioning as a „molecular glue‟ to enhance TIR1–substrate interactions. In
contrast to an allosteric mechanism, auxin binds to the same TIR1 pocket that docks the Aux/IAA substrate.
Without inducing significant conformational changes in its receptor, auxin increases the affinity of two proteins by
simultaneously interacting with both in a cavity at the protein interface [42].

 So far, it is possible to say that the SCFTIR1 complex (including the bound Aux/IAA 

substrate) holds the binding site, although Aux/IAA proteins do not bind IAA, they might 

contribute to a composite binding site. The SCF TIR1 receptor system is always beautifully 

functional. By controlling the free concentration of transcription factors, small errors are 

buffered, but once SCF TIR1 is activated and transcription promoted, amplification of many 

auxin-regulated genes will be rapid and very specific.  

Fig. 7 Regulation of ASK1-TIR1-Aux/IAA auxin receptor complexes. Indole-3-acetic acid (IAA) is the
major natural auxin but other auxinic compounds, including a-Naphthalene aceticacid (1-NAA), 2,4-
Dichlorophenoxyacetic acid (2,4-D) and 4-Amino-3,5,6-trichloropicolinic acid (picloram) promote
auxin specific responses in the root or shoot of the plant. These compounds and other natural
auxins may bind to the promiscuous auxin binding pocket of TIR1 with different affinities [45].

Response specificity is conferred at several complements, by the receptor‟s binding site for 

active auxins, by TIR1‟s specificity for Aux/IAAs and also by the specificity of auxin 

response elements for ARFs [45] (Fig 7). 
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IV.2 Auxin receptors: the role of ABP1 

A huge step in the elucidation of auxin soluble receptors was made in 2005 after 

discovering of the receptor function of transport inhibitor resistant 1 (TIR1) protein. In 

addition, another putative auxin receptor, the AUXIN BINDING PROTEIN1 (ABP1) was 

isolated based on its capacity to bind auxin and is involved in a set of early auxin responses 

such as rapid activation of ion fluxes at the plasma membrane [46].  The ABP1 is encoded by 

a small gene family in Arabidopsis, and varies in the number of genes and their localization in 

different plants [47,48]. The protein has two conserved domains, Box A, responsible for auxin 

binding, and Box B, as well as a C-terminal KDEL tetrapeptide for ER targeting, are present 

in the ABP1 structure [46,49] as shown in Fig  8. 

The ABP1 has long been characterized as an essential component of early auxin action at 

the plasma membrane but its role in downstream responses had remained elusive until 

recently. The identification of an Arabidopsis ABP1 gene knocked out exhibited 

developmental arrest at early embryogenesis stage [50]. Developmental map of gene 

expression in Arabidopsis revealed that ABP1 (At4g02980) exhibits a fairly constant 

expression in almost all tissues throughout vegetative plant development suggesting that its 

role is not restricted to embryo development [51,52]. It has also been shown that ABP1 is 

required for post embryonic shoot development and root growth in a context-dependent 

manner [53,54] as shown in Fig 9. Addition of ABP1 to protoplasts from tobacco leaf cells 

enhanced the sensitivity to auxin 100- to 1000-fold. It was suggested that an over-expression 

of ABP1 enhanced the sensitivity of guard cells to auxin [55]. 
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Fig. 8 Pile-up of ABP1 sequences. ABP1s are listed against their genus names. Conserved residues are
shown in bold type. A consensussequence is shown at the foot and lower case letters represent residues not
conserved. Two boxes of completely conserved residues are outlined, Boxes A and B, and a third box with
high identity is labelled Box C. Several sequence motifs are listed; glc represents N-glycosylationsites, KDEL
the ER retention motif, the residues listed in the shaded boxes represent the core cupin motif and the peptide
reported to carryphoto-activated IAA [49] is labelled peptide 11 [46].

        The sequence and structure of ABP1 classify the protein as a soluble protein, but so far 

ABP1 has been exclusively found at the plasma membrane. Accordingly, the protein is 

localized in the ER, at least in higher plants, but a whole body of biochemical and functional 

evidence supports that ABP1 is located and acting at the outer face of the plasma membrane 

[46,56] as shown in Fig10. 
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Fig. 9 A model for ABP1 mediated auxin responses in roots. The permissive effect of auxin on cell division is
dependent on ABP1. In root stem cells, the D-type CYCLIN/RETINOBLASTOMA (RBR) pathway acts downstream of
ABP1 and controls the G1/S transition. In meristematic cells, ABP1 might also affect the D-type CYCLIN/RBR
pathway but other critical regulators of the G1/S transitionphase are dependent on ABP1 activity. ABP1 contributes
to the auxin control of cell elongation by modulating a zone of competence for PLETHORA and by acting on the
auxin-mediated regulation of Aux/IAA transcriptional repressors. It is worthwhile noticing that expression of PLTs
was reported to be regulated downstream of ARF transcription factors (Auxin Response Factors) and consequently
of Aux/IAAs. ABP1 might act indirectly on PLT via Aux/IAAs regulation. It is well established that regulation of gene
expression by auxin involves the TIR1 receptor which, within the SCFTIR1 E3 ligase, controls the degradation of
Aux/IAA repressors. ABP1 and TIR1 might collectively control gene regulation and elongation [54].

  
 

Fig. 10 Hypothetic model for ABP1 targeting at the plasma membrane. ABP1 is located in the
endoplasmic reticulum (ER) and at the outer surface of the plasma membrane. The protein is
always associated with membrane fractions despite the absence of an intrinsic hydrophobic
domain. The targeting of ABP1 to the Plm has beenhypothesized to result from the interaction of
its C-terminal domain with another protein, thus masking the KDEL ER-retention motif. The
identification of C-TERMINALBINDING PROTEIN 1(CBP1), as a protein interacting with a synthetic
peptide corresponding to the C-terminus of Zm-ABP1, supports this suggestion. Interaction of
ABP1 with the GPI-anchored protein CBP1 might promote targeting of ABP1 to the Plm with CBP1
acting as a carrier. Interaction of ABP1 with CBP1 is however not confirmed yet.The involvement
of a third component for the transduction of the signal after binding of auxin to ABP1 cannot be
ruled out [56].

 
ABP1 is important throughout the life of plants, including embryogenesis, and 

differentially affects the cells depending on the developmental context. All experimental data 
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support that ABP1 is a crucial component of auxin signaling and can be considered as the 

auxin binding subunit of a plasma membrane auxin receptor.  

So far, there are two clear auxin perception receptors, one involving ABP1 and the other 

TIR1/AFBs, as shown in Fig 11. The broad variety of auxin effects is likely to require both 

ABP1 and TIR1 coordinately control the physiological events in plants. In addition, a recent 

research showed S-Phase Kinase-Associated Protein 2A (SKP2A), as another candidate 

protein for auxin receptor, containing in the auxin signal pathway [57]. 

Fig. 11 Model of auxin signal transduction. The receptor ABP1 is depicted as a dimer in complex with a
transmembrane “docking protein.” ABP1 triggers a number of typical signaling pathways in the cytosol (Scherer,
2011). These responses include the phosphorylationstatus of PIN proteins (not shown in drawing) and control of
endocytosis/exocytosis balance (Kleine-Vehn & Friml, 2008). Several PIN proteins, including PIN 1, PIN 2and PIN 3
are integrated into cell polarity and auxin efflux transport toregulate extracytosolic auxin concentration and, thereby,
polar auxintransport and tropisms. Indirectly, they may also regulate cytosolicauxin concentration as is assumed for
PIN 5 which is localized to theER. This localization is postulated to increase nuclear auxin concentrationwhere it is
sensed by the receptor TIR 1. Formation of the ternary complex [TIR 1 x auxin x IAA] leads to ubiquitination of IAA
proteins and their hydrolysis by the proteasome. At least PIN 2 and PIN 3 are regulatedby phosphoryation and rapid
transcriptional responses. TIR 1 is alsoassumed to be the relevant receptor for ABP1 transcriptional regulationso
that ABP1, PIN s and TIR 1 are a completely interlocking system oftwo receptors linked by auxin transport. Other
systems of two or morereceptors for one signal where one receptor is closely associated toregulation of
proteasomal activity are known or likely in plants [32].  
IV.3 Auxin early response genes and auxin responsive element, AuxRE 

Auxin rapidly and transiently induce the expression of hundreds of genes with minutes 

[58] .The early auxin-responsive genes can be classified into three major families: SMALL 

AUXIN-UP RNAs (SAURs), GRETCHENHAGEN (GH3)-related transcripts and 

Auxin/INDOLE-3-ACETIC ACID family members(Aux/IAA). 

SAUR. Small auxin-up RNAs (SAURs) are the early auxin-responsive genes represented 

by a large multigene family in plants. SAURs were originally identified in auxin-treated 

soybean elongating hypocotyl sections [59]. Auxin induction of soybean SAURs was 

transcriptionally regulated and specific for active auxin [60]. Sequence analysis of three 

soybean SAUR cDNAs and genes revealed that the genes contain no introns [60]. 
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Subsequently, Auxin-inducible SAURs have also been identified in mung bean [61],  

Arabidopsis [62], tobacco [63], maize [64] and rice [65]. In Arabidopsis, there are over 70 

SAUR genes which appear to be lack of introns with only one exception AtSAUR11. As like in 

soybean, most of the SAUR genes in Arabidopsis are found in clusters. In rice, 58 OsSAUR 

gene family members were identified and also the coding sequences of OsSAURs do not 

possess any introns. The SAURs encode highly unstable mRNAs with a very high turnover 

rate due to the presence of a conserved downstream (DST) element in their 3-untranslated 

regions [66].  

The SAUR proteins remain largely uncharacterized. Recently, It has been reported that 

ZmSAUR2, a nuclear-localized Zea mays SAUR protein, are shortlived, with a half-life of 

about 7 min [64]. Expression of SAUR19 subfamily members in Arabidopsis confers 

numerous auxin-related phenotypes indicative of increased and/or unregulated cell expansion 

[67]. In addition, the calcium-dependent in vitro binding of SAUR proteins with calmodulin 

has been demonstrated, which provides a link between the Ca2+/calmodulin second 

messenger system and auxin signalling [64,68]. 

GH3. Gretchen Hagen 3 (GH3) genes were a large multigene family and originally 

identified in Glycine max (soybean) as responsive to the phytohormone auxin [69]. GH3 

mRNA is transcriptionally induced within 5 minutes of auxin treatment, and is specifically 

induced only by active auxins [70]. By contrast, soybean GH3 mRNA levels are unaffected 

by treatment with protein synthesis inhibitors [70,71]. Up to now, GH3 genes has been 

identified in many plant species [72], which can be devidied into four different types, 

Chlorophyta, Bryophyta, Coniferophyta, and Magnoliophyta. In Arabidopsis thaliana, several 

genes were identified in genetic screens for altered phytohormone-mediated responses, 

including DFL1 [73] and  JAR1 [74]. 

All of the GH3 genes encode proteins with predicted molecular masses of 65–70 kDa. It 

has been shown plant GH3 proteins can be divided into three major clades, identified as 

Groups I, II, and III [74,75]. Groups I and II contained genes from many more species than 

Group III, the latter containing genes from only three species, Arabidopsis thaliana, Brassica 

napus, and Gossypium hirsutum [72]. In Arabidopsis, Group I was composed of two proteins, 

AtGH3.11(JAR1), that adenylated jasmonic acid (JA) in vitro and displayed JA-amino 

synthetase activity and AtGH3.10 (DFL2) that doesn‟t have these capabilities [76]. Group II 

contains most of the members, including AtGH3.2 (YDK), AtGH3.5 (AtGH3a), AtGH3.6 

(DFL1), and AtGH3.17, which were able to adenylate indolacetic acid (IAA) and to catalyze 

IAA conjugation to amino acids through amide bounds [74,77]. In addition, AtGH3.6, 
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AtGH3.5 and AtGH3.17 might be the targets of the auxin response factor ARF8 [78]. There 

was no adenylation activity on the substrates tested found in group III. 

Fig. 12 Maximum likelihood phylogenetic tree of Arabidopsis GH3 proteins and expression in response to biotic 
and abiotic stress [79].

 
Recently, GH3 genes showed different responses to a variety of stimulus [79] (Fig. 12). The 

fin219 (far-red-insensitive 219) mutant was isolated as a suppressor of a mutation in a key 

regulatory component of photomorphogenesis, COP1 [80]. The fin219 mutant plants display a 

long hypocotyl phenotype when grown under continuous far-red light. The dominant dfl1-D 

(dwarf in light 1) mutant was selected in a screen for hypocotyl length mutants from 

Arabidopsis activation-tagged lines [73]. Both hypocotyl cell elongation and lateral root 

formation are inhibited in the dfl1-D mutant in the light. Furthemore, Overexpression of 

AtGH3.6, AtGH3.10, and AtGH3.2 [73,81,82]  produced short hypocotyl in light (YDK also 

in dark) but only adult plants overexpressing AtGH3.6 and AtGH3.2 resulted in a dwarf 

phenotype. Most recently, the GH3 family encodes the enzyme that catalyzes the conjugation 

of IAA with an amino acid to yield an inactive storage form of IAA [83,84]. In total, the 

above evidence suggests GH3 genes are clearly implicated in the regulation of plant 

phenotype, an agronomical trait of great relevance.  

 

Aux/IAA. Aux/IAA gene was first isolated from soybean hypocotyls [85]. Subsequently, 

many Aux/IAA  genes have been characterized based on the analysis of gain-of-function 
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mutants in Arabidopsis [86], tomato [87,88] , rice [89]  and maize [90].  Aux/IAA genes are 

present as multigene families in plants. Arabidopsis contains 29 Aux/IAA genes and most of 

them are induced by auxin and show a range of induction kinetics except Aux/IAA 28 [91,92]. 

In rice, a total of 31 Aux/IAAs distributed on 10 of the 12 chromosomes (except chromosome 

4 and 10) have been reported [93] . In tomato, it has been shown that a total of 26 Aux/IAAs 

distributed on 9 of the 12 chromosomes (except chromosome2, 10 and 11) and IAA4, IAA9, 

IAA22, IAA29 and IAA32 proteins were located in the nuclus of the tobacco protoplasts 

fused with –GFP (green fluorescent protein) or –YFP (yellow fluorescent protein), suggesting 

that Aux/IAA proteins are nuclar localized [94,95].  In maize, a total of 31 Aux/IAA genes 

were also identified, which are distributed in all the 10 chromosomes except chromosome 2 

[96]. Until now, 17 IAA genes in potato genome, 35 Aux/IAA genesin Populus genome and 

several IAA genes in tobacco have been reported [97,98]. 

Aux/IAAs proteins generally range in size from 20 to 35 kDa. They are short-lived and 

localize to the nucleus as previous described. So far all the Aux/IAAs are characterized as 

repressor of auxin response [99]. It has been found four highly conserved domains (Fig 13). 

Domain I of Aux/IAA functions as an active repression domain and contains a conserved 

Leu-rich (LxLxL) motif that is located in the ethylene response factor-associated amphiphilic 

repression (EAR) motif [99]. Domain II contains a WPPV motif that is responsible for the 

stability of Aux/IAA proteins and directly binds to the TIR1/AFB auxin receptors in an auxin-

dependent manner [100]. Domain III contains a predicted βαα fold, which has been 

characterized in DNA-binding domains of Arc and Met J repressor proteins [101]. Domains 

III and IV of the Aux/IAA proteins contain a protein-protein interaction domain that shares a 

homology with the C-terminal domain (CTD) of ARF proteins [102].  

Fig. 13 Diagram of an Aux/IAA protein with conserved domains I, II, III and IV [111].

 
Aux/IAA family genes play an important role in many aspects of plant responses to auxin. 

In Arabidopsis, it has been shown that iaa28-1 may act as transcription repressor in promoting 

lateral root initiation in response to auxin signals [103]. IAA14 was regarded as a fundamental 
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regulator in lateral root formation as its mutant completely lacked lateral roots [104]. In 

tomato, antisense down-regulation of Sl-IAA3 resulted in the alteration of auxin and ethylene-

related phenotypes, such as apical dominance, auxin sensitivity, apical hook and petiole 

epinasty [87]. While Sl-IAA9 was down-regulated, the antisense lines exhibited simple leaves 

instead of compound leaves, and fruit development was triggered before fertilization, giving 

rise to parthenocarpy [88]. Most recently, it was shown that Sl-IAA15 was involved in 

trichome development as IAA15-inhibitedd lines displayed strong reduction of type I, V and 

VI trichomes[105]. Likewise, suppression of Sl-IAA27 gene revealed multiple phenotypes 

related to vegetative and reproductive growth, including higher auxin sensitivity, altered root 

development, reduced chlorophyll content in leaves, dramatic loss of fertility and enlarged 

placenta and small fruits [106]. Taken together, these phenotypes uncover specialized roles 

for Aux/IAAs in plant developmental processes, clearly indicating that Aux/IAA gene family 

members perform both overlapping and specific functions in plant.  

AuxRE. The promoters of several auxin-responsive genes, like SAURs, GH3 and 

Aux/IAAs, shared a common sequence which had been identified as a six-base pair sequence, 

TGTCTC or variants [107,108]. This element known as Auxin Responsive Element (AuxRE), 

was first identified from the promoter region of the pea Ps-IAA4/5 gene[109].  AuxREs were 

functional in both composite and simple auxin-response elements (Fig. 14). In composite 

AuxREs, the TGTCTC element is only functional if combined with a coupling or constitutive 

element [110]. For simple AuxREs, which derived from the alteration of naturally occurring 

AuxREs, may function in the absence of a coupling element with the TGTCTC elements 

occurred as direct or palindromic repeats. And usually, the simple AuxREs are 5–10 times 

more auxin-responsive than natural AuxREs [111]. 

In the last two decades, natural AuxRE promoter-reporter constructs have often been 

used to study organ and tissue expression patterns of auxin-responsive genes. Synthetic 

AuxRE-reporter genes have been used to monitor cell and/or tissue responses to endogenous 

auxin in wild type and mutant plants carrying the reporter gene [112,113]. More recently, 

genome-wide profiling experiments have revealed a lot of auxin-induced genes, which 

contain AuxREs in putative regulatory regions [114,115]. 
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Fig. 14 Composite and simple AuxREs. The TGTCTC elements or inverted GAGACA elements are indicated by
arrows. The coupling or constitutive elements in the D1 and D4 promoter fragments of the GH3 gene are indicated
by the underlines. P3 (4X) contains an everted repeat separated by 7 bp, which is identical to ER7, and an inverted
repeat separated by 3 bp. ARF1 protein was shown to bind to the ER in a P3 (4X) probe (Ulmasov et al, 1997a). DR5
is a direct repeat, and DR5R is the inverse of the DR5 repeat; both are active AuxREs, indicating that the orientation
of the DR has no effect on activity [111].

 
IV4. Auxin Response Factor (ARF) 

Auxin response factors (ARFs) are transcription factors in the auxin signal pathway 

which bind with specificity to TGTCTC auxin response elements (AuxREs) to regulate the 

primary/early auxin response genes, such as GH3s, SAURs and Aux/IAA genes [116]. ARF is 

a large gene family recruiting Aux/IAA repressors to confer an auxin response to functional 

genes. ARF gene family functions by activating or repressing auxin response genes.  Recent 

advances have revealed that ARF family genes play a critical role in a host of developmental 

process, such as embryo patterning [117], leaf expansion and senescence [118], lateral root 

growth [119], floral organ abscission and petal growth [120,121], fruit set and development 

[122,123,124] and apical hook formation[125], as well as various responses to environmental 

stimuli. In addition, ARF family genes are involved in the interactions between auxin and 

gibberellins [126], auxin and ethylene [127], auxin and ABA [128] and also brassinosteroid 

response [129]. Studies employing different species have indicated that a total of 23 ARF 

genes from Arabidopsis, 25 ARF genes from rice (Oryzasativa) [130], 39 ARF genes from 

Populus trichocarpa[97], 24 ARF genes from sorghum (sorghum vulgare) [131] and 31 ARF 

genes from maize [132] have been identified, respectively. Most recently, 22 ARF genes have 
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also been isolated from tomato (Solanum lycopersicum) genome comparing with AtARF genes 

[133,134]. 

 A typical ARF protein consists of  an amino-terminal DNA binding domain (DBD), a 

middle region (MR) that functions as an activation domain (AD) or repression domain (RD), 

and a carboxy-terminal dimerization domain (CTD) (Fig. 15) [135]. The ARF DBD is 

identified as a plant-specific B3-type, which requires additional amino-terminal and carboxy-

terminal amino acids for efficient in vitro binding to TGTCTC AuxREs [136]. The modular 

nature of ARF DBDs has been checked by carrying out domain swap experiments with the 

DBDs of an ARF repressor and an ARF activator and the results showed DBDs targeted to 

AuxREs was independently of ARF MRs and CTDs [137]. The ARF MRs is located just 

between the DBDs to the CTDs and contains biased amino acids. The ARF ADs are rich in 

glutamine (Q), serine (S), and leucine (L) residues while ARF RDs are rich in proline (P), 

serine (S), threonine (T), and glycine (G) residues. The identification of ARF ADs and RDs 

were demonstrated by fusing the ARF middle regions to yeast GAL4 DBDs and the results 

indicated that ARF MRs function as repression or activation domains in an auxin-independent 

manner [138,139].  

Fig. 15 The ARF family of transcription factors in Arabidopsis. The ARF family consists of five
transcriptional activators (ARF5–8 and 19) with an AD that is enriched in glutamine (Q), serine (S), and
leucine (L). The remainder of the ARF family is thought to consist of transcriptional repressors with an
RD that is usually enriched in serine(S) and in some cases proline (P), leucine (L), and/or glycine (G).
All of the ARFs contain a conserved DBD; however, the DBD in ARF10, 16, and 17 contains an
additional 32–36 residues (indicated in blue within the DBD), and ARF23 contains only a truncated
DBD. ARF3,13, and 17 lack the conserved CTD found in most ARFs [138].

        The ARF CTDs contribute to formation of either ARF/ARF homo- and hetero-dimers or 
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ARF/Aux-IAA hetero-dimers (Fig. 16), which were based on the results in yeast two-hybrid 

assays with selected ARF CTDs and Aux/IAA proteins [107,108,140] as well as in protoplast 

transfection assays [138,139]. ARF activators with a CTD truncation activate auxin response 

genes constitutively in transfected protoplasts, suggesting that ARF CTDs is required for an 

auxin response but not ARF DBDs and MRs [137]. 

Fig. 16 Domain properties of auxin response factor (ARF) and auxin/ indoleacetic acid (Aux/IAA) 
proteins [141].

 

Since cloning of the first AtARF1 gene from Arabidopsis, 23 members of this family, 

distributed over all five chromosomes have been identified [141]. The function and 

characterization of most AtARFgenes was revealed by mutant analysis approach (Fig. 17 and 

18), for example, arf1 and arf2 T-DNA insertion mutation indicated ARF2 regulated leaf 

senescence and longevity [118] as well as floral organ abscission, and ARF1 acted in a 

partially redundant manner with ARF2 and increased transcription of Aux/IAA genes in 

Arabidopsis flowers as a transcriptional repressor [120]. The arf7 and arf19 mutations were 

also found to enhance arf2 mutation phenotypes as transcriptional activators. And the 

arf7arf19 double mutant had stronger auxin resistance than the single mutant and displayed 

phenotypes not seen in the single mutant [127]. The arf8 mutants were reported to regulate 

fertilization and fruit development, such as arf8-1 showed a long-hypocotyl phenotype in 

either white, blue, red or far-red light conditions [78], arf8-3 mutant indicated a significantly 

larger petal than that of the wild type[121], arf8-4 mutant results in the uncoupling of fruit 

development from pollination and fertilization and gives rise to big and parthenocarpic fruit 

[122], and arf6 arf8 double mutant flowers arrested as infertile closed buds with short petals, 

short stamen filaments, undehisced anthers and immature gynoecia [142]. Up to now, the 

roles of most ARFs in Arabidopsis have been identified, in detail, ARF1 plays a role in 

developing flowers [120], ARF2 in developing floral organs and in light-grown or dark-grown 

seedlings [120,143,144], ARF3 and 4 in developing reproductive and vegetative tissues 

[145,146], ARF5 in developing embryos and vascular tissues [147,148], ARF6 in developing 

flowers [142], ARF7 in seedlings, roots, and developing embryos [149,150], ARF8 in 

seedlings and developing flowers and fruits [78,122], ARF10 in serrated leaves, curled stems, 



- 34 - 
 

contorted flowers and twisted siliques[151], ARF16 in the basal region of embryos, root caps, 

vascular tissue of roots, and leaves [152], and ARF19 in seedlings, leaves and lateral 

roots[150,153]. Furthermore, AtARF genes fall into related sister pairs on the chromosome 

and may have overlapping functions during different developmental processes, including 

ARF1 and 2, 3 and 4, 5 and 7, 6 and 8, 7 and 19, or ARF10, 16 and 17 [142,154,155].  

Fig. 17 Location of T-DNA Insertions in the ARF Gene Family Members. Boxes represent exons. T-DNA
insertions with gray triangles denote lines whose characterization has been completed. T-DNA
insertions with white triangles denote lines not yet characterized [144].

 
In tomato, it has been reported that down-regulation of Sl-ARF2B resulted in a color 

change in fruit break stage and partly pathenocarpic fruits (unpresented data). Also, down-

regulation of Sl-ARF4 (DR12) in the tomato resulted in a pleiotropic phenotype including 

dark green and blotchy ripening fruit [156]. Recently, down-regulation of Sl-ARF7 gene in 

tomato produced parthenocarpic fruit, showing different form in contrast to wide type fruit 

[157]. Moveover, the mutant mSl-ARF10 (Sl-miR160a-resistant version) plant developed 

narrow leaflet blades, sepals and petals, and abnormally shaped fruit [158]. 
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Fig. 18 Phenotypes of Mature Mutant Plants. Three wild-type (left) and three mutant plants (right) are shown.
The plants were grown at the same time. White dots indicate the boundaries between the wild-type and the
mutant plants [144].

         Recently, the post-transcriptional regulation of ARF transcript abundance by several 

microRNAs (miRNAs) has been found to play specific roles in regulating plant growth and 

development [159]. For example, the miR160 is complementary to ARF10, ARF16, and 

ARF17 and regulates gene expression by directing mRNA cleavage [160]. It has been shown 

that over-expression of miR160 in Arabidopsis reduced root length, increased lateral root 

number and suppressed root gravitropism [152], while disruption of miR160, acting on 

ARF17 (mARF17), led to severe developmental abnormalities, as like prior description 

mARF10 in tomato. The miR167 is complementary to ARF6 and ARF8 and over-expression 

of miR167 mimicked the phenotypes of arf6arf8 double mutant, showing ectopic ovules and 

abnormal anthers [161,162]. Moreover, the phenotypic plasticity of adventitious rooting in 

Arabidopsisis controlled by complex regulation of ARF6, 8 and 17, correspondence to 

miR160 and 167 (Fig. 19) [163]. Taken together, the miRNA-based regulation of ARFs in 

auxin signal pathway is essential for Arabidopsis growth and development. 
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Fig. 19 A model Integrating the regulatory loops between ARF and miRNAs in the control of
adventitious rooting based on results obtained in this study [163].

 
To investigate the roles of ARF transcription factors in auxin action, identification of the 

potential target genes under the direct transcriptional control of ARFs has been to the point. 

Recently, several methods including differential hybridization, protoplast transfection assays, 

transcript profiling using microarrays of auxin-induced genes, as well as microarrays from 

auxin signaling mutants, have been performed [147,164,165,166]. As been known, ARFs can 

bind specifically to the AuxREs within the promoters of early/primary auxin response genes, 

thus those genes containing the AuxRE sequences TGTCTC or GAGACA in their promoter 

regions have been of specific interests. Some reports have shown that ARF7 plays a major 

role in regulating a wide variety of early/primary auxin response genes in Arabidopsis 

seedlings [149,167]. ARF5 and 19 appear to be involved in activating expression of some 

Aux/IAA genes (e.g. IAA1 and 19) [164,167]. In floral tissues, arf6 arf8 double mutants 

display lower expression of a SAUR clade (SAUR62–SAUR67) as well as a subset of Aux/IAA 

genes, suggesting that ARF6 and 8 may activate at least some auxin response genes in 

reproductive organs [142]. In accordance, some ARF genes in Arabidopsis might bind to 

GH3’s promoters to regulate gene expression. ARF8 was proved to regulate the expression of 

three AtGH3 genes, AtGH3a, DFL1, and YDK1 [78]. These genes were down-regulated in 

arf8-1 mutant and up-regulated in ARF8-sense lines, suggesting that ARF8 probably 

maintains auxin homeostasis in vivo by positively regulate expression of GH3, which leaded 

to adenylating IAA to form IAA-AA. In addition, an auxin signal pathway containing 
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microRNA167-ARF8-GH3-IAA pathway in rice has been founded recently [168], which 

further proved that GH3s are the target genes of ARF8 in the downstream of auxin signalling 

pathway. It is also interesting that a mutant gene Fer1-1 acted synergistically with the ARF8 

gene to control the development of the anther and filament in Arabidopsis[169] and AtARF8 

interacts with BPEp to affect petal growth and development. The petals of bpe-1arf8-3 double 

mutants are significantly larger than those in wide type [121]. Otherwise, over-expression of a 

microRNA160-resistent ARF17 mRNA, showing that ARF17 could negatively regulate gene 

expression of GH3-5, DFL1 and positively regulate gene expression of GH3-2 and 

YDK1[170]. By contrast, ARF7 mutation causes reduced expression of some GH3 genes 

including YDK1, showing that ARF7 regulates the expression of YDK1 once again [82,171]. 

Recently, Okushima et al. described ARF7 binding to the AuxREs in promoters of two 

ASL2/LOB genes in vitro activated their expression in an auxin-dependent manner in 

arf7arf19 mutant lines [172].  

 

Conclusion: Genetic and molecular/biochemical experimental approaches have provided 

a large part of preliminary evidence that both ARF and Aux/IAA proteins function as 

transcription factors on primary auxin-response genes. Regulation of gene expression by 

auxin will surely be interesting and complicated. So far, our understanding remains limited by 

ARF and Aux/IAA transcription factors involved. Based on the current model, when auxin 

concentrations are low, auxin response genes are repressed due to the dimerization of 

Aux/IAAs and ARFs by domains III and IV. These heterodimers might determine whether or 

not an ARF transcription factor is bound to its TGTCTC target site. When auxin 

concentrations are increased, transcription is rapidly derepressed or activated due to the 

dissociation of Aux/IAA repressors from their ARF counterparts, while the Aux/IAA proteins 

were subsequently degradated by the ubiquitin/proteasome pathway. As of the transcriptional 

regulation, there are two patterns, one alterlative is, tissue-specific expression of ARF and 

Aux/IAA proteins could determine which ARF can target an AuxRE and which Aux/IAA 

protein can interact with an ARF to regulate the transcription of auxin response genes. The 

other is, transcription activation could be further potentiated by the binding of additional ARF 

activator to the DNA-bound ARF. However, there are also some questions need to be 

addressed. How does this model explain what role of ARF repressors, like ARF1 and ARF2? 

Do Aux/IAA proteins possess intrinsic repressor activity? Is there selectivity in the types of 

Aux/IAA and ARF homo- and heterodimers (or multimers) that can form? What role, if any, 

do Aux/IAA homodimers or Aux/IAA heterodimers play in auxin-responsive transcription? 
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Thus far, our understanding of the signal transduction pathway from auxin perception to gene 

expression is still rudimentary, progress is being made and interesting challenges remain. 

 

V. The physiological role of auxin in plant development 
The plant hormone auxin as a central hormone is necessory for a number of plant growth 

and developmental processes as well as in many environmental and stress responses. One of 

the most profound actions of auxin on plants is the control of cell division. Accordingly, 

higher auxin concentrations stimulate cell division, and low auxin concentrations stimulate 

cell elongation and enlargement, and cell differentiation [173]. Regulation of organ patterning 

is another critial role of auxin, such as phyllotaxis, root initiation and gravitropism. 

Phyllotaxis is the regular arrangement of leaves on a stem. The accumulation of IAA in cells 

at the side of the shoot apical meristem startes organogenesis and determines the position of 

next leaf primordium. Generally, auxin is transported into roots and stimulates the initiation of 

lateral roots, which the specific PIN proteins, as PIN4 and AUX1 proteins is involved in this 

action [24]. In addition, auxin controls the apical dominance and shoots branching.  It has 

been known for several years that auxin transported down from shoot apex controls the 

outgrowth of shoot branches from axillary buds. It also has been shown that auxin gradients, 

generated by polar auxin transport, have been implicated in tropisms. Adventitious rooting 

formation is also closely related to auxin induce. Addition of auxin to damaged stems often 

induces a strong adventitious rooting response, and this has been made good use in 

horticultural industries. As known, auxin plays a critial role in fruit development and 

maturation. It has been postulated that auxin is produced by the elongatation of pollen tubes 

and after by the embryo and endosperm in the developing seeds. Parthenocarpy has been 

induced in tomato by down-regulated DR12 (ARF4), a transcription factor in auxin singal 

pathway [156]. Today, the largest commercial exploitation for auxin is the use of synthetic 

auxins as selective herbicides, like 2,4-D and NAA [174]. The genetic data have showed the 

target sites for auxinic herbicide seems to be the auxin receptors. As more auxin receptors 

become known, auxins as agrochemicals are also growing.  

 
VI. Tomato as a model plant for fleshy fruit development 

Tomato (Solanum lycopersicum) is the center piece of the Solanaceae family and has 

worked widely as a model system of fleshy fruit development and ripening due to the 

following reasons. Firstly, tomato is a short-lived perennial, grown as an annual, 5-6 months. 

The fruit development usually goes through several remarkable stages, including ovary 
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development, fruit set, developing fruit (8 DPA), young fruit, green fruit, breaker stage, pink 

stage and ripening (Fig. 20). Secondly, there are extensive germplasm collections, well 

characterized mutant stocks, high-density genetic maps, immortalized mapping populations, 

efficient transient and stable transformation, deep expressed sequence tag (EST) resources, 

microarrays and an ongoing genome sequencing database (http://solgenomics.net/) and all 

these efforts contribute to the utility of this experimental system. In addition, well 

characterized ripening mutations, a long history of biochemical and molecular investigations 

related to fruit development and maturation and most interest in the species as a major crop, 

have made considerable effort on the understanding of ripening in tomato [175]. 

Fig. 20 Tomato fruit development can be divided in five phases: ovary development, fruit set, cell division 
phase, cell expansion phase and ripening [188]. 

 
        VI.1 Fruit set and phytohormones 

The shift from the static flower ovary to fast-growing young fruit is a phenomenon 

known as fruit set, and this is a key step in the development of all the sexually reproducing 

higher plants. Generally, fruit set is triggered after pollination and successful fertilization of 

the egg cells in the ovules and requires a tight coordination among molecular, biochemical, 

and structural changes. In the case of tomato (Solanum lycopersicum), fruit set is the first 

phase of fruit development, which contains the initiation of the floral primordial and carpel 

development up to anthesis, after that, if it is pollinated and fertilized, the flower will resume 

the process, resulting in fruit set; or the carpel will senesce in the natural situation [176]. As 

an alternative pathway of fruit production, parthenocarpy promotes the ovary growth into the 

fruit without fertilization and seed formation, under the guidance of exogenous hormone 

treatment or endogenous, genetic stimuli. 

Phytohormones are considered to be important mediators of fruit set signalling after 

pollination and fertilization. In 1936, Gustafson was the first to demonstrate that the 

application of substances closely related to auxins onto the tomato stigmas stimulates the 

ovary into seedless fruits [177]. Shortly thereafter, a second type of growth substance, 

gibberellins (GAs) can also stimulate parthenocarpic fruits and gibberellin-like hormones 
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were identified in different families of flowering plants [178], suggesting that gibberellins are 

also involved in the fruit set programme. In tomato, pollination signals and senescence leaded 

to an increase in ethylene synthesis followed by a decrease at 72 h after anthesis [179] and the 

decrease in ethylene biosynthesis and signaling genes in the ovaries of tomato flowers at 

3DPA in pollinated or GA3 treated ovaries [180]. Recent years, many studies have 

contributed to the role of phytohormones in tomato (Solanum lycopersicum) fruit set relying 

on the transcriptome analysis of ovaries by several approaches, such as microarray, cDNA-

amplified fragment length polymorphism (AFLP), Real-Time qRT-PCR, GC-MS and 

isolation cDNA clones of genes encoding enzymes [181,182,183]. A comparative analysis 

between developing fruit and other plant organs showed that most genes active in the fruit are 

not exclusively expressed there, indicating fruit development depends on the regulation of 

gene activity both in time and intensity [184]. Another transcriptomic analysis of tomato 

carpel development revealed the differentially expression of hormone genes in parthenocarpic 

fruit set with respect to normal fruit set, including auxin related gene, as ARF family, IAA2, 

IAA10 and GH3-like; gebberellin related gene, as GASA5-like, DWARF3, GA2-oxidase, 

GA20-oxidase2 and 3; ethylene related gene, KNAT3, ACO5 and 3-keto-acyl-thiolase 2; 

abcisic acid related gene, as MOSC domain, ABA I zeaxanthin epoxidase and ABA-induced 

protein so on [181]. The similar analysis underlying pollination-dependent and -independent 

tomato fruit set showed that many genes involved in hormone response with different 

percentages (Fig. 21) [185]. In addition, Vriezen et al. [182] compared the transcriptomes 

from pollinated ovaries and gibberellin-treated ovaries, as expected, pollination triggered 

genes that were not all triggered after the application of GA3 and vice versa. Pollination 

appeared to have significant effects on the expression of the auxin signalling genes, such as 

Aux/IAA and ARF family genes [186]. In contrast to the previous model of fruit set, in which 

gibberellins might induce an increase in auxin content within the ovary [187], these data 

showed that auxin may act prior to gibberellin in the onset of tomato fruit development. 

Moveover, several genes involved in ethylene biosynthesis and ethylene signalling pathway 

decreased after pollination. As well as the expression of genes involved in ABA biosynthesis 

seemed to decrease while the mRNA levels in ABA degradation increases [188]. These data 

implied that the function of ABA and ethylene in fruit set may be antagonistic to that of auxin 

and gibberellin to keep the ovary in a temporally dormant state before pollination and 

fertilization (Fig. 22). 
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Fig. 21 Expression of hormone-related genes during fruit set [185].  

 
VI.2 Parthenocarpy and functional genes 

As previous description, parthenocarpy is the fruit set in the absence of pollination and 

fertilization and the ovary develops into a fruit without seed formation. Parthenocarpy is 

thought to be a desirable trait for many commercially grown fruits if undesirable changes to 

structure, flavour, or nutrition can be avoided. For example, the mutation of parthenocarpic 

fruit (pat) is of particular interest because of its strong expressivity and because it confers 

earlier ripening, higher fruit set and enhanced fruit quality [189]. Parthenocarpy has been 

currently extensively studied in tomato due to its application in unfavourable environmental 

conditions that reduce pollen production, anther dehiscence and lead to fruit set, such as in 

South European Countries when tomatoes are grown in winter or in unheated greenhouses or 

tunnels. Parthenocarpy in tomato can be induced by exogenous hormone treatments, such as 

auxins and gibberellins. However, such methods sometimes cause malformed fruit and 

vegetative organs, inhibit further flowering, and usually yield poor quality fruit [190]. 
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Fig. 22 Model for hormonal signaling in the tomato ovary after pollination/fertilization. The central
shaded squareshows auxin and gibberellin acting together to inhibit abscisic acid (ABA) and ethylene
biosynthesis and signaling in order to stimulate fruit set,either directly or in cooperation with other
factors such as polyamines and cytokinins. Dashed arrows show suggested interactions; auxin might
regulate gibberellin biosynthesis and signaling, and ABA and ethylene might act together in a
mechanism to prevent fruit set without fertilization [180].

         Generally, parthenocarpy is correlated with plant hormones in the ovaries, particularly 

auxins and gibberellins, which regulated the expression of fruit initiation genes during the 

critical period of anthesis and promoted the ovary growth independent of the pollination and 

fertilization. So far, genetic strategies offer effective approaches involving specific mutations 

or introduction of specific genes. In auxin signaling components, diageotropica (DGT) gene, 

which encodes for a cyclophyllin catalysing cis-trans isomerization of proline residues in 

peptides, was the first reported in tomato fruit set. The dgt mutants showed that fruit set, fruit 

weight, numbers of locules and seeds are all reduced [191]. Another recently identified gene 

AUCSIA, which is reduced by by RNA interference led to a pleiotropic phenotype, especially 

when the flower petals were emasculated before pollination [192]. In our lab, Jones 

demonstrated for the first time that down-regulation of Sl-ARF4 in tomato, resulted in a 

pleiotropic fruit phenotype including dark green and blotchy ripening fruit [156]. 

Parthenocarpic fruits have also been identified with the silencing of Sl-IAA9 [88], SIIAA27 

[106], Sl-ARF2B (unpublished data) and Sl-ARF7 [157], and mutations in the AtARF8 gene 

have been shown to induce parthenocarpy phenotype in tomato [123]. In contrast to Sl-IAA9, 

overexpression of Sl-TIR1 homologue resulted in a pleiotropic phenotype including 

parthenocarpic fruit formation and leaf morphology [193]. Nevertheless, most of the 
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parthenocarpic fruits were heart shaped and had a rather thick pericarp compared to the fruits 

in wild type (Fig. 23).  

Fig. 23 Phenotypic characteristics of the tomato fruit in wild-type and SlARF7-RNAi [157].

 
Several genes functioning in gibberellin biosynthesis and signaling cascade have been 

identified during fruit initiation recently. For example, the expression of a GA 20-oxidase 

gene was induced by pollination in tomato [194]. Reduction of Sl-DELLA mRNA levels 

induced facultative parthenocarpy in tomato fruit [195], in which, the pericarp contained 

fewer but bigger cells than wild type similar to the gibberellin-induced parthenocarpic fruit 

[196]. In addition, two knox genes, LeT6 and LeT12, may have a role to play in formative 

events in ovule and embryo morphogenesis in tomato. [197]. Recently, it has been shown Sl-

ARF7 may mediate the cross-talk between auxin and gibberellins signalling during tomato 

fruit set [126].  

Notably, in ABA pathway, several genes such as ABA RESPONSE ELEMENT BINDING 

PROTEIN 1, ABA INSENSITIVE1-like genes, and dehydrin genes, were found to be highly 

expressed in mature ovaries while their expression rapidly decreased after pollination [182]. 

In addition, LeNCED1 gene, encodes for an important regulator of ABA biosynthesis in 

tomato, and Sl-CYP707A1 gene, which was expressed specifcally in ovules and placenta, were 

found to regulate the abscisic acid levels in tomato ovaries [188]. Accordingly, ABA-deficient 

mutants, notabilis and flacca (not/flc) double mutant showed reduced fruit set and small fruit 

compared with wide type, suggesting that these two genes mingt act synergistically to control 

the fruit development. The Sl-PP2C1 gene, a homologue of AtABI1, which encode a negative 

regulator of ABA response, was differentially expressed in tomato ovaries during fruit set. 

Over-expression and co-suppression of Sl-PP2C1 in tomato leaded to ABA-insensitive and 

hypersensitive plants. Additionally, Sl-DRM1, a dormancy gene, is strongly regulated by 
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pollination, auxin and gibberellins through its 3‟-UTR and the mRNA is stongly localized in 

the ovules.  

As well known, ethylene plays a critical role throughout fruit ripening of tomato fruit. In 

fact, 1-aminocyclopropane-1-carboxylic acid oxidase 5 (ACO5) gene was clearly activated at 

anthesis in the parthenocarpic line with respect to the control in emasculated ovaries and 1-

Aminocyclopropane-1-Carboxilique Synthase (ACS) family genes were also found in the 

early stages of fruit development in tomato [198]. A recent research showed that over-

expression of Sl-TPR1, which was a tomato tetratricopeptide repeat protein interacting with 

the ethylene receptors NR and LeETR1, modulated ethylene and auxin responses to stimulate 

the parthenocarpic fruits in tomato (Fig. 24) and Arabidopsis [199]. Accordingly, it has been 

also shown that Ethylene Response Factor 4 (ERF4) was involved in the process of fruit 

development. The ERF4-SRDX lines showed a reduced size of tomato fruit and seed number 

(unpublished data). In brief, the plant hormone ethylene may activate with auxin and 

gibberellin to regulate tomato fruit set and development.  

Fig. 24 Altered fruit morphology in line
3273A overexpressing SlTPR1. (A) Control
and transgenic fruit with enlarged
columella (arrow) and no seeds. (B)
Transgenic fruits with a beak-like structure
and an attached style (arrows). (C)
Elongated pedicel without the knuckle
(abscission zone) in the transgenic fruit
compared with the wild-type fruit which
has a shorter pedicel with an obvious
knuckle (arrowed). (D) Senescing petals
attachedto the mature fruits. (E)
Comparison of the transgenic fruits with
the wild type at different developmental
stages. (F) Transgenic fruits on line
3273Afirmly attached to the pedicel 80 d
after ripening. (G, H) Fused multiple
parthenocarpic fruits produced by plants
developed from cuttings of line3273A
[199].

 

Otherwise, parthenocarpic fruits could be generated through ovule-specific expression of 

the iaaM or iaaH genes from Agrobacterium tumefacians, which affects the auxin 



- 45 - 
 

biosynthesis, and the rolB gene from Agrobacterium rhizogenes, which affects auxin 

responses [200,201]. As well known, flower development is largely under the control of 

transcription factors that belong to specific classes of MADS box homeotic genes, in which 

DEFICIENS (Sl-DEF) and TM29, were found to play roles in control of ovary growth in 

tomato [202]. It has also been domonstrated that down-regulation of TM29 gene resulted in a 

parthenocarpic fruit and an aberrant flower morphology, which the petals and stamens are 

partially converted to a sepaloid identity [203].  
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Objectives of the study 
 
The research carried out at the laboratory of Genomics and Biotechnology of Fruit deals with 

the regulation of fleshy fruit development and mainly focus on two important developmental 

shifts both leading to a change of the organ fate. The first transition leads from flower to fruit, 

the so-called fruit set, and the second one from unripe to mature fruit. The role of 

phytohormones in regulating fruit development is addressed mainly through the 

characterization of transcription factors known to mediate hormone responses. Within this 

framework, my thesis project focus on the mechanisms underlying the auxin-dependent 

regulation of the fruit set process. Previous studies performed by the GBF group and based on 

global gene profiling of the shift from the static flower ovary to a fast-growing young fruit 

indicated that among all genes related to hormone metabolism and signaling that show 

significant change in their expression, about one third are related to auxin [185]. In addition, 

an increase in auxin concentration occurs at the end of the fruit growth phase just before fruit 

ripening. Taken together, these data strongly suggest that auxin plays an important role in the 

fruit set and early development steps. To further decipher the mechanisms by which auxin 

mediates fruit initiation, the GBF lab set up a large program aiming at functional 

characterization of transcription factors known to regulate the expression of auxin responsive 

genes. ARFs and Aux/IAAs are two multigene families required for controlling the expression 

of auxin response genes. Previous work [156] demonstrated for the first time that down-

regulation of Sl-ARF4 in tomato, resulted in a pleiotropic fruit phenotype including dark green 

and blotchy ripening fruit.  Few years later, it was reported [122] that arf8-4 mutant in 

Arabidopsis resulted in the uncoupling of fruit development from pollination/fertilization and 

giving rise to parthenocarpic fruits. More recently, it was shown that silencing of Sl-IAA9 [88] 

and Sl-ARF7 [157] in tomato resulted in a fertilization-independent fruit set leading to 

parthenocarpic fruits. Nevertheless, it is obvious that there is more to learn about the 

molecular mechanism underlying the auxin-mediated fruit set. My research project aimed at 

uncovering the role of members of the ARF family in the flower to fruit transition and the 

tomato was used as a model system to carry out my project for all the reasons stressed in 

Chapter I. 

To date, the functional significance of members of the tomato ARF gene family remains 

poorly understood and the identification of the ARF members involved in fruit setting has not 

been undertaken. Moreover, at the beginning of my thesis, unlike the situation prevailing in 
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Arabidopsis where all members of the At-ARF gene family were knownin, the annotation of 

the tomato Sl-ARF gene family was only partial in the absence of the complete genome 

sequence information for this plant species. The first part of my thesis was then devoted to the 

identification and isolation of all members of the ARF gene family members in the tomato. 

Overall, 22 Sl-ARFgenes were found in the tomato genome by BLAST search using 23 

predicted AtARF protein sequences as query. Functional characterization of the isolated Sl-

ARF genes included the investigation of their ability to work as transcriptional activators or 

repressors on auxin-responsive promoters. Subsequently, specific expression patterns in 

different tomato organs and tissues were established for each Sl-ARF family members, as well 

as their regulation by auxin or ethylene treatment at the transcriptional level. In addition, deep 

RNA-Sequencing revealed that most Sl-ARF genes undergo alternative splicing which may 

represent an import level of regulation of their expression during fruit initiation. This study 

provided a better insight on distinctive structural and functional features among tomato ARF 

proteins and set the foundation for more targeted studies on functional characterization of 

selected ARF genes.  

Building on the outcome of the first part of my thesis research project, the second part 

was dedicated to the functional analysis of Sl-ARF8 using reverse genetics approaches. A 

dedicated plant material was generated consisting of transgenic lines altered in the expression 

of this gene. Through expression studies were carried out both by RT-qPCR and via analysis 

of Sl-ARF8A/B promoter-GUS fusion to establish a clear picture for transcript accumulation 

of Sl-ARF8A and Sl-ARF8B in the ovary before and after flower pollination/fertilization. The 

investigation of the hormone regulation of the two ARFs indicated that the expression of Sl-

ARF8A was sharply inhibited by auxin and up-regulated by ethylene while that of Sl-ARF8B 

escaped any regulation by none of the two hormones. The physiological significance of the 

two Sl-ARF8 genes was then addressed by ectopic expression of a sense construct of these 

genes in the tomato. This resulted in pleiotropic phenotypes, including dwarf plants, altered 

root and lateral shoot development and seedless fruits. These Sl-ARF8 over-expressing lines 

were used for histological analysis of flower buds revealing the putative involvement of this 

gene in the growth of reproductive structures, especially placenta and ovules. The 

implementation of RNA-sequencing analyses on this transgenic tomato lines revealed the set 

of genes that show altered expression in Sl-ARF8A-Overexpressing lines. Altogether, the 

study provided a comphensive description of the functional characterization of Sl-ARF8 

allowing to define this tomato ARF member as a central figure of the control mechanism 

underlying the fruit set process.  
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Abstract 
 

Background  

The phytohormone auxin is involved in a wide range of developmental processes and auxin 

signaling is known to modulate the expression of target genes via two types of transcriptional 

regulators, namely, Aux/IAA and Auxin Response Factors (ARF). ARFs play a major role in 

transcriptional activation or repression through direct binding to the promoter of auxin-

responsive genes. The present study aims at gaining better insight on distinctive structural and 

functional features among ARF proteins.  

 

Results 

Building on the most updated tomato (Solanum lycopersicon) reference genome sequence, a 

comprehensive set of ARF genes was identified, extending the total number of family 

members to 22. Upon correction of structural annotation inconsistencies, renaming the tomato 

ARF family members provided a consensus nomenclature for all ARF genes across plant 

species. In silico search predicted the presence of putative target site for small interfering 

RNAs within twelve Sl-ARFs while sequence analysis of the 5‟-leader sequences revealed the 

presence of potential small uORF regulatory elements. Functional characterization carried out 

by transactivation assay partitioned tomato ARFs into repressors and activators of auxin-

dependent gene transcription. Expression studies identified tomato ARFs  potentially involved 

in the fruit set process. Genome-wide expression profiling using RNA-seq revealed that at 

least one third of the gene family members display alternative splicing mode of regulation 

during the flower to fruit transition. Moreover, the regulation of several tomato ARF genes by 

both ethylene and auxin, suggests their potential contribution to the convergence mechanism 

between the signaling pathways of these two hormones. 
 

Conclusion  

All together, the data bring new insight on the complexity of the expression control of Sl-ARF 

genes at the transcriptional and post-transcriptional levels supporting the hypothesis that these 

transcriptional mediators might represent one of the main components that enable auxin to 

regulate a wide range of physiological processes in a highly specific and coordinated manner. 
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Introduction 
The plant hormone auxin, indole-3-acetic acid (IAA), is a simple signaling molecule that 

plays a critical role in plant development and growth. This phytohormone regulates cell 

division and cell elongation and exerts pleiotropic effects on a wide range of developmental 

processes including organ differentiation, embryogenesis, lateral root initiation, apical 

dominance, gravitropism and phototropism, leaf elongation, shoot architecture and fruit 

development [1,2,3,4,5]. A critical move towards understanding the mechanisms underlying 

auxin action [6] happened when it was shown that the hormone coordinates plant 

development essentially through transcriptional regulation of genes such as Aux/IAA, 

Gretchen Hagen3 (GH3), Small Auxin Up RNA (SAUR) and Auxin Response Factor (ARF). It 

was subsequently found that these so-called early auxin-responsive genes contain in their 

promoter one or more copies of a conserved motif, TGTCTC or its variants, known as the 

auxin-responsive element (AuxRE) [7]. Experimental evidences were then provided showing 

that transcription factors from the ARF type specifically bind to this AuxRE to mediate the 

transcription of auxin responsive genes [8]. The components of the pathway linking auxin 

perception to gene expression are now well established indicating that ubiquitination of 

Aux/IAA proteins by the TIR1/AFB subunit of the SCFTIR1/AFB ubiquitin ligase leads to their 

degradation by the 26S proteasome thus releasing the Aux/IAA-mediated inhibition of ARFs 

which allows these transcription factors to modulate the expression of their target genes [9].   

Three types of transcriptional regulators are required for the control of auxin-responsive 

genes, Auxin Response Factors (ARFs), Aux/IAAs and Topless (TPLs) [10,11]. Members of 

the Aux/IAA and TPL families have been reported to function as repressors of auxin-induced 

gene expression [10,12,13,14]. An increasing number of studies demonstrate the critical role 

of ARFs in a variety of developmental processes, such as embryo patterning [15,16], leaf 

expansion and senescence [17,18,19], lateral root growth [18,20,21], floral organ abscission 

and petal growth [19,22], fruit set and development [23,24,25,26], apical hook formation [27], 

and various responses to environmental stimuli [28]. In addition, ARF genes are involved in 

the cross-talk between auxin and other hormones like gibberellins [29], ethylene [30], ABA 

[31] and brassinosteroid signaling [32]. A typical ARF protein consists of a conserved N-

terminal B3-type DNA Binding Domain (DBD) that regulates the expression of early auxin 

response genes, a variable middle region (MR) that function as a transcriptional activation or 

repression domain (AD or RD), and a conserved C-terminal dimerization domain (CTD) that 

contributes to the formation of either ARF/ARF homo- and hetero-dimers or ARF/Aux-IAA 
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hetero-dimers [8,33,34]. The amino acid composition of MRs, located between the DBD and 

CTD, showed that AD types are rich in glutamine(Q), serine (S), and leucine (L) residues 

while RD types are rich in proline (P), serine (S), threonine (T), and glycine (G) residues 

[33,35].  

Since the cloning of the first AtARF1 from Arabidopsis, 22 members of this family, 

distributed over all five chromosomes, have been identified [33]. The functional 

characterization of AtARF genes was revealed by mutant analysis approach. For instance, arf1 

and arf2 T-DNA insertion mutations indicated that ARF2 regulates leaf senescence [17] and 

floral organ abscission [19]. The arf7/arf19 double mutant had stronger auxin resistance than 

the single mutant and displayed phenotypes not seen in the single mutant [30]. ARF8 was 

reported to regulate fertilization and fruit development,  and arf8-4 mutation results in the 

uncoupling of fruit development from pollination and fertilization giving rise to 

parthenocarpic fruit [23], while flowers in arf6/arf8 double mutant are arrested as infertile 

closed buds with short petals, short stamen filaments, undehiscent anthers and immature 

gynoecia [36]. In tomato, recent studies have shown the involvement of ARF genes in fruit 

set, development, ripening and fruit quality [3,4,5,24,25,26,37]. Because of these findings, 

members of this gene family are becoming one of the main targets towards improving fruit 

traits in tomato and more broadly in fleshy fruits. 

Studies using different species have indicated a total of 25 ARF genes in rice (Oryza sativa), 

39 ARF genes in Populus trichocarpa, 24 ARF genes in sorghum (Sorghum vulgare) and 31 

ARF genes in maize [38,39,40,41]. Though 21 ARF genes have been previously identified in 

the tomato (Solanum lycopersicum), yet, the list was incomplete and some the family 

members were either misannotated or suffered structural inconsistency due to the lack at that 

time of a high quality assembled tomato genome sequence [42,43]. The present study, while 

comprehensively revising the entire ARF gene family in tomato, brings new insight on the 

complexity of their expression control at the post-transcriptional level. The distinctive spatio-

temporal pattern of expression of tomato ARF genes and their differential responsiveness to 

auxin and ethylene lay the foundation for a deeper functional characterization of these 

transcriptional mediators.  

 

Results 

Genome-wide search for tomato ARF genes  



- 53 - 
 

Comprehensive identification of the ARF gene family members in the tomato was achieved 

using all ARF proteins previously reported from Arabidopsis and other plant species in 

BLAST queries on the recently published tomato genome sequence (SL2.40 genome 

sequence and iTAG2.30 whole protein sequences). Twenty four significant hits corresponding 

to non-redundant putative Sl-ARF genes were identified. PCR amplification of full length 

coding sequences (CDS) revealed two structural annotation inconsistencies reducing the total 

number of ARFs in the tomato genome to 22 (Table 1). Indeed, four sequences previously 

annotated as distinct ARF genes in iTAG2.30 corresponded to C-terminal or N-terminal parts 

of two ARF proteins (Solyc12g006340/Solyc00g196060; Solyc11g013480/Solyc11g013470). 

The mapping of tomato RNA-Seq data allowed to further improve the annotation of tomato 

ARFs by identifying the 3‟ and/or 5‟ UTR regions for 13 Sl-ARF genes (Table 1). All Sl-ARF 

proteins were found to contain a typical DBD domain (Figure 1A) as revealed by the Pfam 

analysis tool (http://pfam.sanger.ac.uk/). The molecular weight of the deduced Sl-ARF 

proteins showed a large variation ranging from 68 to 126 kDa (Table1). Of particular note, Sl-

ARF6B contains a premature stop codon in the  region corresponding to the DBD domain and 

is therefore likely to be a pseudo-gene whose expression at the protein level is not expected 

(data not shown). Using cNLS Mapper, nuclear localisation signals (NLS) were also 

identified in all of Sl-ARFs (data not shown).  

http://pfam.sanger.ac.uk/
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Figure 1. The ARF family structures in tomato and phylogenetic relationship between rice, 

potato, tomato, grape and Arabidopsis.(A) The generic structures of Sl-ARF family except Sl-

ARF6A. The gene size (kb) is indicated in the upper panel. The domain of Sl-ARF gene is indicated by 

different colours. The marker in Sl-ARF family showsSl-ARF2A, 2B, 3 and 4genes are spliced by TAS 

3, Sl-ARF8A and 8B spliced by miRl67, and Sl-ARF10A, 10B, 16A, 16B and 17 spliced by miR160.(B) 

The unrooted tree was generated using MEGA4 program by neighbor-joining method. Bootstrap 

values (above 50%) from 1000 replicates are indicated at each branch. All Sl-ARFs contain a DBD 

(brown). Most of the Sl-ARF proteins except Sl-ARF3, 10, 24, 16 and 17 contain a carboxy-terminal 

domain related to the domains III and IV found in the Aux/IAA proteins (blue).Sl-ARF5, 6A, 7, 8A, 

8B, 19 contains a middle region that corresponds to the predicted activation domain (green) found in 

some AtARFs. The remaining Sl-ARFs contains a predicted repression domain (red). Sl-ARF-6B and 

AtARF23 contain only a truncated DBD (B3 domain). 

 

Building on the available tomato genome assembly sequence, the mapping of Sl-ARF genes 

revealed that Sl-ARF family members are distributed among the 12 tomato chromosomes. 

Chromosome 7 and 11 are found to harbor three ARFgenes each; chromosome 1, 2, 3, 5, 8 

and 12 bear two ARFs, while each of chromosome 4, 6, 9 and 10 contains only a single ARF 
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gene (Supplementary Figure S1). Unlike the situation prevailing in Arabidopsis, there is no 

evidence for tandem or segmental duplication events involving members of the tomato ARF 

family. 

 

Phylogenetic relationship and consensus nomenclature for Sl-ARFs  

To explore phylogenetic relationship among ARF proteins in largely distributed land plant 

species, a phylogenetic tree (Figure 1B) was constructed that included ARF family members 

from tomato, Arabidopsis, potato, grape and rice. The phylogenetic distribution revealed that 

ARF genes group into four major classes named Class I, II, III and IV. ARFs predicted to 

function as transcriptional activators, based on the presence the Q-rich activation domain in 

their middle region, belong to sub-class IIa (Sl-ARF5, Sl-ARF6A, Sl-ARF7A, Sl-ARF7B, Sl-

ARF8A, Sl-ARF8B and Sl-ARF19) while ARFs from the remaining classes (Ia, IIb, III and 

IV) all harbor a repression domain in the middle region and are consequently predicted to 

function as transcriptional repressors.  

Compared to Arabidopsis which contains 23 members, the size of the tomato Sl-ARF gene 

family is slightly contracted to 22 members. In order to reach a consensual nomenclature for 

ARF genes across species, the tomato members of this gene family were renamed, based on 

phylogenetic relationship and according to the numbering of the closest Arabidopsis homolog. 

While complying with the most complete classification available in Arabidopsis [33], the 

proposed nomenclature better clarifies the correspondence between ARF subclasses in plant 

species. Noteworthy, sub-class Ib which has no representative in the tomato, contains 7 

members in Arabidopsis that are likely to derive from multiple duplications of At-ARF13 

which has no ortholog in any of the plant species tested in the present study. A distinctive 

feature of the tomato ARF family is the expanded size of the activators‟ sub-class (IIa) which 

represents 36.5% of the ARF genes whereas the activators only account for 21.7% of 

Arabidopsis ARFs. Another specific feature of the tomato ARF family is the presence of Sl-

ARF24 (sub-class IV) that is not found out of the Solanaceae family. Interestingly, this 

presumably Solanaceae-specific gene encodes an ARF protein that lacks domain III and IV 

involved in protein/protein interactions and required for the binding to Aux/IAA proteins. 

Likewise, Sl-ARF3, Sl-ARF16B and Sl-ARF17 are also deprived of domain III and IV 

necessary for interaction with Aux/IAAs (Figure 1A and Supplementary Figure S2). It is 
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therefore likely that these Sl-ARFs escape the classical mechanism underlying auxin signaling 

which implies the sequestration of ARF proteins through interaction with Aux/IAAs.  

Predicted siRNA-mediated degradation and multiple upstream ORFs in the 5’ leader 

sequences of tomato ARF transcripts 

ARF genes have been already reported to undergo post-transcriptional regulation involving 

small interfering RNAs. In silico analysis at the RNA level predicted that 12 out of the 22 

tomato Sl-ARFs have a putative target site for small interfering RNAs (Figure 1A). That is, 

Sl-ARF2A, Sl-ARF2B, Sl-ARF3 and Sl-ARF4 are predicted to be potentially targeted by 

TAS3; Sl-ARF6A, Sl-ARF8A and Sl-ARF8B by miR167; and Sl-ARF10A, Sl-ARF10B, Sl-

ARF16A, Sl-ARF16B and Sl-ARF17 by miR160. 

The uORFs are elements found in the 5‟-leader sequences of specific mRNAs that modulate 

the translation of downstream ORFs by ribosomal stalling and inefficient re-initiation or by 

affecting transcript accumulation through nonsense-mediated mRNA decay pathway. Among 

the 19 Sl-ARFs for which the 5‟ leader sequences are available in iTAG2.30 (8 members) or 

identified in this study (11 members), uORFs were predicted for 17 genes, ranging from 1 to 

52 amino acids in size with four genes (Sl-ARF2A, Sl-ARF5, Sl-ARF10A and Sl-ARF16A) 

having five or more uORFs (Supplementary Table S1).The average number of uORF per Sl-

ARF gene is similar in tomato (2.8/leader) and Arabidopsis (3.3/leader), indicating that 

tomato ARFs are suitable candidates to be regulated through translational uORFs depending 

mechanism 

 

Transcriptional activation and repression activities of tomato ARFs  

To characterize the capacity of tomato ARF proteins to in vivo activate or repress gene 

transcription, tobacco cells were co-transfected with an effector construct expressing the full-

length coding sequence of Sl-ARFs and a reporter construct carrying the auxin-responsive 

DR5 promoter fused to GFP coding sequence [44]. DR5 is a synthetic auxin-responsive 

promoter made of 9 inverted repeats of the conserved Auxin-Responsive Element, the so-

called TGTCTC box, fused to a CaMV35S minimal promoter. The DR5-driven GFP chimeric 

gene showed low basal activity which was induced up to 5-fold by exogenous auxin treatment 

(Figure 2). Co-transfection of tobacco protoplasts with the DR5::GFP reporter construct and 

effector plasmids expressing either Sl-ARF1, Sl-ARF2A, Sl-ARF2B, Sl-ARF3, Sl-ARF4, Sl-

ARF9A, Sl-ARF10A or Sl-ARF17 coding sequences, resulted in strong repression of the auxin-
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induced expression of the reporter gene (Figure 2). By contrast, co-transfection with effector 

constructs expressing Sl-ARF5, Sl-ARF6A, Sl-ARF7, Sl-ARF8B or Sl-ARF19 enhanced the 

auxin-induced expression of the reporter gene. Noteworthy, with the exception of Sl-ARF6A 

and Sl-ARF7, these activator ARFs were unable to enhance the basal activity of the DR5 

promoter in the absence of auxin treatment (Figure 2) suggesting that most ARFs require the 

input of an active auxin signalling for transcriptional activation of target genes.  
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Figure 2. Sl-ARF factors differentially regulate the expression of reporter genes driven by 

synthetic and native auxin-responsive promoters. Sl-ARF factors were challenged with a synthetic 

auxin-responsive promoter called DR5, consisting of seven tandem copies of the AuxREtgtctc 

element. A transient expression using a single cell system was performed to measure the reporter gene 

activity. The fluorescence was measured by flux cytometry. Because of the very low basal activity of 

the DR5 promoter without auxin treatment, the auxin inducible fluorescence obtained by co-

transformation with the promoter fused to the reporter gene and with the empty vector is consider as 

reference. The results shown are the average of 3 independent biological repetitions. Values are means 

standard deviation (SD) of three replicates. Stars show significant difference using Student‟s t-test at 

P<0.05. Fluorescence Values obtained by co-transformation with plasmids harbouring each Sl-ARF 

gene were compared to values obtained with basal activity of the DR5 promoter without auxin.  

Fluorescence Values obtained by co-transformation with plasmids harbouring each Sl-ARF gene and 
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treated with auxin were compared to values obtained with the activity of the DR5 promoter treated 

with auxin. 

 

Expression of Sl-ARF genes in different tomato tissues 

To gain clues on the physiological function of tomato ARFs, the spatio-temporal expression 

of individual members of the gene family was examined at the transcriptional level using 

qRT-PCR. Transcript accumulation could be assessed for 15 ARF genes in different tissues 

including root, stem, leaves, flower and fruit at various developmental stages. For the 

remaining 7 tomato ARF genes, transcript detection was unsuccessful in any of the samples 

tested suggesting their extremely low expression in these tissues. The data indicate that the 

expression of ARF genes is ubiquitous in all tissues with most genes being expressed in 

reproductive tissues suggesting their putative role in flower and fruit development (Figure 3).  
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Figure 3. Real-time PCR expression profiles of individual Sl-ARF genes. Total of 15 Sl-ARF genes 

were performed in different tomato organs (root, stem, leaf, flower, 8DPA, Mature Green, Breaker and 

Red). X-axis represents different Sl-ARF genes, while Y-axis represents three relative expressions of 

those genes. 8DPA: 8 days after pollination, Mature Green, Breaker and Red represent different stage 

of the fruit development.  
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Heatmap representation (Figure 4) allowed the clustering of tomato ARFs into two main 

groups based on their expression pattern: group I (Sl-ARF1, Sl-ARF2A, Sl-ARF2B, Sl-ARF4, 

Sl-ARF7A, Sl-ARF6B and Sl-ARF18) are genes preferentially expressed in roots while group 

II Sl-ARFs are lower expressed in the roots.  

Class I

Class II

Fig. 4

 
Figure 4. Heatmap showing Sl-ARF gene expression in different tomato tissues.  

Changes in RNA accumulation in different tomato tissues (Roots, Leaves, Stems, Flowers, Early 

Immature Green (8 DPA), Mature Green, Breaker, Red (Breaker + 7 days) as schematically depicted 

above the displayed array data, are shown relative to the RNA accumulation levels in roots. Levels of 

down expression (green) or up expression (red) are shown on a log2 scale from the high to the low 

expression of each Sl-ARF gene.  

 

Auxin and ethylene regulation of Sl-ARF genes 

Screening for cis-acting elements corresponding to Auxin Response Elements (AuxRE) 

within the promoter regions using the Place database 

(http://www.dna.affrc.go.jp/PLACE/signalscan.html) identified conserved (TGTCTC) and 

degenerate (TGTCCC) motifs in most tomato ARF promoters. In addition to these AuxRE, 

Sl-ARF promoters contain conserved Ethylene-Response motifs, the so-called ERELEE4 

motif found in the promoter of tomato E4 gene (AWTTCAAA) (Supplementary Table S2). 

The presence of these cis-regulatory elements suggests a potential regulation of ARF genes by 

both auxin and ethylene. To test the responsiveness of tomato ARF genes to both hormones, 

transcript accumulation was assessed by qRT-PCR in seedlings treated with auxin or 

http://www.dna.affrc.go.jp/PLACE/signalscan.html
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ethylene. All Sl-ARFs were found to be auxin-responsive after 2 hour treatment (Figure 5A), 

with Sl-ARF4, Sl-ARF5 and Sl-ARF2A showing the highest up-regulation whereas Sl-ARF1, 

Sl-ARF7 Sl-ARF10 displayed the most significant down-regulation. On the other hand, the 

expression of Sl-ARF2B, Sl-ARF5 and Sl-ARF9A showed strong up-regulation (more than 

four folds increase) when treated 5 hours with ethylene (Figure 5B). Of particular interest, Sl-

ARF5 is strongly up-regulated by both hormones and may therefore be involved in mediating 

responses to both hormones.   
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Figure 5. The expression of Sl-ARF family genes in response to auxin and ethylene. (A) Auxin 

induction of Sl-ARF genes on light grown seedlings. Quantitative RT-PCR of Sl-ARF transcripts in 

RNA samples extracted from 12-day-old tomato seedlings soaked in liquid MS medium with 10µM 

IAA for 2 hours.ΔΔCT refers to the fold of difference in Sl-ARF expression to the untreated seedlings. 

The SAUR gene was used as control to validate the auxin treatment. (B) Ethylene regulation of Sl-ARF 

genes on dark grown seedlings. Quantitative RT-PCR of Sl-ARF transcripts in RNA samples extracted 

from5-days dark-grown tomato seedlings treated 5 hours with ethylene (50µL/L). ΔΔCT refers to fold 

differences in Sl-ARF expression relative to untreated seedlings. The E4 gene was used as control for 

efficient ethylene treatment. 

 

Expression of Sl-ARF genes during tomato fruit set 

The expression of a high number of Sl-ARFs in reproductive tissues (Figure 3 and 4) along 

with the previously reported role of auxin in controlling the fruit set process, prompted us to 
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investigate the expression of Sl-ARF genes during the flower-to-fruit transition. To determine 

the expression dynamics throughout the fruit set process, transcript accumulation of tomato 

ARFs was monitored by RNA-seq approach at flower buds, anthesis and pos-anthesis stages 

(young fruit at 4 DPA). For each stage, RNA libraries were generated from three independent 

biological replicates and subjected to Illumina mRNA-Seq technology sequencing (Data 

desposited at NCBI SRA database under accession number SRP029978). Reads were then 

mapped on the tomato genome sequence and read counts were determined as described in 

Maza et al. 2013 [45]. The data indicate that most Sl-ARFs undergo a strong change in their 

expression associated with the flower-to-fruit transition (Figure 6). Three groups could be 

discriminated based on RNA counts distribution during the fruit set process. Group 1 

corresponds to Sl-ARFs whose expression increased following pollination, Group 2 to ARFs 

with unchanged expression and Group 3 to Sl-ARFs displaying decreased expression 

following pollination (Figure 6). 
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Figure 6. The expression profile of Sl-ARF family genes in tomato fruit set. (A)12 Sl-ARF genes 

are over-expressed after pollination and fertilization (4DPA), which are Sl-ARF9A, 4, 18, 8A, 1, 7B, 5, 

8B, 2A, 3, 7A and 2B genes in turn according to the log change of P/A (Post-anthesis/ Anthesis). (B) 5 

Sl-ARF genes keep stable expression from flower bud to post-anthesis, includingSl-ARF10A, 10B, 6B, 

9B, 17 genes.(C) 3 Sl-ARF genes are up-regulated from flower bud to anthesis and down-regulated 

after pollination and fertilization (4DPA), including Sl-ARF24, 19, and 16A genes. The expression 

values are taken from RNA-sequencing data and the colors represent different Sl-ARF genes. 
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Sl-ARF transcripts undergo intense alternative splicing during tomato fruit set 

Closer analysis of the mapping of RNA-seq data on the gene models revealed possible 

alternative splicing regulation during fruit set for 30% of Sl-ARF genes. Sl-ARF2B and ARF19 

shows one possible alternative splicing occurring at intron 11 and intron 1, respectively 

(Figure 6A and Supplementary Figures S3.1). Sl-ARF3 and Sl-ARF4 could putatively give rise 

to two alternative splicing events at introns 7 and 9, and at introns 6 and 10, respectively. 

Three possible alternative splicings were found at introns 3, 6 and 10 in Sl-ARF8A and at 

introns 9, 11 and 13 in Sl-ARF8B. Finally, Sl-ARF24 offers up to four alternative splicing 

possibilities at introns 1, 3, 6 and 10 (Supplementary Figures S3.1-6). In all cases, the 

detected Sl-ARF splice variants resulted in a frame shift within the coding region that 

generates a premature stop codon. To further validate the occurrence of the alternative 

splicing forms and assess the relative levels of the various splice variants, a semi quantitative 

PCR approach was conducted. To this purpose, two pairs of primers were designed, one 

aiming to specifically amplify the retained intron fragment while the second pair was 

designed in the margins of the two exons framing the retained intron. A PCR product with the 

expect size was detected for all genes confirming the presence of the splice variant in each 

RNA extraction (Figure 7B). Interestingly, the data indicate that the abundance of the Sl-

ARF8B_int11 transcript variant decreases dramatically in young fruits whereas the global 

expression of the corresponding Sl-ARF8B gene increases significantly. This finding suggests 

that the down-regulation of the Sl-ARF8B_int11 transcript variant may potentially play a role 

in the regulation of the flower to fruit transition. By contrast, increased accumulation of the 

Sl-ARF19_int1 was observed concomitant to the transition from flower to fruit. Taking 

together, these data uncover a potential role for alternative splicing in regulating the 

expression of tomato ARFs during the fruit set process.   
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Figure 7. The ARF family genes showed alternative spilcing mode of regulation in tomato fruit 

set. (A) RNA-seq reads generated during the fruit-set and mapped on Sl-ARF19 gene structure 

showing one alternative spicing that can be generated in the Intron 1. Reads are represented by red and 

blue rod arrows (B) The RT-PCR was carried out using pairs of primers designed within the introns of 

7 Sl-ARF genes highlighted in supplementary Figures S3.1 to S3.6 , such as Sl-ARF8A_Intron 6, Sl-

ARF8B_Intron 11, Sl-ARF3_Intron 9, Sl-ARF24_Intron 3, Sl-ARF19_Intron 1, Sl-ARF4_Intron 6 and 

Sl-ARF2B_Intron 11. The ubiquitin gene was used as the reference. (C) The RT-PCR was performed 

using pairs of primers nested in the two exons encompassing the intron of target Sl-ARF genes, such 

as Exon1-Exon2 in Sl-ARF19 and Exon6-Exon7 in Sl-ARF8A. The cDNAs generated from flower 

bud (B), flower at anthesis (F) and young fruit 4 days post-pollination (P) tissues were used as the 

template. The ubiquitin was used as the reference. 

 

Discussion 

Being down-stream components of auxin signalling pathway, ARFs likely contribute to the 

specificity of the hormone responses. Hence, the functional characterization of these 

transcriptional mediators is essential towards understanding the mechanisms by which auxin 

triggers appropriate growth and developmental responses in a timely and tissue-specific 

manner. To better define the role of ARFs in mediating specific auxin responses, the present 

study brings a complete picture on the main structural features of the tomato ARF gene 

family. Identification of tomato ARFs has been already described but this attempt built on a 

draft tomato genome sequence and ESTs and could therefore not be comprehensive [42,43]. 
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The present work takes advantage of the most updated  tomato reference genome sequence 

[46] to isolate the complete ARF family members and perform functional analysis and 

expression profiling of these transcriptional regulators. Using these extended resources, the 

list of tomato ARFs has been enlarged to 22 members and manual annotation based on deep 

RNA-Seq data, allowed the curation of some structural annotation inconsistencies as well as 

the identification of the 3‟ and 5‟ UTR regions for more than 50% of the  Sl-ARF gene family. 

The tomato members of the ARF family were renamed according to the numbering of the 

closest Arabidopsis homolog, which provides a consensus nomenclature for ARF genes across 

plant species. In this way, the proposed nomenclature better clarifies the correspondence 

between ARF subclasses in various plant species. The phyllogenetic approach applied on a 

well distributed set of plant ARFs allowed to identify a specific sub-class (sub-class IV) that 

is absent out of the Solanaceae family. Interestingly, this sub-class contains a specific gene, 

Sl-ARF24, encoding a putative ARF protein that lacks the two protein/protein interaction 

domains, known as domain III and IV and required for the binding to Aux/IAA proteins. It is 

therefore likely that Sl-ARF24 escapes the classical mechanism underlying auxin signaling 

which implies the sequestration of ARF proteins through interaction with Aux/IAAs. 

As a preliminary approach towards functional characterization of members of the tomato ARF 

family, the present study describes their expression pattern, their post-transcriptional 

regulation and their ability to activate or repress transcriptional activity on synthetic or native 

auxin-responsive promoters. Transactivation assays revealed that 36% of tomato ARFs are 

strong repressors of transcriptional activity while only 22% are transcriptional activators. The 

repressor/activator ratio among ARFs is more than twice higher in tomato (3.6) compared to 

Arabidopsis (1.7), yet, it remains to be elucidated whether this feature may account for 

differences in developmental and growth behaviour between the two species. In contrast to 

repressor ARFs , most activator Sl-ARFs promote transcription of target genes only upon 

exogenous auxin treatment thus suggesting that activator ARFs require some input from a 

highly activated auxin signalling pathway in order to potentiate transcriptional activity. It is 

conceivable that when the auxin level is low, the amount of Aux/IAA proteins available is 

sufficient to block ARFs at the protein level thus preventing these latter from activating the 

transcription of the target genes. In this perspective, it has to be postulated that Aux/IAAs are 

present in excess in the cell when the tissue is not subjected to auxin treatment. 

The spatio-temporal pattern of expression indicated that all Sl-ARF genes are expressed in 

flower and fruit suggesting a putative important role in reproductive tissue development. The 

shift from the static flower ovary to fast-growing young fruit is a phenomenon known as fruit 
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set and auxin has been shown to play a crucial role in controlling this developmental process 

[47,48] representing an important step in the development of all sexually reproducing higher 

plants. Adding to the primary role of Aux/IAAs in triggering the fruit set process previously 

reported [3,49], the present study reveals the potential active role of a number of Sl-ARFs 

during this process based on genome-wide transcriptomic profiling of the flower to fruit 

transition. The expression of 12 members of the gene family sharply increases upon 

pollination/fertilization, while the expression of a fewer number of Sl-ARF genes peaks at 

anthesis and then dramatically declines at post-pollination stage. Given the role of auxin 

signaling in the fruit set process [48,50], the dynamics of the expression pattern of these Sl-

ARFs is indicative of their putative involvement in mediating auxin responses during the 

flower-to-fruit transition. This is consistent with the prominent role reported for At-ARF8 and 

Sl-ARF7 during fruit set and parthenocarpy in Arabidopsis and tomato, respectively [24,26]. 

Of particular interest, Sl-ARF8A shows the most dramatic rise in expression at post-anthesis 

stage which may designate this ARF among all family members as the main actor of the fruit 

set process.   

The data indicate that tomato ARFs are subject to multi-levels post-transcriptional regulation 

of their expression. In line with Arabidopsis ARFs [51,52,53], it is shown here that 12 out of 

the 22 tomato ARF genes are potentially regulated by siRNAs. Moreover, the direct evidence 

for active alternative splicing described here uncover a new layer of complexity in the post-

transcriptional regulation of ARF genes in the tomato. This mode of regulation may account 

for a significant part of the control of ARF expression in developmental processes such as 

fruit set in the tomato as indicated by the abundance of some transcript splice variants 

concomitant to the flower to fruit transition. An additional mean towards controlling ARF 

expression in the tomato may also take place at the translational level via upstream ORFs 

(uORFs) that have been predicted in most members of ARF genes. This mode of regulation 

has been first suggested in Arabidopsis where in silico search revealed an enrichment of 

uORFs in the ARF 5‟-leader sequences that is not seen in other auxin-related genes such 

Aux/IAA, YUCCA, TIR1 auxin receptors homologs and PIN family of auxin transporters [54]. 

Subsequently, translational control of AtARFs by upstream ORF (uORFs) has been proposed 

as a regulatory mechanism required in modulating auxin responses during plant development 

[55]. Though direct experimental evidence is still lacking, tomato ARFs may also undergo the 

same mode of regulation.   

In addition of being auxin-responsive, the expression of some Sl-ARFs was found to be 

regulated by ethylene. The presence of auxin and ethylene cis-regulatory elements in the 
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promoter region of a number of Sl-ARFs, supports the potential regulation of ARF genes by 

both auxin and ethylene and suggests that these transcription factors have the ability to 

mediate both auxin and ethylene responses. In support to this hypothesis, Arabidopsis ARF19 

has been shown to be inducible by ethylene and has been reported to contribute to ethylene 

sensitivity through a cross-talk between auxin and ethylene signalling [27,30]. Also, ARF2 

has been shown to regulate the hook curvature of etiolated Arabidopsis seedlings, a typical 

ethylene response [27]. Taking together, these data suggest that ARFs may act at the 

crossroads of auxin and ethylene signaling.  

Altogether, the data provide molecular clues on how ARFs can contribute to the specificity 

and selectivity of auxin responses through (i) structural features, (ii) differential expression of 

family members at the tissue and organ levels and, (iii) ability to negatively or positively 

impact transcriptional activity of target genes. The auxin and ethylene regulation of some 

ARF members suggest their specific role in the multi-hormonal cross-talks. The regulation of 

the expression of ARFs by alternative splicing during fruit set provides new insight into the 

complexity of regulation of these genes at the post-transcriptional level. 

 

Materials and Methods 
Plant material and growth conditions 

Tomato seeds (Solanumlycopersicum cv MicroTom or Ailsa Craig) were sterilized, rinsed in 

sterile water and sown in recipient Magenta vessels containing 50 mL of 50% Murashige and 

Skoog (MS) culture medium added with R3 vitamin (0.5 mg L-1 thiamine, 0.25 mg L-1 

nicotinic acid and 0.5 mg L-1pyridoxine), 1.5% (w/v) sucrose and 0.8% (w/v) agar, pH 5.9. 

Plants were grown under standard greenhouse conditions. The culture chamber rooms are set 

as follows: 14-h-day/10-h-night cycle, 25/20°C day/night temperature, 80% hygrometry, 250 

µmol m-2s-1 intense luminosity.  

In silico Identification of the tomato ARFs  

All the ARF gene sequences (ITAG2.3_gene_models.gff3) are download from the Sol 

Genomics Network (http://solgenomics.net/), and analyzed in Notepad++ software. The NLS 

location was searched using cNLS Mapper (http://nls-mapper.iab.keio.ac.jp/cgi-

bin/NLS_Mapper_form.cgi). All the obtained sequences were sorted for the unique sequences 

and these were further used for B3, AUX_RESP, and Aux/IAA domain search using 

InterProScan Sequence Search (http://www.ebi.ac.uk/Tools/pfa/iprscan/). The UTR of Sl-

ARFs were found by two steps, first, the whole tomato genome and Sl-ARF gene structures 

http://www.ebi.ac.uk/Tools/pfa/iprscan/
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(ITAG2.3_gene_models.gff3) were loaded into the Java, and then, the complete cDNA 

sequences from RNA-Seq data including three stages (flower bud, anthesis and post-anthesis) 

were blast with Sl-ARF gene structures to identify the final 5‟ or 3‟ UTRs in Sl-ARFs. The 

miRNA location on the Sl-ARFs were searched depend on the GBF data 

(http://tata.toulouse.inra.fr/gbf/blast/blast.html) and SGN Blast tools. Taken together, all of 

the Sl-ARF family structures were drawn by Fancy Gene v1.4 (http://host13.bioinfo3.ifom-

ieo-campus.it/fancygene/) with manual correction. 

Transient Expression Using a Single Cell System 

Protoplasts were obtained from suspension-cultured tobacco (Nicotianatabacum) BY-2 cells 

and transfected by a modified polyethylene glycol method as described by Abel and 

Theologis [56]. For nuclear localization of the selected ARF fusion proteins, the coding 

sequence of genes were cloned as a C-terminal fusion in frame with GFP under the control of 

the 35S CaMV, a cauliflower mosaic virus promoter. Transfected protoplasts were incubated 

for 16 h at 25°C and analysed for GFP fluorescence by confocal microscopy. For co-

transfection assays, aliquots of protoplasts (0.5 x 106) were transformed either with 10 µg of 

the reporter vector alone containing the promoter fused to the GFP reporter gene or in 

combination with 10 µg of ARF contructs as the effector plasmid. Transformation assays 

were performed in three independent replicates. After 16 h, GFP expression was analyzed and 

quantified by flow cytometry (FACS Calibur II instrument, BD Biosciences, San Jose, CA) 

on the flow cytometry platform, IRF31, Inserm, Toulouse and and cell sorting platform, 

INSERM UPS UMR 1048, Toulouse RIO imaging platform. Data were analyzed using Cell 

Quest software. For each sample, 100 to 1000 protoplasts were gated on forward light scatter 

and the GFP fluorescence per population of cells corresponds to the average fluorescence 

intensity of the population of cells after subtraction of autofluorescence determined with non 

transformed BY-2 protoplasts. The data are normalised using an experiment, in presence of 

50 µM 2.4 D, with protoplasts transformed with the reporter vector in combination with the 

vector used as the effector plasmid but lacking Sl-ARF coding region. 

RNA isolation and Quantitative RT-PCR 

Total RNA from fruit was extracted according to the method of Hamilton et al. [57]. Total 

RNA from leaves and seedlings was extracted using a Plant RNeasy Mini kit (Qiagen) 

according to the manufacturer‟s instruction. Total RNA was treated by DNase I to remove 

any genomic DNA contamination. First strand cDNA was reverse transcribed from 2 µg of 

total RNA using Omniscript kit (Qiagen) according to the manufacturer's instruction.The 

qRT-PCR analysis was performed as previously described [3]. The sequences of primers are 
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listed in supplementary Table S3. Relative fold differences were calculated based on the 

comparative Ct method using the Sl-Actin as an internal standard. To determine relative fold 

differences for each sample in each experiment, the Ct value of genes was normalized to the 

Ct value for Sl-Actin-51 (accession number Q96483/Solyc11g005330) and was calculated 

relative to a calibrator using the formula 2-ΔΔCt. At least two to three independent RNA 

isolations were used for cDNA synthesis and each cDNA sample was subjected to real-time 

PCR analysis in triplicate. Heat map representation was performed using centring and 

normalized ΔCt value, with Cluster 3.0 software and Java Tree view to visualize dendogram. 

Hormone treatment 

For auxin treatment on light grown seedlings, 12-day-old tomato seedlings (30 seedlings) 

were soaked in liquid MS medium with or without (mock treatment) 10 µM IAA for 2 hours. 

The efficiency of the treatment was checked by measuring the induction of the tomato early 

auxin-responsive SAUR gene. For ethylene treatment on dark grown seedlings, 5-days-old 

MicroTom seedlings (100 seedlings) were treated with air or ethylene gas (50 µL/L) for 5 

hours. The efficiency of the treatment was checked by measuring the induction of the tomato 

ethylene-responsive E4 gene. Experiment was repeated for 3 biological times. 

RNA-Sequencing and RT-PCR 

Total RNA was extracted from bud, flower and post-flower (4DPA) for three biological 

repeats using a TRIZOL Reagent (invitrogen) according to the manufacturer‟s instruction. 

Total RNA was treated by DNase I to remove any genomic DNA contamination and checked 

by RNA gel and Agilent RNA 6000 Nano Assay, which the RIN value above 7 was 

determined to be qualified. After that, the best RNA were sent out for deep RNA sequencing 

using Illumina Hiseq2000 and the reads generated were mapped to the tomato genome 

sequence SL2.40. The data are desposited at NCBI SRA database under the accession number 

SRP029978. The gene expression was calculated for each annotated tomato gene (iTAG2.30). 

For continuous validation, first strand cDNA was synthesized as previously described and 

PCR was performed using primers designed from the intron and exon of 7 Sl-ARF genes. The 

primer sequences are listed in Supplementary Table S4. An aliquot of 1ul of the product was 

used as a template. The PCR amplification cycle was as follows: 95°C for 30 s, 56–60°C for 

40 s, 72°C for 30s-2.5min. Samples were taken after 25, 30 or 35 cycles and 10ul of the PCR 

product was visualized on a 2-2.5% agarose gel. All PCRs were carried out in a Mastercycler 

(Eppendorf, Hamburg, Germany). DNA was stained with ethidium bromide in the gel. Sl-

Ubi3 expression was used as an internal control. 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=3219772
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Tables  

 
Table 1. Sl-ARF gene family in tomato. 
a Sl-ARF gene names 
b the alias of each ARF gene in iTAG2.30 genome annotation 
c Length of the corresponding Coding Sequence (CDS) in base pairs. 
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d Conserved Domains found in PFAM database: B3 means DNA binding domain, ARF means 

Auxin response Factor conserved domain, AUX/IAA means AUX/IAA dimerization domain, 

AD means transcriptional activation domain, RD means transcriptional repression domain.  
e Corresponding names in Wu et al.; accession numbers are in the parentheses. 
f Gene Model modification type: UTR means that the UTR sequence have been identified and 

annotated, CDS means that the the coding  sequence have been corrected. 
g New locations in the tomato genome version Sl2.40 taking into account the manual curation 

of the previous gene annotation in iTAG2.30 
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Generic namea Aliasb 
CDS  
lengthc Str Chr  Domainsd Name in Wu et al.e  improvementf New locationg     

Sl-ARF1 Solyc01g103050 1965 + 1 B3,ARF,AUX/IAA,SPL-Rich RD SlARF1(HM061154.1) - 
     

Sl-ARF2A Solyc03g118290 2541 + 3 B3,ARF,AUX/IAA,SPL-Rich RD SlARF2(DQ340255.1) - 
     

Sl-ARF2B Solyc12g042070 2490 - 12 B3,ARF,AUX/IAA,SPL-Rich RD SlARF11(HM143940.1) 5', 3' UTR 42538600..42544937     
Sl-ARF3 Solyc02g077560 2244 + 2 B3,ARF,SL/G-Rich RD SlARF3(DQ340254.1) - 

     
Sl-ARF4 Solyc11g069190 2436 - 11 B3,ARF,AUX/IAA,SPL-Rich RD SlARF4(DQ340259.1) 5', 3' UTR 50900912..50910023     
Sl-ARF5 Solyc04g081240 2793 - 4 B3,ARF,AUX/IAA,QSL-Rich AD SlARF5(HM195248.1) - 

     
Sl-ARF6A Solyc12g006340(Nter); 

Solyc00g196060(Cter) 2643 -/+ 12/0 B3,ARF,AUX/IAA,QSL-Rich AD SlARF6(HM594684.1) 
5„ UTR, CDS 857256..859656(Nter) 

    
    

Sl-ARF6B Solyc07g043620 2673 - 7 B3,ARF,QSL-Rich AD SlARF6-1(NM_001247611.1) 5'UTR 54884781..54890560     
Sl-ARF7A Solyc07g016180 3339 - 7 B3,ARF,AUX/IAA,QSL-Rich AD SlARF19(HM130544.1) - 

     
Sl-ARF7B Solyc05g047460 3294 - 5 B3,ARF,AUX/IAA,QSL-Rich AD SlARF19-1(HM565130.1) 5'UTR 58050744..58057040     
Sl-ARF8A Solyc03g031970 2535 + 3 B3,ARF,AUX/IAA,QSL-Rich AD SlARF8-1(HM560979.1) 5'UTR 8739535..8747501     
Sl-ARF8B Solyc02g037530 2529 + 2 B3,ARF,AUX/IAA,QSL-Rich AD SlARF8(EF66734F2.1) 5'UTR 21756022..21766699     
Sl-ARF9A Solyc08g082630 1977 + 8 B3,ARF,AUX/IAA,SPL-Rich RD SlARF9(HM037250.1) 5'UTR 62527409..62531812     
Sl-ARF9B Solyc08g008380 2052 + 8 B3,ARF,AUX/IAA,SPL-Rich RD SlARF12(HM565127.1) 5'UTR 2807931..2812983     
Sl-ARF10A Solyc11g069500 2100 - 11 B3,ARF,AUX/IAA,SL/G-Rich RD SlARF10(HM143941.1) 5', 3' UTR 51188434..51192539     
Sl-ARF10B Solyc06g075150 2016 + 6 B3,ARF,AUX/IAA,SL/G-Rich RD SlARF16(HM195247.1) 3' UTR 43020594..43023604     
Sl-ARF24 Solyc05g056040 1953 - 5 B3,ARF,SPL-Rich RD SlARF13(HM565128.1);     

SlARF13-1(HM565129.1) - 
 

    
Sl-ARF16A Solyc09g007810 2085 - 9 B3,ARF,AUX/IAA,SL/G-Rich RD No 3' UTR 1332230..1335760     
Sl-ARF16B Solyc10g086130 1896 - 10 B3,ARF,SL/G-Rich RD SlARF16(NM_001247861.1) - 

     
Sl-ARF17 Solyc11g013480(Nter); 

Solyc11g013470(Cter) 1869 - 11 B3,ARF,SL/G-Rich RD SlARF17(HQ456923) 
3' UTR, CDS 6495469..6511349 

    
    

Sl-ARF18 Solyc01g096070 2058 + 1 ARF,AUX/IAA,SPL-Rich RD No 5'UTR 78941268..78946012     
Sl-ARF19 Solyc07g042260 3357 - 7 B3,ARF,AUX/IAA,QSL-Rich AD SlARF7(EF121545.1) -       
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Supplementary Data  

Supplementary Table S1: uORF prediction in the 5‟UTR leader sequences of Sl-ARFs. 
aGene name,  
biTAG release 2.30 name,  
cpredicted uORF number,  
dsize of the corresponding uORFs 
esequence of the uORFs 

Gene namea ITAG numberb 
uORF 

numberc size uORF (AA) d uORF sequencee 
Sl-ARF1 Solyc01g103050.2 2 11 mnviyvdydei 

   
11 mmryseirvnt 

Sl-ARF2A Solyc03g118290.2 5 12 mkkllllsiedr 

   
13 mnthihtvfrern 

   
4 mlls 

   
2 mn 

   
5 mrdlc 

Sl-ARF2B Solyc12g042070.2 3 52 mvkslfssfsvfspynhspnslkiyrdkvaisadsefvlqfacldclskgfa 

   
6 mfglfk 

   
5 mrdlr 

Sl-ARF3 Solyc02g077560.2 3 1 m 

   
1 m 

   
2 mr 

Sl-ARF4 Solyc11g069190.2 4 29 mssassvpssfnskmgvemesyfeflvii 

   
16 mtflffsveflflfll 

   
4 milt 

   
3 mln 

Sl-ARF5 Solyc04g081240.2 6 12 mlscsvvcfhss 

   
16 mfcsmfsfllriiplt 

   
10 mwvgsyvsln 
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3 mlv 

   
4 mssc 

   
11 mgslvlvlglm 

Sl-ARF6A Solyc12g006340 3 1 m 

   
16 mkeltlvvfscgsgvg 

   
9 mfacflvfv 

Sl-ARF6B Solyc07g043620.3 2 44 msknmvscflvfawgggvgvggctskvliflefllsgvalcwln 

   
16 mkqllmvvfscgtrfg 

Sl-ARF7A Solyc07g016180.2 2 8 mccvlcvw 

   
4 mnlr 

Sl-ARF7B Solyc05g047460.3 2 1 m 

   
4 mnlr 

Sl-ARF8A Solyc03g031970.3 2 9 mevlekekc 

   
4 mlgs 

Sl-ARF8B Solyc02g037530.3 4 34 mekrwgilkigfqlifgvgiegflqfsgllqrrv 

   
27 mwgdhihngekvgyledrvsvdfwswn 

   
7 mevleke 

   
8 mhvgrsys 

Sl-ARF9A Solyc08g082630.3 1 3 mff 
Sl-ARF9B Solyc08g008380.3 3 23 mqdleflilklflificdkdtnf 

   
4 mipi 

   
4 mkll 

Sl-ARF10A Solyc11g069500.2 7 18 mlltsltcndpsfrccfv 

   
4 mhlc 

   
6 mlniyr 

   
9 mcflklksl 

   
24 misfffqflrfnisfhnrkfsvsf 

   
10 mcftisfsvl 

   
7 mdllccl 

Sl-ARF10B Solyc06g075150.3 1 1 m 
Sl-ARF16A Solyc09g007810.3 5 2 mf 

   
12 mrsfglnlvklf 
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3 myl 

   
3 mgk 

   
2 mr 

Sl-ARF16B Solyc10g086130.1 
not 

expressed 
  

Sl-ARF17 Solyc11g013470.2 
not 

expressed 
  Sl-ARF18 Solyc01g096070.3 1 36 mlkcvntengfffklccyrpffvcfgflvkfwvisf 

Sl-ARF19 Solyc07g042260.2 0 
  Sl-ARF24 Solyc05g056040.2 0 
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Supplementary Table S2: In silico analysis of Sl-ARF gene promoters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Code 
Number of the AuxRE 

(TGTCTC) Number of the ERE  
Sl-ARF1 Solyc01g103050 1 4 

Sl-ARF2A Solyc03g118290 3 4 
Sl-ARF2B Solyc12g042070 1 3 
Sl-ARF3 Solyc02g077560 4 1 
Sl-ARF4 Solyc11g069190 5 6 
Sl-ARF5 Solyc04g081240 0 4 

Sl-ARF6A Solyc12g006340(Nter); 
Solyc00g196060(Cter) 4 1 

Sl-ARF6B Solyc07g043620 1 1 
Sl-ARF7A Solyc07g016180 0 5 
Sl-ARF7B Solyc05g047460 4 2 
Sl-ARF8A Solyc03g031970 2 1 
Sl-ARF8B Solyc02g037530 0 4 
Sl-ARF9A Solyc08g082630 1 1 
Sl-ARF9B Solyc08g008380 2 2 

Sl-ARF10A Solyc11g069500 1 3 
Sl-ARF10B Solyc06g075150 1 0 
Sl-ARF16A Solyc09g007810 3 2 
Sl-ARF16B Solyc10g086130 0 4 

Sl-ARF17 Solyc11g013480(Nter); 
Solyc11g013470(Cter) 2 1 

Sl-ARF18 Solyc01g096070 0 0 
Sl-ARF19 Solyc07g042260 0 2 
Sl-ARF24 Solyc05g056040 3 2 
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Supplementary Table S3:  Quantitative RT-PCR primers of Sl-ARF genes. 

 
 
 

 

Gene name Name in iTAG release 2.30 Forward primer Reverse primer 
Sl-ARF1 Solyc01g103050 TCTCCTTCATCATTCTCATACTG GAACCATTCTCACCATAACC 
Sl- ARF 2A Solyc03g118290 GCAAGGTCAAGAGTTATCGA CATTGGTTTCTCAGACAAGTC 
Sl- ARF 2B Solyc12g042070 CACTTAATCCACTTCCAATACC TACAACTACTTTGGATGAACCT 
Sl- ARF 3 Solyc02g077560 AATTGCAGTATCAGACTTTGG TCTAGATATCCCAGAACTAGGA 
Sl- ARF 4 Solyc11g069190 CATTATTGTTGGTGACTTTGTG GACCTTTGGAAACCTATTGG 
Sl- ARF 5 Solyc04g081240 CCTTCAGAGTTTGTCATTCCT AACATCATTCCAAATCTCATACC 

Sl- ARF 6A 
 

Solyc12g006340(Nter); 
Solyc00g196060(Cter) CCAACATATCCCTAGTACTTCAG 

 
GTGCCTGAGATATTAGTTGGT 
 

Sl- ARF 6B Solyc07g043620 ACCCTCTAGTATCTTCATCCT TCCGAGACCTTTGTATTGTG 
Sl- ARF 7 Solyc07g016180 TCAACTCCTCAAACATACCT TGAACTATCCAAATAATCCATCTG 
Sl- ARF 8A Solyc05g047460 TGACATCGAATGGAAATTCAG GTCTCTTAGCACTAACAAACAC 
Sl- ARF 8B Solyc03g031970 GTCAGTCCGTGATCATAGAG GGAATCCAAGCTACAATTTCC 
Sl- ARF 9 Solyc02g037530 ATCATTCAATCTCAAATCAAAGGT CCTCATCATTGTCTTCTTCAG 
Sl- ARF 10 Solyc11g069500 ATTCTCTGTGCCTAGATACTG CTATAAATGTGCCTAAACTTCCA 

Sl- ARF 17 
 

Solyc11g013480(Nter); 
Solyc11g013470(Cter) TGAAGTTGATGAAGTTACTATGAG 

 
TCCTCCATTATTCGCATCTG 
 

Sl- ARF 18 Solyc01g096070 AATCTACACTCGGCATTGTC AAGCTTCCTATCTTATCATTGGA 
Sl- ARF 19 Solyc07g042260 TGGTGGATGAATCTGTTGTC TACTTAGACAGCTCTGAACCT 
Sl- ARF 24 Solyc05g056040 TCATTGTTGGATGTTTCAAAGG GAAGTCTTGGAAAGTAGTATACTC 
Sl-Actin  Solyc11g005330 TGTCCCTATCTACGAGGGTTATGC AGTTAAATCACGACCAGCAAGAT 
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Supplementary Table S4. PCR primers for identifying the alternative splicing expressed forms in Sl-ARF genes. 

    Primers sequence 5'-3' 
Gene name Details Forward Reverse  

Sl-ARF2B Intron 11 AACCTTAAGAAAGTGCCAAAAGTAC ATAACTTGCCCTTATATTTGAATTCC 
Sl-ARF3 Intron 9 AATTCTGAAATACTCCCTCCGT AGCATATCCAGACCTAGTCTCCA 
Sl-ARF4 Intron 6 GCACAGAGTGAAAGATTTGGG GCCAAACCATCAATTATCTTCC 
Sl-ARF8A Intron 6 AAGTTGTTATACAGTGGGTCAAGG GCAAATCTCACTCACAATGTCAG 
Sl-ARF8B Intron 11 CGCTGAATGGTCATGTAATAAGAG ATTCCTTCTATCATGGCTATCTGG 
Sl-ARF19 Intron 1 ATAAGGAGTTCTGCAAGCCA GTAGGTTGTGCTATGCTGAC 
Sl-ARF24 Intron 3 GGACAATATGTAGCAATTAGGGAC AGACCATGTGATTTGAGTACCA 
Sl-ARF2B Ex 11-Int 11-Ex 12 AACATCAGCCTTCTCGTCATCC GCACTTAATCCACTTCCAATACCA 
Sl-ARF3 Ex 8-Int 9-Ex 9 TAGATCCAGTTCGATGGCCAG CTCAATCTCCCATGGTGAAACC 
Sl-ARF4 Ex 6-Int 6-Ex 7 CTTGTCCCAACAGGAATCCGA GGAATAAGAAGAGCTGCAAGACCT 
Sl-ARF8A Ex 6-Int 6-Ex 7 TGACATCGAATGGAAATTCAGG CGGCAACAAGTCTCTTAGCA 
Sl-ARF8B Ex 11-Int 11-Ex 12 GCCTTTCTATCAAGGAACCTC GAGAATTGTTGAATCGACTCTC 
Sl-ARF19 Ex 3-Int 3-Ex 4 GCTCACTGTGACCTTGAGGA AGGTGAAAGTAGCTTTGTGTTGG 
Sl-ARF24 Ex 1-Int 1-Ex 2 GGTCTCAGCATAAACCTCTTCC GGAGCAATCATCCAACCAGGA 
Sl-Ubiquitin    CTAACGGGGAAGACGATCACCC TCCCAAGGGTTGTCACATACATC 
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Supplementary Figure S1

 

Supplementary Figure S1. Sl-ARF genes genomic distribution on the tomato chromosomes. The 

arrows next to gene names show the direction of transcription. The number near to each Sl-ARF 

designates the position megabases (Mb) of the first ATG in the tomato chromosome pseudomolecules 

(tomato genome version SL2.40). The chromosome numbers and their corresponding size are 

indicated at the top and bottom of each bar.  
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IV24

Supplementary Figure S2

*

 
Supplementary Figure S2. Phylogenetic relationship between tomato Sl-ARF genes. The unrooted 

tree was generated using MEGA4 program by neighbor-joining method. Bootstrap values (above 

50%) from 1000 replicates are indicated at each branch. Sl-ARFs with a star (*) are deprived of 

domain III and IV necessary for interaction with Aux/IAAs.  
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Supplementary Figure S3.1

 
 

Sl-ARF3

Supplementary Figure S3.2
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Sl-ARF4

Supplementary Figure S3.3

 

Sl-ARF8A
Supplementary Figure S3.4
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Sl-ARF8B

Supplementary Figure S3.5

 
 

Sl-ARF24

Supplementary Figure S3.6

 
Supplementary Figure S3.1-6. Predicted alternative splicing in six Sl-ARFs (Supplementary 

Figure S3.1 to Supplementary Figure S3.6).   
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RNA-seq reads generated during the fruit-set and mapped on the corresponding Sl-ARF gene sequence 

(Sl-ARF2B, 3, 4, 8A, 8B, and 24) showing predicted alternative splicing events. RNA-seq reads are 

represented by red and blue rod arrows. 
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Chapter III:  
Characterization of Sl-ARF8A and Sl-ARF8B tomato 
genes reveals their critical role in auxin-mediated fruit-set. 
 
 
Abstract 

Auxin Response Factor (ARF) is an important regulator involved in auxin-mediated plant 

growth and development processes. To date, the characteristics of Solanum Lycopersicum 

ARF family genes (Sl-ARFs) has remained poorly understood. In the present study, the 

structural and functional characterization of Sl-ARF8A/B was identified and their over-

expression in tomato resulted in pleiotropic phenotypes, including dwarf plants, lateral shoots 

and parthenocarpic (seedless) fruits. The single-cell experiment allowed to showing that the 

encoded protein, Sl-ARF8A or B was exclusively targeted to the nucleus based on the use of 

GFP fusion. Expression analysis by RT- qPCR revealed a notable increase in Sl-ARF8A 

transcript level in ovary after pollination/fertilization, and Sl-ARF8B transcript picked at 

anthesis, further done through analysis of Sl-ARF8A/B promoter-GUS fusion. The hormone 

treatment showed Sl-ARF8A was sharply inhibited by auxin and up-regulated by ethylene. 

The histological analysis in flower buds strongly indicated Sl-ARF8A regulated the 

development of the ovary, the placenta and ovules. Moreover, genes whose expression is 

altered in SlARF8-OX lines were identified using a genome-wide transcriptomic profiling by 

RNA-Seq approach. Almost 2600 differently expressed (DE) genes were identified. 

Considering the dramatic change in gene expression of genes related to auxin, jasmonate and 

ethylene displayed in SlARF8A-OX lines, these phytohormones are likely to play an active 

role in coordinating the fruit set process. 
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Introduction 

Fruit set is a complex event requiring a tight coordination among molecular, biochemical, 

and structural changes. Depending on the progress of the fruit set, the temporal and spatial 

organization of these changes is mediated by plant hormones such as auxin, gibberellin 

(GA) and ethylene [1]. It has been shown that fertilization-independent fruit initiation can 

be triggered by exogenous application of auxin and gibberellin on tomato ovaries but also 

by increasing auxin sensitivity, resulting in the formation of parthenocarpic (seedless) 

fruits [2,3]. In normal fruit set, it was hypothesized that successful pollination and 

fertilization induce an increase of the auxin and GA contents within the ovary [3]. In 

accordance, both auxin and GA response genes were found to be up-regulated within 48 h 

after pollination [4,5]. It has also been shown that the effect of auxin on fruit-set was 

mediated in part by GA, placing some GA biosynthesis genes downstream of auxin 

signaling pathway [6]. So far, the molecular mechanism of auxin action during fruit set is 

still largely unclear. Aux/IAAs and ARFs are two type of important auxin responsive 

gene families, which are involved in leaf morphogenesis [7], lateral root growth [8], floral 

organ abscission and petal growth [9,10] in Arabidopsis. Aux/IAAs are early auxin 

responsive genes, and by far all the Aux/IAAs are characterized as the repressor of the 

auxin response [11]. ARF transcription factors regulate the expression of early auxin 

response genes, such as Aux/IAA, GH3 and SAUR genes that share a conserved motif, 

TGTCTC, which are called auxin-responsive element (AuxRE) [12]. ARFs are 

specifically binding to the AuxREs in their promoters to mediate the auxin response. 

Since cloning of the first AtARF1 gene from Arabidopsis, 23 members of this family, 

distributed over all five chromosomes have been identified [13]. Recently, taking 

advantage of the release of the tomato genome sequence, in silico analysis made by our 

laboratory identified 22 ARF genes (Unpublished data). Most of these putative ARFs have 

an N-terminal B3-derived DNA binding domain (DBD) as described previously as typical 

conserved motifs of this family [14]. The middle region (MR) of these proteins functions 

as a transcriptional activation or repression domain, depending on its amino acid 

composition. In general, ARFs with a glutamine-rich MR act as transcriptional activators, 

while ARFs with an MR rich in proline and serine act as transcriptional repressors [15]. 

The C-terminal domain (CTD) contains two signatures related to motifs III and IV of 

Aux/IAA proteins. These motifs serve as dimerization sites, facilitating ARFs repression 

by hetero-dimerization with Aux/IAA proteins [16,17]. 



 
 

- 90 - 
 

Up to now, the roles of most ARFs in Arabidopsis have been revealed by mutant 

analysis approach. For example, arf1 and arf2 T-DNA insertion mutation indicated ARF2 

regulated leaf longevity [18] and floral organ abscission, and ARF1 acted in a partially 

redundant manner with ARF2 and increased transcription of Aux/IAA genes in 

Arabidopsis flowers as a transcriptional repressor [10]. And the arf7 and arf19 mutations 

were found to regulate the leaf expansion [19] and lateral root formation via direct 

activation of LBD/ASL genes in Arabidopsis [20]. In tomato, down-regulation of Sl-ARF4 

(DR12) resulted in a pleiotropic phenotype including dark green and blotchy ripening 

fruits [21] and also the mutant mSl-ARF10 (Sl-miR160-resistant version) plant displayed 

narrow leaflet blades, sepals and petals, as well as abnormal shaped fruit [22].  

Most interestingly, recent advance shows three genes involving in auxin signaling 

pathway play an important role in fruit-set via a reverse genetics approach. Down-

regulation of tomato Sl-IAA9 exhibited an advance fruit set independent of pollinations 

and fertilizations to lead to parthenocarpic fruits [23]. Thereafter, down-regulated Sl-

ARF7 gene in tomato produced parthenocarpic fruits, which are heart-shaped and showed 

a rather thick pericap [24]. Several T-DNA insertions of At-ARF8 in Arabidopsis also 

resulted in the production of parthenocarpic siliques after flower emasculation [25]. All 

these results pointed out the role of the Aux/IAA and ARF families in regulating fruit set. 

In addition, several reports have already focused on the role of AtARF8 in Arabidopsis. 

Tian et al.[26] reported the T-DNA mutant of arf8-1 showed a long-hypocotyl phenotype 

in white, blue and red light conditions, in contrast to AtARF8-OX displayed short 

hypocotyls in the light. Nagpal et al. [27] found that arf6arf8 double-null mutant flowers 

arrested as infertile closed buds with short petals, short stamen filaments, immature 

gynoecia and undehisced anthers that did not release pollen. More recently, Varaud et al. 

[9] demonstrated that At-ARF8 interacted with BPEp factors to affect the petal growth in 

mutant Arabidopsis, in which the petal was significantly larger than that in the wide-type 

due to the increased cell number and cell expansion. Thus far, tomato as a model system 

has been widely researched for fruit development and ripening. It will be pivotal to study 

the functions of ARF family genes during fruit set to improve any fruit-related agronomic 

trait in tomato.  

Considering the number of the ARF family members, the extent of functional 

redundancy for the encoded proteins is still poorly known. In order to provide further 

insights on the physiological significance and the diversity associated with Sl-ARFs in 

tomato, we report here upon the functional characterization of Sl-ARF8A/B genes in 
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planta. The data shows Sl-ARF8A and 8B genes are repressed by auxin and Sl-ARF8A is 

up-regulated by ethylene but not Sl-ARF8B. Over-expression of Sl-ARF8A or 8B in 

tomato resulted in a dwarf phenotype and fertilization-independent fruit set to generate 

seedless fruits. Comparison of flower buds by histological analysis suggested the 

implication of Sl-ARF8A in ovary development and especially the placenta and ovule 

growth. Further analysis by RNA-Seq uncovered the possible target genes in SlARF8A-

OX lines. Although Sl-ARF8A/B gene is closely related to Sl-ARF4 and Sl-ARF7, these 

genes seem to play distinct roles in plant developmental processes and especially fruit 

growth thus revealing functional diversity within the same gene family.  

 

Results 

Structural features, phylogenetic characterization and expression pattern of tomato 

Sl-ARF8A and Sl-ARF8B genes  

The ARF8 transcription factor, known to mediate auxin responses, has been previously 

shown to be encoded by two genes in the tomato Sl-ARF8A and Sl-ARF8B [28] unlike the 

case in Arabidopsis where only one copy is present in the genome. We show here that Sl-

ARF8A and Sl-ARF8B display well conserved genomic structure with regard to the 

number and position of introns and exons, with the exception of an extra intron located in 

the 5‟-UTR of Sl-ARF8A (Figure 1A). The two genes were mapped into different 

chromosomes with Sl-ARF8A being located at the top of chromosome 3 and Sl-ARF8B at 

the middle of chromosome 2 (Figure 1B). The genomic regions and full-length cDNAs 

corresponding to these genes were isolated showing that Sl-ARF8A and Sl-ARF8 genes 

encode proteins of 845 and 843 amino acid residues, sharing 75.2% and 75.5% homology 

with Arabidopsis AtARF8, respectively. The derived proteins contain the three conserved 

domains (B3, ARF, Aux/IAA) characteristics of ARF proteins. In addition, protein 

domain analysis indicated that both Sl-ARF8A and 8B are predicted to be transcriptional 

activators, due to the identification of the Q-rich activation domain in their middle region. 

Based on phylogenetic study, Sl-ARF8A and 8B fell into the activator subclade of the 

ARF family wich in addition to ARF8 also includes ARF6, ARF5, ARF7 and ARF19; 

with however ARF6 being the closest paralog (Figure 1C). In silico analysis of Sl-

ARF8A/B at the RNA level predicted the presence of a conserved target site for sly-

miR167 and further analysis by cNLS Mapper allowed the identification of a putative 

nuclear location signal (NLS) in Sl-ARF8A/B encoded proteins (Figure 1A).  
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Figure 1 Transcription Unit of Sl-ARF8A and Sl-ARF8B in the tomato Genome. 
(A) The genomic sequences of Sl-ARF8A and Sl-ARF8B were extract from SGN database and 
performed bioinformatic annalysis by using Fancy gene V1.4. These two genes show the same 
number of exons and introns and are spliced by miRNA167.The colors represent different 
functional domains.  
(B) Sl-ARF8A and Sl-ARF8B  are located at two different chromosomes. The arrow next to gene 
names indicate the direction of transcription. The number in contrast to Sl-ARF8A or Sl-ARF8B  
designates the position of the ATG in megabases (Mb) on tomato chromosome pseudomolecules 
(genome version V5.2). The chromosome numbers are indicated at the top of the bar and the 
length of each chromosome shown at the bottom of each bar.  
(C) Phylogenetic relationship of transcription activating class Ia of ARF proteins in Arabidopsis 
and Tomato. The unrooted tree was generated using MEGA4 program by neighbor-joining 
method. Bootstrap values from 100 replicates are indicated at each branch.  

Since nuclear import of transcription factors is instrumental to their transcriptional 

activity and in order to validate the functionality of the NLS in silico prediction, we 

investigated the in vivo subcellular localization of Sl-ARF8A/B by generating N-terminal 

fusions with the GFP reporter protein expressed under the 35S promoter (35S::GFP-Sl-

ARF8A/B). Transient expression in tobacco BY-2 protoplasts coupled to confocal 

microscopy analysis clearly indicated that both proteins are exclusively targeted to the 

nuclear compartment (Figure 2A).  

To gain insight into the spatial pattern of expression of the Sl-ARF8A/B genes, 

accumulation of their transcript was assessed in different plant tissues and organs by 

quantitative reverse transcription–PCR (qRT-PCR). Sl-ARF8A and Sl-ARF8B transcripts 
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were detected in all organs tested, with the highest levels for Sl-ARF8A found in young 

fruit at 8 days post-anthesis whereas the levels of Sl-ARF8B were highest in flowers, stem 

tissues and young fruit (Figure 2B). As general feature, transcripts of both genes are 

lowest in fruits and particularely at the ripening stages (Figure 2B).  
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Figure 2 Nuclear localization of Sl-ARF8A and Sl-ARF8B proteins and comparison of 
expression patterns of Sl-ARF8A and Sl-ARF8B genes. 
(A) Nuclear localization of Sl-ARF8A and Sl-ARF8B proteins fused to a GFP tag. Pro35S::Sl-
ARF8A/B-GFP  or pro35S::GFP fusion proteins were transiently expressed in BY-2 tobacco 
protoplasts and sub-cellular localization was analyzed by confocal laser scanning microscopy. The 
merged pictures of the green fluorescence channel (left panels) and the corresponding bright field 
(middle panels) are shown in the right panels. The scale bar indicates 10 µm. 
(B) Expression patterns of Sl-ARF8A and Sl-ARF8B in different tomato tissues. Total RNA was 
extracted from leaf (Le), stem (St), root (Rt), flower (Fl), fruit at 8 day after anthesis (8d), fruit at 
mature green (MG),fruit at breaker (Br) and fruit at red (Re). The data are expressed as relative 
values, based on the reference root expression set to 1.0 at each stage considered. The error bars 
represent +SE of three independent trials. 
(C) Expression patterns of Sl-ARF8A and Sl-ARF8B in different parts of tomato flowers during 
fruit set. Total RNA was extracted from ovary, stamen, petal and sepal from flower bud to post-
flower independently. Data are expressed as relative values, based on the reference ovary at bud 
stage set to 1.0 at each stage considered. The SE+ represent three biological replicates. 
 

The expression pattern of the two genes was also investigated in planta using transgenic 

lines expressing the β-glucuronidase (GUS) reporter gene driven by either Sl-ARF8A or 

Sl-ARF8B promoter. Overall, the GUS reported expression confirmed the ubiquitous 
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expression of the two genes in vegetative and reproductive tissues (Figure 3 and Figure 

4). In flowers, Sl-ARF8 and B were expressed in all parts of the reproductive organ 

(Figure 2C and Figure 3). Notably, Sl-ARF8A shows an increase in transcript levels in 

ovaries and in young fruits upon flower pollination/fertilization (Figure 3) and in mature 

green fruit, the expression of Sl-ARF8/B was mainly observed in vascular tissue (figure 

3). A clear expression of Sl-ARF8B in the root tips were observed where the expression of 

Sl-ARF8A was not detected (Figure 5). In leaves, Sl-ARF8A and Bare mainly expressed in 

leaf veins but not in leaflets (Figure 4). Taken together, Sl-ARF8A/B genes are typically 

expressed in reproductive structures and show in some cases distinct spatio-temporal 

expression. 

Bud Flower 4 DPA 8 DPA Young Fruit Mature GreenA

B

ProSlARF8A::GUS

ProSlARF8B::GUS

 
Figure 3 Expression patterns of Sl-ARF8A and Sl-ARF8B during the fruit development 
process assessed by GUS reporter gene driven by their promoters.  
The longitudinal sections of  Bud, Flower, 4/8 day post-anthesis (4DPA and 8 DPA), Young fruit 
and Mature green were carried out through ProARF8A::GUS  (A)  and ProARF8B::GUS (B) 
displaying a notable increase of Sl-ARF8A transcripts after pollination /fertilization  (4 DPA and 8 
DPA) , and a high expression of Sl-ARF8B  from flower to fruit transition.   
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Figure 4 Expression pattern of Sl-ARF8A and Sl-ARF8B in the leaves and stems assessed by 

GUS reporter gene driven by their promoters (ProARF8A::GUS  and ProARF8B::GUS).  

(A) The ProARF8A::GUS  and ProARF8B::GUS  fusion in the leaves displayed Sl-ARF8A and Sl-

ARF8B   were mainly expressed in leaf veins, ex. midveins and lateral  veins, but no expression in 

leaf blades and petiolules.  

(B) The ProARF8A::GUS and ProARF8B::GUS fusion in the stems displayed that Sl-ARF8A and 

Sl-ARF8B  were mainly expressed in Phloem and Xylem.  
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Figure 5 Expression patterns of Sl-ARF8A and Sl-ARF8B  in 20-day seedlings assessed by 

GUS reporter gene driven by their promoters  (ProARF8A::GUS  and ProARF8B::GUS).   

(A) The ProARF8A::GUS and ProARF8B::GUS fusion in the seedlings displayed a outstanding 

expression of Sl-ARF8A and Sl-ARF8B in the vascular tissues.  

(B) The ProARF8A::GUS and ProARF8B::GUS fusion in the roots displayed an expression of Sl-

ARF8B  in the root tips compared to  Sl-ARF8A . These pictures were analysed by microscopy 

with 2.5 times of maginification. The scale bar indicates 2 mm.  

 

To better uncover their potential role of Sl-ARF8A and B in mediating hormone responses, 

their responsiveness to auxin and ethylene was investigated 12-day wild-type seedlings 

teated with both hormones.  Assessing transcript accumulation of both genes by RT-qPCR 

revealed a contrasted behaviour with the expression of Sl-ARF8A being repressed by 

auxin and strongly induced by ethylene while the expression of Sl-ARF8B displayed weak 

or no responsiveness to any of the two hormones (Figure 6A, B). The regulation of Sl-

ARF8A by auxin and ethylene was further validated in planta using GUS reporter gene 

driven by each of Sl-ARF8 promoter in 21-day transgenic tomato seedlings, confirming 

the repression and stimulation of Sl-ARF8A by auxin (Figure 6C) and ethylene (Figure 

6D), respectively.  
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Figure 6 Expression of Sl-ARF8A and Sl-ARF8B in seedlings induced by auxin and ethylene.   
(A) Quantitative RT-PCR analysis of Sl-ARF8A and Sl-ARF8A after auxin treatment. The wide-
type seedlings were treated with 20 mM IAA for 2h with control and kept in -80℃ for RNA 
preparation. The SE+ represent three biological replicates. 
(B) Quantitative RT-PCR analysis of Sl-ARF8A and Sl-ARF8B after ethylene treatment. The wide-
type seedlings were treated with 50 ppm ethylene for 5h with control and kept in -80℃ for RNA 
preparation. The SE+ represent three biological replicates.  
(C) Expression pattern of ProARF8A::GUS in seedlings treated with auxin. The seedling was 
treated with 40 mM IAA for 2h (right) and then transfer to 37oC for 6h with control (left) 
displaying Sl-ARF8A was inhibited by auxin.  
(D) Expression pattern of ProARF8A::GUS in seedlings treated with ethylene. The seedling was 
treated with 50 ppm ethylene for 5h (right) and then transfer to 37oC for 9h with control (left) 
displaying Sl-ARF8A was up-regulated by ethylene.  
 

Sl-ARF8A/B over-expression leads to pleiotropic vegetative phenotypes 

To gain insight on the physiological significance of the Sl-ARF8A/B encoded proteins, 

transgenic lines expressing sense constructs of the Sl-ARF8A or Sl-ARF8B genes (Sl-

ARF8A-OX and Sl-ARF8B-OX) were generated using MicroTom tomato genotype. 

Several transgenic lines corresponding to independent transformation events were 

obtained showing substantial increase in Sl-ARF8A and Sl-ARF8B transcript levels as 

assessed by RT-qPCR (Figure 5C and D). These overexpressing lines typically displayed 
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dwarf phenotype (Figure 7A and B) and increased number of lateral roots when compared 

to wild-type (Figure 8A-E).  
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Figure 7 Phenotype features of SlARF8A-OX and SlARF8B-OX lines. 
(A,B) Over-expression of Sl-ARF8A and Sl-ARF8B genes displayed the dwarf and parthenocarpic 
(seedless) phenotypes in three and two independent lines, respectively.  
(C,D) The transcript levels of Sl-ARF8A and Sl-ARF8B were assessed by RT- q PCR in three 
independent SlARF8A-OX and two independent SlARF8B-OX lines. Relative expression level 
refers to the Log value and the error bar represents three biological replicates. 

 

Moreover, the apical dominance was strongly reduced in the transgenic plants with a 

dramatic increase in the number of auxiliary shoot development. Notably, lateral shoots 

development in wild type plants display a basipetal growth pattern where the first lateral 

shoot arises from the last leaf node just below the first inflorescence. By contrast, the 

SlARF8A/B-OX plants displayed an acropetal growth pattern where the first lateral shoot 

arises from the first leaf node just above the cotyledon (Figue 8C). In conclusion, over-

expression of Sl-ARF8A/B displayed pleiotropic auxin related phenotypes including 

altered apical dominance and lateral roots development, suggesting an important role for 

Sl-ARF8A/B in plant vegetative growth. 
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Figure 8 Analysis of the pleiotropic phenotypes in SlARF8A-OX and SlARF8B-OX lines. 
(A) Increased lateral roots in SlARF8A-OX and SlARF8B-OX lines accessed in 20-day seedlings 
compared with the wild type.  
(B) Increased lateral shoots in SlARF8A-OX and SlARF8B-OX plants at fruit mature green stage in 
contrast to the wild-type.  
(C) Diagram depicting the inverted pattern of shoot branching and reduced apical dominance in 
SlARF8A/B-OX compared with the wild-type. Numbers indicate the emergence order of lateral 
shoots. 
(D) Data analysis of the lateral roots in 20-d seedlings of SlARF8A-OX and WT. The error bar is 
representative of three independent statistics.  
(E) Data analysis of the lateral shoots in SlARF8A-OX and WT at fruit mature green stage. The 
error bar is representative of three independent statistics.  
 

Over-expression of Sl-ARF8A/B induces fruit set prior to pollination resulting in 

parthenocarpy 

Overexpression of Sl-ARF8A/B resulted in a dramatic alteration of early fruit growth, with 

all SlARF8A/B-OX lines exhibiting precocious fruit set prior to anthesis stage, resulting in 

premature fruit development which proceeds in parallel to flower development (Figure 9). 

The percent of parthenocarpic fruits was much higher in homozygous lines (90%) than in 

hemizygous ones (30%) showing a dose effect phenotype (Table 1).  
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Table 1 Fruit characteristics in SlARF8A-OX and SlARF8B-OX Lines  
 
Average data  Maximal 

Diameter(mm)a 
Maximal 
Length(mm)b 

Weight(g)c  Flower 
no.d 

Fruit  
no.e 

Fruit set 
rate (%) 

Parthenocarpic 
rate (%) f 

SlARF8A-OX-Homo L1 9.28 ±0.18 8.33 ±0.26 0.29 ±0.02 99±2 69± 9 68-78 99.00  
SlARF8A-OX-Homo L2 9.54±0.17   10.53 ±0.47 0.32 ±0.02 78±11 41 ±7 38-61 99.00  
SlARF8A-OX-Homo L3 9.15 ±0.23 10.67 ±0.22 0.29 ±0.02 87±5 55 ±5 54-68 99.00  
SlARF8A-OX-Hemi L1 17.04 ±0.40 15.71 ±0.32 2.37 ±0.16 N N N 64,72±10.61 
SlARF8A-OX-Hemi L2 13.19 ±0.34 13.76 ±0.31 1.23 ±0.09 N N N 40,18±8.97 
SlARF8A-OX-Hemi L3 14.07 ±0.38 14.19 ±0.35 1.31 ±0.09 N N N 43,35±1.88 
SlARF8B-OX-Homo L1 15.61±0.35 14.96±0.38 1.76±0.14 N N N 76,27 
SlARF8B-OX-Homo L2 13.98±0.37 13.60±0.37 1.11±0.09 N N N 94,52 

WT 22.18 ±0.46 20.56 ±0.49 5.12 ±0.28 18±1 10±1 47-64 13.15±1.97 
 
a,b,c Check for 3 plants randomly and over 60 fruits in each line of SlARF8A-OX-Homo or -Hemi and SlARF8B-OX-Homo. Check for 20 fruits 
in wide type.  
d, e Check for 4 plants randomly in each line of SlARF8A-OX-Homo and check for total 20 plants in wide type.  
f Check for 3 plants randomly and over 150 fruits in each line of SlARF8A-OX-Homo or -Hemi. Check for 6 plants randomly and over 180 fruits 
in each line of SlARF8B-OX-Homo. Check for 20 plants and over 200 fruits in wide type.  
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Figure 9 Analysis of the flower and ripening fruit in SlARF8A-OX and SlARF8B-OX lines.  
(A) The ovary at the flowering stage becomes swollen in SlARF8A-OX and SlARF8B-OX lines in 
contrast to the wide-type.  
(B) The cross section through representive fruits displayed parthenocarpic (seedless) fruits in 
SlARF8A-OX and SlARF8B-OX lines.  

 

To get better understanding of the fruit set process in Sl-ARF8A/B, emasculation assay 

was performed on SlARF8A-OX lines to assess their ability to set fruit in the absence of 

pollination and fertilization. As expected, fruit set in control plants never occurs in 

emasculated wild-type flowers due to the absence of pollination/ferilization, while in 

SlARF8A-OX plants one third of the emasculated unfertilized flowers set fruit leading to 

the development of seedless fruits (Table 2).  
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Table 2 Emasculation assay to assess the ability to set fruit in the absence of pollination 
 

Lines Fruit Set (%) Fruit Set/Emasculated Flower Seed 
Number/Fruit 

WT 0  0/16 0 
SlARF8A-OX L1  25  24/95 0 
SlARF8A-OX L2  39  14/36 0 
SlARF8A-OX L3 30  8/27 0 
WT Pollination 100  8/8 25 

 
Wild-type and SlARF8A-OX flowers were emasculated 1 to 4 d before anthesis. WT Pollination used as a control in emasculation assay.  
The results represent two independent trials. 
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To check whether parthenocarpy in SlARF8A-OX fruits may also arise from non-

functional/fertile pollen, in vitro pollen viability test was carried out but no significant 

differences were observed between wild type and SlARF8A-OX pollen thus ruling out any 

loss of viability for SlARF8A-OX pollen (Figure 10 ). 
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Figure 10 In vitro analysis of pollen viability in SlARF8A-OX lines.  

(A) The pollens from WT and SlARF8A-OX flowers were treated with 2,5-diphenyl 

monotetrazolium bromide (MTT) in 5% sucrose solution at room temperature for 15 min. The 

viable pollen was dyed in red or light red-pink and the dead pollen was not dyed at all.  

(B) Statistical analysis of pollen viability in WT and two independent SlARF8A-OX  lines 

indicated pollen viability was maintained in SlARF8A-OX  lines. The error bar represents the 

mean +SE of three independent tests.  

Given that fruit organogenesis is initiated from the floral primordia, light microscopy 

analysis was therefore performed to investigate flower buds development and early fruit 

organogenesis in wild type and ARF8-OX lines. Observations of a series of longitudinal 

sections made on resin fixed flower buds from wild-type and ARF8-OX lines revealed 

several major changes in transgenic lines among which a dramatic decrease in the 

placenta size and a reduction in ovule number. Indeed, in over-expressing lines, the 

average placenta size was 23% of that of the loggia, while in wild-type it reaches 43% 
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(Figure 11). In the same way, the average number of ovules was 7.3 in ARF8-OX lines 

and 10.7 in wild-type lines (Figure 11). 
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Figure 11 Histological analysis of the flower bud and post-anthesis fruit in the wild-type and 
SlARF8A-OX line 1. 
(A) Comparison of the ovary development in flower bud stage 3 (B3 = 6-8 mm) indicates smaller 
plencenta and less number of ovules in SlARF8A-OX line 1 in contrast to the wide-type. Loggia is 
delimitated in red and placenta is highlighted.  In additon to compare young fruits in the wide-type 
and SlARF8A-OX line 1 displaying the abnormal development of plancenta and ovules.  
(B) Analysis of area (placenta/locular cavity) for each carpel in the wild-type and SlARF8A-OX  
line 1. Percentage of average placenta size compared to loggia size was lower in SlARF8A-OX  
line 1. The data are measured by at least 10 sections. The error bars are representative of the mean 
SE+.  
(C) Analysis of the ovule number for each carpel in the wild- type and SlARF8A-OX  line 1. The 
average ovule number for each carpel was reduced in SlARF8A-OX line 1. The data are measured 
by at least 10 sections. The error bars are representative of the mean SE+.  

 

Identification of the differentially expressed (DE) genes in SlARF8A-OX  

In an attempt to identify genes whose expression is altered in SlARF8-OX lines, we 

performed a genome-wide transcriptomic profiling using deep sequencing RNA-Seq 

approach to compare gobal gene expression patterns in pre-anthesis flower buds (6-8 mm 

length) of wild type and SlARF8A-OX. This developmental srage was selected for the 

transcriptomic analysis because anthesis and post-anthesis stages are difficult to determine 

the in SlARF8-OX. Three biological replicates were prepared from SlARF8A-OX line1 and 

WT flower buds. Total RNA samples were prepared from each replicate and subjected to 
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deep sequencing using Illumina Hiseq2000. Almost 30 million reads have been generated 

for each repeat and after mapping the reads on the latest tomato genome sequence version 

Sl2.40, the level of gene expression was calculated for each annotated tomato gene 

(iTAG2.30). A total of 2632 genes differentially expressed (DE) in SlARF8A-OX plants 

were identified using DegSEQ R package (adjusted p-value <0,001 and 1< log(fold 

change) <-1). All Gene Ontology (GO) functional categories were represented among 

these genes (data not shown).  

Interestingly, many early auxin responsive genes like GH3, SAUR and Aux/IAA were 

represented in the list of DE genes. It is noteworthy that all auxin biosynthesis genes (AMI, 

TAA, TSB and YUC homologs) except YUC5 were repressed while all twelve Sl-ARFs 

genes were induced in the SlARF8A-OX lines. Auxin transport genes were all induced 

with the exception of Sl-PIN5 whose expression is repressed (Figure 12). Unlike other 

auxin transporter known to regulate extracellular auxin transport, Sl-PIN5 encodes an 

auxin transporter predicted to be ER-localized and involved in modulating the 

intracellular auxin homeostasis through the regulation of auxin flow from cytosol to ER 

[29]. 

The COL1 gene encoding the Jasmonate receptor was induced in SlARF8A-OX lines 

unlike the JAZ genes which encode proteins interacting with the receptor but showing a 

decrease in transcript accumulation. The MYC transcription factor genes whose encoded 

proteins are negatively regulated by JAZ genes are all induced. These findings clearly 

support the idea that the jasmonate pathway is in active state during the flower to fruit 

transition. Finally, the situation regarding ethylene is more composite with all ethylene 

response factor genes displaying differential expression in SlARF8A-OX were also 

induced with the exception of Sl-ERF.A2 (Figure 12). By contrast ethylene biosynthesis 

genes SAMS and LeACS8 were down regulated. Considering the dramatic change in gene 

expression of genes related to auxin, jasmonate and ethylene displayed in SlARF8A-OX 

lines, these phytohormones are likely to play an active role in coordinating the fruit set 

process. 
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Figure 12 Analysis of differently expressed (DE) genes involved in Auxin, Jasmonate and 
Ethylene response from the RNA-Sequencing data.  
(A.1) The DE genes involved in Auxin biosynthesis indicates most of them are down-regulated 
except YUC5 gene,  
(A.2) that in Auxin conjugation indicates the deregulation of GH3 and Saur genes, and (A.3) that 
in Auxin response indicates  up-regulation of 11 Sl-ARF genes but deregulation of 8 Aux/IAA 
genes. In addition, (A.4) 3 genes in Auxin transport are up-regulated except PIN5 gene.  
(B) The DE genes in Jasmonate response indicates up-regulation of COL1 and MYC genes and 
down-regulation of JAZ genes which interacted with these two genes. 
(C) The DE genes in Ethylene response indicates up-regulation of most ERF genes except 
ERF.A.2 gene. Relative expression level refers to the Log value are indicated in SlARF8A-OX  
flowers using WT as a control. 
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Discussion 
The phytohormone auxin plays a critical role in plant growth and development via the 

control of processes as diverse as lateral root initiation, leaf elongation, shoot architecture, 

apical dominance, embryogenesis and fruit initiation, development and ripening[3]. The 

perception and signaling of auxin depends on the cooperative action of several 

components among which ARF factors which specificallybind to TGTCTC auxin 

response elements (AuxRE) in the promoters of early auxin-responsive genes. Previous 

work has demonstrated that ARFs and Aux/IAAs significantly contribute to the regulation 

of the auxin regulated fruit initiation in the plant model Arabidopsis and also in tomato 

(Solanum lycopersicum) a model species for fleshy fruit research [5,24,30]. However, the 

molecular mechanism by which auxin mediates the flower-to-fruit transition, the so-called 

fruit-set, remains poorly understood.  

Following isolation and characterization of all memebers of the ARF gene family in 

tomato [28], the present study provides new insight on the role of  Auxin Response Factor 

8 (Sl-ARF8) in tomato (Solanum lycopersicum) during fruit-set. Even though the fruit-set 

developmental process has been investigated by global transcriptome analysis in tomato 

[28], our understanding of the molecular mechanisms by which auxin mediates this 

process is still in its primitive steps. Therefore, the functional analysis of Sl-ARF8A/B, 

carried out here through combined reverse genetics and transcriptomic approaches aims at 

unlocking some of the key mechanisms underlying the fruit-set in tomato. Expression 

analysis, characterization of ARF8 over-expressing lines and protein-interaction studies 

yielded both corroborative and new data on the role of Sl-ARF8 thus allowing to partially 

decipher the auxin mode of action during fruit initiation and early development. The main 

conclusion on the important role of Sl-ARF8 came from the data showing that 

deregulation of Sl-ARF8 expression triggers fertilization-independent fruit-set in tomato. 

This is consistent with the study on its homolog in Arabidopsis, At-ARF8, whose mutation 

also resulted in fertilization-independent fruit-set [25].   

Whereas in Arabidopsis ARF8 is encoded by a single gene, two genes, Sl-ARF8A and Sl-

ARF8B, are present in the tomato genome. The two Sl-ARF8 paralogs share similar 

genomic structure suggesting that may have resulted from a recent duplication. Both 

genes seem to encode functional proteins harboring the three conserved domains (B3, 

ARF, Aux/IAA) characteristics of ARF proteins. Phylogenetic study indicated that Sl-

ARF8A and B belong to a subclade gathering ARF6, ARF5, ARF7 and ARF19, with 
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ARF6 being however the closest paralog. In silico analysis of Sl-ARF8A/B at the RNA 

level predicted the presence of a conserved target site for sly-miR167 suggesting that both 

genes are potentially regulated at the post-transcriptional level by this microRNA. 

Subcellular localization studies indicated that both proteins are targeted to the nucleus 

consistent with these DNA-binding proteins being transcriptional regulators as validated 

by transactivation assays [28].  

 Spatio-temporal expression profiling indicated that these genes were preferentially 

expressed at the very early stages of fruit development right after anthesis, which is 

consistent with the hypothesis upon which Sl-ARF8A/B are probably involved in the 

flower-to-fruit transition.   In order to address the functional significance of Sl-ARF8A and 

Sl-ARF8B, a reverse genetic approach was used to alter the expression of these genes in 

transgenic tomato plants.  

Overexpression of Sl-ARF8A/B results in uncoupling fruit set from pollination and 

fertilization, thus giving rise to parthenocarpic (seedless) fruits.Further characterization of 

the transformed plants were performed including histological analysis to specifically 

study the flower bud development in wild type and SlARF8A-OX, with the aim to better 

decipher the very early stages of fruit-set in the transgenic lines. The data indicated that 

the ovary is the most affected organ with major modifications of the ovary shape. 

Abnormal development of placenta and ovules were also observed in the SlARF8A-OX 

which displayed a limited placenta development and reduced ovule numbers. These 

results are consistent with the phenotypes of SlARF8A-OX mature fruits, which are 

parthenocarpic with a lack of locular tissues and the presence of underdeveloped seed 

structure probably arising from unfertilized ovules.  

Parthenocarpic phenotype in SlARF8-OX lines is a result of a fruit-set triggered before 

any fertilization. However, it is also likely that even in the situation whare ovules are 

successfully fertilized, seed development would probably have been impaired by the poor 

development of the placenta. To test this hypothesis, manual pollination of WT ovaries 

was undertaken to test the viability of these pollen and the results show clearely that 

SLARF8A-OX pollen are active. 

 Comparative transcriptomic profiling of wild type and SlARF8A-OX lines identified 

more than 2600 differentially expressed genes. Functional categorization of the 

differentially expressed genes revealed that the major groups of genes affected are related 

to stress, transcriptional regulation and hormones response and metabolism. These data 

suggest that the fertilization-independent fruit set induced by Sl-ARF8A overexpression 
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requires complex regulatory control and possibly involves multiple hormonal cross-talks. 

In this mechanisms, Sl-ARF8A appears to be a key player, which deregulation triggers a 

cascade of regulatory events leading to desynchronized fruit set. 

  Of particular interest, a group of nine ERF (Ethylene Response Factor) transcription 

factors that were differentially expressed, strongly suggesting the involvement of ethylene 

signaling in fruit set. This is in line with previous transcriptomic data reporting that the 

fruit set process is associated with the activation of a number of ethylene response genes 

[5]. More expected, a total of 31 auxin-related genes belonging to auxin biosynthesis, 

transport and response were found to be deregulated. To further validate the involvement 

of these genes in the process of fruit set, it will be interesting to analyze their expression 

pattern during normal fruit set upon fertilization. To uncover which genes among those 

showing altered expression in the transgenic lines are direct target for SlARF8A, a ChIP-

Seq strategy is now considered. Such an approach becomes now possible given the 

availability of a high quality tomato genome sequence. 

The generation of stably transformed tomato lines expressing ProARF8A::GUS provided 

a useful material to unveil the tissue specific expression of Sl-ARF8A in planta. The 

analysis of these plants indicated that Sl-ARF8A was highly expressed in the vascular 

tissues in most tomato organs. Interestingly, although no expression of ProARF8A::GUS 

was detectible in the roots of seedlings, the lateral root development was observed in 

SlARF8A-OX lines, suggesting that up-regulation of Sl-ARF8A regulates the auxin 

homeostasis to induce the lateral roots. The high expression of Sl-ARF8A in the axils, 

where the axillary shoots are generated, is to pout together with the enhanced shoot 

branching in SlARF8A-OX lines. In addition, the high expression of Sl-ARF8A found in 

the stigma is to bring together with the phenotype observed in SlARF8A-OX lines, and 

suggests that Sl-ARF8A might be directly involved in the style development.  

The identity of the Sl-Aux/IAA(s) putatively interacting with Sl-ARF8 is currently 

unknown. Noteworthy, a bunch of phenotypes displayed by SlARF8A-OX plants are 

reminiscent of those reported for Sl-IAA9 down-regulated tomato lines [23], suggesting 

that Sl-ARF8 might interact with Sl-IAA9 to mediate auxin-dependent developmental 

processes. In addition of pollination-independent fruit set, the acropetal growth pattern is 

also common to SlARF8A-OX and Sl-IAA9 suppressed lines. Altogether, these data 

support the hypothesis that both proteins are components of the same complex involved in 

auxin signaling, and lowering the abundance of Sl-IAA9 protein is equivalent to 

increasing the level of Sl-ARF8 protein.         
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Materials and methods 
Plant materials and growth conditions 

Tomato seeds (Solanum lycopersicum cv MicroTom or Ailsa Craig) were sterilized, 

rinsed in sterile water and sown in recipient Magenta vessels containing 50 mL of 50% 

Murashige and Skoog (MS) culture medium added with R3 vitamin (0.5 mg L-1 thiamine, 

0.25 mg L-1 nicotinic acid and 0.5 mg L-1pyridoxine), 1.5% (w/v) sucrose and 0.8% (w/v) 

agar, pH 5.9. Plants were grown under standard greenhouse conditions. The culture 

chamber rooms are set as follows: 14-h-day/10-h-night cycle, 25/20°C day/night 

temperature, 80% hygrometry, 250 µmol m-2s-1 intense luminosity.  

Cloning the full-length Sl-ARF8A/B cDNAs by 5’, 3’-Race PCR 

BLAST analysis of expressed sequence tag (EST) sequences in the SOL 

GenomicsNetwork (SGN) (http://sgn.cornell.edu/tools/blast/) revealed that 4 EST 

sequences (no. BE353344, BF097763, TC161089, AW223741 or BE434602) was highly 

similar to the previously identified AtARF8. This EST sequence was then used as a basis 

to retrieve the full-length cDNA of Sl-ARF8A from „Micro-Tom‟Tomato. First, 1 µL 

RNA from tomato (Kemer) flower, BD Smart IIA primer and ARF8-R2 primer 

(AATACAAGCTGCCAGCCTGATCT) were used for synthesis of 5‟Race cDNA. Then, 

GSP1 primer (CCGCTTTAGCCTAAGAGGGAACAA) and GSP2 primer 

(CAGCGAACTGGATCTAAGTCACCA) were used to amplify the 5‟ cDNA end of this 

gene according to the manufacturer's instructions of SMART RACE cDNA Amplification 

Kit (Clontech). For 3‟ Race PCR, 2 µl RNA (Mix from WT Kemer tomato IG fruit + 

plantlets+flowers) and 3‟-CDS primer A were used for synthesis of 3‟Race cDNA. Then, 

the specific GSP1 primer (AGATCAGGCTGGCAGCTTGTAT) and GSP2 

primer(GAATGATGTCCTTCTCCTTGG) were used to amplify the 3‟ cDNA end of this 

gene according to the manufacturer's instructions. In addition, a fragment of 1503 bp has 

been amplified by PCR on tomato Kemer cDNA. Next, the full length of ARF8A CDS 

was amplified from tomato flower cDNA (Kemer) with forward primer 

(ATGAAGCTTTCAACATCAGGAATG) and reverse primer (TCAGTAATCAAGTGA 

TCCTATAG) at Tm 62°C, using Isis polymerase and then clone into pGEM-T Easy 

vector (Promega) for sequence. For Sl-ARF8B, a fragment SGN-U328487 with stop 

cordon of Sl-ARF8B CDS has been found in SGN database, then 5‟Race PCR was 

performed as follows. 3 µL RNA Mix from µTom tomato (flower, root, leaves, stems, 
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IMG, MG, breaker, 3 µg/µL) , 5‟CDS and BD Smart IIA primer were used for synthesis 

of 5‟Race cDNA. Primers ARF8B_STOP (TCAGTACTCCAGCGATCCAA GAGA) or 

ARF8B_5‟GSP2 (ATATCCAGTGACCTCCCAACACATCC) were used for first PCR, 

then ARF8B_5‟GSP3 (GGGAGAATTGTTGAATCGACTCTCTG) or 5‟GSP4 

(ATTGGACAGGCTGCTGAAACTGCAT) were used to amplify the 5‟ cDNA ATG of 

this gene according to the manufacturer's instructions of the smart kit. In the end, the full 

length of ARF8B CDS was amplified with forward primer 

(ATGAAGCTTTCAACATCAGGAATGGGTCAG) and reverse ARF8B_STOP as 

before. 

Plant transformation 

To generate SlARF8A-OX and SlARF8B-OX transgenic plants, the full-length of Sl-

ARF8A or Sl-ARF8B CDS was cloned into pGEMN-T (Promega) vector and then 

connected to binary vector pGreen in sense orientation under the transcriptional control of 

the cauliflower mosaic virus 35S promoter and the Nos terminator. Transgenic plants 

were generated by Agrobacterium tumefaciens mediated transformation according to the 

protocol in the GBF laboratory, and transgenic lines were selected on kanamycin (75 

mg/L) and then analyzed by genomic DNA-PCR to check the presence in the various 

transgenic lines obtained.  

RNA isolation and quantitative RT-PCR 

Total RNA was extracted from fruit according to Hamilton et al. (1991). Total RNA from 

leaves, stems, roots, flowers, and seedlings was extracted using a Plant RNeasy Mini kit 

(Qiagen) according to the manufacturer‟s instructions. Total RNA from ovary, stamen, 

petal and sepal from bud, flower and post-flower (4 DPA) was extracted from flower for 

three biological repeats using a TRIZOL Reagent (invitrogen) according to the 

manufacturer‟s instructions. Total RNA was treated by DNase I to remove any genomic 

DNA contamination. First strand cDNA was reverse transcribed from 2 µg of total RNA 

using Omniscript kit (Qiagen) according to the manufacturer's instructions. q RT-PCR 

analysis was performed as previously described [31]. The primer sequences are listed in 

Table 3. Relative fold differences were calculated based on the comparative Ct method 

using the Sl-Actin as an internal standard. To determine relative fold differences for each 

sample in each experiment, the Ct value of genes was normalized to the Ct value for Sl-

Actin-51 (accession number Q96483) and was calculated relative to a calibrator using the 

formula 2-ΔΔCt. At least two to three independent RNA isolations were used for cDNA 

synthesis and each cDNA sample was subjected to real-time PCR analysis in triplicate. 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=3219772
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Subcellular localization 

The Sl-ARF8A_GFP and Sl-ARF8B_GFP fusion were cloned into the Gateway vectors by 

using the primers in Table 3. Protoplasts were obtained from suspension cultured tobacco 

(Nicotiana tabacum) BY-2 cells and transfected according to the method described 

previously (Leclercq et al., 2005). Transfected protoplasts were incubated for 16 h at 25 

°C and analysed for GFP fluorescence by confocal microscopy. Confocal fluorescent 

images were obtained on a confocal laser scanning microscope (Leica TCS SP2, Leica 

DM IRBE ; Leica Microsystems, Wetzlar, Germany). For GFP, the samples were 

illuminated with a 488 nm ray line of an argon laser and the emission light collected in the 

500–525 nm spectral range. 

Hormone treatment 

For auxin treatment, 21-d-old tomato seedlings were harvested and incubated in 1/2 MS 

buffer containing 20 mM IAA or not (mock treatment) for 3 h. Thereafter, WT tissues 

were immediately frozen in liquid nitrogen and stored at -80°C until RNA extraction, or 

ProARF8A::GUS seedlings were used for GUS analysis. For ethylene treatment, 21-d-old 

tomato seedlings were treated at 50 ppm ethylene and air as a control for 5 h. After that, 

WT tissues were immediately frozen in liquid nitrogen and stored at -80°C until RNA 

extraction, or ProARF8A::GUS seedlings were used for GUS analysis. 

Histochemical GUS analysis 

Transgenic lines bearing the ARF8A/B promoter-GUS fusion constructs 

(ProARF8A/B::GUS) were incubated at 37°C for calculated time with GUS staining 

solution (100 mM sodium phosphate buffer, pH 7.2, 10 mM EDTA, 0.1% Triton, and 1 

mM 5-bromo-4-chloro-3-indolyl-b-D-glucuronic acid) to reveal GUS activity. In fact, to 

keep 6 h for the flower and 4 DPA, and 3 h for fruit in different stages. Following GUS 

staining, samples were washed several times to extract chlorophyll using a graded ethanol 

series.  

Pollen viability analysis 

The pollen from the flower of SlARF8A-OX lines and wide type was treated with 2,5-

diphenyl monotetrazolium bromide (MTT) in 5% sucrose solution at room temperature 

for 15 min, and then checked under the microscope with a magnification of 10-40 times. 

Flower emasculation and cross assay 

Flower buds of wild-type or transgenic plants were emasculated before dehiscence of 

anthers (closed flowers) to avoid accidental self-pollination. Cross-pollination was 

performed on emasculated flowers one day prior to anthesis. For emasculation and cross-
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fertilization experiments, 8 to 10 flowers were kept per plant to ensure equivalent growth 

conditions for all fruit. 

Histological section analysis 

For histological analysis, flower buds of 2-8 mm in length were fixed in a glutaraldehyde 

solution (sodium cacodylate 50 mM pH 7.1, 2.5% glutaraldehyde), and dehydrated using 

graded ethanol series before being fixed in graded LR White Resin series. 99 nm-thick 

sections were stained with a toluidine blue solution (0.5% in 2.5% sodium carbonate) and 

viewed under a Leica MZFLIII stereo microscope. Pictures were taken with a Leica DFC 

420C camera, while applying shading correction with the Leica Application Suite 

software (Leica Microsystems). Images analysis and area measures were performed with 

the Image-Pro plus v4.5 software. In total, 3 flower buds by line have been analyzed. 

RNA isolation and RNA-sequencing 

Total RNA was extracted from flower bud in SlARF8A-OX and WT for three biological 

repeats using a TRIZOL Reagent (invitrogen) according to the manufacturer‟s 

instructions. Total RNA was treated by DNase I to remove any genomic DNA 

contamination and checked by RNA gel. The good ones were further analyzed by Agilent 

RNA 6000 Nano Assay, which the RIN value above 7 was determined to be qualified. 

After that, the best RNA were sent out for deep RNA sequencing using Illumine 

Hiseq2000 and the reads generated were mapped to the tomato genome sequence Sl2.40. 

The gene expression was calculated for each annotated tomato gene (iTAG2.30).  
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Table 3 The primers used for the analysis of RT-q PCR and Gateway cloning  

 

Genes  Forward Primer Reverse Primer 
Sl-ARF8A TGACATCGAATGGAAATTCAG GTCTCTTAGCACTAACAAACAC 
Sl-ARF8B GTCAGTCCGTGATCATAGAG GGAATCCAAGCTACAATTTCC 
Sl-Actin-51  TGTCCCTATTTACGAGGGTTATGC CAGTTAAATCACGACCAGCAAGAT 
ProARF8A AAAAAGCAGGCTTCTTTACCATGTCCCTACCCTCT AAGAAAGCTGGGTCCTTTCTCCAAGACCTCCATT 
ProARF8B AAAAAGCAGGCTTCTTAACTAACAAACCAACACAGCCAAC AAGAAAGCTGGGTCTTTATTTAAAAACCCACTTCCTCTTGA 
Sl-ARF8A_GFP Fus AAAAAGCAGGCTTCATGAAGCTTTCAACATCAGGAATG AAGAAAGCTGGGTCGTAATCAAGTGATCCTATAG 
Sl-ARF8B_GFP Fus AAAAAGCAGGCTTCATGAAGCTTTCAACATCAGGAATGGGTCAG AAGAAAGCTGGGTCGACGAAAGCTAAAGAAGCCAGG 
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Chapter IV: 
Main conclusions and perspectives 

 
In fleshy fruits, fruit setting corresponds to a transition step that change the fate of the flower 

organ to a fruit. This process can be described as a very complex developmental event that is 

associated with dramatic physiological, structural and molecular changes. The plant hormone 

auxin is known to play a critical role in the fruit set process, but, so far, the molecular 

mechanisms underpinning auxin action during the flower to fruit transition remain largely 

unknown. Auxin Response Factor (ARF), as an important transcriptional factor involved in 

auxin signaling, regulates early auxin-responsive genes, such as Aux/IAAs, GH3s and SAURs 

by binding to auxin-responsive elements (AuxREs) present in their promoters. The present 

study identified and comprehensively analyzed the whole ARF gene family in the tomato 

(Solanum lycopersicum), a reference species for Solanaceae plants and the model plant for 

fleshy fruit development. The main part of my Ph.D. research project was dealing with the 

structural and functional characterization of two ARF homological members, Sl-ARF8A and 

Sl-ARF8B. 

 

The ARF multigene family in tomato 

It is well accepted now that ARF regulators play a key role in various auxin-mediated 

plant developmental processes by specifically binding to the auxin-responsive elements 

(AuxREs) found in the promoter of early auxin responsive gene. In the present study, a total 

of 22 Sl-ARF genes have been identified from tomato (Solanum lycopersicum) genome using 

23 predicted Arabidopsis thaliana ARF protein sequences as query. Analysis by Fancy 

Genev1.4 revealed the genomic structure of each Sl-ARF gene and the location of each Sl-

ARF on tomato chromosomes. Expression analysis by qRT-PCR unveiled the diversified 

expression patterns of Sl-ARF genes in different tomato tissues and organs and revealed their 

regulation by auxin and ethylene suggesting that these transcriptional regulators may be 

essential components of the cross-talk between auxin and ethylene signaling pathways. RNA-

Seq and RT-PCR analysis provided new insight into the expression profile of each Sl-ARF 

member in fruit set and uncovered a major alternative splicing mode of regulation for 7 Sl-
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ARFs. Overall, the data produced provide important leads towards addressing the role of a 

specific Sl-ARF in a particular developmental process. 

 

Structural and functinal features of Sl-ARF8A/B 

Previous studies have showed that AtARF8 gene played key roles on hypocotyl growth, 

flower petal development and fruit initiation in Arabidopsis. On the other hand, down 

regulation of Sl-ARF7 gene in tomato resulted in parthenocarpic phenotypes and a thickened 

pericarp. The present study uncovers the essential role of Sl-ARF8A and Sl-ARF8B in 

controlling fruit set process. Expression analysis carried by by RT-qPCR revealed an increase 

in Sl-ARF8A transcript levels in ovary within 4 days after pollination and fertilization. The 

hormonal regulation of Sl-ARF8A/B addressed either by qRT-PCR or using transgenic lines 

expressing the ProARF8::GUS fusion, showed that Sl-ARF8A is repressed by auxin and 

activated by ethylene whereas the expression of Sl-ARF8B failed to display regulation by any 

of the two phytohormones. Over-expression of Sl-ARF8A/B resulted in a fertilization-

independent fruit set and parthenocarpic fruit formation in tomato strongly suggesting at least 

a partial functional redundancy between the two genes. The histological analysis revealed an 

altered placenta and ovules development in Sl-ARF8A over-expressing flowers suggesting that 

this is involved in the development of these reproductive structures. Taken together, the data 

uncovers the involvement of Sl-ARF8 in fruit set and suggest that Sl-ARF8A may be essential 

in relaying both auxin and ethylene responses. In contrast to Sl-ARF7 gene, previously 

showed to be up-regulated in non-fertilized flowers and down-regulated after pollination, Sl-

ARF8A displayed an opposite pattern of expression being up-regulated after flower pollination 

and fertilization. However, up-regulation of Sl-ARF8A and down-regulation of Sl-ARF7 both 

resulted in the parthenocarpic fruits in tomato plants, suggesting that these two ARF family 

members may play an opposite role with regard to fruit initiation. The identity of the Sl-

Aux/IAA(s) putatively interacting with Sl-ARF8 is currently unknown. Noteworthy, the 

parthenocarpic phenotype displayed by SlARF8A-OX plants is reminiscent of Sl-IAA9 

antisense tomato lines [83], suggesting that Sl-ARF8 might interact with Sl-IAA9 to mediate 

auxin-dependent developmental processes. In addition of pollination independent fruit set, the 

acropetal growth pattern is also common to SlARF8A-OX and Sl-IAA9 suppressed lines. 

Altogether, these data sustain the idea that both Sl-IAA9 and Sl-ARF8 proteins are part of the 

same complex involved in auxin signalling involved in fruit set. Considering that Aux/IAA 

can potentially interact with ARF proteins leading to their sequestration/inactivation, therefore 

lowering the abundance of Sl-IAA9 protein would increase the level of free/active Sl-ARF8 
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proteins. In this context, it would be important to know the Aux/IAA partners of Sl-ARF7 in 

order to determine whether the two ARFs mediate fruit set through a shared mechanism. 

 

In conclusion, the data obtained within the thesis research project represent the first 

description of phenotypes associated with over-expression of an ARF family gene in tomato. 

The data strongly show that: 

(1) Sl-ARFs display distinct structural and functional features and can be divided into 

activators and repressors of transcriptional activities; 

(2) a number of Sl-ARFs undergo a major alternative splicing mode of regulation that is likely 

important for the control of fruit set; 

(3) unlike Arabidopsis, ARF8 is encoded by two genes in the tomato, named Sl-ARF8A and 

Sl-ARF8B displaying distinct expression patterns with only Sl-ARF8A being regulated by both 

auxin and ethylene; 

(4) fruit set is actively regulated by phytohormone auxin, and Sl-ARF8 plays an important 

role in auxin-mediated fruit set process; 

(5) Over-expression of Sl-ARF8A/B both resulted in common reproductive and vegetative 

phenotypes indicating a large functional redundancy between these two Sl-ARF8 paralogs. 

 

The research project is now being continued towards seeking for the Aux/IAA partners 

of Sl-ARF8A and B but also Sl-ARF7. A dominant repression version of Sl-ARF8 obtained 

by fusing the protein to the EAR repressor motif (ARF8A-SRDX) has been generated and 

tomato plants expressing this construct are now being generated. However, so far, it has been 

proven difficult to produce such transgenic plants suggesting that the expression of the 

repression version of Sl-ARF8 might be detrimental to developmental process essential for 

plant regeneration. In order to identify Sl-ARF8 direct target genes, tomato lines expressing 

tagged Sl-ARF8 genes (35S::Sl-ARF8A-3HA, 35S::3HA-Sl-ARF8A, 35S::Sl-ARF8A-GFP and 

35S::Sl-ARF8B-GFP) have been generated. This plant material is being used to carry out a 

ChIP-seq approach. Furthermore, the posttranscriptional regulation of Sl-ARF8 genes by 

miR167 has been addressed showing that down-regulation of this microRNA gene leads to 

parthenocarpic (seedless) fruits similar to the over-expression of Sl-ARF8A/B (a paralle 

project carried out by another Ph.D. student in the GBF lab). Collectively, the data gathered 

bring a detailed picture of the components of the control mechanism underlying the the 

molecular events involved in auxin-mediated fruit set. 
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From the applied side, the data provide multiple new targets for the control of fruit set 

and parthenocarpy via molecular breeding or genetic transformation strategies.  
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