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Executive Summary (Resume)

Since the last few decades, Information and Communication Technology (ICT) systems are evolving rapidly and they are becoming more and more popular and omnipresent. This trend also exist in aviation domain. Now a days, all modern aircraft have complex suit of on-board electronic devices used for various purposes commonly referred to as Avionics Systems. Avionics systems of an aircraft are used in a wide variety of different applications such as flight control, instrumentation, navigation, communication etc. These avionics systems need to communicate between themselves and exchange data, hence building "Avionics networks". Over the years, demand for data exchange has risen rapidly and avionics networks have evolved from dedicated links to shared buses to switched networks such as Avionics Full-Duplex Switched Ethernet (AFDX). AFDX is a data network for safety critical applications that utilizes dedicated bandwidth while providing deterministic Quality of Service (QoS). AFDX is based on IEEE 802.3 Ethernet technology and utilizes commercial off-the-shelf (COTS) components. It is described specifically by Part 7 of the ARINC 664 Specification, as a special case of a profiled version of an IEEE 802.3 network per parts 1 & 2, which defines how Commercial Off-the-Shelf networking components will be used for future generation Aircraft Data Networks (ADN). The six primary aspects of AFDX include full duplex, redundancy, deterministic, high speed performance, switched and profiled network. Like any other communication network being used on-board an aircraft, it is very important to know the temporal aspects of data flow on AFDX network, such as communication delay from the source to the destination. These end to end communication delays are important to determine because they are used to certify avionics systems of the aircraft. In this context, the main objective of this thesis is to provide methodologies of finding exact worst case communication delays of AFDX network.

To achieve this goal, different tools and approaches have been analyzed and compared with existing techniques. New approaches and algorithm were also developed during the research work of this thesis. At present two main techniques are being used for end to end delay analysis of AFDX network. These are Network Calculus and Trajectory approach. Both of these are pessimistic in their results and give us a sure upper bound on the end to end communication delays instead of exact values. Network Calculus uses Min Plus algebra for its calculations.

The pessimism in results have been reduced by using different techniques such as "grouping".

Trajectory approach uses concept of "busy period" to calculate its bounds for end to end communication delays. In some cases Network Calculus has better results than the Trajectory approach while in other cases Trajectory approach gives better results. On average, results of Trajectory approach are tighter than Network Calculus approach and the margin varies depending upon iv the VL path.

In order to evaluate exact end to end communication delays, Model checking has been used in the context of AFDX network. Before this research work, it was applied to AFDX network as a proof of concept on a simple configuration. During this work, we have explored Model checking for end to end communication delays of AFDX network in depth, with models reflecting the real configuration parameters, such as asynchronous behavior, packet sizes and BAG values.

In this context, existing well established real time model checking tools were explored, such as UPPAAL and NuSMV. UPPAAL suits better for the end to end communication delays in AFDX network as compared to NuSMV because NuSMV can only handle pure discrete models.

On the other hand UPPAAL does not have a symbolic representation for the discrete part of the state space and hence it limits the size of models that can be evaluated in reasonable time and computation resources. Still, we were able to evaluate AFDX network of considerably larger sizes than existing approach. We are able to find end to end communication delays of AFDX network with upto 32 VLs.

In order to overcome limitations of Model Checking approach, the work was done in the direction of exhaustive simulation using in house developed algorithms and tools based on these algorithms. The main reason for using this approach was to develop a tool from scratch which is specifically suited for the task of finding exact end to end communication delay of AFDX networks. In order to reduce state space for this exhaustive simulation approach, properties of the AFDX network were exploited and different algorithms were developed which ensure that we only consider cases which can be candidate for worst case end to end communication delays.

The end result is encouraging and we were able to analyze large AFDX network configurations.

We were also able to analyze part of a real life industrial configuration of the AFDX network with approximately 1000 VLs and 6400 paths. For more than 60% of these paths we were able to find exact end to end communication delays while for the rest we were able to find end to end communication delays which are close to worst case communication delays.

The results obtained from the tool developed during this research were compared with existing approaches. With exact end to end communication delays calculated by this tool, we can find exact pessimism in Network Calculus and Trajectory approaches. On average, Network Calculus is 13% pessimistic in its calculations while Trajectory approach is about 6% pessimistic in its calculations. [Adnan 2010b] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian Fraboul. Model for worst-case delay analysis of an AFDX network using timed automata. In Proc. of the 15th ETFA , Bilbao, pp.1-4, 13-16 Septembre 2010. doi: 10.1109/ETFA.2010.5641124 keywords: automata theory;avionics;delays;local area networks;scheduling;AFDX network;ARINC 664 standard;avionics full duplex switched Ethernet;end-to-end communication delays;local scheduling;timed automata;upper bounds;worst case delay analysis model. URL : http://ieeexplore.ieee.org/stamp/ stamp.jsp?tp=&arnumber=5641124&isnumber=5640954 (Cited on pages 3, 5, 50 and 111.) [Adnan 2010c] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul.
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Worst-case end-to-end delay analysis of switched Ethernet using timed automata. In : Junior Researcher Workshop on Real-Time Computing, Toulouse, IRIT, pp. 23-26,4-5 November 2010. keywords: automata theory;avionics;delays;local area networks;scheduling;AFDX network;ARINC 664 standard;avionics full duplex switched Ethernet;end-to-end communication delays;local scheduling;timed automata;upper bounds;worst case delay analysis model. (Cited on page 5.) [Adnan 2011a] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian Fraboul. An improved timed automata model for computing exact worstcase delays of AFDX periodic flows. In Proc. of the 16th ETFA , Toulouse, In this era of modern science and technology, we rely heavily on the correct functioning of many Information and Communication Technology (ICT) systems. This trend is on the rise and while these systems are becoming more and more complex, at the same time they are massively encroaching on our daily life via the Internet and all kinds of embedded systems such as smart cards, hand-held computers, mobile phones, and high-end television sets. It is estimated that we are confronted with about 25 ICT devices on a daily basis [START_REF] Baier | [END_REF]]. Many services such as electronic banking, on-line shopping (e-commerce) and smart card transactions are part of our routine life. The Internet alone accounts for about 10 12 million US dollars cash flow.

Modern transportation systems such as cars, trains and airplanes spend about one fourth of their production costs in ICT systems. ICT systems have become universal and omnipresent. They play vital role in control of the stock exchange market, they are the heart of telephone switches, they constitute Internet technology, and they are crucial for several kinds of medical systems, transportation systems and manufacturing systems. Our heavy reliance on these embedded systems make them very important and their reliable and correct operation has become a prime priority. Not only we want a good performance in terms like response times and processing capacity, but also the absence of annoying errors is one of the major quality demands.

The correct behavior of ICT systems is vital not only for money and comfort but in many cases, also for our lives. We don't like when our phones does not work properly or when our electronic gadgets reacts unexpectedly and wrongly to our issued commands. These software and hardware errors do not threaten our lives, but may have substantial financial consequences for the manufacturer. Examples are known where incorrect systems have caused valuable money loss to companies. The bug in Intel's Pentium II floating-point division unit in the early nineties caused a loss of about 475 million US dollars to replace faulty processors, and severely damaged Intel's reputation as a reliable chip manufacturer. The software error in a baggage handling system postponed the opening of Denver's airport for 9 months, at a loss of 1.1 million US dollar per day [START_REF] Baier | [END_REF]].

Errors can be catastrophic too. Notorious examples in the past are the fatal defects in the control software of the Ariane-5 missile (figure 1.1), the Mars Pathfinder, and the airplanes of the Airbus family. Similarly software are also used for the process control of safety-critical systems such as chemical plants, nuclear power plants, traffic control and alert systems, and storm surge barriers. Consequently, bugs in such software can have disastrous impacts. For example, a software flaw in the control part of the radiation therapy machine "Therac-25" caused the death of six cancer patients between 1985 and 1987 as they were exposed to an overdose of radiation [START_REF] Baier | [END_REF]].

All these examples remind us that it is very pertinent for any system to verify its correct intended operation and behaviour, specially for those which involve human lives. In this thesis, we strive for verification of an important avionics communication network known as Avionics Full-Duplex Switched Ethernet (AFDX). We will determine the exact worst case end to end communication delays of AFDX network. The context of this problem and brief background is presented in next section.

The Context

All modern aircraft have complex suit of on-board electronic devices used for various purposes, commonly referred to as Avionics Systems. Avionics systems of an aircraft are used in a wide 1.1. The Context 3 variety of different applications such as flight control, instrumentation, navigation, communication etc. These avionics systems need to communicate between themselves and exchange data, hence building "Avionics networks". Over the years, demand for data exchange has risen rapidly and avionics networks have evolved from dedicated links to shared buses and from shared buses to switched networks such as AFDX. Avionics Full-Duplex Switched Ethernet (AFDX) [AR-INC 664 2005] is an avionics data network for safety critical applications and hence requires a very strict verification of its correct functioning. One important aspect of this verification is the maximum end to end communication delay for different devices connected to the network.

In any communication network, there is an end-to-end communication delay which occurs from the source generating a given message to the destinations receiving that message. For each message, this delay is composed of different parts: the transmission delays on links, the switching delays, the waiting times in output buffers. Knowing these delays is crucial for the overall system safety and reliability. However, finding the exact worst case delay for a given message is still an open problem, since every possible scenario has to be considered, leading to an intractable computation on any industrial configuration. Typically, this situation occurs in the context of avionics. Existing approaches for the computation of an exact worst-case delay in the context of the AFDX are based on model checking [Adnan 2010b, Charara 2006a] using Timed Automata [START_REF] Alur | [END_REF]]. They cannot cope with configuration with more than ten VLs.

Many work has been devoted to the estimation of the worst-case delay for each message. By using techniques such as simulation and testing, it is possible to observe the network under study over long periods of times, thus considering a subset of all possible scenarios. Such an approach has been proposed in [Scharbarg 2009] for avionics networks. It provides an interval for the delay for each message. However, the delay for a message can be out of the obtained interval, since the approach does not consider all the possible scenarios. Consequently, simulation and testing do not provide us with exact worst case delays.

Analytical methods such as network calculus [Charara 2006a, Cruz 1991a] , [Cruz 1991b, Fraboul 2002a, Le Boudec 2001, Li 2010] and trajectory approach [START_REF] Bauer | [END_REF][START_REF] Bauer | [END_REF], Martin 2006a] are used to compute an upper bound on the maximum delay for each flow. They guarantee that the delay can never be more than the calculated upper bound. These computed bounds are used for network certification but are pessimistic and cause under utilization of the network. The exact worst case delay for each flow is somewhere between the maximum observed delay and the calculated upper bounds, as shown in figure 1.2. In [START_REF] Bauer | [END_REF]], authors have done analysis of this pessimism by the computation of an under approximation of this delay and comparing it with the results of sure upper bounds calculated by Network Calculus and Trajectory approaches. In figure 1.2, the difference between exact maximum delay and under approximation is the measure of optimism in algorithm used for under approximation while the difference between exact maximum delay and upper bound is the measure of pessimism in Network Calculus and Trajectory approaches used to calculate this bound. Without the knowledge of exact maximum delay, the difference between under approximation and upper bound is sum of optimism and pessimism between corresponding techniques. This gives us an estimation of pessimism in Network Calculus and Trajectory approaches.

Our aim, in this thesis, is to find exact worst case end to end communication delays. For this purpose we have explored existing tools and methodologies as well as developed new algorithms and tools where existing methods were not suitable for this task. The overview of this work is presented in the contribution section.

Contribution

The main objective of this thesis is to find exact worst case end to end communication delays of an AFDX network. For AFDX network, end to end communication delays can be approximated by using simulations, or they can be upper bounded by using analytical techniques such as Network Calculus or Trajectory approach. For computation of exact worst case delays, at present, we have only model checking approach but the model checking approach is limited only to small sized, proof of concept type networks and cannot analyze real life large sized industrial networks. These methods will be discussed in more detail in Chapter 3. Then, the problem is how to find exact worst case communication delays of large AFDX networks. Or, in other words, how can we improve models so that we are able to handle large networks. Also, another objective is to add local scheduling at the end systems in the computations which existing model checking approach doesn't incorporate.

Contribution 5

Starting with the first model checking approach in [Charara 2006b], this approach can be improved: instead of analyzing the whole AFDX network simultaneously, only a part of the network can be considered and "divide and conquer" method can be used. This have been done in [Adnan 2010a] and presented in [Adnan 2010b, Adnan 2010c].The idea is to consider one output port at a time and compute worst case delay at the port under study. This approach is successful in handling larger networks than the existing approach but it does not compute exact worst case delays for every scenario. Due to the port by port analysis approach, it is optimistic in certain cases where worst case delay on one port does not lead to overall end to end worst case delay. This is discussed in further detail in Chapter 3.

In this PhD Thesis, we propose to improve the Timed Automata models in two directions.

First, scheduling of VLs at a local end system using offsets and asynchronous behaviour among all end systems have been added into the model, making the model of the AFDX network more realistic. Secondly, to make models efficient in resource (memory + computation) usage and to reduce search space, in order to cope with larger AFDX networks. In this context, we exploit AFDX network properties to reduce search space by considering only those cases which can be candidate for the worst case end to end delay. A first implementation considering this search space reduction has been presented in [Adnan 2011a[START_REF][END_REF]. A general purpose model checker, UPPAAL, is used for the developed timed automata models.

The models are detailed enough to capture periodic and sporadic flows with any BAG values.

They also support local scheduling at each end system by using offsets. AFDX network with upto 32 VLs can be handled with this approach. This work is presented in more detail in Chapter 4.

At this point, we were still not able to compute worst case end to end delays of a real life industrial scale AFDX network by model checking. This is due to inherent exponential increase of state space in any model checking approach. But we were convinced that use of a general purpose model checker is also hampering our efforts to analyze larger networks. Therefore, we decided to use an approach which is more suited to AFDX network analysis. For this purpose, we started to develop a tool from scratch, which will allow us to exhaustively check all the cases which can be candidate for the worst case end to end delays in the AFDX network. This tool uses the same methodology and algorithms of state space reduction as used in Timed Automata based modeling approach discussed before. This work was presented in [Adnan 2011b]. The results are much better as compared to Timed Automata approach using UPPAAL software.

We are able to compute end to end communication delays of a network which is twice the size of what Timed Automata based approach can handle. This approach is discussed in detail in Chapter 5.

Chapter 1. Introduction

We continued to pursue our main goal to analyze an industrial size AFDX network. With home made tool, we are at liberty to modify and change the software as required. We developed some algorithms and exploited more properties of AFDX network in order to reduce the search space to an extent where we were able to analyze industrial configuration of the AFDX network.

We used this tool to study the end to end communication delays of a real life AFDX network, used on Airbus A380 aircraft. We are now able to compute end to end communication delays of an industrial sized network with about 1000 VLs having 6412 individual paths and more than 100 end systems. We are able to analyze all the VLs of this industrial AFDX network but not all the paths. We can analyze more than 60% paths. The reduction of state space is discussed in Chapter 5.5 and the case study of Airbus A380 network is presented in Chapter 6.

Our contribution in this thesis is to be able to find exact worst case end to end communication delays for large industrial size AFDX network and compare it with existing results to evaluate real pessimism of corresponding approaches. In this chapter we will discuss about system verification and different methodologies available for this purpose. We will also talk about AFDX network in detail; how it works and what are the main building blocks.

System Verification

The complexity of ICT systems has increased with the advancement in technology. other components and systems. This makes them more prone to errors as the probability and number of defects increases exponentially with the number of interacting system components.

Increased complexity also makes it difficult for developers to debug and check systems for potential errors. In particular, phenomena such as concurrency and non-determinism that are central to modeling interacting systems turn out to be very hard to handle with standard techniques. Hence a lot of research is being carried out and efforts are being put in order to check Hardware and Software for correctness as well as compliance to it's specifications. These efforts are generally referred to as "System Verification" and is an active topic of research.

System verification techniques are integral part of all ICT system developments. Currently, the emphases of scientific community is on developing more reliable and accurate system verification techniques. In simple words, system verification is used to establish that the design or product under consideration satisfies certain properties. The properties to be validated are mostly obtained from the system's specification and can be quite elementary, e.g., to verify that the system should never be able to reach a situation in which no progress can be made (a deadlock scenario). The specifications describe what the system has to do and what not, and thus constitutes the basis for any verification activity. A defect is found once the system does not fulfill one of the specification's properties. The system is considered to be "correct" whenever it satisfies all properties obtained from its specification. So correctness is always relative to a specification, and is not an absolute property of a system. A schematic view of verification process is depicted in figure 2.1.

Today's systems are very complex in it's nature and mostly comprise of interconnected sub systems. System verification is a vast field and can be further subdivided into major domains such as:

System Verification
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• Software verification

• Hardware verification

• Behavioral verification

There are different methodologies being used for system verification. These methodologies can be specific to one domain or applicable to more than one domain. These include:

• Measurements

• Tests

• Simulations

• Model Checking

In the context of this thesis, the verification of worst case end to end communication delays falls under behavioral verification domain. For this verification, all of the above mentioned methodologies can be used with varying degree of confidence or surety. Measurements are the quantitative indicators of the properties and performance criteria of the system under study.

They can be very useful during the development phase or for troubleshooting. Tests are integral part of any system development. A system undergoes many tests from its inception to final product. At each state different tests are performed. Results of these tests dictates the progress to next level of development. Simulation is replication of a real world process or system over time. This replication should be as close to real world system as possible for better results.

Simulations are used to investigate behaviour of the system and to validate proper functionality without using the actual system. Tests and simulations are quite similar in nature except that in tests, actual system is used. All of the above mentioned methodologies i.e measurements, tests and simulations only provide data at a particular instance under specific conditions, which means it does not verify system for all possible situations or scenarios. Therefore these methodologies can discover many anomalies in the system understudy but they can not verify that all the possible situations and scenarios have been covered. There is always a chance that a rare anomaly or event has not been tested. For covering all possible cases or scenarios, model checking is used. Model checking, for a given model of a system, exhaustively and automatically checks whether this model meets a given specification. Simulation can also check all possible cases or scenarios, and such simulation is referred to as Exhaustive Simulation. So, for 100% coverage of all possible scenarios, model checking and exhaustive simulation are the two methodologies which can be used. In the context of this thesis, for exact worst case end to end communication Chapter 2. Background: System Verification and AFDX Network delays, we will use both model checking and exhaustive simulation. These methodologies will be discussed in more detail in the next sections.

Software Verification

Software verification is a process of checking system's software for it's compliance with specifications and expected requirements. Peer reviewing and testing are the major "software verification" techniques used in practice. A "peer review" refers to a software inspection carried out by a team of software engineers that preferably has not been involved in the development of software under review. The code of software is not executed but analyzed statically. Empirical studies indicate that peer review provides an effective technique that catches around 60% of the errors [START_REF] Boehm | [END_REF]]. Despite its almost complete manual nature, peer review is thus a rather useful technique. Due to its static nature, experience has shown that subtle errors such as concurrency and algorithm defects are hard to catch using peer review.

"Software testing" is a significant part of any software engineering project [Whittaker 2000].

As opposed to peer review, which analyzes code statically without executing it, testing is a dynamic technique that actually runs the software. Testing takes the piece of software under consideration and provides its compiled code with inputs, called tests. Correctness is thus determined by forcing the software to traverse a set of execution paths, sequences of code statements representing a run of the software. Based on the observations during test execution, the actual output of the software is compared to the output as documented in the system specification.

Although test generation and test execution can partly be automated, the comparison is usually performed by human beings. The main advantage of testing is that it can be applied to all sorts of software, ranging from application software (e.g., e-business software) to compilers and operating systems. As exhaustive testing of all execution paths is practically in-feasible;

in practice only a small subset of these paths is treated. Testing can thus never be complete.

That is to say, testing can only show the presence of errors, not their absence.

Hardware Verification

"Hardware Verification" is vital for preventing errors in hardware design. Hardware is subject to high fabrication costs; fixing defects after delivery to customers is difficult, and quality expectations are high. Whereas software defects can be repaired by providing users with patches or updates, hardware bug fixes after delivery to customers are very difficult and mostly require re-fabrication and redistribution. This has immense economic consequences. As mentioned earlier, the replacement of the faulty Pentium II processors caused Intel a loss of about $ 475 million. It is not surprising that chip manufacturers invest a lot in getting their designs right.

Hardware verification is a well-established part of the design process. Emulation, simulation, and structural analysis are the major techniques used in hardware verification.

"Structural analysis" comprises several specific techniques such as synthesis, timing analysis, and equivalence checking. "Emulation" is a kind of testing. A re-configurable generic hardware system (the emulator) is configured such that it behaves like the circuit under consideration and is then extensively tested. As with software testing, emulation amounts to providing a set of stimuli to the circuit and comparing the generated output with the expected output as laid down in the chip specification. To fully test the circuit, all possible input combinations in every possible system state should be examined. This is impractical and the number of tests needs to be reduced significantly, yielding potential undiscovered errors. With "simulation", a model of the circuit at hand is constructed and simulated. Models are typically provided using hardware description languages such as V erilog or V HDL that are both standardized by IEEE. Based on stimuli, execution paths of the chip model are examined using a simulator. These stimuli may be provided by a user, or by automated means such as a random generator. A mismatch between the simulator's output and the output described in the specification determines the presence of errors. Simulation is like testing, but is applied to models. It suffers from the same limitations, though: the number of scenarios to be checked in a model to get full confidence goes beyond any reasonable subset of scenarios that can be examined in practice.

Behavioral Verification

Behavior of a system refers to it's expected outputs for a given set of assumed inputs. In simple words, Behavioral Verification is the process of verification of system's "behavior" under given conditions. System's behavior is combined effect of its software and hardware functioning. Even though a system is verified separately for it's software and hardware, it is equally important to verify the system at more abstract and conceptual levels. For example, communication protocols, compliance of specified rules, and interaction among subsystems must be verified before starting development of hardware and software for each individual subsystem. Behavioral verification requires a "model" of the system. This model is a formal way of describing the system over which we can use certain queries and properties to verify it's behavior. Different tools incorporating various techniques exist which help in modeling a system for it's behavioral verification such as TINA, NuSMV, SPIN, UPPAAL etc. A comprehensive list of such tools can be consulted in Appendix A.

It must be noted that none of the software and hardware verification techniques described earlier gives us the 100% confidence about system correctness due to the same limitation of unreasonably large set of possible scenarios. If we need absolute surety of our design, then we must find a way to test all possible scenarios and that's where model checking helps us. Model checking approach searches all possible scenario exhaustively to prove correctness of the model under test. An important aspect of model checking is that it's as good as the model itself, i.e we must ensure that the model correctly represents the system before we start the model checking.

In the following sections, basic theory of model checking is presented. The details of available model checking software, called "model checkers", and their application to AFDX network is described in Chapter 3.2 and Chapter 4 respectively. Further discussion about model checking is presented in Appendix A.

Model Checking

In general more time and effort are spent on verification than on construction in software and hardware design of complex systems. Naturally, many techniques are sought to reduce and ease the verification efforts while increasing their coverage. One such technique is the use of "Formal methods" which is known to offer a large potential to obtain an early integration of verification in the design process, to provide more effective verification techniques, and to reduce the verification time.

Formal Methods

To put it in a nutshell, formal methods can be considered as"the applied mathematics for modeling and analyzing ICT systems". Their aim is to establish system correctness with mathematical rigor. Their great potential has led to an increasing use by engineers of formal methods for the verification of complex software and hardware systems. Besides, formal methods are one of the "highly recommended" verification techniques for software development of safety critical systems according to, e.g., the best practices standard of the IEC (International Electro-technical Commission) and standards of the ESA (European Space Agency). The resulting report [START_REF] Baier | [END_REF] of an investigation by the FAA (Federal Aviation Authority) and NASA (National Aeronautics and Space Administration) about the use of formal methods concludes that "Formal methods should be part of the education of every computer scientist and software engineer, just as the appropriate branch of applied maths is a necessary part of the education of all other engineers."
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During the last two decades, research in formal methods has led to the development of some very promising verification techniques that facilitate the early detection of defects. These techniques are accompanied by powerful software tools that can be used to automate various verification steps. Investigations have shown that formal verification procedures would have revealed the exposed defects in, e.g., the Ariane-5 missile, Mars Pathfinder, Intel's Pentium II processor, and the Therac-25 therapy radiation machine.

Model-based Verification

Model-based verification techniques are based on models describing the possible system behavior in a mathematically precise and unambiguous manner. It turns out that prior to any form of verification, the accurate modeling of systems often leads to the discovery of incompleteness, ambiguities, and inconsistencies in informal system specifications. Such problems are usually only discovered at a much later stage of the design. The system models are accompanied by algorithms that systematically explore all states of the system model. This provides the basis for a whole range of verification techniques ranging from an exhaustive exploration (model checking)

to experiments with a restrictive set of scenarios in the model (simulation), or in reality (testing).

Due to unremitting improvements of underlying algorithms and data structures, together with the availability of faster computers and larger computer memories, model-based techniques that a decade ago only worked for very simple examples are nowadays applicable to realistic designs.

As the starting point of these techniques is a model of the system under consideration, we have as a given fact that any verification using model-based techniques is only as good as the model of the system.

Model checking is a verification technique that explores all possible system states, commonly known as state-space, in a brute-force manner. Similar to a computer chess program that checks possible moves, a model checker, the software tool that performs the model checking, examines all possible system scenarios in a systematic manner. In this way, it can be shown that a given system model truly satisfies a certain property. It is a real challenge to examine the largest possible state spaces that can be treated with current means, i.e., processors and memories.

State-of-the-art model checkers can handle state spaces of about 10 8 to 10 9 states with explicit state-space enumeration. Using clever algorithms and tailored data structures, larger state spaces (10 20 up to even 10 476 states) can be handled for specific problems [START_REF] Straunstrup | [END_REF]].

Even the subtle errors that remain undiscovered using emulation, testing and simulation can potentially be revealed using model checking. the generated result OK?, Can the system reach a deadlock situation? e.g., when two concurrent programs are waiting for each other and thus halting the entire system? But also timing properties can be checked: Can a deadlock occur within 1 hour after a system reset?, or, Is a response always received within 8 minutes? Model checking requires a precise and unambiguous statement of the properties to be examined. As with making an accurate system model, this step often leads to the discovery of several ambiguities and inconsistencies in the informal documentation. For instance, the formalization of all system properties for a subset of the ISDN user part protocol revealed that 55% (!) of the original, informal system requirements were inconsistent [Holzmann. 1994] 

History of Model Checking

Model checking originates from the independent work of two pairs in the early eighties: Clarke and Emerson [START_REF][END_REF]] and Queille and Sifakis [START_REF] Queille | [END_REF]]. The term model checking was coined by Clarke and Emerson. The brute-force examination of the entire state space in model checking can be considered as an extension of automated protocol validation techniques by Hajek [Hajek 1978] and West [START_REF] West | An automated technique for communications protocol validation[END_REF][START_REF] West | Protocol validation in complex systems[END_REF]]. While these earlier techniques were restricted to checking the absence of deadlocks or livelocks, model checking allows for the examination of broader classes of properties. Introductory papers on model checking can be found in [Clarke 1996a[START_REF][END_REF], Clarke 1996b, Merz 2001, Wolper 1995]. The limitations of model checking were discussed by Apt and Kozen [Apt 1986]. More information on model checking is available in the earlier books by Holzmann [Holzmann 1990], McMillan [McMillan 1993], and Kurshan [Kurshan 1994] and the more recent works by Clarke, Grumberg, and

Peled [Clarke 1999], Huth and Ryan [START_REF] Huth | [END_REF]], Schneider [Schneider 2004], and Bérard et al. [Bérard 2001]. Automated analysis of designs, in particular verification by model checking, has recently been described by [START_REF] Ruys | Managing the verification trajectory[END_REF]].

Application of Model Checking in Networks

Model checking has been used for verification of different systems in the past. In the domain of networks, it has been used to verify redundant media extension of Ethernet PowerLink [START_REF][END_REF]]. It has also been used in networked automation systems [Ruel 2008] and in functional analysis of real-time protocol in an networked control system [START_REF] Fidge | [END_REF]]. For Integrated Modular Avionics (IMA) [ARINC 653 1997] , the bounds on end to end functional delays have been studied in [Lauer 2010 

Characteristics of Model Checking

Model Checking can be defined as "an automated technique that, given a finite-state model of a system and a formal property, systematically checks whether this property holds for (a given Chapter 2. Background: System Verification and AFDX Network state in) that model." The next section briefly explains the general process of model checking followed by it's advantages, limitations and role in system development cycle.

Model Checking Process

Model checking process can be divided in following different phases:

• Modeling phase:

model the system under consideration using the model description language of the model checker at hand; as a first sanity check and quick assessment of the model perform some simulations;

formalize the property to be checked using the property specification language.

• Running phase: run the model checker to check the validity of the property in the system model.

• Analysis phase:

is property satisfied? If yes then check next property (if any);

is property violated? If yes then system did not respect its specification. Therefore:

1. analyze generated counterexample by simulation;

2. refine the model, design, or property;

3. repeat the entire procedure.

out of memory? If yes then try to revise the abstraction level of the model to reduce its size and try again.

Strengths and Weaknesses of Model checking

Following are the main strengths of model checking approach:

• It is a general verification approach that is applicable to a wide range of applications such as embedded systems, software engineering, and hardware design.

• It supports partial verification, i.e., properties can be checked individually, thus allowing focus on the essential properties first. No complete requirement specification is needed.

• It is not vulnerable to the likelihood that an error is exposed; this contrasts with testing and simulation that are aimed at tracing the most probable defects.

• It provides diagnostic information in case a property is invalidated; this is very useful for debugging purposes.

• It is a potential "push-button" technology; once the model has been developed, the use of model checking tools requires neither a high degree of user interaction nor a high degree of expertise.

• It enjoys a rapidly increasing interest by industry; several hardware companies have started their in-house verification labs, job offers with required skills in model checking frequently appear, and commercial model checkers have become available.

• It can be easily integrated in existing development cycles; its learning curve is not very steep, and empirical studies indicate that it may lead to shorter development times.

• It has a sound and mathematical underpinning; it is based on theory of graph algorithms, data structures, and logic.

Following are the weaknesses of model checking:

• It is mainly appropriate to control-intensive applications and less suited for data intensive applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues; for infinite-state systems, or reasoning about abstract data types (which requires undecidable or semi-decidable logics), model checking is in general not effectively computable.

• It verifies a system model, and not the actual system (product or prototype) itself; any obtained result is thus as good as the system model. Complementary techniques, such as testing, are needed to find fabrication faults (for hardware) or coding errors (for software).

This highly depends on the level of abstraction in the model of the system.

• It checks only stated requirements, i.e., there is no guarantee of completeness. The validity of properties that are not checked cannot be judged.

• It suffers from the state-space explosion problem, i.e., the number of states needed to model the system accurately may easily exceed the amount of available computer memory.

Despite the development of several very effective methods to combat this problem, models of realistic systems may still be too large to fit in memory.
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• Its usage requires some expertise in finding appropriate abstractions to obtain smaller system models and to state properties in the logical formalism used.

• It is not guaranteed to yield correct results: as with any tool, a model checker may contain software defects.

• It does not allow checking generalizations: in general, checking systems with an arbitrary number of components, or parameterized systems, cannot be treated. Model checking can, however, suggest results for arbitrary parameters that may be verified using proof assistants.

Model checking has great potential in system verification and removing rare to find bugs.

It can formally verify properties of the system, and it can be used to check correct behavior of the system. Model checking is the choice when we want a complete verification of the system which simulations can not provide. Model checking considers all possible cases, and hence we can apply it to AFDX network in order to find exact end to end communication delays. We will discuss the application of this technique to find exact end to end communication delays of AFDX network [ARINC 664 2005] in coming sections (Chapter 3.2.1, Chapter 4), but first let's describe AFDX Network. 

AFDX Network

History of Aircraft Data Networks (ADN)

Prior to AFDX, Aircraft Data Networks utilized primarily the ARINC 429 standard. This standard, developed over thirty years ago and still widely used today, has proven to be highly reliable in safety critical applications. This ADN can be found on a variety of aircraft from both Boeing and Airbus, including the B737, B747, B757, B767 and Airbus A330, A340, A380

and the upcoming A350. ARINC 429 utilizes a unidirectional bus with a single transmitter and up to twenty receivers. A data word consists of 32 bits communicated over a twisted pair cable using the Bipolar Return-to-Zero Modulation. There are two speeds of transmission: high speed operates at 100 kbit/s and low speed operates at 12.5 kbit/s. ARINC 429 operates in such a way that its single transmitter communicates in a point-to-point connection, thus requiring a significant amount of wiring which amounts to added weight.

Another standard, ARINC 629, introduced by Boeing for the 777 provides increased data speeds of up to 2 Mbit/s and allowing a maximum of 120 data terminals. This ADN operates without the use of a bus controller thereby increasing the reliability of the network architecture.

The drawback of this system is that it requires custom hardware which can add significant cost to the aircraft. Because of this, other manufacturers did not openly accept the ARINC 629 standard.

ARINC 664 is defined as the next-generation aircraft data network (ADN • Data Link (MAC and Virtual Link addressing concept);

• Network (IP and ICMP);

• Transport (UDP and optionally TCP)

• Application (Network) (Sampling, Queuing, SAP, TFTP and SNMP).

The main elements of an AFDX network are:

• AFDX End Systems

• AFDX Switches

• AFDX Links

Virtual Links (VL)

The central feature of an AFDX network are its Virtual Links (VL). In one abstraction, it is possible to visualize the VLs as an ARINC 429 style network each with one source and one or more destinations as shown in figure 2.5. Virtual Links are unidirectional logic path from the source end-system to all of the destination end-systems. Unlike that of a traditional Ethernet switch which switches frames based on the Ethernet destination or MAC address, AFDX routes packets using a Virtual Link ID. The Virtual Link ID is a 16-bit Unsigned integer value that follows the constant 32-bit field. The switches are designed to route an incoming frame from one, and only one, End System to a predetermined set of End Systems. There can be one or more receiving End Systems connected within each Virtual Link. Each Virtual Link is allocated dedicated bandwidth known as Bandwidth Allocation Gap (BAG) with the total amount of bandwidth defined by the system integrator. However total bandwidth can not exceed the maximum available bandwidth on the network. Bi directional communications must therefore require the specification of a complimentary VL. Each VL is frozen in specification to ensure that the network has a designed maximum traffic, hence performance. Also the switch, having a VL configuration table loaded, can reject any erroneous data transmission that may otherwise swamp other branches of the network. Additionally, there can be sub-virtual links (sub-VLs) that are designed to carry less critical data. Sub-virtual links are assigned to a particular Virtual Link. Data is read in a round robin sequence among the Virtual Links with data to transmit.

Also sub-virtual links do not provide guaranteed bandwidth or latency due to the buffering, but AFDX specifies that latency is measured from the traffic regulator function anyway.

A generic AFDX switch architecture is shown in figure 2.6. Each switch has filtering, policing, and forwarding functions that should be able to process at least 4096 VLs (this seems like a system specific derived requirement in part 7). Therefore, in a network with multiple switches (cascaded star topology), the total number of Virtual Links is nearly limitless. There is no specified limit to the number of Virtual Links that can be handled by each End System (except the one imposed by the VL ID field size in the packet header), although this will be determined by the BAG rates and max frame size specified for each VL versus the Ethernet data rate. However, the number sub-VLs that may be created in a single Virtual Link is limited to four. The switch must also be non-blocking at the data rates that are specified by the system integrator, and in practise this may mean that the switch shall have a switching capacity that is the sum of all of its physical ports. For certification purpose, it is mandatory to prove maximum latency in the airline avionics network, such as AFDX. Indeed, with respect to real-time characteristics of avionics systems, communication infrastructure among avionics equipment need to guarantee that when one equipment sends a message to another equipment, the transmission delay does not exceed a maximum value. This transmission delays depends on different possible scenarios, i.e. the instant when each message is sent, the position of the message in the queue, etc. In order to find the maximum transmission delay, we need to compute the worst-case configuration which leads to this delay.

In this chapter we will present these techniques and methods which are being used for worst case delay analysis for an AFDX network. We can broadly categorize the techniques to find Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network worst case communication delays in AFDX network into two main categories:

• Techniques which give a sure upper bound on end to end communication delays.

-Network calculus and Trajectory approach

• Techniques which evaluate exact end to end communication delays.

-Model checking and Exhaustive simulation At present, Network calculus is actually used for AFDX certification, because it was one of the first efforts in this direction, but other methods should be considered and will be presented in the following sections.

Bounds of Worst Case End-to-End Communication Delays

To guarantee the maximum transmission delays, a first approach consists in finding the bounds of the worst case end to end delays. Two methods can be applied in this context and they will be presented in this section: Network calculus and Trajectory approach.

Network Calculus

Network calculus (NC) is a theoretical framework that provides deep insights into flow problems encountered in networking. The foundation of network calculus lies in the mathematical theory of dioids, and in particular, the Min-Plus dioid (also called Min-Plus algebra) [Jean-Yves Le Boudec 2001]. Network calculus is extensively used for analyzing performance guarantees in computer networks. Network calculus was first applied to AFDX network by Christian Fraboul et al. in [Fraboul 2002b[START_REF][END_REF]], which lead to the certification of AFDX Network on Airbus A380 aircraft. In following sections, network calculus theory and it's application to AFDX network is presented.

Network Calculus Theory

In this section a brief overview of network calculus is presented. A more detailed presentation can be found in [Jean-Yves Le Boudec 2001].

To provide guarantees to data flows in a network, it is necessary that the network has some kind of bounds on its resources. This means that all sources must have guarantees on maximum traffic emission and all service providing elements must have guarantees on capacity. To model the data generated by network elements (sources), with a given data rate constraint, a concept of arrival curve is used. In order to provide reservations, network nodes in return need to offer some guarantees to flows. This is done by packet schedulers. The details of packet scheduling are abstracted by using the concept of service curve. Below we describe these concepts of network calculus.

Consider a simple system S as shown in figure 3.1. It has one input and one output. Figure 3.1a shows the number of bits entering the system S at any time instant t and number of bits exiting the system S at any time t. Figure 3.1b shows the same system S but the input and output traffic is cumulative instead of being instantaneous. This means that the graphs display sum of number of bits received or sent till time t. We can see that with cumulative traffic, the graph is always increasing because of the summation of bits and is easier to understand. In network calculus, such graphs are best represented by the use of cumulative functions.

Cumulative Functions: Network calculus models data flows, as cumulative functions which can be both continuous time and discrete time. 

R(t) -R(s) ≤ α(t -s) (3.1)
The equation implies that α is an arrival curve for function R, or R is α smooth. In simple words, α is an upper bound on R. A well known example of arrival curve is a leaky bucket arrival curve γ r,b shown in figure 3.2a where b represents initial burst of data and r represents steady rate. It is defined as:

γ r,b (t) =    0 if t < 0 rt + b otherwise (3.2)
Service Curve: Consider a system S and a flow through S with input and output function R and R * respectively. We say that S offers to the flow α a service curve β if and only if β is wide sense increasing, β(0) = 0 and R * ≥ R ⊗ β, where ⊗ is min-plus convolution operator.

This definition implies that β is also a wide sense increasing function and for all t ≥ 0 we have:

R * (t) ≥ inf s≤t (R(s) + β(t -s)) (3.3)
This means that the system S offers a minimum guaranteed service characterized by β to inputs.

A well known example of service curve is rate latency service curve β R,T shown in figure 3.2b

where R represents rate and T represents the bound on maximum initial delay for the bits of input flow. It is defined as: More precisely, if a flow R constrained by arrival curve α traverses a system that offers a service curve β then the backlog R(t) -R * (t) (the difference between input and output function) for all values of time t satisfies the following:

β R,T (t) =    0 if t < T R(t -T ) otherwise (3.
R(t) -R * (t) ≤ sup s≥0 {α(s) -β(s)} (3.5)
The second result is about delay bound. It states that the horizontal distance between the arrival curve and service curve presents upper bound on the delay experienced by the traffic.

More precisely, if a flow R constrained by arrival curve α traverses a system that offers a service curve β then the delay d experienced by the flow R is bounded by the maximum horizontal distance between the curve α and β (denoted by h(α, β)). The delay d(t) for all values of time t satisfies the following:

d(t) ≤ h(α, β) = sup z≥0 {β -1 (z) -α -1 (z)} (3.6)
The third result is about output flow. It states that the output flow of a system can be constrained with an arrival curve α * , obtained by min-plus deconvolution ( ) of arrival curve α and service curve β. i.e:

α * = α β (3.7)
Concatenation: Another important result of network calculus is about concatenation of nodes.

It states that if a flow passes from two or more systems in sequence, then we can merge these systems into a single system. More precisely, assume a flow traverses systems S1 and S2 in sequence. Assume that S1 offers a service curve β 1 and S2 offers a service curve β 2 to the flow.

Then the concatenation of the two systems offers a service curve of β 1 ⊗ β 2 to the flow.

Application to AFDX

To use network calculus on AFDX network, the traffic must respect some constraints. As discussed in 2.3, a virtual link (VL) is a static mono-sender multicast flow. A VL is constrained by minimum frame size S min , maximum frame size S max and a minimum interval between two consecutive frames called BAG. Therefore, a VL can be modeled in network calculus as a leaky bucket arrival curve γ Smax BAG ,Smax . Similarly, a switch output port can be modeled as rate latency service curve β R,T where R is the throughput of Ethernet link and T is the switching latency of the AFDX switch. The results can be propagated through the entire network by using the output flow equation 3.7. The output of one switch becomes input of the next switch. This approach was applied to industrial configuration of the AFDX network by Christian Fraboul et al. in [Fraboul 2002b[START_REF][END_REF]]. In order to explain how the network calculus can be used to find communication delays, we will consider a simple example.

Network Calculus Example:

Let's consider a simple example where two flows f 1 and f 2 pass through two nodes s1 and s2 as shown in figure 3.3. Assuming that flows are represented by leaky bucket arrival curve and nodes offer a rate latency service curve, we can find the delay experienced by flow f 1 in both nodes s1 and s2 graphically, as shown in figure 3.3. At node s1, there are two flows entering the node. We can aggregate these flows to a single flow which is equivalent to f 1 + f 2 whose arrival curve is shown as black line in figure 3.3a. This arrival curve is deconvoluted with service curve of node s1 (shown as green line) to get the arrival curve at the output of node s1 (dotted black line). The bound on maximum delay at this node is the maximum horizontal distance between arrival curve of f 1 + f 2 (black line) and service curve of Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network s1 (green line). The output of node s1 is input of node s2. Therefore at node s2, output arrival curve of node s1 (dotted black line) is taken as input arrival curve, and the service curve for node s2 is used for calculations at this node, as shown in figure 3.3b. The bound on maximum delay at this node is the maximum horizontal distance between arrival curve (dotted black line)

and service curve of s2 (green line). The end to end delay for flow f 1 is sum of delays at node s1 and s2.

This worst case delay analysis is obviously pessimistic. The Network Calculus is a holistic approach [Tindell 1994] and the worst case scenario is considered on each node visited by a flow, taking into account maximum possible jitters introduced by previously visited nodes.

This approach can indeed lead to impossible scenarios. There are also other pessimism causes, intrinsic to the Network Calculus theory, as envelops are used instead of the exact arrival curve and service curves.

Trajectory Approach

The Trajectory approach has been developed to get deterministic upper bounds on end-to-end response times in distributed systems [Martin 2004, Martin 2006a, Martin 2006b, Migge 1999].

This approach considers a set of sporadic flows with no assumption concerning the arrival times of packets. Thus the obtained upper bounds are valid for every possible arrival times of packets. Trajectory approach considers the sequence of nodes visited by a frame along it's trajectory. Unlike the holistic approach in network calculus, the Trajectory approach is based on the analysis of the worst case scenario experienced by a packet on its trajectory and not on any visited node. This timing analysis approach enables to focus on a packet from a given flow, and to construct the packet sequences in each crossed node. The resulting jitters and delays lead to an end-to-end communication delay computation, which can then be compared to the upper bounds obtained by deterministic Network Calculus approach.

Trajectory Theory

In order to explain the theory behind Trajectory approach, we will consider a simple example.

Suppose the architecture of a distributed system depicted in figure 3.4 [Martin 2006a]. Such a system is composed of a set of processing nodes (seven in figure 3.4) with some links between them. Each flow crossing this system follow a static path which is an ordered sequence of nodes.

In the example of figure 3.4, there are two flows τ 1 and τ 2 . τ 1 follows the path P 1 = {4,5,6,7}.

Node 4 is the entry point of flow τ 1 in this system, and is often referred to as ingress node. The Trajectory approach assumes, with regards to any flow τ i following path P i , that any flow τ j following path P j , with P j = P i and P j ∩ P i = ∅, never visits a node of path P i after having left this path. In the example of figure 3.4, P 2 = {1,5,6,3} and P 1 ∩ P 2 = {5,6} and the flow τ 2 never joins path of flow τ 1 after leaving it at node 6.

All flows are scheduled with a FIFO(First In First Out) algorithm in every visited node (non preemptive policy). Each flow τ i has a minimum gap time between two consecutive packets at ingress node h, denoted as T i , a maximum release jitter at the ingress node denoted as J i (it is the duration between the packet arrival time and the time it is taken into account by the scheduler), an end-to-end deadline D i which is the maximum end-to-end response time acceptable and a maximum processing time C h i on each node h, with h ∈ P i . The transmission time of any packet on any link between nodes has known lower and upper bounds T r min and T r max (corresponding to the minimum packet size S min and maximum packet size S max respectively) and there are neither collisions nor packet losses on links. This is illustrated in figure 3.5.

The end-to-end response time of a packet is the sum of the times spent in each crossed nodes and the transmission delays on links. The transmission delays on links are upper bounded by T r max . Considering the FIFO scheduling, the time spent by a packet m in a node h depends on the pending packets in h at the arrival time of m in h (because all these pending packets have a higher priority than m due to FIFO scheduling and, thus, will be processed before m).

The problem is then to upper bound the overall time spent in the visited nodes. The solution proposed by the Trajectory approach is based on the busy period concept. A busy period of level L is a time interval [t,t ] within which jobs of priority L or higher are processed throughout the period [t,t ] but no jobs of priority L or higher are present just before and after the period [t,t ]. In simple words, busy period can be considered as the time duration during which port is busy continuously.

The Trajectory approach considers a packet m from flow τ i generated at time t, it identifies the busy period and the packets impacting its end-to-end delay on all the nodes visited by m.

It enables the computation of the latest starting time of m on its last node. This computation will be illustrated in the context of AFDX network in next section.

Application to AFDX

The Trajectory approach is applied to AFDX network in the following way:

• Each AFDX switch output port including the output link becomes a node of Trajectory approach.

• The switching latency of AFDX switches is represented by links of trajectory approach.

• A VL path of AFDX network corresponds to a f low in Trajectory approach.

Assumptions of Trajectory approach are satisfied in AFDX network:

• AFDX switch output ports implement FIFO service discipline, which satisfies the assumption of FIFO service discipline used in Trajectory approach.

• AFDX switching latency is upper bounded by a fixed value (16 µs), hence L=L min =L max =16 µs.

• There are no collisions on the AFDX networks due to Full Duplex links and buffers are dimensioned so that no packet is lost.

• AFDX network is configured so that a VL path never crosses another VL path more than once.

• Routing of the VLs is statically defined.

• VL parameters match the definition of flow in Trajectory approach i.e.

T i = BAG, C h i = S max /R, J i = 0 and R = 100 M b/s
To explain how the trajectory approach works on AFDX network, a simple example will be used to illustrate the concept.

Trajectory Approach Example: Let's consider an example of AFDX network shown in figure 3.6, in order to illustrate the Trajectory approach theory. We consider that:

• All the flows have identical characteristics : BAG = 4000µs and S max = 4000bits.

• The entire network works at R = 100M b/s and the technological latency in an output port is L = 16µs.

• There are five end systems (e1 to e5) which are sending data and two end systems which are receiving the data (e6 and e7).

• Each sending end system emits one VL. All VLs arrive at end-system e6, except for v2 which ends at end-system e7.

As discussed before, Trajectory approach is based on the busy period concept, therefore we must determine busy periods of the AFDX network shown in figure 3.6. where it is processed after packet 1 and packet 5 which arrived before it at time a S3 1 = 5µs and a S3 5 = 38µs respectively. Packet 3, which is the last packet to be processed in the busy period bp S3 arrives at node S3 at time a S3 3 = 116µs.

Packet 3 from flow v3 crosses three busy periods (bp e3 , bp S2 and bp S3 ) on its trajectory. Let us consider bp S3 , the busy period of level corresponding to the priority of packet 3 in which packet 3 is processed on node S3. Let f (S3) be the first packet processed in bp S3 with priority higher than or equal to this packet 3. As the flows may follow different paths in the network depending upon the static routing defined by AFDX network, therefore it is possible that packet f (S3) do not come from the same previous node as packet 3 (which is true in this example, because packet 1 comes from node S1 and packet 3 comes from node S2). We then define p(S2)

as the first packet processed between f (S3) and packet 3 that comes from the same node as packet 3 (here p(S2) is packet 4 from node S2). Packet p(S2) has been processed on node S2 in a busy period bp S2 of level corresponding to the priority of p(S2). f (S2) is then the first packet processed in bp S2 with a priority higher or equal to the priority of p(S2). Here, we have f (S2)

= p(S2), which is not always the case. The same naming process is applied backwards until the ingress node of the VL is reached: the busy period bp e3 on node e3, of level corresponding to the priority of packet p(e3) in which f (e3) is processed.

Let a h m be the arrival time of packet m on node h and consider the arrival time of packet f (e3) in node e3 as time of origin, then a e3 f (e3) = 0. By adding parts of the busy periods crossed by packet 3 on it's path, we can express the latest starting time of packet 3 in node S3. The calculation of which part of busy period to add is bit tricky to understand. This part is calculated in a node h, as the processing times of the packets between f (h) and p(h) minus the difference between the arrival time of p(h -1) (denoted as a h p(h-1) ) and f (h) (denoted as

a h f (h) ). Hence, part of the busy period to consider = C h m -(a h p(h-1) -a h f (h) )
where C h m is the processing time or transmission time of packet m in node h. Let us apply this to our example in 3.7. • In node e3, f (e3) = p(e3) and it is first node therefore a e3 p(e3-1) -a e3 f (e3) = 0, so we count:

Bounds of Worst

C e3 3 • In node S2, f (S2) = p(S2). Thus, we count: C S2 4 -(a S2 p(e3) -a S2 f (S2) )
• In node S3, there is no packet p(S3). Thus, we count the packets from f (S3) until the packet before packet 3:

C S3 1 + C S3 5 + C S3 4 -(a S3 p(S2) -a S3 f (S3) )
• Finally, if we add the transmission times between the nodes, we can get the latest starting time of packet 3 on node S3, which is :

a S3 3 = C e3 3 + L + C S2 4 -(a S2 p(e3) -a S2 f (S2) ) + L + C S3 1 + C S3 5 + C S3 4 -(a S3 p(S2) -a S3 f (S3) ) (3.8)
For our example, we have C m h = C = S max /R = 40µs and L min = L max = L = 16µs. Using these values in equation 3.8, we get:

a S3 3 = 5C + 2L -(a S2 p(e3) -a S2 f (S2) ) -(a S3 p(S2) -a S3 f (S3) ) = 5 × 40 + 2 × 16 -(56 -20) -(76 -5) = 125µs (3.9)
For the worst case scenario we need to maximize this latest starting time of packet 3.

According to the Trajectory approach presented in [Martin 2006a], we can do this by ignoring term (a h p(h-1) -a h f (h) ) for every node h on the considered path. This means that the arrival time of every packet coming from another preceding node should be postponed in order to increase the departure time of packet 3 in it's last node. The effect of this postponing is illustrated in figure 3.8. More precisely, the arrival time of packet 4 at node S2 has been postponed to the arrival time of packet 3 at node S2 (a S2 4 = a S2 3 = 56µs). In node S3, packets 1 and 5 have been postponed in order to arrive between packet 4 and 3, therefore:

a S3 4 ≤ a S3 1 ≤ a S3 5 ≤ a S3
3 . The worst case end-to-end delay of packet m is the sum of it's latest starting time on it's last visited node and the processing time of the packet in this last node. Thus the maximum endto-end delay of m is:

L + C e3 3 + C S2 4 + L + (C S3 1 + C S3 5 + C S3 4 ) + C S3 3 = 6C + 2L = 272µs.
Trajectory approach, like Network calculus, is pessimistic and can lead to impossible scenarios.

Nonetheless, it does provide sure upper bounds on worst case end to end communication delays of AFDX network.

Pessimism of Network calculus and Trajectory approach

Lot of research has been made since the first application of network calculus to AFDX network in order to improve the results. In this regard, the results were further improved by tightening the end to end bounds by Marc Boyer and Christian Fraboul in [Boyer 2008] by using the "grouping" technique. In this technique, we "group" the VLs that exit from the same switch output port and enter another switch together, i.e. Virtual Links that share two segments of path at least. The key issue is that the frames of those VLs are serialized once exiting the first multiplexer and thus they don't have to be serialized again in the following switches. This optimization always gives tighter bounds. Another improvement in network calculus for AFDX was done by Xiaoting Li in [Li 2010] where the authors incorporated the local scheduling in the end systems into network calculus by using of f sets. This resulted in further reduction in bounds of end to end delays calculated by network calculus.

The Trajectory approach was first applied to AFDX network in [START_REF] Bauer | [END_REF]]. Later on the results were further improved in [START_REF] Bauer | [END_REF]] by using the concept of "grouping", just like network calculus where VLs that share same segments of the network are grouped together.

On average, Trajectory approach calculates tighter bounds as compared to network calculus (but in some cases, Network calculus has tighter bounds than Trajectory approach) and hence it improves the end-to-end delays of AFDX network calculated earlier with help of network calculus. Still, the results of Trajectory approach are pessimistic, and the measure of this pessimism was estimated in [START_REF] Bauer | [END_REF]] and concluded that the trajectory approach is at least two times less pessimistic than the Network Calculus approach. Also, the upper bound of pessimism in Trajectory approach varies from 0% to 33% with average of about 7% (remember that without knowing the exact worst case delay, it is not possible to find exact pessimism as illustrated in figure 1.2). Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network

Conclusion

Network calculus and Trajectory approach have relatively less computational complexity in algorithms used for calculations but both methods calculate pessimistic sure upper bounds on end to end communication delays. Presently, network calculus is being used for certification on commercial aircraft such as Airbus A380 because it was the first approach used for calculating end to end communication delay bounds. Trajectory approach, on average, gives better results as compared to network calculus. Both methods don't provide us exact end to end communication delays, therefore, we need other methods to find exact communication delays. In the next section, we will talk about the methods which give us exact end to end communication delays.

Exact Worst Case End-to-End Communication Delays

A second approach to guarantee the maximum transmission delay in AFDX network is to find the exact worst case end to end communication delays. Finding exact worst case communication delays can be classified into two main approaches: a formal methods approach of model checking and exhaustive simulation approach. Both approaches require some form of modeling in order to transform AFDX network into a model which underlying approach can work with. In simple words, in order to find exact worst case communication delays, one must check all possible cases or scenarios. These cases or scenarios are often referred to as state-space . Theoretically, the state-space of AFDX communication network is infinite (because of continuous real-time nature of the network) therefore these approaches also require some kind of state-space reduction. In the following sections, we will present these approaches.

Model Checking

Model checking can be used to find exact worst case communication delays of AFDX network.

We need to model the AFDX network using model description language of the model checker being used for this purpose. Then, we need to formalize some properties using the property specification language of the tool/model checker being used. And finally, we run the model checker to check the property we have formalized by using the AFDX network model.
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Application of Model checking on AFDX Network

As we have seen in section 2.3 that an AFDX network is a real-time system which requires timing constraints. So to model an AFDX network, we need to model time. Also we are interested in finding exact end to end communication delays, therefore we must model how the communication works in AFDX network. This includes the behavior of each end system which generates packets to be transmitted on the AFDX network. To model these entities of the AFDX network we need:

• A language to model the behavior of the system i.e AFDX network (including time, communication and end system etc).

• A language to describe the properties which we want to verify, such as what will be the maximum delay from the transmission of a packet from the source to the reception of this packet at the destination? This can be different than the modeling language of the system or it can be same.

• A tool to check that the system model satisfies the property we desire to verify.

For this purpose, two kind of model checkers can be used for AFDX network communication delay analysis: Real-time model checkers and Simply timed (or discrete time) model checkers.

Further detail about these types and related software can be found in Appendix A. AFDX network can be modeled as simply timed system. Hence we can use both real-time model checkers and Plain or un-timed model checkers with Explicit time model checking approach.

But AFDX network is a large real time system and its not feasible to use Plain model checkers with explicit time technique for AFDX network due to huge state space contributed by explicit modelling of time [Adnan 2010a]. This section will not describe each model checker listed in the [NuSMV ] from simply timed (discrete clock) model checkers.

In the following sections we will see how to model AFDX network in these tools and how to evaluate worst case end-to-end communication delays.

NuSMV and AFDX Network

NuSMV is a symbolic model checker developed as a joint project between the Formal Methods • Architecture. A software architecture has been defined. The different components and functionality of NuSMV have been isolated and separated in modules. Interfaces between modules have been provided. This reduces the effort needed to modify and extend NuSMV.

• Quality of the implementation. NuSMV is written in ANSI C, is POSIX compliant, and has been debugged with Purify in order to detect memory leaks. Furthermore, the system code is thoroughly commented. NuSMV uses the state of the art BDD package developed at Colorado University, and provides a general interface for linking with state-of the-art SAT solvers. This makes NuSMV very robust, portable, efficient, and easy to understand by people other than the developers.

The input language of NuSMV is designed to allow for the description of Finite State Machines (FSMs) which range from completely synchronous to completely asynchronous, and from the detailed to the abstract. One can specify a system as a synchronous Mealy machine, or as an asynchronous network of non-deterministic processes. The language provides for modular hierarchical descriptions, and for the definition of reusable components. Since it is intended to describe finite state machines, the only data types in the language are finite ones: Boolean, scalars and fixed arrays. Static data types can also be constructed.
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The primary purpose of the NuSMV input is to describe the transition relation of the FSM;

this relation describes the valid evolution of the state of the FSM. In general, any propositional expression in the propositional calculus can be used to define the transition relation. This provides a great deal of flexibility, and at the same time a certain danger of inconsistency. For example, the presence of a logical contradiction can result in a deadlock; a state or states with no successor. This can make some specifications vacuously true, and makes the description unimplementable. While the model checking process can be used to check for deadlocks, it is best to avoid the problem when possible by using a restricted description style. The NuSMV system supports this by providing a parallel-assignment syntax. The semantics of assignment in NuSMV is similar to that of single assignment data flow language. By checking programs for multiple parallel assignments to the same variable, circular assignments, and type errors, the interpreter insures that a program using only the assignment mechanism is implementable.

Consequently, this fragment of the language can be viewed as a description language, or a programming language. Comprehensive details of NuSMV input language can be found in [NuSMV ].

To model AFDX network in NuSMV, we need to abstract basic and necessary characteristics of AFDX network. We should not model every minute detail of AFDX network because it will result in huge model which will not be good for model checking. On the other hand, too much of abstraction can lead to incomplete model and hence will give false results. Therefore it is very important to model the AFDX network in best possible way for model checking purposes.

In the paragraphs below, the modeling approach is described for NuSMV along with the results. processor_granted is used to indicate that output port is free so VL can start its transmission.

Modeled

request is used to model the readiness of the VL and f inish is used to indicate when VL has transmitted its data. This is shown in code snippet in figure 3.10. For VLs, modules are named as V Lnm where n represents end system number and m represents the VL number of this end system, e.g V L11 means first VL of end system ES1. Initial state is 0, defined by line 16 in figure 3.10. Module stays in this state till the timeout signal is received (this signal is coming One timer is used for each end system to control the transmission of first packet by the end system, e.g for ES1 the timer timeoutT 1 is used. After the transmission of first packet of a given end system (e.g VL1 of ES1), the first offset timer is triggered, in above case P 11f inish triggers of f set11 timer which models the offset between VL1 and VL2. Similarly, end of of f set11 timer triggers transmission of VL2 which in turn triggers of f set12 timer (representing offset between VL2 and VL3) and so on. This process repeats for all VLs of the end system in an infinite loop.

The process is shown in figure 3.11a. The packet size of each VL is modeled as execution time of the task modeled for this VL.

Similar methodology is adopted for the model of AFDX Switch with a major difference of task priorities. In models them, ensuring that there will never be a simultaneous access for the output port, hence there is no need of priority and port access mechanism. But in case of switch, more than one VL from different end systems can arrive simultaneously, hence we need to model the port access mechanism so that there is no conflict and collisions. In real AFDX network this is done with FIFO buffers, so VLs are stored in order of their arrival and transmitted sequentially. To model this functionality in NuSMV, we make some assumptions to simplify the model (we can model FIFO in NuSMV but it makes model more complicated and large for verification). We assume that instead of a FIFO we have priorities and hence a VL with higher priority is transmitted first if there is a case of simultaneous arrivals. This is depicted in figure 3.11b. SW1 output port is shared by VL1 to VL6 and access is granted to any VL if the port is not busy. In case of simultaneous access, the higher priority VL gets the access first e.g if VL V L1 and V L3 arrive together, then V L1 will be transmitted first and V L3 later. We assume that the overall traffic load is light and hence there will not be a case where a low priority VL will always be waiting for access. This property is also verified with model checker.

Each end system has its own clock and it is not synchronized with other end systems or switches, so there is no synchronization among end systems and switches. This fact can also be modeled with NuSMV by initializing the end system timers with a set of all possible values, which in the case of AFDX network will translate into a set of integers with values from zero to the highest period in the network, theoretically it is 128 ms. This is shown in code snippet in figure 3.12 line 13 to 15.

Finally the whole model is checked and delay is calculated using NuSMV verification language, such as queries below find the minimum and maximum time between start of VL1 at ES1 and reception of VL1 at ES5.

COMPUTE MIN[SW11.start,sw3P13finish] COMPUTE MAX[SW11.start, sw3P13finish] states we can measure the number of time units elapsed between two states. This also means that for modeling of large time interval or duration, number of states will increase accordingly.

Also, modeling of asynchronous behavior in NuSMV has been deprecated according to latest release (version 2.5) of NuSMV 1 . According to its user manual, on page 33, it states that:

"Since NUSMV version 2.5.0 processes are deprecated. In future versions of NUSMV processes may be no longer supported, and only synchronous FSM will be supported by the input language.

Modeling of asynchronous processes will have to be resolved at higher level."

Timed Automata and AFDX Network using UPPAAL

UPPAAL is an integrated tool environment for modeling, simulation, validation and verification of real-time systems modeled as networks of Timed Automata, extended with data types UPPAAL consists of three main parts; a description language, a simulator and a modelchecker.

• The description language is a non-deterministic guarded command language with data types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design language to describe system behavior as networks of automata extended with clock and data variables.

• The simulator is a validation tool which enables examination of possible dynamic executions of a system during early design (or modeling) stages and thus provides an inexpensive mean of fault detection prior to verification by the model-checker which covers the exhaustive dynamic behavior of the system.

• The model-checker can check invariant and reachability properties by exploring the state-space of a system, i.e. reachability analysis in terms of symbolic states represented by constraints.

The two main design criteria for UPPAAL have been efficiency and ease of use. The application of on-the-fly searching technique has been crucial to the efficiency of the UPPAAL model-checker. Another important key to efficiency is the application of a symbolic technique that reduces verification problems to that of efficient manipulation and solving of constraints.

To facilitate modeling and debugging, the UPPAAL model-checker may automatically generate a diagnostic trace that explains why a property is (or is not) satisfied by a system description. The diagnostic traces generated by the model-checker can be loaded automatically to the simulator, which may be used for visualization and investigation of the trace.

Since its first release in 1995, UPPAAL has been applied in a number of case studies (refer

[UPPAAL ] for more details). To meet requirements arising from the case studies, the tool has been extended with various features. The current version of UPPAAL, called Uppaal2k, was first released in September 1999. It is a client/server application implemented in Java and C++, and is currently available for Linux, SunOS, Mac OS X and Windows. The features of Uppaal2k include:

• A graphical system editor allowing graphical descriptions of systems.

• A graphical simulator which provides graphical visualization and recording of the possible dynamic behaviors of a system description, i.e. sequences of symbolic states of the system.

It may also be used to visualize traces generated by the model-checker. Since version 3.4

the simulator can visualize a trace as a message sequence chart (MSC).

• A requirement specification editor that also constitutes a graphical user interface to the verifier of Uppaal2k.

• A model-checker for automatic verification of safety and bonded-liveness properties by reachability analysis of the symbolic state-space. Since version 3.2 it can also check liveness properties.

• Generation of diagnostic traces in case verification of a particular real-time system fails.

The diagnostic traces may be automatically loaded and graphically visualized using the simulator. Since version 3.4 it is possible to specify that the generated trace should be the shortest or the fastest. Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network

Modeling of AFDX Network in Timed Automata

A very first effort in finding worst case communication delays for AFDX network with model checking using Timed Automata was made by Charara et al. in [Charara 2006b]. This is a first, proof of concept effort to find exact worst case delays by using timed-automate based model checking. The approach assumes a set of purely periodic VLs generated by different end systems. In order to reduce the complexity, the model was very simple and basic in its detail with respect to a real AFDX network. Each end system was assumed to have one VL and all

VLs with same packet size. All traffic was assumed to be strictly periodic (real AFDX traffic is sporadic). With these simplifications the model was only able to find exact worst case delay for a very small size network with upto 5 VLs, far from the actual number of VLs in an industrial configuration of AFDX network with 1000 VLs. Nonetheless, it successfully demonstrated that model checking can be applied to AFDX network for worst case communication delays.

A model checking approach determines exact worst case delays but leads to combinatorial explosion thus restricting its use to only small networks [Charara 2006b]. To overcome this issue, a "divide and conquer" methodology was used during the work done in Master's thesis [Adnan 2010a]. The idea is to calculate the exact worst-case delay on each output port on the path of given VL and then to propagate this delay in consecutive discrete steps starting from source node till the destination node. This is different than earlier work in [Charara 2006b] due to its port by port analysis approach. This work was published in [Adnan 2010b].

The approach is illustrated by an example of AFDX network shown in figure 3.14. This network consists of 6 End Systems interconnected with two switches. We assume that all 15

VLs of this configuration are strictly periodic. Their maximum packet size and periods are given in figure 3.14. The scheduling implemented by each ES is modeled by offsets associated to the VLs, given in figure 3.14. We focus on VL1 whose path is {ES1-SW1-SW2-ES2} (bold line in figure 3.14). There are other VLs originating from 'ES1' and other end systems which pass through port 'SW1P1' and 'SW2P1' (indicated by 'x' in columns "SW1P1" and "SW2P1").

The calculation of exact upper bound on end-to-end delay of VL1 is processed on a port by port manner; this delay is first computed at port "SW1P1" and the obtained value is then used to calculate the delay in next port "SW2P1".

The description of the approach proceeds in 4 steps:

• Modeling of VLs and their scheduling at one end system.

• Modeling asynchronous behavior among all end systems. For each end system, we have a set of VLs originating from this end system. We have one automata for each VL. For the first VL of each end system, we start the VL automata as soon as that end system is ready for transmission. The "end system ready to transmit" trigger is modeled by incrementing an integer variable e.g for "ES1" the variable is "scramble1" and it is incremented by the transition as shown in figure 3.16a. For the model of first VL of the end system, e.g for VL3 of ES1, the automata is depicted in figure 3.16b. After the trigger of ES1, indicated by "scramble1 > 0", we wait for the offset time to elapse (which in case of reference VL is zero) and then we go to jitter state which models jitter in the VL (for VLs of originating ES, this jitter is zero i.e there is no jitter for Vls at the end system). The transition out of jitter state is non deterministic and can be taken at any time from 0 till j. This means that model checker will verify all values of jitter from 0 till j. Finally, we store the packet in FIFO queue by using function enQueue(id) by passing VL id as parameter (for VL3, id=3), and wait till the VL period is elapsed. After this period has elapsed, we come back to the jitter state and this process is repeated periodically. Clock variable "x" in all TAs is a local variable. 
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Modeling and Computation of delay at first output port.

In this approach, model of first output port of a switch in the path of VL under study is different than the rest of the output ports in the path. After modeling the end systems, the next step is the computation of worst case delay at first output port i.e "SW1P1". The output port is a FIFO queue (which serves packets in order of their arrival). Figure 3.18 shows timed automaton of an output port.

It models the packet size, and the order among VLs. For simplicity, we assume there is no latency within the switch but it can be easily added to the model by adding a constant whose value is equal to latency of the switch. After initialization we wait in empty state till we receive a packet. As soon as a packet is stored in queue, we check the ID of this packet representing the VL id by using function headQueue() additional states which are used to measure the time elapsed from transmission of packet under study at source end system till the packet is received at destination end system. The delay experienced by the packet of VL under study (in this example its VL1) is measured by local clock variable y. This clock is reset as soon as the packet has just been transmitted. The automaton models two things in the same model, the measuring of elapsed time and normal periodic transmission of VL packets. After the transmission of first packet, the automaton waits in state "fi" till either packet under study has been received at destination or it is time for the transmission of next periodic packet of this VL. The worst case delay is the smallest value x such that the value of clock y is always less than or equal to x while in the state "fi". It is obtained by querying the timed automata using following CTL formula:

(
A[] (VL1m.fi imply VL1m.y ≤ x)

The value x is initialized to the sure upper bound computed by the Network Calculus and then decreased as long as the formula is verified. The delay for VL1 in "SW1P1" is 110µs. We use one automaton for the two functions in order to reduce state-space. In the approach in [Charara 2006b], authors used a separate automaton for the measurements. We tested both approaches i.e a combined automaton for both functions, and two separate automata for each function. We found that combined automaton is efficient and has lesser state-space. in timed automata models in second output port and so on. The above process is repeated for all output ports in the path of a given VL and whole network can be analyzed this way in port by port manner, albeit with a small addition to VL automata explained below.

. Results. The table 3 Table 3.1 -Exact worst-case delays.

This "divide and conquer" or "port by port" approach seems promising in state-space reduction and model checking larger networks but this approach does not lead to the exact worst-case delay for any configuration, it can be optimistic in some scenarios because worst case delay on each port does not always lead to over all end-to-end worst case delay as demonstrated in [Adnan 2011b]. In certain cases, worst case delay at one port does not lead to worst case delay in the consequent port and sum of all delays is not the worst case end to end delay. Such a case is demonstrated in detail in Chapter 5 in Section 5.3.6. Consequently, this approach gives a valuable under estimation of the worst-case end-to-end delay, but it is not enough for certification.

To over come this problem, one idea was to start modeling from destination end system and move backward to the source end system. But we found it very difficult to model this approach.

It was hard to know relative start time of each end system with respect to others.

Exhaustive Simulation

The simulation approach has been applied to AFDX network before in [Charara 2006b] and [Scharbarg 2009] but not exhaustively in the context of exact worst case communication delays. Exhaustive simulation is very similar to model checking approach in the fact that both approaches analyze all possible cases or scenarios. Model checking uses formal methods to do this while exhaustive simulation is brute force approach which can be applied to any problem with relative simplicity and ease as compared to model checking approach. This thesis is the first effort in this direction and no prior work exist for exhaustive simulation of AFDX network for worst case communication delays. This work will be presented in detail in chapter 5.

Conclusion

Model checking and exhaustive simulation provide us exact end to end communication delays but the computational complexity is very high as compared to network calculus and Trajectory
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approach. NuSMV is a discrete time model checker while UPPAAL is a real-time model checker.

NuSMV uses symbolic representation of its state-space which is more efficient than the DBM structure used for regions and zones of timed automata statte-space but we need to model time explicitly in NuSMV which results complex models and huge state-space which offsets the benefits of efficient symbolic representation of state-space. Therefore, in order to find exact end to end communication delays, timed automata approach is better than NuSMV based approach but we must improve models in order to analyze larger networks.

Conclusion

In this chapter we have seen different methods for computing end to end communication delays.

Analytical methods such as Network Calculus and Trajectory approach are good in terms of resource usage (computation time and memory) but they only give us a sure upper bound of delays; these methods are pessimistic and do not provide us exact end to end communication delays. Thus efforts are underway to reduce or even eliminate this pessimism. Tighter upper bounds have been obtained by Trajectory approach [START_REF] Bauer | [END_REF]]. On the other hand, model checking requires lot of computation time and resources but they can provide us with exact end to end communication delays only for very small networks with certain constraints (e.g. strictly periodic VLs only, optimistic in certain cases, buffer depth of switch output port etc).

Existing model checking approaches cannot cope with industrial size configurations due to the combinatorial explosion problem.

Our aim is to find exact communication delays, therefore we can not use Network Calculus or Trajectory approach. Then, we are left with model checking approach. The main problem with approaches presented in this chapter is the huge number of possible cases, i.e state-space.

The state-pace increases exponentially with the number of VLs and detail of the model. Therefore key consideration in these approaches is to reduce the state-space and the complexity of the model of AFDX network. A very detailed model will not be able to find worst case communication delays for a large network and a very simple model will not be realistic with respect to the actual AFDX network properties. A bare minimum level of abstraction must be made in order to have a model which will satisfy the real life AFDX network properties and still be able to find worst case communication delays for larger networks. This abstraction will be presented in Chapter 4 in order to improve the worst case end to end delay computations using the timed automata theory. Chapter 3 shows that model checking with timed automata can be used to find exact worst case end-to-end communication delays in AFDX network. The models used were not always able to find exact worst case end to end communication delays and were optimistic in certain cases. Moreover, these models were not efficient enough to analyze large AFDX networks. In this chapter we will present new models and introduce new techniques to reduce search space in order to analyze larger AFDX networks than previous approaches. The method exploits properties of the AFDX network in order to limit the number of cases that we must check for worst case scenario. For this purpose, in the next section some properties of the AFDX network are established which will allow in reducing the number of cases that can be candidate for the worst case scenario. Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End Delay using Timed Automata

Characteristics of a worst-case scenario

An AFDX network is a set of end systems interconnected by a set of switches. The delay of a frame transmitted over such a network includes the transmission times on links, the switching delays and the waiting times in output buffers. Transmission times and switching delays are constant values for a given network configuration therefore the worst-case delay occurs when the overall waiting time of the frame in the output buffers is maximized. Considering this assumption, the goal is to construct only the possible scenarios leading to the worst case end to end delays.

Definition of a scenario

For a given network architecture, a scenario is defined by the sequences of frames generated by the different end systems and by the instant when each end system generates its first frame.

Since there is no global clock in an AFDX network, no assumption can be done concerning the generation instant of the first frame of each end system. Obviously, these generation instants have an impact on the arrival time of each frame in all the output ports that it crosses, then on the waiting time of each frame in these output ports. Thus, every possible combination of these generation instants should be considered in order to determine a worst-case scenario for a given frame. This exhaustive search has been implemented in previous timed automata based modelling [Charara 2006a]. It leads to combinatorial explosion, even for small configurations.

In order to reduce the search-space, we exploit some properties of AFDX network as discussed in next section where we show that only a small subset of these combinations of generation instants is candidate for a worst-case scenario. The worst-case waiting time for a frame x in the output port of a switch S i (1

Critical Instance Property

≤ i ≤ n)
occurs when x arrives at the output port at the same time as one frame from each of the other input links link(i, 2),...,link(i, m i ) and x is transmitted at the end.

Proof: To prove this property, let's consider the scenario in figure 4.2. Let's suppose that frame x from link(i, 1) is the frame for which we want to calculate worst case waiting time in the switch output port of the switch S i . If frame x does not arrive at switch S i at the same time as one frame from all the other input links link(i, j)

(2 ≤ i ≤ n) (2 ≤ j ≤ m i )
where n represents the number of switches and m i represents the total number of input links of a given switch S i , then it means that for at least one input link there is no frame arriving at the output port at the same time as frame x. This is the case for frame y of link(i, k) in figure 4.2.

The impact of the frames coming from link(i, k) on the waiting time for x in the output port of S i is the amount of data which has arrived at the output port up to t 0 from link(i, k) and has not been transmitted at t o . Let's note y the last frame which is received from link(i, k) before t o . Shifting all the frames coming from link(i, k) to the right so that y arrives at the output port at t o does not increase the amount of data from link(i, k) which are being transmitted before t o , since frames from link(i, k) arrive later at the output port and consequently cannot be transmitted earlier. Then shifting frames from link(i, k) till y arrives at the output port at t o can never decrease the waiting time of x at the output port.

Critical Instance property is an important property which allows us to reduce search space by great extent. This property will be the basis for our timed automata models which we will discuss in the coming sections. 

The modelling based on timed automata

Now we propose to model the AFDX network into timed automata considering the Critical Instance property in order to reduce the search space of the worst case end to end delay computations. The goal of our system of the AFDX network is to compute only the scenarios which are candidate for the worst case end to end delays. Our model is composed of timed automata for:

• End systems which generate a set of VLs

• Switches which use FIFO queues to route packets In the modelled system we focus only on a VL under study, so all the network architecture does not need to be considered: only the part which is related to the VL under study is modelled. In particular, we consider only the VLs which influence the VL under study i.e. VLs which share the path and output ports of the switch with the VL under study. The modelling will be composed of timed automata which models the behavior of:

• Generation of VLs. VLs can be strictly periodic and/or sporadic.

• Output ports of the switches.

• Synchronization between VLs of the network.

• U tility automata for measurement of end to end delay, global variables and other glue logic that may be necessary This modelling is based on timed automata using UPPAAL software version 4.1. While modelling the AFDX network, following assumptions are considered:

• Each end system generates a set of VLs.

• Periodic VLs are strictly periodic.

• Possible periods can only be one of the value from 1, 2, 4, 8, 16, 32, 64, 128 ms (AFDX network allows only these values as BAG).

• Scheduling of frames at each end system is known for periodic VLs.

• Mulitcast VL is treated as equivalent of individual unicast VLs corresponding to each path of the multicast VL.

• Since there is no loop in an AFDX network, the architecture corresponding to a given VL includes exactly one output link per switch.

In an AFDX network, we have mix of both strictly periodic and sporadic VLs. Some of the VLs generated by a given end system are strictly periodic. The scheduling of these VLs by the end systems is known and it can be dealt with offsets. The rest of the VLs are sporadic and their frames can be generated at any time, provided that they respect the minimum gap between two consecutive packets given by the BAG value.

As an example the network architecture of Figure 4.4 shows a possible sequence of VLs generated by the end system e1. This sequence is periodic. On the other hand, e5 generates one periodic VL (v15) and 2 sporadic VLs (v19 and v20). Thus, for these VLs, no temporal relationship can be made between the generation time of the frames.

Every part of the network in Figure 4.3 (VL generation, switch output ports, synchronization) will be modelled into timed automata in the following sections. The VL under study is v1, for which we will compute the worst case end to end communication delay.

Modelling the VLs

Automata of the VLs fall into different groups as far as modelling is concerned: v1,v2,v3,v4 v5,v6,v7 v8,v9,v10 v11,v12,v13,v14 v15,v19,v20 v16,v17,v18 v21,v22,v23 v24,v25,v26 S3 v27,v28,v29 v30,v31,v32 All VLs except v23 v2,v3,v4,v5,v6,v7,v8,v9,v10 S4 v11,v12,v13,v14,v15,v16,v17,v18,v19,v20 v21,v22,v23,v24,v25,v26 v27,v28,v29,v30,v31,v32 v21,v22,v23,v24,v25,v26 v27,v28,v29,v30,v31,v32 Figure • Group G1: For VLs emanating from the end system of the VL under study. In the example in Figure 4.3, G1 consists of TA of e1 which constructs the transmission sequence of v1, v2, v3 and v4.

S1 S2 S5
• Group G2: For VLs starting from end systems connected directly to the same switch as the end system of VL under study. In the example in Figure 4.3, G2 consists of TA of e2, e3, e4, e5, e6 and sporadic VLs v19, v20.

• Group G3: For VLs joining VL under study from other switches. In the example in Figure 4.3, G3 consists of TA of e7, e8, e9, e10.

Periodic VLs emanating from the same end system are modelled within a single automaton to ensure offsets between them, while each sporadic VL is modelled in a separate automaton whether it originates from the same end system or not e.g v19 and v20 are modelled in separate automata. Modelling of each group is explained below. During this modelling, synchronization and buffers related variables are used which will be explained later in their respective sections. or v7 is transmitted thanks to non deterministic transitions from initial state of the automaton.

Modelling of G1

Rest of the automaton works similar to automaton of e1. The automaton of e3, e4, e5 and e6

is similar to the one of e2 except for sporadic VLs v19 and v20. As discussed before, for worst case scenario, we can treat sporadic VLs as periodic VL with period equal to BAG but without any offset assignment. Therefore, sporadic VL is modelled as an independent end system with only one VL, as shown in Figure 4.7 for VL v19.

Modelling of G3 Figure 4.8 shows the automaton for end system e9. As mentioned before, we need to pause and resume this automaton for synchronization purpose, so we use integer variable x1s as clock for this end system. As in automata of G2, sequence of e9 can start by sending a frame of either v27 or v28 or v29. Frame of these VLs are enqueued in switch S3

using the function enqueue3(p3), where p3 represents the packet size. The sequences generated by e9 need to respect the offsets. This is modelled by condition on integer clock x1s in the state as invariant. This automaton can be paused and resumed by two different signals (pause3! and pause4!). In each state, if a pause signal is received, the current value of clock integer x1s is stored in a temporary integer tmp and automaton waits in a pause state. On resume signal, indicated by go3! or go4!, value of tmp is assigned back to clock integer x1s and automaton can evolve. Automata of end system e7, e8, e10 are modelled on the same principle. The timed automata of the switch S5 is shown in Figure 4.11. It is modelled in same way as SW 1 except that a signal end! is generated after waiting for time equal to global variable for VL under study sw2vl1. end signal represents reception of frame under study at destination end system and stops all automata of the network.

Modelling the Synchronization

A synchronisation mechanism is needed between the different TA in order to ensure that only those scenarios are considered which are candidate for the worst case. The idea is to synchronize the input sequences of each switch. Considering the example in Figure 4.3, it comes to process, in a data flow way: UPPAAL, which is very sensitive to the size of arrays [Discussion Group 2010]. Consequently, the modelling proposed in the present section limits the size of the arrays. In order to do that, each element of the array only contains the transmission duration of the corresponding frame (the flow identifier is no more used).

t G1 G2 G3 G4 (e1) (*) (e7, e8) (e9, e10) (S1) (S2) (S3) (S4) (S5) t0 
In [Adnan 2011a], the flow identifier was used in order to differentiate three kinds of frames:

• The frame under study; it is mandatory to know when this frame reaches its destination in order to stop the measurement of time.

• The frame which will leave before the destination; they will not be stored in the FIFO buffer of the next switch.

• All other frames; they also go to the destination end system.

Since we don't have the flow identifier of a frame in the array anymore, we don't know to which VL a given frame in an array belongs to. In order to solve this problem, only the frames of the third kind are stored in the arrays. The frame under study (first kind) is modelled by using integers (sw1vl1, sw2vl1 in the example). When a switch detects that the corresponding integer is not null, it knows that the frame under study has arrived and has to be transmitted.

Similarly, the frames of second kind are also modelled by using integers.

Utility Automata: end to end delay computation

Figure 4.12 shows the automaton to measure end-to-end delay. It starts with signal start! and stop measuring end to end delay when v1 reaches e11, indicated by signal end! in automaton of switch S5. For VLs joining VL under study v1 from other switches, it is necessary that they are synchronized in such a way that at any switch output port, packets arrive at the same time as v1 even after crossing different switches. This requires that we store the current values of clock variables when we pause the automaton and assign these values to clock variables on resume.

But UPPAAL does not provide such feature for its clock variables. Therefore, we modelled an automata which increases integer variables every clock cycle as shown in Figure 4.13 and use them as "integer clocks". Such an implementation has advantage that we can read and modify clock values and also reduce the number of clock variables in order to reduce state-space. The automata of VL under study and switches it crosses are never stopped, hence these automata don't use integer clocks. The worst-case delay for the VL under study is the smallest value d such that the value of clock x in the state measure is always less than or equal to d. This is obtained by querying the timed automata using the following CTL formula:

A[] ((E2E.measure imply x ≤ v)
This formula evaluates to true when there is no scenario leading to x > v. It evaluates to false otherwise. Thus the worst-case delay for the VL under study corresponds to the lowest value of v for which above formula evaluates to true. A corresponding worst-case scenario is obtained by considering the highest value of v for which the formula evaluates to false. Indeed, UPPAAL generates a trace of one scenario which leads to this state. As an example, the worst-case delay for VL v1 in Figure 4.3 is 26ms and a corresponding scenario is depicted in Figure 4.14.

Limits of the approach

The modelling proposed in this chapter allows the analysis of the AFDX configuration in Fig- processor using 2 GB RAM. Configurations with more VLs cannot be analyzed within a reasonable time. As compared to the version of TA approach discussed in [Adnan 2011a](18 VLs), the upper limit of this version is 32 VLs and it also supports sporadic VLs. Thus, the approach presented in this model brings a clear improvement. This work was published in [START_REF][END_REF]].

In principal, timed automata models are based on regions and zones (zone is a convex union of regions) [Bérard 2001]. The graph based on these zones leads to more states and regions as compared to the Java based approach. As an example, consider a simple timed automata shown in figure 4.15. This automata represents a simple transition from a state q to a state r depending on values of clock x1 and x2. This can be a representation of a packet transmission by an end system of an AFDX network. The region graph of this simple automata will comprise of about 30 states and 50 regions. A part of this graph is shown in figure 4.16. On the other hand, if we want to represent same transmission of one packet from an end system using Java based tool, it can be represented by a single scenario.

Another limiting factor in timed automata based approach is the inherent complexity of 

Conclusion

This chapter presented an improved timed automata approach using timed automata for computing exact worst-case delays of AFDX periodic and sporadic flows. The method have been encoded into UPPAAL model checker. This approach is based on a drastic reduction of the number of scenarios which are candidate for the worst-case end-to-end delay of a given flow. The size of the network configurations which can be analyzed by this new approach, upto 32 VLs, is significantly larger than what can be done with the previous approach in [Charara 2006a].On the other hand state-space reduction requires the exploitation of AFDX network properties, in order to consider only those cases that may be candidate for the worst case scenario. This means that the approach will be very specific to AFDX network. Though, the methodology and ideas behind it can be extended to other domain and problems as well.

For a given computational capacity, timed automata based approach is limited for an industrial configuration of the AFDX network. Nevertheless, the timed automata based approach is still interesting and of a great value. Timed automata is based on formal methods, hence it allows us to verify properties which ensure that the model always behave correctly.

The proposed approach is not limited to only the AFDX network but can cope with any switched Ethernet network. It can also be used for analysis of different scheduling techniques in order to compute delay bounds in multi-processor networked architectures. Finally, it could be extended to switched Ethernet networks with service disciplines other than FIFO [Zhang 1995].

Due to the complexity of this modelling approach it is clear that with given computational resources it will be very hard to analyze an industrial configuration of the AFDX network. But this method allowed us to better understand the behaviour of an AFDX network and to define the Critical Instance property which allows to compute the maximum waiting delays in the FIFO queues of the switches. Considering this, in Chapter 5, we propose a new approach to compute the worst-case end to end transmission delays based on the generation of sequences of VL which are candidate for the worse-case end to end delays. In the Chapter 4, the timed automata based models can be used to find exact worst-case end to end delays for AFDX network. The problem with that approach is the use of a standard model checker which is not well adapted for specific task of AFDX network end to end communication delay computations. This chapter proposes a new approach based on Exhaustive Simulation to calculate exact worst case end-to-end delays. Exhaustive simulation is similar to model checking in the sense that both approaches consider all possible cases or scenarios. The idea is to compute the sequences of frames of the VLs transmitted by each end system and to consider only those sequences which are candidate for the worst-case end to end delays. To reduce the search space, properties of the AFDX network are considered as the Critical Instance property shown in Chapter 4. A tool has been developed for this purpose and the exact worst-case end to end delays of an AFDX network has been computed by using this tool which will be presented in Chapter 6.
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Modelling of the network and a scenario

In the following sections we will explain the modelling methodology we adopted to carry out the end to end delay computations. v3,v4 v5,v6 v1,v3,v7 v1,v2,v3,v4,v6 v3,v4,v5,v6 v2,v5 v4,v6 v2,v4,v6,v8 v7,v8 (a) 
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Nomenclature and definitions

In this chapter, we use certain notations to define an AFDX network. We will define these notations and other terminologies with the help of an AFDX network shown in figure 5.1a. This example network consists of 3 switches S1, S2, S3, and eight end systems e1 to e8. Each end system generates a set of VLs. There are total of eight VLs named as v1 to v8. The characteristics and paths of these VLs are shown in table 5.1. Size of the VL in the table 5.1 is shown in terms of transmission time of the packet assuming 100 MHz link speed. These times are purposely chosen as larger than the normal packet sizes in order to show that worst case on each port does not always lead to overall worst case and will be demonstrated later in section Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the Exact Worst-Case End to End delays

5.3.

Each link in an AFDX network carries f lows of packets, named as f 1 to f 10 in figure 5.1b. Each switch in the network has at least one input link and at least one output link. The input links of a switch Si are denoted as link(i, j) where i represents the switch number and j represents j th input link of this switch, as shown in figure 5.1b. If there are m i total input links of switch Si then 1 ≤ j ≤ m i . This terminology is used only for input links of a switch. For all output links, we use f low names.

A flow coming out of an end system consists of an ordered list of packets. The order of these packets of the flow is known for strictly periodic VLs. For sporadic VLs, this order can have many possible permutations. We call one possible order of packets as a sequence. The number of unique sequences generated by each end system depends upon the number of VLs of the end system, their BAG values, and scheduling being used for periodic VLs. A set of sequences that can be received at input link link(i, j) of a switch Si is denoted as seq(i, j) where i is the switch number and j is the j th input link of the switch and 1 ≤ j ≤ m i . Each individual sequence among the set seq(i, j) is denoted by seq (i, j, k) where k represents k th sequence of the set.

Packets of a particular sequence seq(i, j, k) have defined order and temporal relation among them. Each packet of the sequence seq(i, j, k) is denoted as p (i, j, k, l) where l represents l th packet of the sequence seq (i, j, k). Temporal relation between two consecutive packets is defined by a gap between the packets and is denoted as d(i, j, k, l) which represents the distance of packet p(i, j, k, l) from the next packet in the sequence in terms of transmission time on the link. Finally, the transmission time of a packet p(i, j, k, l) is denoted as c (i, j, k, l). This is illustrated in figure 5.1c.

Modelling of a scenario

As discussed in section 4.1.1, a scenario is one possible case for the end to end communication delay analysis. In the context of this chapter, a scenario represents one possible permutation of sequences from each link of the network. This section describes how to model a scenario in the model that we will use for exhaustive simulation in this chapter. A sequence of periodic frames seq(i, j, k) is transmitted on each link link(i, j) of switch Si where 1 ≤ i ≤ n and 1 ≤ j ≤ m i . The sequence is cyclic (repeating itself over an hyper period P h ) and is defined by a circular list, as shown in figure 5.1c. The horizontal distance between the l th packet p(i, j, k, l) of seq (i, j, k) and its successor is derived from the scheduling offsets. This distance is denoted d (i, j, k, l).

Each packet p(i, j, k, l) has a transmission time c (i, j, k, l) where d(i, j, k, l) ≥ c(i, j, k, l) meaning 5.1. Modelling of the network and a scenario 87 that a packet arrives at a switch after at least it's transmission time. This phenomenon is called serialization or grouping in previous works [Charara 2006a, Fraboul 2002a[START_REF] Bauer | [END_REF], Martin 2006a] using network calculus and trajectory approach.

Reducing the number of scenarios

The approach proposed in this chapter is based upon the assumption that the worst case at a given output port happens when the packet under study arrives at the output port at the same instant as one packet from all the other input links of the corresponding switch, as proved in section 4.1.2 in Critical Instance property. Now we present some other properties that will help us in modelling a scenario and in reducing number of scenarios which are candidate for worst case end to end delays.

Property 2: Periodicity of the outgoing sequence at an output port.

The sequence transmitted at the output port of Si is periodic if: (1) The sets of input sequences seq(i, j) (1 ≤ j ≤ m i ) are periodic.

(2) The output port is not overloaded, i.e the incoming traffic does not exceed the capacity of the output port.

Proof:

The load of a sequence seq(i, j, k) is defined as the ratio between the sum of the transmission times of all its packets and its hyper period P h . The load L is defined as:

L = l (c(i, j, k, l)) P h
where i, j and k are fixed and l varies from 1 to last packet of the sequence. If the load L is not greater than 1 then, during the hyper period P h , there is a time when there is no backlog and the link is idle. Assuming that the sequences on all m i input links of Si are periodic, let's define P (i, j, k) as the period of the sequence seq(i, j, k) transmitted on link(i, j) and P h (i) the least common multiple of all the P (i, j, k) (1 ≤ j ≤ m i ). Then the sequence of frames received at Si is periodic with period P h (i). Figure 5.2 illustrates P h (i) and the P (i, j, k).

All the packets arriving from an input link of Si are transmitted in the output link of Si with a first in first out (FIFO) policy. In cases where the output link is not overloaded, there is at least one instant during the hyper period P h (i) with no backlog. Let's call t nb such an instant. 

Computing worst case end to end delays using sequences

In order to compute the worst case end to end delays using sequences, the proposed approach is to compute the combinations of sequences which lead to the worst case scenario by considering the two properties given before. For this purpose, an algorithm has been developed and composed of two parts:

1. Calculations of backlog and combination of sequences on a local port at switch level 2. Global management of data flow based computations on network level.

On a local port level, each end system's packet generation sequence is stored as an ordered circular list (packets are periodically sent). Each entry of the list represents a packet with its characteristics (size, time of generation, scheduling offset etc). For a given output port, the select an output link for which the set of sequences of all the input links are already computed.

3:

compute the set of output sequences of this output link.

4:

For each sequence in the set, compute the backlog at the reception of the last packet of the sequence, which is packet under study. This backlog represents delay at this port for this sequence.

5: end while 6: The worst case delay for frame x at the destination output port is the largest sum of delays on each port passed by the VL in the set of generated sequences.

lists of packets sent by all the end systems which pass through the output port. The result of the algorithm is the worst case delay for the frame under study at the output port and all possible sequences of packets of all VLs sharing this output port of switch Si.

Computation of delay and merging of sequences at a switch output port

The process of calculating the backlog for a given scenario at an output port is illustrated in figure 5.3. We shift packets to align the arrival times of the required packets and then calculate backlog in this scenario, which is simply the time at which the last packet in the merged sequence finishes it's transmission. Assuming packets p15, p25 and p34 arrive together from es1, es2 and es3 respectively, we shift all other packets according to their generation time and then build a new sequence from these three input sequences after they have passed from the output port.

We take the first flow, in this case es1, and construct an array of packets with their arrival time and the time when they will finish their transmission at the output port considering this is the only flow at the port. Next we consider the second flow, in this case es2, and put its packets in the array. Since there are already packets of the first flow in the array, if there is an overlap of packets, we insert the packet before an existing packet if it arrives earlier, or after an existing packet if it arrives latter. If the packets do not overlap, we insert a new row in the table with packet's arrival time and transmission time. We repeat this process for all input flows. At the end, the array contains the resulting sequence of packets at given output of the switch.

At network level, this algorithm follows a data flow approach: calculation starts at source nodes initializing the set of sequences transmitted from each end system (where all the required data is already available) and continues towards the destination when all required data is available for each output port. The set of sequences computed at a given output port of a given 5.3 Worst-case end to end delay computations on a simple AFDX network using sequences

Presentation of the system

In order to explain how the algorithm works, we will consider a model avionics system of an aircraft as shown in figure 5.4. This relatively small avionics system consists of three AFDX switches and eight end systems. This is chosen on purpose in order to demonstrate the fact that worst case delay on each port does not always lead to end-to-end worst case delay.

Computing the worst case end to end delay of VL under study

VL v3 is under study, which is a control message sent from Control Display Unit (CDU) to primary Flight Display (PFD). It originates at end system CDU, corresponding to end system e2 of figure 5.1a and follows the path e2 -S2 -S1 -S3 -e8. Following steps are needed to compute worst case end to end delay for VL v3: 2. Computation of the resulting sequences at the output of switch S2.

3. Computation of the sequences at the input ports of switch S1.

4. Computation of the sequences at the output of switch S1.

5. Computation of the sequences at the input ports of switch S3.

6. Computation of the sequences at the output of switch S3. Let us assume that the end system e2 schedules its VLs in such a way that there is no waiting delay at the end system output port. Hence the worst case delay for all the VLs at the end system is just the transmission time of the largest VL packet, i.e 3ms for v3 at end system e2. p(2,1,2,2) p(2,1,2,1 The next hop in path of VL v3 is switch S2 output port. At this port, VL v3, v4, v5 and v6 compete for the link link(1, 2). Therefore we need to construct sequences seq(2, 1, 1) for VL v3, v4 and seq(2, 2, 1) for VL v5 and v6 on links link(2, 1) and link(2, 2) respectively before we can proceed further. Figure 5.5 illustrates these sequences. As we described earlier, this algorithm checks all possible combinations of packets in the sequences. Hence the total number of sequences generated at the output port of a switch can be calculated by multiplying number of packets in a sequence in each input link of the switch. In this case there are two input links (link(2, 1) and link(2, 2)) of switch S2, each having two packets. Hence the total number of sequences generated at switch S2 output port for link link(1, 2) is calculated to be 2 * 2 = 4.

Computation

But according to Property 1, we are only interested in sequences where packet under study is transmitted in the end, which in this case is packet p(2, 1, 2, 2). Therefore out of 2 possible sequences generated from send system e2, we only consider one sequences: seq(2, 1, 2). This results in total of 1 * 2 = 2 sequences which can be candidate for worst case delays, which is a reduction of two sequences (50%) at the input of switch S2.

To This computation of an exact worst case delay (or an under approximation of this delay) can be used in order to compute the pessimism (or an estimation of this pessimism) of the results obtained by the existing Network Calculus and Trajectory approaches, as illustrated in figure 5.11. Table 5.4 gives this information for the configurations which have been analyzed. with gap of any time interval which is greater than or equal to its BAG value while for strictly periodic VL packets can only arrive with gap of time interval strictly equal to its BAG value, as shown in figure 5.13. In order to generate maximum possible data from a sporadic VL, it must strictly transmit a packet at each minimum interval T and hence in worst case scenario sporadic traffic becomes equal to strictly periodic traffic, but with no of f sets.

More Improvements and reduction in scenarios
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Modeling of Sporadic traffic

We have already seen how a strictly periodic traffic data can be modeled in section 5.1.2. When

VLs are strictly periodic, we can assign offsets in order to reduce worst case delays and to evenly distribute traffic in the network. But with sporadic VLs, we cannot put constraint of strictly defined offsets between different packets of the VL. Therefore, we model the sporadic VLs with offsets equal to zero i.e. packets arrive at the same time and hence we must consider all possible orders of transmissions. This generates huge number of scenarios at each end system (factorial of number of packets in one hyper period of the end system). For example, on an end system with 5 VLs having 128ms BAG (Hyper Period) for each VL, the total number of scenarios at this end system will be 5! = 120. For BAG values other than 128ms (maximum possible BAG value or Hyper Period), this number becomes even greater because more packets are generated in the hyper period of 128ms. This is illustrated in figure 5.14. In this illustration, there are 13 packets in one hyper period, therefore total scenarios for this end system will be 5! × 2! × 4! × 2! = 11520. In short, the closed form complexity of such approach will be O(n * n!). Proof: If data rate on input links of an AFDX switch is same as data rate in output links, then the queuing delay of a packet in its input links competing for a given output link, is directly proportional to the amount of data waiting for the transmission in the output port queue. If more packets are arriving at the output queue than the packets being transmitted, then the data in queue will start to increase. On the other hand, if no packet is being received, i.e there is idle time on the input links, then data in output port queue will reduce. This implies that having idle time in input links will reduce the amount of data being stored in the queue and hence will result in lesser queuing delay at the output port. case delay, we must check all possible placements of this idle time in the sequence, as shown in figure 5.17, for packet v5. In part (a) of the figure 5.17 no VL is leaving and hence packet v5 is delayed by packet v2. In part (b) of the same figure, packet v2 is leaving so it introduces an idle time which results in no delay for packet v5; packet v5 is immediately transmitted on its arrival because switch output port is not busy. If this idle time was due to packet v3 as shown in part (c) of the figure 5.17, then again packet v5 will be delayed by packet v2 as in case (a).

Hence placement of idle time on the link affects the waiting time for the packets on the link. 

Conclusion

In this chapter, we have presented an improved method to calculate exact worst case delays for AFDX network. This approach is promising since it increases the maximum size of the networks which can be analyzed. Another advantage of this technique is that it can generate reachable (but close to the exact worst case) scenarios for large networks which can not be computed for exact worst case in reasonable time. It will probably be difficult to analyze a real industrial configuration (more than 1000 VLs) for exact worst case delays but still we can use this technique to obtain valuable information on the pessimism of upper bounds obtained by Network Calculus or Trajectory approach.

The proposed approach can be adapted in order to compute the backlog in each switch output port, by calculating the maximum number of adjacent packets in computed sequences at this switch output port. This is important for certification: it is mandatory to guarantee that buffers of switch will never overflow. This technique is not limited to AFDX network but can cope with any switched Ethernet network, provided flows are strictly periodic. It can also be used for analysis of different scheduling techniques and finding delay bounds in multi-processor networked architecture.

The first contribution of this work is to explain how the number of scenarios which have to be analyzed for an exact worst case delay computation can be drastically reduced.

The second contribution of this work is to propose an algorithm for the worst case delay computation based on this reduced set of scenarios. This algorithm allows the analysis of larger network configuration than existing model checking approaches in [Adnan 2010b, Charara 2006a].

The third contribution of this work is to show how the proposed algorithm can be adapted for industrial configurations to obtain reachable end-to-end delay cases which are close from the exact worst case.

We have developed a tool based on the algorithms and properties presented in this chapter. In this chapter we will present the case study of an industrial implementation of AFDX network such as used on Airbus A380 aircraft. This AFDX network was analyzed for worst case end to end delays using sequence based approach presented in Chapter 5 using our own developed tool. Before talking about the results of this analysis, we will present the system first in next section.

AFDX network system of industrial scale complexity

In this section we will present a real life AFDX network of industrial scale complexity such as used on commercial aircraft e.g. Airbus A380. Such a large AFDX network consists of about 1000 VLs constituting more than 6000 paths, using 16 AFDX switches and 123 end systems as illustrated in figure 6.1.

Understanding the complexity of industrial scale AFDX network

The complexity of an industrial scale AFDX network, as far as number of possible scenarios is concerned, is mainly because of following two factors: Interference of other VL paths with path of VL under study: We have already discussed basics of AFDX netwrok in 2.3. In AFDX network, each VL is a multicast broadcast of data. This is very similar to a tree with more than one branch. If we consider a single VL in isolation, it will result in number of paths equal to number of branches of the equivalent tree, as shown in figure 6.2. Each path has different end-to-end delay and is calculated separately.

Since there are more than 1000 VLs in the network, it is obvious that many paths or branches interfere with each other by intersecting their paths and/or overlapping each other partially. This means that to calculate end-to-end delay for a single path, we must consider all the VL paths which are directly interfering with path under study and also the paths which are indirectly interfering with path under study. The indirect interference can encompass large number of paths. This is equivalent to Connected Component in graph theory concepts, where any two nodes are connected to each other by paths and are not connected to any other nodes of the graph, as shown in figure 6.3 where there are three connected components. Each connected component is equivalent to part of AFDX network that we must take into account for a VL under study because of directly and indirectly interfering VLs. In this case study, number of interfering paths for a single path under study, can be upto 5500 paths out of 6412 total paths.

As an example, let us consider a VL named V L10151 in this case study. This VL originates from end system IOMA8_1, passes through switch SW4 at output port 7 (AFDX_SW4_7 ), then through switch SW7 at output port 19 (AFDX_SW7_19 )and reaches the destination end system. Considering this VL in isolation leads to a very simple scenario as shown in figure 6.4. Now, If we consider all the VLs that interfere with this VL directly, then the scenario is bit more complex, as shown in figure 6.5 where width of edge indicate number of overlapping paths. In this case we have 297 other VL paths which directly interfere with V L10151. And when we include all the directly and indirectly interfering VLs, we have 5449 paths interfering This example of VL V L10151 demonstrates that the number of cases for even a simple VL path can be huge due to the fact that this path is not in isolation and many other VLs are interfering with it. This makes it even more important to reduce number of scenarios which can be candidate for worst case end to end delay.

Idle times due to leaving VLs: As shown in section 5.1.2, with no idle time between packets, if we arrange packets by decreasing packet size then it will lead us to worst case endto-end delay provided all packets are going to the same end system i.e no VL is leaving the path of VL which is under study. This never happens in industrial AFDX network considered in this case study. When VLs join the VL understudy directly or indirectly, and leave it after sharing a single or multiple switches, they create idle times between packets. The worst case end-to-end delay depends on relative position of this idle time between packets and we must consider all combinations where this idle time can possibly occur.Hence placement of idle time on the link affects the waiting time for the packets on the link, which leads to huge number of possible cases due to large number of paths interfering with each other. The number of cases which can be candidate for worst case end-to-end delays, range from 10 9 to 10 105 . 

Software Architecture

The tool for this case study is written in Java. Java was selected for its ability to be portable across multiple operating systems. Java also offers some open source libraries that can be used to develop a distributed application. The tool developed during this research work can be used as stand alone application on a single machine or as a distributed computation application running on multiple machines connected via network. There are two separate versions of the tool which both have same algorithms for computations of end-to-end delays but differ in the way these calculations are managed: in one version computations runs on a single machine while in the other one computations are distributed across multiple machines. More detail about software implementation can be found in Appendix B.

The basic architecture of the software is shown in figure B.1. Parser is used to read the AFDX network configuration data and to initialize the internal constructs and variables. Network Pruning block builds the essential part of the network that is directly and indirectly linked with the VL under study and removes the unconnected part of the whole network. This block is also responsible to generate scenarios which can be candidate for worst case end-to-end delays. In case of distribution computation, Load Balancer manages the computation distribution among available machine nodes. In case of single machine, it distributes computations among locally available cores. Compute module computes the delays and backlogs for a given sequence on a given output port. It also constructs set of resulting output sequences. Finally the Control module is responsible for coordination between all modules and for collection of results.

The software uses Flow Based Programming [Morrison 2010] concepts to implement data flow approach where computations proceed as the data flow from one output port to another. For distributed computations, Java based library named Java Parallel Processing Framework(JPPF) is being used. The library can be found at http://www.jppf.org/

Results of the Case Study

The industrial scale network used in this case study interconnects aircraft functions in the avionics domain. It is a large scale network and is composed of two redundant networks (indicated by red and blue colors in figure 6 Let us consider VL V L10151 as shown earlier in figure 6.4. The maximum packet size for this VL is 567 bytes and the value of BAG is 64 ms. This VL originates from end system IOM -A8 port 1. At this end system, there are 6 other VLs competing for the output port of the end system. The worst case queuing delay at this output port is 177.76µs. The next output port in the path of this VL is AFDX_SW4_7 which is AFDX switch number 4 port number 7. At this output port, the queuing delays contributing to worst case end to end delay is 928.72µs. The last output port in the path of V L10151 is AFDX_SW7_19 which is AFDX switch number 7 port number 19. At this output port the queuing delay is 969.60µs. After this output port the VL arrives at the destination end system "FT_SCI". The overall end to end worst case delay is sum of the delays on each output port in the path i.e 2076.08µs. The Trajectory approach result for the same VL is 177.76, 1000.4, 1106.64µs on each output port respectively with total end to end delay of 2284.8µs. There is about 10% pessimism in the result of Trajectory approach for this VL. If we compare the results on each output port, we notice that the pessimism increases as the number of ports increase in the path of VL. It took more than one hour to analyze all candidate scenarios.But the worst case scenario was reached in just 7 minutes. This is true for most of the VLs. We reach worst case scenario relatively quickly but still we need to analyze all the scenarios which are candidate for the worst case end to end delay.

Comparison of results with Network Calculus and Trajectory approach

We were able to analyze each VL of the network but not all the paths. Some paths were too complex to be analyzed in reasonable time due to a very large number of possible scenarios (in the vicinity of 10 105 ). Out of 6412 paths, we were able to find exact end to end communication delay for 4099 paths. The results of our analysis, i.e exact end to end communication delays for 4099 paths, were compared to Network Calculus and Trajectory approach. Figure 6.9 shows the results compared to Trajectory approach and figure 6.10 shows the difference between these results, which is equal to pessimism of Trajectory approach. In some cases, both results are equal which indicates that for those cases trajectory approach finds the exact worst case delay.

Figure 6.11 shows the results compared to Network Calculus and figure 6.12 shows the difference between these results, which is equal to pessimism of Network Calculus approach. The actual pessimism in Network Calculus is about 13% on average, and the pessimism in Trajectory approach is about 6% on average.

Conclusion

Finding exact worst case delays of an industrial scale AFDX network is complex and huge. We

were not only able to apply our properties and algorithms on a real industrial scale AFDX network but also we were able to find exact worst case end to end delays for more than 60% of the paths. This shows that model checking or exhaustive simulation can be applied to huge networks. With the exact worst case delays, we can also measure the precise pessimism in upper bounds of Network calculus and Trajectory approach. 

Conclusions

An avionics system is an embedded system composed of communicating resources, sensors and actuators. Each communicate using shared communication networks such as the AFDX network. For certification reasons, the end to end communication delays need to be guaranteed.

To ensure this property, several methods can be used:

• analytical methods, such as Network Calculus or Trajectory Approach, which compute an upper bound of the worst-case end-to-end transmission delays;

• model-checking and exhaustive simulation which evaluate exact worst-case end-to-end transmission delays.

Analytical methods can evaluate an industrial AFDX configuration but are pessimistic. In [Charara 2006a], Model-Checking has been used to compute the exact worst-case end-to-end delays of a small AFDX configuration. The method used is not well-adapted.

In this thesis, the goal is to compute the exact worst-case end-to-end delays on an industrial AFDX configuration. First, we propose to improve the Model-Checking approach by reducing the state-space in the verification process. The first contribution of the thesis is the Critical Instant Property.

are difficult to analyze in short time. The solution proposed in this thesis is to stop the analysis after a given duration. So, for the VLs which do not finish in given time, the obtained results are optimistic.

The problem is due to the number of crossed flows in the system: the VLs which directly influence the VL under study and those which indirectly influence the VL under study. Both of them are considered in our approach. But, not all the indirect VLs have an effect on the worst-case end-to-end communication delay for a given path. The goal will be to find the characteristics of the VLs which do not influence the VL under study. By doing this, we will be able to reduce the number of VLs which need to be considered in our analysis and so, to reduce the number of generated sequences. This may eventually enable us to analyze all paths of an industrial scale AFDX network.

Generalization of the method to other Ethernet based networks. This work can also be extended to other networks and fields. For example, this work can be adapted for any switched Ethernet network with very minimum modifications, if any. Techniques presented in this work can be extended to space-wire communication protocol as well. This work can be applied to multi-processor distributed systems, where we can find inter node communication delays or even distributed scheduling.

Integration of the method in the global avionics system. Nowadays, the avionics systems are defined considering the Integrated Modular Avionics (IMA) architecture. They are composed of a set of applications which share a set of computing resources called modules communicating using a shared network, where network itself is connected to a set of sensors and actuators. The execution model is defined by the standard ARINC653 [ARINC 653 1997],

while the communication standard is ARINC664 (part 7) [ARINC 664 2005], also known as AFDX. These architectures have been defined to allow some real-time requirements.

The goal of this thesis is to propose an approach to verify that the AFDX requirements are guaranteed. Some other works have been devoted to verify that the functional requirements are respected. As an example, in [Lauer 2010], timing analysis of functional chains on an IMA architecture has been done. The transmissions on the AFDX networks has been modeled by timed intervals obtained by using pessimistic upper bounds of Trajectory Approach. Such an analysis can be done by considering a global approach composed of functional models, such as the ones defined by [Lauer 2010], and the network model defined by our approach.

Another key area of research in IMA is the impact of spatial and temporal integration

• Real Time: these model checkers are used for real-time systems where systems are constrained by operational deadlines from "event" to "system response". In these model checkers time is an important variable and continuously evolves independent of other factors.

• Hybrid: these model checkers are used for hybrid systems where systems behavior exhibits both discrete and continuous change.

• Probabilistic: these model checkers are used for probabilistic systems where system exhibits inherent uncertainty which can be expressed in terms of probability such as randomized distributed algorithms, fault-tolerant processes and communication networks.

• Simply Timed: these model checkers are used for a special class of real-time systems where time evolves in discrete steps.

• Un-timed (Plain): these model checkers are used for systems which don't fall in any of the above category and are mostly used for verification of algorithms, protocols and logic.

Depending upon the way how model checkers work, there are basically two approaches in model checking that differ in the way the desired behavior, i.e. the requirement specification, is described:

• Logic-based or heterogeneous approach: in this approach the desired system behavior is captured by stating a set of properties in some appropriate logic, usually some temporal or modal logic. A system usually modeled as a finite-state automaton, where states represent the values of variables and control locations, and transitions indicate how a system can change from one state to another, is considered to be correct with respect to these requirements if it satisfies these properties for a given set of initial states.

• Behavior-based or homogeneous approach: in this approach both the desired and the possible behavior are given in the same notation (e.g. an automaton), and equivalence relations (or pre-orders) are used as a correctness criterion. The equivalence relations usually capture a notion like "behaves the same as", whereas the pre-order relation represents a notion like "behaves at least as". Since there are different perspectives and intuitions about what it means for two processes to "behave the same" (or "behave at least as"), various equivalence (and pre-order) notions have been defined. One of the most well-known notions of equivalence is bi-simulation. In a nutshell, two automata are bi-similar if one automaton can simulate every step of the other automaton, and vice versa. A frequently encountered notion of pre-order is (language) inclusion. An automaton A is included in automaton B, if all words accepted by A are accepted by B. A system is considered to be A.2. List of Model Checkers, Modeling Languages and Specification Languages 135 correct if the desired and the possible behavior are equivalent (or ordered) with respect to the equivalence (or pre-order) attribute under investigation.

A.2 List of Model Checkers, Modeling Languages and Specification Languages

There are numerous model checkers for different types of systems. Some of them are still a work in progress and some are well established and proven softwares used in industry for certification purposes. 

A.2.1 List of Modeling Languages

• AltaRica: a language designed to model both functional and dysfunctional behaviours of critical systems.

• Cadence SMV: Cadence SMV Input Language; synchronous modeling language that has features supporting SMV's style of compositional refinement verification and abstract interpretation.

• CCS: Calculus of communicating systems; process calculus introduced by Robin Milner around 1980 and the title of a book describing the calculus.

• CCSP: A process calculus obtained from CCS by incorporating some operators of CSP.

It is defined by Olderog [4] and by van Glabbeek/Vaandrager [5].

• CSP: Communicating sequential processes; formal language for describing patterns of interaction in concurrent systems. FDR2 is a refinement checking tool for CSP, comparing two models for compatibility.

• DVE input language: a system is described as Network of Extended Finite State Machines communicating via shared variables and unbuffered channels. Does not contain support for buffered channels and for checking the type of message to be received without performing the receive proper. • FSP: Finite State Processes.

• Java: Object-oriented programming language.

• LOTOS: Language Of Temporal Ordering Specification (ISO standard 8807); formal specification language based on temporal ordering used for protocol specification in ISO OSI standards.

• PEPA: Performance Evaluation Process Algebra; itis a stochastic process algebra designed for modelling computer and communication systems.

• Plain MC: these are simple text-file formats used in MRMC and PRISM.

• PRISM language: PRISM model description language.

• Promela: Process or Protocol Meta Language; it is a verification modeling language. The language allows for the dynamic creation of concurrent processes to model, for example, distributed systems.

• Reactive modules: Component-based modeling language for synchronous and asynchronous hardware and software systems.

• REDLIB: Timed CTL.

• Simulink/Stateflow: interactive design and simulation tool for event-driven systems.

• SCCS: Synchronous calculus of communicating systems.

• SMV:SMV input language.

• TCCS: Timed CCS.

• Verilog: an hardware description language (HDL) used to model electronic systems.

• VHDL: commonly used as a design-entry language for field-programmable gate arrays and application-specific integrated circuits in electronic design automation of digital circuits.

• Verus: A C like language used with Verus model checker
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 11 Figure 1.1 -June 4, 1996; The Ariane-5 crashed 36 seconds after the launch due to a conversion of a 64-bit floating point into a 16-bit integer value.
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 2 Figure 2.1 -Schematic view of system verification process.

Figure 2 . 2 -

 22 Figure 2.2 -Schematic view of Model Checking process.
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 2 Figure 2.4 -AFDX network (courtesy condor engineering inc.)
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 2 Figure 2.5 -AFDX virtual links.
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 2 Figure 2.6 -AFDX switch architecture.

  A cumulative function R(t) is defined as the number of bits in the flow during time interval[0, t]. Function R(t) is always a wide-sense increasing function. Generally it is assumed that R(0)=0, unless stated otherwise. In figure3.1b, both the input traffic and output traffic is an example of cumulative function. Cumulative functions describe the relationship between total number of bits and time; they give us sum of all bits arrived (or left) till a time instant t.Input and Output Function: Let's consider a system S as a black-box. S receives input data and after processing it transmits the data at output. If input is defined by cumulative function R(t), then the output is defined by another cumulative function R * (t) called as output function. Figure 3.1c shows an example of input and output functions. The graph in black represents input function and graph in red represents corresponding output function. The horizontal distance d(t) between input and output function graph represents the delay that an input traffic will experience while the vertical distance x(t) between input and out function represents the total number of bits present in the system as backlog. R 1 (t) and R * 1 (t) show a continuous function of continuous time (fluid model); we assume that packets arrive bit by bit, for a duration of one time unit per packet arrival. Functions R 2 (t) and R * 2 (t) show continuous time with discontinuities at packet arrival times (times 1, 4, 8, 8.6 and 14); we assume here that packet arrivals are observed only when the packet has been fully received. Arrival Curve: Arrival curve is a way to constrain data emitted by sources. Given a widesense increasing function α defined for t ≥ 0, we say that a flow defined by cumulative function R is constrained by α if and only if for all s ≤ t: Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network (a) Instantaneous traffic at any given instance t. (b) Cumulative traffic till time t. (c) Examples of Input Output cumulative functions.
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 3 Figure 3.1 -A simple system with one input and one output port.
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 3 Figure 3.2 -Arrival and service curves.
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 4 Network Calculus Bounds: Network calculus has three main results. These are bounds for Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network lossless systems with service guarantees. The first result is about backlog bound. It states that the vertical distance between arrival curve and service curve presents upper bound on backlog.

  (a) Delay at node s1. (b) Delay at node s2.
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 3 Figure 3.3 -Network calculus example.
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 3 Figure 3.4 -A distributed system.
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 3 Figure 3.5 -Model used by Trajectory approach.

  Figure 3.6 -AFDX network for Trajectory approach example.

  Figure 3.7 -Identification of busy periods.

Figure 3

 3 Figure 3.8 -Maximizing the arrival time in last node.

  group in the Automated Reasoning System division at ITC-IRST, the Model Checking group Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network at Carnegie Mellon University , the Mechanized Reasoning Group at University of Genova and the Mechanized Reasoning Group at University of Trento. NuSMV is a reimplementation and extension of SMV, the first model checker based on BDDs (Binary Decision Diagrams). NuSMV has been designed to be an open architecture for model checking, which can be reliably used for the verification of industrial designs, as a core for custom verification tools, as a testbed for formal verification techniques, and applied to other research areas. NuSMV2, combines BDDbased model checking component that exploits the CUDD library developed by Fabio Somenzi at Colorado University and SAT-based model checking component that includes an RBC-based Bounded Model Checker, connected to the SIM SAT library developed by the University of Genova. The main features of NuSMV are: • Functionalities. NuSMV allows for the representation of synchronous and asynchronous finite state systems, and for the analysis of specifications expressed in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL), using BDD-based(Binary Decision Diagram) and SAT-based(Boolean Satisfiability) model checking techniques. Heuristics are available for achieving efficiency and partially controlling the state explosion. The interaction with the user can be carried on with a textual interface, as well as in batch mode.
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 3 Figure 3.9 -Schematic view of sample AFDX network for NuSMV model.
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 3 Figure 3.10 -NuSMV code for modeling a VL.

  Figure 3.11 -Modeling of VLs at the End System and Switch.
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 3 Figure 3.12 -NuSMV code for timers.
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  Figure 3.13 -Output of NuSMV model checker.
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 3 Figure 3.15 -Offsets between VLs of one ES.
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 3 Figure 3.16 -Timed Automata for an end system.

  shown in figure 3.19.) and go to corresponding state Chapter 3. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network without elapsing any time thanks to urgent channel variable "hurry". The automaton has one location for each VL and stays in this location for the time equal to VL packet transmission time and then returns back to empty state removing the packet from the queue. The FIFO queue is modeled as an array with maximum size equal to upper buffer bounds calculated by network calculus. This ensures there will not be overflow in the queue. Functions enQueue(id) and deQueue() add and remove VL packets from the queue respectively. These functions are shown in figure 3.19. A value of -1 in queue indicates an empty place in the queue.
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 3 Figure 3.20 -Timed Automata for Measuring VL.
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 3 Figure 3.21 -Packet arrival instances and how a delay at output port appears as jitter.
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 3 Figure 3.23 -Timed Automata for Serialized VL.
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 3 Figure 3.24 -Worst case scenario for VL1.
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  Consider an AFDX network as shown in figure4.1. The upper part in Figure4.1 depicts the network architecture. The VLs are not represented in the figure, except vx which is under study. We will prove in paragraph 3.3 that a worst-case scenario for a frame of vx necessarily has the characteristics of the scenario depicted in the lower part in Figure4.1. The frame of vx arrives at the output port of S1 at the same instant t0 as a frame a coming from link e2 -S1 and a is arbitrarily transmitted before the frame of vx. Moreover, both frames have to wait till all the frames which have arrived at the output port of S1 before t0 are transmitted. Similar situations occur at the output port of S2 with frames b and c and at the output port of S3
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 41 Figure 4.1 -Illustration of a worst-case scenario
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 4 Figure 4.2 -Worst-case for a frame x.

  Figure 4.3 will be used for modelling. It consists of 5 switches (S1, S2, S3, S4, S5), 12 end systems (e1 to e12) and 32 VLs (from v1 to v32). The configuration of the VLs is shown in table 4.1. VL v19 and v20 are sporadic while rest of the VLs are strictly periodic with offsets.

Figure 4 . 4 -

 44 Figure 4.4 -Sequence of e1

Figure 4 Figure 4 . 7 -

 447 Figure 4.5 -Timed automata of e1
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  Figure 4.14 -A worst case scenario for v1

  ure 4.3 including 32 VLs. It is computed in 10 minutes on a PC with 3.3 GHz Intel Core 2 Duo

  Figure 4.15 -A simple timed automata.
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 4 Figure 4.16 -Partial zone graph of the simple timed automata.
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 5 Figure 5.1 -AFDX Network architecture.

Algorithm 1

 1 computation is done according to the algorithm 1. Calculations of backlog and combination of sequences on a local port at switch level is done in step 3 and 4. Global management of data flow based computations on network level is done in step 1,2 and 5. The algorithm uses ordered 5.2. Computing worst case end to end delays using sequences 89 Worst case delay calculation on output ports 1: while all output ports have not been computed do 2:
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  Figure 5.4 -A simple AFDX Network of a small aircraft.
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 5 Figure 5.5 -Sequences generated at input of Switch S2.
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 5 Figure 5.5 illustrates the sequences of frames transmitted from e2: seq(2, 1, 1) and seq(2, 1, 2) on link link(2, 1) and sequences of frames transmitted from e3: seq(2, 2, 1) and seq(2, 2, 2) on link link(2, 2).
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 56 Figure 5.6 -Construction of sequences at output of Switch S2 Port 1.
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 5 Figure 5.12 -Medium sized AFDX network
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 5 Figure 5.15 -Order and size of packet in switch output port

  Figure5.17 -Idle time due to leaving VLs and its impact on packet under study.
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 5 Figure 5.18 -Idle time and queuing delay at a switch output port.
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 66 Figure 6.3 -Connected Component of a graph which is equivalent to directly and indirectly interfering VLs.

  Figure 6.5 -VL10151 directly linked paths.
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 69 Figure 6.9 -Results of the case study compared to Trajectory approach.
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  Figure A.1 1 summarizes the currently available model checkers, it's not a comprehensive list of all model checkers but an effort to include important model checkers for comparison. It also enlists the languages used by these model checkers for modeling the systems and the languages used for specifying and verifying the properties.
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 1 Figure A.1 -Comparison of Model Checking tools.
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They have evolved from standalone systems to distributed systems; connecting and interacting with several Chapter 2.

Chapter 2. Background: System Verification and AFDX Network

  

	Requirements		System	
	Formalizing		Modeling	
	Property Specification		System Model	
		Model Checking		
	Satisfied	Violated	Simulation	Error Location
	Typical properties that can be checked using model checking are of a qualitative nature: Is

  Figure 2.3 -ARINC 429 vs AFDX architecture (courtesy condor engineering inc.) from Asynchronous Transfer Mode (ATM) to those already found in Ethernet, and constraining the specification of various options, a highly reliable Full-Duplex deterministic network is created providing guaranteed bandwidth and Quality of Service. Through the use of Full-Duplex Ethernet, the possibility of transmission collisions is eliminated. A highly intelligent switch, common to the AFDX network, is able to buffer transmission and reception packets. Through the use of twisted pair or fiber optic cables, Full-Duplex Ethernet uses two separate pairs or strands for transmit and receiving data. AFDX extends standard Ethernet to provide high data integrity and deterministic timing. Further a redundant pair of networks is used to improve the system integrity.Figure 2.4 depicts a generic AFDX network. It specifies inter-operable functional elements at the following OSI Reference Model layers:

). It is based upon IEEE 802.3 Ethernet and utilizes commercial off the shelf hardware thereby reducing costs and development time. AFDX builds on this standard, as is formally defined in Part 7 of the ARINC 664 specification. AFDX was developed by Airbus Industries for the A380. It has since been accepted by Boeing and is used on the Boeing 787 Dreamliner. AFDX bridges the gap on reliability of guaranteed bandwidth from the original ARINC 664 standard. It utilizes a cascaded star topology network, where each switch can be bridged together to other switches on the network. By utilizing this form of network structure, AFDX is able to significantly reduce wire runs thus reducing overall aircraft weight. Additionally, AFDX provides dual link redundancy and Quality of Service (QoS).

Figure 2.3 compares basic architecture of ARINC and AFDX networks.

2.3.2 Overview of AFDX AFDX adopted concepts (token bucket) from the telecom standard, Asynchronous Transfer Mode (ATM), to fix the shortcomings of IEEE 802.3 Ethernet such as in-deterministic behavior of "Carrier sense multiple access with collision detection (CSMA/CD)". By adding key elements Chapter 2. Background: System Verification and AFDX Network

table A

 A 

.1 of Appendix A but will focus only on model checkers with potential for use in AFDX network communication delay analysis. Two prominent model checkers suit best for this job: Timed Automata based model checkers (using UPPAAL [UPPAAL ] tool) from real-time model checkers category and NuSMV
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		VL1,VL2,VL3				
	ES1						ES6
							VL13,VL14,VL15
	ES3	VL4,VL5,VL6	SW1	SW1P1 VL1,VL3,VL4, VL5,VL6,VL9	SW2	SW2P1 VL1,VL3,VL5, VL9,VL10,VL15	ES2
							VL10,VL11,VL12
		VL7,VL8,VL9				
	ES4						ES5
			1 us = bits at 100 Mb/s		
		VL	Size(us) Period(ms) Offset(ms) SW1P1 SW2P1
		VL1		32	4		x	x
		VL2		32	8		-	-
		VL3		16	0		x	x
		VL4		32	0		x	-
		VL5		64	8		x	x
		VL6		128	24		x	-
		VL7		8		2		-	-
		VL8		4		0		-	-
		VL9		16	6		x	x
		VL10		64	24		-	x
		VL11		32	8		-	-
		VL12		16	0		-	-
		VL13		8		0		-	-
		VL14		16	4		-	-
		VL15		16	12		-	x
			Figure 3.14 -Example of AFDX Network configuration.

State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network •

  Modeling and computation of delay at first output port "SW1P1" and• Modeling and computation of delay at consequent output ports "SW2P1".

	Modeling of one ES behavior. As mentioned before, all VLs are assumed strictly periodic
	with period equal to BAG. Hence their scheduling by given ES is modeled by offsets. One
	VL is arbitrarily chosen as the first VL to generate a packet. Without loss of generality, we
	chose a VL with shortest period. In the example in figure 3.14, VL3 is the first (reference) VL
	for "ES1" and offsets of VL1 and VL2 are computed based on VL3 as shown in figure 3.15.
	Similarly VL4, VL8, VL12 and VL13 are chosen as reference VLs for end systems "ES2", "ES3",
	"ES4" and "ES5" respectively. This leads to one timed automaton for each VL. While modeling

the automata, all time values are scaled by 10 µs in order to reduce time required by UPPAAL tool for verification. During verification, model checker will check models at each value of the time in a given interval, and scaling the values of time will reduce the search space.

. State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network

  

	Chapter 3VL VL1 VL3 VL4 VL5 VL6 VL9 VL10 VL15	Delay(us) at SW1P1 Delay(us) at SW2P1 110 110 110 110 110 -80 100 90 -110 110 -110 -110
	.1 represents the results of example network. All calculations were done
	on a machine with 3.3 GHz Intel Core 2 Duo processor having 4 GB RAM. In general for VLs
	with no jitter, the computation time is about 5 seconds using approximately 15 MB of RAM
	but for VLs with jitters, it can take up to 15 hours using approximately 4 GB of RAM because
	of increased state-space due to jitters.

An Improved Method to Compute the Exact Worst Case End-to-End Delay using Timed Automata

  

7, freely available from http : //www.uppaal.org/. Chapter 4.
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  4.3 -AFDX Network architecture for improved timed automata.

	68 Chapter 4.	
	VL v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 128 BAG Size offset (ms) (ms) (ms) 128 2 0 128 2 32 128 2 64 128 2 96 128 2 0 128 2 64 128 2 96 128 2 0 128 2 32 2 96 v11 128 2 0 v12 128 2 32 v13 128 2 64 v14 128 2 96 v15 128 2 0 v16 128 2 0	VL v17 128 BAG Size offset (ms) (ms) (ms) 2 32 v18 128 2 64 v19 32 2 n/a v20 64 2 n/a v21 128 2 0 v22 128 2 32 v23 128 2 64 v24 128 2 0 v25 128 2 64 v26 128 2 96 v27 128 2 0 v28 128 2 64 v29 128 2 96 v30 128 2 0 v31 128 2 64 v32 128 2 96
	Table 4.1 -AFDX network configuration data for improved timed automata

  States vl1 to vl4 represent corresponding VLs and invariant x <= 32 represents offsets between periodic VLs. As an example, v3 offset is 32ms + 32ms as shown in table 4.1. p2 represents packet size. Here, p2 is equal to 2ms (transmission time equivalent to the size of the packet) but we can specify different packet sizes for each VL. Function enqueue1(p2) stores an integer p2 in a FIFO array representing the output port of S1. For the VL under study, v1, we use a global integer sw1vl1 instead of FIFO array. At the transition leading to state vl1, sw1vl1 is incremented by p2, modelling the transmission of a packet of v1 from e1 to switch S1 and a signal start! is emitted so that measuring automaton, shown in figure 4.12, starts measuring time. Boolean f irst, initially set to true, is used to ensure that we stop the automaton after

Figure 4.5 shows the TA for e1. This TA starts with signal pause4! and committed state ensures that it generates signal begin! at the same time. Signal pause4! and begin! are used for synchronization as explained in table 4.2. VLs v1, v2, v3, v4 are generated by e1. two complete hyper periods of v1 and generate synchronization signal stop!, to stop end systems from generating further frames.

Table 4

 4 

	t1	pause till pause4!	pause till begin!	pause till pause3!	emit 1st packet for S3	ready for packet	ready for packet	ready for packet ready to emit packet for S4. broad-cast	ready for packet	ready for packet
	t1				start with		pause till go3!			pause3! pause till go3!
	t2				pause3!. emit 1st packet for S2			ready to emit packet for S4. broad-cast	
	t2						resume with		go3!	resume with
	t3						go3!			go3!	ready to emit packet for S5. broad-cast
	t3 start with			pause till go4!	pause till go4!		pause till go4!	pause till go4!	pause4! pause till go4!
		pause4!. broad-cast							
	begin! t3 emit 1st packet for S1 t4	start with begin!. emit 1st packet for S1				ready to emit packet for S5. broad-cast		
	t4				resume with	resume with	go4!	resume with	resume with	resume with
	t5 stop after hyper period. broad-cast	2		go4!		go4!		go4!	go4!	go4!
	t5	stop!		stop with	stop with		stop with			
				stop!	stop!	stop! (*)e2, e3, e4, e5, e6, v19, v20	

.2 -Synchronization among different groups of VLs.
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  nb + zP h (i) are also instants with no backlog, where z is an integer greater than zero. Since we have the same sequence of frames arriving at Si in each interval [t nb + zP h (i), t nb + (z + 1)P h (i)[, each of these sequences will generate the same transmission of frames at the considered output port. Consequently, the sequence of frames transmitted in the output port of Si is periodic with period P h (i).

	P(i,1,k)	
	seq(i,1,k)	
	P(i,2,k)	
	seq(i,2,k)	
	P(i,j,k)
	seq(i,j,k)	
	P h	(i)
	Figure 5.2 -Property 2.

t

  This avionics system can be mapped to the block diagram of example of figure 5.1a with e1 as Flight Management System, e2 as Control Display Unit, e3 as Engine Controls, e4 as Flight Controls, e5 as Air Data and Inertial Reference Unit, e6 as Navigation and Radar, e7 as Engine/Warning Display and e8 as Primary Flight Display. Hence we can reuse the Table 5.1 for the configuration data for this AFDX network. The packet sizes of the VLs in the table 5.1 are larger than what AFDX stnadard allows for a single packet.

of the sequences generated at the input of switch S2

  

	VL3			VL4
	seq(2,1,1)			
	p(2,1,1,1)	p(2,1,1,2)
	seq(2,1,2)	VL4		VL3
	VL5	p(2,1,2,1)	p(2,1,2,2) VL6	S2
	seq(2,2,1)			
	p(2,2,1,1)			p(2,2,1,2)
		VL6	VL5
	seq(2,2,2)			
		p(2,2,2,1)	p(2,2,2,2)

Table 5 .

 5 3 -End to End worst case delay under approximation algorithm illustration.

  So far we have only considered strictly periodic VLs in our calculation. But real AFDX network has Sporadic VLs. Difference between strictly periodic and sporadic VLs is that while periodic VLs repeat at strictly constant time intervals, the sporadic VLs have a limit on minimum

	No of VLs Model Checking (TA) Using Sequences Pessimism in NC 8 70min <1min 1% 16 -1min 4% 32 -19min 6% 64 -stopped after 1 hr 9%

Table 5 .

 5 4 -Performance comparison of algorithm.
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  .1). The network is composed of 123 end systems, 8 switches per network with 24 ports on each switch, 984 virtual links and 6412 VL paths (due to multicast characteristics of the VLs). Left part of the table 6.1 shows distribution of VLs according to BAG values. The right part of the table 6.1 shows classification of VLs according to the packet size. Table6.2 shows distribution of VL paths according to number of crossed switches. For an Figure 6.7 -Software architecture.

122 Chapter 6. Case Study Figure

  6.8 -Flows of AFDX network of case study.

	6.3. Results of the Case Study	123
	BAG Number (ms) of VLs 2 20 4 40 8 78 16 142 32 229 64 220 128 225	Packet size Number (bytes) of VLs 0-150 561 151-300 202 301-600 114 601-900 57 901-1200 12 1201-1500 35 > 1500 3
	Table 6.1 -AFDX network configuration: BAGs and packet sizes
	No of crossed switches Number of paths 1 1797 2 2787 3 1537 4 291

Table 6 .

 6 2 -AFDX network configuration: crossed switches number of paths overview of how these switches and end system are connected with each other, and about the complexity of this communication, figure6.8 shows actual flows of this network. We can clearly notice how each of these 8 switches are connected to a cluster of end systems. This industrial AFDX network has links speed of 100 M bit/s on all the links. Overall network load (utilization) is about 10%. Actually, this AFDX network is lightly loaded in order to ensure guarantees on the upper bounds of buffer sizes. There is no global clock in the network and hence packet release times at different end systems are independent.

http://en.wikipedia.org/wiki/List_of_model_checking_tools
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Modelling the Switches

The timed automata of the switch S1 is shown in Figure 4.9. For packets other than packet under study, switch output port is modelled as FIFO array. UPPAAL verification is very sensitive to size of arrays as discussed in [Discussion Group 2010]Therefore, in this modelling approach, only one dimensional array is used to store packet size to implement switch output port FIFO queue as shown in code Listing 4.1. Switch input port is not modelled because transfer of packet from input port to output port has constant delay, which is represented as switching latency and can be added to overall end to end delay. The automaton of S1 leaves initial state as soon as the FIFO is not empty (meaning a packet has arrived) or the global variable for VL under study, sw1vl1, is greater than zero (meaning packet under study has arrived at switch S1). Signal hurry! is urgent and is used to ensure that the transition is taken immediately without any time lapse. Automaton waits in state f if o or vlus for the time equal to size of the packet. This behaviour models transmission time on AFDX link. After this time elapses, the packet is stored in the FIFO of next switch (S5) in the path, which in this case is done by function enqueue5(f ront1()) and it is removed from FIFO of S1 by using dequeue1().

If the packet is from v1, then global variable for VL under study of next switch, in this case sw2vl1, is incremented by sw1vl1. This automaton also generates signal go4! as soon as it is ready to transmit first frame. go4! is then used by e7, e8, e9, e10, S2, S3 and S4 to start their automata. The timed automata of the switch S3 is shown in Figure 4.10. It is modelled on the same principle as S1 except that it can be paused/resumed by two signals: pause3! and pause4!. It leaves initial state as soon as the FIFO is not empty (meaning a packet has arrived). After time equal to packet size elapses, the packet is stored in the FIFO of next switch (S4) in the path, which in this case is done by function enqueue4(f ront3()) and it is removed from FIFO of S3 by using dequeue3(). Whenever signal pause3! or pause4! is received, current value of integer clock x3 is stored in a temporary integer tmp and restored back to x3 on resume signal go3! Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End Delay using Timed Automata Figure 4.13 -TA for integer clocks

• e9 and e10 synchronize at S3 and wait for S2 where e7 and e8 synchronize,

• S2 and S3 synchronize at S4 and wait for S1 where e1 to e6 synchronize,

• S1 and S4 synchronize at S5.

The implementation of this synchronization mechanism is summarized in Table 4.2. End systems e9 and e10 start building frame sequence for switch S3 and pause as soon as S3 is ready to transmit the first frame. This is indicated by the broadcast signal pause3!. Then S3 waits for the first frame from switch S2. End systems e7 and e8 start building frame sequences as soon as they receive the broadcast signal pause3. As soon as S2 is ready to transmit a first frame, e9, e10 and switch S3 are resumed with signal go3!. This ensures that a frame from S2 arrives at the same time as a frame from S3 at S4. As soon as S4 is ready to transmit a first frame, switch S4 pauses e7, e8, e9, e10, S2 and S3 with signal pause4!, in order to wait for a frame from S1. Finally, end system e1 broadcasts signal begin! as soon as it receives signal pause4!.

Thus, e1 starts building sequence at the same time as end systems e2, e3, e4,e5, e6 and sporadic VLs v19, v20 (group G2). Switch S1 starts building sequences as soon as it receives a frame and it resumes other paused automata with signal go4!. This ensures that a frame from S1 and S4 arrive at the same time at S5.

Utility Automata: modelling of the buffers

In the preliminary Timed Automata approach presented in [Adnan 2011a], FIFO buffers in the output port of switches are modelled by Arrays. Each element of an array corresponds to a frame which is waiting for the output link associated with the port. A frame is described by its transmission duration and the identifier of its flow. Such a modelling does not fit well with 4.2. The modelling based on timed automata Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the Exact Worst-Case End to End delays size for each generated output sequence is the maximum number of adjoining packets. This backlog size can be used to bound the FIFO buffer depth. In this example, the largest backlog size is 4 packets for sequence seq(1, 2, 1).

Computation of the sequences at the input ports of switch

The next hop in the path of VL v3 is switch S1 output port. At this port VL v1, v2, v3, v4 and v6 compete for link link(3, 1). For link link(1, 1), we have two sequences, seq(1, 1, 1) and seq(1, 1, 2) for VLs v1 and v2. For link link(1, 2), we have two sequences, seq(1, 2, 1) and seq(1, 2, 2) computed in previous step. Also at this port VL v5 is not present so we need to remove packets of VL v5 from sequences seq(1, 2, 1) and seq(1, 2, 2). These sequences are shown in figure 5.7. The link link(1, 2) has total of two sequences: seq(1, 2, 1) and seq(1, 2, 2). So at this output port total combinations are 2 * 2 = 4. If we were considering all sequences in previous step, there would be 2 * 4 = 8 sequences at the input of switch S1.

5.

3. Worst-case end to end delay computations on a simple AFDX network using sequences 95

Computation of the sequences at the output of switch

link(1,2) 

Computation of the sequences at the input ports of switch S3

Next and last output port in path of VL v3 is switch S3 output port. At this port there is a set of four sequences from link link(3, 1) and VL v7 from end system e6 also joins this output port from link link(3, 2). So first we compute sequence from link link(3, 2). There is only one sequence from this link: seq(3, 2, 1) consisting of VL v7 packet p(3, 2, 1, 1). Moreover, VLs v2,v4 and v6 are not present at this link so we remove their packets from set of sequences on link link(3, 1).

5.4. Evaluation of the sequence based approach 97

Computation of the sequences at the output of switch S3

There is only one packet in sequence seq(3, 2, 1) hence total sequences at output of switch S3

are 1 * 4 = 4. Figure 5.9 illustrates these combinations by considering packet p(3, 2, 1, 1) with each sequence from link link(3, 1). The end-to-end delay for VL v3 is summarized in table 5.2.

The worst case delay is 26ms and corresponds to the scenario highlighted in bold. 

Evaluation of the sequence based approach

The algorithm proposed in the previous section has been applied on the medium size AFDX network shown in figure 5.12 which includes 18 end systems and 58 VLs. The number of VLs involved in the worst-case delay analysis depends on the VL under study. The algorithm computes the exact worst-case end-to-end delay in less than 1 hour for the VLs of the network in figure 5.12 as long as at most 50 VLs are involved in the computation. This is illustrated in table 5.4 (column Using Sequences). As a comparison, the model checking approach presented in [Charara 2006a] does not finish with more than 8 VLs. As compared to timed automata based approach presented in Chapter 4, we can almost double the size of the network for which exact end to end communication delays can be determined. Therefore, the algorithm proposed in this chapter increases the size of the configurations which can be analyzed, thanks to a drastic reduction of the search space. Although the underlying principle and properties are same in both approaches, the results are better for the Java based tool because it is designed specifically for this purpose and handles state space better than timed automata based approach using UPPAAL software.

When more than 50 VLs are involved in the worst-case delay analysis, the algorithm does not finish execution in a reasonable time. Then, the idea is to stop the execution after a Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the Exact Worst-Case End to End delays predetermined duration, e.g. 1 hour and use the results computed in this duration. At this instant, a subset of the scenarios which are candidate for the worst-case has been tested. The result of the computation is the highest end-to-end delay obtained with this subset of scenarios.

Obviously, the scenarios leading to the worst-case end-to-end delay can be out of the tested subset. Consequently, the result of the computation can be smaller than the worst-case endto-end delay. Then, a heuristic is applied in order to test first the scenarios which are more promising for the worst-case delay. This is obtained by sorting the generated sequences at the first output port by decreasing order of worst case delays in this port. The worst case delay sequence at the first output port is propagated to the next output port where the same process is repeated. It finishes at the end of the path. Then, the procedure is repeated for second sequence at the first output port, and so on. This approach is explained with the example shown in figure 5.10.

Let's suppose VL v1 has two packets p(1, 1, 1, 1) and p(1, 1, 1, 2) in its periodic sequence and starts at end system e1 and its destination is end system e14 following the path e1-S 1 -S 2 -S 3 -e14. At output port P 1 of switch S 1 , VL v1 from end system e1 competes for the access of link link(2, 1) with VL v4 from end system e2. Let's suppose VL v4 has two packets p(1, 2, 1, 1) and p(1, 2, 1, 2) in its periodic sequence. Depending upon the number of packets in input links of the first switch, all the output sequences of the first switch are calculated. In this case VL v1 and VL v4 have two packets each so total of 4 sequences (seq(2, 1, l), 1 ≤ l ≤ 4) are calculated at output port P 1 of switch S 1 . In next step these sequences are sorted in decreasing order of the waiting time for the frame/packet under study. Then, the first output sequence in the sorted list will be used as input sequence for the subsequent output port in the path of VL v1. In this case, let's assume that seq(2, 1, 2) is the first sequence after sorting, then this sequence will be used as input sequence for switch S 2 at link link(2, 1) and competes with VL v22 for the access of link link(3, 1) at output port P 1 of switch S 2 . Let's assume that VL v22 has two packets p(2, 2, 1, 1) and p(2, 2, 1, 2), so there will be 2 possible sequences, i.e sequence seq(3, 1, 1) and seq(3, 1, 2). We take the first sequence seq(3, 1, 1). The seq(3, 1, 1) is used as input sequence at switch S 3 and competes with VL v43 for access of the output port P 1 of switch S 3 . This is the destination port for the VL under study. Let's assume that VL v43 has two packets p(3, 2, 1, 1) and p(3, 2, 1, 2), then all possible output sequences at this port will be seq(e14, 1, 1) and seq(e14, 1, 2). The end to end delay is calculated by adding largest waiting times at each output port and is stored in a list. This completes one pass of the algorithm. The process is repeated again for remaining sequences i.e. using seq(2, 1, 2) and seq(3, 1, 2) and so on, as shown in Table 5.3. The algorithm can be interrupted and stopped at any time after the calculation of the first pass, in which case the result computed so far is analyzed and largest value of worst case end to end delay computed so far is chosen as under approximation of the exact end to end worst case delay. 

Further reduction of scenarios

In this section we establish more properties of the network that will be used to reduce number of scenarios which are candidate for worst case end-to-end delay.

Property 3: Order of packets in Switch output port.

Assuming, data rate of input link and output link is same, if two packets x 1 and x 2 cross a switch output port and there is no existing backlog in the port, then following is true:

• if x 1 ≥ x 2 then there will be no idle time between x 1 and x 2 at the output of the switch port.

• if x 1 < x 2 then there will be idle time between x 1 and x 2 at the output of the switch port. This idle time is equal to x 2 -x 1 .

Proof: The proof is very simple and intuitive. AFDX switch works on store and forward mechanism and it's output link is a FIFO queue. A smaller packet is transmitted before the larger packet has fully been received which results in idle time between these packets as shown shown in figure 5.16. At the reception of frame x i+1 , the queuing delay in bytes for the first case with no idle time is given by: existing data in queue + received data size -the amount of data transmitted during this period. If s(x i ) denotes the size of packet x i , then we can say that:

For the second case with idle time of z bytes, the queuing delay in bytes at the reception of frame x i+1 is given by:

Consequently, comparing the both cases, we have:

Taking into account the fact that sequence of frames in both cases are identical after the frame

x i+1 , we can conclude that:

Thus, we can say that adding idle time in the sequence of received frames can never increase the queuing delay at a given output port.

An interesting result of this property is the fact that if no VL leaves the path of VL under study after joining it and packets are in order of decreasing packet sizes (otherwise it will cause an idle time on the output link according to Property 3) then this will be the only worst case scenario.

In an AFDX network, it is very rare that no VL leaves the path of VL under study. VLs join the VL under study, share part of the path and then leave. This implies that there are more than one cases for worst case end to end delay. We are interested in amount of data present in the queue at the instance when the packet under study arrives at this output port. If idle time appears closer to the packet under study, it will result in lesser delay and vice versa. Hence, earlier the idle time in a sequence, more chances of worse end to end delay. But for exact worst

Candidate scenario for worst case delays

Consider a sequence of frames in an input link of the switch as shown in figure 5.18(a). If in figure :

• x shares more nodes with the frame under study (v) than y, and

Then we will show that by changing the position of x with y as shown in figure 5.18(b), it can never result in smaller end to end delay for the frame under study. This will allow us to discard all the scenarios where above condition holds true. To prove above condition, we must consider two cases.

• Nodes (switch ports) where x and y are together, and

• the node where y leaves x.

Nodes where x and y are together In this case y > x, this implies no idle time in the output link, according to the Property 3 as shown in figure 5.18(b). No idle time also implies that on all such nodes the queuing delay will be worse or equal to original scenario of figure 5.18(a), according to the Property 4.

Nodes where y leaves x In this case y shares less nodes with frame under study than x.

When y leaves, there will be idle time in the output link, as shown in figure 5.18(d) but this idle time will be earlier as compared to the original scenario shown in figure 5.18(c). Hence the delay will be worse or equal to original scenario of figure 5.18(c), according to the Property 4.

This condition allows us to reduce number of scenarios which can be candidate for worst case end to end delay.

Algorithm to further reduce number of cases

In order to take advantage of the properties discussed earlier and to reduce the total number of scenarios candidate for the worst case end-to-end delay, we have developed an algorithm which generates a list of scenarios that can be a candidate for the worst case end-to-end delay and eliminates all those scenarios which can not be a candidate for the worst case end-to-end delay Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the Exact Worst-Case End to End delays by exploiting the condition expressed in section 5.5.3. The algorithm is shown in Algorithm 2.

The basic principal is to make list of scenarios which don't fulfill conditions expressed in section 5.5.3. We start with sorting of VLs according to the number of shared nodes with the frame of VL under study. Then we group these VLs into lists where each VL in a given list shares same number of nodes with VL under study. These lists are then sorted by decreasing packet size of the VLs. We start from the list which has least number of shared nodes, and take each VL from other lists, in sequence of increasing number of shared nodes. By comparing all the VL packet sizes we decide if a particular sequence will satisfy the condition presented in section 5.5.3 or not. We generate only sequences which don't satisfy the condition. As an example to illustrate the algorithm, let us consider 9 VLs named as v i where i = 1 . . . 9 and with packet sizes of 50,30,10,60,20,5,45,30,15 

We start with list L 0 as a partial sequence Sp 0 . Since there are three lists L 0 , L 1 and L 2 , therefore there will be two iterations of while loop in the algorithm 2 (after taking out L 0 as Sp 0 we are left with only L 1 and L 2 ). In first iteration we take L 1 . In L 1 we iterate over each VL starting from the last, and compare it with VLs of Sp 0 (which is same as L 0 ) also starting from last. So, VL v6 is compared with VL v3, and since size of v6 (5) is less than that of v3( 10), it can't be added to Sp 0 , same is true for VLs v2 and v1. So loop breaks by adding v6 to the end of Sp 0 , storing it in S ! and replacing S by S ! . For the next VL in L 1 , i.e v5, now we have Sp 0 as {v1, v2, v3, v6}. For this iteration, v5 is greater than v6 so its added to Sp 0 before v6 and stored as {v1, v2, v3, v5, v6} in S ! . For next VL v3 in Sp 0 , v5 is greater than v3 so its added to Sp 0 before v3 and stored as {v1, v2, v5, v3, v6} in S ! . For next VL v2 in Sp 0 , v5 is smaller than v2. So, loop breaks, we replace S by S ! . For the next VL in L 1 , i.e v4, now we have following two partial sequences in S: v2, v3, v5, v6} Sp 1 = {v1, v2, v5, v3, v6}
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Comparing VL v4 with VLs of Sp 0 we obtain following partial sequences which are added to S ! : v2, v3, v4, v5, v6}, {v1, v2, v4, v3, v5, v6}, {v1, v4, v2, v3, v5, v6}, {v4, v1, v2, v3, v5, v6}} Comparing VL v4 with VLs of Sp 1 we obtain following partial sequences which are added to {v1, v2, v4, v5, v3, v6}, {v1, v4, v2, v5, v3, v6}, {v4, v1, v2, v5, v3, v6} At this point we have iterated over all VLs of list L 1 and the set S contains 7 partial sequences,

i.e: v2, v3, v4, v5, v6}, {v1, v2, v4, v3, v5, v6}, {v1, v4, v2, v3, v5, v6}, {v4, v1, v2, v3, v5, v6}, {v1, v2, v4, v5, v3, v6}, {v1, v4, v2, v5, v3, v6}, {v4, v1, v2, v5, v3, v6}} The same procedure is repeated for VLs v7, v8 and v9 of L 2 and in the end S contains all the sequences which are candidate for worst case scenario. These sequences are then used to find worst case end-to-end delays. The reduction ratio is huge for these cases. The total number of cases are 9! = 362880 but with this algorithm we have 60 cases only. The complexity of this algorithm is O(n * n k ) in the worst case.

These algorithms and concepts have been implemented in the tool developed to calculate the end to end delays for AFDX network and will be used in case study presented in Chapter 

Add V i to Sp i and store it in S !

17:

else if all VLs (V sp i ) in Sp i has been checked then Considering this property, a timed automata modelling has been done. The method is able to analyze AFDX networks with up to 32 communicating flows, i.e. the virtual links in AFDX terminology, with support of periodic and sporadic data. Unfortunately, the method cannot handle an industrial AFDX network which is composed of more than 1000 VLs. The main reason is that the timed automata language is not well-adapted in managing large number of messages scheduled using FIFO queues and needs to be improved.

In the Model-Checking approach, we construct timed automata generating sequences of VLs which are candidate for worst-case scenario. The second contribution of this thesis is to automatically generate these sequences. The number of sequences is huge and we consider some properties of the AFDX to reduce this number. First, we define the Sequence Periodicity Property.

Sequence Periodicity Property. Since the sequences at the input port of the switches are periodic, it has been demonstrated that the sequences transmitted at the output port is periodic. The periodicity is equal to the hyper-period.

Considering this property, the sequence generation is considered only on two hyper-periods.

So, the number of generated sequences is finite. The Critical Instant Property can be applied on these sequences, drastically reducing the search-space in the approach. A system with at least hundred VLs can be analyzed with these two properties.

To further reduce the state-space, 2 other AFDX properties has been defined: Packet Ordering. If two packets with different amount of data arrive at the same instant in an output port of a switch, then the transmission of the packet with lesser data first, will induces an idle time between the packets. Otherwise, the transmission of the packet with the more amount of data first, induces no idle time.
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Idle Time Placement in input links. As data rate of the input links is the same as data rate of the output links, the amount of data which is received by a switch directly impacts the amount of data which is stored into the output port. An idle time in the input links will reduce this amount which has to be stored and then will reduce the waiting time of the packets.

The goal in finding worst-case scenario is to order packets avoiding idle time in the input port of the switches. Finally, a reduced set of sequences which are candidates to the worst-case scenarios can be obtained. This set is composed of sequences for which the packet under study potentially faces the worst-case waiting time in the output ports of the switches by considering the ordering of the packets and by considering the critical instant property.

Computing the worst-case end-to-end transmission delays consists in finding the sequence with the highest transmission delay. In other words:

To compute the exact worst-case end-to-end transmission delays:

• we construct a reduced set of sequences which are candidates for the worst-case scenario;

• we choose the sequence which has the highest transmission delay among above set of scenarios.

The method has been applied to an industrial scale AFDX network composed of about 1000

VLs sharing more than 6000 paths. To make the computation, a tool has been developed. We are able to analyze all the VLs of this industrial AFDX network but not all the paths. We can analyze more than 60% paths. The obtained results have been compared with those obtained by analytical methods such as Network Calculus and Trajectory Approach. The real pessimism of these methods can also be evaluated thanks to exact worst case delays calculated by using our approach.

Prospective

Improvement of the approach. The AFDX communication model is complex. The methods used to analyze it need to define properties to break this complexity. In this thesis, 4

properties have been defined. But, when the method is applied to an industrial scale AFDX architecture, computation time is high because the number of sequences are still huge and hence choices on the communications performance [START_REF] Nesrine | End to End delay analysis in an Integrated Modular Avionics architecture[END_REF]]. In the design of an IMA system, the problem is to allocate the partitions to the computation modules (spatial allocation) and to allocate the APEX communication channels to the various communications taking place between the tasks (temporal allocation). This integration has to guaranty that end to end communication delays are within allowed bounds. Using our models and methodology for the communication network, temporal allocation of IMA tasks can be integrated with spatial allocation algorithms and models. This can result in a tool that can be used to calculate the real end to end communication statistics for a modelled software and modelled physical architecture of an IMA system.

Appendix A The basic idea of model checking is to use algorithms, executed by computer tools, to verify the correctness of systems. The user inputs a description of a model of the system (the possible behavior) and a description of the requirements specification (the desirable behavior) and leaves the verification up to the machine. If an error is recognized the tool provides a counter-example showing under which circumstances the error can be generated. The algorithms for model checking are typically based on an exhaustive state space search of the model of the system: for each state of the model it is checked whether it behaves "correctly", that is, whether the state satisfies the desired property. The tools used for this purpose (model checkers) can be classified in different groups depending on the way they work, or depending on the type of systems they can analyze.

Model Checking Overview Contents

A.1 Classification

Depending upon the type of system under consideration, the model checking tools can be classified as follows, this classification is generic in nature and there are model checkers which can be used for more than one category:

Compar ison of some model checking tools Name Model Checking Equivalence checking GUI

A.2.2 List of Property Specification Languages

• AFMC: Alternation Free Modal mu-Calculus.

• CSL: Continuous Stochastic Logic, characterizes bisimulation of continuous-time Markov processes.

• CSRL: Continuous Stochastic Reward Logic; a logic to specify measures over CTMCs extended with a reward structure (so-called Markov reward models).

• CTL: Computation Tree Logic; a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized.

• GCTL: Generalized Computation Tree Logic, it's both state based and action based.

• LTL: Linear temporal logic; a modal temporal logic with modalities referring to time.

• Monitor automata: Not sure about.

• mCRL2 mu-calculus: Kozen's propositional modal mu-calculus (excluding atomic propositions), extended with: -data-depended processes -quantification over data types -multi actions -time -regular formulas.

• mu-calculus: temporal logics with a least fix-point operator µ.

• PCTL: Probabilistic CTL; an extension of CTL which allows for probabilistic quantification of described properties.

• PLTL: Probabilistic Linear Temporal Logic.

• PRCTL: Probabilistic Reward Computation Tree Logic; it extends PCTL with rewardbounded properties.

• TCTL: Timed Computation Tree Logic is simply timed variant of CTL and is used in TSMV model checker.

A.3 Relevance/Application to AFDX Network

As described in Chapter 1, AFDX network falls under the category of a real-time system. Based upon the algorithms and properties presented in this thesis, a software tool has been developed to compute exact worst case end to end communication delays of an AFDX network. The software is written in Java. Java was selected for its ability to be portable across multiple operating systems. The tool developed during this research work can be used as stand alone application on a single machine or as a distributed computation application running on multiple machines connected via network. There are two separate versions of the software which both have same algorithms for computations of end-to-end delays but differ in the way these calculations are managed: in one version computations runs on a single machine while in the other one computations are distributed across multiple machines. In this appendix, the software will be discussed in detail.

B.1 Software Architecture

The basic architecture of the software is shown in figure B.1. Parser is used to read the AFDX network configuration data and to initialize the internal constructs and variables. Network

Pruning block builds the essential part of the network that is directly and indirectly linked with the VL under study and removes the unconnected part of the whole network. This block is also The software uses Flow Based Programming [Morrison 2010] concepts to implement data flow approach where computations proceed as the data flow from one output port to another. For distributed computations, Java based library named Java Parallel Processing Framework(JPPF) is being used. The library can be found at http://www.jppf.org/

B.1.1 Parser

The input for this software is AFDX network configuration data. This data is in a specific format which is used by Airbus. In order to read this information encoded in specific format, a Parser is used in this software that takes a file as input and reads the configuration data in a B.1. Software Architecture 143 defined format from the input file. We are interested in following information from this file:

• Name of all the VLs

• Paths of each VL

• BAG value for each VL

• Maximum packet size for each VL Currently, there is no offset information for strictly periodic VLs in this configuration file.

The offset assignment for strictly periodic VLs can be added to configuration file very easily.

Presently, we assume no offsets for strictly periodic VLs but if required it can be assigned easily with a variable already defined in the data structure code of the parser. Parser will parse all above info from the configuration file and store it in the data structures for the use by rest of the software. The output of the parser consists of list of all paths of the AFDX network with associated data i.e VL name, BAG value, maximum packet size etc. for each path.

B.1.2 Network Pruning

After parsing the AFDX network configuration file, we have list of all the paths in the network.

At this stage, we need the reference path i.e. the path which is under study for end to end communication delays. This path can be defined in many ways: either directly taken from user input, or defined in code, or in an input file. Once we have the reference path, we need to find the portion of network which is relevant to path under study i.e. the part of network which is connected either directly or indirectly with the path under study. This is necessary in order to reduce the complexity involved in computations. We refer this step as Network Pruning.

After network pruning, the remaining part of the network contains only the VL paths which we consider in our algorithms.

From the list of remaining paths, after network pruning, we generate list of possible scenarios which can be candidate for worst case end to end delays. This list is generated on the fly, i.e we do not construct or store the whole list in memory but we do it one case at a time. This is achieved thanks to lists of packets in each end system which is arranged according to properties we have developed in Chapter 5. This is explained in section 5.5.4. 

B.1.3 Load Balancer

As mentioned earlier, this software has two versions: one which supports distributed computations and the one which runs on single machine only. The purpose of load balancer is to distributed overall computation load to available resources. For distributed version, free java library Java Parallel Processing Framework(JPPF) is being used to spread the computations over available nodes connected through a network. JPPF makes it easy to parallelize computationally intensive tasks and execute them on a grid. JPPF is based on client-server architecture.

A JPPF grid is made of three main components that communicate together:

• Clients are entry points to the grid and enable developers to submit work via the client APIs

• Servers are the components that receive work from the clients, dispatch it to the nodes, receive the results from the nodes, and send these results back to the clients • Take the total number of cases which are candidate for worst case scenario

• For each case, on data flow basis, submit the task of calculation of delay on a single port to the JPPF server. Once the results are obtained, submit the task of computation in the consequent port in the path of considered case till all the output ports have been computed.

• submit the results back to the client which gathers results.

• Once all cases have been computed, store/print the worst case and associated end to end communication delay.

Load balancing is handled by JPPF server. More details of how JPPF server handles and manages the load on a grid, please consult the online manual at http://www.jppf.org/ For stand alone version, we use number of threads equal to number of cores available on the machine, and compute one case in one thread till all the cases have been analyzed. gathering of results is similar to distributed version: we gather all the results and then store/print the worst case and associated end to end communication delay. In both versions, we can store the results of all cases but in order to save memory usage, we only store the result if its worse than existing result.

B.1.4 Compute Module

This is the module where each task is executed. In this module we compute the delay on a given output port and obtain the resulting sequences. Algorithm of section 5.2.1 is implemented in this module. In distributed version of the software, this piece of code is executed on the grid.

Input to this module is sequences at the given port and output from this module is the resulting delay at this port for the input sequences along with output sequence obtained after merging the input sequences, as shown in figure 5.3. We implement the merging of sequence by using

Array. Each row of the array represents a packet in the sequence. Columns of the array represent information about the packet. Packets of first sequence are stored in array as they appear in the sequence. For remaining sequences, we check if the packet to be added in the array overlaps with existing packet or not. In case it does not overlap with existing packet, then it is stored in Array at the current position. If packet overlaps with the existing packet in the array, we move the packets depending upon their time of arrival.

B.1.5 Control Logic

Control module handles the overall coordination among modules and user interactions. In distributed version, this module acts as client. This module gathers the results and saves final result on disk as well. Control module acts as a glue logic among other core modules. For example, Control module takes the input AFDX configuration file and passes over to Parser.

Then takes output from Parser and given it to Network Pruning module etc. In this module we also define the path under study. For analyzing the complete network of the case study in 6, we use a loop. In this loop: we define first path of the network as a reference path, then compute the worst case end to end communication delay for this reference path, change the reference path to the next path in the total paths of the network and repeat the loop till we have analyzed all the paths of the network. Dans un premier temps, la vérification de modèle a été explorée. Les automates temporisés et les outils de verification ayant fait leur preuve dans le domaine temps réel ont été utilisés.

Index

Ensuite, une technique de simulation exhaustive a été utilisée pour obtenir les délais de communication pire cas exacts.

Pour ce faire, des méthodes de réduction de séquences ont été définies et un outil a été développé.

Ces méthodes ont été appliquées à une configuration réelle du réseau AFDX, nous permettant ainsi de valider notre travail sur une configuration de taille industrielle du réseau AFDX telle que celle embarquée à bord des avions Airbus A380.
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