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Abstract

“Mixed Reality” (MR) can be used to describe Augmented Reality (AR) which primarily
focuses on achieving photo-realism when augmenting the real world with virtual content.
MR is applicable to a variety of immersive experiences, running the gamut from visual
entertainment to simulation-based training, and for previsualization tasks with a empha-
sis on design.The realistic visual integration of virtual elements in a scene requires an
accurate and up-to-date model of the real scene’s geometry and semantic contents. The
3D structure of the environment impacts rendering tasks such as occlusion detection and
physically-based lighting, but also influences the spatial layout of the virtual content and
its interactions with the real world. Given the hardware and power constraints of widely
available AR devices, it is impractical to perform an extensive geometry scan whenever
these devices are used in a known environment. Still, even in a dynamic scene, a lot
of structural information (e.g., solid walls) will remain constant over time and can be
stored between sessions, only needing local updates to accurately represent the scene’s
current state.

The aim of this doctoral study has been to provide the means to identify and correct
the areas of change through the detection of inconsistencies between a prior represen-
tation and an up-to-date view of the scene. In this thesis, we relate our contributions
towards achieving this goal. In particular, we present the completion of a lightweight
reprojection-based geometric change detection framework, as well as the elaboration of a
semantic scene model representing the properties of the scene relevant to the MR experi-
ence using a graph structure. Following this, a scene analysis and registration method is
implemented that showcases said graph model representation capabilities, and its perfor-
mance as the basis of a robust localisation framework. The maintenance of an accurate
geometric and semantic model of a real scene can ultimately be achieved with limited
AR devices using the graph structure to interpret preliminary change detection results
as changes in the scene’s objects’ properties.
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Résumé en français

Introduction

En 2016, le regain d’intérêt pour la Réalité Virtuelle (RV) suivant la sortie de l’Oculus
Rift et de l’HTC VIVE, a été partagé par la Réalité Augmentée (RA) pour ses capacités
d’immersion [40]. Répondant à cette demande, en 2017 Microsoft a sorti le visiocasque
Hololens et Apple a publié ARKit, un outil de développement permettant de produire des
applications de RA sur leurs appareils. Avec la sortie de ARCore pour Android l’année
suivante, une grande variété d’applications de RA grand public ont pu être développées.
L’essor du télétravail [156] a également renouvelé l’intérêt pour la RA en tant qu’outil de
collaboration et communication [142], étant intrinsèquement moins isolante que la RV.
La RA soulève néanmoins des questions concernant l’incrustation réaliste de contenu
virtuels dans une scène réelle [50].

Dans cette thèse, on utilisera le terme “Réalité Mixte” (RM) pour désigner les ap-
plications de RA cherchant à intégrer des éléments virtuels dans une scène réelle de
manière photoréaliste. Le photoréalisme a été cité comme facteur d’immersion, quand
les éléments virtuels se comportent également de manière réaliste [77]. En effet, la RM
a été utilisée dans des applications d’enseignement et de formation quand des situations
réelles sont difficilement procurables [147, 128], ou présentent des dangers ou enjeux trop
importants [178]. De manière plus générale, le photoréalisme peut être bénéfique dans
toutes les applications RA de prévisualisation ou simulation [1, 114, 66], ou quand il y
a des enjeux esthétiques [48, 35, 199].

Les premiers travaux en RM [94, 64] s’attelaient au problème de réduction du temps
de calcul pour accomplir trois tâches principales : l’estimation des paramètres de la
caméra, la reconstruction de la géométrie de la scène, et l’estimation de son illumina-
tion [94, 68]. Contrairement à la RV, où la scène est entièrement modélisée au sein
de l’application, une grande portion d’une scène de RA doit être reconstruite à partir
d’observations partielles du monde réel. La qualité de cette reconstruction impacte di-
rectement le photoréalisme de tâches comme la gestion d’occlusions [206], la profondeur
de champ [134], et l’éclairage simulé [107, 1]. Par ailleurs, la modélisation de la scène
devra également inclure des informations sémantiques pour garantir un réalisme “com-
portemental” [77], affectant par exemple le placement des objets virtuels [111], leur



8

comportement [32], ou la simulation des interactions physiques [24]. La création d’un tel
modèle en temps réel serait hors de la portée de la majorité des appareils de RA grand
public, et dans une scène dynamique, le temps requis à chaque session de RA pour la
scanner exhaustivement serait rédhibitoire.

Pour les applications de RM grand public, la solution est donc de conserver le modèle
de la scène entre chaque session afin de pouvoir démarrer l’expérience immédiatement.
Cependant, le modèle devra être régulièrement mis à jour afin de rester fidèle à la scène
réelle, et trois problèmes seront à résoudre :

� créer une représentation de la scène permettant d’obtenir le niveau de réalisme
souhaité;

� détecter les changements entre la scène actuelle et le modèle, à partir d’observations
partielles;

� modifier le modèle à partir des changements détectés en maintenant son degré de
fidélité.

Le but de cette étude doctorale est donc de trouver une représentation de scène utile et
maintenable pour la RM, et un processus à faible coût de calcul [174] pour détecter les
changements entre ladite représentation et des observations partielles de la scène réelle.

Il existe des travaux dont le but est de détecter des changements entre deux modèles
d’une même scène, et d’agir en conséquence. En général, la nature de ces modèles dépend
du domaine d’application de la méthode, car ce dernier impose des contraintes sur les
moyens et le délai acceptables pour les produire. Certaines méthodes en navigation
autonome [59, 145] et robotique [192, 149, 51, 4, 97, 197] comparent deux représentations
3D de l’environnement pour produire des résultats en 3D. Ces approches nécessitent
cependant des capteurs spécifiques (LiDAR, laser) ou une puissance de calcul importante
(algorithmes de shape-from-motion) pour fournir leurs résultats en temps réel, et sont
difficilement applicables à la RM grand public. D’autres domaines d’application évitent
ces coûts en utilisant des représentations 2D de la scène. En télédétection [38, 39, 67, 42,
30], des images aériennes sont utilisées et les résultats de la détection de changements sont
similairement donnés en 2D au pixel-près. Pour des images produites au sol, notamment
dans le domaine des villes intelligentes [71, 198], des approches ont recours aux réseaux de
neurones siamois pour être d’avantage robustes aux “pseudo-changements”, introduisant
ainsi la notion sémantique de pertinence des changements. La plupart des ces résultats
ne sont cependant pas exploitables en RM sans avoir recours à une conversion coûteuse
de la 2D à la 3D. Dans le contexte de la RM, où la quantité et qualité d’information
disponible en temps réel est inférieure à celle contenue dans le modèle de référence, on
peut utiliser des méthodes à données d’entrée hétérogènes [188, 151, 136]. Ces méthodes
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comparent des observations 2D à un modèle 3D afin d’obtenir directement des résultats
sur la géométrie de la scène à moindre coût en termes de matériel ou calcul.

Parmi les travaux de détection de changements avec données hétérogènes, les ap-
proches photo-géométriques, qui comparent des images actuelles à un maillage 3D de
référence, sont applicables au cas de la RM. Cependant, on remarque que ces méthodes,
notamment celle proposée dans [136], sont souvent biaisées vers la détection d’objets
apparaissant dans la scène, au détriments de ceux qui disparaissent. Notre première
contribution sera donc la généralisation de cette méthode [136] vers une détection plus
exhaustive des changements. Cette approche photo-géométrique est basée sur l’étude
des erreurs introduites lors de la reprojection des images à différents points de vue à
l’aide du maillage désuet. Les résultats 3D donnent une estimation de la forme et la
position des objets ayant été introduits ou retirés dans la scène. Sur la base de cette
première approche, on conclura que ce choix de représentation ne nous permettra pas
d’obtenir une expérience photoréaliste en RA, et que le processus de détection de change-
ments ne permet pas de la mettre à jour avec suffisamment de précision. Notre deuxième
contribution sera ainsi l’introduction d’un modèle construit par analyse sémantique de
la scène, fournissant une représentation segmentée par objets. On notera également
l’évolution des appareils de RA grand public, auxquels auront été ajoutés de nouveaux
capteurs 3D [205]. Enfin, notre troisième contribution sera un processus de génération
et exploitation de ce modèle, un “graphe de scène”, pour la tâche de localisation dans
une scène. Nous évaluerons si le graphe généré est fidèle à la sémantique de la scène
réelle, afin de montrer que cette qualité du modèle peut être améliorée sans compro-
mettre la précision de la localisation, ou sa robustesse aux changements dans des scènes
dynamiques.

Détection de changements photo-géométrique

La méthode décrite dans [136] a été développée pour le domaine de la robotique et
fonctionne en temps “interactif”. Elle fait l’hypothèse de capteurs limités pendant
l’observation de la scène : la détection de changements est faite entre un maillage 3D
non-texturé désuet, et 5 images à jour, localisées relativement au maillage. A l’aide de
cette localisation, on peut projeter les images d’un point de vue à un autre en utilisant
la géométrie du maillage. Cependant, si des changements ont eu lieu, la reprojection
aura des erreurs que l’on pourra détecter en comparant l’image projetée à une image de
référence pour le point du vue étudié. Cette approche n’est pas efficace pour la détection
des objets supprimés : ils sont présent dans le maillage mais pas dans les images, et
donc n’introduisent pas de nouvelles textures qui pourraient donner lieu à de fortes in-
cohérences photométriques. Notre contribution sera donc de permettre la détection des
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insertions et suppressions d’objets dans la scène, en améliorant tout d’abord l’algorithme
de reprojection.

La reprojection de la méthode de l’état de l’art était faite en transformation “directe”,
où chaque pixel de l’image à transformer était déplacé dans l’image finale. Cela résulte
en de nombreux pixels non coloriés dans l’image finale, qu’il faudrait interpoler : on
utilise donc une transformation “inverse”, où à chaque pixel de l’image finale est attribué
un pixel de l’image à transformer. Certaines régions de l’image transformée resteront
cependant non coloriées car elles correspondent à des régions 3D non visibles dans l’image
de départ (car obscurcies par des objets au premier plan, ou en dehors de l’image).
Déterminer si des régions sont visibles ou non se fait à l’aide d’un test de profondeur, et
on remarque qu’en inversant ce test on peut donner à ces pixels la couleur des objets qui
les masquent au premier plan. Cette reprojection alternative donne lieu à des images
qu’on nomme “ombres texturées”, et on remarque qu’en comparant ces ombres texturées
à l’image de référence pour un point de vue donné, les régions cohérentes (en couleurs)
correspondent aux régions des objets supprimés.

Pour un point de vue donné on peut donc produire une carte de détection de sup-
pressions 2D. On prend une des 5 images comme référence, et on projette les 4 autres
à ce point de vue (avec le test de profondeur inversé). Pour mesurer la cohérence, on
crée 4 “delta maps” qui donnent la distance euclidienne pixel par pixel entre la valeur
RGB dans la référence et celle dans une des 4 ombres texturées. Pour obtenir la position
réelle des changements en 2D, on projette les pixels de ces delta maps au “premier plan”,
d’après le maillage et la caméra du point du vue étudié. On fusionne ces 4 delta maps de
“premier plan” afin de réduire le bruit : on prend la valeur minimale de chaque pixel (les
pixels non coloriés ayant une valeur maximale). Pour obtenir les suppressions d’objets en
2D, on fait un seuillage par valeur de pixel de cette delta map fusionnée. Contrairement
à la méthode de [136], qui utilisait une valeur de seuil arbitraire, on effectue un seuillage
automatique comme décrit dans [214], le seuillage triangle.

Les pixels de la carte de suppression 2D sont groupés par régions par dilatation et
érosion des pixels de changements. Une fois qu’une carte des régions de changements est
générée pour les 5 points de vue, on peut obtenir les régions 3D en identifiant, à l’aide du
maillage, quelles régions 2D correspondent au même changement 3D dans la scène. Une
fois les régions identifiées, on crée des ellipsöıdes 3D décrivant la position et la taille des
suppressions d’objets dans la scène, en utilisant l’algorithme de triangulation de [136].

La méthode résultante peut être combinée avec l’approche de [136] avec un impact
négligeable sur le temps de calcul, car les ombres texturées peuvent être générées en
parallèle des images transformées de la méthode originale. On peut également améliorer
la précision de la détection d’insertions en filtrant les résultats 2D avec nos résultats de
détection de suppressions. Une implémentation de ce système complet a été réalisée sur
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GPU à l’aide de shaders, améliorant d’avantage la précision (la résolution des images
transformées) et la vitesse.

Afin d’évaluer la qualité de la détection de suppressions, on utilise les métriques 2D
proposées dans [136] : les ellipsöıdes sont projetés au point de vue de chaque image de la
scène, et on calcule les Intersection over Union (IoU) et True Positive Rate (TPR) des
régions de changements estimées avec celles de la vérité terrain. On modifie également
le dataset d’origine afin d’introduire des suppressions d’objet dans les scènes (des objets
sont rajoutés au maillage 3D), et on modifie des scènes d’un autre dataset : ScanNet [37].
Sur toutes ces scènes, notre méthode est capable de détecter des suppressions d’objets
avec plus de précision et sensibilité que la méthode d’origine (respectivement 36% et
70% de IoU et TPR contre 12% et 22%). On évalue également positivement la qualité
du choix de seuil automatique, à l’aide des courbes ROC (Receiver Operating Character-
istic), comme décrit dans [188]. Notre méthode photo-géométrique est donc supérieure
à l’état de l’art dans la majorité des cas, et est capable de différentier deux types de
changements. Cependant, elle ne permet pas encore la mise à jour du maillage.

Description sémantique d’une scène

Les résultats de détection de changements de l’approche photo-géométrique ne sont pas
suffisamment précis pour mettre à jour le maillage 3D de référence de la scène. Une
analyse sémantique de cette scène permettrait de segmenter son contenu par objet pour
améliorer l’approche. D’une part, les cartes de changements 2D pourraient être rendues
plus précises en utilisant des contours d’objet obtenus à partir d’une segmentation 2D
des images actuelles de la scène. D’autre part, un maillage 3D segmenté par objet
serait plus simple à mettre à jour, en particulier pour le cas de la suppression ou du
déplacement d’objets dans la scène. On note également que les résultats de l’analyse
sémantique seraient exploitables pour localiser les images par rapport au maillage.

Au delà de l’amélioration de l’approche photo-géométrique, un modèle sémantique de
la scène pourrait adresser le problème du réalisme comportemental des objets virtuels [77]
et leur attribuer des propriétés utiles en plus de leur géométrie (poids, matériaux, modèle
photométrique). Une détection de changements ne peut être exhaustive pour toutes
les applications de RM, et définir un “vocabulaire” pour la scène à l’aide de l’analyse
sémantique permet d’identifier quelles propriétés sont pertinentes.

Afin d’organiser l’information sémantique, on utilise un graphe de scène. Un
graphe de scène basique peut représenter les objets présents par ses sommets, et les
relations entre ces objets par ses arrêtes. La représentation est cependant flexible et
peut inclure des attributs et labels sur les sommets et arrêtes, ou avoir plusieurs couches
représentant différents niveaux d’abstraction (les sommets pouvant représenter d’autres
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propriétés de l’environnement). Selon le domaine d’application, ces graphes peuvent être
utilisés pour générer des scènes virtuelles (en rendu graphique [33, 75]), ou pour décrire
des scènes réelles (en robotique [100, 213]). En RA, ces deux cas d’usage sont pertinents,
et l’utilisation de deux graphes permet également de faciliter les interactions entre le réel
et le virtuel [163].

Avec les avancées dans le domaine de la RA suivant le développement de notre
première approche, on peut faire l’hypothèse que l’appareil de RA est capable de pro-
duire une carte de profondeur en plus de l’image RGB et de sa pose relative fournies par
la caméra, et il existe des approches en robotique exploitant ces données d’entrée. La
méthode décrite dans [100] génère des graphes (locaux) pour chaque image en entrée avec
Factorizable-Net [116], et les fusionne dans un graphe 3D (global) en cherchant des som-
mets similaires dans ces graphes 2D. Cette mesure de similarité repose majoritairement
sur le classe et la position absolue de l’objet représenté par le sommet, rendant son utili-
sation pour une relocalisation (ou détection de changements) entre différentes sessions de
RA difficile. Les méthodes de localisation par graphe utilisent souvent uniquement ses
attributs sémantiques et sa topologie pour comparer les sommets, cependant la topologie
des graphes générés par [100] n’est pas assez informative. En effet, les graphes générés
par Factorizable-Net [116] et d’autres méthodes 2D similaires se focalisent sur la descrip-
tion des actions dans la scène plutôt que sa structure, et les quelques arrêtes décrivant
la structure 2D ne sont pas utilisables dans le graphe 3D (“à gauche de”, “derrière”).
Enfin, la génération de graphes 2D est trop instable d’une image à l’autre, et donnerait
lieu à trop de faux positifs pour la détection de changements.

Suivant ces observations, on décide d’étudier les méthodes de génération de graphes
utilisées pour la tâche de localisation plutôt que celle de description de scène, afin de
favoriser la stabilité des graphes d’une session RA à la suivante. En conséquence, on
choisit une représentation de graphe simple : les sommets ont deux attributs, un label et
un vecteur 3D de position, et les arrêtes sont non-directionnelles et basées sur un seuil
de proximité entre les sommets. Pour notre application, les méthodes de localisation par
graphe devront pouvoir identifier les changements dans une scène, et pas seulement les
ignorer pour des besoins de stabilité, mais également produire des graphes suffisamment
fidèles à la scène pour être utiles en RM. On identifie 4 problèmes à résoudre pour
l’utilisation de graphes sémantiques en détection de changements pour la RM:

� détecter les changements entre deux graphes de scène complets;

� détecter les changements entre un graphe partiel et un graphe de référence complet;

� créer un graphe partiel à partir des observations à l’aide de la référence complète;

� mettre à jour la géométrie du modèle de scène à partir de changements sémantiques.
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Graphes pour l’alignement de modèles de scènes
sémantiquement denses

Afin de résoudre le premier des 4 problèmes énoncés précédemment, et tester le modèle
de scène choisi, on s’intéresse au problème de la localisation relative de deux vidéos par
graphe. Dans ce problème, la pose locale de la caméra est connue dans le référentiel d’une
vidéo donnée, mais la transformation 3D nécessaire pour passer du référentiel d’une vidéo
à celui d’une autre est inconnue. Pour le résoudre, chaque vidéo est convertie en graphe
de scène et les sommets (objets) similaires entre les deux graphes sont identifiés, et leur
position relative dans le référentiel de chaque vidéo est utilisé pour calculer la matrice
de transformation 3D.

La similarité entre deux sommets est quantitativement évaluée à l’aide de descrip-
teurs, qui encodent pour chaque sommet la classe de l’objet qu’il représente (le label),
ainsi que les classes des objets voisins d’après la topologie du graphe. Certains descrip-
teurs se limitent aux voisins directs [180], mais d’autres explorent la topologie locale
du graphe par parcours aléatoire [61, 124, 203] ou exhaustivement [72]. L’approche
exhaustive est cependant limitée par la taille du descripteur qui crôıt en ld avec l le
nombre de labels utilisés lors de l’analyse sémantique, et d la profondeur d’exploration
(d − 1 “pas” depuis le sommet d’origine). L’estimation de la transformation 3D est
généralement évaluée avec l’erreur de translation par rapport à la vérité terrain, mais il
existe des métriques plus informatives appliquées au problème d’alignement de nuages de
points, notamment la RMSD (Root-Mean-Square Deviation) [132] qui moyenne l’erreur
de position à chaque point du nuage.

Pour le cas des scènes en intérieur, qui sont sémantiquement riches et où l’erreur
de translation n’est pas suffisante, on va donc contribuer un nouveau descripteur de
sommet non-aléatoire dont la taille crôıt en l × d, ainsi qu’une métrique dérivée de la
RMSD sur nuages de points. Enfin, on propose un nouveau processus de génération de
graphes afin de produire des graphes de scènes exploitables au delà de la tâche de la
localisation, comme représentation fidèle de la scène. Notre système complet, similaire
à ceux décrits dans [72] et [61] a 3 parties : l’extraction de graphes à partir de vidéos, la
génération de descripteurs et l’isomorphisme de sous-graphes pour les graphes générés,
et enfin l’estimation de la transformation 3D basée sur les sommets sémantiquement
similaires.

Pour la génération de graphes, la vidéo en entrée est composée de cartes de seg-
mentation par objets issues d’une analyse sémantique préalable, ainsi que des cartes de
profondeur et poses de caméra (dans le référentiel de la vidéo) correspondantes. On peut
générer des points 3D correspondant aux objets visibles dans une image en calculant les
barycentres 2D des régions sémantiquement uniformes, et en extrapolant leurs positions
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3D dans la scène à partir de la carte de profondeur et de la caméra. D’une image à la
suivante, les mêmes objets restent souvent visibles, donc [72] ignore les nouveaux points
3D si ces derniers sont trop proches d’un point 3D précédemment observé avec le même
label, d’après un seuil de proximité. En conséquence, la première observation d’un ob-
jet donne sa position 3D (son attribut spatial dans le graphe de scène) et est souvent
approximative car généralement les objets sont d’abord partiellement visibles aux bords
de l’image, et de plus, les objets plus grands que le seuil de proximité sont fragmentés
en plusieurs sommets.

Notre approche alternative consiste à ne pas ignorer les nouveaux points 3D simi-
laires, mais à les regrouper sous un même “super-sommet”, dont l’attribut spatial est la
moyenne de ces points 3D. Par ailleurs, on peut alors utiliser tous ces points 3D pour le
test de proximité, et ainsi les grands objets ne sont plus fragmentés, et ont un attribut
spatial plus proche de leur véritable barycentre 3D. La génération du graphe se termine
avec l’ajout d’arêtes selon un autre seuil de proximité automatiquement calculé à partir
de la distance moyenne entre les sommets. Le graphe est donc représenté par une ma-
trice d’adjacence A binaire, symétrique et à diagonale nulle, et par un vecteur de labels,
respectivement de taille n× n et n, le nombre de sommets.

Pour l’alignement des deux graphes, les descripteurs sont générés à partir des puis-
sances Ak de la matrice d’adjacence, où Aki,j donne le nombre de chemins de longueur k
entre les sommets i et j du graphe. Pour chaque k < d, on va encoder l’histogramme des
labels des sommets atteignables depuis le sommet étudié dans un vecteur de longueur l.
On va également encoder le label du sommet en question avec un vecteur one-hot (de
taille l), qu’on peut concaténer avec les d− 1 histogrammes de voisinage, obtenant ainsi
un descripteur de taille d× l.

Les méthodes de parcours aléatoire [61] introduisent des règles d’exploration du
graphe pour favoriser l’encodage d’information pertinente dans les descripteurs : on
peut simuler ces règles en utilisant des variantes de la matrice d’adjacence. On crée
les matrices B(k) qui approximent une exploration du graphe avec la règle “on ne peut
pas passer deux fois par la même arrête”. On pondère également les contributions des
histogrammes de voisinage par l’inverse de la profondeur k qu’ils représentent, afin de
réduire les erreurs dues aux approximations des B(k) ou à l’homogénéisation des Ak pour
les grandes valeurs de k. Les calculs matriciels sont accélérés en utilisant des opérateurs
de logique booléenne, car les descripteurs ne sont pas affectés par le nombre de chemins
entre deux sommets, seulement par leur existence.

Lors de la recherche d’isomorphisme de sous-graphes, la similarité entre deux som-
mets est donnée par le produit scalaire de leurs descripteurs respectifs. Une fois les
sommets les plus similaires entre les deux graphes identifiés, on peut calculer la trans-
formation 3D entre les référentiels de leurs vidéos respectives par régression à partir
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des attributs spatiaux (les coordonnées 3D des objets). Les couples de sommets dont
les coordonnées sont des données aberrantes pendant la régression (erreurs d’extraction,
changements dans la scène) peuvent être filtrés par algorithme de RANSAC [12] pour
améliorer la localisation. Cependant, n’ayant pas de vérité terrain pour l’isomorphisme
de sous-graphes, on rend cette option optionnelle afin de mieux évaluer la performance
des descripteurs à partir de la vérité terrain de localisation.

L’erreur de localisation est calculée à partir d’une intégration formelle de la RMSD
sur le volume de la scène, plutôt d’une sommation des erreurs sur les points du maillage
ou nuage qui la représenterait. Une telle méthode est décrite dans [90] pour l’alignement
de cerveaux représentés par des sphères, prenant ainsi en compte les possibles erreurs
de translation et rotation. Nous adaptons cette méthode pour l’appliquer à la localisa-
tion dans des scènes en intérieur, qui sont alors modélisées par des parallélépipèdes à
3 dimensions. L’erreur correspond à l’intégrale sur ce volume de l’écart entre un point
transformé par notre estimation et le même point transformé par la vérité terrain : elle
est donc indépendante du contenu de la scène mais dépend de ses proportions.

On évalue notre méthode de localisation sur deux datasets de scènes en intérieur :
ScanNet [37] et ChangeSim [139], contenant respectivement des scènes réelles et des
scènes d’entrepôts virtuelles. Pour ScanNet [37], on calcule la vérité terrain d’alignement,
et on utilise la vérité terrain de segmentation par instance d’objet pour comparer la
fidélité des graphes de sommets de [72] et de nos super-sommets à la scène réelle. Pour
ChangeSim [139], on calcule les trajectoires de caméra, et on teste la robustesse de
notre système à la présence de changements dans la scène. La qualité des graphes est
quantitativement évaluée avec le ARI (Adjusted Rand Index), et l’utilisation de nos
super-sommets produit des graphes plus fidèles à la réalité (0.705 de ARI contre 0.599
pour [72], 1 indiquant une corrélation maximale et 0 aucune corrélation). Pour la tâche
de localisation, nos nouveaux descripteurs donnent de meilleurs résultats que ceux de [72]
sur les deux datasets, pour des temps de génération et comparaison (et taille en mémoire)
bien inférieurs. On note enfin que l’utilisation de super-sommets ne dégrade pas la
performance de localisation, et ces derniers pourront donc servir pour cette tâche aussi
bien que pour d’autres propres à la RM.

Conclusion et perspectives

Dans cette thèse, nous avons présenté de nouvelles méthodes pour s’atteler au problème
de la détection de changements pour les applications de Réalité Mixte. Ces travaux ont
été menés afin de fournir un processus de maintenance du modèle d’un environnement
réel, qui contiendrait les informations nécessaires à l’atteinte du niveau de réalisme
souhaité pour des applications de RM.
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Dans une première partie, nous avons souligné les différences entre les données requi-
ses par les applications de RM, et celles qui peuvent être acquises à l’aide d’un appareil
de RA, en implémentant une méthode de détection de changements qui compare deux
états d’une même scène représentés par ces données hétérogènes. Nous avons représenté
l’état “passé” de la scène par un maillage 3D non-texturé (requis pour un rendu photo-
réaliste mais difficile à scanner avec un appareil de RA) et l’état “présent” par une
série d’images (nécessitant un simple caméra). Dans ce contexte, la représentation 3D
peut être mise à jour en détectant uniquement la géométrie qui aurait été ajoutée ou
supprimée entre les deux états. Nous avons utilisé notre propre approche basée sur la
reprojection d’images, qui corrige le penchant [151] des méthodes similaires [136, 188]
pour la détection de l’ajout de géométrie, au détriment de la suppression.

A la fin des ces travaux sur la comparaison du maillage 3D à une série d’images, nous
avons noté que notre analyse photo-géométrique ne pourrait pas fournir des résultats
suffisamment précis pour mettre à jour la géométrie du modèle de scène. Nous avons
donc conclu dans une deuxième partie qu’une connaissance du contenu sémantique de
la scène, et une segmentation 3D et 2D (par objet) des données du modèle associé, nous
permettraient de maintenir la fidélité de ce modèle vis-à-vis de l’environnement réel
après sa mise à jour. Nous avons choisi de représenter la scène par un graph sémantique,
où les sommets représentent des objets et les arrêtes les relations (spatiales) entre ces
objets. Ce graphe de scène est mis à jour par une analyse sémantique de la scène,
qui nous permet de définir quels changements sont “pertinents” (ceux qui affecteraient
l’expérience de RM) et d’améliorer le réalisme comportemental des objets virtuels.

Enfin, nous avons introduit dans une troisième partie, une méthode pour aligner
ces graphes sémantiques par l’identification de sommets similaires. En partant du
principe que les appareils de RA modernes seraient maintenant équipés d’un LiDAR
ou de caméras stéréoscopiques (contrairement à la première partie) nous avons présenté
une nouvelle méthode de génération de graphes à partir de séries d’images RGB-D. Dans
la même partie, nous avons également introduit un nouveau descripteur de sommet qui
permet de mesurer la similarité entre les objets (sommets des graphes de scène) extraits
de deux différentes séries RGB-D. A l’aide des méthodes proposées, deux modèles d’une
scène peuvent être comparés et alignés par comparaison sémantique de leurs graphes, et
du contenu virtuel persistant peut être réintégré à la scène à chaque session de RA.

En conclusion, à l’aide des nouvelles hypothèses introduites dans la deuxième partie,
l’approche photo-géométrique de la première partie de détection de changements pour-
rait être utilisée sur un maillage segmenté par objet, ouvrant une opportunité pour sa
maintenance sans perdre en fidélité. De plus, avec la présence de ces objets sous forme
de sommets dans le graphe de scène, la localisation des images à jour, nécessaire pour
le bon fonctionnement de l’approche photo-géométrique, pourrait être prise en charge
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par le système de localisation de la troisième partie. En cas de changements dans la
scène, les objets retirés peuvent être simplement supprimés d’un maillage de scène seg-
menté, et les objets qui se déplacent dans la scène peuvent être similairement déplacés
dans le maillage. Si l’appareil de RA est capable d’obtenir des images RGB-D pour la
génération de graphe (comme dans la troisième partie), nous avons également accès à
des informations géométriques 3D pour mettre à jour le maillage en cas d’ajout d’objet.
En principe, une fois le problème de la détection de changements sémantiques dans la
scène résolu, un modèle de scène segmenté pourrait être entièrement mis à jour pour des
applications de RM dans des scènes changeantes.

Ce problème de la détection de changements sémantiques a été partiellement adressé
par notre système d’alignement de graphes. En effet, l’approche décrite dans la troisième
partie nous permet de comparer et coupler les sommets de deux graphes de scène, en
mesurant leur similarité à l’aide des descripteurs. Pour obtenir une véritable détection de
changements, le système d’alignement devra être capable d’identifier les sommets rendu
“uniques” (qui n’ont pas d’équivalent dans l’autre graphe) par des changements dans la
topologie du graphe de scène. La qualité d’un tel système devra être évaluée à l’aide
d’une vérité terrain d’isomorphisme de graphe plutôt que d’alignement de scène. Par
la suite, pour vérifier sa viabilité dans le contexte de la RA, le système de localisation
devra être capable de fonctionner avec une vue limitée de la scène actuelle (à comparer
à une référence globale). Cette perspective peut être simulée si les séries d’images RGB-
D utilisées dans la troisième partie sont tronquées, ne montrant ainsi que la portion
de l’environnement visible pendant une courte période. Cette hétérogénéité entre les
observations et la référence conduira à un gain d’importance de cette dernière lors de
l’analyse sémantique et géométrique de la scène, afin de définir les régions d’intérêt
pour la détection de changements, basées sur les données contenues dans le modèle.
Enfin, si on peut faire l’hypothèse que le modèle initial de la scène est “parfait” dans sa
représentation des données requises pour la RM (le maillage, la topologie du graphe, les
attributs des sommets...), un ultime problème serait de le garantir après plusieurs mises
à jour successives. Les méthodes de détection de changements et le modèle de scène
devront donc être choisis pour préserver la qualité de ce dernier sur plusieurs itérations,
ou être capables de comparer deux états de la scène sur une plus longue période si le
modèle d’origine (parfait) est toujours utilisé comme référence.

Une fois ces défis relevés, il sera possible d’envisager différentes extensions pour le
modèle de scène, afin d’améliorer les interactions entre les éléments virtuels et réels, ainsi
qu’avec l’utilisateur final. Notre modèle de scène ayant été inspiré par des avancements
dans le domaine de la robotique, il pourrait également y être utilisé comme medium de
traduction homme-machine pour la perception de l’environnement. Plus généralement,
ce modèle est un outil pour communiquer l’information concernant une scène, et malgré



18

le volume important des données 2D et 3D, le contenu sémantique et son organisa-
tion sont représentés efficacement par un graphe. En outre, un modèle prévu pour
surveiller les changements dans une scène peut s’avérer efficace pour transmettre des
instruction pour la modifier (i.e. prescrire des changements plutôt que les décrire). Avec
une compréhension exhaustive de la scène au niveau sémantique, une grande partie des
changements géométriques et sémantiques nécessaires à la description de ses portions
dynamiques peut être résumée en une liste de changements sémantiques.
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Chapter 1

Introduction

After the resurgence of public interest in Virtual Reality (VR) following the 2016 launches
of the Oculus Rift and HTC VIVE devices, the field of Augmented Reality (AR) also
saw an attention gain despite earlier commercial failures [13] for its own immersive ca-
pabilities [40]. This eventually resulted in the 2017 release of Microsoft’s head-mounted
display (HMD), the HoloLens, and Apple’s ARKit development toolkit for their existing
hand-held products –and its Android counterpart ARCore the following year– leading
to the development of AR applications with broad appeal. The increase in remote work
in the last few years [156] has also renewed interest in AR as a collaboration and com-
munication tool [142] with its innate feature of letting reality through, distinguishing it
from the more isolating VR experience. One of the concerns for AR applications is the
seamless integration of virtual content into a real scene, such as realistically behaving
user avatars [50].

In this thesis, we will use the term “Mixed Reality” (MR). Among its many defini-
tions [177], we will consider MR as a branch of AR with a focus on immersivity through
the blending of real and virtual elements in a photo-realistic manner. Photo-realism has
been claimed to engage AR users by giving them a sense of “being there” as opposed to
more stylized representations [77]. Nevertheless the immersion is more easily broken as
realistic behaviour is also expected [77]. However, when both visual and behavioural re-
alism are achieved, so-called Mixed Reality becomes a powerful and versatile tool. It has
notably given birth to applications such as teaching in fields where real world experiences
cannot be conveniently provided, such as in the study of far-away or otherwise unreach-
able spaces [147, 128], or in dangerous and high-stakes occupations. In medical training
for instance, where there was once a need for dedicated tools for either realistic visualiza-
tion or accurate mechanical simulation because of technological limitations, it has long
been possible to merge the two tasks into a more encompassing teaching medium [178].
More generally, photo-realism can be desirable in any AR application [1] involving pre-
visualization and layout planning such as machining [114] and construction [66]. It is
also relevant when there are aesthetic concerns e.g., in visual effect production [48], for
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interior design [35] or to showcase products in retail experiences [199]. The work in this
thesis is motivated by MR uses in both outdoor urban environments, such as for the
study of cultural heritage and architecture [80], and in indoor scenes, such as for remote
collaboration [127].

In early works [94, 64], photo-realism in AR was framed as a problem of balanc-
ing rendering time and accurately performing three main tasks: geometric registration
(estimating the camera’s parameters), geometric reconstruction (estimating the scene
geometry), and photometric registration [94, 68] (estimating the scene illumination). In-
deed, compared to a VR experience where every asset is designed by or known to the
author and goes through the same rendering pipeline, parts of the AR experience belong
to the physical world and their unknown properties must be inferred through partial
observations (see Figure 1.1). Specifically, when AR users are free to move within the
environment, rendering effects such as occlusion handling [206] and depth of field [134]
are more realistically achieved with knowledge of the 3D geometry of the space, as well as
the light sources and surface materials within it [107, 1]. The results were then evaluated
on an image-basis [64], not accounting for some of the perceptual issues inherent to AR
like virtual object presence and depth perception [104]. These works would also leave the
task of geometry reconstruction to the user [65], allowing them to use the AR display
as a 2D window for the insertion and manipulation of geometric primitives –roughly
representing the objects in the scene– in order to build a so-called “scene-graph” and
calibrate the camera for the geometric registration.

With more standardized hardware and extensive methods to achieve unassisted ge-
ometric registration [34, 200], the focus of research in MR rendering shifted towards
illumination simulation [107] through analysis and modelling of the environment. These
processes were increasingly complexified, starting with representing real objects with
rough “phantom” models to accurately cast virtual shadows [78, 141], then expand-
ing the scene representation to include sky boxes and virtual light sources [141], and
eventually attempting to discard physical probes –such as reflective balls and fiducial
markers [94, 93]– by relying on real-time observations [68, 146, 89].

For the virtual elements’ behaviour to match their visual counterparts in terms of
realism [77] (e.g., object placement [111], agent interactions [32], physics simulation [24]),
the scene representation should include semantic information, requiring a low or high-
level interpretation of its contents. While such a “thorough” representation of the scene
can be hand-crafted in static scenes and controlled environments [112, 107], dynamic
environments would require real-time exhaustive 2D and 3D structure scanning and
processing of the raw observations to produce it. This can be performed using additional
sensors, such as time-of-flight or laser scanners [112, 107], or RGB-D cameras [68], which
might be absent or too rudimentary in a widespread (hand-held) consumer-level AR
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Figure 1.1: Differences in knowledge between VR and AR experiences.
Cameras are represented as triangles, scene geometry as rectangles and
light sources as circles. In the AR scene, the camera pose needs to be
known relative to the real (red) and virtual (green) scenes. Real scene

assets also need to be simulated (dashed shapes).

setup. Alternatively, vision-based methods (such as structure from motion [184]) can be
used by exploiting simple RGB images [133], but are computationally expensive and do
not account for the difficulties of recovering geometry in areas not visible from the point
of view of the AR device [64]. Indeed, [157] resorts to using multiple external cameras
and a personal computer to perform the computations then transmitted to the device, to
answer for its lack of power. Finally, the OpenRooms framework was introduced in [118]
to provide the means to generate a photo-realistic indoor scene dataset, with the aim
to train machine learning models to perform inverse rendering and scene understanding
for robotics and MR. However the synthetic scenes it can produce have yet to be used
in that latter field.

Were these technologies to become more accessible in the future, the time taken to
thoroughly examine the scene would still be prohibitively long for most applications,
if performed at each immersive session or for every change in very dynamic scenes.
Consequently, a representation of the scene needs to be preserved between each session
for the MR experience to be able to (re-)start immediately. While this strategy assumes
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that the representation is sufficiently consistent with the current scene’s state to simulate
the effects of what is out of view [64], it will eventually require updating (as in Figure 1.2).
The problem of providing an up-to-date representation of the environment to be used in
MR applications can thus be broken down into three main issues:

� designing said representation to contain sufficient data about the scene to achieve
the desired level of realism from its exploitation;

� detecting the relevant differences between the current and previous scene states
from limited current observations and a more exhaustive but outdated representa-
tion;

� modifying the representation based on the detected changes to maintain its original
level of fidelity to the scene.

There is a need for a representation of the scene prior –the reference state of the scene–
that facilitates its own maintenance and use in an MR context. In this doctoral study,
the goal is to find such a representation and design a process to detect changes between
the prior and the real scene, to then update said prior with only a partial perception of
the current state at low computational cost [174].

There are existing works that deal with the detection of changes between a prior
representation of a scene and a current one, whose results can be used to act on those
inconsistencies. Some works which apply to surveillance or monitoring tasks [191], only
deal with anomaly detection. Alternatively, other works are geared towards making
regular updates to the scene representation, but separate the tasks of Change Detection
(CD) and scene model maintenance [189]. In this case, the maintenance step is performed
by re-examining the areas of change with specialized equipment, while the detection step
can be accomplished with a simpler device. In general, the types of representation that
are used for the prior and current scene states depend on the target application field, as
the application imposes constraints on the means and acceptable time required to build
them. For the purposes of MR, changes must be detected using the limited data available
at runtime: the current scene’s state is only partially observable, and the “quality” of
its representation is poorer than that of the prior. Said quality can be defined as the
quantity of raw data that can be captured and its reliability, and is governed by the AR
device’s sensors and processing power.

The rest of this thesis will be organised as follows. Chapter 2 will be dedicated to
the exploration of the most relevant CD methods as they relate to MR, as well as fields
where CD is a central issue. To that purpose the chapter will be divided by the types
of representation (3D geometry, 2D geometry, semantics, etc.) used to compare the
reference and current scene states.
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Geometric CD Correct occlusions

Incorrect occlusionsInput: live RGB + outdated mesh

Figure 1.2: Geometric Change Detection for MR. Using an outdated 3D
representation of the scene (top-center) causes an unrealistic integration
of virtual elements (top-right) into the current scene view (top-left). De-
tecting changes between the past and current scene states (bottom-center)

can allow us to correct this (bottom-right).

Some of the mentioned prior works deal with CD using heterogeneous representa-
tions [136] (e.g., a 3D mesh prior against an up-to-date image sequence), and while the
detected changes cannot be directly used to update the prior, the underlying speed and
hardware constraints imposed on the method are close to our MR use-case. For this
reason, this photo-geometric approach [136] will be expanded into a more complete CD
framework, described in Chapter 3. The new method will resolve some of the limitations
of the previous works in terms of types of changes detected –namely object removal–
while testing its efficiency in the field of AR in changing environments. The core concept
of the photo-geometric CD is the reprojection of up-to-date images (observations) aided
by an outdated untextured 3D mesh (prior representation) into different points of view,
and the evaluation of photometric inconsistencies in the resulting images introduced by
the changes in scene geometry between the observations and the prior. The results will
be quantitatively evaluated thanks to the pixel-wise ground truth introduced through
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the simulation of changes in an existing real indoor scene dataset.
From these results, it will be determined that this preliminary choice of scene rep-

resentation is not able to yield photo-realistic results in all cases, and more importantly
is impractical to update using the detectable changes. Therefore in Chapter 4, we will
investigate alternative representations that are better suited to our needs, by observ-
ing that semantic analysis allows for a more practical object-level understanding of the
scene, and that mainstream AR devices have been equipped with hardware such as
LiDAR sensors [205] since the beginning of this thesis.

Chapter 5 will be dedicated to the process of generating the semantic scene graph
and its application to geometric registration. We will evaluate the fidelity of graph scene
models to the real environment, and show that it can be improved without compromising
the registration accuracy, or its robustness to changes in non-static scenes.

Finally, we will present our conclusions in Chapter 6, and show how geometric and
semantic CD can allow us to maintain a scene model for MR applications using our
contributions:

� a complete geometric CD framework –for insertion and removal of geometry– that
operates at interactive time with minimum hardware requirements,

� a semantic scene graph model tailored to the CD task in an AR setting emanating
from a survey of such representations in other fields,

� a scene graph generation and registration framework that produces a multi-purpose
graph representation without compromising the precision of scene alignment.

We will also describe the future works that can be built upon the results presented in
this thesis.
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Chapter 2

Related work

As mentioned in the previous chapter, the main challenges of MR are:

� geometric registration: aligning the virtual and real contents of the scene,

� geometric reconstruction: understanding the real scene’s geometry,

� photometric registration: detecting and modelling the light sources in the real
scene.

The task of Change Detection has been used as a proxy to tackle similar challenges in
many different fields: previous results can be updated rather than reproduced. However,
outside of the context of MR, CD can refer to a variety of processes, involving the
comparison of different types of input data and detection results tailored to specific
applications.

For instance, in medical analysis or manufacturing monitoring, CD can be synony-
mous with anomaly detection between two images, and the expected result can be a
caption –verbal description– of the changes [120]. Furthermore, in applications such
as land surface remote sensing, where the changing nature and borders of terrains are
extensively studied [99, 30, 22, 42], in order to apply CD to scene analysis, the changes
are expected to convey precise geometric information (e.g., a pixel map aligned with the
input aerial images). Indeed, these works often deal with aligned image pairs, as the
conditions of observation can be reproduced over time.

In contrast, the most susceptible fields to address the challenges of MR are those of
ground-based applications, as 3D geometry and semantic analysis become more relevant
when scanning [151] –or rendering– is performed from the ground: the perspective most
AR users are expected to have. There are numerous works dealing with CD as it applies
to smart cities [198, 109, 197, 151], autonomous vehicles [3, 59, 145] and human-robot
collaboration in a shared space [125, 149, 51, 4], as it makes localisation more robust and
improves adaptability and interactivity. The following tables showcase the various input
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data types used that are compared by the CD algorithms of each previously mentioned
fields (Table 2.1), as well as the nature of the CD results (Table 2.2).

Table 2.1: Common types of input data for CD algorithms

Field Input data

Medical, disaster images [120, 138, 95]
Remote sensing images [67, 38, 39, 42, 30]
Smart cities images [198], point clouds [109, 197], both [151]
Autonomous vehicles images [3, 16], point clouds [59], both [151, 145, 188]
Robotics 3D map and RGB-D images [4, 51, 149, 97]

Table 2.2: Common natures of results of CD algorithms

Field Results

Medical, disaster caption [120, 138, 95]
Remote sensing pixel map [67, 38, 39, 42, 30]
Smart cities pixel map [198, 151], objects [109], vertices [197]
Autonomous vehicles pixel map [3, 16, 151, 145], vertices [59], voxels [188]
Robotics 3D objects [4, 51, 149, 97]

Of note, these works assume semi-static input scenes, as opposed to dynamic ones.
This means that detectable changes only occur between observations [192], and CD is
performed between two static states: a prior –or “reference”– and a current –or “query”–
state. Depending on the type of scenes, we have identified three prevailing combina-
tions of input data used for semi-static CD: homogeneous 3D representations for both
states, homogeneous 2D representations, or heterogeneous representations between the
two states. The following sections will give an overview of existing CD methods grouped
according to those input data types, and assert their applicability to MR applications.

2.1 Change detection with 3D data

In the fields of self-driving vehicles [59, 145] or robotics [192, 149, 51, 4, 97, 197], CD
is often performed directly between 3D representations of the environment in order to
directly obtain 3D results. This is achieved by equipping the autonomous device with
laser or LiDAR sensors or RGB-D cameras, and CD is usually used to maintain an
accurate or otherwise “useful” map of the environment. More generally, many such
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methods use point clouds [59, 4] or voxel grids [51] to compare observations of the
environment in different states –with short [145], long [4] or indeterminate [167] elapsed
time between them. When the observations are global (i.e., not partial) the data may
still require alignment, which is achievable through gravitational registration [197]. If the
data are point clouds, temporal changes can be detected using a displacement threshold
on the points’ coordinates [197]. While this approach gives an exact localisation of
the changes –the displaced points– it requires an exact matching of all points between
the compared point clouds, and therefore processing of the input 3D data if it is not
synthetic. Assuming that the observations are already aligned, other works use Growing
Least Square reconstruction [137] on the clouds which do not necessarily share the same
exact points due to the random nature of laser scanning. A segmentation of the scene
into “objects” is performed and then compared at different times, but the method is
not meant to run in real time –despite speed improvements using downsampling– and
requires noiseless and global clouds.

However, in the aforementioned fields, the more recent models of the scene are ex-
pected to be partial due to the limited field-of-view of the observation device. The
registration of the data is done through localisation of the observer, using for instance
SLAM [51], pose graphs [149] or normal distribution transforms on a voxelized map of
the scene [97]. For example, by converting the input data to said 3D grid representation,
[97] is able to quickly perform CD and robust localisation by comparing the occupation of
the voxels in the prior and current states. In the work, this allows the robot to compare
a dense point cloud to up-to-date 3D range data from an onboard Kinect camera, but
despite good performance on localisation, changes of small size will be undetected if the
voxels are oversized due to speed requirements. For a more granular representation of
the scene, a Truncated Signed Distance Function is often used [149, 51, 4] and offers more
precise CD results than the simple occupation of the grid’s voxels. The CD results are
further improved and filtered in [149] by clustering semantically consistent 3D input data
into “objects”, providing the robot with an up-to-date and segmented representation of
its working environment to accurately navigate and perform tasks. When scanning the
scene, said objects are stored in a library, which allows them to be recognized when
they are encountered at a later time (using iterative closest point). This tracking of the
movements of unique objects greatly improves the precision of the updated 3D map,
but comes at a great computational cost as the number of objects increases. In earlier
works [51, 4], the application of CD to map reconstruction differs slightly as it serves
to filter out dynamic objects and obtain a “static map” of the scene. As a result, their
methods are less computationally intensive than that of [149], but much less versatile or
robust to dynamism in the scene, and produce more reconstruction artefacts.

Expanding the scope of this section to works dealing with “dynamic” scenes, we can
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also find relevant methods which still compare successive 3D scene observations, albeit
on a shorter time scale. In [167], different point clouds are turned into voxel grids, and
the identification of “see-through” voxels provides the localisation of dynamic points.
In this context, see-through voxels contain points at a given time but do not prevent
the device from capturing points located behind them at a different time, inducing the
removal of their content. The authors also introduce the notion of “point shadow” that
represents the ability of a 3D point to occlude parts of a scene from a given point of view.
This multi-angle approach is however very costly in terms of memory, as it requires the
storage of multiple points clouds at different known vantage points, since merging them
into a single 3D map before CD would not allow to method to check for see-through
voxels. The method described in [145] detects dynamic objects in a point cloud as well,
but also takes advantage of an RGB camera and real-time depth information to track
patches of similar color in RGB or similar depth in a depth map. Although this makes
the method perform in real time, the work does not focus on comparison to a prior map,
and is not directly usable as a map reconstruction or maintenance framework.

Finally, machine learning tools have more recently been introduced to process 3D
data, such as PointNet [21] and its variants [5, 115] and RPM-Net [212]. Convolution
networks have therefore been used for CD with point clouds [109], taking into account
the color and geometry of the compared object pairs in the environment. However these
methods remain demanding computationally and hardware-wise. While some of these
issues are addressed in [122], where the current 3D observations are derived from stereo-
vision over several frames, there exist more lightweight representations and methods for
CD. Indeed, if 3D geometric information is very relevant to MR applications –for photo-
realism concerns– its scanning and manipulation comes at too great a computational
cost in most situations. Moreover, these works are not themselves focused on producing
a realistic model of the scene, and therefore rarely deal with the textures of the scene,
or its light sources.

2.2 Change detection with 2D data

Avoiding the need for specialized 3D capture equipment, many CD techniques rely on the
comparison of two pictures, particularly in the remote sensing field [38, 39, 67, 42, 30].
Many modern 2D methods are based on the use of Siamese Neural Networks, which can
provide pixel-wise CD results. In [38], such networks are employed to compare two co-
registered RGB or multi-spectral aerial images. More recent work focuses on developing
robustness to pseudo changes [22]. This notion is significant for the street-level applica-
tions in the smart city field [71, 198], where images are less “flat”: neighbouring pixels
can represent 3D regions separated by large distances. In this situation, even slight
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lighting or viewpoint changes are likely to introduce noticeable –yet likely irrelevant–
changes. Other works build on the foundation of Siamese networks to generalize the
CD process, such as in [71], where picture registration is not mandatory, and in [198],
where object segmentation is performed, making the approach more robust to changes
in weather or scene illumination. The method from [71] is also mostly robust to large
viewpoint changes, being able to differentiate noise from meaningful changes. It is how-
ever not due to a 3D understanding of the images’ contents but rather a robustness
inherent to the large receptive field of its Convolutional Neural Network, and the focus
on semantic analysis during training.

Efforts have also been made to further describe the nature of the changes themselves
–rather than the objects affected. For instance, in [16] the notion of “directional change”
is introduced, which describes whether the change is detected due to the removal, the
insertion or the exchange of pixels belonging to foreground objects. This is indeed more
challenging using 2D data, since voxel grids or point clouds already represent geome-
try, and insertion and removals can be inherently inferred after CD. Moreover, several
semantic-based 2D methods have been developed, which focus on the nature of the el-
ements of a scene, for satellite [30, 39, 67] or ground-level images [165]. This approach
is also put to use for unsupervised training [42], where such pictures are artificially
altered with patches of different nature. The nature of change is further explored in
change captioning methods, and more generally approaches used for captioning pairs of
images. In [95], the nature of the semantically identified objects informs the nature of
the change, whereas in [138] both are independently identified. Still, the works based on
semantic understanding from learning are most effective on the data they were trained
on. For this reason, they cannot directly be used to thoroughly detect all the changes
that would impact the scene geometry, as those could arise from objects unrecognizable
to the networks.

In all of these works, inferring 3D CD results from the 2D images remains a challenge,
yet can be necessary to correctly understand the scene. Indeed, to improve the captioning
of 3D relationship change (and camera-robustness), [120] introduces scene graphs to
represent the scene composition, as concept that will be furthered explored in Chapter 4.
Finally, despite providing CD results in the shape of a 2D pixel map, [3] infers sparse 3D
representations from the prior and current image sequences it compares, and uses said
3D models to reproject the 2D images to better align them prior to comparison. If the
prior was assumed to be a 3D representation, this reprojection approach could be used
without resorting to an estimation of the scene’s geometry.
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2.3 Change detection with heterogeneous data

While image-based CD methods are less computationally expensive than 3D-based ones,
this is irrelevant when real-time interpretation of the 2D results is required to (re-)con-
struct the 3D geometry of the environment. This has led to the development of hybrid
methods that use heterogeneous data as input.

Methods described in [188] and [195] aim at monitoring the evolution of a urban
environment. This is achieved through the comparison of up-to-date images with an
outdated 3D mesh [188] or with a dedicated 4D model [195, 196] that represents the
evolution of 3D data over time –considered the fourth dimension. The detected changes
are provided in the shape of a 3D grid of change probabilities. For instance, in [188]: for
every voxel in the grid, the corresponding pixels of the images it appears in are observed,
then the probability of change is lowered if the colour is consistent between images (the
Euclidean norm of the RGB vector). This approach primarily focuses on the structure
of the environment as opposed to its texture and in practice, after this preliminary CD,
some specialized equipment –such as vehicle or aerial laser scanners [84, 44]– is deployed
to the locations of detected changes in order to more precisely update the mesh.

These methods rely on an offline processing of the images and are still too com-
putationally expensive to use on mainstream devices [174]. In [136] a fast approach
based on image reprojection is proposed for the purpose of autonomous exploration of
an environment by a robot. In the absence of changes, the current 2D images should
be identical when reprojected to the same point-of-view using the reference 3D mesh
(not including the occluded areas). However, differences in the scene geometry between
the capture of the mesh and that of the images would introduce inconsistencies in the
reprojection which can be used to infer said geometry changes. While performing at an
interactive rate, the technique is strongly biased toward the detection of object insertion
in a scene rather than removal. This issue of false negatives induced by photometric
homogeneity in the images is addressed in [151], which similarly reprojects current 2D
observations using a 3D point cloud, but has to further process the latter as it contains
“holes”, unlike a mesh. Indeed, inconsistencies in the reprojection are only visible if the
reprojected contents have great photometric variations. Removed objects are therefore
harder to detect since the inconsistencies they introduce are entirely dependent on the
background textures revealed by their removal, which are more likely to be uniform (i.e.,
a wall or the sky). In [151] this issue is dealt with by propagating 2D CD results using
both color and semantic labelling, but this assumes a preliminary segmentation of the
images.
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2.4 Conclusion

For MR applications, CD should be able to provide results on the 3D geometry of the
scene in order to preserve the realism of the experience. In Section 2.1, we found that
attempting to directly scan the new geometry of the scene and updating the model
imposes many hardware requirements (i.e., sensors, computing power) that mainstream
AR devices cannot yet meet. Conversely, Section 2.2 showed that while an image-based
approach could be taken to CD, the results of the detection would not be directly usable.
We conclude that a 3D model is needed to represent the prior state of the scene, otherwise
the updated geometry of the scene would have to be entirely reconstructed from the new
observations.

Table 2.3: Applicability of CD algorithms input types to MR applica-
tions

Data types Benefits Drawbacks

3D vs 3D Access to 3D geometry/changes Specialized sensors
2D vs 2D Simple RGB sensor (camera) Entire geometry reconstruction
2D vs 3D 3D changes from camera Some reconstruction (changes)

In this light, we find that the CD methods using heterogeneous input data presented
in Section 2.3 are more applicable to the field of MR. As outlined in Table 2.3, they
closely match the assumptions we can make for MR: an existing 3D model of the scene is
available, but requires updating using the limited hardware of the AR device –sometimes
limited to a camera and motion sensors. Using heterogeneous CD, the only geometry
that needs to be reconstructed in the model, is that which corresponds to the detected
changes. However, as outlined in Section 2.3, the bias towards changes that introduce
the most photometric disturbances has to be addressed in order to obtain a complete
CD framework.
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Chapter 3

Photo-geometric change detection

In this chapter we propose a method for detecting the removal of objects in a scene using
heterogeneous input data to represent its past and present states. Similarly to the other
approaches that use such inputs [188, 136, 151] mentioned in Chapter 2, we will use a
3D reference model –an untextured mesh– and 2D observations –a sequence of images
registered to said mesh. The removal detection is accomplished by studying the impact
of ignoring all foreground objects from the scene during the projection of images onto
the mesh, as to avoid the false negatives resulting from photometric homogeneity with
regular reprojection [151].Indeed, a foreground object that is still present in the images
will produce inconsistencies if ignored during the projection, while a removed object will
not to the same extent. The removed objects can be found by highlighting the regions of
most consistency between the projected images and a reference one, with an interactive
processing time. The method properties are summarized in Table 3.1.

Table 3.1: Change detection using reprojection

Prior model Current observations CD results

3D untextured mesh Registered image sequence 3D ellipsoids

3.1 Context and inputs

With the popularization of MR applications in an expanding number of fields, there is an
increasing need for accurate and cost effective 3D model building techniques [55, 57].The
naive approach to keep these models updated is to perform a regular and comprehensive
3D scan of the environment, which is time consuming, expensive [8, 47, 54, 84, 155], and
requires appropriate equipment [44, 88, 164]. A more efficient process is to compare an
existing but outdated 3D mesh to current images of the environment to locate the 3D
locations of changes and limit the updates to those areas [188].
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(a) Outdated 3D mesh. (b) Up-to-date scene photograph.

Figure 3.1: Insertions (green) and removals (red) over time.

Using images to describe only the up-to-date –and not the prior– state of a scene
allows the detection to be independent of the illumination, poses, and devices used during
the captures, since these factors generally do not affect the geometry of the scene and
therefore the reference mesh. However, this asymmetry in the types of data used to
represent the past and current states of the environment makes the identification of the
nature of the changes more difficult. The attachment of such semantic information to
changes often relies on the ability to match elements or locations of the scene at different
times [138].

For the purposes of updating the geometry of a 3D mesh, we can categorize changes in
a scene as either “insertion of matter” or “removal of matter”, since the displacements
can be regarded as a combination of the two. Notably, insertions and removals also
account for the “deformation of objects”, as there is no object separation or texture
information in the mesh to maintain: all 3D geometry is broken down into vertices and
triangles. In this chapter, we propose a method for change detection which specifically
focuses on the detection and the localisation of “matter”, or objects, that has been
removed from a scene using a reference mesh and images taken at a later time. The
novelty of the solution is to focus on the parts of the scene that should be occluded by
some foreground.
The main contributions of this chapter are:

� An image warping algorithm that generates textured shadows for the study of
occluded areas in an image.

� An improved object removal detection method that uses the aforementioned algo-
rithm.
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� A complete fast change detection framework that combines our improved removal
detection method with an existing change detection algorithm at no significant
computational cost.

Our proposal is documented in Section 3.2, and the results are discussed in Sec-
tion 3.3. Finally, our conclusions are summarized in Section 3.4.

3.2 Image-based object removal detection

As in [136] and [188], a scene is represented by an outdated 3D mesh (see in Figure 3.1a)
and changes are detected using pairs of up-to-date images registered to the mesh (see
in Figure 3.1b). All images are taken within a narrow time frame, and we therefore
assume that there are no structural or lighting changes between them.

Firstly, changes are evaluated in 2D from the point of view of each image: starting
from a reference image, every other image is reprojected from the reference point of
view. Note that this reprojection must take into account the original 3D scene to han-
dle occlusions. Colour differences are computed between the reference image and each
reprojected image and stored in delta maps. The plurality of delta maps per point of
view is used to reduce noise and retrieve more accurate changes. Secondly, 3D changes
are deduced by matching 2D changes together across multiple points of view. Location
and size of the changes are estimated based on the delta maps.

To achieve removal detection, our approach differs from the state of the art in the
choice of regions of interest for 2D change detection. The projection method used when
warping images generates regions of occlusions as seen in Figure 3.2a which are ignored
in other approaches but are the primary focus in ours.
In summary, the proposed method is comprised of 5 steps:

1. For each image of the sequence, create reprojected copies to fit the points of view
of the other images.

2. For each point of view, render the delta maps between the corresponding sequence’s
image and each accordingly reprojected image.

3. For each point of view, combine the delta maps into a single delta map to reduce
false positives.

4. For each combined delta map, filter and group the pixels of detected changes into
2D areas of changes.

5. Match the 2D areas from one point of view to the other to infer the 3D locations
and size of detected changes.
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3.2.1 Image reprojection and occlusions handling

In this chapter, “reprojection” is not strictly used in its conventional meaning: it here
amounts to back-projecting pixels onto the reference mesh and rendering them using
another projection. This process is formalized in the next paragraphs, insisting on the
impact of occlusions.
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Figure 3.2: Left: Reprojection from viewpoint j to i: foreground object
(green) produces an occlusion (in black) of the background (yellow/pink).
Right: Inserted object at X0 (i.e. absent from mesh) introduces inconsis-
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Let Pj and Pi be the projection matrices of cameras Cj and Ci. Then, a pixel x
rendered by Ci using Pi can also be back-projected to the closest 3D point Xi of the
mesh. The back-projection function of Ci is called Qi:

Xi = Qi(x) . (3.1)

Using Qi and Pj , any pixel x from point of view i can be associated to a pixel xi→j
from point of view j:

xi→j = PjXi , with Xi = Qi(x) . (3.2)

This process is illustrated in Figure 3.2a: every pixel x from point of view i is back-
projected to its corresponding Xi and then projected to xi→j in the point of view j. If
performed on all the x pixels in i, it can be used to assign a pixel value Ii(x) to their
corresponding xi→j in j and render a “reprojected” image Ii→j . Alternatively, the exact
same transformation can be used to assign to each x in i a unique pixel value Ij(xi→j)
and render Ij→i (see Figure 3.4c) with Algorithm 1.
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Figure 3.3: Removed object (i.e. absent from RGB image) is textured
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Using this alternative, every point of the “reprojected” image is given a unique
value, obviating the need for a depth-buffer and the necessity to interpolate any pixels
that would have remained blank after the transformation. Indeed, multiple x can be
reprojected to the same xi→j , but all x reproject to some xi→j if a corresponding 3D
point can be found in the mesh.

When every pixel of the reprojected image is computed, some pixels are associated
with 3D points that were occluded in the original view and therefore have no RGB
value (see Figure 3.2a). We can check for such cases during the application of the
transformation. For Xi as defined in Equation 3.2:

Xi occluded⇔ ‖Xi − Cj‖2 > ‖Xj − Cj‖2 , with Xj = Qj(xi→j) . (3.3)

In Equation 3.3, Xi and Xj can be different from one another as the latter is obtained
by back-projecting xi→j using Cj , and is by definition the closest point to the camera.
Since they are on the same axis, Xj not occluding Xi means they are equal. In contrast,
in Figure 3.2a X ′i 6= X ′j , meaning X ′i is occluded.

In existing methods, occluded 3D points will be discarded when computing 2D
changes (see Figure 3.4c). Conversely, our method systematically assigns an RGB value
to these points: the one associated with the occluding point. Rendering those points
with these RGB values has the effect of creating a textured shadow Sj→i as in Figure 3.4d
and 3.3 of the occluding points. Using Equation 3.2 and Equation 3.3 we can render
Sj→i with Algorithm 2.
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(a) Image Ii (the sky is not in the mesh). (b) Image Ij .

(c) Image Ij→i (Ij seen from camera Ci). (d) Textured shadows Sj→i.

Figure 3.4: Reprojecting image Ij on image Ii (removed objects in red,
corresponding occlusions in yellow).
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Algorithm 1: Base pseudo-code of our image “reprojection” process

CreateReprojectedImage (i, j)
inputs : points of view i and j; 3D mesh; image Ij
output: “Reprojected” image Ij→i
Ij→i ← ∅ ;
foreach x from point of view i do

back-project x to its corresponding Xi ;
project Xi to xi→j in the point of view j ;
Ij→i(x)← Ij(xi→j) ;

return Ij→i ;

Algorithm 2: Pseudo-code of our “textured shadows” rendering process

CreateTexturedShadows (i, j)
inputs : points of view i and j; 3D mesh; image Ij
output: “Texture shadows” image Sj→i
Sj→i ← ∅ ;
foreach x from point of view i do

back-project x to its corresponding Xi ;
project Xi to xi→j in the point of view j ;
if Xi is occluded then

Sj→i(x)← Ij(xi→j) ;

return Sj→i ;

3.2.2 Photo-consistency in occluded pixels

When reprojecting, removed objects that are still present in the mesh have the effect of
back-projecting the colours of the points they mask onto their surface (see Figure 3.4c,
where the statue’s podium is projected onto the middle red shape) and leaving those
points untextured. Rendering the regions of occlusion using Algorithm 2 avoids this
back-projection effect (see Figure 3.4d where the podium is correctly placed).

More generally, the textured shadows of removed objects will be photo-consistent [110]
with the reference image i.e., they will fill holes in the warped image with accurate data
(compare the yellow shadows in Figure 3.4d to the reference in 3.4a). However for
unchanged objects, such back-projections will not be textured by occluded points but
by the object itself, and therefore will not be consistent with the reference image (see
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the lion statue’s shadow to the left of Figure 3.4d). Our approach consists of looking for
the regions of least change between the reference image and the textured shadow images
from different points of view.

The delta maps δj→i (see Figure 3.5a) are computed using the norm 2 distance
between the RGB values of each rendered pixel in the textured shadow and in the
reference images [63]. In order to account for the inaccuracies of the warping process,
either in the camera pose or in the 3D mesh, the reference pixel’s colour is compared
to the colour of all pixels in its neighbourhood N in the warped image [187] and the
minimum value is chosen:

∀x ∈ δj→i, δj→i(x) = min
y∈Nx

‖Sj→i(y)− Ii(x)‖2 ,with Nx = {y ∈ Sj→i | ‖y − x‖1 < d/2} ,
(3.4)

where d is the neighbourhood size and y ∈ Sj→i if Sj→i(y) is rendered.

3.2.3 Photo-consistency with multiple points of view

As we will further detail in the following paragraphs, a single delta map per point of
view will generally not contain enough information to accurately retrieve the 2D location
and shape of a change. Firstly, the regions of least change computed in Subsection 3.2.2
are located within the shadows of the foreground objects rather than in their actual
positions in the frame. Secondly, only the parts of a removed object that cast such
shadows will be detectable, which is why using several points of view can enable the
method to more thoroughly retrieve the shape of the object, by uncovering new parts of
it with each additional view.

3.2.3.1 Foreground projection

Before combining the multiple delta maps for different points of view, we first project
the detected removals onto the foreground (see Figure 3.5b). For any pixel x of the delta
map δj→i, we can obtain the corresponding pixel xi→j in the original point of view j:

∀x ∈ δj→i , xi→j = PjXi , with Xi = Qi(x) . (3.5)

Moreover, if Xi is occluded, back-projecting xi→j will return one of its occluding
points Xj . More specifically it will be the closest one to camera Cj :

∀x ∈ δj→i , Xj = Qj(xi→j) , (3.6)

which corresponds to the pixel x′(= xi→j→i) in point of view i:
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(a) Delta map δj→i. (b) Projected map ∆j→i.

Figure 3.5: Once photo-consistency is evaluated in the occluded parts
of the image, the potential changes are located in the foreground.

∀x ∈ δj→i , x′ = PiXj . (3.7)

We adapt Equation 3.3 to fit the point of view i and avoid rendering occluded objects
(such as the bench to the left of Figure 3.4b visible in Ij and Sj→i, but not in Ii):

Xj visible⇔ ‖Xj − Ci‖2 ≤
∥∥X ′i − Ci

∥∥
2
,with X ′i = Qi(x

′) . (3.8)

X ′i is the closest point to Ci that could occlude Xj . Equation 3.8 checks whether they
are the same or not. We note that, as opposed to the reprojection process (Algorithm 2),
this transformation is not reversible due to the repeated use of the back-projection,
which always returns the closest point to the camera. In practice this means that not
every pixel of the foreground is assigned a value (see the white holes inside the shapes
of Figure 3.5b), while some pixels are given multiple values. The correct value is chosen
using a depth buffer Dj associated with Cj and the foreground-projected delta map
∆j→i, is then rendered using Algorithm 3.

3.2.3.2 Combination of projected delta maps

In ∆j→i, not every pixel is assigned a value (see Algorithm 2 and 3 and the white pixels
in Figure 3.5b). Therefore, we can define for each ∆j→i a binary mask Mj→i:

Mj→i = {x |∆j→i(x) is assigned a value} . (3.9)
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Algorithm 3: Pseudo-code of our foreground projection process

ForegroundProjection (i, j)
inputs : points of view i and j; 3D mesh; delta map δj→i
output: Projected map ∆j→i
∆j→i ← ∅ ;
clear(Dj) ;
foreach x from point of view i do

back-project x to Xi ;
project Xi to xi→j in point of view j ;
back-project xi→j to Xj ;
project Xj to x′ in point of view i ;
if Xj is visible in point of view i then

if ‖Xj − Cj‖2 < Dj(x
′) then

Dj(x
′)← ‖Xj − Cj‖2 ;

∆j→i(x
′)← δj→i(x) ;

return ∆j→i ;

In order to uncover new parts of a potentially removed object, the combination of
two projected delta maps with the same point of view involves the union of their binary
masks. As for their values, the maximum per pixel of the two is chosen in order to reduce
false positives. The maximum value is used to be more selective in the detection process.
Foreground objects that are not removed could still share some RGB values with the
background they occlude for a particular point of view (i.e., be photo-consistent), but it
is unlikely they would for every point of view.

This approach is similar to the intersection process described in [136]. There, in
a single delta map, when an object is inserted in a scene, changes are detected at the
correct position of the object in the reference image and at an erroneous position resulting
from the projection from another point of view (see Figure 3.2b). Since the actual 2D
location of the change is the former, the erroneous positions are removed by intersecting
two different delta maps, requiring 3 points of view in total. However, in this previous
paper [136], the intersection process shrinks the area of the combined mask with every
new point of view, instead of expanding it. This further reduces the chances of false
positives but is not practical for the study of occluded regions, which potentially do not
overlap for every point of view, even after foreground projection.

Using every available point of view, we define the combined delta map ∆i as:
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∀x ∈
⋃

j 6=i
Mj→i , ∆i(x) = max

j 6=i
{∆j→i(x) | x ∈Mj→i} . (3.10)

If x is not in any of the Mj→i, then ∆i(x) remains unassigned.

3.2.4 3D localisation of changes

Similarly to the process described in [136], the 3D localisation relies on the segmentation
of the combined delta map ∆i into 2D regions of detected change, and the matching of
those regions from one point of view i to another. From these matched regions’ locations
in the images, we can infer the 3D location of the change and its spread, as detailed in
the following paragraphs.

3.2.4.1 Segmentation by region

The segmentation is achieved similarly to [136], namely the generation of the regions’
contours using [183] on a binarized ∆i. Our contribution to this process is a more
generalized binarization step that relies on a triangle threshold method described in [214],
rather than an arbitrary constant threshold value. This delta map binarization threshold
is the main sensitivity threshold for the change detection algorithm. The darkest pixels
in ∆i are selected as candidates for the removal detection since they describe the regions
of least change in the textured shadows. Isolated pixels are then removed through erosion
and the contours are generated. A final threshold on the area of the regions is used to
remove the smallest changes [136] (see Figure 3.6b).

(a) ∆i. (b) Detected change regions.

Figure 3.6: Segmentation in regions from point of view i.
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3.2.4.2 Region matching

A 3D region of change that is visible for two or more points of view should have its
projected 2D regions represented in several segmented delta maps. Although the 3D
location of the changes could be retrieved through the use of back-projection, in practice
the segmented maps are an approximation of the 2D projected changes, and a pixel-
wise depth estimation would be inaccurate. Indeed, every reprojection introduces slight
numerical errors, as they are based on a discretized 3D model of the scene (i.e. the depth
maps). Therefore, even taking into account the previously mentioned erosion process,
neighbouring pixels in an region could belong to mesh faces separated by large distances.
This is why we use moments [85] to compute the (2D) centroids of each region and then
the same triangulation process described in [136].

(a) Point of view i (detail). (b) Point of view j (detail).

Figure 3.7: Region matching for two points of view. Circles: centroids
of the regions, Crosses: reprojected centroids.

Our method differs in the criteria used for matching the regions: instead of computing
and comparing the HSV histograms of the regions in the corresponding images –as is
done in [136]– we rely on the back-projection of the centroids on the mesh. This change
is necessary because of the focus on the detection of removed objects, which by definition
are present in the mesh but not in the images. This is a factor in the bias of detection
toward inserted objects in [136]. If the back-projected centroid of a region in i is projected
inside a region in j (or “reprojected” from i to j), and vice-versa, then the two regions
are matched as in Figure 3.7: the orange and blue centroids belong to matched regions,
as do the red and green ones.

The triangulation step produces 3D ellipses based on the size and location of the
matched regions [136]. This final output is presented in Figure 3.8.
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Figure 3.8: Left: Scene model without the “removed objects”. Right:
3D removal detection: red ellipsoids mark the estimated location and size

of changes.

3.3 Experimental evaluation and results

The algorithm from Section 3.2 was implemented in C++11 using the source code from [136]
as a basis. Meshes and camera poses were handled using GLOW (OpenGL Object
Wrapper) [9], mathematical operations were computed with Eigen [70], and images were
processed with OpenCV [17]. The code is available at:

https://github.com/InterDigitalInc/ObjectRemovalDetection

Our method was evaluated on several scenes that presented some changes: at least
one object is removed, and in some cases, some are inserted. The sequences are made up
of five pictures that display the location of the removals, which are introduced by adding
3D objects to an existing accurate mesh of the scene (as seen in Figure 3.8). Conversely,
insertions are simulated by removing objects from that mesh. Meshes were taken from
two sources: the dataset introduced in [136], and the ScanNet [37] dataset1, which also
provide estimated camera poses for the images.

The scenes in the dataset from [136] already showcase one or more insertions. Each
mesh is already associated with five pictures that display the inserted objects. However,
this dataset has some limitations: there are approximations in the meshes that can be
detected as changes and the camera distortion coefficients are not available for every
camera used which leads to inaccurate projection.

In contrast, the ScanNet [37] images are noisier but have been corrected distortion-
wise. The scenes do not contain any insertion, and all meshes are associated with a

1All images from the datasets are available in the appendix Appendix A.

https://github.com/InterDigitalInc/ObjectRemovalDetection
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video with thousands of frames, from which we picked five with the least motion blur
possible to ensure that the camera poses were accurate.

Since we compare our method with the one from [136], the images were also chosen
to showcase the location of the removed object we added to the mesh. For the sake
of this comparison we also scaled the pictures to a width of 500px and used an area
threshold of 50. Delta maps were computed using neighbourhoods N of size d = 3.

3.3.1 Quantitative evaluation

In order to evaluate the change detection quality, we used the same criteria as in [136]
and [188]: for each image point of view, we have a corresponding 2D ground truth which
we compare to the results of our 3D detection. The 3D ellipses are rendered in 2D using
each camera pose and numerical results are averaged across multiple points of view. The
following numbers were computed for the evaluation:

� IoU : area of the intersection of the ground truth and the 2D ellipse, divided by
the area of their union,

� coverage: area of the aforementioned intersection, divided by the area of the ground
truth, i.e. true positive rate (TPR),

� false positive rate: area of the intersection of the ground truth complementary and
the 2D ellipse, divided by the area of the ground truth complementary.

For the scenes that contain inserted objects, we also took into account that the
method described in [136] detects changes of all natures indiscriminately. Therefore,
we subtracted the shapes of the inserted objects from the image comparisons between
the ground truth of removals and the 2D ellipses. Consequently, any insertion that was
correctly reported by the algorithm is not to be considered as a false positive for object
removal detection.

3.3.1.1 IoU and coverage with automatic thresholding

The chosen criteria favour detection that is accurate in 2D but not necessary correctly
localised in 3D i.e., if there are several 3D regions of change accurately detected in 2D but
incorrectly matched together. Since this does not happen with our removal detection,
using a 3D-based criteria could improve the performance of our method comparatively
to the one in [136].

In most cases, our method is the most accurate for both criteria. The IoU is often
greater than 40% but there are particularly difficult scenes where it will drop below
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30% while the algorithm from [136] does not detect anything (such as in Figure 3.18).
Generally these scenes will have a 3D mesh that is incomplete or too dissimilar from the
images in areas that should have remained unchanged.

As explained in Subsection 3.2.3.2, our approach to the combination of delta maps
is based on mask union rather than intersection. This makes the detection more robust
for objects near the edge of the frame.
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Table 3.2: Removal detection: quantitative results (shown in %).

Scene Ours Palazzolo et al.

Palazzolo et al. dataset IoU TPR IoU TPR

container-shelf 31 80 0 0
container-shelf2 39 100 20 27
playground-car 16 64 5 34
statue-robot 48 93 14 17
statue-robot-bad-exp 51 94 3 3
statue-robot-bad-temp 53 95 1 1
statue-robot-temp 59 95 7 9
toilet-stone 17 97 0 0

Dataset average 39 90 6 49

ScanNet dataset IoU TPR IoU TPR

0000 00+plant 11 20 7 15
0000 01+box 45 57 0 0
0000 01-insert+box 42 53 1 1
0000 02+statue 42 47 22 64
0001 00+dollhouse 6 18 0 0
0001 01+table 27 36 21 31
0002 00+chair 40 80 8 20
0002 01+extinguisher 15 66 0 0
0003 00+cat 0 0 23 47
0003 01+desklamp 61 69 27 30
0004 00+ghost 44 83 8 9
0005 00+bucket 62 89 52 89
0005 01+pitcher 27 100 0 0
0006 00+lamp 57 98 38 82

Dataset average 34 58 15 28

Global average 36 70 12 22
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3.3.1.2 ROC curves for different thresholds

The ROC (receiver operating characteristic) curves in Figure 3.9, are used to compare
the true positive rate and false positive rate of a binary operator for different discrimi-
nation thresholds [188], which in our case is the binarization threshold in the delta maps
mentioned in Subsection 3.2.4.1. The automatic threshold is highlighted on the curves
to evaluate its performance and the other threshold values are all the integers between 0
and 255. A threshold of 255 means that only the most consistent pixels of a delta map
are considered (near the origin of the graphs).

We note that the false positive rate never reaches the maximum value of 1 in the
presented curves. This is due to the fact that ellipses are only generated for objects that
cast shadows during reprojection, which generally only represents a small part of any
given image. The value obtained for a threshold of 0, when any pixel in the delta map’s
mask is categorized as “changed” regardless of value, is the de facto maximum.
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(a) statue-robot.
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(b) playground-car.

Figure 3.9: ROC curves. Blue points represent different threshold val-
ues, the red cross is the automatic threshold.

In these curves, the best results are located to the top left. The automatic threshold
value is generally chosen among those ideal values, but there are instances such as in
“playground-car” (Figure 3.9b) where it is at a local minimum. These discontinuities are
a consequence of the thresholding by the changes’ areas and the following segmentation
into 2D regions.
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3.3.2 Qualitative evaluation

3.3.2.1 Filtering of the insertions detection results

While the method described in [136] cannot reliably detect removed objects in the scene,
it is also unable to differentiate them from inserted objects when detection occurs. To
improve the performance of insertion detection, we can use the delta map produced
by our removal detection process to filter the insertion delta maps. A naive approach
consists of simply erasing the pixels from the insertions delta map where the correspond-
ing removals delta map is positively identifying changes (as seen in Figure 3.10). In a
real scenario, both an insertion and a removal could be occurring in the same 2D region
of an image –the removed and added objects are aligned with the camera– but given
enough different points of view, inserted objects would eventually be detectable. This
is occurring in Figure 3.10b, where part of the insertion detection is removed due the
filtering (the bottom part of the statue).
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(a) Original delta map. (b) Filtered delta map.

(c) Final results without filter. (d) Final results with filter.

Figure 3.10: Part of the insertions detection pipeline, without (left)
and with (right) filtering of the removals detection results in 2D (top).

Filtering reduces false positives in 3D (bottom).

3.3.2.2 Scenes from the Palazzolo et al. dataset

In the following figures, on the left is shown the ROC curve for removal detection in a
scene while the right show the 3D results for the automatic threshold.
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Figure 3.11: Removal detection for container-shelf.

The removed object is very close to the edge of the screen, making it harder to
detect and leading to false positives on the trees in the background, whose geometries
are approximated. The large inserted object does no affect the detection of removals.
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Figure 3.12: Removal detection for container-shelf2.

The same image sequence is used but the object is more centered in the frame,
resulting in a much more accurate detection. The ROC curve is also less fragmented.
The fragmentation is partly due to the grouping of changed pixels into regions, which
can be discarded if their surface area falls under a certain threshold. The fragmentation
occurs when there are multiple areas of detection (the trees and the object in the previous
sequence).
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Figure 3.13: Removal detection for playground-car.

In the scene, an inserted object is in front of the removed object. As a result the
object is only partially detected. The complexity of the scene also generates a lot of
false positives because of the approximations in the mesh. In this particular scene, the
automatic threshold is at a local minimum of performance. Also the results for the
automatic threshold do not coincide with ones for any fixed threshold, as it can be
different for each image of the sequence.
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Figure 3.14: Removal detection for statue-robot.

In this scene there are two disjointed removed objects. A few false positives occur
on the trees on the right side of the frame and the statue on the left. The false positives
can only occur on foreground objects, which cause occlusions.
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Figure 3.15: Removal detection for statue-robot-bad-exp.

This scene uses the same mesh and poses as the previous one, but the exposure in
each image has been independently altered. This does not greatly affect the detection:
the false positive rate is higher but it is the result of overestimating the size of the objects
rather than detecting other objects altogether. The automatic threshold results are at
a local maximum of performance: there is no other point to the top and left.
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Figure 3.16: Removal detection for statue-robot-bad-temp.

This scene uses the same mesh and poses as the previous one, but the colour temper-
ature in each image has been independently altered. This does not significantly impact
the detection, and once again the automatic threshold results are at a local maximum.
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Figure 3.17: Removal detection for statue-robot-temp.

This scene uses the same mesh and poses as the previous one, but the colour temper-
ature and exposure have been made more consistent across the images. This improves
the results slightly.
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Figure 3.18: Removal detection for toilet-stone.

The object is detected but it is located in front of an inaccurately modelled part of
the building, which greatly increases the false positive rate. It should be noted that a
lower threshold would significantly improve the result.

3.3.2.3 Scenes from ScanNet dataset
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Figure 3.19: Removal detection for 0000 00+plant.

There is little parallax between the points of view as the camera is mostly rotating
on it-self, and parts of the scene are inaccurately modeled. The true positive rate does
not go over 0.45 signifying that some parts of the object cannot be detected.
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Figure 3.20: Removal detection for 0000 01+box.

The top of the object occludes the wall which is far away, while the bottom rests on
top the bed. The parts of the object that are closer to the background are harder to
detect.
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Figure 3.21: Removal detection for 0000 01-insert+box.

The presence of an inserted object does not significantly affect the removal detection.
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Figure 3.22: Removal detection for 0000 02+statue.

Even at the highest sensibility, some parts of the object cannot be recovered, they
do not produce occlusions.



62 Chapter 3. Photo-geometric change detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False positive rate

T
ru
e
p
os
it
iv
e
ra
te

Figure 3.23: Removal detection for 0001 00+dollhouse.

The top of the object is the most subject to parallax and is the only portion detected.
The false positive are caused by the photometric similarities between the objects of the
scene and the background.
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Figure 3.24: Removal detection for 0001 01+table.

The bottom of the table is merged with the background and cannot be recovered.
However the legs are detected despite their narrowness.
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Figure 3.25: Removal detection for 0002 00+chair.

One arm of the foreground chair is wrongfully detected as removed since it does not
perfectly align between the images and the mesh.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False positive rate

T
ru
e
p
os
it
iv
e
ra
te

Figure 3.26: Removal detection for 0002 01+extinguisher.

Once again, one arm of the foreground chair is wrongfully detected.
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Figure 3.27: Removal detection for 0003 00+cat.

The object does not produce any occlusion because of the camera is mostly rotating
on itself, creating little to no parallax.
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Figure 3.28: Removal detection for 0003 01+desklamp.

The object is rarely seen in full, which makes evaluating its size more difficult.
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Figure 3.29: Removal detection for 0004 00+ghost.

The downward angle of the scene makes the base of the object harder to detect.
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Figure 3.30: Removal detection for 0005 00+bucket.

The object is detected despite the incorrect camera pose estimation on the last 3
pictures.
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Figure 3.31: Removal detection for 0005 01+pitcher.

The power socket on the surface of the table does not produce a false positive, despite
its very approximate 3D capture. However the size of the object is overestimated.
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Figure 3.32: Removal detection for 0006 00+lamp.

In this scene the geometry of the object is very simple, and the object itself is in
front of a distant background. Most threshold value are able to retrieve the object in its
entirety.

3.3.3 Computation time

The methods were run on a CPU rather than a GPU to better reflect the limited hard-
ware of portable AR devices. The execution time is on the same order of magnitude as
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the one reported in [136] as interactive time. The processes of generating the delta maps
and triangulating the changes in 3D never takes longer than a few seconds.

We note that of the two processes mentioned above, delta map generation is more
computationally expensive. The reprojection operations as well as difference calculations
on the images are each performed by looping once over the pixels each image. Empir-
ically, we measured that the computation time was indeed proportional to the image
resolution.

The computation time of the triangulation process cannot be evaluated as reliably,
since it depends on the number of 2D areas detected in the first step. However, for
a constant area threshold it will become less negligible when compared to the time of
delta map generation, as the number of individual detected changes increases with the
resolution. When the area threshold is increased in accordance with the resolution, this
effect is less pronounced. The overall computation time is also tied to the number of
images in the sequence, as every image is compared to every other one (i.e. for n images,
n× (n− 1) reprojections are made).

In a virtual machine with 16GB of RAM and four 2.60Ghz processors, both [136]’s
method and ours process sequences of five 500 pixel-wide images in less than 3 sec-
onds. Compared to the implementation by [136], the computation time of our method
remains low despite the addition of the removal detection process. This is because re-
projection –the most time consuming operation– can be performed for both occluded
(textured shadows) and visible pixels in a single pass by storing the rendered pixels in
the corresponding images (respectively Sj→i and Ij→i). In other words: most of the
computations necessary to produce the textured shadows were already made in the orig-
inal method from [136], but their results were not exploited, since only the visible pixels
are used. In practice, both the algorithm from [136] and ours can be used at the same
time in order to detect both insertions and removals with more accuracy (as mentioned
in Subsection 3.3.2.1). It should also be noted that our reprojection process uses less
memory thanks to the absence of a depth-buffer as described in Subsection 3.2.1. The
reprojected image also has sharper features since no interpolation is required as shown
in Figure 3.33.

3.3.4 Qualitative results from GPU implementation

For the reprojection and delta map rendering processes, we have reimplemented the
existing algorithms using shaders directly applied to the mesh instead of functions run
on the depth maps derived from said mesh. In this configuration, the execution time
becomes tied to the precision of the mesh rather than the image resolution, because no
depth map has to be generated. When such shaders were run an NVIDIA GeForce RTX
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(a) Reprojection from [136], using direct transform. (b) Ours, using inverse transform (Algorithm 1).

Figure 3.33: The reprojection step being performed with different algo-
rithms. The direct transform results in interpolated or missing pixels.

2060 GPU the computation time of the aforementioned processes was reduced by up to
95%.

Working directly with the mesh also eliminated the artefacts introduced by the pix-
elisation of the depth information. These include imprecisions over the computation of
reprojected coordinates, as well as loss of definition in the geometries contours. The
impact of this change is illustrated in Figure 3.34 for the object insertion detection
pipeline, as it is more noticeable.

The foreground projection process is also more precise using the mesh, and allows
us to avoid removal detection false negatives due to the presence of objects between
the removed object and the background. In this case, as illustrated in Figure 3.35, the
(consistent) textured shadows of the removed object are replaced by the (inconsistent)
textured shadows of the objects behind it, making it undetectable. This can be avoided
through a separate process of foreground projection of the reprojected images followed
by the generation the delta maps. The inconsistencies between those delta maps provide
the location of those removed objects at additional computational cost.
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(a) Reprojection on the CPU (zoom). (b) Reprojection on the GPU (zoom).

(c) Insertions delta map on the CPU (zoom). (d) Insertions delta map on the GPU (zoom).

Figure 3.34: Parts of the insertions detection pipeline, as performed on
the CPU and the GPU. During reprojection on the CPU, occluded geome-
try is wrongfully included (red square), and on the delta maps the contours

of objects are more likely to produce false positives (purple square).
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Figure 3.35: The removed object in the foreground is undetected be-
cause the object behind it creates inconsistencies in the textured shadows.
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3.3.5 Limitations

Only studying regions occluded by a foreground object has a few side-effects. For in-
stance, false positives can only be detected on objects that produce such occlusions.
These false positives will only occur on the objects that are the most photo-consistent
with their background (see “0001 00+dollhouse” Figure 3.23). Moreover, any removal
accurately detected in 2D will be accurately localised in 3D. This differs from inser-
tion detection where accurate 2D regions of change can be wrongly matched with other
regions from a different change in another point of view.

In a scene, reflective surfaces might still pose a challenge. Instead of being detected
as false positives as in [136], they can make removed objects situated in their foreground
difficult to detect i.e., generate false negatives.

Change size estimation can be an issue, as the detection size is proportional to the
occlusion size of the removed object (see “0000 02+statue” Figure 3.22). If a removed
object does not produce any occlusion it will not be detected by this method. Such
an object could be detected using the method from [136] if it is far enough from its
background to greatly distort its textures.

Not every image of the ScanNet dataset’s sequences is perfectly aligned with its
corresponding 3D mesh (see “0005 00+bucket” Figure 3.30). While this has not severely
impacted the results of the detection in our experiments, in theory a misalignment of
an image will generate 2D false positives and negatives for its point of view. On the
one hand, false positives are still dealt with by using the other images of the sequence.
On the other hand, false negatives can negatively impact the detection by reducing the
areas of detection and lead to 3D false negatives or inaccurate size estimation. However,
they occur less often, since they require that a removed object aligns with an object still
present in the image.

Appendix A contains the image sequences used for all the scenes in the datasets and
the resulting 2D change detection maps from which the errors are calculated.

3.4 Conclusion

In this chapter, we introduced a new approach for detecting the removal of objects
between an outdated 3D mesh and a set of up-to-date pictures of a scene. The technique
is based on the projection of the pictures’ foreground textures to the background as
defined by the 3D geometry and the pictures’ points of view, and the comparison of
the resulting images to the unmodified set of pictures. The definition and study of
the foreground make our approach distinct from other reprojection-based approaches,
which are not as effective at removal detection due to the low photometric disturbances
caused by this type of change. The focus on object removals also simplifies the process
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of translating the results back into the 3D world, as we know their geometry is still
present in the outdated mesh. It therefore allows us to make inferences on 3D geometry
from images in which said geometry is absent, without relying on expensive depth-
estimation methods [56]. The technique is able to perform well even in environments
with uniform textures or changes of different natures (the adding or removal of geometry)
while remaining as fast as the state of the art methods that are meant to run on devices
with low computational power. Thanks to its short computing time, this process can
be repeatedly used over time, leading to an extension of the set of images used to
describe the current scene. This would yield cleaner results –filtering out false positives–
or uncover different layers of changes in the scene –observe the environment from new
vantage points.

The results could be improved by basing the 3D shapes of the changes on the ge-
ometry of the mesh, rather than relying on standard shapes like ellipses. With more
accurate shapes, the mesh could directly be altered to reflect the detected changes. This
shape-level segmentation of the scene could be estimated through the study of the mesh’s
geometry and its properties (faces’ sizes and normals, convexity, distance between ver-
tices etc.). However it could be made part of the initial scene representation, and rely
for instance on a semantic description of the scene’s contents [151].

With removals now specifically identified, it is possible to ignore their impact in the
change detection algorithm proposed in [136], as the slight photometric disturbances
they introduce during reprojection can be filtered out. As shown, this improves the
detection of inserted objects in scenes, but also allows for the categorization of changes
according to their nature: “insertion” or “removal”. This categorization can be expanded
on by including the notion of “displacement” of an object, when it is both removed and
inserted into a scene. This would necessitate the ability to track said object over time,
which could be accomplished photo-geometrically or through semantic analysis, as will
be discussed in the next chapter.
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Chapter 4

Semantic description of the scene

With the implementation of a full 3D CD framework based on the work presented in [136],
we introduced a new reprojection method [161] in Chapter 3 and used geometry-based
matching in order to specifically detect and localise the removal of objects. This was
accomplished without compromising the efficiency of the original work [136], as the
new reprojection exploits computations that were already necessary but not fully taken
advantage of. This focus on removals also allowed us to filter the results in the original
CD process, resulting in a more accurate object insertion detection. The method returns
as results 3D ellipsoids, which are produced through the detection and matching of 2D
areas of changes across fives images.

While the matching and 3D localisation of the regions resulting from object removals
can be performed with knowledge of the relevant 3D geometry in the scene, the process
is still texture-based for inserted objects, making it less reliable than its removed ob-
ject counterpart. Moreover, in both cases, the 2D region extraction also relies on the
assumption that different objects in the scene have different textures. Parts of objects
that are too photometrically similar to the background will not be detected if they were
just inserted into the scene, or will falsely be identified as “removed” if they were present
in the previous state. Inaccurate 2D or 3D estimation of the shape of changed areas pre-
vents us from correctly updating the scene model, even when said shapes are improved
through techniques such as active contours [2, 108], as those still require reference 3D
geometry, which is unavailable for inserted objects.

4.1 Semantic analysis and motivations

In practice, the changes are generally correctly localised in 3D using our improved
method [161], but the ellipsoids used to represent their shapes are generally not precise
enough to accurately modify the mesh. We attempted to improve the geometric precision



74 Chapter 4. Semantic description of the scene

of the removal detection by using a depth-based contour detection and flood-filling ap-
proach on the intermediary 2D results of the method (shown in Figure 3.7 of Chapter 3).
While this made the CD framework perceptive to previously undetectable removed 3D
geometry, it also led to more false positives, as it became an issue of correctly segmenting
the geometry of the scene solely based on the depth maps. Likewise, insertion detection
would not be improved with a preliminary color-contour detection, if the uniformity
of the textures is the main issue. Therefore, in order to obtain a better object-level
understanding of the scene, we decided to rely on a semantic analysis of its contents.

4.1.1 Object-level modelling

As mentioned in Chapter 2, the rise of Machine Learning and particularly Convolutional
Neural Networks (CNNs) has led to the achievement of pixel-wise CD [22, 38, 71], where
photometric techniques would have struggled. Such tools allow for captioning [138] or
pixel-wise labelling of the nature of the changes [16, 30], of the objects affected [198, 42],
or both [39]. However we also saw in Chapter 2, that they do not provide results
pertaining to the 3D geometry of the scene, and that the cost of estimating said geometry
from 2D inputs without a 3D reference is prohibitive –hence the heterogeneous approach
taken in Chapter 3.

Given the amount of work dedicated to semantic analysis of images [154, 82, 102, 208],
this can also be used as a preemptive step to change detection, effectively translating the
scene into a more easily comparable representation. For instance, in [95] the segmented
maps are compared instead of the original images, and in [42] CD is performed in the
feature-space of a network pre-trained for image segmentation. It should also be noted
that CNNs have more recently been used for 3D point cloud processing [21, 5, 115].

In order to improve the 3D results of our method [161] in Chapter 3, the 2D maps
provided by image segmentation networks [154, 82, 102, 208] could be used to filter
out the noise –or false positives– in our 2D detection maps, or as a contour extractor
for inserted objects. Being able to successfully identify objects across different scene
states could also alleviate the need for accurate geometry estimation of the removed
objects, if the 3D prior were appropriately segmented. Estimation and insertion of
new geometry would remain difficult with few images, but the results would be more
accurate. Finally, an object-level understanding of the scene and of its changes provides
many features relevant to the final MR application, such as physical interactivity [24, 25],
agent interactivity [32], and improved object positioning [111].
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4.1.2 Feature-based localisation

In most MR applications, the user only observes a partial view of the world at any given
time, that must be localised with respect to the prior representation said world (i.e.,
its state when previously scanned) to add content or fix inconsistencies through CD.
Previously mentioned CD works make use of GPS data [189] followed by a refinement
process, assume co-registered representations [137] while sometimes allowing for slight
misalignment [71], or ignore the issue of localisation [136]. However, with semantic
analysis of the scene, registration becomes easier.

There exists literature on feature-based localisation, particularly for SLAM problem,
that involve CD as a means for robustness [131, 45]. Related works also include the
place recognition process cited in [182], which is able to match images based on their
contents using a pre-trained CNN classifier. Some localisation works also make use of a
graph representation of the scene: for instance [150] uses the Kuhn-Munkres algorithm
on graphs generated from the objects present in each image to detect loop closure,
i.e., check if an area is being revisited to correct accumulated estimation errors in the
pose. Other works use pose graphs in order to organise a multitude of relative pose
estimations [159, 87] and infer localisation from it.

With the parallelization of the CD and localisation tasks, there is an opportunity to
improve both processes by avoiding a negative feedback loop: localisation without CD
can wrongly assume which landmarks are displaced between sessions, leading to incorrect
pose estimation and following CD. It should nevertheless be noted that in those works,
CD is a by-product of the main task of localisation, and is prone to false positives.
Indeed, the purpose is only to find reliable landmarks in the environment, similarly
to the static maps [51, 4] mentioned in Chapter 2. The scene representation required
for MR applications will necessitate a more exhaustive description of its geometry, and
ideally of its semantic contents.

4.1.3 Explicitly defining the relevancy of changes

Using semantic analysis, we can set the level of detail or define the changes that are
relevant to the maintenance of our scene representation [79]. Indeed, we have seen that
CNN-based CD methods [71, 198] use semantics to filter out photometric inconsisten-
cies due to view-point or illumination variation between scene states. The ability to
distinguish between different sources of photometric (pixel value) changes in images can
improve the quality of detection when focusing on any of those sources (illumination,
geometry, texture, semantics etc).

Through object-level understanding, suspected geometric changes that result from
the inaccuracies of the MR device’s sensors can be ignored. This is particularly useful
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where there is a large difference in data quality between the reference model and the cur-
rent observations, or when the computational cost of CD and updating is non-negligible.
Indeed, with the development of LiDAR technology and multi-view stereo on consumer
devices, 3D geometry can be directly monitored, but the quality of the representation
would inevitably degrade as the environment changes and updates are applied based
on the low-detail readings of the devices’ sensors. If changes can be understood as the
manipulation of objects in the scene, the same can be done to its representation, pre-
venting the loss of detail in the original photo-geometric contents, and allowing for faster
updates and lighter storage.Scanning the scene directly –in 2D or 3D– would only be
required to capture previously unknown objects.

In the context of MR, any change in geometry that affects the blending of virtual
and real elements must be accounted for (photo-realism), as well as higher-level changes
that will affect the MR experience (behavioural realism). This “exhaustivity” constraint
is where the semantic analysis works mentioned in this chapter fall short, as their vocab-
ulary is limited by their training data –as seen in Figure 4.1 where object detection is
not exhaustive (left) and “panoptic” segmentation [102] (segmentation of both object in-
stances and semantically consistent areas) lacks precision (right). To achieve exhaustive
CD, we will need to structure the available semantic information in a way that allows for
the identification and tracking of unknown object instances, when all that is available is
their appearance.

(a) Object detection trained on the LVISv0.5
dataset [73].

(b) Panoptic segmentation [102] trained on the
COCO dataset [121].

Figure 4.1: Object-based semantic image segmentation, limited by the
data the networks are trained on.



4.2. Graphs to structure the scene information 77

4.2 Graphs to structure the scene information

When semantic segmentation tools such as Detectron2 [208] are used to improve our
geometric understanding of a scene, we are ultimately limited by the number of object
classes that can be detected. In order to avoid those limitations, we now focus on char-
acterizing the contents of a scene using the objects’ identifying features and relationships
to one another, as recorded in a Scene Graph [91] (SG). A Scene Graph can be used
to represent a 3-dimensional scene state, which itself is described by natural language,
sensory readings, or visual representations such as images and 3D models.

4.2.1 Linking semantic information to photo-geometric data

In the works mentioned in the previous section, the semantic analysis results were pro-
vided in the shape of pixel-maps or 2D bounding boxes corresponding to each object or
regions identified. For instance, in the ScanNet [37] dataset of 3D annotated rooms, the
semantic segmentation information is directly stored as indexed color maps of multiple
angles of each room, which are then used as textures for a 3D annotated mesh. A much
lighter representation was introduced in [91], called Scene Graphs: graphs where the
nodes are objects in the scene, often with attributes, and the edges are semantic rela-
tionships between those objects, such as the ones in the Visual Relationship Detection
dataset [126]. While there are CNNs designed for relationship extraction [215], other
architectures [210, 116, 186] directly produce graphs from images, making use of the
Visual Genome dataset [105].

In Section 4.3 we will explore the many applications of such data structures, but
for our purposes, SGs are a means to efficiently store and analyse semantic information
as it relates to the geometry of the scene. This can ultimately lead to better means of
interactivity between the virtual and real actors, and provides the medium to achieve
the lightweight geometric maintenance mentioned in the previous section.

4D graph representations which add a time attribute [18, 74] also allow for the
tracking of entities (areas of land in [18] and semantic data in [74]) over several iterations,
where 3D representations can only be used to compare the current and previous states.
Being able to monitor changes in the scenes over longer periods of time means that
repeatedly disappearing and reappearing geometry can be reused without rescanning.
Overall the CD task would have a larger prior to base its results on, and infer the
variability of particular objects [125].
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4.2.2 Accounting for unknown objects

In a Scene Graph, the nodes representing objects can contain more information than the
object’s label, allowing us to differentiate between multiple instances of a similar object
in a scene through appearance or context. This is beneficial for tracking specific objects
between states, going beyond the simple model of insertion and removal of geometry, but
also to provide information to differentiate between semantically unrecognisable or novel
objects. Indeed, when nodes need to be compared in semantic graphs, the similarity
metric can be a combination of the similarity of the nodes’ attributes [100, 213] and
that of their neighbours [180, 61, 124, 72]. Incremental learning and anomaly detection
could expand the semantic vocabulary of the scene analysis method, but it could lead
to catastrophic interference [130] (abrupt forgetting of previously learned information),
and therefore be unreliable over long periods of time.

In order to fully segment the scene, methods tailored to specific object classes can
be more effective, and their results can be directly stored in the SGs. For instance,
plane detection in 2D [152, 76, 41, 124, 174], 2.5D [176] or 3D [52] can be used to detect
the boundaries of an indoor environment: the walls, floor and ceiling; using semantics,
vanishing points or perspective correction methods. These surfaces can be hard to
classify and localise using object detection networks due to their uniformity and size. It
should also be noted that by detecting objects and planes separately, each process could
improve the others’ result. Masking the planes from the images during object detection
could increase the precision [103] or improve the efficiency [204], as noisy textures could
be removed and smaller objects become visible. Conversely, 3D data could be filtered
to remove the objects’ points before the plane detection.

In the absence of semantic labelling for some 2D or 3D geometry in the scene, the
shape of the underlying objects can be inferred through observation of their known sur-
roundings and be tracked by their geometric attributes. Depending on the available
data, more general photometry [209] or geometry-based [194] segmentation tools would
help in reducing the size of the unknown entities, making them more trackable. The
resulting geometry can be understood as “stuff” or “things” [19] in the context of se-
mantic understanding, and the concept of “blank node” [207] is used to describe such
unknown entities in Resource Description Framework (RDF) graphs. RDF graphs have
been introduced to organise data for semantic web applications, and blank nodes serve
as structural elements to organise pieces of knowledge relatively to each other. Recent
works in robotics have started to apply this concept to scene graphs [175].
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4.2.3 Acting as an intermediary representation

Finally, another benefit of SGs is their ability to be easily parsed by humans and ma-
chines, and to be used as a “translation medium” between different representations. This
will be further illustrated in Section 4.3, as their applications to scene authoring and
Human–machine Interaction (HMI) will be shown, which are both related to the MR
field.

In graph-based localisation methods, such as X-View [61], the graph structure is
used as a means of converting RGB-D data captured from different perspectives –by a
flying drone or a ground-based vehicle– into comparable spatial representations of the
scene. In robotics, it is used as the intermediary representation between a controller’s
commands and the internal understanding of the scene by the agents [213, 100, 160].

SGs can be used to generate text from images [211], or caption changes [120], while
remaining close to the disposition of real and virtual assets in the scene. The focus on
interactivity and clarity makes the SG particularly suited to scene representation in MR
applications, where the goal is always to provide a human user with an immersive and
convenient experience. This ability to serve as a intermediary for switching between dif-
ferent scene representations (images, text, 3D geometry...) further benefits applications
with narrative or educational goals. SGs are able to represent scene states gathered from
heterogeneous data –be it gathered from various sensors or synthetic– and making such
states comparable for tasks such as localisation and CD.

4.2.4 Conclusion: Representation requirements for MR and CD

For MR applications and based on recent technological advances, we can now assume that
the capture device is able to capture RGB images and depth maps with their associated
camera intrinsic and extrinsic parameters, relative to where the MR session was started.
The prior scene representation against which changes are detected would contain the
scene geometry necessary to achieve photorealism, and associated semantic annotations
for behavioural realism [77]. The corresponding information for the current state of
the scene would have to be inferred from the limited perspective of the capture device,
whose interpretation could be facilitated by prior knowledge.

Both the semantic and geometric layers of the scene representation can be organised
using a SG, where nodes describe objects’ and edges’ spatial or general relationships.
Some the objects could be semantically labelled using 2D [154, 82] or 3D [21] processing,
but unknown objects would still be identifiable through stored geometric and photo-
metric attributes, as well as their neighbours’ (defined by the edges). The relationship
described by the edges have to be viewpoint-independent, in order to be usable in 3D.
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In conclusion, SGs can effectively describe which changes are considered relevant
with regards to the application. On the one hand, changes in the scene that impact
the experience should be represented by modifications to the graph’s topology or to the
nodes’ attributes. On the other hand, every element present in the graph should be
maintainable using the available information on the current state of the scene, as to not
diverge from reality.

In the following section we will survey works relating to scene graphs (generation
and application) that are relevant to solving the problem of CD for MR applications.

4.3 Survey: Semantic Graphs for scene understanding

In the field of Augmented Reality, SGs may represent two different types of scenes:
the real one and the virtual one. As outlined in [163], a “scene graph” can be used
to refer to the representation of the latter: an organised collection of virtual assets to
be inserted into the scene. The graph used to represent the real world is referred to
as the “world graph” and organises the various “trackables” (fiducial markers, objects,
landmarks, etc.) in the scene in order to, for instance, localise the device. Both graphs
can contain “anchors” which are used to interface between the real and virtual contents:
they are locations defined relatively to the trackables in the world graph, and around
which assets are organised in the scene graph.

Our change detection task relates to the study of the real scene and therefore to
the “world graph”, however, works relating to either category (virtual or real scenes)
are relevant to our application. These works all refer to the graphs they use as “scene
graphs”, since “world graphs” are a notion specific to the AR field. Consequently, the
following survey will also refer to them as “scene graphs” (SGs) when no distinction is
required.

4.3.1 Prescriptive graphs for scene authoring

SGs were introduced as a database searching tool in [91, 60, 153], but have been used
to manipulate [46, 181] or generate [92] images. Their structured nature make them an
efficient scene authoring tool when semantic constraints are placed before strict geometric
ones. The graph representations used for this purpose are prescriptive (i.e., a set of
instructions) rather than descriptive [36].

In the context of 3D building software [33] or physics engines [75], graphs –and
specifically “trees”– may be used to organise the different assets of a virtual scene. For
example, spatial coordinates or material properties may be passed down the branches
of an asset management tree, but the object-nodes may also be connected by edges
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describing relative transformation matrices. The graph is simply a representation of a
set of constraints between files or models as defined by the user in the scene [36].

By definition, these SGs provide an exhaustive representation of the scene while
relying purely on geometric and photometric data [179, 98]. Similarly, updates to the
topology or the nodes’ attributes are directly reflected in the scene, and there is little
need for performing CD, beyond version control [20]. The study of prescriptive graphs
still informs our choice of graph representation in two ways. Firstly, it helps in creating a
world graph that is better interfaced with the virtual scene graphs for MR applications.
Secondly, the design of these graphs makes explicit many of the attributes that are
relevant to track to achieve realism (textures, materials, meshes, light sources etc. [98]),
and that should therefore be present in our own SG.

Finally, we note that manually created SGs have been used to search for object
patterns in a scene for AR applications [185]. This can be seen as a case where the
anchors of the (real) scene graph and (virtual) world graph are the trackables [163], and
the SG ends up describing the scene, although not in an exhaustive manner.

4.3.2 2D Descriptive graphs and relationship extraction

Building on the idea that scene structure can help identify objects (as in Subsec-
tion 4.2.2), Relation R-CNN [27] (Region-based CNN) is a 2D object detection network
which computes semantic and spatial relation features to improve its sensibility and pre-
cision. Although Relation R-CNN only returns the objects’ classes and bounding boxes,
there exist works that specifically detect the objects’ relationships, yet do not directly
provide their results in the shape of a graph [215].

The works based on the Visual Genome [105] and Visual Relationship Detection
(VDR) [126] datasets provide similar interaction-based relationships. Another dataset,
namely, SpatialVOC2K [11], was developed for the purpose of spatial relationships an-
notation in images [10]. This has led to the implementation of methods that employ
mono-depth estimation [15] and k-means clustering [14] to improve the quality and
quantity of the detected relations. It should also be noted that object pairs should be
able to share multiple semantic relationships to fully describe the scene structure.

For image-based scene understanding, there are many methods for directly generating
scene graphs as well: Graph R-CNN [210], Factorizable Net [116] and Align R-CNN [186].
These methods are derived from object detection R-CNNs [154, 82] where additional
branches were added to provide information on the relationships between the objects.
Such 2D scene graphs have proven useful as a translation tool between the natural
language and geometric or photometric measurements [166], as well as the applications
mentioned in the previous subsection [91, 60, 153, 46, 181, 92]. However, for all these
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applications, the contents of the scene are usually described with a focus on actions or
interactions focus rather than on the structure of the scene [116, 210].

Unlike 3D models or 2D floor plans, “realistic” images of scenes (i.e., ground-based
photography) are not suited to spatial planning and often contain active subjects. The
uniqueness and qualities of an image are often better conveyed through its implied
narrative rather than the spatial arrangement of its contents. Indeed, converting such
action-based captions into accurate visual layouts is an active area of research [49].
Some relationships detectors are designed to extract more structural information about
the scene, such as support relationships [173] (pairings of objects to the surfaces they
are supported by), however most 2D SG generators are not. In practice, the resulting
graphs usually contain a reduced number of edges with complex semantic meanings, and
there have been efforts to increase the density of the graph by producing more edges
per node pairs [186]. However most of these relationships are dynamic or rely on the
presence of active subjects, which makes them unlikely to be stable enough for long-term
change detection and representation in semi-static MR scenes.

4.3.3 3D Descriptive graphs and graph fusion

When SGs are used to describe 3D environments, the focus usually shifts from recording
the narrative of the scene to recording its layout, as they are meant to be used for
interactivity and navigation rather than captioning. Semantic graphs can be directly
constructed from 3D data [201], using Machine Learning tools such as PointNet [21] and
Graph Convolutional Networks [101], but the semantic analysis is generally performed
with 2D images.

One approach consists in generating local 2D graphs from a video or image se-
quence [100, 213], which are incrementally merged into a global 3D graph in a process
that will be further described in the next subsection. The method described in [100] uses
graphs produced by Factorizable Net [116] and therefore requires filtering of the dynamic
edges (actions) or nodes (actors) that do not serve to describe the scene structure, which
further decreases the density of the local graphs before their merging. The density issue
is compounded by the removal of 2D spatial relationships that do not translate directly
into a 3D representation without ambiguity [148], and often only vertical structure is
preserved as this axis is assumed to be aligned with the gravity vector (i.e., the normal
to the ground).

In order to increase the number of structural edges with 2D semantic analysis, graph
generators can use simpler metrics –such as proximity or contact– as opposed to learning-
based methods, therefore decoupling the node and edge creation tasks. This is the
approach taken in generating some “layered” graphs representations [6, 160]. These
data structures have been introduced to facilitate the instruction interpretation task
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in robotics, and to further organise data of differing scale or nature, and they employ
“vertical” edges to correlate the information found on each layer, be it geometry, camera
viewpoints, actors, or building layout.

In a similar fashion to multi-view object detection [28, 190, 43, 202, 217, 117, 144, 29],
semantic analysis is improved by correlating the results found on different 2D points of
view. In [6], object detection is performed on panoramic images registered to the 3D
model, which is in turn textured using the segmentation results. Alternatively, [160]
uses Kimera [159], which generates the geometry from a stereo-camera and an inertial
measurement unit, and provides semantic analysis through panoptic segmentation of the
left-side camera. The 2D segmentation is then converted into a 3D voxel grid of label
probabilities, which is finally used to texture the mesh with the most likely labels using
marching cubes.

As we have seen, the exact structure of 3D graphs vary with their method of con-
struction or the intended application. Some favour processing efficiency over human
readability, and none are specifically tailored to the task of comprehensive scene change
detection, or monitoring on a human-scale. However, the 2D graph fusion methods
requirements are the closest to those of the MR scenario.

4.3.4 Object similarity for node matching

In Subsection 4.3.3 we introduced the process of constructing a global 3D SG from the
fusion of local 2D graphs [213, 100]. This fusion requires the association of the nodes
present in the local graph with the ones contained in the reference: the nodes that refer
to the same object in the scene are matched and merged. Conversely, the ones that
refer to new entities are simply attached to the global graph with the edges seen in the
local graph. To determine if there is a match between a local node and a global node,
there needs to be a means of measuring similarity between nodes and ascertain if it is
significant enough.

The similarity metrics used in graph fusion methods are based on the object nodes’
attributes, and a threshold value is set to indicate similarity. In [213], the nodes’ label
and 3D position are compared, as the photometric aspects of the objects are considered
too unstable over time. The label score is positive if the two nodes share the same
label and is equal to the maximum of the nodes’ “confidence score” for said label –the
probability of the semantic labelling to be accurate reported by the 2D graph extractor.
The position score is proportional to the nodes’ distance normalized by the diameter of
the largest of the two nodes. [100] uses more information: the position and size are stored
as a 3D Gaussian distribution, photometric attributes are stored as a color histogram
and the label is a probability vector over the whole set of object classes. The similarity
metric is based on the 3 most likely labels for each object, the histograms’ intersection
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and the Gaussian distribution overlap. All these individual values are weighted and
summed into an overall similarity score used during the fusion.

A closely related approach to this similarity metric can be found in place recogni-
tion methods that use landmarks [182]. The second-to-last layer of an object classifier
network [106, 81] produces a vector-like descriptor that can be used to identify specific
objects: there is enough information remaining to recognize them as individual instances
rather than as members of a category. For the place recognition task, a database of the
most recognizable, reoccurring and stable landmarks can be constructed containing said
descriptors. The similarity metric can then simply be the cosine distance between two
of those vectors –their scalar product divided by the product of their norms. If it were
to be applied to graph fusion, this metric might need to be used in conjunction with
other measurements, such as relative position, in order to compensate for the generic
nature of most of the objects in the scene. However, this descriptor can act as a more
relaxed substitute for the node’s label probability vector, especially when the object is
of an unknown class.

Switching to a graph structure for localisation [69], collecting landmarks of any nature
in the environment and attaching them to their respective spatial points of capture, can
also prove to be effective. These landmarks can be any type of sensory measurement
(i.e., trackables: temperature, radar, LiDAR...) or miscellaneous properties such as
the presence of WiFi hot-spots or connected items. During a later exploration of the
scene, the graph is searched to find the spatial coordinates which correspond the most
to the currently visible landmarks. In this graph, the directed edges correspond to the
paths between landmarks pairs, and they store the distance and direction along those
paths. The work in [69] notes that landmarks sometimes need to be disambiguated to
be accurately matched, and this is achieved using a “belief” score based on the same
relative spatial properties.

While changing the nodes’ attributes could improve the performance of graph fu-
sion methods [213, 100], their node-matching processes still ignore the relative spatial
knowledge provided by the graphs’ topology. The local and global graphs are practically
reduced to a list of objects with attributes, and edges are only reintroduced when new
nodes need to be attached the reference. As mentioned before, this can be attributed to
the lack of stable relationships extracted from the images when forming the 2D graphs,
which would make the edges an unreliable means of identification for the few nodes they
connect. However, with a more robust way of generating the edges, the topology of the
graph could be a determining factor in graph fusion processes.

Ignoring the graphs’ topologies may provide the necessary time gain for those meth-
ods [213, 100] to produce and merge the local graphs at a sufficient frame rate so as to
guarantee sufficient overlap in the content of the analysed images for real time analysis
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(such as for MR or robotics). However, matching individual nodes cannot sufficiently
discriminate between multiple instances of the same objects in the scene, and ignores the
benefits of a multi-view observation of the scene to determine spatial relationships. If
the pose estimation of the capture device was to become unreliable or unavailable –due
to, for instance, overly quick movements or loss of GPS information– similar objects
at different places could be merged, leading to wrong edges to be drawn without ever
being removed. Attempting to preserve graph topology during fusion can provide some
stability during fusion and retain the spatial information contained in the edges. Only
with said stability can changes be accurately detected.

4.3.5 Graph subsumption

A graph isomorphism is an equivalence relationship between two graphs for which there
exists a bijection between the nodes of each graph which preserves adjacency. When
two graphs are different –and therefore no bijection exists for all nodes– only subgraph
isomorphism is possible and is referred to as “graph subsumption”. In the context of
semantic graphs, the constraint of matching the nodes’ and edges’ attributes is added
on top of the preservation of topology. Graph-based localisation and “graph matching”
are analogous when one graph –the query, which represents the current point of view–
is much smaller than the other –the reference, which represents to global environment.
Graph matching tools already are the backbone of previously mentioned applications,
such as image database searching [91]. For instance, the searching process was improved
upon by using a catalogue graph that links all the existing types of nodes and edges to
the images in which they appear [153]. These works [91, 153] are seemingly applicable
to the field of MR as their visual-semantic graphs also use nodes to tally the objects of
a scene and edges to describe their interactions or relationships.

In order to efficiently compare two graphs with attributes, “node descriptors” can be
used to encode the local topology of the graphs around each node. When several nodes
share similar attributes in the same graph, this helps in differentiating between said
nodes. For SGs, this helps in recognizing specific instances of the same type of object in
the scene, as they would share the same label. In the field of large-scale re-localisation in
semi-static environments, where nodes correspond to semantically consistent contiguous
areas, there exist several approaches for exploring and encoding the local topology around
each node. Works such as [61] (“X-View”) and [124] employ an arbitrary number of
“random walks”, which start at the studied node and take a constant number of steps
from it along the edges. Alternatively, [180] and [72] exhaustively explore the local
topology, but with a usually smaller number of steps –in fact [180] only checks each
node’s direct neighbours. The processes involved in the generation and comparison of
each descriptor will be further developed in Chapter 5.
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We notice that in the above-mentioned localisation methods, the edges of the graphs
are considered unlabelled, as only the nodes’ and their neighbours’ attributes are stored
in the descriptors. Edges merely reflect whether or not the relative distance based on
two nodes’ spatial attributes falls under an arbitrary threshold. Attempting to store
the nature of the relationships in exhaustive descriptors such as those of [72] may be
too costly in terms of memory –which is why the number of steps is limited in the
first place. The random walk approach would not be impacted as severely but the
increased amount of classes involved could necessitate a higher number of walks to better
represent the local topology, especially if multiple relationships per node pair are allowed.
Additionally, both [72] and [61] are designed for outdoor scenes, which are more prone to
environmental –photometric– changes but are less semantically dense and dynamic than
indoor ones. Outdoor scenes present larger and more spread out objects, which makes
each partial view of the environment more unique and camera pose estimation errors
–specifically errors in translation– relatively less significant. Translating those methods
to indoor applications requires consideration for the increased number of classes and
relative size of the query graphs to the reference, and if the current definition of edges
is suitable.

Finally, we must note that [61] and [72] both take as input sequences of relatively
registered RGB-D frames: the relative movements of the camera between each frame
within a sequence are known, but the sequences do not share the same “global” coor-
dinate system, hence the need for localisation. They therefore include their own graph
fusion methods to produce the query and reference graphs, which rely on 2D semantic
analysis and are exclusively node-based. The fusion process is not required to perfectly
merge same-object nodes across frames, and the number of classes detected is limited
to accommodate the descriptor used, i.e., to limit memory consumption and processing
time. Therefore, contrary to the graph generation methods from Subsection 4.3.3, these
localisation methods do not produce graphs useful for scene description, and [150] even
remarks that object classification can be wrong as long as it is consistent.

4.4 Conclusion: Scene Graphs for Change Detection

Like the localisation task, the change detection task requires the existence of a reference
–or prior– which can be of a different nature from the current view of the environment.
In the case of X-View [61], both the query and reference are built from the same rudi-
mentary graph fusion process, whose inconsistencies can be ignored given the robustness
of the final matching algorithm. This is true of most localisation methods, especially in
dynamic scenes: the underlying goal of the task is to find enough of the most reliable
–recognizable and stable– features of the scene to match the query to the reference [45].
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With these tools, performing change detection by listing the unmatched features of the
query and prior would result in many false positives and untracked changes. The de-
tected changes would also need to be translated back into a meaningful representation
of the scene, which could include a filtering step but would not retrieve the missed
changes. In conclusion, the state of the art methods in SGs generation and matching
are not designed to adequately perform the scene CD and model maintenance tasks that
are required for MR applications using current semantic graph tools.

4.4.1 Experiments with the scene representation

Using the capabilities of a standard MR device, the accessible data to produce the query
graph is the RGB image and a corresponding depth map provided by the cameras with
some positional information: as a consequence, we can use image-based graph genera-
tion. With this assumption, we first altered the graph fusion pipeline proposed in [100]
(previously mentioned in Subsection 4.3.3) to include the localisation and comparison
to a graph prior generated by the original algorithm. We found that its node matching
process is reliable given an accurate pose estimate, but it is limited by the object detec-
tion capabilities of Factorizable-Net [116]. The detection is inconsistent from frame to
frame and most objects in the scene are unaccounted for, even when only considering
the classes the network was trained on. To improve the process, another 2D SG gen-
erator was experimented with, Graph R-CNN [210], which gave much more consistent
results along the sequence but still recognized a limited number of objects. Both 2D
SG generators also produced very few relationships edges, which were further filtered
out during fusion. Switching to alternative generators designed to augment the number
of edges –such as Align R-CNN [186]– would not fix this issue, due to their focus on
describing the events occurring in the image rather than the scene layout. Therefore, our
graph representation should include edges provided by geometric analysis of the nodes’
attributes [61, 71], rather than 2D semantic analysis, as the former provide a more stable
representation of the scene layout –thanks to the reliable extraction of nodes’ geometric
attributes– and would be better suited to CD.

For the purpose of evaluating a change detection method, it is more practical to
assume that the prior is an exhaustive and accurate representation of the scene, from
which the perceived current state differs. The problem of detecting the mistakes made
during the construction of a prior using newly acquired information is more akin to
robust scene representation generation, which could be tackled with or without actual
changes. Using the knowledge that the scene prior is “perfect”, the shortcomings of the
change detection method can only come from the sensing of the scene’s current state or
failure to interpret the sensor’s readings.

In summary, we will make the following hypotheses:
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� the AR device is equipped with sensors allowing it to produce a depth map in
addition to the corresponding RGB image and camera pose estimation,

� these readings can be semantically analysed to identify the objects in the scene,
which are the labelled nodes of our SG representation with geometric attributes,

� the edges of the SG are produced from geometric analysis of the nodes’ attributes,
giving the graph a topology based on the scene layout rather than object interac-
tions,

� when evaluating a CD method, the prior representation must be accurate and
exhaustively describe the properties that are tracked by the method.

4.4.2 Problems to solve to achieve the thesis goals

After focusing on a photo-geometric CD method in the previous chapter [161], we have
now chosen to work with a SG representation to deal with the scene’s semantic contents.
With the new hypotheses made in Subsection 4.4.1, we have identified four problems to
solve to achieve our current goal of change detection for MR with scene graphs:

1- Semantic change detection between two complete scene graphs.

We assume that the current state of the scene is described in a similar manner as
the prior: it covers the same spatial regions with the same level of detail. The two
graphs must first be aligned using graph subsumption, where the most similar nodes are
matched. Once this is achieved, we can detect changes of two forms: the modification of
graph topology (addition or removal of nodes) and the modification of node attributes
(besides their label). This second form of change is the result of the flexibility of the
matching algorithm: nodes with different attributes can be matched because we should
not assume that properties such as illumination will remain constant over time. In
addition, simply regarding a node’s change of attributes as replacement by another node
–consecutive removals and additions– would not allow for the tracking of changes of a
specific object instance. Finally, we notice that spatial and visual attributes (colors,
shape, material etc.) are necessary to track changes in unclassified nodes.

2- Semantic change detection with a partial query and a complete prior.

This problem will occur in MR applications, where change detection may need to
be performed live without preemptively scanning the whole scene. An added challenge
from the first problem lies in the complexity of the graph matching step, since less
information will be available from a partial view of the scene than a global one. The
criteria for matching nodes representing large objects (e.g., walls) also changes, as the



4.4. Conclusion: Scene Graphs for Change Detection 89

areas they cover are unlikely to be fully visible. Once the query graph is directly localised
in the prior, there is then the issue of differentiating between actual changes and the
absence of nodes due to the limited field of view or occlusions. Occluded or out-of-
view objects still matter during MR experiences, as they can affect the behaviour of
virtual agents (on-screen or off-screen) or the rendering of virtual content (physically-
based lighting, reflections, shadows etc.) and therefore cannot simply be removed from
the scene model. Limiting the scope of the CD to the partial scene may require the
reconstruction of the camera’s point of view –effectively finding the relevant sub-graph
in the prior– based on current node visibility and the relative change in size and shape
of nodes representing large areas (partial visibility). We note that this problem may
be unsolvable if the information on the current state is too sparse, in which case the
problem will reside in minimizing this minimum data requirements (i.e., the time and
effort required from an MR user at the beginning of a session).

3- Local scene graph extraction guided by the global prior.

If we take into account the limitations of hardware of the MR device at the time
that CD is performed, the use of the prior data is required to fill the knowledge gaps and
accurately detect changes. Attempting to recreate the exhaustiveness of the prior from
low quality observations will result in many missed or misidentified objects, where the
use of the prior may provide additional information in the shape of regions of interest.
The prior also defines contents of the scene relevant to the MR application, and failure
to explicitly track their changes will therefore lead to issues during the experience.

However, if we were to use the prior to generate the local query, the matching process
becomes two-fold: a preliminary query must be proposed and localised in the global
prior to be able to use the local properties of the prior and to subsequently generate
a more accurate query before CD. This may only be required at the start of the MR
session or when the pose estimation becomes unavailable, and a preliminary query graph
may be accurate enough to significantly reduce the number of potential matches in the
prior.

4- Geometric update of the model from semantic CD.

In the three previous problems, we avoid the issue of the initial construction of
the graph prior, since its efficient and accurate generation does not directly relate to
the change detection task. However, the tools used to produce this prior graph and
its contents will ultimately dictate the nature of the changes that can be detected and
how the scene representation may be updated. We must design a prior and method
to allow the conversion of semantic results of the change detection into geometric or
photometric updates of the scene model. This can for instance be done using a layered SG
representation [6, 160], or any prescriptive graph-inspired structure that would allows us
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to link the relevant photo-geometric data to the nodes and their attributes (as explained
in Subsection 4.2.1).

The only data that would need to be retrieved by the MR device would be that
which relates to novel or altered objects in the scene. The textures and geometric data
could be recovered and refined over time using the available sensors [58], but accurate
semantic analysis would allow us to duplicate such data from identical objects in the
scene, or from an existing database [170].

In the following Chapter 5, we will consequently tackle the first of the above-mentioned
problems by introducing our graph generation and registration pipeline. In order to have
graphs of similar nature for the query and reference, they will both be produced from
sequences of relatively registered RGB-D frames, as to emulate the available sensors
from an AR device. Finally, the registration of the SGs will be performed using node
matching –based the graphs’ topologies and the nodes’ semantic labels. The elabora-
tion of a robust node matching process for the registration should ultimately lead to an
effective object tracking method to be used for CD.
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Chapter 5

Graph-based model registration
for semantically rich scenes

In an AR experience, persistent virtual content is content whose state and locations in
the real world are preserved between AR sessions. When changes occurs in the real scene
between sessions, the persistent content can be integrated in the new scene layout based
on its spatial relationships with real world objects rather than absolute coordinates,
for a more realistic behaviour [77, 111]. As shown in Chapter 4, the detection of such
objects and relationships can be achieved through semantic analysis of the scene as
perceived by the AR device, the results of which are stored in a semantic Scene Graph
(SG) as nodes and edges respectively. Using graph matching, this semantic information
is enough to register two instances of a scene –from a previous AR session and the
current one– without additional extraction or reconstruction of 3D geometry. In this
chapter, we propose a novel node descriptor to compute node similarity during the
matching, which encodes the node’s label (i.e., the object’s class) as well as local topology
(i.e., objects’ relationships). The size of this new descriptor increases only linearly
with the depth of the SG exploration as opposed to the exponential growth seen in the
state-of-the-art, without sacrificing matching performance. We also introduce a graph
generation algorithm that provides an object-level representation of the scene to improve
its semantic understanding for AR applications, without compromising the registration
performance. We prepare and use subsets of ScanNet [37] and ChangeSim [139] as scene
registration datasets, and propose a specialised metric for evaluating said registration.
The method properties are summarized in Table 5.1.

Table 5.1: Graph-based registration from image sequences

Raw data Output representation Registration results

RGB-D sequences Semantic SG 3D transform
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Figure 5.1: In an AR session, the contents of the scene can be seman-
tically and spatially represented by a scene graph so that virtual objects
can behave in a realistic manner. Left: A reference graph captured during
a past session and a virtual object attached to a “table” node (magenta
arrow). Right: A query graph generated from the current state of the
scene and must be registered to the reference to restore the virtual ob-
ject. The registration is achieved through semantic node matching (blue

arrows).

5.1 Introduction

In the previous Chapter 4, we noted that in a number of emerging AR applications such
as photo-realistic rendering [157, 146, 140] and environment-guided storytelling [26, 113],
being able to rapidly detect changes in the scene from one AR session to the next is
critical in order to enable a realistic immersive experience for the user. This can be
efficiently achieved when the real world is already segmented into objects or areas that
are relevant to the application. For such applications [111, 22], the positioning of virtual
objects in relation to the ones present in the real world is more relevant than their
absolute coordinates [83]. This can offer more flexibility in the placement of virtual
objects to improve the readability and facilitate user interaction [31], or to help increase
the realism of their interactions with real objects [119]. Previously, fiducial markers
have been used to place virtual objects or to help user navigation [96, 135], but semantic
analysis of the scene has also been able to provide usable landmarks [123]. This has led to
the use of semantically-oriented representations of the AR scene, which allow convenient
storage and processing of the virtual and real objects and their relationships [185]. These
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representations often take the form of a scene graph [91], where the nodes represent
objects or areas and the edges represent spatial or more general relationships between
those objects. Such graphs provide a lightweight and versatile representation of the
scene, especially on portable consumer devices that lack processing power or complex
sensors.

At the start of a new AR session in a previously visited real environment, any per-
sistent virtual content needs to be reintegrated in its correct location despite potential
layout changes in the real world. For instance, virtual objects that appear to be rest-
ing upon a real table should follow the movements of said table between sessions (see
in Figure 5.1). Regardless of the presence of such changes, the AR device will likely
be started in a different position and orientation, and the video feed it captures will
showcase different parts of the scene every time. In this chapter, we aim to register
two image sequences of a real scene, which represent the AR device video feeds of two
different sessions, using the same graph representation whose purpose is to integrate
the AR content in the real scene. Our proposed registration method makes use of in-
formation that is already necessary to the execution of the AR application –i.e., the
scene graph– and will ultimately simplify the tasks of detecting changes and updating
this representation of the scene. From this process we obtain both a 3D transformation
aligning the two scene instances’ coordinate systems, as well as a list of matching graph
nodes –i.e. a list of consistent real objects between the two sessions– onto which to
anchor the virtual content (see Figure 5.1). We also noticed in Chapter 4 that the use
of such semantic graph-based localisation methods is usually limited to outdoor envi-
ronments [72, 61], so we evaluate the pertinence of our method for indoor scenes from
the ScanNet dataset [37], which contains a high variety of objects in spatially restricted
environments. We also observe its behaviour in larger changing environments, such as
the photo-realistic virtual warehouses present in the ChangeSim dataset [139].

In our method, a scene graph is generated from each of the two image sequences
captured at different times, and individual nodes are matched between the two graphs
to identify corresponding areas in the scenes. The nodes of a graph represent the real
objects in the scene using a semantic label –the object’s class– and a 3D point –the
object’s center’s local coordinates in the session– while the edges give a simplified account
of the scene’s structure by connecting objects close to each other. From the labels and
edges, a node descriptor can be generated for each node in one graph and compared
against the node descriptors in the other graph, to measure their similarity. Once nodes
are matched based on their similarity, the 3D points of the matched nodes can be used
to estimate the transformation between the sequences (scene instances). The quality of
this estimation derives from the accuracy of the matching process, which in turn relies
on the effectiveness of the descriptors used. The registration results from our method are
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compared to a state-of-the-art descriptor-based approach [72] to evaluate the usefulness
of the descriptors. Compared to this earlier work, the size of our descriptor only increases
linearly with the depth of graph exploration when generating the descriptor, or the
number of different object classes, as opposed to exponentially. Furthermore, we tailor
our approach to AR applications, where the SGs generated can be used for purposes
beyond the registration –such as interactivity between real and virtual agents– and
where additional node attributes can be provided by other processes –such as color or
material for photorealistic rendering in MR experiences. As such, we propose a variant
of the graph generation algorithm where the object segmentation of the scene (into graph
nodes) more closely matches the real world instance segmentation.

Our contributions are the following:

� A new lightweight and effective node descriptor based on the adjacency matrix of
the scene graph.

� An alternative scene graph generation algorithm from image sequences, which bet-
ter preserves object instance segmentation.

� A bounding box-based Root-Mean-Square Deviation (RMSD) metric applied to
the evaluation of indoor scenes registration.

� Methodologies to process and use ScanNet [37] and ChangeSim [139] as semantic
model alignment datasets.

Section 5.2 is dedicated to an overview of the related graph-based scene registra-
tions methods and the existing processes for evaluating said registration. Our proposal
is documented in Section 5.3, and the preparation of the experiments and results are
explained in Section 5.4. Finally, our conclusions are summarized in Section 5.5.

5.2 Related Work

In Chapter 4, we surveyed the works related to the use of semantic graphs for scene
understanding. Notably, we found that such graphs would often be generated and com-
pared against each other through node matching to provide quick and robust localisation
within said scene. In this section, we will focus on the means by which these works can
compute node similarity for matching, and their limitations in the context of indoor
scene registration.
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5.2.1 Graph-based localisation and descriptors

In this chapter, graph matching refers to a weaker variant of graph isomorphism, pre-
viously defined in Chapter 4. Instead of searching for a bijective mapping between the
nodes of two graphs, the focus is on finding pairs of nodes which are similar according to
a predefined metric. This process is closer to graph subsumption because there is no as-
sumption that a perfect pairing can be found between the nodes or that the graphs have
the same size. Therefore, the edges of the graph become the mean to identify individual
nodes through the observation of their surroundings. In order to process this topological
information efficiently when comparing nodes, it is encoded into node descriptors.

5.2.1.1 Neighbourhood vectors

The use of SGs as an retrieval tool from image database [91, 60, 153] allows them to be
effective in visual place recognition [143]. Such a problem was tackled in [180], where
landmarks of the environment were stored as labelled nodes in a graph connected by
edges weighted by the number of times the landmarks appeared together.

Inspired by the Weisfeiler-Lehman isomorphism test [171], the graph matching method
used in [180] substitutes each node’s label with a vector representing its direct neigh-
bourhood. The vector is sized according to the number of labels, and acts as a histogram
where each bin is the sum of the weights of the edges going from the node to one of its
neighbours’ labels.

The similarity between two nodes can then be measured using a normalized dot
product of the nodes’ corresponding vectors, which serve as node descriptors. However,
the topology is only recorded with a depth of 2, i.e., one step away from the node
described.

5.2.1.2 Random walk

In order to record the local topology around nodes with an arbitrary depth, random
walks can be used [124, 203]. To describe the nodes, X-View [61] generates a fixed
number of random walks with a fixed number of steps, and stores the explored labels
in a 2D array. Each row corresponds to a specific walk and exploration rules can be
added to avoid duplicated walks or to limit the number of times nodes can be visited,
in order to provide more useful descriptors. Contrary to the vector approach [180], the
finite number of walks introduces an element of randomness during the generation of
descriptors. Moreover, the measure of similarity between descriptors involves a time
consuming process of finding identical walks which also limits the depth and number of
walks that can be used.
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5.2.1.3 Walk histograms

Solving the aforementioned issue of randomness, [72] performs an exhaustive tallying of
the walks from each node and stores the result as a vector-like histogram. The search
can be performed with any depth, but the number of steps in the walks is limited to 2
in the paper. This is due to the rapidly expanding size of the stored descriptors with
increasing depth: like the neighbourhood vector [171], the size of the walk histogram
increases with the number of labels in the scene. Since the walks can be seen as label
triplets, the histogram’s length is the number of labels cubed.

The exhaustiveness of this method allows for the use of the normalized dot product
as a similarity metric, therefore combining the convenience of [171] with the descriptive
powers of [61]. However, this representation of the topology would be impractical in
scenes with a large number of object labels, as the histogram’s size would exponentially
increase while most of its bins would remain empty.

In this chapter, we propose an alternative representation of the local topology around
each node with only a linear increase in size with the depth or number of labels, thanks to
the elimination of the redundant information contained in the walk histogram. This new
adjacency matrix-based descriptor can also be compared using the normalized dot prod-
uct, being a vector-like histogram. We therefore keep the advantages of the deterministic
walk histogram approach while having more control over the size of the descriptors.

5.2.2 Quality metrics for scene registration

Point clouds are often used to represent the geometry of scenes as they can be directly
obtained from real environments using the fusion of RGB-D images [37], high-resolution
laser scanning [7] or multi-view stereo reconstruction [168]. As such, there are many
works in scene registration whose performances are evaluated based on the use of clouds
as input data, yet these quality metrics can also be applied to our graph-based method.

The registration of two clouds can be evaluated through the calculation of the rota-
tion and translation errors compared to a ground truth transformation. However, [53]
underlines that having two separate metrics or an arbitrarily weighted sum of the two is
not convenient to compare registration methods. [53] cites RMSD [132] (or RMSE) as
a suitable metric which can be computed by taking all “homologous” point pairings be-
tween the reference and the transformed source and measuring their squared distances,
averaging the result and taking the square root. Homologous points in a point cloud
pair, are points which correspond to the same region of space in both clouds. To avoid
the need for finding such point pairings, [129] proposes to model the clouds as platonic
solids, and only measure the distance for their vertices. RMSD can also be computed



5.3. Proposed method for scene registration 97

using only the points of the source, by comparing the cloud transformed using the esti-
mation to one transformed using the ground truth [216]. Finally, an earlier work [90],
deals with the registration of brains by abstracting such objects as “volumes”, and re-
placing the numerical summation of distances over the points of a cloud –or a solid– by
a formal integration of the RMSD function over a sphere of a given radius. Since the
method in this chapter is focused on indoor scenes, we can perform a similar abstrac-
tion by using the scene’s bounding box as its shape, and formally integrate the RMSD
over the resulting volume. In effect, this will make the error independent of the scene’s
layout –i.e., the error is based on the scene’s boundaries (walls) rather than its contents
(objects)– which we assume to be desirable in changing environments.

5.3 Proposed method for scene registration

5.3.1 Pipeline

Since this work is mostly concerned with the elaboration and evaluation of the new
node descriptor and graph extractor, the scene registration pipeline is similar to the
ones described in [61] and [72] as shown in Figure 5.2. The process takes as input two
semantically segmented representations of the same scene, and outputs an estimation of
the transformation between the two corresponding world coordinate systems.

Input

Semantic sequence A:
segmented images,

depth and local poses

Semantic sequence B:
segmented images,

depth and local poses

Labeled

point cloud

extraction

Labeled point cloud A

Labeled point cloud B

Graph

topology

construction

Semantic graph A

Semantic graph B

Descriptors

generation

Node descriptors of A

Node descriptors of B

Graph

matching Node matches

Outliers

detection

Scene

registration

Output

”A to B”
transformation

matrix

Figure 5.2: Scene registration from semantic information. Two in-
stances “A” and “B” of the same scene are each represented by a sequence
of semantically segmented images, with corresponding depth maps and
camera poses. The two sets of poses do not use the same world coor-
dinate system, so the semantic information from the images is used to
register A and B through the construction and matching of two semantic

graphs.
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5.3.1.1 Input data

Each scene instance is represented as a semantically segmented image sequence with
associated depth and pose information. These sequences are chronologically sorted sets
of images taken at short regular intervals, a simulation of the footage captured by an
AR device as an AR session is running. For the ScanNet [37] sequences, the frame-rate
of capture is 30Hz.

The images store the labels of the visible objects pixel-wise (as seen in Figure 5.1),
and 3D geometric information can be recovered from the depth maps in conjunction
with the intrinsic and extrinsic matrices of the capturing device for each frame.

5.3.1.2 Point Cloud extraction

The SGs are first generated through the extraction of 3D points from the sequences,
corresponding to the graphs’ nodes. For each segmented image, the barycentres of
uniformly labelled regions whose area exceeds a fixed threshold are computed using a
four-way flood-fill algorithm. These 2D barycentres are turned into 3D points using
the depth and pose, and added to a sparse “labelled” point cloud –an edgeless graph of
nodes with spatial attributes and a label each– unless they are filtered based on their
proximity to existing points.

For instance, in [72] new points with the same label and within a 3D distance thresh-
old Tobject of already present points in the cloud are ignored. This threshold allows for
small regions/objects seen across multiple frames to be recorded as single nodes. As a
side effect, objects whose diameter exceeds Tobject are broken up into several nodes, and
since the objects’ volume are not recorded, using multiple nodes helps in representing
the structure of the scene. However, this is undesirable if the instance segmentation of
the scene is to be preserved in the final graph, and increases the influence of the camera
path during scene exploration. Indeed, the spatial attributes of a node will be inferred
from the first detection of its corresponding region/object in the image sequence, which
will likely be at the edge of the frame in question. The object may consequently only be
partially visible for that first detection and the depth estimation may be less accurate
far from the frame’s center: the spatial attributes will not accurately reflect the position
of the object in the scene.

In Subsection 5.3.2, we describe an alternative point processing method which ad-
dresses both the object fragmentation and localisation concerns, while preserving the
necessary scene structure information. The resulting graph has two layers: a bottom
layer containing the aforementioned –now unfiltered– 3D points, and a top layer used to
group those points into object instances using Tobject. We call the resulting nodes in the
top layer “Super Nodes” (SN). SNs are similarly used for the semantic graph matching
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as the nodes produced by the algorithm from [72] –now referred to as “Legacy Nodes”
(LN)– but represent whole objects in the scene rather than semantically consistent areas
of arbitrary size.

5.3.1.3 Graph construction

To build the graph, every pair of nodes (i.e., SN or LN) whose distance falls under a
threshold Tedge based on the scene’s size, is connected by an edge. When using LNs
and setting this threshold higher than Tobject, large objects can always be represented by
several interconnected nodes. In practice, we use an automatic threshold that scales with
the average distance between nodes pairs in the graph based on their spatial attributes.
Tedge is set to avoid orphan nodes while not making the graph too dense, which would
make the local topologies around each node less unique. Empirically, we found that
setting Tedge to 75% of the square root of the average squared node pair distance in
the graph yielded 40% to 60% connectivity in the resulting topology. In this context,
connectivity percentage refers to the number of existing edges in the graph over the total
number of possible edges.

The edges give a simplified account of the spatial structure of the scene, where the
distance between two objects can be represented by the number of steps they are sepa-
rated by. The graphs’ topologies are stored in symmetric binary adjacency matrices with
zeros on their diagonals. They are considered “simple graphs”: edges are undirected and
unweighted, nodes cannot be connected to themselves, and node pairs can be connected
by a single edge at most. Simple graphs with n nodes have at most n(n− 1)/2 edges.

5.3.1.4 Graph matching

Once the graphs are generated, the local topology around each node is exploited to
produce a node descriptor based exclusively on the labels and edges. This process
is further detailed in Subsection 5.3.3. The descriptors are compared using a vector
normalized dot product, similarly to [72]. This results in a list of the most similar nodes
in both graphs according to the semantics and simplified scene structure. This can also
be seen as a list of matching 3D points between the two clouds.

5.3.1.5 Registration

The transformation between the two image sequences is estimated by minimizing the
error when transforming nodes from one graph to their matches in the other.

The previous work [72] also uses the ICP-RANSAC algorithm [12] in order to filter
out outliers that negatively affect the registration. The presence of those outliers is
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unavoidable even with a theoretically perfect graph matching. Indeed, as mentioned
in Subsection 5.3.1.2, due to the sequential extraction of 3D points, when using LNs, the
location of the objects is defined by the parts that first appear in the sequence. This can
cause correctly matched nodes to be located at points that are separated by –at most–
the diameter of the object they represent. The effect is not as pronounced using SNs,
but slight changes in the scene or imprecisions in the 3D point extractions will still lead
semantically sound matches to be spatially inaccurate.

The graph matching quality is ultimately evaluated by the closeness of the estimated
transform to the ground truth from the dataset. For this reason, node filtering through
RANSAC can be disabled, therefore forcing the registration algorithm to use all the
matches found, allowing for a better comparison the matching performance of the node
descriptors.

5.3.2 Super Nodes for graph generation

For every frame in the input sequences, the regions of the segmentation map –which
store the object labels (see Subsection 5.3.1.1)– are converted into 3D points based on
their 2D barycentre and the associated pose and depth map. Since this is performed
at every frame, with a high enough frame rate, the same regions in space are likely to
be observed several times. Even when filtering out similar-looking consecutive frames,
large objects and structures would likely be often visible, and the camera will eventually
capture the same areas over time.

In order to limit the size of the resulting scene graph, and get a better object-
level understanding of the scene, previous graph extraction methods such as [72] do not
add new LNs if there is already a node with the same label within a distance Tobject
(see Subsection 5.3.1.2). However, constructing the graphs with these LNs leads to the
previously mentioned issues: a fragmentation of large objects, and spatial attributes
that do not match the objects’ actual 3D barycentre.

To solve this, we introduce SNs, which can contain a multitude of 3D points rather
than a single attribute vector of 3D coordinates. Like LNs, every SN has a single label,
which is the same label shared by all the points belonging to it. We define the distance
between a 3D point and a SN as the smallest distance between the former and any point
belonging to the latter. Consequently, the distance between two SNs can be defined as
the smallest distance between one SN and any point belonging to the other. Using these
metrics, a new 3D point is identified as a “duplicate” when its distance to an existing
SN with the same label falls under Tobject. When this occurs, rather than being ignored,
the new point is added to the corresponding SN. If the new point were to be added
to multiple SNs using this criteria, they all are merged into a single SN –containing
all their respective points and said new point. This greatly alleviates the problem of
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object fragmentation, as the delimitation threshold can be tested at the extremities of
large objects, which are updated as they include more points, matching their spread
in the real world. The volume of large objects can be inferred from the 3D points
within their corresponding SN, rather than multiple LNs of the same label separated
by Tobject. Consequently, it is the distance between two SNs that is used to create the
graph topology.

The use of SNs also allows for filtering out a posteriori some of the errors introduced
by the sensors. Indeed if the pose estimation momentarily fails or artefacts appear in
the depth map, a few extracted points may be incorrectly identified as new objects and
added to the graph. Once the extraction is over, those anomalies can be removed using
a minimum threshold Tsuper on the number of points a SN must contain. If we require
the object to be visible for at least 5 frames to be added to the graph as a SN, we should
set Tsuper higher than 5, since several points can be extracted per frame. In practise we
use Tsuper = 10.

Figure 5.3 shows how LN and SN extraction processes differ for a specific object:
a “counter”, which only appears once in the scene. The counter is first detected in
frame 165, and the corresponding LN and SN are added to their respective LN-graph
and SN-graph. Initially, both the LN and the SN have the same spatial attribute, which
corresponds to the 3D location of the object’s first sighting (the SN contains a single
3D point). In frame 413, the location at which the “counter” is detected is further
than Tobject away from its original detection, therefore a new LN is added to the LN-
graph. The object has now been fragmented into multiple LNs, each localized at the
extremities of the “counter” seen in frame 165 and 413. Conversely, in the SN-graph, the
3D location of the SN is simply averaged from all the counter’s detection locations since
the creation of the SN. The 3D points contained in said SN all have a neighbouring 3D
point within a Tobject distance, and the two “counter” LNs in the LN-graph correspond
to the extremities of the cloud formed by these 3D points at frame 413. Frame 978 is
the last “counter” detection in the image sequence, no LNs have been added since frame
413, but the location of the SN has been updated based on all the object’s sightings.
In conclusion, rather than representing the object’s size by breaking it into two LNs
–neither giving an accurate location of the object’s center position– a single SN can be
used for a more faithful object-level representation of the scene.

It should be noted that generating a graph using SNs is momentarily more memory
intensive than using LNs, as more 3D coordinate vectors are stored. The resulting graphs
will however end up with fewer labelled nodes to be used during matching due to the
diminished fragmentation, and therefore fewer descriptors will be generated. Moreover,
the registration step described in Subsection 5.3.1.5 requires the SNs to have their own
3D coordinates, as using every single point within them to compute the 3D transform is
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too computationally expensive. Therefore, the final step of graph creation using SNs is
the computation of the SNs’ spatial attribute –their location in 3D space– by averaging
the 3D coordinates of the points they contain. The resulting attribute should be closer to
the real objects’ barycentre, especially for small objects. Finally, following the creation
of the edges, the SNs’ 3D points are no longer required –only the SNs’ labels and spatial
attributes– allowing us to free the corresponding allocated memory if necessary.
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Frame 165 Frame 413 Frame 978

LNs

SNs

“Counter”

Figure 5.3: Node extraction for a “counter” (left side) shown in cyan
in the segmentation maps (right side, top row), in the LN-graphs (middle
row) and in the SN-graphs (bottom row). Frame 165 is the first detec-
tion of the object in the image sequence (right side, left column), while
978 is its last (right column). Frame 413 shows an occurrence of object
fragmentation: a second LN is added to the LN-graph to represent the
same object (right side, middle column). For clarity, 3D points are only
displayed for the “counter” node (circled in magenta) in the SN-graphs
(light cyan), and all other SNs are already shown at their final location.
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5.3.3 Adjacency descriptor

Previous node descriptors relied on tallying the paths that can be taken from each node
to describe its surrounding topology. The maximum number of unique possible walks of
depth d –corresponding to d − 1 steps– among nodes with one of l labels is ld. While
only a fraction of these unique walks will be present in any graph, in the random walk
approach from [61] the number of walks in each descriptor must still be large enough to
avoid cases where a lack of identical walks among descriptors makes matching impossible.
For the histogram method of [72], the size sH(l, d) of each descriptor will always be ld,
but most of the bins will remain empty: since a given node has only one label, only a
maximum of l(d−1) bins are ever used, and for every label not present at depth k, there
are an additional l(d−k) empty bins.

In order to describe the neighbourhood around each node with a larger depth and in
scenes with a high diversity of objects, we propose a descriptor that tallies only the end
label of each walk. Based on the adjacency matrix of the SG, the descriptor’s size only
increases linearly with the depth and number of labels.

5.3.3.1 Basic descriptor using the adjacency matrix

Given the adjacency matrix A of a graph G with n nodes, the element (i, j) of Ak

indicates the number of walks with k steps between two nodes i and j. Based on the
symmetry of the adjacency matrix, each i-th column or row of Ak will therefore give a
description at depth k + 1 of the neighbourhood of node i.

We can fit this description into a histogram Vk,i of size l using the list of nodes’
labels L as a look-up table. L is of size n, and with values between 1 and l, mapping

each node’s index to its label’s index. In practice, for every node j, if A
(k)
i,j = (Ak)i,j is

positive then V
(k,i)
Lj

is incremented.
Since Vk,i only contains information for depth k + 1, we compute it for every k

between 1 and d− 1 (d being the desired exploration depth) to get a full account of the
local topology. We also encode the node’s label using a vector V0,i of size l that is null
except for its Li-th element that is set to 1. For a node i, its descriptor Dd,i at depth d
is obtained by concatenating the (Vi,k) for k between 0 and d− 1. By tallying only the
end points for walks of depth 1 to d, each Dd,i is only of size sD(l, d) = l × d, and no
space is wasted accounting for walks that cannot be taken in G.

Since A is already computed as the representation of the topology of G, increasing
the depth of exploration comes at no great computational cost as only one symmetrical
matrix product of size n is required to update all n descriptors.

The basic algorithm for computing all the descriptors for G is described in Algo-
rithm 4 and an example with a small graph is shown in Figure 5.4.



5.3. Proposed method for scene registration 105

Algorithm 4: Pseudo-code for our descriptor generation algorithm. The i-th

element of a vector Xj is noted as X
(j)
i

DescriptorGenerator (A, d, L)
inputs : Adjacency matrix A; Depth d; Label vector L
output: List of n descriptors (Dd,i)1≤i≤n of size d× l
for i← 1 to n do

Dd,i ← 0d×l ;

D
(d,i)
Li
← 1;

A1 ← A;
for k ← 1 to d− 1 do

Ak+1 ← AkA ;

for i← 1 to n do
for j ← 1 to n do

D
(d,i)
kl+Lj

← D
(d,i)
kl+Lj

+
(
A

(k+1)
i,j > 0

)
;

return (Dd,i)1≤i≤n;



106 Chapter 5. Graph-based model registration for semantically rich scenes

2

1

3

4

5

2

1

2

3

1







L =
0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0







A =

1 0 1 1 0

0 3 1 1 1

1 1 2 1 1

1 1 1 3 0

0 1 1 0 1







A2 =

0 3 1 1 1

3 2 4 5 1

1 4 2 4 1

1 5 4 2 3

1 1 1 3 0







A3 =

1

0

0

0

2

1

2

1

1

2

2

1







D4,2 =

= V0,2

= V1,2

= V2,2

= V3,2

Figure 5.4: Generating the descriptor D4,2 of depth 4 for node 2 of a
graph with 5 nodes and 3 different labels (red has index “1”, green has

“2” and blue “3”).
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5.3.3.2 Improving the descriptor

As mentioned in [61], different exploration strategies can be followed when producing
random walks, to make the limited number of walks more descriptive. These include the
exclusion of duplicate walks or forbidding back-and-forth motions between two nodes.
While our approach is not limited by a sample size from a random distribution of walks,
these strategies can be employed to fix some issues with our basic descriptor, by altering
the framed line in Algorithm 4.

For instance, by using Aki,j to count the number of walks of depth k + 1 between i
and j, we include the walks that involve repeated moves to reach the desired depth. In
practice, this means that if d is divisible by x, every cycle of length x starting from i

will be tallied in D
(d,i)
km+Li

, making the (Vi,k)k≥1 histograms more correlated.
To avoid this correlation issue, we define a series of “no-return” adjacency matrices

B(k) whose elements (i, j) give the number of walks of depth k+ 1 between i and j that
do not pass through the same edge twice. We find for depths 2 and 3 that:

B
(1)
i,j = Ai,j , and B

(2)
i,j =

{
A

(2)
i,j if i 6= j

0 otherwise.
(5.1)

For depths k+1 greater than 2, the computation of B(k+1) is not trivial but its values
can be approximated –without exhaustively exploring the graph– using the cardinality
of the following sets:

B =
⋃

p1...pk

(i
1→ p1

2→ . . .
k→ pk

k+1→ j), (5.2)

L =
⋃

p1...pk

(i→ p1
1→ . . .

k−1→ pk
k→ j), (5.3)

R =
⋃

p1...pk

(i
1→ p1

2→ . . .
k→ pk → j), (5.4)

C =
⋃

p1...pk

(i→ p1
1→ . . .

k−1→ pk → j), (5.5)

D =
⋃

p1...pk

(i
1→ p1

2→ . . .
k−1→ pk

1→ j), (5.6)

E =
k−1⋃

c=1

k−1⋃

d=1

⋃

p1...pk

(i
c→ p1

1→ . . .
k−1→ pk

d→ j), (5.7)

where (i → p1 → . . . → pk → j) is the set of walks of depth k + 2 from i to j passing
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through nodes p1 . . . pk and numbered arrows denote unique edges in the walk. Since
our graphs are simple, these particular sets contain either 0 or 1 walk. We find that:

L ∩R = B ∪D, B ∩D = ∅, (5.8)

C = L ∪R ∪E, (L ∪R) ∩E = ∅, (5.9)

|B| = |L ∩R| − |D| = |L|+ |R| − |C| − |D|+ |E|. (5.10)

Therefore:
B(k+1) = AB(k) +B(k)A−AB(k−1)A− |D|+ |E|. (5.11)

Using equations (5.1) and (5.11) allows us to estimate B(k+1) through recursion for
any value of k. However, since we use B in a similar fashion as A in Algorithm 4, the
only information we require is whether or not its elements are positive.

If we consider A as a matrix of boolean values rather than integers, and the scalar
product and sum as logical and and or in the matrix multiplication (or use the Roy-
Warshall algorithm [162]), we notice that the powers of A will give the same information
necessary to Algorithm 4. This not only speeds up the calculation of Ak but also allevi-
ates any issue of overflowing for large values of k.

Finally, we need to account for the homogenization of the Ak matrices for high
values of k, since they are eventually filled with true except for the rows and columns
of orphan nodes. To achieve this we simply divide the values added to Vk,i by k − 1
when k > 1. This results in closer neighbours having more weight during the matching
and also mitigates the effect of the increasing inaccuracies in the estimation of B(k) for
large values of k. The validity of our estimation of B(k) can nonetheless be tested for the
smaller values, as the correct matrix can be constructed from exhaustive exploration of
the graph rather than matrix multiplication. This exploration process is similar to the
one used to create the walk histograms Hd at a depth d but the results are stored in the
smaller adjacency descriptors Dd, and we keep track of the edges already visited as to
not reuse them in a given walk.

We will refer to this “exact” but computationally expensive version of the “no-return”
adjacency matrix as C(k). For simplicity, we will also refer to the adjacency descriptors

generated with weights as A
(k)
w , B

(k)
w and C

(k)
w , even if the matrices themselves are not

weighted, but rather their contribution to the descriptors (it is the (Vi,k) that are divided
by k−1, not the A(k), B(k) or C(k)). The effect these improvements have on the adjacency
descriptors is illustrated in Figure 5.5 which shows the same small graph example as
in Figure 5.5. The resulting descriptors can then be compared using a normalized dot
product.
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Figure 5.5: Generating the improved descriptor D4,2 (red has index
“1”, green has “2” and blue “3”). Changes in the adjacency matrices
introduced by a “no-return” exploration strategy and descriptor values

affected by depth-wise weighting are shown in red.



110 Chapter 5. Graph-based model registration for semantically rich scenes

5.3.4 Comparison with the walk histogram

Our adjacency descriptor Dd,i at depth d for node i can be seen as a compressed version
of the walk histogram Hd,i from [72]. For each i, Vd−1,i corresponds to the merging of
the bins of (Hd,i) into bins of the label of the walk’s last step, effectively reducing a
histogram of size ld to a size of l. The descriptiveness of Hd,i lost in this reduction, is
regained through the Vk,i with 0 ≥ k < d− 1.

While D0,i and H0,i are identical, their sizes grow linearly and exponentially, respec-
tively, with regards to the depth, making a fair comparison of their effectiveness difficult
since we have more granular control over the size of the adjacency descriptor. In order to
produce results for more values of the descriptors’ sizes for the walk histogram, without
resorting to interpolation, we added a “merging” parameter m to its implementation,
which reduces the number of histogram bins by merging labels on the last step.

Given a value of m that is a divisor of l, the last step of a walk is recorded as one of
l/m “hyper-labels” –groupings of m labels. This results in a descriptor size sH(l, d,m) of
ld/m. We note that changing the value of m for any given depth d does not greatly affect
the complexity of the exploration algorithm, only the size of the histogram in which the
results are stored.

Comparing the two approaches will determine if the trading of the descriptor’s pre-
cision at a given depth for a lighter descriptor which explores the neighbourhood further
is worthwhile. We describe our experimentations in the following section.

5.4 Experiments

We are looking to evaluate the performance of our novel node descriptor for the task of
graph matching in an indoor environment with a high diversity of objects. The results
of the graph matching are then used for the registration of two instances of the same
scene captured with different world coordinate systems. It is the measure of the quality
of the registration that ultimately allows us to compare different node descriptors, as the
parts of the pipeline following descriptor generation remain unchanged (see Figure 5.2).

We are also checking if the new graph extractor using SNs gives as good results for
the registration task as the original LN-based one, while also providing a representation
that gives a better object-level understanding of the scene structure. The latter can be
evaluated by measuring the performance of the extractors for clustering the 3D points
extracted from the images that represent the same object into the same node in the
graph.
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Our code to generate the adjacency descriptors and SN-based graphs from the Scan-
Net [37] and ChangeSim [139] datasets, as well as optimized code to generate the walk
histograms and LN-based graphs from [72] is made available here:

https://github.com/InterDigitalInc/GraphBasedSceneRegistration

5.4.1 Datasets

To test our registration algorithm in semantically rich indoor scenes, we use the ScanNet
dataset [37], which contains 1513 models of scenes along with the localised RGB-D
sequences used to generate them. The dataset includes semantically segmented versions
of the models and images, convertible to the 40 labels of the NYU Depth dataset v2 [173]
(as seen in Figure 5.1). Finally, the dataset also provides instance-segmented image
sequences, which can be used to evaluate our graph extractors clustering ability.

We also use the ChangeSim [139] dataset to check our method’s robustness to
changes, namely: “new”, “missing”, “replaced”, or “rotated” objects. This dataset
contains 10 simulated photo-realistic warehouses scenes, which are explored twice by a
virtual drone before and after changes occur (for a total of 40 sequences, not accounting
for those with added visual disturbances). Similarly to ScanNet, localised RGB-D and
label maps are included.

ScanNet [37] contains 707 unique scenes, but many have been scanned and added
multiple times in the dataset in order to reach the 1513 count. Those scenes with
several instances can be used to perform registration in pairs, and Table 5.2 describes
the dataset’s composition with regards to instance pairs.

Table 5.2: Number of instance pairs to perform registration

Instances in dataset Number of scenes Resulting pairs

1 221 0
2 211 211
3 246 738
4 19 114
5 5 50
6 4 60
7 1 21

total 707 1194

Given that one can make
(
x
2

)
pairs out of a scene with x instances, ScanNet’s contri-

bution to our registration dataset is of maximum size 1194. For each of these instances,

https://github.com/InterDigitalInc/GraphBasedSceneRegistration
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the scene is represented by its semantically segmented RGB sequence, its depth map
sequence with accompanying camera poses, as well as the camera’s intrinsic matrix.

For each ChangeSim [139] scene, the 2 scans before changes occur are referred to
as Ref , and the 2 scans after as Query. Each of the 2 Ref scans can be compared to
is corresponding Query scan, making for a total of 20 additional instance pairs for our
registration dataset.

5.4.1.1 Preparing the ScanNet data

In order to use our pipeline on ScanNet’s subset of interest, we need to find the ground
truth for the alignment of any two instances of the same scene. The original dataset
does not include such information but has for each model an alignTransformMatrix

which permits the user to transform the scene’s coordinates such that the origin is in
the middle of the room’s floor, and the walls are aligned with the X and Y axes (the
floor’s normal is already aligned with Z).

Assuming that two instances of the same scene showcase the same portions of the
world, they should share the same room center. If we apply each alignTransformMatrix

to their corresponding 3D models, the two instances should be aligned or be rotated
around the Z axis by π

2 , π or 3π
2 , since the walls are aligned with X and Y .

In order to check which of the 4 rotations (including the identity) will result in the
alignment of the two instances, we choose a pose P from one of the instances and render
a reference image Iref using the corresponding semantically segmented modelMref . We
then convert this pose into the world coordinates of the other instance using the two
matrices and a rotation matrix Rθ (with θ being one of the 4 possible angles of rotation)
to render an image I from the other model M. As I and Iref are segmentation maps
(and not RGB images from a camera) we can count exactly how many of their pixels
values are identical, and use the percentage of identical pixels as a similarity metric. We
also assume that unlabelled objects (which appear as black pixels) are different from on
instance to the other –they do not count as identical pixels– so that we only rely on
known objects for similarity evaluation. If I and Iref are similar enough, we assume the
rotation being tested is the correct one, otherwise we try the other rotations and then
move on to another pose. The exact procedure to determine the correct orientation is
described in Algorithm 5 and illustrated in Figure 5.6 (where we use a similarity metric
between 0 and 1 rather than a percentage).

Between two instances, the dissimilarity between I and Iref when the rotation is
correct can come from a translation error (the rooms have different centres) or a different
semantic segmentation of the content. For this reason –and because of the unlabelled
areas in the scenes– we cannot use a similarity threshold of 100% identical pixels in the
images. Empirically, we found that using an similarity threshold of 80% would result



5.4. Experiments 113

in 450 instance pairs with a sufficiently reliable ground truth. 5 pairs were manually
removed for having very different centres despite having cleared the threshold thanks to
their lack of semantic variation.

c) d)

a) b)

Figure 5.6: a) Bottom view of the aligned reference mesh, which can be
registered to b) another aligned mesh from the same scene using successive
rotations of π/2 around the Z axis. c) An image generated from the
reference mesh is compared to one d) generated from the other mesh

rotated by 0, π/2, π or 3π/2. A rotation of π registers the meshes.
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Algorithm 5: Base pseudo-code of our instance alignment algorithm. Render
produces an image given a mesh and a camera pose.

AlignInstances (Mref , M)
inputs : Meshes Mref , M; Alignment matrices Aref , A; Similarity

threshold T ; Number of frames imax; Poses (Pi)1≤i≤imax

output: Rotation θbest; Similarity tbest
θmin ← −1;
tbest ← 0;
for i← 1 to imax do

Iref ← Render(Mref , Pi);
for θ ∈ {0, π/2, π, 3π/2} do

P ′ ← A−1RθArefPi ;
I ← Render(M, P ′);
t← mean(I = Iref );
if t > tbest then

tbest ← t;
θbest ← θ;
if tbest > T then

return (θbest, tbest);

return (θbest, tbest);
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5.4.1.2 Preparing the ChangeSim data

Contrary to ScanNet [37], in ChangeSim [139] the matching Ref and Query sequences
are already aligned, meaning that the registration ground truth is an identity matrix
I4. However, we found that the provided trajectory.txt files do not match the virtual
camera trajectories used in the images sequences, requiring additional preparation of the
dataset before it can be used.

For the Query sequences with over 1000 frames, the inconsistencies in the trajectory
files are caused by a sorting error, likely occurring during the merging of the individual
files for each frame. This was solved by recreating them from the individual pose files
provided in the pose folder with a Python script that would order them by filename.
For the Ref sequences, the trajectory files do not contain the correct number of poses,
and cannot be simply recreated due to the absence of a pose folder. Instead, they have
to be extrapolated from the “raw” data shipped with the dataset.

Indeed, each Ref scan contains the aforementioned RGB, depth and label map se-
quences, as well as a raw folder containing additional RGB and depth map sequences.
The raw sequences do not have the same number of frames as the “final” sequences, and
are accompanied by a poses.g2o file which gives positional data for the virtual drone at
certain keyframes. Those keyframes are themselves a subset of the raw frames and their
poses were directly written into the trajectory.txt file, despite them not matching
the frames in the final sequences. Finally, since the raw data does not include label
maps, the keyframes cannot be used as input to the registration pipeline, making the
generation of a new trajectory.txt file for the final data mandatory.

To generate the final poses, we notice that the final sequences follow the same trajec-
tory as the raw sequences, but with different sampling (i.e., frames were not generated
at the same times). With the exception of the warehouses scenes “2” and “4”, there are
always more raw frames than final ones. We therefore use a 3-step process, which we
will describe in detail in the following paragraphs, based on the comparison of the raw
and final depth maps:

1. Match each final depth map to a raw depth map, while preserving the sequence
order,

2. Copy the poses for every matched raw frame that is a keyframe in the poses.g2o

file,

3. Interpolate the missing poses for the matched raw frames using the closest known
poses.

In to order to match the frames, we sequentially go through each depth map of the
final sequence and find the most similar one in the raw sequence according pixel-wise
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L2 distance. The raw pixel values must be divided by 200 to match the final scale –
converting them to metric measurements, as we found experimentally. To preserve the
sequence order, the search for a match is restricted to a selection of frames around the
previous match. We define the reduction ratio r from the raw to the final sequences, as
the number of frames of the former divided by the number of frames of the latter. We
search for the next matching frame from b1rc before the previous match to b6rc after.
We use that search window as it can successfully find matching frames for every scene
save “2” and “4”, and a larger window would result in a longer computation time. This
approach does not work for “2” and “4” because of the too small r values, and both
scenes have to be ignored due to their limited numbers of raw frames, which lead to
issues with the interpolation step.

Once the keyframe poses are copied for the relevant raw frames, the missing ones
must be interpolated from other –copied or not– keyframes. This process is illustrated
in Figure 5.7. Poses in ChangeSim [139] are given as a 3D vector t for translation and a
quaternion q for the rotation, and keyframes are rarely separated by more than 10 frames.
Therefore for a given raw frame, the interpolation is simply performed between the
closest anterior and posterior keyframes poses: we use linear interpolation (Lerp) for the
translation and spherical linear interpolation (Slerp) for the rotation [172]. This assumes
a constant speed between consecutive keyframes, and the interpolation parameter is
simply given by the difference between the current raw frame index and the previous
keyframe index, over the difference between the two consecutive keyframes indexes (as
seen in Figure 5.7).

Raw frames

Final frames

t1
q1

t2
q2

t3
q3

t4
q4

Lerp(t1, t2, 1/2)

Slerp(q1, q2, 1/2)

Lerp(t3, t4, 1/3)

Slerp(q3, q4, 1/3)

2 frames 2 frames 1 frame 2 frames

Figure 5.7: Finals frames (bottom row) are matched to raw frames (top
row). When a raw frame has a known pose (“keyframe”, blue contour),
it can be used for a matched final frame (green contour). When a raw
frame without known pose is matched to a final frame (red contour), said

pose is interpolated from the last and next known poses.

In our implementation, the 3 steps are performed in parallel thanks to the sequential
matching. This process allowed us to add 16 instance pairs to register to our dataset.
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5.4.2 Error metrics for model alignment

As mentioned in Section 5.2, as well as using the translation and rotation errors between
the estimated transformation and the ground truth, we use the RMSD ERMS to provide
a unique metric to compare the methods.

Firstly, if t and R are the estimated translation vector and rotation matrix and tGT
and RGT the corresponding ground truth, then Et and ER are defined as:

Et = ||t− tGT ||2 , ER = ||R−1GTR− I||F , (5.12)

where ||.||2 and ||.||F are the Euclidean norms for vectors (L2) and matrices (Frobenius)
respectively.

Secondly, we call T and TGT the transformation matrices associated with those trans-
lation vectors and rotation matrices:

T =

[
R t

0 0 0 1

]
, TGT =

[
RGT tGT

0 0 0 1

]
. (5.13)

Following the approach given in [90], we formally integrate the transformation error
over a volume V modelling the reference. The offset introduced by the error between
an estimated transformation T and the ground truth TGT for any given point p in
homogeneous coordinates is:

∆p = Mp, M = T−1GTT − I4. (5.14)

Therefore the RMSD over the volume V is given by:

ERMS =

√∫
V |∆p|2 dp∫
V dp

, |∆p|2 = pTMTMp. (5.15)

[90] then calculates the integrals in (5.15) by assuming that V is a sphere with its
radius as a parameter and working in spherical coordinates. In our dataset of indoor
rooms, most of the scenes can be reasonably modelled as their 3D rectangular bounding
boxes, with 3 dimensions in a Cartesian space (width, length and height):

V = [−X,X]× [−Y, Y ]× [−Z,Z], (5.16)

For ScanNet [37] scenes, alignTransformMatrix can be used to align the bounding
box’s axes to the world’s axes. By representing the scene in this way and integrating the
distance error over every point inside the volume, we define a metric that is independent
from the contents of the room.
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In order to compare the estimated transform to the ground truth for our indoor
datasets, we only need to measure the dimensions of the scene P = (X,Y, Z) and find
its center, using the 3D models provided in ScanNet [37] and ChangeSim [139]. If we
first assume that the box is centered on the origin, once T is estimated, we can use TGT –
provided by the method in Subsection 5.4.1.1 for ScanNet– to calculate A, b (submatrices
of M) and D defined as:

M =

[
A b

0 0 0 0

]
, D = diag(ATA) = −2



A1,1 0 0

0 A2,2 0
0 0 A3,3


 (5.17)

then with v, corresponding to p in non-homogeneous coordinates:

|∆p|2 = vTATAv + 2bTAv + bT b. (5.18)

and ∫

V
bT b dp = bT b

∫

V
dp,

∫

V
2bTAv dp = 0. (5.19)

and finally ∫

V
vTATAv dp =

1

3
P TDP

∫

V
dp. (5.20)

Therefore the equation for the RMSD for a centered box is:

ERMS =

√
bT b+

1

3
P TDP. (5.21)

As the origin of our aligned models is actually set to the center of the scene’s floor,
we need to move the box to a new center vc by updating M :

M ′ = MMc, Mc =

[
I3 vc

0 0 0 1

]
, (5.22)

then A′ = A and b′ = b+Avc, therefore:

ERMS =

√
(b+Avc)T (b+Avc) +

1

3
P TDP. (5.23)

An illustration of the errors metrics for a rectangle is shown in Figure 5.8. In this 2D
example, the relationship between the RMSD and the translation and rotation errors is
made apparent, as well as the impact of the studied box’s dimensions. We also note that
Et does not directly appear in the 3D formula for the RMSD Equation 5.23 because
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the translation error is measured at the centre of the room’s floor –the origin of the
coordinate system of an aligned ScanNet model– whereas the RMSD uses the 3D center
vc of the model. The vertical offset between these two definitions of the room’s centre
is not present in the 2D case from Figure 5.8.

(0,0)
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2Y

(x,y)
θ

cosθ −sinθ
sinθ cosθ
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R =
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y
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θ
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Y
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2(1− cosθ) 0
0 2(1− cosθ)
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Figure 5.8: Error metrics for a 2D transformation. The ground truth
is TGT = I4 and the box’s center vc is at the origin. The estimated
transformation T differs from TGT by an horizontal offset x, a vertical
offset y, and a rotation θ. Left: the translation error is Et =

√
x2 + y2

and the rotation error is ER = 2
√

1− cosθ.
Right: the RMSD is ERMS =

√
E2

t + 1
6E

2
R(X2 + Y 2).

5.4.3 Results

Since our dataset includes indoor scenes with a smaller scale than the outdoor scenes
from the SYNTHIA [158] or KITTI [62] datasets used in [72], we reduce the node fusion
threshold Tobject from Subsection 5.3.1.2 from 10 meters [61] to 1 meter.

5.4.3.1 Graph extraction

In order to compare the LN-based [72] and SN-based graph extractors’ abilities to pre-
serve the object instance segmentation of the scenes, we use the Adjusted Rand Index
(ARI) [86]. The ARI is designed to compare the similarity between two clusterings of
data, and has been used in previous work for evaluating point cloud segmentation [23].
In our case we are clustering the 3D points extracted from the regions in the label maps.
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We will be comparing to which object instance they belong in the ground truth, and to
which node in the graph they are associated during extraction.

The reference clustering is simply obtained by looking up the index of each region
in the instance segmentation maps provided in ScanNet [37], as they are aligned with
the label maps. During extraction, as explained in Subsection 5.3.2, the 3D points are
converted into nodes for the graphs:

� Using LNs, only a single 3D point is used to produce a new node, while the
“duplicates” are ignored.

� Using SNs, all points identified as duplicates of each other are bundled into a single
node.

Therefore the estimated clustering –from graph extraction– can be inferred from which
nodes are identified as duplicates of each other. For SNs this is directly detailed by the
final graph structure, and for LNs we can keep track of the ignored nodes during the
extraction to monitor the underlying clustering.

The ARI results over the ScanNet dataset [37] are detailed in Table 5.3. An ARI of 1
indicates identical clusterings –indices’ permutations notwithstanding, which are indeed
irrelevant in our case– while an ARI of 0 occurs for independent clusterings. Addition-
ally, the ARI may be negative if the estimated clustering is “worse than random” (the
clusterings are not independent). In this light, our SN-based extractor better preserves
the 3D point clustering inferred from the instance segmentation maps. In practice this
means that objects in the scene are less likely to be fragmented or merged with one
another into nodes during graph extraction.

We also provide in the table the results for a Ground Truth-based (GT) extractor,
which directly uses the instance segmentation maps to create the SN, therefore getting
an ARI of 1. This shows that, on average, while the scenes from ScanNet [37] contain 31
objects, the SN extractor recovers 19 and the LN extractor 50: meaning that the SN
extractor tends to merge objects of the same label into a single node. The table shows
a slight discrepancy in the number of points used between the SN and GT extractors,
which is due to the filtering of nodes which have less than Tsuper = 10 points (see
Subsection 5.3.2).

Also in Table 5.3 are the number of nodes created and 3D points used on average
per graph for ChangeSim [139], for which we do not have the instance segmentation GT
(therefore no ARI results). For LNs, the number of points is the same as the nodes
since only one point is required to the computation of spatial attributes. For SNs, the
number of points per node is 652.89 on average for ScanNet and 120.50 for ChangeSim,
assuming that all scenes are weighted the same –which differ from the values obtained
by dividing the number of points by the number of nodes, as those give larger weight to
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Table 5.3: Average results of the graph extractors over the datasets

ScanNet [37] Number of nodes Number of points ARI

GT extractor 31.09 12374.80 1.000
LN extractor 49.99 49.99 0.599
SN extractor 18.80 12376.66 0.705

ChangeSim [139] Number of nodes Number of points

LN extractor 767.59 767.59
SN extractor 172.28 17790.72

scenes with more nodes. Therefore a lot more memory is required when generating the
spatial attributes for SNs.

However, using SNs significantly reduces the number of nodes in the graph, which
reduces the number descriptors to generate. Assuming the optimal descriptors H3 de-
scribed by [72] with the 40 NYU labels [173]: each descriptor is of size 64000, while each
point only stores 3 coordinates. In conclusion, the SN extractor produces graphs that
more closely match the scene instance segmentation, and the total memory cost must
be evaluated by taking into account the descriptor types and depths used to achieve the
desired quality of registration.

5.4.3.2 Variants of the adjacency descriptor

In this section, we evaluate which of the modifications introduced in Subsection 5.3.3.2
improve registration results. The ScanNet dataset [37] is processed using 4 variants of
the adjacency descriptor with depth d (equivalent to walks of d−1 steps) going from 2 to
19 and then from 20 to 160 with increments of 20. The results are presented in Figure 5.9:
the variant can either use the powers of the standard (Boolean) adjacency matrix (Ak)
or the “no return” (Boolean) matrices (B(k)), and it can either have constant weights
or be inversely proportional to the depth (indicated by the w index).

As well as the 4 main variants, we also plot the results for depths 2 to 4 using the

non-approximated “no return” matrices (C(k)) and (C
(k)
w ) to validate our approximation.

When comparing the variants, depths 1 and 2 result in the same descriptors, and we
do not plot the d = 1 case, for which the node descriptor is simply its label. The
registration error is plotted against the descriptors’ size (using a logarithmic scale). We
use the median over the dataset rather than the arithmetic mean in order to not let
failed registrations influence the results too greatly, as the translation error and RMSD
can get arbitrarily large due to numerical errors. We also avoid using the geometric or
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harmonic means for this reason: if an error metric for a single instance pair gets too close
to 0, it nullifies the geometric and harmonic means over the dataset for that metric.

When using LNs, (B
(k)
w ) consistently gives better results than the other variants,

especially after d = 4. All variants also seem to stabilize for higher values of d except
(B(k)). This is likely due to the compounding inaccuracies introduced by our estimation
of (B(k)), which is however accurate to (C(k)) for the depths it was computed at.

When using SNs, better results are obtained at low depths, after which the registra-
tion deteriorates then stabilizes (except for (B(k))). This is likely due to the smaller size
of the SN-graphs. The degradation is more pronounced for (A(k)), as the same paths
are likely being taken repeatedly when extending the descriptors, giving the relevant
information less weight during matching. Despite this, the results are generally better

using SNs –even at less than optimal depths– and (B
(k)
w ) outperforms the other variants

using either graph extractor.
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Figure 5.9: Median errors metrics for ScanNet [37] vs. d × l for 6
variants of the adjacency descriptor, starting at d = 2. Left: using LNs,

right: using SNs. Lower is better.
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5.4.3.3 Adjacency descriptor vs walk histogram

The weighted “no return” variant (B
(k)
w ) of our descriptor is compared to the walk

histogram descriptor [72] (Hd) on the datasets. We run the pipeline for (Hd) for depths
1 to 4, and for d > 1 we use a merging m of 20, 10, 8, 5, 4, 2 or 1, all divisors of the
number of classes l = 40.

We again calculate the registration error against the descriptor size: sD(l, d) for
our descriptor and sH(l, d,m) for the walk histogram. The results for ScanNet [37] are
presented in Figure 5.10, and for ChangeSim [139] in Figure 5.11.

Each method is evaluated with and without RANSAC filtering of the outliers, and we
can see that the results for both methods are significantly improved when RANSAC is
used, underlying the shortcomings of the point cloud extraction algorithm as mentioned

in Subsection 5.3.1.5. The exception is ChangeSim using LNs, where (B
(k)
w ) manages

to get as good of results with or without RANSAC filtering (see Figure 5.11 top row).
However, studying the methods without filtering will be our focus, since their perfor-
mance is more indicative of the quality of the graph matching process. Indeed, if the
graphs are to be used for AR purposes beyond localisation as previously pointed out,
we should maximize the number of correct matches.

Both the adjacency and walk histogram descriptors are identical at d = 1 (“node
label” descriptor) but the adjacency descriptor quickly improves registration as d in-
creases. At d = 2 both methods provide similar results but the adjacency descriptor is
much lighter. At s(l, d,m) = 1600, the walk histogram explores only a neighbourhood of
d = 2 while the adjacency descriptor explores d = 40, with significant RMSD reduction
in all configurations except that of ScanNet with SNs (see Figure 5.10 right column).

As seen in the previous section, this is likely due to the small size of these graphs,
since increasing the depth improves results for larger scenes (ChangeSim) or bigger
graphs (LNs). Moreover, for ScanNet the results are still better using SNs at d = 2
rather than LNs at any depth (see Figure 5.10 left column).
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Figure 5.10: Median errors metrics on ScanNet [37] vs. s(l, d,m) for
the walk histogram descriptor and the best adjacency descriptor variant,
with optional RANSAC filtering. For the walk histogram d = 1, 2, 3, 4

with m = 1 are shown as crosses. Left: using LNs, right: using SNs.
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Figure 5.11: Median errors metrics on ChangeSim [139] vs. s(l, d,m) for
the walk histogram descriptor and the best adjacency descriptor variant,
with optional RANSAC filtering. For the walk histogram d = 1, 2, 3, 4

with m = 1 are shown as crosses. Left: using LNs, right: using SNs.
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The performance of H2 and its corresponding (B
(k)
w ) in depth (d = 2) and size

(d = 40) over the whole dataset are detailed in Figure 5.12 for ScanNet and in Figure 5.13
for ChangeSim. We also provide results for H3 as it was the optimal descriptor in [72]
in both figures, and the node label descriptor (d = 1) for ScanNet.

In Figure 5.12, we plot on the y-axis the percentage of successfully registered scene
pairs according an error metric threshold on the x-axis. The 2 or 3 vertical dotted lines
show on the x-axis when 90% of successful registrations is reached for the plain curves
(not dashed) of the matching color. For ScanNet, 90% success is always reached first

with (B
(k)
w ) at d = 40, then with H2, then with the node label. Figure 5.12 also shows

that (B
(k)
w ) at d = 2 and H2 give the same results despite the much smaller size of the

former. Figure 5.12 and Figure 5.14 (left side) also show that after a fast growth, the
SN curves (right column in Figure 5.12) do not near 100% by the time the LN curves do
(left column in Figure 5.12): one is not consistently producing better results than the
other on all scenes, but their performances are close on 90% of them.

In Figure 5.13, we plot the error metrics over the whole ChangeSim dataset, with each
grouping of histogram columns representing the performance on one of the 16 instance

pairs. It shows that (B
(k)
w ) at d = 40 consistently outperforms H2, but once again the

ranking of performances between the SN (right) and LN (left) representations depends
on the scene (as seen also in Figure 5.14).

Overall, for the walk histogram descriptor [72], increasing the depth eventually de-
grades results despite the larger descriptor size. Since it should not have the same issue
of homogenization with increased depth as our non-weighted variant, it is likely that the
scarcity of unique walks in the graphs compared to the size of the histogram makes the
calculation of the normalized dot products less reliable.
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Figure 5.12: Percentage of successful registrations on ScanNet [37] vs.
an error metric threshold for success, using the node’s label, the walk
histogram descriptor and the best adjacency descriptor variant. The ad-
jacency descriptor’s size at depth 40 matches the walk histogram’s size at

depth 2. Left: using LNs, right: using SNs.
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Figure 5.13: Error metrics for each ChangeSim [139] instance, using
the node’s label, the walk histogram descriptor and the best adjacency
descriptor variant. The adjacency descriptor’s size at depth 40 matches
the walk histogram’s size at depth 2. Left: using LNs, right: using SNs.
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5.4.3.4 Generation and matching times

The descriptor generation and matching time is also measured for the two descriptors and

displayed in Figure 5.15. (B
(k)
w ) consistently shows lower RMSD than Hd at equivalent

times. The different is particularly noticeable for d = 2, as both descriptors contain the
same information but said information is more quickly encoded and compared using the
adjacency histograms. Figure 5.15 also shows that the speed gain from using the “plain”
adjacency descriptor (A(k)) are not significant enough to justify its use. Conversely, the

non-approximated variant (C
(k)
w ) is much slower for no practical quality improvement.
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Figure 5.15: Average times on ScanNet [37] for the descriptors genera-
tion (per node, top) and matching (per graph, bottom) vs. the RMSD for
the walk histogram descriptors and variants of the adjacency descriptor
at different depths d. For the walk histogram d = 1, 2 with m = 1 are

shown as crosses. Left: using LNs, right: using SNs.
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As a conclusion, we note that descriptor generation lasts less than a millisecond

for graphs containing hundreds of nodes using (B
(k)
w ), on a virtual machine with 16GB

of RAM and four 2.60GHz processors. The matching step is also done in less than a
millisecond on average on ScanNet, at most depths.

5.4.3.5 Impact of the depth

In the previous sections we have shown that at a given depth d or for the same descriptor
size, our new descriptor provides similar or better results than Hd. In addition, this com-
pressed representation allows for a deeper exploration when constructing the descriptor.
We can check the benefits of the deeper search by plotting how many instance pairs in
the dataset are best registered at a given depth.
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Figure 5.16: Distribution over the depth values in percent for when
an instance pair from ScanNet [37] reaches its lowest RMSD. Left: using

LNs, right: using SNs.

As previously seen for ScanNet, increasing the depth over d = 2 benefits the registra-
tions when using LNs but not SNs. This is shown in the depth histograms of Figure 5.16,
where the dataset was processed using Hd from depth 1 to 4 (the maximum possible

depth on our hardware), and (B
(k)
w ) from depth 1 to 20. Once again using the node’s

label (d = 1) for the graph matching does not generally yield the best results, but it
is more effective using SNs (right) than LNs (left). However, the optimal depth using

(B
(k)
w ) is shown to be 2 for SN graphs, with much less positive results after d = 5 when

compared to LN graphs. This confirms that a deep exploration of the graphs is not
required when using the smaller SN graphs produced for ScanNet scenes.

In contrast, Figure 5.17 shows that there are advantages to deeper graph exploration
when confronted with bigger scenes with more duplicate objects as with the warehouses
of ChangeSim. A significant number of scenes reach their best result for d = 20 for
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Figure 5.17: Distribution over the depth values in percent for when an
instance pair from ChangeSim [139] reaches its lowest RMSD. Left: using

LNs, right: using SNs.

(B
(k)
w ), and could benefit from further exploration, which is not possible using the walk

histograms.
To conclude, the proposed adjacency descriptors offer more flexibility in allowing

deeper exploration of large scenes when necessary. This can be done without pro-
hibitively large execution time, memory cost, or without degrading the results as with
the walk histograms, as the use of depth-wise weighting leads the error to stabilize rather
than increase for large depth values.

5.4.3.6 Impact of graph quality

As mentioned in Subsection 5.4.3.1, to assess the quality of the graph extraction process,
we also generated Ground-Truth (GT) graphs, that are based on the instance segmenta-
tion maps of ScanNet [37] (as shown in Figure 5.18) rather than our object delimitation
process (see Subsection 5.3.2). In Figure 5.19 and Figure 5.20, we show how the descrip-
tors perform under those “ideal” conditions for graph extraction.

The RMSD curves (left of Figure 5.19) show a slight improvement of the registration
over using the SN graphs (about 3% at the optimal depth), but notably, using GT
graphs fixes the issue of quality degradation with increasing depths. Indeed, with the
GT graphs, d = 2 does not account for more than 40% of the best registration results

when using (B
(k)
w ) (right of Figure 5.19) as it did for SN graphs.

Using GT graphs also narrows the performance gap between H2 and (B
(k)
w ) at d = 40,

but the latter still outperforms the former at all success thresholds in Figure 5.20 (left

side). The performance is also improved for (B
(k)
w ) when using the instance segmentation

ground truth (right of Figure 5.20) as success rates of 90% and 100% are reached earlier.
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Figure 5.18: Frame from a ScanNet [37] sequence (left), semantic seg-
mentation (middle) and instance segmentation (right).

The “walls” –semantically represented by a uniform (pale blue) region–
are broken up into two distinct (pale orange and purple) instances.
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Figure 5.19: On ScanNet [37]: Median RMSD vs. s(l, d,m) for Hd

and (B
(k)
w ), with optional RANSAC filtering (left); Distribution over the

depth values in percent for when an instance pair reaches its lowest RMSD
(right).

However, the performance is still the best using SN graphs when only the node
label is used for matching (right of Figure 5.20). The most likely explanation is the
reduced number of nodes in the graphs. In Subsection 5.4.3.1, we showed that GT
graphs contained 31 nodes on average, while SN graphs tend to merge objects, resulting
in a 19 nodes average. Reducing the graph’s size reduces ambiguity when matching
nodes solely on their label, seeing as only nodes of the same label are incorrectly merged
using the SN extractor.
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Figure 5.20: Percentage of successful registrations on ScanNet [37] vs.
an RMSD threshold for success. Left: using the node’s label, Hd and

(B
(k)
w ) with GT graphs. Right: using the node’s label and (B

(k)
w ) with

SNs and GT graphs.

To test the robustness of our registration method to a lowering of graph quality,
we use an off-the-shelf image segmentation tool that has been trained on the 40 NYU
labels [173]. We decided to use 2021’s ESANet [169], which we ran on the RGB images
sequences provided in ScanNet [37] to produce new label maps, replacing the accurate
maps given by ScanNet we otherwise use (see Subsection 5.3.1.1). This approach makes
the labelled region-based graph creation less reliable in 2D (as shown in Figure 5.21), but
also makes the temporal segmentation of the scene inconsistent, leading to ambiguous
3D segmentation.

In practice, the images are segmented into more regions than the ground truth, which
causes the average graph size to increase from 19 to 32 for SNs and from 50 to 124 for LNs
(see Table 5.3). It also greatly affects the quality of the object instance segmentation,
as the ARI drops to 0.133 for SNs and 0.179 for LNs. As for the registration task, the
results using the ESANet label maps are presented in Figure 5.22 and Figure 5.23.

In Figure 5.22, we only plot the walk histogram descriptor’s performance for m =

1 (no merging). Once again, it is outperformed by (B
(k)
w ) for most depths, and the

performance of the adjacency descriptor improves with increased depth whether SNs or
LNs are used, as the graph size is larger using the ESANet segmentation.

However, in Figure 5.22 and Figure 5.23, SNs are outperformed by LNs for the
localisation task when higher depth values are used for the descriptors. In Figure 5.23,
it is especially visible that using SNs benefits the node label descriptor (d = 1) –as LNs
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Figure 5.21: Frames from a ScanNet [37] sequence (left column), ground
truth semantic segmentation (middle column) and semantic segmentation
using ESANet [169] (right column). The labelling of 3D regions visible in

both frames is inconsistent when using ESANet.

graphs are much larger– but they give a poorer performance for d = 40 with (B
(k)
w ).

In conclusion, the quality of the localisation is correlated to the closeness of the graph
representation with the actual semantic contents of the scene. Using the instance seg-
mentation ground truth improves the results when descriptors encode a neighbourhood
of depth 2 or more around each node. Conversely, not using the 2D label ground truth
degrades the results but 90% of instance pairs are still registered within a RMSD of

0.80 meters if (B
(k)
w ) descriptors are used in conjunction with LNs at depth 40 (see left

of Figure 5.23). We therefore note that LNs seem more robust to a degradation of the
input labels, which makes their use over SNs in the localisation task still relevant when
the scene contents are difficult to identify.
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Figure 5.22: Median on ScanNet [37] of the RMSD with ESANet [169]

labels vs. s(l, d,m) for Hd and (B
(k)
w ), with optional RANSAC filtering.

Left: using LNs, right: using SNs.
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Figure 5.23: Percentage of successful registrations with ESANet [169]
labels on ScanNet [37] vs. an RMSD threshold for success, using the

node’s label, Hd and (B
(k)
w ). Left: using LNs, right: using SNs.
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5.5 Conclusion

In this chapter, we presented a new graph node descriptor based on the adjacency matrix
of a scene graph for indoor scenes. We evaluated its descriptive powers in the graph
matching process as part of a pipeline for indoor scene registration. Compared to a
similar state-of-the-art method [72], we found that it produces a more precise alignment
of the scene models. We also demonstrated the computing efficiency of our proposed
descriptor in semantically rich scenes. Indeed, the size of the descriptor necessary to
encode the many different object labels for large neighbourhoods is greatly reduced
from existing works [72, 61], while improving its computing time. The ScanNet [37] and
ChangeSim [139] datasets were processed in order to be usable in our scene registration
task: we generated the registration ground truth for ScanNet, and the camera poses
ground truth for ChangeSim. The registration quality was evaluated using a metric for
transformation error that we adapted from an earlier RMSD metric [90] to fit our data’s
profile.

We also experimented with an alternative graph representation and extraction method,
which is much more representative of the object-level understanding of the scene re-
quired for tasks beyond localisation. This Super Node-based representation performed
equivalently or better than the previous on this task, while the evaluation of its scene
representation quality was quantitatively evaluated using a relevant clustering metric:
the Adjusted Rand Index [86].

Given a pair of scene graphs, preliminary registration can be performed rapidly and
reliably using the proposed graph descriptor and graph representation. These meth-
ods also offer more flexibility to different types of scenes thanks to their slower scaling
with the scene’s dimensions, semantic density, or observation radius required to reliably
identify objects with to their surroundings.
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Chapter 6

Conclusion and Future Work

In this thesis, we introduced novel methods to tackle the problem of geometric Change
Detection for Mixed Reality experiences. Said CD was performed between two states of
a real-world scene, be it through photometric and geometric observations or semantic
analysis of the scene’s contents. We defined MR as photo-realistic Augmented Real-
ity, and found that “behavioural realism” would also need to be achieved to preserve
its immersive quality. Behavioural realism involves the recreation of believable phys-
ical interactions of the virtual contents with the real world, which requires semantic
information about the scene beyond its geometry (the real objects’ types, materials,
relationships etc.). This work was undertaken in order to provide a means of maintain-
ing a model of the real environment, which would include the necessary information to
achieve the desired level of realism for MR applications.The use of CD to construct said
model was motivated by the need to provide a fast and lightweight solution to the main-
tenance problem: gradually applying updates to the model to mirror reality. Indeed,
the widely available AR devices are currently not equipped with the necessary scanning
or computing resources to recreate such a model without a prior with a high enough
fidelity, or within a time acceptable to the AR user. Additionally, devices such as AR
glasses and smartphones can only partially observe the scene –due to sensor limitations
or occlusions– making the use of a reference scene model mandatory for the experience
to be able to begin as the application is launched.

We learned in our study of the state-of-the-art (Chapter 2) in the field of CD, that
most existing methods are too demanding for the hardware of mainstream AR devices, or
are not able to provide 3D geometric results in real-time as required by most applications
in this field. Nevertheless, some of the works for robotics –in autonomous navigation
and interaction for instance– do provide approaches that aim to solve the problem of
scene understanding at interactive time, which we have been able to exploit to fit our
purposes [136, 151, 188].

In Chapter 3, we acknowledged the difference in nature between the data required
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for an MR application, and that which can be acquired using an AR device, by imple-
menting a CD method that can compare scene states represented by said heterogeneous
data. We made the hypothesis of a “semi-static” environment: an environment where
changes occur between AR sessions but not while it is observed during said sessions.
Consequently, changes could be studied by comparing two static models of this environ-
ment: one for its past state –the “prior” or “reference”– and one for its current state
–the “observation” or “query”. We chose to represent the past state as an untextured
3D mesh –required for photo-realistic rendering but difficult to capture with the AR
device– and the current state as a sequence of images –readily available using a simple
camera. In this context, the 3D representation can be updated solely by detecting geom-
etry that was either added or removed between the two scene states. We used our own
image reprojection-based method, which corrects the existing bias [151] of similar meth-
ods [136, 188] toward the detection of geometry addition, to the detriment of removal
detection.

Following the work in Chapter 3, we noticed that updating the geometry of the
scene model would necessitate more precise results than our photo-geometric analysis
could provide from an outdated mesh and up-to-date images. Therefore, we concluded
in Chapter 4 that an object-level understanding of the scene, and subsequent segmenta-
tions of the 3D and 2D data from the scene model, would allow us to better preserve the
model’s fidelity to the real environment after maintenance. We settled on a semantic
Scene Graph representation, where nodes would represent objects in the scene and edges
their (spatial) relationships.In such a SG, the attributes of nodes –namely the location
and type of object they represent– link semantic labels to the relevant scene geometry
and textures. This SG is updated through semantic analysis of the scene, which allows
us to better define the “relevancy” of changes –finding which changes affect the MR
experience– as well as achieving behavioural realism.

Finally, we introduced a method to match our semantic SGs through the identifica-
tion of similar nodes in Chapter 5. The purpose of this work was to show how this scene
representation could be used for various tasks arising from general AR applications (i.e.,
not only MR), such as user localisation and virtual content integration based on seman-
tic contents. With the assumption that modern AR devices are now equipped with a
LiDAR sensor or stereo cameras –in contrast to Chapter 3– we presented a novel graph
generation method from RGB-D sequences. In the same chapter, we also introduced a
novel node descriptor that can be used to measure similarity between the objects (SG
nodes) extracted from two different RGB-D sequences. Using these proposed methods,
two scene states can now be compared and aligned through semantic matching of their
graphs, and persistent virtual content can be reliably reintegrated into the scene between
AR sessions.
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In conclusion, using the new hardware and the reference data hypothesis introduced
in Chapter 4, the photo-geometric CD approach from Chapter 3 could be used on an
object-segmented mesh, opening up the possibility of fidelity-preserving updates to be
made to said mesh. Additionally, with said objects being represented as nodes in a
graph of the scene, the registration of the image sequence required for the CD framework
from Chapter 3 could be handled by the SG-based method from Chapter 5. As outlined
in Chapter 4, when changes are detected in the scene, the removed objects can simply
be deleted from the segmented mesh, while displaced objects can have the corresponding
mesh vertices match their trajectories. By using an AR device able to capture the RGB-
D frames for the SG generation in Chapter 5, we now have access to 3D geometry relevant
to the addition of novel objects to the mesh. In effect, a semantically semantic mesh of
the scene can be updated using RGB-D observations of its current state thanks to our
photo-geometric CD and semantic registration approaches. As such, only semantic CD
remains to be solved in order to exhaustively describe the changes with the precision
required to preserve the realism of MR experience in changing scenes.

We also found that our work on SGs could potentially be used in conjunction with
higher precision scanning utilities as a scene authoring tool from real data, that would
record and organise geometric, photometric and semantic information about the scene
in our proposed lean and versatile SG representation. Considering this and the previ-
ously mentioned registration application, our SG generation method is relevant to both
ends of an AR framework: the production and organisation of virtual assets and the
analysis of the real environment. As graphs have been used as the translation medium
between human instructions and robots’ operations in robotics, they can also be used
as a standardised interface between the real and virtual components of an AR appli-
cation. Indeed, the ability to communicate a set of instructions relating to a real (or
possibly virtual) scene will improve the behavioural realism of AR agents (useful for MR
applications), and generally give them more ways to interact with the scene.

6.1 Future work

As previously mentioned, semantic CD would greatly benefit our scene model update
framework for MR, yet remains to be addressed. In Chapter 4, starting from the semantic
SG model, we outlined an approach to tackling CD for MR applications through the
study of 4 problems:

� CD between two global SGs,

� CD between a partial query SG and a global reference SG,

� creation of the query SG guided by the prior knowledge contained in the reference,
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� update of the scene geometry from semantic CD.

The first problem was partially addressed in Chapter 5, as being able to match the
nodes of the two graphs is the first step towards tallying their differences. As we tackled
the issue of registration through graph matching, we introduced a similarity metric
between nodes (or objects) in the scene, which could be used to semantically match
nodes whose other attributes (geometric or photometric properties) may differ. In our
framework, the final registration step identifies the most geometrically coherent node
matches when aligning the scene instances –not every match is required– which makes
our approach robust to changes. CD will require the matching algorithm itself to identify
“unmatchable” nodes due to changes in the scene impacting the graphs’ topologies. This
will be evaluated using a graph matching ground truth, rather than a registration one.

Following this, the context of AR would require an approach able to match a user’s
current limited view of the scene, against the global reference. This perspective can
be emulated in our data used in Chapter 5 by simply shortening the image sequences
used to simulate the observation of the scene. As outlined in Chapter 4, while SG-
based localisation is addressed in the literature, CD will require an understanding of the
difference between out-of-view and removed objects. Similar attention should be given
to large objects that can only be partially observed at any time, as they can also help
to define the boundaries of the AR device field of view. All these added concerns would
impose new requirements on the scene model used, as a more thorough understanding
of the objects’ properties would be required to address them. This raises the question
of how these new properties might be updated or checked against the current scene,
given our assumed hardware limitations. Mirroring the method described in Chapter 3,
semantic change detection and graph updates would be performed using heterogeneous
data. Semantic and geometric analysis of the scene would be conducted with the help
of the prior, so as to define regions of interest in the current observations and allow the
maintenance of all that is stored in the scene model.

Finally, so far we have assumed that our reference was a perfect representation of the
scene as far as its “tracked” properties were concerned (the scene, the nodes’ attributes,
the mesh...) but can this hypothesis hold after multiple updates to the model? If the
scene only veered slightly from a stable reference state between AR sessions, updates to
the model would not need to be permanent, and the updated version would only exist
for that session. However, this hypothesis cannot be made in most real environments,
and over time the reference state will differ too greatly from the current observations
to be updated from change detection in real-time. Therefore, the scene representation
and CD technique must be chosen to preserve the quality of the former over multiple
iterations. This is especially true of geometric properties, which are the most difficult
to capture with dedicated hardware.
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Once the above-mentioned 4 problems have been solved, the resulting scene model
will be able to provide the necessary data to MR applications to achieve the desired
level of realism. It would then be possible to explore possible extensions to the scene
model, which allow for better interactivity between the virtual and the real environments,
or with the user. As our scene model was inspired by advancements in the field of
robotics, it would likely be an effective translation medium between human and machine
perceptions of the environment. More generally, the model is a means to communicate
scene information, and while the raw 3D and 2D data may be sizeable, the semantic
contents and layout represented by a graph are lightweight. This scene model tailored
to monitoring scene changes may be as efficient as transmitting scene updates: the
vocabulary of changes can be used to describe modification instructions. Once a scene is
understood on a semantic level, the many geometric and photometric changes required
to describe its dynamic parts can be effectively summarised as a set of semantic changes.
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Appendix A

Photo-geometric change detection
dataset

This appendix showcases the datasets of scenes on which photo-geometric change de-
tection was performed for our work in Chapter 3. Each scene’s past and present states
are respectively described by an outdated 3D mesh and a sequence of registered cur-
rent images. All the images of a sequence are taken within a narrow time frame to
reduce structural or lighting changes. For clarity, the virtual cameras chosen to ren-
der the meshes (first row of the figures) align with the estimated camera poses of the
image sequences (second row), and a 2D ground truth is provided for each such pose
(third row). The cameras’ intrinsic and extrinsic matrices are taken from the origi-
nal datasets [37, 136] and are sometimes slightly inaccurate in their estimation of the
camera’s pose or image distortion from its optics.

The last row presents the results of the 3D detection of removed objects from Chap-
ter 3, projected in 2D for comparison with the ground truth. To simulate object removal
(from a reference mesh to current images), 3D models of objects were downloaded from
Turbosquid [193] and added to the meshes, and the download links are provided for
each scene. More quantitative results are provided in Chapter 3, notably the ROC
curves (true positive rate against false positive rate) produced by our removal detection
algorithm.
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A.1 Scenes from Palazzolo et al. dataset

(a) Outdated 3D mesh showing removed object (shelf): www.turbosquid.com/3d-models/1548060

(b) Up-to-date images showing inserted object (container)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.1: container-shelf.

www.turbosquid.com/3d-models/1548060
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(a) Outdated 3D mesh showing removed object (shelf): www.turbosquid.com/3d-models/1548060

(b) Up-to-date images showing inserted object (container)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.2: container-shelf2.

www.turbosquid.com/3d-models/1548060
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(a) Outdated 3D mesh showing removed object (car): www.turbosquid.com/3d-models/1330846

(b) Up-to-date images showing inserted object (play house)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.3: playground-car.

www.turbosquid.com/3d-models/1330846
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(a) Outdated 3D mesh showing removed object (robot, rabbit): www.turbosquid.com/3d-models/?

(b) Up-to-date images showing inserted object (statue)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.4: statue-robot.

www.turbosquid.com/3d-models/?
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(a) Outdated 3D mesh showing removed object (robot, rabbit): www.turbosquid.com/3d-models/?

(b) Up-to-date images showing inserted object (statue)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.5: statue-robot-bad-exp.

www.turbosquid.com/3d-models/?
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(a) Outdated 3D mesh showing removed object (robot, rabbit): www.turbosquid.com/3d-models/?

(b) Up-to-date images showing inserted object (statue)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.6: statue-robot-bad-temp.

www.turbosquid.com/3d-models/?
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(a) Outdated 3D mesh showing removed object (robot, rabbit): www.turbosquid.com/3d-models/?

(b) Up-to-date images showing inserted object (statue)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.7: statue-robot-temp.

www.turbosquid.com/3d-models/?
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(a) Outdated 3D mesh showing removed object (stone): www.turbosquid.com/3d-models/1300107

(b) Up-to-date images showing inserted object (portable toilet)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.8: toilet-stone.

A.2 Scenes from ScanNet dataset

www.turbosquid.com/3d-models/1300107
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(a) Outdated 3D mesh showing removed object (plant): www.turbosquid.com/3d-models/1528072

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.9: 0000 00+plant.

www.turbosquid.com/3d-models/1528072
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(a) Outdated 3D mesh showing removed object (box): www.turbosquid.com/3d-models/1369994

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.10: 0000 01+box.

www.turbosquid.com/3d-models/1369994
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(a) Outdated 3D mesh showing removed object (box): www.turbosquid.com/3d-models/1369994

(b) Up-to-date images showing inserted object (gym bag)

(c) Ground truth: insertions (green) and removals (red).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.11: 0000 01-insert+box.

www.turbosquid.com/3d-models/1369994
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(a) Outdated 3D mesh showing removed object (statue): www.turbosquid.com/3d-models/1335035

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.12: 0000 02+statue.

www.turbosquid.com/3d-models/1335035
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(a) Outdated 3D mesh showing removed object (doll house): www.turbosquid.com/3d-models/1576949

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.13: 0001 00+dollhouse.

www.turbosquid.com/3d-models/1576949
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(a) Outdated 3D mesh showing removed object (table): www.turbosquid.com/3d-models/1578760

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.14: 0001 01+table.

www.turbosquid.com/3d-models/1578760
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(a) Outdated 3D mesh showing removed object (chair): www.turbosquid.com/3d-models/1551213

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.15: 0002 00+chair.

www.turbosquid.com/3d-models/1551213
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(a) Outdated 3D mesh showing removed object (fire extinguisher): www.turbosquid.com/3d-models/

1447524

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.16: 0002 01+extinguisher.

www.turbosquid.com/3d-models/1447524
www.turbosquid.com/3d-models/1447524
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(a) Outdated 3D mesh showing removed object (cat): www.turbosquid.com/3d-models/1340490

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.17: 0003 00+cat.

www.turbosquid.com/3d-models/1340490
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(a) Outdated 3D mesh showing removed object (desk lamp): www.turbosquid.com/3d-models/1522080

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.18: 0003 01+desklamp.

www.turbosquid.com/3d-models/1522080
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(a) Outdated 3D mesh showing removed object (ghost): www.turbosquid.com/3d-models/1419900

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.19: 0004 00+ghost.

www.turbosquid.com/3d-models/1419900
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(a) Outdated 3D mesh showing removed object (bucket): www.turbosquid.com/3d-models/1288741

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.20: 0005 00+bucket.

www.turbosquid.com/3d-models/1288741


194 Appendix A. Photo-geometric change detection dataset

(a) Outdated 3D mesh showing removed object (pitcher): www.turbosquid.com/3d-models/1368224

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.21: 0005 01+pitcher.

www.turbosquid.com/3d-models/1368224
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(a) Outdated 3D mesh showing removed object (lamp): www.turbosquid.com/3d-models/1428616

(b) Up-to-date images.

(c) Ground truth: removals (white).

(d) Projected 3D removal detection (white: false negative, green/cyan: true positive, red/magenta: false
positive).

Figure A.22: 0006 00+lamp.

www.turbosquid.com/3d-models/1428616
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Résumé : La  Réalité  Augmentée  (RA)
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virtuels dans une scène nécessite un modèle
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limitations matérielles des appareils RA grand
public, faire un scan géométrique exhaustif de
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Néanmoins,  une  partie  de  l'information
structurelle dans la scène reste inchangée et
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Cette thèse a pour objectif  de donner les
moyens d'identifier  et  corriger  les  régions
changeantes d'une scène en détectant les
différences  entre  une  réprésentation
antérieure et des observations courantes.
Nous présenterons un nouveau système de
détection  de  changements  géométrique
léger, utilisant une méthode de reprojection
d'images.
Nous présenterons également l'élaboration
d'un modèle sémantique de scène pour la
Réalité  Mixte  à  base  de  graphes,  ainsi
qu'une  méthode  de  génération  de  ce
modèle par analyse sémantique. Ce même
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système d'alignement de scènes 3D, pour
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RA.

Title : Towards geometric and semantic change detection for mixed reality experiences
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Abstract  : Photorealistic  Augmented Reality
(AR)  –or  “Mixed  Reality”–  is  applicable  to
various  immersive  experiences,  from
entertainment  to  simulation-based  training,
and  for  previsualization  tasks.  The  realistic
integration  of  virtual  elements  requires  an
accurate  and  up-to-date  model  of  the  real
scene's geometry and semantic contents. The
3D structure of the environment impacts the
visual rendering as well as the spatial layout
of the virtual content and its interactions with
real  objects.  Given the hardware constraints
of  widely  available  AR  devices,  it  is
impractical to thoroughly scan the geometry of
the  scene  with  each  use.  Still,  some  the
scene's  structural  information  will  remain
constant  over  time  only  requiring  local
updates  to  accurately  represent  the  scene's
current state.

The  aim  of  this  doctoral  study  has  been  to
provide the means to identify and correct areas
of  change  in  a  scene  through  detection  of
inconsistencies between a prior representation
and an current observations.
In this thesis, we present the completion of a
lightweight  reprojection-based  geometric
change detection framework. We also present
the  elaboration  of  a  graph-based  semantic
scene model for Mixed Reality, and a method
for its generation from semantic analysis. This
model  will  then  be  used  in  a  3D  scene
registration  system,  in  order  to  test  its
applicability to the localization task in AR.
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