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Résumeé

La Realite Augmentee Audio vise a intégrer un contenu audio virtuel dans enviro-
nnement acoustique de l'utilisateur, créant ainsi une expérience audio immersive. La disponi-
bilit¢ commerciale de casques de realite augmentee tels que "Apple Vision Pro a encore
renforce Iintérée pour ce domaine de recherche. Pour synthétiser un son spatial binaural
capable de recréer la perception de la distance, de la direction et des indices acoustiques,
la connaissance des parametres acoustiques specifiques de Penvironnement de P'utilisateur
est un prerequis. Les parametres acoustiques se divisent en deux categories : des parametres
globaux associés a la géométrie de la piéce, au temps de réverbération et aux matériaux
des parois, et des parametres locaux concernent la localisation de chaque source sonore. A
l'aide de simulateurs acoustiques, ces parametres sont utilisés pour simuler des réponses im-
pulsionnelles des salle. Ces reponses impulsionnelles peuvent ensuite etre convoluces avec
des signaux audio bruts pour synthetiser un son spatial binaural avec une perception de
réalisme. Cependant, I'estimation des parametres acoustiques est un défi. Des recherches
antérieures ont tent¢ de résoudre ce probleme grace a des mesures in-situ laborieuses et
chronophages, souvent peu pratiques. Dans cette these, nous relevons ce defi en utilisant
des techniques d'apprentissage automatique supervisces utilisant des enregistrements de
parole en entree. Notre principal domaine dapplication concerne les picces cuboides avec
des scénarios acoustiques statiques. Dans la premiere partie de notre travail, nous develop-
pons un réseau de neurones multi-taches pour estimation des parametres de la salle. Nous
évaluons ensuite sa robustesse en utilisant des données réelles.

Dans la deuxieme partie, nous déplacons notre attention vers lapprentissage virtuelle-
ment supervise. Cette approche consiste a entrainer des modeles d’apprentissage automa-
tique exclusivement sur des données simulées. La justification de cette strateégie repose sur
la disponibilit¢ limitee de jeux de données réels spécifiques a la tache dans ce domaine. Pour
assurer la généralisation des modeles ainsi appris, 'ensemble d’apprentissage doit ressem-
bler de pres aux scenarios rencontres dans les ensembles de test. Afin de combler cette
lacune, nous ameliorons le réalisme du simulateur acoustique open-source Pyroomacous-
tics en y intégrant une extension de la methode de source image. Nous utilisons, ce sim-
ulateur acoustique ameliore pour entrainer des réseaux neuronaux aux taches d'estimation
des parametres de la salle et de localisation des sources sonores. Nous utilisons plusieurs
ensembles de test réels pour évaluer 'impact positif de I'apprentissage a l'aide du simula-
teur ameliore. Nos experiences montrent que la generalisation est ameliorée pour les deux
taches par rapport aux modéeles appris pour la méme tache avec des donnces d"apprentissage
moins réalistes. A notre connaissance, il s'agit de P'une des premiéres études a exp]orer



lapprentissage virtuellement supervisé pour l'estimation des parametres acoustiques de salle
a la fois globaux et locaux.



Abstract

Audio Augmented Reality aims to integrate virtual audio content into the user’s
acoustic environment, creating an immersive audio experience. The commercial availabil-
ity of augmented reality headsets such as Apple Vision Pro has furcher motivated interest
in this research field. To synthesize binaural spatial audio that can recreate the perception
of distance, direction, and acoustic cues, the knowledge of specific acoustic parameters of
the user’s environment is a pre-requisite. Acoustic parameters can be divided into two cat-
egories: global parameters associated with the room’s geometry, reverberation time, and
wall materials, and local parameters concerning the location of each sound source. With
the help of room acoustic simulators, these parameters are used to simulate room impulse
responses. These room impulse responses can then be convolved with dry speech signals
to synthesize binaural spatial audio with a perception of realism. However, the estima-
tion of these acoustic parameters is a challenge. Previous research has atctempred to address
this problem through cumbersome and time-consuming in-sicu measurements, which are
often impractical.In this thesis, we tackle this challenge by leveraging supervised machine-
1earning techniques using speech recordings as input. Our primary focus is on cuboid rooms
with static acoustic scenarios. In the initial part of our work, we develop a multi-task neu-
ral network for room parameter estimation. We then assess its robustness using real-world
data.In the second part, we shift our focus towards virtually supervised learning. This ap-
proach involves training machine learning models exclusively on simulated data. The ratio-
nale behind chis strategy is rooted in the limited availability of task-specific real datasets
within this domain. To ensure genralization, the training dataset should closely resemble
the scenarios encountered in the test datasets. In order to bridge the gap, we improve re-
alism in the open-source room acoustics simulator Pyroomacoustics by implementing an
extended image source method. Further, this improved room acoustics simulator is used to
train neural networks for the tasks of room parameter estimation and sound source localiza-
tion. We ernploy several real test datasets to assess the positive impact brought by training
the systems using the improved simulator. Our experiments show that the generalization
of the system is improved across both tasks when compared to the systems trained for the
same task with less realistic training data. To the best of our knowledge, this is one of the
first studies to explore the field of virtually supervised learning for the task of global and
local room acoustic parameter estimation.
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1 Introduction

1.1 Motivation

Augmented Reality (AR) secks to integrate computer-generated virtual content with
the physical environment in a way that creates a seamless fusion, making the virtual content
appear as if it were part of the real world (Azuma, 1997). AR has the potential to enhance
people’s perception of, and interaction with, their surroundings, making it easier for them
to perform real-world tasks. One significant advantage of AR technology is its capacity to
augment human senses, enabling people to interact with virtual objects and scenes just as
effortlessly as they do with the physical world (Azuma et al., 2001). However, the majority
of AR research has predominantly concentrated on visual augmentation (Kim et al., 2018).

Audio Augmented Reality (AAR) has received less attention compared to visual aug-
mentation. In AAR, virtual audicory content is seamlessly integrated into the real acoustic
environment, enhancing the user’s experience. In order to create a realistic sense of direc-
tion, distance, and reverberation for the virtual sounds, the virtual sound sources are often
binaurally spatialized. AAR technology is capable of creating immersive audio experiences
for a variety of sound contents such as speech, music, beacons, and alerts (Li et al., 2018).
Therefore, it can convey different types of information depending on the context. Readily
available powerful computing devices such as mobile phones have the ability to simulate vir-
tual sound sources and provide an immersive audio experience. The user can access these
immersive audio experiences with many off-the-shelf headphones (Yang, 2021). Recently
many AR headsets and earphones have been introduced in the market, that are able to per-
form real-time AAR computation. These include Apple Vision pro, Apple Airpod pro,
Samsung Galaxy buds pro, and Sony WH-1000XMS5.

This has spurred further interest in the field. Compared to audio simulation in virtual
reality systems, AAR systems are more difficult to implement due to the complex technol-
ogy required to augment audio in real-world conditions. More specifically, in virtual realicy
audio, the use of pre-designed virtual scenes can simplify the rendering of audio content,
while in AAR, creating virtual sounds in the physical world and adapting them to the user
in real-time is more complex. A functional AAR system comprises five technological com-
ponents: head tracking, room acoustic modeling, spatial sound synthesis, interaction tech-
nology, and display technology (Yang et al., 2022). Interaction technology is required to get
the user inputs to adjust the parameters for AAR, while display technology refers to the
way the sound is played back for the user. To display the visual content accompanied by
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immersive audio a screen is also required. In this thesis, we only focus on one of these five
aspects of AAR, namely, room acoustic modeling,

1.2 Research context

The incorporation of room acoustic modeling in AAR arises from people’s natural
auditory perception of the real world, where the perception of a sound source can vary
drastically in different environments (Yang ct al., 2022) because the acoustic properties of
the space such as the room geometry or wall materials influence the propagation of the
sound. In particular, we consider acoustic scenes in cuboid rooms (rectangular floor map),
commonly referred to as shoebox rooms in this thesis. To ensure that virtual sounds are
perceived as if they belonged to the physical environment, an AAR system should model
room acoustics when rendering virtual sounds. A common approach is to convolve the
dry sound source that needs to be rendered with an RIR. An option is to perform an in-
situ measurement of the RIR corresponding to the user’s acoustic scene. However, this
process is cumbersome, and for real-time AAR systems, it is impractical. Some current
AAR systems such as those of Heller et al. (2014) and Mattheiss et al. (2020) overcome this
issue by adding artificial reverberation to the rendered sound source, although the closeness
of this artificial reverberation to the actual environment of the user has been barely studied.
Room acoustics, in general, has been overlooked or inadequately modeled in many AAR
systems (Valimaki et al., 2015; Yang et al., 2022).

The forward problem of estimating the RIR of an acoustic scene from a given set
of acoustic parameters has been widely studied and there exists a variety of room acous-
tic simulators that are designed to solve this problem. The inverse problem of estimating
acoustic parameters from one or more RIRs has been less studied, because for AR use cases
the in-situ measurements of RIRs are impractical. Therefore, a more reasonable approach
is to rely on unknown sound sources present in the acoustic scene to measure important
acoustic parameters, and then simulate a RIR matching the user’s environment based on
these parameters.

Acoustic parameters that are relevant for the simulation of RIRs include the wall
absorption coefhcients, the geometry of the room, information about the reverberation
time RTgp, and in some cases the location of the sound source. Methods based on signal
processing exist for the estimation of these parameters (ISO.ASTM:E1050-9, 2006; Hald
et al,, 2019; Shlomo and Rafacly, 2021; Gaubitch et al,, 2012; Brandao et al., 2015; Grumiaux
ct al,, 2022), however, they all have limitations. These methods are known to struggle in
noisy and reverberant conditions, some of them only work with RIR; or they require special
apparatus and meticulous control over the user environment and some of them are not
sufficiently accurate. Machine learning-based methods using Deep neural network (DNN),
and in particular supervised learning, are a resort to this issue. Many applications in audio
such as speech enhancement (Richter et al., 2023), speech separation (Hu et al,, 2023), and
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robust speech recognition (Vincent et al., 2017) have employed methods based on DNN
and demonstrated better results in difficult real-world acoustic conditions. Also, DNN-
based methods provide the ability to perform multi-task inference of various parameters,
one such example is Yu and Kleijn (2020) that simultaneously estimates room geometry and
reflection coefficients from a RIR.

Therefore, in all our contributions we will employ supervised DNN methods to ad-
dress the respective tasks. One caveat with the supervised learning approach is the require-
ment of a large amount of labeled training data. For better generalization in real conditions,
the training data should also be sufhiciently diverse. Pre-recorded, annotated datasets con-
sist of samples measured in real acoustic conditions. They are task-specific, for example,
the dEchorate dataset (Di Carlo et al,, 2021) is specifically designed for the task of room
geometry estimation, and the LOCATA dataset (Evers et al.,, 2020) is commonly used for
sound source localization. Also, most available datasets do not contain enough samples
for the training of a supervised learning system and the dataset is specific to the record-
ing microphone setup, the sound source, and the acoustic scene. For a DNN system which
aims to generalize, the specificity of a training dataset is detrimental. Room acoustic sim-
ulators allow physical modeling of an RIRs and finer control over the type of microphone
array, sound source, and acoustic scene in the virtual space. The simulation method can
vary from wave-based methods which solve the wave equation to simulate an RIR (Svens-
son and Kristiansen, 2002), to the simpler Image Source Method (ISM) which is based on
geometric room acoustics (Allen and Berkley, 1979). Depending on the simulation method,
diverse and realistic training data can be generated, where the latter is usually associated
with higher computational costs.

1.3 Objective and contributions

In this thesis, we focus on estimating global and local room acoustic parameters from
unknown sound sources. Global acoustic parameters include the room’s total surface area
S, the volume V| the mean absorption coefhicients @, and the reverberation time RTgp. As
for the local parameters, we only aim to estimate the location of the sound source. We,
therefore, contribute to two separate tasks: room parameter estimation and sound source
localization. We cater the two tasks using a supervised DNN approach. These DNN sys-
tems are trained solely on simulated data, an approach commonly referred to as virtually
supervised learning. We aim to answer the following questions: Is multi-task room param-
cter estimation (i.e., jointly estimating all room-acoustic parameters) beneficial compared
to separately estimating each room acoustic parameter ? Does multichannel input help or
are single-channel features sufficient? Do measurements from multiple positions inside the
room help in the estimation of the global parameters? Does improving the simulation tech-
niques help improving the generalization of the room parameter estimator and the sound
source localizer on multiple real datasets? What are the specific parameters which help in
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simulating realistic impulse responses, and how does the choice of each parameter affect
the training and performance of the network on real datasets?

1.3.1 Contributions

1.3.1.1 Multichannel room parameter estimation using multiple
viewpoints

Selecting the relevant acoustic parameters of the user environment poses a challenge.
The concept of reverberation fingerprint proposed by Jot and Lee (2016) characterizes a
room on the basis of its volume and its reverberation time per octave band. These two
parameters are related to each other via Sabine’s law under ideal diffuse sound field con-
ditions, which also involves the room’s total surface area and wall absorption coeflicients.
This motivated us to perform a joint estimation of these four parameters. Systems proposed
in the literature typically estimate each of these parameters separately. Murgai et al. (2017)
proposed an algorithm to blindly estimate the reverberation fingerprint based on the decay
envelope of a single-channel clean speech signal, Kataria et al. (2017) trained a statistical
model to blindly estimate the source position and mean wall absorption coefficient above
1 kHz using binaural signals and interchannel cues, and Genovese et al. (2019) proposesd
a DNN for room volume estimation using unknown sound sources. Most of the methods
presented in the literature operate on single-channel features and estimate broadband val-
ues for the frequency-dependent parameters. For learning-based methods an interesting
approach is to learn a latent representation called Room embedding, that conditions an end-
to-end network to convert an audio recorded in one environment to another. This approach
falls short for systems that depend on modeling the RIRs, due to the lack of knowledge of
room parameters.

Our first contribution is a multi-task multichannel framework for room acoustic pa-
rameter estimation. Specifically, we estimate simultaneously the four mentioned parame-
ters in six octave bands. To do so, we propose a new multi-task DNN architecture that is
capable of processing single-channel and multichannel features. This network is trained on
simulated data with a maximum likelihood-based loss function that yields adaptive vari-
ances for each parameter. This allows us to fuse multiple independent observations from a
room in a statistical motivated way. The results are evaluated on simulated and real rever-
berated speech recordings.

1.3.1.2 Improved simulation and its effect on room parameter estimation

A common bottleneck for any learning-based system is the need for a large annotated
training dataset. For audio systems, a widely used technique to emulate sound scenes in a
variety of acoustic spaces is to convolve dry source signals with RIRs. Acquiring thousands
of real RIRs in various acoustic scenes is impractical. Therefore, in recent years, rescarch
has been directed towards the use of data augmentation techniques. Specifically, for the
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task of room parameter estimation, Gamper and Tashev (2018), Genovese et al. (2019), and
Gotz et al. (2022) demonstrated that combining real RIRs with synthetic RIRs improves the
generalization of the DNN for the task of room volume estimation and reverberation time
estimation. While these studies show the effectiveness of using a few hundred annotated
real RIRs for training, obtaining such real data is not always feasible for all tasks, and the
acquisition process can be expensive even for a small amount.

An alternative is to train a DNN only on simulated data using the approach of virtu-
ally supervised learning. One approach could be to use large-scale simulated training datasets
of high-quality RIRs. A dataset published by Tang et al. (2022) consists of approximately
2 million high quality RIRs that were simulated in various acoustic scenes using a highly
accurate simulator combining a finite-difference time-domain wave equation solver at low
frequencies with ray tracing at high-frequencies. To create an accurate acoustic environ-
ment they combined 3D realistic house models with an automatically matched database of
material absorption profiles. The dataset was tested on a variety of single-channel speech
processing tasks and showcased improved gener;ﬂization compared to the model trained
on less realistic simulators. However, generating such large datasets is computationally de-
manding, and also they cannot be generalize to, for example, multichannel settings with a
specific microphone array geometry or to specific tasks.

Our second and third contributions address this issue. First, we improve the re-
alism of the RIRs simulated by the open-source room acoustic simulator Pyroomacous-
tic (Scheibler et al,, 2018) by implementing an extended version of ISM with frequency-
dependent source and receiver directivity without significantly increasing its computa-
tional cost. Then, we train and evaluate our multi-task multichannel room acoustic pa-
rameter estimation model on data obtained with this simulator, and conduct an ablation
study to evaluate the effects of different source and/or receiver directivity profiles and wall
absorption coefhicient distributions. The model is then tested on real speech signals from
the dEchorate dataset, comprising four different room configurations.

1.3.1.3 Improved simulation and its effect on speaker localization

Our fourth contribution diverts from global to local room acoustic parameter estima-
tion. Specifically, we focus on localizing a single active speaker in the environment. In the
context of virtually supervised learning for source localization, the literature has a plethora
of work on training DNN models with a simple ISM based simulator (Chakrabarcy and
Habets, 2019; Adavanne et al., 2018a; Diaz-Guerra et al., 2020; Nguyen et al., 2020). These
studies are using the simplest version of shoebox ISM with frequency-independent omnidi-
rectional sources and microphones combined with frequency-independent wall absorption
coethicients, which makes the simulation process computationally inexpensive. While ISM
simulators employ acoustic simplification compared to advanced simulators, these systems
have still shown decent performance on real test sets. A recent study on source localization
by Gelderblom et al. (2021) used an advanced ISM which models source directivity and
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diffuse late reverberation. Their results show that source directivity has a positive impact
while diffusion shows no added improvement.

Despite the widespread use of shoebox ISM-based simulators for training speaker
localization systems, the impact of incorporating more realistic source and receiver direc-
tivities and surface absorption profiles at training time, and its resulting effect on gener-
alization ability at test time, has been scarcely studied. This contribution aims to address
this gap by using the extended ISM introduced in our second contribution and performing
an ablation study to understand the influence of each added layer of realism on the train-
ing set. We present results on three real datasets, comprising speech excerpts from human
speakers in different rooms and microphone arrays.

1.4 List of published papers

The research conducted during this Ph.D. program resulted in the following publica-
tions.

« P. Srivastava, A. Deleforge, and E. Vincent. Blind room parameter estimation using mul-
tiple multichannel speech recordings. In Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA) 2021. (pp. 226-230)

« P. Srivastava, A. Deleforge, and E. Vincent. Realistic sources, receivers and walls improve
the generalisability of virtually-supervised blind acoustic parameter estimators. In Interna-
tional Workshop on Acoustic Signal Enhancement (IWAENC), 2022. (pp. 1-5)

« P. Srivastava, A.Politis, A. Deleforge, and E. Vincent. How to (virtually) train your
speaker localizer. In Interspeech, 2023.

One secondary contribution, not presented here, was also made during the same period.

- A. Politis, S. Adavanne, D. Krause, A. Deleforge, P. Srivastava, T. Virtanen. A dataset

of dynamic reverberant sound scenes with directional interferers for sound event localization

and detection. In Proc. DCASE, 2021, (pp. 125-129).

1.5 Structure of the thesis

Chapter 2 provides the necessary background for a better understanding of the work.
[t introduces many fundamental equations and their notations, which will be used through-
out the thesis.

Chapter 3 is an overview of the state of the art for room parameter estimation, source
localization, and virtually supervised learning. It also provides details on various room
acoustic simulators and existing audio datasets, that are integral parts of a virtually super-
vised learning approach.

Chapter 4 presents a novel DNN architecture for multi-task, multichannel room pa-
rameter estimation using multiple view-points.

Chapter 5 introduces an advanced room acoustic simulator based on an extension of
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the ISM. This work is a contribution to the open-source simulator Pyroomacoustics '
Chapter 6 presents an ablation study on the effect of using this advanced ISM sim-
ulator for training DNN models. The study is presented for the tasks of room parameter
estimation and source localization.
Chapter 7 summarizes the thesis and provides future research directions.

1https://github.com/LCAV/pyroomacoustics/tree/dev/dirpat






2 Background

This chapter aims to briefly describe the concepts related to audio and acoustics that
will be used throughout this thesis. Section 2.1 describes devices that are used to capture and
produce sound in an environment. It is followed by Section 2.2 that lays the fundamencals
of the digital signal model. After this, Section 2.3 presents the different techniques that
are used for the representation of the discrete sound signals in the frequency and time-
frequency domains. Section 2.4 begins with wave propagation theory and goes further to
explain sound reflection, diffraction, and scattering, which help defining room acoustics
and room impulse responses. Section 2.5 finishes this chapter with a brief introduction to
the deep learning techniques that have been used in this work.

Most of the material in Section 2.2 and 2.3 is inspired from the books of Vincent et al.
(2018) and Kutcruft (2016), except the subsection on spherical harmonics that is taken from
Zotter (2009). Other sections are motivated by the PhD theses of Schréder (2011), Pariente
(2021) and Di Carlo (2020).

2.1 Microphones and loudspeakers

Microphones and loudspeakers are meant to emit and record sound signa]s. In this
work, different types of microphones and loudspeakers are used in acoustic simulations
to increase the diversity of the data used to train our models. Additionally, a variety of
microphones and loudspeakers are used in the testing of our models. In the following, we
briefly describe the functioning of different loudspeakers and microphones, their frequency
response, and their directivity, which are repeatedly used at various points in this work.

2.1.1 Microphones

Microphones are transducers that convert the changes in acoustic pressure to equiv-
alent Changes in electric current. The amp]itude and ﬁ'equency fluctuation in the pressure
field is effectively transferred to the AC voltage produced by the microphone. Microphones
can be defined on the basis of their internal working structure (Lee and Lee, 2008).

L. Dynamic microphones: A diaphragm that detects the change in pressure field is at-
tached to a voice coil. Changes in pressure field lead to movement of the voice coil
across magnets generating electric current. Dynamic microphones are known for be-
ing rugged and do not require an external power source.

9
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Figure 2.1: Frequency response of the AKG ¢480 microphonc. The data is from the DIRPAT dataset
Brandner et al. (2018).

2. Condenser microphone: Instead of a voice coil, condenser microphones use charged
plates that move back and forth according to the air pressure detected by the di-
aphragm. Their use is combined with a high impedance amplifier. Condenser micro-
phones are used in studios and are known for detecting low Frequencies and deliv-
ering crisp audio. Condenser microphones have been extensively used in this study.
Simulation and recording of the datasets were mostly done using one of these micro-
phones: AKG C414 Series, AKG CK32, SHURE MX 391/0.

3. Electret microphones: Shares similarity to Electrostatic capacitor microphone. The
diaphragm isattached toa capacitor, and the capacitor is permanently charged evict-
ing the need of a constant source of electrical charge. The voltage varies with change
in pressure field resulting in current flow.Micro Electromechanical systems (MEMS)
use the same working principle but are constructed differently. Components and sys-
tems in MEMS are miniaturized and they sit on a single die taking advantage of the
semiconductor manufacturing process. Data recorded by MEMS microphones have
been used in this work as part of the VoiceHome2 dataset (Bertin et al., 2019).

2.1.1.1 Frequency response

Sound waves consist of various rapidly changing frequencies and amplitudes. When
converting a sound wave into electric current, a microphone may enhance or attenuate the
amplitude at each frequency. The frequency response of a microphone provides informa-
tion about the range of frequencies to which the microphone is sensitive and the degree of
enhancement or attenuation of each frequency. Some microphones are capable of recreat-
ing sound in the full frequency range, while most of them are only sensitive to a limited
ﬁequency. Figure 2.1 shows the Frequency response of an AKG c480 microphone measured
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Figure 2.2: Directivity pattern of the AKG ¢480 (cardioid) microphonc and AKG c414A (ﬁgurc—of—
cight) microphone for 6 octave bands shown at the equator elevation. The data is taken
from the DIRPAT dataset (Brandner et al., 2018).

in decibels (dB). 0 dB acts as a reference line: Frequencies with a gain equal to 0 dB are
perfectly reproduced without attenuation, while frequencies with a gain greater than 0 dB
are enhanced and frequencies with a gain below 0 dB get attenuated.

2.1.1.2 Directivity

Directional microphones are sensitive to the sound arriving from a particular an-
gle or direction. Their frequency response varies in relation to the direction of the sound
pressure field toward the microphone. Usually, the capsules in directional microphones are
designed so as to let in sound pressure fields from only the specific paths from the front of
the diaphragm to the back. This affects the high-frequency roll-off. There are a number of
directional patterns available for microphones.

L. Omnidirectional microphones have a constant sensitivity irrespective of the direc-
tion of arrival.

2. Unidirectional microphones are more sensitive to the sounds arriving from the front
direction, fixed as 0° in Figure 2.2, and are less sensitive to the other directions. There
exist 3 common types of directional patterns: cardioid, super-cardioid and hyper-
cardioid.

3. Bidirectional microphone have maximum sensitivity in two opposite directions and
minimum sensitivity in the other two directions. These directivity patterns are often

described as figure-of-cight.
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The directionality of the microphone often varies with frequency. Omnidirectional micro-
phones tend to behave directive above 500 Hz, similarly, directive microphones are less
directive below 500 hz. Figure 2.2 illustrates the directivity pattern of a cardioid micro-
phone across 6 octave bands. The source-to-microphone distance also directly affects the
frequency response of a directional microphone: a much closer source results in a boosting
of the lower frequencies, a phenomena known as the proximity effect. To avoid this prox-
imity effect, most of our experiments have been conducted, with a minimum source-to-
P, ’ p )
microphone distance of 30 cm.

2.1.1.3 Ambisonics

Some microphone arrays record sound in specific formats referred to as Ambisonics.
It is a method used to encode a sound field based on its directional properties.

1. Zero-order Ambisonic consists of only one channel that has pressure field informa-
tion at the origin W.

2. First-order ambisonic (FOA), also known as B-format (Gerzon, 1975), contains 4
channels where the first channel is identical to zero order Ambisonics and the other 3
channels encode the acoustic Velocity at the origin along 3 perpendicu] ar axes XY . Z.

3. Higher-order Ambisonics (HOA) contains (I +1)2 channels for a given order [ > 2,
which encode the spherical harmonics decomposition of the sound field (see Section
2.34), resulting in a much finer spatial resolution.

As aresult, any 3D sound fields can be represented, up to a spatial resolution depending on
the chosen order [ (Zotter and Frank, 2019). FOA signals can be recorded with soundfield
microphones such as OKTAVA MK 4012, Soundfield ST450, while HOA signals are often
recorded with Eigenmike em32 consisting of 32 channels, which are then encoded into 25
Ambisonic channels (I = 4). The Eigenmike is used in Chapter 6 as a part of STARS22
dataset (Politis et al., 2022).

2.1.2 Loudspeakers

Loudspeakers are also a type of transducer and convert electric signals into sound
signals. A loudspeaker consists of a movable coil adjoined by magnets. The coil moves
back and forth with respect to the varying electric current, which causes a cone attached
to the moving coil to convert the electric current to a pressure field. As microphone and
loudspeaker both work on the same principle, they can be switched to perform opposing
functions, albeit usually with poor performance. It is mainly because of physical constraints
and the design construction of both devices.

2.1.2.1 Frequency response

The range of frequencies over which a loudspeaker can transmit sound signals is rep-
resented by its f‘requency response. Loudspeakers can be divided into 4 categories based on
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Figure 2.3: Directivity pattern of the Genelec 8020 loudspcakcr and B&K head and torso mannequin
(HATS 4128C) for 6 octave bands shown at the equator elevation. The data is taken from
the DIRPAT dataset (Brandner et al., 2018)

their frequency range. Woofers, midrange and tweeters transmit low (< 200 Hz), medium
(500 - 3,000 Hz) and high (> 3,000 Hz) frequencies, respectively, while full-range loud-
speakers work throughout the frequency range 100 — 15,000 Hz. The specified loudspeak-
ers can be used together in a speaker system by dividing the sound spectrum into parts,
and sending the sound for a certain frequency range to the corresponding speaker system
component. This can be achieved using an electric circuit known as a crossover. Multiple
crossovers can build a crossover network, also known as a band-pass filter.

2.1.2.2 Directivity

Two types of sources are considered in this thesis: loudspeaker, and human speaker.
Human speakers are directive toward the front face while the intensity of directivity de-
pends on the speaker’s orientation. Similarly, the directivity of a loudspeaker depends on
its orientation, although there exists certain types of speakers that are directive in multiple
directions or even close to omnidirectional, such as dodecahedral loudspeaker arrays. Sim-
ilar to directional directivity in the microphones, 10udspeakers radiate in a wider :mgular
range at low frequency and vice-versa at high frequency. The area of this radiation can be
defined by calculating the effective radiation angle for a speaker in the horizontal plane.
Figure 2.3 shows the directivity pattern of a loudspeaker whose radiation angle is 120° de-
grees, i.c., alistener standing at 60° in both directions of the circle will perceive the volume
of sound at similar level as the zero—degree direction. This thesis involves the simulation
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of both omnidirectional and directive loudspeakers, including loudspeaker models such as
the YAMAHA DXRS8 or the Genelec 8020. In an attempt to simulate a human speaker,
a B&K head and torso mannequin is also used. Apart from their utilization in simulated
data, real data is also used employing the aforementioned directive loudspeakers and real
human speakers.

2.2 Digital signal model

2.2.1 Analog-to-digital conversion

Sound pressure field at a microphone position is a function of continous time. The
continuous pressure field is approximated as a continuous raw analog signal captured by a
microphone. For any given time ¢, the continous function outputs a value and the signal
does not break. Continuous functions are represented as Z(t) where ¢ € R. As most of the
processing takes place in digital systems, this continuous signal is converted to a discrete

signal z[n] for n € Z by sampling periodically at rate Fy [Hz] :
z[n]=(kppr2)(n-T). (2.1)

Here, 1,p is an analog low pass filter with frequency support in | - F/2, F5/2], T = 1/ F;
is the sampling period for n € Z and * is the convolution operator in continuous time. A
formal definition of convolution in time domain for two signals © and @ is given by,

(5% a)(t) = f : 5(r)alt - 7)dr . (2.2)

2.2.2 Signal model and terminologies

We define the signal model in discrete time for a static point source and a point
microphone in a homogeneous medium (air) as,

Cmg[n] = (g * 85) [n] + 0 [n], (23)

where * denotes discrete convolution and the source signal s; is modeled as a band-limited
discrete-time signal. Ry, is the RIR, that encapsulates acoustic information of the room. It
is a system response (in this case the room) captured by microphone m, when excited with
an impulse from source 7. The positions and directivities of the source and microphone
influence the RIR. The discrete-time convolution of h,,; with s; generates a reverberated
signal. Here m € {1,..., M}, where M denotes the number of channels present in the
microphone array. M = 1 is called a single-channel system while M > 1 is a multi-channel
system. The resulting reverberated signal for each source j and microphone m is denoted
Cmj- The combined signal for source j at all M channels, can be written as a vector-valued
signal in RM:

c;[n] = [cij[n], ....,enmj[n]] . (2.4)
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In the signal model, 7,5, is the background noise. In our experiments, we conceptualize un-
desired speech or nonspeech sources as point source interferers or diffuse noise, which are con-
sidered as background noise for the mixtures depending on the use-case scenario. Difluse
noise refers to the noise that is present in the background of the signal. Examples include
noise from air conditioning vents, car noise, wind noise ete. Such noise are spatially diffuse,
i.e., they cannot be associated with a single point in space. Two types of diffuse noise are
simulated in this thesis: additive white Gaussian noise (AWGN) and speech-shaped noise
(SSN) whose average power spectrum matches that of babble noise. Both are provided with
spatial characteristics of real diffuse noise (Habets and Gannot, 2007) We assume J differ-
ent point sources in the room and they are indexed by j € {1,...,J}. Point sources are
defined as distinct points in space which emit sound. Far-field is a notion that is generally
relative to the size of the antenna/size of the source and to the wavelength. In a far-field
scenario, point sources are a good approximation of human speakers or loudspeakers. This
theory is described in detail using the wave equation in Section 2.4.1. 1f all the J point
sources are active at the same time, then the respective sounds fields reaching the micro-
phone array are additively combined into a single sound. The resulting superimposition of
sound signals into one is defined as the mixture c[n].

c[n] = Z:];cj [n] (255)

Interferers are unwanted signals that have similar properties as point sources. Likewise, in
a mixture of speech signals where J speech signals are active at the same time, each speech
source acts as an interferer for the other active sources.

2.3 Sound representations

2.3.1 Discrete Fourier transform

Sound signals are usually presented in discrete time domain representations known
as waveforms. Another way of describing the content of the signal is its representation in
the frequency domain. The Fourier transform is one such tool that analyzes the frequency
content of the signal. One specific flavour of Fourier transform called the Discrete Fourier
Transform (DFT) is especially applicable to finite length discrete signals. So far we con-
sidered infinite length discrete signals that help in performing linear convolutions. In the
following, we therefore consider finite-length discrete signals z[n] withn € {0, ..., N -1},
Equivalently, infinite-length discrete periodic signals maybe considered. The DFT converts
the signal from the time domain to the frequency domain by using a set of basis vectors made
up of complex exponentials that are linearly spaced in frequency (see Figure 2.4). DFT anal-
ysis can be written as :
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Frequency

Figure 2.4: A signal decomposed as a Fourier series, which is a sum of sines and cosines that are
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X[f]= NZ_: z[n]e 2™ ME  fel0,.. F-1}. (2.6)

n=0
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The frequency coefticients X[ f] are complex numbers, the magnitudes | X[ f]| of these
coefficients form the magnitude speccrum, while the arguments 2 X[ f] constitute the phase
spectrum. When F' > N, the DFT is invertible, hence, the coefticients X[ f] can be used to
synthesize back the original time-domain signal using the inverse discrete Fourier transform
(IDFT). The DFT exhibits many important properties shown by Lyons (2004). We state
two properties that are used frequently in this thesis.

« Linearity indicates that the DFT of the sum of two signals is equal to the sum of the

individual transform of each signal :

cla)= Y efn] el - L], @7

« The Convolution Theorm for the DFT states that for two finite length discrete time
domain signals v and a, the product of their DFTs is the circular convolution &
between the individual discrete sequences :

z[n] = (v®a)[n] > X[f]=V[FIA[f]. (2.8)

With proper zero padding of both signals in the time domain, this equation also
become valid for linear convolution.

2.3.2 Short-time Fourier transform

The frequency components of signals such as music and speech exhibit variations over
time. To simultaneously track the variations in both time and frequency, we represent the
signal in the time-frequency domain. The short time Fourier transform (STFT) is one such
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Figure 2.5: Speech signal represented as a STFT spectrogram

time-frequency representation, which is illustrated in Figure 2.5. The main idea is to divide

the signal into small chunks of similar length and compute the DFT over each of these
chunks. The STFT is formulated as,

L1
X[f.a]l= > wn]z[n+aLltr]e M e C. (2.9)

n=0

The window function w[n] of length LY is repeatedly used over the signal to create
frames. Each frame is analyzed using the DFT and then w[n] hops to the next part of
the signal, where LMP is the hop size. The resulting time-frequency coefficients X[ f, a]
form a complex-valued matrix X € CF, where (f,a) are the frequency and time indices.
Similar to the DFT, the STFT also has magnitude and phase spectrograms. The power
spectrogram | X[ f, a][? represents the spread of power across frequency and time. Power
spectrograms are best visualized in log-power scale rather than in linear scale, due to the
wide dynamic range of natural sounds. This results in a log-power spectrum in dB scale:
101og,o [X[f, ]

Apart from these conversion of spectogram scales, both magnitude and phase spec-
tograms encodes crucial information. Magnitude spectograms present information on how
much frequency content is present per frame, while the latter encodes change of phase as a
function of frequency and time. The choice of window length becomes a crucial parameter:
long window lengths represent the frequency content accurately but lead to poor time res-
olution, while short window lengths results in the opposite trade-off. This is in line with
Gabor’s uncertainty principle, which states that it is infeasible to locate a signal in both
time and frequency accurately (Benedetto, 2021).

In this thesis we will experiment with magnitude and phase spectrograms and cheir
scaled variants such as power and log-power spectrograms.
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2.3.3 Spherical harmonics

The directivities of sources and microphones can be represented as functions of az-
imuth # and elevation ¢ on the sphere, g(8, ¢), also called spherical functions. More specif-
ically, the output of these spherical functions for a particular value of (6, ¢) is an impulse
response g(0, ¢,t) or a frequency response G(6, ¢, f), where G is the Fourier transform
of g. The spatial resolution of the directivity pattern depends on the discretization of the
sphere, i.c., the grid of (6, ¢) values at which impulse responses have been measured. More
points on the grid lead to higher resolution and vice-versa. Usually, the directivity patterns
of sources and microphones are provided by their respective manufacturers, and, the cor-
responding grid varies from one to the another. For some applications, including the work
in Chapter 5 of this thesis, there arises a need of high-resolution directivity patterns. A
work-around to this is to extrapolate or interpolate the responses to a finer target grid with
increased resolution. The spherical harmonics transform is one such tool used to solve this
problem.

Spherical harmonics provide a set of orthogonal basis functions on the sphere. These
functions originate from solving Laplace’s equation in spherica] coordinates. The spherical
harmonic basis function is given by:

Y (6, ¢) = NP (cosf)e™?. (2.10)

Y“(0,¢) is the spherical harmonic fuention of degree I and order w , where [ € N and
-l < w < . This gives 21 + 1 basis functions for degree [. The right handside of (2.10) is

made up of 3 different parts. V¥ denotes the normalization constant,

N - \l (20 +1) (I - w)! o

47 (I-w)!’

P!"(cos §) unties the function on the 8 axis, where P! is the associated Legendre polyno-

! ’ l ) poty
mial and cos @ maps 0 to the [-1,1] interval. €% can be expanded to sinusoids using Euler’s
formula and it shows the dependence over the ¢ axis.

2.3.4 Discrete spherical harmonic transform

As explained previously, the set of spherical harmonics forms an orthonormal ba-
sis for functions over the sphere. Using them, any real valued spherical function can be
expanded as a sum of an infinite set of scaled spherical harmonics:

00 l
9(0,0)=>" > Z1.,Y,“(0,9)., (2.12)
l

=0 w=—
where Z; 4, denotes the coefhicients on spherical harmonics. In most of the practical cases,
the spherical function g(6, ¢) is band-limited and the function is sampled over a discrete
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set of spherical angles. Therefore we change (2.12) to an expansion on a discrete grid (6;, ¢;),
where 7 is the discrete index.

L-1 1

g(eza (bu) = Z Zl,wYEw(ei; ¢u) . (2.]3)
l

=0 w=-—

This discrete expansion is known as the inverse discrete spherical harmonics transform
(DSHT). The exact expansion of the function g might require an infinite basis set with
[ - oo, but an approximate representation can be calculated using a degree [ up to some
threshold L. Low- spatial-frequency components in g can be well represented with few
degrees, while high-spatial-frequency components need a higher degree for good approxi-
mation.

The coefhicients of the spherical harmonics expansion for a discrete function which
is sampled on a strictly sampled grid (i.c quadrature) (Zotter, 2009) can be found using the
analysis equation,

1-1U-1

Ziw = Z Z ¢i9(0i, 9u)Y," (0is du) » (2.14)
=0 u=0

also called forward Discrete Spherical Harmonics Transform (DSHT), where }_/l“’ denotes
the complex conjugate of the spherical basis function and ¢; denotes quadrature weights.
According to Zotter (2009), (2.14) falls under the category of forward DSHT using quadra-
tures. A discussion about different types of quadrature weights is found in studies by
Sneeuw (1994) and Driscoll and Healy (1994). Additionally, Zotter (2009) also points to
the strict requirement on the order of the spherical harmonics and quadrature. In many
cases, depending on the nature of the spherical function and of the discrete grid on which
the function is sampled, the inverse problem of computing the coefhicients Z; ,, could be ill-
defined. Therefore, a variant of forward DSHT transform using least squares is proposed
by Zotter (2009). It does not pose a strict requirement on the sampled grid, although it
requires a least square pseudo-inverse of the spherical harmonic basis. For uniform distri-
bution of least-square errors on the surface of the sphere, a weighted-least square approach is
employed, whose vectorized form is,

zy, = (YL)+Qg> (215)
where zp, = [Zyp, ..., Zp ] is a column vector and Y, = [y£(0o,¢0), .., ¥L(0r,00)]
is a matrix of column vectors yr = [YL(0i, du), - .., Y (0, 64)]7. Here, + denotes the

pseudo—inverse, Qisa diagonal matrix whose entries are the surfaces of the Voronoi cells
associated with the points on the grid !, and g is a vector of spherical function g(, ¢).
Throughout this thesis, a forward DSHT should be associated with Equation (2.15).

]Equation (2.15), is inspired from the vectorized notation provided in Zotter (2009). For more details,
the reader is encouraged to look at Chapter 4 of Zotter (2009)
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Figure 2.6: Sound wave propagation in the far-field scenario. Incoming waves towards the micro-
g g g
phone can be approximated as plane waves.

2.4 Acoustics

2.4.1 Sound wave propagation

Sound can be defined as a vibration that carries energy through a medium such as
air or water. Throughout this work, we consider the medium of propagation as air and the
corresponding speed of sound ¢ = 343 m/s. The vibrations produced by the excited sound
source cause the air molecules in the medium to expand and contract. This produces an
oscillatory motion, leading to a fluctuation of air pressure. This fluctuation as a function of
space (position 7) and time ¢ defines the sound pressure field p. The acoustic wave equation
describes the evolution of p as a function of (7,t) in free-field conditions, i.c., open air without
any obstacles (no-boundaries) :

1 0?p(r,t
Vzp('r', t) - g% = 0, (216)

o2 O 92 9% . 2 lacis arar o ) o
where V2 = 7 + a7 T o7 18 the Laplacian operator in 3D space. Due to the absence of a
sound source it is also referred to as the homogeneous wave equation.

The Fourier transform of Equation (2.16) is known as the Helmholtz equation :

V2P(r,f) +k*P(r, f) =0, (2.17)

. - . 2
where k& is the wave number that relates to the frequency f via k = %f, and P denotes the

Fourier transform of p. Adding a source signal s5°(¢) located at r§* to the right side of
Equation (2.16) makes it inhomogeneous,
1 %*p(r,t)

V2p('f’,t) - C—ZT = sB‘“(t)é(’r - ’I"BTC . (2.18)

When the source signal is a Dirac signal (%) in time, the above equation becomes :

1 9%h(r,t)

2
\Y h(’f',t) - CGT

=0(t)o(r —ry°), (2.19)
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Figure 2.7: Reflection, scattering, and absorption of an incident sound wave

where h(r,t) denotes the response of the system to a Dirac. A standard solution of this
equation for a receiver placed at ™ is mentioned by Kuttruff (2016) and is written as :

) 1 MiC __ gaSTC
h('f’mlc,t) — 5 t— ||r TO ||

- 2.20
Tl : (220

This result can be interpreted as an outward spherical wave propagating at the speed of
sound in free-field conditions. The signal emitted by the source is attenuated by a factor
n1ic7,r,8'c||

of +” ?md delayed by i =7l

——— when reaching the receiver. Figure 2.6 shows the
Ar|rmic—py c ) )

propagation of an omnidirectional point source in free-field conditions, where the pressure
field is moving away from the source in a spherical pattern. As shown, the microphone

g away P patter: ) P

is placed far away from the source, hence the curvature of the waves can be ignored due
to waves becoming close to plane waves. This scenario is called far-field. Conversely, the
curvature of waves should be taken into account when the receiver is very close to the source,

which describes the near-field scenario.

2.4.2 Room acoustics

Until now, we have presented propagation of sound under the free-field scenario, al-
though in this thesis we work with real or simulated rooms. A room is an enclosed space
that is bounded by sound reflecting materials on the walls, ceiling and floor. The charac-
teristics of the sound wave gets changed when it encounters the boundaries of the room.
The acoustic and geometric properties of each encountered surface determine how much
the sound wave is reflected, diffracted or absorbed by the surface. A combination of these
effects is responsible for room acoustics and complex sound fields. In the rest of this section,
we assume that the sound source is not too close to a wall, so that the sound waves are
treated as incident and undisturbed plane waves based on the far-field scenario.

2.4.2.1 Reflection and scattering

Reflection occurs when a sound wave hits a solid surface. It often changes the ampli-
tude and the phase of the impinging sound wave. Primarily, there are two types of acoustic
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reflections.

L. Specular reflections : follow the Snell-Descartes law, i.c., the angle of incidence and
the angle of reflection are equal.

2. Diffuse reflections : refer to sound waves getting scattered in every direction.

These reflections depend on the surface irregularities and the wavelength of the sound
wave. A perfectly rigid surface reflects sound rays in a specular manner, while on an irregular
surface, the behavior depends on the size @ of the irregularities and the wavelength A of the
sound wave.

+ When A >> a surface irregularities are non-existent, thus sound rays are reflected in
a specular manner.

+ When A # a each sound ray bounces in a different direction, resulting in a scattering
effect.

+ A << a leads to specular reflection on each individual irregularity present on the
surface.

Specular reflections either reflect or absorb a certain fraction of‘energy, depending on the
surface material. This is modeled by the following quantities:

« The acoustic impedance Z,(f) characterizes the behaviour of surface v in terms of
its rigidity or penetrability. It is defined as the ratio between sound pressure and
partic]e Velocity on the surface. It takes values in C with real and imaginary parts
called acoustic resistance and reactance. The former describes the lost energy and
the latter the stored energy.

+ The reflection coefficient 3 is the proportion of incident wave magnitude absorbed
by the surface. It depends on ' through the following formula :

o Zo(f) cosOn — g (f)
79111 = = - - y
A7) Z,(f) cos 6 + gt (f)

where £ ( f) denotes the intrinsic impedence of the propagation medium (air).

(2.21)

+ The absorption coefhicient a( f) represents the ratio of energy that is not reflected
by the surface. It is defined via the following approximations, primarily due to difh-
culties that arise while measuring acoustic impedance (Di Carlo, 2020)

a(f)=1-18(HI, (2.22)

where B(f) denotes the average reflection coefficient averaged over all incidence
angles.

+ The scattering coefficient T of surface material is defined as the proportion of im-
pinging energy that gets scattered.

2.4.2.2 Room impulse response

The inhomogenous free-field wave equation (2.19) for a point source emitting d(t)
is defined for a space €2, where 2 € R3. In order to complement the wave equation with
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Figure 2.8: Schematic illustration of the components of RIR.

boundary conditions, another equation needs to be defined on the boundary
0
n(r).Vh(r,t)+ 5[5 * h](r,t) =0,7r€0Q, (2.23)

where n(7) is the normal vector of 9 at 7 and (7, t) is the admitcance thar defines
the acoustic properties of the room boundary at 7. Solving for Equations (2.19) and (2.23)
provides us with the RIR of the room denoted as h(7, t). This solution is also called a Green’s
function. The RIR establishes a straightforward relation between the sound pressure field
p(r,t) and the source signal s¢(¢) at 7§
equation (2.19). Hence, this relation can be expressed as,

which is linear and time invariant, according to

p(r,t) = [h(., 1) » s](1). (2.24)

The RIR is specific to the room geometry and the acoustic properties of its boundary sur-
faces along with source and microphone positions. A generalized form of Equation (2.24)
for a source signal s(¢) positioned at §" for M different microphones present in the scene
18 :

p(t) = [h*s](t), (2.25)

where p(t) = [p1(t),...,pm(t)]and h(t) = [h1(t), ..., ha(t)], while by, (t) = h(rhic 1)
and pp, (t) = p(rmic,t) for m e {1,..., M}. h(t) can be regarded as a multichannel RIR
for a single source signal. We make extensive use of multichannel RIRs in this thesis, they
provide better spatial information that is crucial to infer room acoustic parameters, as we

shall see in Chapter 4.
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Reverting back to Equation (2.3) that specifies the signal model in the discrete time
domain, we can observe that with the RIR for a particular room and source-microphone
pair, we can simulate a sound signal as if the sound had been emitted in that room. The RIR
can hence be seen as a fingerprint of the room and it generally exhibits a defined pattern

(Jot and Lee, 2016). As shown in Figure 2.8 a RIR can be divided into 3 parts :
h(t) = h4(t) + he(t) + h'(t) (2.26)

- The direct response hd(t) arrives first and corresponds to the line-of-sight path be-
tween the source and the receiver. For omnidirectional source and receivers, it has
the strongest energy since it is attenuated only by the medium and delayed due to
the distance between the source and the receiver.

« Early reflections he(t) refer to the first reflections from obstacles and surfaces in
the room. They are sparse in the time domain but carry more energy than later
reflections. Still, with a combination of direct response and early reflections, one
can derive crucial information about source position, distance, loudness, ete. Early
reflections are less in number and sparse in nature. They can be perfectly modeled
with the ISM, presented in Section 2.4.2.3.

- Late reverberation h'(t) consists of later reflections which are often diffuse in na-
ture, producing a diffuse sound field. This results in a random-like response with
an exponentially decreasing energy. There exists a point in time (usually defined as
50 ms), where it becomes hard to discern the late reverberation from the early reflec-
tions. This is called the mixing time of an RIR and divides the RIR into two distinct
parts. Reverberation provides the room its individual acoustical attribute giving a
very individual sound, but it can also be used to deduce room characteristics such as
volume and shape.

RIR simulators have been extensively used in this thesis and there are three main
simulation approaches :

+ Wave-based methods accurately model the wave equation by relying on space and/or
time discretization, but become computationaﬂy intractable at high Frequencies.

+ Geometric methods, based upon deterministic and stochastic approaches, are typi-
cally faster, but rely on assumptions that are valid at high frequencies and less valid
at low frequencies.

« Hybrid methods: Wave-based and geometric methods are jointly used to simulate
RIRs at low and high frequencies, respectively. This switch is based on the mixing
time that acts as a cross-over point between the two approaches (Savioja and Svens-
son, 2015).

A more detailed literature review on acoustic simulators is given in Section 3.4 of chapter
3. In the next section we describe the ISM proposed by Allen and Berkley (1979). The ISM
is extensively utilized in numerous acoustic simulators and has been the primary option
for simulating large datasets in various applications (see Section 3.5). This thesis revolves
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Figure 2.9: Illustration of ISM

around the ISM, which, besides its role in simulation, has also been extended and imple-
mented as part of the pyroomacoustics simulator (Scheibler et al., 2018). Therefore, it is
essential to delve into the details of the [SM

2.4.2.3 Image source method

The wave theory has been extensively used until now for the description of room
acoustics, due to its correctness from a physical point of view. However, the wave theory
is not ideal in practical situations, such as simulating a concert hall or for the analysis of
room acoustics, particularly due to the high computational complexity involved in solving
wave equations at high frequencies and for complex room geometries. A simple and com-
pelling approach is to model sound waves as acoustic rays. Acoustic rays are normal to the
wavefront and consist of a direction that follows the propagation law of a light ray, albeit
with a different propagation velocity. Each acoustic ray consists of energy without the in-
formation of phase, therefore during the presence of multiple sound fields the energies of
the rays are added while the phase relation is not taken into account.

Acoustic rays are a fundamental concept of geometric room acoustics. This simple
notions allows the practical computation of sound fields. Moreover, diffraction and trans-
mission phenomena are usually ignored in geometric room acoustics as the propagation of
rays in a straight line is the major postulate.

The ISM proposed by Allen and Berkley (1979) is a geometric method used to generate
RIRs. It is based on the concept of geometric room acoustics. Thus it models specular
reflections of acoustic rays in a deterministic approach. This method is highly efficient
and accurate for modeling direct responses and early reflections in an RIR. In ISM, every
reflection of a ray on the boundary of the enclosed space is modeled by a virtual sound
source that is located behind the boundary surface. This virtual source is equidistant from
the reflected surface as the original source is from the wall (see Figure 2.9). The direct path
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distance between each of the virtual sound source and the microphone is equivalent to the
total distance traveled by the acoustic ray inside the enclosed space until it reaches the
microphone.

Allen and Berkley (1979) show that the solution to the free-field wave equation with
boundary conditions (2.19) and (2.23) for a shoebox room with perfectly rigid walls, so-
called Neumann boundary conditions, is equivalent to the one given by the ISM method.
Additionally, they also prove that in that case, Equations (2.19) and (2.23) can be rewritten
as

1 9?h(r,t) &
Z aE Zét)a(r ry (2.27)

where the source term in the free-field wave equation becomes an infinite constellation of

V2h(r,t) -

synchronized point impulse image sources k that replace the boundary of the room, for
higher order reflection k = oo. The solution to the above equation provides the general
expression of RIR construction using the ISM

t=llr = rillz/c)

h(r,t) = 25(

2.28

S ol )
and for a particular microphone position € it can be rewritten as:
s = vl

l"[ll( t 5 t— 2.29

)= Z 47r||rmlL 'r;C“|| c ’ (229

where dj,, € [0,1] is the attenuation of the image source k at microphone m. It is the
product of the absorption coefficients of the boundaries traversed by the path. Equation
2.29 yields an idealized RIR due to many different naive assumptions such as frequency-
independent specular walls, omnidirectional point source, and microphones with frequency-
independent responses. An extended version of the ISM is presented in Chapter 5, which
yields a more realistic RIR.

2.4.2.4 RIR perception and reverberation time

Direct path, early reflection and late reverberation all play different roles in the per-
ception of the sound waves. The direct path helps to reveal the incoming angle of the source.
Early reflections provide a sense of geometry of the scene. Most often direct sound and early
reflections are correlated. Discerning the delay between them is a challenging task when
it is between 5 ms and 40 ms, making them perceived as a sing]e auditory event, as high—
lighted by Wallach et al. (1973). This effect is also known as the precedence effect, and due to
this, even in conditions with strong reflections humans can localize a source source (Huang
cral,, 1997). Early and late reflections are also responsible for the perception of distance and
depth, which provide cues for the 3D localization of the source. In the context of virtual or
augmented rea]ity systems, accurate simulation of distance and depth is important for the



2.5. Deep learning 27

correct impression of depth (Kearney et al., 2012). At last, late reverberation is responsible
for the sound field immersion in the acoustic scene and is mainly characterized by diffuse
effects. These effects are related to the size of the room and the material applied to the
walls. An acoustic parameter that is associated with it and is often used in this thesis is
Reverberation time.

The Reverberation time (RTgg) is defined as the time taken by the reverberant tail
of the impulse response to decay by 60 dB. To calculate the RTgo of an enclosed space,
one needs to measure its RIR. A method to calculate the RTgo from a RIR was devised by
Schroeder (1979) and is still Commonly used today, where the square of the RIR is backward
integrated resulting in an energy decay curve, and a linear Tegressor is fitted on the log of
the decay curve to obtain the RTgg. Sometimes, due to the unavailability of the full decay
up to =60 dB, RT}10,20,30] are used and extrapolated to RTgg. While measuring RIRs is a
cumbersome process and is highly sensitive to noise, there exists other empirical methods
that can approximately estimate the RTgo based on the room dimension and absorption
properties. One such method is Sabine’s Law.

v
RTgo # 0.161— , [s 2.30

60 —5 3] (230)

where S = Y2027 S, is the total area of room’s 6 surfaces in [m?] and @ = Yo-7 225+ is area

weighted mean absorption coefhicient, V' is the total volume of the room [m3] This formula
suggests that reverberation is directly related to the mean absorption, volume, and surface
of a room. This intertwined relation motivates the development of method that estimates
all these quantities purely based on audio recordings, which is the focus of Chapter 4. How-
ever, this formula is mostly valid under diffuse sound field conditions, e.g., in rooms not to
far from a cubic shape and whose surfaces are made of similar macerials. Larger rooms and
experimental reverberation chambers have high RTgp up to 10 s, while for typical shoebox
rooms such as offices and classrooms the RTgp ranges between 0.3 s and 2.0 s. There ex-
ists experimental chambers known as anechoics chambers where the RTg is close to zero.
Sounds that are recorded in a such environment are referred to as "dry” sounds.

2.5 Deep learning

Deep learning refers to a range of machine learning techniques loosely inspired by
the human brain (Rosenblatt, 1958; Goodfellow et al.,,; 2016). Deep learning techniques of-
fer a solution to tasks that humans perform intuitively, such as recognizing spoken words
(Tjandra et al., 2017) or focusing on a specific speaker in a noisy environment (Malek et al,
2017). These tasks pose a challenge for computers because they are difficult to formally
describe. Deep learning offers a way for computers to learn through experience. It involves
the acquisition of complex concepts through a hierarchy of simpler ones. This hierarchical
representation of concepts gives rise to the term 'deep learning’ due to the depth of the con-
cept graph. These algorithms have become popular in recent years, primarily because of two
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reasons: the vast availability of different types of datasets and the increased computational
power that has enabled the community to solve various problems that weren’t possible to
solve with pre-deep learning methods. A deep learning system (a.k.a model) is characterized
by its set of parameters. A dataset, is used to determine the best values for the parameters to
address the targeted task, e.g., classification, regression, etc. This learning process is called
training. In supervised learning techniques, for each example in the dataset, the model aims
to estimate the target or label of that example given a set of ateributes called features or in-
puts. During the training process, the model improvement can be gauged a loss-function,
that is a function of the model parameters which quantifies the gap between the model
output and the desired output by treating the training dataset as constant. The gradient
of the loss function with respect to a given set of input data is calculated using a process
known as back-propagation. Various optimization algorithms are used to search for the best
parameter values which minimizes the loss function. Two such algorithms are stochastic
gradient descent and Adam (Kingma and Ba, 2014). In this thesis, we focus on deep su-
pervised ]eaming techniques, where the deep 1eaming models consist of‘many successive
nonlinear transformation layers, which gradually extract higher-level information from the
data in a successive manner. Such, deep neural networks (DNNs) are able to learn a complex
nonlinear representation of the data.

Throughout this work, we use a combination of different DNN mechanisms such as
Convolutional neural network (CNN), multi-layer perceptrons (MLP), and recurrent neu-
ral networks (RNN), in addition to different regularization and normalization schemes,
learning rate schedulers, skip or residual connections, and many different types of acti-
vation functions and many variations of the loss function. This thesis does not provide
a detailed description of their working terminologies as it out of scope of this work and
throughout this work, we use DNNs as a modeling tool. The interested reader should refer
to the textbook by Zhang et al. (2021).

2.6 Conclusion

This chapter provided us with a brief introduction to the digital signal model, sound
representations, room acoustics and along with it the functioning and characteristics of
different microphones and speakers. The introduced terminologies will be used multiple
times during the thesis and are the main protagonists of this work. In the following chaprer,
we will describe the literature survey on state-of-the-art approaches that are appropriate
for this thesis.
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This chapter describes state-of-the-art techniques in the fields of room parameter
estimation and sound source localization that are related to the contributions that are de-
scribed in the thesis. In addition to that, state-of-the-art techniques in the field of virtually
supervised learning and a discussion on various room acoustic simulators are also presented.
We end this chapter by mentioning a list of existing RIR datasets that have been used to
train and evaluate DNN-based methods.

3.1 Room parameter estimation

The relevance of dynamically parameterizing the local acoustic space of listeners by
estimating acoustic parameters, such as room geometry, reverberation time, and other re-
lated parameters has seen increased interest in the audio processing community (Ick et al.,
2023). The information deduced from these parameters can be used to improve the per-
formance of speech processing applications such as dereverberation (Lebart et al., 2001;
Habets, 2007) and speech recognition (Couvreur and Couvreur, 2000). Additionally, the
acoustic parameters have also been shown to be related to the perceived sound quality
(Del Vallado et al,, 2013) and intelligibility (Kuttruft, 2016) of the reverberant recordings,
and proven to be useful in audio forensics (Moore et al., 2014; Mascia et al., 2015). The es-
timation of these parameters becomes increasingly crucial in order to generate highly con-
vincing spatial audio in the realm of AAR, which has recently gained ground in the works
of Geronazzo et al. (2016), and Yang et al. (2022). Augmented reality systems aim to merge
the virtual and real worlds, creating an interactive and improved audio-visual experience
by adding artificial elements from the virtual world to the real-world environment of the
user. AAR, as a part of augumented reality systems, involves creating perceptually pleasing
virtual sound sources in the user’s environment. To achieve this, an accurate simulation of
the acoustic environment is necessary, thus requiring the estimation of room parameters in
the user’s environment. One of the major challenges in improving the plausibility of im-
mersive audio is to select the relevant parameters of the acoustic environment in which the
users move, from a variety of possible room acoustic parameters.

The term Reverberation Fingerprint coined by Jot et al. (2018) and Ick et al. (2023)

refers to a condensed form used to characterize a room for realistic binaural rendering
in headphones that implement AAR. The volume of the room V' in m3 and frequency-
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dependent reverberation time RTg0(D) together form a reverberation fingerprint (RF). In
diffuse-field situations, these parameters are related through Sabine’s law. Chapter 4 of this
thesis focuses on the estimation of room acoustic parameters. RIRs serve as aroom signature
because many room parameters can be determined based on the decay curve, early echoes,
and direct path from a clean RIR measurement. Furthermore, the availability of accurate
and efficient room acoustics simulators (Habets, 2007; Schimmel et al., 2009; Scheibler
et al,, 2018) allows for a well-defined forward physical problem, where RIRs are modeled
by specifying acoustic parameters. Conversely, the inverse problem of estimating acoustic
parameters from RIRs is challenging and has recently been the subject of research as is
surveyed in the following subsections (Shabrai et al,; 2009; Foy et al,, 2021). This inverse
problem becomes particularly difficult in the context of AAR due to the unavailability of
RIRs for the user’s specific environment. Additionally, measuring RIRs in a new acoustic
environment is a cumbersome and time-consuming task. Therefore, an attractive direction
is to blindly estimate acoustic parameters solely on the basis of received microphone signals

i"T'OTl’] UﬂkﬂOWﬂ sound sources pl‘GSGﬂt in ti’le TOOM.

3.1.1 Pre-deep learning methods

One of the most common techniques to measure the absorption coefhicients of a spe-
cific material in a test is done by using the impedance tube (ISO.ASTM:E1050-9, 20006).
This method typically requires a cumbersome experimental apparatus. Reverberation room
methods outlined in 1S0O.354:2003 (2003) provide an alternative approach. It uses rever-
beration theory and is based on a diffuse sound field assumption. The method requires a
controlled reflective environment, which can be achieved using specially designed reverber-
ation rooms. In contrast to these methods, in sitcu measurements are attractive because they
do not require complex environments or impedance tubes. In sicu measurements can be
conducted in any existing environment, such as classrooms or office spaces. Typically, each
material is tested separately and the dedicated apparatus is kept at a specific position inside
the room to minimize the interference from other walls. Brandio et al. (2015) provide an
extensive review of in situ approaches used to measure acoustic impedence. However, many
of the in situ approaches mentioned by Brandao et al. (2015) and Hald et al. (2019) require
meticulous control over the environment, excitation signal, experimental setup, and post-
processing. This level of control can be challenging to achieve during practical experiments,
highlighting the difficuley of this task.

One of the main objectives of the works conducted by Nava et al. (2009), Antonello
ct al. (2015), Bertin et al. (2016b) and Okawa et al. (2021) is to simplify the acoustic diag-
nosis process. These methods aim to estimate the absorption profile of all the walls within
a room using a small number of measurements. However, these approaches are based on
discretization of the wave equation, which is known for its high compurtational cost and
limited effectiveness at high frequencies above 1 kHz. In an effort to address this problem,
Di]ungana et al. (2022) propose a probabilistic approach. They use the approximate geom-
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etry of the room as an input parameter to the algorithm and select the relevant parts of a
set of RIRs. The selected parts are used to optimize an objective function in the short-term
Fourier magnitude domain.

Estimating RIRs from a pre-defined room geometry has long been a point of interest
for the purpose of simulation. The method provided by Allen and Berkley (1979) served as
a cornerstone for simulating RIRs in shoebox room with perfectly reflective walls. Building
on this, Borish (1984) extended the method to simulate RIRs in polyhedral rooms. However,
the inverse problem of estimating room geometry from RIRs remains a challenge. Recov-
ering information about the image sources that contribute to an RIR, such as the image
source location, time of arrival, and intensity is deemed to be helpful for room geometry
inference (Mabande et al., 2013; Crocco et al., 2016). All these tasks are considered as differ-
ent parts of a larger problem known as the image source recovery problem (Sprunck et al.,
2022). In the literature these problems have been solved using RIRs (Kowalezyk et al., 2013;
Crocco and Del Bue, 2016) as well as blindly, i.c., using audio recordings of unknown sound
sources instead of RIRs (Shlomo and Rafacly, 2021; Tervo and Korhonen, 2010). They are
also referred to as echo-aware methods (Di Carlo et al,, 2021). Additionally, the knowledge
of the room geometry can facilitate the recovery of relevant information about the image
sources, including the 3D position, using the ISM. Efforts have been made to reconstruct
rooms both in 2D (Dokmanic et al., 2011; Antonacci et al., 2012; El Baba et al., 2016) and 3D
(Jager et al., 2016; Remaggi et al., 2016; El Baba et al., 2017; Lovedee-Turner and Murphy,
2019; Park and Chot, 2021) from RIRs. As presented by Shih and Rowe (2019), these ap-
proaches typically require prior information about multiple source-microphone pairs along
with their locations, and the majority of these algorithms estimate the wall locations based
on the detection of first order or second order reflections. Alternatively, some work, e.g.,
by Peng et al. (2015) and Zhou et al. (2017), addresses the problem by using mobile devices
and smartphones instead of multiple microphones. Similarly, the work by Shih and Rowe
(2019) goes a step further and estimates room geometry without the need to detect all the
first-order echoes. With the correct estimation of room geometry calculating surface area
and volume of the room is a straightforward task. In our survey, we could not find a method
that direct]y estimates surface area and volume from measured RIRs.

One ongoing research topic is the blind estimation of a room’s RTg. Ratnam et al.
(2003) were among the first to explore blind estimation techniques using single-channel
noisy signals and exploiting the maximum likelihood method. Since then, a plethora of
works have been published on blind estimation of RTgp. Among these, Gaubitch et al.
(2012) investigated three state-of-the-art methods employing different calculation tech-
niques for RTgo estimation. They tested these methods on noisy and noise-free datasets
and concluded that most of the methods exhibit significant bias in the presence of additive
noise in the signal. Several works were subsequently published to address this shortcom-
ing, some of which utilizing machine learning techniques. Thus, to assess and determine
the state-of=the-art methods for blind RTgg and Direct to Reverberant Ratio (DRR) esti-



32 Chapter 3. State of the art

mation in single and multichannel scenarios with additive noise, the ACE Challenge was
introduced (Eaton et al., 2016).

The ACE Challenge dataset includes recorded RIRs obtrained using multi-microphone
setups with five different microphone arrays, capturing the acoustic characteristics of seven
different rooms. Additionally, the dataset contains anechoic speech and multiple noise con-
ditions recorded in the same acoustic environment to create reverberant and noisy speech
signals. The algorithms submitted to the ACE Challenge can be divided into 3 categories:
maximum likelihood, spectral decay distribution (Wen et al,, 2008), and machine learning
with multiple features. The results showed that single-channel estimation of RTgg in noisy
conditions is a well-established field, with the lowest error rates observed for spectral decay
or maximum likelihood methods. Conversely, methods based on machine learning outper-
formed the others for DRR estimation, indicating that parametric methods could benefic
from improved features. The resules also highlighted thatjoint estimators of RTgp and DRR
were not able to outperform the algorithms that focused on estimating a single parameter.
Furthermore, the absence of multichannel RT60 estimators suggests that there is room for
further research to exploit the spatial information of audio signals. These results provided
an inflection point for future work in machine learning approaches that can alleviate the
listed shortcoming.

3.1.2 Deep learning methods

After the ACE challenge, there has been a push to estimate acoustic parameters using
machine learning approaches. This is partly due to the success of machine learning methods
in other fields such as computer vision and natural language processing. Adding to that, the
results on estimating the DRR using machine learning methods showed promising results in
the ACE challange, motivating more work in this arca. The key issues that persisted after the
ACE challenge include the robustness of the model in noisy reverberant conditions, joint
estimation of the acoustic parameters, the model performance in a variety of real datasets,
and the lack of multichannel approaches to exploit spatial features.

One of the earliest works on blind estimation of RTgq using artificial neural networks
was published by Cox et al. (2001). Their approach is considered semi-blind and requires
re-training the system when there is a change in the acoustic environment. Following the
ACE challenge the authors of Lee and Chang (2016, 2018) presented single-channel and
multichannel methods for blind RTgp estimation using the mel-spectrogram or a combi-
nation of mel-spectogram and inter-channel cross-correlation as input features. However,
their work was limited to resting on Signals convolved with simulated RIRs. Another ap-
proach by Gamper and Tashev (2018) showed the advantage of using a CNN and its ability
to exploit local and temporal features for this particular task. The model is trained on syn-
thetic RIRs convolved with speech signals and employed a gammatone filterbank feature
extractor as the front end. Joint estimation of RTgp and DRR has also received some at-
tention in the work of Xiong et al. (2018). However, the performance of these models was
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found to be limited due to small and imbalanced training sets. To address the limitations
of small datasets, Bryan (2020) proposed data augmentation techniques to generate a bal-
anced dataset from a small collection of real RIRs. The proposed method was tested on
a task similar to that of Xiong et al. (2018) and the results demonstrated its superiority
over previous state-of-the-art methods for this task on the test set of the ACE challenge.
This highlights the importance of training DNN systems with more data for better results.
Subsequently, many methods have been developed for single channel RT¢g estimation, with
recent approaches targeting online RTgp estimation (Deng et al., 2020) and estimation in
dynamic acoustic conditions (Gotz et al,, 2022).

Apart from the time-energy parameters of an RIR, rendering an acoustic space also
requires the estimation of other spatial parameters and boundary information. The efforts
for the estimation of these parameters have been minimal in comparison to the abundance
of DNN-based approaches for RTg and DRR estimation.

Information about the boundary of an acoustic space can be gathered in the form of
estimating the room geometry or reﬂection/absorption coefhicients. One of the first works
involved a DNN to jointly estimate 3D room geometry, including the room length, width,
height, and reflection coeflicients using random RIRs taken in a room (Yu and Kleijn, 2020).
The suggested methodology uses a CNN-based architecture, is trained on simulated data,
and employs a transfer learning technique on a small dataset of real RIRs to improve gen-
eralization. The joint estimation task is formulaced as a regression problem with a mean
square error loss function. In addition, a blind method has been proposed that reconstructs
the room geometry by leveraging the relationship between the direct signal and firsc-order
reflections (Gao et al.,; 2022). This method captures the signal of arbitrary sound sources us-
ing a high-order spherical array. Volume is another important parameter of acoustic spaces
and is related to the RTgp according to Sabine’s law. The estimation of volume from a
single-channel noisy speech signal has recently been proposed by Genovese et al. (2019).
The proposed DNN is based on multiple convolution layers, and is trained on both simu-
lated and real data. As of our survey, there haven’t been any other published works on this
task. Due to its ingenuity, this work has been used as a baseline to contrast the contribution
on room parameter estimation given in this thesis.

The material used in a wall determines its nature of absorbance towards a sound
wave. Absorption coefficients are a metric that explains the level of absorbance of the
walls. Absorption coefhicients are frequency dependent, which highlights the challenge of
estimating them for all the walls of an enclosed surface based solely on a single RIR or a
sound source. Limited work has been proposed to tackle this issue using DNNs. To simplify
the complexity of this task, authors such as Kataria et al. (2017) and Foy et al. (2021) estimate
the surface-weighted mean absorption coefficients

>, (D) S, c
20 S

of a room. It is an analytical quantity that eﬁéctive]y summarizes the acoustical charac-
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teristics of all six surfaces. According to Sabine’s formula (2.30), @(b) can be linked to
RTg(b) for the specific frequency band b. Kataria et al. (2017) estimate @ for walls along
with the direction of the source, using binaural audio signals. The system was trained on
a training set with little acoustic variabilities, therefore the results were only reported on
simulated data. Foy et al. (2021) used a single RIR to estimate @ in six frequency bands.
They obtained errors in a similar range on real data, without the need for a complicated
apparatus, controlled conditions, or a prior requirement on the setup of room geometry.
However, the system’s performance on real data at lower frequencies (< 1000 Hz) was
found to be poor. Yu and Kleijn (2020) tackled the different task of estimating an absorp-
tion coefficient for cach wall in a fixed frequency band. The estimates were obtained by a
model trained on single-channel RIRs, while simulated datasets were used for testing the
system. Limited representations on the range of absorption coefficients in the training set
questions the potential performance of the system on real datasets. Dilungana et al. (2021)
estimated the absorption coeflicient for all six walls and across six-octave bands using mul-
tiple single-channel RIRs in the room. Nevertheless, the lack of testing on real dacasets
raises the question on the generalization ability of the system.

Interesting future directions towards the task of DNN-based room parameter estima-
tion include audio-visual and end-to-end approaches. Su et al. (2020) portray an end-to-
end method to convert a signal recorded in one environment to another. The system takes
a waveform as input and generates a latent representation of the environment called room
embedding. The room embedding is then used to condition the output of the network
in a new environment. Furthermore, some audio-visual methods incorporate vision and
echo information to infer the depth and floor map of a 3D scene (Christensen et al., 2020;
Purushwalkam et al, 2021). These directions open up exciting possibilities for advancing
DNN-based room parameter estimation by integrating different modalities and exploring
the potential of end-to-end learning.

3.2 Sound source localization

Apart from room parameter estimation, this thesis also addresses the task of local-
izing a sound sources in an acoustic scene using the audio captured by an array of micro-
phones. This task is commonly referred to as sound source localization. Sound sources can be
localized in 1D, 2D, or 3D space. Most commonly, sound source localization provides the
Direction of Arrival (DOA), i.c., the angle at which the sound arrives with respect to the mi-
crophone array. In the case of a linear microphone array a 1D angle of arrival 6 € [0°, 180°]
is estimated, while for non-planar microphone array configurations a 2D angle comprising
an azimuth @ € (=180°,180°) and an elevation ¢ € (=90°,90°) can be estimated. The DOA
can be estimated for single or multiple active sources in the acoustic scene. In addition to
DOA estimation, it is also possible to identify the 3D position of a source with respect to a
specific point in space using Cartesian coordinates (Shimada et al., 2021; Emmanuel et al,,
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2021). However, estimating the distance to a source is a more challenging problem that has
received less attention (Yiwere and Rhee, 2017; Bologni et al., 2021).

Although sound source localization and room parameter estimation are considered as
independent tasks in this thesis, there is some overlap between them. One example of such
overlap is in Simultaneous localization and mapping (SLAM) (Evers and Naylor, 2018), where
the system simultaneously maps the 3D positions of objects of interest in the surrounding
arca while localizing an unknown moving observer. While echo-aware methods have often
been used independently for estimating room geometry (Dokmanic et al., 2011) or localizing
sound sources (Di Carlo et al,, 2019), the work of Krekovic et al. (2016) simultancously
estimates both for the purpose of SLAM.

Apart from SLAM, sound source localization as an independent technique has nu-
merous applications. Several signal processing tasks, including power spectral density esti-
mation, beamforming, and spatial coding, require accurate estimates of the DOA of active
sources as a pre-requisite. These tasks play a pivotal role in various practical applications
such as human-robot interaction (Kagami et al.,, 2008), source separation (Gannot et al,,
2017), speech recognition (Busso et al., 2005), bio-diversity monitoring (Chu et al., 2009),
smart home applications (Crocco et al,, 2016) and search and rescue robots (Nakadai et al.,
2017).

Algorithms for estimating the DOA of unknown sound sources can be categorized
into two groups. The first category is signal-processing based methods, which were devel-
oped prior to the advent of machine learning methods and rely on conventional signal-
processing techniques. Signal-processing based methods offer physical interpretability and
can work online without requiring training data. Consequently, they are frequently utilized
as a feature extraction layer in many DNN-based DOA estimation pipelines. However, it
has been noted that they often struggle in noisy and reverberant conditions and fail to
generalize in real-life test scenarios. Some examples of signal-processing based algorithms
include Generalized Cross-Correlation with Phase Transform (GCC-PHAT) and Multiple
Signal Classification (MUSIC). A detailed review of signal-processing based sound source
localization algorithms was presented by DiBiase et al. (2001). The second category consists
of machine learning based algorithms, which differ from SP-based algorithms in that they
require a lot of training daca. DNN-based algorithms have demonstrated better perfor-
mance in challenging conditions, as mentioned by a plethora of published research (Gru-
miaux et al., 2022). However, generalization to unseen conditions is still a challenge. The
following parts describe different signal-processing based methods and then state-of-the-
art DNN-based approaches for DOA estimation.

3.2.1 Signal-processing-based methods

Signal-processing-based methods for sound source localization can be grouped into
four categories: Time difference of arrival estimation (TDOA), beamforming, subspace
methods, Gaussian Mixture Model (GMM) and compressive sensing.



36 Chapter 3. State of the art

The TDOA between two signals can be estimated by GCC-PHAT. The IDFT of the
weighted cross power spectrum (CPS) between the signals from two microphones can be
expressed as
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where the CPS is defined by X7 (f)X2(f)* (* denotes complex conjugate). The phase of

the CPS is perfectly linear as a function of frequency in free-field conditions that is without
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noise and reverberation. The TDOA
7 = argmax {; 5(7), (3.3)

is estimated as the peak of the GCC-PHAT angular spectrum 71 9. The SRP-PHAT algo-
rithm extends GCC-PHAT to arrays of more than two microphones by taking advantage
of multiple microphone pairs. SRP-PHAT uses beamforming to create an acoustic power
map A(T) over all possible directions on a regular grid with spatial coordinates . The local
maxima of the power map indicate the presence of a sound source.The power map A(T) is
obtained by averaging GCC-PHAT across all microphone pairs in the array :

A(f) = Z Z gmhmz(Tmth(f‘)), (34)

mi1=1mo=m1+1

where the CPS between each pair of microphones my, my is calculated for the delay 7, ym, ()
corresponding to cach spatial position T on the grid. However, computing power maps
A(T) is a computationally expensive process due to the involvement of a grid search.

Another class of estimation techniques is subspace methods. These methods operate
on multichannel signals with the assumption of correlated source signals and uncorrelated
noise signals between the channels. One algorithm in this category is MUSIC, which lever-
ages this assumption by performing eigenvalue decomposition on the multichannel signal
matrix to separate the signal and noise subspaces. Based on these subspaces, an angular spec-
trum function is constructed, which is then examined in all directions to detect the presence
of an active source. Another algorithm called ESPRIT directly estimates the source DOA
by exploiting the structure of the source subspace. It provides a faster alternative to MUSIC
but may result in slightly less accurate DOA estimates. While DOA estimations based on
subspace algorithms are relatively robust to noise, reverberant conditions are a challenge
(Moore et al., 2016).

Many estimation algorithms also employ GMM. Authors such as Madhu and Martin
(2008), Schwartz and Gannot (2013) have made consistent efforts in advancing this ap-
proach. In most of these models, the algorithm’s parameters are estimated "online" during
the test phase while localizing sound sources. These methods exploit the sparsity of sources
in the time-frequency domain by maximizing the data likelihood function using expecta-
tion maximization a]gorithms. Fina]]y, methods based on compressive sensing convert a
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high-dimensional signal to a low-dimensional representation using either sparse synthesis
(Candes et al., 2006) or sparse analysis (Nam et al.,, 2013). In the context of sound source
localization, this translates to a sparsity assumption in the spatial domain, which can be
solved using Bayesian or greedy methods (Kiti¢ et al., 2014). This results in a remarkable
performance for localization tasks.

In the realm of multisource DOA estimation systems, Bechler and Kroschel (2003)
attempted to utilize a peak-picking method based on certain threshold levels applied to
the spatial spectrum generated by signal-processing-based algorithms. In the same study,
it has been noted that the spatial spectrum gets corrupted in the presence of noise and
reverberation in the sign:ﬂ, which results in errors and degrades the accuracy of the system.
Nevertheless, Tho et al. (2014) made progress in estimating the angular spectrum in the
presence of noise and demonstrated the ability to mitigate the effects of reverberation for
multisource DOA estimation algorichms.

3.2.2 Machine learning methods

Methods based on GMM such as Madhu and Martin (2008), and Schwartz and Gan-
not (2013) presented in the previous section do not heavily rely on extensive training data,
as they estimate the GMM parameters online from the observed data. By contrast, some
sound source localization algorithms, such as the one of Woodruft and Wang (2012), based
on a GMM, use training data for pre-estimating the parameters. A similar approach was
taken by Deleforge and Horaud (2012), who presented a variant of GMM known as Gaus-
sian mixture regression for single-source localization. This approach was further extended
to multi-source localization by Deleforge et al. (2015). Both models were trained on a dataset
made of synthetic RIRs convolved with noise signals, demonstrating a close connection to
DNN-based methods. Kim and Ling (2011) were among the first to use a DNN for sound
source localization. They introduced a multi-task network based on an multi-layer per-
ceptron architecture capable of performing multi-source counting and localization. The
evaluation of the system was done on reverberant data, while training was performed on
anechoic data. This work served as an inspiration for numerous subsequent studies, leading
to a plethora of DNN-based localization systems (Grumiaux et al,, 2022). These systems can
be further categorized according to their input features, architecture and outputs.

Input features The majority of DNN-based sound source localization methods are
designed for speech sources since there exists a strong connection between speech enhance-
ment, speaker diarization, and separation (Gannot et al., 2017; Vincent et al,, 2018). Systems
such as those of Chakrabarty and Habets (2019),Hao et al. (2020), Grumiaux et al. (2021b)
and He et al. (2021) are specialized in localizing speech sources. However, with the intro-
duction of the SELD task in the DCASE challange (Politis et al., 2020), a range of systems
have emerged that can successtully localize non-speech sources such as barking dogs, door-
knocking, alarms, and more. When it comes to feature extraction from the input, some
networks such as those of Suvorov et al. (2018) and Jenrungrot et al. (2020) directly work
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on raw waveforms using an end-to-end approach. However, this approach requires more
computational power, leading to larger network sizes and the need for extensive training
datasets. The majority of the DNN-based sound source localization systems are smaller in
size compared to the networks seen in other fields such as NLP. Therefore, in most systems,
handcrafted interchannel features, spectrograms (Chakrabarty and Habets, 2019; Bohlen-
dereral., 2021), or signal-processing-based features like GCC-PHAT and MUSIC (He et al,,
2019; Vesperini et al,, 2016) are used as input. Common interchannel features include rela-
rive transfer functions (Chazan et al., 2019; Bianco et al.,, 2019) and binaural features such
as Interchannel Phase Difference (IPD) and Interchannel Level Difference (ILD) (Ma et al.,
2015). Features based on Ambisonics sign:ﬂ have also been 1‘ecent1y exploited, as they effec-
tively represent the spatial properties of the sound field. Systems such as those of Adavanne
et al. (2018b, 2019) use FOA spectrograms as input features, while Poschadel et al. (2021)
and Varanasi et al. (2020) employ third-order ambisonic spectrograms. Perotin et al. (2018)
progressed with a similar idea and used intensity-based ambisonic features referred to as
ambisonics pscudo—int@nsiry vectors, which showed superior performzmce compared o a sys-
tem based on raw ambisonic waveforms.

Architectures Numerous DNN architectures have been proposed for sound source
localization. Efficient architectures and complex models have been proposed that have
drawn inspiration from other domains, leveraging their demonstrated performance on var-
ious types of signals. Architectures based on convolutional neural networks (Chakrabarey
and Habets, 2019; He et al.,, 2019), recurrent neural networks (Wang et al,, 2018) and a
combination of convolutional and recurrent networks (Adavanne et al., 2018b,a) are the
most common to be found in the literature. Recent additions to the field include nerworks
with residual layers (Pujol et al., 2019), attention mechanisms (Grumiaux et al., 2021b), and
encoder-decoder networks (Chazan et al., 2019; Bianco et al., 2019).

Output Sound source localization systems can be classified into single-source or multi-
source localizers, capable of localizing single or overlapping speech or sound events. There
is a substantial body of literature focused on single-source estimation, as it represents the
simplest scenario. Significant progress has been made in developing systems that can local-
ize sources in reverberant environments while simultaneously perﬁ)rming source activity
detection (Yalta et al., 2017; Perotin et al,, 2018; Bologni et al., 2021). While multi-source
localization presents a more challenging problem current systems have demonstrated the
ability to localize sources even in adverse acoustic conditions (Ma et al.; 2015; Perotin et al,,
2019; He et al,, 2021). In multi-source systems, the detection of activity from multiple
sources becomes a source-counting problem (Grumiaux et al, 2021a), which leads these
systems to be termed as multi-tasked. The SELD task of the DCASE challenge is based on
this idea, where the submitted systems must address sound event detection and localization
jointly. Another example of multi-task sound source localization system that also performs
dereverberation is that of Wu et al. (2021). Most of the sound source localization systems
mentioned so far can be classified as either classification-or regression-based systems, which
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localize active sources using Cartesian or spherical coordinate systems. In order to have a
robust system the training data need to be sufficiently diverse to include most directions in
the space. There also exist DNN-based methods that do not directly estimate the DOA but
instead pass the high-level processed features to another conventional algorithm for DOA
estimation (Pertild and Cakir, 2017).

The variety and the amount of work done in the field of DNN-based sound source
localization systems is enormous, making it impossible to cover all of the work within the
scope of this thesis. Interested readers are recommended to refer to the comprehensive
study published by Grumiaux et al. (2022) for a more extensive review.

3.3 Virtually supervised learning

Developing a robust DNN-based system that generalizes to unknown conditions re-
quires a large amount of labeled data. However, acquiring labeled data in various condi-
tions for domain-specific applications is costly and time-consuming, often resulting in a
shortage of high-quality real data across different domains. As a solution, the concept of
training DNN systems with simulated data has emerged, as annotations can be automati-
cally generated. Transfer learning from simulated data to real data has been employed in
various fields, leveraging the availability of reliable simulators. This technique is used to
increase the size of training data in applications such as computational biology (Behboodi
and Rivaz, 2019), financial market predictions (Maeda et al., 2020), geosciences and remote
sensing (Malmgren-Hansen et al., 2017) to computer vision applications such as scene clas-
sification (Bird et al.,; 2020) and autonomous driving (Pan ct al., 2017). In the field of audio,
the term virtually supervised learning was first introduced by Gaultier et al. (2017) who ap-
plied this concept to sound source localization, demonstrating effective mapping using a
virtually learned model on real sound signals. The same study also proposed a large sim-
ulated dataset for training sound source localization models. Simulated training data has
been widely used in audio applications to learn mappings between audio features and prop-
erties. Examples include automatic speech recognition (Huang and Bocklet, 2019), sound
source localization (Grumiaux et al., 2022), speech enhancement (Gannot et al.,, 2017), and
diarization (Horiguchi et al, 2020) systems. Simulated acoustic datasets have also found
applications in navigation systems (Chen et al., 2020), floorplan reconstruction (Purush-
walkam et al,, 2021), and many other areas. All the presented applications use a dataset of
simulated RIRs or simulate RIRs on the fly using acoustics simulators.

However, there still exists a gap in realism between synthetic and real data distribu-
tions. Improving simulators to produce more realistic examples is a way to close this gap,
which will help the DNN generalize to real-world conditions. However, improving simula-
tors often comes with added computational overhead. One research direction is to leverage
DNNs to improve simulation and achieve more realistic results. Richter et al. (2022) ad-
dress similar objectives by employing Generative Adversarial Networks (GANs) (Creswell
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et al, 2018) to enhance the realism of synthetic photos generated by graphic engines.

Improving realism in acoustics simulators will directly affect all DNN-based audio
applications. Currently, a wide variety of acoustics simulators are available, offering dif-
ferent levels of realism at varying computational expenses. Given the substantial amount
of simulated data required for DNN-based systems, there is a need for a fast and realistic
acoustics simulator. While some studies, such as Diaz-Guerra et al. (2021) and Ractnarajah
et al. (2021), demonstrate the efficacy of utilizing Graphic Processing Unit (GPU) accel-
crators and Generative adversarial network (GAN)s to generate a substantial number of
RIRs, they may not preserve all acoustic characteristics and may lack realism. One of our
contributions in this thesis improves the realism of a renowned fast acoustics simulator
(Scheibler et al,, 2018) with minimal computational overhead. To validate its effectiveness
in improving the generalizability of trained models, we focus on tasks such as room param-
cter estimation (see Chapter 4) and sound source localization (see Chapter 5).

3.4 Room acoustics simulators

Modeling room acoustics computationally requires physics-based simulation of the
propagation of sound in a digital acoustic scene. This type of simulation is particularly
useful for acoustic designers as it enables them to evaluate the acoustical design of a room
using auralization and numerical acoustic data (Siltanen et al.,; 2010). Room acoustics simu-
lator (RAS) comprise two main kinds of approaches: Wave based methods and geometrical
acoustics.

3.4.1 Wave-based simulation

Wave-based methods aim to numerically solve the wave equation in order to deter-
mine the room impulse response (RIR). This approach provides an accurate simulation of
room acoustics but comes with a high computational cost, which increases with frequency.
One common strategy is to discretize the bounding surface or the space into small compo-
nents while simulating the interaction between these components. The interaction between
components is calculated by solving the wave equation with appropriate boundary condi-
tions. Two commonly used methods for solving the wave equation are the Finite Element
Method (FEM) and the Finite Difference Time Domain (FDTD) method. Fast calculations
of the solution are possible for low frequencies of sound waves in smaller rooms. How-
ever, the opposite is true for intricate room shapes and high—ﬁ‘equency sound waves. Con-
sequently, the practical use of wave-based methods is limited to modeling low-frequency
RIRs up to the Schréder frequency. Software such as ODEON and a recent GPU-based
implementation of FD'TD (Hamilton, 2021) are examples of simulators capable of perform-
ing wave-based simulations. Mentioning all the wave-based software and simulators is out
of the scope of this thesis. Interested readers are referred to the surveys by Svensson and
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Kristiansen (2002) and Siltanen et al. (2010).

3.4.2 Geometric-acoustics based simulation

Geometric acoustics works on the basis of considering sound as rays instead of waves,
disregarding the wavelength of sound. In this approach, rays or particles are used to rep-
resent sound reflections off room surfaces. These methods analyze sound energy rather
than relying on sound pressure or particle velocity. An RIR is divided into three parts (see
Chapter 2), where simulation of the direct path and early reflections should be precise with
timing and phase information, which is crucial for sound source localization. The ISM is
often employed to do so due to its ability to efficiently determine all specular reflections
using a cluster of image sources. While this method is straightforward, as cach reflected ray
arriving at the receiver can be regarded asa de]ayed attenuated function of the Dirac deltas,
it also has some caveats. The ISM struggles in modeling higher-order reflections, due to cu-
bical increase in the required number of image sources. Additionally, Bork (2000) notes
that the ISM cannort effectively simulate obstacle scattering. Schroeder (1987) suggests a
solution to this issue by using statistical methods to model late reverberant tails, particu-
larly for higher frequencies and larger rooms. Stochastic Ray Tracing (SRT) methods such
as diffuse rain (Schroder, 2011) and other radiance transfer methods (Siltanen et al., 2010)
can be used for this purpose.

The ISM and SRT can be used independently to simulate an RIR, but each method
has its own disadvantages. The ISM requires careful selection of the order of image sources,
while SRT lacks phase information as it focuses solely on energy. By combining them, a
hybrid geometric acoustics simulator can be created. These simulators offer the advantages
of both the ISM and SRT: the ISM can model phase effects in the carly part of the RIR,
while SRT can handle diffuse scattering. However, these simulators have limitations in
modeling diffraction and other low-frequency effects around surfaces and objects in space.
Despite this, the hybrid geometric acoustics approach provides sufficient detail for specific
applications while maintaining computational efficiency.

3.4.3 Room acoustics simulation libraries

Many simulacors based on geometric acoustics have been proposed, and among them,
simulators following the ISM have gained popularity in various applications (Gannot et al,,
2017; Arberet et al,, 2010), as they provide sufficient realism related to the requirement
of targeted applications while maintaining computational efficiency. Furthermore, a large
number of simulators are available as open-source libraries. One such library is the Room-
sim toolbox by Campbell et al. (2005), implemented in MATLAB. It has undergone im-

1

provements, such as in Roomsimove !, which incorporated support for moving sources, and

lDeveloped by Emmanuel Vincent https://members.loria.fr/EVincent/software-and-data/
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by Schimmel et al. (2009), where SRT computation was added, transforming it into a hy-
brid geometric acoustics simulator. Subsequently, Barumerli et al. (2021) created a Python
binding and extended its functionality to load HRTFs for generating Binaural Room Im-
pulse Responses. Other widely used MATLAB-based libraries include the RIR generator by
[Habets (2006), the spherical microphone impulse response generator (Jarrete et al., 2012),
and the multichannel simulator for arbitrary microphone arrays (MCRoomSim) by Wab-
nitz et al. (2010). Schissler et al. (2014) proposed an HGA simulator capable of handling
high-order diffraction, and its Python binding is available as PYGSOUND 2.

With the advancement of DNN based systems whose libraries are mostly found in
Python, there is a demand for Python-based room acoustics simulators. Scheibler et al.
(2018) addressed this need by introducing pyroomacoustics, an open-source library with
highly modular components. In this thesis, we used it extensively and improved its func-
tionalities by adding support for source and receiver directivity with the help of an extended
ISM model presented in Chaprer 5.

Here we describe simulators that exploits GPUs for efficient, large-scale simulation
of RIRs. Due to the presence of CUDA cores, GPUs are known for performing fast complex
calculations at a large scale. Several wave-based simulators have utilized GPUs to provide
solutions for FEM and FDTD problems (Raghuvanshi et al., 2009; Réber et al., 2006). Fu
and Li (2016) and Diaz-Guerra et al. (2021) suggested leveraging GPUs to accelerate ISM
RIR simulations, where the latter also provides an open-source library.

In addition, DNN-based techniques such as the one of Ratnarajah et al. (2021) use
GANs for learning to approximate the distribution of real RIRs with the aim of produc-
ing realistic RIRs on-the-fly. Similarly, Luo and Yu (2022) generates RIRs on-the-fly and
make use of approximate physical modeling of the reflection process and sound propa-
gation. Notably, their approach does not require specific computational equipment such
as GPUs. Although all these methods are good for generating huge RIR datasets on the
fly, they lack flexibility and realism, especially in terms of their inability to simulate RIRs
in complex acoustic environments, simulating different types of microphone arrays, and
modeling directivities for sources and microphones. Hence, the community is in need of
a simulator that is fast and generates realistic RIRs. The work shown in Chapter 5 is an
attempt to bridge this gap.

3.5 RIR and audio datasets

Datasets of real labeled data measured in a variety of sicuations are important for the
assessment of signal-processing/DNN-based room parameter estimation and sound source
localization systems. Collecting real RIRs on a large scale is not trivial. Fortunately, there is
awide range of freely available RIR datasets that cater to specific application requirements.

thtps://github.com/GAMMAAUMD/pygsound
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3.5.1 RIR datasets

Several datasets were specifically collected to capture RIRs in various realistic con-
ditions. One of these datasets is the DTU three-channel dataset (Fernandez-Grande et al.,
2021), which consists of 152 RIRs measured using a three-channel array in a single room.
This dataset is intended for DOA estimation. Another multichannel dataset is the BIU
impulse response database (Hadad et al,; 2014), which can be used for applications such as
speech separation, DOA estimation, and speech enhancement. The BIU dataset includes
1,800 RIRs measured at three different reverberation levels using uniform linear arrays
(ULA). The protocol and modular acoustics room established for the BIU impulse response
dataset were also used by Di Carlo et al. (2021) for the dEchorate dataset. This multichan-
nel dataset was created using six microphone arrays, each consisting of five microphones.
The scenes were excited with six loudspeakers, and the dataset was measured in 11 differ-
ent acoustic conditions created within the same shoebox room, resulting in 1,800 RIRs.
The primary purpose of the dEchorate dataset is to test algorichms for acoustic echo re-
trieval, room parameter estimation, and echo-aware signal-processing methods. The three
multi-channel datasets of Dokmani¢ et al. (2011),Crocco et al. (2016), and Remaggi et al.
(2016) were gathered only for the purpose of room geometry estimation. These datasets lack
proper annotation of source positions and scattered microphones throughout the rooms,
making them unsuitable for DOA estimation and speech enhancement tasks. Arni (Prawda
ctal,, 2021) is a recently measured RIR dataset that also employed a modular acoustic room
with 5,312-panel combinations. It captures single-channel RIRs and aims to investigate the
change in acoustic parameters such as RTgy and speech clarity in relation to variations in
wall absorption coeflicients. The MIT IR survey (Traer and McDermott, 2016) is also a
single-channel dataset consisting of 271 RIRs measured in 10 different rooms.

The BUT Reverb DB (Szoke et al., 2019) and the RWCP sound scene database (Naka-
mura et al., 1999) are datasets specially designed to test multiple audio processing sys-
tems such as sound source localization, speech enhancement, sound retrieval, and auto-
matic speaker recognition. The BUT reverb DB consists of RIRs, environmental noise, and
recorded excerpts from the Librispeech corpus played by loudspeakers. The recordings were
made in 8 rooms of‘varying sizes with 31 microphones divided into various microphone ar-
rays placed in each room. The sources were positioned randomly at 5 different positions.
The RWCP database includes similar contents recorded in 9 different rooms with pho-
netically balanced words instead of speech excerpts. From all the described datasets we
specifically use the dEchorate dataset Di Carlo et al. (2021) for our expirements in Chapter
4 and 6 of this thesis.

3.5.2 Binaural room impulse response (BRIR) datasets

BRIR datasets aim to capture room acoustics with binaural effects. Datasets such
as the Aachen room impu]se response and che Surrey BRIR dataset were measured using
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a binaural microphone array where microphones are positioned in the ears of a Head and
Torso Simulator (HATS) to incorporate the filtering effect of a human head. The former
was measured in 6 different rooms with random source and HATS positions; it was aimed
to test speech enhancement algorithms. The latter also used a HATS microphone array
but measured RIRs in four different rooms. Both datasets have been used for sound source
localization (Venkatesan and Ganesh, 2017; Ma and Liu, 2019).

3.5.3 Smart-home datasets

Another category of datasets focuses on smart home applications. We describe three
datasets namely DIRHA (Cristoforetti et al., 2014), VOICEHOME 1 and 2 (Bertin et al,,
2016a,2019) and SWEET-HOME (Vacher et al.,, 2014). The main objective of these datasets
is to provide multi-channel speech recordings, primarily spoken by humans. All three
datasets were recorded in a domestic environment. The DIRHA corpus consists of record-
ings made in the kitchen and living room of an apartment. Microphones are placed in
various configurations throughout the space, and speech is delivered by six native English
speakers. VOICEHOME 1 and 2 present a series of two corpora that focus on short com-
mands and dialog scenes. The recordings involve 12 native French speakers in 12 rooms
distributed across four houses. Similarly, the SWEET-HOME dataset records 26 hours of
speech utterances in French, captured in a flat with four rooms. All of these datasets are
annotated with positions of source and microphone arrays combined with the geometry
of the scene. However, the publicly available versions of DIRHA and SWEET-HOME do
not include measured RIRs. The applications of these datasets are targeted towards sound
source localization, automatic speech recognition, and speech enhancement. The DIRHA
and VOICEHOME?2 datasets are used in the experiments of Chapter 6 of this thesis.

3.5.4 Audio challenge datasets

Over the years, many challenges have been organized to serve different applications,
and this has led to the emergence of real datasets that are specifically generated to evalu-
ate the submitted systems. The ACE Challenge (Eaton et al,, 2016) aims to find the best
system for blind acoustic parameter estimation. The evaluation dataset consists of real
noisy reverberant speech signals. RIRs are measured in 7 rooms using devices such as mo-
bile phones, notebooks, and an Eigenmike. The LOCATA (Evers et al.,; 2020) and DCASE
speech event localization detection (SELD) challenges (Politis et al., 2020) were designed
for multi-task single and multiple sound source localization tasks. The LOCATA challenge
includes source tracking with sound localization detection. The dataset includes source/mi-
crophone scenarios in static or moving conditions. The signals have been captured using
various types of microphone arrays, namely planar arrays, Eigenmikes, and a microphone
array positioned on a robot head and recordings are done in only one room. The DCASE
SELD Challenge includes an extra task of sound event detection with source localization.
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The evaluation dataset of the latest DCASE SELD challenge is named as STARSS22 and
consists of a naturally acted scene where the speakers are allowed to move and orient them-
selves naturally (Politis et al., 2022). Apart from the dominant speech signals, there are 13
different events, (i.c., non-speech sources) present in the scene that are active at different
times. Furthermore, all these active events are spatio-temporally annotated. A considerable
amount of diffuse and directional noise sources are also present in the recorded signals mak-
ing this dataset challenging. The signals in the STARSS22 datasets are caprured using the
Eigenmike and presented in two formats: a four-channel signal from a tetrahedral sub-array
or FOA, while the recording is done in two different reverberant conditions. Both datasets
use optical tracking systems (OPTI-TRACK) for accurate annotations of the positions. The
STARSS22 dataset is used in the experiment of Chapter 6 of this thesis.

3.5.5 Audio-visual datasets

There are several audio-visual datasets available that include video footage of acoustic
scenes along with recorded audio. Examples of such datasets include AV 16.3 (Lathoud
et al,, 2005) and CHIL (Stiefelhagen et al., 2008) which have been utilized in audio-visual
localization and tracking systems. Additionally, there are audio-visual experiments that
focus on estimating RIRs through the use of acoustic scene images (Singh et al.,; 2021). Real
datasets such as Matterport 3D (Chang et al,, 2017) and Open-Air (Murphy and Shelley,
2010) offer RIRs for multiple acoustic scenes in addition to images.

3.5.6 Synthetic datasets

The requirement to close the gap between simulated data and real data has led to
many developments in advanced simulator systems as seen in Section 3.4. Although the
generation of large simulated datasets consumes power and requires ample time, due to
ample demand for simulated RIRs in many DNN-based audio applications, many simulated
dartasets have been introduced.

GWA (Tang ct al,, 2022) and Soundspace (Chen et al,, 2020) are two highly real-
istic synthetic RIR datasets. GWA (Tang et al., 2022) provides 2 million RIRs, which
are simulated using a complex pipeline that incorporates realistic 3D house models and
a matched database of absorption profiles. The authors employed a combination of FDTD
and SRT methods to generate high-quality RIRs, requiring approximately 1,300 CPU/GPU
hours for the simulations. Models trained on this dataset performed well on many single-
channel tasks and outperformed models trained on less realistic simulated datasets. The
Soundspace dataset (Chen et al., 2020) also utilizes 3D models of indoor spaces with wall
profiles obrained from a matched database. However, the simulation of RIRs in Soundspace
is achieved through SRT techniques, resulting in RIRs that are less realistic compared to
GWA. BIRD (Grondin et al., 2020) and VAST (Gaultier et al., 2017) are other such datasets
made along the lines of Virtually Supervised Learning. Both are less realistic than GWA
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and SOUNDSPACE. The BIRD dataset provides 100,000 multichannel RIRs that are sim-
ulated using the ISM technique in rooms with random-profile wall absorption coefhicients.
The VAST dataset simulates 110,000 binaural RIRs using the hybrid geometric acoustic
method in a realistic indoor acoustic environment, with carefully selected absorption coef-
ficients that represent commonly encountered surfaces in indoor settings. All these datasets
fail to generalize to multi-channels tasks with the demand of a specific microphone array.

3.6 Summary

This chapter begins by conducting a literature review on room parameter estimation
and sound source localization which are the two primary tasks focused in the following
chapters. Subsequently, we introduced virtually supervised learning for audio and then
gave an overview of its two main components room acoustic simulators and diverse audio
datasets. The contributions outlined in Chapter 4,5 and 6 draw inspiration from and often
reference the research presented in various sections of this chapter.



4 Multichannel room parameter
estimation using multiple
viewpoints

This chapter provides a detailed description of our contribution to the task of blind

room parameter estimation. We investigate the joint estimation of room acoustic parame-
ters that are crucial to reverberation Fmgerprim and are related to each other using Sabine’s
law in diffuse field conditions. These parameters are the room’s volume V[m?], surface area
S[m?], reverberation time RTgo(b)[s] and absorption coefficient a, (b) for all surfaces v.
Six octave bands were used in this study, namely, b € [125, 250, 500, 1000, 2000,
4000] kHz. The estimation of @, (b) for all surfaces and octave bands increases the complex-
ity of this task by manyfold. Instead, we estimate the room’s mean absorption coefficients
@(b) calculated with Equation (3.1). With the aim to solve an inverse problem, we estimate
these parameters blindly using a multi-microphone setup with randomly positioned speech
sources in the acoustic scene. Further, we present a novel DNN to efficiently use the data
captured by multiple microphones, and carve out techniques to fuse multiple observations
(source-receiver pairs) in the same room. The network is trained with virtually supervised
1earm’ng on a training dataset that is simulated using a hybrid geometric acoustics simu-
lacor. We propose to study the problem of room parameter estimation in two parts. This
chapter focuses on the first pare, i.c., establishing a state-of-the-art method for room pa-
rameter estimation, while Chapter 6 focuses on the effect of the simulation strategy on the
room parameter estimation performance. This chapter is divided into three parts. Section
4.1 explains the simulation of training data, Section 4.2 introduces the novel DNN network
and the training procedures while Section 4.3 presents different experiments and their re-
sults on simulated and real data, the chapter concludes with Section 4.4.

4.1 Training data
4.1.1 RIR simulation

To train a blind room parameter estimation system, a large dataset of noisy, rever-
berated speech signals properly annotated with room acoustic parameters is required. We
first describe how diverse and realistic RIRs were generated. In this chapter, we use a room
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Figure 4.1: Distribution of RTgg, @, S and V' in the simulated training set. A stacked histogram is
used for RTgp and @ to show data in six-octave bands.

acoustic simulator called Roomsim, developed by Schimmel et al. (2009). Roomsim is a
hybrid geometric acoustics simulator that uses ISM and a stochastic ray tracing method
to simulate specular and diffuse reflections. The Roomsim simulator uses the diffuse rain
technique for the realization of stochastic ray tracing computation (Schroder, 2011). Simu-
lations are run using a sampling frequency of 48 kHz, an image source order of 10 and 2,000
rays for stochastic ray tracing computations. Simulations were conducted for 20,000 dif-
ferent shoebox rooms whose length, width, and height are uniformly sampled from a range
of [3,10] m, [3,10] m, and [2.5,6] m respectively. This resulted in .S € [48,440] m? and
V' € [18,600] m?. Five random source-microphone array positions were simulated in each
room (ak.a observations). The microphone array considered in our study consists of two
microphones at a distance of 22.5 cm.This distance resembles closely to a head or a headset
width. The source and microphones were simulated as omnidirectional. The source and
microphone array are kept at least 30 ecm apart from each other and from each wall of the
room to avoid near-field artifacts.

To have realism in the acoustic scene of the sampled rooms, the walls of the shoebox
rooms need to have frequency-dependent absorption coefhicients av, (f) withv € [1,...,6].
However, the vanilla ISM described in Equation (2.29) is restricted to work with frequency-
independent absorption and reflection coefficients. To incorporate frequency-dependent
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Walls Floor Ceiling
125 Hz | [0.01-0.50] | [0.01-0.20] | [0.01 -0.70]
250 Hz | [0.01-0.50] | [0.01-0.30] | [0.15-1.00]
500 Hz | [0.01-0.30] | [0.05-0.50] | [0.40 - 1.00]
1000 Hz | [0.01-0.12] | [0.15-0.60] | [0.40 - 1.00]
2000 Hz | [0.01-0.12] | [0.25-0.75] | [0.40 - 1.00]
4000 Hz | [0.01-0.12] | [0.30 -0.80] | [0.30 - 1.00]

Table 4.1: Ranges of ay, (b) used for the reflectivity-biased strategy (Foy et al., 2021).

coefhicients, a generalized Fourier-domain formulation of Equation (2.29) is written as

HGene f)y = 30— Denl) e
k=0

= Al - el

, (4.1)

where Dy, (f) is the total wall attenuation of the &™ image source defined in the frequency
domain. The absorption properties of the materials used in buildings are generally provided
by the manufacturers in the form of absorption coefficients given as values in [0, 1] per
octave band. Hence, there is a need to interpolate these coefficients in the Fourier domain
and to add a phase response to walls. Roomsim achieves this by linear interpolation of the
coefhicients and a minimum-phase wall-response design.

To generate our training set, the absorption coefhicients for six surfaces in six oc-
tave bands are sampled using the reflectivity-biased sampling strategy described in Foy et al.
(2021). This strategy provides each wall with a 50% chance of either being a frequency-
independent reflective wall or a frequency-dependent absorbent wall, where values for the
reflective wall profile are uniformly drawn at random in the range ,(b) € [0,0.12], while
the values for the absorbent wall profiles depend on the surface type and are uniformly
drawn at random from the ranges shown in Table 4.1. These ranges are derived from mea-
sured databases of surface materials that are frequently encountered in typical buildings.
Instead of sampling av,(b) at random in the range [0, 1], the advanced sampling strategy
leads to a realistic distriburion of RTgo(b) € [0.2,3.2] s and @(b) € [0.02,0.6] in the
simulated dataset, as can be observed in Figure 4.1. The scattering coeflicient used for the
diffuse-rain stochiastic ray tracing method is drawn randomly in the range of [0.2, 1].

4.1.2 Mixture generation

To generate noisy reverberated mixtures, the simulated RIRs generated for many
room configurations are convolved with speech signals and augmented by noise. The com-
putation is as follows,

cmln] = (hi * s)[n] + p(hiy! * ™) [n] + vi[n], (4.2)
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where m € [1,2] and h,y, are simulated RIRs that are downsampled from 48 kHz to 16 kHz
and convolved with randomly taken anechoic speech signals s from the Librispeech cor-
pus (Panayotov et al., 2015). Reverberated speech signals are cropped after first 20 ms to
avoid silence to a length of 3 seconds. They are altered by adding diffuse babble noise
(Rl psSN [n]) and static microphone noise (73%4). Diffuse babble noise is generated by

SSN

SSN[n] with a late reverberant tail (after 50 ms) of a ran-

convolving speech-shaped noise n
dom RIR simulated in the same room, denoted by A%l The static microphone noise is an
independent white standard Gaussian noise acting on each channel. These noise signals are
weighted by coefficients p and 17 whose values are explained in what follows.

Importamly, realistic noise levels exhibit a behavior where the signal—to—noise ratio
(SNR) tends to be lower if the source is kept far from the receiver, and vice-versa for the
source closer to the receiver. To replicate this we use a reference signal. The reference signal
is simulated in a typical condition, in a shoebox room of dimensions (5,5,3) with frequency-
independent absorption coefficients of 0.2 given to all 6 walls. The same microphone array
used in the training dataset is placed at the center of the room, and the source is positioned
at a distance of 1 M. The resulting RIR is convolved with a fixed white noise signal. Let the
variance, i.c., the power, of the reference signal be 02, which is calculated by concatenating
its channels. For cach noisy mixture generated with Equation (4.2), the variances 03 ; and
e

variance according to the following formula :

of the diffuse and static noises are then calculated with respect to the reference signal

L p—
10logyo | —— | = SNR™, (4.3)
T i
o2, ,
10 10g10 211’{ — SNRSI&[]C’ (44)
static

where SNRU and SNR* are randomly drawn in the ranges [30,60] dB and [70,90] dB
for every observation inside the room. On the other hand, the power of diffuse babble noise
and static noise

ol = " Var((hi ) [n]) (4.5)

O%asie = V2 Var (i ™“[n]) | (4.6)

where the variance of the standard Gaussian distribution is equal to 1, hence 02, = 2.

Solving for p and v we obtain :

O’ref-

_ . 47

7 S (O[] < 107 7

Oref (48)

V= 108NR5L;\1§(/20 .

Scalars p and v are used to scale the respective noise components in Equation (4.2). In
practice, this procedure led to an overall SNR of the mixtures in the dataset ]ying in the
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Figure 4.2: Proposed neural network architecture.

range [—10, 65] dB. Multiple observations are collected in each room and are concatenated
as follows :

x =[cg=1,--.,¢p], (4.9)

where D denotes the number of observations and ¢ is a multichannel signal for each ob-
servation that contains a single source. Using D = 5 observations in each of the 20,000
different rooms led to a dataset of 100,000 multichannel noisy speech signals.

This dataset is divided into non-overlapping training, validation, and test sets of
sizes 80k, 10k, and 10k, respectively. ) = 14 parameters are associated with each room,
namely, S, V, and 6 mean absorptions, 6 reverberation times for all octave bands. To
obtain a unique, reference value of the reverberation time for each room from five different
observations, the RTgg of the five corresponding RIRs are calculated in each octave band,
and their median is used as the labeled RTgq for this room.

4.2 Neural network model

To perform the blind room acoustic parameter estimation task, we propose a new
DNN architecture shown in Figure 4.2. The basic component of this architecture uses 1D
convolutional blocks, which are inspired by the Conv-Tas Net architecture initially intro-
duced for the task of speech separation in Luo and Mesgarani (2019). Each 1D convolu-
tional block is made up of different parts, namely, a separable convolution layer followed
by a ReLU and layer normalization (Ba ct al., 2016). Separable convolutions decouple a
convolution operation into a depthwise and a point-wise convolution. It has been found
useful to reduce the number of parameters, hence allowing for faster and deeper networks.
Scale-invariant representations are created by layer normalizations which were found cru-
cially important for this multi-task DNN network. The network is divided into 2 pipelines.
The botcom part has three 1-D convolution blocks with a progressive dilation rate of [1,2,4]
along the frequency axis and a constant kernel size of 11. Only one 1-D convolutional blocks
gave satisfactory results when applied to the upper part. Both parts are meant to process
different feature sets. The bottom part is meant for single-channel features (SC) and the
other for inter-channel features (IC). Refined features obtained from both pipelines are
concatenated along the frequency axis and average pooled across time to form an embed-
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ding vector of size (1248 x 1). This is followed by 3 fully connected layers of respective
dimensions of 96, 48, 28, yielding 28 outputs.

4.2.1 Input features

Although the proposed architecture works on any input signal length, the length of
input signals was fixed to 3 seconds for all training samples. The multichannel inpur sig-
nal ¢ from a single observation is first processed by the STFT with a 96 ms Hann window
and 50% overlap, resulting in a spectrogram Cy, ( f, t)i’il with F' =769 positive frequency
bins and 7" =63 time frames for cach channel m. This representation is then used to cal-
culate specialized single-channel and inter-channel features. Four different single-channel
features were considered : |C1(f, )%, \/|C1(f,t)|, log|C1(f,t)| and |C1(f,t)|. The lac-
ter performed the best out of the four in our preliminary experiments, so we opted for this
choice Meanwhile, inter-channel features are obrained by concatenating the Interaural level
differences (ILD) and the cosine and sine of Interaural phase differences (IPD):

ILD(f7t) =10g|C’1(f,t)|—log|C’2(f,t)|, (4.10)

Ci(f,)C5 (S, 1) )]
|Ol(f>t)05(fvt)| .

IPD(f, ) = lRe,Im( (4.11)

4.2.2 Loss function

To account for the different magnitudes of uncertainty in jointly estimating the ¢ =
14 target parameters, the network outputs are modeled as independent Gaussians and a
maximum likelithood approach is employed. The neural network parameters is denoted by
©. Hence, the model estimares 28 values of which 14 are the mean pg(c) i.c., the estimates
of the regressor. The rest are variances O'% (c),i.e., uncertainties of the estimated parameters.
Maximizing the likelihood of this model yields the following loss function against which
the network parameters are optimized :

(Yq — pg0(c))?
02,@(0)

18
Lo(c,y) = =log N (y; ne(c),08(c)) = 5 ) logoge(c) + . (1)
g=1

where the ground truth labels are denoted by y € R@.

4.2.3 Fusion of the estimates

This approach has two advantages. First, it allows for the adaptive weighing of errors
on individual parameters. Second, the dataset includes multiple observations in the same
room, and the network outputs multiple estimations based on these observations. These
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estimations can be fused together using the variance that the network outputs for all pa-
rameters, based on this formula derived from Bayes’ theorem :

Po(Walx) = N (44 Ty 0 (%), 1730 (%)) (4.13)
where i, ¢ (x) is the fused estimate whose formula is given by :

P)/q’®( Ca)
Mq,@(x) Z:: _q@( X)

where 7, o(x) = P, V2 o(€a), and 77 g(cq) is the estimated precision that is the inverse
of the estimated variance 77 g (cq) = 1/07 o (ca).

——— Hge(ca), (4.14)

4.2.4 Hyperparameters and training

The network was trained for 120 epochs with the ADAM optimizer (Kingma and
Ba, 2014) using a learning rate of 1074, To avoid overfitting, dropout layers are used after
cach convolutional block with a dropout probability of 0.2, and after each fully connected
layer with a dropout rate of 0.4. The network, trained on a set of 80k binaural examples,
typically converges within 100-150 epochs, with a patience of 15 epochs on the validation
set as a pre-condition for early stopping,

The parameters estimated by the network exhibit different scales. In order to avoid
issues due to scale differences, we normalized the ground cruth values y at training time,
by dividing them by their respective standard deviations calculated over the training set.
At inference time these standard deviations are reused and multiplied with the network
output.

4.2.5 Alternative DNN architectures

On the way to designing the above-mentioned DNN architecture, we experimented
at different levels of the architecture, namely, input features, the layers, the loss function,
and the learning approach. These experiments gave us important clues to proceed fur-
ther. Hence, mentioning them may provide readers with an insight on certain errors to be
avoided while experimenting with this task.

Learnable input filter banks were proposed by the author of Conv-TasNet (Luo and
Mesgarani, 2019). We tried to replace the STFT by advanced learnable filter banks for
single-channel and inter-channel feature calculation, but this change yielded a 25% increase
in the average error and doubled the Variability of the system. With the current STFT
implementation, we experimented with different window sizes of 32, 64, 96 and 128 ms.
Best results were obtained with 96 ms.

Alternatively, X-vectors (Snyder et al, 2018) are a state-of-the-art architecture for
speaker recognition. Inspired by this, we experimented with modified versions of this ar-
chitecture adapted to our task. However, these models did not perform well on our data
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Figure 4.3: Training workflow for the experiments
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and we observed a 1.25 times increase in variance on the errors. Continuing furcher, we
experimented with the loss function. We replaced the Gaussian negative log-likelihood loss
function with a mean squared error loss. This change increased the average error by three
times and also took away the functionality of fusing multiple observations in a room. As
suggested by Genovese et al. (2019), we experimented with using log-scale labels for the
surface and volume at the outpur, i.e., log(.S) and log(V'). This resulted in much worse re-
sults, probably due to the range difference, as we considered a narrower range of room sizes
in our dataset. At last, we gave a chance to single-task learning. We trained four copies of
the proposed architecture to estimate the (a, RTgo, .9, V) parameters separately. Identical
results were obtained, at the cost of a four-fold increase in the number of parameters and
training time.

4.3 Experiments and results

4.3.1 Baseline system and evaluation metric

The literature survey on room parameter estimation conducted in Chapter 3 revealed
a dearth of DNN-based methods capable of performing blind multi-task room parameter
estimation. Furthermore, to the best of our knowledge, no existing methods are capable
of estimating a room’s surface area, frequency-dependent reverberation time, and mean
absorption coefhicient solely based on noisy speech signals. However, a method does exist
for blind one-channel single-position room volume estimation (Genovese et al.,, 2019). We
use this work as a baseline to compare the task of volume estimation for different tests
on both simulated and real data. Due to the non-availability of code for this work, we
re-implemented their architecture from scratch and trained it on the same dataset as the
proposed model. Throughout the experiments, the mean absolute error on cach parameter

is used as a metric.

4.3.2 Simulated data

The network is trained according to the workflow provided in Figure 4.3. After train-
ing, we perform 2 different experiments with a simulated test set consisting of 2,000 unseen
rooms. The aim of our first experiment is to verify whether the fusion of multiple obser-
vations taken in the same room using the approach proposed in Section 4.2.2 does in fact
improve the results both for one-channel and two-channel input signals.

Therefore, for this experiment, we compared two approaches:

L. The full architecture depicted in Figure 4.2, which takes into account two-channel

input .

2. The same architecture is used but without the upper inter-channel processing part
of the network, thus processing only the single channel.
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Figure 4.4: Mean absolute error achieved on simulated data by Genovese et al. (2019) vs. the proposed
model with one- or two-channel inputs, as a function of the number of source-receiver

positions fused in each room. Shaded arcas indicate 95% confidence intervals

The obtained results are compared between the two approaches for the estimation of S,
RTgp and @, while the comparison extends to the baseline method for the estimation of V.

The results in Figure 4.4 for @(b) and RTgo(b) are averaged across all octave bands
to show the average errors on @ and RTg. The figure clearly shows that the fusion of mul-
tiple observations per room lowers the error in a progressive manner on all parameters.
Fusing 5 observations of a two-channel input signal provides the best performance with a
mean absolute error of 0.052 for @, 0.18 s for RTgg, 42 m? on S and 54 m? on V, while
the training set ranges for these quantities are as follows: [0.02,0.6] for @, [0.2,3.6] s for
RTgo, [48,360] m? for S and [18,400] m? for V. The results for the estimation of V' reveal
that our proposed method outperforms the baseline on both approaches with only a single
observation. One-channel with one observation reduces errors by 13%, while two-channel
with five observations reduces errors by 31 % with respect to the baseline. The provided
95% confidence intervals in Figure 4.4 show significance in the mean absolute error be-
tween the compared approaches. The two-channel approach achieves a significantly lower
mean absolute error for the estimation of S and V' compared to the one-channel approach.
This result can be associated with inter-channel features that efficiently capture the spatial
characteristics of the room, which helps in estimating S and V' which are spatial quantities
that depend on early reflections. However, given the conflicting confidence intervals, using
two channels instead of one does not seem to help the estimation of @ and RT.

We conduct a second experiment to examine the impact of combining single-channel
and inter-channel representations at the embedding layer. This investigation aims to de-
termine whether the improvement observed in the previous experiment comes from com-
bining single-channel and inter-channel features or if it is associated with the doubling of
signa] 1ength emitted by the source. This experiment was realized with 1 source—microphone
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Input Feature | @ | RTg (s) | S (m2) | V (m3)
1 microphone, 1 signal SC 0.055 0.225 55.0 68.8
0.058 0.222 554 69.7
2 microphones, 1 signal 0.057 0.221 54.0 67.7
2 microphones, 1signal | SC+IC | 0.055 0.236 49.9 63.7

I microphone, 2 signals

%)
OO0

Table 4.2: Mean absolute errors achieved on simulated data for one source-receiver position using
different inputs and features. Where SC, IC denote single-channel and inter-channel fea-
tures. Bold numbers indicate the best statisticaiiy signiﬁcant result per column based on

95% confidence intervals on the differences, when there is one.

observation with a signal length of 3 seconds. Four types of inputs and features are com-
pared:
1. One speech signal and its single-channel representation (1 microphone, 1 signal)
2. Two speech signais and their average singie—channel representations (1 microphone,
2 signals)
3. One speech signal from 2 individual mics and their concatenated single-channel rep-
resentations (2 microphones, 1 signal)
4. One speech signal and its concatenated (single-channel + inter-channel) representa-
tions (2 microphones, 1 signal), i.e., our proposed method.
The results shown in Table 4.2 suggest that the inclusion of inter-channel features signif-
icantly improves the error for S and V, despite the fact that the dimension of the input
features is the same as in experiments 2 and 3.
The results presented until now show values averaged across all octave bands for
@ and RTgg. Detailed errors on a per-octave-band basis are shown in Table 4.3 for two-
channel with one and five observations. These results reveal that the mean absolute error
for RTgo(b) decreases progressively from 125 Hz to 4 kHz by a factor of 3, while a(b) are
well estimated and do not depict significant error differences across octave bands. These
resules on the RTgo might be due to less information present in narrower lower octave

bands.

4.3.3 Real data

To test the trained model’s generalization ability to unseen real acoustic conditions,
wet speech recordings from the dEchorate dataset (Di Carlo et al., 2021) were used as a real
test set. The dEchorate dataset was described briefly in Section 3.5. Apart from recorded
RIRs the dataset also contains wet speech measurements taken in a modular acoustic shoe-
box room whose wall, floor, and ceiling can switch between reflective and absorbent char-
acteristics with S = 125 m? and V' = 82 m3. As for our simulated data, ground truch for
RTyg is estimated using Schroeder’s integration method, and the median value is taken for
cach room from the calculated set of corresponding RTg. Moreover, the ground truth val-
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1 position 5 positions
Qa RTGO (b) Q RTG() (b)
125 Hz 0.056 0.392 0.051 0.320
250 Hz 0.060 0.305 0.055 0.249
500 Hz 0.057 0.228 0.051 0.170

Octave bands

1 kHz 0.053 0.188 0.050 0.146
2 kHz 0.054 0.165 0.051 0.122
4 kHz 0.052 0.139 0.049 0.106

Table 4.3: Mean absolute errors on @(b) and RTgo(b) in the 6-octave bands achieved by the pro-
poscd model with multi-channel and 1 or 5 source-receiver positions per room on simu-

lated dara.
Method Features | # pos Q RTgo S \%
Genovese et al. (2019) SC 1 - - - 137.8
Ours SC 1 0.061 | 0.134 | 129.6 | 1545
Ours SC 5 0.060 | 0.097 | 125.8 | 149.1
Ours SC+IC 1 0.084 | 0.101 | 894 | 1076
Ours SC+IC 5 0.094 | 0.062 | 50.2 | 68.8

Table 4.4: Mean absolute error achieved over 3 rooms from the real dEchorate dataset. Where SC,
IC denote single-channel and inter-channel features. Bold numbers indicate the best sta-
tistically Signiﬁcant result per column, based on 95% confidence intervals.

ues for @ is estimated using the Eyring model with a technique based on the aggregation of
multiple RIR measurements (Foy et al., 2021). For both the parameters, the values in lower
octave bands (125 kHz & 250 kHz) were omitted as the image source method used to train
our model is known to be inaccurate in this regime (below the Schroeder frequency). Out
of 11 room configurations in the dataset we choose 3 room configurations that have 3 or
more reflective surfaces with @(b) € [0.16 — 0.35] and RTgo(b) € [0.25 - 0.66] sec. These
rooms resemble real acoustic rooms and fall under the scenario chosen for the training set.
We chose a combination of 30 microphone pairs for each of the three rooms, resulting in
3 x 30 = 90 3-second speech signals.

Results on the real test set are shown in Table 4.4. The mean absolute errors are
reported in the table using the proposed method for both one-channel and two-channel
approaches. It also provides a comparison with the baseline method on V' estimation. They
were calculated on 1 or 5 observations corresponding to a fixed microphone array and dif-
ferent source positions that were randomly chosen from the 6 sources present in the room.
An important point seen from the table is that the errors generated by our approach fall
within the same range as those achieved on simulaced data. Also, errors for the estimation
of V' using the one-channel approach with one observation are comparable to the base-
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Method Features | # pos Qa RTgg | S Vv
Genovese et al. (2019) SC 1 - - - 10.0
Ours SC 1 0.030 | 0.161 | 27.2 | 31.8
Ours SC 5 0.024 | 0.090 | 196 | 23.0

Ours SC+IC 1 0.031 | 0.100 | 347 | 39.7

Ours SC+IC 5 0.015 | 0.054 | 165 | 189

Table 4.5: Standard deviation ofpammeter estimates for room "011100" of the real dEchorate dataset.
Where SC, IC denote single-channel and inter-channel features.

line method. The results using the two-channel approach with inter-channel features also
bolster the hypothesis that inter-channel features are important for the estimation of S
and V' as their inclusion significantly decreases errors. Also, the numbers again show that
increasing the number of observations decreases the error on RTg, S, and V. However,
errors obtained on @ do not show a pattern and are more varied than the ones obtained on
the simulated dataset. This could be explained by two reasons: First, the difficult problem
of annotating absorption coeflicients in a real room. Second, the modeling of absorption
coefhicients in the ISM used for training the model is less valid at lower frequencies.

At last, Table 4.5, provides standard deviations across all parameters for 30 speech sig-
nals from a specific room of the dEchorate dataset with 3 reflective surfaces. Encouragingly,
the relatively small standard deviations indicate that the models are capable of producing
stable parameter estimates within a room, and are not heavily influenced by the position
of the source and receiver. Moreover, it can be observed that using multiple observations
decreases the standard deviation of estimates across all the parameters for a given room.

4.4 Summary

The findings of this study demonstrate that incorporating interchannel cues can
greatly enhance the blind estimation of room volume and surface from noisy speech. How-
ever, when estimating reverberation and absorption parameters, a single channel is found
to be adequate. It should be noted that the estimation of absorption coeflicients is not very
reliable, due to challenges in annotating real data and the limitations of the absorption
model for walls used in the ISM. Furthermore, the study emphasizes that combining mul-
tiple measurements reduces estimation errors and variances for all parameters. The results
also demonstrate that a system trained on a meticulously simulated training set exhibits sat-
isfactory generalization capabilities when applied to real-world data. However, it should be
noted that a single real room was used, with a fixed surface and volume, limiting the ability
to draw conclusions for a wider variety of room types. The lack of representation is also
seen in the training set as it was limited to a specific range of room acoustics and is unlikely
to genera]ize to acoustics beyond this range, e.g., cathedrals, recording studios, and non-
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rectangular rooms. Lastly, source and receiver directivities and frequency responses were
not taken into account while training the system.



5 Extended image source method
and implementation under
Pyroomacoustics

This chapter focuses on improving the realism of the open-source room acoustic sim-
ulator Pyroomacoustics by augmenting the simulator with the implementation of a more
realistic version of the ISM without compromising its computational time. While there ex-
ists a 1:1rge range of room acoustic simulators that can simulate RIRs at various degrees of
realism (see Section 3.4), most of them are either not open-source or not written in Python.
The Pyroomacoustics library satisfies both requirements. We view this contribution as a
helpful step to improve the generalizability of virtually-supervised audio signal processing
methods. The chapter starts with a description of the functioning of the Pyroomacoustics
simulator in Section 5.1, then we describe the extended ISM in Section 5.2. The implemen-
tation of the extended ISM in the Pyroomacoustics simulator is presented in Section 5.3.
We provide a qualitative comparison of the old and new versions of the simulator in Section
5.4. We conclude the chapter with Section 5.5, giving a brief discussion on further work in
this direction.

5.1 Functioning of Pyroomacoustics

Pyroomacoustics is an open-source Python library that provides quick routines for
acoustic simulation and various multi-channel processing algorithms that are easily acces-
sible by Python object-oriented methods. RIR simulation can be performed in 2D and
3D polyhedral rooms with multiple sources and receivers via hybrid geometric acoustics
approach. Additionally, the toolbox also provides algorithms for the STFT, source separa-
tion, single channel denoising, adaptive filcering, and beamforming, making it a versatile
library in order to test and develop audio systems (Scheibler et al., 2018). This library pro-
vides high-level Python APIs that are built upon a Python binding known as Cython (Behnel
ct al., 2010). Parts of various algorithms that are associated with high computational costs
are efhiciently performed by code written in C++, which is wrapped by Cython. In this the-
sis, the usage of the Pyroomacoustics simulator is focused on simulating RIRs in 3D shoebox
rooms using the ISM.

Before detailing our changes to implement our extended ISM, we describe how Py-
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roomacoustics simulates RIRs using the ISM. The ISM in the simulator follows the prin-
ciples of Allen and Berkley (1979), but its implementation follows a different paradigm:
it creates RIRs via time domain processing of image source filters. This implementation
is shown as pseudo-code in Implementation 1. The notations follow Python-style script-
ing and use array broadcasting for multiplication purposes. Also, the symbol ® denotes
element-wise multiplication. For an easier interpretation of the algorithm, we consider
an example of simulating an RIR using a single source-microphone pair. For the sake of
legibility, the microphone index m is therefore omitted in the following. Most of the vari-
ables used in the implementation are a result of some external computations and they are
described in the rest of this section in no particular order.

Simulating a RIR in a shoebox room requires the user to define high-level objects. The
room is defined by its properties (room geometry, frequency-dependent ae(b) for walls, sam-
pling frequency, and maximum order for ISM). Similarly, the source and microphone need
to be defined by their properties (position and directivity). Following the room, source,
and microphone description, the function get_pos_attn calls the C++ engine and returns
the position of all the K image sources in 3D coordinates, which will be referred to as
Iros € RE>3 as well as the reflection order of each image source and their associated wall
attenuation. The returned wall actenuations will be referred to as D € RE*B. B denotes the
number of octave bands. The absorption coefficient av of wall materials is often provided
in 6 octave bands b € b = [125, 250,500, 1000, 2000, 4000] Hz. For each image source k
the wall actenuation in octave bands is calculated as the product of the attenuations due to
the walls encountered along the path from the image source to the microphone :

Dy(b) = [15,,, (1), (5.1)

where 3;(b) is the reflection coefficient and is calculated from the absorption coefficient
a;(b) of surface i according to Equation (2.22), and 4, is the index of the v-th surface
encountered. Python functions such as get_time_delay and get_angles use IP* to
calculate the ﬁ)llowiﬂg quantities for each image source k-

« The time of arrival of each image source k, which is denoted as a vector gdelay =
[tielay]ff:_ol of size K. Further, tielay is converted from time in seconds to time in
samples and every time is split into an integer sampled point ¢} € Z and a fractional
sampled point tg“ e R.

+ The incoming angle of arrival (6, ¢ ) at the microphone and the outgoing angle of
departure (=0, —¢x) from the source, whose calculations are based on Brinkmann
ct al. (2019). In the pseudo-code, they are referred to in matrix form with the angle
of arrival denoted by AOA € RE>*2 and the angle of departure by AOD = ~AOA.

The sensitivity of the source and the microphone for angles AOD and AOA is retrieved
using a get_response function. It is represented as g € RX and g™ € RX. With no
specified directivity for the microphone and source we have g = g™ic = [1]5 1. This
simulates the condition of omnidirectional directivity patterns.
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Implementation 1 Time domain RIR construction in Pyroomacoustics for a single source-
microphone pair

Ipos, D <« get_pos_ attn() # retricve image source positions mm’ attenuations
AOD AOA « get_angles(Ir>) # rerricve incoming and outgoing angles of image sources
tddy « get_time_delay(IP) 4 retricoe time of arrival o quu/z mmgL source
g « get_response(AOD)  # rerricoe frequency-independent gain for source
gmc « get_response(AOA)
forb< 1to Bdo #loop over octave bands
D[:,b] < g™ @ g™ ® D[:, b]
rir, < fast_31nc_1nterp(]5[:, b, tdly)  # builds RIR
rir, < octave_band_analysis(riry, b[b]) # filrer RIR with octave band filer
end for

A recent update to the Pyroomacoustics simulator added the abi]ity to load f}equency—
independent cardioid patterns to individual sources and microphones. To devise such di-
rectivity patterns an analytical formula is used

9(0) = ¢+ (1= 1) cos(0), (5.2)

where ¢ € [0,1]. Directivity patterns such as the figure-of-eight, hyper-cardioid, subcar-
dioid, and omnidirectional are obtained by setting ¢ = [0,0.25,0.5,0.75,1] . The point-
ing direction of the directive pattern is controlled by 6, while the dependency towards
elevation is not considered. According to the incoming and outgoing angles of an image
source k, the analytical pattern is queried resulting in the direction-sensitive values that
are constant throughout the frequency bands, hence the function get_response returns
sensitivity values as a vector of size K, ignoring the frequency-dependency by repeating
the same value across bWith attenuations and time delay per image source, two functions
fast_sinc_interp and octave_band_analysis create multiple RIRs in the time do-
main for octave bands in b. The fast_sinc_interp function takes 2 parameters: the
attenuation ]3[:, b] and the source senstivity for octave band b and td1o The function fills
up the vector riry, by going through the attenuation of each image source k, windowing it
using a Hann window, and adding a fractional delay at tz*‘“ using a convolution with a frac-
tional delay filter, i.c., a sinc function. This results in an image source filter that is added
to riry at time ¢}, Although riry is filled by attenuated and delayed image source filters,
these RIRs lack information over frequency. The octave_band_analysis function con-
volves riry, with a raised cosine filter (,(f) whose frequency response (shown in Figure 5.1)
matches the requested octave band in b.Eventually, the resulting rir, vectors are summed

together to obtain the RIR :
B-1

h = Z riry,. (5.3)

b=0
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5.2 Extended ISM

In Section 2.1.1.2 we discuss the directivity patterns of real sound sources and mi-
crophones which tend to be frequency dependent, approximately omnidirectional at lower
frequencies, and more directive at higher frequencies. In the previous section, it was shown
that the construction of RIR in Pyroomacoustics takes place in the time domain with the
help of image source attenuations that are only defined and calculated in octave bands. This
not only disregards the full frequency scale but also makes it difhicult to include frequency-
dependent directivity patterns in the construction of RIRs. To make the simulator and
RIRs more realistic for the purpose of virtually supervised learning (see Section 3.3), we
propose to add the ability to load measured directivity patterns of real sources and micro-
phones into the simulator. In order to take into account the entirety of the frequency scale,
our contribution towards the simulator changes the core construction model of RIRs in
Pyroomacoustics, leading to RIRs being constructed in the frequency domain. Most room
acoustic simulators do not implement the ISM in its extended form, although it can be done
with little computational overhead.

In the previous chapter, Equation (4.1), represents an ISM model that includes frequ-
ency-dependent wall attenuation. Wall atcenuation is modeled as a filter Dy, ,, (f) for every
microphone m and every image source k, and a RIR is represented as a sum of delayed filters.
Now, to account for the source and receiver directivity patterns in the RIR simulation, we
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extend Equation (4.1) as

H(rmic f) — i Dk,m(f)
R ] S |

o pdely
6*127Tftk,mD"m (f)G“‘(—@k,m, —¢k,m7 f)

Gmic(ek,ma ¢k,ma f) ) (54)

where atmospheric attenuation in the frequency domain is denoted as D¥"(f). The time
of arrival at a microphone m for an image source k is denoted by titl;: Microphone and
source directivity patterns are denoted by G™*¢ and G*, the incomiﬁg angles in azimuth
and elevation of an image source k towards a microphone m are denoted by (0 m, Pr.m)-
The outgoing angle from a given source is the opposite of the incoming angle at the micro-
phone. This equation will be referred to as the extended ISM model. A similar formulation
was given by Schroder (2011). It also acts as the main protagonist of this chapter, as most of
the following work is based on our implementation of this equation in the Pyroomacoustics

simulator.

5.3 Extended ISM implementation in
Pyroomacoustics

This section details the implementation of the extended ISM in the Pyroomacoustics
simulator. We start with a description of the directivity datasets for sources and receivers
that are currently supported by the simulator. Then we describe interpolation of the di-
recrivity patterns using the DSHT which is vital for our extended ISM implememation. In
the following subsection, we present RIR construction in the frequency domain and end
this section by presenting extra features that are added to the modified Pyroomacoustics
simulator.

5.3.1 Directivity datasets

While surveying for measured directivity patterns, we found that equipment manu-
facturers often only provide the frequency response of their products, with the full measured
directivity pattern being absent. There are a few reasons that contribute to the absence of
open-source directivity patterns: the difficulties in accessing an anechoic chamber or ac-
quiring related equipment, and a relative lack of interest in the exact directivity patterns of
equipment from most users. However, we found two open-source directivity datasets (see
Section 5.3.1.2), and on the basis of these sources of data we develop the extended version
of the Pyroomacoustics simulator.
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5.3.1.1 SOFA format

A special data storage format known as the Spatially Oriented Format for Acous-
tics (SOFA) was proposed by Majdak et al. (2013). The SOFA format is designed to store
acoustic information pertaining to a particular geometric configuration. The SOFA format
was initially used to store information on HRTF measurements, but was later extended to
the storage of binaural room impulse responses (BRIRs) and spatial room impulse responses
(SRIRs). Prior to this standardized method, custom file formats were used to store HRTF
measurements, which made it challenging to exchange and distribute datasets (Geronazzo
ct al, 2013). Both datasets used in our implementation use the SOFA format.

f =2000 Hz
Omnidirectional Cardioid Hypercardioid Figure of eight
[dB] [dB] [dB] ]
0.4 0.4 0.4 0.4
0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1
f=4000 Hz
0.4 0.4 0.4 0.4
0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1
f = 8000 Hz
0.020 0.020 0.020 0.020
0.015 0.015 0.015 0.015
0.010 0.010 0.010 0.010

0.005 0.005 0.005 0.005

Figure 5.2: Spherical heatmap of AKG C414 from the DIRPAT dataset. The colorbars show normal-
ized magnitudes of the filcers.

5.3.1.2 DIRPAT and other datasets

The DIRPAT dataset consists of 2D and 3D directivity patterns of a variety of sources
and receivers measured at the Institute of Electronic Music and Acoustics, University of
Music and Performing Arts in Graz by Brandner et al. (2018). The dataset is freely available
and stored in SOFA format for reproducible research. It consists of 3D measurements of
four different types of receivers: the AKG C414 microphone with four directivity pattern



5.3. Extended ISM implem@nmtion in Pyroomacoustics 67

f=2000 Hz

Genelec 8020 Yamaha DXR8 Tannoy system 1200 Neumann KH120A
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Figure 5.3: Spherical hearmap of 4 different loudspeaker manufacturers from the DIRPAT dataset.
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Figure 5.4: FIR Filters taken at a random point from a spherical function of a loudspeaker Genelec
8020 and microphone AKG C414A present in the DIRPAT dartaset.

settings (omnidirectional, cardioid, hypercardioid, and figure-of-eight), the AKG C480 mi-
crophone, and two Soundfield microphones. Figure 5.2 shows the spherical heatmap of
all the directivity patterns exhibited by the AKG C414 microphone at three different fre-
quencies. The dataset also includes measured patterns of twelve sources, including generic
loudspeakers, guitar ampliﬁers, and a HATS capable of approximating human speech di-
rectivity. Figure 5.3 shows the spherical heatmap of a few loudspeakers ac f = 2000 Hz.

In the dataset, the directivities of sources and microphones are measured on two dif-
ferent grids. The grid for the sources consists of 540 measurement points while the grid
for the microphones consists of 480 measurement points around the sphere. Grid points
are further factored into 30 regularly—spaced azimuths and 16 or 18 regularly—spaced ele-
vations. We denote these grids by ¢mes = [(re, ¢mes) |17 where ™ is the number
of measurement points on the grid. The points on the grid are provided in the spherical
coordinate system [@m, ¢ '] with 0™ € [0,27], o™ € [0, 7] and r/ is the radius
of the sphere. Each measurement point holds a Finite Impulse Response (FIR) filter sam-
pled at 44.1 kHz for the incident sound path. In our implementation, the FIR filters are
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downsampled to 16 kHz by default. Two such downsampled filters are presented in Figure
5.4. Tables 5.1 and 5.2 provide detailed specifications of the available sources and receivers
in the dataset, with their grid coordinates and FIR length in samples. In addition to the
DIRPAT dataset, we also utilized another directivity dataset that provides the directivity
pattern of a 32-channel Eigenmike. This measurement was taken on a similar grid as the
one specified for the DIRPAT receivers, and at the same location by Franz Zotter et al .
Therefore, the nomenclatures for geometric configuration and length of the FIR fileer are
the same as for the receivers in the DIRPAT dataset. We denote it as "em32Directivicy” when
used in our experiments.

Microphone Number of | Number of | FIR length
azimuth elevation

Oktava MK4012 (Soundfield) 160
Soundtield ST450 130
AKG ¢480/ck61 (cardioid) 256
AKG 414K (ommidirectional) 30 16 256
AKG c414N (wide-cardioid) 256
AKG ¢414S (hyper-cardioid) 256
AKG c414A (figure-of-8) 256

Table 5.1: Microphone dircctivity measurement Speciﬁcations in DIRPAT.

5.3.2 DSHT and interpolation

The available grid points and corresponding filters in the measured receivers and
sources of our selected directivity datasets are insuflicient to represent the numerous in-
coming and exit angles of the image sources generated during simulations. Therefore, we
perform an interpolation of the measurement grids 4™ onto more densely populated Fi-
bonacci grids denoted as Ut = [ (6o, (b?bo)]fgo, the two grids in 3D are shown in Figure
5.5. The Fibonacci grid consists of 7" = 1,000 measurement points, which provides a
uniform distribution of points on the sphere (Gonzalez, 2010).

The implementation of the spherical interpolation of the measurement grids is based
on the DSHT, whose detailed description is given in Section 2.3.3. For the purpose of
interpolation, we choose an order L = 12 for the forward and inverse DSHT. The val-
ues of spherical basis functions on the measured grid U™ are calculated using Equation
(2.10). We refer to this set of basis functions in matrix form as Ymes ¢ CI™*x(L+1)? G-
ilarly, the basis functions on the Fibonacci grid U™ are denoted as Yfibo e CI™ox(L+1)?

Measured directivity patterns in the directivity datasets are sampled spherical functions

'https://phaidra.kug.ac.at/o:69292.
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Directional Source Number of | Number of | FIR length
azimuth elevation

Genelec 8020
Lambda Labs CX-1A
Tannoy System 1200
Neumann KHI120A
Yamaha DXR8
Bruel and Kjaer 4128C 36 15 2048
BM 1x12inch driver closed cabinet
BM 1x12inch driver open cabinet
BM open stacked with Crossover Network
BM open stacked on closed fh]lrange
Palmer 1x12 inch
Vibrolux 2x10 inch

Table 5.2: Source specification in DIRPAT. The first five are directive sources, the sixth is a HATS
simulator, and the last six are the guitar amphﬁcrs.

{gmes (07, O, ) Yicumes geqn,.. - The FIR filters evaluated at the sampled spherical
function for the measurement grids are transformed to the frequency domain by a DFT
operation:

DFT
gmus(e;;nus, ¢;mas’ t) Gmus(e;mas’ ¢mus, f) . (55)

)

The FIR filters in the frequency domain are accumulated in a matrix denoted as G™* =
[Gmess (e, o7, ) Lievmes fe[1,...F7] € CI™*xF' ‘where F’ = N |2 represents the number
of positive frequency bins that is derived from the FIR filter length N. Zotter (2009) pro-
poses a weighted least squares solution (see Section 2.3.4) for calculating a forward DSHT
on the spherical grid with no exact inverse of the spherical basis , which is the case for our
measurement grids Y™ and Y™, Therefore, we write the forward DSHT as

deas — (Ymeas)+QGm635’ (56)

where Z7 € CELA1XF" e spherical harmonic coefficients for the projected spherical
function G™ on the spherical basis and (-)* denotes the Moore-Penrose pseudo inverse.
The quadrature weights are calculated based on Voronoi cells according to Zotter (2009)
and is denoted by a diagonal matrix Q = diag{q} € RI™ /™" The weights are aligned in
a diagonal matrix
w 0 ~ 0
Q-] T 57

0 O °c qlmcns
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Measured grid /™% Fibonacci grid 2/fb°

Figure 5.5: 3D scatter plot of the measured grid U™™ (left) and the fibonacci grid Yo (right).

The value of the weights present as diagonal entries is associated with the area of cach
azimuth-elevation cell in the original grid. For the elevation angle, the geometrical formula

is given by,

l ft meas meas meas 3 ht meas
2 2 2 ieumcas

where left (¢*) and right(¢;*) refer to the elevation points to the left and right of ¢
on the grid. The spherical coefficients Z7 of the measured grid are then used to calculate
the interpolated transfer function on the Fibonacci grid

Gﬁbo — Yﬁbo Zzﬁas ) (59)

Finally, the IDFT inverts the frequency domain transfer functions to the time domain, re-
sulting in an interpolated set of filters on a denser Fibonacci grid :

. IDFT
Gﬁbo (971:'1130 , ¢§1b07 f) ghbo (ezﬁbo 7 (b?bo’ t)ieuﬁbo ) (510)

Figure 5.6 shows the representation of spherical function interpolation in the form of a 2D
spherical heatmap on the original grid ™ and the corresponding heatmap on the denser
Fibonacci grid U'ibo.
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Figure 5.6: Input and output of DSHT interpolation of a spherical function presented as a 2D spher-
ical heatmap at f = 2000 kHz. Left: shows the spherical function on the original grid.
Right: Interpolated function on a Fibonacci grid. Top: Directivity pattern of the Genelec
8020 loudspeaker. Bottom: AKG C414A (Figure of eight) microphone.

5.3.3 Frequency domain RIR construction

Contrary to the original implementation of Pyroomacoustics, the following compu-
tations are made entirely in the DFT domain. Implementing frequency—domain RIR con-
struction significantly changes the code and core functioning of Pyroomacoustics compared
to the previous implementation of time domain RIR construction. We clucidate this new
implementation in the form of pseudo-code for a single source-microphone pair. This con-
tribution is built on top of the C++ engine, which provides us with image source positions
v, wall atcenuation in octave bands D, the angle of arrival AOA, the angle of departure
AOD and the delay t4» for all image sources. Note that these variables are returned for the
function calls of get_pos_attn, get_angles and get_time_delay, whose implemen-
tation is described in the previous pseudo-code in Implementation 1, thus the dimension of
these matrices remains the same. In the psuedo-code in Implementation 2 below, the three
functions octave_band_fd_interp, fast_sinc_interp and get_response provide
individual parts for the generation of the RIR in the frequency domain.

octave_band_fd_interp takes one parameter, namely the wall attenuation in oc-
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tave bands D. It interpolates each row of the matrix to the full DFT frequency scale (F
frequency bins) by

Du(f) = Bz DeD)G(f). -

where (,(f) denotes the half-cosine octave band filters used in the Pyroomacoustics tool-
box. The interpolated filters are denoted by a matrix D € CExF, Equation (5.11) is illus-
trated by an example given in Figure 5.7, where the first figure shows the half cosine filters
for multiple octave bands, the second figure illustrates the wall attenuation provided in
octave bands for an image source Dy (b), and the third figure shows the interpolated wall
attenuation filter in the frequency domain.

fast_sinc_interp takes t¥% as a parameter. It decomposes the time delay for
cach image source k into an integer delay ¢} and a fractional delay tg“c. ti“‘“ is used to
calculate the interpolated sinc function, which is windowed by the Hann function, and
the resules of the operation are returned as a windowed fractional delay filter denoted by
F ¢ RE*F. To save computation time this function efficiently uses a pre-calculated sinc
lookup table.

get_response requires cither the angle of departure AOD or the angle of arrival
AOA. With respect to the provided angles, the function does a nearest neighbor search on
a K-d tree (Zhou et al,, 2008) made out the angles (9?1’“, (b?b“) for ¢ € USPo, Tt returns
the filters gibo (9o gl 1) closest to the queried angles. The returned filter is denoted by
matrices G € CE*F for the source and G™< € CE*F for the microphone. Other variables
such as X, P" hold the computed values while the rir is an empty vector.

Implementation 2 Frequency domain RIR construction based on our extended ISM model

Ir, D « get_pos_attn()
AOD, AOA « get_angles(Ir>)
tdly « get_time_delay(Ir>)
Gmic « get_response(AOD) # retrieve ‘/")11]1u’m‘_\'wfupvmﬂ'nr gdim/{w‘ ini('mp/mw
G « get_response(AOA)
D <~ octave_band_fd_interp(f)) # interpolate attenuations to frequency scale
F < fast_sinc_interp(ti™) 4 rerricoe windowed fractional delay filter
fork < 1to K do #loop over all image sources

X « D[k,:] o F[k,:] © G™[k,:] © G™[k,:]

P < (F+t)

rir[t) : P'] < IDFT(X) +rir[t)* : P']  # add image source filter to the RIR
end for

The functions get_response, octave_band_fd_interpand fast_sinc_interp
do computations in a vectorized form for all the image sources calculated by the C++ engine.
They output a matrix of size K x F'| that contains filters in the frequency domain for all
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Figure 5.7 Example of interpolation of a wall attenuation filter from octave band Dk(b) to fre-
quency scale Dg(f). Top: Half cosine filter banks and wall attenuations provided by
pyroomacoustics. Bottom : Applying Equation (5.11) leads to the interpolated filter

image sources. The loop goes over all the image sources K and performs a linear convolu-
tion of all the filters in the frequency domain which results in an image source filter that is
transformed into the time domain and placed at t}:t in the vector rir. This approach also
works in the following special cases:

1. For undefined source/microphone directivity, G¥</™ic = 1.

2. If one of the directivity patterns is chosen to be a frequency-independent pattern,

Gere/mic hecomes a scalar, whose value is obrained from Equation (5.2).

One important detail concerns the convolution of FIR filters in the frequency domain. A
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convolution in the time domain is a multiplication in the frequency domain, and to be able
to perform element-wise multiplication, the length of the filters should be the same and
sufficiently large. In practice, the FIR filter length of the source and microphone direc-
tivities differ due to the differences in their measurement process. Therefore, we pad all
time-domain filters with sufficient zeros, such that their lengths become equal and suffi-
cient to obtain a linear convolution.

5.3.4 Added features

Apart from implementing the extended ISM in the frequency domain, we provide
additional features to enhance the realism of the simulated RIRs. These additional features
do not increase the computational overhead and have been implemented without modifying
the aforementioned Algorithm 2.

Directivity Pattern Rotation

Directivity patterns are sensitive to the spatial orientation of the source or the re-
ceiver. It is therefore important to allow the user to specify the orientation of each source
and receiver. When generating training data for virtually supervised learning, multiple ran-
dom orientations can be simulated.

Each FIR filter on the Fibonacci grid is associated with a spherical angle (650, ¢lib).
The spherical angles can be converted to Cartesian coordinates on the unit sphere, leading
to the change in the function definition §™° (x4, yi, 2, t) jquso. Let these new coordinates
be denoted by the matrix V e 73 Applying a suitable rotation matrix to V based on a
requested orientation in azimuth §7% € [0, 27] and in elevation ¢ € [0, 7] results in

a transformed set of coordinates V

~ coS ( qbrotate ) 0 sin ( qbrotate ) cos ( Qrorate ) —sin ( Grotate ) 0
V= 0 1 0 x [ sin(@ewe)  cos(fowe)  0fx V. (5.12)
_ Sin ( qutlltc ) 0 cos ( ¢mmtc ) 0 0 1

This makes the FIR filters point to a new set of points in V| resulting in a rotation of the
directivity pattern without the need to recompute the spherical harmonic interpolation.

Minimum Phase Filters

As shown above, Equation (5.11) interpolates non-negative wall attenuations given
in octave bands to the complex-valued discrete Fourier domain. The half-cosine interpo-
lation scheme given in Equation (5.11) yields non-negative filters in the DFT domain, i.e.,
zero-phase fileers. This implies that the wall attenuations are non-causal and cause an impor-
tant artificial delay in the sound propagation (see Figure 5.8, left). Alternatively, Schimmel
et al. (2009) in his room acoustic simulator proposes to use minimum—phase wall attenuation
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Figure 5.8: Example wall attenuation filter dj(t) with the "zero phase” (left) and "minimum phase”
(right) sectings.

filters. Minimum phase filters are, by definition, causal and stable with a causal and sta-
ble inverse, and they are the fastest decaying filters for a given set of Fourier magnitudes.
For a given Fourier spectrum in the DFT domain d = [D(0),...,D(F - 1)] € CF| the

corresponding minimum phase fileer is obtained using the following formula :
Y = Im[Hilbert(-log(|d|))], (5.13)
d-= |d| x eli v , (5.14)

where Hilbert denotes the Hilbert transform. The transformed minimum phase fileer is
shown in Figure 5.8 (right).

5.4 Qualitative analysis of obtained simulated
RIRs

In Section 5.3 we presented the implementation of a frequency-domain RIR simu-
lation method. To verify its functioning and its effectiveness in generating realistic RIRs,
multiple qualitative tests have been performed, as described below.

5.4.1 Comparison between the original and the modified
version of Pyroomacoustics
The original implementation of Pyroomacoustics has been used in a large number of

works over the past few years. In this section, we take this implementation as a baseline and
compare it to our proposed ﬁ‘equency—domain imp]ementation under identical conditions.
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Figure 5.9: Qualitative comparison between the RIRs generated using the original and modified

Pyroomacoustics. Left: Test condition 1, Right: Test condition 2.

This qualitative analysis helped us to debug and verify the functioning of our implemen-
tation of the advanced [SM in the simulator. These tests have been done under 2 different
test conditions :

1.

Reflective omnidirectional. In this condition, RIRs are simulated with omnidirec-
tional sources and microphones in a shoebox room consisting of frequency-dependent
walls. The aim is to verify the level of attenuation and the time of arrival of the image
source filters between the two approaches. As it can be seen in Figure 5.9 (left) the
image source filters exactly match each other, verifying that our frequency-domain
implementation produces similar results compared to the time-domain one.

Source and microphone directivity. In these conditions, the purpose is to ensure the
perfect working of the get_response function that performs DSHT interpolation
and uses the nearest neighbor algorithm to return filters for queried angles of image
source in Algorithm 2. The original version of’ Pyroomacoustics is able to simulate
RIRs with frequency-independent source and microphone directivity patterns (see
Section 5.1). We replicate the same with our modified version of Pyroomacoustics us-
ing the frequency-domain RIR simulation approach. One new SOFA file was created
for each of the source and the receiver, using the same spherical grid as in the DIRPAT
dataset with cardioid and figure-of-eight directivity pattern. The FIR filters at cach
point are one-sample filters whose values are given by the analytical directivity pat-
tern in Equation (5.2). The two SOFA files implementing frequency-independent
directivity patterns are employed to simulate RIR with our frequency-domain RIR
construction method for a shoebox room with frequency-dependent walls. Another
RIR is generated using the original version of’ Pyroomacoustics on similar acoustic
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Figure 5.10: Qualitative comparison between a real RIR and a simulated RIR. The real RIR is taken
from the "011111" room of the dEchorate dataset. Simultancously, the simulation of the
RIR is conducted within an acoustic environment that closely resembles the character-
istics of the real RIR. This simulation employs time-domain processing and uses the
original Pyrooacoustics simulator. The first two rows are RIRs and the third row shows
the frequency response of both the RIRs.

conditions and directivity patterns. The plot on Figure 5.9 (right) shows that RIRs
simulated by both approaches have a high correlation with small coloration between
the RIRs, despite the two RIR construction approaches being significantly different.
This illustrates the proper functioning of the nearest neighbor, DSHT, and interpo-
lation routines.

5.4.2 Similarity to measured RIRs

To validate our claim that incorporating real directivity patterns enhances the realism
of RIRs, we conducted qualitative experiments. In our search for annotated RIR datasets
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Figure 5.11: Qualitative comparison between a real RIR and a simulated RIR. The real RIR is taken
from the "011111" room of the dEchorate dataset. Simultancously, the simulation of the
RIR is conducted within an acoustic environment that closely resembles the characteris-
tics of the real RIR. This simulation employs frequency-domain processing and incorpo-
rates a measured source and microphone from our proposed modified Pyroomacoustics
simulator. The first two rows are RIRs and the third row shows the frequency response
of both the RIRs.

that could be mimicked by a room acoustic simulator, we discovered that the dEchorate
dataset (Di Carlo et al,, 2021) fies well our requirements. We replicated the acoustic scene
of room "011111" from the dataset in our modified version of the simulator. The absorption
profiles of the walls, room dimensions, and positions of microphone arrays and sources were
meticulously recreated in the virtual acoustic environment. Although the directivity pat-
terns of the microphones and sources used in recording the real RIRs were not provided in
the dataset, the dataset did specify the references of the omnidirectional microphones and
directive loudspeakers employed. Using this information, we selected an omnidirectional
AKG c414 microphone and Genelec 8020 loudspeaker as substitutes in our virtual room
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setup. These chosen directivity patterns closely resemble those employed in the measured
RIR dataset.

With some post-processing, we aligned the RIRs on the time axis. Figure 5.1, shows
the real RIR from the dataset and a RIR produced by our modified simulator. Comparing
direct and first-order reflections, we see that both RIRs match well in the time domain. In
the log-magnitude frequency domain, a high correlation can be observed throughout the
frequency scale. This contrasts with Figure 5.10, where simulating the same acoustic scene
with the original Pyroomacostic implementation shows poor resemblance to the real RIR
in both time and frequency domains.

5.5 Further enhancements and improvements

Our implementation of the extended ISM in Pyroomacoustics improves the realism
of simulated RIRs. Qualitative results presented in the previous section provide support
to our claims. Still, there exist many fronts where the simulators can get better. Some
directions include:

« combining ISM and stochastic ray tracing similarly to Schimmel et al. (2009), but
with directive source and microphones;

« incorporating complex impedances of walls, resulting in directive wall responses;

« extension to non-shoebox rooms;

« inclusion of diffraction effects;

« support of a wider variety of measured source and microphone directivity patterns;

Computational time

While implementing the frequency-domain RIR construction (Algorithm 2), an im-
portant factor to consider was the computational time. Our goal was to achieve a com-
putational time that is comparable to the time-domain RIR construction method. Due
to the design of Algorithm 2, which involves iterating through all the image sources and
multiple conversions between the time domain and the Fourier domain, the initial imple-
mentation in Python took around 20 seconds to simulate a RIR with an image source order
of 20. While the original version of Pyroomacoustics generates RIR in the time domain and
does not take into account the frequency-dependency of the source and microphone takes
around 1 seconds.

To optimize computational time, we identified some bottlenecks in the Python code,
such as high-dimensional array broadcasting, and ported them to Cython. Through mul-
tiple iterations of code refactoring, we also managed to vectorize certain parts of the al-
gorithm, which further improved the performance. This significantly reduced the compu-
tational time and one RIR is now generated in 1.5 seconds. However, there is still room
for improvement, as there are additional functions that could potentially be vectorized,
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allowing for even faster execution times, especially with higher image source orders.

5.6 Summary

This chapter provides a detailed description of our contribution towards the Py-
roomacoustics simulator. The chapter shows that employing an extended ISM with the
inclusion of the measured source and receiver directivities improves the realism of the sim-
ulated RIRs without increasing the computational time. The key changes in this implemen-
tation were the DSHT interpolation and the frequency-domain RIR construction method.
The results in Section 5.4 show that our implemented method makes one step in the direc-
tion of obtaining a digital twin of a real room. Observing positive results, this improved
simulator will be used in the next chapter to train virtually-supervised DNN models on two
different tasks and its effect on the generalization of the system will be assessed.



6 Impact of simulation realism on
virtually supervised learning

This chapter details two contributions that focus on the effect of simulation real-
ism on Virtu:ﬂly supervised audio processing systems. Simulations of the training sets are
made more realistic with the help of our advanced ISM simulator presented in Chapter
5. The impact of the realistic simulation is assessed on two different tasks, namely, room
parameter estimation and sound source localization. Throughout this study, we enhance
the simulation of the datasets by adding realism to the source, receiver, and walls of the
virtual acoustic space. Realism in source and receivers is achieved by adding different types
of frequency-dependent directivity patterns, while for the walls, floor, and ceiling, realistic
distributions of absorption coefhicients combined with minimum phase wall responses are
considered. For the task of room parameter estimation, we use the same training procedures
and DNN architecture as presented in Chapter 4. For sound source localization, we focus
on direction of arrival (DOA) estimation using one microphone pair. A state-of-the-art,
broadly applicable DNN architecture is used as the model. The main aim of this chapter is
to study the generalization performance of models purely trained on various extensions of
the ISM on real data. For this purpose, this study effectively tests the models on 4 different
real test sets that include human speakers. Apart from the resules obtained with a baseline,
anaive and an advanced trained model, this chapter also presents an ablation study on both
tasks to determine the impact of each layer of added realism to the training dataset. This
chapter is divided in two parts. First, Section 6.1 presents the study on room parameter
estimation, which is further divided into three subsections. Section 6.1.1 provides details
on simulated data, Section 6.1.2 focuses on training and hyperparameters, and Section 6.1.3
presents the results and experiments on both simulated and real data. The second part
in Section 6.2 concerns source localization, which starts with Section 6.2.1 explaining the
principle of DOA estimation. Section 6.2.2 briefly describes the three real datasets, Section
6.2.3 provides details on scenario-based dataset simulation on three real datasets, Section
6.2.4 describes model selection and training parameters, and the experiment and results are
presented in Section 6.2.5. At last Section 6.3 present a conclusion to both tasks and points
to key takeaways.

81
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6.1 Room parameter estimation

In this section of the chapter, we examine the generalization ability of a room param-
cter estimation model on real-world datasets. The model is trained using daca generated
from the extended ISM simulator presented in Chapter 5. Also, an ablation study is car-
ried out on 7 different simulated training datasets, assessing the impact of experimenting
with different source, receiver directivity profiles, and wall absorption coefhicient distri-
butions. The datasets are used within the room parameter estimation pipeline established
in Chapter 4. Similar to the previous study, we estimate the room surface area S, volume
V', and reverberation time RTgo(b) for all b € [125,250, 500, 1000, 2000, 4000] Hz given
a set of noisy speech signals. Contrary to the previous study, we exclude the estimation of
mean absorption coefhicients @ due to the lack of availability of real test sets with a proper
annotation for this parameter.

6.1.1 Simulated data

The experiments on room parameter estimation shown in Chapter 4 use the Room-
sim simulator (Schimmel et al.,; 2009) and simulate RIRs using the ISM combined with
stochastic ray tracing. These experiments considered omnidirectional sources and receivers
only. However, it has been noted in the study by Kniiceel et al. (2013) that source and re-
ceiver directivities have a strong impact on a RIR. Therefore, in this chapter, we use our
advanced Pyroomacoustics simulator described in Chapter 5. The datasets are simulated
at a large scale using the frequency-dependent source and microphone directivity patterns
from the DIRPAT directivity dataset (Brandner et al,, 2018). The RIRs are also simulated
using realistic wall responses.

6.1.1.1 Training sets used for the ablation study

Seven different datasets named {D1,..., D7} are simulated for this ablation study.
Each dataset is structured to incrementally introduce varying levels of realism in the source,
receivers, and walls. Table 6.1 summarizes the different levels of realism for each dataset
using specific notations, which are explained below.

Source directivity. Three types of source directivity are considered in the train-
ing datasets, namely omnidirectional, frequency-independent, and measured frequency-
dependent responses.  Frequency-independent directivity patterns are implemented us-
ing the general analytical formula in Equation (5.2). For this experiment, a value ¢ €
[0.25,0.5,0.75] is randomly selected for each simulated source, respectively yielding hy-
percardioid, cardioid, and subcardioid patterns. In Table 6.1, such analytical patterns are
denoted as (Ay ) and are only used in dataset D4. Additionaly, omnidirectional sources cor-
respond to the value ¢ = 1 in Equation (5.2). This is denoted as (O) and is used in mulciple
datasets from D1-D5. It should be noted that the directivity patterns formed by the analyt-
ical formula do not take into account the elevation dependency nor, more importantly, the
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Datasets | Walls | Source | Microphones
D1 N @
D2 RB O
D3 RB O
D4 RB Ay
D5 RB M
D6 N M
D7 RB M

TTAOT<CA0

Table 6.1: Ablation study datasets and associated notations describing the level of realism of each
dataset. In the rable N and RB denote naive and reflectivity-biased wall sampling (Foy
ctal, 2021) . O, Ay and M denotes omnidirectional, analytical and measured directivity

pattcrns.

frequency dependency. Measured directivity patterns are taken from the DIRPAT dataset
(Brandner et al., 2018), as described in details in Section 5.3.1. Measured source patterns
were used in the datasets D5, D6, and D7, where a random directivity profile was selected
for each simulated source from three loudspeakers: Genelec 8020, Neumann KH120A, and
Yamaha DXRS. In Table 6.1, this is denoted by (M). For each simulated source its direc-
tivity patterns is randomly rotated in the azimuth angle, parallel to the ground.

Receiver directivity. Omnidirectional () and measured directivity patterns (M)
are considered for the receivers in the ablation study. Omnidirectional patterns are de-
fined in the same way as for the source and are used in datasets D1, D2, D4, D5. Measured
receivers are used in D3, D6, and D7, which utilized the frequency-dependent omnidirec-
tional directivity pattern of the AKG C414 microphone from the DIRPAT dataset. In the
ablation study, for receivers, we excluded any type of non-omnidirectional patterns, both
frequency dependent and independent. This decision was made because the real test set
only consists of omnidirectional receivers.

Absorption Profiles. Similarly, two different types of wall sampling strategies are
considered: Naive sampling (N) and Reflectivity-Biased sampling (RB) (Foy et al,, 2021).
In the first strategy, each of the six surfaces in a shoebox room is associated with a single
frequency independent coefhicient v € [0.02, 0.5], that is drawn uniformly at random. The
second strategy yields realistic rooms as each wall of the room is associated with frequency-
dependent absorption coefhicients v given in six octave bands. These values are sampled
uniformly in ranges defined according to a dataset of commonly encountered room surfaces
(see Table 4.1). A similar sampling strategy on absorption coefficients is employed in our
previous experiment on room parameter estimation, as detailed in Section 4.1.1.
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6.1.1.2 RIR simulation and mixture generation

Each dataset consists of 30, 000 different rooms whose length, width and height are
drawn at random from the box [3,10] x [3,10] x [2,4.5] in meters. In each room, 3 two-
channel RIRs are simulated at a rate of 16 kHz. An array of two microphones placed
22.5 c¢m apart is used, similar to the one used in Chapter 4. The microphone array is
placed at three different positions with a fixed source position. The directivity patterns
for the microphones are randomly oriented on the sphere. The frequency-dependent and
frequency-independent non-omnidirectional patterns of the sources were randomly ori-
ented in only the azimuth direction. The RIRs are used to generate noisy mixcures. To do
50, the two-channel RIRs are convolved with speech excerpts from the Librispeech corpus
(Panayotov et al.,, 2015). Uncorrelated white Gaussian noise with SNR in [60,70] dB and
diffuse speech-shaped noise with SNR in [20,50] dB are convolved with the late part of
a random two-channel RIR in the room. Both noise components are added to the rever-
berated signal. To calibrate the noise levels, a reference speech signal is used, where the
emitter is placed 1 M away and Facing a receiver placed in the middle of a 5 x 5 x 3 m room
with an absorption coefticient of 0.2. This calibration process ensures that the signal—to—
noise ratios across the datasets fall within the [15, 75] dB range. 3 measurements per room
for 30,000 different rooms resulted in 90,000 multichannel RIRs for each dataset. The 7
training datasets used in the ablation study sum up to a total of 630,000 speech signals.

6.1.2 Training and hyperparameters

To perform the task, we reuse our multi-channel multi-task state-of-the-arc DNN
model described in Section 4.2. The parameters to extract features from the speech signals
and the pipelines to process the single/multi-channel features remain the same. The loss
function and the Bayes formula used to fuse multiple observations from one room also
remains the same, however instead of fusing multichannel estimates from five observation,
we chose to fuse three observations to get a single estimate. The results presented in Chaprer
4 points that the gain in performance with the fusion of 5 estimate compared to the fusion
from 3 estimates is not huge, hence for this experiment we fused 3 estimates to get a single
estimarce.

The network is trained with the ADAM optimizer and a learning rate of 1074 with
a batch size of 16. To prevent overfitting, a dropout rate of 0.5 is applied between the
convolutional blocks. Additionally, l; and Iy regularization are applied on the network
weights, with a weight of 1075 and 1073 respectively.

6.1.3 Experiments and results

Seven different models are trained on the seven training sets {D1,...,D7} summa-
rized in Table 6.1. The models are tested on two different test sets and results are provided
in terms of the mean absolute error on all the estimated quantities. The results for RTgq
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are only provided in the octave band range of [500Hz — 4kHz], due to the inaccuracy of
geometric acoustic simulators below the Schroeder frequency, which is around 500 Hz for
the real test room considered in this study.

6.1.3.1 Simulated test set

A simulated test set is created with 400 shoebox rooms consisting of 1,200 multi-
channel recordings. The rooms are simulated with a similar level of realism to D7. The
microphones are simulated using the measured omnidirectional directivity pattern of AKG
C414. The source directivity in each test sample is randomly chosen from 3 out-of-training
measured directivity patterns, namely, 2 loudspeakers Tannoy system 1200 and Lambda
Labs CX-1A and 1 head and torso mouth simulator Bruel & Kjaer 4128C. We refer to this
simulated test set as realistic. The resules obtained with seven virtually supervised models
are shown in the first row of Table 6.2.

6.1.3.2 Real test set

We also used a real test dataset to assess the impact of the different levels of realism
in our training sets. The goal is to identify the specific level of realism that increases the
generalization ability of the system. The dEchorate dataset (Di Carlo et al.,, 2021) is used
as a real test set. The dataset is recorded in a modular rectangular room of S = 125 m?
and V' = 82 m3,

and absorbing mode. Specific details on the source and microphone setup that performed

whose walls, floor and ceiling can be switched between the reflective

the measurements in the dEchorate dataset are found in Section 3.5. Contrary to the ex-
periments in Chapter 4, more rooms from the dataset were used for this test. Out of 11
rooms we selected 4 rooms with 2-5 reflective surfaces. The range of RTg in these rooms is
[250, 810] ms. This range is commonly observed in rooms such as office rooms, classrooms,
and meeting rooms. Six semi-anechoic rooms and one furnished room were excluded from
this dataset. The reverberation times of the anechoic rooms do not represent commonly
encountered conditions, while the furnished room seemed to feature inconsistent ground
truth values!. The dataset is recorded with AKG CK32 omnidirectional microphones, while
the speech is emitted by six directional sources and one omnidirectional source, namely,
Avanton Mix Cubes and a Bruel & Kajer omnidirectional loudspeaker. Each source is emit-
ting 4 different speech utterances from the Wall Street Journal (WS]) dataset (Paul and
Baker, 1992). The directivity patterns of these sources and microphones are not present
in the DIRPAT dataset. Hence, none of our seven training datasets includes these direc-
tive patterns. We consider three two-microphone sub-arrays with an aperture of 22.5 cm
from six microphone arrays consisting of 5 microphones cach. Combining all sub-arrays,
all sources and all utterances yields 7 x 5 x 4 = 140 2-channel real speech recordings that

"The measurements were taken in typical meeting room, however the RTgg ground truth measurements
were inconsistent with the one taken in similar room dimension in the dataset.
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are cut to three second length for each room. Combining the 4 rooms, there are hence 560
test cases in total.

6.1.3.3 Results

The mean absolute error on the two test sets for all the estimated quantities and
the seven trained models is presented in Table 6.2. Upon observing the table, it is evident
that the model trained on the most realistic training set, D7, yie]ds the lowest errors as ex-
pected. This model consistently achieves the best or second-best performance for all esti-
mated quantities on both the simulated and real test sets. Another noteworthy observation
is the comparison between D5 and D7. While D5 shares similar wall and source charac-
teristics as D7, it employs a simpler frequency-independent omnidirectional microphone
model. Surprisingly, D5 outperforms D7 in terms of the estimation of S and V' on the real
test set. This discrepancy for D7 can be attributed to a mismatch in the microphone pro-
file between the training and test sets, which seems to negatively impact the performance
of the system. A possible solution could be to use a diverse set of microphone directivity
patterns in the training set. Subsequently, we do three different comparisons between the
trained models to highlight important findings. First, let’s compare D2 and D3 on the one
hand with D5 and D6 on the other hand. This highlights the improvement in RTg esti-
mation achieved by using measured microphone directivity. However, this improvement
comes at the expense of degraded estimations for S and V', as mentioned before. Second,
comparing D1 and D2 on the one hand with D6 and D7 on the other hand, we note that the
realistic wall sampling strategy (RB) employed in D2 and D7 consistently demonstrates
better performance compared to the naive sampling strategy (N) in D1 and D6 through-
out all the quantities and in both test sets. Lastly, when comparing D2, D4, and D5, we
observe a consistent improvement in estimation results by incorporating realism into the
source directivity. This improvement is evident across all quantities and on both test sets.
This claim is further supported by comparing D3 and D7, which demonstrates a significant
improvement in the estimation of S and V' when using a more realistic source directivity.

6.2 Sound source localization

We now turn our attention to the task of source localization to assess the performance
improvements that can be achieved by training a localization system using simulated data
from our improved version of the Pyroomacoustics simulator. The study by Vincent et al.
(2017) on speech enhancement points out that a broader generalization of DNN models
is achievable when the training set encompasses examples from a diverse range of acoustic
environments, including those that are representative of the ones encountered in the test
set. Simulations are the preferred approach to meet the demand for diverse training data,
given the limited availability of real data for various types of arrays and acoustic condi-
tions. For this purpose, Toom acoustic simulators have been Wide]y used for the app]ication
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Training Realistic test set
dataset | RTgo (500 Hz) | RTgo (1 kHz) | RTgo (2 kHz) | RTgo (4 klHz) S Vv
D1 0.182 0.150 0.150 0.139 97.04 98.47
D2 0.186 0.189 0.228 0.226 69.28 75.56
D3 0.198 0.158 0.133 0.110 103.57 | 108.58
D4 0.170 0.138 0.151 0.155 77.61 84.89
D5 0.168 0.143 0.153 0.119 50.46 53.09
D6 0.152 0.177 0.177 0.098 37.88 41.08
D7 0.134 0.105 0.116 0.092 25.22 28.63
Training Real test set
dartaset RT60 (500 HZ) RTGO (l kHZ) RT(;Q (2 kHL) RTﬁO (4 kHL) S %
D1 0.193 0.160 0.108 0.185 71.00 | 75.68
D2 0.182 0.140 0.128 0.198 45.11 | 55.16
D3 0.115 0.098 0.078 0.156 52.76 | 61.82
D4 0.167 0.134 0.121 0.197 37.91 | 48.95
D5 0.133 0.112 0.066 0.155 21.46 | 18.57
D6 0.151 0.133 0.084 0.159 35.88 | 31.11
D7 0.080 0.103 0.064 0.140 32.69 | 30.57

Table 6.2: Mean absolute errors in reverberation time (RTgg, in s), surface (S, in m?) and volume
(V, in m?) estimation achieved over a realistic test set (top) and real test set (bottom)
using the same model trained on 7 simulated training darasets. Bold numbers indicate the
best statistically significant result per column, based on 98% confidence intervals.

of sound source localization (Wu et al., 2021; Subramanian et al., 2022), as they allow the
modelling of different aspects of RIRs such as the amount of reverberation, interchannel
level differences, and source-to-microphone distances which are crucial for localization pur-
poses. Section 3.4 reviewed the vast variety of existing room acoustic simulators. Among
them, ISM has seen widespread use in the literature because of its implementation simplic-
ity and its ability to generate a variety of shoebox rooms with randomized dimensions, wall
absorption coeflicients, and source-receiver positions. The ISM has been shown to per-
form well on training sound source localization models that then give good performance
on real test sets (Adavanne et al., 2018b; Chakrabarty and Habets, 2019; Perotin et al.,
2019; Diaz-Guerra et al., 2020). The majority of these studies have used the simplest ver-
sion of the ISM, simulating RIRs with omnidirectional receivers and sources in a virtual
room with frequency-independent absorption coeflicients for the walls. Only few studies
on sound source localization using special multichannel receivers, such as spherical micro-
phones (Koyama et al., 2022), Ambisonics (Adavanne et al., 2019; Perotin et al,, 2019) and
binaural receivers (Gaultier et al,, 2017; Ding et al., 2020) incorporated the directivity of
specific receivers in the training of these systems. Despite the widespread use of shoebox
[SM-based simulators for training source localization systems, the effect of integrating more
realistic simulation conditions during training and its performance on a real test set have

hardly been studied.
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More realistic conditions, such as directional sources, receivers, and frequency-dependent
walls have already been successfully integrated as an extended ISM model in our improved
version of the shoebox simulator. Section 6.1 shows that, when used for the purpose of train-
inga Vii‘tuaiiy supervised model for acoustic parameter estimation, our advanced simulator
shows improved generalization on real test scenarios. Similarly, for source localization, a
recent work by Gelderblom et al. (2021) analyzes the effect of source directivity and diffuse
late reverberation modeling in the RIR simulation. Source directivity was found to have
a positive influence on the performance of the localization system while the inclusion of
the latter showed no impact. Additionally, their results were not made on direct human
speech in real acoustic conditions but rather on speech signals convolved with measured
directive RIRs. Apart from these two levels of realism, source localization is influenced by
other facets of the acoustic scene. One such important factor is receiver directivity. Simpler
omnidirectional microphones could induce significant effect in localization performance,
due to the observed variability in directivity pattern at different frequencies (see Figure
2.2). Moreover, frequency-dependent absorption coefhicients affect the reverberation level
reaching the microphones which can be observed in the spatial distribution and power
spectrum. Similar to the previous section an ablation study is performed to quantify the
effect of each added layer of realism at training time. We provide results on three distinct
real test sets with different microphone arrays recording real human speakers in various
acoustic conditions to consolidate our findings.

6.2.1 Angle of arrival estimation

Within the broad field of source localization, we choose the task of estimating the
angle of arrival in [0°,180°] of the impinging source wave to the microphone array, also
called the 1D direction of arrival (DOA). Using a two-microphone array, as in previous
experiments, limits us to performing 1D DOA estimation, because the intrinsic symmetry
of the array creates ambiguities around its rotation axis. Therefore, the array perceives
sources lying on a so-called cone of confusion (Wallach, 1939).

The DOA estimation of a single far-field source by an array of two microphones
separated by a distance of ly; em is shown in Figure 6.1. In free field conditions (see Section
2.4.1), the system in the frequency domain is written as follows:

C(f) =E(N)S() +Af), (6.1)

where C(f) is the Fourier transform of a multichannel vector-valued signal ¢[n] contain-
ing the signal ¢,,,[n] of each microphone. The noise component A(f) is also a vector
incorporating individual microphone noises a,,( f). The single source signal is denoted as
S(f). E(f) is called the steering vector. Each element in the vector is the DFT of the
free-field acoustic impulse response (see Equation (2.20)) from a source to a microphone m.
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Figure 6.1: [lustration presenting DOA estimation of a far-field source from a pair of‘microphoncs
on the horizontal plane. The distance between the microphones is la1, i.c., the aperture.
91 and d2 are the source to microphone distances. The three angles are azimuth 6, eleva-
tion ¢, and angle of arrival w. Also, k defines a unit-norm vector pointing towards the

source.

In the far-field setting,
e—2j7rf51/cF
E(f)~ o2 f8a/cF | (6.2)

where d,,, = || — r¢||3 is the Euclidean distance between the source and microphone
m. The steering vector is directly related to the distance and DOA of the source relative
to the microphone array. Each element e,,(f) consists of a transfer function for a specific
channel and has a specific amplitude and phase. If the phase and magnitude spectrum of the
source is known, disambiguation between e,,(f) and S(f) can be exploited to do source
localization. However, in practice, source signals are rarely known. In that case, it is sensible
to calculate the ratio between the channels. By taking the first channel as a reference the
relative steering vector is given as

~ 1
E(f) = o2 fDafF | 0 (6.3)

where Ay = 229 5 called the time difference of arrival (TDOA). In the far-field setting, the

C

TDOA depends on the DOA of the source signal and can be expressed as

l
A, n 21005 7 (6.4)
c



90 Chapter 6. Impact of simulation realism on virtually supervised learning

where w is the DOA of the source. GCC-PHAT is a commonly used algorithm for TDOA
estimation from the signals of a microphone pair in reverberant conditions (see Equation
(3.2)). With more than 2 microphones in a microphone array, a set of TDOASs is observed,
which can be used by SRP-PHAT to localize a sound source (see Section 3.2.1).

6.2.2 DOA estimation on real test sets

To evaluate the influence of enhanced ISM realism during training, we assess the per-
formance of virtually-supervised DOA estimation models on three real datasets with proper
spatio-temporal annotations of the human speakers’ activity and position relative to the mi-
crophone array. The aim was to select datasets that closely resemble real-world conditions.
Therefore, we selected datasets that featured real human speakers racher than ones gen-
erated using anechoic speech signa]s convolved with measured directive RIRs. Guided by
these requirements, we found three publically available datasets captured in a variety of
rooms, each using a different microphone array. Namely, these are Distant-Speech Inter-
action for Robust Home Applications (DIRHA) (Cristoforetti et al.,, 2014), VoiceHome-2
(Bertin et al,, 2019) and Sony-TAu Realistic Spatial Soundscapes 2022 (STARSS22) (Politis
ctal,, 2022). The first two datasets are designed for the purpose of assessing smart home ap-
plications such as speech enhancement or speaker localization, while the latter is made for
the DCASE sound event and localization challenge (Politis et al,, 2020). A brief summary
of these datasets can be found in Section 3.5. Additionally, from each dataset, we select a
two-microphone sub-array for the task of DOA estimation, as detailed below :

1. The VoiceHome-2 corpus is recorded using a microphone array consisting of 8 MEMS
that are placed near the corner of a cubic baffle. For this study, a two-channel sub-
array with an aperture of 10.4 ¢m is selected, and 360 two-second speech recordings
in quiet conditions are used.

2. The DIRHA corpus is captured using a network of omnidirectional wall-mounted
microphone arrays placed on the walls and ceiling of many different rooms. For
this study, a wall-mounted two-channel microphone array with an aperture of 30 cm
placed in the living room is selected, and 410 two-second speech recordings from the
living room are used.

3. The STARSS22 dataset is recorded using an Eigenmike spherical array? and is dis-
tributed in two formats: first-order Ambisonics and tetrahedral sub-array that selects
the channels 6, 10, 26, and 22 of the Eigenmike. The arrangement of the selected in-
dividual microphones on the Eigenmike forms a tetrahedral shape. We carefully pre-
processed the data to extract 2,100 two-second non-overlapping speech excerpts from
microphones 6 and 10 out of the tetrahedral sub-array, with an aperture of 6.8 em.

The combined duration of the three carefully curated test sets is 95 minutes, comprising
real human speech recordings with two channels and DOA annotations. Details on the

Zhttps://mhacoustics.com/products#eigenmike1
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characteristics of each specific microphone array will be given in the next section.

6.2.3 Scenario-based data generation
6.2.3.1 RIR simulation

For each of the three test sets described in Section 6.2.2, one naive and one advanced
simulated training set are built. The naive training sets consist of omnidirectional re-
ceivers and sources, where the apertures of the receivers are the same as the ones in their
corresponding test sets. The wall absorption coeficients are assumed to be frequency-
independent and equal for all six surfaces in the virtual room. This is similar to the simula-
tion setting of D1, as described in Section 6.1.1.1. The advanced simulated training sets
use our advanced version of the Pyroomacoustics simulator for RIR generation. These
training sets incorporate more informed choices on the directivity and absorption com-
ponents. For walls, the reflectivity-biased (RB) absorption sampling strategy described
in Section 6.1.1.1, is used. Regarding source directivity, the spatially interpolated measured
directivities of a head-and-torso-with-mouth simulator (Bruel & Kjaer HATS 4128-C) and
two directive loudspeakers (Genelec 8020 and YAMAHA DXR®) taken from the DIRPAT
dataset (Brandner et al, 2018) are integrated into the simulation. Receiver directivities
and aperture distance are associated with the particular scenarios found in the test sets.
In the simulated training set designed for the Voicchome-2 test set, the receivers are set to
be omnidirectional. Indeed, the direcitivity pattern of the micro electromechanical systems
microphones (MEMS) used in VoiceHome-2 is not available, but is known to be close to om-
nidirectional. This choice is further supported by the results in our ablation study on room
parameter estimation, where using mismatched microphone responses at training time was
detrimental to the results. For DIRHA, the advanced simulation places the receivers on
the room walls, which is equivalent to simulating microphones with a half-sphere directiv-
ity. Finally, in the simulated training set designed for STARS22, the advanced simulation
utilizes the measured directivity pattern of the relevant sub-array of the Eigenmike (see
Section 5.3.1).

The RIRs are simulated with an image source order of 20. A total of 40k shoebox
rooms of sizes uniformly drawn at random in [3, 10]x[3, 10]x[2, 4.5] meters are simulated,
cach containing a source and a two-microphone array placed uniformly at random with a
minimum source-array and device-wall distance of 30 em.

6.2.3.2 Mixture generation

The mixture generation process is similar to the one used in our study on room pa-
rameter estimation (see Section 4.1.2). The simulated RIRs are convolved with random
speech signals from the Librispeech corpus. Diffuse speech-shaped noise and white Gaus-
sian noise are added to the reverberated signals. The noise levels are tuned based on a
reference signa] that is simulated in an ideal acoustic environment, similar to the previous
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experiment (see Section 4.1.2). However, according to the considered scenario the micro-
phone array distance and directivity is adjusted, and a random source directivity pattern
is chosen from the training set. This approach resulted in bell-shaped signal-to-noise ratio
distributions in [15,75] dB with a peak at 40 dB for each of the six training sets con-
sidered in this study. This generation process yielded 40k two-second two-channel noisy
reverberated speech samples, of which 38k are used for training and 2k for validation. We
conducted experiments by supervising the model with datasets containing 10k to 60k sam-
ples. As expected, a steady performance improvement is observed from 10k to 60k, but we
notice diminishing returns after reaching around 40k samples.

6.2.4 Model selection and hyperparameters

In search of a state-of-the-art learning-based DOA estimator, the long list of methods
given by Grumiaux et al. (2022) is examined. The investigation is carried out with the
objective to find an open-source method that could perform multisource DOA localization,
irrespective of the microphone array configuration (i.c., the inter-microphone distance),
and that has been tested on real test datasets.

Based on the mentioned criteria we opted for the model presented by He et al. (2019)
and subsequently updated by He et al. (2021). We employed the DNN architecture from
the latter study. This architecture involves a multi-task DNN that performs multi-source
DOA estimation, speech detection and counting (not addressed in this study). The authors
showed the abi]ity to train an egective]y deeper CNN thanks to residual blocks (Kaiming
ct al, 2016) that helped to achieve robustness against noisy signals and outperformed the
MUSIC method. Moreover, their method uses the raw STFT as input features and the
architecture is invariant towards any array configuration. Given the availability of the code
on Github, this method was a clear selection.

The model is trained over different simulated training sets as described in the pre-
vious section. The training is performed with the ADAM optimizer and a learning rate of
107% over a batch of size 16 for a maximum of 110 epochs, with early stopping on vali-
dation sets. In this study, we employed the same input features as described by He et al.
(2021), which involved concatenating STET coethicients for each microphone. The STET
coefhicients are calculated with 50% overlap and 42.7 ms time windows. For consistency,
all the signals used in our study were down-sampled to 16 kHz, although He et al. (2021)
used signals sampled at 48 kHz.

6.2.5 Experiments and results
6.2.5.1 Baseline system and evaluation metric

The trained virtually-supervised DOA estimation models are evaluated using two
different metrics, namely, the mean angular error (MAE, in degrees) and Recall (in %). The
recall is defined as the ratio of localized sources with an error below 10°. We tried the
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Figure 6.2: Localization results on naive and advanced simulated test sets following the VoiceHome-
2 scenario.

recall metric with three error threshold: 5°, 10°, and 20°. The 10° threshold showed to
be adequate to prune out the outliers. All three models trained on naive and advanced

simulated data are compared to the classical learning-free SRP-PHAT localization method
implemented by Scheibler et al. (2018).

6.2.5.2 Simulated test data

In this test, we compare three methods, namely, the SRP-PHAT and the model of
He et al. (2021) trained using the naive and advanced training stracegies described in the
previous section, under the simulated VoiceHome-2 scenario. The results are shown in
Figure 6.2. Both bar plots reveal that all the methods perform well on the naive test set,
with both trained models achieving near-perfect recall rates. This implies that even under
the same noise and reverberation-time distributions, the localization task is made much
harder by the presence of realistic wall, source, and receiver responses. Although there is no
prior research that directly supports this, we think that this could offer a useful guideline
to enhance the evaluation of localization techniques on synthetic datasets. The bar plots on
the advanced training set gave results as expected. The learning-based methods demonstrate
superior performance compared to the learning-free approach, and the advanced model
exhibits better generalization capabilities to advanced conditions compared to the model
trained on the naive dataset. Moreover, we also observe that the advanced model performs
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Real Test Sets — VoiceHome-2 DIRHA STARS22
Methods ? Recall | | MAE (°) | 1 Recall | | MAE (°) | 1 Recall | | MAE (°)
SRP-PHAT 70% 99+1.5 61% 15.0+£2.3 | 45% 14.9+0.6
Naive training 78% 7.6+1.2 7% 84+14 57% 12.9+0.6
Advanced training 85% 5.8+0.8 84% 6.3+1.0 61% 11.4+0.5
Ablation study
w/o wall realism 83% 6.2+0.8 81% 7.5+1.4 59% 12.1+0.6
w/o source realism 82% 71+1.1 80% 7.8+1.2 63% 11.4+0.6
w/o receiver realism N/A N/A 78% 83+1.5 53% 13.4+0.6

Table 6.3: Localization results on three real test sets achieved by the SRP-PHAT baseline and by the
supervised model of He et al. (2021) trained using various simulation modes. All three
real tests are recorded with different microphone arrays. Mean angular errors (MAE) are
displayed with their 95% confidence interval. Bold numbers indicate the best system
in each column and the systems statistically equivalent to it. Statistical signiﬁcance was
assessed using McNemar’s test for the Recall metric and 95% confidence intervals over
angular error differences for the MAE metric.

nearly as well as the naive model in the naive condition, despite the mismatch in the training
conditions. This further supports the notion that speaker localization becomes inherently
more challenging in more realistic conditions.

6.2.5.3 Real test data

The trained models and the baseline SRP-PHAT are compared on the three real
datasets. The top part of Table 6.3 depicts the results. It is observed that the advanced
training approach consistently outperforms the naive training approach, achieving 4 to 7
recall points higher and a 2° MAE margins across all three datasets, despite utilizing the
exact same network architecture. The SRP-PHAT baseline is constantly outperformed by
the advanced training approach by a margin of 15 to 23 recall points and 3° to 9° mean an-
gular error. The results reveal that performing DOA estimation on the STARSS22 dataset
is challenging, which aligns with the description of the dataset provided in Section 6.2.2. It
is worth noting that even in the quiet and static conditions of VoiceHome-2 and DIRHA
datasets, the results from the strong SRP-PHAT baseline are far from perfect. This clearly
indicates that two-channel DOA estimation remains a challenging task in real-world set-
tings.

Additionally, an ablation study on the proposed advanced simulation strategy is also
presented in the lower half of Table 6.3. A general consensus drawn from these results is
that the removal of any of the three layers of realism leads to a noticeable decline in perfor-
mance. One notable exception occurs on the STARSS22 dataset, where the use of measured
directive sources at training time does not seem to improve the performance. One possible
explanation for this observation is that the human speakers in the STARS22 dataset exhibit
significant head rotations, which are not accounted for in our framework. In contrast, the
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results for this dataset are strongly improved by using the measured array directivity at
training time, an observation which we have not encountered in previous literature for a
two-microphone array of this nature. The positive impact of source directivity can be seen
in the other two datasets which confirms the findings of Gelderblom et al. (2021). Using
realistic wall absorptions appear to provide a similar enhancement in performance. To the
best of our knowledge, this is a novel finding, which could be attributed to the presence of
diverse real-world rooms in these datasets.

6.3 Summary

In this chapter, we used our advanced Pyroomacoustics simulator to simulate real-
istic RIRs for training sets and assess its impact on virtually supervised learning systems.
We carefully crafted simulated training sets by incorporating various layers of realism in
source, receiver, and wall responses to evaluate the generalization of the models for the
tasks of room parameter estimation and speaker localization. The existing literature on
learning-based systems for both tasks largely overlooks these aspects. However, our results
on both tasks demonstrate that each added layer of realism significantly improves the es-
timation performance of the DNN models on real test sets. Notably, incorporating source
directivity and reﬂectivity—biased wall sampling reduces errors on both tasks compared to
the models trained on naive training datasets. This showcases that by employing an exten-
sion of ISM simulation, we can enhance the performance of virtually supervised systems
without incurring additional computational costs.






7 Conclusion and perspectives

This thesis has presented contributions to DNN-based room parameter estimation
and speaker localization, with an emphasis on virtually supervised learning, wherein the
network is trained using simulated data. In this chapter, we wrap up the thesis by providing
a summary of our contributions in Section 7.1 and outlining perspectives and potential
future directions in Section 7.2.

7.1 Conclusion

In Chapter 4 we addressed the problem of room parameter estimation. Noting the
dependence between the different acoustic parameters present in Sabine’s law, we jointly
estimate the room’s surface area, volume, reverberation time, and mean absorption coeth-
cients in six octave bands from noisy speech signa]s. We presented a novel multi-task DNN
architecture inspired from Luo and Mesgarani (2019) that efhiciently uses the data caprured
by a multi-microphone setup. Also, we developed a technique to fuse multiple observations
(source-receiver pairs) in the room. The DNN is trained from the data simulated by a hy-
brid geometric acoustics simulator which comes under the strategy of virtually supervised
learning. The results of this study highlight that the incorporation of interchannel cues
significantly enhances the blind estimation of room volume and surface from noisy speech.
However, for the estimation of reverberation and absorption parameters, a single channel
suffices. Notably, the accuracy of absorption coeflicient estimation is limited due to chal-
lenges in annotating real data and the constraints of the absorption models for walls used
in the ISM. Additionally, the study underscores that combining multiple measurements
leads to reduced estimation errors and variances across all parameters. The outcomes also
show that a system trained on a meticulously simulated training set provides satisfactory
generalization capabilities when applied to real-world data.

In Chapter 5 our focus centered on the enhancement of realism in the open-source
Pyroomacoustics simulator (Scheibler et al., 2018). Despite the availabi]ity of numerous
room acoustic simulators capable of generating various degrees of realism in room impulse
responses (RIRs), most of them lack open-source accessibility and aren’t programmed in
Python (see Section 3.4). The Pyroomacoustics library satisfies both criteria. We expanded
the simulator’s capabilities by integrating an extended version of the ISM. Specifically, our
attention was on incorporating measured source and receiver directivities and enhancing
the realism of wall responses. This update fundamentally transformed the simulator’s core
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operation from time-domain to frequency-domain RIR computation. The incorporation of
measured directivity was achieved through the utilization of the DSHT and interpolation.
As demonstrated in Section 5.4, our implemented approach produces room impulse re-
sponses with a higher level of realism without significantly increasing computational costs.
Also, this work is an evident step to improve the generalization of DNN-based method
trained under the strategy of virtually supervised learning.

In Chapter 6 we took forward our advanced version of the Pyroomacoustics simula-
tor and use it to simulate training data in order to train two DNN models. One of the tasks
was room parameter estimation, as in Chapter 4, while the other task was speaker localiza-
tion. The aim was to study the system’s generalization ability to real-world datasets when
trained with RIRs simulated using extended ISM. We created multiple training datasets
with varying levels of realism in source, receiver, and wall responses to perform an abla-
tion study for both tasks. Informed decisions were made for the inclusion of the measured
source and receiver directivity with respect to each test dataset. Our results on both tasks
indicate that each added layer of realism improves the performance of the DNN models on
real test sets. Significantly, the inclusion of source directivity and the implementation of
reflectivity-biased wall sampling (Foy et al., 2021) lead to lower errors on both tasks when
compared to models trained on naive training datasets. This serves as a clear demonstra-
tion that through the utilization of an extended ISM simulation, we can augment the per-
formance of virtually supervised systems without incurring any additional compurtational
overhead.

7.2 Perspectives

The research conducted in this thesis paves the way for exploring various intriguing
avenues for further investigation. Several of these potential directions are outlined below.

7.2.1 Advanced Pyroomacoustics simulator

In Chapter 5, we describe our implementation of extended ISM in the open-source
Pyroomacoustics simulator (Scheibler et al., 2018). Moving further in the direction of im-
provements there is a possibility of data augmentation for measured source and microphone
responses. Implementing it will lead to more diversity in directivity patterns which can di-
rectly effect the genera]ization ofxvirtuaﬂy supervised audio systems.

In our implementation of the extended ISM the late reverberation of the RIR is mod-
cled using the ISM, however, more realism in the RIR can be achieved if it is modeled using
stochastic ray tracing method (Gelderblom et al.,; 2021). Combining source and microphone
directivity with the ray tracing methods is a challenging task, its implementation is shown
in the simulator of Schimmel et al. (2009) using angle-time-frequency histograms.

Another avenue for enhancement involves introducing complex-valued wall impedance.
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A study conducted by Meissner and Zielinski (2022) reveals that there are perceptual dis-
tinctions in reverberation between walls with real-valued impedance and those with complex-
valued impedance, particularly in smaller rooms. Along the same lines, inclusion of diffrac-
tion effects in geometeric acoustics simulators will enhance the realism of the simulated
RIR. In this thesis we worked with regular shoebox rooms because of the limitation of the
simulators. Wider application opportunities can be observed if these techniques are ex-
tended to non-shoebox rooms. Keeping the computational time low while employing all
these techniques would be a challenge, but achieving this would give this simulator an edge
over wave-based simulation methods (Hamilton, 2021), which are capable of simulating
RIRs with outmost realism but due to their high computational time can hardly be used to
train virtually supervised learning methods.

7.2.2 Room parameter estimation

A DNN-based joint room parameter estimation model is presented in Chapter 4. The
same model is employed in Chapter 6 to investigate the influence of enhancing realism in
the training data through an ablation study. In terms of problem statement and the design
of the pipeline, further exploration can be done on many fronts. This could include an ex-
tension of the current room parameter estimation model towards the joint estimation of
local parameters such as position and properties of the source and the individual surfaces.
This can be accompanied with experimentation on different DNN architecture designs and
efhicient input features used with specific microphone arrays such as circular arrays or an
Eigenmike. A viable starting point is the recent study by Ick et al. (2023) that points to-
wards the use of Gammartone spectograms combined with Gammatone phase spectograms
for joint estimation of reverberation time and volume. Furthermore, data augmentation
techniques on real data could be considered while training the system, which could be com-
pared with the model trained purely with a virtually supervised approach. To realize this,
efforts should be made in the measurement of a new dataset designed particularly for room
parameter estimation involving different acoustic conditions with proper annotation of
global and local acoustic parameters. The need for such datasets has been shown in various
studies on room parameter estimation (Ick et al., 2023; Genovese et al., 2019; Xiong et al,,
2018). Based on the results shown in Chapter 4 and 6, both contributions lack a detailed
study of training the systems with data comprising different noise distributions and its im-
pact on the real test sets. Also, the systems can be tested on a variety of real-world test sets
to further bolster the claim of generalization. At last, conducting a thorough investigation
employing arange of measured microphone responses is essential to substantiate compara-
ble assertions to those made regarding source directivity, which has indeed demonstrated
its utﬂity in estimating room geometrical parameters.

A focus could also be given to the real-time estimation of the acoustic parameters in
dynamic conditions, which could further be employed in different mobile devices or audio
processing frameworks making it more accessible and usable in real-world scenarios. This
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could integrate with various audio applications such as noise reduction, audio enhance-
ment, virtual reality, and augmented reality, to enhance the user experience.

7.2.3 Sound source localization

Our contribution to speaker localization, as discussed in Chapter 6, aims to explore
simulation techniques and their influence on the generalization of a system trained through
virtually supervised methods. The outcomes of this study reveal certain findings that war-
rant further investigation through additional experiments. We lack a detailed study inves-
tigating the impact of various noise distributions within the training sets and their correla-
tion with performance on the real test sets. During the training phase, we noticed that the
model trained with advanced training sets attains convergence earlier compared to the one
trained on naive datasets. However, a more thorough exploration is necessary to establish a
conclusive claim in this direction. Additionaly, similar to other contributions, the impact
of introducing more measured directivity patterns for microphones in the training of the
system is an important research direction. Furthermore, this study’s scope can be extended
to more scenarios, such as localizing sound sources in dynamic acoustic environments with
multi-source DOA estimation. Another promising avenue of‘experimentation involves the
localization of sources in both 2D and 3D coordinates.



8 Résumé étendu

La Realite Augmentee (AR) vise a intégrer du contenu virtuel geneére par ordina-
teur dans 'environnement physique de manicere a créer une fusion transparente, rendant le
contenu virtuel semblable a une partie du monde réel (Azuma, 1997). AR a le potentiel
d’améliorer la perception et 'interaction des personnes avec leur environnement, facilicant
ainsi 'exécution de taches du monde réel. Un avantage significatif de la technologiec AR
est sa capacite a augmenter les sens humains, permettant aux individus d'interagir avec
des objets et des scenes virtuels aussi facilement quavec le monde physique (Azuma et al,,
2001). Cependant, la grande majorite de la recherche en AR s'est principalement concen-
trée sur I'augmentation visuelle (Kim et al, 2018). La Reéalite Augmentée Audio (AAR) a
recu moins d’attention par rapport a augmentation visuelle. En AAR, du contenu auditif
virtuel est integré de maniere transparente dans I'environnement acoustique reel, amelio-
rant ainsi lexpérience utilisateur. Afin de créer une perception realiste de la direction, de
la distance et de la réverbération pour les sons virtuels, les sources sonores virtuelles sont
souvent spatialisées de maniere binaurale. La technologie AAR est capable de creer des
expériences audio immersives pour divers types de contenus sonores tels que la parole, la
musique, les signaux et les alertes (Li et al,, 2018). Par consequent, elle peut transmettre
differents types d’informations en fonction du contexte.

Des dispositifs informatiques puissants facilement disponibles tels que les telephones
mobiles ont la capacit¢ de simuler des sources sonores virtuelles et de fournir une expéri-
ence audio immersive. Dutilisateur peut accéder a ces expériences audio immersives avec
de nombreux ¢couteurs disponibles dans le commerce (Yang, 2021). Récemment, de nom-
breux casques et ecouteurs AR-VR ont ¢te introduits sur le marche, capables d’effectuer des
calculs AAR en temps reel. Parmi eux figurent PApple Vision Pro, 'Apple AirPod Pro, le
Samsung Galaxy Buds Pro et le Sony WH-1000XM5, ce qui a suscité un intérét croissant
dans ce domaine. Comparativement a l'augmentation audio dans les systemes de réalice
virtuelle (VR), les systemes AAR sont plus difficiles a mettre en ceuvre en raison de la tech-
nologic complexe necessaire pour augmenter l'audio dans des conditions du monde reel.
Plus specifiquement, en VR audio, l'utilisation de scenes virtuelles précongues peut simpli-
fier le rendu de contenu audio, tandis quen AAR, la creation de sons virtuels dans le monde
physique et leur adaptation en temps réel a 'utilisateur est plus complexe. Un systeme AAR
fonctionnel comprend cing composants technologiques : le suivi de la position de 'objet de
l'utilisateur, la modelisation acoustique de la salle, la synthese sonore spatiale, I'interaction
et la technologie d’affichage (Yang ct al.,; 2022). La technologic d'interaction est nécessaire
pour obtenir les entrées de lutilisateur afin d’ajuster les paramétres de 'AAR, tandis que
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la technologic d'affichage se réfere a la maniere dont le son est restitué a l'utilisateur. Pour
afhicher le contenu visuel accompagne d'un son immersif, un ¢cran est egalement nécessaire.
Dans cette these, nous nous concentrons uniquement sur un aspect de 'AAR : la modelisa-
tion acoustique de la salle.

Lobjectif de cette these est destimer les parametres acoustiques globaux et locaux
d'une picce a partir de sources sonores inconnues. Les parametres acoustiques globaux com-
prennent la surface de la salle S| le volume V| les coefficients d’absorption moyens @ et le
temps de réverbération RTgg. En ce qui concerne les parametres locaux, nous visons unique-
ment a estimer Pemplacement de la source sonore. Nous contribuons donc a deux taches
distinctes : Pestimation des paramétres de la salle et la localisation de la source sonore.
Nous abordons ces deux taches a 'aide d’'une approche supervisée basée sur les réseaux de
neurones profonds (DNN). Ces systémes DNN sont entrainés exclusivement sur des don-
nces simulees, une approche appelee apprentissage virtuellement supervise. La these se focalise
notamment sur 'impact du réalisme du simulateur employe dans la géneralisabilice des
méthodes.

Ce resumé ¢tendu est organis¢ comme suit. Dans la Section 8.1, nous développons
notre premiere contribution, un cadre multi-tache multicanal pour 'estimation des parametres
acoustiques de la salle. Dans la Section 8.2, nous décrivons notre contribution a l'amelioration
du realisme des RIR simulces par le simulateur acoustique de salle open source Pyrooma-
coustic en implémentant une version ¢tendue de la mechode des sources images (ISM) avec
des directivites de source et de récepteur dépendantes de la fréquence. Dans la Section 8.3,
I'impact de la version modifi¢e du simulateur pyroomacoustics est analysé sur la tache de
localisation de source sonore et d’estimation des parametres de la salle.

8.1 Estimation des parameétres de la piece a
canaux multiples en utilisant de multiples
points de vue

Sélectionner les paramétres acoustiques pertinents de l'environnement utilisateur rep-
résente un défi. Le concept d’empreinte de réverbération proposé par Jot et Lee (2016) car-
acterise une salle en fonction de son volume et de son temps de reverbération par bande
d'octave. Ces deux parametres sont lics entre eux par la loi de Sabine dans des conditions
ideales de champ sonore diffus, qui implique ¢galement la surface de la picce et les coeth-
cients d’absorption des parois. Celanous a poussés a effectuer une estimation conjointe de
ces quatre parametres. Les systemes proposes dans la littérature estiment generalement cha-
cun de ces parametres séparément et fonctionnent sur des caractéristiques a canal unique et
estiment des valeurs a large bande pour les parametres dependants de la frequence (Murgai
et al., 2017; Kataria et al., 2017; Genovese et al., 2019).

Comme indiqué dansle chapitre 4, nous estimons simultanément les quatre paramétres
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mentionnés dans six bandes d’octave. Pour ce faire, nous proposons une nouvelle archi-
tecture DNN multi-taches capable de traiter des caracteristiques a canal unique et multi-
canal. Ce réseau est entrainé sur des données simulées avec une fonction de perte basce sur
la vraisemblance maximale qui produit des variances adaptatives pour Chaque paramétre.
Cela nous permet de fusionner de maniere statistiquement motivee de multiples observa-
tions indépendantes d'une salle. Les résultats sont évalues sur des enregistrements de parole
réverbérée simulée et réelle.

8.1.1 Les données d’entrainement

Nous decrivons d’abord comment des RIR varices et realistes ont ete generees. Dans
cette section, nous utilisons un simulateur acoustique de salle appele Roomsim,developpe
par Schimmel et al. (2009). Roomsim est un simulateur d’acoustique géométrique hybride
qui utilise des methodes de tracage de rayons ISM et stochastiques pour simuler la réflexion
speculaire et diffuse. Le simulateur Roomsim utilise la technique de la pluie diffuse pour
la réalisation du caleul de tracage stochastique des rayons Schroder (2011). La simulation
est effectuce a une frequence d’échantillonnage de 48 kHz, un ordre de source image de
10 et 2,000 rayons pour les calculs stochastiques. Des simulations ont ete effectuces pour
20,000 différentes de salles "boites a chaussures” (shoebox) dont la longueur, la largeur et la
hauteur sont uniformément échantillonnées a partir d'une gamme de [3,10] m, [3,10] m et
[2.5,6] m. [l en est résuleé S € [48,440] m2 ec V' € [18,600] m3. Cinq positions aléatoires
de sources et de microphones ont ¢te simulees dans chaque picce (cest-a-dire, 5 points de
vue). La source et le réseau de microphones ont ¢té simulés comme ¢tant omnidirectionnels
et sont maintenus a au moins 30 cm I'un de lautre et de chaque mur de la salle afin d’eviter
les artefacts de champ proche. Le réseau de microphones considéré dans notre ¢tude consiste
en deux microphones situés a une distance de 22.5 cm. La distance ressemble beaucoup a
la largeur d'une tete ou d’un casque. Pour obtenir du realisme dans la scene acoustique
de la salle echantillonnée, les parois des salles rectangulaires doivent avoir des coeflicients
dabsorption dépendant de la fréquence a, (f) avec v € [1,...,6]. Pour incorporer des
coefhicients dependants de la frequence, une representation générale dans le domaine de
Fourier de I’Equation (2.29) s'écrit comme suit :

_ K Dim N el
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ot Dy (f) est latténuation totale des parois de la k — ieme source image définie dans
le domaine frequentiel. Les propric¢tes d’absorption du matériau utilis¢ dans les baciments
sont genéralement fournies par les fabricants sous forme de coefficients d’absorption don-
nés en valeurs [0, 1] par bande d'oc Par cons¢ il “cessaire d'interpoler ¢
, 1] par bande d'octave. Par consequent, il est nécessaire d'interpoler ces

coefhicients dans le domaine de Fourier et d’ajouter une réponse en phase aux parois.

Pour generer notre ensemble d’entrainement, les coefficients d’absorption pour six
surfaces dans six bandes d’octaves sont échantillonnés a 'aide de la stratégie d’échanti”onnage
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Murs Planchers Cloisons
125 Hz | [0.01-0.50] | [0.01-0.20] | [0.01-0.70]
250 Hz | [0.01-0.50] | [0.01-0.30] | [0.15 - 1.00]
500 Hz | [0.01-0.30] | [0.05-0.50] | [0.40 - 1.00]
1000 Hz | [0.01-0.12] | [0.15-0.60] | [0.40 - 1.00]
2000 Hz | [0.01-0.12] | [0.25-0.75] | [0.40 - 1.00]
4000 Hz | [0.01-0.12] | [0.30 - 0.80] | [0.30 - 1.00]

Table 8.1: Plages de v, (b) utilisées pour la stratégie reflectivicy-biased (Foy et al.,, 2021).

reflectiviry-biased, telle que décrite dans Foy et al. (2021). Cette stratégie ateribue a chaque
paroi 50% chances d’¢tre soit une paroi réfléchissante indépendante de la fréquence, soit
une paroi absorbante dépendante de la frequence, ot les valeurs du profil de la paroi refléchis-
sante sont tirées uniformément au hasard dans une plage a,(b) € [0,0.12], tandis que
les valeurs du profil de la paroi absorbante dependent du type de surface et sont tirces
uniformément au hasard dans les fourchettes indiquées dans le tableau 8.1. La stratégie
d’échantillonnage avancée conduit a une distribution réaliste de RTgo(b) € [0.2,3.2] s et
a(b) € [0.02,0.6] dans l'ensemble de données simulées.

Les signaux de réverbération a deux canaux resultants, d'une durée de 3 secondes
chacun, subissent deux types de corruption par le bruit. Premicrement, il y a le bruit sta-
tique du microphone, qui comprend du bruit gaussien additif blanc indépendant sur chaque
canal. Deuxiemement, il y a le bruit spatialement diffus, qui est constitue de speech-shaped
noise convolu avec la partie tardive (> 50 ms) d’une Réponse Impulsionnelle de Salle (RIR)
aleatoire dans la salle. Pour garantir des niveaux de bruit réalistes, les signaux provenant
de sources situces plus loin du récepteur présentent des Rapports Signal-Bruit (SNR) plus
faibles. Pour ce faire, pour chaque picce, nous créons d'abord un signal de reférence a I'aide
d’une source de parole alcatoire situce a 1 metre devant un récepteur (ce signal n'est pas
utilise dans le jeu de données final). Les niveaux de bruit statique et diffus pour ce signal
de reference sont configures pour obtenir des SNR uniformeément répartis dans la plage de
(70, 90] dB et [30, 60] dB, respectivement. Ces niveaux de bruit restent constants pour les
mélanges finaux, quelle que soit la distance entre la source de parole et le récepreur. Cette
approche résulte en une plage SNR globale de [-10, 65] dB sur I'ensemble du jeu de données

8.1.2 Modéle de réseau de neurones

Nous proposons une nouvelle architecture de RN profond illustrée dans la Figure 8.1.
Le composant de base de cette architecture utilise des blocs de convolution 1D, inspirés
de larchitecture Conv-Tas Net utilisce pour la separation de la parole dans Luo and Mes-
garani (2019). Chaque bloc de convolution 1D est compose de differentes parties, a savoir
une couche de convolution séparab]e suivie d'une couche ReLLU et d’une normalisation de
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Figure 8.1: Architecture du réseau de neurones proposé

couche (Ba et al,, 2016). Le réseau est divisé en 2 pipe]ines/parties qui traitent les spectres de
magnitude, la partie inférieure comporte trois blocs de convolution 1D avec un taux de di-
latation progressif de [1,2, 4] le long de I'axe de fréquence et une taille de noyau constante
de 11. Les deux parties sont destinées a traiter differents ensembles de caracteristiques. La
partie inferieure est destinée aux caracteristiques mono-canal (SC) et 'autre aux caracteris-
tiques inter-canaux (IC). Les caractéristiques affinces obtenues a partir des deux pipelines
sont concatenées le long de I'axe de fréquence et moyennement regroupces dans le temps
pour former un vecteur d’embedding de taille (1248x1). Il est suivi de 3 couches enti¢rement
connectées de dimensions respectives 96, 48, 28, ce qui donne 28 sorties.

8.1.3 Caractéristiques d’entrée

Nous choisissons un signal d’entrée multicanal de 3 secondes ¢ a partir d’une seule
observation, méme si notre architecture ne varie pas en fonction de la longueur du signal
d’entrée. La STFT est réalisée avec une fenétre de Hann de 96 ms et 50% de chevauche-
ment, ce qui donne un spectrogramme Cl, (f, t)i’thl avec F' =769 frequences positives et
T =63 periodes de temps sur chaque canal m. Ces données sont ensuite utilisces pour cal-
culer les caractéristiques spécialisées monocanales et inter-canales. Quatre caractéristiques
monocanal différentes ont été prises en compte : |C1(f, )%, /|C1(f,1)] et log |C1(f,1)]
et |C1(f,t)|. La derniere sest montrée plus efficace plus efficace en tant que caractéris-
rique monocanale dans nos expériences.Les caractéristiques inter-canales sont obtenues en
concaténant les différences de niveau interaurales (ILD) et le sinus des différences de phase
interaurales (IPD) :

ILD(fa Zf) = lOg |Cl(f> t)’ - log |CQ(f7 t)| ) (8.2)

IPD(f,%) = | Re, Im Ci(f,.)C5(f.1)

I\ G DC (D) (53

8.1.4 Fonction de perte

Les () parametres des sorties sont modelisés comme une distribution gaussienne, le
modele estime donc 28 valeurs dont 14 sont la moyenne pg(c), cest-a-dire, les estima-
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tions du régresseur. Le reste est 03 (c), cest-a-dire les incertitudes des parametres estimés.
Pour optimiser o, une log-vraisemblance negative gaussienne est utilisce comme fonction
de perte pour optimiser les parametres du réseau ©, cest-a-dire,

(Y — Hqe(c))?

. (84)
UZ,@(C)

Lo(c,y) = -log N (y; pe(c),04(c)) = Zlogaqe(C) +

ou la labélisation est représentée par y € R?.

8.1.5 Fusion des estimations

Cette approche presente deux avantages. Premicrement, elle permet de ponderer de
maniere adaptative les erreurs sur les paramétres individuels. Deuxiemement, lensemble de
données comprend plusieurs observations dans la méme salle, et le réseau produit plusieurs
estimations basées sur ces observations. Ces estimations peuvent étre fusionnées en utilisant
la variance que le réseau produit pour tous les parametres, avee cette formule derivee du
theoreme de Bayes,

Po(Yqx) = N (44 Ty 0 (%), 1/Tg0(x)) , (8.5)

dans lequel 71, g (x) est Iestimation fusionnée dont la formule est donnée par :

’Vq@( Ca)
Ta.0(X)

ou 727@()() =2, V5 e(Ca), et 72 g(ca) est la précision estimée qui est l'inverse de la

Hye(x) = Z ———ge(cq), (8.6)

variance estimée 75 g (€a) = 1/07 g (c4).

8.1.6 Hyperparameétres et entrainement

Le réseau a été entrainé pendant 120 époques avec 1’optimiseur ADAM (Kingma and
Ba, 2014) en utilisant un taux d'apprentissage de 107, Pour éviter un surajustement, des
couches dropout sont utilisces entre chaque bloc convolutif avec une probabilite d’abandon
de 0,2, et entre chaque couche enticrement connectée avec un raux d’abandon de 0,4. Le

! / . ! !

réseau, forme sur un ensemble de 80k exemples binauraux, converge genéralement en 100-
150 époques, avec une patience de 15 époques sur lensemble de validation comme condition
prealable a Parrée précoce.

Les parametres estimés par le réseau possedent différentes échelles. Afin déviter les

\ . Nl 51 . [ .
problemes lics aux differences d’echelle, nous avons normalisé les valeurs de la verice terrain
y au moment d"apprentissage, avec les ecarts types calculés sur 'ensemble de apprentissage.
Au moment de I'inférence, ces valeurs sont reutilisees et multiplices par la sortie du réseau.
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8.1.7 Résultats et expérimentations
8.1.7.1 Données simulées

A notre connaissance, aucune méthode existante n'est capable d’estimer la surface
d’unessalle, le temps de réverberation en fonction de la frequence et le coefhicient d"absorption
moyen uniquement sur la base de signaux vocaux bruites. Cependant, il existe une methode
pour Pestimation aveugle du volume d’une salle a un canal et une seule position (Genovese
ctal,, 2019). Nous utilisons ce travail comme référence pour comparer la tache d'estimation
du volume pour différents tests sur des données simulées et reelles. Tout au long des experi-
ences, l'erreur absolue moyenne pour chaque parametre est utilisée comme mesure.

Apres l'entrainement, nous effectuons deux experiences différentes avec un ensemble
de tests simules compose de 2,000 salle non vues. Le but de notre premiere expérience
est de vérifier si la fusion de plusieurs observations prises dans la méme salle en utilisant
'approche proposce dans la Section 8.1.4, am¢liore en effet les résultats pour les signaux
dentrée 4 une ou deux voies. Clest pourquoi, pour cette expérience, nous avons compare
deux approches :

1. Darchitecture complete décrite dans la Figure 8.1, qui prend en compte l'entrée mul-
ticanal et sera dénommée (bicanal).

2. La méme architecture est utilisée, mais sans la partie supérieure du réseau consacrée
au traitement inter-canal, ce qui permet de traiter uniquement le canal unique, qui
sera designe par Pexpression (un canal).

Les résultats présentés dans la Figure 8.2 pour @(b) et RTgo(b) sont calculées en moyenne
pour toutes les bandes d’'octave afin de montrer les erreurs moyennes sur les bandes d’octave
@ ct RTgp. La figure montre clairement que la fusion de plusieurs observations par salle
réduit Perreur de manicere progressive sur tous les parametres. La fusion de 5 observations
d’un signal d’entrée a deux canaux fournit la meilleure performance avec une erreur absolue
moyenne de 0.052 pour @, 0.18 s pour RTgp, 42 m? sur S et 54 m3 sur V, tandis que les
plages de l'ensemble d’entrainement pour ces quantités sont les suivantes : [0.02,0.6] pour
@, [0.2,3.6] s pour RTgp, [48,360] m? pour S et [18,400] m3 pour V. Les résultats de
lestimation de V' révelent que la méchode proposée est plus performante que la méthode de
reference pour les deux approches avec une seule observation. Un canal avec une observation
reduit les erreurs de 13%, tandis que le systeme a deux canaux avee cing observations reduit
les erreurs de 31 % par rapport a la référence. L’approche a deux canaux permet d’'obtenir
une erreur absolue moyenne significativement plus faible pour I'estimation de S et V' par
rapport a I'approche a un seul canal. Ce résultat peut ecre associ¢ aux caractéristiques inter-
canales qui caprurent efficacement les caracteristiques spatiales de la salle, ce qui facilite
lestimation de S et V' qui sont des quantites spatiales dépendant des premieres reflexions.
Toutefois, en raison d’intervalles de confiance se chevauchant, 'utilisation de deux canaux
au lieu d'un seul ne semble pas faciliter Pestimation des @ et RTg.
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Figure 8.2: Erreur absolue moyenne obtenue sur des données simulées par Genovese et al. (2019)
contre le modele proposé avec des entrées a un ou deux canaux, en fonction du nombre

de positions source-récepteur fusionnées dans chaque salle. Les intervalles de confiance

2 95%.
Méthode Caractéristiques | # pos « RTgo S \%
Genovese et al. (2019) SC 1 - - - 137.8
Notre SC 1 0.061 | 0.134 | 129.6 | 1545
Notre SC 5 0.060 | 0.097 | 1258 | 149.1
Notre SC+IC 1 0.084 | 0.101 | 894 | 1076
Notre SC+IC 5 0.094 | 0.062 | 50.2 | 68.8

Table 8.2: Erreur absolue moyenne obtenue sur 3 salles a partir de T'ensemble de données réelles
dEchorate. Les chiffres en gras indiquent le meilleur résultat statistiquement significarif
par colonne, sur la base d’intervalles de confiance a 95%..

8.1.7.2 Données réelles

Pour tester la capacite de genéralisation du modele entraine dans des conditions
acoustiques réelles inedites, des enregistrements de parole réverberée de I'ensemble de don-
nées dEchorate (Di Carlo et al., 2021) ont été utilisés comme un test réel. Sur les 11 con-
figurations de salles dans I'ensemble de données dEchorate, nous choisissons 3 configu-
rations de salles qui ont 3 surfaces réfléchissantes ou plus avec @(b) € [0.16 — 0.35] et
RTgo(b) € [0.25-0.66] sec. Ces salles ressemblent a des salles acoustiques réelles et relevent
du scénario choisi pour Iensemble d’entrainement. Nous avons choisi une combinaison de
30 paires de microphones pour chacune des trois salles, ce qui donne 3 x 30 = 90 signaux
de parole de 3 secondes chacun.

Les resultats sur ensemble de tests reels sont presentes dans le Tableau 8.2, Les er-
reurs absolues moyennes sont reportées dans le tableau en utilisant la mechode proposce
pour les approches a un canal et a deux canaux. Elle fournit ¢galement une comparaison avec
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la méthode de base sur I'estimation de V. Ils ont été calculés sur 1 ou 5 observations avec
des antennes de microphones fixes et des positions de source mobiles qui ont ¢te choisies de
manicre al¢atoire parmi les 6 sources presentes dans la piece. Un point important que 'on
peut observer dans le tableau est que les erreurs générces par notre approche se sicuent dans
la meéme fourchette que celles obtenues sur les données simulées. De plus, les erreurs pour
lestimation de V' en utilisant 'approche a un canal avec une observation sont compara-
bles a la mé¢thode de réfeérence. Les résultats obtenus en utilisant 'approche a deux canaux
avee des caracteristiques inter-canaux renforcent egalement I'hypothese selon laquelle les
caractéristiques inter-canales sont importantes pour I'estimation de .S et V' car leur inclu-
sion diminue significativement les erreurs. De plus, les chiffres montrent a nouveau que
laugmentation du nombre d'observations réduit les erreurs sur RTg, S et V. Cependant,
les erreurs obtenues sur @ ne présentent pas de cohérence et sont plus varices que celles
obtenues sur ensemble de données simuléees. Cela pourrait s'expliquer par deux raisons :
Tout d’abord, la difficult¢ inhérente a 'annotation des coefhicients d’absorption dans une
piéce réelle. Deuxiémement, la modélisation des coefficients d’absorption dans la méthode
ISM utilis¢e pour former le modele est moins valide aux basses frequences.

8.1.8 Résumé

Les resultats de cette ¢tude démontrent que Iincorporation de signaux intercanaux
peut grandement ameliorer l'estimation aveugle du volume et de la surface d’une piece a
partir de parole bruitee. Cependant, lors de I'estimation des parametres de réverberation et
d’absorption, un seul canal s'avere suffisant. Il convient de noter que I'estimation des coef-
ficients d’absorption n'est pas tres fiable, en raison des defis lies a I'annotation de donnces
réelles et des limitations des modeles d’absorption pour les parois utilises dans la mechode
ISM. De plus, I'étude souligne que la combinaison de plusicurs mesures reduit les erreurs
et les variances d’estimation pour tous les parametres. Les resultats montrent egalement
qu'un systeme forme sur un ensemble d’entrainement meticuleusement simule presente des
capacites de genéralisation satisfaisantes lorsqu'il est applique a des donnees du monde reel.

8.2 ISM étendue et implémentation sous
Pyroomacoustics

La contribution décrite dans le Chapitre 5 se concentre sur 'amelioration du realisme
du simulateur acoustique de salle open-source Pyroomacoustics en augmentant le simula-
teur avec la mise en ceuvre d'une version plus realiste de la meéthode des sources images
(ISM) sans compromettre son temps de calcul. Bien qu'il existe une grande varicee de sim-
ulateurs acoustiques de salle capables de simuler des RIR a differents degres de realisme
(voir Section 3.4), la plupart d’entre eux ne sont soit pas open source, soit ne sont pas ecrits
en Python. La bib]iothéque Pyroomacoustics répond a ces deux exigences. Cette contribu-
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tion est une ¢tape nécessaire pour ameéliorer la généralisation des méthodes d’apprentissage
virtuellement supervisces basces sur des réseaux de neurones profonds.

8.2.1 ISM étendu

Pour rendre le simulateur et les RIRs plus realistes dans le but de I'apprentissage
virtuellement supervis¢, nous proposons d’ajouter la capacite de charger les diagrammes de
directivite mesures des sources et des microphones reels dans le simulateur. Afin de tenir
compte de Pensemble de I'échelle des fréquences, notre contribution au simulateur modifie
le modele de construction de base des RIRs dans Pyroomacoustics, ce qui conduit a la con-
struction des RIRs dans le domaine frequentiel. La plupart des simulateurs d’acoustique
des salles n'implémentent pas I'ISM dans sa forme ¢tendue, bien que cela puisse éere faic
avec peu de surcharge computationnelle. Pour tenir compte des modeles de directivite des
sources et des récepteurs dans la simulation des RIR, nous ¢tendons 'Equation 4.1 comme
suit :

H(I‘;%ic,f) _ i Dk,m(f)

& Al -yl

. delay
7127rfthdell (f)GML(_Qk,m7 _¢k,m7 f)

Gmic(ekmm ¢k,m7 f) ) (87)

ou 'ateénuation armosphérique dans le domaine fréquentiel est notée comme D¥"( f). Le
dClﬂ},‘
k,m
Les modeles de directivite des microphones et des sources sont notes par G™¢ et G¥', les

retard temporel darrivée a un microphone m pour une source image k est notce par ¢

angles d’arrivée en azimut et en ¢lévation d'une source d’image k vers un microphone m
sont notes par (Gg.m, Grm). Langle de départ d'une source donnée est lopposé de I'angle
d’arrivee au microphone. Cette equation sera désignee sous le nom de modele ISM ¢tendu.
Une formulation similaire a ¢t¢ donnee par Schroder (2011).

8.2.2 Jeux de données de directivité

Deux jeux de données ont ete utilises dans cette ¢tude. Tout d’abord, il y a le jeu
de données DIRPAT qui se compose de modeles de directivité 2D/3D de diverses sources
et microphone mesures a 'Institut de musique ¢lectronique et d’acoustique de I'Universite
de musique et des arts du spectacle de Graz par Brandner et al. (2018). 11 comprend des
mesures en 3D de quatre types différents de receivers : le microphone AKG C414 avec quatre
configurations de directivit¢ (omnidirectionnelle, cardioide, supercardioide et en huit), le
microphone AKG C480 et deux microphones Soundfield. La Figure 8.3 montre la carte de
chaleur sphérique de 'ensemble des motifs de directivité presentés par le microphone AKG
C414 a wrois frequences differentes. Le jeu de données comprend ¢galement des morifs
mesurcs pour douze sources, notamment des haut-parleurs genériques, des amplificateurs
de guitare et un HATS Capable de simuler la paro]e humaine. La Figure 8.4 montre la carte



8.2. ISM étendue et implémentation sous Pyroomacoustics 111

f =2000 Hz
Omnidirectional Cardioid Hypercardioid Figure of eight
[dB] [dB] [dB]

0.4 0.4 0.4 0.4
0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1

f = 4000 Hz
0.4 0.4 0.4 0.4
0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1

f =8000 Hz
0.020 0.020 0.020 0.020
0.015 0.015 0.015 0.015
0.010 0.010 0.010 0.010
0.005 0.005 0.005 0.005

Figure 8.3: Carte spherique de directivite du microphone AKG C414 issue de 'ensemble de donnees
DIRPAT. La barre de couleur montre la magnitude normalisée des fileres.

de chaleur spherique de quelques haut-parleurs a f = 2000 Hz. Le deuxieme jeu de données
directivite fournit le motif de directivite du microphone a 32 canaux Eigenmike. La mesure
de ce motif de directivite est effectuce sur la méme grille sphérique que DIRPAT et au méme
endroit par Franz Zotter.

8.2.3 Construction de RIR dans le domaine des fréquences

Contrairement a I'implémentation originale de Pyroomacoustics, les calculs dans Py-
roomacoustics modifi¢ sont effectués entierement dans le domaine DFT. L'implémentation
de la construction de la RIR en domaine fréquentiel modifie considérablement le code et
le fonctionnement central de Pyroomacoustics par rapport a 'implementation precedente
de la construction de la RIR en domaine temporel. Les details techniques sur cette imple-
mentation sous forme de pseudo-code sont presentes dans la Section 5.3.3.
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f = 2000 Hz

Genelec 8020 Yamaha DXR8 Tannoy system 1200 Neumann KH120A

[dB] [dB] [dB] [dB]
0.3 0.125 0.125
0.100 0.100
0.075 0.075

0.050 0.050

0.025 0.025

Figure 8.4: Cartes spheriques de directivite de 4 fabricants différents de haut-parleurs issues de
l'ensemble de données DIRPAT. La barre de couleur montre la magnitudc normalisce
des filtres.

8.2.4 Similarité avec les RIR mesurées

Pour valider notre affirmation selon laquelle I'incorporation de modeles de directivite
réels ameliore le realisme des RIR, nous avons realise des expériences qualicatives. Les RIRs
dujeu de données dEchorate sont utilisées pour cette expérience. Ces RIRs sont annotées
et peuvent ¢tre ainsi simulées dans une scene acoustique virtuelle a aide d’un simulateur
acoustique de salle. Nous avons reproduit la scene acoustique de la salle "011111" du jeu de
données dans notre version modifice du simulateur. Bien que les diagrammes de directiv-
it¢ des microphones et des sources utilises pour enregistrer les RIR réelles n'aient pas ¢té
fournis dans le jeu de données, le jeu de donnces a spécifi¢ les réferences des microphones
omnidirectionnels et des haut-parleurs directifs urilisés. En utilisant ces informations, nous
avons s¢lectionné un microphone AKG ¢414 omnidirectionnel et un haut-parleur Genelec
8020 en tant que substituts dans notre configuration de salle virtuelle. Ces diagrammes de
directivite choisis ressemblent ¢troitement a ceux utilises dans le jeu de donnees des RIR
mesurces. Avec un peu de post-traitement, nous avons aligne les RIR sur axe du temps. La
Figure 8.5 montre la RIR reelle du jeu de données et une RIR produite par notre simulateur
modifi¢. En comparant les réflexions directes et de premier ordre, nous constatons que les
deux RIR correspondent bien dans le domaine temporel. Dans le domaine de la frequence
en magnitude logarichmique, une forte correlation peut étre observee sur ensemble de
Pechelle de frequence.

8.2.5 Résumé

Notre contribution presentée dans le chapitre 5 montre que 'utilisation d'un ISM
¢tendu avec I'inclusion des directivites des sources et des récepteurs mesurces ameliore le
réalisme des RIR simulées sans augmenter le temps de calcul. Les principaux changements
dans cette mise en ceuvre ¢taient l'utilisation d’harmoniques sphériques et la méthode de
construction des RIR en domaine fréquentiel. Les résultats montrent que notre méthode

1https://phaidra.kug.ac.at/o:69292.
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Figure 8.5:
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Comparaison qualitative entre une RIR réelle et une RIR simulée. La RIR réelle est ex-
trait de la salle "011111" de I'ensemble de données dEchorate. La simulation de la RIR est
effectuée dans un environnement acoustique qui ressemble ¢troitement aux caracteris-
tiques de la RIR réelle. Cette simulation utilise un traitement en domaine fréquentiel et
intégre une source et un microphone mesurés grace au simulateur Pyroomacoustics mod-
ifi¢. Les deux premiéres rangées sont des RIR et la troisieme rangée montre la réponse en
fréquence des deux RIR.

mise en ceuvre fait un pas dans la direction de Pobtention d’une réplique numérique d'une
picce reelle. En observant des resultats positifs, ce simulateur ameliore est utilise dans le
Chapitre 6 pour entrainer des modeles DNN supervisés de manicre virtuelle sur deux taches

differentes, et son effet sur la generalisation du systeme est evalue.
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8.3 Impact du réalisme de la simulation sur
I’apprentissage virtuellement supervisé

Dans le chapitre 6, nous détaillons deux contributions qui se concentrent sur I'effer du
réalisme de la simulation sur les systemes de traitement audio supervisés virtuellement. Les
simulations des ensembles d’entrainement sont rendues plus réalistes grace a notre simula-
teur ISM avance presente dans le Chapitre 5. L'impact de la simulation realiste est evalue
sur deux taches differentes, a savoir I'estimation des parametres de la salle et la localisa-
tion de la source sonore. Tout au long de cette ¢tude, nous ameliorons la simulation des
ensembles de données en ajoutant du réalisme a la source, au récepteur et aux parois de
l'espace acoustique virtuel. Le réalisme des sources et des récepteurs est obtenu en ajoutant
differents types de diagrammes de directivite dependants de la frequence, tandis que pour
les parois, le sol et le plafond, nous considerons des distributions realistes de coeflicients
d’absorption combinces a des réponses minimales de phase des parois. Le principal objec-
tif de Chapitre 6 est d’¢tudier les performances de géneralisation des modeles purement
entrainés sur diverses extensions de I'ISM sur des données réelles. A cette fin, cette étude
teste efficacement les modeles sur 4 ensembles de tests réels différents qui comprennent
des locuteurs humains. Outre les résultats obtenus avec un modele de référence, un modeéle
naif et un modele avance, le Chapitre 6 presente ¢galement une ¢tude d’ablation sur les
deux taches pour déterminer l’impact de chaque couche de réalisme ajoutée a 'ensemble de
données d’entrainement.

8.3.1 Estimation des parameétres de la salle

Nous examinons la capacité de genéralisation d’'un modele d’estimation des parametres
de la salle sur des ensembles de données du monde réel. Le modele est formé a 'aide de don-
nees generees a partir du simulateur ISM ¢tendu presente au Chapitre 5. De plus, une ¢tude
d’ablation est menée sur 7 ensembles de données d’entrainement simulés différents, évalu-
ant 'impact de l'experimentation avec différentes configurations de directivice de source,
de recepreur et de distributions de coefficients d’absorption des murs. Les ensembles de
données sont utilis¢s dans le cadre du modele d'estimation des parametres de salle ¢tabli au
Chapitre 4. Comme dans I'¢tude precedente, nous estimons la surface de la salle S| volume
V, et temps de réverbération RTgo pour tous les b € [125, 250, 500, 1000, 2000, 4000] Hz

¢tant donné un ensemble de signaux vocaux bruites.

8.3.1.1 Ensembles d’entrainement utilisés pour I'étude d’ablation

Sept ensembles de données différents nommeés {D1,.. ., D7} sont simulés pour cette
¢tude d'ablation. Chaque ensemble de données est structure de maniere a introduire pro-
gressivement différents niveaux de réalisme dans la source, les recepreurs et les murs. Tableau
8.3 résume les différents niveaux de réalisme pour Chaque ensemble de données en utilisant
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des notations specifiques, qui sont expliquées ci-dessous.

Directivité de la source Trois types de directivite de la source sont pris en compte
dans les ensembles de donnees d’entrainement, a savoir les réponses omnidirectionnelles,
indépendantes de la frequence et dependantes de la frequence mesurée. Les modeles de
directivite indépendants de la frequence sont mis en ceuvre a I'aide d'une formule analytique.
Pour cette expérience, une valeur ¢ € [0.25,0.5,0.75] est choisi au hasard pour chaque
source simulée, ce qui donne respectivement des motifs hypercardioides, cardioides et sous-
cardioides. Dans le Tableau 8.3, de tels directivités analytiques sont désign par (Ay) et ne
sont utilisces que dans I'ensemble de données D4. En outre, les sources omnidirectionnelles
correspondent a la valeur ¢ = 1 dans Equation 5.2. Cela est désigné par I'abréviation (O)
et est utilis¢ dans les ensembles de donnees D1-D5. 11 convient de noter que les motifs
de directivit¢ formés par la formule analytique ne tiennent pas compte de la dépendance
a '¢lévation ni, plus important encore, de la dépendance en fréquence. Les modeles de
directivité mesurés sont extraits de lensemble de données DIRPAT (Brandner et al., 2018),
comme décrit en détail dans la Section 8.2.2. Les modeéles de source mesurés ont été utilisés
dans les ensembles de données D5, D6, D7 et est deésigne par M dans le Table 8.3. Le mortif
de directivite de la source est choisi de manicre aléatoire parmi trois haut-parleurs : Genelec
8020, Neumann KH120A, and Yamaha DXRS.

Directivite du récepteur Des directivites omnidirectionnelles O et mesurces M sont
prises en compte pour les récepteurs dans I'étude dablation. Les récepteurs mesures utilisent
le motif de directivit¢ omnidirectionnelle dépendant de la fréquence du microphone AKG
C414 du jeu de donnces DIRPAT. Dans I'¢tude d’ablation, pour les récepteurs, nous avons
exclu tout type de motifs non-omnidirectionnels, a la fois dépendants de la fréquence et
ind¢pendants. Cette décision a ¢te prise car ensemble de test réel ne comprend que des
récepteurs omnidirectionnels.

Profil d’absorption De méme, deux differentes strategies d’¢chantillonnage des parois
sont considérées. Premierement, I'échantillonnage naif (NV') ol chacune des six surfaces
dansune picce rectangulaire est associce a un unique coefhicient independant de la frequence
a €[0.02,0.5], tirée uniformément au hasard. Deuxiemement, I'échantillonnage par réflec-
tivité biais¢ (RB) (Foy et al,, 2021), cette stratégie donnant des salle réalistes car chaque
paroi de la salle est associ¢e a un coefficient d’absorption dependant de la fréquence par
bandes de six octaves.

8.3.1.2 Simulation des RIR et génération de mélanges

Chaque ensemble de données est compose de 30, 000 différentes salles dont la longueur,
la largeur et la hauteur sont tirées au hasard dans la boite [3,10]x[3, 10]x[2,4.5] en métres.
Dans chaque salle, 3 RIR a deux canaux sont simulés a une fréquence de 16 kHz. Un réscau
de deux microphones de 22,5 ¢m, similaire a celui utilis¢ au Chapitre 4, est place a trois
positions diff¢rentes avec une position de source fixe. Les diagrammes de directivite des mi-
Crophones sont orientés de maniére aléatoire sur la sphére. Les modeles de directivité non
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Jeu de données | Murs | Source | Microphones
D1 N O O
D2 RB @ O
D3 RB O M
D4 RB Ay O
D5 RB M O
D6 N | M M
D7 RB M M

Table 8.3: Ensembles de données d’¢études d’ablation et notations associées décrivant le niveau de
réalisme de chaque ensemble de données.

Jeu de données Jeu dessai réel

Entrainement | RTgg (500 Hz) | RTgo (1 kHz) | RTgo (2 kHz) | RTgo (4 kHz) S Vv
D1 0.193 0.160 0.108 0.185 71.00 | 75.68
D2 0.182 0.140 0.128 0.198 45.11 | 55.16
D3 0.115 0.098 0.078 0.156 52.76 | 61.82
D4 0.167 0.134 0.121 0.197 37.91 | 48.95
D5 0.133 0.112 0.066 0.155 2146 | 18.57
D6 0.151 0.133 0.084 0.159 35.88 | 31.11
D7 0.080 0.103 0.064 0.140 32.69 | 30.57

Table 8.4: Erreurs absolues moyennes dans le temps de reverberation (RTgp, en s), surface (S, en
m?) et volume (V, en m3) obtenue sur l'ensemble de test réel en utilisant le méme modele
entrainé sur 7 ensembles de données d’entrainement simulés. Les chiffres en gras indiquent
le meilleur résultat statistiquement signiﬁcatifpar colonne, sur la base d’intervalles de
confiance a 98%.

omnidirectionnels, a la fois dépendants de la fréquence et indépendants de la fréquence,
sont orientes de maniere aleatoire uniquement dans la direction azimutale.

8.3.1.3 Reésultats

En observant le tableau 8.4 qui décrit les résultats sur données réelles, il est évident
que le modele entraine sur 'ensemble d’entrainement le plus realiste, D7, produit les erreurs
les plus faibles comme prevu. Ce modele atteint de maniere constante les meilleures per-
formances, voire les deuxiemes meilleures performances, pour toutes les quantites estimées
sur les ensembles de test réels. Une autre observation importante concerne la comparaison
entre D5 et D7. Bien que D5 partage des caractéristiques similaires en ce qui concerne les
murs et les sources avec D7, il utilise ¢tonnamment un modele de microphone omnidirec-
tionnel plus simple et indépendant de la frequence. De maniere surprenante, D5 surpasse
D7 en ce qui concerne l'estimation de S et de V' sur 'ensemble de test reel. Cette disparite
pour D7 peut étre attribuée a une inadéquation du proﬁ] du microphone entre les ensem-
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bles d’entrainement et de test, ce qui semble avoir un impact négatif sur les performances
du systeme. Une solution possible pourrait ¢tre d'utiliser un ensemble diversific de modeles
de directivite de microphone dans 'ensemble d’entrainement.

8.3.2 Localisation des sources sonores

Nous nous tournons maintenant vers la tache de localisation de source pour éval-
uer les ameliorations de performance qui peuvent étre obtenues en formant un systeme
de localisation en utilisant des données simulées provenant de notre version améliorée du
simulateur Pyroomacoustics.

Des conditions plus realistes, telles que des sources directionnelles, des récepreurs
et des parois dépendantes de la frequence, ont déja cee intégrees avec succes en tant que
modele ISM étendu dans notre version améliorée du simulateur de salle. La Section 8.3.1
montre que, lorsqu'il est utilis¢ dans le but de former un modele supervise virtuellement
pour l'estimation des parametres acoustiques, notre simulateur avancé montre une meilleure
generalisation sur des scénarios de test réels. De meéme, pour la localisation de la source, un
travail récent de Gelderblom et al. (2021) analyse leffet de la directivite de la source et de la
modélisation de la réverbération tardive diffuse dans la simulation de RIR. Il a été constaté
que la directivité de la source avait une influence positive sur les perform ances du Systéme
de localisation, tandis que I'inclusion de la réverbération tardive n'a montre aucun impact.
De plus, leurs résultats n'ont pas ete obtenus avee de la parole humaine directe dans des con-
ditions acoustiques réelles, mais plutot avee des signaux vocaux convolutes avec des RIRs
directrices mesurées. Outre ces deux niveaux de réalisme, la localisation de la source est in-
fluencée par d’autres aspects de la scene acoustique. Un facteur important est la directivité
du récepteur. Des microphones omnidirectionnels plus simples pourraient avoir un effet
significatif sur les performances de localisation, en raison de la variabilit¢ observée dans le
motif de directivite a différentes frequences. De plus, les coefficients d’absorption depen-
dant de la frequence influencent le niveau de reverberation atteignant les microphones, ce
qui peut étre observe dans la distribution spatiale et le spectre de puissance. Tout comme
dans la section precedente, une etude d’ablation est realisee pour quantifier 'effet de chaque
couche de réalisme ajoutce lors de I'entrainement. Nous presentons des résultats sur trois
ensembles de tests reels distinets avec differentes configurations de microphones enregis-
trant de vrais locuteurs humains dans diverses conditions acoustiques afin de consolider
nos conclusions.

8.3.2.1 Localisation sur des ensembles de tests réels

Pour ¢valuer 'influence du realisme ameliore de I'ISM pendant 'entrainement, nous
¢valuons les performances des modeles de localisation supervises virtuellement sur trois
ensembles de données reels avee des annotations spatio-temporelles approprices de 'activice
des locuteurs humains et de leur position par rapport au réseau de microphones. 11 s'agit de
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DIRHA (Distant-Speech Interaction for Robust Home Applications) (Cristoforetti et al.,
2014), VoiceHome-2 (Bertin et al,, 2019) et Sony-Tau Realistic Spatial Soundscapes 2022
(STARSS22) (Politis et al,, 2020). Les deux premiers ensembles de donnees sont concus
dans le but d’¢valuer des applications pour les smarthomes telles que 'amélioration de la
parole ou la localisation des locuteurs, tandis que le dernier est destiné au defi DCASE sur
les ¢événements sonores et la localisation (Politis et al., 2020). De plus, a partir de chaque
ensemble de données, nous s¢lectionnons un sous-ensemble de deux microphones pour la
tache d’estimation de la direction darrivee (DOA), comme explique ci-dessous :

1. Le corpus VoiceHome-2 est enregistre a I'aide d’un réseau de microphones compose
de 8 MEMS places aux coins d’'une antenne cubique. Pour cette ¢tude, un sous-
réseau a deux canaux avec une ouverture de 10.4 cm est sélectionné, et 360 des en-
registrements vocaux de deux secondes dans des conditions silencieuses sont utilisés

2. Le corpus DIRHA est capture a 'aide d’un réseau de microphones omnidirectionnels
montés sur les murs et le plafond de differentes pieces. Pour cette ¢tude, un reseau de
microphones a deux canaux montes sur le mur avec une ouverture de 30 cm place dans
la salle de s¢jour est selectionne, et 410 des enregistrements audio de deux secondes
provenant du salon sont utilisés.

3. Lejeu de donnees STARSS22 est enregistre a 'aide d’un reseau spherique Eigenmike?
et est distribue sous deux formats : Ambisonics du premier ordre et sous-ensemble
tetracdrique qui selectionne les canaux 6, 10, 26 et 22 de I'Eigenmike. La disposition
des ¢lements selectionnés, les microphones individuels de I'Eigenmike forment une
forme tétracdrique. Nous avons soigneusement prétraicé les données pour extraire
2,100 extraits de discours de deux secondes sans chevauchement des microphones 6
et 10 du sous-ensemble tetraedrique, avec une ouverture de 6.8 cm.

La durce totale des trois ensembles de tests soigneusement selectionnes est de 95 minuces,
comprenant des enregistrements de discours humain réel en deux canaux avec des annota-
tions de DOA.

8.3.2.2 Génération de données sur la base de scénarios

Pour chacun des trois ensembles de test, une ensemble d’entrainement simulé naif et
un ensemble d’entrainement simulé avancé sont créés. Les ensembles d’entrainement naifs
sont composcs de récepreurs et de sources omnidirectionnels, ou les ouvertures des recep-
teurs sont les meémes que celles de leurs ensembles de test correspondants. Les coeflicients
d’absorption des parois sont supposes étre indépendants de la frequence et egaux pour les six
surfaces de la salle virtuelle. Les ensembles d’entrainement simulés avancés utilisent notre
version avancée du simulateur Pyroomacoustics pour genérer les réponses impulsionnelles
des pieces. Ces ensembles d'entrainement integrent des choix plus informes concernant les
composantes de directivite et d’absorption. Pour les murs, la stracegie d’¢chantillonnage
d'absorption biaisée vers la réflexion (RB), telle que décrite dans Section 8.3 est utilisé.

Zhttps://mhacoustics.com/productseigenmike1
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En ce qui concerne la directivite de la source, les directivités mesurces spatialement d'un
simulateur de tete et de torse avec bouche (Bruel & Kjaer HATS 4128-C) et de deux haut-
parleurs directionnels (Genelec 8020 et YAMAHA DXR8) provenant de I'ensemble de don-
nees DIRPAT (Brandner et al,, 2018) sont intégrees dans la simulation. Les directivites des
récepteurs et la distance d’ouverture sont associées aux scénarios particuliers que I'on trouve
dans les ensembles de tests. Dans 'ensemble d’entrainement simulé congu pour I'ensemble
de tests Voicehome-2, les recepteurs sont regles en mode omnidirectionnel. La directivite
du microphone MEMS utilis¢ dans le Voicchome-2 n'est pas disponible, mais est connue
pour étre omnidirectionnelle. Pour DIRHA, la simulation avancée place les récepreurs sur
les murs de la piéce, ce qui équivaut a simuler des microphones avec une directivité en
demi-sphere. Enfin, dans I'ensemble d’entrainement simule concu pour STARS22, la sim-
ulation avancée utilise le modele de directivité mesurce de la sous-antenne pertinente de
I'Eigenmike.

Les RIR sont simulées avec un ordre d’image source de 20. Un total de 40 000 salles
rectangulaires de tailles uniformément tirées au hasard dans [3,10] x [3,10] x [2,4, 5] (en
meétres) sont simulées, chacune contenant une source et un réseau de deux microphones
placés uniformément au hasard avec une distance minimale entre la source et le réseau et
une distance minimale entre les appareils et les murs de 30 em. Le processus de generation
des melanges est similaire a celui utilise dans notre ¢tude sur lestimation des parametres
de la piece (voir la Section 8.1).

8.3.2.3 Sélection de modéles et hyperparamétres

A la recherche d’un estimateur DOA basé sur apprentissage de pointe, la longue
liste de mecthodes presencée par Grumiaux et al. (2022) est examince. L'enquéte est menée
dans le but de trouver une methode open source capable d'effectuer une localisation DOA
multi-source, indépendamment de la configuration du réseau de microphones (cest-a-dire
de la distance entre les microphones), et qui a ¢te testee sur des ensembles de donnees
réels. Nous avons opte pour le modele presente par He et al. (2019), mis a jour par la suite
par He et al. (2021). Nous avons utilisé 'architecture DNN de cette derniére écude. Cette
architecture implique un DNN multi-taches qui effectue une estimation DOA multi-source,
une détection de la parole et un comptage (qui ne sont pas abordes dans cette ¢tude).

Le modele est entrainé sur différents ensembles d’entrainement simulés comme décrit
dans la section precedente. Lentrainement est effectue avee 'optimiseur ADAM et un taux
dapprentissage de 107 sur des batchs de taille 16 pour un maximum de 110 époques, avec
un arrét anticipé sur les ensembles de validation. Dans cette ¢tude, nous avons utilise les
mémes caractéristiques d'entrée que celles décrites par He et al. (2021), ce qui implique la
concateénation des coeflicients STFT pour chaque microphone. Les coefficients STFT sont
calcules avec un chevauchement de 50% et des fenétres temporelles de 42.7 ms. Pour des
raisons de coherence, tous les signaux utilis¢s dans notre ¢tude ont ¢te sous-cchantillonnes

a 16 kHz.
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Jeu de tests réels - VoiceHome-2 DIRHA STARS22
Méthodes t Recall | | MAE (°) | 1 Recall | | MAE (°) | 1 Recall | | MAE (°)
SRP-PHAT 70% 99+1.5 61% 15.0+£2.3 | 45% 14.9+£0.6
Entrainement naif’ 78% 7.6+1.2 7% 84+1.4 57% 12.9+ 0.6

Entralnement avancée 85% 58+0.8 84% 6.3+1.0 61% 11.4+0.5
Etude d’ablation

sans réalisme mur 83% 6.2+0.8 81% 75+1.4 59% 12.1 £ 0.6
sans réalisme source 82% 71+1.1 80% 7.8+1.2 63% 11.4+0.6
sans réalisme récepteur N/A N/A 8% 83+1.5 53% 13.4+£0.6

Table 8.5: Resultats de localisation sur trois ensembles de tests réels obtenus par la methode SRP-
PHAT de référence et par le modeéle supervisé de He et al. (2021) formé en ucilisant dif-
ferents modes de simulation. Les erreurs angulaires moyennes (MAE) sont affichées avec
leur intervalle de confiance 2 95%. Les chiffres en gras indiquent le meilleur S}’Sténlﬁ dans
chaque colonne et les systemes statistiquement équivalents. La signification statistique a
¢ee ¢valuce a I'aide du test de McNemar pour la méerique de Recall et des intervalles de

confiance 4 95% sur les différences d’erreur angulairc pour la métriquc de MAE.

8.3.2.4 Expériences et résultats
Systéme de référence et mesures d’évaluation

Les modeles d'estimation DOA supervisés de maniere virtuelle sont évalués a I'aide de
deux metriques differentes, a savoir lerreur angulaire moyenne (MAE, en degres) et le rappel
(en%). Le rappel est defini comme le rapport des sources localisées avec une erreur inferieure
a 10°. Les trois modeéles entrainés sur des données simulées, a la fois naives et avancées, sont
comparés a la méthode de localisation SRP-PHAT classique sans apprentissage mise en
ceuvre par Scheibler et al. (2018).

Jeu de tests réels

Les modeles entrainés et la methode SRP-PHAT de base sont compares sur les trois
ensembles de données réels. La partie superieure du Tableau 8.5 presente les résuleats. On
observe que I'approche d’entrainement avancée surpasse de maniere cohérente 'approche
d’entrainement naive, atteignant de 4 a 7 points de rappel supplémentaires et une marge
de 2° MAE sur 'ensemble des trois ensembles de données, malgré P'utilisation de la méme

) 8
architecture de réseau. La reférence SRP-PHAT est constamment surpassce par lapproche
d’entrainement avancée avec une marge de 15223 points de rappel etde 3°2a9° erreurs angu-
laires moyennes. Les résultats révelent également que l'estimation du DOA sur 'ensemble
'y & q
de données STARSS22 est difficile, ce qui correspond a la description de I'ensemble de
) q P P
données. De plus, une ¢tude d’ablation sur la stratégie de simulation avancée proposée est
¢galement presentee dans la moiti¢ inférieure du Tableau 8.5. Le consensus general tire de
ces resultats est que la suppression de 'une des trois couches de realisme entraine une baisse
perceptible des performances. Une exception notable se produit sur I'ensemble de données
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STARSS22, ot l'utilisation de sources directionnelles mesurées lors de Papprentissage ne
semble pas ameliorer les performances. Une explication possible de cette observation est
que les locuteurs humains de Pensemble de donnees STARS22 effectuent des rotations sig-
nificatives de la téte, ce qui n'est pas pris en compte dans notre approche.

8.3.3 Résumé

Dans ce chapitre, nous avons utilise notre simulateur avance Pyroomacoustics pour
simuler des RIR realistes pour les ensembles d’entrainement, et évalue son impact sur des
systemes d'apprentissage virtuellement supervises. Nous avons soigneusement ¢labore des
ensembles d’entrainement simulés en incorporant diverses couches de réalisme dans les
reponses des sources, des récepteurs et des parois pour ¢valuer la generalisation des mod-
eles pour les taches d'estimation des parametres d'une picce et de localisation de locu-
teurs. Nos resultats pour les deux taches démontrent que chaque couche de réalisme ajoutee
améliore considérablement les performances d'estimation des modeles DNN sur les en-
sembles de tests réels. En particulier, P'incorporation de la directivite de la source et de
I'échantillonnage des parois biais¢ vers la réflectivicé réduit les erreurs pour les deux taches
par rapport aux modeles formes sur des ensembles d’entrainement naifs. Cela demontre que,
en utilisant une extension de la simulation ISM, nous pouvons ameliorer les performances
des systemes virtuellement supervises sans entrainer de cotits informatiques supplémen-
taires.

8.4 Les perspectives

Les recherches mences dans cette these ouvrent la voie a exploration de plusieurs
avenues intrigantes pour de futures investigations. Plusieurs de ces orientations potentielles
sont décrites ci-dessous.

8.4.1 Simulateur avancé Pyroomacoustics

Dans le chapitre 5, nous décrivons notre mise en ceuvre de 'ISM ¢tendu dans le simu-
lateur open-source Pyroomacoustics (Scheibler et al.,; 2018). En continuant dans la voie des
ameliorations, il existe la possibilite d'augmenter les donnees pour les reponses mesurces
des sources et des microphones. La mise en ceuvre de cette methode conduirait a une plus
grande diversite dans les mortifs de directivite, ce qui peut directement affecter la généralisa—
tion des systemes audio supervisés de manicere virtuelle. Dans notre mise en ceuvre de 'ISM
¢tendu, la réverbération tardive du RIR est modeélisce a 'aide de I'ISM, cependant, une plus
grande réalisme dans le RIR peut étre atteint en le modelisant a Paide de la méthode de
tracage stochastique des rayons (Gelderblom et al,; 2021). La combinaison de la directivite
des sources et des microphones avec les methodes de tracage des rayons est une tache com-
plexe, dont la mise en ceuvre est présentée dans le simulateur de Schimmel ec al. (2009) en
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utilisant des histogrammes angle-temps-fréquence.

Une autre avenue d’amelioration consiste a introduire une impedance murale a valeurs
complexes. Une ¢tude mence par Meissner and Zielinski (2022) revele qu'il existe des dis-
tinctions perceptuelles dans la réverberation entre les murs a impedance réelle et ceux a
impédance a valeurs complexes, notamment dans les petites picces. Dans la meéme optique,
I'inclusion des effets de diffraction dans les simulateurs d"acoustique géométrique amelior-
era le réalisme du RIR simulé. Dans cette these, nous avons travaillé avec des picces de
forme rectangulaire standard en raison des limitations des simulateurs. Des opportunites
dapplication plus vastes peuvent étre observees si ces techniques sont ¢tendues aux picces
de forme non 1‘ectangulaire. Maintenir un temps de calcul réduit tout en utilisant toutes
ces techniques serait un defi, mais cela donnerait a ce simulateur un avantage par rapport
aux mcthodes de simulation basces sur les ondes (Hamilton, 2021), qui sont capables de
simuler des RIR avec le plus grand realisme, mais en raison de leur temps de calcul cleve,
peuvent difhicilement ¢tre utilisées pour former des méthodes d’apprentissage supervisées

de manieére virtuelle.

8.4.2 Estimation des parameétres de la piece

Un modele d'estimation conjointe des parametres de la picce bas¢ sur un DNN est
présenté au Chapitre 4. Le méme modele est utilisé au Chapitre 6 pour ¢tudier I'influence
de Pamelioration du realisme des données d’entrainement grace a une ¢tude d’ablation. En
ce qui concerne I'énonce du probleme et la conception de la chaine de traitement, des explo-
rations plus poussces peuvent ¢tre mences sur de nombreux fronts. Cela pourrait inclure
une extension du modele actuel d’estimation des parametres de la piece vers I'estimation
conjointe de parametres locaux tels que la position et les proprictes de la source et des
surfaces individuelles. Cela peut s'accompagner d'expérimentations sur differentes concep-
tions d’architecture de DNN et des caractéristiques d'entrée efficaces utilisées avee des con-
figurations de microphones specifiques, telles que les réseaux circulaires ou un Eigenmike.

Un point de depart viable est I'¢tude récente mence par Ick et al. (2023) qui sug-
gere P'utilisation de spectrogrammes Gammatone combines avec des spectrogrammes de
phase Gammatone pour l'estimation conjointe du temps de réverbération et du volume.
De plus, des techniques d’augmentation des données sur des donnces réelles pourraient
¢tre envisagees lors de la formation du systeme, ce qui pourrait ¢tre compare au modele
forme uniquement avec une approche supervisée virtuellement. Pour concretiser cela, des
efforts devraient étre déployes dans la mesure d'un nouvel ensemble de données congu spe-
cifiquement pour lestimation des parametres de la piece, impliquant différentes conditions
acoustiques avec une annotation appropric¢e des parametres acoustiques globaux et locaux.
Le besoin de telles bases de données a été démontré dans diverses érudes sur Pestimation
des parametres de la piece (Ick et al,, 2023; Xiong et al,, 2018; Genovese et al,, 2019). Sur
la base des resuleats presentes au Chapitre 4 et 6, les deux contributions manquent d'une
¢tude deétaillée sur la formation des systemes avec des données comprenant différentes dis-
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tributions de bruit et leur impact sur les ensembles de tests réels. De plus, les systemes
peuvent etre testes sur divers ensembles de tests du monde réel pour renforcer davantage
Paffirmation de la géneralisation. Enfin, mener une enquéte approfondic en utilisant une
gamme de réponses de microphones mesurées est essentiel pour ¢tayer des assertions com-
parables a celles faites concernant la directivité des sources, qui a effectivement demontre
son utilit¢ dans Pestimation des parametres géometriques de la piece.

Un accent pourrait ¢galement étre mis sur 'estimation en temps réel des parametres
acoustiques dans des conditions dynamiques, ce qui pourrait étre utilis¢ dans différents
dispositifs mobiles ou cadres de traitement audio, le rendant ainsi plus accessible et util-
isable dans des scénarios du monde réel. Cela pourrait s’intégrer a diverses applications
audio telles que la réduction du bruit, Pamélioration audio, la realité virtuelle et la réalite
augmentée, afin d’améliorer Pexpérience utilisateur.

8.4.3 Localisation de la source sonore

Notre contribution a la localisation des orateurs, telle que discutee au Chapitre 6, vise
a explorer les techniques de simulation et leur influence sur la géneralisation d’'un systeme
forme grace a des méthodes supervisces virtuellement. Les résultats de cette ¢tude reve-
lent certaines conclusions qui nécessitent une investigation plus approfondic a travers des
expériences supplémentaires. Nous manquons d’une ¢tude détaillée examinant 'impact de
différentes distributions de bruit au sein des ensembles d’entrainement et leur corrélation
avec les performances sur les ensembles de tests reels. Au cours de la phase dentrainement,
nous avons observe que le modele formé avec des ensembles d’entrainement avances at-
teint la convergence plus rapidement que celui forme sur des ensembles de données plus
simples. Cependant, une exploration plus approfondie est nécessaire pour ¢tablir une con-
clusion definitive dans cette direction. De plus, a I'instar d’autres contributions, 'impact
de Pintroduction de plus de motifs de directivite mesures pour les microphones dans la
formation du systeme est une direction de recherche importante. De plus, la portée de
cette ¢tude peut étre ¢tendue a davantage de scénarios, tels que la localisation des sources
sonores dans des environnements acoustiques dynamiques avec une estimation de I'angle
d'arrivee de multiples sources. Une autre avenue prometteuse d’experimentation concerne
la localisation des sources en coordonnées 2D et 3D.
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