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Abstract

Automata and infinite duration games form the theoretical basis for the verifi-
cation and synthesis of reactive systems. Contrary to the case of regular languages
over finite words, several models of ω-automata exist, each one offering its own
advantages. However, their structural and language-theoretical properties are still
far from being fully understood. In this thesis, we study transformations between
different types of ω-automata, as well as the minimisation problem. Moreover,
we exhibit links between these automata and the complexity of winning strategies
for games with ω-regular winning conditions, giving a complete characterisation of
half-positionality for ω-regular languages.

Résumé

Les automates et les jeux à durée infinie constituent l’un des outils fondamen-
taux pour la vérification et la synthèse de systèmes réactifs. Contrairement au cas
des langages réguliers sur les mots finis, plusieurs modèles d’automates existent, et
de nombreuses questions sur leur structure et sur les langages qu’ils reconnaissent
restent ouvertes. Dans cette thèse, nous étudions des transformations entre dif-
férents types d’automates sur les mots infinis, le problème de la minimisation, et le
lien entre la structure de ces automates et la complexité des stratégies nécessaires
pour gagner des jeux sur des graphes avec condition de gain ω-régulière.
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Résumé étendu en français

Nous présentons ci-dessous un résumé du manuscrit en langue française. Pour une dis-
cussion plus approfondie, le lecteur pourra se référer à l’introduction générale (en langue
anglaise).

1 Contexte

1.1 Décidabilité des logiques et synthèse de programmes

L’une des questions fondamentales en logique est celle de la décidabilité. Étant donné
un système formel L (par exemple, la logique du premier ordre) et une structure math-
ématique M (par exemple, les entiers naturels), l’objectif est de trouver un algorithme
permettant de résoudre le problème suivant :

Étant donné une formule logique φ ∈ L, décider si φ est vraie dansM.

Une solution à ce problème aurait, comme le lecteur peut imaginer, des implications
exceptionnelles. La première conséquence réside dans la possibilité de démontrer automa-
tiquement des théorèmes mathématiques. Si la logique L est suffisamment expressive,
un tel algorithme pourrait conduire à la résolution des grands problèmes mathématiques
ouverts. La deuxième conséquence concerne davantage le domaine de l’informatique. Les
systèmes logiques ne servent pas uniquement à formaliser les mathématiques, mais aussi
à spécifier le comportement des programmes informatiques et à préciser les contraintes
à respecter. Ainsi, la résolution du problème de la décidabilité pour certaines logiques
permettrait de vérifier automatiquement la correction des programmes informatiques.

En 1957, Church [Chu57] introduisit un problème encore plus ambitieux, à savoir celui
de la synthèse. L’objective consiste à concevoir un algorithme capable d’accomplir la tâche
suivante :

Étant donné une formule logique φ ∈ L spécifiant le comportement
d’un système informatique, construire un système satisfaisant φ,

ou déterminer qu’un tel système ne peut pas exister.

Les deux objets centraux de cette thèse, les automates sur les mots infinis et les jeux
à durée infinie, ont été initialement introduits dans le but d’aborder les problèmes de la
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10 Résumé étendu en français

décidabilité et de la synthèse pour certaines logiques [Bü62, Rab69, BL69b].

1.2 Propriétés structurelles des automates

Suite aux découvertes réalisées dans les années 1960, les automates sur les mots infinis
(ou ω-automates) sont devenus un domaine à part entière. Une série de résultats fonda-
mentaux ont été obtenus, contribuant ainsi à la maturation de cette théorie. Cependant,
d’importants défis dans l’étude des ω-automates ont mis en évidence des lacunes majeures
dans notre compréhension de leur structure.

Transformations d’automates. Il existe plusieurs formalismes permettant de dé-
finir quels sont les calculs acceptants dans un automate sur les mots infinis, engendrant
différents types d’automates qui présentent des propriétés algorithmiques et d’expressivité
variées. Une question fondamentale qui se pose est celle de la relation entre ces différents
modèles, notamment en ce qui concerne les transformations permettant de convertir un
automate d’un type X en un automate de type Y en ajoutant un nombre minimal d’états.

Minimisation d’automates. Contrairement aux automates sur les mots finis, il
n’existe généralement pas d’automate minimal canonique permettant de reconnaître un
langage ω-régulier donné. En 2010, Schewe démontra que la minimisation des automates
déterministes de Büchi est un problème NP-complet [Sch10]. Cependant, cette preuve
ne s’applique qu’aux automates avec la condition d’acceptation sur les états. En 2019,
Abu Radi et Kupferman montrèrent que la minimisation de certains types d’automates
est réalisable en temps polynomial lorsque la condition d’acceptation est définie sur les
transitions [AK19]. La question de la minimisation des automates déterministes de Büchi
avec la condition d’acceptation sur les transitions demeure ouverte.

1.3 Complexité des stratégies pour des jeux à durée infinie

Le problème de la synthèse est particulièrement intéressant et présente des défis
uniques dans le cas des systèmes ouverts qui interagissent avec un environnement (ce
que l’on appelle synthèse réactive). L’approche principale pour résoudre ce problème con-
siste à modéliser l’interaction entre le système et l’environement sous la forme d’un jeu.
Une stratégie gagnante dans ce jeu fournirait une implémentation du système tout en
garantissant le respect des spécifications. Afin de faciliter la résolution de ces jeux et de
simplifier l’implémentation finale, il est impératif que les stratégies utilisées soient aussi
simples que possible.

Positionnalité. Les stratégies les plus simples sont celles qui ne considèrent que
la position à un instant donné, sans tenir compte de l’historique du jeu. Ces stratégies
sont désignées sous le terme de stratégies positionnelles. Une question qui se pose est la
suivante : étant donné une condition de victoire, est-il possible pour le système de jouer
de manière optimale quel que soit le jeu (avec cette condition de victoire) en utilisant des
stratégies positionnelles ? Si la réponse est affirmative, on dit que la condition de victoire
est positionnelle.
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Mémoire. En général, les stratégies positionnelles ne suffisent pas, et les joueurs
doivent retenir certaines informations sur le passé du jeu pour effectuer des coups op-
timaux. On peut représenter ce type de stratégies à l’aide d’automates finis, que l’on
appelle des structures de mémoire. Comprendre la taille optimale de ces automates et
leur structure est fondamental pour concevoir des algorithmes pour la résolution des jeux
en aboutissant à des stratégies aussi simples que possible.

2 Contributions
Nous présentons ici les contributions principales de la thèse. Pour une présentation

plus détaillée, on pourra se référer à l’introduction générale ainsi qu’aux introductions de
chaque chapitre (en anglais). Nous utilisons une terminologie technique afin d’énoncer les
résultats de manière précise. Des hyperliens incorporés dans les mots peuvent faciliter la
recherche rapide des définitions requises par le lecteur.

] Caractérisation de la positionnalité des langages ω-réguliers. La contribu-
tion que nous considérons comme la plus importante de la thèse consiste en une caractéri-
sation des langages positionnels parmi la classe des langages ω-réguliers (Théorème V.1).
Cette caractérisation nous permet de répondre à la plupart des questions ouvertes concer-
nant la positionnalité dans le contexte des langages ω-réguliers : obtenir la décidabilité en
temps polynomial, établir l’équivalence de la positionnalité des langages ω-réguliers dans
les graphes finis et infinis et montrer les conjectures de Kopczyński et Ohlmann. De plus,
nous présentons quelques résultats concernant la positionnalité des langages en dehors de
la classe des ω-réguliers (voir Théorèmes V.6, V.7 et V.8).

] Transformations optimales d’automates. Nous présentons une construction
pour transformer des automates de Muller en automates de parité et démontrons un
résultat d’optimalité : l’automate ainsi obtenu est le plus petit parmi les automates de
parité qui peuvent être obtenus en dupliquant des états de l’automate initial, tout en
utilisant la condition d’acceptation la plus simple possible (Théorèmes II.5 et II.6).

Pour formaliser ces résultats, nous introduisons des morphismes d’automates qui cap-
turent la notion de transformation.

] L’ACD : Une nouvelle approche à la structure des automates. Afin de
définir la transformation mentionnée dans le paragraphe précédent, nous introduisons
une structure de données appelée la décomposition en cycles alternants (ACD, selon son
acronyme en anglais). Cette structure permet de résumer les principales propriétés struc-
turelles des automates de Muller. Les applications de l’ACD vont au-delà de la définition
des transformations, l’ACD permet également d’obtenir de nombreux résultats concernant
les automates sur les mots infinis. Parmi ces résultats figurent notamment :

] Déterminer si la condition d’acceptation d’un automate peut être simplifiée.
] Définir une forme normale pour les automates de parité.
] Démontrer que la minimisation du nombre de couleurs utilisées par un automate de
Muller est un problème NP-difficile.

Nous étudions également la complexité du calcul et de l’utilisation de l’ACD.
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] Minimisation d’automates. Nous établissons la complexité du problème de la
minimisation de certaines classes d’automates (avec la condition d’acceptation définie sur
les transitions) :

] La minimisation d’automates de Rabin déterministes est un problème NP-complet,
même pour des automates reconnaissant des langages de Muller (Théorème III.1).

] Il est possible de minimiser les automates de parité déterministes reconnaissant des
langages de Muller en temps polynomial (Théorème III.4).

] La minimisation d’automates de Büchi généralisés déterministes est un problème
NP-complet (Théorème III.2).

] La minimisation d’automates de Muller déterministes est un problème NP-difficile
(Théorème III.3).

] Perspectives sur le déterminisme en histoire. Le déterminisme en histoire
(HD selon son acronyme en anglais) est une propriété d’automates qui a récemment attiré
beaucoup d’attention en raison de ses applications potentielles dans le problème de la
synthèse réactive. (Pour plus de détails sur ce sujet, le lecteur pourra consulter [Kup22,
BL23b]).

Nous utilisons des automates déterministes en histoire tout au long de cette thèse.
Cependant, nous ne nous limitons pas uniquement à l’étude du modèle en lui-même, dans
le but de comprendre ses propriétés d’expressivité. Au contraire, dans cette thèse les au-
tomates HD sont un outil essentiel pour obtenir des résultats théoriques. Nous établissons
une équivalence entre la mémoire pour les jeux de Muller et les automates HD de Rabin
(Théorème IV.3). De plus, pour obtenir notre caractérisation de la positionnalité dans le
Chapitre V, nous faisons un usage intensif des automates HD. Cela est particulièrement
remarquable, car bien que les énoncés de nos théorèmes n’incluent pas explicitement les
automates HD, les propriétés de canonicité qu’ils confèrent (voir [AK22]) jouent un rôle
fondamental dans la réalisation de nos démonstrations. Ces résultats mettent en avant
la canonicité des automates HD et soutient leur pertinence pour obtenir des résultats
théoriques.

Nous établissons également des résultats sur la taille des automates HD. Nous mon-
trons que les automates de parité HD reconnaissant des langages de Muller ne sont pas
plus petits que leur homologues déterministes (Corollaire II.36), ce qui pose des limites
importantes à l’applicabilité du déterminisme en histoire pour la synthèse réactive (voir
également le Corollaire II.80). Cependant, nous montrons que les automates HD de Rabin
reconnaissant des langages de Muller peuvent être exponentiellement plus petits que leur
homologues déterministes (Théorème III.5).

] Correspondance mémoire–automate. Nous établissons une correspondance
entre les automates de Rabin et les structures de mémoire pour les jeux de Muller. Plus
précisément, les automates de Rabin déterministes correspondent exactement aux mé-
moires chromatiques pour les jeux de Muller (Théorème IV.1), tandis que les automates
déterministes en histoire correspondent aux mémoires générales pour ce type de jeux
(Théorème IV.3).

] Automates avec la condition d’acceptation sur les transitions. La grande
majorité de travaux dans la littérature utilisent des ω-automates avec la condition d’accep-
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tation sur les états. Dans cette thèse, le choix de placer la condition d’acceptation sur
les transitions n’est pas seulement techniquement plus pratique, mais il est également
essentiel, car sans cela, la plupart des résultats ne seraient tout simplement pas valides !

Nous croyons que nos contributions apportent des arguments supplémentaires en
faveur du fait que les automates avec la condition d’acceptation sur les transitions sont
plus canoniques et pratiques. Dans le Chapitre VI, nous présentons une synthèse des ré-
sultats qui mettent en évidence le contraste entre les deux modèles, comprenant à la fois
des contributions préexistantes dans la littérature et des découvertes réalisées au cours de
cette thèse.
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1 Automata and games for the synthesis problem

1.1 Motivation: From decidability of logic to program synthesis

The advancements in mathematics in the early 20th century breathed life into the
idea of obtaining a logical formalism that would enable to establish the truth value of all
mathematical statements. This idea found its highest expression in Hilbert’s program,
whose ultimate goal was to obtain an automatic procedure (an algorithm) solving the
following problem:

Given a logical formula stating a theorem, decide whether it is true or false.

In what is probably the most important set of results in the entire history of logic,
Gödel showed with his incompleteness theorems the impossibility of this ambitious pro-
grams [Göd31]. Not all hope was lost, though. Gödel’s theorems imply that no algorithm
can decide the truth of statements expressed in first order logic in the standard model
of arithmetic (natural numbers with the operations of addition and multiplication). But,
what about other (weaker) logics? Some positive results were found: the decidability
of Presburguer arithmetic, that is, the first order theory of integers without multiplica-
tion [Pre29], and the decidability of the first order theory of reals by Tarski [Tar49].
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Model checking. A solution to the decidability problem has further implications
when analysed from a computer science perspective. Indeed, logics do not only serve to
formalise mathematics, they also allow us to describe the behaviour of computer pro-
grams and specify properties we want them to satisfy. A program can be modelled as a
mathematical structure P ; checking whether the program satisfies a property represented
by a logical formula φ comes down to determining whether φ holds over the structure P .
This is commonly referred to as the model checking problem.

The synthesis problem. As we have already mentioned, model checking plays a
crucial role in the formal verification of the correctness of computer programs. In 1957,
Church [Chu57] introduced an even more ambitious objective:

Given a requirement expressed in some logical formalism, construct a
system satisfying the requirement, or determine that no such system exists.

The system referred to (also called controller) is usually a finite state automaton, but
one can think more generally of any computer program. Church stated the problem for
systems working on-line (usually called reactive systems) whose task is to transform an
infinite sequence of inputs predicates i0i1i2 . . . into an infinite sequence of outputs predi-
cates o0o1o2 . . . on the fly, such that the pair of sequences satisfies the desired requirement.
This is known as the reactive synthesis problem.

Automata for obtaining decidability results. The topics explored in this thesis
originated from the use of automata to study the problem of decidability for some logics.
The tight connections between automata and logic were brought to light around the 1960s,
in the works of Trakhtenbrot [Tra58, Tra62], Büchi [Büc60] and Elgot [Elg61], where they
established the equivalence between automata over finite words and weak monadic second
order logic (weak MSO). Extending these ideas, Büchi proved the decidability of monadic
second order logic with one successor over the natural numbers (S1S) [Bü62]. For this
proof, he introduced the object that will constitute the central subject of study in this
thesis: automata over infinite words (see Figure 1 for an example). An extension of S1S
of special relevance, as the decidability of many other logics can reduce to this one, is
monadic second order logic with two successor (S2S) – equivalent to the MSO theory of
the full binary tree. The decidability of S2S, left open by Büchi, was established by Rabin
in 1969 [Rab69]. Rabin’s proof, known for being extremely intricate,1,2 develops a theory
of automata over infinite trees and introduces new acceptance conditions for automata. In
the subsequent years, many advancements in automata theory were driven by the search
for a simplified proof of Rabin’s result [HR72, GH82, MS84, Muc84, EJ91].

Games come into play. The use of games in logic has a long history. The first
appearance of infinite duration games can be traced back to Zermelo’s work on (infinite

1It is worth including here a fragment from the abstract of Gurevich and Harrington [GH82] to
highlight both the importance and intricacy of Rabin’s result: “In 1969 Rabin introduced tree automata
and proved one of the deepest decidability results. If you worked on decision problems you did most
probably use Rabin’s result. But did you make your way through Rabin’s cumbersome proof with its
induction on countable ordinals?”.

2Apparently, not everyone agreed. Citing Büchi [Büc83]: “The old proof is good enough for me”.
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duration) chess [Zer13].3 These games were formalised in the seminal work of Gale and
Stewart [GS53], after which they found multiple applications in descriptive set theory (see
for instance [Mos80, Chapter 6]).

The connection between games and automata theory appeared for the first time in
the solution of the reactive synthesis problem for specifications given in the logic S1S
by Büchi and Landweber [BL69b]. They used a game-theoretic approach suggested by
McNaughton: one player represents the environment and provides input predicates, the
other player, who represent the system, responds with output predicates, trying to build a
sequence satisfying the requirement. A winning strategy for the system in this game yields
an implementation for a controller. Since then, the use of games has been ubiquitous for
studying the synthesis of reactive systems (see [Tho95, BCJ18]).

After the work of Büchi and Landweber, games became a convenient and frequently
used tool for reasoning and elaborating proofs in automata theory [Büc77, Büc83]. In
fact, the most significant progress in the simplification of Rabin’s proof of the decidability
of S2S came through the application of games. A major breakthrough was made by
Gurevich and Harrington [GH82]4 by considering games with Muller winning conditions
(a family of winning conditions for infinite duration games with its root in the work of
Muller [Mul63]). A key step in their approach is to describe “simple” strategies for the
winner in those games, more precisely, strategies implemented by a finite state automaton.
A further important simplification was made by Emerson and Jutla [EJ91]. For their
proof, they obtain one of the first positionality results: the winner of a game using a
parity condition can win using a strategy that only depends on the current position and
not on the history of the play.

Some logics for specifying the behaviour of programs. We have already men-
tioned monadic second order logic for its significance in the origins of the theory of au-
tomata over infinite words. We briefly discuss two further logical formalisms of particular
relevance for their role in the historical development of automata and game-theoretic
tools: the modal µ-calculus and linear temporal logic

The modal µ-calculus, developed in its modern form by Kozen [Koz83], is a logical
formalism notable for its balance between expressiveness and complexity, which makes it
well-suited for model checking purposes. Many of the central results in µ-calculus were
obtained via automata and game-theoretic methods [SE84, Wal96], in particular, Streett
and Emerson showed the equivalence in expressive power between the µ-calculus and
automata on infinite trees [SE89]. Moreover, Emerson, Jutla and Sistla obtained a linear-
time equivalence between the model checking of µ-calculus, checking the non-emptiness
of parity tree-automata and the algorithmic problem of solving parity games [EJS93].
They proved that these problems belong to NP ∩ coNP, and whether they can be solved
in polynomial time remains one of the major open questions in the field.

Linear temporal logic (LTL) was proposed by Pnueli in 1977 as a logic for the ver-
ification of non-terminating reactive systems [Pnu77]. This logic gained popularity due
to its simplicity and proximity to natural language. The synthesis problem for LTL was
solved by Pnueli and Rosner [PR89] using an automata-theoretic approach working in

3There are many misunderstandings surrounding Zermelo’s work on chess. See [SW01] for a discussion
and a translation of Zermelo’s paper into English.

4We remark that their proof is still quite complex. Citing Emerson and Jutla [EJ91]: “While the
presentation is brief, the argument is still extremely difficult, and is probably best appreciated when ac-
companied by the 40 page supplement of Monk.”
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3 steps: (1) translate the LTL formula into an equivalent non-deterministic Büchi au-
tomaton on words, (2) transform this automaton into a deterministic Rabin one, and
(3) use this automaton to produce a parity game and solve it.5 The synthesis of con-
trollers for LTL specifications continues to receive substantial attention nowadays – as
evidenced by the existence of competitions such as SYNTCOMP [Jac+22] – and the
automata-theoretic approach of Pnueli and Rosner is still at the heart of the state-of-
the-art synthesis tools [Esp+17, LMS20, MC18, MS17]. Due to the efforts invested in
improving these tools, and the quest for a polynomial time algorithm for parity games,
game solvers have achieved impressive advancements that allow for the resolution of very
large parity games in just a few seconds [Dij18, Jac+22]. However, the limiting factor
for LTL synthesis algorithms is the transformation of the LTL formula to a deterministic
parity automaton [EKS18, LMS20]. For this reason, synthesis procedures avoiding the
construction of deterministic automata have been proposed, for example, via the use of
universal coBüchi automata [KV05]. Another important challenge is to improve the qual-
ity of the obtained solutions, as for practical applications, the final system must be as
small and simple as possible [Kup12].

1.2 A focus on automata

After the discoveries made in the 1960s culminating in Rabin’s decidability theo-
rem [Rab69], automata over infinite words (which we simply refer to as ω-automata)
became a well-established area of study of independent interest. (We refer to Figure 1
for an example and explanations about automata.) The theory of automata over finite
words had proven to be very rich and fruitful, yielding connections between diverse ar-
eas of study such as formal languages, logic, and algebra. Mirroring these advances, a
series of grounding results on ω-automata shaped the emerging theory: the equivalence
between ω-automata and ω-regular expressions [McN66], results about determinisation
of automata [McN66, Saf88], or the study of recognisability of ω-regular languages by
algebraic structures [Wil91, SPW91]. Additionally, connections between the structure of
ω-automata and notions of topological complexity of languages coming from descriptive
set theory were explored [Lan69, Wag79], adding a new dimension to the theory. How-
ever, major challenges in the study of ω-automata appeared, and a fundamental lack of
understanding of their structure became evident.

Canonicity and minimisation of ω-automata. A remarkable property of au-
tomata over finite words is that each regular language admits a unique minimal determin-
istic automaton with a very nice structure: states correspond to residuals of the language
(classes of the Myhill-Nerode congruence). However, in the case of infinite words, the au-
tomaton of residuals does not suffice to recognise the desired language. In the final quar-
ter of the 20th century, an endeavour was initiated to characterise ω-regular languages
through congruences à la Myhill-Nerode and to obtain canonical automata recognising
them [Sta83, Saë90, SL94]. A syntactic congruence capturing a given ω-regular language
was proposed by Arnold [Arn85], although it does not provide minimal automata. Other
canonical – but not minimal – objects recognising ω-regular languages where proposed by
Mahler and Staiger [MS97] (namely, families of right-congruences). The quest for canon-

5In the original paper [PR89], this last step was presented as checking the emptiness of a Rabin
tree-automaton. The approach based on games rapidly took over this presentation [ALW89, Tho91].
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F Figure 1. An automaton is a finite state machine with transitions labelled by let-
ters. An infinite word induces an infinite path in the automaton by following step
by step the transitions labelled with the letters of the word. We call such a path a
run in the automaton. An automaton can be used to define a set of words (a lan-
guage) by specifying which runs are accepting and which ones are rejecting. The au-
tomaton in the figure uses what is called a Büchi acceptance condition over transi-
tions: some transitions carry a dot, and a run is accepting in the automaton if it vis-
its a dot infinitely often. Therefore, the set of words accepted by this automaton is:

L = Words that contain some b and afterwards infinitely many times the factor aa.

There are many other ways of specifying which runs are accepting (what we call accep-
tance conditions). We refer to Section I.2 for formal definitions.

ical representations of ω-regular languages remains very much alive to this day [ABF18,
AK22, ES22, BL23a].

An algorithm minimising a subclass of ω-automata was first proposed by Gutle-
ben [Gut96],6 who gave a procedure for the minimisation of automata recognising weak
languages, building on work of Staiger and Maler [Sta83, MS97] (a similar algorithm im-
plicitly appears in the work of Maler and Pnueli [MP95]). This algorithm was improved by
Löding [Löd01], giving a procedure working in time O(n log n). In 2010, Schewe proved
that the minimisation of deterministic Büchi automata is NP-complete [Sch10]. That
appeared to be a conclusion to the minimisation problem, but was it? In Schewe’s pa-
per, the NP-completeness is established for automata with the acceptance condition over
states. However, in 2019, Abu Radi and Kupferman showed that some classes of automata
(namely history-deterministic coBüchi automata) can be minimised in polynomial time if
the acceptance condition is defined over transitions [AK19]. The general problem of the
minimisation of automata with transition-based acceptance remains wide open.

A variety of acceptance conditions. The simple Büchi condition (the one used
by the automaton in Figure 1) suffices to define all ω-regular languages over infinite words
using non-deterministic automata. However, to obtain the same expressive power with
deterministic automata, or when using automata over infinite trees, we need to use more
complex ways to represent accepting runs. A wide range of acceptance conditions has
arisen from the study of ω-automata (Muller [Mul63], Rabin [Rab69], parity [Mos84,
EJ91], Emerson-Lei [EL85, Bab+15]...), each one offering its own advantages.

A wide body of literature is devoted to the comparison of these conditions and the
study of questions such as their expressive power [McN66, Mos84, KPB95], the possi-
bility of simplifying the acceptance condition of a given automaton [KPB94, KMM06],
the efficiency of transformations between the different models and the succinctness gap

6Gutleben’s paper has almost gone unnoticed in the literature. I thank Christof Löding for sending
this paper to me.
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between them [Löd98, Löd99, BK12, Bok17, Bok19], or the complexity of decision proce-
dures depending on the condition used [CDK93, KP09, Hug23]. (See [Bok18] for a general
overview of all these questions.)

Two acceptance conditions stand out as the most commonly used in modern LTL
synthesis tools. Emerson-Lei conditions – which are a concise representation of Muller
conditions via boolean formulas – are well-suited for their use due to their succinctness
and their proximity with logical formulas. This allows for simple translations from LTL
logic [MS17, Maj+19a, DL+22] and the use of methods based on SAT-solvers [BDL15,
Cas+22, SSM23]. Parity conditions, on the other hand, allow for the use of the powerful
parity game solvers in the final steps of the LTL synthesis process [RDLP20, LMS20,
MC18].

The parity condition. Amongst all the acceptance conditions mentioned in the
preceding paragraph, one takes a prominent place in both the literature on ω-automata
and in this thesis: the parity condition. Parity automata were introduced by Mostows-
ki [Mos84] (under the name of Rabin automata in chain form), and he proved that they
suffice to represent all ω-regular languages. Independently, Emerson and Jutla [EJ91]
presented the modern formulation of parity conditions and established the paramount
result of their bipositionality (also obtained independently by Mostowski [Mos91]). The
use of parity conditions was rapidly adopted for multiple reasons outlined below.

We have already discussed the utility of the parity condition for LTL synthesis –
mainly due to the existence of high-performing algorithms solving parity games – but its
significant role in the theory of ω-automata extends beyond these practical applications.
From a theoretical point of view, parity conditions can be considered as the simplest family
of conditions that can be used to recognise all ω-regular languages with deterministic
automata. Several properties justify the distinguished status of the parity condition:7,8

] The parity hierarchy. The optimal number of colours needed by a parity automaton
to recognise a language L reveals a fundamental information about it, called its
parity index. The parity index (sometimes called Mostowski index) yields a strict
hierarchy both for deterministic automata over words and for non-deterministic au-
tomata over trees [Niw86, Bra98] (and these hierarchies are closely related [KSV96,
NW98]). In both cases, this index is a measure of the structural complexity of au-
tomata recognising L [Wag79, NW98] and of its topological complexity [Arn+08,
Skr13]. The parity index of a language of infinite words represented as a deter-
ministic parity automaton can be computed in polynomial time [CM99], while the
problem is NP-complete when the input is a Rabin automaton [KPB95]. Whether
we can decide the parity index of a language of infinite trees represented as a non-
deterministic parity tree-automaton is a long standing open problem [NW04, CL08].

] Relation with µ-calculus. The natural acceptance condition appearing when trans-
lating a µ-calculus formula to tree-automata is the parity condition [EJ91]. More-
over, the parity index of a language of trees corresponds to the minimal alternation
depth of fixpoint operators of a µ-calculus formula defining it [Niw86].

7To enable a precise statement of the properties, the following discussion is quite technical and
employs terminology that has not yet been introduced. Hyperlinks on words should help the reader to
quickly check the missing definitions.

8Some of the arguments shown below are discussed by Niwiński and Walukiewicz [NW98, p.2].
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] Symmetry. Parity languages are exactly Muller languages corresponding to families
F ⊆ 2Γ

+ of subsets of colours such that both F and its complement are closed
under union [Zie98] (see also Proposition II.103). This allows, for instance, for easy
complementation of parity automata.

] Positionality. Parity languages are bipositional [EJ91]. Moreover, over infinite game
graphs, these are the only bipositional languages [CN06], and over finite game
graphs, these are the unique bipositional Muller languages [Zie98].

] Complexity of parity games. Solving parity games is both in NP and coNP [EJS93]
(more precisely, the problem is in UP ∩ co-UP [Jur98]). They can be solved in
quasi-polynomial time [Cal+17], and whether they can be solved in polynomial
time is a major open question. This contrasts with the complexity of solving Ra-
bin and Muller games, which is, respectively, NP-complete [EJ99] and PSPACE-
complete [HD05].

(We refer to Section VII.2.2 and Question VII.5 in the conclusions for further discus-
sions about the canonicity of the parity condition.)

History-deterministic automata. As discussed earlier, one of the main challenges
for an efficient implementation of LTL synthesis algorithms is the translation of non-
deterministic automata to deterministic ones. Known determinisation procedures are very
costly, and deterministic automata can be exponentially larger than non-deterministic
ones. To address this problem, Henzinger and Piterman [HP06] proposed a new inter-
mediate model under the name of good-for-games automata (which we call, following
the current terminology, history-deterministic). Similar ideas had been previously inves-
tigated by Kupferman, Safra and Vardi [KSV96], and Colcombet studied the notion of
history-determinism in the context of the theory of cost functions [Col09].

The definition of history-determinism is rather natural: an automaton is history-
deterministic if it can resolve its non-determinism on-the-fly, without guessing the future.
The remarkable property of this definition is that it exactly captures the features of de-
terministic automata that make them suitable for synthesis purposes. A natural question
that arises is whether history-deterministic automata can be more succinct that determin-
istic ones, and, in that case, which languages and automata types can benefit from this
succinctness. It was not until several years after the introduction of history-determinism
that an example of an ω-regular language for which history-deterministic automata are
smaller than deterministic ones was exhibited [KS15]. History-deterministic automata are
the focus of several lines of research (we refer to the surveys [Kup22, BL23b] for detailed
expositions). Despite this, a complete understanding of history-deterministic automata
remains elusive, and their scope of applicability is still uncertain.

State complexity. In this thesis, we study problems such as the transformation of
different types of automata and their minimisation. Throughout the entire document, the
main focus will be in state complexity, that is:

] The parameter we seek to minimise when minimising automata is the number of
states.

] The efficiency of a construction is measured by the number of states of the resulting
automaton.
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The size of the information needed to completely represent an automaton (transitions
and the acceptance condition) takes a secondary role for us, although it will be relevant
in some parts of the document (mainly Section II.5). This approach is commonly adopted
in the literature, and justified by several reasons:

a) In many cases, the size of the whole representation of an automaton is polynomial
in the number of states.

b) In the case of automata over finite words, each state stands for a precise information
of the recognised language: a residual of it. We expect that, similarly, in the case
of infinite words, the states of automata represent and capture relevant information
of the language.

c) In certain situations, it is possible to completely characterise the number of states
of automata (see for instance [CZ09]). The focus on state complexity allows for
elegant statements and tight (non-asymptotic) bounds on the size of automata.

1.3 A focus on strategy complexity in infinite duration games

Solving a game consists of determining which player (if any) has a winning strategy,
that is, a strategy that ensures a victory regardless of the actions of the opponent. A
strategy can be defined as a set of instructions that indicates the player how to act after
each possible finite sequence of moves. For algorithmic purposes, a major challenge arises:
the set of all sequences of moves is infinite. Therefore, in order to be able to tackle the
problem of solving games algorithmically we need to obtain a finite representation of the
set of all possible plays, or, at least, to compress the information needed by a player
to make the optimal moves. (We refer to Figure 2 for an example and explanations on
games.)

In 1958, the criticality of the question of the computability of strategies was made
evident by Rabin, who showed that there are games in which one player can force a victory,
but for which no computable winning strategy exists [Rab58]. To provide a solution to the
synthesis problem with specifications in MSO, Büchi and Landweber proved that in every
game with an ω-regular winning condition there is a player with a winning strategy that
can be implemented by a finite-state automaton [BL69b].9 In their paper, they suggest
the following type of problem [BL69b, p.299]:

Given a class of games C, how simple winning strategies do exist for games in C?

Complexity of strategies takes on special relevance in the context of synthesis (see
[Tho95]). First, the efficiency of algorithms solving a class of games will depend on the
complexity of the strategies required to win in those games. Perhaps more importantly,
the simplicity of the controller synthesised from the winning strategy directly depends on
the simplicity of that strategy.

9The fact that games with ω-regular objective are determined (that is, one of the players can force a
win) can be seen as a corollary of Martin’s determinacy theorem for Borel objectives [Mar75], as ω-regular
languages are Borel. However, Martin’s theorem is posterior to Büchi and Landweber’s result. Still, at
that time, Davis [Dav64] had already obtained the determinacy of Σ0

3-objectives, which is sufficient to
imply that of ω-regular objectives.
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F Figure 2. We consider games played on a graph facing two players: Eve, con-
trolling the circles, and Adam, controlling the squares. They take turns in moving a
token along the edges of the graph. Each time the token traverses an edge, a let-
ter is produced (a or b, in this case). This process produces an infinite word w,
used to determine the winner. The winning condition (also called objective) is given
as a language W of infinite words. Eve wins if the produced word w belongs to
W , and Adam wins otherwise. Consider the game above with the winning condition:

W = Words that contain the factor aa infinitely often.
We show how Eve can force a victory in this game. Whenever the token arrives at E1, she
first goes down to A2; the next time the token arrives at E1, she takes the a-transition
going to A1. From E2 she always takes the a-transition to E1. Repeating this process
guarantees producing aa infinitely often. However, to set up this strategy, she needs to
retain some information, she cannot make a decision based solely on the current position,
that is, she cannot win positionally.

Positionality. The simplest kind of strategies are positional ones, that is, those
whose choices depend exclusively in the current position, and not in the history of the
play. Given a language of infinite words W , a natural question is whether players can
play optimally using positional strategies in games with W as winning condition. If both
players can do so, we say that W is bipositional; if only Eve (“the system”) can, we say
that W is half-positional.

Bipositionality of various objectives was established since the middle of the 20th cen-
tury: simple stochastic games by Shapley [Sha53], finite mean-payoff games by Ehren-
feucht and Mycielski [EM79], parity games by Emerson and Jutla [EJ91] (and indepen-
dently by Mostowski [Mos91]) or finite energy games by Bouyer et al. [Bou+08].10 The
existence of positional strategies for both players implies that solving the previous games
is in NP ∩ coNP, and all existing algorithms solving them strongly rely on their biposi-
tionality (the bibliography on these games is overwhelming, we refer to [Fij+23] for an
overview). At the beginning of this century, there was an increasing interest in obtaining
a precise understanding of positionality. Two major results characterising bipositional-
ity were obtained. Gimbert and Zielonka [GZ05] completely characterised bipositionality
over finite game graphs, and Colcombet and Niwiński [CN06] established that the only
bipositional objectives over all game graphs were parity objectives (under an hypothesis
of prefix-independence).

Nevertheless, for applications in synthesis, half-positionality is arguably a more com-
pelling concept, as we are only interested in Eve’s strategies to build a controller. However,
advancing in the comprehension of half-positionality has proven challenging despite many

10Interestingly, parity games were shown to be linear-time reducible to mean-payoff games and energy
games [Pur95], which are in turn reducible to simple stochastic games [ZP96].
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efforts. One of the first non bipositional objectives proven to be half-positional were Rabin
languages [Kla94], and Zielonka showed that these are the only half-positional objectives
within the class of Muller languages [Zie98]. Other objectives have been proven to be
half-positional, for example finitary Büchi [CF13], cost-parity [FZ14] or mean-payoff over
infinite graphs [Ohl23b]. The first detailed investigation on half-positionality was con-
ducted by Kopczyński in his PhD thesis [Kop08]. The driving question behind much of
his research was: Are half-positional prefix-independent objectives closed under union?
Recently, this question was answered negatively by Kozachinskiy [Koz22a] (in the case of
finite game graphs and non ω-regular conditions). Kopczyński proposed various sufficient
conditions for half-positionality, but they do not constitute a characterisation. His re-
search focused on prefix-independent objectives; generalisations of some of his results to
all objectives were further explored by Bianco et al. [Bia+11].

In a recent breakthrough, Ohlmann gave a characterisation of half-positionality by
means of monotone universal graphs [Ohl23a]. Universal graphs (in the context of infinite
duration games) were first introduced by Colcombet and Fijalkow for the study of algo-
rithms for parity games [CF18, CF19]. A universal graph for an objective W contains,
in some sense, all possible ways a strategy can interact with W in a game. Ohlmann’s
theorem establishes that an objective is half-positional if and only if it admits universal
graphs equipped with a well-order with some further monotonicity properties. This pro-
vides a powerful tool to obtain half-positionality of many objectives. However, Ohlmann’s
characterisation is not constructive, and does not directly yield decidability results.

Memory for games. As already mentioned, the solution to the synthesis problem
involved proving that strategies implemented by finite automata were sufficient in games
with ω-regular conditions [BL69b]. We call such automata memory structures, and re-
fer to their size as the memory used by the strategy. Gurevich and Harrington [GH82]
(and independently Büchi [Büc83, Section 12]) went a step further: they explicitly de-
scribe memory structures implementing winning strategies in games using Muller con-
ditions.11 This understanding of the structure of strategies is an essential ingredient in
McNaughton’s algorithm for solving Muller games [McN93]. However, the memory struc-
tures proposed did not have an optimal size in general. A landmark result in the study of
memory for games is the characterisation of the precise memory requirements of Muller
conditions by Dziembowski, Jurdziński and Walukiewicz [DJW97], based on the analysis
of the Zielonka tree of the condition (a combinatorial structure introduced by Zielonka
under the name of split-tree [Zie98]). This result was extended by Horn by allowing
stochasticity in games [Hor09]. To the best of the author’s knowledge, the only further
characterisation of the memory requirements of a class of languages was that of closed
objectives by Colcombet, Fijalkow and Horn [CFH14] (extended recently to the model of
chromatic memory, both for closed and open objectives [Bou+23]).

In recent years, there has been a renewed interest in questions related to memory for
games. In the context of his PhD thesis [Van23], Vandenhove and coauthors have extended
the results of Gimbert and Zielonka [Bou+20] and Colcombet and Niwiński [BRV23] to
the setting of finite memory determinacy. As a consequence of that work, they charac-
terised ω-regular languages as the only ones for which both players can play optimally

11Büchi [Büc83] attributes the idea behind the structure appearing in this work (the later appearance
record) to McNaughton [McN66]. (However, for a less sharp reader it is not at all clear where to find it
in McNaughton’s paper.)
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with finite memory in all games.12 In their work, there is a focus on understanding when
the analysis of the memory requirements in one-player games suffices to deduce results
for two-player games (results encompassed under the name of 1-to-2-players lifts). This
question has been further explored by Kozachinskiy [Koz22c], who has also made contribu-
tions to the understanding of the differences between various models of memory [Koz22d,
Koz22b] (see Chapter IV for more details). Memory for games has also been studied in
other settings, as concurrent games [BRT22] or timed games [MPR21].

Understanding the complexity of strategies in certain contexts remains the missing
piece for establishing the decidability of some logics. For instance, the decidability of
cost-MSO over infinite trees (which would imply the decidability of determining the par-
ity index of languages of non-deterministic tree-automata [CL08]) would follow from the
conjectured existence of optimal finite memory strategies for some games [Col13, Sec-
tion 9.1].

2 Contributions and organisation

2.1 Division into chapters

The thesis is organised in 6 chapters (the first of them consisting in preliminary defi-
nitions). We have structured the chapters based on thematic considerations, resulting in
4 main research axes:

] Transformations and structural properties of Muller automata (Chapter II).
] Minimisation of automata (Chapter III).
] Memory for games (Chapter IV).
] Positionality (Chapter V).

The last chapter (Chapter VI) should be treated as an addendum, in which we discuss a
particular aspect of our model: the use of transition-based acceptance.

This arrangement has resulted in chapters with imbalanced lengths. Chapters II and V
are notably longer, and encompass most of the technical content of the thesis. On the
contrary, Chapter IV is comparatively short, as many of its contributions can be easily
obtained from the the previous technical work.

At the end of each chapter’s introduction, we credit people that have collaborated in
deriving the results of the chapter and give information about related publications.

2.2 Contributions

We present the primary contributions of this thesis at a high level. For a more detailed
overview of the contributions related to each specific topic, we refer to the introductions
of individual chapters.

12The characterisation is a bit more subtle, as players are required to have a fixed memory structure
that allows them to play optimally in all games (what we call an arena-independent memory). The
question of whether there are non ω-regular objectives for which both players can play optimally with
finite (non-chromatic) memory is open.
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Contribution 1. Characterisation of half-positionality for ω-regular lan-
guages

The contribution we deem to be the most important of the thesis is a complete charac-
terisation of half-positional ω-regular languages (Theorem V.1). This allows us to answer
most open questions about half-positionality in the context of ω-regular languages: de-
cidability in polynomial time, existence of finite-to-infinite and 1-to-2-player lifts and
proofs of conjectures by Kopczyński and Ohlmann. Moreover, we give a characterisation
of bipositionality for all objectives (Theorem V.6), and characterise half-positionality for
some languages beyond ω-regular ones, such as closed and open languages (Theorems V.7
and V.8).

Chapter V is devoted to the statement and proof of these results.

Contribution 2. Optimal transformations of automata

We introduce a construction for transforming Muller automata into parity automata.
We provide very strong optimality guarantees: in all cases, the resulting automaton has a
minimal number of states and uses a minimal number of priorities amongst automata that
can be obtained by duplicating states of the input automaton (Theorems II.1, II.2, II.5
and II.6). Similar transformations are given for obtaining Rabin automata (Theorems II.4
and II.7).

To formalise the statement of these optimality results, we introduce various notions
of morphisms of automata, capturing different kinds of transformations and granting the
preservation of different semantic properties.

These transformations and their optimality are presented in Sections II.3 and II.4 of
Chapter II. Morphisms for automata are defined in Section II.2.

Contribution 3. The ACD: Understanding the structure of automata

To define the aforementioned transformations, we introduce a data structure named
the alternating cycle decomposition (ACD). This is a generalisation of the Zielonka tree,
encapsulating many of the structural properties of Muller automata. Its applications go
beyond the definition of transformations, as it can be used to derive many results about
ω-regular automata. Some of them are:

] Deciding when a Muller automaton can be relabelled with a simpler acceptance
condition (typeness results) (Section II.6).

] Defining a normal form for parity automata (Section II.7).
] Showing that the minimisation of colours for Muller automata is NP-hard (Sec-
tion II.6.3).

We also study the complexity of computing and using the alternating cycle decomposition
(Section II.5).

The ACD provides a fresh presentation of the structural properties of automata stem-
ming from the work of Wagner [Wag79]. We believe that this structural perspective
represents a fruitful approach to reasoning about automata, as proven by the numerous
advances in the theory building upon Wagner’s work since the 1980s. The insights gained
from the ACD are the basis of most of the contributions in the thesis.
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Contribution 4. Minimisation of transition-based automata
We establish the complexity of the minimisation of some classes of (transition-based)

automata:

] The minimisation of deterministic Rabin automata is NP-complete, even for au-
tomata recognising Muller languages (Theorem III.1).

] Deterministic parity automata recognising Muller languages can be minimised in
polynomial time (Theorem III.4).

] The minimisation of deterministic generalised (co)Büchi automata is NP-complete
(Theorem III.2).

] The minimisation of deterministic Muller automata is NP-hard (Theorem III.3).

These results are proven in Chapter III.

Contribution 5. Correspondence memory–automata
We show a tight correspondence between different types of memories for Muller games

and Rabin automata: chromatic memories correspond to deterministic Rabin automata
(Theorem IV.1) and general memories correspond to good-for-games Rabin automata
(Theorem IV.3). These contributions appear in Chapter IV.

The two following contributions span across every chapter.

Contribution 6. History-deterministic automata: A natural model for the
study of ω-regular languages
Throughout the entire thesis, history-deterministic (HD) automata play a central role.

However, our focus is not only on the model itself for the sole purpose of understanding
its expressiveness or succinctness properties; instead, we make an instrumental use of
it. In Chapter V we extensively employ HD automata to obtain our characterisation of
half-positionality. This is quite striking, as the statements of our theorems do not need
to mention HD automata; nevertheless, the canonicity properties they offer (see [AK22])
are fundamental to execute our proofs. Also, in Chapter IV we characterise memory for
games by means of HD automata (Theorem IV.3). We believe that these contributions
reinforce the role of HD automata as a natural and fundamental model and highlight their
suitability for obtaining theoretical results.

Along the path, we also provide succinctness results showing that for some subclasses of
languages, history-deterministic automata can (or cannot) be smaller than deterministic
ones. We show that HD parity automata recognising Muller languages are not more
succinct than deterministic ones (Corollary II.36), and set some important limits for the
applicability of HD automata in the context of reactive synthesis (Corollary II.80). On
the more positive side, we show that HD Rabin automata recognising Muller languages
can be exponentially more succinct than deterministic ones (Theorem III.5).

Contribution 7. Transition-based vs state-based automata
Most works in the literature use ω-automata with the acceptance condition defined

over states (although in recent years this trend is changing). In this thesis, the use of
transition-based acceptance is not only technically more practical, but without its use
most results would simply not hold! We believe that our contributions provide further
evidence to the fact that transition-based automata are more canonical and practical.
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The way in which the use of this model is critical to obtain different results is indicated
in each chapter.

In Chapter VI we include a review of results – both existing from the literature and
novel findings obtained during this thesis – in which the contrast between the two models
is evident.

3 Reading tips and conventions
Non-linear reading and dependencies between chapters. This thesis – mainly

due to its length – is not really well-suited for linear reading from start to finish (but the
reader is very welcome to do so if they wish!). On the contrary, the focus has been
on providing a comprehensive analysis of the topic under study in each part, including
motivations and all necessary technical details.

For this reason, we have taken special care to facilitate the independent reading of
the chapters. Nevertheless, some dependencies are unavoidable – given that establishing
new connections among different areas is a central theme in the thesis – and the proofs
of our theorems often rely on results from previous chapters. At the beginning of each
chapter, we explicitly mention the notions and results previously introduced that will be
used in that chapter. Also, the use of hyperlinks should help the reader to quickly see the
definition of any notion, which facilitates a non-linear reading. These two features should
also help the reader to know what parts of the preliminaries can be skipped.

Despite the comment above, this thesis constitutes a coherent document as a whole.
There are some aspects that are best appreciated with a global view of the document,
primarily the contributions related to: history-deterministic automata, the superiority of
transition-based models, and, in general, the understanding of structural properties of
ω-automata. These aspects are relevant across all chapters.

Use of appendices. Some of the content of the thesis is included in appendices at
the end of the document. This has been done mainly for stylistic reasons. As some proofs
are quite lengthy and technical, we have considered that placing them in appendices might
help to highlight the contributions and the main proof ideas. We always provide intuitive
explanations in the main body. The content in the appendix has received the same level
of attention as the content in the main body, and we consider this material as an integral
part of the thesis.

We note that the bibliography appears after the appendices (which might be uncon-
ventional, and even go against certain style guides). There are two reasons for this choice:
first, as said before, the material in the appendix is an integral part of the thesis, and we
use citations in there just like in any other part; secondly, we find it more convenient for
the reader to have the list of references at the very end, making it easy to locate them
quickly.

Numbering conventions. Except for theorems and conjectures, that are numbered
independently, all environments (lemmas, propositions, definitions, examples...) are num-
bered together to facilitate the navigation in the document.13 To avoid ambiguity, each
identifier is preceded by the chapter in which it appears, in roman numerals (for instance,
Proposition I.18).

13This has a drawback: the numbering reaches some embarrassing values, e.g. Proposition II.137.
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Environments. Important results, definitions and examples are framed in boxes of
different colours.14 We note that lemmas are enclosed in boxes only occasionally; lemmas
that we consider to be relevant results on their own are framed, while small technical
results that are only used locally are not. We comment some particularities on the use of
some environments.

Theorem (Theorem environment).
This is a theorem. The theorem environment is employed exclusively to state original

contributions of the thesis;15 important results appearing in the literature are stated as
propositions (and appropriate references are always included).

Conjecture (Conjecture environment).
This is a conjecture (or a question). This environment is employed exclusively to state

questions that are not solved within the thesis. These questions might be original or come
from the literature; in the latter case, citations are always included.

Global hypothesis.

This environment is employed to state assumptions made throughout a whole chapter
or section. We try to minimise its use, as it is in general preferable to explicitly state all
hypothesis at each point. However, we do make use of it to a certain extent in Chapter V
to improve readability.

This environment is used to emphasise informal questions and general research objec-
tives.

Colours. We use colours in figures, but they are never essential for understanding
the ideas we aim to convey. Whenever necessary, we ensure redundancy by supplementing
the colour code with other visual markings.

Links between a notion and its definition. The design of this thesis is optimised
for reading in an electronic device. Mainly, the document contains many, many, hyperlinks.
Each occurrence of a notion (which we lightly colour in dark blue) is linked to its definition.
On an electronic device, the reader can click on words or symbols (or just hover over them
on some PDF readers) to see their definition.16

14I thank Pierre Ohlmann and Olivier Serre for sharing the LATEX style document used as starting
point for formatting the document of this thesis, and Rémi Morvan for his stylistic advice.

15Of course, there are high chances that some of these results already appear in some form in papers
from the 20th century that have passed unnoticed to the author.

16Thanks to Thomas Colcombet, Rémi Morvan and Aliaume Lopez for developing the knowledge
package and its nifty companion, the knowledge-clustering tool, which allow for the not so simple
implementation of these very useful hyperlinks.

https://ctan.org/pkg/knowledge?lang=en
https://github.com/remimorvan/knowledge-clustering
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Notational conventions

Sets and infinite words
For a set A we let |A| denote its cardinality, 2A its power set and 2A+ = 2A \ {∅}. If

B is a subset of A, and A is clear from the context, we note B = A \ B. For a family
of subsets F ⊆ 2A and A′ ⊆ A, we write F|A′ = F ∩ 2A′ . We write A t B to denote
the union of two sets such that A ∩ B = ∅. For natural numbers i ≤ j, [i, j] stands for
{i, i+ 1, . . . , j − 1, j}.

For a set Σ, a word over Σ is a sequence of elements from Σ. An ω-word (or simply
an infinite word) is a word of length ω. The sets of finite and infinite words over Σ will
be written Σ∗ and Σω, respectively, and we let Σ∞ = Σ∗ ∪Σω. Subsets of Σ∗ and Σω will
be called languages (or objectives, in a context of games). For a word w ∈ Σ∞ we write
wi to represent the ith letter of w. For w = w0w1 . . . wk ∈ Σ∗ we write first(w) = w0 and

31
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last(w) = wk. We let ε denote the empty word, and let Σ+ = Σ∗ \ {ε}. The concatenation
of two words u ∈ Σ∗ and v ∈ Σ∞ is written u · v, or simply uv. If u = v · w for
v ∈ Σ∗, u, w ∈ Σ∞, we say that v is a prefix of u and we write v v u. We write v @ u if
v v u and v 6= u. If u = v1v2 · w for v1, v2 ∈ Σ∗, u, w ∈ Σ∞, we say that v2 is a factor of
u. For a word w ∈ Σω, we let

Inf(w) = {a ∈ Σ | wi = a for infinitely many i ∈ N}.

For Σ′ ⊆ Σ and a language L ⊆ Σ∞, the restriction of L to Σ′ is L|Σ′ = L ∩ Σ′∞.
We say that a language L ⊆ Σω is prefix-independent if for all w ∈ Σω and u ∈ Σ∗,

uw ∈ L if and only if w ∈ L.
Given a map α : A→ B, we will extend α to words component-wise without explicitly

mentioning it, i.e., α : A∞ → B∞ is defined as α(w0w1w2 . . . ) = α(w0)α(w1)α(w2) . . . . If
A′ ⊆ A, we note α|A′ the restriction of α to A′. We let IdA be the identity function on A.
We write α : A ⇀ B if α is a partial mapping (it is defined only over some subset of A).

Graphs
A graph1 is a tuple G = (V,E, source, target) where V is a set of vertices, E a set of

edges and source : E → V and target : E → V are maps indicating the source and target
for each edge. We may omit the maps source target in the description of a graph if they
are clear from the context. A path is a (finite or infinite) sequence ρ = e0e1... ∈ E∞

such that source(ei) = target(ei−1) for all i > 0. For notational convenience, we write
v0

e0−→ v1 · · ·
en−1−−→ vn to denote a finite path from v0 = source(e0) to vn = target(en−1)

and we let source(ρ) = v0 and target(ρ) = vn. For A ⊆ V , we let Pathfin
A (G) and PathA(G)

denote, respectively, the set of finite and infinite paths on G starting from some v ∈ A
(we omit the subscript if A = V ). We let Path∞A (G) = Pathfin

A (G)∪PathA(G). For a subset
of vertices A ⊆ V we write:

] In(A) = {e ∈ E | target(e) ∈ A},
] Out(A) = {e ∈ E | source(e) ∈ A}.

A graph is strongly connected if there is a path connecting each pair of vertices. A
subgraph of (V,E, source, target) is a graph (V ′, E ′, source′, target′) such that V ′ ⊆ V ,
E ′ ⊆ E and source′ and target′ are the restrictions of source and target to E ′, respectively.
A strongly connected component (SCC) is a maximal strongly connected subgraph. We
say that a SCC is final if there is no edge leaving it. We say that a vertex v is recurrent if
it belongs to some SCC, and that it is transient on the contrary. A sink is a vertex with
no outgoing edges.

A pointed graph is a graph together with a non-empty subset of initial vertices I ⊆ V .
We say that a vertex v is accessible (or reachable) from a vertex v0 if there exists a finite
path from v0 to v. We say that a vertex v of a pointed graph is accessible if it is accessible
from some initial vertex. A set of states B ⊆ V is accessible if every state v ∈ B is
accessible. The accessible part of a pointed graph is the set of accessible states. We define
analogously the accessible part from a vertex v0.

1In this work, we will use the term graph to denote what is sometimes called a directed multigraph
(edges are directed, and multiple edges between two vertices are allowed).

https://en.wikipedia.org/wiki/Multigraph
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1 Games

1.1 Games and strategies

Games on graphs. A game is an edge-coloured graph together with a set of winning
sequences of colours and a partition of the vertices into those controlled by a player named
Eve and her opponent, named Adam. Formally, given a pointed graph2 G with vertices
V and edges E, a game over G is a tuple G = (G, VEve, VAdam,Γ, col : E → Γ ∪ {ε},W ),
with V = VEve t VAdam and W ⊆ Γω. We call G the underlying graph of G, I its set of
initial vertices and W its winning condition (or objective). We say that G is an W -game
if it uses W as winning condition.3 We allow ε-edges (that we also call uncoloured) –
edges e such that col(e) = ε – but we impose the condition that no infinite path in G
is composed exclusively of ε-edges. For technical convenience, we make the assumptions
that G contains no sink.

An Eve-game is a game G in which all the vertices are controlled by Eve, that is,
V = VEve. A game is ε-free if it does not contain any uncoloured edge.

Unless stated otherwise, we take the point of view of player Eve; expressions as “win-
ning” will implicitly stand for “winning for Eve”, and strategies will be defined for her.

Plays. In a game, a pebble in placed in an initial vertex, which players move from
one vertex to another for an infinite amount of time. The player who owns the vertex v
where the pebble is placed chooses an edge e ∈ Out(v) and the pebble travels through
this edge to its target, producing colour col(e). In this way, they produce a path ρ =
e0e1e2 · · · ∈ Path∞(G), that we call a play. We denote col(ρ) the sequence of colours
labelling ρ omitting the ε labels (we remark that, if ρ is infinite, col(ρ) ∈ Γω, since there
are no cycles entirely labelled by ε). We refer to col(ρ) as the output of play ρ. We say
that a play ρ is winning (for Eve) if col(ρ) ∈ W and that it is losing (or winning for
Adam) on the contrary. A subplay ρ′ of ρ is a strict prefix of it: ρ′ @ ρ.

Strategies. A strategy (for Eve) is a partial function strat : Pathfin(G) ⇀ E , defined
for finite plays ending in a vertex in VEve that tells Eve which move to choose after any
possible finite play. We say that a play ρ ∈ Pathω(G) is consistent with the strategy strat
if after each subplay ρ′ @ ρ ending in a vertex controlled by Eve, the next edge in ρ is
strat(ρ′). We say that strategy strat is winning from v ∈ V if all infinite plays starting in
v consistent with strat are winning. Strategies for Adam are defined symmetrically.

Winning regions. We say that Eve wins the game G from v if she has a strategy
that is winning from v. Given a game G with I ⊆ V as set of initial vertices, the winning
region of G, written WinEve(G), is the set of initial vertices v ∈ I such that Eve wins G
from v. We say that a strategy is optimal (for Eve) if it is winning from WinEve(G).

2We remark that in our definition, we require G to be a pointed graph, that is, we specify a set
of initial vertices I. This is to be interpreted as follows: these are the vertices that may be chosen to
initialise the game; we will be interested in plays starting from some vertex in the set I. In most cases,
I will be either a singleton, or all of V (see also Lemmas II.19 and II.20).

3As it will be the case in multiple future definitions, the set of colours Γ is of key importance when
studying properties of the objective W . As in most cases it will be clear from the context, we do not
include it in the notations.
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F Remark I.1. Eve always has an optimal strategy, that is, there is a strategy stratopt that
is winning from v for every v ∈ WinEve(G).

The full winning region of G for Eve is her winning region in the game GV , obtained
by setting all vertices to be initial; that is, the set of vertices v ∈ V such that Eve wins
the game G from v.

We will use the expression solve a game G to refer to the algorithmic problem of
determining the winning region of G.

Determinacy. We say that a game G is determined if from any initial vertex v, either
Eve or Adam have a winning strategy from v. In this work, all games will be determined,
as by Martin’s theorem [Mar75] games using Borel objectives are determined, and all
objectives that we will consider are Borel.

Graphical representation of games. We use circles to represent vertices con-
trolled by Eve and squares to represent those controlled by Adam. We will allow ourselves
to consider games with edges labelled by a finite word w = w1w2 . . . wn ∈ Σ∗. Formally,
such transitions will stand for a sequence of n transitions, with n−1 intermediate vertices.
We represent this kind of transitions by a wiggly arrow. We will also use this notation for
infinite words: for w ∈ Σω we write v w for an infinite sequence of edges labelled with the
letters of w starting from v. In this case, the resulting game graph is necessarily infinite.

1.2 Strategy complexity: Positionality and memory

Positionality. We say that a strategy strat : Pathfin(G) ⇀ E is positional if there
exists a mapping σ : VEve → E such that for every finite play ρ ending in a vertex controlled
by Eve we have:

strat(ρ) = σ(last(ρ)).

That is, a strategy is positional if the choice of the next transition only depends on the
current position, and not on the history of the path.

We say that Eve (resp. Adam) can win positionally from a subset A ⊆ V if there is a
positional strategy stratpos that is winning from any vertex in A. We say that Eve (resp.
Adam) can play optimally in G using a positional strategy if she can win positionally from
her winning region.

An objective W ⊆ Γω is half-positional if for every W -game, Eve can play optimally
using positional strategies.4 We say that W is bipositional if both W and W are half-
positional, or, equivalently, if both Eve and Adam can play optimally using positional
strategies in W -games. If X is a subclass of W -games (notably, finite, ε-free and Eve-
games), we say that W is half-positional over X games if for every W -game in X , Eve
can play optimally using positional strategies. The same terminology is used for biposi-
tionality.

F Remark I.2. Our notion of positionality uses what sometimes are called uniform strate-
gies, that is, we require that a single positional strategy suffices to win independently of the

4As in other definitions, the notion of half-positionality depends not only on the set W , but also on
the set of colours Γ. As the set of colours will always be clear from the context, we omit including Γ in
the notations.
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initial vertex. This notion is strictly stronger than the non-uniform version in which we al-
low to use different strategies depending on the initial vertex. Said differently, Remark I.1
does not hold if we require strategies to be positional. See Figure 3 for an example.

v1 v2
b

a

b
a

F Figure 3. Consider the game above, where Eve controls both vertices v1 and v2. Let
W = ab(a + b)ω be the winning condition of the game, that is, Eve wins if the play
starts by ab. She has two positional strategies strat1 and strat2 winning from v1 and v2,
respectively. However, no positional strategy is winning from the entire winning region
{v1, v2}.

Memory structures. A memory skeleton over a set X is a tupleM = (M,m0, µ)
where M is a set of memory states, m0 ∈M is an initial memory state and µ : M ×X →
M is an update function. We extend the function µ to sequences in X∗ by induction:
µ(m, ε) = m, and µ(m,x0 . . . xn−1xn) = µ(µ(m,x0 . . . xn−1), xn).

A memory structure for a game G with set of edges E is a memory skeleton over E
together with a next-move function next-move : VEve×M → E. Such a memory structure
implements a strategy stratM as:

stratM(ρ) = next-move(target(ρ), µ(m0, ρ)), for all ρ ∈ Pathfin(G) ending in VEve.

The size of a memory structure is the cardinality of its set M of states.

Memory requirements. We say that Eve (resp. Adam) can play optimally in G
using memory k if she (resp. he) has a strategy stratk implemented by a memory structure
of size at most k that is winning from every vertex in her winning region Once again, we
highlight the use of uniformity of strategies in this definition.

We define the memory requirements of an objectiveW ⊆ Γω, as the least integer k such
that Eve can play optimally in W -games using memory k. We remark that an objective
W is half-positional if and only if its memory requirements equal 1.

2 Automata

2.1 Automata over infinite words

Non-deterministic automata. A (non-deterministic) automaton over the alpha-
bet Σ is a tuple A = (Q,Σ, I,Γ,∆,W ), where Q is a set of states, Σ is a set of letters
called the input alphabet, I ⊆ Q is a non-empty set of initial states, Γ is a set of output
colours, ∆ ⊆ Q×Σ×Γ×Q is a set of transitions andW ⊆ Γω is a set of infinite sequences
of colours, called the acceptance set.
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We write q a:c−→ q′ to denote the transition (q, a, c, q′) ∈ ∆, and q w:u
q′ to represent

the existence of a path from q to q′ labelled with the input letters w ∈ Σ∗ and output
colours u ∈ Γ∗.

The underlying graph of A is the pointed graph having Q as set of vertices, ∆ as set
of edges and I as set of initial vertices. We refer to the tuple (col,Γ,W ) as the acceptance
condition of A. For a ∈ Σ and q ∈ Q, an a-self loop over q is a transition q a:c−→ q.

For a state q ∈ Q, we write Aq to denote the automaton obtaining by setting I = {q}.
We define:

δ(q, a) = {(q′, c) ∈ Q× Γ | there is q a:c−→ q′ ∈ ∆},
and we will sometimes replace ∆ by δ in the representation of automata. Also, for a
transition e = (q, a, c, q′), we let let(e) = a and col(e) = c be the projection into the input
letter and output colour, respectively.
F Remark I.3. We remark that, if necessary (and when complexity aspects are not under
consideration), we can suppose that Γ is the set of transitions ∆ and col is the identity
function. Indeed, an equivalent acceptance condition can always be defined by using the
acceptance set W ′ = {w ∈ Eω | col(w) ∈ W} ⊆ Eω.

The size of an automaton is its number of states, and we note it |A|

State-based automata. We emphasise that in our definition of automata, the ac-
ceptance condition is put over the transitions. This will be a crucial element in all the
chapters of this thesis (see also Chapter VI). We introduce automata with the acceptance
condition over the states for comparison purposes.

A state-based automaton is a tuple A = (Q,Σ, I,Γ,∆st, colst,W ), where all the ele-
ments are as in the paragraph above except for the set of transitions, which is a subset
∆st ⊆ Q× Σ×Q and the colouring function colst : Q→ Γ.

Determinism and completeness. We say that an automaton A is deterministic if
I is a singleton and for every q ∈ Q and a ∈ Σ, |δ(q, a)| ≤ 1. We say that A is complete if
for every q ∈ Q and a ∈ Σ, |δ(q, a)| ≥ 1. We remark that we can suppose that automata
are complete without loss of generality by adding an extra state.

For deterministic automata, we will sometimes write col(q, a) to denote the output
colour of the unique transition leaving from the state q reading letter a.

Runs and recognition of languages. Given an automaton A and a word w ∈ Σ∞,
a run over w in A is a path

ρ = (q0, w0, c0, q1)(q1, w1, c1, q2)(q2, w2, c2, q3) . . .
such that q0 ∈ I. The output of such a run is col(ρ) = c0c1c2 · · · ∈ Γ∞, and we say that
the run is accepting if col(ρ) ∈ W , and rejecting otherwise.5 A word w ∈ Σω is accepted
by A if it exists an accepting run over w. We remark that if A is deterministic (resp.
complete), there is at most one (resp. at least one) run over w for each w ∈ Σω.

The language accepted (or recognised) by an automaton A is the set
L(A) = {w ∈ Σω | w is accepted by A}.

Two automata recognising the same language are said to be equivalent.
5Although we define runs over finite and infinite words, we will be interested in the acceptance of

runs only over infinite words.
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Subautomata. Given a subgraph G′ = (Q′,∆′) of the underlying graph of an au-
tomaton A and a subset of states I ′ ⊆ Q′, the subautomaton induced by G′ with initial
states I ′ is the automaton having Q′ as set of states, ∆′ as set of transitions, I ′ as set
of initial states, and whose acceptance set is that of A. To specify a subgraph, we will
sometimes only give the subset of transitions ∆′.

Closed subautomata and X-Final SCC. Let A be an automaton, and let X ⊆ Σ
be a subset of the input alphabet. We say that a set of states S ⊂ Q is X-closed if for
every state q in S and every transition q a:c−→ q′, the state q′ is in S. An X-final strongly
connected component (X-FSCC ) of A is an final SCC in the graph obtained by taking
the restriction of the underlying graph of A to the edges labelled by letters in X. We
remark that the states of a X-FSCC form an X-closed, and that a subset S ⊆ Q is the
set of states of an X-FSCC if and only if:

] for any two states q, q′ ∈ S there is a finite word w ∈ X∗ labelling a finite path from
q to q′, and

] if q ∈ S and there is a finite path from q to q′ labelled with a word w ∈ X∗, then
q′ ∈ S.

Lemma I.4 (Existence of X-FSCC).
Let A be a complete automaton. For every subset X ⊆ Σ, A contains an accessible

X-FSCC.

Proof. As any graph without sinks contains some final SCC, the accessible part of the
restriction of A to edges labelled by letters in X contains a final SCC. By completeness
of A, one such final SCC has to be an X-closed subgraph, so it is an X-FSCC. J

Automaton structures and acceptance conditions on top of them. An au-
tomaton structure over Σ is a tuple S = (Q,Σ, I,∆), with ∆ ⊆ Q × Σ × Q. We apply
the terms deterministic and complete to automaton structures in the natural way. An
acceptance condition on top of S is a tuple (col,Γ,W ), with col : ∆ → Γ and W ⊆ Γω.
This naturally defines an automaton A = (Q,Σ, I,Γ,∆′,W ), with ∆′ ⊆ Q × Σ × Γ × Q
containing the tuples (q, a, c, q′) such that (q, a, q′) ∈ ∆ is assigned colour c via col. We
say that A is an automaton on top of S.

F Remark I.5. Given a automaton structure over Σ that is complete, and a language L ⊆
Σω, we can trivially define an acceptance condition on top of S obtaining an automaton
recognising L. It suffices to take Γ = Σ, colour transitions with their input letters and use
W = L as acceptance set.

2.2 History-deterministic automata

Sound resolvers. Let A = (Q,Σ, I,Γ,∆,W ) be a (non-deterministic) automaton.
A resolver for A is a pair (r0, r), consisting of a choice of an initial state,6 r0 ∈ I, and
a function r : ∆∗ × Σ → ∆ such that, for all words w = w0w1 · · · ∈ Σω, the sequence
e0e1 · · · ∈ ∆ω, called the run induced by r over w and defined by ei = r(e0 . . . ei−1, wi) is



38 General preliminaries

actually a run over w in A starting from r0. We write r0
w

r q to denote that the run
induced by r over w lands in q

We say that the resolver is sound if it satisfies that, for every w ∈ L(A), the run
induced by r over w is an accepting run. In other words, r should be able to construct
an accepting run in A letter-by-letter with only the knowledge of the word so far, for all
words in L(A).

History-determinism. An automaton A is called history-deterministic (shortened
HD) if there is a sound resolver for it. History-deterministic automata are sometimes
called good-for-games in the literature; a definition of good-for-gameness and further
explanations on this terminology will be given in Section II.1.3.

Determinisability by pruning. We say that we can prune A into A′ if the latter
automaton can be obtained by removing transitions from A. Formally, there is a subset
∆′ ⊆ ∆ and initial states I ′ ⊆ I such that A′ is the subautomaton induced by ∆′ with
initial states I ′.

We say that an automaton A is determinisable by pruning if it can be pruned into an
equivalent deterministic automaton.
F Remark I.6. Deterministic automata are history-deterministic and they admit a unique
resolver. Automata that are determinisable by pruning are also history-deterministic.

Example I.7 (History-deterministic but not determinisable by pruning automaton).
In Figure 4, we show an automaton A over Σ = {a, b, c} that is not determinisable

by pruning but is history-deterministic. Its set of output colours is Γ = {1, 2} and
its acceptance set is W = {u ∈ {1, 2}ω | u contains finitely many 1s} (this is a coBüchi
condition, as introduced in Section I.3). It is easy to check that A recognises the language:

L(A) = {w ∈ Σω | Inf(w) ⊆ {a, b} or Inf(w) ⊆ {b, c}}.

A resolver for A only has to take a decision when the automaton is in the state q1
and letter b is provided. In this case, a sound resolver is obtained by using the following
strategy: if the last letter seen was a, we take the transition leading to state q0; if it was c,
we take the transition leading to q2. This strategy ensures that, if eventually only letters
in {a, b} (resp. {b, c}) are seen, the run will end up in state q0 (resp. q2) and remain there
indefinitely, without producing any colour 1.

Reachability in HD automata. We say that an state q is reachable using the
resolver (r0, r) if for some word w ∈ Σ∗, r0

w
r q. That is, some run induced by r over

some word w ∈ Σ∗ arrives to q.
Next remark indicates that we can suppose without loss of generality that all states

in an HD automaton are reachable using some sound resolver.
6Sometimes in the literature [Bok+13, BL23b, HP06] the initial state r0 is not required to be specified.

This would permit to choose it after the first letter w0 is given. We consider that a resolver constructing
a run without guessing the future should pick the initial state before the first letter is revealed, hence the
introduction of r0 in the definition of a resolver. The suitability of this choice will be further supported
by the generalisation of HD automata to HD mappings (Section II.2.3).
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q0 q1 q2

a, b : 2

c : 1

a, b : 2 b, c : 2

a : 1

b, c : 2

F Figure 4. An example of a history-deterministic automaton that is not determinisable
by pruning. The acceptance set is W = {u ∈ {1, 2}ω | u contains finitely many 1s}. An
arrow of the form q

a,b:2−−→ q′ represents two different transitions with input letters a and
b, respectively. The initial state q0 is marked with one incoming arrow.

F Remark I.8. Let A be an HD automaton, let (r0, r) be a sound resolver for it and let
Ã be the subautomaton induced by the set of states reachable using (r0, r), with initial
state r0. Then, L(A) = L(Ã), and Ã is HD.

Simplification for prefix-independent languages. The following lemmas pro-
vide some simplifications for automata recognising prefix-independent languages. To-
gether with Remark I.8, Lemma I.9 indicates that when dealing with HD automata for
this kind of languages, we can suppose that any state of the automaton is the initial one.
In particular there will be no need to specify the initial states of subautomata induced by
subgraphs of HD automata recognising prefix-independent languages.

Lemma I.9 (Choice of an initial state).
Let A be a history-deterministic automaton recognising a prefix-independent language

and using as acceptance set a prefix-independent language. For any state q of A that
is reachable using some sound resolver, L(A) = L(Aq). Moreover, Aq is also history-
deterministic. In particular, if A is deterministic, this is the case for any reachable
state q.

Proof. Let (r0, r) be a sound resolver for A such that q is reachable using (r0, r), and fix a
word w0 ∈ Σ∗ such that r induces the run ρ0 = r0

w0
r q. We first show that L(Aq) ⊆ L(A).

Let w ∈ Σω be a word accepted from q. Then, w0w admits an accepting run from the
original initial state (by prefix-independence of the acceptance set), so w0w ∈ L(A), and
by the prefix-independence of L(A), w ∈ L(A) too.

For the converse direction, we define a sound resolver (r′0, r′) for Aq. We let r′0 = q,
and r′(ρ, a) = r(ρ0ρ, a) be the strategy that acts as the resolver r assuming that ρ0 has
happened in the past. It is clear that for every word w ∈ Σω, the run induced by (r′0, r′)
over w has a common suffix with the run induced by (r0, r) over w0w. Therefore, by the
prefix-independence assumptions:

w ∈ L(A) ⇐⇒ w0w is accepted using (r0, r) ⇐⇒ w0w is accepted using (r′0, r′). J

Finite memory resolvers. Let A = (Q,Σ, I,Γ,∆,W ) be a non-deterministic au-
tomaton. A memory structure for A is a memory skeleton M over ∆ together with a
function σ : Q ×M × Σ → ∆, where M is the set of states of M. We say that (M, σ)
implements a resolver (q0, r) if for all a ∈ Σ, r(ε, a) = σ(q0,m0, a) and for all ρ ∈ ∆+,
r(ρ, a) = σ(target(ρ), µ(m0, ρ), a), where m0 is the initial state ofM and µ : M×∆∗ →M
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is its update function. For a state q ∈ Q and m ∈ M , we say that (q,m) is reachable
using r if there is some word w ∈ Σ∗ such that ρ = q0

w
r q and µ(m0, ρ) = m.

Lemma I.10 ([Bok+13]).
Every history-deterministic parity automaton admits a sound resolver implemented

by a finite memory structure.

3 Main classes of acceptance conditions and their representation

3.1 Main classes of acceptance conditions

We now define the main classes of languages used by ω-regular automata as acceptance
sets. We let Γ stand for a finite set of colours.

Büchi. Given a subset B ⊆ Γ, we define the Büchi language associated to B as:

BuchiΓ(B) = {w ∈ Γω | Inf(w) ∩B 6= ∅}.

We say that a language L ⊆ Γω is a Büchi language if there is a set B ⊆ Γ such
that L = BuchiΓ(B).

coBüchi. Given a subset B ⊆ Γ, we define the coBüchi language associated to B as:

coBuchiΓ(B) = {w ∈ Γω | Inf(w) ∩B = ∅}.

We say that a language L ⊆ Γω is a coBüchi language if there is a set B ⊆ Γ such
that L = coBuchiΓ(B).

Generalised Büchi. Given k non-empty subsets B1, . . . , Bk ⊆ Γ, we define the gener-
alised Büchi language associated to B = {B1, . . . , Bk} as

genBuchiΓ(B) = {w ∈ Γω | Inf(w) ∩Bi 6= ∅ for all i ∈ {1, . . . , k}}.

We say that a language L ⊆ Γω is a generalised Büchi language if there is a family
of sets B = {B1, . . . , Bk} such that L = genBuchiΓ(B).

Generalised coBüchi. Given k non-empty subsets B1, . . . , Bk ⊆ Γ, we define the gen-
eralised coBüchi language associated to B = {B1, . . . , Bk} as

genCoBuchiΓ(B) = {w ∈ Γω | Inf(w) ∩Bi = ∅ for some i ∈ {1, . . . , k}}.

We say that a language L ⊆ Γω is a generalised coBüchi language if there is a family
of sets B = {B1, . . . , Bk} such that L = genCoBuchiΓ(B).

Rabin. A Rabin language is represented by a family R = {(g1, r1), . . . , (gr, rr)} of Rabin
pairs, where gj, rj ⊆ Γ. The Rabin language associated to R is defined as:

RabinΓ(R) = {w ∈ Γω | [Inf(w) ∩ gj 6= ∅ and Inf(w) ∩ rj = ∅] for some index j}.

If [Inf(w) ∩ gj 6= ∅ and Inf(w) ∩ rj = ∅], we say that w is accepted by the Rabin pair
(gj, rj). For c ∈ Γ, we will say that a Rabin pair (gj, rj)) is green in c if c ∈ gj,
red in if c ∈ rj, or that is orange in if none of the previous occur. We say that a
language L ⊆ Γω is a Rabin language if there is a family of Rabin pairs R such that
L = RabinΓ(R).
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Streett. The Streett language associated to a family R = {(g1, r1), . . . , (gr, rr)} of Rabin
pairs is defined as:

StreettΓ(R) = {w ∈ Γω | [Inf(w) ∩ gj 6= ∅ implies Inf(w) ∩ rj 6= ∅] for all indices j}.

We say that a language L ⊆ Γω is a Streett language if there is a family of Rabin
pairs R such that L = StreettΓ(R).

Parity. We define the parity language over the alphabet [dmin, dmax] ⊆ N as:

parity[dmin,dmax] = {w ∈ [dmin, dmax]ω | min Inf(w) is even}.

We say that a language L ⊆ Γω is a [dmin, dmax]-parity language if there is a
mapping φ : Γ → [dmin, dmax] such that for all w ∈ Γω, w ∈ L if and only if
φ(w) ∈ parity[dmin,dmax]. We say that L is a parity language if there are dmin, dmax ∈ N
such that L is a [dmin, dmax]-parity language. When using exclusively parity lan-
guages, we will refer to colours as priorities.

Muller. We define the Muller language associated to a family F ⊆ 2Γ
+ of non-empty

subsets of Γ as:
MullerΓ(F) = {w ∈ Γω | Inf(w) ∈ F}.

We say that a language L ⊆ Γω is a Muller language if there is a family F ⊆ 2Γ
+

such that L = MullerΓ(F). We will often refer to sets in F as accepting sets and
sets not in F as rejecting sets.

We drop the subscript Γ (resp. [dmin, dmax]) whenever the set of colours is clear from
the context. We remark that all languages of the classes above are prefix-independent
(for all w ∈ Γω and u ∈ Γ∗, uw ∈ L if and only if w ∈ L).

We say that an automaton is an X automaton, for X one of the classes of languages
above, if its acceptance set is an X language. (We use analogous terminology for games
or acceptance conditions.) In the case of parity automata, we will always suppose that
the set of colours is a subset of N and φ is the identity function. We let DPA stand for
deterministic parity automaton and DMA for deterministic Muller automaton.

We refer to the survey [Bok18] for a more detailed account on different types of ac-
ceptance conditions.
F Remark I.11. A language L ⊆ Γω is a Muller language if and only if it satisfies:

For all w,w′ ∈ Γω, if Inf(w) = Inf(w′), then w ∈ L ⇐⇒ w′ ∈ L.

Also, L is a Muller language if and only if it can be recognised by a deterministic
Muller automaton with one state.

Example I.12.

In Figure 5 we show three different types of automata over the alphabet Σ = {a, b}
recognising the language of words that either eventually only contain letter b, or, after an
even number of occurrences of letter b, only contain letter a. Formally:

L = {w ∈ Σω | w = ubω or (w = uaω and u has an even number of ‘b’s )}.
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a : 1

b : 1

a : 0
b : 1

a : 1

a, b : 0

a : 0 b : 0

ND Büchi automaton

a : α
b : β

b : β

a : λ

Det. Muller automaton

F = {{α}, {β}}

a : 2

b : 1
a : 1

b : 2

b : 2a : 1

Det. coBüchi automaton

F Figure 5. Different types of automata recognising the language L = {w ∈ Σω | w =
ubω or (w = uaω and u has an even number of ‘b’s )}.

Inclusions between classes
We observe that there are many inclusions between the classes of languages that we

have introduced. For example, parity languages are Rabin languages, and generalised
Büchi languages are Streett languages. In particular, all classes above are special cases
of Muller languages. The relations between these classes of languages are outlined in
Figure 6.

Moreover, we note that Büchi languages are exactly [0, 1]-parity languages and coBüchi
languages are exactly [1, 2]-parity languages.

Büchi

coBüchi

gen. Büchi

gen. coBüchi

Parity
Streett

Rabin
Muller

F Figure 6. Relations between subclasses of Muller languages. An arrow from a class
X towards a class Y means that if a language L ⊆ Γω is an X language, then it is also
a Y language. Arrows obtained by transitivity have been omitted. Inclusions are strict:
if an arrow from X to Y cannot be obtained by transitivity, then there are X languages
that are not Y languages [Zie98].

F Remark I.13. We remark that Streett languages are dual to Rabin ones: for a family
of Rabin pairs R over a set of colours Γ, the following holds

RabinΓ(R) = Γω \ StreettΓ(R).

Similarly, (generalised) coBüchi languages are dual to (generalised) Büchi ones.

3.2 Representation of automata

In some parts of this thesis – mainly, in Chapter II – we will focus in the expressive
power of acceptance conditions, and the results we present will not depend on how they
are represented. On the other hand, in other parts (Chapter III, Sections II.5, etc...), we
will consider decision problems for which it will be important to specify how we represent
automata and what is the size of the input of the problem. Muller conditions are those
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acceptance conditions for which the question of the representation is more delicate, as
they admit multiple representations having very different properties. In this thesis, we
will examine only a small number of decision problems involving Muller automata, so
it will not be necessary for us to provide a comprehensive description of the different
representation of Muller conditions.

F Remark I.14. We can suppose without loss of generality that automata under considera-
tion do not contain multiple transitions between the same two states labelled with the same
input letter, that is, two transitions of the form q

a:α−−→ q′, q a:β−−→ q′ (see Appendix B.5).

Representation of parity, Rabin and generalised Büchi automata
A parity automaton A = (Q,Σ, I, [dmin, dmax],∆, parity) is represented by the sets Q,

I and ∆. The size of its representation is then O(|Q|+ |∆||dmax|), where |dmax| is the size
of the representation of the integer dmax (for our purposes, it will not make a difference
whether it is represented in binary or unary). By Remark I.14, we can assume that
|∆| ≤ |Q|2|Σ|, and we can moreover assume that dmax ≤ |∆|. All in all, the size of the
representation of a parity automaton is polynomial in its number of states, which will be
enough precision for our purposes.

Similarly, a generalised Büchi (or generalised coBüchi) automaton A = (Q,Σ, I,Γ,∆,
genBuchiΓ(B)) is represented by the sets Q, I, ∆ and B = {B1, . . . , Bk}. The size
of its representation is then O(|Q| + |∆| + k|Γ|). As we can assume that for each i,
Bi * ∪j 6=iBj, we can suppose that k ≤ |Γ| and therefore we can also assume that the
size of the representation of a generalised Büchi automaton is polynomial in its number
of states.

A Rabin (or Streett) automaton A = (Q,Σ, I,Γ,∆,RabinΓ(R)) is represented by the
sets Q, I, ∆ and R = {(g1, r2), . . . , (gr, rr)}. The size of its representation is then O(|Q|+
|∆| + 2r|Γ|). By Remark I.14, we can assume that |∆| ≤ |Q|2|Σ|, and we can moreover
assume that |Γ| ≤ |∆|. All in all, the size of the representation of a Rabin automaton is
polynomial in |Q|+ r, where r is the number of Rabin pairs it uses.

Representation of Muller automata
In practice, there exists a variety of ways to represent Muller languages; we cite here

some of them and refer to [Bok19, Hug23] for a more detailed account. See also Section II.5
for a comparison between the sizes of the different representations.

Emerson-Lei conditions. A family F ⊆ 2Γ
+ is described as a positive boolean formula

over the primitives Inf(c) and Fin(c), for c ∈ Γ. Automata using Emerson-Lei
conditions are commonly used in practice, as they offer a succinct representation of
the acceptance condition [Bab+15].

Explicit Muller. A family F ⊆ 2Γ
+ can be described explicitly as a list of the subsets

appearing in F .
Zielonka tree. We will define the Zielonka tree of a family F ⊆ 2Γ

+ in Section II.3.1. The
Zielonka tree is a representation of F that captures all the fundamental information
about it.

Zielonka DAG. The Zielonka DAG is a structure obtained from the Zielonka tree, and
that can be more succinct that the latter. We formally define it in Section II.3.1. It
has been first studied by Hunter and Dawar [HD05] and recently, Hugenroth has put
forward its good algorithmic properties [Hug23]. Our results will further support
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the idea that the Zielonka DAG is a fairly succinct representation that neverthe-
less allows to solve many important decision problems about Muller automata in
polynomial time (see e.g. Theorems II.9, II.10 and II.11).

Parity automata. AMuller language MullerΓ(F) can be described by a DPA recognising
it. As we will prove in Theorems II.2 and Proposition III.18, this representation is
equivalent as the one using the Zielonka tree of F .

The complexity and practicality of algorithms manipulating Muller automata and
Muller games may greatly differ depending on which of these representations is used [Hor08,
HD05] (see also Section II.5.1). However, as commented previously, most of the results
we present will not depend on the representation of the Muller acceptance condition. The
representation of Muller automata will be important specially in Section II.5 of Chapter II.

3.3 Classic results

We state some well-known results about ω-automata that will be used in several points
of the manuscript.

Proposition I.15 (Deciding language containment of Rabin automata [CDK93]).
Let A1 and A2 be two deterministic Rabin automata. We can decide in polynomial

time on the representation of the automata whether L(A1) ⊆ L(A2).

Corollary I.16 (Deciding equivalence of automata).
We can decide in polynomial time the containment and equivalence of de-

terministic automata using acceptance conditions of some of the types in
{parity, Rabin, Streett, generalised Büchi, generalised coBüchi}.

Lemma I.17 (Folklore).
Let L1, L2 ⊆ Σω be two ω-regular languages. If L1 * L2, there are finite words

w1, w2 ∈ Σ∗ such that w1w
ω
2 ∈ L1 and w1w

ω
2 /∈ L1.

4 ω-regular languages, cycles and the parity hierarchy

4.1 ω-regular languages

The class of ω-regular languages plays a central role in the theory of formal languages
and verification. The significance of ω-regular languages is (partly) due to the robustness
of its definition, as they admit multiple equivalent characterisations relating different areas
of study.

Proposition I.18 ([Mos84, McN66]).
Let L ⊆ Σω be a language of infinite words. The following properties are equivalent:
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] L can be recognised by a non-deterministic Büchi automaton.
] L can be recognised by a deterministic parity automaton.
] L can be recognised by a non-deterministic Muller automaton.

A language satisfying the previous conditions is called ω-regular. Many other equiva-
lent definitions exist. Notably, ω-regular languages are exactly the languages that can be
defined using monadic second-order logic [Bü62], those that can be described by using ω-
regular expressions [McN66], and those that can be recognised by an ω-semigroup [PP04,
Chapter 2].

4.2 Cycles

Let A be an automaton with Q and ∆ as set of states and transitions, respectively. A
cycle of A is a subset ` ⊆ ∆ such that there is a finite path q0

e0−→ q1
e1−→ q2 −→ . . . qr

er−→ q0
with ei ∈ ∆ and ` = {e0, e1, . . . , er}. We remark that we do not require this path to
be simple, that is, edges and vertices may appear multiple times. The set of states of
the cycle ` is States(`) = {q0, q1, . . . qr}. We say that two cycles `1, `2 have some state in
common if States(`1) ∩ States(`2) 6= ∅. The set of cycles of an automaton A is written
Cycles(A). We will consider the set of cycles ordered by inclusion. For a state q ∈ Q,
we note Cycles

q
(A) the subset of cycles of Q containing q. We remark that a state q

is recurrent in the underlying graph of A if and only if Cycles
q
(A) 6= ∅. We note that

Cycles
q
(A) is closed under union; moreover, the union of two cycles `1, `2 ∈ Cycles(A) is

again a cycle if and only if they have some state in common.
Let A be a Muller automaton with acceptance condition (col,Γ,MullerΓ(F)). Given

a cycle ` ∈ Cycles(A), we say that ` is accepting (resp. rejecting) if col(`) ∈ F (resp.
col(`) /∈ F). We remark that the maximal cycles of an automaton are exactly the sets of
edges of the strongly connected components of its underlying graph. In particular, we can
apply the adjectives accepting and rejecting similarly to the SCCs of a Muller automaton.

We note that, by definition, the acceptance of a run in a Muller automaton only
depends on the set of transitions taken infinitely often. For any infinite run ρ, the set
of transitions taken infinitely often forms a cycle, Inf(ρ) = `ρ ∈ Cycles(A), and ρ is an
accepting run if and only if `ρ is an accepting cycle.

4.3 The deterministic and history-deterministic parity hierarchy

As we have mentioned, every ω-regular language can be recognised by a deterministic
parity automaton, but the number of colours required to do so might be arbitrarily large.
We can assign to each ω-regular language the optimal number of colours needed to recog-
nise it using a deterministic automaton. We obtain in this way the deterministic parity
hierarchy (called Mostowski hierarchy in the context of tree-automata [CL08]), having its
origins in the works of Wagner [Wag79], Kaminski [Kam85], and Mostowski [Mos84]. We
represent this hierarchy in Figure 7. This hierarchy is strict, that is, for each level of the
hierarchy there are languages that do not appear in lower levels [Wag79]. It is known
that we can decide in polynomial time the parity index of an ω-regular language repre-
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sented by a deterministic parity automaton [CM99], but this problem is NP-complete if
the language is given by a deterministic Rabin or Streett automaton [KPB95].

[0, 0] [1, 1]

Weak1

[0, 1] [1, 2]

Weak2

[0, 2] [1, 3]

Weak3

... ...
...

F Figure 7. The (history-)deterministic parity hierarchy.

Definition I.19 (Parity index of a language).
Let L ⊆ Σω be an ω-regular language. We say that L has parity index at least [0, d−1]

(resp. [1, d]) if any DPA recognising L with a parity acceptance condition over the set
of colours [dmin, dmax] satisfies that dmax − dmin ≥ d − 1, and in case of equality dmin is
even (resp. odd). We say that the parity index of L is [0, d− 1] (resp. [1, d]) if, moreover,
there is a DPA recognising L with a parity acceptance condition over the set of colours
[0, d− 1] (resp. [1, d]).

We say that L has parity index at least Weakd if any DPA recognising L with a parity
acceptance condition over the set of colours [dmin, dmax] satisfies that dmax− dmin ≥ d. We
say that the parity index of L is Weakd if, moreover, there are DPAsA1 andA2 recognising
L with parity acceptance conditions over the sets of colours [0, d] and [1, d+1], respectively.

Throughout the thesis, whenever we refer to the parity index of a language L, it will
implicitly imply that L is ω-regular.

If follows from the definition that for each ω-regular language L, there is a unique
d such that either L has parity index [0, d − 1], [1, d] or Weakd, and these options are
mutually exclusive. See also Definition II.1 for more details about languages of parity
index Weakd.

As we will show in Section II.6.2, the parity index also applies to Muller automata:
any deterministic or HD Muller automaton recognising an ω-regular language of parity
index [0, d− 1] uses at least d different colours (Proposition II.117).

The following proposition states that the notion of parity index of a language does
not change by using HD automata instead of deterministic ones in the definition. How-
ever, for non-deterministic automata, the hierarchy collapses at level [0, 1] (Büchi au-
tomata) [McN66].

Proposition I.20 (Parity index for HD automata [BL19, Theorem 19]).
Let A be an HD parity automaton recognising a language L, and suppose that the

parity index of L is [0, d − 1] (resp. [1, d]). Then, the acceptance condition of A uses at
least d output colours, and if it uses exactly d colours, the least of them is even (resp.
odd). If the parity index of L is Weakd, then A uses at least d+ 1 output colours.
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We show next that the parity index of an ω-regular language can be read directly from
a deterministic Muller automaton.

Let A be an automaton using the Muller acceptance condition (col,Γ,MullerΓ(F)). A
d-flower over a state q of A is a set of d cycles `1, `2, . . . , `d ∈ Cycles

q
(A) such that `i ) `i+1

and col(`i) ∈ F ⇐⇒ col(`i+1) /∈ F . We say that it is a positive flower if col(`1) ∈ F and
that it is negative otherwise.

Lemma I.21 (Flower Lemma [NW98, Wag79]).
Let A be a DMA. If A admits an accessible positive (resp. negative) d-flower, then

L(A) has parity index at least [0, d−1] (resp. [1, d]). If A admits both accessible positive
and negative d-flowers, then L(A) has parity index at least Weakd.

Conversely, if an ω-regular language L has parity index at least [0, d− 1] (resp. [1, d]),
then any DMA recognising L admits a positive (resp. negative) d-flower.

F Remark I.22. Deterministic generalised Büchi (resp. generalised coBüchi) automata
have the same expressive power than deterministic Büchi (resp. coBüchi) automata: they
recognise languages of parity index at most [0, 1] (resp. [1, 2]). This well-known property
follows from the results in Chapter II, Section II.6.
F Remark I.23 (Wagner hierarchy). The parity hierarchy was refined in the work of Wag-
ner [Wag79], where he introduces a hierarchy that takes into account the structure of
Muller automata with greater precision. To avoid overcomplicating the presentation of
this thesis, we will not consider Wagner’s hierarchy in the subsequent sections.
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Hay objetos en el mundo que hacen varias funciones y todas las
hacen bien.[...] Si tú eres un objeto que tiene varias funciones y
todas las haces bien, entonces no tengo nada que reprocharte.

TER

Introduction
In this chapter, we focus on the problem of transforming Muller automata to simplify

their acceptance condition: given an automaton using a Muller acceptance condition, our
goal is to construct an equivalent one using a parity acceptance condition. We introduce
the alternating cycle decomposition (ACD), a data structure that dissects the structure of
Muller automata. We use the ACD to define optimal transformations of Muller automata
into parity and Rabin ones, as well as to derive various theoretical results about these
automata.

Applications of automata transformations. As remarked in the general intro-
duction, the bottleneck in modern implementations of LTL synthesis algorithms is the
transformation of the input logic formula into a deterministic parity automaton. Most
solutions to this problem (including the top-ranked tools in the SYNTCOMP competi-
tions, Strix [LMS20, MS21b] and ltlsynt [MC18]) first construct a Muller automaton,
and then transform it into an equivalent parity automaton. The use of an intermedi-
ate Muller automaton is also present (although sometimes implicitly) in the most recent
improvements in the determinisation of Büchi automata towards deterministic parity au-
tomata [Pit06, Sch09, LP19]. For these reasons, understanding transformations of Muller
automata and finding efficient procedures for them holds significant importance.

Existing methods. There are various existing techniques to transform Muller au-
tomata or games into parity ones. The majority of these methods involve composing the
input automaton A with a deterministic parity automaton recognising the acceptance
condition used by A. The first such parity automaton was introduced by Gurevich and
Harrington in the 1980s [GH82] and is known as the Latest Appearance Record (LAR).

https://youtu.be/hpGNiWHBu5A?t=336
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Löding proved that the LAR is optimal in the worst case [Löd99]: there exists a family
of Muller languages Li for which the LAR is minimal amongst deterministic parity au-
tomata recognising Li. However, the LAR is far from being minimal in every case, as it
only uses the information about the size of the alphabet. Since its introduction, many
refinements of the LAR have been proposed for subclasses of Muller languages [Löd99,
Kře+17]. The approach using composition of automata has one significant drawback: it
disregards the structure of the original automaton, and only its acceptance condition is
taken into account. Some works have explored heuristics to improve this aspect [RDLP20,
Kře+21, MS21a]. These refined transformations do still have the following property: each
original state q is turned into multiple states of the form (q, x) – although this is done in
a non-uniform way, with each state possibly being copied a different number of times. In
this work, we introduce morphisms of transition systems to formalise the idea of trans-
formations of automata and games; if a parity automaton B has been obtained as a
transformation of a Muller automaton A, there will be a morphism ϕ : B → A that sends
states of the form (q, x) to q. A theory of morphisms of transition systems is developed
in Section II.2.

The Zielonka tree and the alternating cycle decomposition. The starting
point of our work is the notion of Zielonka tree, introduced by Zielonka [Zie98] as an
informative representation of Muller languages – languages that can be described by a
boolean combination of atomic propositions of the form “the letter ‘a’ appears infinitely
often”. The Zielonka tree captures many important properties of Muller languages, such as
being Rabin or parity [Zie98], and, most importantly, it characterises their exact memory
requirements, both in two-player games [DJW97] and stochastic games [Hor09].

The contribution at the core of this work is a generalisation of Zielonka trees to
general Muller automata recognising any ω-regular language, which we call the alter-
nating cycle decomposition (ACD). The ACD, greatly inspired from Wagner’s work on
ω-automata [Wag79], is a data structure that provides an abridged representation of the
accepting and rejecting cycles of the automaton, encapsulating the interplay between the
structure of the underlying graph and the acceptance condition of a Muller automaton.

Contributions
In this chapter, we perform an extensive study of transformations of Muller automata

and games. We outline next our main contributions.

1. Minimal automata for Muller languages. The basis on which we build up
our work is a study of minimal automata recognising Muller languages. Using
the Zielonka tree, we propose a construction of a deterministic parity automaton
recognising a Muller language (Section II.3.2). This construction implicitly ap-
pears in the long version of [DJW97]. We show a strong optimality result: for every
Muller language L, the parity automaton obtained from the Zielonka tree is minimal
both amongst deterministic and history-deterministic parity automata recognising
L (Theorem II.2).1 Moreover, it uses the optimal number of output colours to recog-
nise L (Theorem II.1). The optimality result we obtain is much stronger than the
worst case optimality result of the LAR transformation [Löd99], since it applies to
every Muller language. In particular, our characterisation yields an algorithm to

1The optimality of the Zielonka-tree-parity-automaton amongst deterministic automata has also been
obtained independently by Meyer and Sickert in the unpublished work [MS21a].
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minimise deterministic parity automata recognising Muller languages in polynomial
time (Theorem III.4). In light of our result, we conclude that the use of history-
determinism does not yield any gain in the state complexity of parity automata
recognising Muller languages.
We further propose a construction of a history-deterministic Rabin automaton recog-
nising a given Muller language (Section II.3.3), and prove that this automaton is
minimal amongst history-deterministic Rabin automata (Theorem II.4). This con-
struction is also based on the Zielonka tree.
In essence, our results reinforce the idea that the Zielonka tree precisely captures
the fundamental properties of Muller languages.

2. Introducing morphisms as witnesses of transformations. In order to formalise
transformations of games and automata, we develop a theory of morphisms of tran-
sition systems (Section II.2).2 Intuitively, a morphism ϕ : B → A witnesses the fact
that B has been obtained from A by blowing up each state q ∈ A to the states
in ϕ−1(q). However, this property on its own does not suffice to guarantee the
semantic equivalence of A and B. It is for this reason that we introduce different
variants of morphisms, offering a range of definitions with varying degrees of restric-
tiveness. Two kind of morphisms will be of central importance: (1) locally bijective
morphisms, which generalise composition by deterministic automata and preserve
determinism, and (2) history-deterministic mappings (HD mappings), which gener-
alise composition by history-deterministic automata and are defined using a minimal
set of hypothesis guaranteeing the semantic equivalence of A and B.

3. The alternating cycle decomposition and optimal transformations of Muller
automata. In order to generalise the fruitful applications of the Zielonka tree
to Muller automata and games, we introduce the alternating cycle decomposition
(ACD), a data structure that captures the interplay of the underlying graph of an
automaton and its acceptance condition (Section II.4). Using the ACD, we describe
a construction that transforms a Muller automaton A into an equivalent parity
automaton B while preserving the determinism of A (formally, there is a locally bi-
jective morphism ϕ : B → A). This transformation comes with a strong optimality
guarantee: for any other parity automaton B′ admitting a locally bijective morphism
(or even HD mapping) ϕ′ : B′ → A, the automaton B is smaller than B′ and it uses
less output colours (Theorems II.5 and II.6). An interesting corollary of our result
is the following: if B is an HD parity automaton that is strictly smaller than any
deterministic parity automaton recognising L(B), then B cannot be derived from
a deterministic Muller automaton (Corollary II.80). This result sheds light on the
difficulty to obtain succinct HD automata and their potential applicability.
We also provide a transformation that translates a Muller automaton A into a
history-deterministic Rabin automaton B in an optimal way: for any other Rabin
automaton B′ admitting an HD mapping ϕ′ : B′ → A, the automaton B is smaller
than B′.
We show that the ACD can be computed in polynomial time if the acceptance
condition is represented as a Zielonka tree (Theorem II.8).

4. Structural results for Muller automata. The ACD does not only provide optimal
2Very similar notions of morphisms have been studied by Sakarovitch and De Souza in the context

of transducers over finite words [Sak98, SS10].
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transformations of games and automata, it also exhibits some of their fundamental
structural properties. As an application, we give a set of crisp characterisations for
relabelling automata with different classes of acceptance conditions (Section II.6).
For instance, we show that given a Muller automaton A, we can define a Rabin
condition over the underlying graph of A obtaining an equivalent automaton if and
only if the union of rejecting cycles of A is again a rejecting cycle. Our results unify
and extend those from [BJW01, BKS10, KPB94, Zie98]. These results will find
application in Chapters III and IV, for the study of the minimisation of automata
and memory for games, respectively. We also show that the minimisation of the
number of colours used by the acceptance conditions of Muller automata is NP-
hard (Theorem II.13).
In Section II.7, we conduct a comprehensive examination of a normal form for parity
automata. This normal form implicitly appears in [CM99], and has since proven
instrumental in proofs about history-deterministic automata [KS15, AK22, ES22],
positionality of ω-regular languages [Bou+22] and learning of ω-automata [BL23a].
Similar normalisation procedures are commonly applied to parity games to speed up
algorithms solving them [FL09]. We use the ACD to provide straightforward proofs
of the fundamental properties which make automata in normal form practical in
both theoretical proofs and applications. This normal form and its properties will
be an essential tool in our characterisation of half-positionality in Chapter V.

Our model: transition systems. We want to point out a technical detail about
the model used in this chapter. We work with general transition systems, that is, graphs
with an acceptance condition on top of them. This choice has been made for two reasons:
(1) to seamlessly encompass both automata and games models, and (2) to emphasise that
the ACD and the transformations we propose do only depend on the underlying graph and
the acceptance condition; we can view the input letters of an automaton or the partition
of the vertices in a game as add-ons that do not affect the core of our approach.

Also, as discussed in the general introduction, we define acceptance conditions over
the edges of transitions systems and we are concerned with state complexity. The repre-
sentation of acceptance conditions is of secondary importance in this chapter.

Collaborators and related publications
The contributions of this chapter are the outcome of a series of collaborations, as

we discuss now. This line of research initiated during my master’s thesis, supervised
by Thomas Colcombet and Nathanaël Fijalkow. Our first results – mainly the material
concerning deterministic automata and locally bijective morphisms – was published in
the conference paper [CCF21]. Together with Thomas Colcombet and Karoliina Lehti-
nen, we generalised our results to obtain minimal history-deterministic Rabin automata
(Theorem II.4), result appearing (amongst others) in [CCL22]. These contributions, to-
gether with some additional content (Theorem II.2, Sections II.4.3 and II.7), constitute
the material of a journal submission under review [Cas+23].

Some of the contents of the chapter are still unpublished, mainly results concerning
computational aspects of the alternating cycle decomposition (Sections II.5 and II.6.3).
These have been obtained jointly with Corto Mascle.

Transformations based on the alternating cycle decomposition brought the attention of
the developers of two open-source tools for ω-automata and LTL synthesis: Spot [DL+22]
and Owl [KMS18]. The ACD transformations were implemented in Spot 2.10 by Alexan-
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dre Duret-Lutz and Florian Renkin, and in Owl 21.0 by Klara J. Meyer and Salomon
Sickert. Together, we prepared the tool paper [Cas+22], where transformations based on
the ACD are compared to the state-of-the-art existing paritizing methods. That paper
also contains material on transformations for state-based automata (Section II.8).

1 Preliminaries

1.1 Transition systems

We introduce transition systems to encompass both automata and games with a def-
inition oriented towards the study of the acceptance condition and its interaction with
the underlying graph, giving secondary importance to semantic aspects such as languages
recognised by automata or winners of games.

Acceptance conditions. An acceptance condition over a graph G with edges E is
a tuple Acc = (col,Γ,W ) where Γ is a finite set of colours, col : E → Γ ∪ {ε} is an edge-
colouring of G and W ⊆ Γω is a language of infinite words called the acceptance set. We
allow uncoloured edges (ε-edges), but we impose that no infinite path of G is eventually
composed exclusively of ε-edges.

As mentioned in Remark I.3, we can assume whenever necessary that Γ equals E and
col is the identity function.

We focus on acceptance sets of some of the classes defined in Section I.3. Of particular
importance for this chapter will be parity, Rabin and Muller languages.

Transition systems. A transition system (abbreviated TS) is a tuple of the form
TS = (GTS ,AccTS), where GTS = (V,E, source, target, I) is a pointed graph, called the
underlying graph of TS, and AccTS = (col,Γ,W ) is an acceptance condition over GTS .
We will also refer to vertices and edges as states and transitions, respectively. We write
v

c−→ v′ if there is e ∈ E such that source(e) = v, target(e) = v′ and col(e) = c. We assume
for technical convenience that transition systems contain no sink, that is, every vertex has
at least one outgoing edge. For any non-empty subset of vertices Ĩ ⊆ V , we let TS Ĩ be
the transition system obtained from TS by setting Ĩ to be its set of initial vertices. The
size of a transition system TS is the cardinality of its set of vertices, written |TS|.

We define cycles of transition systems in the exact same way as cycles for automata
(that is, as a subset of edges that can be visited by a closed path) and use similar notations.

The comments we made about the size of the representation of automata apply simi-
larly to transition systems. In this chapter, transitions systems are assumed to be finite.

As in the case of automata, we can consider state-based transition systems, for which
the colouring of the acceptance condition is given by colst : V → Γ ∪ {ε}. We will only
use state-based TS for the sake of comparison in Section II.8. Transition systems will be
transition-based by default.

Runs. A run on a transition system TS (or on a pointed graph) is a (finite or infinite)
path ρ = e0e1 · · · ∈ E∞ starting from an initial vertex, that is, source(e0) ∈ I. We let
Runfin(TS) and Run(TS) be the set of finite and infinite runs on TS, respectively, and we
let Run∞(TS) = Runfin(TS) ∪ Run(TS). (We note that Run(TS) = PathI(GTS).)
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The output of a run ρ ∈ Run∞(TS) is the sequence of colours in Γ∞ obtained by
removing the occurrences of ε from col(ρ); which we will also denote col(ρ) by a small abuse
of notation. A run ρ is accepting if col(ρ) ∈ W , and rejecting otherwise (in particular,
finite runs will be rejecting). We write ρ = v

w
v′ to denote a run with source(ρ) = v,

target(ρ) = v′ and col(ρ) = w.

Labelled transition systems. A labelled graph (G, (lV , LV ), (lE, LE)) is a graph
together with labelling functions lV : V → LV , lE : E → LE, where LV and LE are
sets of labels for vertices and edges, respectively. If only the first (resp. the second) of
these labelling functions appears, we will use the terms vertex-labelled (resp. edge-labelled)
graphs. A labelled transition system is a transition system with labelled underlying graph.

Automata and games as transition systems. We can represent automata and
games, as introduced in the general preliminaries, as labelled transition systems.

An automaton over Σ admits a representation as an edge-labelled transition system

A = (GA,AccA, (let,Σ)),

where let : E → Σ is a labelling with input letters.
A game admits a representation as a vertex-labelled transition system

G = (GG,AccG, (lPlayers, {Eve,Adam})) ,

with lPlayers : V → {Eve,Adam} a vertex-labelling function inducing a partition of V into
vertices controlled by two Eve and Adam: VEve = l−1

Players(Eve) and VAdam = l−1
Players(Adam).

Generalised weak transition systems. In this chapter, we will also consider con-
ditions that depend on the structure of a given transition system and not only on the set
of colours, that we call generalised weak conditions.

Definition II.1 (Weakd transition systems).
Let TS = (GTS ,AccTS) be a transition system using a parity condition AccTS =

(col, [dmin, dmax], parity). We say that TS (or AccTS) is Weakd if in each strongly con-
nected component S ⊆ GTS there are at most d different colours that appear, that is,
|col(ES)| ≤ d, where ES is the set of edges of S.

The adjective Weak has typically been used to refer to the condition corresponding to
a partition of TS into accepting and rejecting SCC [MSS86]. A run will be accepting if
the component it finally stays in is accepting. It corresponds to the Weak1-condition with
our notation.

As we will show (Corollary II.116), the notation is justified by the fact that an ω-regular
language of parity index Weakd can be recognised by a deterministic Weakd automaton.

1.2 Equivalence of transition systems and typeness

Let TS1 = (G,Acc1) and TS2 = (G,Acc2) be two (labelled) transitions systems over
the same underlying graph G (and using the same labels) with acceptance conditions
Acci = (coli,Γi,Wi), for i ∈ {1, 2}. We say that Acc1 and Acc2 are equivalent over G,
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written Acc1 'G Acc2, if for all runs ρ ∈ Run(G), ρ is accepting for TS1 if and only if
it is accepting for TS2; that is, col1(ρ) ∈ W1 ⇐⇒ col2(ρ) ∈ W2. In this case, we write
TS1 ' TS2 and say that TS1 and TS2 are equivalent. This is equivalent to the fact that
there is an isomorphism of transition systems between TS1 and TS2 (see Section II.2.1 for
the definition of isomorphism).

For X one of types of languages defined in Section I.3 (Büchi, parity, Muller, etc...),
we say that a transition system TS is X type if there exists an acceptance condition AccX
over the underlying graph of TS of type X and such that it is equivalent to that of TS.
We say that this new acceptance condition has been defined on top of TS. Similarly, we
say that TS is Weakd-type if there is an equivalent parity condition over TS making it
Weakd.
F Remark II.2. Given a pointed graph G (whose states are accessible), the equivalence
classes of Muller acceptance conditions for the relation 'G is given exactly by the mappings
f : Cycles(G)→ {Accept,Reject}.

Clearly, two automata A1 and A2 such that A1 ' A2 recognise the same language.
However, the converse only holds for deterministic automata.

Lemma II.3.
Let A1 and A2 be two deterministic automata over the same underlying graph and

with the same labelling by input letters. Then, L(A1) = L(A2) if and only if A1 ' A2.

Proof. The implication from right to left is trivial. For the other implication, suppose
that L(A1) = L(A2), and let ρ ∈ Run(A1) = Run(A2) be an infinite run over the under-
lying graph of A1. Let w ∈ Σω be the word over the input alphabet Σ labelling the run
ρ. Since A1 and A2 are deterministic, ρ is the only run over w, and therefore:

ρ is accepting for A1 ⇐⇒ w ∈ L(A1) = L(A2) ⇐⇒ ρ is accepting for A2. J

1.3 Composition of an automaton and a transition system

We now present the construction of the composition (or product) of a transition system
with an automaton, which constitutes the standard method for transforming a transition
system that uses an acceptance set W1 to another one using a different acceptance set
W2. To guarantee the correctness of the resulting transition system (that is, that it has
the same semantic properties as the original one), the automaton must be deterministic
or history-deterministic (see Propositions II.4, II.6, and II.5).

The composition construction. Let TS = (GTS ,AccTS) be a transition system,
with GTS = (V,E, sourceTS , targetTS , ITS) and AccTS = (colTS ,Σ,WTS), and let A = (GA,
AccA, (letA,Σ)) be a complete automaton over the alphabet Σ, where GA = (Q,∆,
sourceA, targetA, IA) and AccA = (colA,Γ,WA). The composition of TS and A (also
called their product) is the transition system TS nA defined as follows:

] The set of vertices is the cartesian product V ×Q.
] The set of initial vertices is ITS × IA.
] The set of edges En contains a transition (v, q) c−→ (v′, q′) if there is a ∈ Σ and
transitions e1 = v

a−→ v′ ∈ E and e2 = q
a:c−→ q′ ∈ ∆. It also contains ε-edges
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(v, q) ε−→ (v′, q) if v ε−→ v′ ∈ E. Formally,

En = {(e1, e2) ∈ E×∆ | colTS(e1) = letA(e2)} ∪ {e1 ∈ E | colTS(e1) = ε} ⊆ (E×∆)∪E.

] The acceptance condition is inherited from that ofA: the colouring function col′ : En →
Γ is defined as col′(e1, e2) = colA(e2), and the acceptance set is WA ⊆ Γω.

We remark that if TS does not contain an uncoloured cycle, neither does TS n A.
Also, TS nA does not contain sinks by completeness of A.

If TS is a labelled transition system, labelled by the functions lV and lE, we consider
TSnA as a labelled transition system with the functions lnV (v, q) = lV (v) and lnE(e1, e2) =
lE(e1) (resp. lnE(e1) = lE(e1) if e1 is an uncoloured edge).

Intuitively, a computation in TS n A happens as follows: we start from a vertex
v0 ∈ ITS in TS and from q0 ∈ IA. When we are in a position (v, q) ∈ V ×Q, a transition
e between v and v′ takes place in TS, producing a letter a ∈ Σ as output. Then, the
automaton A proceeds using a transition corresponding to a, producing an output in Γ.
In this way, a word in Γω is generated and we can use the acceptance set WA ⊆ Γω of the
automaton as the acceptance set for TS nA.

If A recognises the acceptance set of TS, and under some further hypothesis, their
composition TS nA share the semantic properties of TS.

Composition of automata. In particular, we can perform this operation if TS is
an automaton. We obtain in this way a new automaton that uses the acceptance condition
of A.

Proposition II.4 (Folklore).
Let B be an automaton with acceptance setWB and let A be an automaton recognising

L(A) = WB. Then, L(B nA) = L(B). Moreover, if A and B are deterministic (resp.
history-deterministic), so is B nA.

Games suitable for transformations. We could apply this construction to a game
G, obtaining a new game G nA in which the player who makes a move in G also chooses
a transition in A corresponding to the letter produced by the selected move. However,
in most applications, we intend to obtain an asymmetric form of product game in which
one player has full control of the transitions of the automaton (we take the point of view
of Eve and want her to choose these transitions). For this reason, we restrain the class of
games to which we can apply the product construction by a non-deterministic automaton.

We say that a game is suitable for transformations if it satisfies that for every edge
e = v −→ v′ such that v ∈ VAdam, the edge e is uncoloured (col(e) = ε), v′ ∈ VEve,
and e is the only incoming edge to v′ (In(v′) = {e}). We remark that any game G
can be made suitable for transformations with at most a linear blow up on the size by
inserting an intermediate Eve-vertex in each edge outgoing from an Adam-vertex. A
formal construction, as well as further motivation for this definition, can be found in
Appendix B.1.

Good-for-gameness. The goal of performing the composition of a game with an
automaton is to obtain a game G n A that uses a simpler winning condition than that
of G, so we can solve the new game more easily. Of course, this is of some interest only
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if the games G and G n A have the same winner, which is not in general the case if
the automaton A is not deterministic. However, the winner of a game is preserved by
composition with deterministic automata, and also with some non-deterministic ones.

We say that an automaton A is good-for-games if there is some initial vertex qinit of
A such that for every game suitable for transformations G using the winning condition
L(A), Eve wins the game G from a vertex v if and only if she wins G nA from (v, qinit).

In fact, good-for-games automata are exactly history-deterministic ones, which was
the main motivation for the introduction of history-determinism [HP06]. However, it
should be noted that history-determinism and good-for-gameness have been generalised
to other contexts in which they do not necessarily yield equivalent notions [Col09, BL21].

Proposition II.5 ([HP06]).
An automaton A is good-for-games if and only if it is history-deterministic.

In particular, we have the following property, that we generalise in Section II.2.4.

Proposition II.6 ([HP06]).
Let G be a game that is suitable for transformations with winning condition WG, and

let A be a history-deterministic automaton recognising L(A) = WG. Then, the winning
region of Eve in G is the projection of her winning region in G n A, that is, there is an
initial vertex qinit of A such that Eve wins G from a vertex v if and only if she wins GnA
from (v, qinit).

1.4 Trees

We introduce some technical notations that will be used to define automata based on
the Zielonka tree (Sections II.3.2 and II.3.3) and the transformations based on the ACD
(Sections II.4.2 and II.4.3).

Basic notations about trees. A tree T = (N,�) is a non-empty finite set of
nodes N equipped with an order relation � called the ancestor relation (we say that x
is an ancestor of y, or that y is below x if x � y), such that (1) there is a minimal
node for �, called the root, and (2) the ancestors of an element are totally ordered by �.
The converse relation � is the descendant relation. Maximal nodes are called leaves,
and the set of leaves of T is denoted by Leaves(T ). The minimal strict descendants of a
node are called its children. The set of children of n in T is written ChildrenT (n). The
depth of a node n is the number of strict ancestors of it. We note it Depth(n). The
height of a tree T is the maximal length of a chain for the ancestor relation. A subtree of
T = (N,�) is a tree T ′ = (N ′,�′) such that N ′ ⊆ N , �′ is the restriction of � to N ′ and
ChildrenT ′(n′) ⊆ ChildrenT (n′) for all n′ ∈ N ′. Given a node n of a tree T , the subtree of T
rooted at n is the subtree of T whose nodes are the nodes of T that have n as ancestor.
A branch is a maximal chain of the order �. An A-labelled tree is a tree T together with
a labelling function ν : N → A. A set of trees is called a forest.

Ordered trees. An ordered tree is a tree T = (N,�) together with a total order ≤n
over ChildrenT (n), for each node n ∈ N that is not a leaf. We remark that a subtree of an
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ordered tree can be seen as an ordered tree with the restrictions of these total orders to
the existing children. These orders induce a total order ≤T on T (the depth-first order):
let n, n′ ∈ N . If n � n′, we let n ≤T n′. If n and n′ are incomparable for the ancestor
relation, let nm be the deepest common ancestor, and let n1, n2 ∈ ChildrenT (nm) such that
n1 � n and n2 � n′. We let n ≤T n′ if and only if n1 ≤nm n2. In the latter case, we say
that n is on the left of n′.

Navigating in ordered trees. We will make use of these orders through some
auxiliary functions. The function Next(n) gives the next sibling of n in the tree, in a
cyclic order. Two examples are shown on the left of Figure 8. The function Jump(n, nm)
(for nm an ancestor of n) outputs the node given by the following procedure: we go up
the tree from n to nm; then, we change to the next branch below nm (in a cyclic way)
and go down again taking the leftmost leaf below it. Examples are given on the right of
Figure 8.

0

1 2 3

4 5 6 7 8

Next(5) = 4 and Next(2) = 3.

0

1 2 3

4 5 6 7 8

Jump(5, 1) = 4 and Jump(6, 0) = 7.

F Figure 8. Illustration of the functions Next and Jump.

We give the formal definition now. We also need to define these notions taking into
account some subtree T ′ of T : the input can be any node in T , but the final output is
restricted to be a node in T ′. Examples II.29 (Section II.3.1) and II.55 (Section II.4.1)
further illustrate these notations.

Let T ′ be a subtree of T and n′ a node of T ′ that is not a leaf in T ′. For n ∈
ChildrenT (n′), we let

NextT ′(n) =


min≤n′

{n′′ ∈ ChildrenT ′(n′) | n <n′ n
′′} if this set is not empty,

min≤n′
{n′′ ∈ ChildrenT ′(n′)} otherwise.

That is, the function NextT ′ maps each child of n′ to a sibling that is its successor in T ′
for the ≤n-order, in a cyclic way.

Let T ′ = (N ′,�′) be a subtree of T = (N,�). Let n′ ∈ N ′ and n ∈ N such that n′ is a
(non-strict) ancestor of n (n′ � n). If n′ is a leaf of T ′, we define JumpT ′(n, n′) = n′. For
n′ = n, we define JumpT ′(n, n′) to be the leftmost leaf of T ′ below n′. In any other case,
we define JumpT ′(n, n′) = ldest ∈ Leaves(T ′) to be the only node satisfying that there are
two children of n′ in T , n1, n2 ∈ ChildrenT (n′) such that:

] n1 � n,
] n2 = NextT ′(n1) (in particular, n2 ∈ N ′),
] ldest � n2 is the leftmost3 leaf in T ′ (minimal for ≤T ′) below n2.
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We remark that n1 = n2 if n1 is the only child of n′ in T ′.

Directed acyclic graphs. A directed acyclic graph (DAG) (N,�) is a non-empty
finite set of nodes N equipped with an order relation � called the ancestor relation such
that there is a minimal node for �, called the root. We apply to DAGs similar vocabulary
than for trees (children, leaves, depth, subDAG rooted at a node...). An A-labelled DAG is
a DAG together with a labelling function ν : D → A.

2 Morphisms as witnesses of transformations
As mentioned in the introduction, all existing transformations of automata follow a

common approach: they turn each state q into multiple states of the form (q, x), where x
stores some information about the acceptance condition. It is reasonable to put forward
this characteristic as the defining trait establishing that an automaton has been obtained
as a transformation of another. In this section, we introduce morphisms of transition
systems, which formalise this idea: a morphism ϕ : B → A witnesses that each state
q ∈ A has been augmented to ϕ−1(q). To ensure that B is semantically equivalent to A,
the morphism has to grant a further guarantee, namely, we need to be able to simulate
runs of A in B. We will examine two properties of morphisms that allow to do this: local
bijectivity and history-determinism for mappings.

Almost identical notions of morphisms have been considered by Sakarovitch [Sak98,
Section 2] and Sakarovitch and de Souza [SS10, Section 2.5] in the context of transducers
over finite words.4 Similar ideas to the ones presented here were used by Colcombet to
characterise history-deterministic automata: an automaton is history-deterministic if it
is the homomorphic image of a (possibly infinite) deterministic automaton for the same
language [Col12, Definition 13].

In the entire section, TS = (G,Acc) and TS ′ = (G′,Acc′) will stand for transition sys-
tems with underlying graphsG = (V,E, source, target, I) andG′ = (V ′, E ′, source′, target′, I ′),
and acceptance conditions Acc = (col,Γ,W ) and Acc′ = (col′,Γ′,W ′).

2.1 Morphisms of transition systems

Definition II.7.
A morphism of graphs from G to G′ is a pair of mappings ϕ = (ϕV : V → V ′, ϕE :

E → E ′) preserving edges, that is:

] source′(ϕE(e)) = ϕV (source(e)) for every e ∈ E,
] target′(ϕE(e)) = ϕV (target(e)) for every e ∈ E.

We say that ϕ is a morphism of pointed graphs if, moreover, it preserves initial vertices:

] ϕV (v0) ∈ I ′ for every v0 ∈ I.

3The choice of the leftmost leaf is arbitrary. In all our uses of the function Jump, it could be replaced
by any leaf below n2.

4Thanks to Géraud Sénizergues for pointing us to the works of Sakarovitch and De Souza.
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If (G, (lV , LV ), (lE, LE)) and (G, (l′V , L′V ), (l′E, L′E)) are labelled graphs, we say that ϕ is a
morphism of labelled graphs if, in addition, LV ⊆ L′V , LE ⊆ L′E and ϕ preserves labels:

] l′V (ϕV (v)) = lV (v) for every v ∈ V ,
] l′E(ϕE(e)) = lE(e) for every e ∈ V .

We will write ϕ : G → G′ to denote a morphism ϕ. We will drop the subscript in
ϕV and ϕE whenever it can be deduced from its use. We say that ϕ is surjective (resp.
injective) if ϕV is.

Note that the mapping ϕV does not completely determine a morphism ϕ, as multiple
edges might exist between two given vertices. However, if G has no isolated vertices, the
mapping ϕE does determine it. It will be convenient nonetheless to also keep the notation
for ϕV .

We remark that the image of a run in G by a morphism of pointed graphs is a run
in G′. Therefore, a morphism of pointed graphs ϕ : G→ G′ induces a mapping

ϕRuns : Run∞(G)→ Run∞(G′).

Definition II.8.
Let TS and TS ′ be two (labelled) transition systems. A weak morphism of (labelled)

transition systems ϕ : TS → TS ′ is a morphism of (labelled) pointed graphs between their
underlying graphs, ϕ : G → G′. We say that it is a morphism of (labelled) transition
systems if it preserves the acceptance of runs, that is:

] for every infinite run ρ ∈ Run(TS), col(ρ) ∈ W ⇐⇒ col′(ϕRuns(ρ)) ∈ W ′.

A morphism of labelled TS between automata (resp. between games) will be called a
morphism of automata (resp. morphism of games).

We say that a morphism of TS ϕ : TS → TS ′ is an isomorphism if ϕV and ϕE are
bijective and ϕ−1 = (ϕ−1

V , ϕ−1
E ) is a morphism from TS ′ to TS. In that case, we say that

TS and TS ′ are isomorphic.
We recall that two acceptance conditions are equivalent over the same underlying

graph if they define the same set of accepting runs.

F Remark II.9. If ϕ : TS1 → TS2 is an isomorphism, then (col2 ◦ ϕ,Γ2,W2) is an accep-
tance condition over the underlying graph of TS1 that is equivalent to (col1,Γ1,W1) over
this graph.

Conversely, if two acceptance conditions Acc1 and Acc2 are equivalent over a same
graph G, then the identity function is an isomorphism between TS1 = (G,Acc1) and
TS2 = (G,Acc2).

Therefore, we can use interchangeably the terms of equivalent and isomorphic TS,
and we note TS ' TS ′ if TS and TS ′ are isomorphic. In particular, TS is X type, for
some type of acceptance conditions X, if and only if there exists an isomorphic transition
system TS ′ ' TS using an X acceptance condition.
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2.2 Local properties of morphisms

Definition II.10.
A morphism of pointed graphs ϕ : G→ G′ is called:

] Locally surjective if it satisfies:
1. For every v′0 ∈ I ′ there exists v0 ∈ I such that ϕ(v0) = v′0.
2. For every v ∈ V and every e′ ∈ Out(ϕ(v)) there exists e ∈ Out(v) such that

ϕ(e) = e′.
] Locally injective if it satisfies:

1. For every v′0 ∈ I ′, there is at most one v0 ∈ I such that ϕ(v0) = v′0.
2. For every v ∈ V and every couple e1, e2 ∈ Out(v), ϕ(e1) = ϕ(e2) implies

e1 = e2.
] Locally bijective if it is both locally surjective and locally injective.

Equivalently, a morphism of pointed graphs ϕ is locally surjective (resp. locally in-
jective) if for every v ∈ V the restriction of ϕE to Out(v) is a surjection onto Out(ϕ(v))
(resp. an injection into Out(ϕ(v))), and the restriction of ϕV to I is a surjection onto I ′
(resp. an injection into I ′).

Let ϕ : TS → TS ′ be a (weak) morphism, and let ρ′ = v′0
e′0−→ v′1

e′1−→ . . . be a run
in TS ′. If ϕ is locally surjective, we can pick an initial vertex v0 in ϕ−1(v′0) and build
step-by-step a run ρ in TS from v0 that is sent to ρ′ under ϕ. If ϕ is moreover locally
bijective, the choices of the initial vertex and the edges at each step are unique, so runs
in TS ′ can be simulated in TS via ϕ in a unique way. Said differently, if ϕ : TS → TS ′
is a locally bijective morphism, we can see TS as an automaton that processes runs of
TS ′ in a deterministic fashion (this idea is formalised in Section 4.4.3). This property will
allow us to show that a locally bijective morphism witnesses the semantic equivalence of
TS and TS ′ (see Section II.2.4).

We note that the notion of locally bijective morphisms of transition systems almost
coincides with the usual concept of bisimulation for deterministic transition systems. The
main difference is that locally bijective morphisms treat the acceptance of a run as a
whole; we do not impose the output colour of an edge col(e) to coincide with the colour
col′(ϕ(e)). This allows us to compare transition systems using different types of acceptance
conditions.

F Remark II.11. Let ϕ be a morphism of pointed graphs.

1. If ϕ is locally surjective, then ϕRuns is surjective.
2. If ϕ is locally injective, then ϕRuns is injective.
3. If ϕ is locally bijective, then ϕRuns is bijective.

In the following, all weak morphisms under consideration will be locally surjective.
Next lemma ensures that we can assume that they are surjective without loss of generality.
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Lemma II.12.
If ϕ : TS → TS ′ is a locally surjective weak morphism, it is onto the accessible part of

TS ′. That is, for every accessible state v′ ∈ TS ′, there exists some state v ∈ TS such that
ϕV (v) = v′. In particular, if every state of TS ′ is accessible, ϕ is surjective.

Proof. Let v′ be an accessible state of TS ′. By definition, there exists a finite run ρ′ from
an initial vertex of TS ′ to v′. By surjectivity of ϕRuns , there is a finite run ρ ∈ Runfin(TS)
such that ϕRuns(ρ) = ρ′. As ϕ is a morphism of graphs, we have that ϕ(target(ρ)) = v′. J

Example II.13.

In Figure 9 we provide an example of a locally bijective morphism between the two
rightmost transition systems from Figure 5 (we have removed input letters for simplicity).
We recall that the acceptance set of the rightmost transition system is the Muller language
associated to F = {{α}, {β}}. The morphism is given by ϕV (v1) = ϕV (v2) = v′ and
ϕV (v2) = v′2. In this case, the mapping ϕV determines a unique morphism; the (uniquely
determined) mapping ϕE is represented by the colours of the edges in the figure. It is
easy to check that this mapping preserves the acceptance of runs and that it is locally
bijective.

v1

v2

u1

2

1

21

1

2

v′ u′

α
β

β

λ

F Figure 9. A locally bijective morphism from a parity TS to a Muller TS with accep-
tance set given by F = {{α}, {β}}. We use dashed arrows to represent the images of
vertices, and colours to represent the image of edges (that can be inferred from ϕV ).

2.3 History-deterministic mappings

Locally bijective morphisms are a natural generalisation of the composition of a transi-
tion system with a deterministic automaton. They guarantee the semantic equivalence of
the two involved transition systems, but at the cost of the use of some strong hypothesis,
as the outgoing edges of a vertex v must exactly correspond to the outgoing edges of its
image ϕ(v). We can imagine correct transformations that do not satisfy this requirement.
Notably, history-deterministic automata have been introduced as a method to bypass this
restriction, with the hope of outperforming transformations that are witnessed by locally
bijective morphisms. In general, if A is an HD automaton recognising the acceptance
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set of TS, the composition TS n A does not admit a locally bijective morphism to TS,
although it shares most semantic properties with it (Proposition II.6).

We introduce next HD mappings, which are weak morphisms with the minimal set of
hypothesis ensuring that, if ϕ : TS → TS ′ is an HD mapping, we can simulate runs of TS ′
in TS via ϕ while preserving their acceptance. This will allow us to show that ϕ witnesses
the semantic equivalence of TS and TS ′ (Section II.2.4).

Morphisms

Loc. Injective
Morphisms

Loc. Surjective
Morphisms

Loc. Bijective
Morphisms

HD Mappings
Weak Morphisms

F Figure 10. Different types of morphisms and the relations between them. The fact
that locally surjective morphisms are HD mappings is given by Lemma II.18. Note that
HD mappings are also locally surjective weak morphisms (Remark II.14).

History-deterministic mappings
Let TS and TS ′ be transition systems and ϕ : TS → TS ′ a weak morphism between

them. A resolver simulating ϕ consists of a pair of functions rInit : I ′ → I and r : E∗×E ′ →
E such that:

1. ϕ(rInit(v′0)) = v′0 for all v′0 ∈ I ′,
2. ϕ(r(ρ, e′)) = e′, for all ρ ∈ E∗ and e′ ∈ E ′,
3. if e′0 ∈ Out(I ′), source(r(ε, e′0)) = rInit(source(e′0)), and
4. if ρ is a finite run in TS ending in v and e′ ∈ Out(ϕ(v)), then r(ρ, e′) ∈ Out(v).

Given a run ρ′ = e′0e
′
1 · · · ∈ Run∞(TS ′) starting in some v′0 ∈ I ′, the run induced

by r is the sequence rRuns(ρ′) = e0e1e2 · · · ∈ Run∞(TS) defined by ei = r(e0 . . . ei−1, e
′
i),

which is indeed a run in TS. We say that the resolver is sound if for every accepting run
ρ′ ∈ Run(TS ′), the run rRuns(ρ′) is accepting in TS. Note that we do not impose rRuns(ρ′)
to be rejecting if ρ′ is.
F Remark II.14. Provided that all states of TS ′ are accessible, a resolver simulating ϕ
can only exist if ϕ is a locally surjective weak morphism. We recall that ϕ does not need
to be a morphism (see Figure 10).

Said differently, a sound resolver simulating ϕ is a winning strategy for the player
Duplicator in the following game:

] In round 0, Spoiler picks an initial vertex v′0 in TS ′. Duplicator responds by picking
an initial vertex v0 in TS such that ϕ(v0) = v′0.

] In round n > 0, Spoiler picks an edge e′n in TS ′, and Duplicator responds by picking
an edge en in TS such that ϕ(en) = e′n.
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] Duplicator wins if either e1e2 . . . is an accepting run in TS from v0 or e′1e′2 . . . is not
an accepting run in TS ′ from v′0 (it is either not a run from v0 or not accepting).
Spoiler wins otherwise.

Definition II.15.
Let TS and TS ′ be (labelled) transition systems. A history-deterministic mapping (HD

mapping) of transition systems from TS to TS ′ is a pair of mappings ϕ = (ϕV : V →
V ′, ϕE : E → E ′) such that:

] ϕ is a weak morphism,
] ϕ preserves accepting runs: ρ ∈ Run(TS) and col(ρ) ∈ W =⇒ col′(ϕRuns(ρ)) ∈ W ′,
and

] there exists a sound resolver simulating ϕ.

Even if a history-deterministic mapping is not necessarily locally bijective (and not
even a morphism of transition systems), the existence of a sound resolver allows us to
define a right inverse to ϕRuns preserving the acceptance of runs.

Lemma II.16.
Let ϕ : TS → TS ′ be an HD mapping and let (rInit, r) be a sound resolver simulating

it. The following holds:

] ϕRuns ◦ rRuns = IdRun∞(TS′).
] rRuns preserves the acceptance of runs in TS ′, that is, for every run ρ′ ∈ Run(TS ′), ρ′
is accepting if and only if rRuns(ρ′) is accepting in TS.

Proof. The first item follows from the fact that ϕ(r(ρ, e′)) = e′ for every ρ ∈ E∗ and
e′ ∈ E ′.

For the second item, the definition of a sound resolver imposes that if ρ′ is accepting,
so is rRuns(ρ′). For the other direction, if rRuns(ρ′) is accepting, then ϕRuns(rRuns(ρ′)) = ρ′ has
to be accepting, as an HD mapping preserves accepting runs. J

Example II.17.

In Figure 11 we give an example of a weak morphism ϕ : TS → TS ′ that is a history-
deterministic mapping, but which is neither a morphism, nor locally bijective. Transition
system TS, on the left of the figure, is a parity TS (more precisely, a coBüchi TS). Tran-
sition system TS ′, depicted on the right of the figure, is a Muller TS using as acceptance
set the Muller language associated to F = {{α}, {α, β}, {α, λ}}; that is, a run in TS ′ is
accepting if and only if it eventually avoids either transition e′ or transition f ′. The weak
morphism we propose is given by: ϕ(v0) = ϕ(v1) = ϕ(v2) = v′, and ϕ(u1) = ϕ(u2) = u′.
The image of most edges is uniquely determined, and we use colours to represent them.
We have named the only edges whose image is not uniquely determined, and we define
ϕ(e1) = ϕ(e2) = e′ and ϕ(f1) = ϕ(f2) = f ′.
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We remark that ϕ does not preserve rejecting runs. Indeed, a run in TS alternating
between v0 and u1, taking transition f1 infinitely often, is rejecting, but its image is
accepting in TS ′. However, ϕ preserves accepting runs: a run is accepting in TS if and
only if it eventually stays in {v1, u1} or in {v2, u2}. In the first case, the image under ϕ
avoids transition f ′ in TS ′, and in the second case, its image avoids transition e′.

Finally, we describe a sound resolver simulating ϕ. When simulating a run from TS ′
in TS, we have a choice to make only when we are in state v0. If the previous transition in
TS ′ was e′, we will go up, that is, v′ α−→ u′ is simulated by v0

1−→ u1 and v′ α−→ v′ is simulated
by v0

1−→ v1. If the previous transition in TS ′ was f ′, we will go down in a symmetric
manner. In this way, if transition f ′ is eventually not visited by the run in TS ′, we ensure
to stay in {v1, u1} in TS (and symmetrically, we ensure to stay in {v2, u2} if e′ is avoided
in TS ′).

v2

v0

v1

u2

u11

1

1

1

2

2

2

2

e1 : 2

f1 : 1

e2 : 1

f2 : 2

v′ u′

α
α

e′ : β

f ′ : λ

F Figure 11. A history-deterministic mapping from a parity TS to a Muller TS with
acceptance set given by F = {{α}, {α, β}, {α, λ}}. We use dashed arrows to represent
the images of vertices, and colours to represent the image of edges.

In the next lemma, we prove that HD mappings are a strict generalisation of locally
surjective morphisms (and therefore, also of locally bijective ones). On the other hand,
we remark that HD mappings must be locally surjective, but they are not necessarily
morphisms (they might not preserve rejecting runs).

Lemma II.18.
If ϕ : TS → TS ′ is a locally surjective morphism, it is also an HD mapping.

Proof. We need to define a sound resolver simulating ϕ. Let rInit : I ′ → I be any function
choosing initial vertices satisfying that ϕ ◦ rInit = IdI′ (which exists by local surjectivity
of ϕ). For each v ∈ V and edge e′ ∈ Out(ϕ(v)) we choose one edge f(v, e′) ∈ Out(v)
such that ϕ(f(v, e′)) = e′ (which exists by local surjectivity), and we let r be the resolver
induced by these choices. Formally, we define r : E∗ × E ′ → E recursively. For the base
case, if e′0 ∈ Out(v′), with v′ ∈ I ′, we define r(ε, e′0) = f(rInit(v′), e′0). Assume that r has
been defined for runs of length ≤ n, and let ρ ∈ E∗ be of length n + 1 and e′ ∈ E ′. If
ρ is not a run or e′ /∈ Out(target(ϕ(ρ))), we let r(ρ, e′) be any edge in ϕ−1(e′). If not, let
v = target(ρ) and we define r(ρ, e′) to be the edge f(v, e′).
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It is straightforward to check that (rInit, r) is indeed a resolver (for every run ρ′ ∈
Run(TS ′), the sequence rRuns(ρ′) is a run in TS and ρ′ is its image under ϕ). Finally,
since ϕ is a morphism, for every ρ′ ∈ Run(TS ′), rRuns(ρ′) is accepting in TS if and only
if ρ′ = ϕRuns(ρ) is accepting in TS ′. We conclude that (rInit, r) is a sound resolver and
therefore ϕ is an HD mapping. J

Restrictions and extensions of initial sets
We now include some technical considerations regarding how modifying the set of

initial vertices of the transition systems can impact the existence of HD mappings between
them. The following simple lemma states that reducing the number of initial vertices
preserves the history-determinism of mappings.

Lemma II.19.
Let TS and TS ′ be two TS such that there is an HD mapping ϕ : TS → TS ′. For

any non-empty subset Ĩ ⊆ I ′, ϕ is also an HD mapping between the transition systems
TS rInit(Ĩ) and TS ′Ĩ ; that is, the transitions systems obtained by setting rInit(Ĩ) and Ĩ as
initial vertices, respectively.

For arbitrary acceptance conditions, enlarging the set of initial vertices does not pre-
serve history-determinism. However, for transition systems using the acceptance condi-
tions considered in this work, we can enlarge the set of initial vertices without loss of
generality.

Lemma II.20.
Let TS and TS ′ be two TS such that all their states are accessible, and let ϕ : TS →

TS ′ be an HD mapping between them. If the acceptance sets W and W ′ are prefix-
independent, the mapping ϕ is also HD when considered between the transition systems
TSV and TS ′V ′ , consisting of the transition systems TS and TS ′ where all the states are
set to be initial.

Proof. First, ϕ : TSV → TS ′V ′ is trivially a weak morphism. We claim that it preserves
accepting runs. Let v ∈ V be a state in TS and let ρ = v

w be an accepting run from v.
Since all the states are reachable, there is some v0 ∈ I and finite run ρv = v0

u
v. As ϕ

is a weak morphism we have that ϕRuns(ρvρ) = ϕ(v0) u′
ϕ(v) w′ . It is satisfied:

w ∈ W
W

pref-indep.=⇒ uw ∈ W =⇒ u′w′ ∈ W ′
W ′

pref-indep.=⇒ w′ ∈ W ′,

where the central implication follows from the fact that ϕ preserves accepting runs starting
in v0. Therefore ϕRuns(ρ) is also an accepting run.

Let (rInit, r) be a sound resolver simulating ϕ : TS → TS ′. We define a resolver (̃rInit, r̃)
for the new mapping.

For every state v of TS, we fix (whenever it exists) a finite run ρv ∈ Runfin(TS) ending
in v such that there exists ρ′ ∈ Runfin(TS ′) such that ρv = rRuns(ρ′v′). We let VReach ⊆ V
be the set of vertices for which ρv is well-defined. We note that for each v′ ∈ V ′ there
exists at least one v ∈ ϕ−1(v′) such that v ∈ VReach; indeed, if ρ′v′ is a finite run reaching
v′ in TS ′, one such v is target(rRuns(ρ′v′)) (that is, the vertex to which we arrive in TS when
simulating ρ′v′ via the original resolver). We let r̃Init(v′) be this vertex.
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If e′ ∈ Out(v′) is an edge in TS ′, we let r̃(ε, e′) = r(ρv, e′), for v = r̃Init(v′) (which
belongs to VReach). For ρ a non-empty finite run starting in v ∈ VReach and e′ ∈ E ′, we
define r̃(ρ, e′) = r(ρvρ, e′). If ρ starts in v /∈ VReach we let r̃(ρ, e′) be any edge in ϕ−1(e′)
(if e′ ∈ Out(ϕ(target(ρ))) we pick it in Out(target(ρ))). We check that (̃rInit, r̃) satisfies the
four requirements to be a resolver:

1. r̃Init(v′) has been chosen in ϕ−1(v′).
2. r̃(e′) is chosen in ϕ−1(e′).
3. Let e′ ∈ Out(v′). We have defined r̃(ε, e′) = r(ρv, e′), where ρv is a finite run ending

in v, so by Property 4 of a resolver, r(ρv, e′) ∈ Out(v).

4. Let ρ = v0 v ∈ Runfin(TSV ) and e′ ∈ Out(ϕ(v)). If v0 /∈ VReach, then we have
picked r̃(ρ, e′) in Out(v). If v0 ∈ VReach, then r̃(ρ, e′) = r(ρv0ρ, e

′); as ρv0ρ is a run
ending in v and r satisfies Property 4 of a resolver, r(ρv0ρ, e

′) ∈ Out(v).

Finally, we show that (̃rInit, r̃) is sound. Let ρ′ = v′
w′ ∈ Run(TS ′V ′) be an accepting

run, and let ρ = rRuns(ρ′) = v
w′ be the run induced by (̃rInit, r̃) over ρ′. In particular,

v = r̃Init(v′). Let ρv = v0
u

v and ρ′v = v′0
u′

v′ be the chosen runs such that
ρv = rRuns(ρ′v). It is immediate to check that ρvρ = rRuns(ρ′vρ′). Since ρ′ is accepting, we
have that w′ ∈ W ′, and by prefix-independence of the acceptance sets and the fact that
ρvρ is accepting if ρ′vρ′ is, we have:

w′ ∈ W ′ =⇒ u′w′ ∈ W ′ =⇒ uw ∈ W =⇒ w ∈ W,
so we conclude that ρ is accepting in TS, as we wanted to show. J

2.4 Preservation of semantic properties of automata and games

We start this section by showing that locally bijective morphisms and HD mappings
are a strict generalisation of the composition of a TS by deterministic and history-
deterministic automata, respectively (Proposition II.21). Then, we prove that these
mappings witness the semantic equivalence of the transition systems under considera-
tion. That is, the language recognised by automata (Proposition II.22) and the winner of
games Proposition II.23).

Morphisms generalise composition by an automaton

Proposition II.21.

Let A be a complete automaton accepting the language L(A) = W ⊆ Σω, and let TS
be a (labelled) TS with acceptance set W . Then, there exists a locally surjective weak
morphism of (labelled) transition systems ϕ : TSnA → TS that preserves accepting runs.
Moreover:

1. If A is deterministic, ϕ can be chosen to be a locally bijective morphism.
2. If A is HD, then ϕ can be chosen to be an HD mapping.

Proof. We recall that the set of states of TS n A is V × Q and its set of transitions
En is a subset of (E × ∆) t E, where V and Q (resp. E and ∆) are the states (resp.
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transitions) of TS and A, respectively. We let WA ⊆ Γω be the acceptance set of A. We
define ϕV (v, q) = v and ϕE(e1, e2) = e1 for (e1, e2) ∈ E ×∆ and ϕE(e1) = e1 for e1 ∈ E.
It is immediate to check that ϕ is a weak morphism.

Given a run ρ = (v0, q0) c0−→ (v1, q1) c1−→ . . . in TS nA, we can consider its projection
over TS, ϕRuns(ρ) = v0

a0−→ v1
a1−→ . . . . We note that there must exist a unique run in A of

the form

ϕA(ρ) = q0
a0:c0−−−→ q1

a1:c1−−−→ . . . .

(Formally, some of the letters ai might equal ε, and in this case qi
ai:ci−−→ qi+1 does not

appear in the run ϕA(ρ)).
We show that ϕ preserves accepting runs. Let ρ be an accepting run in TS n A. In

that case, c0c1c2 · · · ∈ WA, and therefore ϕA(ρ) is an accepting run in A over a0a1a2 . . . ,
so we conclude that a0a1a2 · · · ∈ W and ϕRuns(ρ) is an accepting run in TS.

We prove next the local surjectivity of ϕ. Clearly, ϕ induces a surjection between the
initial vertices of TS nA (which are ITS × IA) and those of TS. Let (v, q) ∈ V × Q and
e1 = v

a−→ v′ ∈ E. If a = ε, the edge e1 belongs to En and ϕ(e1) = e1. If a 6= ε, since
A is complete there is a transition e2 = q

a−→ q′ ∈ ∆ and ϕ(e1, e2) = e1, so ϕ is locally
surjective.

1. Since A has a single initial state q0, ϕ induces a bijection between the initial vertices
of TSnA (which are ITS×{q0}) and those of TS. Let Encol ⊆ E×∆ and Enε ⊆ E such
that En = Encol ∪ Enε . We remark that ϕ|En

ε
is the identity function (so injective)

and that ϕ(Encol) ∩ ϕ(Enε ) = ∅ because ϕ(Encol) are exactly coloured transitions of
TS. Finally, let (e1, e2) and (e′1, e′2) in Out(v, q) ∩Encol. Their ϕ(e1, e2) = ϕ(e′1, e′2) if
and only if e1 = e′1. Let a ∈ Σ be the colour of e1. Since A is deterministic, there
is at most one transition from q labelled by a, that must be e2 = e′2. We conclude
that (e1, e2) = (e′1, e′2) and that ϕ is locally injective.
Let ρ be a rejecting run in TSnA (we use the notations introduced above). In that
case, c0c1c2 . . . /∈ WA, and therefore ϕA(ρ) is a rejecting run over a0a1a2 . . . . Since
A is deterministic, this is the only run over a0a1a2 . . . so we conclude that it does
not belong to W. We conclude that ϕRuns(ρ) is a rejecting run in TS.

2. Let (r0, rA) be a resolver for A. We define a resolver (rInit, rϕ) simulating ϕ that
follows the runs indicated by (r0, rA). First, we let rInit(v0) = (v0, r0) for all v0 ∈
ITS . We define rϕ : En∗ × E → En by induction on the length of the runs. Let
e0 = v0

a−→ v1 ∈ Out(v0) be an edge in TS. If e0 is uncoloured (a = ε), we
let rϕ(ε, e0) = e0 = (v0, r0) ε−→ (v1, r0). If not, we let rϕ(ε, e0) = (e0, ea), where
ea = r(ε, a). Assume that rϕ has been defined for sequences of edges of TS n A
of length < n and let ρ = e0e1 . . . en−1 ∈ En∗ be a sequence length n + 1 and
eTS = vn

an−→ vn+1 be an edge in TS. If ρ is not a run or if it does not end in
ϕ−1(vn), we let rϕ(ρ, eTS) be any edge in ϕ−1(eTS). Assume that ρ is a run ending
in ϕ−1(vn). If an = ε, we define rϕ(ρ, eTS) = eTS . As noted before, ρ induces a run
ϕA(ρ) = q0

a0:c0−−−→ q1
a1:c1−−−→ . . . −→ qn in A. We let eA = rA(ϕA(ρ), an) be the transition

chosen by the resolver of A after this run, and we define rϕ(ρ, eTS) = (eTS , eA).
It directly follows from this definition that (rInit, rϕ) is indeed a resolver. The proof
that if ρ ∈ Run(TS) is an accepting run then rϕ,Runs(ρ) is accepting follows the same
lines than the previous item. J
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Morphisms witness equivalence of automata

Proposition II.22.

Let A, A′ be two automata over the same input alphabet such that there is an HD
mapping of automata ϕ : A → A′. Then, L(A) = L(A′), and A is HD if and only if A′ is
HD. If ϕ is moreover locally bijective and surjective, A is deterministic (resp. complete)
if and only if A′ is.

Proof. Since ϕ preserves accepting runs, it is clear that L(A) ⊆ L(A′). Since ϕ admits
a sound resolver (rInit, r), if ρ is an accepting run over w ∈ Σω in A′, then rRuns(ρ) is an
accepting run over w in A, so L(A′) ⊆ L(A).

Let (rInit, rϕ) be a sound resolver simulating ϕ. Assume that A is HD, admitting a
resolver (r0, r). A resolver (r′0, r′) for A′ can be obtained just by composing rϕ and ϕ,
that is: r′0 = ϕ(r0) and for ρ′ ∈ Runfin(A′) and a ∈ Σ, r′(ρ′, a) = ϕ(r(rϕ,Runs(ρ′), a))).
That is, given a run ρ′ in A′, we simulate it in A using rϕ, then, we look at what is the
continuation proposed by the resolver r when we give the letter a, and we transfer back
this choice to A′ using ϕ. Assume now that A′ is HD and that (r′0, r′) is a resolver for it.
We define a resolver (r0, r) for A. We let r0 = rInit(r′0), and for ρ ∈ Runfin(A) and a ∈ Σ,
r(ρ, a) = rϕ((ϕRuns(ρ), r(ϕRuns(ρ), a)). That is, given a run ρ in A, we simulate it in A′
using ϕ, then, we look at what is the continuation proposed by the resolver r′ when we
give the letter a, and we transfer back this choice to A using rϕ. It is a direct check that
the resolvers defined this way witness that A′ and A, respectively, are HD.

The proof that A is deterministic (resp. complete) if and only if A′ is deterministic
(resp. complete), assuming surjectivity and local bijectivity of ϕ, follows the same lines.

J

A subclass of automata with a restrictive amount of non-determinism that is widely
study is that of unambiguous automata (we refer to [Col15, CM03] for a detailed expo-
sition). An automaton is unambiguous if for every input word w ∈ Σω there is at most
one accepting run over w, and it is strongly unambiguous if there is at most one run over
w. By Remark II.11, locally bijective morphisms also preserve (strongly) unambiguity: if
ϕ : A → A′ is a locally bijective morphism then A is (strongly) unambiguous if and only
if A′ is.

Morphisms preserve winning regions of games
It is not difficult to show that locally bijective morphisms preserve winning regions of

games (a stronger result is proved in Appendix B.1).

Proposition II.23.

Let G,G ′ be two games such that there is an locally bijective morphism ϕ : G →
G ′. Eve’s winning region in G ′ is the image of her winning region in G: WinEve(G ′) =
ϕ(WinEve(G)).

Applying Lemma II.20, we moreover obtain that if the winning condition used by the
games G and G ′ in the previous proposition are prefix-independent, then Eve’s full win-
ning region in G ′ is the image of her full winning region in G.
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However, in the same way as HD automata are good-for-games (the composition of a
game with an HD automaton preserves the winning region, c.f. Proposition II.5), we would
like to have that HD mappings also preserve the winning regions of games. Unfortunately,
this is not exactly the case, as HD mappings are oblivious to the owners of the vertices
in the game. For instance, consider a game G consisting in a single vertex controlled by
Adam with two self loops, labelled a and b. Let G ′ be a game with one vertex controlled by
Adam, but just with a self loop labelled a. Let W = aω be the winning condition of both
games. Clearly, Adam wins G (as he can produce, for example, bω), but loses G ′, as he
can only produce aω. However, there is a (uniquely determined) HD mapping ϕ : G → G ′.
The reason for this undesired behaviour is that, in the definition of HD mapping, it is
Eve who choses how to simulate a play of G ′ in G. However, in the previous example it
was Adam who could choose what to do in G.

To work out this problem, we introduce a further notion of mappings, oriented exclu-
sively to games, in which we take into account the owner of the vertices. Our definition
weakens the properties of locally bijective morphisms, and uses the minimal hypothesis to
guarantee the preservation of winning regions in games. See Appendix B.1 for a definition
of HD-for-games mappings and for stronger results about the preservation of winners in
games.

3 The Zielonka tree: An optimal approach to Muller languages

In this section, we take a close look into the Zielonka tree, a structure introduced
(under the name of split trees) to study Muller languages [Zie98]. We show how to
use the Zielonka tree to construct minimal deterministic parity automata and minimal
history-deterministic Rabin automata recognising Muller languages. In Section II.3.2, we
describe the construction of a minimal deterministic parity automaton Aparity

ZF for a given
Muller language Muller(F). Theorem II.2, the main contribution of this section, states the
minimality of Aparity

ZF both amongst deterministic and HD parity automata. Theorem II.1
states the optimality on the number of priorities of the acceptance condition of Aparity

ZF , and
implies that we can determine the parity index of a Muller language from its Zielonka tree.
We will use the optimality of automaton Aparity

ZF to provide a polynomial-time algorithm
minimising DPAs recognising Muller languages in Section III.3.

In Section II.3.3, we describe the construction of a minimal history-deterministic Rabin
automaton ARabin

ZF for a Muller language Muller(F). Its minimality amongst HD automata
is shown in Theorem II.4, by using the characterisation of the memory requirements of a
Muller language in terms of its Zielonka tree [DJW97]. On the other hand, we will show
in the next chapter that finding a minimal deterministic Rabin automaton recognising a
given Muller language is NP-complete, if the language is represented by a parity or Rabin
automaton, or even by its Zielonka tree (Theorem III.1). Therefore, unless P = NP,
there are Muller languages for which minimal deterministic Rabin automata are strictly
larger than minimal HD Rabin automata. We will explicitly show Muller languages for
which minimal HD Rabin automata are exponentially smaller than deterministic ones in
Section III.4. A summary of the minimal automata recognising Muller languages appears
in Table 1.
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Type of
automata Deterministic History-

deterministic

Parity Aparity
ZF Aparity

ZF

Rabin NP-complete
(Section III.1) ARabin

ZF

F Table 1. Minimal automata recognising a Muller language Muller(F), according to
the type of acceptance condition (parity or Rabin) and the form of determinism.

3.1 The Zielonka tree

Definition II.24 ([Zie98]).
Let F ⊆ 2Σ

+ be a family of non-empty subsets over a finite set Σ. A Zielonka tree for F
(over Σ),5 denoted ZF = (N,�, ν : N → 2Σ

+) is a 2Σ
+-labelled tree with nodes partitioned

into round nodes and square nodes, N = N© t N�, such that:

] The root is labelled Σ.
] If a node is labelled X ⊆ Σ, with X ∈ F , then it is a round node, and it has a child
for each maximal non-empty subset Y ⊆ X such that Y 6∈ F , which is labelled Y .

] If a node is labelled X ⊆ Σ, with X 6∈ F , then it is a square node, and it has a child
for each maximal non-empty subset Y ⊆ X such that Y ∈ F , which is labelled Y .

We write |ZF | to denote the number of nodes in ZF .
F Remark II.25. For each family of subsets F ⊆ 2Σ

+, there is only one Zielonka tree up
to renaming of its nodes, so we will talk of the Zielonka tree of F .
F Remark II.26. If n is a node of ZF , then the subtree of ZF rooted at n is the Zielonka
tree for the family F|ν(n) over the alphabet ν(n), that is, for the restriction of F to the
subsets included in the label of n.
F Remark II.27. Let n be a node of ZF and let n1 be a child of it. If ν(n1) ( X ⊆ ν(n),
then ν(n1) ∈ F ⇐⇒ X /∈ F ⇐⇒ ν(n) /∈ F . In particular, if n1, n2 are two different
children of n, then ν(n1) ∈ F ⇐⇒ ν(n2) ∈ F ⇐⇒ ν(n1) ∪ ν(n2) /∈ F .

Next lemma provides a simple way to decide if a subset C ⊆ Σ belongs to F given the
Zielonka tree. It follows directly from the previous remark.
F Lemma II.28. Let C ⊆ Σ and let n be a node of ZF such that C ⊆ ν(n) and that is
maximal for � amongst nodes containing C in its label. Then, C ∈ F if and only if n is
round.

We equip Zielonka trees with an order to navigate in them. That is, we equip each set
ChildrenZF (n) with a total order, making ZF an ordered tree. The precise order considered

5The definition of ZF , as well as most subsequent definitions, do not only depend on F but also on
the alphabet Σ. Although this dependence is important, we do not explicitly include it in the notations
in order to lighten them, as most of the times the alphabet will be clear from the context.
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will be irrelevant for our purposes. From now on, we will assume that all Zielonka trees
are ordered, without explicitly mentioning it.

For a leaf l ∈ Leaves(ZF) and a letter a ∈ Σ we define Supp(l, a) = n to be the deepest
ancestor of l (maximal for �) such that a ∈ ν(n).

Example II.29.

We will use the Muller language associated to the following family of subsets as a
running example throughout the chapter. Let Σ = {a, b, c} and let F be:

F = {{a, b}, {a, c}, {b}}.

In Figure 12 we show the Zielonka tree of F . We use Greek letters (in pink) to name the
nodes of the tree. Integers appearing on the right of the tree will be used in next section.

We have that Supp(ξ, c) = λ and Supp(ξ, b) = α . Also, Jump(ξ, λ) = ζ is the leaf
reached by going from ξ to λ, then changing to the next branch (in a cyclic way) and
re-descend by taking the leftmost path. Similarly, Jump(ξ, α) = θ.

The subtree rooted at λ contains the nodes {λ, ξ, ζ}. We note that this is the Zielonka
tree of F|{a,c} = {{a, c}} (over the alphabet {a, c}).

a, b, c

a, b a, c

a a c

α

β λ

θ ξ ζ

1

2

3

F Figure 12. Zielonka tree ZF for F = {{a, b}, {a, c}, {b}}.

The Zielonka DAG
Another structure that will be useful, mostly when considering decision problems and

the representation of Muller conditions (c.f. Section II.5), is the Zielonka DAG.
The Zielonka DAG of a family F ⊆ 2Σ

+ is just the labelled directed acyclic graph ob-
tained by merging the nodes of ZF that share a common label. Formally, if is the labelled
DAGZ-DAGF = (N ′,�′, ν ′) whereN ′ = {C ⊆ Σ | ∃n node of the Zielonka tree such that
C = ν(n)} and ν ′(C) = C. The relation �′ is inherited from the ancestor relation of
the tree: C �′ D if there are nC , nD nodes of the Zielonka tree such that ν(nC) = C,
ν(nD) = D and nC � nD. In particular, C �′ D impliesD ⊆ C (but the converse does not
hold in general). We will denote the labelling just by ν. We remark that Z-DAGF inherits
the partition of nodes into round and square ones. Moreover, children of a round node of
the Zielonka DAG are square nodes and vice-versa. We also note that Remark II.27 and
Lemma II.28 hold similarly replacing ZF by Z-DAGF in their statement.

We refer to Proposition B.32 for a comparison between the size of the Zielonka tree
and the Zielonka DAG, and Figure 52 for an example (page 286).
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3.2 A minimal deterministic parity automaton

We present next the Zielonka-tree-parity-automaton, a minimal deterministic parity
automaton for a Muller language Muller(F) built from the Zielonka tree ZF . Our con-
struction will furthermore let us determine the parity index of the language Muller(F)
from its Zielonka tree.

3.2.1 The Zielonka-tree-parity-automaton
We associate a non-negative integer to each level of a Zielonka tree ZF = (N,�, ν).

We let pZ : N → N be the function defined as:

] if Σ ∈ F , pZ(n) = Depth(n),
] if Σ /∈ F , pZ(n) = Depth(n) + 1.

We let minF (resp. maxF) be the minimum (resp. maximum) value taken by the func-
tion pZ .

F Remark II.30. A node n in the Zielonka tree ZF verifies that pZ(n) is even if and only
if ν(n) ∈ F . If Σ ∈ F , minF = 0 and maxF equals the height of the Zielonka tree minus
one. If Σ /∈ F , minF = 1 and maxF equals the height of the Zielonka tree.

Example II.31.

The Muller language from Example II.29 satisfies Σ /∈ F . The values taken by the
function pZ are represented at the right of the Zielonka tree in Figure 12. We have
pZ(α) = 1, pZ(β) = pZ(λ) = 2 and pZ(θ) = pZ(ξ) = pZ(ζ) = 3, so minF = 1 and
maxF = 3.

Definition II.32 (Zielonka-tree-parity-automaton).
Given a family of non-empty subsets F ⊆ 2Σ

+, we define the ZT-parity-automaton
Aparity
ZF = (Q,Σ, qinit, [minF ,maxF ], δ, parity) as the deterministic parity automaton given

by:

] Q = Leaves(ZF),
] qinit is the leftmost leaf of ZF ,6

] The transition reading a ∈ Σ from q ∈ Q goes to Jump(q, Supp(q, a)) and produces
pZ(Supp(q, a)) as output, that is,

δ(q, a) = (Jump(q, Supp(q, a)), pZ(Supp(q, a))) .

Intuitively, the transitions of the automaton are determined as follows: if we are in a
leaf l and we read a colour a, then we move up in the branch of l until we reach a node n
that contains the letter a in its label. Then we pick the child of n just to the right of the
branch that we took before (in a cyclic way) and we move to the leftmost leaf below it.
The priority produced as output is pZ(n), determined by the depth of n.

6Any state can be chosen as initial state (see Lemma I.9).
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Example II.33.

In Figure 13 we show the ZT-parity-automaton Aparity
ZF of the family of subsets from

Example II.29.

θ ξ ζ
a : 3

b : 2

c : 1
a : 3

b : 1

c : 2

a : 2

b : 1

c : 3

F Figure 13. ZT-parity-automaton recognising the Muller language associated to F =
{{a, b}, {a, c}, {b}}.

Correctness of the Zielonka-tree-parity-automaton

Proposition II.34 (Correctness).
Let F ⊆ 2Σ

+ be a family of non-empty subsets. Then,

L(Aparity
ZF ) = MullerΣ(F).

That is, a word w ∈ Σω is accepted by Aparity
ZF if and only if Inf(w) ∈ F .

The following useful lemma follows directly from the definition of Supp and Jump.
F Lemma II.35. Let q be a leaf of ZF and let n be a node above q. Then, Supp(q, a)
is a descendant of n if and only if a ∈ ν(n), and in this case, Jump(q, Supp(q, a)) is a
descendant of n too.

Proof of Proposition II.34. Let w = w0w1w2 · · · ∈ Σω be an infinite word. For i > 0,
let qi be the leaf of ZF reached after the (only) run over w0w1 . . . wi−1 in Aparity

ZF . For i ≥ 0
let ni = Supp(qi, wi) be the “intermediate node” used to determine the next state and
the output priority of each transition, and let ci = pZ(ni) = col(qi, wi) ∈ [minF ,maxF ]
be that output priority (the output of the run over w being therefore c0c1c2 · · · ∈ Nω).
Let q∞ be a node appearing infinitely often in the sequence q0q1q2 . . . , and let nw be the
deepest ancestor of q∞ such that Inf(w) ⊆ ν(nw).

G Claim II.34.1. There is K ∈ N such that for all i ≥ K, qi � nw and Supp(qi, wi) �
nw. In particular, ci ≥ pZ(nw) for i ≥ K.

Proof. Let K ∈ N be a position such that wi ∈ Inf(w) for all i ≥ K and qK = q∞.
The claim follows from Lemma II.35 and induction. C

G Claim II.34.2. Let nw,1, . . . , nw,s be an enumeration of ChildrenZF (nw) from left to
right. It is verified that:

1. Supp(qi, wi) = nw infinitely often. In particular, ci = pZ(nw) for infinitely
many i’s.

2. There is no nw,k ∈ Children(nw) such that Inf(w) ⊆ ν(nw,k).
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Proof. We first remark that for all nw,k there are arbitrarily large positions i such
that qi is not below nw,k. Suppose by contradiction that this is not the case. Then,
for all i sufficiently large we have that Supp(qi, wi) � nw,k, and by Lemma II.35,
Inf(w) ⊆ ν(nw,k). In particular, q∞ is below nw,k, contradicting the fact that nw is the
deepest ancestor of q∞ containing Inf(w).

Let K be like in the Claim II.34.1. We show that if i ≥ K and qi � nw,k, then
there is j > i such that wj /∈ ν(nw,k), Supp(qj, wj) = nw and qj+1 � nw,k+1 (by an
abuse of notation we let s + 1 = 1). It suffices to consider the least j ≥ i such that
Supp(qj, wj) � nw,k (which exists by the previous remark). Since Inf(w) ⊆ ν(nw) we
have that Supp(qj, wj) = nw, so wj /∈ ν(nw,j) (by Lemma II.35) and by definition of
the transitions of Aparity

ZF , qj+1 will be a leaf below nw,k+1.
The fact that qj+1 � nw,k+1 implies that for any child nw,k′ , infinitely many states

qi will be below nw,k′ (we go around the children in a round-robin fashion). Therefore,
for any k, there are arbitrarily large j such that wj /∈ ν(nw,j) and Supp(qj, wj) = nw,
implying both items in the claim. C

Combining both claims, we obtain that the minimum of the priorities that are produced
as output infinitely often is pZ(nw). By Remark II.30, pZ(nw) is even if and only if nw is a
round node (if ν(nw) ∈ F). It remains to show that Inf(w) ∈ F if and only if ν(nw) ∈ F ,
which holds by the second item in Claim II.34.2 and Remark II.27. J

3.2.2 Optimality of the Zielonka-tree-parity-automaton
We now state and prove the main results of this section: the optimality of the ZT-

parity-automaton in both number of states (Theorem II.2) and number of priorities of the
acceptance condition (Theorem II.1). The minimality of the ZT-parity-automaton comes
in two version. A weaker one states its minimality only amongst deterministic automata
(Theorem II.3), and a stronger one states its minimality amongst all history-deterministic
automata (Theorem II.2). Although the weaker version is implied by the stronger one,
we find it instructive to provide a proof for this easier case. The proof of the stronger
statement is one of the most technical parts of the thesis, but the argument used in its
proof is just a careful refinement of the ideas appearing in the weaker version.

Statement of the results

Theorem II.1 (Optimality of the parity condition).
The parity index of a Muller language MullerΣ(F) is [minF ,maxF ]. That is, the ZT-

parity-automaton of MullerΣ(F) uses the optimal number of priorities to recognise this
language.

Theorem II.2 (Minimality of the ZT-parity-automaton).
Let A be a history-deterministic parity automaton recognising a Muller language

MullerΣ(F). Then, |Aparity
ZF | ≤ |A|.
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Corollary II.36.

For every Muller language L, a minimal deterministic parity automaton recognising L
has the same size than a minimal HD parity automaton recognising L.

We remark that, nonetheless, there are non-trivial HD parity automata recognising
Muller languages. The automaton provided in Example I.7 (Figure 4) is an HD coBüchi
automaton recognising a Muller language that cannot be made deterministic just by re-
moving transitions (it is not determinisable by pruning). We note that the (deterministic)
ZT-parity-automaton for this Muller language has only 2 states.

Proposition II.37.

There exists an HD parity automaton recognising a Muller language that is not de-
terminisable by pruning.

Optimality of the parity condition

Proof of Theorem II.1. Let L = MullerΣ(F). The ZT-parity-automaton of L is a
parity automaton recognising L using priorities in [minF ,maxF ], therefore, the parity
index of L is at most [minF ,maxF ].

To prove that the parity index is not less than [minF ,maxF ], we use the Flower
Lemma I.21. The language L is trivially recognised by a deterministic Muller automaton
AL with just one state q, transitions q a:a−→ q for each a ∈ Σ, and acceptance condition
given by L itself. Let n1 � n2 � . . . � nd be a branch of maximal length of ZF (that
must verify d = maxF −minF , and that the root n1 is a round node if and only if minF
is even). If we let `i be the cycle in AL containing exactly the transitions corresponding
to letters in ν(ni), we obtain that `1 ) `2 ) · · · ) `d is a d-flower over q, which is positive
if and only if n1 is a round node. Lemma I.21 allows us to conclude. J

Minimality of the ZT-parity-automaton with respect to deterministic automata
The proof of Theorem II.2 is quite technical, and we include it in Appendix B.2. Here,

we prove a weaker result, namely, that the ZT-parity-automaton is minimal amongst
deterministic parity automata recognising a Muller language. We find that a proof of this
weaker result might be enlightening for the reader, and it will allow us to introduce the
main ingredients used in the proof of the stronger optimality result in a simpler setting.

Theorem II.3 (Minimality with respect to deterministic automata).
Let A be a DPA recognising a Muller language MullerΣ(F). Then, |Aparity

ZF | ≤ |A|.

We recall that, by Remark I.8 and Lemma I.9, we can suppose that all the states of
automata recognising Muller languages are accessible, and that any of them can be chosen
to be initial. When considering subautomata of these automata, we will sometimes not
mention their initial state.

We recall that for a subset X ⊆ Σ, an X-FSCC of an automaton A over Σ is an X-
closed final SCC in the graph obtained by taking the restriction of the underlying graph
of A to the edges labelled by letters in X. We can find an X-FSCC in an automaton A
recognising MullerΣ(F) for any X ⊆ Σ (Lemma I.4).
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F Lemma II.38. Let A be a DMA recognising a Muller language MullerΣ(F), let X ⊆ Σ
and let SX be an accessible X-FSCC of A. Then, the automaton induced by SX is a
deterministic automaton recognising MullerX(F|X) = {w ∈ Xω | Inf(w) ∈ F}.

Proof. Let A = (Q,Σ, q0,Γ, δ,W ) (where W is a Muller language). Let qS be the state
in SX chosen to be initial, and let u0 ∈ Σ∗ be a finite word such that the run over u0
from q0 ends in qS. By prefix-independence of Muller languages, a word w ∈ Xω belongs
to MullerΣ(F) if and only if u0w ∈ MullerΣ(F), and therefore, A accepts w if and only
if it accepts u0w. Since the run in A over u0w and the run in SX over w have a suffix
in common, and by prefix-independence of W , we have that w ∈ L(SX) if and only if
u0w ∈ L(A) if and only if Inf(w) ∈ F . J

Next lemma states that, in a parity automaton, the union of two accepting cycles
must be accepting, and similarly for rejecting cycles. In Section II.6, we will see that this
property is actually a characterisation of parity transition systems (Proposition II.111).
F Lemma II.39. Let A be a parity automaton. Let `1, `2 ∈ Cycles(A) be two cycles with
some state in common. If `1 and `2 are both accepting (resp. rejecting), then `1 ∪ `2 is
also accepting (resp. rejecting).

Proof. Let col : ∆→ N be the colouring function of A. The cycles `1 and `2 are accepting
if and only if di = min col(`i) is even, for i = 1, 2. In this case, min col(`1 ∪ `2) =
min{d1, d2} is even. The proof is symmetric if `1 and `2 are rejecting. J

By a small abuse of notation, we will say that two SCC S1 and S2 are disjoint, and
write S1 ∩ S2 = ∅, if their sets of states are disjoint.
F Lemma II.40. Let F ⊆ 2Σ

+ be a family of subsets with Zielonka tree ZF = (N,�, ν),
and let A be a DPA recognising MullerΣ(F). Let n ∈ N be a node of the Zielonka tree
of F , and let n1, n2 ∈ ChildrenZF (n) be two different children of n. If S1 and S2 are two
accessible ν(n1)-FSCC and ν(n2)-FSCC in A, respectively, then S1 ∩ S2 = ∅.

Proof. Without loss of generality, we can suppose that all states in A are accessible, and
since the language that A recognises is prefix-independent, we can also suppose that A is
complete. Let let : ∆→ Σ be the labelling of the transitions of A with input letters. Let
Si be a ν(ni)-FSCC in A, for i = 1, 2, and let `i be its set of edges, which form a cycle
satisfying let(`i) = ν(ni). Suppose by contradiction that S1∩S2 6= ∅. Then `1 and `2 have
some state in common, and their union is also a cycle satisfying let(`1∪`2) = ν(n1)∪ν(n2).
By Lemma II.39, we must have

`1 accepting ⇐⇒ `1 ∪ `2 accepting,

contradicting the fact that ν(n1) ∈ F if and only if ν(n1)∪ν(n2) /∈ F (Remark II.27). J

Proof of Theorem II.3. We proceed by induction in the height of ZF . For height 1,
the result is trivial, since |Aparity

ZF | = 1. Let A be a DPA recognising MullerΣ(F). Let
n0 be the root of ZF and n1, n2, . . . , nk be an enumeration of the children of n0 in ZF .
By Lemma I.4, for each i ∈ {1, . . . , k}, A contains some accessible ν(ni)-FSCC Si, and
by Lemma II.40 these must be pairwise disjoint. By Lemma II.38, each Si induces a
deterministic subautomaton recognising Mullerν(ni)(F|ν(ni)). Let Zi by the subtree of ZF
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rooted at ni, which we recall that is the Zielonka tree for F|ν(ni). By induction hypothesis,
it must be the case that |Leaves(Zi)| ≤ |Si|, so we can conclude:

|Aparity
ZF | = |Leaves(ZF)| =

k∑
i=1
|Leaves(Zi)| ≤

k∑
i=1
|Si| ≤ |A|. J

Some comments about the general case (Theorem II.2). The steps we follow
to prove Theorem II.2 are the same as the ones we have just presented. We perform an
induction over the height of the Zielonka tree, and at each step we try to find disjoint
subautomata recognising the language associated to the different children of a given node.
However, some major technical difficulties appear. Due to the asymmetry of semantics
of non-determinism (we accept a word if there exists an accepting run over it), we need
to distinguish two cases: the one in which the root of the Zielonka tree is a square node,
and the one in which it is round. The first case can be handle without too much trouble,
as we can generalise Lemmas II.39 and II.40 by using resolvers given by finite memory
structures: we take the product of A by such a memory, we find disjoint X-FSCC in
there, and we prove that the image of these X-FSCC in A are also disjoint. However, in
the case in which the root is a round node, this naive approach is not sufficient, and a fine
analysis of the strategies used by the resolver is required. All the details can be found in
Appendix B.2.

3.3 A minimal history-deterministic Rabin automaton

In this section, we present the construction of a history-deterministic Rabin automa-
ton ARabin

ZF for a Muller language Muller(F) using the Zielonka tree ZF , and prove its
minimality (Theorem II.4). The automaton ARabin

ZF can be seen as a quotient of the ZT-
parity-automaton; that is, ARabin

ZF is obtained by merging some of the states of Aparity
ZF .

Thus, we replace the complexity in the number of states by complexity in the acceptance
condition. The size of the automaton ARabin

ZF is a well-studied parameter of Zielonka trees:
its round-branching width, rbw(ZF). This parameter was introduced by Dziembowski,
Jurdziński and Walukiewicz [DJW97] (under the name of memory of ZF) and shown to
coincide with the memory required by Eve to win in games using Muller(F) as an accep-
tance condition (see Proposition IV.1). Although in this chapter we are not concerned
with the memory of objectives, we rely on their result to show the optimality of our
construction.

We note that this construction is asymmetric, in the sense that we show it for Rabin
automata, but not for Streett automata (their dual notion). The reason why we cannot
dualize the construction is due to the semantics of non-deterministic automata. However,
we could use the same idea to obtain a minimal universal history-deterministic Streett
automaton (we refer to [BL19] for the definition of universal HD automata).

3.3.1 The Zielonka-tree-HD-Rabin-automaton

Definition II.41 ([DJW97]).
Let T be a tree with nodes partitioned into round and square nodes, and let T1, . . . , Tk

be the subtrees of T rooted at the children of the root of T . We define inductively the
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round-branching width of T , denoted rbw(T ) as:

rbw(T ) =


1 if T has exactly one node,
max{rbw(T1), . . . , rbw(Tk)} if the root is square,
k∑
i=1

rbw(Ti) if the root is round.

Next lemma directly follows from the definition of rbw(T ).

Lemma II.42.
Let T = (N = N© t N�,�) be a tree with nodes partitioned into round and square

nodes. There exists a mapping η : Leaves(T )→ {1, 2, . . . , rbw(T )} satisfying:

If n ∈ N is a round node with children n1 6= n2, for any pair
of leaves l1 and l2 below n1 and n2, respectively, η(l1) 6= η(l2). (?)

Example II.43.

Let F = {{a, b}, {a, c}, {b}} be the family of subsets considered in Example II.29.
The round-branching width of ZF is rbw(ZF) = 2. A labelling η : Leaves(ZF) → {1, 2}
satisfying Property (?) is given by η(θ) = η(ξ) = 1 and η(ζ) = 2. This labelling is
represented in the Zielonka tree ZF on the left of Figure 14.

We give the construction of a minimal HD Rabin automaton for a Muller language.

Definition II.44 (Zielonka-tree-HD-Rabin-automaton).
Let F ⊆ 2Σ

+, ZF = (N = N© t N�,�) its Zielonka tree and η : Leaves(ZF) →
{1, 2, . . . , rbw(ZF)} a mapping satisfying Property (?). We define the ZT-HD-Rabin-
automaton ARabin

ZF = (Q,Σ, I,Γ,∆,RabinΓ(R)) as a (non-deterministic) automaton using
a Rabin acceptance condition, where:

] Q = {1, 2, . . . , rbw(ZF)},
] I = Q,7

] Γ = N (the colours of the acceptance condition are the nodes of the Zielonka tree),

] δ(q, a) = {
(

Jump(l, Supp(l, a)), Supp(l, a)
)
| l ∈ Leaves(ZF) such that η(l) = q},

] R = {(gn, rn)}n∈N© , where gn and rn are defined as follow: Let n be a round node
and n′ be any node of ZF ,n′ ∈ gn if n′ = n,

n′ ∈ rn if n′ 6= n and n is not an ancestor of n′.
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F Remark II.45. Although we will usually say that ARabin
ZF is the ZT-HD-Rabin-automaton

of F , the structure of this automaton is not unique, it depends on two choices: the order
over the nodes of the Zielonka tree and the mapping η.

The intuition behind this definition is the following. The automaton ARabin
ZF has

rbw(ZF) states, and each of them can be associated to a subset of leaves of ZF by η−1(q).
The mapping η is such that the lowest common ancestor of two leaves in η−1(q) is a square
node. As for the ZT-parity-automaton, for each leaf of l ∈ Leaves(ZF) and letter a ∈ Σ,
we identify the deepest ancestor n = Supp(l, a) containing a in its label, and, using the
Jump function, pick a leaf l′ below the next child of n. We add a transition q

a:n−→ q′ if
there are leaves l ∈ η−1(q) and l′ ∈ η−1(q′) giving such a path. This way, we can identify a
run in the automaton ARabin

ZF with a promenade through the nodes of the Zielonka tree in
which shifts between leaves with the same η-image are allowed. If during this promenade
a unique minimal node (for �) is visited infinitely often, it is not difficult to see that the
sequence of input colours belongs to F if and only if the label of this minimal node belongs
to F (it is a round node). The Rabin condition over the set of nodes of the Zielonka tree
is devised so that it accepts exactly these sequences of nodes (see Lemma II.49 below).

Another way of presenting the automaton ARabin
ZF is as a quotient of the deterministic

parity automaton Aparity
ZF . Indeed, the graph structure and the labelling by input letters

of ARabin
ZF is obtained by merging the states of Aparity

ZF (which are the leaves of ZF) with the
same η-image, and keeping all the transitions between them. However, a parity acceptance
condition over this smaller structure is no longer sufficient to accept Muller(F).

Example II.46.

The ZT-HD-Rabin-automaton ARabin
ZF of the family F = {{a, b}, {a, c}, {b}} from Ex-

ample II.29 is shown on the right of Figure 14. The Zielonka tree ZF appears on the
left of the figure, and the labelling η : Leaves(ZF)→ {1, 2} is represented by the numbers
below its branches. The Rabin condition of this automaton is given by two Rabin pairs
(corresponding to the round nodes of the Zielonka tree):

gβ = {β}, rβ = {α, λ, ξ, ζ},
gλ = {λ}, rλ = {α, β, θ}.

We note that the automaton ARabin
ZF is obtained by merging the states θ and ξ from the

ZT-parity-automaton Aparity
ZF appearing in Figure 13, and replacing the output colours by

suitable nodes from the Zielonka tree.

F Remark II.47. We observe that the automaton from Figure 14 presents duplicated edges,
in the sense that there are two transitions q a:x−→ q′ and q a:y−→ q′ between the same pair of
states and reading the same input letter. We can always avoid this and remove duplicated
edges from any automaton. We provide a proof in Appendix B.5 (Proposition B.46). For
the language from the previous example, an equivalent automaton is proposed in Figure 54

7Any non-empty subset of Q can be chosen as the set of initial states.
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a, b, c

a, b a, c

a a c

α

β λ

θ ξ ζ

1 1 2

1 2a : θ

b : β
c : α

a : ξ
b : α

c : λ

a : λ

b : α

c : ζ

F Figure 14. On the left, the Zielonka tree of F = {{a, b}, {a, c}, {b}}. On the right,
the ZT-HD-Rabin-automaton ARabin

ZF . Blue transitions correspond to those coming from
leaf θ, and green ones to those originating from leaf ξ.

Correctness of the Zielonka-tree-HD-Rabin-automaton

Proposition II.48 (Correctness).
Let F ⊆ 2Σ

+ be a family of non-empty subsets. Then,

L(ARabin
ZF ) = MullerΣ(F).

Moreover, the automaton ARabin
ZF is history-deterministic.

F Lemma II.49. Let u = n0n1n2 · · · ∈ Nω be an infinite sequence of nodes of the
Zielonka tree. The word u belongs to RabinN(R), for R = {(gn, rn)}n∈N© the Rabin
condition of ARabin

ZF , if and only if there is a unique minimal node for the ancestor relation
in Inf(u) and this minimal node is round (recall that the root is the minimal element for
�).

Proof. Suppose that there is a unique minimal node in Inf(u), called n, and that n is
round. We claim that u is accepted by the Rabin pair (gn, rn). It is clear that Inf(u)∩gn 6=
∅, because n ∈ gn. It suffices to show that Inf(u)∩ rn = ∅: By minimality, any other node
n′ ∈ Inf(u) is a descendant of n (equivalently, n is an ancestor of n′), so n′ /∈ rn.

Conversely, suppose that u ∈ RabinN(R). Then, there is some round node n ∈ N©
such that Inf(u)∩ gn 6= ∅ and Inf(u)∩ rn = ∅. Since gn = {n}, we deduce that n ∈ Inf(u).
Moreover, as Inf(u) ∩ rn = ∅, all nodes in Inf(u) are descendants of n. We conclude that
n is the unique minimal node in Inf(u), and it is round. J

F Lemma II.50. There exists a morphism of automata ϕ : Aparity
ZF → ARabin

ZF .

Proof. We define the morphism ϕ as follows:

] ϕV (l) = η(l), for l ∈ Leaves(Aparity
ZF ),

] for a transition e = l
a:c−→ l′ in Aparity

ZF , we let ϕE(e) = (η(l), a, Supp(l, a), l′).

It is clear that ϕ is a weak morphism. We prove that it preserve the acceptance of runs.
Let ρ = l0

w0−→ l1
w1−→ l2

w2−→ · · · ∈ Run(Aparity
ZF ) be an infinite run in Aparity

ZF (the only run
over w0w1w2 · · · ∈ Σω), and let ni = Supp(li, wi). By definition of the morphism, the
output of the run ρ′ = ϕRuns(ρ) in ARabin

ZF is col′(ρ′) = n0n1n2 · · · ∈ Nω. In the proof of
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Proposition II.34, we proved (Claims II.34.1 and II.34.2) that there exists a unique node
nw appearing infinitely often in col′(ρ′). Moreover, we proved that ρ is accepting in Aparity

ZF
if and only if nw is round. Lemma II.49 allows us to conclude that ϕRuns(ρ) is accepting
in ARabin

ZF if and only if ρ is accepting in Aparity
ZF . J

Proof of Proposition II.48. L(ARabin
ZF ) ⊆ MullerΣ(F): Let w ∈ L(ARabin

ZF ) and let u ∈
Nω be the sequence of nodes produced as output of an accepting run over w in ARabin

ZF .
By Lemma II.49, there is a unique minimal node n for � appearing infinitely often in u
and moreover n is round. Let n1, . . . , nk be an enumeration of the children of n (from left
to right), with labels ν(ni) ⊆ Σ (we remark that ν(ni) /∈ F , for 1 ≤ i ≤ k). We will prove
that Inf(w) ⊆ ν(n) and Inf(w) * ν(ni) for 1 ≤ i ≤ k. By definition of the Zielonka tree,
as n is round, this implies that Inf(w) ∈ F .

Since eventually all nodes produced as output are descendants of n (by minimality),
Inf(w) must be contained in ν(n) (by definition of the transitions of ARabin

ZF ).
We suppose, towards a contradiction, that Inf(w) ⊆ ν(nj) for some 1 ≤ j ≤ k. Let

Qi = {η(l) : l is a leaf below ni} be the set of states corresponding to leaves under ni, for
1 ≤ i ≤ k. We can suppose that the leaves corresponding to transitions of an accepting
run over w are all below n, and therefore, transitions of such a run only visit states in⋃k
i=1Qi. Indeed, eventually this is going to be the case, because if some of the leaves

l, l′ corresponding to a transition (q, a, n′, q′) are not below n, then n′ would not be a
descendant of n (since n′ is the least common ancestor of l and l′). Also, by Property (?),
we have Qi ∩ Qj = ∅, for all i 6= j. By definition of the transitions of ARabin

ZF , if a ∈ Σ is
a letter in ν(n) but not in ν(ni), all transitions from some state in Qi reading the letter
a go to Qi+1, for 1 ≤ i ≤ k − 1 (and to Q1 if i = k). Also, if a ∈ ν(ni), transitions from
states in Qi reading a stay in Qi. We deduce that a run over w will eventually only visit
states in Qj, for some j such that Inf(w) ⊆ ν(nj). However, the only transitions from Qj

that would produce n as output are those corresponding to a letter a /∈ ν(nj), so the node
n is not produced infinitely often, a contradiction.

MullerΣ(F) ⊆ L(ARabin
ZF ) and history-determinism: The existence of a morphism

ϕ : Aparity
ZF → ARabin

ZF (Lemma II.50) and the correctness of Aparity
ZF (Proposition II.34) imply

that L(ARabin
ZF ) = L(Aparity

ZF ) = Muller(F). Indeed, if ρ is an accepting run over w ∈ Σω in
Aparity
ZF , then ϕRuns(ρ) is an accepting run over w in ARabin

ZF . We can moreover use Aparity
ZF

and ϕ to define a sound resolver (r0, r) for ARabin
ZF : we let r0 = ϕ(q0) be the image of the

initial state of Aparity
ZF . If ρR ∈ Runfin(ARabin

ZF ) is the image under ϕRuns of some finite run
ρP ∈ Runfin(Aparity

ZF ), we let r(ρR, a) = ϕ(e), where e is the only a-labelled transition from
target(ρP ). We define r arbitrarily in other case. This way, for every w ∈ Σω, the run
induced by r over w is the image of a run over w in Aparity

ZF , which must be accepting if
w ∈ Muller(F). J

3.3.2 Optimality of the Zielonka-tree-HD-Rabin-automaton
We state now the optimality of ARabin

ZF .

Theorem II.4 (Optimality of the ZT-HD-Rabin-automaton).
Let A be a history-deterministic Rabin automaton accepting a Muller language

MullerΣ(F). Then, |ARabin
ZF | ≤ |A|.

Theorem II.4 follows easily combining the three following facts:
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] |ARabin
ZF | = rbw(ZF).

] There are games in which Eve cannot play optimally with less than rbw(ZF) memory
states ([DJW97, Theorem 14], see also Proposition IV.1).

] Rabin objectives are half-positional ([Kla94, Lemma 9] and [Zie98, Corollary 14],
see also Proposition IV.9).

Indeed, assume that A is an HD Rabin automaton recognising Muller(F). Since history-
deterministic automata are good-for-games (Proposition II.5), we can take the composi-
tion of A with a given Muller(F)-game, obtaining a Rabin game in which Eve can play
optimally using a positional strategy. This proves that A can be used as a memory
structure for Muller(F)-games, so it cannot be smaller than rbw(ZF). Formal details are
provided in Lemma IV.13 (in Chapter IV, dedicated to memory for games).

We remark that Proposition II.48 provides an alternative proof for the fact that
the memory requirements of Muller(F) are at most rbw(ZF), result first established
in [DJW97, Theorem 6].

Number of Rabin pairs
For the ZT-parity-automaton, we have shown the optimality of its acceptance con-

dition (Theorem II.1). A natural question is whether the acceptance condition of the
ZT-HD-Rabin-automaton is optimal, that is, if ARabin

ZF uses a minimal number of Rabin
pairs, or if we can minimise it. We remark that to make sense of this question, we need
to fix the automaton structure, or at least, the number of states. If we allow to increase
the number of states, an automaton minimising the number of Rabin pairs is Aparity

ZF with
its optimal parity condition.

Therefore, we focus on the following question: What is the minimal number of Rabin
pairs required to define an equivalent Rabin condition on top of ARabin

ZF ?
We know that the Rabin condition we have defined for ARabin

ZF is not optimal, and
it admits a fairly simple improvement: we could define it in a similar way using the
nodes of the Zielonka DAG instead of the nodes of the Zielonka tree (see the proof of
Proposition B.33). However, this option is not optimal in general neither. We believe (see
Conjecture II.2) that the problem of minimising the number of Rabin pairs for a fixed
automaton structure is NP-complete.

4 The alternating cycle decomposition: An optimal approach to
Muller transition systems

In Section II.3, we have provided minimal parity and Rabin automata for Muller
languages, using the Zielonka tree. We can use these automata to transform Muller tran-
sition systems, by applying the product construction. However, this approach overlooks
the structure of the transition system, meaning it does not take into account the relevant
interplay between the underlying graph and the acceptance condition.

In this section, we present our main contributions: optimal transformations of Muller
transition systems into parity and Rabin ones. The key novelty is that they precisely
capture the way the transition system interacts with the acceptance condition. This
is achieved by generalising Zielonka trees from Muller languages to Muller transition
systems; we define the alternating cycle decomposition (ACD), consisting in a collection
of Zielonka-tree-like structures subsuming all the structural information of the transition
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system necessary to determine whether a run is accepting or not. More precisely, the ACD
is a succinct representation of the alternating chains of loops of a Muller automaton, in
the sense of Wagner [Wag79]. The alternating chains of loops of a DMA are known to
determine the parity index of the language it recognises [Wag79], and, as we will show,
they also capture the essential information to define optimal transformations of automata.

We start with the definition of the alternating cycle decomposition in Section II.4.1.
In Section II.4.2, we describe the ACD-parity-transform, turning a DMA A into an equiv-
alent DPA ACDparity(A). Formally, the validity of this transformation is witnessed by a
locally bijective morphism ϕ : ACDparity(A)→ A (Proposition II.68). In Section II.4.3, we
describe the ACD-HD-Rabin-transform that turns a DMA A into an equivalent history-
deterministic Rabin automaton ACDRabin(A). The validity of the transformation is wit-
nessed by an HD mapping ϕ : ACDRabin(A)→ A (Proposition II.75). These constructions
grant strong optimality guarantees. The automaton ACDparity(A) (resp. ACDRabin(A)) has
a minimal number of states amongst parity (resp. Rabin) automata admitting an HD
mapping to A (Theorems II.6 and II.7). We note that this implies minimality amongst
automata admitting a locally bijective morphism to A. Moreover, the acceptance condi-
tion of ACDparity(A) uses an optimal number of priorities (Theorem II.5). The optimality
of these constructions is shown in Section II.4.4. We are able to prove the optimality of
both constructions at the same time, by reducing the problem to an application of the
minimality of the ZT-parity-automaton and the ZT-HD-Rabin-automaton.

In all this section, we let TS = (GTS ,AccTS) be a Muller transition system with un-
derlying graph GTS = (V,E, source, target, I) and using a Muller acceptance condition
AccTS = (col,Γ,MullerΓ(F)).

4.1 The alternating cycle decomposition

Tree of alternating cycles and the ACD

Definition II.51.
Let `0 ∈ Cycles(TS) be a cycle. We define the tree of alternating subcycles of `0,

denoted AltTree(`0) = (N,�, ν : N → Cycles(TS)) as a Cycles(TS)-labelled tree with nodes
partitioned into round nodes and square nodes, N = N© tN�, such that:

] The root is labelled `0.
] If a node is labelled ` ∈ Cycles(TS), and ` is an accepting cycle (col(`) ∈ F), then
it is a round node, and its children are labelled exactly with the maximal subcycles
`′ ⊆ ` such that `′ is rejecting (col(`′) /∈ F).

] If a node is labelled ` ∈ Cycles(TS), and ` is a rejecting cycle (col(`) /∈ F), then it
is a square node, and its children are labelled exactly with the maximal subcycles
`′ ⊆ ` such that `′ is accepting (col(`′) ∈ F).

For a Cycles(TS)-labelled tree T = (N,�, ν : N → Cycles(TS)) and n ∈ N , we let
νStates(n) = States(ν(n)) be the set of states of the cycle labelling n.
F Remark II.52. Let n be a node of AltTree(`0) and let n1 be a child of it. If `′ is a
cycle such that ν(n1) ( `′ ⊆ ν(n), then ν(n1) is accepting ⇐⇒ `′ is rejecting ⇐⇒
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ν(n) is rejecting.

Definition II.53 (Alternating cycle decomposition).
Let TS be a transition system, and let `1, `2, . . . , `k be an enumeration of its maximal

cycles (that is, the edges sets of its SCCs). We define the alternating cycle decomposition
of TS to be the forest ACDTS = {AltTree(`1), . . . ,AltTree(`k)}.

We let N`i be the set of nodes of AltTree(`i), and n`i its root. We will suppose that
N`i ∩N`j = ∅ if i 6= j.

We define the set of nodes of ACDTS to be Nodes(ACDTS) = ⋃k
i=1N`i , and we let

Nodes©(ACDTS) (resp. Nodes�(ACDTS)) be the subset of round (resp. square) nodes.
As for Zielonka trees, we equip the trees of ACDTS with an arbitrary order making them
ordered trees. From now on, we will suppose that all trees of alternating subcycles are
ordered, without explicitly mentioning it.

Local subtrees
We remark that for a recurrent vertex v of TS, there is one and only one tree AltTree(`i)

in ACDTS such that v ∈ νStates(n`i). On the other hand, transient vertices do not appear
in the trees of ACDTS .

If v is a recurrent vertex of TS, we define the local subtree at v, noted Tv, as the subtree
of AltTree(`i) containing the nodes Nv = {n ∈ N`i | v ∈ νStates(n)}. If v is a transient
vertex, we define Tv to be a tree with a single node.

For v recurrent, as Nv is a subset of the nodes of AltTree(`i), the tree Tv inherits
the order from AltTree(`i), as well as its partition into round and square nodes, Nv =
Nv,© tNv,�. Also, it inherits the labelling given by the mapping ν, whose restriction to
Tv has an image in Cycles

v
(TS).

F Remark II.54. Let v ∈ νStates(n`i). If n ∈ Nv and n′ is an ancestor of n in AltTree(`i),
then n′ ∈ Nv. In particular, Tv is indeed a subtree of AltTree(`i). Also, we note that the
root of Tv is n`i.

For a node n ∈ N`i and an edge e ∈ `i we define Supp(n, e) = n′ to be the deepest
ancestor of n such that e ∈ ν(n′). We remark that if e = v −→ v′, then Supp(n, e) is a
node in both Tv and Tv′ .

Example II.55.

We will use the transition system TS from Figure 15 as a running example. We have
named the edges of TS with letters from a to l, that are also used as the output colours
of the acceptance condition. The acceptance set of TS is the Muller language associated
to:

F = {{c, d, e}, {e}, {g, h, i}, {l}, {h, i, j, k}, {j, k}}.

The initial vertex of TS, v0, is its only transient vertex, all the others vertices are
recurrent. TS has 2 strongly connected components, corresponding to cycles `1 and `2.

The alternating cycle decomposition of TS is shown in Figure 16. It consists of two
trees, AltTree(`1) and AltTree(`2). We use Greek letters (in pink) to name the nodes of
the tree. Inside each node we indicate both its label ν(n) and the set of states of it. For
example, ν(κ) = {g, h, i} and νStates(κ) = {v3, v4}. We have that Supp(τ, g) = κ and
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Supp(τ, j) = λ. We highlight in bold orange the local subtree at v4, Tv4 . The tree Tv0 ,
consisting in a single node, does not appear in the figure. The numbering on the right of
the trees will be used in next section.

v0 v1 v2

v3 v4 v5

ℓ1

ℓ2

a

b

c

f

d
e

g

h

i

j

k l

F Figure 15. Transition system TS using a Muller acceptance condition given by F =
{{c, d, e}, {e}, {g, h, i}, {l}, {h, i, j, k}, {j, k}}. The two maximal cycles, `1 and `2, are
encircled by blue and red dashed lines, respectively.

c,d,e
v1, v2

c,d
v1, v2

2

3

α

β

AltTree(ℓ1)

g,h,i,j,k,l
v3, v4, v5

g,h,i
v3, v4

l
v5

h,i,j,k
v3, v4, v5

g
v3

h,i
v3, v4

h,i
v3, v4

1

2

3

λ

κ ζ
χ

ξ τ θ

AltTree(ℓ2)

F Figure 16. Alternating cycle decomposition of TS. In bold orange, the local subtree
at v4, Tv4 .

F Remark II.56. Let TS be a Muller TS using as acceptance set W = MullerΓ(F), and
let TS be the TS obtained by replacing W with W = Γω \W (which is a Muller language).
Then, the ACD of TS coincides with that of TS, with the only difference that the par-
tition into round and square nodes is inverted: Nodes©(ACDTS) = Nodes�(ACDTS) and
Nodes�(ACDTS) = Nodes©(ACDTS).

We note that if A is a DMA recognising L ⊆ Σω, the automaton A is a DMA recog-
nising Σω \ L.

F Remark II.57. The Zielonka tree can be seen as the special case of the alternating
cycle decomposition for transition systems with just one state. Indeed, a Muller language
Muller(F)Σ can be trivially recognised by a DMA A with a single state q and self loops
q

a:a−→ q. The ACD of this automaton is exactly the Zielonka tree of F .
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Local Muller languages
For a recurrent state v of TS, we define the local Muller language of TS at v as the

Muller language defined over the alphabet Γv = Cycles
v
(TS) associated to:

LocalMullerTS(v) = {C ⊆ Cycles
v
(TS) |

⋃
`∈C

` is an accepting cycle}.

We note that LocalMullerTS(v) is completely determined by singletons (C ∈ LocalMullerTS(v)
if and only if {⋃`∈C `} ∈ LocalMullerTS(v)). For simplicity, and by a slight abuse of nota-
tion, we will work as if LocalMullerTS(v) ⊆ Cycles

v
(TS). To lighten notations, we will just

write LocalMullerTS(v) to denote Muller(LocalMullerTS(v)) whenever no confusion arises.
The following lemma directly follows from the definition of Tv and that of Zielonka

tree. It provides insight in the structure of the trees Tv, and it will be a key ingredi-
ent in the proof of the optimality of the transformations based on the alternating cycle
decomposition.

Lemma II.58.
Let TS be a Muller transition system and let v be a recurrent vertex of it. The tree

Tv is the Zielonka tree of the family LocalMullerTS(v).8

The ACD-DAG
In the same way as we obtained the Zielonka DAG from the Zielonka tree, we define a

DAG obtained by merging the nodes of the ACD sharing the same label. This structure
will be useful for computational considerations (c.f. Section II.5).

Let TS be a Muller transition system. The DAG of alternating subcycles of a cycle `0,
denoted AltDAG(`0) is the Cycles(TS)-labelled DAG obtained by merging the nodes of
AltTree(`0) with a same label.

The ACD-DAG of a Muller transition system TS is ACD-DAGTS = {AltDAG(`1), . . . ,
AltDAG(`k)}, where `1, . . . , `k is an enumeration of the maximal cycles of TS (that is, of
its SCCs).

For v a recurrent vertex of TS, we define the local subDAG at v, noted Tv-DAG, as the
DAG obtained by merging the nodes of Tv with a same label. We note that if `i is the
maximal cycle containing v, Tv-DAG coincides with the subDAG of AltDAG(`i) consisting
of the nodes labelled with cycles containing v.

4.2 An optimal transformation to parity transition systems

We now define the ACD-parity-transform, an optimal transformation turning a Muller
TS into a parity TS while preserving determinism. In order to obtain the optimality in
the number of priorities, we need to pay attention to the parity of the minimal priority
used in different SCCs. To incorporate this parameter in the transformation, we define
positive and negative ACDs.

8Formally, the labelling ν of Tv goes to Cycles
v
(TS), and not to 2Cycles

v
(TS)

+ , as required by the definition
of the Zielonka tree. To obtain a proper Zielonka tree with a labelling of nodes ν′ : Nv → 2Cycles

v
(TS)

+ , we
would have to define ν′(n) = {`′ ∈ Cycles

v
(TS) | `′ ⊆ ν(n)}.
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Let TS be a Muller transition system and let ACDTS = {AltTree(`1), . . . ,AltTree(`k)}
be its alternating cycle decomposition.

We say that a tree AltTree(`i) ∈ ACDTS is positive if `i is an accepting cycle, and that
it is negative otherwise. We say that the alternating cycle decomposition of TS is positive
if all the trees of maximal height of ACDTS are positive, that it is negative if all trees of
maximal height are negative, and that it is equidistant if there are positive and negative
trees of maximal height.

As for the Zielonka tree, we associate a non-negative integer to each level of the trees
of ACDTS via a function pACD(n) : Nodes(ACDTS)→ N. Let `i be a maximal cycle of TS
and n ∈ N`i .

] If ACDTS is positive or equidistant:
- pACD(n) = Depth(n), if `i is accepting,
- pACD(n) = Depth(n) + 1, if `i is rejecting.

] If ACDTS is negative:
- pACD(n) = Depth(n) + 2, if `i is accepting,
- pACD(n) = Depth(n) + 1, if `i is rejecting.

We let minTS (resp. maxTS) be the minimum (resp. maximum) value taken by the
function pACD.
F Remark II.59. A node n in AltTree(`i) verifies that pACD(n) is even if and only if ν(n)
is an accepting cycle (that is, if n is a round node).
F Remark II.60. It is satisfied:

] minTS = 0 if ACDTS is positive or equidistant,
] minTS = 1 if ACDTS is negative.

Example II.61.

In the previous Example II.55, AltTree(`1) is a positive tree and AltTree(`2) is negative.
As AltTree(`2) is the tree of maximal height, ACDTS is negative. The function pACD is
represented in Figure 16 by the integers on the right of each tree. It takes values 2 and
3 over AltTree(`1) (pACD(α) = 2 and pACD(β) = 3), because ACDTS is negative. In this
example, minTS = 1 and maxTS = 3. We note that if we had associated integers 0 and
1 to the levels of AltTree(`1), we would have used 4 integers in total, instead of just 3 of
them.

Definition II.62 (ACD-parity-transform).
Let TS be a Muller TS with ACDTS = {AltTree(`1), . . . ,AltTree(`k)}. We define the

ACD-parity-transform of TS be the parity TS ACDparity(TS) = (G′,Acc′), with G′ =
(V ′, E ′, source′, target′, I ′), and Acc′ = (col′, [minTS ,maxTS ], parity) defined as follows.

Vertices. The set of vertices is
V ′ =

⋃
v∈V

({v} × Leaves(Tv)) .

Initial vertices. I ′ = {(v0, n) | v0 ∈ I and n is the leftmost leaf in Tv0}.
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Edges and output colours. For each (v, n) ∈ V ′ and each edge e = v −→ v′ ∈ Out(v)
in TS we define an edge en = (v, n) col′(en)−−−−→ (v′, n′). Formally,

E ′ =
⋃
e∈E

(
{e} × Leaves(Tsource(e))

)
.

If v and v′ are not in the same SCC, we let n′ be the leftmost leaf in Tv′ and
col′(en) = minTS .9 If v and v′ belong to the same SCC, we let:

] n′ = JumpTv′
(n, Supp(n, e)),

] col′(en) = pACD(Supp(n, e)).

Labellings. If TS is a labelled transition system, with labels lV : V → LV and lE : E →
LE, we label ACDparity(TS) by l′V ′(v, n) = lV (v) and l′E′(en) = lE(e).

Intuitively, a run in the transition system ACDparity(TS) follows a run in TS with some
extra information, updated in the same manner as it was the case with the ZT-parity-
automaton. To define transitions in ACDparity(TS), we move simultaneously in TS and in
ACDTS . When we take a transition e in TS that goes from v to v′ , while being in a node
n in the ACD , we climb the branch of n searching the lowest node ñ with e and v′ in
its label (ñ = Supp(n, e)). We produce as output the priority corresponding to the level
reached. If no such node exists in the current tree (this occurs if we change of SCC), we
jump to the root of the tree containing v′. After having reached the node ñ, we move to
its next child in the tree Tv′ (in a cyclic way), and we pick the leftmost leaf under it.

Example II.63.

We show in Figure 17 the ACD-parity-transform ACDparity(TS) of the transition system
TS from Figure 15 (Example II.55). For each vertex v in TS, we make as many copies
as leaves of the tree Tv. We note that, as v0 is transient, the tree Tv0 consists of a single
node (by definition), that we name ι. Transitions are of the form (e, l), for e a transition
from TS and l a leaf of some local subtree; these are denoted el in the figure for the sake
of space convenience. These labels simply indicate the names of the edges, they should
not be interpreted as input letters (ACDparity(TS) is not an automaton).

We observe that there is a locally bijective morphism of transition systems ϕ from
ACDparity(TS) to TS given by ϕV (v, l) = v and ϕE(el) = e.

Another example can be found in Figure 18.

F Remark II.64. The size of the ACD-parity-transformation of TS is:

|ACDparity(TS)| =
∑
v∈V
|Leaves(Tv)| =

∑
v∈Vrec

|Leaves(Tv)|+ |Vtrans|,

where Vrec and Vtrans are the sets of recurrent and transient vertices of TS, respectively.
F Remark II.65. We remark that if TS = (GTS ,AccTS) is already a parity TS, then the
underlying graphs of ACDparity(TS) and TS are isomorphic. In fact, by Proposition II.68,

9The priorities associated to transitions changing of SCC are almost arbitrary (we could even leave
them uncoloured). We define them to be the minimal priority used so that the obtained transition system
is normalised in the sense of Section II.7.
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v0, ι v1, β v2, β

v3, ξ

v3, τ

v3, θ

v4, τ

v4, θ

v5, ζ

v5, χ

aι : 1

bι : 1

cβ : 3

fβ : 1

dβ : 3 eβ : 2

gξ : 3

hξ : 2

gτ : 2 hτ : 3
gθ : 1

hθ : 3

iτ : 3

jτ : 1

iθ : 3

jθ : 2

kχ : 2

lχ : 1
kζ : 1

lζ : 2

F Figure 17. ACD-parity-transform ACDparity(TS) of the transition system TS from
Figure 15.

ACDparity(TS) and TS will also be isomorphic as transition systems. In this case, the
construction of ACDparity(TS) boils down to the application of the procedure described by
Carton and Maceiras [CM99].

F Remark II.66. The ACD-parity-transform is oblivious to the labelling col of the ac-
ceptance condition of TS; the only information taken into account to define the graph of
ACDparity(TS) and its output colours is the structure of the trees of ACDTS . That is, the
definition of this transformation is independent of the actual representation of the accep-
tance condition of TS (whether it is Emerson-Lei, Muller, Rabin...), and we only use that
any such representation induces a mapping f : Cycles(TS)→ {Accept,Reject}.
F Remark II.67. The ZT-parity-automaton can be seen as a special case of the ACD-
parity-transform, as Aparity

ZF coincides with the DPA ACDparity(A), where A is the DMA
with a single state recognising Muller(F) (see Remark II.57).

Correctness of the ACD-parity-transform

Proposition II.68 (Correctness of the ACD-parity-transform).
Let TS be a (labelled) Muller TS and let ACDparity(TS) be its ACD-parity-transform.

There is a locally bijective morphism of (labelled) transition systems ϕ : ACDparity(TS)→
TS.

The following lemma, analogous to Lemma II.35 from Section II.3.2, follows from the
definition of the ACD-parity-transform.
F Lemma II.69. Let n be a node of AltTree(`i), let ñ be an ancestor of n and let
e = v −→ v′ be an edge in `i. Then, Supp(n, e) is a descendant of ñ if and only if
e ∈ ν(ñ), and in this case, if en = (v, n) −→ (v′, n′) is an edge of ACDparity(TS), then n′ is
a descendant of ñ too.

Proof of Proposition II.68. We consider the mapping ϕ = (ϕV , ϕE) naturally defined
by ϕV (v, n) = v and ϕE(en) = e. It is immediate to check that ϕ is a weak morphism of
transition systems (it preserves initial states and transitions). Also, it is easy to see that it
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is locally bijective: for each initial state v0 ∈ I, there is exactly one node in I ′ of the form
(v0, n): the node where n is the leftmost leaf of Tv; and for each vertex (v, n) and edge
e ∈ Out(v) of TS, we have define exactly one edge outgoing from (v, n) corresponding to
e.

We prove that ϕ preserves the acceptance of runs, following the proof scheme from
Proposition II.34. We can suppose w.l.o.g. (see Remarks I.3 and II.66) that the set of
output colours used by TS is its set of edges E. Let ρ ∈ Run(ACDparity(TS)) be an infinite
run in ACDparity(TS). Eventually, ρ will remain in one SCC, and Inf(ρ) will form a cycle
that is accepting if and only if ρ is an accepting run. We will suppose that all the edges in
ρ appear infinitely often and belong to this cycle (we can do it by using a similar argument
as the one presented in the proof of Proposition II.34), and we let:

ρ = (v0, n0) x0−→ (v1, n1) x1−→ (v2, n2) x3−→ . . . .

The projection of ρ under ϕ is:

ϕRuns(ρ) = v0
e0−→ v1

e1−→ v2
e3−→ . . . .

We note that the edges {e0, e1, . . .} form a cycle in TS, that we will call `ρ. In particular,
`ρ is contained in some maximal cycle `max, and all the nodes ni belong to the same tree
AltTree(`max) of the ACD. Our objective is to show that `ρ is an accepting cycle in TS if
and only if min{x0, x1, x2, . . .} is even. We let ñi = Supp(ni, ei) be the node of ACDTS
determining the ith transition of ρ, so we have that xi = pACD(ñi). Finally, let nρ be the
deepest ancestor of n0 such that `ρ ⊆ ν(nρ).

G Claim II.68.1. For all i ≥ 0, ni � nρ and ñi � nρ (that is, all nodes appearing in
ρ are below nρ). In particular, xi ≥ pACD(nρ).
Proof. The claim follows from Lemma II.69 and induction. C

G Claim II.68.2. Let nρ,1, . . . , nρ,s be an enumeration of ChildrenAltTree(`max)(nρ). It is
verified that:

1. Supp(ni, ei) = nρ infinitely often. In particular, xi = pACD(nρ) for infinitely
many i’s.

2. There is no nρ,k ∈ Children(nρ) such that `ρ ⊆ ν(nρ,k).

Proof. The proof is identical to that of Claim II.34.2, from Proposition II.34. C

We conclude that min{x0, x1, x2, . . .} = pACD(nρ), which is even if and only if `ρ is an
accepting cycle, by Remarks II.52 and II.59. J

F Remark II.70. We can give an alternative interpretation of the previous proof. Given
a run ρ in TS and a vertex v appearing infinitely often in ρ, we can decompose the run
into:

ρ0
v

ρ1
v

ρ2
v

ρ3
v

ρ4
. . . ,

where the finite runs ρi are cycles over v, for i > 0. Therefore, the sequence of these
cycles can be processed by the ZT-parity-automaton corresponding to the local Muller con-
dition LocalMullerTS(v). By Lemma II.58 and the correctness of the ZT-parity-automaton,
the minimal priority produced by a run over this sequence of cycles in Aparity

ZLocalMullerTS (v)
coin-

cides with the minimal priority produced by the run ϕ−1
Runs(ρ) in the ACD-parity-transform

ACDparity(TS) (disregarding the initial path ρ0). This priority is exactly the one corre-
sponding to the deepest node in Tv above the leftmost leaf containing Inf(ρ).
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The locally bijective morphism given by Proposition II.68 witnesses that ACDparity(TS)
has the same semantic properties as TS. The next corollaries follow from Proposi-
tions II.22 and II.23 (and the fact that the choice of initial vertices in ACDparity(TS)
is arbitrary).

Corollary II.71.

Let A be a Muller automaton and let ACDparity(A) be its ACD-parity-transform. Then,
L(A) = L(ACDparity(A)), and A is deterministic (resp. history-deterministic) if and only
if ACDparity(A) is deterministic (resp. history-deterministic).

Corollary II.72.

Let G be a Muller game and let ACDparity(G) be its ACD-parity-transform. Eve wins
ACDparity(G) from a vertex of the form (v, n) if and only if she wins G from v.

4.3 An optimal history-deterministic transformation to Rabin transition
systems

In this section we describe the ACD-HD-Rabin-transform, an optimal transformation
of Muller TS to Rabin TS preserving history-determinism. This construction generalises
the ZT-HD-Rabin-automaton (from Section II.3.3) in the same way as the ACD-parity-
transform generalises the ZT-parity-automaton.

Definition II.73 (ACD-HD-Rabin-transform).
Let TS be a Muller TS. For each vertex v ∈ V we let ηv : Leaves(Tv)→ {1, . . . , rbw(Tv)}

be a mapping satisfying Property (?) from Lemma II.42.
We define the ACD-HD-Rabin-transform of TS to be the Rabin TS ACDRabin(TS) =

(G′,Acc′), with G′ = (V ′, E ′, source′, target′, I ′), and Acc′ = (col′,Nodes(ACDTS),
Rabin(R)) defined as follows.

Vertices. The set of vertices is

V ′ =
⋃
v∈V

({v} × {1, . . . , rbw(Tv)}) ,

where rbw(Tv) is the round-branching width of Tv.

Initial vertices. I ′ = {(v0, x) | v0 ∈ I and x ∈ {1, . . . , rbw(Tv0)}}.

Edges and output colours. We let

E ′ =
⋃
e∈E

(
{e} × Leaves(Tsource(e))

)
.

For each edge e = v −→ v′ ∈ E in TS and x ∈ {1, . . . , rbw(Tv)}, we will place one
edge from (v, x) for each leaf l of Tv such that ηv(l) = x. More precisely, we let
(v, x) n−→ (v′, x′) ∈ E ′ if either

] v and v′ are not in the same SCC (in this case the output colour n is irrelevant),
or
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] v and v′ are in the same SCC and there are leaves l and l′ of Tv and Tv′ ,
respectively, such that:
- ηv(l) = x, ηv′(l′) = x′,
- l′ = JumpTv′

(l, Supp(l, e)),
- n = Supp(l, e).

Rabin condition. R = {(gn, rn)}n∈Nodes©(ACDTS), where gn and rn are defined as follow:
Let n be a round node, and let n′ be any node in Nodes(ACDTS),n′ ∈ gn if n′ = n,

n′ ∈ rn if n′ 6= n and n is not an ancestor of n′.

Labellings. If TS is a labelled transition system, with labels lV : V → LV and lE : E →
LE, we label ACDRabin(TS) by l′V ′(v, x) = lV (v) and l′E′(e′) = lE(e), if e′ ∈ E ′(e).

Intuitively, a run in ACDRabin(TS) can be identified with a promenade through the
nodes of the ACD, which are used as the output colours to define the Rabin acceptance
condition.
F Remark II.74. The size of the ACD-HD-Rabin-transform of TS is:

|ACDRabin(TS)| =
∑
v∈V

rbw(Tv) =
∑
v∈Vrec

rbw(Tv) + |Vtrans|,

where Vrec and Vtrans are the sets of recurrent and transient vertices of TS, respectively.

Correctness of the ACD-HD-Rabin-transform
To obtain the correctness of the ACD-HD-Rabin-transform, we follow the same steps

as in the proof of the correctness of the ZT-HD-Rabin-automaton (Proposition II.48).

Proposition II.75 (Correctness of the ACD-HD-Rabin-transform).
Let TS be a (labelled) Muller TS and let ACDRabin(TS) be its ACD-HD-Rabin-

transform. There is an HD mapping of (labelled) transition systems ϕ : ACDRabin(TS)→
TS.

The proof of next two lemmas are completely analogous to those of Lemmas II.49
and II.50.
F Lemma II.76. Let u = n0n1n2 · · · ∈ Nodes(ACDTS)ω be an infinite sequence of nodes
of the ACD of TS. The word u belongs to Rabin(R), for R = {(gn, rn)}n∈Nodes©(ACDTS) the
Rabin condition of ACDRabin(TS), if and only if there is a unique minimal node for the
ancestor relation in Inf(u) and this minimal node is round.
F Lemma II.77. There exists a morphism of transition systems ϕ : ACDparity(TS) →
ACDRabin(TS).

Using these lemmas we can prove Proposition II.75.

Proof of Proposition II.75. We define the mapping ϕ : ACDRabin(TS) → TS in the
natural way: ϕV (v, x) = v and ϕE(e, l) = e. It is immediate to check that ϕ is a weak
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morphism. The fact that ϕ preserves accepting runs can be proven analogously to the
fact that L(ARabin

ZF ) ⊆ MullerΣ(F) in Proposition II.48 (by using Lemma II.76).
Definition of a sound resolver for ϕ: In order to show how to simulate runs of TS in

ACDRabin(TS), we use the fact that we can see ACDRabin(TS) as a quotient of ACDparity(TS)
(Lemma II.77). Let ϕ̃ : ACDparity(TS) → TS be the locally bijective morphism given by
Proposition II.68, and let ϕ̂ : ACDparity(TS) → ACDRabin(TS) be the morphism given by
Lemma II.77. Since ϕ̃ is locally bijective, ϕ̃Runs is a bijection between the runs of the
transitions systems ACDparity(TS) and TS, admitting an inverse ϕ̃−1

Runs . Composing this
mapping with ϕ̂, we obtain a way to simulate the runs from TS in ACDRabin(TS):

ϕ̂Runs ◦ ϕ̃−1
Runs : Run∞(TS)→ Run∞(ACDRabin(TS)).

This composition of mappings provides a sound resolver simulating ϕ. Formally, let
(rInit, r) be the resolver defined as follows. The choice of initial vertices rInit : I → I ′ is
given by rInit(v0, x) = v0. The function r : E ′∗ ×E → E ′ associates to a finite run ρ ∈ E ′∗
and e ∈ E the last edge of the run ϕ̂(ϕ̃−1(ϕ(ρ)e)) (subscripts have been omitted for
legibility). It is easy to check that (rInit, r) indeed defines a resolver simulating ϕ. Its
soundness follows from the fact that ϕ̃ and ϕ̂ preserve the acceptance of runs. J

As HD mappings are witnesses of the semantic equivalence of automata (Proposi-
tion II.22) we obtain:

Corollary II.78.

Let A be a Muller automaton and let ACDRabin(A) be its ACD-HD-Rabin-transform.
Then, L(A) = L(ACDRabin(A)), and A is history-deterministic if and only if ACDRabin(A)
is history-deterministic.

ACD-HD-Rabin-transform for games. As remarked in Section II.2, the exis-
tence of an HD mapping between two games does not guarantee that they have the same
winner. This applies in particular to the ACD-HD-Rabin-transform, which might not
preserve the winner of games. The reasons why this happens are the same as the diffi-
culties encountered when we wanted to define the composition of a game G and an HD
automaton A (see Section II.1): as the output of such operation, we would like to obtain
a game in which Eve always chooses the transitions taken in A, even if it is Adam who
makes a move in the game, which is not the case if G is not suitable for transformations.
In our case here, we can see the ACD-HD-Rabin-transform of a game G as a game in
which, at each moment, first a move takes place in G and then a choice is made to update
the node in ACDG. With the current definition of ACDRabin(G), it is the player who makes
the move in the game component who chooses how to update the node in ACDG. This
is potentially a problem, as we would like that Eve had full control to decide how to
update the nodes in ACDG, even when it was Adam who moved in the game component.
In Appendix B.1, we propose a slight modification of the ACD-HD-Rabin-transform to
obtain a transformation valid for games.

4.4 Optimality of the ACD-transforms

We now state and prove the optimality of both the ACD-parity-transform (Theo-
rems II.5 and II.6) and the ACD-HD-Rabin-transform (Theorem II.7). The proofs of
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these results will use the optimality of the automata based on the Zielonka tree (c.f.
Section II.3) as a black-box, which will allow us to prove the optimality of both transfor-
mations at the same time. The key idea is that if ϕ : TS → TS ′ is an HD mapping, we
can see TS as an HD automaton recognising the accepting runs of TS ′. We can then use
local Muller conditions at vertices of TS ′ to reduce the problem to automata recognising
Muller languages.

4.4.1 Statement of the optimality results
We state the optimality of the transformations based on the ACD. All the results

below apply to labelled transition systems too. For technical reasons, we need to suppose
that all the states of transition systems under consideration are accessible, hypothesis
that can always be made without loss of generality. We recall that HD mappings are in
particular locally bijective morphisms (c.f. Figure 10).

Theorem II.5.
Let TS be a Muller TS whose states are accessible and let T̃S be a parity TS. If T̃S

admits an HD mapping ϕ : T̃S → TS, then, its acceptance condition uses at least as many
priorities as that of ACDparity(TS).

Theorem II.6.
Let TS be a Muller TS whose states are accessible and let T̃S be a parity TS. If T̃S

admits an HD mapping ϕ : T̃S → TS, then, |ACDparity(TS)| ≤ |T̃S|.

Theorem II.7.
Let TS be a Muller TS whose states are accessible and let T̃S be a Rabin TS. If T̃S

admits an HD mapping ϕ : T̃S → TS, then, |ACDRabin(TS)| ≤ |T̃S|.

4.4.2 Discussion
Before presenting the proofs of the optimality theorems, we discuss some consequences

and limitations of our results.

Difficulty of finding succinct history-deterministic automata
As mentioned in the introduction, several years had to pass after the introduction

of history-deterministic automata [HP06] before finding HD automata that were actually
smaller than equivalent deterministic ones [KS15]. As of today, we only know a handful of
examples of ω-regular languages admitting succinct HD automata [AK22, KS15, CCL22],
and their applicability in practice has yet to be fully determined. We assert that we can
derive from our results some enlightening explanations on the difficulty of finding succinct
HD parity automata, and set some limits in their usefulness in practical scenarios such as
LTL synthesis.

First, Corollary II.36 already sets the impossibility of the existence of small HD par-
ity automata recognising Muller languages. Corollary II.80 states that if an HD parity
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automaton A has been obtained as a transformation of a DMA B, then A is not strictly
smaller than a minimal deterministic parity automaton for L(A).

Corollary II.79.

Let TS be a Muller TS. A minimal parity TS admitting an HD mapping to TS has
the same size than a minimal parity TS admitting a locally bijective morphism to TS.

Corollary II.80.

LetA be a history-deterministic parity automaton. Suppose that there exists a DMA B
such that A admits an HD mapping to B. Then, there exists a DPA A′ recognising L(A)
such that |A′| ≤ |A|.

Both corollaries follow from an immediate application of Theorem II.6.

The ACD-transform does not preserve minimality
A natural question is whether the ACD-parity-transform preserves minimality of au-

tomata, that is, given a DMA A with a minimal number of states for the language it
recognises, is ACDparity(A) minimal amongst DPAs recognising L(A)?10 The answer to
this question is negative, as we show now.

Proposition II.81.

There exists a DMA A that is minimal amongst DMAs recognising L(A), but such
that its ACD-parity-transform ACDparity(A) is not a minimal DPA.

We consider the alphabet Σ = {a, b, c} and the language

L = {w ∈ Σω | c ∈ Inf(w) and w contains infinitely often the factor ab}.

A minimal DMA for L is depicted in Figure 18a. Its minimality follows simply from
the fact that, as L is not a Muller language ((abc)ω ∈ L but (bac)ω /∈ L, c.f. Remark I.11),
a DMA with just one state cannot recognise L. In Figure 18 we show its alternating cycle
decomposition and its ACD-parity-transform, that has 4 states. However, we can find a
DPA with just 3 states recognising L, as shown in Figure 18d.

4.4.3 Optimality of the parity condition of ACDparity(TS)
We show next the proof of Theorem II.5. To prove this result, we would like to use the

Flower Lemma I.21, however, the statement of Theorem II.5 does not involve ω-regular
languages. In order to set up a context in which apply the Flower Lemma, we show that,
whenever we have a morphism ϕ : TS → TS ′, TS can be seen as an automaton reading
the runs of TS ′.

Let TS = (G,Acc) and TS ′ = (G′,Acc′) be transition systems with underlying graphs
G = (V,E, source, target, I) and G′ = (V ′, E ′, source′, target′, I ′), and acceptance condi-
tions Acc = (col,Γ,W ) and Acc′ = (col′,Γ′,W ′). A weak morphism of transition systems
ϕ : TS → TS ′ provides a labelling of the edges of TS by ϕE : E → E ′. Therefore, we

10This question was left open as a conjecture in [CCF21].
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(a) A Muller automaton with acceptance set
given by F = {{α, β}}.
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(b) Alternating cycle decomposition of A. To
indicate the labels of the nodes of this ACD,
we include just the colours of the correspond-
ing edges.
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(c) ACD-parity-transform ofA, ACDparity(A),
with 4 states.

p0 p1 p2

b, c : 1

a : 1 b : 0

c : 1

a : 1

c : 0

a, b : 1

(d) A parity automaton recognising L with
only 3 states .

F Figure 18. A minimal DMA whose ACD-parity-transform is not a minimal DPA.

can see TS as an automaton with input alphabet E ′, inheriting the underlying graph and
acceptance condition from TS. We say that this is the automaton of morphism ϕ and
denote it by Aϕ.

We define the language of accepting runs of a transition system TS as:

LRuns(TS) = {ρ ∈ Eω | ρ is an accepting run in TS}.

Lemma II.82.
Let TS and TS ′ be transition systems with a single initial state, let ϕ : TS → TS ′ be

a weak morphism of transition systems, and let Aϕ be its automaton. Then, ϕ is an HD
mapping if and only if the automaton Aϕ is history-deterministic, and, in this case,

L(Aϕ) = LRuns(TS ′).

Proof. We first note that a resolver for Aϕ (in the sense of HD automata) is a mapping
of the form r : E∗ × E ′ → E, as E ′ is the input alphabet of this automaton. A resolver
simulating ϕ (in the sense of HD mappings) is a mapping of the same form. It is straight-
forward to check that (q0, r) is a sound resolver for Aϕ if and only if (rInit, r) is a sound
resolver simulating ϕ (where rInit(q′0) = q0 is the only possible choice of initial vertex).

We prove that L(Aϕ) = {ρ′ ∈ Run(TS ′) | ρ′ is an accepting run}. First, we remark
that if ρ is a run in Aϕ over ρ′ ∈ Run(TS ′), then ρ′ = ϕRuns(ρ), since the labelling of Aϕ
by input letters is given exactly by ϕ itself. Therefore, if ρ′ ∈ L(Aϕ), there exists an
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accepting run ρ over ρ′, and since ϕ preserves accepting runs, ρ′ = ϕRuns(ρ) is accepting in
TS ′, proving the inclusion from left to right. For the other inclusion, we let (rInit, r) be a
sound resolver simulating ϕ. If ρ′ is an accepting run in TS ′, then rRuns(ρ′) is an accepting
run over ρ′ in Aϕ. J

We recall that [minTS ,maxTS ] are the priorities used by the ACD-parity-transform of
TS, which coincides with the maximal height of a tree in ACDTS . We also recall that
minTS = 0 if ACDTS is positive or equidistant, and that minTS = 1 if ACDTS is negative.

F Lemma II.83. Let TS be a Muller TS, and let AltTree(`) ∈ ACDTS be a positive (resp.
negative) tree of the ACD of TS of height d. Then, TS admits a positive (resp. negative)
d-flower.

Proof. We use the same argument than the one used in the proof of Theorem II.1. Let
n1 � n2 � . . . � nd be a branch of length d of AltTree(`) (where n1 is the root and nd
is a leaf of the tree). Let v ∈ νStates(nd) be a vertex appearing in the leaf. Then, the
whole branch is contained in Tv (by Remark II.54), that is, ν(ni) ∈ CyclesTS(v). Moreover,
ν(n1) ) ν(n2) ) . . . ν(nd) is a chain that alternates accepting and rejecting cycles, so
it is a d-flower that is positive if and only if ν(n1) = ` is an accepting cycle, that is, if
AltTree(`) is positive. J

F Lemma II.84. Let TS be a Muller TS with a single initial vertex and whose vertices
are all accessible. Then, the parity index of LRuns(TS) is:

] [minTS ,maxTS ] if ACDTS is positive or negative,
] WeakmaxTS if ACDTS is equidistant.

Proof. We consider the identity morphism IdTS : TS → TS and its automaton AIdTS ,
which is a deterministic automaton trivially recognising LRuns(TS) (that is, we see TS as
an automaton reading its own edges as input letters). The result follows from the Flower
Lemma I.21 and the fact that a tree AltTree(`) ∈ ACDTS of height d provides a d-flower
that is positive if ` is accepting and negative if ` is rejecting (Lemma II.83). These flowers
are accessible as we have supposed that all the vertices of TS are accessible. J

The previous lemmas allow us to obtain Theorem II.5 for transition systems with a
single initial vertex. We introduce some further notations to deal with the general case.

For a Muller TS TS and a vertex v, we let ACD(TS,v) be the alternating cycle decom-
position of the accessible part of TS from v. We note that the trees of ACD(TS,v) are a
subset of the trees of ACDTS : a tree AltTree(`i) ∈ ACDTS appears in ACD(TS,v) if and only
if the cycle `i is accessible from v. Accordingly, for each vertex v of TS we let min(TS,v)
(resp. max(TS,v)) be the minimum (resp. maximum) value taken by the function pACD
when restricted to the trees of ACD(TS,v).

F Remark II.85. For every transition system TS, one of the two following statements
holds:

] There is some vertex v such that [minTS ,maxTS ] = [min(TS,v),max(TS,v)].
] There are two vertices v0 and v1 such that min(TS,v0) = 0, max(TS,v0) = maxTS − 1
and min(TS,v1) = 1, max(TS,v1) = maxTS .
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Moreover, if all the states of TS are accessible, we can choose v (resp. v0 and v1) to be
an initial vertex.

We can finally deduce Theorem II.5 from the preceding lemmas.

Proof of Theorem II.5. We suppose that we are in the first case of Remark II.85 (a
proof for the second case follows easily). First, we show that we can suppose that T̃S and
TS have a single initial vertex. Let v be an initial vertex of TS such that [minTS ,maxTS ] =
[min(TS,v),max(TS,v)]. Let ϕ : T̃S → TS be an HD mapping, and let (rInit, r) be a sound
resolver simulating it. We let ṽ = rInit(v) be the initial vertex in T̃S chosen by the
resolver. It suffices then to prove the result for the accessible part of T̃S from ṽ, the
transition system TSv, and the restriction of ϕ to these transition systems.

From now on, we suppose that both T̃S and TS have a single initial vertex. By
Lemma II.84 and Proposition I.20, a parity history-deterministic automaton recognising
LRuns(TS) uses at least |[minTS ,maxTS ]| priorities. By Lemma II.82, the automaton Aϕ of
the morphism ϕ is a parity history-deterministic automaton recognising LRuns(TS), and
therefore uses at least |[minTS ,maxTS ]| priorities. Since the acceptance condition of T̃S is
exactly the same as that of Aϕ, we can conclude. J

4.4.4 Optimality of the sizes of ACDparity(TS) and ACDRabin(TS)
We prove now Theorems II.6 and II.7. We first give an intuitive idea of the techniques

used.

Sketch of the proof. Let ϕ : T̃S → TS be an HD mapping, and let v be a vertex in
TS. We can see the set ϕ−1(v) as the states of an HD automaton reading finite runs in
TS looping around v. This allows to define an HD automaton having ϕ−1(v) as set of
states and recognising LocalMullerTS(v). As the Zielonka tree of LocalMullerTS(v) is the
tree Tv, by optimality of the ZT-parity-automaton (resp. the ZT-HD-Rabin-automaton),
we deduce that |ϕ−1(v)| ≥ |Leaves(Tv)| (resp. |ϕ−1(v)| ≥ rbw(Tv)). J

Definition II.86.
Let TS and TS ′ be two transition systems, and let (col,Γ,MullerΓ(F)) be the accep-

tance condition of TS. Let ϕ : TS → TS ′ be a weak morphism of transition systems
that is locally surjective, and let v′ be an accessible recurrent state of TS ′. For each
`′ ∈ Cycles

v′
(TS ′) we let ρ`′ be a finite path starting and ending in v′ visiting exactly the

edges of `′. We define the cycle-preimage-automaton at v′ to be the Muller automaton
A(ϕ−1,v′) = (Qv′ , Cycles

v′
(TS ′), Qv′ , 2Γ

+, δ,Muller2Γ
+

(F̃ )) over the input alphabet CyclesTS′(v
′)

defined as:

] the set of states is Qv′ = ϕ−1(v′),
] all the states are initial,
] the output colours are non-empty subsets of the colours used by TS,
] (q2, C) ∈ δ(q1, `

′) if there is a finite path ρ ∈ Pathfin
q1 (TS) from q1 to q2 such that

ϕ(ρ) = ρ`′ producing as output the colours in C ⊆ Γ, that is col(ρ) = C. If C is
empty, this corresponds to an uncoloured edge q1

`′:ε−−→ q2. We remark that, since ϕ
is supposed locally surjective, there is at least one such path ρ.
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] {C1, . . . , Ck} ∈ F̃ if and only if ∪ki=1Ci ∈ F .

We remark that a transition e = q1
`′:C−−→ q2 inA(ϕ−1,v′) induces a finite path Unfold(e) =

q1
C
q2 in TS called the unfolding of e, producing as output the set of colours C and

such that ϕ(Unfold(e)) = `′. In particular, a run ρ in A(ϕ−1,v′) is accepting if and only if
Unfold(ρ) is accepting.
F Lemma II.87. If L = MullerΓ(F) is a parity (resp. Rabin) language, then, so is the
language L̃ = Muller2Γ

+
(F̃ ) used by the acceptance condition of A(ϕ−1,v′).

Proof. Suppose that L is a parity language, that is, there are dmin ≤ dmax and φ : Γ →
[dmin, dmax] such that for any non-empty subset C ⊆ Γ, C ∈ F if and only if minφ(C) is
even. We define φ̃ : 2Γ

+ → [dmin, dmax] as: φ̃(C) = minφ(C). It is immediate to see that
{C1, . . . , Ck} ∈ F̃ if and only if min φ̃({C1, . . . , Ck}) is even.

Suppose now that L is a Rabin language represented by the Rabin pairs {(g1, r1), . . . ,
(gr, rr)}. We define a family of Rabin pairs R̃ = {(g̃1, r̃1), . . . , (g̃r, r̃r)} for the language L̃
as: {C1, . . . , Ck} ∈ g̃i if ∪ki=1Ci ∈ gi and {C1, . . . , Ck} ∈ r̃i if ∪ki=1Ci ∈ ri. It is immediate
to check that L̃ = Rabin2Γ

+
(R̃). J

F Lemma II.88. Let TS and TS ′ be two Muller TS, ϕ : TS → TS ′ a weak morphism
of TS, and v′ an accessible recurrent state of TS ′. If ϕ is an HD mapping, then the
automaton A(ϕ−1,v′) is history-deterministic and recognises the local Muller condition of
TS ′ at v′.

Proof. L(A(ϕ−1,v′)) ⊆ LocalMullerv′(TS): Let `′1`′2 · · · ∈ Cycles
v
(TS)ω be a sequence of

cycles accepted by A(ϕ−1,v′). By prefix-independence of Muller languages we can suppose
that all the cycles `′i appear infinitely often. Let ρ = q0

`′1:C1−−−→ q1
`′2−→ q2 −→ . . . be an

accepting run in A(ϕ−1,v′) over `′1`′2 . . . , and let Unfold(ρ) be its unfolding. As ρ is an
accepting run, so is Unfold(ρ), and since ϕ preserves accepting runs, ϕ(Unfold(ρ)) is an
accepting run in TS ′. The edges visited by ϕ(Unfold(ρ)) form the cycle ∪i≥1`

′
i, which is

therefore an accepting cycle, so `′1`′2 · · · ∈ LocalMullerv′(TS) by definition of local Muller
condition.

LocalMullerTS′(v′) ⊆ L(A(ϕ−1,v′)) and history-determinism: Let rϕ : E∗ × E ′ → E
be a sound resolver simulating ϕ. We will transfer the strategy given by rϕ to define a
resolver rA : ∆∗ × Cycles

v′
(TS ′)→ ∆ for A(ϕ−1,v′), where ∆ is the set of transitions of the

automaton. Let ρ′0 ∈ Runfin(TS ′) be a finite run reaching v′, and let ρ0 = rϕ,Runs(ρ′0) the
preimage given by the resolver, ending in some q0 ∈ Qv′ that is going to by used as initial
state for A(ϕ−1,v′). For a sequence e1e2 . . . ek ∈ ∆∗ and `′ ∈ Cycles

v′
(TS ′), we let

rA(e1e2 . . . ek, `
′) = rϕ(ρ′0ρ′1 . . . ρ′k, ρ`′), 11

where ρ′j = ϕ(Unfold(ej)) and v′
ρ`′

v′ is the finite run corresponding to `′ fixed in the
definition of A(ϕ−1,v′). By definition, the obtained resolver satisfies the following property:

If e1e2 · · · ∈ ∆ω is the run induced by rA over `′1`′2 · · · ∈ Cycles
v′

(TS ′)ω,
then ρ0Unfold(e1e2 . . . )) = rϕ,Runs(ρ′0ρ′1ρ′2 . . . ).

11Here we use a slight abuse of notation, since, formally, rϕ takes as input elements in E∗ × E′, but
ρ`′ ∈ E′∗. We can naturally extend rϕ to E′∗ by induction. Equivalently, we can say that rA(e1e2 . . . ek, `

′)
is a suffix of rϕ,Runs (ρ′0ρ′1 . . . ρ′kρ`′).
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This gives us:⋃
Inf(`′1, `′2, . . . ) is accepting cycle in TS ′ ⇐⇒ ρ′0ρ

′
1ρ
′
2 . . . is accepting run in TS ′ =⇒

=⇒ ρ0Unfold(e1e2 . . . ) accepting run in TS ⇐⇒ e1e2 . . . accepting run in A(ϕ−1,v′).

Which allows us to conclude that the A(ϕ−1,v′) recognises LocalMullerv′(TS) and that rA
is a sound resolver. J

Corollary II.89.

Let TS and T̃S be a Muller and a parity transition system, respectively, and let
ϕ : T̃S → TS be an HD mapping. Let v be an accessible recurrent state of TS. Then,

|ϕ−1(v)| ≥ |Leaves(ZLocalMullerTS(v))| = |Leaves(Tv)|.

Proof. By Lemma II.88, the automaton A(ϕ−1,v) is a history-deterministic automaton
recognising LocalMullerv(TS) of size |ϕ−1(v)|, and by Lemma II.87, it is a parity au-
tomaton. The optimality of the ZT-parity-automaton (Theorem II.2) gives us the first
inequality. The second equality follows from the fact that Tv is the Zielonka tree of
LocalMullerTS(v) (Lemma II.58). J

The next corollary admits an identical proof, using the optimality of the ZT-HD-
Rabin-automaton (Theorem II.4).

Corollary II.90.

Let TS and T̃S be a Muller and a Rabin transition system, respectively, and let
ϕ : T̃S → TS be an HD mapping. Let v be an accessible recurrent state of TS. Then,

|ϕ−1(v)| ≥ |rbw(ZLocalMullerTS(v))| = |rbw(Tv)|.

Theorems II.6 and II.7 follow from these two corollaries, the formulas for the size
of the ACD-transforms (Remarks II.64 and II.74) and the fact that a locally surjective
morphism ϕ : T̃S → TS is surjective if all vertices of TS are accessible (Lemma II.12).

5 Computational aspects of the Zielonka tree and the ACD
We start in Section II.5.1 by comparing the size of different representations of Muller

languages and translations between them. Then, we analyse the size of the Zielonka
tree and Zielonka DAG in the worst case. By Theorems II.2 and II.4, lower bounds for
the size of the Zielonka tree directly translate into lower bounds for history-deterministic
parity and Rabin automata. We recover in this way some results from Löding [Löd99] and
generalise them to history-deterministic automata. Missing proofs and further results are
included in Appendix B.3.

In Section II.5.2, we discuss the complexity of computing the ACD and the ACD-DAG.
We show that computing the ACD is not harder than computing the Zielonka tree: given
a Muller TS with its acceptance condition represented as a Zielonka tree (resp. Zielonka
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DAG), we can compute its ACD (resp. ACD-DAG) in polynomial time (Theorems II.8
and II.9). These results have various implications:

] They provide support for the assertion that the transformations defined in the pre-
vious section are actually applicable in practical scenarios. Further backing for this
claim is offered by the implementation of the ACD-transforms in Spot 2.10 [DL+22]
and Owl 21.0 [KMS18] (see [Cas+22]).

] In Section II.8, we will show that corresponding problems for state-based models are
NP-hard. This provides further evidence in favour of transition-based acceptance.

] These results will allow us to prove in next section that we can decide the typeness
of Muller transition systems in polynomial time (Theorem II.10).

5.1 Size of the Zielonka tree and the ACD

5.1.1 Translations between different representations of Muller languages

Emerson-Lei

Rabin pairs

Zielonka DAG

Zielonka tree

Explicit

Exponential gap

Polynomial translation

F Figure 19. Comparison between the different representations of Muller conditions. A
blue bold arrow from X to Y means that converting an X-representation into the form
Y might require an exponential blow-up. A dashed arrow from X to Y means that it
is possible to transform an X-representation into the form Y in polynomial time. We
remark that the representation using Rabin pairs does only apply to the subclasses of
Rabin and Streett languages. We note that dashed arrows (polynomials translations) are
closed by transitivity.

In Figure 19 we represent the main relations between different representations of Muller
languages used in this paper, as introduced in Section I.3.2. Detailed proofs and examples
can be found in Appendix B.3, see also [Bok19, HD05, Hug23] for more details about
these and other representations of Muller languages.

Emerson-Lei conditions – which represent a Muller language by a boolean formula –
are the most succinct ones, and for this reason they are commonly used in practice. All
problems considered in the following are trivially NP-hard when using Muller languages
represented as Emerson-Lei conditions. This is the case, for example, for the problem of
computing a child of a node of the Zielonka tree. For this reason, we will seldom consider
Emerson-Lei conditions in the rest of the document.

The Zielonka DAG, first introduced by Hunter and Dawar [HD05], has recently been
shown to offer a good trade-off between conciseness and desirable algorithmic proper-
ties [Hug23]. This makes it a sensible option for representing Muller languages and eval-
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uating the complexity of decision problems related to Muller automata. Almost by defi-
nition, we can obtain a Zielonka DAG from a Zielonka tree in polynomial time. However,
we show in Proposition B.32 that the Zielonka tree can be exponentially larger. Hunter
and Dawar showed that we can compute a Zielonka DAG in polynomial time from an
explicit representation of a Muller language [HD05, Theorem 3.3]. Zielonka trees and
explicit representations are incomparable: there are families F for which ZF is exponen-
tially larger than |F| and vice-versa (Propositions B.29 and B.30). We also remark that
the representation of a Muller language using a Zielonka tree and a deterministic parity
automaton are equivalent, by Theorem II.2 and Proposition III.18.

We remark that the representation using a family of Rabin pairs only applies to Ra-
bin or Streett languages. Arrows involving this representation do only apply to these
subclasses of languages; for example the dotted arrow from “Zielonka DAG” to “Rabin
pairs” should be read: “if Z-DAGF is a Zielonka DAG such that the language associated
to F is a Rabin language, then we can compute a representation as a Rabin condition in
polynomial time”.

5.1.2 Worst case analysis
We study the size of the Zielonka tree in the worst case. By Remark II.57, the given

bounds apply to the ACD, as the Zielonka tree can be seen as the ACD of a Muller TS
with just one state.

In all this subsection, Σn will stand for an alphabet of size n, for example, Σn =
{1, . . . , n}.

We define the double factorial of a positive integer n as:

n!! = n(n− 2)(n− 4) · · · 4 · 2 if n even, n!! = n(n− 2)(n− 4) · · · 3 · 1 if n odd.

Proposition II.91 (Size of the Zielonka tree: Worst case).
Let F ⊆ 2Σ

+ be a family of subsets, and let m = |Σ| be the number of letters of the
alphabet. It is satisfied:

] |ZF | ≤ 1 +m+m(m− 1) + · · ·+m!,
] |Leaves(ZF)| ≤ m!,
] |rbw(ZF)| ≤ m!!, and
] the height of ZF is at most m.

These bound are tight: for all m ∈ N, there is a family Fm ⊆ 2Σm
+ over an alphabet of m

letters such that the previous relations are equalities.

Proof. We start by showing that the given bounds are tight. We suppose that m is
even (the construction is symmetric if m is odd), and let Σm = {1, . . . ,m}. Consider the
family12 EvenLettersm ⊆ 2Σm

+ given by:

EvenLettersm = {C ⊆ Σm | |C| is even}.

First, we remark that the last inequality follows from the fact that the subsets Σm,Σm\
{1}, . . . ,Σm \ {1, . . . ,m− 1} form a branch of the Zielonka tree. Let n be a node of the

12This family of subsets already appear in the worst-case study of parity automata recognising a Muller
language in Mostowski’s paper introducing the parity condition [Mos84, p.161].
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Zielonka tree of EvenLettersm, and let Xn = ν(n) be its label. Then n has a child for each
subset of Xn of size |Xn| − 1. A simple induction gives that the level at depth k of the
Zielonka tree has m(m − 1) · · · (m − (k − 1)) nodes. This gives the first three equalities
of the statement.

We prove now the upper bounds. The last item follows from the fact that the label
of a node is a set of size strictly smaller than the label of his parent. Let F ⊆ 2Σ

+, and
m = |Σ|. We show by recurrence that the Zielonka tree ZF is not bigger than that of
EvenLettersm. We remark that for all X ⊆ Σm, there is a node nX in the Zielonka tree of
EvenLettersm labelled X, and that the subtree rooted at nX is isomorphic to the Zielonka
tree of EvenLetters|X|. Let n0 be the root of ZF , and let n1, . . . , nk be its children. Then,
we can find in the Zielonka tree of EvenLettersm k incomparable nodes having as labels
ν(n1), . . . , ν(nk). By induction hypothesis, the subtree rooted at each of these nodes is
not smaller than the subtrees rooted at n1, . . . , nk. This shows the two first items.

To prove the third item we need to be slightly more careful and pay attention to
round nodes and square nodes. We show the result for the case in which Σ ∈ F and m
even (the other three cases are analogous, by taking if necessary a symmetric condition
OddLettersm). Let n0 be a node of ZF , let n1, n2, . . . , nk be its children, and let n′0 be a
node in the Zielonka tree of EvenLettersm such that n′0 is round if and only if n0 is round
and such that ν(n0) ⊆ ν(n′0). Then, we can find k descendants of n′0 in the Zielonka tree
of EvenLettersm, n′1, . . . , n′k such that:

] nodes n′i are round if and only if nodes ni are round,
] ν(ni) ⊆ ν(n′i).

Suppose that n0 and n′0 are round (the proof is similar if they are square). Let Tx be the
subtree rooted at a node x. Then, it is satisfied:

rbw(Tn0) =
k∑
i=1

rbw(Tni
) ≤

k∑
i=1

rbw(Tn′i) ≤ rbw(Tn0),

where the first inequality follows from induction hypothesis, and the last one by definition
of round-branching width. We conclude by taking n0 the root of ZF . J

We recover results analogous to those of Löding [Löd99], and strengthen them as they
apply to history-deterministic automata. These directly follow combining the previous
proposition with Theorems II.2 and II.4.

Corollary II.92.

For every Muller language L ⊆ Σω there exists a DPA recognising L of size at most |Σ|!.
This bound is tight: for all n, a minimal history-deterministic parity automaton recog-
nising the Muller language associated to EvenLettersn has n! states.

Corollary II.93.

Let L ⊆ Σω be a Muller language. There exists a history-deterministic Rabin au-
tomaton recognising L of size at most n!! = n(n− 2) · · · 2. This bound is tight: for all n
even, a minimal history-deterministic Rabin automaton recognising the Muller language
associated to EvenLettersn has n!! states.
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5.2 The ACD Computation

We discuss now how to compute the alternating cycle decomposition of a Muller
transition system, and the computational cost of it. We prove that if the acceptance
condition is represented as a Zielonka tree, we can compute ACDTS in polynomial time
(Theorem II.8) and if it is represented as a Zielonka DAG, we can compute ACD-DAGTS
in polynomial time (Theorem II.9). This second result will be used to show that we can
decide the typeness of Muller TS in polynomial time (Theorem II.10).

In the whole section, TS stands for a Muller transition system with set of states and
edges V and E, respectively, and acceptance condition AccTS = (col,Γ,MullerΓ(F)).

5.2.1 The complexity of computing the ACD: Main results
We now state the main results concerning the complexity of the computation of the

ACD. Their proof will be covered in the next section and Appendix B.4.

Theorem II.8 (Computation of the ACD).
Given a Muller transition system TS with acceptance condition represented by a

Zielonka tree ZF , we can compute ACDTS in polynomial time in |V |+ |ZF |.

We note that the Zielonka tree of F can be exponentially larger than the Zielonka
DAG of F (Proposition B.32), and (at least) super-polynomially larger than an explicit
representation of F (Proposition B.30). Therefore, as the Zielonka tree is a special case
of the ACD (c.f. Remark II.57), we cannot compute ACDTS in polynomial time in the
representation of TS if the acceptance condition is given as a list of subsets or as a Zielonka
DAG. However, in that case, we can compute in polynomial time the ACD-DAG, which
is sufficient for many applications (see Section II.6).

Theorem II.9 (Computation of the ACD-DAG).
Given a Muller transition system TS with acceptance condition represented by a

Zielonka DAG Z-DAGF , we can compute ACD-DAGTS in polynomial time in |V | +
|Z-DAGF |.

Corollary II.94.

Given a Muller transition system TS with acceptance condition MullerΓ(F) represented
explicitly as a list of subsets, we can compute ACD-DAGTS in polynomial time in |V | +
|F|+ |Γ|.

Proof. By Proposition B.31, given an explicit representation of a Muller language MullerΓ(F),
we can compute its Zielonka DAG in polynomial time. It suffices then to apply Theo-
rem II.9. J

Corollary II.95.

We can compute the alternating cycle decomposition of a parity transition system TS
in polynomial time in the size of the representation of TS.
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Proof. The Zielonka tree of a parity condition can be trivially computed in polynomial
time in the representation of the parity condition. It suffices then to apply Theorem II.8.
Alternatively, it is possible to give a parity-TS-oriented version of Algorithm 2, which
could be subject to further improvements. The algorithm obtained in such way is analo-
gous to the algorithm of Carton and Maceiras [CM99]. J

We obtain similarly:

Corollary II.96.

We can compute the alternating cycle decomposition of a generalised (co)Büchi tran-
sition system TS in polynomial time in the size of the representation of TS.

Proposition II.97 (Computation of the ACD-transforms).
Given a Muller transition system TS with the acceptance condition represented as a

Zielonka tree, we can compute in polynomial time ACDparity(TS) and ACDRabin(TS).

Proposition II.98 (Degeneralisation of generalised Büchi transition systems).
Given a generalised (co)Büchi transition system TS, we can compute in polynomial

time a (co)Büchi TS admitting a locally bijective morphism to TS with a minimal number
of states.

5.2.2 A generic algorithm for computing the ACD
We present the pseudocode of a high-level algorithm computing ACDTS (Algorithm 1).

This algorithm builds the ACD in a top-down fashion: first, it computes an SCC decom-
position of TS and initialises the root of each of the trees in ACDTS . Then, it successively
computes the children of the already found nodes. A first naive algorithm to compute
the children of a node is given in the sub-procedure ComputeChildren, presented in Al-
gorithm 2. Given a node n labelled with ν(n) = ` (suppose that ` is an accepting cycle),
ComputeChildren first enumerate the maximal subsets of colours of col(`) that are re-
jecting. For each of these subsets D, we restrict ` to the edges coloured with colours in
D, and compute a decomposition in SCC of the resulting graph. If the subcycles that
are found in this way are rejecting, they are hold as potential children of n; if they are
accepting, we continue in a recursive way. Finally, the children of n will correspond to
the maximal subcycles that have been retained by this procedure.

The computation of children using Algorithm 2 will suffice to prove Theorem II.8.
In order to obtain Theorem II.9, we provide an enhanced version of the algorithm in
Appendix B.4 (Algorithm 4).

We use the following notations:

] Edges(S) is the set of edges appearing in a subgraph S.
] SCC-Decomposition(S) outputs a list of the strongly connected components of a
graph S. If S is empty, it outputs an empty list.

] pop(stck) removes an element from the stack stck and returns it.
] push(stck, L) adds the elements of L to the stack stck,
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] MaxInclusion(lst) returns the list of the maximal subsets in lst.

All the previous functions can be computed in polynomial time. We will also make use
of:

] MaxAltSubsets(C,F) takes a subset C ⊆ Γ and returns the maximal subsetsD ⊆ C
such that D ∈ F ⇐⇒ C /∈ F .

The computational cost of MaxAltSubsets depends on the representation of F (see details
below).

Algorithm 1 Computation of the alternating cycle decomposition
Input: A transition system TS
Output: ACDTS

1: 〈S1, . . . ,Sr〉 ← SCC-Decomposition(TS)
2: Add S1, . . . ,Sr as the root of r different trees of ACDTS
3: nodesToTreat← 〈S1, . . . ,Sr〉 . Initialise a stack
4: while nodesToTreat 6= ∅ do
5: n← pop(nodesToTreat)
6: children← ComputeChildren(n)
7: Add the nodes children as children of the node n in ACDTS
8: push(nodesToTreat, children)
9: end while
10: return ACDTS

Algorithm 2 ComputeChildren(S): Computing the children of a node of the ACD
Input: A strongly connected subgraph S corresponding to a node of ACDTS
Output: The maximal cycles `1, . . . , `k ∈ Cycles(S) such that col(`i) ∈ F ⇐⇒
col(S) /∈ F .

1: C ← col(S)
2: children← {}
3: maxAltSets← MaxAltSubsets(C,F)
4: for D ∈ maxAltSets do
5: SD ← restriction of S to transitions e ∈ E such that col(e) ∈ D
6: 〈SD,1, . . . ,SD,r〉 ← SCC-Decomposition(SD)
7: for i = 1, . . . , r do
8: if col(SD,i) ∈ F ⇐⇒ C /∈ F then
9: children← children ∪ {Edges(SD,i)}
10: else
11: children← children ∪ ComputeChildren(SD,i)
12: end if
13: end for
14: end for
15: children← MaxInclusion(children)
16: return children
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We remark that the algorithm we propose also serves to compute the ACD-DAG of
TS; when adding the children of a node in Line 7 of Algorithm 1, we just have to identify
the (possibly multiple) parents of this node amongst the nodes computed so far.

Informal analysis. We provide a formal analysis of the complexity of the algorithm
above in Appendix B.4. We discuss here the main ideas of it. The cost of the computation
of the alternating cycle decomposition of TS following Algorithm 1 is proportional to the
size of ACDTS and to the cost of computing the children of a node using the procedure
ComputeChildren (Algorithm 2). The upper bound on the size of |ACDTS | is shown in
Lemma B.42, and uses some non-trivial properties of the Zielonka tree. To prove that
Algorithm 2 takes polynomial time in the size of ZF , for each state q of TS we consider
the tree of recursive calls of the kind ComputeChildren(SD,i) in which q is a state of the
subgraph S. We exhibit an injection of this tree of recursive calls into ZF , obtaining the
desired result.

Efficient computation of the ACD-DAG. We remark that the argument above
does not suffice to show that we can compute the children of a node of the ACD in polyno-
mial time with respect to the size of Z-DAGF . Indeed, the tree of recursive calls mentioned
above does not necessarily embed in Z-DAGF , and the procedure ComputeChildren can
take exponential time with respect to this measure. In Appendix B.4, we give an improved
version of ComputeChildren (see Algorithm 4) which terminates in polynomial time in
|TS|+ |Z-DAGF |, providing a proof for Theorem II.9. Informally, this is achieved by using
a kind of “memoisation guided by the Zielonka DAG”: we keep a stack of subgraphs S
that we need to inspect, and we add a new subgraph S ′ to the stack only if there is not
any “similar enough” subgraph already appearing in the stack that can be merged with
S ′. In this way, we can guarantee that the size of the stack will remain polynomial in
|TS| · |Z-DAGF |.

5.2.3 Implementation

The computation of the ACD and the ACD-parity-transform has been implemented in
Spot 2.10 [DL+22], by Alexandre Duret-Lutz and Florian Renkin, and in Owl 21.0 [KMS18]
by Klara J. Meyer and Salomon Sickert. In the tool paper [Cas+22], we compare this
transformation with the state-of-the-art methods to transform Emerson-Lei automata into
parity ones. The results are conclusive: in all cases, automata output by the ACD-parity-
transform are smaller than automata generated by other methods. Quite surprisingly, the
ACD-transform also outperforms the existing paritizing methods in computational time;
this can be (partly) explained by the build-up of heuristics used by other methods, and
the simplicity offered by the approach using the ACD.

Two main improvements are introduced to optimise the performance of the computa-
tion of the ACD:

] The use of memoisation to remember parts of the ACD that have already been
computed, as a same subtree can appear multiple times in the ACD.

] A set of rules to simplify the booleans formulas of the Emerson-Lei condition, before
passing it into a MAX-Sat solver.
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6 Typeness results: Relabelling automata with simpler accep-
tance conditions

In this section, we discuss some further applications of the Zielonka tree and the
alternating cycle decomposition. We use the insights gained from the ACD to conduct
a comprehensive study of typeness results for deterministic Muller automata, that is, we
focus on the following question:

Given a Muller automaton A, can we define a simpler acceptance condition
on top of the underlying graph of A obtaining an equivalent automaton A′?

This question was first studied (in the context of automata using state-based accep-
tance) by Krishnan, Puri and Brayton [KPB94, KPB95], who showed how to determine if
a DMA can be relabelled with an equivalent Büchi condition. Their work was generalized
to parity automata by Boker, Kupferman and Steinitz [BKS10], and related questions
about typeness were studied for non-deterministic automata by Kupferman, Morgenstern
and Murano [KMM06], and for history-deterministic automata by Boker, Kupferman and
Skrzypczak [BKS17].

In this section, we provide new general characterisations of typeness for Muller transi-
tion systems. In Propositions II.109, II.110 and II.111, we characterise when a Muller TS
can be relabelled with equivalent parity, Rabin, or Streett conditions in terms of prop-
erties of the cycles of the TS. For instance, Proposition II.109 states that a Muller TS
can be relabelled with an equivalent Rabin condition if and only if its rejecting cycles
are closed under union. The “only if” part of this results was already known (see for
instance [Löd99]), but the fact that this is indeed a characterisation is a novel result, for
which the use of the ACD is essential. These characterisations directly imply the results
from [BKS10, KPB94, KPB95]. We also show how to use the ACD to determine the
parity index of the language recognised by a DMA (Proposition II.115), which can be
seen as a simplification of the results from [KPB95, Section 3.2]. We also give further
results concerning generalised (co)Büchi languages and weak automata.

As a corollary of these results, we obtain that we can decide the typeness of a Muller
transition system in polynomial time (that is, telling whether we can put a simpler equiva-
lent acceptance condition on top of the TS, see Theorem II.10) and we can also decide the
parity index of a language recognised by a deterministic Muller automaton in polynomial
time (Theorem II.11).

In Section II.6.3 we study the problem of minimising the number of colours used
by a Muller TS. We show that, in general, the problem is NP-hard (Theorem II.13),
although we can decide the minimal number of colours necessary to define a Muller lan-
guage in polynomial time (this corresponds to the case of TS with just one state, see
Theorem II.12).

Structure of the section. We start in Subsection II.6.1 by studying the typeness
question for Muller languages, without taking into account the structure of transition
systems. The results we obtain are based in the Zielonka tree. In Subsection II.6.2
we generalise these results for transitions systems, using the ACD, and discuss several
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consequences, as the decidability of typeness in polynomial time. In Subsection II.6.3 we
consider the problem of the minimisation of colours for Muller TS.

6.1 Typeness for Muller languages

We present some results proven by Zielonka [Zie98, Section 5] that show how we can
use the Zielonka tree to deduce if a Muller language is a Rabin, a Streett or a parity
language. These results are generalised to transition systems in the next subsection.

The results of this subsection already appear in [Zie98, Section 5] (except for Propo-
sition II.105) and they are special cases of the results appearing in Section II.6.2.

We first introduce some definitions. The terminology will be justified by the upcoming
results.

Definition II.99 (Shape of Zielonka tree).
Let T be a tree T with nodes partitioned into round nodes and square nodes. We say

that T has:

] Rabin shape if every round node has at most one child.
] Streett shape if every square node has at most one child.
] Parity shape if every node has at most one child.
] Büchi shape (resp. coBüchi shape) if it has parity shape, the height of T is at most

2, and if it is exactly 2, the root is round (resp. square).
] Generalised Büchi shape (resp. generalised coBüchi shape) if the height of T is at
most 2, and if it is exactly 2, the root is round (resp. square).

We define analogously the different shapes for the Zielonka DAG.

F Remark II.100. For every family F and for X any of the types of conditions appearing
in the previous definition, the Zielonka tree of F has X shape if and only if the Zielonka
DAG of F has X shape.

Proposition II.101 (Zielonka tree for Rabin languages).
Let F ⊆ 2Γ

+ be a family of non-empty subsets. The following conditions are equivalent:

1. MullerΓ(F) is a Rabin language.
2. F is closed under union: If C1 /∈ F and C2 /∈ F , then C1 ∪ C2 /∈ F .
3. ZF has Rabin shape.
4. Z-DAGF has Rabin shape.

The reader can refer to Proposition B.33 for a direct proof of the fact that if Z-DAGF
has Rabin shape, then MullerΓ(F) is a Rabin language.

Proposition II.102 (Zielonka tree for Streett languages).
Let F ⊆ 2Γ

+ be a family of non-empty subsets. The following conditions are equivalent:
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1. MullerΓ(F) is a Streett language.
2. The family F is closed under union.
3. ZF has Streett shape.
4. Z-DAGF has Streett shape.

Proposition II.103 (Zielonka tree for parity languages).
Let F ⊆ 2Γ

+ be a family of non-empty subsets. The following conditions are equivalent:

1. MullerΓ(F) is a parity language.
2. Both F and F are closed under union: If C1 ∈ F ⇐⇒ C2 ∈ F , then, C1 ∪ C2 ∈
F ⇐⇒ C1 ∈ F .

3. ZF has parity shape.
4. Z-DAGF has parity shape.

Moreover, if some of these conditions is satisfied, MullerΓ(F) is a [minF ,maxF ]-parity
language. In particular, MullerΓ(F) is a Büchi (resp. coBüchi) language if and only if ZF
has Büchi shape (resp. coBüchi shape).

Corollary II.104.

A Muller language L ⊆ Γω is a parity language if and only if it is both a Rabin and a
Streett language.

Proposition II.105 (Zielonka tree for generalised (co)Büchi languages).
Let F ⊆ 2Γ

+ be a family of non-empty subsets. MullerΓ(F) is a generalised Büchi
language (resp. generalised coBüchi language) if and only if ZF has generalised Büchi
shape (resp. generalised coBüchi shape).

Proof. We prove the case generalised Büchi (symmetric for generalised coBüchi). Assume
first that MullerΓ(F) = genBuchiΓ(B) for some family B = {B1, . . . , Bk}. Then, Γ ∈ F ,
as Γ ∩ Bi 6= ∅ for all i, so the root of ZF is round. If C ⊆ Γ is rejecting, C ∩ Bi = ∅ for
some i, so for any subset C ′ ⊆ C we have that C ′ ∩ Bi = ∅ too. Therefore, square nodes
of ZF are leaves and ZF has height at most 2.

Conversely, suppose that ZF has height 2 and that its root is round (Γ ∈ F). Let
A1, . . . , Ak be the labels of the k leaves of ZF and define Bi = Γ \ Ai. We claim that
MullerΓ(F) = genBuchiΓ(B), for B = {B1, . . . , Bk}. Indeed:

C ∈ F ⇐⇒ C * Ai for all i ⇐⇒ C ∩Bi 6= ∅ for all i. J

6.2 Typeness for Muller transition systems and deterministic automata

In this section, we state and prove our main contributions concerning typeness of
transition systems. Results are organised in the following 4 paragraphs:
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] Characterisation of typeness of transition systems using the alternating cycle de-
composition.

] Utilisation of the ACD to determine the parity index of languages recognised by
deterministic Muller automata.

] Semantic consequences of our typeness results for languages recognised by deter-
ministic automata.

] Complexity of the problem of deciding typeness.

We recall that a transition system TS is X type (for X one of types of languages
defined in Section I.3) if we can define an equivalent acceptance condition of type X on
top of TS (or equivalently, if there exists an isomorphic transition system TS ′ ' TS using
an X acceptance condition).

The ACD determines the type of transition systems

Definition II.106 (Types of ACD).
Let TS be a Muller transition system with a set of states V . We say that its alternating

cycle decomposition ACDTS is a:

] Rabin ACD if for every state v ∈ V , the tree Tv has Rabin shape.
] Streett ACD if for every state v ∈ V , the tree Tv has Streett shape.
] Parity ACD if for every state v ∈ V , the tree Tv has parity shape.
] [0, d− 1]-parity ACD (resp. [1, d]-parity ACD) if it is a parity ACD, trees of ACDTS
have height at most d and trees of height d are positive (resp. negative).

] Büchi ACD (resp. coBüchi ACD) if it is a [0, 1]-parity ACD (resp. [1, 2]-parity
ACD).

] Generalised Büchi ACD (resp. generalised coBüchi ACD) if for every state v ∈ V ,
the tree Tv has generalised Büchi shape (resp generalised coBüchi shape).

] Weakd ACD if it is a parity ACD and trees of ACDTS have height at most d.

We define analogously the different types of ACD-DAGs.

F Remark II.107. For every Muller transition system TS, ACDTS is an X-ACD if and
only if ACD-DAGTS is an X-ACD-DAG, for any of the types of conditions considered
above.

F Remark II.108. ACDTS is a parity ACD if and only if it is both a Rabin and a Streett
ACD. Also, ACDTS is a Weakd ACD if and only if it is a [0, d]-parity ACD and a [1, d+1]-
parity ACD.

Proposition II.109 (Characterisation of Rabin TS).
Let TS = (GTS ,AccTS) be a Muller transition system whose states are accessible. The

following conditions are equivalent:

1. TS is Rabin type.
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2. For every pair of rejecting cycles `1, `2 ∈ Cycles(TS) with some state in common,
`1 ∪ `2 is a rejecting cycle.

3. ACDTS is a Rabin ACD.
4. ACD-DAGTS is a Rabin ACD-DAG.

Proof. (1⇒ 2) Let AccR = (col,Γ,Rabin(R) be the Rabin acceptance condition equiva-
lent to AccTS , and let R = (g1, r1), . . . , (gr, rr) be its Rabin pairs. Let `1 and `2 be
two cycles with a state in common, and suppose that `1 ∪ `2 is accepting; we show
that either `1 or `2 is accepting. The cycle `1 ∪ `2 is accepted by some Rabin pair
(gj, rj), so for all edges e ∈ `1 ∪ `2, col(e) /∈ rj, and there is some e0 ∈ `1 ∪ `2 such
that col(e0) ∈ gj. If e0 belongs to `1, then `1 is accepted by the Rabin pair (gj, rj),
and if e0 ∈ `2, then `2 is accepted by it.

(2⇒ 3) Let v be a vertex of TS and Tv the local subtree at v. Suppose that there is a
round node n ∈ Tv with two different children n1 and n2. The cycles ν(n1) and ν(n2)
are rejecting cycles over v, but their union is an accepting cycle (by Remark II.52).

(3⇒ 1) We observe that ACDTS is a Rabin ACD if and only if rbw(Tv) = 1 for all
vertices v of TS. In particular, the ACD-HD-Rabin-transform of TS does not add
any state to TS. It is immediate to check that the morphism ϕ : ACDRabin(TS)→ TS
given by ϕV (v, x) = v, ϕE(e, l) = e defined in the proof of Proposition II.75 is an
isomorphism, and TS uses a Rabin acceptance condition.

(3 ⇐⇒ 4) Given by Remark II.107. J

Proposition II.110 (Characterisation of Streett TS).
Let TS = (GTS ,AccTS) be a Muller transition system. The following conditions are

equivalent:

1. TS is Streett type.
2. For every pair of accepting cycles `1, `2 ∈ Cycles(TS) with some state in common,

`1 ∪ `2 is an accepting cycle.13

3. ACDTS is a Streett ACD.
4. ACD-DAGTS is a Streett ACD-DAG.

Proof. Implications (1 ⇒ 2), (2 ⇒ 3) and (3 ⇐⇒ 4) are analogous to those from
Proposition II.109.

(3⇒ 1) We consider the transition system TS obtained by complementing the acceptance
set of AccTS . By Remark II.56, the ACD of TS is obtained from ACDTS by turning
round nodes into square nodes and vice-versa. Thus, the ACD of TS is a Rabin

13This property was introduced by Le Saëc under the name cyclically closed automata [Saë90]. We
point out that the “if” direction of the result stated in [Saë90, Theorem 5.2] does not hold. That statement
can be rephrased as: If a DMA A is cyclically closed, then the parity index of A is [0, 1]. We refer to
Proposition II.115 for a correct characterisation.
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ACD, and by applying the previous proposition we can define a Rabin condition
AccR = (col,Γ,RabinΓ(R)) such that the transition system (GTS ,AccR) is isomorphic
to TS. Since StreettΓ(R) is the complement language of RabinΓ(R) (Remark I.13), we
obtain that AccS = (col,Γ, StreettΓ(R)) is a Streett acceptance condition equivalent
to AccTS over GTS . J

Proposition II.111 (Characterisation of parity TS).
Let TS = (GTS ,AccTS) be a Muller transition system. The following conditions are

equivalent:

1. TS is parity type.
2. For every pair of accepting (resp. rejecting) cycles `1, `2 ∈ Cycles(TS) with some

state in common, `1 ∪ `2 is an accepting (resp. rejecting) cycle.
3. ACDTS is a parity ACD.
4. ACD-DAGTS is a parity ACD-DAG.

Moreover, if some of the conditions is satisfied, TS is [0, d − 1]-parity type (resp. [1, d]-
parity type / Weakd type) if and only ifACDTS is a [0, d−1]-parity ACD (resp. [1, d]-parity
ACD / Weakd ACD).

In particular, TS is Büchi (resp. coBüchi) type if and only if ACDTS is a Büchi ACD
(resp. coBüchi ACD).

Proof. (1⇒ 2) Proven in Lemma II.39.
(2⇒ 3) Admits an analogous proof to the corresponding implication in Proposition II.109.
(3⇒ 1) By definition, ACDTS is a parity ACD if and only if Leaves(Tv) is a singleton for

each vertex v of TS. In particular, the ACD-parity-transform of TS does not add
any state to TS. It is immediate to check that the morphism ϕ : ACDparity(TS) →
TS defined in the proof of Proposition II.68 is an isomorphism. Therefore, TS
and ACDparity(TS) are isomorphic transition systems, and the latter uses a parity
acceptance condition that is a [0, d − 1]-parity condition if ACDTS is a [0, d − 1]-
parity ACD. If ACDTS is not a [0, d − 1]-parity ACD, then the number of colours
cannot be reduced by the optimality of the number of colours of the ACD-parity-
transform (Theorem II.5). The proof is analogous for the cases [1, d] and Weakd.

(3 ⇐⇒ 4) Given by Remark II.107 J

Corollary II.112.

A Muller transition system is parity type if and only if it is both Rabin and Streett
type.

Corollary II.113.

A Muller transition system is Weakd-type if and only if it is both [0, d] and [1, d+ 1]-
parity type.
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Proposition II.114 (Characterisation of generalised (co)Büchi TS).
A transition system TS is generalised Büchi (resp. generalised coBüchi) type if and

only if ACDTS is a generalised Büchi ACD (resp. generalised coBüchi ACD).

Proof. The result follows by applying the same argument and construction than in Propo-
sition II.105, using as set of output colours the set of edges of TS. J

The ACD and the parity index of ω-regular languages

Proposition II.115 (Reading the parity index from the ACD).
Let A be a deterministic Muller automaton whose states are accessible. Then, the

parity index of L(A) is:

] [0, d− 1] (resp. [1, d]) if and only if:
- trees of ACDA have height at most d,
- there is at least one tree of height d, and
- trees of height d are positive (resp. negative).

] Weakd if and only if:
- trees of ACDA have height at most d,
- there is at least one positive tree of height d, and
- there is at least one negative tree of height d.

Moreover, all these conditions are equivalent to the corresponding ones replacing ACDTS
by ACD-DAGTS .

Proof. The left-to-right implication follows easily from the Flower Lemma I.21 in all
cases.

We prove the right-to-left implication for the case Weakd – which poses some ex-
tra technical difficulties. Suppose that ACDA verifies the previous list of conditions (in
particular, it is equidistant). Then, the ACD-parity-transform ACDparity(A) is a DPA
recognising L(A) using priorities in [0, d]. In order to obtain a DPA for L(A) with prior-
ities in [1, d + 1], we need to introduce a small modification to the function pACD. For `i
a maximal cycle of A and n ∈ N`i we define:

] p′ACD(n) = Depth(n) + 2, if `i is accepting,
] p′ACD(n) = Depth(n) + 1, if `i is rejecting.

It is a routine check to see that the version of the ACD-parity-transform using p′ACD is
indeed a correct parity automaton using priorities in [1, d+ 1].

To prove that no DPA recognising L uses less than d priorities, it suffices to use
the Flower Lemma I.21 and the fact that a branch of length d in a tree of the ACD
induces a d-flower in A, which is positive if and only if the corresponding tree is positive
(Lemma II.83). J

Corollary II.116.

If L ⊆ Σω is an ω-regular language of parity index Weakd, then L can be recognised
by a deterministic Weakd automaton.
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Proposition II.117 (Minimal number of colours coincides with parity index).
Let L ⊆ Σω be an ω-regular language of parity index at least [0, d − 1] (resp. [1, d]).

Any history-deterministic Muller automaton recognising L uses an acceptance condition
with at least d different output colours.

Proof. We first prove the result for deterministic automata. Let A be a DMA recognising
L using the acceptance condition (col,Γ,MullerΓ(F)). By Proposition II.115, there is a
tree AltTree(`i) in the ACD of A of height at least d. We define γACD : Nodes(ACDTS)→ Γ
to be the function that assigns to each node of the ACD the colours appearing in it, that is:
γACD(n) = col(ν(n)). We remark that if n′ is a descendant of n then γACD(n′) ⊆ γACD(n),
and that a node n is round if and only if γACD(n) ∈ F . Therefore, by the alternation
of round and square nodes, if n′ is a strict descendent of n, γACD(n′) ( γACD(n). We
conclude that the root of AltTree(`i) must contain at least d different colours.

In order to obtain the result for history-deterministic automata we use finite memory
resolvers, as defined in Section I.2.2. If A is a history-deterministic Muller automaton, it
admits a sound resolver implemented by a finite memory structure (M, σ) (Lemma I.10).
Then, the composition ACσM is a DMA using the same number of colours, that has to
be at least d. J

The following result (which was already known, as it is a consequence of the construc-
tion by Carton and Maceiras [CM99]) states that if a deterministic parity automaton A
recognises a language of parity index [0, d − 1], we can obtain an equivalent automaton
with an acceptance condition using d colours over the same underlying graph of A. This
result can be rephrased using the normal form of parity automata (see Corollary II.136).

Proposition II.118.

Let A be a deterministic parity automaton such that all its states are accessible and
the parity index of L(A) is [0, d − 1] (resp. [1, d] / Weakd). Then, A is [0, d − 1] (resp.
[1, d] / Weakd)-parity type.

Proof. We suppose that L(A) has parity index [0, d−1] (the other cases are similar). By
the Flower Lemma I.21, A does not contain any negative d-flower. By Proposition II.115,
the trees of the ACD of A have height at most d, and trees of height d are positive. That
is, ACDA is a [0, d− 1]-parity ACD and we conclude by applying Proposition II.111. J

The previous result does not hold for history-deterministic automata, as we could
artificially add transitions augmenting the complexity of the structure of the automaton
(enlarging the flowers of the automaton) without modifying the language it recognises.
Nevertheless, some analogous results applying to HD automata can be obtained. Boker,
Kupferman and Skrzypczak proved that any HD parity automaton recognising a language
of parity index [0, 1] (resp. [1, 2]) admits an equivalent HD subautomaton using a Büchi
(resp. coBüchi) condition [BKS17, Theorems 10 and 13]. We do not know whether the
result holds for languages of arbitrary parity index.

Typeness for deterministic automata
We now lift our results of typeness for transition systems to results about deterministic

automata and the languages they recognise. For doing this, we use the fact that two
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deterministic automata over the same underlying graph recognise the same language if
and only if they are isomorphic (Lemma II.3).

Corollary II.119 (First proven in [BKS10, Theorem 7]).
Let GA be the underlying graph of a deterministic automaton. There are both Rabin

and Streett conditions AccR and AccS such that L(GA,AccR) = L(GA,AccS), if and only
if there is a parity condition Accp such that L(GA,Accp) = L(GA,AccR) = L(GA,AccS).

We remark that the hypothesis of determinism in the previous corollary is necessary,
as it has been shown that an analogous result does not hold for non-deterministic au-
tomata [BKS10].

The following result generalises the fact that if an automaton admits equivalent Büchi
and coBüchi conditions on top of it, then it is Weak1 (this easily follows from [Wag79]
and was explicitly discussed in [MP95, p.319]).

Corollary II.120.

Let GA be the underlying graph of a deterministic automaton. There are [0, d − 1]
and [1, d]-parity conditions Accp,0 and Accp,1 such that L(GA,Accp,0) = L(GA,Accp,1) if
and only if there is a Weakp condition AccW such that L(GA,AccW ) = L(GA,Accp,0) =
L(GA,Accp,1).

Proposition II.121 (First proven in [KPB94, Theorem 15]).
Let A be a deterministic Rabin (resp. Streett) automaton, and suppose that L(A) has

parity index at most [0, 1] (resp. at most [1, 2]). Then, A is Büchi type (resp. coBüchi
type).

Proof. We do the proof for the case Rabin-Büchi. We can suppose that all the states
of A are accessible, as we can define a trivial acceptance condition in the part of A
that is not accessible. Since L(A) has parity index at most [0, 1], the trees of the ACD
of A have height at most 2, and trees of height 2 are positive (the root is a round
node), by Proposition II.115. As A is a Rabin automaton, its ACD has Rabin shape
(Proposition II.109), so round nodes have at most one child. We conclude that the trees of
the ACD of A have a single branch, so it is a [0, 1]-parity ACD, and by Proposition II.111,
A is Büchi type. J

Proposition II.122.

Let A be a deterministic Muller automaton, and suppose that L(A) has parity index
at most [0, 1] (resp. at most [1, 2]). Then, A is generalised Büchi type (resp. generalised
coBüchi type).

Proof. We prove the result for the case generalised Büchi (analogous for coBüchi). We
can suppose that all the states of A are accessible, as we can define a trivial acceptance
condition in the part of A that is not accessible. Since L(A) has parity index at most
[0, 1], the trees of the ACD of A have height at most 2, and trees of height 2 are positive
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(the root is a round node), by Proposition II.115, so it is a generalised Büchi ACD, and
by Proposition II.114, A is generalised Büchi type. J

Deciding typeness in polynomial time
Given a Muller transition system TS, we use the expression decide the typeness of TS

to refer to the family of problems consisting of deciding whether TS is X type for X
one of the following: Rabin, Streett, parity, [dmin, dmax]-parity, Weakd, generalised Büchi,
generalised coBüchi.

Next theorem follows directly from Theorem II.9 and the results of this section.

Theorem II.10 (Deciding typeness in polynomial time).
Given a Muller transition system TS with its acceptance condition represented explic-

itly, as a Zielonka tree, or as a Zielonka DAG, we can decide its typeness in polynomial
time.

We remark that this implies that we can also decide the typeness of parity and gener-
alised (co)Büchi transition systems in polynomial time (c.f. Figure 6).

Combining Theorem II.9 with Proposition II.115, we obtain that we can decide the
parity index of the language recognised by a DMA in polynomial time.

Theorem II.11 (Deciding the parity index in polynomial time).
Given a deterministic Muller automaton with its condition represented explicitly, as a

Zielonka tree, or as a Zielonka DAG, we can decide the parity index of L(A) in polynomial
time.

However, it is known that, given a deterministic Rabin (or Streett) automaton with
the condition represented as a family of Rabin pairs, the problem of determining the
parity index of L(A) is NP-hard [KPB95].14,15

6.3 Minimisation of the number of colours used by Muller conditions

We consider the problem of minimising the number of colours of a Muller transition
system. That is, given TS using a Muller condition, what is the minimal number of colours
needed to define an equivalent Muller condition on top of TS? We first study this question
for Muller languages, without taking into account the structure of the transition system.
We show that given the Zielonka tree of the condition, we can minimise its number of
colours in polynomial time (Theorem II.12). Then, we attack the question taking into
account the structure of the transition system. Surprisingly, we show that in this case the
problem is NP-hard, even if the ACD is given as input (Theorem II.13).

This subject has recently been studied by Schwarzová, Strejček and Major [SSM23].
In their approach, they use heuristics to reduce the number of colours by applying QBF-
solvers. The final transition system is not guaranteed to have a minimal number of colours,
though.

14Formally, there are two different decision problems corresponding to this question: deciding if the
parity index of L(A) is at least or at most [0, k]. For the first version, the decision problem is NP-complete,
for the second one, it is coNP-complete.

15This reduction was shown for state-based automata. It is easy to see that, in this case, the problem
for state-based automata reduces to the problem for transition-based ones.
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We also present the problem of minimising the number of Rabin pairs of a Rabin
language, or of a Rabin condition on top of some fixed transition system. However, we
have not been able to provide conclusive results in this case.16

6.3.1 Minimisation of colours to define Muller languages
We say that a Muller language L ⊆ Σω is k-colour type if there is a set of k colours Γ,

a Muller language L′ ⊆ Γω and a mapping φ : Σ → Γ such that for all w ∈ Σω, w ∈
L ⇐⇒ φ(w) ∈ L′.

F Remark II.123. A Muller language L ⊆ Σω is k-colour type if and only if it can be
recognised by a deterministic Muller automaton with one state using k output colours.

We say that a Rabin language L ⊆ Σω is k-Rabin-pair type if there is a family of k
Rabin pairs R over some set of colours Γ and a mapping φ : Σ → Γ such that for all
w ∈ Σω, w ∈ L ⇐⇒ φ(w) ∈ RabinΓ(R).

F Remark II.124. A Rabin language L ⊆ Σω is k-Rabin-pair type if and only if it can be
recognised by a deterministic Rabin automaton with one state using k Rabin pairs.

Problem: Colour-Minimisation-ML
Input: A Muller language MullerΣ(F) represented by the Zielonka

DAG Z-DAGF and a positive integer k.
Question: Is MullerΣ(F) k-colour type?

We could have chosen other representations of MullerΣ(F) for the input of this problem
(mainly, explicitly or as a Zielonka tree). We have chosen to specify the input as a
Zielonka DAG, as it is more succinct than the other representations (c.f. Figure 19 and
Propositions B.31, B.32). In Theorem II.12, we show that this problem can be solved
in polynomial time if F is represented as a Zielonka DAG, which implies that it can be
equally solved in polynomial time if F is represented explicitly or as a Zielonka tree.

Theorem II.12 (Minimisation of colours for Muller languages).
The problem Colour-Minimisation-ML can be solved in polynomial time.

Proof. We say that two letters a, b ∈ Σ are F-equivalent, written a ∼F b, if, for all
C ⊆ Σ:

C ∪ {a} ∈ F ⇐⇒ C ∪ {b} ∈ F ⇐⇒ C ∪ {a, b} ∈ F .

It is immediate to check that ∼F is indeed an equivalence relation. We let [a] denote the
equivalence class of a for ∼F , Σ/∼F the set of equivalence classes, and for C ⊆ Σ, we write
π(C) = {[a] | a ∈ C}.

G Claim II.124.1. For all C ⊆ Σ, C ∈ F ⇐⇒ ⋃
a∈C [a] ∈ F .

Proof. For each a ∈ C, we can add all the elements in [a] one by one to C without
changing the acceptance status. C

16Corto Mascle has recently solved the first of these problems (unpublished). See also footnote 17.
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G Claim II.124.2. MullerΣ(F) is k-colour type if and only if there are at most k classes
for the F-equivalence relation.

Proof. LetA be a DMA with one state q and using as acceptance condition MullerΓ(H).
This defines a function f : Σ→ Γ that sends a to α if α is the colour produced when
reading a, that is, if q a:α−−→ q is the corresponding transition in A. It is immediate that
if f(a) = f(b), then a ∼F b, so |Γ| is at least the number of equivalence classes.

Conversely, we can define a DMA using as output colours the equivalence classes:
q

a:[a]−−→ q, using as acceptance set the language associated to:

F̃ = {π(C) | C ∈ F}.

The fact that the obtained automaton recognises MullerΣ(F) follows from Claim II.124.1.
C

G Claim II.124.3. Two letters a, b ∈ Σ are F-equivalent if and only for every node n
of the Zielonka DAG of F , a ∈ ν(n) ⇐⇒ b ∈ ν(n).

Proof. Suppose that there is a node n in the Zielonka DAG such that a ∈ ν(n) and
b /∈ ν(n). Take a minimal node with this property, and let n′ be its parent. Then,
by minimality, a ∈ ν(n), b /∈ ν(n), but a, b ∈ ν(n′). By Remark II.27, we obtain that
ν(n) = ν(n) ∪ {a} ∈ F ⇐⇒ ν(n) ∪ {a, b} /∈ F , so a and b are not F -equivalent.

For the other direction, let C ⊆ Σ and take a minimal node n such that C ∪{a} ⊆
ν(n). Then, b ∈ ν(n), so n is also minimal such that C ∪ {a, b} ⊆ ν(n), and therefore
C ∪ {a} ∈ F ⇐⇒ C ∪ {a, b} ∈ F . The third equivalence is obtained by symmetry.

C

Claim II.124.2 tells us that in order to minimise the number of required colours, we
need to compute the classes of the F -equivalence relation. This can be directly done by
inspecting the Zielonka DAG by Claim II.124.3. J

We present the problem of the minimisation of Rabin pairs for Rabin languages.

Problem: Rabin-Pair-Minimisation-ML
Input: A family of Rabin pairs R over Σ and a positive integer k.

Question: Is RabinΣ(R) k-Rabin-pair type?

Conjecture II.1 (Minimisation of Rabin pairs for Rabin languages).
The problem Rabin-Pair-Minimisation-ML can be solved in polynomial time.17

17This result has recently been proven by Corto Mascle. He introduces a form of generalised Horn
formulas, and gives a set of rules that allow to minimise the number of their clauses. The problem Rabin-
Pair-Minimisation-ML reduces to the minimisation of clauses in these generalised Horn formulas.
As this result is still unpublished, we state it as a conjecture here.
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6.3.2 Minimisation of colours in Muller transition systems
We say that a Muller transition system TS is k-colour type if there is an equivalent

Muller condition over the underlying graph of TS using at most k output colours. We say
that a Muller transition system TS is k-Rabin-pair type if there is an equivalent Rabin
condition over the underlying graph of TS using at most k Rabin pairs.

We consider the problem of minimising the number of colours used by a Muller con-
dition over a fixed transition system.

Problem: Colour-Minimisation-TS
Input: A Muller transition system TS and a positive integer k.

Question: Is TS k-colour type?

We remark that we have not specified the representation of the acceptance condition of
TS, therefore, this problem admits different variants according to this representation. We
will show that for the three representations that we use in this section (explicit, Zielonka
tree and Zielonka DAG), the problem Colour-Minimisation-TS is NP-hard. This implies
that the problem is NP-hard even if the ACD is provided as input.

Hugenroth showed18 that, for state-based automata, the problem Colour-Minimisation-
TS is NP-hard when the acceptance condition of TS is represented explicitly or as a
Zielonka tree [Hug23]. However, we have not been able to generalise his reduction to
transition-based automata. Nevertheless, we show now that both problems above are
NP-hard (in the transition-based setting) by giving a different reduction. Moreover, our
reduction of NP-hardness uses a transition system with only 2 disconnected states. This
is quite surprising, as we could think that a generalisation of the methods from the proof
of Theorem II.12 to the ACD would yield a polynomial time algorithm. However, it is
not possible to properly combine the structure of the local subtrees of the ACD.

Theorem II.13 (Minimisation of colours for Muller transition systems).
The problem Colour-Minimisation-TS is NP-hard, if the acceptance condition

MullerΓ(F) of TS is represented explicitly, as a Zielonka tree, as a Zielonka DAG or
as the ACD of TS.

Proof. We prove the result for the representation of the condition as an explicit list of
subsets and as the Zielonka tree. The result for the other representations follows then
from Theorem II.8.

We give a reduction from the problem Max-Clique. Let G = (V,E) be a simple,
connected undirected graph and k ∈ N, k < |V |. We consider the transition system TSG,k
defined as:

] It has two states qvert and qk, both of them initial.
] The set of colours used by its acceptance condition is Γ = V ∪Ak, where Ak is a set
of size k disjoint from V .

18As of today, the proof is not currently publicly available online, we got access to it by a personal com-
munication. The statement of the theorem only express the NP-hardness for the explicit representation,
but a look into the reduction works unchanged if the condition is given as a Zielonka tree.
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] The set of edges is V ∪ Ak. TSG,k has self loops qvert
v−→ qvert for every v ∈ V and

qk
a−→ qk for every a ∈ Ak.

] Its acceptance set is the Muller language associated to the family:

F = {{v, u} | (v, u) ∈ E} ∪ {{a, a′} | a, a′ ∈ Ak, a 6= a′}.

The representation of this transition system is polynomial in |G| + k, since |F| =
O(|E|+ k2). We also note that the Zielonka tree of F has size also O(|E|+ k2).

G Claim II.124.4. If G admits a clique of size k, then TSG,k is |V |-colour type.

Proof. Let V ′ = {v′1, . . . , v′k} be a clique of size k of G, and let Ak = {a1, . . . , ak}.
We consider the Muller condition using as set of colours Γ′ = V given by the family
F ′ = {{v, u} | (v, u) ∈ E}. The new acceptance condition over TSG,k is obtained by
using the same colouring for the self loops over qvert, and recolouring self loops qk

ai−→ qk

with qk
v′i−→ qk. It is immediate that the obtained acceptance condition is equivalent to

the original one of TSG,k. C

In order to show the converse, we will use the following properties satisfied by TSG,k:

] Cycles consisting in a single self loop are rejecting.
] Cycles {a, a′}, with a, a′ ∈ Ak, a 6= a′ are accepting.

G Claim II.124.5. If TSG,k is |V |-colour type, then G admits a clique of size k.

Proof. If TSG,k is |V |-colour type, then there is a set Γ′ of |V | colours and a colouring
function col′ : V ∪ Ak → Γ′.

First, we show that for two different self loops over qvert, named v, v′ ∈ V , col′(v) 6=
col′(v′). If (v, v′) ∈ E, this is clear, as {v} is a rejecting cycle, but {v, v′} is accepting.
Suppose that (v, v′) /∈ E, and let u ∈ V such that (v, u) ∈ E (which exists as G
is connected). Then, the cycle {v, u} is accepting and {v, u, v′} is rejecting, so they
cannot be coloured equally. Therefore, for each colour c ∈ Γ′ there is one self loop v
such that col′(v) = c.

Secondly, we remark that for two different self loops a, a′ over qk it is also satisfied
col′(a) 6= col′(a′). On the contrary, we would have col′({a, a′}) = col′({a}), a contra-
diction. Let {c1, . . . , ck} = col′−1(Ak) be the k different colours labelling the self loops
over qk. We obtain that the subset {v1, . . . , vk} ⊆ V of vertices such col′(vi) = ci form
a clique of size k in G. C

J

Similarly, we consider the problem of minimising the number Rabin pairs over a fixed
Rabin transition system.

Problem: Rabin-Pair-Minimisation-TS
Input: A Rabin transition system TS and a positive integer k.

Question: Is TS k-Rabin-pair type?
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Conjecture II.2 (Minimisation of Rabin pairs over a transition system).
The problem Rabin-Pair-Minimisation-TS is NP-complete.

7 A normal form for parity automata
In this section, we propose a definition of a normal form for parity automata. This

is exactly the form of automata resulting by applying (an adaptation to transition-based
automata of) the procedure defined by Carton and Maceiras [CM99], or, equivalently, of
automata resulting from the ACD-parity-transform (Proposition II.131). These automata
satisfy that they are parity-index-tight, that is, their acceptance condition use the minimal
possible number of colours. But they offer some further convenient properties, stated in
Propositions II.134 and II.135, which make them particularly well-suited for reasoning
about deterministic parity automata. The suitability of this normal form for theoretical
purposes will be evident in Chapter V, where we rely on their properties in most of our
arguments.

This normal form, or partial versions of it, have already been used in the literature to
prove results about parity automata in different contexts, such as history-deterministic
coBüchi automata [KS15, AK22, ES22], positionality of languages defined by deterministic
Büchi automata [Bou+22] or learning of DPAs [BL23a]. This normal form also facilitates
the resolution of parity games in practice [FL09]. However, the application of this normal
form in the literature is limited to specific cases, and no prior works have provided a
formal and systematic study of it.

From our results we obtain three equivalent ways of defining the normal form of a
parity transition system TS. Informally, they can be stated as:

1. Transitions of TS use the smallest possible priorities (Definition II.126).
2. TS = ACDparity(TS) (Proposition II.131).
3. Paths in TS producing priority d can be closed into a cycle producing d′ as minimal

priority, for all d′ ≤ d (Theorem II.14).

This last property is particularly useful for proving that a given parity automaton is
in normal form (this will be the standard procedure to establish normality in the proofs
from Section V.4.2).

Before formally defining this normal form, we remark that we can assume that parity
transition system use 0 or 1 as minimal priority.

F Remark II.125. We remark that if Acc = (col, [dmin, dmax], parity) is the parity accep-
tance condition of a transition system TS, we can always assume that dmin is 0 or 1.
Indeed, define χ = dmin if dmin is even, and χ = dmin − 1 if dmin is odd. The parity
acceptance condition (col′, [dmin − χ, dmax − χ], parity) defined as col′(e) = col(e) − χ is
equivalent to Acc over TS.

7.1 Definition of the normal form

Just as in the definition of the ACD-parity-transform we had to define positive and
negative ACDs to obtain an accurate optimality result in the number of priorities, we
need now to take care of a small technical detail so that TS in normal form are parity-
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index-tight.
We say that a transition system TS is negative if ACDTS is negative, that is, if for

some d TS contains a negative d-flower but contains no positive d-flower. Intuitively,
a parity TS is negative if and only if the minimal priority used by a parity acceptance
condition using an optimal number of priorities is 1.

Definition II.126 (Normal form).
Let TS = (GTS ,AccTS) be a parity transition system using a colouring function col.

If TS is not negative, we say that TS is in normal form if any other parity acceptance
condition equivalent to AccTS over GTS using a colouring function col′ satisfies that for
every edge e:

col(e) ≤ col′(e).

If TS is negative, we say that it is in normal form if any other equivalent colouring
col′ not using priority 0 satisfies that for any edge e:

1 ≤ col(e) ≤ col′(e).

If TS is in normal form, we will also say that its acceptance condition or the colouring
function it uses are in normal form.

Example II.127.

Parity transition systems from Figures 5, 13, 17 and 18 are all in normal form. Parity
automata appearing in Figures 13 and 17 are negative (the minimal priority used by an
optimal acceptance condition is odd), whereas parity automata in Figure 18 are not.

On the other hand, the automaton from Figure 4 is not in normal form (even if it is
parity-index-tight). We can put it in normal form by assigning priority 1 to transitions
q1

a,b−→ q0 and q1
b,c−→ q2. The automaton obtained in this way recognises the same language.

Proposition II.128.

Let TS = (GTS ,AccTS) be a parity transition system with a colouring function col.
There is a unique parity acceptance condition equivalent to AccTS over GTS in normal
form. Moreover, this acceptance condition is exactly the parity condition of the ACD-
parity-transform of TS.

Before showing the proof of Proposition II.128, we prove a useful technical lemma.

F Lemma II.129. Let TS be a parity transition system with colouring function col. If
`1 ) `2 ) · · · ) `k is a positive (resp. negative) k-flower of TS, then min col(`k) ≥ k − 1
(resp. min col(`k) ≥ k).

Proof. We show the result for negative flowers. Let di = min col(`i). We show that di ≥ i
by induction. Since `i is an accepting cycle if and only if i is even, we have that di is even
if and only if i is even. Clearly, d1 ≥ 1, as 1 is the least odd number. Also, di+1 ≥ di,
since `i+1 ⊆ `i, and the inequality is strict by the alternation of the parity, concluding the
proof. J
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Proof of Proposition II.128. We first remark that the uniqueness is directly implied
by the definition of normal form.

We prove that the acceptance condition of the ACD-parity-transform is in normal
form. We note its colouring function by colACD. The transitions not belonging to any
SCC are coloured 0 if TS is not negative and 1 if TS is negative, as desired. It suffices to
prove the result for edges in SCCs.

We assume that TS is not negative and we let S be an accepting SCC of TS (the proof
is similar for TS negative and a rejecting SCC). Let e = v −→ v′ be an edge in S, and let
Tv be the local subtree at v, which is composed of a single branch (see Proposition II.111).
We let n0 � n1 � . . . � nr be that branch, where n0 is the root and nr the leaf . Let nk be
the deepest node of Tv such that e ∈ ν(nk). By definition of the ACD-parity-transform,
colACD(e) = pACD(e) = k. Also, ν(n0) � ν(n1) � . . . � ν(nk) is a positive k+ 1-flower (by
Lemma II.83). Lemma II.129 implies then that any equivalent parity condition using a
colouring function col′ verifies col′(e) ≥ colACD(e) = k. J

We deduce the following result, that might clarify the notion of negative transition
systems.

F Remark II.130. A parity transition system TS is negative if and only if the minimal
priority used by its normal form is 1.

Corollary II.131.

The ACD-parity-transform ACDparity(TS) of any Muller transition system TS is in
normal form.

We obtain as a corollary of Proposition II.97 that we can put a parity TS in normal
form in polynomial time.

Proposition II.132 (Effective normalisation of parity transition systems).
Given a parity transition system TS, we can construct in polynomial time an equivalent

parity condition over its underlying graph such that the obtained transition system is in
normal form.

7.2 Properties of the normal form

Parity-index-tightness
We say that a parity transition system TS = (GTS ,AccTS) is parity-index-tight if any

other parity condition Acc′ over GTS such that Acc′ 'GTS AccTS uses at least as many
priorities as AccTS .

By Proposition II.128, the optimality of the colouring of ACDparity(TS) (Theorem II.5)
transfers to parity transition systems in normal form.

Corollary II.133.

A parity transition system in normal form is parity-index-tight.
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Fundamental properties of the normal form
We now state what we consider to be the two fundamental properties of parity tran-

sition systems in normal form (Propositions II.134 and II.135), which characterise them
(Theorem II.14).

Proposition II.134 (Closing paths with large priorities).
Let TS be a parity transition system in normal form. If there is a path v v′

producing d as minimal priority, then, either:

] v and v′ are in different SCCs (and in this case d ∈ {0, 1}), or

] there is a path v′ v producing no priority strictly smaller than d.

Proof. By Proposition II.128, we know that the colouring of TS is the one given by its
ACD-transform, that we note colACD. If v and v′ are in different SCCs the result is trivial.
Let v and v′ be in the same SCC, that we assume to be an accepting SCC without loss
of generality. Let ρ = v

e1−→ . . .
ek−→ v′ be a path from v to v′ producing min colACD(ρ) = d

as minimal priority. We remark that, as ACDTS is a parity ACD, each edge e appears in
one and only one branch of ACDTS , and that colACD(e) equals the depth of the deepest
node containing e. In particular, if e ∈ ν(n) for some node e, colACD(e) ≥ Depth(n). Our
objective is to show that a similar result holds for the path ρ as a set of edges:

G Claim II.134.1. Let Nρ be the set of nodes of ACDTS containing the edges of the
path ρ in their label, that is, Nρ = {n ∈ Nodes(ACDTS) | {e1, . . . , ek} ⊆ ν(n)}. Then,
min(colACD(ρ)) equals the depth of a node of maximal depth of Nρ.19

This claim allows us to conclude. Indeed, let n be a node of maximal depth of Nρ,
verifying Depth(n) = d. Then, ν(n) is a cycle containing the vertices v and v′, and for
all the edges e ∈ ν(n), colACD(e) ≥ Depth(n) = d. This provides the desired path from v′

to v.
Proof of Claim II.134.1. First, we remark that if `1, `2, . . . , `k are cycles such that `i
and `i+1 have some state in common, then ∪ki=1`i is a cycle. Let n be a node of
maximal depth in Nρ. By the previous remarks, colACD(e) ≥ Depth(n). Suppose by
contradiction that colACD(ρ) > Depth(n). Then, each edge ei of ρ would appear in some
strict descendant ni of n (we can suppose that ni is a child of n). Then, ν(n1), . . . , ν(nk)
would be cycles such that ν(ni) and ν(ni+1) have some state in common (namely,
target(ei) = source(ei+1)), so their union is a cycle. However, this is not possible in a
parity transition system, as ν(n) is accepting if and only if each of the ν(ni) is rejecting
(see Lemma II.39). C

J

Proposition II.135 (Normal flowers do not lack petals).
Let v be a state of a parity transition system in normal form belonging to an accepting

(resp. rejecting) SCC. Let ` ∈ Cycles
v
(TS) be a cycle over v and let d` be the minimal

priority appearing on it.

19In fact, the nodes of Nρ are totally ordered by the ancestor relation, so there is a unique node of
maximal depth in Nρ. This fact is not used in our proof.
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] If TS is not negative, for each x ∈ [0, d`] (resp. x ∈ [1, d`]) there is a cycle `x ∈
Cycles

v
(TS) producing x as minimal priority.

] If TS is negative, for each x ∈ [2, d`] (resp. x ∈ [1, d`]) there is a cycle `x ∈
Cycles

v
(TS) producing x as minimal priority.

Proof. We do the proof for the case in which TS is not negative and v belongs to an
accepting SCC. By Proposition II.128, the colouring of TS is the one given by its ACD-
transform, noted colACD. Consider the local subtree at v, Tv, consisting in a single branch,
as it has parity shape (Proposition II.111). Let n0 � . . . � nk be that branch, and let ni
be the deepest node such that ` ⊆ ν(ni). We remark that, by definition of colACD, d` =
Depth(ni) = i. The desired cycles are obtained by taking `x = ν(nx), for x ∈ [0, d`]. J

Next theorem provides a simple characterisation that is a useful tool to show that
a parity transition system is in normal form in many proofs. In essence, it shows that
the two previous propositions characterise the normal form. We state it for non-negative
transition systems for simplicity; a similar characterisation for negative transition systems
is immediate.

We say that a SCC of a parity TS is positive if the minimal priority appearing on it is
even, and that it is negative if this minimal priority is odd.

Theorem II.14.
A non-negative parity transition system TS is in normal form if and only if:

] transitions changing of SCCs are coloured 0, and
] if v and v′ are in a same positive (resp. negative) SCC and there is a transition
v

d−→ v′ producing priority d > 0 (resp. d > 1), then there are two paths v′ v
producing as minimal priority d and d− 1, respectively.

Proof. The fact that a TS in normal form satisfies these properties follows from the
previous propositions.

Let TS be a TS satisfying these properties and using col as colouring function. Let
e = v

d−→ v′ be an edge with col(e) = d. We will show that for any other equivalent
colouring col′, we have col′(e) ≥ d. This is trivial if d = 0. If d > 0, v and v′ must be in
the same SCC, that we assume positive without loss of generality. By hypothesis, we can
close cycles `d and `d−1 over v producing d and d − 1 as minimal priority, respectively.
Cycle `d−1 can be decomposed in v −→ v′ v1

d−1−−→ v′1 v. Applying the hypothesis
over the edge v1

d−1−−→ v′1 gives a path v′1 v1 producing d − 2 as minimal priority,
which can be merged with `d−1 to produce a cycle `d−2 over v producing d− 2 as minimal
priority. Iterating this process, we can find cycles `0 ⊇ `1 ⊇ . . . ,⊇ `d over v such that
`i produces i as minimal priority. Taking `′i = ∪dj=i`i, we obtain a positive (d+ 1)-flower
`′0 ) `′1 ) · · · ) `′d, so by Lemma II.129 we conclude that col′(e) ≥ d. J



8. Transformations towards state-based automata 129

Parity index from automata in normal form
We show that, when applied to deterministic parity automata, the normal form directly

gives the parity index of the language recognised by the automaton.

Corollary II.136.

Let A be a deterministic parity automaton in normal form using priorities in [0, d− 1]
(resp. [1, d]) such that all its states are accessible. If A is Weakd−1, then the parity index
of L(A) is Weakd−1. If not, the parity index of L(A) is [0, d− 1] (resp. [1, d]).

Proof. We assume that A uses priorities in [0, d−1] (in particular, it is not negative, c.f.
Remark II.130). The proof for [1, d] is analogous.

If A is not Weakd−1, there is a SCC containing all the priorities [0, d− 1]. By Propo-
sition II.135, such SCC contains a positive d-flower, so by the Flower Lemma I.21, the
parity index of L(A) is [0, d− 1].

Assume now that A is Weakd−1. Let ` be a cycle of A in which priority d− 1 occurs.
By Proposition II.135, ` contains a negative (d− 1)-flower. As A is not negative, it also
contains a positive (d − 1)-flower. By the Flower Lemma I.21, the parity index of L(A)
is Weakd−1. J

8 Transformations towards state-based automata
In all the chapter, we have worked with transition systems with the acceptance con-

dition over transitions. In this section, we discuss how the transformations presented in
Section II.4 could be adapted for state-based transition systems. Our main result (The-
orem II.15) is a negative answer: it is not possible to obtain transformations for state-
based transition systems offering the same tight optimality guarantees. Nevertheless, in
Section II.8.2 we present a suboptimal method to transform Muller TS into state-based
parity TS.

8.1 NP-hardness of finding optimal transformations for state-based tran-
sition systems

We have shown that given a Muller transition system TS and its ACD, we can compute
in polynomial time a parity TS minimal amongst those TS admitting a locally bijective
morphism towards TS (Proposition II.97). If the input transition system is a generalised
(co)Büchi one, there is no need to explicitly include the ACD in the input, as it can
be computed in polynomial time (Corollary II.96). For this reason, and to simplify the
statements of the results, we state the contributions of this section for generalised Büchi
automata.

Problem: Transform-GenBuchi
Input: A generalised Büchi transition system TS and a positive integer k.

Question: Is there a Büchi TS of size k admitting a locally bijective
morphism to TS?
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The following result just restates Proposition II.98.

Proposition II.137.

The problem Transform-GenBuchi can be solved in polynomial time.

We can consider the analogous problem in which we ask to obtain a state-based Büchi
TS as output.20 We call the obtained problem Transform-GenBuchi-to-States. We
will see that with just this “small” modification, the problem becomes NP-hard.
F Remark II.138. The problem in which also the input is given as a state-based TS is
easier, since we can go from state-based to transition-based models without modifying the
underlying graph.

We also consider the problem of transforming a transition-based TS into an equivalent
one using a state-based acceptance.

Problem: Transitions-to-States
Input: A transition-based Büchi TS TS and a positive integer k.

Question: Is there a state-based Büchi TS of size k admitting a locally
bijective morphism to TS?

F Remark II.139. Transitions-to-States reduces to Transform-GenBuchi-to-States
in linear time.

We prove now that these problems are NP-complete. The reduction we provide is
almost identical to the one given by Schewe to show the NP-completeness of the min-
imisation of state-based Büchi automata [Sch10]. We argue that this shows that the
reduction proves the difficulty to go from a transition-based model to a state-based model
in an optimal way. This eliminates any hope of using a similar reduction to prove the
NP-hardness of the minimisation of transition-based Büchi automata.

Theorem II.15.
The problems Transform-GenBuchi-to-States and Transitions-to-States are

NP-complete.

Proof. The fact these problems are in NP follows from the fact that we can guess a
state-based Büchi TS of size k and a locally bijective morphism to TS. Checking the
local bijectivity can be trivially done in polynomail time. Checking that the morphism
does indeed preserve the acceptance of runs is equivalent to the problem of checking
the equivalence of two deterministic generalised Büchi automata, that can be done in
polynomial time (Proposition I.15).

To show the NP-hardness we give a reduction from the problem Vertex Cover to
Transitions-to-States. Let G = (V,E) be a simple connected undirected graph. We
define a transition system TSG whose underlying graph is obtained from G as follows: its

20We note that the notion of morphism of transition system applies without any modification to state-
based TS, since it does not impose any condition in the images of the colours of the edges, only in the
acceptance of infinite runs.



8. Transformations towards state-based automata 131

set of states is V , and it has transitions v −→ u if (v, u) ∈ E and v −→ v for all v ∈ V . We
take an arbitrary vertex v0 ∈ V as initial state of TSG.

We define (in polynomial time) a Büchi acceptance condition over the transitions of
TSG as v 0−→ u if u 6= v and v 1−→ v.21

G Claim II.139.1. A run of TSG is accepting if and only if it visits at least two vertices
infinitely often.
Let minCover(G) be the minimal k such that G admits a cover of size k.

G Claim II.139.2. There is a state-based Büchi TS of size |V |+minCover(G) admitting
a locally bijective morphism to TSG.

Proof. Let V ′ ⊆ V be a cover of G. Let TS ′ be the transition system defined as:

] The set of vertices is the disjoint union of V and V ′, that is: V ×{1}tV ′×{0}.
] The transitions are given by:

- (v, 1) −→ (v, 1) for all v ∈ V ,
- (v′, 0) −→ (v′, 1) for all v′ ∈ V ,
- (v, 1) −→ (v′, 0) if v′ ∈ V ′ and (v, v′) ∈ E (we note that this implies v 6= v′),

and
- (v′, 0) −→ (u′, 0) if v′, u′ ∈ V ′ and (v′, u′) ∈ E. .

] The initial state is (v0, 1).
] The Büchi condition (over the states) is given by colst((v, 1)) = 1 and colst((v′, 0)) =

0.

That is, TS ′ is obtained by duplicating the states of V ′. A run in TS ′ is accepting if
and only if it visits some of the new copies of the states in V ′ infinitely often.

We define a morphism ϕ : TS ′ → TSG by taking the projection into the first com-
ponent, that is, ϕV ((v, x)) = v, for x ∈ {0, 1}, and ϕE((v, x) −→ (u, y)) = v −→ u.
It is immediate to check that ϕ is a weak morphism and locally bijective. We show
that it preserves the acceptance of runs. Let ρ′ be an accepting run in TS ′. Then, it
takes infinitely often transitions of the form (v, x) −→ (v′, 0), with v 6= v′ (these are the
only incoming transitions to vertices of the form (v′, 0)). Therefore, ϕRuns(ρ′) changes
of state infinitely often, so it is accepting. Conversely, let ρ′ be a rejecting run in
TS ′. Then, it eventually does not visit any vertex (v′, 0). We show that eventually it
stays in a single vertex. Indeed, each time that rr′ changes twice of state, we produce
a partial run of the form: (v1, 1) −→ (v2, 1) −→ (v3, 1), with v1 6= v2, v2 6= v3 and
(v1, v2) ∈ E and (v2, v3) ∈ E. Since V ′ is a cover, either v2 ∈ V ′ or v3 ∈ V ′. In the
first case, no transition (v1, 1) −→ (v2, 1) exists in TS ′, in the second case, no transition
(v2, 1) −→ (v3, 1) exists in TS ′, a contradiction. Therefore, ϕRuns(ϕ) eventually stays in
a single vertex and it is also rejecting. C

G Claim II.139.3. If TS ′ is a state-based Büchi TS admitting a locally bijective mor-
phism to TSG, then |TS ′| ≥ |V |+ minCover(G).

Proof. Let Q′ be the set of states of TS ′, and let Q′ = Q′0 t Q′1, where Q′0 are the
states coloured with 0 (we will call them Büchi states), and Q′1 those coloured with 1.

21We could define an equivalent generalised Büchi acceptance condition over the states of TSG by
B = {Bv | v ∈ V }, where Bv = {u ∈ V | u 6= v}.



132 Optimal transformations of automata and games using Muller conditions

We prove that |Q′1| ≥ |V | and |Q′1| ≥ minCover(G). Let ϕ : TS ′ → TSG be a locally
bijective morphism.

To prove that |Q′1| ≥ |V |, we show that for every state v of TS, there is q ∈ Q′1
such that v ∈ ϕ−1(q). Let ρ be a run in TSG that reaches v and stays there forever
(this is a rejecting run). There is a unique run ρ′ in TS ′ sent to ρ under ϕ, and such
run has to be rejecting, so eventually it stays in Q′1. Also, since ρ eventually stays in
v, the run ρ′ eventually stays in q−1, so q−1 ∩Q′1 6= ∅.

To prove that |Q′0| ≥ minCover(G), we show that ϕ(Q′0) is a cover of G. Suppose by
contradiction that this is not the case, that is, there is (v, u) ∈ E such that no q ∈ Q′0
is sent under ϕ to v, and no q ∈ Q′0 is sent to u. Consider a run ρ in TSG that reaches
v and then it is of the form (v −→ u −→ v)ω. This run is accepting, since it changes of
state infinitely often. However, the run ρ does not accept as a preimage under ϕ an
accepting run, contradicting the fact that ϕ is a locally bijective morphism. C

J

F Remark II.140. By Corollary II.96, we can compute the ACD of a generalised Büchi
TS in polynomial time. This fact, combined with Theorem II.15, shows that providing
optimal transformations towards state-based parity TS is NP-hard, even if the ACD is
given as input.

8.2 Suboptimal transformations for state-based transition systems

We now show how to use the alternating cycle decomposition to obtain transformations
towards state-based transition systems. However, this transformations are not optimal.
In fact, as shown in the previous section, obtaining optimal transformations towards state-
based transition sytems is NP-hard even if the ACD is given as input. As we will see,
we will need to add some additional states to put a correct acceptance condition over
the states. There are some choices to make for adding these extra states, from where
NP-hardness arises.

As no strong optimality result can be obtained from the result of this section, we keep
the discussion in an informal level.

State-based version of the ZT-parity-automaton
Definition. Let F ⊆ 2Σ

+ be a family of subsets. We explain how to obtain a state-
based parity automaton recognising MullerΣ(F) from the Zielonka tree ZF . We suppose
for the ease of the presentation that the root of ZF is round, that is, Σ ∈ F .

The automaton has a state per node in the Zielonka tree (instead of one state per
leaf). We colour each state with its depth in the tree, that is:

colst(q) = pZ(q).

The idea behind the definition of the transitions of the automaton is the same as in
the ZT-parity-automaton. However, in the current case we need to visit from time to
time a node that is not a leaf of the tree in order to produce the desired priority. We do
so whenever we are sure that we have already tried all branches below a node n.

Assume that we are in a node n and read a letter a. To determine the successor, we go
to Supp(n, a), and change to the next branch below it. If we were in the last children below
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Supp(n, a), we set the target state to be Supp(n, a). On the contrary, we just go the the
leftmost leaf below the branch, as we would have done in the classic ZT-parity-automaton.

A proof of correctness follows the same lines as the proof of Proposition II.34.

Optimality. Using a slightly more complex combinatorial argument than the one
presented in the proof of Theorem II.3, one can show that this automaton is minimal
amongst deterministic parity automata recognising MullerΣ(F). (This fact was remarked
by Klara J. Meyer.)

State-based version of the ACD-parity-transform
Definition. Let TS be a Muller transition system. We define a state-based parity

transition system ACDst
parity(TS) using the same idea as in the previous paragraph:

] Vertices are of the form (v, n), for v a vertex of TS and n a node in Tv.
] We colour a vertex (v, n) by the depth of n, that is, colst(v, n) = pACD(n).
] For each vertex (v, n) and transition e = v −→ v′ in TS, we define an edge (v, n) −→

(v′, n′). We determine n′ as follows. Assume that v and v′ are in the same SCC, (on
the contrary, we let n′ be the leftmost leaf in Tv′). If JumpTv′

(n, Supp(n, e)) is not
in the leftmost branch below Supp(n, e), then let v′ be JumpTv′

(n, Supp(n, e)) (as in
the transition-based case). Otherwise (a “lap” around Supp(n, e) is finished) we let
n′ = Supp(n, e).

A proof of correctness – that is, ACDst
parity(TS) admits a locally bijective morphism

towards TS – follows the same lines as the proof of Proposition II.68.

Non-optimality. The transition system ACDst
parity(TS) is not minimal amongst those

state-based parity TS admitting a locally bijective morphism to TS. In fact, if n is not a
leaf in the ACD, states of the form (v, n) are not necessarily reachable in this transition
system. We only need to add those that can be reached from the initial state. However,
the set of reachable states does depend on the ordering of the children in the trees of the
ACD, and therefore the size of the final transition system depends on this ordering. Some
heuristics to find orderings giving small transitions systems are proposed in [Cas+22].

Nevertheless, we can analyse the size of ACDst
parity(TS) and deduce some (non optimal)

guarantees. Let d be the maximal height of the trees of ACDTS . The final TS has size:

|ACDst
parity(TS)| =

∑
v∈TS
|Tv| ≤

∑
v∈TS

d · |Leaves(Tv)| = d · |ACDparity(TS)|.

We obtain that ACDst
parity(TS) is at most d times larger than a TS admitting a locally

bijective morphism to TS (bound that we could obtain just by applying a naive translation
of ACDparity(TS) to a state-based model). Since the inequality above are not tight, we can
slightly improve this result. In particular, for generalised (co)Büchi TS we obtain:

Proposition II.141.

Let TS be a generalised (co)Büchi transition system. Let TS ′ be a state-based
(co)Büchi transition system admitting a locally bijective morphism to TS. Then:

|ACDst
parity(TS)| ≤ |TS ′|+ |TS|.
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Proof. We can transform TS ′ into a transition-based TS admitting a locally bijective
morphism to TS without any blow-up. By Theorem II.6, we have then that it is not
smaller than ACDparity(TS). The vertices of ACDst

parity(TS) is the union of the set of states
of ACDparity(TS) with a subset of nodes of the form (v, n0), where n0 is the root of Tv.
Therefore:

|ACDst
parity(TS)| ≤ |ACDparity(TS)|+ |TS| ≤ |TS ′|+ |TS|. J
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Introduction
Automata minimisation stands as one of the most fundamental problems in automata

theory, for various reasons. Firstly, for its applications: when employing algorithms that
rely on automata, having the smallest possible automata is crucial for efficiency. Secondly,
beneath the problematic of minimisation lies a profoundly fundamental question: What
is the essential information needed to represent a formal language?
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Finite words. For automata over finite words, minimal automata are well-understood.
Each regular language admits a unique minimal and canonical deterministic automaton,
in which states corresponds to the residuals of the language (the equivalence classes of
the Myhill-Nerode congruence). Moreover, this minimal automaton can be obtained in
time O(n log n), where n is the size of an input deterministic automaton [Hop71].

Infinite words. In the case of ω-automata, the situation is not as simple, and the
minimisation problem has an intriguing complexity status. Contrary to the case of finite
words, in general, the residuals of a language are not sufficient to construct a correct
deterministic automaton. For certain classes of languages, however, this suffices [SL94,
MS97]; an example is that of Weak1-languages. Using this property, Gutleben and Löding
showed that Weak1-automata can be minimised in polynomial time [Gut96, Löd01].

In 2010, Schewe showed that the minimisation of deterministic Büchi and parity au-
tomata is NP-complete, if the acceptance condition is defined over the states [Sch10].
However, the reduction of NP-hardness does not generalise to automata with transition-
based acceptance. A surprising positive result was obtained in 2019 by Abu Radi and
Kupferman: we can minimise in polynomial time history-deterministic coBüchi automata
using transition-based acceptance [AK19]. Schewe showed that the minimisation was
again NP-hard for HD automata with state-based acceptance [Sch20]. Abu Radi and
Kupferman left open the following question, which constitutes the main motivation for
the research presented in this chapter:

Question III.1 ([AK19]).
Can deterministic Büchi automata be minimised in polynomial time?

The corresponding questions for history-deterministic and for parity automata are also
open.

Succinctness of history-deterministic automata. Since their introduction in
2006 [HP06], a pressing question regarding history-deterministic automata was whether
they can be more succinct than their deterministic counterparts. This question was an-
swered positively by Kuperberg and Skrzypczak: minimal HD coBüchi automata can be
exponentially smaller than equivalent deterministic ones [KS15, Theorem 1]. In the case
of Büchi automata, they showed that minimal deterministic automata have at most O(n2)
more states than history-deterministic ones [KS15, Theorem 8], and it is an open question
whether this bound is tight. However, no much has been said for HD automata using
other acceptance conditions, or for automata recognising subclasses of languages.

Contributions
Our contributions are already nearly outlined in the table of contents of this chapter:

1. Minimisation of Rabin automata is NP-complete. We show the NP-completeness
of the minimisation of deterministic Rabin automata (Theorem III.1). Moreover,
we show that this problem is already NP-hard when restricted to automata that
recognise Muller languages, and even if the input Muller language is represented
as a Zielonka tree. This result, together with the construction of a minimal HD
Rabin automaton from the Zielonka tree (Theorem II.4), seems to indicate that HD
automata are better-behaved than deterministic ones in this context.
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2. Efficient minimisation of parity automata recognising Muller languages.
Contrary to the previous case, we show that deterministic parity automata recog-
nising Muller languages can be minimised in polynomial time (Theorem III.4). This
is possible by the fact that such minimal automata are given by the Zielonka tree
of the Muller language (Theorem II.2). This result exhibits the limitations of our
previous NP-hardness reduction.

3. Minimisation of generalised Büchi automata is NP-complete. We show that
the minimisation of deterministic generalised Büchi and generalised coBüchi au-
tomata is NP-complete (Theorem III.2). In this case, the use of Muller languages
cannot suffice to obtain NP-hardness. Our reduction generalises the one presented
for Rabin automata, and introduces ideas necessary to go beyond the limitations of
the use of Muller languages in this kind of reductions.

4. Minimisation of Muller automata is NP-hard. As a consequence of the previous
point, we also obtain the NP-harness of the minimisation of deterministic Muller
automata (Theorem III.3). We find this result quite interesting because, even though
Muller automata might appear more complex than other classes, they use a very
natural acceptance condition. The results of Wagner [Wag79] establishing that the
structure of a deterministic Muller automaton A determines the level in the Wagner
hierarchy of L(A) could lead to the idea that this class of automata benefits from
particularly good properties.

5. Succinct HD Rabin automata. We show that HD Rabin automata recognising
Muller languages can be exponentially more succinct than equivalent deterministic
ones (Theorem III.5). This result is obtained by reducing the problem to a graph
theoretic question about bounds on the chromatic number of graphs. This comple-
ments our result from the previous chapter establishing that HD parity automata
for Muller languages are not more succinct than deterministic ones (Corollary II.36).
Our results concerning the succinctness of HD Rabin automata will be applied in
Chapter IV to obtain bounds on the memory for games.

Prerequisites and links with other chapters
Besides the definitions of automata and the standard acceptance conditions introduced

in the general preliminaries (Section I.3), we make extensive use of the Zielonka tree of
a Muller language, as it provides an expressive representation of it (see Section II.3 for
its definition). Also, we use as a black-box the fact that we can construct a minimal
deterministic parity automaton (resp. minimal history-deterministic Rabin automaton)
from the Zielonka tree (Theorems II.2 and II.4). To obtain Lemmas III.7 and III.20, we
apply Proposition II.109, that tells us when we can relabel a Muller automaton with an
equivalent Rabin condition on top of it. We include some results and discussions about
history-deterministic automata.

To show the NP-hardness of some decision problems, we reduce them to Chromatic
number. We introduce this problem and related vocabulary in Appendix A.

Collaborators and related publications
The contents of Sections III.1 and III.3 have been published in the conference pa-

per [Cas22]. Section III.2 is joint work with Corto Mascle, and it is still unpublished. The
result from Section III.4 is based on joint work with Thomas Colcombet and Karoliina
Lehtinen and appears in the conference paper [CCL22]. We thank Marthe Bonamy and
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Pierre Charbit for their help with graph theory and pointing us to the reference [MR14].
The problem of the minimisation of transition-based Büchi automata was brought to

my attention by a talk of Orna Kupfermann during the program Theoretical Foundations
of Computer Systems at the Simons Institute for the Theory of Computing, held in 2021
(online). I thank her, Bader Abu Radi, Thomas Colcombet, Nathanaël Fijalkow, Karoliina
Lehtinen and Nir Piterman for interesting discussions on the subject, at the origin of this
line of research.

1 NP-completeness of the minimisation of Rabin automata

This section is devoted to proving the NP-completeness of the minimisation of (transition-
based) Rabin automata, stated in Theorem III.1. We start by giving the formal definition
and explaining the different inputs of the decision problems under study.

1.1 Decision problems and statement of the results

We now give formal definition of the decisions problems we consider and state the
main results of this section.

Problem: Minimisation of Rabin automata
Input: A deterministic Rabin automaton A and a positive integer k.

Question: Is there a deterministic Rabin automaton equivalent to A
of size at most k?

We define analogously the problems of the minimisation of X automata, for X any
of the classes of languages introduced in Section I.3 (parity, Streett, generalised Büchi,
etc.). Similarly, we define versions of this problem for history-deterministic automata. We
note that for the variants of the problem Minimisation of Rabin automata, we modify
“Rabin” (resp. “deterministic”) by “X” (resp. “HD”) in both the input and the output
of the problem.

F Remark III.1. We remark that the minimisation problem for deterministic automata
using acceptance conditions that are dual (Rabin – Street, Büchi – coBüchi, generalised
Büchi – generalised coBüchi) are polynomial time equivalent (see also Remark I.13). We
note that this is no longer the case if we consider the analogous problems for history-
deterministic automata.

We will consider a particular case of this problem, namely, the one in which the
language for which we want to find a minimal automaton is a Muller language. In this
case, we can make the problem even easier by representing the language more explicitly
by giving its Zielonka tree.

https://simons.berkeley.edu/talks/introduction-automata-infinite-words
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Problem: Minimal Rabin automata for Muller languages
Input: The Zielonka tree ZF of a family F ⊆ 2Σ

+ and a positive integer k.
Question: Is there a deterministic Rabin automaton recognising MullerΣ(F)

of size at most k?

F Remark III.2. The problem Minimal Rabin automata for Muller languages re-
duces in polynomial time to the problem Minimisation of Rabin automata. Indeed, by
the construction of the Zielonka-tree-parity-automaton (Section II.3.2 of Chapter II), we
can build in linear time in the size of ZF a deterministic parity automaton recognising
MullerΣ(F), which is in particular a Rabin automaton.

Theorem III.1.
The problems Minimisation of Rabin automata and Minimal Rabin automata for

Muller languages are NP-complete.

F Remark III.3. The reduction we give shows that the problem Minimal Rabin automata
for Muller languages is NP-hard also if the input is given as the list of subsets of F .
However, in this case, we lack a proof of the containment in NP.

The results of this section apply to Streett automata too by symmetry.
The reduction we propose will only make use of Muller languages of parity index [1, 3].

This reduction cannot be directly extended to show the NP-hardness of the minimisation
of parity automata, as we will show in Section III.3 that we can minimise parity automata
recognising Muller languages in polynomial time. As we will see in Corollary III.8, this
reduction does not extend to history-deterministic automata neither.

1.2 Proof of NP-completeness

For the containment in NP, we use the fact that we can test equivalence of deterministic
Rabin automata in polynomial time [CDK93].

Proposition III.4.

Given a deterministic Rabin automaton A and a positive integer k, we can decide in
non-deterministic polynomial time whether there is an equivalent Rabin automaton of
size k.

Proof. A non-deterministic Turing machine just has to guess an equivalent automaton
Ak of size k, and by Corollary I.16 it can check in polynomial time whether L(A) =
L(Ak). J

Corollary III.5.

Given the Zielonka tree ZF of a family F ⊆ 2Σ
+, we can decide in non-deterministic

polynomial time whether there is a deterministic Rabin automaton of size k recognising
MullerΣ(F).
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Proof. As we show in Section II.3.2, we can construct a deterministic parity automaton
for MullerΣ(F) in polynomial time from the Zielonka tree ZF . This is in particular a
Rabin automaton, so we can just apply the previous proposition. J

To show the NP-hardness, we describe a reduction from the Chromatic number prob-
lem (one of 21 Karp’s NP-complete problems) to the problem Minimal Rabin automata
for Muller languages. As indicated in Remark III.2, this suffices to show the NP-
harness of Minimisation of Rabin automata. We refer to Appendix A for the definition
of this problem and terminology on undirected graphs.

Let G = (V,E) be an undirected graph and consider the family FG ⊆ 2V+ given by:

FG = {{v, u} | (v, u) ∈ E}.

That is, FG contains exactly the pair of vertices joined by an edge. We remark that
the Muller language associated to FG is:

MullerV (FG) =
⋃

(v,u)∈E
V ∗(v+u+)ω.

An example of the Zielonka tree of FG is given in Figure 20.

a

b

c d

a, b, c, d

a, b a, c b, c c, d

a b a c bc c d

F Figure 20. On the left, an undirected graph G and a colouring of it. On the right,
the Zielonka tree of FG.

We remark that for all undirected graph G (with |V | > 2 and E non-empty), the
Zielonka tree ZFG

has height 3 and its root is square. Therefore, the parity index of
MullerV (FG) is [1, 3] (Proposition II.115).
F Lemma III.6. Given a simple undirected graph G = (V,E), we can build a deter-
ministic Rabin automaton AG of size |V | over the alphabet V recognising MullerV (FG) in
polynomial time.

Proof. We define the automaton AG = (Q, V, q0,Γ, δ,RabinΓ(R)) as follows:

] Q = V .
] q0 an arbitrary vertex in Q.
] The set of output colours is Γ = V × V .
] δ(v, x) = (x, (v, x)), for v, x ∈ V .
] R = {(g(v,u), r(v,u)) | (v, u) ∈ E}, where we define for each edge (v, u) ∈ E a Rabin
pair with green and red sets given by:
- g(v,u) = {(v, u)},
- r(v,u) = V × V \ {(v, u), (u, v), (v, v), (u, u)}.
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That is, the states of the automaton are the vertices of the graph G, and when we
read a letter u ∈ V we jump to the state u. The colours defining the Rabin condition are
all pairs of vertices, and we define one Rabin pair for each edge of the graph. This Rabin
pair will accept words that eventually alternate between the endpoints of the edge and
visit no other vertex.

We prove that AG recognises MullerV (FG). If w ∈ MullerV (FG), then Inf(w) = {v, u}
for some v, u ∈ V , such that (v, u) ∈ E, so eventually we will only visit the states v and
u of the automaton, and produce colour (v, u) when alternating between the,. Therefore,
by definition of the Rabin pairs, w is accepted by the Rabin pair (g(v,u), r(v,u)).

Conversely, suppose that a word w is accepted by AG, and let α ∈ (V × V )ω be the
output of the run of AG over w. It must satisfy Inf(α)∩ r(v,u) = ∅ for some (v, u) ∈ E, so
eventually α only contains the pairs (v, u), (u, v), (v, v) and (u, u). If w was eventually of
the form vω or uω, we would have that Inf(α) ∩ g(v,u) = ∅ for all (v, u) ∈ E. We conclude
that the word w eventually alternates between two vertices connected by an edge, so
w ∈ Muller(FG).

The automaton has |V | states, the transition function δ has size O(|V |2) and the Rabin
condition R has size O(|E||V |2). J

Lemma III.7.
Let G = (V,E) be a simple undirected graph. The size of a minimal deterministic

Rabin automaton recognising Muller(FG) coincides with the chromatic number of G.

Proof. We denote minDetRabin(FG) the number of states of a minimal deterministic
Rabin automaton recognising MullerV (FG). minDetRabin(FG) ≤ χ(G): Let c : V → [1, k]
be a colouring of size k of G. We will define a deterministic Muller automaton Ac with
k states recognising MullerV (FG) and then use Proposition II.109 to show that Ac is
Rabin type, allowing us to conclude. Let Ac = (Q, V, q0,Γ, δ,MullerV (FG)) be the Muller
automaton defined by:

] Q = {1, 2, . . . , k}.
] q0 = 1.
] Γ = V .
] δ(q, x) = (c(x), x) for q ∈ Q and x ∈ V .
] The acceptance set is the Muller language MullerV (FG)) itself.

This automaton trivially recognises MullerV (FG)), since the output produced by a
word w ∈ V ω is w itself, and the acceptance set is MullerV (FG)).

We will prove that the union of any pair of rejecting cycles of Ac with some state in
common is rejecting. By Proposition II.109, this implies that we there exists a determin-
istic Rabin automaton over the underlying graph of Ac recognising MullerV (FG).

Let `1, `2 ⊆ Cycles(Ac) be two rejecting cycles (that is, col(`i) /∈ FG for i ∈ {1, 2}) and
such that States(`1)∩ States(`2) 6= ∅. We note col the function associating output colours
to the transitions of Ac. We distinguish 3 cases:

] |col(`i)| ≥ 3 for some i ∈ {1, 2}. In this case, their union also has more than 3
colours, so it must be rejecting.
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] col(`i) = {u, v}, (u, v) /∈ E for some i ∈ {1, 2}. In that case, col(`1∪`2) also contains
two vertices that are not connected by an edge, so it must be rejecting.

] col(`1) = {v1} and col(`2) = {v2}. In this case, since from every state q of Ac and
every v ∈ V we have δ(q, v) = (c(v), v), the only state in each cycle is, respectively,
c(v1) and c(v2). As `1 and `2 share some state, we deduce that c(v1) = c(v2). If
v1 = v2, `1 ∪ `2 is rejecting because |col(`1 ∪ `2)| = 1. If v1 6= v2, it is also rejecting
because c(v1) = c(v2) and therefore (v1, v2) /∈ E, by definition of a colouring.

Since col(`i) is rejecting, it does not consist on two vertices connected by some edge
and we are always in some of the cases above, finishing this direction of the proof.

χ(G) ≤ minDetRabin(FG): Let A = (Q, V, q0,Γ, δ,RabinΓ(R)) be a Rabin automaton
of size k recognising MullerV (FG). We let col be the function assigning output colours to
the transitions of A. We will define a colouring of size k of G, c : V → Q.

For each v ∈ V we define a subset Qv ⊆ Q as:

Qv = {q ∈ Q | there is a cycle ` containing q and col(`) = {v}}.

For every v ∈ V , the set Qv is non-empty, as it must exist a (non-accepting) run over
vω in A. For each v ∈ V we pick some qv ∈ Qv, and we define the colouring c : V → Q
given by c(v) = qv.

In order to prove that this is indeed a colouring, we we will show that any two vertices
v, u ∈ V such that (v, u) ∈ E satisfy that Qv ∩ Qu = ∅, and therefore they also satisfy
c(v) 6= c(u). Suppose by contradiction that there is some q ∈ Qv ∩Qu. Let `v and `u be
cycles containing q labelled with v and u, respectively. By definition of FG, both cycles
`v and `u are rejecting, as xω /∈ MullerV (FG), for any x ∈ V . However, since (u, v) ∈ E,
the union of `v and `u is accepting, contradicting Proposition II.109. J

1.3 Discussion: The case of history-deterministic Rabin automata

We remark that the reduction we have proposed to show the NP-hardness of the
minimisation of deterministic Rabin automata does not extend to history-deterministic
Rabin automata, nor to deterministic or HD parity automata. Indeed, the analogous of the
problem Minimal Rabin automata for Muller languages for HD Rabin automata or
for parity automata can be solved in polynomial time, as a minimal HD Rabin automaton
(resp. deterministic and HD parity automata) for a language MullerΣ(F) can be build in
polynomial time from the Zielonka tree of F (Theorems II.2 and II.4).

Corollary III.8.

Given the Zielonka tree ZF of a family F ⊆ 2Σ
+, we can build in polynomial time in

the size of ZF :

] a minimal HD Rabin automaton recognising MullerΣ(F),
] a minimal deterministic parity automaton recognising MullerΣ(F), and
] a minimal HD parity automaton recognising MullerΣ(F).

In Section III.3, we will show how this result can be used to minimise deterministic
parity automata recognising Muller languages, as it is possible to build the Zielonka tree
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of F from a DPA recognising MullerΓ(F). However, it is not clear how to do this if
MullerΓ(F) is given by an HD Rabin automaton (see Question III.6).

2 NP-hardness of the minimisation of generalised Büchi andMuller
automata

In this section, we show the NP-completeness of the minimisation of deterministic
generalised (co)Büchi automata (Theorem III.2) and the NP-hardness of the minimisation
of deterministic Muller automata (Theorem III.3). The proof of NP-hardness generalised
the reduction to Chromatic number given in the previous section. However, we face a
difficulty: the use of Muller languages do not suffice in this case, as generalised (co)Büchi
automata recognising Muller languages can be trivially minimised (Proposition III.9).
Therefore, we need to use slightly more complicated languages, which poses some technical
challenges to give the required lower bounds to finish the proof.

Our results show the hardness of the minimisation of a class of automata already quite
close to Büchi automata, and introduces fresh ideas for reductions that could be useful
to make progress in Question III.1.

We recall that deterministic generalised Büchi (resp. generalised coBüchi) automata
recognise languages of parity index at most [0, 1] (resp. at most [1, 2]) (c.f. Remark I.22).

2.1 Statement of the results

We state the results of this section for generalised Büchi automata. They trivially
apply to generalised coBüchi automata too by symmetry (c.f. Remark III.1).

Theorem III.2.
The problem Minimisation of generalised Büchi automata is NP-complete.

Theorem III.3.
The problem Minimisation of Muller automata is NP-hard, for Muller automata

with the acceptance condition represented explicitly, as a Zielonka tree or as a Zielonka
DAG.

Theorem III.3 can be obtained as a corollary of Theorem III.2 by using Proposi-
tion II.122 and Corollary II.96. It will also follow from the reduction we propose.

We remark that these problems are also NP-hard if the input automaton is a determin-
istic Büchi automaton, as given a generalised Büchi automaton we can build an equivalent
Büchi one in polynomial time.

Minimisation of generalised (co)Büchi automata recognising Muller lan-
guages
Before moving to the proof of Theorem III.2, we show that, contrary to the case of

Rabin automata in the previous section, we cannot restrict ourselves to the study of Muller
languages to prove the NP-hardness of the minimisation of generalised Büchi automata.



144 Minimisation of automata and succinctness results

The following proposition is obtained by combining Propositions II.105 and II.115.

Proposition III.9.

Let L be a Muller language of parity index at most [0, 1] (resp. [1, 2]). Then, L can be
recognised by a generalised Büchi (resp. generalised coBüchi) automaton with just one
state.

We conclude that the decision problem Minimisation of generalised Büchi au-
tomata becomes trivial when restricted to the class of Muller languages. We remark
that, moreover, the one-state minimal automaton recognising a Muller language L can be
obtained from any deterministic generalised Büchi automaton recognising L in polynomial
time, as it suffices to identify the maximal rejecting subset of letters, which will determine
the Zielonka tree from which we can obtain the condition to put in the automaton.

2.2 Proof of NP-completeness

We now prove the NP-completeness of the minimisation of generalised Büchi automata.
As in the previous section, we obtain the inclusion in NP of Minimisation of Ra-

bin automata as a corollary of the fact that we can check equivalence of deterministic
generalised Büchi automata in polynomial time [CDK93].

Proposition III.10.

Given a deterministic generalised Büchi automaton A and a positive integer k, we can
decide in non-deterministic polynomial time whether there is an equivalent generalised
Büchi automaton of size k.

To show the NP-hardness, we will give a reduction from the problem 3-colorability
to Minimisation of generalised coBüchi automata. We conjecture that this is in
fact a reduction from the Chromatic number problem. In the proof, we use generalised
coBüchi, as working with the complement of the languages used in the proof is slightly
less natural.

Let G = (V,E) be a simple undirected graph. We define the neighbourhood of a vertex
v ∈ V as:

N [v] = {u ∈ V | (v, u) ∈ E} ∪ {v}.

We associate a language (of parity index [1, 2]) over the alphabet V to each vertex
v ∈ V :

Lv = {w ∈ V ω | Inf(w) ⊆ N [v] and w does not contain the factor vv infinitely often}.

Finally, we associate a language (of parity index [1, 2]) over the alphabet V to the
graph G:

LG =
⋃
v∈V

Lv.

That is, a word w ∈ V ω belongs to LG if for some vertex v, the letters of w are eventually
vertices in the neighbourhood of v, and it does not contains consecutive occurrences of v
infinitely often.
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F Lemma III.11. Given a simple undirected graph G = (V,E), we can build a deter-
ministic generalised coBüchi automaton AG of size |V | over the alphabet V recognising
LG in polynomial time.

Proof. We define the automaton AG = (Q, V, q0,Γ, δ, genCoBuchiΓ(B)) as follows:

] Q = V .
] q0 an arbitrary vertex in Q.
] The set of output colours Γ is the whole set of transitions of the automaton. Each
transition has each own colour.

] δ(v, x) = x, for v, x ∈ V (we only indicate the destination, as we use one colour per
transition).

] B = {Bv | v ∈ V }, where Bv = {q u−→ u | u /∈ N [v]} ∪ {v v−→ v}.

That is, the states of AG are V and we jump to state v when reading letter v. For each
vertex, we define a subset Bv of transitions that serves to reject words w /∈ Lv.

We prove that AG recognises LG. A word w ∈ V ω belongs to LG if and only if there is
v ∈ V such that w ∈ Lv. We prove that w belongs to Lv if and only if a run over w in AG
eventually does not take transitions in Bv (and therefore, it is accepted, by the semantics
of generalised coBüchi conditions). Indeed, if w ∈ Lv, a run over w in AG will eventually
only take transitions q u−→ u with u ∈ N [v], and will not take the transitions {v v−→ v}, as
this transition is only taken if v is read twice in a row. Conversely, if a run over w in AG
eventually does not take transitions in Bv, it eventually only takes transitions labelled
with letters in N [v], and, as it avoids transition {v v−→ v}, w does not contain consecutive
occurrences of v infinitely often.

The size of the representation of this automaton is |V |2, and in order to specify the
acceptance condition given by B, we have to compute the neighbour N [v] for each v ∈ V ,
which can be done in time O(|V |3). J

Lemma III.12.
Let G = (V,E) be a simple undirected graph. There exists a deterministic generalised

coBüchi automaton recognising LG of size χ(G).

Proof. Let c : V → [1, k] be a colouring of size k of G. We define an automaton
Ac = (Q, V, q0,Γ, δ, genCoBuchiΓ(B)) of size k and recognising LG as follows:

] Q = {1, . . . , k}.
] q0 an arbitrary vertex in Q.
] The set of output colours Γ is the whole set of transitions of the automaton.
] δ(q, x) = c(x), for q ∈ Q, x ∈ V (we only indicate the destination, as we use one
colour per transition).

] B = {Bv | v ∈ V }, where Bv = {q u−→ q′ | u /∈ N [v]} ∪ {c(v) v−→ c(v)}.

That is, the states of Ac are the colours used by the colouring c, and we jump to the
colour of v when reading letter v. As in the previous construction, for each vertex, we
define a subset Bv of transitions that serves to reject words w /∈ Lv.
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As in the previous lemma, we prove that w belongs to Lv if and only if a run over w
in Ac eventually does not take transitions in Bv. For this, we use the following claim.

G Claim III.12.1. Suppose that the sequence q u−→ c(v) v−→ c(v) appears in a run in Ac.
Then, either u /∈ N [v] or u = v.

Proof. By definition of the transitions of Ac, if the transition q u−→ c(v) exists, c(u) =
c(v), so by definition of a colouring, (u, v) /∈ E, and therefore either u /∈ N [v] or u = v.

C

This property allows us to end the proof in the exact same way as in the previous lemma:
w belongs to Lv if and only if neither transition c(v) v−→ c(v) nor q u−→ q′ for u /∈ N [v] are
taken infinitely often. J

Conjecture III.2.

Let G = (V,E) be a simple undirected graph. The size of a deterministic generalised
coBüchi automaton recognising LG is at least χ(G).

Conjecture III.2 would yield a correct polynomial-time reduction from the problem
Chromatic number to Minimisation of generalised coBüchi automata. Unfortu-
nately, we have not been able to find a proof for it. However, this does not prevent us
from giving a proof of NP-hardness of the problem, as we can use the remark that the
problem Chromatic number is already NP-complete when k is fixed to 3. Therefore, it
suffices to check Conjecture III.2 for automata of size at most 3, which can be done by
examining a few cases, as the combinatorics for these automata can be greatly simplified.1

The following lemma provides an important family of rejecting words.
F Lemma III.13. If w ∈ V ω is such that Inf(w) = N [v] and for all x ∈ N [v] the word
w contains xx infinitely often, then w /∈ LG.

Proof. Suppose by contradiction that w ∈ Lu for some u ∈ V . As Inf(w) ⊆ N [u], we
must have (u, v) ∈ E, and so u ∈ N [v]. Therefore, w contains the factor uu infinitely
often, contradicting that w ∈ Lu. J

The prove we give applies to all Muller automata. We will make extensive use of the
following remark.
F Remark III.14. Let A be a deterministic Muller automaton. Let w1, w2 ∈ V ω such that
the set of transitions visited infinitely often by the run over w1 and over w2 in A coincide.
Then, w1 ∈ L(A) if and only if w2 ∈ L(A).

Lemma III.15.
Let G = (V,E) be a simple undirected graph. If χ(G) > 3, then no deterministic

Muller automaton with 3 states recognises LG.

Proof. We let A be a deterministic Muller automaton over V with 3 states recognising
a language LG for some graph G. We show that we can define a colouring of G using as
colours the states of A, so χ(G) ≤ 3. In all the proof, we overlook the output colours of

1We know... Not the most beautiful proof, but effective.
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the automaton, as we will only make use of Lemma III.13 and Remark III.14 to reason
about the acceptance of runs of A.

We let n(v) = N [v] \ {v} be the open neighbourhood of v in G. We recall that a set
S of states is X-closed, for X ⊆ V , if no transition labelled with a letter in X leaves S.
Also, a subgraph S of A is X-FSCC if it is a final SCC of the restriction of A to transition
labelled with letters in X. By a small abuse of terminology, we say that a subset X ⊆ V
is an X-FSCC if it is the set of states of one, and we omit the brackets for singletons.

We will extensively use the fact that if q, q′ are two states in a X-FSCC, we can go
from q to q′ reading a word w ∈ X∗ that contains all factors xx for x ∈ X. We can
moreover suppose that such a path visits all edges of the X-FSCC.

G Claim III.15.1. No n(v)-FSCC contains a v-closed subset. In particular, we can
leave any n(v)-FSCC by reading v∗, and a n(v)-FSCC does not contain a state q with
a v-self loop.

Proof. Suppose on the contrary that a subgraph S of A is a n(v)-FSCC and it contains
a subset S ′ v-closed. Let S ′ = {q1, . . . , qk}, and take k words wi ∈ n(v)+ such that
wi serves to label a path of the form qi

v−→ wi
qi+1, while visiting all the edges of

S (we let qk+1 = q1). Then, (vw1 . . . vwk)ω ∈ Lv, so a run visiting all the edges in
{edges of S} ∪ {q′ v−→| q′ ∈ S ′} is accepting. However, we can build in a similar way a
run that visits the same set of edges and labelled with (vvw′1 . . . vvw′k)ω, where w′i is a
word in n(v)+ containing all factors xx for x ∈ n(v). By Lemma III.13, such a word
must be rejected, a contradiction. C

We obtain that the 3 states of A – that we name q1, q2 and q3 – do not form a n(v)-
FSCC for any v ∈ V . Therefore, for no v ∈ V the automaton A contains a full cycle
labelled with v (q1

v−→ q2
v−→ q3

v−→ q1). Also, it cannot be the case that, for some v ∈ V ,
the three states have a self-loop q v−→ q, as some n(v)-FSCC exists (Lemma I.4). We will
show that, for each v ∈ V , one (and only one) of the following cases occurs:

(A) There are two different states q1, q2 such that q1
v−→ q2

v−→ q1 and the third state
admits a transition q3

v−→ q1.
(B) There is a unique state q1 admitting a v-self loop q1

v−→ q1, and there are not both
transitions q2

v−→ q3 and q3
v−→ q2.

(C) There are two states q1, q2 admitting a v-self loop qi v−→ qi, and the third state admits
a transition q3

v−→ q1.

We show the three possible configurations in Figure 21.
This will allow us to define a colouring c : V → Q associating a vertex v the state that

corresponds to q1, when numbering the states from the point of view of v, according to
the case applying to this vertex.

G Claim III.15.2. If there are two different states q1, q2 such that q1
v−→ q2, q2

v−→ q1,
then {q1, q2} is a n(u)-FSCC for every u such that (v, u) ∈ E.

Proof. Let u ∈ V be a neighbour of v and let q3 be the third state of A. Suppose by
contradiction that {q1, q2} is not a n(u)-FSCC. (Warning: the configurations consid-
ered in this proof do not correspond any more to that of Figure 21!) First, the three
states of A do not form a n(u)-FSCCs by the previous claim, and, since the two states
are connected by v-transitions, neither q1 nor q2 can be contained in one (as {q1, q2}
or all of Q would also form a n(u)-FSCCs). Therefore, as some n(u)-FSCC exists
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n(u)-FSSC

q1 q2

q3

v

v

v
u u

Case (A)

q1 q2

q3

v

v

v

Case (B)

q1 q2

q3

v v

v

Case (C)

F Figure 21. The three possible configurations of A. In bold, the transitions that are
established by the definition of each case. For Case (A), we will show that for every
neighbour u of v, the states {q1, q2} form a n(u)-FSCC and there are transitions q1

u−→ q3
and q2

u−→ q3 (dashed edges). In Case (B), the dashed-and-dotted lines represent transitions
that are compatible with this case, but they are not the only possibility. In all the cases,
the state q1 (in blue) is chosen to define c(v) = q1 (note that the numbering of states
depends on v).

(Lemma I.4), {q3} is the only one. In particular, q3 has a v-self loop q3
v−→ q3. Also, as

{q3} it cannot be u-closed, there is a u-transition leaving q3, that we suppose w.l.o.g
that goes to q1: q3

u−→ q1. We note that either q1 or q2 contains a u-self-loop. Indeed,
the automaton contains a n(v)-FSCC that cannot contain q3 (it has a v-self loop) nor
be {q1, q2} (it is v-closed). We treat the case q2

u−→ q2, the other case is analogous.
Let w ∈ n(u)∗ such that q2

w
q3 (this word exists as {q1, q2} is not n(u)-closed).

We let w′ ∈ n(u)∗ containing all factors xx for x ∈ n(u). Then, we compare the runs:

q3
u−→ q1

v−→ q2
u−→ q2

w
q3

w′
q3, q3

u−→ q1
v−→ q2

uu
q2

w
q3

w′
q3.

The first of these cycles is accepting (as (uvuww′)ω ∈ Lu) while the second is rejecting
(by Lemma III.13 applied to u), but they visit the same set of edges, a contradiction.

C

G Claim III.15.3. Each vertex v ∈ V is in one and only one of the cases (A), (B)
or (C).

Proof. By definition, the three cases are pairwise incompatible. We have already
shown that no v-cycle visits the three states and that there is at least one state
without a v-self loop, so, to see that a vertex v is in one of the cases, it suffices to see
that, if there are two states such that q1

v−→ q2
v−→ q1, then we are in Case (A), that

is, q3 does not admit a v-self loop. By Claim III.15.1, {q1, q2} is a n(u)-FSCC. The
automaton contains some n(v)-FSCC, that cannot be contained in {q1, q2} (as we can
leave this subset reading u∗ by Claim III.15.1). Therefore, q3 is contained in such a
n(v)-FSCC, so it cannot admit a v-self loop. C

G Claim III.15.4. If v is in Case (A), then for every u such that (v, u) ∈ E, q1
u−→ q3

and q2
u−→ q3.

Proof. First, we recall that there is a transition q3
v−→ {q1, q2} (Claim III.15.3) and

that {q1, q2} is a n(u)-FSCC (Claim III.15.2). Suppose on the contrary that there was
a transition q1

u−→ q2 (the other case is symmetric). Then, since {q1, q2} is not u-closed,
there is the transition q2

u−→ q3. The situation is depicted in Figure 22.



2. Minimisation of generalised Büchi and Muller automata 149

n(u)-FSSC

q1 q2

q3

v

v

w

v v

u

u

F Figure 22. Situation in the proof of Claim III.15.4. The dashed transitions q3
v−→ q1,

q3
v−→ q2 mean that one of these two transitions exists. The word w ∈ n(u)∗ is a word that

contains all factors xx for x ∈ n(u).

Let w ∈ n(u)∗ producing all factors xx for x ∈ n(u) and labelling a cycle q1
w
q1

(such word exists because q1 is contained in a n(u)-FSCC). We compare the following
cycles:

q1
w
q1

uvv
q2

u−→ q3
v+

q1, q1
w
q1

uvvv
q1

uu
q3

v+
q1.

The first cycle is accepting, while the second is rejecting, but they visit the same set
of edges, a contradiction. C

As advanced earlier, we define a colouring c : V → Q associating a vertex v to the
state that corresponds to q1 in the (only) case applying to v. We show that this is a
correct colouring. Let u ∈ V such that (v, u) ∈ E. We enumerate the states of A from
the point of view of v in the separation of cases above, so Q = {q1, q2, q3} and c(v) = q1.

If v is in Case (A), then c(u) = q3 6= q1: By Claim III.15.4, there are transitions q1
u−→

q3 and q2
u−→ q3. It is not possible for u to be in Case (C). If u is in Case (B), the

only state that can admit a u-self loop is q3, so c(u) = q3. Finally, suppose that u
is in Case (A). As q3

v−→ q1, we can apply Claim III.15.4 from the perspective of u,
obtaining that the configuration q1

u−→ q3
u−→ q1 is not possible. Therefore, the only

remaining possibility is q2
u−→ q3

u−→ q2 and q1
u−→ q3, so c(u) = q3.

We suppose from now on that neither v nor u is in Case (A). In particular, there are
self-loops c(v) v−→ c(v) and c(u) u−→ c(u).

If v is in Case (B) and u is not in Case (A), then c(v) 6= c(u): We show that q1 does
not admit a u-self loop, so c(u) 6= q1. As v is in Case (B), q1 must belong to a n(u)-
FSCC. In particular, it does not admit a u-self loop (Claim III.15.1).

If v is in Case (C), c(v) 6= c(u): We show that q1 does not admit a u-self loop, so c(u) 6=
q1. If v is in Case (C), the state q3 must constitute the unique n(v)-FSCC of A
(since one such FSCC must exists, and q1 and q2 cannot belong to it as they have
v-self loops). Therefore, we can go from q1 to q3 reading a word w ∈ n(v)∗. Let
w′ ∈ n(v)∗ producing all the factors xx, for x ∈ n(v). If we had q1

u−→ q1, we could
build the following two cycles:

q1
w
q3

w′
q3

v−→ q1
u−→ q1

v−→ q1, q1
w
q3

w′
q3

v−→ q1
u−→ q1

vv−→ q1.

The first has to be accepting and the second rejecting, but they visit the same set
of edges, a contradiction.
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This covers all the possible cases. J

Lemmas III.11, III.12 and III.15 justify that the problem 3-colorability reduces in
polynomial time to the problem Minimisation of generalised coBüchi automata.

2.3 Discussion: The case of history-deterministic generalised Büchi au-
tomata

As mentioned in the introduction, Abu Radi and Kupferman gave a procedure to
minimise history-deterministic coBüchi automata in polynomial time [AK22]. Due to the
semantics of non-determinism, this result does not dualise, and the problem of the minimi-
sation of HD Büchi automata is still open (in fact, we conjecture that it is NP-complete,
see Conjecture VII.2). As we have been able to establish the complexity of the min-
imisation of deterministic generalised (co)Büchi automata, the natural next question is
what is the complexity of this problem for history-deterministic automata. We conjecture
that the algorithm of Abu Radi and Kupferman can be extended to generalised coBüchi
automata, whereas the minimisation of generalised Büchi automata is NP-complete.2

Conjecture III.3 (Tractability of minimisation of HD generalised coBüchi automata).
Given a history-deterministic generalised coBüchi automaton A, we can find in poly-

nomial time a minimal history-deterministic generalised coBüchi automaton recognis-
ing L(A).

Conjecture III.4 (Hardness of minimisation of HD generalised Büchi automata).
The problem of minimising history-deterministic generalised Büchi automata is

NP-complete.

In fact, we believe that the reduction shown in Section III.2.2 can be applied to HD
generalised Büchi automata by using the complement language LG. We show now that
the same reduction cannot give the NP-harness of the minimisation of HD coBüchi au-
tomata, by giving an example of a small such automaton.

Let Σ be a finite alphabet, and define the language L∃noRep as:

L∃noRep = {w ∈ Σω | for some a ∈ Σ, w eventually does not contain the factor aa}.

We remark that L∃noRep corresponds to the language LG for a clique G of size |Σ|.
Conjecture III.2 states that a deterministic generalised coBüchi automaton for L∃noRep
has size at least |Σ|, and we have proved that result for |Σ| = 3 (Lemma III.15).

2Just before the submission of this document, we obtained together with Olivier Idir, Denis Ku-
perberg, Corto Mascle and Aditya Prakash that both Conjectures III.3 and III.4 hold. For reasons of
time and extension of the thesis, we do not include these proofs here and still refer to the statements as
conjectures.
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Proposition III.16.

For all Σ, there exists a history-deterministic generalised coBüchi automaton with two
states recognising L∃noRep.

Proof. We describe one such automaton. Let Σ = {a1, . . . , an} be an enumeration of the
letters in Σ. We define Ac = (Q,Σ, q0,Γ,∆, genCoBuchiΓ(B)) as follows:

] Q = {q0, q1}.
] Γ = {b1, . . . , bn} ∪ {γ}.

] For all ai ∈ Σ, q0
ai:bi−−→ q0 and q0

ai:γ−−→ q1.

] For all a ∈ Σ, q1
ai:bi−−→ q0.

] B = {Bi | 1 ≤ i ≤ n}, where Bi = {bi}. That is, a run is accepting if it avoids one
of the colours bi. Colour γ is a safe colour : it is not included in any Bi.

That is, when we are in the state q0 and read letter ai, we can choose to stay in q0 and
produce output bi “as a payment”, or jump to stay q1 producing the safe colour γ.

L(A) ⊆ L∃noRep: Each time that a factor aiai is read, the colour bi is produced as output
in A. Therefore, if a word w is accepted by A by avoiding the set Bi, the word w
does not contain the factor aiai infinitely often.

L∃noRep ⊆ L(A) and history-determinism: We describe a sound resolver for A accept-
ing words in L∃noRep. The resolver will try to build a run avoiding colour bi, switching
of bi in a round robin fashion. The strategy of the resolver consists in n states of
memory. When it is in the memory state i, it will choose to stay in q0 paying bj
when reading aj 6= ai, and it will choose to go to q1 when reading ai. Whenever it
reads letter ai in the state q1 (that is, we have just read the factor aiai, the memory
state updates to i+ 1 (or reinitialises to 1 if i = n). If w ∈ L∃noRep, this resolver will
build an accepting run over w whenever we arrive to a memory state i such that
aiai does no longer appear in w. J

F Remark III.17. We note that, as mentioned in Remark III.1, the previous result does
not dualise to history-deterministic generalised Büchi automata. The reader can verify
that the non-deterministic automaton obtained by interpreting the acceptance condition of
the given automaton as a generalised Büchi one does not recognise the complement of the
language L∃noRep.

3 Minimisation of parity automata recognising Muller languages
in polynomial time

In this section, we provide a polynomial-time algorithm for the minimisation of DPA
recognising Muller languages (with acceptance condition over transitions).
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Theorem III.4.
Given a DPA A recognising a Muller language L = MullerΣ(F), we can find a minimal

deterministic (resp. history-deterministic) parity automaton recognising L in polynomial
time in the size of the representation of A.

By Proposition II.34 and Theorem II.2, we know that a minimal (history-)deterministic
parity automaton recognising a Muller language L = MullerΣ(F) can be constructed in
linear time from the Zielonka tree ZF . We will therefore provide a polynomial-time
algorithm computing this Zielonka tree from a DPA recognising L.

Proposition III.18 (Construction of the Zielonka tree from a DPA).
Given a DPA A recognising a Muller language MullerΣ(F), we can build the Zielonka

tree of F in polynomial time in the size of the representation of A.

The algorithm we give now is similar to the algorithm computing the alternating cycle
decomposition presented in Section II.5.2, which in turn generalises the algorithm of Car-
ton and Maceiras [CM99]. Here, the input is a parity automaton recognising MullerΣ(F),
so A has an underlying graph whose transitions are labelled with letters in Σ (as it was
the case in Section II.5.2). The main difference is that, here, we do not directly have the
information of which subsets of Σ belong to F , so we need to inspect the parity acceptance
condition of A to determine the subsets in F .

Description of the algorithm
Let A = (Q,Σ, q0,Γ,∆, parity) be a DPA recognising L = MullerΣ(F). We outline a

recursive algorithm building ZF = (N,�, ν) in a top-down fashion; it starts from the root
of the tree (which is always labelled Σ), and each time that some node is added to N ,
we compute its children. If we have built ZF up to a node n, we compute the children of
n by using the procedure AlternatingSets described in Algorithm 3, which we disclose
next.

We suppose without loss of generality that n is round, that is, ν(n) ∈ F . First, we
take the restriction of A to transitions labelled with letters in ν(n) and pick a final SCC
on it. Such final SCC induces a subautomaton A′ of A recognising Mullerν(n)(F|ν(n)) (see
also Lemma II.38). Our objective is to find the maximal subautomata of A′ using as
input letters sets X ⊆ ν(n) such that X /∈ F . We will keep all such subsets X in a list
altSets. The labels of the children of n will then correspond to the maximal sets appearing
in this list, which are returned by the algorithm AlternatingSets (Line 13). In order
to find them, we remove the transitions using the minimal priority in A′ (that is even,
since ν(n) ∈ F) and compute a decomposition in strongly connected components of the
obtained graph. Let S be a component of this decomposition and let ΣS ⊆ ν(n) be the
input letters appearing on it. Then, ΣS /∈ F if and only if the minimal priority in S is
odd (see Lemma III.19 below). In this case, we add ΣS to altSets. On the contrary, we
remove the minimal (even) priority from S and we start again finding a decomposition in
SCCs of the obtained graph.

We include the pseudocode for the procedure AlternatingSets in Algorithm 3. We
use the following notations:

] Letters(S) is the set of input letters appearing in S,
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] MinColour(S) is the minimal priority appearing in S (which determines whether
Letters(S) ∈ F , if S is strongly connected),

] SCC-Decomposition(A) outputs a list of the strongly connected components of A.
If A is empty, it outputs an empty list. (Introduced in Section II.5.2.)

] MaxInclusion(lst) returns the list of the maximal subsets in lst. (Introduced in
Section II.5.2.)

Algorithm 3 AlternatingSets(A): Computing the children of a node of the Zielonka
tree

Input: A strongly connected automaton A over Σ such that L(A) = Muller(F)
Output: The maximal subsets Σ1, . . . ,Σk ⊆ Σ such that Σi ∈ F ⇐⇒ Σ /∈ F .

1: d← MinColour(A)
2: A>d ← restriction of A to transitions ∆>d = {q a:x−→ q′ ∈ ∆ | x > d}
3: 〈S1, . . . ,Sr〉 ← SCC-Decomposition(A>d)
4: altSets← {}
5: for i = 1, . . . , r do
6: if MinColour(Si) is odd if and only if d is even then
7: altSets← altSets ∪ {Letters(Si)}
8: else
9: altSets← altSets ∪ AlternatingSets(Si)

10: end if
11: end for
12: maxAltSets← MaxInclusion(altSets)
13: return maxAltSets

Correctness of the algorithm
Let n be a node of the Zielonka tree of F labelled with ν(n), and let An be an

accessible subautomaton of A over ν(n) recognising Mullerν(n)(F|ν(n)). We prove that
AlternatingSets(An) returns a list of sets corresponding to the labels of the children of
n in ZF . We suppose without loss of generality that ν(n) ∈ F and therefore the minimal
priority d in An is even.

First, we observe that if X ⊆ Σ is added to altSets during the execution of the
procedure AlternatingSets, then X is the set of input letters appearing in a cycle whose
minimal priority is odd. Next lemma implies that in this case, X /∈ F . In particular, no
subset is added if n is a leaf of ZF .
F Lemma III.19. Let A be a DPA such that L(A) = MullerΣ(F). Let ` ∈ Cycles(A) be
an accessible cycle of A. Let Σ` ⊆ Σ be the input letters appearing on `, and let d` be the
minimal priority on `. Then, Σ` ∈ F if and only if d` is even.

Proof. Since ` is an accessible cycle, there is a word w ∈ Σω such that Inf(w) = Σ` and
verifying that the edges visited infinitely infinitely often by the (only) run over w in A are
the edges of `. Therefore w ∈ L(A) if and only if d` is even, and since L(A) is a Muller
language, w ∈ L(A) if and only if Inf(w) = Σ` ∈ F . J

As the final output of the algorithm consists solely on the maximal subsets in altSets,
and no accepting set is added to this list, it suffices to show that each maximal rejecting
subset Σmax ⊆ ν(n) is added to altSets at some point.
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Let Σmax ⊆ ν(n) be one of the maximal rejecting subsets of ν(n). Let S be a final
SCC of the restriction of An to transitions labelled with letters in Σmax (by the previous
lemma, MinColour(S) is odd). We show that Σmax will eventually be considered by the
recursive procedure AlternatingSets, and therefore Σmax will be added to altSets We
use of the following remark:

G Claim III.19.1. If S ′ is a strongly connected subautomaton of An such that S (
S ′ ⊆ An, then the minimal priority in S ′ is even.

Proof. Let Σ′ be the input letters appearing in S ′. As S ( S ′ and no transition
labelled with a letter in Σmax leaves S, we must have Σmax ( Σ′. The claim follows
from Lemma III.19. C

Therefore, either S is one of the SCCs of A>d (in this case, Σmax is added to altSets
in Line 7), or it is contained in one SCC of A>d whose minimal priority is even and we
can conclude by induction.

Complexity analysis
We will show that the proposed algorithm works in O(|Q|3|Σ|2|Γ|), where Q, Σ and Γ

are the states, set of input letters and set of output colours of the automaton, respectively.
We remark that, since A is deterministic, |∆| ≤ |Q||Σ|.

First, we study the complexity of the procedure AlternatingSets(A). At each recur-
sive call, at least one edge is removed from ∆, and a decomposition in strongly connected
components of the automaton is performed, which can be done in O(|Q||Σ|) [Tar72].
Therefore, the children of a node of the Zielonka tree can be computed in O(|Q|2|Σ|2).

We perform this operation for each node of the Zielonka tree. By the optimality of
the ZT-parity-automaton (Theorems II.1 and II.2), we know that |Q| ≥ |Leaves(ZF)|
and that the height of ZF is at most |Γ|. Therefore, |ZF | ≤ |Q||Γ|, and the procedure
AlternatingSets is called at most |Q||Γ| times. We conclude that the proposed algorithm
works in O(|Q|3|Σ|2|Γ|).

Minimisation of history-deterministic parity and Rabin automata
In Chapter II, Section II.3, we have shown that we can directly obtain from the

Zielonka tree minimal history-deterministic parity and Rabin automata recognising a
Muller language. However, this does not suffice to show that we can minimise HD Rabin
and parity automata recognising Muller languages in polynomial time, as this approach
requires to be able to construct the Zielonka tree of F from a HD automaton, something
that we do not currently know how to do.

Conjecture III.5.

History-deterministic parity and Rabin automata recognising Muller languages can be
minimised in polynomial time.

Question III.6.

How can we build the Zielonka tree of a family F ⊆ 2Σ
+ from an HD Rabin or parity

automaton recognising MullerΣ(F)?
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4 Exponential succinctness of history-deterministic Rabin au-
tomata for Muller languages

In the previous chapter, we saw that minimal history-deterministic parity automata
recognising Muller languages have the same size as minimal deterministic ones (Corol-
lary II.36). On the contrary, for Rabin automata, complexity considerations already
indicate that HD automata should be smaller: building a minimal deterministic Rabin
automaton from a given Zielonka tree is NP-hard (Theorem III.1), while we can build a
minimal history-deterministic one in polynomial time (Theorem II.4). A natural question
is how large can be the gap on the size. In this section, we show that HD Rabin automata
recognising Muller languages can be exponentially smaller than deterministic ones.

Theorem III.5.
There exists a constant α > 1, a sequence of natural numbers n1 < n2 < n3 . . . and a

sequence of Muller languages Li over the alphabets Σni
= {1, . . . , ni} such that:

] a minimal HD Rabin automaton for Li has size bni/2c,
] a minimal deterministic Rabin automaton for Li has size at least αni .

A lower bound for such a constant is α = 1.116.

We devote the rest of this Section to proving Theorem III.5. In brief, the Muller
languages in question require half the colours to be seen infinitely often. The construction
of the small HD Rabin automaton follows from constructing the Zielonka tree of the
languages. For the lower bound on the deterministic Rabin automaton, we reduce the
problem to finding a lower bound on the chromatic number of a certain graph.

The collection of Muller languages
We define the collection of Muller languages Li that we use to obtain Theorem III.5.
Let n ∈ N and Σn = {1, . . . , n} be an alphabet of n letters. We let Ln be the Muller

language associated to the following family:

Fn = {C ⊆ Σn : |C| = bn/2c}.

The Zielonka tree of Fn is depicted in Figure 23 (for n even).

1, 2, . . . , n

1, 2, . . . , n
2 1, 3, . . . , , n

2 + 1 . . . n
2 , . . . , n

1, . . . , n
2 − 1 . . . 2, . . . , n

2 1, 3, . . . , n
2

. . . 3, . . . , n
2 + 1 n

2 , . . . , n− 1 . . . n
2 + 1, . . . , n

F Figure 23. Zielonka tree ZFn , for Fn = {C ⊆ Σn : |C| = bn/2c}.
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Upper bounds for history-deterministic Rabin automata
The upper bound for HD Rabin automaton recognising Ln = Muller(Fn) follows from

the construction of the ZT-HD-Rabin-automaton from Section II.3.3. We recall that
the automaton ARabin

ZFn
is a (minimal) HD Rabin automaton recognising Muller(Fn) hav-

ing rbw(ZFn) nodes, where rbw(ZFn) is the round-branching width of its Zielonka tree
(Theorem II.4).

We show that rbw(ZFF ) = bn/2c. Since the round nodes of the Zielonka tree of Fn
are pairwise incomparable for the ancestor relation, the round-branching width of ZFn

is the maximum of children of a round node. A round node is labelled with a subset
C ⊆ Σn such that |C| = bn/2c, and it has a child for each subset X ⊆ C such that
|X| = bn/2c − 1. There are exactly bn/2c such subsets.

Lower bounds for deterministic Rabin automata
Using ideas similar to those introduced in Section III.1, we reduce the problem of

searching lower bounds for deterministic Rabin automata to finding lower bounds on
the chromatic number of certain graphs. By making use of known results on graph
theory [MR14], we finally show that the chromatic number of these graphs is sufficiently
large. We refer to Appendix A for definition about the chromatic number of undirected
graphs.

The graph of rejecting subsets of a Muller condition. Let F ⊆ 2Σ
+ be a family

of subsets of letters. We define the graph of rejecting subsets associated to F as the simple
undirected graph GF = (VF , EF) defined as follows:3

] VF = 2Σ
+.

] There is an edge between two subsets X1, X2 ∈ VF if and only if X1, X2 /∈ F and
X1 ∪X2 ∈ F .

That is, we connect two vertices if they correspond to rejecting sets but taking their union
we obtain an accepting set.

Lower bounds of Rabin automata given by the chromatic number. The
following result allows us to reduce the search for lower bounds for Rabin automata to
lower bounds on the chromatic number of GF , written χ(GF).

Lemma III.20 (Lower bounds for Rabin automata).
Let A be a deterministic Rabin automaton recognising a Muller language MullerΣ(F).

It is satisfied:
χ(GF) ≤ |A|.

Proof. Let Q be the set of states of A. We define a colouring c : VF → Q of GF using Q
as colours. For each subset X ⊆ Σ, we let SX be an accessible X-FSCC (which exists by
Lemma I.4, as we can suppose that A is complete by prefix-independence of Muller(F))
and we pick an arbitrary state qX ∈ SX . We define c(X) = qX . We prove that this is
a correct colouring. Suppose that X1 and X2 are two vertices in GF connected by some
edge, that is, X1, X2 /∈ F and X1 ∪ X2 ∈ F . If qX1 = qX2 , the edges of S1 and S2 form

3As in other places of this thesis, we do not include the dependence on the alphabet Σ in the notation.
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two rejecting cycles with an state in common such that their union is an accepting cycle,
contradicting Proposition II.109. J

The graph GFn of our collection of Muller languages. We describe now what
are the graphs of rejecting subsets associated to Fn for the families Fn considered above,
and show that the chromatic number χ(GFn) is exponential in n.

Applying the definition of graph of rejecting subsets in this case gives:

] VFn = 2Σ
+.

] There is an edge between two subsetsX1, X2 ∈ VFn if and only if |X1| < bn/2c, |X2| <
bn/2c and |X1 ∪X2| = bn/2c.

Proposition III.21.

There exists a constant α > 1 and a sequence of natural numbers n1 < n2 < n3 . . .
such that αni ≤ χ(GFni

).

In order to prove Proposition III.21, we introduce some further graph-theoretic notions.
Let G = (V,E) be an undirected graph. An independent set of G is a set S ⊆ V such
that (v, v′) /∈ E for every pair of vertices v, v′ ∈ S.
F Lemma III.22. Let V ′ ⊆ V , and let G′ = (V ′, E|V ′×V ′) be the subgraph of G induced
by V ′. Then, χ(V ′) ≤ χ(V ).
F Lemma III.23. Let m be an upper bound on the size of the independent sets in G.
Then

|V |
m
≤ χ(G).

Proof. Let c : V → Λ be a colouring of G with |Λ| = χ(G). Then, by definition of a
colouring, for each x ∈ Λ, c−1(x) is an independent set in G, so |c−1(x)| ≤ m. Also,
V = ⊔

x∈Λ c
−1(x), so

|V | =
∑
x∈Λ
|c−1(x)| ≤ χ(G) ·m. J

We will find a subgraph of GFn for which we can provide an upper bound on the size
of its independent sets. The upper bound is provided by the following theorem (adapted
from [MR14, Theorem 15]).

Proposition III.24 ([MR14, Theorem 15]).
Let n > k > 2t such that k − t is a prime number. Suppose that B is a family of

subsets of size k of Σn such that |A ∩B| 6= t for any pair of subsets A,B ∈ B. Then,

|B| ≤
(

n

k − t− 1

)
.

We conclude this section with the proof of Proposition III.21.

Proof of Proposition III.21. Let p be a prime number and let n = 5p. We will study
the subgraph of GFn consisting in the subsets of size exactly k = b3n/10c. We denote
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this subgraph by Hn,k. Two subsets A,B ⊆ Σn of size k satisfy that |A ∪ B| = bn/2c if
and only if |A ∩ B| = bn/10c. We set t = bn/10c. We get k − t = p, so we can apply
Theorem III.24 and we obtain that any independent set in Hn,k has size at most

(
n

1
5n−1

)
.

By Lemma III.23, χ(Hn,k) ≥
(

n
b 3

10nc

)
/
(

n
1
5n−1

)
. By Lemma III.22, we know that this lower

bound also holds for GFn . Using Stirling’s approximation we obtain that

χ(GFn) ≥
(

n

b 3
10nc

)
/

(
n

1
5n− 1

)
= Ω

((
(1/5)1/5(4/5)4/5

(3/10)3/10(7/10)7/10

)n)
= Ω(1.116n).

To conclude, we take an enumeration of prime numbers, p1 < p2 < . . . and we set
ni = 5pi. J

F Remark III.25 (Choices of k and t). The choices of k = b3n/10c and t = bn/10c in
the previous proof might appear quite enigmatic. We try to explain them now.

We want to find a number k such that there is not a big family of sets {Ai ⊆ Σn}
of size |Ai| = k such that |Ai ∪ Aj| 6= n/2, and express this fact in terms of |Ai ∩ Aj|.
Since |A ∪ B| = 2k − |A ∩ B|, if we define t = 2k − n/2, then |A ∪ B| 6= n/2 if and
only if |A ∩ B| 6= t, so the value of t will be completely determined by the choice of
k. Our objective is to minimise the upper bound given in Theorem III.24 (what we do by
minimising k−t) while making sure that the hypothesis k > 2t is verified. In the boundary
of this condition (k = 2t) we obtain k = n/3, so we express our choices as k = (1/3− ε)n
and t = (1/6−2ε)n. Moreover, k− t = (1/6+ε)n has to be a prime number (for infinitely
many n). If 1/6 + ε = 1/q for some q ∈ N, we would succeed by considering n of the form
q · p, for p a prime number. We will therefore take ε = 6−q

6q , for some q, 1 ≤ q ≤ 5. With
the optimal choice, q = 5, we obtain k = 3n/10, t = n/10 and k − t = n/5. Since k and
t will not be integers for n of the form 5p (p a prime number) we are forced to take the
integer part in the proof of Proposition III.21.
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Those who cannot remember the past are condemned to repeat it.
George Santayana

Introduction
Strategy complexity. Several parameters are relevant for solving games: their

size, of course, but also their winning condition and the complexity of winning strategies.
A measure of this complexity is the memory used by a strategy. A strategy uses a
finite amount of memory if the information that we need to retain from the past can be
summarised by a finite state machine that processes the sequence of moves played in the
game. In this case, the amount of memory used by the strategy is the number of states

159
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of this machine. Given an objective W , a fundamental question is what is the minimal
quantity m such that if Eve wins a W -game, she has a winning strategy using a memory
of size m (we call m the memory requirements of W ). In addition to its size, a memory
also has some structure, which further elucidates the game dynamics. Understanding
both the size and the structure of memories for W is a crucial step to design algorithms
for solving W -games.

Objective.

Give a structural description of the optimal memory in W -games.

Muller languages. In this chapter, we focus on the study of memories for games
using Muller languages as winning condition. This class of languages is of special rele-
vance: from a theoretical point of view, Muller languages can be considered one of the
“building blocks” of ω-regular languages; from a practical one, the games obtained as an
intermediate step from the state-of-the-art LTL-synthesis tools are Muller games [DL+22,
LMS20]. Memory requirements for Muller languages have been studied in depth by Dziem-
bowski, Jurdziński and Walukiewicz [DJW97]. They provide a “formula” for computing
memory requirements of a given Muller objective, based on the Zielonka tree [Zie98] (see
Section II.3.1 for its definition). Our results extend and complement this characterisation.

Different models of memory. In the study of memory for games, some choices can
be made in the model used, giving rise to a few different notions. Most prominently, one
may restrict to chromatic memories, meaning those that record only the colours that have
appeared so far and not the exact sequence of edges, and one may include uncoloured edges
(ε-edges) in the game. Chromatic memories were first introduced by Kopczyński [Kop06,
Kop08], where he already pointed out a notable advantage: since a chromatic memory
only depends on the set of colours, a same structure can be used in multiple games. He
left open the question of whether the general and the chromatic memory requirements
always coincide. It was also Kopczyński who remarked that the use of ε-edges might affect
the memory requirements of winning conditions [Kop08], but he left open the question of
whether this was actually the case.1

Contributions
1. Separation of notions of memory. Our first contribution is to provide examples

of Muller languages that separate the different notions of memory considered in the
literature. We show that the chromatic memory requirements can be exponentially
larger than general ones (Proposition IV.5) and that the presence of uncoloured
edges in games do affect the memory requirements of conditions (Proposition IV.7).

2. Correspondence: Chromatic memory ↔ Deterministic Rabin automata.
We show that chromatic memory structures for a Muller language W exactly cor-
respond to deterministic transition-based Rabin automata recognising this language
(Theorem IV.1).

3. NP-completeness of finding the chromatic memory requirements. As a
consequence of the previous point, we obtain that computing the least chromatic

1In [Kop08, Section 2.5], this question is stated for half-positionality, question that is still open (see
Conjecture IV.1).



0. Introduction 161

memory necessary for playing optimally in all W -games is NP-complete, even if
the Muller language W is represented by its Zielonka tree (Theorem IV.2). We
remark that both the membership in NP and the hardness are non-trivial without
the aforementioned characterisation.

4. Correspondence: General memory ↔ Good-for-games Rabin automata.2
We show that the general memory requirements of a Muller language W coincide
with the size of a minimal GFG Rabin automaton recognising W (Theorem IV.3).
This description shows that GFG automata play a key, and, up till now, unexplored
role in understanding the complexity of Muller languages and that this role is – in
some respect – even more important than that of the more classical deterministic
automata.

Overall, our contributions supplement our understanding of Muller languages and pro-
vide a bridge between the theory of automata and the study of strategy complexity that
allows us to lift results from one area to the other. This is exactly what we have done
for obtaining the NP-completeness of determining the chromatic memory requirements of
a Muller language and for showing the exponential gap between deterministic and GFG
Rabin automata (resp. between general and chromatic memory requirements). Moreover,
our results highlight the – so far unexplored – fundamental role of GFG automata in the
equation. Indeed, up to now GFG automata had mainly been studied for their succinct-
ness, expressivity or algorithmic properties. Here, we shed light on a novel dimension
of this automata class, by showing that they capture the exact memory requirements of
Muller languages.

Related work
Besides the already mentioned works [Kop06, Kop08, DJW97, Zie98], many other

authors have shown interest in the memory requirements of different families of objectives.
The Zielonka tree was used by Horn to characterise the memory requirements of Muller
conditions when randomised strategies are allowed [Hor09]. Colcombet, Fijalkow and
Horn characterised the general memory requirements of open objectives [CFH14].

In the context of his PhD thesis [Van23], Vandenhove and co-authors have conducted a
thorough research into the potential and limits of chromatic memory. They have charac-
terised objectives for which both players can play optimally using finite chromatic memory
both over finite games [Bou+20] and infinite games [BRV23]. They have also characterised
the chromatic memory requirements of open and closed objectives, showing that for these
classes of objectives, it is also NP-complete to determine this parameter [Bou+23].

The differences between chromatic and general memory over finite games have also
been studied by Kozachinskiy. He provides a strong separation result [Koz22b]: there is a
(non-ω-regular) objective W whose general memory requirements over finite games is 2,
while its chromatic memory requirements are infinite. In a related work, he proves that,
if in a game of size n Eve can win using a general memory structure of size m, then she
can win with a chromatic memory of size (m+1)n, and this bound is tight [Koz22d]. This
improves a result from Le Roux [Rou20].

Very recently, Ohlmann and the author of this thesis have characterised both the

2We recall that an automaton is good-for-games if and only if it is history-deterministic (Proposi-
tion II.5). In this chapter, we employ the term good-for-games as the use we make of these automata is
closer to this definition.
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general3 and the chromatic memory requirements of all objectives by means of mono-
tone universal graphs [CO23]. This characterisation extends Ohlmann’s work on half-
positionality [Ohl23a].

For related work concerning positionality, see the introduction of Chapter V.

Prerequisites and links with other chapters
The main notions used in the statements of the contributions of this chapter – which

refer mostly to memory requirements – are defined in the first section of the chapter. The
other central notions used are those of Rabin automata and good-for-gameness (we recall
that this latter notion is equivalent to history-determinism).

However, the proofs of this chapter heavily rely on previous results, as our contribu-
tions can be seen as corollaries of the work carried out previously (which we see as part of
the beauty and interest of the chapter). To determine the general memory requirements
of examples, we intensively use the Zielonka tree and its round-branching width (Defini-
tions II.24 and II.41). Theorem IV.1 is a consequence of Proposition II.109 (typeness of
Rabin automata), Theorem IV.2 relies in the NP-completeness of minimisation of Rabin
automata (Theorem III.1), and Theorem IV.3 is a direct application of the construction
presented in Section II.3.3 (minimal HD Rabin automata for Muller languages).

Collaborators and related publications
Section IV.3 is based in joint work with Thomas Colcombet and Karoliina Lehtinen.

I thank Igor Walukiewicz and Nathanaël Fijalkow for interesting discussions in the sub-
ject and bringing up the question of the exponential gap between chromatic and general
memory. This chapter includes material from the conference papers [Cas22] and [CCL22].

1 Different models of memory

In this section we introduce and compare various notions of memory requirements for
objectives. The differences in these notions come from two factors:

] The family of games under consideration.
] Restrictions on the memory structures.

In Table 1, we summarise the notations used to represent the different types of memory
requirements of objectives, based on these two factors.

1.1 Different types of game graphs

We introduce the main types of game graphs that will be studied. We notice that we
do not mention the cardinality or finiteness of these games (although, in general, this is an
important parameter to take into account). In this chapter we focus on Muller languages,
whose memory requirements are the same over finite and infinite games [DJW97]. For
this reason, we disregard this difference in the following and allow both finite and infinite
game graphs.

3The exact result concerning general memory is a bit more subtle, as we characterise the ε-memory,
as introduced in Section IV.1.
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Game

Memory General Chromatic Arena-
Independent

Arbitrary memgen(W ) memchr(W ) memArInd(W )

ε-free memε-free
gen (W ) memε-free

chr (W ) memε-free
ArInd(W )

Vertex-coloured memvrt
gen(W ) memvrt

chr(W ) memvrt
ArInd(W )

F Table 1. Different types of memory requirements arising from the combinations of a
type of game graph and a type of memory structure.

Arbitrary games. By default, games are as introduced in the general preliminaries.
That is, they are represented as a tuple G = (G, VEve, VAdam,Γ, col : E → Γ ∪ {ε},W ). In
particular:

] The colours of the winning condition appear on the edges of the game.
] Uncoloured edges are allowed, as long as no infinite path in G is composed exclusively
of them.

] The underlying graph might be finite or infinite.

We sometimes call these arbitrary games.

ε-free games. We recall that a game G is ε-free if no edge is uncoloured, that is:

For all e ∈ E, col(e) 6= ε.

Vertex-coloured games. A vertex-coloured game is a game in which the colours of
the winning condition appear on the vertices, instead of on the edges. Moreover, in this
case we assume that no vertex is left uncoloured. That is, in a vertex-coloured game, the
colouring function is of the form colst : V → Γ.

The reason why we do not consider vertex-coloured games with uncoloured vertices is
because, for the purposes of this chapter, they are equivalent to arbitrary games [Kop08].
Indeed, an edge-coloured game can be converted into a vertex-coloured one by replacing
each edge e = v

c−→ v′ by the path v −→ ve −→ v′ and letting colst(v) = colst(v′) = ε and
colst(ve) = c.

1.2 Different types of memories

We recall that, as defined in the general preliminaries (Section I.1), a memory skeleton
over a set X is a deterministic automaton structure over the input alphabet X. Formally,
we represent it as a tupleM = (M,m0, µ), where µ : M×X →M is the update function,
that we extend to sequences in X∗ in the natural way.

In the entire section, Γ stands for a set of colours, W for an objective over Γ, and G a
game with vertices V and edges E.



164 A tight correspondence between memory and automata

General memory
If we do not add any restriction to the definition of memory introduced in the general

preliminaries, we obtain the notion of general memory (also called chaotic memory in the
literature).

A general memory structure for a game G is a memory skeleton over E together with
a function next-move : VEve ×M → E. Such a memory structure implements a strategy
stratM : Runfin(G) ⇀ E as:

stratM(ρ) = next-move(target(ρ), µ(m0, ρ)), for all ρ ∈ Runfin(G) ending in VEve.

We say that Eve can play optimally in G using general memory k if she has a strategy
stratk implemented by a general memory structure of size at most k that is winning from
every vertex in her winning region

We define the general memory requirements of an objective W ⊆ Γω, which we denote
memgen(W ), as the least integer k such that Eve can play optimally in W -games using
memory k. We remark that an objective W is half-positional if memgen(W ) = 1.

Similarly, we define the general memory requirements over ε-free games (resp. over
vertex-coloured games) of W ⊆ Γω, denoted memε-free

gen (W ) (resp. memvrt
gen(W )), as the least

integer k such that Eve can play optimally in ε-free (resp. vertex-coloured) W -games
using memory k.

The general memory requirements of Muller languages (over arbitrary games) have
been completely characterised by Dziembowski, Jurdziński and Walukiewicz [DJW97,
Theorems 6 and 14] using the round-branching width of the Zielonka tree ZF .

Proposition IV.1 (General memory requirements of Muller objectives [DJW97]).
Let W = MullerΓ(F) be a Muller language. Then,

memgen(W ) = rbw(ZF).

Chromatic memory
Chromatic memories are those that base their updates uniquely in the colour produced

in the game and are oblivious to the particular edge that has been taken.

LetM = (M,m0, µ) be a memory skeleton over Γ. For every W -game G with edges
E, the memory M induces a memory skeleton over E, by defining the update function
µE : M × E →M as:

µE(m, e) = µ(m, col(e)), if col(e) 6= ε, and µE(m, e) = m, if col(e) = ε.

We say that a memory structure for G is a chromatic memory if its update function
can be obtained from a memory skeleton over Γ as above.

The chromatic memory requirements of an objective W ⊆ Γω, denoted memchr(W ),
is the least integer k such that Eve can play optimally in W -games using chromatic
memory structures of size at most k. We also define the chromatic memory requirements
over ε-free games (resp. over vertex-coloured games) of W ⊆ Γω, denoted memε-free

chr (W )
(resp. memvrt

chr(W )), as the least integer k such that Eve can play optimally in ε-free (resp.
vertex-coloured) W -games using chromatic memory k.
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Arena-independent memory
We note that in the definition of chromatic memory requirements, we allow the use of

a different memory skeleton over Γ for each game. As the update function only depends
on Γ, we can imagine that a single structure would suffice for all W -games.

An arena-independent memory structure for W is a memory skeletonM over Γ that
can implement an optimal strategy for Eve over every W -game, that is, a strategy that
is winning from any vertex in her winning region.

The arena-independent memory requirements of an objective W is the minimal size of
an arena-independent memory structure for W . We denote it memArInd(W ).

We define analogously arena-independent memory structures over ε-free games (resp.
over vertex-coloured games) and the arena-independent memory requirements over ε-free
games (resp. vertex-coloured games) of an objective W , which we denote memε-free

ArInd(W )
(resp. memvrt

ArInd(W )).

As we will see in Section IV.2, all ω-regular objectives admit finite arena-independent
memories, as a deterministic parity (or Rabin) automaton recognising an objective W is
an arena-independent memory for it.

ε-memory (digression)
There is yet another type of memory that deserves our attention, although we will not

consider it in the following.
We say that a memory structure for a game G is an ε-memory if it satisfies that, for

each uncoloured edge e ∈ E and every memory state m ∈M , we have that µ(m, e) = m.
That is, the memory updates are oblivious to uncoloured edges.

The main reason we will not consider this notion further is because it coincides with
general memory in the case of Muller languages [CO22, Section 4.3], and we do not have
yet an example that separates both notions in the general case. However, we believe that
for some objectives the ε-memory requirements are strictly larger than the general ones.

Although the restriction imposed in the definition of ε-memory might appear artificial
at first sight, we argue that in many natural occurrences of ε-edges, we do indeed not want
to allow the memory to be updated on them – see Appendix B.1 for such an example:
games originating from logical formulas. Moreover, the ε-memory requirements of all
objectives have been recently characterised by means of the existence of well-monotone
universal graphs [CO23], characterisation that, a priori, does not hold for the general
memory requirements.

1.3 Comparison between the different models

We now separate or establish the equality of the notions introduced above. The
following inequalities are a direct consequence of the definitions:

memX
gen ≤ memX

chr ≤ memX
ArInd , for X any class of game graphs.

memvrt
Y ≤ memε-free

Y ≤ memY , for Y any type of memory.

In Table 2, we compile the examples included in this section to separate the different
notions of memory requirements. All these examples are based on Muller languages. For
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Muller languages, we will show (Theorem IV.1):

memchr(W ) = memε-free
chr (W ) = memArInd(W ) = memε-free

ArInd(W ),

so we only include one column for these four notions. Letter n stands for the size of the
set of colours Γ.

Memory type:
Game type:

General
Arbitrary

Chromatic
Arbitrary

General
ε-free

General
Vertex-coloured

|Inf(w)| = 2 2 n 2 1

|Inf(w)| = n/2 n/2 exponential
in n ? ?

|Inf(w)| > 1 n n 2 1

Inf(w) = {a, b} 2 2 2 1

F Table 2. Summary of the different examples considered in this section and their
memory requirements. Letter n stands for the size of the set of colours Γ.

Chromatic and arena-independent requirements coincide
We show next that the chromatic and the arena-independent memory requirements

coincide for any objective, that is, when using chromatic memories we can suppose that
a single structure suffices to play optimally in all games. A version of this result was first
proven by Kopczyński in his PhD thesis [Kop08, Proposition 8.9].

Proposition IV.2 (Arena-independent and chromatic memories [Kop08]).
Let W ⊆ Γω be any objective. Then:

] memArInd(W ) = memchr(W ),
] memε-free

ArInd(W ) = memε-free
chr (W ).

Moreover, if the set of colours Γ is finite, these results also hold for the chromatic memory
requirements over finite games.

Proof. The inequalities memchr(W ) ≤ memArInd(W ) and memε-free
chr (W ) ≤ memε-free

ArInd(W )
directly follow from the definition. We show that these inequalities are not strict. We
present here the proof for arbitrary game graphs; the proof for ε-free games is identical,
as we do not add any ε-edges in our construction.

We need to show that there is a W -game G such that any chromatic memory im-
plementing an optimal strategy for Eve has at least as many states as a minimal arena-
independent memory for W . Let n = memArInd(W ) be the size of such minimal arena-
independent memory. Let MΓ

<n be the (possibly infinite) set of all memory skeletons
over Γ of size strictly less than n (we note that if Γ is finite, this set is finite). Suppose by
contradiction that memchr(W ) < n. By definition of memArInd(W ), for any memory skele-
tonM ∈MΓ

<n there is some W -game GM such that the structureM cannot implement
an optimal strategy for Eve in GM. Consider the disjoint union of all the games GM, for
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M ∈ MΓ
<n. As memchr(W ) < n, there is some memory skeleton M ∈ MΓ

<n implement-
ing an optimal strategy in this disjoint union. However, the skeletonM implements an
optimal strategy in GM, a contradiction. J

General vs chromatic memory
We now show that, in general, chromatic memories are strictly less powerful than

general ones: memgen(W ) < memchr(W ). This answers a question raised by Kopczyński
in his PhD thesis [Kop08, Section 8.4]. We moreover give an example proving that, already
for Muller languages, the chromatic memory requirements can be exponentially larger (in
the size of the alphabet) than the general ones (Proposition IV.5).

Proposition IV.3 (General vs chromatic memory: Arbitrary gap).
For each integer n ≥ 2, there exists a set of colours Γn of size n and a Muller language

Wn ⊆ Γωn such that:

] memgen(Wn) = 2,
] memchr(Wn) = n.

Example IV.4 (|Inf(w)| = 2).
Let Γn = {1, . . . , n} and let

Wn = {w ∈ Γωn | |Inf(w)| = 2}.

This is the Muller language associated to the family Fn = {X ⊆ Γn | |X| = 2}.
To determine the general memory requirements of Wn we use the characterisation

from Proposition IV.1, using the round-branching width of the Zielonka tree of Fn. This
Zielonka tree is pictured in Figure 24, from which we directly obtain that rbw(ZFn) =
memgen(Wn) = 2.

For the analysis of the chromatic memory requirements of Wn we use Theorem IV.1,
stating that memchr(Wn) equals the size of a minimal deterministic Rabin automaton
recognising Wn. The language Wn coincides with the language Muller(FG) – introduced
in Section III.1 to study the minimisation of Rabin automata – for G a clique of size n.
Lemma III.7 implies that a minimal deterministic Rabin automaton for this language has
size n, and therefore memchr(Wn) = n.

1, 2, . . . , n

1, 2 1, 3 . . . n− 1, n

1 2 1 3 . . . n− 1 n

F Figure 24. Zielonka tree of the family Fn = {X ⊆ {1, 2, . . . , n} : |X| = 2}. The
round-branching width of this tree is 2.
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Proposition IV.5 (General vs chromatic memory: Exponential gap).
There exists a family of Muller languages Wn ⊆ Γωn over alphabets of n colours such

that, for a constant α > 1:

] memgen(Wn) = n/2,
] memchr(Wn) ≥ αn.

Example IV.6 (|Inf(w)| = n/2).
Let Γn = {1, . . . , n}, for n even, and let

Wn = {w ∈ Γωn | |Inf(w)| = n/2}.

That is, a word belongs to Wn if the set of colours seen infinitely often is exactly n/2.
This is the Muller language associated to the family Fn = {X ⊆ Γn | |X| = n/2}.

To determine the general and chromatic memory requirements of this objective, we
apply Theorems IV.1 and IV.3 characterising memgen(Wn) and memchr(Wn) in terms of the
minimal deterministic and good-for-games Rabin automata recognising Wn, respectively.
Then, it suffices to note that this family of languages is the one used in the proof of
Theorem III.5, stating the same exponential gap between the two models of automata.

Memory over ε-free games
We prove that the memory requirements over arbitrary and ε-free games differ. In

particular, the characterisation of the memory requirements of Muller languages of Dziem-
bowski, Jurdziński and Walukiewicz [DJW97] only holds for arbitrary games.

Proposition IV.7 (Memory over ε-free games).
For each integer n ≥ 2, there exists a set of colours Γn of size n and a Muller language

Wn ⊆ Γωn such that:

] memε-free
gen (Wn) = 2,

] memgen(Wn) = n.

Example IV.8 (|Inf(w)| > 1).
Let Γn = {1, . . . , n} and let

Wn = {w ∈ Γωn | |Inf(w)| > 1}.

That is, a word belongs to Wn if it does not eventually end in aω, for a ∈ Γn. This is the
Muller language associated to the family Fn = {X ⊆ Γn | |X| > 1}. Its Zielonka tree is
depicted in Figure 25, from which we deduce that its round-branching width is n, so, by
Proposition IV.1, memgen(Wn) = n.

However, we show that over ε-free games, Eve only requires 2 memory states to play
optimally. Let G be a an ε-free Wn-game. First, by prefix-independence of Wn, we can
suppose that Eve wins G from every vertex: it suffices to restrict ourselves to her winning



1. Different models of memory 169

region. As the game is ε-free, from any vertex v ∈ VEve there is one outgoing edge
coloured with some colour in Γn. We associate to each vertex v ∈ VEve one such colour,
via a mapping c : VEve → Γn, obtaining a partition VEve = V1 t . . . t Vn satisfying that
v ∈ Vx implies that there is some edge coloured x leaving v. We denote strat0 : VEve → E
one application that maps each vertex v ∈ VEve to one outgoing edge labelled with c(v).
Moreover, for any v ∈ V , since Eve can win from v, there is some strategy in G forcing
to see some colour y 6= c(v). For each colour x ∈ Γn, we let stratx : VEve → E be a
positional strategy forcing to see a colour different from x (this positional strategy exists
since reachability games are half-positional). Moreover, we can pick stratx such that it
coincides with strat0 outside Vx.

We define a memory structureM = ({m0,m1},m0, µ) for G and a next-move function
describing the following strategy: the state m0 will be used to remember that we have to
see the colour x corresponding to the component Vx that we are in. That is, when we are
in m0, we follow the strategy strat0. As soon as we arrive to a vertex controlled by Eve,
we use the next transition to accomplish this and we can change to state m1 inM. The
state m1 will serve to follow the positional strategy stratx reaching one colour different
from x. We will change to state m0 if we arrive to some state in VEve not in Vx (this will
ensure that we will see one colour different from x), or if some colour different from x is
produced.

1, 2, . . . , n

1 2 · · · n

F Figure 25. Zielonka tree of the family Fn = {X ⊆ {1, 2, . . . , n} : |X| > 1}. The
round-branching width of this tree is n.

However, in the case of positionality, there is no difference for Muller languages when
considering arbitrary or ε-free games: for both models, positional objectives coincide with
Rabin objectives. A first proof of half-positionality for Rabin objectives was obtained by
Klarlund [Kla94, Lemma 9]. A simpler proof appears implicitly in the work of Emer-
son [Eme85], and the fact that these are the only half-positional Muller objectives was
proven by Zielonka [Zie98, Corollary 14].

Proposition IV.9 (Half-positionality of Rabin languages [Kla94, Zie98]).
Let W be a Muller language. The following conditions are equivalent:

] W is a Rabin language.
] W is half-positional over arbitrary games.
] W is half-positional over ε-free games.

In Chapter V (Theorem V.5) we further show that more generally, ε-edges in games
do not affect the half-positionality of ω-regular languages. However, we do not know if
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this is the case for any language. This question was already raised by Kopczyński [Kop08,
Section 2.5].

Conjecture IV.1 (Arbitrary vs ε-free games for half-positionality [Kop08]).
An objectiveW is half-positional over arbitrary games if and only if it is half-positional

over ε-free games.

Memory for vertex-coloured games
The difference between the memory requirements over vertex-coloured games with-

out uncoloured vertices and arbitrary games was first studied by Zielonka. Using the
Zielonka tree, he characterised Muller languages that are half-positional over totally
coloured vertex-coloured games [Zie98, Theorem 17]. The exact memory requirements
over vertex-coloured games have not been characterised in general.

Example IV.10 (Inf(w) = {a, b}).
Let Γ = {a, b} and let W = Muller(F) be the Muller language associated to the family

F = {{a, b}}. That is, Eve wins a W -game if she produces both a and b infinitely often.
It follows from Proposition IV.1 that memgen(W ) = 2. However, Eve can play optimally
using positional strategies in vertex-coloured games. Indeed, over a-vertices she can use
a positional strategy to reach colour b, and over b-vertices a positional strategy to reach
colour a.

There are many other examples that display this property. For example, the objective
W = {w ∈ Γω | the two first letters are different} is positional only over vertex-coloured
games. It is also the case for the parity objective over infinitely many priorities, as shown
by Grädel and Walukiewicz [GW06].

2 Chromatic memory and deterministic Rabin automata
The main contribution of this section is to establish an exact correspondence between

chromatic memory structures for a Muller language W ⊆ Γω and deterministic Rabin
automaton for W (Theorem IV.1 below). As a corollary, we obtain that it is NP-complete
to determine the chromatic memory requirements of a Muller language (Theorem IV.2).

Theorem IV.1 (Chromatic memory requirements of Muller languages).
Let W ⊆ Γω be a Muller language. The following quantities coincide:

1. The number of states of a minimal deterministic Rabin automaton recognising W .
2. The arena-independent memory requirements of W , memArInd(W ).
3. The arena-independent memory requirements over ε-free games ofW , memε-free

ArInd(W ).
4. The chromatic memory requirements of W , memchr(W ).
5. The chromatic memory requirements over ε-free games of W , memε-free

chr (W ).

Moreover, a deterministic automaton structure over Γ is an arena-independent memory
for W if and only if we can define a Rabin acceptance condition on top of it making it a
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Rabin automaton recognising W .

Proof. The relations memε-free
ArInd(W ) = memε-free

chr (W ) ≤ memArInd(W ) = memchr(W ) are
given by Proposition IV.2. The final claim, as well as the missing inequalities, are given
by Lemmas IV.11 and IV.12. J

2.1 From deterministic Rabin automata to chromatic memory

We give the first direction of Theorem IV.1: a deterministic Rabin automaton A is
an arena-independent memory structure for A. This result can be considered as already
known, as it simply follows from the half-positionality of Rabin languages [Kla94] and the
product construction of an automaton and a game [GH82].

Lemma IV.11 (Deterministic Rabin automata are arena-independent memories).
Let A be a deterministic Rabin automaton recognising a language W ⊆ Γω. Then, A

is an arena-independent memory structure for W .

Proof. The automaton A naturally gives a memory skeleton over Γ: MA = (Q, q0, µ),
where Q is the set of states of A, qinit its initial state, and µ(q, a) = q′ if (q, a, q′) is a
transition in the automaton. We need to show that in every W -game the structureMA
can implement an optimal strategy for Eve.

Let G be a game with W = L(A) as winning condition and having V and E as set
of vertices and edges, respectively. We consider the composition G n A of G with the
automaton A as defined in Section II.1.3, that is, G nA contains an edge (v, q) c−→ (v′, q′)
if there is an edge v

a−→ v′ in G, and the a-transition from q in A is q a:c−→ q′. By
Proposition II.6, if Eve wins G from a vertex v, she wins G nA from (v, qinit). Moreover,
the game GnA uses as winning condition the Rabin language used by A as acceptance set.
Therefore, by Proposition IV.9, she can play optimally using a positional strategy stratpos
given by a function next-move : VEve × Q → E. This is exactly a next-move function for
the memory skeletonMA, implementing a strategy stratG in G. Any play consistent with
stratG in G is the projection of a play consistent with stratpos in G n A. Therefore, as
stratpos is optimal, so is stratG. J

2.2 From chromatic memory to deterministic Rabin automata

We provide the missing direction of Theorem IV.1: an arena-independent structure
for a Muller language W can be equipped with the structure of a deterministic Rabin
automaton recognising W . This result is easily obtained as a corollary of the typeness
results offered by the alternating cycle decomposition (Proposition II.109).

Lemma IV.12 (Chromatic memories are Rabin automata).
Let W ⊆ Γω be a Muller language, and let M be an arena-independent memory

structure for W over ε-free games. Then, we can define a Rabin acceptance condition on
top ofM, obtaining a deterministic Rabin automaton recognising W .
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Proof. LetM = (M,m0, µ) be an arena-independent memory for W over ε-free games.
First, we remark that we can suppose that every state of M is accessible from m0 by
some sequence of transitions. We define a deterministic Muller automaton AM on top of
M just by using the input letters as output: for each transition e = m

a−→ m′ we define
col(e) = a ∈ Γ, and we let W be the acceptance set of the automaton. Since the run over
a word w ∈ Γω produces as output w itself and the accepting set is W , this automaton
trivially accepts the language W . We show that we can also define an equivalent Rabin
condition on top ofM. For this, we verify that the automaton AM satisfies the second
property from Proposition II.109, that is, that for any pair of cycles `1, `2 in AM with
some state in common, if both cycles are rejecting, then their union is also rejecting. This
will prove that we can put a Rabin condition on top of AM.

Let `1 and `2 be two rejecting cycles in AM such that m ∈ M appears in both `1
and `2. We suppose by contradiction that their union `1 ∪ `2 is an accepting cycle. We
build an ε-free W -game in which Eve can win, but not using the memory skeleton M,
leading to a contradiction. Let u0 ∈ Γ∗ be a word labelling a path from m0 to m inM,
that is, µ(m0, u0) = m. Let w1 and w2 in Γ+ be two finite words labelling the cycles `1
and `2 from m; that is, the run over wi from m visits all the edges in `i and goes back to
m, without visiting any edge not appearing in `i. We note that by hypothesis wω1 /∈ W
and wω2 /∈ W . Consider the game G from Figure 26 (if u0 = ε, we remove vertex v0 to
obtain an ε-free game). Eve can win the game G from v0: as `1 ∪ `2 is accepting, she only

v0 vm
u0

w1

w2

F Figure 26. Game in which Eve cannot play optimally using the memory skeletonM.

has to alternate between the two choices in the state vm. However, there is no function
next-move : M × VEve → E implementing a winning strategy. Indeed, for every partial
play ending in vm and labelled with u0wi1 . . . wik , with wij ∈ {w1, w2}, it is clear that
µ(u0wi1 . . . wik) = m (the memory is at state m). If next-move(m, vm) is the edge leading
to the cycle labelled wi, all plays will stay in that cycle, which is losing for Eve. We
conclude thatM cannot be used as a memory structure for G, a contradiction. J

2.3 The complexity of determining the chromatic memory

We consider next the problem of determining the chromatic memory requirements of
a Muller language:

Problem: Chromatic-Memory
Input: A Muller language W = Muller(F) and a positive integer k.

Question: memchr(W ) ≤ k?



3. General memory and good-for-games Rabin automata 173

This problem admits several variants, depending on the representation of the input
Muller language. We show next that, even if the input is given as a Zielonka tree, this prob-
lem is NP-complete. This highly contrast with the fact that the Zielonka tree completely
characterises the general memory requirements of a Muller language (Proposition IV.1).

Theorem IV.2 (Determining the chromatic memory is NP-complete).
The problem Chromatic-Memory is NP-complete for a representation of the input

Muller language as either:

] The Zielonka tree ZF .
] A deterministic parity automaton recognising W .
] A deterministic Rabin automaton recognising W .

Proof. By Theorem IV.1, memchr(W ) coincides with the size of a minimal deterministic
Rabin automaton recognising W . The result follows then from the NP-completeness
of the problem of the minimisation of deterministic Rabin automata recognising Muller
languages: for the representation as a Rabin automaton or as the Zielonka tree, this is a
consequence of Theorem III.1; for the representation as a parity automaton, it suffices to
remark that we can compute the Zielonka tree in polynomial time (Proposition III.18). J

3 General memory and good-for-games Rabin automata

In this section, we present the second main contribution of the chapter: the general
memory requirements of a Muller language exactly correspond to minimal good-for-games
Rabin automata recognising it. The memory requirements of a Muller language were
already known, as they were characterised in [DJW97] using the Zielonka tree (Proposi-
tion IV.1); our main contribution is to provide a construction of a GFG Rabin automaton
matching this lower bound. This construction was presented in Section II.3.3 (Theo-
rem II.4).

Theorem IV.3 (General memory requirements of Muller languages as automata).
Let W ⊆ Γω be a Muller language. The following quantities coincide:

1. The number of states of a minimal good-for-games Rabin automaton recognisingW .
2. The general memory requirements of W , memgen(W ).

3.1 From good-for-games Rabin automata to general memory

We show that if A is a good-for-games Rabin automaton, then it can be used as a
memory structure for any L(A)-game. This result almost follows from the definition of
good-for-games automata, and can be considered as folklore.
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Lemma IV.13 (GFG Rabin automata are memory structures).
Let A be a good-for-games Rabin automaton recognising a language W ⊆ Γω. Then,

Eve can play optimally in any W -game using at most |A| states of general memory.

Proof. Let G be a game with W = L(A) as winning condition, having V and E as sets
of vertices and edges, respectively. Letter Q stands for the set of states of A. We want to
take the composition of G and A to obtain a Rabin game in which Eve can play optimally
using a positional strategy (by Proposition IV.9), and apply a similar argument as the
one used in the proof of Lemma IV.11. In order to be able to perform this composition
operation – as formally presented in Section II.1.3 – we first need to ensure that G is a
game suitable for transformations. Let G̃ be the game obtained from G in the following
way: for every edge e = v

a−→ v′ in G, we add a position (v, e) controlled by Eve and
replace edge e by v

ε−→ (v, e) a−→ v′. It is clear that Eve wins G from a vertex v if and
only if she wins G̃ from that same vertex and that G̃ is suitable for transformations. By
Proposition II.6, there is an initial state qinit in A such that if Eve wins G from a vertex
v, she wins G̃ nA from (v, qinit). Moreover, the game G̃ nA uses the acceptance set from
A, which is a Rabin language, so, by Proposition IV.9, Eve can win using a positional
strategy given by a function strat : ṼEve → Ẽ, where ṼEve is the set of vertices controlled
by Eve in G̃ (this is a subset of (VEve t (V × E)) × Q). We build a memory structure
(M, next-move) of size |Q| that projects the strategy strat onto G:

] its set of states is M = Q,
] the initial state is qinit,
] the update function µ : M × E →M is given by:

µ(q, e) = q′ if strat((v, e), q) = ((v, e), q) −→ (v′, q′).

That is, if the strategy strat takes the transition q −→ q′ in the “automaton compo-
nent” of G̃ nA after the move e = v −→ v′ is taken in the “game component”.

] For v ∈ VEve and q ∈M , we let next-move(v, q) = e if e is the move chosen by strat
from (v, q), that is, if strat(v, q) = (v, q) −→ ((v, q), e).

Since strat is a winning strategy in G̃ n A from (v, qinit), its projection onto G via the
memory structure (M, next-moveM) is a strategy that satisfies that any play consistent
with it produces as output a word in L(A), so it is winning. J

3.2 From general memory to good-for-games Rabin automata

Lemma IV.14 (A GFG Rabin automaton of size memgenW ).

Let W ⊆ Γω be a Muller language. There exists a good-for-games Rabin automaton
recognising W of size memgen(W ).

Proof. Let F ⊆ 2Γ
+ be the family of subsets such that W = Muller(F). By the charac-

terisation from [DJW97] (Proposition IV.1), the general memory requirements of W are
given by the round-branching width of the Zielonka tree of F : memgen(W ) = rbw(ZF). In
Section II.3.3 (Theorem II.4) we gave an explicit construction of a history-deterministic
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Rabin automaton of size rbw(ZF) recognising W . By Proposition II.5, that automaton is
good-for-games. J
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Introduction
Positional strategies. As mentioned in the general introduction, a crucial parame-

ter in the study of games on graphs is the complexity of strategies required by the players
to play optimally. The simplest such strategies are positional ones, those that depend
only on the current vertex, and not on the history of the play. In this chapter, we are
interested in the following question: Given a fixed objective W , is it the case that players
can play optimally using positional strategies in all games that have W as winning objec-
tive? We can ask this question just for one player (player Eve) – we say in the affirmative
case that W is half-positional – or for both players – we say that W is bipositional. Also,
it might be relevant to consider the question for subclasses of games, in particular, for
finite games, or for 1-player games.

Bipositionality. The class of bipositional objectives, both over finite and infinite
games, is already well understood. A characterisation of bipositionality over finite games
was obtained by Gimbert and Zielonka [GZ05], using two properties called monotonicity
and selectivity. An important and useful corollary of their result is what is commonly
known as a 1-to-2-player lift: an objective W is bipositional over finite games if and only
if both players can play optimally using positional strategies in finite 1-player games.

Over infinite games, a very simple and elegant characterisation of bipositionality was
given by Colcombet and Niwiński for prefix-independent objectives [CN06]: a prefix-
independent objective W is bipositional if and only if it is a parity language. In partic-
ular, these objectives are necessarily ω-regular. No such characterisation for non-prefix-
independent objectives appears in the literature (although a generalisation of this result
for finite memory without the prefix-independent assumption appears in [BRV23]).

Half-positionality. Although half-positionality is arguably more relevant than bi-
positionality in the context of reactive synthesis (the controller will be produced based on
Eve’s strategies), much less is known for this class. During the 90s, half-positionality of
some central objectives was proven, notably of parity [EJ91] and Rabin languages [Kla94].
The first thorough study of half-positionality was conducted by Kopczyński in his PhD
thesis [Kop08]. There, he provides some sufficient conditions for half-positionality and
introduces an important set of conjectures that have greatly influenced research in the
area in recent years. However, no general characterisation for half-positionality was found.
One of the main contributions of Kopczyński was to show decidability of half-positionality
over finite games for prefix-independent ω-regular objectives [Kop07, Theorem 2]. How-
ever, his procedure works in O(nO(n2)) time (where n is the size of a deterministic parity
automaton given as input), and more importantly, does not really reveal much about the
structure of automata recognising positional languages. Decidability of half-positionality
over arbitrary games, or for non-prefix-independent ω-regular objectives is open.

Very recently, a significant breakthrough occurred as a result of the works in Ohlmann’s
PhD thesis [Ohl21, Ohl23a]. He provided a characterisation of half-positionality by means
of the existence of graph-theoretical structures known as monotone universal graphs.
While this characterisation is a valuable tool for proving half-positionality of many ob-
jectives, it does not directly offer methods to establish, for instance, decidability of half-
positionality for ω-regular objectives. Also, Ohlmann’s characterisation comes with a
caveat: necessity of the existence of universal graphs for half-positionality is only obtained
for objectives containing a neutral letter (a letter that does not change membership to W
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after its removal). He conjectures that this hypothesis is not essential, as the addition of
a neutral letter to any objective should not break half-positionality (see Conjecture V.3).

This motives the following research direction.

Objective.

Characterise the class of half-positional ω-regular languages,
both over finite and infinite games.

Finite-to-infinite and 1-to-2-player lifts. As mentioned above, a consequence of
Gimbert and Zielonka’s result [GZ05] is that, in order to check bipositionality over finite
games, it suffices to check whether players can play optimally in 1-player games. Recently,
generalisations of 1-to-2-player lifts have been studied in the setting of finite memory by
Kozachinskiy [Koz22c] and Vandenhove [Van23, Bou+20, BRV23]. Vandenhove states the
following conjecture:

Conjecture V.1 (Version of [Van23, Conjecture 9.1.1]).
Let W ⊆ Σω be an ω-regular objective. If the memory requirement of W over Eve-

games (resp. over finite games) is k, then the memory requirement of W over arbitrary
games is k.

He remarks that the corresponding question for k = 1 (lift for half-positionality) is
also open.

Closure properties. The main motivation of the research done in Kopczyński’s
PhD thesis [Kop08] is the question whether prefix-independent half-positional objectives
are closed under union. We refer to this question as Kopczyński’s conjecture. Very
recently, Kozachinskiy [Koz22a] disproved this conjecture, but only for half-positionality
over finite games. Also, the counter-example he gives is not ω-regular. On the positive
side, this conjecture has been proven to hold for the family of Σ0

2 objectives (objectives
recognised by infinite coBüchi automata) [Ohl23a]. Kopczyński’s conjecture and this
latter result have been generalised to the setting of finite memory [CO22, Section 6.3].
Solving Kopczyński’s conjecture over infinite games is one of the driving open questions
for the field.

One of the very few closure properties known for half-positional objectives is closure
under lexicographic products, obtained as a corollary of Ohlmann’s characterisation using
universal graphs [Ohl23a].

Contributions
The main contribution of this chapter is a complete characterisation of half-positionality

for ω-regular languages, stated in Theorem V.1. We give a syntactic description of a fam-
ily of deterministic parity automata, which we call fully progress consistent signature
automata, so that any such automaton recognises a half-positional language, and any
half-positional language can be recognised by an automaton of this family. From this
characterisation, we derive multiple corollaries that address the majority of open ques-
tions related to half-positionality in the case of ω-regular languages:
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1. Decidability in polynomial time. Given a deterministic parity automaton A, we
can decide in polynomial time whether L(A) is half-positional or not (Theorem V.2).

2. Finite-to-infinite and 1-to-2-players lift. An ω-regular objective W is half-
positional over arbitrary games if and only if it is half-positional over finite, ε-free
Eve-games (Theorem V.3). This answers a question raised by Vandenhove [Van23,
Conjecture 9.1.1].

3. Closure under union. The union of two ω-regular half-positional objectives is
half-positional, provided that one of them is prefix-independent (Theorem V.4).
This solves a stronger variant of Kopczyński’s conjecture in the case of ω-regular
languages.

4. Closure under addition of a neutral letter. If W is ω-regular and half-
positional, the objective obtained by adding a neutral letter to W is half-positional
too (Theorem V.5). This solves Ohlmann’s conjecture in the case of ω-regular lan-
guages.

We obtain some further results pertaining to classes of objectives that are not neces-
sarily ω-regular. We relax the ω-regularity hypothesis in two orthogonal ways.

5. Characterisation of bipositionality of all objectives. We extend the char-
acterisation of bipositionality of Colcombet and Niwiński [CN06] to all objectives,
getting rid of the prefix-independence assumption (Theorem V.6).

6. Characterisation of half-positionality of closed and open objectives. We
characterise half-positionality for closed and open objectives (Theorems V.7 and V.8).
We also obtain as corollaries 1-to-2 players lifts and closure under addition of a neu-
tral letter for these classes of objectives.

Technical tools
We would like to highlight some technical tools that take primary importance in our

proofs.

Universal graphs. In general, showing that a given objective is half-positional can be
challenging, as we need to show that for every game Eve can play optimally using
positional strategies. Ohlmann’s characterisation using monotone universal graphs
provides a painless path to prove half-positionality (see Proposition V.14). We
strongly rely on this result to show that parity automata satisfying the syntactic
conditions imposed in Theorem V.1 do indeed recognise half-positional languages.

History-deterministic automata. Although the statements of our results do not men-
tion in any way history-deterministic automata, we use them in a very fundamental
manner in two different parts of our proofs:

] In order to obtain the necessity of the syntactic conditions from our main
characterisation (see Section V.4.2), we need to have a very fine control of the
structure of automata. To do so, we put automata in some sort of canonical
form, for which we need to use and generalise the methods introduced by Abu
Radi and Kupferman [AK22] for the minimisation of HD coBüchi automata.
This allows us to greatly simplify the structure of automata, at the cost of
introducing history-determinism.

] To show the other implication of Theorem V.1, we need to build a monotone



0. Introduction 181

universal graph from a signature automaton. To facilitate this process, we first
“saturate” automata, adding as many transitions as possible without modify-
ing the languages they recognise. This procedure generates non-determinism,
but preserves history-determinism, the key property that allows us to prove
universality of the obtained graph (see Lemma V.93).

We believe that this use of history-determinism underscores the usefulness and
canonicity of the model. Our results are not aimed at understanding the succinctness
of expressiveness properties of history-deterministic automata; rather, they serve as
a tool. This approach reveals that history-determinism offers a natural framework,
enabling us to carry out various proofs that would otherwise be unattainable using
exclusively deterministic automata.

Normal form of parity automata. In our central proof (Section V.4.2), we rely on
the normal form of parity automata introduced in Section II.7.1, in particular, in
the properties stated in Proposition II.134 and Theorem II.14. We make consistent
use of these properties in our combinatorial arguments.

Congruences for parity automata. Since the beginning of the theory of finite au-
tomata, the notion of congruence has played a fundamental role [Arn85, Saë90,
MS97]. Here, we propose a notion of congruences for parity automata that make it
possible to build quotient automata that are compatible with the acceptance condi-
tion (see Definition V.55). This newly introduced vocabulary allows us to formalise
the details of the proof of Theorem V.1 in a simpler way.

Organisation of the chapter
The current chapter is, by far, the most technical part of the thesis. The definition

of some of the central concepts appearing in the statement of the characterisation of
half-positionality (Theorem V.1) is already quite involved. Therefore, the organisation of
the chapter has been done with the utmost focus on clarity, aiming to help the reader
understand the contributions, as well as the newly introduced definitions and techniques.
This might have resulted in some not completely conventional choices.

After introducing some general definitions and terminology used throughout the chap-
ter, we begin Section V.2 by stating the characterisation result (Theorem V.1) and its
main consequences, without providing formal details about the technical concepts appear-
ing in the statement of the Theorem. Section V.3 is a warm-up for the definitions used
in the main characterisation and for the techniques used in its proof. We gradually in-
troduce conditions that are necessary for half-positionality, obtaining partial results and
providing numerous examples along the way. Section V.4 contains the most technical
part of the chapter. We introduce the notions of signature automata, full progress con-
sistency and ε-complete automata appearing in the statement of Theorem V.1, and we
give a proof of it. Nevertheless, most details in the proof of necessity are relegated to
Appendix C. Sections V.5 and V.6 contain, respectively, the two other contributions of
the chapter: a characterisation of bipositionality for all objectives and a characterisation
of half-positionality for open and closed objectives. The proofs of these latter sections are
much simpler.

Prerequisites and links with other chapters
In addition to the concepts presented in the general preliminaries about parity au-

tomata, history-determinism and the parity index, we incorporate a preliminary section



182 Positionality of ω-regular languages and beyond

that introduces various technical notions employed in our characterisation. We exten-
sively use the normal form of parity automata introduced in Section II.7; we recall in
Lemma V.13 the main properties of this form used during the chapter.

In the conclusions (Section VII.2) we comment on the relation between the results and
techniques used in this chapter and the problem of the minimisation of parity automata,
discussed in Chapter III.

Collaborators and related publications
The whole chapter is based on joint work with Pierre Ohlmann. We want to thank

Hugo Gimbert, Damian Niwiński and Pierre Vandenhove for interesting discussions on
the subject. The characterisation of half-positional objectives recognised by deterministic
Büchi automata, presented in Section V.3.3, is based on joint work with Patricia Bouyer,
Mickael Randour and Pierre Vandenhove. This latter characterisation was published
in [Bou+22]. The rest of the contributions of the chapter have not yet been published.

1 Preliminaries
We introduce some definitions and terminology specific to this chapter.

Global hypothesis in Chapter V.

We assume in the whole chapter that automata are complete.
To simplify notations, we assume that all vertices in games are initial.

Congruences and monotone preorders over automata

Equivalence relations and preorders. We will use ∼X to denote different equiv-
alence relations, and [q]X to denote the equivalence class of an element q (which is usually
a state in an automaton).

A preorder ≤X is a binary relation that is reflexive and transitive. We say that it is
total if every pair of elements are comparable. The equivalence relation induced from a
preorder ≤X is the relation defined as:

q ∼X q′ ⇐⇒ q ≤X q′ and q′ ≤X q.

Given a preorder ≤X , we always write ∼X for the induced equivalence relation, and
simply write ≤ for the induced order over equivalence classes, for instance we may write
[q]X ≤ [q′]X .

Let R1 and R2 be two binary relations over a set A (usually preorders or equivalence
relations). We say that R1 is a refinement of R2 if for all q, p ∈ A, q R1 p implies q R2 p.
We note that if ≤1 is a preorder refining ≤2, then the induced equivalence relation ∼1
refines ∼2.

Congruences, uniformity and monotonicity. LetA be a (possibly non-deterministic)
automaton over Σ with states Q and transitions ∆. Let ∼ be an equivalence relation over
Q and let ∆′ ⊆ ∆ be a subset of transitions (usually ∆′ will be the set of transitions
using a given priority in a parity automaton). We say that transitions of ∆′ are uniform
over ∼-classes if for all q ∼ q′ and a ∈ Σ, if q a−→ p ∈ ∆′ then all a-transitions q′ a−→
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are in ∆′. We say that ∼ is a congruence for ∆′ (or that transitions in ∆′ preserve ∼)
if for all q ∼ q′ and a ∈ Σ, if q a−→ p ∈ ∆′ then there exists q′ a−→ p′ ∈ ∆′, and for all
such transitions p ∼ p′. If ∆′ = ∆, we just say that ∼ is a congruence. We say that ∼
is a strong congruence for ∆′ if, moreover, we have the equality p = p′ for transitions as
above.
F Remark V.1. If A is deterministic and ∼ is a congruence for ∆′, then these transitions
are uniform over ∼-classes.

a

a

b

b

b

b

a a a

a

a

b b

b

F Figure 27. Representation of the notions of uniformity, congruency and strong congru-
ency. We picture an automaton with three equivalence classes, each of them represented
by a yellow bubble. Green-dotted transitions are uniform over the classes, but the relation
is not a congruence for them. The relation is a congruence for blue-dashed transitions,
and a strong congruence for red-solid transitions.

Let ≤ be a preorder over Q. We say that transitions in ∆′ are monotone for ≤ if for all
q ≤ q′ and a ∈ Σ, if q a−→ p ∈ ∆′ then there exists q′ a−→ p′ ∈ ∆′ and for all such transitions,
p ≤ p′. Transitions in ∆′ are said strictly monotone for ≤ if, moreover, whenever q < q′,
q

a−→ p ∈ ∆′ and q′ a−→ p′ ∈ ∆′, we have p < p′. If ∆′ = ∆, we simply say that (A,≤) is
(strictly) monotone.

All these properties can equivalently be stated with words w ∈ Σ∗ instead of letters
a ∈ Σ.
F Remark V.2. If transitions in ∆′ are monotone for a preorder ≤, then its induced
equivalence relation is a congruence for ∆′.

Quotient by a congruence. Let A be an automaton and let ∼ be a congruence
over its set of states Q. We define the quotient of A by ∼ to be the automaton structure
A/∼ given by:

] The set of states are the ∼-classes.
] There is a transition [q] a−→ [p] if there are q′ ∈ [q], p′ ∈ [p] such that q′ a−→ p′ in A.
] A class [q] is an initial state if it contains some initial state in A.

We note that if ∼ comes from a monotone preorder, the obtained automaton structure
A/∼ with the induced order over the classes is monotone.
F Remark V.3. The quotient A/∼ is a deterministic automaton structure, if all initial
states of A are ∼-equivalent.
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A run over a word w in A, ρ = q0
w0−→ q1

w1−→ . . . naturally induces a run over w in
A/∼ , [q0] w0−→ [q1] w1−→ . . . , that we call the projection of ρ in the quotient automaton.
F Lemma V.4. Let ∼ be a congruence in A. Any run in A/∼ is the projection of some
run in A.

Proof. Let [q0] w0−→ [q1] w1−→ . . . be a run inA/∼ . We build the desired run inA recursively.
For the base case, it suffices to take p0 ∈ [q0] to be an initial state of A (which exists
by definition of the initial states of A/∼ ). Suppose that p0

w0−→ p1
w1−→ . . . pk has already

been built, with pi ∈ [qi]. By definition of the quotient automaton, there are q′k ∈ [qk]
and q′k+1 ∈ [qk+1] with q′k

wk−→ q′k+1. By the definition of a congruence, there is a transition
pk

wk−→ pk+1 and pk+1 ∈ [qk+1]. J

Residuals and semantic determinism

Residuals of a language. Let L ⊆ Σω be a language of infinite words and let
u ∈ Σ∗. We define the residual of L with respect to u by

u−1L = {w ∈ Σω | uw ∈ L}.

We denote Res(L) the set of residuals of L, which we will always order by inclusion. This
induces a partial preorder ≤L over Σ∗ defined by

u ≤L u′ ⇐⇒ u−1L ⊆ u′−1L.

The induced equivalence relation ∼L is given by the equality of residuals. This yields a
notion of ordered residual classes [u]L = {u′ ∈ Σ∗ | u−1L = u′−1L}, which we sometimes
write as [u] when L is clear from context.
F Remark V.5. A language L is prefix-independent if and only if Res(L) is a singleton.
F Remark V.6. If L is ω-regular, Res(L) is finite, and for all u ∈ Σ∗, u−1L is also ω-
regular. Contrary to the case of finite words, there are non ω-regular languages with a
finite set of residuals.

We now state a key monotonicity property for residuals; its proof is a direct check.
F Lemma V.7. For any language L ⊆ Σω and for any finite words u, u′, w ∈ Σ∗, if
[u] ≤ [u′] then [uw] ≤ [u′w]. In particular, if [u] = [u′] then [uw] = [u′w].

Semantic determinism. We say that an automatonA is semantically deterministic
if it has a single initial state and for all state q ∈ Q, letter a ∈ Σ and transitions q a−→ p1
and q a−→ p2, it is satisfied that L(Ap1) = L(Ap2), where Ap is the automaton obtained by
setting p as initial state.
F Lemma V.8 ([KS15]). Any history-deterministic automaton can be pruned into an
equivalent semantically deterministic and history-deterministic automaton. Moreover, for
parity automata, this can be done in polynomial time.

Global hypothesis in Chapter V.

We assume in the whole chapter that history-deterministic automata are semantically
deterministic.
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We refer to [AK23] for more details on semantically deterministic automata.

Residual associated to a state. For A an automaton recognising L and q a state
of A, we will write q−1L to denote L(Aq), and we let q ∼A q′ if q−1L = q′−1L.

If A is semantically deterministic and q is reachable, q−1L coincides with u−1L for
any word u ∈ Σ∗ leading to q from the initial state of A. In that case, we say that the
class of states [q] is associated to the residual class [u]. The inclusion of these languages
induces a preorder ≤A on the states of A (with its corresponding equivalence relation). By
Lemma V.7, if A is semantically deterministic, relation ∼A is a congruence and preorder
≤A makes A a monotone automaton.

F Remark V.9. An automaton A without unreachable states is semantically deterministic
if and only if it has a single initial state and ∼A is a congruence.

Automaton of residuals. Let L ⊆ Σω be a language of infinite words. The au-
tomaton of residuals of L, is a deterministic automaton structure RL over Σ defined as
follows:

] The set of states is the set of residual classes of Res(L): Q = {[u] | u ∈ Σ∗}.
] The initial state is [ε].
] For each state [u] and letter a ∈ Σ, it contains the transition [u] a−→ [ua].

The states of RL are ordered by the inclusion of residuals. By Lemma V.7, transitions
of RL are monotone for this order.

F Remark V.10. We remark that, for any semantically deterministic automaton A recog-
nising L, the automaton of residuals RL coincides with the quotient of A by the congru-
ence ∼A.

Alphabets of words

As an important element of our main proof, we will need to consider automata whose
transitions are labelled from an alphabet A ⊆ Σ+ of finite words. Such an automaton
defines a language L ⊆ Aω which we would like to see as a language L ⊆ Σω; however
this may pose a problem if a word w ∈ Σω admits several decompositions in Aω.

We say that a set A ⊆ Σ+ is a proper alphabet if any word w ∈ Σω admits a unique
decomposition as elements of A: for any infinite sequences a1, a2, . . . and a′1, a

′
2, . . . of

elements of A, if a1a2 · · · = a′1a
′
2 . . . then ai = a′i for all i.

We will only consider alphabets of words A ⊆ Σ+ which are prefix codes: if a ∈ A, then
no proper prefix of a belongs to A. It is an easy check that these are proper alphabets,
and therefore one may indeed see a language L ⊆ Aω as L ⊆ Σω.

Further notions for parity automata

Notations on paths of parity automata. We refer to transitions of a parity
automaton producing priority x ∈ N as x-transitions. Similarly, we refer to transitions
labelled with an input letter a ∈ Σ as a-transitions. The difference between the two uses
of the term will be always clear from the context.
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Letters x, y will usually stand for integers used as priorities of automata. For two
states q, p of a parity automaton A and a finite word w ∈ Σ∗, we write q w:x

p if there
exists a path from q to p labelled w such that the minimal priority appearing on it is
x ∈ N. We write q w:≥x

p to denote that there exists such a path producing no priority
strictly smaller than x. This is possibly the empty path q

ε−→ q, producing no priority.
We use similar notations for ≤ x, < x and > x. We generalise these notations for infinite
paths: for an infinite word w ∈ Σω we write q w:x if there exists an infinite path from q
labelled w such that the minimal priority seen on it is x.

We may apply this notations to non-deterministic automata – hence the use of an
existential quantification – although in most cases we will work with deterministic ones.

Paths between equivalence classes. Let ∼ be a congruence over the states of a
parity automaton A. We write [q] a:x−→ [p] if for all q′ ∼ q, every a-transition from q′ is
of the form q′

a:x−→ p′ with p′ ∼ p. We extend this notations to paths [q] w:x [p] and for
outputs ≤x, <x, ≥x and >x in the natural way.

F Remark V.11. If ∼ is a congruence for transitions producing priority x, q w:x
p implies

[q] w:x [p].

Paths induced by a resolver. Let A be a history-deterministic automaton with
initial state q0 and let r be a resolver for it. We recall that we write q0

u:x
r q to denote

the run induced by r over u. We use the same conventions as above regarding outputs
with the symbols ≤x, <x, ≥x and >x.

For u0 ∈ Σ∗, we write q w:x
u0,r p if:

] q0
u0

r q, and
] the induced run of r over u0w ends in p and produces x as minimal priority in the
part of the run corresponding to w.

We write q w:x
∃, r p if q

w:x
u0,r p for some u0 ∈ Σ∗. We write q w:x

∀, r p if, for any word u0 ∈ Σ∗

such that q0
u0

r q, we have q w:x
u0,r p.

If ∼ is a congruence in A, we write [q] w:x
∀, r [p] if, for any word u0 ∈ Σ∗ such that

q0
u0

r q
′ ∈ [q], we have q′ w:x

u0,r p
′ ∈ [p]. We avoid using this notation for paths quantified

existentially, as we consider that the corresponding semantics are not as intuitive.

Restricted determinism and homogeneity. Let ∆′ ⊆ ∆ be a subset of transi-
tions of an automaton A. We say that A is deterministic over ∆′ if the restriction of A
to ∆′ is deterministic, that is, if q a−→ p ∈ ∆′, then no other a-transition outgoing from q
is in ∆′.

We say that a parity automaton A is homogeneous if for every state q ∈ Q and letter
a ∈ Σ, if q a:x−→ p is a transition in A, then any other a-transition from q produces
priority x. For 0 ≤ x ≤ d, we say that A is (≤x)-homogeneous if the previous property is
satisfied for priorities ≤ x.



1. Preliminaries 187

F Remark V.12. Let A be an homogeneous parity automaton that is deterministic over
transitions producing priority x. If q a:x−→ p is a transition in A, then there is no other
a-transition outgoing from q in A.

Priority accepting a word. Let A be a parity automaton, and w ∈ Σω an infinite
word. For an even priority x, we say that w can be accepted with priority x in A if there
exists a run over w such that the minimal priority produced infinitely often is x. For an
odd priority x, we say that w is rejected with priority x if the minimal priority produced
infinitely often in every run over w is x.

Automata with ε-transitions. An automaton with ε-transitions is defined just as
an automaton over the alphabet Σ t {ε}, where ε /∈ Σ is a distinguished letter. The
language of an automaton A with ε-transitions is the set of words w ∈ Σω such that there
exists w′ ∈ (Σ t {ε})ω which is accepted by A and such that w is obtained from w′ by
removing all occurrences of the letter ε.

G Note. Note that ε-transitions in this context do not correspond to transitions producing
no output colour, as in the ε-edges of games.

Reminder on the normal form of parity automata. In this chapter, we will
extensively use the normal form of parity automata, as presented in Section II.7. We
recall now the central property that will be used repeatedly.1

Lemma V.13 (Fundamental property of the normal form).
Let A be a parity automaton in normal form and x > 0. If there is a path q w:x

p
producing x as minimal priority, then, for every 0 ≤ y ≤ x, there is a returning path
p

w′:y
q producing y as minimal priority.

That is, if A is in normal form, the restriction of A to priorities ≥ x consists in a
disjoint union of strongly connected components. Moreover, if priority y > x appears
in one of these SCCs, then all priorities between x and y appear in that SCC. This two
properties can be taken as the definition of the normal form (Theorem II.14). We remark
that they do only refer to the colouring with priorities of the automaton, and not to the
input alphabet or to the semantics of it.

Also, we can normalise a given parity automaton in polynomial time (Proposition II.132).

Universal graphs

We now introduce universal graphs, which will be our main tool for deriving position-
ality results. First, we need some formal definitions about graphs.

Σ-graphs. A Σ-graph, where Σ is a set of colours, is a (potentially infinite) graph
G = (V,E, source, target) together with a map col : E → Σ.2 We denote v c−→ v′ in G

1For simplicity, we omit here technical details to be addressed if priority 0 does not appear in the
automaton A or in some of its SCCs.

2This definition is quite close to that of transition systems used in Chapter II. However, we will make
a fundamentally different use of Σ-graphs in this chapter: we will focus on infinite graphs, and the notion
of morphism will not correspond to that of morphisms of transition systems.
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to refer to an edge in G with source v, target v′, and colour c. This notation naturally
extends to finite and infinite paths. Often, we define Σ-graphs simply by describing the
set of transitions v c−→ v′ that occur, and without formally giving names to edges. The
size of a graph G is defined to be the cardinality of V . The following assumption is useful
when considering infinite paths.

Global hypothesis in Chapter V.

All Σ-graphs we consider do not admit sinks, that is, every vertex has at least one
outgoing edge.

Morphisms of Σ-graphs. Given two Σ-graphs G = (V,E, source, target, col) and
G′ = (V ′, E ′, source′, target′, col′), a morphism of Σ-graphs φ from G to G′ is a map
φ : V → V ′ such that for each edge v c−→ v′ in G, it holds that φ(v) c−→ φ(v′) defines an
edge in G′. We write φ : G→ G′ to denote that φ is a morphism.

Universality. Given a Σ-graph G, a vertex v of G and an objectiveW ⊆ Σω, we say
that v satisfies W in G if for any infinite path v w in G, it holds that w ∈ W . Given a
cardinal κ, a graph U is (κ,W )-universal if all graphs G of size < κ admit a morphism
φ : G→ U such that any vertex v that satisfies W in G is mapped to a vertex φ(v) that
satisfies W in U .

Monotonicity. A totally ordered graph (resp. well-ordered graph) is a graph G
together with a total order (resp. well-order) ≤ on its vertex set V . Such a graph is called
monotone if

u ≤ v, v′ ≤ u′ and u c−→ u′ in G =⇒ v
c−→ v′ in G.

We often note the conditions on the left by v ≥ u
c−→ u′ ≥ v′.

We now state our main tool for proving half-positionality.

Proposition V.14 ([Ohl23a, Theorem 3.1]).
Let W ⊆ Σω be an objective. If for all cardinals κ there exists a (κ,W )-universal

well-ordered monotone graph, then W is half-positional over all games.

Universality for trees. It is often more convenient to work with trees. In this
chapter, a Σ-tree is a Σ-graph T with a distinguished vertex t0, called the root, and
such that every vertex t of T admits a unique path from the root. Since graphs (and
in particular trees) are assumed sinkless, trees are always infinite. We say that a tree T
satisfies W if its root t0 satisfies W in T .

We say that a graph U is (κ,W )-universal for trees if all trees T of size < κ which
satisfyW admit a morphism φ : T → U mapping the root t0 to a vertex φ(t0) that satisfies
W in U .

Given an ordered Σ-graph U , we let U> be the Σ-graph obtained by adding a fresh
vertex >, maximal for the order of the graph, with transitions > a−→ v for every a ∈ Σ and
every vertex v of the graph. The following useful result follows directly from the proof
of [Ohl23a, Theorem 3.1] (see also [CO23, Theorem 3]).
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F Lemma V.15. Let W ⊆ Σω be an objective and κ a cardinal. If U is a a well-ordered
monotone graph that is (κ,W )-universal for trees, then U> is well-ordered monotone
(κ,W )-universal (for graphs).

Universal graph for the parity objective. As an important example, we give
a universal graph for the parity objective; it is implicit in the works of Emerson and
Jutla [EJ91] and Walukiewicz [Wal96]. In the latter, the term signatures was used to
name tuples of ordinals ordered lexicographically (term first used in [SE89]). Such a tuple
is meant to represent how many small odd priorities we can allow to see in a play while
still being winning.

Example V.16 (Universal graph for the parity objective).
Consider the parity objective over [0, d], (we assume d even):

parity = {w ∈ {0, . . . , d}ω | lim inf w is even}.

Fix a cardinal κ. We define a graph Uparity having as set of vertices tuples
(λ1, λ3, . . . , λd−1) ∈ κd/2 that we consider ordered lexicographically. This is indeed a
well-order. We let its edges be:

(λ1, . . . , λd−1) x−→ (λ′1, . . . , λ′d−1) ⇐⇒

(λ′1, . . . , λ′x−1) ≤ (λ1, . . . , λx−1) if x is even,
(λ′1, . . . , λ′x) < (λ1, . . . , λx) otherwise.

Where the order between truncated tuples as on the right is also the lexicographic one.
A representation of the graph Uparity appears in Figure 28.

Clearly, Uparity is monotone. We show in Lemma V.17 below that all vertices in
Uparity satisfy parity. Lemma V.18 states that Uparity is (κ, parity)-universal for trees, so,
by Lemma V.15, U>parity is a well-ordered monotone (κ, parity)-universal graph.

(0, 0, x) (0, 1, x) (1, 0, x) (1, 1, x)

(0, y, x) (1, y, x)

· · · · · · · · · · · ·5 5 5 5 5 5 5 5 5 5 5 53 3 3 3· · · · · ·1 1 · · ·
4 4 4 4

2 2

F Figure 28. Universal graph Uparity for the parity objective over priorities [0, 5]. Vertices
are ordered from left to right. Edges between two boxes B1

x−→ B2 represent that there
are edges v1

x−→ v2 for all v1 ∈ B1 and all v2 ∈ B2. Edges obtained by monotonicity are
not represented: if v x−→ v′ and v′′ ≤ v′, then v x−→ v′′ too; for example, by reading colour
5 from a vertex v one can go to any vertex strictly on the left of v. Edges coloured 0 are
not depicted in the figure: they appear between every pair of vertices. The label of a box
represents the forms of the names of vertices inside it.

F Lemma V.17. Every infinite path in Uparity satisfies the objective parity.

Proof. Consider an infinite path ρ = (λ1
1, . . . , λ

1
d+1) w1−→ (λ2

1, . . . , λ
2
d+1) w2−→ . . . in Uparity.

Let x be the minimal priority appearing infinitely often in ρ, which we assume odd for
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contradiction. Then, from some position, no priority > x is read, thus the sequence of
prefixes (λi1, . . . , λix) is decreasing and moreover strictly decreases in infinitely many places.
This contradicts well-foundedness of the lexicographical order over tuples of ordinals. J

F Lemma V.18. Graph Uparity is (κ, parity)-universal for trees.

Proof. Take a tree T of size < κ which satisfies parity; note that by prefix-independence,
all vertices in T satisfy parity. We aim to construct a morphism φ : T → Uparity.

Fix a vertex t ∈ T and an odd priority y ∈ {1, 3, . . . , d−1}. Then, in any path t w in
T there are only finitely many occurrences of y before a smaller priority appears. We may
define an ordinal ranky(v) capturing the number of such occurrences: ranky(v) satisfies
that, if v′ is an x-sucessor of v (that is, v x−→ v′), then:

] ranky(v′) ≤ ranky(v), if y < x, and
] ranky(v′) < ranky(v) if x = y.

One easily verifies that φ : v 7→ (rank1(v), rank3(v), . . . , rankd−1(v)) defines a morphism
from T to Uparity. J

Concavity

For comparison purposes, we define concave objectives. However, this notion will play
no role in our characterisation or our proofs. Concavity was introduced by Kopczyński [Kop08]
as an approximation to half-positionality: prefix-independent concave objectives are half-
positional over finite games [Kop08, Theorem 4.7], but the converse does not hold. This
notion was further studied for non-prefix-independent objectives in [Bia+11].

We say that an objectiveW ⊆ Σω is concave if for all pairs of sequences of finite words
u1, u2, · · · ∈ Σ+ and w1, w2, · · · ∈ Σ+ we have:

u1u2 . . . /∈ W and w1w2 . . . /∈ W =⇒ u1w1u2w2 . . . /∈ W.

That is, the shuffle of any pair of losing words is a losing word.

2 Half-positionality of ω-regular objectives: Statement of the re-
sults

In this section, we state the central result of the chapter and its consequences: a full
characterisation of deterministic parity automata recognising half-positional ω-regular
languages (Theorem V.1). The statement of the theorem uses terminology that will be
formally introduced in Section V.4; here we just provide some intuitive explanations.

2.1 Characterisation of half-positionality for ω-regular objectives

We state our main characterisation theorem. Items are ordered following the sequence
of implications as they will be shown in the chapter.
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Theorem V.1.
Let W ⊆ Σω be an ω-regular objective. The following are equivalent:

1. W is half-positional over finite ε-free Eve-games.
2. There is a deterministic fully progress consistent signature automaton recognis-

ing W .
3. There is a history-deterministic ε-complete automaton recognising W .
4. For all cardinals κ, there is a well-ordered monotone (κ,W )-universal graph.
5. W is half-positional over all games (potentially infinite and containing ε-edges).

The central notion of our characterisation is that of signature automata (name chosen
because of their similarities with the structure of the universal graph Uparity for the parity
objective). These are parity automata with a very restricted syntactic structure: for all
priorities x there is a total preorder ≤x over the states, such that these refine one another
and satisfy some monotonicity properties (see Section V.4.1 for the precise definition). Our
first main technical contribution is to show that any half-positional ω-regular objective
W can be recognised by a signature automaton (implication from (1) to (2)). This is
achieved by applying a number of transformations to a given parity automaton, until
obtaining an automaton with all the desired structural properties. The final automaton
satisfies a further property – necessary for half-positionality – that we call full progress
consistency: words making a strict progress in the automaton with respect to some of the
preorders must be accepted if repeated infinitely often.

The second challenge is to prove that any such automaton indeed recognises a half-
positional objective (implication from (2) to (5)). To do so, we rely on Ohlmann’s charac-
terisation of half-positionality via universal graphs [Ohl23a] (restated as Proposition V.14,
and providing implication from (4) to (5)). To obtain universal graphs, we consider as an
intermediate step ε-complete automata (see Section V.4.3). These are non-deterministic
automata in which all pairs of states can be compared using ε-transitions of any priority.
The advantage is that they admit a much simpler definition and their transitions are
closed by monotonicity, which allows for a smooth transition towards monotone graphs
and the implication from (3) to (4).

We now discuss consequences of Theorem V.1.

2.2 Main consequences on half-positionality

Decidability of half-positionality in polynomial time

Theorem V.2.
Given a deterministic parity automaton A, we can decide in polynomial time whether

L(A) is half-positional.

Although this result is not directly implied by Theorem V.1, it will follow from its
proof. Indeed, in Section V.4.2 we provide a procedure building (when possible) a deter-
ministic signature automaton from a deterministic parity automaton. All the transfor-
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mations used in this construction can be computed in polynomial time. Existence of a
deterministic signature automaton alone does not suffice to guarantee half-positionally, as
we also need the signature automaton to be fully progress consistent. Lemma V.78 guar-
antees that, if L(A) is half-positional, the signature automaton obtained by our procedure
must be fully progress consistent. We can check if this is indeed the case in polynomial
time (Lemma V.80). The final decision algorithm is as follows; let A be a DPA recognising
W :

] We apply the transformation turning a DPA into a signature automaton. If some
step of the procedure fails, we conclude that W is not half-positional.

] If the procedure terminates, we obtain a signature automaton A′ recognising W .
] We check whether A′ is fully progress consistent.

The details of the proof of Theorem V.2 can be found at the end of Section V.4.2.

Finite-to-infinite and 1-to-2 player lifts
The following result simply restates the implication (1) =⇒ (5) from Theorem V.1.

Theorem V.3.
If an ω-regular objective is half-positional over finite, ε-free Eve-games, then it is

half-positional over all games (potentially infinite and containing ε-edges).

Closure under union of prefix-independent half-positional languages
We now show that Kopczyński’s conjecture holds for ω-regular languages: prefix-

independent half-positional languages are closed under union. In fact, we show a stronger
result: it suffices to suppose that only one of the objectives is prefix-independent.

Theorem V.4.
Let W1,W2 ⊆ Σω be two half-positional ω-regular objectives, and suppose that W1 is

prefix-independent. Then, W1 ∪W2 is half-positional.

In order to obtain this theorem, we use the 1-to-2-players lift stated in Theorem V.3.
The result from Theorem V.4 can be easily obtained for Eve-games, so it suffices then to
apply the lift to get the result for all types of games.

Lemma V.19.
Let W1,W2 ⊆ Σω be two objectives that are half-positional over Eve-games, and

suppose that W1 is prefix-independent. Then, W1 ∪W2 is half-positional over Eve-games.

Proof. Let G be an Eve-game usingW1∪W2 as winning condition. We show that Eve has
a positional strategy that wins from any vertex of her winning region. We let G1 be the
game with the same underlying graph than G andW1 as winning condition. Consider Eve’s
winning region in this game, WinEve(G1). By half-positionality of W1, she has a positional
strategy strat1 ensuring to produce paths labelled with W1 from states in WinEve(G1).
Moreover, by prefix-independence of W1, there is no path leading to WinEve(G1) from a
vertex that is not in this winning region.
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We let G2 be the game with G \ WinEve(G1) as underlying graph, and using W2 as
winning condition. By half-positionality of W2, Eve has a positional strategy strat2 for
this game that is winning from WinEve(G2).

We consider the positional strategy strat in G that coincides with strat1 over WinEve(G1)
and coincides with strat2 over G2. It is clear that this strategy is winning from vertices in
WinEve(G1) ∪WinEve(G2). We show that these are all vertices from which Eve can win G,
so strat is an optimal strategy.

G Claim V.19.1. WinEve(G) = WinEve(G1) ∪WinEve(G2).

Proof. Let v be a vertex in G such that Eve wins from it. A strategy in an Eve-game
is just an infinite path in the underlying graph. Let therefore ρv be an infinite path
from v labelled with a word w ∈ W1∪W2. Suppose that v /∈ WinEve(G1). In particular
w /∈ W1, so w ∈ W2. As there is no path leading to WinEve(G1) from a vertex that is
not in this region, the path ρv is contained in G \WinEve(G1), which is the underlying
graph of G2. Therefore, v ∈ WinEve(G2). C

J

The question remains open for arbitrary objectives.

Conjecture V.2 (Kopczyński’s conjecture – Version of [Kop08, Conjecture 7.1]).
Let W1,W2 ⊆ Σω be two half-positional objectives (over all games), and suppose that

W1 is prefix-independent. Then, W1 ∪W2 is half-positional.

Closure of positionality under addition of neutral letters
As mentioned in the introduction, Ohlmann recently characterised half-positional ob-

jectives by means of the existence of universal graphs [Ohl23a]. One direction (stated in
Proposition V.14) holds for any objective: if W admits well-ordered monotone universal
graphs, then it is half-positional. To obtain the converse, the proof proposed by Ohlmann
requires a further hypothesis: W has to contain a neutral letter, that is a letter that can
be removed from any word without modifying the membership in W . In his work, he
left open the problem of whether adding a neutral letter preserves positionality. This is
a central question in the theory of positionality, as it would imply that universal graphs
completely characterise half-positionality without any further hypothesis on the objec-
tives. This question is almost3 equivalent to the one raised by Kopczyński in his PhD
thesis [Kop08, Section 2.5]: if W is half-positional over ε-free games, is it half-positional
over all games?

LetW ⊆ Σω be an objective. A letter c ∈ Σ is neutral for W if, for all w1, w2, · · · ∈ Σ+

and n1, n2, · · · ∈ N:

] cn1w1c
n2w2 · · · ∈ W ⇐⇒ w1w2 · · · ∈ W , and

] w1c
ω ∈ W ⇐⇒ w1

−1W 6= ∅.

Given an objective W , we let W ε denote the unique objective obtained by adding a
fresh neutral letter ε to W .

3The only difference is that in ε-free games we assume that there are no infinite paths composed
exclusively of ε-edges, whereas these may appear in W ε-games.
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Proposition V.20 ([Ohl23a]).
Let W ⊆ Σω. Objective W ε is half-positional if and only if for all cardinal κ there is

a well-ordered monotone (κ,W )-universal graph.

Conjecture V.3 (Neutral letter conjecture [Ohl23a]).
For every half-positional objective W , objective W ε is half-positional.

Our characterisation (Item (4) in Theorem V.1), together with Proposition V.20, an-
swers this question in the case of ω-regular objectives.

Theorem V.5.
Let W ⊆ Σω be an ω-regular objective. If W is half-positional, then W ε is half-

positional. Also, W is half-positional over ε-free games if and only if W is half-positional
over all games.

3 Warm-up: Illustrating ideas on restricted classes of languages
The goal of this section is to give a gentle introduction to the techniques and ideas

which are used in the proof of our main result (implication from (1) to (2) in Theorem V.1).
We single out four crucial properties that a parity automaton recognising a half-positional
objective should satisfy.

] Half-positional objectives have totally ordered residuals, which define a congruence
over states of automata recognising them.

] This order should satisfy a semantical property called progress consistency.
] Transitions with priority 0 preserve this congruence.
] In each congruence class, states which are interreachable using paths avoiding pri-
orities ≤ 1 have comparable (≤1)-safe languages.

We propose to study four restricted classes of ω-regular objectives that allow us to
isolate these different points, namely, closed objectives, open objectives, and those recog-
nised by deterministic Büchi and deterministic coBüchi automata. Considering objectives
in these four classes allows us to illustrate the necessity of the four properties above, and
the techniques we use to derive them. In each case, we state a characterisation of half-
positionality and give a full proof of necessity, which is the more difficult direction. These
characterisation and proof techniques are generalised to all ω-regular languages in our
main inductive proof of necessity (Section V.4.2).

We moreover incorporate in this section many examples illustrating our results and
the ideas in our proofs.

3.1 Closed objectives and total order on the residuals

We now discuss the first property announced above: residuals of half-positional ob-
jectives are totally ordered by inclusion. The necessity of this condition holds even for
non-ω-regular objectives.
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Residuals of half-positional objectives are totally ordered

Lemma V.21.
If an objective W ⊆ Σω is half-positional, then Res(W ) is totally ordered by inclusion.

Proof. We show the contrapositive. Suppose that W has two incomparable residuals,
u1
−1W and u2

−1W . Take w1 ∈ u−1
1 W \u−1

2 W and w2 ∈ u−1
2 W \u−1

1 W . Stated differently,
we have

u1w1 ∈ W , u1w2 /∈ W ,
u2w1 /∈ W , u2w2 ∈ W .

Consider the (infinite) Eve-game G represented in Figure 29. Eve wins G from v1 and
v2: if a play starts in vi, for i = 1, 2, she just has to take the path labelled wi from vchoice.
However, she cannot win from both v1 and v2 using a positional strategy. Indeed, such
a positional strategy would choose one transition vchoice

wi , and the play induced when
starting from v1−i would be losing.

v1

v2

vchoice

u1

u2

w1

w2

F Figure 29. A game G in which Eve cannot play optimally using positional strategies
if Res(W ) is not totally ordered. J

Closed objectives
Let Σ be a set of letters and L ⊆ Σ∗ be a language of finite words. The safety objective

associated to L is defined by

Safety(L) = {w ∈ Σω | w does not contain any prefix in L}.

An objective W is topologically closed if W = Safety(L) for some L ⊆ Σ∗. This
terminology is justified since objectives of the form Safety(L) are exactly the closed subsets
of Σω for the Cantor topology (see for example [Tho91]).
F Remark V.22. An objective W = Safety(L) is ω-regular if and only if L is a regular
language of finite words if and only if Res(W ) is finite. We refer to this class as ω-regular
closed objectives.

It turns out that for ω-regular closed objective, the converse of Lemma V.21 holds.
This was first established in [CFH14].

Proposition V.23 (Half-positionality of closed objectives [CFH14]).
Let W ⊆ Σω be an ω-regular closed objective. Then, W is half-positional if and only

if Res(W ) is totally ordered by inclusion.

Thus, residuals encode the information needed to decide whether an ω-regular closed
objective is half-positional. We do not include a proof of sufficiency in this warm-up;
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a proof for all (non-necessarily ω-regular) closed objectives is given in Theorem V.7.
However, a much subtler understanding is needed for non-closed objectives, as witnessed
by the example below.

Example V.24 (Non-positional open objective).
Consider the non-closed objective

W = {w ∈ Σω | w contains the factor aa}.

Its three residuals are totally ordered by inclusion:

ε−1W ⊆ a−1W ⊆ aa−1W.

However, it is not half-positional, as witnessed by the game in Figure 30.

vab ba

F Figure 30. A game G in which Eve cannot produce the factor aa positionally.

3.2 Open objectives and progress consistency

We now introduce progress consistency, a semantical property of the order of residuals
which is necessary for half-positionality. For ω-regular open objectives, this property,
together with the total order of residuals is also sufficient.

Progress consistency

Definition V.25 (Progress consistency).
An objective W ⊆ Σω is progress consistent if for all u,w ∈ Σ∗:

[u]W < [uw]W =⇒ uwω ∈ W.

Intuitively, a progress consistent objective satisfies that whenever we read a word that
makes some strict progress with respect to the order of the residuals, by repeating this
word we produce a sequence in W .

We remark that the objective Reach(Σ∗aa) from Example V.24 is not progress consis-
tent, as the word ba makes progress from residual ε−1W , but (ba)ω /∈ W .

Let us establish necessity of progress consistency for half-positional objectives.

Lemma V.26 (Necessity of progress consistency).
Any half-positional objective is progress consistent.
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Proof. We show the contrapositive of the statement. Let W be an objective that is not
progress consistent, that is, there are u,w ∈ Σ∗ such that [u] < [uw] and uwω /∈ W . Let
w′ ∈ uw−1W \ u−1W . Consider the game G depicted in Figure 31.

v0 vchoice
u

w

w′

F Figure 31. A game G in which Eve cannot play optimally using positional strategies
if W is not progress consistent.

Eve wins game G from vertex v0 by producing the play

v0
u
vchoice

w
vchoice

w′
.

However, she cannot win positionally from v0 since positional strategies produce either
uwω or uw′, and both of these words are losing. J

F Remark V.27. The previous lemma applies, in particular, to ω-regular closed objectives.
We did not need to add progress consistency as an hypothesis in Proposition V.23, as this
property is granted for closed objective by Lemma V.7.

We are now ready to move on to the characterisation of ω-regular open objectives.

Open objectives
We now study the dual of closed objectives, namely, open ones. Let L ⊆ Σ∗. The

reachability objective associated to L is defined by

Reach(L) = {w ∈ Σω | w contains a prefix in L}.

An objective W is topologically open if W = Reach(L) for some L ⊆ Σ∗. (These are
the open subsets of Σω for the Cantor topology.) Similarly to the previous subsection, we
define the class of ω-regular open objectives as those that are both open and ω-regular.
F Remark V.28. An open objective W = Reach(L) is ω-regular if and only if L is a
regular language of finite words if and only if Res(W ) is finite.

Let us state a characterisation of half-positionality for ω-regular open objectives. Char-
acterisations for the full classes of open and closed objectives (without ω-regularity as-
sumptions) will be obtained in Section V.6.

Proposition V.29 (Half-positionality for open objectives).
An ω-regular open objective W is half-positional if and only if it is progress consistent

and its set of residuals Res(W ) is totally ordered.

Necessity follows from combining Lemmas V.21 and V.26; we omit a proof of sufficiency
in this warp-up. In particular, we obtain the following corollary of Propositions V.23
and V.29.
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Corollary V.30.

Any half-positional ω-regular open objective is bipositional.

We now give an example of an objective that satisfies the requirement from the previous
proposition.

Example V.31 (Half-positional open objective).
Consider the ω-regular open objective

Wn = Reach((aΣ∗)n).

It was introduced (for n = 2) in [Bia+11, Lemma 13] as an example of a bipositional
objective which is not concave. It residuals are given by

ε−1W < a−1W < aa−1W < · · · < an−1W = Σω,

which are totally ordered. Moreover, for any residual class [ai] with i < n, we have
[ai] < [aiu] if and only if u contains the letter a, in which case aiuω ∈ W . Therefore, W
is progress consistent, so we conclude that it is bipositional.

Many natural examples of objectives are in fact prefix-independent; for those, the two
conditions about the residuals above are trivially satisfied. Yet, this does not suffice to
guarantee their positionality. We continue our introductory exploration with objectives
recognised by deterministic Büchi automata.

3.3 Objectives recognised by Büchi automata: Uniformity of 0-transitions

Our goal in this section is to present another property of half-positional ω-regular
objectivesW , namely, that they can be recognised by a deterministic parity automaton A
in which 0-transitions are uniform over each residual class:

For any q ∼A q′ and a ∈ Σ, if q a:0−→ then q′ a:0−→.

In our main induction (Section V.4.2), we will derive a similar property for all even
priorities. To illustrate the technique, we now only focus on the case whereW is recognised
by a deterministic Büchi automaton A (that is, W has parity index at most [0, 1]), which
helps alleviate some of the technicalities while preserving the important ideas behind the
proof. On the way, we characterise half-positionality for these objectives, reobtaining the
main result of [Bou+22].

The proof is split into two parts: first, we focus on the prefix-independent case, and
then reduce to it.

Prefix-independent objectives recognized by deterministic Büchi automata
It is well-known that Büchi languages – that is, those of the form W = BuchiΣ(B)

for some B ⊆ Σ – are half-positional [EJ91]. We prove now that these are the only half-
positional prefix-independent objectives recognised by deterministic Büchi automata.
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Proposition V.32 (Half-positionality for prefix-independent Büchi objectives).
A prefix-independent objective W recognised by a deterministic Büchi automaton is

half-positional if and only if it is a Büchi language.

In particular, Proposition V.32 tells us that there is a Büchi automaton with just one
state recognising W . In this automaton, 0-transitions are trivially uniform.

We now concentrate on proving Proposition V.32. Our proof considerably simplifies
that of [Bou+22, Proposition 11].

Super words and super letters. We say that u ∈ Σ+ is a super word (for W )
if, for every w ∈ Σω, if w contains u infinitely often as a factor, then w ∈ W . If u is a
letter, we say that it is a super letter. Let BW ⊆ Σ be the set of super letters for W . It
is clear that BuchiΣ(BW ) ⊆ W . We will show that, if W is half-positional, this is in fact
an equality.
F Lemma V.33 (Existence of super letters). A non-empty prefix-independent half-
positional objective W recognised by a deterministic Büchi automaton admits a super
letter.

One may easily deduce Proposition V.32 from Lemma V.33: the restriction W ′ of W
to non-super letters is a prefix-independent half-positional objective of parity index [0, 1]
which contains no super letter. Thus, Lemma V.33 tells us that W ′ = ∅ and therefore
W = BuchiΣ(BW ).

Proof of Lemma V.33. Fix a non-empty prefix-independent half-positional objective
W recognised by a deterministic Büchi automaton A, and assume without loss of gener-
ality that A is strongly connected (thus, every state can be chosen initial) and in normal
form. Since W is non-empty, note that A must contain a transition with priority 0. We
will use the following observation.

G Claim V.33.1 (Super words in Büchi automata). A word w ∈ Σ+ is a super word
if and only if for all states q of A, priority 0 appears on the path q w:0 . This is in
particular the case if w is a letter.

Proof. By normality of A (Lemma V.13), if there is q such that q w:1
q′ then there is

a word w′ ∈ Σ∗ labelling a returning path q′ w′:1
q. Therefore, (ww′)ω /∈ W , so w is

not a super word. The converse implication is clear, since each time word w is read,
the automaton produces priority 0. C

We now prove existence of super words.
G Claim V.33.2 (Existence of super words). There is a super word for L(A).

Proof. We note that, as A is strongly connected and contains some priority 0, for
each state q there is a finite word that produces priority 0 when read from q. We let
{q1, q2, . . . , qk} be an enumeration of the states of A and recursively define k finite
words w1, w2, . . . , wk ∈ Σ∗ satisfying:

qi
w1w2...wi−1

q′
wi:0

q′′.

In words, for i ∈ 1, . . . , k, reading w1w2 . . . wi from qi, produces priority 0. This
implies that w1w2 . . . wi produces priority 0 when read from any qj for j ≤ i. Therefore,
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w = w1w2 . . . wk produces priority 0 when read from any state ofA, so by Claim V.33.1,
w is a super word. C

We now prove that, by half-positionality of W , super words can be chopped into
smaller super words. This implies Lemma V.33 by repeatedly chopping a super word
obtained from Claim V.33.2 until obtaining a super letter.

G Claim V.33.3 (Chopping super words). Let w = w1w2 ∈ Σ+ be a super word. Then
either w1 or w2 is a super word.
Proof. Suppose by contradiction that neither w1 nor w2 are super words. Then, by
Claim V.33.1, there are states q1 and q2 such that q1

w1:1
q′1 and q2

w2:1
q′2. By

normality, we obtain returning paths q′1
u1:1

q1 and q′2
u2:1

q2. Therefore, (w1u1)ω /∈
W and (w2u2)ω /∈ W . We consider the game G depicted in Figure 32. Eve can
win this game, as alternating the two self loops she produces the word (u1w1w2u2)ω,
which belongs to L(A) since w1w2 is a super word. However, positional strategies
in this game produce either (w1u1)ω or (w2u2)ω, both losing. This contradicts the
half-positionality of L(A). C

J

vu1w1
w2u2

F Figure 32. A game G in which Eve can win by forming the super word w1w2 infinitely
often, but in which she cannot win using a positional strategy.

Half-positionality for objectives of parity index [0, 1]
We now state a characterisation of half-positionality for all objectives of parity index

[0, 1], without assuming prefix-independence.

Proposition V.34 (Half-positionality of Büchi languages).
Let W ⊆ Σω be a language of parity index at most [0, 1]. Then, W is half-positional

if and only if:

] Res(W ) is totally ordered,
] W is progress consistent, and
] W can be recognised by a Büchi automaton on top of the automaton of residuals.

Example V.35 (Half-positional objective of parity index [0, 1]).
Over the alphabet Σ = {a, b}, let

W = Buchi(a) ∪ Reach(aa),
that is, a word w ∈ Σω belongs to W if either it contains letter a infinitely often, or it
contains the factor aa at some point. This objective has three different residuals,

[ε] < [a] < [aa] = Σω.
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Figure 33 depicts a deterministic Büchi automaton defined on top of the residual automa-
ton of W . It is easy to verify that this objective is progress consistent, so by Proposi-
tion V.34, it is a positional objective.

The half-positionality of this objective cannot be shown by applying existing half-
positionality criteria [Kop08, Bia+11], nor by applying known characterisations of bipo-
sitionality [GZ05], as it is simply not bipositional.

qε qa qaa

a : 0

b : 1

a : 0

b : 0

a, b : 0

F Figure 33. Büchi automaton recognising the objective W = Buchi(a) ∪ Reach(aa).

As earlier, we focus on explaining the necessity of the conditions from Proposition V.34,
and we omit a proof of sufficiency in this warm-up. We already know that the two first
conditions are necessary (Lemmas V.21 and V.26). We now present the techniques used
to obtain the necessity of the third condition.

Uniformity of 0-transitions for half-positional objectives
Our objective is to derive the following result.

Lemma V.36 (Uniform behaviour of 0-transitions).
Let W ⊆ Σω be a half-positional language of parity index at most [0, 1]. There is

a deterministic Büchi automaton A recognising W such that for every pair q ∼A q′ of
equivalent states and for every letter a, transition q a−→ produces priority 0 if and only if
transition q′ a−→ produces priority 0.

Necessity of the conditions from Proposition V.34 easily follows. In fact, what the
previous lemma tells us is that we can take the quotient automaton A/∼A and assign
priorities to its transitions consistently.

The techniques we now introduce for proving Lemma V.36 will be extended in our
main induction (Section V.4.2). The idea is to reduce to the prefix-independent case,
captured by Proposition V.32. For this, we associate a prefix-independent language, over
an ad-hoc alphabet, to each residual of the objective under consideration.

For the rest of this part of the section, we fix a half-positional objective W recognised
by a deterministic Büchi automaton A.

Localising to a residual. For each residual class [u] of W , we define the local
alphabet at [u] as:

Σ[u] = {w ∈ Σ+ | [uw] = [u] and for any proper prefix w′ of w, [uw′] 6= [u]}.

Note that, if it is non-empty, Σ[u] is a prefix code, and therefore it is a proper alphabet.
Note that in general Σ[u] may be infinite, however this is completely harmless in this
context, and we will freely allow ourselves to talk about automata over infinite alphabets.4
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Also, Σ[u] is possibly empty; in the following definitions we assume that this is not the
case.

Seeing words in Σω
[u] as words in Σω, define the localisation of W to [u] to be the

objective
W[u] = {w ∈ Σω

[u] | uw ∈ W}.

Observe that W[u] is prefix-independent. Moreover it is half-positional: any W[u]-game
in which Eve could not play optimally using positional strategies would provide a coun-
terexample for the half-positionality of W .

For a state q of a Büchi automaton A recognising W , define Σ[q] and W[q] in the
natural way: Σ[q] = Σ[u] and W[q] = W[u] for u a word that reaches q from the initial
state. Observe that a word w ∈ Σ∗ belongs to Σ∗[q] if and only if it connects states in the
class [q]. Elements in Σ[q] are those that do not pass twice through this class. We remark
that Σ[q] 6= ∅ if and only if q is a recurrent state (it belongs to some non-trivial SCC).

Let q be a recurrent state. The local automaton of the residual [q] is the Büchi au-
tomaton A[q] defined as:

] The set of states is [q].
] The initial state is arbitrary.
] For w ∈ Σ[q], q w:x−−→ q′ if q w:x

q′ in A.

The language of A[q] is W[u], thus W[u] has parity index at most [0, 1]. Therefore, Propo-
sition V.32 yields that W[u] is a Büchi language: there exists a set B[u] ⊆ Σ[u] such that
W[u] = BuchiΣ[u](B[u]). We let N [u] = Σ[u] \B[u] be the set of non-super letters, and extend
these notations to states of A by putting B[q] = B[u] and N [q] = N [u] where u is any word
leading from the initial state to q.

Polished automata. For a recurrent state q, we say that a residual class [q] is
polished in A if:

1. For all q1, q2 ∈ [q], there is a word u ∈ N∗[q] such that q1
u:1

q2.
2. For every q′ ∈ [q] and every word u ∈ N [q], reading u from q′ produces priority 1.

Stated differently, [q] is polished if the restriction of A[q] to transitions labelled with letters
in N [q] is strongly connected and does not contain any transition with priority 0.

We say that the automaton A is polished if all its residual classes are polished.

F Remark V.37. If A is polished and q is a transient state, then, it is the only state in
its residual class: [q] = {q}. We will apply the term recurrent (resp. transient) to a class
[q] if q is recurrent (resp. transient). This is well defined by the previous comment.

F Lemma V.38 (Obtaining a polished automata). Any half-positional language W of
parity index at most [0, 1] can be recognised by a polished deterministic Büchi automaton.

Proof. Let A be a deterministic Büchi automaton recognising W . We will first polish
the residual class [q] of a fixed state q. Consider the restriction A′[q] of A[q] to transitions

4Note that in a finite automata over an infinite alphabet, there are finitely many classes of letters
such that two letters from the same class admit exactly the same transitions. Hence one may easily turn
such automata into automata over finite alphabets.
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labelled with N [q], and take S[q] to be a final SCC of A′[q]; without loss of generality we
assume that q ∈ S[q].

Now consider the automaton A′ obtained from A by removing states in [q] \ S[q], and
redirecting transitions that go to [q]\S[q] inA to transitions towards q producing priority 0.
Note that this transformation preserves the residuals: if p1

a−→ p2 in A and p1
a−→ p′2 in

A′, then p2 ∼A p′2. Also, either |A′| < |A|, or A is left unchanged. We now prove that it
preserves the language.

G Claim V.38.1. Automaton A′ recognises the objective W .

Proof. Let w ∈ Σω. Suppose first that the run over w in A′ eventually does not take
redirected transitions. Then, this run contains a suffix that is also a run in A. As the
transformation preserves the residuals, w is accepted by A′ if and only if it is accepted
by A′.

Suppose now that the run over w in A′ takes infinitely many redirected transitions.
Such a run in A′ is of the form

qinit
w0

q
w1

p1
a1:0−−→ q

w2
p2

a2:0−−→ q
w3

p3
a3:0−−→ . . . ,

where for all i the transition pi
ai:0−−→ q is a redirected one, meaning that in A, reading

ai from pi leads to [q] \ S[q]. Note that w is accepted by A′, so we should prove that
w ∈ L(A) = W . Observe that, for i ≥ 1, wiai ∈ Σ∗[q] and reading wiai in A takes q to
[q]\S[q], and thus by definition of S[q], it holds that wiai /∈ N∗[q], so wiai ∈ N∗[q]B+

[q]N
∗
[q].

We conclude that w1a1w2a2 · · · ∈ BuchiΣ[q](B[q]) = q−1W hence w ∈ W . C

It follows that the residual class of q in A′ is [q]A′ = [q]A ∩ Q′ = S[q]. We now prove
that it is polished.

G Claim V.38.2. The residual class [q] is polished in A′.

Proof. Let q1, q2 ∈ S[q]. By definition of S[q] there is w ∈ N [q] such that q1
w
q2

in A. As this path avoids [q] \ S[q] in A, it also belongs to A′. We show that it
produces exclusively priorities 1. By definition of S[q], there is a path q2

w′
q1 with

w′ ∈ N [q]. Therefore (ww′)ω does not belongs to W[q], so the path q1
w
q2 cannot

produce priority 0, which proves the first point in the definition of a polished class.
Now take q′ ∈ S[q] and u ∈ N∗[q]. Then by definition of S[q], reading u from q′ in A

leads back to S[q]. By the previous argument, the minimal priority in this path is 1.
Again, this path avoids [q] \ S[q] in A, so it also belongs to A′. C

Thus we have obtained an automaton A′ for W in which the class [q] is polished.
Since there are finitely many residual classes, and the obtained automaton A′ is strictly
smaller than A, we can repeat the process (normalising the automata after each iteration)
until obtaining an automaton in which all the classes are polished. (We remark that we
do not claim that classes [p] 6= [q] that were polished in A will remain polished in A′.
Nevertheless, the process reaches a fixpoint in which all classes are polished.) J

We will later on use the following property, which is our main reason for introducing
polished automata.
F Lemma V.39 (Connection via losing words). Let q ∼A q′ be two different recurrent
equivalent states of a polished automaton A. Then there is a word u ∈ Σ+

[q] such that
q

u
q′ and uω /∈ q−1L(A).
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Proof. As the automaton A is polished, there is a word u ∈ N+
[q] such that q u

q′. This
word satisfies the desired requirement. J

Uniform behaviour of 0-transitions. We are now ready to prove Lemma V.36.
Let A be a polished and normalised deterministic Büchi automaton recognising W , and
suppose by contradiction that there are two states q1 ∼A q2 and a letter a ∈ Σ such that
q1

a:0−→ p1 and q2
a:1−→ p2.

By normality, there is a word w ∈ Σ∗ such that p2
w:1

q2. In particular, since q2
aw

q2,
the class [q2] is recurrent in A. Note that aw ∈ Σ∗[q1] and (aw)ω /∈ q−1

1 W . Let q′ be the
state such that p1

w
q′, note that q′ ∈ [q1]. Let u0 be such that qinit

u0
q1. See Figure 34

for an illustration of the situation.
Since (aw)ω /∈ q−1

1 W , and q1
aw:0

q′, it cannot be that case that q′ = q1. Hence,
Lemma V.39 gives a word u ∈ Σ+

[q] such that q′ u
q1 and uω /∈ q−1W . Together, the facts

that

] (aw)ω /∈ q−1W ,
] uω /∈ q−1W , and
] (awu)ω ∈ q−1W

prove that Eve wins the game on the right of Figure 34, but not positionally.

[q1]A [p1]A

qinit

q1 p1

q′

q2 p2

u0

a : 0

w
u

a : 1

w : 1

v0 v1
u0

aw

u

F Figure 34. On the left, the situation in the automaton A. We have the equivalences
q1 ∼A q2 ∼A q′ and p1 ∼A p2. On the right, a game where Eve can win but not
positionally.

Thus we proved that if W is a half-positional objective of parity index [0, 1], it can be
recognised by a Büchi automaton in which 0-transitions behave uniformly. By extending
the technique from this section, we will show in Section V.4.2 that this property (and its
generalisation to all even priorities) also holds for higher parity indices.

3.4 Objectives recognised by coBüchi automata: Total order given by
safe languages

We now consider objectives of parity index [1, 2], that is, those that can be recognised
by deterministic coBüchi automata. Our analysis requires using history-deterministic
automata and techniques from [AK22].
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Most of the section is devoted to the case of prefix-independent objectives, for which
we propose a characterisation of half-positionality (Proposition V.44). At the end of
the section, we comment on how to extend this characterisation to any objective of parity
index [1, 2] (Proposition V.52). In the spirit of this warm-up, we omit proofs of sufficiency.

Prefix-independent objectives of parity index [1, 2]
Let us start by introducing some terminology relative to coBüchi automata recognising

prefix-independent languages. Our analysis requires considering automata that are not
necessarily deterministic, however, we have a fine control of the non-determinism that will
appear. First, all automata in this subsection will be history-deterministic. Moreover,
we can suppose that they are deterministic over transitions producing priority 2 by the
following result of Kuperberg et Skrzypczak [KS15] (this property is sometimes called safe
determinism).

F Lemma V.40 ([KS15]). Every history-deterministic coBüchi automaton can be pruned
in polynomial time into an equivalent one that is deterministic over 2-transitions.

Safe languages and safe components. Consider a (possibly non-deterministic)
coBüchi automatonA. We define the (<2)-safe language of a state q (or just safe language)
as the set of finite or infinite words such that, when read from q, priority 1 can be avoided,
that is:

Safe<2(q) = {w ∈ Σ∗ ∪ Σω | there is a run q w:2 }.

F Remark V.41. Two safe languages coincide if and only if their restrictions to finite
(resp. infinite) words coincide. Indeed, an infinite word w ∈ Σω belongs to Safe<2(q) if
and only all its finite prefixes do.

We write q ≤2 q
′ if Safe<2(q) ⊆ Safe<2(q′); this defines a partial preorder on states

of A. We will sometimes use the term safe path to refer to paths in A that do not produce
priority 1. The use of the notation “(< 2)-safe” will be justified by the generalisation of
this notion to any parity automaton. The next lemma follows directly from the definition
of safe languages.

F Lemma V.42 (Monotonicity with respect to safe languages). Let A be a coBüchi
automaton which is deterministic over 2-transitions, and let q, q′ be two states such that
q ≤2 q

′. Let u be a finite word in Safe<2(q) and write q u:2
p. There is a unique path

q′
u:2

p′ and p ≤2 p
′.

A (<2)-safe component (or just safe component) of A is a strongly connected com-
ponent of the subautomaton obtained by removing from A all transitions labelled 1. By
Lemma V.40, we can suppose that these subautomata are deterministic. Also, note that
if A is in normal form, transitions between different safe components produce priority 1,
that is, states connected by a safe path are in the same safe component.

F Remark V.43. A run of a coBüchi automaton is accepting if and only if it eventually
remains in a safe component. (We remark that our definition of SCC also includes the
edges of the subgraph.)

Statement of the characterisation of half-positionality. We are now ready to
state a characterisation of positionality of prefix-independent objectives of parity index
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at most [1, 2].

Proposition V.44 (Half-positionality for prefix-independent coBüchi objectives).
A prefix-independent objective of parity index at most [1, 2] is half-positional if and

only if it can be recognised by a deterministic coBüchi automaton satisfying that within
each safe component, states are totally ordered by inclusion of safe languages.

Before going on with the proof, we discuss two examples.

Example V.45.

In Figure 35 we represent a coBüchi automaton over Σ = {a, b, c} recognising the
following objective:

W = coBuchi(c(a∗cb∗)+c).

This is an example of an objective that is not concave, as by shuffling words a(ccaa)ω /∈ W
and (bbcc)ω /∈ W we can obtain (abcc)ω ∈ W . However, we show that it satisfies the
hypothesis of Proposition V.44, so it is half-positional. This automaton has a single safe
component. The inclusions of the safe languages follows from the fact that the transitions
are monotone: for every letter α ∈ Σ, if qi α:2−−→ qj and i ≤ i′, then qi′ α:2−−→ qj′ with j ≤ j′.

q1 q2 q3

c : 1

b : 2

a : 2

c : 2

a : 2

b : 2

c : 2

a, b : 2

F Figure 35. Deterministic coBüchi automaton recognising objective W from Exam-
ple V.45.

Example V.46.

Let Σ = {a, b, c} and W be the prefix-independent objective of words that eventually
do not contain infinitely often both the factor ac and the factor bb, that is:

W = coBuchi(ac) ∪ coBuchi(bb).

We give a coBüchi automaton recognising W and satisfying the hypothesis of Proposi-
tion V.44 in Figure 36. This automaton has two safe components: S1 = {q1, q2} and
S2 = {p1, p2}. The states of each component are totally ordered by inclusion of safe
languages, as we have q1 <2 q2 and p1 <2 p2. Therefore, W is half-positional.

At the level of intuition, starting from a deterministic coBüchi automaton A recognis-
ing a half-positional objective W , our proof of the necessity in Proposition V.44 proceeds
as follows:

] We turn A into a history-deterministic safe centralised automaton (see definition
below) using the minimisation technique of Abu Radi and Kupferman [AK22].
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q1 q2 p1 p2

c : 1

a : 2

b : 2

a : 2

b, c : 2

b : 1

a, c : 2

b : 2

a, c : 2

F Figure 36. Deterministic coBüchi automaton recognising objective W from Exam-
ple V.46. This automaton has two safe components: S1 = {q1, q2} and S2 = {p1, p2}, and
the states of each of them are totally ordered by inclusion of safe languages.

] Using half-positionality, we prove that ≤2 defines a total order on each safe compo-
nent.

] Exploiting the total order, we are able to re-determinise A.

Safe centralisation and safe minimality. Let A be a (possibly non-deterministic)
coBüchi automaton with only one residual class. We say that A is safe centralised if, for
every pair of states q1, q2, if q1 ≤2 q2, then q1 and q2 are in the same safe component. We
say that A is safe minimal if there are no two different states with the same safe language.
F Lemma V.47 ([AK22]). Any prefix-independent language of parity index at most [1, 2]
can be recognised by a history-deterministic coBüchi automaton that is safe centralised and
safe minimal.

Let us present a proof of Lemma V.47. We say that an automaton is 1-saturated if for
all pair of states q, q′, the transition q a:1−→ q′ appears in A. The 1-saturation of a coBüchi
automaton is the automaton obtained by simply adding all possible transitions of the
form q

a:1−→ q′; note that this transformation preserves determinism over 2-transitions.
F Lemma V.48. Let A be a coBüchi automaton recognising a prefix-independent lan-
guage W . Then, its 1-saturation A′ also recognises W . Moreover, if A is history-
deterministic and deterministic over 2-transitions, then so is A′.

Proof. We first show L(A′) ⊆ W . An accepting run over a word w in A′ eventually only
reads transitions with priority 2, so it eventually coincides with a run in A. We conclude
by prefix-independence. The fact thatW ⊆ L(A′) and history-determinism are clear: one
can use the same resolver in A′ as in A. J

Proof of Lemma V.47. Let A be a normalised, 1-saturated, history-deterministic, de-
terministic over 2-transitions automaton recognising W , obtained by Lemma V.48. We
say that a safe component S is redundant if there is q ∈ S and q′ /∈ S such that q ≤2 q

′.
G Claim V.47.1. Let S be redundant and consider the automaton A′ obtained from A
by deleting S. Then A′ is history-deterministic and recognises W .

Proof. Clearly L(A′) ⊆ W . We will describe a sound resolver proving that L(A′) = W
and that A′ is history-deterministic. Let q ∈ S and q′ /∈ S such that q ≤2 q

′. For
each p ∈ S, pick u ∈ Σ∗ such that q u:2

p, and let f(p) be such that q′ u:2
f(p);

this is well defined since q ≤2 q
′. Note that we have p ≤2 f(p) by Lemma V.42. By
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normality of A, there is a returning path f(p) w:2
q′ and thus f(p) is in the same safe

component as q′, so it does not belong to S. We extend f to all of Q by setting it to
be the identity over Q \ S.

Take a sound resolver (q0, r) in A, let w ∈ Σω, and write

ρ = q0
w0−→ q1

w1−→ . . .

for the run in A induced by r over w. We will build a resolver (q′0, r′) in A′ satisfying
the property that the run induced over w, ρ′ = q′0

w0−→ q′1
w1−→ . . . is such that for each

i, qi ≤2 q
′
i. We let q′0 = f(q0), and assume ρ′ constructed up to q′i, and qi ≤2 q

′
i. If

there is a state q′i+1 /∈ S such that q′i
wi:2−−→ q′i+1 then we take this one, which satisfies

qi+1 ≤2 q′i+1 by Lemma V.42. Otherwise, take the transition q′i
wi:1−−→ f(qi+1). In

particular, if w ∈ Safe<2(qi), the induced run from qi does not produce priority 1.
We now show that if ρ is accepting, then ρ′ is an accepting run too: if ρ is accepting,

for some i the suffix wiwi+1 · · · ∈ Safe<2(qi) ⊆ Safe<2(q′i). Therefore, the run q′i
wi:2−−→

q′i+1
wi+1:2−−−→ . . . in A′ is safe, and ρ′ is accepting. C

Using Claim V.47.1, we successively remove redundant safe components until obtaining
a safe centralised automaton.

Finally, to obtain a safe minimal automaton it suffices to merge states with the same
safe language. That is, we define a 1-saturated automaton that has for states the classes
[q]2 of states of A, and transitions [q]2 a:2−→ [p]2 whenever for some (or equivalently, for
all) state q′ ∈ [q]2 there is transition q′ a:2−→ p′ in A, with p′ ∈ [p]2. It is not difficult to
check that the obtained automaton recognises W , is history-deterministic and remains
safe centralised. J

Total order in each safe component. The intuitive idea on why having states
of a same safe component totally ordered by ≤2 is necessary for positionality is the same
than in the case of closed objectives (Lemma V.21): if q and q′ are incomparable, there
are two words w,w′ that produce priority 1 from one state but not from the other. In a
game, if Eve has not kept track of where we are in the automaton, she will not know what
is the best option between w and w′. However, an issue arises when turning this idea into
an actual proof: one needs to build two full differentiating runs from q and q′; producing
priority 1 just once does not suffice. Safe centrality will come in handy for this purpose.

By definition, if q �2 q
′, there is a word which produces priority 1 when read from q′,

and stays in the corresponding safe component when read from q. The following lemma
exploits safe centrality to extend those runs to synchronise them in the same state, while
the run starting from q remains safe. For the purpose of the warm up, we only prove it
assuming A is deterministic; extending it to the history-deterministic case requires some
additional technicalities that will be dealt with in Section V.4.2.
F Lemma V.49 (Synchronisation of separating runs). Let A be a normalised, safe
centralised and safe minimal deterministic coBüchi automaton with a single residual class.
Let q and q′ be two states such that q �2 q

′ and p be any state in the safe component of q.
There is a word w ∈ Σ∗ such that q w:2

p and q′ w:1
p.

Proof. Since Safe<2(q) * Safe<2(q′), there is a word w1 ∈ Σ∗ such that q w1:2
q1 and

q′
w1:1

q′1. By normality, note that q1 is in the same safe component as q. If we have again
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that q1 �2 q
′
1, we can find a word w2 with the same properties. While the non-inclusion

of safe languages is satisfied, repeating the argument yields two runs:

q
w1:2

q1
w2:2

q2
w3:2

. . .

q′
w1:1

q′1
w2:1

q′2
w3:1

. . .

We claim that the process should stop after finite time, meaning that for some i, we have
qi ≤2 q

′
i. Otherwise, we would obtain two infinite runs over w1w2w3 · · · ∈ Σω, one of them

accepting and the other rejecting, contradicting the fact that A has a single residual class.
Let i be the step in which qi ≤2 q

′
i. First, we note that both states are in the safe

component of q: state qi is in there because there is a path q 2
qi, and by safe centrality,

q′i must also be in the same safe component. Let qmax be a state in this safe component
maximal amongst states such that q′i ≤2 qmax. Let u ∈ Σ∗ be a word labelling a path
qi

u:2
qmax (which exists by definition of safe components). By Lemma V.42, maximality

of qmax, and safe minimality, we also have q′i
u:2

qmax. Finally, if suffices to take a word
u′ ∈ Σ∗ labelling a path qmax

u′:2
p and define w = w1w2 . . . wiuu

′. J

We may derive the sought total orders.

F Lemma V.50 (Total order in each safe component). Let A be a deterministic coBüchi
automaton recognising a prefix-independent half-positional objective W . Suppose that A
is safe centralised and safe minimal. Let q and q′ be two different states in the same safe
component. Then, either q <2 q

′ or q′ <2 q.

Proof. By safe minimality, q ≮2 q
′ implies q �2 q

′. Suppose by contradiction that q �2 q
′

and q′ �2 q. Let p be a state in this safe component, and let u, u′ ∈ Σ∗ be such that
p

u:2
q and p u′:2

q′. By Lemma V.49, there are w,w′ ∈ Σω such that:
q

w:2
p, q

w′:1
p,

q′
w:1

p, q′
w′:2

p.
The situation is depicted in Figure 37. We obtain that:

] (w′u)ω /∈ W ,
] (wu′)ω /∈ W ,
] (wu′w′u)ω ∈ W .

Thus consider the game in which Eve controls a vertex with two self loops labelled
w′u and wu′; she can win by alternating both loops, but fails to win positionally. J

Determinisation. We have stated last two lemmas of the previous paragraph for
deterministic automata, in order to simplify the presentation. However, safe centralisa-
tion only yields history-deterministic automaton. We now explain how to use the total
order from Lemma V.50 to determinise HD coBüchi automata recognising half-positional
languages.

Let A be a normalised, history-deterministic and deterministic over 2-transitions
coBüchi automaton recognising a prefix-independent half-positional language. Order ≤2



210 Positionality of ω-regular languages and beyond

q

q′

p

w : 2

w′ : 1

w′ : 2

w : 1

u : 2

u′ : 2

F Figure 37. Situation occurring in the proof Lemma V.50.

is total over each safe component, by Lemma V.50. We show how to rearrange the 1-
transitions in order to define an equivalent deterministic automaton A′ with the same
structure of safe components.

Let {S1, S2, . . . , Sk} be the safe components of A, enumerated in an arbitrary order.
Recall that if a word w ∈ Σω is accepted by A, there is a run over w that eventually stays
in one of the components Si (Remark V.43). The main idea is that, when reading a word
w, we can resolve the non-determinism by trying each safe component in a round-robin
fashion. If for a state q and for a letter a ∈ Σ there is a (unique) transition q a:2−→, we keep
it as the only a-transition from q. If there is no transition q a:2−→, and q belongs to Si, we
define a transition q a:1−→ q′ towards some q′ in Si+1. The total order in Si+1 identifies a
state in Si+1 which is the best to go to: we define q a:1−→ qmax

i+1 , where qmax
i+1 is the unique

maximal state of Si+1 for the total order ≤2. This defines a deterministic automaton A’.
We prove that L(A′) = L(A). Clearly L(A′) ⊆ L(A), as A′ is a subautomaton of the

1-saturation of A. To show the other inclusion, let w ∈ L(A). There is a run over w in A
that eventually remains in a safe component, without loss of generality, we assume that it
is S1. Let w′ = w′1w

′
2 . . . be a suffix of w labelling a run in S1: q1 w′1−→ q2 w′2−→ . . . . Consider

a run over w′ in A′. If this run never visits S1, it must be because it eventually remains in
some safe component, so w′ is accepted by A′ in that case. If the run eventually arrives
to S1 (at the ith step), it will arrive to the maximal element qmax

1 . At this point, the run in
A is in qi ≤2 q

max
1 . Since w′iw′i+1 · · · ∈ Safe<2(qi) ⊆ Safe<2(qmax

1 ), the run over this suffix
is safe in A′, and word w is accepted by A′.

Example V.51.

The automaton from Figure 36 has the shape we have described: transitions producing
priority 1 cycle between the two safe components, and they go to the maximal state of
the other component (p1

b:1−→ q2 and q1
c:1−→ p2).

Generalisation to non prefix-independent coBüchi languages
To remove the prefix-independence assumption, we work with the localisation to resid-

uals of the objectives, as defined in Section V.3.3. If W is a half-positional objective, for
each residual [u] the objective W[u] is half-positional. In turns out that this property, to-
gether with the hypothesis over residuals that were already necessary for open objectives,
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provides a characterisation.

Proposition V.52.

Let W ⊆ Σω be a language of parity index at most [1, 2]. Then, W is half-positional
if and only if:

] Res(W ) is totally ordered,
] W is progress consistent, and
] for all residual class [u], objective W[u] is half-positional.

This result is not fully satisfying (and hard to prove directly), as it relies on the
half-positionality of languages W[u]. As these objectives are prefix-independent, we have
a characterisation for their half-positionality (Proposition V.44), and we can put them
together to obtain a statement using exclusively structural properties of parity automata.
The statement we obtain uses a decomposition of parity automata in three layers:

] States are totally preordered by their residual class (layer 0).
] Within each residual class, states are grouped into safe components (layer 1).
] Within each safe component, states are totally ordered by inclusion of the safe
languages (layer 2).

This decomposition foreshadows the definition of structured signature automata that
we will use in Section V.4.2 to derive a characterisation of half-positionality for all ω-
regular languages.

Proposition V.53.

Let W ⊆ Σω be a language of parity index at most [1, 2]. Then, W is half-positional
if and only if:

] Res(W ) is totally ordered,
] W is progress consistent, and
] W can be recognised by a deterministic coBüchi automaton A such that, for all
residual class [q], the local automaton of the residual A[q] satisfies that its safe
components are totally ordered by inclusion of safe languages.

We do not include a proof of this proposition; it is a special case of Theorem V.1.

Example V.54.

We consider the following objective of parity index [1, 2] over the alphabet Σ = {a, b, c}:

W = Σ∗aω ∪ Σ∗bω ∪ cΣ∗cΣω.

This objective was studied in [Bia+11, Lemma 12] to show that there are half-positional
objectives that are not concave, nor bipositional (objectives from Examples V.35 and V.45
also have this property); their proof of half-positionality is quite involved.
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A coBüchi automaton recognising objective W is depicted in Figure 38. Its residuals
are totally ordered, and it is easy to check that it is progress consistent. Moreover, all its
safe components are trivial. Therefore, Proposition V.53 implies that it is half-positional.

a−1W ε−1W c−1W cc−1W

a : 1

b : 1

c : 1

a : 2 c : 1

b : 1 a : 1

b : 2 c : 1

a : 2

c : 1

b : 1 a : 1

b : 2

c : 1

a, b, c : 2

F Figure 38. Automaton recognising objective W from Example V.54.

3.5 Towards objectives of higher parity index: An example

In Figure 39, we show a deterministic parity automaton A over the alphabet Σ =
{a, b, c, x}, recognising an objective W . One may describe the objective W as follows: if
a word w ∈ Σω does not contain the letter x, then w ∈ W if, either it contains the letter
a infinitely often, or it does not contain the factor bb infinitely often. If w contains the
letter x, then its membership in W is determined by the parity condition associated to
the mapping x 7→ 0, b 7→ 1, a, c 7→ 2.

As this automaton is neither a Büchi or a coBüchi one (W has parity index [0, 2]),
none of the characterisations of this section applies to it. However, we can combine the
techniques presented above to equip A with a “nicely behaved” total order. In next
section, we will see that this can be formalised as the fact that A is a deterministic fully
progress consistent signature automaton, so by Theorem V.1, W is half-positional.

q1 q2 q3

x−1W ε−1W

x : 0

x : 0

x : 0
b : 1

a : 2
c : 2

a : 0

b : 1

c : 2

a : 0
b : 2

c : 2

F Figure 39. Automaton recognising objective W .

Objective W has two residuals: ε−1W and x−1W . It is easy to check that x−1W ⊆
ε−1W , and, since there is no transition [x] −→ [ε], it is trivially progress consistent. The
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states associated to [x] and [ε] are respectively {q1} and {q2, q3}. The subautomaton
induced by {q1} recognises a parity objective which is half-positional. Let us focus on the
subautomaton induced by {q2, q3}, that, in this example, coincides with A[ε]. We observe
that it satisfies the hypothesis of Lemma V.36: transitions of priority 0 act uniformly
within A[ε]; indeed, these transitions are those reading letter a. Consider the restriction
of A[ε] to letters {b, c}. The obtained automaton A′[ε] is a coBüchi automaton, satisfying
the hypothesis of Lemma V.50: the states of the safe component of A′[ε] are totally ordered
by inclusion of safe languages, as q2 <2 q3. In this way, we obtain a decomposition such
that:

] Residuals are total ordered by inclusion, and are progress consistent.
] 0-transitions act uniformly within the states of each residual class.
] The safe components of the coBüchi automata obtained as the restriction of each
class to transitions with priority ≥ 1 are totally ordered by inclusion of safe lan-
guages.

Generalising such decomposition to any parity automaton will be the central point of
the next section.

4 Obtaining the structural characterisation of half-positionality

We now move on to the proof of Theorem V.1. The first step is to identify the
common structural properties of deterministic parity automata recognising half-positional
objectives. In Section V.4.1, we define a class of parity automata, which we call signature
automata, that underscores this structure. We also introduce full progress consistency, a
further necessary condition for automata recognising half-positional languages. To obtain
the implication from (1) to (2) in Theorem V.1 we need then to show how to obtain a fully
progress consistent signature automaton for a half-positional ω-regular objective. This is
the most technical part of the proof, and it is the object of Section V.4.2. We then proceed
to defining ε-complete automata and closing the cycle of implications in Section V.4.3.

4.1 Signature automata and full progress consistency

Before finally moving on to the crucial definition of signature automata, we need more
precise concepts of congruences which we introduce now.

4.1.1 Priority-faithful congruences and quotient automata
Priority-faithful congruences. We recall that a congruence in an automaton al-

lows us to define a quotient A/∼ , which is a deterministic automaton structure. However,
in general, no acceptance condition can be defined on top of A/∼ in a sensible way, as the
congruence does not have to be compatible with the output colours of the automaton.
We now strengthen the definition of congruence for parity automata so that it will be
possible to define an approximation of a correct parity condition on top of the quotient
automaton.
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Definition V.55 ([0, x]-faithful congruence).
Let A be a parity automaton and let ∼ be a congruence over its set of states Q. We

say that ∼ is [0, x]-faithful if:

] for each 0 ≤ y ≤ x, y-transitions are uniform over ∼-classes and relation ∼ is a
congruence for y-transitions, and

] relation ∼ is a congruence for (>x)-transitions.

Stated differently, a relation ∼ is a [0, x]-faithful congruence if, whenever there is a
transition q a:y−→ p with priority y ≤ x, then for every q′ ∼ q a transition q′ a−→ p′ produces
priority y and goes to a state p′ ∼ p. If there is a transition q a:y−→ p producing priority
y > x, we only require that transitions q′ a:>x−−→ p′ produce priorities > x and go to
p′ ∼ p (but the exact priority produced may differ). (We remark that, although it is
not explicitly imposed, (>x)-transitions are uniform over ∼-classes by the first property.
Also, we recall that we assume that automata are complete.)
F Remark V.56. A [0, x]-faithful congruence is [0, y]-faithful for any y ≤ x.

(≤x)-quotient automata. What the definition of [0, x]-faithful congruence tells us
is that transitions producing priorities y ≤ x are well defined in the quotient automaton
A/∼ , in the sense that we can associate a priority y to these transitions reliably. For
transitions producing priorities > x, on the other hand, we only obtain the information
that the priority produced from any state of the class will be large, but we lose some
precision.

Definition V.57 ((≤x)-quotient automata).
If ∼ is a [0, x]-faithful congruence, we can define the (≤x)-quotient of A by ∼ to be

the parity automaton A
/

∼
≤x

given by:

] Its set of states are the ∼-classes of A.
] Initial states are those of the form [qinit], where qinit is an initial state of A.
] For y ≤ x, there is a transition [q] a:y−→ [p] if A has a transition q′ a:y−→ p′ with q′ ∈ [q],
p′ ∈ [p].

] There is a transition [q] a:x′−−→ [p] if A has a transition q′ a:>x−−→ p′ with q′ ∈ [q], p′ ∈ [p];
where x′ = x+ 1 if x even, and x′ = x if x odd.

The automaton A
/

∼
≤x

is defined so transitions coming from those producing a priority
> x inA are assigned the least important odd priority. This guarantees that the projection
of runs that eventually only produce priorities > x in A are rejecting in A

/
∼
≤x

. The next
lemma refines this comment.
F Lemma V.58. Let A be a parity automaton and let ∼ be a [0, x]-faithful congruence
over it. The (≤x)-quotient of A by ∼ recognises the language:

L(A
/

∼
≤x

) = {w ∈ Σω | w is accepted with an even priority y ≤ x in A}.

Moreover, if A is in normal form, then so is A
/

∼
≤x

.
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Proof. A run ρ in A produces a priority y ≤ x infinitely often if and only its projection
in A

/
∼
≤x

produces priority y infinitely often, which gives the equality of the languages.
The fact that A

/
∼
≤x

inherits the normal form is a direct application of Theorem II.14. J

4.1.2 Signature automata
We give the definition of signature automata, at the core of our characterisation.
We say that a sequence of total preorders ≤0,≤1,≤2, . . . ,≤k over Q is a collection of

nested total preorders if ≤i refines ≤i−1, for i > 1. We note that, in that case, the induced
equivalence relation ∼i also refines ∼i−1.

Definition V.59 (Signature automaton).
Let d ∈ N be a priority. A d-signature automaton is a semantically deterministic parity

automaton A together with a collection of nested total preorders ≤0,≤1,≤2, . . . ,≤d over
Q such that:5

I) Refinements of residual inclusion. Preorder ≤0 refines the preorder ≤A given
by the inclusion of residuals.

II) Faithful partitions at even layers. For 0 ≤ x ≤ d, x even, the equivalence
relation ∼x is a [0, x]-faithful congruence.

III) (<x)-safe separation at odd layers. For 2 ≤ x ≤ d, x even, and q ∼x−2 q
′:

q <x−1 q
′ =⇒ there is no path q w:≥x

q′.

IV) Local monotonicity of (≥x)-transitions. For an even priority x ≤ d, transitions
using priorities ≥x are monotone for ≤x over each ∼x−1 class. That is, for q ∼x−1 q

′,
if q ≤x q′:

q
a:≥x−−→ p =⇒ q′

a:≥x−−→ p′, p ∼x−1 p
′ and p ≤x p′, for all a-transitions from q′.

We say that A is a signature automaton if it is a d-signature automaton, for d the maximal
priority appearing in A.

We note that even and odd preorders play a completely different role in the previous
definition. In fact, the only purpose of odd preorders is to delimit the areas in which the
local monotonicity property will apply. Item (III) constrains ∼x−1-classes to be “suffi-
ciently large”.

F Remark V.60. We note that, by Item (IV), for x even the equivalence relations ∼x−1
is a congruence for ≥x-transitions. However, the restrictions on these odd preorders are
much weaker, as we do not impose them to be faithful.

5For notational convenience, we let ∼−2 be the trivial relation over A throughout this definition.
That is, q ∼−2 p for all pairs of states in Q.
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Example V.61.

Consider the automaton A from Figure 39 from the warm-up. This automaton has 3
states, q1, q2, and q3. It can be equipped with the structure of a signature automaton as
follows:

] Preorder ≤0 is given by the inclusion of residuals: q1 <0 q2, q3, and q2 ∼0 q3.
] Preorder ≤1 coincides with preorder ≤0.
] Preorder ≤2 is a total order: q1 <2 q2 <2 q3.

If A is a signature automaton whose maximal even priority is d, we can see the quo-
tient automata A

/
∼0
≤0 ,A

/
∼2
≤2 . . . ,A

/
∼d
≤d

as a sequence of automata that approximates the
original one. Indeed, the ith automaton of this sequence coincides with A over the words
that are accepted or rejected with priority ≤ i. In particular, A

/
∼d
≤d

is equivalent to A.
Although we allow non-determinism in our definition, a signature automata is almost de-
terministic, as each one of these quotient automata is deterministic. We further formalise
this remark now.

We say that a signature automaton A is reduced if its ∼d-classes are singletons, where
d is the maximal even priority appearing in A.

This notion of reduction can be seen as a generalisation of the notion of safe minimality,
introduced by Abu Radi and Kupferman for coBüchi automata [AK22]. In the conclusions
of this chapter (Section VII.2) we further refine this notion of reduced signature automata
and include a discussion about its relation with the minimisation of automata recognising
positional languages.

The next lemma simply follows by faithfulness.
F Lemma V.62. A reduced signature automaton is deterministic.

Given a signature automaton A, we can make it reduced just by merging ∼d-classes.
We can easily state this result using the quotient of automata.
F Lemma V.63. Let A be a signature automaton A whose maximal even priority is d.
Then, its (≤d)-quotient by ∼d, A

/
∼d
≤d

, is an equivalent reduced signature automaton.

4.1.3 Full progress consistency.
The existence of a signature automaton recognising an objective W does not suffice to

ensure half-positionality of W . The problem is similar to the one we encountered when
studying open objectives in Section V.3.2: there are open objectives whose residuals are
totally ordered but their are not half-positional (see Example V.24). In that case, we
needed to add the property of progress consistency to characterise positionality. We
generalise this notion to signature automata with multiple preorders.

Definition V.64 (Full progress consistency).
We say that a signature automaton A recognising an objective W is fully progress

consistent if, for each preorder ≤x, for x even, and every finite word w ∈ Σ∗:

q <x p and q
w:≥x

p =⇒ wω ∈ q−1W.
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F Remark V.65. A fully progress consistent signature automaton is in particular progress
consistent, as the ≤0-preorder refines that coming from the inclusion of residuals.

4.1.4 Structured signature automata from semantic properties of languages
To prove the implication (1) =⇒ (2) from Theorem V.1, we build a signature au-

tomaton from a deterministic parity automaton A recognising W recursively. In order to
be able to carry out the recursion, we will in fact obtain a signature automaton with even
stronger properties. This reinforcement of signature automata is done by ensuring that
the preorders ≤x come from semantic properties of the automata, for which the notion
of <x-safe languages will play a major role. The properties that are imposed are essen-
tially a generalisation of the ones satisfied by the canonical history-deterministic coBüchi
automata defined by Abu Radi and Kupferman [AK22].

We introducing some further notation used in our semantic reinforcement of the defi-
nition of a signature automaton.

<x-safe languages. Let A be a (possibly non-deterministic) parity automaton. We
define the (<x)-safe language of a state q of A as:

SafeA<x(q) = {w ∈ Σ∗ ∪ Σω | there exists q w:≥x }.

We remark that SafeA<x(q) is completely determined by its finite (resp. infinite) words.
We drop the superscript A whenever the automaton is clear from the context. A path
producing no priority strictly smaller than x is called (<x)-safe.

Next lemma simply follows from the definition.
F Lemma V.66 (Monotonicity of safe languages). Let A be a parity automaton that is
deterministic over transitions using priorities ≥ x. Let q and p be two states such that
Safe<x(q) ⊆ Safe<x(p), and let q u:≥x

q′ be a <x-safe run over u from q. Then, there
is a unique <x-safe run over u from p, p u:≥x

p′, and it leads to a state p′ satisfying
Safe<x(q′) ⊆ Safe<x(p′).

<x-safe components. A (<x)-safe component of A is a strongly connected compo-
nent of the subautomaton obtained by removing all transitions producing a priority < x
from A. Note that if A is in normal form and x > 0, transitions changing of (<x)-safe
component produce a priority < x. That is, q u:≥x

p implies that q and p are in the same
(<x)-safe component.
F Remark V.67. The partition of A into <x-safe components is a refinement of its par-
tition into <y-safe components, for y ≤ x.

For the following, we fix a parity automaton A in normal form using priorities in
[0, dmax]. For each x ∈ [1, dmax], we will totally order the <x-safe components of A in such
a way that these orders successively refine each other. For x ∈ [1, dmax] we let S<x1 , . . . , S<xkx

be the <x-safe components of A. For x = 1, we let S<1
1 <1 S

<1
2 <1 · · · <1 S

<1
k1 be an

arbitrary order over the <1-safe components. Assume that an order has already been
fixed at level x − 2. Then, we fix an arbitrary total order for the <x-safe components
contained in a same <(x − 1)-safe components, which yields a total order for the set of
all those safe components, that refines the previous layers. From now on, we assume that
the enumerations S<x1 , . . . , S<xkx

correspond to these orders: S<xi <x S
<x
j if i < j.
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Structured signature automata. The preorders of the signature automaton we
plan to build will correspond to the following semantic properties:

1. Preorder 0 given by inclusion of residuals. Preorder ≤0 corresponds to the
inclusion of residuals:

q ≤0 p ⇐⇒ q−1L(A) ⊆ p−1L(A).

2. Odd layers correspond to safe components. For x ≥ 2 even, we define ≤x−1
by:

q ≤x−1 p ⇐⇒ q <x−2 p or [q ∼x−2 p and q ∈ S<xi and p ∈ S<xj with i ≤ j].

In particular, q ∼x−1 p if and only if q ∼x−2 p and there is a path q w:≥x
p.

3. Even preorders given by inclusion of safe languages. For x ≥ 2, x even, we
define ≤x−1 by:

q ≤x p ⇐⇒ q <x−1 p or [q ∼x−1 p and Safe<x(q) ⊆ Safe<x(p)].

These preorders already ensure some of the properties required to be a signature au-
tomaton; mainly, the local monotonicity of transitions using large priorities (Item (IV)),
as well as the congruence for ≥x-transitions at ∼x-classes. Note, however, that it is not
clear (and will be an important part of our proof) that ≤x is total for even x.

Given an (even or odd) priority d ∈ N, we say that a parity automaton A in normal
form together with nested preorders ≤0,≤1, . . . ,≤d as above is a d-structured signature
automaton if these preorders are total and moreover:

4. Strong congruence of (≤x)-priorities over even classes. Let 0 ≤ x ≤ d, x
even. For every y ≤ x:

q ∼x q′, q
a:y−→ p and q′

a:z−→ p′ =⇒ z = y and p = p′.

5. Classes at layer x are (>x)-connected. For 0 ≤ x ≤ d and q ∼x q′, we have:

q 6= q′ =⇒ there is a path q u:>x
q′.6

6. Safe centralisation. Let 2 ≤ x ≤ d be an even priority, and let q ∼x−2 p. Then:

q �x−1 p =⇒ Safe<x(q) * Safe<x(p).

We say that A is a structured signature automaton if it is a d-structured signature
automaton, for d the maximal priority appearing in A.
F Remark V.68. We draw the reader’s attention to the fact that in Item 4 we do not only
require p ∼x p′, but impose p = p′. This will be necessary to guarantee that the relations
∼y for even priorities y > x are also congruences for x-transitions.

6We remark that, for x odd, this property is already implied by Item 2.
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Lemma V.69.
A deterministic d-structured signature automaton is a d-signature automaton.

Proof. The fact that ≤0 refines the inclusion of residuals is ensured by Item 1. Also, the
(<x)-safe separation at odd levels (Item (III)) is directly implied by the fact that odd
layers correspond to safe components (Item 2).

We now show by induction on x that for each x ≤ d, x even, ∼x is a [0, x]-faithful
congruence. Consider two states q ∼x q′, which rewrites as q ∼x−1 q

′ and Safe<x(q) =
Safe<x(p), and pick a transition q a:y−→ p. There are two cases.

] If y ≤ x, then by Item 4, we have q′ a:y−→ p.

] If y > x, then by monotonicity of safe languages (Lemma V.66), we have q′ a:≥x−−→ p′

with Safe<x(p′) = Safe<x(p), and by induction, p′ ∼x−2 p. From Item 6, it follows
that p′ ∼x−1 p and thus p′ ∼x p, as required.

We conclude that ∼x is a [0, x]-faithful congruence.
Finally, the local monotonicity of (≥x)-transitions follows from the fact that even

preorders correspond to the inclusion of safe languages (Item 3) and the monotonicity of
safe languages (Lemma V.66). J

4.2 From half-positionality to signature automata

This section is devoted to the proof of the implication (1) =⇒ (2) in Theorem V.1.
Many of the ideas in this proof have already appeared in the warm-up section. However
further technical issues stem from the fact that we manipulate general parity automata.
Details for a number of proofs are relegated to Appendix C.

Global hypothesis in Subsection V.4.2.

In the whole section, W stands for an objective that is half-positional over finite, ε-
free Eve-games. These hypotheses will not necessarily be recalled in the statements of
propositions.

4.2.1 Outline of the induction
Given a deterministic parity automaton recognising a half-positional objective, we

will recursively define the preorders and equivalence relations making A a structured
signature automaton. The base case consists in showing that the preorder ≤0 given by the
inclusion of residuals is total, and ensuring Item 4 of the definition for this preorder. For
the recursion step, we suppose that we have a deterministic (x− 2)-structured signature
automaton A recognising W , for x even, and we define preorders ≤x−1 and ≤x over A
as imposed by Items 2 and 3. Then, we apply a sequence of operations, after which we
obtain an equivalent deterministic automaton, that is either x-structured signature, or
has strictly less states than A. In the first case, we continue to define preorders ≤x+1 and
≤x+2; in the second case, we restart the structuration procedure from the beginning, with
a strictly smaller automaton. In both cases, we conclude by induction.

We conjecture that we can sequentially obtain all the preorders, without having to
restart the construction at each step. However, we have not been able to overcome some
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technical difficulties preventing us to do so. We refer to the final subsection of Appendix C
for more details.

We give a more detailed account on the specific operations we apply to obtain the
different items of the definition of a structured signature automaton and their order:

i) Relation ∼x−1 and safe centralisation. We define∼x−1, as determined by Item 2.
Applying a generalisation of the procedure from [AK22], we (<x)-safe centralise A,
obtaining an equivalent automaton satisfying Item 6. The resulting automaton is
no longer deterministic, but it is history-deterministic and has a very restricted and
controlled amount of non-determinism.

ii) Total order in safe components. We prove that the states of each (<x)-safe
component are totally ordered by inclusion of (<x)-safe languages (for which we
rely on the safe centralisation hypothesis). This shows that the preorder ≤x given
by the inclusion of safe languages (Item 3) is total.

iii) Re-determinisation. We determinise automaton A, while preserving previously
obtained properties. For this, the fact that ≤x is total will be key.

iv) Uniformity of x-transitions. Finally, we show that either A already satisfies
Items 4 and 5, or we can trim the automaton to an equivalent strictly smaller one.

Moreover, we show that all these transformations can be performed in polynomial
time.

This establishes that an objectiveW that is half-positional over finite, ε-free Eve-games
can be recognised by a deterministic structured signature automaton. At the end of the
section, we show that such an automaton must be fully progress consistent (Lemma V.78).

4.2.2 Constructing structured signature automata for half-positional languages
LetA = (Q,Σ, qinit, [0, dmax],∆, parity) be a deterministic parity automaton recognising

W , and suppose that W is half-positional over finite, ε-free Eve-games. We assume that
A is in normal form.

Global hypothesis in Subsection 4.2.2.

In this subsection, we will apply successive transformations to the automaton A, en-
suring an increasing list of properties. At the beginning of each paragraph, we clearly
state the properties that are assumed. We allow ourselves to omit these hypotheses in
the statements of propositions inside the paragraphs.

Base case: Preorder ≤0.
We define q ≤0 p if q−1L(A) ⊆ p−1L(A), as imposed by Item 1. In Lemma V.21,

we showed that half-positionality of W implies that this order is total. However, in our
proof we used infinite, and not necessarily ε-free games. It is not difficult to modify the
proof to adapt to this set of minimal hypotheses, using ω-regularity of W . We give all
details in Appendix C (Lemma C.8). Items 2, 3, and 6 are trivially satisfied. Therefore, it
suffices to show that we can obtain an automaton such that ∼0 is a strong congruence for
transitions producing priority 0 (Item 4), and that ∼0-equivalent states can be connected
by paths producing priority >x (Item 5). For this, we apply exactly the same method
presented in Section V.3.3: we obtain a polished automaton and show that it satisfies the
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desired properties. This proof will be covered in the recursive step; the case x = 0 does
not present any particularity.

Moving on to the inductive step, for the rest of the subsection, we let x be an even
priority such that 2 < x ≤ dmax and assume that A is a deterministic (x− 2)-structured
signature automaton.

Safe centrality and relation ∼x−1.
We say that an automaton with a preorder ≤x−2 is (<x)-safe centralised if ∼x−2-

equivalent states that are comparable for the inclusion of (<x)-safe languages are in the
same (<x)-safe component.

F Remark V.70. For automata in normal form (<x)-safe centrality can be stated as: if
q ∼x−2 p and there is no (<x)-safe path connecting q and p, then Safe<x(q) * Safe<x(p).

Lemma V.71 ((<x)-safe centralisation).
There exists a (x− 2)-structured signature automaton A′ equivalent to A which is:

] deterministic over transitions with priority different from x− 1,
] homogeneous,
] history-deterministic, and
] (<x)-safe centralised.

Moreover, A′ can be obtained in polynomial time from A and |A′| ≤ |A|.

The proof of this lemma is a refinement of the corresponding result for coBüchi au-
tomata presented in the warm-up (Lemma V.47): we saturate ∼x−2-classes of the original
automaton A with (x− 1)-transitions, and then remove redundant (<x)-safe components
recursively until obtaining a (<x)-safe centralised automaton. We include all details in
Appendix C (page 302).

Lemma V.71 allows us to define ∼x−1 satisfying all required properties: for q ∼x−2 p,
we define q ≤x−1 p if and only if q ∈ S<xi and p ∈ S<xj with i ≤ j, where S<xi are the
(<x)-safe components of A enumerated following the order described in Section V.4.1.
By definition, Item 2 is satisfied, and by (<x)-safe centralisation of A, so is Item 6.

Preorder ≤x: Total order given by safe languages
In all this paragraph we assume that A is an automaton as obtained in the previous

paragraph, that is: it has nested preorders defined up to ≤x−1 making it a (x − 2)-
structured signature automaton and satisfying Items 2 and 6 for relation ∼x−1. Moreover,
it is history-deterministic, homogeneous, and the only non-determinism of A appears in
(x− 1)-transitions.

We define preorder ≤x as imposed by Item 3:

q ≤x p ⇐⇒ q <x−1 p or [q ∼x−1 p and Safe<x(q) ⊆ Safe<x(p)],

and recall that it follows that q ∼x p if and only if q ∼x−1 p and there is a (< x)-safe path
from q to p.
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F Remark V.72. Using Item 4 for priorities y ≤ x− 2 and Lemma V.66 for transitions
with priority ≥ x, we get that relation ∼x is a congruence for transitions with a priority
different from x − 1. Moreover, over each ∼x−1-class, transitions with priority ≥x are
monotone for ≤x.

Our objective is now to show that ≤x is total over each ∼x−1-class. The proof
of this statement uses the same ideas as the corresponding result from the warm-up
(Lemma V.50). In particular, the main technical point resides in proving that, for two
states q1 �x q2, we can force to produce priority x − 1 from q1 while remaining <x-
safe from q2, and then resynchronise both paths in a same ∼x-class. This result, stated in
Lemma V.74, is the analogue to Lemma V.49 from the warm-up. For its proof we strongly
rely on the (<x)-safe centralisation of A and the fine control of its non-determinism.

In the proofs of Lemmas V.74 and V.75 we will reason at the level of ∼x-classes. As we
only suppose that A is (x− 2)-structured, we do not have the uniformity of x-transitions
over ∼x-classes yet. Lemma V.73 below provides a weaker version of this uniformity that
will suffice for the arguments in the upcoming lemmas.

We say that a word w produces priority y uniformly in a class [q]x if for every q′ ∈ [q]x
all runs from q′ are of the form q′

w:y . In that case, we write [q]x
w:y . We say that such

a word produces priority x uniformly in [q]x leading to [p]x if for every q′ ∈ [q]x we have
q′

w:y
p′ with p′ ∈ [p]x. In that case, we write [q]x

w:y [p]x.
We note that whenever A contains a path q w:≥x

p, a run over w is unique, as A is
homogeneous and its restriction to transitions coloured with priorities≥ x is deterministic.

The proof of the next lemma combines normality of A with ideas appearing in the
proof of Claim V.33.1 from the warm-up; all the details can be found in Appendix C
(page 314).

Lemma V.73 (Existence of uniform words).
Let p and q be two states from the same (<x)-safe component. There is a word w ∈ Σ∗

producing priority x uniformly in [q]x leading to [p]x.

We next state the result that allows us to synchronise runs in a same ∼x-class. Its
proof is analogous to that of Lemma V.49 and can be found in Appendix C.

We let r be a sound resolver for A implemented by a finite memory (which can be
assumed by Lemma I.10), and assume that all states are reachable using this resolver.
We recall that we write q w:y

∀, r p if, for every word u0 ∈ Σ∗ such that the induced run of
r over u0 arrives to q, the induced run of r over u0w ends in p and produces y as minimal
priority in the part of the run corresponding to w. Recall also that we write [q]x

w:y
∀, r [p]x

if for any q′ ∈ [q]x we have q′ w:y
∀, r p

′ for some p′ ∈ [p]x.

Lemma V.74 (Synchronisation of separating runs).
Suppose that q ∼x−1 q

′ and q �x q
′ and let p ∈ [q]x−1. There is a word w ∈ Σ+ such

that [q]x
w:x−1

∀, r [p]x and [q′]x
w:x
∀, r [p]x.

We can now deduce that ≤x is total over each ∼x−1-class.
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Lemma V.75 (Total order in (<x)-safe components).
Let q, q′ ∈ Q be two states such that q ∼x−1 q

′. Then, either q ≤x q′ or q′ ≤x q.

Proof. Suppose by contradiction that Safe<x(q) * Safe<x(q′) and Safe<x(q′) * Safe<x(q).
Let p be a state in [q]x−1 = [q′]x−1, and apply Lemma V.73 to obtain words u, u′ ∈ Σ∗

such that [p]x u:x [q]x and [p]x u′:x [q′]x.
By Lemma V.74, there are words w,w′ ∈ Σω such that:
[q]x

w:x
∀, r [p]x, [q]x

w′:x−1
∀, r [p]x,

[q′]x
w:x−1

∀, r [p]x, [q′]x
w′:x
∀, r [p]x.

The situation is analogous to the one depicted in Figure 37 in the warm-up. We obtain
that:

] (w′u)ω /∈ q−1W ,
] (wu′)ω /∈ q−1W ,
] (wu′w′u)ω ∈ q−1W .

Let u0 ∈ Σ∗ be a word such that the run induced by r over u0 ends in q (it exists, as
we have supposed that all states are reachable using r). It suffices to consider the game
where there is path labelled u0 leading to a vertex controlled by Eve with two self loops;
one of them producing w′u and the other wu′. By the previous remarks, she can win such
game by alternating both loops, but she cannot win positionally. J

Re-obtaining determinism
In this paragraph we assume that A is a parity automaton recognising W equipped

with nested total preorders defined up to ≤x with all properties obtained until now:

] it is a (x− 2)-structured signature automaton,
] preorder ≤x−1 satisfies properties from Items 2 and 6 from the definition of a struc-
tured signature automaton,

] preorder ≤x satisfies the property from Item 3 from the definition of a structured
signature automaton,

] it is deterministic over transitions with priorities different from x− 1,
] it is homogeneous, and
] it is history-deterministic.

We claim that we can obtain a deterministic equivalent automaton preserving the
entire structure of total preorders. Moreover, in the obtained automaton we guarantee
that relation ∼x satisfies Item 4 from the definition of a structured signature automaton
for priorities y < x.

Lemma V.76 (Re-determinisation).
There is a deterministic parity automaton A′ equivalent to A with nested total pre-

orders defined up to ≤x satisfying that:

] it is a (x− 2)-structured signature automaton,
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] preorder ≤x−1 satisfies properties from Items 2 and 6 from the definition of a struc-
tured signature automaton, and

] preorder ≤x is a congruence and satisfies the property from Item 3 and, for priorities
y < x, also that from Item 4 .

Moreover, automaton A′ can be computed in polynomial time from A and |A′| ≤ |A|.

The idea of the proof is a direct generalisation of the one presented in the warm-up
for coBüchi automata (page 209): we redefine the (x− 1)-transitions of the automaton in
such a way that we ensure that a run that changes of <x-safe component infinitely often
passes through all these components in a round-robin fashion. The total order ≤x allows
us to identify a maximal state in each component, so we can make a deterministic choice.
Formal details can be found in Appendix C (page 311).

Uniformity of x-transitions over ∼x-classes
We assume that A is a deterministic parity automaton recognising W with nested

total preorders defined up to ≤x satisfying all conditions stated in Lemma V.76. The ob-
jective of this paragraph is to obtain the remaining properties of a x-structured signature
automaton (Items 4 and 5).

Lemma V.77 (Uniformity of x-transitions over ∼x-classes).
There is a deterministic parity automaton A′ equivalent to A such that either:

] A′ is an x-structured signature automaton with |A′| ≤ |A|, or
] |A′| < |A|.

In both cases, such an automaton can be computed in polynomial time from A.

The proof of this lemma generalises the techniques introduced in Section V.3.3 of
the warm-up. Details can be found in Appendix C (from page 314). We introduce the
local automaton of a ∼x-class [q]x: the automaton originated by keeping the states of
[q]x and paths connecting them producing priorities ≥ x. Using half-positionality and
ideas analogous to those from Lemma V.33, we show that these local automata admit a
well-defined set of super letters, that is, there are letters that, if read infinitely often in
such a local automaton, must produce an accepting word. These letters are exactly the
ones carrying priority x when read from [q]x in the final automaton A′.

To obtain the uniformity of x-transitions, we might need to simplify the automaton:
we introduce x-polished automata, the target form of automata that will allow us to ob-
tain uniformity of x-transitions. Using the existence of super letters, we show that we
can polish automaton A by removing redundant parts of it. This operation might break
the normal form of automaton A,7 but this is not a problem, since in any case it strictly
decreases the number of states of the automaton, as desired.

This ends the induction step of the proof, establishing existence of a deterministic
structured signature automaton recognising W .

7In fact, we believe that the polishing operation does preserve normality, but we have not been able
to prove it.
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4.2.3 Full progress consistency
We show that a structured signature automaton recognising a half-positional objective

must be fully progress consistent. Since we showed how to obtain such a structured
signature automaton in the previous section, this ends the proof of the implication (1)
=⇒ (2) from Theorem V.1.

Lemma V.78 (Necessity of full progress consistency).
LetW ⊆ Σω be half-positional over finite, ε-free Eve-games. Any structured signature

automaton recognising W is fully progress consistent.

Proof. Suppose by contradiction that A is a structured signature automaton for W that
is not fully progress consistent. By definition, for some priority x even, there are q <x p

and a word w ∈ Σ∗ such that q w:≥x
p, but wω /∈ q−1W . As ∼x is a [0, x]-faithful

congruence, we can work with ∼x-classes and write [q]x
w:≥x [p]x. We study first the case

x > 0. By Lemma V.74, there is a word u ∈ Σ+ such that [q]x
u:x−1 [q]x and [p]x u:x [q]x.

Let u0 ∈ Σ+ be a word reaching q from the initial state of A.8 We obtain:

] u0w
ω /∈ W ,

] u0u
ω /∈ W , and

] u0(wu)ω ∈ W .

We consider the game depicted in Figure 40. Eve can win from v0 by alternating loops
labelled w and u when the play arrives to vchoice. However, she cannot win positionally
from v0.

v0 vchoice
u0

w

u

F Figure 40. A game G in which Eve cannot play optimally using positional strategies
if A is not fully progress consistent.

For the case x = 0, the proof is almost identical to that of Lemma V.26; we just
need to ensure that the game in Figure 31 (page 197) can be supposed finite and ε-free.
Finiteness of the game can be obtained by using Lemma I.17. To guarantee that we do
not include ε-transitions, if u0 = ε, we remove vertex v0 from the game. J

4.2.4 Complexity analysis
We now establish decidability of half-positionality of ω-regular languages in polynomial

time, stated as Theorem V.2. In this subsection we assume that the equivalence between
8If q is initial, we omit u0 and the state v0 of the game from Figure 40 to ensure the use of an ε-free

game.



226 Positionality of ω-regular languages and beyond

Items (2) and (5) from Theorem V.1 holds – although at this point we have only shown
necessity of Item (2).

Complexity of building a signature automata
In this section, we show how, given a deterministic parity automaton A, one may

apply the construction from the previous subsection, to decide whether W = L(A) is
half-positional. The general idea is simply to go through the construction from Sec-
tion V.4.2, either ending up with a failure indicating that W is not positional, or with
a deterministic structured signature automaton. At this point, it suffices to check full
progress consistency, which can be done in polynomial time, as explained below.

Most proofs have been already given in the previous section; we also require the
following easy lemma which follows from Proposition I.15.

F Lemma V.79. Let A be a parity automaton and x a priority. Assume that A is
deterministic over ≥x-transitions. Given two states q, p in A, we can decide in polynomial
time whether Safe<x(q) ⊆ Safe<x(p).

We now detail the polynomial-time procedure. Let A be a DPA recognising W .

] First, we check for each pair of states q, p whether L(Aq) ⊆ L(Ap), or L(Ap) ⊆
L(Aq). If for some pair of states these languages are incomparable, then residuals
of W are not totally ordered, and we can conclude that W is not half-positional.

Suppose that we have defined total preorders up to ≤x−2 making A a (x− 2)-structured
signature automaton.

] We <x-safe centralise A, which can be done in polynomial time by Lemma V.71.
The obtained automaton is deterministic over ≥x-transitions.

] We compute the <x-safe components of A, which can be done by doing a decompo-
sition in SCCs of A|≥x. We check whether, for each <x-safe component S and state
q, the states in S ∩ [q]x−2 are totally preordered by inclusion of <x-safe languages,
which can be done in polynomial time by Lemma V.79. If this is not the case, we
conclude that W is not half-positional.

] We remove the non-determinism fromA – in polynomial time and without increasing
the number of states – by applying Lemma V.76.

] We compute (in polynomial time) the automaton A′ given by Lemma V.77 (see last
subsection of Appendix C for details). We check whether L(A′) = W , which can
be done in polynomial time by Proposition I.15. If this is not the case, we conclude
that W is not half-positional.

After these operations, if we have not yet found that W is not half-positional, we
obtain an equivalent deterministic automaton A′ that is either x-structured signature,
or strictly smaller than A. In the former case, we continue defining preorders ≤x+1 and
≤x+2; in the latter, we restart from the beginning. In total, we repeat at most d · |Q|
times a sequence of operations that take polynomial time.

Checking full progress consistency
Assume that we have a deterministic structured signature automaton recognising A.

We cannot yet conclude that W is half-positional, as we do not know whether A is fully
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progress consistent, however, by Lemma V.78, if W is half-positional this must be the
case. By Theorem V.1, this condition is also sufficient. We show now that we can check
full progress consistency of A in polynomial time, finishing the proof of Theorem V.2.

Lemma V.80.
LetA be a deterministic structured signature automaton. We can decide in polynomial

time whether A is fully progress consistent.

The proof crucially relies in the following lemma.
F Lemma V.81. A deterministic structured signature automaton A is fully progress
consistent if and only if, for each even priority x and each pair of states q, p in A such
that q <x p we have:

q
w:≥x

p and p
w:y

p =⇒ y is even. (1)

Proof. It follows directly from the definition that a deterministic fully progress consistent
automaton satisfies this property. To show the converse, assume that (1) holds; we aim to
prove full progress consistency. Consider an even priority x and a word w ∈ Σ∗ such that
q <x p and q w:≥x

p, we should prove wω ∈ q−1W . We take x to be minimal such that
q <x p, and thus we have q ∼x−2 p. For x = 0, the proof is identical to the one appearing
in Lemma V.26, we assume that x ≥ 2. Therefore, there is a <x-safe path connecting q
and p, so we have q ∼x−1 p (Item 2 from the definition of structured signature automaton),
thus since q <x p we get Safe<x(q) ⊆ Safe<x(p) (Item 3). Consider the run over wω from
q in A:

ρ = q
w:≥x

p
w:y1

p2
w:y2

p3
w:y3 · · · .

Since w ∈ Safe<x(p) and q <x p, Lemma V.66 yields Safe<x(p) ⊆ Safe<x(p2), and
hence y1 ≥ x. Since ∼x−2 is [0, x − 2]-faithful and q

w:≥x−2
p ∼x−2 q, it follows that

p2 ∼x−2 p. Then it follows from p
w:≥x

p2 that p ∼x−1 p2, and thus p ≤x p2. Applying
the same reasoning by induction yields yi ≥ x and p ≤x pi for all i, and thus q <x pi

Eventually, ρ closes a cycle: there are N and k such that, for every i ≥ N , pi = pi+k.
We let p′ = pkN and let y denote the minimal priority produced by the cycle. Then it
holds that:

q <x p
′, q

wkN :≥x
p′, and p′

wkN :y
p′.

Thus thanks to (1), y is even, and so wω = (wkN)ω ∈ q−1W . J

We can now deduce Lemma V.80.

Proof of Lemma V.80. For each pair of states q, p ∈ Q and each priority x, we define
the languages of finite words

Lxq−→p = {w ∈ Σ∗ | q w:x
p in A}, and L≥xq−→p = {w ∈ Σ∗ | q w:≥x

p in A}.

By Lemma V.81, A is fully progress consistent if and only if, for each even priority
x ∈ [0, d] and each pair of states q, p ∈ Q such that q <x p:

L≥xq−→p

⋂ ( ⋃
y odd

Lyp−→p

)
= ∅.
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We show that for all pair of states, languages L≥xq−→p and Lxq−→p are regular and we can
obtain deterministic finite automata for them in polynomial time. This implies that we
can check the emptiness of intersections above in polynomial time, concluding the proof.

For L≥xq−→p the previous claim is clear: the finite automaton obtained by taking the
automaton structure of A|≥x and taking q and p as initial and final states, respectively,
is a finite automaton recognising L≥xq−→p.

For Lxq−→p, we consider the automaton over finite words that has as states (Q× [0, d])∪
{(q, init)}, and (q, init) and (p, x) as initial and final states, respectively. Transitions of
the automaton are of the form (q1, x1) a−→ (q2, x2) if the transition q1

a:y−→ q2 in A is such
that x2 = min{x1, y}. In words, this automaton keeps track of the run in A from q and
of the minimal priority produced in the way. It accepts a word if it arrives to p while
producing as minimal priority x, as we wanted. J

4.3 From signature automata to half-positionality

We now complete the proof of Theorem V.1 by showing the two implications (2) =⇒
(3) and (3) =⇒ (4). The implication (4) =⇒ (5) follows from Proposition V.14 (taken
from [Ohl23a]) and (5) =⇒ (1) is trivial.

4.3.1 ε-complete automata

Definition V.82 (ε-complete automata).
An ε-complete automaton A is a non-deterministic parity automaton (with ε-

transitions), with the property that for any pair of states q, q′ ∈ Q, and for any even
priority x < d (where d is the maximal priority in A):

either q
ε:x−→ q′ or q′

ε:x+1−−−→ q.

On an intuitive level, q ε:x−→ q′ means that “q is much better than q′”, since one may,
at any point, move from q to q′ and be rewarded with an even priority x on the way. On
the contrary, q′ ε:x+1−−−→ q means that “q′ is not much worse than q”, since one may at any
point move from q′ to q at the cost of reading an odd priority x+ 1. In other words, in a
ε-complete automaton, one may say that q and q′ are comparable for priority x.

Observe that whenever an automaton contains a transition q ε:x−→ q′ for even x, one may
also add q ε:x+1−−−→ q′ without increasing the language. Hence one may see ε-completeness
as a (much) stronger version of totality of ε:x+1−−−→.

4.3.2 From signature automata to ε-complete automata
We now prove the implication (2) =⇒ (3) from Theorem V.1, which can be stated

as follows.

Lemma V.83 (From (2) to (3) in Theorem V.1).
Let W be recognised by a fully progress consistent deterministic signature automa-

ton A. There exists a history-deterministic ε-complete automaton A′ recognising W .
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We prove Lemma V.83. Let A be a fully progress consistent deterministic signature
automaton with nested preorders ≤0,≤1, . . . ,≤d. Consider the automaton A′ obtained
from A by adding, for all even priorities x ∈ [0, d], transitions q ε:x+1−−−→ q′ whenever q′ ≤x q
and q ε:x−→ q′ whenever q′ <x q. Note that A′ (potentially) has transitions with priorities
up to d+ 1.

F Remark V.84. Note that, for x even, q ε:≥x−−→ p in A′ entails p ≤x q.

Since by definition, q′ <x q is the negation of q ≤x q′, it follows immediately that A′ is
ε-complete. Moreover, as A is a subautomaton of A′, the inclusion W ⊆ L(A) is trivial,
and A′ is determinisable by pruning. The difficulty lies in showing that W ⊆ L(A′).

F Remark V.85. If q w:x
q is a cycle in A′ producing an even minimal priority, then w

is not composed exclusively of ε-letters.

For a priority x (even or odd), we say that a transition q
ε−→ q′ in A′ is an x-jump

if q′ <x q. We remark that if x′ ≤ x, an x′-jump is an x-jump. We start with a useful
technical lemma.

F Lemma V.86. Fix a path q′ w′:≥x
p′ in A′, with x even, such that and consider a

run q w
p in A, where w is obtained from w′ by removing ε-letters (where p = q if w′ is

empty).

a) Assume that there is no x-jump on q′ w′:≥x
p′ and that q ∼x q′. Then p ∼x p′ and

q
w:≥x

p in A. Moreover, if q′ w′:x
p′, then q w:x

p in A.

b) Assume that there is no (x − 1)-jump on q′
w′:≥x

p′, that q′ ∼x−1 q and q′ ≤x q.
Then p′ ∼x−1 p, p′ ≤x p and q w:≥x

p in A.
c) We have that p′ ≤x−1 q

′.

Proof. In the two first cases we deal with the case of a letter and conclude by induction.

a) There are two possibilities, depending on whether the letter is ε or not.

] Transition q′ a:≥x−−→ p′ with a ∈ Σ. Then [0, x]-faithfulness of ∼x gives p ∼x p′

and q a:≥x−−→ p. Moreover if q′ a:x−→ p′, then by [0, x]-faithfulness, q a:x−→ p.
] Transition q′

ε:≥x−−→ p′. Then p′ ≤x q′ and since there is no x-jump, p′ ∼x q′.
Thus p = q ∼x q′ ∼x p′.

b) We distinguish the two same cases.

] Transition q′ a:≥x−−→ p′ with a ∈ Σ. Then local monotonicity of (≥x)-transitions
in A yields q a:≥x−−→ p in A with p′ ≤x p. By Remark V.60, p′ ∼x−1 p.

] Transition q′
ε:≥x−−→ p′. This implies p′ ≤x q′ and since there is no (x − 1)-

jump, we have p′ ∼x−1 q′. Thus we conclude that p′ ≤x q′ ≤x q = p and
p = q ∼x−1 q

′ ∼x−1 p
′.

c) Suppose by contradiction that p′ >x−1 q
′, and let q′1 be the first state in the run

such that q′ <x−1 q
′
1. We have:

q′
w′1:≥x

q′2
a:≥x−−→ q′1

w′2
p′,
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with q′2 <x−1 q
′
1. As in particular q′2 <x q

′
1, a 6= ε (Remark V.84). However, this

contradicts Item (III) from the definition of signature automaton. J

We now state the key result for deriving Lemma V.83.

F Lemma V.87. Consider a cycle q′ w′:x
q′ in A′ with x even, and let w be obtained

from w′ by removing ε-letters. Then, wω is accepted from q′ in A.

Proof. We note that by Remark V.85, w is not empty. Let y be minimal such that an
y-jump appears on the path q′ w′:x

q′.

] If y ≥ x. Then there is no ε:x−→ transition on the path q′ w′:x
q′ (otherwise it would

produce an x-jump). Thus Lemma V.86.a proves q′ w:x
q1 in A with q1 ∼x q′.

Then, since the ∼x-class is preserved, successive applications of Lemma V.86.a give
q′

w:x
q1

w:x
q2

w:x
q3

w:x
. . . in A, and thus wω is accepted from q′ in A.

] If y < x and y odd. We show that this case cannot happen. Let p′1
ε−→ p′2 denote the

first y-jump on the path q′ w
q′ in A′, that is, we have

q′
w′1:>y

p′1
ε:>y−−→ p′2

w′2:>y
q′ in A′, p′2 <y p

′
1.

By Lemma V.86.c, we have that p′1 ≤y q′, so p′2 <y q
′. The existence of a path

p′2
w′2:≥y

q′ contradicts Lemma V.86.c.

] If y < x and y even. Let p′1
ε−→ p′2 denote the last y-jump on the path q′ w

q′ in A′,
that is, we have

q′
w′1:≥y

p′1
ε:≥y−−→ p′2

w′2:≥y
q′ in A′, p′2 <y p

′
1,

and there is no y-jump on p′2
w2

q′. We let w1, w2 be obtained, respectively, from
w′1 and w′2 by removing ε’s. By Lemma V.86.a, we get that p′2

w2:≥y
q in A for

some q ∼y q′. As there is no (y − 1)-jump in the path, by Lemma V.86.b, we get
that q w1:≥y

p1 in A for p′2 <y p
′
1 ≤y p1. See Figure 41 for an illustration of the

situation.

p′2 q′

q

p′1

p1

ε :≥ y

w′
2 :≥ y

w2 :≥ y

w′
1 :≥ y

w1 :≥ y

F Figure 41. Situation in the third case of Lemma V.87. Dashed lines represent paths
in A′ and solid lines those in A. States that are ∼y-equivalent are encircled together.

All in all, we have obtained a path

p′2
w2:≥y

q
w1:≥y

p1 >y p
′
2 in A.
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Therefore, full progress consistency yields (w2w1)ω ∈ (p′2)−1W . As (p′2)−1W ⊆
q′−1W = (q)−1W , we conclude that wω = (w1w2)ω(q)−1W . J

We are now ready conclude the proof of Lemma V.83.

Proof of Lemma V.83. As mentioned above, the inclusion W ⊆ L(A′) is trivial, as A
is a subautomaton of A′. This shows that, if the converse inclusion holds, A′ is determin-
isable by pruning and therefore it is also history-deterministic.

We show L(A′) ⊆ W . Take an accepting run in A′ over w′ ∈ Σω and decompose it as:

q0
w′0

q′
w′1:x

q′
w′2:x

q′
w′3:x
· · · ,

where x is even. For each i, let wi be obtained from w′i by removing ε’s (which is non-
empty by Remark V.85), and consider the corresponding run in A:

q0
w0

q1
w1

q2
w2

q3
w3 · · · ,

It follows by induction that q′ ≤0 qi, so, as order ≤0 refines the order of residuals
(property (I) of a signature automaton), words that are accepted from q′ in A are also
accepted from qi. By Lemma V.86, it holds that for each pair of indices j ≤ j′ we have
(wjwj+1 . . . wj′)ω ∈ q−1W , so these words are also accepted from qi, for all i.

Let i1, i2, . . . be a sequence of indices such that qij = qij+1 for all j, and let q̃ = qi1 be
such recurring state. Each word wij . . . wij+1 forms a cycle over q̃, that, by the previous
remark, must be accepting, so the minimal priority produced on it is even. Therefore, we
have found a decomposition of the run over w in A of the form

q0
w0w1...

q̃
wi1 ...wi2 :x1

q̃
wi2 ...wi3 :x2 · · · ,

with all xi even. We conclude that w0w1 · · · ∈ W . J

4.3.3 Universal graphs from ε-complete automata
We now move on to implication (3) =⇒ (4) in Theorem V.1, which is now recalled.

Proposition V.88 ((3) =⇒ (4) in Theorem V.1).
If there is a ε-complete history-deterministic automaton recognising W , then there is

a well-ordered monotone (κ,W )-universal graph for each cardinal κ.

For the rest of the section, we let A be a ε-complete history-deterministic automaton
recognisingW , and we let d be even such that A has priorities up to d+1, as in the above
section.

Closure of an ε-complete automaton
We define the order 4 over priorities in [0, d + 1] that sets y 4 x if x is “preferable”

to y, that is: 1 4 3 4 . . . d+ 1 4 d 4 . . . 4 2 4 0.
F Remark V.89. For any pair of infinite words w,w′ ∈ [0, d + 1]ω satisfying that for all
i wi 4 w′i, it holds that:

w ∈ parity[0,d+1] =⇒ w′ ∈ parity[0,d+1].
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We say that an automaton A is priority-closed if:

] for any states q, q′, priorities y′ 4 y, and a ∈ Σ ∪ {ε}

q
a:y−→ q′ =⇒ q

a:y′−−→ q′

] for any states p, p′, q, q′ and a ∈ Σ ∪ {ε},

p
ε:y1−−→ q

a:y2−−→ q′
ε:y3−−→ p′ =⇒ p

a:min4(y1,y2,y3)−−−−−−−−−→ p′.

It is easy to turn any automaton into a priority-closed one.
F Lemma V.90. Let A be an automaton recognising W . There is an automaton A′
recognising W which is priority-closed. Moreover, if A is history-deterministic and ε-
complete, then so is A′.

Proof. Let A′ be obtained by adding to A all transitions of the form q
a:y′−−→ q′, when

q
a:y−→ q′ is a transition in A and y′ 4 y, and all transitions of the form p

a:min4(y1,y2,y3)−−−−−−−−−→ p′,
whenever a path p

ε:y1−−→ q
a:y2−−→ q′

ε:y3−−→ p′ appears in A. Clearly, A′ is priority-closed,
L(A) ⊆ L(A′) and if A is ε-complete, then so is A′. The fact that this operation preserves
history-determinism is also clear, once the equality of languages is obtained. To prove
that L(A′) ⊆ L(A), take an accepting run over w ∈ Σω in A′. We build a run over w in
A by replacing any newly added transition q a:y′−−→ q′ by q a:y−→ q′, and p a:min4(y1,y2,y3)−−−−−−−−−→ p′

by p ε:y1−−→ q
a:y2−−→ q′

ε:y3−−→ p′, respectively. By Remark V.89, the obtained run is accepting
in A. J

In a priority-closed automaton, for each priority y, transitions ε:y−→ define a transi-
tive relation. If the automaton is moreover ε-complete, then for each even priority x,
transitions of the form ε:x+1−−−→ define total preorders.

We define q ≥x q′ if q ε:x+1−−−→ q′. Note that, since A is priority-closed, these preorders
are nested: q ≥x+2 q

′ implies q ≥x q′. Moreover, since A is ε-complete, for any even x:

q >x q
′ =⇒ q

ε:x−→ q′.

Finally, observe that, by priority-closure, states q, q′ that are ≤d-equivalent have exactly
the same incoming and outgoing transitions, and can thus be merged without altering the
language (this transformation preserves history-determinism). Therefore, we may assume
that ≤d is antisymmetric and thus defines a total order on Q.

We write [q]x to denote the equivalence class of q associated to preorder ≤x. That is,
[q]x contains the states q′ such that q ≤x q′ and q′ ≤x q.

Definition of the graph
For the remaining of the section, we fix a cardinal κ. Let us first recall the construction

of the (κ, parity)-universal graph Uparity for the parity objective over {0, . . . , d + 1} (see
Example V.16 for a proof of universality). Its vertices are of the form (λ1, λ3, . . . , λd+1) ∈
κd/2+1, ordered lexicographically, and its edges are given by

(λ1, . . . , λd+1) x−→ (λ′1, . . . , λ′d+1) ⇐⇒

(λ′1, . . . , λ′x−1) ≤ (λ1, . . . , λx−1), if x is even,
(λ′1, . . . , λ′x) < (λ1, . . . , λx), otherwise.
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Fix a priority-closed ε-complete and history-deterministic automaton A with states Q
such that ≤d defines a total order on Q.

We define a Σ-graph UA as follows. Vertices of UA are the tuples v = (q, λ1, λ3, . . . , λd+1) ∈
Q× κd/2+1. We associate to each such vertex the extended tuple

ext(v) = ([q]0, λ1, [q]2, λ3, . . . , [q]d−1, λd+1).

We use it to define the total order: v ≤ v′ if ext(v) is smaller than ext(v′) for the lexico-
graphic order. This is therefore a well-order. Edges in UA are given by:

(q, λ1, . . . , λd+1) a−→ (q′, λ1, . . . , λd+1) ⇐⇒ ∃y

 q
a:y−→ q′ in A, and

(λ1, . . . , λd+1) y−→ (λ′1, . . . , λd+1) in Uparity.

Paths in UA are well-behaved with respect to W , as stated below.

F Lemma V.91. Let (q, λ1, . . . , λd+1) w be an infinite path in UA. Then, w ∈ q−1W .

Proof. Consider a path

(q0, λ0
1, . . . , λ

0
d+1) w0−→ (q1, λ1

1, . . . , λ
1
d+1) w1−→ . . . in UA.

By definition, there are priorities y0, y1, . . . such that

q0 w0:y0−−−→ q1 w1:y1−−−→ . . . in A, and (λ0
1, . . . , λ

0
d+1) y0−→ (λ1

1, . . . , λ
1
d+1) y1−→ . . . in Uparity.

Since vertices in Uparity satisfy the parity objective, lim inf(y0y1 . . . ) is even, thus the above
run in A is accepting, and so w0w1 · · · ∈ (q0)−1W . J

Monotonicity
Monotonicity of UA follows from the structural assumptions over A.

F Lemma V.92. The graph UA is monotone.

Proof. Let

(q, λ1, . . . , λd+1) a−→ (q′, λ′1, . . . , λ′d+1) > (q′′, λ′′1, . . . , λ′′d+1) in UA.

We aim to prove that (q, λ1, . . . , λd+1) a−→ (q′′, λ′′1, . . . , λ′′d+1) in UA. By definition of the
transitions of UA, there is a priority y such that q a:y−→ q′ in A and (λ0, . . . , λd+1) y−→
(λ′0, . . . , λ′d+1) in Uparity. We remark that, by definition of the order in UA, we have that
([q′′]0, λ′′1, . . . , λ′′y−1, [q′′]y) ≤ ([q′]0, λ′1, . . . , λ′y−1, [q′]y) (for y even, similar if y odd). We
distinguish four cases:

] If y is even and ([q′]0, λ′1, . . . , λ′y−1, [q′]y) = ([q′′]0, λ′′1, . . . , λ′′y−1, [q′′]y). Then in A,
q

a:y−→ q′
ε:y+1−−−→ q′′ thus q a:y−→ q′′, and in UA, (λ1, . . . , λy−1) ≥ (λ′1, . . . , λ′y−1) =

(λ′′1, . . . , λ′′y−1), which concludes.
] If y is odd and ([q′]0, λ′1, . . . , [q′]y−1, λ

′
y) = ([q′′]0, λ′′1, . . . , [q′′]y−1, λ

′′
y). Then, in A,

q
a:y−→ q′

ε:y−→ q′′ thus q a:y−→ q′′, and in UA, (λ1, . . . , λy) > (λ′1, . . . , λ′y) = (λ′′1, . . . , λ′′y)
which concludes.
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] If for some even x ≤ y it holds that ([q′]0, λ′1, [q′]2, . . . , λ′x−1) = ([q′′]0, λ′′1, [q′]2, . . . , λ′′x−1)
and [q′′]x < [q′]x. Then inA, q a:y−→ q′

ε:x−→ q′′ thus q a:x−→ q′′ and in UA, (λ1, . . . , λx−1) ≥
(λ′1, . . . , λ′x−1) = (λ′′1, . . . , λ′′x−1) thus (λ1, . . . , λd+1) x−→ (λ′′1, . . . , λ′′d+1) which con-
cludes.

] If for some even x < y it holds that ([q′]0, λ′1, . . . , [q′]x) = ([q′′]0, λ′′1, . . . , [q′′]x)
and λ′x+1 > λ′′x+1. Then, in A, q a:y−→ q′

ε:x+1−−−→ q′′ thus q a:x+1−−−→ q′′ and in UA,
(λ1, . . . , λx+1) ≥ (λ′1, . . . , λ′x+1) > (λ′′1, . . . , λ′′x+1) thus (λ1, . . . , λd+1) x+1−−→ (λ′′1, . . . , λ′′d+1)
which concludes.

The other implication v > v′
a−→ v′′ =⇒ v

a−→ v′′ in UA follows exactly the same
lines. J

Universality of UA
To prove Proposition V.88, there remains to establish universality of UA, which follows

easily from history-determinism of A and universality of Uparity.

F Lemma V.93. The graph U>A is (κ,W )-universal.

Proof. We show universality for trees of UA and conclude by Lemma V.15. Let T be
a Σ-tree of size < κ that satisfies W . Let r be a sound resolver for A. We define in a
top-down fashion a labelling rT : T → Q such that, if w1w2 . . . wk is the labelling of the
path from the root to a vertex t, then rT (t) is the target state of the run induced by r
in A. In particular, t a−→ t′ in T implies that rT (t) a:x−→ rT (t′) in A for some priority x, and,
on each infinite branch t0

a0−→ t1
a1−→ . . . , the run rT (t0) a0:x0−−−→ rT (t1) a1:x1−−−→ . . . is accepting

in A. Stated differently, the [0, d+ 1]-tree Tparity obtained from T by replacing each edge
t

a−→ t′ with the corresponding edge t x−→ t′ such that rT (t) a:x−→ rT (t′), satisfies the parity
objective.

By (κ, parity)-universality of Uparity, there exists a morphism φparity : Tparity → Uparity. As
Tparity has the same set of vertices than T , φparity defines a mapping from T to Uparity. We
consider the product mapping φ = rT × φparity : T → UA that sends t 7→ (rT (t), φparity(t)).
It defines a morphism, as for any edge t a−→ t′ in T it holds that, for some x, rT (t) a:x−→
rT (t′) in A and φparity(t) x−→ φparity(t′) in UA. J

This completes the proofs of the implications (2) =⇒ (3) =⇒ (4) from Theorem V.1,
providing a characterisation of half-positionality for ω-regular languages.

5 Bipositionality of all objectives

In this section we provide a characterisation of all bipositional objectives, without ω-
regularity or prefix-independence assumptions. This characterisation extends the result
of Colcombet and Niwiński [CN06], who showed that the only prefix-independent biposi-
tional objective (over all game graphs) is the parity objective. Recently, Bouyer, Randour
and Vandenhove [BRV23] generalised that result in an orthogonal direction: they proved
that the only objectives for which both players can play optimally using finite chromatic
memory are ω-regular objectives.
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5.1 Characterisation of bipositionality and consequences

We say that an objective W ⊆ Σω is bi-progress consistent if both W and its comple-
ment are progress consistent, that is, if it satisfies that for all residual class [u] and finite
word w ∈ Σ∗:

] [u] < [uw] =⇒ uwω ∈ W , and
] [uw] < [u] =⇒ uwω /∈ W .

Theorem V.6 (Characterisation of bipositionality).
An objective W ⊆ Σω is bipositional (over all games) if and only if:

1. W has a finite number of residuals, totally ordered by inclusion, and
2. W is bi-progress consistent, and
3. W can be recognised by a parity automaton on top of the automaton of residuals.

This characterisation only holds for infinite games, as there are non ω-regular objec-
tives that are bipositional over finite games, as, for example, energy objectives [Bou+08]
and their generalisation [Koz22a]. However, we deduce from Theorem V.3 that in the
case of ω-regular objectives these conditions do also characterise bipositionality over fi-
nite games.

Corollary V.94 (Bipositionality over finite games for ω-regular objectives).
An ω-regular objective W ⊆ Σω is bipositional over finite games if and only if it

satisfies the three conditions from Theorem V.6.

Consequences: Lifts and decidability
For ω-regular objectives, we can directly lift the corollaries of Theorem V.1 obtained

for half-positionality to bipositionality. For non-ω-regular ones, the finite-to-infinite lift
does not hold, as commented above. On the other hand, a combination with a recent
result from Bouyer, Randour and Vandenhove [BRV23, Theorem 3.8] implies that the
1-to-2-player lift holds for any objective.

We say that an objective W ⊆ Σω is bipositional over (finite) one-player games if W
is half-positional over (finite) Eve-games and its complement W is half-positional over
(finite) Adam-games.

Corollary V.95 (1-to-2 player lift of bipositionality).
An objective W ⊆ Σω is bipositional (over all games) if and only if it is bipositional

over one-player games.

Corollary V.96 (Finite-to-infinite lift of bipositionality for ω-regular objectives).
An ω-regular objective W ⊆ Σω is bipositional (over all games) if and only if it is

bipositional over finite one-player games.
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We obtain decidability for bipositionality in polynomial time from its counterpart in
the case of half-positionality (Theorem V.2). We observe that Theorem V.6 provides a
more efficient way to check bipositionality.

Corollary V.97 (Decidability of bipositionality).
Given a deterministic parity automaton A, we can decide in polynomial time whether

L(A) is bipositional.

An example

Example V.98 (Parity over occurrences).
We let Σ = [0, d] and let WOccParity be the language of words such that the minimal

priority appearing on them is even:

WOccParity = {w ∈ [0, d]ω | min(w) is even}.

An automaton recognising W is depicted in Figure 42. It has one state per residual,
which are totally ordered, and it is immediate to check that it is bi-progress consistent.
Therefore, WOccParity is a bipositional objective.

q0q1 q2q3 q4

0

1

1

0, 1, 2, 3, 4

1, 2, 3, 4

2, 3, 43, 4 4

01 23

0

0

02

F Figure 42. Automaton recognising WOccParity, for d = 4. The initial state is q4.
This automaton is in fact a weak automaton: runs that finally end in an even state are
accepting, and those ending in an odd state are rejecting.

Some more complex examples can be generated by, for example, adding some output
priorities to the automaton above without breaking the bi-progress consistency condi-
tion. However, the combination of being recognisable by the automaton of residuals
with bi-progress consistency greatly restricts the possibilities of generating examples of
bipositional languages. We wonder whether a more precise characterisation of languages
satisfying these three properties can be obtained.

5.2 Proof of the characterisation

Necessity of the conditions
The necessity of the total order over the residuals of W is given by Lemma V.21,

and the necessity of bi-progress consistency is given by Lemma V.26. The following
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lemma provides the necessity of the last condition of Theorem V.6. It can be obtained by
instantiating the first item of [BRV23, Theorem 3.6] for the case of bipositional objectives.

Lemma V.99 ([BRV23, Theorem 3.6]).
If W ⊆ Σω is bipositional over one-player games, then W is ω-regular and can be

recognised by a parity automaton on top of the automaton of residuals.

Sufficiency of the conditions
The sufficiency of conditions of Theorem V.6 can be shown by providing well-ordered

monotone universal graphs for W and its complement. An even simpler option – now
that we have already done such construction for half-positional objectives – is to provide
fully progress consistent signature automata recognising these languages, and then use
the characterisation of half-positionality given by Item (2) from Theorem V.1.

We show that the parity automaton on top of the automaton of residuals is a fully
progress consistent signature automata. Since by hypothesis Res(W ) is totally ordered,
the order ≤0 given by inclusion of residuals satisfies the first requirement of the definition
of signature automaton. As the residual classes of this automaton are trivial, we can
define all relations ∼x to be trivial too, so this automaton satisfies all the requirements to
be a signature automaton. Moreover, as W is progress consistent and the ∼x-classes of
the automaton are trivial, it is also fully progress consistent. The argument is symmetric
for W .

6 Half-positionality of closed and open objectives

6.1 Closed objectives

We recall that an objective W is closed if

W = Safety(L) = {w | w does not contain any prefix in L},

for some language of finite words L. Half-positional closed objectives were first charac-
terised by Colcombet, Fijalkow and Horn [CFH14], as those that have a totally ordered
set of residuals. However, as they aleady showed, this characterisation only holds for finite
branching game graphs. This fact tells us that we cannot hope to have a finite-to-infinite
lift for general closed objective (as the one presented for ω-regular ones in Corollary V.3).

We now give a characterisation of half-positionality over all game graphs for closed
objectives. Namely, a closed objective W is half-positional if and only if Res(W ) is well-
ordered by inclusion (Theorem V.7). Moreover, we prove (Lemma V.102) that the well-
foundedness of Res(W ) is a necessary condition for finite memory determinacy of any
objective.

6.1.1 Well-foundedness of residuals
Next example, taken from [CFH14], shows that total order over residuals does not

suffice to ensure half-positionality of arbitrary closed objectives.
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Example V.100 (Outbidding game [CFH14]: Total order does not suffice).
Let Σ = {a, b, c} and L be the language of finite words:

L = {w ∈ Σ∗ | for some u ∈ Σ∗ with |u|a ≤ |u|b, uc is a prefix of w},

where |u|x is the number of occurrences of a in u. We consider the closed objective
W = Safety(L). The residuals of W are totally ordered by inclusion:

∅ = c−1W < · · · < (an)−1W < · · · < a−1W < ε−1W < b−1W < · · · .

However, W is not half-positional, as witnessed by the game in Figure 43.

v1

v2

v3

v4

vchoice vfinal

...

...

...

a

a2

a3

a4

b

b2

b3

b4
c

F Figure 43. Outbidding game. First, a sequence an is produced, for some n ∈ N. In
order to win, Eve needs to answer with bm, with m > n. Therefore, she can win from any
vertex in the game, but no positional strategy guarantees the victory from all states.

Lemma V.101 (Necessity of the well-order of residuals).
Let W ⊆ Σω be an objective that is half-positional over ε-free Eve-games. Then,

Res(W ) is well-ordered by inclusion.

We have already seen (Lemma V.21), that if W is half-positional, then Res(W ) is
totally ordered. We need to prove that Res(W ) is well-founded. In fact, we show a much
stronger result: if the memory requirements of W are finite, then Res(W ) is well-founded.

Lemma V.102 (Well-foundedness of residuals necessary for finite memory).
Let W ⊆ Σω be an objective such that Eve can play optimally with finite memory

over ε-free Eve-games. Then, Res(W ) is well-founded (for the order given by inclusion of
residuals).

Proof. Suppose by contradiction that there is an infinite strictly decreasing sequence of
residuals:

u1
−1W ) u2

−1W ) · · · , ui ∈ Σ∗.
(We suppose without loss of generality that ε 6= ui for all i.) Let wi ∈ Σω such that
wi ∈ ui

−1W \ ui+1
−1W . We consider the game – similar to the outbidding game from

Figure 43 – in which a word ui labels a path from a vertex vi to vchoice, for each i. From
this latter vertex, Eve can choose a between paths labelled by {wi | i ∈ N}. Eve can
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win be answering wi to ui. However, any finite memory strategy will only consider a
finite number of responses wj1 , . . . , wjn . Therefore, such a strategy is losing from vK for
K > max{jt | 1 ≤ t ≤ n}. J

6.1.2 Characterisation for closed objectives

Theorem V.7 (Half-positional closed objectives).
Let W ⊆ Σω be a closed objective. Then, W is half-positional (over all game graphs)

if and only if Res(W ) is well-ordered by inclusion.

Proof. We have already shown that this condition is necessary. To prove sufficiency, we
give, for each cardinal κ, a (κ,W )-universal well-ordered monotone graph. We conclude
by Proposition V.14.

Let U be the Σ-graph that has as vertices Res(W ) \ {∅}, ordered by inclusion. By
hypothesis, this is a well-order. For each a ∈ Σ, we let

u−1W
a−→ u′−1W iff u′−1W ≤ (ua)−1W.

We note that if ua is already losing (ua−1W = ∅), then transition u−1W
a−→ u′−1W does

not appear in U . By Lemma V.7, graph U is monotone. The hypothesis of closeness of
W is fundamentally used in next claim.

G Claim V.102.1. A vertex u−1W of U satisfies W if and only if u−1W ⊆ ε−1W = W .

Proof. Let L ⊆ Σ∗ such that W = Safety(L). Let u1
−1W

a1−→ u2
−1W

a2−→ . . . be a
path in U from u1 = u. By induction we obtain ∅ 6= ui

−1W ⊆ (u1a1 . . . ai−1)−1W .
Therefore, for all i, ua1 . . . ai /∈ L, so, by definition of W , the infinite word ua1a2 . . .
belongs to W . C

We show that U is (κ,W )-universal for trees, for every cardinal κ, and conclude by
Lemma V.15. Let T be a Σ-tree which satisfiesW . For each node t ∈ T , let φ(t) = ut

−1W
be the minimal residual such that t satisfies ut−1W . In particular, for the root t0, φ(t0)
satisfies W by the previous claim. We claim that φ is a morphism. Indeed, if t a−→ t′

in T and t satisfies u−1W , then t′ satisfies (ua)−1W . Therefore, u′t−1W ≤ (uta)−1W , so
φ(t) = ut

−1W
a−→ ut′

−1W = φ(t′) is an edge in U . J

6.2 Open objectives

We recall that an objective W is open if

W = Reach(L) = {w | w contains some prefix in L},

for some L ⊆ Σ∗.

6.2.1 Reset-stability
In Section V.3.2, we showed that half-positional ω-regular open objectives are exactly

those with residuals totally ordered and that are progress consistent. However, for non-
ω-regular objectives, these conditions do not suffice, even if residuals are well-ordered.
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Example V.103 (Progress consistency does not suffice).
Let Σ = N and let W be the set of non strictly increasing sequences:

W = {a1a2 · · · ∈ Nω | ai+1 ≤ ai for some i }.

This objective is open, as W = Reach(two consecutive non-increasing numbers). Its
residuals are:

ε−1W < 0−1W < 1−1W < 2−1W < · · · < (00)−1W = Σω.

Therefore, Res(W ) is well-ordered. Moreover, W is progress consistent: any repetition of
factors induces a non-strict inequality < between consecutive letters.

However, we claim thatW is not half-positional. Consider the game in Figure 44. Eve
can win this game: no matter what is the vertex vi chosen by Adam, she can first move
one position to the right, producing i, and then go down producing letter 1. This ensures
two consecutive non-increasing numbers. However, she cannot win positionally. Indeed,
if such a strategy tells her to go always to the left, the sequence produced will be strictly
increasing. If she choses to go down in vertex vi, Adam can win by initialising the play
in that vertex.

v1 v2 v3 v4

v′2 v′3 v′4

. . .

. . .

1 2 3 4

2 3 4

1 1 1 1

F Figure 44. Game in which Eve wins if she produces a non-strictly increasing sequence
of numbers. She can win from every vertex, but not positionally.

Definition V.104 (Reset-stability).
We say that an objective W ⊆ Σω is reset-stable if, for each sequence of finite words

u1, u2, u3, · · · ∈ Σ+ and each sequence of residuals s0
−1W, s1

−1W, s2
−1W, · · · ∈ Res(W ):

si
−1W < (si−1ui)−1W for all i ≥ 1 =⇒ u1u2u3 · · · ∈ s0

−1W.

An intuitive idea of reset-stability is the following. Consider the (potentially infinite)
automaton of residuals of W , which inherits the order over residuals. Add to it all ε-
transitions going backwards: s−1W

ε−→ s′−1W for s′−1W < s−1W . When a run takes an
ε-transition, we say that it makes a reset. What reset-stability tells us is that any run
making infinitely many resets must be accepting. The words u1, u2, . . . in the definition
above correspond to fragments where no reset takes place, and si−1W is the residual where
we land after the ith reset. (See also the notion of 0-jumps in the proof of Lemma V.86).
F Remark V.105. If W is reset-stable, it is progress consistent. The converse holds if
Res(W ) is finite and totally ordered.
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We note that all closed objectives are reset-stable.

Lemma V.106 (Necessity of reset-stability).
Let W ⊆ Σω be a half-positional objective over ε-free Eve-games. Then, W is reset-

stable.

Proof. Suppose by contradiction thatW is not reset-stable. That is, there are u1, u2, . . .Σ+

and s0
−1W, s1

−1W . . . such that si−1W < (si−1ui)−1W , but u1u2 . . . /∈ s0
−1W .

Let wi ∈ Σω such that wi ∈ (si−1ui)−1W \ si−1W . We consider the game pictured in
Figure 45 (to ensure it to be ε-free, we just remove vertex vi if si = ε).

v0 v1 v2 v3 v4

v′0 v′1 v′2 v′3 v′4 · · ·

· · ·

· · ·

s0 s1 s2 s3 s4

u1 u2 u3 u4 u5

w1 w2 w3 w4

F Figure 45. Game in which Eve wins if she produces a non-strictly increasing sequence
of numbers. She can win from every vi, but not positionally.

Eve can win G from any vertex vi (and from v′i if si = ε), as she can produce the
word siui+1wi+1, which belongs to W , as we have taken wi+1 ∈ (siui+1)−1W . However,
we show that no positional strategy ensures to win from all these vertices. We distinguish
two cases. If this strategy takes the path v′i

ui+1
v′i+1 for all i, then it is not winning

from v0, as by hypothesis u1u2 . . . /∈ s0
−1W . If on the contrary this strategy takes a path

v′i
wi , then it is not winning from vi. J

6.2.2 Characterisation for open objectives

Theorem V.8 (Half-positional open objectives).
Let W ⊆ Σω be an open objective. Then, W is half-positional (over all game graphs)

if and only if:

] Res(W ) is well-ordered by inclusion, and
] W is reset-stable.

Proof. The necessity of the conditions has already been established in Lemmas V.102
and V.106. To prove the sufficiency, we give, for each cardinal κ, a well-ordered mono-
tone graph that is (κ,W )-universal for trees, and conclude by Proposition V.14 and
Lemma V.15.

We let U be the Σ-graph having as set of vertices (Res(W ) \ {∅}) × κ, ordered lexi-
cographically. This graph is well-ordered, as by hypothesis so is Res(W ). The edges are
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given by:

(u−1W,λ) a−→ (u′−1W,λ′) if


u′−1W = (ua)−1W and λ′ < λ, or
u′−1W < (ua)−1W, or
u−1W = Σω.

By Lemma V.7, this graph is monotone. We show its (κ,W )-universality for trees. The
key ingredient for this is next claim, which strongly relies in the reset-stability hypothesis.
We let L be the language of finite words such that W = Reach(L).

G Claim V.106.1. For each ordinal λ < κ and each residual u−1W , vertex (u−1W,λ)
satisfies u−1W in U .
Proof. Let ρ = (u0

−1W,λ0) a1−→ (u1
−1W,λ1) a1−→ · · · be an infinite path from (u−1W,λ)

in U , and consider its projection over the (infinite) automaton of residuals RW .
Whenever ρ takes a transition (ui−1W,λi) a−→i (ui+ 1−1W,λi+1) with ui+1

−1W =
(uiai)−1W , this transition exists in RW . If ui+1

−1W < (uiai)−1W , we say that this
transition makes a reset. By induction, we obtain that ui−1W ≤ (ua1 . . . ai)−1W .
We distinguish two cases: (1) If ρ makes infinitely many resets, then we conclude by
reset-stability. (2) If ρ makes finitely many resets, then eventually λi+1 < λi for all
i, unless ui−1W = Σω. We conclude that eventually ui−1W = Σω ≤ (ua1 . . . ai)−1W .
Therefore, ua1 . . . ai ∈ L, so ua1a2 · · · ∈ W . C

Let T be a Σ-tree whose root satisfies W . We give a morphism φ : T → U , which we
decompose in φ1 : T → Res(W ) \ {∅} and φ2 : T → κ. For each t ∈ T , let ut be the word
labelling the path from the root t0 to t. We let φ1(t) = ut

−1W for each t. We define
φ2 by transfinite induction. By hypothesis, each branch eventually contains vertices t
such that ut ∈ L (that is, u−1

t =Σω). For all these vertices, we let φ2(t) = 0. The tree
obtained by removing these vertices, named T1, does not have any infinite branch. For
an ordinal λ < κ, let Tλ be the set of nodes for which we have not defined φ2 at step λ of
the induction. For each leaf t of Tλ, we let φ2(t) = λ.

This mapping has the two following properties:

] if t a−→ t′ in T , then φ1(t′) = (uta)−1W , and
] if t a−→ t′ in T , either φ2(t′) < φ2(t), or ut′ ∈ L.

This ensures that φ = (φ1, φ2) is a morphism, concluding the proof. J

Example V.107 (Half-positional open objective).
Let Σ = N and let W be the set of sequences that start by 123 . . . n, and eventually

decrease. Formally:

W = {a1a2 · · · ∈ Nω | there is j such that ai = i for i < j and aj < j}.

This objective is recognised by the infinite reachability automaton depicted in Fig-
ure 46. Its residuals are well-ordered and it is reset-stable, as after any reset we necessarily
produce an word in W . Therefore, W is half-positional.

We remark that this objective is not bipositional, as Res(W ) is not well-founded. This
contrast with the case of ω-regular open objectives, for which all half-positional open
objectives are bipositional (Corollary V.30).
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Accept

v1 v2 v3 v4 . . .1 2 3 4

0 <2 <3 <4

N

F Figure 46. Game in which Eve wins if she produces a non-strictly increasing sequence
of numbers. She can win, but not positionally.

6.3 1-to-2-player lift and addition of neutral letters

Corollary V.108 (1-to-2-player lift for open and closed objectives).
Let W ⊆ Σω be an open or closed objective. If W is half-positional over ε-free Eve-

games, then W is half-positional over all game graphs.

We also obtain from our proofs that the Neutral letter conjecture (Conjecture V.3)
holds for open and closed objectives.

Corollary V.109 (Closure under addition of neutral letters).
Let W ⊆ Σω be an open or closed objective. If W is half-positional, then W ε is

half-positional.

Proof. In the proof of Theorems V.7 and V.8, we obtained the positionality of objectives
by providing well-ordered monotone (κ,W )-universal graphs. Proposition V.20 allows us
to conclude. J

We have therefore obtained the 1-to-2-player lift for ω-regular objectives, as well as
open and closed ones. However, the 1-to-2-player lift does not hold for arbitrary objectives.
A counter-example is discussed in the PhD of Pierre Vandenhove [Van23, p.236].9 The
objective considered there (first appearing in [Kop08]), is:

MPQ = {w ∈ {0, 1}ω | lim inf
n

(
n∑
i=0

wi)/n is rational}.

We provide here a different example.

Proposition V.110 (No general 1-to-2-player lift).
There is an objective W ⊆ Σω that is half-positional over Eve-games, but is not

half-positional over all game graphs.

Proof. Let Σ be any infinite alphabet, and let W be the following objective:

Wfin = {w ∈ Σω | |Inf(w)| is finite}.
9In his PhD [Van23], Vandenhove discusses the 1-to-2-player lift for finite game graphs. The counter-

example he gives also applies to infinite game graphs.
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To show that it is not half-positional, we consider the game in Figure 47, in which Eve
controls a single vertex, from which she can send the token to any vertex vi controlled by
Adam. We claim that Eve can win this game from every vertex by using the following

vEve

v1 v2 v3 v4 . . .

. . .

1 2 3 4

1

1 1

1

1

1 1
1

F Figure 47. Game in which Eve wins if only finitely many letters are produced infinitely
often. She can win by sending the token further and further away, but she cannot win
positionally.

strategy: she keeps track of the maximal index imax such that the play has passed trough
vertex vimax . Whenever Adam sends back the token to vEve, she will go to vertex vimax .
This strategy ensures that only letter 1 will be produced infinitely often.

However, Eve cannot win using a finite memory strategy. Such a strategy will only
consider finitely many edges vEve

1−→ vi. Let vk be the maximal such vertex. Adam can win
against such strategy by producing longer and longer paths, and then sending back the
token to the vertex controlled by Eve: vi

i(i+1)...
vk+j

1−→ vEve. In this way, all numbers
greater that k will be produced infinitely often.

We show that Wfin is positional over Eve-games.
G Claim V.110.1. For every Eve-game G with winning condition Wfin and every fixed
vertex v0, if Eve wins from v0, she can win from v0 using a positional strategy.

Proof. Assume that Eve wins from v0. A strategy from v0 is just an infinite path from
v. Consider such a path. If this path does not visit a same vertex twice, it is already a
positional strategy. On the contrary, let vk be the first vertex that repeats. Consider
the first two occurrences of vrep:

v0
a0−→ v1

a1−→ · · · vk
ak−→ · · · vk+j

ak+j−−→ vk.

Then, the positional strategy indicating to take the edge vi
ai−→ vi+1 for i ≤ k + j is

winning. C

We use this claim to prove thatWfin is (uniformly) half-positional over Eve-games. Let
G be an Eve-game with winning condition Wfin. By prefix-independence of Wfin, we can
suppose without loss of generality that Eve wins from every vertex in G. Let v1, v2, . . . a
(potentially transfinite) enumeration of vertices in G. We will define a positional strategy
strat : V → E by transfinite induction. At step λ, let Gλ be the game obtained by removing
vertices for which strat has already been defined. Let i be the minimal index such that
vi appears in Gλ. By the previous claim, Eve has a positional strategy in Gλ that wins
from vi. Let Vλ be the vertices reachable from v by using this strategy, and for v ∈ Vλ let
strat(v) be the edge indicated by such strategy. We let V ′λ be the vertices in Gλ \ Vλ from
which Eve can reach Vλ, and fix a positional strategy doing so. We let strat(v′) being
given by this strategy for these vertices. It is immediate that strat is a positional strategy
in G that wins from all vertices. J
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Life is a journey, not a destination.
Ralph Waldo Emerson

Introduction
One particularity of this thesis is the use of transition-based automata and edge-

coloured games throughout the entire manuscript (instead of state-based and vertex-
coloured ones). The use of this formalism is not completely conventional; the vast majority
of papers in the literature use games and automata with the acceptance condition defined
over the states. The choice of transition-based models is far from being fortuitous: not
a single result1 of this tesis would hold when using state-based automata! I2 strongly
believe that many of these results have not been found much earlier precisely because the
use of transition-based automata was not widespread.

In this addendum, we discuss the adequacy of transition-based automata and games for
both the theoretical study of ω-regular languages and practical applications. We support
the idea that the formalism defining acceptance conditions over transitions is preferable
for all purposes. To provide evidence for this claim, we survey a collection of results that
illustrate the advantages of using transition-based models.

1This statement might have been slightly exaggerated, but not so much really.
2If you have made it this far in the manuscript, we can consider ourselves almost intimates, so I

will allow myself to write in a slightly more informal style and use the first person of singular whenever
referring to personal thoughts and considerations.
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Before diving into the list of problems, we give a brief and completely incomplete
account on the use of state-based and transition-based automata in the literature.

Use of state-based and transition-based acceptance in the literature. Au-
tomata over infinite words were first introduced by Büchi in the 1960s [Bü62], using
a formalism that put the acceptance condition over the states.3 The tradition of em-
ploying state-based acceptance persisted in all subsequent classic foundational works
on ω-automata: Muller’s paper at the origin of the Muller condition [Mul63], Landwe-
ber’s study of the complexity of ω-regular languages [Lan69], McNaughton’s works on
ω-regular expressions [McN66] and infinite games [McN93], Rabin’s decidability result of
S2S [Rab69], Wagner’s paper introducing a hierarchy of complexity [Wag79], etc. Follow-
ing this tradition, virtually all handbooks and surveys about automata over infinite words
use state-based acceptance [Tho97, GTW02, PP04, Kup18, BCJ18, WS21, LT21, BK08].
To the best of my knowledge, the only exception to this is the recent book on games on
graphs [Fij+23].

As far as I am aware of, the first occurrence of transition-based automata in the
literature is due to Bertrand Le Saëc4 [Saë90, SPW91, SL94]. He introduced transition-
based Muller automata under the name of table-transition automata, and he already
identified a crucial difference between state and transition-based automata: the residual
automaton of a language L can recognise a richer class of languages when using transition-
based acceptance. Nowadays, the use of transition-based automata is becoming more and
more popular in research papers and tools – some of them are discussed in Section VI.2.
The fundamental difference between the two models became undeniable following the
groundbreaking results of Abu Radi and Kupferman [AK22] and Schewe [Sch20], show-
ing, respectively, that the minimisation of history-deterministic transition-based coBüchi
automata can be performed in polynomial time, and that the corresponding problem for
state-based automata is NP-complete.

Why is was the use of state-based acceptance widespread? We may wonder
why state-based automata were the ubiquitous model for more than 50 years. A first
answer, and probably the most influential factor, is that ω-automata generalise automata
over finite words, for which acceptance over states is indeed the natural choice. Some
natural constructions of ω-automata build on automata over finite words, and for some
of these, state-based acceptance may appear naturally.

One such a construction is the characterisation of languages recognised by determin-
istic Büchi automata as limits of languages of finite words [Lan69] (see also [Tho91,
Remark 4.1]). A language L ⊆ Σω can be recognised by a deterministic Büchi automaton
if and only for some language of finite words Lfin ⊆ Σ∗ we have:

L = −→Lfin = {w ∈ Σω | w contains infinitely many prefixes in Lfin}.
3The corroboration of this claim is reserved to a selected group of researchers capable of understanding

Büchi’s paper, a category I unfortunately do not fall within. Igor Walukiewicz and André Arnold confirm
the use of state-based acceptance by Büchi, and point out that it can be observed, for instance, in the
first line of the proof of Lemma 12 (page 8). In Büchi’s 1969 paper with Landweber [BL69a] , the use
of state-based acceptance is a bit simpler to appreciate in the definitions of SupZ and U , in the second
page of the paper.

4Unfortunately, some of the results of the paper [Saë90] are incorrect. Namely, the condition from
Theorem 5.1 does not characterise languages of parity index at most [0, 1], as it is claimed. A correct
version of this statement appears in Proposition II.110 in this thesis.
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Building a state-based Büchi automaton from a deterministic automaton recognising Lfin
is easy: we just need to interpret the final states of the automaton as the states of the
Büchi condition.

Structure of the chapter. This is a short chapter, divided in three short sec-
tions. We start Section VI.1 by showing that we can easily switch between state and
transition-based acceptance with at most a linear blow-up. However, we already notice
a key difference: going from a transition-based automaton to a state-based one adding
the minimal number of states is NP-hard. In the central section VI.2, we provide a
(non-exhaustive) list of situations in which considering transition-based or state-based
acceptance has a major impact, either in the complexity of decision problems or in actual
theoretical results about ω-automata. The final section VI.3 is an attempt to explain the
underlying reasons causing these striking differences between the two models.

Acknowledgements. I am deeply in debt with Thomas Colcombet for forcing me
to use transition-based automata during my initial steps in research in my master’s thesis.
I also thank Géraud Sénizergues for pointing me to the works of Bertrand Le Saëc.

1 From states to transitions and vice-versa
At first sight, it seems that there is no great difference between state-based or transition-

based acceptance: we can go from one model to the other with at most a linear blow-up.
However, transition-based automata are always smaller, and going from a state-based
automaton to a transition-based one in an optimal way is NP-hard, as stated in Proposi-
tion VI.3.5

Proposition VI.1 (From states to transitions).
Let S = (Q,Σ, I,∆) be an automaton structure and let Ast = (Q,Σ, I,Γ,∆, colst,W )

be a state-based automaton on top of S. Then, there is a transition-based automaton on
top of S equivalent to Ast, using W as acceptance set.

Proof. We define an acceptance condition (coltrans,Γ,W ) on top of S associating to a
transition e = q

a−→ q′ the colour coltrans(e) = colst(q). It is immediate to check that the
obtained automaton is equivalent to Ast. J

Proposition VI.2 (From transitions to states).
Let Atrans = (Q,Σ, I,Γ,∆trans,W ) be a transition-based automaton using a prefix-

independent acceptance set W ⊆ Γω.6 Then, there is a state-based automaton Ast equiv-
alent to Atrans of size |Atrans| · |Γ| and using W as acceptance set.

5In this section, we only work with automata for the ease of the reader. All results can be generalised
to transition systems as presented in Chapter II.

6There is a small annoying technical point here: the construction given in the proof only works if W
is prefix-independent. Indeed, any run will start in a state (q, c0), so it will output colour c0 ∈ Γ first no
matter what is the input word. I see the fact that getting rid of this prefix-independent assumption is a
hassle as further evidence that state-based acceptance is not well-suited.
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Proof. Let c0 ∈ Γ be a colour picked arbitrarily. We defineAst = (Q′,Σ, I ′,Γ,∆′, colst,W )
to be the automaton given by:

] Q′ = Q× Γ,
] the set of initial states is I ′ = {(q, c0) | q ∈ I},

] (q, c) a−→ (q′, c′) ∈ ∆′ if q a:c′−−→ q′ ∈ ∆trans ,
] colst(q, c) = c.

It is immediate to check that this automaton is equivalent to Atrans. J

The automaton Ast from the previous proof satisfies the property that it admits a
locally bijective morphism to Atrans, that is, it has been obtained by duplication of some
states. However, in general, the factor |Γ| is not optimal, we can obtain an equivalent
automaton by duplicating only some of the states. Next proposition – which just restates
Theorem II.15 – states that deciding what is the minimal number of states that we need
to duplicate is NP-hard, already for the class of Büchi automata.

Proposition VI.3 (Optimal transformation from transitions to states).
The following problem is NP-complete:

Input: A transition-based Büchi automaton Atrans and a positive integer k.
Question: Is there a state-based Büchi automaton of size k admitting

a locally bijective morphism to Atrans?

We recall that the reduction used to prove the previous result is the same as the one
given by Schewe to show the NP-completeness of the minimisation of state-based Büchi
automata [Sch10].

2 A compendium of problems

Propositions VI.1, VI.2 and VI.3 already indicate that transitions-based models are
more succinct. However, the difference on the size is only linear, which might lead to
the idea that there is no critical difference between these models. In this section we
provide a list of problems for which the complexity greatly varies when using state-based
or transition-based acceptance. We believe that this provides a solid support for our main
thesis: transition-based automata are not only more succinct than state-based ones, but,
most importantly, they are more canonical.

Minimisation of coBüchi automata

Consider the problem of the minimisation of coBüchi automata:
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Problem: Minimisation of coBüchi automata
Input: A (history-)deterministic coBüchi automaton A

and a positive integer k.
Question: Is there a (history-)deterministic coBüchi automaton

equivalent to A of size at most k?

This problem admits different variants; we can consider it for both deterministic or
history-deterministic automata, and for state-based or transition-based ones. Surprisingly,
the choice of the acceptance type has a great influence on its complexity. We remark that
the importance of the choice of the model lies in the output, as we can convert the input
from state-based to transition-based in polynomial time.

Proposition VI.4 ([Sch10, Sch20]).
The problem Minimisation of coBüchi automata is NP-complete for both determin-

istic and history-deterministic automata if state-based acceptance is used.

Proposition VI.5 ([AK22]).
The problem Minimisation of coBüchi automata can be solved in polynomial time

for history-deterministic transition-based automata.

The complexity of Minimisation of coBüchi automata is open for deterministic
transition-based automata.

Determinisation of Büchi automata
The complexity of the determinisation of Büchi automata is a fundamental prob-

lem in the theory of ω-automata, which has been studied since their introduction by
Büchi [Bü62]. The first asymptotically optimal determinisation construction was due to
Safra [Saf88], which transforms a Büchi automaton into a deterministic Rabin one. Later
on, Piterman [Pit06] and Schewe [Sch09] further improved the construction, reducing the
number of states of the final automaton. Schewe’s construction transforms a Büchi au-
tomaton of size n into a deterministic Rabin automaton of size at most sizeDet(n), which
is naturally equipped with a transition-based acceptance condition. In 2009, Colcombet
and Zdanowski [CZ09] showed that the Piterman-Schewe construction is tight (up to 0
states!) as we precise now.

Proposition VI.6 (Optimality of the Piterman-Schewe construction [CZ09]).
There exists a family of Büchi automata An of size |An| = n, such that a minimal

transition-based deterministic Rabin automaton equivalent to An has size sizeDet(n).

We could obtain a state-based automaton from the Piterman-Schewe Rabin automa-
ton by augmenting the number of states; but doing so we no longer have a matching
lower bound. No such tight bounds are known for the determinisation of Büchi automata
towards state-based automata.
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The complementation and determinisation problems for Büchi and generalised Büchi
automata with transition-based acceptance were further studied by Varghese in his PhD
Thesis [Var14]. In the works of Schewe and Varghese [SV12, SV14], they point out the
suitability of transition-based acceptance for the study of transformations of automata.

Optimal transformations of Muller automata
Chapter II was devoted to the study of transformations of Muller automata into parity

and Rabin ones. In there, we obtained optimal transformations of automata: given
a Muller automaton A, we can build a minimal parity automaton admitting a locally
bijective morphism to A (Theorem II.6). This result is based in the alternating cycle
decomposition, a data structured obtained from the Muller automaton A. Throughout
the chapter, we used transition-based automata, which was not coincidental: as shown
in Section II.8 (Theorem II.15) and recalled next, our results do not hold when using
state-based automata.

Proposition VI.7 (Optimal transformations of Muller automata).
Let A be a Muller automaton (transition or state-based) and let ACDA be its alter-

nating cycle decomposition. With this input:

] We can compute in polynomial time a transition-based parity automaton admitting
a locally bijective morphism to A, and minimal amongst parity automata admitting
a locally bijective morphism to A.

] Deciding whether there is a state-based parity automaton of size ≤ k admitting a
locally bijective morphism to A is NP-hard.

The problem for state-based output is already NP-hard for deterministic automata
recognising languages of parity index [0, 1] (that is, generalised Büchi automata). The
alternating cycle decomposition of these automata can be computed in polynomial time
(Proposition II.98).

Proposition VI.8 (Optimal transformations of generalised Büchi automata).
Let A be a generalised Büchi automaton (transition or state-based):

] We can compute in polynomial time a transition-based Büchi automaton admitting
a locally bijective morphism to A, and minimal amongst Büchi automata admitting
a locally bijective morphism to A.

] Deciding whether there is a state-based Büchi automaton of size ≤ k admitting a
locally bijective morphism to A is NP-hard.

Characterisations based in syntactic properties of automata
Given a class of ω-regular languages C ⊆ 2Σω defined by some semantic property

(e.g. half-positional languages, Muller languages, languages corresponding to a variety of
ω-semigroups, etc.) a natural question is:
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What is the class of deterministic parity automata recognising languages in C?

Where “deterministic” can be replaced by other models (history-deterministic, unam-
biguous, etc.) and “parity” by other types of acceptance condition.

We argue that transition-based acceptance is best suited to obtain such syntactic
characterisations. The evidence we provide is mainly based in the results obtained in
Chapters IV and V of this thesis.

Characterisation of positional ω-regular languages. In Chapter V, we have
characterised both half-positional and bipositional ω-regular languages, describing deter-
ministic parity automata recognising them (Theorems V.1 and V.6). These characterisa-
tions use in multiple ways the fact that the automata we consider are transition-based.
For instance, a necessary condition for the bipositionality of a language L ⊆ Σω is that
it has to be recognised by a parity automaton on top of the residual automaton. This
condition is a completely different one if we use state-based acceptance; for instance, if
L is prefix-independent, a state-based automaton on top of the residual automaton of
L can only recognise the trivial languages ∅ and Σω. In the case of half-positionality,
the definition of a signature automaton is deeply rooted in the use of transition-based
acceptance.

Correspondence memory-automata. In Chapter IV, we showed that, for a given
Muller language L ⊆ Σω, chromatic memory structures for L exactly correspond to de-
terministic Rabin automata recognising L. Also, the general memory requirements of L
correspond to the size of a minimal history-deterministic Rabin automata recognising L.
These equivalences only hold if those Rabin automata are transition-based.

Positionality of objectives in vertex-coloured games
As noticed by Zielonka [Zie98] and Kopczyński [Kop08] (see also Section IV.1), whether

we colour states or transitions in games modifies the memory requirements of objectives.7
In particular, the class of half-positional objectives differs if we consider vertex-coloured
or edge-coloured games. The following question arises: Is one of the two models preferable
over the other? We argue that, at least for the study of memory and positionality, edge-
coloured games is a more natural model. The fundamental reason behind this claim is that
putting colours over the vertices gives some extra information to the player controlling
the vertex that would not have otherwise.

Characterisation of bipositionality. In 2006, Colcombet and Niwiński provided
an elegant characterisation of prefix-independent bipositional objectives [CN06] over in-
finite games. As indicated by the title of their paper, this characterisation only holds for
edge-coloured games:

7These two notions differ uniquely if we consider ε-free games, as we can simulate an edge-coloured
game by a vertex-coloured one in which we introduce intermediate uncoloured vertices (see [Kop08,
Section 2.5]).
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Proposition VI.9 ([CN06]).
A prefix-independent objective L ⊆ Σω is bipositional over (ε-free) edge-coloured

games if and only if L is a parity language.
However, there are prefix-independent objectives that are not parity languages that

are bipositional over ε-free vertex-coloured games.

In Chapter V, we generalised this characterisation to non prefix-independent objectives
(Theorem V.6). Similarly, our characterisation does not apply to ε-free vertex-coloured
games.

Half-positionality over vertex-coloured games. As in the previous paragraph,
the characterisation of half-positionality for ω-regular languages given in Chapter V (The-
orem V.1) only holds for edge-coloured games: there are ω-regular objectives that are
half-positional over ε-free vertex-coloured games, which cannot be recognised by a deter-
ministic signature automaton. We refer the reader to Section IV.1 for examples.

In a recent breakthrough, Ohlmann characterised half-positionality of objectives ad-
mitting a neutral letter by means of universal graphs [Ohl23a]. His Neutral Letter Con-
jecture (Conjecture V.3) implies that this characterisation is complete, that is, it also
applies to objectives without a neutral letter. Theorems V.1 and V.5 show that the Neu-
tral Letter Conjecture holds for ω-regular languages and that the characterisation using
universal graphs is complete for this class of objectives. However, Conjecture V.3 cannot
hold when using vertex-coloured games, as shown by the next proposition. Moreover,
the objective W of next proof does not admit any well-ordered monotone graph that is
(ℵ0,W )-universal, for any reasonable notion of “universality over vertex-coloured graphs”.

Proposition VI.10 (No closure under addition of a neutral letter).
There exists an ω-regular objectiveW ⊆ Σω that is half-positional over vertex-coloured

games such that the objectiveW ε obtained by adding a neutral letter is not half-positional
over vertex-coloured games.

Proof. Consider the alphabet Σ = {a, b} and the Muller objective

W = {w ∈ Σω | Inf(w) = {a, b}}.

We showed in Example IV.10 that W is half-positional over vertex-coloured games (this
also follows by Zielonka’s characterisation [Zie98, Theorem 17]). However, by adding a
neutral letter ε, we obtain the objective W ε over Σ′ = {a, b, ε} given by:

W ε = {w ∈ Σ′ω | Inf(w) ∈ {{ε}, {a, b}, {a, b, ε}} }.

Objective W ε is not half-positional over vertex-coloured games, as witnessed by the game
in Figure 48. J

In Chapter V, we obtained a 1-to-2 player lift (Theorem V.3) and closure of half-
positional prefix-independent ω-regular objectives under union (Theorem V.4). We do
not know whether the analogous of these results hold for vertex-coloured games. Using
Zielonka’s characterisation [Zie98, Theorem 17] we can obtain a partial result: the class
of Muller objectives that are half-positional over vertex-coloured games is closed under
union.
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a ε b

F Figure 48. A vertex-coloured game G in which Eve can produced a and b infinitely
often, but not using a positional strategy.

Practical applications
When using ω-automata for model checking or synthesis purposes, transition-based

automata have been shown to perform better in practice [GL02], and the use of transition-
based models is well-established in the tools used nowadays. The state-of-the-art libraries
for ω-automata, Owl [KMS18] and Spot [DL+22], they both use transition-based au-
tomata by default. For instance, Owl use them internally, and only provides a converter
from state-based to transition-based automata for interfacing with external tools. Re-
garding LTL synthesis tools, transition-based automata is the default model of tools such
as Strix [LMS20, MS21b], ltlsynt [MC18], ltl3tela [Maj+19b], Rabinizer 4 [Kre+18]
or Delag [MS17] – list which includes the top-ranked tools in the SyntComp competi-
tions [Jac+22]. Other tools such as Acacia-Bonsai [CP23] do use state-based automata.

3 Where do all these differences come from? Some thoughts
Previous section contains a list of situation in which using transition-based acceptance

is more advantageous, both for practical and theoretical reasons. The following question
arises naturally:

What are the fundamental differences between state-based and
transition-based models that lead to such contrasting properties?

Role of states in automata. The fundamental question hidden behind the previous
inquiry is the following:

What is the role of a state in an ω-regular automaton?

Let me explain this in more detail. In the case of finite words, the role played by each
state of a deterministic automaton recognising a language L ⊆ Σ∗ is well understood: a
state q represents a residual of L. That is, when reading a word u ∈ Σ∗, the information
we need to retain is what is the residual u−1L. However, in the case of infinite words,
this does not suffice. In general, an ω-regular language L ⊆ Σω cannot be recognised by a
Muller automaton on top of the automaton of residuals of L. This leads to one of the most
fundamental questions about ω-automata: what is this “extra information” that we need
to retain? In particular, this is the question at the core of the automata minimisation
problem, studied in Chapter III. Of course, I do not have any answer to this question, but
analysing the dichotomy state-based vs transition-based acceptance through these lenses
might shed some light to help us understand the differences between the two models.
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This analysis is by no means original, it is exactly what Le Saëc and Litovsky re-
marked 30 years ago [Saë90, SL94]: an automaton of residuals can recognise strictly more
languages if the acceptance condition is put over transitions. For example, consider a
prefix-independent language L ⊆ Σω. The automaton of residuals RL has a single state,
so L can be recognised by a Muller automaton on top of RL if and only if L is trivial (it
equals ∅ or Σω). However, if we allow to define the acceptance over transitions, L can be
recognised by a Muller automaton on top of RL if and only if L is a Muller language, a
much richer class.

The difference on the power of the automaton of residuals has a direct influence, for
example, in our characterisations of bipositional languages (Theorem V.6), in which a
necessary condition is that the language has to be recognised by a parity automaton on
top of the automaton of residuals. The same remark applies to the characterisation of
half-positional objectives recognised by deterministic Büchi automata (Proposition V.34).

The algebraic structure of automata. A fundamental difference between au-
tomata over finite and infinite words is that the latter ones can be seen rather as trans-
ducers reducing a target language to a simpler one. In this light, putting the output
over the transitions seems more natural. One reason is that an elementary operation on
automata is the composition of transitions: given two transitions q1

a−→ q2 and q2
b−→ q3,

one should be able to define a transition q1
ab−→ q3. This new transition can only be defined

in a sensible way if the output appears over transitions.
This composition operation is at the heart of the celebrated connection between au-

tomata and the algebraic theory of semigroups. In fact, one of LeSaëc’s motivations for
introducing transition-based automata was to obtain an algebraic proof of McNaughton’s
theorem for infinite words [SPW91].

Composition of coloured edges is also essential in the modern approach for solving and
analysing infinite duration games based on universal graphs [Col+22, Ohl23a]. Two key
concepts in the theory of universal graphs rely on composition of edges: monotonicity,
and the technique of saturation (see [Col+22, Section 4.1], [CF18, Section 4], or [Ohl23a,
Section 3.3]).

Infinite paths in automata. Another related idea (even more abstract and impre-
cise) is that, by placing the acceptance condition over the states, we overload them with
a task that is not their primary role. In the case of finite words, to check if a word w ∈ Σ∗
is accepted by an automaton we look to the final state of the run over w when it ends.
It makes then perfect sense to put on that state the burden of carrying the acceptance
condition. However, in the case of infinite words, to check the acceptance of a run we
need to look at the whole path in the automaton; the run does not end in a final state.
States are intrinsically malfunctioning for identifying such paths:

A path v0
e0−→ v1

e1−→ v2
e2−→ . . . in a graph is not uniquely identified by the sequence of

vertices v0v1v2 . . . . It is, however, identified by the sequence of edges e0e1e2 . . . .

All in all, this collection of problems and considerations comes to say that, if we
are solely interested in the asymptotic growth of the size of automata, the use of state-
based or transition-based acceptance does not make any difference. However, if we aim
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to understand their fundamental structure and obtain natural procedures to manipulate
them, transition-based acceptance should be adopted.
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Chieftains must understand that the spirit
of the law is greater than its letter.

Attila the Hun Mikołaj Bojańczyk

1 Strategy complexity
The results presented in Section V.2 effectively address most open questions regarding

half-positionality in the context of ω-regular languages. However, as in any other case,
we might question the value of the characterisation presented in Theorem V.1 and how it
truly contributes to our understanding of the problem.

On the one hand, Theorem V.1 fulfils many key requirements to be considered a
satisfactory characterisation: it provides a polynomial-time procedure to check half-
positionality, and its applicability has been demonstrated by solving many open ques-
tions.

Yet, it would be reasonable to seek a “better” characterisation. One drawback of our
approach is its conceptual complexity and its exclusive focus on automata; the charac-
terisation is based on syntactic and combinatorial properties of parity automata, rather
than on intrinsic language-theoretical properties of the languages they recognise. In this
respect, the insights gained about half-positionality are somewhat limited. Therefore, we
believe that there is still room for improvement and for a deeper understanding of the
class of half-positional ω-regular objectives.

We now discuss two research directions extending our results.
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1.1 Positionality of BC(Σ0
2) languages

A potential research direction consists in investigating half-positionality for broader
classes of objectives. We initiated this path in Section V.6 by studying half-positionality
of closed and open objectives. Going further in that direction, the goal is to develop
characterisations for more complex objectives defined by topological properties, mainly,
higher classes in the Borel hierarchy. A natural first step could be to look at objectives
in Σ0

2 and Π0
2, which are, respectively, unions of closed objectives and intersections of

open objectives. These classes admit automata-oriented definitions: Σ0
2 are the objectives

recognised by deterministic infinite Büchi automata, and Π0
2 those recognised by infinite

coBüchi automata [Skr13].
The class of objectives recognised by infinite deterministic parity automata coincides

with BC(Σ0
2): the class of boolean combinations of objectives in Σ0

2 [Skr13] (this is a strict
subclass of ∆0

3 = Σ0
3∩Π0

3). We hope to be able to give a characterisation for this class – as
some of the constructions introduced in this work seems to generalise to automata with
infinite states. We believe that some properties of half-positional ω-regular objectives
could be lifted to BC(Σ0

2) (or even to ∆3). In particular, we conjecture that the 1-to-2
player lift (false in general, see Proposition V.110), holds for BC(Σ0

2)-objectives.

Conjecture VII.1 (1-to-2 player lift in BC(Σ0
2)).

Let W be an objective in BC(Σ0
2) that is half-positional over Eve-games. Then, it is

half-positional over all games.

Decidability problems lose their relevance when dealing with classes of objectives de-
fined by topological properties. Therefore, the question of what is a satisfactory character-
isation becomes even harder to answer in this context – especially when taking into account
that we already have Ohlmann’s characterisation based on universal graphs [Ohl23a]. An
important step forward would involve proving Conjecture VII.1, as well as Kopczyński’s
conjecture (Conjecture V.2) or Ohlmann’s neutral letter conjecture (Conjecture V.3) for
the class BC(Σ0

2).

1.2 Memory requirements of ω-regular languages

An orthogonal research direction would be to maintain the focus on ω-regular lan-
guages, but attempt to characterise their memory requirements rather than just their
positionality. A notable effort has already been made in this direction [DJW97, Kop08,
CFH14, Bou+23, Cas22, CCL22], however, only characterisations for fairly simple classes
of languages are known (Muller [DJW97] and closed languages [CFH14]). One difficulty is
the multiplicity of models of memory: general, chromatic, ε-memory... (see Section IV.1
for details). Recently, Bouyer, Fijalkow, Randour and Vandenhove showed that com-
puting the chromatic memory requirements of ω-regular open and closed objectives is
NP-complete [Bou+23]. This result, together with the NP-completeness of the computa-
tion of the chromatic memory requirements of Muller objectives (Theorem IV.2), indicates
that chromatic memory might be an ill-suited model for these purposes. We believe that
the most promising model to focus on in order to advance on this problem is ε-memory,
as discussed in [CO23]. A first step required for moving forward involves characterising
memory requirements for open objectives. Nevertheless, progress in understanding the
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general memory for open objectives has remained elusive for more than 10 years [Fij11,
CFH14].

The generalisation of the theory of monotone universal graphs to characterise mem-
ory requirements, presented in [CO23], offers a promising tool to establish tight upper
bounds on memory requirements, which could be valuable to overcome impediments in
the advancement of the study of memory for ω-regular objectives.

2 The structure of ω-automata
Most contributions of this thesis are based on a fine analysis of the structural proper-

ties of ω-automata. As already mentioned, Wagner played a pioneering role in studying
these properties and deriving language-theoretical results from them [Wag79]. The intro-
duction of the alternating cycle decomposition offers a fresh perspective into these con-
siderations. We have used it to provide optimal transformations of automata, to obtain
typeness results about Muller automata and to define a normal form for parity automata.
Typeness results have proven crucial in the study of the minimisation of Rabin automata
(Lemma III.7) and its relation with the chromatic memory (Lemma IV.12). The normal
form of parity automata has made possible the study of half-positionality in Chapter V.
Moreover, our findings reinforce a shift occurring in research in automata theory nowa-
days, highlighting the importance of history-determinism and transition-based automata
for obtaining theoretical results.

Many questions remain open. The most intriguing ones are probably those concerning
the minimisation of parity automata. Our results about the minimisation of generalised
(co)Büchi automata (mainly Theorem III.2 and Conjectures III.3 and III.4, which are not
really conjectures, see footnote 2) make us think that the case of history-deterministic
coBüchi automata might be a very special case which admits tractable minimisation, while
deterministic models, or the use of Büchi acceptance might turn the problem NP-hard.
For this reason, we believe that the minimisation of parity, or even Büchi automata is
NP-hard, both for deterministic and history-deterministic models.

Conjecture VII.2 (Minimisation of Büchi automata (question raised in [AK23])).
The minimisation of deterministic and history-deterministic Büchi automata is an

NP-complete problem.

Nevertheless, we have discussed why establishing the NP-hardness of this problem may
be challenging. Specifically, we have shown that minimising parity automata recognising
Muller languages is tractable (Theorem III.4). We discuss another class of languages for
which we believe the minimisation of parity automaton to be tractable: half-positional
languages.

2.1 Minimisation of parity automata recognising positional languages

In the proof of Theorem V.1 (Section V.4.2), we have introduced many transformations
of automata that aim to remove redundant states and to put automata in some form that
make them suitable for our study. This kind of transformations exhibit a flavour similar
to what one might expect from a minimisation algorithm for parity automata. In fact, one
of the main techniques we used (safe centralisation of automata) is just a generalisation
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of the minimisation algorithm for history-deterministic coBüchi automata introduced by
Abu Radi and Kupferman [AK22].

From our characterisation (Theorem V.6) we obtain that we can minimise automata
recognising bipositional languages in polynomial time. Indeed, a necessary condition for
a language L to be bipositional is that it must be recognised by a parity automaton on
top of the automaton of residuals.

Proposition VII.1.

Deterministic (resp. history-deterministic) parity automata recognising bipositional
languages can be minimised in polynomial time.

By the characterisations from Propositions V.34 and V.53, we obtain that we can also
minimise (history-) deterministic Büchi and coBüchi automata recognising half-positional
languages in polynomial time.

Proposition VII.2.

Deterministic (resp. history-deterministic) Büchi and coBüchi automata recognising
half-positional languages can be minimised in polynomial time.

We conjecture that our methods may lead to similar results in the more general case
of parity automata.

Conjecture VII.3.

Deterministic and history-deterministic parity automata recognising half-positional
languages can be minimised in polynomial time. Moreover, history-deterministic parity
automata for this class of languages are not more succinct than deterministic ones.

We believe that we can even describe the minimal automaton that we should obtain,
by refining the definition of reduced signature automaton given in Section V.4.1. We say
that a signature automaton is strongly reduced if it is a structured signature automaton
and, for every state q and even priority x, if no transition producing a priority ≥ x leaves
q, then the ∼x-class of q is trivial: [q]x = {q}.

Conjecture VII.4.

A strongly reduced signature automaton recognising a language L has a minimal
number of states amongst history-deterministic parity automata recognising L.

Moreover, if L is half-positional, it can be recognised by a deterministic strongly
reduced signature automaton.

We are highly confident that this result holds. One should be able to prove that
strongly reduced signature automata are minimal by generalising the methods from [AK22].
Nevertheless, such a proof runs the risk of being highly technical.

As a final consideration, we discuss the problem of the canonicity of the parity condi-
tion.
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2.2 Canonicity of the parity condition

In the general introduction (page 20), we provided a list of properties satisfied by the
parity condition that make it suitable in both practical and theoretical contexts. These
properties serve as indicators of the canonicity and naturalness of the parity condition.
Some of the results in this thesis further support this idea:

] The minimal number of colours required to recognise an ω-regular language us-
ing a deterministic Muller automaton are met with a parity automaton (Proposi-
tion II.117).

] The normal form of a parity automaton exhibits several nice properties that directly
relate to the complexity of the languages they recognise (Section II.7.2).

] The obtained characterisations of half-positionality and bipositionality rely on the
structure of parity automata (Theorems V.1 and V.6).

Yet, we have not been able to provide a formal statement for our claim of simplicity
of the parity condition.

Question VII.5 (Canonicity of the parity condition).
Formalise the statement that parity languages form the simplest ω-regular complete

family of languages (that is, a family of languages that can be used to recognise all ω-
regular languages with deterministic automata).

This question remains somewhat vague, and we have not yet precisely formulated
the result we are seeking. Ideally, we aim to establish a statement of the form “parity
languages form the only family of languages that satisfy some list of hypothesis while min-
imising a certain parameter”. Some measures of complexity that could aid in formalising
such a statement include:

] The topological complexity of languages.
] The size of ω-semigroups or a measure of their structural complexity (such as their
Green relations).

] The size of automata.

Voilà voilà...





Other work

During the realisation of my PhD, I have actively engaged in various additional projects,
some of which have resulted in publications, or are about to. Due to space constraints
and with the objective of maintaining both the fluidity of presentation and the logical
consistency of content, I have opted not to include these results in the manuscript. Below,
you will find a brief summary outlining these related projects.

Universal graphs for the characterisation of memory requirements. In his PhD
thesis [Ohl21, Ohl23a], Pierre Ohlmann characterised half-positionality by means
of well-ordered monotone universal graphs. Together, we generalised the theory of
universal graphs to capture the memory requirements of objectives (both general and
chromatic). A paper presenting this characterisation, as well as its applicability and
limitations, was accepted at ICALP 2023 [CO23] (for the much more comprehensive
full version, see [CO22]).

Infinite lexicographic products of positional objectives. One important applica-
tion of Ohlmann’s characterisation of positionality is obtaining one of the very few
known closure properties of half-positional objectives: they are closed under finite
lexicographic products [Ohl23a]. He conjectured that they are moreover closed un-
der infinite lexicographic products. In a collaboration with Pierre Ohlmann, Michał
Skrzypczak and Igor Walukiewicz, we proved that this is indeed the case. This
implies the positionality of very general and quite exotic objectives, such as parity
objectives over infinite ordinals, setting an open question arising from the works of
Grädel and Walukiewicz [GW06]. A submission is under preparation.

Fast value iteration for energy games. At the beginning of my PhD (and at the end
of Pierre’s), I joined Pierre Ohlmann in some of his in-depth studies of algorithms
for solving parity and energy games. Together, we developed an algorithm for
solving energy games – based on adding natural accelerations to value iteration
algorithms – that had a very simple conceptual description and that performed
very well in practice [CO21]. It turned out that (as pointed to us by Alexander
Kozachinskiy) this was an alternative presentation of an already existing algorithm
by Schewe [Sch08] (also presented slightly differently by Luttenberger [Lut08]). One
of our contributions is to describe a symmetric variant of the algorithm with a very
intriguing status: it performs extremely well in practice, but we have not been able
to prove its termination in all cases.

Lower bounds for solving Rabin games. In a project originated at Autobóz 2023,
jointly with Michał Pilipczuk and K. S. Thejaswini, we provided a fairly simple proof
that, assuming the Exponential Time Hypothesis, there is no algorithm that solves
Rabin games with n vertices and k Rabin pairs in time 2o(k log k) ·nO(1). This reproves
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in a simpler manner a result from [Cal+22]. Our proof involves a reduction from
a problem called Permutation SAT. This problem was brought to our attention
by Marcin Pilipczuk and Uéverton S. Souza, who showed that it admits a similar
lower bound. A conference submission is under review.
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A Some NP-complete problems

In this appendix, we define various NP-complete problems that are used in the thesis
to obtain NP-hardness results.

An undirected graph is a pair G = (V,E) consisting of a set of vertices V and a
symmetric relation E ⊆ V × V . We say that it is simple if for all v ∈ V , (v, v) /∈ E. We
say that it is connected if there is a path connecting any pair of vertices.

The chromatic number problem and 3-colorability
A colouring of a simple undirected graph is a mapping c : V → Λ such that c(v) =

c(v′)⇒ (v, v′) /∈ E for every pair of nodes v, v′ ∈ V . We say that such a colouring has size
|Λ|. The chromatic number of G is the minimal number k such that G has a colouring of
size k. We denote it χ(G).

Problem: Chromatic number
Input: A simple, connected, undirected graph G and a positive integer k.

Question: χ(G) ≤ k?

Lemma A.1 ([Kar72]).
The problem Chromatic number is NP-complete.

This problem is already NP-complete if we only ask whether the chromatic number is
no more than 3.

Problem: 3-colorability
Input: A simple, connected, undirected graph G.

Question: χ(G) ≤ 3?

Lemma A.2 ([Lov73]).
The problem 3-colorability is NP-complete.

Max Clique
A clique of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that (v′, u) ∈ E

for every v′, u′ ∈ V ′.
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Problem: Max-Clique
Input: A simple, connected, undirected graph G and a positive integer k.

Question: Does G contain a clique of size k?

Lemma A.3 ([Kar72]).
The problem Max-Clique is NP-complete.

Vertex cover
A cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that for every

edge (v, u) ∈ E, either v ∈ V ′ or u ∈ V ′.

Problem: Vertex Cover
Input: A simple, connected, undirected graph G and a positive integer k.

Question: Is there a cover of G of size k?

Lemma A.4 ([Kar72]).
The problem Vertex Cover is NP-complete.



B. Transformations of automata: Missing details for Chapter II 269

B Transformations of automata: Missing details for Chapter II

B.1 Transformations for games

In this appendix, we include material showing how to adapt the concepts and con-
structions studied in Chapter II for the case of transformation of games, which require
some technical adjustments.

B.1.1 Games suitable for transformations
As we have indicated throughout Chapter II, defining transformations not preserving

determinism in the case of games poses certain formal challenges. This difficulties appear
both when such transformations arise as the product G n A of a game G by an non-
deterministic automaton A, or when they are witnessed by an HD mapping ϕ : G → G ′.
The problem comes from the fact that the semantics of non-determinism in automata
(or history-determinism of morphisms) are inherently asymmetric, and this asymmetry
needs to be made compatible with the semantics of games. The choices we have made to
overcome this technical difficulty are:

] Restrict transformations of games to games in a standard form, which we have called
games suitable for transformations. Similar restrictions for games have already been
considered in the literature [EJ91].

] Add a restriction to HD mappings in the case of games, introducing the notion of
HD-for-games mapping.

The main motivation for the standard form of games that we propose comes from
viewing games as originating from logical formulas. Indeed, an equivalent model for games
can be given as follows: vertices in the game graph are not partitioned into Eve’s and
Adam’s nodes, instead, we assign a boolean formula to each transition that determines an
interaction between the two players. The outcome of this interaction is (1) the next vertex,
and (2) the output colour of the acceptance condition. We can obtain a game of the kind
we have defined in this thesis by unfolding the boolean formulas of the transitions. There
is a natural way to standardize such games: putting the boolean formulas in disjunctive
normal form (DNF). Then, the unfolding of a game with formulas in DNF yields a game
in which the partition into Eve-Adam nodes induces a bipartite graph with a particular
structure: first, Adam chooses an uncoloured transition leading to a vertex controlled by
Eve (with only one ingoing transition), and then Eve picks a transition producing some
output colour.

We recall that a game is suitable for transformations if it verifies that for every edge
e = v −→ v′, if v is controlled by Adam, then e is uncoloured (col(e) = ε), v′ ∈ VEve, and e
is the only incoming edge to v′ (In(v′) = {e}).

Games in this form have an asymmetric structure that makes them suitable for any
type of transformation. As any pair of consecutive transitions are of the form v

ε−→ ṽ
c−→ v′,

with ṽ ∈ VEve, we can force it so that if a decision needs to be made in a product, Eve is
the one who makes it.

Lemma B.1.
For every game G with vertices V and edges E, there exists a game G̃ that is suitable
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for transformations, of size |G̃| = O(|E|), and equivalent to G in the following sense: there
is an injective function f : V → Ṽ such that Eve wins G from v if and only if she wins G̃
from f(v).

Proof. We define G̃ as follows. We let its set of vertices be Ṽ = V ∪ E. Vertices of
the form v ∈ V will correspond to vertices coming from G, and vertices e ∈ E will be
intermediate vertices added to force the suitability for transformations property. We let
ṼAdam = VAdam and ṼEve = VEve ∪ E. If e = v

c−→ v′ is an edge in G, we add the edges
v

ε−→ e and e c−→ v′ to G ′. It is clear that G̃ is suitable for transformations and that Eve
wins G from v if and only if she wins G̃ from v. J

B.1.2 History-deterministic-for-games mappings
In Section II.2 we remarked that the existence of an HD mappings between two games

ϕ : G → G ′ do not suffice to guarantee that they have the same winner. In this section,
we strengthen the notion of HD mappings in the case of games adding a minimal set of
hypothesis to ensure this property.

In order to show that if Eve wins G ′ then she wins G, we need a method to transfer
strategies in G ′ to G. A regular resolver simulating ϕ does not suffice to do this, as it
does not take into account the partition into Eve and Adam vertices. We need to be
able to simulate a play of G ′ in G in a two-players-game fashion: Adam’s moves will be
simulated by Adam, and Eve’s moves by Eve. This idea leads to the notion of HD-for-
games mapping.

History-determinism-for-games
Let G and G ′ be two games,1 and ϕ : G → G ′ be a weak morphism between them

admitting a resolver (rInit, r) simulating ϕ. Given runs ρ′ = e′0e
′
1 · · · ∈ Run(G ′) and ρ =

e0e1 · · · ∈ Run(G), we say that ρ is consistent with (rInit, r) over ρ′ if:

1. source(e0) = rInit(source(e′0),
2. ϕ(ei) = e′i, and
3. for every finite prefix e0e1 . . . en−1 v ρ ending in a vertex controlled by Eve, the next

edge in ρ is en = r(e0 . . . en−1, e
′
n).

We remark that there exists at least one run consistent with (rInit, r) over ρ′, namely
rRuns(ρ′). We say that (rInit, r) is sound for G if it verifies that for any accepting run
ρ′ ∈ Run(G ′), all runs consistent with (rInit, r) over ρ′ are accepting in G.

Said differently, a resolver sound for G is a winning strategy for Duplicator in the
following game:

] In round 0, Spoiler picks an initial vertex v′0 in G ′. Duplicator responds by picking
an initial vertex v0 in G such that ϕ(v0) = v′0.

] In round n > 0, Spoiler picks an edge e′n in G ′. If vn−1 is controlled by Adam,
Spoiler chooses an edge en = vn−1 −→ vn ∈ Out(vn−1) such that ϕ(en) = e′n. If vn is
controlled by Eve, it is Duplicator who chooses one such en.

1For the following definitions, it suffices in fact to suppose that the codomain G′ is a game, but the
domain G can be any transition system.
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] Duplicator wins if either e1e2 . . . is an accepting run in G from v0 or e′1e′2 . . . is not
an accepting run in G ′ from v′0. Spoiler wins otherwise.

Definition B.2.
An HD mapping of games ϕ : G → G ′ is called history-deterministic-for-games if it

admits a resolver sound for G.

Whenever we apply the term HD-for-games to a map ϕ : TS → TS ′, it will implicitly
imply that TS and TS ′ are games (that is, they have a fixed vertex-labelling lPlayers : V →
{Eve,Adam}), and that ϕ preserves those vertex-labellings).

The proof of next lemma is identical to that of Lemma II.18.

Lemma B.3.
If ϕ : G → G ′ is a locally surjective morphism between games, it is also an HD-for-

games.

Also, Lemmas II.19 and II.20 about the reduction and extension of initial set of vertices
hold similarly by replacing HD mapping by HD-for-games mapping.

HD-for-games mappings generalise the product by an HD automaton
We first show that HD-for-games mappings generalise the product of a game by an

HD automaton.

Proposition B.4.

Let A be a complete automaton accepting the language L(A) = W ⊆ Σω, and let G
be a game suitable for transformations using as winning condition W . Then, there exists
an HD-for-games mapping ϕ : G nA → G.

Proof. The fact that there is a locally surjective weak morphism ϕ : GnA → G is given by
Proposition II.21. We define a resolver (rInit, rϕ) as in the proof of that Proposition II.21:
it follows the edges indicated by a resolver for A. We prove that this resolver is sound
for G. We claim that if ρ is a run in G, the only run consistent with (rInit, rϕ) over ρ is
rϕ,Runs(ρ). This follows from the fact that if (v, q) is a vertex in GnA controlled by Adam
and e ∈ Out(v), then there is a unique e′ ∈ Out(v, q) such that ϕ(e′) = e. This is indeed
the case: as G is suitable for transformations, if v is an Adam’s vertex, every e ∈ Out(v)
is uncoloured, so by definition of ϕ we have that ϕ(e′) = e =⇒ e′ = e. (This can be seen
as that ϕ is locally bijective in Adam’s vertices). We conclude that if ρ is an accepting
run in G and ρn is a run consistent with (rInit, rϕ) over ρ, then ρn = rϕ,Runs(ρ), which is
accepting by soundness of the resolver (rInit, rϕ). J

Preservation of the winning regions in games

Lemma B.5.
Let G,G ′ be two games, such that there is a weak morphism of games ϕ : G → G ′ that

is locally surjective and preserves accepting runs. If Eve wins the game G from an initial
vertex v, then she wins G ′ from ϕ(v).
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Proof. Let v′ = ϕ(v), and let stratv : Pathfin(G) → E be a strategy for Eve in G that is
winning from v. Intuitively, we will define a strategy in G ′ as follows: for each finite run
ρ′ from v′ in G ′, we pick a preimage ρ ∈ ϕ−1(ρ′) in G, look at the decision made by stratv
at the end of ρ and transfer it back to G ′ via ϕ. In order to define a correct strategy, that
suggests valid edges, the choices of the preimages have to be made in a coherent manner.
We formalise this idea next.

We will make use of a function choicest : Pathfin
v′ (G ′)→ Pathfin

v (G) satisfying that for any
ρ′ = e′0e

′
1 . . . e

′
n−1e

′
n ∈ Pathfin

v′ (G ′):

] The run choicest(ρ′) has length n+ 1.
] ϕRuns(choicest(ρ′)) = ρ′.
] Monotonicity: if ρ̃′ v ρ′ then choicest(ρ̃′) v choicest(ρ′).
] If there exists en ∈ ϕ−1(e′n) such that choicest(e′0e′1 . . . e′n−1)en is consistent with

stratv, then choicest(ρ′) is consistent with stratv.

Assume for now that such a function exists, and define a strategy in G ′ as

strat′v′(ρ′) = ϕ(stratv(choicest(ρ′))), for ρ′ ∈ Pathfin
v′ (G ′),

and defined arbitrarily for paths that do not start in v′.
We prove that strat′v′ is winning from v′. Let ρ′ = e′0e

′
1 · · · ∈ PathG′(v′) be an infinite

play consistent with strat′v′ . For each finite prefix ρ̃′ v ρ′, choicest(ρ̃′) is a finite play in G,
and by the monotonicity assumption, we can define the limit of these runs as:

~ρ = e0e1e2 · · · ∈ Run(G), where e0e1 . . . en = choicest(e′0e′1 . . . e′n),

which is indeed a run in G. We show that ~ρ is consistent with stratv by induction. Let
ρn = e0e1 . . . en−1 be the prefix of size n of ~ρ, and suppose that it ends in a vertex vn
controlled by Eve. We want to show that en = stratv(ρn). By definition of strat′v′ , e′n =
ϕ(stratv(ρn)) = ϕ(en), and as vn is controlled by Eve, stratv(ρn) is the only continuation
of ρn consistent with stratv, so by the last property of choicest, en has to coincide with
stratv(ρn), as we wanted. As ~ρ is consistent with the winning strategy stratv, it is an
accepting run in G, and since ϕ preserves accepting runs, ρ′ = ϕRuns(~ρ) is also an accepting
run.

Finally, we show how to build a function choicest : Pathfin
v′ (G ′)→ Pathfin

v (G) by induction
on the length of the runs. Suppose that choicest has been defined for runs of length ≤ n,
and let e′0e′1 . . . e′n be a run of length n + 1, with choicest(e′0e′1 . . . e′n−1) = e0e1 . . . en−1. If
e0e1 . . . en−1 is not consistent with stratv, it ends in a vertex vn controlled by Adam, or
stratv(e0e1 . . . en−1) /∈ ϕ−1(en), we let en ∈ ϕ−1(en) ∩ Out(vn) be any edge (one such edge
exists by local surjectivity). On the contrary, we let en = stratv(e0e1 . . . en−1). We define
choicest(e′0e′1 . . . e′n−1e

′
n) = e0e1 . . . en−1en. By construction, the obtained function fulfils

the 4 requirements. J

Proposition B.6.

Let G,G ′ be two games such that there is an HD-for-games mapping ϕ : G → G ′. Eve’s
winning region in G ′ is the image of her winning region in G: WinEve(G ′) = ϕ(WinEve(G)).

Proof. If Eve wins G from an initial vertex v, Lemma B.5 guarantees that she wins G ′
from ϕ(v).
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Suppose now that Eve wins G ′ from an initial vertex v′ with a strategy strat′ : Pathfin(G ′)→
E ′. We need to show that she wins G from some initial vertex in ϕ−1(v′). Let (rInit, r) be
a resolver simulating ϕ sound for G and let v = rInit(v′). We define

stratv(ρ) = r(ρ, strat′v′(ϕRuns(ρ)), for ρ ∈ Pathfin(G).
That is, stratv is a strategy in G that, given a finite run ρ, simulates ρ in G ′, looks at the
move done by the strategy strat′v′ in there, and transfers this choice back to G ′ by using the
resolver r. We prove that stratv is winning for Eve in G from v. Let ρ = e0e1 · · · ∈ Pathv(G)
be a play consistent with stratv. We claim that ϕ(ρ) is consistent with strat′v′ and that ρ is
consistent with (rInit, r) over ϕ(ρ). This implies the desired result; consistency with strat′v′
implies that ϕ(ρ) is accepting, and since (rInit, r) is sound for G, ρ would be accepting in G.

We prove that ϕ(ρ) is consistent with strat′v′ . Let e′0e′1 . . . e′n−1 be a subplay of ϕ(ρ)
ending in a vertex vn controlled by Eve. By definition of the strategy stratv, we have
that en = r(e0 . . . en−1, strat′v′(e′0 . . . e′n−1)), and by definition of a resolver (item 2), e′n =
ϕ(en) = strat′v′(e′0 . . . e′n−1)), as we wanted.

The fact that ρ is consistent with (rInit, r) over ϕ(ρ) follows directly from the definition
of stratv. J

The next corollary follows from the previous proposition and Lemma II.20.

Corollary B.7.

Let G,G ′ be two games whose states are accessible and such that their acceptance sets
WG and WG′ are prefix-independent. If there is an HD-for-games mapping ϕ : G → G ′,
then Eve’s full winning region in G ′ is the projection of her full winning region in G:
WinEve(G ′V ′) = ϕ(WinEve(GV )).

B.1.3 ACD-HD-Rabin-transform-for-games
As discussed in Section II.4.3, the ACD-HD-Rabin-transform of a game G does not

always induce an HD-for-games mapping ϕ : ACDRabin(G) → G, and G and ACDRabin(G)
do not necessarily have the same winner. This is to be expected, as the ACD-HD-Rabin-
transform does not take into account the partition into Eve and Adam nodes. In this
section, we propose a small modification on the transformation to obtain a correct trans-
formation for games.

Let G be a game. If there is an edge v −→ v′ with v ∈ VAdam, we say that v′ is
an A-successor. We remark that if G is suitable for transformations, an A-successor is
controlled by Eve and has a unique predecessor. We let VA-succ be the set of A-successor
of G and Vnormal = V \ VA-succ. If G is suitable for transformations, for each v ∈ VA-succ we
let pred(v) be its unique predecessor.

The idea to define the ACD-HD-Rabin-transform-for-games ACDgame
Rabin(G) is the fol-

lowing: starting from the regular ACD-HD-Rabin-transform ACDRabin(G), we make some
local changes to vertices that are A-successors. First, if v ∈ VAdam, we replace edges of
the form (v, x) n−→ (v′, x′) in ACDRabin(G) by (v, x) ε−→ (v′, x) (we forbid Adam to choose
how to update the ACD-component). If such an edge is followed by (v′, x′) n′−→ (v′′, x′′)
in ACDRabin(G), then we add (v′, x) n−→ (v′′, x′′) to ACDgame

Rabin(G) (we note that v′ ∈ VEve).
That is, Eve chooses retroactively how to update the ACD-components performing two
consecutive updates. We note that the node n′ is not output in the new game; this is
not a problem, since n must be an ancestor of n′ (we could say that n contains more
information regarding the acceptance condition).
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F Remark B.8. Let G be a game suitable for transformations, let v ∈ VAdam and v e1−→
v′

e2−→ v′′ be a path of size 2 in G from v. It holds:

] If some cycle ` contains e2, it also contains e1.
] Tv′ is a subtree of Tv.
] Let n1 ∈ Leaves(Tv) and n2 = JumpTv′

(n1, Supp(n1, e1)). Then, Supp(n2, e2)) is a
descendant of Supp(n1, e1)) in Tv′.

Definition B.9 (ACD-HD-Rabin-transform-for-games).
Let G be a Muller game suitable for transformations. For each vertex v ∈ V

we let ηv : Leaves(Tv) → {1, . . . , rbw(Tv)} be a mapping satisfying Property (?) from
Lemma II.42. We define the ACD-HD-Rabin-transform-for-games of G to be the Rabin
transition system ACDgame

Rabin(G) defined as follows.

Vertices. The set of vertices is

Ṽ =
⋃

v∈Vnormal

{v} × [1, rbw(Tv)] ∪
⋃

v∈VA-succ

{v} × [1, rbw(Tpred(v))].

Players partition. A vertex (v, x) belongs to Eve if and only if v belongs to Eve in G.

Initial vertices. Ĩ = {(v0, x) | v0 ∈ I and x ∈ {1, . . . , rbw(Tv0)}}.

Edges and output colours. Let e = v −→ v′ in G.
] If v ∈ VEve∩Vnormal, we add (v, x) n−→ (v′, x′) to ACDgame

Rabin(G) exactly in the same
cases as in the regular ACD-HD-Rabin-transform.

] If v ∈ VAdam, we let (v, x) ε−→ (v′, x) in Ẽ for each x ∈ {1, . . . , rbw(Tv)}.
] If v ∈ VA-succ, we add (v, x) n−→ (v′, x′) to ACDgame

Rabin(G) if in the regular ACD-
HD-Rabin-transform there is a path of size 2 of the form

(pred(v), x) n−→ (v, x̃) ñ−→ (v′, x′).

Formally,

Ẽ =
⋃

e=v−→v′∈E
v∈Vnormal

{e} × Leaves(Tv) ∪
⋃

e=v−→v′∈E
v∈VA-succ

{e} × Leaves(Tpred(v)).

Rabin condition. R = {(Gn, Rn)}n∈Nodes©(ACDTS), where Gn and Rn are defined as fol-
low: Let n be a round node, and let n′ be any node in Nodes(ACDTS),n′ ∈ Gn if n′ = n,

n′ ∈ Rn if n′ 6= n and n is not an ancestor of n′.
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Correctness of the ACD-HD-Rabin-transform-for-games

Proposition B.10 (Correctness of the ACD-HD-Rabin-transform-for-games).
Let G be a Muller game suitable for transformations. There is an HD-for-games

mapping ϕ : ACDgame
Rabin(G)→ G.

Proof. The proof is analogous to that of the correctness of the regular ACD-HD-Rabin-
transform (Proposition II.75). We define the mapping ϕ : ACDgame

Rabin(G)→ G as ϕV (v, x) =
v and ϕE(e, l) = e. It is clear that it is a weak morphism, and it preserve accepting runs
by Lemma II.76 and Remark B.8.

We define a resolver (r0, r) simulating ϕ in a similar way as in the proof of Proposi-
tion II.75: We use ACDparity(G) to guide the resolver. Let ρ = v0 −→ v1re . . . be a run in G,
and let (v0, l0) −→ (v1, l1) −→ . . . be the preimage of this run in ACDparity(G). We simulate
ρ in ACDgame

Rabin(G) as follows: We ensure that at every moment i, if vi /∈ VA-succ, the current
vertex (vi, xi) is such that xi = ηvi

(li). There distinguish two cases to simulate the edge
ei = vi −→ vi+1:

] If vi ∈ VAdam, there is a single outgoing edge from (vi, xi) mapped to the edge
vi −→ vi+1 in ρ: (vi, xi) ε−→ (vi+1, xi). This must be the edge picked by the resolver

] If vi ∈ VEve, we pick the edge (vi, xi)
ni−→ (vi+1, xx+1) such that xi+1 = ηli+1 and

ni = Supp(li, ei).

If vi ∈ VA-succ, the vertex (vi, xi) will verify xi = xi−1 = ηvi
(li). In this case, we pick the

edge (vi, xi)
ni−→ (vi+1, xx+1) such that xi+1 = ηli+1 and ni = Supp(li, ei). This is indeed an

edge appearing in ACDgame
Rabin(G), as the path (vi−1, xi−1)

n′i−1−−→ (vi, x′i)
ni−→ (vi+1, xx+1) exists

in the regular ACDRabin(G), with x′i = ηvi
(li).

The resolver obtained in this way is sound for ACDgame
Rabin(G), as there is a unique way

to simulate edges issued from Adam vertices, and the rest of the edges are simulated in
the same way as the resolver defined for the regular ACD-HD-Rabin-transform, which we
proved to be sound. J

Corollary B.11.

Let G be a Muller game suitable for transformations. Eve’s full winning region in G
is the projection of her full winning region in ACDgame

Rabin(G).

Optimality of the ACD-HD-Rabin-transform-for-games
We obtain an analogous optimality result as the one given in Theorem II.7 for the

ACD-HD-Rabin-transform-for-games. In this case, the bound is not tight due to the
additional vertices that are added to ACDgame

Rabin(G).

Corollary B.12.

Let G be a Muller game suitable for transformations whose states are accessible
and let G̃ be a Rabin game. If G̃ admits an HD-for-games mapping ϕ : G̃ → G, then,
|ACDgame

Rabin(G)| ≤ 2|G̃|.
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Proof. The vertices of ACDgame
Rabin(G) corresponding to vertices in Vnormal are exactly the

same that those in ACDRabin(G):

{(v, x) ∈ ACDgame
Rabin(G) | v ∈ Vnormal} = {(v, x) ∈ ACDRabin(G) | v ∈ Vnormal}.

Moreover, for v ∈ VA-succ, there is one vertex of the form (v, x) for each vertex (pred(v), x),
and each v ∈ VA-succ has exactly one predecessor in Vnormal, so we conclude that:

|ACDgame
Rabin(G)| ≤ 2 · |{(v, x) ∈ ACDgame

Rabin(G) | v ∈ Vnormal}| ≤ 2 · |ACDRabin(G)| ≤ 2 · G ′,

where the last inequality follows from Theorem II.7. J

B.2 Minimality of the ZT-parity-automaton with respect to HD au-
tomata: Proof of Theorem II.2

We intend to prove Theorem II.2, that is, that for any F ⊆ 2Σ
+, the automaton Aparity

ZF
is minimal amongst HD parity automata recognising Muller(F). We will follow the same
proof scheme than in the deterministic case (Theorem II.2), performing an induction over
the height of the Zielonka tree. Assume that A is an HD parity automaton for Muller(F)
and that n0 is the root of ZF having n1, . . . , nk as children. For each child ni we want
to find an HD subautomaton Ai recognising the language associated to F|ν(ni) in such a
way that the automata Ai are pairwise disjoint, which would allow us to carry out the
induction and obtain that |A| ≥ |Leaves(ZF)| = |Aparity

ZF |. Our objective will be therefore
to prove:

Proposition B.13.

Let n0 be the root of the Zielonka tree of F , and let n1, n2, . . . , nk be an enumeration
of the children of n0. If A is an HD automaton recognising MullerΣ(F), then, A contains
k pairwise disjoint subautomata A1, . . . ,Ak that are history-deterministic and such that
L(Ai) = Mullerν(ni)(F|ν(ni)).

The non-determinism of A will make this task considerably more laborious than in the
proof of Theorem II.3, and we will have to thoroughly examine the strategies used by the
resolvers for A. By the inherently asymmetric semantics of non-deterministic automata,
there are two well-differentiated cases to consider, depending on whether the root of the
Zielonka tree is round (Σ ∈ F) or square (Σ /∈ F).

Global hypothesis in Section B.2.

In order to simplify the proof, we will suppose that all states are reachable using a
sound resolver and that all automata have a single initial state, which can be done without
lost of generality since a resolver for an HD automaton fixes such initial state in advance.

Case 1: The root of the Zielonka tree is a square node: Σ /∈ F
For the rest of the paragraph, we let A = (Q,Σ, q0,N,∆, parity) be a complete history-

deterministic automaton recognising the Muller language MullerF(Σ) admitting a sound
resolver (q0, r) implemented by a memory structure (M, σ).
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Composition of an automata and a memory implementing a resolver. As
M is a pointed graph labelled with the transitions of A, we can consider the product
automaton AnM. We want to furthermore restrict the transitions of this automaton to
those that are indicated by the next-move function σ.

Given an automaton A and a memory structure (M, σ), we define their composition,
which we write ACσM = (Q×M,Σ, (q0,m0),Γ,∆′,W ) as the automaton having tran-
sitions (q,m) a:c−→ (q′,m′) if σ(q,m, a) = e = q

a:c−→ q′ and µ(m, e) = m′ (formally, ∆′ is
a subset of ∆ × EM, where EM are the edges of the memory skeleton). We note that
ACσM is deterministic, and it is complete if A is.

The following lemma follows directly from the definition of soundness of a resolver and
the definition of composition of an automaton and a memory structure.

Lemma B.14.
Let A be an automaton and (M, σ) a memory structure for A. The resolver imple-

mented by (M, σ) is sound if and only if A and ACσM recognise the same language.

We let πA : ACσM→ A be the morphism of automata given by the projection into
the first component: πA,V (q,m) = q and πA,E(e1, e2) = e1.

F Remark B.15. If ρ is a path in ACσM that is labelled by input letters a0a1 · · · ∈ Σ∞
and producing output c0c1 · · · ∈ N∞, then the πA-projection of ρ is a path in A labelled by
a0a1 · · · ∈ Σ∞ and producing c0c1 · · · ∈ N∞ as output.

Disjoint projections of X-SCCs from the product automata.

F Lemma B.16. Let X ⊆ Σ and let SX be an accessible X-FSCC of A CσM. Then,
πA(SX) induces an HD subautomaton of A recognising MullerX(F|X) = {w ∈ Xω |
Inf(w) ∈ F}.

Proof. Let qS be a state in πA(SX) chosen to be initial. LetmS be a state inM such that
(qS,mS) ∈ SX . By Lemma II.38, SX induces a deterministic subautomaton with initial
state (qS,mS) recognising MullerX(F|X). On the one hand, since πA(SX) is an accessible
subautomaton of A having only transitions labelled by X and by prefix-independence of
L(A), we have that

L(πA(SX)) ⊆ L(A) ∩Xω = MullerX(F
∣∣∣
X

).

On the other hand, the projection of any accepting run in SX provides an accepting run
in πA(SX) (by Remark B.15), so

L(SX) = MullerX(F
∣∣∣
X

) ⊆ L(πA(SX)).

Moreover, a sound resolver for πA(SX) is implemented by (MmS
, σ) (the memory structure

with initial state set to mS). J

F Lemma B.17. Let n ∈ N be a square node of the Zielonka tree of F (ν(n) /∈ F), and
let n1, n2 ∈ ChildrenZF (n) be two different children of n. If S1 and S2 are two accessible
ν(n1)-FSCC and ν(n2)-FSCC in ACσM, respectively, then πA(S1) ∩ πA(S2) = ∅.
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Proof. Suppose by contradiction that there is some state q in πA(S1) ∩ πA(S2), and let
m1,m2 ∈ M be such that (q,m1) and (q,m2) are states in S1 and S2, respectively. For
i = 1, 2, let `i ∈ Cycles (q,mi)(ACσM) be the cycle over (q,mi) containing all edges in
Si. We note that let(`i) = ν(ni) and therefore min col(`i) has to be even (as A CσM
is deterministic), where let and col are the labellings of A CσM with input letters and
output colours, respectively. By Remark B.15, the πA-projections of `1 and `2 are cycles
over q in A labelled with ν(n1) and ν(n2) and in which the minimal colour appearing is
even. By alternating these two cycles, we can build an accepting run in A over a word
w ∈ Σω with Inf(w) = ν(n1) ∪ ν(n2), contradicting the fact that ν(n1) ∪ ν(n2) /∈ F
(Remark II.27). J

Lemmas I.4, B.16 and B.17 imply Proposition B.13 in the case in which the root of
the Zielonka tree is a square node.

Case 2: The root of the Zielonka tree is a round node: Σ ∈ F
Before presenting the formal proof, let us discuss why considering these two cases

separately is necessary. A first idea to obtain the desired result would be to follow the
same steps as in Case 1. However, this approach encounters a major difficulty: the
argument used in the proof of Lemma B.17 is not valid if Σ ∈ F . Indeed, even if we can
find two rejecting cycles `1, `2 such that let(`i) = ν(ni), their πA-projections could a priori
have a state in common; this would imply the existence of a rejecting run over the set of
letters ν(n1) ∪ ν(n2) ∈ F , which is not enough to conclude, as the non-determinism of A
leaves room for the existence of other accepting runs over this set of letters. To circumvent
this difficulty, we need to take a closer look at the strategies used by the resolver. Rather
than considering any finite memory strategy resolving the non-determinism of A, we will
show that we can choose a very precise resolver for which we will be able to obtain a
result analogous to Lemma B.17. To do this, we first construct the letter game of A, as
introduced in [HP06], which is a Muller game satisfying that a strategy for it yields a
resolver for A. The strategy that we will use in this game is the one obtained by applying
McNaughton’s algorithm to solve Muller games [McN93] guided by the Zielonka tree, as
presented in [DJW97].

Letter game. Let A = (Q,Σ, q0, [dmin, dmax],∆, parity) be a parity automaton recog-
nising Muller(F), and suppose that Σ∩ [dmin, dmax] = ∅. The letter game for A is the game
GA defined as follows:

] The set of vertices is V = Q t (Q × Σ). Adam controls vertices in Q, and Eve
controls vertices in Q× Σ.

] For each letter a ∈ Σ and each q ∈ Q, there is an edge q a−→ (q, a).
] For each position (q, a) ∈ Q × Σ, and for each transition q a:c−→ q′ in A, there is an
edge (q, a) c−→ q′.

] The set of colours is Γ = Σ t [dmin, dmax], and the acceptance set is the Muller
language associated to

F → parity = {C ⊆ Γ | [C ∩ Σ ∈ F ] =⇒ [min(C ∩ [dmin, dmax]) is even]}.

That is, in the letter game, Adam provides input letters one by one, and Eve chooses
transitions corresponding to those letters in the automaton A. Eve wins this game if she



B. Transformations of automata: Missing details for Chapter II 279

manages to build an accepting run every time that Adam gives as input an infinite word
in the language recognised by A.

q0 q1 q2

q0, a

q0, b

q1, a

q0, c

q1, b

q1, c

q2, a

q2, b

q2, c

a

b

c

a
b

c

a

b

c

2

2 1

2 2

2 2

1

2

2

F Figure 49. Letter game for the HD automaton from Figure 4, recognising the Muller
language associated to F = {{a}, {b}, {c}, {a, b}, {b, c}}. Squares represent Adam’s ver-
tices (the states of the automaton) and circles Eve’s ones. Solid-blue edges correspond
to input-letters, and dashed-orange edges to the choices of transitions in the automaton
after each input letter. The only vertex where Eve has a non-trivial choice to make to re-
solve the non-determinism of the automaton is (q1, b). In this example, Eve has a winning
strategy corresponding to the resolver described in Example I.7.

We remark that a subgraph of GA induces a subautomaton of A via the (partial)
mapping autA : GA ⇀ A that sends states of the form q ∈ Q to q and edges of the form
(q, a) c−→ q′ to q a:c−→ q′.
F Remark B.18. A strategy for Eve in GA induces a resolver in A, which is sound if and
only if the strategy is winning.
F Remark B.19. If two subsets of vertices of the letter game S1, S2 ⊆ V are disjoint, then
autA(S1) ∩ autA(S2) = ∅.
F Remark B.20. If ρ is a play in GA, labelled a0c0a1c1 · · · ∈ (Σ · [dmin, dmax])∞, the autA-
projection of ρ is a run in A over a0a1 · · · ∈ Σ∞ producing c0c1 · · · ∈ [dmin, dmax]∞ as
output.

Lemma B.21 ([HP06]).
A parity automaton A is HD if and only if Eve wins the letter game from some initial

state of A.

For the rest of the paragraph, let A = (Q,Σ, q0, [0, d],∆, parity) be a complete history-
deterministic parity automaton recognising Muller(F). We can suppose without loss of
generality that the minimal colour that it uses is 0. We let V and E denote the sets of
vertices and edges, respectively, of the letter game and Γ = Σ t [0, d] its set of colours.
Whenever we use expressions like “the minimal colour appearing in a play”, it will refer to
the restriction of Γ to [0, d]. From the prefix-independence of Muller(F) we can moreover
suppose that Eve wins the letter game from any vertex (see Lemma I.9). We let n0 be the
root of the Zielonka tree of F (supposed to be round, that is ν(n0) ∈ F), let n1, . . . , nk
be its children, and let Σi = ν(ni) ⊆ Σ (note that Σi /∈ F for i ≥ 1).

Let us examine the condition F → parity used in the letter game a bit closer. The first
levels of the Zielonka tree of this condition are depicted in Figure 50. It is clear that a
strategy in GA ensuring to produce colour 0 infinitely often is winning. It might be the
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case that Adam can prevent Eve from doing this, however, since Eve wins GA, in that case
she could ensure to produce infinitely often a set of colours included in some of the round
nodes below the root, that is, to either avoid colour 1, or to produce letters included in
some Σi. We use this idea to define next attractor decompositions for GA.

Σ ∪ [0, d]

Σ ∪ [1, d]

Σ ∪ [2, d] Σ1 ∪ [1, d] · · · Σk ∪ [1, d]

...
...

...

F Figure 50. First levels of the Zielonka tree of the Muller condition F → parity, which
is the winning condition of the letter game GA.

Attractor decompositions. For a subset X of vertices or edges of a game G, we
define Eve’s attractor to X as:

AttrG(X) = {v ∈ V | there is a strategy for Eve ensuring to eventually visit X from v}.

For a colour c ∈ Γ we write AttrG(c) = AttrG(Ec), where Ec is the set of edges coloured
c. Given a subset of vertices V ′ ⊆ V we write GA(V ′) to denote the subgame of GA
containing the vertices of V ′ and the edges between them.

Let x be an even integer. For a subgame G ′ = GA(V ′) of GA with no colour strictly
smaller than x, we define an x-attractor decomposition of G ′ as a partition of V ′ into

V ′ = AttrG′(x) t V1 t A1 t . . . t Vl t Al,

satisfying:

] AttrG′(x) is Eve’s attractor to x in G ′.
] For each Vj, either (1) there is some i ∈ {1, . . . , k} such that no colour of Σ \ Σi

appears in GA(Vj), or (2) Eve has a winning strategy for GA(Vj) (from any vertex)
avoiding colour x+1; and in both cases, if Adam can leave Vj taking an edge v a−→ v′

(v ∈ Vj, v′ /∈ Vj), then v′ ∈ AttrG′(x) t V1 t A1 t . . . Vj−1 t Aj−1. In case (1) we
say that Vj is a Σi-region of the attractor decomposition and in case (2) that Vj is
an x+ 1-avoiding region.

] Eve wins GA(Vj) from every vertex for all j.
] Aj = AttrGj

(Vj), where Gj is the subgame induced by the subset of vertices given by
V \ (AttrG′(x) t V1 t . . . t Vj−1 t Aj−1) (we note that this game does not contain
edges coloured with x).

If Vj is an x + 1-avoiding region, we let G ′j be the subgame obtained from GA(Vj) by
removing the transitions labelled x+ 1.

An x-recursive attractor decomposition of G ′ is:

DG′ = 〈AttrG′(x), (V1, A1,DG′1), (V2, A2,DG′2), . . . , (Vl, Al,DG′
l
)〉,
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where AttrG′(x) t V1 t A1 t . . . t Vl t Al is an x-attractor decomposition of G ′, and, if
Vj is an x + 1-avoiding region, then DG′j is an x + 2-recursive attractor decomposition of
G ′j. (If Vj is an Σi-region, DG′j can be disregarded).

G Note. A representation of an attractor decomposition appears in Figure 51.

RegionRegion
1-avoiding region

RegionRegion
Region Region

F Figure 51. On the left, a 0-attractor decomposition of a game G. On the right, the
coloured part represents a 2-attractor decomposition of the subgame G ′2 induced by the
1-avoiding region V2. Since no 3-avoiding region appears on it, this is a full attractor
decomposition of the game G, inducing a partition into three different kinds of regions.
The order over the Σi-regions is given by V1 <D V2,1 <D V2,2 <D V3. Adam can only
force to decrease with respect to this order, that is, at each sublevel of the decomposition,
Adam cannot force to go to the right.

Let G ′ be a subgame of GA with no colour strictly smaller than x and DG′ an x-recursive
attractor decomposition of it. We say that a subgame S of G ′ is a Σi-region of DG′ if it
is a Σi-region of some of the recursively defined attractor decompositions. Similarly, for
y > x an odd integer, we say that S is a y-avoiding region of DG′ if it is a y-avoiding
region of some of the recursively defined attractor decompositions. By convention, G ′ is
an x − 1-avoiding region (note that x might take the value 0). We remark that for any
subset S of vertices of G ′ there is one and only one minimal y-avoiding region of DG′
containing S (note that y might equal −1).
F Remark B.22. A 0-recursive attractor decomposition DGA of GA induces a partition of
the vertices into

V = S1 t . . . t Sr t A1 t . . . Ar t B1 t . . . t Bs,

such that:

] Sj is a Σi-region of DGA, for some i ∈ {1, . . . , k},
] Aj = AttrGj

(Sj) for some subgame Gj appearing at some level of the decomposition,
] Bj = AttrG′j (x) for some even integer x and some x−1-avoiding region G ′j appearing
at some level of the decomposition.

Moreover, such a decomposition induces a total order over the Σi-regions: for two sets
St, St′, we write St <D St′ if there are two regions Vj, Vj′ belonging to the same attractor
decomposition in DGA such that j < j′, St ⊆ Vj and St′ ⊆ Vk′.
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We call such a partition a full attractor decomposition of GA. We remark that, by
definition of an attractor decomposition, Eve wins GA(Sj) from every vertex for every Sj.
See Figure 51 for an illustration.

The proof that GA admits a full attractor decomposition uses the ideas appearing in
[DJW97, Section 3].

Lemma B.23.
Let x be an even integer. If G ′ is a subgame of GA with no colour smaller than x and

such that Eve can win from every vertex, then it admits an x-attractor decomposition.
In particular, GA admits a full attractor decomposition.

Proof. We suppose without loss of generality that x = 0. Assume that V1, A1, . . . Vj−1, Aj−1
have already been defined and that they satisfy the desired properties. Assume that the
game Gj with vertices V \(AttrG′(0) t V1 t . . . Vj−1 t Aj−1) is non-empty. First, note that
Eve wins Gj from any position. Indeed, Eve wins G ′ from any vertex v in Gj (as we assume
that she can win G ′ starting anywhere); moreover, since v /∈ Aj′ for any j′ < j, Adam
has a strategy from v to force to remain in Gj, and Eve has to be able to win against any
such strategy.

We prove that either (1) there is some i ∈ {1, . . . , k} and v vertex in Gj such that Eve
has a winning strategy from v forcing to produce no colour in Σ \Σi, or (2) there is some
vertex v in Gj such that Eve has a winning strategy from v avoiding colour 1. Suppose by
contradiction that this was not the case. Then, Adam can use the following strategy: first,
he forces to produce colour 1, then, a colour not in Σ1, followed by a colour not in Σ2, and
continues this pattern until a colour not in Σl is produced (and this without producing
colour 0, since no 0-edge appears in Gj). Afterward, he continue repeating these steps
in a round-robin fashion. This allows him to produce a play winning for him (the word
produced is in Muller(F) while the minimal number produced is 1), contradicting the fact
that Eve wins Gj from v.

We suppose that we are in the case (1) (case (2) is identical), so from some vertices
Eve can win producing no colour in Σ \ Σi. We let Vj be the set of such vertices, and we
fix a strategy stratj that is winning in Gj and avoids colours in Σ \ Σi. By definition of
Vj, if ρ = v v′ is a finite play consistent with stratj in Gj, then v′ ∈ Vj (Eve can still
win without producing colours in Σ \Σi), so Adam cannot force to leave Vj. This proves
that:

1. stratj is winning in GA(Vj) from every vertex,
2. if v ∈ Vj is controlled by Adam and v −→ v′ is an edge in GA, then v′ ∈ AttrG′(0) t

V1 t A1 t . . . Vj−1 t Aj−1 t Vj.

Also, if a vertex v controlled by Adam is in Vj, no edge v a/∈Σi−−−→ v′ appears in Gj, so no
colour of Σ \ Σi appears in GA(Vj).

To finish the proof, we define Aj to be the attractor of Vj in Gj.

The existence of a full attractor decomposition for GA follows from the fact that
any x + 1-avoiding region of an x-attractor decomposition satisfies the hypothesis of the
lemma. J
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Lemma B.24 ([McN93]).
Eve can play optimally in Muller games using finite memory. That is, if G is a game

using a Muller winning condition, there is a strategy strat for Eve implemented by a finite
memory structure winning from all her winning region.

Finding disjoint HD subautomata from X-closed subgames. For the rest of
the paragraph, we fix a 0-recursive attractor decomposition DGA for GA and let S1 <D
S2 . . . <D Sr be the Σi-regions of the induced full attractor decomposition. For each
region Sj we fix a memory structure (Mj, σj) implementing a winning strategy for Eve
in GA(Sj) (as given by Lemma B.24). As in the previous paragraph, we can consider
the composition GA(Sj) Cσj

Mj consisting of the product game in which the choices for
Eve are restricted to those of the form (v,m) c−→ (v′,m′) if σj(v,m) = e = v

c−→ v′ and
µj(m, e) = m′. By definition, Eve does not have any choice in GA(Sj)Cσj

Mj, and since
(Mj, σj) implements a winning strategy, any infinite path in GA(Sj)Cσj

Mj produces a
set of colours in F → parity. We let πG : GA(Sj)Cσj

Mj → GA(Sj) be the projection into
GA(Sj).

A subgraph Gj of GA(Sj)Cσj
Mj is X-Adam-closed, for a subset X ⊆ Σ, if for every

vertex (q,m) controlled by Adam and every a ∈ X, the transition (q,m) a−→ ((q, a),m′)
remains in Gj. We say that Gj is an X-FSCC if it is a final SCC of the restriction of
GA(Sj) Cσj

Mj to the graph where Adam’s choices are restricted to letters in X that is
moreover X-Adam-closed. We say that a subgraph G of GA is an X-closed subgame (with
respect to the attractor decomposition DGA and a family of finite memory strategies) if
G = πG(Gj) for Gj some X-Adam-closed SCC of some product GA(Sj)Cσj

Mj.
Intuitively, an X-closed subgame G of the letter game is a subgame included in a

region Sj of the full attractor decomposition such that, if Adam only provides letters in
X and Eve plays according to the strategy defined by the memory structures Mj, the
play will never leave G.
F Lemma B.25. Eve wins any X-closed subgame of GA (from any vertex).

Proof. In an X-closed subgame included in a region GA(Sj), Adam’s moves have been
restricted; however, all Eve’s moves coming from the strategy implemented by (Mj, σj) are
available. Therefore, this strategy is also winning in such a subgame, since it is winning
in the full GA(Sj). J

Putting this lemma together with Remark B.18 we obtain:
F Lemma B.26. Let X ⊆ Σ, and let GX ⊆ GA be an X-closed subgame of GA. The
subautomaton of A induced by autA(GX) is HD and recognises MullerX(F|X).
F Lemma B.27. If a product GA(Sj) Cσj

Mj does not contain any X-Adam-closed
subgraph, for X ⊆ Σ, then from any vertex (q,m) Adam can force to leave Sj while
playing only letters in X. That is, there is a path (q,m) (q′,m′) in GA(Sj) Cσj

Mj

producing exclusively letters in X such that, for some a ∈ X, the edge q′ a−→ (q′, a) does
not belong to GA(Sj).

Proof. If this was not the case, the subgraph of GA(Sj)Cσj
Mj consisting of the vertices

that can be reachable from (q,m) by reading letters in X would form an X-Adam-closed
subgraph. J
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F Lemma B.28. For each label Σi of the children of the root of ZF , GA admits some
Σi-closed subgame contained in a Σi-region of DGA.

Proof. Suppose that the full attractor decomposition of GA induced by DGA is the fol-
lowing:

V = S1 t . . . t Sr t A1 t . . . Ar t B1 t . . . t Bs,

We fix the following strategy strat for Eve in the letter game:

] whenever the play lands to Bj, where Bj = AttrG′j (x) for some even colour x, she
forces to produce colour x,

] whenever the play arrives to some Aj, she forces to go to Sj,
] in regions Sj she uses the strategy (Mj, σj). More precisely, let mv be the state
ofMj such that (Mj,v, σj) implements a winning strategy for GA(Vj) from (v,mv).
Each time that the play arrives to a vertex v in Vj from a different region, Eve uses
(Mj,v, σj).

G Claim B.28.1. Let ρ be a play consistent with strat (from any vertex), and let y ≥ −1
be the maximal odd number such that Inf(ρ) is contained in a y-avoiding region S of
DGA. Then, either ρ eventually stays in a Σi-region Sj contained in S, or the minimal
colour produced infinitely often by ρ is y + 1.

Proof. Let AttrS(y + 1) t V1 t A1 t . . . . . . , Vl t Al be the attractor decomposition of
S appearing in DGA . By definition of an attractor decomposition, each time that the
play leaves a Vj region, the next vertex is in v′ ∈ AttrS(y + 1) t V1 t A1 t . . . Vj−1 t
Aj−1. First, if Vj is a y + 2-avoiding region, ρ cannot stay in it (by maximality of y).
Thus, if ρ does not eventually stay in a Σi-region, it leaves regions Vj infinitely often,
so it must produce y+ 1 infinitely often too. Since S is a y-avoiding region, no colour
smaller than y + 1 is produced. C

We obtain as a consequence that strat is winning for Eve from any initial position: any
play staying in a y-avoiding region and producing infinitely many y + 1’s is winning,
and if a play eventually stays in a Σi-region Sj, it has to be winning since the strategy
implemented by (Mj, σj) is winning in there.

We remark that we can extract a Σi-FSCC from any Σi-Adam-closed subgraph of
GA(Sj) Cσj

Mj, that will be contained in the Σi-region Sj, so it suffices to prove the
existence of such Σi-Adam-closed subgraphs. We also recall that in GA(Sj) Cσj

Mj all
choices are left to Adam, so he can choose to produce any path in this product whenever
the play arrives to a vertex v in Sj.

Suppose by contradiction that no accessible Σi-Adam-closed subgraph exists in any of
the products. We consider a play in which Adam does the following:

(a) the letters that he gives form a word w ∈ Σω such that Inf(w) = Σi,
(b) each time that the play arrives to a region Sj, he exists this region in a finite number

of steps.

Indeed, he can ensure to exit regions Sj while only producing letters in Σi by Lemma B.27.
By Claim B.28.1, the minimal colour produced infinitely often by such a play is even. By
Remark B.20, we can project such a play in the automaton A, obtaining an accepting
run over w. This is a contradiction, since w /∈ Muller(F) = L(A) (because Σi /∈ F). We
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conclude that some GA(Sj) Cσj
Mj admits a Σi-FSCC, and therefore GA admits some

Σi-closed subgame. J

We can now infer Proposition B.13 in the case in which the root of ZF is round: from
Lemma B.28, we obtain Σi-closed subgames in GA for each i ∈ {1, . . . , k} that are moreover
contained in Σi-regions. Therefore, their autA-projections are disjoint (Remark B.19), and
each of these projections induces an HD-subautomaton recognising F|Σi

(Lemma B.26).

B.3 Size of the Zielonka tree and the ACD

B.3.1 Comparison of different representations of Muller languages
Explicit Muller vs Zielonka trees. First, we remark that an explicit representa-

tion of a family F can be exponentially larger than ZF .

Proposition B.29.

For all n ∈ N, there is a family of subsets Fn ⊆ 2Σn
+ over Σn = {1, . . . , n} such that

|Fn| = 2n − 1 and |ZF | = 1.

Proof. It suffices to take F = 2Σn
+ . J

Even if the family F is represented explicitly as a list of subsets, we cannot compute
its Zielonka tree in polynomial time, as ZF can be super-polynomially larger than |F|.

Proposition B.30.

For all n ∈ N, there is a family of subsets Fn ⊆ 2Σn
+ over Σn = {1, . . . , n} such that:

|ZFn| ≥ |Fn|log(n).

More precisely, the family Fn satisfies |ZFn| = n! and |Fn| = 2n − 1.

Proof. The condition EvenLettersn from Proposition II.91 satisfies |ZFn| = n! and |Fn| =
2n − 1. The inequality |ZFn| ≥ |Fn|log(n) is obtained by applying Stirling’s formula. J

There is no apparent reason why the lower bound in the previous proposition should
be optimal.

Question B.6.

Find tight bounds for the comparison of the size of an explicit representation of a
Muller condition and the size of its Zielonka tree.

Explicit Muller vs Zielonka DAGs. Hunter and Dawar showed that we can
compute the Zielonka DAG of F in polynomial time if F is given as a list of subsets [HD08,
Theorem 3.17].

https://en.wikipedia.org/wiki/Stirling27s_approximation
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Proposition B.31 ([HD08, Theorem 3.17]).
Given a family of subsets F ⊆ 2Σ

+, we can compute the Zielonka DAG of F in poly-
nomial time in |F|+ |Σ|. In particular, Z-DAGF has polynomial size in |F|+ |Σ|.

By Proposition B.29, the Zielonka DAG can be exponentially smaller that an explicit
representation of F .

Zielonka trees vs Zielonka DAGs. It is clear that, given a Zielonka tree ZF , we
can compute the corresponding Zielonka DAG Z-DAGF in polynomial time. The converse
is not possible.

Proposition B.32.

For all n ∈ N, there is a family of subsets Fn ⊆ 2Σn
+ over Σn = {1, . . . , n} such that:

] the size of the Zielonka DAG of Fn is at most 2n,
] the size of the Zielonka tree of Fn is at least 2bn/2c.

Proof. Consider the family defined as follows:

MinOddAndSuccn = {C = {c1 < c2 < · · · < ck} ⊆ Σn | c1 is odd and c2 = c1 + 1}.

Equivalently, we can describe this family as
n⋃
i=1,
i odd

Xi, where Xi = {C ⊆ Σn | i ∈ C and i+ 1 ∈ C and c > i for all c ∈ C}.

1, 2, . . . , n

2, . . . , n 1, 3, . . . , n

3, . . . , n

...
...

...

n− 2, . . . , n

n− 1, n n− 2, n

n

1, 2, . . . , n

2, . . . , n 1, 3, . . . , n

3, . . . , n 3, . . . , n

4, . . . , n 3, 5, . . . , n 4, . . . , n 3, 5, . . . , n

...
...

...
...

F Figure 52. On the left, the Zielonka DAG of the condition MinOddAndSuccn (for n
odd), of size O(n). On the right, its Zielonka tree, of exponential size.

We show the Zielonka DAG and the Zielonka tree of MinOddAndSuccn (for n odd) in
Figure 52. We observe that the Zielonka DAG has height n; even levels consist in a single
node, and odd levels have two nodes. Therefore, its size is dn/2e+n. On the other hand,
the Zielonka tree (with height also n), has 2bk/2c nodes at the level of depth k. J
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Moreover, we note that for the Zielonka tree of MinOddAndSuccn, rbw(Zn) is also 2bn/2c,
and that the Muller language associated to this condition is a Streett language (the
Zielonka tree in Figure 52 has Streett shape). We can construct a condition giving a
Rabin language dually.

Rabin vs Zielonka trees and Zielonka DAGs. If the Muller language associated
to a family F is a Rabin language, then the Zielonka DAG Z-DAGF has Rabin shape
(see Section II.6.1). In this case, we can compute a family of Rabin pairs R such that
Rabin(R) = Muller(F) in polynomial time. The converse is not possible, we cannot
compute the Zielonka DAG in polynomial time, since it can be of exponential size in the
number of Rabin pairs.

Proposition B.33.

Let F ⊆ 2Σ
+ be a family of subsets, and assume that its Zielonka DAG (resp. Zielonka

tree) has Rabin shape. Then, we can compute in polynomial time in |Z-DAGF | a family
of Rabin pairs R over Σ such that RabinΣ(R) = MullerΣ(F).

Proof. The Rabin condition we define is almost the same as the one used by the ZT-HD-
Rabin-automaton. Let N = N© t N� be the nodes of the Zielonka DAG, partitioned
into round and square nodes. By definition of Rabin shape, all round nodes have at most
one child. We define a Rabin pair for each round node of Z-DAGF , R = {(gn, rn)}n∈N© ,
where gn and rn are defined as follows:

gn = Σ \ ν(n),
rn = ν(n) \ ν(n′), for n′ the only child of n, if it exists.
rn = ν(n) if n has no children.

That is, the pair (gn, rn) accepts the sets of colours A ⊆ Σ that contain some of the
colours that disappear in the child of n and none of the colours appearing above n in the
Zielonka DAG. We show that Rabin(R) = Muller(F). Let A be a set of colours. If A ∈ F ,
let n be a maximal node (for �) containing A. It is a round node and there is some colour
c ∈ A not appearing in the only child of n. Therefore, c ∈ gn and A∩ rn = ∅. Conversely,
if A /∈ F , then for every round node n with a child n′, either A ⊆ ν(n′) (and therefore
A ∩ gn = ∅) or A * ν(n) (and in that case A ∩ rn 6= ∅). J

Proposition B.34.

For all m ∈ N, there is a family R of m Rabin pairs over an alphabet Σ of size 2m,
such that |ZFR

| ≥ m! and |Z-DAGFR
| ≥ 2m, where FR ⊆ 2Σ

+ is the (only) family such
that Muller(FR) = Rabin(R).

Proof. Let Σ = {g1, r1, g2, r2, . . . , gm, rm} and define the Rabin pairs of R as gi = {gi}
and ri = {ri}. We depict the Zielonka tree of the corresponding family of subsets in
Figure 53.

The Zielonka tree ZFR
satisfies that the levels at depth k and k + 1 have m(m −

1) . . . k nodes, which shows that |Leaves(ZFR
)| = m!. For the bound on the size of the

Zielonka DAG, we observe that for each subset X ⊆ {1, . . . ,m} there is at least one subset
appearing as the label of some nodes of the Zielonka tree, namely, {gi, ri | i ∈ X}. J
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g1, r1, . . . , gm, rm

g1, g2, r2, . . . g1, r1, g2, g3, . . . · · · g1, r1 . . . , gm

g2, r2, . . . g1, r1, g3, r3, . . . · · · g1, r1, . . . , gm−1 , rm−1

...
...

...

F Figure 53. The Zielonka tree ZFR
of the Rabin language from the proof of Proposi-

tion B.34.

Deterministic parity automata vs Zielonka trees. In Section II.3.2, we have
seen that given a Zielonka tree ZF , we can build a DPA recognising Muller(F) in poly-
nomial time (DPA which is moreover minimal). Conversely, in Section III.3 (Proposi-
tion III.18), we show that given a DPA A recognising a Muller language MullerΣ(F), we
can compute the Zielonka tree ZF in polynomial time in the size of A. This fact is used to
prove that parity automata recognising Muller languages can be minimised in polynomial
time (Theorem III.4).

Emerson-Lei vs Rabin. We recall that an Emerson-Lei condition represents a
family F ⊆ 2Σ

+ as a positive boolean formula over the primitives Inf(c) and Fin(c). We
show the missing implication in Figure 19.

Proposition B.35 (Folklore).
Given a family of m Rabin pairs R over an alphabet Σ of size n, we can build an

equivalent Emerson-Lei condition of size O(nm).

Proof. Let R = {g1, r1, . . . , gm, rm}. It suffices to consider the formula∨
1≤i≤m

(Inf(gi) ∧ Fin(ri)) ,

where Inf(X) stands for ∨
c∈X

c and Fin(X) stands for ∧
c∈X

c. J

Proposition B.36 (Folklore).
For each n ∈ N, there exists an Emerson-Lei condition of size O(n) over an alphabet

Σ2n of size 2n, such that it defines a Rabin language but any equivalent Rabin condition
uses at least 2n Rabin pairs.

Proof. Let Σ2n = {a1, . . . , an, b1, . . . , bn}, and consider the formula:∧
1≤i≤n

(Fin(ai) ∨ Fin(bi)) .

It is easy to check that the corresponding Muller language is indeed a Rabin language.
Let R = {g1, r1, . . . , gm, rm} be a family of Rabin pairs defining the same Muller language.
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We first remark that each subset of red colours ri must have cardinality at least n, on the
contrary Σ2n\ri would be accepting, which is not possible. For each subsetX ⊆ {1, . . . , n},
there must be a Rabin pair accepting the set:

{ai | i ∈ X} ∪ {bj | j /∈ X}.

We conclude that m ≥ 2n. J

B.3.2 Size of the ACD by type
In Section II.5.1 we provided a worst-case analysis of the size of the Zielonka tree for

any Muller language. Those results directly generalise to the alternating cycle decompo-
sition. Here we refine those results by considering only subclasses of languages (parity,
Rabin, generalised Büchi, etc...). We state the results directly for the alternating cycle
decomposition. The proofs follow the same ideas of that of Proposition II.91, using the
characterisation of typeness from Section II.6.2.

Proposition B.37.

Let TS be a strongly connected Muller transition system that is parity type and using
m output colours. Then,

|ACDTS | ≤ m.

This bound is tight: for all m ∈ N, there is a transition system TSm that is parity type
with one state, m edges and using m colours such that |ACDTS | = m.

Proposition B.38.

Let TS be a strongly connected Rabin TS (resp. Streett TS), using r Rabin pairs and
m output colours . Then:

] |ACDTS | ≤ r!!,
] |ACDTS | ≤ m!!.

These bound are tight: for all r ∈ N, there is a Rabin transition system TSr (resp. Streett
TS) with one state, 2r edges and using r Rabin pairs such that |ACDTS | = r!!.

Proposition B.39.

Let TS be a strongly connected transition system that is generalised Büchi type (resp.
generalised coBüchi type) and using m output colours. Then,

|ACDTS | ≤
(

m

bm/2c

)
.

This bound is almost tight: for all m ∈ N, there is a transition system TSm that is
generalised Büchi type (resp. generalised coBüchi type) with one state, m edges and
using m colours such that |ACDTS | =

(
m
bm/2c

)
.

This result follows from Sperner’s Theorem [Spe28], stating that the maximal size of
an antichain of a set of m elements is

(
m
bm/2c

)
.
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B.4 Computation of the ACD and the ACD-DAG in polynomial time

We give here the proofs of Theorems II.8 and II.9.

B.4.1 Complexity of the ACD computation
We analyse now the complexity of Algorithm 1 proposed in Section II.5.2, depending

on the representation of the acceptance condition, providing a proof for Theorem II.8.
The analysis presented in the next subsection, using a different version for computing the
children of a node of the ACD (function ComputeChildren2, Algorithm 4), supersedes
the ongoing one. However, we show this analysis as the algorithms involved are the
one presented in Section II.5.2, and an analysis of this first naive approach will help to
understand which modifications in the algorithm are necessary to obtain the computation
of the ACD-DAG in polynomial time in |Z-DAGF |.

We observe that the cost of the computation of the alternating cycle decomposition
of TS following Algorithm 1 is O(|ACDTS | · αTS), where |ACDTS | is the number of nodes
of the ACD, and αTS denotes the cost of computing the children of a node using the
procedure ComputeChildren (Algorithm 2). The complexity of this latter procedure
depends, in turn, on the cost of MaxAltSubsets(C,F), which greatly varies depending on
the representation of the Muller condition.

If F is represented as an Emerson-Lei condition (that is, it is given by a boolean for-
mula), the problem SAT reduces to deciding whether the output of MaxAltSubsets(C,F)
is empty, so this problem is therefore NP-complete. On the other hand, if F is given ex-
plicitly, as a Zielonka tree, or as a Zielonka DAG, we can compute MaxAltSubsets(C,F)
in polynomial time (Lemma B.40).
F Lemma B.40. Given the Zielonka tree ZF (resp. Zielonka DAG Z-DAGF) and a
subset C ⊆ Γ, we can compute MaxAltSubsets(C,F) in polynomial time. In particular,
the output of MaxAltSubsets(C,F) is polynomial in the size of Z-DAGF .

Proof. We show the result for the Zielonka DAG (which is a stronger result). We suppose
w.l.o.g. that C ∈ F . We will compute a (polynomial-sized) list altSets containing rejecting
subsets of C, and amongst which lie the maximal ones. To compute MaxAltSubsets(C,F)
we just have to extract the maximal subsets of altSets.

To compute altSets, we first spot a node in Z-DAGF that is maximal containing C in
its label. This can be done simply by inspecting the nodes in the DAG in a top-down
fashion, and taking a child containing C greedily, if such child exists, until arriving at a
node without children containing C. We let nC be this node (which is round), and let
n1, . . . , nk be its children. We let Di = C ∩ ν(ni). For each Di, we repeat the process
looking into the nodes below ni until finding a maximal node nDi

containing Di. If this
node is square, we add Di to altSets; if not, we repeat the process with the intersection
of C with each child of nDi

. By Lemma II.28, all sets added to altSets are rejecting.
Moreover, if D ⊆ C is a maximal rejecting subset, D is of the form C ∩ ν(n), for n some
square node below nC , so all maximal rejecting subsets of C appear in altSets. J

We give now a technical lemma that will be useful for the subsequent analysis.
F Lemma B.41. Let C ⊆ Γ and let nC be a node in ZF such that C ⊆ ν(nC). Let
D1, . . . , Dk be k subsets of C such that, for all i 6= j, C ∈ F ⇐⇒ Di /∈ F ⇐⇒
Di∪Dj ∈ F . Then, there are k strict descendants of nC, n1, . . . , nk, such that Di ⊆ ν(ni),
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ν(ni) ∈ F ⇐⇒ Di ∈ F and such that nodes ni are pairwise incomparable for the ancestor
relation. Moreover, these nodes can be computed in polynomial time in |ZF |.

Proof. To simplify notations we suppose that C ∈ F and Di /∈ F (the proof is symmetric
in the other case). For each Di we pick a node ni which is a descendant of nC , such that
Di ⊆ ν(ni) and maximal for � with this property. In particular, ni is square and a strict
descendant (Lemma II.28). We prove that, for j 6= i, Dj * ν(ni), implying that ni and
nj are incomparable. Suppose by contradiction that for some j 6= i, Dj ⊆ ν(ni). Then,
Dj ⊆ Di∪Dj ⊆ ν(ni), so, by Lemma II.28, Di∪Dj /∈ F , contradicting the hypothesis. J

As we will show (Lemma B.44), the following result also holds if we replace Zielonka
tree by Zielonka DAG. Quite surprisingly, the arguments we need to use in each case are
radically different.
F Lemma B.42. For every state v, the tree Tv has size at most |ZF |.

Proof. We define in a top-down fashion an injective function f : Tv → ZF . For the
base case, we send the root of Tv to the root of ZF . Let n be a node in Tv such that
f(n) has been defined, and let n1, . . . , nk be its children. We let Cn = col(ν(n)) and
Di = col(ν(ni)) be the colours labelling the cycles of these nodes. These sets satisfy that
for i 6= j, Cn ∈ F ⇐⇒ Di /∈ F ⇐⇒ Di ∪ Dj ∈ F . Indeed, if the union of Di and
Dj does not change the acceptance, we could take the union of the corresponding cycles,
contradicting maximality. Lemma B.41 provides k descendants of f(n) such that the
subtrees rooted at them are pairwise disjoint. This allows to define the f(ni) and carry
out the induction. J

We conclude that the size of ACDTS is polynomial in |TS|+ |ZF |:

|ACDTS | ≤
∑
v∈V
|Tv| ≤ |V | · |ZF |.

To obtain Theorem II.8, it suffices to show that the computation of the children of a
given node of the ACD can be done in polynomial time in |TS| + |ZF |. Indeed, this will
imply that Algorithm 1 terminates in polynomial time, as each node of ACDTS is added
to nodesToTreat only once.
F Lemma B.43. Algorithm 2 computes the output of ComputeChildren(S) in polyno-
mial time in |TS|+ |ZF |.

Proof. In order to facilitate the analyse of the algorithm, we will suppose that the func-
tion takes two extra dummy arguments: a node of the Zielonka tree nS and a vertex vS
of TS, ComputeChildren(S, nS , vS). We show that in a call of the function, we can pick
these extra arguments in such a way that each pair (n, v) is used at most once, for n ∈ ZF
and v ∈ TS. This will finish the proof, as in each individual recursive call we perform
polynomially many operations. Indeed, in each recursive call, the algorithm performs:

] a call to MaxAltSubsets(C,F), which takes polynomial time (Lemma B.40),
] a for-loop (Line 4) over the elements in maxAltSets. By Lemma B.40, this set con-
tains polynomially many elements. For each of them, we perform a decomposition
into strongly connected components, which can be done in polynomial time [Tar72].
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We show how to choose the parameters nS , vS in the successive calls so that each pair
is used at most once. We choose them so they satisfy the invariant col(S) ⊆ nS and
vS ∈ S. Suppose that we are executing ComputeChildren(S, nS , vS), and let D1, . . . , Dk

be an enumeration of MaxAltSubsets(C,F), where C = col(S). By Lemma B.41, there
are k incomparable descendants of nS in ZF , n1, . . . , nk, such that Di ⊆ ν(ni). Whenever
we arrive to Line 11 in a loop iteration corresponding to a set Di, and we have to launch
a new recursive call for a subgraph S ′ ⊆ S, we call the function with the parameters
ComputeChildren(S ′, ni, v′), where v′ is any vertex in S ′. In the subsequent recursive
calls done by ComputeChildren(S ′, ni, v′), only strict descendants of ni and vertices in
the SCC S ′ will be used as dummy arguments. As a consequence, we obtain that no pair
(n, v) is used more than once, as the subtrees rooted at nodes ni’s are pairwise disjoint.

G Note. We note that this last argument does not apply to the Zielonka DAG: even if
n1, . . . , nk are pairwise incomparable nodes in Z-DAGF , the subDAGs rooted at these nodes
can have a non-empty intersection.

J

B.4.2 Efficient computation of the ACD-DAG
We show now the proof of Theorem II.9, that is, that we can compute ACD-DAGTS

in polynomial time in the representation of TS if the acceptance condition is given as a
Zielonka DAG Z-DAGF . For the high-level description of the algorithm we use a straight-
forward adaptation of Algorithm 1 to the ACD-DAG: we compute the DAG corresponding
to each SCC of TS recursively in a top-down fashion; before adding a new child, we check
whether it already appears in the part of the DAG previously computed.

As before, in order to show that this can be done in polynomial time, we need to show:
(1) the size of the output, i.e. |ACD-DAGTS | is polynomial in |TS| + |Z-DAGF |, and (2)
we can compute the children of a node in polynomial time in this measure.

Upper bound on the size of the ACD-DAG
We start by showing that |ACD-DAGTS | ≤ |TS| · |Z-DAGF |. For that, we show that

all Tv-DAG can be embedded in Z-DAGF .
F Lemma B.44. For every state v, the DAG Tv-DAG has size at most |Z-DAGF |.

Proof. We will define an injective function f : Tv-DAG → Z-DAGF . For a node n in
Tv-DAG, we let Cn = col(ν(n)) be the set of colours appearing in the label of n. If n is
not the root, we define pred(n) to be an immediate ancestor of n (that is, n is a child
of pred(n)). We let pred∗(n) be the sub-branch of nodes above n obtained by successive
applications of pred, that is, pred∗(n) = {n′ ∈ Tv-DAG | n′ = predk(n) for some k}. We
note that the elements of pred∗(n) are totally ordered by � (n being the maximal node
and the root the minimal one).

We define f recursively: For the root n0 of Tv-DAG, we let f(n0) be a maximal node
(for �) in Z-DAGF containing Cn0 in its label. For n a node such that we have define
f for all its ancestors, we let f(n) be a maximal node (for �) in the subDAG rooted at
f(pred(n)) containing Cn in its label. We remark that f(n) is a round node if and only
if n is a round node (by Lemma II.28). Also, if n′ is an ancestor of n in pred∗(n), then
f(n′) is an ancestor of f(n) in Z-DAGF .

We prove now the injectivity of f . Let n1, n2 be two different nodes in Tv-DAG (that
is, ν(n1) 6= ν(n2)). First, we show that the colours appearing in their labels must differ.
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G Claim B.44.1. It is satisfied that Cn1 6= Cn2.

Proof. Suppose by contradiction that Cn1 = Cn2 . Then, any node n containing ν(n1)
in its label satisfies that ν(n) is an accepting cycle if and only if ν(n) ∪ ν(n2) is an
accepting cycle. Let n be a node of minimal depth such that ν(n1) ⊆ ν(n) and
ν(n2) * ν(n). The label of an immediate predecessor of n contains ν(n1) ∪ ν(n2) by
minimality. This leads to a contradiction, as ν(n) ( ν(n) ∪ ν(n2), so ν(n) would not
be a maximal subcycle producing an alternation in the acceptance status. C

We suppose w.l.o.g. that n1 is round (that is, Cn1 ∈ F). Suppose by contradiction
that f(n1) = f(n2). Then, n2 is also round, and it is satisfied that Cn1 ∪ Cn2 ⊆ f(n1),
by definition of f . Again by definition of f , no child of f(n1) contains C1 ∪ C2, so,
by Lemma II.28, C1 ∪ C2 ∈ F . Let n′ be the minimal node in pred∗(n1) such that
ν(n2) ⊆ ν(n′). We do the prove for the case in which n′ is round, the other case is
symmetric. Let ñ be the child of n′ in pred∗(n′), which is a square node. We claim that
the following three properties hold:

i) Cñ ∪ Cn2 ∈ F ,
ii) Cñ ∪ Cn2 ⊆ f(ñ), and
iii) no child of f(ñ) contains Cñ ∪ Cn2 .

This leads to a contradiction, as the second and third items, combined with Lemma II.28
and the fact that f(ñ) is a square node, imply that Cñ ∪ Cn2 /∈ F . We prove the three
items:

i) Follows from the fact that ν(ñ) is a maximal rejecting cycle of ν(n′), but ν(n′)
contains ν(ñ) ∪ ν(n2).

ii) By definition of f , Cñ ⊆ f(ñ). Also, the node f(ñ) is an ancestor of f(n2), so
Cn2 ⊆ f(n2) ⊆ f(ñ).

iii) By definition of f , no child of f(ñ) contains Cñ in its label. J

We conclude that the size of ACD-DAGTS is polynomial in |TS|+ |Z-DAGF :

|ACD-DAGTS | ≤
∑
v∈V
|Tv-DAG| ≤ |V | · |Z-DAGF |.

A refined algorithm for computing the children of a node
We show now that we can compute the children of a node inACD-DAGTS in polynomial

time in |TS| + |Z-DAGF |. Unfortunately, the procedure ComputeChildren proposed in
Algorithm 2 does not achieve this result. The reason is that ComputeChildren(S) inspects
subgraphs of S recursively, and we can possibly inspect many times subgraphs with a non-
empty intersection, so there is no guarantee that the number of operations that we make
is less than |TS|. In Lemma B.43 we get to bound the number of times that a subgraph
containing a state q is inspected by building a injection of the set of recursive calls done
by the algorithm to V ×ZF . However, this is not possible if we replace the Zielonka tree
by the Zielonka DAG. In order to be able to employ a similar argument, we propose a
different function to compute the children of a node: ComputeChildren2 (Algorithm 4).
The idea of the algorithm is to keep a stack of subgraphs S that we need to inspect, as
cycles labelling children of the node under consideration might appear as subcycles of S.
Each time that we generate new subgraphs to inspect, before adding them to the stack,
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we check whether there is a “similar enough” subgraph already appearing in the stack,
and in that case we merge them. In this way, we can guarantee that the size of the stack
will remain polynomial in |TS| · |Z-DAGF |.

Next lemma follows directly from Lemma II.28. It will be useful to understand Algo-
rithm 5 and to prove its correctness.
F Lemma B.45. Let `1 and `2 be two cycles in TS with some state in common. For
i = 1, 2, let ni be a node in Z-DAGF containing col(`i) and maximal amongst nodes
containing col(`i). If n1 is an ancestor of n2 (n1 � n2), then

`1 is accepting ⇐⇒ `2 is accepting ⇐⇒ `1 ∪ `2 is accepting.

Algorithm 4 ComputeChildren2(S): Computing the children of a node of the ACD
Input: A strongly connected subgraph S corresponding to a node of ACD-DAGTS
Output: The maximal cycles `1, . . . , `k ∈ Cycles(S) such that col(`i) ∈ F ⇐⇒
col(S) /∈ F .

1: C ← col(S)
2: nC ← maximal node in Z-DAGF containing C
3: children← {}
4: sameAccList← 〈(S, nC)〉
5: while sameAccList 6= ∅ do
6: 〈alternatingList, sameAccList〉 ← FindInterestingSubcycles(sameAccList)
7: children← children ∪ alternatingList
8: end while
9: children← MaxInclusion(children)
10: return children

The subprocedure FindInterestingSubcycles is presented in Algorithm 5. We
present it in an asymmetric way (we suppose that the input subsets are accepting). This
is done exclusively in order to simplify the presentation and facilitate its understanding.
The generalisation to an algorithm taking a list of either accepting or rejecting cycles is
straightforward.

Correctness of the algorithm. Let S be a strongly connected subgraph of TS. We
suppose w.l.o.g. that S is accepting. We show that, if the function ComputeChildren2(S)
terminates, then it outputs the maximal rejecting subcycles of S. Termination will be
shown in the next paragraph. Suppose that the output 〈alternatingList, sameAccList〉 of
the subprocedure FindInterestingSubcycles satisfies the conditions claimed at the be-
ginning of Algorithm 5. Then, at each iteration of the while-loop in Line 5, the following
invariants are preserved:

] alternatingList only contains rejecting subcycles,
] if ` is a rejecting subcycle of S, then ` is either contained in some cycle of alternatingList
or in some cycle of sameAccList.

Therefore, at the end of the while-loop, alternatingList contains the maximal rejecting
subcycles of S, and children is indeed the set of maximal rejecting subcycles of S.

We prove now that the output of the subprocedure FindInterestingSubcycles (Al-
gorithm 5) satisfies all the properties stated above Line 1. First, it is clear that all cycles
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Algorithm 5 FindInterestingSubcycles(〈(S1, n1), . . . , (Sk, nk)〉): Classifying subcy-
cles guided by the Zielonka DAG

Input: A list of pairs (Si, ni) of a strongly connected subgraph and a node of the
Zielonka DAG such that

] all the subgraphs Si form accepting cycles,
] col(Si) ⊆ ni, and ni is maximal with this property,
] for i 6= j, Si ∩ Sj 6= ∅ implies ni and nj incomparable (in particular, ni 6= nj).

Output:
1. A list alternatingList of rejecting subcycles of the subgraphs Si.
2. A list sameAccList of pairs (S ′j, n′j) such that S ′j ( Si for some cycle of the input,

and n′j is a strict descendant of ni. Moreover, the list sameAccList satisfies the
same three hypothesis as the input.

Furthermore, if ` is a subcycle of some Si that is rejecting, then ` is contained in some
cycle in alternatingList or in sameAccList.

1: Ci ← col(Si), for i = 1, . . . , k . Ci ∈ F
2: sameAccList← 〈(S1, n1), . . . , (Sk, nk)〉
3: maxAltSetsi ← MaxAltSubsets(Ci,F), for i = 1, . . . , k
4: for i = 1, . . . , k do
5: sameAccList← sameAccList \ {(Si, ni)} . We will replace (Si, ni) by some strict

subcycles
6: for D ∈ maxAltSetsi do
7: Si,D ← restriction of Si to transitions e ∈ E such that col(e) ∈ D
8: 〈Si,D,1, . . . ,Si,D,r〉 ← SCC-Decomposition(Si,D)
9: for j = 1, . . . , r do

10: if col(Si,D,j) /∈ F then . An alternating subcycle has been found
11: alternatingList← alternatingList ∪ {Si,D,j}
12: else . Si,D,j needs to be re-treated
13: ni,D,j ← a maximal descendant of ni containing col(Si,D,j)
14: if for some (S ′, n′) ∈ sameAccList, S ′ ∩ Si,D,j 6= ∅ and n′ � ni,D,j then
15: sameAccList← sameAccList ∪ {(S ′ ∪ Si,D,j, n′)} \ {(S ′, n′)}

. It is not possible that (S ′, n′) ∈ sameAccList, S ′ ∩ Si,D,j 6= ∅ and ni,D,j ≺ n′

16: else
17: sameAccList← sameAccList ∪ {(Si,D,j, ni,D,j)}
18: end if
19: end if
20: end for
21: end for
22: end for
23: return 〈alternatingList, sameAccList〉

added to alternatingList in Line 11 are rejecting, as this is tested in the conditional. We
add elements to sameAccList in Lines 15 and 17. Cycles added in Line 17 are clearly
accepting by the conditional, and those added in Line 15 are accepting by Lemma B.45.
In Line 15, no new node of the Zielonka DAG is added to sameAccList. In Line 15, if
a pair (Si,D,j, ni,D,j) is added to sameAccList, then the node ni,D,j is a strict descendant
of ni, and incomparable to all nodes corresponding to cycles in sameAccList with some
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state in common to Si,D,j. Therefore, the list sameAccList satisfies the same conditions
as the input. Finally, we show that any rejecting subcycle ` of some Si is contained in
some cycle in alternatingList or in sameAccList. Let ` be such a cycle. Then, col(`) ⊆ D
for some D ∈ maxAltSetsi, so ` is contained in a subgraph Si,D,j of the decomposition in
SCCs of Si,D. All these SCCs are added to either alternatingList or sameAccList.

Complexity analysis. First, we look to the number of iterations done by the
while-loop of Line 5 in the function ComputeChildren2 (Algorithm 4). Let sameAccList0,
sameAccList1, . . . be the sequence of lists produced at each iteration of the while-loop.
For each state q of TS and each i ≥ 0, we consider the sets

Ni,q = {n node of Z-DAGF | (S, n) ∈ sameAccListi and q ∈ S}.

By the properties satisfied by the output of FindInterestingSubcycles (Algorithm 5),
each Ni,q is an antichain for the ancestor relation, and if n′ ∈ Ni+1,q, then n′ is a strict
descendant of some node in Ni,q. We obtain:

] The number of iterations of the while-loop of Line 5 is at most the height of Z-DAGF
times |TS|.

] The size of the input passed to FindInterestingSubcycles at each call is at most
|Z-DAGF | × |TS|.

We study now the complexity of the procedure FindInterestingSubcycles. It uses
three nested for-loops, doing, respectively, the following number of iterations:

i) k, for k the size of the input,
ii) the number of subsets in MaxAltSubsets(C,F), for some C ⊆ Γ,
iii) the number of strongly connected components of decomposition into SCCs of a

subgraph of TS.

By Lemma B.40, the number of subsets in MaxAltSubsets(C,F) is polynomial in the
size of the Zielonka DAG. The number of SCCs of a subgraph of TS is at most |TS|.

Inside each for-loop it performs:

] Some unions, variable assignments and other basic operations.
] A decomposition into SCCs (Line 8).
] A computation of a maximal node in Z-DAGF containing a given subset (Line 13).
] In Line 14, we inspect the elements (S ′, n′) ∈ sameAccList of S ′ ∩ Si,D,j 6= ∅. This
requires a further for-loop, which performs polynomially many operations, as the
size of sameAccList remains polynomial during the entire execution.

We conclude that FindInterestingSubcycles terminates in polynomial time in the
size of the input.

B.5 Simplifying automata with duplicated edges

Given an automaton A = (Q,Σ, I,Γ,∆,W ) we say that it has duplicated edges if there
are some pair of states q, q′ ∈ Q and two different transitions between them labelled with
the same input letter: q a:α−−→ q′, q a:β−−→ q′.
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As commented in Remark II.47, the construction of the ZT-HD-Rabin-automaton we
have presented potentially introduces duplicated edges, which can be seen as an undesir-
able property (even if some automata models such as the HOA format [Bab+15] allow
them). We show next that we can always derive an equivalent automaton without dupli-
cated edges. Intuitively, in the Rabin case, if we want to merge two transitions having as
output letters α and β, we add a fresh letter (αβ) to label the new transition. For each
Rabin pair, this new letter will simulate the best of either α or β depending upon the
situation.

Proposition B.46 (Simplification of automata).
Let A be a Muller (resp. Rabin) automaton presenting duplicated edges. There exists

a Muller (resp. Rabin) automaton A′ on the same set of states without duplicated edges
such that L(A) = L(A′). Moreover, if A is history-deterministic, A′ can be chosen
history-deterministic. In the Rabin case, the number of Rabin pairs is also preserved.

Proof. For the Rabin case, let A′ be an automaton that is otherwise as A except that
instead of the transitions ∆ of A it only has one a-transition q a:x−→ q′ ∈ ∆′ (with a fresh
colour x per transition) per state-pair q, q′ and letter a ∈ Σ. That is, ∆′ = {(q, a, xj, q′) :
(q, a, y, q′) ∈ ∆ for some y}. The new Rabin condition {(g′1, r′1), . . . , (g′r, r′r)} is defined as
follows. For each transition q a:x−→ q′:

] x ∈ g′i if q
a:y−→ q′ ∈ ∆ for some y ∈ gi,

] x ∈ R′i if for all q
a:y−→ q′ ∈ ∆, y ∈ ri.

We claim that L(A′) = L(A). Indeed, if u ∈ L(A), as witnessed by some run ρ and
a Rabin pair (gi, ri), then the corresponding run ρ′ in A′ over u is also accepted by the
Rabin pair (g′i, r′i): the transitions of Inf(ρ) ∩ gi induce transitions of Inf(ρ′) ∩ g′i and the
fact that Inf(ρ) ∩ ri = ∅ guarantees that Inf(ρ′) ∩ r′i = ∅.

Conversely, if u ∈ L(A′) as witnessed by a run ρ′ and Rabin pair (g′i, r′i), then there is
an accepting run ρ over u in A: such a run can be obtained by choosing for each transition
q

a:x−→ q′ of ρ′ where x ∈ g′i a transition q
a:y−→ q′ ∈ ∆ such that y ∈ gi, which exists by

definition of A′, for each transition q a:x−→ q′ where x /∈ gi ∪ ri a transition q q,y−→ q′ ∈ ∆
such that y /∈ ri, which also exists by definition of A′, and for other transitions q a:x−→ q′

(that is, those for which x ∈ r′i) an arbitrary transition q a:y−→ q′ ∈ ∆. Since ρ′ is accepting,
we have Inf(ρ′) ∩ gi 6= ∅ and Inf(ρ) ∩ ri = ∅, that is, ρ is also accepting.

For the Muller case, the argument is even simpler. As above, we consider A′ that is
otherwise like A except that instead of the transitions ∆ of A, it only has one a-transition
q

a:x−→ q′ ∈ ∆′ (with a fresh colour per transition) per state-pair q, q′ and the accepting
condition is defined as follows. A set of transitions T is accepting if and only if for each
t = q

a:x−→ q′ ∈ T there is a non-empty set St ⊆ {q
a:y−→ q′ ∈ ∆} such that ⋃t∈T St is

accepting in A. In other words, a set of transitions in A′ is accepting if for each transition
we can choose a non-empty subset of the original transitions in A that form an accepting
run in A.

We claim that L(A′) = L(A). Indeed if u ∈ L(A), as witnessed by some run ρ, the run
ρ′ that visits the same sequence of states in A′ is accepting as witnessed by the transitions
that occur infinitely often in ρ.

Conversely, assume u ∈ L(A′), as witnessed by a run ρ′ and a non-empty subset St
for each transitions t that occurs infinitely often in ρ′ such that ⋃t∈Inf(ρ) St is accepting in
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1 2

a : (θξ)

b : (αβ)

c : α

c : λ

a : λ

b : α

c : ζ

F Figure 54. The simplified ZT-HD-Rabin-automaton.

A. Then there is an accepting run ρ over u in A that visits the same sequence of states
as ρ′ and chooses instead of a transition t ∈ Inf(ρ) each transition in St infinitely often,
and otherwise takes an arbitrary transition. The set of transitions ρ visits infinitely often
is exactly ⋃t∈Inf(ρ) St, and is therefore accepting.

Finally, observe that in both cases, if A is HD, then the automaton A′ without du-
plicate edges is also HD since A′ is obtained from A by merging transitions. Indeed, the
resolver r of A induces a resolver r′ for A′ by outputting the unique transition with the
same letter and state-pair as r. By the same argument as above, the run induced by r′ is
accepting if and only if the run induced by r is. J

Example B.47.

The ZT-HD-Rabin-automaton from Figure 14 has duplicated transitions. In Figure 54
we present an equivalent HD Rabin automaton without duplicates. For this, we have
merged the self loops in state 1 labelled with a and b respectively. We have added the
output colours (αβ) and (θξ). The new Rabin pairs are given by:

g′β = {β, (αβ)}, r′β = {α, λ, ξ, ζ},
g′λ = {λ}, r′λ = {α, β, (αβ), θ}.
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C Half-positionality of ω-regular languages: Full proofs for Sec-
tion V.4.2

In this Appendix, we include full proofs for all the propositions and lemmas appearing
in Section V.4.2. In order to be able to tackle these proofs and formalise them in the
simplest and cleanest possible way, we first introduce some technical artillery that will
come in handy to deal with the structure of layered total preorders of signature automata.
We begin by introducing nice transformations of automata equipped with a priority-
faithful relation in Section C.1. Then, in Section C.2 we give the full details of the
induction constructing a structured signature automaton for a half-positional language.

C.1 Nice transformations of automata

To recursively build a structured signature automaton, we will apply a sequence of
transformations to a given d-signature automaton A, by removing states and adding or
redirecting edges in such a way that relations ∼x are preserved in a strong sense formalised
in this section. Before presenting the proofs of the results from Section V.4.2, we introduce
some notations and prove technical lemmas that will come in handy to reason about
(structured) signature automata.

Global hypothesis in Subsection C.1.

We suppose that all automata are complete and semantically deterministic. In partic-
ular, we suppose that they have a single initial state.

Automata with a common subautomaton
Let A be a semantically deterministic automaton with states QA, and let ∼A be the

congruence given by the equality of residuals. We note that if B is an automaton with
states QB ⊆ QA, relation ∼A induces an equivalent relation over QB (which, in general,
is not a congruence nor coincides with the equality of residuals of B).

F Lemma C.1 (Automata preserving the structure of residuals). Let A be a semantically
deterministic parity automaton with states QA and let B be a parity automaton with states
QB ⊆ QA. Assume that ∼A is a congruence over B and that B/∼A = A/∼A . Let A′ be
a subautomaton of both A and B. If a word w ∈ Σω admits an accepting run in B that
eventually remains in A′, then w is also accepted by A.

Proof. Let
q0

w0−→ q1
w1−→ q2

w2−→ . . .
wk−1−−−→ qk

wk−→ qk+1
wk+1−−−→ . . .

be an accepting run over w in B such that the suffix from qk is contained in A′ (meaning
that both the states and the transitions used are part of A′). We consider the projection
of the prefix of size k of the run in the quotient automaton B/∼A = A/∼A . By Lemma V.4,
there is a run over w0 . . . wk−1 in A, p0

w0−→ p1
w1−→ . . . pk whose projection over the quotient

automaton coincides with the previous one. Therefore, pk ∼A qk, that is, L(Apk
) =

L(Aqk
). Since wk+1wk+2 . . . admits an accepting run from qk in A, it also admits an

accepting run from pk, and w is accepted by A. J
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Nice transformations of automata
For x ∈ N, we denote by A|≥x the subautomaton of A induced by the set of transitions

using a priority ≥ x.

Definition C.2 (Nice transformation at level x).
Let A be a semantically deterministic parity automaton over Σ with states Q, let x

be a priority, and let ∼ be a [0, x − 1]-faithful congruence over A. Let A′ be a parity
automaton over Σ with states Q′ ⊆ Q. We denote ∼ the induced relation over Q′. We
say that A′ is a ∼-nice transformation of A at level x if:

] ∼ is a [0, x− 1]-faithful congruence over A′ and A
/

∼
≤x−1 = A′

/
∼
≤x−1 ,

] ∼A is a congruence over A′ and A′/∼A = A/∼A , and
] A′|≥x+1 coincides with the subautomaton of A|≥x+1 induced by the states in Q′.

Intuitively, if A′ is a nice transformation of A at level x, it means that the only relevant
modifications applied toA concern x-transitions. The structure of the quotient automaton
for priorities <x is left unchanged, and so is the acceptance of runs that eventually only
produce priorities >x.
F Remark C.3. We note that if ∼ is an equivalence relation that refines ∼A, then the
second item of Definition C.2 is implied by the first one. This is in particular the case if
∼ is an equivalent relation ∼x of a d-signature automaton, for 0 ≤ x ≤ d.

Lemma C.4 (Preservation of classes and priorities in nice transformations).
Let A be a semantically deterministic parity automaton equipped with a [0, x − 1]-

faithful congruence ∼. Suppose that A is deterministic over >x-transitions. Let A′ be a
∼-nice transformation of A at level x. If q ∼ q′ are two states of A′ such that there is
path q w:y

p in A, then a path q′ w:y′
p′ in A′ satisfies:

] p ∼ p′,
] if y < x, then y′ = y, and
] if y ≥ x, then y′ ≥ x.

Proof. The equivalence p ∼ p′ follows from the fact that ∼ is a congruence in A′ and
A′/∼A = A/∼A . For y ≤ x− 1 or y′ ≤ x− 1, the equality y′ = y follows from the equality
of the ≤(x− 1)-quotient automata. This directly implies the third item. J

F Lemma C.5. Let A be a parity automaton that admits a [0, x]-faithful congruence ∼.
If a word w ∈ Σω admits a run such that the minimal priority produced infinitely often
is y ≤ x, then the minimal priority produced infinitely often by any run over w is y. In
particular, if y is odd, w is rejected with priority y.

Proof. Let q0
w1:y1−−−→ q1

w2:y2−−−→ . . . and q′0 = q0
w1:y′1−−−→ q′1

w2:y′2−−−→ . . . be two runs over the
same word in A (q0 = q′0 being the initial state of A). Since ∼ is a congruence, we obtain
by induction that qi ∼ q′i for every i. Moreover, as, for y ≤ x, y-transitions act uniformly
over ∼-classes, each time that yi ≤ x, we have that y′i = xi. J
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Lemma C.6 (Nice transformations preserve acceptance of most words).
Let A be a semantically deterministic parity automaton equipped with a [0, x − 1]-

faithful congruence ∼. Let A′ be a ∼-nice transformation of A at level x. We have:

] A word w ∈ Σω can be accepted with an even priority y < x in A′ if and only if w
can be accepted with priority y in A.

] A word w ∈ Σω is rejected with an odd priority y < x in A′ if and only if w is
rejected with priority y in A.

] If a word w ∈ Σω can be accepted with an even priority y > x in A′, then it is
accepted by A.

If moreover A is homogeneous and deterministic over transitions using priorities > x, we
have:

] If there is a rejecting run over w ∈ Σω in A′ producing as minimal priority y > x,
then w is rejected by A.

Proof. Let w ∈ Σω be a word accepted with a priority y < x in A (resp. A′). Then,
by Lemma V.58, w is accepted by the quotient automaton A

/
∼
≤x−1 = A′

/
∼
≤x−1 . Again by

Lemma V.58, w is accepted by A′ (resp. A). The second item is obtained using the same
argument, combined with Lemma C.5.

The third item is directly implied by Lemma C.1, as A′|≥x+1 is a subautomaton of
A|≥x+1.

For the last item, let q0
w0

q′
w′ be a rejecting run over w in A′ such that the

suffix q′ w′ does not produce any priority ≤ x (that is, it is contained in A′|≥x+1). By
determinism and homogeneity, this is the only run over w′ from q′ in A, and therefore
w′ /∈ L(Aq′). We conclude using the equality A′/∼A = A/∼A . J

C.2 From half-positionality to structured signature automata: Full proofs
for Section V.4.2

We provide all the technical details for the proofs of the propositions appearing in
Section V.4.2. We first state a useful simple lemma.
F Lemma C.7. Let W ⊆ Σω be half-positional over finite, ε-free Eve-games. Then, for
every word u ∈ Σ∗, objective u−1W is half-positional over finite, ε-free Eve-games.

Proof. Any game with vertices V witnessing non-half-positionality of u−1W can be
turned into a game witnessing non-half-positionality of W by adding, for every v ∈ V , a
fresh vertex vu and a path vu u

v. J

C.2.1 Base case: Total order of residual classes

Lemma C.8 (Total order of residual classes).
Let W ⊆ Σω be an ω-regular objective that is half-positional over finite, ε-free Eve-

games. Then, Res(W ) is totally ordered by inclusion.
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Proof. The proof is almost identical to that of Lemma V.21. We show the contrapositive.
Assume that W has two incomparable residuals, u1

−1W and u2
−1W . We consider first

the case u1 6= ε and u2 6= ε. Take w1 ∈ u−1
1 W \ u−1

2 W and w2 ∈ u−1
2 W \ u−1

1 W . By
Lemma I.17, we can take these words of the form wi = u′i(w′i)ω, with u′i, w

′
i ∈ Σ+, for

i = 1, 2. We have
u1w1 ∈ W , u1w2 /∈ W ,
u2w1 /∈ W , u2w2 ∈ W .

Consider the ε-free, finite, Eve-game G represented in Figure 55. Eve wins G from v1
and v2: if a play starts in vi, for i = 1, 2, she just has to take the path labelled u′i(w′i)ω
from vchoice. However, she cannot win from both v1 and v2 using a positional strategy.

Indeed, such positional strategy would choose one path vchoice
ui(w′i) , and the play induced

when starting from v1−i would be losing.

v1

v2

vchoice

u1

u2

u′
1

u′
2

w′
1

w′
2

F Figure 55. A game G in which Eve cannot play optimally using positional strategies
if Res(W ) is not totally ordered.

Finally, we take care of the case in which [u1] = {ε} (symmetric for u2). In that case,
we cannot take u1 6= ε. We remark that, since [u1] 6= [u2], we can take u2 6= ε. We
consider the game from Figure 55 in which we simply remove vertex v1. This game is
ε-free, and Eve can win from both v2 and vchoice, but not positionally. J

Global hypothesis in Subsection C.1.

In all the rest of the subsection, we assume that x ≥ 2.

C.2.2 Safe centrality and relation ∼x−1. Proof of Lemma V.71
In this paragraph we give a proof of Lemma V.71. We assume that x ≥ 2 is an even

priority and A is a deterministic (x−2)-structured signature automaton with initial state
qinit.

Lemma V.71 ((<x)-safe centralisation).
There exists a (x− 2)-structured signature automaton A′ equivalent to A which is:

] deterministic over transitions with priority different from x− 1,
] homogeneous,
] history-deterministic, and
] (<x)-safe centralised.

Moreover, A′ can be obtained in polynomial time from A and |A′| ≤ |A|.
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Hypothesis. During the proof, we will lose the determinism of A. However, in all
the subsection we will maintain the three first required properties. In the statements of
all lemmas, A will stand for an (x− 2)-structured signature automaton that is:

] deterministic over transitions with priority different from x− 1,
] homogeneous, and
] history-deterministic.

Saturation. We say that an automaton A′ is (x − 1)-saturated if for every state q
and letter a ∈ Σ, if a transition q a:x−1−−−→ p exists in A′, then q a:x−1−−−→ p′ appears in A′ for
all p′ ∼x−2 p.2 The (x− 1)-saturation of A is the automaton obtained by adding all those
transitions.
F Remark C.9. The (x−1)-saturation of A is homogeneous and deterministic over tran-
sitions with priority different from x− 1.
F Lemma C.10. The (x− 1)-saturation of A is in normal form.

Proof. We use the characterisation of normal form given in Theorem II.14. Let A′ be the
(x− 1)-saturation of A. The property of Theorem II.14 is satisfied for transitions already
appearing in A, as A is assumed to be in normal form. Let q a:x−1−−−→ p be a transition
added by the saturation process, and let q a:x−1−−−→ p′ be a transition in A with p ∼x−2 p

′.
By Item 5 of the definition of structured signature automaton, there is a path p u:>x−2

p′

in A. By normality of A, there are also paths p′ u1:x−1
q and p′ u2:x−2

q. We obtain the
two desired paths in A′:

p
u:>x−2

p′
u1:x−1

q , and p
u:>x−2

p′
u2:x−2

q. J

The following lemma states that (x − 1)-saturation is a ∼x−2-nice transformation at
level x − 1, so Lemmas C.6 and C.4 can be applied. We recall that ∼x−2 refines ∼A, so
congruence of ∼A is implied by that of ∼x−2.
F Lemma C.11. The (x − 1)-saturation of A is a ∼x−2-nice transformation of A at
level x− 1.

Proof. Let A′ be the (x − 1)-saturation of A. It is immediate that A|≥x = A′|≥x.
Moreover, the restriction of A and A′ to transitions using priorities ≤ x − 2 coincides,
so for each 0 ≤ y ≤ x − 2, relation ∼x−2 is a congruence for y-transitions in A′ (and
therefore these transitions act uniformly by determinism). The congruence for transitions
using priority >(x− 2) is preserved as we have only added (x− 1)-transitions that go to
the same ∼x−2-class. As ∼x−2 refines ∼A, the latter relation is also a congruence in A′
and A/∼A = A′/∼A . J

F Lemma C.12. The (x− 1)-saturation of A recognises L(A). Moreover, it is history-
deterministic, homogeneous and deterministic over transitions using priorities different
from x− 1.

2We note that this definition slightly differs from the definition of 1-saturation used in the warm-
up (Section V.3.4). In particular, the definition of the warm-up does not preserve homogeneity. We
allow ourselves these small disagreements of definitions for the sake of clarity in the presentation in each
respective subsection.
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Proof. Let A′ be the (x− 1)-saturation of A. We have already noted that it is homoge-
neous and deterministic over transitions using priority different from x−1 (Remark C.9).
If w ∈ Σω is accepted by A′ (resp. by A), it is either accepted with an even priority
y < x − 1 or y > x − 1. In the first case, since A′ is a ∼x−2-nice transformation at
level x − 1, Lemma C.6 allows us to conclude. In the second case, it suffices to apply
Lemma C.1.

History-determinism of A′ is clear: one can use a resolver for A. J

Redundant safe components. From now on, we suppose that A is (x − 1)-
saturated.

We say that a (<x)-safe component S of A is redundant if there is q ∈ S and q′ ∼x−2 q,
q′ /∈ S, such that Safe<x(q) ⊆ Safe<x(q′). We note that, by normality of A, there are no
(≥x)-transitions entering in S; that is, there are no transitions p a:≥x−−→ q with p /∈ S and
q ∈ S.
F Remark C.13. Automaton A is (<x)-safe centralised if and only if it does not contain
any redundant (<x)-safe component.
F Lemma C.14. If A contains some redundant (<x)-safe component, we can find one
of them in polynomial time.

Proof. The computation of the (<x)-safe components of A can be done by simply a
decomposition in SCC of A|≥x. For each pair of states q ∼x−2 q

′ in different (<x)-safe
components we just need to check the inclusion Safe<x(q) ⊆ Safe<x(q′), which can be done
in polynomial time (Proposition I.15). J

F Lemma C.15. Let S be a redundant (<x)-safe component of A, and let S ′ be a
different (<x)-safe component such that there are q0 ∈ S and q′0 ∈ S ′, with q0 ∼x−2 q

′
0

and Safe<x(q0) ⊆ Safe<x(q′0). Then, for each q ∈ S there is q′ ∈ S ′ such that q ∼x−2 q
′

and Safe<x(q) ⊆ Safe<x(q′).

Proof. For each q ∈ S, pick u ∈ Σ∗ such that q0
u:≥x

q. We let q′ be such that
q′0

u
q′. Since u ∈ Safe<x(q0) ⊆ Safe<x(q′0), this latter path produces priority ≥ x and,

by normality, q′ is in S ′. As ∼x−2 is a congruence for (≥x− 2)-transitions, q′ ∼x−2 q. By
monotonicity for safe languages (Lemma V.66), we also have Safe<x(q) ⊆ Safe<x(q′). J

Removing redundant safe components. For now on, fix S to be a redundant
(<x)-safe component of A, and S ′ a different (<x)-safe component as in the previous
lemma. For each q ∈ S, we let f(q) ∈ S ′ such that q ∼x−2 f(q) and Safe<x(q) ⊆
Safe<x(f(q)). We extend f to all of Q by setting it to be the identity over Q \ S.

We define the automaton A′ as follows:

] The set of states is Q′ = Q \ S.
] The initial state is f(qinit).
] For each p ∈ Q′, if p a:y−→ q is a transition in A, we let p a:y−→ f(q) in A′.

We note that, if q /∈ S, all transitions p a:y−→ q in A are left unchanged. In particular,
the (≥x)-transitions of A′ are the restriction of those appearing in A, A′ is (x − 1)-
saturated, and (<x)-transitions in A not entering in S appear in A′ too. We say that
transitions p a:y−→ q of A such that q ∈ S have been redirected in A′.
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F Lemma C.16. Automaton A′ is a ∼x−2-nice transformation of A at level x− 1.

Proof. We have that A′|≥x is the subautomaton of A|≥x induced by states in Q′. We
show that ∼x−2 is [0, x−2]-faithful in A′. Transitions that have not been redirected satisfy
the congruence requirements, as they satisfy them in A. Let p a:y−→ q and p′ a:y′−−→ q′0 be two
transitions in A′ such that y ≤ x − 2, p ∼x−2 p

′ and such that the second transition has
been redirected from p′

a:y′−−→ q′ (the first transition is possibly a redirected one too). By
the congruence property in A, we have that y′ = y and q ∼x−2 q

′. Since q′ ∼x−2 q
′
0, we

conclude by transitivity. The equality A′
/

∼x−2
≤x−1 = A

/
∼x−2
≤x−1 simply follows from the fact

that redirected transitions have been defined preserving the ∼x−2-classes.
As ∼x−2 refines ∼A, the latter relation is also a congruence in A′ and A/∼A = A′/∼A .

J

Lemma C.17 (Correctness of the removal of redundant components).
For every state q′ ∈ Q′, we have L(A′q′) = L(Aq′). In particular, these automata

are equivalent. Moreover, automaton A′ is deterministic over transitions with priority
different from x− 1, homogeneous and history-deterministic.

Proof. The fact that A′ is deterministic over transitions with priority different from x−1
and homogeneous is immediate from its definition. We show the equality of languages for
the initial state. The proof is identical for a different state.

The inclusion L(A′) ⊆ L(A) directly follows from Lemma C.6.
We describe a sound resolver witnessing L(A) ⊆ L(A′) and history-determinism. Take

a sound resolver r in A, let w ∈ Σω, and write

ρ = p0
w0−→ p1

w1−→ . . .

for the run in A induced by r over w. We will build a resolver r′ in A′ satisfying the
property that the run induced over w, ρ′ = p′0

w0−→ p′1
w1−→ . . . is in one of the following

(non-excluding) cases:

a) produces priorities < x− 1 infinitely often,
b) eventually produces only priorities ≥ x,
c) pi ∼x−2 p

′
i and Safe<x(pi) ⊆ Safe<x(p′i) for every i sufficiently large.

G Claim C.17.1. A resolver r′ satisfying the property above accepts all words in L(A).

Proof. Suppose that w ∈ L(A), that is, the run ρ induced by r is accepting. Let ρ′
be the run induced over w by r′ in A′. We distinguish two cases, according to the
priorities produced by the run ρ in A:

If ρ produces priorities < x − 1 infinitely often. Then Lemma C.6 allows us to
conclude.

If ρ eventually only produces priorities ≥ x − 1. Then, the two first items of
Lemma C.6 tells us that ρ′ eventually only produces priorities ≥ x − 1 too (so we
are not in Case a). We show that ρ′ eventually only produces priorities > x − 1;
the last item of Lemma C.6 allows us to conclude (we recall that A′ is a ∼x−2-nice
transformation at level x− 1). If we are in Case b, this property is trivially satisfied.
Suppose that we are in Case c, and let k > 0 be such that the suffix of ρ from
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qk only produces priorities ≥ x and such that Safe<x(pi) ⊆ Safe<x(p′i) for i ≥ k.
Therefore, there is a run over wkwk+1 . . . from p′k producing exclusively priorities ≥ x.
By determinism over transitions with priority ≥ x, this run is the one induced by r′.

C

We finally show how to construct a resolver with this property. We let p′0 = f(p0),
and assume ρ′ constructed up to p′i satisfying that p′i ∼x−2 pi.

If there is a transition p′i
wi:y−−→ p′i+1 with y 6= x − 1, then we take this one (there is

no other option), which satisfies pi+1 ∼x−2 p
′
i+1 by Lemma C.16. Moreover, if y ≥ x and

Safe<x(pi) ⊆ Safe<x(p′i), then Safe<x(pi+1) ⊆ Safe<x(p′i+1) by Lemma V.66. If there is a
transition p′i

wi:x−1−−−−→, we take p′i+1 = f(pi+1) (this transition exists inA′ by x−1-saturation,
as p′i ∼x−2 pi).

We show that this resolver satisfies the desired property. Suppose that we are not in
the two first cases, that is, ρ′ eventually only produces priorities ≥ x− 1, and it produces
priority x− 1 infinitely often. Take a suffix p′k

wk:yk−−−→ p′k+1
wk+1:yk+1−−−−−−→ . . . of ρ′ such that no

priority < x−1 is produced and such that yk = x−1. Then, by definition of the transitions
using x − 1 chosen by the resolver, p′k+1 = f(pk+1), so Safe<x(pk+1) ⊆ Safe<x(p′k+1). We
conclude by induction, as transitions taken by the resolver using priorities ≥ x−1 preserve
the inclusion of (<x)-safe languages. J

Transformation preserves being a structured signature automaton. To be
able to finish the proof of Lemma 5, we just need to show that A′ is a (x− 2)-structured
signature automaton. We give some technical lemmas that will help us show this.

F Lemma C.18. Let q and p be two states of A′. There is a path q w:x−1
p in A if and

only if there is a path q w:x−1
p in A′.

Proof. If a path q w:x−1
p appears in A′, the very same path also exists in A.

Suppose now that a path ρ = q
w:x−1

p exists in A. Let S be the <x-safe component
that has been removed from A. If the path ρ does not cross S, then it also appears in A.
Suppose that it enters in S. We remark that, by normality and by the definition of safe
component, each time that ρ enters or exists S, it produces priority x − 1. We consider
the last time that ρ enters and exists S:

q
u1:≥x−1

q1
u2:≥x

q2
a:x−1−−−→ q3

u3:≥x−1
p,

with w = u1u2au3, q3 /∈ S, and the path q3
u3

p does not enter S (so it also appears
in A′). Consider any run over u1u2 from q in A′:

q
u1:≥x−1

q′1
u2:≥x−1

q′2.

As ∼x−2 is a [0, x − 2]-faithful congruence, we have that q2 ∼x−2 q′2. As A′ is x − 1-
saturated, there is a transition q′2

a:x−1−−−→ q3. Therefore, we obtain in A′ the path:

q
u1:≥x−1

q′1
u2:≥x−1

q′2
a:x−1−−−→ q3

u3:≥x−1
p. J

F Lemma C.19. Let q and p be two states of A′ and let y be any priority. There is a
path q w:y

p in A if and only if there is a path q w′:y
p in A′.
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Proof. If y ≥ x, q and p are in the same (<x−1)-safe component. Since the (<x−1)-safe
components in A′ are safe components in A, the result is clear in this case.

If y = x− 1, the result is assured by the previous Lemma C.18.
Assume y < x− 1. Suppose that there is a path q w:y

p in A (the proof is analogous
if we take this path in A′), and let q w:y′

p′ be the run over w from q in A′. As A′ is
a ∼x−2-nice transformation, by Lemma C.4, we have that y′ = y and p ∼x−2 p

′. As A
satisfies Item 5 from the definition of a structured signature automaton, there is a path
p′

u:≥x−1
p in A. By Lemma C.18, such a path also exists in A′, so we can take w′ = wu,

giving us a path q w:y
p′

u:>y
p. J

Previous lemma tells us, in particular, that for every (<)y-safe component S<yi of
A, the intersection of S<yi with Q′ constitute the states of a (<)y-safe component in A′.
Therefore, automaton A′ inherits the decomposition in (<)y-safe component S<y1 , . . . , S<yky

from A, for each y; we simply remove those components whose intersection with Q′ is
empty.

Lemma C.20.
Automaton A′ is a (x− 2)-structured signature automaton.

Proof. We go through all the conditions of the definition of a (x − 2)-structured signa-
ture automaton. We recall that, by Lemma C.16, the relation ∼x−2 is [0, x − 2]-faithful
congruence in A′.

Normal form. We check that A′ satisfies the hypothesis of the characterisation from
Theorem II.14. We let q′ a:y−→ p′ be a transition in A′. If it is not a redirected
transition, it exists inA, so we can conclude by normalisation ofA and Lemma C.19.
Assume that q′ a:y−→ p′ is a transition that has been redirected from q′

a:y−→ p. In
particular, p ∼x−2 p

′ and y < x. By Item 5 of the definition of structured signature
automaton applied to A, there is a path p′ w:>y

p in A, and by normality, there is
a returning paths p u1:y

q and p u2:y−1
q. Again, Lemma C.19 allows us to find the

desired returning paths in A′.
Item 1. By Lemma C.17, the residuals in A′ correspond to those in A, so preorder ≤0

correspond to their inclusion in A′ too.
Item 2. By the previous remarks, for all y, the (<y)-safe components of A′ are obtaining

by taking the intersection with those in A. Therefore, odd preorders ≤y−1 corre-
spond to the order of (<y)-safe components on A′.

Item 3. As A′ is a ∼x−2-nice transformation at level x − 1, for every y < x − 1 and
state q′ in A′, SafeA′<y(q′) = SafeA<y(q′). Therefore, the preorders at even levels ≤y
correspond to the inclusion of safe languages in A′, as they do in A.

Item 4. Let q and q′ be two states in A′ such that q ∼y q′, for y ≤ x − 2 even, and
let q a:y′−−→ p for y′ ≤ y and q′

a:z−→ p′. As A′ is a nice transformation, y′ = z. If
the first of these transitions is not a redirected one, then, by strong congruence of
≤(x − 2)-priorities in A, neither is the second one, and p = p′. Assume that these
transitions have been redirected from, q a:y′−−→ p1 and q′ a:y′−−→ p′1. Then, as Item 4 is
satisfied in A, p1 = p′1, so p = f(p1) = f(p′1) = p′.
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Item 5. Directly follows from Lemma C.19 and the fact that A satisfies this property.
Item 6. Follows from the fact that if q �y−1 p in A′, then q �y−1 p in A; and the equality

SafeA′<y(q) = SafeA<y(q). J

Obtaining Lemma 5. We have all the necessary elements to deduce Lemma 5.
Using Lemma C.14, we can decide whether A contains a redundant (<x)-safe component
in polynomial time. If it contains none, A is already (<x)-safe centralised. While we can
find redundant safe components, we remove them applying the transformation described
above. This transformation can clearly be done in polynomial time, and by Lemmas C.17
and C.20, the obtained automaton recognises the correct language and preserves all the
hypothesis assumed in the induction.

C.2.3 Existence of uniform words and synchronising separating runs
We now provide proofs for Lemmas V.73 and V.74. In Section V.4.2, we derived

totality of the order ≤x in each ∼x−1-component from these lemmas (c.f. Lemma V.75).

Hypothesis. In all the subsection we assume that x is an even priority and A is a
(x− 2)-structured signature automaton with initial state qinit that is moreover:

] deterministic over transitions with priority different from x− 1,
] homogeneous,
] history-deterministic, and
] (<x)-safe centralised.

Lemma V.73 (Existence of uniform words).
Let p and q be two states from the same (<x)-safe component. There is a word w ∈ Σ∗

producing priority x uniformly in [q]x leading to [p]x.

Words producing priority x uniformly.

Proof. The fact that for such paths we must have p1 ∼x p2 follows from the monotonicity
of safe languages (Lemma V.66) and the fact that (≥x)-transitions preserve ∼x−1-classes.

We let {q1, q2, . . . , qk} be an enumeration of the states of [q]x.

G Claim 5.1. For each qi ∈ [q]x there is a word ui ∈ Σ∗ such that qi
ui:x

qi.

Proof. Since qi and q are in the same (<x)-safe component, there is a word u′i such

that qi
u′i:≥x

q. By normality, there is a word u′′i such that q
u′′i :x

qi. We just take
ui = u′iu

′′
i . C

We will define k finite words w1, w2 . . . , wk ∈ Σ∗ satisfying:

] For q′ ∈ [q]x and for every i ≤ k, q′ w1w2...wi:≥x [q]x.

] qj
w1w2...wi:x [q]x for every j ≤ i.
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In order to obtain these properties, we just define recursively w1 = u1 and wi = uj, for uj
as given by the previous claim, if:

qi
w1w2...wi−1:≥x

qj.

Finally, we let w = w1w2 . . . wkw, which first produces priority x when read from any
state of [q]x, and then goes to the ∼x-class of p producing priorities ≥x. J

Synchronising separating runs. We recall (Lemma I.10 from Section I.2) that
any history-deterministic parity automaton admits a sound resolver implemented by a
finite memory. In the rest of the subsection we fix a sound resolver r for A implemented
by a memory structure M = (M,m0, µ). For simplicity, we will assume that every pair
of a state and a memory state (q,m) is reachable using r. It is easy to see that we can
get rid of this assumption in the upcoming proof just by ignoring pairs (q,m) that are
not reachable.

For (q,m) ∈ Q×M , we let (q,m) w
r (q′,m′) be the (unique) run induced by r from q

when the memory structure is in state m. We extend notations of the form (q,m) w:x
∃, r q

′

in the natural way; the previous one means that there exists u0 ∈ Σ∗ such that the induced
run of r is ρ = q0

u0
r q, µ(m0, ρ) = m and q0

u0w

r q
′, producing priority x in the second

part of this run.
As A is deterministic over transitions using priorities ≥ x, we may omit the subscript

r in paths producing no priority < x.

Lemma V.74 (Synchronisation of separating runs).
Suppose that q ∼x−1 q

′ and q �x q
′ and let p ∈ [q]x−1. There is a word w ∈ Σ+ such

that [q]x
w:x−1

∀, r [p]x and [q′]x
w:x
∀, r [p]x.

Proof. We first show that we can force to produce priority x−1 from [q]x, while remaining
safe from [q]x.

G Claim 5.1. There is a word u ∈ Σ+ such that for all s ∈ [q]x:

s
u:x−1

∀, r , and [q′]x
u:x
∀, r [p]x.

Proof. By definition of the preorder ≤x, there is a word u1 ∈ Σ+ such that for all
s ∈ [q]x and s′ ∈ [q′]x, s

u1:x−1
∀, r and s′ u1:≥x

r . By normality, we can extend this word

so that q′
u′1:≥x

r q
′; by monotonicity of safe languages all runs from [q′]x reading u′1 go

back to [q′]x. Applying Lemma 5, we obtain u2 that produces priority x uniformly in
[q′]x and goes to [p]x. We take u = u′1u2, which satisfies [q′]x u:x

r [p]x, and it produces
at least one occurrence of priority x − 1 from every state s ∈ [q]x. By [0, x − 2]-
faithfulness, a run s u only produces priorities ≥ x− 1, which concludes. C

G Claim 5.2. Let p′ ∼x−2 q and let m ∈ M be a memory state. Then there is a word
wq,m such that:

(q,m) wq,m:≥x−1
r [p′]x, and [p′]x

wq,m:x
∀, r [p′]x.
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Proof. We distinguish two cases. First, assume that Safe<x(q) ⊆ Safe<x(p′). In this
case, by <x-safe centrality of A, q and p′ are in the same <x-safe component so
q ∼x−1 p

′ (and q ≤x p′). Let p′max be a state in [p′]x−1 such that p′ ≤x p′max, and
maximal with this property. Let w1 ∈ Σ∗ be a word such that q w1:≥x

p′max (which
exists because these two states are in the same <x-safe component). By monotonicity
of safe languages, p′ w1:≥x

p′′ with p′max ≤x p′′. By maximality of p′max, we must have
p′′ ∼x p′max. Finally, let w2 ∈ Σ∗ such that p′′ w2:x

p′ producing priority x uniformly
in the class [p′′]x (which exists by Lemma 5). We obtain q w1:≥x

p′max
w2:x [p′]x and

[p′]x
w1:≥x [p′max]x

w2:x [p′]x as required.
Assume now that Safe<x(q) * Safe<x(p′). In that case, we can find a word w1 ∈

Safe<x(p′) \ Safe<x(q). By Lemma 5, we may assume that it produces priority x
uniformly from [p′]x and comes back to this class. Moreover, by faithfulness, it cannot
produce priorities ≤ x− 2 and respects the ∼x−2-classes. Thus:

(q,m) w1:x−1
r (q1,m1), with q1 ∼x−2 p

′ , and [p′]x
w1:x [p′]x.

If Safe<x(q1) ⊆ Safe<x(p′), we can conclude by using the first case. While we do not
have this inclusion, we build, using the argument above, a sequence of words w1, w2, . . .
such that:

(qi,mi)
wi:x−1

r (qi+1,mi+1) , and [p′]x
wi:x [p′]x.

This sequence cannot be infinite. If it were the case, resolver r would induce a rejecting
run over w1w2 . . . from (q,m), and an accepting from p′. This is a contradiction, as the
equivalence q ∼x−2 p implies q−1W = p′−1W (since ∼x−2 refines ∼A). Therefore, for
some k we must have Safe<x(qk) ⊆ Safe<x(p′) and we can extend the path as wanted
using the first case. C

We may finally deduce the result of Lemma 5 from the two previous claims. First, we
read the word u from Claim 5.1, which forces to produce priority x− 1 from any state in
[q]x. We now show how to use Claim 5.2 to redirect each state, one by one, to the class
[p]x.

We let (q1,m1), . . . , (qk,mk) be an enumeration of all states such that there exists
s ∈ [q]x with s u:x−1

∃, r (qi,mi). We note that, by [0, x− 2]-faithfulness, qi ∼x−2 q ∼x−2 p.
We recursively build a sequence of k words, w1, . . . , wk ∈ Σ∗ by setting:

(qi,mi)
w1...wi−1:≥x−1

r (q′i,m′i)
wi:≥x−1

r [p]x and [p]x
wi:x
∀, r [p]x.

We can indeed do this by letting wi = wq′i,m′i as given by Claim 5.2, as by [0, x − 2]-
faithfulness q′i ∼x−2 p.

The word w1 . . . wi satisfies that, for j ≤ i, (qj,mj)
w1...wi:≥x−1

r [p]x. We conclude the
proof of the lemma by putting w′ = uw1 . . . wk. J

C.2.4 Re-determinisation
We give the proof of Lemma V.76, that is, we show that we can obtain an equiva-

lent deterministic automaton from A while preserving all the obtained structure of total
preorders satisfying the conditions of a structured signature automaton.
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Hypothesis. We assume that A is a parity automaton recognising W with nested
total preorders defined up to ≤x such that:

] it is a (x− 2)-structured signature automaton,
] preorder ≤x−1 satisfies properties from Items 2 and 6 from the definition of a struc-
tured signature automaton,

] preorder ≤x satisfies the property from Item 3 from the definition of a structured
signature automaton,

] it is deterministic over transitions with priorities different from x− 1,
] it is homogeneous, and
] it is history-deterministic.

Lemma V.76 (Re-determinisation).
There is a deterministic parity automaton A′ equivalent to A with nested total pre-

orders defined up to ≤x satisfying that:

] it is a (x− 2)-structured signature automaton,
] preorder ≤x−1 satisfies properties from Items 2 and 6 from the definition of a struc-
tured signature automaton, and

] preorder ≤x is a congruence and satisfies the property from Item 3 and, for priorities
y < x, also that from Item 4 .

Moreover, automaton A′ can be computed in polynomial time from A and |A′| ≤ |A|.

Obtaining a deterministic automaton. An intuitive idea for the construction of
A′ was given in Section V.4.2. We formalise it and prove its correctness now.

Automaton A′ is obtained by keeping all the structure of A, except for (x − 1)-
transitions; for each state q and letter a such that some transition q a:x−1−−−→ p appears in
A, we will redefine this transition as q a:x−1−−−→ p′ for some p′ ∼x−2 p as determined next.

For each ∼x−1-class [q]x−1 of A, we pick a state in the class that is maximal for ≤x.
We let f(q) be that state. That is, for two states q1 ∼x−1 q2:

] f(q1) = f(q2),
] f(q1) ∈ [q1]x−1, and
] q1 ≤x f(q1).

We recall that we have a total order over the <x-safe components of A given by
S<x1 , S<x2 , . . . , S<xkx

. Let q ∈ S<xi and a ∈ Σ such that q a:x−1−−−→ p appears in A. If it exists,
we let inext be the maximal 0 ≤ inext < i such that there is some p′ ∈ [p]x−2, p′ ∈ S<xinext . If
index inext is not defined, we let it be the maximal index i ≤ inext ≤ kx with the previous
property. We fix a state pq,a ∈ S<xinext with pq,a ∈ [p]x−2. We let the a-transition from q in
A′ be q a:x−1−−−→ f(pq,a). This completes the description of A′. It is indeed deterministic, as
A is homogeneous and deterministic over transitions with priorities different from x− 1.

We can find a maximal state f(q) for ≤x in the class [q]x−1 in polynomial time, as
the comparison of <x-safe languages can be done in polynomial time (Proposition I.15).
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Therefore, automaton A′ can be built in polynomial time.
F Lemma C.21. Automaton A′ is a ∼x−2-nice transformation of A at level x− 1.

Proof. This is clear, as the restriction of A′ to transitions using a priority different from
(x − 1) coincides with that of A, and every transition q

a:x−1−−−→ p′ in A′ comes from a
transition q a:x−1−−−→ p in A with p ∼x−2 p

′. J

F Lemma C.22. For every state q ∈ Q, we have L(A′q) = L(Aq). In particular,
automaton A′ recognises the language L(A).

Proof. For simplicity, we give the proof just for the initial state; the proof being identical
for any other state.

Let w ∈ Σω. If the minimal priority produced infinitely often by the run over w in A′
is y < x− 1 or y > x− 1, then w is accepted by A′ if and only if w is accepted by A, by
Lemma C.6 and the fact that A′ is a ∼x−2-nice transformation of A at level x− 1.

Assume that the minimal priority produced infinitely often by the run over w in A′
is x − 1 (so it is rejecting), and suppose by contradiction that w is accepted by A. By
Lemma C.6, an accepting run over w in A cannot produce a priority y < x infinitely
often. Therefore, it eventually remains in a <x-safe component S<xiA . Let ρ be such an
accepting run, and let ρ′ be the run over w in A′. We represent them as:

ρ = q0
u

qN
wN :≥x−−−−→ qN+1

wN+1:≥x−−−−−→ . . . , ρ′ = q′0
u

q′N
wN :x′N

q′N+1
wN+1:x′N+1−−−−−−−→ . . . ,

where u is the prefix of size N of w, q0 = q′0 = qinit, and we suppose that qk ∈ S<xiA for all
k ≥ N . As A′ is a ∼x−2-nice transformation at level x − 1, we have that qk ∼x−2 q

′
k for

all k. Let k1 < k2 < k3 . . . be the positions greater than N where x′kj
= x − 1, and let

i1, i2, . . . be the indices of the <x-safe components such that qkj+1 ∈ S<xij , that is, when

taking the transition qkj

wkj
:x−1

−−−−−→ we land in S<xij .

G Claim 5.1. Eventually, ij = iA.

Proof. Consider a transition q′kj

wkj
:x−1

−−−−−→ q′kj+1, and suppose first that iA < ij−1. We
claim that iA ≤ ij < ij−1. This would end the proof, as we obtain a strictly decreasing
sequence of indices bounded by iA. In order to determine ij, we need to look at the
definition of inext. As qk ∼x−2 q

′
k for all k, there are always states in [q′kj+1]x−2 in some

<x-safe components with an index iA ≤ i < ij−1. Thus, we obtain the desired result
by definition of inext.

If ij−1 ≤ iA, by definition of inext, there is be a sequence of decreasing indices
ij−1 > ij > ij+1 > . . . until no ∼x−2-equivalent state appears in a strictly smaller
safe component. By the same argument as before, there is always a ∼x−2-equivalent
state in S<xiA , so eventually iA ≤ ij′ , and either this is an equality, or we reduce to the
previous case. C

Let j be the first position such that ij = iA, and consider transitions qkj

wkj
:≥x

−−−−→ qkj+1

and q′kj

wkj
:x−1

−−−−−→ q′kj+1 in ρ and ρ′, respectively. By definition of x − 1-transitions of A′,
the state we go to in ρ′ is q′kj+1 = f(qkj+1). As we have chosen f(qkj+1) maximal in
its ∼x−1-class, we have qkj+1 ≤x q′kj+1, so we have the inclusion of <x-safe languages
between these states. Therefore, if there is a <x-safe run over w′ from qkj+1 in A, there
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is also such a safe run over w′ from q′kj+1 in A′. This contradicts the fact that the run ρ′
produces priority x− 1 infinitely often, while the run ρ is <x-safe from qkj+1, concluding
the proof. J

To finish the proof of Lemma 5, we just need to show thatA′ preserves all the properties
of the preorders induced by A. As in the previous section, to obtain normality of the
automaton and Item 5, we rely on a technical lemma that tells us that we can connect
states in the same ∼x−2-component as desired.
F Lemma C.23. Let q ∼x−2 p be two different states in Q. There is a word w ∈ Σ∗ and
a path q w:>x−2

p in A′

Proof. Let ip be the index such that p ∈ S<xip . If q belongs to this same safe component,
we can connect both states by a path producing priorities≥ x. If not, by<x-safe centrality
of A, there is a word w1 ∈ Safe<x(p) \ Safe<x(q). We let q w1:x−1

q1 and p w1:≥x
p1. We

have that q1 ∼x−2 p1 and p1 ∈ S<xip . While qj /∈ S<xip , we extend this run in a similar way.
Using the same argument as in the proof of the previous lemma, by definition of inext each
time that the run from q sees a priority x−1 it decreases the index of its safe component,
so eventually it must land in S<xip . J

F Lemma C.24. Let q w:y
p be a path in A. There is a path q w′:y

p in A′ connecting
the same states and producing the same minimal priority.

Proof. If y ≥ x we can just take w = w′. Suppose y < x and consider the run q w:y′
p′

in A′. By Lemma C.4, p ∼x−2 p
′. Also, y = y′ (if y < x− 1, this is given by Lemma C.4,

if y = x− 1, by the definition of A′). By the previous lemma, we can extend this run to
p′

w2:≥x−2
p, and take w′ = ww2. J

F Lemma C.25. Automaton A′, with the preorders ≤0, . . . ,≤x inherited from A satis-
fies:

] it is a (x− 2)-structured signature automaton,
] preorder ≤x−1 satisfies properties from Items 2 and 6 from the definition of a struc-
tured signature automaton, and

] preorder ≤x satisfies the property from Item 3 and, for priorities y < x, also that
from Item 4.

Proof. We start verifying the properties for the preorders ≤x−1 and ≤x. We note that
the <x-safe components of A′ exactly correspond to those in A, and that for every q ∈ Q,
SafeA<x(q) = SafeA′<x(q). The fact that ≤x−1 satisfies Items 2 and 6, and that ≤x satisfies
Item 3 follows immediately. We check that relation ∼x satisfies Item 4 for priorities y < x.
For y ≤ x − 2, this follows from the fact that ∼x refines ∼x−2, and the latter relation
satisfies Item 4. For y = x− 1, if q a:x−1−−−→ p and q′ a:x−1−−−→ p′, with q ∼x q′, by definition of
the x− 1-transitions in A′, p = f(p) = f(p′) = p′.

Checking that A′ is a (x − 2)-structured signature automaton poses no difficulty. It
can be done in an analogous way as it was done in the proof of Lemma C.20; by applying
Lemma C.24 to obtain normality of A′ and property from Item 5. J
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C.2.5 Uniformity of x-transitions over ∼x-classes
We finally show how to transform A into an equivalent automaton that is either x-

structured signature, or strictly smaller. The techniques presented here generalise those
applying to Büchi automata appearing in Section V.3.3 of the warm-up.

Hypothesis. In all this subsection we suppose that A is deterministic parity au-
tomaton recognising W with nested total preorders defined up to ≤x such that:

] it is a (x− 2)-structured signature automaton,
] preorder ≤x−1 satisfies properties from Items 2 and 6 from the definition of a struc-
tured signature automaton, and

] preorder ≤x is a congruence and satisfies the property from Item 3 and, for priorities
y < x, also that from Item 4 .

Our objective is to prove, under this list of hypothesis, that we can either obtain an
equivalent deterministic x-structured signature automaton, or reduce the number of states
of A.

Lemma V.77 (Uniformity of x-transitions over ∼x-classes).
There is a deterministic parity automaton A′ equivalent to A such that either:

] A′ is an x-structured signature automaton with |A′| ≤ |A|, or
] |A′| < |A|.

In both cases, such an automaton can be computed in polynomial time from A.

We remark that ∼x already satisfies most desired properties of monotonicity; only the
uniformity for x-transitions is missing.
F Lemma C.26. The relation ∼x is a [0, x − 1]-faithful congruence. Moreover, over
each ∼x−1-class, transitions using priorities ≥x are monotone for ≤x.

Proof. The [0, x − 2]-faithfulness follows from the fact that ∼x refines ∼x−2 and A is
(x − 2)-structured signature. The uniformity of (x − 1)-transitions over ∼x-classes is
given by the fact that ∼x-equivalent states have the same <x-safe language, combined
with the uniformity of <(x− 1)-transitions.

The fact that ∼x is a congruence for (x − 1)-transitions follows from Item 4 of the
definition of a structured signature automaton (we recall that ∼x satisfies this prop-
erty by hypothesis). The congruence for ≥x-transitions and the monotonicity of ≥x-
transitions for ≤x at each ∼x−1-class follow from the monotonicity of <x-safe languages
(Lemma V.66). J

Polished automata. We generalise the notion of polished automata from Sec-
tion V.3.3 to our current setting.

Definition C.27 (Polished classes and automata).
We say that the class [q]x is x-polished if:
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] Words producing priority x act uniformly in [q]x. That is, if q1, q2 ∈ [q]x and q1
w:x ,

then q2
w:x .

] For every q1, q2 ∈ [q]x, q1 6= q2, there is a path q1
w:>x

q2 producing exclusively
priorities > x joining q1 and q2.

We say that the automaton A is x-polished if all its ∼x-classes are x-polished.

F Remark C.28. We remark that, as x ≥ 2 and we assume that the automaton A is in
normal form, all non-trivial ∼x-classes are recurrent: if a ∼x-class is not trivial, there
is a cycle visiting all the states of the class. Therefore, we do not need to take care of
transient classes (as it was the case in Lemma V.38 from the warm-up).
F Lemma C.29. We can decide whether A is x-polished in polynomial time.

Proof. As ∼x is a [0, x− 1]-faithful congruence (Lemma C.26), we just need to check the
first property for letters, which can be done in linear time in |Σ||A|.

For the second property, we just need to check whether, for each q ∈ Q, the subau-
tomaton induced by [q]x and transitions with priority >x is strongly connected. J

Case 1: A is already x-polished
Assume that A is x-polished. In this case, it is almost an x-structured signature

automaton. We just need to ensure that if q ∼x q′, two transitions q a:x−→ p and q′ a:x−→ p′

go to a same state p = p′.
We remark that ∼x already satisfies most desired properties of monotonicity; only the

uniformity for x-transitions is missing.
In order to obtain the strong congruence of x-transitions (Item 4), we redirect some

x-transitions of A. For each ∼x-class [q]x, pick an arbitrary state f(q) ∈ [q]x. (Formally,
f : Q → Q such that f(q) = f(q′) if q ∼x q′). We let A′ be the automaton obtained as
follows:

] The states of A′ are the same than those in A.
] Transitions using priorities different from x are those in A.
] If q a:x−→ p, we let q a:x−→ f(p) in A′.

It is immediate to check that A′ is a ∼x-nice transformation of A at level x. Moreover,
A|≥x+1 = A′|≥x+1. These remarks directly give:

F Lemma C.30. A′ is x-polished.

F Lemma C.31. There is a path q w:y
p in A if and only if there is a path q w′:y

p
in A′.

Proof. We suppose that there is q w:y
p in A (the converse proof is symmetric). If y > x,

we have that q w:y
p, as A|≥x+1 = A′|≥x+1. If y ≤ x, as A′ is a nice transformation at

level x, we have that q w:y
p′ in A′, with p ∼x p′. As A′ is x-polished, there is a path

p′
w2:>x

p. We conclude by taking w′ = ww2. J

F Lemma C.32. Automaton A′ is equivalent to A, and it is an x-structured signature
automaton.
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Proof. The fact that L(A) = L(A′) follows easily using that A′ is a ∼x-nice transforma-
tion of A at level x and applying Lemma C.6.

Lemma C.31, combined with Theorem II.14, implies that A′ is in normal form.
Verifying that A′ is an x-structured signature automaton is just a routine check, using

that A′ is x-polished and Lemma C.31. J

Case 2: Polishing a class
Assume now that there is a class [q]x that is not x-polished in A. We show that we can

remove some states from this class, obtaining an strictly smaller equivalent automaton.

Local languages and local automata. We define the x-local alphabet at [q]x by

Σ[q]x = {w ∈ Σ+ | [q]x
w:≥x [q]x and for any proper prefix w′ of w, [q]x

w:≥x [p]x 6= [q]x}.

We remark that, as ∼x is a congruence for ≥x-transitions (Lemma C.26), Σ[q]x is well-
defined and the notation [q]x

w:≥x can be used. A word w ∈ Σ∗ belongs to Σ∗[q]x if and
only if it connects states in the class [q]x. Elements in Σ[q]x are those that do not pass
twice through this class. Note that Σ[q]x is a prefix code, and therefore it is a proper
alphabet (even if, in general, it is infinite).

Seeing words in Σω
[q]x as words in Σω, define the localisation of W to [q]x to be the

objective
W[q]x = {w ∈ Σω

[q]x | w ∈ q
−1W}.

Observe that, as ∼x refines ∼A, this last definition does not depend on the choice of q and
W[q]x is prefix-independent. Moreover,W[q]x is half-positional over finite, ε-free Eve-games:
any W[q]x-game in which Eve could not play optimally using positional strategies would
provide a counterexample for the half-positionality of q−1W , which is half-positional if W
is (Lemma C.7).

The local automaton of the class [q]x is the automaton A[q]x defined as:

] The set of states is [q]x.
] The initial state is arbitrary.

] For w ∈ Σ[q]x , q1
w:y−−→ q2 if q1

w:y
q2 in A (we must have y ≥ x).

Super words and super letters for local languages. We recall some terminology
introduced in the warm-up. Assume that L is a prefix-independent language. We say that
u ∈ Σ+ is a super word for L if, for every w ∈ Σω, if w contains u infinitely often as a
factor, then w ∈ L. If s is a letter, we say that it is a super letter.

For q a state and x an even priority, we let B[q]x ⊆ Σ[q]x be the set of super letters for
W[q]x , and we write N [q]x = Σ[q]x \ B[q]x . We refer to N [q]x as the set of neutral letters of
Σ[q]x (for W[q]x).
F Lemma C.33 (Super words and uniformity). A word w ∈ Σω

[q]x is a super word for
W[q]x if and only if w produces priority x uniformly in [q]x, that is, for all q′ ∈ [q]x,
q′

w:x [q]x.

Proof. By normality of A (Lemma V.13), if there is q1 ∈ [q] such that q1
w:>x

q2, there
is a word w′ ∈ Σ∗ labelling a returning path q2

w′:x+1
q1. Therefore, (ww′)ω /∈ q−1W , so
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w is not a super word for W[q]x . The converse implication is clear, since each time word
w is read, the minimal priority produced by the automaton is x. J

In particular, using previous lemma, we can detect the set of super letters B[q]x in
polynomial time.

Super words of positional languages. The use of the hypothesis of half-positionality
of W for proving Lemma 5 resides in the next fundamental result.

Lemma C.34 (Neutral letters do not form super words).
Let w ∈ Σ+

[q]x be a super word for W[q]x . Then, w contains some super letter.

Proof. If w is already a letter in Σ[q]x , we are done. If not, let w = w1w2 be any non-
trivial decomposition into smaller words w1, w2 ∈ Σ+

[q]x . We show that either w1 or w2 are
super words for W[q]x . This allows us to finish the proof, as we can recursively chop w
into strictly smaller super words until obtaining a super letter.

Suppose by contradiction that neither w1 or w2 are super words. Then, by Lemma C.33,
there are states q1 and q2 such that q1

w1:>x
q′1 and q2

w2:>x
q′2. By normality (Lemma V.13),

we obtain returning paths q′1
u1:x+1

q1 and q′2
u2:x+1

q2. Therefore, (w1u1)ω /∈ W and
(w2u2)ω /∈ W . We consider the game G with winning condition q−1W consisting in a ver-
tex v with self loops u1w1 and u2w2 (see Figure 32 from the warm-up). Eve can win game
G, as alternating the two self loops she produces the word (u1w1w2u2)ω, which belongs
to q−1W since w1w2 is a super word. However, positional strategies in this game produce
either (w1u1)ω or (w2u2)ω, both losing. This contradicts the half-positionality of q−1W ,
and therefore, that of W (Lemma C.7). J

Polishing a ∼x-class of A. We show how to polish the class [q]x of A. This process
has the property that, either [q]x is already polished, or the obtained automaton A′ has
strictly less states than A, as desired.

Assume that the class [q]x is not x-polished. Consider the restriction of A[q]x to
transitions labelled with N [q]x , which we denote A′[q]x . Take S[q]x to be a final SCC of
A′[q]x (by a small abuse of notation, we also denote S[q]x the set of states of this SCC).

Fix a state q0 ∈ [q]x. Consider the automaton A′ obtained from A by removing states
in [q]x \ S[q]x , and redirecting transition that go to [q]x \ S[q]x in A to transitions towards
q0. For these redirected transitions, we keep the same priority if it is ≤ x, and set it to x
otherwise. Formally:

] The set of states of A′ is Q′ = Q \
(
[q]x \ S[q]x

)
.

] The initial state is qinit, or q0 if qinit ∈ [q]x \ S[q]x .

For q′ ∈ Q′:

] If q′ a:y−→ p in A and p /∈ [q]x, then q
a:y−→ p in A′.

] If q′ a:y−→ p in A, p ∈ [q]x \ S[q]x , and y ≤ x, then q′ a:y−→ q0 in A′.

] If q′ a:y−→ p in A, p ∈ [q]x \ S[q]x , and y > x, then q′ a:x−→ q0 in A′.
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For transitions in the two latter cases, we say that q′ a:y−→ q0 has been redirected from
q′

a:y−→ p.
F Remark C.35. If [q]x = S[q]x, then A′ = A.

The following lemma will be use to show that we can compute A′ in polynomial time,
to prove the correctness of A′, and to obtain that [q]x is x-polished in A′.

F Lemma C.36. Let q1, q2 ∈ S[q]x, and let w ∈ N∗[q]x labelling a path q1
w:y

q2 in A.
Then, y > x.

Proof. The fact that y ≥ x simply follows from the fact that N [q]x ⊆ Σ[q]x , which, by
definition, contains words connecting the states in [q]x producing no priority <x.

Suppose by contradiction that y = x. Then, by the same argument as in the proof
of Lemma 5 (see also Claim V.33.2), there is w′ ∈ N∗[q]x producing priority x uniformly

in [q]x and coming back to this class; that is, for every q′ ∈ [q]x, q′ w′:x [q]x. Therefore,
by Lemma C.33, w′ is a super word. By Lemma C.34, w′ must contain a super letter, a
contradiction, as w′ ∈ N∗[q]x and Σ[q]x is a proper alphabet. J

F Lemma C.37. Automaton A′ can be computed in polynomial time from A.

Proof. To obtain S[q]x , we first build a finite representation of the underlying graph of
the restriction of A[q]x to neutral letters (we recall that, in general, A[q]x might have an
infinite number of transitions). One way of doing that is to build the following graph G:
for each pair of states q1, q2 ∈ [q]x and each y > x, we put an edge q1

y−→ q2 if there is a
path from q1 to q2 producing y as minimal priority and not passing trough another state
in [q]x. By Lemma C.36, S[q]x is a subgraph of G. To obtain the states in S[q]x we just
need to perform a decomposition in SCCs of G and take a final SCC of it.3 J

We consider A′ equipped with the preorders ≤0, . . . ,≤x inherited from A.
F Lemma C.38. Automaton A′ is a ∼x-nice transformation of A at level x.

Proof. We first note that, by Lemma C.26, ∼x is [0, x − 1]-faithful in A, so it makes
sense to speak of a ∼x-nice transformation at level x.

Automaton A′|≥x+1 coincides with the subautomaton of A|≥x+1 induced by states in
Q′. Indeed, let q′1, q′2 ∈ Q′ and q′1

a:>x−−→ q′2 in A. As these states are in Q′, q′2 /∈ [q]x \ S[q]x ,
so the transition has not been redirected, and it appears in A′. Conversely, all transitions
producing a priority > x in A′ appear in A.

We show that ∼x is [0, x − 1]-faithful in A′ and A
/

∼x−1
≤x−1 = A

/
∼x−1
≤x−1 . Let p1, p2 ∈ Q′

such that p1 ∼x p2, and let p1
a:y′1−−→ q′1 and p2

a:y′2−−→ q′2 be two transitions in A′. Transitions
that have not been redirected satisfy the congruence requirements, as they satisfy them
in A. Assume that the first of these transitions have been redirected from p1

a:y1−−→ q1 in
A. We have that q′1 = q0 ∼x q1, so, q′1 ∼x q′2 by the congruence property in A. If y′1 < x,
then y1 = y′1 and the y1-uniformity of transitions in A yields y′1 = y′2. Therefore, we also

3If W is not half-positional, the procedure described here does provide a set of states S[q]x
, but it

might lead to an incorrect automaton A′. If our objective is to decide the half-positionality of W , at the
end of the procedure we need to check the equality L(A) = L(A′); if it does not hold, we can conclude
that W is not half-positional.
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have that y′1 ≥ x if and only if y′2 ≥ x This gives both the [0, x− 1]-faithfulness in A′ and
the equality of the quotient automata.

As ∼x refines ∼A, the latter relation is also a congruence in A′ and A/∼A = A′/∼A . J

F Lemma C.39 (Correctness of the polishing operation). Automaton A′ recognises L(A)

Proof. Let w ∈ Σω. If w is accepted or rejected with a priority y < x or y > x in A′,
by Lemma C.6, w ∈ L(A) if and only if w ∈ L(A′). Suppose then that w is accepted
with priority x in A′. Let ρ′ be the run over w in A′. If ρ′ eventually does not take any
redirected transition, then it is eventually a run in A, and we can conclude by Lemma C.1.
Suppose that ρ′ takes redirected transitions infinitely often; moreover, eventually all such
transitions produce priority x. We decompose ρ′ as follows:

ρ′ = qinit
w0

p′0
a0:x−−→ q0

w1:≥x
p′1

a1:x−−→ q0
w1:≥x

p′2
a2:x−−→ q0 . . . ,

where no priority < x appears after p′0, each transition p′i
a1:x−−→ q0 is a redirected one, and

no redirected transition appears in paths q0
wi:≥x , in particular, these paths appear in A.

G Claim C.39.1. For each i ≥ 1, the word wiai belongs to Σ+
[q]x and is a super word

for W[q]x.

Proof. The word wiai connects two states in [q]x in A′ producing no priority < x.
Since A′ is a ∼x-nice transformation at level x, word wiai also connects states in [q]x
in A, without producing priorities < x. Therefore, it belongs to Σ+

[q]x .
Consider the path q0

wi
p′i

ai−→ q′ in A. As we suppose that transition p′i
ai−→ q0

has been redirected in A′, q′ /∈ S[q]x . Then, since S[q]x is a final SCC of the restriction
of A[q]x to N [q]x-transitions, wiai contains some factor that is a letter in Σ[q]x \ N [q]x .
Such a factor is a super letter, so wiai is a super word. C

Consider the run over w in A, that we divide following the decomposition of ρ′:

ρ = qinit
w0

p0
a0:≥x−−−→ q1

w1:≥x
p1

a1:≥x−−−→ q2
w2:≥x

p2
a2:≥x−−−→ q3 . . . .

As A′ is a ∼x-nice transformation at level x, qi ∼x q0 for all i, and ρ does not produce
any priority < x from p0. By Lemma C.33, as wiai is a super word, the path qi

wiai
qi+1

produces priority x. Therefore, w is accepted by A. J

F Lemma C.40 (Polishing polishes). The class [q]x is x-polished in A′.

Proof. Let q1, q2 ∈ Q′ be two states in the class [q]x. Assume that, for a word w ∈ Σ∗,
the path q1

w:x
p1 produces priority x. As ∼x is [0, x − 1]-faithful, q2

w:≥x
p2. Suppose

by contradiction that this latter path produces exclusively priorities > x. Then, this path
also exists in A, and by normality (of A), there is a returning path p2

w′:x+1
q2. We

obtain therefore a path q1
ww′:x [q]x. However, in A′, [q]x = S[q]x , so, by Lemma C.36,

ww′ contains a super letter, so (ww′)ω ∈ q−1W , contradicting the fact that there is a cycle
q2

ww′:x+1
q2.

The second property of the definition of an x-polished class is satisfied in A′, as we
have redirected all x-transitions entering in [q]x to the state q0.

We show the third item. Let q1, q2 ∈ [q]x. Since [q]x = S[q]x in A′, there is a path q1
w

q2 for some w ∈ N∗[q]x . By Lemma C.36, this path produces exclusively priorities >x. J
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This lemma allows us to conclude. We have obtained a deterministic automaton A′
that is equivalent to A. We claim that |A′| < |A|. Indeed, if this was not the case, we
would have that [q]x = S[q]x , so, by Remark C.35, A = A′. By the previous Lemma C.40
this implies that [q]x was already x-polished in A, a contradiction.

Discussion: Why not just continue polishing? We have just showed a method
to x-polish a given class of A. The natural continuation would be to polish the rest of
classes, until obtaining an x-polished automaton, and then apply the first case. The main
difficulty is that the polishing operation we have presented might break the normality of
A. Normality of automata is key in all the process (see for example Lemma C.33), so we
cannot guarantee to be able to continue polishing the classes of A′. We would need to
be able to either show that A′ is in normal form (for example, by having an analogous
to Lemma C.31), or to show that we can normalise A′ while maintaining the properties
of being an (x− 2)-structured signature automaton. We have not succeeded in ensuring
these properties, although we believe that it should be possible to do so.
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