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1. J.L. Robles-Magdaleno, A.E. Rodŕıguez-Mata, M. Farza and M. M’Saad (2020).

A filtered high gain observer for a class of non uniformly observable systems –

Application to a phytoplanktonic growth model, Journal of Process Control, Vol.

87, pp. 68-78.

International Conferences
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Chapter 1

General introduction

In spite of the intensive research efforts throughout the last four decades, the observer

design for nonlinear systems is still an open problem. Various approaches have been

proposed to design state observers for different classes of nonlinear systems (see for

instance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and references therein) but none of

them provides a general solution as in the linear time invariant case. The seminal ap-

proaches dealing with the observer design for nonlinear systems are based on appropriate

coordinates transformations which lead to linear error dynamics up to an output injec-

tion allowing thereby to design a Luenberger structure based observer (see for instance

[14, 15, 16, 17, 18, 19, 20, 21]). An intensive research activity has been devoted to the

class of systems that are observable for any input, i.e. uniformly observable systems (see

for instance [8, 9, 22]). In [8], the authors proposed a canonical form for single output

systems in the control affine case. This canonical form is composed of a fixed linear

dynamics together with a nonlinear triangular controlled one. A Standard High Gain

Observer (SHGO) has been designed on the basis of this canonical form and this observer

design has been subsequently extended in [9] to deal with the non-control affine case

and in [22] for a class of MIMO uniformly observable systems characterized by a normal

form where the nonlinearities are triangular. Several extensions of the SHGO design have

been proposed for some particular classes of MIMO uniformly observable systems. The

underlying observers are characterized by a constant gain which is often issued from an

algebraic Lyapunov equation. In the case of non-uniformly observable systems, there is

no systematic approach to deal with the observer design since these systems may admit

inputs that render them unobservable. The available contributions are rather genuine ex-

tensions of the observer design approach adopted for uniformly observable systems up to

some sufficient conditions on the system inputs which allow the systems to be sufficiently

observable to perform an appropriate observer design. These conditions are generally re-

ferred to as persistent excitation conditions which require the positive definiteness of the
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system observability Gramian. In [23], the authors introduced the notion of local regular

inputs providing thereby sufficient conditions to characterize those systems that can be

immersed under higher dimension normal form composed of an affine part depending on

the input and output and a triangular controlled nonlinear part. A high gain observer

involving a Lyapunov ODE has then been designed on the basis of the normal form. The

class of systems considered in [23] has been revisited in [24] where the authors the authors

enlarged the class of locally regular inputs to the class of regular inputs.

A particular attention has been paid to the Standard High Gain Observer (SHGO) design

for fundamental as well as simplicity purposes ([9]). The simplicity feature is obtained

thanks to the involved Luenberger observer structure together with the parametrization

of the observer gain by a unique design parameter, i.e. a positive scalar commonly de-

noted θ. It is worth noticing that this design parameter is generally taken high enough to

ensure the underlying observation error convergence and intervenes with positive powers

ranged from one to the system dimension in the observer gain expression. Concerning the

fundamental feature, it follows essentially from the fact that SHGO design has been ap-

propriately extended to delay systems and extensively used for designing output feedback

nonlinear control systems (see [25, 26] and references therein). The case of arbitrary long

time delays has been addressed using an appropriate cascade observer design approach

(see [27] and references therein). Otherwise, a genuine approach has been proposed to

redesign any SHGO when the output measurements are available only at sampling in-

stants (see [28] and reference list therein). Such a design has been subsequently extended

to tackle the case of multirate sampling with multiple time-varying output delays us-

ing a high gain observer chained to a cascade predictor (See [29]). Nevertheless, the

applicability of SHGO suffers from two main limitations. The first one consists in its

intrinsic sensibility to the measurement noise, while the second one is the peaking phe-

nomenon occurring during the transient periods. As pointed out in [30], several solutions

have been recently proposed to alleviate the sensitivity to measurement noise of SHGO

([31, 32, 33, 34, 35, 36]). A redesigned version of SHGO has been proposed in [34] for

a class of nonlinear systems of dimension n. Though the observer dimension is equal to

2(n− 1), the underlying observer gain is parameterized by a scalar design parameter the

power of which is limited to 2. Such a design feature allows to enhance the observer per-

formance with respect to the ubiquitous measurement noise. The same objective has bee

investigated in [33] using a cascade observer the dimension of which is equal to 2n. More

specifically, the observer consists in cascading two subsystems of the same dimension as

the original system. The first subsystem is nothing than a copy of the original system

with a simple correction term which linearly depends on the state of the second subsys-
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tem, while the second subsystem is a linear filter driven by the output observation error,

namely the error between the output measurement and an output prediction provided by

the first subsystem. In [37, 38], the authors discussed the use of low-pass filters in high

gain observers and proposed some filters coupled to SHGO to improve the sensitivity to

high frequency signals of the observer.

The peaking phenomenon is a challenging problem that has been recently investigated

([39, 40, 41, 42, 43]). A suitable redesign of the SHGO has been proposed in [40] leading

to an observer of the same dimension as the original system where the power of the ob-

server gain is limited to one. The observer design proposed in [34] has been reconsidered

in [41] to deal with the peaking phenomenon by properly using nested saturation func-

tions. In [30], a redesigned high gain observer with filtering capabilities and where the

peaking phenomenon is significantly reduced has been proposed. The proposed observer

is constituted by the cascade of two subsystems where the first one acts as a liner filter

the input of which is the noisy output observation error and it provides a filtered version

of this error which is used by the second system the structure of which is similar to that

of a high gain observer. Moreover, each equation of the overall system involve a corrective

term with nested saturation functions depending on the filtered output error. Though

the structure of the proposed observer is quite simple, the related convergence analysis

is somewhat elaborate and it is not clear how the adopted approach can be extended to

more general class of systems i.e. systems with sampled/delayed outputs or non uniformly

observable systems.

The ultimate motivation of this thesis is to propose redesigned versions of SHGO in or-

der to improve its sensitivity to high frequency signals. Indeed, two redesigned versions

shall be proposed. The first one [44] is proposed for a class of non uniformly observable

systems and it can be interpreted as an extension of the filtered observer proposed in

[33] for a class of uniformly observable systems. The second redesign is very recent and

is under submission. It is first proposed for a class of uniformly observable system and

then extended to a class of non uniformly observable systems. It should be emphasized

that the second redesign approach is achieved in a unifying context that accounts for all

the scenarios under which the output measurements may be available, i.e. continuously

in time with eventually an output delay or under samples with the eventual presence of

output delays.

This thesis is organized under the form of four chapters amongst which the actual general

introduction and the conclusion. In chapter 2, the first contribution dealing with the
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design of an observer for a class of non uniformly observable systems is detailed. In

chapter 3, a new redesign of a Filtered High Gain Observer (FHGO) is put forward. First

the redesign is detailed for a class of Uniformly Observable Systems (UOS). Then its

extension to a class of Non Uniformly Observable Systems (NUOS) is considered. For

each redesigned observer, simulation results dealing with an academic example as well

as with a bioreactor are given in order to put forward the performance and the main

properties of the underlying observer. Finally some concluding remarks and perspectives

are given in the conclusion.
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Chapter 2

Filtered High Gain Observer Design

Since the eighties, we have witnessed the emergence of nonlinear state observers perform-

ing an admissible estimation of the component concentrations inside bioreactors (see e.g.

[45] and references therein). These observers have been designed using various approaches

that have been progressively developed for specific classes of nonlinear systems using var-

ious design principles (See for instance [46, 47, 48, 49, 50]). The high gain principle has

shown to provide an appealling approach to design observers for nonlinear systems as

pointed out in [49]. Such an attraction is motivated by implementation simplicity and

fundamental considerations. Indeed, the Standard High Gain Observer (SHGO) structure

is very simple since it consists in adding a copy of the system dynamics with a correc-

tive involving an observer gain which is essentially parameterized by a positive design

parameter θ. Of a fundamental interest, one can naturally recover the genuine separation

principle for nonlinear systems when designing output feedback control systems incorpo-

rating a SHGO (see [51] and references therein). However, the design parameter θ has to

be taken high enough for observer convergence purposes and it intervenes with positive

powers in the observer gain, leading thereby to two well known issues. The first issue

is related to the intrinsic sensitivity of SHGO to the non avoidable output measurement

noise while the second one consists in the peaking phenomenon of the state variable es-

timates, the magnitude of which is proportional to an appropriate power of θ, leading to

poor transient behavior of SHGO.

An important research activity has been recently devoted to alleviate the SHGO sensi-

tivity to measurement noise using an appropriate filtering. The seminal contribution has

been proposed in [52] for a class of single output nonlinear systems of dimension n ≥ 3.

The filtering feature is mainly used to limit the observer gain power to 2, reducing thereby

the amplification of noise measurements. Two design features are worth to be empha-

sized. Firstly, the dimension of the proposed observer is equal to 2(n− 1). Secondly, the
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observer provides an estimate of the first and last components of the system state whereas

the intermediary states are provided by a couple of estimates. This contribution has been

subsequently reconsidered in [53] and [54] where redesigned versions involving nested sat-

urations have been proposed to deal with the peaking phenomena. A nice contribution

has been proposed in [51], it consists in a redesigned SHGO having the same dimension as

the original system with two important design features, namely the power of the observer

design parameter is limited to one and the peaking phenomena is well reduced thanks to

nested saturation functions. Further developments related to the design of SHGO with

filtering capabilities have been carried out in [55, 56] for a class of systems with dimen-

sion n ≥ 2. The underlying observers consist in two cascaded sub-systems each one of

which has the same dimension as the original system. The first subsystem is a copy of the

original system with a simple correction term which (linearly) depends on the state of the

second subsystem. The latter subsystem is a linear filter driven by the output observa-

tion error, namely the error between the output measurements and an output prediction

provided by the first subsystem. As in [52], the power of the observer gain is limited to 2.

It is worth noticing that all the high gain observers incorporating filtering capabilities,

cited above, were proposed for uniformly observable systems, i.e. systems which are ob-

servable for any input. Up the authors best knowledge, no equivalent solution has been

proposed for non uniformly observable systems, i.e. systems where the considered inputs

have to satisfy an adequate persistent excitation condition to ensure their observability. In

this paper, one aims at providing a new Filtered High Gain Observer (FHGO) for a class

of Multi-Input/Multi-Output (MIMO) non uniformly observable nonlinear systems. The

underlying design is quite different from those given in [55, 56] for uniformly observable

systems, namely the observer gain is issued from the resolution of a Riccati or Lyapunov

Ordinary Differential Equation (ODE).

The chapter is organized as follows. A comprehensive presentation of the class of systems

to be considered together with an appropriate SHGO are given in section 2. Section 3 is

devoted to the FHGO design assuming that the output measurements are continuously

available with a particular emphasis on a certain persistent excitation condition required

for the observer convergence. The redesigned version of the FHGO dealing with sam-

pled outputs is given in section 4 with a particular emphasis on the admissible sampling

process. Section 5 is dedicated to an application, namely an admissible estimation of

the component concentrations within a bioreactor in a realistic simulation framework. A

particular attention is paid on the FHGO performance with respect to the SHGO in the

presence of noise measurements. For clarity purposes, the convergence analysis related to
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the FHGO with continuous output measurements as well as with sampled ones are given

in Appendix.

Throughout this chapter as well as the next one, for any positive integers k and m,

Ik and 0k denote the k-dimensional identity and zero matrices respectively, 0k×m is the

k × m zero matrix, ∥ · ∥ denotes the euclidian norm and for any Symmetric Positive

Definite (SPD) time-varying matrix Q(t), λM(Q(t)) (resp. λm(Q(t))) will be used to

denote the largest (resp. the smallest) eigenvalue of Q(t) and λ̄M(Q(t)) = sup
t≥t0

λM((Q(t))),

λm(Q(t)) = min
t≥t0

λm((Q(t))) where t0 is any fixed non negative real number. Moreover, the

arguments will be omitted when clear from the context.

2.1 Preliminaries

Recall that the ultimate motivation consists in addressing the SHGO sensitivity with

respect to the ubiquitous noise measurements for a class of non uniformly observable sys-

tems. More specifically, we will consider the following class of nonlinear MIMO systems{
ẋ(t) = F (u(t), x(t))x(t) + φ (u(t), x(t)) +Bε(t)

y(t) = Cx(t) + w(t)
(2.1)

with

x =


x(1)

x(2)

...

x(q)

 with x(k) ∈ IRnk and

q∑
k=1

nk = n, (2.2)

F (u, x) =



0 F1(u, x) 0 0
... F2(u, x)
... 0

0 0 Fq−1(u, x)

0 0


with

Fk(u, x) = Fk(u, x
(1), . . . , x(k)), (2.3)

φ(u, x) =



φ(1)(u, x)

φ(2)(u, x))
...

φ(q−1)(u, x)

φ(q)(u, x)


∈ IRn with

φ(k)(u, x) = φ(k)(u, x(1), . . . , x(k)), (2.4)
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B =


0n1×nq

...

0nq−1×nq

Inq

 , C =
(
In1 0n1×n2 · · · 0n1×nq

)
, (2.5)

where the state x(t) ∈ IRn, each Fk(u, x) is a nk × nk+1 matrix which is triangular w.r.t.

x, i.e. Fk(u, x) = Fk(u, x
(1), ..., x(k)), k = 1, ..., q − 1, φ(x(t), u(t)) is a nonlinear vector

function that has a triangular structure w.r.t. x; u ∈ IRs denotes the system input,

y ∈ IRp is the system output; ε : IR+ → IRnq , is an unknown function which denotes

the system uncertainties and w : IR+ → IRnq is the output noise.

The observer design will be performed under the following assumptions.

A1. The state x(t) and the control u(t) are bounded, i.e. x(t) ∈ X and u(t) ∈ U where

X ⊂ IRn and U ⊂ IRs are compact sets. One sets xM = sup
x∈X

∥x∥.

A2. Each φk(u, x), k = 1, . . . , q and each Fk(u, x), k = 1, . . . , q − 1, is Lipschitz on X

with respect to x uniformly in u, i.e.

∃Lφ > 0 / ∀u ∈ U ; ∀(x, x̄) ∈ X ×X, one has ∥φ(k) (u, x)− φ(k) (u, x̄) ∥ ≤ Lφ∥x− x̄∥,

∃LF > 0 / ∀u ∈ U ; ∀(x, x̄) ∈ X ×X, one has ∥Fk (u, x)− Fk (u, x̄) ∥ ≤ LF ∥x− x̄∥.

A3. The unknown uncertainty ε and the noise signal w are essentially bounded functions,

i.e.

∃ (δε, δw) ∈ IR+ × IR+ / ∥ε∥∞
∆
= ess sup

t≥0
∥ε(t)∥ ≤ δε, ∥w∥∞

∆
= ess sup

t≥0
∥w(t)∥ ≤ δw.(2.6)

Remark 2.1.1 Since the state is bounded, one can construct global Lipschitz prolonga-

tions of the nonlinearities using saturation functions ([26]). To avoid symbol redundance,

one shall assume as in [57] that such prolongations have been achieved and that the func-

tions F and φ result from these prolongations.

System (2.1) has been already considered in [58] in the free uncertainties and noise mea-

surements case and a SHGO has been designed under a set of assumptions amongst which

A1 to A3. Similarly, this system belongs to the class of systems considered in [59] and

[60] where a SHGO has been proposed in the absence of noise measurements. For com-

parison purposes and in order to highlight the main steps of the FHGO design which shall
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be detailed later, let us recall the equations of a SHGO proposed in the above references

([59, 60])

˙̂x(t) = F (u, x̂)x̂(t) + φ(u(t), x̂(t))− θ∆−1
θ P (t)CT (x̂(t)− y(t)), (2.7)

with

∆θ = diag
[
In1

1
θ
In2 · · · 1

θq−1 Inq

]
, (2.8)

where x̂ =


x̂(1)

...

x̂(q)

 ∈ IRn, with x(k) ∈ IRnk , k = 1, . . . , q, denotes the state estimate and

P (t) is a n× n symmetric matrix governed by the following Riccati ODE{
Ṗ (t) = θ

(
P (t) + F (u, x̂)P (t) + P (t)F T (u, x̂)− P (t)CTCP (t)

)
,

P (0) = P T (0) > 0.
(2.9)

Recall that the convergence of the underlying observation error has been established under

Assumptions A1 to A3, together with an appropriate persistent excitation condition

similar to the one which shall be considered later when designing the FHGO.

2.2 Motivation of the proposed design

Before giving the equations of the proposed FHGO, one shall recall some results related on

the design of a FHGO for a class of uniformly observable systems proposed in [33]. Indeed,

the design that shall be proposed later is a tentative to extend the design considered in

[56] to the class of non uniformly observable systems given by (2.1). The FHGO design

considered in [33] deals with the following class of Single Input Single Output (SISO)

nonlinear systems {
ẋ(t) = Anx(t) + φ(u(t), x(t)) +Bnε(t)

y(t) = Cnx(t) + w(t) = x1(t) + v(t)
(2.10)

where x =
(
x1 . . . xn

)T
∈ IRn denotes the state of the system with xi ∈ IR, i =

1, . . . , n; u(t) ∈ IR denotes the system input and y(t) ∈ IR denotes the output of the

system, w(t) is the output noise and the matrices An, Bn and Cn are given by

An =

[
0n−1,1 In−1

0 01,n−1

]
, Bn =

(
0 . . . 0 1

)T
∈ IRn , Cn =

(
1 0 . . . 0

)
∈ IR1×n

(2.11)

The function ε : [0,+∞[ 7→ IR denotes the system uncertainties and may depend on the

input and uncertain parameters. It shall be treated as an unknown function which ex-

plicitly depends on time t for t ≥ 0; finally, φ(u, x) ∈ IRn denotes a nonlinear vector field

which assumes a triangular structure with respect to x, i.e. φi(u, x) = φ(u, x1, . . . , xi),
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i = 1, . . . , n.

The observer design has been performed under assumptions similar to (A1), (A2) and

(A3) considered above for the design of the FHGO that shall be proposed later.

The equations of the observer proposed for system (2.10) in [33] are

˙̂x(t) = Anx̂(t) + φ(u(t), x̂(t))− θ∆−1
n (θ)Gn(Cnx̂(t)− y(t)) (2.12)

with x̂ ∈ IRn denotes the state estimate,

∆n = diag
(
1, 1/θ, . . . , 1/θn−1

)
, (2.13)

Gn =


γ1
...

γn

 ∈ IRn, (2.14)

where Gn is chosen such that the matrix Ān
∆
= An − GnCn is Hurwitz and θ ≥ 1 is a

scalar design parameter. Notice that, since the matrix Ān = An−GnCn is Hurwitz, there

exist a n× n SPD matrix P and a positive real µ such that

PĀn + ĀT
nP ≤ −2µIn (2.15)

The analysis of the convergence of the observation error related to the SHGO is performed

using a Lyapunov approach. More precisely, the Lyapunov function used throughout the

convergence analysis is V (x̄) = x̄TPx̄ with x̄ = θn−1∆θx̃ where ∆θ is given by (2.13),

x̃ = x̂− x and P = P T is the SPD matrix given by 2.15. In particular, it has been shown

that

∃θ0 > 0; ∀θ ≥ θ0; ∀u ∈ U ; ∀x̂(0) ∈ IRn; one has

∥x̃(t)∥ ≤ σθn−1e−(µθ)/(2λM )t∥x̃(0)∥+ 2λMσ/µ
(
δε/θ + θn−1∥Gn∥δw

)
(2.16)

where µ > 0 is a positive real given by equation (2.15) and δε and δw are the upper essen-

tial bounds of ∥ε(t)∥ and ∥w(t)∥ given in Assumption A3 with θ0 = max(1, 2Lφ

√
nλM/µ)

where the Lφ is the Lipschitz constants given by Assumption A2 and σ is the conditioning

number of the matrix P given by (2.15).

The observer design in [33] is in particular based on the following lemma.

Lemma 2.2.1 Let Mn =

(
An −Kn

CT
nCn −Dn +AT

n

)
where n ≥ 2 is a positive integer, An

and Cn are given by (2.11), and Dn, Kn are the following diagonal matrices

Dn = diag (δ1, δ2, . . . , δn) and Kn = diag (k1, k2, . . . , kn) ,

12



where each δi (resp. ki), i = 1, . . . , n, is a real constant (resp. a non zero real constant).

There exists a choice of δi and ki, i = 1, . . . , n such that the eigenvalues of Mn can be

arbitrarily assigned.

The arbitrary assignment of the eigenvalues of Mn can be achieved by using an iterative

procedure provided in [56] and it requires the determination of the roots of n polynomials.

The FHGO proposed in [33] for the class of systems (2.1) is constituted by two subsystems

each one of which has the same dimension as the original system (2.1). The first subsystem

is a copy of the original system, with a corrective term that linearly depends on the state

of the second subsystem. The latter is a linear filter the input of which is the difference

between the output predicted by the observer and the output measurement, namely the

output observation error. More precisely, the proposed observer is given by the following

set of equations{
˙̂x(t) = Anx̂(t) + φ(u(t), x̂(t))− θKne(t),

ė(t) = −θDne(t) + θ2AT
ne(t) + θCT

n (Cnx̂(t)− y(t)) with e(0) = 0,
(2.17)

where x̂ =
(
x̂1 . . . x̂n

)T
∈ IRn, e =

(
e1 . . . en

)T
∈ IRn with x̂i, ei ∈ IR, θ > 0

is a positive real design parameter, and where Dn and Kn are the following diagonal

matrices

Dn = diag(δ1, . . . , δn), Kn = diag(k1, . . . , kn). (2.18)

The coefficients δi and ki, i = 1, . . . , n, are real constants and are chosen such that the

matrix

Mn =

(
An −Kn

CT
nCn −Dn +AT

n

)
(2.19)

is Hurwitz. Notice that such a choice is possible according to Lemma 2.2.1 and it can

be achieved by pursuing the proposed iterative procedure. Now, since the matrix Mn is

Hurwitz, there exist a SPD matrix P = P T > 0 and a positive real µ > 0 such that

MT
n P + PMn ≤ −2µI2n. (2.20)

The convergence analysis of the above FHGO is achieved by using a Lyapunov approach

and the underlying Lyapunov function is based on the matrix P given by (2.20).

Let us compare the structure of the FHGO (2.17) with that of the SHGO (2.12) in order

to put forward the rational behind the proposed design. Let us first focus on the observer

13



state e =


e1
...

en

. According to the ODE governing e(t) in (2.17), The first component

e1 is a filtered version of the output observation error x̂1 − y with a filter of order 1 and

the static gain of which does not depend on θ. For i ≥ 2, the component ei is also a

filtered version of ei−1 with a filter of order 1 and the static gain of which is proportinal

to θ. The component ei is therefore a filtered version of x̂1 − y with a filter of order i and

the static gain of which is proportional to θi−1. Now, the ODE associated to the state x̂i

in the FHGO (2.17) is obtained from that given by the SHGO (2.12) by substituting the

corrective term θi−1γi(x̂1 − y) by its filtered version, namely kiei. Two feature are worth

to be mentioned. The first one deals with the fact that the power of the design parameter

θ does not exceed 2 in the FHGO. The second feature deals with the fact the substitution

of the output observation error by an appropriate filtered version in the state estimate

equations will definitely improve the behavior of the FHGO with respect to the output

measurements noise.

For clarity purposes and in order to put forward in a more clearer manner the ratio-

nal behind the proposed filtering process, one shall consider a general example where

the dimension of the original system is fixed to n = 3 and compare the structures of

the underlying SHGO and FHGO. To simplify and to emphasize the filtering process of

high frequency signals, one shall consider the disturbance free case, i.e. w(t) ≡ 0. The

equations of the SHGO can be written under the following developed form
˙̂x1(t) = x̂2 + φ1(u, x̂1)− γ1θ(x̂1 − y(t))

˙̂x2(t) = x̂3 + φ2(u, x̂1, x̂2)− γ2θ
2(x̂1 − y(t))

˙̂x3(t) = φ3(u, x̂)− γ3θ
3(x̂1 − y(t))

(2.21)

with y(t) = x1 + v(t) and where γi > 0, i = 1, . . . , 3 and θ > 1.

Let x̃ = x̂− x be the underlying observation error. Then, one has
˙̃x1(t) = x̃2 + φ̃1(u, x̂1, x1)− γ1θ(x̃1 − v(t))

˙̃x2(t) = x̃3 + φ̃2(u, x̂1, x̂2, x1, x2)− γ2θ
2(x̃1 − v(t))

˙̃x3(t) = φ̃3(u, x̂, x)− γ3θ
3(x̃1 − v(t))

(2.22)

where φ̃i(u, x̂, x) = φ(u, x̂)− φi(u, x), i = 1, . . . , 3.

The system of error equations (2.22) can be written under the following compact form

˙̃x(t) = A3x̃(t) + φ̃(u, x̂, x)− θ∆−1
3 (θ)G3C3x̃+ θ∆−1

θ G3v(t) (2.23)
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where (A3, C3), ∆3 and G3 are respectively given by (2.11), (2.13) and (2.14) with n = 3.

More precisely, one has

A3 =


0 1 0

0 0 1

0 0 0

 , C3 =
(

1 0 0
)
, G3 =


γ1

γ2

γ3



∆3(θ) =


1 0 0

0
1

θ
0

0 0
1

θ2

 .

Recall that the coefficients of the vector G3, i.e. the γi’s, i = 1, 2, 3 are chosen to assign

the poles of Ā3 = A3 −K3C3 at predefined desired values.

The stability analysis of the error system (2.23) can be fairly achieved by considering the

following (classical) change of variables: x̄ = θ2∆3x̃. Indeed, one can show that

˙̄x(t) = θĀ3x̄(t) + θ2∆3φ̃(u, x̂, x) + θ3G3v(t).

The remaining of the stability analysis is carried out by using a Lyapunov approach which

is based on the exponential stability of the linear part (θĀ3x̄) of the above ODE.

The error equations associated to the FHGO (2.17) specialize for n = 3 as follows

˙̃x1 = x̃2 + φ̃1(u, x̂1, x1)− k1θe1
˙̃x2 = x̃3 + φ̃2(u, x̂1, x̂2, x1, x2)− k2θe2
˙̃x3 = φ̃3(u, x̂, x)− k3θe3

ė1 = −θδ1e1 + θ(x̃1 − v)

ė2 = −θδ2e2 + θ2e1

ė3 = −θδ3e3 + θ2e2

(2.24)

The above system can be written under the following compact form{
˙̃x(t) = A3x̃+ φ̃(u, x̂, )− θK3e

ė(t) = −θD3e+ θ2AT
3 e+ θ(CT

3 C3x̃− v)
(2.25)

where K3 and D3 are the following diagonal matrices

K3 =


k1 0 0

0 k2 0

0 0 k3

 , D3 =


δ1 0 0

0 δ2 0

0 0 δ3

 .
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Recall that the coefficients of the above matrices can be chosen through an appropriate

algorithm to assign the eigenvalues of the following matrix

M3 =

(
A3 −K3

CT
3 C3 −D3 + AT

3

)
, (2.26)

to predefined values.

The stability analysis of the above error system (2.25) can be fairly performed by consid-

ering the following change of variables: x̄ = θ2∆3x̃ and ē = θ2∆3e. Indeed, one can show

that {
˙̄x(t) = θA3x̄− θK3ē+ θ2∆3(θ)φ̃(u, x̂, x)

˙̄e(t) = θCT
3 C3x̄− θ

(
D3 + AT

3

)
ē− θ3∆3(θ)v

(2.27)

Again, the above system can be written under the following more condensed form(
˙̄x

˙̄e

)
= θ

(
A3 −K3

CT
3 C3 −D3 + AT

3

)
︸ ︷︷ ︸

M3

(
x̄

ē

)
+

(
θ2∆3(θ)φ̃(u, x̂, x)

−θ3∆3(θ)v

)
, (2.28)

Using the fact that the linear part (θM3) of the above error system is exponentially stable,

a Lyapunov based approach is used to conclude to the stability of the above error system.

Let us now focus on the developed form of the error equations system associated to

the SHGO (2.22) on one hand and on the equations of the error state observation error

involved in (2.24) on the other hand. Indeed, the error equation associated to x̃1 in (2.22)

is

˙̃x1 = x̃2 + φ̃1(u, x̂, x)− γ1θ(x̃1 − v)︸ ︷︷ ︸
corrective term

. (2.29)

while this error equation in the error system associated to the FHGO (2.24) is

˙̃x1 = x̃2 + φ̃1(u, x̂, x)− k1θe1︸ ︷︷ ︸
corrective term

. (2.30)

It is clear that the sole difference between the above two equations, i.e. (2.29) and (2.30),

is that the dynamics of x̃1 in the FHGO can be obtained from its dynamics in the SHGO

be substituting the term involving the noisy output observation error, i.e. γ1(x̃1 − v) by

k1e1 which is a filtered version of this error obtained from the following first order linear

filter (see the forth equation of system (2.24))

ė1 = −θδ1e1 + θ(x̃1 − v).
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Notice that the relative degree of the transfer function between e1 and x̃1 is equal to 1

and the underlying static gain is independent of θ.

Let us now focus on the dynamics of x̃2. According to (2.22), its dynamics issued from

the SHGO is

˙̃x2 = x̃3 + φ̃2(u, x̂, x)− γ2θ
2(x̃1 − v)︸ ︷︷ ︸

corrective term

. (2.31)

while it is updated in the FHGO as follows (see (2.24))

˙̃x2 = x̃3 + φ̃2(u, x̂, x)− k2θe2︸ ︷︷ ︸
corrective term

. (2.32)

Hence, the term γ2θ
2x̃1 is substituted by k2θe2. According to (2.24), e2 is a filtered version

of e1, i.e.

ė2 = −θδ2e2 + θ2e1.

It is cleat that the relative degree of the transfer function between e2 and e1 is equal to 1

and the underlying static gain is of the order of θ. Hence, one can easily deduce that, the

relative degree of the transfer function between e2 and x̃1 is equal to 2 and the underlying

static gain is of the order of θ.

In a similar manner, one can easily deduce that e3 is a filtered version of x̃1 and the

relative degree of the transfer function between e3 and x̃1 is equal to 2 with a static gain

of the order of θ2. This explains why the term −γ3θ3x̃1 constituting the corrective term

in ˙̃x3 in the SHGO (2.22) has been substituted by −k3θe3 in the FHGO (2.24).

2.2.1 Tentative to extend the design to non uniformly observ-

able systems

A direct extension of the design considered in [33] has been first envisaged to the following

class of SISO non uniformly observable system{
ẋ(t) = Fn(u(t))x(t) + φ(u(t), x(t)) +Bnε(t)

y(t) = Cnx(t) + w(t) = x1(t) + v(t)
(2.33)

where

Fn(u(t)) =



0 f1(u) 0 . . . 0

0 0
. . . . . .

...

0 . . .
. . . . . . 0

0 . . . · · · 0 fn−1(u)

0 . . . · · · · · · 0


. (2.34)
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where the fi(t), i = 1, . . . , n are time-varying functions and all the other variables keep

the same meaning as in system (3.84).

The first prerequisite to perform the FHGO design extension proposed in [33] to the

class of system (3.84) is to look for a counterpart of the result provided by lemma 2.2.1.

However, the main result of lemma 2.2.1 is the exhibition of a Hurwitz (constant) matrix.

The checking of the Hurwitz property of the matrix is performed by checking the real

parts of its eigenvalues. Such a procedure is no longer true when the coefficients of the

matrix are time-varying. More precisely, the counterpart of the problem solved by lemma

2.2.1 can be formulated as follows. Could one choose diagonal matrices Dn(t) and Kn(t)

(with eventually time-varying coefficients) such that the following matrix

Mn =

(
Fn(u) −Kn(t)

CT
nCn −Dn(t) + AT

n

)
(2.35)

is stable in the sense that the state of the following linear time-varying system ẋ(t) =

Mn(t)x(t) with state x is stable. Notice that the response to the above question is not

easy. This explains why the idea to exactly extend the above design was subscribed and

a similar but different design shall be considered.

Before detailing the proposed design, one shall put forward the rational behind it. Indeed,

in the single output case, one shall look for a filtered observer, where the matrix Dn(t) is

no longer diagonal but reduced to a scalar constant matrix, i.e. Dn(t) = δIn where δ is a

positive real. Since, the problem has been significantly simplified, one shall consider the

design for a class of systems with multiple outputs given by system (2.1).

2.3 The FHGO design

Recall that one aims at alleviating the sensitivity of the SHGO (2.12) to the ubiquitous

noise measurements. A suitable filtering process is used to this end by cascading two

subsystems. The first subsystem corresponds to a copy of the original system, with a

(time-varying) corrective term that linearly depends on the state of the second subsystem.

The latter is a linear filter the input of which is the difference between the output predicted

by the observer and the output measurement, namely the output observation error. The

proposed observer is given by the following set of equations

{
˙̂x(t) = F (u, x̂)x̂(t) + φ(u(t), x̂(t))− θK(t)η(t),

η̇(t) = δθ
{
−η(t) + θATη(t) + CT

qn1
(Cx̂(t)− y(t))

}
, η(0) = 0,

(2.36)
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where x̂ =


x̂(1)

...

x̂(q)

 ∈ IRn with x(k) ∈ Rnk , k = 1, . . . , q, η =


η(1)

...

η(q)

 ∈ IRqn1 with

η(k) ∈ IRn1 and A is the qn1 × qn1 anti-shift matrix, i.e.

A =


0n1 In1 0n1 0n1

...
. . . . . . 0n1

0n1 · · · · · · In1

0n1 · · · · · · 0n1

 , CT
qn1

=


In1

0n1

...

0n1

 . (2.37)

The terms δ and θ > 0 are positive real design parameters and finally, K(t) is the following

diagonal matrix

K(t) = diag(P (t)CT )
∆
= diag

(
K(1)(t) . . . K(q)(t)

)
, (2.38)

where each K(i) is ni × n1 matrix and P (t) is a n× n symmetric matrix governed by the

following Riccati ODE

{
Ṗ (t) = θ

(
P (t) + F (u, x̂)P (t) + P (t)F T (u, x̂)− P (t)CTCP (t)

)
,

P (0) = P T (0) > 0.
(2.39)

Besides Assumptions A1 to A3, the following assumption is needed for the observer de-

sign:

A4. The Riccati ODE (2.39) has a positive definite solution that satisfies the following

property

∃ρ⋆ > 0; ∃θ⋆ > 0; ∀θ > θ⋆;∃t⋆ ≥ 0; ∀t ≥ t⋆, (1/λ̄M(P (t))) ≥ (ρ⋆/α(θ))In,(2.40)

where α(θ) is a positive function satisfying

∀θ > 0, α(θ) ≥ 1 and ∃ 0 < χ ≤ 1, lim
θ→∞

α(θ)

θ2χ
= 0. (2.41)

Notice that the dynamics of the Riccati equation (2.39) involved in Assumption A4 de-

pends on the state estimate x̂ as in [61, 62] and not on the state x. At a first glance, it

would seem more natural to express Assumption A4 using the state rather than its esti-

mate. But this would lead to a non checkable assumption since the state is not available.
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Considering the observer states instead of the system states, as formulated in Assumption

A4, would allow to check it at least on-line, even though not a priori. Indeed, Assumption

A4 can be checked on-line by simply computing the inverse of the largest instantaneous

eigenvalue of P (t).

On other aspects, Assumption A4, which is similar to that considered in [61, 62], is

of a primary importance for the stability of the observer. Indeed, as noted in [61], this

assumption is satisfied for uniformly observable systems, i.e. systems which are observable

for any input. For non uniformly observable systems, the characterization of the class of

inputs which satisfy Assumption A4 is still an open problem despite that some interesting

results dealing with some subclasses of systems (2.1) have already been obtained. Indeed,

the authors in [23] introduced the notion of local regular inputs which are defined as those

satisfying Assumption A4 with α(θ) ≡ 1 for all θ. However, these inputs were defined for

a class of systems included in (2.1), i.e. the matrices Fk do not depend on the state. In

[24], the class of systems considered in [23] was revisited and the authors enlarged the

class of locally regular inputs to the class of regular inputs. In the spirit of the persistent

excitation conditions proposed in [23, 24], a similar condition which allows Assumption

A4 to be satisfied has been formulated in [59, 60] where some classes of systems similar

to (2.1) have been considered with a view to observer design in the free noise case. As in

[23, 24], the underlying formulation used the transition matrix Φu,x̂(t, s) of the following

state affine system ξ̇u,x̂(t) = A(u, x̂)ξu,x̂(t) where ξu,x̂ ∈ IRn is the system state, u and

x̂ are the inputs of the system and they respectively correspond to the input of system

(2.1) and to the state of the dynamical system (2.36). Recall that the matrix Φu,x̂(t, s) is

defined as follows


d
dt
(Φu,x̂(t, s)) = A(u(t), x̂(t))Φu,x̂(t, s),

Φu,x̂(s, s) = In.
(2.42)

The persistent excitation condition was formulated as follows in [59, 60]

• ∃θ0 > 0; ∃ρ0 > 0; ∃T ⋆ > 0;∀θ ≥ θ0; ∀t ≥ T ⋆

θ
, one has

∫ t

t−T⋆

θ

ΦT
u,x̂(s, t)C

TCΦu,x̂(s, t)ds ≥
ρ0

θα(θ)
∆2

θ, (2.43)

where the function α(θ) satisfies (3.66) and ∆θ is given by (2.8).

It has been shown in [59, 60] that Assumption A4 is satisfied under the persistent exci-
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tation condition (3.88)-(2.43) and one has

θ⋆ = θ0, t
⋆ =

T ⋆

θ
and ρ⋆ = e−T ⋆

ρ0.

Before stating the theorem where the main properties of observer (2.36) are summarized,

one shall compare the structure of this observer with that of the SHGO (2.12) in order to

put forward the rational behind the proposed design. Let us first focus on the observer

sub-state η =


η(1)

...

η(q)

. The first component η(1) is a filtered version of the output obser-

vation error x̂(1) − y with a filter of order 1 and the static gain of which does not depend

on θ. For i ≥ 2, the component η(i) is also a filtered version of η(i−1) with a filter of order 1

and the static gain of which is proportional to θ. The component η(i) is therefore a filtered

version of x̂(1) − y with a filter of order i and the static gain of which is proportional to

θi−1. Now, the ODE associated to the state x̂i in the FHGO (2.36) is obtained from that

given by the SHGO (2.12) by replacing the corrective term θiK(i)(x̂1 − y) by its filtered

version, namely θK(i)ηi. Two feature are worth to be mentioned. The first one deals

with the fact that the power of the design parameter θ does not exceed 2 in the FHGO.

The second feature deals with the fact the substitution of the output observation error

by an appropriate filtered version in the state estimate equations will definitely improve

the behavior of the FHGO with respect to the output measurements noise.

Now, the main properties of the proposed observer (2.36) are summarized in the following

theorem.

Theorem 2.3.1 Consider system (2.1) subject to assumptions A1 to A3. Then, for

every bounded input satisfying A4, there exist δ⋆, θ⋆, such that for all θ ≥ θ⋆ and for all

δ > max(δ⋆, θχ), one has for all t ≥ t⋆,

∥x̃(t)∥ ≤ βfθ
q−1
√
α(θ)e−ν θ

2
µ(θ)(t−t⋆)

(
(1 +

√
n)∥x̃(t⋆)∥+ ∥η(t⋆)∥

)
+2

βf
νµ(θ)

(√
α(θ)

θ2
δε +

√
α(θ)δθq−1δw

)
. (2.44)

where x̃ = x̂− x with x̂ being any trajectory of system (2.36), δw and δε are the ultimate

bounds of the uncertainties given by Assumption A3, βf and ν are positive constants

independent of θ and δ; the positive reals t⋆, ρ⋆, χ and the function α are given by

Assumption A4and finally µ(θ) > 0 is such that lim
θ→∞

µ(θ) = 1.

Proof of Theorem 2.3.1. Set x̃ = x̂ − x, x̄ = θq−1∆θx̃ and η̄ = θq−1Dθη where ∆θ is

the diagonal matrix given by (2.8) and Dθ is the following qn1 × qn1 diagonal matrix
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Dθ = diag(In1 ,
1

θ
In1 , . . . ,

1

θq−1
In1). (2.45)

Notice that one can easily check the following equalities

∆θF (u, x̂)∆
−1
θ = θF (u, x̂); ∆θK(t) = K(t)Dθ; DθC

T
qn1
C = CT

qn1
C∆θ. (2.46)

From (2.1) and (2.36), one has

˙̃x = F (u, x̂)x̃+ F̃ (u, x̂, x)x+ φ̃(u, x̂, x)− θK(t)η(t)−Bε(t). (2.47)

Now, using (2.46), one gets

˙̄x = θF (u, x̂)x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θq∆θK(t)η(t)− θq−1∆θBε(t)

= θF (u, x̂)x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqK(t)Dθη(t)−Bε(t)

= θF (u, x̂)x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θK(t)η̄(t)−Bε(t). (2.48)

Similarly, from (2.1) and (2.36) and using (2.46), one gets

˙̄η = −θδ
(
(Iqn1 − AT )η̄ + θq−1DθC

T
qn1
C(x̃− w(t))

)
= −θδ

(
(Iqn1 − AT )η̄ + θq−1CT

qn1
C∆θ(x̃− w(t))

)
= −θδ

(
(Iqn1 − AT )η̄ + CT

qn1
Cx̄+ θq−1CT

qn1
Cw(t)

)
. (2.49)

Adding and subtracting the term θP (t)CTCx̄ to the right side of equation (2.48), one

gets

˙̄x = θ
(
F (u, x̂)− P (t)CTC

)
x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
−Bε(t)− θ

(
K(t)η̄ − P (t)CTCx̄

)
. (2.50)

Now, since K(t) = diag(P (t)CT ), one has K(t)U = P (t)CTC where

U
∆
=


In1 0n1,n2 . . . 0n1,nq

...
...

...
...

In1 0n1,n2 . . . 0n1,nq

 ∈ IRqn1×n. (2.51)
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Hence, equation (2.50) can be rewritten as follows

˙̄x = θ
(
F (u, x̂)− P (t)CTC

)
x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
−Bε(t)− θK(t)z̄, (2.52)

where

z̄ = η̄ − Ux̄. (2.53)

Let now derive the time derivative of z̄. Indeed, using (2.48), one gets

˙̄z = ˙̄η − U ˙̄x

= −θδ
(
(Iqn1 − AT )η̄ − CT

qn1
Cx̄+ θq−1CT

qn1
Cw(t)

)
− θUF (u, x̂)x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
+ θUK(t)η̄ + UBε(t)

= θ
(
−δ(Iqn1 − AT ) + UK(t)

)
η̄ + θ

(
δCT

qn1
C − U F (u, x̂)

)
x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t)

= θ
(
−δ(Iqn1 − AT ) + UK(t)

)
(z̄ + Ux̄) + θ

(
δCT

qn1
C − U F (u, x̂)

)
x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t)

= θ
(
−δ(Iqn1 − AT ) + UK(t)

)
z̄

+θ
(
δCT

qn1
C − U F (u, x̂)− δ(Iqn1 − AT )U + UK(t)U

)
x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t).

Now, one can check that (Iqn1 −AT )U = CT
qn1
C and the above last equation can therefore

be written as follows

˙̄z = θδ

(
−(Iqn1 − AT ) +

1

δ
UK(t)

)
z̄

+θ (−UF (u, x̂) + UK(t)U) x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t). (2.54)

According to Assumption A4, the matrix P (t) governed by (2.39) is SPD. Let S(t) =

P−1(t); one can show that S(t) is governed by the following Lyapunov ODE{
Ṡ(t) = −θ

(
S(t) + F T (u, x̂)S(t) + S(t)F (u, x̂)− CTC

)
,

S(0) = ST (0) > 0.
(2.55)

Again, according to Assumption A4, on has

∀t ≥ t⋆, λm(S(t)) ≥
ρ⋆

α(θ)
, (2.56)
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where α(θ) satisfies (3.66).

Now, proceeding as in [58, 59], one can show that the matrix S(t) is bounded and the

underlying upper bound (or equivalently λ̄M(S(t))) is independent of θ. Let V1(x̄, t) =

x̄TS(t)x̄; proceeding as in [58, 59], one can show that for θ ≥ 1,

V̇1(x̄, t) ≤ −θµ(θ)V1(x̄, t) + 2
√
λ̄M(S(t))

√
V1(x̄, t)∥ε(t)∥ − 2θx̄TS(t)K(t)z̄(t)

≤ −θµ(θ)V1(x̄, t) + 2
√
λ̄M(S(t))

√
V1(x̄, t)∥ε(t)∥

+2θ
√
λ̄M(S(t))

√
V1(x̄, t)∥K(t)∥∥z̄(t)∥,

(2.57)

where

µ(θ) = 1− γ

√
α(θ)

θ2
with γ = 2

√
n(LFxM + Lφ)

√
λ̄M(S(t))

ρ⋆
, (2.58)

where xM is given by Assumption A1, LF and Lφ by Assumption A2 and finally ρ⋆ and

α(θ) by Assumption A4.

Similarly, set V2(z̄) = z̄T z̄ = ∥z̄∥2. Then, one has

V̇2 = −θδz̄T (2Iqn1 − (AT + A))z̄ + 2θz̄TUK(t)z̄ + 2θz̄T (−UF (u, x̂) + UK(t)U) x̄

−2θq−1z̄TU∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− 2θqδz̄TCT

qn1
Cw(t)

≤ −θδκ∥z̄∥2 + 2θ∥U∥∥K1(t)∥∥z̄∥2 + 2θ∥U∥(∥F1(u, x̂)∥+ ∥K1(t)∥)∥x̄∥∥z̄∥

−2θq−1z̄TU∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− 2θqδz̄TCT

qn1
Cw(t),

where κ is the smallest eigenvalue of the SPD matrix 2Iqn1 − (A+ AT ).

According to Assumption A2, one can show that

2θq−1z̄TU∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
≤ 2∥z̄∥∥U∥

√
n(LFxM + Lφ)∥x̄∥

≤ 2∥z̄∥∥U∥
√
n(LFxM + Lφ)

√
V1(x̄, t)√
λm(S(t))

≤ 2n(LFxM + Lφ)

√
α(θ)

ρ⋆
∥z̄∥
√
V1(x̄, t)

= 2n(LFxM + Lφ)

√
α(θ)

ρ⋆

√
V1(x̄, t)

√
V2(z̄).

Similarly, one has

2θ∥U∥(∥F1(u, x̂)∥+ ∥K1(t)∥)∥x̄∥∥z̄∥ ≤ 2θ
√
n(FM +KM )

√
V1(x̄, t)√
λm(S(t))

√
V2(z̄)

≤ 2θ
√
n(FM +KM )

√
α(θ)

ρ⋆

√
V1(x̄, t)

√
V2(z̄),
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where KM = sup
t≥0

∥K1(t)∥.

Hence,

V̇2 ≤ −θδκ
(
1− 2

KM

√
n

κδ

)
V2 + 2θqδ

√
V2∥w(t)∥

+2
√
n
{√

n(LFxM + Lφ) + θ(FM +KM)
}√α(θ)

ρ⋆

√
V1(x̄, t)

√
V2(z̄). (2.59)

Now, choose δ such that
(
1− 2KM

√
n

κδ

)
≥ 1

2
, i.e. δ ≥ 2

√
nKM

κ
and choose θ such that

θ ≥ 1. Then, inequality (2.59) leads to

V̇2 ≤ −θδκ
2
V2 + c2θ

√
α(θ)

√
V1(x̄, t)

√
V2(z̄) + 2θqδ

√
V2∥w(t)∥,

where c2 = 2
√

n
ρ⋆
{
√
n(LFxM + Lφ) + (FM +KM)} is a constant independent of θ and δ.

Using inequality (2.57), one gets

V̇1 ≤ −θµ(θ)V1 + c1θ
√
V1
√
V2 + 2

√
λ̄M(S)

√
V1∥ε(t)∥, (2.60)

where c1 = 2KM

√
λ̄M(S(t)) is a positive constant independent of θ and δ.

Set

V ⋆
1 = θµ(θ)V1, V

⋆
2 =

θδκ

2
V2 and let V ⋆ = V ⋆

1 + V ⋆
2 . (2.61)

Notice that one has

V ⋆
1 ≤ V ⋆ and V ⋆

2 ≤ V ⋆. (2.62)

Hence,

V̇1 ≤ −V ⋆
1 + c1θ

√
V ⋆
1

θµ(θ)

√
V ⋆
2

θδκ
2

+ 2
√
λ̄M(S)

√
V1∥ε(t)∥

= −V ⋆
1 +

c1√
δ

√
2

κµ(θ)

√
V ⋆
1

√
V ⋆
2 + 2

√
λ̄M(S)

√
V1∥ε(t)∥.

Using (2.62), one gets

V̇1 ≤ −V ⋆
1 +

c1√
δ

√
2

κµ(θ)
V ⋆ + 2

√
λ̄M(S)

√
V1∥ε(t)∥. (2.63)
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Similarly, one has

V̇2 ≤ −V ⋆
2 + c2θ

√
α(θ)

√
V ⋆
1

θµ(θ)

√
V ⋆
2

θδκ
2

+ 2θqδ
√
V2∥w(t)∥

= −V ⋆
2 + c2

√
α(θ)

δ

√
2

κµ(θ)

√
V ⋆
1

√
V ⋆
2 + 2θqδ

√
V2∥w(t)∥

≤ −V ⋆
2 + c2

√
α(θ)

δ

√
2

κµ(θ)
V ⋆ + 2θqδ

√
V2∥w(t)∥. (2.64)

Now, choose δ such that δ ≥ θχ, i.e. 1
δ
≤ 1

θχ
where χ is given by (3.66). Then, inequality

(2.64) becomes

V̇2 ≤ −V ⋆
2 + c2

√
α(θ)

θ2χ

√
2

κµ(θ)
V ⋆ + 2θqδ

√
V2∥w(t)∥.

Now, let V (x̄, z̄, t) = V1(x̄, t) + V2(z̄) be the candidate Lyapunov function. Using (2.63)

and (2.65) and from the facts that
√
V 1 ≤ V and

√
V2 ≤ V , one gets

V̇ ≤ −V ⋆ +

√
2

κµ(θ)

(
c1
δ
+ c2

√
α(θ)

θ2χ

)
V ⋆

+2

(√
λ̄M(S)∥ε(t)∥+ δθq∥w(t)∥

)√
V . (2.65)

Now, for θ and δ sufficiently high and according to (3.66), one has

lim
ρ→∞

α(θ)

θ2χ
= lim

δ→∞

1

δ
= 0, (2.66)

and as a result, there exists 0 < ν < 1 such that

1−

√
2

κµ(θ)

(
c1
δ
+ c2

√
α(θ)

θ2χ

)
> ν. (2.67)

Similarly, for such values of θ and δ, one has θµ(θ) ≤ θδκ

2
which implies that

θµ(θ)V ≤ V ⋆ ≤ θδκ

2
V. (2.68)

Hence, combining (2.65), (2.67) and (2.68), one gets
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V̇ ≤ −νθµ(θ)V + 2

(√
λ̄M(S)∥ε(t)∥+ θqδ∥w(t)∥

)√
V . (2.69)

Using the comparison lemma, one gets for t ≥ t⋆
∆
= T ⋆

θ
,

√
V (x̄(t), z̄(t), t) ≤ e−ν θ

2
µ(θ)(t−t⋆)

√
V (x̄(t⋆), z̄(t⋆), t⋆) +

2

νθµ(θ)

(√
λ̄M(S)δε + θqδδw

)
.

Coming back to x̄ and from the fact that V1 ≤ V , one gets

∥x̄(t)∥ ≤

√
λM

λm(S(t))
e−ν θ

2
µ(θ)(t−t⋆)∥ξ̄(t⋆)∥+

√
λM

λm(S(t))

2

νθµ(θ)
(δε + θqδδw) ,

where ξ̄(t) =

(
x̄(t)

z̄(t)

)
and λM = max(λ̄M(S), 1).

Now, using (2.56), the last inequality becomes

∥x̄(t)∥ ≤

√
λM
ρ⋆

√
α(θ)e−ν θ

2
µ(θ)(t−t⋆)∥ξ̄(t⋆)∥+

√
λMα(θ)

ρ⋆
2

νθµ(θ)
(δε + θqδδw)

≤ βf
√
α(θ)e−ν θ

2
µ(θ)(t−t⋆)∥ξ̄(t⋆)∥

+2
βf

νµ(θ)

(√
α(θ)

θ2
δε +

√
α(θ)θq−1δδw

)
, (2.70)

where

βf =

√
λM
ρ⋆
. (2.71)

Now, set ξ =

(
x̃(t)

z̃(t)

)
where z̃ is such that z̄ = θq−1∆−1

θ z̃(t). It is easy to check that

∥ξ̃(t)∥ ≤ ∥ξ̄(t)∥ ≤ θq−1∥ξ̃(t)∥, ∀t ≥ t⋆ and ∀θ ≥ 1. (2.72)

Besides, one can show that z̃ = η − Ux̃ and therefore, one has for all t ≥ t⋆

∥ξ̃(t)∥ ≤ ∥x̃(t) + (∥e(t)∥+ ∥U∥∥x̃(t)∥) ≤ (1 +
√
n)∥x̃(t)∥+ ∥η(t)∥. (2.73)

Using (2.72) and (2.73), inequality (2.70) leads to (2.44). The proof of Theorem 2.3.1 is

ended. �.

27



Remark 2.3.1 Notice that in the uncertainties free case and in the absence of mea-

surement noise, the observation error exponentially converges to zero. Moreover, in the

presence of uncertainties and in the free noise case, the asymptotic estimation error can

be made as small as desired by choosing θ high enough.

2.4 The FHGO redesigned version with sampled out-

puts

The observer designed above assumes that the outputs are available in a continuous

manner. This is rarely the case in practice since these outputs are generally available only

at sampling time instants 0 ≤ t0 < . . . < tk < tk+1 < . . . with (time-varying) sampling

intervals τk = tk+1 − tk and lim
k→∞

tk = +∞. In the sequel, one shall propose a redesigned

version of the above observer that accounts for the output sampling process. For this

sake, one naturally assumes that the time intervals τk’s are bounded away from zero by

τm and are upperly bounded by the upper bound of the sampling partition diameter τM ,

i.e.

0 < τm ≤ τk = tk+1 − tk ≤ τM , ∀k ≥ 0. (2.74)

The approach which shall be adopted to redesign the continuous time output FHGO is

similar to that proposed in [57]. One needs the following additional hypothesis on the

boundedness of the noise samples w(tk).

A5. For all tk, the samples w(tk) are bounded by δw where δw is the essential bound given

by Assumption A3.

The redesigned observer takes the following form


˙̂x(t) = F (u, x̂)x̂(t) + φ(u(t), x̂(t))− θK(t)η(t),

η̇(t) = δθ
(
−η(t) + θATη(t) + CT

qn1
(Cx̂(tk)− y(tk) + α(t))

)
,

α̇(t) = −θCP (t)CTCqn1η(t) = −δθK(1)(t)η(1)(t), t ∈ [tk, tk+1[,

η(0) = 0 and α(tk) = 0, k ≥ 0.

(2.75)

Notice that, the above continuous-discrete time observer involves a new state α governed

by an ODE which is re-initialized at zero at each sampling instant tk.
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The main properties of the proposed observer (2.75) are summarized in the following

theorem.

Theorem 2.4.1 Consider system (2.1) subject to assumptions A1, A2, A3 and A5.

Then, for every bounded input satisfying A4, there exist δ⋆, θ⋆, such that for all θ ≥ θ⋆

and for all δ > max(δ⋆, θχ), there exist positive constants ϱθ > 0, ηθ > 0 and Nθ such that

if the upper bound of the sampling partition diameter τM is such that τM < ϱθ, then for

every u ∈ U and every x̂(0) ∈ X, one has for all t ≥ t⋆,

∥x̃(t)∥ ≤ βf
√
α(θ)θq−1e−ζθ(t−t⋆)

(
(1 +

√
n)∥x̃(t⋆)∥+ ∥η(t⋆∥

)
+βfNθ(τm, τM)

(√
α(θ)

θ2
δε +

√
α(θ)δθq−1δw

)
, (2.76)

where x̃ = x̂ − x with x̂ being any trajectory of system (2.75), δw, δε, βf , ν, t
⋆, ρ⋆, χ,

α(θ)and µ(θ) > 0 are as given in Theorem 2.3.1; the expressions ϱθ, ζθ and Nθ are

ϱθ =
βf
√
α(θ)(θFM + Lφ)

2νθµ(θ)
, ζθ = aθ(1−

τM
ϱθ

)e−aθτm ,

aθ =
νθµ(θ)

2
, Nθ(τm, τM) = θτM

2− e−ζθτm

1− e−ζθτm
, (2.77)

where FM = sup
x∈X,u∈U

F (u, x) and Lφ is the Lipschitz constant of φ given by Assumption

A2.

Remark 2.4.1 Notice that, for a fixed value of τM , the tuning parameter θ cannot be

taken arbitrarily and has to satisfy

τM <
βf
√
α(θ)(θFM + Lφ)

2νθµ(θ)
. (2.78)

Proof of Theorem 2.4.1 Set x̃ = x̂ − x, x̄ = θq−1∆θx̃ and η̄ = θq−1Dθη. Proceeding

as in the continuous output case, one gets (compare the equations below with (2.52) and

(2.49), respectively),



˙̄x(t) = θ
(
F (u, x̂)− P (t)CTC

)
x̄−Bε(t)− θK(t)z̄

+θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
˙̄η(t) = −θδ

(
(Iqn1 − AT )η̄(t) + CT

qn1
Cx̄(t) + θq−1CT

qn1
Cw(tk)

)
−θδCT

qn1
γ̄(t),

where z̄(t) is defined as in (2.53) and

γ̄ = C(x̄(t)− x̄(tk))− θq−1α(t) (2.79)
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The dynamics of z̄ is given by (compare with (2.54)

˙̄z = θδ

(
−(Iqn1 − AT ) +

1

δ
UK(t)

)
z̄

+θ (−UF (u, x̂) + UK(t)U) x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t)− θδCT

qn1
γ̄(t). (2.80)

Notice that the first equation in (2.79) is similar to (2.52) while (2.80) differs from (2.54)

by the presence of the term involving γ̄. Hence, the forthcoming development will be

very similar to those carried in the continuous out case. The sole difference consist in the

accounting for the additional term γ̄. Hence, let us derive a bound of γ̄. One has

˙̄γ = θF1(u, x̂
(1))x̄(2) + θq−1φ(1)(u, x(1))− θK(1)(t)η̄(1)(t)− θq−1α̇(t)

= θF1(u, x̂
(1))x̄(2) + θq−1φ(1)(u, x(1))− θ(q−1)(α̇(t) + θK(1)(t)η(1)(t))

= θF1(u, x̂
(1))x̄(2) + θq−1φ(1)(u, x(1)). (2.81)

Notice that the last inequality comes from the fact that α(t) is governed by the ODE

given by (2.79). Now, since α(tk) = 0, one can easily check that γ̄(tk) = 0 and integrating

the last equation from t⋆ ≤ t to t gives

γ̄(t) =

∫ t

t⋆

(
θF1(u, x̂

(1))x̄(2) + θq−1φ(1)(u, x(1))
)
ds,

and hence

∥γ̄(t)∥ ≤ (θFM + Lφ)

∫ t

t⋆
∥x̄(s)∥ds,

where FM = sup
x∈X,u∈U

F (u, x) and Lφ is the Lipschitz constant of φ given by Assumption

A2.

Now, as in the continuous output case, let V1(x̄, t) = x̄TS(t)x̄, V2(z̄) = ∥z̄∥2 and V =

V1+V2. Again, proceeding as in the continuous output case, one can show that (compare

with (2.69)),

V̇ ≤ −νθµ(θ)V + 2
√
λ̄M(S)

√
V2 (θFM + Lφ)

∫ t

t⋆
∥x̄(s)∥ds

+2

(√
λ̄M(S)∥ε(t)∥+ θqδ∥w(t)∥

)√
V .
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Using (2.56), one gets

V̇ ≤ −νθµ(θ)V + 2βf
√
α(θ) (θFM + Lφ)

√
V

∫ t

t⋆

√
V (s)ds

+2λM (∥ε(t)∥+ θqδ∥w(t)∥)
√
V ,

where λM = max(λ̄M(S), 1) and βf is as in (2.71).

The last inequality leads to

d

dt

√
V ≤ −1

2
νθµ(θ)

√
V + βf

√
α(θ) (θFM + Lφ)

∫ t

t⋆

√
V (s)ds

+λM

(√
λ̄M(S)∥ε(t)∥+ θqδ∥w(t)∥

)
.

Now, let aθ =
1
2
νθµ(θ), bθ = βf

√
α(θ) (θFM + Lφ) and pθ(t) =

√
λM (∥ε(t)∥+ θqδ∥w(t)∥)

and assume that the upper diameter of the sampling partition τM satisfies the following

condition

τM < ϱθ
∆
=
aθ
bθ

=
βf
√
α(θ)(θFM + Lφ)

2νθµ(θ)
, (2.82)

then, according to lemma 2.1 in [57], one has

√
V (x̄(t), z̄(t), t) ≤ e−ζθ(t−t⋆)

√
V (x̄(t⋆), z̄(t⋆), t⋆) + cθτM

2− e−ζθτm

1− e−ζθτm
,

where

ess sup
t≥0

pθ(t) ≤ cθ =
√
λ̄M (δε + δθqδw) , ζθ(τM) = aθ(1−

τM
ϱθ

)e−aθτM . (2.83)

Coming back to x̄ and proceeding as in the continuous output case leads to (2.76). The

proof of Theorem 2.4.1 is ended.�

The following remark provides insights about the observer dynamics and the sampling

process specification according to the above fundamental result.

Remark 2.4.2 The bound of the estimation error related to the continuous-discrete time

observer, i.e. the right side of inequation (2.76) is very similar to that derived in the

continuous output case, i.e. the right side of inequality (2.44), with the following two

differences:
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(i) The rate of the exponential decay is equal to aθ = νθµ(θ)/2 in the continuous output

case while it is equal to ζθ when the output is sampled.

(ii) The term 2/(νµ(θ)) involved in the expression of the ultimate bound in the contin-

uous output case is replaced by Nθ(τm, τM) when the output is sampled.

Proceeding as in [57], one can show that in the case of a constant sampling period, i.e.

τM = τm = Ts, ζθ(Ts) is a decreasing function of Ts and lim
Ts→0

ζθ(Ts) = aθ. One can also

show that Nθ(Ts) is a non decreasing function of Ts and that lim
Ts→0

Nθ(Ts) = 2/(νµ(θ)).

Hence, the results obtained in the sampled output case are in accordance with those derived

in the continuous output one: the decreasing to zero of the observation error is inversely

proportional to the magnitude of the sampling period while the value of the ultimate bound

is proportional to this magnitude. More specifically, when the sampling period tends to

zero, the expressions for the decay rate and ultimate bound become identical to those

derived in the continuous output case.

2.5 Academic example

One shall highlight the performance and main properties of the FHGO (3.103) through

the following academic example
ẋ1(t) = f1(t)x2(t)− 0.1x1(t),

ẋ2(t) = f2(t)− 0.1x2(t) + tanh(x1(t)x2(t)),

ẋ3(t) = −0.1x3(t) + tanh(x1(t)x2(t)) + 5 sin(0.5πt) + ε(t)

y(t) = x1(t) + v(t)

(2.84)

where f1, f2 are expressed as f1(t) = sin(0.5t), f2 = sin(2.7t). The expression of the un-

known disturbance used in simulation is ε(t) = 0.1sin(0.1t) and the noise signal affecting

the output is chosen as the sum of two high frequency signals, namely

v(t) = 0.25 sin(387t) + 0.5 sin(987t). (2.85)

Two scenarios depending on the availability of the output measurements shall be consid-

ered. In the first one, the output measurements are assumed to be available continuously.

In the second scenario, these measurements are assumed to be available at equally spaced

sampling instants. In each case, the obtained estimates are compared with those obtained

from a SHGO. These results are detailed hereafter.

2.5.1 Simulation results with continuous output measurements

An observer of the form (2.36) has been designed in order to estimate the state of the

system. The output measurements issued from simulation are corrupted by the noise
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signal given by (2.85). The corresponding time evolution is given in Figure(2.1). The
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Figure 2.1: Noisy time-continuous output measurements

estimates of the states xi, i = 1, . . . , 3 are given in figure 2.2 where each of these estimates

is compared to its true time evolution issued from the simulation of system (3.135). Recall

that the expression of the disturbance ε(t) is unknown by the observer. The values of θ

and δ have been set to 5 and 3, respectively. The initial state values of the system are set

xi = 1, . . . , 3 and those of the observer to η = x̂ = 0.

The obtained results are quite smooth and accurate enough. In order to highlight the

improvement in term of sensitivity to noise of the observer, a SHGO of the form (3.20)

has been designed to derive the state estimate. The obtained results are given in fig 2.3

where as for the FHGO, each estimate is compared to its true value. It is clear that the

obtained estimates are relatively noisy, in particular those related to x2 and x3 and this

clearly confirms the significant improvement obtained with the FHGO.

2.5.2 Simulation results with sampled output measurements

Two sets of simulation results will be presented. In each case the output measurements

are assumed to be available at sampling equally spaced time instants with a sampling

period equal to Te. In the first set of simulation results, the sampling period Te has been

set to a relatively small value, namely Te = 0.02. The value of the tuning parameter θ was

set to 2 and that of δ to 3. The estimates provided by the FHGO are compared to their

true time evolutions in Figure 2.4. Those provided by the SHGO are reported in Figure

2.5. The obtained estimates, for the FHGO as well as for the SHGO, clearly shows that

for small sampling periods and small amplitude for the output delay, the behaviours of

the observers and in particular their sensitivity to the noise measurements are similar to

the case where the output measurements are available continuously in time. In order to

put forward the fact, that these properties still be inherited by the observers even for
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Figure 2.2: Estimates of xi, i = 1, 2, 3 provided by the FHGO
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Figure 2.3: Estimates of xi, i = 1, 2, 3 provided by the SHGO
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Figure 2.4: Estimates of xi, i = 1, 2, 3 provided by the FHGO with Te = 0.02, θ = 2, δ = 3
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Figure 2.5: Estimates of xi, i = 1, 2, 3 provided by the SHGO with Te = 0.02, θ = 2
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more high values of Te, another simulation experiment was carried out with Te = 0.1.

The value of θ was set to 2. The obtained estimates are given in Figure 2.6 for the FHGO

and in Figure 2.7 for the SHGO.

0 5 10 15 20

TIME (h)

-8

-6

-4

-2

0

2

4

6

x
1

SIMULATED

ESTIMATED

0 5 10 15 20

TIME (h)

-4

-2

0

2

4

6

8

x
2

ESTIMATED

SIMULATED

0 5 10 15 20

TIME (h)

-4

-2

0

2

4

6

8

10

x
3

ESTIMATED

SIMULATED

Figure 2.6: Estimates of xi, i = 1, 2, 3 provided by the FHGO with Te = 0.2, θ = 2, δ = 3

Again, the obtained results clearly confirm the the significance of the improvement ob-
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tained with respect the sensitivity to noise through the redesigned version given by the

FHGO.
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Figure 2.7: Estimates of xi, i = 1, 2, 3 provided by the SHGO with Te = 0.2, θ = 2
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2.6 Application to a phytoplanktonic growth model

This section is devoted to the use of the proposed FHGO in a realistic simulation frame-

work involving a phytoplanktonic growth model that has been validated in [63] through

two high gain observers one of which is similar to (2.12) that uses continuous-time output

measurements.

2.6.1 The phytoplanktonic growth model

One considers a bioreactor where a biomass (phytoplanktonic cells) with a concentration

N is growing by consuming a substrate with a concentration S. The bioreactor is function-

ing under a continuous mode with a dilution rate D and an input substrate concentration

Sin. A mathematical model which accounts for the biomass and substrate concentrations

as well as the cell quota of assimilated nutrient, Q, has been considered in [63] and it can

be written as follows
Ṅ(t) = µm

(
1− KQ

Q(t)

)
N(t)−D(t)N(t)

Q̇(t) = ρm
S(t)

Kρ+S(t)
− µm(Q(t)−KQ)

Ṡ(t) = −ρm S(t)N(t)
Kρ+S(t)

+D(t)(Sin − S(t))

(2.86)

where µm, KQ, ρm, Kρ are constant kinetic parameters.

The biomass concentration is measured at equally spaced sampling instants and the ob-

servation objective is to provide continuous estimates of the biomass and substrate con-

centrations N and S and in particular the cell quota Q which can only be estimated with

manual sampling and high cost measurements.

As in [63] and for writing convenience, one first adimentionalizes the state variables by

considering the following changes

x1 =
ρmN

Sin

, x2 =
Q

KQ

, x3 =
S

Sin

, a1 =
Kρ

Sin

, a2 = µm, a3 =
ρm
KQ

. (2.87)

The resulting model which shall be used for the observer design specifies as follows

ẋ1 = −a2x1
1

x2
+ (a2 − u)x1

ẋ2 = −a1a3
1

a1 + x3
+ a3 − a2(x2 − 1)

ẋ3 = − x1x3
a1 + x3

+ u(1− x3)

y(tk) = x1(tk)

(2.88)

where u
∆
= D is the input of the system.
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Now, one shall consider the following change of coordinates which puts system (2.88)

under the normal form (2.1), Φ : IR3 → IR3, x =


x1

x2

x3

 7→ z =


z1

z2

z3

 with

z1 = x1, z2 =
1

x2
, z3 =

1

a1 + x3
. (2.89)

Indeed, one can show that the above change of coordinates puts system (2.88) under form

(2.1) with

x(k) = zk, k = 1, . . . , 3, i.e. nk = 1, . . . , 3,

F1(u, z) = −a2z1, F2(u, z) = a1a3z
2
2 , φ(u, z) =


(a2 − u)z1

a2z2 − (a2 + a3)z
2
2

−a1z1z33 + z23(z1 − u(1 + a1)) + uz3

 .

Note that, the original coordinates can be deduced from the new ones as follows

x1 = z1, x2 =
1

z2
, x3 =

1

z3
− a1. (2.90)

A discrete-continuous time FHGO observer of the form (2.75) has been designed for the

resulting system in the new coordinates z to estimate the relevant state variables of the

process. Notice that the observer equations could be derived in the original coordinates

by considering the inverse of the transformation jacobian. Nevertheless, since the original

dynamical system has already been expressed in the new coordinates z and the original

variables can be easily deduced from the new ones through equations (2.90), one has

simulated the underlying discrete-continuous time observer in the new coordinates z.

2.6.2 Estimation results

Two sets of simulation results are given. In each one, the measurements of the biomass

are assumed to be available at equally spaced sampling instants with a sampling period

equal to Ts which has been set to 0.02 Day in the first experiment and to 0.0625 Day

(i.e. 1.5 h as in [63]) in the second one. Moreover and before being used by the observer,

the output z1(tk) has been corrupted by a noise signal N (tk) to generate a noisy output

y(tk) = z1(tk)(1 +N (tk)). The noise signal N (tk) has been generated by considering the

sum of 26 high frequency sinusoidal signals where the underlying frequencies are equally

spaced between 0.95/(2Ts) and 1/(2Ts) (see Fig. 2.8). In each set of simulation results,

the estimates provided by the continuous-discrete version of the FHGO are compared

with their counterpart estimates provided by a continuous-discrete version of the SHGO
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(see [58] for more details). The values of the model parameters used in simulation are [63]

a1 = 0.02 g.g−1, a2 = 4.18 Day−1, a3 = 5.32 Day−1.

The dilution rateD = u was chosen as a sinusoidal signal, i.e. u = 1.71

(
1 + 0.6 sin(

2π

T0
t)

)
with T0 = 1/3 Day.
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Figure 2.8: Noisy measurements of the output, with Ts = 0.0625 Day

Figure 2.9 shows estimates provided by the FHGO with Ts = 0.02 Day together with their

true values issued from the simulation model. The design parameters θ and δ have been

set to 5 and 7, respectively. Figure 2.10 shows the estimates provided by the SHGO when

the design parameter θ has been set to 5 as for the SHGO. The fundamental results have

been corroborated, namely the smooth behavior of the estimates provided by the FHGO

is mainly du to its filtering capability. Figures 2.11 and 2.12 show the performance of

the FHGO and SHGO, respectively during the second experiment with Ts = 0.0625 Day.

The underlying values of the design parameters are θ = 3 and δ = 5 for the FHGO and

θ = 3 for the SHGO. Again, the FHGO outperforms the SHGO from the noise sensitivity

point of view.
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Figure 2.9: State estimation with FHGO, with Ts = 0.02 Day (θ = 5, δ = 7)
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Figure 2.10: State estimation with SHGO, with Ts = 0.02 Day (θ = 5)
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Figure 2.11: State estimation with FHGO, with Ts = 0.0625 Day (θ = 3, δ = 5)
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Figure 2.12: State estimation with SHGO, with Ts = 0.0625 Day (θ = 3)
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2.7 Conclusion

A FHGO has been proposed for a class of non uniformly observable systems. This FHGO

has been first designed assuming that the output measurements are continuously avail-

able and subsequently appropriately redesigned to account for the sampling process. A

particular attention has been paid to the observer convergence analysis while emphasiz-

ing the admissible sampling process. The feasibility and performance of the proposed

FHGO have been highlighted through an illustrative academic example. The estimates

obtained by the filtered observer have been compared to their counterparts provided by a

continuous-discrete time version of a SHGO which were rather noisy, in particular when

the sampling periods are relatively high.
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Chapter 3

Filtered High Gain Observer design

with continuous, sampled and

delayed output measurements

Though the redesigned observer, referred to FHGO, proposed in the previous chapter

allowed a significant improvement of the sensitivity to noise of the standard high gain

observer, its calibration requires the tuning of an additional parameter δ. Moreover, the

proposed design does not account for the case where the outputs are available with a delay.

In this chapter, one shall propose a general redesign of the SHGO in order to derive a

filtered version that improves its sensitivity with respect to high frequency signal. The

main novelty of the proposed design with respect to the one proposed in the previous

chapter lies in the following facts

1. The proposed design does not need the introduction of any additional design param-

eter, i.e. the tuning of the resulting observer shall be achieved through the choice

of the parameter θ as for the SHGO.

2. The proposed design accounts for all possible scenarios related to the availability

of the output measurements: continuously in time or under the form of samples.

Moreover, ion both cases, these measurements may be available with an output

delay.

For clarity purposes, the proposed redesign shall be detailed in a first step for a class

of UOS. Moreover, one shall first consider the case where the output measurements are

available in a continuous manner. Then, one shall show how the design of the proposed

filtered observer can be extended to the case where these output measurements are avail-

able under the form of samples and eventually with a delay. In a second step, a class
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of NUOS shall be considered and one shall extend the proposed design to this class of

systems.

One now defines some variables that will be used throughout this chapter. Indeed, one

defines the following.

A1 = 0, Ak =

(
0 Ik−1

0 0

)
∈ Rk×k for k ≥ 2, (3.1)

Bk =
(

0 . . . 0 1
)T

, Ck =
(

1 0 . . . 0
)
∈ IRk for k ≥ 1, (3.2)

Gk =
(
γ1 . . . γk

)T
, Āk

∆
= Ak −GkCk for k ≥ 1, (3.3)

∆k(θ) = diag(1, 1/θ, . . . , 1/θk−1) for k ≥ 1. (3.4)

The γi’s for k ≥ 1 and i = 1, . . . , k involved in the expression of the vectors Gk are posi-

tive reals and are chosen such that each matrix Āk is Hurwitz; the parameter θ involved

in the expression of ∆k(θ) is a real positive number.

On other aspects, let n ≥ 1 be a positive integer and let ξT =
(
ξ1 . . . ξn

)
∈ IRn; then

for any integer 1 ≤ k ≤ n, one defines ξ
k
∈ IRk as follows

ξT
k
=
(
ξ1 . . . ξk

)
∈ IRk, k = 1, . . . , n. (3.5)

Finally, one recalls an useful property: If Ak is a n× n Hurwitz matrix, then there exist

a k × k SPD matrix Pk and a positive real µk such that

PkAk +AT
k Pk ≤ −2µkIk. (3.6)

As stated above, the proposed redesign shall first focus of a class of UOS. Then, its

extension to a class of NUOS shll be detailed.

3.1 The problem formulation

One aims at providing a FHGO for a class of disturbed nonlinear systems described by

the following equations {
ẋ(t) = Anx(t) + φ(u(t), x(t)) +Bnε(t)

y(t) = Cnx(t) + v(t)
(3.7)

where x =
(
x1 . . . xn

)T
∈ IRn denotes the state of the system with xi ∈ IR for

i = 1, . . . , n; u(t) ∈ U ⊂ IR denotes the system input and y(t) ∈ IR denotes the actual

output of the system, the matrices An, Bn and Cn are defined as in (3.1) and (3.2) with
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k = n, v(t) is the output noise, the function ε : [0,+∞[ 7→ IR denotes the system uncer-

tainties and may depend on the input and uncertain parameters. It shall be treated as

an unknown function which explicitly depends on time t for t ≥ 0; finally, φ(u, x) ∈ IRn

denotes a nonlinear vector field and each of its n components has a triangular structure

with respect to x, i.e. φi(u, x) = φi(u, xi) for i = 1, . . . , n where xi is the sub-vector of x

as defined by (3.5).

The observer design will be performed under the following usual high gain observer design

assumptions.

A1. The state x(t) and the control u(t) are bounded, i.e. x(t) ∈ X and u(t) ∈ U where

X ⊂ IRn and U ⊂ IR are compact sets. More precisely, there exists a positive

constant ρM , such that ∀t ≥ 0, |xi(t)| ≤ ρM , i = 1, . . . , n.

A2. The functions φk(u, x) for k = 1, . . . , n are Lipschitz on X with respect to x uni-

formly in u, i.e. for k = 1, . . . , n, one has

∃Lk > 0; ∀u ∈ U ; ∀(x̂, x) ∈ X ×X, |φk(u, x̂k)− φk(u, xk)| ≤ Lk

k∑
i=1

|x̃i|, (3.8)

where x̃i = x̂i − xi.

A3. The unknown function ε is essentially bounded, i.e.

∃δε > 0 ; |ε|∞
∆
= ess sup

t≥0
|ε(t)| ≤ δε. (3.9)

A4. The output noise w is essentially bounded, i.e.

∃δv > 0; |v|∞
∆
= ess sup

t≥0
|v(t)| ≤ δv. (3.10)

Furthermore, let us consider the following saturation function

∀z ∈ IR, satr(z) = rsat (z/r) =

{
z if |z| ≤ r

r sign(z) if |z| > r
, (3.11)

where r > 0 is a positive real and sign(·) is the usual signum function. This allows to

saturate the system nonlinearities φk’s for k = 1, . . . , n as follows

φs
i (u, x1, . . . , xi) = φi(u, satR(x1), . . . , satR(xi)). (3.12)

with

R > ρM (3.13)
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where ρM is the positive real defined in Assumption A1. Two properties of the saturated

nonlinearities can be easily checked ([30]). The first property consists in the following

inequalities that hold for k = 1, . . . , n,

∀u ∈ U ; ∀(x̂, x) ∈ IRn × IRn, |φs
k (u, x̂k)− φs

k (u, xk) | ≤ Lk

k∑
i=1

|x̃i|, (3.14)

|φs
k (u, x̂k)− φs

k (u, xk) | ≤ 2Lk

k∑
i=1

R ≤ 2nLφR. (3.15)

where

Lφ = max
1≤k≤n

Lk. (3.16)

The second property concerns the following bounds for the norm of the error vector of

the saturated nonlinearities φ̃s(u, x̂, x)
∆
= φs (u, x̂)− φs (u, x)

∥φ̃s(u, x̂, x)∥ ≤ nLφ∥x̃∥, (3.17)

∥φ̃s(u, x̂, x)∥ ≤
√
n max

1≤k≤n
|φ̃s

k(u, x̂, x)| ≤ 2n
√
nLφR. (3.18)

These properties allow to postulate that the observer redesign can be handled for the

following class of systems.{
ẋ(t) = Anx(t) + φs(u(t), x(t)) +Bnε(t)

y(t) = Cnx(t) = x1(t) + v(t)
(3.19)

where φs(u, x) =
(
φs
1(u, x1) . . . φs

n(u, x)
)T

. Indeed, since system (3.7) coincides with

system (3.19) on X, the observer that shall be designed for system (3.19) could be used in

order to estimate the trajectories of system (3.7) which always lie in X. One now recalls

some results related to the design of a SHGO for system (3.19) and to its main properties

given in ([64]).

3.2 The underlying SHGO design

It has been shown in [64] that under Assumptions A1 to A4, a SHGO can be designed

for (3.19) and the underlying equations are

˙̂x(t) = Anx̂(t) + φs(u(t), x̂(t))− θ∆−1
n (θ)Gn(Cnx̂(t)− y(t)), x̂(t0) ∈ X, (3.20)

where x̂ ∈ IRn denotes the state estimate, Gn ∈ IRn is defined as in (3.3) with k = n

and the underlying coefficients γi’s, i = 1, . . . , n are chosen such that the matrix Ān =

An−ΓnCn is Hurwitz; ∆n(θ) is a diagonal matrix defined as in (3.4) with k = n and θ ≥ 1.
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Let x̃(t) = x̂(t) − x(t) be the observation error associated to the SHGO (3.20). From

(3.19) and (3.20), one has

˙̃x(t) = Anx̃(t) + φ̃s(u(t), x̂, x)− θ∆−1
n (θ)GnCnx̃−Bnε(t) + θ∆−1

n (θ)Γnv(t), (3.21)

where φ̃s(u, x̂, x) = φs(u(t), x̂)−φs(u, x). It has been shown in [30] that each component

x̃i(t), i = 1, . . . , n, of the vector of the observation error satisfies, for θ sufficiently high,

the following property

∃θ0; ∀θ > θ0; ∀u ∈ U ; ∀x̂(t0) ∈ IRn;

∀t ≥ t0, |x̃i(t)| ≤ χPn

(
θi−1e−βnθ(t−t0)∥x̃(t0)∥+

1

βn

(
θi−1−nδε + θi−1∥Gn∥δv

))
,(3.22)

with

βn =
µn

2λ
(M)
Pn

, (3.23)

and where the SPD matrix Pn and the positive real µn are given by equation (3.6) with

k = n and An = Ān given by (3.3), δε is the essential upper bound of |ε(t)| given in

Assumption A3, δv is the essential upper bound of |w(t)| given in Assumption A4 and

χPn is the conditioning number of the matrix Pn.

According to inequality(3.22), in the noise-free case, i.e. δv = 0, the asymptotic obser-

vation errors related to x̃i, i = 1, . . . , n, can be made as small as desired by choosing θ

sufficiently high. Indeed, in this case, the underlying asymptotic ultimate bounds is equal

to θi−1−nδε/βn. Since i ≤, this bound is always lower or equal than θ−1δε/βn which indeed

tends to 0 when θ goes to ∞. In the case where δv ̸= 0, the above property is no longer

true unless an additional constraint is made on δv. Indeed, if δv ̸= 0, then one can easily

check that the resulting asymptotic ultimate bound can be made as small as desired if

the following condition on δv is satisfied

∃δ̄v; ∃θ0;∀θ ≥ θ0, δv ≤
δ̄v
θn
. (3.24)

More precisely, under condition (3.24), inequality (3.22) specializes as follows

∃θ0;∀θ > θ0;∀u ∈ U ;∀x̂(t0) ∈ IRn; ∀t ≥ t0,

|x̃i(t)| ≤ χPnθ
i−1

(
e−βnθ(t−t0)∥x̃(t0)∥+

δε + ∥Gn∥δ̄v
βnθn

)
. (3.25)

A low-pass filtering behaviour of the SHGO (3.20) has been pointed out in [65] by mod-

elling the output measurement as

v(t) =
N∑
i=1

νi sin
(ωi

ϵ
t+ ϕi

)
, (3.26)
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where N > 0 is a positive integer, νi, ωi respectively characterize the amplitude and the

phase of each component of v(t) and ϵ ∈]0, 1[ allows the parametrization of the frequencies

of v(t). The signal v(t) can be considered as the output of the following autonomous

system

ϵẇ = Sw, v = Rw, (3.27)

where 
w =

(
w(1)T , . . . , w(N)T

)T
∈ IR2N , w(i) ∈ IR2, i = 1, . . . , N,

R =
(

(0 1) . . . (0 1)
)
∈ IR2N ,

S = diag
(
S(1) . . . S(N)

)
with S(i) =

(
0 ωi

−ωi 0

)
,

and w(0) ∈ W a compact subset of R2N which is invariant under system (3.27).

It has been shown in [65] that in the disturbance-free case, i.e. δε = 0, the asymptotic

behaviour of the SHGO is characterized as follows

lim
t→∞

sup |x̃i(t)| ≤ (ϵ θ) ρ θi−1δv (3.28)

where ρ is a positive constant independent of θ.

Remark 3.2.1 Notice that a redesigned version of the SHGO has been proposed in ([66])

in order to deal with sampled/delayed output measurements. The equations of the under-

lying observer can be written under the following form
˙̂x(t) = Anx̂(t) + φs(u(t), x̂(t))

−θ∆−1
n (θ)Gn(Cnx̂(t− d(t))− y(t− d(t)) + α(t)− α(t− d(t))),

α̇(t) = −θγ1(Cnx̂(t− d(t))− y(t− d(t)) + α(t)− α(t− d(t))).

(3.29)

where d(t) a piecewise continuous function and it corresponds to the output delay (in-

cluding the sampled output case) and γ1 is the fist component of the gain Gn.

3.3 Design of the FHGO

Many approaches dealing with the observer designs have been proposed to reduce the

underlying observers sensitivity to noise measurements either by appropriately updating

the observer design parameter θ [67, 36, 35] or by substituting in the observer corrective

term the output observation error by an appropriate filtered version provided by a linear

filter cascaded with the original system [38, 33, 68, 69]. The solution that will be suggested
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belongs to the second approach i.e. by filtering the noisy output observation error. In

order to put forward the novelty of the proposed approach with respect to the existing

ones, one shall briefly recall some of the latter. In [33], the proposed observer with filtering

capabilities takes the following form{
η̇ = (−θDn + θ2AT

n )η + θCT
n (Cnx̂− y)

˙̂x = Anx̂+ φs(u, x̂)− θKnη
(3.30)

where η =
(
η1 . . . ηn

)
∈ IRn with ηi ∈ IR, i = 1, . . . , n, D = diag(d1, . . . , dn) and

K = diag(k1, . . . , kn) are n × n diagonal matrices and their entries di, ki are chosen

such that the matrix

(
−Dn + An CT

nCn

−Kn An

)
is Hurwitz. An appropriate algorithm is

provided for the determination of such constants. Notice that the idea behind the design

of observer (3.30) is to substitute in the equation of the SHGO (3.20) the corrective term

G(SH) ∆
= θ∆θ(Cnx̂− y(t)) by the filtered version G(FH) ∆

= θKnη. More precisely, the i’th

component G
(SH)
i = γiθ

i(Cnx̂ − y(t)), i = 1, . . . , n of G(SH) is substituted by its filtered

version G
(FH)
i = θkiη. This can be justified by the fact that the static gain of the filter

the input of which is (Cnx̂−y(t)) and the output of which is ηi is of the order of θ
i−1. The

main motivation of such substitution is to improve the sensitivity of the observer with

respect to the noise measurement. Indeed, in the SHGO, the relative degree of x̂i with re-

spect to y is equal to one for i = 1, . . . , n. However, in the redesigned observer (3.30) and

since the relative degree between ηi and y is equal to i, the relative degree between x̂i and

ηi is equal to the one between ηi and y, i.e. i. It has been noticed in [33] that the structure

of the filter considered in the observer proposed in [34] is similar to the one given by (3.30).

The sensitivity of the observer can be improved further if the output observation error is

substituted by the component of η that has the higher relative degree with respect to y,

i.e; η1. Indeed, the authors in [38] proposes the following filtered observer{
η̇ = θ

ρ

(
(−Ir + AT

r )η + CT
r (Cnx̂− y)

)
˙̂x = Anx̂+ φs(u, x̂)− θKnCrη

(3.31)

where η =
(
η1 . . . ηr

)
∈ IRr with ηi ∈ IR, i = 1, . . . , r, Ar and Cr are respectively

defined as in (3.1) and (3.2) with k = n and ρ > 0 is a positive design parameter

of the observer. Notice that the state η of the filter is of of an aribirarily dimension

r > 0 and not fixed to n as in (3.30). Moreover, only one additional scalar design

parameter is introduced by the filter, i.e. ρ which has to be chosen such that the matrix

F (ρ)
∆
=

(
−1

ρ
(Ir − AT

r )
1
ρ
CT

r Cn

−KnCr An

)
is Hurwitz. It has been shown in [38] that for each

θ > 0, there exists ρ⋆ such for all ρ ∈ [0, ρ⋆, the matrix F (ρ) is Hurwitz. Another
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observer where the component of the filter state having the highest relative degree has

been used in the observer equation is proposed in [30]. The redesign approach is inspired

by that given in [69, 68] and it consists in augmenting the original system (3.19) by an

integrator of order r of the corrupted output. The so obtained augmented system keeps

the triangular structure of the original one and hence by considering the integral of order

r of the output as the output of the system, a SHGO can be designed for this system.The

resulting observer takes the following form{
η̇ = Arη +Br(Cnx̂− y)− θ∆−1

r (θ)KrCrη

˙̂x = Anx̂+ φs(u, x̂)− θr+1∆−1
n (θ)KnCrη

(3.32)

where Kr =
(
k1 . . . kr

)T
∈ IRr and Kn =

(
kr+1 . . . kr+n

)T
are chosen such

that the matrix Ãn+r = An+r − Kr+nCr+n is Hurwitz with Kr+n =
(
KT

r KT
n

)T
and

Ar+n and Cr+n are respectively defined as in (3.1) and (3.2) with k = r + n. Notice that

the choice of the gain Kn+r is simple since it can be achieved through standard matlab

functions (place or acker) by assigning the eignevalue of the matrix An+r. The matrices

∆r(θ) and ∆n(θ) are defined as in (3.4) with k = r and k = n, respectively. On other

aspects and on the contrary of observers (3.30) and (3.31) where the design parameter θ

intervens with a power that does not exceed 2, the power of θ is ranged from 1 to n + r

in the observer (3.32). This might increase the level of the peaking of the observer state

variables. However and as noticed in ([30]), the peaking phenomenon has been dealt with

through a redesign procedure where nested saturations functions have been considered

and hence the resulting proposed observer significantly reduces the peaking phenomenon.

The new filtered observer is presented hereafter.

3.3.1 Equations of the FHGO

The equations of the proposed observer take the following form{
η̇ = θ

(
(Ar −KrCr)η +Br(Cnx̂− y)

)
˙̂x = Anx̂+ φs(u, x̂)− θ∆−1

n (θ)KnCrη, η(t0) = 0 and x̂(t0) ∈ IRn,
(3.33)

where Kr and Kn are defined as in observer (3.32) and they have to be chosen such that

Ãn+r = An+r − Kr+nCr+n is Hurwitz with Kr+n =
(
KT

r KT
n

)T
and Ar+n and Cr+n

are respectively defined as in (3.1) and (3.2) with k = r+ n. As for observer (3.32), such

a choice can be fairly achieved through standard matlab functions (place or acker) by

assigning the eignevalue of the matrix An+r.
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Before stating the main properties of the proposed FHGO, one shall motivate the structure

and put forward the rational behind the proposed design. Indeed, a main property related

to the structure of the FHGO (3.33) lies in the fact that x̂ in this observer is governed by

almost the same ODE as in the SHGO (3.20) and the only difference is the substitution

in the equation related to the SHGO of the noisy observation error Gn(Cnx̂ − y) by a

filtered version KnCrη. In order to motivate such a substitution, one shall give a natural

interpretation of the state η governed by the ODE in (3.33). Indeed, η can be interpreted

as the state of a filter of dimension r, which is arbitrary, the entry of which is the noisy

output observation error (Cnx̂− y). Notice that the equations of the filter given by (3.33)

are written in a canonical form and hence it is easy to check that the relative degree of

the transfer function between the filter output, i.e. η1 = Crη and the filter entry, i.e.

Cnx̂ − y is equal to r and the underlying static gain does not depend on θ. Hence, the

filter output Crη is a filtered version (of order r) of the noisy output observation and its

use in the corrective term of the FHGO will improve the sensitivity of observer to the

high frequency signals.

Notice that the equations of the filter in the FHGO (3.33) are given before the ODE gov-

erning x̂ while there were given after the underlying ODE in the FHGO (2.36) proposed

in the preceding chapter. The inversion of the order of the two subsystems is simply

motivated by clarity purposes since the above form (3.33) is more appropriate for the

analysis of the stability of the underlying observation error equations.

The main property of observer (3.33) is stated in the following theorem.

Theorem 3.3.1 Consider system (3.19) subject to Assumption A1 to A4 together with

observer (3.33) and assume that the essential bound δv satisfies (3.24). Then, the compo-

nents of the observation error vector satisfy the following property,

∃θ0 > 0; ∀θ ≥ θ0;∀u ∈ U ; ∀x̂(t0) ∈ IRn; ∀t ≥ t0,
∥∥∥∥∥ η(t)

x̃1(t)

∥∥∥∥∥ ≤ χPr+n

(
e−βr+nθ(t−t0)∥x̃(t0)∥+

δ̄v + δε
βr+nθn

)
,

|x̃i(t)| ≤ χPr+n

(
θi−1e−βr+nθ(t−t0)∥x̃(t0)∥+

δ̄v + δε
βr+nθn+1−i

)
, i = 2, . . . , n.

(3.34)

with

βn+r =
µr+n

2λ̄Pr+n

, (3.35)

where Pr+n and µr+n are given by equation (3.6) with k = n+ r, λ̄Pr+n and χPr+n respec-

tively denote the largest eigenvalue and the conditioning number of Pr+n, δ̄v is the bound

of v as defined in (3.24) and δε is the essential bound of ε given by Assumption A4.
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Proof of Theorem 3.3.1. Set x̃ = x̂ − x, x̄ = θn−1∆nx̃ and η̄ = θn−1η. Using (3.33),

one gets {
˙̄η = θ

(
(Ar −KrCr)η̄ +BrCnx̄

)
− θnBrv(t)

˙̄x = θAnx̄+ θn−1∆nφ̃
s(u, x̂, x)− θKnCrη̄ −Bnε(t),

(3.36)

where φ̃s(u, x̂, x) = φs(u, x̂)− φ̃s(u, x).

One can check that (
Ar BrCn

An 0

)
= Ar+n, (3.37)

where Ar+n is he anti-shift matrix given by (3.1) with k = n. By setting z =

(
η

x̃

)
and

z̄ =

(
η̄

x̄

)
, the error system (3.36) can be written under the following compact form

˙̄z = θÃn+rz + Φ̃(u, x̂, x)− θnv(t)B̄r+n −Br+nε(t), (3.38)

where

Ãn+r = An+r −Kr+nCr+n, (3.39)

withKr+n =
(
KT

r KT
n

)T
, Cr+n andBr+n are given by (3.2) with k = r+n, Φ̃(u, x̂, x) =(

0

θn−1∆nφ̃
s(u, x̂, x)

)
and B̄r+n ∈ IRr+n is a column vector with all its entries are equal

to zero excepting the one lacated at the r’th row which is equal to 1. Recall that Kr and

Kn are chosen such that Ãr+n is Hurwitz. Hence, there exit a SPD matrix Pr+n and a

positive real µr+n such

ÃT
r+nPr+n + Pr+nÃr+n = −2µr+nIr+n. (3.40)

Let V (z̄) = z̄TPr+nz̄ be the Lyapunov candidate function for the error system (3.38).

Then, using (3.38) and (3.40), one gets

V̇ (z̄) = 2θz̄TPr+nAz̄ + 2zTPr+nΦ̃(u, x̂, x)− 2θnv(t)z̄TPr+nB̄r+n − 2ε(t)z̄TPr+nBr+n

= −2µr+nθ∥z̄∥2 ++2z̄TPr+nΦ̃(u, x̂, x)− 2θnv(t)z̄TPr+nB̄r+n

−2ε(t)z̄TPr+nBr+n. (3.41)

Using the triangular structure and the Lipschitz assumption on φ, one gets for θ ≥ 1 (see

[64]),

∥θn−1∆nφ̃
s(u, x̂, x)∥ ≤ c1∥x̄∥ ≤ c1∥z̄∥,
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where c1 > 0 is a positive constant independent of θ and hence, one gets

2zTPr+nΦ̃(u, x̂, x) ≤ 2c1λ̄Pr+n∥z̄∥2. (3.42)

where λ̄Pr+n is the largest eigenvalue of Pr+n. By choosing θ high enough and in particular

satisfying −2µr+nθ + 2c1λ̄Pr+n ≤ −µr+nθ, i.e. θ ≥ 2c1
λ̄Pr+n

µr+n
, equality (3.41) leads to

V̇ (z̄) ≤ −µr+nθ

λ̄Pr+n

V (z̄) + 2
√
λ̄Pr+n

√
V (z̄)(θnv(t) + ε(t)), (3.43)

or equivalently

d

dt

√
V (z̄) ≤ −βr+nθ

√
V (z̄) +

√
λ̄Pr+n(θ

nv(t) + ε(t)).

where βn+r is given as in (3.35).

Using the comparison lemma, one gets

√
V (z̄(t)) ≤ e−βr+nθ(t−t0)

√
V (z̄(t0)) +

√
λ̄Pr+n

βr+n

(θn−1δv +
δε
θ
).

Using inequality (3.24), the last inequality becomes

√
V (z̄(t)) ≤ e−βr+nθ(t−t0)

√
V (z̄(t0)) +

√
λ̄Pr+n

βr+n

δ̄v + δε
θ

.

Coming back to ∥z̄(t)∥, one gets

∥z̄(t)∥ ≤ χPr+n

(
e−βr+nθ(t−t0)∥z̄(t0)∥+

1

βr+n

(
δ̄v + δε
θ

)

)
, (3.44)

where χPr+n is the conditioning number of Pr+n.

According to the definition of z̄, one has{
z̄i = η̄i = θn−1ηi, i = 1, . . . , r,

z̄i+r = x̄i = θn−ix̃i, i = 1, . . . , n.
(3.45)

Hence, for θ ≥ 1, one has |z̄(t0)∥ ≤ θn−1∥z(t0)∥, and∥∥∥∥∥ η(t)

x̃1(t)

∥∥∥∥∥ ≤ θ1−n∥z̄(t)∥, |x̃i(t)| = θi−n|z̄i+r(t)| ≤ θi−n∥z̄(t)∥, i = 2, . . . , n. (3.46)

Combining (3.44) with (3.46) and accounting for the fact that ∥z(t0)∥ = ∥x̃(t0)∥ (since

η(t0) = 0) lead to (3.34). This ends the proof of Theorem 3.3.1.

Note that the upper bound of the observation estimation error provided by the second

inequality of (3.34) is very similar to that given by (3.22). In particular, the improvement

of the sensitivity to high gain frequency signals of the filtered version cannot be appre-

ciated by this bound. In order to point out this improvement, one shall proceed as in

([65, 38]).
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3.3.2 Improvement of the sensitivity to high frequency signals

Assume that the measurement noise v(t) is modelled as in (3.27), then by proceeding as

in ([38]), one can derive an upper bound for the observation error which puts forward

the high frequency filtering capabilities of the observer. Indeed, one states the following

theorem the proof of which borrows from that of Theorem 2 in ([38]).

Theorem 3.3.2 Consider system (3.19) with observer (3.33) and suppose that Assump-

tion A1, A2 and A4 hold, ε(t) ≡ 0 for all t ≥ t0 and v(t) generated by (3.27) with the

frequencies ωi being pairwise incommensurable. Then, there exists ϵ⋆(θ) > 0 such that for

any ϵ ∈]0, ϵ⋆], one has

lim
t→+∞

sup |x̃i(t)| ≤ ρ (ϵ θ)r+1 kr+iθ
i−1δv, i = 1, . . . , n, (3.47)

where ρ is a constant independent of θ and ϵ.

Proof of Theorem 3.3.2. The proof borrows from that of Theorem 2 in [38] where

only the linear case φ(u, x) = Phix where Φ is a lower triangular matrix with ∥Φ∥ ≤ L

is considered. As pointed out in [38], it has been shown in [65] that the obtained bounds

can be extended to the nonlinear context.

Set z =

(
η

x̃

)
where η and x̃ = x̂x are the state of the error equation system (3.33). For

ε(t) ≡ 0, system (3.36) can be written under the following compact form

ż = Λz + ΓRw, (3.48)

where

Λ =

(
θ(Ar −KrCr) θBrCn

−θ∆−1
n (θ)KnCr An + Φ

)
, Γ =

(
−θBr

0n×1

)
. (3.49)

The matrix Λ can be factorized as follows

Λ = θΥ(θ)Λ̄Υ−1(θ) with Υ(θ) =

(
Ir 0r×n

0n×r ∆−1
n (θ)

)
and (3.50)

Λ̄ =

(
Ar −KrCr BrCn

−KnCr An +
1
θ
∆n(θ)Φ∆

−1
n (θ)

)
(3.51)

Notice that, the matrice λ̄ can be expressed as follows

Λ̄ = Ãn+r + diag(0r×r,Θ(θ)) with Θ(θ) =
1

θ
∆n(θ)Φ∆

−1
n (θ). (3.52)

where Ãn+r is the Hurwitz matrix given by (3.39).

Bearing in mind that the constant matrix Φ is triangular, it is easy to check that each
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non zero entry of the matrix θΘ(θ) is a polynomial in 1
θ
and hence for θ high enough the

matrix Λ̄ is Hurwitz. Combining this fact with the decomposition (3.49), one concludes

that the matrix Λ is Hurwitz and hence the steady state of the linear system (3.48) is

given by zss = Πϵw where Πϵ is the unique solution of the following Sylvester equation

ΠϵS = ϵ
(
ΛΠϵ + ΓR

)
. (3.53)

and it can be expressed as follows (see [38] for more details)

Πϵ =
+∞∏
k=1

ϵkΛk−1ΓRS−k. (3.54)

Now, one can check the following equalities
Λk−1Γ = −θk

(
Ak−1

r Br

0n×1

)
, k = 1, . . . , r,

ΛrΓ = θr+1

(
Kr

∆−1
n (θ)Kn

)
.

(3.55)

For i = r + 1, . . . , r + n, let ei be the i’th column of identity matrix of order r + n. One

clearly has x̃i = eTi z. Now, since lim
t→∞

sup(z − Πϵw(t)) = 0, one has

lim
t→∞

sup |x̃i(t)| = lim
t→∞

sup |eTi Πϵw(t)|, i = 1, . . . , n. (3.56)

Using (3.54), one gets

|eTi Πϵ| =

∣∣∣∣∣eTi
(

r+1∏
k=1

ϵkΛk−1ΓRS−k +
∞∏

k=r+2

ϵkΛk−1ΓRS−k

)∣∣∣∣∣
=

∣∣∣∣∣eTi
(
ϵr+1ΛrΓRS−(r+1) +

∞∏
k=r+2

ϵkΛk−1ΓRS−k

)∣∣∣∣∣
= ϵr+1θr+ikr+i|RS−(r+1)|+

∞∏
k=r+2

ϵk|eTi Λk−1ΓRS−k|. (3.57)

The same arguments provided in [38] are used to conclude. More precisely, for ϵ small

enough, i.e. ϵ ∈]0, ϵ⋆(l)], the dominant terms in (3.57) are the ones with smallest power

of ϵ. Since R,S and Λ are bounded and do not depend on ϵ, there exists ρ > 0 satisfying

(3.47). This ends the proof of Theorem 3.3.2.

3.4 Redesign of the FHGO for sampled/delayed out-

put measurements

The above design deals with the case where the outputs measurements are available

under a continuous form. One proposes in what follows to redesign observer (3.33) in
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order to derive an appropriate version that accounts for general scenarios under which

the outputs may be available: delayed continuous outputs, sampled outputs and sampled

delayed outputs. Notice that he design of state observers for nonlinear systems with

sampled and delayed outputs has received a growing interest over the last two decades

([70, 71, 72, 73, 74, 75, 25, 76, 77, 78, 79, 80]). In many works, the proposed observers

in the case of sampled/delayed outputs are issued from a redesign of observers working

with continuous outputs and the convergence of the observation error associated to the

so derived observers is guaranteed provided that the maximum value of the partition

sampling diameters (or the upper bound of the output delays) is lower than a constant

which generally depends on some observer design parameters(s). Notice that in most

cases, the case of sampling outputs is treated as a particular case of delayed output with

a time-varying delay. When the output delay is long, the proposed observers generally

assume a cascade structure constituted by a chain of subsystems. One of these subsystems

(the head or the tail of the cascade) is an observer which provides a delayed estimate of

the system state where the underlying delay is smaller than the original one. Then, the

so obtained delayed state estimates are exploited to predict the state of the systems over

small intervals in such a way that the state of the last subsystem (the tail or the head of the

cascade) provides an estimate of the system actual state ([25, 76, 77, 78]). In spite of the

existing results, there in not a general approach that allows to redesign in a systematic

manner an available observer working with outputs that are available continuously in

order to generate an appropriate version working with sampled or/and delayed outputs

while inheriting the main properties of the original observer. In the sequel, one shall

generalize the FHGO design proposed previously by accounting for many scenarios under

which the output measurements may be available and one shall show how the properties

of the observer with continuous outputs are inherited by the redesigned version where the

measurements are available under other forms.

3.4.1 Class of systems with different scenarios for the output

measurements availability

The class of systems (3.19) is generalized to the following one{
ẋ(t) = Anx(t) + φs(u(t), x(t)) +Bnε(t)

yd(t) = Cnx(t− d(t)) + v(t) = x1(t− d(t)) + v(t)
(3.58)

where the function d : IR+ → [0, dM ], where dM ≥ 0 is a non negative constant, is a

piecewise continuous function and it denotes the output delay. The other variables keep

the same meaning as in (3.19). The function ε : [0,+∞[ 7→ IR denotes the system uncer-

tainties and may depends on the input and uncertain parameters. It shall be treated as
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an unknown function which explicitly depends on time t for t ≥ 0; finally, φ(u, x) ∈ IRn

denotes a nonlinear vector field and each of its n components has a triangular structure

with respect to x, i.e. φi(u, x) = φi(u, xi) i = 1, . . . , n where xi ∈ IRi is the sub-vector of

x defined xi = [x1 . . . xi].

The observer design will be performed under the the same four assumptions as for ob-

server (3.33) with the following additional one:

A5. The known output delay d(t) is piecewise continuous and bounded, i.e.

∃dM ≥ 0 ; ∀t ≥ 0, |d(t)| ≤ dM . (3.59)

Notice that the fact that the output delay may be time-varying which varies from zero

to dM allows to recover the following two practical situations related to the availability

of the output measurements. The first one corresponds to the case where the output

measurements are available continuously in time either with no delay or with a de-

lay which may be constant or time-varying. The second situation situation deals with

the case where the output measurements are available at sampling instants tk either

with no delay or with a delay, d1, which may be constant or time-varying. More pre-

cisely, each measurement is available at the time instant tk and it corresponds to the

measurement of the output at the time instant tk − d1(tk). In such a case, one has

yd(t) = y(tk − d1(tk)) = y(t − (t − tk + d1(tk))) where yd(t) and y(t) correspond to the

delayed and actual output measurement, respectively. In this situation, the output time-

varying delay can be expressed as d(t) = t− tk + d1(tk).

Before proposing an observer for system (3.7), let us state recall the following technical

lemma [81].

Lemma 3.4.1 Consider a differentiable function v : t ∈ [t0 − δ,+∞[7→ v(t) ∈ IR+ with

t0, δ ≥ 0, satisfying the following inequality

v̇(t)≤−αv(t) + β

∫ t

t−δ
v(s)ds+ p(t), ∀t ≥ t0, (3.60)

where α > 0, β ≥ 0 and p(t) : IR+ → IR+ is an essentially bounded function with

|p|∞ = Ess sup
t≥t0

p(t) ≤ δp. If
βδ

α
< 1, then, ∀t ≥ t0, the function v satisfies

v(t) ≤
(
1 + δ(α− η(δ))

)
e−η(δ)(t−t0) max

ν∈[t0−δ,t0]
v(ν) +

δp
η(δ)

, (3.61)

with

0 < η(δ) = (α− βδ)e−αδ = α(1− βδ

α
)e−αδ ≤ α. (3.62)
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Before dealing with the design of a filtered high gain observer, one recall that the design

of the SHGO (3.20) has been extended in ([66, 81]) to derive a redesigned version that

accounts for all possible forms under which the output measurements may be available.

The equations of the redesigned version can be written as follows{
˙̂x(t) = Ax̂(t) + φ(u, x̂)− θ∆n(θ)K

(
g(t)− g(t− d(t)) + Cx̂(t− d(t))− yd(t)

)
ġ(t) = −θk1

(
g(t)− g(t− d(t)) + Cx̂(t− d(t))− yd(t)

) (3.63)

where x̂ ∈ IRn is the state estimate, K =
(
k1 . . . kn

)T
∈ IRn with ki ∈ IR, i =

1, . . . , n is chosen such that A−KC is Hurwitz, dM is the upper bound of d(t) provided

by Assumption A5, and ∆n is as defined in (3.4) with k = n.

The above observer delay differential equations (3.63) are initialized as follows

x̂(t0) ∈ X and g(s) = ψ(s), ∀s ∈ [t0 − dM , t0],

where X in the subset defined in Assumption A1 and ψ(s) is any arbitrarily continuous

function on [t0 − dM , t0].

3.4.2 Equations of the redesigned FHGO

The equations of the proposed redesigned observers can be written as follows η̇ = θ

(
(Ar −KrCr)η +Br

(
Cnx̂(t− d(t))− yd(t)− θkr+1

∫ t

t−d(t)

η1(s)ds

))
˙̂x = Anx̂+ φs(u, x̂)− θ∆−1

n (θ)KnCrη, η(t0) = 0 and x̂(t0) ∈ IRn,

(3.64)

where all the variables have the same meaning as in observer (3.33). Recall that the

coefficient kr+1 is the first component of the gain Kn.

It should be emphasized that the equations of the redesigned observer (3.64) are very

similar to those of the original FHGO (3.33) with the sole difference that the term

(Cnx̂(t) − y(t)) involved in the equations of (3.33) is substituted by (Cnx̂(t − d(t)) −

yd(t)− θkr+1

∫ t

t−d(t)

η1(s)ds in the equations of (3.64). Moreover, the integral term involv-

ing the integral in the equations of (3.64), i.e. −θkr+1

∫ t

t−d(t)
η1(s)ds can be computed

using the following appropriate form

−θkr+1

∫ t

t−d(t)

η1(s)ds = α(t)− α(t− d(t)) (3.65)

where the function α is governed by the following delay differential equation

α̇(t) = −θkr+1η1(t) with α(s) = ψ(s), ∀s ∈ [t0 − dM , t0], (3.66)

where dM is the upper bound of the output delay given by Assumption A5 and ψ is

any arbitrary continuous function on [−dM 0]. Notice that, since α(t) intervenes in the
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filter equations and in order to reduce the transient period of the filter, one can choose

ψ(s) = 0,∀s ∈ [t0 − dM , t0].

Hence, using (3.66) to compute the integral term, the equations of the proposed redesigned

observer (3.64) specialize as follows
η̇(t) = θ

(
(Ar −KrCr)η(t) +Br

(
Cnx̂(t− d(t))− yd(t) + α(t)− α(t− d(t))

))
,

˙̂x(t) = Anx̂(t) + φs(u, x̂)− θ∆−1
n (θ)KnCrη(t),

α̇(t) = −θkr+1η1(t).

(3.67)

with the initial conditions x̂(t0) ∈ X and η(s) = α(s) = 0, ∀s ∈ [t0 − dM , t0].

The main properties of observer (3.67) are stated in the following theorem.

Theorem 3.4.1 Consider system (3.58) subject to Assumption A1 to A5 together with

observer (3.33) and assume that the essential bound δv satisfies (3.24) and that the upper

bound dM of the delay satisfies the following condition

dM <
βr+n

χPr+n(Lφ + θ)
. (3.68)

where βr+n is given by (3.35), χPr+n is the conditioning number of the matrix Pr+n given

by (3.40) and Lφ is the Lipschitz constant given by (3.16). Then, the components of the

observation error vector satisfy the following property,

∃θ0 > 0; ∀θ ≥ θ0;∀u ∈ U ; ∀x̂(t0) ∈ IRn; ∀t ≥ t0,
∥∥∥∥∥ η(t)

x̃1(t)

∥∥∥∥∥ ≤ χPr+n

(
e−ηθ(dM )(t−t0)∥x̃(t0)∥+

δ̄v + δε
βr+nθn−1ηθ(dM )

)
,

|x̃i(t)| ≤ χPr+n

(
θi−1e−ηθ(dM )(t−t0)∥x̃(t0)∥+

δ̄v + δε
βr+nηθ(dM )θn−i

)
, i = 2, . . . , n.

(3.69)

where

ηθ(dM) = (αθ − βθdM)e−αθdM with αθ = βr+nθ, βθ = χPr+nθ(Lφ + θ). (3.70)

Proof of Theorem 3.4.1. Set x̃ = x̂ − x, x̄ = θn−1∆nx̃, η̄ = θn−1η and ᾱ = θn−1α.

Using (3.67), one gets
˙̄η(t) = θ

(
(Ar −KrCr)η̄(t) +Br

(
Cnx̄(t− d(t)) + ᾱ(t)− ᾱ(t− d(t))

))
− θnBrv(t)

˙̄x(t) = θAnx̄+ θn−1∆nφ̃
s(u, x̂, x)− θKnCrη̄(t)−Bnε(t),

˙̄α(t) = −θkr+1η̄1(t)

(3.71)

where φ̃s(u, x̂, x) = φs(u, x̂)− φ̃s(u, x).
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Adding and subtracting the term θBrCnx̄(t) to the left side of the ODE governing η̄, one

gets

˙̄η = θ
(
(Ar −KrCr)η̄(t) +BrCnx̄(t)

)
+ θBrξ(t)− θnBrv(t) (3.72)

where

ξ(t) = Cn

(
x̄(t− d(t))− x̄(t)

)
+ ᾱ(t)− ᾱ(t− d(t))

= x̄1(t)− x̄1(t− d(t)) + ᾱ(t)− ᾱ(t− d(t)). (3.73)

Notice that the variable ξ(t) can be expressed as follows

ξ(t) =

∫ t

t−d(t)

( ˙̄x1(s)− ˙̄α1(s)) ds

=

∫ t

t−d(t)

( ˙̄x1(s) + θkr+1θη̄1(s)) ds. (3.74)

According to (3.71), one has

˙̄x1(t) = θx̄2(t) + θn−1φ̃(u, x̂1, x)− θkr+1θη̄1(t). (3.75)

Combining (3.74) and (3.75), one gets

ξ(t) =

∫ t

t−d(t)

(
θx̄2(s) + θn−1φ̃(u, x̂1, x)

)
ds (3.76)

Using the Lipschitz assumption on the φ, one gets

|ξ(t)| ≤
∫ t

t−d(t)

(θ + Lφ)∥x̄(s)∥ds, (3.77)

where Lφ is the Lipschitz constant constant by (3.16).

Now, set z =

(
η

x̃

)
and z̄ =

(
η̄

x̄

)
. Proceeding as in the proof of Theorem (3.3.1), the

equation of the error system can be written under the following compact form (compare

with (3.38))

˙̄z = θÃn+rz + Φ̃(u, x̂, x)− B̄r+n (θ
nv(t) + θξ(t))−Br+nε(t), (3.78)

where ξ is as defined in (3.73) and the other variables keep the same meaning as in (3.38).

Let V (z̄) = z̄TPr+nz̄ be the Lyapunov candidate function for the error system (3.78)

where Pr+n is the SPD matrix given as in (3.40). Again, proceeding as in the proof of

Theorem (3.3.1), one can show that (compare with (3.43))

V̇ (z̄) ≤ −µr+nθ

λ̄Pr+n

V (z̄) + 2
√
λ̄Pr+n

√
V (z̄)(θ|ξ(t)|+ θnv(t) + ε(t)). (3.79)
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using the bound of |ξ∥ provided by (3.77), inequality (3.79) leads to

V̇ (z̄) ≤ −µr+nθ

λ̄Pr+n

V (z̄) + 2χPr+nθ
√
V (z̄)(Lφ + θ)

∫ t

t−d(t)

√
V (z̄(s))ds

+2
√
λ̄Pr+n

√
V (z̄)(θnv(t) + ε(t))

≤ −µr+nθ

λ̄Pr+n

V (z̄) + 2χPr+nθ
√
V (z̄)(Lφ + θ)

∫ t

t−dM

√
V (z̄(s))ds

+2
√
λ̄Pr+n

√
V (z̄)(θnv(t) + ε(t)) (3.80)

where χPr+n is the conditioning number of Pr+n and dM is the upper bound of the delay.

Inequality (3.80) can be rewritten as follows

d

dt

√
V (z̄) ≤ −βr+nθ

√
V (z̄) + χPr+nθ(Lφ + θ)

∫ t

t−dM

√
V (z̄(s))ds

+
√
λ̄Pr+n(θ

nv(t) + ε(t)). (3.81)

Set

αθ = βr+nθ, βθ = χPr+nθ(Lφ + θ) and pθ =
√
λ̄Pr+n(θ

nv(t) + ε(t)). (3.82)

According to Assumptions A3, A4 and inequality (3.24), the function pθ(t) is essentially

bound and the underlying essential bound is equal to
√
λ̄Pr+n(δ̄v + δε) where δδv and δε

are the essential bounds provided by Assumptions A3, A4 and inequality (3.24). Now

assume that

βθ
αθ

dM < 1, (3.83)

Since pθ(t) is essentially bounded, then conditions of lemma 3.4.1 and one gets

√
V (z̄(t)) ≤

(
1 + (αθ − ηθ(dM ))dM

)
e−ηθ(dM )(t−t0) max

s∈[t0−dM ,t0]

√
V (z̄(s)) +

√
λ̄Pr+n(δ̄v + δε)

η(dM )
δε,

where ηθ(dM) = (αθ − βθdM)e−αθdM .

Coming back to z̄, one gets

∥z̄(t)∥ ≤ χPr+n

( (
1 + (αθ − ηθ(dM ))dM

)
e−ηθ(dM )(t−t0) max

s∈[t0−dM ,t0]
∥z̄(s)∥+ (δ̄v + δε)

η(dM )
δε

)
,

Coming back to η and x̃ by using (3.46), one gets (3.69). This ends the proof of Theorem

3.4.1.
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3.5 Extension of the design to the class of non uni-

formly observable systems

Contrarily to the class of Uniformly Observable Systems, there are a few results dealing

with the redesign of the SHGO for the class of Non Uniformly Observable Systems (NUOS)

to improve its sensitivity to high frequency signals. In [44], the authors proposed a FHGO

for a class of NUOS. The proposed design is inspired from that given in [82] which has

been proposed for a class of UOS. As in [82], the FHGO in [44] has been first proposed

in the case where the output measurements are available in a contunous manner. Then,

a redesigned version was proposed for the case where these measurements are available

only at sampling instants. The gain of the FHGO is similar as that of the SHGO and it

is issued from the resolution of a Lyapunov (or Riccati) ODE.

One proposes in the sequel to extend the design proposed for UOS to a class of NUOS.

The proposed extension shall be achieved by considering the general framework related

to the availability of the measurements outputs. Before detailing this design, one shall

introduce the considered class of systems and adopt the required assumptions generally

needed when adopting a high gain approach for the observer design.

3.5.1 Class of NUOS

Consider the class of NUOS which are diffeomorophic to the following form{
ẋ(t) = Fn(u(t))x(t) + φs(u(t), x(t)) +Bnε(t)

yd(t) = Cnx(t− d(t)) + v(t) = x1(t− d(t)) + v(t)
(3.84)

where

Fn(u(t)) =



0 f1(u) 0 . . . 0

0 0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 fn−1(u)

0 . . . . . . 0 0


, (3.85)

and all other variables involved in (3.84) have the same meaning as in system (3.58). It is

worth noticing that system (3.84) is very similar to system (3.58) and the only difference

lies in the fact the constant ant-shift matrix An in system (3.58) is substituted by the

time-varying anti-shift matrix Fn(u) in system (3.84). Hence, the observer design which

shall be proposed later shall be achieved by considering the same assumptions as in the

case of UOS, i.e. Assumptions A1 to A5. Moreover, to design a SHGO for system (3.84),

one needs to guarantee its observability over arbitrarily short time horizons. This observ-

ability property shall be achieved through the formulation of specific excitation conditions
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allowing thereby to qualify the input behavior for small time horizons. This leads to the

following additional assumption [23, 83, 59] which will also be adopted.

A6 The input u is such that for any trajectory x(t) of system (3.84) starting from x(t0) ∈
X, ∃T ⋆ > 0, ∃θ0 > 0, ∃δ⋆ > 0, ∀θ ≥ θ0 and ∀t ≥ t⋆0

∆
= T ⋆/θ, the following persistent

excitation condition is satisfied∫ t

t−T ⋆/θ
(Φu(s, t))

T CTCΦu(s, t)ds ≥
δ⋆

θ
∆2

n(θ), (3.86)

where ∆n is as in (3.4) with k = n and Φ(t, s) denotes the state transition matrix of the

state affine system

ξ̇(t) = Fn(u(t))ξ(t). (3.87)

Recall that the matrix Φu(t, s) is defined as

d

dt

(
Φu(t, s)

)
= Fn(u(t))Φu(t, s) ∀t ≥ s ≥ t0 with Φu(s, s) = In. (3.88)

To avoid the redundance of variables and without loss of generality, one shall assume

that the time instant t⋆0 involved in Assumption A5 is equal to t0.

The design of a SHGO for system (3.84) has been proposed in [23] in the disturbance

and noisy free case. A similar observer has been proposed [58, 59] in the presence of the

disturbance ε and under assumptions A1 to A3 and A6.

Before giving the equations of the proposed observer, one proposes to introduce some

variables and recall some results related to the design of SHGO for NUOS.

3.5.2 Preliminaries

In the case where the outputs are available under a continuous form, the equations of a

SHGO for system (3.84) can be written as follows ([23, 83, 59])

˙̂x(t) = Fn(u)x̂(t) + φ(u, x̂)− θS−1
n (t)CT

n (Cnx̂(t)− y(t)), x̂0 ∈ X (3.89)

where ∆n(θ) is a diagonal matrix defined as in (3.4) with k = n and θ ≥ 1 and Sn is a

symmetric matrix solution of the following Lyapunov ordinary differential equation

Ṡn(t) = −θ
(
Sn(t) + F T

n (t)Sn(t) + Sn(t)Fn(t)− CT
nCn

)
. (3.90)

Notice that the equations of observer (3.89) are very similar to those of observer (3.20)

with the difference that the constant gain Gn involved in (3.20), which is chosen such
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that An−KC is Hurwitz, is substituted by S−1
n CT in (3.89). One shall show that under

Assumption A6, the matrix Sn governed by (3.90) is SPD. To this end, one first notices

that the transition matrix, that shall be denoted Φ̃u, of the following state affine system

˙̃ξ(t) = θFn(u)ξ̃(t),

is given by

Φ̃u(t, s) = ∆θΦu(t, s)∆
−1
θ , (3.91)

where Φu is defined by (3.88). This allows to express the matrix S as follows

Sn(t) = e−θtΦ̃T
u (t0, t)Sn(t0)Φ̃u(t0, t) + θ

∫ t

t0

e−θ(t−s)Φ̃T
u (s, t)C

T
nCnΦ̃u(s, t)ds

= e−θt∆−1
θ ΦT

u (t0, t)∆θSn(t0)∆θΦu(t0, t)∆
−1
θ

+θ

∫ t

t0

e−θ(t−s)∆−1
θ ΦT

u (s, t)∆θC
T
nCn∆θΦu(s, t)∆

−1
θ ds. (3.92)

Since ∆−1
θ ΦT

u (t0, t)∆θSn(t0)∆θΦu(t0, t)∆
−1
θ is a SPD matrix and that the integral term in

(3.93) is a symmetric non negative matrix, it follows that Sn(t) is a SPD matrix. From

(3.92), one gets where Φu is defined by (3.88). This allows to express the matrix Sn as

follows

Sn(t) ≥ θ

∫ t

t0

e−θ(t−s)∆−1
θ ΦT

u (s, t)∆θC
T
nCn∆θΦu(s, t)∆

−1
θ ds. (3.93)

Using the facts that C∆θ = C and Sn(t0) is SPD, one gets for t ≥ t0
∆
= T ⋆/θ

Sn(t) ≥ θ

∫ t

t0

e−θ(t−s)∆−1
θ ΦT

u (s, t)C
T
nCnΦu(s, t)∆

−1
θ ds (3.94)

≥ θ

∫ t

t−T⋆

θ

e−θ(t−s)∆−1
θ ΦT

u (s, t)C
T
nCnΦu(s, t)∆

−1
θ ds

≥ θe−T ⋆

∫ t

t−T⋆

θ

∆−1
θ ΦT

u (s, t)C
T
nCnΦu(s, t)∆

−1
θ ds (3.95)

≥ e−T ⋆

δ0In (3.96)

where T ⋆ and δ0 are given in assumption A6.

Set

F(u) =

[
Ar BrCn

0n,r Fn(u)

]
, C =

[
Cr 01,n

]
. (3.97)

and consider the following augmented system

(
ζ̇

ẋ

)
= F(u(t))

(
ζ

x

)
+

(
0

φs(u, x)

)
+Br+nε(t)

y(t) = C

(
ζ

x

)
= Crζ

(3.98)
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Moreover, let S = ST be the (n+ r)× (n+ r) symmetric matrix governed by the consider

the following Lyapunov ODE

Ṡ = −θ
(
S + SF + FTS − CTC

)
. (3.99)

Let Ψu(t, s) be the transition matrix of the following state affine system

ξ̇(t) = F(u(t))ξ(t). (3.100)

where ξ ∈ IRn+r.

The design of the FHGO requires the following Assumption

A7 The input u is such that for any trajectory x(t) of system (3.98) starting from x(t0) ∈ X

and ζ(t0) = 0, ∃T̄ ⋆ > 0, ∃θ̄0 > 0, ∃δ̄⋆ > 0, ∀θ ≥ θ̄0 and ∀t ≥ t̄⋆0
∆
= T̄ ⋆/θ, the following persistent

excitation condition is satisfied∫ t

t−T̄ ⋆/θ
(Ψu(s, t))

T CTCΨu(s, t)ds ≥
δ̄⋆

θ
∆2

n+r(θ), (3.101)

where ∆n+m is as in (3.4) with k = n + r and Ψ(t, s) is the transition matrix of the affine

system (3.100).

Notice that under Assumption A7, one can show that the symmetric matrix S governed

by (3.99) is SPD. Moreover, it is not clear that inequality (3.101) of Assumption A7 can

be derived from Assumption A6. This remains an open question. However, in the case

where where the fi’s are constant i.e. for UOS, the response is positive, i.e. inequality

(3.86) of Assumption A6 does imply inequality (3.101) of Assumption A7.

Since S(t) is SPD under Assumption A7, let Kr(t) =


k1(t)
...

kr(t)

 ∈ IRr and Kn(t) =


kr+1(t)

...

kr+n(t)

 ∈ IRn be the subvector of S−1(t)CT defined as follows

S−1(t)CT =

(
Kr(t)

Kn(t)

)
. (3.102)

3.5.3 Equations of the FHGO for NUOS

The equations of the proposed FHGO can be written as follows
η̇(t) = θ

(
(Ar −Kr(t)Cr)η(t) +Br

(
Cnx̂(t− d(t))− yd(t) + α(t)− α(t− d(t))

))
, η(t0) = 0,

˙̂x(t) = Fn(u(t))x̂(t) + φs(u, x̂)− θ∆−1
n (θ)Kn(t)Crη(t), x̂(t0) ∈ IRn,

α̇(t) = −θkr+1(t)η1(t), α(s) = ψ(s), ∀s ∈ [t0 − dM , t0].

(3.103)

71



where Kr(t) and Kn(t) are the subvectors of S−1(t)CT defined as in (3.102).

Note that the equations of observer (3.103) are very similar to those of observer (3.67),

the sole difference lies in the gains Kr(t) and Kn(t) which are no longer constant as in

(3.67) but issued from the resolution of the ODE Lyapunov equation (3.99).

As one could expect, the main properties of observer (3.103) are similar to those of ob-

server (3.67). They are stated in the following theorem.

Theorem 3.5.1 Consider system (3.58) subject to Assumption A1 - A5 and A7 together

with observer (3.103) and assume that the essential bound δv satisfies (3.24) and that the

upper bound dM of the delay satisfies the following condition

dM <
1

χS(Lφ + θ)
. (3.104)

where χS is the conditioning number of the matrix S given by (3.99) and Lφ is the Lispshitz

constant given by (3.16). Then, the components of the observation error vector satisfy the

following property,

∃θ0 > 0; ∀θ ≥ θ0; ∀u ∈ U ; ∀x̂(t0) ∈ IRn; ∀t ≥ t0,
∥∥∥∥∥ η(t)

x̃1(t)

∥∥∥∥∥ ≤ χS

(
e−ηθ(dM )(t−t0)∥x̃(t0)∥+

δ̄v + δε
θn−1ηθ(dM )

)
,

|x̃i(t)| ≤ χS

(
θi−1e−ηθ(dM )(t−t0)∥x̃(t0)∥+

δ̄v + δε
ηθ(dM )θn−i

)
, i = 2, . . . , n.

(3.105)

where

ηθ(dM) = θ
(
1− χS(Lφ + θ)dM

)
e−θdM . (3.106)

Proof of Theorem 3.5.1. This proof is similar to that of Theorem 3.4.1. Indeed, set

x̃ = x̂− x, x̄ = θn−1∆nx̃, η̄ = θn−1η and ᾱ = θn−1α. Using (3.103), one gets
˙̄η(t) = θ

(
(Ar −Kr(t)Cr)η̄(t) +Br

(
Cnx̄(t− d(t)) + ᾱ(t)− ᾱ(t− d(t))

))
− θnBrv(t)

˙̄x(t) = θFn(u(t))x̄+ θn−1∆nφ̃
s(u, x̂, x)− θKn(t)Crη̄(t)−Bnε(t),

˙̄α(t) = −θkr+1(t)η̄1(t)

(3.107)

where φ̃s(u, x̂, x) = φs(u, x̂)− φ̃s(u, x).

Adding and subtracting the term θBrCnx̄(t) to the left side of the ODE governing η̄, one

gets

˙̄η = θ
(
(Ar −Kr(t)Cr)η̄(t) +BrCnx̄(t)

)
+ θBrξ(t)− θnBrv(t) (3.108)
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where

ξ(t) = Cn

(
x̄(t− d(t))− x̄(t)

)
+ ᾱ(t)− ᾱ(t− d(t))

= x̄1(t)− x̄1(t− d(t)) + ᾱ(t)− ᾱ(t− d(t)). (3.109)

Notice that and as in the proof of Theorem 3.4.1, the variable ξ(t) can be expressed as

follows (compare with (3.74))

ξ(t) =

∫ t

t−d(t)

( ˙̄x1(s) + θkr+1θη̄1(s)) ds. (3.110)

Again, proceeding as in the proof of Theorem 3.4.1, on can show that (compare with

(3.77))

|ξ(t)| ≤
∫ t

t−d(t)

(θ + Lφ)∥x̄(s)∥ds, (3.111)

where Lφ is the Lipschitz constant constant by (3.16).

Now, set z =

(
η

x̃

)
and z̄ =

(
η̄

x̄

)
. Proceeding as in the proof of Theorem (3.3.1), the

equation of the error system can be written under the following compact form (compare

with (3.78))

˙̄z = θF(u)z + Φ̃(u, x̂, x)− B̄r+n (θ
nv(t) + θξ(t))−Br+nε(t), (3.112)

where ξ is as defined in (3.109) and the other variables keep the same meaning as in (3.78).

Let V (z̄) = z̄TS z̄ be the Lyapunov candidate function for the error system (3.112) where

S is the SPD matrix given as by (3.99). Using (3.99) and proceeding as in the proof of

Theorem (3.4.1), one can show that (compare with (3.79))

V̇ (z̄) ≤ −θV (z̄) + 2
√
λ̄S
√
V (z̄)(θ|ξ(t)|+ θnv(t) + ε(t)). (3.113)

using the bound of |ξ∥ provided by (3.111), inequality (3.113) leads to

V̇ (z̄) ≤ −θV (z̄) + 2χSθ
√
V (z̄)(Lφ + θ)

∫ t

t−d(t)

√
V (z̄(s))ds

+2
√
λ̄S
√
V (z̄)(θnv(t) + ε(t))

≤ −θV (z) + 2χSθ
√
V (z)(Lφ + θ)

∫ t

t−dM

√
V (z̄(s))ds

+2
√
λ̄S
√
V (z̄)(θnv(t) + ε(t)) (3.114)

73



where χS is the conditioning number of S and dM is the upper bound of the delay.

Inequality (3.114) can be rewritten as follows

d

dt

√
V (z̄) ≤ −θ

√
V (z̄) + χSθ(Lφ + θ)

∫ t

t−dM

√
V (z̄(s))ds

+
√
λ̄S(θ

nv(t) + ε(t)). (3.115)

Set

αθ = θ, βθ = χSθ(Lφ + θ) and pθ =
√
λ̄Pr+n(θ

nv(t) + ε(t)). (3.116)

According to Assumptions A3, A4 and inequality (3.24), the function pθ(t) is essentially

bound and the underlying essential bound is equal to
√
λ̄Pr+n(δ̄v + δε) where δδv and δε

are the essential bounds provided by Assumptions A3, A4 and inequality (3.24). Now

assume that

βθ
αθ

dM < 1, (3.117)

Since pθ(t) is essentially bounded, then conditions of lemma 3.4.1 and one gets

√
V (z̄(t)) ≤

(
1 + (αθ − ηθ(dM ))dM

)
e−ηθ(dM )(t−t0) max

s∈[t0−dM ,t0]

√
V (z̄(s)) +

√
λ̄S(δ̄v + δε)

η(dM )
δε,

where ηθ(dM) = (αθ − βθdM)e−αθdM = θ
(
1− χS(Lφ + θ)dM

)
.

Coming back to z̄, one gets

∥z̄(t)∥ ≤ χS

( (
1 + (αθ − ηθ(dM ))dM

)
e−ηθ(dM )(t−t0) max

s∈[t0−dM ,t0]
∥z̄(s)∥+ (δ̄v + δε)

η(dM )
δε

)
,

Coming back to η and x̃ by using (3.46), one gets (3.105). This ends the proof of Theorem

3.5.1.

3.5.4 Implementation of the FHGO for NUOS

Contrarily to the FHGO proposed for UOS the gain of which is constant, the gain FHGO

(3.103) proposed for the class of NUOS is time-varying and it requires the resolution of

the ODE (3.99) governing the matrix S. The number of scalar ODE involved in (3.99)

is equal to (n+r)(n+r)
2

. Due to the particular structure of F(u) and in particular to the

fact that this matrix has as a bloc entry the constant matrix Ar, one shall show that the

number of the scalar ODE can be reduced. This issue shall be detailed hereafter. Indeed,

consider the following partition of the matrix S(t)

S =

[
S1 S2

ST
2 S3

]
, (3.118)
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where S1, S2 and S3 are of dimensions r × r, r × n and n× n, respectively.

The ODE (3.99) can be written in the following expanded form[
Ṡ1 Ṡ2

ṠT
2 Ṡ3

]
= −θ

([
S1 S2

ST
2 S3

]
+

[
S1 S2

ST
2 S3

][
Ar BrCn

0n,r Fn

]

+

[
AT

r 0r,n

CT
nB

T
r F T

n

][
S1 S2

ST
2 S3

]
−

[
CT
r Cr 0r,n

0n,r 0n,n

])

= −θ

([
S1 S2

ST
2 S3

]
+

[
S1Ar S1BrCn + S2Fn

ST
2 Ar ST

2 BrCn + S3Fn

]

+

[
S1Ar S1BrCn + S2Fn

ST
2 Ar ST

2 BrCn + S3Fn

]T
−

[
CT
r Cr 0r,n

0n,r 0n,n

]
= −θ

[
S1 + S1Ar +AT

r S1 − CT
r Cr S2 + S2Fn +AT

r S2 + S1BrCn(
S2 + S2Fn +AT

r S2 + S1BrCn

)T
S3 + S3Fn + F T

n S3 + ST
2 BrCn + CT

nB
T
r S2

]
.

Hence, one gets
Ṡ1 = −θ

(
S1 + S1Ar + AT

r S1

)
+ CT

r Cr

Ṡ2 = −θ
(
S2 + S2Fn + AT

r S2 + S1BrCn

)
Ṡ3 = −θ

(
S3 + S3Fn + F T

n S3 + ST
2 BrCn + CT

nB
T
r S2

) (3.119)

The matrix S can be decomposed as follows

S =

[
Ir −Υ

0n,r In

]T [
S1 0r,n

0n,r X

][
Ir −Υ

0n,r In

]
, (3.120)

where

Υ = −S−1
1 S2 and X = S3 + ST

2 Υ. (3.121)

Let us derive the ODE governing the matrix X. To this end, let us first derive the one

governing Υ. Indeed, set G = S−1
1 . one has

Ġ = θ
(
G+ ArG+GAT

r −GCT
r CrG

)
. (3.122)

Hence, one gets

Υ̇ = −ĠS2 −GṠ2 (3.123)

= −θ
(
(G+ ArG+GAT

r −GCT
r CrG)S2 +G

(
S2 + S2Fn + AT

r S2 + S1BrCn

))
= −

(
(ArG−GCT

r CrG)S2 +GS2Fn +BrCn

)
= θ

(
(Ar − S−1

1 CT
r Cr)Υ−ΥFn +BrCn

)
. (3.124)
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According to (3.121), one has

Ẋ = Ṡ3 + ṠT
2 Υ+ ST

2 Υ̇

= −θ
(
S3 + S3Fn + F T

n S3 + ST
2 BrCn + CT

nB
T
r S2

)
−θ
(
ST
2 + F T

n S
T
2 + ST

2 Ar + CT
nB

T
r S1

)
Υ

+θST
2

( (
Ar − S−1CT

r Cr

)
Υ−ΥFn +BrCn

)
= θ

(
−
(
S3 + S3Fn + F T

n S3

)
−
(
ST
2 + F T

n S
T
2

)
Υ+ ST

2

(
−S−1CT

r CrΥ−ΥFn

))
= θ

(
− (S3 + ST

2 Υ)− (S3 + ST
2 Υ)Fn − F T

n (S3 + ST
2 Υ) + ΥTCT

r CrΥ
)

= −θ
(
X +XFn + F T

n X −ΥTCT
r CrΥ

)
(3.125)

Considering the decomposition of S under the form (3.120), its inverse can be expressed

as follows

S−1(t) =

[
Ir Υ(t)

0n,r In

][
S−1
1 (t) 0r,n

0n,r P (t)

][
Ir 0r,n

ΥT (t) In

]

=

[
S−1
1 (t) + Υ(t)P (t)ΥT (t) ΥP (t)

P (t)ΥT P (t)

]
with P (t)

∆
= X−1(t), (3.126)

and hence

S−1(t)CT =

[ (
S−1
1 (t) + Υ(t)P (t)ΥT (t)

)
CT

r

P (t)ΥTCT
r

]
(3.127)

Combining (3.102) and the above equation (3.127), one gets

Kr(t) =
(
S−1
1 (t) + Υ(t)P (t)ΥT (t)

)
CT

r and Kn(t) = P (t)ΥTCT
r . (3.128)

Notice that the first component of Kn(t) denoted Kr+1 can be expressed as follows

kr+1(t) = CnP (t)Υ
TCT

r with Cn =
[
1 0 . . . 0

]
. (3.129)

Notice that the ODE governing S1(t) admits a stationary solution S1,∞ which satisfies the

following algebraic equation

S1,∞ + AT
r S1,∞ + S1,∞Ar = CT

r Cr. (3.130)

It is well known (see e.g [8, 84]) that S1,∞ is SPD and one has

S−1
1,∞C

T
r =


C1

r

C2
r
...

Cr
r

 . (3.131)

76



According to the Lyapunov ODE (3.125) governing X, one can show that the matrix

P = X−1 is governed by the following Riccati ODE

Ṗ (t) = θ
(
P (t) + Fn(u(t))P (t) + P (t)F T

n (u(t))− P (t)ΥT (t)CT
r CrΥ(t)P (t)

)
. (3.132)

According to the above developments, the FHGO for NUOS (3.103)-(3.99) can be imple-

mented under the following more appropriate form, from the numerical point of view,



η̇(t) = θ
(
Arη(t) +Br

(
Cnx̂(t− d(t))− yd(t) + α(t)− α(t− d(t))

))
−
(
S−1
1,∞C

T
r +Υ(t)P (t)ΥT (t)CT

r

)
Crη,

˙̂x(t) = Fn(u(t))x̂(t) + φs(u, x̂)− θ∆−1
n (θ)Kn(t)Crη(t),

α̇(t) = −θCnP (t)Υ
TCT

r Crη(t), α(s) = ψ(s),

Υ̇ = θ
(
(Ar − S−1

1 CT
r Cr)Υ−ΥFn +BrCn

)
,

Ṗ (t) = θ
(
P (t) + Fn(u(t))P (t) + P (t)F T

n (u(t))− P (t)ΥT (t)CT
r CrΥ(t)P (t)

)
,

(3.133)

with the following initial conditions

x̂(t0) ∈ X, P (t0) = P (t0)
T > 0, Υ(t0) = 0, η(s) = α(s) = 0, ∀s ∈ [t0 − dM , t0].

3.5.5 Further extensions

As it has been mentioned previously, the structure of the class of NUOS (3.84) is very

similar to that of the class of UOS given by (3.7). Indeed, to obtain the class of NUOS

system (3.84) from the class of UOS (3.7), it suffices to substitute in (3.7) the constant

ant-shift matrix An (the non zero entries of which are all equal to 1) by the time-varying

anti-shift matrix Fn(u(t)) the non zero entries of which are constituted by the fi(u(t)),

i = 1, . . . , n. However and in order to ensure the observability of the resulting NUOS, the

persistent excitation condition (3.86) is required.

The design of the FHGO (3.103) can be extended forwardly to the class of NUOS where

the functions fi(u(t)) depends not only on the input u but also ion the state x but in a

triangular manner. Otherwise, said, each fi, i = 1, . . . , n− 1 has the following structre

fi(u(t), x(t))
∆
= fi(u(t), x1(t), . . . , xi(t)), i = 1, . . . , n− 1. (3.134)

The equations of the underlying FHGO are similar to those of observer (3.103) but each

fi(u) is substituted by fi(u, x̂) where x̂ is the state estimate.

3.6 Academic example

One shall highlight the performance and main properties of the FHGO (3.103) through

the same example considered in the previous chapter. For clarity purposes, the underlying
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equations are recalled
ẋ1(t) = f1(t)x2(t)− 0.1x1(t),

ẋ2(t) = f2(t)− 0.1x2(t) + tanh(x1(t)x2(t)),

ẋ3(t) = −0.1x3(t) + tanh(x1(t)x2(t)) + 5sin(0.5πt) + ε(t)

y(t) = x1(t− d1(t)) + v(t)

(3.135)

where f1, f2 are expressed as f1(t) = sin(0.5t), f2 = sin(2.7t). The expression of the un-

known disturbance used in simulation is ε(t) = 0.1sin(0.1t) and the noise signal affecting

the output is chosen as the sum of two high frequency signals, namely

v(t) = 0.25 sin(387t) + 0.5 sin(987t). (3.136)

A filtered high gain observer under the form of (3.103) has been designed and simulated

by considering two scenarios. In the first ones, the outputs measurements have been

assumed to be available continuously and are free from delay. In the second scenario,

these measurements are assumed to be available at equally spaced sampling instants with

a time-varying delay. In each case, the obtained estimates are compared with those ob-

tained from a SHGO. These results are detailed hereafter.

3.6.1 Simulation results with delay free continuous output mea-

surements

The output measurements issued from simulation are corrupted by the noise signal given

by (3.136). The corresponding time evolution is given in Figure 3.1.
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Figure 3.1: Noisy time-continuous output measurements

The estimates of the states xi, i = 1, . . . , 3 are given in Figure 3.2 where each of these

estimates is compared to its true time evolution issued from the simulation of system
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(3.135). Recall that the expression of the disturbance ε(t) is unknown by the observer.

The value of θ was set to 10. The initial state values of the system are set xi = 1, . . . , 3

and those of the observer to η = x̂ = 0.
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Figure 3.2: Estimates of xi, i = 1, 2, 3 provided by the FHGO
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The obtained results are quite smooth and accurate enough. In order to highlight the

improvement in term of sensitivity to noise of the observer, a SHGO of the form (3.20)

has been designed to derive the state estimate. The obtained results are given in fig 3.3

where as for the FHGO, each estimate is compared to its true value. It is clear that the

obtained estimates are relatively very noisy, in particular those related to x2 and x3 and

this clearly confirms the significant improvement obtained with the FHGO.

3.6.2 Simulation results with sampled delayed output measure-

ments

Two sets of simulation results will be presented. In each case the output measurements

are assumed to be available at sampling equally spaced time instants with a sampling

period equal to Te with a time varying delay. Hence, by considering the sampling process

as a particular case of a time-varying delay, the overall delay d(t) can be expressed as

d(t) = (t− kTe) + d1(t). The expression of the time-varying d1(t) is

d1(t) = dM cos(kTe), k = 0, 1, . . . (3.137)

where dM > 0 is a positive constant.

In the first set of simulation results, the sampling period Te et the maximum value of

the output delay, dM , have been set to relatively small values, namely Te = 0.01 and

dM = 0.01. The value of the tuning parameter θ was set to 0.5. The estimates provided

by the FHGO are compared to their true time evolutions in Figure 3.4. The estimates

provided by the SHGO are reported in Figure 3.5.

The obtained estimates, for the FHGO as well as for the SHGO, clearly shows that for

small sampling periods and small amplitude for the output delay, the behaviours of the

observers and in particular its sensitivity to the noise measurements are similar to the

case where the output measurements are available continuously in time. In order to put

forward the fact, that these properties still be inherited by the observers even for more

high values of Te and dM others simulations experiments were carried out with Te = 0.2

and dM = 0.1. The value of θ was set to 2. The obtained estimates are given in Figure

3.6 for the FHGO and in Figure 3.7 for the SHGO. Again, the obtained results clearly

confirm the the significance of the improvement obtained with respect the sensitivity to

noise through the redesigned version given by the FHGO.
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Figure 3.3: Estimates of xi, i = 1, 2, 3 provided by the FHGO
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Figure 3.4: Estimates of xi, i = 1, 2, 3 provided by the FHGO with Te = 0.01, dM =

0.01, θ = 5
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Figure 3.5: Estimates of xi, i = 1, 2, 3 provided by the SHGO with Te = 0.01, dM =

0.01, θ = 5
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Figure 3.6: Estimates of xi, i = 1, 2, 3 provided by the FHGO with Te = 0.2, dM = 0.1, θ =

2

84



0 5 10 15 20

TIME (h)

-8

-6

-4

-2

0

2

4

6

x
1

SIMULATED

ESTIMATED

0 5 10 15 20

TIME (h)

-6

-4

-2

0

2

4

6

8

x
2

SIMULATED

ESTIMATED

0 5 10 15 20

TIME (h)

-10

-5

0

5

10

15

x
3

SIMULATED

ESTIMATED

Figure 3.7: Estimates of xi, i = 1, 2, 3 provided by the SHGO with Te = 0.2, dM = 0.1, θ =

2
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3.7 Application to a bioreactor

This section is devoted to the use of the proposed FHGO in a realistic simulation frame-

work involving a typical bioreactor model. we consider a simple microbial culture involv-

ing a single biomass of concentration X denoted by x1(t) growing on a single substrate of

concentration S, denoted x2(t). The bioprocess is continuously operating with a dilution

rate D(t) and a constant input substrate concentration sin and the specific growth rate is

assumed to follow the Contois model. The mathematical dynamical model of this process

is hence constituted by the following two mass balance equations:{
ẋ1(t) = µ⋆x1(t)x2(t)/ (kcx2(t) + x2(t))−D(t)x1(t)

ẋ2(t) = −µ⋆x1(t)x2(t)/ (kcx1(t) + x2(t)) +D(t)(sin − x2(t))
(3.138)

where µ⋆ and kc are the Contois law parameters. The biomass concentration, x1 is

assumed to be measured at sampling instants with a constant sampling period and the

objective is to estimate x1(t) and x2(t) continuously in time. System (3.138) has been

already considered in [8] where the authors exhibited a compact set Ω ⊂ IR+⋆ × IR+⋆

which is positively invariant under the dynamics of (3.138). Moreover, it was shown that

the transformation Φ : (x1, x2)
T ∈ Ω −→ z = (z1 = x1, z2 = µ⋆x1x2/(kcx1 + x2))

T is

a diffeomorphism from Ω onto its image which puts system (3.138) under the classical

uniformly observable triangular form (3.7). Hence, a classical SHGO can be designed

to estimate the states x1 and x2. Since the output measurements are available under

samples, one shall use the redesigned version (3.29) for comparison purposes. Indeed, one

shall highlight in the sequel the performance of the proposed FHGO (3.67) through the

bioreactor example by proceeding as follows

1. Two sets of simulations results shall be provided, each one corresponding to a value

of the sampling period, namely Te = 0.25h and Te = 0.5h.

2. In each set, simulation results provided by the continuous-discrete time SHGO (3.29)

are compared with their counterparts issued from the simulation of the FHGO

(3.67). Moreover, three versions of the FHGO (3.67) are considered and they cor-

respond to r = 1, r = 2 and r = 3.

3.7.1 Equations of the SHGO

Set

f(x1, x2) =

(
µ⋆x1(t)x2(t)/ (kcx2(t) + x2(t))−D(t)x1(t)

−µ⋆x1(t)x2(t)/ (kcx1(t) + x2(t)) +D(t)(sin − x2(t))

)
. (3.139)
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and let J be the jacobian of the transformation that puts system (3.138) under the

uniformly observable canonical form, i.e.

J(x1, x2) =

 1 0

µ⋆x22
(kcx1 + x2)2

µ⋆kcx
2
1

(kcx1 + x2)2

 . (3.140)

One also defines the following diagonal matrix ∆2 as follows

∆2(θ) = diag([1 θ]). (3.141)

The equations of the SHGO (3.29) in the original coordinates specialize as follows
˙̂x(t) = f(x̂1, x̂2)− θ0J

−1(x̂1, x̂2)∆
−1
2 (θ0)Γ2(

x̂1(t− d(t))− x1(t− d(t)) + α0(t)− α0(t− d(t))
)

α̇0(t) = −θ0γ1
(
x̂1(t− d(t))− x1(t− d(t)) + α0(t)− α0(t− d(t))

) (3.142)

where x̂ =

(
x̂1

x̂2

)
, ∆2(θ0) is as in (3.141) with θ = θ0, Γ2 =

(
γ1

γ2

)
and the delay d(t)

specializes as follows

d(t) = t− kTe, (3.143)

where Te is the sampling period.

3.7.2 Equations of the FHGO

As stated above, three FHGO observers shall be simulated and they differ by the value of

r which is equal to 1 in the first observer, to 2 in the second one and to 3 in the last one.

FHGO with r = 1

The underlying filter is or order r = 1 and the equations of the observer can be written

as follows
η̇(t) = θ1

(
−Kr1η + x̂1(t− d(t))− x1(t− d(t)) + α1(t)− α1(t− d(t))

)
˙̂x(t) = f(x̂1, x̂2)− θ1J

−1(x̂1, x̂2)∆
−1
2 (θ1)K

(r1)η

α̇1(t) = −θ1K(r1)
1 η

(3.144)

where η ∈ IR is the state of the filter of order r = 1, Kr1 ∈ IR and K(r1) =

(
K

(r1)
1

K
(r1)
2

)
∈

IR2 are the subvectors of K3 =

(
Kr1

K(r1)

)
which is chosen such that the matrix Ā3

∆
=

A3 −K3C3 is Hurwitz where A3 and C3 are as in (3.1) and (3.2), respectively with k = 3.
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FHGO with r = 2

The underlying filter is or order r = 2 and the equations of the observer can be written

as follows
η̇(t) = θ2

{
(A2 −Kr2C2)η +B2 (x̂1(t− d(t))− x1(t− d(t)) + α2(t)− α2(t− d(t)))

}
˙̂x(t) = f(x̂1, x̂2)− θ2J

−1(x̂1, x̂2)∆
−1
2 (θ2)K

(r2)η1

α̇2(t) = −θ2K(r2)
1 η1

(3.145)

where η =

(
η1

η2

)
∈ IR2 is the state of the filter of order r = 2, Kr2 ∈ IR2 and

K(r2) =

(
K

(r2)
1

K
(r2)
2

)
∈ IR2 are the subvectors of K4 =

(
Kr2

K(r2)

)
which is chosen such

that the matrix Ā4
∆
= A4 −K4C4 is Hurwitz where A4 and C4 are as in (3.1) and (3.2),

respectively with k = 4, and finally A2 and B2, C2 are as in (3.1) and (3.2), respectively

with k = 2.

FHGO with r = 3

The underlying filter is or order r = 3 and the equations of the observer can be written

as follows
η̇(t) = θ3

{
(A3 −Kr3C3)η +B3 (x̂1(t− d(t))− x1(t− d(t)) + α3(t)− α3(t− d(t)))

}
˙̂x(t) = f(x̂1, x̂2)− θ3J

−1(x̂1, x̂2)∆
−1
2 (θ3)K

(r3)η1

α̇3(t) = −θ3K(r3)
1 η1

(3.146)

where η =


η1

η2

η3

 ∈ IR3 is the state of the filter of order r = 3, Kr3 ∈ IR3 and

K(r3) =

(
K

(r3)
1

K
(r3)
2

)
∈ IR2 are the subvectors of K5 =

(
Kr3

K(r3)

)
which is chosen such

that the matrix Ā5
∆
= A5 −K5C5 is Hurwitz where A5 and C5 are as in (3.1) and (3.2),

respectively with k = 5, and finally A3 and B3, C3 are as in (3.1) and (3.2), respectively

with k = 3.

For each observer, SHGO and FHGO, its gain is computed such that the poles of the

observers are located at (−1). Hence, the following values of the gains have been used

1. For the SHGO (3.142),

Γ2 =

(
2

1

)
.
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2. For the FHGO (3.144) with r = 1,

K3 =


3

3

1

 , i.e. Kr1 = 3 and K(r1) =

(
3

1

)
.

3. For the FHGO (3.145) with r = 2,

K4 =


4

6

4

1

 , i.e. Kr2 =

(
4

6

)
and K(r2) =

(
4

1

)
.

3. For the FHGO (3.146) with r = 3,

K5 =



5

10

10

5

1


, i.e. Kr3 =


5

10

10

 and K(r3) =

(
5

1

)
.

3.7.3 Simulation results

The simulation of model (3.138) and all the observers has been carried out by considering

the following expression of the dilution rate D(t) = µ⋆(1 − 1
2
| sin(t)|) and the following

values of the kinetic parameters

µ⋆ = 1.064 h−1, kc = 4.39 g.g−1 , Sin = 20 g.L−1.

The initial conditions for model states and the initial conditions for all the sub-state

observers x̂ are

x1(0) = 1.5 g.L−1, x2(1) = 15 g.L−1, x̂1(0) = 1.0 g.L−1, , x̂2(0) = 14 g.L−1.

The initial values of all the filter states involved in all observers as well as the initial values

of the variables αi(t), i = 0, . . . 3, are set to zero.

The output measurements used by the observers have been first generated by simulating

model (3.138). Then, they have been sampled and corrupted by an additive high frequency

signal v(t) which is generated as follows

v(t) = 0.5

(
sin(2π0.95

t

2Te
) + sin(2π0.97

t

2Te
)

)
. (3.147)
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Before giving the set of simulation results, one recall that since the output measurements

are available under the form of samples, the value of the observer design parameter θ

(denoted θ0 for (3.142) and θi for each FHGO with r = i) cannot be chosen arbitrarily

high as in the continuous output case but its value has to satisfy a condition similar to

that given by (3.68) where the upper bound dM involved in (3.68) corresponds in our case

to Te.

Simulation results with Te = 0.25h

The corrupted outputs measurements used by the observers are given in Fig. 3.8. One

has reported in Fig. 3.9 the continuous estimation of the output provided by the SHGO

(3.142). Notice that the value of θ was set to 1 and higher values give rise to very noisy

estimates.
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Figure 3.8: Noisy outputs samples with Te = 0.25h

The estimates of the biomass x1 provided by the filtered observers with r = 1, 2, 3 are

given in Fig 3.10 where each of theses estimates is compared to the true sampled noise

free values issued from simulation. It is clear that the sensitivity to noise of the observer

is more and more improved when r grows. Notice that these estimates were obtained with

θ = 2. This explains why the estimates provided with r = 1 is almost as noisy as those

provided by the SHGO. However, when the latter was simulated with θ = 2, the obtained

estimates (not shown) were more noisy than those provided with r = 1.

Notice that the improvement of the sensitivity of the observer when changing the value

of r from 2 to 3 is not easily perceptible on Figure 3.10. Such improvement can be

more easily checked of Fig. 3.11 where the observation error related to x1 obtained with

r = 2 and r = 3 are reported. Even though an improvement is obtained with r = 3,
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Figure 3.9: Estimates of x1 from SHGO θ = 1, Te = 0.25h

the estimates provided with r = 2 are smooth enough and one can fix r = 2 to gain in

simplicity with respect to the observer implementation.

The estimate of x2 provided by the SHGO is reported in Fig 3.12 it is compared to their

true unknown values issued from simulation. The relatively noisy estimates are to be

emphasized.

One has reported in Fig 3.13 the estimates of x2 provided by the FHGO’s with different

values of r. Recall that the estimates obtained with r = 1 seem more noisy than those

provided by the SHGO by this is due to value of θ which is set to 1 for the SHGO and

to 2 in the FHGO. Notice that there is not a significant improvement with respect to the

sensitivity to noise when changing the value of r from 2 to 3.

Simulation results with Te = 0.5h

In order to put forward more the improvement obtained with the proposed FHGO, the

value of the sampling period has been increased by 100% and was set tp 0.5h. The

underlying noisy sampled outputs are reported on Fig. 3.14.

One has reported in Fig 3.15 the continuous estimation of the output provided by the

SHGO (3.142). The value of θ was set to 1.

The estimates of the biomass x1 provided by the filtered observers with r = 1, 2, 3 are

given in Fig 3.16 where each of theses estimates is compared to the true sampled noise free

values issued from simulation. Notice that these estimates were obtained in this case with

the same value of θ used for the SHGO, i.e. θ = 1. The improvement of the sensitivity to

noise of the observer is clearly perceptible even with r = 1. One also notices that r2 and

r = 3 give raise to comparable results.

The estimate of x2 provided by the SHGO is reported in Fig 3.17 it is compared to their
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Figure 3.10: Estimates of x1 from the FHGO’s θ = 2, Te = 0.25h

true unknown values issued from simulation. The relatively noisy estimates are to be

emphasized.

One has reported in Fig 3.18 the estimates of x2 provided by the FHGO’s with different

values of r. Again, the improvement of the sensitivity to noise of the observer is clearly
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Figure 3.11: Observation error of x1 with r = 2 and r = 3 θ = 1, Te = 0.25h
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Figure 3.12: Estimates of x2 from SHGO θ = 1, Te = 0.25h

perceptible even with r = 1. Contrarily to x1, the improvement with respect to the

observer sensitivity is significant when changing the value of r from 2 to 3.
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Figure 3.13: Estimates of x2 from the FHGO’s θ = 2, Te = 0.25h
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Figure 3.14: Noisy outputs samples with Te = 0.5h
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Figure 3.15: Estimates of x1 from SHGO θ = 1, Te = 0.5h
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Figure 3.16: Estimates of x1 from the FHGO’s θ = 1, Te = 0.5h
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Figure 3.18: Estimates of x2 from the FHGO’s θ = 1, Te = 0.5h
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3.8 Conclusion

The main motivation of this chapter was to investigate one of the challenging issues of

the high gain observer design, namely the measurement noise sensitivity, using a suit-

able filtering process. More specifically, a FHGO has been first proposed for a class of

uniformly observable nonlinear systems bearing in mind the implementation simplicity

and the convergence requirements. The former requirement has been achieved through-

out an appropriate cascade of two subsystems of the same dimension as the considered

system. The first subsystem is nothing else than a copy of the original system with a

corrective term which linearly depends on the state of the second subsystem. The latter

is an appropriate filter of the output observation error. The second requirement has been

fulfilled using a suitable high gain observer design framework. The proposed observer was

first presented in the case where the outputs measurements are available in a continuous

way. Then, it design has been extended to account for the sampling process and the

presence of delays in the outputs was derived. It has been shown that the redesigned ver-

sion inherits the main properties of the original filtered observer working with continuous

outputs. Further extensions of the design have been achieved by considering a class of

non uniformly observable systems. The underlying extensions accounts for the continu-

ous outputs as well as sampled/delayed ones. The effectiveness of the proposed observer

has been illustrated through an academic example as well as an example dealing with a

typical bioprocess. Further studies are under consideration in the proposed FHGO design

framework, namely how to redesign the proposed FHGO in the presence of appropriate

saturation functions to tackle the observer picking phenomenon.
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Chapter 4

Conclusion and perspectives

The main contributions in this thesis deal with the redesign of the Standard High Gain Ob-

server (SHGO) in order to derive redesigned versions where the sensitivity of the observer

with respect to the output noise measurements is improved. Two redesigned observers

involving filtering capabilities have been proposed. The first observer has been proposed

for a class of non uniformly observable systems and it can be interpreted as an extension

of an existing filtered observer that has been proposed for a class of uniformly observable

systems. The main idea behind the observer design is to substitute in the SHGO correc-

tive term, the noisy output observation error by filtered versions which are the states of

a linear filter the entry of which is the noisy output observation error. The dimension of

the linear filter is equal to the dimension of the original system in the single output case

and the equations of the filter involve a new design parameter that has to be calibrated

by a trial/error approach. The filtered observer design was first carried out in the case

where the outputs measurements are available continuously in time before being extended

to the case where these measurements are available only at sampling instants. Though

this redesigned observer allowed a significant improvement of the sensitivity to noise of

the standard high gain observer, its calibration requires the tuning of an additional de-

sign parameter. Moreover, the proposed design does not account for the case where the

outputs are available with a delay. In order to overcome these problems, a second re-

designed observer has been proposed. Three main novelties in the second design with

respect to the first one are to be emphasized. Indeed, as for the first filtered observer, the

idea behind the redesign is to substitute in the SHGO corrective term, the noisy output

observation error, by a filtered version issued from the use of a linear filter. However,

now, the dimension of the filter is not fixed as for the first redesigned observer but it

can be arbitrarily chosen by the user. The second novelty is that the proposed redesign

does not need the introduction of any additional design parameter, i.e. the tuning of

the resulting observer shall be achieved through the choice of the parameter θ as for the
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SHGO. Finally, the third novelty lies in the fact the proposed redesign accounts for all

possible scenarios related to the availability of the output measurements: continuously in

time or under the form of samples. Moreover, in both cases, these measurements may be

available with an output delay. The observer design has been first carried out for a class of

uniformly observable systems. Then, it has been shown that this design can be extended

almost in a straightforward manner to a class of non uniformly observable systems up to

the adoption of an additional appropriate persistent excitation condition on the system

inputs.

The performance and main properties of the proposed two redesigned observers have been

highlighted through academic examples as well as though typical bioreactots models.

On other aspects, it has been shown that the proposed redesigned observers allowed

to get a significant improvement of the observers sensitivity with respect to the output

noise measurements since the underlying redesigned observers involve filtering capabilities.

However, these observers still inherit from the SHGO the peaking phenomenon that occurs

during the transient periods. We are now working on the redesign of the second observer

in order to derive a version that appropriately deal with the peaking phenomenon. Such

a redesign shall be based on the use of nested saturation functions of the filtered output

observations errors as suggested in [30].
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[30] M. Farza, A. Ragoubi, S. Hadj Säıd, and M. M’Saad. Improved high gain observer

design for a class of disturbed nonlinear systems. Nonlinear Dynamics, 106:631Â–655,
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[58] O. Hernández-González, M. Farza, T. Ménard, B. Targui, and C.M. Astorga-

Zaragoza M. M’Saad. A cascade observer for a class of MIMO non uniformly observ-

able systems with delayed sampled outputs. Syst. Control Lett., 98:86Â–96, 2016.
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Abstract

In this thesis, the redesign of the Standard High Gain Observer is considered to improve

its sensitivity to high frequency signals. In this context, two redesigned Filtered High

Gain Observers, referred to as FHGO I and FHGO II, have been proposed. In particular,

the design of the FHGO II accounts for all possible scenarios related to the availability

of output measurements, namely continuously in time, under samples, with delays and

with possible successions in time of all these cases. Moreover, this design has been first

achieved for a class of uniformly observable systems before being extended to a class of

non uniformly observable ones. The underlying convergence analysis is performed thanks

to a comprehensive Lyapunov approach under a well-defined condition on the maximum

value of the output delay together with the maximum sampling partition diameter in

the case of sampled outputs. The effectiveness of the proposed FHGO’s are highlighted

through simulation results dealing with academic examples and typical bioreactor models.

Résumé

Dans cette thèse, la resynthèse de l’observateur de type grand gain standard est considérée

pour améliorer la sensibilité de l’observateur aux signaux à hautes fréquences. Dans ce

contexte, deux observateurs à grand gain filtrés, auxquels on se réfère par FHGO I et

FHGO II, ont été présentés. En particulier, la conception du FHGO II tient compte de

tous les scénarios possibles liés à la disponibilité des mesures de la sortie, notamment

continues dans le temps, sous forme d’échantillons, avec des retards et aussi avec des

successions possibles dans le temps de tous ces cas. En outre, cette conception a d’abord

été réalisée pour une classe de systèmes uniformément observables avant d’être étendue

à une classe de systèmes non uniformément observables. L’analyse de convergence sous-

jacente est réalisée grâce à une approche de Lyapunov sous des conditions bien définies

sur la valeur maximale du retard de sortie ainsi que la valeur maximale de la période

d’échantillonnage dans le cas des sorties échantillonnées. Les performances des obser-

vateurs proposés ont été illustrées à travers des résultats de simulation portant sur des

exemples académiques et des modèles typiques de bioréacteurs.


