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GRECO mâıtre de conférences

Thèse soutenue à Paris-Saclay, le 27 Octobre 2023, par

Georges AAZAN

Composition du jury
Membres du jury avec voix délibérative
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2

Titre: Stabilité des systèmes commutés contraints par des langages ω-réguliers
Mots clés: Systèmes commutés, Observateur, Fonctions de Lyapunov, automate de Büchi, Stabilité.

Résumé: Les systèmes commutés sont des
systèmes dynamiques comportant plusieurs
modes de fonctionnement, chaque mode étant
décrit par une équation différentielle (temps con-
tinu) ou une équation aux différences (temps
discret). Le mode de fonctionnement actif est
déterminé à tout moment par un signal de com-
mutation. Les systèmes commutés sont très utiles
en pratique pour décrire précisément l’exécution
d’algorithmes de contrôle sur des infrastructures
informatiques distribuées et ainsi pour prendre
en compte les contraintes liées à l’utilisation
de ressources informatiques et de communica-
tion partagées. De plus, les systèmes commutés
présentent des propriétés inattendues (un com-
portement instable peut par exemple résulter
d’une commutation entre des modes de fonction-
nement stables) qui justifient le développement
d’outils théoriques spécifiques pour leur étude.
Les premiers travaux sur la stabilité des systèmes
commutés se sont concentrés sur la stabilité des
signaux de commutation arbitraires ou satis-
faisant certaines conditions de temps de séjour
(minimum ou moyen). Plus récemment, plusieurs
travaux se sont penchés sur le problème de la
preuve de la stabilité de sous-ensembles de sig-
naux de commutation. En général, de tels signaux
de commutation sont supposés être générés par
un automate à états finis et la stabilité est car-
actérisée soit en terme de rayon spectral conjoint
contraint, soit à l’aide de fonctions de Lyapunov.
Cependant, certains sous-ensembles de signaux
de commutation ne peuvent pas être spécifiés à
l’aide d’automates à états finis classiques. Les
exemples sont les signaux de commutation ap-
partenant à certaines langues oméga-régulières
qui sont définies par des formules de logique tem-

porelle linéaire (LTL). Ils sont souvent utilisés
pour spécifier les protocoles de planification et
de communication. Un exemple représentatif de
langage oméga-régulier est l’ensemble des sig-
naux de commutation de type ”shuffle” : un
signal de commutation est dit de type ”shuf-
fle” si et seulement si tous les modes sont ac-
tivés une infiniment souvent. Dans une étude
préliminaire, la stabilité des systèmes commutés
sous signaux de commutation de ce type de con-
trainte a été caractérisée au moyen des fonctions
de Lyapunov. Cette thèse vise à développer
des outils théoriques et numériques pour anal-
yser la stabilité des systèmes commutés sous sig-
naux de commutation de type ”shuffle” et plus
généralement sous contraintes données par un lan-
gage oméga-régulier. Nous définissons une notion
de rayon spectral joint ”shuffled” qui nous permet
de quantifier la vitesse de convergence du système
commuté sous des signaux de commutation de
type ”shuffle”. Nous développons des algorithmes
numériques basés sur les inégalités matricielles
linéaires (IML) et des techniques théoriques des
automates pour calculer des approximations du
rayon spectral joint ”shuffled”. Dans la deuxième
partie de la thèse, nous étendons ces résultats à
des classes plus générales de signaux de commuta-
tion tels que ceux spécifiés par les langages oméga-
réguliers. Ces langages peuvent toujours être
caractérisés par des automates de Büchi. Enfin,
nous présenterons une conception d’observateur
pour systèmes commutés basée sur les automates
de Büchi et les séquences reconstructibles, c’est-
à-dire des séquences permettant d’estimer l’état
du système. Cette conception consiste en une
application de nos résultats théoriques.
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Abstract: Switched systems are dynamical sys-
tems with several operating modes, each mode be-
ing described by a differential (continuous time)
or difference (discrete time) equation. At all
times, the active operating mode is determined
by a switching signal. Switched systems are
very useful in practice for accurately describ-
ing the execution of control algorithms on dis-
tributed computing infrastructures and thus for
taking into account the constraints linked to the
use of shared computing and communication re-
sources. Furthermore, switched systems have un-
expected properties (unstable behavior can for ex-
ample result from switching between stable op-
erating modes) that justify the development of
specific theoretical tools for their study. Early
work on stability of switched systems has focused
on stability for switching signals that are arbi-
trary or that satisfy some (minimum or aver-
age) dwell-time condition. More recently, several
works have considered the problem of proving sta-
bility for subsets of switching signals. In general,
such switching signals are assumed to be gener-
ated by some finite state automaton and stabil-
ity is characterized either in term of constrained
joint spectral radius or using Lyapunov functions.
However, there are some subsets of switching sig-
nals that cannot be specified using classical finite
state automata. Examples are switching signals
belonging to some omega-regular languages e.g.
defined by Linear Temporal Logic (LTL) formu-

las, which are often used to specify scheduling
and communication protocols. A representative
example of omega-regular language is the set of
shuffled switching signals: a switching signal is
shuffled if and only if all the modes are activated
infinitely often. In a preliminary study, the sta-
bility of switched systems under shuffled switch-
ing signals was characterized by means of Lya-
punov functions. This thesis aims at developing
theoretical and numerical tools to analyze the sta-
bility of switched systems under shuffled switch-
ing signals and more generally under constraints
given by an omega-regular language. We define
a notion of shuffled joint spectral radius that al-
lows us to quantify the speed of convergence of
the switched system under shuffled switching sig-
nals. We develop numerical algorithms based on
Linear Matrix Inequalities (LMIs) and automata
theoretic techniques to compute approximations
of the shuffled joint spectral radius. In the second
part of the thesis, we extend these results to more
general classes of switching signals such as those
specified by omega-regular languages. These lan-
guages can always be characterized by Büchi au-
tomata. Finally, we will present an observer de-
sign for switched systems based on the Büchi au-
tomata and reconstructible sequences, i.e. se-
quences allowing to estimate the state of the sys-
tem. This design consists of an application of our
theoretical results.
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1 - Introduction

1.1 . Stability of switched systems

Background

Switched dynamical systems have been a wide domain of research for several

decades. In the recent years, they have earned significant attention across diverse

fields such as engineering or mathematics. Switched systems involve dynamic

transitions between different modes of operation where each mode is described by

a differential (continuous-time) or difference (discrete-time) equation. At each in-

stant, the so-called switching signal dictates the active mode or subsystem. Their

applications span various domains, including control theory, robotics, biology...

Especially, a broad domain in control theory is that of cyber-physical systems,

where switched systems can be used to describe faithfully the interaction between

the physical dynamics and the cyber components such as shared computing re-

sources and communication networks (see e.g. [33, 8, 53]).

Arbitrary switching signals

Several works focused on understanding the behavior of switched systems.

Originally these works were interested in stability for switching signals that are

arbitrary i.e. no constraints are imposed on the switching signal [51, 68]. For the

class of discrete-time switched linear systems with arbitrary switching signals, a

powerful notion for analyzing stability is that of Joint Spectral Radius (JSR)

which was introduced by Rota and Strang in the 60s, [61]. This quantity char-

acterizes the maximal exponential growth rate considering all possible switching

sequences. The JSR encompasses several applications in control theory, especially

those related to synchronization phenomena in networked systems. In fact, by

characterizing the JSR of interconnected nodes, one can identify optimal network

topologies that enhance synchronization [43, 27]. Another intriguing application

of the JSR is that of continuity of wavelets [40, 31]. However, computing the JSR

is, in general, a difficult task [62]. In particular, it is shown that the joint spectral

radius of a pair of matrices is not polynomial-time approximable (see Tsitsiklis

and Blondel, [70]). Several methods have been proposed to compute tight lower

and upper bounds [38, 73]. Also, it is shown that the JSR can be approximated

with arbitrary high accuracy [20].

1
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Constrained switching signals

Another notion that arises in this context is that of constrained systems,

these systems are no longer driven by arbitrary switching signals, instead they

are subject to constraints. These constraints might be given in terms of logic

formulas on the switching signals such as fairness constraints [16], or some dwell-

time constraints [50, 49]. In a dwell-time constrained system, the switching signal

cannot leave some modes before some duration has elapsed. Moreover, these

constraints can be given in terms of a finite state automaton, where the switching

signal must describe a path on the automaton [41, 52]. In the latter case, several

methods for handling such constraints through Lyapunov functions have been

presented in several works [47, 44, 60, 59, 9]. An alternative approach to analyze

stability with such constrained switching signals is by computing the so-called

constrained joint spectral radius introduced in 2012 [30, 44, 79]. In our

work, we will focus on 2 classes of constrained switched systems, the shuffled

switched systems and those driven by ω-regular languages.

Shuffled switching signals

There are classes of constrained switching signals that cannot be described us-

ing classical finite-state automata, in particular that of the shuffled switching

signals. A switching signal is said to be shuffled if each mode of the switched

system is activated an infinite number of times. A shuffled switching signal can

be seen as an arbitrary switching signal satisfying some fairness properties. Intu-

itively, a fairness property here imposes that no mode is prioritized on the others

i.e. every mode gets activated infinitely often. It is known from formal language

theory (see the book of Baier and Katoen, [13]) that the set of shuffled switch-

ing signals, cannot be characterized using classical finite state automata. To the

best of our knowledge, the term ‘shuffle’ was introduced first at 90s in [39] and

it has first been studied in [45] where it is proved that the set of stable shuffled

switched linear systems is not semi-algebraic. However, no further characteriza-

tion of shuffled stability is provided in that paper. A necessary and sufficient

condition can be found in [39] in terms of the maximal spectral radius of an infi-

nite set of matrices. However, its computation is non-trivial and not discussed in

that paper, which therefore does not provide any practical way to check shuffled

stability. In [76], it is shown that a notion of robust shuffled stability is equivalent

to stability for arbitrary switching signals. In [37], a Lyapunov characterization

of shuffled stability and a converse Lyapunov result have been established.

Stability analysis of shuffled switched systems is also interesting from the point

of view of applications. An example of such applications is multi-agent consensus
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with switching communication topologies. Consider a symmetric and connected

communication graph where only one edge is active at each time instant and is

selected by a switching signal. If one uses a shuffled switching signal, then each

edge is activated infinitely often so that the union of future communication graphs

is connected at all time, and it is well-known (see e.g. [56, 21]) that the consensus

is asymptotically reached. On the contrary, if some edges are never activated the

union of future communication graphs may be disconnected and the consensus

is not attainable. Another potential application is the design of observers for

switched systems where the dynamics in each mode is unobservable. Clearly,

the dynamics of the estimation error cannot be stable for arbitrary switching

signals, since keeping the same mode activated all the time makes the system

unobservable (see e.g. [64]). However, considering shuffled switching signals, it

may be possible to design asymptotically convergent observers [67]. This type of

observer design problems is natural when considering a system with distributed

sensors communication over a shared network. More generally, shuffled switching

signals are of interest to describe applications where multiple components rely on

a shared resource and where the access to this resource must be granted to each

of the component infinitely often.

ω-regular language constrained signals

The shuffled signals described before, provide an example of an ω-regular

language which can always be characterized using Büchi automata [13]. A

Büchi automaton is a finite state automaton where some particular states —

called accepting states — must be visited infinitely often.

In scheduling algorithms or communication protocols, ω-regular languages are

frequently used to specify some properties. For instance, these languages can de-

scribe fairness constraints through Linear Temporal Logic (LTL) specifications.

These LTL specifications can be always characterized by Büchi automata [74],

[75]. Moreover, efficient methods for this construction are given in [35] and [12].

Therefore, it is of interest for some cyber-physical systems applications — where

multiple components must be granted access to a shared resource infinitely of-

ten — to analyze the stability of switched systems driven by switching signals

belonging to a given ω-regular language [65, 24].

Moreover, a practical application of systems driven by ω-regular languages

is consensus/synchronization over time-varying (undirected) graphs, which can

be seen as a switched system. It is well known (see e.g. [56, 21]) that consen-

sus/synchronization can be reached if and only if, at every time instant, the union

of future interaction graphs is connected. This connectivity condition cannot be

described using finite state automata as in [60] but can be specified using Büchi
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automata as it will be shown in an example later.

The stability analysis of discrete-time switched linear systems constrained by

ω-regular languages have already been considered in the literature in [76] where

it is shown that the stability is equivalent to the stability of a lifted system driven

by shuffled switching signals. However, this result relies on a transformation and

cannot be used directly on the original state-space. A main contribution of this

thesis is to have a dedicated stability analysis of such ω-regular language driven

systems.

1.2 . An illustrating example

Let us consider a discrete-time switched system of the following form:

x(t+ 1) = Aθ(t)x(t), t ∈ N

where A1 =

(
2 0
0 1

2

)
and A2 =

(
1
5 0
0 1

)
and θ : N 7→ {1, 2} is a switching signal. In

the case of arbitrary switching signals, it is easy to see that the system is unstable.

Indeed if we keep activating the mode 1 the trajectories will diverge. However, let

us constrain the switching signal such that we cannot have a consecutive repetition

on mode 1. This can be represented in the second automaton in Figure 1.1. In

this case, the worst switching case is when mode 2 is always activated and the

system is marginally stable, that is, we have no divergence and some trajectories

do not converge to zero. Yet if we consider now that the state “a” on the last

automaton has to be visited infinitely often, then we get that the system is stable

for any such constrained switching signal. Indeed, the matrix A1A
n
2 is stable for

any n ≥ 1.

a a b a b

1,2 2

1

2 2
2

1

Figure 1.1: The automaton at the left corresponds to arbitrary switching,
the middle excludes the occurrence of -11- and in the last automaton the
state “a” should be visited infinitely often.

In this example, we have dealt with a system that is unstable for arbitrary

switching, marginally stable for a switching signal generated by a finite state



1.3. CONTRIBUTIONS 5

automaton and stable for a switching signals generated by a Büchi automaton. A

main goal of this thesis is to have a dedicated stability study for such constrained

systems.

1.3 . Contributions

In this thesis, we provide a new tool to analyze shuffled stability of discrete-

time switched linear systems. We also give sufficient and necessary stability con-

ditions for systems driven by ω-regular languages generated by Büchi automata.

Moreover, from the latter we present an approach for designing asymptotic ob-

servers for discrete-time switched linear systems.

The ρ-SJSR

We begin Chapter 3 by introducing the shuffled joint spectral radius

(SJSR), which intuitively measures how much the state of the system contracts

each time the signal shuffles (i.e. each time all modes have been activated). We

establish several properties of the SJSR and show how it relates to stability prop-

erties of switched systems driven by shuffled switching signals (Theorem 3.2.1).

In particular, we show that some switched systems that are unstable for arbi-

trary switching signals can be stabilized by using switching signals that shuffle

sufficiently fast, the minimal shuffling rate being related to both the JSR and

the SJSR (Corollary 3.3.1). We also present two approaches to compute approx-

imation of the SJSR. The first approach is based on the JSR of a finite set of

matrices and allows us to compute asymptotically tight lower and upper bounds

(Section 3.4.1). The second approach is based on Lyapunov functions and au-

tomata theoretic techniques and allows us to compute upper bounds (Sections

3.4.2, 3.4.3).

The ω-regular stability

In Chapter 4 we deal with the stability of a discrete-time switched linear

systems whose switching signals are generated by a given Büchi automaton. We

establish sufficient stability conditions using Lyapunov functions (Theorem 4.2.2).

For a particular class of such systems with invertible matrices, we show that these

conditions are also necessary with a converse Lyapunov result (Theorem 4.2.10).

Furthermore, we generalize most of the results of Chapter 3 to the case when the

switching signal is generated through Büchi automata. For instance, we introduce

the ω-Regular Joint Spectral Radius (ω-RJSR). Intuitively, this quantity measures
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how much the system contracts each time some accepting states on the automaton

are visited. We also relate the ω-RJSR with the stability of switched systems

driven by a given Büchi automaton (Theorem 4.3.7). Moreover, we show how

this quantity can lead us to characterize a class of stabilizing switching signals

(Corollary 4.3.8). We also present a Lyapunov-based method for computing upper

bounds ω-RJSR.

An observer design

Finally, we propose a switched observer based on the reconstructible sets i.e.

switching sequences allowing to asymptotically estimate the state of the system.

These observers have an internal discrete state variable whose dynamics are given

by the transition map of a Büchi automaton. The latter is calculated through

a dedicated algorithm. We present two approaches to design observer gains

where the observer is convergent for all switching signals whose occurrence rate of

reconstructible sequences is higher than a tunable threshold. The first approach

gives an explicit construction of the observer gains while the second one is based

on linear matrix inequalities (Proposition 5.3.10). For switched systems with

invertible state matrices, we show that the proposed observer structure is universal

in the sense that it is always possible to design an observer of the proposed form

(Theorem 5.3.9). We use a simple example to illustrate our methodology and then

consider a case study in which we design an observer for a multicellular converter.

1.4 . Publications and communications

This work has led to several publications and communications, including:

Journal articles

� Georges Aazan, Antoine Girard, Luca Greco, and Paolo Mason. An Au-

tomata Theoretic Approach to Observer Design for Switched Linear Sys-

tems. Submitted to Automatica, 2023.

� Georges Aazan, Antoine Girard, Luca Greco, and Paolo Mason. Stabil-

ity of shuffled switched linear systems: A joint spectral radius approach.

Automatica, 143:110434, 2022.

Conference papers

� Georges Aazan, Antoine Girard, Paolo Mason, and Luca Greco. Stability of

discrete-time switched linear systems with ω-regular switching sequences.

In International Conference on Hybrid Systems: Computation and Control,

2022.
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Book chapters

� Georges Aazan, Antoine Girard, Paolo Mason, and Luca Greco. A Joint

Spectral Radius for ω-Regular Language Driven Switched Linear Systems. In

Romain Postoyan, Paolo Frasca, Elena Panteley, Luca Zaccarian (Eds), Hy-

brid and Networked Dynamical Systems - Modeling, Analysis and Control,

to appear.

Communications

� Stability of switched systems under shuffled switching signals or linear tem-

poral logic constraints. Seminar at UCLOUVAIN, 2022.

� Georges Aazan, Antoine Girard, Luca Greco, and Paolo Mason. On the

joint spectral radius of shuffled switched linear systems. In International

Symposium on Mathematical Theory of Networks and Systems, 2022.

� A new joint spectral radius for shuffled switched linear systems. In Journées

nationales Automatique de la Société d’Automatique, de Génie Industriel et

de Productique (SAGIP), 2021.
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2 - A review of some results on switched sys-

tems

2.1 . Joint spectral radius

The joint spectral radius of a set of matrices, is a generalization of the no-

tion of the spectral radius of a matrix. It characterizes the maximal asymptotic

growth rate of products of matrices taken in a set A. The formal definition of the

joint spectral radius was first introduced in the 60s (see [61]). Since then, this

notion has received a lot of interest, it appears in several contexts and has many

applications. In this section, we introduce the main ingredients that we will be

using to introduce our results. The preliminary theorems are presented without

proofs and can be found in [37],[42] and the references therein.

2.1.1 . Definition

We consider a set A of matrices Ai ∈ Rn×n:

A = {Ai : i ∈ I},

where I = {1, · · · ,m} is the set of indices. The spectral radius of a matrix

A ∈ Rn×n is defined by:

ρ(A) = lim
k→∞

∥Ak∥1/k. (2.1)

To define the joint spectral radius (JSR for short), we must first introduce the

quantity:

ρk(A, ∥.∥) = sup

{∥∥∥∥∥
k∏

i=1

Mi

∥∥∥∥∥ : Mi ∈ A for 1 ≤ i ≤ k

}
, (2.2)

where
∏k

i=1Mi = Mk · · ·M1, ∥.∥ here is any submultiplicative matrix norm, and

ρk(A) represents the largest possible norm of all products of k matrices taken in

the set A. The defined quantity relates to the JSR by the following relation:

ρ(A, ∥.∥) = lim sup
k→∞

(ρk(A, ∥.∥))1/k. (2.3)

Thus, the JSR is the maximal asymptotic norm of the products of matrices that

can be constructed and taken in the set A, the 1/k exponent can be seen as a

normalization factor and allows for the JSR to be interpreted as a growth rate of

the norm. From the equivalence of norms in Rn, one can show that the JSR is

independent from the norm, and from now on we shall replace ρ(A, ∥.∥) by ρ(A).

9
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2.1.2 . Properties

1. Convergence

The sequence (ak)k≥1 defined by ak = ρk(A, ∥.∥)1/k converges and

ρ(A) = lim sup
k→∞

ak = lim
k→∞

ak = inf{ak|k ≥ 1}. (2.4)

The proof uses the Fekete’s Lemma and can be found in [42]. From now

on, we can use a simple limit instead of the lim sup used in the definition

of the JSR.

2. Scalar multiplication

Multiplying all the matrices of A by a real scalar α, also multiplies the JSR

in the same way:

∀α ∈ R, ρ(αA) = |α|ρ(A), (2.5)

this is obtained easily from the relation ∥αA∥ = |α|∥A∥.

2.1.3 . Stability of switched systems and JSR

We consider a discrete-time switched system of the following form:

x(t+ 1) = Aθ(t)x(t), t ∈ N (2.6)

where x : N → Rn is the trajectory and θ : N → I is the switching signal.

I = {1, . . . ,m}, withm ≥ 2, is the finite set of modes andA = {Ai ∈ Rn×n|i ∈ I}
is a set of matrices. Let S(I) be the set of all arbitrary (non-constrained) switching

signals taking values in I. Given an initial state x0 ∈ Rn, and a switching signal

θ ∈ S(I), the trajectory defined by (2.6) with x(0) = x0 is unique and denoted

by x(., x0, θ).

Before proceeding further, let us give some stability definitions.

Definition 2.1.1. The discrete-time switched system described by (2.6) is said

to be globally uniformly stable (GUS) if the exists some C ≥ 0 such that for any

initial condition x0 ∈ Rn and for any switching signal θ ∈ S(I), ∥x(t, x0, θ)∥ ≤
C∥x0∥.

This definition does not tell about the convergence of the trajectories, instead,

it gives a uniform upper bound on the norm of the trajectories. The next definition

is about the convergence of the trajectories to zero.
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Definition 2.1.2. The discrete-time switched system described by (2.6) is said

to be globally attractive (GA) if for any initial condition x0 ∈ Rn and for any

switching signal θ ∈ S(I), lim
t→∞

∥x(t, x0, θ)∥ = 0.

Moreover, discrete-time switched system described by (2.6) is said to be the

globally uniformly asymptotically stable GUAS if it is GA and GUS. It is

worthwhile to note that if a linear discrete-time switched system is GA then it is

GUAS [63].

We should stress on the relation between the joint spectral radius of a set of

matrices and the stability of the associated switched dynamical system as detailed

by the following theorem:

Theorem 2.1.3. [42] For any finite set of matrices A, the corresponding discrete-

time switched system with arbitrary switching is GUAS, if and only if ρ(A) < 1.

Consequently, this theorem shows in simple words that in order to check the

stability of an arbitrary switched system one should verify that its JSR is strictly

less than 1. However, the computation of the JSR is proven to be hard in the

general case, but effective methods are proposed to approximate it. In fact, it

is shown that unless P=NP, the joint spectral radius of a pair of matrices is not

polynomial-time approximable. Moreover, given a finite set A of n × n matrices

where their entries are rational then it is undecidable to determine if ρ(A) ≤ 1

(see [70, 38, 20, 58, 73]).

Remark 2.1.4. For a GUS discrete-time switched system, the corresponding set

of state matrices A, satisfies ρ(A) ≤ 1. However, the converse is not true in

general.

Remark 2.1.5. A similar and more general theorem is given in the case of con-

strained switching signal where the constraints are described by a finite state au-

tomaton, see section 2.1.4.

Moreover, since the JSR plays a crucial role in the stability of a switched

dynamical system and following the definition of the JSR, it is easy to build an

inequality between the latter quantity and the trajectories of a dynamical system,

as shown in the following theorem [17, Theorem 1]:

Theorem 2.1.6. For all ρ > ρ(A), there exists C > 0 such that:

∀θ ∈ S(I), ∀x0 ∈ Rn, ∀t ∈ N, ∥x(t, x0, θ)∥ ≤ Cρt∥x0∥. (2.7)

Conversely, if there exists C ≥ 0 such that (2.7) holds then ρ ≥ ρ(A).
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Additionally, besides the JSR, there is another interesting notion to study and

analyze the stability of a dynamical system, the Lyapunov function. A Lyapunov

function is a positive definite function, which we will denote by V that is usually

state-dependent and is non-increasing along the trajectories. Moreover, the deal

is if one can find such a function V , we get that our system is GUS. However,

usually the search for such functions is not always easy and challenging in some

cases. Also, we should point out that this function may not only depend on the

state variable x, additionally, it may depend on a second variable taking values

in a finite set, for instance, it may depend on the set of modes I also. In the

latter case we refer to the multiple Lyapunov functions which will be detailed

later [23, 28, 18]. Now let us restrain ourself to the case of the state-dependent

Lyapunov function, and let us consider the function V : Rn → R+. We say that

V is a Lyapunov function if it satisfies the following conditions for some α, β > 0,

for all x ∈ Rn and every solution x(·) of (2.6):

α∥x∥ ≤ V (x) ≤ β∥x∥,
V (x(t+ 1)) ≤ V (x(t)), t ≥ 0

Now let us consider the class of quadratic Lyapunov function of the form

V (x) =
√
xTPx where P ∈ Rn×n is a positive definite matrix. In the context

of discrete-time switched systems, the above conditions can be translated to the

following:

α∥x∥ ≤ V (x) ≤ β∥x∥, (2.8)

V (Aix) ≤ V (x). ∀x ∈ Rn, i ∈ I (2.9)

Now since V (x) =
√
xTPx, we get a system of linear matrix inequalities

(LMIs):

α2In ≤ P ≤ β2In, (2.10)

AT
i PAi ≤ P, ∀i ∈ I. (2.11)

Therefore, we get a sufficient condition for stability based on an optimization

problem which can be solved efficiently thanks to its convexity. These conditions

are given by the following theorem without proof:

Theorem 2.1.7. [63] If the LMIs (2.10) and (2.11) are feasible, then the corre-

sponding discrete-time switched linear system is GUS. Conversely, if the discrete-

time switched linear system is GUS then there exists a (not necessarily quadratic)

function V satisfying the inequalities (2.8) and (2.9).
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Moreover, if we consider the set Aγ = { 1
γA1, · · · , 1γAm} = 1

γA for some pos-

itive scalar γ, if we prove that the discrete-time switched system described by

(2.6) is GUS, then we get γ as an upper bound on ρ(A). In particular, in the

case of quadratic Lyapunov function, if one can find a positive definite matrix P

such that:

P > 0,

AT
i PAi ≤ γ2P, ∀i ∈ I.

Then ρ(A) ≤ γ. Also, the previous inequalities suggest to define ρe(A), the ellip-

soid norm approximation of the joint spectral radius of the set A [22]:

ρe(A) = inf

{
ρ ≥ 0

∣∣∣∣ ∃M > 0, M⊤ = M,
∀Ai ∈ A;A⊤

i MAi ≤ ρ2M

}
. (2.12)

This quantity characterizes the sets A such that the corresponding switched sys-

tem admits a quadratic Lyapunov function and will be useful in Chapter 5.

2.1.4 . Constrained joint spectral radius

In the previous sections we dealt with the case of an arbitrary switching signal,

however in some applications we can encounter some constraints on the switching

signal. Usually these constraints can be described by a labeled graph or described

by LTL formulas or belonging to some ω-regular language. In this section we focus

on the case when the switching signal is generated by a labeled graph. A labeled

graph, is a tuple G = (V,L,E) where V is a set of nodes, L is a set of labels,

E ⊆ V × L × V is a set of edges or transitions. For an edge e = (v, l, v′) ∈ E,

the node v ∈ V is the origin, l ∈ L is the label, v′ ∈ V is the end. A path in

the labeled graph G is a set of consecutive edges (v0, l1, v1), (v1, l2, v2) · · · , where
vi ∈ V for all i = 0, 1, · · · its label is the word w = l1l2 · · · , in this case we say

that w is accepted by G.

Remark 2.1.8. Throughout the thesis we will use the terms finite state automaton

and labeled graph interchangeably.

Given a finite set of matrices A = {A1, · · · , Am} and a labeled graph G, we
form a constrained system (A,G), where L = I = {1, · · · ,m} i.e. the labels of G
corresponds to the modes of the system. Thus the switching logic is constrained

by the graph G in the sense that the switching signal must describe a path in the

graph. Let us denote by ΘG the set of switching sequences θ such that θ(0)θ(1) · · ·
is accepted by G.

In the following example, taking I = {1, 2} we have 2 labeled graphs, the first

one corresponds to arbitrary switching and the second one corresponds to the case
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of constrained switching where the repetition of the second mode is forbidden i.e.

no −22− in the switching signal.

1, 2

a

1

a b

2

1

Figure 2.1: The automaton at the left corresponds to arbitrary switching
and that of the right excludes the occurrence of -22-.

Similar to the JSR, a notion of stability measure for such systems called the

Constrained Joint Spectral Radius (CJSR) is defined as follows [30]. Given a

constrained system (A,G), the CJSR of (A,G) denoted by ρ(A,G) is defined as

follows:

ρ(A,G) = lim
k→+∞

max


∥∥∥∥∥

k∏
i=1

Aθ(i)

∥∥∥∥∥
1
k

: θ ∈ ΘG

 . (2.13)

This quantity can be seen as a generalization of the JSR for the context of

constrained systems. In particular, if we consider G to be the automaton corre-

sponding to arbitrary switching in Figure 2.1, then Equation (2.13) will coincide

with the JSR equation (2.3). Moreover, Theorem 2.1.3 and equation (2.7) can be

adapted to the case of the CJSR [60].

Furthermore, the stability of such systems can be also studied by means of

the multiple Lyapunov functions or the multinorms [60].

2.2 . Shuffled switched systems

As already mentioned, families of constrained switching signals are not always

described by finite state automaton. Shuffled switching signals represent an ex-

ample of switching signals which cannot be characterized by such automata. The

goal of this section is to provide a state of the art on the stability of shuffled

systems. Firstly, a formal definition of the shuffled switching signal is introduced.



2.2. SHUFFLED SWITCHED SYSTEMS 15

Secondly, some stability definitions are given and lastly a characterization of sta-

bility using the Lyapunov functions is shown. All these definitions and results are

given without proof from [37].

2.2.1 . Shuffled switching signal

We start by giving a formal definition of the shuffling switching signal. We

also present some notions and properties related to such signals.

Definition 2.2.1. A switching signal θ : N → I is shuffled if:

∀i ∈ I, ∀T ∈ N,∃t ≥ T : θ(t) = i. (2.14)

The sequence of shuffling instants (τ θk )k∈N is defined by τ θ0 = 0 and for all k ∈ N:

τ θk+1 = min

{
t > τ θk

∣∣∣ ∀i ∈ I, ∃s ∈ N :
τ θk ≤ s < t and θ(s) = i

}
. (2.15)

The shuffling index is given by:

κθ(t) = max{k ∈ N|τ θk ≤ t}. (2.16)

The shuffling rate γθ ∈ R+
0 is defined by

γθ = lim inf
t→+∞

κθ(t)

t
. (2.17)

Intuitively, between the instants τ θk and τ θk+1 − 1, each mode in I is activated

at least once. For a shuffled switching signal, the sequence of shuffling instants

is well-defined, strictly increasing and thus goes to +∞. Similarly, the shuffling

index is well-defined, non-decreasing and goes to +∞, it essentially counts the

number of times the switching signal has shuffled between 0 and t. An illustration

of these concepts is shown in Figure 2.2.

It is easy to remark that for all t ∈ N, 0 ≤ κθ(t) ≤ t
m . Then, it follows that

the shuffling rate satisfies γθ ∈ [0, 1
m ].

2.2.2 . Shuffled stability analysis

We begin this section by introducing two crucial notions of stability in this

context, then we introduce the shuffle Lyapunov function and we relate its exis-

tence with the stability of shuffled systems.

Definition 2.2.2. Switched system (2.6) is said to be:
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τ
θ
0

τ
θ
1

τ
θ
2

t

t

θ(t)

κ
θ(t)

τ
θ
3

Figure 2.2: A switching signal (with m = 2) and the associated shuffling
instants and index.[37]

� Globally shuffle attractive (GSA) if for all x0 ∈ Rn and for all shuffled

switching signals θ:

lim
t→∞

∥x(t, x0, θ)∥ = 0. (2.18)

� Globally uniformly shuffle asymptotically stable (GUSAS) if there exists a

KL function β such that for all x0 ∈ Rn, for all shuffled switching signals

θ:

∥x(t, x0, θ)∥ ≤ β(∥x0∥, κθ(t)), ∀t ∈ Rn. (2.19)

It is clear that if a system is GUSAS then it is GSA. Now let us give the

definition of the shuffle Lyapunov function.

Definition 2.2.3. A function V : I × Rn → R+
0 is called a shuffle Lyapunov

function if there exists K∞ functions α1, α2, and a K function λ with λ(r) < r

for all r > 0, such that for all x ∈ Rn, the following hold:

α1∥x∥ ≤ V (i, x) ≤ α2∥x∥, i ∈ I (2.20)

V (i, Ai′x) ≤ V (i, x), i, i′ ∈ I, i ̸= i′ (2.21)

V (i+ 1, Aix) ≤ V (i, x), i ∈ I \ {m} (2.22)

V (1, Amx) ≤ λ(V (m,x)). (2.23)
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The shuffled Lyapunov function relates to the stability of such systems by the

following theorem :

Theorem 2.2.4. [37] If there exists a shuffle Lyapunov function, then the

switched system (2.6) is GUSAS. Conversely, if A consists of only invertible ma-

trices and if the system is GSA, then there exists a Lyapunov function satisfying

the above equations.

To give an intuition for the sufficiency part of the previous theorem, let us

consider the automaton in Figure 2.3 and a switching sequence θ with 3 modes.

The labels of the automaton correspond to the values taken by θ at each instant.

It is clear that if the state 1 is visited infinitely often, then the switching signal is

shuffled, that is all the 3 modes are activated infinitely often. Moreover, according

to the inequalities (2.21), (2.22) and (2.23) the Lyapunov function V (x(t)) is

non-increasing as time evolves and therefore the trajectories are bounded. Fur-

thermore, since the state 1 is visited infinitely often, we get that (2.23) will be

activated infinitely often, thus leading to the decrease of the trajectories to zero.

From the previous theorem, we deduce that the 2 defined notions of shuffled

stability are equivalent when A consists of invertible matrices.

2.3 . Conclusion

In this section, a quantitative method for analyzing the stability of discrete-

time switched systems with arbitrary switching was shown, the joint spectral

radius. Also, for systems with constrained switching, where the constraint is de-

scribed by a finite state automaton, a similar approach was given: the constrained

joint spectral radius. It was shown in Theorem 2.1.3 that the condition ρ(A) < 1

1 2 3
1 2

3

2, 3 1, 3 1, 2

Figure 2.3: Automaton generating a shuffled switching signal θ in the case
of 3 modes. Transition labels correspond to the value of θ.
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is a necessary and sufficient condition for stability. However, these methods fail

to characterize the stability of shuffled switched systems. For that sake, another

method is detailed in the previous subsection: the shuffle Lyapunov functions.

Indeed, the existence of these functions guarantees the stability of the shuffled

switched system. Yet, these functions do not allow us to estimate accurately the

convergence rate of these systems. Thus it is important to define a joint spectral

radius related to shuffled switched systems that allow us to quantify the rate of

convergence of the switched system in a shuffling context. In the next chapter,

we will define this notion, investigate its properties and develop algorithms for its

approximation.



3 - Shuffled joint spectral radius

In this chapter, a new notion of joint spectral radius dedicated to shuffled

switched systems is introduced. Intuitively, it measures how much the state of

the system contracts each time the signal shuffles (i.e. each time all modes have

been activated). Several of its properties are also established. Moreover, it is

shown how it relates to stability properties of switched systems driven by shuffled

switching signals (Theorem 3.2.1). In particular, it is shown that some switched

systems that are unstable for arbitrary switching signals can be stabilized by us-

ing switching signals that shuffle sufficiently fast, the minimal shuffling rate being

related to both the JSR and the SJSR (Corollary 3.3.1). Two approaches to com-

pute approximations of the SJSR are also presented. The first approach is based

on the JSR of a finite set of matrices and allows us to compute asymptotically

tight lower and upper bounds. The second approach is based on Lyapunov func-

tions and automata theoretic techniques and allows us to compute upper bounds.

Finally, numerical examples are given to validate the approach.

This chapter represents the results of the following paper:

Georges Aazan, Antoine Girard, Luca Greco, and Paolo Mason. Stability of

shuffled switched linear systems: A joint spectral radius approach. Automatica,

143:110434, 2022.

The organization of this chapter is as follows. In Section 3.1, the SJSR is

introduced and several of its properties are established. Section 3.2 shows the

relationship between the SJSR and stability properties of a switched system driven

by shuffled switching signals. Section 3.3 shows some sufficient conditions for

stabilization under shuffled switching. In Section 3.4, two approaches to compute

approximations of the SJSR are presented. Finally, two numerical examples are

used in Section 3.5 to illustrate the main results of the section.

3.1 . Definitions and properties

Before we give the definition of the shuffled joint spectral radius (SJSR), let us

introduce some notations and notions. Let S(I) and Ss(I) be the sets of arbitrary

switching signals and of shuffled switching signals respectively. We will be using

the same notations of the previous section (see Definition 2.2.1).

Definition 3.1.1. Let ρ > ρ(A), we define the Shuffled Joint Spectral Radius

19
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relative to (A, ρ) (ρ-SJSR for short) by the following

λ(A, ρ) = lim sup
k→+∞

 sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k
 , (3.1)

where Aθ,t =
∏t−1

i=0 Aθ(i) = Aθ(t−1) × · · · ×Aθ(0).

In order to investigate the properties of the ρ-SJSR, let us analyze some prop-

erties of the function λ(A, ·). We begin by showing a crucial observation that

relates the new defined quantity with the JSR, in fact the ρ-SJSR of A can be

seen as the JSR of an infinite but bounded set of matrices. Indeed, for ρ > ρ(A),

let us consider the following set of matrices:

Mρ =

 1

ρN

N∏
k=1

Ajk ,

∣∣∣∣∣∣
j1, . . . , jN ∈ I, N ∈ N,

∀i ∈ I, ∃k, jk = i,
and ∀k ̸= N, jk ̸= jN

 .

Although that Mρ generally has an infinite number of elements, this set is

bounded. In the following, we deal with the joint spectral radius of an infinite

but bounded set of matrices. Although we have defined the JSR only for finite

sets, the results still hold for the bounded case [42]. The latter property is shown

in the following Lemma.

Lemma 3.1.2. For all ρ > ρ(A), Mρ is a bounded set of matrices.

Proof. Let ρ > ρ(A), then ρ(1ρA) = ρ(A)
ρ < 1. Thus, from [17, Theorem 1 (b)],

we deduce that 1
ρA is a left convergent product (following the terminology in [17]).

Since the elements of Mρ are products of matrices belonging to the set 1
ρA, it

follows from [17, Theorem 1 (a)] that Mρ is a bounded set of matrices.

Thanks to the boundedness of the set Mρ, its JSR is well defined. Further-

more, in any matrix of Mρ, all modes in I appear at least once with the last

mode jN appearing only once. Consequently, the set Mρ matches with the set of

all possible matrices 1

ρτ
θ
1
Aθ,τθ1

for θ ∈ Ss(I).

Now we are ready to introduce the following lemma that expresses our obser-

vation more formally.

Lemma 3.1.3. For all ρ > ρ(A), λ(A, ρ) = ρ(Mρ).
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Proof. Let ρ > ρ(A) and k ∈ N with k ≥ 1, observe that for every θ ∈ Ss(I)

the sequence (θj)j∈N of switching signals in Ss(I) defined by θj(t) = θ(t+ τ θj ) for

t, j ∈ N is such that

Aθ,τθk
=

k−1∏
j=0

A
θj ,τ

θj
1

and τ θk =

k−1∑
j=0

τ
θj
1 . (3.2)

On the other hand, given a sequence (θj)j∈N in Ss(I) one can construct a

switching signal θ ∈ Ss(I) such that τ θi =
∑i−1

j=0 τ
θj
1 for i ≥ 1 and θ(t) = θi(t− τ θi )

for τ θi ≤ t < τ θi+1, so that (3.2) holds true. Then, it follows that

sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k

= sup
θ0,...,θk−1∈Ss(I)


∥∥∥∏k−1

j=0 Aθj ,τ
θj
1

∥∥∥
ρτ

θ0
1 +···+τ

θk−1
1


1/k

= sup
M1,...,Mk∈Mρ

∥∥∥ k∏
j=1

Mj

∥∥∥1/k.
Then, taking the limit superior on both sides when k goes to infinity yields the

expected result.

Following the previous Lemma 3.1.3, the ρ-SJSR inherits several properties of

the JSR.

Proposition 3.1.4. For all ρ > ρ(A),

λ(A, ρ) = lim
k→+∞

 sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k
 . (3.3)

Moreover, the value of λ(A, ρ) either in (3.1) or in (3.3) is independent of the

used matrix norm.

Proof. The result is a direct consequence of Lemma 3.1.3 and of the properties of

the JSR stated in [42, Lemma 1.2] and [42, Page 10].

Furthermore, λ(A, ·) enjoys several properties given in the proposition below.

Proposition 3.1.5. One of the following properties holds:
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(i) The function ρ 7→ λ(A, ρ) is decreasing, takes values in (0, 1) and, for all

ρ(A) < ρ1 ≤ ρ2,

λ(A, ρ2) ≤
(
ρ1
ρ2

)m

λ(A, ρ1). (3.4)

(ii) For all ρ > ρ(A), λ(A, ρ) = 0 and for all θ ∈ Ss(I) Aθ,t = 0, for all t ≥ τ θn.

Proof. Let ρ > ρ(A), similar to the proof of Lemma 3.1.2, applying [17, Theorem

1] to the set of matrices 1
ρA we get the existence of C1 ≥ 1 such that

0 ≤
∥∥Aθ,T

∥∥
ρT

≤ C1, ∀θ ∈ S(I), ∀T ∈ N. (3.5)

By letting T = τ θk , raising to the power 1/k and taking the supremum over shuffled

switching signals, we find

0 ≤ sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k

≤ C
1/k
1 .

Taking the limit of all terms yields λ(A, ρ) ∈ [0, 1].

Let us assume that there exists ρ′ > ρ(A) such that λ(A, ρ′) = 0 and let

us consider an arbitrary shuffled switching signal θ ∈ Ss(I). Let us consider

the sequence (θj)j∈N of switching signals in Ss(I), defined as in the proof of

Lemma 3.1.3. From Lemma 3.1.3, ρ(Mρ′) = 0 and therefore the joint spectral

radius of any finite subfamily of Mρ′ is also zero. In particular, we get for the

following subfamily of n elements:

ρ

({
1

ρ′τ
θ0
1

A
θ,τ

θ0
1

, . . . ,
1

ρ′τ
θn−1
1

A
θ,τ

θn−1
1

})
= 0 .

By applying [42, Proposition 2.1] and using (3.2) we get Aθ,τθn
= 0. It follows that

Aθ,t = 0, for all t ≥ τ θn, for all θ ∈ Ss(I). Then, we get that λ(A, ρ) = 0 for all

ρ > ρ(A).

Now let us assume that for all ρ > ρ(A), λ(A, ρ) > 0. Let ρ(A) < ρ1 ≤ ρ2.

By recalling that τ θk ≥ km, we have for all k ∈ N and for all θ ∈ Ss(I)∥∥Aθ,τθk

∥∥
ρ
τθk
2

=

∥∥Aθ,τθk

∥∥
ρ
τθk
1

(
ρ1
ρ2

)τθk
≤

∥∥Aθ,τθk

∥∥
ρ
τθk
1

(
ρ1
ρ2

)km

.

Raising to the power 1/k and taking the supremum over shuffled switching signals

yields

sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρ
τθk
2

)1/k

≤ sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρ
τθk
1

)1/k (
ρ1
ρ2

)m

.
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Now we take the limit of both terms and we get (3.4), which implies that ρ 7→
λ(A, ρ) is decreasing. Then, let us assume that there exists ρ2 > ρ(A) such

that λ(A, ρ2) = 1. It follows from (3.4) that for all ρ1 ∈ (ρ(A), ρ2), λ(A, ρ2) <

λ(A, ρ1), which contradicts the fact that λ(A, ρ1) ∈ [0, 1]. Hence, λ(A, ρ) ∈ (0, 1)

for all ρ > ρ(A).

Now, in order to get rid of the dependency of ρ in the ρ-SJSR, it is natural to

introduce the following definition.

Definition 3.1.6. The Shuffled Joint Spectral Radius (SJSR) of A is defined as

λ(A) = lim
ρ→ρ(A)+

λ(A, ρ). (3.6)

Since by Proposition 3.1.5, λ(A, ·) is bounded and non-increasing in ρ, the

right limit at ρ(A) in (3.6) exists and the SJSR is well-defined. We can now show

some properties of the SJSR.

Proposition 3.1.7. The SJSR enjoys the following properties:

(i) λ(A) belongs to [0, 1] and is independent of the choice of the norm;

(ii) For all K ∈ R, K ̸= 0, we have λ(KA) = λ(A).

Proof. The first statement follows from (3.6) and by the properties of λ(A, ·)
proved in Propositions 3.1.4 and 3.1.5.

Concerning the second item, let K ∈ R, K ̸= 0, we have by (3.6)

λ(KA) = lim
ρ→ρ(KA)+

λ(KA, ρ) = lim
ρ→ρ(A)+

λ(KA, |K|ρ)

where the second equality comes from the property of the JSR, ρ(KA) = |K|ρ(A),

see e.g. [42, Proposition 1.2]. Furthermore, from (3.1), one can deduce that for

all ρ > ρ(A), λ(KA, |K|ρ) = λ(A, ρ), therefore λ(KA) = λ(A).

Let us remark that while the JSR ρ(A) belongs to R+
0 , the SJSR λ(A) is

always a value in [0, 1]. Intuitively, while the JSR provides an estimate of the

contraction rate (when ρ(A) < 1) or of the expansion rate (when ρ(A) > 1) of the

system state at each time step for arbitrary switching signals, the SJSR measures

how much additional contraction of the state is obtained each time the signal

shuffles. Theorem 3.2.1 in the next section provides theoretical ground to this

interpretation.
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3.2 . Relation with dynamical systems

In this section, we show how the SJSR relates to stability properties of

switched linear systems with shuffled switching signals. From Proposition 3.1.5,

we already know that if λ(A, ρ) = 0 for some ρ > ρ(A) then all trajectories

of (2.6) will stay at 0 after n shuffling instants. So, we focus in this section on

the case when λ(A, ρ) > 0 for all ρ > ρ(A). In particular, we show how the

ρ-SJSR allows us to compute bounds on the shuffling rate ensuring stability. The

next result clarifies the relationship between the ρ-SJSR and the behavior of the

trajectories of (2.6).

Theorem 3.2.1. For all ρ > ρ(A), for all λ ∈ (λ(A, ρ), 1], there exists C ≥ 1

such that

∥x(t, x0, θ)∥ ≤Cρtλκθ(t)∥x0∥,
∀θ ∈ Ss(I), ∀x0 ∈ Rn, ∀t ∈ N. (3.7)

Conversely, if there exists C ≥ 1, ρ ≥ 0 and λ ∈ [0, 1] such that (3.7) holds, then

either ρ > ρ(A) and λ ≥ λ(A, ρ), or ρ = ρ(A) and λ ≥ λ(A).

Proof. We start by proving the direct result. Let ρ > ρ(A) and λ ∈ (λ(A, ρ), 1].

By definition of λ(A, ρ), there exists k0 ≥ 1 such that

sup
θ∈Ss(I)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k

≤ λ, ∀k ≥ k0.

It follows that ∥∥Aθ,τθk

∥∥ ≤ ρτ
θ
kλk, ∀θ ∈ Ss(I),∀k ≥ k0. (3.8)

Then, let C1 ≥ 1 be such that (3.5) holds. In particular, for T = τ θk and for

shuffling switching signals, we obtain from (3.5) that∥∥Aθ,τθk

∥∥ ≤ C1ρ
τθk , ∀θ ∈ Ss(I), ∀k ∈ N. (3.9)

Then, let C2 = C1λ
−k0 , it follows from (3.8) and (3.9) that∥∥Aθ,τθk

∥∥ ≤ C2ρ
τθkλk, ∀θ ∈ Ss(I),∀k ∈ N. (3.10)

Let θ ∈ Ss(I), t ∈ N, and k = κθ(t), we have Aθ,t = Aθ′,t−τθk
Aθ,τθk

where θ′ ∈ Ss(I)

is given by θ′(s) = θ(τ θk + s), for all s ∈ N. By (3.5), we get that∥∥Aθ′,t−τθk

∥∥ ≤ C1ρ
t−τθk . (3.11)
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Then, let C = C1C2, by (3.10) and (3.11), we get∥∥Aθ,t

∥∥ ≤
∥∥Aθ′,t−τθk

∥∥∥∥Aθ,τθk

∥∥ ≤ Cλκθ(t)ρt.

Hence, (3.7) holds.

We now prove the converse result. By definition of induced matrix norm, (3.7)

is equivalent to the following:

∥Aθ,t∥ ≤ Cρtλκθ(t), ∀θ ∈ Ss(I), ∀t ∈ N. (3.12)

Since λ ∈ [0, 1] and κθ(t) ∈ N we also have

∥Aθ,t∥ ≤ Cρt, ∀θ ∈ Ss(I), ∀t ∈ N.

Raising the previous terms to the power 1/t and taking the supremum over shuf-

fling switching signals yields

sup
θ∈Ss(I)

∥Aθ,t∥1/t ≤ C1/tρ, ∀t ∈ N.

Using the fact that for every θ ∈ S(I) and all t ∈ N there exists θt ∈ Ss(I) that

coincides with θ up to time t, the equation above can be re-written as

sup
θ∈S(I)

∥Aθ,t∥1/t ≤ C1/tρ, ∀t ∈ N.

Taking the limit as t goes to infinity, one obtains that ρ(A) ≤ ρ. Recalling (3.12)

and fixing t = τ θk , we have

∥Aθ,τθk
∥ ≤ Cρτ

θ
kλk, ∀θ ∈ Ss(I), ∀k ∈ N

which is equivalent to(
∥Aθ,τθk

∥

ρτ
θ
k

)1/k

≤ C1/kλ, ∀θ ∈ Ss(I), ∀k ∈ N. (3.13)

If ρ > ρ(A), taking the supremum over all shuffled switching signals and the limit

as k goes to infinity yields λ(A, ρ) ≤ λ. If ρ = ρ(A), then for all ρ′ > ρ(A),

(3.13) gives (
∥Aθ,τθk

∥

ρ′τ
θ
k

)1/k

≤ C1/kλ, ∀θ ∈ Ss(I), ∀k ∈ N.

Then, it follows that for all ρ′ > ρ(A), λ(A, ρ′) ≤ λ and therefore λ(A) ≤ λ.
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3.3 . Stabilization and shuffling rate

In this section, we give sufficient conditions for shuffle stabilization based on

the previous results.

Theorem 3.2.1 provides a bound on the growth rate of the state and can be

used to derive conditions for stabilization using shuffled switching signals with a

minimal shuffling rate.

Corollary 3.3.1. Assume λ(A, ρ) > 0 for every ρ > ρ(A). Let θ ∈ Ss(I), if

there exists ρ > ρ(A) such that γθ > − ln(ρ)
ln(λ(A,ρ)) , then

lim
t→+∞

∥x(t, x0, θ)∥ = 0, ∀x0 ∈ Rn. (3.14)

Proof. If λ(A, ρ) > 0 and γθ > − ln(ρ)
ln(λ(A,ρ)) , then there exists λ ∈ (λ(A, ρ), 1) such

that γθ > − ln(ρ)
ln(λ) and ϵ > 0 such that ϵ < γθ + ln(ρ)

ln(λ) . Then, from the definition of

shuffling rate, there exists t0 ∈ N such that

κθ(t)

t
> γθ − ϵ

2
, ∀t ≥ t0.

From Theorem 3.2.1, there exists C ≥ 1 such that for all x0 ∈ Rn, for all t ≥ t0.

∥x(t, x0, θ)∥ ≤ Cρtλκθ(t)∥x0∥

≤ Cρtλ(γθ− ϵ
2
)t∥x0∥

≤ Cρtλ
(− ln(ρ)

ln(λ)
+ ϵ

2
)t∥x0∥

= Cλ
ϵ
2
t∥x0∥,

from which (3.14) follows.

A practical consequence of the previous corollary is that even if the switched

system is unstable for arbitrary switching (i.e. if ρ(A) > 1), it can be stabilized

by shuffling sufficiently fast. Note that since for all θ ∈ Ss(I), the shuffling rate

γθ ≤ 1
m , it follows that stabilization by shuffling can only be done if there exists

ρ > ρ(A) such that − ln(λ(A,ρ))
ln(ρ) > m.

Remark 3.3.2. As a consequence of Corollary 3.3.1, we have that if λ(A) ∈
(0, 1), γθ > − ln(ρ(A))

ln(λ(A)) implies (3.14). However, we are unable to show that, in

general, the function ρ 7→ − ln(ρ)
ln(λ(A,ρ)) is non-decreasing, hence replacing the as-

sumption of Corollary 3.3.1 by γθ > − ln(ρ(A))
ln(λ(A)) may increase the conservativeness

of the result.



3.4. COMPUTING BOUNDS WITH LYAPUNOV TECHNIQUES 27

Remark 3.3.3. In the case where the switching signal θ is generated by a Markov

chain, an explicit expression for γθ can be calculated, this is detailed in Appendix

A.

3.4 . Computing bounds with Lyapunov techniques

Similar to the JSR, the exact computation of the ρ-SJSR appears in general

out of reach, and an interesting problem is to look for theoretical and numerical

methods allowing to estimate the ρ-SJSR. Such estimates would have an impact on

the applicability of the stability results, Theorem 3.2.1 and Corollary 3.3.1. From

Lemma 3.1.3, it follows that λ(A, ρ) could be approximated by computing bounds

on ρ(Mρ). However, off-the-shelf algorithms for computing approximations of the

JSR only apply to finite sets of matrices [73]. A lower bound of λ(A, ρ) can still

be computed by computing a lower bound of the JSR of a finite subfamily of Mρ.

However, a similar approach does not allow to compute upper bounds. In the next

subsection, we provide lower and upper bounds based on the computation of the

joint spectral radius of a finite set of matrices. Methods to compute upper bounds

for the ρ-SJSR based on Lyapunov techniques are then developed in Sections 3.4.2

and 3.4.3.

3.4.1 . Asymptotic estimate

In this section, we provide asymptotically tight bounds of λ(A, ρ) for a large

enough ρ. We first recall the following classical result, which roughly speaking

ensures, for any bounded set of matrices M, the existence of a matrix norm such

that ρ(M) is approximated by the maximum norm of the matrices in M.

Proposition 3.4.1. [17, Lemma 2] Let M be a bounded set of matrices. The

following equality holds

ρ(M) = inf
∥·∥

max
M∈M

∥M∥,

where the infimum is taken among all matrix norms induced from norms in Rn.

When it exists, an induced norm ∥ · ∥ that satisfies ρ(M) = max
M∈M

∥M∥ is

called extremal for M. We refer to [42, Theorem 2.2], and also to [14] and [45], for

sufficient conditions and for necessary and sufficient conditions for the existence

of extremal norms.

Let us consider the set NI of products of matrices where all modes in I appear

exactly once:

NI =

{
m∏
k=1

Ajk

∣∣∣∣ j1, . . . , jm ∈ I,
∀i ∈ I, ∃k ∈ {1, . . . ,m}, jk = i

}
.
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The following proposition provides a lower bound for the ρ-SJSR.

Proposition 3.4.2. For all ρ > ρ(A)

λ(A, ρ) ≥ ρ(NI)

ρm
.

Proof. Let us remark that we have 1
ρmNI ⊆ Mρ. Then, from the definition of the

JSR, we get

ρ(Mρ) ≥ ρ
( 1

ρm
NI

)
=

ρ(NI)

ρm
.

Lemma 3.1.3 then allows us to conclude.

It is natural to ask whether the lower bound provided in Proposition 3.4.2 can

prove asymptotically tight. The following theorem provides an upper bound for

the ρ-SJSR and answers to this question.

Theorem 3.4.3. The following results hold true.

(i) For all K > ρ(NI), there exists R ≥ ρ(A) such that for all ρ ≥ R,

λ(A, ρ) ≤ K

ρm
. (3.15)

(ii) We have the asymptotic estimate

lim
ρ→+∞

ρmλ(A, ρ) = ρ(NI). (3.16)

(iii) If there exists a norm ∥ · ∥∗ that is extremal for NI , then there exists R ≥
ρ(A) such that for all ρ ≥ R,

λ(A, ρ) =
ρ(NI)

ρm
. (3.17)

Proof. Let us fix K > ρ(NI). By Proposition 3.4.1 there exists an induced matrix

norm ∥ · ∥∗ such that ∥M∥∗ ≤ K for every M ∈ NI . Considering now the set

M̂ρ = ρmMρ, we have NI ⊆ M̂ρ. We want to show that ∥M∥∗ ≤ K for every

M ∈ M̂ρ \ NI , provided that ρ is large enough. For this purpose, we first take

any R̃ > ρ(A). Then, again by Proposition 3.4.1, there exists an induced matrix

norm ∥ · ∥∗∗ such that ∥A∥∗∗ ≤ R̃ for every A ∈ A. Taking K̃ ≥ 1 such that

∥A∥∗ ≤ K̃∥A∥∗∗ for every matrix A ∈ Rn×n we obtain

∥Aθ,i∥∗ ≤ K̃∥Aθ,i∥∗∗ ≤ K̃R̃i, ∀θ ∈ S(I), ∀i ∈ N.
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Observe now that every element of M̂ρ \ NI takes the form 1

ρτ
θ
1−m

Aθ,τθ1
for some

θ ∈ Ss(I) such that τ θ1 > m. Setting R = max
{
R̃, K̃K R̃m+1

}
we have for every

ρ ≥ R ∥∥∥∥ 1

ρτ
θ
1−m

Aθ,τθ1

∥∥∥∥
∗
≤ 1

ρτ
θ
1−m

K̃R̃τθ1 = K̃R̃m

(
R̃

ρ

)τθ1−m

≤ K̃R̃m

(
R̃

R

)τθ1−m

≤ K̃R̃m+1

R
≤ K.

This proves that ∥M∥∗ ≤ K for every M ∈ M̂ρ \ NI , hence for every M ∈ M̂ρ,

if ρ ≥ R. We deduce that

λ(A, ρ) =
1

ρm
ρ(M̂ρ) ≤

1

ρm
sup

M∈M̂ρ

∥M∥∗ ≤
K

ρm
,

for ρ ≥ R, which proves (3.15).

Setting K = ρ(NI) + ϵ for an arbitrary ϵ > 0 we then get the existence of

R ≥ ρ(A) such that, for all ρ ≥ R,

0 ≤ ρmλ(A, ρ)− ρ(NI) ≤ ϵ,

where the inequality on the left follows from Propositions 3.4.2. Letting ϵ tend to

zero, this implies (3.16).

Finally, by taking ∥ · ∥∗ extremal for NI in the argument above, we obtain

that (3.15) holds true with K = ρ(NI). Together with Proposition 3.4.2, this

implies (3.17).

In the case where all the matrices Ai are invertible, a practical criterion to

estimate the lower bound R in Theorem 3.4.3 is given by the following lemma.

Before stating the lemma, we define, for each i ∈ I, the set Ni of products of N

matrices in A with N < m, where each mode in I appears at most once and i

appears exactly once:

Ni =

{
N∏
k=1

Ajk

∣∣∣∣ j1, . . . , jN ∈ I, N < m,
∀k ̸= k′, jk ̸= jk′ , and ∃k, jk = i

}
.

Lemma 3.4.4. Assume all the matrices in A are invertible. Let K ≥ ρ(NI) and

let ∥ · ∥∗ be an induced matrix norm such that ∥M∥∗ ≤ K for every M ∈ NI .

Then, setting

R = max
i∈I,M∈Ni

∥MAiM
−1∥∗, (3.18)
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we have that R ≥ ρ(A) and (3.15) (and (3.17), if K = ρ(NI)) holds true for

ρ ≥ R.

Proof. Following the proof of Theorem 3.4.3, it is enough to show that ∥Aθ,τθ1
∥∗ ≤

KRτθ1−m for every θ ∈ Ss(I) such that τ θ1 > m. The product of matrices Aθ,τθ1
=

Aθ(τθ1−1) · · ·Aθ(0) is shuffling once, therefore all the modes appear at least once

(with θ(τ θ1 − 1) appearing exactly once). The total number of repetitions in the

product is given by n = τ θ1 − m > 0. Suppose that the first repeated mode is

θ(j1). In order to remove Aθ(j1), using the fact that all matrices Ai are invertible,

we multiply Aθ,τθ1
on the right by

Q1 = (Aθ(j1−1) · · ·Aθ(0))
−1A−1

θ(j1)
(Aθ(j1−1) · · ·Aθ(0)).

Then, Aθ,τθ1
Q1 = A

θ(1),τθ
(1)

1

where the switching signal θ(1) is given by θ(1)(t) = θ(t)

until the instant j1 − 1, and with θ(1)(t) = θ(t + 1) afterwards. It is clear that

τ θ
(1)

1 = τ θ1 − 1. By repeating this process n times, we get a switching signal θ(n)

without repetitions before its first shuffling instant (i.e. τ θ
(n)

1 = τ θ1 − n = m).

Then, we finally have

Aθ,τθ1

( n∏
k=1

Qn+1−k

)
= A

θ(n),τθ
(n)

1

,

with A
θ(n),τθ

(n)
1

∈ NI . It follows that

Aθ,τθ1
= A

θ(n),τθ
(n)

1

( n∏
k=1

Q−1
k

)
,

where for all k = 1, . . . , n,

Q−1
k ∈

⋃
i∈I

{MAiM
−1|M ∈ Ni},

and therefore ∥Q−1
k ∥∗ ≤ R, where R is given by (3.18). Moreover, since Ai ∈ Ni,

we have that R ≥ max
i∈I

∥Ai∥∗, which implies by Proposition 3.4.1 that R ≥ ρ(A).

Finally, from submultiplicativity of the induced matrix norm, we get that for all

θ ∈ Ss(I)

∥Aθ,τθ1
∥∗ ≤ ∥A

θ(n),τθ
(n)

1

∥∗
( n∏

k=1

∥Q−1
k ∥∗

)
≤ KRn ,

which yields the expected result since n = τ θ1 −m.
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We have seen with Theorem 3.4.3 and Lemma 3.4.4 that, under certain con-

ditions, we can find tight bounds on the ρ-SJSR. In particular, if one can find a

norm ∥ · ∥∗ that is extremal for NI , (3.18) provides an R ≥ ρ(A) such that for all

ρ ≥ R the exact value of ρ-SJSR is given by (3.17). For all ρ ∈ [ρ(A), R) we can

still use the lower bound provided by Proposition 3.4.2, but we need an effective

way to compute an upper bound. To address this problem, in the next section we

present two Lyapunov-based methods.

Before that, we end this section by exhibiting a class of switched systems

for which the value of the ρ-SJSR can be explicitly determined for all values of

ρ > ρ(A). Let us consider a set of commuting matrices A = {A1, · · · , Am}, it is
well known (see e.g. [22]) that in that case the JSR is equal to the maximal value

of the spectral radii of the matrices of A, that is ρ(A) = max(ρ(A1), . . .ρ(Am)).

Interestingly, in that case, we are also able to determine the expression of the

ρ-SJSR:

Proposition 3.4.5. For a finite set of commuting matrices A = {A1, · · · , Am},
we have for all ρ > ρ(A),

λ(A, ρ) =
ρ(A1 · · ·Am)

ρm
.

Proof. Since the matrices commute, all matrices NI are equal to A1 · · ·Am. Then,

Proposition 3.4.2 provides a lower bound on λ(A, ρ) with ρ(NI) = ρ(A1 · · ·Am).

We need to show that it is also an upper bound.

From Proposition 3.4.1 we know that, for all ρ > ρ(A), there exists a (sub-

multiplicative) matrix norm ∥ · ∥∗ such that ρ > max
i∈I

(∥Ai∥∗). In the case of

commuting matrices, the product Aθ,τθk
can be rearranged as follows

Aθ,τθk
= (A1 · · ·Am)kAi1

1 · · ·Aim
m

where mk + i1 + · · ·+ im = τ θk . Whereby we have

∥Aθ,τθk
∥∗

ρτ
θ
k

≤ ∥A1 · · ·Am∥k∗∥A1∥i1∗ · · · ∥Am∥im∗
ρkmρi1 · · · ρim

.

Moreover, recalling that
∥Aj∥∗

ρ < 1 for j = 1, . . . ,m, we get

∥Aθ,τθk
∥∗

ρτ
θ
k

≤ ∥A1 · · ·Am∥k∗
ρkm

.
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By raising the previous expression to the power 1
k , by taking the supremum over

θ ∈ Ss(I) and the limit for k going to infinity, we get

λ(A, ρ) ≤ ρ(A1 · · ·Am)

ρm
.

The rest details two methods for computing upper bounds on the JSR and

the ρ-SJSR. Both approaches are based on Lyapunov functions and automata

theoretic techniques. While the first approach is computationally more tractable,

the second approach is shown to be tight.

The Lyapunov approach draws inspiration from [37] but we will be considering

different underlying automata which allow us to prove the tightness of our upper

bound. Also, our Lyapunov conditions also resemble those of [46], however, in

that work, the relation of such Lyapunov functions to shuffled switching signals

was not established.

3.4.2 . First method for computing bounds

Our first method is based on a Lyapunov function indexed by the set of modes

I. It can be seen as an extension of Theorem 1 in [37] in order to compute bounds

on the JSR and the ρ-SJSR (in [37], only a stability certificate is provided).

Theorem 3.4.6. If there exist V : I×Rn → R+
0 , α1, α2, ρ > 0 and λ ∈ [0, 1] such

that the following inequalities hold true for every x ∈ Rn

α1∥x∥2 ≤ V (i, x) ≤ α2∥x∥2, i ∈ I (3.19)

V (i, Ai′x) ≤ ρ2V (i, x), i, i′ ∈ I, i ̸= i′ (3.20)

V (i+ 1, Aix) ≤ ρ2V (i, x), i ∈ I \ {m} (3.21)

V (1, Amx) ≤ ρ2λ2mV (m,x), (3.22)

then the bound (3.7) holds.

Proof. The proof follows the main lines of that of Theorem 1 in [37]. Let us

consider an initial condition x0 ∈ Rn and a shuffled switching signal θ, let us

denote x(·) = x(·, x0, θ). Let η : N → I be defined by η(0) = 1 and the following

rules: 
if θ(t) ̸= η(t), then η(t+ 1) = η(t);

if θ(t) = η(t) and η(t) ̸= m, then η(t+ 1) = η(t) + 1;

if θ(t) = η(t) and η(t) = m, then η(t+ 1) = 1.

(3.23)
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An equivalent description of the evolution of η can be given in terms of a finite

state automaton, like the one shown in Figure 3.1 for m = 3. Inspecting the

dynamics of η, one can easily see that η takes transitions from m to 1 an infinite

number of times if and only if θ is a shuffled switching signal. Moreover, there is

at least one such transition every m shuffling instants.

Let us consider W : N → R+
0 , defined by W (t) = V (η(t),x(t))

ρ2t
, for all t ∈ N.

It follows from (3.20), (3.21) and (3.22) that W (t + 1) ≤ W (t), thus W (t) is

non-increasing. Proceeding as in the proof of Theorem 1 in [37], we can show that

W (τ θjm) ≤ λ2jmW (0), ∀j ∈ N.

Let t ∈ [τ θjm, τ θ(j+1)m), then κθ(t) ≤ (j + 1)m. From the monotonicity of W (t) we

have

W (t) ≤ W (τ θjm) ≤ λ2κθ(t)−2mW (0).

From (3.19) we have W (0) ≤ α2∥x0∥2 and we get for all t ∈ N

V (η(t), x(t)) ≤ α2ρ
2tλ2κθ(t)−2m∥x0∥2.

From (3.19) we also have, for all t ∈ N, ∥x(t)∥2 ≤ V (η(t),x(t))
α1

. Whence, by taking

C = λ−m
√

α2
α1
, we obtain the bound (3.7).

The previous result allows us to compute upper-bounds on the JSR and the

ρ-SJSR. However, there is some conservativeness that is mostly due to the fact

that the Lyapunov function is guaranteed to contract only every m shuffling in-

stants. In the following subsection, we show an approach that makes it possible

to compute a Lyapunov function that contracts at each shuffling instant. This

also allows us to compute tight upper bounds on the JSR and the ρ-SJSR.

1 2 3
1 2

3

2, 3 1, 3 1, 2

Figure 3.1: Automaton describing the dynamics of η in (3.23) for m = 3.
State labels correspond to the value of η, transition labels correspond to the
value of θ.
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3.4.3 . Second method for computing bounds

Our second approach is also based on the use of a Lyapunov function and of an

automaton. The main difference is that we use an automaton that visits a given

state at each shuffling instant (instead of at most each m shuffling instants as in

the previous section). In order to do that, we need to use a Lyapunov function

indexed on the powerset of I. While this significantly increases the complexity

of the approach, 2I having exponentially more elements than I, this allows us to

propose a method that provides tight bounds on the JSR and the ρ-SJSR.

Theorem 3.4.7. If there exist V : (2I \ {I}) × Rn → R+
0 , α1, α2, ρ > 0 and

λ ∈ [0, 1] such that the following inequalities hold true for every x ∈ Rn

α1∥x∥2 ≤ V (J, x) ≤ α2∥x∥2, ∀J ⊊ I (3.24)

V (J ∪ {i}, Aix) ≤ ρ2V (J, x), if J ∪ {i} ≠ I (3.25)

V (∅, Aix) ≤ ρ2λ2V (J, x), if J ∪ {i} = I (3.26)

then the bound (3.7) holds. Conversely, if the matrices Ai are invertible, for all

i ∈ I and the bound (3.7) holds for some ρ > 0, λ ∈ [0, 1] and C ≥ 1, then there

exists a function V : (2I \{I})×Rn → R+
0 such that the inequalities (3.24), (3.25)

and (3.26) are satisfied.

Proof. We first prove the direct part. Let us consider an initial condition x0 ∈ Rn

and a shuffled switching signal θ, let us denote x(·) = x(·, x0, θ). Let η : N →
2I \ {I} be defined by η(0) = ∅ and the following rules:{

if η(t) ∪ {θ(t)} ≠ I, then η(t+ 1) = η(t) ∪ {θ(t)};
if η(t) ∪ {θ(t)} = I, then η(t+ 1) = ∅.

(3.27)

An equivalent description of the evolution of η can be given in terms of a finite

state automaton, like the one shown in Figure 3.2 for m = 3. It is straightforward

to see from the dynamics of η that η(t) = ∅ if and only if t = τ θk for some k ∈ N.
Hence, the automaton state ∅ is visited at each shuffling instant.

Now, let us consider W : N → R+
0 , defined by W (t) = V (η(t),x(t))

ρ2t
, for all

t ∈ N. It follows from (3.25) and (3.26) that for all t ∈ N, W (t + 1) ≤ W (t),

thus W (t) is non-increasing. Also since for all k ∈ N, we have η(τ θk ) = ∅, (3.26)
gives W (τ θk ) ≤ λ2W (τ θk − 1) for every k ∈ N, k ≥ 1. The latter relation and the

monotonicity of W (t) implies that W (τ θk ) ≤ λ2W (τ θk−1). Hence, by induction we

conclude that

W (τ θk ) ≤ λ2kW (0), ∀k ∈ N.
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Let t ∈ [τ θk , τ
θ
(k+1)), then κθ(t) = k, from the monotonicity of W (t) we have:

W (t) ≤ W (τ θk ) ≤ λ2κθ(t)W (0).

From this point on the proof is similar to the final part of that of Theorem 3.4.6.

Therefore we finally obtain the bound (3.7).

We prove now the converse result. We first consider the case ρ = 1. For J ⊆ I

with J ̸= ∅, let MJ consist of all finite products of N matrices in A, with N ∈ N,
where each mode in J appears at least once, and the last mode jN belongs to J

and appears exactly once:

MJ =


N∏
k=1

Ajk ,

∣∣∣∣∣∣
j1, . . . , jN ∈ I, N ∈ N,

∀i ∈ J,∃k, jk = i,
jN ∈ J and ∀k ̸= N, jk ̸= jN

 .

In particular, MI is the set of all possible matrices Aθ,τ1θ
for θ ∈ Ss(I). Since

ρ = 1, it follows from (3.7) that for all k ∈ N

∥Aθ,τkθ
∥ ≤ Cλk, ∀θ ∈ Ss(I) ,

which is equivalent to∥∥∥ k∏
j=1

Mj

∥∥∥ ≤ Cλk, ∀M1, . . . ,Mk ∈ MI .

∅

{1}

{2}

{3}

{1, 2}

{2, 3}

{1, 3}

2

1

2, 3

1, 3

1, 2

2

1

1

2

2

1

1 3

3

3

3

3

2

Figure 3.2: Automaton describing the dynamics of η in (3.27) for m = 3.
State labels correspond to the value of η, transition labels correspond to the
value of θ.
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From [17, Lemma 2] applied to the family of products of matrices in { 1
λM | M ∈

MI}, it follows that there exists a norm ∥ · ∥∗ in Rn such that the corresponding

induced matrix norm, also denoted by ∥ · ∥∗, satisfies sup
M∈MI

∥M∥∗ ≤ λ.

Then, for all subsets J ⊊ I and x ∈ Rn we define

V (J, x) = sup
M∈MI\J

∥Mx∥2∗.

Let us first prove (3.24). For J ⊊ I, let MJ be an arbitrary element of MI\J , then

V (J, x) ≥ ∥MJx∥2∗. All matrices MJ are invertible, ∥ · ∥∗ is equivalent to ∥ · ∥, and
2I \ {I} is a finite set, therefore there exists α1 > 0 such that ∥MJx∥2∗ ≥ α1∥x∥2,
for all J ⊊ I, x ∈ Rn. Also, it follows from (3.7) with ρ = 1 and λ ∈ [0, 1] that for

all J ⊊ I, for all M ∈ MI\J , ∥M∥ ≤ C. Then, ∥ · ∥∗ being equivalent to ∥ · ∥, it
follows that there exists α2 > 0 such that V (J, x) ≤ α2∥x∥2, for all J ⊊ I, x ∈ Rn.

To prove (3.25), we first notice that every product MAi with M ∈ MI\(J∪{i})
belongs to MI\J . Hence,

V (J ∪ {i}, Aix) = sup
M∈MI\(J∪{i})

∥MAix∥2∗

≤ sup
M ′∈MI\J

∥M ′x∥2∗ = V (J, x).

In order to prove (3.26), we use the fact that if J ⊊ I is such that J ∪{i} = I

then Ai ∈ MI\J = M{i}. Consequently,

V (∅, Aix) = sup
M∈MI

∥MAix∥2∗

≤ λ2∥Aix∥2∗
≤ λ2 sup

M∈MI\J

∥Mx∥2∗ = V (J, x).

This concludes the proof in the case ρ = 1.

Let us consider now the general case ρ ̸= 1. For the set of matrices 1
ρA,

the corresponding dynamics satisfies (3.7) with ρ = 1 and we can consider the

function V defined above. It directly follows from the properties shown above and

the fact that V is homogeneous of degree two that (3.24)-(3.25)-(3.26) hold true.

The proof is complete.

As a direct consequence of the previous results and Theorem 3.2.1 we have

the following corollary.

Corollary 3.4.8. Let ρ > 0 and λ ∈ [0, 1] such that there exists a function V

satisfying the conditions of Theorem 3.4.6 or Theorem 3.4.7, then either ρ > ρ(A)
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and λ ≥ λ(A, ρ), or ρ = ρ(A) and λ ≥ λ(A). Conversely, if the matrices Ai are

invertible, for all i ∈ I, then for all ρ > ρ(A), for all λ ∈ (λ(A, ρ), 1], there exists

a function V satisfying the conditions of Theorem 3.4.7.

Corollary 3.4.8 shows that upper-bounds of the JSR and of the ρ-SJSR can

be found by computing Lyapunov functions satisfying the conditions in Theo-

rems 3.4.6 and 3.4.7. Limiting the search to quadratic Lyapunov function, the

conditions (3.19)-(3.20)-(3.21)-(3.22) or (3.24)-(3.25)-(3.26) can straightforwardly

be translated to LMIs for which efficient solvers exist. However, the tightness of

the conditions in Theorem 3.4.7 is lost when constraining the Lyapunov functions

to be quadratic.

3.5 . Numerical examples

In this section, we give two numerical examples to validate our work. The first

one is to validate the results of Section 3.4 by computing lower and upper bounds

on the ρ-SJSR. The computation of the upper bounds is based on two methods.

In the second example, we illustrate the results of Section 3.3 by computing a class

of stabilizing shuffled switching signals. These signals stabilize well an unstable

system. 1

3.5.1 . Numerical example 1

Let us consider a switched system in R3 with 2 modes, where A = {A1, A2}
with:

A1 =

1 0 0
0 µ1 cos(ϕ1) −µ1 sin(ϕ1)
0 µ1 sin(ϕ1) µ1 cos(ϕ1)

 , A2 =

µ2 cos(ϕ2) −µ2 sin(ϕ2) 0
µ2 sin(ϕ2) µ2 cos(ϕ2) 0

0 0 1

 ,

(3.28)

where the numerical values of the parameters are µ1 = 0.9, µ2 = 0.2, ϕ1 =
π
6 , ϕ2 = π

3 . Let us notice that ρ(A) = 1 with the Euclidean norm ∥ · ∥ being

extremal for A.

We first compute a lower bound for the ρ-SJSR using Proposition 3.4.2. Let

us remark that NI = {A1A2, A2A1}. We use the JSR toolbox [73] to compute

tight bounds on ρ(NI) and we obtain ρ(NI) ∈ [ρ, ρ] where ρ = 0.7640321 and

ρ = 0.7640322. It follows from Proposition 3.4.2, that

∀ρ > 1, λ(A, ρ) ≥
ρ

ρm
.

1The Matlab scripts of these numerical examples are available at the following repos-
itory: https://github.com/georgesaazan/Shuffled-systems
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We now apply Theorem 3.4.3 and Lemma 3.4.4 to compute an upper bound on

the ρ-SJSR. Considering K = ρ, we search for an induced matrix norm ∥ · ∥∗ such

that ∥A1A2∥∗ ≤ ρ and ∥A2A1∥∗ ≤ ρ. Limiting the search to a quadratic norm of

the form ∥x∥∗ =
√
x⊤Qx,Q = Q⊤ ≥ 0 with the associated induced matrix norm

∥M∥∗ = ∥Q1/2MQ−1/2∥, the conditions above are equivalent to the following

LMIs:

(A1A2)
⊤QA1A2 ≤ ρ2Q,

(A2A1)
⊤QA2A1 ≤ ρ2Q.

Solving these LMIs yields

Q =

0.2755 0.0688 0.0257
0.0688 0.3660 0.2248
0.0257 0.2248 0.3585

 .

Then, we compute R according to (3.18) and we get

R = max(∥A1∥∗, ∥A2∥∗) = 1.3279.

Then, from Lemma 3.4.4, we get that

∀ρ ≥ R, λ(A, ρ) ≤ ρ

ρm
.

Now, we use the Lyapunov techniques presented in Theorems 3.4.6 and 3.4.7 to

compute upper-bounds of the ρ-SJSR for ρ ∈ (1, R). Searching for Lyapunov

functions of the form V (i, x) = x⊤Qix, i ∈ I the conditions of Theorem 3.4.6

translate to the following LMIs:

In ≤Qi, i ∈ I

A⊤
i′QiAi′ ≤ρ2Qi, i, i′ ∈ I, i ̸= i′

A⊤
i Qi+1Ai ≤ρ2Qi, i ∈ I \ {m}
A⊤

mQ1Am ≤ρ2λ2mQm.

Similarly, searching for Lyapunov functions of the form V (J, x) = x⊤QJx, J ⊊ I,

the conditions of Theorem 3.4.7 translate to the following LMIs:

In ≤QJ , J ⊊ I

A⊤
i QJ∪{i}Ai ≤ρ2QJ , if J ∪ {i} ≠ I

A⊤
i Q1Ai ≤ρ2λ2QJ , if J ∪ {i} = I.
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Figure 3.3: Lower and upper bounds on the ρ-SJSR for (3.28).

Then, for each ρ ∈ Ω = {1, 1.05, · · · , 1.35}, we can find an upper bound λ(ρ) on

λ(A, ρ) by searching (using a line search) for the smallest value of λ for which the

LMIs above have a solution. Then, we can obtain an upper bound for the ρ-SJSR

for all ρ ∈ (1, R) using (3.4):

∀ρ ∈ (1, R), λ(A, ρ) ≤ min
ρ′∈Ω,ρ′≤ρ

(
ρ′

ρ

)m

λ(ρ′).

The resulting upper-bounds as well as the lower bound are shown in Figure 3.3.

One can check that the upper-bound computed using Theorem 3.4.7 is always

tighter than that provided by Theorem 3.4.6. However, let us remark that the

former approach involves solving a set of m(m+1) LMIs while the latter requires

solving a set of (2m − 1)(m+ 1) LMIs. For large values of m the latter approach

is likely to be intractable.

3.5.2 . Numerical example 2
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We provide a short case-study regarding an application of our tools to the

design of networked controllers for synchronization of distributed oscillators. Let

us considerm+1 identical components consisting of discrete-time oscillators whose

dynamics is given by:

zi(t+ 1) = Rzi(t) + ui(t), i = 1, . . . ,m+ 1 (3.29)

where zi(t) ∈ R2, ui(t) ∈ R2 and R =

(
µ cos(ϕ) −µ sin(ϕ)
µ sin(ϕ) µ cos(ϕ)

)
with µ = 1.02

and ϕ = π
6 . The input ui(t) is used for synchronization purpose and is based

on the available information at time t. The information is exchanged over a

single hop communication network, which consists of m communication channels

between components i and i + 1, i = 1, . . . ,m. We assume that the network

capacity is limited, in such a way that only one channel can be activated at a

given time instant. Formally, the active channel is given by a switching signal

θ : N → I = {1, . . . ,m}. Then, the input value implementing the synchronization

protocol is given as follows:

u1(t) =

{
k(z2(t)− z1(t)), if θ(t) = 1

0, otherwise

ui(t) =


k(zi−1(t)− zi(t)), if θ(t) = i− 1

k(zi+1(t)− zi(t)), if θ(t) = i

0 otherwise

for i = 2, . . . ,m,

um+1(t) =

{
k(zm(t)− zm+1(t)), if θ(t) = m

0 otherwise
(3.30)

where k ∈ (0, 1) is a control gain. Denoting the vector of synchronization errors

as x(t) = (x1(t)
⊤, . . . , xm(t)⊤)⊤ with xi(t) = zi+1(t)− zi(t), the error dynamics is

described by a 2m-dimensional switched linear system of the form (2.6) with m

modes. The expression of the matrices Ai ∈ R2m×2m, i = 1, . . . ,m can be easily

derived from (3.29)-(3.30).

For m ≥ 2, it is clear that the synchronization cannot be achieved using ar-

bitrary switching signals. Indeed, considering for instance the constant switching

signal θ(t) = 1, for all t ∈ N, components 1 and 2 will synchronize but other

agents that do not get the opportunity to exchange information cannot synchro-

nize. Hence, we use shuffled switching signals. In our case study, we aim at

providing answers to the following questions:

1. Co-design a control gain k and a minimal shuffling rate γ∗ so that all oscil-

lators synchronize;
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2. Determine the maximal number of oscillators that can be synchronized given

the proposed network architecture and capacity.

We compute ρ(A) using the JSR toolbox. We then use Theorem 3.4.7 to compute

an upper bound λ(ρ) on the ρ-SJSR by solving the associated LMIs presented in

the previous subsection. Note that

γ∗ := inf
ρ>ρ(A)

− ln(ρ)

ln(λ(ρ))
≥ inf

ρ>ρ(A)
− ln(ρ)

ln(λ(A, ρ))
.

In this example, we observe numerically that the infimum is reached for ρ = ρ(A)

when γ∗ < 1
m (the case when the system is stabilizable, see Corollary 3.3.1). Else,

the infimum is reached at infinity with γ∗ = 1
m .

We computed γ∗ for several values of k ∈ (0, 1) and m + 1 ∈ {3, 4, 5} and

we show the result in Figure 3.4. In this figure, the dashed lines correspond to

the maximal achievable shuffling rate 1
m . From Corollary 3.3.1, we know that the

switched system can be stabilized if we use shuffled switching signals θ ∈ Ss(I)

whose shuffling rate γθ ∈ (γ∗, 1
m ]. Hence, in order to stabilize the system, we

should carefully select the control gain k such that the corresponding value of

γ∗ < 1
m . This answers the first point of our case study. For instance, we can see

that for a system composed of m + 1 = 3 oscillators, for a control gain k = 0.6

we get γ∗ = 0.08 and we can stabilize the system by imposing a shuffling rate

γθ ∈ (0.08, 0.5]. If we choose k = 0.88, then γ∗ = 1
m and we are not able to

stabilize the system by shuffling.

We also verified that for m + 1 = 6 oscillators, γ∗ > 1
m for all control gain

k ∈ (0, 1). Therefore, for 6 oscillators, there is no suitable choice of control gain

k such that the system can be stabilized by shuffling. This answers the second

point of our case study.

We now proceed with some illustrative numerical simulations. Let us consider

a system composed of m+ 1 = 3 oscillators with control gain k = 0.4, then from

Figure 3.4, the corresponding lower bound on the shuffling rate is γ∗ = 0.06.

Let us consider the initial synchronization error x(0) = (−1.5 −0.5 2 −1)⊤.

We consider random switching signals generated by a discrete-time Markov chain

with 2 states and the following transition matrix:

(
1− p p
p 1− p

)
where p ∈ (0, 1)

is the probability to switch at a given time instant. It is easy to see that such

switching signals are shuffled almost surely. Moreover, the larger p the higher

the shuffling rate of the switching signals. We first consider p = 1/10, Figure

3.5 shows the evolution of κθ(t)
t , the switching signal θ(t) and the synchronization

errors x1(t), x2(t). It is interesting to note that κθ(t)
t > 0.06 and that the system

stabilizes as expected. Next, we consider p = 1/70, the corresponding simulation
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Figure 3.4: Minimal shuffling rate γ∗ as a function of the control gain k and
of the number of oscillators m+ 1.

results are shown in Figure 3.6. We can check on the figure that in this case
κθ(t)
t < 0.06 and that the system does not stabilize, the shuffling being too slow.

3.6 . Conclusion

In this chapter, the ρ-SJSR and the SJSR were introduced, new notions of

joint spectral radius for discrete-time switched linear systems driven by shuffled

switching signals. Moreover, some of their properties were established. Also,

their relation to stability properties of switched systems was detailed. A method

to compute asymptotically tight lower and upper bounds of the ρ-SJSR was pre-

sented. This method relies on a JSR of a finite set of matrices. Furthermore,

two approaches to compute upper-bounds of the ρ-SJSR were developed. These
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Figure 3.5: Time evolution of the synchronization error x(t) and the switch-
ing signal θ(t) for a shuffling rate higher than γ∗ = 0.06.

methods are based on Lyapunov functions and automata theoretic techniques.

While the first approach is computationally more tractable, the second approach

was shown to be tight. Numerical examples were also provided to show the ef-

fectiveness of the proposed numerical approximation methods. An application of

the SJSR to the synchronization of unstable oscillators was also shown.

Since the shuffled switching signal represents a particular ω-regular language,

it is natural to ask the following question: can the above results be generalized to

the case of an arbitrary ω-regular language driven switched system?

The next chapter discusses this question, moreover it details sufficient and

necessary conditions for the stability of an arbitrary ω-regular language driven

switched system.
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Figure 3.6: Time evolution of the synchronization error x(t) and the switch-
ing signal θ(t) for a shuffling rate lower than γ∗ = 0.06.



4 - Switched systems driven by ω-regular lan-

guage

In this chapter, we detail the stability of switched systems driven by an ω-

regular language generated by a given Büchi automaton. More precisely, we es-

tablish sufficient conditions for stability. For a particular class of systems we

also show that these conditions are also necessary. This part can be seen as a

generalization of [37] from the particular case of shuffled switching signals to the

general case of arbitrary ω-regular languages. Although the proof of the sufficient

conditions is easily adapted from [37], the proofs of the converse result require

some novel techniques. =These techniques include the construction of a labeled

graph based on accepting states of a non-deterministic Büchi automaton, also the

lifting of results of [60] for a construction of a Lyapunov function.

Furthermore, we introduce the ω-Regular Joint Spectral Radius (ω-RJSR).

Intuitively, this quantity measures how much the system contracts each time

some particular states on the Büchi automaton are visited. We also relate the

ω-RJSR with the stability of switched systems driven by a given Büchi automa-

ton (Theorem 4.3.7). Moreover, we show how this quantity can lead us to charac-

terize a class of stabilizing switching signals (Corollary 4.3.8). We also present a

Lyapunov-based method for computing upper bounds ω-RJSR. Finally, we present

two numerical examples which validate our results. In fact, this part can be seen

as a generalization of Chapter 3.

This chapter represents the results of the following paper and book chapter:

� Georges Aazan, Antoine Girard, Paolo Mason, and Luca Greco. Stability of

discrete-time switched linear systems with ω-regular switching sequences.

In International Conference on Hybrid Systems: Computation and Control,

2022.

� Georges Aazan, Antoine Girard, Paolo Mason, and Luca Greco. A Joint

Spectral Radius for ω-Regular Language Driven Switched Linear Systems. In

Romain Postoyan, Paolo Frasca, Elena Panteley, Luca Zaccarian (Eds), Hy-

brid and Networked Dynamical Systems - Modeling, Analysis and Control,

to appear.

The organization of the chapter is as follows. Section 4.1 introduces the Büchi

automaton, the class of systems under consideration and the associated stability

45
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notions. In Section 4.2, we provide sufficient stability conditions given by the

existence of a Lyapunov function. We also establish a converse Lyapunov result for

a particular class of systems. An illustrative example is also shown in this section.

The last section details the ω-RJSR and establishes several of its properties. It also

shows a sufficient condition for stabilization under ω-regular language constraints.

Moreover, a Lyapunov based method is shown to compute upper bounds on the

ω-RJSR. Finally, a numerical example is given to illustrate the results of this

section.

4.1 . ω-regular stability

4.1.1 . Büchi automaton

A non-deterministic Büchi automaton (NBA) is a tuple B = (Q,Σ, δ, Q0, F )

where Q is a finite set of states, Σ is the alphabet, δ : Q × Σ → 2Q is a partial

transition function, Q0 is the set of initial states and F ⊆ Q is the set of accepting

states. A run associated with a finite or infinite word σ ∈ Σ+ ∪ Σω is a sequence

of states q0q1q2 . . . such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi) for all i = 0, 1, . . . . Note

that some words in σ ∈ Σ+ ∪Σω may not have associated runs since δ is a partial

function. A run q0q1q2 . . . associated with an infinite word σ ∈ Σω is said to be

accepting if qi ∈ F for infinitely many indices i ∈ N. The language of B, denoted
by Lang(B), is the set of all infinite words over the alphabet Σ which have an

accepting run in B. We note that an NBA is called deterministic Büchi automaton

(DBA) if |δ(q, i)| ≤ 1 for all q ∈ Q, i ∈ Σ and |Q0| = 1. Given q′, q′′ ∈ Q and

σ1 · · ·σn ∈ Σ∗, we write q′
σ1···σn−−−−→ q′′ if q′′ is obtained as a concatenation of

transitions from q′, namely q′′ = δ(· · · δ(δ(q′, σ1), σ2), . . . , σn).

It is known that the Language of a Büchi automaton represents an example of

an ω-regular language, moreover for any ω-regular language there exists a Büchi

automaton recognizing that language [13, 26].

An example of a Büchi automaton is shown in Figure 4.1. This automaton

accepts infinite words over the alphabet Σ = {1, 2} that end with a sequence of

1’s. Notice that this language cannot be characterized by a finite state automaton.
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Figure 4.1: A non-deterministic Büchi automaton B =
{{a, b}, {1, 2}, δ, {a}, {b}} recognizing the ω-regular language (1 + 2)∗1ω.

Now given a DBA B, and an infinite word σ ∈ Lang(B), let us denote q0q1 . . .
the associated run in B and define the following quantities:

� The sequence of accepting instants (τσk )k∈N defined by τσ0 = 0, and for all

k ∈ N,
τσk+1 = min {t > τσk |qt ∈ F }.

� The accepting index κσ : N → N given by

κσ(t) = max{k ∈ N| τσk ≤ t}.

� The accepting rate γσ as

γσ = lim inf
t→+∞

κσ(t)

t
.

Intuitively, τσk is the instant of the k-th visit of the run to the set F and the

accepting index κσ(t) counts the number of times the run has visited the set F

up to time t. It is worth noting that since σ ∈ Lang(B), we have lim
t→∞

κσ(t) = ∞.

The accepting rate γσ characterizes the frequency of visits to the set F over all

time. Notice that these defined quantities generalize the similar quantities defined

to a shuffled switching signal in Definition 2.2.1.

In the next lemma, we establish a tight upper bound on the accepting rate of

all switching sequences belonging to a language of a given DBA B.
Before introducing this result, let us define the notion of a cycle in B. A

cycle is a sequence of states q1 · · · qn such that for all i ̸= j, qi ̸= qj ; for all

i = 1, · · · , n − 1, there exists σi ∈ Σ such that qi+1 = δ(qi, σi); and there exists

σn ∈ Σ such that q1 = δ(qn, σn). We denote the set of cycles in B by CB. For a

cycle c ∈ CB, we denote by Fc the set of accepting states appearing in c. Formally,

Fc = {qi ∈ F : c = q1 · · · qn}.
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Lemma 4.1.1. Given a DBA B, let M = max
c∈CB

|Fc|
|c| . Then,

∀σ ∈ Lang(B), ∀t ∈ N, κσ(t) ≤ |Q|+Mt. (4.1)

Moreover, max
σ∈Lang(B)

γσ = M .

Proof. Let σ ∈ Lang(B), let q0q1 . . . be the associated run, and let t ∈ N. The

accepting index κσ(t) is given by the number of occurrences of elements of F in

the sequence r0 = q1 . . . qt. Since |r0| = t, if t ≤ |Q|, it is clear that κσ(t) ≤ |Q|
and (4.1) holds. If t > |Q|, then there exists at least one state appearing twice in

r0. Let 1 ≤ i < j ≤ t be the indices of the first state appearing twice in r0. Then,

there exists a cycle c1 = qi . . . qj−1 ∈ CB. Moreover, the number of occurrences of

elements of F in r0 is given by the sum of the number of occurrences of elements

of F in the cycle c1 and in the sequence r1 = q1 . . . qi−1qj . . . qt (or in the sequence

r1 = qj . . . qt if i = 1). By repeating this reasoning, we get that the number

of occurrences of elements of F in r0 is bounded by the sum of the number of

occurrences of elements of F in a collection of cycles c1, . . . , ck and in a sequence

of states rk such that |rk| ≤ |Q|. The number of occurrences of elements of F in

rk is bounded by |rk| ≤ |Q|. The total number of occurrences of elements of F in

the cycles c1, . . . , ck is bounded by M(|c1| + · · · + |ck|) ≤ Mt. Hence, it follows

that (4.1) holds and we directly obtain that

sup
σ∈Lang(B)

γσ ≤ M.

To show that this bound is tight, let us consider c ∈ CB such that |Fc|
|c| = M . From

Assumption 4.1.2, it follows that there exists a run of B of the form r = w.cω.

Let σ be an associated element of Σω. Then, it is easy to see that γσ = M .

As an illustration, consider the DBA B shown in Figure 4.2. This DBA

contains 6 cycles q1, q2, q3, q0q1, q0q2, q0q3. Then, the maximal accepting rate for

infinite words σ ∈ Lang(B) is M = 1
2 .

As explained in Section 1.1, Büchi automata play a crucial role in the descrip-

tion of the connectivity of consensus/synchronization of oscillators. Therefore, in

the next sections we will shed light on the stability of systems driven by ω-regular

language generated using a given Büchi automata.

4.1.2 . Stability notions for ω-regular language driven switched

systems

Let us consider a discrete-time switched linear system in which the switching

sequences are infinite words accepted by a given NBA. Specifically, given a Büchi
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Figure 4.2: An example of DBA whose language consists of infinite words
that do not remain constant after some time. The accepting state is repre-
sented with a double circle.

automaton B = (Q,Σ, δ, Q0, F ) where the alphabet is the set Σ = I = {1, . . . ,m},
given a finite set of matrices A = {A1, . . . , Am} with Ai ∈ Rn×n, i ∈ Σ, the

discrete-time switched linear system with ω-regular switching sequences (A,B) is
described by the trajectory equation (2.6) , i.e.

x(t+ 1) = Aθ(t)x(t),

here we consider that θ ∈ Lang(B) where, by abuse of notation, we say that

θ ∈ Lang(B) if the infinite word θ(0)θ(1) · · · ∈ Lang(B). We note that, given an

initial condition x0 ∈ Rn, and a switching signal θ ∈ Lang(B), the trajectory with

x(0) = x0 is unique, denoted by x(., x0, θ) and given by

∀t ≥ 1 : x(t, x0, θ) =

t−1∏
i=0

Aθ(i)x0,

where

t−1∏
i=0

Aθ(i) = Aθ(t−1) × · · · ×Aθ(0).

Before we elaborate the sufficient conditions, let us introduce the following

assumption:

Assumption 4.1.2. All the states of the Büchi automaton B are reachable from

at least one initial state and for any finite run q0q1q2 . . . qk there exists an infinite

sequence of states qk+1qk+2 . . . such that q0q1q2 . . . is an accepting run.
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Note that there is no loss of generality to suppose that Assumption 4.1.2

holds true since it can be shown easily that for any NBA (resp. DBA), there

exists an NBA (resp. DBA) with the same language and satisfying Assumption

4.1.2. Hence, in the rest of the work, Assumption 4.1.2 is always supposed to be

satisfied.

We start by defining some stability notions.

Definition 4.1.3. The system (A,B) is globally attractive (GA) if for all

switching signals θ ∈ Lang(B) and for all initial conditions x0 ∈ Rn, we have

lim
t→∞

∥x(t, x0, θ)∥ = 0.

Definition 4.1.4. The system (A,B) is globally uniformly stable (GUS) if

there exists a scalar α ≥ 1 such that for all switching signals θ ∈ Lang(B) and

for all initial conditions x0 ∈ Rn, we have

∥x(t, x0, θ)∥ ≤ α∥x0∥, ∀t ∈ N.

Definition 4.1.5. The system (A,B), where B is a DBA, is globally uniformly

exponentially stable (GUES) if there exist a scalar C ≥ 1 and a scalar 0 <

λ < 1 such that for all switching signals θ ∈ Lang(B) and for all initial conditions

x0 ∈ Rn, we have

∥x(t, x0, θ)∥ ≤ Cλκθ(t)∥x0∥,∀t ∈ N.

It is clear that if the system (A,B) is GUES then it is GA and GUS, we

note that this type of stability cannot be defined for an NBA since κθ(t) is not

defined for these automata.

We have seen in this section several notions of stability of switched linear

systems with ω-regular switching sequences, some of them concern the general

case of an NBA, and the rest concerns the DBA only. In the next sections, we

will develop sufficient conditions for stability using a Lyapunov approach and we

will give a converse result for a specific class of systems.

4.2 . Sufficient and necessary conditions for stability

In this section, for a system (A,B), we establish sufficient conditions for the

notions of stability defined in the previous section. Moreover, we show that these

conditions are also necessary when the state matrices are invertible.
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4.2.1 . Sufficient conditions

Before establishing our conditions, let us give a definition of a Lyapunov func-

tion for a system (A,B).

Definition 4.2.1. For the system (A,B), the function V : Q×Rn → R+
0 , is called

Lyapunov function if there exist scalars α1, α2 > 0 and 0 < ρ < 1 such that for

all x ∈ Rn, the following hold:

α1∥x∥ ≤ V (q, x) ≤ α2∥x∥, q ∈ Q (4.2)

V (q′, Aix) ≤ V (q, x), q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) \ F (4.3)

V (q′, Aix) ≤ ρV (q, x), q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) ∩ F (4.4)

Theorem 4.2.2. If there exists a Lyapunov function for the system (A,B) then

(A,B) is GA and GUS. If in addition B is a DBA then (A,B) is GUES.

Proof. Let us consider an initial condition x0 ∈ Rn and a switching signal θ ∈
Lang(B), let q0q1q2 . . . be an accepting run associated with θ. Let t0 = 0 and

0 < t1 < t2 < . . . be the time instants where qti ∈ F , for all i ≥ 1. We denote

x(.) = x(., x0, θ) and we define the function W : N → R+
0 by W (t) = V (qt, x(t))

for all t ∈ N. It follows from (4.3) and (4.4) that W (t+ 1) ≤ W (t) for all t ∈ N.
From the monotonicity of W , we get that

∀t ∈ N : W (t) ≤ W (0).

Therefore, from (4.2) we conclude that

∀t ∈ N : ∥x(t)∥ ≤ α2

α1
∥x0∥,

and we get that the system (A,B) is GUS.

On the other hand, from (4.4), we get that

∀k ≥ 1 : W (tk) ≤ ρW (tk − 1).

From the monotonicity of W , we deduce that

∀k ≥ 1 : W (tk) ≤ ρW (tk−1).

By induction on k, we get that

∀k ∈ N : W (tk) ≤ ρkW (0).

Since W is non-increasing and since W (t) ≥ 0 for all t ∈ N and 0 < ρ < 1, we get

that

lim
t→∞

W (t) = 0.
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Therefore, from (4.2) we get that the system (A,B) is GA.

Now if B is a DBA, the sequence (tk)k∈N defined above coincides with the

sequence of return instants (τ θk )k∈N. Therefore, we get that

∀k ∈ N : W (τ θk ) ≤ ρkW (0).

Now let t ∈ N, and let k ∈ N such that t ∈ [τ θk , τ
θ
k+1), then the return index is

κθ(t) = k. We get from the monotonicity of W that W (t) ≤ ρκ
θ(t)W (0). Finally

from (4.2), we get, for all t ∈ N, x0 ∈ Rn that

∥x(t)∥ ≤ α2

α1
ρκ

θ(t)∥x0∥. (4.5)

Hence (A,B) is GUES.

Let us remark that (4.5) provides an upper bound on the convergence rate

of the state with respect to the number of visits to the accepting set F given

by the return index κθ(t). If we restrain to Lyapunov functions of the form

V (q, x) =
√
x⊤Pqx where, for every q ∈ Q, Pq is a positive definite matrix,

then the conditions in Definition 4.2.1 are equivalent to a set of LMIs. In that

case, stability of the switched system (A,B) can be verified by solving a convex

optimization problem.

4.2.2 . A converse result

In this section, we show that, if all matrices in A are invertible, then the

existence of a Lyapunov function for (A,B) is not only sufficient but also neces-

sary for the attractivity and uniform stability of the system. We introduce some

quantities related to the NBA B. We define Lqqf as the set of all words in Σ+

corresponding to a run starting from q ∈ Q and reaching qf ∈ F without visiting

any accepting state between q and qf . Formally

Lqqf =

{
σ1 . . . σk ∈ Σ+

∣∣∣∣ qi+1 ∈ δ(qi, σi) \ F, 1 ≤ i < k
where q1 = q and qf ∈ δ(qk, σk)

}
.

Now we define L×
qqf

as the set of all products of matrices in A associated with

words in Lqqf :

L×
qqf

=
{
Aσk

× · · · ×Aσ1

∣∣ σ1 . . . σk ∈ Lqqf

}
.

Given a word l ∈ Lqqf the corresponding matrix in L×
qqf

is denoted Ml.

In order to establish necessary conditions, we apply a result obtained in [60]

based on labeled graphs and constrained systems (Section 2.1.4). As a means to

analyze the dynamics of the system (A,B), let us associate it to a constrained
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Lq1q1 Lq2q2

Lq1q2

Lq2q1

q1 q2 q3

Lq3q3

Lq1q3

Lq3q1

Lq3q2

Lq2q3

Figure 4.3: The labeled graph G corresponding to an NBA B with 3 accepting
states q1, q2 and q3.

system (MF
B ,G), where MF

B =
⋃

q,p∈F
L×
qp and the nodes of G are V = F , the labels

L =
⋃

q,p∈F
Lqp, and the set of edges is E = {(q, l, p) |q, p ∈ F, l ∈ Lqp }.

Remark 4.2.3. In [60], the set of labels L is assumed to be finite. In our case,

this set can be infinite.

Figure 4.3 shows the labeled graph corresponding to an NBA B with three

accepting states q1, q2 and q3. In the figure, by an abuse of notation, for qi, qj ∈ F ,

the edge (qi,Lqiqj , qj), denotes the set of edges
{
(qi, l, qj)

∣∣ l ∈ Lqiqj

}
. Note that,

unlike [60], in our case the set of edges of the labeled graph is usually infinite. We

consider the following stability notion.

Definition 4.2.4. We say that the constrained system (MF
B ,G) is attractive if

for all paths (qf0 , l1, qf1), (qf1 , l2, qf2), . . . we have

lim
k→∞

∥Mlk · · ·Ml1∥ = 0.

In the following, we will make use of the following assumption.

Assumption 4.2.5. All the matrices in A are invertible.

The following lemma provides a uniform bound on the set of matrix products

that correspond to transitions from any state q ∈ Q to an accepting state qf ∈ F .
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Lemma 4.2.6. Under Assumption 4.2.5, if the system (A,B) is GUS, then the

set L×
qqf

is either empty or bounded for all q ∈ Q, qf ∈ F .

Proof. Let q ∈ Q, qf ∈ F such that Lqqf ̸= ∅. Let l ∈ Lqqf , by Assumption 4.1.2

we know that there exist a switching signal θ(0)θ(1) · · · ∈ Lang(B) and a cor-

responding run q0q1q2 . . . such that qt′0 = q and qt0 = qf , for some t′0 < t0 and

l = θ(t′0) . . . θ(t0 − 1). Without loss of generality we may assume that qi ̸= qj
for every 0 ≤ i < j ≤ t′0 since otherwise, if qi = qj , we can replace the switch-

ing signal θ with θ(0)θ(1) . . . θ(i − 1)θ(j) . . . and consider the corresponding run

q0q1q2 . . . qiqj+1 . . . . Hence we may assume t′0 ≤ |Q| − 1.

From the definition of global uniform stability we get that there exists α ≥ 1

such that

∥Aθ(t0−1) · · ·Aθ(t′0)
Aθ(t′0−1) · · ·Aθ(1)Aθ(0)∥ ≤ α

Using the fact that, for A,B in Rn×n with B invertible, one has ∥A∥ ≤
∥AB∥∥B−1∥ and since Ml = Aθ(t0−1) · · ·Aθ(t′0)

, we obtain from the previous in-

equality

∥Ml∥ ≤ α∥(Aθ(t′0−1) · · ·Aθ(1)Aθ(0))
−1∥

= α∥(Aθ(0))
−1(Aθ(1))

−1 · · · (Aθ(t′0−1))
−1∥

≤ α

(
max
A∈A

∥A−1∥
)t′0

≤ αmax

{
1,

(
max
A∈A

∥A−1∥
)|Q|−1

}
.

We have thus obtained a uniform bound on the set of matrices L×
qqf

whenever

Lqqf ̸= ∅.

We will analyse the attractivity of the constrained system (MF
B ,G) by making

use of the concept of multinorm, defined below.

Definition 4.2.7. (Definition 1 in [60]) A multinorm of the constrained system

(MF
B ,G), denoted by H, is a set of |F | norms in Rn, that is H = {∥.∥q, q ∈ F}.

The value of the multinorm γ∗(H) is defined as

γ∗(H) = inf

{
γ > 0

∣∣∣∣ ∥Mx∥p ≤ γ∥x∥q, ∀x ∈ Rn,
∀q, p ∈ F s.t. Lqp ̸= ∅, ∀M ∈ L×

qp

}
.

This definition coincides with Definition 1 in [60] except for the fact that here

the matrix M takes values on a possibly infinite set.

Theorem 4.2.8. Suppose that Assumption 4.2.5 holds true and that (A,B) is

GUS. Then the constrained system (MF
B ,G) is attractive if and only if it admits

a multinorm H with value γ∗(H) < 1.



4.2. CONDITIONS FOR STABILITY 55

Proof. The result follows from Proposition 2.2 and Theorem 1.1 in [60], where

these results are proven assuming that the number of labels going from a state to

another is finite and that the graph G is strongly connected. The arguments of the

proofs still apply in our case, although the set L×
qp is bounded but not necessarily

finite and we do not require G to be strongly connected.

Now we relate the attractivity of (A,B) with that of (MF
B ,G) using the fol-

lowing lemma.

Lemma 4.2.9. Under Assumption 4.2.5, if the switched system (A,B) is GA

then the constrained system (MF
B ,G) is attractive.

Proof. Let (qf0 , l1, qf1), (qf1 , l2, qf2), . . . be a path in (MF
B ,G). By Assump-

tion 4.1.2 there exist q0 ∈ Q0, a switching sequence θ ∈ Lang(B) and a sequence

of instants (tk)k∈Z+ with 0 < t1 < t2 . . . such that

∀k ∈ Z+, x0 ∈ Rn : x(tk, x0, θ) = Mlk−1
· · ·Ml1Ml0x0,

where Ml0 ∈ L×
q0qf0

. Since (A,B) is GA we have

lim
k→∞

∥Mlk · · ·Ml0∥ = 0.

By submultiplicativity we have

∥Mlk · · ·Ml1∥ ≤ ∥Mlk · · ·Ml0∥∥M
−1
l0

∥

which implies

lim
k→∞

∥Mlk · · ·Ml1∥ = 0,

concluding the proof of the lemma.

We next provide a converse result to Theorem 4.2.2.

Theorem 4.2.10. Under Assumption 4.2.5, if the switched system (A,B) is GUS

and GA, then it admits a Lyapunov function.

Proof. Under the assumptions of the theorem we get from Theorem 4.2.8 and

Lemma 4.2.9 that, for the constrained system (MF
B ,G), there exists a multinorm

H = {∥.∥qf , qf ∈ F} with a value strictly less than 1, that is γ∗(H) < 1.

Consider the function V : Q× Rn → R+
0 defined as follows

∀q ∈ Q, x ∈ Rn : V (q, x) = max
qf∈F

Lqqf
̸=∅

sup
M∈L×

qqf

∥Mx∥qf .
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Note that V is well defined thanks to Assumption 4.1.2. Let us prove that V is a

Lyapunov function for (A,B), namely that V satisfies equations (4.2), (4.3) and

(4.4) in Definition 4.2.1 for all x ∈ Rn, for some positive constants α1, α2 and ρ

such that γ∗(H) < ρ < 1.

Concerning (4.2), since the system is GUS and thanks to Assumption 4.2.5

we know from Lemma 4.2.6 that the set L×
qqf

is bounded for all q ∈ Q and qf ∈ F .

Hence there exists B > 0 such that V (q, x) ≤ Bmax
qf∈F

∥x∥qf . Furthermore, from

the equivalence of norms in Rn and since F is finite, we get that there exists a

constant α2 > 0 such that V (q, x) ≤ α2∥x∥ for all q ∈ Q and x ∈ Rn.

On the other hand, for q ∈ Q, there exists qf ∈ F such that Lqqf ̸= ∅. Taking
Mq ∈ L×

qqf
we get, from the equivalence of norms in Rn and since F is finite, that

there exists a scalar α > 0 such that for all x ∈ Rn it holds

V (q, x) ≥ α∥Mqx∥.

From Assumption 4.2.5, we then obtain

V (q, x) ≥ α
∥x∥

∥Mq
−1∥

≥ αmin
q∈Q

1

∥M−1
q ∥

∥x∥.

By taking α1 = αmin
q∈Q

1
∥Mq

−1∥ we get that (4.2) holds true.

We next show (4.3). Let q ∈ Q and q′ ∈ δ(q, i) \ F for some i ∈ Σ. For every

qf ∈ F such that Lq′qf ̸= ∅ and M ∈ L×
q′qf

we have that the product MAi is an

element of the set L×
qqf

. In particular

{qf ∈ F | Lq′qf ̸= ∅} ⊆ {qf ∈ F | Lqqf ̸= ∅}

and

sup
M∈L×

q′qf

∥MAix∥qf ≤ sup
M ′∈L×

qqf

∥M ′x∥qf , ∀x ∈ Rn.

Then

max
qf∈F

Lq′qf
̸=∅

sup
M∈L×

q′qf

∥MAix∥qf ≤ max
qf∈F

Lq′qf
̸=∅

sup
M ′∈L×

qqf

∥M ′x∥qf

≤ max
qf∈F

Lqqf
̸=∅

sup
M ′∈L×

qqf

∥M ′x∥qf

Hence (4.3) is satisfied.

Finally, let us prove (4.4). Let q ∈ Q and q′ ∈ δ(q, i) ∩ F for some i ∈ Σ. Let

qf ∈ F,M ∈ L×
q′qf

. Letting ρ such that γ∗(H) < ρ < 1 we get that ∥Mx∥qf ≤
ρ∥x∥q′ for all x ∈ Rn. Since Ai ∈ L×

qq′ , then
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∥MAix∥qf ≤ ρ∥Aix∥q′ ≤ ρ sup
M ′∈L×

qq′

∥M ′x∥q′

≤ ρ max
q′f∈F

Lqq′
f
̸=∅

sup
M ′∈L×

qq′
f

∥M ′x∥q′f

Taking the supremum over M ∈ L×
q′qf

and then the maximum over all qf ∈ F

such that Lq′qf ̸= ∅ on the left-hand side, we get that (4.4) is satisfied, concluding

the proof of the theorem.

Corollary 4.2.11. Under Assumption 4.2.5, let B be deterministic. Then, the

(A,B) is GUES if and only if it is GA and GUS.

Proof. The fact that GUES implies GA and GUS follows directly from the

definitions. Then, if (A,B) is GA and GUS. Then from Theorem 4.2.10, there

exists a Lyapunov function. Theorem 4.2.2 gives that (A,B) is GUES.

4.2.3 . Numerical example

We consider a multi-agent system consisting of 3 discrete-time oscillators

whose dynamics is given by:1:

zi(t+ 1) = Rzi(t) + ui(t), i = 1, 2, 3 (4.6)

where zi(t) ∈ R2, ui(t) ∈ R2 and R =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
with ϕ = π

6 . The

input ui(t) is used for synchronization purpose and is based on the available

information at time t. There exist 3 communication channels between agent 1

and agent 2 (channel 1), 2 and 3 (channel 2) and 1 and 3 (channel 3). At each

instant, only one of these channels is active and the active channel is selected by

1The Matlab scripts of the numerical example and of the case study are available at
the following repository: https://codeocean.com/capsule/7403312/tree/v1
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a switching signal θ : N → Σ = {1, 2, 3}. Then, the input value is given as follows:

u1(t) =


γ(z2(t)− z1(t)), if θ(t) = 1

0, if θ(t) = 2

γ(z3(t)− z1(t)), if θ(t) = 3

u2(t) =


γ(z1(t)− z2(t)), if θ(t) = 1

γ(z3(t)− z2(t)), if θ(t) = 2

0, if θ(t) = 3

u3(t) =


0, if θ(t) = 1

γ(z2(t)− z3(t)), if θ(t) = 2

γ(z1(t)− z3(t)), if θ(t) = 3

where γ = 0.05 is a control gain. Denoting the vector of synchronization errors

as x(t) = (x1(t)
⊤, x2(t)

⊤)⊤ with xi(t) = zi+1(t) − zi(t), the error dynamics is

described by a 4-dimensional switched linear system of the form:

x(t+ 1) = Aθ(t)x(t)

where the 3 matrices describing the 3 modes of communication are given by:

A1 =

(
R− 2γI2 0

γI2 R

)
, A2 =

(
R γI2
0 R− 2γI2

)
,

A3 =

(
R− γI2 −γI2
−γI2 R− γI2

)
.

As for the communication protocol, we impose a fairness constraint that the

switching signal cannot keep activating the same communication channel:

∀t ∈ N, ∃t′ ≥ t, θ(t′) ̸= θ(t).

Note that this property can be formulated as the following linear temporal logic

formula:
3∧

i=1

¬ (♢□(θ = i)) .

This is equivalently described by a deterministic Büchi automaton, B, where

the set of states is Q = {q0, q1, q2, q3}, the alphabet Σ = {1, 2, 3}, Q0 = {q0},
F = Q0. Figure 4.2 shows the corresponding Büchi automaton which describes

the switching logic in this system. We want to show that the agents synchronize

if the state q0 in B is visited infinitely often. This can be done by studying the

stability of (A = {A1, A2, A3},B). We then look for a Lyapunov function of the
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form V (q, x) =
√
xTPqx where Pq is a positive definite symmetric matrix. The

conditions in Theorem 4.2.2 translate into the following linear matrix inequalities:

I4 ≤ Pq, q ∈ Q

A⊤
i Pq′Ai ≤ Pq, q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) \ F

A⊤
i Pq′Ai ≤ ρ2Pq q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) ∩ F

By solving these 16 LMIs, we find for ρ = 0.96 :

Pq0 =

(
1.98I2 0.98I2
0.98I2 1.98I2

)
, Pq1 =

(
2.26I2 0.99I2
0.99I2 1.98I2

)
,

Pq2 =

(
1.98I2 0.99I2
0.99I2 2.26I2

)
, Pq3 =

(
2.22I2 1.22I2
1.22I2 2.22I2

)
.

From Theorem 4.2.2, we get that the switched system (A,B) is GUES which

means the oscillators synchronize well after sufficient time.

We now consider the following scenario: for the first 50 time units, the com-

munication channel 1 is constantly active, then at t = 50 a switch occurs and for

the next 50 time units the channel 2 is active, then at t = 100 another switch

occurs and the communication channel 3 stays active for the next 50 time units.

After t = 150, the switching signal randomly activates channel 1 and channel 2

with equal probability so that the accepting state q0 is visited infinitely often.

The simulation results are shown in Figure 4.4. It is interesting to remark that

when the switching signal remains constant the synchronization error does not

go to zero, however after t = 150, when q0 is visited more frequently, the syn-

chronization error starts to converge towards zero. As expected, the Lyapunov

function V (qt, x(t)) is non-increasing and, as soon as the state q0 is visited fre-

quently enough, it starts approaching zero.

4.3 . Convergence rate characterization

In this section, we introduce a similar notion to the SJSR and we estab-

lish several of its properties. Before we introduce that quantity, let us begin

by introducing some notions. In this section, we assume that the automaton B
is a DBA. Given a set of matrices A = {A1, · · · , Am} and a Büchi automaton

B = (Q,Σ, δ, Q0, F ). Let GB be the labeled graph obtained from B as following:

The nodes of GB are V = Q, the labels L = Σ = {1, · · · ,m}, and the set of edges

is E = {(q, l, p) |q, p ∈ Q, l ∈ Σ, p = δ(q, l)}. Let ρ(A,GB) be the CJSR of (A,GB).

By the CJSR of (A,B) we refer to the quantity ρ(A,B) = ρ(A,GB). Let us denote

by ΘB the set of switching sequences θ such that there exists a sequence of states
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Figure 4.4: Time evolution of the synchronization error x(t) (top figures),
switching signal θ(t) (bottom left), and the Lyapunov function V (qt, x(t))
(bottom right).

p0p1 . . . such that pt+1 = δ(pt, θ(t)) for all t ∈ N. Let us remark that all elements

of Lang(B) belong to ΘB.

The following Lemma relates this notion to trajectories of (2.6).

Lemma 4.3.1. For all ρ > ρ(A,B), there exists a C ≥ 1 such that:

∥x(t, x0, θ)∥ ≤ Cρt∥x0∥, ∀x0 ∈ Rn, θ ∈ ΘB, t ∈ N.

Proof. This is a direct consequence of [60, Theorem 1.1] after scaling the matrices

in A by 1
ρ .

The latter inequality happens to be conservative in the case of switching se-

quences generated by a Büchi automaton B. Therefore, to better estimate the

convergence rate of such systems, we introduce in the next section a new spectral
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characteristic specific to switched linear systems driven by ω-regular switching

sequences.

4.3.1 . The ω-RJSR

In this section, we introduce the ω-Regular Joint Spectral Radius and establish

several of its properties.

Definition 4.3.2. Let ρ > ρ(A,B), the ω-Regular Joint Spectral Radius relative

to (A,B, ρ) (ρ-ω-RJSR for short) is defined as

λ(A,B, ρ) = lim sup
k→+∞

 sup
θ∈Lang(B)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k
 . (4.7)

To better understand the characteristics of the ρ-ω-RJSR, we are going to

analyze some properties of the function λ(A,B, ·).

Proposition 4.3.3. For all ρ > ρ(A,B), the value λ(A,B, ρ) does not change if

we replace the induced matrix norm in (4.7) by any other matrix norm.

Proof. This is straightforward from the equivalence of norms in a finite dimen-

sional subspace.

Proposition 4.3.4. The function ρ 7→ λ(A,B, ρ) is non-increasing, takes values

in [0, 1) and, for all ρ(A,B) < ρ1 ≤ ρ2,

λ(A,B, ρ2) ≤
(
ρ1
ρ2

) 1
M

λ(A,B, ρ1) (4.8)

where M is the same as in Lemma 4.1.1.

Proof. Let ρ > ρ(A,B), from Lemma 4.3.1, we get that there exists C1 ≥ 1 such

that

0 ≤
∥∥Aθ,t

∥∥
ρt

≤ C1, ∀θ ∈ ΘB,∀t ∈ N. (4.9)

Using the fact that Lang(B) ⊆ ΘB, we get that

0 ≤
∥∥Aθ,t

∥∥
ρt

≤ C1, ∀θ ∈ Lang(B),∀t ∈ N. (4.10)

By considering t = τ θk , raising to the power 1/k and taking the supremum over

all switching signals in Lang(B), we find

0 ≤ sup
θ∈Lang(B)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k

≤ C
1/k
1 .
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Taking the lim sup of all terms yields λ(A,B, ρ) ∈ [0, 1].

Now, let us consider ρ(A,B) < ρ1 ≤ ρ2. From (4.1), it follows that τ θk ≥
k−|Q|
M . Then, we have for all k ≥ 1 and for all θ ∈ Lang(B)∥∥Aθ,τθk

∥∥
ρ
τθk
2

=

∥∥Aθ,τθk

∥∥
ρ
τθk
1

(
ρ1
ρ2

)τθk
≤

∥∥Aθ,τθk

∥∥
ρ
τθk
1

(
ρ1
ρ2

) k−|Q|
M

.

Raising to the power 1/k and taking the supremum over all switching signals in

Lang(B) yields

sup
θ∈Lang(B)

(∥∥Aθ,τθk

∥∥
ρ
τθk
2

)1/k

≤ sup
θ∈Lang(B)

(∥∥Aθ,τθk

∥∥
ρ
τθk
1

)1/k (
ρ1
ρ2

) k−|Q|
kM

.

Now we take the lim sup of both terms and we get (4.8), which implies that ρ 7→
λ(A,B, ρ) is non-increasing. Now, let us assume that there exists ρ2 > ρ(A,B)
such that λ(A,B, ρ2) = 1. It follows from (4.8) that for all ρ1 ∈ (ρ(A,B), ρ2),
λ(A,B, ρ2) < λ(A,Bρ1), which contradicts the fact that λ(A,B, ρ1) ∈ [0, 1].

Hence, λ(A,B, ρ) ∈ [0, 1) for all ρ > ρ(A,B).

In order to get rid of the dependence of ρ in the ρ-ω-RJSR, it is natural to

introduce the following definition.

Definition 4.3.5. The ω-Regular Joint Spectral Radius (ω-RJSR) of (A,B) is

defined as

λ(A,B) = lim
ρ→ρ(A,B)+

λ(A,B, ρ). (4.11)

Since by Proposition 4.3.4, λ(A,B, ·) is bounded and non-increasing in ρ, the

right limit at ρ(A,B) in (4.11) exists and the ω-RJSR is well-defined. We can

now show some of its properties.

Proposition 4.3.6. The ω-RJSR enjoys the following properties:

(i) λ(A,B) belongs to [0, 1] and is independent of the choice of the norm;

(ii) For all K ∈ R, K ̸= 0, we have λ(KA,B) = λ(A,B).

Proof. The first statement follows from (4.11) and by the properties of λ(A,B, ·)
proved in Propositions 4.3.3 and 4.3.4. Concerning the second item, let K ∈ R,
K ̸= 0, we have by (4.11)

λ(KA,B) = lim
ρ→ρ(KA,B)+

λ(KA,B, ρ) = lim
ρ→ρ(A,B)+

λ(KA,B, |K|ρ)

where the second equality comes from the property of the CJSR, ρ(KA,B) =

|K|ρ(A,B), see e.g. [60]. Furthermore, from (4.7), one can deduce that for all

ρ > ρ(A,B), λ(KA,B, |K|ρ) = λ(A,B, ρ), therefore λ(KA,B) = λ(A,B).
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Let us remark that while the CJSR ρ(A,B) belongs to R+
0 , the ω-RJSR

λ(A,B) is always in [0, 1]. Intuitively, while the CJSR provides an estimate of the

contraction rate (when ρ(A,B) < 1) or of the expansion rate (when ρ(A,B) > 1)

of the system state at each time step for constrained switching signals, the ω-RJSR

measures how much additional contraction is obtained each time the set of ac-

cepting states F is visited. Theorem 4.3.7 in the next section provides theoretical

ground to this interpretation.

4.3.2 . Stability and ω-RJSR

In this section, we show how the ρ-ω-RJSR relates to stability properties of

constrained switched linear systems. In particular, we show how the ρ-ω-RJSR

allows us to compute bounds on the accepting rate ensuring stability. The next

result clarifies the relationship between the ρ-ω-RJSR and the behaviour of the

trajectories of (2.6).

Theorem 4.3.7. For all ρ > ρ(A,B), for all λ ∈ (λ(A,B, ρ), 1], there exists

C ≥ 1 such that

∥x(t, x0, θ)∥ ≤ Cρtλκθ(t)∥x0∥, ∀x0 ∈ Rn, θ ∈ Lang(B), t ∈ N. (4.12)

Conversely, if the matrices in A are invertible, if there exists C ≥ 1, ρ ≥ 0 and

λ ∈ [0, 1] such that (4.12) holds, then either ρ > ρ(A,B) and λ ≥ λ(A,B, ρ), or
ρ = ρ(A,B) and λ ≥ λ(A,B).

Proof. We start by proving the direct result. Let ρ > ρ(A,B) and λ ∈
(λ(A,B, ρ), 1]. By definition of λ(A,B, ρ), there exists k0 ≥ 1 such that

sup
θ∈Lang(B)

(∥∥Aθ,τθk

∥∥
ρτ

θ
k

)1/k

≤ λ, ∀k ≥ k0.

It follows that ∥∥Aθ,τθk

∥∥ ≤ ρτ
θ
kλk, ∀θ ∈ Lang(B), ∀k ≥ k0. (4.13)

Then, let C1 ≥ 1 be such that (4.10) holds. In particular, for t = τ θk and for

θ ∈ Lang(B), we obtain from (4.10) that∥∥Aθ,τθk

∥∥ ≤ C1ρ
τθk , ∀θ ∈ Lang(B),∀k ∈ N. (4.14)

Then, let C2 = C1λ
−k0 , then C2 ≥ 1 and it follows from (4.13) and (4.14) that∥∥Aθ,τθk

∥∥ ≤ C2ρ
τθkλk, ∀θ ∈ Lang(B), ∀k ∈ N. (4.15)
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Let θ ∈ Lang(B), t ∈ N, and k = κθ(t), we have Aθ,t = Aθ′,t−τθk
Aθ,τθk

where

θ′ ∈ ΘB is given by θ′(s) = θ(τ θk + s), for all s ∈ N. By (4.9), we get that∥∥Aθ′,t−τθk

∥∥ ≤ C1ρ
t−τθk . (4.16)

Then, let C = C1C2, by (4.15) and (4.16) we get∥∥Aθ,t

∥∥ ≤
∥∥Aθ′,t−τθk

∥∥∥∥Aθ,τθk

∥∥ ≤ Cλκθ(t)ρt.

Hence, (4.12) holds.

We now prove the converse result. By definition of induced matrix norm,

(4.12) is equivalent to the following:

∥Aθ,t∥ ≤ Cρtλκθ(t), ∀θ ∈ Lang(B), ∀t ∈ N. (4.17)

Since λ ∈ [0, 1] and κθ(t) ∈ N we also have

∥Aθ,t∥ ≤ Cρt, ∀θ ∈ Lang(B), ∀t ∈ N. (4.18)

Now, let θ ∈ ΘB and t ∈ N. From Assumption 4.1.2, there exists θ′ ∈ Lang(B)
and t0 ≤ |Q| such that θ(s) = θ′(t0 + s), for all s = 0, . . . , t. Then, since all

matrices in A are invertible we get

Aθ,t = Aθ′,t+t0A
−1
θ′,t0

.

Let us denote D = max
A∈A

∥A−1∥, then

∥Aθ,t∥ ≤ ∥Aθ′,t+t0∥ ∥A−1
θ′,t0

∥ ≤ ∥Aθ′,t+t0∥ Dt0 .

From (4.18), we then get that

∥Aθ,t∥ ≤ Cρt+t0Dt0 ≤ C ′ρt

with C ′ = Cmax(1, ρD)|Q|. Hence, for all t ∈ N,

sup
θ∈ΘB

∥∥Aθ,t

∥∥ ≤ C ′ρt.

Raising both side of the inequality to the power 1
t and taking the limit one gets

ρ(A,B) ≤ ρ. Considering (4.17) and fixing t = τ θk , we have

∥Aθ,τθk
∥ ≤ Cρτ

θ
kλk, ∀θ ∈ Lang(B), ∀k ∈ N
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which implies that(
∥Aθ,τθk

∥

ρτ
θ
k

)1/k

≤ C1/kλ, ∀θ ∈ Lang(B), ∀k ≥ 1. (4.19)

If ρ > ρ(A,B), taking the supremum over all switching signals in Lang(B) and

the lim sup as k goes to infinity yields λ(A,B, ρ) ≤ λ. If ρ = ρ(A,B), then for all

ρ′ > ρ(A,B), (4.19) gives(
∥Aθ,τθk

∥

ρ′τ
θ
k

)1/k

≤ C1/kλ, ∀θ ∈ Lang(B), ∀k ≥ 1.

Then, it follows that for all ρ′ > ρ(A,B), λ(A,B, ρ′) ≤ λ and hence by taking the

limit we get λ(A,B) ≤ λ.

The previous theorem provides a bound on the growth of the state and can be

used to derive conditions for stabilization of system (2.6) using ω-regular switching

sequences with a minimal accepting rate as shown in the following result.

Corollary 4.3.8. Let θ ∈ Lang(B), if there exists ρ > ρ(A,B) such that γθ >

− ln(ρ)
ln(λ(A,B,ρ)) , then

lim
t→+∞

∥x(t, x0, θ)∥ = 0, ∀x0 ∈ Rn. (4.20)

Proof. If γθ > − ln(ρ)
ln(λ(A,B,ρ)) , then there exists λ ∈ (λ(A,B, ρ), 1) such that γθ >

− ln(ρ)
ln(λ) and ϵ > 0 such that ϵ < γθ + ln(ρ)

ln(λ) . Then, from the definition of accepting

rate, there exists t0 ∈ N such that

κθ(t)

t
> γθ − ϵ

2
, ∀t ≥ t0.

From Theorem 4.3.7, there exists C ≥ 1 such that for all x0 ∈ Rn, for all t ≥ t0.

∥x(t, x0, θ)∥ ≤ Cρtλκθ(t)∥x0∥

≤ Cρtλ(γθ− ϵ
2
)t∥x0∥

≤ Cρtλ
(− ln(ρ)

ln(λ)
+ ϵ

2
)t∥x0∥

= Cλ
ϵ
2
t∥x0∥,

from which (4.20) follows.

As a result of the previous corollary, even if the switched system is unstable

for constrained switching (i.e. if ρ(A,B) > 1), it can still be stabilized by visiting

the set F frequently enough. From Lemma 4.1.1 we know that the accepting

rate always satisfies γθ ≤ M . Consequently, stabilization in this scenario is only

possible if there exists ρ > ρ(A,B) such that − ln(ρ)
ln(λ(A,B,ρ)) < M .
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4.3.3 . Computing Upper bounds of the ρ-ω-RJSR

In this section, we present an approach for computing upper bounds of the

ρ-ω-RJSR using a combination of Lyapunov and automata theoretic techniques.

Our approach is mainly based on the following result:

Theorem 4.3.9. If there exist V : Q × Rn → R+
0 , α1, α2, ρ > 0 and λ ∈ [0, 1]

such that the following inequalities hold true for every x ∈ Rn

α1∥x∥ ≤ V (q, x) ≤ α2∥x∥, q ∈ Q (4.21)

V (q′, Aix) ≤ ρV (q, x), q ∈ Q, i ∈ Σ, δ(q, i) = q′ /∈ F (4.22)

V (q′, Aix) ≤ ρλV (q, x), q ∈ Q, i ∈ Σ, δ(q, i) = q′ ∈ F (4.23)

then the bound (4.12) holds. Conversely, if the matrices in A are invertible, and

the bound (4.12) holds for some ρ > 0, λ ∈ [0, 1] and C ≥ 1, then there exists a

function V : Q×Rn → R+
0 such that the inequalities (4.21), (4.22) and (4.23) are

satisfied.

Proof. Let us consider an initial condition x0 ∈ Rn and a switching signal θ ∈
Lang(B), let q0q1q2 . . . be the accepting run associated with θ. We denote x(·) =
x(·, x0, θ) and we define the function W : N → R+

0 by W (t) = V (qt,x(t))
ρt for all

t ∈ N. It follows from (4.22) and (4.23) that W (t+1) ≤ W (t) for all t ∈ N. From
(4.23), we get that

∀k ≥ 1, W (τ θk ) ≤ λW (τ θk − 1).

From the monotonicity of W , we deduce that

∀k ≥ 1, W (τ θk ) ≤ λW (τ θk−1).

By induction on k, we get that

∀k ∈ N, W (τ θk ) ≤ λkW (0).

Now let t ∈ N, and let k ∈ N such that t ∈ [τ θk , τ
θ
k+1), then the accepting index is

κθ(t) = k. We get from the monotonicity of W that W (t) ≤ λκθ(t)W (0). Finally

from (4.21), we get, for all t ∈ N, x0 ∈ Rn that

∥x(t)∥ ≤ ρt

α1
W (t) ≤ ρt

α1
λκθ(t)W (0) ≤ α2

α1
ρtλκθ(t)∥x0∥.

Hence, the bound (4.12) holds with C = α2
α1
.

The proof of the converse result follows the same proof procedure as in [3,

Theorem 3] with a slight modification, that is the scale of the matrices in A by

ρ > ρ(A,B).
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As a direct consequence of the previous result and Theorem 4.3.7 we have the

following corollary.

Corollary 4.3.10. Let us assume the matrices in A are invertible. Let ρ > 0

and λ ∈ [0, 1] such that there exists a function V satisfying the conditions of

Theorem 4.3.9, then either ρ > ρ(A,B) and λ ≥ λ(A,B, ρ), or ρ = ρ(A,B) and

λ ≥ λ(A,B). Conversely, for all ρ > ρ(A,B), for all λ ∈ (λ(A,B, ρ), 1], there
exists a function V satisfying the conditions of Theorem 4.3.9.

Corollary 4.3.10 shows that tight upper-bounds of the CJSR and of the ω-ρ-

RJSR can be obtained by computing Lyapunov functions satisfying the conditions

in Theorem 4.3.9. Limiting the search to quadratic Lyapunov functions, the condi-

tions (4.21)-(4.22)-(4.23) can straightforwardly be translated into LMIs for which

efficient solvers exist. However, the tightness of the conditions in Theorem 4.3.9

is lost when constraining the Lyapunov functions to be quadratic.

4.3.4 . Numerical Example

We consider a multi-agent system consisting ofm discrete-time oscillators with

identical dynamics given by:

zi(t+ 1) = Rzi(t) + ui(t), i = 1, · · · ,m

where zi(t) ∈ R2, ui(t) ∈ R2 and R = µ

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
with ϕ = π

6 , µ = 1.02.

The input ui(t) is used for synchronization purpose and is based on the available

information at time t.

To exchange information, the agents are communicating over a network with

ring topology. More precisely, there exist m communication channels in the net-

work: one channel between agent i and agent i+ 1, for i = 1, . . . ,m− 1, and one

channel between agent m and agent 1. Hence, the vertices of the undirected com-

munication graph are given by the agents of the network V = {1, . . . ,m} and the

set of edges are given by the communication channels E = {e1, . . . , em} ⊆ V × V

where:

ei =

{
(i, i+ 1) if i = 1, . . .m− 1

(m, 1) if i = m

At each instant, only one of these channels is active and the active channel is

selected by a switching signal θ : N → Σ = {1, · · · ,m}. More precisely, at time

t ∈ N, the active channel is eθ(t).
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Then, the input value is given as follows:

u1(t) =


k(zm(t)− z1(t)), if θ(t) = m

k(z2(t)− z1(t)), if θ(t) = 1

0, otherwise,

ui(t) =


k(zi−1(t)− zi(t)), if θ(t) = i− 1

k(zi+1(t)− zi(t)), if θ(t) = i

0 otherwise

for i = 2, . . . ,m− 1,

um(t) =


k(zm−1(t)− zm(t)), if θ(t) = m− 1

k(z1(t)− zm(t)), if θ(t) = m

0, otherwise

where k is a control gain. Denoting the vector of synchronisation errors as

x(t) = (x1(t)
⊤, · · · , xm−1(t)

⊤)⊤ with xi(t) = zi+1(t) − zi(t), the error dynam-

ics is described by a 2(m− 1)-dimensional switched linear system of the form:

x(t+ 1) = Aθ(t)x(t) (4.24)

where the matrices Ak for k = 1, . . . ,m can be easily obtained from the multi-

agent dynamics and the input values given above.

Similar to consensus problems [19], we expect the stability of (4.24) to be

related to the connectivity, for all t ∈ N, of the graph Gt = (V,Et) where Et =⋃
s≥t

{eθ(s)}.

Let us consider the DBA B = (Q,Σ, δ, qinit, F ) where the set of states is

Q = 2E \ E with 2E the set of subsets of E; the alphabet is Σ = {1, . . . ,m}; the
initial state is qinit = ∅ and the set of accepting states is F = {∅}. The transition

function δ is given as follows

δ(q, i) =

{
∅ if (V, q ∪ {ei}) is connected
q ∪ {ei} otherwise.

For m = 3 the automaton B corresponds to the DBA represented in Figure 4.2.

For all switching signal θ ∈ Lang(B), we get by construction of B that for all

k ∈ N, the graph Gk = (V,Ek) is connected where

Ek =
⋃

τθk≤s≤τθk+1−1

{eθ(s)}.
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Then, it follows that θ ∈ Lang(B) if and only if G = (V,Et) is connected for all

t ∈ N. Moreover, by analyzing the cycles of B, we can check that the maximal

achievable accepting rate established in Lemma 4.1.1 is given by M = 1
m−1 .

Let us remark that for the DBA B defined above, any arbitrary switching

signal belongs to ΘB. Hence, the CJSR of (A,B) coincides with the JSR of the

set A. We can then compute ρ(A,B) using the JSR toolbox [73].

We then use Theorem 4.3.9 to compute an upper bound λ(ρ) on the ρ-ω-RJSR

by solving the LMIs associated with (4.21)-(4.22)-(4.23). Note that

γ∗ := inf
ρ>ρ(A,B)

− ln(ρ)

ln(λ(ρ))
≥ inf

ρ>ρ(A,B)
− ln(ρ)

ln(λ(A,B, ρ))
.

In this example, we observe numerically that the infimum is reached for ρ =

ρ(A,B) if it satisfies γ∗ < M = 1
m−1 (in which case the system is stabilizable, see

the discussion after Corollary 4.3.8), and at infinity otherwise, with γ∗ = 1
m−1 .

We aim at finding the minimal accepting rate γ∗ required to stabilize the sys-

tem with an arbitrary number of oscillators, therefore we computed γ∗ for several

values of k ∈ (0, 1) and m ∈ {3, 4, 5} and we show the result in Figure 4.5. In

this figure, the horizontal lines correspond to the maximal achievable accepting

rate 1
m−1 . From Corollary 4.3.8, we know that the switched system can be stabi-

lized if we use switching signals belonging to the language of B, whose accepting

rate satisfies γθ ∈ (γ∗, 1
m−1 ]. Hence, in order to stabilize the system, we should

carefully select the control gain k such that γ∗ < 1
m−1 .

We also verified that for m = 6 oscillators, γ∗ > 1
m−1 for all control gain

k ∈ (0, 1). Therefore, for 6 oscillators, there is no suitable choice of control gain k

such that the system can be stabilized using switching signals with a sufficiently

high accepting rate2.

We now proceed with some illustrative numerical simulations. Let us consider

a system composed of m = 3 oscillators with control gain k = 0.1, then from

Figure 4.5, the corresponding lower bound on the accepting rate is γ∗ = 0.22. Let

us consider the initial synchronization error x(0) = (−1.5 −0.5 2 −1)⊤. We

consider random switching signals generated by a discrete-time Markov chain with

3 states such that P(θ(t+1) = j|θ(t) = j) = p, and P(θ(t+1) = j|θ(t) = i) = 1−p
2

where p ∈ (0, 1) and i, j ∈ {1, 2, 3}, i ̸= j, t ≥ 0. From the definition of the DBA

B, it is easy to see that the smaller p, the higher the accepting rate.

We first consider p = 0.8. Figure 4.6 shows the switching signal θ(t), the

evolution of κθ(t)
t , and the synchronization errors x1(t), x2(t). It is interesting to

note that γθ ≥ 0.23 > 0.22 and that the system stabilizes as expected. Then, we

2The Matlab scripts of this numerical example are available at the following repository:
https://github.com/georgesaazan/w-regular-oscillators
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Figure 4.5: Minimal accepting rate γ∗ as a function of the control gain k
and of the number of oscillators m.

consider a switching signal with p = 0.98, The result of the simulation is shown in

Figure 4.7. We can check that γθ < 0.22 and that the system does not stabilize.

4.4 . Conclusion

In this chapter, we established some results concerning the stability of discrete-

time switched systems where the switching signal is generated by a Büchi automa-

ton. We developed sufficient conditions for attractivity and uniform stability for

this type of systems and also of uniform exponential stability when the considered

Büchi automaton is deterministic, all based on Lyapunov arguments. Moreover,

we proved that these conditions are also necessary for a subclass of such systems

with invertible matrices.

In addition, we introduced the ρ-ω-RJSR, a special notion of joint spectral

radius for discrete-time switched linear systems driven by infinite sequences gen-

erated by a given DBA. We have also shown its relation to stability properties of

switched systems. We proposed a method based on Lyapunov functions and au-

tomata theoretic techniques to compute upper-bounds on this quantity. Finally,
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Figure 4.6: Time evolution of the synchronization error x(t) and the switch-
ing signal θ(t) for an accepting rate higher than γ∗ = 0.22.

we illustrated our results with some applications based on oscillators.

In the next chapter we consider an application to observer design for switched

systems. The approach is based on the results of this chapter.
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Figure 4.7: Time evolution of the synchronization error x(t) and the switch-
ing signal θ(t) for an accepting rate smaller than γ∗ = 0.22.



5 - Application: An observer design for

switched systems

In this chapter, we consider the problem of designing asymptotic observers

for discrete-time switched linear systems. For this class of systems, there exists

a diversity of observability notions depending on whether the switching signal is

known [36, 10, 15] or need to be estimated [11, 32]. In our work, we assume that

the switching signal is known. In that context, there have been several works for

characterizing observable or reconstructible switching sequences [36, 69], i.e. finite

switching sequences that make it possible to estimate the initial or the current

state of the system, respectively. Relevant work also includes the characterization

of observability for continuous-time switched systems with jumps at the switching

instants [78, 67, 66], which can be seen as a generalization of discrete-time switched

systems.

The design of asymptotic observers itself has also been considered in several

papers. Observers that are convergent for arbitrary switching sequences have been

designed in [7, 29] using mode dependent observer gains and quadratic or poly-

quadratic Lyapunov functions. Note that this design requires that the dynamics

in each mode is observable since constant switching signals are allowed. The

case where individual dynamics are unobservable but some observable (or recon-

structible) switching sequences exist is also of interest. To be able to estimate the

state of the system, it is necessary that the switching signal contains at least one

reconstructible sequence. Actually, to be able to design observers that are robust

to unmodelled disturbances or to measurement noises, it is necessary to consider

switching signals containing an infinite number of reconstructible sequences.

The contributions of this chapter are multiple and can be summarized as fol-

lows. Firstly, we provide a formal characterization of the set of switching signals

containing an infinite number of reconstructible sequences. More precisely, we

show that this set coincides with the language of a DBA whose construction is

presented in the sequel. We then consider the problem of designing an asymptotic

observer. We propose a switched observer with an internal discrete state whose

dynamics is given by the transition map of the DBA. Building on the results of

Section 4, we then establish sufficient conditions to design the observer gains such

that the resulting observer is convergent for all switching signals whose occurrence

rate of resconstructible sequences is higher than a certain tunable parameter. In

the case where all state matrices of the switched system are invertible, we present

an explicit construction of suitable observer gains, showing that the proposed ob-

73
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server structure is universal in the sense that one can always find an observer of

the proposed form. We also show an alternative design based on LMIs which are

shown to always admit a feasible solution under the same invertibility assump-

tion. We then show how to extend our approach to take into account additional

constraints on the switching signals. Our theoretical contributions are illustrated

using a simple example. To show the effectiveness of the proposed methodol-

ogy, we consider a case study in which we design an observer for a multicellular

converter [71, 72].

The most related works in the literature are the following. In [48], a switched

observer is presented where the observer gains at some instant t depends on the

sequence of modes at time t − L, . . . , t. Similar to our construction, this can be

seen as a switched observer with an internal discrete state though the discrete

dynamics is different from that presented in this work. In [48], the design of the

observer gains is done by solving LMIs. However, contrarily to our approach,

there is no clear characterization of the cases when the proposed design can be

successful. Another approach can be to consider a switched linear system as

a time-varying linear system and to apply associated observer design techniques,

such as Kalman filters [80]. Alternatively, the design proposed in [67] for observers

of continuous-time switched linear systems with jumps at the switching instants

can be adapted to discrete-time systems. The observers designed in [80] and [67]

can be shown to be convergent for switching signals containing an infinite number

of reconstructible sequences. However, their gains have to be computed online. In

comparison, the gains of our observer are computed offline, resulting in reduced

requirements for its implementation.

This chapter represents the results of the following paper:

Georges Aazan, Antoine Girard, Luca Greco, and Paolo Mason. An Automata

Theoretic Approach to Observer Design for Switched Linear Systems. Submitted

to Automatica, 2023.

This chapter is organized as follows. Section 5.1 presents the problem un-

der consideration and introduces preliminary results on observability of switched

systems and on DBAs. Section 5.2 gives a construction of a DBA generating

switching signals containing an infinite number of reconstructible sequences. Sec-

tion 5.3 presents the structure of the switched observers and the methods to design

its gains. It also shows an illustration of a simple example while Section 5.4 deals

with the application to a multicellular converter.

5.1 . Observability of discrete-time switched systems
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Let us consider a discrete-time switched linear system described by the fol-

lowing equation:
x(t+ 1) = Aθ(t)x(t),

y(t) = Cθ(t)x(t)
(5.1)

where x(t) ∈ Rn is the state of the system, θ : N → I is the switching signal

and I is the set of modes, I = {1, . . . ,m}, the state matrices belong to the set

A = {A1, . . . , Am} ⊆ Rn×n. The output vector is y(t) ∈ Rp and the output

matrices are in the set C = {C1, . . . , Cm} ⊆ Rp×n.

Our goal in this chapter is to propose a general procedure for designing asymp-

totic observers for system (5.1) capable of reconstructing the state x from the

knowledge of the switching signal θ and of the output y.

By following [64], we recall a definition and a characterization of observability

for the switched system (5.1).

Definition 5.1.1. The switched system (5.1) is observable (resp., reconstructible),

if there exist a switching signal θ and k ∈ N such that the knowledge of the output

sequence y(0), . . . , y(k) is sufficient to determine the initial condition x0 (resp.,

the state x(k)). We refer to the finite sequence of modes θ(0), . . . , θ(k) as an

observable (resp., reconstructible) sequence.

We recall that an observable system is also reconstructible, while the opposite

is true if all the matrices in A are invertible. We define the observability matrix

corresponding to a sequence of modes i1, . . . , ij ∈ I, as

Ω(i1, . . . , ij) =
[
C⊤
i1

A⊤
i1
C⊤
i2

· · · A⊤
i1
· · ·A⊤

ij−1
C⊤
ij

]⊤
.

Necessary and sufficient conditions for observability and reconstructibility are

recalled in the following theorem.

Theorem 5.1.2. [64, Theorems 4.32 & 4.33] A sequence of modes i1, . . . , ij ∈ I

is observable if and only if

rank
(
Ω(i1, . . . , ij)

)
= n. (5.2)

It is reconstructible if and only if

ker
(
Ω(i1, . . . , ij)

)
⊆ ker(Ai1 · · ·Aij ). (5.3)

As far as the design of asymptotic observers is concerned, it is sufficient to con-

sider the notion of reconstructibility. However, let us remark that the conditions

in (5.2) and (5.3) are equivalent if all matrices in A are invertible.
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5.2 . Reconstructible sequences

In this section, we present a construction of a deterministic Büchi automaton

whose language consists of switching signals that contain an infinite number of

reconstructible sequences. Let us introduce the following notations:

Given a word w ∈ Σ∗, we have that the length of w, denoted by |w| is n

if w = σ1 · · ·σn, or 0 if w = ϵ where ϵ is the empty word. For w ∈ Σ∗, we

say that w′ is a prefix of w if it belongs to the set P(w) = {w′ ∈ Σ∗ | ∃w′′ ∈
Σ∗, w = w′w′′}. Similarly, we say that w′ is a suffix of w if it belongs to the

set S(w) = {w′ ∈ Σ∗ | ∃w′′ ∈ Σ∗, w = w′′w′}. We stress that, in the previous

definitions, w′ and w′′ can be the empty word. Let S1, S2 ⊆ Σ∗, then the set

S1S2 is the set of words consisting of the concatenation of words of S1 and S2,

i.e. S1S2 = {w = w1w2|w1 ∈ S1, w2 ∈ S2}. Let S ⊆ Σ∗ \ {ϵ}, then Sω is the set

of words consisting of the concatenation of an infinite sequence of words of S, i.e.

Sω = {w1w2 · · · |wi ∈ S, i = 1, . . .}.

5.2.1 . Construction of the automaton

Using Theorem 5.1.2, one can efficiently compute reconstructible sequences

up to a specific length for a switched linear system given by (A, C) and described

by equation (5.1). The set of reconstructible sequences of length j ≥ 1 is defined

by

Oj =

{
σ1 · · ·σj ∈ I∗

∣∣∣∣∣ ker
(
Ω(σ1, . . . , σj)

)
⊆

ker(Aσ1 · · ·Aσj )

}
Moreover, the set of reconstructible sequences of length up to k ≥ 1 is given by

O[k] =
⋃

j=1,...,k

Oj .

It is easy to see that if w is a reconstructible sequence, then any sequence con-

taining w as a subsequence is also reconstructible. Therefore it is useful to define

the following reduced set of reconstructible sequences:

O′[k] =

{
w ∈ O[k]

∣∣∣∣ ∄w1, w2 ∈ I∗, w′ ∈ O[k] \ {w}
s.t. w = w1w

′w2

}
.

Intuitively, O′[k] consists of minimal reconstructible sequences, i.e. reconstructible

sequences that do not contain reconstructible subsequences. It is easy to see that

for any k1 ≤ k2, O′[k1] ⊆ O′[k2].

Let us consider k ≥ 1, such that O′[k] ̸= ∅. Our goal is to generate words

containing an infinite number of reconstructible sequences in O′[k]. To this aim,

we provide Algorithm 1 which outputs a DBA Bk = (Q, I, δ, q0, F ) generating
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Algorithm 1 Construction of DBA Bk

Inputs: alphabet I, reconstructible sequences O′[k]

Output: DBA Bk such that Lang(Bk) = (I∗O′[k])ω

1: q0 := ϵ, F := {ϵ}, Q := {ϵ}
2: for σ ∈ I do
3: if σ ∈ O′[k] then
4: δ(ϵ, σ) := ϵ
5: else
6: Q := Q ∪ {σ}
7: δ(ϵ, σ) := σ
8: end if
9: end for
10: for σ1 · · ·σl ∈ O′[k], l ≥ 2 do
11: if l = 2 then
12: δ(σ1, σ2) := ϵ
13: else
14: for j ∈ {2, . . . , l − 1} do
15: Q := Q ∪ {σ1 · · ·σj}
16: δ(σ1 · · ·σj−1, σj) := σ1 · · ·σj

17: end for
18: δ(σ1 · · ·σl−1, σl) := ϵ
19: end if
20: end for
21: W := {(w, σ) ∈ Q× I | (w, σ) /∈ δ−1(Q)}
22: for (w, σ) ∈ W do
23: if ∃ws ∈ S(w) s.t. wsσ ∈ O′[k] then
24: δ(w, σ) := ϵ
25: else
26: δ(w, σ) := arg max

v∈Q∩S(wσ)
|v|

27: end if
28: end for

the language (I∗O′[k])ω. The main idea is to build an automaton that visits an

accepting state each time a reconstructible sequence occurs. We note that in this

automaton the states are words in I∗, i.e. Q ⊆ I∗.

Algorithm 1 is comprised of three parts:

� In the first part, from step 2 to step 9, we check if there are reconstructible
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sequences of length 1. If it is the case we create a self transition to the

accepting state, otherwise we add a new state and we define a transition

from the accepting state to the newly added state.

� In the second part, from step 10 to step 20, we consider reconstructible se-

quences w in O′[k] of length l ≥ 2. We add to the set Q all the prefixes of w,

except w itself, and we define the corresponding transitions between consec-

utive prefixes. The last transition, which happens when the reconstructible

sequence w has occurred, leads to the accepting state.

� Finally, in the third part, from step 21 to step 28, we focus on the couples

(w, σ) ∈ Q × I for which no transition is defined yet. In this case, if there

exists a suffix ws of w such that wsσ ∈ O′[k], then we add a transition from

w to the accepting state. Otherwise, we look for the longest suffix v of wσ

such that v ∈ Q and we define a transition toward this state.

Example 5.2.1. Consider the switched linear system with two modes, i.e. I =

{1, 2}, defined by the set of matrices A = {A1, A2}, C = {C1, C2}, where

A1 = I3, A2 = 1.5×

0 0 1
0 1 0
1 0 0

 ,

C1 = (1 0 0) and C2 = (0 1 1). For k = 3, we get that

O′[k] = {121, 122, 212, 221}.

Applying Algorithm 1, we obtain the DBA represented in Figure 5.2.1 where tran-

sitions are represented with arrows of different types depending on which phase of

the algorithm they have been added.

5.2.2 . Language characterization

In this subsection, we prove that Lang(Bk) = (I∗O′[k])ω. For that purpose,

we make use of the following three lemmas.

Lemma 5.2.2. Let Bk be the Büchi automaton constructed using Algorithm 1 for

some k ≥ 1, then Bk is deterministic and any state of Bk is reachable from any

other state.

Proof. Algorithm 1 univocally builds the application δ for each pair of (w, σ) ∈
Q × I, hence the ensuing Büchi automaton is deterministic. Also, it is apparent

from the couples of lines 6, 7 and 15, 16 that, whenever a new state is added to
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θ
=
1

θ
=
1

θ
=
2

θ
=
1

θ = 2

θ = 2

θ = 1, 2

θ = 1

ǫ

1

2

21

12

22

θ = 1

θ = 2

θ = 2

Figure 5.1: The generated DBA Bk corresponding to O′[k] =
{121, 122, 212, 221} for k = 3. The transitions built in part 1, 2 and 3
of Algorithm 1 are represented respectively by arrows with double head,
single filled head and single empty head.

the set Q a chain of transitions from the accepting state to such a state is also

created. As a consequence, all the states of Bk are reachable from the accepting

state. Furthermore, the last transition of any such chain, see steps 4, 12 and 18,

brings the run back to the accepting state.

Lemma 5.2.3. Let Bk be the DBA constructed using Algorithm 1 for some k ≥ 1.

Then the following statements hold true:

1. If w′, w′′ ∈ Q, w ∈ I∗ are such that w′ w−→ w′′ then w′′ ∈ S(w′w);

2. If w ∈ Q, σ ∈ I are such that δ(w, σ) = ϵ then there exists w′ ∈ S(w) such

that w′σ ∈ O′[k].

Proof. Note that the transition map δ defined by the algorithm satisfies δ(v, σ) ∈
S(vσ) for every v ∈ Q and σ ∈ I. Furthermore, it is straightforward to see that,

for every v, v′, v′′ ∈ I∗ with v′′ ∈ S(v′), it holds S(v′′v) ⊆ S(v′v). Now, let w,w′, w′′
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be as in Item (1). We write w = σ1 · · ·σp and define w0 = w′ and, recursively for

k = 1, . . . , p, wk = δ(wk−1, σk). We then have

w′′ ∈ S(wp−1σp) ⊆ S(wp−2σp−1σp)

⊆ · · · ⊆ S(w′σ1 · · ·σp),

concluding the proof of Item (1).

Let us prove Item (2). Note that in steps 4, 12, 18 and 24 δ(w, σ) = ϵ and the

conclusion of Item (2) holds. In steps 7 and 16 it is apparent that δ(w, σ) ̸= ϵ.

We now show that this is also the case for step 26. Note that, in this step, σ can

not belong to O′[k], thus, by step 6, σ ∈ Q. Therefore δ(w, σ) ̸= ϵ in step 26.

Lemma 5.2.4. Let Bk be the DBA constructed using Algorithm 1 for some k ≥ 1.

Let w ∈ Q,wo ∈ O′[k], then there exists w∗ ∈ P(wo) such that w
w∗
−−→ ϵ.

Proof. Write wo = σ1 · · ·σp. For p = 1 the result follows from steps 4 and 24

of the algorithm. Let us then consider the case p ≥ 2. For k = 1, . . . , p, let us

define wk such that w
σ1···σk−−−−→ wk. To prove the lemma, it is enough to show that

if wk ̸= ϵ for k = 1, . . . , p − 1 then wp = ϵ. We first claim that, if wk ̸= ϵ for

k = 1, . . . , p− 1 then wk = w′
kσ1 · · ·σk for some w′

k ∈ S(w). In order to prove the

claim, we proceed by induction on k. It follows from steps 7, 16 and 26 that either

w1 = wσ1, and thus the claim holds with w′
1 = w, or w1 = arg max

z∈Q∩S(wσ1)
|z|. In

the latter case, since w1 ̸= ϵ by assumption, it follows that w1 = w′
1σ1 for some

w′
1 ∈ S(w). Hence the claim is proved for k = 1.

Assume now that the claim holds true for some k ∈ {1, . . . , p− 2}, hence we

can write wk = w′
kσ1 · · ·σk for some w′

k ∈ S(w). Let us prove the claim for k + 1.

It follows from steps 16 and 26 that either wk+1 = wkσk+1 = w′
kσ1 · · ·σk+1, in

which case the claim holds true with w′
k+1 = w′

k, or wk+1 = arg max
z∈Q∩S(wkσk+1)

|z|.

In the second case, since wo ∈ O′[k] we have, by step 15, that σ1 · · ·σk+1 ∈ Q. By

construction σ1 · · ·σk+1 ∈ S(wkσk+1), from which the claim follows for k + 1.

From the claim we have that wp−1 = w′
p−1σ1 · · ·σp−1. By step 24 we then

have wp = ϵ.

We can now state the main result of this subsection:

Theorem 5.2.5. Let Bk be the DBA constructed using Algorithm 1 for some

k ≥ 1, then Lang(Bk) = (I∗O′[k])ω.



5.3. OBSERVER DESIGN 81

Proof. Note that (I∗O′[k])ω ⊆ Iω and Bk is deterministic by Lemma 5.2.2, hence

for any sequence in (I∗O′[k])ω there exists a (unique) corresponding run in Bk.

First, we show that (I∗O′[k])ω ⊆ Lang(Bk). Let w = w1w
o
1w2w

o
2 · · · ∈

(I∗O′[k])ω, where wi ∈ I∗, wo
i ∈ O′[k], i ≥ 1. Let us define some elements of

the run in Bk corresponding to the sequence w as w(0) = ϵ and, recursively,

w(i−1)

wiw
o
i−−−→ w(i) for all i ≥ 1. Let us define v(i) such that w(i−1)

wi−→ v(i), then, by

Lemma 5.2.4, there exists w∗
i ∈ P(wo

i ) such that v(i)
w∗

i−−→ ϵ. Now, in the infinite

run corresponding to w, the state ϵ is visited at least once between each couple of

states w(i−1) and w(i). Therefore the accepting state is visited an infinite number

of times in the run. This proves the first inclusion.

Let us focus on the inclusion (I∗O′[k])ω ⊇ Lang(Bk). Let w ∈ Lang(Bk). Then

we can write w = w1w2 · · · where wi ∈ I∗ are such that ϵ
w1−→ ϵ

w2−→ ϵ · · · . Let us

consider wi in the previous decomposition of w. We write wi = σ1 · · ·σl for some

l ≥ 1, and consider the word w′
i such that ϵ

σ1···σl−1−−−−−→ w′
i

σl−→ ϵ. By applying Item (2)

in Lemma 5.2.3 we obtain the existence of w′′
i ∈ S(w′

i) such that w′′
i σl ∈ O′[k].

By applying Item (1) in Lemma 5.2.3 we deduce that w′
i ∈ S(σ1 · · ·σl−1), hence

w′
iσl ∈ S(σ1 · · ·σl) = S(wi). We thus get w′′

i σl ∈ S(wi)∩O′[k], that is wi ∈ I∗O′[k].

Since this is true for all wi with i ≥ 1 in w = w1w2 · · · , we obtain w ∈ (I∗O′[k])ω,

concluding the proof of the inclusion (I∗O′[k])ω ⊇ Lang(Bk).

Let us remark that, since for any k1 ≤ k2, O′[k1] ⊆ O′[k2], it follows from Theo-

rem 5.2.5 that Lang(Bk1) ⊆ Lang(Bk2). Hence, considering longer reconstructible

sequences produces a DBA accepting more switching signals.

5.3 . Observer design

In this section, we present an approach for designing asymptotic observers for

system (5.1). The proposed design results in a switched observer where the switch-

ing is driven by the DBA Bk presented in the previous section. We first introduce

the structure of the observer and then propose two approaches for designing the

gains of the observer. Let us consider the system (5.1) and let Bk = (Q, I, δ, q0, F )

be the DBA constructed using Algorithm 1, for some k ≥ 1 such that O′[k] ̸= ∅.
We consider the following switched observer where x̂(t) ∈ Rn is the estimate of

the state of (5.1) and q(t) ∈ Q is an internal discrete state:

q(t+ 1) = δ(q(t), θ(t)), q(0) = q0,
x̂(t+ 1) = Aθ(t)x̂(t) + L(q(t),θ(t))

(
y(t)− Cθ(t)x̂(t)

)
.

(5.4)

Let us remark that the dynamics of q is given by the transition function δ of the

DBA Bk. The structure of the observer being given by (5.4), it remains to design
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the observer gains L(w,σ), for all w ∈ Q and σ ∈ I.

Let e(t) = x(t)−x̂(t) be the estimation error of the observer, then the dynamics

of e(t) is given by:

e(t+ 1) = (Aθ(t) − L(q(t),θ(t))Cθ(t))e(t).

We note that, given an initial condition e0 ∈ Rn, and a switching signal θ, the

trajectory with e(0) = e0 is unique and denoted by e(., e0, θ). In order to guarantee

the convergence of the asymptotic observer, one needs to prove that e(t, e0, θ) goes

to 0 as t tends to infinity. For this purpose, we will make use of the following

Lyapunov-type result.

Proposition 5.3.1. Let us assume that there exist a function V : Q×Rn → R+
0 ,

and scalars α1, α2, ρ > 0, and λ ∈ (0, 1), such that for all e ∈ Rn, the following

inequalities hold:

α1∥e∥ ≤ V (w, e) ≤ α2∥e∥, ∀w ∈ Q, (5.5)

V
(
w′, (Aσ − L(w,σ)Cσ)e

)
≤ ρV (w, e), (5.6)

∀w ∈ Q, σ ∈ I, s.t. w′ = δ(w, σ) ̸= ϵ,

V
(
w′, (Aσ − L(w,σ)Cσ)e

)
≤ ρλV (w, e), (5.7)

∀w ∈ Q, σ ∈ I, s.t. w′ = δ(w, σ) = ϵ.

Then, there exists C ≥ 1 such that for all e0 ∈ Rn, and for all θ ∈ Lang(Bk):

∀t ∈ N, ∥e(t, e0, θ)∥ ≤ Cρtλκθ,Bk (t)∥e0∥. (5.8)

Moreover, whenever γθ > ln(ρ)
− ln(λ) , we have

lim
t→∞

∥e(t, e0, θ)∥ = 0. (5.9)

Proof. The proof of (5.8) follows the same rationale as in [3, Theorem 1], with a

slight modification that is the scaling of the set of state matrices by ρ > 0. The

proof of (5.9) is as in [2, Corollary 1].

Equation (5.8) relates the convergence rate of the asymptotic observer to the

return index κθ,Bk(t) associated with the DBA Bk, which essentially counts the

number of reconstructible sequences (i.e. elements of O′[k]) that occur up to time

t. Note that ρ may be greater than 1. In that case, in order to guarantee the

convergence of the observer, one must consider switching signals where recon-

structible sequences occur sufficiently often. This occurrence rate is measured

by the accepting rate γθ. If γθ is sufficiently large, we get from (5.9) that the

observer asymptotically converges. In general, the set of switching signals θ sat-

isfying γθ > ln(ρ)
− ln(λ) is not an ω-regular language anymore but belongs to the class

of quantitative languages, studied in [25].
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5.3.1 . Explicit construction of gains

In this subsection, we present a particular design of the observer gains L(w,σ),

w ∈ Q and σ ∈ I, and of the associated Lyapunov function V . The proposed

design requires the following property which is assumed to hold throughout the

subsection:

Assumption 5.3.2. Aσ is invertible for all σ ∈ I.

Let us fix ρ > ρe(A) where ρe(A) is as in Equation (2.12) Then, by definition,

there exists M ∈ Rn×n symmetric positive definite such that

A⊤
σMAσ ≤ ρ2M, ∀σ ∈ I. (5.10)

Let us also consider an arbitrary λ ∈ (0, 1).

Remark 5.3.3. The results presented in this section can be extended to the case

ρ = ρe(A) if there exists a symmetric positive definite matrix M such that (5.10)

holds.

We start with a preliminary result:

Lemma 5.3.4. There exists γ > 0 such that for all reconstructible sequences

σ1 · · ·σl ∈ O′[k]

W⊤
σ1···σl

Wσ1···σl
≥ γM,

where Wσ1···σl
= diag([1, 1ρ , . . . ,

1
ρl−1 ])Ω(σ1, . . . , σl).

Proof. Since all matrices in A are invertible, any reconstructible sequence is also

observable. Then, from Theorem 5.1.2, we get that for any σ1 · · ·σl ∈ O′[k],

rank(Wσ1···σl
) = n, and therefore W⊤

σ1···σl
Wσ1···σl

is symmetric positive definite.

Then, the result follows directly from the fact that the set O′[k] is finite.

In the following, we provide an explicit construction of observer gains L(w,σ)

and of a Lyapunov function V under the form

V (w, e) =
√
e⊤Pwe.

Let us associate a matrix Pw ∈ Rn×n with every word w ∈ I∗, defined recursively

as follows:

Pϵ = M (5.11)

Pwσ = ρ2A−⊤
σ PwA

−1
σ +

ρ2

γλ2
A−⊤

σ C⊤
σ CσA

−1
σ , (5.12)

∀w ∈ I∗, σ ∈ I.



84 CHAPTER 5. OBSERVER DESIGN FOR SWITCHED SYSTEMS

Let us prove several instrumental results related to properties of the matrices Pw.

Lemma 5.3.5. For all w ∈ I∗, Pw > 0.

Proof. From (5.12), it follows that

Pwσ ≥ ρ2A−⊤
σ PwA

−1
σ , ∀w ∈ I∗, σ ∈ I.

Then, since Pϵ = M > 0 and Aσ is invertible for all σ ∈ I by Assumption 5.3.2,

it follows by induction that Pw > 0 for all w ∈ I∗.

Lemma 5.3.6. For all w ∈ I∗, σ ∈ I, Pw ≤ Pσw.

Proof. From (5.12), we get that for all σ ∈ I,

Pσ ≥ ρ2A−⊤
σ PϵA

−1
σ .

From (5.10), we get that

M ≤ ρ2A−⊤
σ MA−1

σ .

Then, from (5.11) and the two previous inequalities, it follows that Pϵ ≤ Pσ.

Hence, the property holds for w = ϵ and hence for all words of length 0. Then,

we proceed by induction. Let us assume that the property holds for all words of

a certain length l ∈ N, and let us consider a word w of length l + 1. Then, there

exists wl ∈ I∗, |wl| = l and σl+1 ∈ I such that w = wlσl+1. Then, from (5.12)

Pσw = Pσwlσl+1

= ρ2A−⊤
σl+1

Pσwl
A−1

σl+1
+

ρ2

γλ2
A−⊤

σl+1
C⊤
σl+1

Cσl+1
A−1

σl+1
.

Since |wl| = l, we get by the induction assumption Pσwl
≥ Pwl

and therefore

Pσw ≥ ρ2A−⊤
σl+1

Pwl
A−1

σl+1
+

ρ2

γλ2
A−⊤

σl+1
C⊤
σl+1

Cσl+1
A−1

σl+1
.

Then, from (5.12), we also get

Pw = Pwlσl+1

= ρ2A−⊤
σl+1

Pwl
A−1

σl+1
+

ρ2

γλ2
A−⊤

σl+1
C⊤
σl+1

Cσl+1
A−1

σl+1
.

Then, Pσw ≥ Pw. By induction, the property holds for all w ∈ I∗.
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Lemma 5.3.7. For all w ∈ O′[k], M ≤ λ2Pw.

Proof. Let w ∈ O′[k], w = σ1 · · ·σl, then from (5.12)

Pw =Pσ1···σl

=ρ2lA−⊤
σl

· · ·A−⊤
σ1

MA−1
σ1

· · ·A−1
σl

+
ρ2l

γλ2
A−⊤

σl
· · ·A−⊤

σ1
C⊤
σ1
Cσ1A

−1
σ1

· · ·A−1
σl

+
ρ2(l−1)

γλ2
A−⊤

σl
· · ·A−⊤

σ2
C⊤
σ2
Cσ2A

−1
σ2

· · ·A−1
σl

+ · · ·+ ρ2

γλ2
A−⊤

σl
C⊤
σl
Cσl

A−1
σl

.

Then, it follows that

Pw ≥ ρ2l

γλ2
A−⊤

σl
· · ·A−⊤

σ1
W⊤

σ1···σl
Wσ1···σl

A−1
σ1

· · ·A−1
σl

.

Then, from Lemma 5.3.4 and (5.10), we get

Pw ≥ ρ2l

λ2
A−⊤

σl
· · ·A−⊤

σ1
MA−1

σ1
· · ·A−1

σl
≥ 1

λ2
M.

Let us now define the matrices L(w,σ) ∈ Rn×p, for all w ∈ I∗, σ ∈ I as follows:

L(w,σ) = AσP
−1
w C⊤

σ

(
γλ2Ip + CσP

−1
w C⊤

σ

)−1
. (5.13)

Then, the following fundamental property holds:

Lemma 5.3.8. For all w ∈ I∗, σ ∈ I,

(Aσ − L(w,σ)Cσ)
⊤Pwσ(Aσ − L(w,σ)Cσ) ≤ ρ2Pw.

Proof. From (5.12), we get that for all w ∈ I∗, σ ∈ I,

1

ρ2
A⊤

σ PwσAσ = Pw +
1

γλ2
C⊤
σ Cσ.

Then, it follows that

ρ2A−1
σ P−1

wσA
−⊤
σ =

(
Pw +

1

γλ2
C⊤
σ Cσ

)−1

= P−1
w − P−1

w C⊤
σ

(
γλ2Ip + CσP

−1
w C⊤

σ

)−1
CσP

−1
w (5.14)

= P−1
w −A−1

σ L(w,σ)CσP
−1
w (5.15)
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where (5.14) is obtained by the Woodbury matrix identity and (5.15) is obtained

by (5.13). Multiplying both sides by Aσ on the left and by Pw on the right, we

obtain

Aσ − L(w,σ)Cσ = ρ2P−1
wσA

−⊤
σ Pw.

Therefore,

(Aσ − L(w,σ)Cσ)
⊤Pwσ(Aσ − L(w,σ)Cσ) =

ρ4PwA
−1
σ P−1

wσA
−⊤
σ Pw. (5.16)

Note that from (5.14), the following inequality holds:

ρ2A−1
σ P−1

wσA
−⊤
σ ≤ P−1

w ,

which together with (5.16) gives:

(Aσ − L(w,σ)Cσ)
⊤Pwσ(Aσ − L(w,σ)Cσ) ≤ ρ2Pw.

We are now in position of stating the main result of this subsection:

Theorem 5.3.9. Let Bk be the DBA constructed using Algorithm 1 for some

k ≥ 1, let ρ > ρe(A) and λ ∈ (0, 1). Under Assumption 5.3.2, for all w ∈ Q and

σ ∈ I let the matrices Pw and L(w,σ) be defined as in (5.11), (5.12) and (5.13).

Then, Pw > 0, for all w ∈ Q, and

(Aσ − L(w,σ)Cσ)
⊤Pw′(Aσ − L(w,σ)Cσ) ≤ ρ2Pw, (5.17)

∀w ∈ Q, σ ∈ I, s.t. w′ = δ(w, σ) ̸= ϵ,

(Aσ − L(w,σ)Cσ)
⊤Pw′(Aσ − L(w,σ)Cσ) ≤ ρ2λ2Pw, (5.18)

∀w ∈ Q, σ ∈ I, s.t. w′ = δ(w, σ) = ϵ.

In particular, the function V (w, e) =
√

e⊤Pwe satisfies inequalities (5.5),(5.6)

and (5.7).

Proof. The fact that Pw > 0, for all w ∈ Q, follows from Lemma 5.3.5. Let us

consider w ∈ Q, σ ∈ I, such that w′ = δ(w, σ) ̸= ϵ. Then, from Item (1) of

Lemma 5.2.3, there exist w1, w2 ∈ I∗ (possibly with w1 = ϵ or w2 = ϵ) such that

w = w1w2 and w′ = w2σ. Then, from Lemma 5.3.6,

Pw′ = Pw2σ ≤ Pw1w2σ = Pwσ.
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Then,

(Aσ−L(w,σ)Cσ)
⊤Pw′(Aσ − L(w,σ)Cσ)

≤ (Aσ − L(w,σ)Cσ)
⊤Pwσ(Aσ − L(w,σ)Cσ)

≤ ρ2Pw

where the last inequality comes from Lemma 5.3.8.

Now consider w ∈ Q, σ ∈ I, such that w′ = δ(w, σ) = ϵ. Then, from Item (2)

of Lemma 5.2.3, there exist w1, w2 ∈ I∗ (possibly with w1 = ϵ or w2 = ϵ) such

that w = w1w2 and w2σ ∈ O′[k]. From Lemma 5.3.7 and Lemma 5.3.6, we get

Pw′ = Pϵ = M ≤ λ2Pw2σ ≤ λ2Pw1w2σ = λ2Pwσ.

Then,

(Aσ−L(w,σ)Cσ)
⊤Pw′(Aσ − L(w,σ)Cσ)

≤ λ2(Aσ − L(w,σ)Cσ)
⊤Pwσ(Aσ − L(w,σ)Cσ)

≤ ρ2λ2Pw

where the last inequality comes from Lemma 5.3.8.

The fact that the function V satisfies inequalities (5.5),(5.6) and (5.7) is then

a direct consequence of Pw > 0, (5.17) and (5.18), respectively.

Hence, in this section, we have shown that when all matrices in A are invert-

ible, for all ρ > ρe(A) and λ ∈ (0, 1) it is possible to design observer gains such

that conditions of Proposition 5.3.1 are satisfied.

5.3.2 . Gains construction using LMIs solution

In this subsection, we present an alternative design of the observer gains based

on solving a set of linear matrix inequalities.

Proposition 5.3.10. Let Bk be the DBA constructed using Algorithm 1 for some

k ≥ 1, let ρ > 0 and λ ∈ (0, 1). Let us assume that there exist matrices Pw ∈ Rn×n,

Y(w,σ) ∈ Rn×p, for w ∈ Q, σ ∈ I, such that the following LMIs hold:

Pw > 0, ∀w ∈ Q, (5.19)(
Pw′ Pw′Aσ − Y(w,σ)Cσ

⋆ ρ2Pw

)
≥ 0 (5.20)

∀w ∈ Q, σ ∈ I, s.t. w′ = δ(w, σ) ̸= ϵ,(
Pw′ Pw′Aσ − Y(w,σ)Cσ

⋆ ρ2λ2Pw

)
≥ 0 (5.21)

∀w ∈ Q, σ ∈ I, s.t. w′ = δ(w, σ) = ϵ.
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Then, the function V (w, e) =
√

e⊤Pwe satisfies inequalities (5.5),(5.6) and (5.7)

with observer gains

L(w,σ) = P−1
δ(w,σ)Y(w,σ), w ∈ Q, σ ∈ I. (5.22)

Moreover, under Assumption 5.3.2, LMIs (5.19), (5.20), (5.21) have a feasible

solution for all ρ > ρe(A) and λ ∈ (0, 1).

Proof. Considering L(w,σ) given by (5.22), we get by Schur complement that

(5.20), (5.21) are equivalent to (5.17) and (5.18). This, together with (5.19)

implies that the function V satisfies inequalities (5.5),(5.6) and (5.7).

Conversely, under Assumption 5.3.2, for ρ > ρe(A) and λ ∈ (0, 1), let the

matrices Pw and L(w,σ) be defined as in (5.11), (5.12) and (5.13). Then, let

Y(w,σ) = Pδ(w,σ)L(w,σ). We get from Theorem 5.3.9 and using Schur complement

that (5.19), (5.20), (5.21) are satisfied.

From Theorem 5.3.9 and Proposition 5.3.10, it appears that under Assump-

tion 5.3.2, it is always possible to design gains for the switched observer (5.4), ei-

ther using the explicit construction or by solving LMIs. In this sense, the proposed

observer structure given by (5.4) is universal. Let us remark that the observer

gains need not be computed online as opposed to approaches such as [67] or based

on Kalman filters [80], resulting in much simpler implementations in practice.

5.3.3 . Extension to switched systems with constrained switching

In this subsection, we briefly explain how our approach can be adapted when

the switched system (5.1) is subject to switching constraints. Let us assume that

switching signals θ ∈ S where S ⊆ Iω. We start by remarking that we can

use the exact same approach as described in the previous subsections, since the

conclusions of Proposition 5.3.1 hold for all θ ∈ S ∩ Lang(Bk). However, we

can use the additional information provided by S to design observers with lower

complexity or higher performance.

Firstly, due to switching constraints, not all reconstructible sequences may

appear in the switching signals. We denote by Sk the set of subsequences of

length up to k of sequences in S. Formally, let

Sk =

{
w ∈ I∗

∣∣∣∣ |w| ≤ k, ∃w1 ∈ I∗, w2 ∈ Iω,
w1ww2 ∈ S

}
.

Then, it is sufficient to consider the set of reconstructible sequences given by

Õ′[k] = O′[k] ∩ Sk. Then, we can design an observer using the same approach as

before, simply building the automaton Bk from the set of reconstructible sequences

Õ′[k] instead of O′[k].



5.3. OBSERVER DESIGN 89

Additionally, if S is itself generated by a DBA B, i.e. S = Lang(B), then
we can use the following approach. We start by computing a DBA B̃k such

that Lang(B̃k) = Lang(Bk) ∩ S. This is always possible, following the approach

described in [13, Lemma 4.59 and Theorem 4.56]. One can then adapt the

approach described in Subsection 5.3.2 with the DBA B̃k instead of Bk. In that

case, LMIs similar to (5.20) and (5.21) need to hold for all transitions to non-

accepting states and to accepting states, respectively.

5.3.4 . Numerical example

Let us consider Example 5.2.1 again and let Bk be the DBA constructed using

Algorithm 1 for k = 3 as shown in Figure 5.2.1. Then, we solve the LMIs (5.19),

(5.20), (5.21) for ρ = 1.5, λ = 0.1, to synthesize the following observer gains1:

L(ϵ,1) =
(
1 −0.26 0.01

)⊤
, L(ϵ,2) =

(
0.82 0.68 −0.15

)⊤
L(1,1) =

(
1 6.12 −4.1

)⊤
L(1,2) =

(
0.76 0.74 0.02

)⊤
L(2,1) =

(
1 −1.05 0.07

)⊤
L(2,2) =

(
0.97 0.53 −0.43

)⊤
L(12,1) =

(
1 −1.03 −0.11

)⊤
L(12,2) =

(
0.14 1.36 −1.29

)⊤
L(21,1) =

(
1 0 0

)⊤
L(21,2) =

(
1.38 0.12 0

)⊤
L(22,1) =

(
1 −0.98 0.98

)⊤
L(22,2) =

(
0.88 0.62 0.04

)⊤
For the same values of ρ and λ, we also computed the observer gains using the

explicit design presented in Subsection 5.3.1. For the chosen value of ρ and λ, we

have ln(ρ)
− ln(λ) = 0.18.

We first consider a switching signal consisting of successions of a random

reconstructible sequence inO′[k] and of a random mode in I. Therefore, we have by

construction that the accepting rate of this switching signal satisfies γθ ≥ 0.25 >

0.18. Then, from Proposition 5.3.1, it follows that the observer asymptotically

converges. For both types of observers, this is confirmed by the simulations shown

in Figure 5.2. This figure shows the switching signal θ, the discrete state of the

switched observer q given by the discrete dynamics in (5.4). The return instants

(i.e. instants where q visits the accepting state ϵ) are indicated with red circles.

We also show the evolution in logarithmic scale of the norm of the estimation error

e for both types of gains. We can check that the observer converges faster with the

explicit design than with the LMI-based design. Actually, the convergence rate

of the observer designed using LMIs is quite close to the theoretical guarantees

1The Matlab scripts of the numerical example and of the case study are available at
the following repository: https://github.com/georgesaazan/w-regular-observer
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Figure 5.2: Simulations for the case γθ > ln(ρ)
− ln(λ)

: top - switching signal θ;
center - discrete state of the switched observer q, red circles indicate return
instants; bottom - norm of the estimation error e in logarithmic scale for
both type of gains.

provided by Proposition 5.3.1, which essentially predicts a contraction of the

estimation error by a factor λ between each return instants.

Now we consider the case when the system is driven by a switching signal with

low accepting rate. For this purpose, let us consider a periodic switching signal

constructed as follows: between instants t = 0 and t = 30 mode 2 is activated,

and between t = 31 and t = 40 mode 1 is activated and the rest is constructed

using periodicity. The discrete state of the observer q(t) visits the accepting state

twice over each period. Therefore, this switching signal satisfies γθ = 0.05 < 0.18.

Simulations for both types of observers are shown in Figure 5.3. One can check on

these simulations that the observer diverges for both types of gains. This shows,

as expected, that the occurrence of reconstructible sequences must be frequent

enough in order to make the observer converge.
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Figure 5.3: Simulations for the case γθ < ln(ρ)
− ln(λ)

: top - switching signal θ;
center - discrete state of the switched observer q, red circles indicate return
instants; bottom - norm of the estimation error e in logarithmic scale for
both type of gains.

5.4 . Case study: The multicellular converter

The field of power electronics has earned several insights in the last decades.

A main branch of this field is that of energy conversion [34]. It is known that the

multicellular converter consists a vital example of this field. These circuits were

introduced in the late 90s [55], they involve several industrial applications [54].

In this section we aim at the construction of a switched observer to estimate the

voltage across the capacitors of a multicellular converter. The design is based

on the construction of a Büchi automaton generating reconstructible sequences

leading to the estimation.

Let us consider the circuit of the multicellular converter taken from [71, 72] and

shown in Figure 5.4. This system is an example of switched dynamical systems

due to several commutation cells in the circuit. The dynamics of this converter is
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Figure 5.4: Multicellular converter with an inductive load.

described by the following equations:

İ = −R

L
I +

E

L
Sn −

n−1∑
j=1

Vcj

L
(Sj+1 − Sj)

V̇cj =
I

cj
(Sj+1 − Sj), j = 1, . . . , n− 1

where cj and Vcj are the capacitance and the voltage of the j-th capacitor re-

spectively, I is the current passing through the load consisting of the resistor R

and the inductor L, E is the voltage of the source. Sj ∈ {0, 1} is a binary signal

corresponding to the j-th commutation cell. When Sj = 1, the upper switch of

the j-th cell is “on” and the lower switch is “off” and vice versa in the other case.

We consider the bijection between the set {0, 1}n and the set {1, . . . , 2n}
which maps the binary vector (S1, . . . , Sn) to θ = 1 +

∑n−1
j=0 2

jSj+1. Writing

x = (Vc1 , . . . , Vcn−1 , I)
⊤ ∈ Rn, u = E, and assuming only y = I is measured, the

system dynamics can be described by a continuous time switched system of the

form:
ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t),

y(t) = Cθ(t)x(t)
(5.23)

For numerical experiments, we consider n = 3 commutations cell, with the fol-

lowing parameter values E = 1500V, c1 = c2 = 40µF, R = 10Ω, L = 0.5mH. For
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such numerical values, the state matrices are given by

A1 = 103 ×

0 0 0
0 0 0
0 0 −20

 , A2 = 103 ×

0 0 −25
0 0 0
2 0 −20


A3 = 103 ×

 0 0 25
0 0 −25
−2 2 −20

 , A4 = 103 ×

0 0 0
0 0 −25
0 2 −20


A5 = 103 ×

0 0 0
0 0 25
0 −2 −20

 , A6 = 103 ×

0 0 −25
0 0 25
2 −2 −20


A7 = 103 ×

 0 0 25
0 0 0
−2 0 −20

 , A8 = 103 ×

0 0 0
0 0 0
0 0 −20


while the output matrices are Ci = (0 0 1), for all i = 1, . . . , 8. In the following,

we consider a sampled version of (5.23) with a sampling period T = 0.3ms.

Let us remark that the dynamics in all modes are unobservable. Hence, it

is not possible to build an observer that is convergent for arbitrary switching

signals. Additionally, the system is subject to the following constraint on the

switching signal [71, 72]: only one commutation cell can be switched at a time.

This constraint translates to some adjacency relations between modes described

by the graph in Figure 5.5. When a mode change occurs in the switching signal

θ, the new mode must be adjacent to the previous one. Our goal is to design

an observer for this switched system with constrained switching. The approach

presented in [71, 72] is similar to that of [67] and requires computing the observer

gains online.

As described in Subsection 5.3.3, we compute the set Õ′[k] of reconstructible

sequences satisfying the switching constraints, which, for k = 3, contains 48 se-

quences. Then, we use Algorithm 1 to build the corresponding Büchi automaton

B3. As (5.23) possesses a nonstrict common quadratic Lyapunov function (the

energy of the system) and thanks to Remark 1, we can apply the explicit de-

sign of observer gains presented in Subsection 5.3.1 for ρ = 1 and λ = 0.1.

Let us remark that switching sequences satisfying adjacency constraints can

be generated using a DBA B (see e.g. [77]). Then, as explained in Subsec-

tion 5.3.3, we can further compute the DBA B̃3 shown in Figure 5.6 and such

that Lang(B̃3) = Lang(B3) ∩ Lang(B). Then, we solve the corresponding LMIs

(5.19), (5.20), (5.21) with ρ = 1 and λ = 0.1 to design observer gains.

Numerical simulations are shown in Figure 5.7. The figure shows the switching

signal θ; the return instants (i.e. instants where q visits an accepting state) are
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Figure 5.5: Adjacency relations between modes describing the constraints
on the switching signal θ. When a mode change occurs in the switching
signal θ, the new mode must be adjacent to the previous one.

indicated with red circles. We also show the evolution in logarithmic scale of the

norm of the estimation error e for both designs. We can see again that the observer

based on the explicit design converges faster than the one based on LMIs whose

convergence rate is more consistent with the theoretical guarantees provided by

Proposition 5.3.1.

We end this section by mentioning that in [71, 72], they consider a sampling

period T = 1ms. In that case, the state matrices of the sampled system are

numerically close to singularity and thus Assumption 5.3.2 is not robustly sat-

isfied. This results in the explicit design of Subsection 5.3.1 to be numerically

ill-conditioned. In practice, due to numerical errors, the ensuing observer is di-

vergent. However, it is important to remark that even in that case, the observer

based on the LMI design still works smoothly.

5.5 . Conclusion

In this chapter, we presented an approach to design observers for discrete-time

switched linear systems. Our approach combines automata theory, Lyapunov

techniques and LMI-based design to synthesize switched observers. The most

important feature of the proposed observer structure is that it is universal as we

show that it is always possible to design observer gains that make this observer

convergent. We have shown the effectiveness of our approach in a case study on

multicellular converters.
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Figure 5.6: DBA B̃3 that generates switching sequences satisfying the adja-
cency constraints shown in Figure 5.5 and with an infinite number of recon-
structible subsequences in Õ′[k]. Arrows with double head and labelled by σ
lead to state σ, arrows with empty head and labelled by σ lead to accepting
state ϵσ.
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Figure 5.7: Simulations for the multicellular converter: top - switching signal
θ, red circles indicate return instants; bottom - norm of the estimation error
e in logarithmic scale for both types of gains.



6 - Conclusion and perspectives

Conclusion

In this thesis, we have studied the stability of switched linear systems driven

by ω-regular language. We first reviewed the definition and some properties of

the joint spectral radius. Then we defined a special type of JSR specific to shuf-

fled switched systems, the ρ-SJSR. This quantity intuitively measures how much

the state of the system contracts each time the signal shuffles. We also showed

how this notion relates to stability properties of the associated switched systems.

Particularly, we showed that some switched systems that are unstable for arbi-

trary switching signals can be stabilized by using switching signals that shuffle

sufficiently fast. The minimal shuffling rate required to stabilize the system is

being related to ρ-SJSR. We then present several approaches to compute lower

and upper bounds of the ρ-SJSR using tools such as the classical JSR, Lyapunov

functions and finite state automata. Several tightness results of the bounds are

established.

We also considered to the general case of an arbitrary ω-regular language

and defined the ρ-ω-RJSR. Although its properties resemble well to those of the

ρ-SJSR, their proofs require some new techniques and notions.

In addition, for ω-regular language driven systems, we provided sufficient and

necessary conditions for stability based on a Büchi automaton. We showed a

converse theorem for the sufficiency result when the dynamics are invertible.

Finally, we provided an application based on these results: the design of an

asymptotic observer for switched systems. More precisely, these observers have

an internal discrete state variable whose dynamics is given by the transition map

of a Büchi automaton. This automaton is constructed based on computed recon-

structible sequences. We then presented two approaches to design observer gains

such that the observer is convergent for all switching signals belonging to a spe-

cific class. The first approach describes an explicit construction of the observer

gains while the second one is based on linear matrix inequalities. For switched

systems with invertible state matrices, we show that it is always possible to design

an observer of the proposed form. Several numerical examples and a case study

were given to illustrate our results.

Perspectives

The current work opens several research directions for the future. Firstly,

even though the proposed Lyapunov conditions make it possible to compute tight

97
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upper bounds of the ρ-SJSR (Section 3.4.3) and the ρ-ω-RJSR (Section 4.3.3),

their translation to LMIs may introduce some conservatism. It is then interest-

ing to investigate how techniques similar to the path-complete graph Lyapunov

functions [6] can be used in order to derive LMIs whose solution provides a tight

upper bound of the ρ-SJSR. Moreover, it is shown in [60] that how some lifting

techniques on the automaton can build arbitrary accurate approximation schemes

for the CJSR. Therefore, one can wonder whether the same can be extended to

the case of the ρ-SJSR and the ρ-ω-RJSR.

On the other hand, the development of numerical techniques to compute more

complicated Lyapunov functions is necessary for cases where the simple linear

matrix inequalities approach used in Section 4.2.1 proves unsuccessful. Therefore

it would be of interest to use sum-of-squares Lyapunov functions in this case [58].

Furthermore, since the switching signal may not be always known in some

practical applications, it is interesting to extend the results of Chapter 5 when

the switching signal is partially known. In addition, it was shown that the DBA

construction in Algorithm 1 depends on the length of reconstructible sequences

k, therefore it would be of interest to study the complexity of the observer design

with respect to k.

Finally, since observability and controllability are considered as dual problems.

One could adapt the results of Chapter 5 to design, using a similar approach,

switched controllers to stabilize discrete-time switched linear systems.
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A - Markov chains and shuffling rate

A natural way to represent a shuffled switching signal is to consider finite state

Markov chains. A finite state Markov chain is a sequence of random variables

(states) X0, X1, · · · taking values in a finite state S. These states satisfy the

Markov property, i.e. the occurrence of a state at time t + 1 only depends on

the state at time t. Let us denote by P its associated transition matrix, P is a

stochastic matrix describing the probabilities of occurrence of the states. More

precisely pij , i, j ∈ S denoting the element of i’th row and j’th column in P is the

probability to have a transition from state i to the state j, i.e. pij = P(Xk+1 =

j|Xk = i), k ≥ 0. Let us restrain to the case where every state can be reached

from any state. Therefore, in this case, by taking S = I = {1, · · · ,m} it is

easy to see that we can generate a switching signal that is shuffled almost surely.

Furthermore, we can establish a link between the shuffling rate and the parameters

of the Markov chain. Moreover, we can prove also the averaged shuffling index

converges as well, this is detailed below.

Let us consider a Markov chain with a transition matrix P , where the states

are the set of indices I and let θ = X0, X1, · · · be a generated signal, thus, almost

surely, θ is a shuffling switching signal, to relate κθ(t) with the Markov chain it is

important to have a tractability on this quantity, this is not possible with Markov

chain as it is, therefore it is necessary to add some sort of ‘memory’ on the Markov

chain without altering its properties. This is possible by considering the product

of two automata, the first is a Büchi automaton generating all shuffled signals for

a given number of modes m. The second is an m-state automaton corresponding

to the Markov chain. The resulting automaton can be seen as a representation of

a Markov chain. In the following, we restrain our self to the case of two modes

(m = 2) and we detail a procedure on computing the shuffling rate in this case.

Note that this procedure can be generalized to any m > 0, furthermore it can be

extended easily to compute the accepting index of any ω-regular language whose

elements are generated by a Markov chain.

Let us consider a Markov chain with S = I = {1, 2}, the Büchi automaton

generating the shuffling switching signals with 2 modes and the 2-state Markov

chain representation are shown in Figure A.1 and Figure A.2 respectively.

Now taking the cartesian product of the two automata, one gets an automaton

with 6 states, the latter can be reduced to an automaton with 4 states as shown

in Figure A.3. It represents a Markov chain with 4 states S ′ = {∅1, ∅2, {1}, {2}}
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∅

{1}

{2}

1

2

1

2

Figure A.1: A Büchi automaton generating all shuffled switching signals
with 2 modes.

and the following transition matrix

P ′ =


0 0 p11 p12
0 0 p21 p22
0 p12 p11 0
p21 0 0 p22

 .

Intuitively, each time the state ∅1 or the state ∅2 is visited we know that the

switching signal has shuffled once. Therefore we will rely on this Markov chain to

compute the shuffling rate of the switching signal. This is detailed in the following

lines.

Now let us consider a discrete-time Markov chain, the state-space is S and the

transition matrix is P . Let us assume that there exists a row vector π satisfying

πP = π, where all the elements of π are strictly positive and their sum is 1. Let

Nij(t) denote the number of visits to state j ∈ S in t transition steps given that

X0 = i ∈ S, t ≥ 1. We aim to find if the limit lim
t→∞

Nij(t)
t exists.

Proposition A.0.1. [57, Theorem 1.10.2]

lim
t→∞

Nij(t)
t converges to πj almost surely, where πj is the corresponding state

element of π verifying πP = π, furthermore, if we consider a set of states S ⊆ S
and NiS the number of visits to S starting from X0 = i, then lim

t→∞
NiS(t)

t =
∑
j∈S

πj

almost surely.
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Figure A.2: A finite state automaton representing the 2-state Markov chain.
(pij in red is the state transition probability.)

∅1
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∅2 {1}
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1
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22)

1(p11)
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Figure A.3: A finite state automaton corresponding to the reduced cartesian
product of the two automata.

We present a proof for completeness:

Proof. Given X0 = i, we are now interested in counting the number of visits to

state j over a period of time. Define the function Iij(t), t ≥ 1 to be 1 if Xt = j

given that X0 = i, and 0 otherwise. The number of visits to state j, starting at

state i, by time t is defined as:

Nij(t) =
t∑

k=1

Iij(k), t ≥ 1.

Let T
(l)
j , l ≥ 1, the time between the (l − 1)th and l′th visit to state j, then

from [57, Lemma 1.5.1] the non-negative random variables T
(1)
j , T

(2)
j · · · , are inde-
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pendent and identically distributed (i.i.d), let E[T
(l)
j ] = mj . Now, for t sufficiently

large we have

T
(1)
j + · · ·+ T

(Nij(t)−1)
j ≤ t− 1,

the left-hand side is the time of the last visit to i before t. Also

T
(1)
j + · · ·+ T

(Nij(t))
j ≥ t,

The left-hand side is the time of the first visit to j after t− 1. Hence

T
(1)
j + · · ·+ T

(Nij(t)−1)
j

Nij(t)− 1

Nij(t)− 1

Nij(t)
≤ t

Nij(t)
≤

T
(1)
j + · · ·+ T

(Nij(t))
j

Nij(t)

By the strong law of large numbers

P

(
T
(1)
j + · · ·+ T

(t)
j

t
→ mj as t → ∞

)
= 1

and, since there are no absorption states (the Markov chain is irreducible and

finite)

P (Nij(t) → ∞ as t → ∞) = 1

So, letting t → ∞ in (A), we get

P
(

t

Nij(t)
→ mj as t → ∞

)
= 1

which implies

P
(
Nij(t)

t
→ 1

mj
as t → ∞

)
= 1

Finally, since the Markov chain is finite and irreducible, then from in [57, Theorem

1.7.7], we have 1
mj

= πj , where πj is the j’th element of the limiting distribution

vector π verifying πP = π and

P
(
Nij(t)

t
→ πj as t → ∞

)
= 1

Now if we consider j to belong to a particular set of states S, starting from X0 = i

the number of visits to states in S up to time t is given by NiS(t) =
∑
j∈S

t∑
k=1

Iij(k),

repeating the same steps before we get the following result:

P

NiS(t)

t
→
∑
j∈S

πj as t → ∞

 = 1
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Applying the previous theorem to the Markov chain of state space S ′ and

transition matrix P ′ and assuming S = {∅1, ∅2} we get that NiS(t) = κθ(t) and

γθ =
∑
j∈S

πj , where π = P ′π and πj is an element of the vector π corresponding

to the state j.
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[15] Mert Baştuğ, Mihály Petreczky, Rafael Wisniewski, and John Leth. Reach-

ability and observability reduction for linear switched systems with con-

strained switching. Automatica, 74:162–170, 2016.

[16] Calin Belta, Boyan Yordanov, and Ebru Gol. Formal Methods for Discrete-

Time Dynamical Systems, volume 89. 01 2017. ISBN 978-3-319-50762-0. doi:

10.1007/978-3-319-50763-7.

[17] Marc A Berger and Yang Wang. Bounded semigroups of matrices. Linear

Algebra and its Applications, 166:21–27, 1992.

[18] Pierre-Alexandre Bliman and Giancarlo Ferrari-Trecate. Stability analysis

of discrete-time switched systems through lyapunov functions with nonmini-

mal state. IFAC Proceedings Volumes, 36(6):325–329, 2003. ISSN 1474-6670.

doi: https://doi.org/10.1016/S1474-6670(17)36452-2. URL https://www.

sciencedirect.com/science/article/pii/S1474667017364522. IFAC

Conference on Analysis and Design of Hybrid Systems 2003, St Malo, Brit-

tany, France, 16-18 June 2003.

[19] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Conver-

gence in multiagent coordination, consensus, and flocking. In IEEE Confer-

ence on Decision and Control, pages 2996–3000, 2005. doi: 10.1109/CDC.

2005.1582620.



BIBLIOGRAPHY 109

[20] Vincent D Blondel and Yurii Nesterov. Computationally efficient approxi-

mations of the joint spectral radius. SIAM Journal on Matrix Analysis and

Applications, 27(1):256–272, 2005.

[21] Vincent D Blondel, Julien M Hendrickx, Alex Olshevsky, and John N Tsit-

siklis. Convergence in multiagent coordination, consensus, and flocking. In

IEEE Conference on Decision and Control, pages 2996–3000, 2005.

[22] Vincent D Blondel, Yurii Nesterov, and Jacques Theys. On the accuracy of

the ellipsoid norm approximation of the joint spectral radius. Linear Algebra

and its Applications, 394:91–107, 2005.

[23] M.S. Branicky. Multiple lyapunov functions and other analysis tools for

switched and hybrid systems. IEEE Transactions on Automatic Control, 43

(4):475–482, 1998. doi: 10.1109/9.664150.

[24] C.G. Cassandras and Stephane Lafortune. Introduction to Discrete Event

Systems, page 800. 01 2010. ISBN 1441941193. doi: 10.1007/

978-0-387-68612-7.

[25] Krishnendu Chatterjee, Laurent Doyen, and Thomas A Henzinger. Quan-

titative languages. ACM Transactions on Computational Logic, 11(4):1–38,

2010.

[26] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. 01

2001. ISBN 978-0-262-03270-4.

[27] Valentino Crespi, George Cybenko, and Guofei Jiang. The theory of track-

ability with applications to sensor networks. ACM Trans. Sen. Netw., 4

(3), jun 2008. ISSN 1550-4859. doi: 10.1145/1362542.1362547. URL

https://doi.org/10.1145/1362542.1362547.

[28] J. Daafouz, P. Riedinger, and C. Iung. Stability analysis and control syn-

thesis for switched systems: a switched lyapunov function approach. IEEE

Transactions on Automatic Control, 47(11):1883–1887, 2002.

[29] Jamal Daafouz, Gilles Millerioux, and Claude Iung. A poly-quadratic sta-

bility based approach for linear switched systems. International journal of

Control, 75(16-17):1302–1310, 2002.

[30] Xiongping Dai. A Gel’fand-type spectral radius formula and stability of linear

constrained switching systems. Linear Algebra and its Applications, 436(5):

1099–1113, 2012.



110 BIBLIOGRAPHY

[31] Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and

Applied Mathematics, USA, 1992. ISBN 0898712742.

[32] E De Santis, MD Di Benedetto, and G Pola. Observability of discrete time

linear switching systems. IFAC Proceedings Volumes, 40(6):259–264, 2007.

[33] MCF Donkers, WPMH Heemels, Nathan Van de Wouw, and Laurentiu Hetel.

Stability analysis of networked control systems using a switched linear sys-

tems approach. IEEE Transactions on Automatic control, 56(9):2101–2115,

2011.

[34] Robert W. Erickson and Dragan Maksimovic. Fundamentals of Power Elec-

tronics. Springer, 2ed edition, 2001.

[35] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In
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Synthèse

Les systèmes commutés sont des systèmes dynamiques avec plusieurs modes de
fonctionnement, chaque mode étant décrit par une équation différentielle (en
temps continu) ou une équation de différence (en temps discret). À tout moment,
le mode actif est déterminé par un signal de commutation. Les systèmes commutés
sont très utiles en pratique pour décrire avec précision l’exécution d’algorithmes
de contrôle sur des infrastructures informatiques distribuées et donc pour pren-
dre en compte les contraintes liées à l’utilisation de ressources informatiques et de
communication partagées. De plus, les systèmes commutés ont des propriétés inat-
tendues (par exemple, un comportement instable peut résulter de la commutation
entre des modes de fonctionnement stables) qui justifient le développement d’outils
théoriques spécifiques pour leur étude. Les premiers travaux sur la stabilité des
systèmes commutés ont porté sur la stabilité des signaux de commutation qui
sont arbitraires ou qui satisfont une certaine condition de dwell-time (minimum
ou moyen) (voir, par exemple, [1], [2], et les références citées). Plus récemment,
plusieurs travaux ont examiné le problème de la démonstration de la stabilité pour
des sous-ensembles de signaux de commutation. En général, de tels signaux de
commutation sont supposés être générés par un automate fini et la stabilité est
caractérisée soit en termes de rayon spectral joint contraint [3], [4], soit en utilisant
des fonctions de Lyapunov [5], [6]. Cependant, il existe certains sous-ensembles
de signaux de commutation qui ne peuvent pas être spécifiés à l’aide d’automates
finis classiques. Les exemples sont les signaux de commutation contraints par
des formules logiques temporelles linéaires (LTL), qui sont souvent utilisées pour
spécifier des protocoles d’ordonnancement et de communication [7]. Une classe
représentative de signaux qui peuvent être décrits par une formule LTL est celle
des signaux de commutation mélangés (shuffled) : un signal de commutation est
mélangé si et seulement si tous les modes sont activés infiniment souvent. Dans
une étude préliminaire, la stabilité des systèmes commutés sous des signaux de
commutation mélangés a été caractérisée au moyen de fonctions de Lyapunov [8].
Cette thèse vise à développer des outils théoriques et numériques pour analyser
la stabilité des systèmes commutés sous des signaux de commutation mélangés
et plus généralement sous des contraintes logiques temporelles linéaires. Nous
nous appuierons sur les résultats préliminaires de [8] pour définir une notion de
rayon spectral joint mélangé qui nous permettra de quantifier la vitesse de con-
vergence du système commuté sous des signaux de commutation mélangés. Nous
développerons des algorithmes numériques basés sur des inégalités matricielles
linéaires (LMIs) et des techniques d’automates [5] pour calculer des approxima-
tions du rayon spectral joint mélangé. Dans la deuxième partie de la thèse, nous
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étendrons ces résultats à des classes plus générales de signaux de commutation
tels que ceux spécifiés par des formules logiques temporelles linéaires. L’approche
dans [8] est basée sur un automate spécifique et il sera possible de généraliser ce
résultat en considérant l’automate de Büchi associé à la formule LTL considérée.
Enfin, nous présenterons une conception d’observateur pour systèmes commutés
basée sur les automates de Büchi et les séquences reconstructibles, c’est-à-dire des
séquences permettant d’estimer l’état du système. Cette conception consiste en
une application de nos résultats théoriques.
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