
HAL Id: tel-04316145
https://theses.hal.science/tel-04316145

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of hierarchical tasks for heterogeneous
architectures

Gwenolé Lucas

To cite this version:
Gwenolé Lucas. On the use of hierarchical tasks for heterogeneous architectures. Other [cs.OH].
Université de Bordeaux, 2023. English. �NNT : 2023BORD0231�. �tel-04316145�

https://theses.hal.science/tel-04316145
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE

DE MATHÉMATIQUES ET D’INFORMATIQUE

par Gwenolé LUCAS

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Programmation des architectures hétérogènes
à l’aide de tâches divisibles

Sous la direction de : Abdou Guermouche et Raymond Namyst

Soutenue le : 10 Octobre 2023

Devant la commission d’examen composée de :

Siegfried Benkner Professor, University of Vienna . Rapporteur
Alfredo Buttari Directeur de recherche, CNRS - IRIT Rapporteur
Vincenç Beltran Senior researcher, Barcelona Supercomputing Center . . Examinateur
Thomas Herault Research Assistant Professor, University of Tennessee . Examinateur
Isabelle Terrasse Scientific advisor, Airbus . Examinatrice
Abdou Guermouche . . Maître de conférences, Université de Bordeaux Directeur de thèse
Raymond Namyst Professeur des universités, Université de Bordeaux Directeur de thèse

Programmation des architectures hétérogènes à l’aide de tâches divisibles

Résumé : Au cours des dernières décennies, les plateformes de calcul haute perfor-
mance ont connu une croissance exponentielle de leur puissance de calcul au détriment
d’une complexité toujours plus grande. Programmer ces plateformes pour tirer plei-
nement parti de leur puissance de calcul est un défi de taille. Le programmeur doit
prendre en compte les différents types d’unités de calcul, la hiérarchie de la mémoire,
les transferts de données au sein d’un nœud ou à travers un réseau, etc. Les supports
d’exécution à base de tâches ont gagné en popularité grâce à leur capacité à exprimer
des applications performantes et portables sur ces architectures hétérogènes complexes.
Ce paradigme s’appuie sur divers modèles de programmation pour représenter les
applications sous la forme de graphes de tâches. Plus particulièrement, le modèle de
soumission séquentielle de tâche (Sequential Task Flow, STF) fournit une interface
simple pour écrire des applications performantes, mais ne produit malheureusement
que des graphes de tâches statiques. Ce manque de dynamisme est préjudiciable aux
exécutions destinées à des systèmes hétérogènes, où la granularité des tâches peut avoir
besoin d’être ajustée selon les types d’unités de calcul disponibles à un moment donné.
La nature séquentielle du modèle STF crée également un surcoût à la soumission qui
peut limiter le passage à l’échelle de certaines applications présentant énormément de
parallélisme.

Cette thèse propose de répondre à ces problèmes en étendant le modèle de StarPU
pour y inclure des tâches hiérarchiques, capables d’insérer des sous-graphes au cours
de leur exécution. Les graphes de tâches gagnent ainsi en dynamisme, ce qui permet
d’ajuster la granularité des tâches à l’exécution pour correspondre au mieux aux
unités de calcul ciblées. Par ailleurs, les tâches hiérarchiques peuvent être utilisées
pour paralléliser le processus de soumission et en réduire le surcoût. En effet, il est
possible de traiter des tâches hiérarchiques indépendantes en parallèle. Notre modèle
est complété par un gestionnaire de données capable d’adapter dynamiquement la
disposition des données sans intervention du programmeur. Il contribue également à
l’exactitude du graphe de tâche, car l’insertion de sous-graphes à l’exécution contourne
les règles du STF. Nous parvenons à ce résultat grâce aux tâches de synchronisation
qui ajustent la disposition des données autour des tâches hiérarchiques. Nous avons
implémenté ce modèle et l’avons appliqué à la bibliothèque d’algèbre linéaire dense
Chameleon. La coexistence de plusieurs granularités de tâches a permis d’améliorer
les performances sur des architectures hétérogènes. Cela valide notre modèle et fournit
une évaluation des avantages de l’utilisation de tâches hiérarchiques dans StarPU.

Mots-clés : Calcul haute performance, Supports d’exécution, Programmation à
base de tâches, Modèles de programmation, Calcul hétérogène, Algèbre linéaire dense

Unité de recherche
Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400 Talence

On the Use of Hierarchical Tasks for Heterogeneous Architectures i

On the Use of Hierarchical Tasks for Heterogeneous Architectures

Abstract: In the last decades, the computing power of high-performance platforms
has grown exponentially at the expense of increased complexity. Programming
such platforms to take full advantage of their computing power is challenging. The
programmer must take into account different types of computing units, memory
hierarchy, data transfers within a node or across a network, etc. Task-based runtime
systems have become popular because of their ability to express efficient and portable
applications on these complex heterogeneous architectures. This paradigm relies on
various programming models to represent applications as task graphs. In particular,
the Sequential Task Flow (STF) model provides a simple interface for writing efficient
applications, but unfortunately only supports static task graphs. The lack of dynamism
is detrimental for execution on heterogeneous systems, where task granularity may
need to be adjusted to optimally match the different types of computing units available
at any given time. The sequential nature of the STF model also creates a submission
overhead that limits scalability for embarrassingly parallel applications.

In this thesis, we address these issues by extending the STF model in the StarPU
runtime system with hierarchical tasks, which can insert subgraphs at runtime. This
allows for more dynamic task graphs, making it possible to adjust task granularity
at runtime to best match the targeted computing units. In addition, the submission
overhead can be reduced by using large-grain hierarchical tasks to parallelize the
submission process. Indeed, independent hierarchical tasks can be processed in parallel
on different workers. Our hierarchical task model is combined with an advanced data
manager to dynamically switch between different data layouts without programmer
input. The data manager also contributes to the correctness of the task graph, since
the insertion of subgraphs at runtime bypasses the usual rules of the STF model.
This is achieved through the synchronization tasks that adapt the data layout around
hierarchical tasks. We implemented this model and applied it in the context of
dense linear algebra using the Chameleon library. The coexistence of multiple task
granularities thanks to hierarchical tasks resulted in good performance improvements
on heterogeneous architectures. This allowed us to validate our model and evaluate
the potential benefits of hierarchical tasks in StarPU.

Keywords: High-performance computing, Runtime systems, Task-based program-
ming, Programming models, Heterogeneous computing, Dense linear algebra

Research Unit
Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400 Talence

ii G. Lucas

Contents

Remerciements 1

Résumé 3

Introduction 7

1 Background & Related Work 11
1.1 Task-based programming models . 13
1.2 Runtime systems for modern architectures 16
1.3 Relaxing the models to face modern problems 18

2 The StarPU Runtime System 21
2.1 Data structures . 22

2.1.1 Codelets . 22
2.1.2 Data handles . 23
2.1.3 Tasks and jobs . 24

2.2 Building the graph . 24
2.2.1 Shared memory . 25
2.2.2 Distributed memory . 25

2.3 Executing the graph . 27
2.3.1 Submission time and execution time 27
2.3.2 Scheduling . 28

2.4 Data management: partitioning operations 29
2.4.1 Partitioning data manually . 29
2.4.2 Automatic data manager . 34

2.5 Conclusion . 40

3 The Hierarchical Task Model 43
3.1 Objectives . 44

3.1.1 Improving upon the STF model 44

iii

Contents

3.1.2 Introducing more dynamic task graphs 46
3.1.3 Keeping the model simple . 47

3.2 Designing hierarchical tasks for StarPU 48
3.2.1 Aiming for generality . 48
3.2.2 User interface . 49
3.2.3 Adapting the data layout around hierarchical tasks 50
3.2.4 Correctly inserting tasks at runtime 51
3.2.5 Fine grain dependencies . 53
3.2.6 Parallel submission . 55
3.2.7 Data management for the programmer 57
3.2.8 Case of read-only access mode 57

3.3 Conclusion . 58

4 Hierarchical Tasks Implementation 59
4.1 Foundations of the implementation 60

4.1.1 Updating the data structures 60
4.1.2 Processing hierarchical tasks 61
4.1.3 Processing hierarchical tasks as soon as possible 62

4.2 Extending the data manager . 62
4.2.1 Controlling data dependencies 64
4.2.2 Partition task insertion . 65
4.2.3 Unpartition task insertion . 66
4.2.4 The read-only access mode . 69

4.3 Conclusion . 71

5 Experimental Evaluation 73
5.1 Application of Hierarchical Tasks for Dense Linear Algebra 74

5.1.1 Recursive descriptors . 74
5.1.2 Updating the kernels . 76

5.2 Experimental results . 76
5.2.1 Experimental settings . 76
5.2.2 Hierarchical tasks overhead 78
5.2.3 Matrix-matrix multiplication 79
5.2.4 Cholesky factorization . 82
5.2.5 LU factorization . 85
5.2.6 Impact of the dynamic data manager 85
5.2.7 Comparison with other frameworks 87

6 First Steps of Hierarchical Tasks toward Distributed Memory 91
6.1 Introducing shared data . 92
6.2 Automatic pruning . 93
6.3 Communications at runtime . 94
6.4 Conclusion . 95

iv G. Lucas

Contents

Conclusion 97

Acknowledgements 101

Bibliography 103

Publications 109

On the Use of Hierarchical Tasks for Heterogeneous Architectures v

List of Figures

1.1 Sequential algorithm, corresponding STF version, and DAG. 14
1.2 Nested task parallelism management. 18

2.1 Writing a new codelet. 23
2.2 Registering a handle. 23
2.3 Submitting a task. 24
2.4 Cholesky factorization of a matrix composed of 4× 4 tiles. 26
2.5 Matrix with two partition trees. 30
2.6 Example of synchronous partitioning. 31
2.7 Example of asynchronous partitioning. 33
2.8 Example of automatic partitioning. 34
2.9 Evolution of the graph and handle states associated to Figure 2.8 . . 36
2.10 Unrolling a call of AutoSubmit. 38

3.1 Submitting a hierarchical task. 49
3.2 Encapsulating some of the new parameters into the task codelet. . . . 50
3.3 Example of a single hierarchical task. 51
3.4 Processing a hierarchical task by relying strictly on the STF model. . 51
3.5 Altering the STF model to process a hierarchical task. 52
3.6 Releasing hierarchical task dependencies to connect sub-graphs. . . . 54
3.7 Using unpartition tasks to enforce the correction of the graph. 55
3.8 Example of hierarchical tasks submitting sub-graphs in parallel. . . . 55
3.9 Example of an “identity” partition plan. 56

4.1 Processing a hierarchical task (or not). 61
4.2 Example of code using hierarchical tasks. 63
4.3 Processing the hierarchical tasks of Figure 4.2 in the submission thread. 63
4.4 Manually defining sequential consistency for a task’s data. 64
4.5 Incorrect behavior of AutoSubmit with multiple submission threads. 65
4.6 Checking if unpartitioning operation are needed at runtime 67
4.7 Insertion of unpartitioning tasks. 68

vii

List of Figures

4.8 Insertion of a read-only unpartition task. 71

5.1 Information stored in a regular matrix descriptor. 75
5.2 Information stored in a recursive matrix descriptor. 75
5.3 Using a matrix product kernel to determine optimal tile sizes. 77
5.4 Evaluation of the overhead of hierarchical tasks. 78
5.5 Evaluation of hierarchical tasks in matrix-matrix multiplication. . . . 80
5.6 Illustration of the matrix layouts used in the following experiments. . 81
5.7 Evaluation of hierarchical tasks in Cholesky type operations on the

Intel-V100 platform. 82
5.8 Evaluation of hierarchical tasks in Cholesky type operations on the

AMD-A100 platform. 83
5.9 Evaluation of hierarchical tasks in the LU decomposition. 84
5.10 Evaluation of the performance impact of the dynamic data manager. 86
5.11 Comparison of hierarchical tasks with parallel tasks and PaRSEC . . 88

6.1 Partition tree with shared data. 92
6.2 Example of automatic pruning in a distributed task graph. 94

viii G. Lucas

List of Tables

1.1 Summary of hierarchical task support in task-based runtime systems. 19

2.1 Usability of a handle depending on its state. 35
2.2 Handle states after the submission of partitioning tasks. 37

5.1 Characteristics of the experimental platforms. 77
5.2 Performances of the computational units of both experimental platforms. 79
5.3 Parameters explored to find the best performances on Intel-V100. . 87
5.4 Parameters explored to find the best performances on AMD-A100. . 87

ix

Remerciements

A
rrivé au terme de trois quatre années de thèse, il est finalement temps
de rendre des comptes, en commençant par remercier toutes celles et ceux
qui auront contribué à cet aboutissement.

Pour commencer par la fin, je remercie les membres du jury. J’ai été honoré de
vous présenter ces travaux et de répondre à vos questions. Merci à Siegfried et Alfredo
d’avoir accepté le rôle de rapporteur et relu cette thèse, j’espère que la lecture aura été
sinon agréable, du moins intéressante. Merci à Vincenç, Thomas1 et Isabelle d’avoir
pris part à ce jury, j’ai beaucoup apprécié discuter des tâches hiérarchiques avec vous.
J’adresse également un second remerciement à Alfredo pour avoir cumulé les rôles en
présidant le jury.

Ensuite, je me dois de remercier mes nombreux encadrants, sans qui cette thèse
n’aurait pas pu être ce qu’elle est, à commencer par la direction. Abdou, merci pour
toute l’aide que tu m’as apporté pendant ces quatre années, pour ta patience pendant
que je tombais dans tous les pièges administratifs impossibles et inimaginables, et pour
ta disponibilité sans faille. Cette thèse et moi te devons beaucoup. Raymond, merci
de m’avoir accueilli chez Storm durant tout ce temps. Tes conseils, ton expérience
et tes histoires m’ont énormément appris. Ce n’est pas tout, car j’ai eu la chance
de travailler avec un sacré groupe. Mathieu, merci pour les longs moments passés à
réfléchir et déboguer, et merci de m’avoir parlé de ce stage sur les bulles qui a dégénéré
en thèse. Nathalie, merci pour ton aide technique, notamment autour de StarPU.
Pierre-André, merci pour tes précieuses idées sur les tâches hiérarchiques. Les réunions
de thèse pouvaient être endiablées, mais nous finissions toujours par accorder nos
violons et j’en suis toujours ressorti avec les idées plus claires, grâce à vous tous. Enfin,
merci à Samuel de nous avoir guidé hors de quelques ornières StarPU-esque.

Un grand merci à toute l’équipe Storm de l’Inria Bordeaux. À tous les permanents,
notamment ceux que je n’ai pas encore cités, Marie-Christine, Amina, Laércio, Mihail,
Emmanuelle et Olivier, merci de former une équipe aussi formidable et bienveillante.
C’était un plaisir de travailler à vos côtés, les innombrables discussions, de travail

1Et merci Thomas pour la pêche aux coquilles, désormais corrigées dans cette version définitive.

1

ou pas, resteront d’excellent souvenirs (de même que les iconiques pots et autres
goûters). Je remercie également les membres des autres équipes Inria, en particulier
Topal, Concace et TADaaM, j’ai été heureux de prendre part à l’écosystème HPC
bordelais.

Je ne peux bien sûr pas oublier les éphémères de l’open-space. Aux membres des
neiges d’antan, ceux qui nous ont quittés ou qui font partie des meubles, merci Baptiste,
Romain, Célia, Kun, Chiheb, Van Man, Philippe, d’avoir contribué à instaurer la
bonne ambiance qui règne encore aujourd’hui. Aux membres des dernières averses,
tout frais émoulus de leur Master ou déjà éprouvés par le poids des années (de thèse),
merci Diane, Vincent, Alice, Lana, Thomas, Radja, Albert d’assurer la relève avec
autant de brio. Merci à tout les autres que je n’ai pas cités mais que j’ai côtoyés avec
joie au fil des ans. Enfin, merci à Maxime pour son esprit de camaraderie, bien qu’il
ait eu l’audace de finir dans les temps le premier.

Je remercie également les relecteurs de cette thèse : Abdou, Pierre-André, Nathalie,
Mathieu, Mihail, Olivier, Radja, merci pour vos corrections de mon anglaise prose, et
pour vos suggestions, sur la forme ou le fond.

Pour finir, je remercie toute ma famille. Merci à mes grands-pères et grands-mères,
oncles et tantes, cousins et cousines. À ma petite sœur, qui m’a toléré toute sa vie,
merci pour ton sale caractère, tes histoires qui se terminent en eau de boudin, et ta
maîtrise de choses qui me dépassent complètement (choisir des cadeaux, interagir avec
les gens, réaliser des perfusions. . .). À mes parents, qui ont su me transmettre des
valeurs dont je suis fier et qui m’ont permis de poursuivre ces interminables études :
merci. Vous m’avez toujours laissé libre de toute pression, tout en m’accompagnant
depuis le début. Sans les répétitions de dictées et les explications de factorisation avec
les mains, je ne serais certainement jamais arrivé si loin.

2 G. Lucas

Résumé

H
istoriquement, l’informatique a connu une évolution rapide, tant sur le
plan théorique que technologique. En parallèle, elle a contribué au progrès de
nombreux autres domaines scientifiques. Ceci est particulièrement vrai dans

le domaine du calcul intensif, où de puissants ordinateurs permettent de résoudre
des problèmes toujours plus massifs, plus rapidement et avec une plus grande préci-
sion. Impliqués dans des applications industrielles ou universitaires, ces problèmes
comprennent la modélisation et la simulation de phénomènes naturels, de systèmes
physiques pour l’ingénierie ou de processus biologiques.

Sur le plan matériel, l’augmentation de la puissance de calcul a pris de nombreuses
formes au fil des ans. La simple accélération de la fréquence des cœurs CPU se heurte
à des limites physiques et a arrêté de progresser il y a plus de vingt ans. Afin de
continuer à améliorer leur puissance de calcul, les fabricants de processeurs ont fait le
choix d’augmenter le nombre de cœurs. Dans ces architectures multicœurs, les logiciels
doivent paralléliser leur charge de travail pour tirer pleinement parti du matériel
sous-jacent. Par ailleurs, la dernière décennie a connu une montée en puissance des
accélérateurs, des unités de calcul spécialisées capable d’effectuer certaines opérations
plus efficacement, comme les GPU (Graphics Processing Unit). D’abord conçus pour
accélérer le traitement des images, ils sont aujourd’hui utilisés dans les supercalcula-
teurs en raison de leur affinité pour les calculs hautement parallèles. Les architectures
modernes sont donc plus complexes que jamais : elles forment un réseau de nœuds
hétérogènes combinant des CPU multicœurs et des accélérateurs. C’est par exemple
le cas de Frontier, à la tête du dernier classement Top500 des supercalculateurs
les plus puissants du monde.

Au-delà de leur complexité individuelle, les super-ordinateurs présentent une
grande variété d’architectures, avec de nombreuses configurations et types de matériel,
dont la programmation nécessite différentes technologies. Pour pallier la difficulté
de créer des applications capables d’exploiter ces différentes plateformes, une partie
de la communauté HPC se consacre au développement de supports d’exécution qui
fournissent des techniques et des outils de programmation portables. Un paradigme

3

notable est le modèle de programmation à base de tâches, dans lequel les applications
sont représentées comme un graphe orienté acyclique (Directed Acyclic Graph, DAG)
de tâches. Ce modèle facilite l’expression d’applications parallèles pour le programmeur
en fournissant une abstraction dans laquelle des blocs de calculs séquentiels forment
des tâches reliées par des dépendances.

Cependant, l’exploitation de plateformes hétérogènes par les supports d’exécution à
base de tâches présente plusieurs défis. Les unités de calcul des plateformes hétérogènes
ont des caractéristiques et des exigences différentes. Par exemple, les GPU sont
généralement plus performants en travaillant sur de grands ensembles de données,
tandis que les cœurs CPU conventionnels atteignent leurs performances maximales
avec des opérations à grain fin travaillant sur une empreinte mémoire plus réduite.
En outre, ces plateformes disposent généralement d’un plus grand nombre de cœurs
CPU que de GPUs. Cela signifie qu’il peut être nécessaire d’augmenter le nombre
de petites tâches pour améliorer les performances. Différentes stratégies existent
pour résoudre ce problème, notamment en trouvant le meilleur compromis entre la
granularité optimale de chaque type d’unité de calcul, ou en agrégeant des cœurs
CPU pour traiter efficacement des tâches à gros grain, normalement plus adaptées
aux GPUs. Une autre solution consiste à diviser les tâches à gros grain en tâches
plus petites adaptées aux cœurs CPU. Le principal problème de ces approches est la
nature statique du graphe de tâche, qui nous empêche de sélectionner la granularité
appropriée au moment de l’exécution, en fonction des ressources disponibles.

En général, la plupart des supports d’exécution modernes basés sur les tâches
souffrent d’un manque de dynamisme dans la génération des graphes de tâches. Par
exemple, lors de la conception de solveurs d’algèbre linéaire basés sur des algorithmes
d’approximation de rang faible, il est presque impossible de définir un graphe statique
garantissant une bonne précision numérique. En outre, la représentation interne de
graphes avec un grand nombre de tâches en attente peut causer un surcoût au sein du
support d’exécution. C’est notamment le cas des supports d’exécution qui reposent sur
le modèle de soumission séquentielle de tâche (Sequential Task Flow, STF), dans lequel
le graphe est construit tâche après tâche. Dans ce modèle, la construction séquentielle
du graphe peut également devenir un goulot d’étranglement. D’autres modèles de
programmation qui reposent sur une description de haut niveau des dépendances sont
moins touchés par ces problèmes, mais ils ont tendance à être plus difficiles à utiliser.

Pour résoudre ces problèmes, cette thèse propose d’étendre le processus de soumis-
sion du modèle STF dans le support d’exécution StarPU. Notre nouveau modèle de
programmation introduit des tâches hiérarchiques, qui peuvent insérer un nouveau
sous-graphe de tâche dans le DAG d’une application quand elles sont exécutées. Les
tâches hiérarchiques permettent un contrôle plus fin du flot de soumission de l’ap-
plication. En encapsulant des portions d’un DAG dans des tâches hiérarchiques, les
programmeurs peuvent en retarder la soumission et réduire le surcoût lié au support
d’exécution. Par ailleurs, étant donné que les tâches hiérarchiques sont également des
tâches par nature et qu’elles sont donc exécutées par une unité de calcul, le processus

4 G. Lucas

Résumé

de soumission n’est plus géré par un unique fil d’exécution et peut être parallélisé
en traitant des tâches hiérarchiques indépendantes sur différentes unités de calcul.
Notre modèle est également capable de produire des graphes de tâche qui évoluent
dynamiquement à l’exécution. Ceci est particulièrement utile pour adapter le niveau
de granularité ou pour sélectionner différentes implémentations d’une même opération.
Cependant, cette approche dynamique contourne l’ordre séquentiel de soumission sur
lequel le modèle STF s’appuie pour correctement déduire les dépendances entre les
tâches. Par conséquent, implémenter les tâches hiérarchiques sans créer d’incohérences
au niveau des données ou du calcul est particulièrement complexe.

Puisque l’expression d’un sous-graphe équivalent à une tâche nécessite le parti-
tionnement de ses données, nous devons être en mesure de modifier la disposition des
données lorsqu’une tâche hiérarchique est traitée. StarPU gère généralement cela de
manière asynchrone, avec des tâches de partitionnement servant de points de synchro-
nisation définissant la région du DAG où une certaine disposition de données est active.
Dans le modèle de tâches hiérarchiques, nous avons décidé de lier la hiérarchie des
tâches à une hiérarchie des données. Cela nous permet de faire respecter la correction
du graphe en utilisant uniquement les synchronisations de données nécessaires. Une
première implémentation du modèle sacrifie certaines fonctionnalités pour s’appuyer
sur le gestionnaire de données existant. Au cours du processus de soumission, on
insère des tâches de partitionnement qui assureront la cohérence des données pendant
l’exécution future. Dans cette approche, les tâches hiérarchiques sont traitées par le
fil de soumission dès que possible, ce qui se traduit par une soumission récursive mais
statique. Une implémentation plus avancée étend le gestionnaire de données pour
retarder l’insertion des tâches de partitionnement jusqu’au moment de l’exécution.
Grâce à ce nouveau gestionnaire de données, les tâches de partitionnement sont ajou-
tées au fur et à mesure, et si nécessaire, lorsqu’une tâche hiérarchique est traitée. Une
fois le sous-graphe inséré, la tâche hiérarchique est considérée terminée et libère ses
dépendances sortantes. Cela permet des dépendances à grain fin, car il n’y a pas de
barrière ou de synchronisation entre des tâches hiérarchiques successives. Comme les
successeurs non hiérarchiques utilisent une disposition de données différente de celle
d’un sous-graphe, des tâches de départitionnement sont ajoutées entre les deux, ce qui
permet d’assurer l’exactitude du graphe de tâches. Dans ces deux implémentations, la
gestion des données est transparente pour les programmeurs, qui n’ont qu’à décrire
les différentes dispositions possibles pour les données de leur application.

Des travaux préliminaires montrent que notre modèle de tâches hiérarchiques peut
être utilisé pour élaguer les graphes de tâches distribués en encapsulant des parties
de DAG dans des tâches hiérarchiques, qui ne sont alors traitées que par certains
nœuds. Afin de soumettre et de traiter les tâches hiérarchiques sur plusieurs nœuds,
nous avons introduit la notion de données partagées. Il s’agit d’une approche plus
expressive que la simple restriction des tâches hiérarchiques à des nœuds individuels,
mais elle nécessite de gérer soigneusement les communications de données ajoutées au
moment de l’exécution.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 5

Nous avons validé notre modèle en utilisant la bibliothèque d’algèbre linéaire
dense Chameleon. Les descripteurs de matrice de Chameleon ont été adaptés pour
stocker des tuiles de matrices de manière récursive. Un descripteur récursif peut donc
stocker une matrice avec plusieurs niveaux de granularité. L’extension d’un noyau
pour prendre en charge les tâches hiérarchiques est assez simple, puisque la fonction
décrivant le graphe des tâches d’une version tuilée de l’opération est déjà disponible
dans Chameleon. Nos expériences tentent de tirer parti des tâches hiérarchiques,
soit en fournissant la bonne quantité de tâches à grain fin aux CPU, soit en affinant
les tâches sur le chemin critique des opérations de factorisation. Les résultats que nous
avons obtenus montrent que, bien que limitées par l’absence d’un ordonnanceur dédié,
les tâches hiérarchiques ont le potentiel de grandement améliorer le comportement
des support d’exécution à base de tâches tout en offrant une plus grande flexibilité au
programmeur.

6 G. Lucas

Introduction

C
omputer science historically exhibited fast-paced evolution, both theoret-
ically and technologically. In turn, it enabled and supported progress in
many other scientific fields. This is particularly true in High-Performance

Computing (HPC), where powerful hardware is exploited in both academic and indus-
trial applications to solve larger problems faster and more accurately. Such problems
include the modelization and simulation of natural phenomena (e.g. climate prediction,
weather forecasting), physical systems for engineering (e.g. aerodynamics, nuclear
reactions), or biological processes (e.g. cellular interactions, epidemiology).

Hardware-wise, the increase in computing power has taken many forms over
the years. The straightforward acceleration of the frequency of CPU cores stalled
over twenty years ago2. In order to keep improving their computing power, CPU
manufacturers increased the number of cores. In multicore architectures, software
must express parallelism to take full advantage of the hardware. Furthermore, the
last decade has seen the rise in popularity of accelerators, specialized hardware that
can perform certain operations more efficiently, such as GPUs. Originally designed
to accelerate image processing, they are now used in supercomputers due to their
affinity for embarrassingly parallel computations. Modern architectures are therefore
more complex than ever, consisting of a network of heterogeneous nodes combining
multicore CPUs and accelerators. For example, this is the case of Frontier, the
front-runner of the latest Top500 ranking3.

Beyond their individual complexity, supercomputers present a wide variety of
architectures, with many configurations and types of hardware that require different
technologies to program. To alleviate the difficulty of creating applications that can
use these different platforms, part of the HPC community is focused on developing
runtime systems that provide portable programming techniques and tools. One notable
paradigm is the task-based programming model, in which applications are represented
as a Directed Acyclic Graph (DAG) of tasks. This facilitates the expression of parallel

2https://github.com/karlrupp/microprocessor-trend-data
3https://www.top500.org/lists/top500/2023/06/

7

https://github.com/karlrupp/microprocessor-trend-data
https://www.top500.org/lists/top500/2023/06/

applications for the programmer by providing an abstraction in which sequential sets
of computations are regrouped into tasks connected by dependencies.

However, exploiting heterogeneous platforms using the task-based paradigm
presents several challenges. The computing resources of heterogeneous platforms
have different characteristics and requirements. For example, GPU devices typically
perform best with large data sets, while conventional CPU cores reach peak perfor-
mance with fine-grain kernels working on a reduced memory footprint. Additionally,
these platforms typically have a larger number of CPU cores than GPUs. This means
that having more small tasks may be necessary to increase performance. Several
efforts have been made to address this problem, such as finding the best trade-off
between the optimal granularity of each device, or by using large grain tasks suited to
GPU devices and aggregating CPU cores to process them efficiently. Alternatively,
large grain tasks could be split into smaller tasks adapted to individual CPU cores.
The main issue behind these approaches is the static nature of the task graph, which
prevents us from selecting the appropriate granularity at runtime, depending on the
available resources.

In general, most modern task-based runtime systems suffer from a lack of dynamism
in task-graph generation. For example, when designing linear algebra solvers based
on low-rank approximation algorithms, it is almost impossible to predict the right
DAG to ensure good numerical accuracy. In addition, some runtime systems suffer
from an overhead resulting from the internal representation of task graphs with a
large amount of non-ready tasks. This is the case for runtime systems that rely of
the Sequential Task Flow (STF) model, where the graph is constructed task by task,
which might also bottleneck the execution. Other programming models that rely on a
high-level description of dependencies are less affected by this problem, but they tend
to be more difficult to use.

In this thesis, our goal is to extend the submission process of the STF model
in the StarPU runtime system to produce more dynamic task graphs limiting the
runtime overhead. To this end, we propose a new type of task, called hierarchical
tasks, that can transform themselves into a new task graph at runtime. When such a
task is scheduled to be executed, it can either behave like a regular task or insert a
task graph that takes its place in the larger DAG. To define a hierarchical task, the
programmer is only required to provide hints on top of a regular task. The runtime
system can then delay the submission of parts of the task graph to support dynamic
granularity and implementation selection, parallelize the task insertion process, and
greatly reduce the number of tasks in the runtime system.

In order to replace a task with an equivalent sub-graph, the data used by the
task must also be split into sub-data. Such modifications in the data layout are
handled by StarPU’s data manager, which inserts partitioning tasks at submission
time to maintain data consistency at execution time. To be able to make dynamic
adjustments to the data layout, we extended this data manager to insert partitioning

8 G. Lucas

Introduction

tasks at execution time. We can then rely on these tasks to ensure that a graph
involving hierarchical tasks is consistent with a graph created with the STF model,
and therefore correct.

Chapter 1 sets the context of this thesis in more details by presenting the various
programming models used in task-based runtime systems. We also review the related
work to present how runtime system address modern architectures and their challenges.

Chapter 2 gives a more in depth introduction to the terminology and concepts of
the StarPU runtime system. Most notably, we introduce its original data manager
which was extended to support hierarchical tasks.

Chapter 3 presents our hierarchical task model and the underlying motivations.
This new programming model aims to address some limitations of the submission
process within the STF model, resulting in more dynamic task graphs.

Chapter 4 explores the implementation of this model in the StarPU runtime
system. A first approach uses the existing data manager to process hierarchical
tasks entirely at submission time. Then, we extend said data manager to function at
runtime, which enables dynamic modifications of the task graph during the execution.

Chapter 5 validates the hierarchical task model by evaluating its behavior in the
context of dense linear algebra. We take this opportunity to explain how the matrix
descriptors and kernels of the Chameleon library where extended for hierarchical
tasks.

Finally, chapter 6 deals with some preliminary work done to apply the hierarchical
task model to distributed memory.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 9

Chapter 1
Background & Related Work

Contents
1.1 Task-based programming models 13
1.2 Runtime systems for modern architectures 16
1.3 Relaxing the models to face modern problems 18

11

T
he advent of multicore technology in the early 2000s brought a
sharp break with the past for scientific computing. Researchers had to
rethink their methods and algorithms to take advantage of increasing levels

of parallelism. Since then, the number of cores per processor has grown steadily,
while accelerators and GPU devices have become increasingly popular because of their
massive computing power. Supercomputing nodes now commonly include multiple
multicore CPUs and multiple accelerators. Such nodes are assembled in huge numbers
to achieve extreme performance in a scalable way. The large scale and heterogeneity
of these architectures, equipped with processing units and memories of different speed
and capabilities, and interconnects with different bandwidths and latencies, bring
numerous challenges, from the choice of parallel programming models to the need for
new or redesigned methods to better take advantage of such systems. This common
problem is known as the performance portability issue.

In the diverse landscape of supercomputing architectures described above, and
due to the increasing complexity of algorithms for scientific computing, traditional
methods for implementing parallel applications based on a mix of different technologies
(e.g., MPI [26], OpenMP [9] and Cuda [39]/HIP [7]), may not be sufficient to achieve
high performance, scalability, performance portability, and code maintainability. A
need has gradually emerged for novel parallel programming models and tools that
address the diversity and heterogeneity of modern platforms in a consistent manner,
relieving programmers from architectural details, while making a code efficient and
portable across a wide range of architectures with minimal modification. Modern
runtime systems are designed to meet this demand. A runtime system basically
consists of a Programming Model (to let the programmer express the workload),
a Scheduler (to decide when and on which device a particular operation will be
executed), a Data Manager (to transparently handle data coherency and transfers)
and a set of Drivers (to drive the execution of tasks on a type of computing unit).

The first purpose of runtime systems is thus to provide abstraction. Runtime
systems offer a uniform programming interface for a specific subset of hardware (e.g.,
OpenGL or DirectX are well-established examples of runtime systems dedicated to
hardware-accelerated graphics) or low-level software entities (e.g., POSIX-thread imple-
mentations). They are designed as thin user-level software layers that complement the
basic, general purpose functions provided by the operating system calls. Applications
then target these uniform programming interfaces in a portable manner. Low-level,
hardware dependent details are hidden inside runtime systems. The adaptation of
runtime systems is commonly handled through drivers. The abstraction provided by
runtime systems thus enables portability. Abstraction alone is however not enough
to provide performance portability, as it does nothing to leverage low-level-specific
features to increase performance.

Consequently, the second role of runtime systems is to optimize abstract application
requests by dynamically mapping them onto low-level requests and resources as
efficiently as possible. This mapping process makes use of scheduling algorithms and

12 G. Lucas

1. Background & Related Work

heuristics to decide the best actions to take for a given metric and application state
at a given point in its execution time. This allows applications to easily take full
advantage of available underlying low-level capabilities to their full extent without
breaking their portability. Thus, optimization combined with abstraction allows
runtime systems to offer portability of performance.

In the specific case of parallel work mapping, other approaches have occasionally
been adopted instead of using runtimes. Many scientific applications and libraries,
including linear system solvers, integrate their own custom dynamic scheduling al-
gorithms [8] or even resort to static scheduling techniques [32], either for historical
reasons, or to avoid the potential overhead of an extra runtime layer.

However, as multicore processors densify, as cache and memory hierarchies deepen,
the resulting increase in complexity now makes the use of work-mapping runtime
systems virtually unavoidable. Such runtime systems take elementary task descriptions
and dependencies as input and are responsible for dynamically scheduling the tasks
on the available computing units so as to minimize a given cost function (usually the
execution time) under some predefined set of constraints.

Work-mapping runtime systems themselves are now facing new challenges with
the recent move of the high performance community towards the use of specialized
accelerating cores together with traditional general-purpose cores. Not only do they
have to decide whether or not to take advantage of specific hardware features, but
they also have to decide whether entire application tasks should be executed on an
accelerated device or better left on a standard core.

In the case where specialized cores are located on an expansion card having its
own memory (e.g., GPUs, FPGAs, . . .), the input data of a task must be copied
from central memory to the card’s memory before the task can be run. The output
results must also be copied back to the central memory once the task computation is
complete. The cost of copying data between central memory and accelerator memory
is not negligible. This cost, as well as data dependencies between tasks, must be taken
into account by the scheduling algorithms when deciding whether to offload a given
task, to avoid unnecessary data transfers. Transfers should also be done in advance
and asynchronously in order to overlap communication with computation.

In the rest of this chapter, we present the major programming models used to
interact with task-based runtime systems. We then give a broad overview of recent
contributions to runtime system design. Finally, we focus on approaches aimed at
improving the behavior of task-based runtime systems.

1.1 Task-based programming models
Modern task-based runtime systems aim at abstracting the low-level details of the
hardware architecture and enhance the portability of the performance of the code
designed on top of them. As it is the case in this thesis, in most cases this abstraction

On the Use of Hierarchical Tasks for Heterogeneous Architectures 13

1.1. Task-based programming models

relies on a Directed Acyclic Graph (DAG) of tasks. In this DAG, vertices represent
the tasks to be executed, while edges represent the dependencies between them.

While tasks are almost systematically explicitly encoded, runtime systems offer
multiple ways to encode the dependencies of the DAG. Each runtime system usually
comes with its own API which includes one or multiple ways to encode the dependencies,
and their exhaustive listing would be out of the scope of this thesis. However, we
may consider that there are two main modes for encoding dependencies. The most
natural method consists in declaring explicit dependencies between tasks. In spite
of the simplicity of the concept, this approach may have a limited productivity in
practice as some algorithms may have dependencies that are difficult to express.
Alternatively, dependencies may be implicitly computed by the runtime system thanks
to the sequential consistency. In this latter approach, tasks are provided in sequence
and the data they operate on are also declared.

1 call F(x, y)
2 call G(x, u)
3 call H(y, z)
4 call F(u, z)

1 call submit (F, x:RW , y:RW)
2 call submit (G, x:R, u:RW)
3 call submit (H, y:R, z:RW)
4 call submit (F, u:RW , z:RW)
5 call wait_tasks_completion ()

F

G

H

F

Figure 1.1: Pseudo-code for a dummy sequential algorithm (left), corresponding STF
version (center) and subsequent DAG (right).

We illustrate this mode of expression of dependencies with a simple example relying
on a minimum number of pseudo-instructions. Assume we want to encode the DAG
shown in Figure 1.1 (right) relying on explicit dependencies. A task can be defined as
an instance of a function working on a specific set of data, different tasks possibly
being different instances of a same function. For example, in our example we can see
that the first and final tasks are instances of function F . Tasks are instantiated with
the submit_task pseudo-instruction (see Figure 1.1, center). Implicit dependencies
aim at letting the runtime system automatically infer dependencies thanks to the
so-called superscalar analysis [5] which ensures that the parallelization does not violate
dependencies, following the sequential consistency. While CPUs implement such a
superscalar analysis on chip at the instruction level [5], runtime systems implement
it on tasks in a software layer. Superscalar analysis is performed on tasks and the
associated input/output data they operate on. Assume that the first task F operates
on data x and y in read/write mode (calling F (x, y)), while task G (resp. H) uses
data x (resp. y) in read mode. Because of possible data hazards occurring on x
(resp. y) between tasks F and G (resp. H), the superscalar analysis detects that a
dependency is required to respect the sequential consistency.

Another important paradigm for handling dependencies consists of recursive
submission. Indeed, it may be convenient for the programmer to let tasks trigger
other tasks. Sometimes, one may need the task to be fully completed and cleaned up
before triggering other tasks. Runtime systems often support this option through a

14 G. Lucas

1. Background & Related Work

so-called call-back mechanism consisting of a post-processing portion of code executed
once the task is completed and cleaned up.

Depending on the context, the programmer’s affinity, and the portion of the
algorithm to encode, different paradigms may be considered natural and appropriate.
Alternatively, one may rely on a well-defined and simpler programming model in order
to design a relatively simpler code that is easier to maintain and benefit from the
model’s properties. The Sequential Task Flow (STF) programming model consists in
relying entirely on sequential consistency using only implicit dependencies. Thus, the
STF model consists of submitting a sequence of tasks through non-blocking function
calls that delegates the execution of the tasks to the runtime system. Upon submission,
the runtime system adds a task to the current DAG along with its dependencies
which are automatically computed through data dependency analysis [5]. The actual
execution of the task is then postponed until its dependencies are satisfied. As noted
above, this paradigm is also sometimes referred to as superscalar because it mimics
the operation of superscalar processors, where instructions are issued sequentially
from a single stream, but can actually be executed in a different order, and possibly
in parallel, depending on their mutual dependencies.

One challenge in scaling to large scale many-core systems is how to compactly
represent extremely large DAGs of tasks. In [21, 20], the authors present a model,
namely the Parameterized Task Graph (PTG), that addresses this problem. In this
model, tasks are not enumerated but parameterized, and dependencies between tasks
are explicit. For example, in the DAG represented in Figure 1.1 (right), the initial
and final tasks are two instances of the same type of task that implements F . This
property can be used to encode the DAG in a compact way, resulting in a smaller
memory footprint for its representation, as well as ensuring limited complexity for
parsing it as the problem size grows. For this reason, the memory consumption
overhead in the runtime system for representing the DAG can be much lower for
the PTG model than for the STF model. In addition, in the STF model, the DAG
must be completely unrolled, whereas in the PTG model, the DAG is only partially
unfolded during the execution following the task progression. From this point of view,
the advantage of the PTG approach over the STF one can be crucial in a distributed
memory context because the DAG is pruned on every nodes and only a portion of
the DAG is represented on each node. This could significantly reduce the runtime
overhead for the management of the DAG. On the other hand, knowing the entire DAG
can be useful to compute the schedule of the DAG or to provide information to the
dynamic scheduler by prepossessing the DAG. The PTG model has been successfully
used and implemented within the PaRSEC runtime system [22]. More recently, the
Template Task Graph (TTG) was introduced in [43]. TTG is a generalization of PTG
with respect to the dynamic aspect of graph discovery and generation. It extends the
notions of parameter and dependency management (data-dependent task dependencies
selection). This allows for dynamic construction of the DAG depending on the result
of already computed tasks.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 15

1.2. Runtime systems for modern architectures

1.2 Runtime systems for modern architectures
Many initiatives have emerged in the past years to develop efficient runtime systems
for modern heterogeneous platforms. Most of these runtime systems use a task-based
paradigm to express concurrency and dependencies, using a task dependency graph
to represent the application to be executed. The main differences between all the
approaches are related, for the programming models, to whether or not they manage
data movements between computational resources, to which extent they focus on task
scheduling and finally to whether or not they handle distributed memory parallelism.

Most of the available runtime systems do not target any specific type of applications
and provide a general API. Qilin [37], for example, provides an interface to submit
kernels that operate on arrays which are automatically dispatched between the different
processing units of an heterogeneous machine. Moreover, Qilin dynamically compiles
parallel code for both CPUs (by relying on the Intel TBB [42] technology) and GPUs
(using CUDA) [39]. Another relevant framework is Charm++ [33] which is a parallel
variant of the C++ language that provides sophisticated load balancing and a large
number of communication optimization mechanisms. Charm++ has been extended to
provide support for accelerators such as the Cell processors as well as GPUs [35]. Many
runtime systems propose a task-based programming paradigm. Runtime systems like
KAAPI/XKAAPI [28] or APC+ [29], Legion/Realm [14, 47] offer support for hybrid
platforms mixing CPUs and GPUs. Their data management is based on a DSM-like
mechanism: each data block is associated with a bitmap that permits to determine
whether there is already a copy locally available to a specific processing unit or not.
Moreover, task scheduling within XKAAPI is based on work-stealing mechanisms
or on graph partitioning. The StarSS project is actually an umbrella term that
describes both the StarSS language extensions and a collection of runtime systems
targeting different types of platforms [13, 12]. StarSS provides an annotation-based
language which extends C or Fortran applications to offload pieces of computation on
the architecture targeted by the underlying runtime system. Later on, OmpSs [23, 25]
was introduced by the same authors in an effort to integrate features from the StarSS
programming model into a single programming model. This effort, was then pushed
further in the context of the second generation programming model OmpSs-2 [45, 1].
The PaRSEC [16] (formerly DAGuE [17]) runtime system dynamically schedules tasks
within a node using a rather simple strategy based on a locality-aware work-stealing
strategy. It was first introduced for linear algebra but was later extended to more
generic applications. It takes advantage of the specific shape of the task graphs (in
the sense that there are few types of tasks) to represent the task dependency graph in
an algebraic fashion. The StarPU runtime system [11] provides a generic interface
for developing parallel, task-based applications. It supports multicore architectures
equipped with accelerator as well as distributed memory systems. This runtime is
capable of transparently handling data and provides a rich panel of features. The
details of this runtime systems are given in the next section. All the efforts mentioned
above have contributed to proving the ease of use, the effectiveness and portability

16 G. Lucas

1. Background & Related Work

of general purpose runtime systems to the point where the OpenMP [9] board has
decided to include similar features in the OpenMP standard since version 4.0: the
task construct was extended with the depend clause which enables the OpenMP
runtime to automatically detect dependencies among tasks and consequently schedule
them. The same OpenMP standard also provides constructs for using accelerator
devices.

The common point among these runtime systems is that they all use high-level
descriptions of dependencies to build the task graph at runtime and then schedule the
corresponding computations on available resources. Various approaches are used to
construct the task graph. For instance, most of the previously mentioned runtime
systems rely on the STF model (e.g. OpenMP, StarSS, StarPU) to build the
task graph. On the other hand, runtime systems such as PaRSEC are based on the
parameterized task graph programming model (PTG) [21]. Other runtime systems
use different paradigms to express computations, such as Legion, which describes
logical data regions representing the data flow and dependencies between tasks. The
various programming models have different levels of ease of use and the amount of
overhead they impose on the underlying runtime system. For example, the sequential
task flow model is easy to use as programmers only need to provide the sequential
implementation of their application and then add data access modes. However, this
method comes with higher overhead in the runtime system. On the other hand, the
parameterized task graph approach requires users to express their computations in a
subtle high-level formalism where the dataflow is explicitly described, but has less
overhead on the runtime system [30, 40].

While task-based runtime systems have been mainly research tools in the past,
their recent progress makes them solid candidates for designing advanced scientific
software as they provide programming paradigms that enable the programmer to
express concurrency in a simple yet effective way and relieve him from the burden of
dealing with low-level architectural details.

The key features which need to be constantly considered within task-based runtime
systems are related to:

1. the overhead of the runtime which needs to be as low as possible,
2. the flexibility of the programming model,
3. the efficient exploitation of the underlying platform.

These aspects have been extensively studied and many contributions have been made.
Most of them concern either the actual implementation of the runtime and/or the
relaxation of the corresponding programming model.

Several efforts have been made to address the problem of reducing the overhead
of task-based runtime systems, which mainly focus on those based on the sequential
task flow model or increasing the amount of parallelism provided by these systems.
In [6], the authors analyzed the limiting factors in the scalability of a task-based

On the Use of Hierarchical Tasks for Heterogeneous Architectures 17

1.3. Relaxing the models to face modern problems

runtime system and proposed individual solutions for each of the identified challenges,
such as a wait-free dependency system and a scalable scheduler design based on
delegation instead of work-stealing. Other approaches focus on advanced dependency
management. For example, in [24], the authors proposed an eager approach for
releasing data dependencies, where tasks are launched for execution as soon as their
data requirements are met instead of waiting for predecessor tasks to finish execution.
In [38], worksharing tasks were introduced, which internally leverage worksharing
techniques to exploit fine-grained structured loop-based parallelism without requiring
a barrier.

1.3 Relaxing the models to face modern problems
As shown in the introductive chapter, the granularity required by each computing
resource may be very different. Finding the best granularity to optimally exploit
the platform may be a difficult problem. A natural solution would be to rely on
several granularities (one for each type of resource). However, handling task-graphs
using several levels of granularities can be tedious from the programmer’s point of
view. Some preliminary work targeting heterogeneous architectures has considered
splitting tasks when assigned to CPU cores in PaRSEC [48, 18] and XKaapi [28].
However, in the case where a coarse-grain task is split when assigned to CPU cores,
the submitted subgraph needs to be entirely completed before releasing the coarse
dependency, which is equivalent to having a barrier at the end of the subgraph. This
is represented in the scenario illustrated in Figure 1.2b where we can see that the
red dependency between the two parent tasks is still expressed at coarse grain. An
alternative approach consisted in considering the dual problem: instead of splitting
tasks at runtime, resources are aggregated. Then, parallel implementation of the tasks
are used to exploit the set of aggregated resources. This approach was explored in [19].
This scenario corresponds to the one depicted in Figure 1.2a where we can see that
the parallelism within the task is hidden to the runtime system. From a broad point
of view, the main difference between the two strategies is mainly related to the fact
that resource aggregation will rely on an existing parallel implementation of the task,
while the task splitting approach will require a fine grain implementation of the split
task using the considered runtime system.

(a) Parallel tasks. (b) Nested tasks with coarse-
grain dependencies.

(c) Nested tasks with fine-
grain dependencies.

Figure 1.2: Nested task parallelism management.

Concurrently to these questions, the problem of optimizing task dependencies

18 G. Lucas

1. Background & Related Work

management when using nested tasking was explored in [41] with the concept of
weak dependencies. It is an extension of the OpenMP model that supports fine-
grained dependencies not only between sibling tasks but also between tasks with any
family relationship. Our objective in this thesis is to define a model that exhibits
the same properties as task splitting while supporting fine-grain dependencies when
exploiting heterogeneous systems. Figure 1.2c presents an example of such fine grain
dependencies.

Runtime Fine-grain Automatic Data HeterogeneityDependencies Management
PaRSEC [48] ✗ ✗ ✓

OmpSs [41] ✓ ✗ ✗

TaskFlow [31] ✗ ✗ ✓

IRIS [34] ✗ ✓ ✓

Libtask [10] ✗ ✓ ✓

Table 1.1: Summary of hierarchical task support in task-based runtime systems.

Several efforts have been made to allow task-based runtime systems to have more
dynamic capabilities in terms of task management and generation. In TaskFlow [31],
advanced tasking schemes are introduced, including dynamic, composable, and con-
ditional tasking. Dynamic tasking, in particular, allows for the dynamic generation
of a sub-DAG from a given task. However, synchronization is added at the end of
each hierarchical task to ease the dependency management, and programmers are
responsible for data management and changing data layout as needed. In [34], the IRIS
runtime is introduced, which can perform dynamic task partitioning either through
user input or automatically via a polyhedral compiler, but no details are provided
on how dependencies are handled in this context. Finally, Libtask, an advanced
runtime system supporting hierarchical tasks in the context of low-rank linear algebra
solvers is presented in [10]. This work introduces hierarchical tasks, and dependencies
are expressed at the finest level. The correctness of the produced DAG is considered
through extra automatic dependencies, but data management is straightforward as
data partitioning is performed statically at the beginning of the execution.

Table 1.1 provides a summary of how the runtime systems mentioned in this
section compare with respect to the functionality we want to achieve with hierarchical
tasks. We focus on three main features. The first one is the presence of fine-grain
dependencies between distinct sub-graphs. The second one is a data manager that
can adjust the data layout around hierarchical tasks without user supervision. The
third one is the support of heterogeneous architectures.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 19

Chapter 2
The StarPU Runtime System

Contents
2.1 Data structures . 22

2.1.1 Codelets . 22
2.1.2 Data handles . 23
2.1.3 Tasks and jobs . 24

2.2 Building the graph . 24
2.2.1 Shared memory . 25
2.2.2 Distributed memory . 25

2.3 Executing the graph . 27
2.3.1 Submission time and execution time 27
2.3.2 Scheduling . 28

2.4 Data management: partitioning operations 29
2.4.1 Partitioning data manually 29
2.4.2 Automatic data manager 34

2.5 Conclusion . 40

21

2.1. Data structures

D
uring this thesis we mainly worked on the StarPU runtime system, which
we present in this chapter. More specifically, we give an overview of the
StarPU terminology and mechanisms that are necessary for the understand-

ing of this document. We start by introducing the main data structures of StarPU:
handles and codelets. The former are an abstraction for the data used in the applica-
tions, and the latter store the different implementations of a task. We then explain
how StarPU implements the STF model to construct the DAG of an application,
either on a single node or on multiple nodes using a distributed paradigm. Next, we
detail the execution flow of an application to complete the picture of how StarPU
operates prior to the addition of hierarchical tasks. Finally, we take a look at data
partitioning and its challenges from a programming model perspective. This leads us
to introduce StarPU’s data manager by explaining how it handles data partitioning
automatically with minimal input from programmers.

2.1 Data structures
StarPU utilizes various data structures to facilitate the portability of its applications
and to achieve efficient communications between different computing units or nodes.
In this section, we introduce the main data structures of StarPU, codelets, data
handles and tasks and explain how they enable users to write efficient and portable
programs with ease.

2.1.1 Codelets
Programming hybrid architectures is one of the main features of the StarPU runtime
system. Such architectures require different implementations of a task, each suitable
for a specific type of core, for example a CPU kernel and a Cuda kernel. The role of
codelets is to collect these kernel implementations into a single data structure, which
can then be used to submit tasks that can run on any of the different computing
cores of a node. Codelets also encapsulate the attributes shared by all the tasks
performing the same computation, regardless of the chosen implementation. This
includes debugging information, like the name of the operation, data information, and
some specific options, such as restrictions on the type of cores targeted by a task, or
flags to use when executing certain kernels.

Figure 2.1 presents how programmers can define a new codelet. Note that the funcs
members (lines 3 to 5) are arrays and can store pointers to several implementations
for a single type of worker. StarPU can then use its performance models to pick the
best alternative on a given core.

22 G. Lucas

2. The StarPU Runtime System

1 struct starpu_codelet new_cl = {
2 /* Task implementations */
3 . cpu_funcs = { cpu_impl1 , cpu_impl2 },
4 . cuda_funcs = { cuda_impl },
5 . opencl_funcs = { opencl_impl },
6 /* Data information */
7 . nbuffers = 3,
8 . modes = { STARPU_R , STARPU_W , STARPU_RW },
9 /* Debug information */

10 .name = "new"
11 };

Figure 2.1: Writing a new codelet.

2.1.2 Data handles
A codelet alone does not suffice to create a task, it also requires data to work on. For
this reason, StarPU applications generally begin by registering the data that its
tasks will access. This registration step abstracts data into handles, an opaque data
structure that defines the properties of a piece of data within the runtime system. It
allows StarPU to efficiently manipulate data, for example by maintaining coherent
copies of a piece of data to limit data movements (e.g. across NUMA nodes).

1 float A[SIZE];
2 starpu_data_handle_t handleA ;
3
4 starpu_vector_data_register (& handleA , STARPU_MAIN_RAM , A,
5 SIZE , sizeof (float));
6
7 /* In a distributed memory context : */
8 starpu_mpi_data_register (handleA , tagA , mpi_rank);
9

10 /* Migrate the data */
11 starpu_mpi_data_migrate (MPI_COMM_WORLD , handleA , mpi_rank);

Figure 2.2: Registering a handle.

Figure 2.2 illustrates the registration of a vector. It makes use of one of StarPU’s
predefined data interfaces, which facilitate the registration of commonly used data
types, such as vectors (in this case) or matrices. It is however possible for programmers
to define their own data interface by providing StarPU the corresponding function
implementations. These functions include the registration function as well as functions
used to allocate and free data buffers, to copy and transfer them between different
memories, to access some properties of the handle (for example a matrix leading
dimension), etc.

When using StarPU in the context of distributed memory, an additional function
call is required to set the ownership of each handle to a certain node (identified by
its mpi_rank in Figure 2.2). The owner of a handle is the node in charge of sending
it to the other MPI processes using it, and of updating it in case it was modified.
This operation also associates the handle with an MPI tag that will be used in data

On the Use of Hierarchical Tasks for Heterogeneous Architectures 23

2.2. Building the graph

1 starpu_task_insert (& new_cl , /* Task codelet */
2 STARPU_R , handleA , /* Data in Read -only mode */
3 STARPU_W , handleB , /* Data in Write -only mode */
4 STARPU_RW , handleC , /* Data in Read - Write mode */
5 STARPU_VALUE , &cst , sizeof , /* Constant value */
6 STARPU_CALLBACK , callback , /* Callback function */
7 STARPU_PRIORITY , 10, /* Task priority */
8 0);

Figure 2.3: Submitting a task.

transfers. This data mapping is not definitive and the application can dynamically
update it through data migration (see Figure 2.2, line 11).

Overall, the handle data structure enables StarPU to fully manage the data of
an application. This mainly involves transfers between memories within a node and
inter-node communications.

2.1.3 Tasks and jobs
The task structure combines a codelet and a set of handles to define a specific
computation in the application. It instantiates the codelet and completes it with
parameters that are not shared with other tasks using the same codelet. The most
important of these parameters are the handles on which the task operate. As shown
in Figure 2.3, they are passed to the task along with their access modes (lines 2 to
4). The other parameters (lines 5 to 7) are optional and allow users to customize the
behavior of the task. These include additional arguments for the codelet, callback
functions to be executed before or after the task, priority information, etc.

Each task is eventually associated to a job structure. Unlike tasks, which are
largely defined by users during their submission, jobs are an internal data structure
of StarPU. They contain all the task properties that should only be accessed by
StarPU. This includes debugging information, synchronization structures (mutexes),
information on the task successors (to notify them upon completion), updates on the
status of a task, etc.

For the sake of clarity, we do not make a distinction between task and job in the
rest of this document. The “task” designation encompasses both structures as the
differences between them are purely internal to StarPU.

2.2 Building the graph
The main data structures now being defined, we can now take a closer look into the
submission process and explain how StarPU implements the STF model to construct
its DAGs. In this section, we first go through the submission process of the standard
shared memory case. Then we complete it with the addition of MPI communication

24 G. Lucas

2. The StarPU Runtime System

for the distributed memory case.

2.2.1 Shared memory
Tasks are the vertices of our graphs. To complete the picture, we need to explain
how the edges, the dependencies, are constructed to connect those tasks. While
it is possible to explicitly define dependencies “by hand” between tasks, StarPU
will, by default, infer them implicitly. These implicit dependencies are actually data
dependencies that maintain a sequential consistency [36] order as described in the
paragraph below.

In StarPU, the application code is executed by a submission thread that will
be responsible of the construction of the graph. When a new task T is inserted, its
handles and their access modes are inspected. If a handle HW is accessed in read-write
or write mode, a dependency is added from the last task(s) that accessed HW to T .
In turn, T becomes the last task to modify that handle and the next task accessing
HW will depend on T . If a handle HR is accessed in read-only mode, a dependency is
added from the last task that modified HR. As long as the following tasks access HR

in read-only mode, they will only depend on that last task. This process is entirely
sequential: tasks are added one by one to depend from the previously inserted ones.

Consequently, two StarPU tasks can be considered independent (and therefore
run in parallel) if they either operate on different handles, or on the same handles,
but in read-only mode.

It is also possible for the user to disable the sequential consistency for a data
handle, either globally or within a task. When the sequential consistency of a handle
is disabled, no dependencies will ever be inferred from it. The user is then responsible
of ensuring the correctness of the task graph.

Figure 2.4 shows how a dense Cholesky factorization can be implemented in
StarPU. The code 2.4a is analogous to a tiled and sequential implementation of
the operation but replaces function calls to the POTRF, TRSM, SYRK and GEMM
kernels with task insertions. This approach removes the need to explicitly define
parallel regions, and the resulting DAG 2.4b is able to exhibit all the parallelism
available.

This process can be done entirely asynchronously, for example like in Figure 2.4,
by submitting the entire graph and then waiting for the completion of every task.

2.2.2 Distributed memory
StarPU provides an interface to create task graphs in distributed memory, called
StarPU-MPI [44].

Porting a shared memory StarPU application to a distributed context is fairly
straightforward and does not require much effort from programmers. The only

On the Use of Hierarchical Tasks for Heterogeneous Architectures 25

2.2. Building the graph

1 # define N 4
2
3 starpu_data_handle_t A[N][N];
4 [...] /* Register handles for each block of A */
5
6 for (k = 0; k < N; k++) {
7 starpu_task_insert (& potrf_cl ,
8 STARPU_RW , A[k][k], 0);
9 for (m = k+1; m < N; m++) {

10 starpu_task_insert (& trsm_cl ,
11 STARPU_R , A[k][k],
12 STARPU_RW , A[m][k], 0);
13 }
14 for (n = k+1; n < N; n++) {
15 starpu_task_insert (& syrk_cl ,
16 STARPU_R , A[n][k],
17 STARPU_RW , A[n][n], 0);
18 for (m = n+1; m < N; m++) {
19 starpu_task_insert (& gemm_cl ,
20 STARPU_R , A[m][k],
21 STARPU_R , A[n][k],
22 STARPU_RW , A[m][n], 0);
23 }
24 }
25 }
26
27 starpu_task_wait_for_all ();

(a) StarPU code.

P

T T T

S G S G S G

P

T T

S G S

P

T

S

P

(b) DAG.

Figure 2.4: Cholesky factorization of a matrix composed of 4× 4 tiles.

necessary modification is the mapping of the data over the different nodes as discussed
in Section 2.1.2. StarPU-MPI implements a decentralized model without a master
process, where all processes are equals1. During the task submission step, each process
goes through the submission of the entire task graph. The decision to execute a
task on a given node is made locally at submission time and inferred from the data
mapping. In the easiest case, every data handles of a task are owned by the same
node, which will be responsible for its execution. In the more complicated cases,
various policies can be selected to choose the node to execute the task.

If a task is assigned to a node N that does not own all of its handles, data transfers
are necessary. When that situation occurs, N inserts a recv communication task for
every handle it needs. Likewise, upon reaching the submission of that same task, the
nodes owning these handles insert a send communication task. These send-receive
pairs serve as inter-node dependencies, in addition to the usual STF dependencies
that connects tasks inside the node.

This model depends on the fact that every node goes through the graph submission
sequentially. This ensures that the decisions made locally are consistent between the
processes. However, this approach unnecessarily inflates the runtime system overhead,
since every node has to process the entire graph and to manage tasks it is not involved

1Although a “master/slave” mode is implemented.

26 G. Lucas

2. The StarPU Runtime System

with. This issue can be addressed by pruning the DAG. The pruned DAG of a node
only includes the tasks it will execute and the tasks that require communications (i.e.
tasks using a handle owned by the node but executed on another one). StarPU can
prune the graph automatically to a certain extent by interrupting the submission of a
task once it can tell that they are irrelevant to the node. However this pruning is far
from optimal as StarPU must go through a non-negligible section of the submission
process before knowing if a task can be pruned or not.

A more efficient approach requires the programmer to handle pruning directly
in the application. At the application level, it is possible to know which nodes are
relevant for a given task (i.e. the nodes owning the different handles used by the task)
before submitting that task. The application can therefore test the MPI rank of a
process to only submit a task on a node if it is necessary.

2.3 Executing the graph
Now that we have described the construction of the task graph, the question of its
execution arises. This section presents the concepts associated to the runtime. We
first consider the asynchronous nature of StarPU and how it creates overlap between
the submission process and the execution process. Next we discuss scheduling matters
and give a general idea of how tasks are assigned to computing devices. These devices,
in charge of executing tasks, are called workers in StarPU. In general, one worker
is bound to each CPU core and to each accelerator. Binding multiple workers to a
single CPU is possible but generally ill-advised. In the case of accelerators however,
binding multiple workers to a single device can be useful (e.g. to use Cuda streams).

2.3.1 Submission time and execution time
The default model used by StarPU creates two different “timelines”, or fronts for
the application. On the one hand, the submission front inserts new tasks into the
graph. On the other hand, the execution front removes tasks from the graph as they
are completed. This means that StarPU is never really aware of the entire graph,
as it does not wait for the end of the submission process to start executing tasks.
Instead, the graph is perceived as a set of ready tasks that can be executed, and a set
of non-ready tasks waiting for their dependencies to be released.

Task insertions mainly direct the path of the submission front, but the StarPU
interface contains methods to interact with the execution front. This is mostly achieved
through wait() functions that create barriers blocking the submission process. These
barriers can either wait for a specific task, a set of tasks, or all the submitted tasks.
It is also possible to use acquire() operations to create data-centric barriers. These
calls ensure that a piece of data will be available and up-to-date in the specified node
and access mode. These barriers achieve this by waiting for all the tasks already
submitted on the associated data handle. These operations can be blocking and

On the Use of Hierarchical Tasks for Heterogeneous Architectures 27

2.3. Executing the graph

suspend the submission thread, or they can be submitted as tasks in the graph to be
asynchronous.

2.3.2 Scheduling
A key actor of an application’s runtime is the scheduler that StarPU uses to assign
the tasks to the various available workers. The scheduler implements a strategy aiming
to optimize certain criteria, most notably minimizing the execution time. In StarPU,
schedulers can be loosely defined with two operations. The push operation makes
scheduling decisions when a task becomes ready to be executed. The pop operation is
used by the workers when they finish executing a task and need a new one. Users can
define their own scheduling strategies by providing implementations for the methods
composing a scheduler. Many methods already implemented in StarPU are modular
and can be re-used. This allows users to define their own schedulers or to tailor a
scheduler to their application.

By default, StarPU uses the Locality Work Stealing (LWS) scheduler. With that
scheduler, each worker has its own queue in which ready tasks will be pushed. When
a worker wants a new task to execute, it pops the first one in its queue. If its queue is
empty, the pop operation will attempt to steal a task from another worker’s queue,
prioritizing its neighbors in the memory hierarchy of the machine to take advantage
of caches. This is an example of “worker-centric” scheduler, which make decisions
around the availability of the workers, handing them tasks when they request it.

Another popular scheduler in StarPU is Deque Model Data Aware (DMDA).
This scheduler makes use of StarPU’s performance models to predict the completion
time of a task for each device. When a task is pushed, it is scheduled onto the worker
that minimizes that completion time (including the computation time of tasks already
assigned to this worker). StarPU is then notified to prefetch the data it will use.
When a worker is done with its previous task, the pop operation returns the first task
in its queue. The DMDA scheduler has many variants, which can, for example, take
into account task priorities or data availability on the devices. Such schedulers can be
considered “task-centric”, meaning that their decisions are made when a task becomes
ready to be executed.

Some schedulers are hybrid and implement aspects of both worker-centric and
task-centric schedulers. An example of such scheduler in StarPU is HeteroPrio [4],
which assigns one priority per type of computing units to each task (e.g. one for CPUs
and one for GPUs). When a task becomes ready, it is pushed in a queue with other
tasks sharing the same couple of priorities. When a worker needs work, it looks in
the queues to pop a task. Each type of worker checks the queues in a different order,
starting with those having the highest priority for its type.

28 G. Lucas

2. The StarPU Runtime System

2.4 Data management: partitioning operations
The last StarPU mechanism we want to introduce allows programmers to divide
a piece of data into smaller chunks. This is often useful in order to express more
parallelism in specific parts of the task graph, by creating data parallelism out of
larger data pieces. In some applications, it is a natural way to represent data. In
the context of linear algebra for example, it is tempting to register a large piece of
data, such as a matrix, before dividing it into blocks. It can also be used to achieve
greater memory efficiency depending on the resources of the system, and address load
balancing issues. This process of dividing a piece of data into smaller chunks is called
data partitioning. In the rest of this document, we call the large data parent and the
smaller chunks children. In the context of StarPU, all the children are represented
by handles, that we call the sub-handles of the parent.

This section presents the evolution of the data management in StarPU, from a
manual approach requiring programmer input to a more automated process. Data
management is a central notion in this thesis, and the automatic data manager in
particular is at the core of the programming model we propose in the following
chapters. For this reason, we present it in detail, which will make our later extensions
to it clearer.

2.4.1 Partitioning data manually
While it is certainly a convenient feature, data partitioning can be a bit tricky to
implement. First, it creates another view of the partitioned data that must be kept
consistent with the original one. This means that some mechanism is needed to
prevent users from creating a graph where a piece of data and its children are modified
simultaneously. On the other hand, as long as the data accesses are read-only, they
can happen concurrently.

For the sake of generality, it should also be possible to partition a data handle
that is already the child of another data. This results in a partition tree associated
with each higher level data. If there is a need for different partitions of the same data,
that data can have multiple partition trees. For example, Figure 2.5 represents two
partition trees for the matrix A: vertical blocks on the left side, and horizontal blocks
on the right side (with one of the children partitioned vertically).

In addition to the partitioning operation, which divides a parent into children, it
is also necessary to implement a symmetrical unpartitioning operation, which merges
the children back into their parent.

Synchronous partitioning

The initial implementation of data partitioning in StarPU was synchronous: the
operation happens when partitioning function calls are reached in the submission
thread. To protect data consistency, partitioning calls have to be blocking. Partition

On the Use of Hierarchical Tasks for Heterogeneous Architectures 29

2.4. Data management: partitioning operations

A

V0 V1
H0

H1

H10 H11

Figure 2.5: Matrix with two partition trees.

calls wait for all the tasks working on the parent handle. Unpartition calls wait for all
the tasks working on the children.

The first step in introducing data partitioning in a StarPU application is to
define a data filter. This is common to all the approaches presented in this section. A
data filter is a simple structure used to describe a partitioning operation. It consists
of a filter function and information on the number of children. The filter function
is called once per child to fill its interface with the appropriate information, mainly
by computing the pointer to the start of a sub-data and its dimensions. These
filter functions are part of the methods defined for the data interfaces mentioned in
Section 2.1.2, and StarPU provides a variety of them for its predefined interfaces.

Once a data filter is created, users can use partitioning and unpartitioning func-
tions in their applications. Calling starpu_data_partition(handle, &filter) will
wait for the completion of all tasks working on handle and then creates its chil-
dren using filter. Users can then submit tasks working on the children (stored
in handle). To use the parent handle in tasks again, users must call starpu_
data_unpartition(handle, STARPU_MAIN_RAM). Upon reaching this function call,
StarPU will wait for all the tasks that are working on the children of handle. It
will then collect these children back into one large piece of data in the designated
memory node (here STARPU_MAIN_RAM).

Figure 2.6 is an example of synchronous partitioning. The programmer submits
two chains of three tasks, working respectively on data A and B. Instead of submitting
a single task in the middle of the chain working on A, we partition A into {A0, A1}
and work on these sub-handles (lines 15 to 23 of Figure 2.6a), before reconstituting A
with an unpartition for the final task of the chain (lines 27 to 31). Each task working
on B is submitted after the corresponding task working on A. Figure 2.6b illustrates
the resulting task graph. Regular dependencies are represented with simple arrows,

30 G. Lucas

2. The StarPU Runtime System

1 # define NPARTS 2
2
3 [...] /* Registration of handleA & handleB */
4
5 /* Filter dividing a handle in NPARTS vertical slices */
6 struct starpu_data_filter f = {
7 . filter_func = starpu_vector_filter_block ,
8 . nchildren = NPARTS
9 };

10
11 /* Insertion of tasks working on the large data */
12 starpu_task_insert (& T0_cl , STARPU_RW , handleA , 0);
13 starpu_task_insert (& T0_cl , STARPU_RW , handleB , 0);
14
15 /* Synchronous partitioning */
16 starpu_data_partition (handleA , &f);
17
18 /* Insertion of tasks working on the sub -data of handleA */
19 starpu_data_handle_t subhandle ;
20 for (i = 0; i < NPARTS ; i++) {
21 subhandle = starpu_data_get_child (handleA , i);
22 starpu_task_insert (& T1_cl , STARPU_RW , subhandle , 0);
23 }
24
25 starpu_task_insert (& T1_cl , STARPU_RW , handleB , 0);
26
27 /* Synchronous unpartitioning */
28 starpu_data_unpartition (handleA , STARPU_MAIN_RAM);
29
30 /* Insertion of tasks working on the large data */
31 starpu_task_insert (& T2_cl , STARPU_RW , handleA , 0);
32 starpu_task_insert (& T2_cl , STARPU_RW , handleB , 0);

(a) Code using synchronous partitioning.

T0(A)

T1(A0)

T1(A1)

T2(A)

T0(B) T1(B) T2(B)

partition(A) unpartition(A)

(b) Graph resulting from Figure 2.6a.

Figure 2.6: Example of synchronous partitioning. Simple arrows are regular depen-
dencies. Double arrows represent the submission flow barriers caused by synchronous
partitioning calls.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 31

2.4. Data management: partitioning operations

while double arrows represent the barriers in the submission flow blocking the insertion
of a task until a synchronous call can be executed. For example, T1(B) cannot be
submitted until the completion of T0(A) because the submission call is placed after a
synchronous partition call. For the same reason, the insertion of T2(B) depends on the
completion of the T1(Ai) tasks. This example showcases how blocking calls are used
to enforce data consistency between a data piece and its children. It also reveals how
this method can result in undesirable synchronizations by delaying the submission
of tasks, effectively creating unnecessary dependencies. This can quickly become a
bottleneck for the application. Furthermore, while it is possible to define multiple
partition trees for a data (as shown in Figure 2.5) by writing different filters, manually
switching from one to the other will quickly become tedious for the programmer.

Asynchronous partitioning

In response to the bottleneck issue, an asynchronous approach to data partitioning
was implemented. Instead of applying the filter every time a partition is needed and
accessing the children through their parents, a plan operation is introduced. This
operation will only use the filter once, to register a new set of handles which will be
the sub-handles of the parent handle.

Figure 2.7 is an example of asynchronous partitioning reusing the case presented
in Figure 2.6. Lines 1 to 11 of Figure 2.7a are the data registration step, which defines
a filter and creates a partition plan for handleA. Lines 13 to 27 are the task insertion
steps, and Figure 2.7b shows the resulting graph. As shown in this example, once a
partition plan is specified for a handle, users can use asynchronous variants of the
partitioning functions presented earlier. These variants will insert partitioning and
unpartitioning tasks using both the main handle and the sub-handles in write mode.
Therefore, the rules of the STF model can be applied to correctly insert these tasks
in the graph. By making the partition operation asynchronous, the barriers blocking
the submission of the tasks Ti(B) in Figure 2.6 are removed, and replaced by proper
dependencies in the task chain using A.

At runtime, the partitioning tasks do not perform any computations (i.e. their
codelet does not have any implementations). Instead, they serve as synchronization
points. A partition task becomes ready when the tasks working on the parent
handle are finished. Then, it invalidates that handle and makes the children usable.
Symmetrically, an unpartition task becomes ready when the tasks working on the
sub-handles are finished, and it invalidates the children and makes the parent usable
again.

The asynchronous approach also implements read-only versions of the partition
and unpartition functions. The read-only case calls for a different behavior because
read accesses to a single piece of data can happen concurrently. This means that the
partitioning and unpartitioning tasks do not have to invalidate any handles. This can
help to express more parallelism in the application.

32 G. Lucas

2. The StarPU Runtime System

1 # define NPARTS 2
2
3 [...] /* Registration of handleA & handleB */
4
5 /* Partitioning in NPARTS slices */
6 struct starpu_data_filter f = {
7 . filter_func = starpu_vector_filter_block ,
8 . nchildren = NPARTS
9 };

10 starpu_data_handle_t subhandlesA [NPARTS];
11 starpu_data_partition_plan (handleA , &f, subhandlesA);
12
13 /* Insertion of tasks working on the large data */
14 starpu_task_insert (& T0_cl , STARPU_RW , handleA , 0);
15 starpu_task_insert (& T0_cl , STARPU_RW , handleB , 0);
16
17 /* Insertion of a partitioning task */
18 starpu_data_partition_submit (handleA , NPARTS , subhandlesA);
19
20 /* Insertion of tasks working on the sub -data of handleA */
21 for (i = 0; i < NPARTS ; i++)
22 starpu_task_insert (& T1_cl , STARPU_RW , subhandlesA [i], 0);
23
24 starpu_task_insert (& T1_cl , STARPU_RW , handleB , 0);
25
26 /* Insertion of an unpartitioning task */
27 starpu_data_unpartition_submit (handleA , NPARTS , subhandlesA , STARPU_MAIN_RAM);
28
29 /* Insertion of tasks working on the large data */
30 starpu_task_insert (& T2_cl , STARPU_RW , handleA , 0);
31 starpu_task_insert (& T2_cl , STARPU_RW , handleB , 0);

(a) Code using asynchronous partitioning.

T0(A) PV

T1(A0)

T1(A1)

UV T2(A)

T0(B) T1(B) T2(B)

(b) Graph resulting from Figure 2.7a.

Figure 2.7: Example of asynchronous partitioning.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 33

2.4. Data management: partitioning operations

However, just as in the synchronous case, this method of data partitioning still
requires the user to add function calls at the appropriate times. It is even further
complicated by the addition of read-only partitioning. This is not only tedious for the
user, but it can also be a source of bugs in the application. To alleviate this problem,
it may be desirable to have these operations handled automatically by StarPU.

2.4.2 Automatic data manager

1 # define PARTS 2
2 void submit_task_graph (int matrix [NX][NY]) {
3 starpu_data_handle_t handle ;
4 starpu_data_handle_t v_handles [PARTS];
5 starpu_data_handle_t h_handles [PARTS];
6 starpu_data_handle_t h_subhandles [PARTS];
7
8 /* Data registration */
9 starpu_matrix_data_register (& handle , STARPU_MAIN_RAM ,

10 (uintptr_t)matrix , NX , NX , NY ,
11 sizeof (matrix [0][0]));
12
13 /* Partition the matrix in PARTS vertical slices */
14 struct starpu_data_filter vertF = {
15 . filter_func = starpu_matrix_filter_block ,
16 . nchildren = PARTS
17 };
18 starpu_data_partition_plan (handle , &vertF , v_handles);
19
20 /* Partition the matrix in PARTS horizontal slices */
21 struct starpu_data_filter horF = {
22 . filter_func = starpu_matrix_filter_vertical_block ,
23 . nchildren = PARTS
24 };
25 starpu_data_partition_plan (handle , &horF , h_handles);
26 starpu_data_partition_plan (h_handles [1] , &vertF , h_subhandles);
27
28 /* Fill the matrix */
29 starpu_task_insert (& initialize , STARPU_W , handle , 0);
30
31 /* Modify the values via the vertical slices */
32 for (i = 0; i < PARTS ; i++)
33 starpu_task_insert (& modify , STARPU_RW , v_handles [i], 0);
34
35 /* Check results with both horizontal and vertical slices */
36 for (i = 0; i < PARTS ; i++)
37 starpu_task_insert (& check , STARPU_R , h_handles [i], 0);
38 for (i = 0; i < PARTS ; i++)
39 starpu_task_insert (& check , STARPU_R , v_handles [i], 0);
40
41 /* Unregister data from StarPU . */
42 starpu_data_partition_clean (handle , PARTS , v_handles);
43 starpu_data_partition_clean (h_handles , PARTS , h_subhandles);
44 starpu_data_partition_clean (handle , PARTS , h_handles);
45 starpu_data_unregister (handle);
46 }

Figure 2.9a

Figure 2.9b

Figure 2.9c

Figure 2.9d

Figure 2.8: Example of automatic partitioning.

To relieve users of the burden and risk of manually managing data partition trees,

34 G. Lucas

2. The StarPU Runtime System

StarPU’s default behavior now handles data partitioning automatically. Just as
in the asynchronous case presented earlier, users call plan operations to define the
partition trees they want to use and to register the corresponding sub-handles. During
this step, they can introduce multiple partition plans for a single piece of data, and
recursively partition sub-handles to create more levels of partitioning. In the code
snippet 2.8, the lines 13 to 26 show how to define the partition trees of Figure 2.5. In
the rest of the code, all the handles and sub-handles can be used directly to insert
tasks without calling any of the previous partitioning functions.

The functions calls that inserts partitioning tasks are added internally at submission
time. Five different operations are implemented. On top of the partition_submit()
and unpartition_submit() and their read-only variants that were described in the
previous subsection, the readwrite_upgrade_submit() operation turns a read-only
partition into a read-write partition.

The handle structure defines the following states to describe the state of a handle
during the submission of tasks:

• Inactive, the piece of data cannot be accessed.
• Read-Write active, the piece of data can be read and modified.
• Read-only active, the piece of data can only be read.

Additionally, an active handle can be:
• Not partitioned, if only the piece of data itself can be accessed, and not its

children.
• Read-Write partitioned, if the piece of data can only accessed through its children.
• Read-only partitioned, if the piece of data and its children can be read.
The state of a handle is used to tell at submission time whether or not that handle

would be usable at runtime. Table 2.1 summarizes in green the states indicating that
a task can use the handle without generating an error at runtime. RW means that
the handle can be accessed in read-write, write or read-only mode. RO means that
the handle can only be accessed in read-only mode. A state in which a handle cannot
be used at runtime is marked with X. Impossible states are indicated with N/A.

Inactive Read-Write active Read-only active
Not partitioned N/A RW RO
Read-Write partitioned N/A X N/A
Read-only partitioned N/A RO RO

Table 2.1: Usability of a handle depending on its state.

Each handle also contains information used to navigate the partition trees. This
information includes a pointer to the parent handle (NULL in the case of the root

On the Use of Hierarchical Tasks for Heterogeneous Architectures 35

2.4. Data management: partitioning operations

A

V0 V1

H1

H0

A

V0 V1

H1

H0

W (A)

(a) Partition plans and initialization task.

W (A) PV

W (V0)

W (V1)

(b) Read-Write vertical partition.

A

V0 V1

H1

H0

A

W (A) PV

W (V0)

W (V1)

UV PH

R(V0)

R(V1)

R(H0)

R(H1)

(c) Three Read-only active partitions.

W (A) PV

W (V0)

W (V1)

UV PH

R(V0)

R(V1)

R(H0)

R(H1)

UH UV

(d) Partition clean.

Legend for tasks:

W (A)

R(A)

P/U

P/U

Task writing in A

Task reading from A

RW -partitioning task

RO-partitioning task

Legend for data:

Inactive handle

Active handle (RW or RO)

RW partitioned handle

Figure 2.9: Evolution of the graph and handle states associated to the submission
process of the code provided in Figure 2.8.

36 G. Lucas

2. The StarPU Runtime System

handle), pointers to the active children and to the siblings (NULL if there is none).

Parent handle Sub-handles
RW active RW activepartition_submit() RW partitioned Not partitioned
RW activeunpartition_submit() Not partitioned Inactive

RW or RO active RO activepartition_readonly_submit() RO partitioned Not partitioned
RO active RO activeunpartition_readonly_submit() RO partitioned Not partitioned
RW active RW activereadwrite_upgrade_submit() RW partitioned Not partitioned

Table 2.2: Handle states after the submission of partitioning tasks.

Before inserting a new task into the graph, StarPU checks the states of the task’s
handles to decide whether or not it should partition or unpartition them first. If the
state of the handle indicates that it cannot be used, then the appropriate operation is
inserted. If the handle is at the bottom of a partition tree, a chain of partitioning
tasks will be recursively inserted to activate it. Similarly, chains of unpartitioning
tasks can be recursively inserted to re-enable a handle higher in the tree. Every time a
partitioning task is inserted, the states of the handles involved are updated according
to Table 2.2.

Algorithm 1 Recursive traversal of the partition trees to activate target handle
1: function AutoSubmit(ancestor, target, write)
2: if ancestor is Inactive or

(write and parent is RO active) then
3: AutoSubmit(ancestor parent, ancestor, write)
4: CheckUnpartition(ancestor, target, write)
5: if target is NULL then
6: return
7: CheckPartition(ancestor, target, write)

Algorithm 1 is a pseudo-code version of the recursive function that is called on each
handle of a new task to be inserted. The ancestor argument is the handle whose state
is being checked. The target argument is NULL on the initial call to AutoSubmit.
During recursive calls, it is used to remember the ancestor of the previous call. The
write argument is a boolean that is true if target uses the STARPU_RW or STARPU_W
access modes and false if it uses the STARPU_R access mode.

Figure 2.10 illustrates how the partition tree of A is traversed to activate the
handle H10 for a task T . Initially, the “vertical” branch of the tree is activated and

On the Use of Hierarchical Tasks for Heterogeneous Architectures 37

2.4. Data management: partitioning operations

A

V0 V1
H0

H1

V00

V01

H10 H11

AutoSubmit(H10, NULL, 1)

(a) A task T is being submitted to write on
H10. Call AutoSubmit(H10, NULL, 1).

A

V0 V1
H0

H1

V00

V01

H10 H11

AutoSubmit(H10, NULL, 1)

AutoSubmit
(H1, H10, 1)

AutoSubmit
(A, H1, 1)

(b) Recursive calls to AutoSubmit to
climb the partition tree until the first active
handle.

A

V0 V1
H0

H1

V00

V01

H10 H11

AutoSubmit(H10, NULL, 1)

AutoSubmit
(H1, H10, 1)

AutoSubmit
(A, H1, 1)

CheckUnpartition(A, H1, 1)

unpartition_
submit(V0)

unpartition_
submit(A)

(c) Recursively submit unpartition tasks to re-enable A.

A

V0 V1
H0

H1

V00

V01

H10 H11

AutoSubmit(H10, NULL, 1)

AutoSubmit
(H1, H10, 1)

CheckPartition(A, H1, 1)

partition_
submit(A)

(d) Submit a first partition task to enable
the horizontal plan.

A

V0 V1
H0

H1

V00

V01

H10 H11

AutoSubmit(H10, NULL, 1)

CheckPartition
(H1, H10, 1)

partition_
submit(H1)

(e) Submit another partition task to enable
the handle accessed by T .

Figure 2.10: Unrolling a call of AutoSubmit.

38 G. Lucas

2. The StarPU Runtime System

RW partitioned (see Figure 2.10a). First, AutoSubmit is recursively called to climb
the partition tree until we reach an active ancestor of H10 matching the access mode.
This corresponds to lines 2 and 3 of Algorithm 1 and to Figure 2.10b. Upon reaching
that active handle, we call CheckUnpartition (line 4).

Algorithm 2 Submission of unpartitioning tasks
1: function CheckUnpartition(ancestor, target, write)
2: if ancestor is Partitioned then
3: if write then
4: if target is NULL or

ancestor active children ̸= target siblings then
5: rec_unpartition_submit(ancestor)
6: else
7: if ancestor state ̸= RO partitioned then
8: rec_unpartition_readonly_submit(ancestor)

CheckUnpartition 2 is used to check whether a handle ancestor needs to be
unpartitioned or not. If ancestor must be unpartitioned, then one of the function calls
on lines 5 and 8 will recursively insert unpartitioning tasks by following the pointers
to the active descendants of ancestor. The states of the handle traversed are updated
accordingly. This process is illustrated by Figure 2.10c.

Algorithm 3 Submission of partitioning task
1: function CheckPartition(ancestor, target, write)
2: if ancestor is RO partitioned then
3: if write then
4: readwrite_upgrade_submit(ancestor, target siblings)
5: else
6: partition_readonly_submit(ancestor, target siblings)
7: else
8: if write then
9: partition_submit(ancestor, target siblings)

10: else
11: partition_readonly_submit(ancestor, target siblings)

After this step, we determine if the active ancestor must be partitioned with
CheckPartition 3 (line 7 of Algorithm 1). The target argument is used to chose
which plan should be activated by the partitioning operation, in case multiple plan
were created for ancestor. Contrary to Algorithm 2, this algorithm inserts a single
partition task, which is enough to put target in the correct state. As the call stack
unwinds (Figures 2.10d and 2.10e), AutoSubmit keeps using CheckUnpartition
and CheckPartition to progressively update the partition tree until the initial
handle is in the correct state for T to be submitted.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 39

2.5. Conclusion

Figure 2.9 provides another example of this mechanism, showing the evolution of
the handle states and the task graph during the submission process of the code from
Figure 2.8. At the end of the data registration step, once the plan operations have
been performed, only the root handle is active (see Figure 2.9a). When the first task
using a sub-handle is submitted (line 33), StarPU first inserts the corresponding
partitioning task. It also updates the states of the handles involved in the operation.
A becomes RW-partitioned and the children Vi become RW-active (see Figure 2.9b).
The next step (line 35) submits “check” tasks that access the data in read-only mode
in both the vertical and horizontal layout. Because the vertical layout is already
active, no partition operation is needed for the tasks using the Vi handles. On the
other hand, the Hi handles are still inactive and A is also in an invalid state. Thus
StarPU starts by inserting a read-only unpartitioning task to make A RO-partitioned.
Then it submit a read-only partitioning task to activate the Hi handles. This results
in Figure 2.9c. Finally, unpartitioning tasks are added before cleaning the partition
plans (see Figure 2.9d).

2.5 Conclusion
The main goal of this thesis is to implement a model of hierarchical tasks in an
existing runtime system. It is necessary to first present the runtime system in question,
StarPU, in order to properly set the stage for the rest of the document. StarPU
considers its tasks as the combination of a codelet and data. Codelets factorize the
properties of a task, such as its different implementations targeting various computing
resources. Data are registered at the beginning of an application as data handles.
Tasks are submitted sequentially in a singular submission thread according to the
STF model. StarPU creates incoming dependencies for each new task based on the
access modes of the data pieces it uses, relying on sequential consistency.

The execution of the task graph thus constructed is overlapped with its submission.
This means that StarPU never gets a full picture of the DAG of an application,
but rather see it through a sliding window. On the one hand, the submission thread
inserts new tasks. On the other hand, the workers remove tasks from the graph by
executing them. Assigning a task to a worker can be done through various scheduling
policies centered around customizable push and pop operations. The push operation
occurs when a task is ready to be executed, while the pop operation occurs when a
worker is looking for a task to execute.

The most important component for the introduction of hierarchical tasks in
StarPU is the data manager. This mechanism enables the programmer to declare
different data layouts and use them transparently in the application. StarPU is in
charge of automatically creating the partitioning operations required at runtime to
maintain the consistency between the data layouts. These operations are positioned
in the DAG as tasks during the graph’s submission. Later in this thesis, we will have
to extend this data manager to position these operations at execution time. However,

40 G. Lucas

2. The StarPU Runtime System

the user interface and the core principles are unchanged.
After presenting the existing elements of StarPU that are relevant for this thesis,

we can build our hierarchical task model.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 41

Chapter 3
The Hierarchical Task Model

Contents
3.1 Objectives . 44

3.1.1 Improving upon the STF model 44
3.1.2 Introducing more dynamic task graphs 46
3.1.3 Keeping the model simple 47

3.2 Designing hierarchical tasks for StarPU 48
3.2.1 Aiming for generality . 48
3.2.2 User interface . 49
3.2.3 Adapting the data layout around hierarchical tasks 50
3.2.4 Correctly inserting tasks at runtime 51
3.2.5 Fine grain dependencies . 53
3.2.6 Parallel submission . 55
3.2.7 Data management for the programmer 57
3.2.8 Case of read-only access mode 57

3.3 Conclusion . 58

43

3.1. Objectives

F
acing the challenges posed by the increasing complexity of modern HPC
architectures demands more and more adaptability and expressivity from
runtime systems. In addition, runtime systems need to address the limitations

imposed by the programming models they implement. To this end, we propose to
extend the STF model implemented in the StarPU runtime system by introducing
the concept of hierarchical tasks. A hierarchical task shares all the characteristics of
a regular task with the added feature of being able to submit a sub-DAG. Such a
task can either behave as a regular task and perform a given set of computations, or
it can insert new tasks into the DAG. These new tasks are called sub-tasks of the
hierarchical task that submitted them. The work done by the graph formed by these
sub-tasks must produce the same results as the standard execution of the task they
replaced.

In this chapter, we present the hierarchical task paradigm, its features, and how to
use it. First, we review our objectives and explain the problems we are aiming to solve
with hierarchical tasks. We then give a detailed presentation of our new programming
model to explain how it addresses the aforementioned problems without diverging
from the existing STF model. To do that, we iterate on our model to present how
we address the challenges of inserting sub-graphs without creating inconsistencies in
the graph. A central part of that discussion is the question of data management that
emerges from the need to partition data handles to refine a task into a sub-graph.
Finally, we discuss the use of hierarchical tasks in the context of distributed memory.

3.1 Objectives
Our main goal with hierarchical tasks is to introduce in StarPU a mechanism that
enhances the submission process and allows a finer control over it, both automatically
at the runtime system level and for users at the application level. In this section,
we first go over the improvements that hierarchical tasks can bring to StarPU’s
programming model. We then focus on the common problems of all task-based runtime
systems that we want to address with hierarchical tasks. The last part is dedicated to
explaining our goals regarding the programming interface, since we want to keep our
model simple to use while extending its expressivity.

3.1.1 Improving upon the STF model
In StarPU, the interactions between the submission process of the task graph and
its execution can lead to different types of overhead depending on the nature of the
DAG processed by the runtime system. With hierarchical tasks, we aim to reduce
these overheads and target the following goals.

44 G. Lucas

3. The Hierarchical Task Model

Parallel submission of the task graph

While the sequential nature of the STF model is the key to its simplicity (from users’
perspective), it is also the root of its problems. Placing the entire burden of the
task graph submission on the shoulder of a single thread can be a bottleneck for
the application. If an application presents enough parallelism and the computing
resources offer enough workers to exploit it, the execution front might catch up with
the submission front. This can induce various levels of starvation for the workers.

For the same reason, we must minimize the interruptions of the submission
thread in order to avoid bottlenecks in StarPU applications. This means that users
must rely on asynchronous operations whenever possible and use barriers sparingly.
However, some necessary interruptions are independent from the user. For example,
the submission thread might have to wait for a mutex internal to the runtime. This
can also lead to some level of starvation of the computing resources.

Hierarchical tasks address these limitations by introducing parallelism in the
submission process. If we can share the insertion of tasks between different threads,
then the bottleneck issue can be mitigated and interruptions of a submission thread
are not as big of a deal.

More generally speaking, submitting and managing tasks with a runtime system
will inevitably induce overhead. The order of magnitude of that overhead in StarPU
is typically in the range of a few microseconds per task. As the number of workers
increases, tasks must meet a minimal threshold in their execution time for that
overhead to be negligible. If tasks are too short, the scaling of the application will be
limited by the runtime overhead beyond a certain number of workers. This notion
must be kept in mind as we introduce hierarchical tasks. Otherwise the benefits
gained by parallel submission might be offset by the cost of the new mechanism itself.

Delay the submission of parts of the task graph

At first glance, it may seem advantageous to submit the task graph as quickly as
possible. It prevents the aforementioned issues and provides the runtime system
with more information about the future of the execution of the application. This
improves the scheduling decisions and data transfer operations. However, the cost of
task management increases along with the number of non-ready tasks accumulating
in the system. It can negatively impact the runtime system overhead by increasing
scheduling costs. It can also lead to excessive memory usage due to the allocation of
a large number of task structures and data buffers.

In StarPU, this issue is generally handled by throttling the submission thread.
There are mechanisms implemented to control the submission flow either at the runtime
level, or at the application level. At the runtime level, StarPU can monitor its current
memory usage (and anticipate future memory usage) to interrupt the submission flow
between certain thresholds [44]. At the application level, Application Programming

On the Use of Hierarchical Tasks for Heterogeneous Architectures 45

3.1. Objectives

Interface (API) functions or environment variables can be used to interrupt the
submission based on the number of non-ready tasks already submitted [3].

With hierarchical tasks, we also aim to introduce a new mechanism to control the
task submission flow. By encapsulating parts of the task graph in hierarchical tasks,
it becomes possible to limit the number of non-ready tasks waiting in the system
without interrupting the submission. Another benefit of using hierarchical tasks to
delay parts of the submission process is that the hierarchical graph still gives StarPU
an overview of the rough shape of the final graph. This overview is useful to inform
certain scheduling decisions in advance or to anticipate data transfers, which is not
possible when the submission thread is interrupted.

In some applications, some parts of the task graph cannot be known in advance,
so it cannot be entirely submitted at startup. The submission of these unknown parts
has to be delayed. For example, when factorizing sparse matrices with partial pivoting,
rows are interchanged based on the numerical values of their elements. This makes it
impossible to predict the exact final structure of the sparse matrices involved without
completing the factorization [27]. Since the data layout is unpredictable, many regions
of the task graph can only be inserted at the correct time. In this context, hierarchical
tasks could be used to represent these regions and submit sub-graphs suiting the data
layout as soon as it is known.

Automatic pruning in StarPU-MPI

In Section 2.2.2, we explained that when using StarPU-MPI to create distributed
DAG, each node should prune irrelevant tasks and thus mitigates runtime overhead.
When done automatically by the runtime system, the pruning does not fully solve the
overhead issue as the submission process is still partially executed. When done by users
at the application level, the pruning is more efficient but it requires implementation
efforts that can be complex, especially if the data mapping is redefined.

We aim to use the submission flow control effects of hierarchical tasks to tackle this
problem. Once again, the idea is to encapsulate parts of the task graph in hierarchical
tasks. This would enable StarPU’s automatic pruning to prevent the submission of
many tasks by aborting the submission of a single, hierarchical, task. It would give
users a new way to build distributed graphs without having to oversee their pruning.

3.1.2 Introducing more dynamic task graphs
Beyond leveraging hierarchical tasks to address specific shortcomings of the StarPU
programming model, we also aim to tackle broader challenges faced by task-based
runtime systems. In Section 1.3, we presented an overview of the current limitations of
runtime systems and the state-of-the-art approaches employed to overcome them. The
common trait of these limitations is the static nature of the task graphs handled by
each runtime system. The use of hierarchical tasks also aims to bring more dynamism

46 G. Lucas

3. The Hierarchical Task Model

into the expression of DAGs. By delegating parts of the DAG submission to specific
tasks, the goal is to produce graphs that can evolve during execution time. This can
create opportunities to shape the graph on the fly, for example by fitting the new
graph to the availability of resources at a given time.

Optimal task granularity

In the context of heterogeneous platforms, there is a disparity in computing power
between workers of different nature. For this reason, if one wants to fully exploit all
the resources available to them, finding the appropriate task granularity (i.e. the
amount of computations done in a task) is particularly important.

The use of hierarchical tasks could allow StarPU to dynamically reduce the
granularity of a task by replacing it with a sub-graph that works at a smaller grain.
This decision could be made by the scheduler depending on the priority of the coarse
hierarchical task and the workers available when it becomes “ready”. If the sub-graph
introduces enough parallelism, then the runtime system can take advantage of slower
but more numerous workers (e.g. CPU cores) to run the computations faster than by
waiting for a more powerful worker to be free. It is particularly interesting in the case
of high-priority tasks, such as a task from the critical path or a task unlocking many
other tasks.

The hierarchical task approach is adjacent to the parallel task solution, which
relies on resource aggregation to efficiently execute coarse tasks on CPU cores [19]
and is already implemented in StarPU. The two methods could eventually be used
jointly to address the granularity issue.

More expressive task graphs

In addition to the potential performance improvements resulting from more dynamic
hierarchical task graphs, hierarchical graphs can also be more expressive. For exam-
ple, the capacity of hierarchical tasks to submit sub-graphs, themselves potentially
composed of hierarchical sub-tasks, lends itself well to recursive algorithms.

Iterative solvers are another field that could benefit from this new expressivity. A
single hierarchical task could submit a task graph that includes another hierarchical
task identical to itself. Every time such a hierarchical task is ready, it can decide
whether to iterate by inserting a new task graph or not. This process can be repeated
until a termination criterion is met and the hierarchical task decides not to insert a
task graph.

3.1.3 Keeping the model simple
Finally, an important goal during this thesis was to keep StarPU as accessible as
possible. A big advantage of the STF model resides in its simplicity of use. This
property is also generally a crucial feature for runtime systems in HPC. Our approach

On the Use of Hierarchical Tasks for Heterogeneous Architectures 47

3.2. Designing hierarchical tasks for StarPU

to extend this programming model must therefore avoid diverging too much from the
model that users expect to interface with. If our answers to the goals stated above
are too complex to use, then their value is severely limited.

3.2 Designing hierarchical tasks for StarPU
At the beginning of this chapter, we defined hierarchical tasks as regular tasks that
can insert a sub-graph to replace them. The sub-graph in question must, of course,
perform computations providing the same results as the task it replaces. In the
rest of this document, this substitution operation where a hierarchical task inserts a
sub-graph instead of executing a kernel is called processing the hierarchical task. In
our model, a hierarchical task is processed when all its incoming dependencies have
been released and the task is considered ready.

In this section, we build up the hierarchical task paradigm by progressively
expanding the model, highlighting the issues it may cause, and explaining how to
solve them. We start with a presentation of the rules we have imposed on hierarchical
tasks in order to provide a solution for our goals that is as general as possible. This
leads us to describe the use of hierarchical tasks from the users’ point of view. Next,
we present how hierarchical tasks adapt the data layout to create sub-graphs with
more parallelism. We can then explain how to correctly insert tasks at runtime,
breaking the usual rules of the StarPU submission flow. The following part refines
this approach by expressing dependencies between sub-graphs at the finest grain
possible to maximize parallelism. Finally, we conclude this section with a final rule
that allows us to safely use hierarchical tasks to parallelize the submission process.

3.2.1 Aiming for generality
In order to meet the objectives we set in Section 3.1, the hierarchical task model must
be as general as possible. For example, in most cases, it would be possible to provide
tasks of the appropriate granularity for CPU cores and GPU devices with only two
levels of task granularity. However, this would severely limit the expressivity of the
model. To ensure that the programming interface does not limit users, we want to
be able to nest hierarchical tasks. If a hierarchical task can generate a graph that
contains hierarchical tasks, this enables new expressions for the recursive and iterative
algorithms mentioned in Section 3.1.2.

The user interface for hierarchical tasks also needs to be as straightforward as
possible. If the creation of a sub-graph is too convoluted, then writing hierarchical
graphs or adapting existing graphs to be hierarchical becomes tedious. To this end,
users express hierarchical graphs at the highest level according to the standard STF
model. They only have to annotate some tasks as “hierarchical” to indicate where
a sub-graph (themselves expressed through the STF model) can be inserted. The
annotations in question are explained in more details in the following subsection.

48 G. Lucas

3. The Hierarchical Task Model

1 starpu_task_insert (& new_cl , /* Task codelet */
2 STARPU_R , handleA , /* Data in Read -only mode */
3 STARPU_W , handleB , /* Data in Write -only mode */
4 STARPU_RW , handleC , /* Data in Read - Write mode */
5 STARPU_TURN , is_hierarchical ,
6 STARPU_TURN_ARG , &is_h_args ,
7 STARPU_GEN_DAG , generate_subdag ,
8 STARPU_GEN_DAG_ARG , & gen_dag_args ,
9 0);

New parameters

Figure 3.1: Submitting a hierarchical task.

3.2.2 User interface
To indicate to StarPU that a task is hierarchical and to set its properties, new
parameters have been added to the function dedicated to task insertion. Figure 3.1
reuses the example of Figure 2.3 with the annotations required to turn the task
hierarchical.

The most important parameter, prefixed by STARPU_GEN_DAG, is the function
generate_subdag() in charge of the submission of the sub-graph. This function is
user-defined and describes a DAG using the STF model. Writing that function can
be more or less difficult. When trying to factorize parts of an existing graph into
a hierarchical task, then the code of the function can be taken directly from the
application. When writing a new application or extending the tasks of an existing
one, users have to either reuse an already defined graph generating function or write
it themselves. Users must make sure that the sub-graph generated will perform
equivalent computations to the task’s implementations, i.e. that the task output will
remain the same whether it is executed “normally” or processed as “hierarchical”.

The parameter prefixed by STARPU_TURN is a function (is_hierarchical() in
Figure 3.1) that will be called when the task becomes ready. This function returns a
boolean. If the return value is false, then the task is executed like any regular task. If
the return value is true, then the hierarchical task is processed and the worker calls
generate_subdag() instead of a codelet implementation.

The other two parameters are optional in the definition of a hierarchical task.
They are used to provide arguments to the previously mentioned functions. These
arguments are passed to generate_subdag() as a generic type pointer with STARPU_
GEN_DAG_ARG. In general, they consists in a structure storing a set of data handles as
well as static task parameters, which will be used to insert the sub-tasks. Similarly,
STARPU_TURN_ARG enables programmers to give an argument to the function passed
with STARPU_TURN.

Instead of positioning these parameters by hand in each task submission of an
application, the STARPU_GEN_DAG and STARPU_TURN functions can be factorized into
the task’s codelet. Figure 3.2 shows an example of codelet defining hierarchical tasks.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 49

3.2. Designing hierarchical tasks for StarPU

1 struct starpu_codelet hierarchical_cl = {
2 /* Task implementations */
3 . cpu_funcs = { cpu_impl1 , cpu_impl2 },
4 . cuda_funcs = { cuda_impl },
5 . opencl_funcs = { opencl_impl },
6 /* Hierarchical task parameters */
7 . turn_func = is_hierarchical ,
8 . gen_dag_func = generate_subdag ,
9 /* Data information */

10 . nbuffers = 3,
11 . modes = { STARPU_R , STARPU_W , STARPU_RW },
12 /* Debug information */
13 .name = " hierarchical "
14 };

Figure 3.2: Encapsulating some of the new parameters into the task codelet.

It is also worth noting that the parameters used when inserting a specific task
will override the functions defined in its codelet. This means that there is no loss
of generality in using codelets to define hierarchical tasks and that users still have
full control over its application. They can ensure that a task with a “hierarchical”
codelet is processed by submitting it with a STARPU_TURN function that always returns
false. They can also use the STARPU_GEN_DAG parameter to replace the sub-graph
generating function of a particular task with a different one without having to write a
new codelet.

3.2.3 Adapting the data layout around hierarchical tasks
Due to the way in which StarPU infers dependencies from data access modes using
sequential consistency, the role of data is of paramount importance in the creation of
our task graphs. With the addition of hierarchical tasks, we must also consider how
data coherence will be achieved between the main DAG and the sub-DAGs. In fact,
to be able to express parallelism within a hierarchical task, its input data must be
partitioned to a smaller granularity. The introduction of hierarchical tasks requires
dynamically adapting the granularity of the data around them.

Figure 3.3 illustrates this notion with a single hierarchical task H performing a
matrix multiplication. In order for H to be able to submit its sub-graph when it is
processed, each original matrix has to be partitioned into tiles in a 2× 2 layout. Then,
if a subsequent task needs to work on the entire matrices again, an unpartitioning
operation is required to protect data coherence by disabling the sub-handles and
re-enabling their parents. This serves to demonstrate that a proper implementation
of hierarchical tasks should be associated with a data manager. To avoid costly
barriers, we want to maintain the asynchronous approach that relies on partitioning
tasks1. Therefore, the data manager must be able to dynamically partition and

1In Figure 3.3b, the dependencies between the sub-graph and the partitioning tasks are simplified
to keep the figure legible. In reality, the partitioning tasks all are connected directly to the sub-tasks
that access a sub-handle.

50 G. Lucas

3. The Hierarchical Task Model

H

PA

PB

PC

UA

UB

UC

A

B

C

(a) Initial hierarchical task and data layout.

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

(b) Sub-graph and partitioned data layout.

Figure 3.3: Example of a hierarchical task corresponding to a matrix product operation
C = C + A×B and its corresponding DAG.

T1 H

T2

T3

(a) Initial DAG.

T1 H

T2

T3

P U

(b) Processing H results in an incorrect DAG.

Figure 3.4: Processing a hierarchical task by relying strictly on the STF model.

unpartition an application’s data at runtime. This deviates from the current data
manager of StarPU, which inserts partitioning tasks at submission time, as explained
in Section 2.4.

However, these partitioning tasks were previously inserted following the rules of
the STF model, where the creation of dependencies relies on the order of submission
(see Section 2.2). Since a hierarchical task H is processed during runtime, its sub-tasks,
and the partitioning tasks around them, will be inserted after the potential successors
of H. This scenario is shown in Figure 3.4, where H is submitted between regular
tasks Ti. When H is processed, T2 and T3 have already been submitted, and StarPU
will incorrectly consider that the newly inserted sub-tasks should be placed in front
of them, as shown in Figure 3.4b.

3.2.4 Correctly inserting tasks at runtime
To address the issue we just introduced, we remove some of the automatically inferred
data dependencies on both ends of a hierarchical task. Then, we add new dependencies

On the Use of Hierarchical Tasks for Heterogeneous Architectures 51

3.2. Designing hierarchical tasks for StarPU

in the correct place to ensure that the sub-tasks are properly positioned into the DAG.
The objective is to guarantee that hierarchical DAGs remain correct and consistent
with sequentially created graphs.

T1 H

T2

T3

(a) Initial situation.

T1

T2

T3

(b) Starting to process H.

T1 P

T2

T3

(c) Partition task inserted.

T1 P

T2

T3

(d) H has been completely processed.

T1 P U

T2

T3

(e) Unpartition task inserted.

Figure 3.5: Altering the STF model to process a hierarchical task without breaking
the DAG. Dotted arrows represent released dependencies, tasks with a black border
are already executed, green borders indicate ready tasks, and red borders indicate
not-ready tasks.

Partitioning before a hierarchical task

First, let us examine what should happen when a hierarchical task becomes ready and
starts inserting sub-tasks. In the scenario from Figure 3.4, the roots of the issue are
the partition tasks P that are placed in front of T2 and T3. As mentioned before, we
have to disable the data dependencies that the STF model inferred from the “coarse”
handles used by the tasks Ti.

Figure 3.5 shows the evolution of the example of Figure 3.4a once the classic STF
model has been altered for hierarchical tasks. When H becomes ready (Figure 3.5a)
and starts being processed, the data layout matches the level of T1 and must be fitted
for the sub-tasks of H. Since our model supports the coexistence of multiple partition
plan of the same data, we must wait for the beginning of the first sub-task’s submission
(Figure 3.5b). Only then can we know which partition plan must be activated. With
this information, the appropriate partition task is inserted. This is done during the
submission of the sub-task, which is only inserted after the partition task. Figure 3.5c
shows the subsequent state of the task graph, with P correctly inserted before any of
the sub-tasks. The hierarchical task then continues to submit the sub-graph, which
will wait for the partition task to update the data layout.

In this example, H only submitted on the sub-handles of a single data handle. For
more complex cases involving more data handles (e.g. our first matrix multiplication
example), the process described above is repeated to partition each parent handle into

52 G. Lucas

3. The Hierarchical Task Model

the appropriate sub-handles. A partition task for a data D is only inserted before the
submission of the first sub-task that accesses a descendant of D.

Processing the hierarchical task

Once the partition tasks are in place, we can start inserting the sub-tasks of H. As
shown in Figure 3.5d, because all the sub-tasks work on sub-handles and not on
the parent handles, the STF model will not connect them to the coarser tasks Ti.
Moreover, accessing these sub-handles means that they are the natural successors of
the partition tasks, which is the behavior we want. After all the sub-tasks have been
inserted, we must restore the larger data handles for the following tasks, such as T2
and T3, with unpartition tasks.

Unpartitioning after a hierarchical task

Similarly to the partition tasks, the rules of the STF model dictate that a task
unpartitioning a data D must depend on the already submitted tasks accessing D or
its children. We can address this issue by removing the dependencies inferred from
the parent handles, just like we did for the partitioning tasks. This only leaves the
dependencies inferred from the sub-handles, which will automatically connect the
unpartition task to the now fully submitted sub-graph.

Since they are the last tasks to be inserted, the unpartition tasks will have no
outgoing dependencies. This is an issue, as it means that T2 and T3 risk to be
considered ready, when they should wait for the execution of the sub-graph and the
unpartition tasks. A direct solution to this problem is to prevent the task H from
releasing its dependencies until the completion of the entire sub-graph, including the
unpartition tasks associated to it. This is represented in Figure 3.5e.

Just like in the partition case, our example only considers the unpartitioning of a
single handle. If more handles where partitioned when H was processed, additional
unpartition tasks would be inserted.

3.2.5 Fine grain dependencies
Preventing the release of the dependencies of a hierarchical task until its sub-graph is
executed makes for a simple way to ensure the correctness of the DAG. However, when
considering a hierarchical task graph at its coarsest level, having dependencies between
hierarchical tasks can appear particularly strict. By creating a barrier that waits for
the completion of the sub-graph before inserting the next one, these dependencies limit
the expression of parallelism in the application. In contrast, removing this barrier
improves the pipelining of the processing of two consecutive hierarchical tasks. For
example, the sub-tasks of the second hierarchical tasks can start as soon as their
dependencies in the first sub-graph are satisfied, instead of waiting for the execution
of the entire sub-graph to be completed.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 53

3.2. Designing hierarchical tasks for StarPU

T1

H1

H2

H3

H4

T2

(a) Initial situation.

T1

H1 H3

H4

T2

(b) Processing H2.

T1

H1 H3

T2

(c) Processing H4 results in an
incorrect DAG.

Figure 3.6: Releasing the dependencies of hierarchical tasks once they are processed
to connect sub-graphs at the finest level. Partitioning tasks have been simplified out.

To achieve this, we want to release the dependencies of a hierarchical task immedi-
ately after it has been processed. Figure 3.6 illustrates this mechanism. In Figure 3.6b,
the dependency of H2 is not held until the sub-graph is fully executed but released
immediately after it is submitted. Thus H4 can start its own submission process.
Because StarPU automatically infers dependencies from the data, H4’s sub-graph
will naturally plug itself on top of H2’s sub-graph without any additional effort on
the part of programmers. This ensures that task dependencies are always positioned
at the finest grain (i.e. the deepest level of the hierarchy).

While the expression of fine grain dependencies emerges naturally from this
approach, it creates a glaring problem. As shown in Figure 3.6c, releasing H4’s
dependency turns T2 into a ready task too soon. This can be disastrous, as it breaks
the graph of the application and can easily lead to incorrect results.

Another issue with our approach is that releasing the outgoing dependencies of a
hierarchical task once it has been processed is not enough. Due to the unpartition
tasks that we insert after a sub-graph, the following sub-graph must first re-partition
its data. This will also result in pointless dependencies between the unpartition and
the partition tasks.

The solution to both of these issues is to avoid systematically inserting unpartition
tasks after the sub-graph of a hierarchical task. Instead, we can delay the submission
of these unpartition tasks until we can determine that it is necessary, i.e. until a task
using the parent data is about to start. This requires inserting the unpartitioning task
between the last sub-graph submitted and the tasks accessing the parent handle. Once
again, such a task cannot be correctly placed by strictly following the STF model.
However, we can implement a mechanism that replaces the dependencies released
prematurely by the processing of a hierarchical task.

Figure 3.7 revisits the last step of Figure 3.5 to illustrate this mechanism. With the
changes we just made, when H inserts its sub-graph and terminates, its successors are
now considered ready (see Figure 3.7a). However, before starting the execution of these
tasks, their handles are checked and an unpartition task U is inserted. Dependencies

54 G. Lucas

3. The Hierarchical Task Model

T1 P

T2

T3

(a) Initial problem.

T1 P U

T2

T3

(b) Fixed by the insertion of U .

Figure 3.7: Using unpartition tasks to enforce the correction of the graph.

from the last sub-tasks to be submitted for each sub-handle are gathered by U and
more dependencies are created between U and H’s successors. The execution of these
successors is then postponed and they are returned to a non-ready state.

As shown in Figure 3.7b, if H carried multiple dependencies, the unpartition task
U will only be submitted once and all the successors of H will depend on it.

3.2.6 Parallel submission
Now that our model is capable of inserting sub-graphs correctly while enforcing data
consistency, we can examine its potential features. An important notion that stems
from the nature of hierarchical tasks is the coexistence of multiple submission threads.
Because hierarchical tasks are treated as regular tasks until their execution is about to
start, StarPU’s scheduler assigns them to a worker when they are ready. If it turns
out that a hierarchical task is to be processed, the sub-graph generating function
will be called by the worker in charge of the task. Therefore, processing independent
hierarchical tasks at the same time in different workers parallelize the submission
process.

T1

H1

H2

H3

H4

T2

(a) Initial DAG.

T1

H3

H4

T2

(b) H1 & H2 can be processed
in parallel.

T1

H3

H4

T2

(c) Non independent sub-graphs
result in an incorrect DAG.

Figure 3.8: Example of hierarchical tasks submitting sub-graphs in parallel.

Figure 3.8 presents a simple case where two hierarchical tasks (H1 and H2) could
be processed in parallel. For this approach to be correct, programmers must ensure
that the coarse dependencies (T1 → H1 and T1 → H2) are representative of the
dependencies of the sub-graphs within the larger graph. In other words, the sub-tasks
must respect the incoming and outgoing dependencies of their parent hierarchical task.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 55

3.2. Designing hierarchical tasks for StarPU

Otherwise, our hypothesis that independent hierarchical tasks submit independent
sub-graphs would be false, and parallel submission would produce race conditions and
potentially incorrect graphs. An example of this kind of errors is shown in Figure 3.8c.
In the sub-graph inserted by H2, a sub-task uses a data handle that is not a child of
the handles on which H2 was submitted. In Figure 3.8c, it results in new dangerous
dependencies. Depending on when the hierarchical tasks are processed, the direction
of the dark red dependencies will change. In turn, this makes the numerical result of
this DAG unpredictable.

To be able to solve this problem, we placed a natural restriction around the use of
hierarchical tasks, more specifically regarding their relation to data handles. The rule
in question is that hierarchical tasks should only submit tasks working on sub-handles
of their own handles.

This rule removes the risk of a sub-task using a handle tied to a different data
than the handles used in the parent hierarchical tasks. It makes the dependencies of
the hierarchical tasks sufficient to fully describe the location of the sub-graph in the
rest of the DAG. As a result, two independent hierarchical tasks will always produce
two independent sub-graphs that can be safely appended to the graph in parallel.

An added benefit of this rule is that it consolidates our model in the context of
nested hierarchical tasks and partition trees with multiple levels. Under this rule,
the data hierarchy is tied to the task hierarchy: each level of the task hierarchy will
operate on its own level of data handles. The subsets of handles that each level of
tasks will access are exclusive to this specific level. This gives us two guarantees that
contribute to the correct insertion of sub-tasks (as described in Section 3.2.4):

1. Level n tasks inserted by a level n− 1 hierarchical task will never depend on
the tasks of levels < n that are already present in the graph.

2. Level n tasks are naturally placed in front of the other level n tasks from
previously inserted sub-graphs, according to the STF model.

1 [...] /* Registration of handleA */
2 starpu_data_handle_t handleA_bis ;
3
4 /* Example of filter creating a single child */
5 struct starpu_data_filter f = {
6 . filter_func = starpu_vector_filter_block ,
7 . nchildren = 1
8 };
9

10 starpu_data_partition_plan (handleA , &f, & handleA_bis);

Figure 3.9: Example of an “identity” partition plan.

While this restriction may seem to lessen the generality of the approach by forcing
the programmer to partition their data in order to use hierarchical tasks, this is
not the case. In fact, it is possible to partition a handle “into itself”. Programmers

56 G. Lucas

3. The Hierarchical Task Model

can create a new partitioning level for a data with a single sub-handle pointing to
the entire data buffer. Figure 3.9 showcases how to create such a partition. In this
example, handleA_bis, created with a nchildren=1 filter, points to the exact same
data buffer as handleA. However, it is only accessible after a partitioning task, and
an unpartitioning task is required to access handleA after that point. Using this
mechanism, the programmer can create sub-tasks that work on the same data as their
parent while still benefiting from the model’s security.

3.2.7 Data management for the programmer
Now that we have completed our presentation of how the model expects to be
interacted with, we can look at the situation from the programmer’s perspective.
Creating a graph using hierarchical tasks requires dynamic adaptation of the data
layout depending on which hierarchical tasks are being processed and when. For
the programmer, manually managing these issues would add a whole new level of
complexity to the inconveniences presented in Section 2.4.1. In particular, it would
conflict with our goal of making the user’s job as simple as possible. A more reasonable
approach is to extend the automatic data manager presented in Section 2.4.2 and
make data management completely transparent to the user.

Specifically, we want to leave the data registration step (including partition
planning) strictly unchanged, whether the programmer uses hierarchical tasks or not.
They can provide new filters and partition plans to use with hierarchical tasks, but
they can do that using the interface already in place in StarPU.

The only constraint placed on the user is to ensure that each level of hierarchical
task only submits tasks that work on data handles of the correct level. Reciprocally,
data handles of a certain level should only be accessed by tasks of the correct level.
The initial graph should be submitted at the coarsest data level, with hierarchical
tasks submitting sub-graphs on the next data level, and so on. The partition trees
can be completely traversed by nesting hierarchical tasks.

3.2.8 Case of read-only access mode
In the previous examples, we mostly presented cases where data was accessed in write
or read-write mode. The read-only access mode, which is especially important for
parallelism in the application, requires special partitioning and unpartitioning tasks
(as mentioned in Section 2.4). Otherwise, the regular partitioning tasks would create
harsh synchronizations that limit the parallelism possibilities of read accesses.

These read-only partitioning and unpartitioning tasks can, for the most part,
follow the same principles as those described above. Still, the fact that read-only
partitions enable concurrent access to a data handle and all of its possible sub-handles
can create convoluted problems. These problems and their solutions will be discussed
in detail in the next chapter, which deals with the implementation of this model.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 57

3.3. Conclusion

3.3 Conclusion
A hierarchical task is a task that can submit a sub-DAG at runtime instead of
performing actual computations. The introduction of such tasks in StarPU aims to
address certain limitations of task-based runtime systems. A first goal is to improve
upon the submission process of the STF model. By processing independent hierarchical
tasks, we parallelize the submission process. This addresses a potential bottleneck in
embarrassingly parallel applications, where the execution front would catch up with
the sequential submission front. By encapsulating part of a task graph in hierarchical
task, we also delay task submission. This limits the amount of non-ready tasks in the
system, reducing runtime overhead. It is also useful in applications where parts of the
task graph cannot be known in advance. Another goal behind the implementation
of hierarchical tasks is to increase the expressivity of our task graphs. For example,
making a large grain task into a hierarchical task would enable it to turn into a
sub-DAG of tasks with smaller grain at runtime. This would help us target the
appropriate CPU or GPU resources based on their availability during the execution.

Our model aims to be as natural and transparent as possible for the programmer.
To this end, making a task hierarchical consists of providing a pair of hints: a function
describing a potential sub-graph and a function used at runtime to decide if the task
should be processed or not. This can be done individually for certain tasks in the
application, or generalized to an entire set of tasks through the codelet structure.

In order to express a sub-graph out of a task, it appears necessary to partition its
data. In StarPU, data partitioning is completely transparent to the programmer.
They can submit partition plans describing the different data layouts they will use
in their application to create new handles associated to the different layouts. They
can then use these handles freely in the submission of their tasks and StarPU
will automatically insert partitioning tasks to protect data consistency. This user
interface is maintained in the hierarchical task model with the added constraint to
always use the sub-handles of a task’s data in its potential sub-graph. The model
can therefore support fine-grain dependencies: there are no barriers between two
consecutive hierarchical tasks. When a hierarchical task finishes its sub-graph insertion,
its outgoing dependencies are immediately released. The partition and unpartition
tasks inserted at runtime for data consistency also ensure that the hierarchical graph
remains consistent with a STF graph.

To be able to correctly position the partitioning tasks at runtime and enforce the
correction of a DAG using hierarchical tasks, we must extend the data manager. We
deal with this in the next chapter, covering the implementation of the hierarchical
task model in StarPU.

58 G. Lucas

Chapter 4
Hierarchical Tasks Implementation

Contents
4.1 Foundations of the implementation 60

4.1.1 Updating the data structures 60
4.1.2 Processing hierarchical tasks 61
4.1.3 Processing hierarchical tasks as soon as possible 62

4.2 Extending the data manager 62
4.2.1 Controlling data dependencies 64
4.2.2 Partition task insertion . 65
4.2.3 Unpartition task insertion 66
4.2.4 The read-only access mode 69

4.3 Conclusion . 71

59

4.1. Foundations of the implementation

I
n the previous chapter, we explained that the introduction of hierarchi-
cal tasks in StarPU requires changes in the way its current model works.
Most notably, we have to update the behavior of tasks to make them capable

of inserting sub-graphs as described in Section 3.2.2. Just as importantly, the support
of hierarchical tasks involves extending the data manager to enable dynamic data
partitioning at runtime.

This chapter is meant to present the modifications that were made in StarPU to
implement hierarchical tasks. A first implementation effort focuses on the groundwork
and processes hierarchical tasks at submission time. While this approach is entirely
static, it completely implements the hierarchical task interface and can be seen as a
powerful way to express recursive algorithms with the STF model. To improve upon
the STF model and deliver on the promised dynamism, we then have to update the
data manager to match the behavior described in Sections 3.2.4 and 3.2.5.

4.1 Foundations of the implementation
In this section, we explain the basics involved in the implementation of the interface
we detailed in Section 3.2.2. This requires modifications that concern data structures,
the submission process, and, most prominently, the execution process of StarPU’s
tasks. To simplify this initial presentation, we elude issues of graph correctness and
data consistency by processing hierarchical tasks as soon as they are submitted.

4.1.1 Updating the data structures
The majority of the updates needed in the data structures of StarPU’s codelets and
tasks are fairly straightforward. The codelet simply presents two new members where
users can define the functions characterizing a hierarchical task (see Figure 3.2). For
the task structure, new members store the aforementioned functions (STARPU_TURN
and STARPU_GEN_DAG) and their arguments. Information on the status of a task are
also added, like whether or not it is hierarchical (hierarchical flag), and whether or
not it will be processed (to_process flag). On top of that, some additional elements
can be stored in the task structure for debugging purposes. This includes, for example,
information linking a sub-task to its hierarchical parent.

When a hierarchical task is submitted, the TURN and GEN_DAG functions and their
arguments are stored in the task structure. The task is then flagged as hierarchical.
For now, we can consider that the rest of the submission process is identical to that
of a regular task. Differences between the two types of tasks are concentrated around
the point where the execution of a kernel is replaced by the insertion of a sub-graph.

60 G. Lucas

4. Hierarchical Tasks Implementation

Algorithm 4 A task’s lifetime
1: task is submitted
2: When task is ready
3: Push task to scheduler
4: Assign task to worker
5: Execute task codelet
6: Release task outgoing dependencies

4.1.2 Processing hierarchical tasks
This point is reached when a task becomes ready, i.e. when all of its incoming
dependencies are fulfilled. When this happens, the task is inspected to check if
it is a hierarchical task that should be processed. Algorithm 4 is a pseudo-code
representation of the existence of a task in StarPU. The moment when we want to
process a hierarchical task is after line 2.

1 void process_hierarchical_task (struct starpu_task *task)
2 {
3 struct starpu_codelet * codelet = task ->cl;
4
5 /* Check if a hierarchical task should be processed */
6 if (task -> hierarchical)
7 if (task -> turn_func)
8 task -> to_process = task -> turn_func (task -> turn_arg);
9 else

10 task -> to_process = codelet -> turn_func (task -> turn_arg);
11
12 /* Process the hierarchical task */
13 if (task -> to_process)
14 if (task -> gen_dag_func)
15 task -> gen_dag_func (task -> gen_dag_arg);
16 else
17 codelet -> gen_dag_func (task -> gen_dag_arg);
18 }

Figure 4.1: Processing a hierarchical task (or not).

The function presented in Figure 4.1 is a streamlined version of that step. First,
if the task is flagged as hierarchical, turn_func is called (lines 6 to 10). The return
value is stored as another flag in the task and used to decide whether or not the
hierarchical task should be processed (lines 13 to 17), as specified in the model.

The processing step itself is particularly straightforward, as it simply consists of
calling gen_dag_func() with its argument. This user-defined function describes a
sub-graph using the standard STF model, and can therefore be called directly by a
worker to insert new tasks in the DAG.

If the task is not hierarchical, or if turn_task returned false, then its execution
continues unchanged and one of its codelet implementation is launched. On the
contrary, when a hierarchical task is processed, the execution of the task is interrupted

On the Use of Hierarchical Tasks for Heterogeneous Architectures 61

4.2. Extending the data manager

soon after, as the sub-graph is meant to replace the task that inserted it.

4.1.3 Processing hierarchical tasks as soon as possible
In Section 3.2.3, we explained how the use of hierarchical tasks often mandates
adjustments in the data layout by partitioning the handles to exhibit new parallelism
in the sub-graphs. In turn, this forces the use of unpartitioning operations to restore
the larger handles. The next sections detailed the various modifications to implement
in StarPU’s data manager to achieve our goals regarding dynamic task graphs and
parallel submission. However, a first implementation can focus on sub-graph insertion
and rely strictly on the existing data manager. To this end, we let the submission
thread process hierarchical tasks as soon as they are inserted.

This is achieved by calling the process_hierarchical_task() function of Fig-
ure 4.1 as soon as possible, before inserting another task. In Algorithm 4, this means
calling the function during the very first step (line 1). Figure 4.3 is an example of
the resulting submission process for the code given in Figure 4.2. Since we restore
the sequential order of task submission, the existing data manager can insert the
partitioning tasks correctly at submission time, without any modifications.

As mentioned above, this approach is entirely static and will not be enough to
achieve some of our goals. It can instead be seen as a way of enabling recursive task
submission. This gives us a first functioning implementation of the hierarchical task
model with several of its features. Most notably it can be used to create DAGs mixing
the granularity of their tasks, as shown in Figure 4.3. It also fully implements the
interface we described in Section 3.2.2. . This will later allow us to compare the fully
implemented model to an equivalent graph relying on the STF model.

4.2 Extending the data manager
To overcome these limitations and finally implement the entire hierarchical task model,
the data manager must be extended. Under the hierarchical task model, the whole
task graph cannot be known until all hierarchical tasks have been processed. A
consequence of this is that the layout of an application’s data can vary at any given
time of the execution, depending on how hierarchical tasks are processed. Therefore,
the fundamental difference with the data manager presented in Section 2.4.2 is that
the insertion of partitioning tasks must be handled at execution time rather than
submission time.

In this section, we go over the changes implemented in the data manager. First,
we focus on tasks modifying the data pieces they access (read-write or write mode).
With these access modes, a piece of data can only be accessed by one task at a time.
This ensures that we can cycle through the partitioning states of data handles safely.
The main challenge in these first sections is to correctly position our partitioning tasks.

62 G. Lucas

4. Hierarchical Tasks Implementation

1 # define NPARTS 2
2
3 int is_hierarchical (void *arg)
4 return 1;
5
6 void generate_subdag (void *arg) {
7 starpu_data_handle_t *subA = (starpu_data_handle_t *) arg;
8 for (i = 0; i< NPARTS ; i++)
9 starpu_task_insert (& read_cl , STARPU_R , subA[i], 0);

10 }
11
12 struct starpu_codelet task_cl = {
13 . cpu_funcs = { cpu_impl1 }
14 };
15
16 struct starpu_codelet hierarchical_cl = {
17 . cpu_funcs = { cpu_impl2 },
18 . turn_func = is_hierarchical ,
19 . gen_dag_func = generate_subdag
20 };
21
22 int main () {
23 [...] /* Registration of handleA */
24
25 /* Partitioning in NPARTS slices */
26 struct starpu_data_filter f = {
27 . filter_func = starpu_vector_filter_block ,
28 . nchildren = NPARTS
29 };
30 starpu_data_handle_t subhandlesA [NPARTS];
31 starpu_data_partition_plan (handleA , &f, subhandlesA);
32
33 starpu_task_insert (& task_cl , STARPU_RW , handleA , 0); // T1
34
35 starpu_task_insert (& hierarchical_cl , STARPU_R , handleA , // H1
36 STARPU_GEN_DAG_ARG , subhandlesA , 0);
37
38 starpu_task_insert (& hierarchical_cl , STARPU_R , handleA , // H2
39 STARPU_GEN_DAG_ARG , subhandlesA , 0);
40
41 starpu_task_insert (& task_cl , STARPU_RW , handleA , 0); // T2
42
43 [...] /* Handle unregistration */
44 }

Figure 4.2: Example of code using hierarchical tasks.

T1

H1

(a) Inserting and instantly
processing H1.

T1 P

H2

(b) Inserting and instantly
processing H2.

T1 P U T2

(c) Finishing the submission.

Figure 4.3: Submission of the task graph of Figure 4.2. Hierarchical tasks are processed
in the submission thread.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 63

4.2. Extending the data manager

We achieve this by removing some of StarPU’s automatically inferred dependencies,
and by explicitly declaring new ones. We can then tackle the case of read-only
accesses. It requires dedicated partitioning tasks and safeguards to account for the
additional parallelism it enables. Under the read-only access mode, multiple threads
are susceptible to simultaneously submit partitioning operations on the same data.
Thus, we have to ensure that the data manager is not subject to race conditions.

4.2.1 Controlling data dependencies
By default, the STF model will insert the new tasks it receives as successors of the tasks
already present to respect the sequential consistency, as explained in Section 3.2.3. It is
however possible to specify the behavior of a task regarding the sequential consistency
of each of its handles.

1 call submit (T1 , A:RW)
2 call submit (T1 , B:RW)
3 call submit (T1 , C:RW)
4
5 call submit (T, A:RW , B:RW , C:RW ,
6 A:1, B:0, C:1)
7 ...

7 ...
8 call submit (T2 , A:RW)
9 call submit (T2 , B:RW)

10 call submit (T2 , C:RW)

T1(A)

T1(B)

T1(C)

T

(A, B, C)

(a) Effect on incoming dependencies.

T1(A)

T1(B)

T1(C)

T

(A, B, C)

T2(A)

T2(B)

T2(C)

(b) Effect on outgoing dependencies.

Figure 4.4: Manually defining sequential consistency for a task’s data.

An example is given in Figure 4.4. In every task, each data is accessed in
read-write mode. However, when T (A, B, C) is submitted, we specify that the
sequential consistency is ignored for the data B. Thus, T (A, B, C) is inserted without
being dependent from T1(B) (see Figure 4.4a). Moreover, the tasks submitted after
T (A, B, C) will only depend on it if they access A or C. As shown in Figure 4.4b,
there is no outgoing dependency toward T2(B).

This mechanism can be used to remove undesirable dependencies from partitioning
tasks. A task partitioning or unpartitioning a data handle A will be submitted with
write access to the parent handle A and each of its sub-handles. By disabling the
sequential consistency on the parent handle only, a partition task will not depend on
any of the tasks accessing the parent handle, but it will have outgoing dependencies

64 G. Lucas

4. Hierarchical Tasks Implementation

toward any subsequent task accessing the sub-handles. With the same approach, an
unpartition task will only depend on the tasks accessing the sub-handles.

4.2.2 Partition task insertion
When considering the insertion of partition tasks, we can heavily rely on the existing
data manager. The rules of the model guarantee that a task accessing a sub-handle is
submitted by a hierarchical task. When a hierarchical task is processed, the submission
of its sub-tasks is identical to the submission of any other tasks. In particular, the
AutoSubmit algorithm presented in Section 2.4.2 is used to check the state of the
handles accessed. If it finds that the data is not in the proper state, it submits a
partition task. Thus, before the first sub-task is submitted, AutoSubmit is called
on each of the sub-handles it accesses, and inserts the appropriate partition tasks to
activate them.

The only adjustment required was presented in the previous section. The incoming
dependencies of a partition tasks are removed by ignoring the sequential consistency
of the main handle. This ensures that it is immediately ready. This can be done safely,
because a hierarchical task is only processed when all its dependencies are satisfied.
Once the partition task is inserted, the states of the parent and children handles are
updated to reflect the modification of the data layout.

H T1

(a) Initial situation.

P T1 T2

(b) H is processed, but the
main submission thread also
adds a new coarse task T2.

P T1 T2U

(c) AutoSubmit (called for T2)
incorrectly inserts an unpartition
task U .

Figure 4.5: Incorrect behavior of AutoSubmit when multiple submission threads
coexist.

The AutoSubmit algorithm was conceived to be used within a unique submission
thread. In that context, the algorithm updates the partitioning states of every handle
sequentially. When a handle is partitioned, all the tasks using the sub-handles are
necessarily submitted before the insertion of an unpartition task. This property is not
true when data is partitioned for hierarchical tasks at execution time.

If we leave the algorithm as it is, it risks to incorrectly insert unpartitioning tasks.
This is illustrated in Figure 4.5. As expected, a partition task is inserted before the
sub-graph of H (Figure 4.5b), but the handle state is updated after the insertion of
P , indicating that it is now RW-partitioned. Figure 4.5c shows what happens if the
main submission thread submits a new task T2 at this point. Since the handle is now
considered RW-partitioned, the call to AutoSubmit made during the insertion of T2
will indicate that an unpartition task must be added. This can lead into a cascade of

On the Use of Hierarchical Tasks for Heterogeneous Architectures 65

4.2. Extending the data manager

errors, as the handle states will be updated again. Since H is still being processed,
the next sub-task will believe that the sub-handles have been unpartitioned and insert
a redundant partition task.

Algorithm 5 Updated version of Algorithm 1
1: function AutoSubmit(ancestor, target, write, isRuntime)
2: if ancestor is Inactive or

(write and parent is RO active) then
3: AutoSubmit(ancestor parent, ancestor, write, isRuntime)
4: if isRuntime then
5: CheckUnpartition(ancestor, target, write)
6: if target is NULL or isRuntime then
7: return
8: CheckPartition(ancestor, target, write)

To address this issue, we must prevent AutoSubmit from inserting unpartitioning
tasks at submission time. A revised version is presented in Algorithm 5. We add a
boolean argument isRuntime, which indicate whether AutoSubmit was called by
a thread submitting tasks or not. If isRuntime is false, we only check if ancestor
must be partitioned. Otherwise, if isRuntime is true, we check if ancestor must be
unpartitioned and return from AutoSubmit.

4.2.3 Unpartition task insertion
After the modifications presented in Algorithm 5, the insertion of unpartition tasks
has to be done at execution time. It also has to exhibit the behavior detailed in
Section 3.2.5, which we summarize next. When a hierarchical task is fully processed,
it releases its outgoing dependencies. This enables a potential hierarchical successor
to be processed without creating a barrier between the sub-graphs. If the successor is
not a hierarchical task (or if the hierarchical task is not processed), the data handle
involved will have to be unpartitioned and the dependency replaced. By properly
inserting our unpartitioning tasks, we aim to kill two birds with one stone.

Inserting unpartitioning tasks correctly is more complex than inserting partitioning
tasks. Here are the points that we address in this section:

1. When should a task check if its handles must be unpartitioned?
2. How was the handle structure extended to enable this operation?
3. How can the execution of a ready task be postponed in case an unpartition is

needed first?
4. How are the dependencies of the unpartition task positioned?
First, when a task is ready, we must determine the appropriate moment to check if

66 G. Lucas

4. Hierarchical Tasks Implementation

1 void process_hierarchical_task (struct starpu_task *task)
2 {
3 struct starpu_codelet * codelet = task ->cl;
4
5 /* Check if a hierarchical task should be processed */
6 if (task -> hierarchical)
7 if (task -> turn_func)
8 task -> to_process = task -> turn_func (task -> turn_arg);
9 else

10 task -> to_process = codelet -> turn_func (task -> turn_arg);
11
12 /* Check if the data must be unpartitioned */
13 if (! task -> hierarchical || !task -> to_process)
14 unpartition_if_needed (task);
15
16 /* Process the hierarchical task */
17 if (task -> to_process)
18 if (task -> gen_dag_func)
19 task -> gen_dag_func (task -> gen_dag_arg);
20 else
21 codelet -> gen_dag_func (task -> gen_dag_arg);
22 }

Update

Figure 4.6: Updating process_hierarchical_task() to check if unpartitioning
operations are needed at execution time.

an unpartitioning task is needed. If we insert such a task between two hierarchical tasks
of the same level, the data will have to be partitioned again if the second hierarchical
task is processed. This would recreate the bottleneck between the first and the second
sub-graphs that we want to avoid. Therefore, the decision to unpartition a data should
be made once we know whether the task will be processed or not. To this end, we
update the process_hierarchical_task() function, as shown in Figure 4.6. Every
task T that does not insert a sub-graph will call unpartition_if_needed(). This
function checks each handle of task and, as its name indicates, unpartition them if
necessary.

In order to be able to manage the insertion of unpartition tasks at runtime, we
extended the data handle structure. A first additional member, ctrl_unpartition
stores a pointer to a control task. A control task is a task without a codelet: when it
becomes ready, its outgoing dependencies are immediately released without having to
be run by a worker. The control task of a handle H is used to manage the dependency
between the task unpartitioning H and the task accessing H. A second new member
is a flag indicating if an unpartition task exists for the parent of the handle, but has
not been executed yet. It provides information completing the partitioning state of
the handle.

Figure 4.7 shows an example of insertion of unpartitioning tasks. In Figure 4.7a, two
hierarchical tasks H1 and H2 were processed and released their successor T . This task
calls process_hierarchical_task() and, since it is not hierarchical, unpartition_
if_needed(). The function checks every handle of T one by one. First, it creates a

On the Use of Hierarchical Tasks for Heterogeneous Architectures 67

4.2. Extending the data manager

H1(A):

H2(C):

T

(A, B, C)

(a) Processing H1 and H2 makes T ready.
Before launching its codelet, it makes sure
that its data handles can be accessed.

cA

T

(A, B, C)

(b) T calls unpartition_if_needed().
First, it creates a control task for A and
call AutoSubmit.

UA cA

cB

cC

T

(A, B, C)

(c) An unpartition task is inserted for A.
AutoSubmit finds that B is not parti-
tioned. T starts verifying the state of C.

UA

UC

cA

cB

cC

T

(A, B, C)

(d) AutoSubmit inserts an unpartition
task for C. Submission of the control
tasks.

Figure 4.7: Insertion of unpartitioning tasks.

control task cA for the handle A and declares a cA → T dependency without submitting
cA. This indicates to StarPU that T is no longer ready. Furthermore, it gives us
control over the “readiness” of T , since the dependency cannot be released until we
submit cA. The handle A stores cA in ctrl_unpartition. Then, AutoSubmit is
called for A with the argument isRuntime = True to decide if an unpartition task is
required or not. In Figure 4.7c, the state of A indicates that it is partitioned, and an
unpartition task is inserted. The same process is repeated for the handles B and C.
In the case of the handle B, AutoSubmit finds that it is not necessary to insert an
unpartition task.

If an unpartition task is inserted, we tweak its dependencies, just like we did
for the insertion of partitioning tasks. The incoming dependencies come from the
sub-tasks, the only ones accessing the sub-handles. No dependencies (incoming or
outgoing) are inferred from the parent handle, instead, the necessary dependencies
are declared explicitly. This concerns the outgoing dependency, which connects the
unpartition task to the task that called AutoSubmit. It is achieved by manually
setting a dependency between the unpartition task and the control task found in
the parent handle via ctrl_unpartition. Once every handle of the task has been
checked, the control tasks are submitted (Figure 4.7d). In the case of A and C, an
unpartition was inserted, so their control task is not ready. On the contrary, since B

68 G. Lucas

4. Hierarchical Tasks Implementation

was not unpartitioned, cB is considered ready when it is submitted, and the associated
dependency is immediately released.

Algorithm 6 Insertion of an unpartition task at execution time
1: function UnpartitionIfNeeded(task)
2: if task was already checked then
3: return
4: Mark task as checked
5: controlTasks← ∅
6: for H in task handles do
7: if H has partition plans then
8: write← H access mode in task
9: ctrl ← New control task

10: Add ctrl to controlTasks
11: Save ctrl in H as ctrl_unpartition
12: Create dependency (ctrl→ task)
13: AutoSubmit(H, NULL, write, True)
14: for ctrl in controlTasks do
15: Submit ctrl
16: return

The details of the algorithm implemented by unpartition_if_needed() are given
in Algorithm 6. Lines 2 to 4 ensure that a task only goes through the algorithm once.
Furthermore, since handles without a partition plan cannot be partitioned, they never
have to be unpartitioned and can be ignored (line 7).

A callback function is also added to the unpartitioning tasks to reset the new
members of the data handle structure. This callback is used after the completion of
an unpartitioning task, but before its outgoing dependencies are released.

4.2.4 The read-only access mode
Within the STF model, the access modes declared by a task on each of its data are
particularly important for the parallelism expressed in the task graph. In particular,
the distinction between reading information from a data piece and writing information
in it is crucial. In Section 2.4, this justified the implementation of partitioning tasks
dedicated to the read-only access mode. A read-only partition task can modify the
layout of a data handle without disabling it. As long as they only declare to read from
a data piece, tasks can do it using the parent handle, or any of the children. Similarly,
read-only unpartition tasks can re-enable the parent handle without disabling the
children.

In the context of hierarchical tasks, where task submissions can occur in multiple
threads simultaneously, this can lead to concurrency issues. Two sub-tasks reading

On the Use of Hierarchical Tasks for Heterogeneous Architectures 69

4.2. Extending the data manager

the same sub-handles can be inserted in parallel and attempt to partition the same
data at the same time. Likewise, two regular tasks reading the same handle can turn
ready at the same time and try to create the same unpartition task twice. This was
not an issue for the previous data manager, as it could rely on the sequential nature
of the submission thread.

To protect our data manager from race conditions, we rely on mutual exclusion.
The critical sections to protect are the updates in the handle structure that are related
to partitioning operations. This includes the partitioning state of a handle and the
new members we created to help with the insertion of unpartitioning tasks. Every
sub-handle of a partition tree, regardless of its level, shares the same lock as the root
handle. This prevents inconsistent modifications in different branches of the partition
tree.

The addition of locks removes the risk of simultaneously inserting the same read-
only partition task in two different submission threads. The first thread to take the
lock will insert the partition task and update the state of the handle. When the lock
is released, the second thread will find the handle in a partitioned state and will know
that it does not have to insert a partition task. For the same reason, it partially solves
the issues with the insertion of unpartitioning tasks.

Algorithm 7 Updated version of Algorithm 6
1: function UnpartitionIfNeeded(task)
2: if task was already checked then
3: return
4: Mark task as checked
5: controlTasks← ∅
6: for H in task handles do
7: if H has partition plans then
8: if H has ctrl_unpartition then
9: Create dependency (ctrl_unpartition → task)

10: else
11: write← H access mode in task
12: ctrl ← New control task
13: Add ctrl to ctrlTasks
14: Save ctrl in H as ctrl_unpartition
15: Create dependency (ctrl→ task)
16: AutoSubmit(H, NULL, write, 1)
17: for ctrl in controlTasks do
18: Submit ctrl
19: return

Indeed, there is no longer a risk to insert the same read-only unpartition task
multiple times. However, since our data manager has to position the outgoing

70 G. Lucas

4. Hierarchical Tasks Implementation

dependencies of an unpartition task explicitly, Algorithm 6 has to be updated to
create more dependencies between a read-only unpartition task and its eventual
successors. We present this update in green in Algorithm 7 (lines 9-10). We use the
ctrl_unpartition task stored in the data handle as a meeting point to create the
correct dependency.

H(A):

T1(A)

T2(A)

(a) T1 and T2 read from A.
Both task starts verifying
the state of A in their re-
spective threads.

UA cA

T1(A)

T2(A)

(b) T1 create a control task for
A and call AutoSubmit. An
unpartition task is inserted.

UA cA

T1(A)

T2(A)

(c) T2 sees that A already has
a control task and create a
dependency.

Figure 4.8: Insertion of a read-only unpartition task.

Figure 4.8 illustrates how the new algorithm covers the insertion of read-only
unpartition tasks. Just like in the partitioning case, the first thread to take the lock
is charged with creating the control task and inserting the unpartition task (T1 in
Figure 4.8b). The second task T2 can only check its handle A when T1’s thread releases
the lock. Since T1 already inserted the unpartition task, T2 finds that a control task
already exists in A and directly connects itself to it.

4.3 Conclusion
Implementing hierarchical tasks in a runtime system such as StarPU requires creating
new mechanisms and adapting existing ones. The processing of a hierarchical task
can be handled at different points of its life cycle. A simplified version processes
hierarchical tasks as they are submitted. This limits their potential, but by keeping
the submission of the whole graph sequential, we can rely on existing features of
StarPU, in particular its data manager. However, to fully implement the hierarchical
task model, the insertion of sub-graphs must be delayed until hierarchical tasks are
considered ready.

As explained in Chapter 3, the main challenge in implementing this model on
top of the STF is data management. We extended the existing data manager in
order to correctly adjust the data layout around hierarchical tasks according to the
model we constructed. It requires a finer control of the dependencies of partitioning
tasks, in order to correctly position them around hierarchical tasks within the DAG.
This involves disabling some of StarPU’s automatically inferred dependencies and,
if necessary, replacing them. Partitioning operations are fairly straightforward: by

On the Use of Hierarchical Tasks for Heterogeneous Architectures 71

4.3. Conclusion

construction, they are ready to be executed as soon as they are needed, when a
hierarchical task starts submitting sub-tasks. Unpartitioning operations are more
tricky, as they must be placed at execution time, between the last sub-tasks and their
successor. Inserting such a task is fairly unnatural in the STF model. To this end,
we extended the handle structure to store a control task. The purpose of this task
is to enable the declaration of a dependency from an unpartition task to an already
existing task.

As long as the handles are accessed in write or read-write mode, they are only
used by one task (hierarchical or not) at a time, and their partitioning states are still
updated sequentially. However, with the read-only access mode, multiple tasks might
attempt to look at the same handle in parallel. We used mutual exclusion to protect
our data manager from race conditions. The updates in the partitioning tree of each
data piece are protected by a lock to ensure that partitioning tasks are only inserted
once. When multiple tasks must unpartition the same handle before reading from it,
we can rely on the control task stored in the handle to connect all of them to a single
unpartition task.

Now that our model has been completely implemented, we must evaluate how it
performs. The next chapter showcases the potential performance benefits of the use
of hierarchical tasks for dense linear algebra.

72 G. Lucas

Chapter 5
Experimental Evaluation

Contents
5.1 Application of Hierarchical Tasks for Dense Linear Algebra 74

5.1.1 Recursive descriptors . 74
5.1.2 Updating the kernels . 76

5.2 Experimental results . 76
5.2.1 Experimental settings . 76
5.2.2 Hierarchical tasks overhead 78
5.2.3 Matrix-matrix multiplication 79
5.2.4 Cholesky factorization . 82
5.2.5 LU factorization . 85
5.2.6 Impact of the dynamic data manager 85
5.2.7 Comparison with other frameworks 87

73

5.1. Application of Hierarchical Tasks for Dense Linear Algebra

V
alidating the hierarchical tasks model requires an evaluation of the
benefits it provides to an application. To illustrate those, we chose to apply
hierarchical tasks to dense linear algebra. This area of application is widely

used to evaluate task-based runtime systems. Linear algebra operations present very
regular task graphs that could be improved on heterogeneous systems by having
multiple levels of task granularity coexist.

The Chameleon library [2] implements task-based versions of dense linear algebra
operations over multiple runtime systems (StarPU, PaRSEC, OpenMP, and
QUARK). In this chapter, we start by presenting how Chameleon was updated to
use hierarchical tasks. Most notably, the data structure representing matrices was
extended in a recursive version storing multiple levels of partitioning. Kernels were
also modified to incorporate hierarchical tasks. We can then move on to the actual
evaluation of hierarchical tasks. After presenting the experimental settings, we study
the behavior of hierarchical tasks. To this end, we provide their performances for
operations (of varying level of affinity with hierarchical tasks) and compare them to
existing solutions.

5.1 Application of Hierarchical Tasks for Dense
Linear Algebra

Chameleon implements dense linear algebra routines such as matrix products,
matrix factorizations, or solvers of linear equations. It can be interfaced with various
task-based runtime systems, including StarPU, to generate task graphs of these
operations on tiled matrices. To use hierarchical tasks in Chameleon, we had to
extend the representation of tiled matrices to account for the potential partitioning of
tiles. A recursive data structure was implemented to traverse matrices with multiple
levels of partitioning. Multiple kernels were also adapted to enable hierarchical tasks.
This required both a method to determine what tasks of the DAG are hierarchical
and a function generating the appropriate sub-graph.

5.1.1 Recursive descriptors
The first step in applying hierarchical tasks to Chameleon is to describe the data.
In a dense linear algebra context, data are in the form of matrices. To represent
these matrices, Chameleon relies on a data structure called descriptor. A descriptor
contains all the information defining a tiled matrix, such as its dimensions and the
dimensions of its tiles. It also includes pointers to the matrix data and to an array of
tiles. Each tile stores its number of rows and columns, its leading dimension, and a
pointer to its data. They are registered in StarPU and the resulting handles are
also recorded in an array of the descriptor structure.

Figure 5.1 schematically illustrates a Chameleon descriptor. The descriptor itself

74 G. Lucas

5. Experimental Evaluation

0

1

2

3

4

5

6

7

8

N

M

Nt

Mt

Tiles:

Handles:

0 1 2 3 4 5 6 7 8

H0 H1 H2 H3 H4 H5 H6 H7 H8

Figure 5.1: Information stored in a regular matrix descriptor.

is represented in black, with its array of tiles in brown and the corresponding array
of handles in blue. The matrix values are stored tile by tile in column-major order.

0

2

3

4

6

7

8

10
11

12
13

50
51

52
53

N

M

Nt

Mt

Tiles:

Handles:

0 2 3 4 6 7 8
10
11

12
13

10 11 12 13

H1
0 H1

1 H1
2 H1

3

50
51

52
53

50 51 52 53

H5
0 H5

1 H5
2 H5

3

H0 H1 H2 H3 H4 H5 H6 H7 H8

Figure 5.2: Information stored in a recursive matrix descriptor.

Since the tile handles have to be partitioned to use hierarchical tasks, the existing
descriptors must be updated to reflect that. Figure 5.2 schematically illustrates
a recursive descriptor, i.e. a descriptor with “partitionable” tiles. In a recursive
descriptor, each tile is given an additional member defining its format. The format
of a tile indicates whether it is a regular tile, or a sub-descriptor. If a tile Ti is a
sub-descriptor, it includes a pointer to a descriptor representing the partitioned tile.
This descriptor has its own array of tiles (the sub-tiles of Ti) and its own array of
handles (the sub-handles of Ti’s handle). Each sub-tile might also be a descriptor,
making this recursive structure can be as deep as necessary. In Figure 5.2, the tiles 1
and 5 are sub-descriptors. Partition plans are created for the corresponding handles
H1 and H5, and the resulting sub-handles H1

i and H5
i are stored in the sub-descriptors.

Making the “partitionable” tiles into descriptors means that they can be treated
by Chameleon as if they were regular tiled matrices. This allows us to use the
existing algorithms to submit sub-graphs, once the kernels have been updated to
include hierarchical tasks.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 75

5.2. Experimental results

5.1.2 Updating the kernels
With our data now arranged in a hierarchical-friendly way, we update the submission
of kernels in Chameleon to use hierarchical tasks. We implemented a simple strategy
where hierarchical tasks are guided by the data layout in the recursive descriptors. In
the absence of a “hierarchical” scheduler capable of making hierarchical task decisions
at execution time, this static approach allows us to showcase some advantages of
hierarchical tasks.

In that strategy, the task of a kernel is processed as hierarchical if all the tiles
accessed by the kernel are sub-descriptors. When a hierarchical task is processed,
the handles of the tiles are partitioned into the handles of the sub-tiles, and the task
graph associated to that kernel is submitted. As mentioned above, most functions
describing the graph of a specific kernel already exist in Chameleon. Since all the
tiles involved are also descriptors, we can simply call the appropriate function with
them, which will submit the sub-graph.

In the rest of this chapter, our objective is to validate the hierarchical task model
by using it to create correct DAGs with various levels of task granularity. The layout
of recursive descriptor provides us with a partitioning scheme of a matrix. We use
various partitioning schemes to decide where to place hierarchical tasks and address
certain limitations in the Chameleon applications we chose. Three partitioning
schemes have been implemented for these experiments. They are described further
down for the experiments they were used in.

5.2 Experimental results
This section compiles the experimental results of different configurations of hierarchical
tasks and compares them with other strategies. First, we present our experimental
platforms and settings and explain how we selected the tile sizes used in the rest of
the section. Then, we study the overhead and performances of hierarchical tasks when
using the implementation detailed in Section 4.1.3. This implementation processes
hierarchical tasks as soon as possible, in the submission thread. The following part
examines the impact of the extended data manager that enables dynamic modifications
of the data layout at runtime. Finally, we compare the hierarchical task model to the
parallel task paradigm and the PaRSEC runtime system.

5.2.1 Experimental settings
First, we give an overview of our experimental settings by presenting the platforms
that we used and the configuration of Chameleon and StarPU. We also explain
how the tile sizes of our experiments were chosen, as well as the nomenclature we use
in figures.

The following experiments were conducted on two architectures, presented in

76 G. Lucas

5. Experimental Evaluation

Name Processor GPU Memory
Intel-V100 2 x Intel Xeon Gold 6142,

16 cores, 2.6GHz
2 x NVIDIA V100 (16GB) 384GB

AMD-A100 2 x AMD Zen3 EPYC 7513,
32 cores, 2.6GHz

2 x NVIDIA A100 (40GB) 512GB

Table 5.1: Characteristics of the experimental platforms.

Table 5.1.

Intel-V100 AMD-A100

G
P

U
C

P
U

0 5000 10000 15000 0 5000 10000 15000

2500

5000

7500

10000

20

40

60

Tile Size

G
F

lo
p

/s

Version

Ideal Noisy

Figure 5.3: Performances of a matrix product (DGEMM) kernel. In the ideal setting
a single kernel runs on a single ressource (CPU core or GPU device). In the noisy
setting every CPU core runs 10 independent DGEMM kernels.

Figure 5.3 shows the double precision performance of a single dense DGEMM
kernel for different sizes of square matrices on both platforms. We present with a solid
line the actual performance for both a single CPU and a single GPU. We can see that
on the CPU side, the processor’s peak performance is achieved for matrix sizes not
exceeding 500. Providing larger matrices does not improve the absolute performance
on a single core. On the GPU side, we can observe that the larger the matrix size,
the higher the performance. This experiment aims to find the best trade-off for the
task granularity between the CPU cores and GPU devices. Having a granularity of
tasks not large enough will limit GPU performance. On the other hand, using very
coarse grain tasks limits parallelism and may affect CPU performance. Thus, in future
experiments, we will mainly use a tile size of 2880 (resp. 5700) on the Intel-V100

On the Use of Hierarchical Tasks for Heterogeneous Architectures 77

5.2. Experimental results

0.0

2.5

5.0

7.5

0 20000 40000 60000

Matrix order (N)

S
u

b
m

is
si

o
n

 t
im

e
 p

e
r

c
o

m
p

u
ta

tio
n

a
l t

a
sk

 (
µ

s)

Version: Tile sizes

Hierarchical: 2880 / 960

Hierarchical: 960 / 960

Non-Hierarchical: 960

(a) Submission cost of computational tasks for
DGEMM with all tiles partitioned on Intel-
V100. Lower is better.

(b) Partitioning every tile of the matrix.

Figure 5.4: Evaluation of the overhead of hierarchical tasks.

(resp. AMD-A100) platform.
The dotted line is the normalized performance of a batch of independent DGEMM

kernels spread evenly across all CPU cores. This accounts for the performance
degradation resulting from memory contention in shared memory hierarchy levels (L3
cache, for example), and for the CPU frequency reduction due to the higher number
of concurrent resources exploited.

On both architectures, StarPU and Chameleon are compiled with GCC 10.3.0,
Nvidia CUDA 11.2, and the Intel MKL 2020. StarPU has been configured to use
a single stream per GPU and to pipeline four events per stream. Unless otherwise
specified, we use all CPU cores and GPU devices available on the node. All the
experiments in StarPU relied on the Deque Model Data Aware Sorted (DMDAS)
scheduler. A description of the basic principles of this scheduler is given in Section 2.3.2.

In the next section, the hierarchical variants use the following notation: x/y/z/ . . .
It means that each initial tile is of size x and is partitioned according to one of the
three schemes mentioned above into tiles of size y, which are in turn split into tiles of
size z etc.

5.2.2 Hierarchical tasks overhead
To evaluate the overhead induced by hierarchical tasks, we consider the graph of
a matrix-matrix multiplication (GEMM) using a tile size of 960. The partitioning

78 G. Lucas

5. Experimental Evaluation

scheme used in this experiment recursively splits each matrix tile. An example is
shown in Figure 5.4b with one recursion level: each matrix tile is divided into a finer
tile size. Figure 5.4a compares the graph submission time per computational task in
two configurations. The ‘960’ curve represents the non-hierarchical case. The ‘960/960’
curve shows the worst possible scenario: the DAG is composed only of hierarchical
tasks and each submits exactly one task when processed. This doubles the number
of tasks submitted and heavily increases the workload of the data manager, making
the submission time per computational task roughly 3.5 times slower. Finally, the
‘2880/960’ curve is a more realistic scenario, where the graph is first submitted at
coarse grain (with a tile size of 2880) and then refined down to the same granularity
as the previous configurations (960). In this case, each hierarchical task submits
⌈2880/960⌉3 = 27 regular tasks when processed, thus amortizing the overhead induced
by the management of hierarchical tasks.

5.2.3 Matrix-matrix multiplication
For the matrix product kernel C = αAB + βC, the main objective of the hierarchical
scheme is to balance the workload between CPU cores and GPU devices based on
their respective computing power. A custom partitioning scheme is used. We first
define a computing power for each resource, PCP U , and PGP U respectively, and then
we estimate the computing power ratio of the CPU resources:

R = #CP U × PCP U

(#CP U × PCP U) + (#GP U × PGP U)

Platform Intel-V100 AMD-A100
PCP U PGP U 1 GPU 2 GPU PCP U PGP U 1 GPU 2 GPU

R1 50.9 6.65e3 19% 10% 25.0 14.5e3 10% 5%
R2 55.0 4.50e3 26% 15% 28.0 9.5e3 16% 9%

Table 5.2: Performances in GFlop/s used to compute R1 and R2 for each individual
computational unit, and resulting percentages of tiles partitioned for the CPUs in the
hierarchical version in Figure 5.5.

We finally compute the number of tiles for which the partition planning has to be
done with respect to R: ⌊R×Nt2⌋, where Nt2 is the total number of tiles of the C
matrix. Table 5.2 summarizes the different values of R we selected for our experiments.
R1 is computed from the best performances reached for tiled matrix multiplication
using all the CPU cores without the GPU devices and vice-versa. R2 is computed
from the plateau values from Figure 5.3, using the noisy setting in the CPU case.

We evaluate the behavior of the GEMM operation on those matrices, using one and
two GPUs (Figures 5.5a and 5.5b). On the Intel-V100 platform, this strategy allows

On the Use of Hierarchical Tasks for Heterogeneous Architectures 79

5.2. Experimental results

1 V100 2 V100

M
a
trix M

u
ltip

lica
tio

n
 (d

g
e
m

m
)

10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000

5

10

15

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 2880

Non-Hierarchical: 960

Hierarchical: 2880 / 960 (R1)

Hierarchical: 2880 / 960 (R2)

(a) Intel-V100 platform.
1 A100 2 A100

M
a
trix M

u
ltip

lic
a
tio

n
 (d

g
e
m

m
)

20000 40000 60000 20000 40000 60000
5

10

15

20

25

30

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 5760

Non-Hierarchical: 1920

Hierarchical: 5760 / 1920 (R1)

Hierarchical: 5760 / 1920 (R2)

(b) AMD-A100 platform.

Figure 5.5: Evaluation of hierarchical tasks in the matrix-matrix multiplication
(DGEMM) kernel, with a fixed percentage of hierarchical tasks (see Table 5.2). Higher
is better.

80 G. Lucas

5. Experimental Evaluation

(a) Tile size: 2880. (b) Tile sizes: 2880 / 960. (c) Tile sizes: 2880 / 960 / 320.

Figure 5.6: Illustration of the matrix layouts used in the following experiments.

the hierarchical versions to outperform the standard ones on medium matrix sizes by
providing the CPU cores of the node with tasks working on smaller tiles. When using
large tiles (2880) on bigger matrix sizes, StarPU’s scheduler can start assigning
more work to the CPUs without penalizing execution time and catches up with the
hierarchical versions. On the AMD-A100 platform, the performance ratio between
the CPU cores and the GPU devices is so high that the contribution of the CPU
cores is marginal. Once the matrices become large enough, the percentage of smaller
tiles becomes a disadvantage and negatively impacts the performance. This could be
compensated by partitioning fewer tasks as the matrix size increase. However, even
in this situation, the hierarchical version using R1 can achieve similar performance
to standard Chameleon. A common trend between both platforms is that the R1
ratio provides better results than R2, because it was computed using values more
representative of the disparity in computing power between CPUs and GPUs for this
type of operation. Generally speaking, the dense matrix product is a very regular
operation that is rather unfavorable to the use of hierarchical tasks. Despite that, the
hierarchical variants have a good behavior and can achieve high performance with a
simple partitioning strategy.

We present experimental results in the forthcoming section illustrating the hierar-
chical tasks’ behavior on more advanced dense linear algebra operations to illustrate
the flexibility of hierarchical tasks better. First, we consider operations relying on
Cholesky decomposition (POTRF): POSV (linear system solving, in this case, of a
single vector) and POINV (matrix inversion). These operations have complex task
graphs, and in the case of POINV, validate the anti-dependency problem (WRITE
after READ). Furthermore, we provide an experimental evaluation using the LU
factorization without partial pivoting (GETRF_nopiv) which has a wider task graph
than the Cholesky factorization and for which the criticality of some tasks (mainly
those corresponding to the tiles on the diagonal) can severely degrade performance if
delayed.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 81

5.2. Experimental results

Cholesky Factorization (dpotrf) Cholesky Solve (dposv) Cholesky Inversion (dpoinv)

2
 V

1
0

0
1

 V
1

0
0

25000 50000 75000 100000 25000 50000 75000 100000 25000 50000 75000 100000

0

5

10

0

5

10

Matrix order (N)

T
F

lo
p
/s

Version: Tile sizes

Non-Hierarchical: 2880
Non-Hierarchical: 960
Non-Hierarchical: 320

Hierarchical: 2880 / 960
Hierarchical: 2880 / 960 / 320

Figure 5.7: Evaluation of hierarchical tasks in Cholesky type operations (DPOTRF,
DPOSV, DPOINV) with a diagonal distribution of the hierarchical tasks on the
Intel-V100 platform. Higher is better.

5.2.4 Cholesky factorization
The partitioning scheme we implemented for the following experiments splits recursively
the matrix along the diagonal, sub-diagonal and superdiagonal, to mimic H-Matrices
algorithms and use finer granularities on the critical path. An example is shown
in Figure 5.6. Figures 5.7 and 5.8 show the results of operations relying on the
Cholesky decomposition: POTRF (actual Cholesky decomposition), POSV (linear
system solving, with a single right-hand side) and POINV (matrix inversion). Contrary
to the previous DGEMM experiment, this partitioning scheme doesn’t simply attempt
to supply all resources with the right amount of work. Instead, it tries to improve
performance on the critical path of the operation, because Chameleon requires all
POTRF kernels (which are on the critical path of the factorization and located on the
diagonal tiles) on CPU cores. This is illustrated in both figures where we can see that
the granularity having the best behavior used for the standard version use smaller
tiles than the one relying on the hierarchical tasks on both platforms. Thanks to

82 G. Lucas

5. Experimental Evaluation

Cholesky Factorization (dpotrf) Cholesky Solve (dposv) Cholesky Inversion (dpoinv)

2
 A

1
0

0
1

 A
1

0
0

25000 50000 75000 100000 25000 50000 75000 100000 25000 50000 75000 100000

0

10

20

0

10

20

Matrix order (N)

T
F

lo
p
/s

Version: Tile sizes

Non-Hierarchical: 5760
Non-Hierarchical: 1920
Non-Hierarchical: 640

Hierarchical: 5760 / 1920
Hierarchical: 5760 / 1920 / 640

Figure 5.8: Evaluation of hierarchical tasks in Cholesky type operations (DPOTRF,
DPOSV, DPOINV) with a diagonal distribution of the hierarchical tasks on the
AMD-A100 platform. Higher is better.

hierarchical tasks, we can partition the tiles along the diagonal and split those large
tasks into sub-graphs with a smaller granularity, allowing for better CPU utilization
on the critical path. For all the kernels and platforms, enabling hierarchical tasks
enhances performance for most matrix sizes. We can also observe that the regular
version can catch up for huge matrix sizes. The sudden drop observed at the end of
some non-hierarchical curves is explained by a conflict between the StarPU scheduler
data prefetching and eviction in GPU memory, as explained in [46]. The experimental
results illustrate the interest in hierarchical tasks for tackling the granularity problem
of heterogeneous architectures. This highlights the fact that hierarchical tasks can
find a better trade-off to fully exploit the whole platform: each resource is used with
a task granularity adapted to its characteristics.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 83

5.2. Experimental results

1 V100 2 V100

LU
 F

a
cto

riza
tio

n
 (d

g
e
trf)

10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000

0

5

10

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 2880

Non-Hierarchical: 960

Non-Hierarchical: 320

Hierarchical: 2880 / 960

Hierarchical: 2880 / 960 / 320

(a) Intel-V100 platform.
1 A100 2 A100

LU
 F

a
cto

riza
tio

n
 (d

g
e
trf)

25000 50000 75000 100000 25000 50000 75000 100000

0

10

20

30

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 5760

Non-Hierarchical: 1920

Non-Hierarchical: 640

Hierarchical: 5760 / 1920

Hierarchical: 5760 / 1920 / 640

(b) AMD-A100 platform.

Figure 5.9: Evaluation of hierarchical tasks in the LU decomposition (DGETRF_
nopiv) with diagonal distribution of the hierarchical tasks. Higher is better.

84 G. Lucas

5. Experimental Evaluation

5.2.5 LU factorization
We provide in Figure 5.9 an experimental evaluation of hierarchical tasks to enhance
the dense LU factorization without pivoting (DGETRF_nopiv). This dense linear
algebra kernel exhibits a high amount of parallelism. It requires the tiles on the
diagonal to be processed as fast a possible to release many dependencies. Once again,
we can observe that hierarchical tasks improve performance on both platforms. We
can also observe that the non-hierarchical version of Chameleon achieves lower
performance because of the critical tasks on the diagonal: since the matrix partitioning
is uniform, the best tiling uses a large granularity to exploit the GPU devices fully.

Finally, we can observe that the gap between the hierarchical tasks and standard
Chameleon is more significant on the more heterogeneous AMD-A100 platform.
This is mainly because, on this platform, large tiles (5760) are needed to exploit the
potential of the A100 devices fully. Thus, not using hierarchical tasks to adapt the
granularity for each device penalizes performance.

5.2.6 Impact of the dynamic data manager
While the results we just covered illustrate the potential of hierarchical tasks, they
rely on a static implementation of the model. In this section, we examine how the
fully implemented model compares to the previous results. This version of the model
extends the data manager of StarPU to insert partitioning tasks at runtime. It
enables a dynamic DAG generation, as hierarchical tasks can now be processed at
execution time, when they become ready.

Figure 5.10 presents in dashed lines the performances reached with the previously
established hierarchical task configurations when the dynamic data manager is active.
We can see that it results in some overhead, which was expected, since part of the
submission process is delayed and the data manager has to synchronize certain tasks
at runtime to maintain the consistency of their data. This overhead is particularly
noticeable for small matrices (e.g. Figure 5.10a), which exhibits less parallelism. Since
hierarchical tasks are processed at runtime, the delayed insertion of sub-tasks is more
penalizing if it blocks a larger portion of the graph. For larger matrix sizes, the impact
of the data manager is less important, as the processing of hierarchical tasks and the
work of the data manager are spread more evenly across a larger task graph with
more parallelism.

It is also important to note that the scheduler is a critical component of the
course of the execution and even more so when we aim to process hierarchical tasks
at runtime. For these experiments, we used the existing DMDAS scheduler, which is
not designed for hierarchical tasks, leaving a lot of room for improvement.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 85

5.2. Experimental results

(a)

Matrix Multiplication (dgemm)

In
te

l-V
1

0
0

10000 20000 30000 40000 50000 60000

5

10

15

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 2880
Non-Hierarchical: 960
Hierarchical (static): 2880 / 960 (10%)
Hierarchical (static): 2880 / 960 (16%)
Hierarchical (dynamic): 2880 / 960 (10%)
Hierarchical (dynamic): 2880 / 960 (16%)

(b)

Cholesky Factorization (dpotrf)

In
te

l-V
1

0
0

25000 50000 75000 100000

0

5

10

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 2880
Non-Hierarchical: 960
Non-Hierarchical: 320
Hierarchical (static): 2880 / 960
Hierarchical (static): 2880 / 960 / 320
Hierarchical (dynamic): 2880 / 960
Hierarchical (dynamic): 2880 / 960 / 320

(c)

LU Factorization (dgetrf)

In
te

l-V
1

0
0

10000 20000 30000 40000 50000 60000

0

5

10

Matrix order (N)

T
F

lo
p

/s

Version: Tile sizes

Non-Hierarchical: 2880
Non-Hierarchical: 960
Non-Hierarchical: 320
Hierarchical (static): 2880 / 960
Hierarchical (static): 2880 / 960 / 320
Hierarchical (dynamic): 2880 / 960
Hierarchical (dynamic): 2880 / 960 / 320

Figure 5.10: Evaluation of the performance impact of the dynamic data manager for
matrix multiplication (DGEMM) and factorization (DPOTRF, DGETRF_nopiv) on
the Intel-V100 platform. Higher is better.

86 G. Lucas

5. Experimental Evaluation

5.2.7 Comparison with other frameworks
In this section we compare our hierarchical task paradigm with two different approaches.
We consider the so-called parallel task paradigm, presented in [19] and available within
StarPU, where CPUs are aggregated to excute parallel tasks which helps to limit
the impact of granularity issues. We also present the results of the PaRSEC runtime
system in the state-of-the-art library Dplasma [15]. The comparison will consider the
matrix product operation (GEMM), the Cholesky factorization (POTRF) and the LU
factorization without pivoting (GETRF-nopiv). Each point for a given framework will
consider the best observed performance with respect to tile size, number of streams,
and task partitioning scheme (for the hierarchical variants). The parameters used are
summarized in Tables 5.3 and 5.4. Finally, concerning the approach using parallel
tasks, one parallel worker is assigned to each socket of the Intel-V100 platform, to
share the same cache. For the AMD-A100 architecture, two parallel workers have
been assigned to each CPU socket because of the high CPU count on the platform.

Intel-V100 Non-Hierarchical Hierarchical Parallel tasks PaRSEC
Tile sizes: 2880, 960, 320 2880, 960, 320 2880, 960, 320 2880, 960, 320
Cuda streams: 1, 2, 4, 8 streams 1 stream 1 stream 1 stream

Partitioning scheme: See Table 5.2N/A and Figure 5.6 N/A N/A

Table 5.3: Parameters explored to find the best overall performances for each operations
in Figure 5.11a (Intel-V100 platform).

AMD-A100 Non-Hierarchical Hierarchical Parallel tasks PaRSEC
Tile sizes: 5760, 1920, 640 5760, 1920, 640 5760, 1920, 640 5760, 1920, 640
Cuda streams: 1, 2, 4, 8 streams 1 stream 1 stream 1 stream

Partitioning scheme: See Table 5.2N/A and Figure 5.6 N/A N/A

Table 5.4: Parameters explored to find the best overall performances for each operations
in Figure 5.11a (AMD-A100 platform).

The matrix multiplication (GEMM) performances in Figure 5.11 (left) show us
that the different approaches have a better behavior that the standalone StarPU
implementation (no hierarchical tasks). We can also observe that using parallel tasks
is a very efficient solution except for moderate size matrices. This can be explained
by the fact that since the GEMM operation is highly parallel, the synchronizations
induced by the use of parallel tasks is not impacting performance.

We also provide in Figure 5.11 (center) additional performance comparison using
the Cholesky factorization (POTRF). We can observe that the parallel worker approach
is the most efficient approach. Our hierarchical task variant is not able to achieve the
same performance. This is mainly due to scheduling issues. It is important to remind

On the Use of Hierarchical Tasks for Heterogeneous Architectures 87

5.2. Experimental results

Matrix Multiplication (dgemm) Cholesky Factorization (dpotrf) LU Factorization (dgetrf)

In
te

l-V
1

0
0

25000 50000 75000 100000 25000 50000 75000 100000 25000 50000 75000 100000

0

5

10

15

Matrix order (N)

T
F

lo
p
/s

Non-Hierarchical Hierarchical Parallel Tasks PaRSEC

(a) Intel-V100 platform.

Matrix Multiplication (dgemm) Cholesky Factorization (dpotrf) LU Factorization (dgetrf)

A
M

D
-A

1
0

0

25000 50000 75000 100000 25000 50000 75000 100000 25000 50000 75000 100000

0

10

20

30

Matrix order (N)

T
F

lo
p
/s

Non-Hierarchical Hierarchical Parallel Tasks PaRSEC

(b) AMD-A100 platform.

Figure 5.11: Comparison of the behavior of the hierarchical task paradigm with respect
to the parallel tasks and PaRSEC for the matrix product operation (DGEMM),
Cholesky factorization (DPOTRF), and LU factorization without pivoting (DGETRF).
Higher is better.

88 G. Lucas

5. Experimental Evaluation

that we use the standalone StarPU scheduler for heterogeneous systems, namely
DMDAS (presented in Section 2.3.2). We did not tune or improve the scheduler to
handle hierarchical tasks. Thus, there is a lot of room for improvement from this point
of view. This represents a fundamental problem on its own and will be considered in
future work.

Finally, we provide in Figure 5.11 (right) the observed behavior for the LU
factorization kernel (without pivoting). We can see that the hierarchical variant is
able to achieve the highest performance on most test cases and for both platforms. The
parallel workers approach also achieves good performance but is slightly less efficient.
This mainly due to the fact that for moderate to large matrices, tile sizes of 2880
are used. However, these large tiles are processed by a single parallel worker (1 CPU
socket for the Intel-V100 platform and half of a CPU socket for AMD-A100 one).
This will represents a limitation when processing tasks on the critical path. One could
improve the behavior by dynamically changing the amount of CPU cores associated
to a parallel worker but this is out of the scope of this experimental evaluation. The
uncharacteristically poor performances of PaRSEC in this scenario is unfortunately
due to the lack of Cuda implementation for some kernels in the LU factorization of
Dplasma.

The results presented in Figure 5.11 illustrates that even with a basic scheduling
and partitioning strategy, the flexibility of the hierarchical task paradigm can find a
better trade-off between parallelism and task granularity. All in all, the set of results
presented in this section enlighten the potential and the interest of our approach but
also points out that advanced scheduling strategies will have to be designed to achieve
high performance in this new context.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 89

Chapter 6
First Steps of Hierarchical Tasks
toward Distributed Memory

Contents
6.1 Introducing shared data 92
6.2 Automatic pruning . 93
6.3 Communications at runtime 94
6.4 Conclusion . 95

91

6.1. Introducing shared data

U
p until now, our efforts to design a hierarchical tasks model have been
restrained to shared memory systems. Containing the graph to a central
memory limited the need for additional data management such as network

communications. Once our model became capable to function properly on a single
node, a natural follow up is to extend it over multiple nodes. The most direct
translation of our model for distributed systems consists in restricting hierarchical
tasks to a single node. By submitting and processing hierarchical tasks within one
node, we can mostly rely on the work done for the shared memory model. This is
already interesting when considering heterogeneous nodes, but it is tempting to extend
the model further and propose more features for distributed memory systems. In
particular, being able to submit and process hierarchical tasks over multiple nodes
would greatly enhance the expressivity of the model.

In this chapter, we go over the first few extensions of the hierarchical task model
dedicated to distributed memory systems. Since StarPU-MPI, the extension of
StarPU targeting distributed memory architectures, maps the data over the different
nodes, we first present the necessity to share data ownership between multiple nodes.
This enables us to insert a single hierarchical task in the local graph of different nodes.
When it is processed, the sub-graph will be inserted between the nodes according
to their ownership of the sub-data. We then explain how this mechanism results in
a more user-friendly way to prune the graph (see Section 2.2.2 for a definition of
the pruning operation). Finally, hierarchical tasks need to be able to position new
communications at runtime, due to their dynamic nature.

6.1 Introducing shared data
As explained in Section 2.1.2, StarPU-MPI maps all the data of distributed appli-
cations over the nodes of the targeted platform. This data mapping is then used to
determine where the tasks will be executed. In this model, a task is, very logically,
not allowed to be submitted and executed across multiple nodes. In order to submit
a single hierarchical task on different nodes, we must introduce a type of data that
can be owned by all the nodes involved at the same time. This new type of data are
called shared data.

A0+1+2+3

A0+1 A2+3

Ai : A0 A1 A2 A3

shared

Figure 6.1: Partition tree with shared data.

A shared data is the root of a partition tree, as illustrated in Figure 6.1. The

92 G. Lucas

6. First Steps of Hierarchical Tasks toward Distributed Memory

children of a shared data can be shared or not themselves, but all the leaves of the tree
must be non-shared data. In Figure 6.1, the leaves Ai are all owned by four different
nodes i. A0+1 and A2+3 are shared respectively between the nodes [0,1] and [2,3].
The root itself is shared between all four nodes. This partition tree can be extended
by partitioning the leaves further, but all the children of Ai will be non-shared data
owned by the node i. The shared data A0+1+2+3 can be used to submit a hierarchical
task on the four nodes. In the corresponding sub-graph, the hierarchical tasks using
A0+1 (respectively A2+3) are only executed on nodes 0 and 1 (respectively 2 and 3).

The construction of shared data is automatic. Like in any StarPU-MPI appli-
cation, the user is only required to register its non-shared data into handles and to
map them on the different nodes. The runtime system then automatically marks the
parent handles that are considered shared.

For now, shared data are only meant to be a tool in the submission of distributed
DAG with hierarchical tasks. They are not meant to be used in computations, but
this possibility could be explored more in future works.

6.2 Automatic pruning
A common issue that limits the scalability of StarPU-MPI applications is the fact
that every node is required to go through the entire submission of the task graph
sequentially (see Section 2.2.2). To avoid this issue, programmers can prune the
DAG of their application by avoiding to submit certain tasks on the nodes that are
not involved with them (typically because they do not own any of the task’s data).
However, this is a tedious and complex process. To address this issue, we want
to use hierarchical tasks and the shared data mechanism to achieve some pruning
automatically. In fact, since a hierarchical task encloses a part of the task graph, it
can be submitted on every node, and only the nodes processing it will have to see the
submission process of that part of the DAG.

Figure 6.2 showcases the automatic pruning mechanism on a very simple DAG.
In this example, each node i owns a data Ai in a partition tree of shared data (see
Figure 6.2a). The complete task graph is shown in Figure 6.2b and distributed
between three nodes like in Figure 6.2c. Initially, they all submit a hierarchical task
on the shared data A0+1+2, which is processed into a regular task working on A2
(thus executed on node 2) and another hierarchical task working on A0+1. Since A0+1
is not shared with node 2, it does not complete the submission of the hierarchical
task and never processes it, effectively pruning this sub-graph. The task working on
both A0 and A1 can be assigned to the nodes 0 or 1 indifferently depending on the
StarPU policy selected (here node 0). Communications between the two nodes are
then required to execute that task.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 93

6.3. Communications at runtime

A0 A1 A2

A0+1+2

A0+1

(a) Shared data.

(A0) (A1)

(A0,A1)

(A2)

(A0+1)
(A0+1+2)

(b) Global task graph.

Node 0: Node 1: Node 2:

(A0) (A1)

(A0,A1)

(A2)

(A0) (A1)

(A0,A1)

(A2) (A 0+1) (A2)

(c) Task graph distributed between the nodes. Full tasks are executed on the corresponding
node. Dotted tasks indicate that the node interrupted the submission of the task. Dashed
arrows are inter-node dependencies (communications).

Figure 6.2: Example of automatic pruning in a distributed task graph.

6.3 Communications at runtime
In the standard model of StarPU-MPI, communications are planned at submission
time. When the submission process of a node N inserts a task T to be executed on N ,
it first checks if N owns all the data handles used by the task. If not, communication
tasks are inserted with a recv operation for each missing handle. Similarly, when
other nodes try to submit T and finds that it will be executed by N , the owners of
the data handle missing for N submit their own communication tasks with a send
operation. After the task is submitted in N , the nodes create communications tasks

94 G. Lucas

6. First Steps of Hierarchical Tasks toward Distributed Memory

in a symmetric manner to return the data handles to their owners. A send/recv
pair forms an inter-node dependency that is important for the correctness of the
application.

When we introduce hierarchical tasks in StarPU-MPI, this mechanism is no
longer restricted to submission time. In fact, when a hierarchical task is processed
across multiple nodes at runtime, new communications might be necessary. This is
the case in the example of Figure 6.2c. Since the node 1 owns A1, this data piece
must be communicated to the node 0 to execute a task using A0 and A1.

The addition of communications at runtime creates data consistency issues that are
analogous to the ones encountered in the previous chapters of this thesis. They were
addressed by extending the task data structure to include more information on the
state of communications and on the place of the task in the hierarchy. Communications
at runtime could be further enhanced with hierarchical tasks of communications. Such
a hierarchical task would be submitted using the root of the partition tree of shared
data. Depending on the hierarchical level of the task that triggered its insertion, it
could send (respectively recv) the root handle, or be processed into a sub-graph of
(potentially hierarchical) communication tasks. This could enable the use of shared
data in computations, instead of their current role as a submission tool.

6.4 Conclusion
The most evident way to use hierarchical tasks in distributed memory consists of
limiting their scope to individual nodes. However, it is tempting to submit hierarchical
tasks across multiple nodes and distribute the resulting sub-graph between them. This
is mostly hindered by the data mapping. Each data is owned by a single node, and
each task is submitted on a single node based on the ownership of the data involved,
making it impossible to process a single hierarchical task over multiple nodes. In
this chapter, we gave some insight into the first efforts made to address this. We
introduced the concept of shared data, a submission tool that share the higher levels
of a partition tree between multiple nodes. A hierarchical task can therefore use these
shared data and be submitted and processed by different nodes. In turn, this enables
some automatic pruning, as a node will never process a hierarchical task whose data
are not shared with it. Similarly to the previous chapters, data consistency is a
complex issue to handle, in this case because of the communications added at runtime
between the nodes processing the same hierarchical task. Our solution extended the
task structure to store the information needed to handle runtime communication.
The idea of hierarchical tasks of communications is also currently explored to enable
computations on shared data.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 95

Conclusion

T
he growing complexity of high performance computing platforms has led
to the pursuit of highly efficient runtime systems, which aim to abstract the
underlying architectures. These runtime systems use various programming

models to express computations. One of the most widely used is the so-called
Sequential Task Flow (STF) model, in which tasks are sequentially inserted to form
a Directed Acyclic Graph (DAG) representing the application. This model offers
a natural way for programmers to express a parallel workload. A runtime system,
such as StarPU, is then left in charge of scheduling computations and managing
data and communications. While this approach has been shown to be effective,
the sequential submission process and the resources used by non-ready tasks can
result in non-negligible overhead for certain applications. In addition, it is limited to
constructing static task graphs: once a set of tasks has been inserted in the system,
it cannot be optimized for the resources available at runtime. This is particularly
problematic in heterogeneous systems where different types of computational units
have conflicting characteristics.

To address these issues, this thesis proposed to extend the submission process of the
STF model in the StarPU runtime system. Our new programming model introduced
hierarchical tasks, which can insert a new sub-graph of tasks into an application’s
DAG at runtime. Hierarchical tasks offer a finer control of the submission flow of the
application. By encapsulating parts of a DAG in hierarchical tasks, programmers can
delay its submission and reduce runtime overhead. Furthermore, since hierarchical
tasks are also tasks by nature, and thus executed by workers, the submission process is
no longer handled by a single thread and can be parallelized by processing independant
hierarchical tasks on different workers. Our model is also capable of producing task
graphs that evolves dynamically at runtime. This is particularly useful to adapt the
level of granularity or to select different implementations of an operation. However,
this dynamic approach bypasses the sequential order of submission that the STF
model rely on to correctly infer task dependencies. As a result, integrating hierarchical
tasks without creating data or computational inconsistencies is quite complex.

97

Since the expression of a sub-graph equivalent to a given task requires partitioning
the task’s data to find parallelism, we must be able to modify the data layout when a
hierarchical task is processed. StarPU generally handles this asynchronously, with
partitioning tasks serving as synchronization points defining the region of the DAG
where a given data layout is active. In the hierarchical task model, we decided to tie
the task hierarchy with the data hierarchy. This enables us to enforce the correctness
of the graph using only the necessary data synchronizations. A first implementation
of the hierarchical task model sacrifices some features to rely on the existing data
manager. During the submission process, it inserts partitioning tasks that enforce data
consistency during the execution. In this approach, hierarchical tasks are processed by
the submission thread as soon as possible, resulting in a recursive but static submission.
A more advanced implementation extends the data manager to delay the insertion of
partitioning tasks until runtime. Thanks to this new data manager, partition tasks are
added as needed when a hierarchical task is processed. Once the sub-graph is inserted,
the hierarchical task finishes and releases its outgoing dependencies. This enables
fine-grain dependencies, as there is no barrier or synchronization between successive
hierarchical tasks. Because the non-hierarchical successors use a different data layout
than the sub-graph, unpartition tasks are added between the two, enforcing the
correctness of the DAG. In both implementations, data management is transparent to
programmers, who are only required to describe the different possible data layouts of
their application.

Some preliminary work showed that the hierarchical task model can be used to
prune distributed task graphs by encapsulating parts of the DAG in hierarchical tasks,
which are then only processed by certain nodes. In order to submit and process
hierarchical tasks across multiple nodes, we introduced the notion of “shared data”.
This is a more expressive approach compared to simply restricting hierarchical tasks
to individual nodes, but it requires to carefully manage the data communications
added at runtime.

We validated our model using the dense linear algebra library Chameleon. We
adapted the matrix descriptors of Chameleon to store tiles recursively. A recursive
descriptor can therefore store a matrix with multiple levels of tiles. Extending a kernel
to support hierarchical tasks is fairly straightforward, since the function describing
the task graph of a tiled version of the operation is already available in Chameleon.
Our experiments attempt to leverage hierarchical tasks, either by providing the
right amount of fine grain tasks to CPUs or by refining tasks in the critical path of
factorization operations. The results we obtained showed that, despite being limited
by the lack of a dedicated scheduler, hierarchical tasks have the potential to improve
the behavior of task-based runtime systems while providing more flexibility to the
programmer.

98 G. Lucas

Conclusion

Perspectives
Designing and implementing the hierarchical task model in StarPU opens up many
perspectives. The most natural direction would be to enhance this mechanism by
designing a scheduler that can take full advantage of its dynamic properties. While a
specialized scheduler would already makes the programmer’s job easier, it might be
possible to automate the use of hierarchical tasks even more with compiler techniques.
Another direction for hierarchical tasks would be to look into the applicative side of
things. In fact, many applications could benefit from hierarchical tasks beyond the
dense linear algebra operations showcased in this thesis.

Scheduling hierarchical tasks
Considering scheduling matters is essential to achieve the full potential of the hier-
archical task model. The design of a”’ “hierarchically oriented” scheduler will be a
considerable undertaking. Such a scheduler should be able to tell when, where and
how a hierarchical task should be processed and therefore make runtime optimization
to the construction of the DAG.

When to process a hierarchical task? Using the scheduler to measure the
availability of resources and anticipate future needs, it would be possible to make
informed decisions on whether to process a hierarchical task or not, at runtime. If the
system is already crowded with non-ready tasks, it would be wiser to avoid processing
hierarchical tasks, which would risk overloading the system even more. Conversely, if
the sequential submission thread is bottlenecking the application, the issue could be
solved by processing many hierarchical tasks in parallel.

How to process a hierarchical task? Once a hierarchical task starts being
processed, the hierarchical task mechanism could give the scheduler an opportunity to
decide which sub-graph to insert. Selecting the most appropriate implementation will
require the design of advanced performance models. Instead of picking a particular
implementation, which require some input from the programmer, another approach
would be to target the appropriate degree of parallelism for the platform.

Where to process a hierarchical task? When a hierarchical task has been
processed, the question of how to schedule the freshly inserted sub-graph arises. The
most straightforward answer is to simply rely on existing strategies. However, thanks
to hierarchical tasks, each sub-graph constitutes a region for which the scheduler
has access to additional information based on the position the hierarchical tasks
used to occupy in the DAG. Such information could be leveraged to improve the
behavior of the application. For example, coarse graphs could be scheduled with a
more costly algorithm before using a faster scheduler for big amounts of tasks lower
in the hierarchy.

On the Use of Hierarchical Tasks for Heterogeneous Architectures 99

Overall, addressing these issues will improve the behavior of hierarchical tasks in
the runtime system.

Distributed hierarchical tasks
The hierarchical task model for distributed architectures is still in a perfectible state
and some edge cases must be ironed out. There is more work to be done around data
communications. For example, implementing hierarchical communication tasks would
enable the use of shared data in computational tasks, as they are simply a submission
tool for the moment. The scaling and performance capabilities of the model must also
be evaluated.

Toward a more automated approach
During this thesis, we focused a lot of efforts into making the hierarchical task model
as natural to use as possible. However, it still requires to manually provide hints to
the tasks we want to be hierarchical. This involves writing the STF code generating
the sub-graph of the hierarchical task. For some applications, this process could be
automated at compile time. An advanced compiler would be able to regroup parts of
the task graph into hierarchical tasks. It could rely on its information on the targeted
architecture to evaluate the levels of granularity and the amount of parallelism that
should be expressed.

Exploring more applications
Finally, the use of hierarchical tasks for more irregular algorithms should definitely be
explored. The dense linear algebra operation we covered in Chapter 5 present a very
regular workload that does not take full advantage of the features of hierarchical tasks.
On the other hand, algorithms with task graphs that evolve based on the results
of the computations could be expressed more naturally with hierarchical tasks. For
example, sparse matrix factorizations relying on partial pivoting have unpredictable
data layouts due to reordering their matrices based on the numerical value of its
elements throughout the operation. Hierarchical tasks could express such algorithms
by adapting the sub-graph inserted at runtime to the data layout. Iterative solvers
could also be expressed elegantly, with each iteration including a hierarchical task that
will be processed into the graph of the next iteration, until a termination criterion is
met. Low-rank approximations are another promising lead. This method compresses
matrices into a collection of dense (full-rank) and low-rank blocks in a nested structure
called a hierarchical matrix (H-Matrix). The solvers using this method to reduce
their memory and computation cost could implement hierarchical tasks to operate
more naturally on the structure of H-Matrices.

100 G. Lucas

Acknowledgements

The experiments presented in this document were carried out using the PlaFRIM
experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bor-
deaux, Bordeaux INP and Conseil Régional d’Aquitaine (see https://www.plafrim.fr).

This work was supported by the french ANR through the Solharis project, under
the grant ANR-19-CE46-0009.

101

Bibliography

[1] Jimmy Aguilar Mena, Omar Shaaban, Vicenç Beltran, Paul Carpenter, Eduard
Ayguadé, and Jesus Labarta Mancho. OmpSs-2@Cluster: Distributed Memory
Execution Of Nested OpenMP-Style Tasks. In Euro-Par 2022: Parallel Processing:
28th International Conference on Parallel and Distributed Computing, pages 319–
334, Berlin, Heidelberg, 2022. Springer-Verlag. ↑ p. 16

[2] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond
Namyst, Samuel Thibault, and Stanimire Tomov. Faster, Cheaper, Better – a
Hybridization Methodology to Develop Linear Algebra Software for GPUs. In
Wen mei W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann,
September 2010. ↑ p. 74

[3] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent
Pruvost, Marc Sergent, and Samuel Thibault. Achieving High Performance on
Supercomputers with a Sequential Task-based Programming Model. IEEE
Transactions on Parallel and Distributed Systems, 2017. ↑ p. 46

[4] Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve, Matthias
Messner, and Toru Takahashi. Task-based FMM for Heterogeneous Architectures.
Concurr. Comput. Pract. Exp., 28(9):2608–2629, 2016. ↑ p. 28

[5] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures:
A Dependence-Based Approach. Morgan Kaufmann, 2002. ↑ pp. 14, 15

[6] David Álvarez, Kevin Sala, Marcos Maroñas, Aleix Roca, and Vincenç Beltran.
Advanced Synchronization Techniques for Task-Based Runtime Systems. In Proc.
of PPoPP ’21, pages 334–347, 2021. ↑ p. 17

[7] AMD. HIP. https://github.com/ROCm-Developer-Tools/HIP. ↑ p. 12
[8] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A

Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling.
SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001. ↑ p. 13

[9] The OpenMP architecture review board. OpenMP Application Programming

103

https://github.com/ROCm-Developer-Tools/HIP

Bibliography

Interface. https://www.openmp.org, 2022. ↑ pp. 12, 17
[10] Cédric Augonnet, David Goudin, Matthieu Kuhn, Xavier Lacoste, Raymond

Namyst, and Pierre Ramet. A Hierarchical Fast Direct Solver for Distributed
Memory Machines with Manycore Nodes. Technical report, CEA/DAM ; Total
E&P ; Université de Bordeaux, Oct 2019. ↑ p. 19

[11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. StarPU: A Unified Platform for Task Scheduling on Heterogeneous Mul-
ticore Architectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011. ↑ p. 16

[12] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta, Rafael Mayo,
and Enrique S. Quintana-Ortí. An Extension of the StarSs Programming Model
for Platforms with Multiple GPUs. In Euro-Par, pages 851–862, 2009. ↑ p. 16

[13] Rosa M. Badia, José R. Herrero, Jesús Labarta, Josep M. Pérez, Enrique S.
Quintana-Ortí, and Gregorio Quintana-Ortí. Parallelizing Dense and Banded
Linear Algebra Libraries using SMPSs. Concurrency and Computation: Practice
and Experience, 21(18):2438–2456, 2009. ↑ p. 16

[14] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion:
Expressing Locality and Independence with Logical Regions. In SC Conference
on High Performance Computing Networking, Storage and Analysis, SC ’12, Salt
Lake City, UT, USA - November 11 - 15, 2012, page 66, 2012. ↑ p. 16

[15] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem
Ltaief, Piotr Luszczek, Asim YarKhan, and Jack Dongarra. Flexible Development
of Dense Linear Algebra Algorithms on Massively Parallel Architectures with
DPLASMA. In IEEE IPDPS Workshops and PhD Forum, pages 1432–1441, 2011.
↑ p. 87

[16] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J. Dongarra. PaRSEC: Exploiting Heterogeneity to Enhance
Scalability. Computing in Science and Engineering, 15(6):36–45, 2013. ↑ p. 16

[17] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Hérault, Pierre
Lemarinier, and Jack Dongarra. DAGuE: A Generic Distributed DAG Engine for
High Performance Computing. Parallel Computing, 38(1-2):37–51, 2012. ↑ p. 16

[18] Qinglei Cao, Yu Pei, Kadir Akbudak, Aleksandr Mikhalev, George Bosilca,
Hatem Ltaief, David Keyes, and Jack Dongarra. Extreme-Scale Task-Based
Cholesky Factorization Toward Climate and Weather Prediction Applications.
In Proceedings of the Platform for Advanced Scientific Computing Conference,
PASC ’20, New York, NY, USA, 2020. Association for Computing Machinery.
↑ p. 18

[19] Terry Cojean, Abdou Guermouche, Andra Hugo, Raymond Namyst, and Pierre-

104 G. Lucas

https://www.openmp.org

Bibliography

André Wacrenier. Resource Aggregation for Task-based Cholesky Factorization
on top of Modern Architectures. Parallel Comput., 83:73–92, 2019. ↑ pp. 18, 47,
87

[20] Michel Cosnard and Emmanuel Jeannot. Compact DAG Representation and its
Dynamic Scheduling. Journal of Parallel and Distributed Computing, 58(3):487–
514, 1999. ↑ p. 15

[21] Michel Cosnard and Michel Loi. Automatic Task Graph Generation Techniques.
In System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International
Conference on, volume 2, pages 113–122 vol.2, Jan 1995. ↑ pp. 15, 17

[22] Anthony Danalis, George Bosilca, Aurelien Bouteiller, Thomas Herault, and
Jack Dongarra. PTG: An Abstraction for Unhindered Parallelism. In 2014
Fourth International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, pages 21–30, 2014. ↑ p. 15

[23] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. Ompss: A Proposal for Programming
Heterogeneous Multi-Architectures. Parallel Process. Lett., 21(2):173–193, 2011.
↑ p. 16

[24] Hatem Elshazly, Francesc Lordan, Jorge Ejarque, and Rosa M. Badia. Accelerated
Execution via Eager-release of Dependencies in Task-based Workflows. The
International Journal of High Performance Computing Applications, 35(4):325–
343, 2021. ↑ p. 18

[25] Alejandro Fernández, Vicenç Beltran, Xavier Martorell, Rosa M. Badia, Eduard
Ayguadé, and Jesús Labarta. Task-Based Programming with OmpSs and its
Application. In Euro-Par 2014: Parallel Processing Workshops - Euro-Par 2014
International Workshops, volume 8806 of Lecture Notes in Computer Science,
pages 601–612. Springer, 2014. ↑ p. 16

[26] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.0. https://www.mpi-forum.org/docs, 2020. ↑ p. 12

[27] Cong Fu, Xiangmin Jiao, and Tao Yang. Efficient Sparse LU Factorization with
Partial Pivoting on Distributed Memory Architectures. IEEE Trans. Parallel
Distributed Syst., 9(2):109–125, 1998. ↑ p. 46

[28] Thierry Gautier, Fabien Le Mentec, Vincent Faucher, and Bruno Raffin. X-kaapi:
A Multi Paradigm Runtime for Multicore Architectures. In 42nd International
Conference on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013,
pages 728–735, 2013. ↑ pp. 16, 18

[29] Timothy D. R. Hartley, Erik Saule, and Çatalyürek Ümit V. Improving Perfor-
mance of Adaptive Component-based Dataflow Middleware. Parallel Computing,
38(6-7):289–309, 2012. ↑ p. 16

[30] Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra. Dynamic

On the Use of Hierarchical Tasks for Heterogeneous Architectures 105

https://www.mpi-forum.org/docs

Bibliography

Task Discovery in PaRSEC: A Data-Flow Task-Based Runtime. In Proceedings
of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, ScalA ’17, New York, NY, USA, 2017. Association for Computing
Machinery. ↑ p. 17

[31] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
Transactions on Parallel and Distributed Systems, pages 1–1, 2021. ↑ p. 19

[32] Pascal Hénon, Pierre Ramet, and Roman Jean. PaStiX: A High-performance
Parallel Direct Solver for Sparse Symmetric Positive Definite Systems. Parallel
Computing, 28(2):301–321, 2002. ↑ p. 13

[33] Laxmikant V. Kalé and Sanjeev Krishnan. Charm++: A Portable Concurrent
Object Oriented System Based On C++. In OOPSLA, pages 91–108, 1993. ↑ p. 16

[34] Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter. IRIS: A Portable
Runtime System Exploiting Multiple Heterogeneous Programming Systems. In
Proc. of HPEC’21, pages 1–8, 2021. ↑ p. 19

[35] David M. Kunzman and Laxmikant V. Kalé. Programming Heterogeneous Clus-
ters with Accelerators using Object-based Programming. Scientific Programming,
19(1):47–62, 2011. ↑ p. 16

[36] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, 28(9):690–
691, 1979. ↑ p. 25

[37] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting Parallelism
on Heterogeneous Multiprocessors with Adaptive Mapping. In MICRO, pages
45–55, 2009. ↑ p. 16

[38] Marcos Maronas, Kevin Sala, Sergi Mateo, Eduard Ayguadé, and Vicenç Beltran.
Worksharing Tasks: An Efficient Way to Exploit Irregular and Fine-Grained
Loop Parallelism. In Proc. of HiPC’19, pages 383–394, 2019. ↑ p. 18

[39] NVIDIA. Cuda. https://developer.nvidia.com/cuda-toolkit, 2020.
↑ pp. 12, 16

[40] Yu Pei, George Bosilca, and Jack Dongarra. Sequential Task Flow Runtime Model
Improvements and Limitations. In 2022 IEEE/ACM International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS), pages 1–8, 2022.
↑ p. 17

[41] Josep M. Perez, Vicenç Beltran, Jesus Labarta, and Eduard Ayguadé. Improving
the Integration of Task Nesting and Dependencies in OpenMP. In Proc. of
IPDPS’17, pages 809–818, 2017. ↑ p. 19

[42] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism. O’Reilly, 2007. ↑ p. 16

106 G. Lucas

https://developer.nvidia.com/cuda-toolkit

Bibliography

[43] Joseph Schuchart, Poornima Nookala, Thomas Herault, Edward F. Valeev, and
George Bosilca. Pushing the Boundaries of Small Tasks: Scalable Low-Overhead
Data-Flow Programming in TTG. In 2022 IEEE International Conference on
Cluster Computing (CLUSTER), pages 117–128, 2022. ↑ p. 15

[44] Marc Sergent, David Goudin, Samuel Thibault, and Olivier Aumage. Controlling
the Memory Subscription of Distributed Applications with a Task-Based Run-
time System. In 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops, IPDPS Workshops 2016, pages 318–327. IEEE Computer
Society, 2016. ↑ pp. 25, 45

[45] OmpSs-2 specification. Barcelona supercomputing center. https://pm.bsc.es/
ftp/ompss-2/doc/spec, 2023. ↑ p. 16

[46] Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau, and Jean-
François Méhaut. Modeling and Simulation of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-core Architectures. In Fernando M. A. Silva,
Inês de Castro Dutra, and Vítor Santos Costa, editors, Euro-Par 2014 Parallel
Processing - 20th International Conference, Porto, Portugal, August 25-29, 2014.
Proceedings, volume 8632 of Lecture Notes in Computer Science, pages 50–62.
Springer, 2014. ↑ p. 83

[47] Sean Treichler, Michael Bauer, and Alex Aiken. Realm: an Event-based Low-level
Runtime for Distributed Memory Architectures. In International Conference
on Parallel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada,
August 24-27, 2014, pages 263–276, 2014. ↑ p. 16

[48] Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, and Jack Dongarra.
Hierarchical DAG Scheduling for Hybrid Distributed Systems. In Proc. of
IPDPS’15, pages 156–165, 2015. ↑ pp. 18, 19

On the Use of Hierarchical Tasks for Heterogeneous Architectures 107

https://pm.bsc.es/ftp/ompss-2/doc/spec
https://pm.bsc.es/ftp/ompss-2/doc/spec

Publications

Articles in peer-reviewed conferences
[49] Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, Ray-

mond Namyst, Samuel Thibault, and Pierre-André Wacrenier. Programming
Heterogeneous Architectures Using Hierarchical Tasks. In HeteroPar 2022 -
twentieth international workshop, page 12, Glasgow, United Kingdom, August
2022.

National conferences
[50] Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas,

Samuel Thibault, and Pierre-André Wacrenier. Programmation des architectures
hétérogènes à l’aide de tâches hiérarchiques. In COMPAS 2022 - Conférence
francophone d’informatique en Parallélisme, Architecture et Système, Amiens,
France, July 2022.

Journals
[51] Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, Ray-

mond Namyst, Samuel Thibault, and Pierre-André Wacrenier. Programming
Heterogeneous Architectures Using Hierarchical Tasks. Concurrency and Compu-
tation: Practice and Experience, 2023.

Research reports
[52] Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, Ray-

mond Namyst, Samuel Thibault, and Pierre-André Wacrenier. Programming
Heterogeneous Architectures Using Hierarchical Tasks. Research Report RR-9466,
Inria Bordeaux Sud-Ouest, March 2022.

109

	Remerciements
	Résumé
	Introduction
	Background & Related Work
	Task-based programming models
	Runtime systems for modern architectures
	Relaxing the models to face modern problems

	The StarPU Runtime System
	Data structures
	Codelets
	Data handles
	Tasks and jobs

	Building the graph
	Shared memory
	Distributed memory

	Executing the graph
	Submission time and execution time
	Scheduling

	Data management: partitioning operations
	Partitioning data manually
	Automatic data manager

	Conclusion

	The Hierarchical Task Model
	Objectives
	Improving upon the STF model
	Introducing more dynamic task graphs
	Keeping the model simple

	Designing hierarchical tasks for StarPU
	Aiming for generality
	User interface
	Adapting the data layout around hierarchical tasks
	Correctly inserting tasks at runtime
	Fine grain dependencies
	Parallel submission
	Data management for the programmer
	Case of read-only access mode

	Conclusion

	Hierarchical Tasks Implementation
	Foundations of the implementation
	Updating the data structures
	Processing hierarchical tasks
	Processing hierarchical tasks as soon as possible

	Extending the data manager
	Controlling data dependencies
	Partition task insertion
	Unpartition task insertion
	The read-only access mode

	Conclusion

	Experimental Evaluation
	Application of Hierarchical Tasks for Dense Linear Algebra
	Recursive descriptors
	Updating the kernels

	Experimental results
	Experimental settings
	Hierarchical tasks overhead
	Matrix-matrix multiplication
	Cholesky factorization
	LU factorization
	Impact of the dynamic data manager
	Comparison with other frameworks

	First Steps of Hierarchical Tasks toward Distributed Memory
	Introducing shared data
	Automatic pruning
	Communications at runtime
	Conclusion

	Conclusion
	Acknowledgements
	Bibliography
	Publications

