
HAL Id: tel-04317425
https://theses.hal.science/tel-04317425

Submitted on 1 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low carbon footprint intrusion detection in IoT systems
based on Deep Learning algorithms combined with a

metaheuristic
Mohamed Sassi

To cite this version:
Mohamed Sassi. Low carbon footprint intrusion detection in IoT systems based on Deep Learning
algorithms combined with a metaheuristic. Signal and Image Processing. CY Cergy Paris Université,
2023. English. �NNT : 2023CYUN1165�. �tel-04317425�

https://theses.hal.science/tel-04317425
https://hal.archives-ouvertes.fr

CY CERGY PARIS UNIVERSITÉ

DOCTORAL SCHOOL (ED 407)

ECONOMIC, MANAGEMENT, MATHEMATICS, PHYSICS AND

COMPUTER SCIENCES (EM2PSI)

A THESIS
PRESENTED AS A REQUIREMENT TO AIM FOR THE DEGREE OF 3rd

CYCLE DOCTORATE IN SYSTEMS AND INFORMATION AND

COMMUNICATION PROCESSING (STIC)

Low carbon footprint intrusion detection
in IoT systems based on Deep Learning

combined with a metaheuristic

By:

Sassi Mohamed

Defended at 3 may 2023

Approved by supervisory committee:

Jourdan Laeitia Prof. Univ Lille President

Siarry Patrick Prof. Univ Paris-Est Créteil Rapporteur

Barkaoui Kamel Prof. Univ CNAM Rapporteur

Labadi Karim Prof. ECAM-EPMI Examinator

Chelouah Rachid Prof. Univ CY-Tech Supervisor

Davadie Philippe DER PJGN Invited

2

Résumé

Face à la problématique croissante de la cybersécurité des objets connectés (IoT) au sein des réseaux

Wi-Fi d’entreprise et étatique tel que la Gendarmerie nationale, cette thèse expose notre méthode de

conception d’un Système de Détection d’Intrusion (IDS) contre les attaques spécifiques 802.11 et

embarquable dans un IoT aux ressources de calcul et de mémoire limitées. Notre méthode est basée sur

l’optimisation métaheuristique, la sélection des dimensions et les algorithmes Deep Learning.

Le problème d’optimisation de sélection des dimensions est un problème discret de type NP-Hard.

Dans la deuxième partie de cette thèse nous avons donc conçu une nouvelle métaheuristique, Harris Hawk

Optimization Encirclement Attack Synergy (HHO-EAS), en mesure de trouver une bonne solution

acceptable optimale ou proche de l’optimale en un temps raisonnable à cette catégorie de problème

d’optimisation. HHO-EAS est issue d’une stratégie d'hybridation de la métaheuristique Harris Hawk

Optimization (HHO) avec l’ambition de supprimer ses faiblesses dans la résolution des problèmes

d'optimisation hautement multimodaux et de grande dimension. Notre stratégie d’hybridation est

entièrement bio-inspirée par une synergie de chasse gagnant-gagnant inopinée entre deux prédateurs

pendant les périodes hivernales extrêmement difficiles : le corbeau et le loup. Les facultés exploratoires

des corbeaux combinées à la capacité des loups à capturer des proies plus grosses qu'eux avec rapidité et

efficacité, permettent à ces deux prédateurs de détecter et d'attraper de bonnes proies très rares et très

difficiles à chasser en période hivernale rigoureuse. Afin de modéliser mathématiquement cette synergie

de chasse gagnant-gagnant avec les équations d'encerclement et d'attaque et de l'intégrer dans HHO, nous

avons utilisé la logique floue pour créer un système d'inférence floue (FIS) de type Mamdani. HHO-EAS

a été testé d'une part avec HHO, GWO et PSO sur un benchmark général de 19 fonctions bien connues

et d'autre part avec HHO sur un benchmark spécifique des 20 fonctions les plus complexes du CEC 2017.

Les résultats expérimentaux obtenus sur ces deux benchmarks démontrent la supériorité de HHO-EAS

sur HHO pour des problèmes d'optimisation hautement multimodaux et de grande dimension et a ainsi

validé notre stratégie d'hybridation entièrement bio-inspirée.

Disposant de la métaheuristique HHO-EAS en mesure de traiter les problèmes d’optimisation NP-

Hard, la troisième partie de cette thèse est une application concrète de la métaheuristique HHO-EAS pour

concevoir un IDS contre les attaques spécifiques 802.11 au profit des IoT. Nous avons réalisé une

3

méthode de sélection des dimensions de type Wrapper plus avancée que celle que l'on peut retrouver dans

la littérature. Notre méthode est basée sur des algorithmes métaheuristiques, les algorithmes Deep

Learning et l'exploitation de la puissance de calcul de la technologie GPU pour le calcul des valeurs de

la fonction objectif. Pour ce faire nous avons dans un premier temps hybridé la métaheuristique HHO-

EAS pour créer Binary HHO-EAS (BHHO-EAS) adaptée à l'optimisation du problème multi-objectif

NP-Hard de sélection des dimensions de type Wrapper dans un espace de recherche binaire. Puis nous

avons dans un deuxième temps intégré BHHO-EAS à notre nouvelle méthode de sélection des

dimensions Wrapper combinée à l'algorithme Deep Learning Convolutional Neural Network (CNN).

Afin d'être cohérent avec l'évolution technologique des systèmes d'information des entreprises et des

nouvelles attaques Wi-Fi, nous avons appliqué notre méthode au nouveau dataset AWID3. L’objectif

ultime est de concevoir un CNN-IDS, dans un contexte de Green computing, pouvant être embarqué dans

un IoT et qui détecte les sept attaques spécifiques au 802.11: Deauthentication (Deauth), Disassociation

(Disas), ReAssociation ((Re)Assoc), Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation

Attack (Krack) et Kr00k. Les résultats de nos travaux ont conduit à une sélection de 8 dimensions parmi

les 253 du dataset AWID3 et un CNN-IDS avec de très bonnes performances de prédiction des attaques

supérieures à 99,70%. Nos travaux ont ainsi prouvé la capacité de notre méthode pilotée par BHHO-EAS

à fournir une bonne solution au problème d'optimisation multi-objectif NP-Hard de sélection des

dimensions et a contribué au domaine de la cybersécurité des réseaux Wi-Fi d’entreprise en concevant

un CNN-IDS compétitif et suffisamment léger pour être intégré dans un IoT. Dans le cadre d’un Proof of

Concept (PoC) technique, un prototype de CNN-IDS, nommé E-CNN-IDS, a été embarqué et testé en

condition réelle dans un Raspberry Pi 4 Model B. E-CNN-IDS a démontré d’excellentes performances

de détection des attaques spécifiques 802.11.

Mots-clés : Métaheuristique, HHO-EAS, Synergie, Corbeau, Loup, Logique floue, Encerclement,

Attaque, Entreprise, Cybersécurité, Wi-Fi, IoT, IDS, Sélection des dimensions Wrapper, Optimisation

multi-objectif, CNN, GPU, AWID3.

4

Abstract

Faced with the growing problem of cybersecurity of Internet of Things (IoT) within company and

state Wi-Fi networks such as the National Gendarmerie, this thesis presents our method for designing an

Intrusion Detection System (IDS) against 802.11 specific attacks and embeddable in an IoT with limited

computing and memory resources. Our method is based on metaheuristic optimization, feature selection

and Deep Learning algorithms.

The feature selection optimization problem is a discrete NP-Hard type problem. In the second part of

this thesis we have therefore designed a new metaheuristic, Harris Hawk Optimization Encirclement

Attack Synergy (HHO-EAS), able to find a good solution in an acceptable time to this category of

optimization problem. HHO-EAS comes from a hybridization strategy of the Harris Hawk Optimization

(HHO) metaheuristic with the ambition to remove its weaknesses in solving highly multimodal and high-

dimensional optimization problems. Our hybridization strategy is entirely bio-inspired by an unexpected

win-win hunting synergy between two predators during extremely difficult winter periods: the crow and

the wolf. The exploratory faculties of crows, combined with the ability of wolves to capture prey larger

than themselves with speed and efficiency, allow these two predators to detect and catch good prey that

is very rare and very difficult to hunt in rigorous winters. In order to mathematically model this win-win

hunting synergy with encirclement and attack equations and integrate it into HHO, we used fuzzy logic

to create a Mamdani-like fuzzy inference system (FIS). HHO-EAS was tested on the one hand with HHO,

GWO and PSO on a general benchmark of 19 well-known functions and on the other hand with HHO on

a specific benchmark of the 20 most complex functions of the CEC 2017. The experimental results

obtained on these two benchmarks demonstrate the superiority of HHO-EAS over HHO for highly

multimodal and high-dimensional optimization problems and thus validated our fully bio-inspired

hybridization strategy.

Having the HHO-EAS metaheuristic able to deal with NP-Hard optimization problems, the third part

of this thesis is a concrete application of the HHO-EAS metaheuristic to design an IDS against 802.11

specific attacks for the benefit of IoT. We have carried out a more advanced Wrapper feature selection

method than which can be found in the literature. Our method is based on metaheuristic, Deep Learning

5

and the exploitation of the computing power of GPU technology for the calculation of the objective

function values. To do this, we first hybridized the HHO-EAS metaheuristic to create Binary HHO-EAS

(BHHO-EAS) adapted to the NP-Hard multi-objective optimization problem of feature selection in a

binary search space. Then, in a second step, we integrated BHHO-EAS with our new Wrapper feature

selection method combined with the Deep Learning Convolutional Neural Network (CNN) algorithm. In

order to be consistent with the technological evolution of company information systems and new Wi-Fi

attacks, we applied our method to the new AWID3 dataset. The ultimate goal is to design a CNN-IDS, in

a Green computing context, that can be embedded in an IoT and that detects the seven 802.11 specific

attacks: Deauthentication (Deauth), Disassociation (Disas), ReAssociation ((Re)Assoc), Rogue Access

Point (Rogue AP), Evil Twin, Key Reinstallation Attack (Krack) and Kr00k. The results of our work led

to a selection of 8 features among the 253 of the AWID3 dataset and a CNN-IDS with very good

performance in attack prediction above 99.70%. Our work thus proved the ability of our method, driven

by BHHO-EAS, to provide a good solution to the NP-Hard multi-objective optimization problem of

feature selection and contributed to the field of cybersecurity in company Wi-Fi networks by designing

a competitive CNN-IDS that is light enough to be integrated into an IoT. As part of a technical Proof of

Concept (PoC), a CNN-IDS prototype, named E-CNN-IDS, was embedded and tested in real conditions

in a Raspberry Pi 4 Model B. E-CNN-IDS demonstrated excellent performance in detecting 802.11

specific attacks.

Keywords: Metaheuristics, HHO-EAS, Synergy, Crow, Wolf, Fuzzy Logic, Encirclement, Attack,

Company, Cybersecurity, Wi-Fi, IoT, IDS, Wrapper feature selection, Multi-objective Optimization,

CNN, GPU, AWID3.

6

Acknowledgements

First and foremost, I would like to thank my thesis director Rachid Chelouah who believed in me from

the start and enabled me to fulfill my dearest professional dream: a thesis in the favorite and most strategic

fields of our century, which are Cybersecurity and Artificial Intelligence. During these four years, Rachid

has always been available seven days a week, even during his holidays. He was able to guide me,

encourage me and give me the necessary impulses during my thesis. I send you a thousand thanks Rachid.

At the beginning of my thesis, I focused on metaheuristic algorithms because I was sure that they

represented the keystone of my research. I have therefore studied with great interest several scientific

works on metaheuristics. However, only one author was able to bring these algorithms to life, reveal their

real potential and inspire me with the strategy to adopt for the design of my metaheuristics: Patrick Siarry,

university professor at the University of Paris-Est Créteil. I would never even hope that I would have the

great honor of having Patrick Siarry become a member of the thesis follow-up committee and the thesis

jury. I would like to express my most sincere thanks to Patrick Siarry.

I would also like to thank Kamel Barkaoui, university professor at the CNAM, for agreeing to be the

rapporteur for my thesis.

Finally, I would like to thank my wife and four children for their unwavering support and patience

over the past four years. In addition to my extremely time-consuming professional responsibilities, they

accepted that I devote all my rest days and holidays to my thesis work. To my wife, I dedicate all of my

thesis work to her.

7

Contents

General introduction .. 12

1. Generalities about optimization and metaheuristics ... 16

1.1. Introduction ... 16

1.2. Definition of optimization ... 16

1.3. Computational complexity theory of optimization problems .. 17

1.4. Mono-objective optimization .. 18

1.4.1. Mathematical expression of a mono-objective problem .. 18

1.4.2. Definition of global and local optimum .. 19

1.4.3. Illustration of global and local optimums in a real case of optimization problem 20

1.4.4. Taxonomy of mono-objective optimization methods .. 20

1.5. Multi-objective Optimization .. 22

1.5.1. Mathematical expression of a multi-objective problem... 22

1.5.2. Particularities of multi-objective optimization problems .. 23

1.5.3. Role of the decision maker in multi-objective optimization ... 24

1.5.4. Definition of dominance in a context of multi-objective optimization 27

1.6. Metaheuristics ... 32

1.6.1. Definition of a heuristic ... 32

1.6.2. Definition of a metaheuristic ... 32

1.6.3. Common specificities of metaheuristics .. 33

1.6.4. The curse of parameters ... 33

1.6.5. Mathematical interest of metaheuristics for the NP-Hard optimization problems 38

1.6.6. The limits of metaheuristics via the No Free Lunch theorem ... 39

1.6.7. Classification of metaheuristics ... 40

1.6.8. Exploration and exploitation ... 41

1.6.9. Metaheuristics hybridization ... 44

1.7. Conclusion ... 46

2. Conception of the metaheuristic HHO-EAS for highly multimodal and high-dimensional

optimization problems ... 48

2.1. Introduction ... 48

2.2. Harris Hawk Optimization .. 49

2.2.1. HHO Inspiration .. 50

8

2.2.2. Search phase (Exploration) .. 50

2.2.3. Attack Phase (Exploitation) ... 50

2.2.4. HHO Algorithm ... 51

2.2.5. The HHO’s weaknesses and improvement attempts ... 57

2.3. Our contribution HHO-EAS a new population based metaheuristic inspired from the nature

 61

2.3.1. Inspiration from the nature .. 61

2.3.2. Our contribution HHO-EAS .. 63

2.4. Experiment and discussion .. 86

2.4.1. Analytical working station setup ... 87

2.4.2. Programming language .. 87

2.4.3. Benchmark functions ... 87

2.4.4. Metaheuristic parameters ... 88

2.4.5. Performance metrics .. 90

2.4.6. Experimental results on the general benchmark tests .. 90

2.4.7. Experimental results on the CEC 2017 specific benchmark tests 92

2.5. Conclusion ... 94

3. Elaboration of an intrusion detection system against 802.11 specific attacks with BHHO-EAS and

the Wrapper feature selection method ... 97

3.1. Introduction ... 97

3.2. Overview of Intrusion Detection Systems and specification of the CNN-IDS 98

3.2.1. Definition of an Intrusion .. 98

3.2.2. Description of the main modules required for IDSs .. 99

3.2.3. The three main classes of IDS and their detection method ... 100

3.2.4. CNN-IDS defense strategy and specification .. 101

3.3. Related work .. 102

3.4. Design of BHHO-EAS for a efficient Wrapper feature selection process 110

3.4.1. Description of the feature selection process .. 110

3.4.2. Binary vector initialization strategies .. 114

3.4.3. Flow chart of the feature selection process ... 116

3.4.4. Design of the binary metaheuristic BHHO-EAS ... 117

3.5. Application of BHHO-EAS to design a CNN-IDS specific to 802.11 attacks 125

3.5.1. Mathematical modeling of the Wrapper feature selection process in a multi-objective

optimization problem ... 125

9

3.5.2. Convolutional neural network for the creation of a CNN-IDS .. 127

3.5.3. Analysis of the AWID3 dataset ... 131

3.5.4. Preprocessing of the dataset AWID3... 132

3.6. Experimental results and discussion .. 138

3.6.1. Analytical working station setup and IoT environment .. 140

3.6.2. Experimental parameters and performance metrics .. 141

3.6.3. The 5 steps to implement Wrapper feature selection process driven by BHHO-EAS 147

3.6.4. Results and discussion ... 148

3.7. Conclusion ... 153

General conclusion .. 155

Appendix 1: General benchmark functions ... 161

Appendix 2: Optimisation results of HHO-EAS against HHO, GWO and PSO on the general benchmark

of 19 functions for dimension 2, 30,100 and 1000 .. 166

Appendix 3: Graphical representation of the general test results .. 174

Appendix 4: Optimisation results of HHO-EAS against HHO on the specific benchmark of 20 functions

from CEC 2017 for dimension 100 ... 178

Appendix 5 : Wilcoxon test, p-values results,Wilcoxon rank-sum test with 5% significance 185

Appendix 6 : HHO Algorithm ... 186

Appendix 7 : HHO-EAS Algorithm .. 187

Appendix 8: BHHO-EAS Algorithm .. 188

Appendix 9: Wrapper features selection architecture .. 189

Appendix 10: Diagramme and 2D architecture of CNN-IDS ... 190

Appendix 11: Experimental results of BHHO-EAS .. 191

Appendix 12: Performances of the IDS trained with AWID3 dataset .. 193

Appendix 13: Performances of the E-CNN-IDS embedded on a Raspberry Pi 4 196

References ... 198

10

List of Abbreviations

ABC: Artificial Bee Colony

ACO: Ant Colony Optimization

AP: Access Point

AWID: Aegean Wi-Fi Intrusion Dataset

BA: Bat Algorithm

BHHO-EAS: Binary Harris Hawk Optimization Encirclement Attack Synergy

BOA: Base Optimization Algorithm

BSSID: Basic Service Set IDedntifier

CNN: Convolutional Neural Network

CNN-IDS: Convolutional Neural Network Intrusion Detection System

DE: Differential Evolution

DOE: Design Of Experiment

E-CNN-IDS: Embedded Convolutional Neural Network Intrusion Detection System

EMA: Electromagnetism Mecanism Algorithm

FIS: Fuzzy Inference System

FISREE: Fuzzy Inference System Rabbit Escaping Energy

GA: Genetic Algorithm

GP: Genetic Programming

GRASP: Greedy Randomized Adaptive Search Procedure

GSA: Gravitational Search Algorithm

GWO: Grey Wolf Optimizer

HHO: Harris Hawk Optimization

HHO-EAS: Harris Hawk Optimization Encirclement Attack Synergy

HMS: Human Mental Search

ICA: Imperialist Competitive Algorithm

IDS: Intrusion Detection System

11

IoT: Internet of Things

IP: Internet Protocol

IWO: Invasive Weed Optimization

LCA: League Championship Algorithm

MAC: Media Access Control

MOOP: Multi-Objective Optimization Problem

OSI: Open Systems Interconnection

PoC: Proof of Concept

PSO: Particle Swarm Optimization

REE: Rabbit Escaping Energy

SA: Simulated Annealing

SCA: Sine Cosine Algorithm

SLC: Soccer League Competition

SSA: Squirrel Search Algorithm

SSID: Service Set IDentifier

STA: Station

TLBO: Teaching Learning Based Optimization

VNS: Variable Neighborhood Search

Wi-Fi: Wireless Fidelity

WWO: Water Wave Optimization

12

General introduction

Technological progress has enabled companies as well as state administrations to integrate a

movement of upward digitization in their work organization methods. IoT plays a key role in this

evolution: Smart phones, drones, connected watches, tablets, laptops, connected screens, connected

lamps, nano computer, etc. Along with Bluetooth, Wi-Fi (IEEE 802.11 standard) is one of the wireless

protocols most used by IoT. However, this protocol is subject to several 802.11 specific cyber-attacks

and the wireless specificity of this protocol only facilitates the action of cyberattackers. Moreover, given

that in companies’ information systems the Wi-Fi wireless network coexists with the wired network,

hackers can use it as a gateway to extend their attacks on the latter. Therefore, in companies’ information

systems, the Wi-Fi network represents an attack surface that can cause very serious consequences for the

company. The literature does very little about the consequences of these Wi-Fi cyberattacks on the

companies:

 Unavailability of computer services hosted on its network: Web servers, E-mail, data

exchange, etc.;

 Theft or destruction of sensitive data: customer files, passwords, medical data, etc.;

 Damage to the image of the company;

 Financial loss;

 Judicial backlash due to illicit access to company computer systems and dissemination of

sensitive company data.

To deal with these constantly evolving threats, IoT systems must be able to have a smart cyber-defense

system allowing the detection of attacks. These systems are called Intrusion Detection System (IDS). The

design of the IDS must exploit a distinct approach from traditional signature-based IDSs in order to satisfy

two main objectives:

 Maximize real-time detection performance against known and unknown 802.11 specific

attacks;

 Request a minimum of computing and memory resources in order to allow the IDS to be

embedded in an IoT.

13

Mathematically, we must therefore solve a multi-objective optimization problem. But, as this

manuscript demonstrates, the complexity of this multi-objective optimization problem belongs to the NP-

Hard class. In order to solve this complex optimization problem, we have focused in this thesis on the

potential of metaheuristic algorithms. These algorithms are the first important point of this thesis and

constitute the keystone of our work. Unlike classical optimization methods, metaheuristics, such as

Particle Swarm Optimization (PSO), Differential Evolution (DE) or Harris Hawk Optimization (HHO)

consider the optimization problem as a black box whatever its internal mathematical specificities.

Furthermore, they make it possible to obtain in an acceptable time a good solution to NP-Hard

optimization problems. However, metaheuristics are likely to show weaknesses when faced with the

growth of the dimension and the multimodality of the optimization problem. This particularly concerns

feature selection problems that fall victim to the curse of dimensionality. This problem is one of the

components of the multi-objective optimization problem of this thesis.

In order to defend ourselves against cyber threats targeting IoT systems exploiting Wi-Fi within the

companies' information systems and state administration information systems, the work presented in this

thesis manuscript provides contributions in the following three fields: metaheuristic algorithms, feature

selection algorithms and cybersecurity.

In the field of metaheuristic algorithms, we designed two new metaheuristics: HHO-EAS (Harris

Hawk Optimization – Encirclement Attack Synergy) [Sassi M et al., 2023] and BHHO-EAS (Binary

HHO-EAS).

With the ambition of meeting the cybersecurity challenges of this thesis, the new metaheuristic HHO-

EAS was designed via a new hybridization strategy entirely bio-inspired by the hunting synergy between

crows and wolves during the harsh winter periods. We will see on two benchmarks that HHO-EAS,

compared to three well-known metaheuristics including PSO, GWO and HHO, demonstrates very good

performances on high-dimensional (greater than 100) and highly multimodal optimization problems. The

promising results obtained at this stage of our works made it possible to validate the use of HHO-EAS

for the feature selection problems and the design of a CNN-IDS (Convolutional Neural Network Intrusion

Detection System) against the 802.11 specific attacks.

14

The feature selection optimization problems of high-dimensional datasets are of NP-Hard type within

a discrete binary search space. In order to allow HHO-EAS to solve this category of problem, we

hybridized it while keeping its algorithmic and mathematical strategy to create BHHO-EAS.

In the field of feature selection algorithms and cybersecurity, to design our CNN-IDS, we improved

the Wrapper feature selection system by integrating the ability to exploit all metaheuristics, all Deep

Learning algorithms, all kind of dataset as well as GPU technology. In the applicative part of this

manuscript which is the second important point of this thesis, our system thus allowed us on one hand,

to benefit from the superior predictive skills of Deep Learning algorithms instead of traditional Machine

Learning algorithms commonly observed in the literature for the feature selection. And on the other

hand, during the feature selection process driven by the metaheuristic BHHO-EAS, the latter is able to

exploit the computing power of the GPUs when calculating the objective function values for each agent

of BHHO-EAS and of the CPUs for updating their positions in the binary search space.

In a supervised learning context, we have focused our attention on the Deep Learning Convolutional

Neural Network (CNN) algorithms for their excellent attack prediction skills and their inherent

capabilities in their architecture to be embedded in an IoT.

Concerning the dataset, thanks to the excellent work of the researchers from the Greek Aegean

University, the new AWID3 dataset (Aegean Wi-Fi Intrusion Dataset 3) was created in 2021. Much

more complex, adapted to the technical specificities of companies' information systems and richer in

Wi-Fi attacks than its predecessor AWID2, the AWID3 dataset makes it possible to create IDSs against

very recent 802.11 specific attacks targeting companies' information systems. Furthermore, at the time

of writing this manuscript, we are the first to applied a metaheuristic optimization method to the feature

selection of AWID3 dataset. Indeed, in the literature, no feature selection via metaheuristic optimization

methods were used on the AWID3 dataset.

The results of our feature selection method and design of a CNN-IDS against 802.11 specific attacks

were compared to the work of Chatzoglou E. et al. in [Chatzoglou E et al., 2022a] recognized by the

community of researchers and which are the only ones to be in the same dominants as ours. For a fair

comparison between the 4 best IDS of [Chatzoglou E et al., 2022a] and our CNN-IDS, the performance

measures are based on AUC and F1 metrics as well as the Confusion matrix and the number of features

15

selected from the AWID3 dataset. The experimental results demonstrated that our CNN-IDS provides

extremely competitive results compared to the 4 best IDS of [Chatzoglou E et al., 2022a]. And in order

to prove the ability of our CNN-IDS to be embedded in an IoT environment with limited computing and

memory resources, we carried out a technical Proof of Concept (PoC) on a Raspberry Pi 4.

In line with our objectives set out above, our thesis manuscript is organized into three chapters. First

of all, in order to understand the mathematical challenges of optimization problems and the advantages

of metaheuristics in solving these problems, we provided in the first chapter a general presentation of

mono-objective and multi-objective optimization problems as well as metaheuristics algorithms.

In the second chapter we present our design strategy of the new metaheuristic HHO-EAS for solving

high-dimensional and highly multimodal optimization problems and its performances on general and

specific benchmarks. Our design strategy is based on a hybridization entirely bio-inspired by the hunting

synergy between crows and wolves.

The third chapter is the application of HHO-EAS to IoT cybersecurity within companies’ information

systems. We explain our hybridization method of HHO-EAS to design BHHO-EAS, thus allowing it to

solve the NP-Hard multi-objective optimization problems of feature selection. Thus, BHHO-EAS drives

our Wrapper feature selection method and selects the most relevant AWID3 feature subset that maximizes

the prediction performance of CNN-IDS while minimizing its complexity in order to be integrated into

an IoT with limited computing and memory resources. We will conclude this thesis by recalling our

contributions and detailing the promising perspectives for our future work.

The second and third chapters of our thesis have both been the subject of an article submitted to the

journal Artificial Intelligence Review. The first article has been validated and accepted for publication

[Sassi M et al., 2023]. We have also written Chapter 3 of the book Optimization and Machine Learning:

Optimization for Machine Learning and Machine Learning for Optimization [Sassi M, 2022] which

describes the synergy between metaheuristics and the feature selection process for the design of an IDS.

16

Chapter 1

1. Generalities about optimization and metaheuristics

1.1. Introduction

Optimization problems are encountered on a daily basis regardless of the sector of activity. A business

manager wants his schedule for the week to take into account all the assignments of the week while taking

into account the constraints imposed by his employees and minimizing operating costs. The traveler

salesman will want to deliver to all their customers as quickly as possible by choosing the shortest route

and consuming as little fuel as possible. Finally, electronics engineers, forced by the inflation of metal

prices, seek to create electronic boards using as little metal as possible while connecting all the

components of the electronic board.

In order to satisfy these needs, engineers implement optimization methods. Metaheuristics are among

the most powerful and exploited optimization methods to solve optimization problems categorized as

NP-Hard. This class of problems are insurmountable for other "classical" optimization methods. In this

chapter, after mathematically defining optimization and the computational complexity theory in the

sections 1.2 and 1.3, we will provide a general description of mono-objective optimization in section 1.4.

Since real-world optimization problems must satisfy multiple objectives, which is the case of the subject

of this thesis, we will present in section 1.5 a general description of the multi-objective optimization

problems (MOOPs). Then we will provide in section 1.6 a general review of the keystone algorithms of

this thesis: metaheuristics.

1.2. Definition of optimization

Optimization is defined as "the search for the minimum or the maximum of a given function" [Siarry

P et al., 2002a]. It is therefore a question of finding a data vector representing candidate decision variables

which minimizes or maximizes the objective function(s). The objective function(s) mathematically model

the optimization problem to be solved. In addition, optimization problems are very often limited by

equality or inequality constraints that must be taken into account in the decision variables of the problem.

We thus obtain a constrained optimization problem for which the decision variables fluctuate in a

restricted search space. And depending on the possibilities of assigning the values of the decision

17

variables, whether they are limited by discrete values in ℤ+ or unlimited by continuous values in ℝ, the

problem is respectively categorized as a combinatorial, integer variable or continuous [Singh P et al.,

2021].

This general definition applies to both categories of optimization problem depending on whether the

problem must satisfy one or more objective functions. If there is only one objective function, the

optimization is said to be mono-objective. On the other hand, if there are several objective functions, the

optimization will be multi-objective. But before addressing these two categories of problem it is necessary

to appreciate their level of complexity.

1.3. Computational complexity theory of optimization problems

In chapter 3 of this thesis we analyze and deal with feature selection problem whose computational

complexity is categorized as 𝑁𝑃-Hard. In order to measure the complexity of this category of problem

it is essential above all to define the fundamental notions of the theory of the complexities of

optimization problems.

We distinguish two main classes of problem: 𝑃 and 𝑁𝑃 [Du D et al., 2014; Izadkhah H, 2022;

Rabbouch B et al., 2023]. These two classes discriminate the problems according to whether it is

possible or not to solve them by a deterministic polynomial algorithm. More precisely does there exist

a polynomial of degree m which dominates the time of resolution of the problem or not?

A problem belongs to class 𝑃 (Polynomial) if there is a deterministic algorithm that can solve this

problem exactly in polynomial time. An example of a well-known class 𝑃 problem is that of Linear

Search. As a consequence of the above, a candidate solution to this problem of class 𝑃 can be verified

in polynomial time is therefore 𝑃 a subset of the problem class 𝑁𝑃 (𝑃 ⊂ 𝑁𝑃).

A problem belongs to the class 𝑁𝑃 (Non-deterministic Polynomial) if it can be solved by a non-

deterministic polynomial algorithm and we can verify a candidate solution to this 𝑁𝑃 problem in

polynomial time. A classic example of an 𝑁𝑃 problem is the Traveling Salesman Problem TSP.

Among the 𝑁𝑃 class problems we can find the most complex problems: 𝑁𝑃-Complete (𝑁𝑃𝐶) and

𝑁𝑃-Hard. 𝑁𝑃-Hard problems find several definitions in the literature that can overlap globally. The one

18

that is the most precise and the most adequate to this thesis is the one that follows [Siarry P, 2014a]. We

distinguish the cases where the optimization problem is discrete or continuous:

 A continuous optimization problem is class 𝑁𝑃-Hard if we don't know algorithm to find the

exact solution with certainty in a limited computation time. This case is encountered for

high-dimensional and highly multimodal engineering optimization problems.

 A discrete optimization problem of dimension 𝐷 is 𝑁𝑃-Hard if there is no integer 𝑚 allowing

to dominate the solving time by 𝐷𝑚. This is the case for the feature selection problem whose

resolution time is an exponential function of the dimension of the problem.

As for problems the 𝑁𝑃𝐶 problem class they are both 𝑁𝑃 and 𝑁𝑃-Hard.

We are now able to appreciate the complexity of an optimization problem, especially if it is 𝑁𝑃-

Hard, whether it is mono-objective or multi-objective.

1.4. Mono-objective optimization

1.4.1. Mathematical expression of a mono-objective problem

As we have just stated above, optimization in a d-dimensional search space consists of finding a subset

of optimal decision variables in order to minimize or maximize an objective function that mathematically

models the optimization problem [Cuevas E et al., 2021b].

A mono-objective optimization problem under constraints is mathematically expressed as follows in

(1.1) [Houssein EH et al., 2021b; Khanduja N et al., 2021; Singh P et al., 2021]:

 One mono-objective function 𝑓 to minimize (or to maximize) in a d-dimensional search

space;

 A vector �⃗� of p inequality constraints 𝑔𝑘;

 A vector ℎ⃗⃗ of q equality constraints ℎ𝑗.

19

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒): 𝑓(𝑥)
𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑔𝑘(𝑥) ≤ 0 , 𝑘 ∈ {1, . . , 𝑝}

𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: ℎ𝑗(𝑥) = 0 , 𝑗 ∈ {1, . . , 𝑞}

𝑥 = (𝑥1, … , 𝑥𝑖,… . , 𝑥𝑑), 𝑖 ∈ {1, . . , 𝑑}

 𝑥𝑖 ∈ [𝑙𝑖; 𝑢𝑖] , 𝑥 ∈ 𝑆
𝑑

�⃗⃗⃗�(𝑥) = (𝑔1,… , 𝑔𝑘, … . , 𝑔𝑝)

ℎ⃗⃗⃗(𝑥) = (ℎ1, … , ℎ𝑗, … . , ℎ𝑞)

 (1.1)

𝑙𝑖 and 𝑢𝑖 represent respectively the lower and upper bounds of the search space of the decision variable

𝑥𝑖. 𝑙𝑖 and 𝑢𝑖 are also the components of the vectors 𝑳 and 𝑼 of dimension d. 𝑳 and 𝑼 thus create a hyper

rectangular domain 𝑆𝑑. Furthermore, to be more comprehensive, the space where the search space and

all the constraints are taken into account is the realizable value space ℵ𝑑.

The optimization problem can be split into two categories depending on the existence of local optima

in the objective function 𝑓. An optimization problem with a unique global optimum is said to be

unimodal. While an optimization problem with one or more local optima and one or more global optima

is said to be multimodal.

1.4.2. Definition of global and local optimum

We distinguish three types of optimum: global optimum, strict local optimum and weak local

optimum [Siarry P et al., 2002a].

 A global optimum 𝑥𝑔 is a global minimum (or a global maximum) of the objective function

𝑓 if

∀ 𝑥 ∈ 𝑆𝑑 , 𝑥 ≠ 𝑥𝑔 | 𝑓(𝑥𝑔) ≤ 𝑓(𝑥) (or 𝑓(𝑥𝑔) ≥ 𝑓(𝑥) if maximum)

 Similarly, a local optimum 𝑥𝑤 is a weak local minimum (or a weak local maximum) of the

objective function 𝑓 if there exists a neighborhood 𝑁(𝑥𝑤) of 𝑥𝑤 defined by: 𝑥 ∈

𝑁(𝑥𝑤), ∃ ε > 0 | ‖𝑥 − 𝑥𝑤‖ < ε.

Thus ∀ 𝑥 ∈ 𝑁(𝑥𝑤), 𝑥 ≠ 𝑥𝑤| 𝑓(𝑥𝑤) ≤ 𝑓(𝑥) (or 𝑓(𝑥𝑤) ≥ 𝑓(𝑥) if local maximum).

 And a local optimum 𝑥𝑠 is a strict local minimum (or a strict local maximum) of the objective

function 𝑓 if there exists a neighborhood 𝑁(𝑥𝑠) of 𝑥𝑠 such that

∀ 𝑥 ∈ 𝑁(𝑥𝑠), 𝑥 ≠ 𝑥𝑠| 𝑓(𝑥𝑠) < 𝑓(𝑥) (or 𝑓(𝑥𝑠) > 𝑓(𝑥) if strict local maximum)

20

We will exploit these mathematical definitions in what follows by a simple example of optimization

problem.

1.4.3. Illustration of global and local optimums in a real case of optimization problem

In order to illustrate the global and local minima on a concrete case of an optimization problem, let

us take the example of the function 𝑓(𝑥) = ∑ 𝑎𝑗 . 𝑥
𝑗20

𝑗=0 . 𝑓 is a polynomial whose coefficients 𝑎𝑗 are

created using the least squares method of [Krueger M, 1990]. Moreover, ∀𝑥 ∈ [0,1], 𝑓(𝑥) ∈ [0,1]. The

curve of function 𝑓 is illustrated in Fig. 1.1.

Fig. 1.1. Polynomial function 𝑓 with one variable [Chelouah R, 2000]

The particularity of the function 𝑓 is that it has in [0,1] , five diversified local minima.

 A global minimum 𝑋2 equal to 0.4666 with 𝑓(𝑋2) = 0.01048;

 A strict local minimum 𝑋1 with 𝑓(𝑋1) almost equal to 𝑓(𝑋2) and positioned in a wider

valley ;

 Three strict local minimums 𝑋3, 𝑋4 et 𝑋5 with values 𝑓(𝑋3), 𝑓(𝑋4) and 𝑓(𝑋5) far from

equaling 𝑓(𝑋2) and positioned in wide valleys for 𝑋3, 𝑋4 and a narrow valley for 𝑋5;

 No weak local minimum.

To solve mono-objective optimization problems, mathematics offers a wide range of possibilities.

1.4.4. Taxonomy of mono-objective optimization methods

The range of mathematical methods for solving mono-objective problems is substantial. As we

explained in the definition of optimization above, these methods can be divided into two categories:

combinatorial or discrete methods and continuous methods. Combinatorial methods exploit a

21

permutation of finite set of numbers as decision variables. The Traveling Salesman problem is a classic

example. And discrete methods exploit discrete values as decision variables as in the Binary feature

selection problem. It includes exact and approximate methods. Exact methods such as Branch and

Bound [Hillier FS et al., 1995] or Simplex method [Nash JC, 2000] make it possible to obtain the exact

global optimum of certain "simple" optimization problems with a search space that is not very complex

and of small and medium dimension. On the contrary, approximate methods such as Heuristics and

Metaheuristics [Ahmed F et al., 2021; Houssein EH et al., 2021b]are used for so-called "difficult"

optimization problems.

Continuous methods as their name suggests exploit continuous decision variables. They make it

possible to deal with linear and nonlinear optimization problems. Linear optimization problems are

solved by linear programming methods. And nonlinear optimization problems also include so-called

"difficult" problems that can be solved, according to their mathematical specificities, either with local

methods such as Gradient based ones or global methods such as Metaheuristics.

Fig. 1.2 provides the taxonomy of mono-objective optimization methods that we have just exposed.

Fig. 1.2. Taxonomy of optimization methods for mono-objective problems [Chelouah R, 2000; Siarry

P et al., 2002a]

22

We now have an exhaustive view of mono-objective optimization problems and their methods for

solving them. However, real-world optimization problems are not satisfied with only a single objective

to be satisfied but with a multitude of contradictory objectives. These are called multi-objective problems.

1.5. Multi-objective Optimization

Real-world engineering optimization problems typically require consideration of multiple adversarial

optimization sub problems and just like single-objective problems, this requires taking into account

several decision variables. For example, a carpenter who has to build a plastic board with the least

possible deformation and the smallest possible section. These optimization problems are said to be multi-

objective [Alkebsi K et al., 2020; Houssein EH et al., 2021b; Abdollahzadeh B et al., 2022; Toloo M et

al., 2022a]. This is also the case of the optimization problem which constitutes the mathematical modeling

of the objectives of our thesis: satisfying both strategic objectives of maximizing the cybersecurity

performance of an IDS and integrating it into an IoT with limited computing and memory resources. In

order to better understand this vital contemporary problem, it is essential to have the theoretical

fundamentals of multi-objective optimization.

1.5.1. Mathematical expression of a multi-objective problem

The mathematical expression of a multi-objective optimization problem (MOOP) is similar in form

to that of a single-objective optimization problem. The fundamental difference is that we no longer have

to deal with single objective but with a vector of functions composed of several objective functions.

A multi-objective optimization problem under constraints in real life is mathematically expressed as

follows in (1.2) [Al-Tashi Q et al., 2020; Rodríguez MA et al., 2020; Houssein EH et al., 2021b;

Khanduja N et al., 2021; Panagant N et al., 2021; Yu X et al., 2022]:

 A vector 𝑓 of n objective function 𝑓𝑙 to minimize or to maximize in a d-dimensional search

space, with n>1;

 A vector �⃗� of p inequality constraints 𝑔𝑘;

 A vector ℎ⃗⃗ of q equality constraints ℎ𝑗.

23

{

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒): 𝑓(𝑥)

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: �⃗�(𝑥) ≤ 0

𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: ℎ⃗⃗(𝑥) = 0

𝑥 = (𝑥1, … , 𝑥𝑖, … . , 𝑥𝑑), 𝑖 ∈ {1, . . , 𝑑}

 𝑥𝑖 ∈ [𝑙𝑖; 𝑢𝑖] , 𝑥 ∈ 𝑆
𝑑

𝑓(𝑥) = (𝑓1, … , 𝑓𝑙 , … . , 𝑓𝑛), 𝑙 ∈ {1, . . , 𝑛}

�⃗�(𝑥) = (𝑔1, … , 𝑔𝑘 , … . , 𝑔𝑝), 𝑘 ∈ {1, . . , 𝑝}

ℎ⃗⃗(𝑥) = (ℎ1, … , ℎ𝑗, … . , ℎ𝑝), 𝑗 ∈ {1, . . , 𝑞}

 (1.2)

As in mono-objective optimization, 𝑙𝑖 and 𝑢𝑖 represent respectively the lower and upper bounds of the

research space of the decision variable 𝑥𝑖. And 𝑆𝑑, ℵ𝑑.and F d are respectively the search space, the

realizable value space and the objective function space. These three spaces are illustrated in Fig. 1.3 for

d=2. Fig. 1.3 illustrates the evolution of the search space 𝑆2 to ℵ2 when we apply the constraints of the

optimization problem then to the objective function space F 2 when we apply the two objective functions

(𝑓1, 𝑓2). We also provide, via the color codes green triangle, yellow square, red circle and blue star, the

Pareto fronts of the four types of bi-objective optimization problem Min-Min, Min-Max, Max-Max and

Max-Min.

Fig. 1.3. Search space, realizable value space and objective function space for d=2 and n=2

Compared to mono-objective optimization problems, multi-objective problems are distinguished by

several mathematical particularities.

1.5.2. Particularities of multi-objective optimization problems

The first particularity that we have already mentioned above is that multi-objective optimization

problems require minimizing or maximizing n objective functions which are generally contradictory,

while taking into consideration constrained function vectors. This concretely means that a decision vector

24

𝑥 which decreases the value of one of the component objective functions will increase the value of

another.

The second feature stems from the first. Given the contradictory nature of objective functions, solving

a multi-objective problem generates several non-optimal solutions. Indeed, each of these solutions

represents a compromise between the different objectives of the problem. So, they cannot minimize or

maximize all the n objectives. On the contrary, some of the objectives will be devalued in favor of others

which will come closer to the expected results. Therefore, we can notice that the notion of good solution

is not as obvious as for mono-objective problems.

The third particularity is linked to the vector character of the objective function 𝑓. This creates an n-

dimensional objective function space. Fig. 1.3 illustrates this space for 𝑑 = 2 and 𝑛 = 2.

The fourth and last particularity is the introduction of a decision maker in the strategy of solving a

multi-objective problem. We will detail the role of this decision maker in what follows.

1.5.3. Role of the decision maker in multi-objective optimization

The decision maker is a crucial actor in the process of multi-objective optimization. If the decision

maker has a good strategy, he can come up with very competitive solutions. There are three main

approaches for the decision maker [Siarry P et al., 2002a; Donoso Y et al., 2016; Toloo M et al., 2022b] :

A priori, A posteriori and Interactive.

A. A priori

In the A priori case, the objective functions do not have the same importance for the decision maker.

Thus he makes arbitration choices on the 𝑛 objectives to be achieved before the start of the optimization

in order to define the tradeoff between the 𝑛 objectives. This is the case, for example in the weighted sum

method (or scalar method). The decision maker sets a weight for each objective function according to

their importance and aggregates them. We therefore move from a multi-objective problem to a mono-

objective problem. For example, for a bi-objective optimization problem (𝑓1, 𝑓2) the decision maker will

assign them the weights (𝑤1, 𝑤2) and aggregate them to obtain the unique objective function 𝑓 =

𝑤1. 𝑓1+𝑤2. 𝑓2.

25

B. A posteriori

Contrary to the A priori approach, in the A posteriori approach the decision maker has no appreciation

on the objective functions, thus he gives them the same importance. We therefore remain in a multi-

objective context until the end of the optimization process. This approach can be applied with a

metaheuristic algorithm such as Multi-Objective Particle Swarm Optimization (MOPSO) [Bouchaala A

et al., 2022]. However, the complexity and computation time of this approach is much greater than the A

priori approach. At the end of the optimization process, the decision maker must choice the best solution

in line with his target. It is therefore necessary for him to have a method of ranking Pareto solutions.

Taguchi's quadratic loss function, based on socio-economic criteria, allows this classification [STeele S

et al., 1988; Baron C et al., 2005; Chelouah R et al., 2007; Chelouah R et al., 2009]. Taguchi's quadratic

loss function consists of a weighted sum of the costs of the decision variables. This Loss function

considers that deviations from the target is a loss which increases quadratically with respect to the target

[Yu FJ et al., 2009]. For the case of a 2-dimensional search space, the Taguchi's quadratic loss function

is represented by the 2 equations (1.3) and (1.4) below [Chelouah R et al., 2009]:

𝐶 = 𝑂 + ∆= (
𝑐1
𝑐2
) = (

𝑜1
𝑜2
) + (

𝛿1
𝛿2
) = (

𝑜1
𝑜2
) + (

𝑘1(𝑒1 − 𝑥1)
2

𝑘2(𝑒2 − 𝑥2)
2) (1.3)

𝐺 = ∑ 𝑐𝑖 = ∑ 𝑜𝑖 + ∑ 𝛿𝑖 =
2
𝑖=1

2
𝑖=1

2
𝑖=1 ∑ 𝑜𝑖 + ∑ 𝑘𝑖(𝑒𝑖 − 𝑥𝑖)

22
𝑖=1

2
𝑖=1 (1.4)

 C is the cost of the solution (𝑥1, 𝑥2) belonging to the Pareto front;

 O is the vector of optimal costs;

 is the vector of the additional costs;

 G is the total cost of the solution (𝑥1, 𝑥2) ;

 (𝑒1, 𝑒2) is the target desired by the decision maker;

 𝑘1 and 𝑘2 are constants called Taguchi's quality loss coefficients which represent

respectively the weights of the cost (𝑒1 − 𝑥1)
2 and (𝑒2 − 𝑥2)

2.

C. Interactive

In this approach, the decision maker is present throughout the optimization process by deciding on the

tradeoff to carried out on the 𝑛 function objectives. This is the case with Fandel's method, which guides

the choice of objective weights [Eschenauer H et al., 1990].

26

In order to have a synthetic knowledge of the methods of multi-objective optimization A priori, A

posteriori and Interactive, we propose the taxonomy below represented by Fig. 1.4 [Yassa S, 2014].

We provide in gray the optimization methods that we used in the research work of our thesis.

Fig. 1.4. Taxonomy of multi-objective optimization methods [Yassa S, 2014]

At the end of the optimization process, the A priori and Interactive approach therefore make it

possible to obtain a single solution whose quality will translate the strategy of the decision maker. While

the A posteriori approach provides several solutions. However, only solutions having a dominance

relationship on others, in the Pareto optimal front (or very close to it) must be taken into account. In

order to identify, in a context of multi-objective optimization, the concepts of Pareto global optimum,

Pareto local optimum and Pareto front it is necessary to define these mathematical concepts.

27

1.5.4. Definition of dominance in a context of multi-objective optimization

We will first define the Pareto Dominance between two decision-making vectors, the Pareto front

then the Pareto local and global optimum [Siarry P et al., 2002a; Al-Tashi Q et al., 2020; Rodríguez MA

et al., 2020; Sharma S et al., 2022].

D. Pareto dominance

The mathematical concept of Pareto dominance was first defined in 1881 by the Irish economist and

lawyer Edgeworth FY for the resolution of the economic problems of balance between taxation and

purchasing power of each individual [Chiandussi G et al., 2012]. Then in 1896 the Italian engineer and

economist Pareto V theorized it in order to extend multi-objective optimization problems to other

scientific dominant [Emmerich MTM et al., 2018]. This is why the mathematical term Edgeworth-

Pareto dominance is mentioned in some literature for multi-objective optimization problems.

Pareto V issued the following postulate in 1896: "There is a balance such that one cannot improve

one criterion without deteriorating at least one of the other criteria." From this postulate we can

conclude that there is no single solution as in mono-objective optimization problems but several

solutions. The concept of Pareto dominance thus makes it possible to create an ordering relation between

two candidate solutions to be evaluated against each other in multi-objective context.

Either two solutions (𝑆𝛼, 𝑆𝛽) ∈ (ℵ
𝑑)2, the solution 𝑆𝛼 dominates the solution 𝑆𝛽, mathematically

noted as 𝑆𝛼 ≺ 𝑆𝛽, if:

 𝑆𝛼 has at least the same performance on the 𝑛 objective functions than 𝑆𝛽,

 𝑆𝛼 has performance strictly superior than 𝑆𝛽 on at least one of the 𝑛 objective functions.

Mathematically Pareto dominance is expressed by (1.5):

{

 𝑓(𝑆𝛼) = (𝑓1(𝑆𝛼),… , 𝑓𝑙(𝑆𝛼),… . , 𝑓𝑛(𝑆𝛼))

𝑓(𝑆𝛽) = (𝑓1(𝑆𝛽),… , 𝑓𝑙(𝑆𝛽),… . , 𝑓𝑛(𝑆𝛽))

𝑆𝛼 ≺ 𝑆𝛽 𝑎𝑛𝑑 𝑓(𝑆𝛼) ≤ 𝑓(𝑆𝛽) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ∀𝑙 ∈ {1, . . , 𝑛} 𝑓𝑙 (𝑆𝛼) ≤ 𝑓𝑙 (𝑆𝛽)

𝑎𝑛𝑑 ∃ 𝑢 ∈ {1, . . , 𝑛} 𝑓𝑢 (𝑆𝛼) < 𝑓𝑢 (𝑆𝛽)

 (1.5)

Like mono-objective problems, the notion of Pareto dominance introduces a Pareto global and

Pareto local optimality and a weak and a strict Pareto dominance.

28

a. Pareto global and local optimality

The definition of a Pareto global and a Pareto local optimum in a multi-objective context is quite

similar to that in a single-objective context:

 A vector 𝑆𝛼 ∈ ℵ
𝑑 is a Pareto global optimum if ∀ 𝑆𝛽 ∈ ℵ

𝑑 , 𝑆𝛼 ≺ 𝑆𝛽;

 A vector 𝑆𝛼 ∈ ℵ
𝑑 is a Pareto local optimum local if there exists a real ε > 0 such that

∀ 𝑆𝛽 ∈ ℵ
𝑑 ∩𝐵(𝑆𝛼, ε), 𝑆𝛼 ≺ 𝑆𝛽, knowing that 𝐵(𝑆𝛼 , ε) is a hyperball with center 𝑆𝛼 and

radius ε.

Local optimality is therefore limited to a restricted area 𝐵 dimensioned by ε around 𝑆𝛼, while

global optimality concerns the entire space ℵ𝑑. But optimality can be weak or strict.

b. Weak and a strict dominance in the sense of Pareto

Thus for two solutions (𝑆𝛼, 𝑆𝛽) ∈ (ℵ
𝑑)

2
, the solution 𝑆𝛼 weakly dominates the solution 𝑆𝛽,

mathematically noted as 𝑆𝛽 ≼ 𝑆𝛼, if and only if ∀𝑙 ∈ {1, . . , 𝑛} 𝑓𝑙 (𝑆𝛼) ≤ 𝑓𝑙 (𝑆𝛽).

And the solution 𝑆𝛼 strongly dominates the solution 𝑆𝛽, mathematically noted as 𝑆𝛼 ≺ 𝑆𝛽, if and

only if ∀𝑙 ∈ {1, . . , 𝑛} 𝑓𝑙 (𝑆𝛼) < 𝑓𝑙 (𝑆𝛽).

Finally, using the mathematical definition of Pareto dominance, we can say that a vector 𝑆𝛼 ∈ ℵ𝑑 is

non-dominated if ∀ 𝑆𝛽 ∈ ℵ
𝑑 𝑆𝛽 ⊀ 𝑆𝛼.

The mathematical definitions that we have stated above make it possible to determine the quality of

a solution in ℵ𝑑 and the best solutions are positioned on the Pareto front.

E. Pareto front

The Pareto front is constituted by the subset Π∗ of Pareto optimal solutions or Pareto optimal set.

The solutions in Π∗ dominate the other solutions but do not dominate each other. This means that if 𝑆𝛼 ∈

Π∗ there is no solution 𝑆𝛽 ∈ ℵ𝑑 that dominates 𝑆𝛼. The Pareto front thus constitutes the ideal compromise

on all the objectives of a multi-objective optimization problem.

The Pareto front Πf ∗ is the image of Π∗ in the objective function space. Π∗ is defined by (1.6) and

Πf ∗ is defined by (1.7). For example, Fig. 1.3 illustrates the Pareto front with green triangles for a Min-

Min bi-objective optimization problem of the two objective functions 𝑓1and 𝑓2.

29

Π∗ = {𝑆𝛼 ∈ ℵ
𝑑|∄𝑆𝛽 ∈ ℵ

𝑑, 𝑆𝛽 ≺ 𝑆𝛼 } (1.6)

Πf ∗ = { 𝑓(𝑆)|𝑆 ∈ Π∗} (1.7)

As can be visually guessed from Fig. 1.3, there are several fronts starting from the Pareto optimal

front which constitute the Pareto ranks.

F. Pareto ranks

The Pareto ranks allow to sort subsets of solutions, that do not dominate each other, according to their

dominance relation on other subset of solutions. This technique is used in some multi-objective

optimization algorithms such as the NSGA-II metaheuristic [Deb K et al., 2002].

We will call 𝑆℘ the set of solutions and 𝑆𝑘 the subset of solutions of rank 𝑘. So, for 𝑛 subsets and

therefore 𝑛 ranks, 𝑆℘ = ⋃ 𝑆𝑘𝑛
1 .

The creation of ranks is performed as follows. Rank 1 is made up of the Pareto optimal solutions 𝑆1

which dominates all the other solutions. To create the second rank 2 with 𝑆2, we remove the solutions

𝑆1 from 𝑆℘ and we recalculate the Pareto optimal solutions. We proceed in this way until there are no

more solutions. At the end, all the solution subsets 𝑆𝑘 will have been integrated at a rank 𝑘. Fig. 1.5

illustrates the result of this process for a set of 15 solutions which are distributed over 4 ranks.

Fig. 1 5. Sorting of the 15 solutions on 4 Pareto dominance rank

To illustrate the concept of Ranking Pareto dominance, we will use the example of Siarry P et al.

[Siarry P et al., 2002b] for a bi-objective optimization problem: maximize 𝑓1 and minimize 𝑓2.

For this problem we obtain 5 solutions detailed in Table 1.1.

30

Solutions Fonction objectif 𝒇𝟏 Fonction objectif 𝒇𝟐

A 8 5

B 9 2

C 12 1

D 11 2

E 16 2

Table 1.1. The 5 solutions to the bi-objective problem 𝑓1 and 𝑓2 [Siarry P et al., 2002b]

Graphically the 5 solutions are distributed in objective function space (𝑓1, 𝑓2) according to Fig. 1.6.

Fig. 1.6. Representation of the 5 solutions in the objective function space (𝑓1, 𝑓2) [Siarry P et al., 2002b]

In order to sort the 5 solutions in accordance with the Pareto dominance criteria, we will use, like

Siarry P et al., the symbols +, − and = if respectively a solution is better, less good or equivalent than

another on the 2 objective functions 𝑓1 et 𝑓2. At the end we obtain the result in Table 1.2.

 A B C D E

A (-,-) (-,-) (-,-) (-,-)

B (+,+) (-,-) (-,=) (-,=)

C (+,+) (+,+) (+,+) (-,+),

D (+,+) (+,=) (-,-) (-,=)

E (+,+) (+,=) (+,-) (+,=)

Table 1.2. Evaluation of the 5 solutions A, B, C, D et E

Based on the results obtained in Table 1.2, it appears that solutions C and E dominate solutions A, B

and D but they do not dominate each other. C and E therefore constitute the Pareto optimal solutions and

will belong to the rank 1. To determine rank 2, solutions C and E are removed from the set of 5 solutions.

We obtain Table 1.3 made up of solutions A, B and D. We repeat the same processing as in Table 1.2.

Thus, solution D dominates solutions A and B and constitutes the Pareto optimal solution for the rank 2.

31

 A B D

A (-,-) (-,-)

B (+,+) (-,=)

D (+,+) (+,=)

Table 1.3. Evaluation of the 3 solutions A, B and D

We remove D from Table 1.3 and we get Table 1.4.

 A B

A (-,-)

B (+,+)

Table 1.4. Evaluation of the 2 solutions A and B

In Table 1.4, B dominates A. Consequently, B will belong to the rank 3 and A to the rank 4. This last

iteration finalizes the sorting of the 5 solutions in ranks 1, 2, 3 and 4 as illustrated in Fig. 1.7.

Fig. 1.7. Pareto rank of the 5 solutions [Siarry P et al., 2002b]

This section has provided the general concepts of multi-objective optimization. We have seen that

MOOPs, which represent real-world engineering problems, are much more complex mathematically. And

as we have already specified above, the mathematical modeling of the optimization problem of the aims

of this thesis is a MOOP. But we will also see in chapter 3 that this optimization problem is discrete, non-

linear and NP-Hard. However, metaheuristics, faced with the curse of the dimensionality [Segera D et

al., 2023], and contrary to classic optimization methods, will make it possible to take up the challenge of

searching in the large space for feasible solutions ℵ𝑑, without going through it entirely, a good solution

in an acceptable time very close to the Pareto front.

32

1.6. Metaheuristics

Metaheuristic algorithms appeared in the 1980s with the ambition to solve complex optimization

problems. Glover F was the first to use the term metaheuristic in 1986 [Sörensen K et al., 2018; Alabas-

Uslu C et al., 2020]. The etymology of Metaheuristic has Greek origins: Meta which means beyond and

Heuristic which means to find. The etymology therefore means that a metaheuristic is an algorithm that

positions itself above heuristics with the objective of implementing them in order to obtain a global

solution to an extremely large amount of real-world optimization problems [Toloo M et al., 2022b]. A

heuristic and a metaheuristic are therefore two optimization methods that should not be confused. To do

this, we will provide firstly a definition of these two optimization methods before explaining the common

specificities of metaheuristics and the curses of their parameters. We will then discuss the mathematical

interest of metaheuristics, their inherent limits as well as a general classification. Finally, we will end this

part with three vital concepts for metaheuristics: exploration, exploitation and hybridization.

1.6.1. Definition of a heuristic

A heuristic is an optimization method specific to a given optimization problem, especially for difficult

combinatorial optimization problems. The solution obtained by the heuristic is close to the optimum but

not necessarily optimal [Siarry P, 2014a; Sörensen K et al., 2018; Rabbouch B et al., 2023].

1.6.2. Definition of a metaheuristic

According to Cuevas E et al. [Cuevas E et al., 2021c] "A metaheuristic is a solution method that

articulate interactions between some improvements in local heuristics and high-level strategies, aimed

at escaping from local optimum in a solution space, aimed at a global optimum". But the qualities of

metaheuristics are much better defined by Osman IH et al. [Osman IH et al., 1996]: "A metaheuristic is

an iterative generation process that guides a subordinate heuristic by intelligently combining different

concepts to explore and exploit the search space, learning strategies are used to structure information

in order to efficiently find the near-optimal solutions ".

According to these definitions, we can affirm that metaheuristics are above all powerful, stochastic

generic heuristics, alternating between exploration and exploitation phases with an imperative of a

33

balanced tradeoff between these two phases and not to be trapped in a local optimum [Jerebic J et al.,

2021]. The vast majority of metaheuristics share common specificities.

1.6.3. Common specificities of metaheuristics

The main specificities of metaheuristics which constitutes the essence of their strengths but also of

their weaknesses are seven in number:

 Global;

 Stochastic, which helps to deal with the curse of dimensionality;

 Generic even if the context is continuous or discrete;

 Do not need the gradient of the objective function in the case of continuous problems;

 Finds an acceptable solution in a reasonable time without guaranteeing optimality;

 With difficulties in the choice of assignment of the values of the control parameters;

 Inspired by analogies from nature.

We will develop in the next subsection the issue of the parameters tuning of metaheuristics because

of the challenge it represents for the research community in the field of metaheuristic optimization.

1.6.4. The curse of parameters

The number of quantitative parameters of a metaheuristic, the time-consuming cost and the difficulty

of their configuration is one of the main weaknesses of metaheuristics [Siarry P, 2014b; Siarry P, 2014c].

In addition, the closer we get to ad-hoc tuning of the parameters of a metaheuristic, for a given

optimization problem instance, the more we benefit from the following effects:

 Increased performance of metaheuristics;

 Decrease in the spatial distance between the final solution and the global optimum;

 Reduced execution time to obtain the final solution;

 Reduced processing cost of a problem.

Given the role of parameters in the performance of a metaheuristic, the issue of parameters tuning is

therefore far from being a secondary action.

Just like the curse of dimensionality, metaheuristics are also plagued by the "curse of parameters".

Indeed, increasing the number of parameters in a metaheuristic only exponentially increases the number

34

of possible parameter vectors in the parameter search space. Consider a striking example among the

recent metaheuristics: Squirrel search algorithm (SSA) [Mohit J et al., 2019]. SSA requires the

configuration of six parameters including three integers and three real:

 The maximum number of iteration 𝑇𝑚𝑎𝑥;

 The population size 𝑁;

 The nutrition food resources 𝑁𝑓𝑠

 The gliding distance 𝑑𝑔 ;

 The predator presence probability 𝑃𝑑𝑝 ;

 The gliding constant 𝐺𝑐.

The author of SSA himself confirms that a bad tuning of his parameters will induce bad results. From

the point of view of this problematic, the ideal metaheuristic would be the one whose parameters are

dynamic or self-adaptive during the iterations.

In general in the literature, the fine optimal tuning of the metaheuristic parameters is mainly empirical

based on expert knowledge and following several tests carried out on function benchmarks[Agushaka

JO et al., 2022]. But this empirical method does not allow, in the face of the curse of the parameters, to

obtain the optimal parameter vector. And if a researcher approaches it during his work, it is essential for

him to justify the choice of his parameters for a metaheuristic and a problem instance so that the research

community can rely on these results and conclusions for their future work [Kazikova A et al., 2020].

In order to face the issue of the parameter tuning, researchers have developed a wide variety of

parameter tuning methods that aim to maximize the performance of metaheuristics for a given

optimization problem instance [Huang C et al., 2020].

In [Talbi EG, 2009] Talbi EG provided a complete taxonomy of parameter tuning methods split into

two main paradigms: Offline parameter tuning and Online parameter tuning. We explain this taxonomy

in Fig. 1.8 below.

35

Fig. 1.8. Parameter tuning taxonomy

Before describing the Offline and Online paradigms let us mathematically define the components of

the metaheuristic parameter optimization problem:

 A metaheuristic 𝛭;

 A parameter search space 𝐶;

 An instance of problem 𝐼;

 A performance metric 𝑃 for the measure of the performance of a vecteur 𝑐 ∈ 𝐶 of an instance

of metaheuristic 𝛭(𝑐) and an instance of problem 𝐼.

The objective is to obtain the optimal parameter vector 𝑐∗ ∈ 𝐶 which makes it possible to obtain the

metaheuristic 𝛭(𝑐∗) with the best performance on the instance of problem 𝐼. Mathematically this is

expressed by 𝑚𝑎𝑥{𝑃: 𝑐 ∈ 𝐶}.

A. Offline parameter tuning

In the Offline parameter tuning paradigm, the vector of parameters 𝑐 is defined before the execution

of the metaheuristic 𝛭, without modification during the execution, by exploiting three groups of

methods: Design of Experiments (DOE), Meta-Optimization and Machine Learning.

a. Design of Experiments

As its name indicates, the DOE methods exploit the experience acquired during the analysis of the

variations of 𝑃 during the changes of values of the components of the vector parameter 𝑐 [Pereira I et

al., 2013]. However, the computation time of this method increases with the number of parameters.

Unsupervised learning algorithms are used to support DOE methods in order to select and define the

most influential metaheuristic parameters on an instance of optimization problems. In [Ramos ICO et

36

al., 2005] Ramos ICO et al. exploited the logistic regression algorithm to implement the DOE method

on evolutionary algorithm ProtoG applied to the Traveling Salesman Problem (TSP). The authors

clustered the parameter search space in order to detect the most influential parameter cluster on the TSP

problem. This allowed to reduce the time cost for the tuning of the parameters.

b. Meta-Optimization

The meta-Optimization method uses metaheuristic algorithms to determine the vector of parameter

𝑐 closest to the optimal vector 𝑐∗. In this method, these metaheuristics are positioned at the upper-level

and the metaheuristics Μ for which the optimal parameter vector must be determined are positioned at

the low-level [Pereira I et al., 2013; Huang C et al., 2020]. Thus, meta-level metaheuristics see the

metaheuristic set Μ and problem instance I as the black box optimization problem to be solved by

finding the closest parameter vector 𝑐 to 𝑐∗ in the parameter search space 𝐶. The value of the objective

function to this black box optimization problem, for a given vector of parameter 𝑐, is that obtained for

the best solution acquired by the base-level metaheuristic.

In [Crawford B et al., 2013] Crawford B et al. used an upper level metaheuristic to tune the

parameters of a low level metaheuristic. The upper level metaheuristic is Genetic Algorithm (GA) and

the lower metaheuristic are Ant Colony System (ACS) and Scatter Search (SS) applied to the Set

Covering optimization problem.

c. Machine Learning

Machine Learning algorithms are able to predict the parameter vector 𝑐 as close as possible to the

optimal parameter vector 𝑐∗ for a problem instance 𝐼. Machine Learning algorithms therefore make it

possible to adapt a metaheuristic to different problem instance before execution.

The work of Rasku J et al. in [Rasku J et al., 2016], based on Vehicle Routing Problem (CVRP)

instance benchmark, combined three Machine Learning algorithms: Principal Component Analysis

(PCA), the clustering algorithm DBSCAN and Random Forest (RF) Algorithm. This combination of

algorithms made it possible to determine which vector 𝑐 (Initial temperature and cooldown factor) is

necessary for the SA metaheuristic to solve an instance of problem VRP.

37

B. Online parameter tuning

Unlike the Offline paradigm, the Online paradigm updates in real time the parameters values during

the execution of the metaheuristic in a dynamic or adaptive way.

a. Dynamic

Dynamic methods update the parameters at each iteration, via random or deterministic variables

regardless of the search strategy.

In [Eiben AE et al., 2011] the authors take up the two levels of the upper and lower metaheuristics

which they position respectively in the design layer and algorithm layer. Unlike Meta-Optimization

which selects the parameters only during the initialization of a metaheuristic, in [Eiben AE et al., 2011]

evolutionary algorithms (EA) (GA, EDA, ES, etc.) positioned in the design layer as that meta-EA select

the parameters of a metaheuristic stochastically and dynamically at each iteration. This is also the case

of the metaheuristic Harris Hawk Optimization (HHO) [Heidari AA et al., 2019] which randomly

updates its two parameters 𝐽 and 𝐸.

b. Adaptative

Adaptive or even self-adaptive methods constitute a privileged path for researchers. Algorithms in

the field of artificial intelligence able to self-regulate the parameters of a metaheuristic in order to

maximize its performance during iteration constitute a decisive advance in the field of the optimization

of NP-Hard problems. Alabas-Uslu C et al. [Alabas-Uslu C et al., 2020] implemented, for instances of

the combinatorial optimization problem VRP, a self-adaptive local search algorithm (SALS) which self-

adaptes its unique parameter 𝜃. To do this SALS calculates on the one hand the value 𝛼1 by the ratio of

the values of the objective function of the best solution 𝑋𝑏
(𝑖)

 at iteration 𝑖 and of the initial solution 𝑋𝑧

and on the other hand the value 𝛼2 by the ratio between the improvement number of the best solution at

iteration 𝑖 and the value 𝑖.

The curse of the parameters is therefore not a fatality thanks to the work of the research community.

Self-adaptive methods exploiting reinforcement learning algorithms is the preferred choice for

researchers to increase in the coming years the mathematical interest of metaheuristics in solving real

NP-Hard optimization problems.

38

1.6.5. Mathematical interest of metaheuristics for the NP-Hard optimization problems

Compared to other optimization methods, metaheuristics have unique and exceptional mathematical

qualities. As specified by Siarry P [Siarry P, 2016] and Cuevas E et al [Cuevas E et al., 2021c], compared

to the classical optimization methods that we saw in 2.3, each metaheuristic has its own algorithmic

strategy which allows it to analyze the search space in order to obtain a final solution as close as possible

to the global optimum. Metaheuristics thus allow the resolution of a very wide range of optimization

problems, too complex for "conventional" optimization methods, even if the problems are linear or non-

linear, discrete or continuous, non-convex, non-differentiable, unimodal or multimodal, low or high

dimension [Cuevas E et al., 2021b; Houssein EH et al., 2021b; Houssein EH et al., 2021c]. Indeed, real-

world optimization problems are mostly nonlinear, discontinuous, highly multimodal, high-dimensional

with non-smooth constraints and noisy. While other classical optimization methods require the objective

function to be twice differentiable, metaheuristics do not require this. Indeed the metaheuristics are

gradient-free and are not interested in the continuity or the differentiability of the problem or in the

smoothing [Teghem J, 2012; Qian L et al., 2020; Cuevas E et al., 2021b]. Based on their current state

variables, they only need the return value of the objective function 𝑓(𝑥), for an input candidate solution

x created by the metaheuristic. Thus 𝑓(𝑥) is like a "breadcrumb trail" for metaheuristics in the search

for the global optimum of the optimization problem. This is the main reason why the mathematical

modeling of an optimization problem in objective functions will condition the quality of the final results.

Furthermore, in order to avoid or extricate themselves from the pitfalls of local optima, metaheuristics

temporarily deteriorate their situation during certain iterations with the aim of obtaining a better one in

the following iterations.

Thus, metaheuristics see optimization problems as a "black box" [Qian L et al., 2020; Cuevas E et

al., 2021b; Houssein EH et al., 2021c] regardless of its content. And this ability to consider the

optimization problem as a black box is far from trivial. On the contrary, it opens up a wide range of

technical possibilities that do not exist with conventional optimization methods. Indeed, it is a major

asset for solving very complex optimization problems of the 𝑁𝑃-Hard type.

Based on the description of metaheuristics and their mathematical specificities, we are in a position

to propose in Fig. 1.9 a general diagram of a metaheuristic.

39

Fig. 1.9. General diagram of a metaheuristic

However, a metaheuristic should not be considered as the keystone of all optimization problems

because it also has its limits that the No Free Lunch theorem clearly reminds us.

1.6.6. The limits of metaheuristics via the No Free Lunch theorem

When discussing the superior potential of metaheuristics, it is necessary to consider them as a whole

and not individually. Wolpert et al. [Wolpert DH et al., 1996; Wolpert DH et al., 1997] were able to

theorize its limits by the No Free Lunch theorem. Indeed, the No Free Lunch (NFL) theorem reminds

us of the individual limits of a metaheuristic [Adam SP et al., 2019; Wolpert DH, 2021]. According to

the NFL, each metaheuristic performs better than others on some subset of optimization problems and

performs poorly on others. There is thus no metaheuristic superior to other if we consider the whole

space of optimization problems. Therefore, the metaheuristics will have on average the same

performance over the whole space of optimization problems and for each optimization problem it is

necessary to choose the most suitable metaheuristics to solve it. And, in order to support the selection of

appropriate metaheuristics to the problem to be solved, a synthetic classification of the latter is desirable.

40

1.6.7. Classification of metaheuristics

The immense amount of metaheuristics that can be found in the literature are generally inspired by

nature. The researchers, through a metaphorical process, were able to model at the mathematical and

algorithmic level the optimization processes resulting from nature which effectively made it possible to

overcome the problems of survival and to prolong existence [Hussain K et al., 2019a; Moshtaghi HR et

al., 2021]. These sources of inspiration have thus made it possible to design a profusion of classification

of metaheuristics [Dhiman G et al., 2017; Abdel-Basset M et al., 2018; Abd EM et al., 2021; Avjeet S

et al., 2021; Cuevas E et al., 2021c; Cuevas E et al., 2021d; Moshtaghi HR et al., 2021; Houssein EH et

al., 2022a; Houssein EH et al., 2022d; Muazu AA et al., 2022; Vinod Chandra SS et al., 2022]. However,

this profusion only complicates the search for a common denominator reconciling all its classifications.

Fig. 1.10. Classification of metaheuristics into five groups (Image source: https://www.westend61.de,

https://www.gettyimages.fr, https://www.soustraiter.fr, https://www.infogm.org, https://www.freepik.c

om)

Our analysis of the state of the art has enabled us to highlight five major groups capable of federating

these classifications: Swarm intelligence, Human behavior, Physic, Evolutionary and Not inspired

by nature. Fig. 1.10 represents these five groups with for each examples of well-known metaheuristics.

We can complete this classification by splitting the metaheuristics according to the size of their agent:

single-based metaheuristic such Simulated Annealing (SA) and population based metaheuristic such as

HHO [Hussain K et al., 2019a; Houssein EH et al., 2022a].

Swarm
intelligence

•PSO

•ABC

•GWO

•HHO

•ACO

Human
behavior

•LCA

•SLC

•HMS

•TLBO

Physic and
chemistry

•SA

•GSA

•EMA

•WWO

Evolutionary
process

•GA

•DE

•GP

•IWO

•ICA

Not inspired
by nature

•VNS

•GRASP

•SCA

•BOA

https://www.westend61.de/
https://www.gettyimages.fr/
https://www.soustraiter.fr/
https://www.infogm.org/

41

The list of metaheuristics in Fig. 1.10 is obviously not exhaustive. The articles [Moshtaghi HR et al.,

2021] and [Abdel-Basset M et al., 2018] provide a broad view of the oldest to the most recent

metaheuristics. And as we mentioned in 2.6.1 each of these metaheuristics has its own exploration and

exploitation strategy with the ultimate aim of finding the global optimum of the optimization problems.

1.6.8. Exploration and exploitation

For a metaheuristic, exploration (or diversification) and exploitation (or intensification) are the two

pillars of its optimization process with opposite strategies for finding a good final solution [Siarry P,

2014d; Ghazali R et al., 2018; Cuevas E et al., 2021a]. A balance between these two phases is the key

to a successful metaheuristic which allows it to find solutions close to the global optimum and to avoid

or escape from the traps of the local minima of the objective function. [Morales-Castañeda B et al.,

2020]. This process is called the strategic oscillation between exploration and exploitation [Teghem J,

2012]. However, balance should not be confused with equality. Indeed, having the same number of

exploration and exploitation phases does not give the assurance of obtaining better results. Balancing

exploration and exploitation means designing and implementing a strategy that will create the right ratio

between the exploration and exploitation phases as iterations occur. Of course, the strategy is intimately

linked to the algorithmic specificities and mathematical operators of each metaheuristic. We will

describe below these two pillars of optimization enriched by exploration and exploitation strategies

implemented by well-known metaheuristics in the literature. We will close this part with the attempts in

the literature to measure the exploration and exploitation phases.

A. Exploration

Exploration is a global, diverse search for unvisited promising areas in the search space [Cuevas E

et al., 2021a; Jerebic J et al., 2021]. This process is based on stochastic "jumps". A good exploration

therefore increases the probability of finding the area of the search space containing the global optimum

and of thus obtaining a final solution closest to or equal to this global optimum. Thus a good exploration

decreases the probability of being trapped in a local optimum.

For example, in Artificial Bee Colony (ABC) [Karaboga D et al., 2007], exploration is the

responsibility of bee scouts who are assigned a randomly selected food source. The more scout bees

42

there will be following the abandonment by an exploiting bee of a bad source of food (position) and the

more exploration will be favored.

In the case of Simulated Annealing (SA) [Kirkpatrick S et al., 1983], it’s the acceptance criterion of

Metropolis with the probability 𝑒
−∆𝐸

𝑇 which makes it possible to accept a degradation of the position in

the search space in order to explore other potentially promising valleys . ∆𝐸 represents the energy

variation (or variation of the objective function) and T the temperature of the solid. The higher the

temperature, the greater the probability of accepting a degradation of the position. This has the effect of

encouraging exploration.

However, if the exploration is excessive within the framework of respecting the exploration-

exploration balance, it will degrade the speed of convergence. The complement to exploration is

exploitation which has an opposite research logic.

B. Exploitation

Exploitation aims to stochastically intensify local search in promising area located during

exploration. Consequently, the exploitation makes it possible to refine the best promising area already

found in exploration phases [Cuevas E et al., 2021a; Jerebic J et al., 2021]. Generally, the exploitation

consists in "mutating" a solution 𝑥 ∗ by a movement around 𝑥 ∗in order to obtain, in its neighborhood

𝑁(𝑥 ∗), a better solution 𝑥 ∈ 𝑁(𝑥 ∗).

In ABC the mutation of a solution 𝑠 is carried out in four steps:

 Random selection of dimension 𝑘 of 𝑠 to mutate;

 Selection of an influential food source 𝑠𝑖 ;

 Selection of a random value 휀 in [−1,1] ;

 Mutation operation on the dimension 𝑘 of 𝑠 according to the equation 𝑠𝑘 = 𝑠𝑘 + 휀 ∗

(𝑠𝑘 − 𝑠𝑖
𝑘).

If the mutation of 𝑠 provides a better food source, then the mutation is retained. Otherwise it is

rejected and 𝑠 gets a penalty. The exploiting bees with the most penalty, in proportion to the number of

scout bees compared to the size of the bee population, will become scouts in the next iteration.

43

In Bat Algorithm (BA) [Yang XS, 2010] the mutation operates beforehand on the speed v of a bat of

position x and ultrasound emission frequency 𝑓. The mutation equation is 𝑣 = 𝑣 + (𝑥 − 𝑥 ∗) ∗ 𝑓. Then

the position 𝑥 undergoes the movement 𝑥 = 𝑥 + 𝑣.

Moreover, a good exploitation makes it possible to increase the rate of convergence towards a good

solution. Nevertheless, excessive exploitation increases the probability of being trapped in a local

optimum.

To better understand the exploration and exploitation process we will use the metaphor of the dig for

diamonds. Gemologists (diamond diggers), first explore promising areas of the mine with probes and

other drilling mining machines. This is the exploration phase in search of a promising diamond area.

Then as soon as a promising area is detected, a new more refined search is carried out in its vicinity

using hydraulic drills, shovels, pickaxes, rotary cutters and diamond testers. This is the exploitation

phase. If the area fails, gemologists revert to the exploration phase so they don't get stuck in barren local

drilling. The global logic is similar in metaheuristics but with "intelligent" stochastic components that

allow them to extract themselves from local optima with an exploration-exploitation balance imperative.

The literature assures us and repeats to us that a good exploration-exploitation balance guarantees better

efficiency in the search for a good solution to the optimization problem. But how to know if the

metaheuristic respects this imperative of balance? To do this, methods for measuring exploration and

exploitation are needed.

C. Exploration and exploitation measurement methods

Measurements of exploration and exploitation are not easy because of the great heterogeneity of

metaheuristics. However, the literature provides some methods of indirect and direct measurement of

exploration and exploitation, particularly for population-based metaheuristics [Gabor T et al., 2017;

Ghazali R et al., 2018; Hussain K et al., 2019b]. The indirect measurement method assesses the level of

exploration or exploitation based on other metrics. The methods known in the literature are those of

Swarm diversity measuring the positions of agents relative to each other, the measurement of Entropy

[Gabor T et al., 2017; Hussain K et al., 2019b]and more simplistically, the monitoring of the

improvement of the best value obtained from the objective function [Tilahun SL, 2017]. As for direct

44

measurement, as its name suggests, it directly measures the level of exploration and exploitation. One

of the most recent methods is that of measuring the Attraction basins in the search space [Jerebic J et

al., 2021].

But these methods of measurement only make it possible to note the effectiveness or the impotence

of the operations of exploration and exploitation of a metaheuristic. If one wishes to act on the observed

weaknesses, methods such as hybridization must be implemented.

1.6.9. Metaheuristics hybridization

Glover F was the first to create a hybrid metaheuristic in his work in [Glover F et al., 1998]. However,

the literature does not clearly define the action framework of a metaheuristic hybridization. But this lack

of definition can be seen as an advantage for the research community. Indeed, no definition can thus

limit, by strict frameworks, the spirit of innovation of researchers to create new metaheuristics by

hybridization. On the other hand, the literature specific to metaheuristic hybridization allows us to

provide a common denominator that describes the major effect sought in hybridization: The main

purpose of hybridization and to exploit the mutually beneficial synergy of at least two distinct

algorithmic strategies with the purpose of obtaining a metaheuristic with increased performance for

solving NP-Hard optimization problems [Talbi EG, 2013; Ting TO et al., 2015; Hassan A, 2019; Raidl

GR et al., 2019; Cuevas E et al., 2021e].

The hybridization process must therefore allow a metaheuristic to increase its exploration and

exploitation capacities with an imperative of balance between them in order to find a good solution close

to the global solution by limiting its weaknesses which are premature convergence or slow convergence

[Ting TO et al., 2015].

The hybridization of a metaheuristic generally exploits other metaheuristics, machine learning

algorithms or other exact mathematical methods [Talbi EG, 2013].

In order to better understand the fundamentals of hybridization, we will focus in what follows on the

hybridization between at least two well-known metaheuristics in the literature and explain the basic

principles of the design of a hybrid metaheuristic which are based on the strategies of control, the order

of execution and the level of hybridization [Talbi EG, 2013; Ting TO et al., 2015; Raidl GR et al., 2019].

45

A. Control strategy

The control strategy of a metaheuristic can be collaborative or integrative. A hybridization is

collaborative when two algorithms act jointly "as equals" sequentially or in parallel during the

optimization process. In this strategy, generally one of the algorithms acts on exploration and the second

on exploitation.In [Ting TO et al., 2006] the authors created a hybrid metaheuristic to evaluate the flow

of electric power in power transmission network. They used GA and PSO metaheuristics in a

collaborative strategy. GA manages global search and PSO acts at the local search level.

On the other hand, the integrative strategy creates a link of subordination between two

metaheuristics. In this strategy, a slave algorithm is integrated into a master algorithm and it is the master

algorithm that directs the optimization process. Birogul S proposes in [Birogul S, 2019] an integrative

hybridization of the DE metaheuristic in HHO to obtain HHODE. The five mutation equations of DE

have been integrated into the exploratory equations of HHO in order to increase its exploration capacity.

Tests on the CEC2005 and CEC2017 benchmarks confirmed the increased performance of HHODE

compared to HHO.

In the two control strategies that we have just described, several types of order of execution are

possible.

B. Order of execution strategy

After the control strategy, the hybridization of a metaheuristic requires an order of execution strategy.

Three strategies are possible: sequential, parallel and interleaved.

The integrative control strategy uses a sequential or interleaved execution order. This is the case of

HHODE [Birogul S, 2019] which has a sequential execution order. The Hybrid HHO (H-HHO)

metaheuristic in [Abualigah L et al., 2021], used for data clustering, just like HHODE, integrates DE

into HHO with an interleaved execution order to reduce its weaknesses during the exploration phases

and also to operation.

On the other hand, the parallel execution order is exploited in the collaborative control strategy. In

[Hijazi NM et al., 2021] the authors combine three metaheuristics with a parallel execution order to

design a hybrid metaheuristic for feature selection: Gray Wolf Optimization (GWO) [Mirjalili S et al.,

2014], Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

46

Within the sequential or interleaved order of execution, the level of hybridization strategy depends

on the strength of the fusion of the metaheuristics which acts on the hybridization level.

C. Hybridization level strategy

The designer of a hybrid metaheuristic can choose to combine these metaheuristics with a high-level

or low-level strategy. In a high-level strategy, the algorithms and equations of the metaheuristics are not

modified and maintain their independence. Metaheuristics are therefore weakly-coupled and

communicate via an ad hoc interface. This high-level strategy is present in a context of collaborative

metaheuristics with sequential execution as in [Ting TO et al., 2006].

In the low-level strategy, on the contrary, the metaheuristics are strongly-coupled and therefore inter-

dependent. Their algorithms and equations are changed. This strategy is found in a context of integrated

metaheuristics with an execution order interleaved as in [Abualigah L et al., 2021].

The Fig. 1.11 below provides a summary diagram of hybridization strategies.

Fig. 1.11. Summary diagram of hybridization strategies

1.7. Conclusion

Optimization problems are ubiquitous in the technical environments of engineers and researchers.

They can be mono-objective without constraints for the most basic ones, but the vast majority of real-

world optimization problems are multi-objective with several constraints and having to satisfy multiple

contradictory aspirations by compromise. We have seen that there is a plethora of methods for solving

optimization problems depending on the category and complexity classes to which the problem belongs.

47

The problems that pose the most difficulty to the research community, as their names suggests, are

problems of the 𝑁𝑃-Hard class. Fortunately, metaheuristic algorithms appeared in the 1980s opened up

promising new perspectives for solving 𝑁𝑃-Hard problems. One of their major assets is to consider the

optimization problem as a black box without worrying about the internal mathematical specifics of the

problem. The other major asset of metaheuristics is their intelligent stochastic nature which allows them,

through balanced exploration and exploitation processes, to extract themselves from local optima and

to get as close as possible to the global optimum. Thanks to their strengths, metaheuristics have managed

to solve many 𝑁𝑃-Hard engineering problems.

The spirit of innovation of the researchers has made it possible to design a very large number of

metaheuristics mainly inspired by nature and by hybridization. As the No Free Lunch Theorem states,

each metaheuristic can excel on some subset of optimization problems and be deficient in others. For

the cybersecurity objectives of our thesis, we have taken advantage of a very recent nature-inspired and

population-based metaheuristic: Harris Hawk Optimization (HHO). However, this metaheuristic does

not escape to the NFL theory. It has weaknesses for high-dimensional and highly multimodal

optimization problems.

In the chapter 2 we will develop our unseen hybridization strategy of HHO totally bio-inspired by

the hunting synergy between crows and wolves to design the new metaheuristic HHO-EAS. Our

hybridization strategy aims to increase HHO-EAS skills during the exploration and exploitation phases

and to achieve better performance than HHO for high-dimensional and highly multimodal optimization

problems.

48

Chapter 2

2. Conception of the metaheuristic HHO-EAS for highly multimodal and high-

dimensional optimization problems

2.1. Introduction

As we explained in chapter 1, the conception of metaheuristics is mostly inspired by nature, and they

are divided into four categories: Bio-inspired, Physics and Chemistry, Evolutionary and Swarm

Intelligence [Houssein EH et al., 2022a; Houssein EH et al., 2022b; Houssein EH et al., 2022d]. These

metaheurtics are single-based such Simulated Annealing (SA) or population-based such as Harris Hawk

Optimization (HHO).

HHO is a very recent metaheuristic inspired of Harris Hawk’s pack hunting techniques. It was created

by Heidari AA et al. in 2019 [Heidari AA et al., 2019]. However, as we explained in chapter 1, the No

Free Lunch theorem reminds us that no metaheuristic can claim to outperform all metaheuristics on all

optimization problems [Wolpert DH et al., 1997]. According to this theorem such a metaheuristic does

not exist. Thereby, like all metaheuristics, HHO has some weaknesses, particularly for the optimization

of highly multimodal and high-dimensional problems. Indeed, for highly multimodal and high-

dimensional problems, HHO fails to maintain a good balance between exploration and exploitation to

end up trapped in a local optimum [Chen H et al., 2020; Alabool HM et al., 2021].

However, these weaknesses are far from being inevitable. So, in order to minimize the HHO’s

weaknesses we designed a hybridization strategy totally inspired by a partnership between two predators

that everything separates.

In northern Europe and in Yellowstone Park in Wyoming United-state, during the hard winter months

when good preys are hard to find and capture, an atypical alliance between two predators was born: the

crows of the family corvidae and the wolves of the family canidae [Stahler D et al., 2002; Milner R,

2020]. These two predators have combined the smart and adaptive exploration of the hunting ground of

crows with the exceptional abilities of wolves to capture rapidly and in an organized way prey even if it

is larger than them.

In order to improve the optimization capabilities of HHO for highly multimodal and high-dimensional

optimization problems, we mathematically modeled this win-win hunting synergy. We designed a

49

Mamdani-like Fuzzy Inference System (FIS) to model the crows' smart and adaptive exploration and the

Encirclement and Attack equations to model wolves action. Then we integrated them into HHO to create

a new metaheuristic: Harris Hawk Optimization – Encirclement Attack Synergy (HHO-EAS). These

work has been the subject of a scientific article validated for a publication in the journal Artificial

Intelligence Review.[Sassi M et al., 2023].

Thus, the main contributions of our work are twofold:

 We have designed the new metaheuristic HHO-EAS overall more efficient than HHO for the

optimization of highly multimodal and high dimension problems;

 Unlike classical hybridization strategies that combine metaheuristics with each other, our

hybridization strategy is based on another paradigm entirely inspired by the win-win hunting

synergy observed in nature between two animals: the crows and the wolves.

This chapter, is articulated as follows. In the section 2.2 we will describe the HHO algorithm with its

exploration and exploitation techniques, its weaknesses and the main works aimed at improving it by

hybridization.

The section 2.3 will present our contribution in order to design HHO-EAS by detailing our

hybridization strategy bio-inspired by the win-win hunting synergy between the crows and wolves.

In the section 2.4 we will demonstrate firstly, with a general benchmark of 19 well-known unimodal,

multimodal and composite functions, the overall superiority of HHO-EAS over HHO as well as over two

other population-based metaheuristics, GWO and PSO. Secondly we will focus only on HHO-EAS and

HHO with a specific benchmark of the 20 most complex optimization problems of the CEC 2017 close

to real life optimization problems: 10 hybrid and 10 composite functions.

We will conclude this chapter in the section 2.5 and we will open the future applications of HHO-

EAS in the chapter 3.

2.2. Harris Hawk Optimization

The metaheuristic HHO, created by Ali Asghar Heidari in 2019 [Heidari AA et al., 2019] is inspired

by the Harris Hawks' pack hunting strategy. HHO is a population-based metaheuristic allowing global

and stochastic optimization guided by intelligent mechanisms during the exploration and exploitation

50

phases [Shu PW et al., 2020]. Furthermore, HHO is almost an "autonomous" metaheuristic, that is to say

with very few parameters to configure in its algorithm. However, HHO as all metaheuristic, presents

weaknesses that some works have attempted to reduce.

2.2.1. HHO Inspiration

Biologists Jennifer O. Coulson and Thomas D. Coulson studied the cooperative hunting techniques

of the Harris Hawks. Their articles make reference in this field [Coulson J et al., 2012; Coulson JO,

2013]. Their research has provided insight into the Harris Hawks' hunting strategies. The Harris Hawks’

hunting techniques inspired HHO's exploration and exploitation equations.

Harris Hawks are raptors with some intelligence and have the particularity of living in packs unlike

other Hawks. They practice cooperative hunting.

They live between southwestern North America and central and southern of South America. Their

living areas are semi-desert.

Their strategy for finding and capturing preys is organized in groups and structured in two stages:

Search and Attack.

2.2.2. Search phase (Exploration)

They begin as a single group by gathering on the cacti, tree branches, utility poles, etc.

Then they split into two groups. The first group flies from perch to perch like leapfrog to get a different

point of view. This allows them to better explore the surrounding terrain in search of prey with a

preference for rabbits. They sometimes practice the backend to get a better point of view (One Harris

Hawk perches on top of another).

The second group, to find a prey, flies over a potentially promising areas in packs. The two groups

maintain eye contact to be ready to go into attack phase if they detect a good prey.

2.2.3. Attack Phase (Exploitation)

The Harris Hawk’s key hunting tactic is the surprise pounce to attack a prey such as rabbit.

After detecting the rabbit, each Harris Hawk pounces on it, if one of the Harris Hawks misses the

target because the prey fled in the opposite direction, the Harris Hawk in the opposite direction takes over

51

in the attack. Thus, Harris Hawks cooperatively attack the prey from several directions. This attack

resembles to a Harris Hawk flurry on the prey from all possible sides.

Harris Hawk's research and attack techniques are all modeled by the exploration and exploitation

equations in the HHO algorithm.

2.2.4. HHO Algorithm

HHO metaheuristic, like all metaheuristics, is structured in two phases: exploration and exploitation.

The exploration phases are guided by two exploratory equations inspired by the prey search phase.

And the exploitation phases are guided by four equations inspired by the attack phase. These four

equations make it possible to search for better solutions in a neighborhood far or close to promising areas.

The exploration, the exploitation and the transition of HHO between exploration and exploitation are

all driven by the Rabbit Escaping Energy (REE) variable. But that's not all. REE also makes it possible

to control the magnitude of local searches in the near or far neighborhood of the best solution at iteration

𝑡.

Our analysis of this algorithm allows us to affirm that REE is the central element of HHO because it's

this that coordinates the action of the Harris Hawk agents at each iteration. In addition, REE has a major

influence in the balance between exploration and exploitation as well as in the search for a good solution.

A. Rabbit Escaping Energy

REE is defined by the equations (2.1) et (2.2). REE’s amplitude decreases linearly in term of the

Iteration. Through the equations (2.1) and (2.2), REE ensures a smooth transition between the exploration

and exploitation phases. It is mathematically represented by the function 𝐸.

𝐸 = 2𝐸0 (1 −
𝑡

𝑇𝑚𝑎𝑥
) (2.1)

𝐸0 = 2𝑟 − 1 (2.2)

In (2.1) the iteration is represented by 𝑡 and 𝑇𝑚𝑎𝑥 is the maximum number of iteration.

In (2.2) 𝑟 is an uniform random variable defined in [0,1], therefore 𝐸0 ∈ [−1,1].

Based on (2.1) and (2.2), 𝐸 ∈ [−2,2] and |𝐸| reaches zero at the end of the iteration 𝑇𝑚𝑎𝑥. We can

also notice that |𝐸| < 1 from half of the iteration
𝑇𝑚𝑎𝑥

2
. (2.3) summarizes the membership intervals of 𝐸

according to the iteration 𝑡.

52

{

 𝑖𝑓 𝑡 ∈ [0,
𝑇𝑚𝑎𝑥

2
] , 𝐸 ∈ [−2,2]

𝑖𝑓 𝑡 ∈ [
𝑇𝑚𝑎𝑥

2
, 𝑇𝑚𝑎𝑥] , 𝐸 ∈ [−1,1]

𝑖𝑓 𝑡 = 𝑇𝑚𝑎𝑥 , 𝐸 = 0

 (2.3)

The REE evolution curve is provided by the Fig. 2.1. As noted above, REE drives the exploration and

exploitation phases.

Fig. 2.1. REE evolution curve

B. Exploration phases

The exploration phases take place when the of REE’s amplitude is greater than or equal to 1:|𝐸 | ≥

1.

The exploration phases model the two behaviors of Harris Hawks when searching for prey. Harris

Hawks either jump from perch to perch in search of a better vantage point to detect a rabbit, or they group

together by flying around a promising area and by perching close to each other in order to be ready to

migrate in attack formation if they detect a rabbit. The second situation therefore exploits the rabbit’s

position 𝑋𝑟, and the Harris Hawks swarm average position 𝑋𝑚.

The exploration process is done using the exploratory equations (2.4). These equations make it

possible, by stochastic leap, to diversify the search for unexplored promising areas in the search space

and to calculate the Harris Hawk’s next position.

These two situations are equally likely. Thus, for a uniform random variables q in [0,1], the first

situation will occur if 𝑞 ≥ 0.5 and the second situation if 𝑞 < 0.5.

53

𝑋(𝑡 + 1) = {

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|, 𝑞 ≥ 0.5

(𝑋𝑟(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵), 𝑞 < 0.5
 (2.4)

 𝑟1, 𝑟2, 𝑟3 et 𝑟4 are uniform random variables in [0,1];

 𝐿𝐵 and 𝑈𝐵 are respectively the lower and upper bounds of the search space, which makes it

possible to create a random position in the search space with 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵));

 𝑋𝑟 is the rabbit’s position, so the best solution at iteration 𝑡;

 𝑋𝑟𝑎𝑛𝑑 is a position chosen at random from the Harris Hawk population;

 𝑋𝑚(𝑡) is the average position of the Harris Hawk population and is calculated by (2.5):

𝑋𝑚(𝑡) =
∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 (2.5)

C. Exploitation phases

The exploitation phases take place when: |𝐸 | < 1.

The rabbit is under fire from Harris Hawk attacks. There are four exploitation phases (attacks), each of

which models a collective Harris Hawk attacks: Soft besiege, Hard besiege, Soft besiege with progressive

rapid dives and Hard besiege with progressive rapid dives. Each of these four phases will seek better

solutions in a neighborhood near or far from 𝑋𝑟(𝑡) .

The four phases are identified by the couple (|𝐸|, 𝑟5) with 𝑟5 a uniform random variable in [0,1].

The random variable 𝑟5 let’s us to know if the rabbit manages to escape 𝑟5 < 0.5 or if his escape

attempt failed 𝑟5 ≥ 0.5. The success and failure are equally likely.

|𝐸| allows us to measure the rabbit exhaustion during the Harris Hawk attacks and therefore its ability

to be able to escape. If |𝐸| ≥ 0.5 the rabbit has enough energy to run away. On the other hand if |𝐸| <

0.5, the rabbit is exhausted and will have more difficulty avoiding Harris Hawk attacks.

Thus the four exploitation situations (attacks) are identified as follows:

 Soft Besiege (SB): if |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5;

 Hard Besiege (HB) : if |𝐸| < 0.5 and 𝑟5 ≥ 0.5;

 Soft Besiege with Progressive Rapid Dives (SBPRD): if |𝐸| ≥ 0.5 and 𝑟5 < 0.5;

 Hard Besiege with Progressive Rapid Dives (HBPRD): if |𝐸| < 0.5 and 𝑟5 < 0.5.

54

One of the strengths of HHO is the integration of the Levy Flight equation in SBPRD and HBPRD.

Given that the position of the global solution is unknown in the search space, just like the position of a

prey is unknown in the hunting ground, the Levy Flight allows Harris Hawk to perform effective local

research by random short-range jumps in the vicinity of 𝑋𝑟. This method of research, by exploiting the

Levy Flight distribution, increases search diversity in the distant neighborhood of 𝑋𝑟.

We are going to describe in detail each of the four exploitation phases explained above.

a. Soft besiege

The rabbit is not yet exhausted and is hopping in all directions in an attempt to escape. This therefore

creates uncertainty in his position. Unfortunately for him he cannot escape. Harris hawks take advantage

of this and perform surprise pounces to capture their prey. This attack is modeled by the equations (2.6)

and (2.7) which allow to calculate the next position:

𝐽 = 2. (1 − 𝑟6) (2.6)

{
𝑋(𝑡 + 1) = ∆𝑋(𝑡) − 𝐸. |𝐽. 𝑋𝑟(𝑡) − 𝑋(𝑡)|

∆𝑋(𝑡) = 𝑋𝑟(𝑡) − 𝑋(𝑡)
 (2.7)

𝑟6 is a uniform random variable in [0,1], so 𝐽 belongs to the interval [0,2]. 𝐽 models the uncertainty

of the rabbit position and helps to extend the search area in the neighborhood of 𝑋𝑟(𝑡).

The search magnitude in the neighborhood of 𝑋𝑟(𝑡) is managed by 𝐸. Since |𝐸| ≥ 0.5, the search

takes place in a far neighborhood from 𝑋𝑟(𝑡).

b. Hard besiege

The rabbit is exhausted and no longer has the energy to perform run, jump and escape. So there is less

uncertainty in the rabbit position. Harris hawks perform thus surprise pounces all around the rabbit to

capture it. This close attack is modeled by equation (15). As |𝐸| < 0.5, the search is performed in a close

neighborhood of 𝑋𝑟(𝑡).

𝑋(𝑡 + 1) = 𝑋𝑟(𝑡) − 𝐸. |∆𝑋(𝑡)| (2.8)

c. Soft besiege with progressive rapid dives

The rabbit has enough energy and it manages to escape. So it performs random zigzag movements.

Like the rabbit still has enough energy and that he avoids skillfully short-range attacks, Harris Hawks

55

perform a soft besiege in order to try to catch the rabbit with surprise pounces disordered. Then, the Harris

Hawk agents correct their trajectory progressively.

In order to model the random rabbit zigzag movements, the Levy Flight (LF) equation (2.12) is used

in the Harris Hawk movement strategy. The LF movement is a great way to widen the search areas

stochastically during exploitation.

Equations (2.9) to (2.12) take into account two situations.

In the first situation equation (2.9) is sufficient to try to capture the rabbit and is satisfactory to

calculate the next Harris Hawk position Y.

In the second situation the rabbit is much more skill than Harris Hawks. In this situation, the next

Harris Hawk position Z is calculated with the equations (2.9), (2.10), (2.11) and (2.12).

𝑌 = 𝑋𝑟(𝑡) − 𝐸. |𝐽. 𝑋𝑟(𝑡) − 𝑋(𝑡)| (2.9)

𝑍 = 𝑌 + 𝑆. 𝐿𝐹 (2.10)

𝑋(𝑡 + 1) = {

𝑌 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋)

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋)
 (2.11)

{

 𝐿𝐹 = 0.001. 𝑢.𝜎

|𝑣|
1
𝛽

𝜎 = (
𝛤(1+𝛽).𝑠𝑖𝑛(𝜋.𝛽

2
)

𝛤(1+𝛽
2
).𝛽.2

(
𝛽−1
2

)
)

1
𝛽 (2.12)

𝑢 and 𝑣 are two vectors whose components are random variables in [0,1] and 𝛽 is a constant equal to

1,5.

d. Hard besiege with progressive rapid dives

The rabbit is exhausted and it is therefore in a difficult situation. However, it manages to escape. We

observe again a random zigzag movement escape.

Like SBPRD, in HBPRD the calculation of the next Harris Hawk position uses the Levy Flight

equation (2.12) and depend on two situations: the first situation uses equation (2.13) and the second

56

situation uses equations (2.12), (2.14) and (2.15). Since the Harris Hawk attacks strategy is in close

formation, the next position calculation is based on the average Harris Hawk positions 𝑋𝑚. The average

position 𝑋𝑚 is calculated with equation (2.5).

𝑌 = 𝑋𝑟(𝑡) − 𝐸. |𝐽. 𝑋𝑟(𝑡) − 𝑋𝑚(𝑡)| (2.13)

𝑍 = 𝑌 + 𝑆. 𝐿𝐹 (2.14)

𝑋(𝑡 + 1) = {

𝑌 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋)

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋)
 (2.15)

Appendix 6 provides the flowchart of HHO. The schematic representations of the updating Harris

Hawk position provided in the literature are unreadable and incomprehensible views in 3-dimension on

a 2-dimensional plan [Heidari AA et al., 2019; Hussain K et al., 2019c]. We propose in our flowchart a

mapping more pragmatic of the updating of the Harris Hawk positions in the exploration and exploitation

phases. Moreover, this new representation highlights REE as the central element of HHO as the

coordinator of exploration and exploitation phases. The pseucode Algorithm 1 below implements the

HHO algorithm.

Algorithm 2.1 Pseudocode of HHO

In: Population size N, number of iteration 𝑇𝑚𝑎𝑥, objective function F

Out: 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)

Initialization of the Harris Hawk positions �⃗�𝑖 , 𝑖 ∈ {1, . . , 𝑁}, t=0

While (t < 𝑇𝑚𝑎𝑥) do:

 Calculate 𝐹(�⃗�𝑖) of each Harris Hawk position �⃗�𝑖

 Define the best position of rabbit 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)

 For each Harris Hawk 𝑖 do:

 Update 𝐸0, 𝐸, and 𝐽 with (2.1), (2.2) and (2.6)

 If(|𝐸 | ≥ 1) then: [Exploration]

 Calculate 𝑞 and Update position with (2.4)

 Else: [Exploitation]

 Calculate 𝑟5

57

 If |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5 then:

 Update position with (2.6) and (2.7)

 If |𝐸| < 0.5 and 𝑟5 ≥ 0.5 then:

 Update position with (2.8)

 If |𝐸| ≥ 0.5 and 𝑟5 < 0.5 then:

 Update position with (2.9) to (2.12)

 If |𝐸| < 0.5 and 𝑟5 < 0.5 then:

 Update position with (2.12) to (2.15)

 End for

 t=t+1

End while

Return 𝑋𝑟⃗⃗⃗⃗⃗

In subsection 2.2.4 we have seen all the qualities of HHO metaheuristic inspired by Harris Hawks'

pack hunting technique. It is a very recent and almost autonomous metaheuristic (two parameters to

initialize) with sophisticated exploration and exploitation equations.

The experimental results in the literature demonstrate correct performances in search of the global

solution for small and medium-dimension optimization problems [Heidari AA et al., 2019].

However, as the No Free Lunch Theorem [Wolpert DH et al., 1996] reminds us «There is no

metaheuristic algorithm that can solve all optimization problems». This means that a metaheuristic can

demonstrate good performance on a group of optimization problems, while getting mediocre results on

another group. So, the perfect metaheuristic does not exist and HHO does not escape the rule. This opens

up a wide range of innovation to researchers to improve HHO and to reduce its weaknesses. These

weaknesses were particularly manifested in highly multimodal and high-dimensional optimization

problems. Indeed, in this category of problems, HHO fails to maintain proper balance between

exploration and exploitation phases to get stuck in one of the local optimum with low accuracy. Thus the

Harris Hawks have a lot of weaknesses "to hunt and catch an acceptable prey" (acceptable solution) in a

reasonable time.

2.2.5. The HHO’s weaknesses and improvement attempts

Many studies in the literature have attempted to correct the HHO’s weaknesses by hybridization

strategies [Alabool HM et al., 2021]. These weaknesses relate more particularly to exploration and

58

exploitation capacities and the balance between these two phases. These weaknesses are accentuated by

the multimodality of the optimization problem and with the curse of the dimensionality by increasing the

dimension.

Four main strategies have been implemented to correct the HHO’s weaknesses: Improve the

exploratory equations, modify the REE function, increase the diversification of the population and adapt

the exploitation area by altering the exploitation equations. These four strategies used individually or

combined contribute to the final objective of correcting the HHO’s weaknesses that we have just

explained above.

HHO skills were exploited by Elkadeem M.R. et al. [Elkadeem MR et al., 2019] to resolve the

optimization of renewable energy distribution planning in photovoltaic and volume panels. In order to

improve HHO exploration capacities, the latter was hybridized with Particle Swarm Optimization (PSO)

to create HHO-PSO. Indeed, PSO, although less evolved than HHO, is able to explore the search space

quite quickly. It’s this particularity that has been integrated into the exploratory equations of HHO. The

experimental results testify to the good exploratory faculties of HHO-PSO compared to HHO.

In a research by Birogul S. [Birogul S, 2019] HHO was hybridized with the metaheuristic Differential

Evolution (DE) to create HHODE. HHODE has allowed to better solve the optimization problem of

Electrical Power Flow (OPF). Again, exploration is the improvement line of HHO by replacing the

exploratory equations for 𝑞 ≥ 0.5. This equation is replaced by the five mutational equations of the most

used algorithm in DE to benefit from their diversification capabilities. The experimental results

demonstrated the superiority of HHODE on HHO.

Houssein E.H. et al. [Houssein EH et al., 2020] introduced a hybridization of HHO with the Cuckoo

Search (CS) and chaotic maps to create the CHHO-CS metaheuristic. CHHO-CS was used for the feature

selection of the chemical composition descriptors. CHHO-CS uses CS to achieve better 𝑋𝑟𝑎𝑛𝑑 and 𝑋𝑟

position to improve explorations phases and the balance between exploration and exploitation. Then

chaotic maps were incorporated into the REE function to change the shape of its amplitude to an inverted

parabolic. Thus 𝐸 evolve in [−2,2] in the two half of the iteration. Thereby hybridization allows to

reorganize the exploration and exploitation phases in the two halves of the iteration.

59

Jia H. et al. [Jia H et al., 2019] proposed DHHO/M in order to use it in satellite images segmentation.

DHHO/M improves the exploration phases of HHO by replacing on the one hand a part the exploration

equation for 𝑞 ≥ 0.5 with the DE best/2 operation. And on the other hand by adding to the REE a function

which stochastically creates "pulses" during the second half of the Iteration. Those pulses increase the

amplitude of REE. This makes it possible to have |𝐸 | ≥ 1 during the second half of the Iteration, so new

exploration phases could allow DHHO/M to get out from the local optimum traps. Tests on satellite

image datasets validated the performance of DHHO/M against HHO.

The authors Gupta S. et al. [Gupta S et al., 2020] combined three of the four methods mentioned

above to improve HHO by creating the metaheuristic m-HHO. The linear management of the amplitude

of the REE function has been replaced by a decreasing quadratic exponential function. This function

grants less iterations to the exploration phases while accelerating convergence. The Levy Flight (LF)

function multiplied by a parameter 𝛼 was added to the two exploitation equations (2.9) and (2.13). This

parameter 𝛼 controls the magnitude of the step of LF and varies throughout iterations in the same way as

the REE function. This modification makes it possible to reduce disturbances in the exploitation phases

as the iterations progress. The diversification phase of the algorithm has been implemented by the use of

the Opposition-Based Learning (OBL) method applied to a greedy selection of the 𝑁𝑜𝑝 best opposed

solutions of the HHO population. 𝑁𝑜𝑝 is a decreasing staircase function according to iterations which

allows a wide diversification of the population at the start of iterations in order to promote exploration to

then focus on a smaller portion of the population at the end of the iteration in order to promote

exploitation. Tests on a benchmark of 33 functions provided better results for m-HHO with a better local

optimums avoidance.

Fan Q. et al. [Fan Q et al., 2020] created QRHHO by integrating the Quasi-Reflection-Based Learning

(QRBL) mechanism into HHO in order to diversify the population. QRBL is a variant of the Opposition-

Based Learning (OBL) mechanism. QRBL is used for the initialization phases and the updating of the

population at each iteration. The calculation of QRBL is performed on each position of the N agents of

the population to provides N new QRBL agents. Then a greedy selection is performed on the original

population and the QRBL population in order to keep only the N best agents. Tests on a benchmark of

60

23 functions have demonstrated that QRHHO has better exploitation, exploration and convergence

capabilities than HHO.

Chen H. et al. [Chen H et al., 2020] have integrated into HHO three mechanisms allowing to correct

the exploration, the exploitation and the precision of the final solution. To do this, they created the

metaheuristic CMDHHO which uses respectively the topological multi-population strategy, the chaotic

sequence of the Logistic map and the three DE operations: mutation, crossover and selection.

The 30 functions of the CEC2017 benchmark made it possible to highlight that the three mechanisms

include at the same time in CMDHHO allowed a significant reduction of HHO’s weaknesses to increase

the convergence speed and the final solution quality, but without knowing which of the mechanisms

introduced brings the most performance or the least performance or even no improvement.

Gao Z.M. et al. [Gao ZM et al., 2019] have used in HHO, the chaotic sequence of the Tent map to

diversify at each iteration the best position 𝑋𝑟. It is a diversification method applied only to Rabbit

position. This strategy is divided into three steps. In the first step the components of 𝑋𝑟, initially in the

search space [𝐿𝐵, 𝑈𝐵], are mapped in [0,1]. In the second step the components are transformed into

chaotic value with the Tent chaotic map. In the last step they are switched in the initial search space

[𝐿𝐵, 𝑈𝐵]. The reiteration of this process is equal to the number M of chaotic iteration. Therefore, M new

Rabbit positions are created. A greedy selection of the best position among the M is finally made to

replace the position 𝑋𝑟 if its fitness value is better.

Experimental results on a benchmark of 18 functions compared HHO and the chaotic version of HHO.

These results highlighted the superiority of chaotic version of HHO by a faster convergence and a better

precision of the final solution.

All the work that we have just described above prove that HHO has great weaknesses and that a large

leeway exists to improve it. However, these works only use classical hybridization paradigms to improve

HHO. Contrary to these works, our hybridization paradigm is entirely inspired by an unexpected hunting

synergy observed in nature. In section 2.3, we will detail our contribution in which we will explain in

detail our hybridization strategy inspired from the hunting synergy between the crows of and the wolves

which has allowed us to design HHO-EAS.

61

2.3. Our contribution HHO-EAS a new population based metaheuristic inspired from the nature

2.3.1. Inspiration from the nature

In northern Europe, near Romania and in the Yellowstone Park in Wyoming, winters are very harsh.

During this season sufficiently nutritious prey is scarce and the chances of survival are dwindling for

predators. It was in this hostile environment that an unusual alliance was born between the wolves and

the crows [Stahler D et al., 2002; Milner R, 2020].

Fig. 2.2. Synergy between crow and wolf while hunting [Milner R, 2020].

Individually, the crows and wolves struggle to feed themselves by hunting in such difficult climatic

conditions.

In the snow, wolves have a good ability to hunt by detecting and catching a prey near them, even if it

is larger than them. However, they have great difficulty in locating their prey in a large hunting ground,

especially if the hunting ground is very hilly and rugged. They will therefore have exhausted themselves

trying to catch a prey in vain. Then, they give up due to excessive complexity of the hunt, and

consequently reduces their chances of survival.

Crows, unlike wolves, have a good aerial view on the entire hunting ground. This makes it easier for

them to quickly explore the hunting ground and to detect attractive prey. However, attractive preys are

often too big for their hunting ability. Crows therefore cannot catch them away. Consequently, they will

have exhausted themselves in vain in search of this prey. Thus, they will suffer the same fate as the

wolves.

However, if the crows and wolves associate their skills, their desperate situation could favorably

change. Crows will use their aerial exploration faculties to detect promising prey, even if stronger than

them. As soon as they will have detected a good prey they will communicate his position to the wolves

62

and ask them to exploit this information to attack and catch this prey. Once the prey is acquired, the

wolves honorably cedes a part of the booty to the crows.

This win-win synergy between the aerial exploration abilities of the crows and the attack skills of the

wolves allows them both to better feed themselves during the winter and ensure their survival.

The hunting strategy between crows and wolves is structured in three phases.

First phase: The crows initiate the hunt and invite the wolves to join them. The crows perform a

careful exploration adapted to the hunting ground whatever its complexity. The initial field of exploration

is wide and then gradually narrows to an area with a promising prey. So the exploration phases are present

until the crows have targeted a promising prey. The wolves’ encirclement and attack phase is in the last

phase of the hunt. During the exploration phases, crows can ask wolves to check the feasibility of the

attack and the capture of a prey.

Second phase: Finally, the crows’ exploration abilities allowed them to detect a promising region

with a good prey. They ask wolves to attack this prey. The wolves move towards the position of the prey

provided by the crows to encircle and attack it.

Third phase: Wolves and crows benefit together of the outcome of their alliance by sharing the prey.

The hunting synergy between the crows and the wolves brings out four key points of the adopted

strategy:

 A good management of hunting by the crows and a constant communication between crows

and wolves;

 A smart exploration, gradual and adapted to the hunting ground carried out by the crows in

order to find a good prey;

 A signal that allows to coordinate the missions of each during the hunt and asking the wolves

to attack the prey;

 An encirclement and attack of the prey made by the wolves.

Based on the three phases of the hunting synergy between crows and wolves and its four key points

we were able to enforce a hybridization strategy to design a new HHO-EAS metaheuristic.

63

2.3.2. Our contribution HHO-EAS

Subsection 2.2.5 explained some researches to improve HHO by hybridization. These improvements

act mainly on exploratory and exploitation equations and on the alteration of the REE function.

The HHO-EAS metaheuristic provides news axis of improvement for exploration and exploitation in

order to improve the performance of HHO. Inspired by the hunting synergy between crows and wolves,

HHO-EAS integrates the four key points listed above in HHO:

 A new REE function designed by fuzzy logic techniques that provides a smart distribution of

exploration and exploitation phases;

 Progressive and decreasing exploration phases, better suited to highly multimodal problems

thanks to fuzzy logic;

 A new Harris Hawk hierarchy, 𝛼 − 𝛽 − 𝛿 ;

 A coordinated exploitation between Harris Hawk 𝛾 and the Harris Hawk hierarchy, 𝛼 − 𝛽 −

𝛿, who lead the encirclement and attack.

A. A smart distribution of exploration and exploitation phases managed with a Fuzzy Inference

Sytem (FIS)

In subsection 2.3.1, three of the four points of the hunting synergy between the crows and the wolves

are:

 A good management of hunting by the crows and a constant communication between crows

and wolves;

 An intelligent exploration, gradual and adapted to the hunting ground in order to find a good

prey;

 A signal that allows to coordinate the missions of each during the hunt and asking the wolves

to attack the prey.

We will model this strategy by creating a Fuzzy Inference System (FIS) based on a Mamdani type.

We name it FISREE (Fuzzy Inference System Rabbit Escaping Energy). Our algorithm manages the

amplitude e of REE, so it coordinates the exploration and exploitation phases of HHO-EAS. Unlike HHO

that coordinates the exploration and exploitation phases at each iteration with a simplistic linear function,

64

our algorithm will implement a smart coordination process of exploration and exploitation phases suited

to highly multimodal and high-dimensional optimization problems. As we could see in subsection 2.2.4,

the REE function is the beating heart of the HHO algorithm. This function makes it possible to coordinate

the exploration and exploitation phases while ensuring a smooth transition and a balance between its two

phases. It therefore contributes to performance of HHO. However, as explained in subsection 2.2.5, REE

can be improved to better promote the distribution of exploration and exploitation phases during iterations

and to tend towards a better exploration-exploration balance. Thus this allows to increase the probability

of finding a promising area in the search space containing a good solution and to avoid the pitfalls of a

poor exploration-exploitation balance, either premature convergence or too slow convergence.

In HHO, the amplitude of REE is the crisp variable 𝑒 and is expressed over two phases in a decreasing

and linear fashion :

{

 𝑖𝑓 𝑡 ∈ [0,

𝑇𝑚𝑎𝑥

2
] , 𝑒 ∈ [1,2]

𝑖𝑓 𝑡 ∈ [
𝑇𝑚𝑎𝑥

2
, 𝑇𝑚𝑎𝑥] , 𝑒 ∈ [0,1]

In [0,
𝑇𝑚𝑎𝑥

2
], the amplitude 𝑒 allows several exploration phases and in [

𝑇𝑚𝑎𝑥

2
, 𝑇𝑚𝑎𝑥] there’s no more

exploration phases. The second phase is therefore suddenly deprived of exploration phases. We can easily

deduce that in HHO, there is a premature disappearance of the exploration phases, which is not adapted

to the high-dimensional and highly multimodal optimization problems [Jia H et al., 2019; Zhang Y et al.,

2020]. However, in the collaborative hunting between the crows and the wolves, there is an intelligent

exploration, gradual and adapted to the hunting ground to find a prey. Indeed, the crows gradually

decrease their fields of exploration to manage to detect a promising area. In this strategy the exploration

phases constitute the major part of the hunting process and the wolf attack phase, with only exploitation

phases, is the very last part of the hunt. To model this strategy in HHO-EAS, with FISREE we insert in

the amplitude e three level: Small, Medium and Big.

Before detailing the architecture of FISREE, it is necessary to recall the general concepts of fuzzy

logic and to fix its theoretical fundamentals. These fundamentals are 8 in number: Universe of discourse,

65

Fuzzy set, Membership functions, Fuzzy Rules, Fuzzification, Defuzzification, Knowledge base and

Inference Engine [Zadeh LA, 1965; Klir G et al., 1995; Sabri N et al., 2013; Mitiku T et al., 2018;

Pourjavad E et al., 2019].

B. General concepts

Fuzzy logic is a subset of the artificial intelligence created by ZADEH Lotfi in 1965 [Zadeh LA,

1965]. Fuzzy logic makes it possible to process physical signals from our environment by the decision-

making process of human perception which may lack precision. Mathematically, Fuzzy logic enables

rational, flexible and repeatable decisions to be made about crisp output variables based on crisp input

variables and fuzzy rules between input and output linguistic variables [Klir G et al., 1995; Ross TJ,

2016; Reddy PVS, 2021].

C. Theoretical fundamentals

a. Universe of discourse

Universe of discourse 𝜒 of a fuzzy set 𝐿 is the interval of definition of the crisp values 𝑥 in which

membership function 𝜇𝐿 is defined.

b. Fuzzy set

A Fuzzy set 𝐿, defined in the universe of discourse 𝜒 is characterized by its membership function 𝜇𝐿.

It is represented by the couple 𝑥 et 𝜇(𝑥)𝐿, with 𝑥 a crisp value in the universe of discourse 𝜒. The

mathematical expression of the fuzzy set 𝐿 is :

𝑳 = {(𝒙, 𝝁(𝒙)𝑳)| 𝒙 ∈ 𝝌} .

c. Membership function

A membership function 𝜇𝐿 is associated with the fuzzy set 𝐿 . For each crisp value 𝑥 of the universe

of discourse 𝜒, 𝜇𝐿 provide a real value in [0, 1] which represents the degree of membership of 𝑥 in the

fuzzy set 𝐿.

The membership 𝜇𝐿 is defined by the mathematical expression : {
𝝌 → [𝟎, 𝟏]

𝒙 → 𝝁𝑳(𝒙)

66

There is a multitude of membership functions: Gaussian, sigmoid, trapezoid, triangular, etc. What all

of its membership functions have in common is that their values are in [0,1]. Membership functions must

agree with the definition space of the crisp input and crisp output value that they describe.

d. Fuzzy rules

Fuzzy rules are the expression of the expert human knowledge. This makes it possible to express, in

human language, a fuzzy logical relationship between input and output linguistic variables and input and

output fuzzy sets.

A fuzzy rule is expressed by the basic logical expressions IF antecedent THEN consequent. The

antecedent is the fuzzy logic equation involving the input linguistic variables and input fuzzy sets. The

consequent is the fuzzy logic equation involving the output linguistic variables and output fuzzy sets.

Knowing that the fuzzy sets represent linguistic values of the linguistic variables.

e. Fuzzification

The Fuzzification process is the mapping of a crisp value in a Fuzzy Set. Thus, the Fuzzification makes

it possible to transform a crisp input value, from the input universe of discourse, in membership degrees

of the fuzzy sets.

f. Defuzzification

The Defuzzification is the opposite process of Fuzzification. It is the process we use to convert a fuzzy

set, taking into account the activated fuzzy rules, in order to provide a crisp output value belonging to the

output universe of discourse.

g. Knowledge base

The Knowledge base is a data base containing the expert knowledge of the Fuzzy Inference System.

It contains the Fuzzy rules and the Membership function associated to the Fuzzy sets.

h. Inference Engine

Inference engine allow to create the output fuzzy set from the input fuzzy set and the fuzzy knowledge

base containing the fuzzy rules. To do this, the Inference Engine acts in two steps:

1st step: Knowing the degree to which the inputs crisp values belong to each membership function

in the Fuzzification process, the Inference Engine calculates the degree for which each rule is fired;

67

2nd step: From the triggered rules and their degree of firing, the Inference Engine creates the output

fuzzy set concerned by the rules triggered.

We now know the fundamental blocks that will allow us to build our FISREE. We can now explain

step by step its implementation.

D. Variables and membership functions of FISREE

In order to design and to develop the architecture of FISREE, it is necessary to first define its input

and output variables and its input and output membership functions. The choices made for each of these

elements are fundamental for the efficiency of FISREE.

We describe below the design choices of FISREE:

 The Input and Crisp output value;

 The Output universe of discourse, knowing that input universe of discourse for Iteration is

[0,1];

 The Input and Output fuzzy set;

 The Input and Output Membership functions.

a. Input and crisp output value

Like HHO that uses the iteration as numerical input variable for the function REE (2.1) to pace

exploration and exploitation, HHO-EAS will use the iteration as a crisp input value to pace FISREE. In

order to have an interval of value between 0 and 1 we divide the iteration by the maximum number of

iteration :
𝒕

𝑻𝒎𝒂𝒙
.

It is the amplitude 𝑒 that is the crisp output value calculated by FISREE.

Next, we need to determine for FISREE, the bounds of the output universe of discourse the most

optimal in order to model the crow exploration strategy.

b. Output universe of discourse

In order to determine which is the most optimal output universe of discourse for FISREE, we

performed the efficiency evaluation of the six following universe of discourse:

68

[0,2], [0.5,2], [0,2.5], [0.5,2.5], [0.5,3] and [0,3]. These universes of discourse were determined after

analyzing the state of the art of the attempts to improve HHO by acting on the amplitude of REE

[7,16,17,20]. Each universe of discourse acts differently on the employability of REE and therefore on

the distribution of exploration and exploitation phases. The output universe of discourse most consistent

with the strategy of crows with a gradual decline in the field of exploration is [0.5,2.5]. It was therefore

chosen as the output interval of discourse for the amplitude 𝑒.

c. Input and Output linguistic variables

The input linguistic variable Iteration has three input fuzzy set linked to the three linguistic values:

Start, Middle and End.

As Iteration, the output linguistic variable 𝒆 has three fuzzy set linked to the linguistic values: Small,

Medium and Big.

d. Membership functions

The choice of membership functions is vital for the FISREE. They act not only on FISREE

performance but also on the calculation time of the output value 𝑒.

For FISREE we want membership functions:

 Which are compatible with large variations of input and output numeric variable in a very

short time interval;

 Requiring a short calculation time in order to not to increase the HHO-EAS complexity.

Based on the state of the art [Zhao J et al., 2002; Monicka JG et al., 2011] the membership functions

adapted to our needs are triangular or trapezoid functions. The most efficient for FISREE are the

triangular ones.

e. Triangular membership functions

The triangular membership function is normal (there is at least one 𝑥 belonging to the universe of

discourse such as 𝜇(𝑥) = 1), symetric and convex fuzzy set. It is defined by the equations (2.16)

depending on three real values a, b and c with 𝑎 < 𝑏 < 𝑐.

69

𝜇(𝑥) =

{

0 𝑖𝑓 𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
 𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
 𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐

0 𝑖𝑓 𝑐 ≤ 𝑥

 (2.16)

The real values a, b and c define the Support, the Core and the Boundary of the membership

function:

 Support is {(𝑥 ∈ [𝑎 , 𝑐])| 𝜇(𝑥) > 0} ;

 Core is {(𝑥 ∈ [𝑎 , 𝑐])| 𝜇(𝑥) = 1} , for a triangular membership function the core is equal to

𝑏;

 Boundary is {(𝑥 ∈ [𝑎 , 𝑐]): 0 < 𝜇(𝑥) < 1} ;

Therefore, for the triangular membership function, 𝑏 is the argmax value in [𝑎 , 𝑐] for 𝜇(𝑥).

Thanks to the results obtained in [Zhao J et al., 2002; Monicka JG et al., 2011], we selected and tested

two membership functions with different linguistic weighting terms [𝑎 , 𝑏, 𝑐] in a universe of discourse

normalized [0 , 1]:

(1). [0 , 0, 0.5], [0 , 0.5, 1], [0.5, 1, 1] ;

(2). [0 , 0, 0.4], [0.1 , 0.5, 0.9], [0.6, 1, 1].

We have chosen (2) because, for the progressive decrease of the exploration phases, this allows on the

three portions of the input universe of discourse: [0,
𝑇𝑚𝑎𝑥

10
], [

2𝑇𝑚𝑎𝑥

5
,
3𝑇𝑚𝑎𝑥

5
], and [

9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] to obtain

three constant levels of amplitude 𝑒 followed or preceded by non-linear progressive decrease of the

amplitude. Thus, we have associated to the input and output fuzzy sets three triangular membership

functions with:

 Crisp input value in the universe of discourse [0 ,1] ;

 Crisp output value in the universe of discourse [0.5 ,2.5] ;

 For the linguistic variable Iteration , the three triangular membership functions have the

linguistic weighting terms defined by Start [0 , 0, 0.4], Middle , [0.1 , 0.5, 0.9], End [0.6, 1, 1] ;

70

 For the amplitude linguistic variable e , the three triangular membership functions have the

linguistic weighting terms defined by Small [0.5,0.5,1.3], Medium [0.7,1.5,2.3], Big

[1.7,2.5,2.5].

Fig. 2.3 provides with the graphical representation of the six input and output membership functions

for the linguistic variables Iteration and e.

We now have all the fundamental building blocks to design the FISREE’s architecture.

Fig. 2.3. Membership functions for linguistic variable Iteration and e.

E. FISREE’s architecture

FISREE manage the amplitude of REE with five decreasing phases: Big, Big and Medium, Medium,

Medium and Small and Small.

FISREE provide therefore a new distribution of exploration and exploitation phases during Iteration

from 0 to 𝑇𝑚𝑎𝑥 in order to obtain a better exploration-exploitation balance in highly multimodal and high-

dimensional optimization problems and to increase the probability of obtaining an area containing a good

solution. This area will then be enhanced by the exploitation phases.

The FISREE’s architecture is composite of the four main blocks of a Fuzzy Inference System. Each

of them plays an essential and complementary role in the calculation of the crisp value 𝑒:

 The Fuzzification block;

 The Knowledge base block;

 The Inference engine block;

71

 The Deffuzzification block.

Fig. 2.4 below provides the FISREE’s architecture.

Fig. 2. 4. FISREE’s architecture.

These four blocks were designed in order to obtain the desired non-linear decreasing monotonous

variations for the amplitude 𝑒.

The objective is to obtain, like the exploration strategy of the hunting ground by the crows, a

redistribution of gradually decreasing and balanced exploration phases compared to exploitation phases,

until the final step of the optimization process with only exploitation phases.

a. Fuzzification block

The Fuzzification block receives the crisp input value Iteration. This block transforms it into a

linguistic variable Iteration with different degree of membership associated to the fuzzy sets Start,

Middle and End thank to the three triangular membership functions detailed above and loaded in the

Knowledge Base block.

b. Knowledge Base block

As clarified above, the fuzzy rules and the triangular membership functions express the knowledge

base that reflects the human expert choices during the execution of the HHO-EAS metaheuristic. We

detailed previously the input and output triangular membership functions. Never the less we have not

explained our "fuzzy strategy" expressed by our fuzzy rules.

72

FISREE has three fuzzy rules. In order to create a decreasing amplitude 𝑒 (crisp output variable) we

implement three decreasing rules between the linguistic variables Iteration and 𝒆 :

IF (Iteration) IS (Start) THEN (𝒆) is (Big)

IF (Iteration) IS (Middle) THEN (𝒆) is (Medium)

IF (Iteration) IS (End) THEN (𝒆) is (Small)

These three rules make it possible to determine the linguistic value 𝒆 from the linguistic value

Iteration .

These three fuzzy rules will be activated by the Inference engine block taking into account the

membership degree of the crisp value associated to each fuzzy set Start, Middle and End.

c. Inference engine block

Inference engine allow to create the fuzzy set of the linguistic variable 𝒆 from the fuzzy set of the

linguistic variable Iteration, its three triangular membership functions and the three fuzzy rules in the

knowledge base.

The results from the fuzzy rules activations are then aggregated and transmitted to the Defuzzification

block.

d. Defuzzification block

For the Defuzzification process in FISREE, with a Mamdani-type FIS, we use the centroid method

to provide a amplitude value 𝑒. This method use the weighted average of the output fuzzy sets expressed

by:

𝑒 =
∫ 𝜇𝐿(𝑦). 𝑦. 𝑑𝑦

∫ 𝜇𝐿(𝑦). 𝑑𝑦

The FISREE’s architecture is now operational. We can therefore visualize the results on the amplitude

𝑒, the REE function and the distribution of exploration and exploitation phases from the iteration 0 to

𝑇𝑚𝑎𝑥 with 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000 in accordance with the 𝑇𝑚𝑎𝑥 values used in general and

73

specific tests. We will see that FISREE makes it possible to redistribute the exploration and exploitation

phases independently of 𝑇𝑚𝑎𝑥 in order to model the smart strategy of the crows with the progressive

decreasing of exploration phases.

F. Graphical results

a. Evolution of the amplitude e during the iterations

Fig. 2.5 allows us to visualize the progression of the numeric variable 𝑒 for HHO and HHO-EAS.

We can see in Fig. 2.5, whatever 𝑇𝑚𝑎𝑥 value, that unlike HHO which has a single decreasing linear

management of 𝑒, FISREE allows HHO-EAS to manage the numeric variable 𝑒 on five phases: Three

constant levels at the beginning in the middle and at the end of the iterations, preceded by nonlinear

decreasing phases.

Each phases represents the following fuzzy sets of 𝑒:

Phase 1: Big;

Phase 2: Big and Medium;

Phase 3: Medium;

Phase 4: Small and Medium;

Phase 5: Small.

This is the result of the operations carried out by FISREE from the crisp input value of Iteration. It

can be noted that HHO-EAS is still able to perform exploration phases after
𝑻𝒎𝒂𝒙

𝟐
. These five variations

of the amplitude 𝑒 allow HHO-EAS to have a smart and adapted management of the REE function to the

highly multimodal and high-dimensional optimization problems.

74

Fig. 2.5. Graphical representation of the amplitude e in HHO and HHO-EAS for 𝑇𝑚𝑎𝑥=600 and

𝑇𝑚𝑎𝑥=10000

75

Fig. 2.6. Graphical representation of REE function in HHO and HHO-EAS for 𝑇𝑚𝑎𝑥=600 and

𝑇𝑚𝑎𝑥=10000

76

b. Evolution of the REE function during the Iteration

To analyze the evolution of REE in HHO-EAS, we replace in the equation (2.1) the linear decreasing

amplitude e by the output crisp value e produced by FISREE.

Fig. 2.6 make it possible to compare the REE managed by HHO and HHO-EAS. We can see that the

wrap of the REE function is the same for 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000. Which confirms that the

variation of the amplitude e is independent of 𝑇𝑚𝑎𝑥.

As we had expected, we observe several peaks of amplitude greater than 1 up to iteration 540 for

𝑇𝑚𝑎𝑥 = 600 and 9000 for 𝑇𝑚𝑎𝑥 = 10000. After 540 and 9000, there is no more peak greater than 1,

leaving the field open for the exploitation phases only. Like the hunting synergy between the crows and

the wolves, the exploration phases are present in the major part of the optimization process and end with

only the exploitation phases in the last phase of the optimization.

We will see in what follows that FISREE carries out a new distribution of the exploration and

exploitation phases in accordance with the crows’ exploration strategy.

c. Exploration and exploitation distributrion

In order to model the crows’ exploration strategy, FISREEE provide a new distribution of the

exploration and exploitation phases in order to increase, for the highly multimodal and high-dimensional

optimization problems, the probability of finding a promising area with good solution and avoiding to be

trapped in a local optimum.

In accordance with our FISREE conception choices explained above, the latter performs a distribution

in the five following intervals: [0,
𝑇𝑚𝑎𝑥

10
], [

𝑇𝑚𝑎𝑥

10
,
2𝑇𝑚𝑎𝑥

5
], [

2𝑇𝑚𝑎𝑥

5
,
3𝑇𝑚𝑎𝑥

5
], [

3𝑇𝑚𝑎𝑥

5
,
9𝑇𝑚𝑎𝑥

10
] and [

9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥].

These intervals represent respectively the linguistic values: Start, Start and Middle, Middle, Middle and

End and End. Whatever 𝑇𝑚𝑎𝑥 the fuzzy inference system FISREE allows us to obtain the same

proportion between exploration and exploitation phases in these five intervals. Thus, FISREE allows to

maintain an stable strategy independently of 𝑇𝑚𝑎𝑥.

Knowing that the exploration phases disappear halfway through the iterations for HHO, we have split

the interval [
2𝑇𝑚𝑎𝑥

5
,
3𝑇𝑚𝑎𝑥

5
] into two: [

2𝑇𝑚𝑎𝑥

5
,
𝑇𝑚𝑎𝑥

2
] and [

𝑇𝑚𝑎𝑥

2
,
3𝑇𝑚𝑎𝑥

5
]. This allows us to observe the total

loss of exploration phases in HHO unlike HHO-EAS which maintains its strategy of progressive decrease

77

in its exploration phases. Of course, FISREE will keep the same logic of distribution in these two

intervals.

So we will analyze in Fig. 2.7 the quotient between the exploration and exploitation phases over the

six key intervals: [0,
𝑇𝑚𝑎𝑥

10
], [

𝑇𝑚𝑎𝑥

10
,
2𝑇𝑚𝑎𝑥

5
], [

2𝑇𝑚𝑎𝑥

5
,
𝑇𝑚𝑎𝑥

2
], [

𝑇𝑚𝑎𝑥

2
,
3𝑇𝑚𝑎𝑥

5
], [

3𝑇𝑚𝑎𝑥

5
,
9𝑇𝑚𝑎𝑥

10
] and [

9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥]

with 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000 in accordance with the 𝑇𝑚𝑎𝑥 values used in general and specific

tests.

Fig. 2.7. Distribution of Exploration and Exploitation phases over the six key iteration intervals for

Tmax=600 and Tmax=10000

d. Analysis of the distribution exploration and exploitation phases strategy implemented by FISREE

First of all, as we had planned, we can note that the quotients between the exploration and

exploitation phases are almost identical for 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000. The exploration phases

are the majority in the interval [0,
𝑇𝑚𝑎𝑥

10
] for HHO-EAS with a ratio of 1.23 unlike HHO where they are

78

minority with a ratio of 0.90. This is one of the assets of HHO-EAS compared to HHO because it allows,

from the beginning of the optimization process, to cover a greater portion of the search space and thus

provide a better investment in the search for promising areas such as the crows at the beginning of the

hunt. In addition, the number of exploration phases gradually decreases in the interval [0,
𝑇𝑚𝑎𝑥

2
] while

maintaining a ratio greater than 0.5. This allows HHO-EAS to continue to explore new areas of the

search space in order to have a better probability of finding promising areas while leaving little by little

the field free for exploitation.

For HHO the ratio decreases too brutally in [
𝑇𝑚𝑎𝑥

10
,
𝑇𝑚𝑎𝑥

2
] from 0.48 to 0.1. If the promising areas have

not been detected at the beginning of iterations, HHO will have much more trouble doing it in [
𝑇𝑚𝑎𝑥

10
,
𝑇𝑚𝑎𝑥

2
].

As expected, HHO no longer provides exploration phases when the iterations are greater than
𝑇𝑚𝑎𝑥

2
,

(300 and 5000 in our case). In contrast, for HHO-EAS the exploration phases represent a ratio of 0.5 in

[
𝑇𝑚𝑎𝑥

2
,
3𝑇𝑚𝑎𝑥

5
] and 0.26 in [

3𝑇𝑚𝑎𝑥

5
,
9𝑇𝑚𝑎𝑥

10
]. These exploration phases could allow to move towards better research

areas contrary to HHO. As we wanted, the exploration phases disappear in [
9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] with 100% of

exploitation phases. This part is the last of the optimization process when the wolves attacks the prey

detected by the crows.

So Thanks to our design choices, FISREE manages to reproduce the crows’ exploration strategy

followed by the final attack of wolves. Thus HHO-EAS performs a progressive and careful exploration

more adapted to the hunting ground of the optimization problem. The initial field of exploration is wide

in [0,
𝑇𝑚𝑎𝑥

10
] and then gradually narrows toward an area with promising prey, to conclude with the final

attack of wolves in [
9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] with 100% of exploitation phases.

Other design choices in fuzzy logic are certainly possible for modeling other exploration strategy

model. The choices that have been taken to create FISREE all come from an analysis of the state of the

art with a dual objective: to best model the crows’ exploration strategy of the hunting ground and

minimize the complexity of FISREE so not to weigh down on the execution of the algorithm HHO-EAS.

In the next subsection, we will explain the wolves attack modeling. In HHO-EAS, this attack will be

led not by wolves but by a new hierarchy of Harris Hawk 𝛼 − 𝛽 − 𝛿 . It’s this new hierarchy which

79

pilots the Harris Hawks’ attack in the exploitation phases. This model is based on the encirclement and

attack equations.

G. Exploitation improvement with the encirclement and attack equations

The second part of the hybridization models the encirclement and attack of the prey by the wolves

after the exploration driven by the crows. After the detection of a promising area with a potential prey,

the wolves encircle, attack and share the prey with the crows in the last phase of the hunt. Unlike other

methods aimed at orienting, at each iteration, the metaheuristics towards the most appropriate dimension

such as sensitivity analysis [Loubiere P et al., 2016; Loubiere P, 2016], the encirclement and attack

equations act on all dimensions in order to position the agents in a portion of the search space more

promising. This hybridization improves the quality of the local search even if the optimization problem

is high-dimensional and highly multimodal. Indeed, in this category of optimization problem, for the

population based metaheuristics, the agents tend to gather around the agent having the best position even

if it is in a local optimum. This can therefore generate premature convergence towards this local optimum.

With this second hybridization, our ambition is to avoid this defect, to position Harris Hawks in more

promising areas and then catch "a good prey".

This hybridization is high-level and precedes the exploitation phases of HHO, with a subordinated

execution to FISREE when the crisp output value is in [−1, 1].

Like the crows that can’t hunt alone of good prey in the exploitation phases without the help of the

wolves, the Harris Hawk agents 𝛾 will benefit from the help of the hierarchy Harris Hawk agents 𝛼 −

𝛽 − 𝛿 to obtain improved exploitation phases with solutions of better qualities.

In order to models the action of the wolves in this win-win hunting synergy, HHO-EAS acts on two

axes:

 We have completed the organization of the Harris Hawk pack by integrating their hierarchy

𝛼 − 𝛽 − 𝛿 observed in nature [Dawson JW et al., 1991] ;

 We inserted the encirclement and attack equations synchronized on the crisp output value

provided by FISREE which also ensures the magnitude of the encirclement around the 𝛼 −

𝛽 − 𝛿 Harris Hawks.

80

a. General concepts of encirclement and Attack equations

Several metaheuristics inspired by predators’ hunting techniques model their strategy with the

encirclement and attack equations: Sea Lion Optimization [Masadeh R et al., 2019], Whale Optimization

[Mirjalili S et al., 2016], Spotted Hyena Optimizer [Dhiman G et al., 2017] and Gray Wolf Optimization

[Mirjalili S et al., 2014].

The main effect of these equations is to create virtuous encirclement areas in the neighborhood of the

top three solutions 𝛼 − 𝛽 − 𝛿 and to attack them by repositioning the other agents in a more promising

area consisting of a linear combination of three new positions. Each of these three new positions belong

to one of the three areas around 𝛼 − 𝛽 − 𝛿. Thereby, the processes of encirclement and attack guide, on

all dimensions, the agents toward better positions in the exploitation phases.

In the literature the encirclement and attack equations have produced very good experimental results

in the exploitation phases [Mirjalili S et al., 2014; Zhang X et al., 2020a]. On the other hand, the results

in the exploration phases are very mixed or even mediocre for high-dimensional and highly multimodal

optimization problems. However, in HHO-EAS the encirclement and attack equations have the only

mission to improve exploitation phases. They are therefore in adequacy with our goals.

b. Encirclement equations

The encirclement equations are described by the equations (2.17) and (2.18).

{
𝑆 = |𝐾�⃗⃗�. 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| (2.17)

�⃗�(𝑡) = 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗⃗⃗�. 𝑆 (2.18)

 𝐾 is a non-zero integer;

 �⃗⃗� is a vector whose the components are uniform random values defined in [0,1];

 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) is the prey position;

 𝑋 ⃗⃗⃗⃗ (𝑡) is the predator position;

 �⃗⃗⃗⃗� is a vector whose components evolve randomly in the interval [−𝑤,𝑤]. Generally �⃗⃗⃗⃗� is

defined by the combination of a random variable and a dependent function of the iteration.

Equation (2.17) creates a vector 𝑆 whose components represent the distances between each component

of the vectors 𝐾�⃗⃗�. 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) and �⃗�(𝑡).

81

𝐾�⃗⃗� models the uncertainties of the hunting ground in order to access the prey. The hunting ground

can keep the prey away from predators if the ground is too rough and too hilly. Thus the more the distance

between 𝐾�⃗⃗�. 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) and �⃗�(𝑡) increases, the more the predator is likely to be away from the prey.

Conversely, the more this distance decreases, the closer the predator gets to the prey. Mathematically the

components of the vector 𝑆 sizes the stride of the movement and therefore the speed of predators in the

encirclement area around the neighborhood of the prey.

Once 𝑆 and �⃗⃗⃗⃗� have been calculated, the encirclement area or hypercube (for a dimension 𝑁) around

the prey 𝑋𝑝⃗⃗ ⃗⃗ ⃗ is created by (2.18).

In order to illustrate the action of the encirclement equations on the search for a solution, let us take

the simple case of a two-dimensional search space.

c. Encirclement equations for a bidimensional search space

The two components of the vector 𝑆 (2.17) is given by equations (2.19).

{

𝑆1 = |𝐾𝑉1. 𝑋𝑝1(𝑡) − 𝑋1(𝑡)|

𝑆2 = |𝐾𝑉2. 𝑋𝑝2(𝑡) − 𝑋2(𝑡) |

 (2.19)

𝐾𝑉1 and 𝐾𝑉2 are random values in [0, 𝐾].

Once the components (𝑊1,𝑊2) of 𝑊 ⃗⃗⃗⃗⃗⃗ are calculated with (𝑊1,𝑊2) ∈ [−𝑤,𝑤]
2, thus 𝑊1. 𝑆1 ∈

 [−𝑤. 𝑆1, 𝑤. 𝑆1] and 𝑊2. 𝑆2 ∈ [−𝑤. 𝑆2, 𝑤. 𝑆2], the equation (2.20) create the encirclement area around

the prey’s position 𝑋𝑝⃗⃗ ⃗⃗ ⃗. The encirclement process is illustrated by Fig. 2.8.

{

𝑋1(𝑡) = 𝑋𝑝1(𝑡) −𝑊1. 𝑆1

𝑋2(𝑡) = 𝑋𝑝2(𝑡) −𝑊2. 𝑆2

 (2.20)

82

Fig. 2.8. Encirclement area around the prey in a two dimensional search space

The calculation of the new position �⃗�(𝑡) of the predator is stochastic due to the randomness of the

vectors �⃗⃗� and �⃗⃗⃗⃗�. However it is possible to determine the neighborhood in which �⃗�(𝑡) will be.

Each metaheuristic using the encirclement equations defines two neighborhoods in the encirclement

area around the prey:

 A remote neighborhood (bleu area) for the exploration with (𝑊1,𝑊2) ∈

[−𝑤,−
𝑤

2
 [∪]

𝑤

2
, 𝑤]

2
 ;

 A near neighborhood (grey area) for the exploitation with (𝑊1,𝑊2) ∈ [−
𝑤

2
,
𝑤

2
]
2
.

The encirclement and attack equations, in HHO-EAS, will only be employed in the grey area for the

exploitation.

For example for the metaheuristic GWO [Mirjalili S et al., 2014] , the encirclement and attack

equations are illustrated by (2.21):

{

 �⃗⃗⃗⃗� = 2. 𝑓(𝑡). 𝑟 − 𝑓(𝑡). 𝐼

 𝑓(𝑡) = 2 − 2(
𝐼𝑡

𝐼𝑡𝑚𝑎𝑥
)

𝑟 = (𝑟1
𝑟2
) , (𝑟1, 𝑟2) ∈ [0,1]

2 𝑎𝑛𝑑 𝐼 = (1
1
)

 (2.21)

We detail in what follows the mathematical modeling in HHO-EAS of the encirclement and attack

equations driven by the Harris Hawk hierarchy 𝛼 − 𝛽 − 𝛿.

83

d. Encirclement and attack equations driven by the Harrys Hawk hierarchy 𝛼 − 𝛽 − 𝛿

The positions of the Harris Hawk hierarchy 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 𝑋𝛿⃗⃗ ⃗⃗⃗ will be surrounded, and attacked in order

to get a new position in a more promising area. This significantly improve the convergence rate and the

quality of the solution as we will see from the experimental results in section 2.4.

𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 𝑋𝛿⃗⃗ ⃗⃗⃗ represent the three best Harris Hawk positions. The three best positions 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and

𝑋𝛿⃗⃗ ⃗⃗⃗ are also the three best prey in descending order of quality with each iteration. For the encirclement

equations we have 𝐾 = 2 and �⃗⃗⃗⃗� = �⃗⃗�. Each components of the vector �⃗⃗� are provided by the crisp output

value of FISREE multiplied by a uniform random value provided by equation (2.2). Being in the

exploitation phases, their value are in [−1,1]. As a result, the attack will be done in the exploitation areas

(grey area) around 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 𝑋𝛿⃗⃗ ⃗⃗⃗.

The encirclement equations applied to the hierarchy positions 𝑋𝛼 , 𝑋𝛽 et 𝑋𝛿 provide three new

positions in each exploitation area: 𝑋1⃗⃗⃗⃗⃗, 𝑋2⃗⃗⃗⃗⃗ and 𝑋3⃗⃗⃗⃗⃗ with the equations (2.22) to (2.27). The attack equation

(2.28) repositions the Harris Hawk position �⃗�𝑖 at the center of gravity 𝑋𝑒⃗⃗⃗⃗⃗ of the three new positions 𝑋1⃗⃗⃗⃗⃗,

𝑋2⃗⃗⃗⃗⃗ and 𝑋3⃗⃗⃗⃗⃗.

𝑆𝛼⃗⃗⃗⃗⃗ = |𝐾𝑉𝛼⃗⃗ ⃗⃗ . 𝑋𝛼⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗⃗�𝑖(𝑡)| (2.22)

𝑆𝛽⃗⃗⃗⃗⃗ = |𝐾𝑉𝛽⃗⃗⃗⃗⃗. 𝑋𝛽⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗⃗�𝑖(𝑡)| (2.23)

𝑆𝛿⃗⃗⃗⃗⃗ = |𝐾𝑉𝛿⃗⃗⃗⃗⃗. 𝑋𝛿⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗⃗�𝑖(𝑡)| (2.24)

𝑋1⃗⃗⃗⃗⃗ = 𝑋𝛼⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗�. 𝑆𝛼⃗⃗⃗⃗⃗ (2.25)

𝑋2⃗⃗⃗⃗⃗ = 𝑋𝛽⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗�. 𝑆𝛽⃗⃗⃗⃗⃗ (2.26)

𝑋3⃗⃗⃗⃗⃗ = 𝑋𝛿⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗�. 𝑆𝛿⃗⃗⃗⃗⃗ (2.27)

𝑋𝑒⃗⃗⃗⃗⃗(𝑡) =
𝑋1⃗⃗⃗⃗⃗⃗ +𝑋2⃗⃗⃗⃗⃗⃗ +𝑋3⃗⃗⃗⃗⃗⃗

3
 (2.28)

Like the wolves which offers the crows good prey during final attack, the hierarchy 𝛼 − 𝛽 − 𝛿 with

the encirclement and attack equations (2.22) to (2.28) offer a much more attractive position to the Harris

84

Hawk for a more productive exploitation. Fig. 2.9 illustrate the repositioning of a Harris Hawk agent

towards 𝑋𝑒⃗⃗⃗⃗⃗.

Fig. 2.9. New position resulting from encirclement and attack

H. Computational complexity of HHO-EAS

In order to better compare HHO-EAS and HHO metaheuristics, it is essential to calculate for each of

them their computational complexity.

The computational complexity of HHO is based on 3 components of its algorithm: initialization,

fitness evaluation and the updating of Harris Hawk positions [Heidari AA et al., 2019]. For a population

size N, a maximum number of iterations 𝑇𝑚𝑎𝑥 and an optimization problem of dimension 𝑑, the

computational complexity of these 3 components are:

 Initialization : 𝑂(𝑁)

 Fitness evaluation : 𝑂(𝑇𝑚𝑎𝑥 ×𝑁)

 Updating of Harris Hawk’s position: 𝑂(𝑇𝑚𝑎𝑥 × 𝑁 × 𝑑)

The total computational complexity of HHO is therefore 𝑂(𝑁 × (1 + 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥 × 𝑑)).

The computational complexity of HHO-EAS also takes into account the 3 first components that we

have just discussed. However, in the updating phase of Harris Hawk positions we need to add the

computational complexity of the encirclement and attack equations:

 Encirclement equations: 𝑂(6 × 𝑇𝑚𝑎𝑥 × 𝑁 × 𝑑)

 Attack equation: 𝑂(𝑇𝑚𝑎𝑥 ×𝑁 × 𝑑)

85

The total computational complexity of HHO-EAS is thereby 𝑂(𝑁 × (1 + 𝑇𝑚𝑎𝑥 + 8 × 𝑇𝑚𝑎𝑥 × 𝑑))

For high-dimensional problems, the computational complexity of HHO-EAS tends to be 8 greater

than HHO.

This increase in computational complexity is one of the corollaries of our hybridization strategies also

observed in other works aimed at improving HHO [Chen H et al., 2020; Alabool HM et al., 2021].

We now have all the components to model the hunting synergy between crows and wolves in HHO-

EAS: The Fuzzy Inference System FISREE for the exploration strategy and the encirclement and attack

equations for the exploitation strategy.

Like the crows, the initial field of exploration is wide and then gradually narrows to a promising area

by leaving more and more scope for the exploitation phases. In those promising areas, during the

exploitation phases, as the wolves, the hierarchy 𝛼 − 𝛽 − 𝛿 with the encirclement and attack equations,

provides a better position to each Harris Hawk and so a better final solution to the optimization problems.

Appendix 7 provides the flowchart of HHO-EAS and the mapping of the updating of the Harris Hawk

positions in exploration and exploitation phases. The pseucode Algorithm 2 below implements the HHO-

EAS algorithm. Section 2.4 will make it possible to experimentally validate the superiority of HHO-EAS

over HHO.

Algorithm 2.2 Pseudocode of HHO-EAS

In: Population size N, number of iteration 𝑇𝑚𝑎𝑥, objective function F

Out: 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)

Initialization of the Harris Hawk positions �⃗�𝑖 , 𝑖 ∈ ⟦1, 𝑁⟧, 𝐾 = 2, t=0

While (t < 𝑇𝑚𝑎𝑥) do:

 Calculate 𝐹(�⃗�𝑖) of each Harris Hawk position �⃗�𝑖

 Define the best position of rabbit 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)

 For each Harris Hawk 𝑖 do:

 Update 𝑒, 𝐸0, 𝐸, and 𝐽 with FISREE, (2.2) and (2.6)

 If(|𝐸 | ≥ 1) then: [Exploration]

Calculate 𝑞 and Update position with (2.4)

 Else: [Exploitation]

Update 𝑉𝛼⃗⃗ ⃗⃗ , 𝑉𝛽⃗⃗⃗⃗⃗ and 𝑉𝛿⃗⃗⃗⃗⃗

86

Define:

𝑋𝛼⃗⃗ ⃗⃗ ⃗=First best position

𝑋𝛽⃗⃗ ⃗⃗⃗=Second best position

𝑋𝛿⃗⃗ ⃗⃗⃗=Third best position

Calculate encirclement equations with (2.22), (2.23), (2.24), (2.25), (2.26) and (2.27)

Calculate 𝑋𝑒⃗⃗⃗⃗⃗ with attack equation (2.28)

Update Harris Hawk position �⃗�𝑖 by 𝑋𝑒⃗⃗⃗⃗⃗

 Calculate 𝑟5

 If |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5 then:

 Update position with (2.6) and (2.7)

 If |𝐸| < 0.5 and 𝑟5 ≥ 0.5 then:

 Update position with (2.8)

 If |𝐸| ≥ 0.5 and 𝑟5 < 0.5 then:

 Update position with (2.9) to (2.12)

 If |𝐸| < 0.5 and 𝑟5 < 0.5 then:

 Update position with (2.12) to (2.15)

 End For

 t=t+1

End While

Return 𝑋𝑟⃗⃗⃗⃗⃗

2.4. Experiment and discussion

To examine the performances of the new metaheuristic HHO-EAS, we have set up an analytical

environment with all the necessary hardware, software and statistic components:

 An analytical workstation with enough computing power;

 A programming language adapted to scientific calculations and artificial intelligence;

 General and specific benchmarks composed of sufficiently diversified functions in order to

validate the design strategy of HHO-EAS and its superiority over HHO;

 Experimental metrics of performance;

 A non-parametric statistical hypothesis Wilcoxon test to validate statistically the experimental

results.

87

2.4.1. Analytical working station setup

We implemented HHO-EAS and did the experimental tests on a computing station with the following

technical specifications:

 Operating system: UBUNTU 20.04 LTS 64 bits

 Hardware:

o SSD 2,0 To

o RAM 31,3 GoProcessor Intel Xeon 3.50 Ghz, total cores 8 and total threads 16

2.4.2. Programming language

The HHO-EAS metaheuristic has been developed with the Python programming language.

2.4.3. Benchmark functions

In order to validate the superiority of HHO-EAS over HHO, we have carried out general and specific

experimental tests on benchmarks with sufficiently diversified optimization problems set.

A. General benchmark

General tests have for ambitions to analyze the convergence behavior, the exploitation and exploration

performance of HHO-EAS as well as the balance between exploration and exploitation, knowing that a

good balance exploration-exploitation allows the avoidance of local optimums. To do this we have,

unimodal, multimodal and compound optimization problems to measure respectively the performances

of exploitation, exploration and the search strategy with the ability to maintain a balance between

exploitation and exploration. In order to analyze the scalability of HHO-EAS on a dimension spectrum

small, medium and high we have performed the tests on a wide range of dimensions: 2, 30, 100, and

1000. Indeed, the increase in the dimension causes the deterioration of performances of any metaheuristic,

this is called the curse of the dimensionality.

Regarding test functions, we used a diversified benchmark of 19 well-known functions frequently

used in the literature to validate the metaheuristics’ performances [Yao X, Liu Y, Lin G, 1999; Digalakis

JG et al., 2000; Mirjalili S et al., 2014; Hayashida T et al., 2017; Cortés-Toro EM et al., 2018; Wang

GG et al., 2018; Vanaret C et al., 2020; Zhang X et al., 2020a; Zhang X et al., 2020b]. This benchmark

88

consists of 4 unimodal functions (U1 –U4), 13 multimodal functions (M1-M13) that have several local

optima and 2 composite functions (C1-C2).

We have put HHO-EAS in competition with HHO and with two other population-based

metaheuristics well-known in the literature and with well-established optimization techniques: GWO

[Mirjalili S et al., 2014] and PSO [El-Shorbagy M, Hassanien AE, 2018].

Mathematical formulas and graphical representations of these functions are provided in Appendix 1.

B. Specific benchmark

Unlike general tests, the specific tests focus on HHO-EAS’s performances compared to HHO in 20

very complex environments close to real life. To do this, we have exploited the benchmark CEC 2017

[Wu G et al., 2017].

Thus, for the specific tests we used the 20 most complex problems from the CEC 2017: 10 hybrid

functions (F11 - F20) and 10 compound functions (F21 - F30).

These 20 optimization problems make it possible to assess search strategy, the exploration

performance and the balance between exploration and exploitation of HHO-EAS in complex environment

which is the key to the avoidance of local optimums. In addition, this will allow us to confront our

exploration and exploitation strategy inspired from the hunting synergy between wolves and a crows in

the real life optimization problems.

Unlike the general tests above, the dimensions of the CEC 2017 functions are limited to six: 2, 10, 20,

30, 50 and 100. Given that we want to validate the performance of HHO-EAS in the most complex

environments possible, we have chosen the maximum dimension of CEC 2017: 100. The details of its

20 functions are provided in Appendix 4, Table A4.1.

2.4.4. Metaheuristic parameters

A. General tests

To compare fairly, HHO-EAS, HHO, GWO and PSO on general tests, for the dimension 2, 30, 100

and 1000 we have configured the same spatial and temporal complexity for each metaheuristic. Our

experimental parameters are inspired by Heidari AA et al. in [Mirjalili S et al., 2014]. We maintained

the same population size than [Mirjalili S et al., 2014] in order to have the same spatial complexity.

Nevertheless, this is not the case for the Number of independent executions, the Maximum number of

89

iteration and the PSO settings. Regarding PSO settings in [Mirjalili S et al., 2014], the authors use a

constant inertial factor equal to 0.3 and cognitive and social constants equal to 1. This choice seemed

too simplistic to us and could penalize the PSO metaheuristic during experimental tests. We have

therefore chosen parameters that can better promote the exploration and exploitation capacity of PSO:

a variable inertial factor decreasing linearly from 0.9 to 0.2 during the iterations and cognitive and social

constants equal to 1.48. As for the Number of independent executions and the Maximum number of

iteration, after several tests we have selected other values which gave us the best results. So we arrived

at the following parameters:

 Number of independent executions: 50;

 Population size: 30 (spatial complexity);

 Maximum number of iteration 𝑇𝑚𝑎𝑥: 600 (temporal complexity);

 For PSO: Inertia factor Min wMin= 0.2, Inertia factor Max wMax=0.9, Cognitive coefficient

c1=1.48 and Social coefficient c2=1.48.

B. Specific tests

To compare HHO-EAS and HHO we use the same spatial complexity as in the general tests. To take

into account the complexity of the functions of the CEC 2017 benchmark, we used a much greater

temporal complexity and identical for HHO-EAS and HHO:

 Number of independent executions: 50;

 Population size: 30 (spatial complexity);

 Maximum number of iteration: 10000 (temporal complexity).

In the general and specific tests, for each metaheuristic, the results from each of the 50 independent

executions are stored. The comparison between the metaheuristics is founded on the average of these 50

independent results.

90

2.4.5. Performance metrics

The performance metrics for the assessment of metaheuristics on general and specific benchmarks

tests are AVG, MIN, MAX and STD: Average result, Minimum (Best) result, Maximum (Worst) result

and Standard deviation. The best results are in bold in Appendix 2 and 4.

For each of the dimension 2, 30, 100 and 1000, a summary of the results with the signs +, − and ≈ is

provided at the end of each table for the four metrics AVG, MIN, MAX and STD. So for each test

functions, if HHO, GWO or PSO has better results than HHO-EAS on one of the metrics we increment

+, if the results are worse we increment − and if they are equal we increment ≈.

2.4.6. Experimental results on the general benchmark tests

The experimental results on the general benchmark tests are provided in Appendix 2 and 3. They show

the exploitation and the exploration performances as well as the local optima avoidance ability of HHO-

EAS compared to HHO, GWO and PSO. Appendix 2 details, for the dimensions 2, 30, 100 and 1000, the

performance metrics for the 19 functions of the benchmark from Table A2.1 to Table A2.4 and Appendix

3 makes it possible to visualize the convergence curves.

A. Exploitation performances

Unimodal functions U1 to U4, have only one global optimum and therefore help to determine the

exploitation performances of HHO-EAS, HHO, GWO and PSO metaheuristics.

The experimental results show that HHO-EAS provide very good results and a suitable convergence

rate for unimodal functions from U1 to U4 with the dimensions 30, 100 and 1000. These good

exploitation performances for medium and large dimensions are due to the encirclement and attack

equations. Those equations make it possible to obtain results closer to the global minimum than HHO,

GWO and PSO.

On the other hand, for small dimensions such as 2, except for U3, GWO has the best results for U1,

U2 and U4. Which confirms these excellent exploitation capacities for small dimensions. However, for

dimension 2, HHO-EAS maintains overall better exploitation performance than HHO.

91

B. Exploration performances

Unlike unimodal functions, multimodal functions from M1 to M13 have global optimums and several

local optimums. The curse of the dimensionality increases these local optimums exponentially depending

on the dimension. The multimodal functions are therefore good support for evaluating the exploration

performance of HHO-EAS, HHO, GWO and PSO.

As we could expect the performance of metaheuristics degrades with the increase of the dimension.

With regard to the dimensions, 30, 100 and 1000, from M1 to M13, HHO-EAS surpasses HHO, GWO

and PSO or at least demonstrates performances as competitive as HHO. We can note a correct

convergence rate for M2, M5, M6, M8, M11 and M13.

This is the experimental demonstration of the effectiveness of FISREE that implements an efficient

exploration and exploitation phases distribution which helps HHO-EAS to limit blockages in local optima

and to have a good convergence to a better final solution.

Concerning the dimension 2, PSO has the best results for the multimodal functions M1, M2, M5, M8,

M9, M10 and M11. For M3 and M13, the four metaheuristics displays equivalent results. This confirms

that PSO is able to effectively and fairly quickly explore the search spaces with small dimensions. And

for the functions M6 and M7, HHO-EAS displays the best results. Nonetheless, the exploration

capabilities of HHO-EAS for the dimension 2 remains overall superior to HHO.

C. Local optima avoidances and balance between exploitation and exploration

The complexity of composite functions C1 and C2 is a challenge for HHO-EAS, HHO, GWO and

PSO metaheuristics that will test their ability to maintain the balance between exploitation and

exploration. Indeed, a good balance between exploitation and exploration will better avoid local

optimums. The composite functions C1 and C2 will therefore make it possible to evaluate the validity of

the distribution of the exploration and exploitation phases implemented by FISREE and its ability to

maintain a good balance between these two phases despite the increase of the dimension.

As with multimodal functions, the performances of metaheuristics degrade with the increase of the

dimension. Notwithstanding, the experimental results are without calls. Whatever the dimension, 2, 30,

100 or 1000, for C1 and C2, HHO-EAS surpasses HHO, GWO and PSO with a convergence rate much

higher and a much greater ability to avoid local optima. This experimentally demonstrates once again the

92

validity of the conception strategy of FISREE which makes it possible to maintain a good balance

between exploration and exploitation and particularly better than HHO with better avoidance of local

optima.

To conclude, the results on the general benchmark show that our hybridization strategy is not efficient

for the small dimensions such as 2. Whether for unimodal or multimodal functions, the encirclement and

attack equations and FISREE do not do not allow to erase the weaknesses of HHO although HHO-EAS

maintains overall better performances than it. But this observation is absolutely not in contradiction with

our hybridization strategy. Our hybridization strategy explained in section 2.3, was mainly designed to

increase the performance of HHO for higher dimensions. Indeed, the experimental results for the medium

and large dimensions 30, 100 and 1000 confirm the superiority of HHO-EAS over HHO as well as over

GWO and PSO. Consequently, these experimental results corroborate the success of our hybridization

strategy to obtain a better metaheuristic than HHO for highly multimodal and high-dimensional

optimization problems.

In what follow, the specific tests performed on the CEC 2017 benchmark will focus on the

performances of HHO-EAS and HHO in the 20 more complex environments of the CEC 2017 and more

close to the problems encountered in real life. They will support the results obtained in general tests.

2.4.7. Experimental results on the CEC 2017 specific benchmark tests

As noted above, specific tests aim to make a close-up on the performances of HHO-EAS and HHO in

complex environments close to the real life problems. These 20 functions will put to the tests in difficult

conditions all the abilities of HHO-EAS and HHO: exploitation, exploration, balance exploitation-

exploration, local optimum avoidances and convergence.

These environments consist of the most complex functions in a search space with the largest

dimension of the CEC 2017: 10 hybrid functions from F11 to F20, 10 composite functions from F21 to

F30 and a dimension equal to 100.

Appendix 4 details the performance metrics obtained for these twenty functions and makes it possible

to visualize the convergence curves.

93

Experimental results demonstrate that HHO-EAS has better performances than HHO out of 90% of

hybrid functions and 90% of the composite functions: respectively F11 to F19, F21, F23 to F30.

However, even for the hybrid function F20 and the composite function F22, HHO-EAS provides

competitive results.

We can also note, for the twenty functions F11 to F30, that the convergence rate of HHO-EAS is,

from the first iterations, greater than that of HHO. It’s thanks to the exploration and exploitation strategy

of HHO-EAS. FISREE pilots the distribution of the exploration and exploitation phases as well as the

balance exploration-exploitation that provides areas of the search space more promising that HHO. Then

thanks to the encirclement and attack equations the exploitations of the promising areas are better

"optimized" to provide a final solution with a better quality in 90% of cases.

All the results we have obtained above in the general tests and the specific tests allow us to validate

our hybridization strategy inspired by the hunting synergy between crows and wolves. Those results must

now be statistically validated by one of the most used non parametric statistical test: The Wilcoxon tests

with the calculation of p-value.

A. Wilcoxon test

In order to analyze whether the performances of HHO-EAS are revealing of its superiority over HHO,

GWO and PSO and to validate statistically the experimental results, we have made a paired non

parametric statistical Wilcoxon test with 5% significance for obtaining p-value. We used the same

calculation method as [Gardeux V, 2011] and we have included in these test the Holm adjustment

method.

For the general tests we ask the null hypothesis H0g: "There is no distinction between the distribution

of solutions found by HHO-EAS and the distributions of solutions found by HHO, GWO and PSO". And

for the specific tests we ask the null hypothesis H0s: "There is no distinction between the distribution of

solutions found by HHO-EAS and the distributions of solutions found by HHO".

To do these tests we used the statistical software R. The results are provided in Appendix 5, Table

A5.1 and Table A5.2. These tables provide respectively the results per pair of Metaheuristic:

 HHO-EAS\HHO, HHO-EAS\GWO and HHO-EAS\PSO for the general tests;

94

 HHO-EAS\HHO for the specific tests.

B. Wilcoxon tests for general results Table A5.1

The calculated p-value for the dimensions 30, 100 and 1000 are all less than 0.05. We can therefore

reject the null hypothesis H0g with an error probability of 5% for these dimensions. Regarding the W+

values, for the dimension 30, 100 and 1000, they are all very large, for the metaheuristics HHO, GWO

and PSO. This confirms the conclusions of the general tests: HHO-EAS dominates HHO, GWO and PSO

for medium and high dimensional search spaces.

For the dimension 2, the results are different. We have a p-value less than 0.05 for the pairs

HHO\HHO-EAS and GWO\HHO-EAS. But this is not the case for PSO\HHO-EAS with a p-value equal

to 0.3684. So we have to accept the null hypothesis H0g for this pair. This means that for dimension 2,

there is no distinction between the distribution of solutions found by HHO-EAS and PSO. Thus,

statistically, the performance of HHO-EAS is not different from PSO. These results are consistent with

the results observed in the general tests for the dimension 2, since the general results are mitigated

between HHO-EAS and PSO.

C. Wilcoxon tests for specific results Table A5.2

The Wilcoxon test on the specific results for the pair HHO\HHO-EAS rejects the null hypothesis H0s

since it is less than 0.05. In addition, the W+ value statistically attests of the superiority of HHO-EAS over

HHO, so the performances of HHO-EAS are much better than HHO.

2.5. Conclusion

In this chapter we have presented HHO-EAS, a new population based metaheuristic, hybrid of HHO

resulting from a hybridization strategy entirely inspired by the hunting synergy observed in nature

between the crows and the wolves. The aim of HHO-EAS is to produce better results than HHO in the

highly multimodal and high-dimensional optimization problems. HHO-EAS implements a win-win

hunting synergy between the good exploration strategy managed by the Fuzzy Inference System

FISREE which models the exploration of the crows and the exploitation strategy of the Encirclement

and Attack equations which models the attack technique of the wolves. These equations make it possible,

95

on the one hand, to prevent premature convergence when agents gather prematurely near a local

optimum on the other hand to upgrade the Harris Hawk positions in a more promising area.

The exploitation and the exploration performances as well as the balance between these two phases

in HHO-EAS have been evaluated on a general and on a specific benchmark. The general benchmark

consists of 19 well known functions: 4 unimodal functions, 13 multimodal functions and 2 composite

functions with the dimensions 2, 30, 100 and 1000. The specific tests aim to make a close up on the

performance of HHO-EAS and HHO in the 20 most complex environments of the CEC 2017 close to

real life. The specific tests consist of the 10 hybrid functions and the 10 composite functions from the

CEC 2017 with a dimension equal to 100. The tests on the general benchmark have proved that HHO-

EAS is overall superior to HHO whether in the exploration phases with the multimodal functions, the

exploitation phases with the unimodal functions and the balance between these two phases with the

composite functions. In addition, HHO-EAS has a better convergence rate, the best scalability on all

dimensions and generally gives the assurance of having a better quality solution and faster than HHO.

On the specific benchmark, in the 20 most complex environments of the CEC 2017, HHO-EAS has

shown that its abilities are mainly superior to those of HHO on hybrid and compound functions. Indeed,

in these 20 most complex problems of CEC 2017, HHO-EAS demonstrated a success of 90% on hybrid

functions and 90% on composite functions. As well as the results obtained on the general benchmark,

the specific benchmark makes it possible to experimentally validate the exploration and exploitation

strategy implemented in HHO-EAS inspired by the hunting synergy between the crows and the wolves.

The most important result that emerges from our research and which will serve us in the next chapter

is that HHO-EAS is better suited than HHO to deal with the real life optimization problems as evidenced

by experimental results for dimensions 100 and 1000. Indeed, the real life optimization problems are

generally highly multimodal, high-dimensional and NP-Hard such as feature selection optimization

problems. Thus, HHO-EAS, combined to Deep Learning algorithms, opens a wide range of perspectives

to create computer resource efficient Intrusion Detection Systems (IDS) in IoT environments with

excellent attack prediction performance. The next chapter is the concrete application of HHO-EAS to

process the NP-hard feature selection optimization problems in a high-dimensional binary search space.

The new metaheuristic, named Binary HHO-EAS (BHHO-EAS), have the ambition to achieve results

96

higher than those obtained in research performed in the same field such as [Too J et al., 2019] or

[Gardeux V et al., 2011; Gardeux V, 2011; Gardeux V et al., 2012] who uses a metaheuristic with line

search methods for the feature selection. BHHO-EAS will perform the feature selection on a very recent

cybersecurity dataset AWID3 which contains modern attacks against Wi-Fi networks. BHHO-EAS will

thus make it possible to obtain the most relevant features of the AWID3 dataset and to design an IDS

based on Deep Learning algorithms with high detection capabilities and resource-efficient to be

embedded in an IoT with limited computing and memory resources.

97

Chapter 3

3. Elaboration of an intrusion detection system against 802.11 specific attacks with

BHHO-EAS and the Wrapper feature selection method

3.1. Introduction

At this stage of this thesis, the work carried out in chapter 2 allows us to have the HHO-EAS

metaheuristic. Its performances in the general and specific benchmarks have demonstrated that it is able

to find a good solution in a reasonable time to NP-Hard problems. The skills of HHO-EAS will be

decisive in this chapter for the design of an IDS embedded in IoTs with limited computing and memory

resources against 802.11 specific attacks: Deauthentication (Deauth), Disassociation (Disas),

ReAssociation ((Re)Assoc), Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation Attack

(Krack) and Kr00k. Via HHO-EAS, we will use metaheuristic optimization process for the Wrapper

feature selection of the AWID3 dataset (Aegean Wi-Fi Intrusion Dataset 3) [University of the Aegean,].

The Wrapper feature selection method is explicitly defined in subsection 3.4.1.

Works of the same field in the literature, use the Wrapper feature selection method with classical

Machine Learning algorithms such as KNN, SVM, OPF, Decision Tree, Random Forest, etc. [Agrawal

P et al., 2021]. However, they deprive themselves of Deep Learning algorithms that are much more

efficient to conceive a IDS than conventional Machine Learning algorithms. To this end, our

contributions in this chapter is threefold:

 We have designed the new metaheuristic BHHO-EAS from the HHO-EAS metaheuristic for

the optimization of NP-Hard Wrapper features selection multi-objective problems in a binary

search space: maximize the detection capabilities of the IDS against 802.11 specific attacks

and minimize features in order to design an embeddable IDS in IoT;

 At the time of writing this manuscript, we are the first to have created and implemented a

Wrapper feature selection method that is more advanced and more complex than the classic

Wrapper method mentioned above. Our method integrates a Convolutional Neural Network

(CNN) combined with the computing power of GPU technology instead of conventional

98

classical Machine Learning algorithms and CPU technology [Agrawal P et al., 2021;

Houssein EH et al., 2022c; Houssein EH et al., 2022a; Houssein EH et al., 2022b];

 We are also the first to have applied a feature selection process by metaheuristic optimization

driven by BHHO-EAS on the AWID3 dataset, much more complex than its predecessor

AWID2 [University of Aegean, 2014].

Like chapter 2, the work presented in this chapter has also been the subject of a second scientific

article submitted for publication in the journal Artificial Intelligence Review.

This chapter is articulated as follows. Section 3.2 provide an overview of the Intrusion Detection

Systems (IDS). Having the ambition to exploit our IDS in companies and public administration

information systems, we have developed in this section a synthetic specification. This specification will

guide not only the conception strategy of the IDS but also the preprocessing of the AWID3 dataset in

subsection 3.5.4. Section 3.3 presents the related works which aim to design an IDS using the feature

selection with the AWID3 dataset. Section 3.4 explains the design of the new BHHO-EAS metaheuristic

to apply our Wrapper feature selection method in the section 3.5 on the AWID3 dataset and to conceive

a CNN-IDS. In section 3.6, we will analyze the experimental results. In this experimental section we

will provide a technical PoC of our work by embedding and testing a prototype of CNN-IDS, named E-

CNN-IDS (Embedded CNN-IDS), in a Raspberry Pi 4 Model B with very limited memory and

computing resources. In section 3.7 we will conclude this chapter.

3.2. Overview of Intrusion Detection Systems and specification of the CNN-IDS

To deal with the constantly evolving threats targeting IoTs using Wi-Fi, they must be able to have a

smart cyber-defense system allowing the detection of attacks. These systems are called Intrusion

Detection System (IDS). Before providing a description of IDSs, it is first necessary to define what an

Intrusion is in cybersecurity terms and the main modules that constitute an IDS.

3.2.1. Definition of an Intrusion

An intrusion is defined as an illegitimate access to a system in violation of the Confidentiality,

Integrity and Availability (of its resources [Sengupta N et al., 2020]. Thus, an Intrusion jeopardizes the

fundamentals of the cybersecurity of an information system. Furthermore, an Intrusion can target not only

99

networks but also host systems. Consequently, network and host must be defended by an IDS whose

constituent modules are adapted to the technical specificities of their environment.

3.2.2. Description of the main modules required for IDSs

An Intrusion Detection System audits a host system and/or the network in order to identify actions

that are harmful and antagonistic to the security policy [Drewek-Ossowicka A et al., 2021]. It is therefore

an "autonomous process" of intrusion detection which is to find events of violation of security policies or

standard security practices in computer networks [Kim K et al., 2018a].

Intrusion detection is based on four main modules as illustrated in Fig. 3.1 [Sengupta N et al., 2020]:

 Collection of system and/or network data;

 Preprocessing of collected data;

 Analysis and recognition of an attack with the intrusion detection engine;

 Actions and logging following the detection of an attack.

Fig. 3.1. Architecture of the main modules of an IDS

Regarding the action and logging module, the action could be a simple alert sent to the administrator

or a more sophisticated action adapted to the detected attack such as a logical isolation from the rest of

the network with the IP address (Internet Protocol) or with the MAC address (Medium Access Control)

of the compromised agent. In the latter case, the IDS is an IPS (Intrusion Prevention System) because it

actively participates in blocking attacks.

Among these four modules, it is the Intrusion detection engine module with its design and detection

strategies which are the capital elements of an IDS. The design of this module is the main objective of

100

this chapter and the data to be processed by this module and the positioning of the IDS depends on the

class to which the IDS belongs.

3.2.3. The three main classes of IDS and their detection method

There are three main classes of IDS: Network IDS (NIDS), Hosted IDS (HIDS) and Hybrid IDS [Kim

K et al., 2018a; Sengupta N et al., 2020; Drewek-Ossowicka A et al., 2021; Mirjalili S et al., 2023]. The

NIDS analyzes the data coming from the network packets captured and made up of several features

specific to the protocols used. While the HIDS analyzes data from the host in which it is embedded:

network packets captured crossing the host, CPU usage, RAM usage, storage disk usage, temperature,

access to system files, etc. The third class of IDS, Hybrid IDS, bring together NIDS and HIDS.

These three IDS classes have two types of detection method: signature-based and anomaly-based

[Azizjon M et al., 2020; Jiyeon K et al., 2020; Riyaz B et al., 2020; Park D et al., 2021; Chatzoglou E

et al., 2022a]. Signature-based detection uses a signature database describing the pattern of an attack. If

an attack conforms to one of the pattern, it will be detected by the IDS. This detection method has the

advantage of detecting all the attacks listed in the signature database. However, it has three major

drawbacks:

 Unknown attacks (zero-day) are not detected;

 The attack signature database requires regular updates;

 For IoT with limited memory resources, the signature database is highly likely to saturate the

memory in the medium term or even in the short term.

Anomaly-based detection does not have these three major drawbacks [Jiyeon K et al., 2020; Riyaz B

et al., 2020; Park D et al., 2021]. This detection method analyzes the data in order to detect an abnormal

deviation from the states referenced as normal. To do this, the IDS must have been previously trained

with reference data (or dataset) labeled with normal states and abnormal states. This detection method

has the advantage of detecting unknown attacks (zero-day) and, while being scalable, of not requiring a

signature database. However, the major drawback of this method is that it generates some detection

errors: false positives and false negatives. Despite this drawback and in view of the problems inherent

in signature-based detection, anomaly-based detection is the most suited for our CNN-IDS as well as to

101

the constantly changing attack detection requirements and hardware constraints of IoT. But determining

the method of detection is not enough. As the CNN-IDS is intended to be integrated into company

information systems and state administrations, we have developed a defense strategy and a synthetic

specification.

3.2.4. CNN-IDS defense strategy and specification

The defense strategy that we have defined and which will guide the design of our IDS is as follows:

focus the defense on the Data Link Layer. Indeed, the seven specific attacks 802.11 are initiated from

the Physical layer and are finalized at the Data Link Layer [Chatzoglou E et al., 2021; Chatzoglou E et

al., 2022a]. Once the attacker has taken over the Data Link Layer, it will be easier for him to escalate

the higher layers in order to have greater privileges and a much greater capacity for harm. So if we detect

and block the attack at the Data Link Layer, "it will be dead in the bud" and will have no chance of

succeeding on the upper layers. Our defense strategy is combined with synthetic specifications we have

developed.

The requirements of our specifications were built from the knowledge and experience of information

system experts. The proof of the consistency of our specifications is that it is in total agreement with the

requirements explained in the state of the art concerning the IDS designed from AWID3 [Chatzoglou E

et al., 2022a; Chatzoglou E et al., 2022b]. The specifications are articulated in 5 requirements. These 5

requirements guide not only the conception strategy of the IDS but also the preprocessing of the AWID3

dataset. Therefore, the 5 requirements have been incorporated into the preprocessing of the AWID3

dataset in subsection 3.5.4. The 5 requirements are:

1. Detection of 802.11 specific attacks

The IDS must detect known and unknown 802.11 specific attacks in real time and must be sufficiently

independent of the technical specificities of the implementation of the attacks in order to better generalize

the detection capacities of the IDS.

2. Compatibility with companies’ information systems

The IDS must be usable on a large majority of company information systems. Consequently, it must

not depend on the architecture of the network and the entities that the information system hosts.

102

3. Hardware adhesion

The IDS must be able to be embedded and be operated in IoTs or STAs (Stations) with heterogeneous

hardware specificities and with limited computing and memory capacities.

4. 802.11 frames processing

802.11 frames are of 3 types: management, control and data. The IDS must be able to exploit the 3

types of 802.11 frame for the detection of attacks.

5. Temporal and sequential components

The need to embed the IDS in environments with limited computing and memory resources requires

minimizing the processing of superfluous data. Moreover, the embedded IDS is not intended to take time

series into account. Consequently, the temporal and sequential features must not be taken into account in

the detection of 802.11 attacks.

In this section we have defined the fundamental concepts of IDS. We have also explained our defense

strategy as well as our specifications adapted to the imperatives of CNN-IDS and information systems.

The section 3.5 will contribute to the design of the CNN-IDS via metaheuristic optimization and Deep

Learning algorithms. But first of all, we present in the section 3.3 the related works which aim to design

an IDS using the feature selection with the AWID3 dataset.

3.3. Related work

As we specified above, the AWID3 dataset is very recent. Only two articles to date have been

published with the objective of creating an IDS from the AWID3 dataset. Also, AWID3 is much more

complex than its predecessor AWID2. Indeed, AWID3 was built in a context of company information

system architectures with WPA2-Enterprise, frame protection (PMF) with the 802.11w amendment and

the 802.11ac standard (or Wi-Fi 5). In [Chatzoglou E et al., 2021], the authors Chatzoglou E. et al.,

comprehensively provide the architecture of the information system on which AWID3 was built. This

information system consists of 17 nodes including 10 IoT terminals, 3 physical or virtual servers with

heterogeneous operating systems and 4 active Wi-Fi network management systems:

 IoT terminals

103

o 2 workstations running on Ubuntu 20.04 desktop;

o 5 workstations running on Microsoft Windows 10 Pro or Enterprise;

o 3 smartphones including a Samsung S20 FE running on Android v10, a Samsung Note 4

running on Android v6.0.1 and an iPhone 6s running on iOS v14.2.

 Servers

o 1 Microsoft Windows 2019 servers host the Active Directory (AD) domain controller;

o 1 Fedora 33 server hosting FreeIPA identity management to use Kerberos authentication, DNS

server and Samba server for file sharing via SMB protocol;

o 1 Ubuntu 20.04 server.

 Active Wi-Fi network management system

o 1 Access Point (AP) ASUZ RT-AC68U;

o 1 monitor node on Kali Linux v2020.4 operating in Man in the Middle between the STA and

the AP. For capturing network packets, it uses Wireshark v3.2.7 for the fixed STA and

Mitmproxy for mobile STA;

o 1 dockerized DVWA for testing attacks on web applications hosted in a Microsoft Azure cloud;

o 1 FreeRADIUS v3.0.20 server installed on Ubuntu 20.04 server virtual server with an exchange

encrypted by 802.1X certificate between this server and its clients.

Furthermore, AWID3 contains modern 802.11 attacks such as Krack and Kr00k, integrates features

and attacks on the entire OSI stack from physic layer to application layer. Whereas AWID2 was built on

a WEP based infrastructure logic in a standard at home environment with only 802.11 attacks such as

ReAssociation or Deauthentication. In addition, to the OSI level, only the physics and data link layers are

taken into account in AWID2.

Consequently, it would make no technical and functional sense to provide the related work of IDS

built with AWID2 when our work exploits AWID3 to do so. This section will therefore describe the only

2 works existing for AWID3 of Chatzoglou E. et al. [Chatzoglou E et al., 2022a] and [Chatzoglou E et

al., 2022b] with the aim of designing an IDS.

104

Chatzoglou E. et al. in [Chatzoglou E et al., 2022a], designed by supervised learning, IDSs agains

t 7 attacks specific 802.11 : Deauthentication (Deauth), Disassociation (Disas), ReAssociation ((Re)A

ssoc), Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation Attack (Krack) and Kr00k. To do

this, the authors performed feature selection on the AWID2 and AWID3 datasets based on the analysis

of human experts in 802.11 technology and empirical observations. Those works are divided into 4 main

parts.

In the first part the authors selected only features common to AWID2 and AWID3 to create two new

ones. The arguments of the authors justifying the choice of features is extremely exhaustive and

technically of a very good level. The expert's analysis led to the selection of 16 features common to

AWID2 and AWID3 in order to train Machine Learning and Deep Learning algorithms. 6 Machine

Learning and 2 Deep Learning models were used: Logistic Regression (LR), LinearSVC, Stochastic

Gradient Descent Classifier (SGDClassifier), Light Gradient Boosting Machine (LightGBM), Decision

Trees (DT), Random Forest (RF), Extra Trees (ET), Multi-Layer Perceptron (MLP) and Denoising

stacked Autoencoders (AE).

Since the authors did not balance their dataset, they mainly relied on the AUC and F1 metrics to

evaluate the performance of the 6 Machine Learning models and the 2 Deep Learning models. We define

AUC and F1 metrics in subsection 3.6.2 and explain why this choice of metric is relevant. For the sake

of completeness, the authors have included the 3 metrics Accuracy, Recall and Precision also explicitly

defined in subsection 3.6.2.

The experimental results were split by model family: Machine Learning first and then Deep Learning.

On the AWID2 dataset, DT provided the best AUC results for (95.16%) and LightGBM for F1 (95.36%).

The worst results were obtained by SGDClassifier for AUC (85.99%) and F1 (84.56%). As for the Deep

Learning models, MLP obtained the best performance on AUC (81.79%) and F1 (81.98%) compared to

AE which provided mediocre AUC (80.7%) and F1 (81.98%).

On the AWID3 dataset, DT and LightGBM still obtained the best results respectively for AUC

(99.49%) and F1 (99.55%). Once again SGDClassifier demonstrated the worst performance for AUC

(95.17%) and F1 (96.60%). The ranking of Deep Learning models remains unchanged. MLP had the

best AUC (96.47%) and F1 (97.55%) and AE the worst AUC (95.39%) and F1 (96.78%). We can notice

105

that overall the 6 Machine Learning models and the 2 Deep Learning models had better results with the

AWID3 dataset than with the AWID2 dataset. This is largely due to the sample count deficiency in

AWID 2 compared to AWID3 that allows models to converge to their optimal performance.

In the second experimental part, the authors selected 3 new features belonging exclusively to

AWID3, speculating that they would allow models to better distinguish attack classes. Consequently,

only the AWID3 dataset has been used in this part. Here again the authors relied on the knowledge of

human experts and their empirical observations. In this part only the Machine Learning ET model and

the Deep Learning MLP model were used. ET had the best performance for AUC (99.24%) and F1

(99.37%) and although the performance of MLP increased on AUC (97.23%) and F1 (97.97%) it is

unacceptable compared to ET.

In the third part the authors proceeded to the reduction of the subset of the 16 features common to

AWID2 and AWID3 hoping to obtain better results. In this part, the authors used only 4 Machine

Learning models belonging to the group of tree classifiers: LightGBM, DT, RF and ET. To do this, they

constructed 4 feature subsets, Set 1 to Set 4, with a nmber of 4 features. This time the authors, used the

feature selection based on empirical observations and human expert knowledge, confirmed by the

Feature Permutation Importance technique on the LightGBM and RF models.

For the AWID2 dataset, the ET model had the best performance on AUC and F1 on the 4 subsets

with AUC values ranging from 91.67% to 95.03% and F1 ranging from 92.14 to 95.19%. LightGBM

obtains the worst results on the 4 subsets, except for Set 2 where it is DT who has the worst F1. For the

AWID3 dataset, the DT model wins with an AUC ranging from 91.09% to 97.16% and F1 ranging from

90.04% to 95.19%. On the other hand, unlike AWID2, the ET model had the worst results on the 4

subsets.

Finally, the fourth part aims to analyze the transferability of features within AWID2 and between

AWID2 and AWID3 as a test dataset. The authors constructed 4 new datasets using the same feature

selection method as in the first three parts: datasets 30 (30F), 27 (27F), 13 (13F) and 5 (5F). Only the 3

classifiers ET, DT and LightGBM, having provided at least once the best performances were chosen for

this experimental part. The central question of this part is: "Is the selected set of 16 features directly

106

transferable between datasets and does it improve the performance of ET, DT and LightGBM

classifiers?".

The 30F dataset was created by adding to the AWID2 dataset of 16 features and the 14 most used

AWID2 features in the state of the art. This dataset allowed the 3 classifiers to have their best

performance compared to the other AWID2 datasets. The following 4 experiments with the 4 AWID2

datasets 30F, 27F, 13F and 5F consist in training the 3 Machine Learning models mentioned above with

these AWID2 datasets and then testing them on the AWID3 counterpart. Except for the ET and DT

models respectively on the 13F and 5F dataset, the performance of the models at the end of these 4

experiments is very poor. This experimentally confirms our analysis at the beginning of this section

concerning the technical and functional difference between the creation environments of AWID2 and

AWID3. Thus an IDS created on AWID2 is generally not compatible in a company information system.

Thus the work in [Chatzoglou E et al., 2022a] has made it possible to highlight, for the benefit of the

research community, 2 bases of essential information for the design of IDS specific 802.11 and the

selection of features on the AWID2 and AWID3 datasets.

If AWID2 was one of the main precursor datasets for the creation of IDS against 802.11 specific

attacks by supervised learning, it clearly showed in [Chatzoglou E et al., 2022a] its technical and

functional limits compared to AWID3.

On a technical level, the number of samples in AWID2 does not allow the models to converge

towards acceptable performance unlike AWID3. The comparison of the results of the 6 Machine

Learning models LR, LinearSVC (LSVC), SGDClassifier, LightGBM, DT, RF, ET and of the 2 Deep

Learning models MLP, AE with the AWID2 and AWID3 datasets are proof of this. In addition,

functionally AWID2 does not take into account the new 802.11 standards, the new protection and

security protocol reforms as well as the new 802.11 attacks. This makes all IDS created with AWID2

unsuitable for company information systems.

But beyond the datasets AWID2 and AWID3, Chatzoglou E. et al. demonstrated to us the technical

capabilities of feature selection based on empirical observations and human expert knowledge. This

selection technique has shown the fullness of its effectiveness on IDSs design with the 16+3 features

subset of AWID3 with very good AUC and F1 performance metrics above 99% for the ET model. It is

107

the only IDS in [Chatzoglou E et al., 2022a] with sufficient credibility to be deployed on a company

information system against attacks specific 802.11.

In their second work Chatzoglou, E. et al completed their cyber defense surface by creating an IDS

against attacks targeting the application layer.

In [Chatzoglou E et al., 2022b], Chatzoglou E. et al. attempted to design an IDS specific to attacks

targeting the application layer using 6 subsets of AWID3 features. The authors exploited the richness of

AWID3 which integrates features and attacks from layers higher than the Data link layer.

The IDS focuses on the 6 attacks: Botnet, Malware, SSH, SQL Injection, SSDP amplification et

Website spoofing. The authors again used feature selection based on empirical observations and human

expert knowledge to create applicative IDSs from subsets of AWID3 features and an artificially created

feature:

1. 16 features specific 802.11,

2. 17 non-specific 802.11 features,

3. Reduced set of 6 features 802.11 from the 16 features specific 802.11,

4. Reduced set of 3 features Non-802.11 from the 17 features specific Non-802.11,

5. An artificial feature called Insider.

Targeting the correlation between the IP from client station, the Insider feature was created by the

authors, via Algorithm n° 1 in [Chatzoglou E et al., 2022b], in order to better detect Botnet-type attacks.

In this type of attack, the hacker has taken possession of a client station and uses it in server mode for

his distributed attacks to other clients.

These groups of features do not incorporate any features of the application layer because these are

anonymized or encrypted, therefore unusable by the IDS.

From the features initially selected or created, the authors created by combination 5 subsets of

additional features:

1. Reduced set of 6 features 802.11 with set of 3 features Non-802.11,

2. 16 specific 802.11 features with set of 17 non-specific 802.11 features,

108

3. Reduced set of 6 features with Insider feature,

4. Reduced set of 6 features 802.11 with reduced set of 3 features Non-802.11 and with Insider

feature,

5. 16 specific 802.11 features with set of 17 Non-specific 802.11 features and with Insider

feature.

To create the subset of the 16 802.11 specific features, the authors used the work of [Chatzoglou E

et al., 2022a]. The features of the non-specific 802.11 dataset include 17 features from the Network and

Transport layers. As in [Chatzoglou E et al., 2022a] the reduced datasets of 6 specific 802.11 features

and 3 non-specific 802.11 features were created by the selection method based on empirical observations

confirmed by the Feature Permutation Importance technique on the tree-based LightGBM model.

3 Machine Learning models and 2 Deep Learning models were used in the experimental part: DT,

LightGBM, Bagging, MLP and AE. These 5 models were tested on datasets n° 1 and n° 2. As in

[Chatzoglou E et al., 2022a], given that the AWID3 dataset is highly unbalanced, the authors relied on

the AUC and F1 metrics to evaluate the performance of the 5 models.

On the two datasets n° 1 and n° 2, for the Machine Learning models, Bagging had the best results

for the AUC and F1 metrics:

 90.77 % et 88.07 % on the specific 802.11 dataset,

 76.28 % et 66.02 % on the non-specific 802.11 dataset.

DT had the worst results with

 88.98 % et 86.34 % on the specific 802.11 dataset,

 76.21 % et 66.02 % on the non-specific 802.11 dataset.

For Deep Learning models, MLP demonstrates the best performance for AUC and F1:

 75.53 % et 69.40 % on the specific 802.11 dataset,

 74.67 % et 64.48 % on the non-specific 802.11 dataset.

AE performs worse results on the 802.11 specific dataset with 74.96% and 68.50% and surprisingly

identical results to MLP on the non-specific 802.11 dataset.

109

We can notice that even the best results on the two datasets n° 1 and n° 2 are well below 90% and

therefore a source of many detection errors. The application IDS created from the 5 models are therefore

mediocre and unsuitable for deployment in a company information system.

For datasets n° 3, n° 4 and n° 6 to n° 10, only the 2 Machine Learning models LightGBM and Bagging

were used. Overall Bagging obtains higher performances than LightGBM more particularly on dataset

n° 3, n° 6, n° 8 and n° 9 with an AUC ranging from 90.71% to 95.46% and F1 ranging from 87.84% to

93.33%. For dataset n° 7 and n° 10 the results are divided: Bagging has the best AUC from 95.29% to

96.70% and LightGBM has the best F1 from 94.48% to 95.99%.

 Application IDSs created on datasets n° 6 to n° 10 have metrics greater than 90%. The results are

therefore much more acceptable than for the IDS created from datasets n° 1 to n° 4. However, even the

best results of the work of [Chatzoglou E et al., 2022b] cannot have sufficient credibility to be deployed

in a company information system where detection errors are very detrimental to the company.

To conclude this section, works [Chatzoglou E et al., 2022a] and [Chatzoglou E et al., 2022b],

employing a feature selection based on empirical observations and expert human knowledges in 802.11

technology, have produced mixed results overall. The best results in [Chatzoglou E et al., 2022a],

demonstrated that this feature selection technique makes it possible to create IDSs against 802.11 specific

attacks with performance in line with the requirements of an enterprise information system. But this is

far from being the case in [Chatzoglou E et al., 2022b] where the application IDS have insufficient

performance.

However, the main pitfall of these two works, admitted by the authors, is that they did not use

"optimization or dimensionality reduction techniques". Our work goes beyond the work of Chatzoglou

E. et al. and fills these gaps by using the new BHHO-EAS metaheuristic to perform for the first time on

the AWID3 dataset, at the time of writing this manuscript, a Wrapped feature selection in order to create

an IDS based on a Deep Learning CNN model against attacks specific 802.11. Furthermore, the work of

Chatzoglou E. et al. we will serve as references in section 3.6 in order to compare the performance of our

IDS to theirs and demonstrate the superiority of our method.

110

3.4. Design of BHHO-EAS for a efficient Wrapper feature selection process

3.4.1. Description of the feature selection process

The features selection process consists in selecting the most relevant, informative and smallest

possible subset of features Φ ̂ from the source set of features as illustrated in Fig. 3.2. The subset Φ ̂ will

thus contain the features with the minimum of redundancy and of noisy as well as the maximum of

relevance [Agrawal P et al., 2021; Houssein EH et al., 2022b; Houssein EH et al., 2022a; Houssein EH

et al., 2022c; Segera D et al., 2023].

Fig. 3.2. Feature selection process

Concretely with the use of a binary vector 𝐵𝑖 = (𝑏𝑖
1, … , 𝑏𝑖

𝑑) the feature 𝐹𝑗 is selected if 𝑏𝑖
𝑗
= 1. For

example with 𝑑 = 6 and 𝐵𝑖 = (0,1,0,0,1,0) the subset of features selected is (𝐹2, 𝐹5) as illustrated in

Table 3.1.

Features 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔

Binary

vector
0 1 0 0 1 0

Features

selected
- 𝐹2 - - 𝐹5 -

Table 3.1. Example of features selection for 𝑑 = 6

Therefore, the positions of the agents in the BHHO-EAS metaheuristic will be binary positions and

the feature selection optimization problem is a discreet problem in a binary search space. In order to

understand the level of difficulty of this problem a mathematical explanation is necessary.

A. Mathematical theory of the feature selection

The binary discrete search space is a search space whose vector components can only take the discrete

values 0 or 1.

As we mentioned above, the mathematical representation of a binary vector is 𝐵𝑖 = (𝑏𝑖
1, … , 𝑏𝑖

𝑑) . The

variable 𝑑 is the dimension of the binary search space ℬ𝑑 . ℬ𝑑 is represented by a hypercube with 2𝑑

vertices. Each binary vector is consequently one of the vertices of this hypercube. For example, for 𝑑=3,

Source of features
Subset of features

111

ℬ3 is a cube with eight binary vectors positioned on the eight vertices as illustrated bellow Fig. 3.3. It

means that the size of a hypercube ℬ𝑑 increases exponentially with respect to the dimension 𝑑. This

mathematical fatality is conducive to the curse of the dimensionality for a high dimensional optimization

problem in a binary search space. Therefore, the feature selection is a NP-Hard optimization problem.

Fortunately, metaheuristic algorithms are the most suitable methods for solving this category of problem

as a prime contractor of the feature selection. Thus, an efficient metaheuristic for the resolution of the

NP-Hard optimization problems of feature selection, will browse the vertices of the hypercube ℬ𝑑 by

exploration and exploitation phases in a reasonable time in search of a good solution close to the optimal

solution. The nature-inspired and population-based metaheuristics [Agrawal P et al., 2021; Segera D et

al., 2023] will provide to the design of the IDS all the benefits of the feature selection.

Fig. 3.3. Binary search space ℬ3

B. The benefits of the feature selection to the design of a IDS

If the feature selection is an NP-Hard problem to solve, the final solution Φ ̂ to that problem will

provide benefits commensurate with the complexity of that problem [Banka H et al., 2017a; Banka H et

al., 2017b; Almomani A et al., 2019; Hodashinsky IA et al., 2019; Sassi M, 2022; Tansel D et al., 2022;

Segera D et al., 2023]. The benefits will concern all the components related to the design of a IDS in the

context of supervised learning: the dataset, the Deep Learning algorithm and the STA (IoT). We count

ten main benefits. The feature selection process:

 Selects relevant data and remove the redundant data;

 Reduces the noise such as irrelevant and fallacious data;

 Reduces the risk of error in the data samples since the size of features is reduced;

112

 Minimizes the consequences of the curse of the dimensionality which exists if the number of

features in the dataset is greater than or equal to 100, which increases the noise in the dataset and

therefore the detection errors rate of the IDS [Gardeux V, 2011] ;

 Simplifies the representation pattern and the interpretation of the data;

 Increases or at least maintains the performance of Deep Learning algorithms;

 Reduces the computational load of the training, validation and testing phases as well as the

number of Epochs during the training phase thanks to the reduction in the size of the dataset;

 Improves the generalization capacity of the Deep Learning model and therefore makes it more

resilient to unknown attacks;

 Decreases the complexity of the Deep Learning model architecture, which is an essential asset

for compacting an IDS and saving computing and memories resources of an IoT;

 Reduces processing time, this is another asset for better responsiveness in the field of

cybersecurity.

Now that we know the benefits of the feature selection process, we need to choose how to do it, more

precisely which feature selection method to use.

C. Feature selection methods

The Filter, Wrapper, Hybrid and Embedded methods are the four main methods used in the literature

for feature selection [Hodashinsky IA et al., 2019; Sharma M et al., 2021; Houssein EH et al., 2022b;

Houssein EH et al., 2022a; Houssein EH et al., 2022c; Segera D et al., 2023]. Each of these methods has

a separate evaluation step.

a. Filter method

Filter selection methods have the advantage of being independent of the Machine Learning algorithm

for the evaluation of the feature subset Φ and of being not very complex. They exploit the intrinsic

statistical properties of features to assign them a value. This value will allow features to be evaluated and

selected based on a threshold. The disadvantages are that this method can select interrelated features and

is less precise than the wrapper method. The most used filter methods are the Hisher test, the 𝜒2test, the

113

Welsh test [Gardeux V, 2011] or even Mutual information, Correlation-based, Fast Correlation-based,

Branch and bound, Consistency, Principal Component Analysis and Information Gain [Banka H et al.,

2017a; Almomani A et al., 2019; Sakr MM et al., 2019; Houssein EH et al., 2022c; Houssein EH et al.,

2022a].

b. Wrapper method

Unlike the filter method, the wrapper method is dependent on the Machine Learning algorithm for the

evaluation of a subset of feature Φ [Banka H et al., 2017a; Almomani A et al., 2019; Houssein EH et al.,

2022c; Houssein EH et al., 2022a; Houssein EH et al., 2022b; Tansel D et al., 2022]. In addition, it will

provide a final solution Φ ̂ that is more precise and better adapted to the Machine Learning algorithm.

With this method, the whole {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,𝐷𝑎𝑡𝑎𝑠𝑒𝑡} is considered as the "black box"

optimization problem for a metaheuristic. On the other hand, the major drawback of the wrapper method

is that it requires much more computational time and resources than the filter method.

c. Embedded method

The embedded method is quite similar to the wrapper method [Houssein EH et al., 2022c; Houssein

EH et al., 2022a]. Like the wrapper method, the embedded method uses the Machine Learning algorithm

to evaluate the feature subset Φ and provide a final solution Φ ̂ more precise and better adapted to the

Machine Learning algorithm. The main difference with the wrapper method is that the embedded method

uses an internal method that evaluates Φ during the Machine Learning model training process. The

evaluation of Φ is thus embedded in the training process of the Machine Learning model, selects the

features and trains the Machine Learning model at the same time [Banka H et al., 2017a; Almomani A

et al., 2019; Agrawal P et al., 2021]. The L1 penalty with LASSO regularization is one of the best known

evaluation methods for the embedded method.

d. Hybrid method

The hybrid method uses both the upstream filter and downstream wrapper methods [Banka H et al.,

2017a; Houssein EH et al., 2022a; Houssein EH et al., 2022b]. The filter method selects a subset of

features Φ before implementing the wrapper method. Then the wrapper method considers the subset Φ

as the initial feature set and will in turn select and evaluate a feature subset Φ′. However, this method

114

inherits the lack of precision of the filter method. Indeed, if the filter method selects a subset of features

Φ which is not optimal with several correlations between features, the result of the quality of the solution

Φ ̂ provided by the wrapper method will decrease accordingly [Almomani A et al., 2019].

Among these four feature selection methods, the wrapper method is therefore the most efficient and

accurate for our work because it is more efficient than the filter method and therefore the hybrid method

[Sakr MM et al., 2019; Davahli A et al., 2020a]. In our works, we do not use a classic Machine Learning

algorithm but the Deep Learning CNN algorithm which is very efficient in the classification and therefore

in the detection of attacks. We will justify our choice in subsection 3.5.2. Moreover, unlike the embedded

method, the wrapper method meets our technical specifications which require that the BHHO-EAS

metaheuristic be the driving force in the search for the best subset of feature Φ ̂ of the AWID3 dataset.

But the wrapper method must be implemented with the most appropriate feature selection initialization.

3.4.2. Binary vector initialization strategies

The initialization strategy is sometimes neglected in the literature while the initial position of the

agents in the search space is a crucial element in the optimization strategy [Qian L et al., 2020; Agushaka

JO et al., 2022]. The initialization in a metaheuristic algorithm must make it possible to position its agents

in order to effectively cover the search space and to increase the probabilities that at least one of the

agents is in a promising zone containing the optimal solution. This would reduce the search time and the

quality of the final solution.

For binary metaheuristics there are three main binary vector initialization strategies [Almomani A et

al., 2019; Gad AG et al., 2022]:

 Random initialization;

 Great initialization;

 Small initialization.

A. Random initialization

The Random selection method offers the greatest probability of being positioned from the start on a

promising zone of the hypercube by randomly initializing each component of the binary vectors to 0 or

115

1. During the iterations the components at 0 or at 1 can respectively change to 1 or to 0 in order change

the subset of feature Φ and to obtain the most optimal subset Φ ̂. It is this method that we favored in our

work compared to the Great initialization and Small initialization methods.

B. Great initialization

The Great initialization method, for each binary vector, randomly selects one of its components to set

it to 0 and leaving all the other components at 1. The positioning of the bit at 0 must be different from

one binary vector to another. The objective, if the size of the population of the metaheuristic is greater

than or equal to the dimension of the optimization problem, is that the component at 0 traverses at least

once the set of dimensions of the binary vectors.

As iterations go, the bits at 1 will change to 0 to remove features and reduce the size of the subset Φ

[Almomani A et al., 2019; Gad AG et al., 2022].

C. Small initialization

The Small initialization method is the opposite of the Great initialization method. This method will

randomly set to 1, a single component of the binary vector and all the other components to 0. As the

iterations progress, the bits at 0 will change to 1 to select new features and increase the size of the subset

Φ [Schiezaro M et al., 2013; Almomani A et al., 2019; Gad AG et al., 2022].

Fig. 3.4. Illustrates the three initialization methods for a population of four agents and a dimension

equal to eight.

Fig. 3.4. The three main binary vector initialization strategies

116

We now have all the theoretical elements of the feature selection process. In order to have a synthetic

vision we provide in the following its flow chart.

3.4.3. Flow chart of the feature selection process

The feature selection process is divided into four steps [Banka H et al., 2017b]:

 Selection of a feature subset Φ;

 Evaluation of the subset Φ;

 Termination tests of the Selection process;

 Validation of the subset Φ.

The flowchart in four steps are illustrated in Fig. 3.5.

Fig. 3.5. Steps of the feature selection

A. Selection and validation

The selection is made by one of four methods: filter, wrapper, hybrid and embedded. As explained

above, each of these methods has a separate evaluation step.

B. Termination tests of the selection process

There are three criteria for stopping the feature selection process:

 Maximum number of iterations reached;

 No improvement after a certain number of iterations;

 The optimal subset of features is already obtained at initialization.

117

C. Feature subset validation

The validation of the feature subset Φ ̂ consists in confirming the relevance of the selection thanks to

performance metrics. In our work, the evaluation step will exploit the Accuracy metric of the IDS.

We now have the fundamentals of the feature selection process. We know what this process is, what

are its advantages, its four main steps and how to implement it with filter, wrapper, embedded or hybrid

methods. In the next subsection 3.4.4 we will design the BHHO-EAS metaheuristic which will be the

prime contractor for our wrapper feature selection. Our wrapper feature selection method is unique since

it uses the Deep Learning algorithms and the computing power of GPU technology for the design of the

CNN-IDS.

3.4.4. Design of the binary metaheuristic BHHO-EAS

To adapt HHO-EAS metaheuristic to optimization in a binary discrete search space it is necessary it

is necessary to allow him to discretize the continue search space.

There are several methods of discretization or encoding such as Nearest Integer (NI) [Burnwal S et

al., 2013], Smallest Position Value (SPV) [Verma RS et al., 2012; Demyana IE et al., 2016], Great Value

Priority (GVP) [Congying L et al., 2011], Random-Key (RK) [Huiqin C et al., 2011] or the modified

position equation (MPE) method that was used on PSO [Pan QK et al., 2008]. The later required the

modification of the equations for calculating the position of the agents. In our case we adopt the binary

discretization which will limit the number of possible states to 0 or 1 [Sassi M, 2022].

We have designed a modular binary discretization method, independent of metaheuristics and which

allows to preserve their algorithmic and mathematical integrity as well as their exploration and

exploitation strategy.

We therefore performed a high-level hybridization, integrated in the HHO-EAS metaheuristic [Ting

TO et al., 2015]. Our hybridization is composed of two modules 𝑀1 and 𝑀2 [Sassi M, 2022]. These

two modules are suitably positioned in HHO-EAS so that at each iteration the continuous positions 𝑋𝑖

of an agent 𝑖 are converted into a binary position 𝑉𝑏𝑖 [Raidl GR et al., 2019].

118

A. Module M1

For a search space of dimension 𝑑 and an agent population of size 𝑁, the module 𝑀1 make it possible

to go from a continuous real space ℝ𝑑 to an continuous intermediate space [0,1]𝑑. It normalizes the real

values 𝑥𝑖
𝑗
, components 𝑗 of the positions 𝑋𝑖 of an agent 𝑖, in order to obtain a probability value 𝑝𝑖

j
 via a

transfer function 𝑇. Thus the module 𝑀1 converts the position vector 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑) to the

intermediate vector 𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑) which will act on the selection of the features set (𝑓1, . . , 𝑓𝑑).

Equation (3.1) summarizes the mathematical operation of 𝑀1 performed by a transfer function 𝑇.

{

 𝑖 ∈ ⟦1, 𝑁⟧, 𝑗 ∈ ⟦1, 𝑑⟧

𝑋𝑖 ∈ ℝ
𝑑 , 𝑃𝑖 ∈ [0,1]

𝑑

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑)
𝑇
⇒ 𝑃𝑖 = (𝑝𝑖

1, … , 𝑝𝑖
𝑑)

 (3.1)

Referring to the state of the art, the most used transfer functions 𝑇 for feature selection are: S-shaped,

V-shaped, U-shaped and Q-shaped [Too J et al., 2019; Kumar V et al., 2021; Nadimi-Shahraki, M.H. et

al., 2021; Tansel D et al., 2022]. Recent work has proven the superiority of Q-shaped transfer functions

[Too J et al., 2019].

Table 3.2, Table 3.3, Table 3.4 and Table 3.5 provide the mathematical formulation of transfer

functions and Fig. 3.6, Fig. 3.7, Fig. 3.8 and Fig. 3.9 provide their graphical representations. For a search

space of dimension 𝑑, the transfer functions S-shaped provide the probability of selecting a feature. On

the other hand, the V-shaped, U-shaped and Q-shaped transfer functions provide the probability of

modifying the choice made at the previous iteration: if a feature has been selected, it will no longer be

at the next iteration and vice versa.

The next step will be to go from the intermediate space [0,1]𝑑 to the binary space {0,1}𝑑 with the

module 𝑀2.

Name S-shaped functions

S1 1

1 + 𝑒−2𝑥

S2 1

1 + 𝑒−𝑥

119

S3 1

1 + 𝑒(−
𝑥
2
)

S4 1

1 + 𝑒(−
x
3
)

Table 3.2. S-shaped functions

Name V-shaped functions

V1
 |erf (

√𝜋

2
𝑥)|

V2 | tanh(𝑥) |

V3 |𝑥|

√1 + (𝑥)2

V4
|
2

𝜋
 arctan (

𝜋

2
𝑥)|

Table 3.3. V-shaped functions

Name U-shaped functions

U1
 𝛼 |𝑥

3
2|

U2 𝛼|𝑥2|

U3 𝛼|𝑥3|

U4 𝛼|𝑥4|

Table 3.4.U-shaped functions

Name Q-shaped functions

Q1

{
|

𝑥

0.5𝑥𝑚𝑎𝑥
| , 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

1, 𝑒𝑙𝑠𝑒

Q2

{
(

𝑥

0.5𝑥𝑚𝑎𝑥
)
2

, 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

1, 𝑒𝑙𝑠𝑒

Q3

{(
|𝑥|

0.5𝑥𝑚𝑎𝑥
)

3

, 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

 1, 𝑒𝑙𝑠𝑒

120

Q4

{(
|𝑥|

0.5𝑥𝑚𝑎𝑥
)

1
2

, 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

1, 𝑒𝑙𝑠𝑒

Table 3.5. Q-shaped functions

Fig. 3.6. S-shaped functions

Fig. 3.7.V-shaped functions

121

Fig. 3.8. U-shaped functions (𝛼 = 1)

Fig. 3.9. Q-shaped functions (𝑥𝑚𝑎𝑥 = 6)

B. Module M2

The module 𝑀2, by the use of a binarization rule 𝑅, makes it possible to pass from the intermediate

space [0,1]𝑑 to the binary space {0,1}𝑑. There are two main binarization rules: 𝑅1 and 𝑅2 .These two

rules convert the probability values 𝑝𝑖
j
 of the vector 𝑃𝑖 into binary values 𝑏𝑖

𝑗
 in order to create the binary

vector 𝐵𝑖. The mathematical equations of the rules 𝑅1 and 𝑅2 are respectively detailed in (3.2) and (3.3).

Each of these rules applies to a specific category of transfer function 𝑇:

 Rule 𝑅1 for S-shaped functions;

 Rule 𝑅2 for V-shaped, U-shaped and Q-shaped functions.

122

𝑅1: 𝑏𝑖
𝑗
= {1 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑖

𝑗

0 𝑒𝑙𝑠𝑒
 (3.2)

𝑅2: 𝑏𝑖
𝑗
= {

~(𝑏𝑖
𝑗
) 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑖

𝑗

𝑏𝑖
𝑗
 𝑒𝑙𝑠𝑒

 (3.3)

Thus in rule 𝑅2, if the binary component 𝑏𝑖
𝑗
= 1 and the random value 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑖

𝑗
 then ~(𝑏𝑖

𝑗
) =

0. And if 𝑏𝑖
𝑗
= 0 and 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑖

𝑗
 then ~(𝑏𝑖

𝑗
) = 1. On the other hand, if 𝑟𝑎𝑛𝑑 > 𝑝𝑖

𝑗
, 𝑏𝑖

𝑗
 will not change

its value.

Equation (3.4) summarizes the mathematical operation of 𝑀2 performed by a logical rule 𝑅.

{

 𝑖 ∈ ⟦1, 𝑁⟧, 𝑗 ∈ ⟦1, 𝑑⟧

𝑃𝑖 ∈ [0,1]
𝑑 , 𝐵𝑖 ∈ {0,1}

𝑑

𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑)
𝑅
⇒𝐵𝑖 = (𝑏𝑖

1, … , 𝑏𝑖
𝑑)

 (3.4)

Thus the combination of the module 𝑀1 and the module 𝑀2 creates a mathematical process of binary

discretization of the position vectors 𝑋𝑖 in order to get 𝐵𝑖. Equation (3.5) summarizes the overall process

of binary discretization for a transfer function 𝑇 and a logical rule 𝑅.

{

 𝑖 ∈ ⟦1,𝑁⟧, 𝑗 ∈ ⟦1, 𝑑⟧

𝑀1: 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑)
𝑇
⇒ 𝑃𝑖 = (𝑝𝑖

1, … , 𝑝𝑖
𝑑)

𝑀2: 𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑)
𝑅
⇒ 𝐵𝑖 = (𝑏𝑖

1, … , 𝑏𝑖
𝑑)

 (3.5)

In order to obtain the new metaheuristic BHHO-EAS, it now remains to integrate the two modules

𝑀1 and 𝑀2 in HHO-EAS and to initialize the binary position of the agents with the Random initialization

method. Algorithm 2 describes the pseudo-code of BHHO-EAS. The modules 𝑀1 and 𝑀2 are in blue

color in Algorithm 2. The flow chart of BHHO-EAS is provided in Appendix 8. This flow chart specifies

the components of the BHHO-EAS algorithm which exploits the GPU or the CPU for its calculations.

The calculation of the new position of the agents at each iteration is identical to HHO-EAS. The pseudo-

code and the flow chart confirm that there is no alteration of the HHO-EAS algorithm and that the

modules 𝑀1 and 𝑀2 were added at the end of the calculation of the new positions 𝑋𝑖 of each agent 𝑖.

123

In the next section 3.5, with the aim of conceive the CNN-IDS against 802.11 specific attacks, we

will demonstrate that BHHO-EAS is the central intelligence in the wrapper feature selection method

applied to the AWID3 dataset.

Algorithm 3.1 Pseudocode of BHHO-EAS

In: Population size N, Number of Iteration ItMax, Objective function F, Transfer function T, Rule R

Out: 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)

Initialization of the Harris Hawk’s binary positions �⃗⃗�𝑖, 𝑖 ∈ ⟦1, 𝑁⟧, 𝐾 = 2, t=0

While (t < ItMax) do:

 Calculate 𝐹(�⃗�𝑖) of each Harris Hawk’s position �⃗�𝑖

 Define the best position of rabbit 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)

 For each Harris Hawk agent 𝑖 do:

 Update 𝑒, 𝐸0, 𝐸, and 𝐽 with FISREE, (2.2) and (2.6)

 If(|𝐸 | ≥ 1) [Exploration] then:

Calculate 𝑞 and Update position with (2.4)

 Else [Exploitation]:

Update 𝑉𝛼⃗⃗ ⃗⃗ , 𝑉𝛽⃗⃗⃗⃗⃗ and 𝑉𝛿⃗⃗⃗⃗⃗

Define:

𝑋𝛼⃗⃗ ⃗⃗ ⃗=First best position

𝑋𝛽⃗⃗ ⃗⃗⃗=Second best position

𝑋𝛿⃗⃗ ⃗⃗⃗=Third best position

Calculate encirclement equations with (2.22), (2.23), (2.24), (2.25), (2.26) and (2.27)

Calculate 𝑋𝑒⃗⃗⃗⃗⃗ with attack equation (2.28)

Update Harris Hawk’s position �⃗�𝑖 by 𝑋𝑒⃗⃗⃗⃗⃗

 Calculate 𝑟5

 If |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5 then:

 Update position with (2.6) and (2.7)

 If |𝐸| < 0.5 and 𝑟5 ≥ 0.5 then:

 Update position with (2.8)

 If |𝐸| ≥ 0.5 and 𝑟5 < 0.5 then:

 Update position with (2.9) to (2.12)

 If |𝐸| < 0.5 and 𝑟5 < 0.5 then:

 Update position with (2.12) to (2.15)

 End For

124

 For each Harris Hawk agent position 𝑋𝑖 do:

 𝑃𝑖 = 𝑇(𝑋𝑖) with 𝑇 𝜖 𝑀1 (3.1)

 𝐵𝑖 = 𝑅(𝑃𝑖) with 𝑅 𝜖 𝑀2 (3.2), (3.3)

 t=t+1

End While

Return 𝑋𝑟⃗⃗⃗⃗⃗

125

3.5. Application of BHHO-EAS to design a CNN-IDS specific to 802.11 attacks

3.5.1. Mathematical modeling of the Wrapper feature selection process in a multi-objective

optimization problem

The wrapper feature selection method provides the optimal subset of features Φ ̂ by pursuing a dual

objective: minimizing the size of the feature subset Φ and maximizing the detection performance of the

CNN. The wrapper feature selection is therefore a NP-Hard multi-objective optimization problem

[Almomani A et al., 2019; Davahli A et al., 2020a; Houssein EH et al., 2021b; Sharma M et al., 2021;

Houssein EH et al., 2022a].

The two objectives to be optimized are:

 1st objective Minimize : Select the feature subset Φ with the smallest possible size represented

by a binary vector 𝑉𝑏. But reducing the size of Φ consists in minimizing the Hamming distance

|𝑽𝒃| between the binary vector 𝑉𝑏 and the null vector;

 2nd objective Maximize: We need to increase the Accuracy metric (𝑨𝒄𝒄) to maximize the

CNN's ability to predict the Attacks and Normal samples and reduce the detection errors.

Accuracy metric is more explicitly detailed in subsection 3.6.2.

The mathematical transcription of this multi-objective optimization problem is as follows:

 Maximize 𝑨𝒄𝒄

 Minimize |𝑽𝒃|.

 With:

𝑽𝒃 = (𝒃
𝟏, … , 𝒃𝒅),

|𝑽𝒃| =∑𝒃𝒋
𝒅

𝒋=𝟏

 ,

𝑨𝒄𝒄(𝑽𝒃) =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑵+ 𝑻𝑵+ 𝑭𝑷

The solution 𝑉�̂� to this multi-objective problem is generally not unique and not optimal because they

represent a compromise on the two objectives Min-Max to be achieved. Indeed, the excessive reduction

126

of the number of features could decrease the Accuracy. And conversely the increase in Accuracy tends

to generate an increase in the number of features.

As we specified in chapter 1, among the solutions obtained, those which have a relation of dominance

over the other solutions and none of them, constitute the Pareto optimal front.

To solve this multi-objective problem with an A priori approach, we will use the weighted sum

methods (or aggregation method) [Siarry P et al., 2002a; Donoso Y et al., 2016]. This method is the

most widely used in the literature for solving the multi-objective wrapper feature selection optimization

problems [Mafarja MM et al., 2017; Almomani A et al., 2019; Bonab MS et al., 2020; Davahli A et al.,

2020a; Davahli A et al., 2020b]. The two main advantages of this method and which motivated its use

for our works are the following:

 It allows to go from a multi-objective problem to a single-objective problem that can be solved

by the BHHO-EAS metaheuristic;

 It is particularly effective in obtaining a good final solution thanks to the A priori intervention

of an expert.

In our case, the A priori intervention requires a cybersecurity expert in 802.11 technology. The expert

will give either a preponderance to the Accuracy Acc with the weight 𝜔1 in order to maximize the

detection performances of the CNN-IDS, or will favor the minimization of |𝑽𝒃| to save the IoT’s

computing resources via the weight 𝜔2. Our expert choice is as follows: In the context of IoT

cybersecurity, the priority is to have the most efficient CNN-IDS possible in the detection of 802.11

specific attacks with the fewest false positives and false negatives. Consequently, the weight assigned to

Acc, 𝜔1 will be preponderant with respect to the weight 𝜔2 assigned to |𝑽𝒃|.

In order to obtain a single equation to be minimized from a Min-Min multi-objective optimization

problem, we replace the Accuracy by the detection Error 𝑬𝒓𝒓. Acc and Err are linked by the equation:

𝑬𝒓𝒓 = 𝟏 − 𝑨𝒄𝒄. And since the functions to be optimized must be normalized in the method of weighted

sums, we divide |𝑽𝒃| by the dimension of the optimization problem 𝒅.

The multi-objective optimization problem Min-Min is therefore expressed by the mono-objective

equation (3.6) to be minimized:

127

𝐹(𝑉𝑏) = 𝜔1. (1 − 𝐴𝑐𝑐(𝑉𝑏)) + 𝜔2.
|𝑉𝑏|

𝑑
. (3.6)

Furthermore we know that in the weighted sum method (𝜔1, 𝜔2) ∈ [0,1]
2 and 𝜔1 + 𝜔2 = 1. The

equation (3.6) then becomes equation (3.7) with 𝜔2 = 𝜔 and 𝜔1 = 1 − 𝜔:

𝐹(𝑉𝑏) = (1 − 𝜔). (1 − 𝐴𝑐𝑐(𝑉𝑏)) + 𝜔.
|𝑉𝑏|

𝑑
 (3.7)

The theoretical bases of the Wrapper feature selection multi-objective optimization problem are laid.

We must now design the architecture of the wrapper feature selection with the triptych {BHHO-EAS,

CNN, AWID3}. We have already designed the BHHO-EAS metaheuristic in section 3.4. In what

follows we will first define the choice of the Deep Learning model CNN before approaching the analysis

and the preprocessing of the AWID3 dataset.

3.5.2. Convolutional neural network for the creation of a CNN-IDS

The Convolutional Neural Network (CNN) is one of the neural networks of Deep Learning

algorithms. Deep Learning algorithms are a subset of Machine Learning algorithms themselves being a

subset of Artificial Intelligence [Houssein EH et al., 2021a; Monteiro ACB et al., 2021; Pedroza M et

al., 2021]. Fig. 3.10 below schematizes these inclusions.

Deep Learning algorithms are much more efficient than classic Machine Learning algorithms for

classification tasks [Zhang S et al., 2020]. Deep Learning provides us with many neural networks that

mimic the neural and visual abilities of animals: Feedforward Neural Network (FNN), Recurrent Neural

Network (RNN), Convolutional Neural Networks (CNN), etc.

Fig. 3.10. Inclusion of ML and DL in AI

128

Before exhaustively describing CNN and its inherent attack detection capabilities and its ability to

be embedded into an IoT, we will provide a general overview of Machine Learning.

A. General overview of Machine Learning

Michel T, computer science professor at the University of Carnegie Mellon and researcher in

artificial intelligence, was one of the first researchers to provide a definition of Machine Learning : "A

computer program is said to learn from experience E with respect to some class of tasks T and

performance measure P , if its performance at tasks in T , as measured by P, improves with experience

E" [Mitchell T, 1997]. This definition is one of the theoretical foundations of Machine Learning.

Machine Learning consists of three main branches [Hussain F et al., 2020; Sarker IH, 2021]:

Reinforcement Learning, Unsupervised Learning, and Supervised Learning. We will define below each

of these three branches.

a. Reinforcement Learning

Reinforcement Learning is the branch of Machine Learning which is closest to human behavior

because it is based on trials and errors. This branch of Machine Learning requires an Agent, an

Environment, the States of the Environment and the Rewards obtained by the Agent’s Actions for a

given State of the Environment. Based on the State of the Environment and the value of the Reward, the

Agent learns via Reinforcement Learning algorithms to optimize these decisions by choosing the Action

which will modify the state of the environment and will maximize his Rewards in the long term. A

multitude of Reinforcement Learning algorithms exist such as Q-Learning, Sarsa, Deep Q-Learning, etc.

[Zhang H et al., 2020].

b. Unsupervised Learning

Having no information on the data label, Unsupervised Learning algorithms are trying to highlight the

internal data structure in order to determine internal characteristics common to data. This is the case of

clustering or reduction of dimensions such as Principal Component Analysis (PCA) [Zhang S et al., 2020;

Dara S et al., 2022; Verma KK et al., 2022].

c. Supervised Learning

In Supervised Learning, all data are labeled. This means that each record of the data has its known

exit. For example, an image dataset representing cats or dogs will be labeled cat or dog respectively. The

129

Supervised Learning algorithms will create a function that will associate a record with its label [Zhang S

et al., 2020; Dara S et al., 2022; Verma KK et al., 2022]. The design of the CNN-IDS is in the context

of the Supervised Learning.

Fig. 3.11 provides a general taxonomy of the three branches of the Machine Learning with examples

of algorithms for each branch.

Fig. 3.11. General taxonomy of Machine Learning algorithms

B. General skills of CNNs for intrusion detection and to be embedded into an IoT

CNN models have a common general architecture. They are composed of three main blocks [Ramos-

Michel A et al., 2021]:

 The convolution layers: They consist of several maps of features having distinct convolution

kernels of smaller dimensions than the images to be processed as input. These kernels are the

equivalent of weights in classical neural networks. Within the same feature map, the convolution

kernels are identical. Thanks to convolution kernels, these feature maps can extract one after

another and layer by layer the main high-level features of an image from its low-level features to

transmit them to the Pooling layers;

 Pooling layers: In a rectangular area of reduced dimension, the Pooling layers sub-sample the

information coming from the convolution layers by different mathematical aggregation

operations. The most exploited operations in CNNs are the maximum, the average, the weighted

average or the ℒ2 norm. The Pooling layer therefore makes it possible to reduce the dimensions

of an image, the amount of memory and calculation required while keeping the main high-level

130

information. This last point also makes it possible to minimize the overfitting of the CNN model.

The data aggregated by the last pooling layer is then passed to the fully connected layers;

 Fully connected layers: After a flattening (or serialization) of the data of the last Pooling layer,

this layer learns to process the high-level nonlinear features coming from the combination

[Convolution layer - Pooling layer], classifies it as a classic neural network would.

The general architecture of CNNs is detailed in Fig. 3.12.

Fig. 3.12. General architecture of Convolutional Neural Network

Now that we know the technical specifications of CNN, let's answer the following question: why did

we choose CNN to design our IDS? We chose CNN for two main reasons.

The first reason is based on the three properties inherent in the architecture and operation of CNN

[Goodfellow I et al., 2016; Gaspar A et al., 2021; Marquez Casillas ES et al., 2021; Monteiro ACB et

al., 2021; Ramos-Michel A et al., 2021]. Initiated by work on the Neocognitron by Kunihiko Fukushima

in 1980 [Fukushima K, 1980], the CNN has mathematical processes based on convolution (or cross-

correlation) making it possible to extract the high-level characteristics of images from low-level

characteristics such as the human visual cortex would. This is the mathematical property of equivariance

and invariance of CNNs. This is a major asset for the recognition of attacks with comparable motives.

The other two properties are sparse interactions and parameter sharing. These two properties make it

possible to reduce the number of parameters, the necessary calculations and de facto will relieve the

131

material resource necessary for the execution of the CNN model. These two properties thus contribute to

the ability of the CNN-IDS to be embedded in an IoT.

The second reason is based on our analysis of the state of the art. Recent literature proves that CNNs

are much more efficient than "classic" Machine Learning algorithms for the detection of known and

unknown attacks [Kim K et al., 2018b; Kim K et al., 2018c; Azizjon M et al., 2020; Jiyeon K et al.,

2020; Riyaz B et al., 2020; Hu J et al., 2021; Park D et al., 2021; Tressa M, 2021; Tufan E et al., 2021;

Mohammadpour L et al., 2022]. CNNs are therefore a major asset for the recognition of attack patterns

coming from the Wi-Fi network flow composed of several complex low-level characteristics.

Thus the inherent qualities of the CNN that we have just exposed above make it the appropriate Deep

Learning algorithm for the design of our CNN-IDS. And in order to classify the attack vectors by the

CNN-IDS from the AWID3 dataset, they will first be transformed into 1D images in the preprocessing

phases.

3.5.3. Analysis of the AWID3 dataset

The AWID3 dataset (Aegean Wi-Fi Intrusion Dataset 3) was created in 2021 by researchers from the

Greek Aegean University [Chatzoglou E et al., 2021]. It is available in PCAP and CSV format

[University of Aegean, 2014]. As we specified in section 3.3, unlike its predecessor AWID2, the AWID3

dataset is much more complex and fully in line with the technical requirements of a company information

system.

For the design of our CNN-IDS we used AWID3 in CSV format. It is composed of 28,800,413

samples. These samples are structured around 253 features representing the protocols from the Physical

layer to the Application layer of the OSI stack. A label is added to the 253 features to identify an attack.

The 253 features are composed of several types of data: integer, binary, float and string, knowing that

hexadecimal values are transformed into integer values. We will see in what follows that these features

can be classified into two classes of data: categorical and numeric.

The attacks are spread over 13 groups of class. These 13 groups of attacks represent both the classic

802.11 specific attacks found in AWID 2 and upper layer attacks: Deauthentication (Deauth),

Disassociation (Disas), ReAssociation ((Re)Assoc), Rogue Access Point (Rogue AP), Evil Twin, Key

132

Reinstallation Attack (Krack), Kr00k, Botnet, SSH brute force, Malware, SQL injection, SSDP

amplification and Website spoofing. 7 of these 13 groups of attacks are specific to 802.11 technology and

more particularly target the MAC layer in order to succeed in their offensive towards higher layers. These

7 groups of attacks are: Deauthentication (Deauth), Disassociation (Disas), ReAssociation ((Re)Assoc),

Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation Attack (Krack) and Kr00k. This represents

15,155,345 samples of the dataset [Chatzoglou E et al., 2022a]. The other 6 groups of attacks target the

upper layers: SSH brute force, Malware, SQL injection, SSDP amplification and Website spoofing. This

represents 13,645,068 samples of the dataset [Chatzoglou E et al., 2022b].

As we specified in subsection 3.2.4, we focus on the samples linked to the 7 groups of 802.11 specific

attacks that must be preprocessed beforehand before being used.

3.5.4. Preprocessing of the dataset AWID3

As it stands, the AWID3 dataset cannot be used by a Deep Learning algorithm and does not meet the

5 requirements of the specifications provided in subsection 3.2.4. Significant data preprocessing work

was carried out beforehand, followed by a balancing of the data by subsampling in order to have a 1:1

ratio between the Normal and Attacks samples. The preprocessing ends with an encoding phase of the

categorical features and a normalization phase of the numerical features by using respectively One-Hot-

Encoding (OHE) and Min-Max [Neu DA et al., 2022].

The OHE encoding converts categorical features into numerical values via a binary vector whose size

is the numbers of categorical values. In this vector representation, all the components are at 0 except the

position of the feature which is at 1. For example, the feature wlan.fc.tytpe has 3 possible values:

management, control and data. Their respective binary representations are: (1,0,0), (0,1,0) and (0,0,1).

On the other hand, Min-Max makes it possible to grant the same importance to all the numerical features

in the supervised learning process whatever their scale of value. In addition, it helps to reduce noise and

outlier values. The scale values of each numerical feature are thus converted into a numeric value in [0,1]

by the following formula:
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
.

This preprocessing phase of the AWID3 dataset allows our CNN model to be trained and to be

integrated in the Wrapper feature selection process driven by our BHHO-EAS metaheuristic.

133

The preprocessing of the AWID3 dataset follows a 4-step workflow taking into account the CNN-IDS

design specifications:

 Application of the 5 requirements of the CNN-IDS specifications;

 Data cleaning;

 Data balancing by a subsampling of the Normal samples to get a ratio 1:1 between Normal

and Attack samples;

 Data encoding with OHE and Min-Max methods.

A. Application of the 5 requirements of the CNN-IDS specifications

In the first phase of preprocessing, we apply the 5 requirements of the specifications explained in

subsection 3.2.4.

R1. Detection of 802.11 specific attacks

Only the seven 802.11 specific attacks are taken into account as well as the Physic and Data Link

layer features. These features are 66 in number.

R2. Compatibility with companies’ information systems

For the CNN-IDS to be independent of the information system, the IDS must not be linked to the Wi-

Fi infrastructure. We therefore remove the RSN-related features wlan.rsn (Robust Security Network)

which make it possible to determine which security protocol is used: WPA, WPA2 and WPA3. We also

remove the features wlan.ta, wlan.ra, wlan.bssid and wlan.ssid attached to the Wi-Fi network

infrastructure. Furthermore, these features can be very easily usurped or modified by attackers and

keeping these features would link the dataset to a Wi-Fi network and would generate a risk of overfitting

the CNN model and would harm to its generalization.

R3. Hardware adhesion

The features should not be linked to the hardware of an STA. This particularly concerns the datarate

fields and the MAC adress: radiotap.datarate, wlan_radio.data_rate, wlan.sa and wlan.da.

R4. 802.11 frames processing

134

The features must be common to the three types of frames: Management, Control and Data. This

allows the CNN-IDS to exploit the three types of frames for the detection of 802.11 attacks.

Consequently, the features linked only to management frames with the wlan_mgt root are deleted.

R5. Temporal and sequential components

The need to embed the IDS in environments with limited computing and memory resources requires

minimizing the demands of superfluous data. Moreover, the IDS is not intended to take time series into

account. Consequently, the temporal and sequential components are not taken into account. The CNN-

IDS is therefore timeless and each frame must be independent of the previous one. Consequently, the

temporal and sequential features must not be taken into account in the detection of 802.11 attacks: The

following features are deleted:

 wlan.seq,

 frame.number,

 frame.time,

 frame.time_delta,

 frame.time_delta_displayed,

 radiotap.timestamp.ts,

 wlan_radio.start_tsf,

 wlan_radio.end_tsf,

 frame.time_epoch,

 radiotap.mactime,

 wlan_radio.timestamp,

 wlan_radio.start_tsf,

 wlan_radio.end_tsf,

 frame.time_relative.

At the end of this first phase of preprocessing based on the 5 requirements of the specifications, there

remain 18 features explained in Table 3.7. The correlation heatmap of these 18 features is detailed in

the Fig. 3.13.

A cleaning of the data represented by these 18 features is necessary before the encoding phase.

135

Fig. 3.13. Correlation heatmap of the 18 pre-selected AWID features

B. Data cleaning

In the second phase of the preprocessing we have proceeded to the cleaning of the data by deleting

the features presenting the following specificities in the distribution of their values:

 Having more than 50% missing or outlying values such as 'NaN', '?', 'Null', 'Inf';

 Having more than 90% of zero variance such as features:

 radiotap.present.flags,

 radiotap.present.rxflags,

 radiotap.present.dbm_antsignal,

 radiotap.present.channel,

 radiotap.present.antenna.

For the remaining features, we replaced the missing values by the average of their values for float

type features and the median for integer, binary and non-ordinal string type features. The average and

the median are calculated in relation to all the correct values of the feature. The hexadecimal data with

'0x', the exponent syntax of 10 with the symbol 'E' or 'e' and the value of combining

136

several data such as radiotap.present.tsft or radiotap.dbm_antisignal have been converted to numerical

value.

The next preprocessing step will create the final dataset balanced between Normal and Attack

samples.

C. Data balancing by subsampling

To respect the specifications, with the objective of creating a compact and embeddable CNN-IDS in

an IoT, we have chosen to reduce the complexity of the neural network by detecting the 3 main classes

of 802.11 attacks: Impersonation, Flooding and Normal. The Impersonation attack class represents the

3 attacks Krack, Evil_Twin and RogueAP. The Flooding attack class represents the 4 attacks Deauth,

Disas, (Re)Assoc and Kr00k.

Contrary to [Chatzoglou E et al., 2022a] which kept a very strongly unbalanced dataset in favor of

Normal samples and at the expense of Attack samples, we balanced our dataset so as not to be reduced

only to AUC and F1 metrics. We can thus use the Accuracy metric for the resolution of the multi-

objective Wrapper feature selection optimization problem. To do this we have down sampled the Normal

samples in order to have a 1:1 ratio between the Normal and Attack samples. Indeed, as Table 3.6,

indicates, the CSV datasets of the seven 802.11 specific attacks are mostly made up of Normal samples,

which can bias the CNN-IDS towards this population of samples.

CSV file attacks 802.11 Normal ratio Attack ratio

Krack 96,52 % 3,48 %

Evil_Twin 97,23 % 2,77 %

RogueAP 99,93 % 0,07 %

Deauth 97,61 % 2,39 %

Disas 96,27 % 3,73 %

(Re)Assoc 99,70 % 0,3 %

Kr00k 93,38 % 6,61 %

Table 3.6. Proportion between Normal and Attack samples per CSV file

137

After the subsampling process, we obtain the final dimension of the dataset with 935,010 samples

and 18 features including 467,505 Normal samples and 467,505 Attack samples distributed between

311,378 Flooding samples and 156,127 Impersonation samples. Our final dataset is therefore well

balanced between Normal and Attack samples. This will allow BHHO-EAS to exploit the Accuracy

metric in the objective function values during the search for the best feature subset. But the data provided

by the dataset still needs to be encoded to be usable by the CNN-IDS.

D. Data encoding

In order for our dataset to be understandable by the CNN-IDS, we applied the OHE and Min-Max

methods to the 18 features. As shown in Table 3.7, the 18 features are divided into 12 categorical features

and 6 numerical features. The OHE was applied to the 12 categorical features and Min-Max to the 6

numeric features.

Feature type Index Features selected

C
a
te

g
o
ri

ca
l

fe
a
tu

re

1
2
3
4
5
6
7
8
9

10
11
12

radiotap.present.tsft

radiotap.channel.freq

wlan.fc.type

wlan.fc.subtype

wlan.fc.ds

wlan.fc.frag

wlan.fc.retry

wlan.fc.pwrmgt

wlan.fc.moredata

wlan.fc.protected

wlan_radio.phy

wlan.fc.order

N
u

m
er

ic

fe
a
tu

re

13
14
15
16
17
18

frame.len

radiotap.length

radiotap.dbm_antsignal

wlan.duration

wlan_radio.signal_dbm

wlan_radio.duration

Table 3.7. The 18 features in technical coherence with the specifications

The preprocessing is now complete. Fig. 3.14 summarizes the 4 stages of the preprocessing. The

correlation heatmap of the 18 preselected AWID features will allow us to analyze in section 3.6 the

correlation of features selected by BHHO-EAS.

138

We now have all the main bricks to apply the BHHO-EAS metaheuristic within our Wrapper feature

selection method to select the most optimal AWID3 feature subset to maximize the performances of the

CNN-IDS and to minimize the features subset size.

Fig. 3.14. The 4 steps of the AWID3 preprocessing

3.6. Experimental results and discussion

In a desire for clarity, reproducibility and scientific continuity for future works, we will provide in this

section all the technical information necessary to reproduce our experiments.

This section provides the experimental results of the application of the metaheuristic BHHO-EAS for

solving the Wrapper feature selection multi-objective optimization problem and the design of the CNN-

IDS specific to 802.11 attacks. To do this, BHHO-EAS will provide an acceptable solution in a reasonable

time to multi-objective optimization problem exposed in subsection 3.5.1. The results of the optimization

are provided in Appendix 11. We will too specify in Appendix 11 AWID3 features selected by BHHO-

EAS as well as their functions in a company Wi-Fi network.

As we detailed in section 3.3, there are very few works on the AWID3 dataset and only one in the

same field and with the same purpose as our work. The works of Chatzoglou, E. et al [Chatzoglou E et

al., 2022a], validated by the scientific community and researchers, constitutes very good technical

references. In [Chatzoglou E et al., 2022a], the authors created IDSs through supervised training on

Machine Learning algorithms combined with upstream feature selection methods. The IDS obtained at

the end of the training phase make it possible to classify the test samples among the 3 classes: Normal,

139

Flooding and Impersonation. Our work goes beyond that of Chatzoglou E. et al. At the time of writing

this manuscript, we are the first to have created and implemented, on the AWID3 dataset, an 802.11

specific IDS design method with a metaheuristic optimization algorithm driving the Wrapper feature

selection with a Deep Learning model and exploiting GPU technology. We will, on the one hand,

demonstrate the superiority of our Wrapper features selection method driven by BHHO-EAS to that of

[Chatzoglou E et al., 2022a] based on expert knowledge and empirical techniques. On the other hand we

will compare the performance of our CNN-IDS compared to the 4 IDS having obtained in [Chatzoglou

E et al., 2022a] the best results on one of the 3 subsets of the AWID3 dataset: subset of 16 features, subset

of 19 features and the subsets of 4 features Set4.

Appendix 12 details the numerical and graphical values of the CNN-IDS performances and the 4

models of [Chatzoglou E et al., 2022a], based on the 5 metrics AUC, F1, Accuracy, Precision and Recall.

These metrics are used to comprehensively measure the prediction performances of a Machine Learning

and Deep Learning classifier [Ramos-Michel A et al., 2021]. For the main metrics AUC and F1, the best

results are in bold green and the worst in bold red.

We will also provide in Appendix 12 the Number of features selected, the Confusion Matrix of CNN-

IDS as well as, in Fig. A12.3 and Fig. A12.4, its Best and Worst Loss and Accuracy curves obtained on

the 10 folds of the stratified cross validation. The Confusion Matrix gives the results of the classification

in number and in percentage of samples correctly or incorrectly classified. It thus measures the success

and prediction error rates.

Finally, in order to prove the ability of our CNN-IDS to be embedded in an IoT with limited resources,

we will demonstrate by a technical PoC the performance of the prototype E-CNN-IDS in a Raspberry Pi

4 Model B widely used in the literature and with very limited memory and computing resources.

Thus, we will first present the hardware and software experimental environment. Then we will give

in detail, the spatial and temporal complexity parameters of BHHO-EAS, the parameters of the Wrapper

feature selection optimization problem and the hyper parameters of the CNN-IDS. In order to better

understand our Wrapper feature selection method, we will specify its five main steps illustrated in the

architecture diagram in Appendix 9. Finally, we will analyze the metrics and the final solution of BHHO-

EAS as well as the prediction performances of CNN-IDS compared to the 4 best IDSs of [Chatzoglou E

140

et al., 2022a]. Concerning E-CNN-IDS, in terms of prediction of 802.11 specific attacks, we will provide

in Appendix 13 its Confusion Matrix (Fig. A13.2). To measure the preserving of memory and computing

resources, Fig. A13.3 and Fig. A13.4 provide the minimum and maximum consumption of RAM and

CPU resources of the Raspberry Pi 4 Model B. Finally, Fig. A13.5 demonstrates the ability of E-CNN-

IDS to detect attack vectors belonging to the Flooding and Impersonation classes.

3.6.1. Analytical working station setup and IoT environment

We implemented BHHO-EAS, the CNN-IDS, the Wrapper feature selection and did the experimental

tests on an analytical workstation with the following technical specifications:

 Operating system: UBUNTU 20.04 LTS 64 bits

 Hardware environment:

o SSD 2,0 To;

o Processor Intel Core i7, 2,5Ghz, 8 cores, 16 logical processors;

o RAM 32 Go;

o NVIDIA GeForce RTX 3060:

 GPU with a frequency of 1320 MHz

 12 GB memory of GDDR6 type and 1750 MHz frequency

 Software environment: To design BHHO-EAS, CNN-IDS and to do the preprocessing of the

AWID3 dataset we have used:

o BHHO-EAS: Python programming language v.3.9.7;

o CNN-IDS: Scikit-learn v.1.1.2, Keras framework v.2.10.0 and the Tensorflow v.2.10.0

platform;

o Pre-processing of AWID3 dataset: Pandas v.1.3.4 and Numpy v.1.20.3.

The IoT environment represented by the Raspberry Pi 4 Model B has the technical specifications

hereafter. Fig. A13.1 in Appendix 13 provides an image of the Raspberry Pi and a description of its

electronic components for calculation and memory as well its ports.

 Constructor: Raspberry Pi in UK

141

 Operating system: Raspberry Pi OS Debian version 11 32 bits

 Hardware environment:

o SSD 16Go;

o Processor ARM v8 Quad core Cortex-A72 1.5 Ghz;

o RAM 2 Go;

3.6.2. Experimental parameters and performance metrics

A. Wrapper feature selection process

To define the spatial and temporal complexity of BHHO-EAS and the Wrapper feature selection

multi-objective optimization problem, we have set the following parameters:

 Number of independent runs 𝑵𝒓: 30 ;

 BHHO-EAS population size N: 10 (spatial complexity);

 Number of iteration ItMax: 100 (temporal complexity);

 Values of the weights 𝛚𝟏 and 𝛚𝟐 ∶ To solve our multi-objective optimization problem with

the weighted sum method (or aggregation method), based on the recent work in the literature

[Faris H et al., 2018; Too J et al., 2019; Thaher T et al., 2020; Al-Wajih R et al., 2021], the a

priori decision of the cybersecurity expert is to give preponderance to detection capability of

CNN-IDS over to the size of the selected features subset. So we used 𝜔 = 0.01 in order to obtain

the couple of weights: {𝜔1 = 0.99 , 𝜔2 = 0.01}. This couple of weights is a good compromise

between our two objectives. It promotes the performance of CNN-IDS without sacrificing its

ability to be embedded in an IoT by reducing the number of features.

 Transfer function and logic rule : Based on the state of the art of the M1 and M2 modules and

the best performance obtained, we have selected the quadratic transfer function Q4 with Rule R2

[Too J et al., 2019].

B. CNN-IDS Architecture

To design our CNN-IDS we used the architecture and supervised learning hyperparameters

respectively explained in Table 3.8 and Table 3.9. We recall that the objective of the CNN-IDS is to be

sufficiently efficient in the detection of intrusion but also light enough to be embedded in an IoT.

142

Table 3.10 communicates distribution of the 3 classes Normal, Flooding and Impersonation in the

Training, Validation and Test data. As we can see in Table 3.10, although the dataset is balanced between

Normal class samples and Attack samples with a ratio 1:1, we have a ratio 1:2 between Impersonation

and Flooding samples. Consequently, we chose to use the method of Stratified cross validation with

k=10 to train and validate the CNN model. This technique will help to better generalize CNN-IDS with

our AWID3 dataset and to optimize its prediction performance. The number of fold k=10 is the most

used and recommended in the state of the art.

Only Training and Validation samples interests us for the stratified cross validation which represent

respectively 60% and 20% of the total samples. Test samples will only be used for the final evaluation

of CNN-IDS prediction performance in subsection 3.6.4. During the stratified cross validation process,

we merge the Training and Validation samples. These samples are randomly selected and split into 10

folds. Each fold has the same proportions in Normal, Flooding and Impersonation samples. At each

iteration, 9 folds will be used for training and 1 fold for validation.

In order to avoid overfitting and to increase the generalization of the CNN-IDS to make it more

resistant to the evolution of 802.11 specific attacks, we used the regularization techniques of

EarlyStopping and Dropout. EarlyStopping, with a patience parameter=2, is monitored on the val_loss

metric. Thus, as soon as the results provided by val_loss deteriorate during 2 successive epochs from

the last "safe" epoch, the training process will be interrupted and back to the last "safe" epoch.

Dropout is a proven regularization technique for creating classifiers from Deep Learning models.

We set an equiprobability of 0.5 to turn off a neuron at each training phase (Dropout rate). This technique

thus allows the CNN model to learn to detect attacks by dispensing with half of the neurons randomly

switched off in a layer. But this will not be the case during the validation and testing phase. Therefore,

the val_accuracy metric will be larger than the Accuracy metric and the val_loss metric will be smaller

than the loss metric.

Always in the desire to generalize the CNN-IDS as well as possible, we have chosen a large Batch

size value of 200 samples. Finally, to save the best model during the training on the 10 folds we use the

ModelCheckpoint technique monitored on the metric val_accuracy.

143

We provide, in Table 3.8, the architecture of the CNN-IDS layer by layer and its diagram in Appendix

10 as well as its 2D representation. The CNN-IDS architecture thus has 0.164M parameters which will

be defined after the training phase and requires a computing power of 1.535M Flops. Based on the work

of [Monteiro A et al., 2018; Liu J et al., 2020; Gonzalez-Huitron V et al., 2021; Bhosale YH et al., 2022;

Joshila Grace LK et al., 2022], our CNN-IDS is able to be embedded and run in a IoT such as Mobile

device, Jetson Nano or Raspberry Pi. This is what we prove in the experimental subsection 3.6.4 with a

technical PoC.

Name Type Maps Size Kernel Stride Padding Activation

In Input − 14x1 − − − −

C1 Conv 64 12x1 3x1 1 Valid ReLu

C2 Conv 64 10x1 3x1 1 Valid ReLu

P3 MaxPool 64 5x1 2x1 2 −

C4 Conv 128 5x1 3x1 1 Same ReLu

C5 Conv 128 5x1 3x1 1 Same ReLu

C6 Conv 128 5x1 3x1 1 Same ReLu

P7 MaxPool 128 2x1 2x1 2 − −

F8 Flatten − 256 − − − −

L9 Dense − 100 − − − ReLu

D10 Droupout 0,5 − 100 − − − −

F11 Dense − 20 − − − ReLu

Out Dense − 3 − − − Softmax

Table 3.8. The CNN-IDS architecture from Input to Output layer

Training hyper parameters Value

Training data ratio 80%

Final test data ratio 20%

Stratified cross validation k=10

Batch size 200

Optimizer Adam learning rate=0.001

𝛽1 = 0.9

𝛽2 = 0.999

EarlyStopping monitor=’loss’

mode=’min’

patience=2

ModelCheckpoint monitor=’val_accuracy’

mode=’max’

Table 3.9. Hyperparameters for the training

144

Data category Class Value

Training data (90% of 748008)

Normal 336902

Flooding 224089

Impersonation 112216

Validation data ratio (10% of 748008)

Normal 37434

Flooding 24899

Impersonation 12468

Final Test data (187002)

Normal 93169

Flooding 62390

Impersonation 31443

Table 3.10. Distribution of the 3 classes

C. Performance metrics

The performance metrics for the evaluation of the metaheuristic BHHO-EAS, on the 30 independent

runs, are AVG (Average result), MIN (Minimum or Best result), MAX (Maximum or Worst result) and

STD (Standard deviation). The STD metric makes it possible to evaluate the stability and solidity of

BHHO-EAS in the search for a good solution to the optimization problem. The AVG metrics are defined

mathematically by equations (3.8) to (3.10). The functions that have been used are: 𝑭𝒊𝒕 (Fitness), 𝑨𝒄𝒄

(Accuracy) and |𝑽𝒃| (Number of selected features).

𝑨𝑽𝑮𝑭𝒊𝒕 =
𝟏

𝑵𝒓
∑ 𝑭𝒊𝒕𝒌
𝑵𝒓
𝒌=𝟏 (3.8)

𝑨𝑽𝑮𝑨𝒄𝒄 =
𝟏

𝑵𝒓
∑ 𝑨𝒄𝒄𝒌
𝑵𝒓
𝒌=𝟏 (3.9)

𝑨𝑽𝑮𝑭𝑺 =
𝟏

𝑵𝒓
∑ |𝑽𝒃|𝒌
𝑵𝒓
𝒌=𝟏 (3.10)

We provide below the definition and the formula, from (3.11) to (3.16), of the 6 metrics to evaluate

the IDSs: AUC, Precision, Recall, F1, Accuracy and Convolution matrix. Knowing that the AUC and F1

metrics will be preponderant. To calculate these metrics for CNN-IDS we use test data that has not been

used for its training and validation phases. The values of the 6 metrics for the 4 best IDSs of [Chatzoglou

E et al., 2022a] are detailed in their article.

Accuracy (3.11) is the ratio between the number of correctly predicted samples, Normal and Attack,

over the total number of samples.

145

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

=
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑵+ 𝑻𝑵+ 𝑭𝑷
 (3.11)

Precision (3.12) is the ratio between correctly predicted Attack samples and the total number of

predicted Attack samples. This metric puts the cursor on the number of prediction errors in terms of false

positives. The fewer false positives there are, the more the Precision tends towards 1.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

=
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 (3.12)

Recall (3.13) is the ratio between the number of correctly predicted Attack samples and the true

number of Attack samples. Unlike Precision, Recall places the cursor on the number of prediction errors

in terms of false negatives. Thus, the fewer false negatives there are, the more the Recall tends towards

1.

𝑹𝒆𝒄𝒂𝒍𝒍

=
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (3.13)

As we can see, Precision and Recall constitute 2 important performance axes of a classifier because

they both allow the prediction errors to be evaluated in false positives and false negatives. A performance

metric that will combine fairly Precision and Recall will more measure the quality of a classifier. This

is the role of F1-score metric (3.14). F1-score is a harmonic mean of Recall and Precision. This metric

makes it possible to evaluate the performance of a classifier especially when the dataset is unbalanced

between the Normal and Attack samples. This is the case in [Chatzoglou E et al., 2022a].

𝑭𝟏

=
𝟏

𝟏
𝟐 (

𝟏
𝑹𝒆𝒄𝒂𝒍𝒍

+
𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)
 (3.14)

146

Just like F1-score, AUC combines two performance metrics or rather two indicators: Recall and

Specificity. In order to define the AUC metric, we must first define the Specificity (3.15). Specificity is

the ratio between the Normal samples correctly predicted and the true number of Normal samples.

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚

=
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 (3.15)

Recall and Specificity metrics allow us to plot the Receiver Operating Characteristic (ROC) curve.

The ROC curve is plotted with 𝛿=1-Speficity (False positive rate) on the abscissa and 𝜃=Recall (True

positive rate) on the ordinate. The ROC curve thus makes it possible to graphically materialize the

compromise between the False positive rate and the True positive rate. Via the minimum and maximum

thresholds, the ROC curve makes it possible to measure the ability of a classifier to discriminate the

negative and positive samples.

As F1-Score, the area under the ROC is an essential metric to evaluate the prediction performance

of a classifier, especially when the dataset is unbalanced between the Normal and Attack samples. This

area is called the Area Under the Curve (AUC) and is calculated by the formula (3.16). Consequently,

the more the number of correct detection increases and the number of false detection decreases, the more

the AUC will approach 1.

𝑨𝑼𝑪

= ∫𝜽(𝜹). 𝒅𝜹

𝟏

𝟎

 (3.16)

Confusion matrix

The Confusion matrix crosses the real classification of the test dataset and the predictions of the IDS.

The result of this crossing makes it possible to determine the quantity of correctly classified test samples

and to calculate the 5 performance metrics of the IDS defined above.

147

 Predicted

 Positif Negatif

True

Positif TP FN

Negatif FP TN

Among the set of metrics that we have just defined, the pair (AUC, F1-Score) stands out for its ability

to fairly and accurately evaluate the prediction performance of a classifier. In subsection 3.6.4, this

couple will be essential to demonstrate the detection qualities of CNN-IDS.

Before analyzing in subsection 3.6.4 the values of the performance metrics obtained following the

resolution by BHHO-EAS of the Wrapper feature selection multi-objective optimization problem, we

must first describe each of its 5 steps.

3.6.3. The 5 steps to implement Wrapper feature selection process driven by BHHO-EAS

The "black box" optimization problem seen by BHHO-EAS consists of the CNN model and the

AWID3 dataset. The Appendix 9 details the architecture of the Wrapper feature selection. Our

métaheuristique BHHO-EAS has a population size N. Each agent 𝑖 of this population is positioned by a

binary position 𝑽𝒃𝒊 of dimension 𝑑 in one of the 2𝑑 − 1 edges of the hypercube. The null vector is

excluded because it does not select any feature, which makes no sense in the context of our work. Our

Wrapper feature selection process, driven by BHHO-EAS, is split into 5 steps:

1. 𝑉𝑏𝑖 creates a new dataset by selecting a feature subset from the AWID3 dataset as described

in subsection 3.4.1;

2. The new dataset is divided into Train, Validation and Test;

3. The CNN model is trained with the Train data and validated with the Validation data. At this

step we obtain the accuracy value 𝑨𝒄𝒄𝒊;

4. The fitness value 𝑭𝒊𝒕𝒊 of the agent 𝑖 is calculated with 𝑨𝒄𝒄𝒊, |Vbi|, 𝒅 and the weight 𝝎;

5. BHHO-EAS uses the N values 𝑭𝒊𝒕𝒊 to calculate the next N binary positions 𝑽𝒃𝒊 with the aim

to minimize the objective function.

148

3.6.4. Results and discussion

A. Results of the Wrapper feature selection multi-objective optimization problem

We recall that the design strategy of the metaheuristic HHO-EAS allows it to have higher performance

than HHO for medium and high-dimensional NP-Hard optimization problems. BHHO-EAS inherited the

skills of HHO-EAS thanks to our high-level hybridization by means of the two modules M1 and M2 with

a sequential execution order. BHHO-EAS therefore retains the mathematical and algorithmic strategy of

HHO-EAS.

In this subsection we analyze the resolution by BHHO-EAS of the Wrapper feature selection multi-

objective optimization problem. In this experimental phase, we provided BHHO-EAS with an objective

function mathematically faithful to what was described in subsection 3.5.1, without first applying the

stratified cross validation. Stratified cross validation was applied in the final design phase of the CNN-

IDS in order to increase its performance and generalization capabilities for attack detection.

The parameters Population size, Number of Iteration but also the weights 𝜔1 and 𝜔2, are inspired

by the work of Khurma RA et al. [Khurma et al., 2020], Jingwei, T. et al. [Too J et al., 2019] and Thaher,

T et al. [Thaher T et al., 2020]. We performed 30 independent runs with the aim of obtaining statistical

results representative of the performance of BHHO-EAS. From these 30 runs we get the AVG, MIN,

MAX and STD metrics.

The values of these metrics as well as the convergence curve of BHHO-EAS are provided in

Appendix 11 respectively in Table A11.1 to A11.3 and Fig. A11.1

In Table A11.1 BHHO-EAS obtains very good results in the optimization problem with an AVG of

8.40E-03. Moreover, BHHO-EAS testifies to a solid stability of the results during the 30 runs with a

STD of 3.31E-04. The best result obtained during the 30 runs is represented by the MIN metric with the

value 7.13E-03.

In Table A11.2 and Table A11.3, the metrics for the Accuracy and the Number of selected features

are equally competitive with an AVG greater than 99% for Accuracy and less than 5 for the Number of

selected features. However, the metric that will be essential for the final design of the CNN-IDS is the

MIN of Fitness and the MAX of Accuracy equal to 99.58% because we promote in our work the detection

149

skills of the CNN-IDS. With the application of the stratified cross validation technique, the detection

performance of CNN-IDS will increase.

The convergence curve of BHHO-EAS demonstrates, as for HHO-EAS, that the exploration and

exploitation strategy of BHHO-EAS, implemented by the combination of the FIS-REE and the

Encirclement and Attacks equations, attributes to it excellent skills in optimizing the NP-Hard Wrapper

feature selection optimization problem. Indeed, this allows BHHO-EAS to have a smart distribution of

the exploration and exploitation phases during the iterations, to adapt the search for a better solution to

each iteration while maintaining a good balance between exploration and exploitation. In addition, it

allows BHHO-EAS to avoid being blocked in a local optimum. The convergence rate and the absence of

premature convergence until the end of the iterations are proof of this.

Finally, in the binary search space, BHHO-EAS manages to obtain a very good solution represented

by the MIN value of Fitness and MAX of Accuracy. MIN is obtained with the binary position 𝑉�̂� =

{1,1,1,0,0,0,0,0,0,1,0,0,1,0,1,0,1,1}. 𝑉�̂� selects 8 features among the 18 preselected features in

subsection 3.5.4: {1,2,3,0,0,0,0,0,0,10,0,0,13,0,15,0,17,18}. This solution is balanced between the

categorical features and numeric features: the features {1,2,3,10} are categorical and {13,15,17 ,18} are

numerical. Based on the literature [Chatzoglou E et al., 2022a; Chatzoglou E et al., 2022b; University

of the Aegean,] and the specialized documentation at Wireshark, we have provided in Table A11.4 the

role of the 8 features in a company Wi-Fi network and their interpretation in the detection of 3 classes

Normal, Flooding and Impersonation.

Furthermore, if we refer to the correlation heatmap in Fig. 3.13, the 8 features selected by BHHO-

EAS are very weakly correlated, apart the feature radiotap.present.tsft which has a correlation with

wlan.fc.type greater than 0.8 in absolute value. This again attests to the quality of the solution obtained

by BHHO-EAS.

To design the CNN-IDS we used the binary solution 𝑉�̂�, its architecture in Table 3.8 and the

hyperparameters in Table 3.9 by applying stratified cross validation.

150

B. Experimental results of the CNN-IDS performances

In [Chatzoglou E et al., 2022a], due to the great imbalance of their datasets, the authors legitimately

prioritized the metrics AUC, F1 and Confusion matrix to evaluate the performance of their 4 best IDSs.

Indeed, as specified in Table 3.6, the huge disproportion in [Chatzoglou E et al., 2022a] of the Normal

samples to the detriment of the Attack samples has the effect of distorting the results of the 3 metrics

Precision, Recall and Accuracy. This is not the case with our dataset, which we previously balanced

between the Normal and Attack samples.

As a result, for a fair comparison between our CNN-IDS and the best 4 IDSs of [Chatzoglou E et al.,

2022a], the performance measures will only be based on the metrics AUC, F1 and Confusion matrix.

However, as we have specified above, the Precision, Recall and Accuracy metrics have not been

neglected and have also been treated and provided in Appendix 12 in Table A12.1 and in Fig. A12.1.

In [Chatzoglou E et al., 2022a], the 4 IDS having obtained at least a maximum value on one of the 2

metrics AUC and F1 are:

 ET and LightGBM on the AWID3 subset of 16 features;

 ET on the AWID3 subset of 19 features;

 DT on the AWID3 subset of 4 features named Set4.

We named these 4 IDS ET_16f, LightGBM_16f, ET_19f and DT_4f_Set4 respectively.

We specify that, as in [Chatzoglou E et al., 2022a], all the performance values provided in Appendix

12 are the averages of the AUC, F1 and Confusion Matrix values over the 10 folds of the stratified cross

validation. The same is true for Precision, Recall and Accuracy. For completeness, we have also

included in Appendix 12 the best and the worst Accuracy - Loss curves of CNN-IDS among the 10 fold

respectively in Fig. A12.3 and Fig. A12.4.

We can see in Table A12.1 and in Fig. A12.1 that the CNN-IDS, with the 8 features selected by

BHHO-EAS, demonstrates its skills detection of the 3 classes by obtaining the best values for the AUC

and F1 metrics. The AUC of CNN-IDS reaches an average value of 99.98 and the F1 the average value

of 99.78. Without real surprise DT_4f_Set4 obtains the worst results with an average AUC of 97.16 and

an average F1 of 95.19.

151

The Confusion Matrix in Fig. A12.2 confirms our conclusions above. The 4 IDS of [Chatzoglou E

et al., 2022a] detect on average almost 100% of the Normal samples. On the other hand, the average

detection of the classes Flooding and Impersonation is less good with 99.44% and 98.43% for ET_16f,

98.97% and 98.71% for LightGBM_16f, 98.60% and 98.37% for ET_19f and 97.94% and 89.25% for

DT_4f_Set4. This detection imbalance between the 3 classes testifies to a lack of generalization and an

overfitting in favor of the Normal class.

Our CNN-IDS, contrary to the 4 IDS of [Chatzoglou E et al., 2022a], demonstrates very competitive

average detection rates, balanced and generalized on the 3 classes with values higher than 99.5%. Our

CNN-IDS obtains detection rates of 99.56% for the Normal class, 99.97% for the Flooding class and

99.95% for the Impersonation class.

Finally, as we specified in subsection 3.4.1, another virtue of feature selection is the reduce of the

computational load of the training, validation and testing phases as well as the number of Epochs during

the training phase thanks to the reduction in the size of the dataset. It took an average of 8.6 Epoch out

of the 10 folds to train the CNN-IDS. In Fig. A12.3 and Fig. A12.4 we notice that for the best Accuracy

- Loss curves it took only 11 Epoch. And for the worst it took 6 Epoch, which is insufficient to have

competitive performance.

We can deduct from the performances provided by AUC, F1 and the Confusion Matrix, that our

CNN-IDS has better generalization and detection capacities of the 3 classes than the 4 best IDS of

[Chatzoglou E et al., 2022a], and this only with the 8 selected AWID3 features by BHHO-EAS. In

addition, the very low number of 8 features to be processed by the CNN-IDS for the detection of 802.11

specific attacks greatly facilitates its ability to be embedded in an IoT and will increase its reaction

capacity. Indeed, the number of parameters of the CNN-IDS and the amount of Flops provided in

subsection 3.6.1 as well as the next experimental subsection C confirms this.

C. Experimental results of the E-CNN-IDS performances embedded in IoT

In order to assess the performance of the E-CNN-IDS in a real IoT environment and compared them

to the Confusion matrix of CNN-IDS we proceeded as follows. We have configured E-CNN-IDS as a

Linux service in the Raspberry Pi OS environment. This service is represented by the e_cnn_ids.service

152

file. Thus, E-CNN-IDS will be active as soon as the Raspberry Pi is started and will constantly search

for 802.11 specific attacks. A laptop computer, connected to the same company Wi-Fi network,

simulates the role of the hacker. Via this laptop we sent to the Raspberry Pi 4 the same quantity of

attacks as during the test phase of the CNN-IDS detailed in Table 3.10.

The action of E-CNN-IDS following the detection of an attack is an alert dedicated to the

administrator composed of 4 fields:

 The date,

 The time in the format HH:MM:SS,

 The class of attack,

 The source IP of the Hacker's STA.

Fig 44 illustrates an example of how E-CNN-IDS works in the face of 6 successive attacks: Disas,

Disas, Disas, Evil_Twin, (Re)Assoc and (Re)Assoc. These 6 attacks were correctly detected and

classified by E-CNN-IDS. We have blurred the Hacker's STA IP address for obvious computer security

reasons.

At the end of the test phase we obtained the Confusion matrix of the E-CNN-IDS. But being in an

IoT environment with very limited computing resources, we also evaluated the minimum and the

maximum consumption of memory and CPU resources. All the experimental results of this PoC are

provided in Appendix 13.

In terms of predictions of 802.11 specific attacks, we obtained very good performances materialized

by the Confusion matrix of E-CNN-IDS in Fig. A13.2. Overall, these results are very close to those

obtained for the CNN-IDS. Compared to the Confusion matrix of CNN-IDS, a slight performance

decrease is observed for the Flooding and Impersonation attack classes. For the Flooding attack class,

we note +0.11% false negative and -0.11% true positive. And for the Impersonation attack class, we

have +0.2% false negative and -0.19% true positive. Despite this, E-CNN-IDS demonstrates, like CNN-

IDS, better performance than the 4 best IDS of [Chatzoglou E et al., 2022a] as well as a much more

generalized ability to predict.

In terms of hardware resource consumption, we can see in Fig 42 and Fig 43 that E-CNN-IDS

consumes 1.4% of RAM and between 0.4% and 0.6% of CPU resources.

153

Our PoC experimentally demonstrates thus the excellent optimization performance of BHHO-EAS

which is derived from the hybridization of HHO-EAS. Indeed, BHHO-EAS is able to select the most

relevant features of the AWID3 dataset, thus maximizing the attack prediction performances of CNN-

IDS and reducing its complexity so that it can be embedded in an IoT with limited computing and

memory resources.

3.7. Conclusion

This chapter is the application of HHO-EAS to the field of IoT cybersecurity in a company

information system. The main scientific contributions of our work are threefold.

The first contribution concerns the field of metaheuristic algorithms. We designed the new

metaheuristic BHHO-EAS, hybrid of HHO-EAS, for solving the Wrapper feature selection multi-

objective optimization problems in a binary search space. In order to make BHHO-EAS benefit from

the mathematical and algorithmic strategy of HHO-EAS, we performed a high-level hybridization by

integrating the M1 and M2 modules into HHO-EAS.

The second contribution is the creation of a new Wrapper feature selection method to create a CNN-

IDS through a metaheuristic optimization method. The CNN-IDS obtained at the end will be an essential

component of a company information system's cybersecurity strategy, efficient against 802.11 specific

attacks and light enough to be embedded in an IoT with limited computing and memory resources. To

do this, we have made significant changes to the classic Wrapper feature selection method by using not

a classic Machine Learning algorithm as in the literature, but a Deep Learning algorithm and GPU

technology for calculating the values of the objective function. Deep Learning algorithms have

mathematical, algorithmic and technical specificities that make them more complex to implement in the

Wrapper feature selection method. Consequently, we find in the literature Wrapper feature selection

methods exploiting Machine Learning algorithms such as K-NN or SVM for their ease of

implementation. Our Wrapper feature selection method is obviously compatible with classic Machine

Learning algorithms, but above all it is able to integrate Deep Learning algorithms in order to benefit

from their superior classification skills, as well as GPU technology for value calculation of the objective

function of each agent in the population of BHHO-EAS. To design our IDS, we chose the Deep Learning

154

CNN algorithm for two main reasons. The first is motivated by the performance of CNN recognized in

the literature in the detection of known and unknown attacks. The second is for its inherent properties

in its architecture and operation allowing to embed a CNN in an IoT.

The third contribution, which is not the least, concerns the AWID3 dataset. Our work is the first, at

the time of writing this manuscript, to have applied a feature selection process by metaheuristic

optimization driven by BHHO-EAS on the AWID3 dataset, much more complex than its predecessor

AWID2.

The resolution of the Wrapper feature selection multi-objective optimization problem by BHHO-

EAS allowed us to obtain a binary solution 𝑉�̂� representing a subset of 8 features among the 253 of the

AWID3 dataset. We exploited this binary solution to design our CNN-IDS. In order to demonstrate the

superiority of our method, we compared it to the work of Chatzoglou E. et al. [Chatzoglou E et al.,

2022a] validated by the scientific community and having the same purposes as ours. Our CNN-IDS, that

complies with the 5 requirements of the specifications formulated in section 3.2, obtains the best AUC

and F1 performance compared to the 4 best IDS of [Chatzoglou E et al., 2022a]. In addition, the

generalization capabilities of CNN-IDS allow it to better classify the attack vectors with less than 0.05%

error in the 3 classes Normal, Flooding and Impersonation.

In order to demonstrate the capabilities of CNN-IDS to be embedded in an IoT environment with

very limited computing and memory resources, we embedded its prototype, E-CNN-IDS, in a Raspberry

Pi 4 Model B. The technical PoC of our work provided a Confusion matrix as competitive as that

obtained for the post training test phase of the CNN-IDS. In addition, CPU and RAM monitoring proves

that the prototype E-CNN-IDS consumes very few CPU and RAM resources. These experimental results

demonstrate the superiority and efficiency of our method compared to that of Chatzoglou E. et

al.[Chatzoglou E et al., 2022a], with BHHO-EAS as the central actor.

155

General conclusion

The growing ubiquity of IoT systems exploiting Wi-Fi within companies’ information systems and

state administrations, increases the attack surface of hackers. Thanks to 802.11 specific vulnerabilities,

hackers manage to use IoT systems as gateways to extend their reach to wireless and wired networks

and then conclude their attack with an elevation of their privileges. Thus, thanks to its vulnerabilities,

hackers are in a strategically advantageous position to maintain their access to the information system,

exploit its resources as they please and execute disastrous attacks for the sustainability of the company.

Faced with these risks of growing cyber threats, research for the design of Intrusion Detection Systems

(IDS) using Artificial Intelligence techniques is a top priority for the research community. The work

explained in this thesis manuscript makes contributions to three crucial research areas: the metaheuristic

algorithms, the feature selection algorithms for the benefit of the design of IoT Intrusion Detection

Systems in a company information system, and for the first time in the literature, a feature selection by

metaheuristic optimization on the Wi-Fi attack dataset named AWID3, much more complex than its

predecessor AWID2.

Our first contribution aims to design a metaheuristic able to deal with NP-Hard optimization

problems by exploiting new bio-inspired models. Thus, we have significantly increased the

performances of the HHO metaheuristic thanks to an unprecedented hybridization strategy entirely

inspired by the win-win hunting synergy between the crows and the wolves. This made it possible to

design the new metaheuristic HHO-EAS, which is much more efficient than HHO for high-dimensional

and highly multimodal optimization problems. Then, we designed the new metaheuristic BHHO-EAS,

hybrid of HHO-EAS, for solving the Wrapper feature selection NP-Hard multi-objective optimization

problems in a binary search space. In order to make BHHO-EAS benefit from the mathematical and

algorithmic strategy of HHO-EAS, we performed a high-level hybridization by integrating the M1 and

M2 modules into HHO-EAS.

The second contribution, for the benefit of IoT cybersecurity, is the creation of a new Wrapper feature

selection method via a metaheuristic optimization method. To accomplish this, we've made two

important changes to the classic Wrapper feature selection method. We've built in the ability to leverage

Deep Learning algorithms and GPU technology. Thus, our Wrapper feature selection method is able to

156

integrate all the Deep Learning algorithms in order to benefit from their predictive skills superior to

traditional Machine Learning algorithms commonly observed in the literature. And in order to increase

the computing power, our method can exploit the CPUs and GPUs according to the stage of the

metaheuristic algorithm as illustrated by the flowchart of the metaheuristic BHHO-EAS in Appendix 8.

This new method allowed us to create a CNN-IDS as a vital component of the cybersecurity strategy of

a company information system integrating a Wi-Fi environment. The CNN-IDS is thus efficient in the

prediction of 802.11 specific attacks and light enough, in a green computing logic, to be embedded in

an IoT with limited computing and memory resources.

The third contribution, which is not the least, concerns the AWID3 dataset. Our work is the first, at

the time of writing this thesis manuscript, to have applied a feature selection process on the AWID3

dataset by metaheuristic optimization. In our works, the feature selection process is driven by BHHO-

EAS on the AWID3 dataset, much more complex than its predecessor AWID2.

In order to achieve these three major scientific contributions, our thesis has been structured in two

phases.

In the first phase of this thesis, our ambition was to rely on a very recent metaheuristic, based on the

population, with very few parameters to configure in order to reduce the curse of the parameters and

enough leeway to integrate a sophisticated hybridization. The HHO metaheuristic satisfied all of its

criteria. Then to design our hybridization strategy, we looked for a bio-inspired, intelligent and adaptive

model, having proven its effectiveness in the complex search for good nutritious prey which offers a

greater probability of survival to predators in a very hostile environment. Our research led us to the

hostile regions of Eastern Europe and the state of Wyoming in the United States where an unexpected

alliance between crows and wolves was observed in winter. To cope with the long and harsh winters,

the extraordinary hunting synergy between crows and wolves allowed them to find very promising prey

that was sufficiently consistent to feed these two predators. We modeled this hunting synergy by a

Mamdani-type Fuzzy Inference System named FISREE and the Encirclement and Attack equations.

Then we integrated them into HHO to create the new metaheuristic HHO-EAS. FISREE models the

exploration strategy of the crows and significantly improves the distribution strategy of the exploration

and exploitation phases compared to that of HHO. The Encirclement and Attack equations modeling the

157

attack technique of the wolves make it possible on the one hand to prevent premature convergence when

agents gather too early near a local optimum, on the other hand to upgrade the Harris Hawk positions in

a more promising area. The exploitation and the exploration performances as well as the balance

between these two phases in HHO-EAS have been evaluated on a two benchmarks: a general and a

specific. The general benchmark consisting of 19 functions allowed us to validate our bio-inspired

hybridization strategy and to validate the exploration and exploitation capabilities of HHO-EAS overall

more efficient than that of HHO as well as that of GWO and PSO. The performances of HHO-EAS are

manifested all the more for multimodal and composite functions in search spaces of high dimensions

100 and 1000. In addition, HHO-EAS has a better convergence rate, a best scalability on all dimensions

and generally gives the assurance of having a better quality solution faster than HHO. The specific

benchmark allowed us to focus on the performance superiority of HHO-EAS compared to HHO in the

20 most complex environments and high-dimensional of the CEC2017 close to real-life optimization

problems. Our bio-inspired hybridization strategy allowed HHO-EAS to demonstrate a success of 90%

on hybrid functions and 90% on composite functions in a search space of dimension 100. As well as the

results obtained on the general benchmark, the specific benchmark makes it possible once again to

experimentally validate the exploration and exploitation strategy implemented in HHO-EAS inspired

by the hunting synergy between the crows and the wolves.

The most important result that emerges from the first phase of this thesis and which served us in the

second phase, is that HHO-EAS is better suited than HHO to deal with the real life optimization

problems as evidenced by experimental results for dimensions 100 and 1000. Indeed, the real life

optimization problems are generally highly multimodal, high-dimensional and NP-Hard such as feature

selection optimization problems.

In the second phase of this thesis, our objectives are focused on the cybersecurity of IoT exploiting

Wi-Fi within the companies' information systems and the state administrations. More specifically the

design of an efficient, scalable and light enough CNN-IDS to be embedded in an IoT. In the context of

Wrapper feature selection and supervised learning of a CNN, the feature selection of the AWID3 dataset

and the design of the CNN-IDS is mathematically modeled by a multi-objective optimization problem.

The HHO-EAS's performances are the keystone of the culmination of this second phase of our thesis.

158

The choice of the Deep Learning CNN algorithm to design the CNN-IDS is based on a tactical choice

aimed at satisfying cybersecurity imperatives and technical constraints. The imperatives are satisfied by

the performance of CNN recognized by the literature in the detection of known and unknown attacks.

And the respect of the technical constraints is provided by the inherent properties of CNN's architecture

and its operation allowing it to be embedded in an IoT. This demonstrates the relevance of our tactical

choice to effectively satisfy the two main objectives of the second phase of our thesis: CNN-IDS is

exploited for 802.11 specific attack prediction and to be embedded in an IoT with limited computing

and memory resources.

With CNN, having the first component of our Wrapper feature selection process, we then proceeded

to the analysis and processing of the second component, the new AWID3 dataset. The AWID3 dataset

comes from the research work of the Greek Aegean University in Wi-Fi cybersecurity within a company

information system. Much more complex and elaborate than its predecessor AWID2, AWID3 is made

up of 253 features and a label to identify the attacks. Additionally, AWID3 encompasses all seven layers

of the OSI stack by integrating 802.11 specific attacks as well as application attacks. In an attack Wi-Fi

detection and blocking strategy at the Data Link Layer level, we first performed a preprocessing phase

crucial to the prediction performance of the CNN-IDS. This preprocessing aims to select and clean the

802.11 features related to the Data Link Layer in accordance with our specifications based on the

knowledge of information system experts. In order to have a balanced dataset between Attack and

Normal records, we sub-sampled the records labeled Normal. We then applied an encoding of

categorical features with One-Hot Encoding (OHE) and a normalization of numerical features with Min-

Max. At this stage of the preprocessing the dataset is ready to be integrated into our Wrapper feature

selection process.

The third and final major component of our Wrapper feature selection process is the HHO-EAS

metaheuristic. In order to allow HHO-EAS to drive our Wrapper feature selection process, we

hybridized it and designed the new Binary HHO-EAS (BHHO-EAS) metaheuristic which is able to

exploit the binary discrete search space. BHHO-EAS resulted in the selection of the subset of the 8 most

relevant features among the 253 features in the AWID3 dataset. BHHO-EAS thus made it possible to

159

maximize the prediction performance and the robustness of the CNN-IDS while minimizing its

complexity in order to be embedded in an IoT.

To demonstrate the superiority of our method, we compared it to the works of

Chatzoglou E. et al. in [Chatzoglou E et al., 2022a]. Their work are the only ones in the literature to be

in the same dominants as ours. For a fair comparison between the best 4 IDS of [Chatzoglou E et al.,

2022a] and our CNN-IDS, performance was assessed via AUC and F1 metrics as well as the Confusion

Matrix and the number of selected feature from AWID3. However, we have not neglected the Accuracy,

Precision and Recall metrics in our work. Our CNN-IDS, that complies with the 5 requirements of the

specifications formulated in the third chapter and with only 8 AWID3 features, obtains the best AUC

and F1 performance compared to the 4 best IDS of [Chatzoglou E et al., 2022a]. The AUC reaches an

average value of 99.98 and the F1 the average value of 99.78. In addition, the generalization capabilities

of CNN-IDS allow it to better classify the attack vectors with less than 0.05% error on the 3 classes

Normal, Flooding and Impersonation. Besides, in order to prove the ability of our CNN-IDS to be

embedded in an IoT environment with limited computing and memory resources, we have integrated a

prototype of CNN-IDS into a Raspberry Pi 4. This prototype, named E-CNN-IDS, demonstrated

prediction performances very close to those of CNN-IDS with a satisfactory preservation of memory

and calculation resources. These experimental results demonstrate the superiority and efficiency of our

method with BHHO-EAS as the central actor.

The results of the work of our thesis inaugurate three very promising perspectives in the fields of

metaheuristic algorithms, feature selection and cybersecurity.

In the field of metaheuristic algorithms, we will conduct two works. In HHO-EAS, the amplitude

range provided by FISREE is in [0.5,2.5]. As a result, the distribution of the exploration and exploitation

phases is static whatever the optimization problem. Our first work will thus aim to enable HHO-EAS to

dynamically adapt the management of the exploration and exploitation phases to the complexity of each

optimization problem. To this end, since Reinforcement Learning algorithms provide the algorithms that

employ them with the ability to learn and self-adapt to their environment [60], we will integrate into

FISREE a Reinforcement Learning module in order to dynamically adapt the amplitude range to

160

optimization problems. At the end of this work, we will compare the performance of this new

metaheuristic named DHHO-EAS (Dynamic HHO-EAS) to HHO-EAS.

Our second work will adapt HHO-EAS to the context of multi-objective optimization by creating the

metaheuristic MHHO-EAS (Multi-objective HHO-EAS). This new metaheuristic will allow us to

exploit the solutions that have a relationship of dominance over the others and none between them, thus

constituting the Pareto optimal Front. We will compare the results obtained by MHHO-EAS in an

approach A Posteriori with those obtained by BHHO-EAS using an approach A Priori.

In the fields of feature selection and cybersecurity, our Wrapper feature selection method will allow

us to extend the spectrum of our work to the benefit of UTMs (Unified Thread Management) in

companies' information systems and state administrations. In this our works, we used the Deep Learning

algorithm CNN and the AWID3 dataset. However, our Wrapper feature selection method is sufficiently

modular to integrate metaheuristics, datasets and Deep Learning algorithms different from ours. Our

method could therefore be applied to other fields than cybersecurity such as health, chemistry,

electronics, etc. We will use the modularity of our Wrapper feature selection method in our third work

to create an IDS dedicated to UTM. Our future IDS design method will therefore exploit a broader

spectrum of artificial intelligence algorithms. We will implement metaheuristic optimization combined

with Deep Learning algorithms RNN such as LSTM (Long Short-Term Memory) or GRU (Gated

Recurrent Unit) and Reinforcement Learning algorithms to take into account the time dimension. This

IDS will not only be able to protect wired networks from known and unknown attacks but also wireless

networks such as Wi-Fi and 5G.

161

Appendix 1: General benchmark functions

Name Function 3D plot
Sphere U1

𝑓(x) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

Rotated

Hyper

Ellipsoid
U2

𝑓(𝐱) = ∑
𝑛

𝑖=1

 ∑ 𝑥𝑗
2

𝑖

𝑗=1

Sum

Squares
U3

𝑓(𝐱) = ∑ 𝑖𝑥𝑖
2

𝑛

𝑖=1

Brown

U4 𝑓(𝐱) = ∑ (𝑥𝑖
2)(𝑥𝑖+1

2 +1) + (𝑥𝑖+1
2)(𝑥𝑖

2+1)
𝑛−1

𝑖=1

162

Dixon-
Price

M1

𝑓(𝐱) = (𝑥1 −1)2 +∑ 𝑖(2𝑥𝑖
2 −𝑥𝑖−1)

2
𝑛

𝑖=2

Happy Cat

M2 𝑓(x) = [(||x||2 − 𝑛)2]𝛼 +
1

𝑛
(
1

2
||x||2 +∑ 𝑥𝑖

𝑛

𝑖=1

) +
1

2

Ackley

M3 𝑓(x) = −𝑎.𝑒𝑥𝑝(−𝑏√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1

) − 𝑒𝑥𝑝(
1

𝑛
∑ 𝑐𝑜𝑠(𝑐𝑥𝑖)
𝑛

𝑖=1

)+

𝑎+ 𝑒𝑥𝑝(1)

𝑎 = 20,𝑏 = 0.2 𝑎𝑛𝑑 𝑐 = 2𝜋 .

Quartic

M4 𝑓(𝐱) = ∑ 𝑖𝑥𝑖
4 + random[0,1]

𝑛

𝑖=1

163

Rosenbrock
M5 𝑓(x) = ∑ [𝑏(𝑥𝑖+1 −𝑥𝑖

2)2 + (𝑎 −𝑥𝑖)
2]

𝑛−1

𝑖=1

a = 1 and b = 100

Schwefel

M6 𝑓(x) = −∑ 𝑥𝑖𝑠𝑖𝑛(√|𝑥𝑖|
𝑛

𝑖=1

)

Griewank

M7 𝑓(x) = 1 + ∑
𝑥𝑖
2

4000

𝑛

𝑖=1

−∏𝑐𝑜𝑠(
𝑥𝑖
√𝑖
)

𝑛

𝑖=1

Levy and

montalo
M8

𝑓(x) = sin2 (𝜋𝑤1 + ∑(𝑤𝑖 −1)2(1 + 10sin2 (𝜋𝑤𝑖 + 1)) +
𝑛−1

𝑖=1

(𝑤𝑛 −1)2(1 + sin2 (2𝜋𝑤𝑛))

𝑤𝑖 = 1+
𝑥𝑖 −1

4

164

General
penalized 1

M9

𝜋

𝐷
[10sin (𝜋.𝑦1)

2 + ∑ {(𝑦𝑖 −1)2. (1 + 10sin (𝜋.𝑦𝑖+1)
2)} +

𝑛−1

𝑖=1

(𝑦𝑛

−1)2] + ∑ 𝑢𝑖(
𝑛

𝑖=1

𝑥𝑖, 𝑎, 𝑘,𝑚)

{

𝑦𝑖 = 1+

1

4
(𝑥𝑖 + 1)

𝑢𝑖(𝑥𝑖,𝑎, 𝑘,𝑚) =

{

 𝑘(𝑥𝑖 − 𝑎)𝑚 𝑖𝑓 𝑥𝑖 > 𝑎

0 𝑖𝑓 − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 −𝑎)𝑚 𝑖𝑓 𝑥𝑖 < −𝑎

𝑎 = 10,𝑚 = 4,𝑘 = 100

General

penalized 2

M10

1
10

. [sin (3𝜋.𝑦1)
2.∑ {(𝑦𝑖 − 1)2. (1 + 10sin (3𝜋.𝑦𝑖+1)

2)}
𝑛−1
𝑖=1

]+

(𝑦𝑛 − 1)2. (1 + sin (2𝜋.𝑦𝑛)
2) + ∑ 𝑢𝑖(

𝑛

𝑖=1

𝑥𝑖,𝑎, 𝑘,𝑚)

{

𝑦𝑖 = 1+

1

4
(𝑥𝑖 + 1)

𝑢𝑖(𝑥𝑖,𝑎, 𝑘,𝑚) =

{

 𝑘(𝑥𝑖 − 𝑎)𝑚 𝑖𝑓 𝑥𝑖 > 𝑎

0 𝑖𝑓 − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 −𝑎)𝑚 𝑖𝑓 𝑥𝑖 < −𝑎

𝑎 = 10,𝑚 = 4,𝑘 = 100

Sine

envelope

M11
𝑓(𝐱) = − ∑ (0.5 +

sin (√𝑥𝑖+1
2 +𝑥𝑖

2 −0.5)2

(0.001(𝑥𝑖+1
2 + 𝑥𝑖

2) + 1)2

𝑛−1

𝑖=1

Alpine N1

M12 𝑓(𝐱) = ∑ |
𝑛

𝑖=1

𝑥𝑖𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|

165

EggHolder
M13

𝑓(𝐱) = −∑ ((𝑥𝑖+1+47)𝑠𝑖𝑛(√|𝑥𝑖+1+0.5𝑥𝑖+47|)𝑛−1
1 +

𝑥𝑖𝑠𝑖𝑛(√|𝑥𝑖 − (𝑥𝑖+1 + 47)|))

166

Appendix 2: Optimisation results of HHO-EAS against HHO, GWO and PSO on the general

benchmark of 19 functions for dimension 2, 30,100 and 1000

Table A2.1: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions

for dimension 2

ID Functions Metrics HHO-EAS HHO GWO PSO

U1 Sphere

AVG 2.23E-277 2.02E-87 2.85E-288 3.95E-122

STD 0.00E+00 1.30E-86 0.00E+00 1.97E-121

Min 1.45E-307 6.70E-107 0.00E+00 1.31E-126

Max 1.11E-275 9.23E-86 1.42E-286 1.41E-120

U2 Rotated HyperEllipsoid

AVG 3.47E-274 1.81E-84 1.03E-287 1.55E-121

STD 0.00E+00 1.26E-83 0.00E+00 3.78E-121

Min 6.12E-304 3.46E-106 0.00E+00 1.55E-125

Max 1.74E-272 9.02E-83 5.07E-286 1.99E-120

U3 Sum Squares

AVG 9.30E-282 8.05E-89 1.85E-280 4.51E-121

STD 0.00E+00 5.51E-88 0.00E+00 1.57E-120

Min 2.63E-310 5.27E-106 4.94E-324 1.58E-126

Max 3.73E-280 3.93E-87 8.26E-279 1.05E-119

U4 Brown

AVG 1.34E-274 5.61E-90 1.66E-296 1.15E-121

STD 0.00E+00 3.91E-89 0.00E+00 6.67E-121

Min 6.78E-307 6.21E-109 0.00E+00 1.48E-127

Max 6.68E-273 2.79E-88 5.45E-295 4.75E-120

M1 Dixon-Price

AVG 1.07E-07 5.97E-08 1.29E-07 3.70E-32

STD 4.35E-07 2.33E-07 1.51E-07 0.00E+00

Min 2.36E-17 4.93E-32 1.24E-09 3.70E-32

Max 2.72E-06 1.61E-06 7.70E-07 3.70E-32

M2 Happy Cat

AVG 3.30E-04 7.41E-04 3.43E-05 2.39E-05

STD 5.06E-04 1.11E-03 2.70E-05 5.74E-05

Min 1.00E-06 7.02E-08 1.82E-06 1.46E-08

Max 2.99E-03 6.23E-03 1.31E-04 3.17E-04

M3 Ackley

AVG 4.44E-16 4.44E-16 4.44E-16 4.44E-16

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Min 4.44E-16 4.44E-16 4.44E-16 4.44E-16

Max 4.44E-16 4.44E-16 4.44E-16 4.44E-16

M4 Quartic

AVG 1.26E-04 1.03E-04 1.58E-04 2.23E-04

STD 1.16E-04 1.09E-04 1.16E-04 1.51E-04

Min 2.47E-06 4.40E-06 5.68E-06 7.40E-06

Max 4.32E-04 4.28E-04 5.02E-04 7.97E-04

M5 Rosenbrock

AVG 4.55E-09 5.13E-07 6.52E-07 4.12E-20

STD 1.74E-08 9.69E-07 6.99E-07 2.88E-19

Min 3.15E-13 0.00E+00 1.29E-08 0.00E+00

Max 1.22E-07 4.00E-06 3.72E-06 2.06E-18

M6 Schwefel

AVG 2.37E+00 2.14E+01 4.74E+01 9.91E+01

STD 1.66E+01 4.55E+01 6.70E+01 7.92E+01

Min 2.55E-05 2.55E-05 3.69E-05 2.55E-05

Max 1.18E+02 1.18E+02 2.37E+02 2.37E+02

M7 Griewank

AVG 0.00E+00 0.00E+00 3.06E-03 5.57E-03

STD 0.00E+00 0.00E+00 3.77E-03 8.01E-03

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 0.00E+00 0.00E+00 9.87E-03 4.68E-02

M8 Levy and montalo AVG 5.80E-10 7.13E-08 1.99E-06 2.90E-30

167

STD 1.47E-09 2.13E-07 5.75E-06 0.00E+00

Min 4.42E-18 2.90E-30 2.77E-14 2.90E-30

Max 8.50E-09 1.38E-06 2.74E-05 2.90E-30

M9 General penalized 1

AVG 2.66E-10 3.87E-08 4.07E-08 2.36E-31

STD 6.89E-10 6.26E-08 3.81E-08 0.00E+00

Min 9.12E-16 2.06E-13 7.46E-11 2.36E-31

Max 3.85E-09 2.60E-07 1.54E-07 2.36E-31

M10 General penalized 2

AVG 5.26E-10 3.25E-08 4.83E-08 1.35E-32

STD 1.05E-09 7.62E-08 4.25E-08 2.74E-48

Min 5.71E-15 2.62E-21 8.46E-10 1.35E-32

Max 5.79E-09 4.21E-07 1.91E-07 1.35E-32

M11 AlpineN1

AVG 1.54E-08 2.18E-07 3.57E-06 4.44E-18

STD 5.27E-08 8.06E-07 1.01E-05 3.11E-17

Min 5.28E-154 3.53E-56 9.19E-179 0.00E+00

Max 2.82E-07 4.49E-06 6.48E-05 2.22E-16

M12 EggHolder

AVG 4.41E+00 2.79E+01 5.05E+01 1.92E+02

STD 1.17E+01 3.42E+01 6.59E+01 1.14E+02

Min 3.73E-05 3.73E-05 3.73E-05 3.73E-05

Max 6.51E+01 2.07E+02 2.43E+02 4.66E+02

M13 Sine envelope

AVG 4.71E-06 4.71E-06 4.71E-06 4.71E-06

STD 4.58E-15 6.66E-17 1.94E-10 1.07E-16

Min 4.71E-06 4.71E-06 4.71E-06 4.71E-06

Max 4.71E-06 4.71E-06 4.71E-06 4.71E-06

C1
Combination Griewank

and Rosenbrock

AVG 8.88E-18 3.95E-04 8.49E-03 1.58E-03

STD 3.74E-17 2.76E-03 1.58E-02 4.98E-03

Min 4.94E-324 0.00E+00 5.55E-16 0.00E+00

Max 2.22E-16 1.97E-02 9.86E-02 1.97E-02

C2
Combination Ackley and

Rosenbrock

AVG 5.02E-09 5.52E-05 3.31E+00 1.88E+00

STD 1.05E-08 7.71E-05 3.59E+00 7.27E+00

Min 3.55E-15 0.00E+00 1.77E-06 0.00E+00

Max 5.95E-08 3.83E-04 7.20E+00 4.00E+01

Summary of results

AVG

+ 2 4 8

− 15 14 10

≈ 2 1 1

STD

+ 2 1 6

− 15 14 12

≈ 2 4 1

Min

+ 3 4 9

− 11 11 5

≈ 5 4 5

Max

+ 0 4 7

− 16 13 10

≈ 3 2 2

168

Table A2.2: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions

for dimension 30

ID Functions Metrics HHO-EAS HHO GWO PSO

U1 Sphere

AVG 6.61E-247 8.43E-81 1.05E-40 1.05E+00

STD 0.00E+00 5.61E-80 3.09E-40 5.14E+00

Min 2.99E-269 8.34E-99 7.58E-43 1.71E-04

Max 3.09E-245 4.01E-79 2.17E-39 2.62E+01

U2 Rotated HyperEllipsoid

AVG 2.82E-246 1.03E-76 9.26E-37 9.29E-01

STD 0.00E+00 7.23E-76 4.70E-36 5.71E+00

Min 1.05E-272 1.20E-93 1.91E-39 4.75E-03

Max 1.39E-244 5.16E-75 3.37E-35 4.09E+01

U3 Sum Squares

AVG 1.46E-243 4.78E-80 4.82E-39 8.81E+01

STD 0.00E+00 2.25E-79 1.04E-38 1.76E+02

Min 7.87E-272 3.04E-99 4.36E-41 1.82E-03

Max 7.23E-242 1.54E-78 6.19E-38 9.00E+02

U4 Brown

AVG 1.64E-243 1.12E-78 7.07E-42 1.28E+01

STD 0.00E+00 7.86E-78 1.43E-41 5.95E+00

Min 2.20E-273 5.96E-101 6.64E-44 7.00E+00

Max 8.19E-242 5.61E-77 6.47E-41 3.00E+01

M1 Dixon-Price

AVG 2.41E-01 2.47E-01 6.67E-01 7.55E+01

STD 3.20E-03 1.11E-02 2.22E-04 1.21E+02

Min 2.28E-01 1.84E-01 6.67E-01 7.15E-01

Max 2.46E-01 2.55E-01 6.68E-01 3.28E+02

M2 Happy Cat

AVG 7.28E-03 2.06E-02 3.10E-01 2.09E-01

STD 1.13E-02 2.03E-02 5.54E-02 7.47E-02

Min 7.95E-05 1.43E-04 1.99E-01 8.91E-02

Max 5.38E-02 7.79E-02 4.55E-01 4.35E-01

M3 Ackley

AVG 4.44E-16 4.44E-16 3.77E-14 1.46E+00

STD 0.00E+00 0.00E+00 3.64E-15 6.61E-01

Min 4.44E-16 4.44E-16 2.89E-14 9.93E-03

Max 4.44E-16 4.44E-16 4.31E-14 2.75E+00

M4 Quartic

AVG 1.43E-04 1.40E-04 1.97E-03 1.55E+00

STD 2.03E-04 1.58E-04 8.43E-04 2.64E+00

Min 3.10E-07 1.31E-05 7.01E-04 3.93E-02

Max 1.02E-03 1.09E-03 4.51E-03 1.08E+01

M5 Rosenbrock

AVG 9.11E-04 4.82E-03 2.69E+01 5.94E+03

STD 2.10E-03 8.27E-03 7.92E-01 1.65E+04

Min 3.45E-08 7.60E-06 2.58E+01 2.62E+01

Max 1.41E-02 3.58E-02 2.88E+01 5.66E+04

M6 Schwefel

AVG 6.37E-01 2.96E+01 6.68E+03 8.26E+03

STD 2.90E+00 1.48E+02 1.14E+03 8.84E+02

Min 3.82E-04 3.82E-04 5.12E+03 6.66E+03

Max 2.07E+01 9.75E+02 9.66E+03 9.75E+03

M7 Griewank

AVG 0.00E+00 0.00E+00 4.07E-03 5.51E-02

STD 0.00E+00 0.00E+00 9.20E-03 7.88E-02

Min 0.00E+00 0.00E+00 0.00E+00 7.37E-04

Max 0.00E+00 0.00E+00 4.60E-02 5.17E-01

M8 Levy and montalo

AVG 7.44E-06 5.26E-05 1.72E+00 1.50E+00

STD 1.89E-05 7.89E-05 1.45E+00 1.62E+00

Min 9.79E-10 4.68E-08 1.25E-01 1.72E-02

169

Max 1.16E-04 4.15E-04 5.78E+00 7.27E+00

M9 General penalized 1

AVG 1.36E-06 6.20E-06 6.32E-02 7.81E-02

STD 2.24E-06 8.63E-06 3.80E-02 1.23E-01

Min 2.34E-10 4.72E-09 1.53E-02 2.74E-06

Max 1.10E-05 5.34E-05 2.45E-01 4.19E-01

M10 General penalized 2

AVG 1.65E-05 7.81E-05 1.02E+00 5.21E-01

STD 2.81E-05 1.04E-04 3.95E-01 6.83E-01

Min 3.49E-08 1.37E-07 1.99E-01 4.92E-03

Max 1.44E-04 5.72E-04 1.91E+00 2.66E+00

M11 AlpineN1

AVG 4.80E-07 1.02E-06 9.62E-04 1.19E+00

STD 3.29E-06 7.16E-06 1.14E-03 1.73E+00

Min 5.68E-139 1.54E-52 5.48E-22 2.91E-02

Max 2.35E-05 5.12E-05 5.28E-03 6.44E+00

M12 EggHolder

AVG 4.71E+03 5.35E+03 1.60E+04 2.03E+04

STD 6.77E+01 1.76E+03 1.97E+03 1.36E+03

Min 4.59E+03 4.91E+03 1.29E+04 1.67E+04

Max 4.86E+03 1.76E+04 2.14E+04 2.27E+04

M13 Sine envelope

AVG 2.06E-04 4.20E-04 2.00E+00 9.88E+00

STD 1.28E-04 4.85E-04 1.45E+00 1.93E+00

Min 1.37E-04 1.37E-04 4.61E-01 3.91E+00

Max 9.54E-04 2.06E-03 9.93E+00 1.36E+01

C1
Combination Griewank

and Rosenbrock

AVG 2.31E-08 8.37E-07 9.69E+00 5.55E+04

STD 6.57E-08 2.67E-06 3.23E+00 2.00E+05

Min 1.77E-14 3.57E-12 4.32E+00 5.45E+00

Max 3.64E-07 1.37E-05 1.73E+01 1.11E+06

C2
Combination Ackley and

Rosenbrock

AVG 2.58E-03 1.25E-02 1.14E+02 4.67E+02

STD 3.93E-03 1.73E-02 2.44E+01 2.54E+01

Min 4.44E-07 1.98E-04 1.08E+02 4.09E+02

Max 1.59E-02 9.54E-02 2.71E+02 5.16E+02

Summary of results

AVG

+ 1 0 0

− 16 19 19

≈ 2 0 0

STD

+ 1 1 0

− 16 18 19

≈ 2 0 0

Min

+ 1 0 0

− 15 18 19

≈ 3 1 0

Max

+ 0 0 0

− 17 19 19

≈ 2 0 0

170

Table A2.3: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions

for dimension 100

ID Functions Metrics HHO-EAS HHO GWO PSO

U1 Sphere

AVG 6.47E-245 1.01E-77 2.91E-20 8.82E+01

STD 0.00E+00 6.44E-77 3.42E-20 2.63E+01

Min 1.38E-271 3.91E-101 2.85E-21 4.82E+01

Max 2.45E-243 4.59E-76 1.94E-19 1.54E+02

U2 Rotated HyperEllipsoid

AVG 7.38E-231 2.17E-76 1.47E-16 6.69E+03

STD 0.00E+00 1.51E-75 1.26E-16 2.43E+03

Min 1.17E-265 3.30E-94 1.59E-17 2.76E+03

Max 3.69E-229 1.08E-74 6.66E-16 1.35E+04

U3 Sum Squares

AVG 1.90E-235 9.23E-75 4.01E-18 7.67E+03

STD 0.00E+00 6.46E-74 4.02E-18 2.62E+03

Min 2.13E-274 6.65E-98 4.60E-19 2.57E+03

Max 8.70E-234 4.62E-73 1.57E-17 1.53E+04

U4 Brown

AVG 8.51E-244 5.08E-79 4.44E-21 1.08E+02

STD 0.00E+00 2.09E-78 5.86E-21 2.66E+01

Min 5.90E-269 5.27E-99 3.37E-22 5.58E+01

Max 4.23E-242 1.06E-77 3.79E-20 1.54E+02

M1 Dixon-Price

AVG 2.50E-01 2.52E-01 6.67E-01 4.29E+05

STD 1.03E-03 3.11E-03 3.60E-04 3.71E+05

Min 2.50E-01 2.50E-01 6.67E-01 3.02E+04

Max 2.54E-01 2.67E-01 6.69E-01 1.46E+06

M2 Happy Cat

AVG 2.26E-02 1.14E-01 6.93E-01 7.31E-01

STD 3.89E-02 1.13E-01 8.56E-02 7.06E-02

Min 2.43E-05 8.64E-04 5.16E-01 6.16E-01

Max 2.50E-01 4.24E-01 8.93E-01 8.82E-01

M3 Ackley

AVG 4.44E-16 4.44E-16 3.05E-10 6.06E+00

STD 0.00E+00 0.00E+00 1.79E-10 6.03E-01

Min 4.44E-16 4.44E-16 9.74E-11 4.57E+00

Max 4.44E-16 4.44E-16 1.20E-09 7.42E+00

M4 Quartic

AVG 1.51E-04 1.75E-04 7.37E-03 1.90E+02

STD 1.37E-04 1.74E-04 2.87E-03 9.65E+01

Min 8.89E-06 1.17E-06 2.91E-03 5.09E+01

Max 7.52E-04 8.27E-04 1.63E-02 4.37E+02

M5 Rosenbrock

AVG 1.62E-03 1.64E-02 9.75E+01 4.61E+05

STD 2.54E-03 2.86E-02 7.28E-01 1.50E+05

Min 5.04E-09 5.53E-05 9.59E+01 1.56E+05

Max 1.18E-02 1.87E-01 9.85E+01 8.54E+05

M6 Schwefel

AVG 4.68E-01 2.16E+00 2.57E+04 3.35E+04

STD 7.85E-01 6.02E+00 3.59E+03 2.67E+03

Min 1.27E-03 1.27E-03 2.18E+04 2.56E+04

Max 3.31E+00 3.94E+01 3.60E+04 3.71E+04

M7 Griewank

AVG 0.00E+00 0.00E+00 8.37E-16 4.63E+00

STD 0.00E+00 0.00E+00 4.28E-16 1.70E+00

Min 0.00E+00 0.00E+00 2.22E-16 2.22E+00

Max 0.00E+00 0.00E+00 2.33E-15 1.12E+01

M8 Levy and montalo

AVG 1.83E-05 1.40E-04 2.25E+01 6.22E+01

STD 4.14E-05 1.73E-04 7.88E+00 1.88E+01

Min 1.50E-09 6.73E-07 1.39E+01 3.32E+01

171

Max 2.73E-04 8.33E-04 5.73E+01 1.09E+02

M9 General penalized 1

AVG 5.97E-07 3.27E-06 1.59E-01 3.06E+00

STD 9.64E-07 4.93E-06 6.65E-02 2.34E+00

Min 1.06E-10 2.52E-09 1.07E-01 1.25E+00

Max 3.99E-06 2.97E-05 3.65E-01 1.68E+01

M10 General penalized 2

AVG 1.70E-05 1.22E-04 6.30E+00 1.89E+02

STD 2.54E-05 1.47E-04 1.39E+00 5.30E+01

Min 5.73E-10 8.15E-07 3.55E+00 7.25E+01

Max 1.13E-04 7.86E-04 8.67E+00 3.15E+02

M11 AlpineN1

AVG 2.94E-07 9.28E-06 3.83E-03 4.81E+01

STD 1.72E-06 6.50E-05 3.13E-03 9.30E+00

Min 2.05E-136 2.15E-52 3.55E-11 2.59E+01

Max 1.20E-05 4.64E-04 1.44E-02 7.48E+01

M12 EggHolder

AVG 1.74E+04 1.75E+04 6.61E+04 7.83E+04

STD 3.22E+01 2.73E+01 6.91E+03 2.50E+03

Min 1.73E+04 1.74E+04 5.75E+04 7.31E+04

Max 1.74E+04 1.75E+04 8.04E+04 8.27E+04

M13 Sine envelope

AVG 7.89E-04 1.83E-03 1.99E+01 4.14E+01

STD 5.13E-04 2.11E-03 5.57E+00 3.91E+00

Min 4.67E-04 4.67E-04 1.14E+01 3.23E+01

Max 2.73E-03 1.02E-02 4.86E+01 5.10E+01

C1
Combination Griewank

and Rosenbrock

AVG 4.97E-08 1.08E-05 4.40E+01 5.73E+06

STD 1.02E-07 4.55E-05 5.66E+00 2.61E+06

Min 1.03E-14 9.99E-15 3.70E+01 1.48E+06

Max 5.06E-07 3.22E-04 6.84E+01 1.14E+07

C2
Combination Ackley and

Rosenbrock

AVG 1.82E-02 1.39E-01 3.95E+02 1.84E+03

STD 5.81E-02 2.56E-01 2.34E+02 5.86E+01

Min 9.78E-06 5.45E-04 3.61E+02 1.72E+03

Max 4.10E-01 1.20E+00 2.03E+03 2.00E+03

Summary of results

AVG

+ 0 0 0

− 17 19 19

≈ 2 0 0

STD

+ 1 1 0

− 16 18 19

≈ 2 0 0

Min

+ 2 0 0

− 13 19 19

≈ 4 0 0

Max

+ 0 0 0

− 17 19 19

≈ 2 0 0

172

Table A2. 4: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions

for dimension 1000

ID Functions Metrics HHO-EAS HHO GWO PSO

U1 Sphere

AVG 1.46E-239 6.64E-77 8.94E-06 4.94E+03

STD 0.00E+00 4.59E-76 2.68E-06 1.33E+02

Min 1.86E-262 2.19E-96 4.11E-06 4.56E+03

Max 6.89E-238 3.28E-75 1.57E-05 5.14E+03

U2 Rotated HyperEllipsoid

AVG 7.71E-237 9.43E-75 5.99E-01 2.89E+07

STD 0.00E+00 6.53E-74 1.55E-01 1.27E+06

Min 9.77E-261 6.95E-94 3.32E-01 2.56E+07

Max 3.86E-235 4.67E-73 1.07E+00 3.13E+07

U3 Sum Squares

AVG 1.53E-236 1.86E-76 1.44E-02 6.49E+06

STD 0.00E+00 6.65E-76 4.76E-03 2.13E+05

Min 9.16E-264 5.10E-97 6.10E-03 6.06E+06

Max 7.63E-235 3.37E-75 2.61E-02 6.95E+06

U4 Brown

AVG 4.58E-241 3.93E-80 2.07E-06 2.98E+03

STD 0.00E+00 1.47E-79 5.93E-07 1.23E+02

Min 8.04E-264 5.15E-97 1.08E-06 2.60E+03

Max 1.10E-239 8.17E-79 3.54E-06 3.25E+03

M1 Dixon-Price

AVG 2.87E-01 2.89E-01 2.75E+00 9.41E+08

STD 1.13E-01 1.47E-01 9.82E-01 7.70E+07

Min 2.50E-01 2.50E-01 1.18E+00 7.54E+08

Max 6.67E-01 1.00E+00 6.96E+00 1.10E+09

M2 Happy Cat

AVG 1.26E-01 3.94E-01 1.07E+00 9.96E-01

STD 2.65E-01 4.87E-01 7.69E-02 3.16E-02

Min 9.85E-05 2.01E-03 9.50E-01 9.19E-01

Max 1.68E+00 1.96E+00 1.37E+00 1.07E+00

M3 Ackley

AVG 4.44E-16 4.44E-16 2.00E-03 1.69E+01

STD 0.00E+00 0.00E+00 2.57E-04 1.83E-01

Min 4.44E-16 4.44E-16 1.50E-03 1.65E+01

Max 4.44E-16 4.44E-16 2.58E-03 1.73E+01

M4 Quartic

AVG 1.42E-04 1.71E-04 1.39E-01 1.55E+05

STD 1.24E-04 2.30E-04 3.32E-02 7.17E+03

Min 2.80E-06 5.41E-06 6.55E-02 1.38E+05

Max 5.71E-04 1.57E-03 2.20E-01 1.71E+05

M5 Rosenbrock

AVG 3.33E-02 1.80E-01 9.97E+02 4.01E+07

STD 6.88E-02 2.51E-01 2.45E-01 2.45E+06

Min 1.09E-06 1.34E-05 9.96E+02 3.63E+07

Max 3.42E-01 1.35E+00 9.97E+02 4.59E+07

M6 Schwefel

AVG 6.38E+00 4.63E+01 3.33E+05 3.91E+05

STD 1.32E+01 1.56E+02 2.92E+04 8.58E+03

Min 1.27E-02 1.41E-02 3.10E+05 3.74E+05

Max 7.96E+01 1.09E+03 4.01E+05 4.04E+05

M7 Griewank

AVG 0.00E+00 0.00E+00 1.34E-02 3.55E+02

STD 0.00E+00 0.00E+00 3.72E-02 2.44E+01

Min 0.00E+00 0.00E+00 1.05E-04 3.14E+02

Max 0.00E+00 0.00E+00 1.45E-01 4.05E+02

M8 Levy and montalo

AVG 3.85E-04 1.54E-03 7.10E+02 4.07E+03

STD 8.42E-04 2.24E-03 2.24E+01 2.01E+02

Min 7.72E-10 3.42E-06 6.61E+02 3.69E+03

173

Max 5.36E-03 1.07E-02 7.81E+02 4.59E+03

M9 General penalized 1

AVG 9.18E-07 2.86E-06 9.70E-01 3.11E+07

STD 1.73E-06 4.12E-06 5.23E-01 6.60E+06

Min 1.79E-10 5.15E-11 2.39E-01 1.89E+07

Max 1.02E-05 1.96E-05 2.24E+00 4.29E+07

M10 General penalized 2

AVG 2.61E-04 3.55E-04 3.38E+02 3.10E+07

STD 3.74E-04 4.75E-04 2.48E+02 6.91E+06

Min 4.19E-08 3.61E-07 8.15E+01 1.63E+07

Max 1.56E-03 2.42E-03 8.33E+02 4.66E+07

M11 AlpineN1

AVG 8.14E-05 1.90E-04 5.77E-01 1.62E+03

STD 5.19E-04 9.36E-04 1.24E+00 4.58E+01

Min 1.07E-134 5.94E-48 1.14E-01 1.49E+03

Max 3.70E-03 6.50E-03 7.51E+00 1.68E+03

M12 EggHolder

AVG 1.76E+05 1.76E+05 7.97E+05 8.72E+05

STD 6.93E+00 4.00E+01 4.09E+04 7.73E+03

Min 1.76E+05 1.76E+05 7.58E+05 8.50E+05

Max 1.76E+05 1.76E+05 8.80E+05 8.85E+05

M13 Sine envelope

AVG 9.42E-03 1.67E-02 4.72E+02 5.64E+02

STD 1.03E-02 1.48E-02 2.88E+01 1.36E+01

Min 4.71E-03 4.76E-03 4.23E+02 5.37E+02

Max 5.62E-02 6.40E-02 6.31E+02 5.92E+02

C1
Combination Griewank

and Rosenbrock

AVG 2.36E-06 8.76E-05 7.84E+02 2.36E+09

STD 6.22E-06 2.84E-04 7.25E+01 2.73E+08

Min 4.94E-324 4.39E-09 6.86E+02 1.86E+09

Max 2.75E-05 1.93E-03 1.04E+03 2.96E+09

C2
Combination Ackley and

Rosenbrock

AVG 1.66E-01 1.13E+00 3.62E+03 2.06E+04

STD 2.91E-01 1.98E+00 9.89E+00 1.33E+02

Min 1.92E-07 1.01E-04 3.62E+03 2.03E+04

Max 1.40E+00 1.14E+01 3.66E+03 2.09E+04

Summary of results

AVG

+ 0 0 0

− 16 19 19

≈ 3 0 0

STD

+ 0 0 1

− 17 19 18

≈ 2 0 0

Min

+ 1 0 0

− 14 19 19

≈ 4 0 0

Max

+ 0 0 1

− 16 19 18

≈ 3 0 0

174

Appendix 3: Graphical representation of the general test results

 D=2 D=30 D=100 D=1000

U1

U2

U3

U4

M1

175

M2

M3

M4

M5

M6

176

M7

M8

M9

M10

M11

177

M12

M13

C1

C2

178

Appendix 4: Optimisation results of HHO-EAS against HHO on the specific benchmark of 20

functions from CEC 2017 for dimension 100

Table A4.1: Test results of HHO-EAS against HHO on a benchmark of 20 functions from CEC 2017

for dimension 100 [Wu G et al., 2017]

Function Description Convergence curve Metric HHO-EAS HHO

F11

Hybrid

Function 1

1. Zakharov

2. Rosenbrock

3. Rastrigins

Multimodal

Non-separable

subcomponents

AVG 1.31E+04 1.48E+05

STD 7.22E+03 4.18E+04

Min 6.88E+03 7.10E+04

Max 5.69E+04 2.91E+05

F12

Hybrid

Function 2

1. High

Conditione

Elliptic

2. Modified

Schwefels

3. Bent Cigar

Multimodal

Non-separable

subcomponents

AVG 1.16E+10 3.55E+11

STD 4.48E+09 9.11E+10

Min 4.36E+09 1.37E+11

Max 2.65E+10 5.14E+11

F13

Hybrid

Function 3

1. Bent Cigar

2. Rosenbrock

3. Lunache Bi-

Rastrigin

Multimodal

Non-separable

subcomponents

AVG 2.28E+07 5.43E+10

STD 1.66E+07 1.95E+10

Min 2.73E+06 1.71E+10

Max 7.29E+07 1.02E+11

179

F14

Hybrid

Function 4

1. High
Conditioned
Elliptic

2. Ackley

3. Schaffer

4. Rastrigin

Multimodal

Non-separable

subcomponents

AVG 2.21E+06 1.16E+07

STD 9.98E+05 3.56E+06

Min 8.21E+05 5.24E+06

Max 4.83E+06 1.93E+07

F15

Hybrid

Function 5

1. Bent Cigar

2. HGBat

3. Rastrigin

4. Rosenbrock

Multimodal

Non-separable

subcomponents

AVG 2.67E+06 7.60E+09

STD 2.89E+06 5.97E+09

Min 2.31E+05 2.78E+08

Max 1.49E+07 2.66E+10

F16

Hybrid

Function 6

1. Expanded

Schaffer

2. HGBat

3. Rosenbrock

5. Modified

Schwefel

Multimodal

Non-separable

subcomponents

AVG 9.43E+03 1.03E+04

STD 2.11E+03 1.63E+03

Min 6.00E+03 6.63E+03

Max 1.36E+04 1.43E+04

180

F17

Hybrid

Function 7

1. Katsura

2. Ackley

3. Expanded

Griewank +

Rosenbrock

4. Modified

Schwefel

5. Rastrigin

Multimodal

Non-separable

subcomponents

AVG 6.29E+03 2.65E+04

STD 1.01E+03 3.13E+04

Min 4.04E+03 5.57E+03

Max 8.72E+03 1.85E+05

F18

Hybrid

Function 8

1. High

Conditione

d Elliptic

2. Ackleys

3. Rastrigins

4. HGBat

Function

Multimodal

Non-separable

subcomponents

AVG 2.42E+06 9.13E+06

STD 1.02E+06 6.91E+06

Min 3.77E+05 9.78E+05

Max 5.33E+06 3.72E+07

F19

Hybrid

Function 9

1. Bent Cigar

2. Rastrigin’s

3. Expanded

Griewanks

+
Rosenbrocks

4. Weierstrass

5. Expanded

Schaffers

Multimodal

Non-separable

subcomponents

AVG 5.00E+07 8.02E+09

STD 5.00E+07 6.42E+09

Min 5.99E+06 5.06E+07

Max 2.11E+08 2.54E+10

181

F20

Hybrid

Function 10

1. Happycat

2. Katsura

3. Ackley

4. Rastrigin

5. Modified

Schwefel

6. Schaffer

Multimodal

Non-separable

subcomponents

AVG 3.72E+03 3.67E+03

STD 5.00E+02 4.64E+02

Min 2.47E+03 1.95E+03

Max 4.85E+03 4.85E+03

F21

Composition

Function 1

1. Rosenbroc

k

2. High

Conditione

d Elliptic

3. Rastrigin

Multimodal

Non-separable

Asymmetrical

AVG 1.70E+03 2.14E+03

STD 2.01E+02 1.92E+02

Min 1.36E+03 1.71E+03

Max 2.26E+03 2.53E+03

F22

Composition

Function 2

1. Rastrigin

2. Griewank

3. Modifed

Schwefel

Multimodal

Non-separable

Asymmetrical

AVG 2.16E+04 2.08E+04

STD 2.02E+03 2.27E+03

Min 1.77E+04 1.73E+04

Max 2.61E+04 2.61E+04

182

F23

Composition

Function 3

1. Rosenbrock

2. Ackley

3. Modifed

Schwefel

4. Rastrigin

Multimodal

Non-separable

Asymmetrical

AVG 2.78E+03 3.60E+03

STD 3.35E+02 4.10E+02

Min 2.05E+03 3.00E+03

Max 3.52E+03 5.03E+03

F24

Composition

Function 4

1. Ackley

2. High

Conditioned

Elliptic

3. Girewank

4. Rastrigin

Multimodal

Non-separable

Asymmetrical

AVG 3.84E+03 6.78E+03

STD 4.12E+02 8.17E+02

Min 2.88E+03 5.13E+03

Max 4.80E+03 8.74E+03

F25

Composition

Function 5

1. Rastrigin

2. Happycat

3. Ackley

4. Discus

5. Rosenbrock

Multimodal

Non-separable

Asymmetrical

AVG 1.85E+03 7.05E+03

STD 2.39E+02 7.42E+02

Min 1.47E+03 5.45E+03

Max 2.50E+03 8.73E+03

183

F26

Composition

Function 6

1. Expanded

Scaffer

2. Modified

Schwefel

3. Griewank

4. Rosenbrock

5. Rastrigin

Multimodal

Non-separable

Asymmetrical

AVG 2.90E+04 3.39E+04

STD 2.07E+03 1.96E+03

Min 2.43E+04 2.90E+04

Max 3.34E+04 3.79E+04

F27

Composition

Function 7

1. HGBat

2. Rastrigin

3. Modifed

Schwefel

4. Bent-Cigar

5. High

Conditioned

Elliptic

6. Expanded

Scaffer

Multimodal

Non-separable

Asymmetrical

AVG 3.11E+03 7.10E+03

STD 6.40E+02 1.74E+03

Min 1.77E+03 3.81E+03

Max 4.45E+03 1.09E+04

F28

Composition

Function 8

1. Ackley’s

Function

2. Griewank’s

Function

3. Discus

Function

4. Rosenbrock’

s Function

5. HappyCat

Function

6. Expanded S

caffer’s

Function

AVG 1.76E+03 1.06E+04

STD 2.76E+02 9.49E+02

Min 1.25E+03 8.74E+03

Max 2.35E+03 1.29E+04

184

F29

Composition

Function 9

1. Hybrid

Function 5

2. Hybrid

Function 6

3. Hybrid

Function 7

Multimodal

Non-separable

Asymmetrical

AVG 1.22E+04 1.69E+04

STD 1.87E+03 4.02E+03

Min 8.10E+03 9.86E+03

Max 1.66E+04 2.77E+04

F30

Composition

Function 10

1. Hybrid

Function 5

2. Hybrid

Function 8

3. Hybrid

Function 9

Multimodal

Non-separable

Asymmetrical

AVG 2.08E+09 5.09E+10

STD 9.94E+08 2.77E+10

Min 5.58E+08 4.47E+09

Max 4.73E+09 1.14E+11

Summary of results

AVG

+ 2

− 18

≈ 0

STD

+ 4

− 16

≈ 0

Min

+ 2

− 18

≈ 0

Max

+ 0

− 20

≈ 0

185

Appendix 5 : Wilcoxon test, p-values results,Wilcoxon rank-sum test with 5% significance

 Dimension

Pair of Metaheuristic

2 30 100 1000

HHO\HHO-

EAS

p-value 0.01048 0.00109 0.000321 0.0004824

W+ 118 146 153 136

W- 18 7 0 0

GWO\HHO-

EAS

p-value 0.009225 3.815E-06 3.815E-06 3.815E-06

W+ 132 190 190 190

W- 21 0 0 0

PSO\HHO-

EAS

p-value 0.3684 3.815E-06 3.815E-06 3.815E-06

W+ 96 190 190 190

W- 57 0 0 0

Table A5.1: Wilcoxon tests for general tests

 Dimension

Pair of Metaheuristic

100

HHO\HHO-

EAS

p-value 1.752E-04

W+ 185

W- 25

Table A5.2: Wilcoxon tests for specific tests

186

Appendix 6 : HHO Algorithm

187

Appendix 7 : HHO-EAS Algorithm

188

Appendix 8: BHHO-EAS Algorithm

189

Appendix 9: Wrapper features selection architecture

190

Appendix 10: Diagramme and 2D architecture of CNN-IDS

191

Appendix 11: Experimental results of BHHO-EAS

Metaheuristic Metrics Values

BHHO-EAS

AVG 8.40E-03

STD 3.31E-04

Min 7.07E-03

Max 8.86E-03

Table A11.1. Objective function values from the Wrapper feature selection optimization

Metaheuristic Metrics Values

BHHO-EAS

AVG 4,6

STD 1.35

Min 4

Max 8

Table A11.2. Features number values

Metaheuristic Metrics Values

BHHO-EAS

AVG 99.07E-02

STD 5.96E-03

Min 98.08E-02

Max 99.58E-02

Table A11. 3. Classification accuracy values

Fig. A11.1. Average convergence curve of the Wrapper feature selection multi-objective optimization

problem

192

Index Features selected Description

𝟏 radiotap.present.tsft

This flag signals that the AP will synchronize the MAC timestamp of

the associated STAs. In a Wi-Fi network with a predefined flag for the

synchronization of MAC timestamps, not taking this flag into account

in the attack makes it possible to strengthen the detection of

Impersonation or Flooding attacks with the support of the features

below.

𝟐 radiotap.channel.freq,

This feature provides the frequency value in Mhz of the channel with

distinct frequencies from the 2.4Ghz and 5Ghz frequencies. These

frequencies change according to the 802.11 standard and the country.

The attacks exploit different channels with frequencies that may be

inconsistent with that of the AP. This helps detect an Impersonation or

Flooding attack.

𝟑 wlan.fc.type
There are 3 types of frame: Management, Control and Data. Combined
with the wlan.fc.protected feature, wlan.fc.type helps detect Flooding
and Impersonation attacks.

𝟏𝟎 wlan.fc.protected

Provided by the AP, this flag indicates to the STA that the frame is

encrypted. With the 802.11w amendment, the MFP also protects

management frames such as Deauthentication and Disassociation

frames. The same is true for Beacon frames. This flag thus makes it

possible to accompany the distinction between the 802.11 Normal,

Flooding or Impersonation flow

𝟏𝟑 frame.len

This is the total length of a frame. This length varies by frame type and

subtype. But also depending on its protected state or not. Thus

combined with wlan.fc.type and wlan.fc.protected, frame.len is an

indicator of a Flooding or Impersonation attack.

𝟏𝟓 radiotap.length

This feature, although specific to the wireless interface driver, is
common to all Wi-Fi wireless devices. It provides the size of the
Radiotap field. Radiotap is the field of the frame which provides
physical data on the device such as the datarate, the frequency, the type
of frequency modulation or the signal strength of the antennas.
Combined with frame.len, this feature can detect Impersonation type
attacks.

𝟏𝟕 wlan_radio.signal_dbm

This is the transmit power of the device in dBm. The STA of an attacker
with a position further away than a legitimate STA therefore has an ab
normal transmission power compared to the latter. Combined with the
 frame.len feature, wlan_radio.signal_dbm helps detect Flooding and
Impersonation attacks.

18 wlan_radio.duration

This feature provides the duration in ms of the frame taking into account
the physical data and the 802.11 data, which the sender allocates for the
benefit of the acknowledgment frame. This feature is independent of the
frames that precede and succeed it. This feature is therefore
consistent with our specifications.
wlan_radio.duration scales based on frame type and subtype. Combin
ed with wlan_radio.signal_dbm, it identifies Flooding and Impersonat
ion attacks.

Table A11.4. Description of the 8 features selected by BHHO-EAS from AWID3 dataset

193

Appendix 12: Performances of the IDS trained with AWID3 dataset

 AUC Prec Recall F1-score Acc Epochs

ET 16f 99,49 99,75 99,28 99,52 99,96 N/A

LightGBM 16f 99,42 99,89 99,22 99,55 99,96 N/A

ET 19f 99,24 99,76 98,98 99,37 99,94 N/A

DT Set 4 97,16 94,72 95,67 95,19 99,69 N/A

CNN-IDS 99,98 99,74 99,82 99,78 99,84 7,6

BEST : 99,98 99,89 99,82 99,78 99,96 7,6

WORST : 97,16 92,40 87,70 95,19 99,46 N/A

Table A12.1. Performance comparison between the best performance results in [Chatzoglou E et al., 2022a] and the

CNN-IDS performances

194

Fig. A12.1. Comparison between CNN-IDS and the 4 best Machine Learning IDS models of [Chatzoglou E et

al., 2022a]

CNN-IDS ET 16f

LightGBM 16f ET 19f

195

DT 4f Set4

Fig. A12.2. Confusion matrix of the detection capabilities of the 3 classes of attacks by CNN-IDS and the

4 best Machine Learning IDS models of [Chatzoglou E et al., 2022a]

Fig. A12.3. Best Accuracy and Loss curve of CNN-IDS on the 10 folds

Fig. A12.4. Worst Accuracy and Loss curve of CNN-IDS on the 10 folds

196

Appendix 13: Performances of the E-CNN-IDS embedded on a Raspberry Pi 4

Fig. A13.1. IoT environment Raspberry Pi 4 Model B with E-CNN-IDS embedded

Fig. A13.2. Confusion matrix of the detection capabilities of the 3 classes of attacks by E-CNN-IDS

197

Fig. A13.3. Minimum consumption of memory and computing resources of the E-CNN-IDS

Fig. A13.4. Maximum consumption of memory and computing resources of the E-CNN-IDS

Fig. A13.5. Detection by E-CNN-IDS of six 802.11 specific attacks

References

[Abd EM et al., 2021] Abd EM, Dahou A, Abualigah, L. (2021) Advanced metaheuristic optimization

techniques in applications of deep neural networks: a review. In: Neural Computing and Applications

volume. pp 14079–14099

[Abdel-Basset M et al., 2018] Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Metaheuristic

Algorithms: A Comprehensive Review. In: Computational Intelligence for Multimedia Big Data on the

Cloud with Engineering Applications. pp 185–231

[Abdollahzadeh B et al., 2022] Abdollahzadeh B, Gharehchopogh FS (2022) A multi-objective

optimization algorithm for feature selection problems. In: Engineering with Computers. Springer, pp

1845–1863

[Abualigah L et al., 2021] Abualigah L, Abd Elaziz M, Shehab M, Alomari OA, Alshinwan M, Alabool

H, Al-Arabiat DA (2021) Hybrid Harris Hawks Optimization with Differential Evolution for Data

Clustering. In: Metaheuristics in Machine Learning: Theory and Applications. Springer, pp 267–299

[Adam SP et al., 2019] Adam SP, Alexandropoulos SAN, Pardalos PM, Vrahatis MN (2019) No Free

Lunch Theorem: A Review. In: Approximation and Optimization. Springer, pp 57–82

[Agrawal P et al., 2021] Agrawal P, Abutarboush HF, Ganesh T, Mohamed AW (2021) Metaheuristic

Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019). In: IEEE Access.

IEEE, pp 26766–26791

[Agushaka JO et al., 2022] Agushaka JO, Ezugwu AE (2022) Initialisation Approaches for Population-

Based Metaheuristic Algorithms: A Comprehensive Review. In: Applied Sciences. mdpi

[Ahmed F et al., 2021] Ahmed F, Asghar MZ, Imran A (2021) Combinatorial Optimization for Artificial

Intelligence Enabled Mobile Network Automation. In: Metaheuristics in Machine Learning: Theory and

Applications. Springer, pp 663–690

[Alabas-Uslu C et al., 2020] Alabas-Uslu C, Dengiz B (2020) Parameter Tuning Problem in

Metaheuristics: A Self-Adaptive Local Search Algorithm for Combinatorial Problems. In: Women in

Industrial and Systems Engineering. Springer, pp 93–111

[Alabool HM et al., 2021] Alabool HM, Alarabiat D, Abualigah L (2021) Harris hawks optimization: a

comprehensive review of recent variants and applications. In: Neural Computing and Applications.

Springer, pp 8939–8980

[Alkebsi K et al., 2020] Alkebsi K, Du W (2020) A Fast Multi-Objective Particle Swarm Optimization

Algorithm Based on a New Archive Updating Mechanism. IEEE, pp 124734–124754

[Almomani A et al., 2019] Almomani A, Alweshah M, Al Khalayleh S, Al-Refai M, Qashi R (2019)

Metaheuristic Algorithms-based Feature Selection Approach for Intrusion Detection. In: Machine

Learning for Computer and Cyber Security, 1st Edition. CRC Press, pp 184–208

[Al-Tashi Q et al., 2020] Al-Tashi Q, Abdulkadir SJ, Rais HMd, Mirjalili S, Alhussian H, Ragab MG,

Alqushaibi A (2020) Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in

Classification. IEEE, pp 106247–106263

[Al-Wajih R et al., 2021] Al-Wajih R, Abdulkadir SJ, Aziz N, Al-Tashi Q, Talpur N (2021) Hybrid

Binary Grey Wolf With Harris Hawks Optimizer for Feature Selection. In: IEEE Access. IEEE, pp

31662–31677

199

[Avjeet S et al., 2021] Avjeet S, Kumar A (2021) Applications of nature-inspired meta-heuristic

algorithms: a survey. In: International Journal of Advanced Intelligence Paradigms. INDERSCIENCE,

pp 388–417

[Azizjon M et al., 2020] Azizjon M, Jumabek A, Kim W (2020) 1D CNN based network intrusion

detection with normalization on imbalanced data. International Conference on Artificial Intelligence in

Information and Communication (ICAIIC), pp 218–224

[Banka H et al., 2017a] Banka H, Dara S (2017) High Dimensional Feature Selection: A Survey. In:

Feature Selection in High Dimensional Data Using Metaheuristic. LAP LAMBERT Academic,

Republic of Moldova, pp 27–35

[Banka H et al., 2017b] Banka H, Dara S (2017) Feature Selection. In: Feature Selection in High

Dimensional Data Using Metaheuristic. LAP LAMBERT Academic, Republic of Moldova, pp 15–17

[Baron C et al., 2005] Baron C, Rochet S, Gutierrez C (2005) Proposition of a methodology for the

management of innovative design projects

[Bhosale YH et al., 2022] Bhosale YH, Sridhar Patnaik K (2022) IoT Deployable Lightweight Deep

Learning Application For COVID-19 Detection With Lung Diseases Using RaspberryPi. In: 2022

International Conference on IoT and Blockchain Technology (ICIBT). IEEE, pp 1–6

[Birogul S, 2019] Birogul S (2019) Hybrid Harrison Hawk Optimization Based on Differential

Evolution (HHODE) Algorithm for Optimal Power Flow Problem. IEEE Access, pp 184468–184488

[Bonab MS et al., 2020] Bonab MS, Ghaffari A, Gharehchopogh FS, Alemi P (2020) A wrapper‐based

feature selection for improving performance of intrusion detection systems. In: International Journal of

Communication Systems. WILEY

[Bouchaala A et al., 2022] Bouchaala A, Merroun O, Sakim A (2022) A MOPSO algorithm based on

pareto dominance concept for comprehensive analysis of a conventional adsorption desiccant cooling

system. In: Journal of Building Engineering. ELSEVIER, p 105189

[Burnwal S et al., 2013] Burnwal S, Deb, S. (2013) Scheduling optimization of flexible manufacturing

system using cuckoo search-based approach. In: The International Journal of Advanced Manufacturing

Technology. Springer, pp 951–959

[Chatzoglou E et al., 2021] Chatzoglou E, Kambourakis G, Kolias C (2021) Empirical Evaluation of

Attacks Against IEEE 802.11 Enterprise Networks: The AWID3 Dataset. IEEE Access, pp 34188–

34205

[Chatzoglou E et al., 2022a] Chatzoglou E, Kambourakis G, Kolias C, Smiliotopoulos C (2022) Pick

quality over quantity: Expert feature selection and data pre-processing for 802.11 Intrusion Detection

Systems. IEEE Access

[Chatzoglou E et al., 2022b] Chatzoglou E, Kambourakis G, Smiliotopoulos C, Kolias C (2022) Best of

Both Worlds: Detecting Application Layer Attacks through 802.11 and Non-802.11 Features. Sensors,

p 5633

[Chelouah R, 2000] Chelouah R (2000) Adaptation aux problèmes à variables continues de plusieurs

métaheuristiques d’optimisation combinatoire : la méthode tabou, les algorithmes génétiques et les

méthodes hybrides. Application en contrôle non destructif

[Chelouah R et al., 2007] Chelouah R, Baron C (2007) Ant colony algorithm hybridized with tabu and

greedy searches as applied to multi-objective optimization in project management. In: Journal of

Heuristics. Springer

200

[Chelouah R et al., 2009] Chelouah R, Baron C, Zholghadri M, Gutierrez C (2009) Meta-heuristics for

System Design Engineering. In: Foundations of Computational Intelligence Volume 3. Springer, Berlin,

Heidelberg, pp 387–423

[Chen H et al., 2020] Chen H, Heidari AA, Chen H, Wang M, Pan Z, Gandomi AH (2020) Multi-

population differential evolution-assisted Harris hawks optimization: Framework and case studies. In:

Future Generation Computer Systems. ELSEVIER, pp 175–198

[Chiandussi G et al., 2012] Chiandussi G, Codegone M, Ferrero S, Varesio F.E. (2012) Comparison of

multi-objective optimization methodologies for engineering applications. In: Computers & Mathematics

with Applications. ELSEVIER, pp 912–942

[Congying L et al., 2011] Congying L, Huanping Z, Xinfeng Y (2011) Particle swarm optimization

algorithm for quadratic assignment problem. In: Proceedings of 2011 International Conference on

Computer Science and Network Technology. IEEE, pp 1728–1731

[Cortés-Toro EM et al., 2018] Cortés-Toro EM, Crawford B, Gómez-Pulido JA, Soto R, Lanza-

Gutiérrez JM (2018) A New Metaheuristic Inspired by the Vapour-Liquid Equilibrium for Continuous

Optimization. In: Applied Sciences. MDPI

[Coulson J et al., 2012] Coulson J, Coulson T (2012) The Harris’s Hawk Revolution, 1st edn. Parabuteo

Publishing, Kingman, Arizona

[Coulson JO, 2013] Coulson JO (2013) Reexamining cooperative hunting in Harris’s Hawk (Parabuteo

Unicinctus): large prey or challenging habitats ? In: The Auk. The American Ornithologists’ Union, p

548−552

[Crawford B et al., 2013] Crawford B, Valenzuela C, Soto R, Monfroy E, Paredes F (2013) Parameter

Tuning of Metaheuristics Using Metaheuristics. In: Advanced Science Letters. Science letters, pp 3556–

3559

[Cuevas E et al., 2021a] Cuevas E, Diaz P, Camarena O (2021) Experimental Analysis Between

Exploration and Exploitation. In: Metaheuristic Computation: A Performance Perspective. Springer, pp

249–269

[Cuevas E et al., 2021b] Cuevas E, Rodríguez A, Alejo-Reyes A, Del-Valle-Soto C (2021) Introductory

Concepts of Metaheuristic Computation. In: Recent Metaheuristic Computation Schemes in

Engineering. Springer, pp 1–9

[Cuevas E et al., 2021c] Cuevas E, Rodríguez A, Alejo-Reyes A, Del-Valle-Soto C (2021) Metaheuristic

Algorithms for Wireless Sensor Networks. In: Recent Metaheuristic Computation Schemes in

Engineering. Springer, pp 193–235

[Cuevas E et al., 2021d] Cuevas E, Rodríguez A, Alejo-Reyes A, Del-Valle-Soto C (2021) Metaheuristic

Algorithms Applied to the Inventory Problem. In: Recent Metaheuristic Computation Schemes in

Engineering. Springer, pp 237–277

[Cuevas E et al., 2021e] Cuevas E, Rodríguez A, Alejo-Reyes A, Del-Valle-Soto C (2021) Metaheuristic

Algorithm Based on Hybridization of Invasive Weed Optimization asnd Estimation Distribution

Methods. In: Recent Metaheuristic Computation Schemes in Engineering. Springer, pp 63–123

[Dara S et al., 2022] Dara S, Dhamercherla S, Jadav SS (2022) Machine Learning in Drug Discovery:

A Review. In: Artificial Intelligence Review volume. Springer, pp 1947–1999

[Davahli A et al., 2020a] Davahli A, Shamsi M, Abaei, G. (2020) Hybridizing genetic algorithm and

grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless

201

networks. In: Journal of Ambient Intelligence and Humanized Computing volume. Springer, pp 5581–

5609

[Davahli A et al., 2020b] Davahli A, Shamsi M, Abaei G (2020) A Lightweight Anomaly Detection

Model using SVM for WSNs in IoT through a Hybrid Feature Selection Algorithm based on GA and

GWO. In: Journal of Computing and Security. pp 63–79

[Dawson JW et al., 1991] Dawson JW, Mannan RW (1991) Dominance Hierarchies and Helper

Contributions in Harris Hawks. In: The Auk. Central Ornithology Publication Office, pp 649–660

[Deb K et al., 2002] Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective

genetic algorithm: NSGA-II. In: IEEE Transactions on Evolutionary Computation. IEEE, pp 182–197

[Demyana IE et al., 2016] Demyana IE, Adil Y (2016) Scheduling Jobs on Cloud Computing using

Firefly Algorithm. In: International Journal of Grid and Distributed Computing. pp 149–158

[Dhiman G et al., 2017] Dhiman G, Kumar V (2017) Spotted hyena optimizer: A novel bio-inspired

based metaheuristic technique for engineering applications. In: Advances in Engineering Software.

ELSEVIER, pp 48–70

[Digalakis JG et al., 2000] Digalakis JG, Margaritis KG (2000) On benchmarking functions for genetic

algorithms. In: International Journal of Computer Mathematics. Taylor&Francis, pp 481–506

[Donoso Y et al., 2016] Donoso Y, Fabregat R (2016) Multi-Objective Optimization in Computer

Networks Using Metaheuristics. Auerbach

[Drewek-Ossowicka A et al., 2021] Drewek-Ossowicka A, Pietrołaj M, Rumiński J (2021) A survey of

neural networks usage for intrusion detection systems. In: Journal of Ambient Intelligence and

Humanized Computing volume. Springer, pp 497–514

[Du D et al., 2014] Du D, Ko K (2014) Theory of Computational Complexity, 2nd edn. WILEY

[Eiben AE et al., 2011] Eiben AE, Smit SK (2011) Evolutionary Algorithm Parameters and Methods to

Tune Them. In: Autonomous Search. Springer, pp 15–36

[Elkadeem MR et al., 2019] Elkadeem MR, Elaziz MA, Ullah Z, Wang S, Sharshir SW (2019) Optimal

Planning of Renewable Energy-Integrated Distribution System Considering Uncertainties. In: IEEE

Access. pp 164887–164907

[El-Shorbagy M, Hassanien AE, 2018] El-Shorbagy M, Hassanien AE (2018) Particle Swarm

Optimization from Theory to Applications. In: International Journal of Rough Sets and Data Analysis.

IGI, pp 1–24

[Emmerich MTM et al., 2018] Emmerich MTM, Deutz AH (2018) A tutorial on multiobjective

optimization: fundamentals and evolutionary methods. In: Natural Computing. Springer, pp 585–609

[Eschenauer H et al., 1990] Eschenauer H, Koski J, Osyczka A (1990) Multicriteria design optimization :

procedures and applications. Springer-Verlag

[Fan Q et al., 2020] Fan Q, Chen Z, Xia Z (2020) A novel quasi-reflected Harris hawks optimization

algorithm for global optimization problems. In: Soft Computing. Springer, pp 14825–14843

[Faris H et al., 2018] Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H

(2018) An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems.

In: Knowledge-Based Systems. Science Direct, pp 43–67

202

[Fukushima K, 1980] Fukushima K (1980) Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. In: Biological Cybernetics volume.

pp 193–202

[Gabor T et al., 2017] Gabor T, Belzner L (2017) Genealogical distance as a diversity estimate in

evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference

Companion GECCO ’17. ACM, pp 1572–1577

[Gad AG et al., 2022] Gad AG, Sallam KM, Chakrabortty, R.K. (2022) An improved binary sparrow

search algorithm for feature selection in data classification. In: Neural Computing and Applications

[Gao ZM et al., 2019] Gao ZM, Zhao J, Hu YR, Chen HF (2019) The improved Harris hawk

optimization algorithm with the Tent map. In: 2019 3rd International Conference on Electronic

Information Technology and Computer Engineering (EITCE). IEEE, pp 336–339

[Gardeux V, 2011] Gardeux V (2011) Conception d’heuristiques d’optimisation pour les problèmes de

grande dimension. Application à l’analyse de données de puces à ADN. Université de Paris-Est Créteil

[Gardeux V et al., 2011] Gardeux V, Chelouah R, Siarry P (2011) EM323: a line search based algorithm

for solving high-dimensional continuous non-linear optimization problems. In: Soft computing.

Springer, pp 2275–2285

[Gardeux V et al., 2012] Gardeux V, Natowicz R, Chelouah R, Siarry P (2012) ABEUS : un algorithme

d’optimisation discret appliqué à la sélection de variables sur des jeux de données de transcriptomique.

In: Recherche Opérationnelle et Aide à la Décision (ROADEF)

[Gaspar A et al., 2021] Gaspar A, Oliva D, Cuevas E, Zaldívar D, Pérez M, Pajares G (2021)

Hyperparameter Optimization in a Convolutional Neural Network Using Metaheuristic Algorithms. In:

Metaheuristics in Machine Learning: Theory and Applications. Springer, pp 37–59

[Ghazali R et al., 2018] Ghazali R, Deris M, Nawi N, Abawajy J (2018) Exploration and Exploitation

Measurement in Swarm-Based Metaheuristic Algorithms: An Empirical Analysis. In: Recent Advances

on Soft Computing and Data Mining. Springer, pp 24–32

[Glover F et al., 1998] Glover F, Laguna M (1998) Tabu Search. In: Handbook of Combinatorial

Optimization. Springer, pp 621–757

[Gonzalez-Huitron V et al., 2021] Gonzalez-Huitron V, León-Borges JA, Rodriguez-Mata AE,

Amabilis-Sosa LE, Ramírez-Pereda B, Rodriguez H (2021) Disease detection in tomato leaves via CNN

with lightweight architectures implemented in Raspberry Pi 4. In: Computers and Electronics in

Agriculture. ELSEVIER

[Goodfellow I et al., 2016] Goodfellow I, Courville A, Bengio Y (2016) Convolutional Networks. In:

Deep Learning. The MIT Press, Cambridge, Massachusetts, United States, pp 326–366

[Gupta S et al., 2020] Gupta S, Deep K, Heidari AA, Moayedi H, Wang M (2020) Opposition-based

learning Harris hawks optimization with advanced transition rules: principles and analysis. Expert

Systems with Applications 158:113510

[Hassan A, 2019] Hassan A (2019) Hybrid metaheuristics: An automated approach. In: Expert Systems

With Applications. pp 132–144

[Hayashida T et al., 2017] Hayashida T, Nishizaki I, Sekizaki S, Koto S (2017) Cooperative Particle

Swarm Optimization in Distance-Based Clustered Groups. In: Journal of Software Engineering and

Applications. Scientific Research, pp 143–158

203

[Heidari AA et al., 2019] Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris

hawks optimization: Algorithm and applications. In: Future Generation Computer Systems. ELSEVIER,

pp 849–872

[Hijazi NM et al., 2021] Hijazi NM, Faris H, Aljarah I (2021) A parallel metaheuristic approach for

ensemble feature selection based on multi-core architectures. In: Expert Systems with Applications.

ELSEVIER

[Hillier FS et al., 1995] Hillier FS, Lieberman GJ (1995) Introduction to Operations Research. McGraw-

Hill International Editions

[Hodashinsky IA et al., 2019] Hodashinsky IA, Sarin KS (2019) Feature selection: Comparative

Analysis of Binary Metaheuristics and Population Based Algorithm with Adaptive Memory. In:

Programming and Computing Software. ACM, pp 221–227

[Houssein EH et al., 2021a] Houssein EH, Dirar M, Hussain K (2021) Artificial Neural Networks for

Stock Market Prediction: A Comprehensive Review. In: Metaheuristics in Machine Learning: Theory

and Applications. Springer, pp 409–444

[Houssein EH et al., 2022a] Houssein EH, Hassan HN, Al-Sayed MM, Nabil E (2022) Intelligent

Computational Models for Cancer Diagnosis: A Comprehensive Review. In: Integrating Meta-

Heuristics and Machine Learning for Real-World Optimization Problems. Springer, pp 25–50

[Houssein EH et al., 2020] Houssein EH, Hosney ME, Elhoseny M (2020) Hybrid Harris hawks

optimization with cuckoo search for drug design and discovery in chemoinformatics. In: Scientific

Reports

[Houssein EH et al., 2022b] Houssein EH, Ibrahim IE, Hassaballah M, Wazery YM (2022) Integration

of Machine Learning and Optimization Techniques for Cardiac Health Recognition. In: Integrating

Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Springer, pp 121–148

[Houssein EH et al., 2021b] Houssein EH, Mahdy MA, Shebl D, Mohamed WM (2021) A Survey of

Metaheuristic Algorithms for Solving Optimization Problems. In: Metaheuristics in Machine Learning:

Theory and Applications. Springer, pp 515–543

[Houssein EH et al., 2021c] Houssein EH, Saad MR, Hussain K, Shaban H, Hassaballah M (2021) A

Review of Metaheuristic Optimization Algorithms in Wireless Sensor Networks. In: Metaheuristics in

Machine Learning: Theory and Applications. Springer, pp 193–217

[Houssein EH et al., 2022c] Houssein EH, Saber E, Wazery YM, Ali AA (2022) Swarm Intelligence

Algorithms-Based Machine Learning Framework for Medical Diagnosis: A Comprehensive Review. In:

Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Springer,

pp 85–106

[Houssein EH et al., 2022d] Houssein EH, Zaki GN, Abualigah L, Younis EMG (2022) Metaheuristics

for Parameter Estimation of Solar Photovoltaic Cells: A Comprehensive Review. In: Integrating Meta-

Heuristics and Machine Learning for Real-World Optimization Problems. Springer, pp 149–179

[Hu J et al., 2021] Hu J, Liu C, Cui Y (2021) An Improved CNN Approach for Network Intrusion

Detection System. In: International Journal of Network Security. IJNS, pp 569–575

[Huang C et al., 2020] Huang C, Li and Y, Yao X (2020) A Survey of Automatic Parameter Tuning

Methods for Metaheuristics. In: IEEE Transactions on Evolutionary Computation. IEEE, pp 201–216

204

[Huiqin C et al., 2011] Huiqin C, Sheng L, Zheng T (2011) Hybrid Gravitational Search Algorithm with

Random-key Encoding Scheme Combined with Simulated Annealing. In: IJCSNS International Journal

of Computer Science and Network Security. Computer Science

[Hussain F et al., 2020] Hussain F, Hussain R, Hassan SA, Hossain E (2020) Machine Learning in IoT

Security: Current Solutions and Future Challenges. In: IEEE Communications Surveys & Tutorials.

IEEE, pp 1686–1721

[Hussain K et al., 2019a] Hussain K, Mohd Salleh MN, Cheng S (2019) Metaheuristic research: a

comprehensive survey. In: Springer. pp 2191–2233

[Hussain K et al., 2019b] Hussain K, Salleh MNM, Cheng S (2019) On the exploration and exploitation

in popular swarm-based metaheuristic algorithms. In: Neural Computing and Applications. Springer, pp

7665–7683

[Hussain K et al., 2019c] Hussain K, Zhu W, Mohd Salleh MN (2019) Long-Term Memory Harris’

Hawk Optimization for High Dimensional and Optimal Power Flow Problems. In: IEEE Access. pp

147596–147616

[Izadkhah H, 2022] Izadkhah H (2022) P, NP, NP-Complete, and NP-Hard Problems. In: Problems on

Algorithms. Springer, pp 497–511

[Jerebic J et al., 2021] Jerebic J, Mernik M, Liu SH, Ravber M, Baketarić M, Mernik L, Črepinšek M

(2021) A novel direct measure of exploration and exploitation based on attraction basins. In: Expert

Systems with Applications. ELSEVIER

[Jia H et al., 2019] Jia H, Lang C, Oliva D, Song W, Peng P (2019) Dynamic Harris Hawks Optimization

with Mutation Mechanism for Satellite Image Segmentation. Remote Sensing 11:1421.

[Jiyeon K et al., 2020] Jiyeon K, Jiwon K, Hyunjung K, Minsun S, Eunjung C (2020) CNN-Based

Network Intrusion Detection against Denial-of-Service Attacks. In: Electronics

[Joshila Grace LK et al., 2022] Joshila Grace LK, Asha P, Refonaa J, Jany Shabu SL, Viji Amutha Mary

A (2022) Detect Fire in Uncertain Environment using Convolutional Neural Network. In: Advances in

Intelligent Computing and Communication. Springer, pp 399–404

[Karaboga D et al., 2007] Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) Optimization

Algorithm for Solving Constrained Optimization Problems. In: Foundations of Fuzzy Logic and Soft

Computing. Springer, pp 789–798

[Kazikova A et al., 2020] Kazikova A, Pluhacek M, Senkerik R (2020) Why Tuning the Control

Parameters of Metaheuristic Algorithms Is So Important for Fair Comparison? In: Soft Computing.

Mendel

[Khanduja N et al., 2021] Khanduja N, Bhushan B (2021) Recent Advances and Application of

Metaheuristic Algorithms: A Survey (2014–2020). In: Metaheuristic and Evolutionary Computation:

Algorithms and Applications. Springer, pp 207–228

[Khurma et al., 2020] Khurma RA, Castillo PA, Sharieh A, Aljarah I (2020) New Fitness Functions in

Binary Harris Hawks Optimization for Gene Selection in Microarray Datasets. In: Proceedings of the

12th International Joint Conference on Computational Intelligence - ECTA. SCITEPRESS, pp 139–146

[Kim K et al., 2018a] Kim K, Aminanto ME, Tanuwidjaja HC (2018) Intrusion Detection Systems. In:

Network Intrusion Detection using Deep Learning. Springer, pp 5–11

205

[Kim K et al., 2018b] Kim K, Aminanto ME, Tanuwidjaja, H.C. (2018) Classical Machine Learning

and Its Applications to IDS. In: Network Intrusion Detection using Deep Learning. Springer, pp 13–26

[Kim K et al., 2018c] Kim K, Aminanto ME, Tanuwidjaja, H.C. (2018) Deep Learning-Based IDSs. In:

Network Intrusion Detection using Deep Learning. pp 35–45

[Kirkpatrick S et al., 1983] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated

Annealing. Science, pp 671–680

[Klir G et al., 1995] Klir G, Yuan B (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1st

edn. Prentice Hall, U.S.A

[Krueger M, 1990] Krueger M (1990) Méthode d’analyse d’algorithmes d’optimisation stochastiques à

l’aide d’algorithmes génétiques. Thèse de doctorat en informatique et réseaux de l’Ecole nationale

supérieure des télécommunications

[Kumar V et al., 2021] Kumar V, Kumar D, Kaur M, Singh D, Idris SA, Alshazly, H. (2021) A Novel

Binary Seagull Optimizer and its Application to Feature Selection Problem. In: IEEE Access. IEEE, pp

103481–103496

[Liu J et al., 2020] Liu J, Li Q, Cao R, Tang W, Qiu G (2020) MiniNet: An extremely lightweight

convolutional neural network for real-time unsupervised monocular depth estimation. In: ISPRS Journal

of Photogrammetry and Remote Sensing. ELSEVIER, pp 255–267

[Loubiere P, 2016] Loubiere P (2016) Amélioration des métaheuristiques d’optimisation à l’aide de

l’analyse de sensibilité. Université de Paris-Est Créteil

[Loubiere P et al., 2016] Loubiere P, Jourdan J, Siarry P, Chelouah R (2016) A sensitivity analysis

method for driving the Artificial Bee Colony algorithm’s search process. In: Applied Soft Computing.

ELSEVIER, pp 515–531

[Mafarja MM et al., 2017] Mafarja MM, Mirjalili S (2017) Hybrid Whale Optimization Algorithm with

simulated annealing for feature selection. In: Neurocomputing. Science Direct, pp 302–312

[Marquez Casillas ES et al., 2021] Marquez Casillas ES, Osuna-Enciso V (2021) Architecture

Optimization of Convolutional Neural Networks by Micro Genetic Algorithms. In: Metaheuristics in

Machine Learning: Theory and Applications. Springer, pp 149–167

[Masadeh R et al., 2019] Masadeh R, Mahafzah BA, Sharieh A (2019) Sea Lion Optimization

Algorithm. In: International Journal of Advanced Computer Science and Applications (IJACSA). The

Science and Information Organization

[Milner R, 2020] Milner R (2020) The Unexpected Relationship Between Wolves And Ravens

[Mirjalili S et al., 2023] Mirjalili S, Gandomi AH (2023) Metaheuristic algorithms in network intrusion

detection. In: Comprehensive Metaheuristics: Algorithms and Applications. Academic Press, pp 95–

129

[Mirjalili S et al., 2016] Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. In: Advances

in Engineering Software. ELSEVIER, pp 51–67

[Mirjalili S et al., 2014] Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. In: Advances

in Engineering Software. ELSEVIER, pp 46–61

[Mitchell T, 1997] Mitchell T (1997) Machine Learning. McGraw-Hill 45.37, Burr Ridge, pp. 870–877

206

[Mitiku T et al., 2018] Mitiku T, Manshahia MS (2018) Neuro Fuzzy Inference Approach : A Survey.

In: Engineering and Technology. pp 505–519

[Mohammadpour L et al., 2022] Mohammadpour L, Ling TC, Liew CS, Aryanfar AA (2022) A Survey

of CNN-Based Network Intrusion Detection. MDPI

[Mohit J et al., 2019] Mohit J, Vijander S, Asha R (2019) A novel nature-inspired algorithm for

optimization: Squirrel search algorithm. In: Swarm and Evolutionary Computation. ELSEVIER, pp

148–175

[Monicka JG et al., 2011] Monicka JG, Sekhar NOG, Kumar KR (2011) Performance Evaluation of

Membership Functions on Fuzzy Logic Controlled AC Voltage Controller for Speed Control of

Induction Motor Drive. In: International Journal of Computer Applications. pp 8–12

[Monteiro A et al., 2018] Monteiro A, De Oliveira M, De Oliveira R, Da Silva T (2018) Embedded

application of convolutional neural networks on Raspberry Pi for SHM. In: Electronics Letters. IET, pp

680–682

[Monteiro ACB et al., 2021] Monteiro ACB, Iano Y, França RP, Arthur R (2021) A Metaheuristic

Algorithm for Classification of White Blood Cells in Healthcare Informatics. In: Metaheuristics in

Machine Learning: Theory and Applications. Springer, pp 219–238

[Morales-Castañeda B et al., 2020] Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez

A (2020) A better balance in metaheuristic algorithms: Does it exist ? In: Swarm and Evolutionary

Computation. Science Direct, p 100671

[Moshtaghi HR et al., 2021] Moshtaghi HR, Eshlaghy AT, Motadel MR (2021) A Comprehensive

Review on Meta-Heuristic Algorithms and their Classification with Novel Approach. In: Journal of

Applied Research on Industrial Engineering. pp 63–89

[Muazu AA et al., 2022] Muazu AA, Hashim AS, Sarlan A (2022) Review of Nature Inspired

Metaheuristic Algorithm Selection for Combinatorial t-Way Testing. IEEE Access, pp 27404–27431

[Nadimi-Shahraki, M.H. et al., 2021] Nadimi-Shahraki, M.H., Banaie-Dezfouli, M., Zamani, H.,

Taghian, S., Mirjalili, S. (2021) B-MFO: A Binary Moth-Flame Optimization for Feature Selection from

Medical Datasets. Computers

[Nash JC, 2000] Nash JC (2000) The (Dantzig) simplex method for linear programming. In: Computing

in Science & Engineering. IEEE, pp 29–31

[Neu DA et al., 2022] Neu DA, Lahann J, Fettke PA (2022) A systematic literature review on state-of-

the-art deep learning methods for process prediction. In: Artificial Intelligence Review. Springer, pp

801–827

[Osman IH et al., 1996] Osman IH, Laporte G (1996) Metaheuristics: A bibliography. In: Annals of

Operations Research volume. Springer, pp 511–623

[Pan QK et al., 2008] Pan QK, Tasgetiren MF, Liang YC (2008) A discrete particle swarm optimization

algorithm for the no-wait flowshop scheduling. In: Computers & Operations Research. pp 2807–2839

[Panagant N et al., 2021] Panagant N, Pholdee N, Bureerat S (2021) A Comparative Study of Recent

Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems. Springer, pp

4031–4047

[Park D et al., 2021] Park D, Kim S, Kwon H, Shin D (2021) Host-Based Intrusion Detection Model

Using Siamese Network. IEEE Xplore, pp 76614–76623

207

[Pedroza M et al., 2021] Pedroza M, Ramírez-Bello A, Becerra AG, Martínez FAF (2021) Machine

Reading Comprehension (LSTM) Review (State of Art). In: Metaheuristics in Machine Learning:

Theory and Applications. Springer, pp 491–514

[Pereira I et al., 2013] Pereira I, Madureira A, De Moura Oliveira PB, Abraham A (2013) Tuning Meta-

Heuristics Using Multi-agent Learning in a Scheduling System. In: Transactions on Computational

Science XXI. Springer, pp 190–210

[Pourjavad E et al., 2019] Pourjavad E, Mayorga RV (2019) A comparative study and measuring

performance of manufacturing systems with Mamdani fuzzy inference system. In: Journal of Intelligent

Manufacturing. Springer, pp 1085–1097

[Qian L et al., 2020] Qian L, San-yang L, Xin-She Y (2020) Influence of Initialization on the

Performance of Metaheuristic Optimizers. In: Applied Soft Computing. Computer Science

[Rabbouch B et al., 2023] Rabbouch B, Rabbouch H, Saâdaoui F, Mraihi R (2023) Foundations of

combinatorial optimization, heuristics, and metaheuristics. In: Comprehensive Metaheuristics:

Algorithms and Applications. Academic Press, pp 407–438

[Raidl GR et al., 2019] Raidl GR, Puchinger J, Blum C (2019) Metaheuristic Hybrids. In: Handbook of

Metaheuristics. pp 385–417

[Ramos ICO et al., 2005] Ramos ICO, Goldbarg MC, Goldbarg EG, Net ADD (2005) Logistic

regression for parameter tuning on an evolutionary algorithm. In: 2005 IEEE Congress on Evolutionary

Computation. IEEE, pp 1061–1068

[Ramos-Michel A et al., 2021] Ramos-Michel A, Pérez-Cisneros M, Cuevas E, Zaldivar, D. (2021)

Image Classification with Convolutional Neural Networks. In: Metaheuristics in Machine Learning:

Theory and Applications. Springer, pp 445–473

[Rasku J et al., 2016] Rasku J, Kärkkäinen T, Musliu N (2016) Feature Extractors for Describing Vehicle

Routing Problem Instances. In: 5th Student Conference on Operational Research (SCOR 2016).

OASICS, Dagstuhl, Germany, pp 1–13

[Reddy PVS, 2021] Reddy PVS (2021) Generalized Fuzzy Logic with twofold fuzzy set: Learning

through Neural Net and Application to Business Intelligence. In: 2021 International Conference on

Fuzzy Theory and Its Applications (iFUZZY). IEEE, pp 1–5

[Riyaz B et al., 2020] Riyaz B, Ganapathy S (2020) A deep learning approach for effective intrusion

detection in wireless networks using CNN. In: Soft Computing volume. Springer, pp 17265–17278

[Rodríguez MA et al., 2020] Rodríguez MA, Mezura ME, Villarreal CMG, Aldape PM (2020) Multi-

objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem.

In: Applied Soft Computing. Science Direct, p 106342

[Ross TJ, 2016] Ross TJ (2016) Fuzzy Logic with Engineering Applications, 4th edn. WILEY

[Sabri N et al., 2013] Sabri N, Aljunid SA, Salim MS, Badlishah RB, Kamaruddin R, Abd Malek MF

(2013) Fuzzy Inference System: Short Review and Design. In: International review of automatic control.

pp 441–449

[Sakr MM et al., 2019] Sakr MM, Tawfeeq MA, El-Sisi AB (2019) Filter Versus Wrapper Feature

Selection for Network Intrusion Detection System. In: Ninth International Conference on Intelligent

Computing and Information Systems. IEEE, pp 209–214

208

[Sarker IH, 2021] Sarker IH (2021) Machine Learning: Algorithms, Real-World Applications and

Research Directions. In: SN Computer Science. Springer

[Sassi M, 2022] Sassi M (2022) Solving Feature Selection Problems Built on Population-based

Metaheuristic Algorithms. In: Optimization and Machine Learning Optimization for Machine Learning

and Machine Learning for Optimization. WILEY, pp 55–88

[Sassi M et al., 2023] Sassi M, Chelouah R (2023) HHO-EAS: A new metaheuristic bio-inspired of the

win-win hunting synergy between the two predators crow and wolf. In: Artificial Intelligence Review.

Springer

[Schiezaro M et al., 2013] Schiezaro M, Pedrini H (2013) Data feature selection based on Artificial Bee

Colony algorithm. In: EURASIP Journal on Image and Video Processing

[Segera D et al., 2023] Segera D, Mbuthia M, Nyete A (2023) Metaheuristics for optimal feature

selection in high-dimensional datasets. In: Comprehensive Metaheuristics: Algorithms and

Applications. Academic Press, pp 237–267

[Sengupta N et al., 2020] Sengupta N, Sil J (2020) Intrusion Detection: A Data Mining Approach. In:

Cognitive Intelligence and Robotics. Springer, pp 1–25

[Sharma M et al., 2021] Sharma M, Kaur PA (2021) Comprehensive Analysis of Nature-Inspired Meta-

Heuristic Techniques for Feature Selection Problem. In: Archives of Computational Methods in

Engineering. pp 1103–1127

[Sharma S et al., 2022] Sharma S, Kumar V (2022) A Comprehensive Review on Multi-objective

Optimization Techniques: Past, Present and Future. In: Archives of Computational Methods in

Engineering. Springer, pp 5605–5633

[Shu PW et al., 2020] Shu PW, Chu QX, Mai JY (2020) Harris Hawks Optimization Algorithm for

Waveguide Filter Designs. In: IEEE Asia-Pacific Microwave Conference (APMC). IEEE, pp 406–408

[Siarry P, 2014a] Siarry P (2014) Avant propos. In: Métaheuristiques, 1er edn. Eyrolles, Paris 5e, France,

pp 1–2

[Siarry P, 2014b] Siarry P (2014) Un sujet ouvert : le choix d’une métaheuristique. In: Métaheuristiques.

Eyrolles, Paris 5e, France, p 17

[Siarry P, 2014c] Siarry P (2014) Techniques de modélisation et comparaisons de méthodes. In:

Métaheuristiques. Eyrolles, Paris 5e, France, pp 337–359

[Siarry P, 2016] Siarry P (2016) Metaheuristics. Springer

[Siarry P, 2014d] Siarry P (2014) Exploitation et exploration. In: Métaheuristiques. Eyrolles, Paris 5e,

France, p 215

[Siarry P et al., 2002a] Siarry P, Collette Y (2002) Optimisation multiobjectif. Eyrolles, Paris 5e, France

[Siarry P et al., 2002b] Siarry P, Collette Y (2002) Introduction : optimisation multiobjectif et

dominance. In: Optimisation multiobjectif. Eyrolles, Paris 5e, France, pp 15–40

[Singh P et al., 2021] Singh P, Choudhary SK (2021) Introduction: Optimization and Metaheuristics

Algorithms. In: Metaheuristic and Evolutionary Computation: Algorithms and Applications. Springer,

pp 3–32

209

[Sörensen K et al., 2018] Sörensen K, Sevaux M, Glover F (2018) A History of Metaheuristics. In:

Handbook of Heuristics. Springer, pp 791–808

[Stahler D et al., 2002] Stahler D, Heinrich B, Smith D (2002) Common ravens, Corvus corax,

preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. In: Animal

behaviour. pp 283–290

[STeele S et al., 1988] STeele S et al. (1988) An Analysis of Injection Molding by Taguchi Methods

[Talbi EG, 2009] Talbi EG (2009) Parameter Tuning. In: Metaheuristics: From Design to

Implementation. WILEY, pp 54–57

[Talbi EG, 2013] Talbi EG (2013) A Unified Taxonomy of Hybrid Metaheuristics with Mathematical

Programming, Constraint Programming and Machine Learning. In: Hybrid Metaheuristics. Springer, pp

3–76

[Tansel D et al., 2022] Tansel D, Ayça D, Hakan EK (2022) A comprehensive survey on recent

metaheuristics for feature selection. In: Neurocomputing. Science Direct, pp 269–296

[Teghem J, 2012] Teghem J (2012) Les heuristiques et les métaheuristiques. In: Recherche

opérationnelle. Ellipse, pp 369–434

[Thaher T et al., 2020] Thaher T, Heidari AA, Mafarja MM, Dong JS, Mirjalili S (2020) Binary Harris

Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection. In: Evolutionary Machine

Learning Techniques. Springer, pp 251–272

[Tilahun SL, 2017] Tilahun SL (2017) Prey predator hyperheuristic. In: Applied Soft Computing.

ELSEVIER, pp 104–114

[Ting TO et al., 2006] Ting TO, Wong KP, Chung CY (2006) A Hybrid Genetic Algorithm/Particle

Swarm Approach for Evaluation of Power Flow in Electric Network. In: Advances in Machine Learning

and Cybernetics. Springer, pp 908–917

[Ting TO et al., 2015] Ting TO, Yang XS, Cheng S, Huang K (2015) Hybrid Metaheuristic Algorithms:

Past, Present, and Future. In: Recent Advances in Swarm Intelligence and Evolutionary Computation.

Springer, pp 71–83

[Toloo M et al., 2022a] Toloo M, Talatahari S, Rahimi I (2022) Multi-Objective Combinatorial

Optimization Problems and Solution Methods, 1st edn. ELSEVIER

[Toloo M et al., 2022b] Toloo M, Talatahari S, Rahimi I (2022) The fundamentals and potential of

heuristics and metaheuristics for multiobjective combinatorial optimization problems and solution

methods. In: Multi-Objective Combinatorial Optimization Problems and Solution Methods.

ELSEVIER, pp 10–12

[Too J et al., 2019] Too J, Abdullah AR, Saad NM (2019) A New Quadratic Binary Harris Hawk

Optimization for Feature Selection. In: Electronics. MDPI

[Tressa M, 2021] Tressa M (2021) CNN Intrusion Detection for Threat Analysis of a Network. In:

Turkish Journal of Computer and Mathematics Education. TURCOMAT

[Tufan E et al., 2021] Tufan E, Tezcan C, Acartürk C (2021) Anomaly-Based Intrusion Detection by

Machine Learning: A Case Study on Probing Attacks to an Institutional Network. In: IEEE Access.

IEEE, pp 50078–50092

[University of Aegean, 2014] University of Aegean (2014) AWID dataset - Wireless security project

210

[University of the Aegean,] University of the Aegean Aegean Wi-Fi Intrusion Dataset (AWID)

[Vanaret C et al., 2020] Vanaret C, Gotteland JB, Durand N, Alliot JM (2020) Certified Global Minima

for a Benchmark of Difficult Optimization Problems. ArXiv

[Verma KK et al., 2022] Verma KK, Singh BM, Dixit A (2022) A review of supervised and

unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance

system. In: International Journal of Information Technology volume. Springer, pp 397–410

[Verma RS et al., 2012] Verma RS, Kumar S (2012) DSAPSO : DNA sequence assembly using

continuous particle swarm optimization with smallest position value rule. In: 2012 1st International

Conference on Recent Advances in Information Technology (RAIT). IEEE, pp 410–415

[Vinod Chandra SS et al., 2022] Vinod Chandra SS, Anand HS (2022) Nature inspired meta heuristic

algorithms for optimization problems. In: Computing. pp 251–269

[Wang GG et al., 2018] Wang GG, Gao XZ, Zenger K, Coelho LS (2018) A Novel Metaheuristic

Algorithm inspired by Rhino Herd Behavior. In: Proceedings of the 9th EUROSIM & the 57th SIMS.

pp 1026–1033

[Wolpert DH, 2021] Wolpert DH (2021) What Is Important About the No Free Lunch Theorems? In:

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer, pp 373–388

[Wolpert DH et al., 1996] Wolpert DH, Macready WG (1996) No Free Lunch Theorems for Search

[Wolpert DH et al., 1997] Wolpert DH, William GM (1997) No Free Lunch Theorems for Optimization.

In: IEEE Transactions on Evolutionary Computation. IEEE, pp 67–82

[Wu G et al., 2017] Wu G, Mallipeddi R, Suganthan PN (2017) Problem Definitions and Evaluation

Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-

Parameter Optimization

[Yang XS, 2010] Yang XS (2010) A New Metaheuristic Bat-Inspired Algorithm. In: Nature Inspired

Cooperative Strategies for Optimization. Springer, Berlin, Heidelberg, pp 65–74

[Yao X, Liu Y, Lin G, 1999] Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. In:

IEEE Transactions on Evolutionary Computation. IEEE, pp 82–102

[Yassa S, 2014] Yassa S (2014) Allocation optimale multicontraintes des workflows aux ressources

d’un environnement Cloud Computing. Sciences et Technologies de l’Information et de la

Communication

[Yu FJ et al., 2009] Yu FJ, Chen HK (2009) Economic-Statistical Design of X-bar Control Charts Using

Taguchi Loss Functions. In: IFAC Proceedings Volumes. ELSEVIER, pp 1719–1723

[Yu X et al., 2022] Yu X, Haokai Z, Ferrantec N (2022) A self-adaptive multi-objective feature selection

approach for classification problems. In: Integrated Computer-Aided Engineering. IOS Press, pp 3 – 21

[Zadeh LA, 1965] Zadeh LA (1965) Fuzzy sets. In: Information and Control. pp 338–353

[Zhang H et al., 2020] Zhang H, Yu T (2020) Taxonomy of Reinforcement Learning Algorithms. In:

Deep Reinforcement Learning. pp 125–133

[Zhang S et al., 2020] Zhang S, Zhang S, Wang B, Habetler TG (2020) Deep Learning Algorithms for

Bearing Fault Diagnostics: A Comprehensive Review. In: IEEE Access. IEEE, pp 29857–29881

211

[Zhang X et al., 2020a] Zhang X, Wang X, Chen H (2020) Improved GWO for large-scale function

optimization and MLP optimization in cancer identification. In: Neural Computing and Applications.

Springer, pp 1305–1325

[Zhang X et al., 2020b] Zhang X, Zhao K, Wang L, Wang Y, Niu Y (2020) An Improved Squirrel Search

Algorithm With Reproductive Behavior. In: IEEE Access. IEEE, pp 101118–101132

[Zhang Y et al., 2020] Zhang Y, Zhou X, Shih PC (2020) Modified Harris Hawks Optimization

Algorithm for Global Optimization Problems. In: Arabian Journal for Science and Engineering volume.

Springer, pp 10949–10974

[Zhao J et al., 2002] Zhao J, Bose BK (2002) Evaluation of membership functions for fuzzy logic

controlled induction motor drive. In: IEEE 2002 28th Annual Conference of the Industrial Electronics

Society. IEEE, pp 229–234

	General introduction
	1. Generalities about optimization and metaheuristics
	1.1. Introduction
	1.2. Definition of optimization
	1.3. Computational complexity theory of optimization problems
	1.4. Mono-objective optimization
	1.4.1. Mathematical expression of a mono-objective problem
	1.4.2. Definition of global and local optimum
	1.4.3. Illustration of global and local optimums in a real case of optimization problem
	1.4.4. Taxonomy of mono-objective optimization methods

	1.5. Multi-objective Optimization
	1.5.1. Mathematical expression of a multi-objective problem
	1.5.2. Particularities of multi-objective optimization problems
	1.5.3. Role of the decision maker in multi-objective optimization
	A. A priori
	B. A posteriori
	C. Interactive

	1.5.4. Definition of dominance in a context of multi-objective optimization
	D. Pareto dominance
	E. Pareto front
	F. Pareto ranks

	1.6. Metaheuristics
	1.6.1. Definition of a heuristic
	1.6.2. Definition of a metaheuristic
	1.6.3. Common specificities of metaheuristics
	1.6.4. The curse of parameters
	A. Offline parameter tuning
	B. Online parameter tuning

	1.6.5. Mathematical interest of metaheuristics for the NP-Hard optimization problems
	1.6.6. The limits of metaheuristics via the No Free Lunch theorem
	1.6.7. Classification of metaheuristics
	1.6.8. Exploration and exploitation
	A. Exploration
	B. Exploitation
	C. Exploration and exploitation measurement methods

	1.6.9. Metaheuristics hybridization
	A. Control strategy
	B. Order of execution strategy
	C. Hybridization level strategy

	1.7. Conclusion

	2. Conception of the metaheuristic HHO-EAS for highly multimodal and high-dimensional optimization problems
	2.1. Introduction
	2.2. Harris Hawk Optimization
	2.2.1. HHO Inspiration
	2.2.2. Search phase (Exploration)
	2.2.3. Attack Phase (Exploitation)
	2.2.4. HHO Algorithm
	A. Rabbit Escaping Energy
	B. Exploration phases
	C. Exploitation phases
	a. Soft besiege
	b. Hard besiege
	c. Soft besiege with progressive rapid dives
	d. Hard besiege with progressive rapid dives

	2.2.5. The HHO’s weaknesses and improvement attempts

	2.3. Our contribution HHO-EAS a new population based metaheuristic inspired from the nature
	2.3.1. Inspiration from the nature
	2.3.2. Our contribution HHO-EAS
	A. A smart distribution of exploration and exploitation phases managed with a Fuzzy Inference Sytem (FIS)
	B. General concepts
	C. Theoretical fundamentals
	a. Universe of discourse
	b. Fuzzy set
	c. Membership function
	d. Fuzzy rules
	e. Fuzzification
	f. Defuzzification
	g. Knowledge base
	h. Inference Engine

	D. Variables and membership functions of FISREE
	a. Input and crisp output value
	b. Output universe of discourse
	c. Input and Output linguistic variables
	d. Membership functions
	e. Triangular membership functions

	E. FISREE’s architecture
	a. Fuzzification block
	b. Knowledge Base block
	c. Inference engine block
	d. Defuzzification block

	F. Graphical results
	a. Evolution of the amplitude e during the iterations
	b. Evolution of the REE function during the Iteration
	c. Exploration and exploitation distributrion
	d. Analysis of the distribution exploration and exploitation phases strategy implemented by FISREE

	G. Exploitation improvement with the encirclement and attack equations
	a. General concepts of encirclement and Attack equations
	b. Encirclement equations
	c. Encirclement equations for a bidimensional search space
	d. Encirclement and attack equations driven by the Harrys Hawk hierarchy 𝛼−𝛽−𝛿

	H. Computational complexity of HHO-EAS

	2.4. Experiment and discussion
	2.4.1. Analytical working station setup
	2.4.2. Programming language
	2.4.3. Benchmark functions
	A. General benchmark
	B. Specific benchmark

	2.4.4. Metaheuristic parameters
	A. General tests
	B. Specific tests

	2.4.5. Performance metrics
	2.4.6. Experimental results on the general benchmark tests
	A. Exploitation performances
	B. Exploration performances
	C. Local optima avoidances and balance between exploitation and exploration

	2.4.7. Experimental results on the CEC 2017 specific benchmark tests
	A. Wilcoxon test
	B. Wilcoxon tests for general results Table A5.1
	C. Wilcoxon tests for specific results Table A5.2

	2.5. Conclusion

	3. Elaboration of an intrusion detection system against 802.11 specific attacks with BHHO-EAS and the Wrapper feature selection method
	3.1. Introduction
	3.2. Overview of Intrusion Detection Systems and specification of the CNN-IDS
	3.2.1. Definition of an Intrusion
	3.2.2. Description of the main modules required for IDSs
	3.2.3. The three main classes of IDS and their detection method
	3.2.4. CNN-IDS defense strategy and specification

	3.3. Related work
	3.4. Design of BHHO-EAS for a efficient Wrapper feature selection process
	3.4.1. Description of the feature selection process
	A. Mathematical theory of the feature selection
	B. The benefits of the feature selection to the design of a IDS
	C. Feature selection methods
	a. Filter method
	b. Wrapper method
	c. Embedded method
	d. Hybrid method

	3.4.2. Binary vector initialization strategies
	A. Random initialization
	B. Great initialization
	C. Small initialization

	3.4.3. Flow chart of the feature selection process
	A. Selection and validation
	B. Termination tests of the selection process
	C. Feature subset validation

	3.4.4. Design of the binary metaheuristic BHHO-EAS
	A. Module M1
	B. Module M2

	3.5. Application of BHHO-EAS to design a CNN-IDS specific to 802.11 attacks
	3.5.1. Mathematical modeling of the Wrapper feature selection process in a multi-objective optimization problem
	3.5.2. Convolutional neural network for the creation of a CNN-IDS
	A. General overview of Machine Learning
	a. Reinforcement Learning
	b. Unsupervised Learning
	c. Supervised Learning

	B. General skills of CNNs for intrusion detection and to be embedded into an IoT

	3.5.3. Analysis of the AWID3 dataset
	3.5.4. Preprocessing of the dataset AWID3
	A. Application of the 5 requirements of the CNN-IDS specifications
	B. Data cleaning
	C. Data balancing by subsampling
	D. Data encoding

	3.6. Experimental results and discussion
	3.6.1. Analytical working station setup and IoT environment
	3.6.2. Experimental parameters and performance metrics
	A. Wrapper feature selection process
	B. CNN-IDS Architecture
	C. Performance metrics

	3.6.3. The 5 steps to implement Wrapper feature selection process driven by BHHO-EAS
	3.6.4. Results and discussion
	A. Results of the Wrapper feature selection multi-objective optimization problem
	B. Experimental results of the CNN-IDS performances
	C. Experimental results of the E-CNN-IDS performances embedded in IoT

	3.7. Conclusion

	General conclusion
	Appendix 1: General benchmark functions
	Appendix 2: Optimisation results of HHO-EAS against HHO, GWO and PSO on the general benchmark of 19 functions for dimension 2, 30,100 and 1000
	Appendix 3: Graphical representation of the general test results
	Appendix 4: Optimisation results of HHO-EAS against HHO on the specific benchmark of 20 functions from CEC 2017 for dimension 100
	Appendix 5 : Wilcoxon test, p-values results,Wilcoxon rank-sum test with 5% significance
	Appendix 6 : HHO Algorithm
	Appendix 7 : HHO-EAS Algorithm
	Appendix 8: BHHO-EAS Algorithm
	Appendix 9: Wrapper features selection architecture
	Appendix 10: Diagramme and 2D architecture of CNN-IDS
	Appendix 11: Experimental results of BHHO-EAS
	Appendix 12: Performances of the IDS trained with AWID3 dataset
	Appendix 13: Performances of the E-CNN-IDS embedded on a Raspberry Pi 4
	References

