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Résumé  

Face à la problématique croissante de la cybersécurité des objets connectés (IoT) au sein des réseaux 

Wi-Fi d’entreprise et étatique tel que la Gendarmerie nationale, cette thèse expose notre méthode de 

conception d’un Système de Détection d’Intrusion (IDS) contre les attaques spécifiques 802.11 et 

embarquable dans un IoT aux ressources de calcul et de mémoire limitées. Notre méthode est basée sur 

l’optimisation métaheuristique, la sélection des dimensions et les algorithmes Deep Learning.  

Le problème d’optimisation de sélection des dimensions est un problème discret de type NP-Hard. 

Dans la deuxième partie de cette thèse nous avons donc conçu une nouvelle métaheuristique, Harris Hawk 

Optimization Encirclement Attack Synergy (HHO-EAS), en mesure de trouver une bonne solution 

acceptable optimale ou proche de l’optimale en un temps raisonnable à cette catégorie de problème 

d’optimisation. HHO-EAS est issue d’une stratégie d'hybridation de la métaheuristique Harris Hawk 

Optimization (HHO) avec l’ambition de supprimer ses faiblesses dans la résolution des problèmes 

d'optimisation hautement multimodaux et de grande dimension. Notre stratégie d’hybridation est 

entièrement bio-inspirée par une synergie de chasse gagnant-gagnant inopinée entre deux prédateurs 

pendant les périodes hivernales extrêmement difficiles : le corbeau et le loup. Les facultés exploratoires 

des corbeaux combinées à la capacité des loups à capturer des proies plus grosses qu'eux avec rapidité et 

efficacité, permettent à ces deux prédateurs de détecter et d'attraper de bonnes proies très rares et très 

difficiles à chasser en période hivernale rigoureuse. Afin de modéliser mathématiquement cette synergie 

de chasse gagnant-gagnant avec les équations d'encerclement et d'attaque et de l'intégrer dans HHO, nous 

avons utilisé la logique floue pour créer un système d'inférence floue (FIS) de type Mamdani. HHO-EAS 

a été testé d'une part avec HHO, GWO et PSO sur un benchmark général de 19 fonctions bien connues 

et d'autre part avec HHO sur un benchmark spécifique des 20 fonctions les plus complexes du CEC 2017. 

Les résultats expérimentaux obtenus sur ces deux benchmarks démontrent la supériorité de HHO-EAS 

sur HHO pour des problèmes d'optimisation hautement multimodaux et de grande dimension et a ainsi 

validé notre stratégie d'hybridation entièrement bio-inspirée. 

Disposant de la métaheuristique HHO-EAS en mesure de traiter les problèmes d’optimisation NP-

Hard, la troisième partie de cette thèse est une application concrète de la métaheuristique HHO-EAS pour 

concevoir un IDS contre les attaques spécifiques 802.11 au profit des IoT. Nous avons réalisé une 
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méthode de sélection des dimensions de type Wrapper plus avancée que celle que l'on peut retrouver dans 

la littérature. Notre méthode est basée sur des algorithmes métaheuristiques, les algorithmes Deep 

Learning et l'exploitation de la puissance de calcul de la technologie GPU pour le calcul des valeurs de 

la fonction objectif. Pour ce faire nous avons dans un premier temps hybridé la métaheuristique HHO-

EAS pour créer Binary HHO-EAS (BHHO-EAS) adaptée à l'optimisation du problème multi-objectif 

NP-Hard de sélection des dimensions de type Wrapper dans un espace de recherche binaire. Puis nous 

avons dans un deuxième temps intégré BHHO-EAS à notre nouvelle méthode de sélection des 

dimensions Wrapper combinée à l'algorithme Deep Learning Convolutional Neural Network (CNN). 

Afin d'être cohérent avec l'évolution technologique des systèmes d'information des entreprises et des 

nouvelles attaques Wi-Fi, nous avons appliqué notre méthode au nouveau dataset AWID3. L’objectif 

ultime est de concevoir un CNN-IDS, dans un contexte de Green computing, pouvant être embarqué dans 

un IoT et qui détecte les sept attaques spécifiques au 802.11: Deauthentication (Deauth), Disassociation 

(Disas), ReAssociation ((Re)Assoc), Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation 

Attack (Krack) et Kr00k. Les résultats de nos travaux ont conduit à une sélection de 8 dimensions parmi 

les 253 du dataset AWID3 et un CNN-IDS avec de très bonnes performances de prédiction des attaques 

supérieures à 99,70%. Nos travaux ont ainsi prouvé la capacité de notre méthode pilotée par BHHO-EAS 

à fournir une bonne solution au problème d'optimisation multi-objectif NP-Hard de sélection des 

dimensions et a contribué au domaine de la cybersécurité des réseaux Wi-Fi d’entreprise en concevant 

un CNN-IDS compétitif et suffisamment léger pour être intégré dans un IoT. Dans le cadre d’un Proof of 

Concept (PoC) technique, un prototype de CNN-IDS, nommé E-CNN-IDS, a été embarqué et testé en 

condition réelle dans un Raspberry Pi 4 Model B. E-CNN-IDS a démontré d’excellentes performances 

de détection des attaques spécifiques 802.11. 

Mots-clés : Métaheuristique, HHO-EAS, Synergie, Corbeau, Loup, Logique floue, Encerclement, 

Attaque, Entreprise, Cybersécurité, Wi-Fi, IoT, IDS, Sélection des dimensions Wrapper, Optimisation 

multi-objectif, CNN, GPU, AWID3.  
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Abstract 

Faced with the growing problem of cybersecurity of Internet of Things (IoT) within company and 

state Wi-Fi networks such as the National Gendarmerie, this thesis presents our method for designing an 

Intrusion Detection System (IDS) against 802.11 specific attacks and embeddable in an IoT with limited 

computing and memory resources. Our method is based on metaheuristic optimization, feature selection 

and Deep Learning algorithms. 

The feature selection optimization problem is a discrete NP-Hard type problem. In the second part of 

this thesis we have therefore designed a new metaheuristic, Harris Hawk Optimization Encirclement 

Attack Synergy (HHO-EAS), able to find a good solution in an acceptable time to this category of 

optimization problem. HHO-EAS comes from a hybridization strategy of the Harris Hawk Optimization 

(HHO) metaheuristic with the ambition to remove its weaknesses in solving highly multimodal and high-

dimensional optimization problems. Our hybridization strategy is entirely bio-inspired by an unexpected 

win-win hunting synergy between two predators during extremely difficult winter periods: the crow and 

the wolf. The exploratory faculties of crows, combined with the ability of wolves to capture prey larger 

than themselves with speed and efficiency, allow these two predators to detect and catch good prey that 

is very rare and very difficult to hunt in rigorous winters. In order to mathematically model this win-win 

hunting synergy with encirclement and attack equations and integrate it into HHO, we used fuzzy logic 

to create a Mamdani-like fuzzy inference system (FIS). HHO-EAS was tested on the one hand with HHO, 

GWO and PSO on a general benchmark of 19 well-known functions and on the other hand with HHO on 

a specific benchmark of the 20 most complex functions of the CEC 2017. The experimental results 

obtained on these two benchmarks demonstrate the superiority of HHO-EAS over HHO for highly 

multimodal and high-dimensional optimization problems and thus validated our fully bio-inspired 

hybridization strategy. 

Having the HHO-EAS metaheuristic able to deal with NP-Hard optimization problems, the third part 

of this thesis is a concrete application of the HHO-EAS metaheuristic to design an IDS against 802.11 

specific attacks for the benefit of IoT. We have carried out a more advanced Wrapper feature selection 

method than which can be found in the literature. Our method is based on metaheuristic, Deep Learning 
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and the exploitation of the computing power of GPU technology for the calculation of the  objective 

function values. To do this, we first hybridized the HHO-EAS metaheuristic to create Binary HHO-EAS 

(BHHO-EAS) adapted to the NP-Hard multi-objective optimization problem of feature selection in a 

binary search space. Then, in a second step, we integrated BHHO-EAS with our new Wrapper feature 

selection method combined with the Deep Learning Convolutional Neural Network (CNN) algorithm. In 

order to be consistent with the technological evolution of company information systems and new Wi-Fi 

attacks, we applied our method to the new AWID3 dataset. The ultimate goal is to design a CNN-IDS, in 

a Green computing context, that can be embedded in an IoT and that detects the seven 802.11 specific 

attacks: Deauthentication (Deauth), Disassociation (Disas), ReAssociation ((Re)Assoc), Rogue Access 

Point (Rogue AP), Evil Twin, Key Reinstallation Attack (Krack) and Kr00k. The results of our work led 

to a selection of 8 features among the 253 of the AWID3 dataset and a CNN-IDS with very good 

performance in attack prediction above 99.70%. Our work thus proved the ability of our method, driven 

by BHHO-EAS, to provide a good solution to the NP-Hard multi-objective optimization problem of 

feature selection and contributed to the field of cybersecurity in company Wi-Fi networks by designing 

a competitive CNN-IDS that is light enough to be integrated into an IoT. As part of a technical Proof of 

Concept (PoC), a CNN-IDS prototype, named E-CNN-IDS, was embedded and tested in real conditions 

in a Raspberry Pi 4 Model B. E-CNN-IDS demonstrated excellent performance in detecting 802.11 

specific attacks. 

 

Keywords: Metaheuristics, HHO-EAS, Synergy, Crow, Wolf, Fuzzy Logic, Encirclement, Attack, 

Company, Cybersecurity, Wi-Fi, IoT, IDS, Wrapper feature selection, Multi-objective Optimization, 

CNN, GPU, AWID3.  
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General introduction 

Technological progress has enabled companies as well as state administrations to integrate a 

movement of upward digitization in their work organization methods. IoT plays a key role in this 

evolution: Smart phones, drones, connected watches, tablets, laptops, connected screens, connected 

lamps, nano computer, etc. Along with Bluetooth, Wi-Fi (IEEE 802.11 standard) is one of the wireless 

protocols most used by IoT. However, this protocol is subject to several 802.11 specific cyber-attacks 

and the wireless specificity of this protocol only facilitates the action of cyberattackers. Moreover, given 

that in companies’ information systems the Wi-Fi wireless network coexists with the wired network, 

hackers can use it as a gateway to extend their attacks on the latter. Therefore, in companies’ information 

systems, the Wi-Fi network represents an attack surface that can cause very serious consequences for the 

company. The literature does very little about the consequences of these Wi-Fi cyberattacks on the 

companies: 

 Unavailability of computer services hosted on its network: Web servers, E-mail, data 

exchange, etc.; 

 Theft or destruction of sensitive data: customer files, passwords, medical data, etc.; 

 Damage to the image of the company;  

 Financial loss; 

 Judicial backlash due to illicit access to company computer systems and dissemination of 

sensitive company data. 

To deal with these constantly evolving threats, IoT systems must be able to have a smart cyber-defense 

system allowing the detection of attacks. These systems are called Intrusion Detection System (IDS). The 

design of the IDS must exploit a distinct approach from traditional signature-based IDSs in order to satisfy 

two main objectives: 

 Maximize real-time detection performance against known and unknown 802.11 specific 

attacks; 

 Request a minimum of computing and memory resources in order to allow the IDS to be 

embedded in an IoT. 



 

13 

 

Mathematically, we must therefore solve a multi-objective optimization problem. But, as this 

manuscript demonstrates, the complexity of this multi-objective optimization problem belongs to the NP-

Hard class. In order to solve this complex optimization problem, we have focused in this thesis on the 

potential of metaheuristic algorithms. These algorithms are the first important point of this thesis and 

constitute the keystone of our work. Unlike classical optimization methods, metaheuristics, such as 

Particle Swarm Optimization (PSO), Differential Evolution (DE) or Harris Hawk Optimization (HHO) 

consider the optimization problem as a black box whatever its internal mathematical specificities. 

Furthermore, they make it possible to obtain in an acceptable time a good solution to NP-Hard 

optimization problems. However, metaheuristics are likely to show weaknesses when faced with the 

growth of the dimension and the multimodality of the optimization problem. This particularly concerns 

feature selection problems that fall victim to the curse of dimensionality. This problem is one of the 

components of the multi-objective optimization problem of this thesis. 

In order to defend ourselves against cyber threats targeting IoT systems exploiting Wi-Fi within the 

companies' information systems and state administration information systems, the work presented in this 

thesis manuscript provides contributions in the following three fields: metaheuristic algorithms, feature 

selection algorithms and cybersecurity. 

In the field of metaheuristic algorithms, we designed two new metaheuristics: HHO-EAS (Harris 

Hawk Optimization – Encirclement Attack Synergy) [Sassi M et al., 2023] and BHHO-EAS (Binary 

HHO-EAS). 

With the ambition of meeting the cybersecurity challenges of this thesis, the new metaheuristic HHO-

EAS was designed via a new hybridization strategy entirely bio-inspired by the hunting synergy between 

crows and wolves during the harsh winter periods. We will see on two benchmarks that HHO-EAS, 

compared to three well-known metaheuristics including PSO, GWO and HHO, demonstrates very good 

performances on high-dimensional (greater than 100) and highly multimodal optimization problems. The 

promising results obtained at this stage of our works made it possible to validate the use of HHO-EAS 

for the feature selection problems and the design of a CNN-IDS (Convolutional Neural Network Intrusion 

Detection System) against the 802.11 specific attacks.  
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The feature selection optimization problems of high-dimensional datasets are of NP-Hard type within 

a discrete binary search space. In order to allow HHO-EAS to solve this category of problem, we 

hybridized it while keeping its algorithmic and mathematical strategy to create BHHO-EAS. 

In the field of feature selection algorithms and cybersecurity, to design our CNN-IDS, we improved 

the Wrapper feature selection system by integrating the ability to exploit all metaheuristics, all Deep 

Learning algorithms, all kind of dataset as well as GPU technology. In the applicative part of this 

manuscript which is the second important point of this thesis, our system thus allowed us on one hand, 

to benefit from the superior predictive skills of Deep Learning algorithms instead of traditional Machine 

Learning algorithms commonly observed in the literature for the feature selection. And on the other 

hand, during the feature selection process driven by the metaheuristic BHHO-EAS, the latter is able to 

exploit the computing power of the GPUs when calculating the objective function values for each agent 

of BHHO-EAS and of the CPUs for updating their positions in the binary search space. 

In a supervised learning context, we have focused our attention on the Deep Learning Convolutional 

Neural Network (CNN) algorithms for their excellent attack prediction skills and their inherent 

capabilities in their architecture to be embedded in an IoT. 

Concerning the dataset, thanks to the excellent work of the researchers from the Greek Aegean 

University, the new AWID3 dataset (Aegean Wi-Fi Intrusion Dataset 3) was created in 2021. Much 

more complex, adapted to the technical specificities of companies' information systems and richer in 

Wi-Fi attacks than its predecessor AWID2, the AWID3 dataset makes it possible to create IDSs against 

very recent 802.11 specific attacks targeting companies' information systems. Furthermore, at the time 

of writing this manuscript, we are the first to applied a metaheuristic optimization method to the feature 

selection of AWID3 dataset. Indeed, in the literature, no feature selection via metaheuristic optimization 

methods were used on the AWID3 dataset.  

The results of our feature selection method and design of a CNN-IDS against 802.11 specific attacks 

were compared to the work of Chatzoglou E. et al. in [Chatzoglou E et al., 2022a] recognized by the 

community of researchers and which are the only ones to be in the same dominants as ours. For a fair 

comparison between the 4 best IDS of [Chatzoglou E et al., 2022a] and our CNN-IDS, the performance 

measures are based on AUC and F1 metrics as well as the Confusion matrix and the number of features 
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selected from the AWID3 dataset. The experimental results demonstrated that our CNN-IDS provides 

extremely competitive results compared to the 4 best IDS of [Chatzoglou E et al., 2022a]. And in order 

to prove the ability of our CNN-IDS to be embedded in an IoT environment with limited computing and 

memory resources, we carried out a technical Proof of Concept (PoC) on a Raspberry Pi 4. 

In line with our objectives set out above, our thesis manuscript is organized into three chapters. First 

of all, in order to understand the mathematical challenges of optimization problems and the advantages 

of metaheuristics in solving these problems, we provided in the first chapter a general presentation of 

mono-objective and multi-objective optimization problems as well as metaheuristics algorithms.  

In the second chapter we present our design strategy of the new metaheuristic HHO-EAS for solving 

high-dimensional and highly multimodal optimization problems and its performances on general and 

specific benchmarks. Our design strategy is based on a hybridization entirely bio-inspired by the hunting 

synergy between crows and wolves. 

The third chapter is the application of HHO-EAS to IoT cybersecurity within companies’ information 

systems. We explain our hybridization method of HHO-EAS to design BHHO-EAS, thus allowing it to 

solve the NP-Hard multi-objective optimization problems of feature selection. Thus, BHHO-EAS drives 

our Wrapper feature selection method and selects the most relevant AWID3 feature subset that maximizes 

the prediction performance of CNN-IDS while minimizing its complexity in order to be integrated into 

an IoT with limited computing and memory resources. We will conclude this thesis by recalling our 

contributions and detailing the promising perspectives for our future work. 

The second and third chapters of our thesis have both been the subject of an article submitted to the 

journal Artificial Intelligence Review. The first article has been validated and accepted for publication 

[Sassi M et al., 2023]. We have also written Chapter 3 of the book Optimization and Machine Learning: 

Optimization for Machine Learning and Machine Learning for Optimization [Sassi M, 2022] which 

describes the synergy between metaheuristics and the feature selection process for the design of an IDS.  
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Chapter 1 

1. Generalities about optimization and metaheuristics 

1.1. Introduction 

Optimization problems are encountered on a daily basis regardless of the sector of activity. A business 

manager wants his schedule for the week to take into account all the assignments of the week while taking 

into account the constraints imposed by his employees and minimizing operating costs. The traveler 

salesman will want to deliver to all their customers as quickly as possible by choosing the shortest route 

and consuming as little fuel as possible. Finally, electronics engineers, forced by the inflation of metal 

prices, seek to create electronic boards using as little metal as possible while connecting all the 

components of the electronic board. 

In order to satisfy these needs, engineers implement optimization methods. Metaheuristics are among 

the most powerful and exploited optimization methods to solve optimization problems categorized as 

NP-Hard. This class of problems are insurmountable for other "classical" optimization methods. In this 

chapter, after mathematically defining optimization and the computational complexity theory in the 

sections 1.2 and 1.3, we will provide a general description of mono-objective optimization in section 1.4. 

Since real-world optimization problems must satisfy multiple objectives, which is the case of the subject 

of this thesis, we will present in section 1.5 a general description of the multi-objective optimization 

problems (MOOPs). Then we will provide in section 1.6 a general review of the keystone algorithms of 

this thesis: metaheuristics.  

1.2. Definition of optimization 

Optimization is defined as "the search for the minimum or the maximum of a given function" [Siarry 

P et al., 2002a]. It is therefore a question of finding a data vector representing candidate decision variables 

which minimizes or maximizes the objective function(s). The objective function(s) mathematically model 

the optimization problem to be solved. In addition, optimization problems are very often limited by 

equality or inequality constraints that must be taken into account in the decision variables of the problem. 

We thus obtain a constrained optimization problem for which the decision variables fluctuate in a 

restricted search space. And depending on the possibilities of assigning the values of the decision 
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variables, whether they are limited by discrete values in ℤ+ or unlimited by continuous values in ℝ, the 

problem is respectively categorized as a combinatorial, integer variable or continuous [Singh P et al., 

2021]. 

This general definition applies to both categories of optimization problem depending on whether the 

problem must satisfy one or more objective functions. If there is only one objective function, the 

optimization is said to be mono-objective. On the other hand, if there are several objective functions, the 

optimization will be multi-objective. But before addressing these two categories of problem it is necessary 

to appreciate their level of complexity. 

1.3. Computational complexity theory of optimization problems 

In chapter 3 of this thesis we analyze and deal with feature selection problem whose computational 

complexity is categorized as 𝑁𝑃-Hard. In order to measure the complexity of this category of problem 

it is essential above all to define the fundamental notions of the theory of the complexities of 

optimization problems. 

We distinguish two main classes of problem: 𝑃 and 𝑁𝑃 [Du D et al., 2014; Izadkhah H, 2022; 

Rabbouch B et al., 2023]. These two classes discriminate the problems according to whether it is 

possible or not to solve them by a deterministic polynomial algorithm. More precisely does there exist 

a polynomial of degree m which dominates the time of resolution of the problem or not? 

A problem belongs to class 𝑃 (Polynomial) if there is a deterministic algorithm that can solve this 

problem exactly in polynomial time. An example of a well-known class 𝑃 problem is that of Linear 

Search. As a consequence of the above, a candidate solution to this problem of class 𝑃 can be verified 

in polynomial time is therefore 𝑃 a subset of the problem class 𝑁𝑃 (𝑃 ⊂ 𝑁𝑃).  

A problem belongs to the class 𝑁𝑃 (Non-deterministic Polynomial) if it can be solved by a non-

deterministic polynomial algorithm and we can verify a candidate solution to this 𝑁𝑃 problem in 

polynomial time. A classic example of an 𝑁𝑃 problem is the Traveling Salesman Problem TSP. 

Among the 𝑁𝑃 class problems we can find the most complex problems: 𝑁𝑃-Complete (𝑁𝑃𝐶) and 

𝑁𝑃-Hard. 𝑁𝑃-Hard problems find several definitions in the literature that can overlap globally. The one 
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that is the most precise and the most adequate to this thesis is the one that follows [Siarry P, 2014a]. We 

distinguish the cases where the optimization problem is discrete or continuous: 

 A continuous optimization problem is class 𝑁𝑃-Hard if we don't know algorithm to find the 

exact solution with certainty in a limited computation time. This case is encountered for 

high-dimensional and highly multimodal engineering optimization problems. 

 A discrete optimization problem of dimension 𝐷 is 𝑁𝑃-Hard if there is no integer 𝑚 allowing 

to dominate the solving time by 𝐷𝑚. This is the case for the feature selection problem whose 

resolution time is an exponential function of the dimension of the problem. 

As for problems the 𝑁𝑃𝐶 problem class they are both 𝑁𝑃 and 𝑁𝑃-Hard. 

We are now able to appreciate the complexity of an optimization problem, especially if it is 𝑁𝑃-

Hard, whether it is mono-objective or multi-objective. 

1.4. Mono-objective optimization 

1.4.1. Mathematical expression of a mono-objective problem 

As we have just stated above, optimization in a d-dimensional search space consists of finding a subset 

of optimal decision variables in order to minimize or maximize an objective function that mathematically 

models the optimization problem [Cuevas E et al., 2021b].  

A mono-objective optimization problem under constraints is mathematically expressed as follows in 

(1.1) [Houssein EH et al., 2021b; Khanduja N et al., 2021; Singh P et al., 2021]: 

 One mono-objective function 𝑓 to minimize (or to maximize) in a d-dimensional search 

space; 

 A vector �⃗� of p inequality constraints 𝑔𝑘; 

 A vector ℎ⃗⃗ of q equality constraints ℎ𝑗.  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒): 𝑓(𝑥)                                
𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑔𝑘(𝑥) ≤ 0 , 𝑘 ∈  {1, . . , 𝑝}

𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: ℎ𝑗(𝑥) = 0 , 𝑗 ∈ {1, . . , 𝑞}      

𝑥 = (𝑥1, … , 𝑥𝑖,… . , 𝑥𝑑), 𝑖 ∈ {1, . . , 𝑑}                             

 𝑥𝑖 ∈ [𝑙𝑖; 𝑢𝑖] , 𝑥 ∈ 𝑆
𝑑                                                         

�⃗⃗⃗�(𝑥) = (𝑔1,… , 𝑔𝑘, … . , 𝑔𝑝)                                            

ℎ⃗⃗⃗(𝑥) = (ℎ1, … , ℎ𝑗, … . , ℎ𝑞)                                              

      (1.1) 

𝑙𝑖 and 𝑢𝑖 represent respectively the lower and upper bounds of the search space of the decision variable 

𝑥𝑖. 𝑙𝑖 and 𝑢𝑖 are also the components of the vectors 𝑳 and 𝑼 of dimension d. 𝑳 and 𝑼 thus create a hyper 

rectangular domain 𝑆𝑑. Furthermore, to be more comprehensive, the space where the search space and 

all the constraints are taken into account is the realizable value space  ℵ𝑑. 

The optimization problem can be split into two categories depending on the existence of local optima 

in the objective function 𝑓. An optimization problem with a unique global optimum is said to be 

unimodal. While an optimization problem with one or more local optima and one or more global optima 

is said to be multimodal. 

1.4.2. Definition of global and local optimum 

We distinguish three types of optimum: global optimum, strict local optimum and weak local 

optimum [Siarry P et al., 2002a]. 

 A global optimum 𝑥𝑔 is a global minimum (or a global maximum) of the objective function 

𝑓 if 

∀ 𝑥 ∈ 𝑆𝑑 , 𝑥 ≠ 𝑥𝑔 | 𝑓(𝑥𝑔) ≤ 𝑓(𝑥) (or  𝑓(𝑥𝑔) ≥ 𝑓(𝑥) if maximum) 

 Similarly, a local optimum 𝑥𝑤 is a weak local minimum (or a weak local maximum) of the 

objective function 𝑓 if there exists a neighborhood 𝑁(𝑥𝑤) of 𝑥𝑤 defined by: 𝑥 ∈

𝑁(𝑥𝑤), ∃ ε > 0 | ‖𝑥 − 𝑥𝑤‖  < ε. 

Thus ∀ 𝑥 ∈ 𝑁(𝑥𝑤), 𝑥 ≠  𝑥𝑤| 𝑓(𝑥𝑤) ≤ 𝑓(𝑥) (or 𝑓(𝑥𝑤) ≥ 𝑓(𝑥) if local maximum). 

 And a local optimum 𝑥𝑠 is a strict local minimum (or a strict local maximum) of the objective 

function 𝑓 if there exists a neighborhood 𝑁(𝑥𝑠) of 𝑥𝑠 such that 

∀ 𝑥 ∈ 𝑁(𝑥𝑠), 𝑥 ≠  𝑥𝑠| 𝑓(𝑥𝑠) < 𝑓(𝑥)  (or 𝑓( 𝑥𝑠) > 𝑓(𝑥) if strict local maximum) 
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We will exploit these mathematical definitions in what follows by a simple example of optimization 

problem. 

1.4.3. Illustration of global and local optimums in a real case of optimization problem 

In order to illustrate the global and local minima on a concrete case of an optimization problem, let 

us take the example of the function 𝑓(𝑥) = ∑ 𝑎𝑗 . 𝑥
𝑗20

𝑗=0 . 𝑓 is a polynomial whose coefficients 𝑎𝑗 are 

created using the least squares method of [Krueger M, 1990]. Moreover, ∀𝑥 ∈ [0,1], 𝑓(𝑥) ∈ [0,1]. The 

curve of function 𝑓 is illustrated in Fig. 1.1.  

 

Fig. 1.1. Polynomial function 𝑓 with one variable [Chelouah R, 2000] 

The particularity of the function 𝑓 is that it has in [0,1] , five diversified local minima. 

 A global minimum 𝑋2  equal to 0.4666 with 𝑓(𝑋2) = 0.01048; 

 A strict local minimum 𝑋1 with 𝑓(𝑋1) almost equal to 𝑓(𝑋2) and positioned in a wider 

valley ; 

 Three strict local minimums 𝑋3, 𝑋4 et 𝑋5 with values 𝑓(𝑋3), 𝑓(𝑋4) and 𝑓(𝑋5) far from 

equaling 𝑓(𝑋2) and positioned in wide valleys for 𝑋3, 𝑋4 and a narrow valley for 𝑋5; 

 No weak local minimum. 

To solve mono-objective optimization problems, mathematics offers a wide range of possibilities. 

1.4.4. Taxonomy of mono-objective optimization methods 

The range of mathematical methods for solving mono-objective problems is substantial. As we 

explained in the definition of optimization above, these methods can be divided into two categories: 

combinatorial or discrete methods and continuous methods. Combinatorial methods exploit a 
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permutation of finite set of numbers as decision variables. The Traveling Salesman problem is a classic 

example. And discrete methods exploit discrete values as decision variables as in the Binary feature 

selection problem. It includes exact and approximate methods. Exact methods such as Branch and 

Bound [Hillier FS et al., 1995] or Simplex method [Nash JC, 2000] make it possible to obtain the exact 

global optimum of certain "simple" optimization problems with a search space that is not very complex 

and of small and medium dimension. On the contrary, approximate methods such as Heuristics and 

Metaheuristics [Ahmed F et al., 2021; Houssein EH et al., 2021b]are used for so-called "difficult" 

optimization problems.  

Continuous methods as their name suggests exploit continuous decision variables. They make it 

possible to deal with linear and nonlinear optimization problems. Linear optimization problems are 

solved by linear programming methods. And nonlinear optimization problems also include so-called 

"difficult" problems that can be solved, according to their mathematical specificities, either with local 

methods such as Gradient based ones or global methods such as Metaheuristics. 

Fig. 1.2 provides the taxonomy of mono-objective optimization methods that we have just exposed. 

 

Fig. 1.2. Taxonomy of optimization methods for mono-objective problems [Chelouah R, 2000; Siarry 

P et al., 2002a] 
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We now have an exhaustive view of mono-objective optimization problems and their methods for 

solving them. However, real-world optimization problems are not satisfied with only a single objective 

to be satisfied but with a multitude of contradictory objectives. These are called multi-objective problems. 

1.5. Multi-objective Optimization 

Real-world engineering optimization problems typically require consideration of multiple adversarial 

optimization sub problems and just like single-objective problems, this requires taking into account 

several decision variables. For example, a carpenter who has to build a plastic board with the least 

possible deformation and the smallest possible section. These optimization problems are said to be multi-

objective [Alkebsi K et al., 2020; Houssein EH et al., 2021b; Abdollahzadeh B et al., 2022; Toloo M et 

al., 2022a]. This is also the case of the optimization problem which constitutes the mathematical modeling 

of the objectives of our thesis: satisfying both strategic objectives of maximizing the cybersecurity 

performance of an IDS and integrating it into an IoT with limited computing and memory resources. In 

order to better understand this vital contemporary problem, it is essential to have the theoretical 

fundamentals of multi-objective optimization. 

1.5.1. Mathematical expression of a multi-objective problem 

The mathematical expression of a multi-objective optimization problem (MOOP) is similar in form 

to that of a single-objective optimization problem. The fundamental difference is that we no longer have 

to deal with single objective but with a vector of functions composed of several objective functions. 

A multi-objective optimization problem under constraints in real life is mathematically expressed as 

follows in (1.2) [Al-Tashi Q et al., 2020; Rodríguez MA et al., 2020; Houssein EH et al., 2021b; 

Khanduja N et al., 2021; Panagant N et al., 2021; Yu X et al., 2022]: 

 A vector  𝑓 of n objective function 𝑓𝑙 to minimize or to maximize in a d-dimensional search 

space, with n>1; 

 A vector �⃗� of p inequality constraints 𝑔𝑘; 

 A vector ℎ⃗⃗ of q equality constraints ℎ𝑗.  
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 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒): 𝑓(𝑥)               

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: �⃗�(𝑥) ≤ 0         

𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: ℎ⃗⃗(𝑥) = 0             

𝑥 = (𝑥1, … , 𝑥𝑖, … . , 𝑥𝑑), 𝑖 ∈ {1, . . , 𝑑}        

 𝑥𝑖 ∈ [𝑙𝑖; 𝑢𝑖] , 𝑥 ∈ 𝑆
𝑑                                       

𝑓(𝑥) = (𝑓1, … , 𝑓𝑙 , … . , 𝑓𝑛), 𝑙 ∈ {1, . . , 𝑛}     

�⃗�(𝑥) = (𝑔1, … , 𝑔𝑘 , … . , 𝑔𝑝), 𝑘 ∈ {1, . . , 𝑝} 

ℎ⃗⃗(𝑥) = (ℎ1, … , ℎ𝑗, … . , ℎ𝑝), 𝑗 ∈ {1, . . , 𝑞}  

       (1.2) 

As in mono-objective optimization, 𝑙𝑖 and 𝑢𝑖 represent respectively the lower and upper bounds of the 

research space of the decision variable 𝑥𝑖. And 𝑆𝑑, ℵ𝑑.and F d are respectively the search space, the 

realizable value space and the objective function space. These three spaces are illustrated in Fig. 1.3 for 

d=2. Fig. 1.3 illustrates the evolution of the search space 𝑆2 to ℵ2 when we apply the constraints of the 

optimization problem then to the objective function space F 2 when we apply the two objective functions 

(𝑓1, 𝑓2). We also provide, via the color codes green triangle, yellow square, red circle and blue star, the 

Pareto fronts of the four types of bi-objective optimization problem Min-Min, Min-Max, Max-Max and 

Max-Min. 

 

Fig. 1.3. Search space, realizable value space and objective function space for d=2 and n=2 

Compared to mono-objective optimization problems, multi-objective problems are distinguished by 

several mathematical particularities. 

1.5.2. Particularities of multi-objective optimization problems 

The first particularity that we have already mentioned above is that multi-objective optimization 

problems require minimizing or maximizing n objective functions which are generally contradictory, 

while taking into consideration constrained function vectors. This concretely means that a decision vector 
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𝑥 which decreases the value of one of the component objective functions will increase the value of 

another. 

The second feature stems from the first. Given the contradictory nature of objective functions, solving 

a multi-objective problem generates several non-optimal solutions. Indeed, each of these solutions 

represents a compromise between the different objectives of the problem. So, they cannot minimize or 

maximize all the n objectives. On the contrary, some of the objectives will be devalued in favor of others 

which will come closer to the expected results. Therefore, we can notice that the notion of good solution 

is not as obvious as for mono-objective problems. 

The third particularity is linked to the vector character of the objective function 𝑓. This creates an n-

dimensional objective function space. Fig. 1.3 illustrates this space for 𝑑 = 2 and 𝑛 = 2. 

The fourth and last particularity is the introduction of a decision maker in the strategy of solving a 

multi-objective problem. We will detail the role of this decision maker in what follows. 

1.5.3. Role of the decision maker in multi-objective optimization 

The decision maker is a crucial actor in the process of multi-objective optimization. If the decision 

maker has a good strategy, he can come up with very competitive solutions. There are three main 

approaches for the decision maker [Siarry P et al., 2002a; Donoso Y et al., 2016; Toloo M et al., 2022b] : 

A priori, A posteriori and Interactive. 

A. A priori 

In the A priori case, the objective functions do not have the same importance for the decision maker. 

Thus he makes arbitration choices on the 𝑛 objectives to be achieved before the start of the optimization 

in order to define the tradeoff between the 𝑛 objectives. This is the case, for example in the weighted sum 

method (or scalar method). The decision maker sets a weight for each objective function according to 

their importance and aggregates them. We therefore move from a multi-objective problem to a mono-

objective problem. For example, for a bi-objective optimization problem (𝑓1, 𝑓2) the decision maker will 

assign them the weights (𝑤1, 𝑤2) and aggregate them to obtain the unique objective function 𝑓 =

𝑤1. 𝑓1+𝑤2. 𝑓2. 
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B. A posteriori 

Contrary to the A priori approach, in the A posteriori approach the decision maker has no appreciation 

on the objective functions, thus he gives them the same importance. We therefore remain in a multi-

objective context until the end of the optimization process. This approach can be applied with a 

metaheuristic algorithm such as Multi-Objective Particle Swarm Optimization (MOPSO) [Bouchaala A 

et al., 2022]. However, the complexity and computation time of this approach is much greater than the A 

priori approach. At the end of the optimization process, the decision maker must choice the best solution 

in line with his target. It is therefore necessary for him to have a method of ranking Pareto solutions. 

Taguchi's quadratic loss function, based on socio-economic criteria, allows this classification [STeele S 

et al., 1988; Baron C et al., 2005; Chelouah R et al., 2007; Chelouah R et al., 2009]. Taguchi's quadratic 

loss function consists of a weighted sum of the costs of the decision variables. This Loss function 

considers that deviations from the target is a loss which increases quadratically with respect to the target 

[Yu FJ et al., 2009]. For the case of a 2-dimensional search space, the Taguchi's quadratic loss function 

is represented by the 2 equations (1.3) and (1.4) below [Chelouah R et al., 2009]: 

𝐶 = 𝑂 + ∆= (
𝑐1
𝑐2
) = (

𝑜1
𝑜2
) + (

𝛿1
𝛿2
) = (

𝑜1
𝑜2
) + (

𝑘1(𝑒1 − 𝑥1)
2

𝑘2(𝑒2 − 𝑥2)
2)    (1.3) 

𝐺 = ∑ 𝑐𝑖 = ∑ 𝑜𝑖 + ∑ 𝛿𝑖 =
2
𝑖=1

2
𝑖=1

2
𝑖=1 ∑ 𝑜𝑖 + ∑ 𝑘𝑖(𝑒𝑖 − 𝑥𝑖)

22
𝑖=1

2
𝑖=1     (1.4) 

 C is the cost of the solution (𝑥1, 𝑥2) belonging to the Pareto front; 

 O is the vector of optimal costs; 

  is the vector of the additional costs; 

 G is the total cost of the solution (𝑥1, 𝑥2) ; 

 (𝑒1, 𝑒2) is the target desired by the decision maker; 

 𝑘1 and 𝑘2 are constants called Taguchi's quality loss coefficients which represent 

respectively the weights of the cost (𝑒1 − 𝑥1)
2 and (𝑒2 − 𝑥2)

2. 

C. Interactive 

In this approach, the decision maker is present throughout the optimization process by deciding on the 

tradeoff to carried out on the 𝑛 function objectives. This is the case with Fandel's method, which guides 

the choice of objective weights [Eschenauer H et al., 1990]. 
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In order to have a synthetic knowledge of the methods of multi-objective optimization A priori, A 

posteriori and Interactive, we propose the taxonomy below represented by Fig. 1.4 [Yassa S, 2014]. 

We provide in gray the optimization methods that we used in the research work of our thesis. 

 

Fig. 1.4. Taxonomy of multi-objective optimization methods [Yassa S, 2014] 

At the end of the optimization process, the A priori and Interactive approach therefore make it 

possible to obtain a single solution whose quality will translate the strategy of the decision maker. While 

the A posteriori approach provides several solutions. However, only solutions having a dominance 

relationship on others, in the Pareto optimal front (or very close to it) must be taken into account. In 

order to identify, in a context of multi-objective optimization, the concepts of Pareto global optimum, 

Pareto local optimum and Pareto front it is necessary to define these mathematical concepts.  
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1.5.4. Definition of dominance in a context of multi-objective optimization 

We will first define the Pareto Dominance between two decision-making vectors, the Pareto front 

then the Pareto local and global optimum [Siarry P et al., 2002a; Al-Tashi Q et al., 2020; Rodríguez MA 

et al., 2020; Sharma S et al., 2022]. 

D. Pareto dominance 

The mathematical concept of Pareto dominance was first defined in 1881 by the Irish economist and 

lawyer Edgeworth FY for the resolution of the economic problems of balance between taxation and 

purchasing power of each individual [Chiandussi G et al., 2012]. Then in 1896 the Italian engineer and 

economist Pareto V theorized it in order to extend multi-objective optimization problems to other 

scientific dominant [Emmerich MTM et al., 2018]. This is why the mathematical term Edgeworth-

Pareto dominance is mentioned in some literature for multi-objective optimization problems.  

Pareto V issued the following postulate in 1896: "There is a balance such that one cannot improve 

one criterion without deteriorating at least one of the other criteria." From this postulate we can 

conclude that there is no single solution as in mono-objective optimization problems but several 

solutions. The concept of Pareto dominance thus makes it possible to create an ordering relation between 

two candidate solutions to be evaluated against each other in multi-objective context. 

Either two solutions (𝑆𝛼, 𝑆𝛽) ∈ ( ℵ
𝑑)2, the solution 𝑆𝛼 dominates the solution 𝑆𝛽, mathematically 

noted as 𝑆𝛼 ≺ 𝑆𝛽, if:  

 𝑆𝛼  has at least the same performance on the 𝑛 objective functions than 𝑆𝛽,  

 𝑆𝛼 has performance strictly superior than 𝑆𝛽 on at least one of the 𝑛 objective functions.  

Mathematically Pareto dominance is expressed by (1.5): 

{
 
 

 
 𝑓(𝑆𝛼) = (𝑓1(𝑆𝛼),… , 𝑓𝑙(𝑆𝛼),… . , 𝑓𝑛(𝑆𝛼))                                                                 

𝑓(𝑆𝛽) = (𝑓1(𝑆𝛽),… , 𝑓𝑙(𝑆𝛽),… . , 𝑓𝑛(𝑆𝛽))                                                                 

𝑆𝛼 ≺ 𝑆𝛽 𝑎𝑛𝑑 𝑓(𝑆𝛼) ≤ 𝑓(𝑆𝛽) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ∀𝑙 ∈ {1, . . , 𝑛} 𝑓𝑙 (𝑆𝛼) ≤ 𝑓𝑙 (𝑆𝛽) 

𝑎𝑛𝑑 ∃ 𝑢 ∈ {1, . . , 𝑛}  𝑓𝑢 (𝑆𝛼) < 𝑓𝑢 (𝑆𝛽)                                                                       

  (1.5) 

Like mono-objective problems, the notion of Pareto dominance introduces a Pareto global and 

Pareto local optimality and a weak and a strict Pareto dominance. 
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a. Pareto global and local optimality 

The definition of a Pareto global and a Pareto local optimum in a multi-objective context is quite 

similar to that in a single-objective context: 

 A vector 𝑆𝛼 ∈ ℵ
𝑑 is a Pareto global optimum if ∀ 𝑆𝛽 ∈ ℵ

𝑑 , 𝑆𝛼 ≺ 𝑆𝛽; 

 A vector 𝑆𝛼 ∈ ℵ
𝑑 is a Pareto local optimum local if there exists a real ε > 0 such that 

∀ 𝑆𝛽  ∈ ℵ
𝑑 ∩𝐵(𝑆𝛼, ε), 𝑆𝛼 ≺ 𝑆𝛽, knowing that 𝐵(𝑆𝛼 , ε) is a hyperball with center 𝑆𝛼 and 

radius ε. 

Local optimality is therefore limited to a restricted area 𝐵 dimensioned by ε around 𝑆𝛼, while 

global optimality concerns the entire space ℵ𝑑. But optimality can be weak or strict. 

b. Weak and a strict dominance in the sense of Pareto 

Thus for two solutions (𝑆𝛼, 𝑆𝛽) ∈ ( ℵ
𝑑)

2
, the solution 𝑆𝛼 weakly dominates the solution 𝑆𝛽, 

mathematically noted as 𝑆𝛽 ≼ 𝑆𝛼, if and only if ∀𝑙 ∈ {1, . . , 𝑛} 𝑓𝑙 (𝑆𝛼) ≤ 𝑓𝑙 (𝑆𝛽). 

And the solution 𝑆𝛼 strongly dominates the solution 𝑆𝛽, mathematically noted as 𝑆𝛼 ≺ 𝑆𝛽, if and 

only if ∀𝑙 ∈ {1, . . , 𝑛} 𝑓𝑙 (𝑆𝛼) < 𝑓𝑙 (𝑆𝛽). 

Finally, using the mathematical definition of Pareto dominance, we can say that a vector 𝑆𝛼 ∈ ℵ𝑑 is 

non-dominated if ∀ 𝑆𝛽  ∈  ℵ
𝑑 𝑆𝛽 ⊀ 𝑆𝛼. 

The mathematical definitions that we have stated above make it possible to determine the quality of 

a solution in ℵ𝑑 and the best solutions are positioned on the Pareto front. 

E. Pareto front 

The Pareto front is constituted by the subset Π∗ of Pareto optimal solutions or Pareto optimal set. 

The solutions in Π∗ dominate the other solutions but do not dominate each other. This means that if 𝑆𝛼 ∈

Π∗ there is no solution 𝑆𝛽 ∈  ℵ𝑑 that dominates 𝑆𝛼. The Pareto front thus constitutes the ideal compromise 

on all the objectives of a multi-objective optimization problem.  

The Pareto front Πf ∗ is the image of Π∗ in the objective function space. Π∗ is defined by (1.6) and 

Πf ∗ is defined by (1.7). For example, Fig. 1.3 illustrates the Pareto front with green triangles for a Min-

Min bi-objective optimization problem of the two objective functions 𝑓1and 𝑓2. 
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Π∗ = {𝑆𝛼 ∈  ℵ
𝑑|∄𝑆𝛽 ∈  ℵ

𝑑, 𝑆𝛽 ≺ 𝑆𝛼  }          (1.6) 

Πf ∗ = { 𝑓(𝑆)|𝑆 ∈ Π∗}                  (1.7) 

As can be visually guessed from Fig. 1.3, there are several fronts starting from the Pareto optimal 

front which constitute the Pareto ranks. 

F. Pareto ranks 

The Pareto ranks allow to sort subsets of solutions, that do not dominate each other, according to their 

dominance relation on other subset of solutions. This technique is used in some multi-objective 

optimization algorithms such as the NSGA-II metaheuristic [Deb K et al., 2002].  

We will call 𝑆℘ the set of solutions and 𝑆𝑘 the subset of solutions of rank 𝑘. So, for 𝑛 subsets and 

therefore 𝑛 ranks, 𝑆℘ = ⋃ 𝑆𝑘𝑛
1 . 

The creation of ranks is performed as follows. Rank 1 is made up of the Pareto optimal solutions 𝑆1 

which dominates all the other solutions. To create the second rank 2 with 𝑆2, we remove the solutions 

𝑆1 from 𝑆℘ and we recalculate the Pareto optimal solutions. We proceed in this way until there are no 

more solutions. At the end, all the solution subsets 𝑆𝑘 will have been integrated at a rank 𝑘. Fig. 1.5 

illustrates the result of this process for a set of 15 solutions which are distributed over 4 ranks. 

 

Fig. 1 5. Sorting of the 15 solutions on 4 Pareto dominance rank 

To illustrate the concept of Ranking Pareto dominance, we will use the example of Siarry P et al. 

[Siarry P et al., 2002b] for a bi-objective optimization problem: maximize 𝑓1 and minimize 𝑓2. 

For this problem we obtain 5 solutions detailed in Table 1.1. 
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Solutions Fonction objectif 𝒇𝟏 Fonction objectif 𝒇𝟐 

A 8 5 

B 9 2 

C 12 1 

D 11 2 

E 16 2 

Table 1.1. The 5 solutions to the bi-objective problem 𝑓1 and 𝑓2 [Siarry P et al., 2002b] 

Graphically the 5 solutions are distributed in objective function space (𝑓1, 𝑓2) according to Fig. 1.6. 

 

Fig. 1.6. Representation of the 5 solutions in the objective function space (𝑓1, 𝑓2) [Siarry P et al., 2002b] 

In order to sort the 5 solutions in accordance with the Pareto dominance criteria, we will use, like 

Siarry P et al., the symbols +, − and = if respectively a solution is better, less good or equivalent than 

another on the 2 objective functions 𝑓1 et 𝑓2. At the end we obtain the result in Table 1.2. 

 A B C D E 

A  (-,-) (-,-) (-,-) (-,-) 

B (+,+)  (-,-) (-,=) (-,=) 

C (+,+) (+,+)  (+,+) (-,+), 

D (+,+) (+,=) (-,-)  (-,=) 

E (+,+) (+,=) (+,-) (+,=)  

Table 1.2. Evaluation of the 5 solutions A, B, C, D et E 

Based on the results obtained in Table 1.2, it appears that solutions C and E dominate solutions A, B 

and D but they do not dominate each other. C and E therefore constitute the Pareto optimal solutions and 

will belong to the rank 1. To determine rank 2, solutions C and E are removed from the set of 5 solutions. 

We obtain Table 1.3 made up of solutions A, B and D. We repeat the same processing as in Table 1.2. 

Thus, solution D dominates solutions A and B and constitutes the Pareto optimal solution for the rank 2. 
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 A B D 

A  (-,-) (-,-) 

B (+,+)  (-,=) 

D (+,+) (+,=)  

Table 1.3. Evaluation of the 3 solutions A, B and D 

We remove D from Table 1.3 and we get Table 1.4. 

 A B 

A  (-,-) 

B (+,+)  

Table 1.4. Evaluation of the 2 solutions A and B 

In Table 1.4, B dominates A. Consequently, B will belong to the rank 3 and A to the rank 4. This last 

iteration finalizes the sorting of the 5 solutions in ranks 1, 2, 3 and 4 as illustrated in Fig. 1.7. 

 

Fig. 1.7. Pareto rank of the 5 solutions [Siarry P et al., 2002b] 

This section has provided the general concepts of multi-objective optimization. We have seen that 

MOOPs, which represent real-world engineering problems, are much more complex mathematically. And 

as we have already specified above, the mathematical modeling of the optimization problem of the aims 

of this thesis is a MOOP. But we will also see in chapter 3 that this optimization problem is discrete, non-

linear and NP-Hard. However, metaheuristics, faced with the curse of the dimensionality [Segera D et 

al., 2023], and contrary to classic optimization methods, will make it possible to take up the challenge of 

searching in the large space for feasible solutions ℵ𝑑, without going through it entirely, a good solution 

in an acceptable time very close to the Pareto front. 
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1.6. Metaheuristics 

Metaheuristic algorithms appeared in the 1980s with the ambition to solve complex optimization 

problems. Glover F was the first to use the term metaheuristic in 1986 [Sörensen K et al., 2018; Alabas-

Uslu C et al., 2020]. The etymology of Metaheuristic has Greek origins: Meta which means beyond and 

Heuristic which means to find. The etymology therefore means that a metaheuristic is an algorithm that 

positions itself above heuristics with the objective of implementing them in order to obtain a global 

solution to an extremely large amount of real-world optimization problems [Toloo M et al., 2022b]. A 

heuristic and a metaheuristic are therefore two optimization methods that should not be confused. To do 

this, we will provide firstly a definition of these two optimization methods before explaining the common 

specificities of metaheuristics and the curses of their parameters. We will then discuss the mathematical 

interest of metaheuristics, their inherent limits as well as a general classification. Finally, we will end this 

part with three vital concepts for metaheuristics: exploration, exploitation and hybridization.  

1.6.1. Definition of a heuristic 

A heuristic is an optimization method specific to a given optimization problem, especially for difficult 

combinatorial optimization problems. The solution obtained by the heuristic is close to the optimum but 

not necessarily optimal [Siarry P, 2014a; Sörensen K et al., 2018; Rabbouch B et al., 2023]. 

1.6.2. Definition of a metaheuristic 

According to Cuevas E et al. [Cuevas E et al., 2021c] "A metaheuristic is a solution method that 

articulate interactions between some improvements in local heuristics and high-level strategies, aimed 

at escaping from local optimum in a solution space, aimed at a global optimum". But the qualities of 

metaheuristics are much better defined by Osman IH et al. [Osman IH et al., 1996]: "A metaheuristic is 

an iterative generation process that guides a subordinate heuristic by intelligently combining different 

concepts to explore and exploit the search space, learning strategies are used to structure information 

in order to efficiently find the near-optimal solutions ". 

According to these definitions, we can affirm that metaheuristics are above all powerful, stochastic 

generic heuristics, alternating between exploration and exploitation phases with an imperative of a 
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balanced tradeoff between these two phases and not to be trapped in a local optimum [Jerebic J et al., 

2021]. The vast majority of metaheuristics share common specificities. 

1.6.3. Common specificities of metaheuristics 

The main specificities of metaheuristics which constitutes the essence of their strengths but also of 

their weaknesses are seven in number: 

 Global; 

 Stochastic, which helps to deal with the curse of dimensionality; 

 Generic even if the context is continuous or discrete; 

 Do not need the gradient of the objective function in the case of continuous problems; 

 Finds an acceptable solution in a reasonable time without guaranteeing optimality; 

 With difficulties in the choice of assignment of the values of the control parameters; 

 Inspired by analogies from nature. 

We will develop in the next subsection the issue of the parameters tuning of metaheuristics because 

of the challenge it represents for the research community in the field of metaheuristic optimization. 

1.6.4. The curse of parameters 

The number of quantitative parameters of a metaheuristic, the time-consuming cost and the difficulty 

of their configuration is one of the main weaknesses of metaheuristics [Siarry P, 2014b; Siarry P, 2014c]. 

In addition, the closer we get to ad-hoc tuning of the parameters of a metaheuristic, for a given 

optimization problem instance, the more we benefit from the following effects: 

 Increased performance of metaheuristics;  

 Decrease in the spatial distance between the final solution and the global optimum; 

 Reduced execution time to obtain the final solution; 

 Reduced processing cost of a problem. 

Given the role of parameters in the performance of a metaheuristic, the issue of parameters tuning is 

therefore far from being a secondary action. 

Just like the curse of dimensionality, metaheuristics are also plagued by the "curse of parameters". 

Indeed, increasing the number of parameters in a metaheuristic only exponentially increases the number 



 

34 

 

of possible parameter vectors in the parameter search space. Consider a striking example among the 

recent metaheuristics: Squirrel search algorithm (SSA) [Mohit J et al., 2019]. SSA requires the 

configuration of six parameters including three integers and three real: 

 The maximum number of iteration 𝑇𝑚𝑎𝑥; 

 The population size 𝑁; 

 The nutrition food resources 𝑁𝑓𝑠  

 The gliding distance 𝑑𝑔 ; 

 The predator presence probability 𝑃𝑑𝑝 ; 

 The gliding constant 𝐺𝑐. 

The author of SSA himself confirms that a bad tuning of his parameters will induce bad results. From 

the point of view of this problematic, the ideal metaheuristic would be the one whose parameters are 

dynamic or self-adaptive during the iterations. 

In general in the literature, the fine optimal tuning of the metaheuristic parameters is mainly empirical 

based on expert knowledge and following several tests carried out on function benchmarks[Agushaka 

JO et al., 2022]. But this empirical method does not allow, in the face of the curse of the parameters, to 

obtain the optimal parameter vector. And if a researcher approaches it during his work, it is essential for 

him to justify the choice of his parameters for a metaheuristic and a problem instance so that the research 

community can rely on these results and conclusions for their future work [Kazikova A et al., 2020]. 

In order to face the issue of the parameter tuning, researchers have developed a wide variety of 

parameter tuning methods that aim to maximize the performance of metaheuristics for a given 

optimization problem instance [Huang C et al., 2020].  

In [Talbi EG, 2009] Talbi EG provided a complete taxonomy of parameter tuning methods split into 

two main paradigms: Offline parameter tuning and Online parameter tuning. We explain this taxonomy 

in Fig. 1.8 below. 
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Fig. 1.8. Parameter tuning taxonomy 

Before describing the Offline and Online paradigms let us mathematically define the components of 

the metaheuristic parameter optimization problem:  

 A metaheuristic 𝛭; 

 A parameter search space 𝐶; 

 An instance of problem 𝐼; 

 A performance metric 𝑃 for the measure of the performance of a vecteur 𝑐 ∈ 𝐶 of an instance 

of metaheuristic 𝛭(𝑐) and an instance of problem 𝐼. 

The objective is to obtain the optimal parameter vector 𝑐∗ ∈ 𝐶 which makes it possible to obtain the 

metaheuristic 𝛭(𝑐∗) with the best performance on the instance of problem 𝐼. Mathematically this is 

expressed by 𝑚𝑎𝑥{𝑃: 𝑐 ∈ 𝐶}. 

A. Offline parameter tuning 

In the Offline parameter tuning paradigm, the vector of parameters 𝑐 is defined before the execution 

of the metaheuristic 𝛭, without modification during the execution, by exploiting three groups of 

methods: Design of Experiments (DOE), Meta-Optimization and Machine Learning.  

a. Design of Experiments 

As its name indicates, the DOE methods exploit the experience acquired during the analysis of the 

variations of 𝑃 during the changes of values of the components of the vector parameter 𝑐 [Pereira I et 

al., 2013]. However, the computation time of this method increases with the number of parameters.  

Unsupervised learning algorithms are used to support DOE methods in order to select and define the 

most influential metaheuristic parameters on an instance of optimization problems. In [Ramos ICO et 
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al., 2005] Ramos ICO et al. exploited the logistic regression algorithm to implement the DOE method 

on evolutionary algorithm ProtoG applied to the Traveling Salesman Problem (TSP). The authors 

clustered the parameter search space in order to detect the most influential parameter cluster on the TSP 

problem. This allowed to reduce the time cost for the tuning of the parameters. 

b. Meta-Optimization 

The meta-Optimization method uses metaheuristic algorithms to determine the vector of parameter 

𝑐 closest to the optimal vector 𝑐∗. In this method, these metaheuristics are positioned at the upper-level 

and the metaheuristics Μ for which the optimal parameter vector must be determined are positioned at 

the low-level [Pereira I et al., 2013; Huang C et al., 2020]. Thus, meta-level metaheuristics see the 

metaheuristic set Μ and problem instance I as the black box optimization problem to be solved by 

finding the closest parameter vector 𝑐 to 𝑐∗ in the parameter search space 𝐶. The value of the objective 

function to this black box optimization problem, for a given vector of parameter 𝑐, is that obtained for 

the best solution acquired by the base-level metaheuristic.  

In [Crawford B et al., 2013] Crawford B et al. used an upper level metaheuristic to tune the 

parameters of a low level metaheuristic. The upper level metaheuristic is Genetic Algorithm (GA) and 

the lower metaheuristic are Ant Colony System (ACS) and Scatter Search (SS) applied to the Set 

Covering optimization problem. 

c. Machine Learning 

Machine Learning algorithms are able to predict the parameter vector 𝑐 as close as possible to the 

optimal parameter vector 𝑐∗ for a problem instance 𝐼. Machine Learning algorithms therefore make it 

possible to adapt a metaheuristic to different problem instance before execution.  

The work of Rasku J et al. in [Rasku J et al., 2016], based on Vehicle Routing Problem (CVRP) 

instance benchmark, combined three Machine Learning algorithms: Principal Component Analysis 

(PCA), the clustering algorithm DBSCAN and Random Forest (RF) Algorithm. This combination of 

algorithms made it possible to determine which vector 𝑐 (Initial temperature and cooldown factor) is 

necessary for the SA metaheuristic to solve an instance of problem VRP. 
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B. Online parameter tuning 

Unlike the Offline paradigm, the Online paradigm updates in real time the parameters values during 

the execution of the metaheuristic in a dynamic or adaptive way. 

a. Dynamic 

Dynamic methods update the parameters at each iteration, via random or deterministic variables 

regardless of the search strategy.  

In [Eiben AE et al., 2011] the authors take up the two levels of the upper and lower metaheuristics 

which they position respectively in the design layer and algorithm layer. Unlike Meta-Optimization 

which selects the parameters only during the initialization of a metaheuristic, in [Eiben AE et al., 2011] 

evolutionary algorithms (EA) (GA, EDA, ES, etc.) positioned in the design layer as that meta-EA select 

the parameters of a metaheuristic stochastically and dynamically at each iteration. This is also the case 

of the metaheuristic Harris Hawk Optimization (HHO) [Heidari AA et al., 2019] which randomly 

updates its two parameters 𝐽 and 𝐸.  

b. Adaptative 

Adaptive or even self-adaptive methods constitute a privileged path for researchers. Algorithms in 

the field of artificial intelligence able to self-regulate the parameters of a metaheuristic in order to 

maximize its performance during iteration constitute a decisive advance in the field of the optimization 

of NP-Hard problems. Alabas-Uslu C et al. [Alabas-Uslu C et al., 2020] implemented, for instances of 

the combinatorial optimization problem VRP, a self-adaptive local search algorithm (SALS) which self-

adaptes its unique parameter 𝜃. To do this SALS calculates on the one hand the value 𝛼1 by the ratio of 

the values of the objective function of the best solution 𝑋𝑏
(𝑖)

 at iteration 𝑖 and of the initial solution 𝑋𝑧 

and on the other hand the value 𝛼2 by the ratio between the improvement number of the best solution at 

iteration 𝑖 and the value 𝑖. 

 

The curse of the parameters is therefore not a fatality thanks to the work of the research community. 

Self-adaptive methods exploiting reinforcement learning algorithms is the preferred choice for 

researchers to increase in the coming years the mathematical interest of metaheuristics in solving real 

NP-Hard optimization problems. 
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1.6.5. Mathematical interest of metaheuristics for the NP-Hard optimization problems 

Compared to other optimization methods, metaheuristics have unique and exceptional mathematical 

qualities. As specified by Siarry P [Siarry P, 2016] and Cuevas E et al [Cuevas E et al., 2021c], compared 

to the classical optimization methods that we saw in 2.3, each metaheuristic has its own algorithmic 

strategy which allows it to analyze the search space in order to obtain a final solution as close as possible 

to the global optimum. Metaheuristics thus allow the resolution of a very wide range of optimization 

problems, too complex for "conventional" optimization methods, even if the problems are linear or non-

linear, discrete or continuous, non-convex, non-differentiable, unimodal or multimodal, low or high 

dimension [Cuevas E et al., 2021b; Houssein EH et al., 2021b; Houssein EH et al., 2021c]. Indeed, real-

world optimization problems are mostly nonlinear, discontinuous, highly multimodal, high-dimensional 

with non-smooth constraints and noisy. While other classical optimization methods require the objective 

function to be twice differentiable, metaheuristics do not require this. Indeed the metaheuristics are 

gradient-free and are not interested in the continuity or the differentiability of the problem or in the 

smoothing [Teghem J, 2012; Qian L et al., 2020; Cuevas E et al., 2021b]. Based on their current state 

variables, they only need the return value of the objective function 𝑓(𝑥), for an input candidate solution 

x created by the metaheuristic. Thus 𝑓(𝑥) is like a "breadcrumb trail" for metaheuristics in the search 

for the global optimum of the optimization problem. This is the main reason why the mathematical 

modeling of an optimization problem in objective functions will condition the quality of the final results. 

Furthermore, in order to avoid or extricate themselves from the pitfalls of local optima, metaheuristics 

temporarily deteriorate their situation during certain iterations with the aim of obtaining a better one in 

the following iterations. 

Thus, metaheuristics see optimization problems as a "black box" [Qian L et al., 2020; Cuevas E et 

al., 2021b; Houssein EH et al., 2021c] regardless of its content. And this ability to consider the 

optimization problem as a black box is far from trivial. On the contrary, it opens up a wide range of 

technical possibilities that do not exist with conventional optimization methods. Indeed, it is a major 

asset for solving very complex optimization problems of the 𝑁𝑃-Hard type.  

Based on the description of metaheuristics and their mathematical specificities, we are in a position 

to propose in Fig. 1.9 a general diagram of a metaheuristic. 
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Fig. 1.9. General diagram of a metaheuristic 

However, a metaheuristic should not be considered as the keystone of all optimization problems 

because it also has its limits that the No Free Lunch theorem clearly reminds us. 

1.6.6. The limits of metaheuristics via the No Free Lunch theorem 

When discussing the superior potential of metaheuristics, it is necessary to consider them as a whole 

and not individually. Wolpert et al. [Wolpert DH et al., 1996; Wolpert DH et al., 1997] were able to 

theorize its limits by the No Free Lunch theorem. Indeed, the No Free Lunch (NFL) theorem reminds 

us of the individual limits of a metaheuristic [Adam SP et al., 2019; Wolpert DH, 2021]. According to 

the NFL, each metaheuristic performs better than others on some subset of optimization problems and 

performs poorly on others. There is thus no metaheuristic superior to other if we consider the whole 

space of optimization problems. Therefore, the metaheuristics will have on average the same 

performance over the whole space of optimization problems and for each optimization problem it is 

necessary to choose the most suitable metaheuristics to solve it. And, in order to support the selection of 

appropriate metaheuristics to the problem to be solved, a synthetic classification of the latter is desirable. 
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1.6.7. Classification of metaheuristics 

The immense amount of metaheuristics that can be found in the literature are generally inspired by 

nature. The researchers, through a metaphorical process, were able to model at the mathematical and 

algorithmic level the optimization processes resulting from nature which effectively made it possible to 

overcome the problems of survival and to prolong existence [Hussain K et al., 2019a; Moshtaghi HR et 

al., 2021]. These sources of inspiration have thus made it possible to design a profusion of classification 

of metaheuristics [Dhiman G et al., 2017; Abdel-Basset M et al., 2018; Abd EM et al., 2021; Avjeet S 

et al., 2021; Cuevas E et al., 2021c; Cuevas E et al., 2021d; Moshtaghi HR et al., 2021; Houssein EH et 

al., 2022a; Houssein EH et al., 2022d; Muazu AA et al., 2022; Vinod Chandra SS et al., 2022]. However, 

this profusion only complicates the search for a common denominator reconciling all its classifications.  

Fig. 1.10. Classification of metaheuristics into five groups (Image source: https://www.westend61.de, 

https://www.gettyimages.fr, https://www.soustraiter.fr, https://www.infogm.org,  https://www.freepik.c

om) 

Our analysis of the state of the art has enabled us to highlight five major groups capable of federating 

these classifications: Swarm intelligence, Human behavior, Physic, Evolutionary and Not inspired 

by nature. Fig. 1.10 represents these five groups with for each examples of well-known metaheuristics. 

We can complete this classification by splitting the metaheuristics according to the size of their agent: 

single-based metaheuristic such Simulated Annealing (SA) and population based metaheuristic such as 

HHO [Hussain K et al., 2019a; Houssein EH et al., 2022a].  

Swarm 
intelligence 

•PSO

•ABC

•GWO

•HHO

•ACO

Human 
behavior

•LCA

•SLC

•HMS

•TLBO

Physic and 
chemistry

•SA

•GSA

•EMA

•WWO

Evolutionary 
process

•GA

•DE

•GP

•IWO

•ICA

Not inspired 
by nature

•VNS

•GRASP

•SCA

•BOA

https://www.westend61.de/
https://www.gettyimages.fr/
https://www.soustraiter.fr/
https://www.infogm.org/
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The list of metaheuristics in Fig. 1.10 is obviously not exhaustive. The articles [Moshtaghi HR et al., 

2021] and [Abdel-Basset M et al., 2018] provide a broad view of the oldest to the most recent 

metaheuristics. And as we mentioned in 2.6.1 each of these metaheuristics has its own exploration and 

exploitation strategy with the ultimate aim of finding the global optimum of the optimization problems. 

1.6.8. Exploration and exploitation 

For a metaheuristic, exploration (or diversification) and exploitation (or intensification) are the two 

pillars of its optimization process with opposite strategies for finding a good final solution [Siarry P, 

2014d; Ghazali R et al., 2018; Cuevas E et al., 2021a]. A balance between these two phases is the key 

to a successful metaheuristic which allows it to find solutions close to the global optimum and to avoid 

or escape from the traps of the local minima of the objective function. [Morales-Castañeda B et al., 

2020]. This process is called the strategic oscillation between exploration and exploitation [Teghem J, 

2012]. However, balance should not be confused with equality. Indeed, having the same number of 

exploration and exploitation phases does not give the assurance of obtaining better results. Balancing 

exploration and exploitation means designing and implementing a strategy that will create the right ratio 

between the exploration and exploitation phases as iterations occur. Of course, the strategy is intimately 

linked to the algorithmic specificities and mathematical operators of each metaheuristic. We will 

describe below these two pillars of optimization enriched by exploration and exploitation strategies 

implemented by well-known metaheuristics in the literature. We will close this part with the attempts in 

the literature to measure the exploration and exploitation phases. 

A. Exploration 

Exploration is a global, diverse search for unvisited promising areas in the search space [Cuevas E 

et al., 2021a; Jerebic J et al., 2021]. This process is based on stochastic "jumps". A good exploration 

therefore increases the probability of finding the area of the search space containing the global optimum 

and of thus obtaining a final solution closest to or equal to this global optimum. Thus a good exploration 

decreases the probability of being trapped in a local optimum.  

For example, in Artificial Bee Colony (ABC) [Karaboga D et al., 2007], exploration is the 

responsibility of bee scouts who are assigned a randomly selected food source. The more scout bees 
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there will be following the abandonment by an exploiting bee of a bad source of food (position) and the 

more exploration will be favored. 

In the case of Simulated Annealing (SA) [Kirkpatrick S et al., 1983], it’s the acceptance criterion of 

Metropolis with the probability 𝑒
−∆𝐸

𝑇  which makes it possible to accept a degradation of the position in 

the search space in order to explore other potentially promising valleys . ∆𝐸 represents the energy 

variation (or variation of the objective function) and T the temperature of the solid. The higher the 

temperature, the greater the probability of accepting a degradation of the position. This has the effect of 

encouraging exploration. 

However, if the exploration is excessive within the framework of respecting the exploration-

exploration balance, it will degrade the speed of convergence. The complement to exploration is 

exploitation which has an opposite research logic. 

B. Exploitation 

Exploitation aims to stochastically intensify local search in promising area located during 

exploration. Consequently, the exploitation makes it possible to refine the best promising area already 

found in exploration phases [Cuevas E et al., 2021a; Jerebic J et al., 2021]. Generally, the exploitation 

consists in "mutating" a solution 𝑥 ∗ by a movement around 𝑥 ∗in order to obtain, in its neighborhood 

𝑁(𝑥 ∗), a better solution 𝑥 ∈ 𝑁(𝑥 ∗).  

In ABC the mutation of a solution 𝑠 is carried out in four steps:  

 Random selection of dimension 𝑘 of 𝑠 to mutate; 

 Selection of an influential food source 𝑠𝑖 ; 

 Selection of a random value 휀 in [−1,1] ; 

 Mutation operation on the dimension 𝑘 of 𝑠 according to the equation 𝑠𝑘 = 𝑠𝑘 + 휀 ∗

(𝑠𝑘 − 𝑠𝑖
𝑘). 

If the mutation of 𝑠 provides a better food source, then the mutation is retained. Otherwise it is 

rejected and 𝑠 gets a penalty. The exploiting bees with the most penalty, in proportion to the number of 

scout bees compared to the size of the bee population, will become scouts in the next iteration.  
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In Bat Algorithm (BA) [Yang XS, 2010] the mutation operates beforehand on the speed v of a bat of 

position x and ultrasound emission frequency 𝑓. The mutation equation is 𝑣 = 𝑣 + ( 𝑥 − 𝑥 ∗) ∗ 𝑓. Then 

the position 𝑥 undergoes the movement 𝑥 = 𝑥 + 𝑣. 

Moreover, a good exploitation makes it possible to increase the rate of convergence towards a good 

solution. Nevertheless, excessive exploitation increases the probability of being trapped in a local 

optimum.  

To better understand the exploration and exploitation process we will use the metaphor of the dig for 

diamonds. Gemologists (diamond diggers), first explore promising areas of the mine with probes and 

other drilling mining machines. This is the exploration phase in search of a promising diamond area. 

Then as soon as a promising area is detected, a new more refined search is carried out in its vicinity 

using hydraulic drills, shovels, pickaxes, rotary cutters and diamond testers. This is the exploitation 

phase. If the area fails, gemologists revert to the exploration phase so they don't get stuck in barren local 

drilling. The global logic is similar in metaheuristics but with "intelligent" stochastic components that 

allow them to extract themselves from local optima with an exploration-exploitation balance imperative. 

The literature assures us and repeats to us that a good exploration-exploitation balance guarantees better 

efficiency in the search for a good solution to the optimization problem. But how to know if the 

metaheuristic respects this imperative of balance? To do this, methods for measuring exploration and 

exploitation are needed. 

C. Exploration and exploitation measurement methods 

Measurements of exploration and exploitation are not easy because of the great heterogeneity of 

metaheuristics. However, the literature provides some methods of indirect and direct measurement of 

exploration and exploitation, particularly for population-based metaheuristics [Gabor T et al., 2017; 

Ghazali R et al., 2018; Hussain K et al., 2019b]. The indirect measurement method assesses the level of 

exploration or exploitation based on other metrics. The methods known in the literature are those of 

Swarm diversity measuring the positions of agents relative to each other, the measurement of Entropy 

[Gabor T et al., 2017; Hussain K et al., 2019b]and more simplistically, the monitoring of the 

improvement of the best value obtained from the objective function [Tilahun SL, 2017]. As for direct 
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measurement, as its name suggests, it directly measures the level of exploration and exploitation. One 

of the most recent methods is that of measuring the Attraction basins in the search space [Jerebic J et 

al., 2021].  

But these methods of measurement only make it possible to note the effectiveness or the impotence 

of the operations of exploration and exploitation of a metaheuristic. If one wishes to act on the observed 

weaknesses, methods such as hybridization must be implemented. 

1.6.9. Metaheuristics hybridization 

Glover F was the first to create a hybrid metaheuristic in his work in [Glover F et al., 1998]. However, 

the literature does not clearly define the action framework of a metaheuristic hybridization. But this lack 

of definition can be seen as an advantage for the research community. Indeed, no definition can thus 

limit, by strict frameworks, the spirit of innovation of researchers to create new metaheuristics by 

hybridization. On the other hand, the literature specific to metaheuristic hybridization allows us to 

provide a common denominator that describes the major effect sought in hybridization: The main 

purpose of hybridization and to exploit the mutually beneficial synergy of at least two distinct 

algorithmic strategies with the purpose of obtaining a metaheuristic with increased performance for 

solving NP-Hard optimization problems [Talbi EG, 2013; Ting TO et al., 2015; Hassan A, 2019; Raidl 

GR et al., 2019; Cuevas E et al., 2021e].  

The hybridization process must therefore allow a metaheuristic to increase its exploration and 

exploitation capacities with an imperative of balance between them in order to find a good solution close 

to the global solution by limiting its weaknesses which are premature convergence or slow convergence 

[Ting TO et al., 2015].  

The hybridization of a metaheuristic generally exploits other metaheuristics, machine learning 

algorithms or other exact mathematical methods [Talbi EG, 2013].  

In order to better understand the fundamentals of hybridization, we will focus in what follows on the 

hybridization between at least two well-known metaheuristics in the literature and explain the basic 

principles of the design of a hybrid metaheuristic which are based on the strategies of control, the order 

of execution and the level of hybridization [Talbi EG, 2013; Ting TO et al., 2015; Raidl GR et al., 2019]. 
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A. Control strategy 

The control strategy of a metaheuristic can be collaborative or integrative. A hybridization is 

collaborative when two algorithms act jointly "as equals" sequentially or in parallel during the 

optimization process. In this strategy, generally one of the algorithms acts on exploration and the second 

on exploitation.In [Ting TO et al., 2006] the authors created a hybrid metaheuristic to evaluate the flow 

of electric power in power transmission network. They used GA and PSO metaheuristics in a 

collaborative strategy. GA manages global search and PSO acts at the local search level.  

On the other hand, the integrative strategy creates a link of subordination between two 

metaheuristics. In this strategy, a slave algorithm is integrated into a master algorithm and it is the master 

algorithm that directs the optimization process. Birogul S proposes in [Birogul S, 2019] an integrative 

hybridization of the DE metaheuristic in HHO to obtain HHODE. The five mutation equations of DE 

have been integrated into the exploratory equations of HHO in order to increase its exploration capacity. 

Tests on the CEC2005 and CEC2017 benchmarks confirmed the increased performance of HHODE 

compared to HHO. 

In the two control strategies that we have just described, several types of order of execution are 

possible. 

B. Order of execution strategy 

After the control strategy, the hybridization of a metaheuristic requires an order of execution strategy. 

Three strategies are possible: sequential, parallel and interleaved.  

The integrative control strategy uses a sequential or interleaved execution order. This is the case of 

HHODE [Birogul S, 2019] which has a sequential execution order. The Hybrid HHO (H-HHO) 

metaheuristic in [Abualigah L et al., 2021], used for data clustering, just like HHODE, integrates DE 

into HHO with an interleaved execution order to reduce its weaknesses during the exploration phases 

and also to operation.  

On the other hand, the parallel execution order is exploited in the collaborative control strategy. In 

[Hijazi NM et al., 2021] the authors combine three metaheuristics with a parallel execution order to 

design a hybrid metaheuristic for feature selection: Gray Wolf Optimization (GWO) [Mirjalili S et al., 

2014], Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 
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Within the sequential or interleaved order of execution, the level of hybridization strategy depends 

on the strength of the fusion of the metaheuristics which acts on the hybridization level.  

C. Hybridization level strategy 

The designer of a hybrid metaheuristic can choose to combine these metaheuristics with a high-level 

or low-level strategy. In a high-level strategy, the algorithms and equations of the metaheuristics are not 

modified and maintain their independence. Metaheuristics are therefore weakly-coupled and 

communicate via an ad hoc interface. This high-level strategy is present in a context of collaborative 

metaheuristics with sequential execution as in [Ting TO et al., 2006]. 

In the low-level strategy, on the contrary, the metaheuristics are strongly-coupled and therefore inter-

dependent. Their algorithms and equations are changed. This strategy is found in a context of integrated 

metaheuristics with an execution order interleaved as in [Abualigah L et al., 2021].  

The Fig. 1.11 below provides a summary diagram of hybridization strategies. 

 

Fig. 1.11. Summary diagram of hybridization strategies 

1.7. Conclusion 

Optimization problems are ubiquitous in the technical environments of engineers and researchers. 

They can be mono-objective without constraints for the most basic ones, but the vast majority of real-

world optimization problems are multi-objective with several constraints and having to satisfy multiple 

contradictory aspirations by compromise. We have seen that there is a plethora of methods for solving 

optimization problems depending on the category and complexity classes to which the problem belongs. 
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The problems that pose the most difficulty to the research community, as their names suggests, are 

problems of the 𝑁𝑃-Hard class. Fortunately, metaheuristic algorithms appeared in the 1980s opened up 

promising new perspectives for solving 𝑁𝑃-Hard problems. One of their major assets is to consider the 

optimization problem as a black box without worrying about the internal mathematical specifics of the 

problem. The other major asset of metaheuristics is their intelligent stochastic nature which allows them, 

through balanced exploration and exploitation processes, to extract themselves from local optima and 

to get as close as possible to the global optimum. Thanks to their strengths, metaheuristics have managed 

to solve many 𝑁𝑃-Hard engineering problems. 

The spirit of innovation of the researchers has made it possible to design a very large number of 

metaheuristics mainly inspired by nature and by hybridization. As the No Free Lunch Theorem states, 

each metaheuristic can excel on some subset of optimization problems and be deficient in others. For 

the cybersecurity objectives of our thesis, we have taken advantage of a very recent nature-inspired and 

population-based metaheuristic: Harris Hawk Optimization (HHO). However, this metaheuristic does 

not escape to the NFL theory. It has weaknesses for high-dimensional and highly multimodal 

optimization problems. 

In the chapter 2 we will develop our unseen hybridization strategy of HHO totally bio-inspired by 

the hunting synergy between crows and wolves to design the new metaheuristic HHO-EAS. Our 

hybridization strategy aims to increase HHO-EAS skills during the exploration and exploitation phases 

and to achieve better performance than HHO for high-dimensional and highly multimodal optimization 

problems. 
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Chapter 2 

2. Conception of the metaheuristic HHO-EAS for highly multimodal and high-

dimensional optimization problems 

2.1. Introduction 

As we explained in chapter 1, the conception of metaheuristics is mostly inspired by nature, and they 

are divided into four categories: Bio-inspired, Physics and Chemistry, Evolutionary and Swarm 

Intelligence [Houssein EH et al., 2022a; Houssein EH et al., 2022b; Houssein EH et al., 2022d]. These 

metaheurtics are single-based such Simulated Annealing (SA) or population-based such as Harris Hawk 

Optimization (HHO). 

HHO is a very recent metaheuristic inspired of Harris Hawk’s pack hunting techniques. It was created 

by Heidari AA et al. in 2019 [Heidari AA et al., 2019]. However, as we explained in chapter 1, the No 

Free Lunch theorem reminds us that no metaheuristic can claim to outperform all metaheuristics on all 

optimization problems [Wolpert DH et al., 1997]. According to this theorem such a metaheuristic does 

not exist. Thereby, like all metaheuristics, HHO has some weaknesses, particularly for the optimization 

of highly multimodal and high-dimensional problems. Indeed, for highly multimodal and high-

dimensional problems, HHO fails to maintain a good balance between exploration and exploitation to 

end up trapped in a local optimum [Chen H et al., 2020; Alabool HM et al., 2021]. 

However, these weaknesses are far from being inevitable. So, in order to minimize the HHO’s 

weaknesses we designed a hybridization strategy totally inspired by a partnership between two predators 

that everything separates. 

In northern Europe and in Yellowstone Park in Wyoming United-state, during the hard winter months 

when good preys are hard to find and capture, an atypical alliance between two predators was born: the 

crows of the family corvidae and the wolves of the family canidae [Stahler D et al., 2002; Milner R, 

2020]. These two predators have combined the smart and adaptive exploration of the hunting ground of 

crows with the exceptional abilities of wolves to capture rapidly and in an organized way prey even if it 

is larger than them. 

In order to improve the optimization capabilities of HHO for highly multimodal and high-dimensional 

optimization problems, we mathematically modeled this win-win hunting synergy. We designed a 
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Mamdani-like Fuzzy Inference System (FIS) to model the crows' smart and adaptive exploration and the 

Encirclement and Attack equations to model wolves action. Then we integrated them into HHO to create 

a new metaheuristic: Harris Hawk Optimization – Encirclement Attack Synergy (HHO-EAS). These 

work has been the subject of a scientific article validated for a publication in the journal Artificial 

Intelligence Review.[Sassi M et al., 2023].  

Thus, the main contributions of our work are twofold: 

 We have designed the new metaheuristic HHO-EAS overall more efficient than HHO for the 

optimization of highly multimodal and high dimension problems; 

 Unlike classical hybridization strategies that combine metaheuristics with each other, our 

hybridization strategy is based on another paradigm entirely inspired by the win-win hunting 

synergy observed in nature between two animals: the crows and the wolves. 

This chapter, is articulated as follows. In the section 2.2 we will describe the HHO algorithm with its 

exploration and exploitation techniques, its weaknesses and the main works aimed at improving it by 

hybridization. 

The section 2.3 will present our contribution in order to design HHO-EAS by detailing our 

hybridization strategy bio-inspired by the win-win hunting synergy between the crows and wolves. 

In the section 2.4 we will demonstrate firstly, with a general benchmark of 19 well-known unimodal, 

multimodal and composite functions, the overall superiority of HHO-EAS over HHO as well as over two 

other population-based metaheuristics, GWO and PSO. Secondly we will focus only on HHO-EAS and 

HHO with a specific benchmark of the 20 most complex optimization problems of the CEC 2017 close 

to real life optimization problems: 10 hybrid and 10 composite functions.  

We will conclude this chapter in the section 2.5 and we will open the future applications of HHO-

EAS in the chapter 3. 

2.2. Harris Hawk Optimization 

The metaheuristic HHO, created by Ali Asghar Heidari in 2019 [Heidari AA et al., 2019] is inspired 

by the Harris Hawks' pack hunting strategy. HHO is a population-based metaheuristic allowing global 

and stochastic optimization guided by intelligent mechanisms during the exploration and exploitation 
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phases [Shu PW et al., 2020]. Furthermore, HHO is almost an "autonomous" metaheuristic, that is to say 

with very few parameters to configure in its algorithm. However, HHO as all metaheuristic, presents 

weaknesses that some works have attempted to reduce. 

2.2.1. HHO Inspiration 

Biologists Jennifer O. Coulson and Thomas D. Coulson studied the cooperative hunting techniques 

of the Harris Hawks. Their articles make reference in this field [Coulson J et al., 2012; Coulson JO, 

2013]. Their research has provided insight into the Harris Hawks' hunting strategies. The Harris Hawks’ 

hunting techniques inspired HHO's exploration and exploitation equations. 

Harris Hawks are raptors with some intelligence and have the particularity of living in packs unlike 

other Hawks. They practice cooperative hunting. 

They live between southwestern North America and central and southern of South America. Their 

living areas are semi-desert.  

Their strategy for finding and capturing preys is organized in groups and structured in two stages: 

Search and Attack. 

2.2.2. Search phase (Exploration) 

They begin as a single group by gathering on the cacti, tree branches, utility poles, etc. 

Then they split into two groups. The first group flies from perch to perch like leapfrog to get a different 

point of view. This allows them to better explore the surrounding terrain in search of prey with a 

preference for rabbits. They sometimes practice the backend to get a better point of view (One Harris 

Hawk perches on top of another).  

The second group, to find a prey, flies over a potentially promising areas in packs. The two groups 

maintain eye contact to be ready to go into attack phase if they detect a good prey. 

2.2.3. Attack Phase (Exploitation) 

The Harris Hawk’s key hunting tactic is the surprise pounce to attack a prey such as rabbit. 

After detecting the rabbit, each Harris Hawk pounces on it, if one of the Harris Hawks misses the 

target because the prey fled in the opposite direction, the Harris Hawk in the opposite direction takes over 
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in the attack. Thus, Harris Hawks cooperatively attack the prey from several directions. This attack 

resembles to a Harris Hawk flurry on the prey from all possible sides.  

Harris Hawk's research and attack techniques are all modeled by the exploration and exploitation 

equations in the HHO algorithm. 

2.2.4. HHO Algorithm 

HHO metaheuristic, like all metaheuristics, is structured in two phases: exploration and exploitation. 

The exploration phases are guided by two exploratory equations inspired by the prey search phase. 

And the exploitation phases are guided by four equations inspired by the attack phase. These four 

equations make it possible to search for better solutions in a neighborhood far or close to promising areas. 

The exploration, the exploitation and the transition of HHO between exploration and exploitation are 

all driven by the Rabbit Escaping Energy (REE) variable. But that's not all. REE also makes it possible 

to control the magnitude of local searches in the near or far neighborhood of the best solution at iteration 

𝑡.  

Our analysis of this algorithm allows us to affirm that REE is the central element of HHO because it's 

this that coordinates the action of the Harris Hawk agents at each iteration. In addition, REE has a major 

influence in the balance between exploration and exploitation as well as in the search for a good solution. 

A. Rabbit Escaping Energy 

REE is defined by the equations (2.1) et (2.2). REE’s amplitude decreases linearly in term of the 

Iteration. Through the equations (2.1) and (2.2), REE ensures a smooth transition between the exploration 

and exploitation phases. It is mathematically represented by the function 𝐸.  

𝐸 = 2𝐸0 (1 −
𝑡

𝑇𝑚𝑎𝑥
)          (2.1) 

𝐸0 = 2𝑟 − 1          (2.2) 

In (2.1) the iteration is represented by 𝑡 and 𝑇𝑚𝑎𝑥 is the maximum number of iteration. 

In (2.2) 𝑟 is an uniform random variable defined in [0,1], therefore 𝐸0 ∈ [−1,1].                    

Based on (2.1) and (2.2), 𝐸 ∈ [−2,2] and |𝐸| reaches zero at the end of the iteration 𝑇𝑚𝑎𝑥. We can 

also notice that |𝐸| < 1 from half of the iteration 
𝑇𝑚𝑎𝑥

2
. (2.3) summarizes the membership intervals of 𝐸 

according to the iteration 𝑡. 
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{
 

 𝑖𝑓 𝑡 ∈ [0,
𝑇𝑚𝑎𝑥

2
] , 𝐸 ∈ [−2,2]           

𝑖𝑓 𝑡 ∈ [
𝑇𝑚𝑎𝑥

2
, 𝑇𝑚𝑎𝑥] , 𝐸 ∈ [−1,1]  

𝑖𝑓  𝑡 =  𝑇𝑚𝑎𝑥 , 𝐸 = 0                         

       (2.3) 

The REE evolution curve is provided by the Fig. 2.1. As noted above, REE drives the exploration and 

exploitation phases. 

 

Fig. 2.1. REE evolution curve 

B. Exploration phases 

The exploration phases take place when the of REE’s amplitude is greater than or equal to 1:|𝐸 |  ≥

1. 

The exploration phases model the two behaviors of Harris Hawks when searching for prey. Harris 

Hawks either jump from perch to perch in search of a better vantage point to detect a rabbit, or they group 

together by flying around a promising area and by perching close to each other in order to be ready to 

migrate in attack formation if they detect a rabbit. The second situation therefore exploits the rabbit’s 

position 𝑋𝑟, and the Harris Hawks swarm average position 𝑋𝑚. 

The exploration process is done using the exploratory equations (2.4). These equations make it 

possible, by stochastic leap, to diversify the search for unexplored promising areas in the search space 

and to calculate the Harris Hawk’s next position. 

These two situations are equally likely. Thus, for a uniform random variables q in [0,1], the first 

situation will occur if 𝑞 ≥ 0.5 and the second situation if 𝑞 < 0.5. 
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𝑋(𝑡 + 1) = {

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|,                𝑞 ≥ 0.5

(𝑋𝑟(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵),     𝑞 < 0.5
    (2.4) 

 𝑟1, 𝑟2, 𝑟3 et 𝑟4  are uniform random variables in [0,1]; 

 𝐿𝐵 and 𝑈𝐵 are respectively the lower and upper bounds of the search space, which makes it 

possible to create a random position in the search space with 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)); 

 𝑋𝑟 is the rabbit’s position, so the best solution at iteration 𝑡; 

 𝑋𝑟𝑎𝑛𝑑 is a position chosen at random from the Harris Hawk population; 

 𝑋𝑚(𝑡) is the average position of the Harris Hawk population and is calculated by (2.5): 

𝑋𝑚(𝑡)  =
∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
          (2.5) 

C. Exploitation phases  

The exploitation phases take place when: |𝐸 |  < 1. 

The rabbit is under fire from Harris Hawk attacks. There are four exploitation phases (attacks), each of 

which models a collective Harris Hawk attacks: Soft besiege, Hard besiege, Soft besiege with progressive 

rapid dives and Hard besiege with progressive rapid dives. Each of these four phases will seek better 

solutions in a neighborhood near or far from 𝑋𝑟(𝑡) .   

The four phases are identified by the couple ( |𝐸|, 𝑟5) with  𝑟5 a uniform random variable in [0,1]. 

The random variable 𝑟5 let’s us to know if the rabbit manages to escape 𝑟5 < 0.5 or if his escape 

attempt failed 𝑟5 ≥ 0.5. The success and failure are equally likely. 

|𝐸| allows us to measure the rabbit exhaustion during the Harris Hawk attacks and therefore its ability 

to be able to escape. If |𝐸| ≥ 0.5 the rabbit has enough energy to run away. On the other hand if |𝐸| <

0.5, the rabbit is exhausted and will have more difficulty avoiding Harris Hawk attacks. 

Thus the four exploitation situations (attacks) are identified as follows:  

 Soft Besiege (SB): if  |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5; 

 Hard Besiege (HB) : if   |𝐸| < 0.5 and 𝑟5 ≥ 0.5; 

 Soft Besiege with Progressive Rapid Dives (SBPRD): if   |𝐸| ≥ 0.5 and 𝑟5 < 0.5; 

 Hard Besiege with Progressive Rapid Dives (HBPRD): if  |𝐸| < 0.5 and 𝑟5 < 0.5. 
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One of the strengths of HHO is the integration of the Levy Flight equation in SBPRD and HBPRD. 

Given that the position of the global solution is unknown in the search space, just like the position of a 

prey is unknown in the hunting ground, the Levy Flight allows Harris Hawk to perform effective local 

research by random short-range jumps in the vicinity of 𝑋𝑟. This method of research, by exploiting the 

Levy Flight distribution, increases search diversity in the distant neighborhood of 𝑋𝑟.  

We are going to describe in detail each of the four exploitation phases explained above.  

a. Soft besiege 

The rabbit is not yet exhausted and is hopping in all directions in an attempt to escape. This therefore 

creates uncertainty in his position. Unfortunately for him he cannot escape. Harris hawks take advantage 

of this and perform surprise pounces to capture their prey. This attack is modeled by the equations (2.6) 

and (2.7) which allow to calculate the next position: 

𝐽 = 2. (1 − 𝑟6)                                                       (2.6) 

{
𝑋(𝑡 + 1) = ∆𝑋(𝑡) − 𝐸. |𝐽. 𝑋𝑟(𝑡) − 𝑋(𝑡)|

∆𝑋(𝑡) = 𝑋𝑟(𝑡) − 𝑋(𝑡)                                
        (2.7) 

𝑟6 is a uniform random variable in [0,1], so 𝐽 belongs to the interval [0,2]. 𝐽 models the uncertainty 

of the rabbit position and helps to extend the search area in the neighborhood of 𝑋𝑟(𝑡). 

The search magnitude in the neighborhood of 𝑋𝑟(𝑡) is managed by 𝐸. Since |𝐸| ≥ 0.5, the search 

takes place in a far neighborhood from 𝑋𝑟(𝑡). 

b. Hard besiege 

The rabbit is exhausted and no longer has the energy to perform run, jump and escape. So there is less 

uncertainty in the rabbit position. Harris hawks perform thus surprise pounces all around the rabbit to 

capture it. This close attack is modeled by equation (15). As |𝐸| < 0.5, the search is performed in a close 

neighborhood of 𝑋𝑟(𝑡). 

𝑋(𝑡 + 1) = 𝑋𝑟(𝑡) − 𝐸. |∆𝑋(𝑡)|        (2.8) 

c. Soft besiege with progressive rapid dives 

The rabbit has enough energy and it manages to escape. So it performs random zigzag movements. 

Like the rabbit still has enough energy and that he avoids skillfully short-range attacks, Harris Hawks 
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perform a soft besiege in order to try to catch the rabbit with surprise pounces disordered. Then, the Harris 

Hawk agents correct their trajectory progressively. 

In order to model the random rabbit zigzag movements, the Levy Flight (LF) equation (2.12) is used 

in the Harris Hawk movement strategy. The LF movement is a great way to widen the search areas 

stochastically during exploitation. 

Equations (2.9) to (2.12) take into account two situations. 

In the first situation equation (2.9) is sufficient to try to capture the rabbit and is satisfactory to 

calculate the next Harris Hawk position Y. 

In the second situation the rabbit is much more skill than Harris Hawks. In this situation, the next 

Harris Hawk position Z is calculated with the equations (2.9), (2.10), (2.11) and (2.12).  

𝑌 = 𝑋𝑟(𝑡) − 𝐸. |𝐽. 𝑋𝑟(𝑡) − 𝑋(𝑡)|        (2.9) 

𝑍 = 𝑌 + 𝑆. 𝐿𝐹          (2.10) 

𝑋(𝑡 + 1) = {

𝑌  𝑖𝑓  𝐹(𝑌) < 𝐹(𝑋)

𝑍  𝑖𝑓  𝐹(𝑍) < 𝐹(𝑋)
        (2.11) 

{
  
 

  
 𝐿𝐹 = 0.001. 𝑢.𝜎

|𝑣|
1
𝛽

𝜎 = (
𝛤(1+𝛽).𝑠𝑖𝑛(𝜋.𝛽

2
)

𝛤(1+𝛽
2
).𝛽.2

(
𝛽−1
2

)
)

1
𝛽         (2.12) 

𝑢 and 𝑣 are two vectors whose components are random variables in [0,1] and 𝛽 is a constant equal to 

1,5. 

d. Hard besiege with progressive rapid dives 

The rabbit is exhausted and it is therefore in a difficult situation. However, it manages to escape. We 

observe again a random zigzag movement escape.  

Like SBPRD, in HBPRD the calculation of the next Harris Hawk position uses the Levy Flight 

equation (2.12) and depend on two situations: the first situation uses equation (2.13) and the second 
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situation uses equations (2.12), (2.14) and (2.15). Since the Harris Hawk attacks strategy is in close 

formation, the next position calculation is based on the average Harris Hawk positions 𝑋𝑚. The average 

position 𝑋𝑚 is calculated with equation (2.5). 

𝑌 = 𝑋𝑟(𝑡) − 𝐸. |𝐽. 𝑋𝑟(𝑡) − 𝑋𝑚(𝑡)|        (2.13) 

𝑍 = 𝑌 + 𝑆. 𝐿𝐹          (2.14) 

𝑋(𝑡 + 1) = {

𝑌   𝑖𝑓    𝐹(𝑌) < 𝐹(𝑋)

𝑍   𝑖𝑓   𝐹(𝑍) < 𝐹(𝑋)
        (2.15) 

Appendix 6 provides the flowchart of HHO. The schematic representations of the updating Harris 

Hawk position provided in the literature are unreadable and incomprehensible views in 3-dimension on 

a 2-dimensional plan [Heidari AA et al., 2019; Hussain K et al., 2019c]. We propose in our flowchart a 

mapping more pragmatic of the updating of the Harris Hawk positions in the exploration and exploitation 

phases. Moreover, this new representation highlights REE as the central element of HHO as the 

coordinator of exploration and exploitation phases. The pseucode Algorithm 1 below implements the 

HHO algorithm.  

Algorithm 2.1 Pseudocode of HHO 

In: Population size N, number of iteration 𝑇𝑚𝑎𝑥, objective function F 

Out: 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗) 

Initialization of the Harris Hawk positions �⃗�𝑖 , 𝑖 ∈ {1, . . , 𝑁}, t=0 

 

While (t < 𝑇𝑚𝑎𝑥) do: 

      Calculate 𝐹(�⃗�𝑖) of each Harris Hawk position �⃗�𝑖 

      Define the best position of rabbit  𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)   

      For each Harris Hawk 𝑖 do:  

          Update 𝐸0, 𝐸, and 𝐽 with (2.1), (2.2) and (2.6) 

          If(|𝐸 |  ≥ 1) then:            [Exploration] 

              Calculate 𝑞 and Update position with (2.4) 

          Else:             [Exploitation] 

              Calculate 𝑟5 



 

57 

 

                  If  |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5 then: 

        Update position with (2.6) and (2.7) 

                  If   |𝐸| < 0.5 and 𝑟5 ≥ 0.5 then: 

         Update position with (2.8)  

                  If   |𝐸| ≥ 0.5 and 𝑟5 < 0.5 then: 

         Update position with (2.9) to (2.12) 

                  If   |𝐸| < 0.5 and 𝑟5 < 0.5 then: 

         Update position with (2.12) to (2.15) 

       End for  

       t=t+1  

End while  

Return 𝑋𝑟⃗⃗⃗⃗⃗ 

In subsection 2.2.4 we have seen all the qualities of HHO metaheuristic inspired by Harris Hawks' 

pack hunting technique. It is a very recent and almost autonomous metaheuristic (two parameters to 

initialize) with sophisticated exploration and exploitation equations. 

The experimental results in the literature demonstrate correct performances in search of the global 

solution for small and medium-dimension optimization problems [Heidari AA et al., 2019].  

However, as the No Free Lunch Theorem [Wolpert DH et al., 1996] reminds us «There is no 

metaheuristic algorithm that can solve all optimization problems». This means that a metaheuristic can 

demonstrate good performance on a group of optimization problems, while getting mediocre results on 

another group. So, the perfect metaheuristic does not exist and HHO does not escape the rule. This opens 

up a wide range of innovation to researchers to improve HHO and to reduce its weaknesses. These 

weaknesses were particularly manifested in highly multimodal and high-dimensional optimization 

problems. Indeed, in this category of problems, HHO fails to maintain proper balance between 

exploration and exploitation phases to get stuck in one of the local optimum with low accuracy. Thus the 

Harris Hawks have a lot of weaknesses "to hunt and catch an acceptable prey" (acceptable solution) in a 

reasonable time. 

2.2.5. The HHO’s weaknesses and improvement attempts 

Many studies in the literature have attempted to correct the HHO’s weaknesses by hybridization 

strategies [Alabool HM et al., 2021]. These weaknesses relate more particularly to exploration and 



 

58 

 

exploitation capacities and the balance between these two phases. These weaknesses are accentuated by 

the multimodality of the optimization problem and with the curse of the dimensionality by increasing the 

dimension.  

Four main strategies have been implemented to correct the HHO’s weaknesses: Improve the 

exploratory equations, modify the REE function, increase the diversification of the population and adapt 

the exploitation area by altering the exploitation equations. These four strategies used individually or 

combined contribute to the final objective of correcting the HHO’s weaknesses that we have just 

explained above. 

HHO skills were exploited by Elkadeem M.R. et al. [Elkadeem MR et al., 2019] to resolve the 

optimization of renewable energy distribution planning in photovoltaic and volume panels. In order to 

improve HHO exploration capacities, the latter was hybridized with Particle Swarm Optimization (PSO) 

to create HHO-PSO. Indeed, PSO, although less evolved than HHO, is able to explore the search space 

quite quickly. It’s this particularity that has been integrated into the exploratory equations of HHO. The 

experimental results testify to the good exploratory faculties of HHO-PSO compared to HHO. 

In a research by Birogul S. [Birogul S, 2019] HHO was hybridized with the metaheuristic Differential 

Evolution (DE) to create HHODE. HHODE has allowed to better solve the optimization problem of 

Electrical Power Flow (OPF). Again, exploration is the improvement line of HHO by replacing the 

exploratory equations for 𝑞 ≥ 0.5. This equation is replaced by the five mutational equations of the most 

used algorithm in DE to benefit from their diversification capabilities. The experimental results 

demonstrated the superiority of HHODE on HHO. 

Houssein E.H. et al. [Houssein EH et al., 2020] introduced a hybridization of HHO with the Cuckoo 

Search (CS) and chaotic maps to create the CHHO-CS metaheuristic. CHHO-CS was used for the feature 

selection of the chemical composition descriptors. CHHO-CS uses CS to achieve better 𝑋𝑟𝑎𝑛𝑑 and 𝑋𝑟 

position to improve explorations phases and the balance between exploration and exploitation. Then 

chaotic maps were incorporated into the REE function to change the shape of its amplitude to an inverted 

parabolic. Thus 𝐸 evolve in [−2,2] in the two half of the iteration. Thereby hybridization allows to 

reorganize the exploration and exploitation phases in the two halves of the iteration. 
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Jia H. et al. [Jia H et al., 2019] proposed DHHO/M in order to use it in satellite images segmentation. 

DHHO/M improves the exploration phases of HHO by replacing on the one hand a part the exploration 

equation for 𝑞 ≥ 0.5 with the  DE best/2 operation. And on the other hand by adding to the REE a function 

which stochastically creates "pulses" during the second half of the Iteration. Those pulses increase the 

amplitude of REE. This makes it possible to have |𝐸 |  ≥ 1 during the second half of the Iteration, so new 

exploration phases could allow DHHO/M to get out  from the local optimum traps. Tests on satellite 

image datasets validated the performance of DHHO/M against HHO. 

The authors Gupta S. et al. [Gupta S et al., 2020] combined three of the four methods mentioned 

above to improve HHO by creating the metaheuristic m-HHO. The linear management of the amplitude 

of the REE function has been replaced by a decreasing quadratic exponential function. This function 

grants less iterations to the exploration phases while accelerating convergence. The Levy Flight (LF) 

function multiplied by a parameter 𝛼 was added to the two exploitation equations (2.9) and (2.13). This 

parameter 𝛼 controls the magnitude of the step of LF and varies throughout iterations in the same way as 

the REE function. This modification makes it possible to reduce disturbances in the exploitation phases 

as the iterations progress. The diversification phase of the algorithm has been implemented by the use of 

the Opposition-Based Learning (OBL) method applied to a greedy selection of the 𝑁𝑜𝑝  best opposed 

solutions of the HHO population. 𝑁𝑜𝑝 is a decreasing staircase function according to iterations which 

allows a wide diversification of the population at the start of iterations in order to promote exploration to 

then focus on a smaller portion of the population at the end of the iteration in order to promote 

exploitation. Tests on a benchmark of 33 functions provided better results for m-HHO with a better local 

optimums avoidance.  

Fan Q. et al. [Fan Q et al., 2020] created QRHHO by integrating the Quasi-Reflection-Based Learning 

(QRBL) mechanism into HHO in order to diversify the population. QRBL is a variant of the Opposition-

Based Learning (OBL) mechanism. QRBL is used for the initialization phases and the updating of the 

population at each iteration. The calculation of QRBL is performed on each position of the N agents of 

the population to provides N new QRBL agents. Then a greedy selection is performed on the original 

population and the QRBL population in order to keep only the N best agents. Tests on a benchmark of 
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23 functions have demonstrated that QRHHO has better exploitation, exploration and convergence 

capabilities than HHO. 

Chen H. et al. [Chen H et al., 2020] have integrated into HHO three mechanisms allowing to correct 

the exploration, the exploitation and the precision of the final solution. To do this, they created the 

metaheuristic CMDHHO which uses respectively the topological multi-population strategy, the chaotic 

sequence of the Logistic map and the three DE operations: mutation, crossover and selection. 

The 30 functions of the CEC2017 benchmark made it possible to highlight that the three mechanisms 

include at the same time in CMDHHO allowed a significant reduction of HHO’s weaknesses to increase 

the convergence speed and the final solution quality, but without knowing which of the mechanisms 

introduced brings the most performance or the least performance or even no improvement. 

Gao Z.M. et al. [Gao ZM et al., 2019] have used in HHO, the chaotic sequence of the Tent map to 

diversify at each iteration the best position 𝑋𝑟. It is a diversification method applied only to Rabbit 

position. This strategy is divided into three steps. In the first step the components of 𝑋𝑟, initially in the 

search space [𝐿𝐵, 𝑈𝐵], are mapped in [0,1]. In the second step the components are transformed into 

chaotic value with the Tent chaotic map. In the last step they are switched in the initial search space 

[𝐿𝐵, 𝑈𝐵]. The reiteration of this process is equal to the number M of chaotic iteration. Therefore, M new 

Rabbit positions are created. A greedy selection of the best position among the M is finally made to 

replace the position 𝑋𝑟 if its fitness value is better.  

Experimental results on a benchmark of 18 functions compared HHO and the chaotic version of HHO. 

These results highlighted the superiority of chaotic version of HHO by a faster convergence and a better 

precision of the final solution. 

All the work that we have just described above prove that HHO has great weaknesses and that a large 

leeway exists to improve it. However, these works only use classical hybridization paradigms to improve 

HHO. Contrary to these works, our hybridization paradigm is entirely inspired by an unexpected hunting 

synergy observed in nature. In section 2.3, we will detail our contribution in which we will explain in 

detail our hybridization strategy inspired from the hunting synergy between the crows of and the wolves 

which has allowed us to design HHO-EAS. 
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2.3. Our contribution HHO-EAS a new population based metaheuristic inspired from the nature 

2.3.1. Inspiration from the nature 

In northern Europe, near Romania and in the Yellowstone Park in Wyoming, winters are very harsh. 

During this season sufficiently nutritious prey is scarce and the chances of survival are dwindling for 

predators. It was in this hostile environment that an unusual alliance was born between the wolves and 

the crows [Stahler D et al., 2002; Milner R, 2020]. 

 

Fig. 2.2. Synergy between crow and wolf while hunting [Milner R, 2020]. 

Individually, the crows and wolves struggle to feed themselves by hunting in such difficult climatic 

conditions.  

In the snow, wolves have a good ability to hunt by detecting and catching a prey near them, even if it 

is larger than them. However, they have great difficulty in locating their prey in a large hunting ground, 

especially if the hunting ground is very hilly and rugged. They will therefore have exhausted themselves 

trying to catch a prey in vain. Then, they give up due to excessive complexity of the hunt, and 

consequently reduces their chances of survival. 

Crows, unlike wolves, have a good aerial view on the entire hunting ground. This makes it easier for 

them to quickly explore the hunting ground and to detect attractive prey. However, attractive preys are 

often too big for their hunting ability. Crows therefore cannot catch them away. Consequently, they will 

have exhausted themselves in vain in search of this prey. Thus, they will suffer the same fate as the 

wolves. 

However, if the crows and wolves associate their skills, their desperate situation could favorably 

change. Crows will use their aerial exploration faculties to detect promising prey, even if stronger than 

them. As soon as they will have detected a good prey they will communicate his position to the wolves 
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and ask them to exploit this information to attack and catch this prey. Once the prey is acquired, the 

wolves honorably cedes a part of the booty to the crows. 

This win-win synergy between the aerial exploration abilities of the crows and the attack skills of the 

wolves allows them both to better feed themselves during the winter and ensure their survival. 

The hunting strategy between crows and wolves is structured in three phases. 

First phase: The crows initiate the hunt and invite the wolves to join them. The crows perform a 

careful exploration adapted to the hunting ground whatever its complexity. The initial field of exploration 

is wide and then gradually narrows to an area with a promising prey. So the exploration phases are present 

until the crows have targeted a promising prey. The wolves’ encirclement and attack phase is in the last 

phase of the hunt. During the exploration phases, crows can ask wolves to check the feasibility of the 

attack and the capture of a prey. 

Second phase: Finally, the crows’ exploration abilities allowed them to detect a promising region 

with a good prey. They ask wolves to attack this prey. The wolves move towards the position of the prey 

provided by the crows to encircle and attack it. 

Third phase: Wolves and crows benefit together of the outcome of their alliance by sharing the prey. 

The hunting synergy between the crows and the wolves brings out four key points of the adopted 

strategy: 

 A good management of hunting by the crows and a constant communication between crows 

and wolves; 

 A smart exploration, gradual and adapted to the hunting ground carried out by the crows in 

order to find a good prey; 

 A signal that allows to coordinate the missions of each during the hunt and asking the wolves 

to attack the prey; 

 An encirclement and attack of the prey made by the wolves. 

Based on the three phases of the hunting synergy between crows and wolves and its four key points 

we were able to enforce a hybridization strategy to design a new HHO-EAS metaheuristic. 
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2.3.2. Our contribution HHO-EAS 

Subsection 2.2.5 explained some researches to improve HHO by hybridization. These improvements 

act mainly on exploratory and exploitation equations and on the alteration of the REE function. 

The HHO-EAS metaheuristic provides news axis of improvement for exploration and exploitation in 

order to improve the performance of HHO. Inspired by the hunting synergy between crows and wolves, 

HHO-EAS integrates the four key points listed above in HHO: 

 A new REE function designed by fuzzy logic techniques that provides a smart distribution of 

exploration and exploitation phases; 

 Progressive and decreasing exploration phases, better suited to highly multimodal problems 

thanks to fuzzy logic; 

 A new Harris Hawk hierarchy, 𝛼 − 𝛽 − 𝛿 ; 

 A coordinated exploitation between Harris Hawk 𝛾 and the Harris Hawk hierarchy, 𝛼 − 𝛽 −

𝛿, who lead the encirclement and attack. 

A. A smart distribution of exploration and exploitation phases managed with a Fuzzy Inference 

Sytem (FIS)  

In subsection 2.3.1, three of the four points of the hunting synergy between the crows and the wolves 

are:  

 A good management of hunting by the crows and a constant communication between crows 

and wolves; 

 An intelligent exploration, gradual and adapted to the hunting ground in order to find a good 

prey; 

 A signal that allows to coordinate the missions of each during the hunt and asking the wolves 

to attack the prey. 

We will model this strategy by creating a Fuzzy Inference System (FIS) based on a Mamdani type. 

We name it FISREE (Fuzzy Inference System Rabbit Escaping Energy). Our algorithm manages the 

amplitude e of REE, so it coordinates the exploration and exploitation phases of HHO-EAS. Unlike HHO 

that coordinates the exploration and exploitation phases at each iteration with a simplistic linear function, 
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our algorithm will implement a smart coordination process of exploration and exploitation phases suited 

to highly multimodal and high-dimensional optimization problems. As we could see in subsection 2.2.4, 

the REE function is the beating heart of the HHO algorithm. This function makes it possible to coordinate 

the exploration and exploitation phases while ensuring a smooth transition and a balance between its two 

phases. It therefore contributes to performance of HHO. However, as explained in subsection 2.2.5, REE 

can be improved to better promote the distribution of exploration and exploitation phases during iterations 

and to tend towards a better exploration-exploration balance. Thus this allows to increase the probability 

of finding a promising area in the search space containing a good solution and to avoid the pitfalls of a 

poor exploration-exploitation balance, either premature convergence or too slow convergence. 

In HHO, the amplitude of REE is the crisp variable 𝑒 and is expressed over two phases in a decreasing 

and linear fashion : 

{
 
 

 
 𝑖𝑓 𝑡 ∈ [0,

𝑇𝑚𝑎𝑥

2
] , 𝑒 ∈ [1,2]   

     

𝑖𝑓 𝑡 ∈ [
𝑇𝑚𝑎𝑥

2
, 𝑇𝑚𝑎𝑥] , 𝑒 ∈ [0,1]

 

In [0,
𝑇𝑚𝑎𝑥

2
], the amplitude 𝑒 allows several exploration phases and in [

𝑇𝑚𝑎𝑥

2
, 𝑇𝑚𝑎𝑥] there’s no more 

exploration phases. The second phase is therefore suddenly deprived of exploration phases. We can easily 

deduce that in HHO, there is a premature disappearance of the exploration phases, which is not adapted 

to the high-dimensional and highly multimodal optimization problems [Jia H et al., 2019; Zhang Y et al., 

2020]. However, in the collaborative hunting between the crows and the wolves, there is an intelligent 

exploration, gradual and adapted to the hunting ground to find a prey. Indeed, the crows gradually 

decrease their fields of exploration to manage to detect a promising area. In this strategy the exploration 

phases constitute the major part of the hunting process and the wolf attack phase, with only exploitation 

phases, is the very last part of the hunt. To model this strategy in HHO-EAS, with FISREE we insert in 

the amplitude e three level: Small, Medium and Big.  

Before detailing the architecture of FISREE, it is necessary to recall the general concepts of fuzzy 

logic and to fix its theoretical fundamentals. These fundamentals are 8 in number: Universe of discourse, 
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Fuzzy set, Membership functions, Fuzzy Rules, Fuzzification, Defuzzification, Knowledge base and 

Inference Engine [Zadeh LA, 1965; Klir G et al., 1995; Sabri N et al., 2013; Mitiku T et al., 2018; 

Pourjavad E et al., 2019]. 

B. General concepts 

Fuzzy logic is a subset of the artificial intelligence created by ZADEH Lotfi in 1965 [Zadeh LA, 

1965]. Fuzzy logic makes it possible to process physical signals from our environment by the decision-

making process of human perception which may lack precision. Mathematically, Fuzzy logic enables 

rational, flexible and repeatable decisions to be made about crisp output variables based on crisp input 

variables and fuzzy rules between input and output linguistic variables [Klir G et al., 1995; Ross TJ, 

2016; Reddy PVS, 2021]. 

C. Theoretical fundamentals 

a. Universe of discourse 

Universe of discourse 𝜒 of a fuzzy set 𝐿 is the interval of definition of the crisp values 𝑥 in which 

membership function 𝜇𝐿 is defined. 

b. Fuzzy set 

A Fuzzy set 𝐿, defined in the universe of discourse 𝜒 is characterized by its membership function 𝜇𝐿. 

It is represented by the couple 𝑥 et 𝜇(𝑥)𝐿, with 𝑥 a crisp value in the universe of discourse 𝜒. The 

mathematical expression of the fuzzy set 𝐿 is : 

𝑳 = {(𝒙, 𝝁(𝒙)𝑳)| 𝒙 ∈ 𝝌} . 

c. Membership function 

A membership function 𝜇𝐿 is associated with the fuzzy set 𝐿 . For each crisp value 𝑥 of the universe 

of discourse 𝜒, 𝜇𝐿 provide a real value in [0, 1] which represents the degree of membership of 𝑥 in the 

fuzzy set 𝐿. 

The membership 𝜇𝐿 is defined by the mathematical expression : {
𝝌 → [𝟎, 𝟏]

𝒙 → 𝝁𝑳(𝒙)
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There is a multitude of membership functions: Gaussian, sigmoid, trapezoid, triangular, etc. What all 

of its membership functions have in common is that their values are in [0,1]. Membership functions must 

agree with the definition space of the crisp input and crisp output value that they describe. 

d. Fuzzy rules 

Fuzzy rules are the expression of the expert human knowledge. This makes it possible to express, in 

human language, a fuzzy logical relationship between input and output linguistic variables and input and 

output fuzzy sets. 

A fuzzy rule is expressed by the basic logical expressions IF antecedent THEN consequent. The 

antecedent is the fuzzy logic equation involving the input linguistic variables and input fuzzy sets. The 

consequent is the fuzzy logic equation involving the output linguistic variables and output fuzzy sets. 

Knowing that the fuzzy sets represent linguistic values of the linguistic variables. 

e. Fuzzification 

The Fuzzification process is the mapping of a crisp value in a Fuzzy Set. Thus, the Fuzzification makes 

it possible to transform a crisp input value, from the input universe of discourse, in membership degrees 

of the fuzzy sets.  

f. Defuzzification 

The Defuzzification is the opposite process of Fuzzification. It is the process we use to convert a fuzzy 

set, taking into account the activated fuzzy rules, in order to provide a crisp output value belonging to the 

output universe of discourse. 

g. Knowledge base 

The Knowledge base is a data base containing the expert knowledge of the Fuzzy Inference System. 

It contains the Fuzzy rules and the Membership function associated to the Fuzzy sets. 

h. Inference Engine 

Inference engine allow to create the output fuzzy set from the input fuzzy set and the fuzzy knowledge 

base containing the fuzzy rules. To do this, the Inference Engine acts in two steps:  

1st step: Knowing the degree to which the inputs crisp values belong to each membership function 

in the Fuzzification process, the Inference Engine calculates the degree for which each rule is fired; 
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2nd step: From the triggered rules and their degree of firing, the Inference Engine creates the output 

fuzzy set concerned by the rules triggered. 

We now know the fundamental blocks that will allow us to build our FISREE. We can now explain 

step by step its implementation. 

D. Variables and membership functions of FISREE 

In order to design and to develop the architecture of FISREE, it is necessary to first define its input 

and output variables and its input and output membership functions. The choices made for each of these 

elements are fundamental for the efficiency of FISREE. 

We describe below the design choices of FISREE:  

 The Input and Crisp output value; 

 The Output universe of discourse, knowing that input universe of discourse for Iteration is 

[0,1]; 

 The Input and Output fuzzy set; 

 The Input and Output Membership functions. 

a. Input and crisp output value 

Like HHO that uses the iteration as numerical input variable for the function REE (2.1) to pace 

exploration and exploitation, HHO-EAS will use the iteration as a crisp input value to pace FISREE. In 

order to have an interval of value between 0 and 1 we divide the iteration by the maximum number of 

iteration : 
𝒕

𝑻𝒎𝒂𝒙
. 

It is the amplitude 𝑒 that is the crisp output value calculated by FISREE.  

Next, we need to determine for FISREE, the bounds of the output universe of discourse the most 

optimal in order to model the crow exploration strategy. 

b. Output universe of discourse 

In order to determine which is the most optimal output universe of discourse for FISREE, we 

performed the efficiency evaluation of the six following universe of discourse: 
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[0,2], [0.5,2], [0,2.5], [0.5,2.5], [0.5,3] and [0,3]. These universes of discourse were determined after 

analyzing the state of the art of the attempts to improve HHO by acting on the amplitude of REE 

[7,16,17,20]. Each universe of discourse acts differently on the employability of REE and therefore on 

the distribution of exploration and exploitation phases. The output universe of discourse most consistent 

with the strategy of crows with a gradual decline in the field of exploration is [0.5,2.5]. It was therefore 

chosen as the output interval of discourse for the amplitude 𝑒. 

c. Input and Output linguistic variables  

The input linguistic variable Iteration has three input fuzzy set linked to the three linguistic values: 

Start, Middle and End.  

As Iteration, the output linguistic variable 𝒆 has three fuzzy set linked to the linguistic values: Small, 

Medium and Big. 

d. Membership functions 

The choice of membership functions is vital for the FISREE. They act not only on FISREE 

performance but also on the calculation time of the output value 𝑒.  

For FISREE we want membership functions: 

 Which are compatible with large variations of input and output numeric variable in a very 

short time interval; 

 Requiring a short calculation time in order to not to increase the HHO-EAS complexity. 

Based on the state of the art [Zhao J et al., 2002; Monicka JG et al., 2011] the membership functions 

adapted to our needs are triangular or trapezoid functions. The most efficient for FISREE are the 

triangular ones.  

e. Triangular membership functions 

The triangular membership function is normal (there is at least one 𝑥 belonging to the universe of 

discourse such as 𝜇(𝑥) = 1), symetric and convex fuzzy set. It is defined by the equations (2.16) 

depending on three real values a, b and c with 𝑎 < 𝑏 < 𝑐. 
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𝜇(𝑥) =

{
 
 

 
 
0 𝑖𝑓 𝑥 ≤ 𝑎                  
𝑥−𝑎

𝑏−𝑎 
 𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
 𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐

0  𝑖𝑓 𝑐 ≤ 𝑥                

        (2.16) 

The real values a, b and c define the Support, the Core and the Boundary of the membership 

function:  

 Support is {(𝑥 ∈ [𝑎 , 𝑐])| 𝜇(𝑥) > 0} ; 

 Core is {(𝑥 ∈ [𝑎 , 𝑐])| 𝜇(𝑥) = 1} , for a triangular membership function the core is equal to 

𝑏; 

 Boundary is {(𝑥 ∈ [𝑎 , 𝑐]): 0 < 𝜇(𝑥) < 1} ; 

Therefore, for the triangular membership function, 𝑏 is the argmax value in [𝑎 , 𝑐] for 𝜇(𝑥). 

Thanks to the results obtained in [Zhao J et al., 2002; Monicka JG et al., 2011], we selected and tested 

two membership functions with different linguistic weighting terms [𝑎 , 𝑏, 𝑐] in a universe of discourse 

normalized [0 , 1]: 

(1). [0 , 0, 0.5], [0 , 0.5, 1], [0.5, 1, 1] ; 

(2). [0 , 0, 0.4], [0.1 , 0.5, 0.9], [0.6, 1, 1]. 

We have chosen (2) because, for the progressive decrease of the exploration phases, this allows on the 

three portions of the input universe of discourse: [0,
𝑇𝑚𝑎𝑥

10
], [

2𝑇𝑚𝑎𝑥

5
, 
3𝑇𝑚𝑎𝑥

5
], and [

9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] to obtain 

three constant levels of amplitude 𝑒 followed or preceded by non-linear progressive decrease of the 

amplitude. Thus, we have associated to the input and output fuzzy sets three triangular membership 

functions with: 

 Crisp input value in the universe of discourse [0 ,1] ; 

 Crisp output value in the universe of discourse [0.5 ,2.5] ; 

 For the linguistic variable Iteration , the three triangular membership functions have the 

linguistic weighting terms defined by Start [0 , 0, 0.4], Middle , [0.1 , 0.5, 0.9], End [0.6, 1, 1] ;  



 

70 

 

 For the amplitude linguistic variable e , the three triangular membership functions have the 

linguistic weighting terms defined by Small [0.5,0.5,1.3], Medium [0.7,1.5,2.3], Big 

[1.7,2.5,2.5]. 

Fig. 2.3 provides with the graphical representation of the six input and output membership functions 

for the linguistic variables Iteration and e.  

We now have all the fundamental building blocks to design the FISREE’s architecture. 

 
Fig. 2.3. Membership functions for linguistic variable Iteration and e. 

E. FISREE’s architecture  

FISREE manage the amplitude of REE with five decreasing phases: Big, Big and Medium, Medium, 

Medium and Small and Small.  

FISREE provide therefore a new distribution of exploration and exploitation phases during Iteration 

from 0 to 𝑇𝑚𝑎𝑥 in order to obtain a better exploration-exploitation balance in highly multimodal and high-

dimensional optimization problems and to increase the probability of obtaining an area containing a good 

solution. This area will then be enhanced by the exploitation phases. 

The FISREE’s architecture is composite of the four main blocks of a Fuzzy Inference System. Each 

of them plays an essential and complementary role in the calculation of the crisp value 𝑒: 

 The Fuzzification block; 

 The Knowledge base block; 

 The Inference engine block; 
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 The Deffuzzification block. 

Fig. 2.4 below provides the FISREE’s architecture. 

 

Fig. 2. 4. FISREE’s architecture. 

These four blocks were designed in order to obtain the desired non-linear decreasing monotonous 

variations for the amplitude 𝑒.  

The objective is to obtain, like the exploration strategy of the hunting ground by the crows, a 

redistribution of gradually decreasing and balanced exploration phases compared to exploitation phases, 

until the final step of the optimization process with only exploitation phases.  

a. Fuzzification block  

The Fuzzification block receives the crisp input value Iteration. This block transforms it into a 

linguistic variable Iteration with different degree of membership associated to the fuzzy sets Start, 

Middle and End thank to the three triangular membership functions detailed above and loaded in the 

Knowledge Base block.  

b. Knowledge Base block 

As clarified above, the fuzzy rules and the triangular membership functions express the knowledge 

base that reflects the human expert choices during the execution of the HHO-EAS metaheuristic. We 

detailed previously the input and output triangular membership functions. Never the less we have not 

explained our "fuzzy strategy" expressed by our fuzzy rules.  
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FISREE has three fuzzy rules. In order to create a decreasing amplitude 𝑒 (crisp output variable) we 

implement three decreasing rules between the linguistic variables Iteration and 𝒆 :  

IF (Iteration) IS (Start) THEN (𝒆) is (Big) 

IF (Iteration) IS (Middle) THEN (𝒆) is (Medium) 

IF (Iteration) IS (End) THEN (𝒆) is (Small) 

These three rules make it possible to determine the linguistic value 𝒆 from the linguistic value 

Iteration . 

These three fuzzy rules will be activated by the Inference engine block taking into account the 

membership degree of the crisp value associated to each fuzzy set Start, Middle and End. 

c. Inference engine block 

Inference engine allow to create the fuzzy set of the linguistic variable 𝒆 from the fuzzy set of the 

linguistic variable Iteration, its three triangular membership functions and the three fuzzy rules in the 

knowledge base. 

The results from the fuzzy rules activations are then aggregated and transmitted to the Defuzzification 

block. 

d. Defuzzification block 

For the Defuzzification process in FISREE, with a Mamdani-type FIS, we use the centroid method 

to provide a amplitude value 𝑒. This method use the weighted average of the output fuzzy sets expressed 

by:  

𝑒 =
∫ 𝜇𝐿(𝑦). 𝑦. 𝑑𝑦

∫ 𝜇𝐿(𝑦). 𝑑𝑦
 

The FISREE’s architecture is now operational. We can therefore visualize the results on the amplitude 

𝑒, the REE function and the distribution of exploration and exploitation phases from the iteration 0 to 

𝑇𝑚𝑎𝑥 with 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000 in accordance with the 𝑇𝑚𝑎𝑥 values used in general and 
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specific tests. We will see that FISREE makes it possible to redistribute the exploration and exploitation 

phases independently of 𝑇𝑚𝑎𝑥 in order to model the smart strategy of the crows with the progressive 

decreasing of exploration phases. 

F. Graphical results  

a. Evolution of the amplitude e during the iterations 

Fig. 2.5 allows us to visualize the progression of the numeric variable 𝑒 for HHO and HHO-EAS. 

We can see in Fig. 2.5, whatever 𝑇𝑚𝑎𝑥 value, that unlike HHO which has a single decreasing linear 

management of 𝑒, FISREE allows HHO-EAS to manage the numeric variable 𝑒 on five phases: Three 

constant levels at the beginning in the middle and at the end of the iterations, preceded by nonlinear 

decreasing phases.  

Each phases represents the following fuzzy sets of 𝑒:  

Phase 1: Big; 

Phase 2: Big and Medium; 

Phase 3: Medium; 

Phase 4: Small and Medium; 

Phase 5: Small. 

This is the result of the operations carried out by FISREE from the crisp input value of Iteration. It 

can be noted that HHO-EAS is still able to perform exploration phases after 
𝑻𝒎𝒂𝒙

𝟐
. These five variations 

of the amplitude 𝑒 allow HHO-EAS to have a smart and adapted management of the REE function to the 

highly multimodal and high-dimensional optimization problems. 



 

74 

 

 

Fig. 2.5. Graphical representation of the amplitude e in HHO and HHO-EAS for 𝑇𝑚𝑎𝑥=600 and 

𝑇𝑚𝑎𝑥=10000 
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Fig. 2.6. Graphical representation of REE function in HHO and HHO-EAS for 𝑇𝑚𝑎𝑥=600 and 

𝑇𝑚𝑎𝑥=10000 
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b. Evolution of the REE function during the Iteration 

To analyze the evolution of REE in HHO-EAS, we replace in the equation (2.1) the linear decreasing 

amplitude e by the output crisp value e produced by FISREE. 

Fig. 2.6 make it possible to compare the REE managed by HHO and HHO-EAS. We can see that the 

wrap of the REE function is the same for 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000. Which confirms that the 

variation of the amplitude e is independent of 𝑇𝑚𝑎𝑥. 

As we had expected, we observe several peaks of amplitude greater than 1 up to iteration 540 for 

𝑇𝑚𝑎𝑥 = 600 and 9000 for 𝑇𝑚𝑎𝑥 = 10000. After 540 and 9000, there is no more peak greater than 1, 

leaving the field open for the exploitation phases only. Like the hunting synergy between the crows and 

the wolves, the exploration phases are present in the major part of the optimization process and end with 

only the exploitation phases in the last phase of the optimization. 

We will see in what follows that FISREE carries out a new distribution of the exploration and 

exploitation phases in accordance with the crows’ exploration strategy.  

c. Exploration and exploitation distributrion 

In order to model the crows’ exploration strategy, FISREEE provide a new distribution of the 

exploration and exploitation phases in order to increase, for the highly multimodal and high-dimensional 

optimization problems, the probability of finding a promising area with good solution and avoiding to be 

trapped in a local optimum. 

In accordance with our FISREE conception choices explained above, the latter performs a distribution 

in the five following intervals: [0,
𝑇𝑚𝑎𝑥

10
], [

𝑇𝑚𝑎𝑥

10
, 
2𝑇𝑚𝑎𝑥

5
], [

2𝑇𝑚𝑎𝑥

5
, 
3𝑇𝑚𝑎𝑥

5
], [

3𝑇𝑚𝑎𝑥

5
, 
9𝑇𝑚𝑎𝑥

10
] and [

9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥]. 

These intervals represent respectively the linguistic values: Start, Start and Middle, Middle, Middle and 

End and End. Whatever 𝑇𝑚𝑎𝑥 the fuzzy inference system FISREE allows us to obtain the same 

proportion between exploration and exploitation phases in these five intervals. Thus, FISREE allows to 

maintain an stable strategy independently of 𝑇𝑚𝑎𝑥. 

Knowing that the exploration phases disappear halfway through the iterations for HHO, we have split 

the interval [
2𝑇𝑚𝑎𝑥

5
, 
3𝑇𝑚𝑎𝑥

5
] into two: [

2𝑇𝑚𝑎𝑥

5
, 
𝑇𝑚𝑎𝑥

2
] and [

𝑇𝑚𝑎𝑥

2
, 
3𝑇𝑚𝑎𝑥

5
]. This allows us to observe the total 

loss of exploration phases in HHO unlike HHO-EAS which maintains its strategy of progressive decrease 
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in its exploration phases. Of course, FISREE will keep the same logic of distribution in these two 

intervals. 

So we will analyze in Fig. 2.7 the quotient between the exploration and exploitation phases over the 

six key intervals: [0,
𝑇𝑚𝑎𝑥

10
], [

𝑇𝑚𝑎𝑥

10
, 
2𝑇𝑚𝑎𝑥

5
], [

2𝑇𝑚𝑎𝑥

5
, 
𝑇𝑚𝑎𝑥

2
], [

𝑇𝑚𝑎𝑥

2
, 
3𝑇𝑚𝑎𝑥

5
], [

3𝑇𝑚𝑎𝑥

5
, 
9𝑇𝑚𝑎𝑥

10
] and [

9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] 

with 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000 in accordance with the 𝑇𝑚𝑎𝑥 values used in general and specific 

tests.  

 

 

Fig. 2.7. Distribution of Exploration and Exploitation phases over the six key iteration intervals for 

Tmax=600 and Tmax=10000 

d. Analysis of the distribution exploration and exploitation phases strategy implemented by FISREE 

First of all, as we had planned, we can note that the quotients between the exploration and 

exploitation phases are almost identical for 𝑇𝑚𝑎𝑥 = 600 and 𝑇𝑚𝑎𝑥 = 10000. The exploration phases 

are the majority in the interval [0,
𝑇𝑚𝑎𝑥

10
] for HHO-EAS with a ratio of 1.23 unlike HHO where they are 
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minority with a ratio of 0.90. This is one of the assets of HHO-EAS compared to HHO because it allows, 

from the beginning of the optimization process, to cover a greater portion of the search space and thus 

provide a better investment in the search for promising areas such as the crows at the beginning of the 

hunt. In addition, the number of exploration phases gradually decreases in the interval [0,
𝑇𝑚𝑎𝑥

2
] while 

maintaining a ratio greater than 0.5. This allows HHO-EAS to continue to explore new areas of the 

search space in order to have a better probability of finding promising areas while leaving little by little 

the field free for exploitation.  

For HHO the ratio decreases too brutally in [
𝑇𝑚𝑎𝑥

10
, 
𝑇𝑚𝑎𝑥

2
] from 0.48 to 0.1. If the promising areas have 

not been detected at the beginning of iterations, HHO will have much more trouble doing it in [
𝑇𝑚𝑎𝑥

10
, 
𝑇𝑚𝑎𝑥

2
]. 

As expected, HHO no longer provides exploration phases when the iterations are greater than  
𝑇𝑚𝑎𝑥

2
, 

(300 and 5000 in our case). In contrast, for HHO-EAS the exploration phases represent a ratio of 0.5 in 

[
𝑇𝑚𝑎𝑥

2
, 
3𝑇𝑚𝑎𝑥

5
] and 0.26 in [

3𝑇𝑚𝑎𝑥

5
, 
9𝑇𝑚𝑎𝑥

10
]. These exploration phases could allow to move towards better research 

areas contrary to HHO. As we wanted, the exploration phases disappear in [
9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] with 100% of 

exploitation phases. This part is the last of the optimization process when the wolves attacks the prey 

detected by the crows.  

So Thanks to our design choices, FISREE manages to reproduce the crows’ exploration strategy 

followed by the final attack of wolves. Thus HHO-EAS performs a progressive and careful exploration 

more adapted to the hunting ground of the optimization problem. The initial field of exploration is wide 

in [0,
𝑇𝑚𝑎𝑥

10
] and then gradually narrows toward an area with promising prey, to conclude with the final 

attack of wolves in [
9𝑇𝑚𝑎𝑥

10
, 𝑇𝑚𝑎𝑥] with 100% of exploitation phases.  

Other design choices in fuzzy logic are certainly possible for modeling other exploration strategy 

model. The choices that have been taken to create FISREE all come from an analysis of the state of the 

art with a dual objective: to best model the crows’ exploration strategy of the hunting ground and 

minimize the complexity of FISREE so not to weigh down on the execution of the algorithm HHO-EAS.  

In the next subsection, we will explain the wolves attack modeling. In HHO-EAS, this attack will be 

led not by wolves but by a new hierarchy of Harris Hawk 𝛼 − 𝛽 − 𝛿  . It’s this new hierarchy which 
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pilots the Harris Hawks’ attack in the exploitation phases. This model is based on the encirclement and 

attack equations. 

G. Exploitation improvement with the encirclement and attack equations 

The second part of the hybridization models the encirclement and attack of the prey by the wolves 

after the exploration driven by the crows. After the detection of a promising area with a potential prey, 

the wolves encircle, attack and share the prey with the crows in the last phase of the hunt. Unlike other 

methods aimed at orienting, at each iteration, the metaheuristics towards the most appropriate dimension 

such as sensitivity analysis [Loubiere P et al., 2016; Loubiere P, 2016], the encirclement and attack 

equations act on all dimensions in order to position the agents in a portion of the search space more 

promising. This hybridization improves the quality of the local search even if the optimization problem 

is high-dimensional and highly multimodal. Indeed, in this category of optimization problem, for the 

population based metaheuristics, the agents tend to gather around the agent having the best position even 

if it is in a local optimum. This can therefore generate premature convergence towards this local optimum. 

With this second hybridization, our ambition is to avoid this defect, to position Harris Hawks in more 

promising areas and then catch "a good prey".  

This hybridization is high-level and precedes the exploitation phases of HHO, with a subordinated 

execution to FISREE when the crisp output value is in [−1, 1]. 

Like the crows that can’t hunt alone of good prey in the exploitation phases without the help of the 

wolves, the Harris Hawk agents 𝛾 will benefit from the help of the hierarchy Harris Hawk agents 𝛼 −

𝛽 − 𝛿  to obtain improved exploitation phases with solutions of better qualities. 

In order to models the action of the wolves in this win-win hunting synergy, HHO-EAS acts on two 

axes: 

 We have completed the organization of the Harris Hawk pack by integrating their hierarchy 

𝛼 − 𝛽 − 𝛿  observed in nature [Dawson JW et al., 1991] ; 

 We inserted the encirclement and attack equations synchronized on the crisp output value 

provided by FISREE which also ensures the magnitude of the encirclement around the 𝛼 −

𝛽 − 𝛿 Harris Hawks. 
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a. General concepts of encirclement and Attack equations 

Several metaheuristics inspired by predators’ hunting techniques model their strategy with the 

encirclement and attack equations: Sea Lion Optimization [Masadeh R et al., 2019], Whale Optimization 

[Mirjalili S et al., 2016], Spotted Hyena Optimizer [Dhiman G et al., 2017] and Gray Wolf Optimization 

[Mirjalili S et al., 2014]. 

The main effect of these equations is to create virtuous encirclement areas in the neighborhood of the 

top three solutions 𝛼 − 𝛽 − 𝛿 and to attack them by repositioning the other agents in a more promising 

area consisting of a linear combination of three new positions. Each of these three new positions belong 

to one of the three areas around 𝛼 − 𝛽 − 𝛿. Thereby, the processes of encirclement and attack guide, on 

all dimensions, the agents toward better positions in the exploitation phases. 

In the literature the encirclement and attack equations have produced very good experimental results 

in the exploitation phases [Mirjalili S et al., 2014; Zhang X et al., 2020a]. On the other hand, the results 

in the exploration phases are very mixed or even mediocre for high-dimensional and highly multimodal 

optimization problems. However, in HHO-EAS the encirclement and attack equations have the only 

mission to improve exploitation phases. They are therefore in adequacy with our goals. 

b. Encirclement equations 

The encirclement equations are described by the equations (2.17) and (2.18). 

{
𝑆 =  |𝐾�⃗⃗�. 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)|                                                                                                                                     (2.17)           

          

�⃗�(𝑡) =  𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗⃗⃗�. 𝑆                                                                                                                                           (2.18)            

  

 𝐾 is a non-zero integer; 

 �⃗⃗� is a vector whose the components are uniform random values defined in [0,1]; 

 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) is the prey position; 

 𝑋 ⃗⃗⃗⃗ (𝑡) is the predator position; 

 �⃗⃗⃗⃗� is a vector whose components evolve randomly in the interval [−𝑤,𝑤]. Generally �⃗⃗⃗⃗� is 

defined by the combination of a random variable and a dependent function of the iteration. 

Equation (2.17) creates a vector 𝑆 whose components represent the distances between each component 

of the vectors 𝐾�⃗⃗�. 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) and �⃗�(𝑡).  
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𝐾�⃗⃗� models the uncertainties of the hunting ground in order to access the prey. The hunting ground 

can keep the prey away from predators if the ground is too rough and too hilly. Thus the more the distance 

between 𝐾�⃗⃗�. 𝑋𝑝⃗⃗ ⃗⃗ ⃗(𝑡) and �⃗�(𝑡) increases, the more the predator is likely to be away from the prey. 

Conversely, the more this distance decreases, the closer the predator gets to the prey. Mathematically the 

components of the vector 𝑆 sizes the stride of the movement and therefore the speed of predators in the 

encirclement area around the neighborhood of the prey.  

Once 𝑆 and �⃗⃗⃗⃗� have been calculated, the encirclement area or hypercube (for a dimension 𝑁 ) around 

the prey 𝑋𝑝⃗⃗ ⃗⃗ ⃗ is created by (2.18).  

In order to illustrate the action of the encirclement equations on the search for a solution, let us take 

the simple case of a two-dimensional search space. 

c. Encirclement equations for a bidimensional search space  

The two components of the vector 𝑆 (2.17) is given by equations (2.19). 

{

𝑆1  =  |𝐾𝑉1. 𝑋𝑝1(𝑡) − 𝑋1(𝑡)|

𝑆2  =  |𝐾𝑉2. 𝑋𝑝2(𝑡) − 𝑋2(𝑡) |

        (2.19) 

𝐾𝑉1 and 𝐾𝑉2 are random values in [0, 𝐾]. 

Once the components (𝑊1,𝑊2) of 𝑊 ⃗⃗⃗⃗⃗⃗ are calculated with (𝑊1,𝑊2) ∈ [−𝑤,𝑤]
2, thus 𝑊1. 𝑆1  ∈

 [−𝑤. 𝑆1, 𝑤. 𝑆1] and 𝑊2. 𝑆2  ∈  [−𝑤. 𝑆2, 𝑤. 𝑆2], the equation (2.20) create the encirclement area around 

the prey’s position 𝑋𝑝⃗⃗ ⃗⃗ ⃗. The encirclement process is illustrated by Fig. 2.8. 

{

𝑋1(𝑡) = 𝑋𝑝1(𝑡) −𝑊1. 𝑆1
 

𝑋2(𝑡) =  𝑋𝑝2(𝑡) −𝑊2. 𝑆2

         (2.20) 
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Fig. 2.8. Encirclement area around the prey in a two dimensional search space 

The calculation of the new position �⃗�(𝑡) of the predator is stochastic due to the randomness of the 

vectors �⃗⃗� and �⃗⃗⃗⃗�. However it is possible to determine the neighborhood in which �⃗�(𝑡) will be. 

Each metaheuristic using the encirclement equations defines two neighborhoods in the encirclement 

area around the prey:  

 A remote neighborhood (bleu area) for the exploration with (𝑊1,𝑊2) ∈

[−𝑤,−
𝑤

2
 [∪]

𝑤

2
, 𝑤]

2
 ;  

 A near neighborhood (grey area) for the exploitation with (𝑊1,𝑊2) ∈  [−
𝑤

2
,
𝑤

2
]
2
.  

The encirclement and attack equations, in HHO-EAS, will only be employed in the grey area for the 

exploitation. 

For example for the metaheuristic GWO [Mirjalili S et al., 2014] , the encirclement and attack 

equations are illustrated by (2.21): 

 

{
 
 

 
 �⃗⃗⃗⃗� =  2. 𝑓(𝑡). 𝑟 − 𝑓(𝑡). 𝐼                                                                                

 𝑓(𝑡) = 2 − 2(
𝐼𝑡

𝐼𝑡𝑚𝑎𝑥
)                                                                                    

𝑟  =  (𝑟1
𝑟2
) , (𝑟1, 𝑟2) ∈ [0,1]

2   𝑎𝑛𝑑   𝐼 =  (1
1
)                                              

   (2.21) 

We detail in what follows the mathematical modeling in HHO-EAS of the encirclement and attack 

equations driven by the Harris Hawk hierarchy 𝛼 − 𝛽 − 𝛿. 
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d. Encirclement and attack equations driven by the Harrys Hawk hierarchy 𝛼 − 𝛽 − 𝛿 

The positions of the Harris Hawk hierarchy 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 𝑋𝛿⃗⃗ ⃗⃗⃗ will be surrounded, and attacked in order 

to get a new position in a more promising area. This significantly improve the convergence rate and the 

quality of the solution as we will see from the experimental results in section 2.4.  

𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 𝑋𝛿⃗⃗ ⃗⃗⃗ represent the three best Harris Hawk positions. The three best positions 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 

𝑋𝛿⃗⃗ ⃗⃗⃗ are also the three best prey in descending order of quality with each iteration. For the encirclement 

equations we have 𝐾 = 2 and �⃗⃗⃗⃗� = �⃗⃗�. Each components of the vector �⃗⃗� are provided by the crisp output 

value of FISREE multiplied by a uniform random value provided by equation (2.2). Being in the 

exploitation phases, their value are in [−1,1]. As a result, the attack will be done in the exploitation areas 

(grey area) around 𝑋𝛼⃗⃗ ⃗⃗ ⃗, 𝑋𝛽⃗⃗ ⃗⃗⃗ and 𝑋𝛿⃗⃗ ⃗⃗⃗. 

The encirclement equations applied to the hierarchy positions 𝑋𝛼 ,  𝑋𝛽 et 𝑋𝛿 provide three new 

positions in each exploitation area: 𝑋1⃗⃗⃗⃗⃗, 𝑋2⃗⃗⃗⃗⃗  and 𝑋3⃗⃗⃗⃗⃗ with the equations (2.22) to (2.27). The attack equation 

(2.28) repositions the Harris Hawk position �⃗�𝑖 at the center of gravity 𝑋𝑒⃗⃗⃗⃗⃗ of the three new positions 𝑋1⃗⃗⃗⃗⃗,

𝑋2⃗⃗⃗⃗⃗  and 𝑋3⃗⃗⃗⃗⃗. 

𝑆𝛼⃗⃗⃗⃗⃗ =  |𝐾𝑉𝛼⃗⃗ ⃗⃗ . 𝑋𝛼⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗⃗�𝑖(𝑡)|         (2.22) 

𝑆𝛽⃗⃗⃗⃗⃗ =  |𝐾𝑉𝛽⃗⃗⃗⃗⃗. 𝑋𝛽⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗⃗�𝑖(𝑡)|         (2.23) 

𝑆𝛿⃗⃗⃗⃗⃗ =  |𝐾𝑉𝛿⃗⃗⃗⃗⃗. 𝑋𝛿⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗⃗�𝑖(𝑡)|         (2.24) 

𝑋1⃗⃗⃗⃗⃗ =  𝑋𝛼⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗�. 𝑆𝛼⃗⃗⃗⃗⃗          (2.25) 

𝑋2⃗⃗⃗⃗⃗ =  𝑋𝛽⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗�. 𝑆𝛽⃗⃗⃗⃗⃗          (2.26) 

𝑋3⃗⃗⃗⃗⃗ =  𝑋𝛿⃗⃗ ⃗⃗⃗(𝑡) − �⃗⃗�. 𝑆𝛿⃗⃗⃗⃗⃗          (2.27) 

𝑋𝑒⃗⃗⃗⃗⃗(𝑡) =
𝑋1⃗⃗⃗⃗⃗⃗ +𝑋2⃗⃗⃗⃗⃗⃗ +𝑋3⃗⃗⃗⃗⃗⃗

3
          (2.28) 

Like the wolves which offers the crows good prey during final attack, the hierarchy 𝛼 − 𝛽 − 𝛿 with 

the encirclement and attack equations (2.22) to (2.28) offer a much more attractive position to the Harris 
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Hawk for a more productive exploitation. Fig. 2.9 illustrate the repositioning of a Harris Hawk agent 

towards 𝑋𝑒⃗⃗⃗⃗⃗. 

 

Fig. 2.9. New position resulting from encirclement and attack 

H. Computational complexity of HHO-EAS  

In order to better compare HHO-EAS and HHO metaheuristics, it is essential to calculate for each of 

them their computational complexity.  

The computational complexity of HHO is based on 3 components of its algorithm: initialization, 

fitness evaluation and the updating of Harris Hawk positions [Heidari AA et al., 2019]. For a population 

size N, a maximum number of iterations 𝑇𝑚𝑎𝑥 and an optimization problem of dimension 𝑑, the 

computational complexity of these 3 components are: 

 Initialization : 𝑂(𝑁) 

 Fitness evaluation : 𝑂(𝑇𝑚𝑎𝑥 ×𝑁) 

 Updating of Harris Hawk’s position: 𝑂(𝑇𝑚𝑎𝑥 × 𝑁 × 𝑑) 

The total computational complexity of HHO is therefore 𝑂(𝑁 × (1 + 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥 × 𝑑)). 

The computational complexity of HHO-EAS also takes into account the 3 first components that we 

have just discussed. However, in the updating phase of Harris Hawk positions we need to add the 

computational complexity of the encirclement and attack equations: 

 Encirclement equations: 𝑂(6 × 𝑇𝑚𝑎𝑥 × 𝑁 × 𝑑) 

 Attack equation: 𝑂(𝑇𝑚𝑎𝑥 ×𝑁 × 𝑑) 
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The total computational complexity of HHO-EAS is thereby 𝑂(𝑁 × (1 + 𝑇𝑚𝑎𝑥 + 8 × 𝑇𝑚𝑎𝑥 × 𝑑)) 

For high-dimensional problems, the computational complexity of HHO-EAS tends to be 8 greater 

than HHO. 

This increase in computational complexity is one of the corollaries of our hybridization strategies also 

observed in other works aimed at improving HHO [Chen H et al., 2020; Alabool HM et al., 2021].  

 

We now have all the components to model the hunting synergy between crows and wolves in HHO-

EAS: The Fuzzy Inference System FISREE for the exploration strategy and the encirclement and attack 

equations for the exploitation strategy.  

Like the crows, the initial field of exploration is wide and then gradually narrows to a promising area 

by leaving more and more scope for the exploitation phases. In those promising areas, during the 

exploitation phases, as the wolves, the hierarchy 𝛼 − 𝛽 − 𝛿 with the encirclement and attack equations, 

provides a better position to each Harris Hawk and so a better final solution to the optimization problems.  

Appendix 7 provides the flowchart of HHO-EAS and the mapping of the updating of the Harris Hawk 

positions in exploration and exploitation phases. The pseucode Algorithm 2 below implements the HHO-

EAS algorithm. Section 2.4 will make it possible to experimentally validate the superiority of HHO-EAS 

over HHO. 

Algorithm 2.2 Pseudocode of HHO-EAS 

In: Population size N, number of iteration 𝑇𝑚𝑎𝑥, objective function F 

Out: 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗) 

Initialization of the Harris Hawk positions �⃗�𝑖 , 𝑖 ∈ ⟦1, 𝑁⟧, 𝐾 = 2, t=0 

While (t < 𝑇𝑚𝑎𝑥) do:  

      Calculate 𝐹(�⃗�𝑖) of each Harris Hawk position �⃗�𝑖 

      Define the best position of rabbit 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)   

      For each Harris Hawk 𝑖 do: 

          Update 𝑒, 𝐸0, 𝐸, and 𝐽 with FISREE, (2.2) and (2.6)  

          If(|𝐸 |  ≥ 1) then:            [Exploration] 

Calculate 𝑞 and Update position with (2.4)  

          Else:             [Exploitation] 

Update 𝑉𝛼⃗⃗ ⃗⃗ , 𝑉𝛽⃗⃗⃗⃗⃗ and 𝑉𝛿⃗⃗⃗⃗⃗  



 

86 

 

Define: 

𝑋𝛼⃗⃗ ⃗⃗ ⃗=First best position  

𝑋𝛽⃗⃗ ⃗⃗⃗=Second best position  

𝑋𝛿⃗⃗ ⃗⃗⃗=Third best position 

Calculate encirclement equations with (2.22), (2.23), (2.24), (2.25), (2.26) and (2.27) 

Calculate 𝑋𝑒⃗⃗⃗⃗⃗ with attack equation (2.28) 

Update Harris Hawk position �⃗�𝑖 by 𝑋𝑒⃗⃗⃗⃗⃗ 

               Calculate 𝑟5 

                  If  |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5 then: 

        Update position with (2.6) and (2.7) 

                  If   |𝐸| < 0.5 and 𝑟5 ≥ 0.5 then: 

         Update position with (2.8)  

                  If   |𝐸| ≥ 0.5 and 𝑟5 < 0.5 then: 

         Update position with (2.9) to (2.12) 

                  If   |𝐸| < 0.5 and 𝑟5 < 0.5 then: 

         Update position with (2.12) to (2.15) 

      End For 

         t=t+1  

End While  

Return 𝑋𝑟⃗⃗⃗⃗⃗ 

2.4. Experiment and discussion 

To examine the performances of the new metaheuristic HHO-EAS, we have set up an analytical 

environment with all the necessary hardware, software and statistic components:  

 An analytical workstation with enough computing power; 

 A programming language adapted to scientific calculations and artificial intelligence; 

 General and specific benchmarks composed of sufficiently diversified functions in order to 

validate the design strategy of HHO-EAS and its superiority over HHO;  

 Experimental metrics of performance; 

 A non-parametric statistical hypothesis Wilcoxon test to validate statistically the experimental 

results. 
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2.4.1. Analytical working station setup 

We implemented HHO-EAS and did the experimental tests on a computing station with the following 

technical specifications: 

 Operating system: UBUNTU 20.04 LTS 64 bits 

 Hardware: 

o SSD 2,0 To 

o RAM  31,3 GoProcessor Intel Xeon 3.50 Ghz, total cores 8 and total threads 16 

2.4.2. Programming language 

The HHO-EAS metaheuristic has been developed with the Python programming language.  

2.4.3. Benchmark functions 

In order to validate the superiority of HHO-EAS over HHO, we have carried out general and specific 

experimental tests on benchmarks with sufficiently diversified optimization problems set.  

A. General benchmark 

General tests have for ambitions to analyze the convergence behavior, the exploitation and exploration 

performance of HHO-EAS as well as the balance between exploration and exploitation, knowing that a 

good balance exploration-exploitation allows the avoidance of local optimums. To do this we have, 

unimodal, multimodal and compound optimization problems to measure respectively the performances 

of exploitation, exploration and the search strategy with the ability to maintain a balance between 

exploitation and exploration. In order to analyze the scalability of HHO-EAS on a dimension spectrum 

small, medium and high we have performed the tests on a wide range of dimensions: 2, 30, 100, and 

1000. Indeed, the increase in the dimension causes the deterioration of performances of any metaheuristic, 

this is called the curse of the dimensionality.  

Regarding test functions, we used a diversified benchmark of 19 well-known functions frequently 

used in the literature to validate the metaheuristics’ performances [Yao X, Liu Y, Lin G, 1999; Digalakis 

JG et al., 2000; Mirjalili S et al., 2014; Hayashida T et al., 2017; Cortés-Toro EM et al., 2018; Wang 

GG et al., 2018; Vanaret C et al., 2020; Zhang X et al., 2020a; Zhang X et al., 2020b]. This benchmark 
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consists of 4 unimodal functions (U1 –U4), 13 multimodal functions (M1-M13) that have several local 

optima and 2 composite functions (C1-C2).  

We have put HHO-EAS in competition with HHO and with two other population-based 

metaheuristics well-known in the literature and with well-established optimization techniques: GWO 

[Mirjalili S et al., 2014] and PSO [El-Shorbagy M, Hassanien AE, 2018].  

Mathematical formulas and graphical representations of these functions are provided in Appendix 1. 

B. Specific benchmark 

Unlike general tests, the specific tests focus on HHO-EAS’s performances compared to HHO in 20 

very complex environments close to real life. To do this, we have exploited the benchmark CEC 2017 

[Wu G et al., 2017].  

Thus, for the specific tests we used the 20 most complex problems from the CEC 2017: 10 hybrid 

functions (F11 - F20) and 10 compound functions (F21 - F30).  

These 20 optimization problems make it possible to assess search strategy, the exploration 

performance and the balance between exploration and exploitation of HHO-EAS in complex environment 

which is the key to the avoidance of local optimums. In addition, this will allow us to confront our 

exploration and exploitation strategy inspired from the hunting synergy between wolves and a crows in 

the real life optimization problems.  

Unlike the general tests above, the dimensions of the CEC 2017 functions are limited to six: 2, 10, 20, 

30, 50 and 100. Given that we want to validate the performance of HHO-EAS in the most complex 

environments possible, we have chosen the maximum dimension of CEC 2017: 100. The details of its 

20 functions are provided in Appendix 4, Table A4.1. 

2.4.4. Metaheuristic parameters 

A. General tests 

To compare fairly, HHO-EAS, HHO, GWO and PSO on general tests, for the dimension 2, 30, 100 

and 1000 we have configured the same spatial and temporal complexity for each metaheuristic. Our 

experimental parameters are inspired by Heidari AA et al. in [Mirjalili S et al., 2014]. We maintained 

the same population size than [Mirjalili S et al., 2014] in order to have the same spatial complexity. 

Nevertheless, this is not the case for the Number of independent executions, the Maximum number of 
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iteration and the PSO settings. Regarding PSO settings in [Mirjalili S et al., 2014], the authors use a 

constant inertial factor equal to 0.3 and cognitive and social constants equal to 1. This choice seemed 

too simplistic to us and could penalize the PSO metaheuristic during experimental tests. We have 

therefore chosen parameters that can better promote the exploration and exploitation capacity of PSO: 

a variable inertial factor decreasing linearly from 0.9 to 0.2 during the iterations and cognitive and social 

constants equal to 1.48. As for the Number of independent executions and the Maximum number of 

iteration, after several tests we have selected other values which gave us the best results. So we arrived 

at the following parameters: 

 Number of independent executions: 50; 

 Population size: 30 (spatial complexity); 

 Maximum number of iteration 𝑇𝑚𝑎𝑥: 600 (temporal complexity); 

 For PSO: Inertia factor Min wMin= 0.2, Inertia factor Max wMax=0.9, Cognitive coefficient 

c1=1.48 and Social coefficient c2=1.48. 

B. Specific tests 

To compare HHO-EAS and HHO we use the same spatial complexity as in the general tests. To take 

into account the complexity of the functions of the CEC 2017 benchmark, we used a much greater 

temporal complexity and identical for HHO-EAS and HHO: 

 Number of independent executions: 50; 

 Population size: 30 (spatial complexity); 

 Maximum number of iteration: 10000 (temporal complexity). 

In the general and specific tests, for each metaheuristic, the results from each of the 50 independent 

executions are stored. The comparison between the metaheuristics is founded on the average of these 50 

independent results. 
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2.4.5. Performance metrics 

The performance metrics for the assessment of metaheuristics on general and specific benchmarks 

tests are AVG, MIN, MAX and STD: Average result, Minimum (Best) result, Maximum (Worst) result 

and Standard deviation. The best results are in bold in Appendix 2 and 4. 

For each of the dimension 2, 30, 100 and 1000, a summary of the results with the signs +, − and ≈ is 

provided at the end of each table for the four metrics AVG, MIN, MAX and STD. So for each test 

functions, if HHO, GWO or PSO has better results than HHO-EAS on one of the metrics we increment 

+, if the results are worse we increment − and if they are equal we increment ≈. 

2.4.6. Experimental results on the general benchmark tests 

The experimental results on the general benchmark tests are provided in Appendix 2 and 3. They show 

the exploitation and the exploration performances as well as the local optima avoidance ability of HHO-

EAS compared to HHO, GWO and PSO. Appendix 2 details, for the dimensions 2, 30, 100 and 1000, the 

performance metrics for the 19 functions of the benchmark from Table A2.1 to Table A2.4 and Appendix 

3 makes it possible to visualize the convergence curves. 

A. Exploitation performances 

Unimodal functions U1 to U4, have only one global optimum and therefore help to determine the 

exploitation performances of HHO-EAS, HHO, GWO and PSO metaheuristics. 

The experimental results show that HHO-EAS provide very good results and a suitable convergence 

rate for unimodal functions from U1 to U4 with the dimensions 30, 100 and 1000. These good 

exploitation performances for medium and large dimensions are due to the encirclement and attack 

equations. Those equations make it possible to obtain results closer to the global minimum than HHO, 

GWO and PSO. 

On the other hand, for small dimensions such as 2, except for U3, GWO has the best results for U1, 

U2 and U4. Which confirms these excellent exploitation capacities for small dimensions. However, for 

dimension 2, HHO-EAS maintains overall better exploitation performance than HHO. 
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B. Exploration performances 

Unlike unimodal functions, multimodal functions from M1 to M13 have global optimums and several 

local optimums. The curse of the dimensionality increases these local optimums exponentially depending 

on the dimension. The multimodal functions are therefore good support for evaluating the exploration 

performance of HHO-EAS, HHO, GWO and PSO. 

As we could expect the performance of metaheuristics degrades with the increase of the dimension. 

With regard to the dimensions, 30, 100 and 1000, from M1 to M13, HHO-EAS surpasses HHO, GWO 

and PSO or at least demonstrates performances as competitive as HHO. We can note a correct 

convergence rate for M2, M5, M6, M8, M11 and M13. 

This is the experimental demonstration of the effectiveness of FISREE that implements an efficient 

exploration and exploitation phases distribution which helps HHO-EAS to limit blockages in local optima 

and to have a good convergence to a better final solution. 

Concerning the dimension 2, PSO has the best results for the multimodal functions M1, M2, M5, M8, 

M9, M10 and M11. For M3 and M13, the four metaheuristics displays equivalent results. This confirms 

that PSO is able to effectively and fairly quickly explore the search spaces with small dimensions. And 

for the functions M6 and M7, HHO-EAS displays the best results. Nonetheless, the exploration 

capabilities of HHO-EAS for the dimension 2 remains overall superior to HHO.  

C. Local optima avoidances and balance between exploitation and exploration 

The complexity of composite functions C1 and C2 is a challenge for HHO-EAS, HHO, GWO and 

PSO metaheuristics that will test their ability to maintain the balance between exploitation and 

exploration. Indeed, a good balance between exploitation and exploration will better avoid local 

optimums. The composite functions C1 and C2 will therefore make it possible to evaluate the validity of 

the distribution of the exploration and exploitation phases implemented by FISREE and its ability to 

maintain a good balance between these two phases despite the increase of the dimension. 

As with multimodal functions, the performances of metaheuristics degrade with the increase of the 

dimension. Notwithstanding, the experimental results are without calls. Whatever the dimension, 2, 30, 

100 or 1000, for C1 and C2, HHO-EAS surpasses HHO, GWO and PSO with a convergence rate much 

higher and a much greater ability to avoid local optima. This experimentally demonstrates once again the 
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validity of the conception strategy of FISREE which makes it possible to maintain a good balance 

between exploration and exploitation and particularly better than HHO with better avoidance of local 

optima. 

 

To conclude, the results on the general benchmark show that our hybridization strategy is not efficient 

for the small dimensions such as 2. Whether for unimodal or multimodal functions, the encirclement and 

attack equations and FISREE do not do not allow to erase the weaknesses of HHO although HHO-EAS 

maintains overall better performances than it. But this observation is absolutely not in contradiction with 

our hybridization strategy. Our hybridization strategy explained in section 2.3, was mainly designed to 

increase the performance of HHO for higher dimensions. Indeed, the experimental results for the medium 

and large dimensions 30, 100 and 1000 confirm the superiority of HHO-EAS over HHO as well as over 

GWO and PSO. Consequently, these experimental results corroborate the success of our hybridization 

strategy to obtain a better metaheuristic than HHO for highly multimodal and high-dimensional 

optimization problems.  

In what follow, the specific tests performed on the CEC 2017 benchmark will focus on the 

performances of HHO-EAS and HHO in the 20 more complex environments of the CEC 2017 and more 

close to the problems encountered in real life. They will support the results obtained in general tests. 

2.4.7. Experimental results on the CEC 2017 specific benchmark tests 

As noted above, specific tests aim to make a close-up on the performances of HHO-EAS and HHO in 

complex environments close to the real life problems. These 20 functions will put to the tests in difficult 

conditions all the abilities of HHO-EAS and HHO: exploitation, exploration, balance exploitation-

exploration, local optimum avoidances and convergence. 

These environments consist of the most complex functions in a search space with the largest 

dimension of the CEC 2017: 10 hybrid functions from F11 to F20, 10 composite functions from F21 to 

F30 and a dimension equal to 100.  

Appendix 4 details the performance metrics obtained for these twenty functions and makes it possible 

to visualize the convergence curves. 
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Experimental results demonstrate that HHO-EAS has better performances than HHO out of 90% of 

hybrid functions and 90% of the composite functions: respectively F11 to F19, F21, F23 to F30. 

However, even for the hybrid function F20 and the composite function F22, HHO-EAS provides 

competitive results. 

We can also note, for the twenty functions F11 to F30, that the convergence rate of HHO-EAS is, 

from the first iterations, greater than that of HHO. It’s thanks to the exploration and exploitation strategy 

of HHO-EAS. FISREE pilots the distribution of the exploration and exploitation phases as well as the 

balance exploration-exploitation that provides areas of the search space more promising that HHO. Then 

thanks to the encirclement and attack equations the exploitations of the promising areas are better 

"optimized" to provide a final solution with a better quality in 90% of cases. 

All the results we have obtained above in the general tests and the specific tests allow us to validate 

our hybridization strategy inspired by the hunting synergy between crows and wolves. Those results must 

now be statistically validated by one of the most used non parametric statistical test: The Wilcoxon tests 

with the calculation of p-value. 

A. Wilcoxon test 

In order to analyze whether the performances of HHO-EAS are revealing of its superiority over HHO, 

GWO and PSO and to validate statistically the experimental results, we have made a paired non 

parametric statistical Wilcoxon test with 5% significance for obtaining p-value. We used the same 

calculation method as [Gardeux V, 2011] and we have included in these test the Holm adjustment 

method.  

For the general tests we ask the null hypothesis H0g: "There is no distinction between the distribution 

of solutions found by HHO-EAS and the distributions of solutions found by HHO, GWO and PSO". And 

for the specific tests we ask the null hypothesis H0s: "There is no distinction between the distribution of 

solutions found by HHO-EAS and the distributions of solutions found by HHO". 

To do these tests we used the statistical software R. The results are provided in Appendix 5, Table 

A5.1 and Table A5.2. These tables provide respectively the results per pair of Metaheuristic:  

 HHO-EAS\HHO, HHO-EAS\GWO and HHO-EAS\PSO for the general tests; 
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 HHO-EAS\HHO for the specific tests. 

B. Wilcoxon tests for general results Table A5.1 

The calculated p-value for the dimensions 30, 100 and 1000 are all less than 0.05. We can therefore 

reject the null hypothesis H0g with an error probability of 5% for these dimensions. Regarding the W+ 

values, for the dimension 30, 100 and 1000, they are all very large, for the metaheuristics HHO, GWO 

and PSO. This confirms the conclusions of the general tests: HHO-EAS dominates HHO, GWO and PSO 

for medium and high dimensional search spaces. 

For the dimension 2, the results are different. We have a p-value less than 0.05 for the pairs 

HHO\HHO-EAS and GWO\HHO-EAS. But this is not the case for PSO\HHO-EAS with a p-value equal 

to 0.3684. So we have to accept the null hypothesis H0g for this pair. This means that for dimension 2, 

there is no distinction between the distribution of solutions found by HHO-EAS and PSO. Thus, 

statistically, the performance of HHO-EAS is not different from PSO. These results are consistent with 

the results observed in the general tests for the dimension 2, since the general results are mitigated 

between HHO-EAS and PSO.  

C. Wilcoxon tests for specific results Table A5.2 

The Wilcoxon test on the specific results for the pair HHO\HHO-EAS rejects the null hypothesis H0s 

since it is less than 0.05. In addition, the W+ value statistically attests of the superiority of HHO-EAS over 

HHO, so the performances of HHO-EAS are much better than HHO. 

2.5. Conclusion 

In this chapter we have presented HHO-EAS, a new population based metaheuristic, hybrid of HHO 

resulting from a hybridization strategy entirely inspired by the hunting synergy observed in nature 

between the crows and the wolves. The aim of HHO-EAS is to produce better results than HHO in the 

highly multimodal and high-dimensional optimization problems. HHO-EAS implements a win-win 

hunting synergy between the good exploration strategy managed by the Fuzzy Inference System 

FISREE which models the exploration of the crows and the exploitation strategy of the Encirclement 

and Attack equations which models the attack technique of the wolves. These equations make it possible, 
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on the one hand, to prevent premature convergence when agents gather prematurely near a local 

optimum on the other hand to upgrade the Harris Hawk positions in a more promising area.  

The exploitation and the exploration performances as well as the balance between these two phases 

in HHO-EAS have been evaluated on a general and on a specific benchmark. The general benchmark 

consists of 19 well known functions: 4 unimodal functions, 13 multimodal functions and 2 composite 

functions with the dimensions 2, 30, 100 and 1000. The specific tests aim to make a close up on the 

performance of HHO-EAS and HHO in the 20 most complex environments of the CEC 2017 close to 

real life. The specific tests consist of the 10 hybrid functions and the 10 composite functions from the 

CEC 2017 with a dimension equal to 100. The tests on the general benchmark have proved that HHO-

EAS is overall superior to HHO whether in the exploration phases with the multimodal functions, the 

exploitation phases with the unimodal functions and the balance between these two phases with the 

composite functions. In addition, HHO-EAS has a better convergence rate, the best scalability on all 

dimensions and generally gives the assurance of having a better quality solution and faster than HHO. 

On the specific benchmark, in the 20 most complex environments of the CEC 2017, HHO-EAS has 

shown that its abilities are mainly superior to those of HHO on hybrid and compound functions. Indeed, 

in these 20 most complex problems of CEC 2017, HHO-EAS demonstrated a success of 90% on hybrid 

functions and 90% on composite functions. As well as the results obtained on the general benchmark, 

the specific benchmark makes it possible to experimentally validate the exploration and exploitation 

strategy implemented in HHO-EAS inspired by the hunting synergy between the crows and the wolves.  

The most important result that emerges from our research and which will serve us in the next chapter 

is that HHO-EAS is better suited than HHO to deal with the real life optimization problems as evidenced 

by experimental results for dimensions 100 and 1000. Indeed, the real life optimization problems are 

generally highly multimodal, high-dimensional and NP-Hard such as feature selection optimization 

problems. Thus, HHO-EAS, combined to Deep Learning algorithms, opens a wide range of perspectives 

to create computer resource efficient Intrusion Detection Systems (IDS) in IoT environments with 

excellent attack prediction performance. The next chapter is the concrete application of HHO-EAS to 

process the NP-hard feature selection optimization problems in a high-dimensional binary search space. 

The new metaheuristic, named Binary HHO-EAS (BHHO-EAS), have the ambition to achieve results 
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higher than those obtained in research performed in the same field such as [Too J et al., 2019] or 

[Gardeux V et al., 2011; Gardeux V, 2011; Gardeux V et al., 2012] who uses a metaheuristic with line 

search methods for the feature selection. BHHO-EAS will perform the feature selection on a very recent 

cybersecurity dataset AWID3 which contains modern attacks against Wi-Fi networks. BHHO-EAS will 

thus make it possible to obtain the most relevant features of the AWID3 dataset and to design an IDS 

based on Deep Learning algorithms with high detection capabilities and resource-efficient to be 

embedded in an IoT with limited computing and memory resources.  
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Chapter 3 

3. Elaboration of an intrusion detection system against 802.11 specific attacks with 

BHHO-EAS and the Wrapper feature selection method 

3.1. Introduction 

At this stage of this thesis, the work carried out in chapter 2 allows us to have the HHO-EAS 

metaheuristic. Its performances in the general and specific benchmarks have demonstrated that it is able 

to find a good solution in a reasonable time to NP-Hard problems. The skills of HHO-EAS will be 

decisive in this chapter for the design of an IDS embedded in IoTs with limited computing and memory 

resources against 802.11 specific attacks: Deauthentication (Deauth), Disassociation (Disas), 

ReAssociation ((Re)Assoc), Rogue Access Point (Rogue AP ), Evil Twin, Key Reinstallation Attack 

(Krack) and Kr00k. Via HHO-EAS, we will use metaheuristic optimization process for the Wrapper 

feature selection of the AWID3 dataset (Aegean Wi-Fi Intrusion Dataset 3) [University of the Aegean,]. 

The Wrapper feature selection method is explicitly defined in subsection 3.4.1. 

Works of the same field in the literature, use the Wrapper feature selection method with classical 

Machine Learning algorithms such as KNN, SVM, OPF, Decision Tree, Random Forest, etc. [Agrawal 

P et al., 2021]. However, they deprive themselves of Deep Learning algorithms that are much more 

efficient to conceive a IDS than conventional Machine Learning algorithms. To this end, our 

contributions in this chapter is threefold:  

 We have designed the new metaheuristic BHHO-EAS from the HHO-EAS metaheuristic for 

the optimization of NP-Hard Wrapper features selection multi-objective problems in a binary 

search space: maximize the detection capabilities of the IDS against 802.11 specific attacks 

and minimize features in order to design an embeddable IDS in IoT; 

 At the time of writing this manuscript, we are the first to have created and implemented a 

Wrapper feature selection method that is more advanced and more complex than the classic 

Wrapper method mentioned above. Our method integrates a Convolutional Neural Network 

(CNN) combined with the computing power of GPU technology instead of conventional 



 

98 

 

classical Machine Learning algorithms and CPU technology [Agrawal P et al., 2021; 

Houssein EH et al., 2022c; Houssein EH et al., 2022a; Houssein EH et al., 2022b];  

 We are also the first to have applied a feature selection process by metaheuristic optimization 

driven by BHHO-EAS on the AWID3 dataset, much more complex than its predecessor 

AWID2 [University of Aegean, 2014].  

Like chapter 2, the work presented in this chapter has also been the subject of a second scientific 

article submitted for publication in the journal Artificial Intelligence Review. 

This chapter is articulated as follows. Section 3.2 provide an overview of the Intrusion Detection 

Systems (IDS). Having the ambition to exploit our IDS in companies and public administration 

information systems, we have developed in this section a synthetic specification. This specification will 

guide not only the conception strategy of the IDS but also the preprocessing of the AWID3 dataset in 

subsection 3.5.4. Section 3.3 presents the related works which aim to design an IDS using the feature 

selection with the AWID3 dataset. Section 3.4 explains the design of the new BHHO-EAS metaheuristic 

to apply our Wrapper feature selection method in the section 3.5 on the AWID3 dataset and to conceive 

a CNN-IDS. In section 3.6, we will analyze the experimental results. In this experimental section we 

will provide a technical PoC of our work by embedding and testing a prototype of CNN-IDS, named E-

CNN-IDS (Embedded CNN-IDS), in a Raspberry Pi 4 Model B with very limited memory and 

computing resources. In section 3.7 we will conclude this chapter.  

3.2. Overview of Intrusion Detection Systems and specification of the CNN-IDS 

To deal with the constantly evolving threats targeting IoTs using Wi-Fi, they must be able to have a 

smart cyber-defense system allowing the detection of attacks. These systems are called Intrusion 

Detection System (IDS). Before providing a description of IDSs, it is first necessary to define what an 

Intrusion is in cybersecurity terms and the main modules that constitute an IDS. 

3.2.1. Definition of an Intrusion 

An intrusion is defined as an illegitimate access to a system in violation of the Confidentiality, 

Integrity and Availability ( of its resources [Sengupta N et al., 2020]. Thus, an Intrusion jeopardizes the 

fundamentals of the cybersecurity of an information system. Furthermore, an Intrusion can target not only 
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networks but also host systems. Consequently, network and host must be defended by an IDS whose 

constituent modules are adapted to the technical specificities of their environment. 

3.2.2. Description of the main modules required for IDSs 

An Intrusion Detection System audits a host system and/or the network in order to identify actions 

that are harmful and antagonistic to the security policy [Drewek-Ossowicka A et al., 2021]. It is therefore 

an "autonomous process" of intrusion detection which is to find events of violation of security policies or 

standard security practices in computer networks [Kim K et al., 2018a]. 

Intrusion detection is based on four main modules as illustrated in Fig. 3.1  [Sengupta N et al., 2020]: 

 Collection of system and/or network data; 

 Preprocessing of collected data; 

 Analysis and recognition of an attack with the intrusion detection engine;  

 Actions and logging following the detection of an attack. 

 

 

Fig. 3.1. Architecture of the main modules of an IDS 

Regarding the action and logging module, the action could be a simple alert sent to the administrator 

or a more sophisticated action adapted to the detected attack such as a logical isolation from the rest of 

the network with the IP address (Internet Protocol) or with the MAC address (Medium Access Control) 

of the compromised agent. In the latter case, the IDS is an IPS (Intrusion Prevention System) because it 

actively participates in blocking attacks. 

Among these four modules, it is the Intrusion detection engine module with its design and detection 

strategies which are the capital elements of an IDS. The design of this module is the main objective of 
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this chapter and the data to be processed by this module and the positioning of the IDS depends on the 

class to which the IDS belongs. 

3.2.3. The three main classes of IDS and their detection method 

There are three main classes of IDS: Network IDS (NIDS), Hosted IDS (HIDS) and Hybrid IDS [Kim 

K et al., 2018a; Sengupta N et al., 2020; Drewek-Ossowicka A et al., 2021; Mirjalili S et al., 2023]. The 

NIDS analyzes the data coming from the network packets captured and made up of several features 

specific to the protocols used. While the HIDS analyzes data from the host in which it is embedded: 

network packets captured crossing the host, CPU usage, RAM usage, storage disk usage, temperature, 

access to system files, etc. The third class of IDS, Hybrid IDS, bring together NIDS and HIDS. 

These three IDS classes have two types of detection method: signature-based and anomaly-based 

[Azizjon M et al., 2020; Jiyeon K et al., 2020; Riyaz B et al., 2020; Park D et al., 2021; Chatzoglou E 

et al., 2022a]. Signature-based detection uses a signature database describing the pattern of an attack. If 

an attack conforms to one of the pattern, it will be detected by the IDS. This detection method has the 

advantage of detecting all the attacks listed in the signature database. However, it has three major 

drawbacks:  

 Unknown attacks (zero-day) are not detected; 

 The attack signature database requires regular updates; 

 For IoT with limited memory resources, the signature database is highly likely to saturate the 

memory in the medium term or even in the short term. 

Anomaly-based detection does not have these three major drawbacks [Jiyeon K et al., 2020; Riyaz B 

et al., 2020; Park D et al., 2021]. This detection method analyzes the data in order to detect an abnormal 

deviation from the states referenced as normal. To do this, the IDS must have been previously trained 

with reference data (or dataset) labeled with normal states and abnormal states. This detection method 

has the advantage of detecting unknown attacks (zero-day) and, while being scalable, of not requiring a 

signature database. However, the major drawback of this method is that it generates some detection 

errors: false positives and false negatives. Despite this drawback and in view of the problems inherent 

in signature-based detection, anomaly-based detection is the most suited for our CNN-IDS as well as to 
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the constantly changing attack detection requirements and hardware constraints of IoT. But determining 

the method of detection is not enough. As the CNN-IDS is intended to be integrated into company 

information systems and state administrations, we have developed a defense strategy and a synthetic 

specification. 

3.2.4. CNN-IDS defense strategy and specification 

The defense strategy that we have defined and which will guide the design of our IDS is as follows: 

focus the defense on the Data Link Layer. Indeed, the seven specific attacks 802.11 are initiated from 

the Physical layer and are finalized at the Data Link Layer [Chatzoglou E et al., 2021; Chatzoglou E et 

al., 2022a]. Once the attacker has taken over the Data Link Layer, it will be easier for him to escalate 

the higher layers in order to have greater privileges and a much greater capacity for harm. So if we detect 

and block the attack at the Data Link Layer, "it will be dead in the bud" and will have no chance of 

succeeding on the upper layers. Our defense strategy is combined with synthetic specifications we have 

developed.  

The requirements of our specifications were built from the knowledge and experience of information 

system experts. The proof of the consistency of our specifications is that it is in total agreement with the 

requirements explained in the state of the art concerning the IDS designed from AWID3 [Chatzoglou E 

et al., 2022a; Chatzoglou E et al., 2022b]. The specifications are articulated in 5 requirements. These 5 

requirements guide not only the conception strategy of the IDS but also the preprocessing of the AWID3 

dataset. Therefore, the 5 requirements have been incorporated into the preprocessing of the AWID3 

dataset in subsection 3.5.4. The 5 requirements are: 

1. Detection of 802.11 specific attacks 

The IDS must detect known and unknown 802.11 specific attacks in real time and must be sufficiently 

independent of the technical specificities of the implementation of the attacks in order to better generalize 

the detection capacities of the IDS. 

2. Compatibility with companies’ information systems 

The IDS must be usable on a large majority of company information systems. Consequently, it must 

not depend on the architecture of the network and the entities that the information system hosts. 
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3. Hardware adhesion 

The IDS must be able to be embedded and be operated in IoTs or STAs (Stations) with heterogeneous 

hardware specificities and with limited computing and memory capacities. 

4. 802.11 frames processing 

802.11 frames are of 3 types: management, control and data. The IDS must be able to exploit the 3 

types of 802.11 frame for the detection of attacks. 

5. Temporal and sequential components 

The need to embed the IDS in environments with limited computing and memory resources requires 

minimizing the processing of superfluous data. Moreover, the embedded IDS is not intended to take time 

series into account. Consequently, the temporal and sequential features must not be taken into account in 

the detection of 802.11 attacks. 

In this section we have defined the fundamental concepts of IDS. We have also explained our defense 

strategy as well as our specifications adapted to the imperatives of CNN-IDS and information systems. 

The section 3.5 will contribute to the design of the CNN-IDS via metaheuristic optimization and Deep 

Learning algorithms. But first of all, we present in the section 3.3 the related works which aim to design 

an IDS using the feature selection with the AWID3 dataset. 

3.3. Related work 

As we specified above, the AWID3 dataset is very recent. Only two articles to date have been 

published with the objective of creating an IDS from the AWID3 dataset. Also, AWID3 is much more 

complex than its predecessor AWID2. Indeed, AWID3 was built in a context of company information 

system architectures with WPA2-Enterprise, frame protection (PMF) with the 802.11w amendment and 

the 802.11ac standard (or Wi-Fi 5). In [Chatzoglou E et al., 2021], the authors Chatzoglou E. et al., 

comprehensively provide the architecture of the information system on which AWID3 was built. This 

information system consists of 17 nodes including 10 IoT terminals, 3 physical or virtual servers with 

heterogeneous operating systems and 4 active Wi-Fi network management systems: 

 IoT terminals 
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o 2 workstations running on Ubuntu 20.04 desktop; 

o 5 workstations running on Microsoft Windows 10 Pro or Enterprise; 

o 3 smartphones including a Samsung S20 FE running on Android v10, a Samsung Note 4 

running on Android v6.0.1 and an iPhone 6s running on iOS v14.2. 

 Servers 

o 1 Microsoft Windows 2019 servers host the Active Directory (AD) domain controller; 

o 1 Fedora 33 server hosting FreeIPA identity management to use Kerberos authentication, DNS 

server and Samba server for file sharing via SMB protocol; 

o 1 Ubuntu 20.04 server. 

 Active Wi-Fi network management system 

o 1 Access Point (AP) ASUZ RT-AC68U; 

o 1 monitor node on Kali Linux v2020.4 operating in Man in the Middle between the STA and 

the AP. For capturing network packets, it uses Wireshark v3.2.7 for the fixed STA and 

Mitmproxy for mobile STA; 

o 1 dockerized DVWA for testing attacks on web applications hosted in a Microsoft Azure cloud; 

o 1 FreeRADIUS v3.0.20 server installed on Ubuntu 20.04 server virtual server with an exchange 

encrypted by 802.1X certificate between this server and its clients. 

Furthermore, AWID3 contains modern 802.11 attacks such as Krack and Kr00k, integrates features 

and attacks on the entire OSI stack from physic layer to application layer. Whereas AWID2 was built on 

a WEP based infrastructure logic in a standard at home environment with only 802.11 attacks such as 

ReAssociation or Deauthentication. In addition, to the OSI level, only the physics and data link layers are 

taken into account in AWID2. 

Consequently, it would make no technical and functional sense to provide the related work of IDS 

built with AWID2 when our work exploits AWID3 to do so. This section will therefore describe the only 

2 works existing for AWID3 of Chatzoglou E. et al. [Chatzoglou E et al., 2022a] and [Chatzoglou E et 

al., 2022b] with the aim of designing an IDS. 



 

104 

 

Chatzoglou E. et al. in [Chatzoglou E et al.,   2022a], designed by supervised  learning, IDSs agains

t 7 attacks specific 802.11 :  Deauthentication (Deauth), Disassociation (Disas),  ReAssociation ((Re)A

ssoc), Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation Attack (Krack) and Kr00k. To do 

this, the authors performed feature selection on the AWID2 and AWID3 datasets based on the analysis 

of human experts in 802.11 technology and empirical observations. Those works are divided into 4 main 

parts.  

In the first part the authors selected only features common to AWID2 and AWID3 to create two new 

ones. The arguments of the authors justifying the choice of features is extremely exhaustive and 

technically of a very good level. The expert's analysis led to the selection of 16 features common to 

AWID2 and AWID3 in order to train Machine Learning and Deep Learning algorithms. 6 Machine 

Learning and 2 Deep Learning models were used: Logistic Regression (LR), LinearSVC, Stochastic 

Gradient Descent Classifier (SGDClassifier), Light Gradient Boosting Machine (LightGBM), Decision 

Trees (DT), Random Forest (RF), Extra Trees (ET), Multi-Layer Perceptron (MLP) and Denoising 

stacked Autoencoders (AE). 

Since the authors did not balance their dataset, they mainly relied on the AUC and F1 metrics to 

evaluate the performance of the 6 Machine Learning models and the 2 Deep Learning models. We define 

AUC and F1 metrics in subsection 3.6.2 and explain why this choice of metric is relevant. For the sake 

of completeness, the authors have included the 3 metrics Accuracy, Recall and Precision also explicitly 

defined in subsection 3.6.2.  

The experimental results were split by model family: Machine Learning first and then Deep Learning. 

On the AWID2 dataset, DT provided the best AUC results for (95.16%) and LightGBM for F1 (95.36%). 

The worst results were obtained by SGDClassifier for AUC (85.99%) and F1 (84.56%). As for the Deep 

Learning models, MLP obtained the best performance on AUC (81.79%) and F1 (81.98%) compared to 

AE which provided mediocre AUC (80.7%) and F1 (81.98%). 

On the AWID3 dataset, DT and LightGBM still obtained the best results respectively for AUC 

(99.49%) and F1 (99.55%). Once again SGDClassifier demonstrated the worst performance for AUC 

(95.17%) and F1 (96.60%). The ranking of Deep Learning models remains unchanged. MLP had the 

best AUC (96.47%) and F1 (97.55%) and AE the worst AUC (95.39%) and F1 (96.78%). We can notice 



 

105 

 

that overall the 6 Machine Learning models and the 2 Deep Learning models had better results with the 

AWID3 dataset than with the AWID2 dataset. This is largely due to the sample count deficiency in 

AWID 2 compared to AWID3 that allows models to converge to their optimal performance. 

In the second experimental part, the authors selected 3 new features belonging exclusively to 

AWID3, speculating that they would allow models to better distinguish attack classes. Consequently, 

only the AWID3 dataset has been used in this part. Here again the authors relied on the knowledge of 

human experts and their empirical observations. In this part only the Machine Learning ET model and 

the Deep Learning MLP model were used. ET had the best performance for AUC (99.24%) and F1 

(99.37%) and although the performance of MLP increased on AUC (97.23%) and F1 (97.97%) it is 

unacceptable compared to ET.  

In the third part the authors proceeded to the reduction of the subset of the 16 features common to 

AWID2 and AWID3 hoping to obtain better results. In this part, the authors used only 4 Machine 

Learning models belonging to the group of tree classifiers: LightGBM, DT, RF and ET. To do this, they 

constructed 4 feature subsets, Set 1 to Set 4, with a nmber of 4 features. This time the authors, used the 

feature selection based on empirical observations and human expert knowledge, confirmed by the 

Feature Permutation Importance technique on the LightGBM and RF models. 

For the AWID2 dataset, the ET model had the best performance on AUC and F1 on the 4 subsets 

with AUC values ranging from 91.67% to 95.03% and F1 ranging from 92.14 to 95.19%. LightGBM 

obtains the worst results on the 4 subsets, except for Set 2 where it is DT who has the worst F1. For the 

AWID3 dataset, the DT model wins with an AUC ranging from 91.09% to 97.16% and F1 ranging from 

90.04% to 95.19%. On the other hand, unlike AWID2, the ET model had the worst results on the 4 

subsets.  

Finally, the fourth part aims to analyze the transferability of features within AWID2 and between 

AWID2 and AWID3 as a test dataset. The authors constructed 4 new datasets using the same feature 

selection method as in the first three parts: datasets 30 (30F), 27 (27F), 13 (13F) and 5 (5F). Only the 3 

classifiers ET, DT and LightGBM, having provided at least once the best performances were chosen for 

this experimental part. The central question of this part is: "Is the selected set of 16 features directly 
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transferable between datasets and does it improve the performance of ET, DT and LightGBM 

classifiers?".  

The 30F dataset was created by adding to the AWID2 dataset of 16 features and the 14 most used 

AWID2 features in the state of the art. This dataset allowed the 3 classifiers to have their best 

performance compared to the other AWID2 datasets. The following 4 experiments with the 4 AWID2 

datasets 30F, 27F, 13F and 5F consist in training the 3 Machine Learning models mentioned above with 

these AWID2 datasets and then testing them on the AWID3 counterpart. Except for the ET and DT 

models respectively on the 13F and 5F dataset, the performance of the models at the end of these 4 

experiments is very poor. This experimentally confirms our analysis at the beginning of this section 

concerning the technical and functional difference between the creation environments of AWID2 and 

AWID3. Thus an IDS created on AWID2 is generally not compatible in a company information system. 

Thus the work in [Chatzoglou E et al., 2022a] has made it possible to highlight, for the benefit of the 

research community, 2 bases of essential information for the design of IDS specific 802.11 and the 

selection of features on the AWID2 and AWID3 datasets.  

If AWID2 was one of the main precursor datasets for the creation of  IDS against 802.11 specific 

attacks by supervised learning, it clearly showed in [Chatzoglou E et al., 2022a] its technical and 

functional limits compared to AWID3. 

On a technical level, the number of samples in AWID2 does not allow the models to converge 

towards acceptable performance unlike AWID3. The comparison of the results of the 6 Machine 

Learning models LR, LinearSVC (LSVC), SGDClassifier, LightGBM, DT, RF, ET and of the 2 Deep 

Learning models MLP, AE with the AWID2 and AWID3 datasets are proof of this. In addition, 

functionally AWID2 does not take into account the new 802.11 standards, the new protection and 

security protocol reforms as well as the new 802.11 attacks. This makes all IDS created with AWID2 

unsuitable for company information systems.  

But beyond the datasets AWID2 and AWID3, Chatzoglou E. et al. demonstrated to us the technical 

capabilities of feature selection based on empirical observations and human expert knowledge. This 

selection technique has shown the fullness of its effectiveness on IDSs design with the 16+3 features 

subset of AWID3 with very good AUC and F1 performance metrics above 99% for the ET model. It is 
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the only IDS in [Chatzoglou E et al., 2022a] with sufficient credibility to be deployed on a company 

information system against attacks specific 802.11. 

In their second work Chatzoglou, E. et al completed their cyber defense surface by creating an IDS 

against attacks targeting the application layer. 

 

In [Chatzoglou E et al., 2022b], Chatzoglou E. et al. attempted to design an IDS specific to attacks 

targeting the application layer using 6 subsets of AWID3 features. The authors exploited the richness of 

AWID3 which integrates features and attacks from layers higher than the Data link layer. 

The IDS focuses on the 6 attacks: Botnet, Malware, SSH, SQL Injection, SSDP amplification et 

Website spoofing. The authors again used feature selection based on empirical observations and human 

expert knowledge to create applicative IDSs from subsets of AWID3 features and an artificially created 

feature:  

1. 16 features specific 802.11, 

2. 17 non-specific 802.11 features, 

3. Reduced set of 6 features 802.11 from the 16 features specific 802.11, 

4. Reduced set of 3 features Non-802.11 from the 17 features specific Non-802.11, 

5. An artificial feature called Insider. 

Targeting the correlation between the IP from client station, the Insider feature was created by the 

authors, via Algorithm n° 1 in [Chatzoglou E et al., 2022b], in order to better detect Botnet-type attacks. 

In this type of attack, the hacker has taken possession of a client station and uses it in server mode for 

his distributed attacks to other clients. 

These groups of features do not incorporate any features of the application layer because these are 

anonymized or encrypted, therefore unusable by the IDS. 

From the features initially selected or created, the authors created by combination 5 subsets of 

additional features: 

1. Reduced set of 6 features 802.11 with set of 3 features Non-802.11, 

2. 16 specific 802.11 features with set of 17 non-specific 802.11 features, 
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3. Reduced set of 6 features with Insider feature, 

4. Reduced set of 6 features 802.11 with reduced set of 3 features Non-802.11 and with Insider 

feature, 

5. 16 specific 802.11 features with set of 17 Non-specific 802.11 features and with Insider 

feature. 

To create the subset of  the 16 802.11 specific features, the authors used the work of [Chatzoglou E 

et al., 2022a]. The features of the non-specific 802.11 dataset include 17 features from the Network and 

Transport layers. As in [Chatzoglou E et al., 2022a] the reduced datasets of 6 specific 802.11 features 

and 3 non-specific 802.11 features were created by the selection method based on empirical observations 

confirmed by the Feature Permutation Importance technique on the tree-based LightGBM model. 

3 Machine Learning models and 2 Deep Learning models were used in the experimental part: DT, 

LightGBM, Bagging, MLP and AE. These 5 models were tested on datasets n° 1 and n° 2. As in 

[Chatzoglou E et al., 2022a], given that the AWID3 dataset is highly unbalanced, the authors relied on 

the AUC and F1 metrics to evaluate the performance of the 5 models.  

On the two datasets n° 1 and n° 2, for the Machine Learning models, Bagging had the best results 

for the AUC and F1 metrics:  

 90.77 % et 88.07 % on the specific 802.11 dataset,  

 76.28 % et 66.02 % on the non-specific 802.11 dataset. 

DT had the worst results with 

 88.98 % et 86.34 % on the specific 802.11 dataset, 

 76.21 % et 66.02 % on the non-specific 802.11 dataset. 

For Deep Learning models, MLP demonstrates the best performance for AUC and F1: 

 75.53 % et 69.40 % on the specific 802.11 dataset, 

 74.67 % et 64.48 % on the non-specific 802.11 dataset. 

AE performs worse results on the 802.11 specific dataset with 74.96% and 68.50% and surprisingly 

identical results to MLP on the non-specific 802.11 dataset. 
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We can notice that even the best results on the two datasets n° 1 and n° 2 are well below 90% and 

therefore a source of many detection errors. The application IDS created from the 5 models are therefore 

mediocre and unsuitable for deployment in a company information system.  

For datasets n° 3, n° 4 and n° 6 to n° 10, only the 2 Machine Learning models LightGBM and Bagging 

were used. Overall Bagging obtains higher performances than LightGBM more particularly on dataset 

n° 3, n° 6, n° 8 and n° 9 with an AUC ranging from 90.71% to 95.46% and F1 ranging from 87.84% to 

93.33%. For dataset n° 7 and n° 10 the results are divided: Bagging has the best AUC from 95.29% to 

96.70% and LightGBM has the best F1 from 94.48% to 95.99%. 

 Application IDSs created on datasets n° 6 to n° 10 have metrics greater than 90%. The results are 

therefore much more acceptable than for the IDS created from datasets n° 1 to n° 4. However, even the 

best results of the work of [Chatzoglou E et al., 2022b] cannot have sufficient credibility to be deployed 

in a company information system where detection errors are very detrimental to the company. 

 

To conclude this section, works [Chatzoglou E et al., 2022a] and [Chatzoglou E et al., 2022b], 

employing a feature selection based on empirical observations and expert human knowledges in 802.11 

technology, have produced mixed results overall. The best results in [Chatzoglou E et al., 2022a], 

demonstrated that this feature selection technique makes it possible to create IDSs against 802.11 specific 

attacks with performance in line with the requirements of an enterprise information system. But this is 

far from being the case in [Chatzoglou E et al., 2022b] where the application IDS have insufficient 

performance. 

However, the main pitfall of these two works, admitted by the authors, is that they did not use 

"optimization or dimensionality reduction techniques". Our work goes beyond the work of Chatzoglou 

E. et al. and fills these gaps by using the new BHHO-EAS metaheuristic to perform for the first time on 

the AWID3 dataset, at the time of writing this manuscript, a Wrapped feature selection in order to create 

an IDS based on a Deep Learning CNN model against attacks specific 802.11. Furthermore, the work of 

Chatzoglou E. et al. we will serve as references in section 3.6 in order to compare the performance of our 

IDS to theirs and demonstrate the superiority of our method. 
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3.4. Design of BHHO-EAS for a efficient Wrapper feature selection process 

3.4.1. Description of the feature selection process 

The features selection process consists in selecting the most relevant, informative and smallest 

possible subset of features Φ ̂ from the source set of features as illustrated in Fig. 3.2. The subset Φ ̂ will 

thus contain the features with the minimum of redundancy and of noisy as well as the maximum of 

relevance [Agrawal P et al., 2021; Houssein EH et al., 2022b; Houssein EH et al., 2022a; Houssein EH 

et al., 2022c; Segera D et al., 2023]. 

 

 

 

Fig. 3.2. Feature selection process 

Concretely with the use of a binary vector 𝐵𝑖 = (𝑏𝑖
1, … , 𝑏𝑖

𝑑) the feature 𝐹𝑗 is selected if 𝑏𝑖
𝑗
= 1. For 

example with 𝑑 = 6 and 𝐵𝑖 = (0,1,0,0,1,0)  the subset of features selected is (𝐹2, 𝐹5) as illustrated in 

Table 3.1. 

Features 𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 

Binary 

vector 
0 1 0 0 1 0 

Features 

selected 
- 𝐹2 - - 𝐹5 - 

Table 3.1. Example of features selection for 𝑑 = 6 

Therefore, the positions of the agents in the BHHO-EAS metaheuristic will be binary positions and 

the feature selection optimization problem is a discreet problem in a binary search space. In order to 

understand the level of difficulty of this problem a mathematical explanation is necessary. 

A. Mathematical theory of the feature selection  

The binary discrete search space is a search space whose vector components can only take the discrete 

values 0 or 1. 

As we mentioned above, the mathematical representation of a binary vector is 𝐵𝑖 = (𝑏𝑖
1, … , 𝑏𝑖

𝑑) . The 

variable 𝑑 is the dimension of the binary search space ℬ𝑑 . ℬ𝑑  is represented by a hypercube with 2𝑑 

vertices. Each binary vector is consequently one of the vertices of this hypercube. For example, for 𝑑=3, 

Source of features 
Subset of features 
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ℬ3 is a cube with eight binary vectors positioned on the eight vertices as illustrated bellow Fig. 3.3. It 

means that the size of a hypercube ℬ𝑑 increases exponentially with respect to the dimension 𝑑. This 

mathematical fatality is conducive to the curse of the dimensionality for a high dimensional optimization 

problem in a binary search space. Therefore, the feature selection is a NP-Hard optimization problem. 

Fortunately, metaheuristic algorithms are the most suitable methods for solving this category of problem 

as a prime contractor of the feature selection. Thus, an efficient metaheuristic for the resolution of the 

NP-Hard optimization problems of feature selection, will browse the vertices of the hypercube ℬ𝑑  by 

exploration and exploitation phases in a reasonable time in search of a good solution close to the optimal 

solution. The nature-inspired and population-based metaheuristics [Agrawal P et al., 2021; Segera D et 

al., 2023] will provide to the design of the IDS all the benefits of the feature selection. 

 
Fig. 3.3. Binary search space ℬ3 

B. The benefits of the feature selection to the design of a IDS 

If the feature selection is an NP-Hard problem to solve, the final solution Φ ̂ to that problem will 

provide benefits commensurate with the complexity of that problem [Banka H et al., 2017a; Banka H et 

al., 2017b; Almomani A et al., 2019; Hodashinsky IA et al., 2019; Sassi M, 2022; Tansel D et al., 2022; 

Segera D et al., 2023]. The benefits will concern all the components related to the design of a IDS in the 

context of supervised learning: the dataset, the Deep Learning algorithm and the STA (IoT). We count 

ten main benefits. The feature selection process: 

 Selects relevant data and remove the redundant data; 

 Reduces the noise such as irrelevant and fallacious data; 

 Reduces the risk of error in the data samples since the size of features is reduced; 
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 Minimizes the consequences of the curse of the dimensionality which exists if the number of 

features in the dataset is greater than or equal to 100, which increases the noise in the dataset and 

therefore the detection errors rate of the IDS [Gardeux V, 2011] ; 

 Simplifies the representation pattern and the interpretation of the data; 

 Increases or at least maintains the performance of Deep Learning algorithms; 

 Reduces the computational load of the training, validation and testing phases as well as the 

number of Epochs during the training phase thanks to the reduction in the size of the dataset; 

 Improves the generalization capacity of the Deep Learning model and therefore makes it more 

resilient to unknown attacks; 

 Decreases the complexity of the Deep Learning model architecture, which is an essential asset 

for compacting an IDS and saving computing and memories resources of an IoT; 

 Reduces processing time, this is another asset for better responsiveness in the field of 

cybersecurity. 

Now that we know the benefits of the feature selection process, we need to choose how to do it, more 

precisely which feature selection method to use. 

C. Feature selection methods 

The Filter, Wrapper, Hybrid and Embedded methods are the four main methods used in the literature 

for feature selection [Hodashinsky IA et al., 2019; Sharma M et al., 2021; Houssein EH et al., 2022b; 

Houssein EH et al., 2022a; Houssein EH et al., 2022c; Segera D et al., 2023]. Each of these methods has 

a separate evaluation step. 

a. Filter method 

Filter selection methods have the advantage of being independent of the Machine Learning algorithm 

for the evaluation of the feature subset Φ and of being not very complex. They exploit the intrinsic 

statistical properties of features to assign them a value. This value will allow features to be evaluated and 

selected based on a threshold. The disadvantages are that this method can select interrelated features and 

is less precise than the wrapper method. The most used filter methods are the Hisher test, the 𝜒2test, the 
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Welsh test [Gardeux V, 2011] or even Mutual information, Correlation-based, Fast Correlation-based, 

Branch and bound, Consistency, Principal Component Analysis and Information Gain [Banka H et al., 

2017a; Almomani A et al., 2019; Sakr MM et al., 2019; Houssein EH et al., 2022c; Houssein EH et al., 

2022a]. 

b. Wrapper method 

Unlike the filter method, the wrapper method is dependent on the Machine Learning algorithm for the 

evaluation of a subset of feature Φ [Banka H et al., 2017a; Almomani A et al., 2019; Houssein EH et al., 

2022c; Houssein EH et al., 2022a; Houssein EH et al., 2022b; Tansel D et al., 2022]. In addition, it will 

provide a final solution Φ ̂ that is more precise and better adapted to the Machine Learning algorithm. 

With this method, the whole {𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,𝐷𝑎𝑡𝑎𝑠𝑒𝑡} is considered as the "black box" 

optimization problem for a metaheuristic. On the other hand, the major drawback of the wrapper method 

is that it requires much more computational time and resources than the filter method.  

c. Embedded method 

The embedded method is quite similar to the wrapper method [Houssein EH et al., 2022c; Houssein 

EH et al., 2022a]. Like the wrapper method, the embedded method uses the Machine Learning algorithm 

to evaluate the feature subset Φ and provide a final solution Φ ̂ more precise and better adapted to the 

Machine Learning algorithm. The main difference with the wrapper method is that the embedded method 

uses an internal method that evaluates Φ during the Machine Learning model training process. The 

evaluation of Φ is thus embedded in the training process of the Machine Learning model, selects the 

features and trains the Machine Learning model at the same time [Banka H et al., 2017a; Almomani A 

et al., 2019; Agrawal P et al., 2021]. The L1 penalty with LASSO regularization is one of the best known 

evaluation methods for the embedded method. 

d. Hybrid method 

The hybrid method uses both the upstream filter and downstream wrapper methods [Banka H et al., 

2017a; Houssein EH et al., 2022a; Houssein EH et al., 2022b]. The filter method selects a subset of 

features Φ before implementing the wrapper method. Then the wrapper method considers the subset Φ 

as the initial feature set and will in turn select and evaluate a feature subset Φ′. However, this method 
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inherits the lack of precision of the filter method. Indeed, if the filter method selects a subset of features 

Φ which is not optimal with several correlations between features, the result of the quality of the solution 

Φ ̂ provided by the wrapper method will decrease accordingly [Almomani A et al., 2019]. 

 

Among these four feature selection methods, the wrapper method is therefore the most efficient and 

accurate for our work because it is more efficient than the filter method and therefore the hybrid method 

[Sakr MM et al., 2019; Davahli A et al., 2020a]. In our works, we do not use a classic Machine Learning 

algorithm but the Deep Learning CNN algorithm which is very efficient in the classification and therefore 

in the detection of attacks. We will justify our choice in subsection 3.5.2. Moreover, unlike the embedded 

method, the wrapper method meets our technical specifications which require that the BHHO-EAS 

metaheuristic be the driving force in the search for the best subset of feature Φ ̂ of the AWID3 dataset. 

But the wrapper method must be implemented with the most appropriate feature selection initialization. 

3.4.2. Binary vector initialization strategies 

The initialization strategy is sometimes neglected in the literature while the initial position of the 

agents in the search space is a crucial element in the optimization strategy [Qian L et al., 2020; Agushaka 

JO et al., 2022]. The initialization in a metaheuristic algorithm must make it possible to position its agents 

in order to effectively cover the search space and to increase the probabilities that at least one of the 

agents is in a promising zone containing the optimal solution. This would reduce the search time and the 

quality of the final solution. 

For binary metaheuristics there are three main binary vector initialization strategies [Almomani A et 

al., 2019; Gad AG et al., 2022]:  

 Random initialization; 

 Great initialization; 

 Small initialization. 

A. Random initialization 

The Random selection method offers the greatest probability of being positioned from the start on a 

promising zone of the hypercube by randomly initializing each component of the binary vectors to 0 or 
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1. During the iterations the components at 0 or at 1 can respectively change to 1 or to 0 in order change 

the subset of feature Φ and to obtain the most optimal subset Φ ̂. It is this method that we favored in our 

work compared to the Great initialization and Small initialization methods. 

B. Great initialization 

The Great initialization method, for each binary vector, randomly selects one of its components to set 

it to 0 and leaving all the other components at 1. The positioning of the bit at 0 must be different from 

one binary vector to another. The objective, if the size of the population of the metaheuristic is greater 

than or equal to the dimension of the optimization problem, is that the component at 0 traverses at least 

once the set of dimensions of the binary vectors. 

As iterations go, the bits at 1 will change to 0 to remove features and reduce the size of the subset Φ 

[Almomani A et al., 2019; Gad AG et al., 2022]. 

C. Small initialization 

The Small initialization method is the opposite of the Great initialization method. This method will 

randomly set to 1, a single component of the binary vector and all the other components to 0. As the 

iterations progress, the bits at 0 will change to 1 to select new features and increase the size of the subset 

Φ [Schiezaro M et al., 2013; Almomani A et al., 2019; Gad AG et al., 2022].  

Fig. 3.4. Illustrates the three initialization methods for a population of four agents and a dimension 

equal to eight. 

 

Fig. 3.4. The three main binary vector initialization strategies 
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We now have all the theoretical elements of the feature selection process. In order to have a synthetic 

vision we provide in the following its flow chart. 

3.4.3. Flow chart of the feature selection process 

The feature selection process is divided into four steps [Banka H et al., 2017b]: 

 Selection of a feature subset Φ; 

 Evaluation of the subset Φ; 

 Termination tests of the Selection process; 

 Validation of the subset Φ. 

The flowchart in four steps are illustrated in Fig. 3.5. 

 

Fig. 3.5. Steps of the feature selection 

A. Selection and validation 

The selection is made by one of four methods: filter, wrapper, hybrid and embedded. As explained 

above, each of these methods has a separate evaluation step. 

B. Termination tests of the selection process 

There are three criteria for stopping the feature selection process:  

 Maximum number of iterations reached; 

 No improvement after a certain number of iterations; 

 The optimal subset of features is already obtained at initialization. 
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C. Feature subset validation 

The validation of the feature subset Φ ̂ consists in confirming the relevance of the selection thanks to 

performance metrics. In our work, the evaluation step will exploit the Accuracy metric of the IDS. 

We now have the fundamentals of the feature selection process. We know what this process is, what 

are its advantages, its four main steps and how to implement it with filter, wrapper, embedded or hybrid 

methods. In the next subsection 3.4.4 we will design the BHHO-EAS metaheuristic which will be the 

prime contractor for our wrapper feature selection. Our wrapper feature selection method is unique since 

it uses the Deep Learning algorithms and the computing power of GPU technology for the design of the 

CNN-IDS. 

3.4.4. Design of the binary metaheuristic BHHO-EAS 

To adapt HHO-EAS metaheuristic to optimization in a binary discrete search space it is necessary it 

is necessary to allow him to discretize the continue search space.  

There are several methods of discretization or encoding such as Nearest Integer (NI) [Burnwal S et 

al., 2013], Smallest Position Value (SPV) [Verma RS et al., 2012; Demyana IE et al., 2016], Great Value 

Priority (GVP) [Congying L et al., 2011], Random-Key (RK) [Huiqin C et al., 2011] or the modified 

position equation (MPE) method that was used on PSO [Pan QK et al., 2008]. The later required the 

modification of the equations for calculating the position of the agents. In our case we adopt the binary 

discretization which will limit the number of possible states to 0 or 1 [Sassi M, 2022]. 

We have designed a modular binary discretization method, independent of metaheuristics and which 

allows to preserve their algorithmic and mathematical integrity as well as their exploration and 

exploitation strategy. 

We therefore performed a high-level hybridization, integrated in the HHO-EAS metaheuristic [Ting 

TO et al., 2015]. Our hybridization is composed of two modules 𝑀1 and 𝑀2 [Sassi M, 2022]. These 

two modules are suitably positioned in HHO-EAS so that at each iteration the continuous positions 𝑋𝑖 

of an agent 𝑖 are converted into a binary position 𝑉𝑏𝑖 [Raidl GR et al., 2019]. 
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A. Module M1 

For a search space of dimension 𝑑 and an agent population of size 𝑁, the module 𝑀1 make it possible 

to go from a continuous real space ℝ𝑑  to an continuous intermediate space  [0,1]𝑑. It normalizes the real 

values 𝑥𝑖
𝑗
, components 𝑗 of the positions 𝑋𝑖 of an agent 𝑖, in order to obtain a probability value 𝑝𝑖

j
 via a 

transfer function 𝑇. Thus the module 𝑀1 converts the position vector 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑) to the 

intermediate vector 𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑) which will act on the selection of the features set (𝑓1, . . , 𝑓𝑑).  

Equation (3.1) summarizes the mathematical operation of 𝑀1 performed by a transfer function 𝑇. 

{

 𝑖 ∈ ⟦1, 𝑁⟧, 𝑗 ∈ ⟦1, 𝑑⟧                                                                             

𝑋𝑖 ∈ ℝ
𝑑 , 𝑃𝑖 ∈ [0,1]

𝑑                                                                                

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑) 
𝑇
⇒ 𝑃𝑖 = (𝑝𝑖

1, … , 𝑝𝑖
𝑑)                                               

   (3.1) 

Referring to the state of the art, the most used transfer functions 𝑇 for feature selection are: S-shaped, 

V-shaped, U-shaped and Q-shaped [Too J et al., 2019; Kumar V et al., 2021; Nadimi-Shahraki, M.H. et 

al., 2021; Tansel D et al., 2022]. Recent work has proven the superiority of Q-shaped transfer functions 

[Too J et al., 2019].  

Table 3.2, Table 3.3, Table 3.4 and Table 3.5 provide the mathematical formulation of transfer 

functions and Fig. 3.6, Fig. 3.7, Fig. 3.8 and Fig. 3.9 provide their graphical representations. For a search 

space of dimension 𝑑, the transfer functions S-shaped provide the probability of selecting a feature. On 

the other hand, the V-shaped, U-shaped and Q-shaped transfer functions provide the probability of 

modifying the choice made at the previous iteration: if a feature has been selected, it will no longer be 

at the next iteration and vice versa.  

The next step will be to go from the intermediate space  [0,1]𝑑  to the binary space {0,1}𝑑 with the 

module 𝑀2. 

Name S-shaped functions  

S1 1

1 + 𝑒−2𝑥
 

S2 1

1 + 𝑒−𝑥
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S3 1

1 + 𝑒(−
𝑥
2
)
 

S4 1

1 + 𝑒(−
x
3
)
 

Table 3.2. S-shaped functions 

 

Name V-shaped functions 

V1 
 |erf (

√𝜋

2
𝑥)| 

V2 | tanh(𝑥) | 

V3 |𝑥|

√1 + (𝑥)2
 

V4 
|
2

𝜋
 arctan (

𝜋 

2
𝑥)| 

Table 3.3. V-shaped functions 

Name U-shaped functions 

U1 
 𝛼 |𝑥

3
2| 

U2 𝛼|𝑥2| 

U3 𝛼|𝑥3| 

U4 𝛼|𝑥4| 

Table 3.4.U-shaped functions 

Name Q-shaped functions 

Q1 

{
|

𝑥

0.5𝑥𝑚𝑎𝑥
| , 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

1, 𝑒𝑙𝑠𝑒                                      
  

Q2 

{
(

𝑥

0.5𝑥𝑚𝑎𝑥
)
2

, 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

1, 𝑒𝑙𝑠𝑒                                        

 

Q3 

{(
|𝑥|

0.5𝑥𝑚𝑎𝑥
)

3

, 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

 1, 𝑒𝑙𝑠𝑒                                         
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Q4 

{(
|𝑥|

0.5𝑥𝑚𝑎𝑥
)

1
2

, 𝑖𝑓 |𝑥| < 0.5𝑥𝑚𝑎𝑥

1, 𝑒𝑙𝑠𝑒                                        

 

Table 3.5. Q-shaped functions 

 
Fig. 3.6. S-shaped functions 

 
Fig. 3.7.V-shaped functions 
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Fig. 3.8. U-shaped functions (𝛼 = 1) 

 
Fig. 3.9. Q-shaped functions (𝑥𝑚𝑎𝑥 = 6) 

B. Module M2 

The module 𝑀2, by the use of a binarization rule 𝑅, makes it possible to pass from the intermediate 

space [0,1]𝑑 to the binary space {0,1}𝑑. There are two main binarization rules: 𝑅1 and 𝑅2 .These two 

rules convert the probability values 𝑝𝑖
j
 of the vector 𝑃𝑖 into binary values 𝑏𝑖

𝑗
 in order to create the binary 

vector 𝐵𝑖. The mathematical equations of the rules 𝑅1 and 𝑅2 are respectively detailed in (3.2) and (3.3). 

Each of these rules applies to a specific category of transfer function 𝑇: 

 Rule 𝑅1 for S-shaped functions; 

 Rule 𝑅2 for V-shaped, U-shaped and Q-shaped functions. 
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𝑅1: 𝑏𝑖
𝑗
= {1 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤   𝑝𝑖

𝑗

0 𝑒𝑙𝑠𝑒                     
                (3.2) 

𝑅2: 𝑏𝑖
𝑗
= {

~(𝑏𝑖
𝑗
) 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤   𝑝𝑖

𝑗
                   

𝑏𝑖
𝑗
 𝑒𝑙𝑠𝑒                                                

              (3.3) 

Thus in rule 𝑅2, if the binary component 𝑏𝑖
𝑗
= 1 and the random value 𝑟𝑎𝑛𝑑 ≤   𝑝𝑖

𝑗
 then ~(𝑏𝑖

𝑗
) =

0. And if 𝑏𝑖
𝑗
= 0 and 𝑟𝑎𝑛𝑑 ≤   𝑝𝑖

𝑗
 then ~(𝑏𝑖

𝑗
) = 1. On the other hand, if 𝑟𝑎𝑛𝑑 > 𝑝𝑖

𝑗
, 𝑏𝑖

𝑗
 will not change 

its value. 

Equation (3.4) summarizes the mathematical operation of 𝑀2 performed by a logical rule 𝑅. 

{

 𝑖 ∈ ⟦1, 𝑁⟧, 𝑗 ∈ ⟦1, 𝑑⟧                                                               

𝑃𝑖 ∈ [0,1]
𝑑 ,  𝐵𝑖  ∈ {0,1}

𝑑                                                           

𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑)
𝑅
⇒𝐵𝑖 = (𝑏𝑖

1, … , 𝑏𝑖
𝑑)                                    

         (3.4) 

Thus the combination of the module 𝑀1 and the module 𝑀2 creates a mathematical process of binary 

discretization of the position vectors 𝑋𝑖 in order to get 𝐵𝑖. Equation (3.5) summarizes the overall process 

of binary discretization for a transfer function 𝑇 and a logical rule 𝑅. 

{
 

 
 𝑖 ∈ ⟦1,𝑁⟧, 𝑗 ∈ ⟦1, 𝑑⟧                                    

𝑀1: 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑)  
𝑇
⇒ 𝑃𝑖 = (𝑝𝑖

1, … , 𝑝𝑖
𝑑)  

𝑀2: 𝑃𝑖 = (𝑝𝑖
1, … , 𝑝𝑖

𝑑)
𝑅
⇒ 𝐵𝑖 = (𝑏𝑖

1, … , 𝑏𝑖
𝑑)    

                                  (3.5) 

In order to obtain the new metaheuristic BHHO-EAS, it now remains to integrate the two modules 

𝑀1 and 𝑀2 in HHO-EAS and to initialize the binary position of the agents with the Random initialization 

method. Algorithm 2 describes the pseudo-code of BHHO-EAS. The modules 𝑀1 and 𝑀2 are in blue 

color in Algorithm 2. The flow chart of BHHO-EAS is provided in Appendix 8. This flow chart specifies 

the components of the BHHO-EAS algorithm which exploits the GPU or the CPU for its calculations. 

The calculation of the new position of the agents at each iteration is identical to HHO-EAS. The pseudo-

code and the flow chart confirm that there is no alteration of the HHO-EAS algorithm and that the 

modules 𝑀1 and 𝑀2 were added at the end of the calculation of the new positions 𝑋𝑖 of each agent 𝑖.  
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In the next section 3.5, with the aim of conceive the CNN-IDS against 802.11 specific attacks, we 

will demonstrate that BHHO-EAS is the central intelligence in the wrapper feature selection method 

applied to the AWID3 dataset. 

Algorithm 3.1 Pseudocode of BHHO-EAS 

In: Population size N, Number of Iteration ItMax, Objective function F, Transfer function T, Rule R 

Out: 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗) 

Initialization of the Harris Hawk’s binary positions �⃗⃗�𝑖, 𝑖 ∈ ⟦1, 𝑁⟧, 𝐾 = 2, t=0 

While (t < ItMax) do:  

      Calculate 𝐹(�⃗�𝑖) of each Harris Hawk’s position �⃗�𝑖 

      Define the best position of rabbit 𝑋𝑟⃗⃗⃗⃗⃗ and F (𝑋𝑟⃗⃗⃗⃗⃗)   

      For each Harris Hawk agent 𝑖 do: 

          Update 𝑒, 𝐸0, 𝐸, and 𝐽 with FISREE, (2.2) and (2.6) 

          If(|𝐸 |  ≥ 1) [Exploration] then: 

Calculate 𝑞 and Update position with (2.4)  

          Else [Exploitation]: 

Update 𝑉𝛼⃗⃗ ⃗⃗ , 𝑉𝛽⃗⃗⃗⃗⃗ and 𝑉𝛿⃗⃗⃗⃗⃗  

Define: 

𝑋𝛼⃗⃗ ⃗⃗ ⃗=First best position  

𝑋𝛽⃗⃗ ⃗⃗⃗=Second best position  

𝑋𝛿⃗⃗ ⃗⃗⃗=Third best position 

Calculate encirclement equations with (2.22), (2.23), (2.24), (2.25), (2.26) and (2.27) 

Calculate 𝑋𝑒⃗⃗⃗⃗⃗ with attack equation (2.28) 

Update Harris Hawk’s position �⃗�𝑖 by 𝑋𝑒⃗⃗⃗⃗⃗ 

               Calculate 𝑟5 

                  If  |𝐸| ≥ 0.5 and 𝑟5 ≥ 0.5 then: 

        Update position with (2.6) and (2.7) 

                  If   |𝐸| < 0.5 and 𝑟5 ≥ 0.5 then: 

         Update position with (2.8)  

                  If   |𝐸| ≥ 0.5 and 𝑟5 < 0.5 then: 

         Update position with (2.9) to (2.12) 

                  If   |𝐸| < 0.5 and 𝑟5 < 0.5 then: 

         Update position with (2.12) to (2.15) 

      End For 
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      For each Harris Hawk agent position 𝑋𝑖 do: 

           𝑃𝑖 = 𝑇(𝑋𝑖 ) with 𝑇 𝜖 𝑀1 (3.1) 

          𝐵𝑖 = 𝑅(𝑃𝑖) with 𝑅 𝜖 𝑀2 (3.2), (3.3) 

       t=t+1  

End While  

Return 𝑋𝑟⃗⃗⃗⃗⃗ 
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3.5. Application of BHHO-EAS to design a CNN-IDS specific to 802.11 attacks 

3.5.1. Mathematical modeling of the Wrapper feature selection process in a multi-objective 

optimization problem 

The wrapper feature selection method provides the optimal subset of features Φ ̂ by pursuing a dual 

objective: minimizing the size of the feature subset Φ and maximizing the detection performance of the 

CNN. The wrapper feature selection is therefore a NP-Hard multi-objective optimization problem 

[Almomani A et al., 2019; Davahli A et al., 2020a; Houssein EH et al., 2021b; Sharma M et al., 2021; 

Houssein EH et al., 2022a]. 

The two objectives to be optimized are: 

 1st objective Minimize : Select the feature subset Φ with the smallest possible size represented 

by a binary vector 𝑉𝑏. But reducing the size of Φ consists in minimizing the Hamming distance 

|𝑽𝒃| between the binary vector 𝑉𝑏 and the null vector; 

 2nd objective Maximize: We need to increase the Accuracy metric (𝑨𝒄𝒄) to maximize the 

CNN's ability to predict the Attacks and Normal samples and reduce the detection errors. 

Accuracy metric is more explicitly detailed in subsection 3.6.2. 

The mathematical transcription of this multi-objective optimization problem is as follows: 

 Maximize 𝑨𝒄𝒄 

 Minimize |𝑽𝒃|. 

 With:  

𝑽𝒃 = (𝒃
𝟏, … , 𝒃𝒅), 

|𝑽𝒃| =∑𝒃𝒋
𝒅

𝒋=𝟏

 ,     

𝑨𝒄𝒄(𝑽𝒃) =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑵+ 𝑻𝑵+ 𝑭𝑷
 

The solution 𝑉�̂� to this multi-objective problem is generally not unique and not optimal because they 

represent a compromise on the two objectives Min-Max to be achieved. Indeed, the excessive reduction 
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of the number of features could decrease the Accuracy. And conversely the increase in Accuracy tends 

to generate an increase in the number of features. 

As we specified in chapter 1, among the solutions obtained, those which have a relation of dominance 

over the other solutions and none of them, constitute the Pareto optimal front. 

To solve this multi-objective problem with an A priori approach, we will use the weighted sum 

methods (or aggregation method) [Siarry P et al., 2002a; Donoso Y et al., 2016]. This method is the 

most widely used in the literature for solving the multi-objective wrapper feature selection optimization 

problems [Mafarja MM et al., 2017; Almomani A et al., 2019; Bonab MS et al., 2020; Davahli A et al., 

2020a; Davahli A et al., 2020b]. The two main advantages of this method and which motivated its use 

for our works are the following:  

 It allows to go from a multi-objective problem to a single-objective problem that can be solved 

by the BHHO-EAS metaheuristic; 

 It is particularly effective in obtaining a good final solution thanks to the A priori intervention 

of an expert.  

In our case, the A priori intervention requires a cybersecurity expert in 802.11 technology. The expert 

will give either a preponderance to the Accuracy Acc with the weight 𝜔1 in order to maximize the 

detection performances of the CNN-IDS, or will favor the minimization of |𝑽𝒃| to save the IoT’s 

computing resources via the weight 𝜔2. Our expert choice is as follows: In the context of IoT 

cybersecurity, the priority is to have the most efficient CNN-IDS possible in the detection of 802.11 

specific attacks with the fewest false positives and false negatives. Consequently, the weight assigned to 

Acc, 𝜔1 will be preponderant with respect to the weight 𝜔2 assigned to |𝑽𝒃|. 

In order to obtain a single equation to be minimized from a Min-Min multi-objective optimization 

problem, we replace the Accuracy by the detection Error 𝑬𝒓𝒓. Acc and Err are linked by the equation: 

𝑬𝒓𝒓 = 𝟏 − 𝑨𝒄𝒄. And since the functions to be optimized must be normalized in the method of weighted 

sums, we divide |𝑽𝒃| by the dimension of the optimization problem 𝒅. 

The multi-objective optimization problem Min-Min is therefore expressed by the mono-objective 

equation (3.6) to be minimized: 
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𝐹(𝑉𝑏) = 𝜔1. (1 − 𝐴𝑐𝑐(𝑉𝑏)) + 𝜔2.
|𝑉𝑏|

𝑑
.        (3.6) 

Furthermore we know that in the weighted sum method (𝜔1, 𝜔2)  ∈ [0,1]
2 and 𝜔1 + 𝜔2 = 1. The 

equation (3.6) then becomes equation (3.7) with 𝜔2 = 𝜔 and 𝜔1 = 1 − 𝜔: 

𝐹(𝑉𝑏) = (1 − 𝜔). (1 − 𝐴𝑐𝑐(𝑉𝑏)) + 𝜔.
|𝑉𝑏|

𝑑
       (3.7) 

The theoretical bases of the Wrapper feature selection multi-objective optimization problem are laid. 

We must now design the architecture of the wrapper feature selection with the triptych {BHHO-EAS, 

CNN, AWID3}. We have already designed the BHHO-EAS metaheuristic in section 3.4. In what 

follows we will first define the choice of the Deep Learning model CNN before approaching the analysis 

and the preprocessing of the AWID3 dataset. 

3.5.2. Convolutional neural network for the creation of a CNN-IDS  

The Convolutional Neural Network (CNN) is one of the neural networks of Deep Learning 

algorithms. Deep Learning algorithms are a subset of Machine Learning algorithms themselves being a 

subset of Artificial Intelligence [Houssein EH et al., 2021a; Monteiro ACB et al., 2021; Pedroza M et 

al., 2021]. Fig. 3.10 below schematizes these inclusions. 

Deep Learning algorithms are much more efficient than classic Machine Learning algorithms for 

classification tasks [Zhang S et al., 2020]. Deep Learning provides us with many neural networks that 

mimic the neural and visual abilities of animals: Feedforward Neural Network (FNN), Recurrent Neural 

Network (RNN), Convolutional Neural Networks (CNN), etc. 

 

Fig. 3.10. Inclusion of ML and DL in AI 
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Before exhaustively describing CNN and its inherent attack detection capabilities and its ability to 

be embedded into an IoT, we will provide a general overview of Machine Learning. 

A. General overview of Machine Learning 

Michel T, computer science professor at the University of Carnegie Mellon and researcher in 

artificial intelligence, was one of the first researchers to provide a definition of Machine Learning : "A 

computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P , if its performance at tasks in T , as measured by P, improves with experience 

E" [Mitchell T, 1997]. This definition is one of the theoretical foundations of Machine Learning. 

Machine Learning consists of three main branches [Hussain F et al., 2020; Sarker IH, 2021]: 

Reinforcement Learning, Unsupervised Learning, and Supervised Learning. We will define below each 

of these three branches. 

a. Reinforcement Learning 

Reinforcement Learning is the branch of Machine Learning which is closest to human behavior 

because it is based on trials and errors. This branch of Machine Learning requires an Agent, an 

Environment, the States of the Environment and the Rewards obtained by the Agent’s Actions for a 

given State of the Environment. Based on the State of the Environment and the value of the Reward, the 

Agent learns via Reinforcement Learning algorithms to optimize these decisions by choosing the Action 

which will modify the state of the environment and will maximize his Rewards in the long term. A 

multitude of Reinforcement Learning algorithms exist such as Q-Learning, Sarsa, Deep Q-Learning, etc. 

[Zhang H et al., 2020]. 

b. Unsupervised Learning 

Having no information on the data label, Unsupervised Learning algorithms are trying to highlight the 

internal data structure in order to determine internal characteristics common to data. This is the case of 

clustering or reduction of dimensions such as Principal Component Analysis (PCA) [Zhang S et al., 2020; 

Dara S et al., 2022; Verma KK et al., 2022]. 

c. Supervised Learning 

In Supervised Learning, all data are labeled. This means that each record of the data has its known 

exit. For example, an image dataset representing cats or dogs will be labeled cat or dog respectively. The 
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Supervised Learning algorithms will create a function that will associate a record with its label [Zhang S 

et al., 2020; Dara S et al., 2022; Verma KK et al., 2022]. The design of the CNN-IDS is in the context 

of the Supervised Learning. 

Fig. 3.11 provides a general taxonomy of the three branches of the Machine Learning with examples 

of algorithms for each branch. 

 

Fig. 3.11. General taxonomy of Machine Learning algorithms 

B. General skills of CNNs for intrusion detection and to be embedded into an IoT 

CNN models have a common general architecture. They are composed of three main blocks [Ramos-

Michel A et al., 2021]:  

 The convolution layers: They consist of several maps of features having distinct convolution 

kernels of smaller dimensions than the images to be processed as input. These kernels are the 

equivalent of weights in classical neural networks. Within the same feature map, the convolution 

kernels are identical. Thanks to convolution kernels, these feature maps can extract one after 

another and layer by layer the main high-level features of an image from its low-level features to 

transmit them to the Pooling layers; 

 Pooling layers: In a rectangular area of reduced dimension, the Pooling layers sub-sample the 

information coming from the convolution layers by different mathematical aggregation 

operations. The most exploited operations in CNNs are the maximum, the average, the weighted 

average or the ℒ2 norm. The Pooling layer therefore makes it possible to reduce the dimensions 

of an image, the amount of memory and calculation required while keeping the main high-level 
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information. This last point also makes it possible to minimize the overfitting of the CNN model. 

The data aggregated by the last pooling layer is then passed to the fully connected layers; 

 Fully connected layers: After a flattening (or serialization) of the data of the last Pooling layer, 

this layer learns to process the high-level nonlinear features coming from the combination 

[Convolution layer - Pooling layer], classifies it as a classic neural network would. 

The general architecture of CNNs is detailed in Fig. 3.12. 

 

Fig. 3.12. General architecture of Convolutional Neural Network 

Now that we know the technical specifications of CNN, let's answer the following question: why did 

we choose CNN to design our IDS? We chose CNN for two main reasons. 

The first reason is based on the three properties inherent in the architecture and operation of CNN 

[Goodfellow I et al., 2016; Gaspar A et al., 2021; Marquez Casillas ES et al., 2021; Monteiro ACB et 

al., 2021; Ramos-Michel A et al., 2021]. Initiated by work on the Neocognitron by Kunihiko Fukushima 

in 1980 [Fukushima K, 1980], the CNN has mathematical processes based on convolution (or cross-

correlation) making it possible to extract the high-level characteristics of images from low-level 

characteristics such as the human visual cortex would. This is the mathematical property of equivariance 

and invariance of CNNs. This is a major asset for the recognition of attacks with comparable motives. 

The other two properties are sparse interactions and parameter sharing. These two properties make it 

possible to reduce the number of parameters, the necessary calculations and de facto will relieve the 
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material resource necessary for the execution of the CNN model. These two properties thus contribute to 

the ability of the CNN-IDS to be embedded in an IoT.  

The second reason is based on our analysis of the state of the art. Recent literature proves that CNNs 

are much more efficient than "classic" Machine Learning algorithms for the detection of known and 

unknown attacks [Kim K et al., 2018b; Kim K et al., 2018c; Azizjon M et al., 2020; Jiyeon K et al., 

2020; Riyaz B et al., 2020; Hu J et al., 2021; Park D et al., 2021; Tressa M, 2021; Tufan E et al., 2021; 

Mohammadpour L et al., 2022]. CNNs are therefore a major asset for the recognition of attack patterns 

coming from the Wi-Fi network flow composed of several complex low-level characteristics.  

Thus the inherent qualities of the CNN that we have just exposed above make it the appropriate Deep 

Learning algorithm for the design of our CNN-IDS. And in order to classify the attack vectors by the 

CNN-IDS from the AWID3 dataset, they will first be transformed into 1D images in the preprocessing 

phases.  

3.5.3. Analysis of the AWID3 dataset 

The AWID3 dataset (Aegean Wi-Fi Intrusion Dataset 3) was created in 2021 by researchers from the 

Greek Aegean University [Chatzoglou E et al., 2021]. It is available in PCAP and CSV format 

[University of Aegean, 2014]. As we specified in section 3.3, unlike its predecessor AWID2, the AWID3 

dataset is much more complex and fully in line with the technical requirements of a company information 

system.  

For the design of our CNN-IDS we used AWID3 in CSV format. It is composed of 28,800,413 

samples. These samples are structured around 253 features representing the protocols from the Physical 

layer to the Application layer of the OSI stack. A label is added to the 253 features to identify an attack. 

The 253 features are composed of several types of data: integer, binary, float and string, knowing that 

hexadecimal values are transformed into integer values. We will see in what follows that these features 

can be classified into two classes of data: categorical and numeric. 

The attacks are spread over 13 groups of class. These 13 groups of attacks represent both the classic 

802.11 specific attacks found in AWID 2 and upper layer attacks: Deauthentication (Deauth), 

Disassociation (Disas), ReAssociation ((Re)Assoc), Rogue Access Point (Rogue AP), Evil Twin, Key 
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Reinstallation Attack (Krack), Kr00k, Botnet, SSH brute force, Malware, SQL injection, SSDP 

amplification and Website spoofing. 7 of these 13 groups of attacks are specific to 802.11 technology and 

more particularly target the MAC layer in order to succeed in their offensive towards higher layers. These 

7 groups of attacks are:  Deauthentication (Deauth), Disassociation (Disas), ReAssociation ((Re)Assoc), 

Rogue Access Point (Rogue AP), Evil Twin, Key Reinstallation Attack (Krack) and Kr00k. This represents 

15,155,345 samples of the dataset [Chatzoglou E et al., 2022a]. The other 6 groups of attacks target the 

upper layers: SSH brute force, Malware, SQL injection, SSDP amplification and Website spoofing. This 

represents 13,645,068 samples of the dataset [Chatzoglou E et al., 2022b]. 

As we specified in subsection 3.2.4, we focus on the samples linked to the 7 groups of 802.11 specific 

attacks that must be preprocessed beforehand before being used. 

3.5.4. Preprocessing of the dataset AWID3 

As it stands, the AWID3 dataset cannot be used by a Deep Learning algorithm and does not meet the 

5 requirements of the specifications provided in subsection 3.2.4. Significant data preprocessing work 

was carried out beforehand, followed by a balancing of the data by subsampling in order to have a 1:1 

ratio between the Normal and Attacks samples. The preprocessing ends with an encoding phase of the 

categorical features and a normalization phase of the numerical features by using respectively One-Hot-

Encoding (OHE) and Min-Max [Neu DA et al., 2022].  

The OHE encoding converts categorical features into numerical values via a binary vector whose size 

is the numbers of categorical values. In this vector representation, all the components are at 0 except the 

position of the feature which is at 1. For example, the feature wlan.fc.tytpe has 3 possible values: 

management, control and data. Their respective binary representations are: (1,0,0), (0,1,0) and (0,0,1). 

On the other hand, Min-Max makes it possible to grant the same importance to all the numerical features 

in the supervised learning process whatever their scale of value. In addition, it helps to reduce noise and 

outlier values. The scale values of each numerical feature are thus converted into a numeric value in [0,1] 

by the following formula: 
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
. 

This preprocessing phase of the AWID3 dataset allows our CNN model to be trained and to be 

integrated in the Wrapper feature selection process driven by our BHHO-EAS metaheuristic. 
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The preprocessing of the AWID3 dataset follows a 4-step workflow taking into account the CNN-IDS 

design specifications: 

 Application of the 5 requirements of the CNN-IDS specifications; 

 Data cleaning; 

 Data balancing by a subsampling of the Normal samples to get a ratio 1:1 between Normal 

and Attack samples; 

 Data encoding with OHE and Min-Max methods. 

A. Application of the 5 requirements of the CNN-IDS specifications 

In the first phase of preprocessing, we apply the 5 requirements of the specifications explained in 

subsection 3.2.4. 

R1. Detection of 802.11 specific attacks 

Only the seven 802.11 specific attacks are taken into account as well as the Physic and Data Link 

layer features. These features are 66 in number.  

R2. Compatibility with companies’ information systems 

For the CNN-IDS to be independent of the information system, the IDS must not be linked to the Wi-

Fi infrastructure. We therefore remove the RSN-related features wlan.rsn (Robust Security Network) 

which make it possible to determine which security protocol is used: WPA, WPA2 and WPA3. We also 

remove the features wlan.ta, wlan.ra, wlan.bssid and wlan.ssid attached to the Wi-Fi network 

infrastructure. Furthermore, these features can be very easily usurped or modified by attackers and 

keeping these features would link the dataset to a Wi-Fi network and would generate a risk of overfitting 

the CNN model and would harm to its generalization. 

R3. Hardware adhesion 

The features should not be linked to the hardware of an STA. This particularly concerns the datarate 

fields and the MAC adress: radiotap.datarate, wlan_radio.data_rate, wlan.sa and wlan.da. 

R4. 802.11 frames processing 
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The features must be common to the three types of frames: Management, Control and Data. This 

allows the CNN-IDS to exploit the three types of frames for the detection of 802.11 attacks. 

Consequently, the features linked only to management frames with the wlan_mgt root are deleted. 

R5. Temporal and sequential components 

The need to embed the IDS in environments with limited computing and memory resources requires 

minimizing the demands of superfluous data. Moreover, the IDS is not intended to take time series into 

account. Consequently, the temporal and sequential components are not taken into account. The CNN-

IDS is therefore timeless and each frame must be independent of the previous one. Consequently, the 

temporal and sequential features must not be taken into account in the detection of 802.11 attacks: The 

following features are deleted:  

 wlan.seq, 

 frame.number, 

 frame.time, 

 frame.time_delta, 

 frame.time_delta_displayed, 

 radiotap.timestamp.ts, 

 wlan_radio.start_tsf, 

 wlan_radio.end_tsf, 

 frame.time_epoch, 

 radiotap.mactime, 

 wlan_radio.timestamp, 

 wlan_radio.start_tsf, 

 wlan_radio.end_tsf, 

 frame.time_relative. 

At the end of this first phase of preprocessing based on the 5 requirements of the specifications, there 

remain 18 features explained in Table 3.7. The correlation heatmap of these 18 features is detailed in 

the Fig. 3.13.  

A cleaning of the data represented by these 18 features is necessary before the encoding phase. 
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Fig. 3.13. Correlation heatmap of the 18 pre-selected AWID features 

B. Data cleaning 

In the second phase of the preprocessing we have proceeded to the cleaning of the data by deleting 

the features presenting the following specificities in the distribution of their values: 

 Having more than 50% missing or outlying values such as 'NaN', '?', 'Null', 'Inf'; 

 Having more than 90% of zero variance such as features: 

 radiotap.present.flags, 

 radiotap.present.rxflags, 

 radiotap.present.dbm_antsignal, 

 radiotap.present.channel, 

 radiotap.present.antenna. 

For the remaining features, we replaced the missing values by the average of their values for float 

type features and the median for integer, binary and non-ordinal string type features. The average and 

the median are calculated in relation to all the correct values of the feature. The hexadecimal data with 

'0x', the exponent syntax of 10 with the symbol 'E' or 'e' and the value of combining 
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several data such as radiotap.present.tsft or  radiotap.dbm_antisignal have been converted to numerical 

value. 

The next preprocessing step will create the final dataset balanced between Normal and Attack 

samples. 

C. Data balancing by subsampling  

To respect the specifications, with the objective of creating a compact and embeddable CNN-IDS in 

an IoT, we have chosen to reduce the complexity of the neural network by detecting the 3 main classes 

of 802.11 attacks: Impersonation, Flooding and Normal. The Impersonation attack class represents the 

3 attacks Krack, Evil_Twin and RogueAP. The Flooding attack class represents the 4 attacks Deauth, 

Disas, (Re)Assoc and Kr00k. 

Contrary to [Chatzoglou E et al., 2022a] which kept a very strongly unbalanced dataset in favor of 

Normal samples and at the expense of Attack samples, we balanced our dataset so as not to be reduced 

only to AUC and F1 metrics. We can thus use the Accuracy metric for the resolution of the multi-

objective Wrapper feature selection optimization problem. To do this we have down sampled the Normal 

samples in order to have a 1:1 ratio between the Normal and Attack samples. Indeed, as Table 3.6, 

indicates, the CSV datasets of the seven 802.11 specific attacks are mostly made up of Normal samples, 

which can bias the CNN-IDS towards this population of samples.  

CSV file attacks 802.11 Normal ratio  Attack ratio 

Krack 96,52 %  3,48 % 

Evil_Twin 97,23 %  2,77 % 

RogueAP 99,93 %  0,07 % 

Deauth 97,61 %  2,39 % 

Disas 96,27 %  3,73 % 

(Re)Assoc 99,70 % 0,3 % 

Kr00k 93,38 %  6,61 % 

Table 3.6. Proportion between Normal and Attack samples per CSV file 
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After the subsampling process, we obtain the final dimension of the dataset with 935,010 samples 

and 18 features including 467,505 Normal samples and 467,505 Attack samples distributed between 

311,378 Flooding samples and 156,127 Impersonation samples. Our final dataset is therefore well 

balanced between Normal and Attack samples. This will allow BHHO-EAS to exploit the Accuracy 

metric in the objective function values during the search for the best feature subset. But the data provided 

by the dataset still needs to be encoded to be usable by the CNN-IDS. 

D. Data encoding 

In order for our dataset to be understandable by the CNN-IDS, we applied the OHE and Min-Max 

methods to the 18 features. As shown in Table 3.7, the 18 features are divided into 12 categorical features 

and 6 numerical features. The OHE was applied to the 12 categorical features and Min-Max to the 6 

numeric features.  

Feature type Index Features selected 

C
a
te

g
o
ri

ca
l 

fe
a
tu

re
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

radiotap.present.tsft  

radiotap.channel.freq  

wlan.fc.type  

wlan.fc.subtype  

wlan.fc.ds  

wlan.fc.frag  

wlan.fc.retry  

wlan.fc.pwrmgt  

wlan.fc.moredata  

wlan.fc.protected  

wlan_radio.phy  

wlan.fc.order 

N
u

m
er

ic
 

fe
a
tu

re
 

13 
14 
15 
16 
17 
18 

frame.len  

radiotap.length  

radiotap.dbm_antsignal  

wlan.duration  

wlan_radio.signal_dbm  

wlan_radio.duration 

Table 3.7. The 18 features in technical coherence with the specifications 

The preprocessing is now complete. Fig. 3.14 summarizes the 4 stages of the preprocessing. The 

correlation heatmap of the 18 preselected AWID features will allow us to analyze in section 3.6 the 

correlation of features selected by BHHO-EAS. 
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We now have all the main bricks to apply the BHHO-EAS metaheuristic within our Wrapper feature 

selection method to select the most optimal AWID3 feature subset to maximize the performances of the 

CNN-IDS and to minimize the features subset size.  

 

Fig. 3.14. The 4 steps of the AWID3 preprocessing 

3.6. Experimental results and discussion 

In a desire for clarity, reproducibility and scientific continuity for future works, we will provide in this 

section all the technical information necessary to reproduce our experiments. 

This section provides the experimental results of the application of the metaheuristic BHHO-EAS for 

solving the Wrapper feature selection multi-objective optimization problem and the design of the CNN-

IDS specific to 802.11 attacks. To do this, BHHO-EAS will provide an acceptable solution in a reasonable 

time to multi-objective optimization problem exposed in subsection 3.5.1. The results of the optimization 

are provided in Appendix 11. We will too specify in Appendix 11 AWID3 features selected by BHHO-

EAS as well as their functions in a company Wi-Fi network. 

As we detailed in section 3.3, there are very few works on the AWID3 dataset and only one in the 

same field and with the same purpose as our work. The works of Chatzoglou, E. et al [Chatzoglou E et 

al., 2022a], validated by the scientific community and researchers, constitutes very good technical 

references. In [Chatzoglou E et al., 2022a], the authors created IDSs through supervised training on 

Machine Learning algorithms combined with upstream feature selection methods. The IDS obtained at 

the end of the training phase make it possible to classify the test samples among the 3 classes: Normal, 
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Flooding and Impersonation. Our work goes beyond that of Chatzoglou E. et al. At the time of writing 

this manuscript, we are the first to have created and implemented, on the AWID3 dataset, an 802.11 

specific IDS design method with a metaheuristic optimization algorithm driving the Wrapper feature 

selection with a Deep Learning model and exploiting GPU technology. We will, on the one hand, 

demonstrate the superiority of our Wrapper features selection method driven by BHHO-EAS to that of 

[Chatzoglou E et al., 2022a] based on expert knowledge and empirical techniques. On the other hand we 

will compare the performance of our CNN-IDS compared to the 4 IDS having obtained in [Chatzoglou 

E et al., 2022a] the best results on one of the 3 subsets of the AWID3 dataset: subset of 16 features, subset 

of 19 features and the subsets of 4 features Set4. 

Appendix 12 details the numerical and graphical values of the CNN-IDS performances and the 4 

models of [Chatzoglou E et al., 2022a], based on the 5 metrics AUC, F1, Accuracy, Precision and Recall. 

These metrics are used to comprehensively measure the prediction performances of a Machine Learning 

and Deep Learning classifier [Ramos-Michel A et al., 2021]. For the main metrics AUC and F1, the best 

results are in bold green and the worst in bold red.  

We will also provide in Appendix 12 the Number of features selected, the Confusion Matrix of CNN-

IDS as well as, in Fig. A12.3 and Fig. A12.4, its Best and Worst Loss and Accuracy curves obtained on 

the 10 folds of the stratified cross validation. The Confusion Matrix gives the results of the classification 

in number and in percentage of samples correctly or incorrectly classified. It thus measures the success 

and prediction error rates. 

Finally, in order to prove the ability of our CNN-IDS to be embedded in an IoT with limited resources, 

we will demonstrate by a technical PoC the performance of the prototype E-CNN-IDS in a Raspberry Pi 

4 Model B widely used in the literature and with very limited memory and computing resources. 

Thus, we will first present the hardware and software experimental environment. Then we will give 

in detail, the spatial and temporal complexity parameters of BHHO-EAS, the parameters of the Wrapper 

feature selection optimization problem and the hyper parameters of the CNN-IDS. In order to better 

understand our Wrapper feature selection method, we will specify its five main steps illustrated in the 

architecture diagram in Appendix 9. Finally, we will analyze the metrics and the final solution of BHHO-

EAS as well as the prediction performances of CNN-IDS compared to the 4 best IDSs of [Chatzoglou E 
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et al., 2022a]. Concerning E-CNN-IDS, in terms of prediction of 802.11 specific attacks, we will provide 

in Appendix 13 its Confusion Matrix (Fig. A13.2). To measure the preserving of memory and computing 

resources, Fig. A13.3 and Fig. A13.4 provide the minimum and maximum consumption of RAM and 

CPU resources of the Raspberry Pi 4 Model B. Finally, Fig. A13.5 demonstrates the ability of E-CNN-

IDS to detect attack vectors belonging to the Flooding and Impersonation classes. 

3.6.1. Analytical working station setup and IoT environment 

We implemented BHHO-EAS, the CNN-IDS, the Wrapper feature selection and did the experimental 

tests on an analytical workstation with the following technical specifications: 

 Operating system: UBUNTU 20.04 LTS 64 bits 

 Hardware environment: 

o SSD 2,0 To; 

o Processor Intel Core i7, 2,5Ghz, 8 cores, 16 logical processors; 

o RAM  32 Go; 

o NVIDIA GeForce RTX 3060: 

 GPU with a frequency of 1320 MHz 

 12 GB memory of GDDR6 type and 1750 MHz frequency 

 Software environment: To design BHHO-EAS, CNN-IDS and to do the preprocessing of the 

AWID3 dataset we have used:  

o BHHO-EAS: Python programming language v.3.9.7;  

o CNN-IDS: Scikit-learn v.1.1.2, Keras framework v.2.10.0 and the Tensorflow v.2.10.0 

platform;  

o Pre-processing of AWID3 dataset: Pandas v.1.3.4 and Numpy v.1.20.3. 

The IoT environment represented by the Raspberry Pi 4 Model B has the technical specifications 

hereafter. Fig. A13.1 in Appendix 13 provides an image of the Raspberry Pi and a description of its 

electronic components for calculation and memory as well its ports. 

 Constructor: Raspberry Pi in UK 
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 Operating system: Raspberry Pi OS Debian version 11 32 bits  

 Hardware environment: 

o SSD 16Go; 

o Processor ARM v8 Quad core Cortex-A72 1.5 Ghz; 

o RAM  2 Go; 

3.6.2. Experimental parameters and performance metrics  

A. Wrapper feature selection process 

To define the spatial and temporal complexity of BHHO-EAS and the Wrapper feature selection 

multi-objective optimization problem, we have set the following parameters: 

 Number of independent runs 𝑵𝒓: 30 ; 

 BHHO-EAS population size N: 10 (spatial complexity); 

 Number of iteration ItMax: 100 (temporal complexity); 

 Values of the weights 𝛚𝟏 and 𝛚𝟐 ∶ To solve our multi-objective optimization problem with 

the weighted sum method (or aggregation method), based on the recent work in the literature 

[Faris H et al., 2018; Too J et al., 2019; Thaher T et al., 2020; Al-Wajih R et al., 2021], the a 

priori decision of the cybersecurity expert is to give preponderance to detection capability of 

CNN-IDS over to the size of the selected features subset. So we used 𝜔 = 0.01 in order to obtain 

the couple of weights: {𝜔1 = 0.99 , 𝜔2 = 0.01}. This couple of weights is a good compromise 

between our two objectives. It promotes the performance of CNN-IDS without sacrificing its 

ability to be embedded in an IoT by reducing the number of features. 

 Transfer function and logic rule : Based on the state of the art of the M1 and M2 modules and 

the best performance obtained, we have selected the quadratic transfer function Q4 with Rule R2 

[Too J et al., 2019]. 

B. CNN-IDS Architecture 

To design our CNN-IDS we used the architecture and supervised learning hyperparameters 

respectively explained in Table 3.8 and Table 3.9. We recall that the objective of the CNN-IDS is to be 

sufficiently efficient in the detection of intrusion but also light enough to be embedded in an IoT. 
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Table 3.10 communicates distribution of the 3 classes Normal, Flooding and Impersonation in the 

Training, Validation and Test data. As we can see in Table 3.10, although the dataset is balanced between 

Normal class samples and Attack samples with a ratio 1:1, we have a ratio 1:2 between Impersonation 

and Flooding samples. Consequently, we chose to use the method of Stratified cross validation with 

k=10 to train and validate the CNN model. This technique will help to better generalize CNN-IDS with 

our AWID3 dataset and to optimize its prediction performance. The number of fold k=10 is the most 

used and recommended in the state of the art.  

Only Training and Validation samples interests us for the stratified cross validation which represent 

respectively 60% and 20% of the total samples. Test samples will only be used for the final evaluation 

of CNN-IDS prediction performance in subsection 3.6.4. During the stratified cross validation process, 

we merge the Training and Validation samples. These samples are randomly selected and split into 10 

folds. Each fold has the same proportions in Normal, Flooding and Impersonation samples. At each 

iteration, 9 folds will be used for training and 1 fold for validation. 

In order to avoid overfitting and to increase the generalization of the CNN-IDS to make it more 

resistant to the evolution of 802.11 specific attacks, we used the regularization techniques of 

EarlyStopping and Dropout. EarlyStopping, with a patience parameter=2, is monitored on the val_loss 

metric. Thus, as soon as the results provided by val_loss deteriorate during 2 successive epochs from 

the last "safe" epoch, the training process will be interrupted and back to the last "safe" epoch.  

Dropout is a proven regularization technique for creating classifiers from Deep Learning models. 

We set an equiprobability of 0.5 to turn off a neuron at each training phase (Dropout rate). This technique 

thus allows the CNN model to learn to detect attacks by dispensing with half of the neurons randomly 

switched off in a layer. But this will not be the case during the validation and testing phase. Therefore, 

the val_accuracy metric will be larger than the Accuracy metric and the val_loss metric will be smaller 

than the loss metric.  

Always in the desire to generalize the CNN-IDS as well as possible, we have chosen a large Batch 

size value of 200 samples. Finally, to save the best model during the training on the 10 folds we use the 

ModelCheckpoint technique monitored on the metric val_accuracy.  



 

143 

 

We provide, in Table 3.8, the architecture of the CNN-IDS layer by layer and its diagram in Appendix 

10 as well as its 2D representation. The CNN-IDS architecture thus has 0.164M parameters which will 

be defined after the training phase and requires a computing power of 1.535M Flops. Based on the work 

of [Monteiro A et al., 2018; Liu J et al., 2020; Gonzalez-Huitron V et al., 2021; Bhosale YH et al., 2022; 

Joshila Grace LK et al., 2022], our CNN-IDS is able to be embedded and run in a IoT such as Mobile 

device, Jetson Nano or Raspberry Pi. This is what we prove in the experimental subsection 3.6.4 with a 

technical PoC. 

Name Type Maps Size Kernel Stride Padding Activation 

In Input − 14x1 − − − − 

C1 Conv 64 12x1 3x1 1 Valid ReLu 

C2 Conv 64 10x1 3x1 1 Valid ReLu 

P3 MaxPool 64 5x1 2x1 2  − 

C4 Conv 128 5x1 3x1 1 Same ReLu 

C5 Conv 128 5x1 3x1 1 Same ReLu 

C6 Conv 128 5x1 3x1 1 Same ReLu 

P7 MaxPool 128 2x1 2x1 2 − − 

F8 Flatten − 256 − − − − 

L9 Dense − 100 − − − ReLu 

D10 Droupout 0,5 − 100 − − − − 

F11 Dense − 20 − − − ReLu 

Out Dense − 3 − − − Softmax 

Table 3.8. The CNN-IDS architecture from Input to Output layer 

Training hyper parameters Value 

Training data ratio 80% 

Final test data ratio 20% 

Stratified cross validation  k=10  

Batch size 200 

Optimizer Adam learning rate=0.001 

𝛽1 = 0.9 

𝛽2 = 0.999 

EarlyStopping monitor=’loss’  

mode=’min’ 

patience=2 

ModelCheckpoint monitor=’val_accuracy’  

mode=’max’ 

Table 3.9. Hyperparameters for the training 
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Data category Class Value 

Training data (90% of 748008) 

Normal 336902 

Flooding 224089 

Impersonation 112216 

Validation data ratio (10% of 748008) 

Normal 37434 

Flooding 24899 

Impersonation 12468 

Final Test data (187002) 

Normal 93169 

Flooding 62390 

Impersonation 31443 

Table 3.10. Distribution of the 3 classes 

C. Performance metrics 

The performance metrics for the evaluation of the metaheuristic BHHO-EAS, on the 30 independent 

runs, are AVG (Average result), MIN (Minimum or Best result), MAX (Maximum or Worst result) and 

STD (Standard deviation). The STD metric makes it possible to evaluate the stability and solidity of 

BHHO-EAS in the search for a good solution to the optimization problem. The AVG metrics are defined 

mathematically by equations (3.8) to (3.10). The functions that have been used are: 𝑭𝒊𝒕 (Fitness), 𝑨𝒄𝒄 

(Accuracy) and |𝑽𝒃| (Number of selected features). 

𝑨𝑽𝑮𝑭𝒊𝒕 =
𝟏

𝑵𝒓
∑ 𝑭𝒊𝒕𝒌
𝑵𝒓
𝒌=𝟏                                                                (3.8) 

𝑨𝑽𝑮𝑨𝒄𝒄 =
𝟏

𝑵𝒓
∑ 𝑨𝒄𝒄𝒌
𝑵𝒓
𝒌=𝟏                                                               (3.9) 

𝑨𝑽𝑮𝑭𝑺 =
𝟏

𝑵𝒓
∑ |𝑽𝒃|𝒌
𝑵𝒓
𝒌=𝟏                                                                (3.10) 

 

We provide below the definition and the formula, from (3.11) to (3.16), of the 6 metrics to evaluate 

the IDSs: AUC, Precision, Recall, F1, Accuracy and Convolution matrix. Knowing that the AUC and F1 

metrics will be preponderant. To calculate these metrics for CNN-IDS we use test data that has not been 

used for its training and validation phases. The values of the 6 metrics for the 4 best IDSs of [Chatzoglou 

E et al., 2022a] are detailed in their article. 

Accuracy (3.11) is the ratio between the number of correctly predicted samples, Normal and Attack, 

over the total number of samples. 



 

145 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

=  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑵+ 𝑻𝑵+ 𝑭𝑷
                                                                                                                   (3.11) 

Precision (3.12) is the ratio between correctly predicted Attack samples and the total number of 

predicted Attack samples. This metric puts the cursor on the number of prediction errors in terms of false 

positives. The fewer false positives there are, the more the Precision tends towards 1. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

=  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
                                                                                                                                        (3.12) 

Recall (3.13) is the ratio between the number of correctly predicted Attack samples and the true 

number of Attack samples. Unlike Precision, Recall places the cursor on the number of prediction errors 

in terms of false negatives. Thus, the fewer false negatives there are, the more the Recall tends towards 

1. 

𝑹𝒆𝒄𝒂𝒍𝒍

=  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
                                                                                                                                              (3.13) 

As we can see, Precision and Recall constitute 2 important performance axes of a classifier because 

they both allow the prediction errors to be evaluated in false positives and false negatives. A performance 

metric that will combine fairly Precision and Recall will more measure the quality of a classifier. This 

is the role of F1-score metric (3.14). F1-score is a harmonic mean of Recall and Precision. This metric 

makes it possible to evaluate the performance of a classifier especially when the dataset is unbalanced 

between the Normal and Attack samples. This is the case in [Chatzoglou E et al., 2022a]. 

𝑭𝟏

= 
𝟏

𝟏
𝟐 (

𝟏
𝑹𝒆𝒄𝒂𝒍𝒍

+
𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)
                                                                                                                         (3.14) 
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Just like F1-score, AUC combines two performance metrics or rather two indicators: Recall and 

Specificity. In order to define the AUC metric, we must first define the Specificity (3.15). Specificity is 

the ratio between the Normal samples correctly predicted and the true number of Normal samples. 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚

=  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
                                                                                                                                                       (3.15) 

Recall and Specificity metrics allow us to plot the Receiver Operating Characteristic (ROC) curve. 

The ROC curve is plotted with 𝛿=1-Speficity (False positive rate) on the abscissa and 𝜃=Recall (True 

positive rate) on the ordinate. The ROC curve thus makes it possible to graphically materialize the 

compromise between the False positive rate and the True positive rate. Via the minimum and maximum 

thresholds, the ROC curve makes it possible to measure the ability of a classifier to discriminate the 

negative and positive samples. 

As F1-Score, the area under the ROC is an essential metric to evaluate the prediction performance 

of a classifier, especially when the dataset is unbalanced between the Normal and Attack samples. This 

area is called the Area Under the Curve (AUC) and is calculated by the formula (3.16). Consequently, 

the more the number of correct detection increases and the number of false detection decreases, the more 

the AUC will approach 1. 

𝑨𝑼𝑪

= ∫𝜽(𝜹). 𝒅𝜹

𝟏

𝟎

                                                                                                                                                  (3.16) 

Confusion matrix 

The Confusion matrix crosses the real classification of the test dataset and the predictions of the IDS. 

The result of this crossing makes it possible to determine the quantity of correctly classified test samples 

and to calculate the 5 performance metrics of the IDS defined above. 
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  Predicted 

 Positif Negatif 

True 

Positif TP FN 

Negatif FP TN 

Among the set of metrics that we have just defined, the pair (AUC, F1-Score) stands out for its ability 

to fairly and accurately evaluate the prediction performance of a classifier. In subsection 3.6.4, this 

couple will be essential to demonstrate the detection qualities of CNN-IDS.  

Before analyzing in subsection 3.6.4 the values of the performance metrics obtained following the 

resolution by BHHO-EAS of the Wrapper feature selection multi-objective optimization problem, we 

must first describe each of its 5 steps. 

3.6.3. The 5 steps to implement Wrapper feature selection process driven by BHHO-EAS 

The "black box" optimization problem seen by BHHO-EAS consists of the CNN model and the 

AWID3 dataset. The Appendix 9 details the architecture of the Wrapper feature selection. Our 

métaheuristique BHHO-EAS has a population size N. Each agent 𝑖 of this population is positioned by a 

binary position 𝑽𝒃𝒊 of dimension 𝑑 in one of the 2𝑑 − 1 edges of the hypercube. The null vector is 

excluded because it does not select any feature, which makes no sense in the context of our work. Our 

Wrapper feature selection process, driven by BHHO-EAS, is split into 5 steps:  

1. 𝑉𝑏𝑖 creates a new dataset by selecting a feature subset from the AWID3 dataset as described 

in subsection 3.4.1;  

2. The new dataset is divided into Train, Validation and Test; 

3. The CNN model is trained with the Train data and validated with the Validation data. At this 

step we obtain the accuracy value 𝑨𝒄𝒄𝒊; 

4. The fitness value 𝑭𝒊𝒕𝒊 of the agent 𝑖 is calculated with 𝑨𝒄𝒄𝒊, |Vbi|, 𝒅 and the weight 𝝎; 

5. BHHO-EAS uses the N values 𝑭𝒊𝒕𝒊 to calculate the next N binary positions 𝑽𝒃𝒊 with the aim 

to minimize the objective function. 
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3.6.4. Results and discussion 

A. Results of the Wrapper feature selection multi-objective optimization problem 

We recall that the design strategy of the metaheuristic HHO-EAS allows it to have higher performance 

than HHO for medium and high-dimensional NP-Hard optimization problems. BHHO-EAS inherited the 

skills of HHO-EAS thanks to our high-level hybridization by means of the two modules M1 and M2 with 

a sequential execution order. BHHO-EAS therefore retains the mathematical and algorithmic strategy of 

HHO-EAS. 

In this subsection we analyze the resolution by BHHO-EAS of the Wrapper feature selection multi-

objective optimization problem. In this experimental phase, we provided BHHO-EAS with an objective 

function mathematically faithful to what was described in subsection 3.5.1, without first applying the 

stratified cross validation. Stratified cross validation was applied in the final design phase of the CNN-

IDS in order to increase its performance and generalization capabilities for attack detection. 

The parameters Population size, Number of Iteration but also the weights 𝜔1 and 𝜔2, are inspired 

by the work of Khurma RA et al. [Khurma et al., 2020], Jingwei, T. et al. [Too J et al., 2019] and Thaher, 

T et al. [Thaher T et al., 2020]. We performed 30 independent runs with the aim of obtaining statistical 

results representative of the performance of BHHO-EAS. From these 30 runs we get the AVG, MIN, 

MAX and STD metrics.  

The values of these metrics as well as the convergence curve of BHHO-EAS are provided in 

Appendix 11 respectively in Table A11.1 to A11.3 and Fig. A11.1 

In Table A11.1 BHHO-EAS obtains very good results in the optimization problem with an AVG of 

8.40E-03. Moreover, BHHO-EAS testifies to a solid stability of the results during the 30 runs with a 

STD of 3.31E-04. The best result obtained during the 30 runs is represented by the MIN metric with the 

value 7.13E-03. 

In Table A11.2 and Table A11.3, the metrics for the Accuracy and the Number of selected features 

are equally competitive with an AVG greater than 99% for Accuracy and less than 5 for the Number of 

selected features. However, the metric that will be essential for the final design of the CNN-IDS is the 

MIN of Fitness and the MAX of Accuracy equal to 99.58% because we promote in our work the detection 
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skills of the CNN-IDS. With the application of the stratified cross validation technique, the detection 

performance of CNN-IDS will increase. 

The convergence curve of BHHO-EAS demonstrates, as for HHO-EAS, that the exploration and 

exploitation strategy of BHHO-EAS, implemented by the combination of the FIS-REE and the 

Encirclement and Attacks equations, attributes to it excellent skills in optimizing the NP-Hard Wrapper 

feature selection optimization problem. Indeed, this allows BHHO-EAS to have a smart distribution of 

the exploration and exploitation phases during the iterations, to adapt the search for a better solution to 

each iteration while maintaining a good balance between exploration and exploitation. In addition, it 

allows BHHO-EAS to avoid being blocked in a local optimum. The convergence rate and the absence of 

premature convergence until the end of the iterations are proof of this. 

Finally, in the binary search space, BHHO-EAS manages to obtain a very good solution represented 

by the MIN value of Fitness and MAX of Accuracy. MIN is obtained with the binary position 𝑉�̂� =

{1,1,1,0,0,0,0,0,0,1,0,0,1,0,1,0,1,1}. 𝑉�̂� selects 8 features among the 18 preselected features in 

subsection 3.5.4: {1,2,3,0,0,0,0,0,0,10,0,0,13,0,15,0,17,18}. This solution is balanced between the 

categorical features and numeric features: the features {1,2,3,10} are categorical and {13,15,17 ,18} are 

numerical. Based on the literature [Chatzoglou E et al., 2022a; Chatzoglou E et al., 2022b; University 

of the Aegean,] and the specialized documentation at Wireshark, we have provided in Table A11.4 the 

role of the 8 features in a company Wi-Fi network and their interpretation in the detection of 3 classes 

Normal, Flooding and Impersonation. 

Furthermore, if we refer to the correlation heatmap in Fig. 3.13, the 8 features selected by BHHO-

EAS are very weakly correlated, apart the feature radiotap.present.tsft which has a correlation with 

wlan.fc.type greater than 0.8 in absolute value. This again attests to the quality of the solution obtained 

by BHHO-EAS. 

To design the CNN-IDS we used the binary solution 𝑉�̂�, its architecture in Table 3.8 and the 

hyperparameters in Table 3.9 by applying stratified cross validation. 
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B. Experimental results of the CNN-IDS performances 

In [Chatzoglou E et al., 2022a], due to the great imbalance of their datasets, the authors legitimately 

prioritized the metrics AUC, F1 and Confusion matrix to evaluate the performance of their 4 best IDSs. 

Indeed, as specified in Table 3.6, the huge disproportion in [Chatzoglou E et al., 2022a] of the Normal 

samples to the detriment of the Attack samples has the effect of distorting the results of the 3 metrics 

Precision, Recall and Accuracy. This is not the case with our dataset, which we previously balanced 

between the Normal and Attack samples. 

As a result, for a fair comparison between our CNN-IDS and the best 4 IDSs of [Chatzoglou E et al., 

2022a], the performance measures will only be based on the metrics AUC, F1 and Confusion matrix. 

However, as we have specified above, the Precision, Recall and Accuracy metrics have not been 

neglected and have also been treated and provided in Appendix 12 in Table A12.1 and in Fig. A12.1. 

In [Chatzoglou E et al., 2022a], the 4 IDS having obtained at least a maximum value on one of the 2 

metrics AUC and F1 are:  

 ET and LightGBM on the AWID3 subset of 16 features; 

 ET on the AWID3 subset of 19 features; 

 DT on the AWID3 subset of 4 features named Set4. 

We named these 4 IDS ET_16f, LightGBM_16f, ET_19f and DT_4f_Set4 respectively. 

We specify that, as in [Chatzoglou E et al., 2022a], all the performance values provided in Appendix 

12 are the averages of the AUC, F1 and Confusion Matrix values over the 10 folds of the stratified cross 

validation. The same is true for Precision, Recall and Accuracy. For completeness, we have also 

included in Appendix 12 the best and the worst Accuracy - Loss curves of CNN-IDS among the 10 fold 

respectively in Fig. A12.3 and Fig. A12.4. 

We can see in Table A12.1 and in Fig. A12.1 that the CNN-IDS, with the 8 features selected by 

BHHO-EAS, demonstrates its skills detection of the 3 classes by obtaining the best values for the AUC 

and F1 metrics. The AUC of CNN-IDS reaches an average value of 99.98 and the F1 the average value 

of 99.78. Without real surprise DT_4f_Set4 obtains the worst results with an average AUC of 97.16 and 

an average F1 of 95.19. 
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The Confusion Matrix in Fig. A12.2 confirms our conclusions above. The 4 IDS of [Chatzoglou E 

et al., 2022a] detect on average almost 100% of the Normal samples. On the other hand, the average 

detection of the classes Flooding and Impersonation is less good with 99.44% and 98.43% for ET_16f, 

98.97% and 98.71% for LightGBM_16f, 98.60% and 98.37% for ET_19f and 97.94% and 89.25% for 

DT_4f_Set4. This detection imbalance between the 3 classes testifies to a lack of generalization and an 

overfitting in favor of the Normal class. 

Our CNN-IDS, contrary to the 4 IDS of [Chatzoglou E et al., 2022a], demonstrates very competitive 

average detection rates, balanced and generalized on the 3 classes with values higher than 99.5%. Our 

CNN-IDS obtains detection rates of 99.56% for the Normal class, 99.97% for the Flooding class and 

99.95% for the Impersonation class. 

Finally, as we specified in subsection 3.4.1, another virtue of feature selection is the reduce of the 

computational load of the training, validation and testing phases as well as the number of Epochs during 

the training phase thanks to the reduction in the size of the dataset. It took an average of 8.6 Epoch out 

of the 10 folds to train the CNN-IDS. In Fig. A12.3 and Fig. A12.4 we notice that for the best Accuracy 

- Loss curves it took only 11 Epoch. And for the worst it took 6 Epoch, which is insufficient to have 

competitive performance. 

We can deduct from the performances provided by AUC, F1 and the Confusion Matrix, that our 

CNN-IDS has better generalization and detection capacities of the 3 classes than the 4 best IDS of 

[Chatzoglou E et al., 2022a], and this only with the 8 selected AWID3 features by BHHO-EAS. In 

addition, the very low number of 8 features to be processed by the CNN-IDS for the detection of 802.11 

specific attacks greatly facilitates its ability to be embedded in an IoT and will increase its reaction 

capacity. Indeed, the number of parameters of the CNN-IDS and the amount of Flops provided in 

subsection 3.6.1 as well as the next experimental subsection C confirms this. 

C. Experimental results of the E-CNN-IDS performances embedded in IoT 

In order to assess the performance of the E-CNN-IDS in a real IoT environment and compared them 

to the Confusion matrix of CNN-IDS we proceeded as follows. We have configured E-CNN-IDS as a 

Linux service in the Raspberry Pi OS environment. This service is represented by the e_cnn_ids.service 
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file. Thus, E-CNN-IDS will be active as soon as the Raspberry Pi is started and will constantly search 

for 802.11 specific attacks. A laptop computer, connected to the same company Wi-Fi network, 

simulates the role of the hacker. Via this laptop we sent to the Raspberry Pi 4 the same quantity of 

attacks as during the test phase of the CNN-IDS detailed in Table 3.10.  

The action of E-CNN-IDS following the detection of an attack is an alert dedicated to the 

administrator composed of 4 fields: 

 The date,  

 The time in the format HH:MM:SS,  

 The class of attack, 

 The source IP of the Hacker's STA.  

Fig 44 illustrates an example of how E-CNN-IDS works in the face of 6 successive attacks: Disas, 

Disas, Disas, Evil_Twin, (Re)Assoc and (Re)Assoc. These 6 attacks were correctly detected and 

classified by E-CNN-IDS. We have blurred the Hacker's STA IP address for obvious computer security 

reasons. 

At the end of the test phase we obtained the Confusion matrix of the E-CNN-IDS. But being in an 

IoT environment with very limited computing resources, we also evaluated the minimum and the 

maximum consumption of memory and CPU resources. All the experimental results of this PoC are 

provided in Appendix 13. 

In terms of predictions of 802.11 specific attacks, we obtained very good performances materialized 

by the Confusion matrix of E-CNN-IDS in Fig. A13.2. Overall, these results are very close to those 

obtained for the CNN-IDS. Compared to the Confusion matrix of CNN-IDS, a slight performance 

decrease is observed for the Flooding and Impersonation attack classes. For the Flooding attack class, 

we note +0.11% false negative and -0.11% true positive. And for the Impersonation attack class, we 

have +0.2% false negative and -0.19% true positive. Despite this, E-CNN-IDS demonstrates, like CNN-

IDS, better performance than the 4 best IDS of [Chatzoglou E et al., 2022a] as well as a much more 

generalized ability to predict. 

In terms of hardware resource consumption, we can see in Fig 42 and Fig 43 that E-CNN-IDS 

consumes 1.4% of RAM and between 0.4% and 0.6% of CPU resources. 
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Our PoC experimentally demonstrates thus the excellent optimization performance of BHHO-EAS 

which is derived from the hybridization of HHO-EAS. Indeed, BHHO-EAS is able to select the most 

relevant features of the AWID3 dataset, thus maximizing the attack prediction performances of CNN-

IDS and reducing its complexity so that it can be embedded in an IoT with limited computing and 

memory resources. 

3.7. Conclusion 

This chapter is the application of HHO-EAS to the field of IoT cybersecurity in a company 

information system. The main scientific contributions of our work are threefold.  

The first contribution concerns the field of metaheuristic algorithms. We designed the new 

metaheuristic BHHO-EAS, hybrid of HHO-EAS, for solving the Wrapper feature selection multi-

objective optimization problems in a binary search space. In order to make BHHO-EAS benefit from 

the mathematical and algorithmic strategy of HHO-EAS, we performed a high-level hybridization by 

integrating the M1 and M2 modules into HHO-EAS.  

The second contribution is the creation of a new Wrapper feature selection method to create a CNN-

IDS through a metaheuristic optimization method. The CNN-IDS obtained at the end will be an essential 

component of a company information system's cybersecurity strategy, efficient against 802.11 specific 

attacks and light enough to be embedded in an IoT with limited computing and memory resources. To 

do this, we have made significant changes to the classic Wrapper feature selection method by using not 

a classic Machine Learning algorithm as in the literature, but a Deep Learning algorithm and GPU 

technology for calculating the values of the objective function. Deep Learning algorithms have 

mathematical, algorithmic and technical specificities that make them more complex to implement in the 

Wrapper feature selection method. Consequently, we find in the literature Wrapper feature selection 

methods exploiting Machine Learning algorithms such as K-NN or SVM for their ease of 

implementation. Our Wrapper feature selection method is obviously compatible with classic Machine 

Learning algorithms, but above all it is able to integrate Deep Learning algorithms in order to benefit 

from their superior classification skills, as well as GPU technology for value calculation of the objective 

function of each agent in the population of BHHO-EAS. To design our IDS, we chose the Deep Learning 
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CNN algorithm for two main reasons. The first is motivated by the performance of CNN recognized in 

the literature in the detection of known and unknown attacks. The second is for its inherent properties 

in its architecture and operation allowing to embed a CNN in an IoT.  

The third contribution, which is not the least, concerns the AWID3 dataset. Our work is the first, at 

the time of writing this manuscript, to have applied a feature selection process by metaheuristic 

optimization driven by BHHO-EAS on the AWID3 dataset, much more complex than its predecessor 

AWID2.  

The resolution of the Wrapper feature selection multi-objective optimization problem by BHHO-

EAS allowed us to obtain a binary solution 𝑉�̂� representing a subset of 8 features among the 253 of the 

AWID3 dataset. We exploited this binary solution to design our CNN-IDS. In order to demonstrate the 

superiority of our method, we compared it to the work of Chatzoglou E. et al. [Chatzoglou E et al., 

2022a] validated by the scientific community and having the same purposes as ours. Our CNN-IDS, that 

complies with the 5 requirements of the specifications formulated in section 3.2, obtains the best AUC 

and F1 performance compared to the 4 best IDS of [Chatzoglou E et al., 2022a]. In addition, the 

generalization capabilities of CNN-IDS allow it to better classify the attack vectors with less than 0.05% 

error in the 3 classes Normal, Flooding and Impersonation. 

In order to demonstrate the capabilities of CNN-IDS to be embedded in an IoT environment with 

very limited computing and memory resources, we embedded its prototype, E-CNN-IDS, in a Raspberry 

Pi 4 Model B. The technical PoC of our work provided a Confusion matrix as competitive as that 

obtained for the post training test phase of the CNN-IDS. In addition, CPU and RAM monitoring proves 

that the prototype E-CNN-IDS consumes very few CPU and RAM resources. These experimental results 

demonstrate the superiority and efficiency of our method compared to that of Chatzoglou E. et 

al.[Chatzoglou E et al., 2022a], with BHHO-EAS as the central actor. 
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General conclusion 

The growing ubiquity of IoT systems exploiting Wi-Fi within companies’ information systems and 

state administrations, increases the attack surface of hackers. Thanks to 802.11 specific vulnerabilities, 

hackers manage to use IoT systems as gateways to extend their reach to wireless and wired networks 

and then conclude their attack with an elevation of their privileges. Thus, thanks to its vulnerabilities, 

hackers are in a strategically advantageous position to maintain their access to the information system, 

exploit its resources as they please and execute disastrous attacks for the sustainability of the company. 

Faced with these risks of growing cyber threats, research for the design of Intrusion Detection Systems 

(IDS) using Artificial Intelligence techniques is a top priority for the research community. The work 

explained in this thesis manuscript makes contributions to three crucial research areas: the metaheuristic 

algorithms, the feature selection algorithms for the benefit of the design of IoT Intrusion Detection 

Systems in a company information system, and for the first time in the literature, a feature selection by 

metaheuristic optimization on the Wi-Fi attack dataset named AWID3, much more complex than its 

predecessor AWID2.  

Our first contribution aims to design a metaheuristic able to deal with NP-Hard optimization 

problems by exploiting new bio-inspired models. Thus, we have significantly increased the 

performances of the HHO metaheuristic thanks to an unprecedented hybridization strategy entirely 

inspired by the win-win hunting synergy between the crows and the wolves. This made it possible to 

design the new metaheuristic HHO-EAS, which is much more efficient than HHO for high-dimensional 

and highly multimodal optimization problems. Then, we designed the new metaheuristic BHHO-EAS, 

hybrid of HHO-EAS, for solving the Wrapper feature selection NP-Hard multi-objective optimization 

problems in a binary search space. In order to make BHHO-EAS benefit from the mathematical and 

algorithmic strategy of HHO-EAS, we performed a high-level hybridization by integrating the M1 and 

M2 modules into HHO-EAS. 

The second contribution, for the benefit of IoT cybersecurity, is the creation of a new Wrapper feature 

selection method via a metaheuristic optimization method. To accomplish this, we've made two 

important changes to the classic Wrapper feature selection method. We've built in the ability to leverage 

Deep Learning algorithms and GPU technology. Thus, our Wrapper feature selection method is able to 
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integrate all the Deep Learning algorithms in order to benefit from their predictive skills superior to 

traditional Machine Learning algorithms commonly observed in the literature. And in order to increase 

the computing power, our method can exploit the CPUs and GPUs according to the stage of the 

metaheuristic algorithm as illustrated by the flowchart of the metaheuristic BHHO-EAS in Appendix 8. 

This new method allowed us to create a CNN-IDS as a vital component of the cybersecurity strategy of 

a company information system integrating a Wi-Fi environment. The CNN-IDS is thus efficient in the 

prediction of 802.11 specific attacks and light enough, in a green computing logic, to be embedded in 

an IoT with limited computing and memory resources.  

The third contribution, which is not the least, concerns the AWID3 dataset. Our work is the first, at 

the time of writing this thesis manuscript, to have applied a feature selection process on the AWID3 

dataset by metaheuristic optimization. In our works, the feature selection process is driven by BHHO-

EAS on the AWID3 dataset, much more complex than its predecessor AWID2. 

In order to achieve these three major scientific contributions, our thesis has been structured in two 

phases. 

In the first phase of this thesis, our ambition was to rely on a very recent metaheuristic, based on the 

population, with very few parameters to configure in order to reduce the curse of the parameters and 

enough leeway to integrate a sophisticated hybridization. The HHO metaheuristic satisfied all of its 

criteria. Then to design our hybridization strategy, we looked for a bio-inspired, intelligent and adaptive 

model, having proven its effectiveness in the complex search for good nutritious prey which offers a 

greater probability of survival to predators in a very hostile environment. Our research led us to the 

hostile regions of Eastern Europe and the state of Wyoming in the United States where an unexpected 

alliance between crows and wolves was observed in winter. To cope with the long and harsh winters, 

the extraordinary hunting synergy between crows and wolves allowed them to find very promising prey 

that was sufficiently consistent to feed these two predators. We modeled this hunting synergy by a 

Mamdani-type Fuzzy Inference System named FISREE and the Encirclement and Attack equations. 

Then we integrated them into HHO to create the new metaheuristic HHO-EAS. FISREE models the 

exploration strategy of the crows and significantly improves the distribution strategy of the exploration 

and exploitation phases compared to that of HHO. The Encirclement and Attack equations modeling the 



 

157 

 

attack technique of the wolves make it possible on the one hand to prevent premature convergence when 

agents gather too early near a local optimum, on the other hand to upgrade the Harris Hawk positions in 

a more promising area. The exploitation and the exploration performances as well as the balance 

between these two phases in HHO-EAS have been evaluated on a two benchmarks: a general and a 

specific. The general benchmark consisting of 19 functions allowed us to validate our bio-inspired 

hybridization strategy and to validate the exploration and exploitation capabilities of HHO-EAS overall 

more efficient than that of HHO as well as that of GWO and PSO. The performances of HHO-EAS are 

manifested all the more for multimodal and composite functions in search spaces of high dimensions 

100 and 1000. In addition, HHO-EAS has a better convergence rate, a best scalability on all dimensions 

and generally gives the assurance of having a better quality solution faster than HHO. The specific 

benchmark allowed us to focus on the performance superiority of HHO-EAS compared to HHO in the 

20 most complex environments and high-dimensional of the CEC2017 close to real-life optimization 

problems. Our bio-inspired hybridization strategy allowed HHO-EAS to demonstrate a success of 90% 

on hybrid functions and 90% on composite functions in a search space of dimension 100. As well as the 

results obtained on the general benchmark, the specific benchmark makes it possible once again to 

experimentally validate the exploration and exploitation strategy implemented in HHO-EAS inspired 

by the hunting synergy between the crows and the wolves.  

The most important result that emerges from the first phase of this thesis and which served us in the 

second phase, is that HHO-EAS is better suited than HHO to deal with the real life optimization 

problems as evidenced by experimental results for dimensions 100 and 1000. Indeed, the real life 

optimization problems are generally highly multimodal, high-dimensional and NP-Hard such as feature 

selection optimization problems. 

In the second phase of this thesis, our objectives are focused on the cybersecurity of IoT exploiting 

Wi-Fi within the companies' information systems and the state administrations. More specifically the 

design of an efficient, scalable and light enough CNN-IDS to be embedded in an IoT. In the context of 

Wrapper feature selection and supervised learning of a CNN, the feature selection of the AWID3 dataset 

and the design of the CNN-IDS is mathematically modeled by a multi-objective optimization problem. 

The HHO-EAS's performances are the keystone of the culmination of this second phase of our thesis. 
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The choice of the Deep Learning CNN algorithm to design the CNN-IDS is based on a tactical choice 

aimed at satisfying cybersecurity imperatives and technical constraints. The imperatives are satisfied by 

the performance of CNN recognized by the literature in the detection of known and unknown attacks. 

And the respect of the technical constraints is provided by the inherent properties of CNN's architecture 

and its operation allowing it to be embedded in an IoT. This demonstrates the relevance of our tactical 

choice to effectively satisfy the two main objectives of the second phase of our thesis: CNN-IDS is 

exploited for 802.11 specific attack prediction and to be embedded in an IoT with limited computing 

and memory resources.  

With CNN, having the first component of our Wrapper feature selection process, we then proceeded 

to the analysis and processing of the second component, the new AWID3 dataset. The AWID3 dataset 

comes from the research work of the Greek Aegean University in Wi-Fi cybersecurity within a company 

information system. Much more complex and elaborate than its predecessor AWID2, AWID3 is made 

up of 253 features and a label to identify the attacks. Additionally, AWID3 encompasses all seven layers 

of the OSI stack by integrating 802.11 specific attacks as well as application attacks. In an attack Wi-Fi 

detection and blocking strategy at the Data Link Layer level, we first performed a preprocessing phase 

crucial to the prediction performance of the CNN-IDS. This preprocessing aims to select and clean the 

802.11 features related to the Data Link Layer in accordance with our specifications based on the 

knowledge of information system experts. In order to have a balanced dataset between Attack and 

Normal records, we sub-sampled the records labeled Normal. We then applied an encoding of 

categorical features with One-Hot Encoding (OHE) and a normalization of numerical features with Min-

Max. At this stage of the preprocessing the dataset is ready to be integrated into our Wrapper feature 

selection process. 

The third and final major component of our Wrapper feature selection process is the HHO-EAS 

metaheuristic. In order to allow HHO-EAS to drive our Wrapper feature selection process, we 

hybridized it and designed the new Binary HHO-EAS (BHHO-EAS) metaheuristic which is able to 

exploit the binary discrete search space. BHHO-EAS resulted in the selection of the subset of the 8 most 

relevant features among the 253 features in the AWID3 dataset. BHHO-EAS thus made it possible to 
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maximize the prediction performance and the robustness of the CNN-IDS while minimizing its 

complexity in order to be embedded in an IoT. 

To demonstrate the superiority of our method, we compared it to the works of 

Chatzoglou E. et al. in [Chatzoglou E et al., 2022a]. Their work are the only ones in the literature to be 

in the same dominants as ours. For a fair comparison between the best 4 IDS of [Chatzoglou E et al., 

2022a] and our CNN-IDS, performance was assessed via AUC and F1 metrics as well as the Confusion 

Matrix and the number of selected feature from AWID3. However, we have not neglected the Accuracy, 

Precision and Recall metrics in our work. Our CNN-IDS, that complies with the 5 requirements of the 

specifications formulated in the third chapter and with only 8 AWID3 features, obtains the best AUC 

and F1 performance compared to the 4 best IDS of [Chatzoglou E et al., 2022a]. The AUC reaches an 

average value of 99.98 and the F1 the average value of 99.78. In addition, the generalization capabilities 

of CNN-IDS allow it to better classify the attack vectors with less than 0.05% error on the 3 classes 

Normal, Flooding and Impersonation. Besides, in order to prove the ability of our CNN-IDS to be 

embedded in an IoT environment with limited computing and memory resources, we have integrated a 

prototype of CNN-IDS into a Raspberry Pi 4. This prototype, named E-CNN-IDS, demonstrated 

prediction performances very close to those of CNN-IDS with a satisfactory preservation of memory 

and calculation resources. These experimental results demonstrate the superiority and efficiency of our 

method with BHHO-EAS as the central actor.  

The results of the work of our thesis inaugurate three very promising perspectives in the fields of 

metaheuristic algorithms, feature selection and cybersecurity. 

In the field of metaheuristic algorithms, we will conduct two works. In HHO-EAS, the amplitude 

range provided by FISREE is in [0.5,2.5]. As a result, the distribution of the exploration and exploitation 

phases is static whatever the optimization problem. Our first work will thus aim to enable HHO-EAS to 

dynamically adapt the management of the exploration and exploitation phases to the complexity of each 

optimization problem. To this end, since Reinforcement Learning algorithms provide the algorithms that 

employ them with the ability to learn and self-adapt to their environment [60], we will integrate into 

FISREE a Reinforcement Learning module in order to dynamically adapt the amplitude range to 
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optimization problems. At the end of this work, we will compare the performance of this new 

metaheuristic named DHHO-EAS (Dynamic HHO-EAS) to HHO-EAS. 

Our second work will adapt HHO-EAS to the context of multi-objective optimization by creating the 

metaheuristic MHHO-EAS (Multi-objective HHO-EAS). This new metaheuristic will allow us to 

exploit the solutions that have a relationship of dominance over the others and none between them, thus 

constituting the Pareto optimal Front. We will compare the results obtained by MHHO-EAS in an 

approach A Posteriori with those obtained by BHHO-EAS using an approach A Priori. 

In the fields of feature selection and cybersecurity, our Wrapper feature selection method will allow 

us to extend the spectrum of our work to the benefit of UTMs (Unified Thread Management) in 

companies' information systems and state administrations. In this our works, we used the Deep Learning 

algorithm CNN and the AWID3 dataset. However, our Wrapper feature selection method is sufficiently 

modular to integrate metaheuristics, datasets and Deep Learning algorithms different from ours. Our 

method could therefore be applied to other fields than cybersecurity such as health, chemistry, 

electronics, etc. We will use the modularity of our Wrapper feature selection method in our third work 

to create an IDS dedicated to UTM. Our future IDS design method will therefore exploit a broader 

spectrum of artificial intelligence algorithms. We will implement metaheuristic optimization combined 

with Deep Learning algorithms RNN such as LSTM (Long Short-Term Memory) or GRU (Gated 

Recurrent Unit) and Reinforcement Learning algorithms to take into account the time dimension. This 

IDS will not only be able to protect wired networks from known and unknown attacks but also wireless 

networks such as Wi-Fi and 5G.   



 

161 

 

Appendix 1: General benchmark functions  
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Appendix 2: Optimisation results of HHO-EAS against HHO, GWO and PSO on the general 

benchmark of 19 functions for dimension 2, 30,100 and 1000 

Table A2.1: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions 

for dimension 2 

ID Functions Metrics HHO-EAS HHO GWO PSO 

U1 Sphere 

AVG 2.23E-277 2.02E-87 2.85E-288 3.95E-122 

STD 0.00E+00 1.30E-86 0.00E+00 1.97E-121 

Min 1.45E-307 6.70E-107 0.00E+00 1.31E-126 

Max 1.11E-275 9.23E-86 1.42E-286 1.41E-120 

U2 Rotated HyperEllipsoid 

AVG 3.47E-274 1.81E-84 1.03E-287 1.55E-121 

STD 0.00E+00 1.26E-83 0.00E+00 3.78E-121 

Min 6.12E-304 3.46E-106 0.00E+00 1.55E-125 

Max 1.74E-272 9.02E-83 5.07E-286 1.99E-120 

U3 Sum Squares 

AVG 9.30E-282 8.05E-89 1.85E-280 4.51E-121 

STD 0.00E+00 5.51E-88 0.00E+00 1.57E-120 

Min 2.63E-310 5.27E-106 4.94E-324 1.58E-126 

Max 3.73E-280 3.93E-87 8.26E-279 1.05E-119 

U4 Brown 

AVG 1.34E-274 5.61E-90 1.66E-296 1.15E-121 

STD 0.00E+00 3.91E-89 0.00E+00 6.67E-121 

Min 6.78E-307 6.21E-109 0.00E+00 1.48E-127 

Max 6.68E-273 2.79E-88 5.45E-295 4.75E-120 

M1 Dixon-Price 

AVG 1.07E-07 5.97E-08 1.29E-07 3.70E-32 

STD 4.35E-07 2.33E-07 1.51E-07 0.00E+00 

Min 2.36E-17 4.93E-32 1.24E-09 3.70E-32 

Max 2.72E-06 1.61E-06 7.70E-07 3.70E-32 

M2 Happy Cat 

AVG 3.30E-04 7.41E-04 3.43E-05 2.39E-05 

STD 5.06E-04 1.11E-03 2.70E-05 5.74E-05 

Min 1.00E-06 7.02E-08 1.82E-06 1.46E-08 

Max 2.99E-03 6.23E-03 1.31E-04 3.17E-04 

M3 Ackley 

AVG 4.44E-16 4.44E-16 4.44E-16 4.44E-16 

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Min 4.44E-16 4.44E-16 4.44E-16 4.44E-16 

Max 4.44E-16 4.44E-16 4.44E-16 4.44E-16 

M4 Quartic 

AVG 1.26E-04 1.03E-04 1.58E-04 2.23E-04 

STD 1.16E-04 1.09E-04 1.16E-04 1.51E-04 

Min 2.47E-06 4.40E-06 5.68E-06 7.40E-06 

Max 4.32E-04 4.28E-04 5.02E-04 7.97E-04 

M5 Rosenbrock 

AVG 4.55E-09 5.13E-07 6.52E-07 4.12E-20 

STD 1.74E-08 9.69E-07 6.99E-07 2.88E-19 

Min 3.15E-13 0.00E+00 1.29E-08 0.00E+00 

Max 1.22E-07 4.00E-06 3.72E-06 2.06E-18 

M6 Schwefel 

AVG 2.37E+00 2.14E+01 4.74E+01 9.91E+01 

STD 1.66E+01 4.55E+01 6.70E+01 7.92E+01 

Min 2.55E-05 2.55E-05 3.69E-05 2.55E-05 

Max 1.18E+02 1.18E+02 2.37E+02 2.37E+02 

M7 Griewank 

AVG 0.00E+00 0.00E+00 3.06E-03 5.57E-03 

STD 0.00E+00 0.00E+00 3.77E-03 8.01E-03 

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Max 0.00E+00 0.00E+00 9.87E-03 4.68E-02 

M8 Levy and montalo  AVG 5.80E-10 7.13E-08 1.99E-06 2.90E-30 



 

167 

 

STD 1.47E-09 2.13E-07 5.75E-06 0.00E+00 

Min 4.42E-18 2.90E-30 2.77E-14 2.90E-30 

Max 8.50E-09 1.38E-06 2.74E-05 2.90E-30 

M9 General penalized 1 

AVG 2.66E-10 3.87E-08 4.07E-08 2.36E-31 

STD 6.89E-10 6.26E-08 3.81E-08 0.00E+00 

Min 9.12E-16 2.06E-13 7.46E-11 2.36E-31 

Max 3.85E-09 2.60E-07 1.54E-07 2.36E-31 

M10 General penalized 2 

AVG 5.26E-10 3.25E-08 4.83E-08 1.35E-32 

STD 1.05E-09 7.62E-08 4.25E-08 2.74E-48 

Min 5.71E-15 2.62E-21 8.46E-10 1.35E-32 

Max 5.79E-09 4.21E-07 1.91E-07 1.35E-32 

M11 AlpineN1 

AVG 1.54E-08 2.18E-07 3.57E-06 4.44E-18 

STD 5.27E-08 8.06E-07 1.01E-05 3.11E-17 

Min 5.28E-154 3.53E-56 9.19E-179 0.00E+00 

Max 2.82E-07 4.49E-06 6.48E-05 2.22E-16 

M12 EggHolder 

AVG 4.41E+00 2.79E+01 5.05E+01 1.92E+02 

STD 1.17E+01 3.42E+01 6.59E+01 1.14E+02 

Min 3.73E-05 3.73E-05 3.73E-05 3.73E-05 

Max 6.51E+01 2.07E+02 2.43E+02 4.66E+02 

M13 Sine envelope 

AVG 4.71E-06 4.71E-06 4.71E-06 4.71E-06 

STD 4.58E-15 6.66E-17 1.94E-10 1.07E-16 

Min 4.71E-06 4.71E-06 4.71E-06 4.71E-06 

Max 4.71E-06 4.71E-06 4.71E-06 4.71E-06 

C1 
Combination Griewank 

and Rosenbrock 

AVG 8.88E-18 3.95E-04 8.49E-03 1.58E-03 

STD 3.74E-17 2.76E-03 1.58E-02 4.98E-03 

Min 4.94E-324 0.00E+00 5.55E-16 0.00E+00 

Max 2.22E-16 1.97E-02 9.86E-02 1.97E-02 

C2 
Combination Ackley and 

Rosenbrock 

AVG 5.02E-09 5.52E-05 3.31E+00 1.88E+00 

STD 1.05E-08 7.71E-05 3.59E+00 7.27E+00 

Min 3.55E-15 0.00E+00 1.77E-06 0.00E+00 

Max 5.95E-08 3.83E-04 7.20E+00 4.00E+01 

Summary of results 

AVG 

+ 2 4 8 

− 15 14 10 

≈ 2 1 1 

STD 

+ 2 1 6 

− 15 14 12 

≈ 2 4 1 

Min 

+ 3 4 9 

− 11 11 5 

≈ 5 4 5 

Max 

+ 0 4 7 

− 16 13 10 

≈ 3 2 2 
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Table A2.2: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions 

for dimension 30 

ID Functions Metrics HHO-EAS HHO GWO PSO 

U1 Sphere 

AVG 6.61E-247 8.43E-81 1.05E-40 1.05E+00 

STD 0.00E+00 5.61E-80 3.09E-40 5.14E+00 

Min 2.99E-269 8.34E-99 7.58E-43 1.71E-04 

Max 3.09E-245 4.01E-79 2.17E-39 2.62E+01 

U2 Rotated HyperEllipsoid 

AVG 2.82E-246 1.03E-76 9.26E-37 9.29E-01 

STD 0.00E+00 7.23E-76 4.70E-36 5.71E+00 

Min 1.05E-272 1.20E-93 1.91E-39 4.75E-03 

Max 1.39E-244 5.16E-75 3.37E-35 4.09E+01 

U3 Sum Squares 

AVG 1.46E-243 4.78E-80 4.82E-39 8.81E+01 

STD 0.00E+00 2.25E-79 1.04E-38 1.76E+02 

Min 7.87E-272 3.04E-99 4.36E-41 1.82E-03 

Max 7.23E-242 1.54E-78 6.19E-38 9.00E+02 

U4 Brown 

AVG 1.64E-243 1.12E-78 7.07E-42 1.28E+01 

STD 0.00E+00 7.86E-78 1.43E-41 5.95E+00 

Min 2.20E-273 5.96E-101 6.64E-44 7.00E+00 

Max 8.19E-242 5.61E-77 6.47E-41 3.00E+01 

M1 Dixon-Price 

AVG 2.41E-01 2.47E-01 6.67E-01 7.55E+01 

STD 3.20E-03 1.11E-02 2.22E-04 1.21E+02 

Min 2.28E-01 1.84E-01 6.67E-01 7.15E-01 

Max 2.46E-01 2.55E-01 6.68E-01 3.28E+02 

M2 Happy Cat 

AVG 7.28E-03 2.06E-02 3.10E-01 2.09E-01 

STD 1.13E-02 2.03E-02 5.54E-02 7.47E-02 

Min 7.95E-05 1.43E-04 1.99E-01 8.91E-02 

Max 5.38E-02 7.79E-02 4.55E-01 4.35E-01 

M3 Ackley 

AVG 4.44E-16 4.44E-16 3.77E-14 1.46E+00 

STD 0.00E+00 0.00E+00 3.64E-15 6.61E-01 

Min 4.44E-16 4.44E-16 2.89E-14 9.93E-03 

Max 4.44E-16 4.44E-16 4.31E-14 2.75E+00 

M4 Quartic 

AVG 1.43E-04 1.40E-04 1.97E-03 1.55E+00 

STD 2.03E-04 1.58E-04 8.43E-04 2.64E+00 

Min 3.10E-07 1.31E-05 7.01E-04 3.93E-02 

Max 1.02E-03 1.09E-03 4.51E-03 1.08E+01 

M5 Rosenbrock 

AVG 9.11E-04 4.82E-03 2.69E+01 5.94E+03 

STD 2.10E-03 8.27E-03 7.92E-01 1.65E+04 

Min 3.45E-08 7.60E-06 2.58E+01 2.62E+01 

Max 1.41E-02 3.58E-02 2.88E+01 5.66E+04 

M6 Schwefel 

AVG 6.37E-01 2.96E+01 6.68E+03 8.26E+03 

STD 2.90E+00 1.48E+02 1.14E+03 8.84E+02 

Min 3.82E-04 3.82E-04 5.12E+03 6.66E+03 

Max 2.07E+01 9.75E+02 9.66E+03 9.75E+03 

M7 Griewank 

AVG 0.00E+00 0.00E+00 4.07E-03 5.51E-02 

STD 0.00E+00 0.00E+00 9.20E-03 7.88E-02 

Min 0.00E+00 0.00E+00 0.00E+00 7.37E-04 

Max 0.00E+00 0.00E+00 4.60E-02 5.17E-01 

M8 Levy and montalo  

AVG 7.44E-06 5.26E-05 1.72E+00 1.50E+00 

STD 1.89E-05 7.89E-05 1.45E+00 1.62E+00 

Min 9.79E-10 4.68E-08 1.25E-01 1.72E-02 
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Max 1.16E-04 4.15E-04 5.78E+00 7.27E+00 

M9 General penalized 1 

AVG 1.36E-06 6.20E-06 6.32E-02 7.81E-02 

STD 2.24E-06 8.63E-06 3.80E-02 1.23E-01 

Min 2.34E-10 4.72E-09 1.53E-02 2.74E-06 

Max 1.10E-05 5.34E-05 2.45E-01 4.19E-01 

M10 General penalized 2 

AVG 1.65E-05 7.81E-05 1.02E+00 5.21E-01 

STD 2.81E-05 1.04E-04 3.95E-01 6.83E-01 

Min 3.49E-08 1.37E-07 1.99E-01 4.92E-03 

Max 1.44E-04 5.72E-04 1.91E+00 2.66E+00 

M11 AlpineN1 

AVG 4.80E-07 1.02E-06 9.62E-04 1.19E+00 

STD 3.29E-06 7.16E-06 1.14E-03 1.73E+00 

Min 5.68E-139 1.54E-52 5.48E-22 2.91E-02 

Max 2.35E-05 5.12E-05 5.28E-03 6.44E+00 

M12 EggHolder 

AVG 4.71E+03 5.35E+03 1.60E+04 2.03E+04 

STD 6.77E+01 1.76E+03 1.97E+03 1.36E+03 

Min 4.59E+03 4.91E+03 1.29E+04 1.67E+04 

Max 4.86E+03 1.76E+04 2.14E+04 2.27E+04 

M13 Sine envelope 

AVG 2.06E-04 4.20E-04 2.00E+00 9.88E+00 

STD 1.28E-04 4.85E-04 1.45E+00 1.93E+00 

Min 1.37E-04 1.37E-04 4.61E-01 3.91E+00 

Max 9.54E-04 2.06E-03 9.93E+00 1.36E+01 

C1 
Combination Griewank 

and Rosenbrock 

AVG 2.31E-08 8.37E-07 9.69E+00 5.55E+04 

STD 6.57E-08 2.67E-06 3.23E+00 2.00E+05 

Min 1.77E-14 3.57E-12 4.32E+00 5.45E+00 

Max 3.64E-07 1.37E-05 1.73E+01 1.11E+06 

C2 
Combination Ackley and 

Rosenbrock 

AVG 2.58E-03 1.25E-02 1.14E+02 4.67E+02 

STD 3.93E-03 1.73E-02 2.44E+01 2.54E+01 

Min 4.44E-07 1.98E-04 1.08E+02 4.09E+02 

Max 1.59E-02 9.54E-02 2.71E+02 5.16E+02 

Summary of results 

AVG 

+ 1 0 0 

− 16 19 19 

≈ 2 0 0 

STD 

+ 1 1 0 

− 16 18 19 

≈ 2 0 0 

Min 

+ 1 0 0 

− 15 18 19 

≈ 3 1 0 

Max 

+ 0 0 0 

− 17 19 19 

≈ 2 0 0 
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Table A2.3: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions 

for dimension 100 

ID Functions Metrics HHO-EAS HHO GWO PSO 

U1 Sphere 

AVG 6.47E-245 1.01E-77 2.91E-20 8.82E+01 

STD 0.00E+00 6.44E-77 3.42E-20 2.63E+01 

Min 1.38E-271 3.91E-101 2.85E-21 4.82E+01 

Max 2.45E-243 4.59E-76 1.94E-19 1.54E+02 

U2 Rotated HyperEllipsoid 

AVG 7.38E-231 2.17E-76 1.47E-16 6.69E+03 

STD 0.00E+00 1.51E-75 1.26E-16 2.43E+03 

Min 1.17E-265 3.30E-94 1.59E-17 2.76E+03 

Max 3.69E-229 1.08E-74 6.66E-16 1.35E+04 

U3 Sum Squares 

AVG 1.90E-235 9.23E-75 4.01E-18 7.67E+03 

STD 0.00E+00 6.46E-74 4.02E-18 2.62E+03 

Min 2.13E-274 6.65E-98 4.60E-19 2.57E+03 

Max 8.70E-234 4.62E-73 1.57E-17 1.53E+04 

U4 Brown 

AVG 8.51E-244 5.08E-79 4.44E-21 1.08E+02 

STD 0.00E+00 2.09E-78 5.86E-21 2.66E+01 

Min 5.90E-269 5.27E-99 3.37E-22 5.58E+01 

Max 4.23E-242 1.06E-77 3.79E-20 1.54E+02 

M1 Dixon-Price 

AVG 2.50E-01 2.52E-01 6.67E-01 4.29E+05 

STD 1.03E-03 3.11E-03 3.60E-04 3.71E+05 

Min 2.50E-01 2.50E-01 6.67E-01 3.02E+04 

Max 2.54E-01 2.67E-01 6.69E-01 1.46E+06 

M2 Happy Cat 

AVG 2.26E-02 1.14E-01 6.93E-01 7.31E-01 

STD 3.89E-02 1.13E-01 8.56E-02 7.06E-02 

Min 2.43E-05 8.64E-04 5.16E-01 6.16E-01 

Max 2.50E-01 4.24E-01 8.93E-01 8.82E-01 

M3 Ackley 

AVG 4.44E-16 4.44E-16 3.05E-10 6.06E+00 

STD 0.00E+00 0.00E+00 1.79E-10 6.03E-01 

Min 4.44E-16 4.44E-16 9.74E-11 4.57E+00 

Max 4.44E-16 4.44E-16 1.20E-09 7.42E+00 

M4 Quartic 

AVG 1.51E-04 1.75E-04 7.37E-03 1.90E+02 

STD 1.37E-04 1.74E-04 2.87E-03 9.65E+01 

Min 8.89E-06 1.17E-06 2.91E-03 5.09E+01 

Max 7.52E-04 8.27E-04 1.63E-02 4.37E+02 

M5 Rosenbrock 

AVG 1.62E-03 1.64E-02 9.75E+01 4.61E+05 

STD 2.54E-03 2.86E-02 7.28E-01 1.50E+05 

Min 5.04E-09 5.53E-05 9.59E+01 1.56E+05 

Max 1.18E-02 1.87E-01 9.85E+01 8.54E+05 

M6 Schwefel 

AVG 4.68E-01 2.16E+00 2.57E+04 3.35E+04 

STD 7.85E-01 6.02E+00 3.59E+03 2.67E+03 

Min 1.27E-03 1.27E-03 2.18E+04 2.56E+04 

Max 3.31E+00 3.94E+01 3.60E+04 3.71E+04 

M7 Griewank 

AVG 0.00E+00 0.00E+00 8.37E-16 4.63E+00 

STD 0.00E+00 0.00E+00 4.28E-16 1.70E+00 

Min 0.00E+00 0.00E+00 2.22E-16 2.22E+00 

Max 0.00E+00 0.00E+00 2.33E-15 1.12E+01 

M8 Levy and montalo  

AVG 1.83E-05 1.40E-04 2.25E+01 6.22E+01 

STD 4.14E-05 1.73E-04 7.88E+00 1.88E+01 

Min 1.50E-09 6.73E-07 1.39E+01 3.32E+01 
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Max 2.73E-04 8.33E-04 5.73E+01 1.09E+02 

M9 General penalized 1 

AVG 5.97E-07 3.27E-06 1.59E-01 3.06E+00 

STD 9.64E-07 4.93E-06 6.65E-02 2.34E+00 

Min 1.06E-10 2.52E-09 1.07E-01 1.25E+00 

Max 3.99E-06 2.97E-05 3.65E-01 1.68E+01 

M10 General penalized 2 

AVG 1.70E-05 1.22E-04 6.30E+00 1.89E+02 

STD 2.54E-05 1.47E-04 1.39E+00 5.30E+01 

Min 5.73E-10 8.15E-07 3.55E+00 7.25E+01 

Max 1.13E-04 7.86E-04 8.67E+00 3.15E+02 

M11 AlpineN1 

AVG 2.94E-07 9.28E-06 3.83E-03 4.81E+01 

STD 1.72E-06 6.50E-05 3.13E-03 9.30E+00 

Min 2.05E-136 2.15E-52 3.55E-11 2.59E+01 

Max 1.20E-05 4.64E-04 1.44E-02 7.48E+01 

M12 EggHolder 

AVG 1.74E+04 1.75E+04 6.61E+04 7.83E+04 

STD 3.22E+01 2.73E+01 6.91E+03 2.50E+03 

Min 1.73E+04 1.74E+04 5.75E+04 7.31E+04 

Max 1.74E+04 1.75E+04 8.04E+04 8.27E+04 

M13 Sine envelope 

AVG 7.89E-04 1.83E-03 1.99E+01 4.14E+01 

STD 5.13E-04 2.11E-03 5.57E+00 3.91E+00 

Min 4.67E-04 4.67E-04 1.14E+01 3.23E+01 

Max 2.73E-03 1.02E-02 4.86E+01 5.10E+01 

C1 
Combination Griewank 

and Rosenbrock 

AVG 4.97E-08 1.08E-05 4.40E+01 5.73E+06 

STD 1.02E-07 4.55E-05 5.66E+00 2.61E+06 

Min 1.03E-14 9.99E-15 3.70E+01 1.48E+06 

Max 5.06E-07 3.22E-04 6.84E+01 1.14E+07 

C2 
Combination Ackley and 

Rosenbrock 

AVG 1.82E-02 1.39E-01 3.95E+02 1.84E+03 

STD 5.81E-02 2.56E-01 2.34E+02 5.86E+01 

Min 9.78E-06 5.45E-04 3.61E+02 1.72E+03 

Max 4.10E-01 1.20E+00 2.03E+03 2.00E+03 

Summary of results 

AVG 

+ 0 0 0 

− 17 19 19 

≈ 2 0 0 

STD 

+ 1 1 0 

− 16 18 19 

≈ 2 0 0 

Min 

+ 2 0 0 

− 13 19 19 

≈ 4 0 0 

Max 

+ 0 0 0 

− 17 19 19 

≈ 2 0 0 
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Table A2. 4: Test results of HHO-EAS against HHO, GWO and PSO on a benchmark of 19 functions 

for dimension 1000 

ID Functions Metrics HHO-EAS HHO GWO PSO 

U1 Sphere 

AVG 1.46E-239 6.64E-77 8.94E-06 4.94E+03 

STD 0.00E+00 4.59E-76 2.68E-06 1.33E+02 

Min 1.86E-262 2.19E-96 4.11E-06 4.56E+03 

Max 6.89E-238 3.28E-75 1.57E-05 5.14E+03 

U2 Rotated HyperEllipsoid 

AVG 7.71E-237 9.43E-75 5.99E-01 2.89E+07 

STD 0.00E+00 6.53E-74 1.55E-01 1.27E+06 

Min 9.77E-261 6.95E-94 3.32E-01 2.56E+07 

Max 3.86E-235 4.67E-73 1.07E+00 3.13E+07 

U3 Sum Squares 

AVG 1.53E-236 1.86E-76 1.44E-02 6.49E+06 

STD 0.00E+00 6.65E-76 4.76E-03 2.13E+05 

Min 9.16E-264 5.10E-97 6.10E-03 6.06E+06 

Max 7.63E-235 3.37E-75 2.61E-02 6.95E+06 

U4 Brown 

AVG 4.58E-241 3.93E-80 2.07E-06 2.98E+03 

STD 0.00E+00 1.47E-79 5.93E-07 1.23E+02 

Min 8.04E-264 5.15E-97 1.08E-06 2.60E+03 

Max 1.10E-239 8.17E-79 3.54E-06 3.25E+03 

M1 Dixon-Price 

AVG 2.87E-01 2.89E-01 2.75E+00 9.41E+08 

STD 1.13E-01 1.47E-01 9.82E-01 7.70E+07 

Min 2.50E-01 2.50E-01 1.18E+00 7.54E+08 

Max 6.67E-01 1.00E+00 6.96E+00 1.10E+09 

M2 Happy Cat 

AVG 1.26E-01 3.94E-01 1.07E+00 9.96E-01 

STD 2.65E-01 4.87E-01 7.69E-02 3.16E-02 

Min 9.85E-05 2.01E-03 9.50E-01 9.19E-01 

Max 1.68E+00 1.96E+00 1.37E+00 1.07E+00 

M3 Ackley 

AVG 4.44E-16 4.44E-16 2.00E-03 1.69E+01 

STD 0.00E+00 0.00E+00 2.57E-04 1.83E-01 

Min 4.44E-16 4.44E-16 1.50E-03 1.65E+01 

Max 4.44E-16 4.44E-16 2.58E-03 1.73E+01 

M4 Quartic 

AVG 1.42E-04 1.71E-04 1.39E-01 1.55E+05 

STD 1.24E-04 2.30E-04 3.32E-02 7.17E+03 

Min 2.80E-06 5.41E-06 6.55E-02 1.38E+05 

Max 5.71E-04 1.57E-03 2.20E-01 1.71E+05 

M5 Rosenbrock 

AVG 3.33E-02 1.80E-01 9.97E+02 4.01E+07 

STD 6.88E-02 2.51E-01 2.45E-01 2.45E+06 

Min 1.09E-06 1.34E-05 9.96E+02 3.63E+07 

Max 3.42E-01 1.35E+00 9.97E+02 4.59E+07 

M6 Schwefel 

AVG 6.38E+00 4.63E+01 3.33E+05 3.91E+05 

STD 1.32E+01 1.56E+02 2.92E+04 8.58E+03 

Min 1.27E-02 1.41E-02 3.10E+05 3.74E+05 

Max 7.96E+01 1.09E+03 4.01E+05 4.04E+05 

M7 Griewank 

AVG 0.00E+00 0.00E+00 1.34E-02 3.55E+02 

STD 0.00E+00 0.00E+00 3.72E-02 2.44E+01 

Min 0.00E+00 0.00E+00 1.05E-04 3.14E+02 

Max 0.00E+00 0.00E+00 1.45E-01 4.05E+02 

M8 Levy and montalo  

AVG 3.85E-04 1.54E-03 7.10E+02 4.07E+03 

STD 8.42E-04 2.24E-03 2.24E+01 2.01E+02 

Min 7.72E-10 3.42E-06 6.61E+02 3.69E+03 
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Max 5.36E-03 1.07E-02 7.81E+02 4.59E+03 

M9 General penalized 1 

AVG 9.18E-07 2.86E-06 9.70E-01 3.11E+07 

STD 1.73E-06 4.12E-06 5.23E-01 6.60E+06 

Min 1.79E-10 5.15E-11 2.39E-01 1.89E+07 

Max 1.02E-05 1.96E-05 2.24E+00 4.29E+07 

M10 General penalized 2 

AVG 2.61E-04 3.55E-04 3.38E+02 3.10E+07 

STD 3.74E-04 4.75E-04 2.48E+02 6.91E+06 

Min 4.19E-08 3.61E-07 8.15E+01 1.63E+07 

Max 1.56E-03 2.42E-03 8.33E+02 4.66E+07 

M11 AlpineN1 

AVG 8.14E-05 1.90E-04 5.77E-01 1.62E+03 

STD 5.19E-04 9.36E-04 1.24E+00 4.58E+01 

Min 1.07E-134 5.94E-48 1.14E-01 1.49E+03 

Max 3.70E-03 6.50E-03 7.51E+00 1.68E+03 

M12 EggHolder 

AVG 1.76E+05 1.76E+05 7.97E+05 8.72E+05 

STD 6.93E+00 4.00E+01 4.09E+04 7.73E+03 

Min 1.76E+05 1.76E+05 7.58E+05 8.50E+05 

Max 1.76E+05 1.76E+05 8.80E+05 8.85E+05 

M13 Sine envelope 

AVG 9.42E-03 1.67E-02 4.72E+02 5.64E+02 

STD 1.03E-02 1.48E-02 2.88E+01 1.36E+01 

Min 4.71E-03 4.76E-03 4.23E+02 5.37E+02 

Max 5.62E-02 6.40E-02 6.31E+02 5.92E+02 

C1 
Combination Griewank 

and Rosenbrock 

AVG 2.36E-06 8.76E-05 7.84E+02 2.36E+09 

STD 6.22E-06 2.84E-04 7.25E+01 2.73E+08 

Min 4.94E-324 4.39E-09 6.86E+02 1.86E+09 

Max 2.75E-05 1.93E-03 1.04E+03 2.96E+09 

C2 
Combination Ackley and 

Rosenbrock 

AVG 1.66E-01 1.13E+00 3.62E+03 2.06E+04 

STD 2.91E-01 1.98E+00 9.89E+00 1.33E+02 

Min 1.92E-07 1.01E-04 3.62E+03 2.03E+04 

Max 1.40E+00 1.14E+01 3.66E+03 2.09E+04 

Summary of results 

AVG 

+ 0 0 0 

− 16 19 19 

≈ 3 0 0 

STD 

+ 0 0 1 

− 17 19 18 

≈ 2 0 0 

Min 

+ 1 0 0 

− 14 19 19 

≈ 4 0 0 

Max 

+ 0 0 1 

− 16 19 18 

≈ 3 0 0 
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Appendix 3: Graphical representation of the general test results 

 D=2 D=30 D=100 D=1000 

U1 

 

    

U2 

 

    

U3 

 

  
  

U4 

 

    

M1 

 

    



 

175 

 

M2 

 

    

M3 

 

    

M4 

 

    

M5 

 

    

M6 

 

    



 

176 

 

M7 

 

    

M8 

 

    

M9 

    

M10 

    

M11 

    



 

177 

 

M12 

    

M13 

 

    

C1 

   
 

 

C2 

    
  



 

178 

 

Appendix 4: Optimisation results of HHO-EAS against HHO on the specific benchmark of 20 

functions from CEC 2017 for dimension 100  

Table A4.1: Test results of HHO-EAS against HHO on a benchmark of 20 functions from CEC 2017 

for dimension 100 [Wu G et al., 2017] 

Function Description Convergence curve Metric HHO-EAS HHO 

F11 

Hybrid 

Function 1 

1. Zakharov 

2. Rosenbrock 

3. Rastrigins 

 

Multimodal 

Non-separable 

subcomponents 

 

AVG 1.31E+04 1.48E+05 

STD 7.22E+03 4.18E+04 

Min 6.88E+03 7.10E+04 

Max 5.69E+04 2.91E+05 

F12 

Hybrid  

Function 2  

1. High 

Conditione 

Elliptic 

2. Modified 

Schwefels 

3. Bent Cigar 

 

Multimodal 

Non-separable 

subcomponents  

AVG 1.16E+10 3.55E+11 

STD 4.48E+09 9.11E+10 

Min 4.36E+09 1.37E+11 

Max 2.65E+10 5.14E+11 

F13 

Hybrid 

Function 3 

1. Bent Cigar 

2. Rosenbrock 

3. Lunache Bi-

Rastrigin 

 

Multimodal 

Non-separable 

subcomponents 

 

AVG 2.28E+07 5.43E+10 

STD 1.66E+07 1.95E+10 

Min 2.73E+06 1.71E+10 

Max 7.29E+07 1.02E+11 
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F14 

Hybrid 

Function 4 

1. High 
Conditioned 
Elliptic 

2. Ackley 

3. Schaffer 

4. Rastrigin 

 

Multimodal 

Non-separable 

subcomponents  

AVG 2.21E+06 1.16E+07 

STD 9.98E+05 3.56E+06 

Min 8.21E+05 5.24E+06 

Max 4.83E+06 1.93E+07 

F15 

Hybrid 

Function 5 

1. Bent Cigar 

2. HGBat 

3. Rastrigin 

4. Rosenbrock 

 

Multimodal 

Non-separable 

subcomponents 

 

AVG 2.67E+06 7.60E+09 

STD 2.89E+06 5.97E+09 

Min 2.31E+05 2.78E+08 

Max 1.49E+07 2.66E+10 

F16 

Hybrid 

Function 6 

1. Expanded 

Schaffer 

2. HGBat 

3. Rosenbrock 

5. Modified 

Schwefel 

 

Multimodal 

Non-separable 

subcomponents 

 

AVG 9.43E+03 1.03E+04 

STD 2.11E+03 1.63E+03 

Min 6.00E+03 6.63E+03 

Max 1.36E+04 1.43E+04 
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F17 

Hybrid 

Function 7 

1. Katsura 

2. Ackley 

3. Expanded 

Griewank +

Rosenbrock 

4. Modified 

Schwefel 

5. Rastrigin 

 

Multimodal 

Non-separable 

subcomponents 
 

AVG 6.29E+03 2.65E+04 

STD 1.01E+03 3.13E+04 

Min 4.04E+03 5.57E+03 

Max 8.72E+03 1.85E+05 

F18 

Hybrid 

Function 8 

1. High 

Conditione

d Elliptic 

2. Ackleys  

3. Rastrigins  

4. HGBat 

Function  

 

Multimodal 

Non-separable 

subcomponents 
 

AVG 2.42E+06 9.13E+06 

STD 1.02E+06 6.91E+06 

Min 3.77E+05 9.78E+05 

Max 5.33E+06 3.72E+07 

F19 

Hybrid 

Function 9 

1. Bent Cigar 

2. Rastrigin’s 

3. Expanded 

Griewanks 

+ 
Rosenbrocks  

4. Weierstrass 

5. Expanded 

Schaffers 

 

Multimodal 

Non-separable 

subcomponents 

 

AVG 5.00E+07 8.02E+09 

STD 5.00E+07 6.42E+09 

Min 5.99E+06 5.06E+07 

Max 2.11E+08 2.54E+10 
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F20 

Hybrid 

Function 10 

1. Happycat 

2. Katsura 

3. Ackley 

4. Rastrigin 

5. Modified 

Schwefel 

6. Schaffer 

 

Multimodal 

Non-separable 

subcomponents 
 

AVG 3.72E+03 3.67E+03 

STD 5.00E+02 4.64E+02 

Min 2.47E+03 1.95E+03 

Max 4.85E+03 4.85E+03 

F21 

Composition 

Function 1 

1. Rosenbroc

k 

2. High 

Conditione

d Elliptic 

3. Rastrigin 

 

Multimodal 

Non-separable 

Asymmetrical  

AVG 1.70E+03 2.14E+03 

STD 2.01E+02 1.92E+02 

Min 1.36E+03 1.71E+03 

Max 2.26E+03 2.53E+03 

F22 

Composition 

Function 2  

1. Rastrigin 

2. Griewank 

3. Modifed 

Schwefel 

 

Multimodal 

Non-separable 

Asymmetrical 

 

AVG 2.16E+04 2.08E+04 

STD 2.02E+03 2.27E+03 

Min 1.77E+04 1.73E+04 

Max 2.61E+04 2.61E+04 
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F23 

Composition 

Function 3  

1. Rosenbrock 

2. Ackley 

3. Modifed 

Schwefel 

4. Rastrigin 

 

Multimodal 

Non-separable 

Asymmetrical  

AVG 2.78E+03 3.60E+03 

STD 3.35E+02 4.10E+02 

Min 2.05E+03 3.00E+03 

Max 3.52E+03 5.03E+03 

F24 

Composition 

Function 4  

1. Ackley 

2. High 

Conditioned 

Elliptic 

3. Girewank 

4. Rastrigin 

 

Multimodal 

Non-separable 

Asymmetrical 
 

AVG 3.84E+03 6.78E+03 

STD 4.12E+02 8.17E+02 

Min 2.88E+03 5.13E+03 

Max 4.80E+03 8.74E+03 

F25 

Composition 

Function 5  

1. Rastrigin 

2. Happycat 

3. Ackley 

4. Discus 

5. Rosenbrock 

 

Multimodal 

Non-separable 

Asymmetrical 

 

AVG 1.85E+03 7.05E+03 

STD 2.39E+02 7.42E+02 

Min 1.47E+03 5.45E+03 

Max 2.50E+03 8.73E+03 
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F26 

Composition 

Function 6  

1. Expanded 

Scaffer 

2. Modified 

Schwefel 

3. Griewank 

4. Rosenbrock 

5. Rastrigin 

 

Multimodal 

Non-separable 

Asymmetrical 

 

AVG 2.90E+04 3.39E+04 

STD 2.07E+03 1.96E+03 

Min 2.43E+04 2.90E+04 

Max 3.34E+04 3.79E+04 

F27 

Composition 

Function 7 

1. HGBat 

2. Rastrigin 

3. Modifed 

Schwefel 

4. Bent-Cigar 

5. High 

Conditioned 

Elliptic 

6. Expanded 

Scaffer 

Multimodal 

Non-separable 

Asymmetrical 

 

AVG 3.11E+03 7.10E+03 

STD 6.40E+02 1.74E+03 

Min 1.77E+03 3.81E+03 

Max 4.45E+03 1.09E+04 

F28 

Composition 

Function 8 

1. Ackley’s 

Function 

2. Griewank’s 

Function 

3. Discus 

Function 

4. Rosenbrock’

s Function 

5. HappyCat 

Function 

6. Expanded S

caffer’s 

Function 
 

 

AVG 1.76E+03 1.06E+04 

STD 2.76E+02 9.49E+02 

Min 1.25E+03 8.74E+03 

Max 2.35E+03 1.29E+04 
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F29 

Composition 

Function 9 

1. Hybrid 

Function 5  

2. Hybrid 

Function 6 

3. Hybrid 

Function 7 

Multimodal 

Non-separable 

Asymmetrical  

 

AVG 1.22E+04 1.69E+04 

STD 1.87E+03 4.02E+03 

Min 8.10E+03 9.86E+03 

Max 1.66E+04 2.77E+04 

F30 

Composition 

Function 10  

1. Hybrid 

Function 5 

2. Hybrid 

Function 8 

3. Hybrid 

Function 9 

Multimodal 

Non-separable 

Asymmetrical 

 

AVG 2.08E+09 5.09E+10 

STD 9.94E+08 2.77E+10 

Min 5.58E+08 4.47E+09 

Max 4.73E+09 1.14E+11 

Summary of results 

AVG 

+ 2 

− 18 

≈ 0 

STD 

+ 4 

− 16 

≈ 0 

Min 

+ 2 

− 18 

≈ 0 

Max 

+ 0 

− 20 

≈ 0 
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Appendix 5 : Wilcoxon test, p-values results,Wilcoxon rank-sum test with 5% significance 

 

            Dimension 

 

 

Pair of Metaheuristic 

2 30 100 1000 

HHO\HHO-

EAS 

p-value 0.01048 0.00109 0.000321 0.0004824 

W+ 118 146 153 136 

W- 18 7 0 0 

GWO\HHO-

EAS 

p-value 0.009225 3.815E-06 3.815E-06 3.815E-06 

W+ 132 190 190 190 

W- 21 0 0 0 

PSO\HHO-

EAS 

p-value 0.3684 3.815E-06 3.815E-06 3.815E-06 

W+ 96 190 190 190 

W- 57 0 0 0 

Table A5.1: Wilcoxon tests for general tests 

           Dimension  

 

 

Pair of Metaheuristic 

100 

HHO\HHO-

EAS 

p-value 1.752E-04 

W+ 185 

W- 25 

Table A5.2: Wilcoxon tests for specific tests 
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Appendix 6 : HHO Algorithm 
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Appendix 7 : HHO-EAS Algorithm 
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Appendix 8: BHHO-EAS Algorithm  
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Appendix 9: Wrapper features selection architecture  
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Appendix 10: Diagramme and 2D architecture of CNN-IDS 
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Appendix 11: Experimental results of BHHO-EAS  

Metaheuristic Metrics Values 

BHHO-EAS 

AVG 8.40E-03 

STD 3.31E-04 

Min 7.07E-03 

Max 8.86E-03 

Table A11.1. Objective function values from the Wrapper feature selection optimization  

Metaheuristic Metrics Values 

BHHO-EAS 

AVG 4,6 

STD 1.35 

Min 4 

Max 8 

Table A11.2. Features number values  

Metaheuristic Metrics Values 

BHHO-EAS 

AVG 99.07E-02 

STD 5.96E-03 

Min 98.08E-02 

Max 99.58E-02 

Table A11. 3. Classification accuracy values 

 

Fig. A11.1. Average convergence curve of the Wrapper feature selection multi-objective optimization 

problem 
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Index Features selected Description 

𝟏 radiotap.present.tsft 

This flag signals that the AP will synchronize the MAC timestamp of 

the associated STAs. In a Wi-Fi network with a predefined flag for the 

synchronization of MAC timestamps, not taking this flag into account 

in the attack makes it possible to strengthen the detection of 

Impersonation or Flooding attacks with the support of the features 

below. 

𝟐 radiotap.channel.freq,  

This feature provides the frequency value in Mhz of the channel with 

distinct frequencies from the 2.4Ghz and 5Ghz frequencies. These 

frequencies change according to the 802.11 standard and the country. 

The attacks exploit different channels with frequencies that may be 

inconsistent with that of the AP. This helps detect an Impersonation or 

Flooding attack. 

𝟑 wlan.fc.type 
There are 3 types of frame: Management, Control and Data. Combined 
with the wlan.fc.protected feature, wlan.fc.type helps detect Flooding 
and Impersonation attacks. 

𝟏𝟎 wlan.fc.protected 

Provided by the AP, this flag indicates to the STA that the frame is 

encrypted. With the 802.11w amendment, the MFP also protects 

management frames such as Deauthentication and Disassociation 

frames. The same is true for Beacon frames. This flag thus makes it 

possible to accompany the distinction between the 802.11 Normal, 

Flooding or Impersonation flow  

𝟏𝟑 frame.len 

This is the total length of a frame. This length varies by frame type and 

subtype. But also depending on its protected state or not. Thus 

combined with wlan.fc.type and wlan.fc.protected, frame.len is an 

indicator of a Flooding or Impersonation attack. 

𝟏𝟓 radiotap.length 

This feature, although specific to the wireless interface driver, is 
common to all Wi-Fi wireless devices. It provides the size of the 
Radiotap field. Radiotap is the field of the frame which provides 
physical data on the device such as the datarate, the frequency, the type 
of frequency modulation or the signal strength of the antennas. 
Combined with frame.len, this feature can detect Impersonation type 
attacks. 

𝟏𝟕 wlan_radio.signal_dbm 

This is the transmit power of the device in dBm. The STA of an attacker 
with a position further away than a legitimate STA therefore has an ab
normal transmission power compared to the latter. Combined with the
 frame.len feature, wlan_radio.signal_dbm helps detect Flooding and 
Impersonation attacks. 

18 wlan_radio.duration 

This feature provides the duration in ms of the frame taking into account 
the physical data and the 802.11 data, which the sender allocates for the 
benefit of the acknowledgment frame. This feature is independent of the 
frames that precede and succeed it. This feature is therefore 
consistent with our specifications. 
wlan_radio.duration scales based on  frame type and subtype. Combin
ed with wlan_radio.signal_dbm, it identifies Flooding and  Impersonat
ion attacks. 

Table A11.4. Description of the 8 features selected by BHHO-EAS from AWID3 dataset 
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Appendix 12: Performances of the IDS trained with AWID3 dataset  

  AUC Prec Recall F1-score Acc Epochs 

ET 16f 99,49 99,75 99,28 99,52 99,96 N/A 

LightGBM 16f 99,42 99,89 99,22 99,55 99,96 N/A 

ET 19f 99,24 99,76 98,98 99,37 99,94 N/A 

DT Set 4 97,16 94,72 95,67 95,19 99,69 N/A 

CNN-IDS 99,98 99,74 99,82 99,78 99,84 7,6 

 

BEST : 99,98 99,89 99,82 99,78 99,96 7,6 

WORST : 97,16 92,40 87,70 95,19 99,46 N/A 

Table A12.1. Performance comparison between the best performance results in [Chatzoglou E et al., 2022a] and the 

CNN-IDS performances 

  

  

  



 

194 

 

  

Fig. A12.1. Comparison between CNN-IDS and the 4 best Machine Learning IDS models of [Chatzoglou E et 

al., 2022a] 

 

CNN-IDS ET 16f 

  

LightGBM 16f ET 19f 
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DT 4f Set4  

 

 

Fig. A12.2. Confusion matrix of the detection capabilities of the 3 classes of attacks by CNN-IDS and the 

4 best Machine Learning IDS models of [Chatzoglou E et al., 2022a] 

 
Fig. A12.3. Best Accuracy and Loss curve of CNN-IDS on the 10 folds 

 
 

Fig. A12.4. Worst Accuracy and Loss curve of CNN-IDS on the 10 folds 
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Appendix 13: Performances of the E-CNN-IDS embedded on a Raspberry Pi 4  

 

Fig. A13.1. IoT environment Raspberry Pi 4 Model B with E-CNN-IDS embedded 

 

Fig. A13.2. Confusion matrix of the detection capabilities of the 3 classes of attacks by E-CNN-IDS 



 

197 

 

 

Fig. A13.3. Minimum consumption of memory and computing resources of the E-CNN-IDS 

 

Fig. A13.4. Maximum consumption of memory and computing resources of the E-CNN-IDS 

 

Fig. A13.5. Detection by E-CNN-IDS of six 802.11 specific attacks  
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