
HAL Id: tel-04318027
https://theses.hal.science/tel-04318027v1

Submitted on 1 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of Quantum Fourier Sampling and the
Dihedral Hidden Subgroup Problem

Maxime Remaud

To cite this version:
Maxime Remaud. Applications of Quantum Fourier Sampling and the Dihedral Hidden Sub-
group Problem. Cryptography and Security [cs.CR]. Sorbonne Université, 2023. English. �NNT :
2023SORUS326�. �tel-04318027�

https://theses.hal.science/tel-04318027v1
https://hal.archives-ouvertes.fr






Remerciements

Jean-Pierre, je ne saurais te remercier assez pour ces trois ans, qui ont été, tu en
conviendras probablement, particulièrement atypiques. Je nŠai que de la gratitude à
exprimer pour ton aide constante, pour ta patience, mais également pour mŠavoir épargné
bien des tracas à plusieurs reprises. Je suis dŠautant plus reconnaissant pour tout ce que
jŠai pu apprendre grâce à toi, scientiĄquement ou non, et suis Ąer de tŠavoir eu comme
directeur de thèse.

Simon, je mesure ma chance dŠavoir effectué mon stage de Ąn dŠétudes, puis dŠavoir
poursuivi en doctorat, sous ton regard toujours bienveillant. Bien que mes travaux soient
Ąnalement restés assez éloignés de tes domaines dŠexpertise, tu mŠas toujours apporté de
précieux conseils. Travailler et discuter avec toi est un plaisir en plus dŠêtre enrichissant.

Merci à Omar Fawzi et à Damien Stehlé pour avoir endossé le rôle de rapporteur, ainsi
quŠà Alex Bredariol Grilo, Mehdi Mhalla et María Naya-Plasencia pour avoir accepté de
faire partie de mon jury.

Je tiens également à remercier Thomas et André, que jŠai eu la chance dŠavoir comme
co-auteurs. Thomas, ton sens de la pédagogie et la passion que tu mets dans ton travail
sont particulièrement admirables. André, nous avons principalement collaboré à distance,
mais je peux témoigner de ton enthousiasme et de la qualité du travail que tu abats de
manière terriblement efficace.

Je souhaite également exprimer ma reconnaissance envers Cyril. Vous mŠavez accordé
votre conĄance pour réaliser ce doctorat, puis lŠavez renouvelée pour la suite. JŠespère
être à la hauteur des tâches qui mŠattendent !

Ces trois années ont été rendues dŠautant plus agréables grâce à mes collègues à Atos
dŠune part et à lŠINRIA dŠautre part. Je ne pourrais citer toutes les personnes que jŠai
croisées, avec qui jŠai eu le plaisir de travailler ou de discuter au cours dŠun repas ou
dŠune pause café. Évoluer dans ces deux environnements différents mais complémentaires
a été à la fois instructif et plaisant.

JŠai une pensée particulière pour les professeurs qui mŠont conduit sur la route des
mathématiques, puis sur un chemin de plus en plus spéciĄque pour en arriver jusquŠici.
En particulier, jŠaimerais mentionner François Arnault, avec qui jŠai eu la chance de

i



découvrir lŠinformatique quantique lors dŠun stage entre mes deux années de Master, et
Philippe Gaborit, pour avoir notamment contribué à rendre cette thèse possible.

Maxime, un grand merci pour avoir relu un des chapitres de cette thèse et mŠavoir donné
de très bons conseils, mais également pour nos conversations, toujours très intéressantes
et agréables.

Il nŠy a pas que des docteurs en informatique théorique que je souhaite remercier. JŠai
une reconnaissance inĄnie envers Dr. Laigle-Donadey en particulier, mais également
tous les autres spécialistes que jŠai été amené à rencontrer. Peut-être ai-je contribué à
faire avancer la science en médecine durant ces trois ans, bien malgré moi ?

Anaïs, Caroline, Koray, merci pour les moments partagés ensemble. Même sŠils se font
plus rares quŠen Licence ou en Master, ils sont inestimables et me rendent souvent
nostalgique de ce quŠon a pu vivre ensemble à la Roche, à Limoges ou ailleurs.

Olivier, meda akpe na wò ŋuto. Wòe nye xõnye vevito eye melé wò de nye dzi ŋu
kplikplikpli. Mawu nayra wò gede. Èno anyi nam le γeyiγi nyui kple võwo me, èdo alom
hede dzi ƒo nam. Akpe gede na wò, èle vevie nam ŋuto.

A mes parents, merci de mŠavoir fait conĄance, accompagné dans mes choix et encouragé
à suivre ma route en mŠen donnant toujours les moyens. A toute ma famille, ne vous
inquiétez pas, malgré lŠéloignement, la Vendée est toujours dans mon coeur (certains
peuvent en témoigner, jŠen parle souvent...), tout comme vous lŠêtes.

Nana Yaa, aseda nnooso, nanso mennya asεmfua foforo biara. Meda wo ase sε mowo ha
bere nyinaa. Meda wo ase sε woboa me bere nyinaa. Meda wo ase sε woyε wo. Yεrefa
asetra mu anammon a emu yε den yiye mu, nanso yεbεbom ayε. εrenkyε, yebetumi
anya asetra mu anigye sεnea εfata. Onyankopon nhyira wo pii. Medo wo.

EnĄn, merci à vous tous. Que vous le sachiez déjà ou non, ces trois années ont été
intriquées avec de nombreuses épreuves médicales. Votre soutien ou ne serait-ce que
votre bienveillance ou un sourire ont rendu ce doctorat plus facile quŠil nŠaurait dû lŠêtre
dans les circonstances données. Merci.

ii



Contents

Contents i

Introduction (Français) v

Introduction (English) ix

Preprints and Publications xiii

Notation and Acronyms xv

1 Introduction to the Hidden Subgroup Problem 1
1 SimonŠs Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 ShorŠs Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Standard Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Introduction to Code-Based Cryptography 11
1 DeĄnitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Codes and their representations . . . . . . . . . . . . . . . . . . . 12
1.2 Norm and distance . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Computational Problems . . . . . . . . . . . . . . . . . . . . . . 16

2 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Hamming Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Rank Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 From Decoding to Finding Short Codewords 23
1 Quantum Reduction from Sampling Short Codewords to Decoding . . . 30

1.1 A general result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2 Outline of the proof of Theorem 3.2 . . . . . . . . . . . . . . . . 33
1.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4 Application to the Hamming metric . . . . . . . . . . . . . . . . 38
1.5 Application to the rank metric . . . . . . . . . . . . . . . . . . . 43

i



2 About the usefulness of our reduction. . . . . . . . . . . . . . . . . . . . 46
2.1 Hamming case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Rank Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1 Step 1: Proof of Lemma 3.1 and Lemma 3.3 . . . . . . . . . . . . 48
3.2 Step 2: Proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . 51
3.3 Step 3 : Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . 52

4 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Proofs of Lemma 3.12 and Lemma 3.13 . . . . . . . . . . . . . . 55
4.2 Proofs of Lemma 3.15 and Lemma 3.16 . . . . . . . . . . . . . . 58

4 Introduction to the Dihedral Hidden Subgroup Problem 61
1 From Finding a Hidden Subgroup to Solving a Quantum Problem . . . 63

1.1 Dihedral Hidden Subgroup Problem . . . . . . . . . . . . . . . . 63
1.2 Dihedral Coset Problem . . . . . . . . . . . . . . . . . . . . . . . 64

2 KuperbergŠs Ąrst algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 RegevŠs algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 KuperbergŠs second algorithm . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 A Query Interpolation Algorithm 83
1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2 Reducing the DCP to a Subset-sum Problem . . . . . . . . . . . . . . . 87

2.1 Using a Classical Subset-sum Solver . . . . . . . . . . . . . . . . 87
2.2 Using a Quantum Subset-sum Solver . . . . . . . . . . . . . . . . 88

3 Interpolation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4 Quantum Subset-sum Algorithms . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Algorithms Based on Representations . . . . . . . . . . . . . . . 96
4.2 From Asymptotic to Exact Optimizations . . . . . . . . . . . . . 98
4.3 Solving Subset-Sum in Superposition . . . . . . . . . . . . . . . . 100

6 A Space Interpolation Algorithm 103
1 A Space-Efficient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 104

1.1 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . 111
1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 113

ii



2 A Space-Interpolation Algorithm . . . . . . . . . . . . . . . . . . . . . . 115
2.1 Clues for Conjecture 6.2 . . . . . . . . . . . . . . . . . . . . . . . 124
2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 129

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Conclusion and Perspectives 133

Bibliography 135

iii





Introduction (Français)

Problème de sous-groupe caché. Abrégé par HSP pour "Hidden Subgroup Problem",
le problème de sous-groupe caché est un problème fondamental en informatique théorique
consistant à trouver un sous-groupe inconnu H au sein dŠun groupe G à lŠaide uniquement
dŠune fonction qui est constante et distincte sur les classes de H. Ce problème de
sous-groupe caché a de nombreuses applications en cryptographie, ce qui en fait un
problème important à étudier, puisque la sécurité de certains systèmes cryptographiques
repose notamment sur la difficulté à résoudre ce problème. Les algorithmes quantiques
interviennent alors, car il a été montré que des avantages signiĄcatifs peuvent être
obtenus pour résoudre efficacement certaines instances de HSP difficiles à résoudre
pour les ordinateurs classiques. Une technique bien connue se cache derrière cela, cŠest
lŠéchantillonnage de Fourier quantique.

Échantillonnage de Fourier quantique. Quantum Fourier Sampling en anglais,
lŠéchantillonnage de Fourier quantique est en effet une technique algorithmique quantique
qui exploite la transformée de Fourier quantique (QFT, pour "Quantum Fourier
Transform", qui est lŠanalogue quantique de la transformée de Fourier discrète: dŠune
certaine manière, elle mesure les fréquences présentes dans lŠétat dŠentrée et les exprime
dans lŠétat transformé). LŠéchantillonnage de Fourier quantique tire donc parti de cette
propriété pour résoudre efficacement les problèmes qui peuvent être représentés à lŠaide
dŠune fonction avec périodicité. La méthode est simple: il suffit tout dŠabord de construire
une superposition dŠentrées, appliquer la fonction en question sur cette superposition, puis
appliquer une QFT sur le registre contenant les images ainsi calculées et le mesurer. Nous
obtenons alors une superposition dŠéléments dŠune classe de lŠorthogonal du sous-groupe
caché, nous permettant par conséquent dŠobtenir de lŠinformation sur ce dernier.

Chapitre 1. LŠalgorithme de Shor est un célèbre et excellent exemple de la manière
dont lŠéchantillonnage de Fourier quantique peut être appliqué à un problème de sous-
groupe caché. Il utilise en effet cette technique pour trouver la période dŠune fonction
modulaire, qui est un exemple concret de HSP. La factorisation de grands nombres (un
problème difficile classiquement) pouvant être réduite à la recherche de la période dŠune
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fonction modulaire et cette fonction modulaire pouvant être calculée efficacement de
manière quantique, lŠalgorithme de Shor résout le problème de factorisation efficacement
(cŠest-à-dire, en temps polynomial). En tirant parti de la puissance de lŠéchantillonnage
de Fourier quantique, qui hérite lui-même des propriétés de la QFT, il a ainsi été montré
quŠà lŠimage de lŠalgorithme de Shor, il est possible de résoudre des problèmes de sous-
groupe caché ayant un impact important en cryptographie. Le Chapitre 1 introduit plus
largement le problème de sous-groupe caché ainsi que la méthode dŠéchantillonnage de
Fourier quantique, en allant de lŠalgorithme de Simon jusquŠà lŠalgorithme générique
permettant de résoudre le HSP dans nŠimporte quel groupe abélien en temps polynomial,
en passant par lŠalgorithme de Shor.

Chapitre 2. La cryptographie post-quantique est un domaine en pleine évolution
qui cherche à développer des primitives cryptographiques sûres contre les attaques
cryptanalytiques exécutées sur des ordinateurs quantiques. La sécurité de ces primitives
post-quantiques est basée sur des problèmes mathématiques considérés comme difficiles
pour les ordinateurs classiques et quantiques, tels que le problème du vecteur le plus
court (SVP, pour "Shortest Vector Problem") et le problème de lŠapprentissage avec
erreurs (LWE, pour "Learning With Errors") en cryptographie à base de réseaux, qui est
une approche populaire de la cryptographie post-quantique se basant sur la métrique
euclidienne. Le Chapitre 2 donne les bases et notions élémentaires de cryptographie à base
de codes, une autre approche majeure en cryptographie post-quantique se basant quant
à elle sur la métrique de Hamming. Les équivalents de SVP et LWE, respectivement le
problème de recherche de mot de petit poids et le problème de décodage, sont notamment
clairement déĄnis et leur difficulté est discutée. EnĄn, nous introduisons et discutons
également de la métrique rang, qui tend à être de plus en plus étudiée et investiguée dans
le cadre de la recherche de primitives post-quantiques (quelques soumissions en métrique
rang, en plus de celles plus nombreuses en métrique euclidienne et de Hamming, sont à
noter au programme de standardisation du NIST, voir [NIS16; NIS22]).

Chapitre 3. Ce chapitre correspond à lŠarticle [DRT23]. Le but de notre travail est
de montrer comment calculer avec un ordinateur quantique un mot de faible poids de
Hamming dans un code aléatoire à partir dŠun algorithme permettant de décoder son
dual. CŠest la première fois quŠune telle réduction (classique ou quantique) pour la
métrique de Hamming a été obtenue. En fait, ce travail fournit une adaptation aux
codes linéaires de la réinterprétation de Stehlé-Steinfeld-Tanaka-Xagawa [Ste+09] de la
réduction quantique de Regev [Reg05] de SVP approximé dans le pire cas au problème
LWE. La métrique de Hamming est une métrique beaucoup plus grossière que la
métrique euclidienne et cette adaptation a nécessité plusieurs nouveaux ingrédients pour
fonctionner. Par exemple, pour obtenir une réduction signiĄcative, il est nécessaire, avec
la métrique de Hamming, de choisir un rayon de décodage très grand: dans de nombreux
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cas, il faut aller au-delà du rayon où le décodage est unique. Une autre étape cruciale
pour lŠanalyse de la réduction est le choix des erreurs pour lŠalgorithme de décodage. En
réseaux, les erreurs sont généralement échantillonnées selon une distribution gaussienne.
Cependant, il sŠavère que la distribution de Bernoulli (lŠanalogue de la gaussienne pour
les codes) est trop étalée et ne peut pas être utilisée, en tant que telle, pour la réduction
avec des codes. Nous avons traité cette difficulté pour obtenir le résultat susmentionné
en considérant une distribution originale dans ce contexte, cŠest-à-dire une distribution
de Bernoulli tronquée. En outre, notre travail montre également une connexion entre
lŠapproche de Regev et une notion intéressante de "distance duale" qui est impliquée
dans la première borne de programmation linéaire en théorie des codes [McE+77] ou
celle [Lev79; CE03] dŠempilement des sphères dans Rn.

Chapitre 4. Comme vu dans le premier chapitre, la méthode dŠéchantillonnage de
Fourier quantique permet de résoudre le problème de sous-groupe caché dans nŠimporte
quel groupe abélien en temps polynomial. Mais son intérêt ne sŠarrête pas aux seuls
groupes abéliens: il a également été montré quŠelle peut être utile pour résoudre ce
problème dans un groupe diédral. Cette fois-ci elle ne permet pas une accélération
exponentielle comme pour les groupes abéliens mais une accélération sous-exponentielle,
tout de même. Dans ce chapitre nous reprenons les principaux algorithmes qui ont
échelonné lŠhistoire de la résolution du problème de classe diédrale suivant le sous-groupe
caché (DCP, pour "Dihedral Coset Problem"), problème quantique qui peut sŠexprimer
relativement simplement et auquel se réduit le problème de sous-groupe caché dans
un groupe diédral. A celui-ci se réduit la sécurité de nombreux cryptosystèmes, quŠils
soient asymétriques ou symétriques, et plus généralement de nombreux autres problèmes,
notamment utilisés en cryptographie à base de réseaux ou à base dŠisogénies, faisant du
DCP un problème de prime importance. Pour N ∈ N, il est déĄni comme suit.

Problème (DCP). Etant donné un oracle générant aléatoirement des nombres k tirés

uniformément dans ZN et leur état quantique associé ♣ψk⟩, déterminer s ∈ ZN , avec:

♣ψk⟩ def=
1√
2

(
♣0⟩+ e

2iπsk
N ♣1⟩


.

Il existe deux familles dŠalgorithmes pour le résoudre, toutes deux tournant en temps
sous-exponentiel: la première est essentiellement composée du premier algorithme de
Kuperberg [Kup05], qui résout le problème de manière directe et uniquement grâce à des
portes CNOT et des mesures, tandis que lŠautre est notamment composée de lŠalgorithme
de Regev [Reg04a] et du deuxième algorithme de Kuperberg [Kup13], qui réduisent le
problème à un problème de somme de sous-ensembles (subset-sum problem). Ces trois
algorithmes sont présentés dans ce chapitre et leur complexité est donnée, après que le
problème de sous-groupe caché dans un groupe diédral et le DCP soient déĄnis, ainsi que
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lŠalgorithme de Ettinger et Høyer [EH99], le premier algorithme résolvant ce problème,
présenté.

Chapitre 5. En combinant une idée due à Regev pour résoudre le DCP dans ZN

[Reg04a] et la méthode dŠéchantillonnage de Fourier quantique, nous introduisons dans ce
chapitre un nouveau genre dŠalgorithme pour résoudre le problème de sous-groupe caché
dans un groupe diédral. Nous réduisons en effet la résolution de ce problème à celle dŠun
problème quantique de somme de sous-ensembles, ce qui offre une nouvelle alternative
aux deux autres principaux modes de résolutions déjà connus et cités ci-dessus. Pour
cela, nous reprenons lŠidée initiale de lŠalgorithme de Regev mais au lieu de mesurer
une superposition de valeurs cibles pour un problème de somme de sous-ensembles et
de résoudre le problème classiquement, nous conservons la superposition et utilisons
un algorithme quantique pour résoudre le problème quantiquement. Nous obtenons
alors un algorithme qui ne nécessite plus de faire quŠun nombre linéaire (cŠest-à-dire en
O (logN)) de requêtes à lŠoracle, là où la version économe en requêtes de celui de Regev
nécessitait un nombre quadratique (en O

(
(logN)2

)
). De plus, la complexité en temps

est celle de lŠalgorithme quantique de somme de sous-ensembles au lieu de celui classique.
Nous obtenons ainsi le premier algorithme depuis celui de Ettinger et Høyer à effectuer
un nombre linéaire de requêtes à lŠoracle, et nous en améliorons lŠexposant: là où celui
de Ettinger-Høyer tourne en temps en O (N), le notre tourne approximativement en
O
(
N0.418

)
. EnĄn, nous donnons également une interpolation très naturelle sur le nombre

de requêtes entre ce nouvel algorithme et le deuxième de Kuperberg, ainsi quŠune étude
affinée dŠalgorithmes pour résoudre le problème de somme de sous-ensembles quantique.
Ce chapitre correspond à lŠarticle [RST23].

Chapitre 6. Finalement, nous donnons dans notre dernier chapitre plusieurs pistes
pour résoudre le DCP dans ZN sans avoir à se réduire à un problème de somme de sous-
ensembles, nous plaçant ainsi dans la voie du premier algorithme de Kuperberg, ce dernier
ayant néanmoins le défaut majeur de nécessiter un espace sous-exponentiel (classique
et quantique) en 2O(

√
log N) pour fonctionner. En nous inspirant dŠune réécriture de

celui-ci proposée par Bonnetain et Naya-Plasencia [BN18], nous présentons un nouvel
algorithme pour résoudre le DCP dans ZN . Celui-ci bat tous les algorithmes existants
en terme dŠusage dŠespace classique comme quantique puisquŠil nécessite au maximum

⌈logN⌉ qubits et sa complexité en temps est en O
(
N0.415

)
et est la plus basse parmi

tous les algorithmes utilisant un espace linéaire, mais en contrepartie, il nécessite de
faire un nombre de requêtes exponentiel. De par son mode de fonctionnement, il est
très facile de généraliser la méthode employée à lŠélaboration de cet algorithme et de
lŠadapter pour un nombre quelconque de qubits.
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Introduction (English)

Hidden Subgroup Problem. Abbreviated HSP, the hidden subgroup problem is a
fundamental problem in theoretical computer science consisting in Ąnding an unknown
subgroup H within a group G using only a function that is constant and distinct over
the cosets of H. This hidden subgroup problem has many applications in cryptography,
making it an important problem to study, since the security of some cryptographic
systems relies in particular on the difficulty of solving this problem. Quantum algorithms
come into play here, as it has been shown that signiĄcant advantages can be gained in
efficiently solving certain HSP instances that are difficult for classical computers to solve.
A well-known technique behind this is quantum Fourier sampling.

Quantum Fourier sampling. Quantum Fourier Sampling is in fact a quantum
algorithmic technique that exploits the quantum Fourier transform (QFT, which is the
quantum analog of the discrete Fourier transform: in a way, it measures the frequencies
present in the input state and expresses them in the transformed state). Quantum
Fourier sampling therefore takes advantage of this property to efficiently solve problems
that can be represented using a function with periodicity. The method is simple: Ąrst
construct a superposition of inputs, apply the function in question to this superposition,
then apply a QFT to the register containing the images thus calculated and measure
it. We obtain a superposition of elements of a coset of the orthogonal of the hidden
subgroup, enabling us to obtain information about the latter.

Chapter 1. ShorŠs algorithm is a famous and excellent example of how quantum
Fourier sampling can be applied to a hidden subgroup problem. It uses this technique
to Ąnd the period of a modular function, which is a concrete example of HSP. Since
factorization of large numbers (a classically difficult problem) can be reduced to Ąnding
the period of a modular function, and since this modular function can be quantumly
computed efficiently, ShorŠs algorithm solves the factorization problem efficiently (i.e.,
in polynomial time). By taking advantage of the power of quantum Fourier sampling,
which itself inherits the properties of QFT, it has thus been shown that, like ShorŠs
algorithm, it is possible to solve hidden subgroup problems that have a major impact
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in cryptography. Chapter 1 provides a broader introduction to the hidden subgroup
problem and the quantum Fourier sampling method, ranging from SimonŠs algorithm
via ShorŠs algorithm to the generic algorithm for solving the HSP in any abelian group
in polynomial time.

Chapter 2. Post-quantum cryptography is an evolving Ąeld that seeks to develop
cryptographic primitives secure against cryptanalytic attacks executed on quantum
computers. The security of these post-quantum primitives is based on mathematical
problems considered difficult for both classical and quantum computers, such as the
Shortest Vector Problem (SVP) and the Learning With Errors Problem (LWE) in lattice-
based cryptography, which is a popular approach to post-quantum cryptography based
on the Euclidean metric. The Chapter 2 gives the basics and notions of code-based
cryptography, another major approach to post-quantum cryptography based on the
Hamming metric. In particular, the equivalents of SVP and LWE, respectively the short
codeword search problem and the decoding problem, are deĄned and their difficulty
discussed. Finally, we also introduce and discuss the rank metric, which tends to be
increasingly studied and investigated in the search for post-quantum primitives (a few
submissions in rank metric, in addition to the more numerous ones in Euclidean and
Hamming metrics, are to be noted at the NIST standardization process, see [NIS16;
NIS22]).

Chapter 3. This chapter corresponds to the article [DRT23]. The aim of our work
is to show how to compute with a quantum computer a low-weight Hamming word
in a random code from an algorithm allowing to decode its dual. This is the Ąrst
time that such a reduction (classical or quantum) for the Hamming metric has been
obtained. In fact, this work provides an adaptation to linear codes of Stehlé-Steinfeld-
Tanaka-XagawaŠs reinterpretation [Ste+09] of RegevŠs quantum reduction [Reg05] from
worst-case approximate SVP to LWE. The Hamming metric is a much coarser metric
than the Euclidean one, and this adaptation required several new ingredients to work.
For example, to achieve a signiĄcant reduction, it is necessary, with the Hamming metric,
to choose a very large decoding radius: in many cases, we have to go beyond the radius
where decoding is unique. Another crucial step in reduction analysis is the choice of
errors that are passed on to the decoding algorithm. With lattices, errors are generally
sampled according to a Gaussian distribution. However, it turns out that the Bernoulli
distribution (the Gaussian analogue for codes) is too spread out and cannot be used,
as such, for a reduction with codes. We have addressed this difficulty to obtain the
above result by considering an original distribution in this context, i.e., a truncated
Bernoulli distribution. In addition, our work also shows a connection between RegevŠs
approach and an interesting notion of "dual distance" which is involved in the Ąrst linear

x



programming bound in code theory [McE+77] or that [Lev79; CE03] of sphere stacking
in Rn.

Chapter 4. As seen in the Ąrst chapter, the quantum Fourier sampling method can
be used to solve the hidden subgroup problem in any abelian group in polynomial time.
But the methodŠs interest is not limited to abelian groups: it has also been shown that
it can be useful for solving this problem in a dihedral group. This time, it does not
allow exponential acceleration as for abelian groups, but it does allow subexponential
acceleration. In this chapter, we review the main algorithms that have staggered the
history of the solution of the Dihedral Coset Problem (DCP), a quantum problem that
can be expressed relatively simply and to which the hidden subgroup problem in a
dihedral group is reduced. In turn, to this problem is reduced the security of many
cryptosystems, whether asymmetric or symmetric, and more generally of many other
problems, notably used in lattice-based or isogeny-based cryptography, making the DCP

a problem of prime importance. For N ∈ N, it is deĄned as follows.

Problem (DCP). Given an oracle generating numbers k drawn uniformly at random

from ZN and their associated quantum state ♣ψk⟩, determine s ∈ ZN , where:

♣ψk⟩ def=
1√
2

(
♣0⟩+ e

2iπsk
N ♣1⟩


.

There are two families of algorithms for solving this problem, both running in
subexponential time: the Ąrst is essentially made up of KuperbergŠs Ąrst algorithm
[Kup05], which solves the problem directly and solely using CNOT gates and
measurements, while the other is notably made up of RegevŠs algorithm [Reg04a]
and KuperbergŠs second algorithm [Kup13], which reduce the problem to a classical
subset-sum problem. These three algorithms are presented in this chapter and their
complexity is given, after the hidden subgroup problem in a dihedral group and the DCP

are deĄned, and Ettinger and HøyerŠs algorithm [EH99], the historically Ąrst algorithm
proposed to solve this problem, presented.

Chapter 5. Combining an idea due to Regev for solving the DCP in ZN [Reg04a]
and the quantum Fourier sampling method, we introduce in this chapter a new kind
of algorithm for solving the hidden subgroup problem in a dihedral group. In fact, we
reduce the resolution of this problem to that of a quantum subset-sum problem, offering
a new alternative to the two other main methods of resolution already known and cited
above. To do this, we take up the original idea of RegevŠs algorithm, but instead of
measuring a superposition of target values for a subset-sum problem and solving the
problem classically, we retain the superposition and use a quantum algorithm to solve
the problem quantum-wise. We then obtain an algorithm that only requires a linear

xi



number (i.e., in O (logN)) of queries to the oracle, whereas the low-queries version of
RegevŠs algorithm required a quadratic number (in O

(
(logN)2

)
). The time complexity

is that of the quantum subset-sum algorithm instead of the classical one. We thus obtain
the Ąrst algorithm since Ettinger and HøyerŠs to perform a linear number of queries to
the oracle, and we improve its exponent: where Ettinger-HøyerŠs runs in O (N) time,
ours runs in approximately O

(
N0.418

)
. Finally, we also give a very natural interpolation

on the number of queries between this new algorithm and KuperbergŠs second algorithm,
as well as a reĄned study of algorithms for solving the quantum subset-sum problem.
This chapter corresponds to the article [RST23].

Chapter 6. Finally, in our last chapter, we present several ways of solving the DCP in
ZN without having to reduce it to a subset-sum problem, thus following in the footsteps
of KuperbergŠs Ąrst algorithm, which nevertheless has the major drawback of requiring
a subexponential space (classical and quantum) in 2O(

√
log N) to work. Inspired by a

rewriting of the latter proposed by Bonnetain and Naya-Plasencia [BN18], we present a
new algorithm for solving DCP in ZN . This beats all existing algorithms in terms of use
of both classical and quantum space, since it requires at most ⌈logN⌉ qubits and its time
complexity is in O

(
N0.415

)
and is the lowest among all algorithms using linear space,

but on the other hand, it requires making an exponential number of queries. Because of
the way it works, it is very easy to generalize the method used to design this algorithm
and adapt it to any number of qubits.
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Notation and Acronyms

General notation. Vectors are in row notation and they will be written with lowercase
bold letters. Uppercase bold letters are used to denote matrices.

Logarithms. log (x) (or simply log x) will denote the logarithm in base 2 of x.

Set of integers. For a and b integers with a ≤ b, we denote by Ja, bK the set of integers
¶a, a+ 1, . . . , b♢. We extend this notation when a and b are not integers to the set of
integers in [a, b].

Polynomial quantity. poly(n) will denote a quantity which is an O (na) for some
constant a.

Inner product. x · y def=
∑n

i=1 xiyi for x = (xi)n
i=1 and y = (yi)n

i=1.

Shannon entropy. hq(x) def= −(1− x) logq(1− x)− x logq

(
x

q−1


for x ∈ (0, 1).

Quantum Fourier Transform (QFT). Let the prime p be the characteristic of Fq,

with q = ps. Let ωp
def= e

2iπ
p . The QFT of ♣ψ⟩ def=

∑
x∈Fn

q
αx ♣x⟩ is deĄned as

♣ψ⟩̂ def=
1√
qn

∑

y∈Fn
q


∑

x∈Fn
q

αxω
Tr(x·y)
p


 ♣y⟩ where Tr(a) def=

s−1∑

i=0

api

.
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Acronyms.

CBC Code-Based Cryptography
DCP Dihedral Coset Problem

DHSP Dihedral Hidden Subgroup Problem
DLP Discrete Logarithm Problem
DP Decoding Problem

HSP Hidden Subgroup Problem
LPN Learning Parity with Noise
LWE Learning With Errors
SCP Short Codeword Problem
SIS Short Integer Solution
SS Subset-Sum

SVP Shortest Vector Problem
uSVP unique Shortest Vector Problem
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Chapter

1Introduction to the Hidden

Subgroup Problem

Let G be a known group and H be an unknown subgroup of G. We will refer to
H as the hidden subgroup of G and Ąnding it is a problem known as the Hidden
Subgroup Problem (HSP). This problem is of the greatest importance in mathematics
and theoretical computer science, because it encompasses many known problems used in
particular in cryptography to construct primitives. For example, we can mention the
problems of period Ąnding, discrete logarithm, graph isomorphism and shortest vector as
special cases of hidden subgroup problems. Among all the cryptographic primitives built
relying on the hardness of Ąnding a hidden subgroup in a group, we can obviously cite
the RSA cryptosystem [RSA78] and the Diffie-Hellman key exchange protocol [DH76],
built on the period-Ąnding problem and the discrete logarithm problem respectively.
More interestingly for our purpose, we can mention CSIDH [Cas+18] and more generally
any cryptosystem based on the isogeny problem [CJS14], any cryptosystem based on the
Unique Shortest Vector Problem (uSVP) in lattice-based cryptography (such as [AD97;
Reg04b]) or on any of the many problems that can be reduced to uSVP , and even
symmetric primitives (Poly1305-AES [Ber05; BN18] for example).

But the HSP is also paramount in quantum computing because it was responsible for
the Ąrst major advances in the Ąeld in the early 1990s. Indeed, SimonŠs and ShorŠs
algorithms are well-known examples of quantum algorithms that solve hidden subgroup
problems, and what makes them particularly interesting is the fact that they work in
polynomial time, whereas no classical algorithm does.

In order to solve the HSP, we are given a function which is said to "hide" the hidden
subgroup, since it has the property to be constant and distinct on the left cosets of H:

Definition 1.1 (Hiding function). Let G be a group and H be a subgroup of G. We
say that a function f : G→ S (where S is a Ąnite set) hides H if

∀g, g′ ∈ G, f(g) = f(g′) ⇐⇒ gH = g′H.

We can now properly deĄne the HSP, as follows.

1



2 Chapter 1. Introduction to the HSP

Problem 1.1. Hidden Subgroup Problem (HSP). The hidden subgroup problem is defined

as:

• Input: a function f : G→ S that hides an unknown subgroup H of a group G, S

being a finite set,

• Output: (a generating set of) H.

Note that in practice, H might be a large subset of G and Ąnding it (i.e., Ąnding all
its elements) would be tedious, but Ąnding a generating set of it will be enough for our
purpose.

In Table 1.1, we give examples of problems which can be casted as a HSP and the group
in which this HSP has to be solved.

Problem Group

SimonŠs Zn
2

Period Finding ZN

Discrete Logarithm ZN × ZN

Graph Isomorphism SN

Shortest Vector DN

Table 1.1: Examples of problems which can be casted as a HSP in the speciĄed group.
SN is the symmetric group on N elements and DN is the dihedral group, the group of
the symmetries of a polygon with N sides, which will be the subject of the next chapter.
See [KLM06] for more details.

It turns out that when G is abelian, there is a well-known polynomial-time quantum
algorithm solving HSP, which, roughly speaking, consists in building a superposition
over the elements of G, computing f(G) in an ancillary register, applying a Quantum
Fourier Transform (QFT) on the Ąrst register and Ąnally sampling it. SimonŠs and
ShorŠs algorithms are speciĄc cases of this algorithm. On the other hand, when G is not
abelian, there is no general algorithm for solving this problem but some results exist for
particular non-abelian groups like the symmetric and the dihedral groups, to which are
linked the Graph Isomorphism Problem and the Shortest Vector Problem, respectively.

In this chapter, we will focus on algorithms for solving the HSP in abelian groups.
Namely, we will give an overview of SimonŠs algorithm, then of ShorŠs algorithm for the
Discrete Logarithm Problem, and Ąnally of the "standard algorithm" for solving any
HSP in a Ąnite abelian group in polynomial time. The HSP in a dihedral group will be
the subject of Chapter 5 and Chapter 6 of this manuscript.

Contents

1 SimonŠs Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1 Simon’s Algorithm

In the early 1990s, Simon was one of the Ąrst to present a quantum algorithm that
could solve a certain problem using a polynomial number of queries where a classical
algorithm would use an exponential number [Sim94]. The problem in question, which
is simply called "SimonŠs problem", was designed speciĄcally to show that there is a
quantum advantage over classical algorithms, but it later turned out that it has practial
applications in symmetric cryptography (see for example [Bon+19; CLS22]), making
SimonŠs work all the more interesting. More precisely, SimonŠs problem is deĄned as
follows.

Problem 1.2. Simon’s problem. Let f : Zn
2 → S (where S is a finite set) be a function

that hides H = ¶0, s♢ ⊆ Zn
2 . Simon’s problem asks to find s given f .

The promise on f means that we have the following property:

∀x,y ∈ Zn
2 , f(x) = f(y) ⇐⇒ x = y⊕ h where h ∈ H = ¶0, s♢ . (1.1)

In this problem, Ąnding H boils down to Ąnding the secret vector s.

It can be shown that any classical algorithm solving SimonŠs problem with probability at
least 2/3 will have a query complexity in Ω

(
2

n
3


(see [KLM06], Theorem 6.5.1). On the

other hand, Simon came up with a quantum algorithm which solves this same problem
with a query complexity in O (n), exponentially improving over its classical counterparts
(see [KLM06], Theorem 6.5.2).

Algorithm 1 provides a pseudo-code implementation of SimonŠs algorithm. It assumes
that the function f that hides the subgroup is efficiently implementable in a quantum
way, which will always be assumed for all algorithms presented in this chapter. Namely,
we assume that we have a unitary Uf for implementing f :

Uf : ♣x⟩ ♣b⟩ 7→ ♣x⟩ ♣b⊕ f(x)⟩ .

Remarks on Simon’s algorithm.

• The uniform superposition over Zn
2 is efficiently produced thanks to Hadamard

gates applied to n qubits initialized to 0.

• The Ąrst measurement is not mandatory but it simpliĄes the algorithmŠs analysis.
By this measure, an image of f is chosen and the Ąrst register is projected on a
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Algorithm 1 SimonŠs algorithm for SimonŠs Problem

Require: A unitary Uf to quantumly compute f .
Ensure: The secret vector s as deĄned in Equation 1.1.

1: Initialize a list L = ∅.
2: repeat
3: Prepare a uniform superposition over Zn

2 and use Uf to compute f in an ancillary
register

1√
2n

∑

x∈Zn
2

♣x⟩ ♣f(x)⟩

4: Measure the second register and discard it

1√
2

(♣y⟩+ ♣y + s⟩)

5: Apply H⊗n

1√
2n+1

∑

x∈ZN

(−1)x·y (1 + (−1)x·s) ♣x⟩

6: Measure the register and place the resulting vector in L
7: until the dimension of the span of the vectors in L equals n− 1.
8: Solve the linear system formed by ℓ · s = 0, ∀ℓ ∈ L and output the non-zero

solution.

superposition of the preimages by f of the image that has been measured. With
our notation, an image f(y) has two antecedents: y and y + s.

• If we look at the amplitude of the vector x just before the second measurement
operator, we can see that it is zero if and only if x · s = 1 or conversely that it is
non-zero if and only if x · s = 0. It means that we can write

1√
2n+1

∑

x∈ZN

(−1)x·y (1 + (−1)x·s) ♣x⟩ =
1√

2n−1

∑

x∈ZN :
x·s=0

(−1)x·y ♣x⟩

=
1√

2n−1

∑

x∈H⊥
(−1)x·y ♣x⟩

where we recall that

H⊥ def= ¶x ∈ Zn
2 : x · h = 0 ∀h ∈ H♢ = ¶x ∈ Zn

2 : x · s = 0♢.

The vector that will be measured will thus be a vector orthogonal to the secret
one we are looking for.

• The dimension of H being 1, the dimension of H⊥ has to be n− 1. Thus, if we
have n− 1 vectors orthogonal to s forming a basis of H⊥, we will be able to solve
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the linear system in polynomial time in n by Gaussian elimination in the last step
of the algorithm. This linear system has exactly two solutions, 0 and s.

2 Shor’s Algorithm

In this section, we will outline ShorŠs quantum algorithm for solving the Discrete
Logarithm Problem (DLP) in polynomial time [Sho94]. ShorŠs algorithm is surely best
known for allowing to efficiently solve the factorization problem by reducing it to the
period Ąnding problem that it then solves thanks to a quantum computer, but this
will not be our point here. We will focus on the algorithm for DLP which is more
straightforward and can easily be seen to be, in some way, on the path between SimonŠs
algorithm and the standard algorithm for solving HSP for any Ąnite abelian group. We
start by recalling DLP:

Problem 1.3. Discrete Logarithm Problem (DLP). Let G = ⟨g⟩ be a finite cyclic group

of order N and x ∈ G. The DLPg,x,N asks to find the smallest positive integer α such

that

gα = x, (1.2)

i.e., α = logg x.

With these notations, N will typically be equal to p− 1 where p is a prime number and
G will be Z×

p . We assume that x is different from g, otherwise the problem is trivial. We
also assume that we know the order N of the group since if we do not, we can simply
use ShorŠs algorithm for period Ąnding to determine N .

There have actually been many classical algorithms introduced for solving the DLP in
an arbitrary group. Some are deterministic, as for examples the Baby-Step/Giant-Step
algorithm [Sha73] or Pohlig-Hellman algorithm [PH78], and some are probabilistic,
such as Pollard-ρ algorithm [Pol78] or the distinguished points method [vW99]. In any
case, all these algorithms have a query complexity which is exponential in logN . For
some non-arbitrary groups, some improvements have been exhibited such as AdlemanŠs
method, for the case where the group in which we intend to solve the DLP is a Ąnite
Ąeld [Adl79]. The query complexity of all such speciĄc algorithms is not better than
subexponential but in [Bar+14], a heuristic algorithm providing a quasi-polynomial
complexity when N has a speciĄc form was introduced.

When Shor came up with his quantum algorithm, the impact was great because he
showed that it is possible to efficiently solve the DLP with a query complexity polynomial
in logN , the size of the considered group. We Ąrst show how he Ąrst reduced the DLP

to a HSP in ZN × ZN and then give his algorithm for solving this latter problem right
after. For more details on classical algorithms for the DLP, we refer to [Bar13].
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So indeed, the DLP can be written as a Hidden Subgroup Problem. An appropriate
deĄnition of f to fall back on a HSP is the following:

f : ZN × ZN → G

(α, β) 7→ xαgβ

and this function f hides a subgroup H of ZN × ZN deĄned by

H
def= ¶(α,−α logg x) : α ∈ ZN♢

and its cosets

(0, δ) +H = ¶(α, δ − α logg x) : α ∈ ZN♢, δ ∈ ZN

since we have that every elements in a coset (0, δ) +H for δ ∈ ZN has the same image
by f and this image is different for each coset:

∀α, δ ∈ ZN , f(α, δ − α logg x) = xαg−α logg xgδ = gδ.

ShorŠs algorithm is actually nothing more than SimonŠs algorithm adaptated from Zn
2

to ZN × ZN in the case of solving the DLP (and to ZN in the case of solving the
period Ąnding problem). The Walsh-Hadamard transforms H⊗n are simply replaced by
QFTŠs on ZN × ZN (ZN , respectively). Similarily, it assumes that the hiding function
f is efficiently implementable in a quantum way, which is true since we know how to
efficiently do an exponentiation with a quantum circuit (we will refer here to [VBE96]
but several papers improving the adder circuit which is used as a subroutine in the
exponentiation algorithm have followed). Namely, we assume that we have a unitary Uf

for implementing f :
Uf : ♣x⟩ ♣b⟩ 7→ ♣x⟩ ♣b⊕ f(x)⟩ .

Hereafter, Algorithm 2 provides a pseudo-code implementation of ShorŠs algorithm for
the DLP.

Remarks on Shor’s algorithm.

• The QFT over ZN can efficiently be approximated (e.g., [HH00]) or even replaced

by a QFT over Z2n where n def= ⌈logN⌉, for example. Note that it can also be useful
to decompose N by the fundamental theorem of arithmetic and thus uniquely
write N =

∏m
i=1 p

ni
i where the piŠs are distinct prime numbers and the niŠs are

integers. The QFT over ZN is then equivalent to the tensor product of the QFT

over the cyclic group Zp
ni
i

for i going from 1 to m.

• By the Ąrst measurement, an image of f is chosen, let say gδ, and the Ąrst register
is projected on a superposition of the preimages (σ, τ) by f of this gδ. Since we have

gδ def= xσgτ = gτ+σ logg x, we have τ = δ − σ logg x. Thus, we get a superposition of
the couples (σ, δ − σ logg x) for σ ∈ ZN where δ is unknown.



2. Shor’s Algorithm 7

Algorithm 2 ShorŠs algorithm for the DLP

Require: A unitary Uf to quantumly compute f .
Ensure: The discrete logarithm logg x as deĄned in Equation 1.2.

1: Prepare a uniform superposition over ZN × ZN and use Uf to compute f

1
N

∑

α,β∈ZN

♣α, β, f(α, β)⟩ =
1
N

∑

α,β∈ZN

∣∣∣α, β, xαgβ
〉

2: Measure the last register and discard it

1√
N

∑

α∈ZN

∣∣∣α, δ − α logg x
〉

3: Apply the Fourier transform over ZN × ZN

1

N
√
N

∑

α,ρ,σ∈ZN

ω
ρα+σ(δ−α logg x)

N ♣ρ, σ⟩

4: Measure the two registers to obtain a couple of values (σ logg x, σ) for some σ ∈ ZN

5: Compute σ−1 mod N , multiply it to σ logg x and output the result.

• If we look at the amplitude of the couple (α, β) just before the second measurement
operator, we have

1

N
√
N

∑

σ,α,β∈ZN

ω
ασ+β(δ−σ logg x)

N ♣α, β⟩

=
1

N
√
N

∑

α,β∈ZN

ωβδ
N


 ∑

σ∈ZN

ω
σ(α−β logg x)

N


 ♣α, β⟩

=
1√
N

∑

β∈ZN

ωβδ
N

∣∣∣β logg x, β
〉

where we used the following fact:

∑

σ∈ZN

ω
σ(α−β logg x)

N =




N if α = β logg x

0 otherwise.

So as stated in the penultimate step of the algorithm, we will obtain as a result of
the measurement step a couple (β logg x, β) for some β ∈ ZN .

• The value β we obtain has an inverse modulo N with good probability, since β
and N are coprime with probability ϕ(N)

N = Ω
(

1
log log N


where ϕ is EulerŠs totient

function, which allows us to retrieve logg x by repeating around log logN times
the algorithm.



8 Chapter 1. Introduction to the HSP

3 Standard Algorithm

It turns out that SimonŠs algorithm as well as ShorŠs algorithm, which respectively solve
the hidden subgroup problem in Zn

2 and in ZN or ZN ×ZN , can be seen as special cases
of a more general algorithm. In the literature, it is often referred to as the standard

algorithm and is mostly attributed to Kitaev [Kit95]. The method behind this algorithm
is called "coset sampling". It consists in the construction of a superposition of the
elements of a coset of the hidden subgroup using the function that hides it, followed by
the application of a quantum Fourier transform, which produces a superposition on the
elements of the dual of the hidden subgroup. Thus, a measurement of this superposition
will give an element of the latter, and thus of the hidden subgroup itself. This algorithm
turns out to efficiently solve the hidden subgroup problem in any abelian group G.
Indeed, we have the following theorem.

Theorem 1.1 (Th. 2.2 [EH99]). Let f : G→ S be a function that fulfills the subgroup

promise with respect to a subgroup H. There exists a quantum algorithm that outputs a

subset X ⊂ G such that X generates H with probability at least 1− 1/♣G♣. The algorithm

uses O (log ♣G♣) evaluations of f and runs in time polynomial in log ♣G♣ and in the time

required to compute f .

A brief aside is made on the theory of characters (see next page), which will be useful
for understanding and analyzing Algorithm 3, the algorithm in question for solving HSP,
as well as others in the chapters to come.

Algorithm 3 Standard algorithm for abelian groups

1: Prepare the uniform superposition over G× S and compute f

1√
♣G♣

∑

x∈G

♣x⟩ ♣f(x)⟩

2: Measure the second register and discard it

1√
♣H♣

∑

h∈H

♣y + h⟩

3: Apply the Fourier transform over G

1√
♣G♣♣H♣

∑

h∈H

∑

g∈G

χy+h(g) ♣g⟩

4: Measure the register to get a random element from H⊥.
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A word on character theory. Before giving some information which will be necessary
to us on character theory, we must begin with representation theory. Essentially, it
provides an important tool called "representation" to study abstract algebraic structures,
by representing the elements of these structures by linear transformations of vector
spaces. A representation is more precisely deĄned as follows.

Definition 1.2. Let G be a Ąnite group, V be a vector space over a Ąeld F and GL(V )
be the general linear group on V . A representation of G is a group homomorphism from
G to GL(V ).

In particular, the elements of a multiplicative group G will be represented by complex
invertible matrices and thus we will be able to use linear algebra tools, which is
particularly interesting. For more information on the theory of representations, we
refer the reader to [Sch21].
We now come to the character theory, which, in short, provides us with another tool
called "character" that allows us to characterize the elements of a group by the trace of
the matrix that represents them. The information given by the representation is not
lost, it is simply compressed. Formally, a character is deĄned as follows.

Definition 1.3. Let G be a Ąnite group, V be a vector space over a Ąeld F and GL(V )
be the general linear group on V . The character of a representation ρ : G→ GL(V ) is

χρ(g) : G→ F

g 7→ Tr(ρ(g))

From this new notion, we can directly deĄne the dual group G⊥ of G as the set of
characters of G equipped with pointwise multiplication. In the same way, the dual H⊥

of a subgroup H of G can be deĄned as follows.

H⊥ def=
{
χg ∈ G⊥ : χg(h) = 1 ∀h ∈ H

}
.

To Ąnish with this brief aside on characters, we give two properties that will be valuable
to us later, on several occasions:

♣x⟩ QFT over G7−−−−−−−→ 1√
♣G♣

∑

g∈G

χx(g) ♣g⟩ (1.3)

∑

h∈H

χg(h) =




♣H♣ if χg ∈ H⊥

0 otherwise.
(1.4)

Once again we refer to [Sch21] and to [Wol19] for more details on character theory and
on the link with the quantum Fourier transform, respectively.
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Remarks on the standard algorithm.

• The Ąrst remark to be made concerns the QFT. How can it be implemented for
any Ąnite abelian group G? One solution is to use the fundamental theorem of
Ąnite abelian groups. Indeed, it says that G is isomorphic to the direct sum of
cyclic subgroups of order a power of a prime number. Thus we can write that
G ≃ Zp

n1
1
× · · · × Zpnm

m
where the piŠs are distinct prime numbers and the niŠs are

integers. Therefore, the QFT over G is the tensor product of the QFT over the
cyclic group Zp

ni
i

for i going from 1 to m.

• By the Ąrst measurement, an image f(y) is chosen and the Ąrst register collapses
on a superposition of the preimages of f(y), i.e. of the elements of the coset of y,
y +H.

• If we look at the amplitude of an element g just before the second measurement
operator, we have

1√
♣G♣♣H♣

∑

h∈H

∑

g∈G

χy+h(g) ♣g⟩

=
1√
♣G♣♣H♣

∑

g∈G

χy(g)


∑

h∈H

χh(g)


 ♣g⟩

=
1√
♣G♣♣H♣

∑

g∈G

χy(g)


∑

h∈H

χg(h)


 ♣g⟩

=

√
♣H♣
♣G♣

∑

g∈G :
χg∈H⊥

χy(g) ♣g⟩ (by Equation 1.4)

So, as stated in the last step of the algorithm, we will obtain as a result of the
measurement step an element g such that χg ∈ H⊥.



Chapter

2Introduction to Code-Based

Cryptography

The theory of error-detecting and error-correcting codes makes it possible to ensure
the integrity of information when exchanged during a communication over a channel
where errors can occur, or of data stored on a physical medium, such as a CD or a
hard disk, where errors can also occur. The principle is simple: redundancy is added to
the transmitted or stored information. Any alteration of this information can thus be
detected and even corrected, depending on the amount of redundancy.

This step during which one takes a k bits message (which contains the information to be
transmitted or stored) and one adds redundancy to it to form a n bits coded message (n
being necessarily greater than k), is called encoding. Encoding corresponds in fact to the
multiplication of a vector m (representing the message) by a matrix G of size k×n. The
vector space given by the row space of this matrix is called a code. The recipient of the
coded message mG will in fact recover a noisy version due to the alterations generated
by the means of communication or storage, i.e. a vector y = mG + e of n bits where e
is a vector representing the perturbations. Finding the original message m from y is
then a task called decoding. This operation will be more or less complicated, depending
on the vector e and on the encoding method used (whether more or less redundancy
was added or whether a structure exists in the encoding method).

In the framework described so far, the objective is to make the decoding as simple as
possible, preferably of polynomial complexity in n, in order to preserve the integrity of
the transmitted information and especially to recover it easily. This is notably made
possible by using codes with a strong structure, i.e. a structured matrix G. But error-
correcting codes have found a second important use in cryptography, since it turns out
that when G is drawn randomly, the decoding task has an exponential cost in n. It is
in 1978 that McEliece proposed the Ąrst cryptosystem based on the theory of codes,
opening the way to code-based cryptography. Widely studied since then, no generic
algorithm with polynomial complexity is known, neither classical nor quantum, to attack
cryptographic primitives built from codes, making it one of the most popular branches
of post-quantum cryptography.

For an extensive introduction to error-correcting codes, we refer the reader to the well-

11
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known book by Huffman and Pless [HP03], which provides an extensive introduction
to error correcting codes. We also mention other interesting resources for the reader
interested in codes and which were good supports for writing this chapter. First, a
chapter book written by Raphael Overbeck and Nicolas Sendrier [OS09] and some lecture
notes by Alain Couvreur [Cou20] and Thomas Debris-Alazard [Deb21a; Deb21b]. There
are also several PhD theses: by Nicolas Aragon [Ara20], Maxime Bros [Bro22], Thomas
Debris-Alazard [Deb19], Adrien Hauteville [Hau17], Matthieu Lequesne [Leq21] and
Rocco Mora [Mor23]. Finally, we can cite the French accreditation to supervise research
of Pierre Loidreau [Loi07].
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1 Definitions

We deĄne here some basic key terms of code theory in our context. The notation F will
stand for a Ąnite Ąeld in this chapter. Recall that a Ąnite Ąeld contains qm elements,
where q is a prime number and m a positive integer.

1.1 Codes and their representations

We start by formally deĄning what a code is: a code of length n is simply a subset of Fn.
Not convenient to use since it requires an exhaustive list of their elements, it is common
to restrict ourselves to the case of linear codes (i.e., subspaces of Fn), which will be the
kind of codes we will work on exclusively.

Definition 2.1 (Linear code C). Let n and k be integers with k ≤ n. A linear code of
length n and dimension k over F is a k-dimensional vector space of Fn and its elements
are called codewords. We will refer to it as an [n, k]♣F♣-code and it will commonly be
denoted by C.

For the sake of clarity, we will simply refer to linear codes as codes in what follows.

An important quantity to look at when considering a code is its rate. It quantiĄes the
proportion of information contained in a coded message.
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Definition 2.2 (Code rate R). Let C be an [n, k]♣F♣-code. The quantity R
def= k

n is
referred to as the rate of a code.

A code is intimately linked to its dual, deĄned as follows.

Definition 2.3 (Dual code C
⊥). Let C be an [n, k]♣F♣-code. The dual code C

⊥ of C in Fn

is a code of dimension n− k, deĄned as

C
⊥ def= ¶u ∈ Fn : u · v = 0♢ .

The dual code C
⊥ of a linear code C over F can also be deĄned from the characters as

follows:

C
⊥ def= ¶u ∈ Fn : ∀c ∈ C, χu(c) = 1♢

As brieĆy described in the introduction, a code can be represented by a matrix, called a
generator matrix:

Definition 2.4 (Generator matrix G). Let C be an [n, k]♣F♣-code. A matrix G ∈ Fk×n

such that the rows of G form a basis for C is a generator matrix for C.

In other words, any codeword can be expressed as a linear combination of the rows of a
generator matrix of the code (note that a code can be represented by more than one
generator matrix); and a linear code can be deĄned as the k-dimensional vector space C

spanned by the rows of one of its generator matrices G:

C
def=
{

uG : u ∈ Fk
}
. (2.1)

The generator matrix of the dual code C
⊥ of a code C is called a parity-check matrix of

C.

Definition 2.5 (Parity-check matrix H). Let C be an [n, k]♣F♣-code. A matrix H ∈
F(n−k)×n such that the rows of H form a basis for C

⊥ is a parity-check matrix for C.

In other words, any vector that is orthogonal to all the codewords of C is a linear
combination of the rows of a parity-check matrix of the code (note that a code can be
represented by more than one parity-check matrix) and a linear code C can be deĄned
as the kernel of one of its parity-check matrices H:

C
def=
{

c ∈ Fn : Hc⊺ = 0
}
. (2.2)

We have brieĆy mentioned that the encoding of a message m is done by computing mG
where G is a generating matrix of the code. Decoding can be done in a similar way by
multiplying the vector mG by the transpose of a parity check matrix, since GH⊺ = 0
by deĄnition. Applying this decoding method to any vector of the Ąeld in which we
work gives us what is called a syndrome.
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Definition 2.6 (Syndrome). Let H ∈ F(n−k)×n. The syndrome of a vector y ∈ Fn with
respect to H is deĄned as the vector yH⊺.

Since yH⊺ = (c + e)H⊺ = eH⊺ only depends on the error in the noisy encoded message
y = c + e where c ∈ C, the syndrome is a useful tool in the decoding process.

It turns out that the syndromes with respect to a code are representative of what are
known as the cosets of the code.

Definition 2.7 (Coset). Let C be an [n, k]♣F♣-code. The coset of a vector y ∈ Fn with
respect to C is deĄned as the set

y + C
def= ¶y + c : c ∈ C♢ .

1.2 Norm and distance

To work with error-correcting codes and to be able to specify this notion of decoding as
well as that of error detection and correction, it is more than useful to equip our vector
space with a norm, which we will call here a weight function and usually denote by ♣·♣.
The distance induced by this norm will be denoted by d and is such that

∀x,y ∈ Fn, d(x,y) = ♣x− y♣.

In what follows, the weight functions we will consider will typically be the Hamming
weight for vectors and the rank weight for matrices and will be deĄned in Section 2. For
the time being, we give generic deĄnitions that apply to any distance d, starting with
that of ball, which is simply the set of elements whose distance to a certain point, the
center, is less than or equal to a certain value, the radius.

Definition 2.8 (Ball Br of radius r). Let n ∈ N, x be a vector of Fn and r ≤ n be a
nonnegative integer. The (closed) ball Br(x) of center x and radius r is deĄned as the
subset of Fn constituted of vectors at distance at most r from x, i.e.,

Br(x) def= ¶y ∈ Fn : d(x,y) ≤ r♢ .

We will denote by Br a ball of radius r and Br its volume.

We similarly deĄne the notion of sphere, which is just the boundary of a ball:

Definition 2.9 (Sphere Sr of radius r). Let n ∈ N, x be a vector of Fn and r ≤ n be a
nonnegative integer. The sphere Sr(x) of center x and radius r is deĄned as the subset
of Fn constituted of vectors at distance r from x, i.e.,

Sr(x) def= ¶y ∈ Fn : d(x,y) = r♢ .

We will denote by Sr a sphere of radius r and Sr its volume.
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It straightforwardly follows that a ball Br is just the union of all the spheres Sj with
j ≤ r:

Br =
r⋃

j=0

Sj .

Keeping in mind the decoding objective, it is interesting to work with a code such that
the balls centered on its codewords span as much as possible Fn, without intersecting,
since an intersection would mean that for some vectors of Fn, there are several possible
decodings, which is absolutely not desirable. Naturally, we must be interested in the
smallest distance between two codewords in order to determine the largest radius we
can take so that the balls do not overlap.

Definition 2.10 (Minimum distance dmin). Let C be a code. Its minimum distance is
deĄned as

dmin(C) def= min
c,c′∈C : c ̸=c′

{
d(c, c′)

}
.

The relative minimum distance is δmin(C) def= dmin(C)
n . When the context is clear, we will

simply note dmin and δmin.

Note that by linearity of the code, we can in fact prove that dmin(C) = minc∈C\¶0♢ ¶♣c♣♢.
From there, taking r =

⌊
dmin−1

2

⌋
, it is straightforward that the balls Br(c) for c ∈ C are

pairwise disjoint, yielding unique decoding. It is now interesting to see how the quantity
dmin behaves.

It turns out that standard probabilistic arguments can be used to show that the minimum
distance of a random linear code (i.e., a code C obtained as in Equation 2.1 by a generator
matrix G chosen uniformly at random in Fk×n) is with overwhelming probability equal,
up to an additive constant, to a quantity known as the Gilbert-Varshamov distance

dGV(n, k) (or simply dGV if there is no ambiguity).

Definition 2.11 (Gilbert-Varshamov distance dGV). The Gilbert-Varshamov distance
dGV(n, k) of an [n, k]♣F♣-code is deĄned as the largest radius r for which

Br ≤ ♣F♣n−k.

This Gilbert-Varshamov distance also happens to quantify the region where we typically

have unique decoding. More precisely, it turns out that the solution to the decoding
problem for a random linear code is unique with probability 1− 2−Ω(n) as long as for
Ąxed positive ε,

r ≤ (1− ε)dGV(n, k) (2.3)

when n goes to inĄnity. The Gilbert-Varshamov distance is crucial and will be very
useful later on.
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1.3 Computational Problems

The security of code-based cryptosystems relies on the hardness of computational
problems such as the Decoding Problem and Short Codeword Problem. It is worth
noting that efficient algorithms are known for solving these problems on some very
speciĄc families of linear codes, but they are still difficult to solve on average, for codes
uniformly drawn at random. We precisely deĄne these two problems in what follows.

• The Decoding Problem is a fundamental problem in coding theory. Given a linear
code C and a noisy codeword y ∈ Fn (i.e., a codeword to which an error has been
added), the decoding problem (sometimes also referred as the nearest codeword

problem) is to Ąnd the nearest codeword in C to y regarding the considered distance.
In the case of a random linear code C, which is the standard case, this problem
can be expressed as follows:

Problem 2.1. Decoding Problem (DP). The decoding problem with parameters

n, k, t ∈ N, which will be denoted by DP♣F♣(n, k, t), is defined as:

– Given: (G,mG + e) where G ∈ Fk×n and m ∈ Fk are sampled uniformly at

random over their domain and e ∈ Fn over the words of weight t,

– Find: e.

In fact, it really corresponds to decoding the code generated by the rows of G, as
in Equation 2.1.

The best algorithms for solving the decoding problem have exponential complexity
in n as soon as t is linear in n and the code rate R is bounded away from 0 and 1.

The Decoding Problem can be stated in an equivalent manner, known as the
Syndrome Decoding Problem. It is based on the fact that the parity-check matrix of
a linear code C can be used to detect errors in a received word y by computing its
syndrome. If y contains no errors, its syndrome is zero. Otherwise, the syndrome
reveals information about the location and type of the errors.

• The Short Codeword Problem is another fundamental problem in coding theory.
Given a linear code C and an integer w, the short codeword problem is to Ąnd
a codeword c ∈ C \ ¶0♢ of weight at most w (regarding the weight induced by
the considered distance). This problem is also sometimes referred to as the Low
Weight Codeword Problem. In the case of a random linear code, this problem can
be expressed as follows:

Problem 2.2. Short Codeword Problem (SCP). The Short Codeword Problem

with parameters n, k, w ∈ N, which will be denoted by SCP♣F♣(n, k, w), is defined as:
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– Given: H ∈ F(n−k)×n which is sampled uniformly at random,

– Find: c ∈ Fn such that Hc⊺ = 0 and the weight of c belongs to (0, w].

In fact, we are looking for a non-zero codeword c of weight ≤ w in the code deĄned
by the so-called parity-check matrix H, as in Equation 2.2.

The Short Codeword Problem becomes easy when the weight w is above a certain
range. The reason is that the code is a vector space of dimension k: by solving a
linear system, we can produce codewords with k− 1 entries equal to 0, which gives
good candidates for having a small weight. This strategy produces in polynomial
time codewords of weight ≈ ωeasy(n, k)n, where ωeasy(n, k) is some important
quantity that we will explicit in details in the next section. Below this quantity
ωeasy(n, k), the best known algorithms for solving the SCP have an exponential
complexity for a Ąxed rate R and a Ąxed ratio ω = w

n . Obtaining larger weights is
also readily obtained by choosing only part of the k − 1 entries to be equal to 0.

2 Weights

We will focus in this manuscript on two weights, which are also often called metrics,
namely the Hamming weight and the rank weight. The former was introduced more than
seventy years ago by Richard Hamming [Ham50] and is the one that was historically
the Ąrst used in code-based cryptography, while the latter has been introduced in the
context of matrix codes by Philippe Delsarte [Del78]. Other weights can be used to
build error-correcting codes such as the Lee weight, due to William Lee [Lee58], but it
will not be studied here.

2.1 Hamming Weight

The most commonly used weight in coding theory is the Hamming weight. The Hamming
weight wH of a vector is deĄned as the number of its non-zero coordinates, implying
that the Hamming distance dH measures the number of positions at which two vectors
of equal length differ. Formally, we have

Definition 2.12 (Hamming weight wH). Given a vector x = (x1, . . . , xn) ∈ Fn
q , its

Hamming weight is deĄned as

wH(x) = ♣¶i ∈ J1, nK : xi ̸= 0♢♣.

2.1.1 Properties for the Hamming weight

Let Fq be a Ąxed Ąeld. We give a collection of properties that will be useful in Chapter 3,
starting with the volume of a sphere.
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Lemma 2.1 (Volume Sr of a sphere Sr). Let n ∈ N and r be a positive integer. The

volume of Sr is

Sr =

(
n

r

)
(q − 1)r.

Lemma 2.2 (Bounding Sr (Lemma 3.11 of [Cou20])). Let n ∈ N and p ∈
[
0, 1− 1

q

]

such that pn ∈ N. Then Spn ≤ qnhq(p).

The Gilbert-Varshamov distance is more precisely deĄned as follows for Hamming metric.

Lemma 2.3 (Relative Gilbert-Varshamov distance δGV). The relative Gilbert-
Varshamov distance δGV of a random [n, k]q-code is

δGV = h−1
q


1− k

n


+O


1
n


.

We end with a theorem giving a simple bound involving explicitly the rate of a code and
the Gilbert-Varshamov bound.

Theorem 2.1 (Theorem 4.10 of [Cou20]). There exists a sequence of linear codes (Ci)i

over a fixed field Fq whose lengths sequence tends to infinity, rates sequence converges to

R and relative distance sequence converges to δ and such that

R ≥ 1− hq(δ).

Finally, we give an expression for the bound ωeasy(n, k) under which it is difficult to Ąnd
short codewords by solving a linear system where we aim to produce codewords with
k − 1 entries equal to 0.

Definition 2.13 (Short Codewords Bound). The bound ωeasy(n, k) of a random [n, k]q-
code is deĄned as

ωeasy(n, k) def=
q − 1
q


1− k

n


.

2.1.2 Hardness of DP and SCP in the context of Hamming weight

The decoding problem for random linear codes has been studied for a long time and
despite many efforts on this issue, the best algorithms are exponential in the codelength
n in the regime where t and k are linear in n. They almost all use the same technique,
known as Information Set Decoding, which was introduced in 1962 by Eugene Prange
[Pra62] in the case F = F2. Many improvements have later on been proposed [LB88;
Leo88; Ste88; FS09; BLP11; MMT11; Bec+12; MO15; BM17]. On the other hand, a
technique known as Statistical Decoding and introduced in [Jab01] was very recently
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improved up to the point that it beats Information Set Decoding algorithms when F = F2

and the rate of the code is smaller than 0.3 in [Car+23].

Nonetheless, the decision version of this problem is NP-complete [BMT78]. In 1978,
Robert McEliece [McE78] proposed the Ąrst public key encryption scheme based on
coding theory and relying on the difficulty of decoding a random linear code. Many
other public key encryption schemes [Ale03; Mis+12] and schemes such as authentication
protocols [Ste93] or pseudorandom generators [FS96] followed, built relying on the
hardness of this task.

Decoding and looking for short codewords are problems that have been conjectured to be
extremely close. They have been studied for a long time [Pra62; Ste88; Dum89; MMT11;
Bec+12; MO15; BM18; Car+23], and for instance in the regime of parameters where the
rate R = k

n is Ąxed in (0, 1), the best algorithms for solving them are the same (namely
Information Set Decoding). A reduction from decoding to the problem of Ąnding short
codewords is known but in an LPN context [App+17; Bra+19; Yu+19; DR22]. However,
even in an LPN context, no reduction is known in the other direction. These problems
can be viewed in some sense as a code version of the LWE and SIS problems respectively
in lattice-based cryptography [Reg09].

The decision version of the short codeword problem has also been proved to be NP-
complete [Var97] and while the security of many code-based cryptosystems relies on the
hardness of the decoding problem, it can also be based on Ąnding a ŞshortŤ codeword, as
in [Mis+12] or in [App+17; Bra+19; Yu+19] to build collision resistant hash functions
for example.

2.2 Rank Weight

In recent years, there has been growing interest in developing cryptographic primitives
based on the rank weight, a mathematical concept that measures the dimension of
the vector space spanned by the rows of a matrix. It is thus tempting to deĄne codes
embedded with this metric: these codes are named matrix codes and their codewords are
matrices. The rank metric has been extensively studied in the area of network coding,
where it is well-suited for the kind of errors that occur.

Definition 2.14 (Matrix code). Let Mm×n (Fq) be the set of m × n matrices with
coefficients in Fq. An [m×n,K]q-code is a K-dimensional linear subspace of Mm×n (Fq)
called a matrix code.

The set of codes on Fqm , which are known as Fqm-linear codes, is a subset of the class
of matrix codes (see [FLP08]). Indeed, we can associate a matrix from Fm×n

q to any
vector from Fn

qm by using a basis of Fqm over Fq and thus associate a matrix code to a
Fqm-linear code.
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Definition 2.15 (Matrix code associated to a Fqm-linear code). Let β = (β1, . . . , βm)
be a basis of Fqm over Fq and C be a Fqm-linear code. To each word x = (x1, . . . , xn) ∈ C

we can associate a m× n matrix M(x) = (mij)i∈J1,mK
j∈J1,nK

with entries in Fq such that for

any j in J1, nK:

xj =
m∑

i=1

mijβi.

The set ¶M(x) : x ∈ C♢ is the matrix code over Fq associated to C. The rank of x is
then deĄned as the rank of M(x):

rank (x) def= rank (M(x)) .

The rank distance dR follows from this deĄnition. For x,y ∈ Fn
qm ,

dR(x,y) = rank (x− y) .

Note that the representation of a Fqm-linear code is cheaper than the one of the
corresponding matrix code, making the former particularly interesting.

Remark 2.1. Let us take a [n, k]qm-code and its associated matrix code, which is a
[mn,mk]q-code. We will need k(n−k)m log q bits to represent the former while mk(mn−
mk) log q bits are required to represent the latter. It is therefore more appropriate to
work with Fqm-linear codes as they offer a storage gain of a factor m over their matrix
code counterpart.

2.2.1 Properties for the rank weight

We can now give a closed formula for the size of a sphere of radius r. It is equal to the
number of matrices in Fm×n

q of rank r.

Lemma 2.4 (Volume Sr of a sphere Sr). Let r be a positive integer. We have

Sr
def
= ♣Sr♣ =




r−1∏

j=0

(qm − qj)



[
n

r

]

q

.

Where the Gaussian coefficient
[n

r

]
q

is deĄned by

[
n

r

]

q

def=





∏r−1
j=0

qn−qj

qr−qj if r ≤ n
0 otherwise

(2.4)

We have some bounds on the volume of a sphere and thus on the one of a ball:
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Lemma 2.5. We have

q(m+n−2)r−r2 ≤ Sr ≤ q(m+n+1)r−r2
(2.5)

q(m+n−2)r−r2 ≤ Br ≤ q(m+n+1)r−r2+1 (2.6)

Using the fact that
∏∞

i=1(1− q−i) is some constant depending on q, we can prove the
following asymptotic expressions for Gaussian coefficients and for the volume of a sphere:

Lemma 2.6 (Asymptotic expressions). As n→ +∞,

[
n

r

]

q

= Θ
(
qr(n−r)


(2.7)

Sr = Θ
(
qr(m+n−r)


(2.8)

From Equation 2.8 we deduce that

Su+1

Su
= Θ

(
q(u+1)(m+n−u−1)

qu(m+n−u)

)
= Θ

(
qm+n−2u−1


. (2.9)

We can take back the DeĄnition 2.11 of the Gilbert-Varshamov distance and approximate
the ball Br by its boundary Sr. Injecting Equation 2.8 in the expression then yields a
useful and simple relation on the Gilbert-Varshamov distance, stated in the following
Lemma for any matrix code.

Lemma 2.7 (Gilbert-Varshamov distance [FLP08]). The relative Gilbert-Varshamov

distance δGV of an [m× n,K]q-code (with m ≥ n) satisfies the relation

K ≤ (m− δGV)(n− δGV).

2.2.2 Hardness of DP and SCP in the context of rank weight

Contrary to their counterparts in Hamming metric, the decision versions of the decoding
and short codeword problems are not known to be NP-complete. However, Gaborit and
Zémor proved that the decoding problem in Hamming metric, which is an NP-complete
problem, can be reduced by a randomized reduction to the decoding problem in rank
metric [GZ16].

In addition, some cryptosystems have been proposed, based on these problems. Namely,
we can cite the Ąrst one, introduced in [GPT91] and notable for the fact that it is a
translation in rank metric of the McEliece cryptosystem. It suffered from several attacks,
e.g., in [Gib96; Ove05]. It is worth noticing that two rank-based cryptosystems made
it to the second round of the NIST Post-Quantum Standardization Process, namely
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ROLLO [Ara+19] and RQC [Agu+20] and several rank-based signature schemes have
been presented to the NIST Ąrst round of the Standardiation Process of additional
signatures, such as MIRA [Ara+23b], MiRitH [Adj+23] or RYDE [Ara+23a] for example.

Regarding attacks on these problems, for a long time combinatorial attacks were the only
ones considered useful and consist in some Information Set Decoding equivalents [CS96;
GRS16; Ara+18]. However, algebraic attacks have made their way and have recently
been shown to be more effective than the former [OJ02; Bar+20; Bar+20; Bar+22].
These algebraic attacks have notably impacted NISTŠs decision not to move ROLLO
and RQC to the third round of the Standardization Process (as well as the signature
schemes Rainbow and GeMSS, in multivariate cryptography).

Finally, it is important to note that the key sizes of rank metric cryptosystems are
generally smaller than those in Hamming metric, since the complexity of rank metric
attacks is higher than in Hamming metric. On the other hand, the Hamming metric has
been much more widely studied than the rank metric, which is more recent.



Chapter

3From Decoding to Finding Short

Codewords

Decoding and looking for short codewords are problems that have been conjectured to be
extremely close. They have been studied for a long time [Pra62; Ste88; Dum89; MMT11;
Bec+12; MO15; BM18; Car+23], and a reduction from decoding to the problem of
Ąnding short codewords is known but in an LPN context [App+17; Bra+19; Yu+19;
DR22]. However, even in an LPN context, no reduction is known in the other direction.
These problems can be viewed in some sense as a code version of the LWE and SIS

problems respectively in lattice-based cryptography [Reg09]. Our contribution in this
chapter, based on [DRT23], is precisely to give the code-based version of this reduction,
namely a quantum reduction from Ąnding short codewords to decoding. This problem
was open for quite some time. To simplify the statements, we will state it in the regime
of parameters where the rate R is Ąxed in (0, 1), but actually it also works in the LPN

setting (but needs to be adapted in several places where we use exponential bounds in
n).

There is a fundamental difficulty of reducing the research of low weight codewords to
decoding a linear code which is due to the fact that the nature of these two problems is
very different. Decoding concentrates on a region of parameters where there is typically
just one solution, whereas Ąnding low weight codewords concentrates on a region of
parameters where there are solutions (and typically an exponential number of solutions).
This makes these problems inherently very different. This was also the case for the
reduction from SIS to LWE and the fact that we can have a reduction from one to
another by looking for quantum reductions instead of classical reductions was really a
breakthrough at that time.

Regev’s quantum reduction strategy adapted to coding theory. In [Reg05] (see
also the extended version [Reg09]) Regev showed how to transform a random oracle
solving the decoding problem in a lattice into a quantum algorithm outputting a rather
small vector in the dual lattice. Our aim is to show here that the natural translation of
this approach in coding theory gives an algorithm that outputs a rather small vector in
the dual code. Roughly speaking RegevŠs approach relies on a fundamental result about
the Fourier transform.

23
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Proposition 3.1. Consider an Abelian group G and a function f : G 7→ C that is

constant on the cosets of a subgroup H of G. Then the Fourier transform f̂ is constant

on the dual subgroup H⊥.

This innocent looking fact, together with the fact that the quantum Fourier transform
can be performed in polylog time when the group G is Abelian, is arguably the key to
several remarkable quantum algorithms solving in polynomial time the period Ąnding in
a vectorial Boolean function [Sim94], the factoring problem or the discrete logarithm
problem [Sho94]. All of these problems can be rephrased in terms of the hidden Abelian
subgroup problem, where one is given such a function f that is constant (and distinct)
on the cosets of an unknown subgroup H and one is asked to recover H. This is achieved
by

(i) creating the uniform superposition 1√
♣G♣
∑

x∈G ♣x⟩ ♣f(x)⟩,

(ii) measuring the second register and discarding it, yielding a quantum state of the
form 1√

♣H♣
∑

h∈H ♣x+ h⟩,

(iii) applying the QFT to it yielding a superposition of elements in the dual subgroup
H⊥ (and therefore gaining information on H in this way).

Proposition 3.1 is used in a similar way in RegevŠs reduction. Translating RegevŠs
reduction in coding theory would use this framework by considering that the linear code
C we want to decode plays the role of the aforementioned H. From now on we will
assume that this code is of dimension k and length n over Fq. The algorithm would
basically look as follows for reducing the search of small codewords in the dual code
C

⊥ =
{

c⊥ ∈ Fn
q : c · c⊥ = 0, ∀c ∈ C

}
(where x · y =

∑n
i=1 xiyi is the standard inner

product in Fn
q ) to decoding errors of weight t in C.

Step 1. Use a quantized version of the decoding algorithm to prepare the state

1√
Z

∑

c∈C,e∈Fn
q

πe ♣c + e⟩

where Z is a normalizing constant and (♣πe♣2)e is a probability distribution on
errors that concentrate around the weight t we are able to decode. This is done

(i) by preparing Ąrst a superposition of codewords and errors,

1√
Z

∑

c∈C

∑

e∈Fn
q

πe ♣c⟩ ♣e⟩ ,
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(ii) then adding the second register to the Ąrst one to get the entangled state

1√
Z

∑

c∈C

∑

e∈Fn
q

πe ♣c + e⟩ ♣e⟩

(iii) and Ąnally disentangling it thanks to a quantized version of the decoding
algorithm, which from c + e recovers e and subtracts it from the second
register to get the state

1√
Z

∑

c∈C

∑

e∈Fn
q

πe ♣c + e⟩ ♣0⟩ .

Step 2. Apply the QFT on Fn
q to obtain a superposition of elements c⊥ in the dual code

∑

c⊥∈C⊥
αc⊥

∣∣∣c⊥
〉
.

Step 3. Measure the register to output c⊥ of rather small norm in C
⊥.

The second step is a direct consequence of Proposition 3.1. The last one raises the
issue of whether or not the QFT concentrates the weight of the vector output by this
algorithm on weights t′ for which Ąnding a codeword in C

⊥ is not known to be easy, as
it is the case for RegevŠs reduction on lattices equipped with the Euclidean metric.

On the difficulty of translating Regev’s reduction to the Hamming metric.
The natural analog in the Hamming metric case of the Gaussian noise model used in
RegevŠs reduction [Reg09] is the q-ary symmetric channel. Its associated quantum state
is given by

∣∣∣πSC
〉

def=
∑

e∈Fn
q

(1− τ)
n−♣e♣

2


τ

q − 1

 ♣e♣
2 ♣e⟩ =


√1− τ ♣0⟩+

∑

α∈F∗
q

√
τ

q − 1
♣α⟩



⊗n

where ♣e♣ stands for the Hamming weight of e, n for the length of e and τ is the crossover
probability of the q-ary symmetric channel. Indeed, measuring such a state yields an
error distributed like a q-ary symmetric channel of crossover probability τ . In both cases
(be it for the Gaussian noise or the q-ary symmetric channel), the Fourier transform
yields a dual noise which is again Gaussian or q-ary symmetric respectively and the
quantum state corresponding to the error is a product state which considerably simpliĄes
the computation. In the case of the q-ary symmetric noisy chanel, applying the QFT on∣∣∣πSC

〉
yields the quantum state

∑

e∈Fn
q

(1− τ⊥)
n−♣e♣

2

(
τ⊥

q − 1

) ♣e♣
2

♣e⟩ =



√

1− τ⊥ ♣0⟩+
∑

α∈F∗
q

√
τ⊥

q − 1
♣α⟩



⊗n

def= ♣̂πSC⟩
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where (see Fact 1)

τ⊥ def=

(√
(q − 1)(1− τ)−√τ

2

q
.

This new quantum state represents a q-ary symmetric channel of parameter τ⊥. If we
measure

∣∣∣πSC
〉

we get relative weights ≈ τ whereas if we measure ♣̂πSC⟩ we get relative

weights around τ⊥.

It would thus be tempting to conclude that the ŞidealŤ version of the algorithm presented
above will output dual codewords (in Step 3) of relative Hamming weight ≈ τ⊥ < ωeasy,
i.e., in the regime where there is a chance that it is difficult to produce such words.
However, this natural approach runs into the following problem. The parameter τ of
the Bernoulli noise has to be chosen so that the typical error weight τn is equal to or
slightly below the weight t we can decode. Such a τ is therefore at most the relative
Gibert-Varshamov δGV. However, it can be proved that in this case the most likely
relative weight we measure at Step 3 is typically zero if τ⊥ < ωeasy. In other words, the
straightforward application of RegevŠs approach to coding theory fails to give a useful
reduction.

We will give in Remark 3.1 another explanation for the failure of this approach. It can
be summarized by saying that the Bernoulli noise model is not concentrated enough on
its typical weight τn.

Fact 1. Let
∣∣∣πSC

〉
def
=
√

1− τ ♣0⟩+
∑

α∈F∗
q

√
τ

q−1 ♣α⟩
⊗n

, where τ ∈
[
0, q−1

q

]
, then

♣̂πSC⟩ =



√

1− τ⊥ ♣0⟩+
∑

α∈F∗
q

√
τ⊥

q − 1
♣α⟩



⊗n

, where (3.1)

τ⊥ def
=

(√
(q − 1)(1− τ)−√τ

2

q
. (3.2)

Proof. Let ♣ψ⟩ def=
√

1− τ ♣0⟩+
∑

α∈F∗
q

√
τ

q−1 ♣α⟩. Then, it is readily veriĄed that

♣̂πSC⟩ =
(
♣̂ψ⟩
⊗n

where ♣̂ψ⟩ =
1√
q


β0 +

∑

y∈F∗
q

βy ♣y⟩

 with

β0 =
√

1− τ + (q − 1)
√

τ

q − 1
and βy =

√
1− τ +

√
τ

q − 1

∑

x∈F∗
q

χy(x).

It is easy to verify that for any y ∈ F∗
q we have for any x0 ∈ F∗

q :

∑

x∈Fq

χy(x) =
∑

x∈Fq

χy(x0 · x) = χy(x0)
∑

x∈Fq

χy(x)
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Since there exists x0 ∈ F∗
q such that χy(x0) ̸= 1, we deduce that

∑
x∈Fq

χy(x) = 0. Now
since

∑
x∈Fq

χy(x) = 1 +
∑

x∈F∗
q
χy(x), we have

∑
x∈F∗

q
χy(x) = −1 for any y in F∗

q and
therefore

βy√
q

=

√
1− τ
q
−
√

τ

q(q − 1)

=

√
(q − 1)(1− τ)
q(q − 1)

−
√

τ

q(q − 1)

=

√
(q−1)(1−τ)

q −
√

τ
q√

q − 1

=

√
τ⊥

√
q − 1

.

It is then clear that β0√
q =
√

1− τ⊥ from
∑

y∈Fq
♣βy♣2 = 1, concluding the proof.

Our approach. To tackle this issue, it would therefore be natural to choose the most
concentrated noise model on the weight t, namely:

∣∣∣πunif
〉

=
∑

e : ♣e♣=t

1√
St
♣e⟩

where St is the cardinality of the sphere of radius t in the Hamming metric, i.e.,
St = (q − 1)t

(n
t

)
. Understanding of which weight w is the outcome after measuring the

state
∑

c⊥∈C⊥ αc⊥

∣∣∣c⊥
〉

in Step 3 is more difficult in the constant weight error model
than in the Bernoulli noise model. In particular, it involves properties of Krawtchouk
polynomials. However, it can be shown that when ω

def= w
n lies in a whole interval

[
τ⊥, τ⊥

+

]
where τ⊥

+
def=
(√

(q−1)(1−τ)+
√

τ
)2

q , we have many points where the probability of

measuring a word of weight w is actually 1
poly(n) . The ŞdualŤ weight distribution is not

really concentrated on a single value but spread over a large interval. This would provide
a useful reduction when we use a decoding algorithm that succeeds on a non-negligible
set of inputs.

Unfortunately, to be relevant in a cryptographic context, we must consider the case where
decoding succeeds only for a potentially very low probability ε, the aim being to turn our
decoding algorithm into an algorithm that produces a low weight codeword from the dual
with some probability poly(ε). This cannot be obtained with the uniform distribution on
the sphere of radius t. Indeed, the ŞidealŤ version of the algorithm we presented before
(where we assume we always succeed with our decoding algorithm) describes a state
we obtain in Step 2 that is not completely orthogonal (the scalar product is bounded
from below by a quantity poly(ε)) to the ŞrealŤ state after applying this approximate
decoding process and the QFT. If we were to measure this state directly (starting from
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the uniform noise model over the sphere of radius t), we would only be sure to measure a
word of some relative weight lying in the interval

[
τ⊥, τ⊥

+

]
with probability poly(ε), since

the ŞidealŤ state concentrates its relative weight distribution in all this interval. In this
way, we cannot ensure the measurement of a dual codeword of smallest possible relative
weight, namely τ⊥, it could be 1/2 ∈

[
τ⊥, τ⊥

+

]
. We really need here a distribution that

is rather sharply concentrated around the decoding radius of our decoding algorithm,
but whose Fourier transform is also sharply concentrated around a certain weight.

So far, two noise models have been considered for the reduction to work, each with an
advantage and a drawback:

• the q-ary symmetric noise
∣∣∣πSC

〉
is not concentrated enough on its typical weight

τn but its dual noise is sufficiently concentrated on τ⊥n,

• the uniform noise
∣∣∣πunif

〉
on the sphere of radius τn is sufficiently concentrated

but its dual noise is spread out on the whole interval
(
τ⊥n, τ⊥

+n

.

Interestingly, the issues with these two distributions are opposite. Fortunately, it turns
out that we have a natural noise model to get a best-of-both-worlds model: truncating

the q-ary symmetric noisy channel. More precisely, consider the following noise model
(for some small enough constant ε > 0),

∣∣∣πTrunc
〉

=
1√
N

∑

e :
♣e♣∈[(1−ε)t,(1+ε)t]

(1− τ)
n−♣e♣

2


τ

q − 1

 ♣e♣
2 ♣e⟩

where N is a normalizing factor. This noise model solves our above issues with
∣∣∣πSC

〉

and
∣∣∣πunif

〉
because it veriĄes our two constraints for the reduction to work:

(i) its weight distribution is sufficiently concentrated around τn,

(ii) its dual noise after applying the Fourier transform is concentrated on the relative
weight τ⊥n.

Contrary to (i), assertion (ii) may seem unclear. It relies on the following equality as
we will show in Lemma 3.11

∥∥∥
∣∣∣πTrunc

〉
−
∣∣∣πSC

〉∥∥∥ = 2−Ω(n)

where ∥·∥ stands for the norm of the Hilbert space in which the quantum states are
embedded. Therefore, applying the Fourier transform (which is an isometry for ∥·∥) on∣∣∣πTrunc

〉
will yield a quantum state which is 2−Ω(n)-close of ♣̂πSC⟩.
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With our approach and the truncated q-ary symmetric channel, we transform through
the QFT a decoding algorithm correcting τn errors into an algorithm outputting with
non-negligible probability words of weight ≈ τ⊥n in the dual code. The distance τ⊥ is
clearly a decreasing function of τ and the issue is now whether or not there exists a
τ < δGV(n, k) (this is the biggest value for which we can hope that decoding is successful
with probability 1− o(1)) such that τ⊥ < ωeasy(n, n − k) (here we want to Ąnd short
codewords in the dual code C

⊥ which is of dimension n− k), since this would yield a
useful reduction. It turns out that in many cases we have to choose τ > δGV(n, k)/2,
meaning that we are not in the regime where decoding necessarily has at most one
solution. This complicates the proof of the reduction somewhat since with a quantized
version of the decoding algorithm, we will not be able to produce at Step 1 the state

1√
Z

∑
c∈C

∑
e∈Fn

q
πe ♣c + e⟩ (since decoding fails for some e) but we will show that as long

as τ < δGV(n, k), we will get a state close to it. This will be enough for our purpose.

By putting all these ingredients together, we are able to prove the following result.

Theorem 3.1 (informal). The short codeword problem SCP(q, n, n− k,w) reduces to

the decoding problem DP(q, n, k, t) for w = τ⊥n+O(1) where

τ
def
=

t

n
and τ⊥ def

=

(√
(q − 1)(1− τ)−√τ

2

q
.

It will turn out that for q = 2 (see Section 2) we can Ąnd for any rate R = k
n in

(0, 1) a t < dGV(n, k) for which the corresponding w is below ωeasy(n, n − k)n (the
reduction is useful in this case). It also corresponds to parameter ranges that are relevant
for certain cryptographic applications (see [AFS05] whose security relies on the SCP

problem in a parameter range which is covered by our reduction and [Ste93] which is
an identiĄcation scheme whose security actually relies on the decoding problem just
below the Gilbert-Varshamov distance). Unfortunately, this is not true anymore when
q ≥ 5, where there is always a range for R for which w is above ωeasy(n, n− k)n, for any
choice of t < dGV(n, k). The reduction then starts to become useless since the range
in question gets larger when q grows. Roughly speaking, when q grows, the Hamming
metric gets coarser (we have only n+ 1 different values for the metric on Fn

q , whereas
the size of the ambient space gets bigger) and this results in the range of values of R for
which this reduction is useful becoming smaller.

Considering other metrics. The whole approach we have followed here (properly
choosing the error distribution and going beyond the unique decoding radius for decoding
if necessary) can of course be adapted to other metrics. It is easy for instance to apply it
to the rank metric which is becoming increasingly popular in code-based cryptography,
see for instance [Ara+19; Agu+20; Bel+19; Bel+20]. This metric is even coarser than
the Hamming metric: on Fm×n

q there are only 1 + min(m,n) different values for the
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rank weight (given a matrix, it is deĄned as its rank). In this case, as we will see, the
reduction is always useless (i.e., reduces to weights which are always easy to produce for
a random linear code).
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1 Quantum Reduction from Sampling Short Code-

words to Decoding

1.1 A general result

We assume here that we have a probabilistic algorithm A that solves (sometimes) the
decoding problem at distance t. Its inputs are a generator matrix G ∈ Fk×n

q of a code

C ⊆ Fn
q (i.e., C =

{
uG : u ∈ Fk

q

}
) and a noisy codeword c + e where c belongs to C. We

denote by r ∈ Fℓ
2 the internal coins of A . It outputs with a certain probability ε, the

ŞrightŤ e when being fed with c + e where c and e are uniformly chosen at random in C

and among the errors of weight t respectively:

ε
def= PG,c,e,r (A (G, c + e, r) = e) . (3.3)

The quantum reduction starts by building the initial superposition

1√
2ℓqk

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣e⟩ ♣c⟩ ♣r⟩
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where ♣π⟩ def=
∑

e∈Fn
q
πe ♣e⟩ is some quantum superposition of errors. It then acts as

follows.

Algorithm of the quantum reduction.

Initial state =
1√
2ℓqk

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣e⟩ ♣c⟩ ♣r⟩

adding e to c: 7→ 1√
2ℓqk

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣e⟩ ♣c + e⟩ ♣r⟩

applying A : A7→ 1√
2ℓqk

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣e−A (G, c + e)⟩ ♣c + e⟩ ♣r⟩ def= ♣ψA ⟩

(3.4)

QFT on 2nd reg: 7→ ♣̂ψA ⟩ (3.5)

measuring the state: 7→ ♣e⟩
∣∣∣c⊥

〉
♣r⟩ (3.6)

We will now give a general theorem about an algorithm of this kind and will show that
it produces a codeword of the dual code C

⊥ of some weight u with probability poly(ε)
when certain conditions are met. We recall that Su denotes the volume of a sphere of
radius u (see DeĄnition 2.9).

Theorem 3.2. Assume that ♣π⟩ is radial and non-negative, i.e., πe = f(♣e♣) for some non-

negative function f . Assume that ♣̂π⟩ =
∑

e∈Fn
q
π̂e ♣e⟩ is radial too(1) and let f̂(w) = π̂e

for any element e of Fn
q of weight w. Furthermore, assume that there exists an interval

(1)In other words, we assume that the Fourier transform is radially preserving. This property depends

on the characters chosen to define the Fourier transform and the metric. Recall that a radial function is

a function which is constant on spheres centered around 0. This property clearly holds for functions

f : Fn
q → C with the characters chosen here and the Hamming metric. We give this more general

statement in order to apply it in other cases of interest, for instance the rank metric.
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W ⊆ J0, nK such that:

(Concentration of π)
⟨π♣1⟩2
qn−k

= 2−Ω(n),

(C1)

(Exponentially many dual codewords of weight u ∈ W )
∑

u∈W

qk

Su
= 2−Ω(n),

(C2)

(Concentration of the dual distribution π̂ on W )
∑

u∈W

Su

∣∣∣f̂(u)
∣∣∣
2

= 1− 2−Ω(n)

(C3)

with ♣1⟩ being the (unnormalized) superposition of errors : ♣1⟩ def
=
∑

e∈Fn
q
♣e⟩.

Suppose that there exists an algorithm A solving the decoding problem DP(q, n, k, t)
with success probability ε. Then, there exists a quantum algorithm which takes as

input a generator matrix G ∈ Fk×n
q of C and outputs a codeword of weight u ∈ W

in C
⊥ with probability greater than

p2
t ε3

16 − O(p4
t ε

5) − 2−Ω(n) − O
(
q− min(k,n−k)


where

pt
def
=
∑

e : ♣e♣=t ♣πe♣2 = Stf(t)2.

Remark 3.1.

• We will use this theorem for Hamming and rank metrics, but it can be applied to
any metric for which the Fourier transform is radially preserving.

• When πe is non-negative, Condition (C1) basically requires the probability

distribution on Fn
q , µ def= (π2

e)e∈Fn
q
, to be sufficiently concentrated. This quantity

can be expressed as qk(1−H2(µ,U))2, where U stands for the uniform distribution

over Fn
q and H(p,q) def=

√
1−∑i

√
piqi is the Hellinger distribution between two

probability distributions p and q deĄned over a same probability space.

1. It is clearly maximal for the uniform probability distribution over Fn
q , and

2. on the other hand, when considering the Hamming metric and ♣π⟩ =
∣∣∣πSC

〉
,

we have
〈
πSC

∣∣∣1
〉2

qn−k
=

qk

qn

∣∣∣∣∣∣
∑

y∈Fn
q

χy(0)πy

∣∣∣∣∣∣

2

= qk
∣∣∣f̂(0)

∣∣∣
2

= qk(1− τ⊥)n.

It can be veriĄed that there is no way to choose τ such that at the same time:

(i) τn ≤ dGV(n, k) (otherwise there is no hope to decode correctly most of
the time),
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(ii) τ⊥ ≤ ωeasy (otherwise Ąnding codewords in C
⊥ of weight τ⊥n is easy),

(iii) qk(1− τ⊥)n = o(1).

The quantity ⟨π
SC♣1⟩2
qn−k is just too big, or in other words, the distribution of µ

is too much spread out and not concentrated enough on its typical weight.

• Condition (C2) expresses that u lies in a subset of values for which a random
[n, n − k]-code has an exponential expected number of codewords. Indeed, the
expected number of codewords of weight u is equal to Su

qk .

• Finally, Condition (C3) expresses that the dual probability distribution µ̂
def=

(♣π̂e♣2)e∈Fn
q

is almost completely supported on W up to an exponentially small
vanishing term.

1.2 Outline of the proof of Theorem 3.2

Let us Ąrst give a general outline of the proof before detailing each step.

Step 1. We prove that after applying A in the reduction, ♣ψA ⟩ is close enough to the
ŞdisentangledŤ state

♣ψideal⟩ def=
1√
Z

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣0n⟩ ♣c + e⟩ ♣r⟩ (3.7)

where Z is a normalizing constant.

Step 2. We then analyze the effect of the QFT on the Şideal stateŤ ♣ψideal⟩ and a subsequent
measurement of it. We namely prove that measuring it produces a codeword

c⊥ ∈ C
⊥ of weight u with probability

∣∣∣f̂(u)
∣∣∣
2
, up to a normalizing factor.

Step 3. Then we prove that the number of codewords of weight u in C
⊥ is typically very

close to Su

qk . With Step 2 and the assumptions of Theorem 3.2, we infer that the
probability of observing a dual codeword of weight in the set W after measuring
̂♣ψideal⟩ is exponentially close to 1.

Step 4. We upper-bound the statistical distance between the probability distribution of
the states after measuring ♣̂ψA ⟩ and ̂♣ψideal⟩ respectively by using Step 1 and the
properties of the trace distance given in Fact 2 below.

Let us give more details about these steps.

Step 1. For this purpose, we use the trace distance between quantum states (as in
[Ste+09] where this has been used in the lattice setting). It is deĄned as follows :

Dtr(♣ϕ⟩ , ♣ψ⟩) def=
√

1− ♣⟨ϕ♣ψ⟩♣2. (3.8)
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This distance meets the following properties that will prove useful in our context:

Fact 2.

(I) It can never increase after a quantum evolution [NC16, §9, Th. 9.1];

(II) The pair of probability distributions (pm, qm) of the measurement outcome m of any

quantum measurement performed on the pair of states (♣ϕ⟩ , ♣ψ⟩) satisfies [NC16,

§9, Th. 9.2]

Dstat(pm, qm) ≤ Dtr(♣ϕ⟩ , ♣ψ⟩) (3.9)

where Dstat is the statistical distance (also called the total variation distance)

between two probability distributions. It is defined by:

Dstat(p, q)
def
=

1
2

∑

x∈X

♣p(x)− q(x)♣

where p and q are two discrete probability distributions on X .

With this notion we can prove that

Proposition 3.2. With probability greater than 1− ⟨π♣1⟩2

qn−k −O
(
q− min(k,n−k)


over the

choices of G we have:

Dtr(♣ψA ⟩ , ♣ψideal⟩) ≤
√

1− p2
t

2
ε2

G,

where εG is the probability that A returns the right error e when the input matrix is G,

i.e.,

εG
def
= Pc,e,r (A (G, c + e, r) = e) . (3.10)

The proof of this result follows immediately from three lemmas (whose proof is in
Section 3.1). The Ąrst one bounds the trace distance in terms of εG and Z, and the
second one gives a tight upper-bound on the expected value of Z for a related probabilistic
model. The latter is used to derive the third one which is fundamental and states that
it is very unlikely for Z to be much greater than the ŞnaturalŤ constant 2ℓqk:

Lemma 3.1. We have:

Dtr(♣ψA ⟩ , ♣ψideal⟩) ≤
√

1− 2ℓqkp2
t

Z
ε2

G.

Lemma 3.2. Assume that C is chosen by uniformly drawing at random a parity-check

matrix H for it. We have:

E(Z) ≤ 2ℓqk

(
1 +
⟨π♣1⟩2
qn−k

)
. (3.11)
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Lemma 3.3. Let η > 0. We have:

PG(Z > 2ℓqk(1 + η)) ≤ 1
η

⟨π♣1⟩2
qn−k

+O
(
q− min(k,n−k)


.

Proposition 3.2 immediately follows by using η = 1 in Lemma 3.3 and plugging this
bound on Z in Lemma 3.1. The quantity 2ℓqk is the natural value for Z since it is
what we can expect when all the c + e terms (taking all c in C and all typical e) are
different. The constant Z increases precisely when there are many collisions for the c + e
terms. However, in this case, we do not expect to be able to solve the decoding problem
anymore.

Step 2. More precisely, we prove that

Lemma 3.4. If the Fourier transform is radially preserving, meaning that it transforms

a radial function into a radial function, then after measuring ̂♣ψideal⟩ we obtain a state

♣0n⟩
∣∣∣c⊥

〉
♣r⟩ with c⊥ ∈ C

⊥ of weight u with probability 2ℓq2k

Z N⊥
u

∣∣∣f̂(u)
∣∣∣
2

where f̂(u)
def
= π̂e

for an arbitrary e of weight u and N⊥
u is the number of codewords of weight u in C

⊥.

The proof is given in Section 3.2.

Step 3. This step consists in quantifying how close to 1 the probability of observing a
dual codeword of weight in the set W after measuring ̂♣ψideal⟩ is. More speciĄcally, we
have

Proposition 3.3. Under the assumptions made in Theorem 3.2, the probability of

obtaining a codeword c⊥ ∈ C
⊥ of weight u ∈ W when measuring ̂♣ψideal⟩ is ≥ 1− α(π)

for a proportion ≥ 1− β(π) of matrices G, where:

α(π)
def
=

∑

u∈W

(
qk

Su

)1/4

+

√
⟨π♣1⟩2
qn−k

− 2−Ω(n),

β(π)
def
= (q − 1)

∑

u∈W

√
qk

Su
+

√
⟨π♣1⟩2
qn−k

+O
(
q− min(k,n−k)


.

This proposition is proved in Section 3.3.

Step 4. We Ąrst prove the following point

Lemma 3.5. Call G the set of “good matrices” G ∈ Fk×n
q that satisfy at the same time:

(i) εG ≥ ε/2 (where ε and εG are defined in Equation 3.3 and Equation 3.10),

(ii) Z ≤ 2ℓ+1qk.
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The proportion of good matrices is at least ε/2 − δ(π) where δ(π)
def
= ⟨π♣1⟩2

qn−k +

O
(
q− min(k,n−k)


.

Proof. By deĄnition,

ε =
1
qkn

∑

G∈Fk×n
q

εG.

Let B be the set of matrices G that are not good, namely for which (a) εG < ε/2 or (b)
Z > 2ℓ+1qk. By Lemma 3.3, the density of matrices verifying (b) is smaller than δ(π).
Therefore,

ε ≤ 1
qkn

∑

G/∈B

1 + δ(π)
ε

2
≤ 1
qkn

∑

G/∈B

1 + δ(π) +
ε

2

which concludes the proof.

We use this lemma to prove that the statistical distance between the weight distributions
obtained by measuring ♣̂ψA ⟩ and ̂♣ψideal⟩ cannot be too far away:

Lemma 3.6. Let P , respectively Q, be the distribution of the weights
∣∣∣c⊥

∣∣∣ of the state

♣e⟩
∣∣∣c⊥

〉
obtained by measuring the state ♣̂ψA ⟩, respectively ̂♣ψideal⟩. We have

Dstat(P,Q) ≤ 1− p2
t ε

3

16
+O

(
p4

t ε
5


+ δ(π).

Proof. Let,

PG(u) def= Pc,e

(
measuring

∣∣∣c⊥
〉

of weight u in the 2nd register of ♣̂ψA ⟩ for a code choice G


QG(u) def= Pc,e

(
measuring

∣∣∣c⊥
〉

of weight u in the 2nd register of ̂♣ψideal⟩ for a code choice G

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We start the proof by noticing that

Dstat(P,Q) =
1
2

∑

u

♣P (u)−Q(u)♣ = 1
2

∑

u

∣∣∣∣∣∣∣

∑

G∈Fk×n
q

1
qkn

(PG(u)−QG(u))

∣∣∣∣∣∣∣

≤ 1
qkn

∑

G∈Fk×n
q

1
2

∑

u

♣PG(u)−QG(u)♣

=
1
qkn

∑

G∈Fk×n
q

Dstat (PG, QG)

=
∑

G∈G

Dstat (PG, QG)
qkn

+
∑

G/∈G

Dstat (PG, QG)
qkn

≤
∑

G∈G

Dtr (♣ψA ⟩ , ♣ψideal⟩)
qkn

+
∑

G/∈G

1
qkn

(by Equation 3.9)

≤
∑

G∈G

√
1− p2

t ε2

4

qkn
+
∑

G/∈G

1
qkn

(by Proposition 3.2)

≤
√

1− p2
t ε

2

4
(ε/2− δ(π)) + 1− ε/2 + δ(π) (by Lemma 3.5)

≤ (ε/2− δ(π))

(
1− p2

t ε
2

8
+O

(
p4

t ε
4
)

+ 1− ε/2 + δ(π)

≤ 1− p2
t ε

3

16
+O

(
p4

t ε
5


+ δ(π)

which concludes the proof.

1.3 Proof of Theorem 3.2

We are now ready to prove Theorem 3.2. By Proposition 3.3 we know that
∑

u∈W

Q(u) ≥ (1− α(π))(1− β(π)) ≥ 1− α(π)− β(π).

But now we have the following computation,
∑

u∈W

P (u) ≥
∑

u∈W

Q(u)−Dstat(P,Q)

≥ 1− α(π)− β(π)− 1 +
p2

t ε
3

16
−O

(
p4

t ε
5

− δ(π)

=
p2

t ε
3

16
−O

(
p4

t ε
5

− α(π)− β(π)− δ(π)

which concludes the proof by deĄnition of α(π), β(π) and δ(π).
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1.4 Application to the Hamming metric

The assumptions of Theorem 3.2 will be satisĄed for the Hamming metric for weights u
close to τ⊥n (where τ⊥ is given in Equation 3.2) and we will prove that

Theorem 3.3. Suppose that there exists an algorithm A solving with success probability

ε the decoding problem DP(q, n, k, t) at Hamming distance 1 ≤ t def
= τn ≤ (1−δ)dGV(n, k)

for any arbitrary δ > 0. Then, there exists a quantum algorithm which takes as input

a generator matrix G ∈ Fk×n
q of a code C ⊆ Fn

q and outputs c⊥ ∈ C
⊥ of weight

u ∈
q
(1− α)τ⊥n, (1 + α)τ⊥n

y
(where α is any arbitrary constant > 0) with probability

over a uniform choice of G given by a Ω
(

ε3

n − 2−Ω(n)


where:

τ⊥ def
=

1
q

√
(q − 1)(1− τ)−√τ

2

. (3.12)

The proof of this theorem relies on Theorem 3.2, for a suitable choice of quantum state ♣π⟩.
This is done by choosing ♣π⟩ =

∣∣∣πTrunc
〉

which represents a truncated q-ary symmetric
channel of crossover probability τ . All its weights are in an interval J(1− η)t, (1 + η)tK
where η is some positive constant which will be chosen later on. More precisely, let us
Ąrst deĄne the (untruncated) quantum state representing the q-ary symmetric channel
of crossover probability τ :

∣∣∣πSC
〉

def=


√1− τ ♣0⟩+

√
τ/(q − 1)

∑

α∈F∗
q

♣α⟩



⊗n

.

Indeed, since
∣∣∣πSC

〉
can also be written as

∣∣∣πSC
〉

=
∑

e∈Fn
q

πe ♣e⟩ with πe
def=

√

(1− τ)n−♣e♣


τ

q − 1

♣e♣
,

measuring
∣∣∣πSC

〉
mimics the error we have in a q-ary symmetric channel of crossover

probability τ , i.e.,

P(measurement outputs e) = ♣πe♣2 =


τ

q − 1

♣e♣
(1− τ)n−♣e♣.

We will be interested in the truncated version given by

∣∣∣πTrunc
〉

def=
∑

e∈Fn
q :

♣e♣∈J(1−η)t,(1+η)tK

πTrunc
e ♣e⟩ with πTrunc

e
def=





πe√
N

if ♣e♣ ∈ J(1− η)t, (1 + η)tK
0 otherwise
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where N is the normalizing constant given by

N
def=

∑

e∈Fn
q

♣e♣∈J(1−η)t,(1+η)tK

♣πe♣2. (3.13)

It will be helpful to notice that for all η > 0, N is exponentially close to 1:

Lemma 3.7. For all η > 0, we have

N = 1− 2−Ω(n).

Proof. Notice that by Equation 3.13,

1−N =
∑

e∈Fn
q

♣e♣̸∈J(1−η)t,(1+η)tK

♣πe♣2 = Pe(♣e♣ /∈ J(1− η)t, (1 + η)tK)

= Pe(♣e♣ < (1− η)τn) + Pe(♣e♣ > (1 + η)τn) (3.14)

where ♣e♣ is the sum of n independent (binary) Bernoulli random variables of parameter
τ . Therefore, by HoeffdingŠs inequality, we have for all η > 0,

Pe(♣e♣ < (1− η)τn) ≤ e−2η2τ2n and Pe(♣e♣ > (1 + η)τn) ≤ e−2η2τ2n

which concludes the proof by plugging this in Equation 3.14.

Theorem 3.3 is proved by showing that
∣∣∣πTrunc

〉
satisĄes all the requirements of

Theorem 3.2 when η is small enough.

Step 1: Verification of Condition (C1).

This amounts to proving the following lemma

Lemma 3.8. For η > 0 small enough, we have,

〈
πTrunc

∣∣∣1
〉2

qn−k
= 2−Ω(n).

Before proving this result, it will be helpful to notice that:

Lemma 3.9. If u ≤ (1− δ)dGV(n, k) for some δ > 0, then

Su

qn−k
= 2−Ω(n).
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Proof. Recall that the size Bu of the Hamming ball of radius u is of the form

Bu = qn hq(µ)(1+o(1))

where µ def= u/n. From this we obtain

Su

qn−k
≤ Bu

BdGV

(since Su ≤ Bu and BdGV
≤ qn−k)

≤ qn(hq(µ)−hq(δGV)+o(1))

≤ qn(hq((1−δ)δGV)−hq(δGV)+o(1)).

We Ąnish the proof by noticing that hq((1− δ)δGV)− hq(δGV) < 0.

We are now ready to prove Lemma 3.8.

Proof of Lemma 3.8. We have the following computation,
〈
πTrunc

∣∣∣1
〉

=
∑

e∈Fn
q

♣e♣∈J(1−η)t,(1+η)tK

πTrunc
e

=
∑

r∈J(1−η)t,(1+η)tK

∑

e∈Fn
q

♣e♣=r

πe√
N

=
1√
N

∑

r∈J(1−η)t,(1+η)tK

√√√√
(
n

r

)
(q − 1)r

√√√√
(
n

r

)
(q − 1)r (1− τ)n−r


τ

q − 1

r

≤ 1√
N

∑

r∈J(1−η)t,(1+η)tK

√√√√
(
n

r

)
(q − 1)r (3.15)

where in the last line we used that
(n

u

)
(q − 1)u

(
τ

q−1

u
(1− τ)n−u ≤ 1 for any u ∈ J0, nK.

Therefore, using Equation 3.15, we have:

〈
πTrunc

∣∣∣1
〉2
≤ 1
N




⌊(1+η)t⌋∑

r=⌈(1−η)t⌉

√√√√
(
n

r

)
(q − 1)r






⌊(1+η)t⌋∑

r′=⌈(1−η)t⌉

√√√√
(
n

r′

)
(q − 1)r′




and since ♯ J(1− η)t, (1 + η)tK ≤ n+ 1,

〈
πTrunc

∣∣∣1
〉2
≤ (n+ 1)2

N
max

r,r′∈J(1−η)t,(1+η)tK

√√√√
(
n

r

)(
n

r′

)
(q − 1)r(q − 1)r′ .

The max is reached for r = r′ = (1 + η)t, so:

〈
πTrunc

∣∣∣1
〉2
≤ (n+ 1)2

N

(
n

(1 + η)t

)
(q − 1)(1+η)t =

(n+ 1)2

N
S(1+η)t.
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Using this last inequality, Lemma 3.7 and Lemma 3.9, we obtain

〈
πTrunc

∣∣∣1
〉2

qn−k
= O


(n+ 1)2 S(1+η)t

qn−k


= 2−Ω(n)

where we choose η small enough such that (1 + η)t ≤ (1− δ′)dGV(n, k) for some δ′ > 0
(recall that by assumption t ≤ (1− δ)dGV(n, k) for δ > 0).

Remark 3.2. As explained in the introduction and Remark 3.1, Lemma 3.8 is not satisĄed
by
∣∣∣πSC

〉
. Here truncating the error distribution is essential to verify this concentration

lemma.

Step 2: Verification of Conditions (C2) and (C3).

We prove here that the Conditions (C2) and (C3) of Theorem 3.2 are met by
∣∣∣πTrunc

〉
.

This results from a combination of arguments: (i) these two conditions are met for
∣∣∣πSC

〉

(ii)
∣∣∣πSC

〉
and

∣∣∣πTrunc
〉

are very close and so are ♣̂πSC⟩ and ̂♣πTrunc⟩ (because they are
obtained from the Ąrst pair by applying a QFT, which is unitary).

More precisely we are going to prove that

Lemma 3.10. Let t⊥
def
= (
√

(q−1)(n−t)−
√

t)2

q and α > 0 be some constant small enough.

We let ̂♣πTrunc⟩ =
∑

e∈Fn
q
π̂Trunc

e ♣e⟩. This state is radial and we let f̂Trunc(w) = π̂Trunc
e

for any element e of Fn
q of Hamming weight w. We have

pt = Ω


1√
n


,

∀u ∈
r
t⊥(1− α), t⊥(1 + α)

z
,

qk

Su
= 2−Ω(n) and

⌊t⊥(1+α)⌋∑

u=⌈t⊥(1−α)⌉
Su

∣∣∣f̂Trunc(u)
∣∣∣
2

= 1−2−Ω(n).

As explained above, to prove this result we will rely on the following lemma

Lemma 3.11. For all η > 0, we have

∥∥∥
∣∣∣πTrunc

〉
−
∣∣∣πSC

〉∥∥∥ = 2−Ω(n) and

∥∥∥∥∥
∣∣∣πTrunc

〉̂
−
∣∣∣πSC

〉̂∥∥∥∥∥ = 2−Ω(n) (3.16)
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Proof. We have the following computation,

∥∥∥
∣∣∣πTrunc

〉
−
∣∣∣πSC

〉∥∥∥
2

=
∑

e∈Fn
q

(πe − πTrunc
e )2

=
∑

e∈Fn
q :

♣e♣̸∈J(1−η)t,(1+η)tK

π2
e +

∑

e∈Fn
q :

♣e♣∈J(1−η)t,(1+η)tK


πe −

πe√
N

2

= 1−N +
(1−

√
N)2

N

∑

e∈Fn
q

♣e♣∈J(1−η)t,(1+η)tK

π2
e (by Equation 3.13)

= 1−N + (1−
√
N)2 (by Equation 3.13)

≤ 2−Ω(n) (by Lemma 3.7).

The second relation follows, since the QFT is an isometry with respect to ∥·∥.

With this lemma at hand, we are ready to prove Lemma 3.10.

Proof of Lemma 3.10. By deĄnition,

pt =
1
N

∑

e : ♣e♣=t

(1− τ)n−t


τ

q − 1

t

=

(n
t

)
(q − 1)t qnhq(τ)

N
= Ω


1√
n



where in the last equality we used Lemma 3.7 and StirlingŠs formula.

The equality qk

Su
= 2−Ω(n) is veriĄed when u is sufficiently close to t⊥ (α small enough),

because it is readily veriĄed that there exists some constant β > 0 such that t⊥ ≥
(1 + β)dGV(n, n− k). This together with t⊥ ≤ (q−1)n

q implies that qk

Su
= 2−Ω(n) for any

u in
q
t⊥(1− α), t⊥(1 + α)

y
.

The untruncated distribution
∣∣∣πSC

〉
=
∑

e πe ♣e⟩ is radial, and so is its Fourier transform

♣̂πSC⟩ =
∑

e π̂e ♣e⟩. We let f̂(u) = π̂e where e is any e ∈ Fn
q of Hamming weight u. We

notice that

⌊t⊥(1+α)⌋∑

u=⌈t⊥(1−α)⌉
Su

∣∣∣f̂(u)
∣∣∣
2

=
∑

e∈Fn
q : ♣e♣∈[(1−α)t⊥,(1+α)t⊥]

♣π̂e♣2 = Pe

(
♣e♣ ∈

[
(1− α)t⊥n, (1 + α)t⊥n

]
,

where τ⊥ = t⊥
n and ♣e♣ is the sum of n independent (binary) Bernoulli random variables

of parameter τ⊥. Therefore, by using HoeffdingŠs bound again we obtain that

∑

u∈[(1−α)t⊥,(1+α)t⊥]

Su

∣∣∣f̂(u)
∣∣∣
2

= 1− 2−Ω(n). (3.17)
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meaning that f̂ concentrates around vectors of weight t⊥. Consider the projection of
♣̂πSC⟩ and ̂♣πTrunc⟩ on the space spanned by the states ♣e⟩ for ♣e♣ ∈

q
(1− α)t⊥, (1 + α)t⊥

y
:

♣̃πSC⟩ def=
∑

e∈Fn
q : ♣e♣∈[(1−α)t⊥,(1+α)t⊥]

π̂e ♣e⟩

˜♣πTrunc⟩ def=
∑

e∈Fn
q : ♣e♣∈[(1−α)t⊥,(1+α)t⊥]

π̂Trunc
e ♣e⟩

Since a projection can only reduce the norm, we have
∥∥∥∥♣̃πSC⟩ − ˜♣πTrunc⟩

∥∥∥∥ ≤
∥∥∥♣̂πSC⟩ − ̂♣πTrunc⟩

∥∥∥ = 2−Ω(n). (3.18)

We deduce from the triangle inequality that
∥∥∥∥ ˜♣πTrunc⟩

∥∥∥∥ ≥
∥∥∥♣̃πSC⟩

∥∥∥−
∥∥∥∥♣̃πSC⟩ − ˜♣πTrunc⟩

∥∥∥∥ , (3.19)

and then from Equation 3.18 and Equation 3.17
(
which says

∥∥∥♣̃πSC⟩
∥∥∥

2
= 1 − 2−Ω(n)



that
∥∥∥∥ ˜♣πTrunc⟩

∥∥∥∥ ≥ 1− 2−Ω(n). Since
∥∥∥∥ ˜♣πTrunc⟩

∥∥∥∥ ≤
∥∥∥ ̂♣πTrunc⟩

∥∥∥ = 1 we Ąnally obtain

∥∥∥∥ ˜♣πTrunc⟩
∥∥∥∥ = 1− 2−Ω(n).

This directly implies
∑

u∈J(1−α)t⊥,(1+α)t⊥K Su

∣∣∣f̂Trunc(u)
∣∣∣
2

=
∥∥∥∥ ˜♣πTrunc⟩

∥∥∥∥
2

= 1−2−Ω(n).

Proof of Theorem 3.3.

This immediately follows from Lemma 3.8 and Lemma 3.10 which show that the relevant
assumptions of Theorem 3.2 are veriĄed for the choice ♣π⟩ =

∣∣∣πTrunc
〉

for η small enough.

1.5 Application to the rank metric

The assumptions of Theorem 3.2 will also be satisĄed in the context of codes C ⊆ Fm×n
q

embedded with the rank metric (given some matrix in Fm×n
q , its weight is deĄned as its

rank). The Gilbert-Varshamov distance dGV(m,n, k) is deĄned in a similar way, but it
depends on three parameters here and corresponds to the largest radius t of a ball in
the rank metric for which

qkBt ≤ qm×n.

We will be able to prove that
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Theorem 3.4. Suppose that there exists an algorithm A solving with success probability

ε the decoding problem at rank distance 1 ≤ t < dGV(m,n, k) where m ≥ n. Then,

there exists a quantum algorithm which takes as input a generator matrix of C ⊆ Fm×n
q

and outputs c⊥ ∈ C
⊥ of weight u ∈ (t⊥ − ηn, t⊥] where t⊥

def
= n − t (for any arbitrary

constant η > 0) with probability over a uniform choice of the generator matrix given by

a Ω
(
ε3 − 2−Ω(n)


.

Remark 3.3. Our assumption that m ≥ n can be done without loss of generality. In the
case where n > m we can just consider the transposed code C

⊺ def=
{
M⊺ : M ∈ C

}
: taking

the transpose is a linear automorphism and can be used to transform any algorithm
decoding C into an algorithm decoding C

⊺ with the same complexity.

As in the Hamming case, Theorem 3.4 will be a consequence of Theorem 3.2. Therefore
we Ąrst have to choose appropriately a quantum state ♣π⟩ that will model the noise
distribution.

Step 1 : Choosing ♣π⟩.
Let,

♣π⟩ def=
1√
N

∑

V ≤Fn
q

dim V =t

♣πV ⟩ where (3.20)

♣πU ⟩ def=

(
1√
qdim U

∑

u∈U

♣u⟩
)⊗m

(3.21)

and N is a normalizing constant. ♣πU ⟩ can be viewed as a uniform superposition of
matrices whose rows belong to U . These matrices have rank at most dimU and ♣π⟩ is
close to a uniform distribution of all matrices of rank t. We also have the following
alternative description for ♣π⟩.

Lemma 3.12. ♣π⟩ is radial, i.e., we may write ♣π⟩ as

♣π⟩ =
∑

E∈Fm×n
q : ♣E♣≤t

πE ♣E⟩

with ♣E⟩ def
= ♣E1⟩⊗ · · ·⊗ ♣Em⟩ where the Ei’s denote the rows of E and πE = f(♣E♣) where

f(u) =





[n−u
t−u]

q√
qmtN

if u ≤ t,

0 otherwise.

This lemma is proved in Section 4.1, as well as the following one, which gives estimations
for N and pt in order to apply Theorem 3.2.
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Lemma 3.13. We have:

N = Θ



[
n

t

]

q


 and pt = Θ (1) .

Step 2: Verification that ♣̂π⟩ is radial.

The following proposition states that ♣̂π⟩ has actually the same form as ♣π⟩ where t is
replaced by n− t:

Proposition 3.4. We have,

♣π⟩̂ =
1√
N

∑

W ≤Fn
q

dim W =n−t

♣πW ⟩ .

Proof. We apply the QFT on ♣π⟩, deĄned in Equation 3.20. It gives,

♣π⟩̂ =
1√
N

∑

V ≤Fn
q

dim V =t


 1√

qn+t

∑

y∈Fn
q

(∑

v∈V

χy(v)

)
♣y⟩



⊗m

By distinguishing the cases where y ∈ V ⊥ (the dual of V with the standard inner
product) or not:

♣̂π⟩ =
1√
N

∑

V ≤Fn
q

dim V =t


 1√

qn+t

∑

y∈V ⊥
qt ♣y⟩




⊗m

=
1√
N

∑

W ≤Fn
q

dim W =n−t


 1√

qn−t

∑

y∈W

♣y⟩



⊗m

which concludes the proof.

We can now straightforwardly apply Lemma 3.12 on ♣̂π⟩ and obtain

Lemma 3.14. The state ♣̂π⟩ is radial and can be written as
∑

E∈Fm×n
q : ♣E♣≤n−t π̂E ♣E⟩.

If we let f̂(u)
def
= π̂E for any E ∈ Fm×n

q of rank u, we have

f̂(u) =





[ n−u
n−t−u]

q√
qm(n−t)N

if u ≤ n− t,

0 otherwise.
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Step 3: Verification of Conditions (C1), (C2) and (C3).

This is achieved in the following lemmas that are proved in Section 4.2.

Lemma 3.15. We have,

St

qmn−k
= q−Ω(n) and

⟨π♣1⟩2
qmn−k

= q−Ω(n).

Lemma 3.16. For any η > 0, we have,

∀u ∈ J(1− η)n− t, n− tK , q
k

Su
= q−Ω(n) and

∑

u∈J(1−η)n−t,n−tK

Su

∣∣∣f̂(u)
∣∣∣
2

= 1− q−Ω(n).

Proof of Theorem 3.4.

This follows from Lemma 3.12, Lemma 3.14, Lemma 3.15 and Lemma 3.16 that allow to
apply Theorem 3.2, completing the proof.

2 About the usefulness of our reduction.

It is now interesting to look at the parameters for which our reduction is useful for both
the Hamming and rank metrics.

2.1 Hamming case

A lower-bound on τ is obtained with the following arguments. First, if one wants to
compute dual codewords (via the quantum measure) for which no poly-time algorithm
is known, one has to ensure that τ⊥ < ωeasy(n, n− k) = q−1

q
k
n . But notice that τ 7→ τ⊥

is a decreasing involution on
[
0, 1

2

]
. Therefore, for the reduction to be meaningful, it is

necessary that

τ > ωeasy(n, n− k)⊥ =
1
q

(√
(q − 1)


1− q − 1

q

k

n


−
√
q − 1
q

k

n

)2

=
q − 1
q2



√

q − (q − 1)
k

n
−
√
k

n




2

(3.22)

Furthermore, according to Theorem 3.3, the relative decoding distance τ has to verify

τ <
dGV(n, k)

n
= h−1

q


1− k

n


+O


1
n


= δGV(n, k) +O


1
n


.
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where t⊥ belongs to a range of values for which it is always easy to Ąnd codewords of
this weight as we now show.

To verify this point, consider a linear code C ⊆ Fm×n
q of dimension K (with m ≥ n). It is

easy to Ąnd short codewords if they are above a certain range. To produce codewords of
small weight, we use the fact that the dual code is a vector space of dimension nm−K.
Thus, we can just produce codewords with nm−K − 1 entries equal to 0 that will be
good candidates for having a small weight by solving a linear system. The entries are
chosen so as to Ąll columns with zeroes. It is straightforward that this strategy produces
in polynomial time codewords of weight ≈ Rn (since in our case n ≤ m) where R is the

rate of C deĄned by R def= K
mn .

Notice now that t⊥ is a decreasing function of the decoding distance t. The largest value
for which we can hope to decode is the Gilbert-Varshamov distance dGV(m,n,K). The

relative Gilbert-Varshamov distance δGV(m,n,K) def= dGV(m,n,K)
n satisĄes the relation

R = 1− δGV(1 + ν − δGV)

where ν
def= m

n ≥ 1. However, we have (where δ⊥
GV is deĄned as t⊥/n when t/n =

δGV(m,n,K))
t⊥

n
≥ δ⊥

GV = 1− δGV = R+ δGV(ν − δGV) ≥ R.

In other words, we are always in a regime where Ąnding codewords of relative weight
t⊥/n is easy.

3 Proof of Theorem 3.2

3.1 Step 1: Proof of Lemma 3.1 and Lemma 3.3

Let us recall Lemma 3.1 Ąrst:

Lemma 3.1. We have:

Dtr(♣ψA ⟩ , ♣ψideal⟩) ≤
√

1− 2ℓqkp2
t

Z
ε2

G.

Proof. Let G be the set of (c, e)Šs that correspond to inputs of weight t to A that are
correctly decoded:

G
def=
{

(c, e, r) ∈ C×St × Fℓ
2 : A (G, c + e, r) = e

}
.

Let us recall that

♣ψA ⟩ =
1√
2ℓqk

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣e−A (G, c + e)⟩ ♣c + e⟩ ♣r⟩
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and
♣ψideal⟩ =

1√
Z

∑

e∈Fn
q

∑

c∈C

∑

r∈Fℓ
2

πe ♣0n⟩ ♣c + e⟩ ♣r⟩

From this we deduce by using the non-negativity of πe that

⟨ψA ♣ψideal⟩ ≥
1√

2ℓqkZ

∑

(c,e,r)∈G

π2
e

=

√
2ℓqk

Z
Stf(t)2 ♯G

2ℓqkSt

=

√
2ℓqk

Z
pt εG.

Remark 3.4. Here we do not have as in the lattice case [Ste+09] to make the assumption
that the decoder is Şstrongly solution independentŤ. In our case we can indeed have
a uniform superposition over all the codewords and we can just use the way our error
probability is deĄned, namely as the ratio ♯G

2ℓqkSt
.

All the probabilistic results of this section are easier to prove if, instead of choosing a code
C by picking uniformly at random a generator matrix G for it, we slightly change the
probabilistic model by picking uniformly at random a parity-check matrix H ∈ F

(n−k)×n
q

for it, i.e.,
C =

{
x ∈ Fn

q : Hx⊺ = 0
}
.

We will denote PG and PH respectively the probabilities in the initial model and the
probabilities in the new model. The two probability distributions are closely related:
the Ąrst model always produces linear codes of dimension ≤ k and codes of dimension
= k with probability 1−O

(
q−(n−k)


whereas the second model always produces linear

codes of dimension ≥ k and codes of dimension = k with probability 1−O
(
q−k


. This

relationship is expressed by the following lemma.

Lemma 3.17. Let E be an ensemble of linear codes of length n in Fq. We have

PG(E) ≤ PH(E) +O
(
q− min(k,n−k)


.

With this new probabilistic model, the expected value of Z is given by:

Lemma 3.2. Assume that C is chosen by uniformly drawing at random a parity-check

matrix H for it. We have:

E(Z) ≤ 2ℓqk

(
1 +
⟨π♣1⟩2
qn−k

)
. (3.11)
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Proof. Computing EH(Z) with this alternate probabilistic model is straightforward. We
have

Z =

∥∥∥∥∥∥∥

∑

c∈C,e∈Fn
q ,r∈Fℓ

2

πe ♣0n⟩ ♣c + e⟩ ♣r⟩

∥∥∥∥∥∥∥

2

= 2ℓqk
∑

e∈Fn
q

♣πe♣2 + 2ℓ
∑

(c,e) ̸=(c′,e′) :
c+e=c′+e′

πeπe′

= 2ℓqk


1 +

∑

e ̸=e′ : H(e−e′)
⊺
=0

πeπe′




where H is an arbitrary-parity check matrix for C. Let

X
def=

∑

e ̸=e′ : H(e−e′)
⊺
=0

πeπe′ .

The point of the probabilistic model where the parity-check matrix H is uniformly drawn
at random is that for non-zero element x ∈ Fn

q we have

PH(x ∈ C) = PH(Hx⊺ = 0) =
1

qn−k
.

From this we deduce

EH(X) =
∑

e ̸=e′
πeπe′PH((e− e′) ∈ C)

=
∑

e ̸=e′

πeπe′

qn−k

≤
∑

e,e′

πeπe′

qn−k

=
⟨π♣1⟩2
qn−k

.

From this inequality we conclude the proof.

With the help of these two lemmas, we can upper-bound the probability for Z to be
bigger than 2ℓqk(1 + η) for any η > 0 and prove Lemma 3.3, that we recall:

Lemma 3.3. Let η > 0. We have:

PG(Z > 2ℓqk(1 + η)) ≤ 1
η

⟨π♣1⟩2
qn−k

+O
(
q− min(k,n−k)


.
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Proof. We take back the notation from the proof of Lemma 3.2. We have

PG(Z > 2ℓqk(1 + η)) = PG(X > η)

≤ PH(X > η) +O
(
q− min(k,n−k)


(by Lemma 3.17)

≤ 1
η
EH(X) +O

(
q− min(k,n−k)


(Markov inequality)

≤ 1
η

⟨π♣1⟩2
qn−k

+O
(
q− min(k,n−k)



which concludes the proof.

3.2 Step 2: Proof of Lemma 3.4

If we apply a QFT on the second register of ♣ψideal⟩ (given in Equation 3.7), we obtain:

̂♣ψideal⟩ def= (I⊗ QFT⊗ I) ♣ψideal⟩ =
qk

√
Z

∑

c⊥∈C⊥

∑

r∈Fℓ
2

π̂c⊥ ♣0n⟩
∣∣∣c⊥

〉
♣r⟩ ,

where ♣π⟩̂ =
∑

e∈Fn
q
π̂e ♣e⟩ is the QFT of ♣π⟩. We use this remark to prove Lemma 3.4,

that we recall:

Lemma 3.4. If the Fourier transform is radially preserving, meaning that it transforms

a radial function into a radial function, then after measuring ̂♣ψideal⟩ we obtain a state

♣0n⟩
∣∣∣c⊥

〉
♣r⟩ with c⊥ ∈ C

⊥ of weight u with probability 2ℓq2k

Z N⊥
u

∣∣∣f̂(u)
∣∣∣
2

where f̂(u)
def
= π̂e

for an arbitrary e of weight u and N⊥
u is the number of codewords of weight u in C

⊥.

Proof. For e ∈ Fn
q , let

♣1C+e⟩ def=
∑

c∈C

♣c + e⟩ .

We have

♣1C+e⟩̂ =
∑

c∈C

1√
qn

∑

y∈Fn
q

χy(c + e) ♣y⟩

=
1√
qn

∑

y∈Fn
q

χy(e)
∑

c∈C

χy(c) ♣y⟩

=
qk

√
qn

∑

c⊥∈C⊥
χc⊥(e)

∣∣∣c⊥
〉

(since
∑

c∈C

χy(c) = 0 if y /∈ C
⊥ and qk otherwise)
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Therefore

∣∣∣∣∣
∑

e∈Fn
q ,c∈C

πe ♣c + e⟩
〉̂

=
∑

e∈Fn
q

πe♣1C+e⟩̂

=
qk

√
qn

∑

e∈Fn
q

πe

∑

c⊥∈C⊥
χc⊥(e)

∣∣∣c⊥
〉

= qk
∑

c⊥∈C⊥

1√
qn

∑

e∈Fn
q

πeχc⊥(e)
∣∣∣c⊥

〉

= qk
∑

c⊥∈C⊥
π̂c⊥

∣∣∣c⊥
〉
.

It follows that

̂♣ψideal⟩ =
qk

√
Z

∑

c⊥∈C⊥

∑

r∈Fℓ
2

π̂c⊥ ♣0n⟩
∣∣∣c⊥

〉
♣r⟩ .

After measurement we get a state ♣0n⟩
∣∣∣c⊥

〉
♣r⟩ with probability q2k

Z

∣∣∣f̂(
∣∣∣c⊥

∣∣∣)
∣∣∣
2
. By

summing over all r ∈ Fℓ
2 and c⊥ ∈ C

⊥ of weight u, we conclude the proof.

3.3 Step 3 : Proof of Proposition 3.3

We Ąrst need for this a good estimation of ̂♣ψideal⟩Šs amplitudes. This will be a consequence
of the following lemma.

Lemma 3.18. If the generator matrix G of a code C is chosen uniformly at random in

Fk×n
q then the number N⊥

u of codewords of weight u in C
⊥ satisfies

PG

(∣∣∣∣N
⊥
u −

Su

qk

∣∣∣∣ ≥

Su

qk

3/4
)
≤ (q − 1)

√
qk

Su
.

Proof. Let 1x be the indicator function of the event Şx ∈ C
⊥Ť. By deĄnition,

N⊥
u =

∑

x∈Su

1x. (3.23)

We have E(1x) = PG(x ∈ C
⊥) = 1

qk , implying that E(N⊥
u ) = Su

qk . By using Bienaymé-
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TchebychevŠs inequality, we obtain:

P

∣∣∣∣N
⊥
u −

Su

qk

∣∣∣∣ ≥ a

≤ Var(N⊥

u )
a2

=
1
a2



∑

x∈Su

Var(1x) +
∑

x,y∈Su

x̸=y

E(1x1y)− E(1x)E(1y)




≤ 1
a2



∑

x∈Su

E(1x) +
∑

x,y∈Su

x̸=y

E(1x1y)− E(1x)E(1y)




=
1
a2



Su

qk
+

∑

x,y∈Su

x̸=y

E(1x1y)− E(1x)E(1y)


 (3.24)

where we used that Var(1x) ≤ E(12
x) = E(1x). Let us now upper-bound the second

term of the inequality. It is readily veriĄed that:

E(1x1y) =





1/qk if x and y are colinear,

1/q2k otherwise.

Therefore, we deduce that:

∑

x,y∈Su

x̸=y

E(1x1y)− E(1x)E(1y) =
∑

x∈Su

∑

y∈Su\x :
colinear to x

1
qk
− 1
q2k

≤
∑

x∈Su

∑

y∈Su\x :
colinear to x

1
qk

≤ (q − 2)Su

qk
(3.25)

It gives by plugging Equation 3.25 in Equation 3.24:

PG

∣∣∣∣N
⊥
u −

Su

qk

∣∣∣∣ ≥ a

≤ 1

a2


Su

qk
+

(q − 2)Su

qk


=

(q − 1)Su

a2qk

which concludes the proof by choosing a =
(

Su

qk

3/4
.

We are ready to prove Proposition 3.3 which we now recall:

Proposition 3.3. Under the assumptions made in Theorem 3.2, the probability of

obtaining a codeword c⊥ ∈ C
⊥ of weight u ∈ W when measuring ̂♣ψideal⟩ is ≥ 1− α(π)
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for a proportion ≥ 1− β(π) of matrices G, where:

α(π)
def
=

∑

u∈W

(
qk

Su

)1/4

+

√
⟨π♣1⟩2
qn−k

− 2−Ω(n),

β(π)
def
= (q − 1)

∑

u∈W

√
qk

Su
+

√
⟨π♣1⟩2
qn−k

+O
(
q− min(k,n−k)


.

Proof. Let Q be the quantum algorithm starting from ♣ψ⟩ which computes (I⊗ QFT⊗
I) ♣ψ⟩. This algorithm succeeds when measuring a dual codeword c⊥ ∈ C

⊥ of weight
u ∈ W . When starting with ♣ψideal⟩, the probability of success of Q is equal to
∑

u∈W

2ℓq2kN⊥
u

Z

∣∣∣f̂(u)
∣∣∣
2

by Lemma 3.4. Let

B
def=



G ∈ Fk×n

q : Z > 2ℓqk


1 +

√
⟨π♣1⟩2
qn−k





 and

Eu
def=

{
G ∈ Fk×n

q :
∣∣∣∣N

⊥
u −

Su

qk

∣∣∣∣ ≥

Su

qk

3/4
}
.

By Lemma 3.3 and Lemma 3.18 we have that

P


G ∈ B ∪

⋃

u∈W

Eu


 ≤ β(π) = (q − 1)

∑

u∈W

√
qk

Su
+

√
⟨π♣1⟩2
qn−k

+O
(
q− min(k,n−k)


.

Therefore, for a proportion ≥ 1− β(π) of codes (over matrices G):

(i) Z ≤ 2ℓqk

(
1 +

√
⟨π♣1⟩2

qn−k

)
and Z ≥ 2ℓqk (this is true for any G as πe ≥ 0 for any e),

(ii) for all u in W ,
∣∣∣ q

kN⊥
u

Su
− 1

∣∣∣ ≤
(

qk

Su

1/4
.

We deduce that for a proportion ≥ 1− β(π) of codes and for all u in W :

1−
(

qk

Su

1/4

1 +
√

⟨π♣1⟩2

qn−k

≤ qkN⊥
u

Su

2ℓqk

Z
≤ 1 +

(
qk

Su

)1/4

.

This implies that for a proportion ≥ 1− β(π) of codes and for all u in W we have that

1−∑u∈W

(
qk

Su

1/4

1 +
√

⟨π♣1⟩2

qn−k

≤ 2ℓq2kN⊥
u

SuZ
≤ 1 +

∑

u∈W

(
qk

Su

)1/4

,
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from which we deduce that under the same conditions we also have

Su

∣∣∣f̂(u)
∣∣∣
2




1−∑u∈W

(
qk

Su

1/4

1 +
√

⟨π♣1⟩2

qn−k




≤
∑

u∈W

2ℓq2kN⊥
u

Z

∣∣∣f̂(u)
∣∣∣
2
≤ Su

∣∣∣f̂(u)
∣∣∣
2


1 +

∑

u∈W

(
qk

Su

)1/4

 . (3.26)

Now,

1−∑u∈W

(
qk

Su

1/4

1 +
√

⟨π♣1⟩2

qn−k

≥ 1−
∑

u∈W

(
qk

Su

)1/4

−
√
⟨π♣1⟩2
qn−k

Therefore, by plugging this in Equation 3.26 we have for a proportion ≥ 1 − β(π) of
codes:

(1− δ)
∑

u∈W

Su

∣∣∣f̂(u)
∣∣∣
2
≤
∑

u∈W

2ℓq2kN⊥
u

Z

∣∣∣f̂(u)
∣∣∣
2
≤ (1 + δ)

∑

u∈W

Su

∣∣∣f̂(u)
∣∣∣
2

(3.27)

where δ def=
∑

u∈W

(
qk

Su

1/4
+
√

⟨π♣1⟩2

qn−k . We Ąnish the proof by applying Lemma 3.4: we

namely know that after measuring the state obtained by Q, we obtain a dual codeword

of weight u in W with probability
∑

u∈W

2ℓq2kN⊥
u

Z

∣∣∣f̂(u)
∣∣∣
2
.

4 Proof of Theorem 3.4

4.1 Proofs of Lemma 3.12 and Lemma 3.13

The following lemma will be very helpful in what follows.

Lemma 3.19. [BCN89, §9.3, Lem. 9.3.2] Let V be a subspace of dimension s, then there

are exactly q(t−ℓ)(s−ℓ)
[n−s

t−ℓ

]
q

[s
ℓ

]
q

subspaces W of dimension t such that dim(V ∩W ) = ℓ.

Let us now recall Lemma 3.12:

Lemma 3.12. ♣π⟩ is radial, i.e., we may write ♣π⟩ as

♣π⟩ =
∑

E∈Fm×n
q : ♣E♣≤t

πE ♣E⟩

with ♣E⟩ def
= ♣E1⟩⊗ · · ·⊗ ♣Em⟩ where the Ei’s denote the rows of E and πE = f(♣E♣) where

f(u) =





[n−u
t−u]

q√
qmtN

if u ≤ t,

0 otherwise.
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Proof. Let U be the Fq-space generated by the EiŠs. We denote by u the dimension of
U . We have

πE =
1√
qmtN

♯
{
V ≤ Fn

q : dimV = t and U ⊆ V
}

=

[n−u
t−u

]
q√

qmtN
,

where we used Lemma 3.19 for the last equality. It concludes the proof.

Another asymptotic expression for N and an estimate for pt are given by:

Lemma 3.13. We have:

N = Θ



[
n

t

]

q


 and pt = Θ (1) .

This lemma will be a consequence of the following lemmas.

Lemma 3.20. For any V,W ≤ Fn
q such that V ≠ W and dimV = dimW = t we have,

⟨πV ♣πW ⟩ = qm(dim(V ∩W )−t).

Proof. Recall that,

♣πU ⟩ =

(
1√
qdim U

∑

u∈U

♣u⟩
)⊗m

Therefore we have,

⟨πV ♣πW ⟩ =

(
1
qt

∑

v∈V

∑

w∈W

⟨v♣w⟩
)m

=


1
qt
♯(V ∩W )

m

which concludes the proof.

Lemma 3.21. We have,

∑

V ≤Fn
q

dim V =t

∑

W ≤Fn
q

dim W =t
W ̸=V

⟨πV ♣πW ⟩ = O



[
n

t

]

q


 .
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Proof. We have
∑

V ≤Fn
q

dim V =t

∑

W ≤Fn
q

dim W =t
W ̸=V

⟨πV ♣πW ⟩ =
∑

V ≤Fn
q

dim V =t

∑

W ≤Fn
q

dim W =t
W ̸=V

qm(dim(V ∩W )−t)

=
∑

V ≤Fn
q

dim V =t

t−1∑

ℓ=0

∑

W ≤Fn
q

dim W =t
dim(W ∩V )=ℓ

1
qm(t−ℓ)

=
∑

V ≤Fn
q

dim V =t

t−1∑

ℓ=0

1
qm(t−ℓ)

q(t−ℓ)2

[
t

ℓ

]

q

[
n− t
t− ℓ

]

q

(3.28)

=

[
n

t

]

q

t−1∑

ℓ=0

q(t−ℓ−m)(t−ℓ)

[
t

ℓ

]

q

[
n− t
t− ℓ

]

q

where in Equation 3.28 we used Lemma 3.19. Now, there exists some constant c > 0
such that: [

n

ℓ

]

q

≤ cqℓ(n−ℓ).

Then, for some constant C > 0,

∑

V ≤Fn
q

dim V =t

∑

W ≤Fn
q

dim W =t
W ̸=V

⟨πV ♣πW ⟩ ≤ C
[
n

t

]

q

t−1∑

ℓ=0

q(t−ℓ−m)(t−ℓ)+ℓ(t−ℓ)+(t−ℓ)(n−2t+ℓ)

= C

[
n

t

]

q

t−1∑

ℓ=0

q(t−ℓ)(t−ℓ−m+ℓ+n−2t+ℓ)

= C

[
n

t

]

q

t−1∑

ℓ=0

q(t−ℓ)(−t+ℓ−m+n)

≤ C
[
n

t

]

q

t−1∑

ℓ=0

q−(t−ℓ)2
(since n ≤ m)

which concludes the proof.

We are now ready to prove Lemma 3.13.

Proof of Lemma 3.13. By deĄnition of N we have:

N =

∥∥∥∥∥∥∥∥

∑

V ≤Fn
q

dim V =t

πV

∥∥∥∥∥∥∥∥

2

=
∑

V ≤Fn
q

dim V =t

∥πV ∥2 +
∑

V ≤Fn
q

dim V =t

∑

W ≤Fn
q

dim W =t
W ̸=V

⟨πV , πW ⟩
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and by deĄnition of πV :

∑

V ≤Fn
q

dim V =t

∥πV ∥2 =

[
n

t

]

q

(
1
qt

∑

v∈V

1

)m

=

[
n

t

]

q

This concludes the proof that N =
[n

t

]
q

by using Lemma 3.21. Now, by deĄnition of pt,
we have:

pt = Stf(t)2

= St

[n−t
0

]2
q

qmtN
(by Lemma 3.12)

=
St

Θ (St)
(by using the estimate for N and Equation 2.8)

allowing us to conclude that pt = Θ (1).

4.2 Proofs of Lemma 3.15 and Lemma 3.16

Recall Lemma 3.15 Ąrst:

Lemma 3.15. We have,

St

qmn−k
= q−Ω(n) and

⟨π♣1⟩2
qmn−k

= q−Ω(n).

Proof. In order to prove the Ąrst equation, note that dGV(m,n, k) is deĄned such that
SdGV

qmn−k ≤ 1. From this and Equation 2.9 we deduce

SdGV−1

qmn−k
=
SdGV−1

SdGV

SdGV

qmn−k
≤ Θ

(
q−(m+n−2dGV−1)


= Θ

(
q−Ω(n)



where the last equality follows from the fact that (see for instance [Loi06])

dGV(n,m, k) =
m+ n−

√
(m− n)2 + 4k
2

(1 + o(1)). (3.29)

Now, for the second equation, we have

⟨π♣1⟩2
qmn

=
∣∣∣f̂(0)

∣∣∣
2

=

[ n
n−t

]2
q

qm(n−t)N
(by Lemma 3.14)

= Θ

(
qmt

[n
t

]
q

qmn

)
(By Lemma 3.13)

= Θ

St

qmn


(By Equation 2.7 and Equation 2.8)
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Thanks to the Ąrst equation, we complete the proof.

The second lemma we need is recalled here:

Lemma 3.16. For any η > 0, we have,

∀u ∈ J(1− η)n− t, n− tK , q
k

Su
= q−Ω(n) and

∑

u∈J(1−η)n−t,n−tK

Su

∣∣∣f̂(u)
∣∣∣
2

= 1− q−Ω(n).

Proof. The Ąrst equation can be proved in the same way as Lemma 3.15. For the second
identity, Ąrst notice (by Lemma 3.14) that

∑

u∈Jn−t−ηn,n−tK

Su

∣∣∣f̂(u)
∣∣∣
2

= 1−
∑

u<n−t−ηn

Su

∣∣∣f̂(u)
∣∣∣
2
.

Now, we have the following computation:

∑

u<n−t−ηn

Su

∣∣∣f̂(u)
∣∣∣
2

=
∑

u<n−t−ηn

Su

[ n−u
n−u−t

]2
q

N qm(n−t)
(by Lemma 3.15)

= Θ


 ∑

u<n−t−ηn

Su

[ n−u
n−u−t

]2
q[n

t

]
q
qm(n−t)


 (by Lemma 3.13)

= Θ


 ∑

u<n−t−ηn

qu(m+n−u) q2(n−t−u)t

qt(n−t) qm(n−t)


 (By Equation 2.7 and 2.8)

= Θ
(
qmaxu<n−t−ηn u(m+n−u−2t) q(t−m)(n−t)



Let g(u) def= u(m+ n− u− 2t). Then, g′(u) = m+ n− 2(t+ u) ≥ 0 as t+ u ≤ n ≤ m.
Therefore, g is an increasing function and by setting u = n− t− ηn, we obtain

∑

u<n−t−ηn

Su

∣∣∣f̂(u)
∣∣∣
2
≤ n Θ

(
q(n−t−ηn)(m−t+ηn) q(t−m)(n−t)



= n Θ
(
q(n−t)(t−m+m−t+ηn) q−ηn(m−t+ηn)



= n Θ
(
q−ηn(m−t+ηn−n+t)



= n Θ
(
q−ηn(m−n+ηn)



= q−Ω(n)

as n ≤ m by assumption. It concludes the proof.





Chapter

4Introduction to the Dihedral Hidden

Subgroup Problem

The dihedral group of order 2N , which will be denoted DN , is simply deĄned as the
group of symmetries (rotations and reĆections) of a regular N -gon. Formally:

DN
def=
〈
u, v : uN = v2 = (uv)2 = 1

〉

Here u can be thought as a rotation of the N -gon by an angle 2π/N and v as a reĆection
about some Ąxed axis. A simple example is given in Figure 4.1 of the action of the
dihedral group on a regular pentagon.

1

v

u4

vu4

u3

vu3

u2

vu2

u

vu

Figure 4.1: Action of the dihedral group D5 of order 10 on a regular pentagon. The
Ąrst row shows the effect of the rotation u, the second one shows the effect of a vertical
reĆection v applied to the Ąrst row. We denote by 1 the identity.

It results from the deĄnition we gave that any group element can be written in the
form uxvb where x ∈ ZN and b ∈ Z2. Thus we can equivalently think of the group as
consisting of elements (x, b) ∈ ZN ×Z2, where x deĄnes the angle of the rotation applied
and b if we apply a reĆection or not. For more information about dihedral groups, we
refer to [Chi22; Con23].

61
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In this chapter, we look at the HSP in a dihedral group (DHSP). While the HSP in an
abelian group is quantumly easy to solve, as we saw in Chapter 1, many post-quantum
primitives are related to the DHSP. This is the case of cryptosystems based on the
Unique Shortest Vector Problem (uSVP) in lattice-based cryptography (such as [AD97;
Reg04b]) or on any problem that can be reduced to the uSVP (because of a chain of
reductions between several problems [Reg02; LM09; Ste+09]). More concretely, the
security of several primitives reduces to the DHSP. The most prominent example is
the isogeny-based post-quantum key-exchange CSIDH [Cas+18], which is similar to
the Diffie-Hellman protocol [DH76] except that it does not rely on the period-Ąnding
problem in an abelian group (which is solvable in quantum polynomial time), but
on the difficulty to invert the group action. As it has been shown in [BS20; Pei20;
Chá+22], a better understanding of the security of CSIDH comes from a careful analysis
of quantum algorithms solving the DHSP. Several related constructions [Ala+20] such
as the signature schemes SeaSign [DG19; DPV19] and CSI-FiSh [BKV19] also rely
on this problem. It should be noted that these isogeny-based cryptosystems are the
only major contenders for which the quantum attacker enjoys more than a quadratic
speedup, as opposed to the lattice- and hash-based Ąnalists of the NIST post-quantum
standardization process [NIS16; Ala+22].

In Section 1, we will see how to reduce the DHSP, which is a purely classical problem,
to a quantum problem, known as the Dihedral Coset Problem (DCP). The following
sections will then introduce the milestone algorithms, from the Ąrst algorithm to solve
the DCP in sub-exponential time to KuperbergŠs second algorithm, which is the state of
the art, via RegevŠs algorithm, which was the Ąrst algorithm to solve the DCP with a
polynomial number of qubits.
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1 From Finding a Hidden Subgroup to Solving a

Quantum Problem

We properly deĄne here the Dihedral Hidden Subgroup Problem and the Dihedral Coset
Problem. We show how to reduce the former to the latter, by the intermediate of another
problem which is the hidden subgroup problem in a dihedral group with a promise on
the structure of this subgroup.

1.1 Dihedral Hidden Subgroup Problem

The Dihedral Hidden Subgroup Problem, DHSP for short, is simply the Hidden Subgroup
Problem in a dihedral group DN for some integer N . We take it to be greater than 2 in
what follows, since DN is non-abelian in this case. We then have here an example of a
group with a relatively simple structure for which the standard algorithm solving the
abelian HSP cannot be applied.

We will therefore be interested in the structure that the hidden subgroup in a dihedral
group can take, i.e., the possible subgroups of a dihedral group. But Ąrst we start by
proving that an exhaustive search of the hidden subgroup in DN is not possible when
N is too big. The following lemma states the number of subgroups SN of the dihedral
group DN :

Lemma 4.1 ([Mil14]). The number SN of subgroups of DN is equal to σ(N) + τ(N)
where σ(N) is the sum of the divisors of N and τ(N) is the number of divisors of N :

σ(N)
def
=

∑

d : d♣N
d and τ(N)

def
=

∑

d : d♣N
1.

From this lemma, we can then deduce a lower bound on SN , which we Ąnd by considering
that N is a prime number since it is trivially the case where SN will be the smallest.
In this case, σ(N) = N + 1 and τ(N) = 2, since the only divisors of N are 1 and N

itself. It follows that when N is exponential, so is an exhaustive search to Ąnd a hidden
subgroup in DN .

We will now look at the structure of the subgroups of a dihedral group. In fact, it can
be shown that its subgroups are either dihedral themselves or cyclic, as stated in the
following lemma:

Lemma 4.2 (Theorem 3.1 [Con23]). The possible subgroups of DN are of the form

• ⟨(x, 0)⟩ where x ∈ ZN is some divisor of N (cyclic subgroups, normal in DN ),

• ⟨(x, 0), (y, 1)⟩ where x ∈ ZN is some divisor of N and 0 ≤ y < x (dihedral

subgroups).
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Remark 4.1. More precisely, Miller actually proved in [Mil14] that τ(N) is the number
of cyclic subgroups and σ(N) is the number of dihedral subgroups.

It was proved by Ettinger and Høyer that it is possible to reduce the general DHSP

(in which the hidden subgroup could be any of the possible ones) to a DHSP with the
promise that the hidden subgroup is of a certain form.

Lemma 4.3 (Proof of Theorem 2 [EH99]). The DHSP in DN reduces to a DHSP where

the hidden subgroup is either the trivial subgroup or ⟨(y, 1)⟩ = ¶(0, 0), (y, 1)♢ for some

y ∈ ZN .

Proof. Let H be a subgroup of DN . We have from Lemma 4.2 that H can be either
cyclic or dihedral: 



⟨ux⟩ with x♣N
⟨ux, uyv⟩ with x♣N and y ∈ J0, x− 1K

Let us show that any of these cases reduce to the particular case where the subgroup is
of the form ⟨uyv⟩, or trivial. We distinguish the case where x = N (i.e. x = 0) from the
others.

• When x ≠ N , the hidden subgroup H necessarily has a cyclic part and therefore a
cyclic subgroup, namely ⟨ux⟩. This subgroup being normal in DN , we can compute
the quotient group DN/Zx ≃ DN/x. The hidden subgroup in this quotient group
is then H/Zx, which does not have any cyclic subgroup, meaning that it is either
the trivial subgroup or a subgroup of the form ⟨uyv⟩.

• When x = N , we are in the same case where H can be either trivial or dihedral
with no cyclic subgroup.

In conclusion, it does not matter what form the subgroup H takes, it will reduce to
Ąnding a subgroup of the form ⟨uyv⟩, i.e. a subgroup of the form ⟨(y, 1)⟩.

1.2 Dihedral Coset Problem

We showed in the previous subsection that if we know how to solve the DHSP with the
promise that the hidden subgroup is of the form ⟨(s, 1)⟩ = ¶(0, 0), (s, 1)♢ where s ∈ ZN

is unknown, then we can in fact solve the general DHSP in which the hidden subgroup
could be any of the possible ones. We now have to take a closer look to the DHSP with a
promise and how to solve it. We let f : DN → S be a function that fulĄlls the subgroup
promise with respect to H, where H is ¶(0, 0), (s, 1)♢ for some unknown s ∈ ZN (H
could actually be the trivial subgroup ¶(0, 0)♢ but as it is easy to deal with it, we will
leave it on the side). Finding H is equivalent to Ąnding s, so we will in fact focus on
Ąnding the unknown value s.
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A standard method to solve the DHSP with a promise thanks to a quantum algorithm is
by coset sampling. The beginning is the same as the algorithm we described in Chapter 1,
for the abelian case: we build a superposition over the elements of G and compute f(G)
in an ancillary register thanks to the hiding function f . We then measure the ancillary,
which leaves us with a coset state ♣(x, 0)H⟩, a superposition over a coset of the unknown
subgroup H which is promised to be ⟨(s, 1)⟩ = ⟨(0, 0), (s, 1)⟩. This method is shown in
Algorithm 4.

Algorithm 4 Building coset states

Require: A unitary Uf to compute f .
1: Prepare a uniform superposition over ZN × Z2 and compute f by using Uf

1√
2N

∑

x∈ZN

∑

b∈Z2

♣x, b, f(x, b)⟩

2: Measure the ancillary register and discard it

1√
2

∑

b∈Z2

♣x+ bs, b⟩ =
1√
2

(♣x, 0⟩+ ♣x+ s, 1⟩) def= ♣(x, 0)H⟩

It can be veriĄed that the value x is picked at random from ZN during the measurement.
This procedure is the crucial argument used in [EH99] to conclude that solving the DHSP

with a promise reduces to the Dihedral Coset Problem (DCP), which is the quantum
problem of Ąnding s from coset states ♣(x, 0)H⟩, deĄned as follows.

Problem 4.1. Dihedral Coset Problem (DCP). Suppose we have a collection of coset

states ♣(x, 0)H⟩ for random unknown x ∈ J0, NK. The DCP asks to find s ∈ J0, NK.

From coset states, two strategies are available to us. The Ąrst one consists in applying a
tensor product of a QFT and a Hadamard gate on ZN × Z2 (and thus proceed in a way
analogous to what is done for abelian groups, as seen in the previous chapter) and the
second one consists in applying a QFT on ZN only. LetŠs take a closer look at these two
strategies.

1.2.1 Quantum Fourier Transform over ZN × Z2

In their paper [EH99], Ettinger and Høyer applied FN ⊗H on ♣(x, 0)H⟩, which gives

1

2
√
N

∑

a∈ZN

∑

b∈Z2

ωax
N


1 + ω

as+b N
2

N


♣a⟩ ♣b⟩ . (4.1)

They then measured the two registers to obtain a pair (a, b) ∈ ZN ×Z2 that is measured
with probability given in the following lemma:
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Lemma 4.4 ([EH99]). The probability for (a, b) to be the outcome of the measurement

is {
1
N cos2

(
π as

N

)
if b = 0

1
N sin2

(
π as

N

)
if b = 1

Proof. The probability of measuring (a, b) ∈ ZN × Z2 is

1
4N

∣∣∣∣1 + ω
as+b N

2
N

∣∣∣∣
2

=
1
N

cos2

π

2
b+ π

as

N


.

Ettinger and Høyer then built an algorithm upon this method to retrieve information
about s from a collection of O (logN) results of this procedure, as stated in Theorem 4.1,
but it runs in exponential classical time and it appears to be difficult to design a more
efficient algorithm using this strategy.

Theorem 4.1 (Theorem 3 of [EH99]). There exists a quantum algorithm that outputs

either "trivial" or the secret value s using at most O(logN) evaluations of the hiding

function f . The output is always "trivial" if H is trivial and the algorithm outputs s

with probability at least 1− 1
2N otherwise.

We will not give the proof of this theorem here. We can simply remark from Lemma 4.4
that the probability distribution we get from measuring states of the form given by
Equation 4.1 is non-uniformly distributed on ZN depending on s. From such states
measurements, we can thus retrieve information about s using Lemma 4.4. That is
roughly speaking what Ettinger-Høyer algorithm does: it produces a linear number (in
logN) of couples (a, b) with the above procedure and then goes through all possible
values for s and Ąnds which one best Ąts the measurement results using a statistical
argument. The number of queries to the hiding function is thus linear (in logN) and
enough to solve the DCP, however, the algorithm has the major disadvantage of requiring
an exponential classical time, since it proceeds to an enumeration on a list of N values.

1.2.2 Quantum Fourier Transform over ZN

We now look at the other strategy, of applying the QFT over ZN only, which yields

1√
2N

∑

k∈ZN

ωkx
N ♣k⟩

(
♣0⟩+ ωsk

N ♣1⟩


Measuring the Ąrst register collapses the superposition on

1√
2
♣k⟩
(
♣0⟩+ ωsk

N ♣1⟩

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for a value k picked at random from ZN . In the second register, we obtain a state which
will be denoted by ♣ψk⟩ and called a phase vector.

Definition 4.1 (Phase vector). Let k ∈ ZN . We denote by ♣ψk⟩ the phase vector deĄned
as

♣ψk⟩ def=
1√
2

(♣0⟩+ ωsk
N ♣1⟩) (4.2)

where s ∈ ZN is an unknown integer we are looking for.

These states will turn out to be useful to reveal information about the secret s in a
much more efficient way than with the previous strategy. Namely, we will be able to
design subexponential time quantum algorithms to solve the DCP. We will consider in
what follows that we have access to an oracle outputting phase vectors as deĄned in
DeĄnition 4.1, since Ąnding s ∈ J0, NK from a collection of states ♣ψk⟩ for known and
uniformly distributed random k ∈ J0, NK solves the DCP and thus the DHSP in turn, as
we saw previously.

2 Kuperberg’s first algorithm

With a simple but clever way of assembling two phase vectors to obtain one with
better properties, Kuperberg designed in 2003 the Ąrst algorithm to solve the DCP in
subexponential time [Kup05]. For the sake of clarity, we will take N to be a power of 2,

namely N def= 2n, but the algorithm described here works for any integer N .

It is indeed possible to combine two phase vectors in order to construct a new one in
the following way

♣ψp, ψq⟩ =
1
2

(
♣0, 0⟩+ ωsp

N ♣1, 0⟩+ ωsq
N ♣0, 1⟩+ ω

s(p+q)
N ♣1, 1⟩



CNOT7−−−−→ 1
2

(
♣0, 0⟩+ ω

s(p+q)
N ♣1, 0⟩+ ωsq

N ♣0, 1⟩+ ωsp
N ♣1, 1⟩



=
1√
2

(♣ψp+q, 0⟩+ ωsq
N ♣ψp−q, 1⟩)

A measurement of the second qubit will leave the Ąrst one in the state ♣ψp+q⟩ if 0 is
obtained and in the state ♣ψp−q⟩ if 1 is obtained. Both cases happen with probability
1/2. Having this combination method on hand, it is interesting to note that if p and q

had a certain number m of least signiĄcant bits in common, then with probability 1/2
we would get ♣ψp−q⟩, where p− q would have its m least signiĄcant bits equal to 0.

In parallel, we note that the state
∣∣∣ψN/2

〉
, associated to the value N/2 whose binary

development is (0, . . . , 0, 1) (i.e., all its bits are zeroes except for the most signiĄcant
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one), is

∣∣∣ψN/2

〉
=

1√
2


♣0⟩+ ω

s N
2

N ♣1⟩


=
1√
2

(
♣0⟩+ (−1)lsb(s) ♣1⟩



= H ♣lsb(s)⟩

So we have a method that, if we iterate it, produces phase vectors with more and more
least signiĄcant bits equal to zero, and a state with all its bits equal to zero except
for the most signiĄcant one, which we would like to obtain because it would give us
information about the secret, namely lsb(s).

Kuperberg therefore designed the sieve which is roughly represented in Figure 4.2 and
described as follows. We start by generating many phase vectors, which are gathered in
a list. Their most signiĄcant bit, which is represented by a darker orange column, will
not be affected. The Ąrst step is to classify the states according to their value on their m
least signiĄcant bits (there will typically be 2m lists for the 2m possible bit strings on m
bits). Once this is done, we take the phase vectors in each sublist two by two, combine
them by the CNOT trick, and keep the resulting state when the difference is obtained.
Finally, all the states are grouped together in the same list and the process is iterated.

2.1 Algorithm

The pseudocode for KuperbergŠs algorithm is given by Algorithm 5.

Algorithm 5 KuperbergŠs Algorithm

Require: A parameter m and a list L of 2ℓ coset states as in Equation 4.2, where each
copy has k ∈ ZN chosen independently and uniformly at random.

Ensure: The least signiĄcant bit of the secret s.
1: for j from 0 to m− 1 do
2: Collect the coset states into pairs (♣ψp⟩ , ♣ψq⟩) sharing at least their m lower bits,

their jm trailing zeroes being excluded, or n − 1 − jm if j = m − 1. Discard the
remaining states that cannot be paired.

3: Use the combination routine to create a state ♣ψp±q⟩ from each pair, and discard
it if the + sign occurs.

4: if ♣ψ2n−1⟩ ∈ L then Measure it in the ♣±⟩ basis and return the result

5: return "The algorithm failed"

As previously described, this algorithm solves the DCP by collecting states that share
many of their last signiĄcant bits into pairs (♣ψp⟩ , ♣ψq⟩), such that ♣ψp−q⟩ is likely to
have many of its least signiĄcant bits equal to zero. It would require an exponential
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Classify

Combine

Merge

...

...

m n−m− 1

Figure 4.2: Diagram representing the process of the Kuperberg algorithm. It is inspired
by the one for the BKW algorithm which can be found in the slides [The22] corresponding
to the paper [LY22], the only difference being in the combination step, where instead of
using a vector that we XOR to all the others, we take them two by two and combine
them with a CNOT and a measure. We start with a list of phase vectors whose labelsŠ
most signiĄcant bit is shown in dark orange. The classiĄcation step separates these
labels according to their value on their m least signiĄcant bits (each color corresponds
to a different string of m bits). The combination step then allows us to construct phase
vectors whose labels have their m least signiĄcant bits equal to 0, which is shown in
white.
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time to zero out all but the most signiĄcant one in one shot so instead, we proceed
by zeroing out the m least signiĄcant bits in successive rounds. This parameter m has
to be carefully chosen as it can bring the time complexity of the algorithm down to
subexponential, as we will see in what follows.

We will also look at the number of initial phase vectors, which should be chosen such as
there remains at least one element at the end of the process, i.e., one state with all its
n− 1 least signiĄcant bits equal to zero. Indeed, when

∣∣∣ψN/2

〉
is obtained, we are left

with applying a Hadamard gate on it and measuring it in order to obtain lsb(s). From
this point where we know the parity of s, we can determine to which subgroup DN/2 of
DN it belongs and then reapply the algorithm to determine the second least signiĄcant
bit of s (which is its parity bit in DN/2), and so on, until the whole secret is discovered.

Bonnetain and Naya-Plasencia proved in [BN18] that it is actually possible to recover all
the bits of s at once rather than working on successive least signiĄcant bits in dihedral
groups with smaller and smaller cardinal. It turns out that their procedure allows a
polynomial speed-up over KuperbergŠs algorithm.

They Ąrst showed that it is possible to retrieve s from a collection of phase vectors ♣ψki
⟩

with ki such that 2i♣ki but 2i+1 ̸ ♣ki, for each i from 0 to n− 1. It is equivalent to say
that there exists αi ∈

q
0, 2n−1−i − 1

y
such that

♣ψki
⟩ =

∣∣∣ψ(2αi+1)2i

〉
.

Indeed, up to a phase correction, we can Ąnd sn−1−i from ♣ψki
⟩, as shown in the following

computation:
∣∣∣ψ(2αi+1)2i

〉
=

1√
2


♣0⟩+ e

iπs
2αi+1

2n−1−i ♣1⟩


=
1√
2


♣0⟩+ e

iπ(s−(s mod 2n−1−i))
2αi+1

2n−1−i e
iπ(s mod 2n−1−i)

2αi+1

2n−1−i ♣1⟩


=
1√
2


♣0⟩+ eiπsn−1−ie

iπ(s mod 2n−1−i)
2αi+1

2n−1−i ♣1⟩


=
1√
2


♣0⟩+ (−1)sn−1−ie

iπ(s mod 2n−1−i)
2αi+1

2n−1−i ♣1⟩


Starting from i = n − 1, we can directly determine the least signiĄcant bit of s. For
i = n − 2, we then know (s mod 2n−1−i) = s0, meaning that we can apply a phase
correction of angle

−πs0
2αi + 1
2n−1−i

on
∣∣∣ψ(2αi+1)2n−1−i

〉
, giving the state 1√

2
(♣0⟩+ (−1)sn−1−i ♣1⟩), which will give us s1.

Iterating this process, we will be able to determine the whole secret, as shown by
Algorithm 6.
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Algorithm 6 Algorithm to retrieve s from n coset states

Require: ∀i ∈ J0, n− 1K a phase vector
∣∣∣ψ(2αi+1)2i

〉
, where αi ∈

q
0, 2i − 1

y
.

Ensure: The secret s.
1: From ♣ψ2n−1⟩, retrieve s0 by measuring the state in the ♣±⟩ basis
2: for i from n− 2 to 0 do
3: Use the bits s0, . . . , si−1 to apply a phase correction of angle

−π(s mod 2n−1−i)
2α+ 1
2n−1−i

on
∣∣∣ψ(2αi+1)2i

〉

4: Measure the corrected state in the ♣±⟩ basis to retrieve sn−1−i

5: return s

Tweaking a bit KuperbergŠs algorithm to keep states ♣ψki
⟩ (as described above) on

the way to produce
∣∣ψkn−1

〉
=
∣∣∣ψN/2

〉
, Bonnetain and Naya-Plasencia then proposed

Algorithm 7.

Algorithm 7 Variant of KuperbergŠs algorithm to obtain s in one pass

Require: 2ℓ phase vectors as in Equation 4.2, where each copy has k ∈ ZN chosen
independently and uniformly at random.

Ensure: The secret s.
1: Separate the coset states in pools Pi, where Pi

def= ¶♣ψk⟩ : 2i♣k, 2i+1 ̸ ♣k♢
2: for i from 0 to n− 2 do
3: while ♣Pi♣ ≥ 3 do
4: Pop ♣ψa⟩ and ♣ψb⟩ of Pi such that a + b or a − b has the highest possible

divisibility by 2 (and is not 0)
5: Combine ♣ψa⟩ and ♣ψb⟩ and insert the resulting state in the appropriate pool
6: if ∀i ∈ J0, n− 1K , Pi ̸= ∅ then Pick one element in each Pi, apply Algorithm 6

and return s
7: return "The algorithm failed"

We will come back on Algorithm 7 with more details in Chapter 6, as it was the
inspiration for a new algorithm for solving the DCP.

We will now dive deeper into the parameters of KuperbergŠs algorithm and its complexity.

2.2 Complexity

KuperbergŠs algorithm has subexponential query, time and space complexities, as stated
by the following theorem
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Theorem 4.2 (Theorem 3.1 of [Kup05]). Letting m = ⌈√n⌉, Algorithm 5 then requires

O
(
23

√
n


quantum queries and space, and Õ
(
23

√
n


computation time.

Sketch of proof (inspired by [Chi22]). The parameters required for the algorithm to work
can be estimated as follows. The combination step takes two phase vectors and produces
one. This state is of interest for our purpose with probability 1/2. It means than Step
3 of Algorithm 5 divides by 4 the size of the list of phase vectors we have in Step 2.
We also notice that on average, 2m−1 phase vectors could be discarded at Step 2, since
we are working on m bits and we will typically have an odd number of phase vectors
with probability 1/2 in each sublist (i.e., one unmatched state per sublist). Thus, at the
end of the combination routine with j = 0, we have on average 2ℓ−2 − 2m−1 remaining
phase vectors. In turn, when j = 1, we get 2ℓ−4 − 2m−3 − 2m−1 states, and so on. More
generally, at the end of the combination routine for j going from 0 to m− 2, we have

2ℓ−2(j+1) −
j∑

i=0

2m−1−2i = 2ℓ−2(j+1) +
2m−1−2j − 2m+1

3

phase vectors on average. At the beginning of the last step, i.e., for j = m− 1, we have
2ℓ−2m + 2m−1−2(m−1)−2m+1

3 states. It remains n− 1− jm bits to put to 0, meaning that
on average, 2n−2−jm phase vectors will be discarded. We end up with

2ℓ−2m +
2−m+1 − 2m+1

3
− 2n−2−(m−1)m

states. These states will be of the form ♣ψ2n−1⟩ or ♣ψ0⟩. In order to simplify the
calculations, we will ask to have 2m−1 states at the end of the algorithm, even if we could
ask for less. We Ąrst give a lower bound on the number of phase vectors we previously
computed and then we will check for when it is greater than 2m−1.

2ℓ−2m +
2−m+1 − 2m+1

3
− 2n−2−(m−1)m ≥ 2ℓ−2m − 2m−1 − 2n−2−(m−1)m

We now look for a lower bound for the polynomial n − 2 − (m − 1)m. We get it for
m =

√
4n−7+1

2 , which means that m ≈ √n. We will keep this value in mind but will keep
up with the notation m for the sake of simplicity. We now have

2ℓ−2m +
2−m+1 − 2m+1

3
− 2n−2−(m−1)m ≥ 2ℓ−2m − 2m−1 − 1
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Now if we ask for this expression to be greater than 2m−1,

2ℓ−2m − 2m−1 − 1 ≥ 2m−1

2ℓ−2m ≥ 2m + 1

2ℓ ≥ 23m + 22m

Thus, ℓ should be greater than 3m+ 1, i.e., ℓ ≈ 3
√
n.

It is in fact possible to study the complexity of KuperbergŠs algorithm more precisely and
show that its complexity in terms of queries, classical and quantum time and classical
and quantum space is a Õ

(
2
√

2 log (3)n


(see [Kup05], Theorem 5.1). Simulations have
been carried out by Bonnetain and Schrottenloher to study the practical complexity of
this algorithm [BS20]. They obtained a query complexity close to 12× 21.8

√
n (note that√

2 log 3 ≃ 1.78).

3 Regev’s algorithm

KuperbergŠs Ąrst algorithm requires to store, at each time, a subexponential number of
phase vectors; thus, it has subexponential quantum memory complexity. Regev [Reg04a]
modiĄed the combination routine to reduce the number of qubits to polynomial, while
keeping the time complexity subexponential.

The combination routine in question takes a number of, say ℓ, phase vectors that have
in common that their a least signiĄcant bits are zero, and combines them to form a
new one that has its a+ r least signiĄcant bits set to zero (with of course r > 0). From
this method, Regev constructs an algorithm that makes calls to the oracle until it has ℓ
phase vectors that share the same number of least signiĄcant bits equal to zero. In this
way, we can represent the process as a system of communicating vessels. The Ąrst vase,
once full of elements that have no particular structure, builds one that will belong to
the second vase, and so on. This idea for keeping the space usage of the resolution of
the DCP low is described in Figure 4.3.

Now let us focus on the combination routine. It combines ℓ phase vectors for a well-
chosen ℓ (to minimize the overall complexity) in the following way. Let B be some
chosen, arbitrary value. We start with ℓ phase vectors ♣ψκ1⟩ , . . . , ♣ψκℓ

⟩ and we let

κ
def= (κ1, . . . , κℓ). We tensor these phase vectors, giving us the superposition:

♣ψκ⟩ def=
ℓ⊗

i=1

♣ψκi
⟩ =

∑

b∈Fℓ
2

ωsb·κ
N ♣b⟩ (4.3)
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We then compute b · κ mod B in an ancillary register, and measure it, which gives us a
value z. This projects the superposition on the vectors b such that b · κ mod B = z.
We choose ℓ and the size of B such that on average two solutions b0 and b1 occur. The
state becomes proportional to:

♣b0⟩+ ω
s(b1−b0)·κ
N ♣b1⟩

If there are more than two solutions, we choose two and project onto them (the exact
process will be described later). Finally, we remap b0,b1 to 0, 1 respectively. We have
obtained a phase vector ♣ψκ⟩ with a label κ = (b1 − b0) · κ ≤ B, i.e., by deĄnition of
b0 and b1, κ has now its last log (B) bits equal to zero. Then, step by step (actually,
thanks to the process described before and which is illustrated in Figure 4.3 with this
combination routine plugged in), we can build phase vectors whose labels have more
and more of their least signiĄcant bits zeroed out until we obtain the label N/2 = 2n−1.

Regev [Reg04a] and later Childs, Jao and Soukharev [CJS14] used this combination
routine to get an algorithm with Õ

(
2

√
2n log n


queries and O (n) quantum memory.

In the following sections, we give a more detailed description of the algorithm and an
analysis of its complexity.

3.1 Algorithm

We provide in Algorithm 8 the pseudocode for RegevŠs combination routine.

The projective measurement in Step 5 can be done by marking the vectors of interest
thanks to an unitary operator U deĄned as:

U ♣b⟩ ♣0⟩ 7→ ♣b⟩ ♣β⟩ where

β =





1 if b ∈ ¶b0,b1♢
0 otherwise

and second, measuring this ancillary qubit β. If 1 is measured, we succeeded to project
the superposition of t elements on the two we targeted and we can go to Step 6 of the
algorithm. On the other hand, if 0 is measured, then we obtained a superposition of all
the solutions except the two we wanted to project on. Thus, we pick two other solutions
and restart the projection process with these two vectors. This process has some small
probability to fail if t is odd that we can upperbound by 1/3.

The Ąnal relabeling step is quite simple and can be achieved in the following way:

(ωsb0·κ
N ♣b0⟩+ ωsb1·κ

N ♣b1⟩) ♣0⟩
U−→ ωsb0·κ

N ♣b0⟩ ♣0⟩+ ωsb1·κ
N ♣b1⟩ ♣1⟩

V−→ ♣0⟩ (ωsb0·κ
N ♣0⟩+ ωsb1·κ

N ♣1⟩)
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...

...
...

...
...

...

ℓ

n− 1

Figure 4.3: Diagram showing the system of communicating vessels that enabled Regev
to design a polynomial-space algorithm to solve the DCP. The dotted boxes have a
capacity of ℓ phase vectors and must be Ąlled so that their contents can be used to
construct a new phase vector that will (most likely) belong to the next box. The arrows
represent the combination process in question. Calls are made to the oracle until our
vase system has Ąlled the penultimate vase, allowing us to construct a solution state.
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Algorithm 8 RegevŠs Combination Routine

Require: a parameter r and ℓ phase vectors as in Equation 4.2 such that ∀j ∈
J1, ℓK , 2a♣κj

Ensure: a state ♣ψκ⟩ such that 2a+r♣κ
1: Build ♣ψκ⟩ where κ = (κ1, . . . , κℓ)

∑

b∈Fℓ
2

ωsb·κ
N ♣b⟩

2: Compute the function κ 7→ b · κ mod 2a+r in an ancillary register

∑

b∈Fℓ
2

ωsb·κ
N ♣b⟩

∣∣∣b · κ mod 2a+r
〉

3: Measure the ancillary register. The state collapses to:
∑

b∈Fℓ
2 :

b·κ mod 2a+r=z

ωsb·κ
N ♣b⟩ ♣z⟩

4: Compute
{

b ∈ Fℓ
2 : b · κ mod 2a+r = z

}
, of size t. Denote by bi the elements of this

set. The state can be rewritten as

t−1∑

i=0

ωsbi·κ
N ♣bi⟩ ♣z⟩

5: A projective measurement on a couple of solutions (♣b0⟩ , ♣b1⟩) gives

1√
2

(
ωsb0·κ

N ♣b0⟩+ ωsb1·κ
N ♣b1⟩



6: return The relabeled state

1√
2

(
♣0⟩+ ω

s(b1−b0)·κ
N ♣1⟩



where the operators U and V are deĄned as follows:

U ♣bb⟩ ♣0⟩ 7→ ♣bb⟩ ♣b⟩ and V ♣bb⟩ ♣b⟩ 7→ ♣0⟩ ♣b⟩ for b ∈ ¶0, 1♢.

Recall that the implementation of the operator V is possible because b0 and b1 are
classicaly known.
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3.2 Complexity

RegevŠs algorithm has subexponential query and time complexities but only needs a
polynomial space, as stated by the following theorem.

Theorem 4.3 (See [Reg04a]). Letting ℓ = r + 4 = O
(√
n logn

)
, Regev’s algorithm then

requires 2O(
√

n log n) queries and time, and polynomial (in n) space.

Sketch of proof (given by [Reg04a]). Since each routine in the process sets O
(√
n logn

)

new bits to zero, we will need O

√
n

log n


routines in the pipeline, described in Figure

4.3. We wonŠt prove it here but it can be shown that the combination routine is successful
with constant probability (see for example [Reg04a; Bon19a]). Then, inputting a total

of ℓ
√

n
log n phase vectors suffices for the algorithm to output a solution with very high

probability. This quantity is of the same order as 2O(
√

n log n), hence the query complexity
estimate. Finally, the time complexity is of the same order since we can bound the time
taken by the routine combination by 2O(ℓ).

RegevŠs study of the complexity of his own algorithm, which was fairly superĄcial, was
taken up in detail by Childs, Jao and Soukharev. They proved the following result.

Theorem 4.4 ([CJS14]). Regev’s algorithm actually requires 2

(
1√
2

+o(1)

√
n log n

queries

and quantum time, 2(
√

2+o(1))
√

n log n classical time, and polynomial (in n) space.

There are a number of possible tradeoffs, which can be achieved by adjusting the value
of ℓ. This was the subject of a study by Bonnetain, and we refer to his paper on the
subject [Bon19b] as well as his PhD thesis [Bon19a].

Low Queries Variant RegevŠs combination method, described by Algorithm 8, is used
in a communicating vessel system. The more successive rounds there are in this system,
the fewer vectors are required as input to the combination method. And vice versa.
When we want to optimize the algorithm in terms of time, we obtain Theorem 4.3, with
what is usually called RegevŠs algorithm, which uses a polynomial space and 2O(

√
n log n)

queries and time. But if we take our system of communicating vessels to have only one
round, we obtain an algorithm that takes ℓ = n vectors and directly produces the one
of interest (i.e., the one with k = N/2) at the cost of solving a subset-sum problem on
n-bit numbers. The result is an algorithm with exponential complexity in classical time,
but which uses only O (n) queries to Ąnd a bit of the secret, hence a quadratic number
(in n) of queries to Ąnd the whole secret. This limiting case of RegevŠs algorithm was
described and studied by Bonnetain and Schrottenloher in [BS20]. It will be our starting
point to design a new algorithm which reduces the DCP to an instance of quantum
subset-sum instead of a classical one in Chapter 5.
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4 Kuperberg’s second algorithm

Like the two previous algorithms, KuperbergŠs collimation sieve [Kup13] is a hybrid
quantum/classical procedure starting from the initial phase vectors, where we need
to perform both quantum computations which create new vectors, and classical
computations which give their description. It improves on the time complexity of
RegevŠs algorithm and his own Ąrst algorithm, while retaining its use in quantum space
polynomial. It is inspired by RegevŠs algorithm and works in the same way with tensored
phase vectors. However, in order to control these new phase vectors, we need to know
the list of all their labels. These lists will become of subexponential size, although the
vector itself requires only a polynomial amount of qubits. This is why the algorithm
combines a polynomial quantum memory with a subexponential classical memory, while
RegevŠs algorithm needed polynomial classical and quantum space.

4.1 Algorithm

To introduce KuperbergŠs second algorithm, we begin by rewriting RegevŠs algorithm in
a slightly different way. SpeciĄcally, instead of indexing the phase vector with a vector
κ of size ℓ and writing the algorithm with all the scalar products κ ·b for b ∈ Fℓ

2, we list
all the scalar products directly as a vector k = (k1, · · · , kL ) with in this case L = 2ℓ,
and then directly work with the values ki in this version of the algorithm. Namely, we
can give a more general deĄnition of phase vectors, as the superposition:

♣ψk⟩ def=
∑

i∈J1,L K

ωski

N ♣i⟩ (4.4)

We can now present KuperbergŠs second algorithm combination routine, which uses this
more general deĄnition to generalize in some sense RegevŠs algorithm. The Ąrst main
difference is that the former does not necessarily reduce the list of labels down to 2 in
the end, contrary to the latter. In other words, where Regev uses a vector of length L

to produce one of length 2, Kuperberg uses two of length L and L ′ to produce one of
length L ” (where in practice L ≃ L ′ ≃ L ”), as shown in Algorithm 9. The second
main difference is that while Regev uses a vector of size L = 2ℓ for some ℓ, Kuperberg
uses (and produces) vectors of size L which can be any number, not necessarily a power
of 2.

Starting from a certain set of phase vectors, we can identify them with the classical
lists of their labels. The combination step operates on these lists like a purely classical
list-merging algorithm, in which new lists of labels are formed from the pairs of labels
satisfying a certain condition. This algorithm can be represented as a merging tree in
which all nodes are lists of labels (resp. phase vectors). On the classical side, KuperbergŠs
algorithm is thus similar to WagnerŠs generalized birthday algorithm [Wag02], which is a
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Algorithm 9 Combination routine in the collimation sieve.

Require: a parameter r and 2 phase vectors ♣ψk⟩ and ♣ψk′⟩ of respective length L and
L ′, such that for some a, ∀i ∈ J1,L K , 2a♣ki and ∀j ∈ J1,L ′K , 2a♣k′

j

Ensure: a phase vector ♣ψv⟩ of length L ”, such that ∀i ∈ J1,L ”K , 2a+r♣vi

1: Tensor ♣ψk⟩ and ♣ψk′⟩

♣ψk⟩ ⊗ ♣ψk′⟩ =
∑

i∈J1,L K

∑

j∈J1,L ′K

ω
s(ki+k′

j)

N ♣i⟩ ♣j⟩

2: Compute the function (i, j) 7→ ki + k′
j mod 2a+r into an ancillary register

∑

i∈J1,L K

∑

j∈J1,L ′K

ω
s(ki+k′

j)

N ♣i⟩ ♣j⟩
∣∣∣ki + k′

j mod 2a+r
〉

3: Measure the ancillary register. The state collapses to:

∑

i∈J1,L K,j∈J1,L ′K
ki+k′

j mod 2a+r=z

ω
s(ki+k′

j)

N ♣i⟩ ♣j⟩ ♣z⟩

4: Compute
{

(i, j) ∈ J1,L K× J1,L ′K : ki + k′
j mod 2a+r = z

}
, of size L ”.

5: Apply to the state a transformation that maps the pairs (i, j) to J1,L ”K.
6: Return the state and the vector of corresponding labels ki + k′

j .

binary merging tree of depth
√
n. In WagnerŠs algorithm, the goal is to impose stronger

conditions at each level which culminate in a full-zero sum. Here, the same conditions
are imposed on the labels in the phase vectors. A success in the list-merging routine is
equivalent to a success in the collimation routine (we obtain a phase vector with the
wanted label). The query, time and memory complexities depend on the shape of the
tree. Even though the conditions are actually chosen at random at the measurement
step in Algorithm 9, we can consider them chosen at random before the combination
to analyze the algorithm. The merging tree will typically have the shape pictured in
Figure 4.4.

4.2 Complexity

In the following lemma, we give the complexity of KuperbergŠs second algorithm.

Lemma 4.5. Kuperberg’s second algorithm requires on average O
(√

2n2
√

2n


(classical

and quantum) time, O
(
2

√
2n


queries and classical memory, and poly(n) qubits.

Proof. The optimal time complexity is obtained with a tree (as described in Figure 4.4)
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2 2 2 2 2 2 2 2

4 4 4 4

8 8

. . .

Figure 4.4: We start from the leaves of the tree, which correspond to phase vectors of
length L = 2, towards the root, where the solution vector will be found. At the i-th
level of the tree, we form pairs of phase vectors of length (approximately) 2i, which we
combine two by two, to form new ones of length (approximately) 2i+1 that will belong
to the (i+ 1)-th level. If we were to process this tree level by level, we would not only
have to store 2d+1 classical indices of the phase vectors, where d is the depth of the tree,
but also all the phase vectors themselves. A better strategy exists, and it is a kind of
reverse depth-Ąrst search. This method allows us to store at most a reasonable number
of phase vectors at any time, i.e., use poly(n) qubits.

as follows. It starts with lists of size 2, i.e., two-labeled phase vectors. At level i starting
from the leaves, the lists have (expected) size 2i, and they are merged pairwise into a list
of size 2i+1. This means that when combining phase vectors of the i-th level of the tree,
we can eliminate 2i− (i+ 1) = i− 1 bits. So the depth d of the tree should be such that:

d−1∑

i=1

(i− 1) = n

i.e., d should be close to
√

2n. We directly deduce that there are in total 2
√

2n leaves
(hence queries to do). The (classical) cost of merging, over the whole tree, is equal to
the sum of all list sizes. It is also the (quantum) cost of the relabeling operations:

d∑

i=1

2
√

2n−i × 2i = O
(√

2n2
√

2n


To compute the memory complexity, one must note that it is not required to store
whole levels of the merging tree. Instead, we compute the lists (resp. the phase vectors)
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depth-Ąrst, and store only one node of each level at most, i.e., d nodes in total, as we
can prove by induction. Indeed, if d = 2, we will have to store the two initial phase
vectors to produce a Ąnal one, so we will store at most d phase vectors. Assume this is
true for a tree of i levels. It is then also true for a tree of i+ 1 levels, since we will store
the root of one subtree of i levels while we have to go through the whole other subtree,
i.e. store at most i additional nodes, until we arrive to its root and combine the result
with the root of the former subtree. In the end this means that we will have to store at
most around

√
2n phase vectors at any time. For the same reason, the classical memory

complexity is O
(
2

√
2n

.

Up to this point, the analysis was only performed on average, and in practice, there is a
signiĄcant variance in the list sizes in the tree. More precise analyses were performed
in [Pei20; Chá+22]. It follows from them that the list size after merging should be
considered smaller than the expected one by an Şadjusting factorŤ

√
3/(2π). Furthermore,

the combination may create lists that are too large, which must be discarded. The
empirical analysis of Peikert [Pei20] gives a factor (1 − δ) of loss at each level, with
δ = 0.02.

The smaller factor in list sizes simply means that at level i, we will not exactly eliminate
i− 1 bits, but i− c where c = log2

(
1 +

√
3

2π


≃ 0.76. (We can control the interval size

in Algorithm 9 very precisely.) Thus d is in fact solution to:

d∑

i=1

(i− c) = n =⇒ d2

2
− ch = n =⇒ d ≃ c+

√
2n+ 4c2 .

Finally, the loss at each level induces a global multiplicative factor (1 − δ)−d =

2− log2(1−δ)d ≃ 20.029d on the complexity. Therefore, accounting for the adjusting factor
and discards, the query complexity of the sieve is close to:

21.029(0.76+
√

2n+2.30) (4.5)

and the quantum time complexity multiplies this by a factor 0.76 +
√

2n+ 2.30. The
difference with the exact 2

√
2n is not negligible, but not large either. At n = 4608, the

two exponents are respectively 99.6 and 96.

This analysis applies if we want to obtain a speciĄc label, e.g., the label 1. Afterwards,
the algorithm can be repeated n times. For a generic N (not a power of 2), one typically
produces all labels which are powers of 2 and uses a QFT to directly recover the secret.
This is done for example in [BS20] but Peikert [Pei20] proposed a more advanced method
to recover multiple bits of the secret with each phase vector.

Lemma 4.5 gives the complexity of Ąnding one bit of the secret. We give an important
formula for computing the complexities for Ąnding the whole secret from this lemma.
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Lemma 4.6. Let α > 0 and n be a positive integer. We have

n∑

i=1

2α
√

i = O
(√

n2α
√

n

.

Proof. When i is a perfect square, let say i = j2, we have that 2α
√

i = 2αj . Now for any
i between the two perfect squares (j − 1)2 and j2, we have the upper bound 2α

√
i < 2αj .

In order to use this, we rewrite the sum:

n∑

i=1

2α
√

i ≤
⌈√n⌉−1∑

j=0

(j+1)2∑

k=j2+1

2α
√

k

≤
⌈√n⌉−1∑

j=0

(j+1)2∑

k=j2+1

2α(j+1)

=

⌈√n⌉−1∑

j=0

(2j + 1)2α(j+1)

Using the formula for geometric series, we obtain:

n∑

i=1

2α
√

i ≤ 2α+1 (2α − 1) ⌈√n⌉ 2α⌈√n⌉ − 2α(2α⌈√n⌉ − 1)

(2α − 1)2
+ 2α 2α⌈√n⌉ − 1

2α − 1

=
2α

2α − 1

(
(2
⌈√
n
⌉

+ 1)2α⌈√n⌉ − 2α+1

2α − 1
(2α⌈√n⌉ − 1)− 1

)

≤ 2α

2α − 1
(2
⌈√
n
⌉

+ 1)2α⌈√n⌉ .

which allows us to conclude the proof, α being Ąxed.

In Chapter 5, we will consider the task of obtaining labels which, instead of reaching a
prescribed k, match k on a certain number of bits only (we can say that the phase vectors
are partially collimated), let say i: this complexity is of order 2

√
2i. By Lemma 4.6,

we can obtain a sequence of i phase vectors collimated on 1, . . . , i bits with a query
complexity (by Lemma 4.6):

i∑

j=1

2
√

2j = O
(√

i2
√

2i

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5A Query Interpolation Algorithm

Let n def
= ⌈logN⌉. In this chapter, based on [RST23], we Ąrst propose a new algorithm

for solving the DCP using a linear number of queries. It is somewhat analogous to
RegevŠs algorithm where instead of reducing the DCP to a classical subset-sum problem,
it reduces the DCP to a quantum subset-sum problem. In the Ąrst case, the algorithm
makes O (n) queries to Ąnd one bit of the secret, meaning it has to be iterated O (n)

times. With this new algorithm, which is inspired by [Reg02; Ste+09], we only need
O (1) quantum subset-sum instances, i.e., O (n) queries, to Ąnd the whole secret.

Second, we present a simple and natural method of interpolation between KuperbergŠs
second algorithm (which is the state of the art) and the new algorithm we mentioned
above. It consists in using KuperbergŠs algorithm to more or less preprocess the states
given as input to our algorithm. The difficulty of solving the inherent quantum subset-
sum problem instance will depend on the preprocessing step.

Finally, as a building block of our algorithms, we study quantum subset-sum algorithms
when the problem to solve is partially in superposition. We show here that we can still
improve over GroverŠs search even under the constraint of a polynomial quantum memory,
using an exponential classical memory, with or without quantum access. SpeciĄcally, we
show that the QRACM-based algorithm of [Bon+20] adapts to this case and reaches a
complexity Õ

(
20.2356n

)
. Without QRACM, we reach a quantum time Õ

(
20.4165n

)
using

O
(
20.2334n

)
bits of classical memory, improving over a previous algorithm by Helm and

May [HM20]. In both cases, we also give non-asymptotic estimates of their complexity.

All together, we can summarize the complexity exponents of the different algorithms
for solving the DCP in Table 5.1, including the new one we propose. Note that this
is a corrected version of the same table appearing in the paper [RST23] (same for the
table that will follow in the next paragraph where some evaluations are given). In this
table and in this chapter in general, RegevŠs algorithm refers to the low-queries variant
described in Section 3.2, and 0.283 is the best asymptotic exponent that we can obtain
for classical subset-sum algorithms known at the moment [Bon+20], if there are no
constraints on the memory.

83
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Table 5.1: Complexity exponents of algorithms for Ąnding the whole secret s.

Algorithm Queries Classical Time Quantum Time Classical Space

Kuperberg II
√

2n+ 1
2 logn+ 3

√
2n+ 1

2 logn+ 3
√

2n+ 1
2 logn+ 3

√
2n

Regev 2 logn+ 3 0.283n+ 3 2 logn+ 3 0.283n
Ettinger-Hoyer logn+ 6.5 n logn+ 6.5 logn

Alg. 12 w/ QRACM logn+ 3 0.238n+ 12 0.238n+ 3
2 logn+ 12 0.238n

Alg. 12 w/o QRACM logn+ 3 < 0.232n 0.418n+ 3
2 logn+ 15.5 < 0.232n

We propose two versions of our algorithm, one with QRACM and one without, both
using polynomial quantum space. Note that our algorithm with QRACM outperforms
other algorithms using a linear number of queries when we look at the complexity in
classical time + quantum time.

Impact on CSIDH. Although KuperbergŠs second algorithm is the one with the best
time complexity for solving the DCP, it is still interesting to look at algorithms that
only use a linear number of queries, since for example, CSIDH cryptanalysis via the
resolution of the DCP involves the use of a very expensive oracle.

We give in Table 5.2 a few examples of complexity exponents for parameters of CSIDH.

Table 5.2: Complexity exponents for some parameters of CSIDH, computed from the
expressions given in Table 5.1. The quantum space is polynomial in n.

Algorithm Queries Classical

Time

Quantum

Time

Classical

Space

CSIDH-512
(n = 256)

Regev 19 76 19 73
Alg. 12 w/ QRACM 11 73 85 61

CSIDH-1024
(n = 512)

Regev 21 148 21 145
Alg. 12 w/ QRACM 12 134 148 122

CSIDH-1792
(n = 896)

Regev 23 257 23 254
Alg. 12 w/ QRACM 13 226 240 214

CSIDH-3072
(n = 1536)

Regev 25 438 25 435
Alg. 12 w/ QRACM 14 378 394 366

CSIDH-4096
(n = 2048)

Regev 25 583 25 580
Alg. 12 w/ QRACM 14 500 516 488

Organization. In Section 1, we give some preliminaries on subset-sum algorithms
that we will use as black boxes afterwards. In Section 2, we recall the reduction from
the DCP to the subset-sum problem, and introduce our new idea of using a quantum

subset-sum solver. Our interpolation between the sieving and subset-sum approaches is
detailed in Section 3. Finally, our contributions on quantum subset-sum algorithms and
the details of the black boxes that we used in the chapter are provided in Section 4.
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1 Preliminaries

Quantum Memory. We work with different types of memory:

• quantum memory (i.e., qubits): some DCP algorithms (e.g., KuperbergŠs Ąrst
algorithm [Kup05]) need to store many coset states, which creates a subexponential
quantum memory requirement;

• classical memory with quantum random-access (QRACM): the QRACM (or qRAM,
QROM in some papers) is a specialized hardware which stores classical data and
accesses this data in quantum superposition. That is, we assume that given a
classical memory of M bits y0, . . . , yM−1, the following unitary operation:

♣x⟩ ♣i⟩ Access7−−−−→ ♣x⊕ yi⟩ ♣i⟩

can be implemented in time O (1). QRACM is a very common assumption in
quantum computing, and it appears in several works on the DCP [Kup13; Pei20]
but also on collision-Ąnding [BHT98] and subset-sum algorithms [Bon+20].

• classical memory without quantum random-access: the Access operation can be
implemented in M arithmetic operations using a sequential circuit. This removes
the QRACM assumption, and we fall back on the basic quantum circuit model.
Some algorithms using QRACM can be re-optimized in a non-trivial way when
memory access is costly, and this is the case of subset-sum [HM20].
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The Subset-Sum Problem. As we saw in Chapter 4, the DCP can be reduced to the
Subset-sum problem; this leads to the most query-efficient algorithms, and depending
on the cost of queries, to the best optimization for some instances. We recall here the
deĄnition of this problem

Problem 5.1 (Subset-sum). A subset-sum instance is given by (v,k), v ∈ ZN ,k ∈ Zm
N

for some modulus N and integer m. The problem is to find a vector (or all vectors)

b ∈ ¶0, 1♢m such that b · k = v mod N .

When m ≃ n = ⌈logN⌉, there is one solution on average. The instance is said to be of
density one. Heuristic classical and quantum algorithms based on the representation

technique [HJ10; BCJ11] allow to solve it in exponential time in n. In the following, we
will use these algorithms as black boxes. We Ąrst need a classical subset-sum solver.

Fact 3. We have a classical algorithm S C which, on input a subset-sum instance (v,k)

of density one, finds all solutions. It has a time complexity in Õ (2ccSSn) where ccSS < 1.

Here, the parameter ccSS is the best asymptotic exponent that we can obtain for
classical subset-sum algorithms. If there are no constraints on the memory, we can take
ccSS = 0.283 which is the best value known at the moment [Bon+20].

In this paper, we will also need (quantum) algorithms solving a more difficult problem, in
which k is Ąxed, but the target v is in superposition. We will call this type of algorithm
a quantum subset-sum solver.

Fact 4. We have a quantum algorithm S Q which has a complexity cost in Õ (2cqSSn)

(where cqSS < 1), which, given an error bound ε, given a known (classical) k ∈ Zm
N and

on input a quantum v, maps:

♣v⟩ ♣b⟩ 7→ ♣v⟩
∣∣∣b⊕S

Q(v)
〉

where, for a proportion at least 1− ε of all v admitting a solution, S Q(v) is selected

uniformly at random from the solutions to the subset-sum problem, i.e., from the set

¶b : b · k = v♢.

Notice that in the way we implement the solver, we can only guarantee that it succeeds
on a large proportion of inputs (there remains some probability of error). However, it
depends on some precomputations that we can redo, to obtain a heuristically independent
solver which allows to reduce ε and / or to ensure that we get more solutions.

Though we could implement the function S Q by running an available classical (or
quantum) subset-sum algorithm, it would then require exponential amounts of qubits.
Using only poly(n) qubits, we know for sure that cqSS ≤ 0.5, because we can use GroverŠs
algorithm to exhaustively search for a solution b. This search uses poly(n) qubits
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only. In Section 4, we will show that we can reach smaller values for cqSS, which differ
depending on whether we allow QRACM or not.

2 Reducing the DCP to a Subset-sum Problem

Recall that we note n = ⌈logN⌉, where N is not necessarily a power of 2. We will focus
in this section on two algorithms to solve the DCP: the Ąrst one (from Regev [Reg04a])
uses a classical subset-sum solver and the other (ours) uses a quantum one.

2.1 Using a Classical Subset-sum Solver

By reducing RegevŠs algorithm to a single level as described in Section 3.2, we can
directly produce lsb(s) from n phase vectors. The pseudocode of the corresponding
algorithm is given in Algorithm 10.

It can be proven that in Step 4, the number of solutions is quite small but generally enough
for our purpose. In Step 5, the solution vectors we want to project our superposition
on are marked in an ancillary register which is then measured. Either we will get what
we want, or we will end up with a superposition of the solution vectors that were not
marked, in which case we start the process again with two other solution vectors. For
more details, we refer to the extensive study of RegevŠs algorithm by Childs, Jao and
Soukharev [CJS14].

The following lemma gives us the complexity of Algorithm 10, derived from RegevŠs
algorithm.

Lemma 5.1 (Subsection 3.3 [BS20]). There exists an algorithm which finds lsb(s) with

O (n) queries and quantum time and space. It has the same usage in classical time and

space as the subset-sum solver S C.

Algorithm 10 Ąnds one bit of the secret. In order to retrieve the whole secret, we will have
to repeat this procedure n times. Thus, we get an algorithm using a quadratic number
of calls to the oracle, exponential classical time and space because of the subset-sum
solver, linear quantum space and quadratic quantum time.

It turns out that we could solve the classical subset-sum problem on the side with
a quantum computer, leading to some tradeoffs described in [Bon19b]. But we show
hereafter that we can also build an algorithm which directly uses a quantum subset-sum
solver instead of having to measure the ancillary register to get a classical instance of a
subset-sum problem.
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Algorithm 10 Finding lsb(s) using a classical subset-sum solver S C

Require: ♣ψk1⟩, . . . , ♣ψkn
⟩ with k def

= (k1 . . . kn) ∈ Zn
N .

Ensure: lsb(s).
1: Tensor the phase vectors and append a register on Fn−1

2

n⊗

i=1

♣ψki
⟩ =

1√
2n

∑

b∈Fn
2

ωsb·k
N ♣b⟩

2: Compute the inner product of b and k in the ancillary register

1√
2n

∑

b∈Fn
2

ωsb·k
N ♣b⟩

∣∣∣b · k mod 2n−1
〉

3: Measure the ancillary register ▷ Z is a normalizing constant

1√
Z

∑

b∈Fn
2 :

b·k=z mod 2n−1

ωsb·k
N ♣b⟩ ♣z⟩

4: Search for vectors bi such that bi · k = z mod 2n−1 using S C

5: Project the superposition onto a pair of solutions, e.g., (b1,b2)

1√
2

(
ωsb1·k

N ♣b1⟩+ ωsb2·k
N ♣b2⟩



6: Relabel the basis states to (♣0⟩ , ♣1⟩), resulting in

ωsb1·k
N√

2

(
♣0⟩+ ω

s(b2−b1)·k
N ♣1⟩



7: Apply a Hadamard gate on the qubit, measure it and output the result.

2.2 Using a Quantum Subset-sum Solver

The main observation that led to the design of the algorithm we introduce hereafter is
that on one hand, we would like to build the superposition

1√
N

∑

j∈ZN

ωsj
N ♣j⟩ (5.1)

since applying the inverse QFT on ZN on it would directly give the secret s, and on the
other hand, we know that it would be possible, thanks to a quantum subset-sum solver,
to prepare the state

1√
Z(k)

∑

b∈Fm
2

ωsb·k
N ♣b · k mod N⟩ (5.2)
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where Z(k) is a normalizing constant depending on k. Indeed, preparing this state is
done by using RegevŠs trick (see [Reg02; Ste+09]), i.e.,

(i) by tensoring m phase vectors

1√
M

∑

b∈Fm
2

ωsb·k
N ♣b⟩ ♣0n⟩ ,

(ii) then computing the subset-sum in the second register to get the entangled state

1√
M

∑

b∈Fm
2

ωsb·k
N ♣b⟩ ♣b · k mod N⟩ ,

(iii) and Ąnally disentangle it thanks to a quantum subset-sum algorithm which from
b · k mod N and k (which is classical) recovers b and subtracts it from the Ąrst
register to get the state we want.

As one can see, if we could take m = n and have an isomorphism between the vectors
b and the knapsack sums b · k mod N , the prepared state (5.2) would be exactly the
superposition (5.1).

However, there would be many cases in which multiple solutions to the subset-sum
problem exist. Thus we take m < n and deĄne M

def
= 2m < N . This is different

from Algorithm 10, where such collisions are needed. We obtain Algorithm 11, which
uses RegevŠs trick with a quantum subset-sum solver in Step 3.

DespiteM being smaller thanN , some cases still yield multiple solutions, and furthermore
the subset-sum solver (as given by Fact 4) fails on some instances. This is why we
distinguish between Algorithm 11 in which we consider the quantum subset-sum solver
to be ideal (i.e., it Ąnds back b from b · k and k with certainty), and the algorithm that
we actually build in practice: Algorithm 12.

The analysis of Algorithm 12 is related to the set of b on which the quantum subset-sum
solver succeeds: S Q(b · k) = b for a Ąxed k.

Notation 1. Let us denote by G (k) the set of b’s that are correctly found back by S Q

for a given k:

G (k)
def
= ¶b ∈ Fm

2 : S
Q(b · k) = b♢

and let G(k) be the size of the set G (k).

We apply in Step 4 a measurement in order to disentangle the superposition we have,
so we can apply an inverse QFT in the same natural way as in the ideal algorithm.
We show that the probability of success of the measurement (i.e., of measuring 0) is
good enough for our purpose when taking m close to n. We also prove under the same
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Algorithm 11 Ideal algorithm

Require: A parameter m < n and phase vectors ♣ψki
⟩ for i ∈ J1,mK.

Ensure: An element j ∈ ZN .
1: Tensor the m phase vectors and append a register on ZN

m⊗

i=1

♣ψki
⟩ ♣0n⟩ =

1√
M

∑

b∈Fm
2

ωsb·k
N ♣b⟩ ♣0n⟩

2: Compute the inner product of b and k in the ancillary register

1√
M

∑

b∈Fm
2

ωsb·k
N ♣b⟩ ♣b · k mod N⟩

3: Uncompute b thanks to k and ♣b · k mod N⟩

1√
Z(k)

∑

b∈Fm
2

ωsb·k
N ♣0m⟩ ♣b · k mod N⟩

4: Apply the inverse QFT on ZN on the second register

1√
N

∑

j∈ZN


 1√

Z(k)

∑

b∈Fm
2

ω
(s−j)b·k
N


 ♣0m⟩ ♣j⟩

5: Measure the state and output the resulting j.

assumption that the algorithm outputs the secret with good probability. All in all, these
two properties lead to our main result.

Theorem 5.1. There exists an algorithm which finds s using O (n) queries and the

same usage in time and space as the subset-sum solver S Q.

In order to analyze Algorithm 12 and prove Theorem 5.1, we will proceed in two steps.

Step 1.

The Ąrst step is to give a lower bound on Ek [G(k)]. This lower bound is given by
estimating the number of vectors which admit more than one possible solution.

To arrive here, we Ąrst take a look at the normalization constant Z(k) and we compute
Ek [Z(k)] (the average over all choices of k). This can be done by simply looking at the
measurement step in Algorithm 11.

Lemma 5.2. We have

Ek [Z(k)] = M


1 +

M − 1

N


.
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Algorithm 12 Finding s using a quantum subset-sum solver S Q

Require: A parameter m < n and phase vectors ♣ψki
⟩ for i ∈ J1,mK.

Ensure: An element j ∈ ZN .
1: Tensor the phase vectors and append a register on ZN

m⊗

i=1

♣ψki
⟩ ♣0n⟩ =

1√
M

∑

b∈Fm
2

ωsb·k
N ♣b⟩ ♣0n⟩

2: Compute the inner product of b and k in the ancillary register

1√
M

∑

b∈Fm
2

ωsb·k
N ♣b⟩ ♣b · k mod N⟩

3: Apply S Q to uncompute b

1√
M

∑

b∈Fm
2

ωsb·k
N

∣∣∣b⊕S
Q(b · k)

〉
♣b · k mod N⟩

4: Measure the Ąrst register. If the result is not 0m, abort and restart with new coset
states. Otherwise, we obtain

1√
G(k)

∑

b∈G

ωsb·k
N ♣0m⟩ ♣b · k mod N⟩

5: Apply the inverse QFT on ZN on the second register

1√
N

∑

j∈ZN


 1√

G(k)

∑

b∈G

ω
(s−j)b·k
N


 ♣0m⟩ ♣j⟩

6: Measure the state and output the resulting j.

Proof. Fix k = (k1, · · · , km). For all j ∈ ZN , the measurement in Algorithm 11 returns
j with probability:

Pideal [j♣k] =
1

NZ(k)

∣∣∣∣∣∣
∑

b∈Fm
2

ω
(s−j)b·k
N

∣∣∣∣∣∣

2

=
1

NZ(k)

∣∣∣∣∣
m∏

i=1

(
1 + ω

(s−j)ki

N

∣∣∣∣∣

2

=
1

NZ(k)

m∏

i=1

∣∣∣1 + ω
(s−j)ki

N

∣∣∣
2

=
1

NZ(k)

m∏

i=1

4 cos2

πki

s− j
N


=

M2

NZ(k)

m∏

i=1

cos2

πki

s− j
N


.
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Furthermore, we have
∑

j∈ZN
Pideal [j♣k] = 1, so we can write:

Z(k) =
M2

N

∑

j∈ZN

m∏

i=1

cos2

πki

s− j
N


(5.3)

It follows that

Ek [Z(k)] =
M2

N

∑

j∈ZN

E

[
m∏

i=1

cos2

πki

s− j
N

]

and since the ki are i.i.d., we have

Ek [Z(k)] =
M2

N


1 +

∑

j∈ZN \¶s♢

m∏

i=1

E


cos2


πki

s− j
N




=
M2

N

(
1 + (N − 1)

m∏

i=1

1

2

)
=
M

N
(N +M − 1) .

Next, we give a relation between G(k) and Z(k).

Lemma 5.3. For any k:

G(k) ≥ (1− ε) (2M − Z(k)) .

Proof. Fix k. Let B(j) be the set of vectors whose knapsack sum is j:

B(j)
def
= ¶b ∈ Fm

2 : b · k = j mod N♢

and let Ci be the set of vectors b that have i collisions:

Ci
def
= ¶b ∈ Fm

2 : #B(b · k) = i♢ .

We denote by Ci the size of the set Ci.

If we take a closer look at Z(k), we have that

Z(k) =
∑

j∈ZN

∣∣∣∣∣∣
∑

b∈B(j)

ωsb·k
N

∣∣∣∣∣∣

2

=
∑

j∈ZN

∣∣∣ωsj
N

∣∣∣
2

∣∣∣∣∣∣
∑

b∈B(j)

1

∣∣∣∣∣∣

2

=
∑

j∈ZN

∑

b∈B(j)

∑

b′∈B(j)

1 =
∑

j∈ZN

∑

b∈B(j)

∑

b′∈B(b·k)

1

=
∑

j∈ZN

∑

b∈B(j)

#B(b · k) =
∑

b∈Fm
2

#B(b · k)

=
∑

i≥1

∑

b∈Fm
2 : #B(b·k)=i

i =
∑

i≥1

iCi
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Letting C>1 be the number of vectors b with at least one collision (i.e., for which there
exists b′ ≠ b such that they have the same knapsack sum), we have C>1 =

∑
i>1Ci.

From
Z(k) =

∑

i≥1

iCi = C1 + 2
∑

i≥2

Ci +
∑

i≥3

(i− 2)Ci ,

it follows that we have the lower bound:

Z(k) ≥ C1 + 2C>1 .

Injecting twice the equation C1 = M −C>1 in this inequality and using the trivial bound
G(k) ≥ (1− ε)C1, we conclude the proof.

From Lemma 5.2 and Lemma 5.3, we immediately deduce:

Lemma 5.4.
Ek [G(k)] ≥ (1− ε)M


1− M − 1

N


.

Step 2.

The second step in our proof computes the probability of success of the ŞrealŤ algorithm
by relating it to Ek [G(k)].

Lemma 5.5. Algorithm 12 outputs the secret s with probability ≥ (1− ε)M(N−M+1)
N2 .

Proof. We compute the probability of measuring j ∈ ZN at the end of Algorithm 12. In
particular, we have for s

Preal [s♣k] =
1

NG(k)

∣∣∣∣∣∣
∑

b∈G

ω0
N

∣∣∣∣∣∣

2

=
G(k)

N

We have by Lemma 5.4 that E [G(k)] ≥ (1 − ε)M
(
1− M−1

N


. We Ąnish the proof by

observing that Preal [s] = E [Preal [s♣k]] ≥ (1− ε)M(N−M+1)
N2 .

Finally, we can prove Theorem 5.1.

Proof. Step 4 of Algorithm 12 succeeds with average probability E[G(k)]
M which is greater

than (1− ε)N−M+1
N (by Lemma 5.4). The Ąnal measurement of the algorithm outputs

the secret with probability ≥ (1 − ε)M(N−M+1)
N2 (by Lemma 5.5). We will thus have

to repeat the algorithm an expected number smaller than N3

(1−ε)2M(N−M+1)2 times. By
letting m be equal to n− 1, we obtain that the algorithm will have to be repeated less
than 8/(1−ε)2 times. Thus, we can conclude that our algorithm needs O (n) queries and
has complexity costs identical to the ones of the subset-sum solver, since the subset-sum
resolution is the only exponential step of the algorithm.
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3 Interpolation algorithm

If we take a look at the ideal algorithm and consider that there is no collision, we can
see that we would like 2m to be as close to N as possible in order for the sum

1√
M

∑

b∈Fm
2

ω
(s−j)b·k
N

to contain as many as possible elements of the sum

1√
N

∑

b∈Fn
2

ω
(s−j)b·k
N .

In the mean time, it is clear that the closest M gets to N , the more likely collisions
b1 · k = b2 · k for b1 ̸= b2 become. We thus have to Ąnd a compromise on the value m
or more interestingly play with the values ki used in the algorithm, to avoid collisions
and to simplify the resolution of the subset-sum problem.

In fact, we can reduce the size of the subset-sum problem we have to solve by pre-
processing the states to get values of ki that will allow us to solve the subset-sum
problem on some bits by Gaussian elimination. Constructing these kiŠs can be achieved
by KuperbergŠs second algorithm (or any improvement). Given a threshold parameter
t ∈ J1,mK, we can consider the following conĄguration for the ki to use as inputs
in Algorithm 12 (dots represent unknown bits and the i-th bit of the j-th row is the
j-th bit of the binary expansion of ki):




1 2 · · · m− t m− t+ 1 · · · n

k1 1 • · · · • • · · · •
k2 0 1

. . . • • · · · •
...

...
...

. . . . . .
... · · · •

km−t 0 0 · · · 1 • · · · •
km−t+1 0 0 · · · 0 • · · · •
...

...
...

...
... · · · •

km 0 0 · · · 0 • · · · •




(5.4)

In Algorithm 12, it turns out that we can keep a good probability of Ąnding the secret s
by letting m be equal to n− 1 so that is what we will assume afterwards.

To build phase vectors that satisfy the conĄguration in Equation 5.4, we will
approximately have to query the oracle

n−t∑

i=1

2
√

cDCPi + t2
√

cDCP(n−t)
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leading to a query and time complexities of O
(
(
√
n− t+ t)2

√
cDCP(n−t)


(by Lemma 4.6),

where cDCP is the constant of the algorithm used to construct the states (cDCP = 2 for
KuperbergŠs second algorithm). For the subset-sum problem, solving it on the Ąrst n− t
bits is easy (thanks to a Gaussian elimination), the difficulty comes from the last t bits,
leading to a complexity in O

(
2cqSSt

)
time, where cqSS is the complexity exponent of the

quantum subset-sum solver. This parameter t can be used in a natural way to obtain
an interpolation algorithm, since it allows to obtain a tradeoff between the preparation
of the states and the resolution of the problem (which amounts to solving a quantum
subset-sum problem).

We can now give an interpolation algorithm derived from Algorithm 12. We note that
letting q be the query complexity exponent, it is possible to determine t from n and
the value q we can afford. Using KuperbergŠs second algorithm (or any improvement)
to compute suitable phase vectors as described before and then giving them as inputs
to Algorithm 12, we can retrieve the secret s as described by Algorithm 13 with the
complexities given by Theorem 5.2.

Algorithm 13 Interpolation algorithm (using a quantum SS solver)

Require: q such that 2q is the number of queries we are allowed to do.
Ensure: The secret s.

1: Use KuperbergŠs second algorithm (or any improvement) to create states ♣ψki
⟩ for

i ∈ J1,mK satisfying the conĄguration represented by Matrix (5.4), where t ≈ q
cSS

.
2: Apply Algorithm 12 on these m states to obtain a value j ∈ ZN .
3: Check if j is the secret. If not, return to Step 1. Otherwise, output j.

Theorem 5.2. Let t ∈ J1,mK. Algorithm 13 finds s with O
(
(
√
n− t+ t)2

√
cDCP(n−t)



queries in O
(
(
√
n− t+ t)2

√
cDCP(n−t) + 2cqSSt


quantum time, classical space

O
(
2
√

cDCP(n−t) + 2cqSSt


and O (poly(n)) quantum space.

We notice that when t = m, the ki are kept random and we have to solve the Şfull rankŤ
subset-sum, matching with Algorithm 12. On the other side, when t = 1, we fall back
on KuperbergŠs second algorithm since we have in this case to construct a collection of
states divisible by all the successive powers of 2. Finally, when 1 < t < m, we have new
algorithms working for any number of queries between O (n) and Õ

(
2

√
cDCPn


.

4 Quantum Subset-sum Algorithms

In this section, we consider quantum algorithms solving the quantum subset-sum problem
introduced in Section 1. We give both asymptotic complexities and numerical estimates.
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Recall that we consider a subset-sum instance (v,k),k ∈ Zm
N , where v is in superposition,

and k will remain Ąxed. The problem is to Ąnd b such that b · k = v mod N for a
given (Ąxed) modulus N . For a given v, if there are many solutions, we want to Ąnd one
selected uniformly at random (under heuristics). If we want all solutions, then we can
run multiple instances of the solver (we will have to redo the pre-computations that we
deĄne below). A given solver, deĄned for a speciĄc k, is expected to work only for some
(large) proportion 1− ε of v. We can check whether the output is a solution or not and
measure the obtained bit to collapse on the cases of success.

4.1 Algorithms Based on Representations

The best algorithms to solve the subset-sum problem with density one are list-merging
algorithms using the representation technique [HJ10; BCJ11]. The best asymptotic
complexities (both classical and quantum) are given in [Bon+20]. We detail the
representation framework following the depiction given in [Bon+20]. To ease the
description, we start with the case v = 0, i.e., the homogeneous case, and we will show
below how to extend it easily to v ̸= 0.

Guessed Weight. We assume that the solution b is of weight ⌈m/2⌉. This is true
only with probability: pm := 2−m

( m
⌈m/2⌉

)
= 1/poly(m). If not, we re-randomize the

subset-sum instance by multiplying b by a random invertible matrix. Thus if we manage
to solve an instance of weight ⌈m/2⌉, the total complexity to solve any instance will
introduce a multiplicative factor 1

pm
that we will have to estimate.

Distributions. We consider distributions of vectors having certain relative weights:
Dm[α] ⊆ ¶0, 1♢m is the set of vectors having weight αm. The basic idea of representations
is to write the solution b as a sum of vectors of smaller relative weights, e.g., b = b1 +b2

where b1 ∈ Dm[α1],b2 ∈ Dm[α2] and α1 + α2 = 1
2 . In this paper, we consider only

representations with coefficients 0 or 1. Extended representations can be considered,
using more coefficients (which have to cancel out each other). However, the advantage
of using extended representations becomes quickly insigniĄcant in practice. It is also
harder to compute the number of representations, or the Ąltering probabilities that we
deĄne below.

Merging Tree. A subset-sum algorithm is deĄned by a merging tree. A node in
this tree is a list L[ℓ, α, c], which represents a set of vectors drawn from ¶0, 1♢m under
several conditions: 1. the size of the list is 2mℓ; 2. the vectors are sampled u.a.r. from
a prescribed distribution Dm[α]; 3. the vectors satisfy a modular condition of cm bits.
With v = 0, the following condition can be used: e · k mod N ∈ [−N/2cm;N/2cm] for
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some number c. More generally, the modular conditions can be chosen arbitrarily, as
long as they remain compatible with the target v.

Once the tree structure is chosen, its parameters are optimized under several constraints.
First, the lists have a certain maximal size. A distribution Dm[α] has size

( m
αm

)
, which is

asymptotically estimated as ≃ 2h(α)m. This creates the constraint ℓ ≤ h(α)− c. Second,
we expect the root list to contain the solution of the problem, i.e., ℓ = 0 (one element),
α = 1

2 and c = 1. Finally, each non-leaf list L has its parameters determined by its
two children L1, L2. Indeed, it is obtained via the merging-filtering operation which
selects, among all pairs of vectors (e1, e2) ∈ L1×L2, the pairs such that: e1 + e2 satisĄes
the modular condition (merging) and satisĄes the weight condition (Ąltering). The
parameters are:




α = α1 + α2 (increasing weights)

ℓ = ℓ1 + ℓ2 − (c−min(c1, c2))− pf(α1, α2)
(5.5)

Here, pf is the probability that two vectors chosen u.a.r. in their respective distributions
will not have colliding 1s.

Lemma 5.6 (Lemma 1 in [Bon+20]). Let e1, e2 be drawn u.a.r. from Dm[α1], Dm[α2]

with α1 + α2 ≤ 1. The probability that e1 + e2 ∈ Dm[α1 + α2] is equal to:

PF(α1, α2,m) :=

(
m− α1m

α2m

)
/

(
m

α2m

)
≃ 2mpf(α1,α2)

where pf(α1, α2) := h
(

1−α2
α1


α1 − h(α1) .

Classical Computation of the Tree. To any correctly parameterized merging tree
corresponds a classical subset-sum algorithm that runs as follows: it creates the leaf
lists by sampling their distributions at random. It then builds the parent lists by
merging-filtering steps. The merging operation is efficient, since elements can be ordered
according to the modular condition to be satisĄed.

Lemma 5.7 (Lemma 2 in [Bon+20]). Let L1, L2 be two sorted lists stored in classical

memory with random access. In log2, relatively to m, the parent list L can be built in

time: max(min(ℓ1, ℓ2), ℓ1 + ℓ2 − (c−min(c1, c2))) and in memory max(ℓ1, ℓ2, ℓ).

Quantum Computation of the Tree. While the more advanced quantum subset-
sum algorithms use quantum walks [Ber+13; HM18; Bon+20], we want to focus here on
algorithms using few qubits, which at the moment, rely only on quantum merging with
Grover search. They replace the classical merging operation by the following.
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Lemma 5.8 (Lemma 4 in [Bon+20]). Let L2 be a sorted list stored in QRACM. Assume

given a unitary U that produces, in time tL1 , a uniform superposition of elements of L1.

Then there exists a unitary U ′ that produces a uniform superposition of elements of L,

in time O


tL1√

pf(α1,α2)
max(

√
2cm/♣L2♣, 1)


.

Since the goal is only to sample u.a.r. from the root list, only half of the lists in the
tree need actually to be stored in QRACM. The others are sampled using the unitary
operators given by Lemma 5.8. In short, the obtained subset-sum algorithm is a sequence
of Grover searches which use existing lists stored in memory to sample elements in new
lists with more constraints.

Heuristics. The standard subset-sum heuristic assumes that the elements of all lists
in the tree (not only the leaf lists) behave as if they were uniformly sampled from the
set of vectors of right weight, satisfying the modular condition. This heuristic ensures
that the list sizes are very close to their average: for each L obtained by merging and
Ąltering L1[ℓ1, α1, c1] and L2[ℓ2, α2, c2], we have:

♣L♣ ≃ ♣L1♣♣L2♣
2m(c−min(c1,c2))PF(α1, α2,m)

,

where the approximation is exact down to a factor 2. This is true with overwhelming
probability for all lists of large expected size via Chernoff-Hoeffding bounds, and even
if the root list is of expected size 1, the probability that it actually ends up empty is
smaller than e−0.5 ≃ 0.61.

4.2 From Asymptotic to Exact Optimizations

As the time and memory complexities of a subset-sum algorithm are determined by
its merging tree, we seek to select a tree which minimizes these parameters. Given
a certain subset-sum problem, we Ąrst select a tree shape. As an example, the best
subset-sum algorithm with low qubits (using QRACM) is the Şquantum HGJŤ algorithm
of [Bon+20], whose structure is reproduced in Figure 5.1. At level 3, it splits the vectors
into two halves, and merges without Ąltering. While all lists are obtained via quantum
merging/Ąltering, the main computation is performed after obtaining L3

1, L
2
1, L

1
1, where

the main branch is explored using GroverŠs algorithm: we search through the lists
L3

0, L
2
0L

1
0 without representing them in memory. The quadratic speedup of Grover

search makes the tree unbalanced, which is reĆected on the naming of its parameters in
Figure 5.1.

The asymptotic time complexity of the algorithms has the form Õ
(
2βm


, and is the

result of summing together the costs of all merging steps. Through the approximation
of binomial coefficients, the list sizes are approximated in log2 and relatively to m. The
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L0

L1
1 with

condition c1

L2
3 with

condition c2
1

L3
7

m/2
L3

6

m/2

L2
2 with
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1

L3
5

m/2
L3

4

m/2

L1
0 with

condition c1

L2
1 with

condition c2
0

L3
3

m/2
L3
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m/2
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condition c2
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1

mr
L3

0

m(1− r)

Figure 5.1: Quantum HGJ algorithm. Dotted lists are search spaces (they are not
stored). Bold lists are stored in QRACM. The Ąrst level uses a left-right split of vectors,
without Ąltering.

parameters (relative weights, modular conditions and sizes) are numerically optimized.
The optimization of Figure 5.1 in [Bon+20] yields the complexity Õ

(
20.2356m

)
.

In this paper, we also perform non-asymptotic optimizations for a given m. Since
we use only ¶0, 1♢-representations, the Ąltering probability is well known and has a
simple expression (Lemma 5.6). Since the binomial coefficients can be extended as
functions of R2, we can perform an exact numerical optimization of list sizes for a
given m. Afterwards, the numbers obtained are rounded, in particular the weights
of representations, and we take the point which gives us the best results: smallest
complexity and biggest average size for L0.

Example. Let us take n = log2N = 256, m = n − 1 = 255, and the structure
of Figure 5.1. We adapt the optimization code of [Bon+20] by taking the exact exponents
(not relative to n) and optimize numerically under the constraint

∣∣L0
∣∣ = 22 (to ensure

that there are solutions). The asymptotic formula would give 20.2356n ≃ 260.31. Numerical
optimization gives us a time 263.81, but this admits non-integer parameters and it is only
the maximum between all steps. By rounding the parameters well, we obtain Figure 5.2.

To compute the quantum time complexity, we consider the list sizes to be exact and use
the formula of Lemma 5.8 without the O. The subtrees on the right can be computed
in 265.71 operations; the slight increase is due to the fact that we take a sum of their
respective terms and not a maximum. In the left branch, we sample from L0 in 263.48

operations.

The actual time complexity is slightly bigger, due to the variation in list sizes, and
the constant complexity overhead (π/2) of Grover search. More importantly, these
operations require: • to recompute a sum, using m (controlled) additions modulo N ;
• to test membership in some distribution; • to sample from input distributions Dn.
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253.31 and a memory 226.82 < 2128×0.2324 = 229.75. On top of this, we must also take pm

into account.

After running optimizations for n = 128 to 1024, we obtained a count of about
20.418m+12.851 blocks of m arithmetic operations (m2 quantum gates). The point at
which the algorithm starts improving over Grover search lies around n = 157.



Chapter

6A Space Interpolation Algorithm

To brieĆy review the main historical stages in solving the DHSP, the Ąrst major milestone
was KuperbergŠs Ąrst algorithm, proposed in 2003. It solves the DHSP directly, using only
CNOT gates and measurements, in sub-exponential time, but also with sub-exponential
space. Less than a year later, Regev proposed an algorithm that is also sub-exponential
in time, but with two notable differences: it reduces the DHSP to a subset-sum problem
and requires only a polynomial (classical and quantum) space. Subsequent efforts have
then focused on this idea of reducing the DHSP to a subset-sum problem, leading to
the state-of-the-art, KuperbergŠs second algorithm, and several tradeoffs. On the other
hand, only minor improvements have been made on KuperbergŠs Ąrst algorithm (of the
order of polynomial factors, see Chapter 4), and the basic idea of the algorithm does not
seem to have been exploited beyond that.

In this chapter, we look at just that and give some hints as to what could be done to
obtain new algorithms for solving the DHSP using only CNOT gates and measurements,
with the aim of building (both classical and quantum) space-efficient algorithms. The
work presented here is still in progress, which is why conjectures about the complexity of
the algorithms introduced hereafter are given and attempts to prove them are presented.
In addition, experimental results are given, reinforcing in particular a conjecture about
the complexity of one of the algorithms presented. This algorithm would solve the DCP

in ZN where N = 2n using at most n qubits (and likewise a classical space of the order
of n2 bits) in (classical and quantum) time Θ̃

(
20.415n

)
with an equivalent number of

queries. This algorithm would therefore be the fastest among all the previously known
algorithms that use a linear number of qubits to solve the DCP (namely, Ettinger-Høyer
algorithm and the algorithm presented in Chapter 5). The work presented in this chapter
is the object of a preprint to come soon [RT23].
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1 A Space-Efficient Algorithm

We recall that phase vectors are deĄned as states

♣ψk⟩ def
=

1√
2

(♣0⟩+ ωsk
N ♣1⟩) (6.1)

where s ∈ ZN is an unknown integer we are looking for. We will assume for the sake of
simplicity that N = 2n.

In what follows, we assume we have an oracle O outputting at each call an integer k
drawn uniformly at random from ZN and the corresponding phase vector ♣ψk⟩ as deĄned
in Equation (6.1). When such a couple is obtained, we will put it in a pool denoted by
Pi if 2i−1 is the greatest power of 2 that divides k, more precisely:

Pi ←− (k, ♣ψk⟩) if k ∈ Di where

∀i ∈ J1, nK , Di
def
=
{

(2α− 1)2i−1, α ∈
q
1, 2n−i

y}
.

Thanks to this deĄnition, Bonnetain and Naya-Plasencia [BN18] proposed to write
KuperbergŠs Ąrst algorithm in a more opportunistic way, for which we recall in
Algorithm 14 a pseudo-code implementation.
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Algorithm 14 Opportunistic variant of KuperbergŠs Ąrst algorithm

Require: A set of phase vectors.
Ensure:

∣∣∣ψN/2

〉
.

1: Classify the phase vectors in the pools Pi

2: for i = 1 to n− 1 do
3: while ♣Pi♣ ≥ 2 do
4: Pick ♣ψa⟩ and ♣ψb⟩ from Pi such that a±b has the highest possible divisibility

by 2 (and is not 0)
5: Combine ♣ψa⟩ and ♣ψb⟩ and insert the result in the appropriate pool
6: if Pn ̸= ∅ then return

∣∣∣ψN/2

〉

7: return "The algorithm failed".

It is claimed in [BN18] that Algorithm 14 has the same complexity as KuperbergŠs Ąrst
algorithm and this is the algorithm that inspired us to build a new one that uses at most
n qubits and n2 bits to solve the DCP, making it the most space-efficient algorithm to
date. Its pseudocode is provided in Algorithm 15.

Algorithm 15 Our algorithm

Require: An oracle O outputting uniformly at random ♣ψk⟩ with k ∈ ZN .
Ensure:

∣∣∣ψN/2

〉
.

1: repeat
2: while for all i, ♣Pi♣ < 2 do
3: Call O and insert the result in the appropriate pool.
4: Let i be such that ♣Pi♣ = 2.
5: Pick ♣ψa⟩ and ♣ψb⟩ from Pi.
6: Combine ♣ψa⟩ and ♣ψb⟩ and insert the result in the appropriate pool
7: until there is a state in the pool Pn

8: return
∣∣∣ψN/2

〉
.

Note that when the state ♣ψ0⟩ is produced, we just drop it off, since it is basically the
state ♣+⟩ and does not carry any information about the secret.

From this algorithm we cannot say much other than to study the probability distributions
corresponding, on one hand, to what the oracle produces and, on the other, to what is
obtained by combining two elements from the same pool.

Probability Distributions. The probability distribution of elements picked uniformly
at random from the oracle is given by the following lemma.
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Lemma 6.1 (Initial distribution). Let i ∈ J1, nK. The probability that the oracle O

yields a phase vector belonging to the pool Pi, denoted by PO [i], is

PO [i] = 2−i.

Proof. This is straightforward since PO [i] = ♣Di♣
♣ZN ♣ = 2n−i

2n .

The probability distribution of elements obtained from combining two phase vectors of a
same pool is given by the following lemma.

Lemma 6.2 (Combination distribution). Let i ∈ J1, n− 1K and j ∈ J1, nK. The

probability that combining two phase vectors from Pi yields a phase vector from Pj,

denoted by Pi [j], is

Pi [j] =





2i−j if j > i

0 otherwise.

Proof. Let P+
i [j] (resp. P−

i [j]) be the probability for two phase vectors from Pi to
produce one from Pj when combined and their sum (resp. difference) is obtained.
Let k ∈ Di. There exists α ∈

q
1, 2n−i

y
such that k = (2α − 1)2i−1. We Ąrst look

for the proportion P+
i [j] of ℓ ∈ Di, which we can write as ℓ = (2β − 1)2i−1 for some

β ∈
q
1, 2n−i

y
, such that k + ℓ = (α+ β − 1)2i ∈Pj , i.e.,

P+
i [j] =

1

♣Di♣
#
{
β ∈

q
1, 2n−i

y ∣∣∣ (α+ β − 1)2i ∈Pj

}

Looking closely at the condition, it is equivalent to say that there must exist γ ∈
q
1, 2n−j

y

such that

(α+ β − 1)2i = (2γ − 1)2j−1

We can see that if j ≤ i, no value for γ exists such that this equation holds. We assume
from now on that j > i. The condition becomes

α+ β − 1 = 2j−(i+1) mod 2j−i

It follows that

P+
i [j] =

1

♣Di♣
2n−i

2j−i
= 2i−j

We use the same reasoning for the difference, P−
i [j] being the proportion of ℓ ∈Pi such

that ♣k − ℓ♣ = ♣α− β♣2i ∈Pj , i.e.,

P−
i [j] =

1

♣Di♣
#
{
β ∈

q
1, 2n−i

y ∣∣∣ ♣α− β♣2i ∈Pj

}
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It is equivalent to say that there must exist γ ∈
q
1, 2n−j

y
such that

♣α− β♣2i = (2γ − 1)2j−1

Once again if j ≤ i, no value for γ exists such that this equation holds. We assume from
now on that j > i. The condition is equivalent to

♣α− β♣ = 2j−(i+1) mod 2j−i

It follows that

P−
i [j] =

1

♣Di♣
2n−i

2j−i
= 2i−j

By deĄnition, the overall probability Pi [j] is

Pi [j] =
1

2

(
P+

i [j] + P−
i [j]


= 2i−j .

These probability distributions would actually be useful for studying the mean hitting
time of the Markov chain corresponding to the process followed in the algorithm, which
would thus give us the average time complexity of the algorithm. The problem is that
there is an exponential number of states in this Markov chain.

On the Markov chain of Algorithm 15. Indeed, these states are vectors of length
the number of qubits we are using (namely, n). They contain in their i-th entry the
number at time t of phase vectors contained in the i-th pool. The transitions between
different vectors are made according to the probability distribution of the combination if
we start from a vector that contains a 2 (since in this case we have two phase vectors in
the same subpool that we have to combine) or according to the probability distribution
given by the oracle in the other case (since if there are no elements to combine, we draw
a new one from the oracle). All in all, the Markov chain has an exponential number of
states, which makes it difficult to study. Indeed, we have:

• the conĄgurations were a solution have been found, i.e., there is 1 element in Pn,
coming either from the oracle (which means before calling the oracle, there was
no pool with 2 elements) or either from a combination (meaning that 2 elements
from a pool were used to produce the solution, leaving no pool with 2 elements)
are 2n−1 of them,

• the conĄgurations for which no solution has been found, corresponding either to
a situation where a query must be made (i.e., no pool contains 2 elements), or
to a situation where a combination must be made (i.e., there is a pool which
contains 2 elements). There are therefore 2n−1 +

(n−1
1

)
2n−2 = (n+ 1)2n−2 of these

conĄgurations.
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In total, the Markov chain corresponding to our algorithm therefore has (n + 3)2n−2

states. Studying the mean hitting time starting from the conĄguration where we do
not have any phase vector in any of the pools would give us the exact average-time
complexity of our algorithm, but unfortunately we could not manage to deal with this
exponential amount of states and their intricate structure.

Our analysis. In order to avoid this exponential number of states to consider, we
looked at a different algorithm which is based on the same idea but where we assume
that all the calls to the oracle have been made from the outset. All that remains is
to combine the phase vectors (which are taken at random, unlike in Algorithm 14).
Its pseudocode is given in Algorithm 16. In order to determine the query and time
complexity of this algorithm, we barely have to Ąnd what quantity of phase vectors
we should give it as input. We conjecture that the number of calls to the oracle made
by this algorithm is of the same order as that of Algorithm 15, which is what we are
observing experimentally (experimental results are given at the end of the section).

Algorithm 16 The algorithm we study (sequential version)

Require: A set of 2ℓ phase vectors.
Ensure:

∣∣∣ψN/2

〉
.

1: Classify the phase vectors in the pools Pi

2: for i = 1 to n− 1 do
3: while ♣Pi♣ ≥ 2 do
4: Pick ♣ψa⟩ and ♣ψb⟩ from Pi.
5: Combine ♣ψa⟩ and ♣ψb⟩ and insert the result in the appropriate pool

6: if Pn ̸= ∅ then return
∣∣∣ψN/2

〉

7: return "The algorithm failed".

Algorithm 15 is essentially a version that makes calls to the oracle as it goes along and
so recycles the qubits it uses, whereas Algorithm 16 stores all the states it needs as input.
The latter then processes the phase vectors sequentially. It Ąrst sorts them according to
the pool to which they belong, then runs through these pools in order, since combining
elements from the i-th pool produces elements that belong exclusively to pools i + 1

to n, as shown in Lemma 6.2. In this way, the algorithm gradually concentrates the
phase vectors in the last pools. Indeed, on the i-th iteration of the For loop, at most
one element (which could not have been matched) remains in pools P1 through Pi,
while the pool Pi+1 will contain a quantity of phase vectors denoted Qi+1. This must
be greater than or equal to 2 in order to form at least one pair of phase vectors, which
can be combined to obtain a more interesting pair. Finally, for the algorithm to succeed,
we must have Qn equal to at least 1 at the end.
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We can also write this algorithm in parallel mode, which will be even more easier to
study: instead of acting sequentially by processing the pools one after the other, we can
process all the pools Pi at once and place the results in a separate pool, then classify
these new states in the pools Pi again and iterate the process. This is the method used
in Algorithm 17.

Algorithm 17 The algorithm we study (parallel version)

Require: A pool P of 2ℓ phase vectors.
Ensure:

∣∣∣ψN/2

〉
.

1: for t = 1 to n− 1 do
2: Take the phase vectors from P and classify them in the pools Pi

3: for i = 1 to n− 1 do
4: while ♣Pi♣ ≥ 2 do
5: Pick ♣ψa⟩ and ♣ψb⟩ from Pi.
6: Combine ♣ψa⟩ and ♣ψb⟩ and insert the result in P

7: if Pn ̸= ∅ then return
∣∣∣ψN/2

〉

8: return "The algorithm failed".

In order to study the average-case complexity of Algorithm 17, we construct a vector b
corresponding to the initial distribution of phase vectors, i.e., whose i-th entry is equal
to the expected number of phase vectors that will belong to Pi at the beginning of the
algorithm. We thus have from Lemma 6.1:

bi
def
= 2ℓPO [i] = 2ℓ−i.

We also deĄne the transition matrix A corresponding to the action on the vector b of
one iteration of the main For loop, from the distribution given in Lemma 6.2. Namely,
combining two elements of Pi will produce one element of Pj with probability Pj [i], so
we let:

Ai,j
def
=




Pj [i] if i = n
1
2Pj [i] otherwise.

The halving factor comes from the fact that we take two elements to produce one, except
when we are already in the pool of solutions. It turns out that the matrix A has a
particular form, speciĄed in the following lemma.

Lemma 6.3. A is a square matrix of order n such that

A =

(
N 0T

u 1

)
(6.2)
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where 0 = (0, . . . , 0) is a vector of size n− 1, u is a positive vector of size n− 1 and N
is a nilpotent matrix of order and index n− 1 (the smallest power of N yielding the zero

matrix) whose elements under the diagonal are nonnegative and zero over the diagonal.

Proof. This directly follows from the deĄnition of A and Lemma 6.2.

Analyzing the average-case complexity of Algorithm 17 then boils down to studying
the powers of A, since one iteration of the main For loop corresponds to applying the
matrix A on b, two iterations to applying A2, and so on. It will thus be crucial to have
a closed-form expression for powers of the matrix A, which is provided in the following
lemma.

Lemma 6.4. Let p be any positive integer, then

Ap =

(
Np 0T

u
(∑p−1

ℓ=0 Nℓ


1

)

Proof. This is trivially true for p = 1. Assume it holds for some Ąxed p. Then we have

ApA =

(
Np 0T

u
(∑p−1

ℓ=0 Nℓ


1

)(
N 0T

u 1

)
=

(
Np+1 0T

u + u
(∑p

ℓ=1 Nℓ


1

)

concluding the proof by induction.

Recall that our goal is to determine the quantities Qi. Since solutions can accumulate
in the last pool Pn, all we have to do is look at the number of elements in Pn at the
end of the algorithm to obtain Qn. However, for any other pool Pi, it is necessary to
accumulate the number of elements that go through Pi over the iterations of the main
For loop in order to Ąnd back the value of Qi.

Actually, if we denote Q the vector (Q1, . . . ,Qn) with Qi
def
= E [Qi], and if we let

Q def
=
∑n−2

p=0 Np, we have the following lemma.

Lemma 6.5. We have

Q
def
= Q̃bT where Q̃ =

(
Q 0T

uQ 1

)

Now, in order to analyze the average-case complexity of Algorithm 17, it remains to
determine Q and make sure to choose a value for ℓ such that Qi is greater or equal to 2

for every i ∈ J1, n− 1K and greater or equal to 1 when i = n.

Thanks to Lemma 6.5, we can easily Ąnd the average-case complexity of Algorithm 17
and thus prove the following theorem.
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Theorem 6.1. Algorithm 17 runs in Θ
(
20.415n

)
average-time with a similar amount of

queries and qubits.

It directly follows that Ąnding the whole secret s with Algorithm 17 would all the same
require Θ

(
20.415n

)
time, space and queries.

1.1 Proof of Theorem 6.1

We start our analysis by giving an expression for the entries of a power of the nilpotent
matrix N we are working with.

Lemma 6.6. Let p be a positive integer. We have for all i ∈ J1, n− 1K and j ∈ J1, i− 1K:

(Np)i,j =

(
i− j − 1

p− 1

)
2j−i−p.

Proof. We have for any square matrix M of order n− 1 and integer p greater than 1:

(Mp)i,j =
∑

k1,...,kp−1∈J1,nK

( p∏

ℓ=1

Mkℓ−1,kℓ

)

with k0 = i and kp = j. When taking M = N, where N is a nilpotent matrix whose
elements under the diagonal are nonnegative and zero over the diagonal, we obtain:

(Np)i,j =
∑

j<kp−1<···<k1<i

( p∏

ℓ=1

Nkℓ−1,kℓ

)
.

From Lemma 6.2, we have

Nkℓ−1,kℓ
= Akℓ−1,kℓ

= 2kℓ−kℓ−1−1

so the product simpliĄes to

p∏

ℓ=1

Nkℓ−1,kℓ
= 2kp−k0−p = 2j−i−p.

Thus we have

(Np)i,j = 2j−i−p
∑

j<kp−1<···<k1<i

1 =

(
i− j − 1

p− 1

)
2j−i−p .

We can now give an expression for the entries of the matrix Q̃.
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Lemma 6.7. We have for i, j ∈ J1, nK:

Q̃i,j =





0 if j > i

1 if j = i

1
3

(
3
4

i−j
otherwise.

Proof. Let i, j ∈ J1, n− 1K. We have by deĄnition and Lemma 6.6:

Qi,j =
i−j∑

p=1

(
i− j − 1

p− 1

)
2j−i−p

=
1

4i−j

i−j−1∑

p=0

(
i− j − 1

p

)
2i−j−1−p

=
3i−j−1

4i−j

Now, let j ∈ J1, n− 1K. We have

(uQ)j =
n−1∑

i=1

uiQi,j

= uj +
n−1∑

i=j+1

ui
3i−j−1

4i−j

= 2j−(n+1) +
22j−(n+1)

3j+1

n−1∑

i=j+1


3

2

i

= 2j−(n+1) +
22j−(n+1)

3j+1

(
3n

2n−1
− 3j+1

2j

)

=
3n−j−1

4n−j

Together with the deĄnition of Q̃ in Lemma 6.5, we conclude the proof.

Now that we have a closed-form expression for the entries of Q̃ and since we know b, we
can look at Q.

Lemma 6.8. Let i ∈ J1, nK. We have

Qi =
3i−1

22i−1
.
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Proof. For any i ∈ J1, nK, we have by Lemma 6.5:

Qi
def
= Q̃i · b

=
n∑

j=1

Q̃i,jbj

=
1

2i
+

i−1∑

j=1

1

3


3

4

i−j 1

2j
by Lemma 6.7

=
1

2i
+

3i−1

22i

i−1∑

j=1


2

3

j

=
1

2i
+

3i−1

22i

(
2− 2i

3i−1

)

=
3i−1

22i−1

Concluding the proof.

Proof of Theorem 6.1. We want at least 2 phase vectors in each pool except in the last
one, where we can have just one phase vector, i.e., one solution. In other words, we
want: 




3i−12ℓ−2i+1 ≥ 2 ∀i ∈ J1, n− 1K
3n−12ℓ−2n+1 ≥ 1

i.e., 


ℓ ≥ 2i− log (3)(i− 1) = (2− log (3))i+ log 3

ℓ ≥ 2n− log (3)(n− 1)− 1 = (2− log (3))n+ log 3− 1

Taking ℓ = (2− log (3))n satisĄes all these inequations, meaning that we should have an
input set of approximately 20.415n phase vectors in order for Algorithm 17 to output the
state

∣∣∣ψN/2

〉
on expectation.

1.2 Experimental Results

From the study of Algorithm 17 in this section, we conjecture that the complexity of
our algorithm is of the same order. SpeciĄcally,

Conjecture 6.1. Using Algorithm 15, one can solve the DCP in Θ̃
(
20.415n

)
time and

queries, with at most n qubits.

We implemented the classical part of Algorithm 15 in Python, picking uniformly at
random numbers in ZN (instead of generating them with the quantum oracle) and
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Listing 6.1: Python code for Algorithm 15

from math import l og2
from random import rand int

def a lgo (n ) :
N = 2∗∗n
poo l s = [ [ ] for _ in range (n ) ]
n_queries = 0
pool_idx = 0

while True :

while len ( poo l s [ pool_idx ] ) == 2 :
# i f a poo l has s i z e 2 , combine the e lements
b = (1 − 2 ∗ rand int ( 0 , 1 ) )
k = ( poo l s [ pool_idx ] . pop ( ) +

b ∗ poo l s [ pool_idx ] . pop ( ) ) % N
i f k != 0 :

pool_idx = int ( log2 ( k & −k ) )
poo l s [ pool_idx ] . append ( k )

i f N/2 in poo l s [ n −1] :
# i f the t a r g e t has been produced , re turn i t
break

# e l s e , query the o r ac l e
k = randint (0 ,N−1)
n_queries += 1
while k == 0 :

k = randint (0 ,N−1)
n_queries += 1

pool_idx = int ( log2 ( k & −k ) )
poo l s [ pool_idx ] . append ( k )

return n_queries
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choosing uniformly at random between the sum and the difference when combining two
phase vectors. The code is given hereafter.

We then ran this implementation a thousand times on small values of n (from 5 up to
35) and computed the mean query complexity. The results are given in Table 6.1. They
are indeed of the order of 2(2−log 3)n, and more precisely they appear to be very close to
2(2−log 3)n+1.

Note that the time complexity is necessarily of the same order as the query complexity.
There cannot be more than n combination steps before calling the oracle a new time, so
in the worst case the time complexity is n times the query complexity.

2 A Space-Interpolation Algorithm

We have just described an algorithm using at most n qubits, which we have matched to
pools of size 2i, for i ranging from 0 to n− 1. A very simple observation is that if we
have more qubits, we can subdivide these pools. We will do this uniformly, in order to
keep the size of the subpools equal to a power of 2, and at least 2, so we can have two
different elements to combine when falling in such a subpool. We introduce a parameter
m such that each pool will have 2m subpools, with the exception of those that are too
small which will be divided in subpools of 2 elements.

Formally, for any i ∈ J1, n− 1K, we will divide Pi in 2min (n−i−1,m) subpools, where m
will be chosen such that the total number of subpools will be as close to the number X
of qubits we have at our disposal as possible, i.e., m is the greatest integer such that

X ≥ 1 +
n−1∑

i=1

φ(i)

= 1 +
n−m−2∑

i=1

2m +
n−1∑

i=n−m−1

2n−i−1

= 1 + (n−m− 2)2m + 2m+1 − 1

= (n−m)2m

We will assume that m > 0 since the case m = 0 corresponds to the algorithm without
subpools, i.e., the algorithm described in the previous section. We will place a couple
(k, ♣ψk⟩) in a subpool denoted by P(i,vi), where i ∈ J1, nK and vi ∈ J0, φ(i)− 1K, in the
following manner:

P(i,vi) ←− (k, ♣ψk⟩) if k ∈ D(i,vi) where

D(i,vi)
def
=

{
(2(φ(i)α+ vi) + 1)2i, α ∈

s
0,

2n−i

φ(i)
− 1

{}
and φ(i)

def
= 2min (n−i−1,m)
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n Query exponent 0.415n+ 1 Abs. difference

5 2.91 3.07 0.16
6 3.37 3.49 0.12
7 3.75 3.9 0.15
8 4.22 4.32 0.1
9 4.68 4.73 0.05
10 5.08 5.15 0.07
11 5.5 5.56 0.06
12 5.94 5.98 0.04
13 6.35 6.39 0.04
14 6.74 6.81 0.07
15 7.18 7.22 0.05
16 7.61 7.64 0.03
17 8.06 8.05 0.01
18 8.5 8.47 0.03
19 8.89 8.88 0.0
20 9.26 9.3 0.04
21 9.68 9.71 0.03
22 10.1 10.13 0.03
23 10.55 10.54 0.01
24 10.94 10.96 0.02
25 11.29 11.38 0.08
26 11.79 11.79 0.0
27 12.17 12.21 0.03
28 12.63 12.62 0.01
29 13.04 13.04 0.0
30 13.38 13.45 0.07
31 13.82 13.87 0.05
32 14.25 14.28 0.03
33 14.68 14.69 0.02
34 15.1 15.11 0.01
35 15.52 15.52 0.01

Table 6.1: The mean query complexity exponent of Algorithm 15 (1000 shots) is given
and compared to 0.415n + 1. The rounded absolute difference between both values
(taken before rounding) is given in the last column.
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Note that we do not subdivide Pn, since Dn contains only one element, but we will refer
to it as P(n,0) for notation consistency. Note also that φ(i) is deĄned such that subpools
will correspond to sets of elements of size at least 2, because we want to combine different
phase vectors, even in the smallest subpools.

We now present our generalized algorithm for Ąnding one bit of the secret s, from
phase vectors produced by an oracle O. The pseudocode for this algorithm is given by
Algorithm 18.

Algorithm 18 Our generalized algorithm

Require: An oracle O outputting uniformly at random ♣ψk⟩ with k ∈ ZN .
Ensure:

∣∣∣ψN/2

〉
.

1: repeat
2: while for all (i, vi),

∣∣∣P(i,vi)

∣∣∣ < 2 do
3: Call O and insert the result in the appropriate pool.
4: Let (i, vi) be such that

∣∣∣P(i,vi)

∣∣∣ = 2.
5: Pick ♣ψa⟩ and ♣ψb⟩ from P(i,vi).
6: Combine ♣ψa⟩ and ♣ψb⟩ and insert the result in the appropriate pool
7: until there is a state in the bin P(n,0)

8: return
∣∣∣ψN/2

〉
.

As for the previous section, we give the probability distributions corresponding to the
oracle outputs and the combination process.

Probability distributions. The probability distribution of elements picked uniformly
at random from the oracle is given by the following lemma.

Lemma 6.9 (Initial distribution). Let i ∈ J1, nK and vi ∈ J0, φ(i)− 1K. The probability

that the oracle O yields a phase vector belonging to the subpool P(i,vi), denoted by

PO [(i, vi)], is

PO [(i, vi)]
def
=

1

φ(i)2i

Proof. This is straightforward since PO [(i, vi)] =
♣D(i,vi)♣

♣ZN ♣ =
2n−i

φ(i)

2n .

The probability distribution of elements obtained from combining two phase vectors of a
same subpool is given by the following lemma.

Lemma 6.10 (Combination distribution (subpools)). Let i ∈ J1, n− 1K and vi ∈
J0, φ(i)− 1K. Let j ∈ Ji+ 1, nK and wj ∈ J0, φ(j)− 1K. The probability that

combining two phase vectors from P(i,vi) yields a phase vector from P(j,wj), denoted by

P(i,vi) [(j, wj)], is
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• when i = n− 1:

P(i,vi) [(n, 0)] =
1

2

• when n− (m+ 1) ≤ i < n− 1:

P(i,vi) [(j, wj)] =





1
4 if (j, wj) = (n, 0)
1
2 if (j, wj) = (i+ 1, vi mod φ(i+ 1))

• when i < n− (m+ 1):

P(i,vi) [(j, wj)] =





1
4 if (j, wj) = (i+ 1, vi mod φ(i+ 1))
1
4 if (j, wj) = (i+ 1, (vi + 2m−1) mod φ(i+ 1))
2m+i−j−1

φ(j) for wj ∈ J0, φ(j)− 1K for j ∈ Ji+m+ 1, nK
.

When j ∈ J1, iK, the probability is always zero.

Please note that vi depends on i and wj depends on j, but also on i and vi. For the
sake of clarity, we dropped the latter from the index of w.

Proof. Let P+
(i,vi)

[(j, wj)] (resp. P−
(i,vi)

[(j, wj)]) be the probability for two phase vectors
from P(i,vi) to produce one from P(j,wj) when combined and their sum (resp. difference)
is obtained.

Let k ∈ D(i,vi). There exists α ∈
r

0, 2n−i

φ(i) − 1
z

such that

k = (2(φ(i)α+ vi) + 1)2i.

We Ąrst look for the proportion P+
(i,vi)

[(j, wj)] of ℓ ∈ D(i,vi), which we can write for some

β ∈
r

0, 2n−i

φ(i) − 1
z

as

ℓ = (2(φ(i)β + vi) + 1)2i,

such that

k + ℓ = (φ(i)(α+ β) + 2vi + 1)2i+1 ∈ D(j,wj),

i.e., there must exist γ ∈
r

0, 2n−j

φ(j) − 1
z

such that

(φ(i)(α+ β) + 2vi + 1)2i+1 = (2(φ(j)γ + wj) + 1)2j . (6.3)

Necessarily, j ≥ i+1. We have three cases to consider. Recall that φ(i)
def
= 2min (n−(i+1),m).
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• When i < n− (m+ 1), we have φ(i) = 2m. Equation 6.3 becomes

2m(α+ β) + 2vi + 1 = (2wj + 1)2j−(i+1) mod φ(j)2j−i

Necessarily, 2j−(i+1) has to be odd, so j = i + 1. The condition can then be
simpliĄed to

2m−1(α+ β) + vi = wj mod φ(j)2j−i .

We deduce that

P+
(i,vi)

[(j, vi mod φ(i+ 1))] =
1

2
and P+

(i,vi)

[
(j, vi + 2m−1 mod φ(i+ 1))

]
=

1

2
.

• When n − (m + 1) ≤ i < n − 1, we have φ(i) = 2n−(i+1) and φ(j) = 2n−(j+1).
Equation 6.3 becomes

(α+ β)2n + vi2
i+2 + 2i+1 = γ2n + wj2j+1 + 2j

Necessarily j = i+ 1 and it follows that

P+
(i,vi)

[(i+ 1, vi)] = 1.

• When i = n−1, j can only be equal to n and we have φ(i) = φ(j) = 1. Equation 6.3
becomes

α+ β + 2vi + 1 = 2γ + 2wj + 1

implying that α+ β = 0 mod 2. It follows that

P+
(n−1,0) [(n, 0)] =

1

2
.

We use the same reasoning for the difference, P−
(i,vi)

[(j, wj)] being the proportion of
ℓ ∈ D(i,vi) such that

♣k − ℓ♣ = ♣α− β♣φ(i)2i+1 ∈ D(j,wj),

i.e., there must exist γ ∈
r

0, 2n−j

φ(j) − 1
z

such that

♣α− β♣φ(i)2i+1 = (2(φ(j)γ + wj) + 1)2j . (6.4)

Necessarily, j ≥ i+ 1. Now we have three cases to consider.

• When i < n− (m+ 1), we have φ(i) = 2m. Equation 6.4 becomes

♣α− β♣2m = (2wj + 1)2j−(i+1) + γφ(j)2j−i

Necessarily, j ≥ i+m+ 1. We can rewrite the condition as

♣α− β♣ = (2wj + 1)2j−m−(i+1) mod φ(j)2j−m−i

It follows that

P−
(i,vi)

[(j, wj)] =
2m+i−j

φ(j)
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• When n − (m + 1) ≤ i < n − 1, we have φ(i) = 2n−(i+1) and φ(j) = 2n−(j+1).
Equation 6.4 becomes

♣α− β♣2n = (2wj + 1)2j + γ2n

implying that j = n. It follows that

P−
(i,vi)

[(n, 0)] =
1

2
.

The case i = n− 1 is similar and leads to the same result.

• When i = n−1, j can only be equal to n and we have φ(i) = φ(j) = 1. Equation 6.4
becomes

♣α− β♣ = 2γ + 2wj + 1

implying that α+ β = 1 mod 2. It follows that

P−
(n−1,0) [(n, 0)] =

1

2
.

By deĄnition, the overall probability P(i,vi) [(j, wj)] is

P(i,vi) [(j, wj)] =
1

2

(
P+

(i,vi)
[(j, wj)] + P−

(i,vi)
[(j, wj)]



which allows us to conclude the proof.

On the Markov chain of Algorithm 18. As we said in the previous section, the
right way to study this algorithm would also be to analyse the corresponding Markov
chain. Once again, this chain has an exponential number of states, which makes it
difficult to study. Indeed, we have:

• the conĄgurations were a solution have been found, i.e., there is 1 element in
P(n,0), coming either from the oracle (which means before calling the oracle, there
was no subpool with 2 elements) or either from a combination (meaning that 2

elements from a subpool were used to produce the solution, leaving no subpool
with 2 elements) are 2(n−m)2m−1 of them,

• the conĄgurations for which no solution has been found, corresponding either to a
situation where a query must be made (i.e., no subpool contains 2 elements), or
to a situation where a combination must be made (i.e., there is a subpool which
contains 2 elements). There are therefore 2(n−m)2m−1 +

((n−m)2m−1
1

)
2(n−m)2m−2 =

((n−m)2m + 1) 2(n−m)2m−2 of these conĄgurations.

In total, the Markov chain corresponding to our algorithm has
((n−m)2m + 3) 2(n−m)2m−2 states. This is a prohibitive quantity, even though
studying the mean hitting time of this Markov chain would give us the exact average
complexity of our algorithm.
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Our analysis. The algorithm we will actually study, in the same way as we did in the
previous section, is Algorithm 19.

Algorithm 19 The algorithm we study (parallel version)

Require: A pool P of 2ℓ phase vectors.
Ensure:

∣∣∣ψN/2

〉
.

1: for t = 1 to n− 1 do
2: Take the phase vectors from P and classify them in the subpools P(i,vi)

3: for i = 1 to n− 1 do
4: while

∣∣∣P(i,vi)

∣∣∣ ≥ 2 do
5: Pick ♣ψa⟩ and ♣ψb⟩ from P(i,vi).
6: Combine ♣ψa⟩ and ♣ψb⟩ and insert the result in P

7: if P(n,0) ̸= ∅ then return
∣∣∣ψN/2

〉

8: return "The algorithm failed".

We construct a vector b̃ corresponding to the initial distribution of phase vectors, i.e.,
whose (i, vi)-th entry is equal to the expected number of phase vectors that will belong
to P(i,vi) at the beginning of the algorithm. We thus have from Lemma 6.9:

b̃(i,v) = 2ℓPO [(i, ∗)] =
2ℓ−i

φ(i)

We also deĄne the transition matrix Ã corresponding to the action on average on the
vector b̃ of one iteration of the main For loop, from the distribution given in Lemma 6.10.
Namely, combining two elements of P(i,vi) will produce one element of P(j,wj) with
probability P(j,wj) [(i, vi)], so we let:

Ã(i,vi),(j,wj) =




P(j,wj) [(i, vi)] if i = n
1
2P(j,wj) [(i, vi)] otherwise.

The halving factor comes from the fact that we take two elements to produce one, except
when we are already in the pool of solutions.

We can actually simplify a great deal this analysis by considering the combination
distribution from pool to pool rather than from subpool to subpool.

Lemma 6.11. Let t ∈ J0, n− 1K. We have for any i ∈ J1, nK and vi, v
′
i ∈ J0, φ(i)− 1K:

(ÃtbT )(i,vi) = (ÃtbT )(i,v′
i
).

Proof. This is true by deĄnition of b for t = 0 (since b(i,vi) does not depend on vi). Now
assume this is true for some t ∈ J0, n− 2K. Using Lemma 6.10 and its notation, we want
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to prove that for any j ∈ J1, nK and wj , w
′
j ∈ J0, φ(j)− 1K:

(Ãt+1bT )(j,wj) = (Ãt+1bT )(j,w′
j
).

We take back the different conĄgurations of Lemma 6.10 for i:

• If i = n − 1, we have only one subpool since j = n (i.e., wj = w′
j = 0), so the

property trivially holds.

• If n− (m+ 1) ≤ i < n− 1, the case j = n is once again trivial. For the other case,
we Ąrst note that φ(i) = 2n−i−1 and φ(i+ 1) = 2n−i−2. Thus, any subpool indexed
by (j, wj) with j = i+ 1 and wj ∈ J0, φ(i+ 1)− 1K has exactly two preimages by
Ã: those are (i, wj) and (i, wj + 2n−i−2), and the probability to go from one of
the two to the considered image is constant. Therefore, the property holds.

• If i < n− (m+ 1), we have φ(i) = φ(i+ 1) = 2m. Any subpool indexed by (j, wj)

with j = i+ 1 and wj ∈ J0, φ(i+ 1)− 1K has once again exactly two preimages by
Ã: those are (i, wj) and (i, wj + 2m−1 mod 2m), and the probability to go from
one of the two to the considered image is once again constant. For the remaining
case, we can see that every subpool (i, vi) has for images every subpool indexed
by (j, wj) for wj ∈ J0, φ(j)− 1K, for j ∈ Ji+m+ 1, nK with a probability that
does not depend on vi nor wj , meaning that every subpool of a same pool will be
attained with the same probability, i.e., the property holds.

It follows from this important lemma that we can in some sense merge in our analysis
the subpools of each pool. This allows us to once again work with a transition matrix
between the n pools, instead of working with a transition matrix between the (n−m)2m

subpools. Namely, we give in the following lemma the transition probabilities between
pools.

Corollary 6.1 (Combination distribution (pools)). Let i ∈ J1, n− 1K and j ∈ Ji+ 1, nK.
The probability that combining two phase vectors from P(i,∗) yields a phase vector from

P(j,∗) (where the asterisk means that it can be any of the subdivisions of the considered

pool), denoted by Pi [j], is

• when i = n− 1:

Pi [n] =
1

2

• when n− (m+ 1) ≤ i < n− 1:

Pi [j] =





1
4 if j = n
1
2 if j = i+ 1
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• when i < n− (m+ 1):

Pi [j] =





1
2 if j = i+ 1

2m+i−j−1 for j ∈ Ji+m+ 1, nK
.

When j ∈ J1, iK, the probability is always zero.

Proof. We simply take back the probability distribution of Lemma 6.10 and forget
about the subpools indexes. When i < n − (m + 1), we merge the 1/4 probabilities
of falling into P(i+1,v mod φ(i+1)) and into P(i+1,(v+2m−1) mod φ(i+1)): we simply have a
1/2 probability of falling into P(i,∗). The same applies when j ∈ Ji+m+ 1, nK: we

sum every probability to fall into P(j,∗), i.e., we sum φ(j) times 2m+i−j−1

φ(j) , leading to a

probability of 2m+i−j−1 to go from P(i,∗) to P(j,∗).

We can then take back our method of analysis and deĄne a new transition matrix from
the combination distribution we just gave in Corollary 6.1. Namely, we let, as we did in
the previous section, for i, j ∈ J1, nK:

Ai,j
def
=




Pj [i] if i = n
1
2Pj [i] otherwise.

In the exact same way, we deĄne from the probabilities of getting an element in P(i,∗)

when calling the oracle a vector b as follows:

bi
def
= 2ℓφ(i)PO [(i, ∗)] = 2ℓ−i

It turns out that the matrix A has the same form as in Lemma 6.3. We can thus
analyze Algorithm 19 as we did for Algorithm 17. Using the same notation, we want to
determine Q (as deĄned in Lemma 6.5 and make sure to choose a value for ℓ such that
Qi is greater or equal to 2 for every i ∈ J1, n− 1K and greater or equal to 1 when i = n.

In the end, we will be able to give a loose estimate of the average-case complexity of
Algorithm 19, which is stated in the following conjecture.

Conjecture 6.2. Algorithm 19 runs in O
(
2log 3 n

m+1
+2m


time with the same amount

of queries and qubits.

The O
(
2log 3 n

m+1
+2m


for the time complexity seems actually to be a very rough upper

bound on the actual complexity of the algorithm, as we will see in the last subsection,
where we will give experimental results. For now on, we proceed in the same way as for
the analysis of the n-qubits algorithm: we take a closer look at Q and uQ.
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2.1 Clues for Conjecture 6.2

We are soon faced with a problem in carrying out our study: looking at the powers
of the nilpotent matrix N is much less straightforward than in the case where m = 0.
However, determining Q, the sum of the powers of N, is essential if we want to obtain
Q. We manage hereafter to obtain the Ąrst Qi values for i ranging from 1 to m + 1

and also to give a good estimate for Qn. Unfortunately, all the other Qi values remain
unknown. In the end, we are therefore forced to give a very large estimate for ℓ based
on the values we know, but which should be much lower when our study is complete
and the Q vector is fully known.

Estimate of Qn. We will use the fact that (uQ)j =
(
An−1

)
n,j to estimate the value

of Qn. We Ąrst show that the values (uQ)j are recursively deĄned and let σj
def
= (uQ)j .

Lemma 6.12. We have:

σj =





1 if j = n
1
4 if j = n− 1
1
8 + 1

4σj+1 if j ∈ Jn−m− 1, n− 2K
1
4σj+1 +

∑n
i=j+m+1 2j+m−i−2σi if j ∈ J1, n−m− 2K .

Proof. We have

Ap = Ap−1A

(Ap)n,j =
n∑

i=1

(
Ap−1


n,i

Ai,j

Taking p to be greater than n, we get p > p− 1 ≥ n− 1. Since n− 1 is the index of the
nilpotent matrix N, it follows that

σj =
n∑

i=1

σiAi,j .

Now, the matrix N being a lower triangular matrix whose diagonal is zero, we have

σj =
n∑

i=j+1

σiAi,j .

Plugging the probability distributions given by Corollary 6.1 in this equation, we conclude
the proof.

From this lemma, it is then possible to give a closed-form expression for some of the
entries (uQ)j , namely, when j ∈ Jn−m− 1, n− 1K.
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Corollary 6.2. Let j ∈ Jn−m− 1, n− 1K. We have:

σj =
1

6


1 +

2

4n−j



Proof. The case j = n− 1 is readily veriĄed. Now for j ∈ Jn−m− 1, n− 2K, we have
from Lemma 6.12:

σj =
1

8
+

1

4
σj+1

=
1

8

k−j−1∑

ℓ=0

1

4ℓ
+

1

4k−j
σk for k > j

=
1

8

n−j−2∑

ℓ=0

1

4ℓ
+

1

4n−j−1
σn−1 for k = n− 1

=
1

6


1− 1

4n−j−1


+

1

4n−j

=
1

6


1 +

2

4n−j



Unfortunately, giving a closed-form expression for the entries σj becomes increasingly
difficult as j decreases. As can be seen in Lemma 6.12, when j < n−m− 2, σj depends
on the σiŠs with i ≥ j +m+ 1. It follows that we can theoretically give a closed-form
expression in packets of m+ 1 consecutive σj , but it is simpler to give lower and upper
bounds for these. We now give a tight interval in which σj can be found for any j.

Lemma 6.13. Let α ∈
q
0,
⌈

n
m

⌉y
. For j ∈ Jn− α(m+ 1), n− α(m+ 1) +mK def

= Iα,

we have:
1

2× 3α
≤ σj <

1

2× 3α−1
.

Proof. Only j = n belongs to I0 and since σn = 1, the bound is veriĄed for α = 0.

By Corollary 6.2, we have for j ∈ I1 = Jn− (m+ 1), n− 1K:

σj =
1

6


1 +

2

4n−j


≥ 1

6

so the bound is also veriĄed for α = 1.

From Lemma 6.12, we note that σj < σj+1. Thus, for α ∈
q
2,
⌈

n
m

⌉y
, we actually have

for all j ∈ Iα that
σj ≥ σn−α(m+1) . (6.5)

We now assume that
σn−α(m+1) ≥

1

2× 3α
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and prove that this bound holds for α+ 1. We have

σn−(α+1)(m+1) =
1

4
σn−(α+1)(m+1)+1 +

n∑

j=n−α(m+1)

2n−(α+1)(m+1)+m−j−2σj

≥ 1

4
σn−(α+1)(m+1) +

n∑

j=n−α(m+1)

2n−α(m+1)−j−3σj

Thus

3

4
σn−(α+1)(m+1) ≥ 2−α(m+1)−3σn +

α∑

a=1

∑

j∈Ia

2n−α(m+1)−i−3σj

≥ 2−α(m+1)−3 +
α∑

a=1

∑

j∈Ia

2n−α(m+1)−j−3σn−a(m+1)

≥ 2−α(m+1)−3 +
α∑

a=1

∑

j∈Ia

2n−α(m+1)−j−4

3a

= 2−α(m+1)−3 +
2m+1 − 1

2m+4

α∑

a=1

2(a−α)(m+1)

3a

= 2−α(m+1)−3 +
2m+1 − 1

2m+1 − 3

2m+1 − 3α2−(α−1)(m+1)

3α2m+4

≥ 2−α(m+1)−3 +
1

8× 3α
− 2−α(m+1)−3

=
1

8× 3α

We obtain

σn−(α+1)(m+1) ≥
1

2× 3α+1
.

We conclude the proof by induction, the upper bound being provable in the exact same
way.

From this lemma, we can now give an asymptotic expression for Qn.

Lemma 6.14. We asymptotically have

Qn = Θ
(
3−⌈ n

m+1⌉

.
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Proof.

Qn = (uQ♣1) · b = bn +
∑

1≤j≤n−1

σjbj

= 2−n +
∑

1≤j≤n−1

2−jσj

= 2−n +

⌈ n
m+1⌉−1∑

a=1

∑

j∈Ia

2−jσj +

n−⌈ n
m+1⌉(m+1)+m∑

j=1

2−jσj

We now use the upper bound of Lemma 6.13 to obtain:

(uQ♣1) · b ≥ 2−n +

⌈ n
m+1⌉−1∑

a=1

3−a
∑

j∈Ia

2−(j+1) +

n−⌈ n
m+1⌉(m+1)+m∑

j=1

2−(j+1)3−⌈ n
m+1⌉

= 2−n +
(
2m+1 − 1

 ⌈ n
m+1⌉−1∑

a=1

2(a−1)(m+1)−n3−a +
1− 2⌈ n

m+1⌉(m+1)−m−n

2× 3⌈ n
m+1⌉

=
1

2× 3⌈ n
m+1⌉

+

⌈ n
m+1⌉−1∑

a=0

2a(m+1)−n3−a −
⌈ n

m+1⌉∑

a=1

2(a−1)(m+1)−n3−a

=
1

2× 3⌈ n
m+1⌉

+

⌈ n
m+1⌉−1∑

a=0

2a(m+1)−n+13−(a+1)

=
1

2× 3⌈ n
m+1⌉

+
1

3× 2n−1

⌈ n
m+1⌉−1∑

a=0

(
2m+1

3

)a

=
1

2× 3⌈ n
m+1⌉

+
1

2n−1

(
2m+1

3

⌈ n
m+1⌉ − 1

2m+1 − 3

For n and m big enough, we have

(uQ♣1) · b ≥ 1

2× 3⌈ n
m+1⌉

+
1

2m

1

3⌈ n
m+1⌉

.

Using the lower bound of Lemma 6.13 instead of the upper bound, we can also show
that

(uQ♣1) · b ≤ 1

2× 3⌈ n
m+1⌉−1

+
1

2m

1

3⌈ n
m+1⌉−1

Now that we have an estimate for (uQ♣1) · b, i.e. for Qn, we look at the case where
i < n.
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Value of Qi for i ∈ J1,m+ 1K. It turns out that we can easily give an expression for
Qi = (Qi♣0) ·b for i ∈ J1,m+ 1K (where Qi denotes the i-th row of the matrix Q), from
the probability distribution of the subpools. In this aim, we assume that m < n−1

2 (when
m is greater, the algorithm uses in any case an exponential amount of qubits, which is
not really appealing), meaning that m < n− (m+ 1). It follows that for i ∈ J1,m+ 1K,
φ(i) = 2m. We then have a closed-form expression for Qi.

Lemma 6.15. Let i ∈ J1,m+ 1K. We have

Qi =
2i − 1

2m+2i−1
.

Proof. We take back the probability distributions of Lemma 6.9 and Lemma 6.10. In
any subpool of the Ąrst pool, we have a proportion of 1

2φ(1) = 1
2m+1 phase vectors, so the

equality is veriĄed for i = 1. Now we assume that it holds for a given value i ∈ J1,m+ 1K.
Then, for the i+ 1-th pool, we initially have a proportion of 1

2i+1φ(i+1)
phase vectors and

we have to add a quarter of the proportion of phase vectors we had in the i-th pool, i.e.,

1

2m+i+1
+

2i − 1

2m+2i+1
=

2i+1 − 1

2m+2i+1

concluding the proof by induction.

The equality given in Lemma 6.15 does not hold anymore for i greater than m+ 1, since
we have to take into consideration the probability to come from the i− (m+ 1)-th pool
to the i-th one (see Lemma 6.10).

Conclusion. We do not currently have an expression for Qi for i from m+ 2 to n− 1.
We just use the ones we do have to conclude. So we want at least 2 phase vectors in
each subpool except in the last one, where we can have just one phase vector, i.e., one
solution. In other words, we want from Lemma 6.14 and Lemma 6.15:





(2i − 1)2ℓ−2i−m+1 ≥ 2 ∀i ∈ J1,m+ 1K
2ℓ3−⌈ n

m+1⌉ ≥ 1

i.e., 


ℓ ≥ i+m+ 1 ∀i ∈ J1,m+ 1K
ℓ ≥ log (3)

⌈
n

m+1

⌉

Taking ℓ = log (3)
⌈

n
m+1

⌉
+ 2m largely satisĄes all these inequations. Once again, some

inequations are missing, for i ∈ Jm+ 2, n− 1K. We will see in the next subsection that
a much smaller value for ℓ should be enough, but we do not have for the moment any
more precise value.
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leading us to assert that this formula is a very rough upper bound of the actual query
complexity of our algorithm.

Having the entire vector Q would allow us to reĄne the value of ℓ and obtain one
sufficient for Algorithm 18 to succeed in producing a solution. It seems likely that we
would obtain an expression of the form cst1

n
m+1 + cst2m for ℓ (where cst1 and cst2 are

constants to determine). We could then, by equating the two terms, determine the
optimal value for m leading to an algorithm with the lowest complexity in time and
queries (observed as the minimum in Figure 6.2). Finally, we could of course compare
our algorithm with those of Kuperberg.

3 Conclusion

As we have just seen, there is still room for precise analysis of the proposed algorithm.
The method used here might not be the most suitable, and even if we were to carry
out the calculations to the end, we might not obtain a result corresponding to what
we observe experimentally. In fact, the right way to study our algorithm would be to
analyse the corresponding Markov chain and its mean hitting time.

We also propose a variant of our algorithm that is a priori more efficient. The only
difference is in the way the pools are deĄned. Although it seems more promising than
the one presented above, according to the practical experiments we have carried out,
it would also involve the study of the underlying Markov chain, or the same kind of
process as the one we have used here, only more complicated (in particular, the involved
matrix A does not contain a nilpotent matrix, which made things easier for us in our
study). The idea is to put phase vectors whose associated values are close in ZN into
the same pool instead of doing it according to their least signiĄcant bits. More precisely,
we deĄne the pools as follows: a couple (k, ♣ψk⟩) generated by the oracle will be placed
in the i-th pool, denoted by Pi if k is in between 2i and 2i+1, more precisely:

Pi ←− (k, ♣ψk⟩) if k ∈ Di where

∀i ∈ J0, n− 1K , Di
def
= [ 2i, 2i+1 ) .

In the same way as we did previously in this chapter, these pools might actually be
subdivised in smaller subpools depending on the value m derived from the number
of qubits X we have at our disposition. Namely, we will place a couple (k, ♣ψk⟩) in a
subpool denoted by P(i,vi), where i ∈ J0, n− 1K and vi ∈

q
0, 2min (i−1,m) − 1

y
, in the

following manner:

P(i,vi) ←− (k, ♣ψk⟩) if k ∈ D(i,vi) where

D(i,vi)
def
= [ 2i + vi2

i−min (i−1,m), 2i + (vi + 1)2i−min (i−1,m) ) .
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Note that with this approach, the solution state that we wish to construct is ♣ψ1⟩ instead
of
∣∣∣ψN/2

〉
and that it will therefore be found in P0. Note also that we can save a few

qubits compared with the previous approach in the following way: when the oracle
generates a state with k ∈ JN/2, N − 1K, we can bring it back into J0, N/2− 1K at a
lower cost, by combining ♣ψk⟩ with ♣ψN ⟩ (which is equal to ♣+⟩). One time out of two,
this will give back ♣ψk⟩, in which case you will have to repeat the process until you
obtain ♣ψN−k⟩. Finally, this trick allows us to deal with any value of N very easily, not
only powers of 2.



Conclusion and Perspectives

Conclusion In this thesis, we have seen two new concrete applications of the Quantum
Fourier Sampling technique, Ąrstly in complexity theory and secondly in algorithms.
In both cases, the implications for cryptography are direct, reminding us of the major
importance of studying this method in cryptanalysis, well beyond the famous Shor
algorithm. In this respect, we recalled in Chapter 1 the application of Quantum Fourier
Sampling in the more general context of solving the HSP in any abelian group.

These fundamental reminders, together with the elementary but no less necessary
reminders of code-based cryptography given in Chapter 2, enabled us to give in Chapter 3
a quantum reduction of the problem of Ąnding a low-weight codeword in a code to the
problem of decoding in its dual code. This result is an important advance in complexity
theory, since no reduction in this direction existed between these problems, whether
classical or quantum, and it gives us a better understanding of the links between these
problems.

Quantum Fourier Sampling has also been shown to be of interest in the context of
dihedral groups and not just abelian groups, as we saw in Chapter 4. We reviewed there
the main algorithms that have been milestones for solving the DCP, to which the security
of many cryptosystems, whether asymmetric or symmetric, can be reduced, and more
generally to which many other problems, whether used in lattice-based or isogeny-based
cryptography, can be reduced.

By combining the Quantum Fourier Sampling method with an idea due to Regev for
solving the DCP, we have then introduced in the Chapter 5 a new kind of algorithm
for solving the HSP in a dihedral group. Namely, we reduced the resolution of the DCP

to that of a quantum subset-sum problem, which offers a new alternative to the two
other main methods of resolution already known (direct resolution or reduction to a
classical subset-sum problem). We thus obtained the Ąrst algorithm to improve over
Ettinger-Hoyer algorithm in the regime of algorithms using a linear number of queries
to the oracle. Finally, we also give a very natural interpolation on the number of queries
between this new algorithm and KuperbergŠs second algorithm.

Finally, in Chapter 6, we give new ways of solving the HSP in a dihedral group without
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reducing it to a subset-sum problem. In particular, we present a new algorithm that
beats all previously known algorithms in terms of quantum space usage and whose time
complexity is the lowest among all algorithms using a linear space. We also give an
interpolation between this algorithm and, most probably, KuperbergŠs Ąrst algorithm.
Giving the complexity of this interpolation explicitly is unfortunately a difficult task
and requires further work.

Perspectives We have shown that our quantum reduction of the short codeword
problem to the decoding problem is interesting when we consider the Hamming metric,
but that on the contrary, with the rank metric, it operates in an area where the Ąrst
problem is already easy. This is because the rank metric is much coarser than the
Hamming metric. That said, there is the Lee metric, which is less coarse than the
Hamming metric and is making its way into post-quantum cryptography, for which it
would be interesting to investigate this reduction. Finally, although this reduction was
originally studied and presented with the Euclidean metric, its full potential had not
been exploited. As we saw in the Hamming metric, we had to consider going beyond
dGV/2 for the decoding problem, where in the lattice setting, [Ste+09] stopped before.
It would therefore be interesting to investigate this further for the Euclidean metric.

As we discussed in the last chapter, there are still a number of things to be done with our
space-interpolation algorithm and one major idea to be explored. First of all, we need
to reĄne the study of our algorithm so that we can obtain its complexity more precisely,
and thus be able to compare it with KuperbergŠs algorithms in particular. Analysing
the Markov chain corresponding to the algorithm would be optimal but appears to be a
complicated task. Secondly, the idea of changing the way in which subpools are deĄned
seems promising and worth looking into, but it also seems all the more difficult to study.
It is, however, more intuitive and represents a genuinely new approach compared with
KuperbergŠs Ąrst algorithm.
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