

D'une pression isotrope à l'anisotropie de pression dans les plasmas spatiaux turbulents : investigation analytique, numérique et observationnelle

Pauline Simon

► To cite this version:

Pauline Simon. D'une pression isotrope à l'anisotropie de pression dans les plasmas spatiaux turbulents : investigation analytique, numérique et observationnelle. Astrophysique [astro-ph]. Sorbonne Université, 2023. Français. NNT : 2023SORUS321 . tel-04318059

HAL Id: tel-04318059 https://theses.hal.science/tel-04318059

Submitted on 1 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sorbonne Université

Ecole doctorale n°127 : Astronomie et Astrophysique d'Ile-de-France Laboratoire de Physique des Plasmas Équipe Plasmas Spatiaux

D'une pression isotrope à l'anisotropie de pression dans les plasmas spatiaux turbulents

Investigation analytique, numérique et observationnelle

Par Pauline SIMON

Thèse de doctorat d'Astronomie et Astrophysique

Dirigée par Dr. Fouad SAHRAOUI et Prof. Sébastien GALTIER

Présentée et soutenue publiquement le 22 Septembre 2023 Devant un jury composé de :

Président : Prof. Frédéric DAIGNE,	Professeur des universités,	SU /IAP
Rapporteur : Dr. Alain Noullez,	Directeur de recherche,	, CNRS /LAGRANGE
Rapporteur : Dr. Luca Sorriso-Valvo,	Chercheur,	CNR /ISTP
Examinatrice : Dr. Katia Ferrière,	Directrice de recherche,	CNRS /IRAP
Examinateur : Dr. Lorenzo Matteini,	Chercheur,	Imperial /SPAT
Directeur : Dr. Fouad SAHRAOUI,	Directeur de recherche et professeur,	CNRS /LPP /X
Co-Directeur : Prof. Sébastien GALTIER,	Professeur des universités,	UPSy / LPP

D'une pression isotrope à l'anisotropie de pression dans les plasmas spatiaux turbulents

Investigation analytique, numérique et observationnelle

Version : 26 novembre 2023

Laboratoire de Physique des Plasmas CNRS , Observatoire de Paris-Meudon, Sorbonne Université, Université Paris-Saclay, École Polytechnique, Institut Polytechnique de Paris Route de Saclay, 91120 Palaiseau, France

CC (i) (c) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-nd/3.0/

« La physique, c'est beau. Quand c'est moche, ce n'est pas physique. » Dr. Fouad SAHRAOUI, pendant une réunion à propos des résultats de simulations. Je tiens particulièrement à le remercier car sans lui, cette thèse n'aurait pas eu lieu.

- NOTE D'INFORMATION

This thesis is written in French, so do not hesitate to contact the author to obtain a translation of a chapter or additional information.

Cette thèse est organisée en 6 parties : la première est introductive, les deux suivantes résument le travail analytique effectué avec une pointe observationnelle, la quatrième le travail numérique encore préliminaire en termes d'interprétation, la cinquième conclue cette thèse et la dernière contient annexes, tables et bibliographie.

Chaque chapitre sera achevé par une synthèse des méthodes et résultats. L'apport du travail présenté ici y sera encadré en rouge et les éléments provenant de l'état de l'art, utiles à des fins méthodologiques ou comparatives, y seront encadrés en bleu.

Acronymes, symboles, tableaux et figures sont référencés et listés à la fin de la thèse.

REMERCIEMENTS

Merci... Merci à chacun... Merci à tous. Je n'ai pas forcément envie de faire une liste commençant par merci, mais il y a beaucoup de personnes à qui j'ai envie de le dire. Donc, je vais vous raconter une histoire dans laquelle chacun de vous a une place.

C'est l'histoire d'une petite fille qui contemplait les étoiles par la fenêtre et les nébuleuses dans les bouquins. Toute sa famille lui disait : « Toi, un jour, tu seras astronome ». Merci à chacun de vous pour votre soutien sans faille, que je sois loin ou à vos côtés. La petite fille a rêvé de le devenir pendant 10 ans. Elle a grandi, s'est découverte d'autres amours : la mythologie, l'électronique, les livres, les trains, et les questions sans réponse. Merci à vous, mes parents, de m'avoir fait découvrir le monde qui nous entoure. Cette même petite fille a aussi découvert à quel point elle aime comprendre mais... pas apprendre aveuglément. Merci à vous, enseignants, d'avoir enduré mes questions sur le moindre détail incompris et de m'avoir laissée bouquiner pendant vos cours, que je notais, tout de même, assidûment. En classes préparatoires, alors devenue bachelière, les livres ont commencé à prendre la poussière et elle a dû se concentrer sur « comment apprendre vite sans forcément comprendre ? » et « comment se prouver à soi-même que quoi qu'il arrive, on peut le faire ? ». Après deux ans, ne sachant toujours pas ce qu'elle voulait faire, elle a suivi le conseil d'un professeur et est montée sur Paris pour découvrir la Physique au Magistère de Physique Fondamentale d'Orsay. Elle a ainsi découvert une pépite : les plasmas. Merci à vous, professeurs, enseignants-chercheurs, chargés de travaux pratiques et personnels administratifs, pour m'avoir accueillie, orientée et aidée dans mon apprentissage. Elle a alors fait des stages et, sans le reconnaître, est revenue à ses amours de jeunesse : le ciel et les étoiles, l'eau et le feu. Merci à Pierre, Norbert, Tom et Fouad pour m'avoir acceptée en stage. Merci aussi à Géraud, Elise, Théau, Théo, Maugan, Axel, Hugo, Sam, Léa et vous autres, amis et camarades, rencontrés et pour beaucoup perdus de vue. Vous m'avez apporté, et pour certains m'apportez encore, de la joie et de la bonne humeur.

C'est aussi l'histoire d'une thèse qui a commencé par la demande d'un sujet à la fin d'un cours à un enseignant passionné ayant décrit sa méthode de travail, par une étudiante mettant la charrue (la thèse) avant les bœufs (le stage et toute l'année de M2). Merci Fouad, pour m'avoir acceptée, poussée et retenue, au cours de ce périple avec beaucoup de patience et de bienveillance. Merci à toi aussi, Sébastien, pour avoir rejoint ce bateau avec ton écoute et tes conseils. Par la suite, cette thèse a impliqué un certain nombre d'acteurs. Renaud, Nahuel et Maia ont répondu à mes questions au tout début de mes mésaventures avec mon code. L'équipe informatique et en particulier Nicolas m'ont donné accès à Hopper et Cholesky. Alexis a accepté de m'aider sur la réécriture de ce « fichu code casse-pied qui ne fait que bugger » et m'a accueillie dans son bureau pendant une semaine entière. Sans toi, je ne sais pas où j'en serais et ce code n'aurait pas la structure qu'il a aujourd'hui, merci. Il y a eu aussi quelques aller-retours dans les bureaux de Gérard et Thomas pour discuter thermodynamique et d'autres sujets. Je remercie aussi Dimitri, Thierry et Pierre-Louis avec qui la collaboration a mené à quelques centaines de mails, de questions, trois jours intenses de discussions à l'Observatoire de la Côte d'Azur (OCA) à Nice et des réunions en distanciel sur les simulations que j'utilise. Merci aussi de m'avoir donné la possibilité d'en lancer de nouvelles en me laissant accéder à Licallo. Finalement, je vous remercie aussi, rapporteurs, examinateurs et examinatrice, d'avoir accepté d'évaluer ce travail, Anne et Pierre, pour votre suivi et l'ED, Sorbonne Université (SU) et la DIM ACAV+ pour les cadres pédagogique, administratif et financier.

C'est enfin l'histoire d'une vie dans et en dehors du laboratoire, à l'Ecole Polytechnique (X), à Massy et bien d'autres endroits. Le midi, je rejoignais quelques membres du laboratoire pour aller manger au Magnan. Merci à tous pour cette pause ainsi qu'à l'équipe Plasmas Froids avec qui je partageais les premiers repas pendant la période du COVID. C'est d'ailleurs au cours d'un de ces repas que j'ai informellement finie successeure potentielle du titre de Représentante des doctorants et non-permanents au conseil du laboratoire. Responsabilité que j'ai acceptée un an après. Ce mandat d'un an m'a permis de m'investir un peu plus dans la vie du laboratoire. Merci à tous de m'avoir donné cette opportunité. Merci d'ailleurs à tous les doctorants et stagiaires avec qui j'ai pu passer de très bons moments, et en particulier Vincent, Davide, Giulio et Benoît avec qui je partageais mon bureau, Théo avec qui j'enseignais, et Bayanne qui m'embarque manger une glace un 14 juillet. Mais avant d'y aller, j'aimerais remercier l'APAJF et les petits avec qui j'ai partagé quelques heures de bénévolat, le club de Viet Vo Dao ainsi que Valérie et Duc du club de Taiji pour les parenthèses martiales qui n'ont pas duré très longtemps mais qui sont riches en souvenirs, les équipes pédagogiques de l'Observatoire de Paris-Meudon (OBSPM) pour m'avoir donné la possibilité d'effectuer une mission d'enseignement, Maria et Marie-Anne pour votre soutien et votre écoute, et toutes les personnes que j'ai pues rencontrer et avec qui j'ai discuté au cours de ces trois ans par monts et par vaux. Et bien sûr, merci à toi Sylvain, pour ton support inconditionnel.

J'espère n'avoir oublié personne et pars manger cette glace en vous souhaitant une bonne lecture de ce pavé qui n'est malheureusement pas un roman mais qui, j'espère, vous permettra de comprendre ce que j'ai fait ces trois dernières années.

RÉSUMÉ DÉTAILLÉ

Le vent solaire est un plasma hautement turbulent où les quantités fluides (vitesse, densité et pression) ainsi que les champs électrique et magnétique varient beaucoup. Ces fluctuations se traduisent entre autres par des spectres turbulents couvrant plusieurs décades en fréquences. Les spectres des fluctuations de vitesse et de champ magnétique suivent des lois de puissances dont les exposants dépendent de l'échelle considérée. Aux basses fréquences, des exposants proches de -5/3 sont observés. Ils sont interprétés comme une signature de la dynamique turbulente magnétohydrodynamique (MHD) du plasma. Cette dynamique prendrait la forme d'une cascade transférant non-linéairement l'énergie présente à grande échelle, vers les petites échelles où sa dissipation est possible.

Cette cascade turbulente peut être étudiée au moyen de lois exactes dérivées à partir des équations des différentes quantités fluides. Ces lois lient le taux de cascade aux fluctuations turbulentes. Le taux de cascade est associé au taux de dissipation d'après la théorie de Kolmogorov et correspondrait donc à l'estimation d'un taux de chauffage du plasma. Ce taux est une clef de compréhension du problème du chauffage du vent solaire, la température de ce dernier décroissant plus lentement avec la distance héliocentrique que ne le prédit la théorie de l'expansion radiale adiabatique.

Ces dernières années, la théorie des lois exactes a été étendue avec succès aux modèles MHD et MHD-Hall, l'effet Hall étendant le domaine de validité de la MHD à des échelles comparables ou plus petites que l'échelle caractéristique des ions. Ces lois ont été dérivées dans le cadre d'approximations (fermetures) de type incompressible (densité constante) ou isotherme (pression proportionnelle à la densité). Ces fermetures permettent de simplifier les équations décrivant le plasma. Cependant, leur validité est sujette à caution dans le cadre des plasmas spatiaux tels que le vent solaire. Une hypothèse un peu plus réaliste consisterait à prendre en compte une fermeture du type polytrope (pression proportionnelle à une puissance de la densité). En étendant la théorie des lois exactes dans cette direction, une loi plus versatile a été obtenue : elle dépend d'une pression isotrope (scalaire) quelconque. L'apport de cette loi a ensuite été analysé à travers une application à des données relevées dans le vent solaire par la sonde Parker Solar Probe lancée par la NASA en 2018 en direction du Soleil.

Dans les plasmas spatiaux, il s'avère que le champ magnétique et le manque de collisions induisent une anisotropie de pression. La pression est alors tensorielle et prend en compte, a minima, une différence de pression parallèlement et perpendiculairement au champ magnétique ambiant (hypothèse gyrotrope). Une nouvelle étape d'extension de la théorie des lois exactes a donc été entreprise en relaxant l'isotropie de la pression. La loi obtenue est applicable à des écoulements régis par une pression tensorielle décrits par exemple par une fermeture CGL (Chew, Goldberger, Low, 1956), dite aussi bi-adiabatique, car dépendant de la gyrotropie de pression. Cette loi apporte un cadre d'étude rigoureux de l'impact de l'anisotropie sur la cascade turbulente et le taux de chauffage. Afin de valider son apport et d'affiner son interprétation, la loi CGL est enfin appliquée dans des simulations tridimensionnelles turbulentes du modèle CGL-MHD-Hall. The solar wind is a highly turbulent plasma in which the fluid quantities (fluid velocity, density and pressure) and the electric and magnetic field vary greatly. These fluctuations are reflected in turbulent spectra covering several frequency decades. The spectra of velocity and magnetic field fluctuations follow power-laws whose exponents depend on the scale considered. At low frequencies, exponents close to -5/3 are observed. They are interpreted as a signature of magnetohydrodynamic (MHD) turbulence that transfers energy non-linearly from large scales to small scales, where dissipation is possible.

This turbulent cascade can be studied using exact laws derived from the equations of the fluid quantities and the magnetic field. These laws link the cascade rate to the turbulent fluctuations. The cascade rate is associated with the dissipation rate according to Kolmogorov's theory, and would therefore provide an estimation of the plasma heating. This dissipation rate is a key to understanding the problem of solar wind heating. Indeed, the temperature of the solar wind decreases slower (with heliocentric distance) than predicted by the theory of adiabatic radial expansion.

In recent years, the theory of exact laws has been successfully extended to MHD and Hall-MHD models, with the Hall effect extending the range of validity of MHD to scales comparable to or smaller than the characteristic ion scale. These laws have been derived within the framework of the incompressible (constant density) and isothermal (pressure proportional to density) approximations. These closures simplify the equations describing the plasma. However, their validity as a description of space plasmas such as the solar wind is open to question. A bit more realistic hypothesis would be to take into account a polytropic closure (pressure proportional to a power of the density). By extending the theory of exact laws in this direction, a more versatile law was obtained : it depends on any isotropic (scalar) pressure.

The contribution of this law is then analysed through an application to data collected in the solar wind by the Parker Solar Probe launched by NASA in 2018 to explore the Sun. In space plasmas, the magnetic field and the lack of collisions induce pressure anisotropy. Such pressure takes the form of a full tensor and can be reduced to the gyrotropic one that considers at least the difference between the components parallel and perpendicular to the ambient magnetic field. A new extension of the theory of exact laws is then derived, relaxing the pressure isotropy assumption. The law obtained is applicable to flows governed by a tensorial pressure and described, at least, by a CGL (Chew, Goldberger, Low, 1956) closure, also known as bi-adiabatic because it depends on pressure gyrotropy. This law provides a rigorous framework for studying the impact of pressure anisotropy on the turbulent cascade and the heating rate. In order to validate its contribution and refine its interpretation, the CGL version of the law was finally applied to three-dimensional turbulent simulations of the Hall-MHD-CGL model.

SOMMAIRE

N	ote d'information	i
\mathbf{R}	emerciements	iii
R	ésumé détaillé	\mathbf{v}
D	etailed abstract	vii
Sc	ommaire	x
	INTRODUCTION : La turbulence dans les plasmas astrophysiques	
1	Qu'est-ce que la turbulence? La description hydrodynamique de Kol- mogorov	3
2	Qu'est-ce qu'un plasma? De l'exemple du vent solaire à la probléma- tique d'étude	13
3	Etude de la cascade turbulente dans un plasma incompressible	23
sic	PARTIE I : Le chauffage turbulent dans un plasma compressible avec pr on isotrope	es-
In	troduction	33
4	Que sait-on sur le modèle compressible?	35
5	Décrire la cascade compressible	43
6	Etudes de cas dans les données in-situ	55
C	onclusion	67
	PARTIE II : Etude analytique de l'effet de l'anisotropie de pression	
In	troduction	71
7	Loi exacte pour le modèle CGL	73
8	Et dans le cas incompressible ?	85

9	Relaxer l'approximation MHD et aller vers le bi-fluide	95
Co	onclusion	109
sil	PARTIE III : Etude numérique d'un plasma turbulent faiblement comp ple avec anisotropie de pressions	ores-
In	troduction	113
10	Simulation turbulente et calcul de lois exactes	115
11	Des lois incompressibles aux lois compressibles : tests et validations	125
12	Effet de l'anisotropie de pression dans des simulations CGL-MHD-Hall ∇P_e	- 137
13	Vers l'étude des simulations Landau-fluides	151
Co	onclusion	157
	CONCLUSION GENERALE	
14	Synthèse et perspectives	161
	ANNEXES	
\mathbf{A}	Explication mathématique et interprétation des termes des lois KHM	169
в	Validation et comparaison des lois exactes avec pression isotrope	173
\mathbf{C}	Details du terme correctif anisotrope pour CGL3B, CGL5 et CGL6	179
	TABLES ET LISTES	
Τa	ble des matières	186
Τa	ble des figures	192
\mathbf{Li}	ste des tableaux	194
\mathbf{Li}	stes des acronymes	195
\mathbf{Li}	ste des symboles	199
Bi	bliographie	209
	ARTICLES	
Si	mon et Sahraoui, Astrophysical Journal, 2021	213
Si	mon et Sahraoui, Physical Review E, 2022	223

INTRODUCTION : La turbulence dans les plasmas astrophysiques

I have never thought that you could obtain the extremely clumpy, heterogeneous universe we have today, strongly affected by plasma processes, from the smooth, homogeneous one of the Big Bang, dominated by gravitation.¹ Hannes ALFVÈN, un des pères de la physique des plasmas magnétisés.

^{1.} Traduction : Je n'ai jamais pensé que l'on pouvait obtenir l'univers hétérogène et très agité que nous connaissons aujourd'hui, fortement influencé par des processus plasmas, à partir de l'univers lisse et homogène du Big Bang, dominé par la gravitation. Citation extraite de PERATT 1988.

INTRODUCTION : CHAPITRE 1

QU'EST-CE QUE LA TURBULENCE ? LA DESCRIPTION HYDRODYNAMIQUE DE KOLMOGOROV

Sommaire

1.1	Définition et propriétés d'un écoulement turbulent \ldots	3
1.2	Description statistique et notations pour l'étude d'un sys-	
	tème turbulent	6
1.3	Théorie de Kolmogorov et loi d'échelle	8
1.4	Synthèse des hypothèses de Kolmogorov et de la description de la cascade turbulente via des lois exactes	12

Quand on parle de turbulence, la première image qui résonne dans notre esprit est un écoulement semblant chaotique, des secousses dans un avion ou un enfant qui n'en fait qu'à sa tête. Les propriétés partagées par ces trois exemples sont l'agitation, l'apparent désordre, l'imprévisibilité. Mais ce n'est qu'apparence. Contrairement au pur chaos, ce comportement est statistiquement prévisible et peut montrer un semblant d'ordre. Dans ce chapitre, sont résumés des notions, notations et outils permettant de caractériser et de prédire le comportement d'un écoulement turbulent dans un cadre hydrodynamique (HD).

1.1 Définition et propriétés d'un écoulement turbulent

Supposons l'écoulement incompressible, c'est-à-dire un fluide de densité constante ρ_0 . Ce fluide s'écoule à la vitesse $\boldsymbol{v}(t, \mathbf{x})$ dépendant du temps t et de la position \mathbf{x} . L'hypothèse incompressible impose aussi une contrainte sur cette vitesse : l'annulation de sa divergence, c'est-à-dire, mathématiquement $\nabla \cdot \boldsymbol{v} = 0$ en notant $\nabla = \frac{\partial}{\partial \mathbf{x}}$ l'opérateur de dérivation spatiale.

Un écoulement hydrodynamique incompressible est un système modélisé par les équations de Navier-Stockes incompressibles :

$$\nabla \cdot \boldsymbol{v} = 0 \tag{1.1}$$

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho_0} \nabla p + \nu \Delta \boldsymbol{v}.$$
 (1.2)

Le premier terme de l'équation (1.2), $\partial_t \boldsymbol{v}$, indique que cette équation est celle de l'évolution temporelle, $\partial_t = \frac{\partial}{\partial t}$ étant la dérivée partielle temporelle, de la vitesse de l'écoulement \boldsymbol{v} . Le deuxième terme, $\boldsymbol{v} \cdot \nabla \boldsymbol{v}$, implique un déplacement convectif du champ de vitesse à la vitesse de l'écoulement. Ce terme cristallise les non-linéarités du système. Dimensionnellement, on peut le schématiser par $C_{NL} = \frac{V^2}{L}$ avec V la vitesse caractéristique de l'écoulement et L sa largeur caractéristique. Le terme $-\frac{1}{\rho_0}\nabla p$ avec p la pression du fluide dénote les forces de pressions impliquées dans l'écoulement. Le dernier terme, $\nu\Delta v$, est un terme dissipatif, d'effort visqueux. Il dépend de ν , la viscosité du fluide, et de $\Delta = \nabla^2$, l'opérateur Laplacien. Ce terme vient contrebalancer le terme convectif et, s'il domine, rend l'écoulement laminaire. On peut le schématiser tel que $C_D = \nu \frac{V}{L^2}$.

Le rapport entre C_{NL} et C_D est le nombre de Reynolds $R_e = \frac{C_{NL}}{C_D} = \frac{VL}{\nu}$, un nombre sans dimension caractérisant le régime de l'écoulement, laminaire (R_e faible) ou turbulent ($R_e \gg 1$). Ces régimes sont illustrés sur la FIGURE 1.1. Dans cette expérience, un jet d'eau (blanc) est injecté dans de l'eau stagnante (espace noir). À gauche, sa largeur caractéristique est imposée par le diamètre du tuyau d'injection, l'écoulement est alors dans un régime laminaire. Ensuite, la turbulence se développe (régime transitoire), il y a apparition de tourbillons (vortex) dans l'écoulement. Enfin, tout à droite, la turbulence est pleinement développée, les non-linéarités dominent et s'entretiennent.

FIGURE 1.1 – Injection d'un jet d'eau dans de l'eau observée par fluorescence laser et illustrant les différents régimes d'un écoulement : laminaire, transitoire et turbulent. [Crédits de l'image initiale : VAN DYKE 1982.]

Dans le cadre hydrodynamique incompressible, l'écoulement n'est décrit que par les champs de vitesse et de pression, mais pour d'autres fluides, la description peut impliquer d'autres champs tels que le champ magnétique \boldsymbol{B} , le champ scalaire massique ρ , etc. On peut définir un nombre sans dimension similaire au nombre de Reynolds, rapport entre le terme non-linéaire convectif et le terme diffusif ou dissipatif impliqués dans l'évolution temporelle de ces champs. Dans le cas d'un champ magnétique, ce sera le nombre de Reynolds magnétique $R_m = \frac{VL}{\eta}$ avec η la résistivité ou diffusivité magnétique. Pour des quantités thermodynamiques telles que la densité de masse ou la pression, on parlera plutôt de nombres de Péclet.

Sur la FIGURE 1.2, sont présentés des résultats d'une simulation turbulente dépendant de trois directions spatiales (3D) qui sera introduite et utilisée dans la partie III. L'image (a) correspond à une coupe du cube de densité ρ telle que $n_z = 323$ obtenue au temps t = 410. Si on la compare à l'image (c) (autre coupe du même cube telle que $n_z =$

FIGURE 1.2 – Résultats d'une simulation 3D d'un plasma turbulent décrit par le modèle Hall-CGL. Le code de simulation sera introduit dans la partie III. La quantité représentée est la densité ρ . Chaque image correspond à une coupe x - y du cube de densité obtenu au temps t (en unité de temps de la simulation). Les axes sont en position numérique (nombre de points dans chaque direction, comptés à partir d'une position (0, 0, 0)). (a) : $n_z = 323, t = 410$. (b) : zoom de (a). (c) : $n_z = 638, t = 410$. (d) : $n_z = 323, t = 408$. Pour chaque image, la moyenne spatiale, ρ_0 , est de 1.00 et l'écart-type, std (ρ) , de 0.04.

638), on remarque une certaine invariance spatiale statistique qui illustre la propriété d'homogénéité dite statistique d'un fluide turbulent. Si par contre, on la compare à l'image (d) (coupe $n_z = 323$ obtenue à la date t = 408), on retrouve similairement une certaine invariance temporelle qui vient illustrer la propriété de stationnarité statistique du fluide. Enfin, en comparant avec l'image (b) (zoom de l'image (a)), on observe ce qui semble être une loi d'échelle.

Un écoulement ou un fluide turbulent serait donc caractérisé par

- une dominance des non-linéarités sur les contributions diffusives (grands nombres de Reynolds et de Péclet),
- des propriétés d'invariance (homogénéité, stationnarité) au sens statistique,
- une loi d'échelle.

Dans la section 1.2, on va définir les notations et appellations liées aux notions mathématiques statistiques et dans la section 1.3, on abordera un peu plus en détail la description de la turbulence à travers les échelles.

1.2 Description statistique et notations pour l'étude d'un système turbulent

Afin de garder la description du travail présenté dans ce mémoire accessible à tous, nous ne nous perdrons pas dans des définitions mathématiques complexes et exhaustives des notions, mais resterons sur des définitions exemplifiées et plus appliquées.

Dans l'ensemble de ce mémoire, on se placera dans un cadre 3D. Sauf quantités indéfinies, les grandeurs vectorielles seront notées en gras. Le système de représentation spatial sera génériquement cartésien $\mathbf{x} = (x, y, z)$, sauf mention contraire.

Soit une quantité indéfinie X (densité, vitesse, pression, champ magnétique, etc.) caractérisant un fluide. La distribution de valeurs possibles pour X, ou distribution de probabilité de X, notée \mathcal{P}_X , peut être obtenue en considérant différents points de vue :

- PV1 : décrire le fluide comme un ensemble souvent discret, par exemple de N particules (atomes, molécules, etc.) associées individuellement à une valeur de la quantité X, notée X_n avec $n \in [1; N]$,
- PV2 : regarder l'espace occupé par le fluide : un volume continu V ou un nombre de points d'emplacement \mathbf{x} . La quantité X sera alors évaluée en chacun d'eux et notée $X(\mathbf{x})$,
- PV3 : ne considérer qu'une particule ou qu'un point, regarder les valeurs de X au fil du temps sur une période T, et les noter X(t).

Ces différents points de vue ne sont pas forcément équivalents. Par exemple, si l'on regarde plusieurs types de particules et que les valeurs de X dépendent de leur nature, ne regarder qu'une particule au fil du temps ne sera pas représentatif du système. Par la suite, on utilisera les représentations PV2 et PV3.

Pour caractériser la distribution de probabilité de X, on peut utiliser divers outils statistiques. L'un d'eux est la moyenne (moment d'ordre 0), une opération linéaire que l'on va noter $\langle X \rangle$ et qui est définie en fonction des points de vue :

- PV1 : $\langle X \rangle_N = \frac{1}{N} \sum_{n=1}^N X_n$, est la moyenne d'ensemble définie de manière discrète.
- PV2 : $\langle X \rangle_V = \frac{1}{V} \int_V X(\mathbf{x}) \mathcal{P}_X d\mathbf{x}$, est la définition continue de la moyenne spatiale. $\langle X \rangle_V$ est indépendante de la position locale \mathbf{x} . Dans le cas discret, en considérant un échantillonnage spatial, c'est-à-dire N_V points dans le volume V, et en notant X_p la valeur de X au point p, $\langle X \rangle_V = \frac{1}{N_V} \sum_{p=1}^{N_V} X_p$.
- PV3 : $\langle X \rangle_T = \frac{1}{T} \int_0^T X(t) \mathcal{P}_X dt$, est la définition continue de la moyenne temporelle. $\langle X \rangle_T$ est indépendante de l'instant t. Une moyenne discrète peut aussi être définie en considérant un échantillonnage temporel.

Si $\langle X \rangle_N = \langle X \rangle_V = \langle X \rangle_T$ est vérifiée, on peut supposer une équivalence statistique des différents points de vue. Le système sera alors ergodique.

On peut définir plus rigoureusement les propriétés d'homogénéité et de stationnarité statistiques à l'aide de \mathcal{P}_X :

- homogénéité statistique : soient deux échantillons représentatifs du système et définis relativement à deux positions indépendantes l'une de l'autre \mathbf{x} et \mathbf{x}' alors $\mathcal{P}_X(\mathbf{x}) = \mathcal{P}_X(\mathbf{x}') = \mathcal{P}_X$, ce qui implique pour la moyenne $\langle X(\mathbf{x}) \rangle = \langle X(\mathbf{x}') \rangle = \langle X \rangle$, - stationnarité statistique : soient deux échantillons représentatifs du système et définis relativement à deux instants indépendants l'un de l'autre t et t' alors $\mathcal{P}_X(t) = \mathcal{P}_X(t') = \mathcal{P}_X$, ce qui implique pour la moyenne $\langle X(t) \rangle = \langle X(t') \rangle = \langle X \rangle$.

Attention, cela ne signifie pas que localement, entre deux instants t ou deux positions \mathbf{x} , X sera constant. En pratique, dans des données d'observations ou de simulations, des échantillons dans lesquels ces hypothèses seraient parfaitement valides sont difficiles à

obtenir. Des compromis devront donc être établis.

Similairement aux définitions des propriétés d'homogénéité et de stationnarité statistiques, pour étudier un fluide turbulent, on doit relier le comportement statistique de deux échantillons ou plus, c'est-à-dire que l'on doit s'intéresser aux fluctuations, incréments de quantités et corrélations entre au moins deux échantillons. Ce lien peut s'exprimer en fonction de la distance temporelle ou spatiale entre ces échantillons, généralement appelée «échelle». En 1941, Kolmogorov pose les bases d'une théorie permettant d'obtenir une telle relation : la théorie des lois exactes [FRISCH 1995; KOLMOGOROV 1991a,b]. Cette théorie repose sur les hypothèses que nous avons illustrées dans la section 1.1 (dominance des effets non-linéaires, homogénéité et stationnarité statistiques) ainsi que sur une hypothèse plus spécifique de séparation d'échelle qui sera expliquée dans la section 1.3.

Le travail décrit dans ce mémoire est basé sur cette théorie et implique les notations suivantes. On considèrera deux échantillons définis relativement à deux positions ^{1 2} indépendantes l'une de l'autre, \mathbf{x} et \mathbf{x}' . La quantité indéfinie X évaluée en \mathbf{x}' sera notée X' et celle évaluée en \mathbf{x} , X. L'échelle, notée ℓ , sera définie comme l'incrément de position :

$$\boldsymbol{\ell} = \delta \mathbf{x} = \mathbf{x}' - \mathbf{x},\tag{1.3}$$

avec δ dénotant le caractère incrémental. Similairement l'incrément de la quantité indéfinie X s'écrira :

$$\delta X = X' - X = X(\mathbf{x}') - X(\mathbf{x}). \tag{1.4}$$

Le lien étudié entre les deux échantillons sera une fonction de corrélation spatiale entre deux quantités X et Y (ici indéfinies) qui s'obtient en considérant une quantité au point \mathbf{x} et l'autre au point \mathbf{x}' , en les multipliant puis en moyennant. Afin de conserver une symétrie du rôle de \mathbf{x} et \mathbf{x}' , on définira la fonction de corrélation telle que

$$\mathcal{R}_{XY} = \frac{1}{2} \left\langle X \cdot Y' + X' \cdot Y \right\rangle, \qquad (1.5)$$

en notant · l'opération générique multiplicative. Entre deux vecteurs, cette opération pourrait être considérée comme un produit scalaire ou remplacée par un produit vectoriel noté ×. La fonction d'auto-corrélation est obtenue en considérant X = Y, c.-à-d. $\mathcal{R}_{XX} = \langle X \cdot X' \rangle$. La moyenne $\langle \rangle$ impliquée dans ces fonctions est la moyenne spatiale. \mathcal{R}_{XY} sera donc indépendante de \mathbf{x} et \mathbf{x}' et ne dépendra que de $\boldsymbol{\ell}$ et a priori de t si les quantités dépendent du temps.

Par indépendance entre le temps et la position, la moyenne spatiale commute avec la dérivée temporelle :

$$\partial_t \left\langle X \right\rangle = \left\langle \partial_t X \right\rangle. \tag{1.6}$$

On note $\nabla_{\ell} = \frac{\partial}{\partial \ell}$ l'opérateur de dérivation spatiale dans l'espace global des échelles, ∇ et ∇' les opérateurs de dérivation locaux respectivement en \mathbf{x} et \mathbf{x}' . L'indépendance entre \mathbf{x} et \mathbf{x}' , implique que :

$$\nabla X' = 0, \qquad \nabla' X = 0. \tag{1.7}$$

^{1.} Il est possible de corréler plus de deux points. Tout lecteur intéressé pourra se référer à [CHO et LAZARIAN 2009].

^{2.} Historiquement, les calculs sont effectués dans le cadre PV2. Il serait a priori possible de les transposer dans les cadres PV1 ou PV3, mais ce n'est pas l'objet de cette thèse.

Grâce à l'hypothèse d'homogénéité statistique, ces opérateurs dérivatifs vérifient³

$$\nabla_{\boldsymbol{\ell}} \langle \rangle = \langle \nabla' \rangle = - \langle \nabla \rangle \,. \tag{1.8}$$

En turbulence, on utilise aussi communément la transformée de Fourier. Cette méthode permet de travailler dans un espace où la position est repérée par $\mathbf{k} \propto 1/\mathbf{x}$, et où toute quantité se retrouve décomposée en une série de « modes » que l'on appelle un spectre. Dans le cas continu 3D, on définit la transformée de Fourier de la quantité X par

$$\tilde{X}(\boldsymbol{k}) = \frac{1}{(2\pi)^3} \iiint X(\mathbf{x}) e^{-i\boldsymbol{k}\cdot\mathbf{x}} d\mathbf{x}$$
(1.9)

et la transformée inverse par

$$X(\mathbf{x}) = \iiint \tilde{X}(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{x}}d\mathbf{k}.$$
(1.10)

On remarque qu'en termes de dimensions, si l'on note [X] l'unité de X et L l'unité de longueur, $\tilde{X} \sim [X]L^3$.

Dans le cas continu dépendant d'une seule direction spatiale (1D), on aura similairement :

$$\tilde{X}(k) = \frac{1}{2\pi} \int X(x)e^{-ikx}dx, \qquad X(x) = \int \tilde{X}(k)e^{ikx}dk \tag{1.11}$$

et en termes de dimensions, $\tilde{X} \sim [X]L$.

Ces notations et hypothèses seront utilisées tout au long de ce mémoire. Pour se familiariser avec leur utilisation, une application de la théorie de Kolmogorov à un écoulement hydrodynamique incompressible décrit par les équations de Navier-Stockes (1.1) et (1.2) est donnée dans la section 1.3. Cette application va nous servir à introduire la notion de loi d'échelle et l'hypothèse de séparation d'échelle.

1.3 Théorie de Kolmogorov et loi d'échelle

La démonstration de Kolmogorov de 1941 [version traduite : KOLMOGOROV 1991a,b] a été réécrite à de multiples reprises sous différentes formes. D'autres versions sont données par MONIN et JAGLOM 1975, FRISCH 1995, ANTONIA *et al.* 1997, et GALTIER 2021.

Pour faciliter les étapes de calcul, on va réécrire l'équation de Navier-Stockes (1.2) grâce à l'hypothèse incompressible (1.1) et y ajouter un terme de forçage f_c :

$$\partial_t \boldsymbol{v} = -\nabla \cdot (\boldsymbol{v}\boldsymbol{v}) - \frac{1}{\rho_0} \nabla p + \nu \Delta \boldsymbol{v} + \boldsymbol{f_c}.$$
(1.12)

La démonstration se base sur la recherche d'une équation d'évolution temporelle pour la fonction d'auto-corrélation $\mathcal{R}_{vv} = \langle v \cdot v' \rangle$. Pour l'obtenir, on dérive temporellement \mathcal{R}_{vv} grâce à la propriété (1.6) (étape (1.13)), on injecte l'équation de Navier-Stockes (1.12) (étape (1.14)) puis on applique les propriétés (1.7) et (1.8) pour extraire les opérateurs

^{3.} Soient A, B et C des quantités indéfinies telles que $A(\ell) = \langle B \cdot C' \rangle = \langle B(\mathbf{x}) \cdot C(\mathbf{x}') \rangle$ avec · une opération multiplicative quelconque et $\mathbf{x}' = \mathbf{x} + \ell$. Alors, l'élément différentiel $d\ell$ est égal à $d\mathbf{x}' - d\mathbf{x}$.

À **x** fixé, $d\boldsymbol{\ell} = d\mathbf{x}'$, alors $\nabla_{\boldsymbol{\ell}} A(\boldsymbol{\ell}) = \langle \partial_{\boldsymbol{\ell}} (B \cdot C') \rangle = \langle \partial_{\mathbf{x}'} (B \cdot C') \rangle = \langle \nabla' (B \cdot C') \rangle$. D'où la relation entre les opérateurs : $\nabla_{\boldsymbol{\ell}} \langle \rangle = \langle \nabla' \rangle$. Similairement, à **x**' fixé, $d\boldsymbol{\ell} = -d\mathbf{x}$, d'où $\nabla_{\boldsymbol{\ell}} \langle \rangle = -\langle \nabla \rangle$.

dérivatifs spatiaux de la moyenne spatiale (étape (1.15)) :

$$\partial_t \mathcal{R}_{\boldsymbol{v}\boldsymbol{v}} = \langle \boldsymbol{v} \cdot \partial_t \boldsymbol{v}' + \boldsymbol{v}' \cdot \partial_t \boldsymbol{v} \rangle$$

$$= - \langle \nabla' \cdot (\boldsymbol{v}' \boldsymbol{v}') \cdot \boldsymbol{v} + \nabla \cdot (\boldsymbol{v} \boldsymbol{v}) \cdot \boldsymbol{v}' \rangle - \frac{1}{\rho_0} \langle \boldsymbol{v} \cdot \nabla' P' + \boldsymbol{v}' \cdot \nabla P \rangle$$
(1.13)

$$+\nu \langle \boldsymbol{v} \cdot \Delta' \boldsymbol{v}' + \boldsymbol{v}' \cdot \Delta \boldsymbol{v} \rangle + \langle \boldsymbol{v} \cdot \boldsymbol{f}_{\boldsymbol{c}}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{\boldsymbol{c}} \rangle$$
(1.14)

$$= \nabla_{\boldsymbol{\ell}} \cdot \langle -\boldsymbol{v} \cdot \boldsymbol{v}' \boldsymbol{v}' + \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v} \rangle + \frac{1}{\rho_0} \nabla_{\boldsymbol{\ell}} \cdot \langle -P' \boldsymbol{v} + P \boldsymbol{v}' \rangle + 2\nu \Delta_{\boldsymbol{\ell}} \langle \boldsymbol{v} \cdot \boldsymbol{v}' \rangle + \langle \boldsymbol{v} \cdot \boldsymbol{f}_{\boldsymbol{c}}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{\boldsymbol{c}} \rangle.$$
(1.15)

Avec l'hypothèse incompressible et celle d'homogénéité statistique (propriétés (1.7) et (1.8)),

$$\nabla_{\boldsymbol{\ell}} \cdot \langle -P'\boldsymbol{v} + P\boldsymbol{v'} \rangle = 0, \qquad (1.16)$$

$$\nabla_{\boldsymbol{\ell}} \cdot \langle -\boldsymbol{v} \cdot \boldsymbol{v}' \boldsymbol{v}' + \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v} \rangle = \frac{1}{2} \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle, \qquad (1.17)$$

$$\langle \boldsymbol{v} \cdot \boldsymbol{f_c'} + \boldsymbol{v'} \cdot \boldsymbol{f_c} \rangle = \langle \boldsymbol{v} \cdot (\boldsymbol{f_c} (\mathbf{x} + \boldsymbol{\ell}) + \boldsymbol{f_c} (\mathbf{x} - \boldsymbol{\ell})) \rangle.$$
 (1.18)

D'où l'équation dite de Kármán-Howarth-Monin (KHM) :

$$-\frac{\rho_0}{2}\partial_t \mathcal{R}_{\boldsymbol{v}\boldsymbol{v}} + \nu\rho_0 \Delta_{\boldsymbol{\ell}} \mathcal{R}_{\boldsymbol{v}\boldsymbol{v}} + \frac{\rho_0}{2} \left\langle \boldsymbol{v} \cdot (\boldsymbol{f_c} \left(\mathbf{x} + \boldsymbol{\ell} \right) + \boldsymbol{f_c} \left(\mathbf{x} - \boldsymbol{\ell} \right) \right) \right\rangle = -\frac{\rho_0}{4} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \right\rangle.$$
(1.19)

Schématiquement, on va la noter :

$$-\partial_t \mathcal{R} + \varepsilon_{NL} + \varepsilon_F + \varepsilon_D = 0. \tag{1.20}$$

- $\mathcal{R} = \frac{\rho_0}{2} \mathcal{R}_{\boldsymbol{vv}}$, la fonction de corrélation de densité d'énergie totale (ici cinétique). En $\boldsymbol{\ell} = 0$, elle est égale à la densité d'énergie totale moyenne $\left\langle \frac{\boldsymbol{v}^2}{2} \right\rangle$ du système.
- $\varepsilon_{NL} = \frac{1}{4} \rho_0 \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle, \text{ le taux de cascade ou de transfert non-linéaire de l'énergie incrémentale } \frac{1}{4} \rho_0 \langle \delta \boldsymbol{v}^2 \rangle \text{ à travers les échelles, il s'annule en } \boldsymbol{\ell} = 0.$
- $\varepsilon_F = \frac{1}{2}\rho_0 \langle \boldsymbol{v} \cdot (\boldsymbol{f_c}(\mathbf{x} + \boldsymbol{\ell}) + \boldsymbol{f_c}(\mathbf{x} \boldsymbol{\ell})) \rangle$, le taux de forçage dépendant des échelles. En $\boldsymbol{\ell} = 0$, il est égal à la densité d'énergie moyenne injectée $\rho_0 \langle \boldsymbol{v} \cdot \boldsymbol{f_c} \rangle$ dans le système par le forçage.
- $-\varepsilon_D = \rho_0 \nu \Delta_{\ell} \mathcal{R}_{\boldsymbol{v}\boldsymbol{v}}$, le taux de dissipation dépendant des échelles. En $\ell = 0$, il est égal à la densité d'énergie moyenne dissipée par viscosité $\rho_0 \nu \langle \Delta \boldsymbol{v}^2 \rangle$.

On remarque qu'en $\ell = 0$, (1.19) devient l'équation d'énergie totale moyenne que l'on peut noter :

$$-\partial_t \mathcal{R}(\boldsymbol{\ell}=0) + \varepsilon_D(\boldsymbol{\ell}=0) + \varepsilon_F(\boldsymbol{\ell}=0) = 0.$$
(1.21)

L'hypothèse de stationnarité statistique vient annuler toute dérivée temporelle de quantités moyennées. Par conséquent, les équations (1.20) et (1.21) deviennent :

$$\varepsilon_{NL} + \varepsilon_F + \varepsilon_D = 0, \qquad (1.22)$$

$$\varepsilon_D(\boldsymbol{\ell}=0) + \varepsilon_F(\boldsymbol{\ell}=0) = 0. \tag{1.23}$$

Les démonstrations existantes divergent dans le traitement des taux ε_F et ε_D de l'équation (1.22) car elles ne prennent pas forcément en compte ε_F . Mais, toutes utilisent une propriété fondamentale de la turbulence, la loi «zéroième». Cette loi indique que, pour un nombre de Reynolds grand, lorsque ν tend vers 0, la densité d'énergie dissipée moyenne $\rho_0 \nu \langle \Delta \boldsymbol{v}^2 \rangle$, qui correspond à ε_D évalué en $\boldsymbol{\ell} = 0$, devient indépendante de ν et ne s'annule pas. Cette singularité est aussi appelée anomalie dissipative. Elle indique la présence d'une dissipation dans la limite $R_e \gg 1$. On va noter $-\varepsilon$ cette valeur particulière de ε_D . On peut alors résumer cette loi comme suit :

$$\varepsilon_D \xrightarrow[\nu \to 0]{} \begin{cases} 0 & \text{si } \ell \neq 0 \\ -\varepsilon & \text{si } \ell = 0 \end{cases}$$
(1.24)

Si l'on prend en compte le terme de forçage, il sera supposé actif aux grandes échelles, notées $\ell_{\mathbf{F}}$. Aux échelles $\ell \ll \ell_{\mathbf{F}}$, on obtient ⁴ $\varepsilon_F = \varepsilon_F(\ell = 0)$. Avec la relation (1.23) et la loi zéroième (1.24), on obtient alors $\varepsilon_F(\ell \ll \ell_F) = \varepsilon$. Enfin, en se plaçant à des échelles différentes de $\ell = 0$, telles que $\varepsilon_D = 0$, on obtient de (1.22), la loi exacte de Kolmogorov (K41) :

$$\frac{\varepsilon}{\rho_0} = -\frac{1}{4} \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle \qquad (1.25)$$

qui s'écrit schématiquement $\varepsilon = -\varepsilon_{NL}$. Dans ce mémoire, nous déterminerons et analyserons ε_{NL} pour différents modèles. Si l'on ne prend pas en compte le terme de forçage, on peut construire la différence entre (1.20) et (1.21) et, dans la limite des grands nombres de Reynolds et avec l'hypothèse de stationnarité statistique, on peut retrouver (1.25) [ANTONIA *et al.* 1997].

Cette loi est valable dans une gamme d'échelle dite inertielle où le comportement du fluide est supposé complètement non-linéaire $(R_e \gg 1 \text{ et } \nu \rightarrow 0)$ et peu impacté par tout phénomène d'injection d'énergie. La cascade d'énergie s'y effectue donc à un taux ε constant. L'ensemble des dernières hypothèses est résumé sous le nom « hypothèse de séparation d'échelle » : il existe une gamme d'échelle dite inertielle où l'énergie cascade conservativement (pas de dissipation, $\nu \rightarrow 0$ et $\ell \neq 0$, ni de forçage, $\ell \ll \ell_F$) à un taux ε constant.

Une autre hypothèse, communément appliquée en hydrodynamique, a été prise en compte par Kolmogorov, celle d'isotropie statistique. Elle permet d'obtenir une forme intégrée de la loi exacte. L'isotropie statistique implique une invariance angulaire sphérique. $\varepsilon(\ell)$ ne dépendra alors que de $\ell = |\ell|$. On peut alors intégrer sur une boule de rayon ℓ la loi (1.25) sachant que, dans la zone inertielle, ε est constant. Ainsi, en notant $v_{\ell} = \boldsymbol{v} \cdot \boldsymbol{\ell}$, on a :

$$-\frac{4}{3}\frac{\varepsilon}{\rho_0}\ell = \left\langle |\delta \boldsymbol{v}|^2 \delta v_\ell \right\rangle.$$
(1.26)

Phénoménologiquement, par analyse dimensionnelle, la loi exacte (1.26) s'écrit $(\delta v)^3 \sim \ell$ d'où $E(\ell) \sim (\delta v)^2 \sim \ell^{2/3}$. En passant dans l'espace de Fourier, sachant que l'on se place dans un cas 1D, on peut remplacer ℓ par 1/k et $E(\ell)$ par kE(k). On obtient alors le spectre énergétique :

$$E(k) \sim k^{-5/3}$$
. (1.27)

D'où, en représentation logarithmique, $\log E(k) = -5/3 \log k + C$ avec C une constante. Ainsi, la théorie de Kolmogorov nous permet de prédire, dans le cas isotrope, un spectre d'énergie cinétique, E(k) de pente -5/3 en représentation logarithmique. Malgré son caractère phénoménologique, cette prédiction est très bien retrouvée sur plusieurs ordres

^{4.} Une démonstration de cette approximation est donnée dans l'Annexe A.1 pour un forçage de type distribution de Dirac dans l'espace de Fourier.

FIGURE 1.3 – Compilations de spectres obtenus dans diverses expériences de laboratoire. Tous ces spectres sont en accord avec la pente en -5/3 prédite grâce à la théorie de Kolmogorov. [Crédits : SADDOUGHI et VEERAVALLI 1994.]

de grandeurs, par exemple dans le cadre expérimental (voir FIGURE 1.3). La forme $E(k) = Ck^{\gamma}$ avec C et γ constants, qui s'écrit en représentation logarithmique log $E(k) = \gamma \log k + C$, est une loi d'échelle. Dans un système physique, une loi d'échelle ne va apparaître que sur une gamme d'échelle dédiée, limitée par la taille du système et l'émergence de phénomènes diffusifs à petites échelles, c'est à dire petits ℓ ou grands k. Ici, cette gamme est la zone de validité de la loi de Kolmogorov : la zone inertielle.

Cette définition spectrale de la zone inertielle turbulente, telle que le spectre affiche une loi d'échelle en -5/3, n'est pas aussi contraignante que la définition statistique via un taux ε constant. En effet, le système vérifiera plus facilement la définition spectrale que la définition statistique car E(k) est d'ordre 2 ($\propto (\delta v)^2$ et positif) alors que ε est d'ordre 3 ($\propto (\delta v)^3$ et signé). Autrement dit, observer une pente -5/3 de type Kolmogorov ne sera pas forcément synonyme d'un régime de turbulence complètement développée définie par l'existence d'une zone inertielle telle que ε constant.

1.4 Synthèse des hypothèses de Kolmogorov et de la description de la cascade turbulente via des lois exactes

Taux énergétiques échelles-dépendants :

- Taux de cascade (transfert non linéaire entre les échelles) : $\varepsilon_{NL}(\ell)$,
- Taux d'injection (forçage) : $\varepsilon_F(\ell)$,
- Taux de dissipation : $\varepsilon_D(\boldsymbol{\ell})$.

Loi zéroième ou anomalie dissipative : $\varepsilon_D(\ell = 0) \xrightarrow[\nu \to 0]{} -\varepsilon \neq 0.$

 ε correspond au taux de dissipation turbulent.

Méthode d'obtention d'une loi exacte :

- Dériver l'évolution temporelle d'une fonction de corrélation \mathcal{R} entre deux points indépendants \mathbf{x} et \mathbf{x}' séparés de l'échelle $\boldsymbol{\ell}$,
- Prendre en compte l'hypothèse d'homogénéité statistique, \Rightarrow Loi exacte de type KHM
- Appliquer les hypothèses de Kolmogorov de stationarité statistique et séparation d'échelle \Rightarrow Loi exacte de type K41

Propriété liée à l'hypothèse d'homogénéité statistique :

$$\Rightarrow \nabla_{\boldsymbol{\ell}} \langle . \rangle = \langle \nabla' . \rangle = - \langle \nabla . \rangle$$

Propriété liée à l'hypothèse de stationnarité statistique : $\Rightarrow \partial_t \langle . \rangle = 0.$

Hypothèse de séparation d'échelle : Séparation des gammes d'échelles d'injection/forçage, de cascade/inertielles, et de dissipation/chauffage permise par la loi zéroième.

$$\Rightarrow \varepsilon_{NL}(0 \ll \boldsymbol{\ell} \ll \boldsymbol{\ell}_{\boldsymbol{F}}) = -\varepsilon_{F}(\boldsymbol{\ell} \ll \boldsymbol{\ell}_{\boldsymbol{F}}) = \varepsilon_{D}(\boldsymbol{\ell} = 0) = -\varepsilon$$

Loi exacte de type KHM : $\partial_t \mathcal{R} = \varepsilon_{NL} + \varepsilon_F + \varepsilon_D$

Loi exacte de type K41 : $\varepsilon = -\varepsilon_{NL}$

INTRODUCTION : CHAPITRE 2_{-}

QU'EST-CE QU'UN PLASMA? DE L'EXEMPLE DU VENT SOLAIRE À LA PROBLÉMATIQUE D'ÉTUDE

Sommaire

2.1	Les plasmas, état de la matière	13
2.2	Le vent solaire, source de questions ouvertes et probléma-	
	tique d'étude	15
2.3	Décrire un plasma à l'aide d'un modèle fluide	17
2.4	Synthèse : problématique et modèles utilisés	21

Dans le Chapitre 1, nous avons défini dans le cadre HD ce qu'est la turbulence grâce à la théorie des lois exactes de Kolmogorov. Ce sera le seul chapitre placé dans ce cadre. Dans l'univers visible (ou baryonique), la matière est majoritairement sous forme de plasma que l'on ne peut décrire par les équations de Navier-Stockes incompressibles seules. On s'intéressera donc à la turbulence dans un plasma.

Ici, nous allons définir ce qu'est un plasma et comment le décrire, puis nous aborderons les questions ouvertes, motivations des travaux décrits dans ce mémoire.

2.1 Les plasmas, état de la matière

La matière peut être décrite comme des poupées russes constituées de particules de tailles diverses, allant des atomes et molécules aux quarks en passant par les protons et les électrons qui sont des particules chargées positivement et négativement. Elle peut aussi être décrite en fonction de son état : solide, liquide, gaz et plasma.

Les états solide, liquide et gaz sont les états les plus reconnus dans notre quotidien. Ils sont généralement constitués de molécules ou d'atomes neutres ne portant pas de charge électrique. Pourtant, ces états sont des exceptions dans l'univers, où la matière est majoritairement à l'état de plasma. Les atomes y sont dissociés en particules chargées, ions, protons et électrons qui induisent un champ électromagnétique s'il n'y en a pas originellement. Le plasma sera entretenu par les interactions entre ces particules et les champs électrique et magnétique. Un plasma est donc un milieu constitué de particules chargées et de champs électrique et magnétique et magnétiqu

On peut aussi en reconnaître dans notre quotidien, le plus souvent ils brillent ! Par exemple, les éclairs, les aurores, les flammes, les néons, les étoiles et les nébuleuses. Ils forment finalement la grande majorité de la matière présente dans l'univers, du centre des planètes au milieu intergalactique. Pour les étudier, on a deux possibilités : les créer en laboratoire ou s'immerger dedans. Dans le deuxième cas, peu sont réellement accessibles, beaucoup étant trop furtifs (les éclairs), trop lointains (les nébuleuses) ou trop extrêmes (le soleil) pour y envoyer des appareils de mesure. Parmi les plasmas naturels accessibles, l'espace interplanétaire est roi. Véritable laboratoire [BRUNO et CARBONE 2005], on y envoie régulièrement des sondes et satellites. La dernière sonde en date est Jupiter Icy Moons Explorer (JUICE) lancée le 14 avril 2023 en direction du système lunaire de Jupiter.

Dans l'espace interplanétaire, on trouve différents types de plasmas. Si l'on décolle de la surface d'une planète telle que la Terre, on commencera par traverser l'atmosphère constituée de gaz neutre. Puis, on atteindra l'ionosphère, un plasma d'ions lourds et impactés par le champ magnétique planétaire. En s'écartant un peu plus, on s'immergera dans la magnétosphère constituée d'ions légers (principalement des protons) et d'électrons, toujours sous l'influence du champ planétaire. En partant du Soleil, on peut aussi définir différentes couches, la chromosphère, une couche fine gazeuse, puis la couronne solaire, un plasma s'étendant sur une quinzaine de rayons solaires et enfin l'héliosphère dans lequel baignent les planètes. Le Soleil y éjecte continuellement un plasma : le vent solaire. Cet écoulement vient former des arcs de choc précédant les planètes en mouvement dans l'héliosphère. Entre cet arc et la magnétosphère, le vent solaire est dit choqué. Cette région, dominée par le champ magnétique interplanétaire, est la magnétogaine. La FIGURE 2.1 illustre quelques-unes de ces différentes régions. D'autres régions plus spécifiques existent, mais on se contentera de ce niveau de description, le vent solaire étant notre principal objet d'étude.

FIGURE 2.1 – Exemples de plasmas spatiaux. CME signifie éjections de masse coronale. Crédits de l'image initiale : Institut royal d'Aéronomie Spatiale de Belgique (page web www.aeronomie.be).

Le vent solaire est par exemple traversé par Parker Solar Probe (PSP) en orbite autour du Soleil, cette mission lancée par l'agence spatiale américaine NASA en 2018 s'approche petit à petit du Soleil afin de « toucher » la couronne. La mission Magnetospheric Multiscale (MMS) en orbite autour de la Terre explore le vent solaire, la magnétogaine et la magnétosphère. Nous reparlerons plus en détail de ces deux missions dans le Chapitre 6.

2.2 Le vent solaire, source de questions ouvertes et problématique d'étude

Le vent solaire est un plasma extrêmement dilué, peu collisionnel et turbulent, constitué essentiellement d'ions légers ou protons (hydrogène, hélium chargés) et d'électrons interagissant avec le champ magnétique du Soleil. En fonction de l'activité cyclique et des latitudes du Soleil, il peut être rapide ($v_{SW} \sim 800 \text{ km/s}$) ou lent ($v_{SW} \sim 400 \text{ km/s}$) et parcouru par des structures à grandes échelles telles que les éjections de masse coronale (CME). Les missions Voyager 1 et 2, lancées en 1977 vers les confins de l'héliosphère par la NASA, ont permis de tracer les profils de température, champ magnétique, vitesse etc. en fonction de la distance au Soleil [RICHARDSON, PAULARENA *et al.* 1995]. Ces profils ont donné lieu à diverses modélisations et à des problèmes encore ouverts aujourd'hui.

FIGURE 2.2 – Profil de température ionique en fonction de la distance au Soleil, observé avec les données de Voyager 2 (noir). Profil adiabatique (vert). [Crédits : RICHARDSON et SMITH 2003.]

Sur la FIGURE 2.2 est donné l'exemple du profil de température. Du caractère peu collisionnel du vent solaire ont émergé, dans un premier temps, des prédictions d'une décroissance adiabatique du profil de température (courbe verte) [TU et MARSCH 1995]. Mais comme on peut l'observer, la décroissance n'est pas aussi rapide que le modèle adiabatique. Des exemples de modélisations pour retrouver ce profil sont référencés par RICHARDSON et SMITH 2003. Sur la FIGURE 2.2, des résultats d'un modèle prenant en compte des ions dits « pickups » sont présentés en bleu et en rouge. Dans le cas rouge, est ajouté au modèle une dépendance linéaire entre la vitesse du vent solaire et la température. Le profil in-situ est ainsi plutôt bien retrouvé mais initialisé à partir de relevés de vitesse

et température effectués autour de 1 au (unité astronomique dont l'étalon est la distance Soleil-Terre). Les ions pickups font en effet partie des sources du chauffage localisé du vent solaire mais ce chauffage aurait d'autres sources, comme l'explique DAVID *et al.* 2022. Avant 1 au, il serait principalement dû aux fluctuations turbulentes, puis aux chocs interplanétaires venant accélérer ou ralentir le plasma, et enfin, après 20 au, aux ions pickups provenant du milieu interstellaire. Le chauffage dû aux fluctuations turbulentes est souvent mis en compétition avec un chauffage induit par les processus de reconnexion des lignes de champ magnétique [MATTHAEUS et VELLI 2011, CRANMER *et al.* 2015]. Ces deux phénomènes sont souvent liés [SUNDKVIST *et al.* 2007, RETINÒ *et al.* 2007, SERVIDIO *et al.* 2011, CHASAPIS *et al.* 2015, MANZINI, SAHRAOUI et CALIFANO 2023].

Dans ces travaux, on s'intéresse au chauffage turbulent [TU et MARSCH 1995, KIYANI et al. 2015] prédominant à partir de quelques rayons solaires jusqu'à 2 au. Une définition thermodynamique de ce chauffage sera donnée dans le Chapitre 4. Ce problème sera abordé à travers la cascade turbulente définie dans le Chapitre 1 et décrite avec une théorie des lois exactes, héritage de la théorie de Kolmogorov. Elle permet un transfert d'énergie des grandes échelles d'injection, à travers les échelles dites fluides et vers les petites échelles (dites cinétiques) où les processus cinétiques dissipatifs peuvent intervenir afin de chauffer les ions et les électrons.

Ce transfert peut être illustré à partir des spectres d'énergie magnétique comme celui de la FIGURE 2.3 compilé grâce aux relevés de champ magnétique effectués in-situ par les missions Advanced Composition Explorer (ACE) et Cluster (CLUSTER) en orbite autour de la Terre. Sur cette figure, on retrouve en fonction de la fréquence temporelle f, une pente de type Kolmogorov en $-5/3 \simeq -1.7$. L'hypothèse de Taylor permet de relier le vecteur d'onde k introduit dans le Chapitre 1, à la fréquence f accessible dans les relevés in-situ, grâce à la vitesse du vent (\boldsymbol{v}_{SW}) : $2\pi f \sim \boldsymbol{v}_{SW} \cdot \boldsymbol{k}$. Cette pente indique donc les échelles inertielles et la présence de turbulence dans le plasma d'après la définition spectrale de la zone inertielle donnée dans le Chapitre 1 et transposée à l'énergie magnétique. À plus hautes fréquences, cette zone inertielle s'achève par une rupture de pente autour de la fréquence associée à une longueur caractéristique ionique (la longueur d'inertie d_i ou le rayon de Larmor ρ_{Li} noté sur la figure ρ_i). À partir de cette échelle, des effets cinétiques ioniques commencent donc à être visibles. Ensuite, le spectre semble se stabiliser autour d'un nouveau régime a priori dispersif, avec une pente proche de -2.6, avant d'atteindre la zone d'influence des électrons autour de la fréquence associée à une longueur caractéristique électronique (d_e ou ρ_{Le} , noté sur la figure ρ_e). Les phénomènes d'origine cinétique impliqués dans la zone de transition et les zones qui s'ensuivent ne sont pas encore complètement compris, tout comme leurs impacts sur les régimes turbulents (voir par exemple ALEXANDROVA et al. 2013 et SAHRAOUI et al. 2020).

Parmi ces questions ouvertes dans l'étude de la turbulence compressible pour le chauffage du vent solaire, on s'attaquera aux effets conjoints du manque de collision et du champ magnétique sur la cascade. Ces deux propriétés induisent une anisotropie de la fonction de distribution de vitesse des particules, menant à un tenseur de pression anisotrope. Comme on le verra par la suite, cette anisotropie de pression peut induire des instabilités dans le système [PARKER 1958, BEREZIN et VSHIVKOV 1976, HALL 1981, SOUTHWOOD et KIVELSON 1993, GARY *et al.* 1976, HUNANA *et al.* 2019].

La cascade turbulente d'énergie a été largement étudiée dans le cas incompressible depuis le début du siècle et l'extension de la théorie des lois exactes de Kolmogorov au modèle magnétohydrodynamique incompressible par POLITANO et POUQUET 1998a et POLITANO et POUQUET 1998b. Les études sur l'effet de la compression sur la cascade sont

FIGURE 2.3 – Spectre d'énergie magnétique du vent solaire obtenu à partir des missions ACE et CLUSTER. Ce spectre peut être découpé en cinq régions grâce aux ruptures de pentes. Pente en -1.1: Réservoir d'énergie. λ_c : longueur de corrélation. Pente en -1.7: Zone inertielle. ρ_i : rayon de Larmor ionique. Pente en -3.4: Zone de transition. Pente en -2.6: Échelles dispersives. ρ_e : rayon de Larmor électronique. Pente en -3.7: Échelles de dissipation électronique. [Crédits : SAHRAOUI *et al.* 2020.]

quant à elles plus récentes et leur cadre souvent limité par l'hypothèse thermodynamique isotherme [MARINO et SORRISO-VALVO 2023]. Dans le Chapitre 3, nous reprendrons quelques résultats incompressibles avant d'apporter dans la Partie I une première extension du cadre d'étude de la cascade turbulente à des plasmas compressibles, en centrant la problématique sur l'effet de différentes descriptions thermodynamiques utilisées pour définir la pression. Dans la Partie II, nous élargirons le cadre de la théorie des lois exactes en prenant en compte l'anisotropie de pression. Et dans la Partie III, nous appliquerons la théorie analytique ainsi élargie à des simulations tridimensionnelles turbulentes.

Mais, avant cela, dans la section 2.3, sera rappelée la description fluide d'un plasma qui sert de base à l'ensemble des modèles utilisés dans ces travaux.

2.3 Décrire un plasma à l'aide d'un modèle fluide

Soit un plasma, dans lequel chaque particule est caractérisée par le ratio charge/masse, q_{α}/m_{α} , associée à son espèce notée α , sa position dans l'espace des phases $\{\mathbf{x}, \mathbf{v}\}$ et une fonction de distribution $\mathcal{P}_{\alpha}(\mathbf{x}, \mathbf{v}, t)$. Dans les cas étudiés ici, les espèces sont les protons ($\alpha = i$) et les électrons ($\alpha = e$). En négligeant les collisions entre les particules, l'équation cinétique, nommée alors équation de Vlasov, décrivant l'évolution de la fonction de distribution des particules est :

$$\partial_t \mathcal{P}_{\alpha} + \mathbf{v} \cdot \nabla \mathcal{P}_{\alpha} + \frac{d\mathbf{v}}{dt} \cdot \nabla_{\mathbf{v}} \mathcal{P}_{\alpha} = 0.$$
(2.1)

Le système est alors décrit par sept variables, une temporelle t, les trois composantes de la position $\mathbf{x} = [x, y, z]$ associée à l'opérateur dérivatif ∇ et les trois composantes de la vitesse \mathbf{v} associée à l'opérateur dérivatif $\nabla_{\mathbf{v}}$ et dépendantes du temps. Si l'on considère que les particules baignent dans un champ électromagnétique { $\mathbf{E}(\mathbf{x}, t), \mathbf{B}(\mathbf{x}, t)$ }, on peut remplacer $\frac{d\mathbf{v}}{dt}$ par la force électromagnétique de Lorentz $q_{\alpha}/m_{\alpha} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ et compléter le système avec les équations de Maxwell :

$$\nabla \cdot \boldsymbol{E} = Q/\epsilon_0, \qquad (2.2)$$

$$\nabla \cdot \boldsymbol{B} = 0, \tag{2.3}$$

$$\nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B}, \qquad (2.4)$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} + \epsilon_0 \mu_0 \partial_t \boldsymbol{E}, \qquad (2.5)$$

avec $Q(\mathbf{x},t)$ et $\mathbf{j}(\mathbf{x},t)$ les densités totales de charges et de courant du plasma.

On peut définir des quantités macroscopiques, des « moments » de la fonction de distribution, en moyennant une fonction $g(\mathbf{x}, \mathbf{v}, t)$ dans l'espace des vitesses $(d^3v = dv_x dv_y dv_z)$:

$$\langle G(\mathbf{x},t) \rangle_{\alpha} = \int_{-\infty}^{+\infty} \mathcal{P}_{\alpha}(\mathbf{x},\mathbf{v},t) g(\mathbf{x},\mathbf{v},t) d^{3}v.$$
 (2.6)

Afin d'appliquer cette moyenne, on supposera la convergence des intégrales. Les étapes de calculs ne seront pas détaillées¹. Visuellement, les moments d'ordre 0, sont reliés à l'aire sous la fonction de distribution, ceux d'ordre 1 sont reliés à sa valeur moyenne et ceux d'ordre 2 à sa largeur à mi-hauteur comme représentés sur la FIGURE 2.4.

Suivant la fonction g, on peut obtenir pour chaque espèce, les moments suivant :

Quantité	$\left\langle G\left(\mathbf{x},t\right) ight angle _{lpha}$	$g\left(\mathbf{x},\mathbf{v},t ight)$	ordre
Densité de particules	$n_{\alpha}\left(\mathbf{x},t\right)$	1	0
Densité de masse	$ \rho_{\alpha}\left(\mathbf{x},t\right) $	$m_{lpha}\left(\mathbf{x},t ight)$	0
Densité de charge	$Q_{\alpha}\left(\mathbf{x},t\right)$	$q_{lpha}\left(\mathbf{x},t ight)$	0
Densité de vitesse du fluide	$n_{\alpha}\boldsymbol{v_{\alpha}}\left(\mathbf{x},t\right)$	\mathbf{V}	1
Densité de courant	$oldsymbol{j}_{oldsymbol{lpha}}\left(\mathbf{x},t ight)$	$q_{lpha}oldsymbol{v}_{oldsymbol{lpha}}$	1
Pression	$\overline{P_{\alpha}}(\mathbf{x},t)$	$m_{lpha}\left(\mathbf{v}-oldsymbol{v}_{oldsymbol{lpha}} ight)\left(\mathbf{v}-oldsymbol{v}_{oldsymbol{lpha}} ight)$	2
Flux de chaleur	$\overline{\overline{\boldsymbol{q}_{\alpha}}}(\mathbf{x},t)$	$m_{\alpha} \left(\mathbf{v} - \boldsymbol{v}_{\alpha} \right) \left(\mathbf{v} - \boldsymbol{v}_{\alpha} \right) \left(\mathbf{v} - \boldsymbol{v}_{\alpha} \right)$	3

À partir de l'équation de Vlasov, on obtient des équations dites « multi-fluides » (dépendantes de α) décrivant l'évolution des différents moments :

— L'équation de continuité pour la densité massique :

$$\partial_t \rho_\alpha + \nabla \cdot (\rho_\alpha \boldsymbol{v}_\alpha) = 0. \tag{2.7}$$

^{1.} Pour plus d'informations, se référer à, par exemple, KRALL et TRIVELPIECE 1973, RAX 2005, GALTIER 2016 ou BELMONT et al. 2018.

FIGURE 2.4 – Représentation graphique des moments d'ordre 0 (aire sous la courbe colorée en bleu), 1 (valeur moyenne de \mathbf{v} indiquée par la verticale verte) et 2 (largeur indiquée par l'horizontale rouge) de la fonction de distribution en vitesse $f(\mathbf{x}, \mathbf{v}, t)$ ici gaussienne.

— L'équation sur la quantité de mouvement :

$$\partial_t \left(\rho_\alpha \boldsymbol{v}_\alpha \right) + \nabla \cdot \left(\rho_\alpha \boldsymbol{v}_\alpha \boldsymbol{v}_\alpha + \overline{\boldsymbol{P}_\alpha} \right) - Q_\alpha \boldsymbol{E} - \boldsymbol{j}_\alpha \times \boldsymbol{B} = 0.$$
(2.8)

— L'équation d'évolution du tenseur de pression :

$$\partial_t \overline{P_{\alpha}} + \nabla \cdot \left(\boldsymbol{v_{\alpha}} \overline{P_{\alpha}} + \overline{\overline{q_{\alpha}}} \right) + \left(\overline{P_{\alpha}} \cdot \nabla \boldsymbol{v_{\alpha}} \right)^S + \frac{Q_{\alpha}}{\rho_{\alpha}} \left(\boldsymbol{B} \times \overline{P_{\alpha}} \right)^S = 0, \quad (2.9)$$

avec $()^{S} = ()+()^{T}$ avec $()^{T}$ la transposée de (). Ces équations sont associées respectivement aux moments d'ordre 0, 1 et 2. On remarque que l'équation du moment d'ordre n dépend d'un moment d'ordre n + 1. Afin de fermer le système d'équations, des équations dites « de fermeture », devront être introduites.

Dans les plasmas que l'on considère, on a deux populations ($\alpha = i, e$) : les ions/protons (m_i, e) et les électrons $(m_e, -e)$ avec les masses $m_i \gg m_e$ et e la charge élémentaire. Le système d'équation multi-fluide sera donc appelé « bi-fluide ». On l'abordera dans le Chapitre 9.

Les quantités totales (notées sans indices : $n, \rho, \boldsymbol{v}, \boldsymbol{j}$, etc.) sont ensuite obtenues en sommant sur toutes les espèces, $n_{\alpha}, \rho_{\alpha}, Q_{\alpha}, \rho_{\alpha} \boldsymbol{v}_{\alpha}, \boldsymbol{j}_{\alpha}, \boldsymbol{P}_{\alpha} + \rho_{\alpha} \boldsymbol{v}_{\alpha} \boldsymbol{v}_{\alpha}$ et $\rho_{\alpha} u_{\alpha} + \frac{1}{2} \rho_{\alpha} |\boldsymbol{v}_{\alpha}|^2$. En appliquant ces sommations aux équations (2.7), (2.8) et (2.9) et en considérant l'hypothèse de quasi-neutralité ($Q \simeq 0$), on obtient les équations mono-fluides quasi-neutres suivantes :

— L'équation de continuité pour la densité massique :

$$\Rightarrow \partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0. \tag{2.10}$$

— L'équation sur la quantité de mouvement :

$$\Rightarrow \partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} + \overline{\boldsymbol{P}} \right) - \boldsymbol{j} \times \boldsymbol{B} = 0.$$
 (2.11)
— L'équation d'évolution du tenseur de pression, avec $\overline{P_E} = \sum_{\alpha} \frac{Q_{\alpha}}{\rho_{\alpha}} \overline{P_{\alpha}}$:

$$\Rightarrow \partial_t \overline{\boldsymbol{P}} + \nabla \cdot \left(\boldsymbol{v} \overline{\boldsymbol{P}} + \overline{\boldsymbol{q}} \right) + \left(\overline{\boldsymbol{P}} \cdot \nabla \boldsymbol{v} \right)^S + \frac{Q}{\rho} \left(\boldsymbol{B} \times \overline{\boldsymbol{P}_E} \right)^S = 0. \quad (2.12)$$

L'hypothèse non-relativiste et la quasi-neutralité permettent d'y remplacer j par $\nabla \times B$ (Equation de Maxwell (2.5)).

On peut construire, à partir de l'équation (2.8), l'équation d'évolution de la densité de courant totale $\mathbf{j} = en_i \mathbf{v}_i - en_e \mathbf{v}_e$. Sachant que $m_i \gg m_e$, cette équation peut s'écrire sous la forme de la loi d'Ohm généralisée :

$$\boldsymbol{E} = \boldsymbol{E}_{\boldsymbol{M}\boldsymbol{H}\boldsymbol{D}} + \boldsymbol{E}_{\boldsymbol{h}\boldsymbol{a}\boldsymbol{l}\boldsymbol{l}} + \boldsymbol{E}_{\boldsymbol{t}\boldsymbol{h}\boldsymbol{e}\boldsymbol{r}\boldsymbol{m}} \tag{2.13}$$

avec :

 $\begin{array}{l} - & \boldsymbol{E_{MHD}} = -\boldsymbol{v} \times \boldsymbol{B}, \text{ le terme d'induction}, \\ - & \boldsymbol{E_{hall}} = \lambda_i \frac{\boldsymbol{j}}{\rho} \times \boldsymbol{B}, \text{ le terme de Hall (Hall)}, \\ - & \boldsymbol{E_{\nabla P_e}} = -\frac{\lambda_i}{\rho} \nabla \cdot \overline{\boldsymbol{P_e}}, \text{ le terme } \ll \text{ grad Pe } \gg (\nabla P_e), \end{array}$

avec $\lambda_i = \frac{m_i}{e}$. La loi d'Ohm permet d'expliciter E dans l'équation (2.4). En ne prenant en compte que le terme d'induction dans la loi d'Ohm, on obtient l'équation :

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) \tag{2.14}$$

qui s'écrit en fonction de la vitesse d'Alfvén $v_A = \frac{B}{\sqrt{\mu_0 \rho}}$ avec μ_0 , la perméabilité du vide, :

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v}.$$
(2.15)

Les équations (2.10), (2.11) avec l'hypothèse non-relativiste, (2.12) et (2.14) forment le modèle magnétohydrodynamique (MHD) non fermé, valable pour des échelles temporelles associées à des fréquences plus petites que la fréquence cyclotron ionique $\omega_{ci} = B_0/\lambda_i$ avec $B_0 = |\langle \mathbf{B} \rangle|$ et des échelles spatiales, dites MHD, plus grandes que d_i et ρ_{Li} . En fonction de l'équation de fermeture choisie, l'équation (2.12) peut être omise, par exemple dans le cas d'une fermeture isotherme où $\overline{\mathbf{P}} \propto \rho$. Usuellement, la pression est supposée isotrope $(\overline{\mathbf{P}} = p\overline{\mathbf{I}})$ dans le modèle MHD mais dans ce mémoire, on ne fera cette hypothèse que dans la Partie I.

Dans la Partie II, on abordera l'extension de la théorie des lois exactes au modèle MHD-Hall (MHD-Hall) pour laquelle l'équation d'induction peut s'écrire :

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} - \frac{\lambda}{\sqrt{\rho}} \nabla \times \left(\frac{1}{\sqrt{\rho}} \boldsymbol{j} \times \boldsymbol{v}_{\boldsymbol{A}}\right).$$
(2.16)

Ce modèle est souvent normalisé par la vitesse d'Alfvén moyenne v_{A0} . Dans l'équation (2.16), λ_i est alors remplacée par la longueur inertielle des ions $d_i = v_{A0}\omega_{ci}$. Ce modèle sera donc valable aux échelles MHD et aux échelles dites Hall, proches de d_i . Certaines simulations que l'on analysera dans la Partie III prennent aussi en compte ∇P_e . Nous proposerons donc une extension au modèle MHD-Hall avec correction ∇P_e (MHD-Hall- ∇P_e). Ce terme permet de prendre en compte la contribution thermique des électrons au champ électrique.

2.4 Synthèse : problématique et modèles utilisés

Problématique générale : Quel est l'impact des fermetures dépendant de la pression sur la cascade turbulente ?

Plan :

- Partie I : Impact d'une pression isotrope sur la cascade turbulente compressible,
- Partie II : Description d'un écoulement turbulent dépendant d'une pression anisotrope,
- Partie III : Effet de l'anisotropie de pression sur la cascade turbulente.

Modèles utilisés

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0 \qquad (2.17)$$

$$\partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} + \overline{\boldsymbol{P}} \right) - \boldsymbol{j} \times \boldsymbol{B} = 0$$
 (2.18)

$$\partial_t \overline{P} + \nabla \cdot \left(v \overline{P} + \overline{\overline{q}} \right) + \left(\overline{P} \cdot \nabla v \right)^S + \left(B \times \overline{P_E} \right)^S = 0$$
(2.19)

— MHD (Parties I et II) :

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) \tag{2.20}$$

— MHD-Hall (Parties II et III) :

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \lambda \nabla \times \left(\frac{\boldsymbol{j}}{\rho} \times \boldsymbol{B}\right)$$
 (2.21)

— MHD-Hall- ∇P_e (Parties II et III) :

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \lambda \nabla \times \left(\frac{\boldsymbol{j}}{\rho} \times \boldsymbol{B}\right) + \lambda \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}_e}\right)$$
(2.22)

— Autre : Bi-fluide (Partie II)

INTRODUCTION : CHAPITRE 3

ETUDE DE LA CASCADE TURBULENTE DANS UN PLASMA INCOMPRESSIBLE

Sommaire

3.1	Le modèle et l'énergie totale	23
3.2	Le cas linéaire et les ondes d'Alfvén	24
3.3	Décrire la cascade turbulente incompressible avec une loi	
	exacte	26
3.4	Synthèse sur l'étude de la cascade dans le cadre Inc-MHD	29

Ce n'est que 57 ans après l'apport de Kolmogorov à la compréhension de la turbulence que l'idée de chercher des lois exactes dans un fluide magnétisé, ou plasma, a émergé. Ainsi, POLITANO et POUQUET 1998a et POLITANO et POUQUET 1998b ont étendu la théorie hydrodynamique à la MHD en restant dans le cadre incompressible. Cette avancée historique a apporté un cadre à l'étude de la turbulence dans les plasmas spatiaux. Dans le laboratoire qu'est le vent solaire, elle a permis de trouver des éléments de réponse à des problèmes tels que ceux du chauffage ou de l'accélération du vent [SMITH *et al.* 2006, SORRISO-VALVO *et al.* 2007, STAWARZ *et al.* 2009, OSMAN *et al.* 2013, BRUNO et CARBONE 2013, ALEXANDROVA *et al.* 2013, SAHRAOUI *et al.* 2020, MARINO et SORRISO-VALVO 2023].

Le modèle MHD incompressible (Inc-MHD) avec pression isotrope est la description fluide d'un plasma la plus simple abordée dans ce mémoire. Dans ce chapitre, nous reprendrons les résultats analytiques incompressibles principaux afin d'introduire les outils fondamentaux de l'étude de la turbulence dans un plasma.

3.1 Le modèle et l'énergie totale

Contrairement au modèle hydrodynamique incompressible abordé dans le Chapitre 1, dans le cas d'un plasma, il est nécessaire de prendre en compte le couplage entre le fluide et le champ magnétique et d'ajouter l'équation d'induction (2.20) comme on a pu le mettre en pratique dans le Chapitre 2. L'incompressibilité s'exprime quant à elle à travers la contrainte $\nabla \cdot \boldsymbol{v} = 0$. Le modèle Inc-MHD est alors :

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \boldsymbol{v}_{\boldsymbol{A}} \cdot \nabla \boldsymbol{v}_{\boldsymbol{A}} + \frac{1}{\rho_0} \nabla p_* = 0, \qquad (3.1)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} + \boldsymbol{v} \cdot \nabla \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v}_{\boldsymbol{A}} \cdot \nabla \boldsymbol{v} = 0, \qquad (3.2)$$

$$\nabla \cdot \boldsymbol{v} = 0. \tag{3.3}$$

Le champ magnétique apparaît dans ces équations à travers la vitesse d'Alfvén $\boldsymbol{v}_{\boldsymbol{A}} = \boldsymbol{B}/\sqrt{\mu_0\rho_0}$ et la pression magnétique $p_m = \rho_0 \boldsymbol{v}_{\boldsymbol{A}}^2/2$ contenue dans la pression totale $p_* =$

 $p + p_m$. On remarque qu'il y a 3 équations (7 en termes de composantes) et 3 inconnues (2 vectorielles, \boldsymbol{v} et $\boldsymbol{v}_{\boldsymbol{A}}$ et une scalaire, p). Le système se retrouve donc fermé grâce à la contrainte incompressible, équation (3.3). On peut rappeler aussi que le champ magnétique est aussi contraint tel que $\nabla \cdot \boldsymbol{B} = 0$, ce qui implique dans le cas incompressible : $\nabla \cdot$ $\boldsymbol{v}_{\boldsymbol{A}} = 0$ (contrainte implicitement prise en compte dans l'équation d'induction (3.2)). En appliquant la divergence sur l'équation (3.1), on obtient l'équilibre de pression, $-\frac{1}{\rho_0}\nabla^2 p_* =$ $\nabla \boldsymbol{v} : \nabla \boldsymbol{v} - \nabla \boldsymbol{v}_{\boldsymbol{A}} : \nabla \boldsymbol{v}_{\boldsymbol{A}}$, qui indique que la pression totale est directement reliée aux nonlinéarités du système.¹

Dans ce système apparaissent deux canaux énergétiques : cinétique de densité $E_c = \frac{1}{2}\rho_0 \boldsymbol{v}^2$, et magnétique, $E_m = \frac{1}{2}\rho_0 \boldsymbol{v_A}^2$. On définit aussi la densité d'hélicité croisée couplant les deux champs : $H_c = \rho_0 \boldsymbol{v_A} \cdot \boldsymbol{v}$. Les équations de densité d'énergie cinétique et magnétique, obtenue respectivement à partir de (3.1) et (3.2), et celle de densité d'énergie totale $E_{tot} = E_c + E_m$ sont alors :

$$\partial_t E_c + \nabla \cdot (E_c \boldsymbol{v} + H_c \boldsymbol{v}_{\boldsymbol{A}} + p_* \boldsymbol{v}) = -\rho_0 \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} : \nabla \boldsymbol{v}, \qquad (3.5)$$

$$\partial_t E_m + \nabla \cdot (E_m \boldsymbol{v}) = \rho_0 \boldsymbol{v}_A \boldsymbol{v}_A : \nabla \boldsymbol{v}, \qquad (3.6)$$

$$\partial_t E_{tot} + \nabla \cdot (E_{tot} \boldsymbol{v} + H_c \boldsymbol{v}_{\boldsymbol{A}} + p_* \boldsymbol{v}) = 0.$$
(3.7)

L'équation (3.7) indique que la densité d'énergie totale moyenne $\langle E_{tot} \rangle$ est conservée puisque pour toute quantité \mathbf{X} , la moyenne, ici spatiale, $\langle \rangle$, implique² $\langle \nabla \cdot \mathbf{X} \rangle = 0$. Les équations (3.5) et (3.6) nous indiquent un échange entre les canaux énergétiques se faisant à travers le terme de droite.

3.2 Le cas linéaire et les ondes d'Alfvén

La théorie linéaire est la principale voie nous donnant des informations ondulatoires sur un modèle. Ainsi, dans le modèle Inc-MHD, elle vient révéler l'existence des ondes dites d'Alfvén.

Pour cela, on doit linéariser le système, c'est-à-dire négliger tout terme non-linéaire (d'ordre supérieur à 1). Les moyennes des quantités impliquées seront indiquée par un 0 (ordre 0) et les fluctuations d'ordre 1 seront indiquées par un 1. Ainsi, par exemple, $\boldsymbol{v} \simeq \boldsymbol{v}_0 + \boldsymbol{v}_1$. On considèrera aussi que $\boldsymbol{v}_0 = 0$ et on notera la direction du champ magnétique moyen \boldsymbol{b}_0 .

La deuxième étape consiste à passer dans l'espace de Fourier, c'est-à-dire remplacer ∂_t par la pulsation $-i\omega$ et ∇ par le vecteur d'onde $i\mathbf{k}$. On supposera sans perte de généralité, le système de coordonnées cartésiennes orienté tel que $\mathbf{e}_z = \mathbf{b}_0$ et l'annulation de la composante suivant \mathbf{e}_y du vecteur d'onde, $k_y = 0$. On notera k la norme du vecteur

$$\partial_t \boldsymbol{z}^{\pm} + \boldsymbol{z}^{\mp} \cdot \nabla \boldsymbol{z}^{\pm} = -\frac{1}{\rho_0} \nabla p_*, \qquad \nabla \cdot \boldsymbol{z}^{\pm} = 0.$$
 (3.4)

Leur somme $\frac{1}{4}\rho_0(z^{+2} + z^{-2})$ donne l'énergie totale E_{tot} et leur différence, l'hélicité croisée H_c . La dynamique non-linéaire est alors contenue dans le terme $z^{\mp} \cdot \nabla z^{\pm}$. De telles variables sont adaptées à l'étude de ce système incompressible et sont largement utilisées pour simplifier les calculs. Il est nécessaire de garder en tête qu'en termes de mathématique fondamentale, elles ne peuvent exister, car elles sont la somme d'un champ vectoriel (vitesse) et d'un champ pseudo-vectoriel (champ magnétique). Dans un effort de cohérence avec le cadre compressible dans lequel elles sont mal définies [MAGYAR *et al.* 2019], elles ne seront pas utilisées ici.

2. En supposant la périodicité de \boldsymbol{X} ou son annulation à l'infinie.

^{1.} Ce système peut aussi être symétrisé grâce aux variables d'Elsässer, $z^{\pm} = v \pm v_A$:

FIGURE 3.1 – Système de coordonnées et vecteur d'onde dans le cadre linéaire.

d'onde, k_{\parallel} sa composante le long de $\boldsymbol{e}_{\boldsymbol{z}}$, parallèle au champ magnétique moyen, k_{\perp} sa composante le long de $\boldsymbol{e}_{\boldsymbol{x}}$ et θ l'angle formé avec $\boldsymbol{e}_{\boldsymbol{z}}$ (voir FIGURE 3.1).

Le système Inc-MHD devient alors :

$$\omega v_1 + v_{A0} k_{\parallel} v_{A1} - \frac{1}{\rho_0} p_{*1} k = 0, \qquad (3.8)$$

$$\omega \boldsymbol{v_{A1}} + \boldsymbol{v_{A0}} \boldsymbol{k_{\parallel}} \boldsymbol{v_1} = 0, \qquad (3.9)$$

$$\boldsymbol{k} \cdot \boldsymbol{v_1} = 0 \qquad \boldsymbol{k} \cdot \boldsymbol{v_{A1}} = 0. \tag{3.10}$$

Ensuite, on injecte les équations (3.9) et (3.10) dans l'équation (3.8):

- $-\mathbf{k} \cdot (3.8) \Rightarrow p_{*1} = 0$, en excluant le cas trivial où $\mathbf{k} = 0$. La pression totale n'est donc bien reliée qu'aux non-linéarités du système.
- $-\omega \cdot (3.8) \Rightarrow (\omega^2 (\mathbf{k} \cdot \mathbf{v}_{A0})^2)\mathbf{v}_1 = 0 \text{ (dite équation de dispersion), d'où la relation de dispersion :}$

$$\omega = \pm \boldsymbol{k} \cdot \boldsymbol{v}_{A0} = \pm v_{A0} k_{\parallel} = \pm v_{A0} k \cos \theta.$$
(3.11)

$$- (3.9) \text{ et } (3.11) \Rightarrow \boldsymbol{v_1} = \pm \boldsymbol{v_{A1}}.$$
$$- p_{*1} = 0 \Rightarrow p_1 = -v_{A0}v_{A1z} .$$

La relation de dispersion (3.11) nous indique qu'il peut y avoir dans le système Inc-MHD, des ondes dites d'Alfvén, couplant champ magnétique et champ de vitesse. Généralement, pour obtenir la polarisation d'une onde, on injecte sa relation de dispersion dans le système. Dans le cas du système Inc-MHD, le système s'annule alors complètement. La polarisation de l'onde d'Alfvén y est définie par $\mathbf{k} \cdot \mathbf{v}_{A1} = 0$ qui indique que \mathbf{v}_{A1} doit être perpendiculaire à \mathbf{k} . Or \mathbf{k} est dans le plan $\mathbf{e}_x - \mathbf{e}_z$. Donc \mathbf{v}_{A1} est polarisé suivant une combinaison linéaire des vecteurs \mathbf{e}_y et $(-\cos\theta, 0, \sin\theta)$. Le mode d'Alfvén est donc dégénéré, il est formé d'un mode dit incompressible, polarisé suivant \mathbf{e}_y , et d'un mode dit pseudo-alfvénique, polarisé suivant $(-\cos\theta, 0, \sin\theta)$.

L'onde d'Alfvén est très importante en physique des plasmas. Elle est, en effet, solution exacte du système Inc-MHD linéaire et non linéaire. En turbulence, elle peut donc alimenter la cascade. Lorsque la cascade est développée par des ondes, on parlera de turbulence d'onde. De plus, deux régimes existent : la turbulence faible où la cascade d'énergie est supposément développée par des interactions faiblement non-linéaires entre paquets d'ondes, et la turbulence forte où ondes et structures cohérentes (de type vortex par exemple) coexistent et entretiennent la cascade.

3.3 Décrire la cascade turbulente incompressible avec une loi exacte

La théorie des lois exactes, nommée ainsi car aucune hypothèse de linéarisation ou perturbative n'est supposée pour les obtenir, s'appuie sur les hypothèses de Kolmogorov exposées et illustrées dans le Chapitre 1 (voir synthèse 1.4) et rappelées ci-après. On se réfèrera au Chapitre 1 à propos des notations. Historiquement, de multiples versions de la loi exacte décrivant la cascade Inc-MHD et de la méthode pour l'obtenir existent [POLITANO et POUQUET 1998a, POLITANO et POUQUET 1998b, MACBRIDE, SMITH *et al.* 2008, GALTIER 2018]. On la nommera dans la suite « Politano et Pouquet 98 » (PP98) du nom des deux chercheuses ayant dérivé la première version en 1998.

D'après les hypothèses de Kolmogorov, la zone inertielle est définie comme l'ensemble des échelles où le tranfert s'effectue conservativement. L'énergie totale (cinétique + magnétique) étant un invariant du système Inc-MHD, elle peut a priori cascader de manière conservative. Une cascade d'énergie implique une source d'injection et un canal de dissipation, respectivement aux grandes et petites échelles. Le canal de dissipation transfère l'énergie des champs électromagnétiques vers les particules du plasma. Cette énergie sera visible dans la fonction de distribution des particules à travers une augmentation de sa largeur (chauffage) ou un décalage de la moyenne (accélération). Dans le cadre Inc-MHD, les dissipations généralement admises sont des dissipations visqueuses ou résistives qui s'accompagnent d'une variation d'entropie. Le canal d'injection est nécessaire pour entretenir la cascade et compenser la dissipation dans le bilan énergétique (dans le cas incompressible) [GALTIER 2021]. Pour refléter cela dans les équations, on va ajouter une force f_c d'injection agissant à grande échelle et un terme dissipatif (visqueux), d_c , agissant à petite échelle, dans l'équation (3.1) et, pour permettre la visualisation de ce que deviennent ces sources si elles sont définies magnétiquement, on va ajouter f_m et d_m (résistif) dans l'équation d'induction (3.2). On restera dans un cadre général en ne détaillant pas leur contenu. Ainsi :

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \boldsymbol{v}_A \cdot \nabla \boldsymbol{v}_A + \frac{1}{\rho_0} \nabla p_* = \boldsymbol{f}_c + \boldsymbol{d}_c,$$
 (3.12)

$$\partial_t \boldsymbol{v}_A + \boldsymbol{v} \cdot \nabla \boldsymbol{v}_A - \boldsymbol{v}_A \cdot \nabla \boldsymbol{v} = \boldsymbol{f}_m + \boldsymbol{d}_m,$$
 (3.13)

$$\nabla \cdot \boldsymbol{v} = 0, \qquad \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} = 0. \tag{3.14}$$

Maintenant, si l'on veut une loi exacte sur l'énergie totale, on doit choisir une fonction de corrélation qui, lorsque $\mathbf{x'} = \mathbf{x}$, est égale à l'énergie totale moyenne, ici $\langle E_{tot} \rangle = \langle E_c + E_m \rangle = \langle \frac{1}{2}\rho_0 \mathbf{v}^2 + \frac{1}{2}\rho_0 \mathbf{v}_A^2 \rangle$. Cela nous donne bien des choix de formulation :

$$\left\langle \sqrt{E_{tot}} \cdot \sqrt{E'_{tot}} \right\rangle, \qquad \left\langle \sqrt{E_c} \cdot \sqrt{E'_c} + \sqrt{E_m} \cdot \sqrt{E'_m} \right\rangle,$$

et pourquoi pas d'autres puissances? Ici, c'est la même quantité à une constante près, mais on pourrait avoir à choisir entre B ou v_A , ou encore utiliser les variables d'Elsässer. Une autre possibilité est de définir cette fonction à l'aide des incréments de quantités (voir par exemple ANTONIA *et al.* 1997). Avec une telle fonction, on obtient naturellement son annulation lorsque x' = x. Du choix de la fonction de corrélation va dépendre la difficulté du calcul, la sauvegarde du sens physique (que voudrait dire $v^{1/5}$?) et potentiellement l'élégance et la compacité du résultat. Une question fondamentale subsiste et ne sera qu'en partie traitée dans cette thèse : regarde-t-on la même chose quel que soit le choix de fonction de corrélation ?³ On considèrera la fonction d'auto-corrélation pour chaque canal d'énergie : $\mathcal{R} = \frac{1}{2}\rho_0 \langle \boldsymbol{v} \cdot \boldsymbol{v}' + \boldsymbol{v}_A \cdot \boldsymbol{v}'_A \rangle$, $\rho_0/2$ étant une constante dans ce cadre incompressible.

Ensuite, on doit dériver une équation pour cette fonction de corrélation, elle s'obtient en notant que $\partial_t \mathcal{R} = \frac{1}{2} \rho_0(\langle \partial_t(\boldsymbol{v}) \cdot \boldsymbol{v'} + \boldsymbol{v} \cdot \partial_t(\boldsymbol{v'}) \rangle + \langle \partial_t(\boldsymbol{v_A}) \cdot \boldsymbol{v'_A} + \boldsymbol{v_A} \cdot \partial_t(\boldsymbol{v'_A}) \rangle)$ et en remplaçant les dérivées temporelles grâce aux équations (3.12) et (3.13). Pour alléger la démonstration, on peut noter que $\langle \partial_t(\boldsymbol{v'}) \cdot \boldsymbol{v} \rangle$ est le conjugué de $\langle \partial_t(\boldsymbol{v}) \cdot \boldsymbol{v'} \rangle$, c'est-à-dire en échangeant les rôles (prime ou pas) de chacun des points. Ainsi, on obtient en jouant un peu avec l'hypothèse d'homogénéité statistique et les contraintes (3.14) :

$$\langle \boldsymbol{v}' \cdot \partial_t \boldsymbol{v} \rangle = \nabla_{\boldsymbol{\ell}} \cdot \langle \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v} - \boldsymbol{v}' \cdot \boldsymbol{v}_A \boldsymbol{v}_A \rangle + \langle \boldsymbol{v}' \cdot \boldsymbol{f}_c + \boldsymbol{v}' \cdot \boldsymbol{d}_c \rangle, \qquad (3.15)$$

$$\langle \boldsymbol{v}_{\boldsymbol{A}}' \cdot \partial_t \boldsymbol{v}_{\boldsymbol{A}} \rangle = \nabla_{\boldsymbol{\ell}} \cdot \langle \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}} \rangle + \langle \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{f}_{\boldsymbol{m}} + \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{d}_{\boldsymbol{m}} \rangle, \quad (3.16)$$

puisque $-\langle \boldsymbol{v'} \cdot \nabla p_* \rangle = \nabla_{\boldsymbol{\ell}} \cdot \langle p_* \boldsymbol{v'} \rangle = \langle p_* \nabla' \cdot \boldsymbol{v'} \rangle = 0.$

On peut chercher à faire apparaître par factorisation dans les termes dit « de flux » (sous l'opérateur ∇_{ℓ}) des équations (3.15) et (3.16), des fonctions de structure, c'est-à-dire des multiplications d'incréments telles que $\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle$. Via les hypothèses d'homogénéité et les contraintes (3.14), on peut faire ainsi ressortir :

$$\nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle
= \nabla_{\boldsymbol{\ell}} \cdot \langle \boldsymbol{v}' \cdot \boldsymbol{v}' \boldsymbol{v}' - \boldsymbol{v} \cdot \boldsymbol{v} \boldsymbol{v} - \boldsymbol{v}' \cdot \boldsymbol{v}' \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{v} \boldsymbol{v}' + 2 \boldsymbol{v} \cdot \boldsymbol{v}' \boldsymbol{v} - 2 \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v}' \rangle
= 2 \nabla_{\boldsymbol{\ell}} \cdot \langle \boldsymbol{v} \cdot \boldsymbol{v}' \boldsymbol{v} - \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v}' \rangle.$$
(3.17)

Et de même :

$$\nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} \rangle = 2 \nabla_{\boldsymbol{\ell}} \cdot \langle \boldsymbol{v}_{\boldsymbol{A}} \cdot \boldsymbol{v}_{\boldsymbol{A}}' \boldsymbol{v} - \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}' \rangle, \qquad (3.18)$$

$$\nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle = \nabla_{\boldsymbol{\ell}} \cdot \langle \boldsymbol{v} \cdot \boldsymbol{v}_{\boldsymbol{A}}' \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}}' + \boldsymbol{v}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v} \cdot \boldsymbol{v}_{\boldsymbol{A}}' \boldsymbol{v}_{\boldsymbol{A}}' \rangle.$$
(3.19)

Les fonctions de structure d'ordre 3, $\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle$ et $\langle \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} \rangle$, rappellent la convection de l'énergie, respectivement cinétique et magnétique, par le champ de vitesse présente dans l'équation d'énergie totale (3.7), et $\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle$ rappelle la convection de l'hélicité croisée par le champ magnétique.

Ainsi, l'équation de la fonction de corrélation de l'énergie totale obtenue avec $\mathcal{R} = \langle \frac{1}{2} \rho_0 \boldsymbol{v} \cdot \boldsymbol{v}' + \frac{1}{2} \rho_0 \boldsymbol{v}_A \cdot \boldsymbol{v}'_A \rangle$ peut s'écrire :

$$\partial_t \mathcal{R} = \frac{1}{4} \rho_0 \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} + \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} + 2\delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle$$
(3.20)

$$+\frac{1}{2}\rho_0 \left\langle \boldsymbol{v}' \cdot \boldsymbol{f_c} + \boldsymbol{v} \cdot \boldsymbol{f_c}' + \boldsymbol{v_A'} \cdot \boldsymbol{f_m} + \boldsymbol{v_A} \cdot \boldsymbol{f_m'} \right\rangle$$
(3.21)

$$+\frac{1}{2}\rho_0 \left\langle \boldsymbol{v'} \cdot \boldsymbol{d_c} + \boldsymbol{v} \cdot \boldsymbol{d'_c} + \boldsymbol{v'_A} \cdot \boldsymbol{d_m} + \boldsymbol{v_A} \cdot \boldsymbol{d'_m} \right\rangle.$$
(3.22)

Dans le terme de droite, la première ligne décrit la cascade non-linéaire ($\varepsilon_{NL} = (3.20)$), la deuxième, l'injection au taux ε_F (= (3.21)), et la troisième, la dissipation ($\varepsilon_D = (3.22)$).

^{3.} On regardera la différence analytique entre les fonctions de type incrémentale ou non (traitée numériquement dans les cadres MHD-Hall incompressible et compressible par FERRAND, GALTIER, SAHRAOUI, MEYRAND *et al.* 2019 et FERRAND, SAHRAOUI, GALTIER *et al.* 2022). La question de la convergence des taux de cascade obtenus avec des lois du même type (incrémental ou non) mais différentes formulations (exemple des différentes puissances) reste un problème ouvert qui n'a, à notre connaissance, pas été traité rigoureusement.

Les contributions magnétiques viennent se mêler aux contributions cinétiques présentes dans chaque taux et vues dans le cadre HD (voir Chapitre 1). Cette équation du type KHM est valable dans et en dehors de la zone inertielle.

En $\boldsymbol{\ell} = 0$, on retrouve l'équation de densité d'énergie totale moyenne du système : $\partial_t \langle E_{tot} \rangle = \langle E_F \rangle + \langle E_D \rangle$ avec $\langle E_F \rangle = \rho_0 \langle \boldsymbol{v} \cdot \boldsymbol{f_c} + \boldsymbol{v_A} \cdot \boldsymbol{f_m} \rangle$, la densité d'énergie moyenne injectée et $\langle E_D \rangle = \rho_0 \langle \boldsymbol{v} \cdot \boldsymbol{d_c} + \boldsymbol{v_A} \cdot \boldsymbol{d_m} \rangle$, la densité d'énergie moyenne dissipée. Si le système est conservatif, $\langle E_F \rangle = -\langle E_D \rangle$. Afin que $\langle E_F \rangle = -\langle E_D \rangle$ soit respecté ε_F ne doit pas s'annuler aux échelles où le forçage n'a pas d'influence mais plutôt être égal à $\langle E_F \rangle$. $\varepsilon_F(\ell)$ ne représente donc pas l'énergie qui est injectée à l'échelle ℓ mais plutôt l'énergie qui a été injectée dans la cascade aux échelles $> \ell$, où le forçage est actif.

En appliquant les hypothèses de stationnarité statistique et de séparation d'échelle, on obtient la loi de type K41 donnée par $\varepsilon = -\varepsilon_{NL}$:

$$\varepsilon = -\frac{1}{4}\rho_0 \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} + \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} + 2\delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle .$$
(3.23)

Cette équation est la loi exacte PP98 pour l'énergie totale du modèle Inc-MHD, obtenue à partir de la théorie de Kolmogorov. Ce lien entre le taux de cascade et l'anomalie dissipative ε (voir synthèse 1.4) nous permet, dans le vent solaire par exemple, d'estimer le taux de dissipation permise par la turbulence pour répondre par exemple au problème du chauffage (décrit dans le Chapitre 2, voir aussi MACBRIDE, FORMAN *et al.* 2005, SORRISO-VALVO *et al.* 2007, STAWARZ *et al.* 2009 et OSMAN *et al.* 2013).

Phénoménologiquement, ε étant supposé constant et avec l'hypothèse d'isotropie, on remarque que : $(\delta \boldsymbol{v})^3 \sim (\delta \boldsymbol{v}_A)^3 \sim \varepsilon \ell \Longrightarrow (\delta \boldsymbol{v})^2 \sim (\delta \boldsymbol{v}_A)^2 \sim \ell^{2/3}$, ce qui donne des spectres 1D d'énergie cinétique et magnétique en $E(k) \sim k(\delta \boldsymbol{v}(k))^2 \sim k(\delta \boldsymbol{v}_A(k))^2 \sim k^{-5/3}$. On retrouve ainsi la loi phénoménologique des spectres en -5/3 de Kolmogorov étendue aux fluides magnétisés.⁴

Pour en revenir à la différence entre les fonctions de corrélation, regardons ce qu'il se passe si l'on considère une fonction incrémentale, par exemple $S = \langle \frac{1}{2}\rho_0 \delta \boldsymbol{v}^2 + \frac{1}{2}\rho_0 \delta \boldsymbol{v_A}^2 \rangle$ formée de fonctions de structure d'ordre 2 qui rappelle celles d'ordre 3 impliquées dans le taux de cascade. On remarque que $S = 2 \langle E_{tot} \rangle - 2\mathcal{R}$. Ainsi la loi exacte KHM (3.20) devient :

$$\partial_t \mathcal{S} = -\frac{1}{2} \rho_0 \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} + \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} + 2\delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle$$
(3.24)

$$+\rho_0 \left\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{f_c} + \delta \boldsymbol{v_A} \cdot \delta \boldsymbol{f_m} \right\rangle \tag{3.25}$$

$$+\rho_0 \left\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{d_c} + \delta \boldsymbol{v_A} \cdot \delta \boldsymbol{d_m} \right\rangle. \tag{3.26}$$

La partie non-linéaire, le taux de cascade, n'est pas impactée. Mais une question émerge : les définitions des taux de forçage et de dissipation dépendant de f_c , f_m et d_c , d_m extraites de (3.20) et celles extraites de (3.24) sont-elles équivalentes? Regarder S ou \mathcal{R} revient à regarder ou une quantité énergétique incrémentale ou celle restant dans le bilan énergétique total moyen $\langle E_{tot} \rangle = S/2 + \mathcal{R}$. C'est la même chose pour les définitions des taux d'injection et de dissipation. Le choix de la définition, incrémentale ou non, des taux, dépend donc du problème que l'on veut étudier et comme on vient de le voir, il est très facile de passer, analytiquement, d'une définition à une autre.

^{4.} Lorsque le champ magnétique est important, de l'anisotropie apparait dans l'espace de Fourier entre la direction parallèle au champ magnétique et le plan perpendiculaire. La description phénoménologique doit donc être modifiée, par exemple avec la condition dite de "critical balance" [GOLDREICH et SRIDHAR 1995,HORBURY *et al.* 2008].

3.4 Synthèse sur l'étude de la cascade dans le cadre Inc-MHD

Modèle contraint tel que $\rho = \rho_0 \Rightarrow \nabla \cdot \boldsymbol{v} = 0$:

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \boldsymbol{v}_{\boldsymbol{A}} \cdot \nabla \boldsymbol{v}_{\boldsymbol{A}} + \frac{1}{\rho_0} \nabla p_* = \boldsymbol{f}_{\boldsymbol{c}} + \boldsymbol{d}_{\boldsymbol{c}}, \qquad (3.27)$$

$$\partial_t \boldsymbol{v}_A + \boldsymbol{v} \cdot \nabla \boldsymbol{v}_A - \boldsymbol{v}_A \cdot \nabla \boldsymbol{v} = \boldsymbol{f}_m + \boldsymbol{d}_m,$$
 (3.28)

$$\nabla \cdot \boldsymbol{v} = 0 \quad \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} = 0. \tag{3.29}$$

Points méthodologiques de linéarisation (voir FIGURE 3.1) :

- Négliger toutes quantités ou termes n'étant pas d'ordre 0 ou 1,
- $v \simeq v_1, v_A \simeq v_{A0} + v_{A1}$ avec $v_{A0} = v_{A0}e_z$,
- Passage dans l'espace de Fourier : $\partial_t \to -i\omega$ et $\nabla \to i\mathbf{k}$ avec

$$\boldsymbol{k} = k_{\perp} \boldsymbol{e}_{\boldsymbol{x}} + k_{\parallel} \boldsymbol{e}_{\boldsymbol{z}} = k(\sin\theta \boldsymbol{e}_{\boldsymbol{x}} + \cos\theta \boldsymbol{e}_{\boldsymbol{z}}).$$

Relation de dispersion linéaire : Existence de modes d'Alfvén pouvant participer à la cascade turbulente

$$\omega = \pm k_{\parallel} v_{A0} = \pm v_{A0} k \cos \theta. \tag{3.30}$$

Fonctions de corrélation d'énergie totale et moyennes statistiques : $- \mathcal{R} = \frac{1}{2}\rho_0 \langle \boldsymbol{v} \cdot \boldsymbol{v}' + \boldsymbol{v}_A \cdot \boldsymbol{v}'_A \rangle, \\
- \mathcal{S} = \frac{1}{2}\rho_0 \langle (\delta \boldsymbol{v})^2 + (\delta \boldsymbol{v}_A)^2 \rangle = 2 \langle E_{tot} \rangle - 2\mathcal{R}, \\
- \langle E_{tot} \rangle = \mathcal{R}(\boldsymbol{\ell} = 0), \langle E_F \rangle = \varepsilon_F(\boldsymbol{\ell} = 0), \langle E_D \rangle = \varepsilon_D(\boldsymbol{\ell} = 0).$

Équations statistiques (densité d'énergie totale moyenne, lois exactes KHM avec \mathcal{R} et \mathcal{S}) :

$$\partial_{t} \langle E_{tot} \rangle = \langle E_{F} \rangle + \langle E_{D} \rangle, \qquad (3.31)$$

$$\partial_{t} \mathcal{R} = -\varepsilon_{NL} + \varepsilon_{F} + \varepsilon_{D} = \frac{1}{4} \rho_{0} \nabla_{\ell} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} + \delta \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}_{A} \delta \boldsymbol{v} + 2\delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{A} \delta \boldsymbol{v}_{A} \rangle + \frac{1}{2} \rho_{0} \langle \boldsymbol{v}' \cdot \boldsymbol{f}_{c} + \boldsymbol{v} \cdot \boldsymbol{f}'_{c} + \boldsymbol{v}'_{A} \cdot \boldsymbol{f}_{m} + \boldsymbol{v}_{A} \cdot \boldsymbol{f}'_{m} \rangle + \frac{1}{2} \rho_{0} \langle \boldsymbol{v}' \cdot \boldsymbol{d}_{c} + \boldsymbol{v} \cdot \boldsymbol{d}'_{c} + \boldsymbol{v}'_{A} \cdot \boldsymbol{d}_{m} + \boldsymbol{v}_{A} \cdot \boldsymbol{d}'_{m} \rangle, \qquad (3.32)$$

$$\partial_{t} S = -\mathcal{E}_{NL} + \mathcal{E}_{F} + \mathcal{E}_{D} = -\frac{1}{2} \rho_{0} \nabla_{\ell} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} + \delta \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}_{A} \delta \boldsymbol{v} + 2\delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{A} \delta \boldsymbol{v}_{A} \rangle + \rho_{0} \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{f_{c}} + \delta \boldsymbol{v}_{A} \cdot \delta \boldsymbol{f_{m}} \rangle + \rho_{0} \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{d_{c}} + \delta \boldsymbol{v}_{A} \cdot \delta \boldsymbol{d_{m}} \rangle.$$
(3.33)

Loi exacte PP98 sur les taux d'énergie (type K41) :

$$\varepsilon = -\frac{1}{4}\rho_0 \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} + \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} + 2\delta \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle .$$
(3.34)

PARTIE I : Le chauffage turbulent dans un plasma compressible avec pression isotrope

There is even a humorous statement about this by a well-known theoretical physicist who compared the theory of turbulence without pressure with a someone who has lost his manhood.⁵ Sergey G. CHEFRANOV et Artem S. CHEFRANOV

^{5.} Traduction : Un célèbre physicien théoricien a même fait une déclaration humoristique à ce sujet en comparant la théorie de la turbulence sans pression à un homme qui a perdu sa virilité. Citation extraite de CHEFRANOV et CHEFRANOV 2021.

INTRODUCTION

Bien que le modèle incompressible soit encore très utilisé [MARINO et SORRISO-VALVO 2023], le caractère compressible des fluctuations et des structures présentes dans le vent solaire est observé et identifié depuis les premières missions spatiales [TU et MARSCH 1995]. Les travaux présentés dans cette partie se placent dans la continuité d'un effort d'extension de la théorie de Kolmogorov aux plasmas compressibles entrepris depuis BANERJEE et GALTIER 2013.

Dans le Chapitre 4, sera présenté le modèle compressible sur lequel seulement deux contraintes seront imposées dans cette Partie I : une pression de type isotrope et une équation d'induction MHD. Diverses relations thermodynamiques y seront analysées pour fermer ce modèle fluide.

Dans le Chapitre 5, sera résumé l'extension analytique compressible avec pression isotrope de la théorie de Kolmogorov à travers les premiers résultats que j'ai obtenus.

Dans le Chapitre 6, nous aborderons une application observationnelle de ces premiers résultats analytiques dans les premières données in-situ obtenues près du Soleil par PSP. Cette étude de cas effectuée, j'ai ensuite amorcé une étude statistique dans des données relevées dans la magnétogaine terrestre par MMS.

QUE SAIT-ON SUR LE MODÈLE COMPRESSIBLE?

Sommaire

4.1	Energétique du modèle MHD non fermé	35
4.2	Fermetures thermodynamiques	36
4.3	Thermodynamique et turbulence	39
4.4	Propriétés linéaires de la MHD compressible	41
4.5	Synthèse sur le modèle compressible avec pression isotrope .	42

Lorsque la contrainte d'incompressibilité qui servait de fermeture au système d'équation est relaxée, le modèle n'est plus fermé. Dans ce chapitre, seront définis différents types de fermeture en considérant toujours une pression isotrope. On regardera ce qu'il advient du taux de cascade dans le chapitre suivant.

4.1 Energétique du modèle MHD non fermé

Si l'on reprend les équations du modèle MHD, dérivées du modèle cinétique (voir synthèse 2.4), et que l'on suppose une pression isotrope, on obtient le système suivant, écrit avec la vitesse d'Alfvén $\boldsymbol{v}_{\boldsymbol{A}} = \frac{\boldsymbol{B}}{\sqrt{\mu_{0}\rho}}$, :

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0, \qquad (4.1)$$

$$\partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} - \rho \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} \right) + \nabla p_* = 0, \qquad (4.2)$$

$$3\partial_t p + \nabla \cdot (3p\boldsymbol{v} + 2\boldsymbol{q}) + 2p\nabla \cdot \boldsymbol{v} = 0, \qquad (4.3)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) + \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} = 0.$$
(4.4)

La contrainte sur le champ magnétique, $\nabla \cdot \boldsymbol{B} = 0$, peut s'écrire : $\nabla \cdot (\rho \boldsymbol{v}_{\boldsymbol{A}}) = -\rho \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}}$. Ce système n'est pas fermé, mais avant de le fermer, regardons ce qu'il nous indique en termes d'énergétique. L'équation de densité d'énergie cinétique $E_c = \frac{1}{2}\rho \boldsymbol{v}^2$ obtenue via (4.1) et (4.2) est :

$$\partial_t E_c + \nabla \cdot (E_c \boldsymbol{v} + p_* \boldsymbol{v} - \rho \boldsymbol{v} \cdot \boldsymbol{v}_A \boldsymbol{v}_A) = -\rho \boldsymbol{v}_A \boldsymbol{v}_A : \nabla \boldsymbol{v} + p_* \nabla \cdot \boldsymbol{v}.$$
(4.5)

L'équation de densité d'énergie magnétique $E_m = \frac{1}{2}\rho \boldsymbol{v_A}^2$ obtenue via (4.1) et (4.4) est :

$$\partial_t E_m + \nabla \cdot (E_m \boldsymbol{v}) = \rho \boldsymbol{v}_A \boldsymbol{v}_A : \nabla \boldsymbol{v} - p_m \nabla \cdot \boldsymbol{v}.$$
(4.6)

On remarque que l'échange entre ces deux canaux énergétiques se fait à travers la pression magnétique et un terme croisé (termes de droite de (4.6)) similaire au cas incompressible.

La densité d'énergie totale moyenne $\langle E_{tot} \rangle = \langle E_c + E_m + E_u \rangle$ étant un invariant du système, cela nous autorise, a priori, à appliquer la méthode résumée dans la section 3.4 pour en étudier la cascade. Afin que cette énergie soit conservée, il faut ajouter une équation annulant le terme source dépendant de p dans l'équation d'énergie cinétique (4.5). Cette équation est l'équation de densité d'énergie interne, $E_u = \rho u$ avec u l'énergie interne spécifique, dans laquelle on doit aussi faire figurer un terme de flux de chaleur, $\nabla \cdot \boldsymbol{q}$, :

$$\partial_t E_u + \nabla \cdot (E_u \boldsymbol{v} + \boldsymbol{q}) = -p \nabla \cdot \boldsymbol{v}. \tag{4.7}$$

L'équation de densité d'énergie totale, $E_{tot} = E_c + E_m + E_u$, est alors :

$$\partial_t E_{tot} + \nabla \cdot (E_{tot} \boldsymbol{v} + p_* \boldsymbol{v} - \rho \boldsymbol{v} \cdot \boldsymbol{v}_A \boldsymbol{v}_A + \boldsymbol{q}) = 0.$$
(4.8)

On peut remarquer que dans le cas incompressible, l'énergie interne (4.7) est découplée de l'énergie cinétique (4.5) et par ce biais de l'énergie magnétique (4.6) puisque $p\nabla \cdot \boldsymbol{v} = 0$. Via cette méthode basée sur un bilan, nous obtenons, indépendamment de la fermeture, une équation d'évolution pour l'énergie interne [ECKART 1940]. L'obtention d'une équation de densité d'énergie totale est donc possible sans expliciter de fermeture qui pourra être fixée dans un second temps. On qualifiera de générales, les équations (4.7) et (4.8) applicables à toutes données, tous modèles respectant le comportement des moments fluides ρ (4.1) et \boldsymbol{v} (4.2) obtenus via l'équation de Vlasov et l'équation d'induction (4.4). Mais cette description n'est pas complète, pas fermée, puisque rien n'y impose le respect de l'équation (4.3) concernant p qui pourrait être définie autrement, et \boldsymbol{q} reste indéfini. Cette observation présage la possibilité d'obtenir une loi exacte tout aussi générale sur la cascade de densité d'énergie totale comme on le verra dans le Chapitre 5.

4.2 Fermetures thermodynamiques

En MHD compressible avec pression isotrope, l'équation de fermeture est souvent une relation entre la pression, p, et la densité, ρ , issue de la thermodynamique et venant se substituer à l'équation sur la pression $(4.3)^{1}$. Par la suite, on appellera thermodynamique tout ce qui est relatif à la densité, la pression, l'énergie interne, etc. (grandeurs supposément définies et convergentes dans le cadre fluide) et pouvant relever du champ de discipline empirique de la thermodynamique à l'équilibre [BOREL et FAVRAT 2005] possiblement étendu au cadre hors équilibre [LIVADIOTIS et MCCOMAS 2012].

Le premier principe de la thermodynamique peut s'écrire

$$du = \mathfrak{d} \mathcal{Q} + \mathfrak{d} \mathcal{W} = T ds + \frac{p}{\rho^2} d\rho, \qquad (4.9)$$

avec Q la chaleur et W le travail de pression, d' correspond à l'élément de calcul différentiel inexact et d à l'élément exact. L'élément inexact signifie que le résultat d'une intégration sera chemin-dépendant². L'élément différentiel exact peut servir à créer une dérivée totale ou partielle. En construisant la dérivée temporelle totale, qui s'écrit en fonction des

^{1.} On pourrait aussi fermer au niveau des moments suivant via une loi de Fourier sur le flux de chaleur, $q = -\kappa \nabla T$ [BELMONT *et al.* 2018], ou la fermeture à l'ordre 4 proposé par CHUST et BELMONT 2006 par exemple. On ne détaillera pas ces possibilités ici mais on notera que le flux de chaleur peut, via κ , la viscosité thermique, n'avoir un impact qu'aux petites échelles, similairement aux dissipations visqueuse et résistive [EYINK et DRIVAS 2018].

^{2.} Pour plus d'information se référer à BOREL et FAVRAT 2005.

dérivées partielles $d_t = \partial_t + \boldsymbol{v} \cdot \nabla$, et en injectant l'équation de densité de masse (4.1), on trouve, à partir de (4.9), une équation sur la densité d'énergie interne :

$$d_t(\rho u) = \rho T d_t s - (p + \rho u) \nabla \cdot \boldsymbol{v}.$$
(4.10)

Cette équation est compatible avec l'équation (4.7) si $\nabla \cdot \mathbf{q} = -\rho T d_t s$, s étant l'entropie spécifique et T la température. Ces équations sont compatibles avec l'équation de pression (4.3) si l'on impose $\rho u = \frac{3}{2}p$. On verra que ce n'est pas forcément le cas avec les fermetures de type thermodynamique.

Dans le cadre thermodynamique original [BOREL et FAVRAT 2005], la définition des dénominations « polytrope », « isochore », « isobare », « isotherme » ou « isentrope » ne s'applique qu'à des transformations :

- isochore (ou incompressible puisque $\rho = m/V$) signifie à volume V constant
- isobare signifie à pression p constante,
- -- isotherme signifie à température T constante,
- isentrope signifie à entropie s constante, elle ne peut être ni créée ni échangée par transfert thermique,
- adiabatique signifie sans transfert thermique d Q, c'est-à-dire sans échange d'entropie (equivalente à l'isentrope dans le cas réversible où aucune entropie n'est crée),
 polytrope signifie à σ = Tds/Vdp, le facteur polytrope, constant.

Alors qu'en astrophysique et physique des plasmas, on entend ces termes en tant que noms de fermeture caractérisant le système. Ici, dans une volonté de clarifier cet usage, on considérera qu'un système décrit idéalement avec l'une de ces caractéristiques est un système dans lequel la quantité caractérisée ne pourra évoluer qu'en suivant le type de transformation associée. En réalité, ces caractéristiques coexistent souvent, l'une pouvant dominer les autres, par exemple dans les plasmas spatiaux d'après LIVADIOTIS et McComas 2012.

L'hypothèse polytrope apparaît plus générale dans le sens où, suivant la valeur de σ , on peut se retrouver dans le cadre des hypothèses isochore, isobare, isotherme, adiabatique ou isentrope [BOREL et FAVRAT 2005]. D'après HOREDT 2004, cette hypothèse a été introduite par CHANDRASEKHAR 1939 en astrophysique via la définition : pV^{γ} constant avec $\gamma = \frac{c_p - c}{c_V - c}$, nommé indice spectral ou indice polytropique. c est, ici, $\frac{dQ}{dT}$ la chaleur spécifique, c_p la chaleur spécifique à pression constante et c_V celle à volume constant. Cette définition rappelle celle de l'indice adiabatique $\gamma_a = c_p/c_V$. On peut d'ailleurs réécrire γ en fonction de γ_a en se plaçant dans le cadre d'un gaz parfait ($pV \propto T$) et en utilisant les relations (1.2.19) à (1.2.24) de HOREDT 2004. Ainsi $\gamma = (\gamma_a - 1) K + \gamma_a$ avec $K = \frac{dQ}{dW} = \frac{Tds}{-pdV}$. Sachant que $d(pV^{\gamma}) = 0$, le lien entre pV^{γ} et $\sigma = \frac{Tds}{Vdp}$ est $\sigma = K/\gamma = \frac{1-\gamma_a/\gamma}{\gamma_a-1}$. D'où l'équivalence des définitions ³ via σ et γ .

La FIGURE 4.1 inspirée de LIVADIOTIS et MCCOMAS 2012, complétée avec les valeurs de σ et quelques exemples de plasmas spatiaux données par LIVADIOTIS 2018a, résume le lien entre les différentes fermetures et l'hypothèse polytrope. Les plasmas spatiaux pouvant être modélisés comme des gaz parfaits monoatomiques, $\gamma_a = 5/3$ et dans le cas isochore, $\sigma = \frac{1}{\gamma_a - 1} = 3/2$.

Dans le premier principe (4.9) et l'équation d'énergie interne (4.10), l'utilisation de σ

^{3.} L'intérêt de la définition via σ met en lumière la différence entre les transformations polytropes et adiabatique/isentrope ($\sigma = 0$ et $\gamma = \gamma_a$) qui semblent souvent confondues en astrophysique [EYINK et DRIVAS 2018], peut-être car le flux de chaleur semble « disparaître » dans l'obtention de la forme explicite de l'énergie interne.

FIGURE 4.1 – Transformations thermodynamiques et intervalles en fonction du γ du milieu [LIVADIOTIS et MCCOMAS 2012] et du σ [BOREL et FAVRAT 2005], exemple de plasmas spatiaux [LIVADIOTIS 2018a]. Adiabatique et isentrope y sont confondues dans le cas réversible.

permet d'écrire :

$$du = \mathbf{d} \mathcal{Q} + \mathbf{d} \mathcal{W} = (K+1) \mathbf{d} \mathcal{W} = (\sigma \gamma + 1) \mathbf{d} \mathcal{W}, \tag{4.11}$$

$$d_t(\rho u) = -[(\sigma \gamma + 1) p + \rho u] \nabla \cdot \boldsymbol{v}, \qquad (4.12)$$

$$\Rightarrow \nabla \cdot \boldsymbol{q} = -\rho T d_t s = \sigma \gamma p \nabla \cdot \boldsymbol{v}. \tag{4.13}$$

D'un autre côté, la relation entre p et V peut s'écrire $p \propto \rho^{\gamma}$. Cela donne l'équation :

$$d_t p = -\gamma p \nabla \cdot \boldsymbol{v}. \tag{4.14}$$

Cette équation est compatible avec l'équation de pression du modèle fluide (4.3) si :

$$\left(\frac{5}{3} - \gamma\right) p \nabla \cdot \boldsymbol{v} = -\frac{2}{3} \nabla \cdot \boldsymbol{q} \quad \Rightarrow \quad \left(\frac{5}{3} + \left(\frac{2}{3}\sigma - 1\right)\gamma\right) p \nabla \cdot \boldsymbol{v} = 0. \tag{4.15}$$

Par ces relations, on remarque que l'hypothèse polytrope peut nous permettre de fermer le modèle fluide au niveau du troisième moment q en injectant (4.13) dans l'équation de p (4.3), ou au niveau du deuxième, p, en utilisant γ et en injectant $p \propto \rho^{\gamma}$ dans (4.2)⁴. L'hypothèse adiabatique, isentrope si réversible, $\gamma = \gamma_a$ et $\nabla \cdot \boldsymbol{q} = 0$, est retrouvée dans l'évolution fluide de p si l'on se place dans le cadre d'un gaz parfait monoatomique $\gamma_a = 5/3$ d'après (4.15). Dans le cas isotherme, on retrouve dans (4.15) ou (4.11), $d\mathcal{W} = -d\mathcal{Q}$, c'est-à-dire du = 0. En effet, la variation d'énergie interne d'un gaz parfait ne dépendant que de la température, ne peut qu'être nulle sous l'hypothèse d'isothermie. Les cas isochore (ou incompressible) et isobare sont plus délicats. Dans le cas isochore, le produit $\gamma \nabla \cdot \boldsymbol{v}$ qui apparaît dans toutes les expressions de (4.11) à (4.15), tend vers $\infty \times 0$. Dans le cas isobare, $\infty \times 0$ apparaît dès que $\sigma \gamma$ est présent dans l'équation. Ces limites du cas polytrope sont donc problématiques dans la définition de u. Elles doivent être traitées indépendamment. Dans le cas isochore, $d \mathcal{W} = 0$ et l'énergie interne vérifie $d_t u + \nabla \cdot \boldsymbol{q} = 0$. L'hypothèse isobare, quant à elle, ferme le système fluide au niveau de l'équation (4.2). L'équation d'énergie interne est alors $\partial_t u + \nabla \cdot (u \boldsymbol{v} + \boldsymbol{q} + p_0 \boldsymbol{v}) = 0$. Pour ces deux fermetures, l'énergie interne est conservée et n'échange plus avec les énergies cinétique et magnétique⁵.

^{4.} Usuellement, on ferme au niveau du deuxième moment. L'information sur le flux de chaleur est alors perdue d'où la confusion entre isentrope et polytrope.

^{5.} La cascade d'énergie cinétique et magnétique peut alors être traitée indépendamment de celle d'énergie interne. Cela a été fait dans le Chapitre 3 dans le cadre incompressible.

Dans le cadre de la fermeture polytrope, on peut écrire $p = \frac{c_s^2}{\gamma}\rho$, avec $c_s^2 = \frac{\partial p}{\partial \rho} \propto \rho^{\gamma-1}$ le carré de la vitesse thermique. Pour ce qui est de la variation d'énergie interne spécifique, elle devient :

$$du = (\sigma\gamma + 1)\frac{p}{\rho^2}d\rho = (\sigma\gamma + 1)\frac{p}{\rho^{\gamma}}\rho^{\gamma-2}d\rho$$
(4.16)

$$= \begin{cases} \frac{\sigma\gamma+1}{\gamma-1}\frac{p}{\rho^{\gamma}}d\left(\rho^{\gamma-1}\right) & \text{si} \quad \gamma \neq 1\\ (\sigma+1)\frac{p}{\rho}d\left(\ln\rho\right) & \text{si} \quad \gamma = 1 \end{cases}$$
(4.17)

Et par intégration :

$$u - u_I = \begin{cases} \frac{\sigma\gamma + 1}{\gamma - 1} \frac{p}{\rho^{\gamma}} \left(\rho^{\gamma - 1} - \rho_I^{\gamma - 1} \right) = \frac{\sigma\gamma + 1}{\gamma - 1} \frac{c_s^2}{\gamma} \left(1 - \left(\frac{\rho_I}{\rho} \right)^{\gamma - 1} \right) & \text{si} \quad \gamma \neq 1 \\ (\sigma + 1) \frac{p}{\rho} \ln \frac{\rho}{\rho_I} = (\sigma + 1) c_s^2 \ln \frac{\rho}{\rho_I} & \text{si} \quad \gamma = 1 \end{cases}$$
(4.18)

en notant u_I et ρ_I les constantes d'intégrations. Dans le cas particulier de la fermeture isotherme, $\gamma = 1$, $\sigma = -1$, $p = c_s^2 \rho$ avec c_s constante et du = 0.

4.3 Thermodynamique et turbulence

La cascade turbulente pourrait être, dans les plasmas spatiaux peu collisionnels, une réponse au problème du chauffage. En définissant le chauffage comme la variation de température et sachant que pour un gaz parfait, l'énergie interne ne dépend que de la température⁶, il est facile de définir le chauffage comme tout transfert d'énergie vers l'énergie interne, appelée aussi énergie thermique [CASSAK et BARBHUIYA 2022]. Le terme de pression dans l'équation (4.2) s'interprète alors comme les termes visqueux et résistifs abordés dans le Chapitre 3, c'est-à-dire comme un terme « dissipatif » dont l'influence est renvoyée aux petites échelles. Mais, ce serait oublier que la cascade turbulente permet de faire le lien entre les grandes échelles, MHD, où la validité de l'hypothèse de gaz parfait est cohérente puisque l'on néglige les interactions entre ions et électrons, et les petites échelles, sub-ioniques et cinétiques, où les interactions commencent à apparaître à travers le champ électromagnétique et où la validité de l'hypothèse des gaz parfaits peut être remise en question. Définir le chauffage comme un transfert d'énergie vers l'énergie interne (reposant sur l'hypothèse des gaz parfaits) et renvoyer son effet à petite échelle manque donc de cohérence. Afin de définir le chauffage, on s'intéressera plutôt à ce qu'il se passe à petite échelle. Ainsi, si l'on regarde l'effet des dissipations visqueuse ou résistive, elles viennent réduire l'énergie du système, mais elles apparaissent aussi dans l'équation d'entropie [EYINK et DRIVAS 2018]. Chauffer ainsi va donc venir augmenter l'entropie du plasma. La définition du chauffage adaptée à l'étude de la turbulence serait donc plutôt celle d'un transfert énergétique impactant l'entropie. Le taux de cascade doit donc prendre en compte l'énergie étant transférée isentropiquement à l'énergie interne.

Cette définition du chauffage justifie l'hypothèse proposée par GALTIER et BANERJEE 2011 que seul le terme de travail \mathcal{W} de l'énergie interne affecte la cascade dans la zone inertielle. Cette hypothèse revient à supposer une zone inertielle isentrope telle que

^{6.} Dans un gaz parfait, on suppose que les particules n'interagissent pas entre elles. Donc qu'elles soient éloignées ou proches n'influera pas sur leur énergie individuelle. Par conséquent, l'énergie interne est indépendante de la densité. Cependant, la densité d'énergie interne dépendra de ρ et T.

 $\sigma = 0$. Si le système global est fermé tel que $\gamma \neq \gamma_a$, le terme de chaleur dQ jouera un rôle aux autres échelles afin que les relations thermodynamiques soient respectées dans le système global. La fermeture considérée par GALTIER et BANERJEE 2011 est la fermeture isotherme qui dans l'hypothèse d'une zone inertielle isentrope implique : $\gamma = 1$, $\sigma = 0$, $p = c_s^2 \rho$ avec c_s constante et $du = d \mathcal{W} \Rightarrow u - u_I = \frac{p}{\rho} \ln \frac{\rho}{\rho_I}$. On appellera cette fermeture, qui n'est valable que dans la zone inertielle, « isentrope-isotherme » afin d'expliciter la nuance existant entre l'isotherme basique tel que du = 0 et l'isotherme étudié dans le cadre d'une cascade isentrope. En suivant cette logique, je me suis intéressée dans SIMON et SAHRAOUI 2021 à la fermeture « isentrope-polytrope » telle que $\sigma = 0$, $p = \frac{c_s^2}{\gamma} \rho^{\gamma}$ et

$$u - u_I = \begin{cases} \frac{1}{\gamma - 1} \frac{p}{\rho^{\gamma}} \left(\rho^{\gamma - 1} - \rho_I^{\gamma - 1} \right) = \frac{+1}{\gamma - 1} \frac{c_s^2}{\gamma} \left(1 - \left(\frac{\rho_I}{\rho} \right)^{\gamma - 1} \right) & \text{si} \quad \gamma \neq 1 \\ \frac{p}{\rho} \ln \frac{\rho}{\rho_I} = c_s^2 \ln \frac{\rho}{\rho_I} & \text{si} \quad \gamma = 1 \end{cases} . (4.19)$$

Dans l'usage des formes explicites de l'énergie interne dans les calculs de lois exactes avec l'hypothèse polytrope, les constantes sont souvent annulées entre elles. Par exemple, dans le cas « isentrope-polytrope », BANERJEE et GALTIER 2014 considère comme forme explicite de l'énergie interne $\rho u = \frac{1}{(\gamma-1)}p$. Contrairement à ce travail, nous avons choisi de maintenir une forme de compatibilité avec la fermeture « isentrope-isotherme » de GALTIER et BANERJEE 2011 (si $u = u_I$ alors u = 0) dans nos choix de constantes.

Sont résumés dans la TABLE 4.1, les caractéristiques, dénominations et choix de constante des fermetures définies polytropiquement via σ et γ qui serviront par la suite.

Nom	Paramètres	Energie interne explicite
Polytrope (hors isotherme)	$\{\sigma, \gamma \neq 1\}$	$\frac{\sigma\gamma+1}{\gamma-1}\frac{p}{\rho^{\gamma}}\left(\rho^{\gamma-1}-\rho_{I}^{\gamma-1}\right)$
Isotherme	$\{-1,1\}$	u = 0
Isentrope-polytrope (hors isotherme)	$\{0,\gamma\neq 1\}$	$\frac{1}{\gamma-1}\frac{p}{\rho^{\gamma}}\left(\rho^{\gamma-1}-\rho_{I}^{\gamma-1}\right)$
Isentrope-isotherme	$\{0, 1\}$	$u = \frac{p}{\rho} \ln \frac{\rho}{\rho_I}$

TABLE 4.1 – Fermetures et relations associées. La forme de l'énergie interne de l'isentropeisotherme est calquée sur celle utilisée par GALTIER et BANERJEE 2011. Les autres sont définies de telle sorte à maintenir une forme de compatibilité : si $u = u_I$ alors u = 0. Celle de l'isentrope-polytrope est donc légèrement différente de celle utilisée par BANERJEE et GALTIER 2014. $\frac{p}{\rho}$ peut aussi s'écrire $\frac{c_s^2}{\gamma}$ et $p \propto \rho^{\gamma}$.

ALUIE et al. 2012 observent en détail la cascade d'énergie cinétique et magnétique dans différentes simulations subsoniques à transoniques. Le transfert cinétique-interne via la pression semble n'avoir lieu qu'à grande échelle dans une zone qu'ils appellent « zone de conversion », à plus petites échelles cette contribution reste constante. Ils en déduisent un découplage des cascades d'énergie cinétique et d'énergie interne et l'existence d'une zone inertielle cinétique. EYINK et DRIVAS 2018 déduisent aussi, analytiquement, un effet à grande échelle de la pression qui permettrait d'alimenter des structures cohérentes et de réduire l'entropie à grande échelle. Cela induirait une cascade inverse d'entropie vers les grandes échelles et un équilibre s'établirait entre les cascades d'énergie totale et d'entropie. Aucun de ces résultats ne prouve que l'énergie interne ne cascade pas. Ne pas la prendre en compte dans l'estimation du taux de chauffage comme le propose HELLINGER, VERDINI *et al.* 2018 est donc hasardeux et n'est justifiable que dans le cas subsonique où sa contribution semble mineure [ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK *et al.* 2018; FERRAND, GALTIER, SAHRAOUI et FEDERRATH 2020] ou à des échelles plus faibles que celle où l'impact de la pression semble majeur [ALUIE *et al.* 2012]. Etudier la cascade compressible dans une zone inertielle où la pression ne transférerait pas d'énergie vers l'énergie interne, c'est à dire $\nabla p = 0$ dans l'équation (4.21), correspondrait à regarder une zone inertielle isobare. Au vu des observations, cela ne semble pas physiquement absurde, mais étant intéressés par l'impact de la pression sur la cascade turbulente totale, cette hypothèse réductrice n'a pas retenu notre intérêt.

4.4 Propriétés linéaires de la MHD compressible

Dans le cadre de l'obtention d'une relation de dispersion compressible, on fermera le système avec la fermeture polytrope pour rester dans le cas le plus général possible. Ainsi, on utilise le système d'équations suivant fermé par $p \propto \rho^{\gamma}$:

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0, \qquad (4.20)$$

$$\partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} - \rho \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} \right) + \nabla p_* = 0, \qquad (4.21)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) + \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} = 0.$$
(4.22)

L'application de la méthode de linéarisation présentée dans le Chapitre 3 nous donne l'équation de dispersion suivante :

$$\begin{pmatrix} \frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - \left(1 + \frac{\gamma}{2}\beta_0\right) \frac{k_{\perp}^2}{k_{\parallel}^2} - 1 & 0 & -\frac{\gamma}{2}\beta_0 \frac{k_{\perp}}{k_{\parallel}} \\ 0 & \frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - 1 & 0 \\ -\frac{\gamma}{2}\beta_0 \frac{k_{\perp}}{k_{\parallel}} & 0 & \frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - \frac{\gamma}{2}\beta_0 \end{pmatrix} \cdot \begin{pmatrix} v_x^1 \\ v_y^1 \\ v_z^1 \end{pmatrix} = 0$$
(4.23)

avec $\beta_0 = \frac{2p_0}{\rho_0 v_{A0}^2}$ le paramètre β linéarisé du plasma. La relation de dispersion est donnée par l'annulation du déterminant de la matrice, c'est-à-dire, :

$$0 = \left(\frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - 1\right) \left(\frac{\omega^2}{k^2 v_{A0}^2} - \frac{1}{2}\left(1 + \frac{\gamma}{2}\beta_0 \pm \sqrt{\Delta}\right)\right)$$
(4.24)

avec $\Delta = \left(1 - \frac{\gamma}{2}\beta_0\right)^2 + 2\gamma\beta_0 \sin^2\theta = \left(1 + \frac{\gamma}{2}\beta_0\right)^2 - 2\gamma\beta_0 \cos^2\theta$ en notant θ l'angle entre \boldsymbol{k} et $\boldsymbol{e_z}$. La première racine correspond au mode d'Alfvén incompressible et les deux autres aux modes magnétosonores rapide (+) et lent (-). Ces modes sont stables (ω est réel), puisque $\Delta > 0$ et $\frac{1}{2}\left(1 + \frac{\gamma}{2}\beta_0 \pm \sqrt{\Delta}\right) > 0$.

Ces modes et leur version cinétique influencent le développement de la cascade turbulente en interagissant les uns avec les autres [CHO et LAZARIAN 2003, SHARMA et KUMAR 2011, ANDRÉS, CLARK DI LEONI *et al.* 2017, BRODIANO *et al.* 2021, GALTIER 2023]. Dans le vent solaire, quasi-incompressible, le mode d'Alfvén et la cascade associée sont dominants. Cependant, des filtrages de spectres relevés dans la magnétogaine ou la couronne solaire montrent des spectres de types turbulents pour les ondes magnétosoniques. Pour essayer de comprendre la répartition des rôles des différents modes, les simulations sont des outils très utilisés [BRODIANO *et al.* 2021] mais l'universalité des résultats est questionnable, les résultats étant dépendants du forçage (Alfvénique ou non) initiant la cascade.

Synthèse sur le modèle compressible avec pression 4.5isotrope

Modèle :

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0, \qquad (4.25)$$

$$\partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} - \rho \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} \right) + \nabla p_* = 0, \qquad (4.26)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) + \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} = 0,$$
 (4.27)

$$\boldsymbol{v}_{\boldsymbol{A}} \cdot \nabla \rho + 2\rho \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} = 0. \qquad (4.28)$$

Fermetures écrites dans le cadre général polytrope et formes explicites de l'énergie interne spécifique considérées (telles que $u_I = u (\rho = \rho_I) = 0$) :

$$\frac{p}{\rho} = \frac{c_s^2}{\gamma}, \quad c_s^2 \propto \rho^{\gamma-1}, \quad \sigma = \frac{\nabla \cdot \boldsymbol{q}}{\gamma p \nabla \cdot \boldsymbol{v}}$$

— cas polytrope hors isotherme : $u = \frac{\sigma\gamma+1}{\gamma-1} \frac{p}{\rho^{\gamma}} \left(\rho^{\gamma-1} - \rho_I^{\gamma-1}\right)$, — cas isotherme : $\sigma = -1$, $\gamma = 1$, u = 0 et c_s constant,

- cas isentrope-polytrope hors isotherme : $\sigma = 0$ et $u = \frac{\gamma+1}{\gamma-1} \frac{p}{\rho^{\gamma}} \left(\rho^{\gamma-1} \rho_I^{\gamma-1} \right)$,
- cas isentrope-isotherme : $\sigma = 0, \gamma = 1, c_s$ constant et $u = c_s^2 \ln \frac{\rho}{\rho_I}$.

Equation d'énergie interne :

Formulation générale

 \Rightarrow Compatibilité :

:
$$\partial_t (\rho u) + \nabla \cdot (\rho u \boldsymbol{v} + \boldsymbol{q}) = -p \nabla \cdot \boldsymbol{v},$$
 (4.29)

(4.31)

- Premier principe thermo : $du = d\mathcal{Q} + d\mathcal{W} = Tds + \frac{p}{\rho^2}d\rho$, (4.30)
 - $\partial_t \left(\rho u \right) + \nabla \cdot \left(\rho u \boldsymbol{v} \right) \rho T d_t s = -p \nabla \cdot \boldsymbol{v},$ Formulation thermo :

$$\nabla \cdot \boldsymbol{q} = -\rho T d_t s, \tag{4.32}$$

Formulation polytrope :
$$\partial_t (\rho u) + \nabla \cdot (\rho u \boldsymbol{v}) = -(\sigma \gamma + 1) p \nabla \cdot \boldsymbol{v}.$$
 (4.33)

Equation de pression :

Modèle fluide non fermé :
$$\partial_t p + \nabla \cdot \left(p \boldsymbol{v} + \frac{2}{3} \boldsymbol{q} \right) + \frac{2}{3} p \nabla \cdot \boldsymbol{v} = 0,$$
 (4.34)
Fermeture polytrope $(p \propto \rho^{\gamma})$: $\partial_t p + \boldsymbol{v} \cdot \nabla p - \gamma p \nabla \cdot \boldsymbol{v} = 0,$ (4.35)

$$\Rightarrow \text{ Compatibilité}: \qquad \left(\frac{5}{3} + \left(\frac{2}{3}\sigma - 1\right)\gamma\right)\nabla \cdot \boldsymbol{v} = 0, \qquad (4.35)$$

Relation de dispersion linéaire :

$$0 = \left(\frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - 1\right) \left(\frac{\omega^2}{k^2 v_{A0}^2} - \frac{1}{2} \left(1 + \frac{\gamma}{2}\beta_0 \pm \sqrt{\left(1 - \frac{\gamma}{2}\beta_0\right)^2 + 2\gamma\beta_0 \sin^2\theta}\right)\right). \quad (4.37)$$

La première racine correspond au mode d'Alfvén similaire à celui obtenu en incompressible et les deux autres aux modes magnétosonores rapide (+) et lent (-).

DÉCRIRE LA CASCADE COMPRESSIBLE

Sommaire

5.1	Dérivation d'une loi exacte compressible générale pour dé- crire un écoulement turbulent polytrope	44
5.2	Reformulation de la loi K41 générale dépendant d'une pres- sion isotrope	48
5.3	Application à d'autres fermetures et deuxième reformulation	49
5.4	Synthèse de l'étude analytique de turbulence compressible avec pression isotrope	53

La variation du résultat de l'estimation d'un indice polytropique dans différents types de plasmas spatiaux (voir FIGURE 4.1 and LIVADIOTIS 2018b) vient motiver la dérivation d'une loi exacte polytrope pour étudier la cascade d'énergie totale dans ces milieux. L'objectif initial du travail présenté dans cette Partie I, et dont la contribution originale analytique est introduite dans ce Chapitre 5, est de dériver une loi exacte MHD polytrope, une extension des lois existantes pour les modèles MHD isothermes [BANERJEE et GALTIER 2013, ANDRÉS et SAHRAOUI 2017, ANDRÉS, GALTIER *et al.* 2018, FERRAND, GALTIER et SAHRAOUI 2021] et HD polytrope [BANERJEE et GALTIER 2014]. La cascade y est décrite similairement à celle décrite par GALTIER et BANERJEE 2011 (cas HD isotherme) et, suite à la discussion sur les fermetures résumée dans le Chapitre 4, on peut dire qu'elle y est supposée isentrope dans la zone inertielle. L'hypothèse d'une fermeture polytrope (resp. isotherme) avec une zone inertielle isentrope revient à la fermeture « isentrope-polytrope » (resp. isentrope-isotherme) introduite au Chapitre 4.

La méthode de calcul envisagée pour atteindre l'objectif initial a, en réalité, permis d'obtenir une loi exacte générale valable pour toutes les fermetures du système tant que l'isentropie est imposée dans la zone inertielle. Ce travail dont l'application à la fermeture « isentrope-polytrope » répond à l'objectif initial est présenté dans la section 5.1. Dans la section 5.2, on détaillera l'impact des fermetures sur une autre formulation de la loi qui a émergé du travail de relaxation de l'hypothèse d'isotropie de pression (présenté dans le Chapitre 7). Après avoir atteint l'objectif initial, on s'est posé la question de l'impact du flux de chaleur (a priori attendu en dehors de la zone inertielle) et on l'a pris en compte dans la loi KHM qui, ainsi, a réellement pris une dimension générale. Notre loi a alors adopté une troisième formulation qui sera présentée dans la section 5.3. Des applications isobare, isotherme et polytrope y seront abordées en tant qu'exemples d'application clôturant ce travail de généralisation.

5.1Dérivation d'une loi exacte compressible générale pour décrire un écoulement turbulent polytrope

La méthode utilisée ici pour dériver une loi exacte compressible correspond à celle détaillée dans le cas incompressible et résumée dans la section 3.4. La première étape est de définir une fonction de corrélation. Il existe plus de possibilités que dans le cas incompressible puisque cette fois la compression ($\rho \neq 0$) impacte les densités d'énergie : $E_{tot} = \frac{1}{2}\rho v^2 + \frac{1}{2}\rho v_A^2 + \rho u$. Pour l'énergie cinétique, la volonté de considérer une forme de type auto-corrélation, a inspiré des études HD et MHD considérant sa racine-carré en $\sqrt{\rho}v$ [HELLINGER, PAPINI et al. 2021] tandis que d'autres ont privilégié le sens physique de la quantité de mouvement ρv [GALTIER et BANERJEE 2011]. Pour l'énergie magnétique, la question est la même : B [FERRAND, GALTIER et SAHRAOUI 2021] ou ρv_A [ANDRÉS et SAHRAOUI 2017]? Et pour l'énergie interne, les choix présents dans la littérature ont été en partie orientés suivant le type de fermeture : dans le cas polytrope par exemple, la forme explicite de l'énergie interne spécifique peut s'écrire tel que le carré de la vitesse thermique, d'où $\rho \sqrt{u}$ [BANERJEE et GALTIER 2014] ou $\sqrt{\rho u}$, alors que, dans le cas isotherme [GALTIER et BANERJEE 2011], le choix était plutôt orienté vers la conservation de son intégrité c'est-à-dire prendre ρ en un point et u en un autre. Trois possibilités, extraites de ces usages, ont été envisagées pour chaque type d'énergie (dont la forme est ici généralisée en $E_{\mathcal{X}} = \rho X^2$) :

- l'auto-corrélation : $\mathcal{R}_{\mathcal{X}_1} = \langle \sqrt{\rho'} X' \cdot \sqrt{\rho} X \rangle$ de fonction incrémentale associée :
- ciée : $\mathcal{S}_{\chi_2} = \langle \delta(\rho X) \cdot \delta X \rangle$
- la corrélation avec la densité : $\mathcal{R}_{\mathcal{X}_3} = \frac{1}{2} \langle \rho' X^2 + \rho X'^2 \rangle$ de fonction incrémentale associée : $\mathcal{S}_{\mathcal{X}_3} = \langle \delta \rho \delta X^2 \rangle$

Il s'avère qu'utiliser des formes prenant en compte des racines carrées a tendance à compliquer le calcul et le résultat. Les formes finalement choisies sont donc : $\mathcal{R}_c = \mathcal{R}_{c2} =$ $\left\langle \frac{1}{4} \left(\rho' + \rho \right) \boldsymbol{v'} \cdot \boldsymbol{v} \right\rangle, \ \mathcal{R}_m = \mathcal{R}_{m2} = \left\langle \frac{1}{4} \left(\rho' + \rho \right) \boldsymbol{v'_A} \cdot \boldsymbol{v_A} \right\rangle \ \text{et} \ \mathcal{R}_u = \mathcal{R}_{u3} = \frac{1}{2} \left\langle \rho' u + \rho u' \right\rangle. \ \text{Ce}$ choix concorde avec celui de ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK et al. 2018, dont les résultats de simulation permettront l'étude dans les données in-situ du Chapitre 6 et ont servi de base de comparaison afin de valider les résultats de simulations présentés dans la Partie III (voir l'Annexe B.2).

Concernant le modèle considéré, la première idée était d'appliquer la méthode de calcul des lois exactes sur le modèle fermé par l'hypothèse $p \propto \rho^{\gamma}$, dans la lignée des dérivations compressibles effectuées par exemple par GALTIER et BANERJEE 2011 et ANDRÉS et SAHRAOUI 2017. Mais il s'est avéré qu'un autre choix plus judicieux existait. En effet, comme pour obtenir l'équation d'énergie totale (4.8), nous pouvons obtenir une loi exacte « générale » en utilisant l'équation de densité d'énergie interne (4.29) sans expliciter la forme de p ni celle de u. En première approximation, l'hypothèse isentrope qui implique $\nabla \cdot \boldsymbol{q} = 0$ via l'équation de compatibilité (4.32), a d'abord été posée. Ce travail fait partie des résultats publiés dans SIMON et SAHRAOUI 2021. La loi KHM générale qui y est obtenue n'est alors valable que dans la zone inertielle où l'hypothèse isentrope est supposée effective et ne sert que d'étape de calcul vers une loi K41. Dans une volonté de donner un résultat pour la loi KHM générale valable pour toutes les échelles, nous prendrons en compte $\nabla \cdot \boldsymbol{q}$ dans cette section, mais nous garderons sa contribution brute, sans travail analytique en accord avec le cheminement chronologique voulu pour ce chapitre.

Les équations considérées sont celles de densité de masse (4.25), vitesse (4.26), induction (4.27) et énergie interne (4.29) avec des termes de forçage et de dissipation définis comme dans le cas incompressible (voir (3.27) et (3.28)). Ainsi :

$$\partial_t \rho = -\nabla \cdot (\rho \boldsymbol{v}), \qquad (5.1)$$

$$\partial_t \boldsymbol{v} = -\nabla \cdot (\boldsymbol{v}\boldsymbol{v}) + \boldsymbol{v}\nabla \cdot \boldsymbol{v} + \frac{1}{\rho}\nabla \cdot (\rho \boldsymbol{v}_A \boldsymbol{v}_A) - \frac{1}{\rho}\nabla p_* + \boldsymbol{f}_c + \boldsymbol{d}_c, \qquad (5.2)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} + \boldsymbol{f}_{\boldsymbol{m}} + \boldsymbol{d}_{\boldsymbol{m}}, \qquad (5.3)$$

$$\partial_t u = -\nabla \cdot (u\boldsymbol{v}) + u\nabla \cdot \boldsymbol{v} - \frac{1}{\rho} \nabla \cdot \boldsymbol{q} - \frac{p}{\rho} \nabla \cdot \boldsymbol{v}.$$
(5.4)

Si l'on regarde la forme des fonctions de corrélation incrémentales associées aux formes des fonctions choisies, on peut s'attendre à pouvoir identifier les fonctions de structure $\langle \delta (\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle$, $\langle \delta (\rho \boldsymbol{v}_A) \cdot \delta \boldsymbol{v}_A \delta \boldsymbol{v} \rangle$ et $\langle \delta \rho \delta u \delta \boldsymbol{v} \rangle$ et, similairement au cas incompressible, $\langle \delta (\rho \boldsymbol{v}_A) \cdot \delta \boldsymbol{v} \delta \boldsymbol{v}_A \rangle$ ou $\langle \delta (\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v}_A \delta \boldsymbol{v}_A \rangle$. Le calcul de l'évolution temporelle des fonctions de corrélation pour chaque canal énergétique nous donne, en effet, pour le canal d'énergie cinétique ($\mathcal{R}_c = \frac{1}{4} \langle (\rho' + \rho) \, \boldsymbol{v}' \cdot \boldsymbol{v} \rangle$) :

$$4\partial_{t}\mathcal{R}_{c} = \langle \partial_{t} \left(\rho'+\rho\right) \boldsymbol{v}' \cdot \boldsymbol{v} + \left(\rho'+\rho\right) \boldsymbol{v}' \cdot \partial_{t}\boldsymbol{v} + \left(\rho'+\rho\right) \boldsymbol{v}' \cdot \partial_{t}\boldsymbol{v} \rangle$$

$$= \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \left(\rho \boldsymbol{v}\right) \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} - \left(\delta \left(\rho \boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta \boldsymbol{v} \delta \boldsymbol{v}_{\boldsymbol{A}} + \delta \left(\rho \boldsymbol{v}\right) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \right) \rangle$$

$$+ \nabla_{\boldsymbol{\ell}} \cdot \langle \rho' \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}} - \rho \boldsymbol{v}_{\boldsymbol{A}} \cdot \boldsymbol{v}' \boldsymbol{v}_{\boldsymbol{A}}' - \rho' \boldsymbol{v}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}}' + \rho \boldsymbol{v} \cdot \boldsymbol{v}_{\boldsymbol{A}}' \boldsymbol{v}_{\boldsymbol{A}} \rangle$$

$$+ \langle \rho \boldsymbol{v} \cdot \delta \boldsymbol{v} \nabla' \cdot \boldsymbol{v}' - \rho' \boldsymbol{v}' \cdot \delta \boldsymbol{v} \nabla \cdot \boldsymbol{v} + 2\rho' \boldsymbol{v}' \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - 2\rho \boldsymbol{v} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}}' \rangle$$

$$+ \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) p_{*} \boldsymbol{v}' - \left(1 + \frac{\rho}{\rho'}\right) p_{*}' \boldsymbol{v} \right\rangle - \left\langle \frac{\rho'}{\rho} p_{*} \boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} + \frac{\rho}{\rho'} p_{*}' \boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle$$

$$+ \langle (\rho' + \rho) \left(\boldsymbol{v} \cdot \boldsymbol{f}_{\boldsymbol{c}}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{\boldsymbol{c}} \right) \rangle + \langle (\rho' + \rho) \left(\boldsymbol{v} \cdot \boldsymbol{d}_{\boldsymbol{c}}' + \boldsymbol{v}' \cdot \boldsymbol{d}_{\boldsymbol{c}} \right) \rangle, \qquad (5.5)$$

pour celui d'énergie magnétique $(\mathcal{R}_m = \frac{1}{4} \langle (\rho' + \rho) \, \boldsymbol{v'_A} \cdot \boldsymbol{v_A} \rangle)$:

$$4\partial_{t}\mathcal{R}_{m} = \left\langle \partial_{t}\left(\rho'+\rho\right)\boldsymbol{v}_{A}'\cdot\boldsymbol{v}_{A}+\left(\rho'+\rho\right)\boldsymbol{v}_{A}'\cdot\partial_{t}\boldsymbol{v}_{A}+\left(\rho'+\rho\right)\boldsymbol{v}_{A}'\cdot\partial_{t}\boldsymbol{v}_{A}\right\rangle \\ = \nabla_{\boldsymbol{\ell}}\cdot\left\langle\delta\left(\rho\boldsymbol{v}_{A}\right)\cdot\delta\boldsymbol{v}_{A}\delta\boldsymbol{v}\right\rangle+\left\langle\left(\rho\boldsymbol{v}_{A}\cdot\delta\boldsymbol{v}_{A}-\frac{1}{2}\left(\rho'+\rho\right)\boldsymbol{v}_{A}'\cdot\boldsymbol{v}_{A}\right)\nabla'\cdot\boldsymbol{v}'\right\rangle \\ - \left\langle\left(\rho'\boldsymbol{v}_{A}'\cdot\delta\boldsymbol{v}_{A}+\frac{1}{2}\left(\rho'+\rho\right)\boldsymbol{v}_{A}'\cdot\boldsymbol{v}_{A}\right)\nabla\cdot\boldsymbol{v}\right\rangle \\ + \left\langle\left(\rho'\boldsymbol{v}_{A}'\cdot\boldsymbol{v}-\rho\boldsymbol{v}\cdot\boldsymbol{v}_{A}'\right)\nabla\cdot\boldsymbol{v}_{A}\right\rangle+\left\langle\left(\rho'\boldsymbol{v}'\cdot\boldsymbol{v}_{A}-\rho\boldsymbol{v}_{A}\cdot\boldsymbol{v}'\right)\nabla'\cdot\boldsymbol{v}_{A}'\right\rangle \\ - \nabla_{\boldsymbol{\ell}}\cdot\left\langle\rho'\boldsymbol{v}_{A}'\cdot\boldsymbol{v}\boldsymbol{v}_{A}-\rho\boldsymbol{v}_{A}\cdot\boldsymbol{v}'\boldsymbol{v}_{A}'-\rho'\boldsymbol{v}'\cdot\boldsymbol{v}_{A}\boldsymbol{v}_{A}+\rho\boldsymbol{v}\cdot\boldsymbol{v}_{A}'\boldsymbol{v}_{A}\right\rangle \\ + \left\langle\left(\rho'+\rho\right)\left(\boldsymbol{v}_{A}\cdot\boldsymbol{f}_{m}'+\boldsymbol{v}_{A}'\cdot\boldsymbol{f}_{m}\right)\right\rangle+\left\langle\left(\rho'+\rho\right)\left(\boldsymbol{v}_{A}\cdot\boldsymbol{d}_{m}'+\boldsymbol{v}_{A}'\cdot\boldsymbol{d}_{m}\right)\right\rangle, \end{cases}$$
(5.6)

et pour celui d'énergie interne $(\mathcal{R}_u = \frac{1}{2} \langle \rho' u + \rho u' \rangle)$:

$$2\partial_{t}\mathcal{R}_{u} = \langle \partial_{t} (\rho') u + \rho' \partial_{t} u + \partial_{t} (\rho) u' + \rho \partial_{t} u' \rangle$$

$$= \nabla_{\ell} \cdot \langle \delta \rho \delta u \delta v \rangle + \langle \rho \delta u \nabla \cdot v' - \rho' \delta u \nabla \cdot v \rangle$$

$$- \left\langle \rho' \frac{p}{\rho} \nabla \cdot v + \rho \frac{p'}{\rho'} \nabla' \cdot v' \right\rangle - \left\langle \frac{\rho}{\rho'} \nabla' \cdot q' + \frac{\rho'}{\rho} \nabla \cdot q \right\rangle.$$
(5.7)

[1]	$4\partial_t \mathcal{R}$	=	$\nabla_{\boldsymbol{\ell}} \cdot \langle (\delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}}) \delta \boldsymbol{v} - (\delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}}) \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle$
[2]			$+\left\langle \left(ho oldsymbol{v}\cdot\deltaoldsymbol{v}+ hooldsymbol{v}_{oldsymbol{A}}\cdot\deltaoldsymbol{v}_{oldsymbol{A}}-rac{1}{2}\left(ho'+ ho ight)oldsymbol{v}_{oldsymbol{A}}\cdotoldsymbol{v}_{oldsymbol{A}} ight) abla ^{\prime}\cdotoldsymbol{v}^{\prime} ight angle $
[3]			$-\left\langle \left(\rho' \boldsymbol{v'} \cdot \delta \boldsymbol{v} + \rho' \boldsymbol{v'_A} \cdot \delta \boldsymbol{v_A} + \frac{1}{2} \left(\rho' + \rho\right) \boldsymbol{v'_A} \cdot \boldsymbol{v_A} \right) \nabla \cdot \boldsymbol{v} \right\rangle$
[4]			$+\left\langle \left(2 ho'oldsymbol{v}'\cdot\deltaoldsymbol{v}_{oldsymbol{A}}+ hooldsymbol{v}\cdotoldsymbol{v}_{oldsymbol{A}}- ho'oldsymbol{v}_{oldsymbol{A}}\cdotoldsymbol{v} ight) abla \cdotoldsymbol{v}_{oldsymbol{A}} ight angle $
[5]			$-\left\langle \left(2\rho\boldsymbol{v}\cdot\delta\boldsymbol{v}_{\boldsymbol{A}}-\rho'\boldsymbol{v'}\cdot\boldsymbol{v}_{\boldsymbol{A}}+\rho\boldsymbol{v}_{\boldsymbol{A}}\cdot\boldsymbol{v'}\right)\nabla'\cdot\boldsymbol{v}_{\boldsymbol{A}}'\right\rangle$
[6]			$+2\nabla_{\boldsymbol{\ell}}\cdot\left\langle\delta\rho\delta u\delta\boldsymbol{v}\right\rangle+2\left\langle\left(\rho\delta u-\rho\frac{p'}{\rho'}\right)\nabla'\cdot\boldsymbol{v'}-\left(\rho'\delta u+\rho'\frac{p}{\rho}\right)\nabla\cdot\boldsymbol{v}\right\rangle$
[7]			$+ \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + rac{ ho'}{ ho} ight) p_* \boldsymbol{v'} - \left(1 + rac{ ho}{ ho'} ight) p'_* \boldsymbol{v} ight angle - \left\langle rac{ ho'}{ ho} p_* \boldsymbol{v'} \cdot rac{ abla ho}{ ho} + rac{ ho}{ ho'} p'_* \boldsymbol{v} \cdot rac{ abla' ho'}{ ho'} ight angle$
[8]			$-2\left\langle rac{ ho}{ ho'} abla'\cdotoldsymbol{q}'+rac{ ho'}{ ho} abla\cdotoldsymbol{q} ight angle$
[9]			$+\left\langle \left(ho^{\prime}+ ho ight) \left(oldsymbol{v}\cdotoldsymbol{f}_{oldsymbol{c}}^{\prime}+oldsymbol{v}^{\prime}\cdotoldsymbol{f}_{oldsymbol{m}}^{\prime}+oldsymbol{v}_{oldsymbol{A}}^{\prime}\cdotoldsymbol{f}_{oldsymbol{m}}^{\prime}+oldsymbol{v}_{oldsymbol{A}}^{\prime}\cdotoldsymbol{f}_{oldsymbol{m}}^{\prime} ight) ight angle $
[10]			$+\left\langle \left(ho'+ ho ight)\left(oldsymbol{v}\cdotoldsymbol{d}_{oldsymbol{c}}'+oldsymbol{v}'\cdotoldsymbol{d}_{oldsymbol{m}}+oldsymbol{v}_{oldsymbol{A}}\cdotoldsymbol{d}_{oldsymbol{m}} ight) ight angle .$
			(5.8)

D'où pour l'énergie totale avec $\mathcal{R} = \mathcal{R}_c + \mathcal{R}_m + \mathcal{R}_u$:

Cette loi KHM est valable à toutes les échelles où le modèle MHD est vérifié. Comme elle est obtenue à partir du modèle MHD non fermé, elle est adaptable à toute fermeture thermodynamique considérée dans la zone inertielle. C'est le premier résultat majeur obtenu, il a été par la suite reformulé comme on le verra dans les sections suivantes. La ligne [1] contient la contribution à la cascade qui survit dans la limite incompressible. Ces termes sont souvent nommés « Yaglom compressible », sont de type flux et dénote un transfert travers les échelles. Les lignes [2] à [8] contiennent les termes purement compressibles car ils s'annulent dans la limite incompressible. Les lignes [2] à [5] contiennent des termes dits « sources », liés à l'effet de la dilation/compression du plasma sur les champs cinétiques et magnétiques (resp. $\nabla \cdot \boldsymbol{v}$ et $\nabla \cdot \boldsymbol{v}_{\boldsymbol{A}}$). La ligne [6] contient des contributions d'énergie interne et de pression convectées par le champ de vitesse sous la forme d'un terme flux, qui semble indiquer l'existence d'une cascade d'énergie interne à travers les échelles, et de termes sources. La ligne [7] contient la contribution de pression totale qui peut être écrite en factorisant la pression magnétique en fonction du paramètre $\beta = p/p_m$ du plasma et qui contient la majorité des termes nommés « hybrides » par ANDRÉS et SAHRAOUI 2017 car il est possible de les écrire tels des termes flux ou sources. Cette ligne sera principalement affectée par les reformulations présentées dans les sections 5.2 et 5.3. La ligne [8] contient la contribution du flux de chaleur qui sera abordée et reformulée dans la section 5.3. Et, pour finir, les lignes [9] et [10] correspondent aux taux d'injection et de dissipation de l'énergie totale compressible.

Dans le cadre d'une zone inertielle isentrope, il faut prendre en compte les lignes [1] à [7] dans le taux de cascade. On obtient ainsi la « loi exacte générale de type K41 dans le cadre d'une zone inertielle supposée isentrope » :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\left(\rho' + \rho\right)\boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}}\right) \nabla' \cdot \boldsymbol{v}' \right\rangle \\ - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \frac{1}{2}\left(\rho' + \rho\right)\boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}}\right) \nabla \cdot \boldsymbol{v} \right\rangle \\ + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \rho\boldsymbol{v} \cdot \boldsymbol{v}_{\boldsymbol{A}}' - \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \rho'\boldsymbol{v}' \cdot \boldsymbol{v}_{\boldsymbol{A}} + \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \boldsymbol{v}'\right) \nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}}' \right\rangle \\ + 2\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\boldsymbol{u}\delta\boldsymbol{v} \right\rangle + 2 \left\langle \left(\rho\delta\boldsymbol{u} - \rho\frac{p'}{\rho'}\right) \nabla' \cdot \boldsymbol{v}' - \left(\rho'\delta\boldsymbol{u} + \rho'\frac{p}{\rho}\right) \nabla \cdot \boldsymbol{v} \right\rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) p_{*}\boldsymbol{v}' - \left(1 + \frac{\rho}{\rho'}\right) p_{*}'\boldsymbol{v} \right\rangle - \left\langle \frac{\rho'}{\rho}p_{*}\boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} + \frac{\rho}{\rho'}p_{*}'\boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle.$$

$$(5.9)$$

Grâce au premier principe de la thermodynamique (4.30) qui peut alors s'écrire $\rho^2 \partial u = p \partial \rho$, on peut reformuler le dernier terme en fonction de l'énergie interne et du paramètre caractéristique en physique des plasmas $\beta = p/p_m$ local :

$$\left\langle \frac{\rho'}{\rho} p_* \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} + \frac{\rho}{\rho'} p_*' \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle = \left\langle \left(1 + \frac{p_m}{p} \right) \rho' \boldsymbol{v}' \cdot \nabla u + \left(1 + \frac{p'_m}{p'} \right) \rho \boldsymbol{v} \cdot \nabla' u' \right\rangle$$

$$= \nabla_{\boldsymbol{\ell}} \cdot \left\langle \rho u' \boldsymbol{v} - \rho' u \boldsymbol{v}' \right\rangle + \left\langle \frac{1}{\beta} \nabla \cdot \left(\rho' u \boldsymbol{v}' \right) + \frac{1}{\beta'} \nabla' \cdot \left(\rho u' \boldsymbol{v} \right) \right\rangle.$$

$$(5.10)$$

On retrouve ainsi le résultat publié et analysé dans SIMON et SAHRAOUI 2021 (eq. 18).

L'injection de la fermeture isentrope-polytrope dans la loi (5.9) permet de répondre à l'objectif initial : trouver une loi exacte MHD polytrope. Le résultat s'obtient directement et s'écrit, dans le cas $\gamma \neq 1$ (car l'on y injecte l'expression explicite de l'énergie interne), en fonction de γ et c_s^2 , :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v}_{A} \right\rangle \right. \\ \left. + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\left(\rho' + \rho\right)\boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}\right) \nabla' \cdot \boldsymbol{v}' \right\rangle \right. \\ \left. - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}_{A} + \frac{1}{2}\left(\rho' + \rho\right)\boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}\right) \nabla \cdot \boldsymbol{v} \right\rangle \right. \\ \left. + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{A} + \rho\boldsymbol{v} \cdot \boldsymbol{v}_{A}' - \rho'\boldsymbol{v}_{A}' \cdot \boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \left. - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{A} - \rho'\boldsymbol{v}' \cdot \boldsymbol{v}_{A} + \rho\boldsymbol{v}_{A} \cdot \boldsymbol{v}'\right) \nabla' \cdot \boldsymbol{v}_{A}' \right\rangle \\ \left. + \frac{2}{\gamma(\gamma-1)}\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta c_{s}^{2}\delta\boldsymbol{v} \right\rangle + \frac{2}{\gamma} \left\langle \rho\left(\frac{1}{\gamma-1}\delta c_{s}^{2} - c_{s}^{2}\right) \nabla' \cdot \boldsymbol{v}' - \rho'\left(\frac{1}{\gamma-1}\delta c_{s}^{2} + c_{s}^{2}\right) \nabla \cdot \boldsymbol{v} \right\rangle \\ \left. + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\rho + \rho'\right) \left(\frac{c_{s}^{2}}{\gamma} + \frac{\boldsymbol{v}_{A}^{2}}{2}\right) \boldsymbol{v}' - \left(\rho + \rho'\right) \left(\frac{c_{s}'^{2}}{\gamma} + \frac{\boldsymbol{v}_{A}'^{2}}{2}\right) \boldsymbol{v} \right\rangle \\ \left. - \left\langle \rho'\left(\frac{c_{s}^{2}}{\gamma} + \frac{\boldsymbol{v}_{A}^{2}}{2}\right) \boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} + \rho\left(\frac{c_{s}'^{2}}{\gamma} + \frac{\boldsymbol{v}_{A}'^{2}}{2}\right) \boldsymbol{v} \cdot \frac{\nabla\rho'\rho'}{\rho'} \right\rangle. \end{aligned}$$

$$(5.11)$$

On remarque que la partie constante de l'énergie interne dépendant de ρ_I ne survit pas étant donné que cette énergie n'apparaît que sous forme incrémentale. C'est aussi le cas avec la reformulation (5.10) où l'énergie interne apparaît dérivée. En considérant $\boldsymbol{v}_{\boldsymbol{A}} = 0$, on peut trouver une loi exacte pour le modèle HD compressible polytrope :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle (\delta\rho\boldsymbol{v}) \cdot \delta\boldsymbol{v}\delta\boldsymbol{v} + \frac{2}{\gamma(\gamma-1)}\delta\rho\delta c_s^2\delta\boldsymbol{v} \right\rangle + \left\langle \rho\boldsymbol{v} \cdot \delta\boldsymbol{v}\nabla' \cdot \boldsymbol{v}' - \rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}\nabla \cdot \boldsymbol{v} \right\rangle + \frac{2}{\gamma} \left\langle \rho \left(\frac{1}{\gamma-1}\delta c_s^2 - c_s'^2\right)\nabla' \cdot \boldsymbol{v}' - \rho' \left(\frac{1}{\gamma-1}\delta c_s^2 + c_s^2\right)\nabla \cdot \boldsymbol{v} \right\rangle$$
(5.12)
$$+ \nabla_{\boldsymbol{\ell}} \cdot \left\langle (\rho+\rho')\frac{c_s^2}{\gamma}\boldsymbol{v}' - (\rho+\rho')\frac{c_s'^2}{\gamma}\boldsymbol{v} \right\rangle - \left\langle \rho'\frac{c_s^2}{\gamma}\boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} + \rho\frac{c_s'^2}{\gamma}\boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle.$$

On n'y reconnaît pas la loi proposée par BANERJEE et GALTIER 2014 car ces derniers considèrent $\left\langle \frac{\rho c_s c'_s}{\gamma(\gamma-1)} \right\rangle$ comme fonction de corrélation pour l'énergie interne. Passer de $\left\langle \frac{\rho c'_s}{\gamma(\gamma-1)} \right\rangle$ à $\left\langle \frac{\rho c_s c'_s}{\gamma(\gamma-1)} \right\rangle$ n'a pas été obtenu. Dans les essais effectués, on finissait toujours par supprimer la contribution de l'une et la remplacer par celle de l'autre. L'étude de la convergence de ces différentes formes de fonction de corrélation dans des simulations n'a pas été traitée dans ce travail.

Dans le cas de la fermeture isentrope-isotherme, on peut aussi obtenir un résultat rapidement à partir de (5.9). Après quelques manipulations et introduction d'autres notations, il est alors possible de retrouver la loi proposée par ANDRÉS et SAHRAOUI 2017 comme le montre SIMON et SAHRAOUI 2021.

5.2 Reformulation de la loi K41 générale dépendant d'une pression isotrope

Dans le Chapitre 7, nous dériverons une loi exacte de type K41 pour un modèle où l'isotropie de pression sera relaxée. Y imposer l'isotropie de pression, nous apporte la formulation suivante pour la loi générale (5.9) :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\left(2\delta\boldsymbol{u} - \delta\left(\frac{p_{*}}{\rho}\right)\right) \delta\boldsymbol{v} \right\rangle \\ + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) + 2\rho\left(\delta\boldsymbol{u} - \delta\left(\frac{p}{\rho}\right)\right)\right) \nabla' \cdot \boldsymbol{v}' \right\rangle \\ - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) + 2\rho'\left(\delta\boldsymbol{u} - \delta\left(\frac{p}{\rho}\right)\right)\right) \nabla \cdot \boldsymbol{v} \right\rangle \\ + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' - \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} - \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ + \left\langle \left(\frac{p_{*}}{\rho}\delta\rho - \rho\delta\left(\frac{p_{*}}{\rho}\right)\right) \boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} - \left(\frac{p'_{*}}{\rho'}\delta\rho - \rho'\delta\left(\frac{p_{*}}{\rho}\right)\right) \boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle.$$

(5.13)

Cette formulation est plus élégante que la précédente, car les termes flux apparaissent tous sous la forme de fonctions de structure grâce à l'introduction de $\left\langle \delta\rho\delta\left(\frac{p_*}{\rho}\right)\delta\boldsymbol{v}\right\rangle$, et les termes sources s'écrivent tous sous une forme généralisée du type $\left\langle X\delta Y\nabla' Z'\right\rangle$ ou $\left\langle X'\delta Y\nabla Z\right\rangle$ avec l'opération entre ∇ et Z pouvant être une divergence si Z est une quantité vectorielle (ex : \boldsymbol{v}) ou un gradient ($\frac{\nabla\rho}{\rho} = \nabla (\ln \rho)$). Cette forme rend évident qu'en $\boldsymbol{\ell} = 0$, $\varepsilon = 0$. Le passage d'une forme à l'autre s'effectue en remarquant que les contributions de pression (notée ε_p) et de pression magnétique (notée ε_{pm}) peuvent s'écrire :

$$-4\varepsilon_{p} = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) p \boldsymbol{v}' - \left(1 + \frac{\rho}{\rho'}\right) p' \boldsymbol{v} \right\rangle - 2 \left\langle \rho \frac{p'}{\rho'} \nabla \cdot \boldsymbol{v}' + \rho' \frac{p}{\rho} \nabla \cdot \boldsymbol{v} \right\rangle$$
$$= -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta \rho \delta \frac{p}{\rho} \delta \boldsymbol{v} \right\rangle + \left\langle 2\rho' \delta \left(\frac{p}{\rho}\right) \nabla \cdot \boldsymbol{v} - 2\rho \delta \left(\frac{p}{\rho}\right) \nabla' \cdot \boldsymbol{v}' - \rho \frac{p'}{\rho'} \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} - \rho' \frac{p}{\rho} \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} \right\rangle$$
$$+ \left\langle \left(\delta \rho \frac{p}{\rho} - \rho \delta \left(\frac{p}{\rho}\right)\right) \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} - \left(\delta \rho \frac{p'}{\rho'} - \rho' \delta \left(\frac{p}{\rho}\right)\right) \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} \right\rangle, \tag{5.14}$$

$$-4\varepsilon_{pm} = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) p_{m}\boldsymbol{v}' - \left(1 + \frac{\rho}{\rho'}\right) p'_{m}\boldsymbol{v} \right\rangle - \left\langle \rho \frac{p'_{m}}{\rho'}\boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} + \rho' \frac{p_{m}}{\rho}\boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle + \left\langle \left(\rho \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2} \left(\rho' + \rho\right) \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \right) \nabla' \cdot \boldsymbol{v}' - \left(\rho' \boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} + \frac{1}{2} \left(\rho' + \rho\right) \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \right) \nabla \cdot \boldsymbol{v} \right\rangle = -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho \delta \frac{p_{m}}{\rho} \delta \boldsymbol{v} \right\rangle + \left\langle \left(\delta\rho \frac{p_{m}}{\rho} - \rho\delta \left(\frac{p_{m}}{\rho}\right)\right) \boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} - \left(\delta\rho \frac{p'_{m}}{\rho'} - \rho'\delta \left(\frac{p_{m}}{\rho}\right)\right) \boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle + \frac{1}{2} \left\langle \left(\rho \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \left(\rho \boldsymbol{v}_{\boldsymbol{A}}\right)\right) \nabla' \cdot \boldsymbol{v}' - \left(\rho' \boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta \left(\rho \boldsymbol{v}_{\boldsymbol{A}}\right)\right) \nabla \cdot \boldsymbol{v} \right\rangle.$$
(5.15)

Dans le cas isentrope-polytrope avec $\gamma \neq 1$, $\delta(u - p/\rho) = \delta[(2 - \gamma) \frac{c_s^2}{\gamma(\gamma - 1)}] = (2 - \gamma) \delta u$ et de même, $\delta(2u - p/\rho) = (3 - \gamma) \delta u$. Dans le cas isentrope-isotherme, c'est-à-dire avec $\gamma = 1$ et c_s constant, $\delta(u - p/\rho) = \delta u = (2 - \gamma) \delta u$ et $\delta(2u - p/\rho) = (3 - \gamma) \delta u$. De plus, $p_*/\rho = (1 + \beta) v_A^2/2$. Ainsi, on peut déduire de (5.13), une formulation de la loi exacte isentrope-polytrope valable pour tout γ , incluant donc la fermeture isentrope-isotherme, et dépendant de u, γ et β :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\left(3-\gamma\right)u - \frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\right)\delta\boldsymbol{v} \right\rangle \\ + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) + 2\left(2-\gamma\right)\rho\delta\boldsymbol{u}\right)\nabla' \cdot \boldsymbol{v}' \right\rangle \\ - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) + 2\left(2-\gamma\right)\rho'\delta\boldsymbol{u}\right)\nabla \cdot \boldsymbol{v} \right\rangle \\ + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' - \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right)\nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} - \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}\right)\nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}}' \right\rangle \\ + \left\langle \left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\left(1+\beta\right)\delta\rho - \rho\delta\left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\left(1+\beta\right)\right)\right)\boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle \\ - \left\langle \left(\frac{\boldsymbol{v}_{\boldsymbol{A}}'^{2}}{2}\left(1+\beta'\right)\delta\rho - \rho'\delta\left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\left(1+\beta\right)\right)\right)\boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle.$$

$$(5.16)$$

La réécriture des termes de pression via les formules (5.14) et (5.15) ne dépend pas de l'hypothèse d'isentropie de la zone inertielle. Cette réécriture est aussi applicable dans la loi KHM générale (5.8) qui devient :

$$4\partial_{t}\mathcal{R} = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v}_{A} \right\rangle \right. \\ \left. + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\left(2\delta\boldsymbol{u} - \delta\left(\frac{p_{*}}{\rho}\right)\right) \delta\boldsymbol{v} \right\rangle \right. \\ \left. + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\boldsymbol{v}_{A} \cdot \delta\left(\rho\boldsymbol{v}_{A}\right) + 2\rho\left(\delta\boldsymbol{u} - \delta\left(\frac{p}{\rho}\right)\right)\right) \nabla' \cdot \boldsymbol{v}' \right\rangle \right. \\ \left. - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\boldsymbol{v}_{A}' \cdot \delta\left(\rho\boldsymbol{v}_{A}\right) + 2\rho'\left(\delta\boldsymbol{u} - \delta\left(\frac{p}{\rho}\right)\right)\right) \nabla \cdot \boldsymbol{v} \right\rangle \right. \\ \left. + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{A} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A} - \rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \left. - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{A} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A} - \rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \left. + \left\langle \left(\frac{p_{*}}{\rho}\delta\rho - \rho\delta\left(\frac{p_{*}}{\rho}\right)\right) \boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} - \left(\frac{p'_{*}}{\rho'}\delta\rho - \rho'\delta\left(\frac{p_{*}}{\rho}\right)\right) \boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle \\ \left. - 2\left\langle \frac{\rho}{\rho'}\nabla' \cdot \boldsymbol{q}' + \frac{\rho'}{\rho}\nabla \cdot \boldsymbol{q} \right\rangle \\ \left. + \left\langle \left(\rho' + \rho\right) \left(\boldsymbol{v} \cdot \boldsymbol{f}_{c}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{c} + \boldsymbol{v}_{A} \cdot \boldsymbol{f}_{m}' + \boldsymbol{v}_{A}' \cdot \boldsymbol{f}_{m}\right) \right\rangle. \end{aligned}$$

$$(5.17)$$

5.3 Application à d'autres fermetures et deuxième reformulation

L'approche présentée dans la section 5.1 pour répondre à l'objectif initial est empreinte d'une volonté de généralisation des résultats dans le but de permettre à de futures études de ne pas avoir à redémontrer entièrement une loi exacte pour une nouvelle fermeture. Le résultat obtenu peut même être utilisé pour étudier d'autres situations comme celle proposée par ALUIE *et al.* 2012 et HELLINGER, PAPINI *et al.* 2021, où l'énergie cinétique/magnétique pourrait cascader indépendamment de l'énergie interne, sans transfert de pression. Comme discuté dans la section 4.2, cela revient à supposer une zone inertielle isobare dans laquelle la description de cette cascade d'énergie via une loi exacte ne dépendrait d'aucune grandeur thermodynamique autre que la densité. Elle peut s'obtenir à partir de notre loi exacte générale (5.17) en supposant $\delta u \to 0$ pour supprimer la contribution d'énergie interne et $p \to 0$ pour supprimer celle de p. Ainsi :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \delta\rho\delta\left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\right) \right) \delta\boldsymbol{v} \right\rangle$$

$$-\nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle$$

$$+ \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \right) \nabla' \cdot \boldsymbol{v}' \right\rangle$$

$$- \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \right) \nabla \cdot \boldsymbol{v} \right\rangle$$

$$+ \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' - \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle$$

$$- \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} - \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}\right) \nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle$$

$$+ \left\langle \left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\delta\rho - \rho\delta\left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\right)\right) \boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} - \left(\frac{\boldsymbol{v}_{\boldsymbol{A}}'^{2}}{2}\delta\rho - \rho'\delta\left(\frac{\boldsymbol{v}_{\boldsymbol{A}}^{2}}{2}\right)\right) \boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle.$$
(5.18)

On rappelle que l'utilisation de ce résultat dans le but d'estimer le taux de chauffage turbulent doit a priori être complétée par une estimation du taux de cascade d'énergie interne.

L'hypothèse principale de notre approche étant une zone inertielle isentrope, une contribution y a été omise : la contribution du flux de chaleur. Cette contribution est une fenêtre s'ouvrant sur l'entropie à travers le terme de flux de chaleur présent dans l'équation d'énergie interne, comme on l'a vu dans la section 4.2. De plus, EYINK et DRIVAS 2018 a démontré via la théorie du « coarse-graining » ¹ l'existence d'une cascade d'entropie. Cette cascade impacterait-elle celle d'énergie totale? L'influence du flux de chaleur se limite-t-il bien qu'aux petites échelles, en dehors de la zone inertielle? Ces questions seront posées dans la Partie III mais, ici, on peut déjà répondre à la question : est-il possible d'obtenir analytiquement un terme de type flux dépendant du flux de chaleur dans la description générale (KHM) de la cascade turbulente? La réponse est oui, et elle va même nous permettre de retravailler les termes de pression.

La contribution du flux de chaleur, gardée brute dans la relation KHM générale (5.8) et que l'on va noter ε_q , peut s'écrire :

$$-4\varepsilon_{q} = -2\left\langle \frac{\rho'}{\rho} \nabla \cdot \boldsymbol{q} + \frac{\rho}{\rho'} \nabla' \cdot \boldsymbol{q'} \right\rangle$$
$$= \nabla_{\boldsymbol{\ell}} \cdot \left\langle 2\delta\rho\delta\boldsymbol{q}\delta\left(1/\rho\right) \right\rangle + \left\langle 2\rho\delta\boldsymbol{q}\cdot\nabla'\left(\frac{1}{\rho'}\right) - 2\rho'\delta\boldsymbol{q}\cdot\nabla\left(\frac{1}{\rho}\right) \right\rangle. \quad (5.19)$$

De plus, si l'on compare les termes flux écrits avec la formulation précédente ((5.13)) et auxquels on ajoute celui de flux de chaleur (à gauche) avec les termes flux de l'équation de densité d'énergie totale (4.8) (à droite) :

$$\begin{array}{c|c} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + 2\delta u\right) \delta\boldsymbol{v} \right\rangle & \left| \frac{1}{2} \nabla \cdot \left(\left(\rho\boldsymbol{v}^{2} + \rho\boldsymbol{v}_{\boldsymbol{A}}^{2} + 2\rho u\right) \boldsymbol{v}\right) \\ - \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle & \left| -\nabla \cdot \left(\rho\boldsymbol{v} \cdot \boldsymbol{v}_{\boldsymbol{A}}\boldsymbol{v}_{\boldsymbol{A}}\right) \\ - \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(p_{*}/\rho\right) \delta\boldsymbol{v} \right\rangle & \nabla \cdot \left(p_{*}\boldsymbol{v}\right) \\ \nabla_{\boldsymbol{\ell}} \cdot \left\langle 2\delta\rho\delta\boldsymbol{q}\delta\left(1/\rho\right) \right\rangle & \nabla \cdot \left(\boldsymbol{q}\right), \end{array} \right)$$

^{1.} Cette autre approche de l'étude de la cascade turbulente implique schématiquement un filtrage de type passe-bas des échelles et permet une représentation locale dans l'espace et en échelle.

on peut se demander s'il n'existe pas une formulation de la contribution de pression totale dans la loi exacte qui aurait un signe correspondant à celui présent dans l'équation de densité d'énergie totale. En effet, en s'inspirant de la forme de la fonction de structure dépendant du flux de chaleur, on remarque que la contribution de la pression totale peut s'écrire :

$$-4\varepsilon_{p*} = -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\frac{p_{*}}{\rho}\right)\delta\boldsymbol{v} \right\rangle + \left\langle \left(\delta\rho\frac{p_{*}}{\rho} - \rho\delta\left(\frac{p_{*}}{\rho}\right)\right)\boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle \\ - \left\langle \left(\delta\rho\frac{p_{*}'}{\rho'} - \rho'\delta\left(\frac{p_{*}}{\rho}\right)\right)\boldsymbol{v}' \cdot \frac{\nabla\rho}{\rho} \right\rangle \\ = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \deltap_{*}\delta\left(\frac{1}{\rho}\right)\delta\left(\rho\boldsymbol{v}\right) \right\rangle + \left\langle \delta\left(p_{*}\right)\rho\boldsymbol{v} \cdot \nabla'\left(\frac{1}{\rho'}\right) - \delta\left(p_{*}\right)\rho'\boldsymbol{v}' \cdot \nabla\left(\frac{1}{\rho}\right) \right\rangle.$$

$$(5.20)$$

Le nombre de termes est ainsi réduit de 5 à 3 et la loi KHM générale s'écrit :

$$4\partial_{t}\mathcal{R} = \nabla_{\boldsymbol{\ell}} \cdot \langle (\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} \rangle \delta\boldsymbol{v} - (\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} \rangle \delta\boldsymbol{v}_{\boldsymbol{A}} \rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \langle 2\delta\rho\delta u\delta\boldsymbol{v} + \delta p_{*}\delta\left(1/\rho\right)\delta\left(\rho\boldsymbol{v}\right) + 2\delta\rho\delta\boldsymbol{q}\delta\left(1/\rho\right) \rangle \\ + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) + 2\rho\left(\delta u - \delta\left(\frac{p}{\rho}\right)\right)\right)\nabla' \cdot \boldsymbol{v}' \right\rangle \\ - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) + 2\rho'\left(\delta u - \delta\left(\frac{p}{\rho}\right)\right)\right)\nabla \cdot \boldsymbol{v} \right\rangle \\ + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' - \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right)\nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} - \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}\right)\nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ + \left\langle \left(\rho\boldsymbol{v}\delta\left(p_{*}\right) + 2\rho\delta\boldsymbol{q}\right) \cdot \nabla'\left(\frac{1}{\rho'}\right) - \left(\rho'\boldsymbol{v}'\delta\left(p_{*}\right) + 2\rho'\delta\boldsymbol{q}\right) \cdot \nabla\left(\frac{1}{\rho}\right) \right\rangle \\ + \left\langle \left(\rho' + \rho\right)\left(\boldsymbol{v} \cdot \boldsymbol{f}_{\boldsymbol{c}}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{\boldsymbol{c}} + \boldsymbol{v}_{\boldsymbol{A}} \cdot \boldsymbol{f}_{\boldsymbol{m}}' + \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{f}_{\boldsymbol{m}}\right) \right\rangle.$$

$$(5.21)$$

(5.21)

L'équation (5.21) est la formulation finale de la loi KHM compressible générale décrivant la cascade d'énergie totale à l'aide de la fonction de corrélation :

$$\mathcal{R} = \left\langle \frac{1}{4} \left(\rho' + \rho \right) \boldsymbol{v'} \cdot \boldsymbol{v} + \frac{1}{4} \left(\rho' + \rho \right) \boldsymbol{v'_A} \cdot \boldsymbol{v_A} + \frac{1}{2} \left(\rho' u + \rho u' \right) \right\rangle.$$

Cette formulation rappelle l'équation d'énergie totale générale (4.8) et, tout comme elle, dépend de p, u et q. Cette dépendance reste à définir à l'aide d'une équation de fermeture et/ou à annuler en fonction du type de zone inertielle que l'on veut considérer. Son application dans des données ou des simulations n'impose qu'un postulat, à savoir que les équations de continuité (5.1), vitesse (5.2), induction (5.3) et énergie interne générale (5.4)² soient valides. En fonction du cas d'application, les autres formulations des contributions de pression ε_p (5.14), pression magnétique ε_{pm} (5.15), pression totale ε_{p*} (5.20) et flux de chaleur ε_q (5.19) ou celle en appliquant le premier principe thermodynamique avec l'hypothèse d'isentropie (5.10) pourront tout à fait être préférées.

Par exemple, si l'on veut utiliser l'expression du flux de chaleur en fonction de σ pour obtenir une loi exacte de type K41 dans le cadre d'une zone inertielle de type encore indéfinie (isobare, isentrope ou autre) mais pour un modèle fermé avec la fermeture polytrope, il semble plus à propos d'utiliser la formulation de ε_q dépendant de $\nabla \cdot \boldsymbol{q}$ qui

^{2.} Hors cas isobare.

devient $-4\varepsilon_q = -2\sigma\gamma \left\langle \rho' \frac{p}{\rho} \nabla \cdot \boldsymbol{v} + \rho \frac{p'}{\rho'} \nabla' \cdot \boldsymbol{v'} \right\rangle$ puisque $\nabla \cdot \boldsymbol{q} = \sigma\gamma p \nabla \cdot \boldsymbol{v}$. Ainsi en posant $p_* = \rho \boldsymbol{v'_A}^2 (\beta + 1)/2, c_2^s/\gamma = \boldsymbol{v'_A}^2 \beta/2$ et $\tilde{u} = \frac{1}{\gamma - 1}$ si $\gamma \neq 1$ ou $\ln(\rho/\rho_0)$ si $\gamma = 1$, on obtient :

$$\begin{aligned}
4\partial_{t}\mathcal{R} &= \nabla_{\boldsymbol{\ell}} \cdot \langle (\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v} - (\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v}_{A} \rangle \\
&+ \nabla_{\boldsymbol{\ell}} \cdot \langle \delta\rho\delta\left(\boldsymbol{v}_{A}^{\ 2}\beta\left(\sigma+1\right)\tilde{\boldsymbol{u}}\right) \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{A}^{\ 2}\left(\beta+1\right)/2\right) \delta\left(1/\rho\right) \delta\left(\rho\boldsymbol{v}\right) \rangle \\
&+ \langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\boldsymbol{v}_{A} \cdot \delta\left(\rho\boldsymbol{v}_{A}\right)\right) \nabla' \cdot \boldsymbol{v}' \rangle \\
&+ \langle \left(\rho\delta\left(\boldsymbol{v}_{A}^{\ 2}\beta\left((\sigma\gamma+1)\tilde{\boldsymbol{u}}-1\right)\right) - \sigma\gamma\rho\boldsymbol{v}_{A}^{\ 2}\beta'\right) \nabla' \cdot \boldsymbol{v}' \rangle \\
&- \langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho' \boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\boldsymbol{v}_{A}' \cdot \delta\left(\rho\boldsymbol{v}_{A}\right)\right) \nabla \cdot \boldsymbol{v} \rangle \\
&- \langle \left(\rho'\delta\left(\boldsymbol{v}_{A}^{\ 2}\beta\left((\sigma\gamma+1)\tilde{\boldsymbol{u}}-1\right)\right) + \sigma\gamma\rho'\boldsymbol{v}_{A}^{\ 2}\beta\right) \nabla \cdot \boldsymbol{v} \rangle \\
&+ \langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{A} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A}' - \rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \rangle \\
&- \langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{A} + \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A} - \rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \rangle \\
&+ \langle \left(\rho\boldsymbol{v}\delta\left(\rho\boldsymbol{v}_{A}^{\ 2}\left(\beta+1\right)/2\right)\right) \cdot \nabla'\left(\frac{1}{\rho'}\right) - \left(\rho'\boldsymbol{v}'\delta\left(\rho\boldsymbol{v}_{A}^{\ 2}\left(\beta+1\right)/2\right)\right) \cdot \nabla\left(\frac{1}{\rho}\right) \rangle \\
&+ \langle \left(\rho'+\rho\right)\left(\boldsymbol{v} \cdot \boldsymbol{f}_{c}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{c} + \boldsymbol{v}_{A} \cdot \boldsymbol{f}_{m}' + \boldsymbol{v}_{A}' \cdot \boldsymbol{f}_{m}\right) \rangle .
\end{aligned} \tag{5.22}$$

Dans le cadre d'une zone inertielle isentrope, $\sigma = 0$, et on y retrouve la loi exacte (5.16) écrite avec la dernière formulation des termes de pression totale.

Si le système est fermé de manière isotherme et qu'aucune hypothèse thermodynamique ne contraint la zone inertielle, alors $\gamma = 1$, $\sigma = -1$, c_s^2 est constant et :

$$4\partial_{t}\mathcal{R} = \nabla_{\ell} \cdot \langle (\delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}_{A}) \cdot \delta \boldsymbol{v}_{A}) \delta \boldsymbol{v} - (\delta(\rho \boldsymbol{v}_{A}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v}_{A}) \delta \boldsymbol{v}_{A} \rangle + \nabla_{\ell} \cdot \langle \delta\left(\rho \boldsymbol{v}_{A}^{\prime 2}/2\right) \delta\left(1/\rho\right) \delta\left(\rho \boldsymbol{v}\right) \rangle + c_{s}^{2} \langle \rho \nabla' \cdot \boldsymbol{v}' + \rho' \nabla \cdot \boldsymbol{v} \rangle + \langle \left(\rho \boldsymbol{v} \cdot \delta \boldsymbol{v} + \frac{1}{2} \rho \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}_{A} - \frac{1}{2} \boldsymbol{v}_{A} \cdot \delta\left(\rho \boldsymbol{v}_{A}\right)\right) \nabla' \cdot \boldsymbol{v}' \rangle - \langle \left(\rho' \boldsymbol{v}' \cdot \delta \boldsymbol{v} + \frac{1}{2} \rho' \boldsymbol{v}_{A}' \cdot \delta \boldsymbol{v}_{A} - \frac{1}{2} \boldsymbol{v}_{A}' \cdot \delta(\rho \boldsymbol{v}_{A})\right) \nabla \cdot \boldsymbol{v} \rangle + \langle (2\rho' \boldsymbol{v}' \cdot \delta \boldsymbol{v}_{A} + \delta(\rho \boldsymbol{v}) \cdot \boldsymbol{v}_{A}' - \rho' \boldsymbol{v}_{A}' \cdot \delta \boldsymbol{v}) \nabla \cdot \boldsymbol{v}_{A} \rangle - \langle (2\rho \boldsymbol{v} \cdot \delta \boldsymbol{v}_{A} + \delta(\rho \boldsymbol{v}) \cdot \boldsymbol{v}_{A} - \rho \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}) \nabla' \cdot \boldsymbol{v}_{A}' \rangle + \langle \left(\rho \boldsymbol{v} \delta\left(\rho \boldsymbol{v}_{A}'^{2}/2\right)\right) \cdot \nabla' \left(\frac{1}{\rho'}\right) - \left(\rho' \boldsymbol{v}' \delta\left(\rho \boldsymbol{v}_{A}'^{2}/2\right)\right) \cdot \nabla \left(\frac{1}{\rho}\right) \rangle + \langle (\rho' + \rho) \left(\boldsymbol{v} \cdot \boldsymbol{f}_{c}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{c} + \boldsymbol{v}_{A} \cdot \boldsymbol{f}_{m}' + \boldsymbol{v}_{A}' \cdot \boldsymbol{f}_{m}\right) \rangle .$$
(5.23)

La contribution thermodynamique est alors très simple : $c_s^2 \langle \rho \nabla' \cdot \boldsymbol{v'} + \rho' \nabla \cdot \boldsymbol{v} \rangle$. Sans elle, on obtiendrait la loi KHM décrivant la cascade isobare d'énergie cinétique-magnétique.

La loi exacte KHM (5.22) décrit donc le transfert énergétique à travers les échelles MHD, qu'il existe ou non une zone inertielle, et cela dans tout modèle fermé avec une fermeture thermodynamique polytropique. Elle prend en compte les canaux de dissipation et injection d'énergie ainsi que la contribution du flux de chaleur.

Cette étude analytique analysant la prise en compte des fermetures thermodynamiques dans l'extension compressible de la théorie des lois exactes nous apporte donc un cadre général applicable à toute étude de cascade turbulente dans des modèles MHD avec pression isotrope. On verra dans le Chapitre 9 qu'en ajoutant quelques termes indépendants de la pression, ces résultats seront étendus d'une manière simple au modèle MHD-Hall.

5.4 Synthèse de l'étude analytique de turbulence compressible avec pression isotrope

Equations utilisées pour calculer la loi générale : modèle MHD

$$\partial_t \rho = -\nabla \cdot (\rho \boldsymbol{v}), \qquad (5.24)$$

$$\partial_t \boldsymbol{v} = -\nabla \cdot (\boldsymbol{v}\boldsymbol{v}) + \boldsymbol{v}\nabla \cdot \boldsymbol{v} + \frac{1}{\rho}\nabla \cdot (\rho \boldsymbol{v}_A \boldsymbol{v}_A) - \frac{1}{\rho}\nabla p_* + \boldsymbol{f}_c + \boldsymbol{d}_c, \qquad (5.25)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} + \boldsymbol{f}_{\boldsymbol{m}} + \boldsymbol{d}_{\boldsymbol{m}}, \qquad (5.26)$$

$$\partial_t u = -\nabla \cdot (u\boldsymbol{v}) + u\nabla \cdot \boldsymbol{v} - \frac{1}{\rho} \nabla \cdot \boldsymbol{q} - \frac{p}{\rho} \nabla \cdot \boldsymbol{v}.$$
(5.27)

Fonctions de corrélation d'énergie totale considérées :

$$- \mathcal{R} = \frac{1}{2} \left\langle \frac{1}{2} \left(\rho' + \rho \right) \boldsymbol{v'} \cdot \boldsymbol{v} + \frac{1}{2} \left(\rho' + \rho \right) \boldsymbol{v'_A} \cdot \boldsymbol{v_A} + \rho' u + \rho u' \right\rangle$$

 $- S = \frac{1}{2} \langle \delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} + 2\delta\rho\delta u \rangle, \text{ la fonction incrémentale associée à } \mathcal{R}$ - autres possibilités évoquées section 5.1

Formulations (f1, f2 et f3) des lois exactes générales KHM et K41 et applications aux fermetures isentrope-polytrope et polytrope :

- KHM f1 : (5.8),
- K41 f1 : (5.9),
- K41 isentrope-polytrope f1 : (5.11) [Résultat répondant à l'objectif initial],
- KHM f2 : (5.17),
- K41 f2 : (5.13),
- K41 isentrope-polytrope f2: (5.16),
- KHM f3 : (5.21),
- KHM polytrope f3: (5.22).

Réécriture des contributions de pression et flux de chaleur :

- Prise en compte du premier principe de la thermodynamique et de l'hypothèse d'isentropie dans f1 : (5.10),
- Contributions de pression ε_p (f1 vers f2) : (5.14),
- Contributions de pression magnétique ε_{pm} (f1 vers f2) : (5.15),
- Contributions de pression totale ε_{p*} (f2 vers f3) : (5.20),
- Contributions du flux de chaleur ε_q (f1 et f2 vers f3) : (5.19).

Des applications aux autres fermetures définies dans le Chapitre 4 sont données au fil des sections 5.1, 5.2 et 5.3. Les résultats écrits avec f1 (section 5.1) sont publiés dans SIMON et SAHRAOUI 2021.

ETUDES DE CAS DANS LES DONNÉES IN-SITU

Sommaire

6.1	Données et conditions d'application d'une loi exacte dans des observations issues d'une seule sonde	55
6.2	Comparaison des lois incompressible et compressible-isentrope- polytrope avec $\gamma = 1$ (isotherme) et $\gamma = 5/3$ (adiabatique)	59
6.3	Application statistique préliminaire dans des données locali- sées dans la magnétogaine terrestre	62
6.4	Synthèse de l'étude de cas observationnels issus des données de PSP	65

Ce chapitre résume le travail de comparaison de la loi incompressible PP98 et de deux cas de la loi compressible isentrope-polytrope. Dans le premier cas, elle est fermée tel que $\gamma = 1$ (isotherme) et dans le second, tel que $\gamma = 5/3$ (adiabatique). Cette comparaison est effectuée dans deux jeux de données de compressibilité différente issus de PSP afin de comprendre l'apport de la loi polytrope dans l'estimation du taux de chauffage dans le vent solaire. Ce travail a fait l'objet d'une publication, SIMON et SAHRAOUI 2021, puis a été étendu statistiquement dans le cadre d'une étude préliminaire dans des données relevées dans la magnétogaine terrestre par la mission MMS. La formulation des lois compressibles utilisée est la formulation f1 donnée par la loi exacte générale (5.9).

6.1 Données et conditions d'application d'une loi exacte dans des observations issues d'une seule sonde

Le 12 août 2018, PSP commence son voyage à bord d'une fusée Delta IV-Heavy. Cette mission lancée par la NASA devra s'approcher au maximum du Soleil afin de permettre la compréhension de la dynamique insufflée par le Soleil dans son environnement, du chauffage et de l'accélération de la couronne solaire et du vent solaire à ceux des particules énergétiques [FOX *et al.* 2016]. Un tel objectif résonne avec l'application des lois exactes dans les données afin d'estimer le taux de chauffage turbulent [PARASHAR et MATTHAEUS 2022]. De plus, comme indiqué sur la FIGURE 4.1, le γ estimé près du Soleil est plus proche, voire supérieur, de 5/3 que de 1. Relaxer l'isothermie dans la loi exacte et y regarder une loi polytrope y semble donc plus réaliste.

Pour estimer le taux de chauffage avec une loi exacte MHD, nous avons besoin du champ magnétique et des moments mono-fluides de la fonction de distribution. Ces données sont relevées par deux expériences de PSP (voir la FIGURE 6.1) : Fields Experiments (FIELDS) et Solar Wind Electrons Alpha and Protons Investigation (SWEAP).

FIGURE 6.1 – Localisation des instruments de mesure sur PSP. Les instruments de l'expérience FIELDS sont notés en blanc, et ceux de SWEAP en jaune. Les données utilisées ici proviennent des magnétomètres à saturation (Fluxgate Magnetometers, MAGs) situés sur le bras et de la coupe de Faraday (Faraday Cup, SPC) située juste à côté du bouclier et orientée vers le Soleil. Crédits : la page web de FIELDS (fields.ssl.berkeley.edu) et Johns Hopkins University Applied Physics Laboratory.

FIELDS [BALE, GOETZ et al. 2016] mesure le champ magnétique grâce à deux magnétomètres à saturation (« fluxgate » en anglais), MAGs, mesurant la composante continue (DC) et les fluctuations à basse fréquence (MHD-ionique) du champ, et un de type fluxmètre (« search-coil »), Search-Coil Magnetometer (SCM), donnant accès aux hautes fréquences (ionique-électronique). SWEAP [KASPER et al. 2016] est quant à elle composée d'une coupe de Faraday (« Faraday Cup »), SPC, mesurant les flux globaux ionique et électronique, et d'analyseurs électrostatiques d'ions et d'électrons, Solar Probe Analyzer (SPAN), permettant de séparer leur état de charge. Notre étude concernant plutôt les échelles MHD, les données utilisées proviennent des instruments MAGs et SPC.

Les données publiquement disponibles au moment où cette étude a été menée (fin 2020) provenaient des quatre premières orbites (FIGURE 6.2). Nous avons choisi d'analyser les données relevées lorsque PSP était proche de son premier périhélie atteint le 6 novembre 2018 à 03h27 UTC vers 35.7 Rs. Autour de cette position, les données sont relevées dans le vent solaire près du Soleil. Mais peu de lots de données comprenant conjointement les relevés provenant de SPC et ceux provenant de MAGs étaient assez complets pour

FIGURE 6.2 – Orbites de PSP depuis la date de lancement, le 12 août 2018 à 7h31 UTC. Le premier périhélie à 35.7 Rs a été atteint le 6 novembre 2018 à 03h27 UTC. Crédits : la page web de PSP (http://parkersolarprobe.jhuapl.edu) et Johns Hopkins University Applied Physics Laboratory.

être traités. Finalement, le jeu choisi a été relevé le 4 novembre entre 00h00 et 02h30. Les données provenant de MAGs y sont résolues à une cadence d'environ 7 ms sans temps manquant tandis que celles provenant de SPC sont résolues à 0.873 s et montrent 0.15% de temps manquants situés entre 01h08 et 01h13. Ces trous seront comblés par interpolation linéaire et, afin d'avoir la même cadence, les données MAGs sont rééchantillonnées sur la cadence de SPC. Les données analysées sont montrées sur la FIGURE 6.3.

Les sous-intervalles choisis pour le calcul des taux de cascade sont marqués en rouge et sont associés à deux niveaux de compressibilité différents. La compressibilité noté cest calculée en prenant l'écart-type, std, des fluctuations de densité, c'est-à-dire $c = \operatorname{std}(\frac{\rho-\rho_0}{\rho_0}) = \operatorname{std}(\frac{\delta\rho}{\rho_0})$. Le premier sous-intervalle, de 00h35 à 01h05 a une compressibilité très faible, $c \sim 8\%$, tandis que le second, de 01h45 à 02h15, est plus compressible, $c \sim 20\%$. Grâce à ces deux intervalles, nous pouvons étudier l'impact des différents niveaux de fluctuations de densité sur le taux de cascade calculé avec la loi isentrope-polytrope et la loi incompressible.

Ces choix de sous-intervalles ont été effectués en considérant un certain nombre d'hypothèses permettant de calculer un taux de cascade tout en réduisant l'incertitude du résultat. Les séries étant temporelles, on utilise l'hypothèse de Taylor¹ [TAYLOR 1937] qui présuppose que les variations temporelles relevées par la sonde peuvent être interprétées comme des variations spatiales convectées par le flot de plasma à la vitesse moyenne

^{1.} La validité de l'hypothèse de Taylor dans le vent solaire et en particulier le long de la trajectoire de PSP peut être remise en question [CHHIBER *et al.* 2019; TREUMANN *et al.* 2019] mais l'obtention d'une hypothèse de remplacement est encore une question ouverte [PARASHAR et MATTHAEUS 2022].

FIGURE 6.3 – Données PSP mesurées dans l'héliosphère interne le 4 novembre 2018. (a) à (c) : les trois composantes du champ magnétique dans le système de représentation RTN. (d) : Norme du champ magnétique. (e) : angle entre le champ de vitesse du fluide et le champ magnétique. (f) et (g) : fluctuations de densité et température relative des protons. Les zones rouges représentent les sous-intervalles utilisés pour le calcul des taux de cascade.

 v_0 . Ainsi, on peut estimer l'incrément spatial ℓ à partir de l'incrément temporel τ via $\ell \sim v_0 \tau$. L'utilisation de l'hypothèse de Taylor donne donc accès aux échelles spatiales dans la direction moyenne du flot. Or le couplage entre le champ magnétique et le fluide implique une forte anisotropie entre les directions parallèle et perpendiculaires au champ magnétique. Par conséquent, si l'angle entre la vitesse et le champ magnétique, θ_{VB} , varie trop fortement, d'importantes variations pourront apparaître dans les résultats du taux de cascade, comme l'ont observé [HADID, SAHRAOUI et GALTIER 2017]. Les intervalles ont donc été choisis tel que θ_{VB} soit relativement stationnaire (ligne (e) de la FIGURE 6.3). On a aussi considéré des séries temporelles relativement stationnaires pour les autres quantités afin d'assurer une certaine stationnairé/homogénéité statistique.

L'estimation des moyennes dans le calcul du taux de cascade demande une statistique suffisante, c'est-à-dire des intervalles de durée supérieure à plusieurs fois le temps de corrélation des fluctuations turbulentes [COBURN *et al.* 2015]. [PARASHAR, GOLDSTEIN *et al.* 2020] ont estimé le temps de corrélation des données relevées par PSP entre le 3 et le 10 novembre avec des intervalles glissants de 4h, 8h et 24h. En se fiant à cette estimation, le temps de corrélation pour les données utilisées ici (le 4 novembre entre 00h00 et 02h30) est autour de 500 s, c'est-à-dire un peu moins du tiers de la longueur de nos sous-intervalles (30 min). On supposera donc que leur durée convient au calcul d'un taux de cascade.

Sur la FIGURE 6.4, sont tracés les spectres des fluctuations magnétiques obtenus

FIGURE 6.4 – Spectre des fluctuations magnétiques pour l'intervalle complet de données (bleu), et les sous-intervalles (orange et vert) obtenue avec les données MAGs non rééchantillonnées à la cadence de SPC. La ligne noire continue indique la pente attendue dans la zone MHD (spectre de type Kolmogorov en -5/3) et l'axe vertical la fréquence maximale accessible avec la cadence de SPC.

avec les données MAGs non rééchantillonnées de l'intervalle complet et des deux sousintervalles. Les fréquences qui nous intéressent sont les fréquences inférieures à la cadence de SPC. Pour ces fréquences, la pente des spectres est proche de -5/3 (attendue dans la zone MHD). La loi exacte du modèle MHD dérivée dans le Chapitre 5 y semble donc applicable.

6.2 Comparaison des lois incompressible et compressibleisentrope-polytrope avec $\gamma = 1$ (isotherme) et $\gamma = 5/3$ (adiabatique)

Pour ce qui est de la forme de la loi exacte, l'utilisation d'une seule sonde impose deux autres hypothèses. La première correspond à la négligence des termes sources. En effte, ces derniers ne peuvent pas être calculés à cause de leur dépendance en des dérivées locales (∇ et ∇') qui ne peuvent être estimées qu'avec des missions multi-sondes telles que MMS ou CLUSTER en orbite autour de la Terre [ANDRÉS, SAHRAOUI, GALTIER, HADID, FERRAND *et al.* 2019]. Physiquement, une telle hypothèse pourrait avoir un impact significatif. Mais d'après l'étude numérique de [ANDRÉS, SAHRAOUI, GALTIER, HADID, FERRAND *et al.* 2019] en turbulence MHD subsonique sur une loi exacte isentropeisotherme formulée similairement à (5.9) (formulation qui sera considérée ici), les termes flux donnés ci-dessous (6.2) sont dominants tandis que les autres termes sont négligeables ou se compensent. La deuxième hypothèse est celle d'isotropie des fluctuations qui permet d'intégrer tridimensionnellement la loi exacte dans une boule de rayon $\ell = |\boldsymbol{\ell}|$. Cette hypothèse simplificatrice est largement utilisée [PARASHAR et MATTHAEUS 2022] mais sa validité peut être remise en cause par l'anisotropie du plasma due au champ magnétique². L'expression du taux de cascade calculée ici est alors :

$$\varepsilon = F_1 + F_2, \tag{6.1}$$

avec

$$F_{1} = -\frac{3}{4|\boldsymbol{v}_{0}|\tau} \left\langle (\delta(\rho\boldsymbol{v}) \cdot \delta\boldsymbol{v} + \delta(\rho\boldsymbol{v}_{A}) \cdot \delta\boldsymbol{v}_{A})\delta\boldsymbol{v} - (\delta(\rho\boldsymbol{v}_{A}) \cdot \delta\boldsymbol{v} + \delta(\rho\boldsymbol{v}) \cdot \delta\boldsymbol{v}_{A})\delta\boldsymbol{v}_{A} \right\rangle,$$

$$(6.2)$$

$$F_2 = -\frac{3}{4|\boldsymbol{v}_0|\tau} \left\langle 2\delta\rho\delta u\delta\boldsymbol{v} \right\rangle.$$
(6.3)

 F_1 est la contribution dite Yaglom compressible, ne s'annulant pas dans la limite incompressible, tandis que F_2 est la contribution d'énergie interne, dépendant des fermetures compressibles. ρ et u y sont calculés pour des cas particuliers de la fermeture isentropepolytrope définies dans la TABLE 4.1 :

- incompressible (IMHD) : $\rho = \rho_0$, pas de *u* nécessaire (cette fermeture permet de retrouver la loi PP98),
- isentrope-isotherme (CMHDi) : $u = c_s^2 \ln(\frac{\rho}{\rho_0})$ obtenu avec la fermeture isentropepolytrope et $\gamma = 1$,
- isentrope-adiabatique (CMHDp) : $u = \frac{c_s^2 c_{s0}^2}{\gamma(\gamma 1)}$ obtenu avec la fermeture isentropepolytrope et $\gamma = 5/3$.

La vitesse du son c_s est obtenue grâce à la relation des gaz parfaits $c_s^2 = \gamma k_B T_p/m_p$, avec k_B la constante de Boltzmann, m_p la masse des protons, et T_p la température locale des protons. c_{s0} provient de la relation des gaz parfaits calculée avec la température moyenne des protons.

Sur la FIGURE 6.5 apparaissent les résultats pour les deux sous-intervalles, le quasiincompressible à gauche (1) et le plus compressible à droite (2). La première ligne ((a1) et (a2)) montre l'estimation du taux de cascade avec la fermeture IMHD en bleu, la loi CMHDi en vert et CMHDp en rouge. Sur la deuxième ligne ((b1) et (b2)), la contribution d'énergie interne F_2 est comparée à la contribution F_1 dans les cas isotherme (vert) et adiabatique (rouge). L'impact de la fermeture thermodynamique n'étant portée que par F_2 , le ratio entre les F_2 adiabatique (F_{2p}) et isotherme (F_{2i}) est donné sur la troisième ligne ((c1) et (c2)).

N'est représentée que la valeur absolue des différentes quantités puisque leur signe nécessite des intervalles plus longs pour statistiquement converger [COBURN *et al.* 2015, HADID, SAHRAOUI et GALTIER 2017]. La question de l'inversion de la cascade potentiellement visualisée à travers le signe du taux ne peut donc pas être étudiée ici. Un taux ε en valeur absolue quasi-constant peut par contre témoigner d'une convergence. On va donc utiliser la quasi-constance de ε pour définir une zone inertielle. Pour le premier intervalle, sur le graphique (a1) de la FIGURE 6.5, les ε montrent des variations avant $\tau \sim 10$ s et après $\tau \sim 400$ s et restent quasiment constant au centre. On supposera donc que cette

^{2.} Un taux de cascade incompressible intégré axisymétriquement a été investigué par ANDRÉS, SAHRAOUI, HUANG *et al.* 2022 mais une extension compressible reste à faire.

FIGURE 6.5 – Comparaison des taux de cascade obtenus avec l'expression de la loi exacte (6.1) et les différentes fermetures pour les sous-intervalles {00h35–01h05} (à gauche) et {01h45–02h15} (à droite). (a1)–(a2) : valeur absolue des taux de cascade obtenus avec les fermetures incompressible (IMHD) en bleu, compressibles isentrope-isotherme (CMHDi) en vert et adiabatique (CMHDp) en rouge. (b1)–(b2) : ratio entre la contribution d'énergie interne F_2 (6.3) et celle Yaglom compressible F_1 (6.2) dans le cas isotherme (vert) et le cas adiabatique (rouge). (c1)–(c2) : ratio entre les contributions de l'énergie interne adiabatique F_{2p} et isotherme F_{2i} .

zone centrale correspond à une zone inertielle. À grande échelle, ces variations proviennent de F_1 et se reflètent dans la brusque augmentation apparaissant sur le graphique (b1) de la FIGURE 6.5. Ils s'avère que ces variations sont accompagnées de changements de signe. Pour le second intervalle, sur le graphique (a2) de la FIGURE 6.5, le signe ne varie pas, il reste positif contrairement à ce que pourrait laisser présager le creux apparaissant en $\tau \sim 50$ s. En se fiant à la quasi-constance du niveau de ε , nous limitons l'interprétation d'une zone inertielle à l'intervalle $\tau \in [50; 800]$ s.

Le graphique (a2) de la FIGURE 6.5 met en avant le rôle de la compression dans le taux de cascade : les taux de cascade compressibles sont plus élevés d'un facteur 2 à 3 par rapport au taux incompressible, alors que le graphique (a1) de la FIGURE 6.5 provenant de données bien moins compressible montre des niveaux similaires. Cette observation coïncide avec de précédentes, issues de données du vent solaire [BANERJEE, HADID *et al.* 2016, HADID, SAHRAOUI et GALTIER 2017, ANDRÉS, SAHRAOUI, HADID *et al.* 2021]. Par contre, les deux modèles compressibles montrent les mêmes résultats. La raison de cette convergence est révélée par les graphiques (b1) et (b2) de la FIGURE 6.5 : la contribution de F_2 est bien négligeable devant celle de F_1 . Le facteur 3 observé précédemment provient donc de la prise en compte de la densité dans F_1 . Même si l'impact du terme dépendant de la fermeture à une importance moindre dans le taux total, nous pouvons en examiner l'effet sur les graphiques (c1) et (c2) de la FIGURE 6.5. Aux grandes échelles ($\tau > 100 \,\mathrm{s}$), les deux fermetures apportent une contribution similaire tandis qu'à plus petite échelle (hors de la suspectée zone inertielle pour le deuxième intervalle), un ordre de grandeur de différence apparaît. Dans le cas du premier intervalle, la fermeture isotherme contribue plus que l'adiabatique tandis que dans le cas du deuxième intervalle, c'est le contraire. Une interprétation complète de cette différence de comportement ne peut être apportée avec cette étude de cas et nécessite une analyse statistique. Cette analyse, effectuée ultérieurement par BRODIANO et al. 2022 dans les données PSP montre que $\langle F_2 \rangle$ (en notant $\langle \rangle$ la moyenne sur les échelles et en adoptant nos notations des contributions aux taux de cascade) apparaît statistiquement un à deux ordres de grandeur en dessous de $\langle F_1 \rangle$, et que le facteur 3 entre les taux compressibles et le taux incompressible n'est pas retrouvé sauf pour des cas particuliers. Les cas que nous avons étudiés semblent donc dans la norme pour le premier point vérifié, mais, pour le dernier point, notre deuxième sous-intervalle entre dans la classe des cas particuliers. Ils montrent aussi que plus la compressibilité est forte, plus $\langle F_2 \rangle$ peut venir concurrencer $\langle F_1 \rangle$ voire, pour certains cas, le surpasser. Près du Soleil, ils notent aussi que $\langle F_{2p} \rangle$ est supérieur à $\langle F_{2i} \rangle$ en moyenne.

Cette étude de cas préliminaire, publiée dans SIMON et SAHRAOUI 2021 et validée statistiquement par BRODIANO *et al.* 2022, a donc permis de visualiser l'impact de la compression sur l'estimation du taux de cascade et l'apport potentiel d'une fermeture par rapport à une autre dans des données réelles du vent solaire.

6.3 Application statistique préliminaire dans des données localisées dans la magnétogaine terrestre

Le plasma dans la magnétogaine est plus compressible que dans le vent solaire [HADID, SAHRAOUI, GALTIER et HUANG 2018] et d'après LIVADIOTIS 2018a, $1 < \gamma < 5/3$. Il est aussi exploré par de multiples missions, en particulier des missions multi-sondes comme MMS qui comprend quatre satellites en orbite autour de la Terre depuis 2015 (FIGURE 6.6).

A partir d'une douzaine de cas parmi ceux utilisés par ANDRÉS, SAHRAOUI, GALTIER, HADID, FERRAND *et al.* 2019, nous avons vérifié si l'on retrouve, dans la magnétogaine, les résultats de notre étude de cas effectuée avec les données de PSP. Les données utilisées ont été relevées par les instruments Fast Plasma Investigation (FPI) pour ce qui est des moments de la fonction de distribution des particules, et Fluxgate Magnetometer (FGM), pour le champ magnétique, pendant 12 intervalles de temps entre 2015 et 2017. L'étude, similaire à celle effectuée avec les données de PSP, est menée séparément sur les quatre satellites de la constellation (48 résultats).

Concernant les quantités estimées, les notations sont les mêmes que celles utilisées dans la section 5.3. La FIGURE 6.7 montre l'emplacement des 48 résultats pour lesquels les fluctuations de densité (compressibilité c) varie de 20% à 60% (visualisé via l'échelle de couleur) dans deux diagrammes ayant pour abscisse le rapport entre les taux moyen compressible $\langle \varepsilon_{CMHDp} \rangle$ obtenu avec $\gamma = 5/3$ (loi adiabatique, CMHDp) et incompressible $\langle \varepsilon_{IMHD} \rangle$. Le diagramme de gauche a pour ordonnée le rapport entre les contributions d'énergie interne $\langle F_{2p} \rangle$ et Yaglom compressible $\langle F_1 \rangle$ de la loi adiabatique et celui de droite le rapport entre les contributions d'énergie interne adiabatique et isentrope-isotherme, respectivement $\langle F_{2p} \rangle$ et $\langle F_{2i} \rangle$.

FIGURE 6.6 – Vue d'artiste de la mission MMS. Crédits : la page web de MMS/NASA (https://www.nasa.gov/mission_pages/mms).

FIGURE 6.7 – Résumé de l'étude statistique préliminaire menée sur 12 intervalles des quatre satellites de MMS. Couleurs : compressibilité c de l'intervalle. Abscisses : rapport entre le taux de cascade compressible adiabatique (CMHDp, $\gamma = 5/3$) et incompressible (IMHD). À gauche : pour CMHDp, rapport entre les contributions d'énergie interne F_2 et Yaglom compressible F_1 . À droite : rapport entre les contributions d'énergie interne adiabatique F_{2p} , et isotherme F_{2i} ($\gamma = 1$).

Cette étude révèle de plus importantes fluctuations de densité dans la magnétogaine que celles relevées pour les données de PSP. Dans les cas les plus compressibles, le taux de cascade compressible semble pouvoir doubler par rapport au taux incompressible (points rouges éloignés de la verticale centrale). Cependant, la contribution d'énergie interne moyenne y est encore plus négligeable que dans les données de PSP, 5 à 8 ordres de grandeurs plus faibles que la contribution Yaglom compressible moyenne comme le montre le diagramme de gauche. Sur le diagramme de droite, on voit que $\langle F_{2p} \rangle$ à tendance à être un peu plus faible que $\langle F_{2i} \rangle$ mais qu'il peut aussi être environ deux fois plus important. Cette dernière observation montre un comportement inverse du comportement moyen observé à tout rayon solaire dans le vent solaire par BRODIANO *et al.* 2022, mais demanderait plus de statistique pour être confirmée.

Cette étude dans les données de MMS est restée préliminaire, l'intérêt du travail ayant dévié vers l'effet de l'anisotropie de pression (voir Partie II). Par la suite, une autre contribution pourrait être étudiée grâce à la constellation de satellites de MMS : celles des termes sources, impossible à analyser avec PSP. La caractéristique multi-sondes de cette mission peut en effet permettre le calcul complet des lois exactes compressibles. Cela a, par exemple, été effectué dans le cadre isotherme par ANDRÉS, SAHRAOUI, GALTIER, HADID, FERRAND *et al.* 2019. Il serait aussi intéressant d'étudier dans les données les contributions au taux de cascade apportées par les différentes formulations ayant été analytiquement dérivées dans le chapitre précédent, en particulier les contributions des termes flux dépendant des pressions magnétique et thermodynamique, ou celle du flux de chaleur.

6.4 Synthèse de l'étude de cas observationnels issus des données de PSP

Données choisies : instruments SPC/SWEAP et MAGs/FIELDS présents sur la sonde PSP, mesures relevées le 4 Novembre 2018, comparaison d'un intervalle quasi-incompressible et d'un plus compressible.

Hypothèses nécessaires à l'utilisation de données in-situ issues d'une mission composée d'une seule sonde pour l'estimation de taux de cascade :

- taille d'intervalle supérieure à plusieurs fois le temps de corrélation des fluctuations turbulentes,
- hypothèse de Taylor, $\boldsymbol{\ell} \sim \boldsymbol{v_0} \tau$,
- angle θ_{VB} quasi-stationnaire,
- négligence des termes sources dans la loi exacte, valide si vent subsonique et avec la formulation f1 de la loi exacte MHD,
- intégration isotrope de la loi exacte, validité à nuancer tant que l'angle θ_{VB} reste quasi-stationnaire.

Loi exacte analysée : $\varepsilon = F_1 + F_2$ avec

$$\begin{split} F_1 &= -\frac{3}{4|\boldsymbol{v}_0|\tau} \left\langle (\delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}}) \delta \boldsymbol{v} - (\delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}}) \delta \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ F_2 &= -\frac{3}{4|\boldsymbol{v}_0|\tau} \left\langle 2\delta\rho\delta u\delta \boldsymbol{v} \right\rangle \end{split}$$

Fermetures :

- incompressible : $\rho = \rho_0$, pas de *u* nécessaire,
- is entrope-isotherme : $u=c_s^2\ln(\frac{\rho}{\rho_0})$ et $\gamma=1,$
- isentrope-adiabatique : $u = \frac{c_s^2 c_{s0}^2}{\gamma(\gamma 1)}$ et $\gamma = 5/3$.

Conclusion :

- apport potentiellement substantiel de la compression via la densité dans les termes de type F_1 indépendant de la fermeture,
- apport de la fermeture important dans F_2 à petite échelle,

— F_2 négligeable devant F_1 pour les fermetures compressibles et dans les cas analysés. Ces résultats sont publiés dans SIMON et SAHRAOUI 2021, statistiquement validés par BRODIANO *et al.* 2022 et étendus dans la magnétogaine à travers une étude statistique préliminaire effectuée dans les données de MMS (section 5.3).

CONCLUSION

Depuis 1998 et la loi exacte PP98 étendant aux plasmas Inc-MHD la théorie de Kolmogorov décrivant la cascade turbulente à travers des lois exactes, de multiples extensions ont été proposées prenant en compte la compressibilité.

Dans cette partie I, nous nous sommes concentrés sur l'effet de fermetures thermodynamiques dépendant d'une pression isotrope. Un premier chapitre (synthèse section 4.5) pose le problème de la compressibilité dans les modèles fluides et analyse différentes possibilités de fermeture basées sur la théorie thermodynamique. La question qui se pose alors est celle de l'impact de la compressibilité sur la turbulence. Ma contribution pour y répondre est développée à travers les chapitres 5 et 6.

Dans le Chapitre 5 (synthèse section 5.4), un cadre analytique est démontré à travers l'extension de la théorie des lois exactes. La stratégie mise en œuvre ne repose pas sur une fermeture thermodynamique, contrairement à celles entreprises dans la littérature [Galtier et Banerjee 2011, Banerjee et Galtier 2013, Banerjee et Galtier 2014, ANDRÉS et SAHRAOUI 2017], mais plutôt sur l'équation de densité d'énergie interne. La loi exacte résultante obtient ainsi un caractère général et la fermeture ne devient qu'un « détail », une hypothèse à ne considérer qu'à la fin du calcul en fonction du besoin. Par ce biais, est abordé l'objectif initial de cette partie du travail : obtenir une loi valable dans la zone inertielle isentrope pour une fermeture polytrope décrivant ainsi la cascade turbulente dans les plasmas de manière plus réaliste et versatile que la fermeture isotherme utilisée jusqu'à présent. La première formulation (f1) proposée pour répondre à cet objectif est inspirée du travail dans le cadre isentrope-isotherme de ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK et al. 2018. Elle a permis l'étude comparative, dans deux jeux de données issus de la mission PSP, de l'impact de la compression et des fermetures isentropes-isotherme ($\gamma = 1$) et isentrope-adiabatique ($\gamma = 5/3$) sur la cascade turbulente. Cette étude fait l'objet du Chapitre 6 (synthèse section 6.4) où elle est étendue dans la magnétogaine à travers l'amorçage d'une étude statistique utilisant les données de MMS. L'intérêt de la formulation f1 est que les termes sources impossibles à calculer à cause des caractéristiques de la mission PSP (une seule sonde) ont préalablement été numériquement démontrés comme négligeables dans le taux de cascade total par ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK et al. 2018 dans les cadre isotherme. La deuxième formulation (f_2) de la loi exacte a initialement vu le jour comme une conséquence du travail analytique qui sera présenté dans la partie II, relaxant l'isotropie de pression. Ce résultat, dépendant de p/ρ , peut s'avérer plus adapté à l'application d'une fermeture thermodynamique. La troisième et dernière formulation (f3) est la plus récente et s'inspire du travail sur le flux de chaleur dans l'équation d'énergie interne qui s'est révélé nécessaire lors de l'étude numérique qui sera présentée dans la partie III. Ce résumé des résultats obtenus avec pression isotrope reflète la structure chronologique de l'ensemble du travail effectué et présenté dans ces trois parties, la méthode scientifique mise en œuvre et les points

méthodologiques utilisés.

En termes de physique, cette partie propose un cadre d'étude de l'impact de la compression dans sa forme la plus « simple » : une densité variable, une pression isotrope, une énergie interne et un flux de chaleur souvent négligé. Ces grandeurs nous permettent de fermer le modèle fluide par des relations basées sur des hypothèses thermodynamiques telles que l'isentropie, l'isothermie ou la polytropie. A travers l'analyse de ces hypothèses et leur application dans les anciennes descriptions de la cascade turbulente, quatre possibilités majeures de fermeture ont émergé. La première, isentrope-isotherme, est la première à avoir été utilisée dans l'extension des lois exactes [ANDRÉS et SAHRAOUI 2017; BANERJEE et GALTIER 2013; GALTIER et BANERJEE 2011]. La deuxième, isentrope-polytrope, introduite en HD [BANERJEE et GALTIER 2014], est celle qui nous a permis de généraliser la méthode d'obtention des lois exactes à toutes fermetures en utilisant l'équation d'énergie interne, elle prend en compte l'existence d'un γ et reflète un peu mieux la pluralité de transformations thermodynamiques observée dans les plasmas spatiaux et astrophysiques. La troisième, polytropique, basée sur un γ et un σ , lie le flux de chaleur au travail de pression et étend un peu plus loin les possibilités d'application des lois exactes. De la dernière, isotherme, émerge la loi exacte compressible qui semble la plus simple malgré la prise en compte des flux de chaleur.

Concernant l'impact de la compression et des fermetures observé dans l'étude du taux de cascade dans le vent solaire, l'étude de cas comparative montre que la compression peut jouer un rôle important dans la cascade, mais, dans les cas étudiés, la fermeture isentropeadiabatique ou isentrope-isotherme a peu d'impact malgré le rôle qu'elle joue à travers l'énergie interne. Les termes dominants s'avèrent en effet être ceux n'en dépendant pas. On peut aussi les interpréter comme ceux subsistant dans le cas d'une fermeture isobare. Ce travail pose ainsi les bases d'une étude observationnelle, plus générale, complète et systématique, de l'impact de la compression et des fermetures sur la turbulence dans les plasmas spatiaux. Cette étude est laissée au futur car le vent solaire ayant la particularité d'être peu collisionnel et magnétisé, nous nous sommes intéressés à un autre type de fermeture qui a orienté le travail dans une autre direction : celle de l'effet de l'anisotropie de pression.

PARTIE II : Etude analytique de l'effet de l'anisotropie de pression

La collision de tous les sentiments contradictoires qui l'agitaient avait produit la neutralité, et aucun d'eux n'était capable de lui communiquer le mouvement. Citation extraite de la traduction française de HARDY 1874. Thomas HARDY³ (1849-1927), artiste, écrivain, poète, romancier.

^{3.} LOIN DE LA FOULE DÉCHAINÉE, publiée en version originale anglaise en 1874

INTRODUCTION

Les fonctions de distribution de vitesse des ions observées dans le vent solaire sont généralement anisotropes le long des directions parallèle et perpendiculaires au champ magnétique [MARSCH *et al.* 1981, MATTEINI *et al.* 2007, BALE, KASPER *et al.* 2009]. Le champ magnétique, interagissant avec les ions, rend le milieu anisotrope et les collisions, trop peu nombreuses, échouent à l'isotropiser. Ce type d'anisotropie a tout d'abord été modélisé par [CHEW *et al.* 1956] à travers une pression de forme tensorielle et diagonale (gyrotrope) et supposant l'isentropie du modèle. Ce modèle, nommé Chew-Goldberger-Low (CGL) en hommage aux auteurs, sera présenté plus en détail dans le Chapitre 7 de cette deuxième partie. Il y sera accompagné de l'extension proposée pour la théorie de Kolmogorov, prenant en compte un tenseur de pression. Ensuite dans le Chapitre 8, nous nous poserons la question suivante : l'incompressibilité est-elle compatible avec la gyrotropie de pression? Et, dans le Chapitre 9, nous généraliserons la loi pour la MHD au modèle bi-fluide dépendant des ions et des électrons.

Dans cette partie qui concentre le cœur analytique du travail effectué, nous conserverons l'hypothèse d'une zone inertielle isentrope et nous ne regarderons pas en détail l'impact sur la cascade des composantes non gyrotropes du tenseur de pression.

LOI EXACTE POUR LE MODÈLE CGL

Sommaire

7.1	D'un tenseur de pression dans le modèle fluide au modèle CGL	73
7.2	Instabilités linéaires et potentiel impact sur la turbulence du vent solaire	75
7.3	Loi exacte générale dépendant d'une pression tensorielle et	10
	loi CGL	78
7.4	Synthèse de l'étude analytique de turbulence compressible	
	avec pression tensorielle et modèle CGL	83

Dans le vent solaire, utiliser un modèle MHD compressible avec pression isotrope peut s'avérer ardu à justifier en présence d'un champ magnétique et d'un faible nombre de collisions. Il faut prendre en compte, a minima, une pression gyrotrope par exemple en utilisant le modèle dit CGL. C'est le but de ce chapitre : décrire la cascade turbulente d'énergie totale à travers une loi exacte associée au modèle CGL. Encore une fois, on ne réduira le champ d'application qu'après avoir obtenu une loi plus générale, valable pour tout tenseur de pression. Les nouveaux résultats exposés ici ont fait l'objet principal de l'article [SIMON et SAHRAOUI 2022].

7.1 D'un tenseur de pression dans le modèle fluide au modèle CGL

Dans le cadre général défini à partir de l'équation de Vlasov et menant au modèle MHD, la pression et le flux de chaleur sont définis comme des tenseurs d'ordre 2 et 3 respectivement. La pression, \overline{P} , est un tenseur symétrique obtenu en effectuant le produit de deux vecteurs vitesse tandis que le flux de chaleur s'obtient à partir du produit de trois vecteurs vitesse.

Dans la Partie I, la pression était supposée isotrope, c'est à dire $\overline{P} = p\overline{I}$ avec \overline{I} le tenseur identité. Dans le modèle CGL, elle est définie comme gyrotrope par rapport à la direction du champ magnétique, notée **b**. On considère donc deux pressions, une dite parallèle p_{\parallel} et une perpendiculaire p_{\perp} . Dans un repère cartésien orienté tel que **b** coïncide avec la direction e_z , le tenseur s'écrit :

$$\overline{\boldsymbol{P}} = \left(\begin{array}{ccc} p_{\perp} & 0 & 0\\ 0 & p_{\perp} & 0\\ 0 & 0 & p_{\parallel} \end{array} \right).$$

Plus généralement, on peut l'écrire $\overline{P} = p_{\perp}\overline{I} + (p_{\parallel} - p_{\perp}) bb$. La partie isotrope de la pression, $p = \frac{1}{3}\overline{P} : \overline{I} = \frac{1}{3} (2p_{\perp} + p_{\parallel})$, est obtenue en faisant le produit dual ":" entre \overline{P} et \overline{I} , ce qui revient à considérer la trace de \overline{P} . Cela permet de réécrire le tenseur de pression en séparant la partie isotrope de la composante dite anisotrope, $\overline{\Pi} = (p_{\parallel} - p_{\perp}) (bb - \frac{1}{3}\overline{I})$. Ainsi, la pression s'écrit $\overline{P} = p\overline{I} + \overline{\Pi}$. Dans le cas général non-gyrotrope, d'autres composantes apparaissent. On n'abordera pas leur détail et on les résumera simplement par la notation $\overline{\Pi}_{ng}$. D'après CASSAK et BARBHUIYA 2022, $\overline{\Pi} = (p_{\parallel} - p_{\perp}) (bb - \frac{1}{3}\overline{I}) + \overline{\Pi}_{ng}$ contribue à la déformation incompressible du fluide via la contrainte normale/longitudinale et le cisaillement à travers le terme $\overline{P} : \nabla v$ tandis que p résulte en sa dilatation, compressible. En mécanique des fluides, ces termes de pression anisotrope sont souvent une réécriture des termes de dissipation visqueuse, d'où leur interprétation dissipative.

On rappelle le modèle non fermé dépendant des moments $\rho, \boldsymbol{v}, \overline{\boldsymbol{P}}$ et $\overline{\boldsymbol{q}}$ et de la loi d'Ohm MHD exprimée à travers l'équation d'induction (7.4) :

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0,$$
 (7.1)

$$\partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} - \rho \boldsymbol{v}_A \boldsymbol{v}_A \right) + \nabla \overline{\boldsymbol{P}_*} = 0, \qquad (7.2)$$

$$\partial_t \overline{\boldsymbol{P}} + \nabla \cdot \left(\boldsymbol{v} \overline{\boldsymbol{P}} \right) + \left(\overline{\boldsymbol{P}} \cdot \nabla \boldsymbol{v} \right)^S + \omega_{ce} \frac{|\boldsymbol{v}_A|}{v_{A0}} \left(\boldsymbol{b} \times \overline{\boldsymbol{\Pi}}_{ng} \right)^S = -\nabla \cdot \overline{\boldsymbol{q}}, \quad (7.3)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) + \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} = 0, \qquad (7.4)$$

sachant que $\mathbf{b} \times \overline{\mathbf{I}} = 0$ et $\mathbf{b} \times \mathbf{bb} = 0$, et en notant $\overline{\mathbf{P}_*} = \overline{\mathbf{P}} + p_m \overline{\mathbf{I}}$, le tenseur de pression totale. Aucune hypothèse sur la forme des tenseurs de pression et flux de chaleur n'est faite dans ce modèle.

Ce modèle peut nous servir à obtenir une loi exacte générale sur l'énergie totale applicable sous l'hypothèse d'une cascade isentrope, quelles que soient les formes de la pression et du flux de chaleur. En effet, comme dans le cas avec pression isotrope, l'équation (7.3) ne servira pas dans la dérivation de la loi exacte. On utilisera seulement l'équation d'énergie interne que l'on peut obtenir à partir de l'équation sur la composante isotrope du tenseur de pression :

$$\partial_t p + \nabla \cdot (p\boldsymbol{v}) + \frac{2}{3} \overline{\boldsymbol{P}} : \nabla \boldsymbol{v} = -\frac{1}{3} \nabla \cdot \left(\overline{\overline{\boldsymbol{q}}} : \overline{\boldsymbol{I}}\right)$$
(7.5)

puisque, $\overline{\Pi}_{ng}$ étant symétrique, $(\boldsymbol{b} \times \overline{\Pi}_{ng})$: $\overline{\boldsymbol{I}} = 0$. L'énergie interne sera définie par $\rho u = \frac{1}{2}\overline{\boldsymbol{P}}$: $\overline{\boldsymbol{I}} = \frac{3}{2}p = \frac{1}{2}(2p_{\perp} + p_{\parallel})$, la dernière formulation étant associée au cas particulier gyrotrope [HAZELTINE *et al.* 2013]. On retrouve donc l'équation (4.29) écrite pour un tenseur de pression quelconque :

$$\partial_t \left(\rho u\right) + \nabla \cdot \left(\rho u \boldsymbol{v}\right) + \overline{\boldsymbol{P}} : \nabla \boldsymbol{v} = -\frac{1}{2} \nabla \cdot \left(\overline{\overline{\boldsymbol{q}}} : \overline{\boldsymbol{I}}\right).$$
(7.6)

Cette équation est assez générale et peut être obtenue indépendamment de l'expression de u en fonction de p et de l'équation (7.3), avec un bilan énergétique, comme celui que l'on a effectué dans le Chapitre 4 [ECKART 1940; HAZELTINE *et al.* 2013]. On peut y faire apparaître l'isentropie à travers l'hypothèse : $\nabla \cdot (\overline{\overline{q}} : \overline{I}) = 0$.

La fermeture CGL consiste à annuler la divergence du flux de chaleur $\nabla \cdot \overline{\overline{q}}$ dans l'équation (7.3) et à considérer un tenseur de pression de forme gyrotrope. L'équation tensorielle de pression prend alors la forme de deux équations (voir [HUNANA *et al.* 2019]

pour les détails de dérivations) :

$$\partial_t p_{\parallel} + \nabla \cdot (p_{\parallel} \boldsymbol{v}) + 2p_{\parallel} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = 0$$
(7.7)

$$\partial_t p_\perp + \nabla \cdot (p_\perp \boldsymbol{v}) + p_\perp \nabla \cdot \boldsymbol{v} - p_\perp \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = 0$$
(7.8)

En les sommant, on retrouve l'équation d'énergie interne (7.6) avec l'hypothèse d'isentropie. Pour simplifier les calculs dans cette Partie II, nous supposerons, dans le cas général, $\nabla \cdot \overline{\overline{q}} = 0$ (équation (7.3)). Cette hypothèse est, comme on vient de le voir, cohérente avec l'hypothèse d'isentropie de la cascade turbulente et avec le modèle CGL qui nous intéresse. Elle pourra être facilement relaxée, si besoin est, en prenant en compte, dans la loi exacte, la correction (5.19) qui a été dérivée dans la section 5.3.

En manipulant les équations de pression du modèle CGL (7.7) et (7.8) avec l'équation d'induction (7.4), on obtient les formes conservatives :

$$d_t \left(\frac{p_{\parallel} \boldsymbol{v_A}^2}{\rho^2}\right) = 0 \qquad d_t \left(\frac{p_{\perp}}{\rho^{3/2} |\boldsymbol{v_A}|}\right) = 0 \tag{7.9}$$

De ce lien entre $p_{\parallel,\perp}$ et des puissances de ρ proviennent la deuxième appellation du modèle, « bi-adiabatique », ainsi que les formes explicites des pressions $p_{\parallel} \propto \frac{\rho^2}{\boldsymbol{v}_A^2}$ et $p_{\perp} \propto \rho^{3/2} |\boldsymbol{v}_A|$.

7.2 Instabilités linéaires et potentiel impact sur la turbulence du vent solaire

Les anisotropies de pression peuvent rendre le plasma instable. On utilise la théorie linéaire pour approcher ce problème comme on a approché celui des ondes d'Alfvén et magnétosonores dans les modèles MHD (voir Chapitres 3 et 4). Le pendant non linéaire de ces instabilités est en effet difficile à établir.

La linéarisation du modèle CGL¹, nous donne l'équation de dispersion $\overline{M} \cdot v_1 = 0$ avec :

$$\overline{M} = \begin{pmatrix} M_{xx} & 0 & -\frac{\beta_{\parallel 0}}{2} a_{p0} \frac{k_{\perp}}{k_{\parallel}} \\ 0 & M_{yy} & 0 \\ -\frac{\beta_{\parallel 0}}{2} a_{p0} \frac{k_{\perp}}{k_{\parallel}} & 0 & \frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} - \frac{3}{2} \beta_{\parallel 0} \end{pmatrix}$$
(7.10)

 et

$$M_{xx} = \frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} - \left(\beta_{\parallel 0} a_{p0} + 1\right) \frac{k_{\perp}^2}{k_{\parallel}^2} + \left(\frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0}\right) - 1\right),$$

$$M_{yy} = \frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} + \left(\frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0}\right) - 1\right).$$

 $a_{p0} = \frac{p_{\perp 0}}{p_{\parallel 0}}$ est le taux d'anisotropie et $\beta_{\parallel 0} = \frac{2p_{\parallel 0}}{\rho_0 v_{A0}^2}$ est le paramètre β linéaire du plasma calculé avec la pression parallèle. La relation de dispersion s'écrit alors :

$$0 = \left(\frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - 1 + \frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0}\right)\right) \left(\frac{\omega^2}{k^2 v_{A0}^2} - \frac{1}{2} \left(A \pm \sqrt{A^2 - 4B}\right)\right)$$
(7.11)

^{1.} Voir méthode dans la section-synthèse 3.4 du Chapitre 3 et pour plus de détails, le chapitre 3 de HUNANA $et\ al.$ 2019.

avec

A

$$A = 1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{2} \cos^2 \theta \right) + \beta_{\parallel 0} \cos^2 \theta,$$

$$B = \frac{3}{2} \beta_{\parallel 0} \cos^2 \theta \left(\left(1 - \frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0} \right) \right) \cos^2 \theta + \left(1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{6} a_{p0} \right) \right) \sin^2 \theta \right)$$

$$= \frac{3}{2} \beta_{\parallel 0} \cos^2 \theta \left(1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{2} \cos^2 \theta \right) - \frac{\beta_{\parallel 0}}{2} \cos^2 \theta - \frac{1}{6} \beta_{\parallel 0} a_{p0}^2 \sin^2 \theta \right),$$

$$P^2 - 4B = \left(1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{2} \cos^2 \theta \right) - \beta_{\parallel 0} \cos^2 \theta \right)^2 + 3\beta_{\parallel 0}^2 \cos^4 \theta + \beta_{\parallel 0} a_{p0}^2 \sin^2 \theta.$$

Dans le premier mode $\frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} + \left(\frac{\beta_{\parallel 0}}{2} (1 - a_{p0}) - 1\right) = 0$, on retrouve le mode d'Alfvén incompressible si $a_{p0} = 1$. Il est polarisé tel que $\boldsymbol{v_1} \propto (0, 1, 0)$. Ce mode est instable si $1 - \frac{\beta_{\parallel 0}}{2} (1 - a_{p0}) < 0$. Cette instabilité est appelée « firehose » (« lance d'incendie » ou « tuyau d'arrosage »). Son nom provient du comportement des tubes de flux magnétique qui ressemble à celui d'un tuyau d'arrosage devenu fou après avoir été lâché par son utilisateur².

Les deux autres modes visibles dans la relation (7.11) sont les modes magnétosonores rapide (+) et lent (-) du modèle CGL. Même en y considérant $a_{p0} = 1$, il est impossible de retrouver les modes magnétosonores MHD dans les expressions des modes CGL. Cela est dû à l'utilisation des équations de pression dans le calcul pour obtenir les relations de dispersion. D'après l'expression de $A^2 - 4B$, le mode rapide va rester stable. Le mode lent peut quant à lui devenir instable si B < 0. Cela peut arriver dans deux cas de figure :

 $-1 - \frac{\beta_{\parallel 0}}{2}(1 - a_{p0}) < 0 \text{ correspondant à l'instabilité firehose, qui est dans ce cas nommée firehose parallèle puisqu'elle apparaît principalement si <math>k_{\parallel} \gg k_{\perp}$,

— $1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{6} a_{p0} \right) < 0$ correspondent à l'instabilité dite « miroir ».

L'expression du critère d'instabilité miroir est légèrement différente de celle provenant de la théorie linéaire cinétique à cause du facteur 1/6 [KULSRUD 1983, FERRIÈRE et ANDRÉ 2002]. Ce facteur d'erreur translate la condition nécessaire pour qu'il y ait des instabilités miroir à $a_{p0} > 6$ au lieu de $a_{p0} > 1$, comme on peut le voir sur la FIGURE 7.1. La condition nécessaire pour qu'il y ait apparition d'instabilité firehose est, quant à elle, $a_{p0} < 1$ ce qui est en accord avec la théorie cinétique. Dans le vent solaire, ces critères d'instabilité semblent avoir un impact majeur puisque l'état du plasma semble maintenu, sur les diagrammes $a_p - \beta_{\parallel}$, dans une zone qu'ils semblent délimiter, comme l'a observé HELLINGER, TRÁVNÍČEK *et al.* 2006 dans les données relevées par la sonde Wind (WIND).

Dans le Chapitre 3, nous avons rappelé l'importance des ondes d'Alfvén dans les théories de turbulence et, dans le Chapitre 4, que le sujet de l'impact des ondes compressibles MHD sur la cascade turbulente est toujours ouvert [BRODIANO *et al.* 2021]. Similairement, on peut se demander quel est l'impact des instabilités sur la turbulence? Et en

^{2.} Soit un tube de flux magnétique que l'on perturbe légèrement en le courbant avec un rayon R. Sa tension correspond à la force de pression magnétique qui s'écrit $\rho_0 v_{A0}^2/R$. La pression parallèle (liée à v_{\parallel}^2) va induire une force centrifuge en $\rho_0 v_{\parallel}^2/R$ poussant le plasma dans le tube vers l'extérieur de la courbe. La pression perpendiculaire correspondant à la pression thermique du plasma à l'extérieur du tube, induit une force de pression en $p_{\perp 0}/R$. Si $p_{\parallel 0} > p_{\perp 0} + 2p_{m0}$ (critère d'instabilité firehose), la force centrifuge ne sera pas compensée par la force externe et la tension du tube. La courbe va se resserrer, le rayon diminué et la perturbation s'amplifier.

FIGURE 7.1 – Zones de stabilité du modèle CGL (zone grisée). Critères d'instabilité firehose (bleu), miroir (orange) et miroir cinétique (vert). Horizontale $a_p = 1$ en gris.

particulier, quelle est l'influence des instabilités des ondes d'Alfvén (firehose) sur la turbulence Alfvénique?

Si l'on regarde les résultats des études de la température isotrope [LIU *et al.* 2006], des fluctuations magnétiques [BALE, KASPER *et al.* 2009] et du taux de cascade incompressible [OSMAN *et al.* 2013] (voir FIGURE 7.2) dans les données relevées par WIND et ceux du taux compressible isotherme observés par HADID, SAHRAOUI, GALTIER et HUANG 2018 dans les données des missions Time History of Events and Macroscale Interactions during Substorms (THEMIS) et CLUSTER, on remarque que sur les diagrammes $a_p - \beta_{\parallel}$, près des frontières des zones instables, la température des protons semble plus élevée, et les fluctuations du champ magnétique ainsi que les taux de cascade plus importants. Mais la relation entre instabilités et turbulence reste à clarifier : le plasma est-il plus chaud et turbulent parce que les instabilités jouent un rôle dans son chauffage? Ce chauffage s'effectue-t-il via la cascade turbulente ? Ou est-ce lié à l'âge collisionnel du plasma comme le propose BALE, KASPER *et al.* 2009 ?

De multiples études se sont attaquées à ces questions à travers des comparaisons de spectres, du taux d'anisotropie de pression et des taux de croissance des instabilités cinétiques linéaires et quasi-linéaires. Parmi les plus récentes, on notera QUDSI *et al.* 2020, MARKOVSKII et VASQUEZ 2022, OPIE *et al.* 2022, BANDYOPADHYAY *et al.* 2022, NAVARRO et MOYA 2023. De notre côté, nous l'attaquons analytiquement à partir des échelles fluides et de la théorie des lois exactes, dans le but d'offrir un cadre fluide permettant d'étudier plus rigoureusement l'impact des anisotropies et instabilités de pression sur la cascade turbulente.

FIGURE 7.2 – Distribution statistique en fonction de $a_p = \frac{p_\perp}{p_\parallel} = \frac{T_\perp}{T_\parallel}$ et β_\parallel d'échantillons relevés entre 1995 et 2011 dans le vent solaire par la sonde WIND en orbite autour de la Terre. Pour chacun d'eux, le taux de cascade est calculé avec la loi exacte PP98 et indiqué par l'échelle chromatique. Les courbes pointillées indiquent les frontières associées aux instabilités cinétiques miroir (décroissante supérieure), cyclotron (décroissante inférieure) et firehose (croissante). [Crédits : OSMAN *et al.* 2013.]

7.3 Loi exacte générale dépendant d'une pression tensorielle et loi CGL

Pour obtenir une loi exacte pour le modèle Chew-Goldberger-Low (CGL), nous avons utilisé la méthode mise en place dans le Chapitre 5, c'est-à-dire prendre en compte l'équation d'énergie interne (7.6) et non la forme explicite des pressions parallèle et perpendiculaire (7.9). Le modèle utilisé est donc :

$$\partial_t \rho = -\nabla \cdot (\rho \boldsymbol{v}), \qquad (7.12)$$

$$\partial_t \boldsymbol{v} = -\nabla \cdot (\boldsymbol{v}\boldsymbol{v}) + \boldsymbol{v}\nabla \cdot \boldsymbol{v} + \frac{1}{\rho}\nabla \cdot (\rho \boldsymbol{v}_A \boldsymbol{v}_A) - \frac{1}{\rho}\nabla \cdot \overline{\boldsymbol{P}_*} + \boldsymbol{f_c} + \boldsymbol{d_c}, \quad (7.13)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} + \boldsymbol{f}_{\boldsymbol{m}} + \boldsymbol{d}_{\boldsymbol{m}}, \quad (7.14)$$

$$\partial_t u = -\nabla \cdot (u\boldsymbol{v}) + u\nabla \cdot \boldsymbol{v} - \frac{\boldsymbol{P}}{\rho} : \nabla \boldsymbol{v}.$$
(7.15)

De manière cohérente avec les choix effectués dans le Chapitre 5, la fonction de corrélation d'énergie totale choisie est $\mathcal{R} = \mathcal{R}_c + \mathcal{R}_m + \mathcal{R}_u$ avec $\mathcal{R}_c = \left\langle \frac{1}{4} \left(\rho' + \rho \right) \boldsymbol{v}' \cdot \boldsymbol{v} \right\rangle$, $\mathcal{R}_m = \left\langle \frac{1}{4} \left(\rho' + \rho \right) \boldsymbol{v}'_{\boldsymbol{A}} \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle$ et $\mathcal{R}_u = \frac{1}{2} \left\langle \rho' u + \rho u' \right\rangle$.

En appliquant la même méthode que celle utilisée pour obtenir (5.5), (5.6) et (5.7),

on obtient l'évolution temporelle des fonctions de corrélation associées à chaque énergie :

- Énergie cinétique : $\mathcal{R}_c = \langle (\rho' + \rho) \, \boldsymbol{v'} \cdot \boldsymbol{v} \rangle / 4$

$$4\partial_{t}\mathcal{R}_{c} = \nabla_{\boldsymbol{\ell}} \cdot \langle \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}\delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}\delta\boldsymbol{v}_{\boldsymbol{A}} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\delta\boldsymbol{v}_{\boldsymbol{A}}\right) \rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \langle \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}\boldsymbol{v}_{\boldsymbol{A}} - \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \boldsymbol{v}'\boldsymbol{v}_{\boldsymbol{A}}' - \rho'\boldsymbol{v}' \cdot \boldsymbol{v}_{\boldsymbol{A}}\boldsymbol{v}_{\boldsymbol{A}}' + \rho\boldsymbol{v} \cdot \boldsymbol{v}_{\boldsymbol{A}}\boldsymbol{v}_{\boldsymbol{A}} \rangle \\ + \langle \delta\boldsymbol{v} \cdot \left(\rho\boldsymbol{v}\nabla' \cdot \boldsymbol{v}' - \rho'\boldsymbol{v}'\nabla \cdot \boldsymbol{v}\right) + 2\delta\boldsymbol{v}_{\boldsymbol{A}} \cdot \left(\rho'\boldsymbol{v}'\nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - \rho\boldsymbol{v}\right)\nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}}' \rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \rho'\frac{\overline{P_{*}}}{\rho} \cdot \boldsymbol{v}' - \rho\frac{\overline{P_{*}'}}{\rho'} \cdot \boldsymbol{v} + \overline{P_{*}} \cdot \boldsymbol{v}' - \overline{P_{*}'} \cdot \boldsymbol{v} \right\rangle \\ - \left\langle \frac{\rho'}{\rho}\boldsymbol{v}' \cdot \overline{P_{*}} \cdot \frac{\nabla\rho}{\rho} + \frac{\rho}{\rho'}\boldsymbol{v} \cdot \overline{P_{*}'} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle \\ + \left\langle \left(\rho' + \rho\right)\left(\boldsymbol{v} \cdot \boldsymbol{f}_{c}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{c}\right)\right\rangle + \left\langle \left(\rho' + \rho\right)\left(\boldsymbol{v} \cdot \boldsymbol{d}_{c}' + \boldsymbol{v}' \cdot \boldsymbol{d}_{c}\right)\right\rangle. \quad (7.16)$$

— Énergie magnétique : $\mathcal{R}_m = \langle (\rho' + \rho) \, \boldsymbol{v'_A} \cdot \boldsymbol{v_A} \rangle \, /4$

$$4\partial_{t}\mathcal{R}_{m} = \nabla_{\ell} \cdot \langle \delta\left(\rho \boldsymbol{v}_{A}\right) \cdot \delta \boldsymbol{v}_{A} \delta \boldsymbol{v} \rangle -\nabla_{\ell} \cdot \langle \rho' \boldsymbol{v}_{A}' \cdot \boldsymbol{v} \boldsymbol{v}_{A} - \rho \boldsymbol{v}_{A} \cdot \boldsymbol{v}' \boldsymbol{v}_{A}' - \rho' \boldsymbol{v}' \cdot \boldsymbol{v}_{A} \boldsymbol{v}_{A}' + \rho \boldsymbol{v} \cdot \boldsymbol{v}_{A}' \boldsymbol{v}_{A} \rangle + \left\langle \left(\rho \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}_{A} - \frac{1}{2} \left(\rho' + \rho\right) \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}\right) \nabla' \cdot \boldsymbol{v}' \right\rangle - \left\langle \left(\rho' \boldsymbol{v}_{A}' \cdot \delta \boldsymbol{v}_{A} + \frac{1}{2} \left(\rho' + \rho\right) \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}\right) \nabla \cdot \boldsymbol{v} \right\rangle + \left\langle \left(\rho' \boldsymbol{v}_{A}' \cdot \boldsymbol{v} - \rho \boldsymbol{v} \cdot \boldsymbol{v}_{A}'\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle + \left\langle \left(\rho' \boldsymbol{v}' \cdot \boldsymbol{v}_{A} - \rho \boldsymbol{v}_{A} \cdot \boldsymbol{v}'\right) \nabla' \cdot \boldsymbol{v}_{A}' \right\rangle + \left\langle \left(\rho' + \rho\right) \left(\boldsymbol{v}_{A} \cdot \boldsymbol{f}_{m}' + \boldsymbol{v}_{A}' \cdot \boldsymbol{f}_{m}\right) \right\rangle + \left\langle \left(\rho' + \rho\right) \left(\boldsymbol{v}_{A} \cdot \boldsymbol{d}_{m}' + \boldsymbol{v}_{A}' \cdot \boldsymbol{d}_{m}\right) \right\rangle.$$
(7.17)

— Énergie interne : $\mathcal{R}_u = \langle \rho' u + \rho u' \rangle / 2$

$$2\partial_{t}\mathcal{R}_{u} = \nabla_{\boldsymbol{\ell}} \cdot \langle \delta\rho\delta u\delta\boldsymbol{v} \rangle + \langle \rho\delta u\nabla' \cdot \boldsymbol{v}' - \rho'\delta u\nabla \cdot \boldsymbol{v} \rangle - \left\langle \rho'\frac{\overline{\boldsymbol{P}}}{\rho} : \nabla\boldsymbol{v} + \rho\frac{\overline{\boldsymbol{P}'}}{\rho'} : \nabla'\boldsymbol{v}' \right\rangle.$$
(7.18)

Le résultat pour l'énergie magnétique n'est pas influencé par le type de pression (tensoriel ou isotrope) contrairement à ceux des énergies cinétique et interne. La question qui s'est posée alors était : est-il possible d'améliorer la formulation des termes dépendant de la pression ? Autrement dit, est-il possible de faire apparaître l'influence de la pression dans les termes de type flux sous la forme d'une fonction de structure ? En remarquant que \overline{P} ou $\overline{P_*}$ est, dans tous les termes, accompagné de $\frac{1}{\rho}$ pris au même point, l'idée de travailler sur la fonction de structure $\left< \delta \rho \delta \frac{\overline{P}}{\rho} \cdot \delta v \right>$ puis sur la fonction $\left< \delta \rho \delta \frac{\overline{P_*}}{\rho} \cdot \delta v \right>$ a émergé. Développer cette dernière sous la divergence locale en utilisant l'hypothèse d'homogénéité statistique et l'indépendance des positions \boldsymbol{x} et $\boldsymbol{x'}$ donne alors :

$$\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta \rho \delta \overline{\frac{\boldsymbol{P}_{\star}}{\rho}} \cdot \delta \boldsymbol{v} \right\rangle = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left[\rho \overline{\frac{\boldsymbol{P}_{\star}}{\rho'}} \cdot \boldsymbol{v} - \rho' \overline{\frac{\boldsymbol{P}_{\star}}{\rho}} \cdot \boldsymbol{v}' \right] + \left[\overline{\boldsymbol{P}_{\star}} \cdot \boldsymbol{v}' - \overline{\boldsymbol{P}_{\star}'} \cdot \boldsymbol{v} \right] \right\rangle$$
$$+ \nabla_{\boldsymbol{\ell}} \cdot \left\langle \rho' \overline{\frac{\boldsymbol{P}_{\star}}{\rho}} \cdot \boldsymbol{v} - \rho \overline{\frac{\boldsymbol{P}_{\star}'}{\rho'}} \cdot \boldsymbol{v}' \right\rangle.$$

On peut donc exprimer $\nabla_{\boldsymbol{\ell}} \cdot \left\langle \rho' \frac{\overline{P_*}}{\rho} \cdot \boldsymbol{v'} - \rho \frac{\overline{P'_*}}{\rho'} \cdot \boldsymbol{v} \right\rangle$ ou $\nabla_{\boldsymbol{\ell}} \cdot \left\langle \overline{P_*} \cdot \boldsymbol{v'} - \overline{P'_*} \cdot \boldsymbol{v} \right\rangle$ en fonction de $\left\langle \delta \rho \delta \frac{\overline{P_*}}{\rho} \cdot \delta \boldsymbol{v} \right\rangle$ dans (7.16). Sachant que

$$\nabla_{\boldsymbol{\ell}} \cdot \left\langle \overline{\boldsymbol{P}_{\ast}} \cdot \boldsymbol{v}' - \overline{\boldsymbol{P}_{\ast}'} \cdot \boldsymbol{v} \right\rangle = \left\langle \rho \frac{\overline{\boldsymbol{P}_{\ast}}}{\rho} : \nabla' \boldsymbol{v}' + \rho' \frac{\overline{\boldsymbol{P}_{\ast}'}}{\rho'} : \nabla \boldsymbol{v} \right\rangle$$

rappellant les termes dépendant de la pression dans l'équation (7.18), nous avons choisi la première possibilité. Ainsi :

$$\nabla_{\boldsymbol{\ell}} \cdot \left\langle \rho' \frac{\overline{\boldsymbol{P}_{*}}}{\rho} \cdot \boldsymbol{v}' - \rho \frac{\overline{\boldsymbol{P}_{*}'}}{\rho'} \cdot \boldsymbol{v} + \overline{\boldsymbol{P}_{*}} \cdot \boldsymbol{v}' - \overline{\boldsymbol{P}_{*}'} \cdot \boldsymbol{v} \right\rangle$$

$$= -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho \delta \frac{\overline{\boldsymbol{P}_{*}}}{\rho} \cdot \delta\boldsymbol{v} \right\rangle + \left\langle \boldsymbol{v} \cdot \frac{\overline{\boldsymbol{P}_{*}}}{\rho} \cdot \nabla' \rho' + \boldsymbol{v}' \cdot \frac{\overline{\boldsymbol{P}_{*}'}}{\rho'} \cdot \nabla \rho \right\rangle$$

$$+ \left\langle 2\rho \frac{\overline{\boldsymbol{P}}}{\rho} : \nabla' \boldsymbol{v}' + 2\rho' \frac{\overline{\boldsymbol{P}'}}{\rho'} : \nabla \boldsymbol{v} + \rho \boldsymbol{v}_{\boldsymbol{A}}^{2} \nabla' \cdot \boldsymbol{v}' + \rho' \boldsymbol{v}_{\boldsymbol{A}}^{2} \nabla \cdot \boldsymbol{v} \right\rangle.$$

La loi KHM générale pour l'énergie totale avec $\mathcal{R} = \mathcal{R}_c + \mathcal{R}_m + \mathcal{R}_u$ devient alors :

$$\begin{array}{rcl} 1] & 4\partial_{t}\mathcal{R} &= \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v}_{A} - \left(\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v}_{A} \right\rangle \\ \end{array} \\ \begin{array}{rcl} 2] & + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \boldsymbol{v}_{A}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \end{array} \\ \left[3] & - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \boldsymbol{v}_{A}'\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \end{array} \\ \left[4] & + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{A} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A}' + \rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \end{array} \\ \left[5] & - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{A} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A} + \rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \left[6] & + \nabla_{\boldsymbol{\ell}} \cdot \left\langle 2\delta\rho\delta\boldsymbol{u}\delta\boldsymbol{v} \right\rangle + 2 \left\langle \rho\delta\boldsymbol{u}\nabla' \cdot \boldsymbol{v}' - \rho'\delta\boldsymbol{u}\nabla \cdot \boldsymbol{v} \right\rangle \\ \end{array} \\ \left[7] & - \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\frac{\overline{P_{*}}}{\rho} \cdot \delta\boldsymbol{v} \right\rangle - 2 \left\langle \rho\delta\frac{\overline{P}}{\rho} : \nabla'\boldsymbol{v}' - \rho'\delta\frac{\overline{P}}{\rho} : \nabla\boldsymbol{v} \right\rangle \\ \\ \left[8] & + \left\langle \boldsymbol{v} \cdot \left(\frac{\overline{P_{*}}}{\rho}\delta\rho - \rho\delta\frac{\overline{P_{*}}}{\rho}\right) \cdot \frac{\nabla'\rho'}{\rho'} - \boldsymbol{v}' \cdot \left(\frac{\overline{P_{*}'}}{\rho'}\delta\rho - \rho'\delta\frac{\overline{P_{*}}}{\rho}\right) \cdot \frac{\nabla\rho}{\rho} \right\rangle \\ \\ \left[9] & + \left\langle \left(\rho' + \rho\right) \left(\boldsymbol{v} \cdot \boldsymbol{f}_{c}' + \boldsymbol{v}' \cdot \boldsymbol{f}_{c} + \boldsymbol{v}_{A} \cdot \boldsymbol{f}_{m}' + \boldsymbol{v}_{A}' \cdot \boldsymbol{f}_{m}\right) \right\rangle . \end{array}$$

(7.19)

Les lignes [7] et [8] contiennent les contributions des tenseurs de pression et de pression totale.

La loi exacte générale de type K41 est alors :

$$\begin{aligned}
-4\varepsilon &= \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\
&+ \nabla_{\boldsymbol{\ell}} \cdot \left\langle 2\delta\rho\delta u\delta\boldsymbol{v} - \delta\rho\delta\frac{\overline{P_{\star}}}{\rho} \cdot \delta\boldsymbol{v} \right\rangle \\
&+ \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} + 2\rho\delta u\right) \nabla' \cdot \boldsymbol{v}' - 2\rho\delta\frac{\overline{P}}{\rho} : \nabla'\boldsymbol{v}' \right\rangle \\
&- \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' + 2\rho'\delta u\right) \nabla \cdot \boldsymbol{v} - 2\rho'\delta\frac{\overline{P}}{\rho} : \nabla \boldsymbol{v} \right\rangle \\
&+ \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' + \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\
&- \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} + \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}\right) \nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}}' \right\rangle \\
&+ \left\langle \boldsymbol{v} \cdot \left(\frac{\overline{P_{\star}}}{\rho}\delta\rho - \rho\delta\frac{\overline{P_{\star}}}{\rho}\right) \cdot \frac{\nabla'\rho'}{\rho'} - \boldsymbol{v}' \cdot \left(\frac{\overline{P_{\star}}}{\rho'}\delta\rho - \rho'\delta\frac{\overline{P_{\star}}}{\rho}\right) \cdot \frac{\nabla\rho}{\rho} \right\rangle.
\end{aligned}$$

(7.20)

Cette loi est valable quelle que soit la forme du tenseur de pression ou de l'énergie interne

tant que la zone inertielle est supposée isentrope. Si l'on considère la pression sous forme isotrope $\overline{P} = p\overline{I}$, on trouve la loi (5.13) analysée dans la section 5.2. On notera ce résultat ε_{iso} . On peut alors isoler dans le taux de cascade la contribution de la composante anisotrope du tenseur de pression $\overline{\Pi}$:

$$-4\left(\varepsilon - \varepsilon_{iso}\right) = -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\frac{\overline{\mathbf{n}}}{\rho}\right) \cdot \delta\boldsymbol{v} \right\rangle - \left\langle 2\rho\delta\left(\frac{\overline{\mathbf{n}}}{\rho}\right) : \nabla'\boldsymbol{v}' - 2\rho'\delta\left(\frac{\overline{\mathbf{n}}}{\rho}\right) : \nabla\boldsymbol{v} \right\rangle \\ + \left\langle \boldsymbol{v} \cdot \left(\left(\frac{\overline{\mathbf{n}}}{\rho}\right)\delta\rho - \rho\delta\left(\frac{\overline{\mathbf{n}}}{\rho}\right)\right) \cdot \frac{\nabla'\rho'}{\rho'} - \boldsymbol{v}' \cdot \left(\left(\frac{\overline{\mathbf{n}'}}{\rho'}\right)\delta\rho - \rho'\delta\left(\frac{\overline{\mathbf{n}}}{\rho}\right)\right) \cdot \frac{\nabla\rho}{\rho} \right\rangle.$$

$$(7.21)$$

Nous quantifierons et analyserons cette contribution grâce à des simulations dans la Partie III.

Dans le cas d'un tenseur de pression gyrotrope, on peut faire apparaître p_{\parallel} et p_{\perp} :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{\boldsymbol{A}}\right) \delta\boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\frac{p_{\perp}+p_{\parallel}+p_{m}}{\rho}\right) \delta\boldsymbol{v} + \delta\rho\delta\left(\frac{p_{\perp}-p_{\parallel}}{\rho}\boldsymbol{b}\boldsymbol{b}\right) \cdot \delta\boldsymbol{v} \right\rangle \\ + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} + \rho\delta\left(\frac{p_{\parallel}}{\rho}\right)\right) \nabla' \cdot \boldsymbol{v}' \right\rangle \\ - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' + \rho'\delta\left(\frac{p_{\parallel}}{\rho}\right)\right) \nabla \cdot \boldsymbol{v} \right\rangle \\ + 2 \left\langle \rho\delta\left(\frac{p_{\perp}-p_{\parallel}}{\rho}\boldsymbol{b}\boldsymbol{b}\right) : \nabla'\boldsymbol{v}' - \rho'\delta\left(\frac{p_{\perp}-p_{\parallel}}{\rho}\boldsymbol{b}\boldsymbol{b}\right) : \nabla\boldsymbol{v} \right\rangle \\ + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}}' + \rho'\boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} \right\rangle \\ - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{\boldsymbol{A}} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{\boldsymbol{A}} + \rho\boldsymbol{v}_{\boldsymbol{A}} \cdot \delta\boldsymbol{v}\right) \nabla' \cdot \boldsymbol{v}_{\boldsymbol{A}}' \right\rangle \\ + \left\langle \left(\frac{p_{\perp}+p_{m}}{\rho}\boldsymbol{v}\delta\rho - \rho\boldsymbol{v}\delta\left(\frac{p_{\perp}+p_{m}}{\rho}\right)\right) \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle \\ + \left\langle \left(\frac{p_{\parallel}-p_{\perp}}{\rho}\boldsymbol{v} \cdot \boldsymbol{b}\boldsymbol{b}\delta\rho - \rho\boldsymbol{v} \cdot \delta\left(\frac{p_{\parallel}-p_{\perp}}{\rho}\boldsymbol{b}\boldsymbol{b}\right)\right) \cdot \frac{\nabla\rho}{\rho} \right\rangle \\ - \left\langle \left(\frac{p'_{\perp}+p'_{m}}{\rho'}\boldsymbol{v}' \cdot \boldsymbol{b}'\boldsymbol{b}'\delta\rho - \rho'\boldsymbol{v}' \cdot \delta\left(\frac{p_{\parallel}-p_{\perp}}{\rho}\boldsymbol{b}\boldsymbol{b}\right)\right) \cdot \frac{\nabla\rho}{\rho} \right\rangle.$$
(7.22)

Cette loi est valable pour le modèle CGL. Si besoin est, on peut y expliciter p_{\parallel} et p_{\perp} en fonction de ρ , $\boldsymbol{v}_{\boldsymbol{A}}$ grâce à (7.9).

On peut aussi faire apparaître a_p et β_{\parallel} dans (7.22) pour identifier les termes potentiellement impactés par les instabilités. Ainsi, on obtient :

$$-4\varepsilon = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v} - \left(\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v} + \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}_{A}\right) \delta\boldsymbol{v}_{A} \right\rangle \right. \\ \left. + \frac{1}{2} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\boldsymbol{v}_{A}^{2}\left(\beta_{\parallel}\left(a_{p}+1\right)+1\right)\right) \delta\boldsymbol{v} + \delta\rho\delta\left(\beta_{\parallel}\left(a_{p}-1\right) \boldsymbol{v}_{A}\boldsymbol{v}_{A}\right) \cdot \delta\boldsymbol{v} \right\rangle \right. \\ \left. + \left\langle \left(\rho\boldsymbol{v} \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \boldsymbol{v}_{A} + \frac{1}{2}\rho\delta\left(\boldsymbol{v}_{A}^{2}\beta_{\parallel}\right)\right) \nabla \cdot \boldsymbol{v} \right\rangle \right. \\ \left. - \left\langle \left(\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v} + \frac{1}{2}\rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}_{A} - \frac{1}{2}\delta\left(\rho\boldsymbol{v}_{A}\right) \cdot \boldsymbol{v}_{A}' + \frac{1}{2}\rho'\delta\left(\boldsymbol{v}_{A}^{2}\beta_{\parallel}\right)\right) \nabla \cdot \boldsymbol{v} \right\rangle \\ \left. + \left\langle \rho\delta\left(\beta_{\parallel}\left(a_{p}-1\right) \boldsymbol{v}_{A}\boldsymbol{v}_{A}\right) : \nabla'\boldsymbol{v}' - \rho'\delta\left(\beta_{\parallel}\left(a_{p}-1\right) \boldsymbol{v}_{A}\boldsymbol{v}_{A}\right) : \nabla \boldsymbol{v} \right\rangle \\ \left. + \left\langle \left(2\rho'\boldsymbol{v}' \cdot \delta\boldsymbol{v}_{A} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A}' + \rho'\boldsymbol{v}_{A}' \cdot \delta\boldsymbol{v}\right) \nabla \cdot \boldsymbol{v}_{A} \right\rangle \\ \left. - \left\langle \left(2\rho\boldsymbol{v} \cdot \delta\boldsymbol{v}_{A} - \delta\left(\rho\boldsymbol{v}\right) \cdot \boldsymbol{v}_{A} + \rho\boldsymbol{v}_{A} \cdot \delta\boldsymbol{v}\right) \nabla' \cdot \boldsymbol{v}_{A} \right\rangle \\ \left. + \frac{1}{2} \left\langle \left(\boldsymbol{v}_{A}^{2}\left(\beta_{\parallel}a_{p}+1\right) \delta\rho - \rho\delta\left(\boldsymbol{v}_{A}^{2}\left(\beta_{\parallel}a_{p}+1\right)\right)\right) \boldsymbol{v} \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle \\ \left. - \frac{1}{2} \left\langle \boldsymbol{v} \cdot \left(\beta_{\parallel}\left(a_{p}-1\right) \boldsymbol{v}_{A}\boldsymbol{v}_{A}\delta\rho - \rho\delta\left(\beta_{\parallel}\left(a_{p}-1\right) \boldsymbol{v}_{A}\boldsymbol{v}_{A}\right)\right) \cdot \frac{\nabla\rho}{\rho} \right\rangle. \end{aligned}$$
(7.23)

Les critères d'instabilité linéaires n'y sont pas explicites, mais on observe que certains termes, présents dans la contribution anisotrope (7.21), dépendent de a_p-1 , en particulier le terme de type flux. Par conséquent, le signe de ces termes va dépendre du régime de pression dans le système, c'est-à-dire si p_{\parallel} ou p_{\perp} domine, et est ainsi lié au type d'instabilité pouvant s'y développer. Comme ces termes dépendent de quantités incrémentales, il est néanmoins difficile de conclure sur leur apport au taux de cascade total sans regarder dans des simulations. Ce sera l'un des objectifs de la Partie III.

7.4 Synthèse de l'étude analytique de turbulence compressible avec pression tensorielle et modèle CGL

Fermeture CGL : $\nabla \cdot \overline{\overline{q}} = 0$ et $\overline{P} = p\overline{I} + \overline{\Pi} = \frac{2p_{\perp} + p_{\parallel}}{3}\overline{I} + (p_{\parallel} - p_{\perp})(bb - \frac{1}{3}\overline{I})$ avec $b = \frac{v_A}{|v_A|}$. Energie interne définie telle que $\rho u = \frac{3}{2}p$.

$$\partial_t p_{\parallel} + \nabla \cdot (p_{\parallel} \boldsymbol{v}) + 2p_{\parallel} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = 0, \qquad (7.24)$$

$$\partial_t p_{\perp} + \nabla \cdot (p_{\perp} \boldsymbol{v}) + p_{\perp} \nabla \cdot \boldsymbol{v} - p_{\perp} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = 0.$$
(7.25)

Linéarisation du modèle CGL :

- Relation de dispersion : (7.11)
- Mode d'Alfvén incompressible \Rightarrow instabilité firehose,
- Mode magnétosonore rapide : stable,
- Mode magnétosonore lent \Rightarrow instabilité firehose parallèle et miroir
- instabilité firehose si $1 \frac{\beta_{\parallel 0}}{2} (1 a_{p0}) < 0$
- instabilité miroir si $1 + \beta_{\parallel 0} \tilde{a}_{p0} \left(1 \frac{1}{6} a_{p0}\right) < 0$

Equations utilisées pour calculer la loi exacte générale avec tenseur de pression (zone inertielle isentrope) :

$$\partial_t \rho = -\nabla \cdot (\rho \boldsymbol{v}), \qquad (7.26)$$

$$\partial_t \boldsymbol{v} = -\nabla \cdot (\boldsymbol{v}\boldsymbol{v}) + \boldsymbol{v}\nabla \cdot \boldsymbol{v} + \frac{1}{\rho}\nabla \cdot (\rho \boldsymbol{v}_A \boldsymbol{v}_A) - \frac{1}{\rho}\nabla \cdot \overline{\boldsymbol{P}_*} + (\boldsymbol{f_c} + \boldsymbol{d_c}), \quad (7.27)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} + (\boldsymbol{f}_{\boldsymbol{m}} + \boldsymbol{d}_{\boldsymbol{m}}), \qquad (7.28)$$

$$\partial_t u = -\nabla \cdot (u\boldsymbol{v}) + u\nabla \cdot \boldsymbol{v} - \frac{\boldsymbol{P}}{\rho} : \nabla \boldsymbol{v}.$$
(7.29)

Fonctions de corrélation d'énergie totale considérée :

$$\mathcal{R} = \frac{1}{2} \left\langle \frac{1}{2} \left(\rho' + \rho \right) \boldsymbol{v'} \cdot \boldsymbol{v} + \frac{1}{2} \left(\rho' + \rho \right) \boldsymbol{v'_A} \cdot \boldsymbol{v_A} + \rho' \boldsymbol{u} + \rho \boldsymbol{u'} \right\rangle.$$

Lois exactes générales dérivées dans ce chapitre (formulation f2) :

- KHM générale $\forall \overline{\mathbf{P}} : (7.19),$
- K41 générale $\forall \overline{\mathbf{P}} : (7.20),$
- contribution de l'anisotropie de pression : (7.21).

Lois exactes K41 gyrotrope/CGL répondant à l'objectif initial (formulation f2):

— fonction de p_{\parallel} et p_{\perp} : (7.22),

- fonction de
$$a_p = \frac{p_{\perp}}{p_{\parallel}}$$
 et $\beta_{\parallel} = \frac{p_{\parallel}}{p_{\parallel}}$: (7.23).

Les résultats dérivés ici sont publiés dans SIMON et SAHRAOUI 2022.

ET DANS LE CAS INCOMPRESSIBLE?

Sommaire

8.1	De la limite incompressible dans la loi exacte générale vers	
	un nouveau modèle	85
8.2	Proposition d'un modèle incompressible gyrotrope	86
8.3	Etude paramétrique des modes linéaires du modèle incom-	
	pressible gyrotrope	89
8.4	Synthèse : Limite incompressible et pistes d'étude	94

Si l'on prend la limite incompressible de la loi exacte dépendant d'une pression isotrope (5.13), on retrouve la loi PP98 donnant le taux de cascade ε_{PP98} (3.34). Mais est-ce aussi le cas si la pression est tensorielle? De cette question en émerge une autre : qu'est-ce qu'un système incompressible avec pression tensorielle? Dans ce chapitre, sera présenté le travail effectué pour tenter de répondre à ces questions. Ce travail n'a pas encore été publié.

8.1 De la limite incompressible dans la loi exacte générale vers un nouveau modèle

Si l'on considère la limite incompressible ($\rho = \rho_0, \, \delta \rho = 0, \, \nabla \rho = 0, \, \nabla \cdot \boldsymbol{v} = 0, \, \nabla \cdot \boldsymbol{v}_A = 0$) dans l'équation (7.21), ε_{iso} devient ε_{PP98} et tous les termes s'annulent sauf :

$$-4(\varepsilon - \varepsilon_{PP98}) = -2\left\langle \delta(\overline{\mathbf{\Pi}}) : \nabla' \boldsymbol{v}' - \delta(\overline{\mathbf{\Pi}}) : \nabla \boldsymbol{v} \right\rangle$$
(8.1)

puisque la contribution de la trace de $\nabla \boldsymbol{v}$ s'annule par incompressibilité : $\overline{\boldsymbol{I}}$: $\nabla \boldsymbol{v} = \nabla \cdot \boldsymbol{v} = 0$. On obtient ainsi une correction à la théorie PP98 dépendant de la composante anisotrope de la pression participant à la déformation incompressible du plasma (pour plus d'information voir CASSAK et BARBHUIYA 2022) :

$$-4(\varepsilon - \varepsilon_{PP98}) = -2\left\langle \delta(\overline{\boldsymbol{P}} - p\overline{\boldsymbol{I}}) : \delta(\nabla \boldsymbol{v}) \right\rangle = -2\left\langle \delta\overline{\boldsymbol{\Pi}} : \delta(\nabla \boldsymbol{v}) \right\rangle.$$
(8.2)

Une question émerge de ce résultat : dans des plasmas faiblement compressibles dépendant d'une pression tensorielle, tel le vent solaire, la correction anisotrope aurait-elle plus de poids que la prise en compte de la compression via les fluctuations de densité ?

Dans le cas particulier gyrotrope, on obtient :

=

$$-4(\varepsilon - \varepsilon_{PP98}) = -2\left\langle \delta((p_{\parallel} - p_{\perp})(\boldsymbol{b}\boldsymbol{b} - \frac{1}{3}\overline{\boldsymbol{I}})) : \delta(\nabla \boldsymbol{v}) \right\rangle$$
(8.3)

$$= -2 \left\langle \delta((p_{\parallel} - p_{\perp}) \boldsymbol{b} \boldsymbol{b}) : \delta(\nabla \boldsymbol{v}) \right\rangle.$$
(8.4)

On observe que la ligne (8.3) dépend de \overline{I} : ∇v , on annule donc ce terme dans la ligne suivante (8.4). Dans le cas incompressible, ces deux expressions sont donc équivalentes. En revanche, dans des plasmas quasi-incompressibles, si l'on veut estimer le taux de cascade à l'aide de la loi exacte incompressible corrigée, les deux expressions ne seront plus équivalentes. Dans la première, on s'assure de n'utiliser que la part incompressible de la pression (la contribution de la trace de **bb** étant annulée par $-\frac{1}{3}\overline{I}$). Dans la seconde, ce n'est pas le cas, le résultat pourra alors être impacté.

On remarque que cette correction dépend de $p_{\parallel} - p_{\perp}$, c'est à dire de $\beta_{\parallel}(1 - a_p)$ qui rappelle les critères d'instabilités. Dans le cas CGL, on a vu que ces critères dépendent fortement de $\beta_{\parallel 0}(1 - a_{p0})$. Si l'on se place dans une situation dans laquelle $\frac{\beta_{\parallel}}{2}(1 - a_p)$ serait quasiment constant, alors le terme correctif de la loi exacte à l'ordre 0 pourra s'écrire :

$$-4(\varepsilon - \varepsilon_{PP98}) = -2\left\langle \delta(\frac{\beta_{\parallel}}{2}(1 - a_p)\boldsymbol{v}_{\boldsymbol{A}}\boldsymbol{v}_{\boldsymbol{A}}) : \delta(\nabla \boldsymbol{v}) \right\rangle$$
(8.5)

$$\simeq -\beta_{\parallel 0}(1-a_{p0}) \left\langle \delta(\boldsymbol{v}_{\boldsymbol{A}}\boldsymbol{v}_{\boldsymbol{A}}) : \delta(\nabla \boldsymbol{v}) \right\rangle.$$
(8.6)

En prenant des valeurs réalistes dans le vent solaire telles que $\beta_{\parallel 0} \sim 1$ et $|1 - a_{p0}| \sim 0.5$, on obtient $\varepsilon - \varepsilon_{PP98} \sim \frac{1}{8} \langle \delta(\boldsymbol{v}_A \boldsymbol{v}_A) : \delta(\nabla \boldsymbol{v}) \rangle$. Si $\langle \delta(\boldsymbol{v}_A \boldsymbol{v}_A) : \delta(\nabla \boldsymbol{v}) \rangle \sim \varepsilon$ alors la correction de l'anisotropie de pression sera de l'ordre de 12 % du taux de cascade ε_{PP98} . Tandis que près du critère firehose $(\frac{\beta_{\parallel}}{2}(1 - a_p) \sim 1)$, le niveau de cette contribution sera autour de 50 %. Dans le vent solaire, d'après HADID, SAHRAOUI et GALTIER 2017, la contribution de la compression est de l'ordre de 10 % de ε_{PP98} , c'est-à-dire plus faible que nos estimations. Le résultat très approximatif obtenu ici va dans le sens d'une correction anisotrope plus significative qu'une correction compressible, en particulier près du critère d'instabilité firehose. Si l'on regarde le diagramme publié par OSMAN *et al.* 2013 (voir la FIGURE 7.2), suivant son signe que l'on ne peut pas estimer ici, cette contribution pourrait venir accroître ou réduire la dispersion des valeurs du taux de cascade. Bien évidemment, cette petite estimation est loin d'être suffisante pour conclure sur l'impact des anisotropies de pression sur le taux de cascade. Simulation et étude comparative dans le vent solaire sont nécessaires.

Par curiosité, on s'est demandé quelle était la physique derrière notre terme correctif. Dans le cadre des modèles incompressibles avec pression isotrope, le seul mode existant est le mode d'Alfvén qui constitue la brique fondamentale de la turbulence Inc-MHD décrite par PP98. Notre terme correctif serait-il une trace de la correction du mode d'Alfvén pouvant induire l'instabilité firehose dans la cascade non-linéaire incompressible? Afin de répondre à cette question, nous avons voulu vérifier dans un modèle incompressible dépendant d'une pression gyrotrope si le mode d'Alfvén-firehose existait. Mais aucune trace d'un modèle incompressible avec pression tensorielle n'a été trouvée dans la littérature. Si l'on approche le problème sous un autre angle, celui des fermetures, on se rend compte que le cadre gyrotrope est habituellement abordé à travers la fermeture CGL. Ajouter une fermeture incompressible signifierait alors surcontraindre le système : une équation de trop par rapport au nombre de variables. La viabilité du système résultant en tant que modèle réaliste serait remise en cause.

8.2 Proposition d'un modèle incompressible gyrotrope

Nous avons construit un nouveau modèle en partant de la question : comment décrire un écoulement magnétisé et incompressible dépendant d'une pression gyrotrope? Dans un tel écoulement, la contrainte $\rho = \rho_0$ et donc $\nabla \cdot \boldsymbol{v} = 0$ s'impose. Elle induit pour le champ magnétique $\nabla \cdot \boldsymbol{v}_A = 0$. On a aussi besoin d'une équation sur la vitesse (premier moment) et d'une équation sur le champ magnétique (équation d'induction). L'hypothèse d'une pression gyrotrope va s'exprimer dans l'équation sur la vitesse à travers $\nabla \cdot \overline{\boldsymbol{P}}$. On a alors 7 équations (la contrainte incompressible, les trois composantes de la vitesse et les trois composantes du champ magnétique) pour 8 variables scalaires (les composantes de la vitesse et du champ magnétique, et les pressions parallèle et perpendiculaire). Il manque donc une équation pour fermer le système. Afin de maintenir la cohérence avec la définition de l'énergie interne telle que $u = \frac{1}{2\rho_0}(2p_{\perp} + p_{\parallel})$, nous avons décidé de fermer le système avec l'équation sur la trace du tenseur de pression avec $\nabla \cdot \boldsymbol{q} = 0$. Ce système est donc compatible avec la loi exacte (8.3).

Par conséquent, le modèle incompressible gyrotrope envisagé est :

$$\nabla \cdot \boldsymbol{v} = 0 \qquad \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} = 0, \tag{8.7}$$

$$\partial_t \boldsymbol{v} + \nabla \cdot (\boldsymbol{v} \boldsymbol{v} - \boldsymbol{v}_A \boldsymbol{v}_A + \frac{1}{\rho_0} \overline{\boldsymbol{P}_*}) = 0,$$
 (8.8)

$$\partial_t p + \nabla \cdot (p \boldsymbol{v}) + \frac{2}{3} \overline{\boldsymbol{\Pi}} : \nabla \boldsymbol{v} = 0,$$
 (8.9)

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) = 0, \qquad (8.10)$$

avec :

$$\begin{split} \overline{\boldsymbol{P}} &= p\overline{\boldsymbol{I}} + \overline{\boldsymbol{\Pi}} = \frac{1}{3}(2p_{\perp} + p_{\parallel})\overline{\boldsymbol{I}} + (p_{\parallel} - p_{\perp})(\boldsymbol{b}\boldsymbol{b} - \frac{1}{3}\overline{\boldsymbol{I}}), \\ \nabla \cdot \overline{\boldsymbol{P}_{*}} &= \nabla(p_{\perp} + \frac{1}{2}\rho_{0}\boldsymbol{v_{A}}^{2}) + \boldsymbol{b}\boldsymbol{b} \cdot \nabla(p_{\parallel} - p_{\perp}) + (p_{\parallel} - p_{\perp})\frac{1}{\boldsymbol{v_{A}}^{2}}(\boldsymbol{v_{A}} \cdot \nabla \boldsymbol{v_{A}} - 2\boldsymbol{v_{A}}\boldsymbol{b}\boldsymbol{b} : \nabla \boldsymbol{v_{A}}), \\ \overline{\boldsymbol{\Pi}} : \nabla \boldsymbol{v} &= (p_{\parallel} - p_{\perp})\boldsymbol{b}\boldsymbol{b} : \nabla \boldsymbol{v}. \end{split}$$

Nous proposons de linéariser ce nouveau modèle afin d'en identifier les modes propres, et a minima vérifier que le mode d'Alfvén-firehose en est une solution. Sa forme linéaire, obtenue en suivant la méthode résumée section 3.4, est :

$$0 = k_{\perp} v_{1x} + k_{\parallel} v_{1z}, \tag{8.11}$$

$$0 = -\omega v_{1x}, + \frac{p_{\perp 1}}{\rho_0} k_{\perp} + \left(\frac{p_{\parallel 0} - p_{\perp 0}}{\rho_0 v_{A0}^2} - 1\right) v_{A0} k_{\parallel} v_{A1x} + v_{A0} k_{\perp} v_{A1z}, \tag{8.12}$$

$$0 = -\omega v_{1y} + \left(\frac{p_{\parallel 0} - p_{\perp 0}}{\rho_0 v_{A0}^2} - 1\right) v_{A0} k_{\parallel} v_{A1y}, \tag{8.13}$$

$$0 = -\omega v_{1z} + \frac{p_{\parallel 1}}{\rho_0} k_{\parallel} - \frac{p_{\parallel 0} - p_{\perp 0}}{\rho_0 v_{A0}^2} v_{A0} k_{\parallel} v_{A1z}, \qquad (8.14)$$

$$0 = -\omega(2p_{\perp 1} + p_{\parallel 1}) + 2(p_{\parallel 0} - p_{\perp 0})k_{\parallel}v_{1z}, \qquad (8.15)$$

$$0 = -\omega v_{A1} - k_{\parallel} v_{A0} v_{1}. \tag{8.16}$$

Après quelques manipulations, ce système peut s'écrire sous la forme de l'équation de dispersion $\overline{M} \cdot v_1 = 0$ dépendant de la matrice

$$\overline{\boldsymbol{M}} = \begin{pmatrix} k_{\perp} & 0 & k_{\parallel} \\ 0 & \omega^2 - F v_{A0}^2 k_{\parallel}^2 & 0 \\ 0 & 0 & \omega^2 (k_{\perp}^2 - 2k_{\parallel}^2) - (Gk_{\perp}^2 + 2Fk_{\parallel}^2)v_{A0}^2 k_{\parallel}^2 \end{pmatrix},$$
(8.17)

et en notant $F = 1 - \frac{\beta_{\parallel 0}}{2}(1 - a_{p0})$ et $G = 3\frac{\beta_{\parallel 0}}{2}(1 - a_{p0}) - 2$.

La relation de dispersion est donc :

$$(\omega^2 - F v_{A0}^2 k_{\parallel}^2) (\omega^2 (k_{\perp}^2 - 2k_{\parallel}^2) - (G k_{\perp}^2 + 2F k_{\parallel}^2) v_{A0}^2 k_{\parallel}^2) = 0.$$
(8.18)

On retrouve le mode d'Alfvén incompressible firehose $\omega_A = \pm k_{\parallel} v_{A0} \sqrt{F}$ polarisé suivant (0, 1, 0). Cette solution s'exprime à travers les différentes quantités :

$$v_1 = (0, 1, 0),$$
 (8.19)

$$\boldsymbol{v_{A1}} = \pm \frac{1}{\sqrt{F}} \boldsymbol{v_1} = \pm \frac{1}{\sqrt{1 - \frac{\beta_{\parallel 0}}{2}(1 - a_{p0})}} \boldsymbol{v_1},$$
 (8.20)

$$p_{\parallel 1} = (2F - 1)\rho_0 v_{A0} v_{A1z} = 0, \qquad (8.21)$$

$$p_{\perp 1} = \rho_0 v_{A0} v_{A1z} = 0. \tag{8.22}$$

On y reconnaît bien le comportement du mode d'Alfvén incompressible au niveau des pressions et la relation linéaire entre la vitesse et le champ magnétique. On note que cette relation est altérée par le critère firehose et on remarque que les fluctuations des pressions sont nulles (c'est aussi le cas dans le cadre CGL [HUNANA *et al.* 2019]). Les seules fluctuations accompagnant ce mode sont donc celles de v_{1y} et v_{A1y} . L'existence du mode Alfvén-firehose dans ce nouveau modèle incompressible donne une assise plus sérieuse à la correction trouvée pour PP98. En revanche, une surprise nous attend puisqu'un nouveau mode émerge de la relation de dispersion (8.18).

Ce nouveau mode, polarisé suivant $(1, 0, -\tan\theta)$, est :

$$\omega_{N} = \pm \sqrt{\frac{Gk_{\perp}^{2} + 2Fk_{\parallel}^{2}}{k_{\perp}^{2} - 2k_{\parallel}^{2}}} v_{A0}k_{\parallel} = \pm \sqrt{\frac{(3\frac{\beta_{\parallel 0}}{2}(1 - a_{p0}) - 2)k_{\perp}^{2} + 2(1 - \frac{\beta_{\parallel 0}}{2}(1 - a_{p0}))k_{\parallel}^{2}}{k_{\perp}^{2} - 2k_{\parallel}^{2}}} v_{A0}k_{\parallel}$$

$$(8.23)$$

Les différentes quantités sont alors :

$$\boldsymbol{v_1} = (1, 0, -\tan\theta) \tag{8.24}$$

$$\boldsymbol{v}_{A1} = \pm \sqrt{\frac{k_{\perp}^2 - 2k_{\parallel}^2}{Gk_{\perp}^2 + 2Fk_{\parallel}^2}} \boldsymbol{v}_1$$
(8.25)

$$p_{\parallel 1} = \frac{(G+F-1)k_{\perp}^{2}+2k_{\parallel}^{2}}{k_{\perp}^{2}-2k_{\parallel}^{2}}\rho_{0}v_{A0}v_{A1z} = \frac{(\beta_{\parallel 0}(1-a_{p0})-2)k_{\perp}^{2}+2k_{\parallel}^{2}}{k_{\perp}^{2}-2k_{\parallel}^{2}}\rho_{0}v_{A0}v_{A1z}$$

$$(8.26)$$

$$p_{\perp 1} = \frac{\rho_0}{k_\perp^2} \frac{4Fk_\parallel^2 k_\parallel^2 + (G - F + 2)k_\perp^2 k_\parallel^2 - k_\perp^2 k_\perp^2}{k_\perp^2 - 2k_\parallel^2} v_{A0} v_{A1z}$$

$$= \frac{(2\beta_{\parallel 0}(1 - a_{p0}) - 1)(k_\perp^2 - k_\parallel^2)k_\parallel^2 + 3k_\parallel^2 k_\parallel^2 - k_\perp^2 k_\perp^2}{k_\perp^2 (k_\perp^2 - 2k_\parallel^2)} \rho_0 v_{A0} v_{A1z}$$
(8.27)

On retrouve des résultats similaires au mode pseudo-alfvénique donnant une pression non nulle proportionnelle à v_{A1z} mais avec des facteurs dépendant de l'angle de propagation (θ présent dans $k_{\parallel} = k \cos \theta$ et k_{\perp}) en plus des paramètres d'anisotropie de pression. Considérer une gyrotropie de pression lève donc la dégénérescence observée dans le cas incompressible avec pression isotrope (voir Chapitre 3) similairement à la levée de dégénérescence menant aux modes magnétosonores dans le cas compressible. Ce nouveau mode s'accompagnant de fluctuations des pressions, qui ne sont pas identiques, il pourra engendrer des fluctuations du taux d'anisotropie de pression. Son apport au taux de cascade turbulent pourrait alors s'exprimer à travers notre terme correctif qui dépendrait des fluctuations de pression. Il pourrait aussi interagir non linéairement avec le mode d'Alfvén-firehose¹.

Ce modèle proposé admet donc deux modes linéaires. Ils forment donc deux canaux potentiels de développement de la cascade turbulente à l'image des modes d'Alfvén et pseudo-alfvénique dans la turbulence Inc-MHD. Par curiosité, une étude comparative et paramétrique des modes d'Alfvén-firehose et du nouveau mode a été menée. Elle est résumée dans la section 8.3.

8.3 Etude paramétrique des modes linéaires du modèle incompressible gyrotrope

La linéarisation du système d'équation incompressible gyrotrope proposé a abouti aux deux modes que l'on peut exprimer en fonction de θ :

- le mode d'Alfvén-firehose : $\omega = \omega_A$ avec $\frac{\omega_A^2}{v_{A0}^2 k_{\parallel}^2} = F$ et $F = 1 \frac{\beta_{\parallel 0}}{2} (1 a_{p0})$, un nouveau mode : $\omega = \omega_N$ avec $\frac{\omega_N^2}{v_{A0}^2 k_{\parallel}^2} = \frac{G \sin^2 \theta 2F \cos^2 \theta}{\sin^2 \theta 2\cos^2 \theta}$ et $G = 3\frac{\beta_{\parallel 0}}{2} (1 a_{p0}) 2$

Le mode d'Alfvén-firehose qui s'écrit $\omega_A = \pm \sqrt{F} v_{A0} k_{\parallel}$ est linéaire en $v_{A0} k_{\parallel}$ avec une pente dépendant de a_{p0} et $\beta_{\parallel 0}$. Le nouveau mode est aussi linéaire en $v_{A0}k_{\parallel}$ mais sa pente va aussi dépendre de θ . Ils sont représentés sur la FIGURE 8.1 normalisé par ω_{ci} la pulsation cyclotron des ions, et en fonction de $k_{\parallel}d_i = k_{\parallel}v_{A0}/\omega_{ci}$ avec d_i la longueur inertielle ionique. Le mode d'Alfvén-firehose est représenté en bleu et le nouveau mode dans des couleurs chaudes (orange pour $\theta = 25^{\circ}$ et rouge pour $\theta = 70^{\circ}$). On remarque que le nouveau mode peut être plus lent ou plus rapide que le mode d'Alfvén-firehose en fonction de θ . Ce n'est pas montré ici, mais il peut aussi devenir instable quand le mode d'Alfvén-firehose est stable. Ils sont donc très différents. Ces observations nous ont amené à faire une étude paramétrique en fonction de θ de la vitesse de phase et du taux de croissance/amortissement des instabilités.

Au cours de cette étude, on a observé cinq comportements différents pour le nouveau mode suivant la valeur du couple $\{\beta_{\parallel 0}; a_{p0}\}$. Ces comportements sont résumés sur la figure 8.2 à travers cinq couples représentatifs. Sur l'ensemble de graphiques de la FIGURE 8.2 sont tracés en fonction de θ , pour les cinq couples représentatifs et chaque mode, la partie réelle de ω normalisée par le mode d'Alfvén, $\Re[\omega/(k_{\parallel}v_{A0})]$ (colonne a) correspondant à sa vitesse de phase, ainsi que sa partie imaginaire, $\Im[\omega/(k_{\parallel}v_{A0})]$ (colonne b), qui correspond au taux de croissance. ω étant ou réel ou purement imaginaire, ces graphiques sont complémentaires : si le mode est instable, il apparaîtra sur la colonne b, et s'il est stable sur la colonne a (à l'exception du graphique (3a) où les modes sont stables et coîncident). Le caractère instable firehose du mode d'Alfvén (bleu) est ainsi retrouvé lorsque F < 0 sur le graphique (1b).

Le nouveau mode semble tendre asymptotiquement vers le mode d'Alfvén pour $\theta \sim 0^\circ$ et vers l'asymptote $\omega_P = \pm k_{\parallel} v_{A0} \sqrt{G}$ représentée par une ligne discontinue verte, pour

^{1.} Dans le futur, il serait intéressant de les étudier avec des méthodes de turbulence d'ondes par exemple.

FIGURE 8.1 – Mode d'Alfvén-firehose (ω_A , bleu) et nouveau mode (ω_N , orange pour $\theta = 25^{\circ}$ et rouge pour $\theta = 70^{\circ}$) normalisés par ω_{ci} la pulsation cyclotron des ions et représentés en fonction de $k_{\parallel}d_i$, avec $d_i = v_{A0}/\omega_{ci}$, la longueur inertielle ionique.

 $\theta \sim 90^{\circ}$. Une asymptote angulaire est aussi visible en un angle que l'on note θ_2 , on verra par la suite que cet angle est solution de $\tan^2 \theta = 2$. La stabilité du nouveau mode à une dépendance forte en θ : pour tout couple, il existe une gamme angulaire telle que le mode soit stable et, à l'exception du couple (3), une gamme telle que le mode est instable.

On propose maintenant de démontrer les comportements identifiés pour le nouveau mode en fonction de a_{p0} et $\beta_{\parallel 0}$. Au fil de cette analyse, on va construire le diagramme de la FIGURE 8.3. Les emplacements des différents couples présentés sur la FIGURE 8.2 sont indiqués par des croix rouges.

Etude asymptotique angulaire : Si $\theta \to 0^{\circ}$ $(k_{\parallel} \gg k_{\perp})$, alors $\frac{\omega_N^2}{v_{A0}^2 k^2} \to F \cos^2 \theta$. La convergence vers le mode d'Alfvén-firehose du nouveau mode observée en $\theta \to 0^{\circ}$ sur la FIGURE 8.2 est ainsi vérifiée. Comme cette limite peut être stable ou instable en fonction du signe de F, on a représenté sur la FIGURE 8.3, la frontière F = 0 en bleue et bleuté la zone où F < 0. On retrouve dans ce comportement stable/instable l'instabilité firehose « parallèle » qui est présente par exemple pour le mode lent dans le cadre compressible. Le couple (1), tel que F < 0, est un exemple instable : le nouveau mode et le mode d'Alfvén apparaîssent dans la colonne du taux de croissance (graphique (1b)).

Si $\theta \to 90^{\circ}$ $(k_{\perp} \ll k_{\parallel})$, alors $\frac{\omega_N^2}{v_{A0}^2 k^2} \to G \cos^2 \theta$. On retrouve l'asymptote ω_P tracée en vert sur la FIGURE 8.2. Le mode ω_N est instable si G < 0. La comparaison de G et F ont la même structure à un facteur 3/2 et un signe près. Cela nous inspire à appeller cette instabilité « instabilité pseudo-firehose perpendiculaire » ². Elle apparaît pour le couple (5) (graphique (5b)). Sur la FIGURE 8.3, on indique la frontière G = 0 en vert et la zone où G < 0 par une aire verte.

Ainsi grâce à F et G, on peut déduire qu'une instabilité pourra se développer dans le système pour tout couple $\{\beta_{\parallel 0}; a_{p0}\}$ tel que $\frac{2}{3} > \frac{\beta_{\parallel 0}}{2}(1-a_{p0})$ (instabilité

^{2.} Cette dénomination n'est proposée qu'à cause de la similarité des critères d'instabilités. Le comportement des quantités d'ordre 1 n'a pas été vérifié.

FIGURE 8.2 – Vitesse de phase $\Re[\omega/(kv_{A0})]$ (colonne a) et taux de croissance des instabilités $\Im[\omega/(kv_{A0})]$ (colonne b) normalisées par v_{A0} en fonction de l'angle θ pour le nouveau mode incompressible (ω_N , orange) et pour le mode d'Alfvén (ω_A , bleu). Des asymptotes sont tracées en lignes discontinues. En vert : mode asymptotique ω_P . En noir : angle asymptotique θ_2 . Première ligne : couple (1) tel que $\{a_{p0}, \beta_{\parallel 0}\} = \{0.05, 20/9\} \Rightarrow$ instabilité firehose (F < 0). Deuxième ligne : couple (2) tel que $\{0.2, 20/9\}$. Troisième ligne : couple (3) tel que $\{0.325, 20/9\} \Rightarrow$ seul cas stable pour tout θ (F = G). Quatrième ligne : couple (4) tel que $\{0.38, 20/9\}$. Cinquième ligne : couple (5) tel que $\{0.5, 20/9\} \Rightarrow$ instabilité pseudo-firehose perpendiculaire (G < 0). Sauf graphique (3a) où tous les modes coincident, lorsque qu'un mode disparaît d'un graphique de la colonne a, il apparaît sur le graphique de la colonne b.

pseudo-firehose perpendiculaire, couple (5) et aire verte sur la FIGURE 8.3) ou $\frac{\beta_{\parallel 0}}{2}(1-a_{p0}) > 1$ (instabilité firehose parallèle, couple (1) et aire bleue sur la FIGURE 8.3). Dans la zone intermédiaire (blanche sur la FIGURE 8.3), G > 0 et F > 0.
Etude angulaire complète du nouveau mode : Pour les angles θ plus obliques, entre 0° et 90°, le comportement de ω_N est plus difficile à établir puisque le signe de $\sin^2 \theta - 2\cos^2 \theta$ vient compenser le signe de $G\sin^2 \theta - 2F\cos^2 \theta$. Une instabilité, entre l'instabilité firehose parallèle et l'instabilité pseudo-firehose perpendiculaire, pourra alors émerger. On la nommera « instabilité pseudo-firehose oblique ». Elle apparaît pour les couples (2) (graphique (2b)) et (4) (graphique (4b)). La condition d'instabilité est obtenue pour F et G tels que :

$$(\tan^2 \theta - 2)(G \tan^2 \theta - 2F) < 0.$$
 (8.28)

 $g(\theta) = (\tan^2 \theta - 2)(G \tan^2 \theta - 2F)$ est une parabole présentant deux racines :

— $\tan^2 \theta = 2$ en laquelle $\omega_N^2 \to \infty$ (asymptote verticale indiquée en pointillés sur FIGURE 8.2), on la note θ_2 ,

— $\tan^2 \theta = 2\frac{F}{G}$ en laquelle $\omega_N^2 \to 0$, on la note $\theta_{F/G}$.

La stabilité du nouveau mode dépendra donc de la position de θ par rapport à θ_2 et $\theta_{F/G}$. Pour que le nouveau mode soit stable pour tout θ , il faut $g(\theta) > 0$. Cela n'est possible que si F = G, alors $g(\theta) = (\tan^2 \theta - 2)^2 > 0$. Dans ce cas, $\omega_N = \omega_A = \omega_P$. Sur la FIGURE 8.3, le critère F = G est indiqué par la courbe noire et il est illustré par le couple (3) (graphiques (3a) et (3b)). Par conséquent, en fonction de a_{p0} et $\beta_{\parallel 0}$, le nouveau mode sera stable pour tout θ si et seulement si $\frac{\beta_{\parallel 0}}{2}(1 - a_{p0}) = \frac{3}{4}$.

F = G, G = 0 et F = 0 découpent le diagramme de la FIGURE 8.3 en quatre zones que l'on va étudier séparément.

Si G < 0 (zone verte), alors F > 0. Dans ce cas, $g(\theta) < 0$ si $\theta > \theta_2$. Cette situation est illustrée par le couple (5) (graphiques (5a) et (5b)), instable pour tout angle supérieur à θ_2 . On peut raccrocher à cette condition le cas G = 0 puisque F = 1/3, et la parabole sera négative si $\tan^2 \theta > 2$. Dans ces cas, on retrouve l'instabilité pseudo-firehose perpendiculaire découverte asymptotiquement si $\theta \to 90^\circ$. On peut maintenant compléter ses conditions d'existence qui deviennent : l'instabilité pseudo-firehose perpendiculaire peut se développer si G < 0 pour tout angle $\theta > \theta_2$.

Si G > 0 et F/G > 1 (zone blanche délimitée par les courbes verte et noire), $g(\theta) < 0$ si $2\frac{F}{G} > \tan^2 \theta > 2$. Cette situation est illustrée par le couple (4) (graphiques (4a) et (4b)). L'instabilité s'y développant est l'instabilité pseudo-firehose oblique.

Si G > 0 et F/G < 1 (zone blanche délimitée par les courbes bleue et noire et zone bleue), $g(\theta) < 0$ si $2 > \tan^2 \theta > 2\frac{F}{G}$. Si F < 0, l'instabilité firehose parallèle se développe pour tout angle $\theta < \theta_2$. Ce cas est illustré par le couple (1) (graphiques (1a) et (1b)). Si F > 0, la situation est illustrée par le couple (2) (graphiques (2a) et (2b)). L'instabilité visible est encore une fois l'instabilité pseudo-firehose oblique. Sa condition d'apparition est donc : l'instabilité pseudo-firehose oblique peut se développer si G > 0 et F > 0 mais $G \neq F$, pour tout angle θ entre θ_2 et $\theta_{F/G}$.

La zone de stabilité de ce nouveau mode en fonction des paramètres $\beta_{\parallel 0}$ et a_{p0} est donc quasi-inexistante. Un résumé de l'ensemble des éléments de cette analyse est donné sur la FIGURE 8.3. Sachant que la problématique principale de ce travail se place dans le cadre compressible, l'exploitation de ce modèle incompressible n'a pas été engagée mais il fera l'objet d'un nouveau papier en préparation [SIMON et SAHRAOUI 2023].

FIGURE 8.3 – Diagramme $a_{p0} - \beta_{\parallel 0}$ résumant l'étude du nouveau mode. Croix rouges : couples $\{\beta_{\parallel 0}; a_{p0}\}$ sélectionnés pour l'étude paramétrique de la FIGURE 8.2. Frontière d'instabilité firehose F = 0 (bleu) et zone instable (F < 0, bleue) associée. Frontière d'instabilité pseudo-firehose perpendiculaire G = 0 (verte) et zone instable (G < 0, verte) associée. Ligne noire : ensemble des couples $\{\beta_{\parallel 0}; a_{p0}\}$ stables pour tout angle θ paramétrisé par F = G. Zone blanche : instabilité pseudo-firehose oblique.

8.4 Synthèse : Limite incompressible et pistes d'étude

Limite incompressible de la loi exacte avec pression tensorielle et cas gyrotrope :

$$-4(\varepsilon - \varepsilon_{PP98}) = -2\left\langle \delta(\overline{\boldsymbol{P}} - p\overline{\boldsymbol{I}}) : \delta(\nabla \boldsymbol{v}) \right\rangle = -2\left\langle \delta\overline{\boldsymbol{\Pi}} : \delta(\nabla \boldsymbol{v}) \right\rangle, \qquad (8.29)$$

$$-4(\varepsilon - \varepsilon_{PP98}) = -2\left\langle \delta((p_{\parallel} - p_{\perp})(\boldsymbol{b}\boldsymbol{b} - \frac{1}{3}\overline{\boldsymbol{I}})) : \delta(\nabla \boldsymbol{v}) \right\rangle.$$
(8.30)

 \Rightarrow Questionne l'existence d'un modèle incompressible gyrotrope.

Modèle incompressible avec pression gyrotrope proposé compatible avec la loi exacte :

$$\partial_t \boldsymbol{v} + \nabla \cdot (\boldsymbol{v} \boldsymbol{v} - \boldsymbol{v}_A \boldsymbol{v}_A + \frac{1}{\rho_0} \overline{\boldsymbol{P}_*}) = 0, \quad (8.31)$$

$$\partial_t p + \nabla \cdot (p \boldsymbol{v}) + \frac{2}{3} \overline{\boldsymbol{\Pi}} : \nabla \boldsymbol{v} = 0, \quad (8.32)$$

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) = 0, \quad (8.33)$$

$$\bar{\mathbf{I}} = p_0 |\boldsymbol{v}_{\boldsymbol{A}}|^2 = p_0 \frac{1}{(2m + m)}$$

avec
$$\overline{P_*} = (p + p_m)\overline{I} + \overline{\Pi}, \quad p_m = \frac{\rho_0 |v_A|^2}{2}, \quad p = \frac{1}{3}(2p_\perp + p_\parallel),$$

 $\overline{\Pi} = (p_\parallel - p_\perp)(bb - \frac{1}{3}\overline{I}), \quad b = \frac{v_A}{|v_A|}, \quad \text{et} \quad \nabla \cdot v = 0.$

Etude linéaire du modèle proposé :

— Mode d'Alfvén incompressible polarisé suivant (0, 1, 0):

$$\frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} + \frac{\beta_{\parallel 0}}{2} (1 - a_{p0}) - 1 = 0, \qquad (8.34)$$

Instabilité firehose :
$$\frac{\beta_{\parallel 0}}{2}(1-a_{p0})-1 > 0.$$
 (8.35)

— Nouveau mode polarisé suivant $(1, 0, -\tan\theta)$: (voir la FIGURE 8.3)

$$\frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} - \frac{2(\frac{\beta_{\parallel 0}}{2}(1-a_{p0})-1)\cos^2\theta + (3\frac{\beta_{\parallel 0}}{2}(1-a_{p0})-2)\sin^2\theta}{\sin^2\theta - 2\cos^2\theta} = 0.$$
(8.36)

Critère d'instabilité pseudo-firehose :
$$\frac{\beta_{\parallel 0}}{2}(1-a_{p0}) \neq \frac{3}{4}$$
. (8.37)

Les résultats obtenus ici à propos du nouveau modèle semblent prometteurs et feront l'objet d'une publication future.

RELAXER L'APPROXIMATION MHD ET ALLER VERS LE BI-FLUIDE

Sommaire

9.1	Le modèle MHD-Hall		
9.2	Le modèle bi-fluide 97		
9.3	Le modèle analysé numériquement dans la partie III 104		
9.4	Synthèse de l'extension de la théorie des lois exactes à d'autres		
	régimes		

Dans les chapitres précédents, l'équation d'induction (7.4) était celle de l'approximation MHD. Dans ce chapitre, nous allons relaxer les hypothèses sur cette équation en prenant d'abord en compte le terme de Hall (section 9.1). Dans la section 9.2, nous dériverons une correction à la loi exacte associée à chaque niveau d'approximation de la loi d'Ohm en partant du modèle bi-fluide. Enfin dans la section 9.3, nous nous intéresserons au modèle gyrotrope utilisé dans les simulations étudiées dans la Partie III : un modèle LF/CGL-MHD-Hall- ∇P_e (avec la fermeture Landau-fluide (LF) gyrotrope telle que $\overline{q} \neq 0$) prenant en compte la pression électronique dans la loi d'Ohm avec différentes fermetures (isotherme et gyrotrope).

Le modèle MHD-Hall 9.1

Comme on l'a vu dans le Chapitre 2, le terme de Hall doit être pris en compte dans l'équation d'induction si l'on regarde des échelles proches de la longueur inertielle des ions, ou des fréquences proches de la fréquence cyclotron des ions. Par conséquent, la loi exacte obtenue avec une loi d'Ohm MHD perdra sa validité près de ces échelles. Afin de tirer la description de la cascade dans ce domaine ionique, on doit donc calculer une correction à partir du terme de Hall. Diverses formulations existent pour cette contribution dans le cas des modèles dépendant d'une pression isotrope mais que devient-elle dans le cadre d'une fermeture avec pression tensorielle?

En prenant en compte le terme de Hall, l'équation d'induction devient :

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{u} - \boldsymbol{u} \boldsymbol{v}_{\boldsymbol{A}}) - \boldsymbol{u} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{u} - \frac{\lambda_i}{\sqrt{\rho}} \nabla \times \left(\frac{\boldsymbol{j}}{\sqrt{\rho}} \times \boldsymbol{v}_{\boldsymbol{A}}\right), \quad (9.1)$$

avec $\lambda_i = m_i/|q_e|$ une constante analysée dans le chapitre 2, $\boldsymbol{j} = \frac{1}{\sqrt{\mu_0}} \nabla \times \left(\sqrt{\rho} \boldsymbol{v}_{\boldsymbol{A}}\right)$ la

densité de courant et μ_0 la perméabilité du vide. Puisque $\sqrt{\rho} \boldsymbol{v}_A \cdot \nabla \times \left(\frac{\boldsymbol{j}}{\sqrt{\rho}} \times \boldsymbol{v}_A\right) = \nabla \cdot ((\boldsymbol{j} \times \boldsymbol{v}_A) \times \boldsymbol{v}_A)$, l'équation d'énergie magnétique

(4.6) devient :

$$\partial_t E_m + \nabla \cdot (E_m \boldsymbol{v} + \lambda_i \left(\boldsymbol{j} \times \boldsymbol{v}_{\boldsymbol{A}} \right) \times \boldsymbol{v}_{\boldsymbol{A}}) = \rho \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} : \nabla \boldsymbol{v} - p_m \nabla \cdot \boldsymbol{v}.$$
(9.2)

Cette correction n'ajoute qu'un terme de type flux au bilan énergétique et n'impactera pas l'équation d'énergie interne. De plus, le terme de Hall ne dépend pas du tenseur de pression. Par conséquent, elle n'influera pas les contributions du tenseur de pression et de l'énergie interne dans la loi exacte. Il faudra tout de même faire attention à ne pas utiliser les formes conservatives des pressions parallèle et perpendiculaire CGL (7.9) qui ne sont valables que dans le cas MHD, l'équation d'induction MHD étant utilisée pour les obtenir.

En notant génériquement ε_{mhd} le taux de cascade compressible obtenu avec un modèle dans lequel le terme de Hall est négligé et ε_{hall} la correction Hall, le nouveau taux de cascade sera $\varepsilon = \varepsilon_{mhd} + \varepsilon_{hall}$ avec :

$$-4\varepsilon_{hall} = \lambda_i \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\boldsymbol{j} \times \boldsymbol{v_A} + \boldsymbol{j'} \times \boldsymbol{v'_A} \right) \times \delta \boldsymbol{v_A} - \delta \left(\frac{\boldsymbol{j}}{\rho} \times \boldsymbol{v_A} \right) \times \left(\rho \boldsymbol{v_A} + \rho' \boldsymbol{v'_A} \right) \right\rangle \\ + \frac{\lambda_i}{2} \left\langle \left(\rho' \boldsymbol{v'_A} \cdot \delta \boldsymbol{v_A} - \delta \left(\rho \boldsymbol{v_A} \right) \cdot \boldsymbol{v'_A} \right) \nabla \cdot \left(\frac{\boldsymbol{j}}{\rho} \right) - \left(\rho \boldsymbol{v_A} \cdot \delta \boldsymbol{v_A} - \delta \left(\rho \boldsymbol{v_A} \right) \cdot \boldsymbol{v_A} \right) \nabla' \cdot \left(\frac{\boldsymbol{j'}}{\rho'} \right) \right\rangle \\ - \lambda_i \left\langle \left(\rho' \boldsymbol{v'_A} \cdot \delta \left(\frac{\boldsymbol{j}}{\rho} \right) - \boldsymbol{v'_A} \cdot \delta \boldsymbol{j} \right) \nabla \cdot \boldsymbol{v_A} - \left(\rho \boldsymbol{v_A} \cdot \delta \left(\frac{\boldsymbol{j}}{\rho} \right) - \boldsymbol{v_A} \cdot \delta \boldsymbol{j} \right) \nabla' \cdot \boldsymbol{v'_A} \right\rangle.$$

$$(9.3)$$

Ce résultat est une adaptation à nos notations du résultat obtenu par ANDRÉS, GALTIER et al. 2018 qui utilise la même fonction de corrélation de l'énergie magnétique que nous : $\mathcal{R}_m = \frac{1}{4} \langle (\rho' + \rho) \, \boldsymbol{v'_A} \cdot \boldsymbol{v_A} \rangle.$

Dans le cas incompressible avec pression isotrope, diverses formes de ε_{hall} existent et ont été comparées par FERRAND, GALTIER, SAHRAOUI, MEYRAND *et al.* 2019. On retiendra la forme qu'ils ont dérivée et qui peut être retrouvée en prenant la limite incompressible de la correction (9.3) :

$$-4\varepsilon_{hall} \xrightarrow{\rho=\rho_0} -\frac{\lambda_i}{2} \nabla_{\boldsymbol{\ell}} \cdot \langle \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{j} - 2\delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{j} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle.$$

$$(9.4)$$

Similairement à la correction compressible, cette correction est applicable à notre loi incompressible avec pression gyrotrope.

Linéairement, le terme de Hall va adapter les modes MHD et CGL afin d'y faire apparaître des corrections proches de la fréquence cyclotron ionique $\omega_{ci} = \frac{B_0}{\lambda_i}$. Des modes « whistler » (sifflants) et cyclotron ionique vont émerger ¹. On note que plus l'angle de propagation sera oblique par rapport à b_0 et plus la correction Hall à la relation de dispersion sera affaiblie. En terme d'instabilité, l'instabilité firehose sera quelque peu stabilisée. En effet, le critère d'instabilité devient $\frac{\beta_{\parallel 0}}{2}(1-a_{p0}) > 1 + \frac{k_{\parallel}^2 v_{A0}^2}{4\omega_{ci}^2}$. Par conséquent, la zone de stabilité du cadran $a_{p0} < 1$ dans le diagramme $a_{p0} - \beta_{\parallel 0}$ (FIGURE 7.1) sera élargie : en $a_{p0} = 0$, le critère rejoindra $\beta_{\parallel 0} = 2 + \frac{k_{\parallel}^2 v_{A0}^2}{2\omega_{ci}^2}$ qui est supérieur au $\beta_{\parallel 0} = 2$ obtenu dans le cas CGL. Le critère miroir ne sera quant à lui pas modifié.

^{1.} Pour plus de détails, se référer à la dérivation reprise par HUNANA et al. 2019.

Le modèle bi-fluide 9.2

On s'est demandé à quoi ressemblerait la loi exacte si l'on prenait en compte l'ensemble de la loi d'Ohm généralisée (2.13) dans l'équation d'induction. Au lieu d'attaquer ce problème en relaxant petit à petit les approximations appliquées sur la loi d'Ohm, j'ai choisi de partir du modèle bi-fluide puis d'y prendre en compte la quasi-neutralité, de l'exprimer en fonction des grandeurs mono-fluide, et enfin d'y injecter la loi d'Ohm généralisée. Il est ensuite possible de faire tendre la loi exacte obtenue vers différents régimes similairement au travail effectué par BANERJEE et ANDRÉS 2020. Contrairement à BANERJEE et ANDRÉS 2020 proposant une loi dérivée avec un modèle bi-fluide fermé polytropiquement et similairement à la dérivation effectuée dans le Chapitre 7, on considèrera des pressions tensorielles et les équations d'énergie interne associée à chaque espèce en négligeant les flux de chaleur. Pour alléger un peu le calcul, on ne fait pas apparaître non plus les termes de forçage et dissipation. La fonction de corrélation pour l'énergie électromagnétique sera choisie au plus près de celle utilisée jusqu'à présent c'est-à-dire $\langle \rho \boldsymbol{v}_{\boldsymbol{A}} \cdot \boldsymbol{v}'_{\boldsymbol{A}} \rangle$.

Les équations bi-fluides utilisées sont :

$$\partial_t \rho_\alpha + \nabla \cdot (\rho_\alpha \boldsymbol{v}_\alpha) = 0, \qquad (9.5)$$

$$\partial_t \left(\rho_\alpha \boldsymbol{v}_\alpha \right) + \nabla \cdot \left(\rho_\alpha \boldsymbol{v}_\alpha \boldsymbol{v}_\alpha + \overline{\boldsymbol{P}_\alpha} \right) - Q_\alpha \boldsymbol{E} - \boldsymbol{j}_\alpha \times \boldsymbol{B} = 0, \qquad (9.6)$$

$$\partial_t u_{\alpha} + \boldsymbol{v}_{\alpha} \cdot \nabla u_{\alpha} + \frac{1}{\rho_{\alpha}} \overline{\boldsymbol{P}_{\alpha}} : \nabla \boldsymbol{v}_{\alpha} = 0, \qquad (9.7)$$

$$\nabla \cdot \boldsymbol{E} = \frac{Q}{\varepsilon_0} \qquad \nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} + \mu_0 \varepsilon_0 \partial_t \boldsymbol{E} \qquad \nabla \cdot \boldsymbol{B} = 0, \qquad (9.8)$$

$$\partial_t \boldsymbol{B} + \nabla \times \boldsymbol{E} = 0, \qquad (9.9)$$

avec $Q = \sum_{\alpha} Q_{\alpha} = \sum_{\alpha} q_{\alpha} n_{\alpha}, \ \boldsymbol{j} = \sum_{\alpha} \boldsymbol{j}_{\alpha} = \sum_{\alpha} q_{\alpha} n_{\alpha} \boldsymbol{v}_{\alpha}.$

Ces équations contiennent beaucoup de quantités constantes : m_{α} dans ρ_{α} , q_{α} pour chaque espèce, μ_0 et ε_0 . Afin de réduire ce nombre de constantes qui viendront alourdir les calculs, nous allons normaliser les équations et faire ressortir des constantes caractéristiques du plasma². Ces constantes caractéristiques sont le rapport de masse $\mu =$ $\frac{m_e}{m_i+m_e} \simeq \frac{m_e}{m_i}$ puisque $m_e \ll m_i$, qui permet d'accéder facilement aux régimes MHD $(\mu \to 0)$ ou MHD électronique (EMHD) si $\mu \to 1$, et une longueur inertielle sans dimension $\lambda_i = \frac{\sqrt{m_i + m_e}}{L_0 \sqrt{\mu_0 n_0 e^2}} \simeq \frac{\sqrt{m_i}}{L_0 \sqrt{\mu_0 n_0 e^2}}$ que l'on note λ_i pour faciliter les comparaisons avec les résultats dimensionnés. Les vitesses seront normalisées par la vitesse de la lumière dans le vide c, et l'on note les quantités de références :

- $\text{Longueur} : L_0, \\ \text{Temps} : t_0 = \frac{L_0}{c},$
- Vitesse : $V_0 = c$,
- Densité de particule : n_0 ,
- Champ magnétique : $B_0 = c\sqrt{\mu_0 n_0(m_i + m_e)},$
- Champ électrique : $E_0 = cB_0$,
- Pression : $P_0 = (m_i + m_e)n_0c^2$.

On pourrait noter les quantités sans dimension avec un «~», par exemple $\tilde{v}_i = v_i/V_0$, etc. Cependant, dans la suite de cette section, on ne fera pas apparaître les «~» afin d'alléger les notations.

^{2.} Cela n'a pas été entreprit dans les modèles mono-fluides utilisés précédemment, parce qu'en MHD et MHD-Hall, les seules échelles apparaissant sont celles des ions (puisque $m_e \ll m_i$).

Le système sans dimension s'écrit donc :

$$\partial_t n_i + \nabla \cdot (n_i \boldsymbol{v_i}) = 0, \quad (9.10)$$

$$\partial_t n_e + \nabla \cdot (n_e \boldsymbol{v_e}) = 0, \quad (9.11)$$

$$\partial_t \boldsymbol{v}_i + \boldsymbol{v}_i \cdot \nabla \boldsymbol{v}_i + \frac{1}{(1-\mu)n_i} \nabla \cdot \overline{\boldsymbol{P}_i} - \frac{1}{(1-\mu)\lambda_i} \boldsymbol{E} - \frac{1}{(1-\mu)\lambda_i} \boldsymbol{v}_i \times \boldsymbol{B} = 0, \quad (9.12)$$

$$\partial_t \boldsymbol{v_e} + \boldsymbol{v_e} \cdot \nabla \boldsymbol{v_e} + \frac{1}{\mu n_e} \nabla \cdot \overline{\boldsymbol{P_e}} + \frac{1}{\mu \lambda_i} \boldsymbol{E} + \frac{1}{\mu \lambda_i} \boldsymbol{v_e} \times \boldsymbol{B} = 0, \quad (9.13)$$

$$\partial_t u_i + \boldsymbol{v}_i \cdot \nabla u_i + \frac{1}{(1-\mu)n_i} \overline{\boldsymbol{P}_i} : \nabla \boldsymbol{v}_i = 0, \quad (9.14)$$

$$\partial_t u_e + \boldsymbol{v}_e \cdot \nabla u_e + \frac{1}{\mu n_e} \overline{\boldsymbol{P}_e} : \nabla \boldsymbol{v}_e = 0, \quad (9.15)$$

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\lambda_i} (n_i - n_e), \qquad \nabla \times \boldsymbol{B} = \frac{1}{\lambda_i} (n_i \boldsymbol{v_i} - n_e \boldsymbol{v_e}) + \partial_t \boldsymbol{E}, \qquad \nabla \cdot \boldsymbol{B} = 0, \quad (9.16)$$
$$\partial_t \boldsymbol{B} + \nabla \times \boldsymbol{E} = 0. \quad (9.17)$$

Les grandeurs mono-fluides seront alors définies telles que
$$\rho = (1 - \mu)n_i + \mu n_e$$
 pour la densité, $\boldsymbol{v} = \frac{(1-\mu)n_i \boldsymbol{v_i} + \mu n_e \boldsymbol{v_e}}{(1-\mu)n_i + \mu n_e}$ pour la vitesse, $\boldsymbol{j} = \frac{1}{\lambda_i}(n_i \boldsymbol{v_i} - n_e \boldsymbol{v_e})$ pour la densité de courant.
Elles permettront de compacter un peu les équations. En combinant les équations (9.10), (9.11), (9.12) et (9.13), on obtient l'évolution de \boldsymbol{j} qui sera nécessaire pour remplacer \boldsymbol{E} dans (9.17) :

$$\boldsymbol{E} = -\frac{\rho}{\mu n_i + (1-\mu)n_e} \boldsymbol{v} \times \boldsymbol{B} - \frac{\lambda_i(2\mu-1)}{\mu n_i + (1-\mu)n_e} \boldsymbol{j} \times \boldsymbol{B} + \lambda_i \frac{\mu \nabla \cdot \overline{\boldsymbol{P}_i} - (1-\mu)\nabla \cdot \overline{\boldsymbol{P}_e}}{\mu n_i + (1-\mu)n_e} \\ + \frac{\lambda_i^2 \mu (1-\mu)}{\mu n_i + (1-\mu)n_e} \left[\partial_t \boldsymbol{j} + \nabla \cdot \left(\frac{\rho \rho}{n_i n_e} \boldsymbol{v} \boldsymbol{j} + \frac{\rho \rho}{n_i n_e} \boldsymbol{j} \boldsymbol{v} + \frac{\lambda_i(2\mu-1)n_i}{n_i n_e} \boldsymbol{j} \boldsymbol{j} \right) \right] \\ + \frac{\lambda_i \mu (1-\mu)}{\mu n_i + (1-\mu)n_e} \nabla \cdot \left(\frac{n_e - n_i}{n_i n_e} (\rho^2 \boldsymbol{v} \boldsymbol{v} + \mu^2 \lambda_i^2 \boldsymbol{j} \boldsymbol{j}) \right).$$
(9.18)

Contrairement à la loi d'Ohm détaillée dans le Chapitre 2, on n'y suppose ni la quasineutralité $(n_i = n_e = \rho)$ qui viendrait annuler la dernière ligne, ni $\mu \to 0$. À partir d'ici, on supposera l'hypothèse non-relativiste, qui permet de négliger les termes dépendant de \boldsymbol{E} devant ceux dépendant de \boldsymbol{B} dans (9.12) et (9.13) et (9.16). Comme on a besoin de l'équation d'induction, on doit garder le champ électrique dans l'équation (9.18) et (9.17). L'hypothèse non relativiste sera donc appliquée sur (9.18) en fonction de l'usage.

On définit aussi la vitesse d'Alfvén telle que $v_A = \frac{B}{\sqrt{(1-\mu)n_i + \mu n_e}}$. L'énergie totale non relativiste de ce système peut ainsi être séparée entre une énergie totale ionique et une électronique :

$$E_{tot} = E_{toti} + E_{tote} = \frac{1}{2}(1-\mu)n_i(|\boldsymbol{v}_i|^2 + |\boldsymbol{v}_A|^2 + 2u_i) + \frac{1}{2}\mu n_e(|\boldsymbol{v}_e|^2 + |\boldsymbol{v}_A|^2 + 2u_e).$$

L'équation d'induction (9.17) s'écrit en fonction de la vitesse d'Alfvén :

$$\partial_t \boldsymbol{v}_{\boldsymbol{A}} = -\frac{\nabla \times \boldsymbol{E}}{\sqrt{(1-\mu)n_i + \mu n_e}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \frac{\nabla \cdot ((1-\mu)n_i \boldsymbol{v}_{\boldsymbol{i}} + \mu n_e \boldsymbol{v}_{\boldsymbol{e}})}{(1-\mu)n_i + \mu n_e}.$$
 (9.19)

En appliquant la méthode résumée dans la section 3 sur les fonctions de corrélations

d'énergie totale ionique, $\mathcal{R}_{toti} = \frac{1-\mu}{4} \langle (n'_i + n_i)(\boldsymbol{v'_i} \cdot \boldsymbol{v_i} + \boldsymbol{v'_A} \cdot \boldsymbol{v_A}) + 2n'_i u_i + 2n_i u'_i \rangle$, et électronique, $\mathcal{R}_{tote} = \frac{\mu}{4} \langle (n'_e + n_e)(\boldsymbol{v'_e} \cdot \boldsymbol{v_e} + \boldsymbol{v'_A} \cdot \boldsymbol{v_A}) + 2n'_e u_e + 2n_e u'_e \rangle$, puis en supposant les hypothèses de stationnarité statistique et de séparation d'échelles de Kolmogorov, on obtient les lois exactes pour les taux de cascade, ε_i et ε_e , associés à chaque fluide et exprimés dans la zone inertielle :

$$- 4\varepsilon_{i} = (1 - \mu) \left(\nabla_{\ell} \cdot \langle \delta(n_{i}\boldsymbol{v}_{i}) \cdot \delta\boldsymbol{v}_{i}\delta\boldsymbol{v}_{i} \rangle + \left\langle \delta\boldsymbol{v}_{i} \cdot (n_{i}\boldsymbol{v}_{i}\nabla' \cdot \boldsymbol{v}_{i}' - n_{i}'\boldsymbol{v}_{i}'\nabla \cdot \boldsymbol{v}_{i}) \right\rangle \right) \\+ 2(1 - \mu) \left(\nabla_{\ell} \cdot \langle \delta n_{i}\delta\boldsymbol{u}_{i}\delta\boldsymbol{v}_{i} \rangle + \left\langle \delta\boldsymbol{u}_{i} \left(n_{i}\nabla' \cdot \boldsymbol{v}_{i}' - n_{i}'\nabla \cdot \boldsymbol{v}_{i}\right) \right) \right) \\+ \nabla_{\ell} \cdot \left\langle \delta(n_{i}\boldsymbol{v}_{i}) \cdot \delta\overline{\boldsymbol{P}_{i}}\delta\left(\frac{1}{n_{i}}\right) \right\rangle + \left\langle \delta\overline{\boldsymbol{P}_{i}} : \left(n_{i}\boldsymbol{v}_{i}\nabla'\left(\frac{1}{n_{i}'}\right) - n_{i}'\boldsymbol{v}_{i}'\nabla\left(\frac{1}{n_{i}}\right) \right) \right\rangle \\+ 2\left\langle \delta\left(\frac{\overline{\boldsymbol{P}_{i}}}{n_{i}}\right) : \left(n_{i}'\nabla\boldsymbol{v}_{i} - n_{i}\nabla'\boldsymbol{v}_{i}'\right) \right\rangle \\+ \frac{1 - \mu}{2}\left\langle \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}\left[\frac{(1 - \mu)(n_{i}' - n_{i}) - 2\mu n_{e}}{\rho}\nabla \cdot (n_{i}\boldsymbol{v}_{i}) + \frac{\mu(n_{i}' + n_{i})}{\rho}\nabla \cdot (n_{e}\boldsymbol{v}_{e})\right] \right\rangle \\+ \frac{1 - \mu}{2}\left\langle \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}\left[\frac{(1 - \mu)(n_{i} - n_{i}') - 2\mu n_{e}'}{\rho'}\nabla' \cdot (n_{i}'\boldsymbol{v}_{i}') + \frac{\mu(n_{i}' + n_{i})}{\rho'}\nabla' \cdot (n_{e}'\boldsymbol{v}_{e}')\right] \right\rangle \\+ \frac{1}{\lambda_{i}}\left\langle (n_{i}' + n_{i})\left(\boldsymbol{v}_{i}' \cdot \boldsymbol{v}_{i} \times (\sqrt{\rho}\boldsymbol{v}_{A}) + \boldsymbol{v}_{i} \cdot \boldsymbol{v}_{i}' \times \left(\sqrt{\rho'}\boldsymbol{v}_{A}'\right)\right) \right\rangle \\- (1 - \mu)\left\langle (n_{i}' + n_{i})\left(\frac{\nabla' \cdot (\boldsymbol{E}' \times \boldsymbol{v}_{A})}{\sqrt{\rho'}} + \frac{\nabla \cdot (\boldsymbol{E} \times \boldsymbol{v}_{A})}{\sqrt{\rho}}\right) \right\rangle, \tag{9.20}$$

$$- 4\varepsilon_{e} = \mu \left(\nabla_{\ell} \cdot \langle \delta(n_{e} \boldsymbol{v}_{e}) \cdot \delta \boldsymbol{v}_{e} \delta \boldsymbol{v}_{e} \rangle + \langle \delta \boldsymbol{v}_{e} \cdot (n_{e} \boldsymbol{v}_{e} \nabla' \cdot \boldsymbol{v}_{e}' - n_{e}' \boldsymbol{v}_{e}' \nabla \cdot \boldsymbol{v}_{e}) \rangle \right) \\+ 2\mu \left(\nabla_{\ell} \cdot \langle \delta n_{e} \delta u_{e} \delta \boldsymbol{v}_{e} \rangle + \langle \delta u_{e} \left(n_{e} \nabla' \cdot \boldsymbol{v}_{e}' - n_{e}' \nabla \cdot \boldsymbol{v}_{e} \right) \rangle \right) \\+ \nabla_{\ell} \cdot \left\langle \delta \left(n_{e} \boldsymbol{v}_{e} \right) \cdot \delta \overline{P_{e}} \delta \left(\frac{1}{n_{e}} \right) \right\rangle + \left\langle \delta \overline{P_{e}} : \left(n_{e} \boldsymbol{v}_{e} \nabla' \left(\frac{1}{n_{e}'} \right) - n_{e}' \boldsymbol{v}_{e}' \nabla \left(\frac{1}{n_{e}} \right) \right) \right\rangle \\+ 2 \left\langle \delta \left(\frac{\overline{P_{e}}}{n_{e}} \right) : \left(n_{e}' \nabla \boldsymbol{v}_{e} - n_{e} \nabla' \boldsymbol{v}_{e}' \right) \right\rangle \\+ \frac{\mu}{2} \left\langle \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A} \left[\frac{\mu \left(n_{e}' - n_{e} \right) - 2 \left(1 - \mu \right) n_{i}}{\rho} \nabla \cdot \left(n_{e} \boldsymbol{v}_{e} \right) + \frac{\left(1 - \mu \right) \left(n_{e}' + n_{e} \right)}{\rho} \nabla \cdot \left(n_{i} \boldsymbol{v}_{i} \right) \right] \right\rangle \\+ \frac{\mu}{2} \left\langle \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}' \left[\frac{\mu \left(n_{e} - n_{e}' \right) - 2 \left(1 - \mu \right) n_{i}}{\rho'} \nabla \cdot \left(n_{e}' \boldsymbol{v}_{e}' \right) + \frac{\left(1 - \mu \right) \left(n_{e}' + n_{e} \right)}{\rho'} \nabla \cdot \left(n_{i}' \boldsymbol{v}_{i}' \right) \right] \right\rangle \\+ \frac{1}{\lambda_{i}} \left\langle \left(n_{e}' + n_{e} \right) \left(\boldsymbol{v}_{e}' \cdot \boldsymbol{v}_{e} \times \left(\sqrt{\rho} \boldsymbol{v}_{A} \right) + \boldsymbol{v}_{e} \cdot \boldsymbol{v}_{e}' \times \left(\sqrt{\rho'} \boldsymbol{v}_{A}' \right) \right) \right\rangle \right\}$$
(9.21)

On y retrouve des fonctions de structures et des termes sources similaires à ceux dérivés dans les cas MHD et CGL (voir équations (7.16), (7.18) et (5.20)) pour les contributions cinétique et thermodynamique (v_i , v_e , u_i , u_e , $\overline{P_i}$ et $\overline{P_e}$). Par contre, la contribution électromagnétique diffère (quatre dernières lignes de (9.20) et (9.21)). On remarque d'ailleurs qu'elle reflète le couplage des deux fluides par le champ électromagnétique étant donné que, dans (9.20) comme dans (9.21), elle dépend de E, v_A , v_i , v_e , n_i et n_e . Pour réduire cette contribution, on doit sommer (9.20) et (9.21). On obtient ainsi après quelques manipulations, la loi exacte pour l'énergie totale bi-fluide :

$$\begin{array}{ll} |1| & -4\varepsilon &= (1-\mu) \left(\nabla_{\boldsymbol{\ell}} \cdot \langle \delta\left(n_{i}\boldsymbol{v}_{i}\right) \cdot \delta\boldsymbol{v}_{i}\delta\boldsymbol{v}_{i} \rangle + \langle \delta\boldsymbol{v}_{i} \cdot \left(n_{i}\boldsymbol{v}_{i}\nabla^{\prime} \cdot \boldsymbol{v}_{i}^{\prime} - n_{i}^{\prime}\boldsymbol{v}_{i}^{\prime}\nabla \cdot \boldsymbol{v}_{i}\right) \rangle \right) \\ |2| & +\mu \left(\nabla_{\boldsymbol{\ell}} \cdot \langle \delta\left(n_{e}\boldsymbol{v}_{e}\right) \cdot \delta\boldsymbol{v}_{e}\delta\boldsymbol{v}_{e} \rangle + \langle \delta\boldsymbol{v}_{e} \cdot \left(n_{e}\boldsymbol{v}_{e}\nabla^{\prime} \cdot \boldsymbol{v}_{e}^{\prime} - n_{e}^{\prime}\boldsymbol{v}_{e}^{\prime}\nabla \cdot \boldsymbol{v}_{e}\right) \rangle \right) \\ |3| & +2(1-\mu) \left(\nabla_{\boldsymbol{\ell}} \cdot \langle \delta n_{i}\delta\boldsymbol{u}_{i}\delta\boldsymbol{v}_{i} \rangle + \langle \delta\boldsymbol{u}_{i}\left(n_{i}\nabla^{\prime} \cdot \boldsymbol{v}_{i}^{\prime} - n_{i}^{\prime}\nabla^{\prime} \cdot \boldsymbol{v}_{i}\right) \rangle \right) \\ |4| & +2\mu \left(\nabla_{\boldsymbol{\ell}} \cdot \langle \delta n_{e}\delta\boldsymbol{u}_{e}\delta\boldsymbol{v}_{e} \rangle + \langle \delta\boldsymbol{u}_{e}\left(n_{e}\nabla^{\prime} \cdot \boldsymbol{v}_{e}^{\prime} - n_{e}^{\prime}\nabla^{\prime} \cdot \boldsymbol{v}_{e}\right) \rangle \right) \\ |5| & +\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\left(n_{i}\boldsymbol{v}_{i}\right) \cdot \delta\overline{\boldsymbol{P}_{i}}\delta\left(\frac{1}{n_{i}}\right) \right\rangle + \left\langle \delta\overline{\boldsymbol{P}_{i}} : \left(n_{i}\boldsymbol{v}_{i}\nabla^{\prime}\left(\frac{1}{n_{i}^{\prime}}\right) - n_{i}^{\prime}\boldsymbol{v}_{i}^{\prime}\nabla\left(\frac{1}{n_{e}^{\prime}}\right) \right) \right\rangle \\ |6| & +\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\left(n_{e}\boldsymbol{v}_{e}\right) \cdot \delta\overline{\boldsymbol{P}_{e}}\delta\left(\frac{1}{n_{e}}\right) \right\rangle + \left\langle \delta\overline{\boldsymbol{P}_{e}} : \left(n_{e}\boldsymbol{v}_{e}\nabla^{\prime}\left(\frac{1}{n_{e}^{\prime}}\right) - n_{e}^{\prime}\boldsymbol{v}_{e}^{\prime}\nabla\left(\frac{1}{n_{e}}\right) \right) \right\rangle \\ |7| & +2 \left\langle \delta\left(\frac{\underline{\boldsymbol{P}_{i}}{n_{i}}\right) : \left(n_{i}^{\prime}\nabla\boldsymbol{v}_{i} - n_{i}\nabla^{\prime}\boldsymbol{v}_{i}^{\prime}\right) + \delta\left(\frac{\underline{\boldsymbol{P}_{e}}}{n_{e}}\right) : \left(n_{e}^{\prime}\nabla\boldsymbol{v}_{e} - n_{e}\nabla^{\prime}\boldsymbol{v}_{e}\right) \right\rangle \\ |8| & -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\rho^{\prime} + \rho\right) \left(\frac{\boldsymbol{E}^{\prime} \times \boldsymbol{v}_{A}}{\sqrt{\rho^{\prime}}} - \frac{\boldsymbol{E} \times \boldsymbol{v}_{A}}{\sqrt{\rho^{\prime}}}\right) \right\rangle + \frac{1}{2} \left\langle \left(\rho^{\prime} - \rho\right) \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}^{\prime}\left(\nabla \cdot \boldsymbol{v} - \nabla^{\prime} \cdot \boldsymbol{v}^{\prime}\right) \right\rangle \\ |9| & + \left\langle \left(\rho^{\prime} - \rho\right) \left(\left(-\frac{\boldsymbol{E} \times \boldsymbol{v}_{A}}{\sqrt{\rho^{\prime}}} + \frac{1}{2}\boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}\boldsymbol{v}\right) \cdot \frac{\nabla\rho}{\rho} + \left(\frac{\boldsymbol{E}^{\prime} \times \boldsymbol{v}_{A}}{\sqrt{\rho^{\prime}}} - \frac{1}{2}\boldsymbol{v}_{A}^{\prime} \cdot \boldsymbol{v}_{A}\boldsymbol{v}^{\prime}\right) \cdot \frac{\nabla\rho'\rho'}{\rho'}\right) \right\rangle \\ |10| & +\frac{1}{\lambda_{i}} \left\langle \left(n_{e}^{\prime} + n_{e}\right) \left(\boldsymbol{v}_{e}^{\prime} \cdot \boldsymbol{v}_{e} \times \left(\sqrt{\rho}\boldsymbol{v}_{A}\right) + \boldsymbol{v}_{e} \cdot \boldsymbol{v}_{e}^{\prime} \times \left(\sqrt{\rho'}\boldsymbol{v}_{A}^{\prime}\right)\right) \right\rangle . \end{array} \right) .$$

Cette loi dépend de μ , n_i , n_e , v_i et v_e explicitement et à travers ρ et v. Elle dépend aussi de u_i , u_e , $\overline{P_i}$ et $\overline{P_e}$ et de λ_i , v_A et E. E peut y être remplacé par la loi d'Ohm (9.18).

On peut aussi exprimer la loi (9.22) en fonction des quantités mono-fluides en remplaçant \boldsymbol{v}_i et \boldsymbol{v}_e avec $\boldsymbol{v}_i = \frac{\rho}{n_i} \boldsymbol{v} + \frac{\lambda_i \mu}{n_i} \boldsymbol{j}$ et $\boldsymbol{v}_e = \frac{\rho}{n_e} \boldsymbol{v} - \frac{\lambda_i (1-\mu)}{n_e} \boldsymbol{j}$. On supposera aussi le fluide quasi-neutre, c'est-à-dire $n_i = n_e = \rho$ et on va travailler les termes séparément en fonction de leur dépendance.

Tout d'abord les lignes [1] et [2], purement cinétiques, pevent s'écrire comme suit :

$$-4\varepsilon_{[1-2]} = \nabla_{\boldsymbol{\ell}} \cdot \langle \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\boldsymbol{v}\delta\boldsymbol{v}\rangle + \langle \delta\boldsymbol{v} \cdot \left(\rho\boldsymbol{v}\nabla'\cdot\boldsymbol{v}'-\rho'\boldsymbol{v}'\nabla\cdot\boldsymbol{v}\right)\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\left(\frac{\boldsymbol{j}}{\rho}\right)\delta\left(\frac{\boldsymbol{j}}{\rho}\right) + \delta\boldsymbol{j} \cdot \delta\boldsymbol{v}\delta\left(\frac{\boldsymbol{j}}{\rho}\right) + \delta\boldsymbol{j} \cdot \delta\left(\frac{\boldsymbol{j}}{\rho}\right)\delta\boldsymbol{v}\right\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\left\langle\delta\frac{\boldsymbol{j}}{\rho} \cdot \left(\boldsymbol{j}\nabla'\cdot\boldsymbol{v}'-\boldsymbol{j}\nabla\cdot\boldsymbol{v}\right)\right\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\left\langle\left(\boldsymbol{j}\cdot\delta\boldsymbol{v}+\rho\boldsymbol{v}\cdot\delta\frac{\boldsymbol{j}}{\rho}\right)\nabla'\cdot\frac{\boldsymbol{j}'}{\rho'}-\left(\boldsymbol{j}'\cdot\delta\boldsymbol{v}+\rho\boldsymbol{v}\cdot\delta\frac{\boldsymbol{j}}{\rho}\right)\nabla\cdot\frac{\boldsymbol{j}}{\rho}\right\rangle \\ +\lambda_{i}^{3}\mu\left(1-\mu\right)\left(2\mu-1\right)\nabla_{\boldsymbol{\ell}} \cdot\left\langle\delta\boldsymbol{j}\cdot\delta\left(\frac{\boldsymbol{j}}{\rho}\right)\delta\left(\frac{\boldsymbol{j}}{\rho}\right)\right\rangle \\ +\lambda_{i}^{3}\mu\left(1-\mu\right)\left(2\mu-1\right)\left\langle\delta\left(\frac{\boldsymbol{j}}{\rho}\right)\cdot\left(\boldsymbol{j}\nabla'\cdot\frac{\boldsymbol{j}'}{\rho'}-\boldsymbol{j}'\nabla\cdot\frac{\boldsymbol{j}}{\rho}\right)\right\rangle.$$

$$(9.23)$$

Lorsque $\mu \to 0$ (magnétohydrodynamique (MHD)) ou $\mu \to 1$ (EMHD), seule la première ligne de (9.23) subsiste. On remarque aussi que les lignes suivantes sont en λ_i^2 et λ_i^3 , par conséquent ces termes tendront rapidement vers 0 pour des échelles L_0 grandes devant la longueur d'inertie du plasma.

Ensuite les lignes [3] et [4] dépendant de l'énergie interne nous donne, en notant $u = (1 - \mu) u_i + \mu u_e$:

$$-4\varepsilon_{[3-4]} = 2\left(\nabla_{\boldsymbol{\ell}} \cdot \langle \delta\rho\delta u\delta\boldsymbol{v} \rangle + \langle \delta u \left(\rho\nabla' \cdot (\boldsymbol{v}') - \rho'\nabla \cdot (\boldsymbol{v})\right) \rangle\right) +2\lambda_{i}\mu\left(1-\mu\right)\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(u_{i}-u_{e}\right)\delta\left(\frac{\boldsymbol{j}}{\rho}\right) \right\rangle +2\lambda_{i}\mu\left(1-\mu\right)\left\langle \delta\left(u_{i}-u_{e}\right)\left(\rho\nabla' \cdot \left(\frac{\boldsymbol{j}'}{\rho'}\right) - \rho'\nabla \cdot \left(\frac{\boldsymbol{j}}{\rho}\right)\right) \right\rangle.$$

$$(9.24)$$

Ici aussi, lorsque $\mu \to 0$ (MHD) ou $\mu \to 1$ (EMHD), seule la première ligne de (9.24) subsiste.

Les lignes [5] à [7] de (9.22) dépendant des tenseurs de pressions s'écrivent en notant $\overline{P} = \overline{P_i} + \overline{P_e}$:

$$-4\varepsilon_{[5-7]} = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\left(\rho\boldsymbol{v}\right) \cdot \delta\overline{\boldsymbol{P}}\delta\left(\frac{1}{\rho}\right) \right\rangle + \left\langle \delta\overline{\boldsymbol{P}} : \left(\rho\boldsymbol{v}\nabla'\left(\frac{1}{\rho'}\right) - \rho'\boldsymbol{v}'\nabla\left(\frac{1}{\rho}\right)\right) \right\rangle \\ + 2\left\langle \delta\left(\frac{\overline{\boldsymbol{P}}}{\rho}\right) : \left(\rho'\nabla\boldsymbol{v} - \rho\nabla'\boldsymbol{v}'\right) \right\rangle \\ + \lambda_{i}\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\boldsymbol{j} \cdot \delta\left(\mu\overline{\boldsymbol{P}_{i}} - (1-\mu)\overline{\boldsymbol{P}_{e}}\right)\delta\left(\frac{1}{\rho}\right) \right\rangle \\ + \lambda_{i}\left\langle \delta\left(\mu\overline{\boldsymbol{P}_{i}} - (1-\mu)\overline{\boldsymbol{P}_{e}}\right) : \left(\boldsymbol{j}\nabla'\left(\frac{1}{\rho'}\right) - \boldsymbol{j}'\nabla\left(\frac{1}{\rho}\right)\right) \right\rangle \\ + 2\lambda_{i}\left\langle \delta\left(\mu\frac{\overline{\boldsymbol{P}_{i}}}{\rho} - (1-\mu)\frac{\overline{\boldsymbol{P}_{e}}}{\rho}\right) : \left(\rho'\nabla\left(\frac{\boldsymbol{j}}{\rho}\right) - \rho\nabla'\left(\frac{\boldsymbol{j}'}{\rho'}\right)\right) \right\rangle.$$

$$(9.25)$$

Dans les deux premières lignes de (9.25), on retrouve la formulation f3 (5.20) de la contribution du tenseur de pression de la loi générale MHD gyrotrope (7.20). Elles s'écrivent de la même manière, que les quantités soient sans dimension ou pas. Les lignes suivantes dépendent de la densité de courant \boldsymbol{j} et des tenseurs de pressions. Elles rappellent la contribution thermique de la loi d'Ohm (9.18) et ne s'annulent pas complètement si $\mu \to 0$ ou $\mu \to 1$.

Les lignes [8] à [11] de (9.22) dépendent de la vitesse d'Alfvén et du champ électrique. En y appliquant la même transformation qu'aux autres lignes, elles deviennent :

$$\begin{aligned}
-4 \quad \varepsilon_{[8-11]} \\
= & -\nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\rho'+\rho\right) \left(\frac{\boldsymbol{E}' \times \boldsymbol{v}_{A}}{\sqrt{\rho'}} - \frac{\boldsymbol{E} \times \boldsymbol{v}'_{A}}{\sqrt{\rho}}\right) \right\rangle + \frac{1}{2} \left\langle \left(\rho'-\rho\right) \boldsymbol{v}_{A} \cdot \boldsymbol{v}'_{A} \left(\nabla \cdot \boldsymbol{v} - \nabla' \cdot \boldsymbol{v}'\right) \right\rangle \\
& + \frac{1}{2} \left\langle \left(\rho'-\rho\right) \left(\left(-\frac{\boldsymbol{E} \times \boldsymbol{v}'_{A}}{\sqrt{\rho}} + \boldsymbol{v}_{A} \cdot \boldsymbol{v}'_{A} \boldsymbol{v}\right) \cdot \frac{\nabla_{\rho}}{\rho} + \left(\frac{\boldsymbol{E}' \times \boldsymbol{v}_{A}}{\sqrt{\rho'}} - \boldsymbol{v}'_{A} \cdot \boldsymbol{v}_{A} \boldsymbol{v}'\right) \cdot \frac{\nabla' \rho'}{\rho'} \right) \right\rangle \\
& + \left\langle \left(\frac{1}{\rho'} + \frac{1}{\rho}\right) \left(\boldsymbol{j}' \cdot \rho \boldsymbol{v} \times \left(\sqrt{\rho} \boldsymbol{v}_{A}\right) + \boldsymbol{j} \cdot \rho' \boldsymbol{v}' \times \left(\sqrt{\rho'} \boldsymbol{v}'_{A}\right)\right) \right\rangle \\
& + \lambda_{i} \left(2\mu - 1\right) \left\langle \left(\frac{1}{\rho'} + \frac{1}{\rho}\right) \left(\boldsymbol{j}' \cdot \boldsymbol{j} \times \left(\sqrt{\rho} \boldsymbol{v}_{A}\right) + \boldsymbol{j} \cdot \boldsymbol{j}' \times \left(\sqrt{\rho'} \boldsymbol{v}'_{A}\right)\right) \right\rangle \\
& + \left\langle \left(\frac{1}{\rho'} + \frac{1}{\rho}\right) \left(\rho \boldsymbol{v}' \cdot \boldsymbol{j} \times \left(\sqrt{\rho} \boldsymbol{v}_{A}\right) + \rho' \boldsymbol{v} \cdot \boldsymbol{j}' \times \left(\sqrt{\rho'} \boldsymbol{v}'_{A}\right)\right) \right\rangle \\
& + \left\langle \left(\frac{1}{\rho'} - \rho\right) \left(\left(-\frac{\boldsymbol{E} \times \boldsymbol{v}'_{A}}{\sqrt{\rho'}} - \frac{\boldsymbol{E} \times \boldsymbol{v}'_{A}}{\sqrt{\rho}}\right) \right\rangle + \frac{1}{2} \left\langle \left(\rho' - \rho\right) \boldsymbol{v}_{A} \cdot \boldsymbol{v}'_{A} \left(\nabla \cdot \boldsymbol{v} - \nabla' \cdot \boldsymbol{v}'\right) \right\rangle \\
& + \frac{1}{2} \left\langle \left(\rho' - \rho\right) \left(\left(-\frac{\boldsymbol{E} \times \boldsymbol{v}'_{A}}{\sqrt{\rho'}} - \frac{\boldsymbol{E} \times \boldsymbol{v}'_{A}}{\sqrt{\rho}}\right) \cdot \frac{\nabla \rho}{\rho} + \left(\frac{\boldsymbol{E}' \times \boldsymbol{v}_{A}}{\sqrt{\rho'}} - \boldsymbol{v}'_{A} \cdot \boldsymbol{v}_{A} \boldsymbol{v}'\right) \cdot \frac{\nabla' \rho'}{\rho'} \right) \right\rangle \\
& + \left\langle \left(\frac{1}{\rho'} + \frac{1}{\rho}\right) \left(\boldsymbol{j}' \cdot \rho \boldsymbol{v} \times \left(\sqrt{\rho} \boldsymbol{v}_{A}\right) + \boldsymbol{j} \cdot \rho' \boldsymbol{v}' \times \left(\sqrt{\rho'} \boldsymbol{v}'_{A}\right)\right) \right\rangle \\
& + \lambda_{i} \left(2\mu - 1\right) \left\langle \left(\frac{1}{\rho'} + \frac{1}{\rho}\right) \left(\boldsymbol{j}' \cdot \boldsymbol{j} \times \left(\sqrt{\rho} \boldsymbol{v}_{A}\right) + \boldsymbol{j} \cdot \boldsymbol{j}' \times \left(\sqrt{\rho'} \boldsymbol{v}'_{A}\right)\right) \right\rangle \\
& + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\rho + \rho'\right) \left(\boldsymbol{v} \cdot \boldsymbol{v}'_{A} \boldsymbol{v}'_{A} - \frac{1}{2} \boldsymbol{v}'_{A} \cdot \boldsymbol{v}'_{A} \boldsymbol{v} - \boldsymbol{v}' \cdot \boldsymbol{v}_{A} \boldsymbol{v}_{A} - \frac{1}{2} \rho \boldsymbol{v}'_{A} \cdot \boldsymbol{v}_{A} \boldsymbol{v}\right) \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle.
\end{aligned}$$
(9.26)

La dernière égalité est obtenue en remplaçant \boldsymbol{j} par $\nabla \times (\sqrt{\rho}\boldsymbol{v}_{\boldsymbol{A}})$ dans la dernière ligne de (9.26). Les termes résultants rappellent les fonctions de structure $\langle \delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v} \rangle$, $\langle \delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle$, $\langle \delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \delta \boldsymbol{v}_{\boldsymbol{A}} \rangle$ et $\langle \delta(\rho \boldsymbol{v}) \delta(\frac{\rho \boldsymbol{v}_{\boldsymbol{A}}^2}{2}) \delta(1/\rho) \rangle$ présentes dans les lois MHD. Pour les faire apparaître, il nous manque des termes qui sont cachés dans la première ligne. On doit y remplacer \boldsymbol{E} qui provient de l'équation d'induction grâce à la loi d'Ohm (9.18) qui devient avec l'hypothèse quasi-neutre et en fonction de la vitesse d'Alfvén :

$$\boldsymbol{E} = -\boldsymbol{v} \times \sqrt{\rho} \boldsymbol{v}_{\boldsymbol{A}} - \frac{\lambda_{i}(2\mu-1)}{\rho} \boldsymbol{j} \times \sqrt{\rho} \boldsymbol{v}_{\boldsymbol{A}} + \lambda_{i} \frac{\mu \nabla \cdot \overline{\boldsymbol{P}_{i}} - (1-\mu) \nabla \cdot \overline{\boldsymbol{P}_{e}}}{\rho} \\ + \frac{\lambda_{i}^{2} \mu (1-\mu)}{\rho} \left[\partial_{t} \boldsymbol{j} + \nabla \cdot (\boldsymbol{v} \boldsymbol{j} + \boldsymbol{j} \boldsymbol{v} + \frac{\lambda_{i}(2\mu-1)}{\rho} \boldsymbol{j} \boldsymbol{j}) \right]^{\rho}.$$
(9.27)

On peut aussi utiliser cette expression de la loi d'Ohm pour remplacer \boldsymbol{E} dans la deuxième ligne. En revanche, afin de remplacer $\lambda_i(2\mu-1)\boldsymbol{j} \times \sqrt{\rho}\boldsymbol{v}_A + \rho \boldsymbol{v} \times \sqrt{\rho}\boldsymbol{v}_A$ dans les troisième et quatrième lignes, il faut utiliser sa version non relativiste :

$$\rho \boldsymbol{v} \times \sqrt{\rho} \boldsymbol{v}_{\boldsymbol{A}} + \lambda_{i} (2\mu - 1) \boldsymbol{j} \times \sqrt{\rho} \boldsymbol{v}_{\boldsymbol{A}} = \frac{\lambda_{i}^{2} \mu (1 - \mu)}{\rho} \left[\partial_{t} \boldsymbol{j} + \nabla \cdot (\boldsymbol{v} \boldsymbol{j} + \boldsymbol{j} \boldsymbol{v} + \lambda_{i} (2\mu - 1) \boldsymbol{j} \boldsymbol{j}) \right] \\ + \lambda_{i} (\mu \nabla \cdot \overline{\boldsymbol{P}_{i}} - (1 - \mu) \nabla \cdot \overline{\boldsymbol{P}_{e}}).$$
(9.28)

Ainsi, en appliquant (9.27) et (9.28) dans (9.26) contribution par contribution, on obtient les résultats suivants.

Pour la contribution MHD :

$$-4 \quad \varepsilon_{[8-11]}^{MHD} = \nabla_{\boldsymbol{\ell}} \cdot \left\langle (\rho + \rho') (\boldsymbol{v} \cdot \boldsymbol{v}_{A}' \boldsymbol{v}_{A}' - \frac{1}{2} \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}' \boldsymbol{v} - \boldsymbol{v}' \cdot \boldsymbol{v}_{A} \boldsymbol{v}_{A} + \frac{1}{2} \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A} \boldsymbol{v}') \right\rangle \\ + \nabla_{\boldsymbol{\ell}} \cdot \left\langle (\rho' + \rho) ((\boldsymbol{v}' \times \boldsymbol{v}_{A}') \times \boldsymbol{v}_{A} - (\boldsymbol{v} \times \boldsymbol{v}_{A}) \times \boldsymbol{v}'_{A}) \right\rangle \\ + \frac{1}{2} \left\langle (\rho' - \rho) \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}' (\nabla \cdot \boldsymbol{v} - \nabla' \cdot \boldsymbol{v}') \right\rangle \\ + \frac{1}{2} \left\langle (\rho' - \rho) ((\boldsymbol{v} \times \boldsymbol{v}_{A}) \times \boldsymbol{v}_{A}' + \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A}' \boldsymbol{v}) \cdot \frac{\nabla \rho}{\rho} \right\rangle \\ - \frac{1}{2} \left\langle (\rho' - \rho) ((\boldsymbol{v}' \times \boldsymbol{v}_{A}') \times \boldsymbol{v}_{A} + \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A} \boldsymbol{v}') \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle \\ + \left\langle (\rho' \boldsymbol{v}' \cdot \boldsymbol{v}_{A} \boldsymbol{v}_{A} - \frac{1}{2} \rho' \boldsymbol{v}_{A} \cdot \boldsymbol{v}_{A} \boldsymbol{v}') \cdot \frac{\nabla \rho}{\rho} + (\rho \boldsymbol{v} \cdot \boldsymbol{v}_{A}' \boldsymbol{v}_{A}' - \frac{1}{2} \rho \boldsymbol{v}_{A}' \cdot \boldsymbol{v}_{A}' \boldsymbol{v}) \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle, \\ = \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta(\rho \boldsymbol{v}_{A}) \cdot \delta \boldsymbol{v}_{A}' \delta \boldsymbol{v} + \delta(\frac{\rho' \boldsymbol{v}_{A}'^{2}}{2}) \delta(\rho \boldsymbol{v}) \delta(\frac{1}{\rho}) - \delta \boldsymbol{v}_{A} \cdot \delta(\rho \boldsymbol{v}) \delta \boldsymbol{v}_{A} - \delta(\rho \boldsymbol{v}_{A}) \cdot \delta \boldsymbol{v} \delta \boldsymbol{v}_{A} \right\rangle \\ + \frac{1}{2} \left\langle (\delta(\rho \boldsymbol{v}_{A}) \cdot \boldsymbol{v}_{A}' - \delta \boldsymbol{v}_{A} \cdot \rho' \boldsymbol{v}_{A}') \nabla \cdot \boldsymbol{v} - (\delta(\rho' \boldsymbol{v}_{A}') \cdot \boldsymbol{v}_{A} - \rho \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}_{A}) \nabla' \cdot \boldsymbol{v}') \right\rangle \\ + \left\langle \delta(\frac{\rho \boldsymbol{v}_{A}^{2}}{2}) (\rho \boldsymbol{v} \cdot \nabla' \frac{1}{\rho'} - \rho' \boldsymbol{v}' \cdot \nabla \frac{1}{\rho} \right\rangle \\ - \left\langle (2\rho \boldsymbol{v} \cdot \delta \boldsymbol{v}_{A} + \rho \boldsymbol{v}_{A} \cdot \delta \boldsymbol{v}) - \boldsymbol{v}_{A} \cdot \delta(\rho \boldsymbol{v})) \nabla' \cdot \boldsymbol{v}_{A} \right\rangle.$$

$$(9.29)$$

On retrouve bien la contribution électromagnétique dérivée dans le cas MHD (voir équations (5.8) et (5.20) pour les termes de pression magnétique)³. Elle ne dépend ni de μ ni de λ_i , donc elle ne diffèrera pas que l'on soit dans le régime MHD ou EMHD.

Pour la contribution Hall :

$$-4 \quad \varepsilon_{[8-11]}^{Hall} = \lambda_{i} \left(2\mu - 1\right) \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\rho' + \rho\right) \left(\left(\frac{1}{\rho'} \boldsymbol{j'} \times \boldsymbol{v'_{A}}\right) \times \boldsymbol{v_{A}} - \left(\frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{v_{A}}\right) \times \boldsymbol{v'_{A}}\right) \right\rangle \\ - \frac{\lambda_{i} (2\mu - 1)}{2} \left\langle \left(\rho' - \rho\right) \left(\left(\frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{v_{A}}\right) \times \boldsymbol{v'_{A}} \cdot \frac{\nabla\rho}{\rho} - \left(\frac{1}{\rho'} \boldsymbol{j'} \times \boldsymbol{v'_{A}}\right) \times \boldsymbol{v_{A}} \cdot \frac{\nabla'\rho'}{\rho'}\right) \right\rangle, \\ = -\lambda_{i} \left(2\mu - 1\right) \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(\boldsymbol{j'} \times \boldsymbol{v'_{A}} + \boldsymbol{j} \times \boldsymbol{v_{A}}\right) \times \delta \boldsymbol{v_{A}} - \delta \left(\frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{v_{A}}\right) \times \left(\rho' \boldsymbol{v'_{A}} + \rho \boldsymbol{v_{A}}\right) \right\rangle \\ + \lambda_{i} \left(2\mu - 1\right) \left\langle \left(\frac{\rho'}{\rho} - 1\right) \boldsymbol{v'_{A}} \cdot \boldsymbol{j} \nabla \cdot \boldsymbol{v_{A}} + \left(\frac{\rho}{\rho'} - 1\right) \boldsymbol{v_{A}} \cdot \boldsymbol{j'} \nabla' \cdot \boldsymbol{v'_{A}} \right\rangle \\ - \frac{\lambda_{i} (2\mu - 1)}{2} \left\langle \left(\rho' - \rho\right) \boldsymbol{v'_{A}} \cdot \boldsymbol{v_{A}} \nabla \cdot \frac{\boldsymbol{j}}{\rho} - \left(\rho' - \rho\right) \boldsymbol{v_{A}} \cdot \boldsymbol{v'_{A}} \nabla' \cdot \frac{\boldsymbol{j'}}{\rho'} \right\rangle.$$

$$(9.30)$$

Dans le cas $\mu \to 0$, on retrouve le résultat de la section 9.1 (9.3).

^{3.} On a fait en sorte de choisir les quantités servant à normaliser le système d'équations telles que les résultats présentés dans ce mémoire se recoupent.

Pour la contribution des pressions :

$$-4 \quad \varepsilon_{[8-11]}^{\nabla P} = -\lambda_{i}\mu\nabla_{\boldsymbol{\ell}}\cdot\left\langle\left(\rho'+\rho\right)\left(\frac{1}{\sqrt{\rho'}}\left(\frac{1}{\rho'}\nabla'\cdot\overline{\boldsymbol{P}'_{i}}\right)\times\boldsymbol{v}_{\boldsymbol{A}}-\frac{1}{\sqrt{\rho}}\left(\frac{1}{\rho}\nabla\cdot\overline{\boldsymbol{P}_{i}}\right)\times\boldsymbol{v}'_{\boldsymbol{A}}\right)\right\rangle \\ +\lambda_{i}\mu\left\langle\left(\rho'-\rho\right)\left(\frac{1}{\sqrt{\rho}}\left(\frac{1}{\rho}\nabla\cdot\overline{\boldsymbol{P}_{i}}\right)\times\boldsymbol{v}'_{\boldsymbol{A}}\cdot\frac{\nabla\rho}{\rho}-\frac{1}{\sqrt{\rho'}}\left(\frac{1}{\rho'}\nabla'\cdot\overline{\boldsymbol{P}'_{i}}\right)\times\boldsymbol{v}_{\boldsymbol{A}}\cdot\frac{\nabla'\rho'}{\rho'}\right)\right\rangle \\ +\lambda_{i}\mu\left\langle\left(\frac{1}{\rho'}+\frac{1}{\rho}\right)\left(\boldsymbol{j}\cdot\nabla'\cdot\overline{\boldsymbol{P}'_{i}}+\boldsymbol{j}'\cdot\nabla\cdot\overline{\boldsymbol{P}_{i}}\right)\right\rangle \\ +\lambda_{i}\left(1-\mu\right)\nabla_{\boldsymbol{\ell}}\cdot\left\langle\left(\rho'+\rho\right)\left(\frac{1}{\sqrt{\rho'}}\left(\frac{1}{\rho'}\nabla'\cdot\overline{\boldsymbol{P}'_{e}}\right)\times\boldsymbol{v}_{\boldsymbol{A}}-\frac{1}{\sqrt{\rho}}\left(\frac{1}{\rho}\nabla\cdot\overline{\boldsymbol{P}_{e}}\right)\times\boldsymbol{v}'_{\boldsymbol{A}}\right)\right\rangle \\ -\lambda_{i}\left(1-\mu\right)\left\langle\left(\rho'-\rho\right)\left(\frac{1}{\sqrt{\rho}}\left(\frac{1}{\rho}\nabla\cdot\overline{\boldsymbol{P}_{e}}\right)\times\boldsymbol{v}'_{\boldsymbol{A}}\cdot\frac{\nabla\rho}{\rho}-\frac{1}{\sqrt{\rho'}}\left(\frac{1}{\rho'}\nabla'\cdot\overline{\boldsymbol{P}'_{e}}\right)\times\boldsymbol{v}_{\boldsymbol{A}}\cdot\frac{\nabla'\rho'}{\rho'}\right)\right\rangle \\ -\lambda_{i}\left(1-\mu\right)\left\langle\left(\frac{1}{\rho'}+\frac{1}{\rho}\right)\left(\boldsymbol{j}\cdot\nabla'\cdot\overline{\boldsymbol{P}'_{e}}+\boldsymbol{j}'\cdot\nabla\cdot\overline{\boldsymbol{P}_{e}}\right)\right\rangle. \tag{9.31}$$

Dans la section 9.3, nous verrons (dans le cadre $\mu \to 0$) une autre formulation de cette contribution prenant en compte les termes présents dans (9.25).

Pour la contribution inertielle :

$$-4 \quad \varepsilon_{[8-11]}^{inert} = -\lambda_{i}^{2}\mu\left(1-\mu\right)\nabla_{\boldsymbol{\ell}}\cdot\left\langle\frac{\rho'+\rho}{\rho'\sqrt{\rho'}}\left[\partial_{t}\boldsymbol{j'}+\nabla'\cdot\left(\boldsymbol{v'}\boldsymbol{j'}+\boldsymbol{j'}\boldsymbol{v'}+\frac{(2\mu-1)}{\rho'}\lambda_{i}\boldsymbol{j'}\boldsymbol{j'}\right)\right]\times\boldsymbol{v_{A}}\right\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\nabla_{\boldsymbol{\ell}}\cdot\left\langle\frac{\rho'+\rho}{\rho\sqrt{\rho}}\left[\partial_{t}\boldsymbol{j}+\nabla\cdot\left(\boldsymbol{v}\boldsymbol{j}+\boldsymbol{j}\boldsymbol{v}+\frac{(2\mu-1)}{\rho}\lambda_{i}\boldsymbol{j}\boldsymbol{j}\boldsymbol{j}\right)\right]\times\boldsymbol{v'_{A}}\right\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\left\langle\frac{\rho'+\rho}{\rho\sqrt{\rho'}}\left[\partial_{t}\boldsymbol{j}+\nabla\cdot\left(\boldsymbol{v}\boldsymbol{j}+\boldsymbol{j}\boldsymbol{v}+\frac{(2\mu-1)}{\rho}\lambda_{i}\boldsymbol{j}\boldsymbol{j'}\boldsymbol{j'}\right)\right]\times\boldsymbol{v_{A}}\cdot\frac{\nabla\rho}{\rho}\right\rangle \quad (9.32) \\ -\lambda_{i}^{2}\mu\left(1-\mu\right)\left\langle\frac{\rho'+\rho}{\rho'\sqrt{\rho'}}\left[\partial_{t}\boldsymbol{j'}+\nabla'\cdot\left(\boldsymbol{v'}\boldsymbol{j'}+\boldsymbol{j'}\boldsymbol{v'}+\frac{(2\mu-1)}{\rho'}\lambda_{i}\boldsymbol{j'}\boldsymbol{j'}\boldsymbol{j'}\right)\right]\times\boldsymbol{v_{A}}\cdot\frac{\nabla'\rho'}{\rho'}\right\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\left\langle\left(\frac{1}{\rho'}+\frac{1}{\rho}\right)\boldsymbol{j'}\cdot\left[\partial_{t}\boldsymbol{j}+\nabla\cdot\left(\boldsymbol{v}\boldsymbol{j}+\boldsymbol{j}\boldsymbol{v}+\frac{(2\mu-1)}{\rho'}\lambda_{i}\boldsymbol{j}\boldsymbol{j}\boldsymbol{j}\boldsymbol{j}\right)\right]\right\rangle \\ +\lambda_{i}^{2}\mu\left(1-\mu\right)\left\langle\left(\frac{1}{\rho'}+\frac{1}{\rho}\right)\boldsymbol{j}\cdot\left[\partial_{t}\boldsymbol{j'}+\nabla'\cdot\left(\boldsymbol{v'}\boldsymbol{j'}+\boldsymbol{j'}\boldsymbol{v'}+\frac{(2\mu-1)}{\rho'}\lambda_{i}\boldsymbol{j'}\boldsymbol{j'}\boldsymbol{j'}\right)\right]\right\rangle.$$

Cette contribution est nulle si $\mu \to 0$ (cas MHD) mais aussi si $\mu \to 1$ (cas EMHD). Ces termes en λ_i^2 sont aussi nuls aux grandes échelles. Cette expression est gardée brute car on ne l'utilisera pas par la suite, mais on pourrait y appliquer l'hypothèse de stationnarité statistique et l'équation de continuité pour supprimer la dépendance en $\partial_t \mathbf{j}$.

En dérivant une loi exacte pour un modèle bi-fluide, puis en travaillant sur les différentes contributions avec la loi d'Ohm généralisée et l'hypothèse de quasi-neutralité, on vient d'obtenir différents niveaux de correction qui viennent étendre la description de la cascade turbulente d'énergie totale à de multiples systèmes par exemple les deux régimes asymptotiques MHD et EMHD. À noter que la loi exacte obtenue est valable pour des fermetures quelconques appliquées aux ions et aux électrons tant qu'elles sont en accord avec les équations des énergies internes (9.14) et (9.15). En fonction de l'usage, il sera toujours possible de retravailler les termes pour obtenir des formulations potentiellement plus pratiques à analyser. Les termes dépendant de la pression électronique présents dans (9.25) et (9.31) seront par exemple reformulés dans le cadre $\mu \rightarrow 0$, dans la section 9.3.

9.3 Le modèle analysé numériquement dans la partie III

Originellement, le modèle CGL est pensé en supposant des électrons dit « froids » ($\beta_e \ll 1$ avec $\beta_e = \frac{p_e}{p_m}$) c'est-à-dire en considérant un mono-fluide d'ions [HUNANA *et al.* 2019]. Les quantités électroniques n'interviennent donc pas. Dans la Partie III, nous allons analyser des résultats de simulation LF/CGL-MHD-Hall- ∇P_e prenant en compte l'anisotropie de pression des ions et des électrons. Le modèle simulé suppose $\mu \ll 1$ et prend en compte la correction Hall donnée dans la section 9.1 et retrouvée dans la section 9.2, ainsi que la correction ∇P_e . Il faudra donc prendre en compte les termes dépendant de la pression électronique présents dans (9.25) et (9.31). Nous allons ici les analyser plus en détail.

Le modèle simulé est constitué des équations suivantes :

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0, \tag{9.33}$$

$$\partial_t \left(\rho \boldsymbol{v} \right) + \nabla \cdot \left(\rho \boldsymbol{v} \boldsymbol{v} - \rho \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} \right) + \nabla \overline{\boldsymbol{P}_*} = 0, \qquad (9.34)$$

$$\partial_t \overline{P_i} + \nabla \cdot \left(v \overline{P_i} \right) + \left(\overline{P_i} \cdot \nabla v \right)^S = 0, \qquad (9.35)$$

$$\partial_t \overline{P_e} + \nabla \cdot \left(\boldsymbol{v} \overline{P_e} \right) + \left(\overline{P_e} \cdot \nabla \boldsymbol{v} \right)^S = \lambda_i \nabla \cdot \left(\frac{\boldsymbol{j}}{\rho} \overline{P_e} \right) + \lambda_i \left(\overline{P_e} \cdot \nabla \left(\frac{\boldsymbol{j}}{\rho} \right) \right)^S, \quad (9.36)$$

$$\partial_{t} \boldsymbol{v}_{\boldsymbol{A}} - \nabla \cdot (\boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v} - \boldsymbol{v} \boldsymbol{v}_{\boldsymbol{A}}) + \boldsymbol{v} \nabla \cdot \boldsymbol{v}_{\boldsymbol{A}} - \frac{\boldsymbol{v}_{\boldsymbol{A}}}{2} \nabla \cdot \boldsymbol{v} \\ = -\frac{\lambda_{i}}{\sqrt{\rho}} \nabla \times \left(\frac{\boldsymbol{j}}{\sqrt{\rho}} \times \boldsymbol{v}_{\boldsymbol{A}}\right) + \frac{\lambda_{i}}{\sqrt{\mu_{0}\rho}} \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}_{e}}\right), \qquad (9.37)$$

avec $\overline{P_*} = \overline{P_i} + \overline{P_e} + p_m \overline{I}$ et $p_m = \frac{1}{2}\rho |v_A|^2$. Dans un premier lot de simulation, la pression électronique sera considérée comme isotrope et plus particulièrement isotherme, et dans un deuxième lot comme gyrotrope. On notera que dans le cas où la pression électronique est isotrope et que le premier principe thermodynamique (4.30) est valable, on peut définir une enthalpie électronique telle que $h = u_e + \frac{m_i}{m_e} \frac{p_e}{\rho}$. Si l'hypothèse adiabatique/isentrope s'applique dans le système, alors le terme thermique de l'équation d'induction (9.37) s'annule puisque $\nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{P_e}\right) = \nabla \times \left(\frac{1}{\rho} \nabla p_e\right) = \frac{m_i}{m_e} \nabla \times \nabla h = 0$. Par principe de précaution, nous le prendrons tout de même en compte dans notre analyse.

En terme d'énergétique, l'équation de densité d'énergie cinétique (4.5) n'est modifiée que par la prise en compte de la pression électronique dans la pression totale. En revanche, celle de densité d'énergie magnétique devient :

$$\partial_{t} E_{m} + \nabla \cdot \left(E_{m} \boldsymbol{v} + \lambda_{i} \left((\boldsymbol{j} \times \boldsymbol{v}_{\boldsymbol{A}}) \times \boldsymbol{v}_{\boldsymbol{A}} + \frac{\boldsymbol{v}_{\boldsymbol{A}}}{\sqrt{\mu_{0}\rho}} \times \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}} - \frac{\boldsymbol{j}}{\rho} \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}} \right) \right)$$

$$= \rho \boldsymbol{v}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}} : \nabla \boldsymbol{v} - p_{m} \nabla \cdot \boldsymbol{v} - \lambda_{i} \overline{\boldsymbol{P}_{\boldsymbol{e}}} : \nabla \left(\frac{\boldsymbol{j}}{\rho} \right)$$
(9.38)

sachant que :

$$\sqrt{\frac{\rho}{\mu_0}} \boldsymbol{v}_{\boldsymbol{A}} \cdot \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right) = -\nabla \cdot \left(\frac{1}{\sqrt{\mu_0 \rho}} \boldsymbol{v}_{\boldsymbol{A}} \times \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right) + \nabla \cdot \left(\frac{\boldsymbol{j}}{\rho} \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right) - \overline{\boldsymbol{P}_{\boldsymbol{e}}} : \nabla \left(\frac{\boldsymbol{j}}{\rho}\right).$$
(9.39)

Et celle d'énergie interne définie telle que $\rho u = \rho_i u_i + \rho_e u_e = \frac{1}{2} \overline{P_i} : \overline{I} + \frac{1}{2} \overline{P_e} : \overline{I}$, est :

$$\partial_t \left(\rho u\right) + \nabla \cdot \left(\rho u \boldsymbol{v}\right) + \left(\overline{\boldsymbol{P}_i} + \overline{\boldsymbol{P}_e}\right) : \nabla \boldsymbol{v} = \lambda_i \nabla \cdot \left(\frac{m_e}{m_i} u_e \boldsymbol{j}\right) + \lambda_i \overline{\boldsymbol{P}_e} : \nabla \left(\frac{\boldsymbol{j}}{\rho}\right) . (9.40)$$

Puisque ici $\mu \ll 1$, le terme $\lambda_i \nabla \cdot \left(\frac{m_e}{m_i} u_e j\right)$ pourra être négligé. Le dernier terme de (9.40) étant relié à $\sqrt{\rho} \boldsymbol{v}_A \cdot \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}_e}\right)$ et à des termes flux via (9.39), sa contribution en tant que source dans le bilan énergétique s'annulera dans le cas particulier où l'on peut faire apparaître l'enthalpie *h*. Dans le bilan énergétique total, ce dernier terme vient compenser le terme $-\lambda_i \overline{\boldsymbol{P}_e} : \nabla \left(\frac{j}{\rho}\right)$ émergeant dans (9.38) à cause de la prise en compte de la pression électronique dans l'équation d'induction (9.37).

Les termes contribuant au taux de cascade qui n'ont pas été pris en compte dans (7.20) ni (9.3) seront donc $\frac{\lambda_i}{\sqrt{\mu_{0}\rho}} \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{P_e}\right)$ dans (9.37) et $\lambda_i \overline{P_e} : \nabla \left(\frac{j}{\rho}\right)$ dans (9.40). La correction résultante à la loi exacte s'écrit après quelques manipulations :

$$- 4 \quad \varepsilon_{\nabla pe} = \frac{\lambda_{i}}{\sqrt{\mu_{0}}} \left\langle \left(\rho' + \rho\right) \left(\boldsymbol{v}_{\boldsymbol{A}} \cdot \left(\frac{1}{\sqrt{\rho'}} \nabla' \times \left(\frac{1}{\rho'} \nabla' \cdot \overline{\boldsymbol{P}'_{\boldsymbol{e}}}\right) \right) + \boldsymbol{v}_{\boldsymbol{A}}' \cdot \left(\frac{1}{\sqrt{\rho}} \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right) \right) \right) \right\rangle \\ + 2\lambda_{i} \left\langle \frac{\rho'}{\rho} \overline{\boldsymbol{P}_{\boldsymbol{e}}} : \nabla \left(\frac{i}{\rho}\right) + \frac{\rho}{\rho'} \overline{\boldsymbol{P}'_{\boldsymbol{e}}} : \nabla' \left(\frac{j'}{\rho'}\right) \right\rangle \\ = -2\lambda_{i} \left(\nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\frac{i}{\rho} \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right)\delta\left(\frac{1}{\rho}\right) \right\rangle - \left\langle \left(\rho'\nabla\left(\frac{1}{\rho}\right) - \rho\nabla'\left(\frac{1}{\rho'}\right)\right) \cdot \delta\left(\frac{j}{\rho} \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right) \right\rangle \right) \\ + 2\frac{\lambda_{i}}{\sqrt{\mu_{0}}} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta\rho\delta\left(\frac{\boldsymbol{v}_{\boldsymbol{A}}}{\sqrt{\rho}} \times \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right)\delta\left(\frac{1}{\rho}\right) \right\rangle \\ - 2\frac{\lambda_{i}}{\sqrt{\mu_{0}}} \left\langle \left(\boldsymbol{\nu}_{\boldsymbol{A}}\delta\rho - 2\rho\delta\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \left(\frac{1}{\sqrt{\rho'}} \nabla' \times \left(\frac{1}{\rho'} \nabla \cdot \overline{\boldsymbol{P}'_{\boldsymbol{e}}}\right)\right) \right\rangle \\ - \frac{\lambda_{i}}{\sqrt{\mu_{0}}} \left\langle \left(\boldsymbol{v}'_{\boldsymbol{A}}\delta\rho - 2\rho'\delta\boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \left(\frac{1}{\sqrt{\rho}} \nabla \times \left(\frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}\right)\right) \right\rangle.$$

$$(9.41)$$

Les deux premières lignes de l'équation (9.41) correspondent aux formes brutes de la correction. L'égalité suivante, dépendant de termes flux et sources, est obtenue en injectant (9.39) et en identifiant les fonctions de structures $\left\langle \delta\rho\delta\left(\frac{v_A}{\sqrt{\rho}}\times\nabla\cdot\overline{P_e}\right)\delta\left(\frac{1}{\rho}\right)\right\rangle$, $\left\langle \delta\rho\delta\left(\frac{i}{\rho}\cdot\overline{P_e}\right)\delta\left(\frac{1}{\rho}\right)\right\rangle$ et $\left\langle \delta\rho\delta u_e\delta\left(\frac{i}{\rho}\right)\right\rangle$. Dans le cas où l'on peut faire apparaître l'enthalpie h, l'avant-dernière ligne de (9.41) sera nulle. On s'attend à ce que cette correction, dépendant de λ_i , prenne de l'importance près des échelles ioniques similairement à la correction Hall. Les termes dépendant de $\overline{P_e}$ proviennent quant à eux d'un mélange de (9.31) et des trois dernières lignes de (9.25). L'équivalence ne sera pas présentée ici. On notera tout de même la présence de la constante μ_0 qui provient du caractère dimensionné des équations utilisées dans cette section.

Dans la limite incompressible, la majorité des termes de (9.41) s'annule et il ne reste que la dernière ligne qui s'écrit :

$$-4\varepsilon_{\nabla pe} \quad \overrightarrow{\rho=\rho_{0}} \quad -2\frac{\lambda_{i}}{\sqrt{\rho_{0}}} \left\langle \delta \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta(\nabla \times \nabla \cdot \overline{\boldsymbol{P}_{\boldsymbol{e}}}) \right\rangle.$$

$$(9.42)$$

Elle s'annule si $\overline{P_e}$ est isotrope.

Linéairement, la pression électronique peut influer sur les critères d'instabilités. Si la fermeture sur les ions et celle sur les électrons sont CGL et l'équation d'induction est MHD

ou MHD-Hall, il suffira juste de prendre en compte des pressions parallèle et perpendiculaire totale (ionique + électronique) dans le taux d'anisotropie a_p et le paramètre β présents dans les critères firehose et miroir (voir synthèse 7.4). Dans les simulations telles que l'équation d'induction prend en compte le terme en ∇P_e , avec $\overline{P_e}$ tenseur gyrotrope, le modèle est complété par une fermeture dite Landau-fluide qui tient compte de l'effet Landau linéaire sur les ions et les électrons ainsi que des critères d'instabilité firehose et miroir cinétique. Dans les autres simulations, la pression électronique est isotrope et définie avec une fermeture thermodynamique isotherme telle que $p_e \propto \rho$, et les ions sont CGL. Dans le cas de l'approximation MHD, l'équation de dispersion est :

$$\begin{pmatrix} M_{xx} & 0 & M_{xz} \\ 0 & M_{yy} & 0 \\ M_{zx} & 0 & M_{zz} \end{pmatrix} \cdot \begin{pmatrix} v_{x1} \\ v_{y1} \\ v_{z1} \end{pmatrix} = 0$$
(9.43)

avec :

$$\begin{split} M_{xx} &= \frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} - \left(\beta_{\parallel 0} a_{p0} + 1 + \frac{\beta_{e0}}{2}\right) \frac{k_{\perp}^2}{k_{\parallel}^2} + \left(\frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0}\right) - 1\right), \\ M_{xz} &= M_{zx} = - \left(\frac{\beta_{\parallel 0}}{2} a_{p0} + \frac{\beta_{e0}}{2}\right) \frac{k_{\perp}}{k_{\parallel}}, \\ M_{yy} &= \frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} + \left(\frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0}\right) - 1\right), \\ M_{zz} &= \frac{\omega^2}{v_{A0}^2 k_{\parallel}^2} - \left(\frac{3}{2}\beta_{\parallel 0} + \frac{\beta_{e0}}{2}\right). \end{split}$$

La relation de dispersion s'écrit alors :

$$0 = \left(\frac{\omega^2}{k_{\parallel}^2 v_{A0}^2} - 1 + \frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0}\right)\right) \left(\frac{\omega^2}{k^2 v_{A0}^2} - \frac{1}{2} \left(A \pm \sqrt{A^2 - 4B}\right)\right)$$
(9.44)

avec

$$A = 1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{2} \cos^2 \theta \right) + \beta_{\parallel 0} \cos^2 \theta + \frac{\beta_{e0}}{2},$$

$$B = \cos^2 \theta \left(\left(\frac{3}{2} \beta_{\parallel 0} + \frac{\beta_{e0}}{2} \right) \left(1 - \frac{\beta_{\parallel 0}}{2} \left(1 - a_{p0} \right) \right) \cos^2 \theta + \left(\frac{3}{2} \beta_{\parallel 0} \left(1 + \beta_{\parallel 0} a_{p0} \left(1 - \frac{1}{6} a_{p0} \right) \right) + \frac{\beta_{e0}}{2} \left(\frac{3}{2} \beta_{\parallel 0} + 1 \right) \right) \sin^2 \theta \right).$$

Le mode d'Alfvén-firehose incompressible n'est pas affecté par la pression électronique contrairement aux modes magnétosonores. Le critère firehose oblique n'est donc pas impacté. Le mode rapide reste stable et le mode lent contient toujours les critères firehose parallèle et miroir. Ces critères sont visibles dans *B*. Le critère firehose parallèle ($\theta \sim 0^{\circ}$) est multiplié par un facteur positif dépendant de β_{e0} , il ne sera donc pas impacté. Le critère miroir est par contre influencé par β_{e0} , et s'écrit :

$$\frac{3}{2}\beta_{\parallel 0}\left(1+\beta_{\parallel 0}a_{p_0}\left(1-\frac{1}{6}a_{p_0}\right)\right)+\frac{\beta_{e_0}}{2}\left(\frac{3}{2}\beta_{\parallel 0}+1\right)<0.$$
(9.45)

Ces résultats sont valables aux échelles MHD. On a vu dans la section 9.1 que la correction Hall est indépendante des pressions et n'influe que sur le critère firehose, elle ne sera donc pas affectée par la pression électronique isotrope. De plus, si la pression électronique est définie par une fermeture thermodynamique, la correction ∇P_e sera nulle. Par conséquent, le critère miroir modifié par β_{e0} que l'on vient de dériver est valable pour les modèles MHD, MHD-Hall et MHD-Hall- ∇P_e .

9.4 Synthèse de l'extension de la théorie des lois exactes à d'autres régimes

Correction Hall

- Théorie linéaire : apparition des branches whistler et cyclotron ionique, critère miroir inchangé mais décalage du critère firehose suivant le vecteur d'onde.
- Correction turbulente compressible : (9.3)
- Correction incompressible à la loi exacte PP98: (9.4)
- \Rightarrow Contribution turbulente indépendante des tenseurs de pressions

Dérivations des contributions provenant de la loi d'Ohm généralisée à partir du modèle bi-fluide

- Modèle bi-fluide sans dimension et ouvert utilisé pour obtenir la loi exacte généralisée : équations (9.10), (9.11), (9.12), (9.13), (9.14), (9.15), (9.16), (9.17)
- Loi exacte K41 généralisée écrite avec les quantités bi-fluide : (9.22)
- Écriture de la loi exacte K41 bi-fluide avec les quantités mono-fluide et l'hypothèse quasi-neutre :
 - Contribution cinétique : (9.23)
 - Contribution d'énergie interne : (9.24)
 - Contribution des tenseur de pression : (9.25)
 - Contribution électromagnétique : (9.26)
- Décomposition de (9.26) suivant les différentes contributions présentes dans la loi d'Ohm généralisée quasi-neutre (9.27):
 - Contribution MHD : (9.29)
 - Contribution Hall : (9.30) équivalente à (9.3)
 - Contribution ∇P_e et ∇P_i : (9.31)
 - Contribution inertielle : (9.32)

 \Rightarrow Ouvre le champ d'études potentielles au régime EMHD par exemple, et à l'étude plus rigoureuse de l'impact sur la cascade turbulente des différentes appoximations appliquées à la loi d'Ohm.

Modèle utilisé dans la Partie III

- Modèle ouvert utilisé pour obtenir la correction turbulente : équations (9.33), (9.34), (9.37), (9.40).
- Théorie linéaire : la pression électronique va venir impacter le critère d'instabilité miroir.
- Correction turbulente compressible : (9.41)
- Correction incompressible à la loi exacte PP98 : (9.42)

Ces résultats n'ont pas encore été publiés.

CONCLUSION

Dans cette partie, nous avons dérivé un cadre d'étude complet et rigoureux des écoulements turbulents (zone inertielle supposée isentrope) allant du régime mono-fluide au régime bi-fluide, et dépendant de pressions tensorielles.

Dans le Chapitre 7 (synthèse 7.4), a été présentée une extension de la théorie de Kolmogorov à un écoulement magnétisé idéal dépendant d'une pression tensorielle. Un tenseur de pression gyrotrope a ensuite été appliqué dans cette extension afin de répondre analytiquement à la question de l'impact des anisotropies de pression décrites par le modèle CGL sur la cascade turbulente. De nouveaux termes pouvant nourrir ou réduire la cascade et dépendant de $1 - a_p$ avec a_p le taux d'anisotropie p_{\perp}/p_{\parallel} ont été découverts. Linéairement, le signe de $1 - a_p$ impacte l'apparition d'instabilité firehose ou miroir dans l'écoulement, comme cela a été rappelé dans la section 7.2. On a donc proposé un modèle théorique non linéaire permettant d'étudier le lien entre anisotropies (et potentiellement instabilités) et régimes turbulents, qui pourrait venir expliquer les observations de OSMAN *et al.* 2013 et HADID, SAHRAOUI, GALTIER et HUANG 2018 dans le vent solaire. Cependant, une étude numérique est nécessaire afin d'affiner l'interprétation de la loi exacte.

Parmi les nouveaux termes dépendant de l'anisotropie de pression émergeant dans la loi exacte, un terme source survit dans la limite incompressible. La question de sa signification s'est donc posée. Nous nous sommes alors demandés à quoi pourrait ressembler un modèle incompressible gyrotrope dans le Chapitre 8 (synthèse 8.4). Un tel modèle incompressible, fermé par l'équation sur la trace du tenseur de pression, a alors été proposé et linéarisé. En plus de l'onde d'Alfvén-firehose, un nouveau mode y apparaît. On y retrouve le critère d'instabilité firehose parallèle mais aussi un critère d'instabilité que l'on a nommé pseudo-firehose apparaissant dans le cas quasi-perpendiculaire et venant réduire la zone de stabilité du modèle en fonction du taux d'anisotropie moyen a_{p0} et du paramètre $\beta_{\parallel 0}$. Après une étude plus fine en fonction de l'angle de propagation, ce mode s'est révélé instable pour certains angles de propagation et tout couple de paramètres $\beta_{\parallel 0}$ et a_{p0} tels que $\frac{\beta_{\parallel 0}}{2}(1-a_{p0}) \neq \frac{3}{4}$. Cette étude fera l'objet d'un futur article.

Enfin, dans le Chapitre 9 (synthèse 9.4), les corrections provenant de la relaxation des approximations appliquées sur l'équation d'induction ont été dérivées à partir d'un modèle bi-fluide afin d'étendre la loi exacte à d'autres gammes d'échelles et régimes. Les résultats obtenus ainsi ont servi de base afin d'adapter la loi exacte CGL aux modèles qui seront étudiés numériquement dans la Partie III. Ces corrections serviront à refléter au mieux la cascade turbulente simulée.

PARTIE III : Etude numérique d'un plasma turbulent faiblement compressible avec anisotropie de pressions

« Simulations are to plasma turbulence physics what telescopes are to astronomy. They allow us to see beyond the limitations of our physical experiments and explore the vast and complex landscape of plasma behavior. »⁴
 Paul W. TERRY, dans « The role of numerical simulations in plasma turbulence research », 2010... d'après ChatGPT ⁵⁶.

^{4.} Traduction : Les simulations sont à la physique de la turbulence des plasmas ce que les télescopes sont à l'astronomie. Elles nous permettent de voir au-delà des limites de nos expériences physiques et d'explorer le paysage vaste et complexe du comportement des plasmas.

^{5.} Cette intelligence artificielle invente des citations et les attribue à des articles introuvables écrits par des personnes existantes.

^{6. ...} cette thèse n'a pas été écrite avec ChatGPT.

INTRODUCTION

L'outil numérique pour la turbulence permet d'étudier divers modèles, d'isoler les effets des différents processus présents dans un plasma turbulent ou de simuler des régimes présents dans des plasmas inaccessibles aux mesures/diagnostics. Par exemple, les effets de la compression et les régimes sonique ou supersonique ont été étudiés par ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK *et al.* 2018 et des régimes proches de celui supposé dans le milieu interstellaire ont été explorés par FEDERRATH *et al.* 2010 et FERRAND, GALTIER, SAHRAOUI et FEDERRATH 2020. L'impact de l'approximation Hall sur la cascade incompressible d'énergie totale est le sujet de FERRAND, GALTIER, SAHRAOUI, MEYRAND *et al.* 2019 et celui de la fermeture LF a fait l'objet de [FERRAND, SAHRAOUI, LAVEDER *et al.* 2021]. Comme on le verra par la suite, le modèle LF est un modèle gyrotrope fermé au niveau du flux de chaleur de telle sorte que le modèle fluide capte le processus cinétique de l'effet Landau décrit par la théorie linéaire. Dans ces simulations, on a alors $\nabla \cdot \overline{\overline{q}} \neq 0$.

Dans les études présentées ici, nous allons utiliser des simulations qui ont, pour certaines, fait l'objet de [FERRAND, SAHRAOUI, LAVEDER *et al.* 2021]. Le code de simulation et notre méthode de post-traitement permettant d'obtenir les différents termes des lois exactes, seront présentés dans le chapitre 10. Différentes méthodes de validation feront l'objet du chapitre 11. Puis, nous présenterons et analyserons, plus en détail, la cascade turbulente présente dans divers jeux de données. Ceux issus de simulations du modèle CGL-MHD-Hall- ∇P_e feront l'objet du Chapitre 12 et ceux associés au modèle LF-MHD-Hall- ∇P_e du Chapitre 13.

L'objectif de ces études est d'affiner notre compréhension de l'impact de l'anisotropie de pression sur la cascade turbulente à travers une validation des lois dépendant d'une pression gyrotrope (voir Chapitre 7) par rapport à la loi compressible avec pression isotrope dérivée dans le Chapitre 5.

Les résultats de ces études n'ont pas encore été publiés et leur interprétation est encore en cours de discussion⁷.

^{7.} Le chemin engagé pour obtenir les résultats montrés ici s'est révélé tortueux entre la réflexion sur les méthodes à utiliser dans le code de post-traitement, l'implémentation de ces méthodes, la nécessité de lancer de nouvelles simulations, etc.

Paramètres et dénominations des simulations utilisées

Les paramètres et dénominations des simulations utilisées sont résumés dans la TABLE 9.1 et la TABLE 9.2. Nous nous y réfèrerons au fil des chapitres de cette partie. Le champ magnétique est initialisé suivant e_z . CGL1, CGL2, CGL3, LF2 et LF3 ont initialement été étudiées par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 mais les échantillons de temps consécutifs ont été extraits pour nos études. Les simulations CGL5 et CGL6 ont été spécialement lancées pour nos études.

Nom	Résolution	$k_{0\perp}d_i$	$ heta_i$	E_{sup}	$ A_f$	t_I	N_t	δt
CGL1	512^{3}	0.045	7°	1.6×10^{-2}	1.0×10^{-3}	6700	4	6.25×10^{-2}
CGL2	512^{3}	0.045	15°	1.6×10^{-2}	1.0×10^{-3}	12900	4	5×10^{-2}
CGL3	$512^2 \times 1024$	0.5	15°	$4.5 imes 10^{-2}$	8.0×10^{-3}	361	6	2×10^{-4}
CGL3B	$512^2 \times 1024$	0.5	15°	1.125×10^{-2}	4.0×10^{-3}	410	4	3×10^{-4}
CGL5	$512^2 \times 1024$	0.147	15°	$1.6 imes 10^{-2}$	3.0×10^{-3}	12905	6	5×10^{-3}
CGL6	$512^2 \times 1024$	0.147	15°	1.6×10^{-2}	3.0×10^{-3}	2730	4	5×10^{-3}
LF2	512^{3}	0.045	15°	1.6×10^{-2}	1×10^{-3}	6580	1	6.25×10^{-2}
LF3	432^{3}	0.5	15°	4.5×10^{-2}	8×10^{-3}	180.2	1	4×10^{-4}

TABLE 9.1 – Extraits des paramètres des simulations traitées.

Résolution : Nombre de points dans la grille numérique du code de simulation.

 $k_{0\perp}d_i$: vecteur d'onde d'injection perpendiculaire à e_z normalisé par la longueur inertielle d_i et lié à $L_{\perp} = \frac{2\pi}{k_0}$, la taille physique perpendiculaire de la grille simulée.

 θ_i : angle d'injection par rapport à $\boldsymbol{e_z}$, lié à $L_z = \frac{L_{\perp}}{\tan \theta_i}$.

 E_{sup} : énergie perpendiculaire cinétique + magnétique, critère d'extinction du forçage. A_f : paramètre d'amplitude du forçage.

 t_I : temps initial (en unité de temps ionique) de prélèvement de l'échantillon temporel utilisé pour l'étude le loi exacte.

 N_t : nombre de pas de temps consécutifs utilisés.

 δt : pas temporel, unité de temps ionique.

Nom	$ u = \eta $	$ u_{ ho}$	$ u_p$	$ u_q$	α	a_{piI}	a_{peI}
CGL1	7.35×10^{-8}	0	7.35×10^{-9}	0	80	1	1
CGL2	7.35×10^{-8}	0	7.35×10^{-9}	0	10	1	1
CGL3	4×10^{-14}	1.6×10^{-14}	1.6×10^{-14}	0	2.5	1	1
CGL3B	1.0×10^{-14}	1.0×10^{-14}	1.0×10^{-14}	0	2.5	1	1
CGL5	3×10^{-11}	0	3×10^{-12}	0	6	1	1
CGL6	3×10^{-11}	0	3×10^{-12}	0	5	4	1
LF2	7.35×10^{-8}	0	7.35×10^{-9}	7.35×10^{-9}	1	1	1
LF3	7×10^{-14}	7×10^{-14}	7×10^{-14}	7×10^{-14}	1.5	1	1

TABLE 9.2 – Extraits des paramètres des simulations traitées, choisis empiriquement pour l'hyperdissipation.

 ν , η , ν_{ρ} , ν_{p} , ν_{q} : constantes caractéristiques de l'hyperdissipation respectivement de la vitesse, du champ magnétique, de la densité, des pressions et des flux de chaleurs. α : facteur d'anisotropie.

 a_{piI}, a_{peI} : taux initiaux d'anisotropie de pression respectivement ionique et electronique.

SIMULATION TURBULENTE ET CALCUL DE LOIS EXACTES

Sommaire

10.1	Simuler un plasma turbulent	
10.2	Code de post-traitement pour le calcul numérique de lois	
	exactes	
10.3	Mode de représentation du résultat	
10.4	Synthèse des méthodes et choix numériques 123	

Dans cette partie, nous utiliserons des simulations turbulentes issues de deux modèles décrivant des anisotropies de pression, le premier dépend d'une fermeture CGL tandis que le second dépend d'une fermeture de type LF. Ces modèles sont simulés avec un seul et unique code que l'on va présenter dans ce chapitre. Les spécificités des modèles seront détaillées dans les Chapitres 12 et 13. Dans ce premier chapitre, seront abordées les méthodes numériques utilisées dans l'implémentation de ces modèles (section 10.1) ainsi que la description des méthodes de post-traitement associées au calcul des lois exactes (section 10.2) et à leur visualisation (section 10.3). Les valeurs des paramètres décrits dans la section 10.1 sont résumés dans la TABLE 9.1 et la TABLE 9.2 pour chaque simulation.

10.1 Simuler un plasma turbulent

Le code de simulation utilisé, codé en Fortran, est un code tridimensionnel pseudospectral et versatile développé en interne à l'Observatoire de la Côte d'Azur pour l'implémentation du modèle fluide proposé par SNYDER *et al.* 1997 et étendu par [GOSWAMI *et al.* 2005, PASSOT et SULEM 2007, PASSOT, SULEM et HUNANA 2012, SULEM et PASSOT 2015]. Ce modèle prend en compte les termes gyrotrope et non-gyrotrope des tenseurs de pression des ions et des électrons et capte l'effet Landau ionique et électronique à travers les flux de chaleur des électrons et des ions. Le code permet à l'utilisateur de choisir quelles contributions garder.

Les quantités sont sans dimension, les longueurs sont normalisées par d_i , la longueur inertielle des ions, et les vitesses par la vitesse d'Alfvén. Cela induit une constante $\beta/2$, avec $\beta = 1$, présente dans tous les termes dépendant des pressions. Il faudra prendre en compte cette constante par la suite.

Supposons une équation générique $\partial_t X = \boldsymbol{v} \cdot \nabla X$. La simuler via un code pseudospectral (algorithme schématisé sur la FIGURE 10.1) signifie que les dérivées spatiales telles que ∇X sont effectuées dans l'espace de Fourier, tandis que les produits tels que $\boldsymbol{v} \cdot \nabla X$ et l'intégration temporelle de l'équation pour obtenir les quantités au pas de temps suivant, sont effectués dans l'espace réel. Ainsi, à chaque pas de temps, un aller-retour est effectué entre les espaces réel et de Fourier. Leur discrétisation en un nombre de points finis, ou grille numérique, induit un repliement du spectre, dit « aliasing », des termes non-linéaires. Cet effet est limité par une troncation à chaque pas de temps du spectre de chaque quantité. L'intégration temporelle est obtenue via un schéma de Runge-Kutta d'ordre 3 (RK3), choisi pour sa stabilité devant des termes dispersifs tels que le terme de Hall [WILLIAMSON 1980]. Les conditions de bords de la grille numérique sont choisies comme périodiques afin de pouvoir utiliser la transformation de Fourier et l'algorithme de transformée de Fourier rapide (FFT).

FIGURE 10.1 – Algorithme d'intégration d'une équation d'évolution générique via une méthode pseudo-spectrale. Prise en compte des corrections d'anti-aliasing et d'hyperdissipation $\nu\Delta^n A$. TF(I) correspond à transformée de Fourier (inverse).

Afin de limiter l'apparition de fort gradients et autres discontinuités liées à des instabilités numériques et induisant un arrêt brusque de la simulation, deux possibilités existent : appliquer un filtre passe-bas sur le spectre de la quantité impliquée ou un terme d'hyperviscosité dans son équation. Le choix effectué est celui de l'hyperviscosité, c'est-à-dire imposer une décroissance graduelle et de plus en plus intense du spectre de la quantité (pour plus d'informations, se référer à [BORUE et ORSZAG 1995; FRISCH *et al.* 2008]). Ce terme de dissipation numérique s'écrit $\nu \Delta^n X$ pour un champ X, avec ν une constante choisie initialement et n un entier fixé à 4. Δ^n est effectué dans l'espace de Fourier où une décroissance du spectre en \mathbf{k}^{-8} est donc obtenue. L'existence d'un champ magnétique moyen dans les simulations induit une anisotropie spatiale de la turbulence. Sa direction est imposée suivant \mathbf{e}_z . Afin de refléter cette anisotropie, l'hyperviscosité est adaptée avec un paramètre $\alpha : \Delta^n$ est calculé dans l'espace de Fourier tel que $(k_x^2 + k_y^2 + \alpha k_z^2)^n$. Les paramètres ν et α sont résumés dans la TABLE 9.2. Avec le pas de temps δt , ils sont accordés empiriquement afin de réduire le temps de calcul, de maintenir la dissipation aux vecteurs d'onde les plus grands et d'éviter tout emballement de la simulation et l'apparition d'instabilités numériques. En termes de turbulence, l'hyperviscosité sera considérée comme le terme de dissipation évacuant l'énergie aux petites échelles.

La cascade d'énergie est entretenue par un forçage permanent¹. Ce forçage de type antenne de Langevin (oscillateur harmonique forcé aléatoirement [TENBARGE *et al.* 2014]) injecte la somme de deux ondes de fréquences aléatoires mais proches de celle de l'onde d'Alfvén cinétique avec une amplitude correspondand au paramètre A_f multiplié par un facteur aléatoire. Il est appliqué sur le champ de vitesse de sorte à maintenir la somme des énergies cinétique et magnétique perpendiculaires moyennes sous un niveau E_{sup} et audessus d'un niveau E_{inf} proche de E_{sup} . L'énergie moyenne totale est donc quasi-constante. Dans l'espace de Fourier, il prend la forme d'un peigne de distributions de Dirac non nulles aux vecteurs d'ondes les plus petits, tels que $\mathbf{k} = \{(0, \pm 1, \pm 1); (\pm 1, \pm 1, \pm 1)\}$ dans la grille numérique associée à l'espace de Fourier. L'angle d'injection de l'énergie, θ_i , sert à définir la forme de la grille spatiale, un parallélépipède allongé dans la direction \mathbf{e}_z , la taille physique de cette grille est fixée telle que $L_{\perp}/L_z = \tan \theta_i$ avec $L_{\perp} = \frac{2\pi}{k_{0\perp}}$.

La taille de l'espace des échelles accessibles via ces simulations dépend de la taille de la grille spatiale. L'échelle la plus petite dans une direction est la distance minimale entre deux points de la grille dans cette direction, et l'échelle la plus grande est la moitié de la taille de la grille. Pour une étude de turbulence, on a besoin de plusieurs ordres de grandeur entre les échelles minimales et maximales. Afin d'obtenir un nombre de points suffisant, on part d'une grille de taille physique fixée mais contenant peu de points, par exemple 128³, puis, après avoir atteint un régime turbulent satisfaisant tel que les spectres soient stabilisés, on augmente le nombre de points et ainsi de suite jusqu'à avoir la taille voulue pour l'espace des échelles et un spectre stable. Le nombre de points idéal serait 1024³ ou plus, mais plus il y a de points, plus le temps de calcul augmente ² et plus le calcul monopolisera de la mémoire. Similairement, le calcul du taux de cascade sera aussi plus contraignant. Un compromis doit donc être trouvé. La taille de cube minimale considérée dans le cadre des études de turbulence sera 512³ et une partie des simulations aura une résolution de 512² dans le plan { e_x, e_y } et 1024 dans la direction e_z .

Les simulations utilisées et détaillées dans la TABLE 9.1 et la TABLE 9.2 ont, pour la plupart, fait l'objet de l'article [FERRAND, SAHRAOUI, LAVEDER *et al.* 2021]. Parmi elles, une est de résolution 1024³. Elle ne sera pas traitée ici car sa taille est trop importante pour le code de post-traitement implémenté et les moyens de calcul à disposition (mésocentre).

10.2 Code de post-traitement pour le calcul numérique de lois exactes

On a vu qu'une loi exacte est une formule statistique donnant un résultat en fonction de l'échelle ℓ . Elle dépend de quantités évaluées localement en deux points puis combinées en une expression qui est ensuite moyennée. Une partie des termes doit ensuite être dérivée dans l'espace des échelles si aucune hypothèse d'intégration n'est effectuée. Cette méthode

^{1.} Dans [HELLINGER, VERDINI *et al.* 2018, GÓMEZ *et al.* 2005, MININNI *et al.* 2011], une autre méthode est utilisée pour obtenir le développement d'une cascade turbulente : leurs champ de vitesse et champ magnétique sont initialisés par une superposition de modes de phases aléatoires, puis leurs simulations évoluent librement (simulations en déclin).

^{2.} Typiquement, il faut environ un mois de calcul avec 64 processeurs pour obtenir une simulation de taille $512^2 \times 1024$ dans laquelle la turbulence se serait a priori entièrement développée

pourrait être implémentée directement. On considèrerait les quantités à disposition, a priori des cubes évalués en \boldsymbol{x}), on les translaterait de sorte à obtenir des cubes évalués en $\boldsymbol{x} - \boldsymbol{\ell}$, puis on les combinerait suivant l'expression voulue avant de les moyenner. On obtiendrait ainsi notre résultat évalué en un point de l'espace des échelles et il faudrait recommencer encore et encore afin d'obtenir l'ensemble de l'espace des échelles. Enfin, on dériverait ou intégrerait le résultat. Cet algorithme est schématisé sur la FIGURE 10.2.

Algorithme direct de calcul de $\varepsilon = \nabla_{\ell} \cdot \langle F(A', A) \rangle + \langle S(A', A) \rangle$

FIGURE 10.2 – Algorithme de calcul du taux de cascade ε via la méthode directe. Les quantités impliquées sont des quantités génériques.

Cette méthode est coûteuse en temps de calcul et demande des compromis. Pour réduire le temps de calcul, on peut choisir intelligemment un certain nombre de vecteurs d'échelle. Tout d'abord, on peut jouer sur la parité de la loi exacte et ne calculer que les vecteurs tels que $\ell_z \leq 0$. FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 et FERRAND, SAHRAOUI, GALTIER et al. 2022 par exemple, utilisent les hypothèses d'isotropie ou d'axisymétrie de l'espace d'échelles. Dans le cas isotrope, l'espace des échelles est alors vu comme une sphère avec 73 vecteurs directeurs partant de son centre. Dans le cas axisymétrique, le découpage est similaire, mais effectué dans des disques pour chaque ℓ_z . La divergence dans l'espace des échelles est ensuite effectuée sphériquement (resp. cylindriquement) le long de $\ell = |\boldsymbol{\ell}|$ (resp. $\ell_{\perp} = \sqrt{\ell_x^2 + \ell_y^2}$) en supposant les dérivées angulaires nulles. Je n'ai pas voulu faire de même, n'étant pas convaincue de l'indépendance angulaire de la dérivée et trouvant la statistique finale faible. Une autre possibilité est de choisir les vecteurs en fonction du mode de représentation final. Si ce mode de représentation est logarithmique, on peut ne choisir qu'un nombre limité de vecteurs à grande échelle tels qu'ils soient régulièrement espacés en représentation logarithmique [MANZINI, SAHRAOUI, CALIFANO et FERRAND 2022]. Un problème de cette méthode est l'irrégularité de la grille résultante. La divergence dans l'espace des échelles doit donc se faire vecteur par vecteur à partir des six échelles les plus proches (au minimum). Ce choix-là ne semblait toujours pas satisfaisant, car il implique de devoir potentiellement refaire le calcul en fonction du mode de représentation final et un biais apparaît en cas de moyenne dans l'espace des échelles. Ces compromis doivent en plus être accompagnés d'une optimisation, voire d'une parallélisation du calcul numérique.

Après maintes versions et tentatives d'optimisation de mon code de post-traitement, codé en Python et essayant de respecter explicitement la forme de la loi exacte, j'ai décidé de changer radicalement de point de vue. Mathématiquement, les opérations de corrélation et de convolution, *, sont liées. En effet, si l'on considère deux quantités réelles s et r, leur fonction de corrélation peut s'écrire :

$$C_{s,r}(\boldsymbol{\ell}) = \frac{1}{V} \iiint_{V} s(\boldsymbol{x} + \boldsymbol{\ell}) r(\boldsymbol{x}) d\boldsymbol{x} = \frac{1}{V} \iiint_{V} s(\boldsymbol{x}) r(\boldsymbol{x} - \boldsymbol{\ell}) d\boldsymbol{x}$$
$$= \frac{1}{V} \iiint_{V} s(\boldsymbol{x}) r(-(\boldsymbol{\ell} - \boldsymbol{x})) d\boldsymbol{x} = \left[\frac{1}{V} s * \hat{\mathcal{P}}r\right](\boldsymbol{\ell}), \qquad (10.1)$$

avec V le volume d'intégration et $\hat{\mathcal{P}}$ l'opérateur de parité. Ainsi appliquer l'opération de corrélation entre s et r revient à convoluer s évaluée en \boldsymbol{x} avec r évaluée en $-\boldsymbol{x}$. Une autre propriété mathématique intéressante est que l'opération de convolution correspond à un simple produit dans l'espace de Fourier et que $\hat{\mathcal{P}}r$ correspond au conjugué, $(\tilde{r})^*$, de \tilde{r} la transformée de Fourier de r. Ainsi en notant $\tilde{C}_{s,r}$ la transformée de Fourier de $C_{s,r}$ et TFI[.] la transformée inverse, on obtient :

$$C_{s,r}(\boldsymbol{\ell}) = \mathrm{TFI}[\widetilde{C}_{s,r}] = \frac{1}{V} \mathrm{TFI}[\widetilde{s}(\boldsymbol{k})(\widetilde{r})^*(\boldsymbol{k})].$$
(10.2)

L'obtention de l'ensemble de l'espace des échelles est donc possible mais demande de développer tous les termes factorisés de la loi exacte. Par exemple, pour la fonction de structure $\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle$:

$$\langle \delta \boldsymbol{v} \cdot \delta \boldsymbol{v} \delta \boldsymbol{v} \rangle = \langle \boldsymbol{v}' \cdot \boldsymbol{v}' \boldsymbol{v}' - \boldsymbol{v} \cdot \boldsymbol{v} \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{v} \boldsymbol{v}' + 2 \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v} - \boldsymbol{v}' \cdot \boldsymbol{v}' \boldsymbol{v} - 2 \boldsymbol{v}' \cdot \boldsymbol{v} \boldsymbol{v}' \rangle$$

$$= \operatorname{TFI}[\widetilde{C}_{\boldsymbol{v},\boldsymbol{v}\cdot\boldsymbol{v}} - \widetilde{C}_{\boldsymbol{v}\cdot\boldsymbol{v},\boldsymbol{v}} + 2\widetilde{C}_{\boldsymbol{v},\boldsymbol{v}\boldsymbol{v}} - 2\widetilde{C}_{\boldsymbol{v}\boldsymbol{v},\boldsymbol{v}}]$$

$$= \frac{1}{N} \operatorname{TFI}[(\widetilde{\boldsymbol{v}\cdot\boldsymbol{v}})(\widetilde{\boldsymbol{v}})^* - \widetilde{\boldsymbol{v}}(\widetilde{\boldsymbol{v}\cdot\boldsymbol{v}})^* + 2\widetilde{\boldsymbol{v}}^* \cdot (\widetilde{\boldsymbol{v}\boldsymbol{v}}) - 2\widetilde{\boldsymbol{v}} \cdot (\widetilde{\boldsymbol{v}\boldsymbol{v}})^*], \quad (10.3)$$

avec $C_{\boldsymbol{v}\cdot\boldsymbol{v},\boldsymbol{v}} = \langle \boldsymbol{v}'\cdot\boldsymbol{v}'\boldsymbol{v}\rangle$, $C_{\boldsymbol{v}\boldsymbol{v},\boldsymbol{v}} = \langle \boldsymbol{v}'\cdot\boldsymbol{v}\boldsymbol{v}'\rangle$ et N le nombre de points moyennés (volume discret), tout en sachant que par homogénéité statistique, on a $\langle \boldsymbol{v}'\cdot\boldsymbol{v}'\boldsymbol{v}'\rangle = \langle \boldsymbol{v}\cdot\boldsymbol{v}\boldsymbol{v}\rangle$ et que la moyenne est distributive. Cette méthode est utilisable car il est possible de développer les expressions en des produits de deux quantités générales, une évaluée au point \boldsymbol{x} et l'autre en \boldsymbol{x}' , et parce que la simulation est périodique. L'algorithme associé à cette méthode est schématisé sur la FIGURE 10.3. Il demande quelques précautions lors de son implémentation, car il peut vite devenir coûteuse en mémoire, l'ensemble des termes présents dans une loi exacte devant être développé. Cependant, elle permet d'obtenir un résultat complet, indépendant du mode de représentation final des résultats. C'est donc la méthode qui a été choisie. De plus, en usant de l'algorithme de FFT, elle s'avère particulièrement rapide (moins de dix minutes pour calculer séparément les trois termes de PP98 pour CGL2 par exemple).

FIGURE 10.3 – Algorithme de calcul du taux de cascade ε via la convolution. Les quantités impliquées sont des quantités génériques.

10.3 Mode de représentation du résultat

Le résultat de l'algorithme de calcul par convolution est, pour chaque quantité, un parallélépipède couvrant une gamme d'échelles physiques dans la direction e_z différente de la gamme d'échelles couvrete dans les directions perpendiculaires, e_x ou e_y . Ces gammes d'échelles couvrant différents ordres de grandeur, une représentation logarithmique est usuellement adoptée. Le caractère tridimensionnel de la grille parallélépipédique impose de choisir une méthode de réduction (3D vers 2D ou 1D) afin de pouvoir visualiser facilement les quantités. Différents types de réduction sont possibles et illustrés sur la FIGURE 10.4 :

- R1 : 1D en fonction de $\ell = |\boldsymbol{\ell}|$, en moyennant la quantité sur des coquilles de rayon moyen ℓ ,
- R2 : 2D en fonction de $\ell_{\perp} = \sqrt{\ell_x^2 + \ell_y^2}$ et $\ell_{\parallel} = \ell_z$, en moyennant la quantité sur des couronnes de rayon moyen ℓ_{\perp} dans chaque plan perpendiculaire à e_z ,
- R3 : 1D en fonction de ℓ_{\perp} , en moyennant la quantité sur des coquilles cylindriques de rayon moyen ℓ_{\perp} , la moyenne suivant ℓ_{\parallel} peut s'effectuer de diverses manières qui seront détaillées par la suite,
- R4 : 1D en fonction de ℓ_{\parallel} en moyennant chaque plan perpendiculaire à e_z , la moyenne suivant ℓ_{\perp} peut s'effectuer de diverses manières qui seront détaillées par la suite.

FIGURE 10.4 – Différents modes de représentations du taux de cascade ε_{PP98} calculé avec PP98 dans les données de la simulation CGL1. R2 : 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} , avec deux échelles de couleurs, une échelle symlog, linéaire entre -10^{-8} et 10^{-8} (barre de couleur continue), et une échelle linéaire (barre de couleur discontinue) et les frontières $\theta = \theta_i$ (noire discontinue) et $\theta = 45^{\circ}$ (noire continue). R1 : 1D en fonction de ℓ . R3 : 1D en fonction de ℓ_{\perp} , pour $\ell_{\parallel} = 0$ (rouge), moyenne sur l'ensemble des ℓ_{\parallel} (bleue), moyennes sur les ℓ_{\parallel} tels que $\theta > 45^{\circ}$ (orange) et $\theta > \theta_i$ (vert). R4 : 1D en fonction de ℓ_{\parallel} , pour $\ell_{\perp} = 0$ (rouge), moyenne sur l'ensemble des ℓ_{\perp} (bleue), moyenne sur les ℓ_{\perp} tels que $\theta < 45^{\circ}$ (orange) et $\theta < \theta_i$ (vert). Le caractère continu ou discontinu des courbes 1D reflète le signe de ε_{PP98} .

Sachant que la grille parallélépipédique couvre des gammes d'échelles différentes dans la direction e_z et les directions perpendiculaires (voir la carte R2 sur la FIGURE 10.4), notre géométrie est fondamentalement axisymétrique. La représentation de type R2 est donc la plus adaptée. L'échelle « symlog » ³ permet de repérer les changements de signe et les ordres de grandeur couverts par ε_{PP98} tandis que les courbes de niveau linéaires révèlent les variations plus spécifiques telles qu'un affaiblissement aux petites échelles ou des bosses (courbes de niveau bleues) aux échelles parallèles et perpendiculaires intermédiaires. On pourrait définir une zone inertielle entre les courbes de niveau associées à la valeur 0.4. On remarque que cette zone semble carrée, cela est dû aux axes logarithmiques. Avec des axes linéaires, on observerait un quart d'ellipse liant $\ell_{\parallel}/d_i = 1 \times 10^2$ à $\ell_{\perp}/d_i \simeq 30$. Le problème des cartes est la difficulté de comparer de multiples quantités. Une représentation 1D sera donc nécessaire.

R1 peut donner un résultat biaisé. Ainsi, sur le graphique R1 de la FIGURE 10.4, le résultat correspond quasiment entièrement (sauf aux très grandes échelles communes aux directions parallèle et perpendiculaire) à $\varepsilon_{PP98}(\ell_{\parallel} = 0)$ (en rouge sur le graphique R3 de la FIGURE 10.4). Le manque de points pour effectuer la moyenne en chaque ℓ , induit des variations non-physiques du résultat (sursauts à intervalles réguliers sur le graphique R1 de la FIGURE 10.4). R3 ou R4 sont peut-être plus adaptés même si le caractère petit ou grand des échelles est défini à partir de $\ell = |\boldsymbol{\ell}|$ (resp. petit ou grand).

Cependant, visualiser la cascade via R3 en moyennant l'ensemble des ℓ_{\parallel} à ℓ_{\perp} fixé (courbe bleue) vient mixer les petits et grands ℓ . La zone négative à grand ℓ_{\parallel} vient alors écraser la zone inertielle présumée et plus encore la variation des petites échelles. Le même phénomène apparaît pour R4 (courbes bleues sur les graphiques R3 et R4 de la FIGURE 10.4). Une autre possibilité de réduction serait de ne regarder qu'une direction $\ell_{\parallel} = 0$ pour R3 ou $\ell_{\perp} = 0$ pour R4 (courbes rouges sur les graphiques R3 et R4 de la FIGURE 10.4). Le résultat n'est alors pas très lisse et peu représentatif de la variation d'ensemble.

La troisième possibilité correspond à appliquer un filtre angulaire. En définissant θ , l'angle entre ℓ et e_z , on pourrait considérer que les ℓ contribuant à la dynamique parallèle sont les ℓ quasi-parallèles tels que $\theta < 45^{\circ}$, et ceux contribuant à la dynamique perpendiculaire les ℓ quasi-perpendiculaires tels que $\theta < 45^{\circ}$. La frontière $\theta = 45^{\circ}$ est représentée par une ligne noire continue sur la carte R2 de la FIGURE 10.4, et les résultats apparaissent en orange sur les graphiques R3 et R4. Pour R3, le résultat coïncide avec $\varepsilon_{PP98}(\ell_{\parallel} = 0)$. En effet, aux petites échelles, le plan tel que $\ell_{\parallel} = 0$ est la seule contribution à la moyenne. Similairement, pour R4, on assiste à un écroulement de la courbe qui rejoint $\langle \varepsilon_{PP98} \rangle_{\ell_{\perp}}$ en $\ell_{\parallel} = 7 \times 10^1$. Cet écroulement est dû à la prise en compte de la région bleue à droite de la carte R2 pour les échelles supérieures à 7×10^1 . Ce filtre angulaire n'est donc pas adapté.

La réduction 1D qui sera adoptée par la suite correspond à un filtrage angulaire basé sur l'angle d'injection de l'énergie θ_i . Ce dernier impose la géométrie de la grille et les gammes d'échelles accessibles. Dans l'espace des échelles, l'injection a lieu aux échelles telles que ℓ est maximal, c'est-à-dire dans l'angle supérieur droit de la carte R2 FIGURE 10.4. $\theta = \theta_i$ correspond à la diagonale représentée par une ligne noire discontinue. Appliquer cette réduction nous donne les courbes vertes des graphiques R3 et R4 de la FIGURE 10.4. N'y apparaissent, ni les artéfacts visibles avec R1, ni les saturations visibles sur les courbes

^{3.} Cette échelle décrit l'ensemble des nombres réels via trois représentations : $[x_0; +\infty[$ en représentation logarithmique, $] - x_0; x_0[$ en représentation linéaire (afin d'éviter la singularité du point 0), puis $] -\infty; -x_0]$ en représentation logarithmique (en prenant l'opposé du logarithme de la valeur absolue). x_0 est choisi le plus petit possible.

bleues ou oranges, et elles sont plus représentatives du comportement de ε_{PP98} dans l'ensemble de l'espace des échelles que les courbes rouges. On remarquera tout de même que la décroissance en allant vers les petites échelles est moins accentuée que pour les courbes rouges : les premières échelles de ℓ_{\parallel} (resp. ℓ_{\perp}) différentes de 0 sont prises en compte dans la moyenne des premiers points de ε_{PP98} en fonction de ℓ_{\perp} (resp. ℓ_{\parallel}).

10.4 Synthèse des méthodes et choix numériques

Code de simulation d'un plasma turbulent (Fortran) :

- Méthode d'intégration pseudo-spectrale (voir FIGURE 10.1) des équations fluides.
- Des termes d'hyperdissipation qui joueront le rôle de la dissipation aux petites échelles.
- Un forçage permanent (dans l'espace de Fourier) de fréquences aléatoires proches de la pulsation Alfvénique et maintenant l'énergie perpendiculaire (cinétique + magnétique) du système quasiment constante.
- Une géométrie périodique dépendant de l'angle d'injection de l'énergie θ_i et de la résolution de la grille numérique.

Je n'ai pas participé à l'écriture de ce code mais je l'ai utilisé pour compléter le lot de simulations analysé par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021.

Calcul des termes des lois exactes (Python/Numpy/Scipy) : Obtention rapide de l'ensemble de l'espace d'échelles accessible grâce à une méthode de calcul spectrale basée sur le lien entre corrélation et convolution et sur la périodicité des simulations. L'algorithme est schématisé sur la FIGURE 10.3.

Visualisation des résultats (Python/Matplotlib) : représentation cylindrique

- Représentation 2D en fonction de ℓ_{\parallel} et ℓ_{\perp} avec des échelles de couleurs de type chaud/froid (indiquant facilement le signe du résultat) associées aux variations logarithmiques (fond) et linéaires (courbes de niveaux) du résultat.
- Représentation 1D en fonction de ℓ_{\perp} . Réduction du résultat 2D en moyennant sur ℓ_{\parallel} pour $\theta > \theta_i$.
- Représentation 1D en fonction de ℓ_{\parallel} . Réduction du résultat 2D en moyennant sur ℓ_{\perp} pour $\theta < \theta_i$.

Avec θ l'angle entre ℓ et la direction moyenne du champ magnétique e_z .

J'ai implémenté les codes de post-traitement et de visualisation des termes des lois exactes. Le code de post-traitement est disponible sur [GitHub : *github.com/paulinesimon97/2022-07_Simu_Exact_laws : Package usefull to compute exact laws 2023*].

PARTIE III : CHAPITRE 11_{-}

DES LOIS INCOMPRESSIBLES AUX LOIS COMPRESSIBLES : TESTS ET VALIDATIONS

Sommaire

11.1 Comparaison de résultats Inc-MHD-Hall avec pression iso-					
trope et schémas numériques					
11.1.1 Comparaison avec des résultats Inc-MHD-Hall	25				
11.1.2 Comparaison avec des schémas numériques à travers les résultats					
Inc-MHD-Hall	27				
11.1.3 Effet du forçage sur la zone inertielle \ldots \ldots \ldots \ldots 12	29				
11.2 Équation KHM et incertitude numérique					
11.2.1 Calcul de la loi KHM	30				
11.2.2 Analyse des contributions de la loi KHM	31				
11.2.3 Estimation de l'erreur sur le taux de cascade $\ldots \ldots \ldots \ldots 13$	34				
11.3 Synthèse des tests de validation et sources d'erreurs 136					

Avant d'attaquer les spécificités des modèles simulés et les lois exactes associées, il est nécessaire de valider les méthodes numériques exposées dans le Chapitre 10 et d'en déterminer les biais. Dans la section 11.1, les résultats de la loi exacte MHD-Hall incompressible (Inc-MHD-Hall) seront comparés aux résultats de [FERRAND, SAHRAOUI, LAVEDER *et al.* 2021] (F21). Enfin, dans la section 11.2, une méthode d'estimation de l'incertitude sur nos résultats sera proposée. Les simulations utilisées dans ces études comparatives sont CGL1 et CGL3 (voir détail TABLE 9.1 et TABLE 9.2). Elles font partie des simulations du modèle CGL-MHD-Hall- ∇P_e analysées par F21 et elles feront l'objet du Chapitre 12.

11.1 Comparaison de résultats Inc-MHD-Hall avec pression isotrope et schémas numériques

11.1.1 Comparaison avec des résultats Inc-MHD-Hall

Afin de valider les méthodes et choix décrits dans le Chapitre 10, nous avons calculé avec les données de CGL1 et CGL3 les quantités comparées par F21 :

- $-\varepsilon_{MHD}$, provenant de la loi PP98 (équation (3.34)),
- ε_{Hall} , la correction Hall incompressible (équation (9.4)),
- $\varepsilon_{MHD-Hall} = \varepsilon_{MHD} + \varepsilon_{Hall}$, qui correspond au résultat de la loi Inc-MHD-Hall dérivée par FERRAND, GALTIER, SAHRAOUI, MEYRAND *et al.* 2019.

Pour CGL1, le temps sélectionné, indiqué dans la TABLE 9.1, est celui utilisée par F21. Ce n'est pas le cas pour CGL3, pour laquelle F21 utilise t = 357. Afin de ne pas apporter

d'incertitude à notre comparaison en changeant les données utilisées, les résultats seront exceptionnellement donnés pour t = 357 dans cette section.

Par conséquent, aucune différence que l'on pourra noter ne proviendra des données, des expressions des quantités ou de leur domaine de validité. Les différences entre les résultats résideront dans les schémas numériques utilisés. On a indiqué le nôtre par la mention « Fourier for Exact Law » (FEL) et celui de F21 par « F21 ». Nos résultats sont présentés sur la FIGURE 11.1 par des lignes pleines et sont accompagnés de ceux des figures 3 et 5 de F21 en pointillés.

FIGURE 11.1 – Mode de représentation : 1D en fonction de ℓ_{\perp} normalisé par d_i . Lignes pleines : nos résultats (avec en lignes discontinues les valeurs négatives). Pointillés : résultats extraits des figures 3 et 5 de F21. Bleu : $\varepsilon_{MHD-Hall}$. Orange : ε_{MHD} . Vert : ε_{Hall} . Haut : CGL1. Bas : CGL3 (t = 357).

Tout d'abord, pour chaque simulation, on retrouve les points physiques attendus :

- Pour CGL1 : une zone inertielle MHD telle que $\varepsilon_{MHD-Hall} = \varepsilon_{MHD}$ (resp. courbe bleue et orange) et une augmentation de ε_{Hall} (courbe verte) en allant vers les petites échelles.
- Pour CGL3 : une croissance de ε_{Hall} , en allant vers les petites échelles, venant dominer ε_{MHD} et rejoignant $\varepsilon_{MHD-Hall}$ pour former un plateau (la zone inertielle Hall). Le croisement entre ε_{MHD} et ε_{Hall} a lieu près de $\ell_{\perp} = d_i$ donc à la frontière entre les zones MHD et Hall.

Ces résultats tendent à valider notre implémentation. D'autres tests, tels qu'une comparaison des formulations de la loi ε_{MHD} (PP98) et celle proposée par BANERJEE et KRITSUK 2017) ou la vérification des prédictions de ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK *et al.* 2018, ont été entrepris afin de vérifier la cohérence et le respect de la physique des lois obtenues dans la littérature. Ces résultats sont présentés dans l'Annexe B.

11.1.2 Comparaison avec des schémas numériques à travers les résultats Inc-MHD-Hall

Les différences entre les résultats de FEL et F21, visibles sur la FIGURE 11.1, sont :

- une bosse aux petites échelles pour $\varepsilon_{MHD-Hall}$ calculé avec FEL (ex : $\ell_{\perp}/d_i < 1$ pour le graphique sur CGL1 de la FIGURE 11.1),
- en allant vers les petites échelles, une décroissance moindre de ε_{MHD} calculé avec FEL aux échelles $\ell < d_i$,
- en allant vers les grandes échelles, une décroissance de $\varepsilon_{MHD-Hall}$ et ε_{MHD} calculés avec FEL arrivant avant celle des quantités calculées avec F21.

Usuellement, ce qui se passe au niveau des petites échelles est attribué à la dissipation, et ce qui se passe au niveau des plus grandes échelles au forçage. Similairement, ε_{MHD} étant calculé avec la loi PP98, la décroissance apparaît en dehors de son domaine de validité, c'est-à-dire la zone MHD telle que $\ell \gg di$. Par conséquent, les différences vues n'influent pas sur l'interprétation physique. De plus, les données post-traitées et les expressions des quantités calculées étant identiques pour chaque simulation, les différences observées ne peuvent être dues qu'à une erreur de code ou aux différences présentes dans les schémas numériques utilisés.

Les différences entre les schémas numériques pouvant impacter l'estimation de nos quantités qui sont de la forme $\nabla_{\ell} \cdot \mathcal{F}$ sont résumées dans la TABLE 11.1. Les notations associées au schéma numérique de F21 et détaillées dans FERRAND 2021 sont adaptées à nos notations.

	F21 (inspirée de TAYLOR $et al. 2003$)	FEL (voir le Chapitre 10)
maillage	ensemble réduit de directions vectorielles	tous les vecteurs accessibles
$ abla_{\ell}$	$rac{1}{\ell_{\perp}}\partial_{\ell_{\perp}}\left[\ell_{\perp}\left\langle\mathcal{F}_{\ell_{\perp}} ight angle_{\phi,\ell_{\parallel}} ight]$	$\nabla_{\ell} \cdot \boldsymbol{\mathcal{F}}$ cartésienne
filtrage des ℓ_{\parallel}	pour $\theta > 45^{\circ}$ de la grille numérique	pour $\theta > \theta_i$
$\langle \rangle_{\phi,\ell_{\parallel}}$	avant la dérivation et pondérée	après la dérivation

TABLE 11.1 – Différences majeures entre les schémas numériques F21 et FEL. ϕ correspond à l'angle présent dans le plan perpendiculaire dans un système de coordonnées cylindriques.

Tout d'abord, à propos du maillage de l'espace des échelles, l'utilisation d'un ensemble réduit de directions vectorielles implique l'impossibilité de calculer une divergence complète. Il faut ou interpoler, ou approximer l'opérateur de dérivation, ou calculer les quelques points adjacents pour chaque vecteur d'échelle voulu. La première solution a tendance à apporter des erreurs numériques non négligeables si le maillage interpolé n'est pas régulier, ce qui est le cas pour F21. Tandis que la troisième solution demande du temps de calcul supplémentaire. Finalement, la deuxième solution a été adoptée pour F21. N'est
alors calculée que la composante transverse du flux dans chaque plan perpendiculaire au champ magnétique moyen. Ce calcul se base donc sur la symétrie des simulations, provenant du champ magnétique moyen suivant e_z et néglige les variations de la composante parallèle du flux le long de ℓ_{\parallel} .

FIGURE 11.2 – Mode de représentation : 1D en fonction de ℓ_{\perp} normalisé par d_i . Simu : CGL3 (t = 357). Comparaison de ε_{MHD} obtenu par F21 (ligne noire pointillée), FEL (ligne noire pleine) et l'application d'une divergence transverse sur \mathcal{F} calculés avec FEL et moyenné suivant deux angles $\theta = 45^{\circ}$ de la boîte numérique et $\theta = \theta_i$.

La FIGURE 11.2 illustre les effets de la variation parallèle de la composante parallèle du flux ainsi que ceux du filtrage. Le résultat F21 (en pointillé) y est comparé à deux estimations de la divergence transverse effectuée dans nos résultats après avoir moyenné le flux dans le plan perpendiculaire et suivant les ℓ_{\parallel} . On ne s'attend pas à retrouver exactement le résultat de F21 mais à s'en rapprocher. La différence entre les deux estimations correspond au filtrage utilisé dans la moyenne de ℓ_{\parallel} : celui utilisé par F21 en bleu, et celui que l'on utilise en orange. L'impact de l'angle de filtrage avait déjà été remarqué dans l'analyse de la FIGURE 10.4. On voit ici qu'il a pu influer sur le résultat de F21 tout comme il peut influer sur le nôtre. On peut en déduire de cette figure que le poids des variations parallèles, omis par F21, semble avoir un impact sur nos résultats.

La différence entre nos estimations transverses et F21 est située dans le nombre de points du maillage utilisé. Comme FEL prend en compte l'ensemble de l'espace des échelles, il donnera pour ε_{MHD} par exemple, un résultat impacté par toutes ses variations spatiales omises par une moyenne sur un nombre réduit de vecteurs, malgré la compensation apportée par la pondération. Cet ensemble réduit d'échelles étant choisi tel des multiples de quelques vecteurs directionnels, il représentera d'autant moins les variations en s'approchant des grandes échelles.

Il semble donc cohérent d'attribuer notre différence de comportement de ε_{MHD} aux choix numériques façonnant le code de post-traitement. On peut aussi en déduire que FEL donne un résultat associé à la position dans l'espace 2D plus réaliste que F21.

11.1.3 Effet du forçage sur la zone inertielle

La proximité du forçage induit de fortes variations dans le résultat à grande échelle. De plus, ici, cette injection est loin d'être stationnaire : parfois le forçage est allumé, d'autres fois, il est éteint. Sur la FIGURE 11.3, est affiché le résultat Inc-MHD-Hall pour différents temps de CGL3. On voit qu'en fonction du temps, l'échelle limite de la zone

FIGURE 11.3 – Mode de représentation : 1D en fonction de ℓ_{\perp} normalisé par d_i . ε_{F19} est obtenu pour divers temps t de CGL3, chaque temps correspond à une couleur. Le résultat extrait de la figure 5 de F21 est donné en pointillés noirs.

inertielle (telle que ε_{F19} constant) fluctue grandement. Et à t = 357 (temps utilisé par F21), notre résultat (courbe bleue) montre la zone inertielle la plus large obtenue avec FEL. Le forçage est éteint de t = 357 à t = 360 et la zone inertielle décroît petit à petit. Puis, pour les temps suivant, il est rallumé et le plateau semble alors se reformer. On observe donc, ici, l'oscillation de l'injection. Aux échelles $\ell_{\perp}/d_i < 1$, le niveau de ε_{F19} varie peu quel que soit le temps considéré. Cette observation concorde avec l'hypothèse de stationnarité statistique du taux de cascade dans la zone inertielle (ici MHD-Hall). Cette hypothèse est considérée analytiquement pour obtenir des lois du type K41 (voir synthèse 1.4).

Le temps de simulation sélectionné impactant l'extension dans la zone de forçage de la zone inertielle, les temps de simulations indiqués dans la TABLE 9.1 ont été sélectionnés en prenant garde à l'état allumé ou éteint du forçage, mais cela ne signifie pas que l'extension de la zone inertielle se sera reformée. Une dernière différence, minime, n'a pas encore été abordée : celle de la variation aux petites échelles de $\varepsilon_{MHD-Hall}$. Sa signification associée à l'hyperdissipation sera abordée dans la section 11.2.

11.2 Équation KHM et incertitude numérique

Afin d'estimer l'incertitude sur nos résultats, nous nous sommes lancés dans la vérification de l'équation KHM du modèle simulé sous sa forme complète et pas seulement de la loi K41 dont la validité est réduite à la zone inertielle. Cette estimation est permise par le travail analytique effectué en amont et décrit dans la Partie II.

Calcul de la loi KHM 11.2.1

Une loi de type KHM peut s'écrire schématiquement (voir Chapitre 1) :

$$\partial_t \mathcal{R} = \varepsilon_{NL} + \varepsilon_D + \varepsilon_F \tag{11.1}$$

Nous avons vu que l'application des hypothèses de Kolmogorov donne la loi réduite de type K41 $\varepsilon = -\varepsilon_{NL}$ (voir synthèse 1.4). Son contenu, spécifique au modèle implémenté, sera détaillé dans les Chapitres 12 (CGL-MHD-Hall- ∇P_e) et 13 (LF-MHD-Hall- ∇P_e).

 $\partial_t \mathcal{R}$ est la dérivée temporelle de la fonction de corrélation utilisée pour obtenir la loi exacte. Dans nos études, cette fonction est $\mathcal{R} = \frac{1}{4} \langle (\rho' + \rho) (\boldsymbol{v'} \cdot \boldsymbol{v} + \boldsymbol{v'_A} \cdot \boldsymbol{v_A}) + 2\rho' u + 2\rho u' \rangle$. Pour estimer ce terme, on va utiliser les temps consécutifs relevés dans la simulation. La dérivée temporelle sera estimée grâce à des schémas de discrétisation de type « différences finies \gg d'ordre 2 :

- $\begin{array}{l} \quad \text{décentrée vers la droite pour le premier temps } t_0 : (\partial_t \mathcal{R})(t_0) = \frac{\mathcal{R}(t_0 + \delta t) \mathcal{R}(t_0)}{\delta t}, \\ \quad \text{décentrée vers la gauche pour le dernier temps } t_{N_t} : (\partial_t \mathcal{R})(t_{N_t}) = \frac{\mathcal{R}(t_{N_t}) \mathcal{R}(t_{N_t} \delta t)}{\delta t}, \\ \quad \text{centrée pour les autres temps } : (\partial_t \mathcal{R})(t_n) = \frac{\mathcal{R}(t_{n+1}) \mathcal{R}(t_{n-1})}{2\delta t} \text{ avec } n \in]0, N_t[. \end{array}$

Le forçage présent dans nos simulations est un forçage de type antenne de Langevin appliqué sur le champ de vitesse. Par conséquent, le taux de forçage ε_F s'écrira $\varepsilon_F = \frac{1}{4} \langle (\rho' + \rho) (\boldsymbol{v'} \cdot \boldsymbol{f} + \boldsymbol{v} \cdot \boldsymbol{f'}) \rangle$. Ce forçage dépend de deux composantes aléatoires qui font partie des quantités extraites de la simulation, elles seront notées f_{sup} et f_{inf} . Elles permettent de construire une quantité intermédiaire $F = a_1 f_{sup} + (1 - a_1) f_{inf}$ avec a_1 un paramètre égal à 0.5 dans nos simulations. Les composantes de \boldsymbol{f} sont alors : $f_x = \partial_y F$, $f_y = -\partial_x F$ et $f_z = 0$.

Enfin, le taux de dissipation ε_D couvre l'ensemble des hyperdissipations présentes dans le système. Chaque quantité est associée à une hyperdissipation du type $\nu_X \Delta^4 X$ avec X quantité générique et $\Delta^4 = (\partial_x^2 + \partial_y^2 + \alpha \partial_z^2)^4$. On va décomposer ε_D tel que :

$$\varepsilon_D = \varepsilon_D^c + \varepsilon_D^m + \varepsilon_D^{ui} + \varepsilon_D^{ue} \tag{11.2}$$

avec :

— la contribution cinétique avec $D_{v} = \nu \Delta^{4} v$ et $D_{\rho} = \nu_{\rho} \Delta^{4} \rho$:

$$\varepsilon_D^c = \varepsilon_D^c(\boldsymbol{D}_{\boldsymbol{v}}) + \varepsilon_D^c(D_{\rho}) = -\frac{1}{4} \left\langle (\rho' + \rho) \left(\boldsymbol{v'} \cdot \boldsymbol{D}_{\boldsymbol{v}} + \boldsymbol{v} \cdot \boldsymbol{D'_{\boldsymbol{v}}} \right) \right\rangle - \frac{1}{4} \left\langle \left(D'_{\rho} + D_{\rho} \right) \boldsymbol{v'} \cdot \boldsymbol{v} \right\rangle$$
(11.3)

— la contribution magnétique avec $D_{v_A} = \frac{\eta}{\sqrt{\rho}} \Delta^4(\sqrt{\rho} v_A)$:

$$\varepsilon_D^m = \varepsilon_D^m(\boldsymbol{D}_{\boldsymbol{v}_A}) + \varepsilon_D^m(\boldsymbol{D}_{\rho}) = -\frac{1}{4} \left\langle (\rho' + \rho) \left(\boldsymbol{v}_A' \cdot \boldsymbol{D}_{\boldsymbol{v}_A} + \boldsymbol{v}_A \cdot \boldsymbol{D}_{\boldsymbol{v}_A}' \right) \right\rangle \\ -\frac{1}{8} \left\langle (\rho' - \rho) \left(\frac{D_{\rho}'}{\rho'} - \frac{D_{\rho}}{\rho} \right) \boldsymbol{v}_A' \cdot \boldsymbol{v}_A \right\rangle \quad (11.4)$$

— la contribution d'énergie interne ionique (gyrotrope) avec $D_u = \frac{\nu_p}{2} \Delta^4 (2p_{\perp i} + p_{\parallel i})$ et sachant que $\rho_i u_i = \frac{1}{2}(2p_{\perp i} + p_{\parallel i})$:

$$\varepsilon_D^{ui} = \varepsilon_D^{ui}(D_u) + \varepsilon_D^{ui}(D_\rho) = -\frac{1}{2} \left\langle \frac{\rho}{\rho'} D'_u + \frac{\rho'}{\rho} D_u \right\rangle - \frac{1}{2} \left\langle \left(\frac{D'_\rho}{\rho'} - \frac{D_\rho}{\rho} \right) \left(\rho' u_i - \rho u'_i \right) \right\rangle$$
(11.5)

— la contribution d'énergie interne électronique (isotherme) sachant que $\rho_e u_e = \rho \ln \rho$:

$$\varepsilon_D^{ue} = -\frac{1}{2} \left\langle D'_{\rho} \ln \rho + D_{\rho} \ln \rho' + \frac{\rho'}{\rho} D_{\rho} + \frac{\rho}{\rho'} D'_{\rho} \right\rangle$$
(11.6)

et ν , η , ν_{ρ} et ν_{p} des constantes choisies empiriquement pour chaque simulation. Elles sont résumées dans la TABLE 9.2.

11.2.2 Analyse des contributions de la loi KHM

Sur la FIGURE 11.4, ε_{NL} (bleu) est comparé à un niveau de référence $\varepsilon_{ref} = -\partial_t \mathcal{R} + \varepsilon_D + \varepsilon_F$ (violet), construit à partir de $\partial_t \mathcal{R}$ (rouge), ε_D (vert) et ε_F (orange). La différence $\zeta = \varepsilon_{ref} - \varepsilon_{NL}$ est donnée en marron. On remarque qu'elle n'est pas de l'ordre du zéro numérique (~ 10⁻²⁰) mais environ deux ordres de grandeurs en dessous du niveau de ε_{NL} . De plus, la forme des termes $\partial_t \mathcal{R}$, ε_D et ε_F est particulière.

FIGURE 11.4 – Détail de la loi KHM pour CGL1 (haut) et CGL3 (bas). Bleu : ε_{NL} . Orange : ε_F . Vert : ε_D . Rouge : $\partial_t \mathcal{R}$. Violet : $\varepsilon_{ref} = -\partial_t \mathcal{R} + \varepsilon_D + \varepsilon_F$. Marron : $\zeta = \varepsilon_{ref} - \varepsilon_{NL}$. Représentation : 1D en fonction de ℓ_{\perp} avec les valeurs positives en trait plein et négatives en trait discontinu.

Balance des termes et forçage : Tout d'abord, analysons la situation pour CGL1. Dans le Chapitre 1, on a vu que :

$$\varepsilon_{NL}(\boldsymbol{\ell}) = \varepsilon_F(\boldsymbol{\ell}) = \varepsilon_D(\boldsymbol{\ell}=0) = -\varepsilon$$
 (11.7)

dans une zone inertielle où l'hypothèse de stationnarité statistique s'appliquerait.

On peut en effet identifier une gamme d'échelles $\ell_{\perp}/d_i \in [1; 20]$ telle que ε_{NL} soit constant. Son niveau est alors d'environ 5×10^{-6} . La valeur n'est pas visible ici à cause de l'échelle logarithmique mais $\varepsilon_D(\ell = 0) \simeq 5 \times 10^{-6}$. Donc $\varepsilon_{NL}(\ell) = \varepsilon_D(\ell = 0)$ semble retrouvé. Par contre, même si la constance¹ de ε_F est vérifiée à ces échelles, son niveau est beaucoup trop important, de l'ordre de 1.5×10^{-5} . Pour retrouver le niveau 5×10^{-6} , on doit lui soustraire $\partial_t \mathcal{R}$ qui est d'environ 1×10^{-5} . La relation (11.7) s'écrit alors dans nos simulations :

$$\varepsilon_{NL}(\boldsymbol{\ell}) = \varepsilon_F(\boldsymbol{\ell}) - \partial_t \mathcal{R} = \varepsilon_D(\boldsymbol{\ell} = 0) = -\varepsilon$$
(11.8)

Analyse du terme $\partial_t \mathcal{R}$: Analytiquement, on se servait de l'hypothèse de stationnarité statistique pour annuler $\partial_t \mathcal{R}$, c'est-à-dire pour supposer qu'entre deux temps \mathcal{R} ne varie pas. Puisque $\partial_t \langle E_{tot} \rangle = \partial_t \mathcal{R}(\ell = 0)$, si $\partial_t \mathcal{R} = 0$ alors $\partial_t \langle E_{tot} \rangle = 0$. Sauf que dans nos simulations $\langle E_{tot} \rangle$ fluctue légèrement : pour les quatre temps consécutifs utilisés pour CGL1, $\langle E_{tot} \rangle$, de l'ordre de 1.3 × 10⁰, augmente d'environ 6 × 10⁻⁷ par pas de temps. Par conséquent, $\partial_t \mathcal{R} = 0$ est impossible à obtenir. C'est ce que l'on observe sur la FIGURE 11.4 pour CGL1 comme pour CGL3. Pourtant, la convergence temporelle des résultats du calcul de loi exacte K41 dans une certaine zone d'échelles a bel et bien été observée sur la FIGURE 11.3, et cela nous semblait une belle preuve de la stationnarité statistique de nos simulations. À première vue, ces résultats ne semblent pas compatibles. L'interprétation de ce paradoxe reste à affiner mais le comportement du $\partial_t \mathcal{R}$ instantané tel un forçage ne semble pas être une spécificité de nos simulations. En effet, FERRAND, SAHRAOUI, GALTIER et al. 2022 trouvent un comportement similaire dans des simulations de turbulence non forcée, pour lesquelles l'énergie totale moyenne est en décroissance perpétuelle. Dans notre cas, on pourrait peut-être interpréter le comportement du terme $\partial_t \mathcal{R}$ comme un réservoir d'énergie régulant temporellement l'injection de l'énergie dans la cascade afin que cette dernière puisse s'effectuer au taux imposé par les processus de dissipation.

Analyse des contributions d'hyperdissipation : Un autre comportement pathologique est celui de ε_D en fonction de ℓ . Dans la théorie analytique, ce terme est supposé nul à toutes les échelles sauf en $\ell = 0$ à cause de l'anomalie dissipative. Dans nos simulations, son rôle est joué par les termes d'hyperdissipation, mais on s'attendrait à ce qu'ils décroissent rapidement en allant vers les grandes échelles puisque la dérivation par Δ^4 impose un comportement en k^8 dans l'espace de Fourier. Regardons ce qu'il en est en le décomposant sur ses diverses contributions. La décomposition est présentée sur la FIGURE 11.5. On y voit que chacune des contributions semble ou décroître en allant vers les grandes échelles ou rester constante. Les termes en D_{ρ} (visibles seulement pour CGL3 puisque $\nu_{\rho} = 0$ pour CGL1) et D_u ne montrent pas de décroissance, et la tendance en environ ℓ^{-2} de la décroissance de $\varepsilon_D^c(D_v)$ et $\varepsilon_D^m(D_{v_A})$ avait été remarquée par FERRAND 2021 dans le cas incompressible. La pathologie de cette pente en -2 y avait été identifiée et associée à une saturation mathématique de la fonction de corrélation calculée entre

^{1.} Le comportement constant du terme de forçage est démontré rigoureusement dans l'annexe A.1.

FIGURE 11.5 – Détail du terme d'hyperdissipation, ε_D (noir), pour CGL1 (haut) et CGL3 (bas). Bleu : $\varepsilon_D^m(D_{\boldsymbol{v}_A})$. Orange : $\varepsilon_D^m(D_{\rho})$. Vert : $\varepsilon_D^{ue}(D_{\rho})$. Rouge : $\varepsilon_D^{ui}(D_{\rho})$. Violet : $\varepsilon_D^c(D_{\rho})$ Marron : $\varepsilon_D^{ui}(D_u)$. Rose : $\varepsilon_D^c(D_v)$. Représentation : 1D en fonction de ℓ_{\perp} avec les valeurs positives en trait plein et négatives en trait discontinu.

deux points. Cette saturation est due à une puissance de k trop importante dans l'espace de Fourier et est similaire à celle relevée par CHO et LAZARIAN 2009.

Dans l'Annexe A.2, nous proposons une démonstration mathématique de ce phénomène en fonction du type de la fonction de corrélation, incrémentale ou non, et de la tendance du spectre dans l'espace de Fourier. On y obtient dans le cas non incrémental, pour la corrélation de deux quantités indéfinies A et B, :

$$\langle A(\mathbf{x}+\boldsymbol{\ell})\cdot B(\mathbf{x})+A(\mathbf{x})\cdot B(\mathbf{x}+\boldsymbol{\ell})\rangle \propto \begin{cases} \ell^{-2} & \text{si } m \in]-\infty, -1[\\ \ell^{m-1} & \text{si } m \in]-1, 1[\\ 1 & \text{si } m \in]1, +\infty[\end{cases}$$
(11.9)

avec m, la pente du spectre unidimensionnel en représentation logarithmique tel que k^{-m} .

Pour une fonction de corrélation incrémentale on obtient :

$$\langle (A(\mathbf{x}+\boldsymbol{\ell})-A(\mathbf{x})) \cdot (B(\mathbf{x}+\boldsymbol{\ell})-B(\mathbf{x})) \rangle \propto \begin{cases} 1 & \text{si } m \in]-\infty, 1[\\ \ell^{m-1} & \text{si } m \in]1, 3[\\ \ell^2 & \text{si } m \in]3, +\infty[\end{cases}$$
(11.10)

Si l'on analyse les différentes contributions du terme de dissipation, on se rend compte que $\varepsilon_D^c(\mathbf{D}_v)$, $\varepsilon_D^c(D_\rho)$, $\varepsilon_D^m(\mathbf{D}_{v_A})$, $\varepsilon_D^{ui}(D_u)$ et ε_D^{ue} ont une forme assez proche d'une fonction de corrélation non incrémentale et $\varepsilon_D^m(D_\rho)$ tandis que $\varepsilon_D^{ui}(D_\rho)$ sont plus proches d'une fonction incrémentale.

Pour une pente de spectre autour de k^8 (m = -8), une fonction de corrélation non incrémentale va saturer en ℓ^{-2} . On retrouve ce comportement pour $\varepsilon_D^c(\mathbf{D}_v)$ et $\varepsilon_D^m(\mathbf{D}_{v_A})$. Tandis qu'une fonction de corrélation incrémentale va saturer en ℓ^0 (comportement retrouvé pour $\varepsilon_D^m(D_\rho)$ et $\varepsilon_D^{ui}(D_\rho)$). On retrouve aussi le comportement du terme de forçage (fonction de corrélation non incrémentale) constant loin des échelles de forçage, puisqu'un Dirac à petit ℓ peut-être vu comme une pente en $m = +\infty$. Ces comportements plus mathématiques que physiques sont retrouvés pour toutes les simulations.

On remarque tout de même les fortes variations des termes décroissant en ℓ^{-2} . Ces variations sont la cause de la bosse visible aux plus petites échelles pour tous les taux ε_{NL} et ε calculés dans les simulations et que l'on avait remarquée dans la section 11.1. En effet, $\varepsilon_F - \partial_t \mathcal{R}$ reste constant dans cette zone alors que la bosse apparaît dans $\varepsilon_F - \partial_t \mathcal{R} + \varepsilon_D$. Cette bosse nous indique donc les échelles auxquelles l'erreur mathématique de l'hyperdissipation impacte systématiquement ε_{NL} et ses contributions.

Ce type d'erreur mathématique pourrait aussi impacter $\partial_t \mathcal{R}$, \mathcal{R} étant une fonction de corrélation en deux points.

11.2.3 Estimation de l'erreur sur le taux de cascade

Les fonctions de corrélation en deux points ne sont donc pas adaptées à l'étude de la physique des termes d'hyperdissipation et de ceux inclus dans $\partial_t \mathcal{R}$ comme a pu le faire remarquer CHO et LAZARIAN 2009². Par la suite, nous nous concentrerons seulement sur ε_{NL} et ses contributions, mais nous garderons en mémoire les influences potentielles de ces termes.

L'analyse des différentes contributions à la loi KHM permet ainsi d'identifier les sources d'erreurs numériques et mathématiques menant au niveau de ζ . Ce dernier, de l'ordre des fluctuations de $\langle E_{tot} \rangle$, reflèterait la signature de la quasi-stationnarité statistique des simulations. Aux échelles plus faibles, la saturation mathématique du calcul des fonctions de corrélation dépendant de l'hyperdissipation ainsi que sa signature³ dans ε_{NL} semblent impacter ζ . Ce dernier correspond donc à l'incertitude systématique de notre estimation du taux de cascade, incertitude provenant des données initiales, de leur adéquation avec les hypothèses de Kolmogorov et du schéma numérique utilisé pour le calcul des termes

^{2.} La solution proposée par CHO et LAZARIAN 2009 est d'augmenter le nombre de points servant au calcul de la fonction de corrélation. Une telle tâche s'annonce mathématiquement complexe et lourde dans le cadre de la théorie des lois exactes. Une autre possibilité est d'estimer précisément pour chaque contribution la puissance m du spectre influant sur le résultat de chaque contribution au taux de dissipation, puis de calculer la tendance attendue en ℓ^{m-1} [FERRAND 2021].

^{3.} Les corrélations impliquées dans ε_D étant d'ordre 2 et celles présentes dans les termes dominant de ε_{NL} étant d'ordre 3, le reflet dans ε_{NL} de l'erreur mathématique pourrait, à priori, ne pas compenser exactement l'erreur sur ε_D .

des lois exactes. Par la suite, les contributions qui apparaîtront inférieures à ζ seront alors supposés dans la zone d'incertitude du taux de cascade total. Leur analyse devra donc être effectuée avec précautions.

Un autre point reste à éclaircir dans cette étude sur les lois du type KHM : la différence entre la loi obtenue en utilisant \mathcal{R} et celle en utilisant une fonction incrémentale \mathcal{S} . La fonction \mathcal{S} associée à \mathcal{R} est :

$$S = \frac{1}{4} \left\langle \delta(\rho \boldsymbol{v}) \cdot \delta \boldsymbol{v} + \delta(\rho \boldsymbol{v}_{\boldsymbol{A}}) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} + 2\delta\rho\delta u \right\rangle$$
(11.11)

On a alors la relation $S = \langle E_{tot} \rangle - \mathcal{R}$. Sachant que $\mathcal{R}(\ell = 0) = \langle E_{tot} \rangle$, il est facile de passer de l'expression (11.1) à la loi :

$$\partial_t \mathcal{S} = -\mathcal{E}_{NL} + \mathcal{E}_D + \mathcal{E}_F \tag{11.12}$$

avec $\mathcal{E}_{NL} = \varepsilon_{NL}(\boldsymbol{\ell} = 0) - \varepsilon_{NL}, \ \mathcal{E}_{D} = \varepsilon_{D}(\boldsymbol{\ell} = 0) - \varepsilon_{D} \text{ et } \mathcal{E}_{F} = \varepsilon_{F}(\boldsymbol{\ell} = 0) - \varepsilon_{F}.$

FIGURE 11.6 – Détail de la loi (11.11) pour CGL1 (haut) et CGL3 (bas). Bleu : \mathcal{E}_{NL} . Orange : \mathcal{E}_F . Vert : \mathcal{E}_D . Rouge : $\partial_t \mathcal{S}$. Violet : $\mathcal{E}_{ref} = -\partial_t \mathcal{S} + \mathcal{E}_D + \mathcal{E}_F$. Marron : $\mathcal{Z} = \mathcal{E}_{ref} - \mathcal{E}_{NL}$. Représentation : 1D en fonction de ℓ_{\perp} avec les valeurs positives en ligne pleine et négatives en ligne dicontinue.

On notera que l'équation d'énergie totale s'écrit sous la forme $\partial_t E_{tot} + \nabla \cdot F_{tot} = S$ avec S les termes sources (dissipation et forçage), et F_{tot} le total de flux. De plus, puisque $\langle \nabla \cdot F_{tot} \rangle = \nabla_{\ell} \cdot \langle F_{tot} \rangle = - \langle \nabla' \cdot F_{tot} \rangle = 0$, alors $\mathcal{E}_{NL} = -\varepsilon_{NL}$.

En appliquant cette transformation sur le détail de la loi KHM (FIGURE 11.4), on obtient les résultats de la FIGURE 11.6. On y remarque que le comportement des termes de forçage (orange) et de dissipation (vert) se sont inversés. \mathcal{E}_F augmente en allant des petites vers les grandes échelles, avec une pente de facteur 2, et \mathcal{E}_D reste constant avant de changer de signe vers les grandes échelles. Ces comportements sont cohérents avec ceux démontrés dans les Annexes A.1 et A.2 (voir équations (11.9) et (11.10)). Par contre, la différence $\mathcal{Z} = \mathcal{E}_{ref} - \mathcal{E}_{NL} = (-\partial_t S + \mathcal{E}_D + \mathcal{E}_F) - \mathcal{E}_{NL}$ est supérieure à ζ . L'utilisation d'une fonction de corrélation incrémentale dans une étude de données de simulations semble donc amplifier l'erreur numérique et mathématique associée aux termes temporels, de dissipation et de forçage en y ajoutant l'erreur sur l'équation de $\langle E_{tot} \rangle$.

11.3 Synthèse des tests de validation et sources d'erreurs

Ces études sont illustrées par les résultats obtenus pour les simulations CGL1 et CGL3.

Comparaison Inc-MHD-Hall avec les résultats de FERRAND 2021 :

- le comportement des lois Inc-MHD-Hall est retrouvé,
- effets de nos choix de schéma numérique.

Effet du forçage sur la zone inertielle visualisée avec Inc-MHD-Hall :

- visualisation des oscillations induites par l'injection d'energie dans le taux de cascade : extension/réduction de la zone inertielle sur environ une demi décade,
- visualisation de l'impact de la stationnarité statistique : amortissement des oscillations et convergence de la zone inertielle.

Analyse de la loi KHM :

- paradoxe sur l'hypothèse de stationnarité statistique dans les simulations,
- saturation mathématique apportée par l'hyperdissipation,
- incertitude provenant de l'utilisation de fonctions incrémentales,
- estimation de l'erreur numérique et mathématique sur la loi exacte totale associée au modèle simulé, noté ζ .

Ces études valident le schéma numérique et son implémentation, et questionnent les comportements non-physiques pouvant impacter les résultats.

Les Annexes A et B contiennent des études complémentaires pour ce chapitre.

EFFET DE L'ANISOTROPIE DE PRESSION DANS DES SIMULATIONS CGL-MHD-HALL- ∇P_E

Sommaire

12.1 Le modèle CGL simulé
12.2 Étude de la loi CGL-MHD-Hall- $ abla P_e$ dans les simulations
CGL1, CGL2, CGL3
12.2.1 Loi globale et contribution de l'anisotropie de pression 139
12.2.2 Détail de la contribution de l'anisotropie de pression
12.2.3 Comportement statistique des pressions
12.3 De nouvelles simulations
12.3.1 Moins d'énergie que CGL3 : CGL3B
12.3.2 Une gamme d'échelle intermédiaire : CGL5
12.3.3 Une initialisation anisotrope $a_{piI} = 4$: CGL6
12.4 Synthèse de l'étude préliminaire des simulations CGL-MHD-
Hall- ∇P_e

Dans ce chapitre, nous attaquons le cœur de l'étude numérique dont l'objectif est de répondre à la question : quel est l'impact de la correction dépendant de l'anisotropie de pression sur le taux de cascade? Les résultats montrés ici sont récents, préliminaires et leur interprétation est encore en cours de discussion.

12.1 Le modèle CGL simulé

Dans un premier lot de simulations, les ions sont décrits avec la fermeture CGL et les électrons avec une fermeture isotherme qui correspond à notre fermeture isothermeisentrope. La contribution des flux de chaleur est supposée nulle. La pression électronique est définie telle que $p_e = \rho$. Le modèle général CGL-MHD-Hall- ∇P_e simulé dans le code versatile est donné dans la section 9.2. Regardons à quoi il ressemble si l'on y injecte les fermetures et que l'on y applique la normalisation indiquée dans la section 10.1 et utilisée dans l'implémentation des équations. Les équations de ce modèle sont ainsi :

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0, \qquad (12.1)$$

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{B} + \frac{1}{\rho} \nabla \cdot \overline{\boldsymbol{P}} = 0,$$
 (12.2)

$$\partial_t \boldsymbol{B} - \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) + d_i \nabla \times \left(\frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{B}\right) = 0,$$
 (12.3)

$$\partial_t p_{\perp i} + \nabla \cdot (p_{\perp i} \boldsymbol{v}) + p_{\perp i} \nabla \cdot \boldsymbol{v} - p_{\perp i} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = 0, \qquad (12.4)$$

$$\partial_t p_{\parallel i} + \nabla \cdot (p_{\parallel i} \boldsymbol{v}) + 2p_{\parallel i} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = 0, \qquad (12.5)$$

en notant $\overline{P} = \frac{\beta_0}{2} \left(\overline{P_i} + \rho \overline{I} \right)$ avec $\overline{P_i} = p_{\perp i} \overline{I} + \left(p_{\parallel i} - p_{\perp i} \right) bb$ le tenseur gyrotrope de pression ionique, $b = \frac{B}{|B|}$ la direction du champ magnétique et $\frac{\beta_0}{2}$ une constante provenant de la normalisation des équations.

L'hypothèse isotherme vient annuler la contribution ∇P_e présente dans l'équation d'induction (9.37) puisque :

$$\nabla \times \left(\frac{1}{\rho}\nabla\left(p_{e}\right)\right) = \nabla \times \left(\frac{1}{\rho}\nabla\rho\right) = \nabla \times \nabla\left(\ln\rho\right) = 0.$$

On s'attend donc à ce que la contribution de ∇P_e permettant de compenser l'effet de ce terme dans l'équation d'énergie totale s'annule aussi. L'énergie interne étant ρu = $\frac{\beta_0}{2} \left(p_{\perp i} + \frac{1}{2} p_{\parallel i} + \rho \ln \rho \right)$, son équation peut en effet s'écrire :

$$\partial_t \left(\rho u \right) + \nabla \cdot \left(\rho u \boldsymbol{v} \right) + \overline{\boldsymbol{P}} : \nabla \boldsymbol{v} = 0.$$
(12.6)

On reconnaît dans ces équations le modèle ayant donné la loi exacte (7.20) ainsi que le terme de Hall dans l'équation (12.3) qui indique qu'il faut prendre en compte la correction Hall donnée par (9.3). Le taux de transfert non linéaire ε_{NL} obtenu, qui est aussi valable en dehors de la zone inertielle, sera noté ε_{cql} . On le comparera à ε_{iso} calculé avec la partie isotrope du tenseur de pression¹. On s'attend, pour ces quantités, à observer une zone inertielle élargie de la zone MHD à la zone Hall. La différence $\varepsilon_{\overline{\Pi}} = \varepsilon_{cgl} - \varepsilon_{iso}$ correspond à la contribution de l'anisotropie de pression donnée par l'équation (7.21). Elle sera décomposée en quatre termes :

- un terme flux : $\nabla_{\boldsymbol{\ell}} \cdot \boldsymbol{\mathcal{F}}_{\boldsymbol{A}} = \frac{1}{4} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta \rho \delta \left(\frac{\overline{\mathbf{\Pi}}}{\rho} \right) \cdot \delta \boldsymbol{v} \right\rangle$, le terme source survivant dans la limite incompressible :

$$S_{A1} = \frac{1}{2} \left\langle \delta \left(\frac{\overline{\mathbf{\Pi}}}{\rho} \right) : \left(\rho \nabla' \boldsymbol{v}' - \rho' \nabla \boldsymbol{v} \right) \right\rangle,$$

— le terme source compressible dépendant explicitement des fluctuations de pression :

$$\mathcal{S}_{A2} = \frac{1}{4} \left\langle \delta \left(\frac{\overline{\Pi}}{\rho} \right) : \left(\rho \boldsymbol{v} \frac{\nabla' \rho'}{\rho'} - \rho' \boldsymbol{v'} \frac{\nabla \rho}{\rho} \right) \right\rangle,$$

— le terme source dépendant explicitement des fluctuations de densité :

$$\mathcal{S}_{A3} = -\frac{1}{4} \left\langle \delta \rho \left(\boldsymbol{v} \cdot \left(\frac{\overline{\boldsymbol{\Pi}}}{\rho} \right) \cdot \frac{\nabla' \rho'}{\rho'} - \boldsymbol{v'} \cdot \left(\frac{\overline{\boldsymbol{\Pi'}}}{\rho'} \right) \cdot \frac{\nabla \rho}{\rho} \right) \right\rangle,$$

avec $\overline{\mathbf{\Pi}} = \frac{\beta_0}{2} \left(p_{\parallel i} - p_{\perp i} \right) \left(\boldsymbol{b} \boldsymbol{b} - \frac{1}{3} \overline{\boldsymbol{I}} \right)$. Cette contribution anisotrope est entièrement portée par les ions.

^{1.} Le comportement de ε_{iso} est connu, il a été étudié par ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK et al. 2018 dans le cas isotherme. Comme nous utilisons une nouvelle formulation de la loi exacte, une vérification des prédictions est détaillée dans l'Annexe B.2.

12.2 Etude de la loi CGL-MHD-Hall- ∇P_e dans les simulations CGL1, CGL2, CGL3

Tout d'abord, nous avons entrepris l'analyse des simulations CGL1, CGL2 et CGL3. Ce sont les simulations CGL-MHD-Hall- ∇P_e analysées dans l'article de FERRAND, SAHRAOUI, LAVEDER *et al.* 2021, leurs paramètres sont résumés dans la TABLE 9.1 et la TABLE 9.2. Ces trois simulations sont initialisées telles que $a_{pi} = 1$.

12.2.1 Loi globale et contribution de l'anisotropie de pression

La FIGURE 12.1 (CGL1 et CGL2) et la FIGURE 12.2 (CGL3) contiennent des triptyques associés à chaque simulation et permettant de comparer les taux de cascade ε_{iso} et ε_{cgl} . La différence des deux $\varepsilon_{\overline{\Pi}}$ est représentée en 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} , et est projetée dans les représentations 1D sous la forme de courbe verte. Sur les représentations 1D, sont ajoutés ε_{cgl} en bleu, ε_{iso} en orange et le niveau d'incertitude ζ en gris qui reste assez éloigné des autres quantités.

À partir de ces figures, on peut définir une zone inertielle où ε_{cgl} sera quasi-constant pour chaque simulation. Pour CGL1, elle s'étend entre $\ell_{\perp} \in [1; 20]$ et $\ell_{\parallel} \in [10; 60]$, pour CGL2 entre $\ell_{\perp} \in [1; 6]$ et $\ell_{\parallel} \in [2; 40]$, et pour CGL3 entre $\ell_{\perp} \in [0.1; 1]$ et $\ell_{\parallel} \in [0.2; 2]$. Les variations que l'on pourra observer en dehors de ces domaines seront sous influence dissipative ou dans la zone de forçage. On remarque que la zone inertielle de CGL1 et CGL2 couvrent les échelles MHD et celle de CGL3, les échelles Hall. Dans ces zones, la contribution de $\varepsilon_{\overline{\Pi}}$ au taux de cascade totale est en valeurs absolues d'environ 10 % de ε_{iso} pour CGL1 et CGL3, et entre 2 % et 20 % pour CGL2 (on prendra la valeur médiane : 10 %). Ce niveau reste donc constant.

Cependant, une différence de taille apparaît autour des grandes échelles de CGL3 (FIGURE 12.2) : $\varepsilon_{\overline{\Pi}}$ augmente autour de 10 fois la valeur de ε_{iso} . En pratique, on ne regarde pas ce qu'il se passe à ces échelles car elles sont impactées par l'injection d'énergie dans la cascade qui a tendance à faire fortement fluctuer les résultats provenant des lois calculées jusqu'à présents dans la littérature. Donc a priori, cette augmentation n'aurait pas un sens physique généralisable et serait plus spécifique à l'outil numérique. Pourtant, contrairement à l'impact du forçage observé dans la section 11.1.3, il n'est pas oscillant et il provient spécifiquement de la contribution anisotrope. On s'est alors posé la question de son origine et de sa nature.

Une autre différence est visible. Sur la représentation 2D de CGL3 (FIGURE 12.2), la contribution anisotrope est positive quasiment partout à l'exception d'une « bulle » accrochée à la direction parallèle. Tandis que pour CLG1 et CGL2 (FIGURE 12.1), un changement de signe de $\varepsilon_{\overline{\Pi}}$ dans la zone inertielle MHD ($\ell > d_i$) semble indiquer une échelle caractéristique. Aux plus petites échelles, il est positif et puis devient négatif. L'emplacement de ce changement de signe est situé autour de $\ell_{\perp}^s \sim 2d_i$ dans la direction perpendiculaire. Dans la direction parallèle, le changement de signe a lieu en $\ell_{\parallel}^s \sim 20d_i$ pour CGL1, $\ell_{\parallel}^s \sim 80d_i$ pour CGL2. Trois éléments pourraient potentiellement expliquer ces observations. Tout d'abord, en présence d'un champ magnétique, le développement de la cascade est anisotrope comme on peut facilement le visualiser sur les cartes de MANZINI, SAHRAOUI, CALIFANO et FERRAND 2022. Cela pourrait venir expliquer l'observation $\ell_{\perp}^s < \ell_{\parallel}^s$. Ensuite, l'angle d'injection θ_i étant inférieur à 45°, l'énergie n'est pas injectée isotropiquement dans la simulation. Il diffère d'ailleurs entre CGL1 (7°) et CGL2-CGL3 (15°). Si le premier élément est validé, cela pourrait impliquer que l'angle d'injection

FIGURE 12.1 – Simu : CGL1 et CGL2. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris).

FIGURE 12.2 – Simu : CGL3. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\mathbf{n}}}$ (vert) et ζ (gris).

pourrait venir contrer ou amplifier l'anisotropie de $\varepsilon_{\overline{\Pi}}$. Enfin, entre CGL2 et CGL3, la gamme d'échelles diffère ainsi que le niveau énergétique (E_{sup}) , plus important pour CGL3.

Le comportement dans la direction parallèle semblant plus complexe que celui de la direction perpendiculaire, on s'est focalisé sur la compréhension de cette dernière. Puisque le changement de signe a lieu près de la zone Hall, on s'est demandé si le comportement de CGL2 et celui de CGL3 ne se complétaient pas : l'augmentation présente dans CGL3 serait-elle le début d'une bosse qui ensuite se répercuterait aux échelles MHD où sa diminution irait jusqu'à engendrer un croisement de ε_{cgl} et ε_{iso} et un changement de signe de $\varepsilon_{\overline{\Pi}}$? Ce point est intéressant, car une telle bosse pourrait être la signature d'instabilités qui viendraient injecter de l'énergie aux échelles ioniques. Cette première question est mise en doute par le comportement de CGL1 et CGL2 : une augmentation similaire semble apparaître dans $\varepsilon_{\overline{\Pi}}$ mais avec un signe opposé et une intensité moindre n'influant que très peu sur ε_{cgl} . Si c'est bien le même effet que pour CGL3, il serait alors accroché aux échelles de forçage. Plus de questions que de réponses émergent donc de ces simulations, elles ont emmené l'analyse dans diverses directions nécessitant de nouvelles simulations :

- le niveau de la zone inertielle changera-t-il si l'on initialise la simulation avec une pression anisotropique $(a_{piI} \neq 1)$?
- l'augmentation à grande échelle est-elle accrochée aux échelles de forçage?
- le changement de signe de $\varepsilon_{\overline{\Pi}}$ est-il lié à la proximité de la frontière entre les zones MHD et Hall?

— ces différences sont-elles des signatures de phénomène physique ? Sont-elles liées ?
Avant de se lancer dans de nouvelles simulations, d'autres élements peuvent être étudiés.
Ils font l'objet des sections suivantes.

12.2.2 Détail de la contribution de l'anisotropie de pression

FIGURE 12.3 – Simu : CGL1 (haut), CGL2 (milieu) et CGL3 (bas). Représentation 1D en fonction de ℓ_{\perp} du détail de $\varepsilon_{\overline{\Pi}}$ (bleu). Orange : $\nabla_{\ell} \cdot \mathcal{F}_A$. Vert : \mathcal{S}_{A1} . Rouge : \mathcal{S}_{A2} . Violet : \mathcal{S}_{A3} . Gris : niveau d'erreur ζ . Les termes présents dans la zone grise délimitée par ζ sont supposés négligeables.

Sur la FIGURE 12.3, est indiqué le détail de $\varepsilon_{\overline{\Pi}}$ (bleu). On remarque que sont comportement est dominé par S_{A1} tandis que $\nabla_{\ell} \cdot \mathcal{F}_A$ et S_{A2} fluctuent autour de ζ . Ils peuvent légèrement influencer $\varepsilon_{\overline{\Pi}}$ lorsque S_{A1} s'affaiblit pour changer de signe, comme on peut le voir sur les résultats de CGL1 et CGL2. S_{A3} est, quant-à-lui, généralement négligeable. La contribution de l'anisotropie de pression et son comportement est donc principalement portée par le terme source qui survit dans la limite incompressible. Cela concorde avec la quasi-incompressibilité des simulations : l'écart-type de la densité est entre 2% (CGL1 et CGL2) et 8% (CGL3) de la moyenne. S_{A1} et $\varepsilon_{\overline{\Pi}}$ doivent donc se comporter en accord avec la limite quasi-incompressible (8.3) obtenue dans le Chapitre 8 :

$$\varepsilon_{\overline{\mathbf{\Pi}}} \simeq \mathcal{S}_{A1} \simeq \frac{\beta_0}{4} \left\langle \delta\left(\left(p_{\parallel i} - p_{\perp i}\right) \left(\boldsymbol{b}\boldsymbol{b} - \frac{1}{3}\overline{\boldsymbol{I}}\right)\right) : \delta\left(\nabla \boldsymbol{v}\right) \right\rangle$$
(12.7)

Comprendre le comportement de ce terme est complexe puisqu'il dépend des fluctuations de la direction du champ magnétique **b** pondérées par l'anisotropie de la pression et distribuées sur les variations du gradient de la vitesse. $p_{\parallel i} - p_{\perp i}$ portant l'influence de l'anisotropie de pression de ce terme sur la loi exacte et pouvant s'écrire $1 - a_{pi}$, on s'est intéressé au comportement statistique de a_{pi} . On remarque que seule la direction du champ magnétique influe sur ce terme et non son amplitude.

Ces résultats sont retrouvés dans les simulations qui seront étudiées par la suite (voir Annexe C).

12.2.3 Comportement statistique des pressions

La TABLE 12.1 résume la statistique (moyenne \pm écart-type) des valeurs de la densité, de l'anisotropie de pression ionique $a_{pi} = \frac{p_{\pm i}}{p_{\parallel i}}$, et du paramètre $\beta_{\parallel} = \frac{p_{\parallel i}}{p_m}$ pour chaque simulation. Sur la figure FIGURE 12.4, est tracée la dispersion en fonction de a_{pi} et β_{\parallel} , des simulations. Ces histogrammes 2D prennent la forme de trois courbes de niveau formant des ovales concentriques. Le plus large contient tous les couples $\{\beta_{\parallel}; a_{pi}\}$ existant dans la simulation, l'intermédiaire et le plus petit sont associés à des pourcentages du maximum de l'histogramme : 50 % et 99 %. Sur cette figure, les critères des instabilités miroir et firehose ainsi que l'horizontale $a_{pi} = 1$ sont aussi affichés. Le critère firehose est le critère calculé dans le chapitre 7, sa position sera affectée par l'effet Hall. Le critère miroir prend en compte la présence de la pression électronique isotherme $p_e = \rho$ et est paramétrisé par l'équation (9.45). Les simulations que l'on étudie ici sont données en gris (CGL1), bleu (CGL2) et orange (CGL3) et correspondent aux première, deuxième et quatrième lignes du tableau.

Name	ρ	a_{pi}	β_{\parallel}
CGL1	1 ± 0.02	1.1 ± 0.1	0.9 ± 0.1
CGL2	1 ± 0.02	1.1 ± 0.1	0.9 ± 0.1
CGL3B	1 ± 0.04	1.3 ± 0.3	0.8 ± 0.2
CGL3	1 ± 0.08	2.2 ± 0.5	0.6 ± 0.3
$\mathrm{CGL5}$	1 ± 0.02	2.1 ± 0.1	0.6 ± 0.1
CGL6	1 ± 0.02	3.97 ± 0.5	1.01 ± 0.2

TABLE 12.1 – Moyenne et écart-type de la densité, du taux d'anisotropie ionique $a_{pi} = \frac{p_{\perp i}}{p_{\parallel i}}$ et du paramètre $\beta_{\parallel} = \frac{p_{\parallel i}}{p_m}$ pour chaque simulation, à la date t.

FIGURE 12.4 – Diagramme $a_{pi} - \beta_{\parallel}$ contenant l'histogramme 2D des simulations sous la forme de courbes de niveau centrées sur le couple moyen. Le critère miroir est paramétrisé par l'équation (9.45) qui prend en compte les électrons isothermes. Le critère firehose est le critère CGL calculé dans le Chapitre 7.

On remarque que les trois simulations se sont écartées de leurs valeurs d'initialisation, $a_{piI} = 1$ et $\beta_{\parallel I} = 1$. S_{A1} ne dépendant pas de p_m , on ne s'est pas attardé sur $\beta_{\parallel} = 1$. Les distributions de CGL1 et de CGL2 sont quasiment identiques et très proches des valeurs initiales. CGL3 s'est quant-à-elle bien décalée et montre une moyenne $a_{pi0} \sim 2$, sa distribution est aussi beaucoup plus large avec quelques points proches du critère miroir. L'augmentation de la pression a lieu dès les premiers temps de la simulation puis reste stable. La raison d'un tel comportement est encore sujette à question : notre conjecture est qu'il est dû à l'énergie présente dans CGL3. Cette dernière est en effet forcée avec des ondes plus intenses et telle que l'énergie dans le système soit trois fois supérieure à celle dans CGL1 ou CGL2 (voir resp. A_f et E_{sup}). Entre les points proches du critère miroir et l'augmentation de la moyenne et de l'écart-type de a_{pi} , beaucoup d'éléments pourraient être à l'origine de la différence de comportement de la contribution anisotrope. Ces résultats motivent d'autant plus l'obtention de nouvelles simulations.

12.3 De nouvelles simulations

Trois nouvelles simulations ont été utilisées : CGL3B, CGL5 et CGL6. CGL5 et CGL6 ont été conçues et lancées pour répondre à certaines de nos questions. Comme indiqué dans le Chapitre 10, obtenir des résultats de simulation valables pour une étude de turbulence prend du temps, c'est-à-dire plusieurs mois en comptant l'ajustement des paramètres d'hyperdissipation et, sachant qu'à chaque augmentation de la résolution, le temps de calcul était au moins multiplié par huit. Ainsi, d'une semaine de calcul pour faire converger le spectre associé à une résolution $258^2 \times 512$, on passe à un ou deux mois pour $512^2 \times 1024$. Par conséquent, les résultats présentés ici sont récents et leur interprétation est encore en cours.

12.3.1 Moins d'énergie que CGL3 : CGL3B

FIGURE 12.5 – Simu : CGL3B. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris).

Tout d'abord, CGL3B est une version moins énergétique de CGL3. La gamme d'échelle est donc la même, seul le forçage et par conséquent la dissipation sont affaiblis. Cette simulation est, elle aussi, initialisée telle que $a_{piI} = 1$. Sur le diagramme de la FIGURE 12.4, elle est indiquée en vert : sa moyenne, $a_{pi0} \sim 1.5$, est entre celle de CGL2 et CGL3, et sa distribution inclue celle de CGL2 mais est moins étalée que celle de CGL3. On s'attend donc à voir les différences les plus importantes entre les résultats de l'étude des lois exactes de CGL2 et de CGL3 s'atténuer si a_{pi} a de l'importance dans l'expression de la correction anisotrope. Le triptyque fait l'objet de la FIGURE 12.5.

À première vue, en regardant la représentation 2D , on sait que l'on a un comportement similaire à CGL2. Le croisement entre ε_{cgl} et ε_{iso} dû au changement de signe de $\varepsilon_{\overline{\Pi}}$ est toujours présent dans la zone MHD. Comme pour CGL3, cette zone est aussi la zone de forçage. Dans cette zone, on remarque une augmentation de la contribution venant dominer ε_{iso} . Si ces deux éléments ne sont pas des artefacts dus à l'oscillation du forçage, cela signifie que, contrairement à CGL3 et similairement à CGL1 et CGL2, le changement

de signe a lieu avant l'augmentation, et cela tend à indiquer que l'augmentation présente dans CGL3 est intrinsèque à la zone de forçage.

La zone inertielle est située entre $\ell_{\perp} \in [0.1; 2]$ et $\ell_{\parallel} \in [0.2; 4]$. Cette fois-ci, $\varepsilon_{\overline{\Pi}}$ contribue à 30 % de ε_{iso} . On a donc un facteur 3 par rapport aux 10 % relevés pour les autres simulations. Ce résultat, significatif, indique que l'anisotropie de pression semble affecter la zone inertielle mais interpelle aussi car, pour une simulation que tout semble placer entre CGL2 et CGL3, l'effet de l'anisotropie de pression sur la zone inertielle en est éloigné. La source d'un tel comportement est encore en cours de discussion.

12.3.2 Une gamme d'échelle intermédiaire : CGL5

FIGURE 12.6 – Simu : CGL5. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris).

La gamme d'échelles accessible via CGL5 est située entre celles de CGL2 et celles de CGL3 afin de couvrir la transition entre la zone MHD et la zone Hall, tout en gardant éloignées les échelles impactées par l'injection d'énergie. L'écart-type de sa distribution est aussi de l'ordre de celui de CGL2, tout comme son étalement dans le diagramme de la FIGURE 12.4, mais sa position centrale y est plus proche de celle de CGL3. Le comportement observé pourrait donc être en faveur de la conjecture d'un impact de la moyenne de a_{pi} ou de celle d'un impact des fluctuations sur la contribution du taux de cascade dépendant de l'anisotropie de pression.

Sur le triptyque obtenu pour CGL5 (FIGURE 12.6), on observe un comportement similaire à celui de CGL3. Dans la zone inertielle ($\ell_{\perp} \in [0.3; 5]^2$), la contribution de $\varepsilon_{\overline{\Pi}}$

^{2.} La taille de la zone inertielle perpendiculaire dans la représentation 1D de la FIGURE 12.6 est réduite

est de l'ordre de 10 % de ε_{iso} . Ces résultats confirment que le comportement de CGL3 n'est pas un cas particulier et se placent en faveur de la moyenne de a_{pi} plutôt que de ses fluctuations. De plus, l'augmentation à grande échelle visible pour CGL3 s'est déportée avec le forçage, confirmant qu'elle est intrinsèque à la zone d'injection de l'énergie dans la cascade.

12.3.3 Une initialisation anisotrope $a_{piI} = 4$: CGL6

FIGURE 12.7 – Simu : CGL6. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris).

La dernière simulation lancée est CGL6. Elle est basée sur CGL5 mais initialisée avec une pression anisotrope : $a_{piI} = 4$. Le but de cette simulation est double :

- vérifier si l'un des comportements observés précédemment pour notre correction se maintient lorsque la simulation est initialisée anisotropiquement,
- se rapprocher du critère miroir.

Des valeurs de a_{piI} plus importantes ont été testées, mais seule la simulation avec $a_{piI} = 4$ a pu être numériquement stabilisée.

Comme on peut le voir sur la TABLE 12.1 et sur la FIGURE 12.4 (violet), cette simulation se maintient au niveau de a_{piI} . En fait, c'est la seule simulation montrant un a_{pi0} aussi proche de sa condition initiale, l'écart n'étant que de 3 %. Pour ce qui est du but de se rapprocher du critère miroir, le diagramme nous indique que quelques points de CGL6 sont situés au-dessus du critère miroir. Le développement d'instabilité miroir semble donc permis dans cette simulation.

à cause de la « bulle » négative parallèle et du filtrage angulaire. La valeur maximale est donc estimée à partir de la représentation 2D .

Sur la FIGURE 12.7, $\varepsilon_{\overline{\Pi}}$ est entièrement positif. Son niveau est de l'ordre de 70 % de ε_{iso} aux échelles inertielles, c'est-à-dire pour $\ell_{\perp} \in [0.3; 1]$. Il a donc bien augmenté par comparaison avec les 10 % et 30 % précédents. Par comparaison avec CGL5, la gamme d'échelles inertielles est réduite par l'augmentation de $\varepsilon_{\overline{\Pi}}$ qui est plus étalée.

12.4 Synthèse de l'étude préliminaire des simulations CGL-MHD-Hall- ∇P_e

Les résultats présentés dans ce chapitre nous permettent de valider numériquement l'apport de la correction dépendant de l'anisotropie de pression dans le cas quasi-incompressible. Ils nous confirment aussi que, dans un cadre quasiincompressible, le terme dominant est celui qui vient former la correction de **PP98 dans la limite incompressible gyrotrope (Chapitre 8).** Cela implique que la première correction devant être appliquée dans un plasma quasi-incompressible tel que le vent solaire n'est peut-être pas la compression mais plutôt l'anisotropie de pression. Cette étude numérique n'est cependant qu'à un stade préliminaire. En effet, nous n'avons pas encore convergé sur l'interprétation d'un certain nombre d'éléments et, comme nous venons de le voir, elle soulève un nombre important de questions.

On propose une synthèse à travers la FIGURE 12.8. Sur le graphique (A) sont repris les histogrammes de a_{pi} , (CGL1 y est confondu avec CGL2). Les simulations sont ordonnées par couleur et comportement : les simulations présentant un changement de signe sont en gris (CGL1), bleu (CGL2) et vert (CGL3B). Celles montrant un signe quasiment isotrope à l'exception d'une « bulle » dans la direction parallèle sont en jaune (CGL3) et rouge (CGL5). La dernière simulation, initialisée avec $a_{piI} = 4$, montrant une contribution anisotrope entièrement positive, est donnée en violet (CGL6). Deux paramètres liés à la distribution de a_{pi} ont été abordés : la moyenne a_{pi0} (graphique (B) et (C)) et l'écart-type std (a_{pi}) (graphique (D) et (E)). En fonction de a_{pi0} , les simulations se comportant similairement restent groupées, contrairement à $std(a_{pi})$. a_{pi0} semble donc être un meilleur paramètre que std (a_{pi}) . Sur le graphique (B), sont placées les estimations de la contribution anisotrope au taux de cascade dans la zone inertielle. On y observe que CGL3B et CGL6 s'écartent du résultat des autres simulations. Ce résultat est inattendu pour CGL3B (ou CGL3 et CGL5). Si a_{pi0} est bien le paramètre important dans l'impact des anisotropies de pression sur la cascade et que CGL3B est bien valable et n'est pas une exception, alors il pourrait exister un processus qui viendrait inverser, pour quelques a_{pi0} , la tendance croissante de la contribution anisotrope dans la zone inertielle. Pour ce qui est du rapport entre le taux de transfert non linéaire estimé dans la zone de forçage et le taux de cascade inertielle (graphique (D)), il semble globalement croitre en fonction de a_{ni0} . Il serait intéressant d'y évaluer plus précisément l'impact de l'injection d'énergie afin de vérifier si un autre processus intervient.

Ces graphiques, contenant un nombre limité de points lié au nombre de simulations à disposition, ne sont, bien évidemment, que des outils de spéculation, synthétisant cette étude préliminaire et permettant de dégager des tendances pour lesquelles l'analyse pourra être approfondie.

FIGURE 12.8 – Résumé de l'étude préliminaire sur l'effet de l'anisotropie de pression sur le taux de transfert non linéaire en fonction de a_{pi0} (première colonne) et de std (a_p) (deuxième colonne). Chaque simulation est associée à une couleur (même association que pour la FIGURE 12.4). (A) : histogramme de a_p , CGL1 y est confondu avec CGL2. (B) et (C) : apport de la contribution de la pression anisotrope. (D) et (E) : impact de l'augmentation dans la zone de forçage de la contribution anisotrope sur le niveau du taux de transfert total mesuré dans la zone inertielle.

VERS L'ÉTUDE DES SIMULATIONS LANDAU-FLUIDES

Sommaire

13.1 Modèle simulé et loi exacte	
13.2 Etude préliminaire des simulations	
13.3 Premières applications de la loi exacte LF-MHD-Hall- $ abla P_e$ 154	
13.3.1 Effet du flux de chaleur $\ldots \ldots 154$	
13.3.2 Effet des tenseurs de pression $\dots \dots \dots$	

FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 ont aussi utilisé des simulations du modèle LF-MHD-Hall- ∇P_e prenant en compte un flux de chaleur $\overline{\overline{q}}$ gyrotrope obtenu grâce à une fermeture Landau-fluide présente dans le code versatile présenté dans la section 10.1. Il s'est avéré que ces simulations prennent aussi en compte un tenseur de pression électronique de type gyrotrope. La fermeture Landau-fluide corrigeant les critères d'instabilité tel que le critère miroir afin de refléter le comportement linéaire cinétique, elle pourrait par la suite nous aider à étendre nos interprétations vers les processus cinétiques.

Dans ce chapitre, nous décrivons les spécificités du modèle implémenté et la loi exacte complète associée. Une première application préliminaire sur deux simulations semble montrer des résultats paradoxaux qui nécessiteront une étude plus fine avant d'en extraire un début d'interprétation.

13.1 Modèle simulé et loi exacte

Dans ce deuxième lot de simulations, les ions et les électrons sont décrits avec un tenseur de pression gyrotrope. La fermeture utilisée est une fermeture Landau-fluide. Cette fermeture nous rapproche du comportement cinétique en prenant en compte l'amortissement Landau linéaire (phénomène cinétique) dans le modèle fluide. Cette correction étant basée sur la relation de dispersion cinétique, les critères d'instabilité seront aussi corrigés pour correspondre aux critères cinétiques. La gyrotropie des électrons impactera d'ailleurs le critère miroir. Les flux de chaleur ioniques et électroniques sont aussi supposés gyrotropes.

Les premières équations normalisées du modèle simulé sont, en y faisant apparaître indépendamment les tenseurs des pressions ionique et électronique, :

$$\partial_t \rho + \nabla \cdot (\rho \boldsymbol{v}) = 0, \qquad (13.1)$$

$$\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{B} + \frac{1}{\rho} \nabla \cdot \left(\overline{\boldsymbol{P}_i} + \overline{\boldsymbol{P}_e} \right) = 0,$$
 (13.2)

$$\partial_t \boldsymbol{B} - \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) + d_i \nabla \times \left(\frac{1}{\rho} \boldsymbol{j} \times \boldsymbol{B}\right) = d_i \nabla \times \left(\frac{1}{\rho} \nabla (p_e)\right),$$
 (13.3)

$$\partial_t p_{\perp i} + \nabla \cdot (p_{\perp i} \boldsymbol{v}) + p_{\perp i} \nabla \cdot \boldsymbol{v} - p_{\perp i} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = -\frac{1}{2} \left(\operatorname{Tr}(\nabla \cdot \overline{\overline{\boldsymbol{q}_i}}) - \boldsymbol{b} \boldsymbol{b} : \nabla \cdot \overline{\overline{\boldsymbol{q}_i}} \right),$$
(13.4)

$$\partial_t p_{\parallel i} + \nabla \cdot \left(p_{\parallel i} \boldsymbol{v} \right) + 2 p_{\parallel i} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v} = -\boldsymbol{b} \boldsymbol{b} : \nabla \cdot \overline{\boldsymbol{q}_i}, \qquad (13.5)$$

$$\partial_t p_{\perp e} + \nabla \cdot (p_{\perp e} \boldsymbol{v}_{\boldsymbol{e}}) + p_{\perp e} \nabla \cdot \boldsymbol{v}_{\boldsymbol{e}} - p_{\perp e} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v}_{\boldsymbol{e}} = -\frac{1}{2} \left(\operatorname{Tr}(\nabla \cdot \overline{\overline{\boldsymbol{q}_{\boldsymbol{e}}}}) - \boldsymbol{b} \boldsymbol{b} : \nabla \cdot \overline{\overline{\boldsymbol{q}_{\boldsymbol{e}}}} \right),$$
(13.6)

$$\partial_t p_{\parallel e} + \nabla \cdot \left(p_{\parallel e} \boldsymbol{v}_{\boldsymbol{e}} \right) + 2 p_{\parallel e} \boldsymbol{b} \boldsymbol{b} : \nabla \boldsymbol{v}_{\boldsymbol{e}} = -\boldsymbol{b} \boldsymbol{b} : \nabla \cdot \overline{\overline{\boldsymbol{q}_{\boldsymbol{e}}}}, \qquad (13.7)$$

avec $\overline{P_{i,e}} = \frac{\beta_0}{2} \left(p_{\perp i,e} \overline{I} + \left(p_{\parallel i,e} - p_{\perp i,e} \right) bb \right)$ les tenseurs gyrotropes des pressions ionique (i) et électronique (e), $b = \frac{B}{|B|}$ la direction du champ magnétique, $\frac{\beta_0}{2}$ la constante provenant de la normalisation des équations, et $v_e = v - d_i \frac{j}{\rho}$ la vitesse électronique. La fermeture est appliquée au niveau du quatrième moment¹ présent dans les équations de $\overline{\overline{q_i}}$ et $\overline{\overline{q_e}}$. L'hypothèse de gyrotropie appliquée aux tenseurs de flux de chaleur implique (avec s = i, e) :

$$\boldsymbol{b}\boldsymbol{b}:\nabla\cdot\overline{\boldsymbol{q}_{\boldsymbol{s}}} \simeq \nabla\cdot(q_{\parallel s}\boldsymbol{b}) - 2q_{\perp s}\nabla\cdot\boldsymbol{b},$$
$$\frac{1}{2}\left(\operatorname{Tr}(\nabla\cdot\overline{\boldsymbol{q}_{\boldsymbol{s}}}) - \boldsymbol{b}\boldsymbol{b}:\nabla\cdot\overline{\boldsymbol{q}_{\boldsymbol{s}}}\right) \simeq \nabla\cdot(q_{\perp s}\boldsymbol{b}) + q_{\perp s}\nabla\cdot\boldsymbol{b}.$$

L'équation d'énergie interne peut être construite à partir des équations des pressions (13.5), (13.4), (13.7), (13.6) et de la relation $\boldsymbol{v}_{\boldsymbol{e}} = \boldsymbol{v} - d_i \frac{\boldsymbol{j}}{\rho}$. Ainsi, on obtient :

$$\partial_t \left(\rho u\right) + \nabla \cdot \left(\rho u \boldsymbol{v} + \boldsymbol{q}\right) + \left(\overline{\boldsymbol{P}_i} + \overline{\boldsymbol{P}_e}\right) : \nabla \boldsymbol{v} = \frac{d_i}{2} \nabla \cdot \left(\operatorname{Tr}\left(\overline{\boldsymbol{P}_e}\right) \frac{\boldsymbol{j}}{\rho}\right) + d_i \overline{\boldsymbol{P}_e} : \nabla \left(\frac{\boldsymbol{j}}{\rho}\right)$$
(13.8)

sachant que $\rho u = \frac{\beta_0}{2} \left(p_{\perp i} + \frac{1}{2} p_{\parallel i} + p_{\perp e} + \frac{1}{2} p_{\parallel e} \right)$ et avec $\boldsymbol{q} = \frac{\beta_0}{2} \left(q_{\perp i} + \frac{1}{2} q_{\parallel i} + q_{\perp e} + \frac{1}{2} q_{\parallel e} \right) \boldsymbol{b}$. La loi exacte valable pour ce modèle a pour base (7.20) à laquelle on doit ajouter

La loi exacte valable pour ce modele à pour base (7.20) à laquelle on doit ajouter la correction Hall (9.3), la correction dépendant de la pression électronique (9.41) et la correction dépendant des flux de chaleur (5.19). Nous l'avons appliquée à deux simulations, LF2 et LF3, pour vérifier s'il était possible de retrouver les conclusions de FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 à travers les termes dépendant des flux de chaleurs.

13.2 Etude préliminaire des simulations

Les paramètres initiaux associés à chaque simulation sont donnés dans la TABLE 9.1 et la TABLE 9.2. Dans la TABLE 13.1, sont repris quelques informations statistiques. Similairement aux simulations CGL-MHD-Hall- ∇P_e , les fluctuations de densité sont faibles. Ces simulations sont donc aussi quasi-incompressibles.

Les taux d'anisotropie initialisés à 1 sont restés proches de 1 et sont moins étalées que ceux des simulations CGL2 et CGL3, même si LF3 montre un étalement plus important que LF2 similairement à CGL3 par rapport à CGL2. Plus d'un tiers de ses points sont situés du côté instable du critère miroir. Deux critères miroirs sont donnés. Le premier en cyan correspond au critère cinétique obtenu en corrigeant le facteur 6 du critère CGL [KULSRUD 1983, FERRIÈRE et ANDRÉ 2002, HUNANA *et al.* 2019]. Le second, en bleu,

^{1.} Pour plus d'informations, se référer aux premières parties de PASSOT et SULEM 2007.

Name	ρ	a_{pi}	$eta_{\parallel i}$	a_{pe}	$eta_{\parallel e}$
LF2	1 ± 0.01	1.05 ± 0.03	0.97 ± 0.04	1.01 ± 0.006	0.98 ± 0.05
LF3	1 ± 0.08	1.52 ± 0.31	0.84 ± 0.30	0.96 ± 0.04	1.10 ± 0.42

TABLE 13.1 – Moyenne et écart-type de la densité, des taux d'anisotropie ionique $a_{pi} = \frac{p_{\perp i}}{p_{\parallel i}}$ et électronique $a_{pe} = \frac{p_{\perp e}}{p_{\parallel e}}$ et des paramètres $\beta_{\parallel i} = \frac{p_{\parallel i}}{p_m}$ et $\beta_{\parallel e} = \frac{p_{\parallel e}}{p_m}$ pour chaque simulation, à la date t.

FIGURE 13.1 – Diagramme $a_{pi} - \beta_{\parallel i}$ contenant l'histogramme 2D des simulations LF2 et LF3 sous la forme de courbes de niveau centrées sur le couple moyen. Les lignes discontinues correspondent aux critères d'instabilité. Rouge : le critère firehose CGL calculé dans le chapitre 7 et valable dans les modèles cinétique [HUNANA *et al.* 2019]. Il ne prend pas en compte l'effet Hall. Cyan : critère miroir cinétique (sans prise en compte de la pression électronique) [HUNANA *et al.* 2019]. Bleu : critère miroir proposé par KUZNETSOV *et al.* 2012, prenant en compte les électrons gyrotropes et calculé avec $a_{pe} = 1$ et $\beta_{\parallel e} = 1$.

est aussi un critère miroir cinétique mais prenant en compte l'anisotropie de pression électronique. Ce critère est dérivé par KUZNETSOV *et al.* 2012. Il est ici représenté en considérant $a_{pe} = 1$ et $\beta_{\parallel e} = 1$.

Les simulations LF pourraient donc permettre une étude fine de l'impact des instabilités cinétiques sur la cascade turbulente. En première application de la loi exacte étendue, nous avons d'abord cherché à retrouver les résultats de FERRAND, SAHRAOUI, LAVEDER *et al.* 2021.

13.3 Premières applications de la loi exacte LF-MHD-Hall- ∇P_e

Pour les simulations LF2 et LF3, l'extraction d'échantillons de temps consécutifs n'a pas encore été effectuée. On ne fera donc pas apparaître le niveau ζ dans les résultats préliminaires qui suivent.

13.3.1 Effet du flux de chaleur

L'une des questions que nous nous sommes posées est : retrouve-t-on la décroissance associée au flux de chaleur par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021? On a alors calculé le taux de cascade total ε dans LF2 et LF3 avec ($\varepsilon | \nabla \cdot \boldsymbol{q} \neq 0$) et sans ($\varepsilon | \nabla \cdot \boldsymbol{q} = 0$) la contribution du flux de chaleur. Les résultats sont montrés sur la FIGURE 13.2.

FIGURE 13.2 – Simu : LF2 (haut) et LF3 (bas). Représentation 1D en fonction de ℓ_{\perp} de la contribution du flux de chaleur C_q et du taux de cascade calculé en la prenant en compte ($\varepsilon | \nabla \cdot \boldsymbol{q} \neq 0$) et en l'omettant ($\varepsilon | \nabla \cdot \boldsymbol{q} = 0$).

On remarque que la contribution du flux de chaleur (C_q , vert) semble négligeable même aux plus petites échelles. On ne retrouve donc pas la décroissance observée par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 en allant vers les petites échelles et que l'on s'attendait à voir pour $\varepsilon | \nabla \cdot \boldsymbol{q} = 0$.

13.3.2 Effet des tenseurs de pression

Afin de vérifier si une erreur ne s'est pas introduite dans notre calcul, nous avons calculé la loi exacte la plus proche de la loi incompressible utilisée par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021, c'est-à-dire la loi MHD-Hall en n'y prenant en compte que les contributions isotropes des tenseurs de pression ionique et électronique. En effet, les termes dépendant de l'anisotropie de pression, du terme ∇P_e ou des flux de chaleur sont nouveaux dans l'estimation du taux de cascade. Ce taux de cascade initial, ε_{HMHD} , est représenté en orange sur la FIGURE 13.3. On retrouve bien le résultat de FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 avec la décroissance en allant vers les petites échelles. Ayant deux résultats semblant contradictoires, $\varepsilon | \nabla \cdot \boldsymbol{q}$ (bleu) et ε_{HMHD} (orange), j'ai ajouté une à une les nouvelles contributions afin de comprendre ce qu'il se passait.

FIGURE 13.3 – Simu : LF2 (haut) et LF3 (bas). Représentation 1D en fonction de ℓ_{\perp} du taux de transfert non linéaire $\varepsilon | \nabla \cdot \boldsymbol{q} = 0$ (courbe bleue épaisse) calculé en prenant petit à petit en compte les nouvelles contributions. Le but étant de retrouver ce taux de transfert en partant d'une loi MHD-Hall (ε_{HMHD} , orange). Etape 1 (vert) : ajout de l'anisotropie de pression ionique ($C_{\Pi_i \neq 0}$). Etape 2 (rouge) : ajout de la contribution de pression électronique isotrope dans le terme ∇P_e ($C_{p_e \in \partial_t B}$). Etape 3 (cyan) : prise en compte de la contribution complète du tenseur de pression électronique ($C_{P_e \in \partial_t B}$). Le taux de référence est quasiment retrouvé en ajoutant l'anisotropie de pression ionique et la pression isotrope électronique dans le terme ∇P_e .

Tout d'abord, on prend en compte l'anisotropie de pression des ions et des électrons en gardant une loi d'Ohm MHD-Hall. Le résultat correspond à la courbe verte. Le niveau du taux de cascade commence à s'affaisser aux échelles a priori inertielles, et à augmenter près des échelles de forçage. Ces ajouts sont dominés par la pression ionique.

Ensuite, on ajoute la contribution de la pression électronique isotrope associée au terme ∇P_e de la loi d'Ohm, cela donne la courbe rouge. Le résultat est alors très proche du résultat voulu. La contribution de la composante anisotrope des tenseurs de pression électronique dans ce terme (résultat cyan) s'avère faible pour LF2 et influe un peu plus sur le taux de transfert de LF3. Le résultat $\varepsilon | \nabla \cdot \boldsymbol{q}$ observé sur la FIGURE 13.2 est ainsi retrouvé.

Ce résultat semble paradoxal face aux conclusions de F21. Dans cet article, ils concluent en comblant la décroissance du taux de cascade par une estimation d'un taux de dissipation dû à l'amortissement Landau, remontant ainsi le niveau du taux de cascade dans la zone inertielle. De notre côté, on observe plutôt un affaissement du niveau du taux de cascade dû à la prise en compte de l'anisotropie de pression ionique ainsi que du tenseur de pression électronique dans l'équation d'induction. Ces résultats obtenus très récemment semblent venir questionner ou la méthode d'obtention du taux de dissipation par effet Landau utilisée par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021, ou notre interprétation de la contribution du flux de chaleur dans le taux de cascade. Leur compréhension demande une analyse plus fine que ce qui a pu être fait jusqu'à présent.

CONCLUSION

Cette Partie III contient l'état actuel de notre étude numérique de l'effet de l'anisotropie de pression sur la cascade turbulente.

Dans le Chapitre 10, nous présentons le code qui nous a permis d'obtenir les données avec lesquelles l'étude des lois exactes est effectuée, ainsi que notre méthode de posttraitement. Cette dernière reposant sur l'usage de la transformée de Fourier n'est, à notre connaissance, pas utilisée par la communauté.

Dans le Chapitre 11, sont exposées les étapes ayant permis la validation de notre code ainsi qu'une étude de l'apport de notre méthode par rapport à une autre utilisée couramment consistant à décrire l'espace des échelles par un ensemble réduit de vecteurs. En se basant sur nos connaissances du code de simulation et sur le travail analytique de la Partie II, nous y développons une méthode d'obtention de l'erreur numérique s'appliquant sur nos résultats ainsi qu'une analyse approfondie de nos sources d'erreurs.

Ainsi armés de ces outils, nous avons attaqué l'analyse complète des simulations utilisées par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 afin de valider l'apport de notre extension gyrotrope de la théorie des lois exactes et d'affiner notre compréhension de l'effet de l'anisotropie de pression sur la turbulence. Le Chapitre 12 contient une analyse préliminaire des simulations du modèle CGL-MHD-Hall- ∇P_e . Cette étude valide l'apport de notre extension en particulier le poids, dans des simulations quasi-incompressibles, du terme survivant dans la limite incompressible et qui a fait l'objet du Chapitre 8. Cependant, l'interprétation de ces résultats est encore sujette à discussion et nécessitera quelques analyses complémentaires. Le Chapitre 13 contient une ouverture vers l'application de nos résultats analytiques et de nos méthodes dans des simulations plus complexes prenant en compte l'effet Landau-fluide. De telles simulations rapprochent le comportement du système de celui décrit par un modèle cinétique en captant partiellement l'effet Landau linéaire. Les tout premiers résultats questionnent notre interprétation de l'impact du flux de chaleur sur la cascade turbulente, et nécessiteront une analyse plus fine avant de mener à un début d'interprétation.

CONCLUSION GENERALE

Science is not about building a body of known 'facts'. It is a method for asking awkward questions and subjecting them to a reality-check, thus avoiding the human tendency to believe whatever makes us feel good.²

But then science is nothing but a series of questions that lead to more questions.³ **Terry PRATCHETT**, écrivain contemporain mélant humour, satire et mondes fantastiques,

^{2.} Traduction : La science ne consiste pas à établir un ensemble de « faits » connus. C'est une méthode qui permet de poser des questions embarrassantes et de les soumettre à un contrôle de réalité, évitant ainsi la tendance humaine à croire tout ce qui nous fait plaisir. Citation extraite de PRATCHETT, STEWART *et al.* 1999.

^{3.} Traduction : La science n'est jamais qu'une succession de questions conduisant à d'autres questions. Citation extraite de PRATCHETT et BAXTER 2012.

SYNTHÈSE ET PERSPECTIVES

$\mathbf{\alpha}$					•	
~	0	m	m	5	1 10	\mathbf{n}
				~		е.
\sim	\mathbf{U}	***				\mathbf{v}

14.1 Partie I 16	1
14.1 1 alue 1	T
14.2 Partie II	2
14.3 Partie III	3
14.4 Le mot de la fin du début	4

Au cours de ce travail, nous avons questionné l'effet de la pression sur la cascade turbulente à travers l'extension de la théorie des lois exactes de Kolmogorov et la dérivation d'une telle loi pour la cascade d'énergie totale. Deux formats de la loi sont possibles, le format KHM qui ne prend en compte que l'hypothèse d'homogénéité statistique et le format K41 qui implique la validité des hypothèses de stationnarité statistique et de séparation des échelles de forçage et de dissipation. Les échelles où la loi exacte de format K41 est constante sont les échelles inertielles. Dans la partie introductive, nous avons rappelé qu'un plasma peut être décrit tel un fluide grâce à un ensemble infini d'équations dépendant les unes des autres. La pression y apparaît sous la forme d'un tenseur dont l'équation dépend du flux de chaleur. Redéfinir une pression ou un flux de chaleur est une manière de fermer un tel système.

14.1 Partie I

Dans la Partie I, la pression est supposée isotrope. L'utilisation d'une pression isotrope appelle en général une fermeture provenant de la thermodynamique (comme cela est décrit dans le Chapitre 4). Diverses fermetures sont possibles (isotherme, adiabatique, isobare, isochore...) et il en existe une, un peu plus générale : la fermeture polytrope. En fonction de deux paramètres (σ et γ), elle permet de se placer dans le cadre des autres fermetures et de décrire divers plasmas spatiaux. À partir de ces fermetures, on peut estimer une expression de l'énergie interne du système. Ces étapes sont usuellement effectuées avant la dérivation d'une loi exacte associée au système d'équations qui est ainsi fermé.

Dans le Chapitre 5, cette procédure est revisitée. En effet, l'expression explicite de l'énergie interne ou de la pression peut n'être appliquée qu'à la fin, après avoir obtenu une loi exacte que l'on peut ainsi qualifier de générale. La dérivation de cette loi ne nécessite que les équations de continuité, de vitesse, d'induction et d'énergie interne. La seule contrainte imposée sur la fermeture sera donc qu'elle respecte l'équation d'énergie interne. C'est le cas des fermetures thermodynamiques, l'équation d'énergie interne n'étant alors qu'une réécriture du premier principe de la thermodynamique. Afin de répondre à l'objectif initial qui était d'étendre la théorie des lois exactes à des écoulements polytropes, nous avons choisi d'appliquer la fermeture polytrope dans cette loi exacte générale. En supposant que le chauffage effectif du plasma impactera son entropie, nous avons supposé nulle la contribution du flux de chaleur dans la zone inertielle. Cette dernière décrite ainsi est isentrope. Cette hypothèse sur la zone inertielle est décorrélée du comportement thermodynamique global de l'écoulement. Si l'écoulement est adiabatique, la loi exacte obtenue sera valable en dehors de la zone inertielle, mais s'il est isotherme, par exemple, l'hypothèse isentrope s'accompagne du postulat que le système s'adaptera pour réguler la situation à l'extérieur de la zone inertielle.

Dans le Chapitre 6, une application de cette loi isentrope-polytrope est entreprise dans les données relevées par PSP dans le vent solaire. On y compare dans un jeu de données quasi-incompressible et un jeu plus compressible, le comportement des lois incompressible, isentrope-isotherme et isentrope-adiabatique, estimant ainsi le taux de cascade/chauffage dans le vent solaire. Ce taux s'avère dominé par les termes flux qui survivent dans la limite incompressible, dit Yaglom. La contribution de l'énergie interne, seule contribution dépendant de la fermeture calculable avec une seule sonde, reste négligeable. Le choix de fermetures thermodynamiques n'impacte alors pas le taux de chauffage contrairement à la présence de la densité dans les termes Yaglom. Ces observations ont ensuite été confirmées statistiquement dans les données PSP par BRODIANO et al. 2022. Une petite évaluation statistique est aussi menée dans les données relevées par MMS dans la magnétogaine plus compressible : le comportement de ces termes y est similaire. Étudier la cascade dans le vent solaire permet de confronter nos résultats analytiques à un écoulement réel, mais est aussi très contraignant dans l'étude des lois exactes compressibles : la plupart des missions envoyées ne comprenant qu'un seul satellite, il n'est alors pas possible de calculer des dérivées locales dans les données relevées. MMS, constellation de quatre satellites, permet par contre de les estimer et de calculer l'ensemble de la loi exacte. Ce travail n'a pas été entamé. Pour estimer l'énergie interne dans le vent solaire, nous avons utilisé la densité à travers une fermeture thermodynamique. Cette estimation, en accord avec le domaine de validité de la loi exacte appliquée, n'est pas très réaliste. Si l'on voulait être réaliste, il faudrait utiliser la pression issue des fonctions de distribution en vitesse des particules, or la pression dans le vent solaire n'est pas isotrope. Notre loi exacte n'est donc pas suffisante.

14.2 Partie II

Le vent solaire étant magnétisé, toutes les facettes de son comportement sont anisotropes suivant la direction du champ magnétique. La pression, second moment de la fonction de distribution en vitesse des particules, est ainsi impactée. Le vent solaire étant aussi peu collisionnel, cette anisotropie n'est pas homogénéisée par les collisions et la pression doit au minimum être décrite par un tenseur gyrotrope dépendant de deux composantes. La question de l'impact d'une telle propriété sur la cascade turbulente, cœur de cette thèse, est d'abord abordée à travers une extension analytique de la théorie des lois exactes, présentée dans la Partie II.

Comme résumé dans le Chapitre 7, nous avons d'abord appliqué la routine analytique présentée dans le chapitre 5 et dépendant de l'équation d'énergie interne dans les équations dépendant d'une pression tensorielle. Puis nous y avons injecté la fermeture liée au modèle gyrotrope le plus communément utilisé : le modèle CGL. Ce modèle suppose nulle la contribution du flux de chaleur. Le résultat alors obtenu dans la zone inertielle décrit aussi le transfert non-linéaire de l'énergie à l'ensemble des échelles MHD en dehors de la zone inertielle. À travers la composante anisotrope du tenseur de pression, il dépend de l'anisotropie de pression mesurée usuellement par le rapport a_p . Cette contribution pourrait être affectée par le développement d'instabilité de pression telle que l'instabilité firehose ou l'instabilité miroir qui sont permises par l'anisotropie. Ce qui est certain, c'est qu'elle est la signature de l'impact de l'anisotropie de pression sur la cascade turbulente.

En cherchant la limite incompressible de cette contribution, nous nous sommes apperçus qu'un terme parmi les quatre la composant survivait. Il est présenté dans le Chapitre 8. L'anisotropie de pression étant généralement étudiée dans le cadre compressible, ce terme interpelle : gyrotropie et incompressibilité seraient-elles compatibles? Nous proposons alors un modèle auto-cohérent dépendant d'un tenseur de pression gyrotrope, fermé par la contrainte incompressible et l'équation d'énergie interne indépendante du flux de chaleur. L'énergie interne étant définie à partir de la trace du tenseur de pression, cette fermeture semble appropriée pour s'assurer de la compatibilité de ce modèle avec notre loi exacte générale. L'étude linéaire de ce modèle a révélé la présence d'un mode d'Alfvén incompressible affecté par la correction firehose ainsi que d'un nouveau mode lié à la limite incompressible des modes magnétosonores du modèle CGL. La cascade turbulente étant en partie développée par des interactions non-linéaires entre ondes, notre correction gyrotrope de la loi MHD incompressible pourrait être l'incarnation de ces interactions. De plus, la résilience de ce terme dans la limite incompressible semble impliquer que la correction majeure dans le vent solaire, quasi-incompressible, n'est peut-être pas la compressibilité mais l'anisotropie de pression.

Dans le Chapitre 9, nous sortons du cadre MHD en vérifiant le comportement des différents termes de la loi d'Ohm face à l'utilisation de tenseurs de pression. Le terme Hall n'en dépendant pas, sa contribution à la loi exacte ne varie pas entre le cas d'une pression isotrope ou tensorielle. Par contre le terme ∇P_e , en fonction de la forme du tenseur de pression électronique, pourrait influer le transfert non-linéaire, et cela même dans la limite incompressible. Nous y dérivons aussi une loi exacte générale bi-fluide dépendant des ions et des électrons et valable dans divers régimes : MHD et EMHD. Ces extensions permettent la description du transfert non-linéaire dans la grande majorité des gammes d'échelles mesurables. Notons tout de même que la formulation de la loi exacte ainsi obtenue est intrinsèque à la fonction de corrélation d'énergie totale choisie au début le calcul. L'analyse des contributions non gyrotropes du tenseur de pression n'a pas été abordée, mais notre loi générale dépendant d'une pression tensorielle semble tout à fait compatible avec leur étude (tant que le tenseur de pression reste symétrique).

14.3 Partie III

La description de la cascade turbulente d'énergie totale, étendue à ce qu'il semble être son maximum (la contribution du flux de chaleur a été dérivée dans le Chapitre 5), peut maintenant nous permettre d'étudier dans son intégralité la cascade d'énergie présente dans des simulations LF/CGL-MHD-Hall- ∇P_e et en particulier l'effet de l'anisotropie de pression. Cette étude entamée et présentant des premiers résultats prometteurs est décrite dans la Partie III.

Le Chapitre 10 présente le code versatile permettant de simuler divers modèles dépendant d'une pression gyrotrope tel que le modèle CGL ou le modèle LF. Ce code peut être utilisé afin de répondre aux problématiques concernant la turbulence grâce à l'inclusion d'un forçage et de l'hyperdissipation, originellement utilisée pour lisser les fort gradients pouvant induire des instabilités numériques, mais qui s'avère être un canal dissipatif performant à petites échelles dans le cadre des études de turbulence. Y sont aussi présentés notre code de post-traitement et les choix imposés afin de visualiser les résultats. La particularité principale de notre code de post-traitement est qu'il repose sur le lien entre
fonction de corrélation et produit de convolution. Cette propriété mathématique nous permet d'effectuer le calcul des termes de la loi exacte dans l'espace de Fourier, et nous donne la quantité voulue pour l'ensemble des vecteurs d'échelle accessibles en fonction de la taille et de la résolution de la simulation traitée. Le résultat final, tridimensionnel et régulier, laisse ainsi libre les choix de traitements supplémentaires (dérivation, etc.) et de réduction (carte bidimensionnelle, filtrage angulaire et moyenne pour obtenir une visualisation 1D, etc.) afin de visualiser les comportements turbulents qui nous intéressent.

Une campagne de validation de notre implémentation est présenté dans le Chapitre 11 à travers les comparaisons de résultats de diverses lois exactes et une estimation de l'erreur numérique sur le taux de cascade totale, erreur intrinsèque à nos simulations. Cette erreur est obtenue en calculant la forme KHM de nos lois exactes, elle prend donc en compte les spécificités du code initial (forçage et hyperdissipation) et son estimation n'est permise que grâce à l'extension de la théorie des lois exactes présentée dans les Parties I et II. Nous intéresser au comportement des termes de forçage et d'hyperdissipation nous a permis de nous rendre compte des limites mathématiques de cette théorie reposant sur des fonctions de corrélation d'ordre 2. En effet, le comportement de l'hyperdissipation par exemple n'est pas calqué sur sa conception dans l'espace spectral, mais sur des saturations mathématiques dont les tendances dans le cas isotrope sont estimées dans l'Annexe A.

Ayant ainsi validé et déterminé les limitations de notre code, nous avons entamé l'étude des simulations dont certaines sont utilisées par FERRAND, SAHRAOUI, LAVEDER *et al.* 2021 du modèle CGL. Cette étude fait l'objet du Chapitre 12. Le comportement des premiers résultats étant particulier, il a engendré un certain nombre de questions qui ont motivé le lancement de nouvelles simulations. L'interprétation fine de leurs résultats n'est pas encore aboutie. Cependant, il semblerait que dans ces simulations quasi-incompressibles, le terme survivant à la limite incompressible domine les termes compressibles. Cela irait dans le sens de la conjecture proposée dans la Partie II : dans un plasma quasi-incompressible (par exemple le vent solaire), la correction de l'anisotropie de pression primerait sur la correction compressible de la loi exacte et de l'estimation du taux de chauffage turbulent. Une étude dans les données de MMS ou de la mission HELIOSWARM qui sera déployée dans le vent solaire en 2028 pourrait permettre de valider ce résultat, notre contribution dépendant de dérivées locales. En attendant, nos résultats analytiques pourraient aussi permettre de mieux comprendre la cascade turbulente dans les modèles LF tel qu'ébauché dans le Chapitre 13.

14.4 Le mot de la fin du début

Finalement, cette thèse revisite diverses méthodes liées à l'étude de la cascade turbulente telle que la méthode d'obtention des lois exactes d'énergie totale ou leur implémentation en tant que post-traitement de simulations turbulentes. Elle apporte aussi un cadre d'étude élargie de la cascade d'énergie totale grâce à une extension généraliste de la théorie des lois exactes, un nouveau modèle incompressible gyrotrope ainsi qu'une correction dépendant des anisotropies de pression. Cette correction pourrait servir de base à l'étude du lien entre les instabilités du pression et la turbulence, et semble être plus importante dans la description d'un écoulement quasi-incompressible que la correction donnée par la compression.

Ces apports pourront servir de base pour des études plus approfondies de la turbulence dans les plasmas spatiaux. Jusqu'à présent, dans les données relevées dans le vent solaire par exemple, on n'utilise pas la pression pour calculer les lois exactes. On ne prend en compte que la densité, la vitesse et le champ magnétique et on calcule une pression équivalente grâce à une fermeture, comme effectué dans le Chapitre 6. La loi exacte non fermée dépendant des tenseurs de pression nous offre maintenant plus de liberté. Pour ce qui est de la correction dépendant du flux de chaleur, elle sera, pour l'instant, difficile à calculer, l'extraction du flux de chaleur des données étant limitée à cause des précisions des coupes de Faraday utilisées. Pour le calcul de termes sources, dont notre terme correctif dominant, HELIOSWARM (9 sondes) pourrait permettre, dans un futur proche, de les étudier plus précisément dans le vent solaire. Cependant, une amélioration de la précision des techniques de calcul des gradients locaux sera sûrement nécessaire.

Jusqu'à présent, ce travail a fait l'objet de deux articles.

- Le premier, SIMON et SAHRAOUI 2021, résume l'obtention de l'extension de la théorie des lois exactes dépendant d'une pression isotrope dans le cadre d'une description isentrope de la zone inertielle et présente les résultats de l'étude de cas effectuée avec les données de PSP.
- Le second, SIMON et SAHRAOUI 2022, présente l'extension analytique dépendant de la compression et d'une pression tensorielle avec l'application au modèle CGL et sa limite incompressible.

Ils sont insérés à la fin de cette thèse. D'autres articles sont en préparation sur le modèle incompressible gyrotrope, l'étude des simulations et les autres extensions abordées dans cette thèse.

ANNEXES

ANNEXE A

EXPLICATION MATHÉMATIQUE ET INTERPRÉTATION DES TERMES DES LOIS KHM

Sommaire

A.1	Si A correspond à une distribution de Dirac dans l'espace de
	Fourier
A.2	Si $\Re[a_{m k}b_{m k}^*]$ est proportionnelle à une puissance de l'amplitude
	de k

En s'inspirant de la démonstration mathématique de la convergence des fonctions de structure d'ordre 2 proposée par [CHO et LAZARIAN 2009], j'ai démontré le comportement des fonctions de corrélation en fonction des tendances des spectres des quantités impliquées. La démonstration proposée ici est un résumé.

Soit A et B deux quantités quelconques dépendant de \mathbf{x} . Soit a_k (resp. b_k) la transformée de Fourier de A (resp. B) évaluée en k. Pour faciliter la lecture, on supposera les moyennes effectuées sur un volume V = 1 et les intégrales triples ne seront notées qu'avec un seul $\int \delta$ est, dans cette Annexe, la distribution de Dirac.

La fonction de corrélation $\langle A(\mathbf{x} + \boldsymbol{\ell}) \cdot B(\mathbf{x}) \rangle$ est d'abord explicitée sous forme d'intégrale. Puis, les transformées de Fourier de A et B sont injectées. Quelques manipulations des différentes intégrales sont nécessaires pour faire apparaître $\delta(\boldsymbol{k} + \boldsymbol{k'})$ qui nous permet de remplacer $\boldsymbol{k'}$ par $-\boldsymbol{k}$:

$$\langle A(\mathbf{x}+\boldsymbol{\ell})\cdot B(\mathbf{x})\rangle = \int A(\mathbf{x}+\boldsymbol{\ell})\cdot B(\mathbf{x})\,d\mathbf{x}$$
 (A.1)

$$= \int \left(\int a_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}} e^{i\mathbf{k}\cdot\mathbf{k}} d\mathbf{k} \right) \left(\int b_{\mathbf{k}'} e^{i\mathbf{k}'\cdot\mathbf{x}} d\mathbf{k}' \right) d\mathbf{x}$$
(A.2)

$$= \int \int a_{\mathbf{k}} e^{i\mathbf{k}\cdot\boldsymbol{\ell}} b_{\mathbf{k}'} \left(\int e^{i(\mathbf{k}+\mathbf{k}')\cdot\boldsymbol{x}} d\mathbf{x} \right) d\mathbf{k} d\mathbf{k}'$$
(A.3)

$$\propto \int \int a_{\mathbf{k}} b_{\mathbf{k}'} e^{i\mathbf{k}\cdot\boldsymbol{\ell}} \delta\left(\mathbf{k}+\mathbf{k'}\right) d\mathbf{k} d\mathbf{k'} \propto \int a_{\mathbf{k}} b_{\mathbf{k}}^* e^{i\mathbf{k}\cdot\boldsymbol{\ell}} d\mathbf{k}.$$
(A.4)

Ensuite, la fonction de corrélation symétrique \mathcal{R} est construite en notant $\Re[Z]$ la partie réelle de Z. Ainsi :

=

$$\mathcal{R} = \langle A(\mathbf{x} + \boldsymbol{\ell}) \cdot B(\mathbf{x}) + A(\mathbf{x}) \cdot B(\mathbf{x} + \boldsymbol{\ell}) \rangle$$
(A.5)

$$\propto \int \left(a_{\boldsymbol{k}}b_{\boldsymbol{k}}^* + a_{\boldsymbol{k}}^*b_{\boldsymbol{k}}\right) \left(e^{i\boldsymbol{k}\cdot\boldsymbol{\ell}} + e^{-i\boldsymbol{k}\cdot\boldsymbol{\ell}}\right) d\mathbf{k} \propto \int \Re[a_{\boldsymbol{k}}b_{\boldsymbol{k}}^*] \cos\left(\boldsymbol{k}\cdot\boldsymbol{\ell}\right) d\mathbf{k}.$$
(A.6)

Pour une fonction de corrélation incrémentale, notée \mathcal{S} , l'expression finale sera légère-

ment différente :

$$\mathcal{S} = \langle (A(\mathbf{x} + \boldsymbol{\ell}) - A(\mathbf{x})) \cdot (B(\mathbf{x} + \boldsymbol{\ell}) - B(\mathbf{x})) \rangle$$
(A.7)

$$= \langle 2A(\mathbf{x}) \cdot B(\mathbf{x}) - (A(\mathbf{x} + \boldsymbol{\ell}) \cdot B(\mathbf{x}) + A(\mathbf{x}) \cdot B(\mathbf{x} + \boldsymbol{\ell})) \rangle$$
(A.8)

$$\propto \int \left(a_{\boldsymbol{k}}b_{\boldsymbol{k}}^* + a_{\boldsymbol{k}}^*b_{\boldsymbol{k}}\right) \left(1 - e^{i\boldsymbol{k}\cdot\boldsymbol{\ell}} + e^{-i\boldsymbol{k}\cdot\boldsymbol{\ell}}\right) d\mathbf{k} \propto \int \Re[a_{\boldsymbol{k}}b_{\boldsymbol{k}}^*] \left(1 - \cos\left(\boldsymbol{k}\cdot\boldsymbol{\ell}\right)\right) d\mathbf{k}.$$
(A.9)

Maintenant, nous allons explorer la convergence de ces intégrales pour quelques formes de spectres de A et B rappelant les comportements fréquentiels des termes de forçage et de dissipation.

A.1 Si A correspond à une distribution de Dirac dans l'espace de Fourier

On suppose $a \propto \delta(\mathbf{k} - \mathbf{k}_n)$. Ce cas correspond au comportement du forçage utilisé dans la Partie III. Dans ce cas :

$$\mathcal{R} = \langle A(\mathbf{x} + \boldsymbol{\ell}) \cdot B(\mathbf{x}) + A(\mathbf{x}) \cdot B(\mathbf{x} + \boldsymbol{\ell}) \rangle \propto \Re[b_{\boldsymbol{k}_{\boldsymbol{n}}}] \cos(\boldsymbol{k}_{\boldsymbol{n}} \cdot \boldsymbol{\ell}), \quad (A.10)$$
$$\mathcal{S} = \langle (A(\mathbf{x} + \boldsymbol{\ell}) - A(\mathbf{x})) \cdot (B(\mathbf{x} + \boldsymbol{\ell}) - B(\mathbf{x})) \rangle \propto \Re[b_{\boldsymbol{k}_{\boldsymbol{n}}}] (1 - \cos(\boldsymbol{k}_{\boldsymbol{n}} \cdot \boldsymbol{\ell})). \quad (A.11)$$

Aux petites échelles telles que $\ell \ll 1/k_n$ et en représentation logarithmique, \mathcal{R} sera donc constant puisque $\cos(k_n \cdot \ell) \sim 1$ et que $\Re[b_{k_n}]$ est indépendant de ℓ . On retrouve le comportement de ε_F (voir Chapitre 11). Pour ce qui est de \mathcal{S} , $(1 - \cos(k_n \cdot \ell)) \sim (k_n \cdot \ell)^2$ et on retrouve la pente de facteur 2 observée pour \mathcal{E}_F en représentation logarithmique.

A.2 Si $\Re[a_k b_k^*]$ est proportionnelle à une puissance de l'amplitude de k

On suppose l'hypothèse d'isotropie pour simplifier le calcul¹ et on explicite les quantités vectorielles dans un système de coordonnées sphériques, $\{k, \phi, \theta\}$, orienté tel que θ soit l'angle entre \mathbf{k} et $\boldsymbol{\ell}$. Alors $d\mathbf{k} = k^2 \sin \theta dk d\theta d\phi$ avec $\theta \in [0, \pi]$ et $\phi \in [0, 2\pi]$, et $\mathbf{k} \cdot \boldsymbol{\ell} = k \ell \cos \theta$.

On note aussi $k^2 \Re[a_k b_k^*] \propto k^{-m}$. Ce cas est le plus commun dans les études de turbulence. Par exemple, la phénoménologie de Kolmogorov indique un spectre d'énergie cinétique, $k^2 v_k^2$, proportionnel à $k^{-5/3}$. Pour ce qui est de l'hyperdissipation $\Delta^4 \sim k^8$. Dans [FERRAND 2021], un spectre en $k^8 v_k^2 \sim k^6$ est indiqué pour l'hyperdissipation cinétique incompressible. Dans le cas compressible, on supposera que les spectres liés à l'hyperdissipation ont une pente telle que $m \ll -1$.

^{1.} Dans le cas axisymétrique, il faut gérer les directions parallèle et perpendiculaire. Le calcul se complique mais les tendances resteront similaires.

Avec ces hypothèses, on obtient :

$$\mathcal{R} \propto \int_{k} \int_{0}^{\pi} k^{-m} \cos\left(k\ell \cos\theta\right) \sin\left(\theta\right) dkd\theta \propto \int_{k} \int_{0}^{\pi} k^{-m} \frac{\sin\left(k\ell\right)}{k\ell} dk$$

$$(\text{par substitution } u = k\ell) \propto \ell^{m-1} \int_{0}^{+\infty} u^{-m-1} \sin\left(u\right) du, \quad (A.12)$$

$$\mathcal{S} \propto \int_{k} \int_{0}^{\pi} k^{-m} \left(1 - \cos\left(k\ell \cos\theta\right)\right) \sin\left(\theta\right) dkd\theta \propto \ell^{m-1} \int_{0}^{+\infty} u^{-m} \left(1 - \frac{\sin\left(u\right)}{u}\right) du.$$

$$(A.13)$$

Ensuite, il est nécessaire de regarder la convergence de $K = \int_0^{+\infty} u^{-m-1} \sin(u) du$ afin d'estimer une tendance en ℓ . Si $m \in]-1, 1[$, cette intégrale peut s'écrire comme une intégrale généralisée de Fresnel convergente et constante en ℓ . Pour $m \in]-\infty, -1[$ et $m \in]1, +\infty[$, on peut obtenir une expression de récurrence en intégrant par partie K puis estimer la convergence des différents termes. Ainsi, si $m \in]-\infty, -1[$, $K \propto \ell^{-m-1}$ et si $m \in]1, +\infty[$, $K \propto \ell^{-m+1}$. Finalement :

$$\mathcal{R} = \langle A(\mathbf{x} + \boldsymbol{\ell}) \cdot B(\mathbf{x}) + A(\mathbf{x}) \cdot B(\mathbf{x} + \boldsymbol{\ell}) \rangle \propto \begin{cases} \ell^{-2} & \text{si } m \in] - \infty, -1[\\ \ell^{m-1} & \text{si } m \in] -1, 1[\\ 1 & \text{si } m \in] 1, +\infty[\end{cases}$$

$$(A.14)$$

$$\mathcal{S} = \langle (A(\mathbf{x} + \boldsymbol{\ell}) - A(\mathbf{x})) \cdot (B(\mathbf{x} + \boldsymbol{\ell}) - B(\mathbf{x})) \rangle \propto \begin{cases} 1 & \text{si } m \in] -\infty, 1[\\ \ell^{m-1} & \text{si } m \in] 1, 3[\\ \ell^{2} & \text{si } m \in] 3, +\infty[\end{cases}$$

$$(A.15)$$

FIGURE A.1 – Lignes pleines colorées : fonction de corrélation suivent la loi d'échelle spectrale de puissance m. Lignes discontinues colorées : tendance attendue pour chaque m si n'y pas de saturation mathématique. Lignes fines noires : tendance des saturations.

Ces tendances sont représentées sur la figure FIGURE A.1a pour \mathcal{R} et FIGURE A.1b pour \mathcal{S} . On retrouve aussi la prédiction de CHO et LAZARIAN 2009 pour les fonctions de corrélation de type \mathcal{S} avec A = B. Cette prédiction est étendue ici à $A \neq B$ et m < 0. On

FIGURE A.2 – Équivalence entre S (lignes épaisses) et $2 < A \cdot B > -\mathcal{R}$ (lignes fines). Couleurs : *m*. Lignes discontinues : saturations.

s'attend donc à retrouver ce genre de saturations mathématiques dans nos simulations pour l'hyperdissipation qui se comporte tel que $m \ll -1$. L'équivalence nécessaire pour le passage de \mathcal{R} à \mathcal{S} en soustrayant à \mathcal{R} sa valeur en $\ell = 0$ pour obtenir \mathcal{S} est montrée sur la figure FIGURE A.2.

Cette démonstration montre que le lien entre tendance spectrale et fonction de corrélation n'est pas évident. Quelques pincettes sont donc à prendre lorsque l'on veut interpréter les résultats des lois KHM, en particulier à travers l'hypothèse de séparation d'échelle. Ce n'est pas parce que le forçage n'est supposé agir qu'à grande échelle que sa contribution, ε_F , à la loi KHM tendra vers 0 aux autres échelles. Elle restera en effet constante. De même, en fonction de sa forme, incrémentale ou non, la contribution dissipative sera ou constante ou de pente 2 ou -2. FERRAND 2021 a proposé quelques méthodes afin de contourner ce problème dans le cas incompressible mais leur validité est questionnable dans le cas compressible. Comme on a pu le remarquer, une méthode simple peut aider à l'interprétation de ces contributions : regarder conjointement les lois KHM qui sont incrémentales et celles qui ne le sont pas. Si les fonctions de corrélation permettant de les obtenir sont bien choisies, il est très facile de passer de l'une à l'autre en soustrayant les valeurs obtenues en $\ell = 0$. ANNEXE B

VALIDATION ET COMPARAISON DES LOIS EXACTES AVEC PRESSION ISOTROPE

Sommaire

B.1	Comparaison	\mathbf{des}	formulations	de	la	loi	MHD	incompressible	173
-----	-------------	----------------	--------------	----	----	-----	-----	----------------	-----

- B.2 Résultats compressibles avec pression isotrope 174
- B.3 Comparaison des formulations dérivées dans le Chapitre 5 . . 176

B.1 Comparaison des formulations de la loi MHD incompressible

On propose ici une validation de notre code de post-traitement à travers une comparaison des formulations de la loi PP98.

FIGURE B.1 – Triptyques de la différence $\varepsilon_{PP98} - \varepsilon_{BG17}$ (courbes vertes et carte 2D) calculée dans CGL1. Courbes 1D bleues : ε_{PP98} . Courbes 1D oranges : ε_{BG17} (coïncidant avec les bleues).

Elle peut en effet s'écrire via une autre formulation ne dépendant pas de ∇_{ℓ} mais dépendant de la vorticité $\boldsymbol{w} = \nabla \times \boldsymbol{v}$. Cette loi a été dérivée par BANERJEE et KRITSUK 2017. Le taux de cascade associé sera noté ε_{BG17} , et s'écrit, sous un format non normalisé et avec nos notations, :

$$\varepsilon_{BG17} = \frac{1}{2} \left\langle \delta \left(\boldsymbol{v} \times \boldsymbol{w} + \sqrt{\mu_0} \boldsymbol{j} \times \boldsymbol{v}_{\boldsymbol{A}} \right) \cdot \delta \boldsymbol{v} + \sqrt{\mu_0} \delta \left(\boldsymbol{v} \times \boldsymbol{v}_{\boldsymbol{A}} \right) \cdot \delta \boldsymbol{j} \right\rangle. \tag{B.1}$$

Sur la FIGURE B.1, est représentée la différence $\varepsilon_{PP98} - \varepsilon_{BG17}$ suivant les différents modes de représentation retenus au Chapitre 10. Cette figure nous indique que, quelle que soit l'échelle ℓ , $\varepsilon_{PP98} - \varepsilon_{BG17}$ est de l'ordre de 10^{-7} maximum pour CGL1 et en moyenne de l'ordre de 2% du niveau moyen de ε_{PP98} qui est de l'ordre de 5×10^{-6} . On obtient ainsi une estimation relative de l'erreur effectuée sur ε_{PP98} .

Cette erreur pourrait provenir de la forme analytique de la dérivation, locale (BG17) à travers la vorticité et la densité de courant ou en échelle (PP98) à travers la divergence en ℓ , car elle n'est pas appliquée au même stade du schéma numérique ni avec les mêmes quantités. De plus, le passage analytique d'une forme à l'autre, n'est pas direct, la contrainte incompressible doit être utilisée.

B.2 Résultats compressibles avec pression isotrope

Ici, nous regardons avec CGL1, le comportement du taux de cascade compressible calculé en supposant une pression isotrope afin de comparer le résultat de la loi (5.9) aux comportements observés par [ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK *et al.* 2018] (A18) dans le cas isotherme.

Dans la simulation CGL1, trois pressions sont disponibles, les pressions ioniques parallèle, $p_{\parallel i}$, et perpendiculaire, $p_{\perp i}$, et la pression électronique supposée isotherme, $p_e = \rho$. Nous calculerons la pression isotrope à partir de la formule $p = \frac{1}{3} (2p_{\perp i} + p_{\parallel i}) + p_e$ et l'énergie interne¹ à partir de $\rho u = \frac{1}{2} (2p_{\perp i} + p_{\parallel i}) + \rho \ln \rho$. On s'attend à ce que le taux de cascade, noté ε_{f_1} , soit constant aux échelles MHD, la loi exacte étant obtenue dans le cadre d'une loi d'Ohm idéale valable si $\ell \gg d_i$.

Sur la FIGURE B.2, sont représentés les profils parallèles et perpendiculaires de ε_{PP98} (bleu), ε_{f_1} (orange), le total des termes flux écrits tels des fonctions de structures $\nabla_{\ell} \cdot \mathcal{F}_{f_1} = \nabla_{\ell} \cdot [\mathcal{F}_1 + \mathcal{F}_2]$ (vert et représentation 2D de gauche), les contributions $\nabla_{\ell} \cdot \mathcal{F}_1$ (violet) et $\nabla_{\ell} \cdot \mathcal{F}_2$ (marron), et \mathcal{S}_{f_1} (rouge, et représentation 2D de droite) la somme des autres termes (nommés sources, hybrides et β par A18). \mathcal{F}_1 et \mathcal{F}_2 sont définis tels que :

$$\mathcal{F}_{1} = -\frac{1}{4} \left\langle \left(\delta\left(\rho \boldsymbol{v}\right) \cdot \delta \boldsymbol{v} + \delta\left(\rho \boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \right) \delta \boldsymbol{v} - \left(\delta\left(\rho \boldsymbol{v}_{\boldsymbol{A}}\right) \cdot \delta \boldsymbol{v} + \delta\left(\rho \boldsymbol{v}\right) \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} \right) \delta \boldsymbol{v}_{\boldsymbol{A}} \right\rangle, \quad (B.2)$$

$$\mathcal{F}_2 = -\frac{\rho_0}{4} \left\langle \delta \rho \delta u \delta \boldsymbol{v} \right\rangle, \tag{B.3}$$

en prenant en compte le facteur de normalisation $\frac{\beta_0}{2}$ mentionné dans la section 10.1 (il doit aussi être pris en compte dans S_{f_1}).

1. L'énergie interne des ions est l'énergie interne gyrotrope : $\rho_i u_i = \frac{1}{2} \left(2p_{\perp i} + p_{\parallel i} \right)$. L'énergie interne des électrons s'obtient à partir du premier principe de la thermodynamique (cas isentrope-isotherme, voir Chapitre 4) appliqué aux quantités électroniques et en supposant $p_e = \rho = \rho_i : u_e = \frac{p_e}{\rho_e} \ln \left(\frac{\rho_e}{\rho_{e0}}\right) = \frac{m_i}{m_e} \ln \left(\frac{\rho}{\rho_0}\right)$ avec $\rho_0 = 1$ (initialisation des simulations).

FIGURE B.2 – Panel d'étude de ε_{f_1} dans CGL1. Première ligne de gauche à droite : Représentation 2D de $\nabla_{\ell} \cdot \mathcal{F}_{f_1}$ et \mathcal{S}_{f_1} . Deuxième ligne : Représentation 1D en fonction de ℓ_{\perp}/d_i . Troisième ligne : Représentation 1D en fonction de ℓ_{\parallel}/d_i . Sur les représentations 1D : ε_{PP98} (bleu), ε_{f_1} (orange), $\nabla_{\ell} \cdot \mathcal{F}_{f_1}$ (vert), \mathcal{S}_{f_1} (rouge), $\nabla_{\ell} \cdot \mathcal{F}_1$ (violet) et $\nabla_{\ell} \cdot \mathcal{F}_2$ (marron).

 ε_{PP98} , ε_{f_1} , $\nabla_{\ell} \cdot \mathcal{F}_{f_1}$, $\nabla_{\ell} \cdot \mathcal{F}_1$ sont superposés. La différence entre ε_{PP98} et ε_{f_1} est de l'ordre de 10% comme l'a indiqué FERRAND, SAHRAOUI, LAVEDER *et al.* 2021. La contribution provenant de $\nabla_{\ell} \cdot \mathcal{F}_2$ s'accroît vers les petites échelles mais reste inférieure à 10% du taux de cascade. Les autres contributions résumées par \mathcal{S}_{f_1} , correspondent à environ 1% du taux de cascade. On retrouve donc le comportement observé par A18 : un taux de cascade ε_{f_1} dominé par le terme flux $\nabla_{\ell} \cdot \mathcal{F}_1$ qui correspond aux termes survivant dans la limite incompressible, tandis que les termes résumés par \mathcal{S}_{f_1} se compensent pour devenir négligeables.

Comparaison des formulations dérivées dans le Cha-**B.3** pitre 5

Dans le Chapitre 5, diverses formulations des termes dépendant de la pression ont été dérivées. Elles s'obtiennent à partir de (5.14), (5.15) et (5.20). On compare ici la formulation f2 avec la formulation f1 afin de vérifier si les observations de A18 y resteront valables. Dans la formulation f2, on a en effet extrait un terme flux dependant de la pression totale des termes sources et hybrides présents dans f1. Cette étude pourra servir à une future application observationnelle d'une loi formulée avec f2 : le nouveau terme flux est-il négligeable devant les autres termes? ou contient-il la majeure partie de la contribution de pression totale isotrope? Cette dernière possibilité permettrait de corriger les résultats appliqués dans des données relevées par des missions constituées d'une seule sonde (ex : PSP). Une autre possibilité serait qu'il domine la contribution de pression totale et que les termes sources l'accompagnant viennent le compenser. Dans ce cas, il ne faudrait surtout pas l'utiliser dans les données issues d'une seule sonde. La contribution de pression ε_p (5.14) n'étant pas liée analytiquement à celle de pression magnétique ε_{pm} (5.15), on sépare leur analyse. Les deux simulations utilisées ici sont CGL1 et CGL3.

Reformulation des termes de pression magnétique entre f1 et f2 via l'équation (5.15): Les termes composant ε_{pm} (5.15) correspondent dans f1 à des termes sources, hybrides et β -dépendant d'après les dénominations de A18, et dans f2, à un terme flux et des termes sources. Ils seront découpés suivant :

- f1 : la contribution hybride $\mathcal{H}_{f_1}^{pm} = -\frac{1}{4}\nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) p_m \boldsymbol{v'} \left(1 + \frac{\rho}{\rho'}\right) p'_m \boldsymbol{v} \right\rangle$ f1 : la contribution d'énergie magnétique présente dans les termes sources et hy-
- brides de A18 :

$$S_{f_{1}}^{pm} = -\frac{1}{4} \left\langle \left(\rho \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} - \frac{1}{2} \left(\rho' + \rho \right) \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \right) \nabla' \cdot \boldsymbol{v}' \right\rangle \\ + \frac{1}{4} \left\langle \left(\rho' \boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} + \frac{1}{2} \left(\rho' + \rho \right) \boldsymbol{v}_{\boldsymbol{A}}' \cdot \boldsymbol{v}_{\boldsymbol{A}} \right) \nabla \cdot \boldsymbol{v} \right\rangle$$

- f1 : la contribution β -dépendante $\mathcal{M}_{f_1}^{pm} = \frac{1}{4} \left\langle \rho \frac{p'_m}{\rho'} \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} + \rho' \frac{p_m}{\rho} \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} \right\rangle$ - f2 : le terme flux $\nabla_{\boldsymbol{\ell}} \cdot \mathcal{F}_{f_2}^{pm} = \frac{1}{4} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta \rho \delta \frac{p_m}{\rho} \delta \boldsymbol{v} \right\rangle$

- f2 : les termes sources

$$S_{f_{2}}^{pm} = -\frac{1}{4} \left\langle \left(\delta \rho \frac{p_{m}}{\rho} - \rho \delta \left(\frac{p_{m}}{\rho} \right) \right) \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} - \left(\delta \rho \frac{p'_{m}}{\rho'} - \rho' \delta \left(\frac{p_{m}}{\rho} \right) \right) \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} \right\rangle - \frac{1}{8} \left\langle \left(\rho \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v}_{\boldsymbol{A}} \cdot \delta \left(\rho \boldsymbol{v}_{\boldsymbol{A}} \right) \right) \nabla' \cdot \boldsymbol{v}' - \left(\rho' \boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta \boldsymbol{v}_{\boldsymbol{A}} - \boldsymbol{v}_{\boldsymbol{A}}' \cdot \delta \left(\rho \boldsymbol{v}_{\boldsymbol{A}} \right) \right) \nabla \cdot \boldsymbol{v} \right\rangle$$

 $\mathcal{M}_{f_1}^{pm}$ contient la contribution qui peut être reformulée en appliquant le premier principe thermodynamique (4.30) isentrope. Cette réécriture est donnée dans l'équation (5.10) et fait apparaître le paramètre $\beta = p/p_m$ du plasma. Sachant que p dépend des pressions ioniques parallèle et perpendiculaire, la validité du premier principe thermodynamique est remise en cause. On n'explicitera donc pas β dans $\mathcal{M}_{f_1}^{pm}$.

FIGURE B.3 – Panel d'étude de la reformulation de la contribution de pression magnétique ε_p (noir) dans CGL1 (gauche) et CGL3 (droite). Bleu : Décomposition des termes de f1. Epais : contribution hybride $\mathcal{H}_{f_1}^p$. Moyen : contribution d'énergie magnétique $\mathcal{S}_{f_1}^p$. Fin : contribution β -dépendante $\mathcal{M}_{f_1}^{p'}$. Vert : Décomposition des termes de f2. Epais : terme flux $\nabla_{\ell} \cdot \mathcal{F}_{f_2}^p$. Fin : termes sources $\mathcal{S}_{f_2}^p$. Représentation : 1D fonction de ℓ_{\perp} .

Pour les deux simulations, la FIGURE B.3 montre que la décomposition (courbes bleues) en termes source, hybride et β -dépendant de la formulation f1 inspirée de A18, reflète moins bien la contribution de pression magnétique du taux de cascade que le découpage (courbes vertes) en termes flux et sources de f2. À l'exception de $S_{f_1}^{pm}$ (dans le cas CGL1), ils sont loin de refléter individuellement ε_{pm} . A contrario, $S_{f_2}^{pm}$ reflète efficacement les variations et le signe de ε_{pm} pour les deux simulations sauf pour les petites échelles de CGL1 où $\nabla_{\ell} \cdot \mathcal{F}_{f_2}^{pm}$ domine. Notre décomposition semble donc plus adaptée pour la contribution de pression magnétique, cependant cela provient du caractère négligeable du nouveau terme flux (en général de l'ordre de 10 % de ε_{pm})

Reformulation des termes de pression entre f1 et f2 via (5.14) : Une étude similaire peut être effectuée pour les termes composant ε_p (5.14). Ils seront découpés suivant :

- f1 : la contribution hybride $\mathcal{H}_{f_1}^p = -\frac{1}{4} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) p \boldsymbol{v}' \left(1 + \frac{\rho}{\rho'}\right) p' \boldsymbol{v} \right\rangle$ f1 : la contribution de type source qui ne devient hybride que dans le cas isotherme, car p/ρ est alors constant : $\mathcal{S}_{f_1}^p = \frac{1}{2} \left\langle \rho \frac{p'}{\rho'} \nabla \cdot \boldsymbol{v}' + \rho' \frac{p}{\rho} \nabla \cdot \boldsymbol{v} \right\rangle$
- f1 : la contribution qui peut être réécrite en appliquant le premier principe thermodynamique (5.10) $\mathcal{M}_{f_1}^p = -\frac{1}{4} \left\langle \rho_{\rho'}^{\underline{p}'} \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} + \rho' \frac{p}{\rho} \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} \right\rangle$

- f2 : le terme flux
$$\nabla_{\boldsymbol{\ell}} \cdot \mathcal{F}_{f_2}^p = \frac{1}{4} \nabla_{\boldsymbol{\ell}} \cdot \left\langle \delta \rho \delta_{\rho}^{\underline{p}} \delta \boldsymbol{v} \right\rangle$$

- f2 : les termes sources
$$\mathcal{S}_{f_2}^{pm} = -\frac{1}{2} \left\langle \rho' \delta\left(\frac{p}{\rho}\right) \nabla \cdot \boldsymbol{v} - \rho \delta\left(\frac{p}{\rho}\right) \nabla' \cdot \boldsymbol{v}' \right\rangle$$

 $-\frac{1}{4} \left\langle \left(\delta \rho \frac{p_*}{\rho} - \rho \delta\left(\frac{p}{\rho}\right)\right) \boldsymbol{v} \cdot \frac{\nabla' \rho'}{\rho'} - \left(\delta \rho \frac{p'}{\rho'} - \rho' \delta\left(\frac{p_*}{\rho}\right)\right) \boldsymbol{v}' \cdot \frac{\nabla \rho}{\rho} \right\rangle$

Les observations effectuées pour la contribution de pression magnétique au taux de cascade s'appliquent à la contribution de pression représentée sur la FIGURE B.4. La

FIGURE B.4 – Panel d'étude de la reformulation de la contribution de pression ε_p (noir) dans CGL1 (gauche) et CGL3 (droite).

Bleu : Décomposition des termes de f1. Epais : contribution hybride $\mathcal{H}_{f_1}^p$. Moyen : contribution de type source qui ne devient hybride que dans le cas isotherme, $\mathcal{S}_{f_1}^p$. Fin : contribution qui peut être réécrite en appliquant le premier principe thermodynamique $\mathcal{M}_{f_1}^p$. Vert : Décomposition des termes de f2. Epais : terme flux $\nabla_{\ell} \cdot \mathcal{F}_{f_2}^p$. Fin : termes sources $\mathcal{S}_{f_2}^p$. Représentation : 1D fonction de ℓ_{\perp} .

formulation f2 séparant termes flux et termes sources semble plus appropriée pour représenter la cascade. Le terme flux $\nabla_{\boldsymbol{\ell}} \cdot \mathcal{F}_{f_2}^p$ est cependant un peu plus important dans la balance que ne l'est $\nabla_{\boldsymbol{\ell}} \cdot \mathcal{F}_{f_2}^{pm}$ dans le cas magnétique : autour de 30 % de ε_p pour CGL3 et complètement dominant aux petites échelles de CGL1.

Le comportement observé par A18 reste donc valable dans nos simulations. Et avec les conclusions du Chapitre 6 et les résultats de cette section, on peut prédire que, pour l'application d'une formulation f2 dans des données faiblement compressibles, :

- les termes flux de type Yaglom domineront les termes sources et les termes flux de pression, pression magnétique et énergie interne,
- la contribution des termes de flux de pression et pression magnétique sera négligeable devant celle des termes sources.

Le set de simulations CGL et LF n'étant pas adapté à une étude rigoureuse du caractère systématique de la validité de ces prédictions ni à une analyse de l'évolution de ces contributions en fonction de la compression du milieu telle que celle effectuée par A18, ces résultats resteront sous la forme de résultats préliminaires. Je me suis aussi posée la question de l'apport de la formulation f3 sur la formulation f2 via (5.20). Les résultats, non présentés ici, ne semblent montrer aucun apport significatif.

En interprétant les termes flux en tant qu'énergie transférée à travers les échelles et les termes sources tels des réservoirs d'énergie localisés aux différentes échelles, il semble ici que les contributions de pression magnétique et thermodynamique aient plutôt des rôles de réservoirs. L'augmentation des termes flux aux petites échelles de CGL1 indiquerait, avec cette interprétation, le lieu d'un transfert d'énergie à travers les échelles permis par ces pressions².

^{2.} Il serait intéressant de démontrer analytiquement ces comportements à l'aide d'une théorie plus locale telle que la théorie du « coarse-graining » qui a permis de démontrer l'existence d'une cascade d'entropie par exemple [EYINK et DRIVAS 2018]

DETAILS DU TERME CORRECTIF ANISOTROPE POUR CGL3B, CGL5 ET CGL6

ANNEXE C

FIGURE C.1 – Simu : CGL3B (haut), CGL5 (milieu) et CGL6 (bas). Représentation 1D en fonction de ℓ_{\perp} du détail de $\varepsilon_{\overline{\Pi}}$ (bleu). Orange : $\nabla_{\ell} \cdot \mathcal{F}_A$. Vert : \mathcal{S}_{A1} . Rouge : \mathcal{S}_{A2} . Violet : \mathcal{S}_{A3} . Gris : niveau d'erreur ζ . Les termes présents dans la zone grise délimitée par ζ sont supposés négligeables.

TABLES ET LISTES

TABLE DES MATIÈRES

N	ote d	l'information	i
Re	emer	ciements	iii
Re	ésum	lé détaillé	v
D	etaile	ed abstract	vii
Sc	omma	aire	x
	INT	TRODUCTION : La turbulence dans les plasmas astrophysiques	
1	Qu' mog	est-ce que la turbulence? La description hydrodynamique de Kol- gorov	3
	1.1 1.2 1.3 1.4	Définition et propriétés d'un écoulement turbulent	3 6 8 12
2	Qu' tiqu 2.1 2.2 2.3 2.4	est-ce qu'un plasma? De l'exemple du vent solaire à la probléma- ne d'étude Les plasmas, état de la matière	13 13 15 17 21
3	Etu 3.1 3.2 3.3 3.4	de de la cascade turbulente dans un plasma incompressible Le modèle et l'énergie totale	 23 23 24 26 29

PARTIE I : Le chauffage turbulent dans un plasma compressible avec pression isotrope

Introduction

4	Que 4.1 4.2 4.3 4.4 4.5	sait-on sur le modèle compressible ? Energétique du modèle MHD non fermé Fermetures thermodynamiques Thermodynamique et turbulence Propriétés linéaires de la MHD compressible Synthèse sur le modèle compressible avec pression isotrope	35 35 36 39 41 42
5	Déc 5.1 5.2 5.3 5.4	rire la cascade compressible Dérivation d'une loi exacte compressible générale pour décrire un écoule- ment turbulent polytrope	43 44 48 49 53
6	Etuc 6.1 6.2 6.3 6.4	des de cas dans les données in-situ Données et conditions d'application d'une loi exacte dans des observations issues d'une seule sonde	55 55 59 62 65
Co	onclu	sion	67
	PAF	RTIE II : Etude analytique de l'effet de l'anisotropie de pression	
In	trodu	action	71
7	Loi 7.1 7.2 7.3 7.4	exacte pour le modèle CGL D'un tenseur de pression dans le modèle fluide au modèle CGL Instabilités linéaires et potentiel impact sur la turbulence du vent solaire . Loi exacte générale dépendant d'une pression tensorielle et loi CGL Synthèse de l'étude analytique de turbulence compressible avec pression tensorielle et modèle CGL	73 73 75 78 83
8	Et c 8.1 8.2 8.3 8.4	ans le cas incompressible ? De la limite incompressible dans la loi exacte générale vers un nouveau modèle	85 85 86 89 94
9	Rela	exer l'approximation MHD et aller vers le bi-fluide	95

ICCI	axer rapproximation will bet and vers to be-induce	00
9.1	Le modèle MHD-Hall	95
9.2	Le modèle bi-fluide	97
9.3	Le modèle analysé numériquement dans la partie III	104
9.4	Synthèse de l'extension de la théorie des lois exactes à d'autres régimes	107

Conclusion 109				
PARTIE III : Etude numérique d'un plasma turbulent faiblement compres- sible avec anisotropie de pressions				
Introduction 113 Paramètres et dénominations des simulations utilisées 114				
10 Simulation turbulente et calcul de lois exactes 115 10.1 Simuler un plasma turbulent 115 10.2 Code de post-traitement pour le calcul numérique de lois exactes 117 10.3 Mode de représentation du résultat 120 10.4 Synthèse des méthodes et choix numériques 123				
11 Des lois incompressibles aux lois compressibles : tests et validations 125 11.1 Comparaison de résultats Inc-MHD-Hall avec pression isotrope et schémas 125 11.1.1 Comparaison avec des résultats Inc-MHD-Hall 125 11.1.2 Comparaison avec des schémas numériques à travers les résultats 127 11.1.3 Effet du forçage sur la zone inertielle 129 11.2 Équation KHM et incertitude numérique 129 11.2.1 Calcul de la loi KHM 130 11.2.2 Analyse des contributions de la loi KHM 131 11.2.3 Estimation de l'erreur sur le taux de cascade 134 11.3 Synthèse des tests de validation et sources d'erreurs 136				
12 Effet de l'anisotropie de pression dans des simulations CGL-MHD-Hall- ∇P_e 13712.1 Le modèle CGL simulé13712.2 Étude de la loi CGL-MHD-Hall- ∇P_e dans les simulations CGL1, CGL2, CGL313912.2.1 Loi globale et contribution de l'anisotropie de pression13912.2.2 Détail de la contribution de l'anisotropie de pression14212.3 Comportement statistique des pressions14312.3 De nouvelles simulations14412.3.1 Moins d'énergie que CGL3 : CGL3B14512.3.2 Une gamme d'échelle intermédiaire : CGL514612.3.3 Une initialisation anisotrope $a_{piI} = 4 : CGL6$ 14712.4 Synthèse de l'étude préliminaire des simulations CGL-MHD-Hall- ∇P_e 148				
13 Vers l'étude des simulations Landau-fluides15113.1 Modèle simulé et loi exacte15113.2 Etude préliminaire des simulations15213.3 Premières applications de la loi exacte LF-MHD-Hall- ∇P_e 15413.3.1 Effet du flux de chaleur15413.3.2 Effet des tenseurs de pression155				

Conclusion

CONCLUSION GENERALE

14 Synthèse et perspectives					
14.1 Partie I	. 161				
14.2 Partie II	. 162				
14.3 Partie III	163				
14.4 Le mot de la fin du début \ldots	. 164				

ANNEXES

Α	Explication mathématique et interprétation des termes des lois KHM A.1 Si <i>A</i> correspond à une distribution de Dirac dans l'espace de Fourier A.2 Si $\Re[a_{k}b_{k}^{*}]$ est proportionnelle à une puissance de l'amplitude de k	169 . 170 . 170
В	 Validation et comparaison des lois exactes avec pression isotrope B.1 Comparaison des formulations de la loi MHD incompressible B.2 Résultats compressibles avec pression isotrope B.3 Comparaison des formulations dérivées dans le Chapitre 5 	173 . 173 . 174 . 176
С	Details du terme correctif anisotrope pour CGL3B, CGL5 et CGL6	179
	TABLES ET LISTES	
Ta	able des matières	186
Ta	able des figures	192
Lis	ste des tableaux	194
Lis	stes des acronymes	195
Lis	ste des symboles	199
Bi	ibliographie	209
	ARTICLES	
Siı	mon et Sahraoui, Astrophysical Journal, 2021	213
Sii	mon et Sahraoui, Physical Review E, 2022	223

157

TABLE DES FIGURES

1.1	Injection d'un jet d'eau dans de l'eau observée par fluorescence laser et illustrant les différents régimes d'un écoulement : laminaire, transitoire et turbulent. [Crédits de l'image initiale : VAN DYKE 1982.]	4
1.2	Résultats d'une simulation 3D d'un plasma turbulent décrit par le modèle Hall-CGL. Le code de simulation sera introduit dans la partie III. La quantité représentée est la densité ρ . Chaque image correspond à une coupe $x-y$ du cube de densité obtenu au temps t (en unité de temps de la simulation). Les axes sont en position numérique (nombre de points dans chaque direction, comptés à partir d'une position $(0,0,0)$). (a) : $n_z = 323$, $t = 410$. (b) : zoom de (a). (c) : $n_z = 638$, $t = 410$. (d) : $n_z = 323$, $t = 408$. Pour chaque image, la moyenne spatiale, ρ_0 , est de 1.00 et l'écart-type, std (ρ) , de 0.04.	5
1.3	Compilations de spectres obtenus dans diverses expériences de laboratoire. Tous ces spectres sont en accord avec la pente en $-5/3$ prédite grâce à la théorie de Kolmogorov. [Crédits : SADDOUGHI et VEERAVALLI 1994.]	11
2.1	Exemples de plasmas spatiaux. CME signifie éjections de masse coronale. Crédits de l'image initiale : Institut royal d'Aéronomie Spatiale de Belgique (page web www.aeronomie.be)	14
2.2	Profil de température ionique en fonction de la distance au Soleil, observé avec les données de Voyager 2 (noir). Profil adiabatique (vert). [Crédits : RICHARDSON et SMITH 2003.]	15
2.3	Spectre d'énergie magnétique du vent solaire obtenu à partir des missions ACE et CLUSTER. Ce spectre peut être découpé en cinq régions grâce aux ruptures de pentes. Pente en -1.1 : Réservoir d'énergie. λ_c : longueur de corrélation. Pente en -1.7 : Zone inertielle. ρ_i : rayon de Larmor ionique. Pente en -3.4 : Zone de transition. Pente en -2.6 : Échelles dispersives. ρ_e : rayon de Larmor électronique. Pente en -3.7 : Échelles de dissipation électronique. [Crédits: SAHRAOUI <i>et al.</i> 2020.]	17
2.4	Représentation graphique des moments d'ordre 0 (aire sous la courbe co- lorée en bleu), 1 (valeur moyenne de \mathbf{v} indiquée par la verticale verte) et 2 (largeur indiquée par l'horizontale rouge) de la fonction de distribution en vitesse $f(\mathbf{x}, \mathbf{v}, t)$ ici gaussienne.	19
3.1	Système de coordonnées et vecteur d'onde dans le cadre linéaire	25

4.1	Transformations thermodynamiques et intervalles en fonction du γ du mi- lieu [LIVADIOTIS et MCCOMAS 2012] et du σ [BOREL et FAVRAT 2005], exemple de plasmas spatiaux [LIVADIOTIS 2018a]. Adiabatique et isentrope y sont confondues dans le cas réversible	38
6.1	Localisation des instruments de mesure sur PSP. Les instruments de l'ex- périence FIELDS sont notés en blanc, et ceux de SWEAP en jaune. Les données utilisées ici proviennent des magnétomètres à saturation (Fluxgate Magnetometers, MAGs) situés sur le bras et de la coupe de Faraday (Fa- raday Cup, SPC) située juste à côté du bouclier et orientée vers le Soleil. Crédits : la page web de FIELDS (fields.ssl.berkeley.edu) et Johns Hopkins University Applied Physics Laboratory	56
6.2	Orbites de PSP depuis la date de lancement, le 12 août 2018 à 7h31 UTC. Le premier périhélie à 35.7 Rs a été atteint le 6 novembre 2018 à 03h27 UTC. Crédits : la page web de PSP (http://parkersolarprobe.jhuapl.edu) et Johns Hopkins University Applied Physics Laboratory	57
6.3	Données PSP mesurées dans l'héliosphère interne le 4 novembre 2018. (a) à (c) : les trois composantes du champ magnétique dans le système de re- présentation RTN. (d) : Norme du champ magnétique. (e) : angle entre le champ de vitesse du fluide et le champ magnétique. (f) et (g) : fluc- tuations de densité et température relative des protons. Les zones rouges représentent les sous-intervalles utilisés pour le calcul des taux de cascade.	58
6.4	Spectre des fluctuations magnétiques pour l'intervalle complet de données (bleu), et les sous-intervalles (orange et vert) obtenue avec les données MAGs non rééchantillonnées à la cadence de SPC. La ligne noire continue indique la pente attendue dans la zone MHD (spectre de type Kolmogorov en $-5/3$) et l'axe vertical la fréquence maximale accessible avec la cadence de SPC.	59
6.5	Comparaison des taux de cascade obtenus avec l'expression de la loi exacte (6.1) et les différentes fermetures pour les sous-intervalles {00h35–01h05} (à gauche) et {01h45–02h15} (à droite). (a1)–(a2) : valeur absolue des taux de cascade obtenus avec les fermetures incompressible (IMHD) en bleu, compressibles isentrope-isotherme (CMHDi) en vert et adiabatique (CMHDp) en rouge. (b1)–(b2) : ratio entre la contribution d'énergie interne F_2 (6.3) et celle Yaglom compressible F_1 (6.2) dans le cas isotherme (vert) et le cas adiabatique (rouge). (c1)–(c2) : ratio entre les contributions de l'énergie interne adiabatique F_{2p} et isotherme F_{2i}	61
6.6	Vue d'artiste de la mission MMS. Crédits : la page web de MMS/NASA (https://www.nasa.gov/mission_pages/mms)	63
6.7	Résumé de l'étude statistique préliminaire menée sur 12 intervalles des quatre satellites de MMS. Couleurs : compressibilité c de l'intervalle. Abs- cisses : rapport entre le taux de cascade compressible adiabatique (CMHDp, $\gamma = 5/3$) et incompressible (IMHD). À gauche : pour CMHDp, rapport entre les contributions d'énergie interne F_2 et Yaglom compressible F_1 . À droite : rapport entre les contributions d'énergie interne adiabatique F_{2p} , et isotherme F_{2i} ($\gamma = 1$)	63

7.1	Zones de stabilité du modèle CGL (zone grisée). Critères d'instabilité firehose (bleu), miroir (orange) et miroir cinétique (vert). Horizontale $a_p = 1$ en gris	77
7.2	Distribution statistique en fonction de $a_p = \frac{p_\perp}{p_\parallel} = \frac{T_\perp}{T_\parallel}$ et β_\parallel d'échantillons relevés entre 1995 et 2011 dans le vent solaire par la sonde WIND en or- bite autour de la Terre. Pour chacun d'eux, le taux de cascade est calculé avec la loi exacte PP98 et indiqué par l'échelle chromatique. Les courbes pointillées indiquent les frontières associées aux instabilités cinétiques mi- roir (décroissante supérieure), cyclotron (décroissante inférieure) et firehose (croissante). [Crédits : OSMAN <i>et al.</i> 2013.]	78
8.1	Mode d'Alfvén-firehose (ω_A , bleu) et nouveau mode (ω_N , orange pour $\theta = 25^{\circ}$ et rouge pour $\theta = 70^{\circ}$) normalisés par ω_{ci} la pulsation cyclotron des ions et représentés en fonction de $k_{\parallel}d_i$, avec $d_i = v_{A0}/\omega_{ci}$, la longueur inertielle ionique.	90
8.2	Vitesse de phase $\Re[\omega/(kv_{A0})]$ (colonne a) et taux de croissance des instabi- lités $\Im[\omega/(kv_{A0})]$ (colonne b) normalisées par v_{A0} en fonction de l'angle θ pour le nouveau mode incompressible (ω_N , orange) et pour le mode d'Alf- vén (ω_A , bleu). Des asymptotes sont tracées en lignes discontinues. En vert : mode asymptotique ω_P . En noir : angle asymptotique θ_2 . Première ligne : couple (1) tel que $\{a_{p0}, \beta_{\parallel 0}\} = \{0.05, 20/9\} \Rightarrow$ instabilité firehose ($F < 0$). Deuxième ligne : couple (2) tel que $\{0.2, 20/9\}$. Troisième ligne : couple (3) tel que $\{0.325, 20/9\} \Rightarrow$ seul cas stable pour tout θ ($F = G$). Quatrième ligne : couple (4) tel que $\{0.38, 20/9\}$. Cinquième ligne : couple (5) tel que $\{0.5, 20/9\} \Rightarrow$ instabilité pseudo-firehose perpendiculaire ($G < 0$). Sauf graphique (3a) où tous les modes coincident, lorsque qu'un mode disparaît d'un graphique de la colonne a, il apparaît sur le graphique de la colonne b.	91
8.3	Diagramme $a_{p0} - \beta_{\parallel 0}$ résumant l'étude du nouveau mode. Croix rouges : couples $\{\beta_{\parallel 0}; a_{p0}\}$ sélectionnés pour l'étude paramétrique de la FIGURE 8.2. Frontière d'instabilité firehose $F = 0$ (bleu) et zone instable ($F < 0$, bleue) associée. Frontière d'instabilité pseudo-firehose perpendiculaire $G =$ 0 (verte) et zone instable ($G < 0$, verte) associée. Ligne noire : ensemble des couples $\{\beta_{\parallel 0}; a_{p0}\}$ stables pour tout angle θ paramétrisé par $F = G$. Zone blanche : instabilité pseudo-firehose oblique	93
10.1	Algorithme d'intégration d'une équation d'évolution générique via une mé- thode pseudo-spectrale. Prise en compte des corrections d'anti-aliasing et d'hyperdissipation $\nu\Delta^n A$. TF(I) correspond à transformée de Fourier (in- verse)	.16
10.2	Algorithme de calcul du taux de cascade ε via la méthode directe. Les quantités impliquées sont des quantités génériques	18
10.3	Algorithme de calcul du taux de cascade ε via la convolution. Les quantités impliquées sont des quantités génériques	20

10.4	Différents modes de représentations du taux de cascade ε_{PP98} calculé avec PP98 dans les données de la simulation CGL1. R2 : 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} , avec deux échelles de couleurs, une échelle symlog, linéaire entre -10^{-8} et 10^{-8} (barre de couleur continue), et une échelle linéaire (barre de couleur discontinue) et les frontières $\theta = \theta_i$ (noire discontinue) et $\theta = 45^{\circ}$ (noire continue). R1 : 1D en fonction de ℓ . R3 : 1D en fonction de ℓ_{\perp} , pour $\ell_{\parallel} = 0$ (rouge), moyenne sur l'ensemble des ℓ_{\parallel} (bleue), moyennes sur les ℓ_{\parallel} tels que $\theta > 45^{\circ}$ (orange) et $\theta > \theta_i$ (vert). R4 : 1D en fonction de ℓ_{\parallel} , pour $\ell_{\perp} = 0$ (rouge), moyenne sur l'ensemble des ℓ_{\perp} (bleue), moyenne sur les ℓ_{\perp} tels que $\theta < 45^{\circ}$ (orange) et $\theta < \theta_i$ (vert). Le caractère continu ou discontinu des courbes 1D reflète le signe de ε_{PP98}	121
11.1	Mode de représentation : 1D en fonction de ℓ_{\perp} normalisé par d_i . Lignes pleines : nos résultats (avec en lignes discontinues les valeurs négatives). Pointillés : résultats extraits des figures 3 et 5 de F21. Bleu : $\varepsilon_{MHD-Hall}$. Orange : ε_{MHD} Vert : ε_{HeH} Haut : CGL1 Bas : CGL3 ($t = 357$)	126
11.2	Mode de représentation : 1D en fonction de ℓ_{\perp} normalisé par d_i . Simu : CGL3 ($t = 357$). Comparaison de ε_{MHD} obtenu par F21 (ligne noire poin- tillée), FEL (ligne noire pleine) et l'application d'une divergence transverse sur \mathcal{F} calculés avec FEL et moyenné suivant deux angles $\theta = 45^{\circ}$ de la boîte numérique et $\theta = \theta_i$	128
11.3	Mode de représentation : 1D en fonction de ℓ_{\perp} normalisé par d_i . ε_{F19} est obtenu pour divers temps t de CGL3, chaque temps correspond à une couleur. Le résultat extrait de la figure 5 de F21 est donné en pointillés noirs.	129
11.4	Détail de la loi KHM pour CGL1 (haut) et CGL3 (bas). Bleu : ε_{NL} . Orange : ε_F . Vert : ε_D . Rouge : $\partial_t \mathcal{R}$. Violet : $\varepsilon_{ref} = -\partial_t \mathcal{R} + \varepsilon_D + \varepsilon_F$. Marron : $\zeta = \varepsilon_{ref} - \varepsilon_{NL}$. Représentation : 1D en fonction de ℓ_{\perp} avec les valeurs positives en trait plein et négatives en trait discontinu	131
11.5	Détail du terme d'hyperdissipation, ε_D (noir), pour CGL1 (haut) et CGL3 (bas). Bleu : $\varepsilon_D^m(D_{\boldsymbol{v}_A})$. Orange : $\varepsilon_D^m(D_\rho)$. Vert : $\varepsilon_D^{ue}(D_\rho)$. Rouge : $\varepsilon_D^{ui}(D_\rho)$. Violet : $\varepsilon_D^c(D_\rho)$ Marron : $\varepsilon_D^{ui}(D_u)$. Rose : $\varepsilon_D^c(D_v)$. Représentation : 1D en fonction de ℓ_{\perp} avec les valeurs positives en trait plein et négatives en trait discontinu.	133
11.6	Détail de la loi (11.11) pour CGL1 (haut) et CGL3 (bas). Bleu : \mathcal{E}_{NL} . Orange : \mathcal{E}_F . Vert : \mathcal{E}_D . Rouge : $\partial_t \mathcal{S}$. Violet : $\mathcal{E}_{ref} = -\partial_t \mathcal{S} + \mathcal{E}_D + \mathcal{E}_F$. Marron : $\mathcal{Z} = \mathcal{E}_{ref} - \mathcal{E}_{NL}$. Représentation : 1D en fonction de ℓ_{\perp} avec les valeurs positives en ligne pleine et négatives en ligne dicontinue	135
12.1	Simu : CGL1 et CGL2. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $ \varepsilon_{iso} $ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris).	140
12.2	Simu : CGL3. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} - \varepsilon_{iso}$ par rapport à $ \varepsilon_{iso} $ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{ico} (orange), ε_{ccl} (bleu), $\varepsilon_{\overline{cc}}$ (vert) et ζ (gris)	141
12.3	Simu : CGL1 (haut), CGL2 (milieu) et CGL3 (bas). Représentation 1D en fonction de ℓ_{\perp} du détail de $\varepsilon_{\overline{\mathbf{n}}}$ (bleu). Orange : $\nabla_{\boldsymbol{\ell}} \cdot \boldsymbol{\mathcal{F}}_{\boldsymbol{A}}$. Vert : \mathcal{S}_{A1} . Rouge : \mathcal{S}_{A2} . Violet : \mathcal{S}_{A3} . Gris : niveau d'erreur ζ . Les termes présents dans la zone	
	grise délimitée par ζ sont supposés négligeables	142

- 12.4 Diagramme $a_{pi} \beta_{\parallel}$ contenant l'histogramme 2D des simulations sous la forme de courbes de niveau centrées sur le couple moyen. Le critère miroir est paramétrisé par l'équation (9.45) qui prend en compte les électrons isothermes. Le critère firehose est le critère CGL calculé dans le Chapitre 7. 144
- 12.5 Simu : CGL3B. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris). 145
- 12.6 Simu : CGL5. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\Pi}}$ (vert) et ζ (gris). . . . 146
- 12.7 Simu : CGL6. Représentation 2D en fonction de ℓ_{\perp} et ℓ_{\parallel} de $\varepsilon_{cgl} \varepsilon_{iso}$ par rapport à $|\varepsilon_{iso}|$ en %, entourée des représentations 1D en fonction de ℓ_{\perp} (bas) et ℓ_{\parallel} (gauche) de ε_{iso} (orange), ε_{cgl} (bleu), $\varepsilon_{\overline{\mathbf{n}}}$ (vert) et ζ (gris). . . . 147

A.2	Équivalence entre S (lignes épaisses) et $2 < A \cdot B > -\mathcal{R}$ (lignes fines). Couleurs : m . Lignes discontinues : saturations
B.1	Triptyques de la différence $\varepsilon_{PP98} - \varepsilon_{BG17}$ (courbes vertes et carte 2D) cal- culée dans CGL1. Courbes 1D bleues : ε_{PP98} . Courbes 1D oranges : ε_{BG17} (coïncidant avec les bleues)
B.2	Panel d'étude de ε_{f_1} dans CGL1. Première ligne de gauche à droite : Re- présentation 2D de $\nabla_{\ell} \cdot \mathcal{F}_{f_1}$ et \mathcal{S}_{f_1} . Deuxième ligne : Représentation 1D en
B.3	fonction de ℓ_{\perp}/d_i . Troisième ligne : Représentation 1D en fonction de ℓ_{\parallel}/d_i . Sur les représentations 1D : ε_{PP98} (bleu), ε_{f_1} (orange), $\nabla_{\ell} \cdot \mathcal{F}_{f_1}$ (vert), \mathcal{S}_{f_1} (rouge), $\nabla_{\ell} \cdot \mathcal{F}_1$ (violet) et $\nabla_{\ell} \cdot \mathcal{F}_2$ (marron)
	tique ε_p (noir) dans CGL1 (gauche) et CGL3 (droite). Bleu : Décomposition des termes de f1. Epais : contribution hybride $\mathcal{H}_{f_1}^p$. Moyen : contribution d'énergie magnétique \mathcal{S}_{f}^p . Fin : contribution β -dépendante
	$\mathcal{M}_{f_1}^p$. Vert : Décomposition des termes de f2. Epais : terme flux $\nabla_{\ell} \cdot \mathcal{F}_{f_2}^p$. Fin :
B.4	termes sources $\mathcal{S}_{f_2}^p$. Représentation : 1D fonction de ℓ_{\perp}
	Bleu : Décomposition des termes de f1. Epais : contribution hybride $\mathcal{H}_{f_1}^p$. Moyen : contribution de type source qui ne devient hybride que dans le cas isotherme, $\mathcal{S}_{f_1}^p$. Fin : contribution qui peut être réécrite en appliquant le premier principe thermodynamique \mathcal{M}^p
	Vert : Décomposition des termes de f2. Epais : terme flux $\nabla_{\boldsymbol{\ell}} \cdot \mathcal{F}_{f_2}^p$. Fin : termes sources $\mathcal{S}_{f_2}^p$. Représentation : 1D fonction de ℓ_{\perp}
C.1	Simu : CGL3B (haut), CGL5 (milieu) et CGL6 (bas). Représentation 1D en fonction de ℓ_{\perp} du détail de $\varepsilon_{\overline{\Pi}}$ (bleu). Orange : $\nabla_{\ell} \cdot \mathcal{F}_{A}$. Vert : \mathcal{S}_{A1} . Rouge : \mathcal{S}_{A2} . Violet : \mathcal{S}_{A3} . Gris : niveau d'erreur ζ . Les termes présents
	dans la zone grise délimitée par ζ sont supposés négligeables

LISTE DES TABLEAUX

4.1	Fermetures et relations associées. La forme de l'énergie interne de l'isentrope- isotherme est calquée sur celle utilisée par GALTIER et BANERJEE 2011. Les autres sont définies de telle sorte à maintenir une forme de compatibilité : si $u = u_I$ alors $u = 0$. Celle de l'isentrope-polytrope est donc légèrement différente de celle utilisée par BANERJEE et GALTIER 2014. $\frac{p}{\rho}$ peut aussi s'écrire $\frac{c_s^2}{\gamma}$ et $p \propto \rho^{\gamma}$	40
9.1	Extraits des paramètres des simulations traitées. Résolution : Nombre de points dans la grille numérique du code de simu-	
	lation. $k_{0\perp}d_i$: vecteur d'onde d'injection perpendiculaire à e_z normalisé par la longueur inertielle d_i et lié à $L_{\perp} = \frac{2\pi}{k_0}$, la taille physique perpendiculaire de la grille simulée.	
	θ_i : angle d'injection par rapport à $\boldsymbol{e_z}$, lié à $L_z = \frac{L_{\perp}}{\tan \theta_i}$. E_{sup} : énergie perpendiculaire cinétique + magnétique, critère d'extinction du forcage	
	A_f : paramètre d'amplitude du forçage. t_I : temps initial (en unité de temps ionique) de prélèvement de l'échan- tillon temporel utilisé pour l'étude le loi exacte. N_t : nombre de pas de temps consécutifs utilisés. δt : pas temporel, unité de temps ionique.	114
9.2	Extraits des paramètres des simulations traitées, choisis empiriquement pour l'hyperdissipation. $\nu, \eta, \nu_{\rho}, \nu_{p}, \nu_{q}$: constantes caractéristiques de l'hyperdissipation respecti- vement de la vitesse, du champ magnétique, de la densité, des pressions et des flux de chaleurs.	
	α : facteur d'anisotropie. a_{piI}, a_{peI} : taux initiaux d'anisotropie de pression respectivement ionique et electronique	114
11.1	Différences majeures entre les schémas numériques F21 et FEL. ϕ correspond à l'angle présent dans le plan perpendiculaire dans un système de coordonnées cylindriques.	127
12.1	Moyenne et écart-type de la densité, du taux d'anisotropie ionique $a_{pi} = \frac{p_{\perp i}}{p_{\parallel i}}$ et du paramètre $\beta_{\parallel} = \frac{p_{\parallel i}}{p_m}$ pour chaque simulation, à la date $t.$	143

13.1	Moyenne et écart-type de la densité, des taux d'anisotropie ionique $a_{pi} =$
	$\frac{p_{\perp i}}{p_{\perp i}}$ et électronique $a_{ne} = \frac{p_{\perp e}}{p_{\perp e}}$ et des paramètres $\beta_{\parallel i} = \frac{p_{\parallel i}}{p_{\parallel i}}$ et $\beta_{\parallel e} = \frac{p_{\parallel e}}{p_{\perp e}}$ pour
	$p_{\parallel i} \qquad \qquad p_{\parallel e} \qquad p_{\parallel e} \qquad \qquad p_{\parallel e} \qquad \qquad p_{\parallel i} \qquad p_{m} \qquad p_{m} \qquad \qquad p_{m} \qquad \qquad p_{m} \qquad \qquad$
	chaque simulation, a la date t

LISTES DES ACRONYMES

Laboratoires et Universités

LPP Laboratoire de Physique des Plasmas. UMR 7648. Situé à Paris et Palaiseau. **SU** Sorbonne Université.

IAP Institut d'Astrophysique de Paris. UMR 7095. Situé à Paris.

OBSPM Observatoire de Paris-Meudon. Situé à Paris et Meudon.

LAGRANGE Laboratoire J.-L. LAGRANGE. UMR 7293. Situé à Nice.

OCA Observatoire de la Côte d'Azur. Situé à Nice.

CNRS Centre national de la recherche scientifique. Situé sur l'ensemble du territoire français.

UMR Unité Mixte de Recherche. Système français de classification des laboratoires.

CNR Consiglio Nazionale delle Ricerche. Centre national italien pour la recherche.

ISTP Istituto per la Scienza e la Tecnologia dei Plasmi. Situé à Milan, Bari et Padova.

IRAP Institut de recherche en astrophysique et planétologie. Situé à Toulouse.

Imperial Imperial College London. Situé à Londres.

SPAT Space and Atmospheric Physics group. Sous composante de Imperial

Univ. université.

AAIF Ecole doctorale n°127 : Astronomie et Astrophysique d'Ile-de-France.

UPSy Université Paris-Saclay.

X École Polytechnique. Situé à Palaiseau.

Modèles

HD hydrodynamique.

MHD magnétohydrodynamique. Modèle et gamme d'échelle.

Inc-MHD MHD incompressible.

EMHD MHD électronique. Modèle et zone d'échelle couvrant les échelles sub-ioniques et électroniques.

Hall Hall. Gamme d'échelle subionique et terme de la loi d'Ohm.

MHD-Hall MHD-Hall. Modèle prenant en compte la correction Hall de la loi d'Ohm.

- **Inc-MHD-Hall** MHD-Hall incompressible. Modèle MHD incompressible prenant en compte la correction Hall de la loi d'Ohm.
- **MHD-Hall-** ∇P_e MHD-Hall avec correction ∇P_e . Modèle prenant en compte des corrections Hall et ∇P_e de la loi d'Ohm.
- $\nabla P_e \ll {\rm grad}$ Pe ». Terme dépendant de la pression électronique présent dans la loi d'Ohm généralisée.
- $\nabla P_i \,$ « grad Pi ». Terme dépendant de la pression ionique présent dans la loi d'Ohm généralisée valable en régime EMHD .
- **CGL** Chew-Goldberger-Low. [CHEW *et al.* 1956]. Modèle et fermeture dépendant d'une pression gyrotrope (bi-adiabatique).
- CGL-MHD-Hall MHD-Hall bi-adiabatique. Modèle prenant en compte l'approximation Hall et la fermeture CGL.
- **LF** Landau-fluide. Modèle et fermeture gyrotrope captant l'effet Landau cinétique linéaire.

Lois exactes

- **KHM** de Kármán-Howarth-Monin. [von KARMAN et HOWARTH 1938, MONIN et JAGLOM 1971]. Type de loi exacte obtenue avant applications des hypothèses de stationnarité statistique et séparation d'échelle.
- **K41** de Kolmogorov. [KOLMOGOROV 1991b, KOLMOGOROV 1991a]. Type de loi exacte obtenue après applications des hypothèses de stationnarité statistique et séparation d'échelle. Version dérivée.
- **PP98** « Politano et Pouquet 98 ». [POLITANO et POUQUET 1998b, POLITANO et POUQUET 1998a]. Loi exacte Inc-MHD.
- **F21** [FERRAND, SAHRAOUI, LAVEDER *et al.* 2021]. Etude de l'effet de l'effet Landau linéaire sur la cascade turbulente décrite par la loi exacte Inc-MHD-Hall dans des simulations CGL et LF .
- A18 [ANDRÉS, SAHRAOUI, GALTIER, HADID, DMITRUK *et al.* 2018]. Etude numérique de la loi exacte MHD-Hall compressible isotherme.

Simulations

- **3D** dépendant de trois directions spatiales.
- 2D dépendant de deux directions spatiales.
- 1D dépendant d'une seule direction spatiale.
- $LF/CGL-MHD-Hall-\nabla P_e$ LF/CGL-MHD-Hall- ∇P_e . Modèle versatile simulé.

CGL-MHD-Hall- ∇P_e CGL-MHD-Hall- ∇P_e . Modèle CGL simulé.

LF-MHD-Hall- ∇P_e LF-MHD-Hall- ∇P_e . Modèle LF simulé.

FFT algorithme de transformée de Fourier rapide.

RK3 schéma de Runge-Kutta d'ordre 3. Schéma numérique d'intégration.

FEL « Fourier for Exact Law ». Méthode de calcul présentée dans la section 10.2

197

Observations

- **NASA** National Aeronautics and Space Administration. Agence spatiale américaine. **ESA** European Space Agency. Agence spatiale européenne.
- **PSP** Parker Solar Probe. Mission spatiale de la NASA constituée d'une sonde.
- **MMS** Magnetospheric Multiscale. Mission spatiale de la NASA constituée de quatre sondes.
- **SWEAP** Solar Wind Electrons Alpha and Protons Investigation.
- **FIELDS** Fields Experiments.
- MAGs MAGs. magnétomètres à saturation présent sur PSP.
- SCM Search-Coil Magnetometer. Fluxmètre présent sur PSP.
- SPC Solar Probe Cup. Coupe de Faraday présent sur PSP.
- SPAN Solar Probe Analyzer. Analyseur électrostatiques présent sur PSP.
- **UTC** Temps Universel Coordonné.
- **RTN** système de coordonnées Radial-Tangential-Normal. Système de coordonnées local de la position du satellite tel que e_z est tourné vers le centre de l'objet autour duquel le satellite orbite.
- **FPI** Fast Plasma Investigation. Sur MMS.
- FGM Fluxgate Magnetometer. Sur MMS.
- **WIND** Wind. Satellite présent dans le vent solaire. Mission spatiale de la NASA constituée d'une sonde.
- **CLUSTER** Cluster. Quatre satellites pour l'étude de la magnétosphère. Mission spatiale de l'ESA constituée de quatre sondes.
- **THEMIS** Time History of Events and Macroscale Interactions during Substorms. Mission spatiale de la NASA constituée de cinq satellites.
- **JUICE** Jupiter Icy Moons Explorer.
- **CME** éjections de masse coronale.
- ACE Advanced Composition Explorer.
- **HELIOSWARM** HelioSwarm. Future mission spatiale de la NASA constituée de neuf sondes.

 $8.854 \times 10^{-12} \,\mathrm{A}^2 \cdot \mathrm{s}^4 \cdot \mathrm{kg}^{-1} \cdot \mathrm{m}^{-3}$

 $1.602\,176\,634 \times 10^{-19}\,\mathrm{C}$

La liste suivante contient les notations utilisées récurrament dans l'ensemble de cette thèse ainsi que quelques éléments de définition. L'usage courant des notations est généralement respecté et sauf unités spécifiques utilisées dans la communauté astrophysique, les unités sont exprimées dans le système international (SI). Les vecteurs sont notés en gras et les tenseurs en gras surmontés d'une (ordre 2) ou deux (ordre 3) barres. Les quantités liées à l'écoulement sont indicées par α , e, i si une distinction est faite sur le type de particules s'écoulant (resp. espèce quelconque mais distincte, électrons, ions). Les valeurs moyennes sont en générale indicées par un 0 et les fluctuations linéaires par un 1 si requis (exemple dans le cadre des linéarisations). Dans les études de turbulence, les quantités exprimées en \mathbf{x}' sont primés. Dans le cadre des simulations, les quantités initiales sont indicées par un I.

Electromagnétisme

- **B** champ magnétique.
- **b** direction du champ magnétique.
- E champ électrique.
- j densité de courant, moment d'ordre 1 de la fonction de distribution des particules.
- v_A vitesse d'Alfvén.
- ϵ_0 permittivité du vide.
- μ_0 perméabilité (magnétique) du vide, $1/(\epsilon_0 c^2)$.
- *B* module du champ magnétique.
- c vitesse de la lumière dans le vide. $2.997\,924\,58 \times 10^8\,\mathrm{ms}^{-1}$
- e charge élémentaire.
- p_m pression magnétique.
- q_{α} charge particulaire, à ne pas confondre avec les flux de chaleurs.
- Q densité de charge.
- v_A module de la vitesse d'Alfvén.

Autres constantes et paramètres physiques

- \boldsymbol{v}_{SW} vitesse d'écoulement du vent solaire de module v_{SW} . $4\,00 800\,\mathrm{ms}^{-1}$
- $\lambda_{i,e}$ rapport masse-charge élémentaire des ions et électrons
$6.958\times10^{-8}\,\mathrm{m}$

 $1.495\,978\,707\,00\times10^{-11}\,\mathrm{m}$

unité atronomique, distance Soleil-Terre. au

Rsrayon solaire.

Energétique

- \mathcal{Q} chaleur dans le premier principe thermodynamique.
- \mathcal{W} travail dans le premier principe thermodynamique.
- E_c énergie cinétique.
- E_D énergie dissipée.
- E_F énergie provenant du forçage.
- E_m énergie magnétique.

énergie totale. E_{tot}

- entropie spécifique (divisée par la masse). s
- énergie interne spécifique (divisée par la masse). u

Forcage et dissipation

- ℓ_F échelle de forçage.
- d_c dissipation cinétique, appliqué dans l'équation d'évolution de v.
- d_m dissipation magnétique, appliqué sur l'équation d'évolution de v_A .
- forçage cinétique, appliqué dans l'équation d'évolution de v. f_c
- forçage magnétique, appliqué sur l'équation d'évolution de v_A . f_m
- résistivité du fluide, caractérise la diffusivité magnétique. η
- viscosité du fluide, caractérise la dissipation cinétique. ν

Masse et densité

- rapport massique m_e/m_i . μ
- densité massique d'un fluide, moment d'ordre 0 de la fonction de distribution des ρ particules.
- $9.1094 \times 10^{-31} \,\mathrm{kg}$ masse d'un électron. m_e
- masse ionique proportionnelle à m_p . m_i
- masse d'un proton. m_p

Paramètres numériques

- α facteur d'anisotropie present dans le Laplacien numérique.
- δt pas temporel numérique en unité de temps ionique.
- $\nu_{\rho}, \nu_{p}, \nu_{q}$ constantes caractéristiques de l'hyperdissipation de la densité, des pressions et des flux de chaleurs.
- θ_i angle d'injection de l'énergie dans la simulation par rapport à e_z .
- paramètre déterminant l'amplitude du forçage. A_f

- $1.6726 \times 10^{-27} \,\mathrm{kg}$

- $k_{0\perp}d_i$ vecteur d'onde d'injection perpendiculaire à e_z et normalisé par la longueur inertielle d_i .
- L_{\perp}, L_z taille spatiale physique de la simulation.

 $n_x, n_y, n_z\,$ position en nombre de points dans la grille numérique.

Opérateurs et opérations (exemples donnés entre quantités indéfinies A, B).

 $\delta A = A' - A$, incrément spatial de A.

- $\Delta \qquad = \nabla \cdot \nabla, \text{ Laplacien.}$
- đ A différentielle inexacte (intégration dépendant du chemin) d'une quantité quelconque A, $\frac{\partial}{\partial A}$.
- $\Im[A]$ partie imaginaire de A.
- $\langle A \rangle$ moyenne de A.
- \mathcal{R}_{AB} corrélation symétrique de A et B, $\frac{1}{2} \langle A' \cdot B + A \cdot B' \rangle$.
- \mathcal{S}_{AB} corrélation incrémentale de A et B, $\langle \delta A \cdot \delta B \rangle$.
- ∇' opérateur de dérivation spatiale, $\partial_{\mathbf{x}'}$.
- ∇_{ℓ} opérateur de dérivation en échelle spatiale, ∂_{ℓ} .
- ∇ opérateur de dérivation spatiale, $\partial_{\mathbf{x}}$.
- ∂_A dérivée partielle suivant une quantité quelconque A, $\frac{\partial}{\partial A}$.
- $\Re[A]$ partie réelle de A.
- $A \times B$ produit vectoriel, entre quantités vectorielles, donne un vecteur.
- A' A évalué en \mathbf{x}' .
- A: B produit dual, ou double produit scalaire (entre quantités tensorielles), on ne l'utilisera que si l'un des tenseurs est symétrique, il peut s'écrire comme deux produits scalaires si l'un des tenseur est construit par produit tensoriel (ex : pour A = vvet B = bb, $A: B = vv : bb = v \cdot bb \cdot v = (v \cdot b)(b \cdot v)$).
- $A \cdot B$ produit scalaire, donne un scalaire si appliqué entre deux vecteurs, un vecteur si appliqué entre un vecteur et un tenseur d'ordre 2, etc., ne s'applique pas entre un scalaire et un vecteur, aussi utilisé pour noté un produit indéfini entre quantités indéfinies.
- $A^S = A + A^T$, symétrisation de A par somme avec la transposée.
- AB produit tensoriel, donne un scalaire si utilisé avec des quantités scalaires, un vecteur si utilisé entre un vecteur et un scalaire, un tenseur d'ordre 2 si utilisé avec deux vecteurs, etc..
- dA élément différentiel de A.
- d_t dérivée temporelle totale suivant, $\partial_t + \boldsymbol{v} \cdot \nabla$.

Pression et flux de chaleur

- $\beta \qquad \text{paramètre du plasma, correspond à une pression sur la pression magnétique, indicé suivant le type de pression (ex. : <math>\beta_{\parallel} = p_{\parallel}/p_m$). }
- q flux de chaleur, forme réduite par produit dual avec \overline{I} de $\overline{\overline{q}}$.
- γ_a indice adiabatique, 5/3 pour un gaz (semi-)parfait.
- γ indice polytropique.
- $\overline{\Pi}$ composante anisotrope du tenseur de pression.
- \overline{I} tenseur identité.
- $\overline{P_*}$ tenseur de pression totale, contient \overline{P} et p_m .
- $\overline{P_E}$ quantité fluide $\frac{Q}{\rho}\overline{P}$
- \overline{P} tenseur de pression, moment d'ordre 2 de la fonction de distribution des particules.
- $\overline{\overline{q}}$ tenseur de flux de chaleur.
- σ facteur polytrope.
- a_p taux d'anisotropie de pression, correspond à une pression perpendiculaire sur une pression parallèle.
- c_s vitesse thermique.
- n densité de particule.
- p_{\parallel} pression parallèle, composante gyrotrope de \overline{P} dans la direction **b**.
- p_{\perp} pression perpendiculaire, composante gyrotrope de \overline{P} perpendiculaire à la direction **b**.
- p pression isotrope, tiers de la trace du tenseur de pression.
- q module ou composante du flux de chaleur sauf dans le chapitre 2 ou c'est la charge associée à l'espèce des particules.

Systèmes de représentation

- $\boldsymbol{e_x}, \boldsymbol{e_y}, \boldsymbol{e_z}$ vecteurs directeurs cartésiens, $\boldsymbol{e_z}$ est souvent aligné sur le champ magnétique moyen.
- θ angle entre k et e_z

Statistique et turbulence

- λ_c longueur de corrélation.
- \mathcal{E}_D taux de dissipation obtenu avec la loi KHM dépendant de la fonction de corrélation incrémentale.
- \mathcal{E}_F taux de forçage obtenu avec la loi KHM dépendant de la fonction de corrélation incrémentale.
- \mathcal{E}_{NL} taux de transfert non linéaire obtenu avec la loi KHM dépendant de la fonction de corrélation incrémentale.
- \mathcal{R}_c fonction de corrélation d'énergie cinétique.

- \mathcal{R}_m fonction de corrélation d'énergie magnétique.
- \mathcal{R}_u fonction de corrélation d'énergie interne.
- \mathcal{R} fonction de corrélation d'énergie totale.
- \mathcal{S} fonction de corrélation incrémentale d'énergie totale.
- ε_D taux de dissipation défini avec la loi KHM .
- ε_F taux de forçage défini avec la loi KHM .
- $\varepsilon_{\overline{\mathbf{\Pi}}}$ correction du taux de cascade dépendant de la part anisotrope du tenseur de pression.
- ε_{cgl} tout taux de cascade calculé avec la fermeture CGL
- ε_{hall} correction étendant le domaine de validité du taux ε_{mhd} aux échelles Hall .
- ε_{iso} tout taux de cascade calculé avec le composante isotrope du tenseur de pression
- ε_{mhd} tout taux de cascade calculé avec l'approximation MHD
- ε_{NL} taux de transfert non linéaire.
- ε taux de cascade dans la zone inertielle.
- R_e nombre de Reynolds, rapport entre convection et dissipation cinétique (voir section 1.1).
- R_m nombre de Reynolds magnétique, rapport entre convection et diffusivité magnétique (voir section 1.1).

Temps, positions et vitesses

- ℓ échelle, incrément spatial aussi noté δx .
- **k** vecteur d'onde (position dans l'espace de Fourier).
- $m{v}$ vitesse d'écoulement d'un fluide, moment d'ordre 1 de la fonction de distribution des particules.
- **v** vitesse d'une particule individuelle.
- \mathbf{x}' position \mathbf{x} translatée de $\boldsymbol{\ell}$.
- **x** position.
- \mathcal{P}_{α} fonction de distribution en vitesse des particules d'espèce α .

 $\omega_{ci,ce}$ pulsation cyclotron ionique (resp. électronique).

 ω pulsation/fréquence temporelle (dans l'espace de Fourier).

 $\rho_{Li,Le}$ rayon de Larmor ionique (resp. électronique).

- $d_{i,e}$ longueur d'inertie ionique (resp. électronique).
- f fréquence temporelle.
- k_{\perp}, k_{\parallel} composante perpendiculaire et parallèle au champ magnétique moyen du vecteur d'onde.
- t instant, temps.
- x, y, z composantes cartésiennes de la position.

- 1. O. ALEXANDROVA, C. H. K. CHEN, L. SORRISO-VALVO, T. S. HORBURY, S. D. BALE, *Space Sci Rev* **178**, 101-139 (2013).
- 2. H. ALUIE, S. LI, H. LI, *ApJL* **751**, L29 (2012).
- 3. N. ANDRÉS, F. SAHRAOUI, S. GALTIER, L. Z. HADID, P. DMITRUK *et al.*, J. Plasma Phys. 84, 21 (2018).
- 4. N. ANDRÉS, P. CLARK DI LEONI et al., Phys. Plasmas 24, 102314 (2017).
- 5. N. ANDRÉS, S. GALTIER, F. SAHRAOUI, Phys. Rev. E 97, 013204 (2018).
- 6. N. ANDRÉS, F. SAHRAOUI, Phys. Rev. E 96, 053205 (2017).
- 7. N. ANDRÉS, F. SAHRAOUI, L. Z. HADID *et al.*, *arXiv e-prints* **2102**, arXiv :2102.11781 (2021).
- 8. N. ANDRÉS, F. SAHRAOUI, S. HUANG, L. Z. HADID, S. GALTIER, *A&A* 661, A116 (2022).
- 9. N. ANDRÉS, F. SAHRAOUI, S. GALTIER, L. Z. HADID, R. FERRAND *et al.*, *Phys. Rev. Lett.* **123**, 245101 (2019).
- 10. R. A. ANTONIA, M. OULD-ROUIS, F. ANSELMET, Y. ZHU, J. Fluid Mech. 332, 395-409 (1997).
- 11. S. D. BALE, K. GOETZ et al., Space Sci Rev 204, 49-82 (2016).
- 12. S. D. BALE, J. C. KASPER et al., Phys. Rev. Lett. 103, 211101 (2009).
- 13. R. BANDYOPADHYAY et al., Phys. Plasmas 29, 102107 (2022).
- 14. S. BANERJEE, L. Z. HADID, F. SAHRAOUI, S. GALTIER, *ApJL* 829, L27 (2016).
- 15. S. BANERJEE, N. ANDRÉS, *Phys. Rev. E* **101**, 043212 (2020).
- 16. S. BANERJEE, S. GALTIER, J. Fluid Mech. 742, 230-242 (2014).
- 17. S. BANERJEE, S. GALTIER, Phys. Rev. E 87, 013019 (2013).
- 18. S. BANERJEE, A. G. KRITSUK, Phys. Rev. E 96, 053116 (2017).
- 19. G. BELMONT, L. REZEAU, C. RICONDA, A. ZASLAVSKY, *Introduction à la physique des plasmas* (ISTE editions, 2018).
- 20. Y. BEREZIN, V. A. VSHIVKOV, J. Comput. Phys. 20, 81-96 (1976).
- 21. L. BOREL, D. FAVRAT, *Thermodynamique et énergétique* (PPUR presses polytechniques, 2005).
- 22. V. BORUE, S. A. ORSZAG, *EPL* **29**, 687 (1995).

- 23. M. BRODIANO, N. ANDRÉS, P. DMITRUK, ApJ 922, 240 (2021).
- 24. M. BRODIANO, N. ANDRÉS, P. DMITRUK (2022).
- 25. R. BRUNO, V. CARBONE, Living Rev. Solar Phys. 2, 4 (2005).
- 26. R. BRUNO, V. CARBONE, Living Rev. Solar Phys. 10 (2013).
- 27. P. A. CASSAK, M. H. BARBHUIYA (2022).
- 28. S. CHANDRASEKHAR, An introduction to the study of stellar structure.
- 29. A. CHASAPIS *et al.*, *ApJ* **804**, L1 (2015).
- 30. S. G. CHEFRANOV, A. S. CHEFRANOV, Phys. Fluids 33, 076108 (2021).
- G. F. CHEW, M. GOLDBERGER, F. E. LOW, Proc. R. Soc. Lond. A 236, 112-118 (1956).
- 32. R. Chhiber, A. V. USMANOV, W. H. Matthaeus, T. N. Parashar, M. L. Goldstein, ApJS **242**, 12 (2019).
- 33. J. CHO, A. LAZARIAN, Mon. Notices Royal Astron. Soc. 345, 325-339 (2003).
- 34. J. CHO, A. LAZARIAN, ApJ 701, 236-252 (2009).
- 35. T. CHUST, G. BELMONT, Phys. Plasmas 13, 012506 (2006).
- 36. J. T. COBURN, M. A. FORMAN, C. W. SMITH, B. J. VASQUEZ, J. E. STAWARZ, *Phil. Trans. R. Soc. A.* **373**, 20140150 (2015).
- 37. S. R. CRANMER et al., Phil. Trans. R. Soc. A. 373, 20140148 (2015).
- 38. V. DAVID, S. GALTIER, F. SAHRAOUI, L. Z. HADID, ApJ 927, 200 (2022).
- 39. C. ECKART, Phys. Rev. 58, 267-269 (1940).
- 40. G. L. EYINK, T. D. DRIVAS, *Phys. Rev. X* 8, 011022 (2018).
- 41. C. FEDERRATH, J. ROMAN-DUVAL, R. S. KLESSEN, W. SCHMIDT, M.-M. M. LOW, *A&A* **512**, A81 (2010).
- 42. R. FERRAND, S. GALTIER, F. SAHRAOUI, C. FEDERRATH, ApJ 904, 160 (2020).
- 43. R. FERRAND, S. GALTIER, F. SAHRAOUI, R. MEYRAND *et al.*, *ApJ* 881, 50 (2019).
- 44. R. FERRAND, F. SAHRAOUI, S. GALTIER et al., ApJ 927, 205 (2022).
- 45. R. FERRAND, F. SAHRAOUI, D. LAVEDER et al., ApJ 923, 122 (2021).
- 46. R. FERRAND, thèse de doct., Université Paris-Saclay, 2021.
- 47. R. FERRAND, S. GALTIER, F. SAHRAOUI, J. Plasma Phys. 87, 905870220 (2021).
- 48. K. M. FERRIÈRE, N. ANDRÉ, J. Geophys. Res. Space Physics **107**, SMP 7–1–SMP 7-17 (2002).
- 49. N. J. Fox et al., Space Sci Rev 204, 7-48 (2016).
- 50. U. FRISCH, *Turbulence : The Legacy of A.N. Kolmogorov* (Cambridge University Press, 1995).
- 51. U. FRISCH et al., Phys. Rev. Lett. 101, 144501 (2008).
- 52. S. GALTIER, *Physique de la Turbulence : des tourbillons aux ondes* (CNRS Editions / EDP Sciences (Savoirs Actuels), 2021).
- 53. S. GALTIER, J. Phys. A : Math. Theor. 51, 205501 (2018).

- 54. S. GALTIER, J. Plasma Phys. 89, 905890205 (2023).
- 55. S. GALTIER, *Introduction to Modern Magnetohydrodynamics* (Cambridge University Press, Cambridge, 2016).
- 56. S. GALTIER, S. BANERJEE, *Phys. Rev. Lett.* **107**, 134501 (2011).
- S. P. GARY, M. D. MONTGOMERY, W. C. FELDMAN, D. W. FORSLUND, J. Geophys. Res. 81, 1241 (1976).
- 58. github.com/paulinesimon97/2022-07_Simu_Exact_laws : Package usefull to compute exact laws.
- 59. P. GOLDREICH, S. SRIDHAR, *ApJ* **438**, 763 (1995).
- 60. D. O. GÓMEZ, P. D. MININNI, P. DMITRUK, Phys. Scr. 2005, 123 (2005).
- 61. P. GOSWAMI, T. PASSOT, P. L. SULEM, Phys. Plasmas 12, 102109 (2005).
- 62. L. Z. HADID, F. SAHRAOUI, S. GALTIER, ApJ 838, 9 (2017).
- 63. L. Z. HADID, F. SAHRAOUI, S. GALTIER, S. Y. HUANG, *Phys. Rev. Lett.* **120**, 055102 (2018).
- 64. A. N. HALL, Mon. Notices Royal Astron. Soc. 195, 685-696 (1981).
- 65. T. HARDY, Far from the Madding Crowd (Cornhill Magazine, 1874).
- R. D. HAZELTINE, S. M. MAHAJAN, P. J. MORRISON, *Phys. Plasmas* 20, 022506 (2013).
- 67. P. HELLINGER, E. PAPINI *et al.*, *arXiv e-prints* (2021).
- P. HELLINGER, P. TRÁVNÍČEK, J. C. KASPER, A. J. LAZARUS, *Geophys. Res. Lett.* 33, L09101 (2006).
- 69. P. HELLINGER, A. VERDINI, S. LANDI, L. FRANCI, L. MATTEINI, ApJ 857, L19 (2018).
- 70. T. S. HORBURY, M. FORMAN, S. OUGHTON, Phys. Rev. Lett. 101, 175005 (2008).
- 71. G. P. HOREDT, *Polytropes Applications in Astrophysics and Related Fields*, vol. 306.
- 72. P. HUNANA et al., J. Plasma Phys. 85, 205850602 (2019).
- 73. J. C. KASPER et al., Space Sci Rev 204, 131-186 (2016).
- 74. K. H. KIYANI, K. T. OSMAN, S. C. CHAPMAN, *Phil. Trans. R. Soc. A.* **373**, 20140155 (2015).
- 75. A. N. KOLMOGOROV, Proc. R. Soc. A : Math. Phys. Eng. Sci. 434, 15-17 (1991).
- 76. A. N. KOLMOGOROV, Proc. R. Soc. A : Math. Phys. Eng. Sci. 434, 9-13 (1991).
- 77. N. A. KRALL, A. W. TRIVELPIECE, *Principles of Plasma Physics* (McGraw-Hill, New York, 1973).
- 78. R. M. KULSRUD, in Basic plasma physics : selected chapters [of] Handbook of Plasma Physics, Volume 1 and 2, sous la dir. d'A. A. GALEEV, R. N. SUDAN (North-Holland, Amsterdam, 1983).
- 79. E. A. KUZNETSOV, T. PASSOT, P. L. SULEM, Phys. Plasmas 19, 090701 (2012).
- Y. LIU, J. D. RICHARDSON, J. W. BELCHER, J. C. KASPER, H. A. ELLIOTT, J. Geophys. Res. 111, A01102 (2006).

- 81. G. LIVADIOTIS, D. J. MCCOMAS, *ApJ* **749**, 11 (2012).
- 82. G. LIVADIOTIS, *Entropy* **20**, 799 (2018).
- 83. G. LIVADIOTIS, EPL **122**, 50001 (2018).
- 84. B. T. MACBRIDE, M. A. FORMAN, C. W. SMITH, Proceedings of the Solar Wind 11 / SOHO 16, "Connecting Sun and Heliosphere" Conference (ESA SP-592), 613 (2005).
- 85. B. T. MACBRIDE, C. W. SMITH, M. A. FORMAN, *ApJ* **679**, 1644 (2008).
- 86. N. MAGYAR, T. V. DOORSSELAERE, M. GOOSSENS, en, ApJ 873, 56 (2019).
- 87. D. MANZINI, F. SAHRAOUI, F. CALIFANO, Phys. Rev. Lett. 130, 205201 (2023).
- 88. D. MANZINI, F. SAHRAOUI, F. CALIFANO, R. FERRAND, *Phys. Rev. E* **106**, 035202 (2022).
- 89. R. MARINO, L. SORRISO-VALVO, *Phys. Rep.*, Scaling laws for the energy transfer in space plasma turbulence **1006**, 1-144 (2023).
- 90. S. A. MARKOVSKII, B. J. VASQUEZ, ApJ 924, 111 (2022).
- 91. E. MARSCH, K.-H. MÜHLHÄUSER, H. ROSENBAUER, R. SCHWENN, K. U. DENSKAT, J. Geophys. Res. Space Physics 86, 9199-9203 (1981).
- 92. L. MATTEINI et al., Geophys. Res. Lett. 34, L20105 (2007).
- 93. W. H. MATTHAEUS, M. VELLI, Space Sci Rev 160, 145 (2011).
- 94. P. D. MININNI, D. ROSENBERG, R. REDDY, A. POUQUET, *Parallel Comput.* 37, 316-326 (2011).
- 95. A. S. MONIN, A. M. JAGLOM, Statistical fluid mechanics : mechanics of turbulence (MIT Press, Cambridge, Mass, English ed. updated, augmented and rev, 1971), vol. 1.
- 96. A. S. MONIN, A. M. JAGLOM, *Statistical fluid mechanics : mechanics of turbulence* (MIT Press, Cambridge, 2. Aufl, 1975), vol. 2.
- 97. R. E. NAVARRO, P. S. MOYA, Universe 9, 8 (2023).
- 98. S. OPIE, D. VERSCHAREN, C. H. K. CHEN, C. J. OWEN, P. A. ISENBERG, arXiv e-prints (2022).
- K. OSMAN, W. MATTHAEUS, K. KIYANI, B. HNAT, S. CHAPMAN, *Phys. Rev. Lett.* 111 (2013).
- 100. T. N. PARASHAR, M. L. GOLDSTEIN *et al.*, *ApJS* **246**, 58 (2020).
- 101. T. N. PARASHAR, W. H. MATTHAEUS (2022).
- 102. E. N. PARKER, *Phys. Rev.* **109**, 1874-1876 (1958).
- 103. T. PASSOT, P. L. SULEM, Phys. Plasmas 14, 082502 (2007).
- 104. T. PASSOT, P. L. SULEM, P. HUNANA, Phys. Plasmas 19, 082113 (2012).
- 105. A. L. PERATT, Washington Times, supplement : The World and I (1988).
- 106. H. POLITANO, A. POUQUET, *Phys. Rev. E* 57, R21-R24 (1998).
- 107. H. POLITANO, A. POUQUET, Geophys. Res. Lett. 25, 273-276 (1998).
- 108. T. PRATCHETT, S. BAXTER, *The Long Earth* (Doubleday, 2012).

- 109. T. PRATCHETT, I. STEWART, J. COHEN, *The Science of Discworld* (Ebury Press, 1999).
- 110. R. A. QUDSI *et al.*, *ApJ* **895**, 83 (2020).
- 111. J.-M. RAX, *Physique des plasmas : Cours et applications* (Dunod, 2005).
- 112. A. RETINÒ et al., Nat. Phys. 3, 235-238 (2007).
- 113. J. D. RICHARDSON, K. I. PAULARENA, A. J. LAZARUS, J. W. BELCHER, *Geophys. Res. Lett.* 22, 325-328 (1995).
- 114. J. D. RICHARDSON, C. W. SMITH, *Geophys. Res. Lett.* **30** (2003).
- 115. S. G. SADDOUGHI, S. V. VEERAVALLI, J. Fluid Mech. 268, 333-372 (1994).
- 116. F. SAHRAOUI, L. HADID, S. HUANG, Rev. Mod. Plasma Phys. 4, 4 (2020).
- 117. S. SERVIDIO et al., Nonlinear Process Geophys. 18, 675-695 (2011).
- 118. R. P. SHARMA, S. KUMAR, J. Geophys. Res. Space Physics 116 (2011).
- 119. P. SIMON, F. SAHRAOUI, ApJ 916, 49 (2021).
- 120. P. SIMON, F. SAHRAOUI, Phys. Rev. E 105, 055111 (2022).
- 121. P. SIMON, F. SAHRAOUI, Article sur le modèle incompressible en préparation, 2023.
- 122. C. W. SMITH, K. HAMILTON, B. J. VASQUEZ, R. J. LEAMON, *ApJ* 645, L85 (2006).
- 123. P. B. SNYDER, G. W. HAMMETT, W. DORLAND, *Phys. Plasmas* 4, 3974-3985 (1997).
- 124. L. SORRISO-VALVO et al., Phys. Rev. Lett. 99, 115001 (2007).
- 125. D. J. SOUTHWOOD, M. G. KIVELSON, J. Geophys. Res. 98, 9181 (1993).
- 126. J. E. STAWARZ, C. W. SMITH, B. J. VASQUEZ, M. A. FORMAN, B. T. MACBRIDE, ApJ 697, 1119-1127 (2009).
- 127. P. L. SULEM, T. PASSOT, J. Plasma Phys. 81 (2015).
- 128. D. SUNDKVIST, A. RETINÒ, A. VAIVADS, S. D. BALE, *Phys. Rev. Lett.* **99**, 025004 (2007).
- 129. G. I. TAYLOR, Proc. R. Soc. Lond. A 164, 476-490 (1937).
- 130. M. A. TAYLOR, S. KURIEN, G. L. EYINK, *Phys. Rev. E* 68, 026310 (2003).
- 131. J. M. TENBARGE, G. G. HOWES, W. DORLAND, G. W. HAMMETT, *Comput. Phys. Commun.* **185**, 578-589 (2014).
- 132. R. A. TREUMANN, W. BAUMJOHANN, Y. NARITA, *Earth Planets Space* **71**, 41 (2019).
- 133. C.-Y. TU, E. MARSCH, *MHD Structures, Waves and Turbulence in the Solar Wind* (Springer Netherlands, Dordrecht, 1995).
- 134. M. VAN DYKE, An Album of Fluid Motion (Parabolic Press, 1982).
- 135. T. von KARMAN, L. HOWARTH, Proc. R. Soc. Lond. A 164, 192-215 (1938).
- 136. J. H. WILLIAMSON, J. Comput. Phys. 35, 48-56 (1980).

ARTICLES

CrossM

General Exact Law of Compressible Isentropic Magnetohydrodynamic Flows: Theory and Spacecraft Observations in the Solar Wind

P. Simon[®] and F. Sahraoui

Laboratoire de Physique des Plasmas, CNRS, École polytechnique, Université Paris-Saclay, Sorbonne Université, Observatoire de Paris-Meudon, F-91128 Palaiseau Cedex, France; pauline.simon@lpp.polytechnique.fr

Received 2021 March 29; revised 2021 May 17; accepted 2021 May 18; published 2021 July 26

Abstract

Various forms of exact laws governing magnetohydrodynamic (MHD) turbulence have been derived either in the incompressibility limit, or for isothermal compressible flows. Here we propose a more general method that allows us to obtain such laws for any turbulent isentropic flow (i.e., constant entropy). We demonstrate that the known MHD exact laws (incompressible and isothermal) and the new (polytropic) one can be obtained as specific cases of the general law when the corresponding closure equation is stated. We also recover all known exact laws of hydrodynamic (HD) turbulence (incompressible, isothermal, and polytropic) from this law in the limit B = 0. We furthermore show that the difference between the two forms (isothermal and polytropic) of the MHD exact laws of interest in this work resides in some of the source terms and in the explicit form of the flux term that depends on internal energy. Finally, we apply these two forms to Parker Solar Probe data taken in the inner heliosphere to highlight how the different closure equations affect the energy cascade rate estimates.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Solar physics (1476); Magnetohydrodynamics (1964); Plasma astrophysics (1261); Plasma physics (2089); Interplanetary turbulence (830)

1. Introduction

The formalism of an exact law describing turbulent flows was first developed in the context of neutral fluid dynamics: incompressible hydrodynamics (HD; Kolmogorov 1991; Frisch 1995; Antonia et al. 1997; Galtier 2016), isothermal (Galtier & Banerjee 2011), and polytropic (Banerjee & Galtier 2014) compressible HD. It was then extended to magnetized plasmas described within various approximations: incompressible MHD (IMHD; Politano & Pouquet 1998; Yoshimatsu 2012; Banerjee & Galtier 2017), incompressible Hall-MHD (IHMHD; Galtier 2008; Banerjee & Galtier 2017; Hellinger 2018; Ferrand et al. 2019), incompressible (Andrés et al. 2016a, 2016b) and compressible (Banerjee & Andrés 2020) two fluids, isothermal compressible MHD (CMHD; Banerjee & Galtier 2013; Andrés & Sahraoui 2017; Andrés et al. 2018b), and isothermal compressible Hall-MHD (CHMHD; Andrés et al. 2018a). The main driver of such efforts, other than their intrinsic theoretical interest, is to better model the turbulent heating of the solar wind and magnetospheric plasmas (Richardson et al. 1995; Bruno & Carbone 2013; Sahraoui et al. 2020). Indeed, the formalism of an exact law allows us to derive (within the classical assumptions that will be recalled further below) exact relations that couple, in a full nonlinear way, the turbulent fields to the energy transfer rate between scales. This cascade rate is assumed to be equal to the rate by which energy is injected into the system (at the largest scales) and to the rate by which it is dissipated (at the smallest scales). Although these fluid models have strong limitations, in particular when applied to collisionless space plasmas, they nevertheless provide useful means by which one can apprehend the challenging problem of quantifying energy dissipation and particle heating in spacecraft observations. This is witnessed by the significant progress that has been achieved in recent years on these questions, from the evidence of turbulence cascade in space plasmas (Smith et al. 2006; Sorriso-Valvo et al. 2007; Sahraoui 2008; Stawarz et al. 2010; Marino et al. 2012; Coburn et al. 2015), to the study of how density fluctuations enhance the dissipation rate in the solar wind and planetary magnetospheres (Carbone et al. 2009; Banerjee et al. 2016; Hadid et al. 2017, 2018; Andrés et al. 2020), and the first estimation of the turbulent dissipation rate at kinetic (subion) scales in the Earth's magnetosheath turbulence (Andrés et al. 2019; Sorriso-Valvo et al. 2019; Bandyopadhyay et al. 2020; Quijia et al. 2021), and other key regions of the magnetosphere (Sorriso-Valvo et al. 2019; Quijia et al. 2021).

Here, we extend the previous efforts by proposing a general method that allows us to obtain the exact law for any isentropic flow using the internal energy equation, but without a prior specification of the state equation (isothermal or polytropic). Among other results, this formulation provides a new exact law for compressible polytropic MHD flows, which allows us to relax the isothermal closure when applying the exact law formalism to space plasma observations (Hadid et al. 2017, 2018; Andrés et al. 2020). We also show a first application of the new law to the Parker Solar Probe (PSP) to highlight similarities and differences with the isothermal closure.

2. Generalized Exact Law for Isentropic Flows

Our analysis is based on the following compressible MHD equations

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0, \tag{1}$$

$$\partial_t(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = \nabla \cdot (\rho \mathbf{v}_{\mathbf{A}} \mathbf{v}_{\mathbf{A}}) - \nabla (P + P_M) + d_k + f, \qquad (2)$$

$$\boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}_{\mathbf{A}}) = -\rho \, \boldsymbol{\nabla} \cdot \boldsymbol{v}_{\mathbf{A}},\tag{3}$$

$$\partial_t(\rho \mathbf{v}_{\mathbf{A}}) + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}_{\mathbf{A}}) = \boldsymbol{\nabla} \cdot (\rho \mathbf{v}_{\mathbf{A}} \mathbf{v}) + \rho \mathbf{v} \boldsymbol{\nabla} \cdot \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \boldsymbol{\nabla} \cdot \mathbf{v} + \mathbf{d}_m, \qquad (4)$$

THE ASTROPHYSICAL JOURNAL, 916:49 (9pp), 2021 July 20

where ρ is the mass density, v the velocity field, v_A the Alfvén velocity, P the pressure, P_M the magnetic pressure, d_k the kinetic viscous dissipation, d_m the magnetic resistive dissipation, and f a stationary homogeneous external force assumed to act on large scales.

Note that the above system is not closed so long as a closure equation relating, for instance, the second order moment P to the mass density ρ , is not specified. Instead of adopting such an equation at this stage as done in all previous derivations of exact laws for compressible HD and MHD turbulence (Galtier & Banerjee 2011; Banerjee & Galtier 2013, 2014; Andrés & Sahraoui 2017; Andrés et al. 2018a), here we elect to remain more general and assume only that we are to deal with isentropic flows in which the entropy remains constant (note that sometimes these flows are called barotropic, see Zakharov et al. 1992; Eyink & Drivas 2018). To this purpose we introduce a general equation that governs the internal energy variations in such flows. We show below that such a law encompasses incompressible and compressible (isothermal and polytropic) closures, whose von Kármán-Howarth-Monin (KHM) equations will be obtained as simple limits of the general form that we derive in this work. To do so we need to recall some thermodynamics notions in view of highlighting some subtle differences between the turbulent cascade in compressible and incompressible flows and the concept of energy dissipation within the formalism of exact laws.

2.1. Some Remarks on the Thermodynamics

Let us start with the definition of internal energy variation δU in a given system, based on the first principle of thermodynamics

$$\delta U = \delta Q + \delta W = T\delta S - P\delta V \tag{5}$$

that reflects the two distinct contributions to the internal energy variation: the heat component $\delta Q = T\delta S$ due to entropy variation δS and the work of the pressure force δW (*V* and *T* are the volume and temperature of the considered thermodynamical system). For isentropic flows, i.e., a constant entropy, the internal energy variation reduces to the work of the pressure force:

$$\delta U = -P\delta V,\tag{6}$$

with the definition of the mass density $\rho = \frac{m}{V}$ one obtains by simple variation

$$\delta V = -\frac{m}{\rho^2} \delta \rho. \tag{7}$$

Injecting relation (7) into Equation (6) and introducing the specific internal energy u = U/m (i.e., internal energy per unit mass) yields

$$\delta u = \frac{P}{\rho^2} \delta \rho. \tag{8}$$

Introducing the time and spatial derivatives one can obtain the following relations from Equation (8)

$$\partial_t u = \frac{P}{\rho^2} \partial_t \rho, \tag{9}$$

$$\boldsymbol{\nabla}\boldsymbol{u} = \frac{P}{\rho^2} \boldsymbol{\nabla}\rho. \tag{10}$$

Combining relations (9) and (10) with the continuity Equation (1) one obtains the following "continuity" equation for the specific internal energy

$$\partial_t u + \mathbf{v} \cdot \nabla(u) = -\frac{P}{\rho} \nabla \cdot \mathbf{v}, \qquad (11)$$

which can be written for convenience as

$$\partial_t(\rho u) + \boldsymbol{\nabla} \cdot (\rho u \boldsymbol{v}) = -P \boldsymbol{\nabla} \cdot \boldsymbol{v}. \tag{12}$$

Some remarks can be made here based on Equations (11) and (12). First, we recall that this equation was derived assuming a constant entropy and an isotropic pressure. This means that this equation forbids any (irreversible) dissipation that requires an increase of entropy. At first sight this observation might sound in contradiction with the idea that turbulence requires dissipation, which is reflected by the presence of the resistive and viscous terms in Equations (2) and (4) (Eyink & Drivas 2018). The contradiction can actually be solved thanks to the assumptions used in the derivation of the turbulence exact laws (as will be recalled below): they are valid only in a range of (inertial) scales where the dissipation is negligible with respect to nonlinear transfers, the former becoming comparable to or larger than the latter only at the very smallest scales. In this sense, the internal energy Equations (11) and (12) should be understood as valid only in the inertial range. Entropy can be produced, but only at (and confined to) small scales. A more rigorous solution to this problem would consist of introducing a cooling term (e.g., thermal radiation) that would extract entropy production (and subsequent internal energy excess) at sufficient rate so that Equations (11) and (12) remain valid at all scales (Eyink & Drivas 2018).

The second remark that can be made is that in the incompressible limit (i.e., ∇ . $\nu = 0$), the internal energy is fully conserved for an isentropic flow: $d_t(u) = \partial_t u + v$. $\nabla u = 0$. This observation means that in incompressible HD flows (a generalization to MHD is straightforward) the total energy is the sum of the kinetic and internal energies, but the cascade concerns only the kinetic energy (Kolmogorov 1991; Frisch 1995; Politano & Pouquet 1998). The explanation is rather simple: under the assumptions that (kinetic) energy is injected at the largest scales and dissipation limited to the smallest ones, since internal energy is conserved (i.e., no exchange with kinetic energy) then the injected energy has to cascade to small scales (due to nonlinearities) where it is eventually dissipated. This "necessity" of cascade in incompressible flows does not hold in compressible flows, for which the internal energy is no longer conserved and exchanges with kinetic energy via the right-hand side (rhs) terms of Equations (11) and (12). In this case and under the same assumptions as above, once kinetic energy is injected at the largest scales, it can nonlinearly exchange with the internal energy (through the pressure forces) in a way that may populate the inertial range but without necessarily implying a cascade toward small scales with a constant flux. An example would be planar shocks in compressible fluids (a multiscale problem where compression dominates and heating occurs, but the notion of cascade is irrelevant). This idea is supported by the presence in all the existing exact laws for compressible HD, MHD, and Hall-MHD flows of source terms (i.e., proportional to the divergence of fields such as v and v_A) that act in the inertial range and reflect the presence of compression and dilatation of the fluid (Galtier & Banerjee 2011; Banerjee & Galtier 2013;

Andrés et al. 2018a, 2019; Ferrand et al. 2021). Those terms can fully balance the flux terms, at least in some instances of supersonic turbulence (Ferrand et al. 2020). In such situations the existence of an energy cascade with a constant flux over scales is not guaranteed. Therefore, in compressible models of turbulence, the examination of the weight of the source with respect to the flux terms is important to assess the presence or not of an energy cascade over scales as is known in incompressible flows.

A final remark about compressible turbulent flows can be made regarding the nature of the energy that cascades to small scales. In the previous works (and in the present paper) the derivation of the exact law was based on using two-point correlation functions that can be related to the total energy of the system (i.e., the sum of kinetic, magnetic, and internal energies; Banerjee & Galtier 2013; Andrés et al. 2018a, 2019; Ferrand et al. 2020, 2021). However, it is important to note that in such formulations it is the sole "component" of internal energy driven by the pressure forces as defined by Equation (6) that is considered in the cascade process. The other "component" due to entropy variation (TdS) is assumed to be negligible in the inertial range. This observation does not contradict the fact that all the energy will be eventually converted into heat at the smallest scales, which will result in an increase of the internal energy through entropy variation $T\delta S$ according to Equation (5). From this viewpoint, there is no difference between incompressible and compressible turbulence: energy will eventually be dissipated into heat. The difference lies only in the nature of the energy that undergoes that conversion: in the former it is the kinetic energy (so long as internal energy remains conserved, i.e., the work of the pressure force is zero), in the latter it is the total energy (the sum of kinetic and internal energies).

2.2. KHM Equation for Compressible Isentropic MHD Turbulence

To derive the KHM equation for isentropic flow we use Equations (1)–(4) complemented by the internal energy Equation (11). We define ℓ as the spatial increment connecting two points \mathbf{x} and \mathbf{x}' as $\mathbf{x}' = \mathbf{x} + \ell$ and, for any given field ξ , $\xi(\mathbf{x}) \equiv \xi$ and $\xi(\mathbf{x}') \equiv \xi'$. We consider the mean correlation function $R_{\text{tot}} = \langle R + R' \rangle / 2$ with $\langle \rangle$ an ensemble average, and $\langle R \rangle = \langle \rho \mathbf{v} \cdot \mathbf{v}' / 2 + \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' / 2 + \rho u' \rangle = \langle R_k + R_B + R_u \rangle$ a correlation function taken at the point \mathbf{x} and $\langle R' \rangle$ its conjugate, i.e., the same function taken at the point \mathbf{x}' . We note that if $\mathbf{x} = \mathbf{x}'$, $R_{\text{tot}} = \langle E \rangle = \langle \rho v^2 / 2 + \rho v_A^2 / 2 + \rho u \rangle$, which defines the mean total energy of the system.

Using the property $\partial_t \langle \rangle = \langle \partial_t \rangle$, the temporal evolution of R_{tot} is given by

$$\partial_{t} R_{\text{tot}} = \frac{1}{4} \langle \partial_{t} (\rho \boldsymbol{\nu} \cdot \boldsymbol{\nu}') + \partial_{t} (\rho' \boldsymbol{\nu}' \cdot \boldsymbol{\nu}) \rangle + \frac{1}{4} \langle \partial_{t} (\rho \boldsymbol{\nu}_{\mathbf{A}} \cdot \boldsymbol{\nu}_{\mathbf{A}}') + \partial_{t} (\rho' \boldsymbol{\nu}_{\mathbf{A}}' \cdot \boldsymbol{\nu}_{\mathbf{A}}) \rangle + \frac{1}{2} \langle \partial_{t} (\rho u' + \rho' u) \rangle.$$
(13)

We are interested in deriving the explicit forms of the time evolution of the correlators $\langle R_k \rangle$, $\langle R_B \rangle$, and $\langle R_u \rangle$ involved in Equation (13). For this purpose we use Equations (1)–(4) and (11) written at the positions x and x'. We recall that in our formalism

we can write for any entity $A: \partial_x A' = \partial_{x'} A = 0$, and define $\delta A \equiv A' - A$. Under the hypothesis of space homogeneity we also have the relations $\langle \nabla' \cdot \rangle = \nabla_{\ell} \cdot \langle \rangle$ and $\langle \nabla \cdot \rangle = -\nabla_{\ell} \cdot \langle \rangle$, where ∇_{ℓ} denotes the derivative operator along the increment ℓ . Using these relations, we obtain the following expressions for the correlators involved in Equation (13) (see the Appendix for details):

$$2\langle \partial_{t}(R_{k}+R_{k}')\rangle = \langle \partial_{t}(\rho\mathbf{v}\cdot\mathbf{v}'+\rho'\mathbf{v}'\cdot\mathbf{v})\rangle$$

$$= \nabla_{t} \cdot \langle \rho\mathbf{v}\cdot\mathbf{v}'\mathbf{v}-\rho\mathbf{v}\cdot\mathbf{v}'\mathbf{v}'-\rho'\mathbf{v}'\cdot\mathbf{v}\mathbf{v}'+\rho'\mathbf{v}'\cdot\mathbf{v}\rangle$$

$$-\nabla_{t} \cdot \langle \rho\mathbf{v}_{\mathbf{A}}\cdot\mathbf{v}'\mathbf{v}_{\mathbf{A}}-\rho\mathbf{v}\cdot\mathbf{v}_{\mathbf{A}}'\mathbf{v}_{\mathbf{A}}'-\rho'\mathbf{v}_{\mathbf{A}}'\cdot\mathbf{v}\mathbf{v}_{\mathbf{A}}'+\rho'\mathbf{v}'\cdot\mathbf{v}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}}\rangle$$

$$+\nabla_{t} \cdot \langle (P+P_{M})\mathbf{v}'-(P'+P_{M}')\mathbf{v}-\frac{\rho}{\rho'}(P'+P_{M}')\mathbf{v}$$

$$+\frac{\rho'}{\rho}(P+P_{M})\mathbf{v}'-\rho\mathbf{u}'\mathbf{v}+\rho'\mathbf{u}\mathbf{v}'\rangle$$

$$+\left\langle \rho'\mathbf{v}'\cdot\mathbf{v}\nabla\cdot\mathbf{v}+\rho\mathbf{v}\cdot\mathbf{v}'\nabla'\cdot\mathbf{v}'-2\rho'\mathbf{v}'\cdot\mathbf{v}_{\mathbf{A}}\nabla\cdot\mathbf{v}_{\mathbf{A}}$$

$$-2\rho\mathbf{v}\cdot\mathbf{v}_{\mathbf{A}}'\nabla'\cdot\mathbf{v}_{\mathbf{A}}'-\frac{P_{M}'}{P'}\nabla'\cdot(\rho\mathbf{u}'\mathbf{v})-\frac{P_{M}}{P}\nabla\cdot(\rho'\mathbf{u}\mathbf{v}')\right\rangle$$

$$+\left\langle d_{k}\cdot\mathbf{v}'+\frac{\rho}{\rho'}d_{k}'\cdot\mathbf{v}+d_{k}'\cdot\mathbf{v}+\frac{\rho'}{\rho}d_{k}\cdot\mathbf{v}'$$

$$+f\cdot\mathbf{v}'+\frac{\rho}{\rho'}f'\cdot\mathbf{v}+f'\cdot\mathbf{v}+\frac{\rho'}{\rho}f\cdot\mathbf{v}'\right\rangle,$$
(14)

$$2\langle \partial_{t}(R_{B} + R_{B}') \rangle = \langle \partial_{t}(\rho\mathbf{v}_{A} \cdot \mathbf{v}_{A}' + \rho'\mathbf{v}_{A}' \cdot \mathbf{v}_{A}) \rangle$$

$$= \nabla_{\ell} \cdot \langle \rho\mathbf{v}_{A} \cdot \mathbf{v}_{A}'\mathbf{v} - \rho\mathbf{v}_{A} \cdot \mathbf{v}_{A}'\mathbf{v}' - \rho'\mathbf{v}_{A}' \cdot \mathbf{v}_{A}\mathbf{v}' + \rho'\mathbf{v}_{A}' \cdot \mathbf{v}_{A}\mathbf{v} \rangle$$

$$- \nabla_{\ell} \cdot \langle \rho\mathbf{v} \cdot \mathbf{v}_{A}'\mathbf{v}_{A} - \rho\mathbf{v}_{A} \cdot \mathbf{v}'\mathbf{v}_{A}' - \rho'\mathbf{v}' \cdot \mathbf{v}_{A}\mathbf{v}_{A}' + \rho'\mathbf{v}_{A}' \cdot \mathbf{v}_{A} \rangle$$

$$+ \left\langle \left(\frac{1}{2}\rho'\mathbf{v}_{A}' \cdot \mathbf{v}_{A} - \frac{1}{2}\rho\mathbf{v}_{A} \cdot \mathbf{v}_{A}'\right)\nabla \cdot \mathbf{v} \right.$$

$$+ \left(\frac{1}{2}\rho\mathbf{v}_{A} \cdot \mathbf{v}_{A}' - \frac{1}{2}\rho'\mathbf{v}_{A}' \cdot \mathbf{v}_{A}\right)\nabla' \cdot \mathbf{v}' \rangle$$

$$+ \left\langle (\rho'\mathbf{v}' \cdot \mathbf{v}_{A} - \rho\mathbf{v}_{A} \cdot \mathbf{v}')\nabla' \cdot \mathbf{v}_{A}' \right.$$

$$+ \left\langle d_{m} \cdot \mathbf{v}_{A}' + \frac{\rho}{\rho'}d'_{m}' \cdot \mathbf{v}_{A} + d'_{m}' \cdot \mathbf{v}_{A} + \frac{\rho'}{\rho}d_{m} \cdot \mathbf{v}_{A}' \right\rangle, \qquad (15)$$

$$2\langle \partial_{t}(R_{u} + R'_{u}) \rangle = \langle \partial_{t}(\rho u' + \rho' u) \rangle$$

= $\nabla_{\ell} \cdot \langle \rho u' v - \rho u' v' - \rho' u v' - \rho' u v \rangle$
+ $\left\langle \left(\rho u' - \frac{\rho}{\rho'} P' \right) \nabla' \cdot v' + \left(\rho' u - \frac{\rho'}{\rho} P \right) \nabla \cdot v \right\rangle$. (16)

The ∇_{ℓ} terms (except the third line of the Equation (14) that contains pressure terms) of Equations (14)–(16) contain a part of the developed form of the structure functions $\langle \delta(\rho v) \cdot \delta v \delta v \rangle$, $\langle \delta(\rho v_A) \cdot \delta v_A \delta v \rangle$, $\langle \delta \rho \delta u \delta v \rangle$, $\langle \delta(\rho v_A) \cdot \delta v \delta v_A \rangle$, and $\langle \delta(\rho v) \cdot \delta v_A \delta v_A \rangle$. The other part can be written as source terms that include a dilatation factor like $\nabla \cdot v$ or $\nabla \cdot v_A$. Then, introducing the structure functions in the Equations (14)–(16) (see the Appendix for an example), Equation (13), which is the sum of THE ASTROPHYSICAL JOURNAL, 916:49 (9pp), 2021 July 20

Equations (14)–(16), becomes:

$$\begin{aligned} 4\partial_{t}R_{\text{tot}} &= \nabla_{\ell} \cdot \left\langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} + \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v}_{\mathbf{A}} \delta \mathbf{v} + 2\delta\rho\delta u\delta \mathbf{v} \right. \\ &- \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v} \delta \mathbf{v}_{\mathbf{A}} - \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{\mathbf{A}} \delta \mathbf{v}_{\mathbf{A}} \right\rangle \\ &+ \nabla_{\ell} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) (P + P_{M}) \mathbf{v} + \rho' u \mathbf{v}' - \rho u' \mathbf{v} \right\rangle \\ &+ \left\langle (\nabla' \cdot \mathbf{v}') \left(\rho \mathbf{v} \cdot \delta \mathbf{v} + \rho \mathbf{v}_{\mathbf{A}} \cdot \delta \mathbf{v}_{\mathbf{A}} \right. \\ &- \frac{1}{2} \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' + 2\rho \left(\delta u - \frac{P'}{\rho'}\right) \right) \right\rangle \\ &+ \left\langle (\nabla \cdot \mathbf{v}) \left(-\rho' \mathbf{v}' \cdot \delta \mathbf{v} - \rho' \mathbf{v}_{\mathbf{A}}' \cdot \delta \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' \right. \\ &- \frac{1}{2} \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}_{\mathbf{A}} - 2\rho' \left(\delta u + \frac{P}{\rho}\right) \right) \right\rangle \\ &- \left\langle (\nabla \cdot \mathbf{v}_{\mathbf{A}}') (2\rho \mathbf{v} \cdot \delta \mathbf{v}_{\mathbf{A}} - \rho' \mathbf{v}' \cdot \mathbf{v}_{\mathbf{A}} + \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}') \right. \\ &- \left\langle (\nabla \cdot \mathbf{v}_{\mathbf{A}}) (2\rho' \mathbf{v}' \cdot \delta \mathbf{v}_{\mathbf{A}} - \rho' \mathbf{v}' \cdot \mathbf{v}_{\mathbf{A}} + \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}') \right\rangle \\ &- \left\langle (\nabla \cdot \mathbf{v}_{\mathbf{A}}) (2\rho' \mathbf{v}' \cdot \delta \mathbf{v}_{\mathbf{A}} + \rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' - \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}) \right\rangle \\ &- \left\langle \nabla \cdot \mathbf{v}_{\mathbf{A}} (2\rho' \mathbf{v}' \cdot \delta \mathbf{v}_{\mathbf{A}} + \rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' - \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}) \right\rangle \\ &+ \left\langle f \cdot \mathbf{v}' + \frac{\rho}{\rho} f' \cdot \mathbf{v} + f' \cdot \mathbf{v} + \frac{\rho'}{\rho} f \cdot \mathbf{v}' \right\rangle \\ &+ \left\langle d_{\mathbf{k}} \cdot \mathbf{v}' + \frac{\rho}{\rho'} d'_{\mathbf{k}}' \cdot \mathbf{v} + d'_{\mathbf{k}}' \cdot \mathbf{v} + \frac{\rho'}{\rho} d_{\mathbf{k}} \cdot \mathbf{v}' \\ &+ d_{\mathbf{m}} \cdot \mathbf{v}_{\mathbf{A}}' + \frac{\rho}{\rho'} d'_{\mathbf{m}}' \cdot \mathbf{v}_{\mathbf{A}} + d'_{\mathbf{m}}' \cdot \mathbf{v}_{\mathbf{A}} + \frac{\rho'}{\rho} d_{\mathbf{m}}' \cdot \mathbf{v}_{\mathbf{A}}' \right\rangle. \end{aligned}$$

Equation (17) is the KHM equation for isentropic MHD turbulence. Following the usual assumptions used in fully developed homogeneous turbulence (infinite kinetic and magnetic Reynolds numbers, a stationary state with a balance between forcing and dissipation (Frisch 1995; Galtier & Banerjee 2011)), one obtains

$$-4\varepsilon = \nabla_{\ell} \cdot \langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} + \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v}_{\mathbf{A}} \delta \mathbf{v} + 2\delta \rho \delta u \delta \mathbf{v} - \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v} \delta \mathbf{v}_{\mathbf{A}} - \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{\mathbf{A}} \delta \mathbf{v}_{\mathbf{A}} \rangle + \nabla_{\ell} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) (P' + P_M) \mathbf{v}' - \rho u' \mathbf{v} \right\rangle + \left\langle (\nabla' \cdot \mathbf{v}') \left(\rho \mathbf{v} \cdot \delta \mathbf{v} + \rho \mathbf{v}_{\mathbf{A}} \cdot \delta \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' + 2\rho \left(\delta u - \frac{P'}{\rho'}\right) \right) \right\rangle + \left\langle (\nabla \cdot \mathbf{v}) \left(-\rho' \mathbf{v}' \cdot \delta \mathbf{v} - \rho' \mathbf{v}_{\mathbf{A}}' \cdot \delta \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' - \frac{1}{2} \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho' \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' - \frac{1}{2} \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}_{\mathbf{A}} - 2\rho' \left(\delta u + \frac{P}{\rho}\right) \right) \right\rangle - \left\langle (\nabla' \cdot \mathbf{v}_{\mathbf{A}}') (2\rho \mathbf{v} \cdot \delta \mathbf{v}_{\mathbf{A}} - \rho' \mathbf{v}' \cdot \mathbf{v}_{\mathbf{A}} + \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}') - (\nabla \cdot \mathbf{v}_{\mathbf{A}}) (2\rho' \mathbf{v}' \cdot \delta \mathbf{v}_{\mathbf{A}} + \rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' - \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v}) \right\rangle - \left\langle \frac{P'_M}{P'} \nabla' \cdot (\rho u' \mathbf{v}) + \frac{P_M}{P} \nabla \cdot (\rho' u \mathbf{v}') \right\rangle,$$
(18)

Simon & Sahraoui

where we used the assumption $\langle \mathbf{f} \cdot \mathbf{v}' + \frac{\rho}{\rho} \mathbf{f}' \cdot \mathbf{v} + \mathbf{f}' \cdot \mathbf{v} + \frac{\rho'}{\rho'} \mathbf{f} \cdot \mathbf{v}' \rangle \simeq 4\varepsilon$, with ε being the mean rate of energy injection by unit mass. Equation (18) is the first main result of this paper: a general exact law for compressible isentropic MHD flows. It is valid in the inertial range where the forcing and dissipation are assumed to be negligible with respect to the nonlinear terms. Note that this equation depends on the plasma pressure *P* whose explicit dependence on mass density ρ is not yet stated. We show now that by specifying such a relation (i.e., choosing a closure equation) we can derive the exact laws for isothermal and polytropic MHD (and HD in the limit $\mathbf{B} = 0$) turbulence, along with their incompressible limits.

2.2.1. Incompressible MHD Turbulence

The incompressible MHD exact law (Politano & Pouquet 1998) can readily be obtained from Equation (18) in the limit of constant mass density $\rho = \rho_0$, which implies that all the source terms (i.e., those proportional to field divergence) tend to zero. Equation (18) reduces then to

$$-4\frac{\varepsilon}{\rho_0} = \nabla_{\ell} \cdot \langle (\delta \mathbf{v} \cdot \delta \mathbf{v} + \delta \mathbf{v}_A \cdot \delta \mathbf{v}_A) \delta \mathbf{v} - 2\delta \mathbf{v}_A \cdot \delta \mathbf{v} \delta \mathbf{v}_A \rangle.$$
(19)

2.2.2. Compressible Isothermal MHD Turbulence

In the isothermal case, the state equation is $P = c_s^2 \rho$ with c_s the constant sound speed. Then one can readily demonstrate the equality:

$$\nabla_{\ell} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right) (P + P_M) \mathbf{v}' - \left(1 + \frac{\rho}{\rho'}\right) (P' + P'_M) \mathbf{v} \right. \\ \left. + \rho' u \mathbf{v}' - \rho u' \mathbf{v} \right\rangle - \left\langle 2\rho \frac{P'}{\rho'} \nabla' \cdot \mathbf{v}' \right\rangle - \left\langle 2\rho' \frac{P}{\rho} \nabla \cdot \mathbf{v} \right\rangle \\ = \left\langle (P_M - P) \nabla' \cdot \mathbf{v}' \right\rangle + \left\langle (P'_M - P') \nabla \cdot \mathbf{v} \right\rangle \\ \left. + \left\langle \left(\frac{\mathbf{v}_A^2}{2} + u\right) \nabla' \cdot (\rho' \mathbf{v}') \right\rangle + \left\langle \left(\frac{\mathbf{v}_A'^2}{2} + u'\right) \nabla \cdot (\rho \mathbf{v}) \right\rangle.$$

$$(20)$$

With the modifications of the source terms and by introducing the notation $\beta = P/P_M$, $\bar{\rho} = (\rho' + \rho)/2$ for the average density, $H = \rho \mathbf{v} \cdot \mathbf{v}_A$ for the cross helicity, $R_E = \rho \mathbf{v} \cdot \mathbf{v}'/2 + \rho \mathbf{v}_A \cdot \mathbf{v}_A'/2 + \rho u'$, $R_B = \rho \mathbf{v}_A \cdot \mathbf{v}_A'/2$, and $R_H = \rho \mathbf{v} \cdot \mathbf{v}_A'/2 + \rho \mathbf{v}_A \cdot \mathbf{v}'/2$, the nonaveraged correlators for the total energy, magnetic energy, and cross helicity, we recognize the isothermal exact law derived by Andrés & Sahraoui (2017):

$$-2\varepsilon = \frac{1}{2}\nabla_{\ell} \cdot \left\langle \left[\delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v}_{A} + 2\delta\rho\delta u\right]\delta \mathbf{v} - \left[\delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{A}\right]\delta \mathbf{v}_{A}\right\rangle \\ + \left\langle \left(\nabla' \cdot \mathbf{v}'\right) \left[R_{E} - \frac{R_{B} + R_{B}'}{2} - E + \frac{P_{M} - P}{2}\right]\right\rangle \\ + \left\langle \left(\nabla \cdot \mathbf{v}\right) \left[R_{E}' - \frac{R_{B}' + R_{B}}{2} - E' + \frac{P_{M}' - P'}{2}\right]\right\rangle$$

THE ASTROPHYSICAL JOURNAL, 916:49 (9pp), 2021 July 20

$$+ \langle (\boldsymbol{\nabla}' \cdot \boldsymbol{v}_{\mathbf{A}}')[R'_{H} - R_{H} - \bar{\rho}\boldsymbol{v} \cdot \boldsymbol{v}_{\mathbf{A}}' + H] \rangle + \langle (\boldsymbol{\nabla} \cdot \boldsymbol{v}_{\mathbf{A}})[R_{H} - R'_{H} - \bar{\rho}\boldsymbol{v}' \cdot \boldsymbol{v}_{\mathbf{A}} + H'] \rangle + \frac{1}{2} \left\langle \left(\frac{\boldsymbol{v}_{\mathbf{A}}^{2}}{2} + u \right) \boldsymbol{\nabla}' \cdot (\rho'\boldsymbol{v}') \right\rangle + \frac{1}{2} \left\langle \left(\frac{\boldsymbol{v}_{\mathbf{A}}'^{2}}{2} + u' \right) \boldsymbol{\nabla} \cdot (\rho\boldsymbol{v}) \right\rangle - \frac{1}{2} \langle \beta'^{-1} \boldsymbol{\nabla}' \cdot (\rho u'\boldsymbol{v}) + \beta^{-1} \boldsymbol{\nabla} \cdot (\rho' u \boldsymbol{v}') \rangle.$$

$$(21)$$

In the limit of $v_A = 0$ one can easily recover the exact law of compressible isothermal HD turbulence derived in Galtier & Banerjee (2011).

2.2.3. Compressible Polytropic MHD Turbulence

In the polytropic case, the state equation is $\gamma P = c_s^2 \rho$, but now the sound speed is no longer constant and depends on density variations, γ is the polytropic index. The source terms now are:

$$\nabla_{\ell} \cdot \left\langle \left(1 + \frac{\rho'}{\rho}\right)(P + P_{M})\mathbf{v}' - \left(1 + \frac{\rho}{\rho'}\right)(P' + P_{M}')\mathbf{v} + \rho' u \mathbf{v}' - \rho u' \mathbf{v} \right\rangle - \left\langle 2\rho \frac{P'}{\rho'} \nabla' \cdot \mathbf{v}' \right\rangle - \left\langle 2\rho' \frac{P}{\rho} \nabla \cdot \mathbf{v} \right\rangle$$

$$= \left\langle \left(P_{M} + P - 2\rho \frac{P'}{\rho'}\right) \nabla' \cdot \mathbf{v}' \right\rangle$$

$$+ \left\langle \left(P_{M}' + P' - 2\rho' \frac{P}{\rho}\right) \nabla \cdot \mathbf{v} \right\rangle$$

$$+ \left\langle \left(\frac{c_{s}^{2}}{\gamma} + \frac{\mathbf{v}_{A}^{2}}{2} + u\right) \nabla' \cdot (\rho' \mathbf{v}') \right\rangle$$

$$+ \left\langle \left(\frac{c_{s}'^{2}}{\gamma} + \frac{\mathbf{v}_{A}'^{2}}{2} + u'\right) \nabla \cdot (\rho \mathbf{v}) \right\rangle. \qquad (22)$$

Consequently, the polytropic MHD exact law reads

$$-2\varepsilon = \frac{1}{2}\nabla_{\ell} \cdot \langle [\delta(\rho\mathbf{v}) \cdot \delta\mathbf{v} + \delta(\rho\mathbf{v}_{A}) \cdot \delta\mathbf{v}_{A} + 2\delta\rho\delta u]\delta\mathbf{v} - [\delta(\rho\mathbf{v}_{A}) \cdot \delta\mathbf{v} + \delta(\rho\mathbf{v}) \cdot \delta\mathbf{v}_{A}]\delta\mathbf{v}_{A} \rangle + \left\langle (\nabla' \cdot \mathbf{v}') \left[R_{E} - \frac{R_{B} + R_{B}}{2} - E + \frac{1}{2} \left(P_{M} + P - 2\rho' \frac{c_{s}^{2}}{\gamma} \right) \right] \right\rangle + (\nabla \cdot \mathbf{v}) \left[R_{E}' - \frac{R_{B}' + R_{B}}{2} - E' + \frac{1}{2} \left(P_{M}' + P' - 2\rho' \frac{c_{s}^{2}}{\gamma} \right) \right] \right\rangle + \left\langle (\nabla' \cdot \mathbf{v}_{A}') [R_{H}' - R_{H} - \bar{\rho}\mathbf{v} \cdot \mathbf{v}_{A}' + H] \right\rangle + \left\langle (\nabla \cdot \mathbf{v}_{A}) [R_{H} - R_{H}' - \bar{\rho}\mathbf{v}' \cdot \mathbf{v}_{A} + H'] \right\rangle + \frac{1}{2} \left\langle \left(\frac{c_{s}^{2}}{\gamma} + \frac{\mathbf{v}_{A}^{2}}{2} + u \right) \nabla' \cdot (\rho' \mathbf{v}') \right\rangle + \frac{1}{2} \left\langle \left(\frac{c_{s}'^{2}}{\gamma} + \frac{\mathbf{v}_{A}'^{2}}{2} + u' \right) \nabla \cdot (\rho \mathbf{v}) \right\rangle - \frac{1}{2} \left\langle \beta'^{-1} \nabla' \cdot (\rho u' \mathbf{v}) + \beta^{-1} \nabla \cdot (\rho' u \mathbf{v}') \right\rangle.$$
(23)

Equation (23) is the second main result of this work. One can recognize the same structure as in its counterpart describing isothermal CMHD turbulence (Andrés & Sahraoui 2017). The first line of the rhs term of Equation (23) is the usual flux terms that depend only on field increments, the following three lines are the source terms that depend upon the divergence of the Alfvén and flow speeds and contain the hybrid term that can be written either as a source or a flux term, and the last line is the β -dependent term (Andrés & Sahraoui 2017).

Comparing Equations (21)–(23) one can see that the choice of the closure equation (polytropic versus isothermal) alters the exact law in two locations: in some of source terms that depend on the internal energy or on the polytropic index γ , and in the internal energy flux term $2\delta\rho\delta u\delta v$ through the dependence of the internal energy on the chosen closure. Quantifying the importance of such dependence on the estimation of the cascade rate in the solar wind is the goal of the next section.

Finally, we note that in the limit $v_A = 0$ one can obtain the following exact law for polytropic HD turbulence:

$$-2\varepsilon = \frac{1}{2} \nabla_{\ell} \cdot \langle [\delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} + 2\delta\rho\delta u] \delta \mathbf{v} \rangle + \left\langle (\nabla' \cdot \mathbf{v}') \left[R_E - E + \frac{1}{2} \left(P - 2\rho \frac{c_s'^2}{\gamma} \right) \right] \right\rangle + (\nabla \cdot \mathbf{v}) \left[R'_E - E' + \frac{1}{2} \left(P' - 2\rho' \frac{c_s^2}{\gamma} \right) \right] \right\rangle + \frac{1}{2} \left\langle \left(\frac{c_s^2}{\gamma} + u \right) \nabla' \cdot (\rho' \mathbf{v}') + \left(\frac{c_s'^2}{\gamma} + u' \right) \nabla \cdot (\rho \mathbf{v}) \right\rangle.$$
(24)

The expression of this law is different from the one derived by Banerjee & Galtier (2014), because of the different expressions of the internal energy correlators used in the two derivations $(\rho \sqrt{u} \sqrt{u'} = \frac{\rho C_s C'_s}{\gamma(\gamma - 1)}$ instead of $\rho u' = \frac{\rho C'_s C'_s}{\gamma(\gamma - 1)}$). The two laws should however be equivalent if tested on numerical simulations as done for IHMHD (Ferrand et al. 2019).

3. Application to Spacecraft Observations

We use PSP data recorded on 2018 November 4 between 00:00 and 02:30 during its first orbit at around 36 R_s , where R_s is the solar radius (Fox et al. 2016). The data used are those of the magnetic field measured by the FIELDS experiment with a sampling time of 3 ms (Bale et al. 2016) and of the plasma moments (density, ion velocity, and temperature) from the Solar Wind Electrons Alphas and Protons (SWEAP) experiment (Kasper et al. 2016) sampled at 0.873 s. In order to compute the cascade rate, which involves correlations between the plasma moments and the magnetic field data, we had to resample the magnetic field data at the resolution of the SWEAP measurements. The analyzed data are shown in Figure 1. We analyze two subintervals (marked by the red color) that reflect two different levels of density fluctuations: the first one (subset 1) from 00:35 to 01:05 shows very low compressibility (typically $\langle |\delta \rho| / \rho_0 \rangle \sim 8\%$), while the second one (subset 2) from 01:45 to 02:15 shows larger density fluctuations ($\langle |\delta \rho| / \rho_0 \rangle \sim 20\%$). This choice is made to investigate the impact of the different levels of density fluctuations on the cascade rate estimated from isothermal

Figure 1. The PSP data measured in the inner heliosphere on 2018 November 4. Panels (a)–(c) are the three magnetic field components (in the RTN reference frame), (d) is the corresponding magnitude, (e) is the angle between the fluid velocity and the magnetic field, and (f) and (g) are the relative proton density and temperature fluctuations, respectively. The red areas indicate the intervals where the cascade rate is computed.

and polytropic CMHD models with respect to that given by the IMHD model. The choice of 30 minute duration guarantees including about three correlation times of the turbulent fluctuations in the analyzed data based on the estimation given by Parashar et al. (2020) (our intervals were included in that study where a correlation time is estimated to ~600 s). In Figure 1 we also plot the angle Θ_{VB} between the local magnetic field and plasma velocity. It is used to check that the two selected periods correspond to a relatively stationary angle, a necessary condition to obtain a reliable estimate of the cascade rate as shown in Hadid et al. (2017). (Because of the use of the Taylor hypothesis, sampling very different directions with respect to the local magnetic field can result in large fluctuations of the cascade rate.)

To estimate the cascade rate we introduce two further assumptions to the model. Considering that the source terms require estimating the divergence of the plasma and the compressible Alfvén speeds, which can be done only using multispacecraft data (Andrés et al. 2019), we assume that the source terms are negligible with respect to the flux terms. This assumption is confirmed in numerical simulation results of subsonic MHD turbulence (Andrés et al. 2018a). Therefore, in the following, we only use the first line in Equation (23). We further assume the isotropy of the fluctuations, which allows us to integrate in 3D, on a ball of radius ℓ , the reduced form of Equation (23) and obtain the following expression

$$\varepsilon = -\frac{3}{4v_0\tau} \langle [\delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v}_{\mathbf{A}}] \delta v_{\ell} - [\delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{\mathbf{A}}] \delta v_{\mathbf{A}\,\ell} \rangle - \frac{3}{4v_0\tau} \langle 2\delta\rho\delta u\delta v_{\ell} \rangle = F_1 + F_2,$$
(25)

where ℓ denotes the increment direction taken along the mean flow velocity using the Taylor hypothesis $\ell \sim v_0 \tau$, with τ being the time lag (v_0 is obtained by averaging over each time interval, as for all the quantities that are indexed by 0). The difference between the isothermal and the polytropic models hides in the form of the specific internal energy u given by $u = c_s^2 \ln(\rho/\rho_0)$ in the isothermal case and $u = (c_s^2 - c_{s0}^2)/(\gamma(\gamma - 1))$ in the polytropic one (with $\gamma \neq 1$). This choice is made to ensure a consistency between the two models regarding the initial (background) internal energy ($\rho = \rho_0 \rightarrow u = 0$). The sound velocity c_s comes from the perfect gas equation, $c_s^2 = \gamma k_B T_p/m_p$, with $\gamma = 1$ for the isothermal case and $\gamma = 5/3$ for the polytropic, T_p and m_p being the proton temperature and mass. In Equation (25) the term F_1 refers to the modified (i.e., compressible) Yaglom term given by Equation (19), while F_2 refers to the internal energy one, which has no counterpart in the IMHD theory. Within the reduced

Simon & Sahraoui

Figure 2. Comparison of the computed cascade rate for subset 1 (00:35–01:05, left) and subset 2 (01:45–02:15, right). Panels (a1)–(a2) represent the absolute value of the cascade rate given by each model (incompressible in blue, isothermal in green, and polytropic in red), (b1)–(b2) are the ratios between the internal energy term F_2 and the compressible Yaglom term F_1 for isothermal (green) and polytrope (red) description, and (c1)–(c2) are the ratios between the polytropic (F_{2p}) and isothermal (F_{2i}) estimations of the internal energy term.

Equation (25) the difference in estimating the polytropic and isothermal cascade rate would come only from the term F_{2} .

Figure 2 shows the results obtained from the two subsets of data on the estimation of the full cascade rate using the IMHD, polytropic CHMHD, and isothermal CHMHD, and on the separate contribution of each term, F_1 and F_2 . Since we are primarily interested in the possible impact of the equation of state on the cascade rate, this first application of the general exact law to real data is limited to the evaluation of the absolute values of the cascade rate. The signed cascade rate and the subsequent question of the forward versus inverse cascade, which requires much larger data samples to ensure statistical convergence (Coburn et al. 2015; Hadid et al. 2017), is thus not treated here. In the first data set (Figure 2(a1)) the cascade rate changes sign at $\tau \sim 10$ s and $\tau \sim 400$ s but remains nearly constant between the two time lags, which would define the inertial range where the exact law can be evaluated. The largescale sign change is due to a brief variation in the Yaglom term F_1 that appears by an increase in Figure 2(b1) and a decrease of the incompressible and compressible results in Figure 2(a1). In the second data set (Figure 2(a2)) the cascade rate shows no sign change, but the inertial range would be limited to the range from $\tau \sim 50$ s to $\tau \sim 800$ s.

Figure 2(a2) emphasizes the role of density fluctuations in amplifying the compressible cascade rate by a factor ~ 3 with respect to the incompressible one. This contrasts with the data

in subset 1 (Figure 2(a1)) where the compressible and incompressible cascade rate coincide, in agreement with the lower density fluctuations observed during this time interval $(\langle |\delta \rho| / \rho_0 \rangle \sim 8\%)$. This result confirms the previous findings in the solar wind (Banerjee et al. 2016; Hadid et al. 2017; Andrés et al. 2021). Figures 2(a1)-(a2) show further that the two compressible models (polytropic and isothermal) give essentially the same cascade rate. The reason for the convergence of the two models can be seen in Figures 2(b1)-(b2): the contribution of the internal energy term F_2 in both subsets is negligible with respect to the compressible Yaglom term F_1 (note that the burst of the ratio F_2/F_1 observed at $\tau \sim 400$ s is not caused by an increase of the internal energy term but rather by the decline of the Yaglom term F_1 because of its sign change at the same time lag mentioned above). From this observation one can conclude that the amplification in the total cascade rate seen in Figure 2(a2) comes from the contribution of the density fluctuations to the Yaglom term F_1 . However, even if in these two particular cases the isothermal and polytropic closures yield the same estimation of the cascade rate (since $F_2 \ll F_1$), one can still examine the impact of each closure on the internal energy term F_2 . The result is given in Figures 2(c1)-(c2). We observe that at the largest scales $(\tau \gtrsim 100 \text{ s})$ the two closures provide nearly the same estimation of the internal energy term F_2 . However, at smaller scales there is about an order of magnitude difference in the estimates given

by the two models: in subset 1 the polytropic closure provides a lower contribution to the cascade rate than the isothermal one, while the opposite trend is observed in subset 2. However, a firm conclusion cannot be reached about the physical origin of the difference between the two models, which would require analyzing a larger data sample. Nevertheless, this first application of our new model to spacecraft observations shows that the choice of the "thermodynamics" can impact the estimation of the cascade rate in real data. This impact is likely to be higher in the magnetosheath where density fluctuations are generally larger than those reported here, in which case both F_1 and F_2 would play a leading role in the turbulent cascade (Andrés et al. 2019).

4. Discussion and Conclusions

In this work we provided a general theoretical framework to derive exact relations for homogeneous compressible turbulent flows described within the MHD model. This general framework relies only on the assumption of constant entropy (in the inertial range), which allowed us to introduce a general equation for the internal energy used in the derivation, which encompasses the classical isothermal and polytropic closures (in addition to the incompressible limit). We showed that this formalism allows, when the closure equation is stated in the exact relations, for recovering all known limits of incompressible and compressible isothermal MHD laws, and to obtain a new one that describes polytropic MHD turbulence. We found that the choice of the state equation impacts both the flux (through the internal energy) and the source terms. To quantify such an impact we applied a reduced form of the two theoretical models (where only flux terms were retained) to two intervals of PSP observations taken in the inner heliosphere. We showed that while the overall impact of the state equation on the cascade rate is negligible (because of the relatively low density fluctuations in the solar wind), it does however influence the internal energy term. The same conclusion is obtained from a few intervals of Magnetospheric Multiscale Mission (MMS) data measured in the magnetosheath (not shown) where density fluctuations were higher (up to 50%), but based only on the estimation of the flux terms. Nevertheless, a firm conclusion as to how the two compressible models would impact the cascade rate estimates in spacecraft observations requires analyzing a larger data sample. The use of multispacecraft MMS data should allow us to obtain a full answer to this question, through the estimation of both the flux and source terms.

P.S. is funded through a DIM ACAV+ PhD grant. The authors acknowledge the Johns Hopkins Applied Physics Laboratory for designing, building, and now operating Parker Solar Probe as part of NASA's Living with a Star (LWS) program (contract NNN06AA01C). They also acknowledge the use of data from the FIELDS (http://research.ssl.berkeley.edu/data/psp/data/sci/fields/12/) and SWEAP (http://sweap.cfa. harvard.edu/pub/data/sci/sweap/) instruments.

Appendix Derivation of the Kinetic Energy Correlator Equation

The exact law given in the main text is obtained from the equation governing the temporal evolution of the total correlator $2R_{\text{tot}} = \langle (R_k + R'_k) + (R_B + R'_B) + (R_u + R'_u) \rangle / 2$

(i.e., Equation (13)). The strategy for deriving such an equation is the same for the three terms related to the kinetic, magnetic, and internal energy correlators. Therefore, here we provide only the details of the derivation of the kinetic energy correlator $(R_k + R'_k)$. Using Equations (1), (3), and (10), the momentum Equation (2) can be written under the following form:

$$\partial_t \mathbf{v} + \nabla \cdot (\mathbf{v}\mathbf{v}) - \mathbf{v}\nabla \cdot \mathbf{v} = \nabla \cdot (\mathbf{v}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}}) - 2\mathbf{v}_{\mathbf{A}}\nabla \cdot \mathbf{v}_{\mathbf{A}} - \nabla \left(\frac{P + P_M}{\rho}\right) - \left(1 + \frac{P_M}{P}\right)\nabla u + \frac{d_k}{\rho} + \frac{f}{\rho}.$$
 (A1)

Writing (2) at the point *x* multiplied by ν' then at the point *x'* multiplied by ν , and (A1) at the point *x* multiplied by $\rho'\nu'$ then at the point *x'* multiplied by $\rho\nu$, summing the four terms and using the property $\partial_t \langle \rangle = \langle \partial_t \rangle$ yield the following expression for the time evolution of the kinetic energy correlator

$$\begin{split} & 2\langle\partial_t(R_k+R'_k)\rangle = \langle\partial_t(\rho\mathbf{v}\cdot\mathbf{v}'+\rho'\mathbf{v}'\cdot\mathbf{v})\rangle \\ &= \langle\partial_t(\rho\mathbf{v})\cdot\mathbf{v}'+\rho\mathbf{v}\cdot\partial_t\mathbf{v}'+\partial_t(\rho'\mathbf{v}')\cdot\mathbf{v}+\rho'\mathbf{v}'\cdot\partial_t\mathbf{v}\rangle \\ &= \langle(-\nabla\cdot(\rho\mathbf{v}\mathbf{v})+\nabla\cdot(\rho\mathbf{v}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}})-\nabla(P+P_M)+d_k+f)\cdot\mathbf{v}'\rangle \\ &+ \left\langle\rho\mathbf{v}\cdot\left(-\nabla'\cdot(\mathbf{v}'\mathbf{v}')+\mathbf{v}'\nabla'\cdot\mathbf{v}'+\nabla'\cdot(\mathbf{v}_{\mathbf{A}}'\mathbf{v}_{\mathbf{A}}')\right. \\ &- 2\mathbf{v}_{\mathbf{A}}'\nabla'\cdot\mathbf{v}_{\mathbf{A}}'-\nabla'\left(\frac{P'+P'_M}{\rho'}\right) \\ &- \left(1+\frac{P'_M}{P'}\right)\nabla'u'+\frac{d'_k}{\rho'}+\frac{f'}{\rho'}\right)\right\rangle \\ &+ \left\langle(-\nabla'\cdot(\rho'\mathbf{v}'\mathbf{v}')+\nabla'\cdot(\rho'\mathbf{v}_{\mathbf{A}}'\mathbf{v}_{\mathbf{A}}')\right. \\ &- \nabla'(P'+P'_M)+d'_k+f')\cdot\mathbf{v}\rangle \\ &+ \left\langle\rho'\mathbf{v}'\cdot\left(-\nabla\cdot(\mathbf{v}\mathbf{v})+\mathbf{v}\nabla\cdot\mathbf{v}+\nabla\cdot(\mathbf{v}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}})-2\mathbf{v}_{\mathbf{A}}\nabla\cdot\mathbf{v}_{\mathbf{A}}\right. \\ &- \nabla\left(\frac{P+P_M}{\rho}\right)-\left(1+\frac{P_M}{P}\right)\nabla u+\frac{d_k}{\rho}+\frac{f}{\rho}\right)\right\rangle. \end{split}$$

Using the definition for any entity $A: \partial_x A' = \partial_{x'} A = 0$ one gets:

$$\begin{split} & 2\langle\partial_t(R_k+R_k')\rangle = \langle -\nabla\cdot(\rho\mathbf{v}\cdot\mathbf{v'v}) + \nabla\cdot(\rho\mathbf{v}_{\mathbf{A}}\cdot\mathbf{v'v}_{\mathbf{A}}) \\ & -\nabla\cdot((P+P_M)\mathbf{v'}) + d_k\cdot\mathbf{v'} + f\cdot\mathbf{v'}\rangle \\ & + \left\langle -\nabla'\cdot(\rho\mathbf{v}\cdot\mathbf{v'v'}) + \rho\mathbf{v}\cdot\mathbf{v'\nabla'}\cdot\mathbf{v'} + \nabla'\cdot(\rho\mathbf{v}\cdot\mathbf{v}_{\mathbf{A}}'\mathbf{v}_{\mathbf{A}}') \\ & - 2\rho\mathbf{v}\cdot\mathbf{v}_{\mathbf{A}}'\nabla'\cdot\mathbf{v}_{\mathbf{A}}' - \nabla'\cdot\left(\frac{P'+P'_M}{\rho'}\rho\mathbf{v}\right) \\ & - \left(1+\frac{P'_M}{P'}\right)\nabla'\cdot(\rho u'\mathbf{v}) + \rho\mathbf{v}\cdot\frac{d'_k}{\rho'} + \rho\mathbf{v}\cdot\frac{f'}{\rho'}\right\rangle \\ & + \langle -\nabla'\cdot(\rho'\mathbf{v'}\cdot\mathbf{vv'}) + \nabla'\cdot(\rho'\mathbf{v}_{\mathbf{A}}'\cdot\mathbf{vv}_{\mathbf{A}}') \\ & - \nabla'\cdot((P'+P'_M)\cdot\mathbf{v}) + d'_k\cdot\mathbf{v} + f'\cdot\mathbf{v}\rangle \\ & + \left\langle -\nabla\cdot(\rho'\mathbf{v'}\cdot\mathbf{vv}) + \rho'\mathbf{v'}\cdot\mathbf{v}\nabla\cdot\mathbf{v} + \nabla\cdot(\rho'\mathbf{v'}\cdot\mathbf{v}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}}) \\ & - 2\rho'\mathbf{v'}\cdot\mathbf{v}_{\mathbf{A}}\nabla\cdot\mathbf{v}_{\mathbf{A}} - \nabla\cdot\left(\frac{P+P_M}{\rho}\rho'\mathbf{v'}\right) \\ & - \left(1+\frac{P_M}{P}\right)\nabla\cdot(\rho'u\mathbf{v'}) + \rho'\mathbf{v'}\cdot\frac{d_k}{\rho} + \rho'\mathbf{v'}\cdot\frac{f}{\rho}\right\rangle. \end{split}$$

Thanks to the homogeneity assumption $\langle \nabla \cdot \rangle = -\nabla_{\ell} \cdot \langle \rangle$ and $\langle \nabla' \cdot \rangle = \nabla_{\ell} \cdot \langle \rangle$, and after rearranging some terms, we THE ASTROPHYSICAL JOURNAL, 916:49 (9pp), 2021 July 20

obtain the following equation:

$$\begin{aligned} 2\langle\partial_{t}(R_{k}+R_{k}')\rangle &= \nabla_{\ell} \cdot \langle\rho\mathbf{v}\cdot\mathbf{v}'\mathbf{v}-\rho\mathbf{v}\cdot\mathbf{v}'\mathbf{v}'\\ &-\rho'\mathbf{v}'\cdot\mathbf{v}\mathbf{v}'+\rho'\mathbf{v}'\cdot\mathbf{v}\mathbf{v}\rangle\\ &-\nabla_{\ell} \cdot \langle\rho\mathbf{v}_{\mathbf{A}}\cdot\mathbf{v}'\mathbf{v}_{\mathbf{A}}-\rho\mathbf{v}\cdot\mathbf{v}_{\mathbf{A}}'\mathbf{v}_{\mathbf{A}}'-\rho'\mathbf{v}_{\mathbf{A}}'\cdot\mathbf{v}\mathbf{v}_{\mathbf{A}}'+\rho'\mathbf{v}'\cdot\mathbf{v}_{\mathbf{A}}\mathbf{v}_{\mathbf{A}}\rangle\\ &+\nabla_{\ell} \cdot \left\langle(P+P_{M})\mathbf{v}'-(P'+P_{M}')\mathbf{v}-\frac{\rho}{\rho'}(P'+P_{M}')\mathbf{v}\right.\\ &+\frac{\rho'}{\rho}(P+P_{M})\mathbf{v}'-\rho\mathbf{u}'\mathbf{v}+\rho'\mathbf{u}\mathbf{v}'\right\rangle\\ &+\left\langle\rho'\mathbf{v}'\cdot\mathbf{v}\nabla\cdot\mathbf{v}+\mathbf{v}+\rho\mathbf{v}\cdot\mathbf{v}'\nabla'\cdot\mathbf{v}'\right.\\ &-2\rho'\mathbf{v}'\cdot\mathbf{v}_{\mathbf{A}}\nabla\cdot\mathbf{v}_{\mathbf{A}}-2\rho\mathbf{v}\cdot\mathbf{v}_{\mathbf{A}}'\nabla'\cdot\mathbf{v}_{\mathbf{A}}'-\frac{P_{M}'}{P'}\nabla'\cdot(\rho\mathbf{u}'\mathbf{v})\\ &-\frac{P_{M}}{P}\nabla\cdot(\rho'\mathbf{u}\mathbf{v}')\right\rangle\\ &+\left\langle d_{k}\cdot\mathbf{v}'+\frac{\rho}{\rho'}d_{k}'\cdot\mathbf{v}+d_{k}'\cdot\mathbf{v}+\frac{\rho'}{\rho}d_{k}\cdot\mathbf{v}'+f\cdot\mathbf{v}'\right.\\ &+\frac{\rho}{\rho'}f'\cdot\mathbf{v}+f'\cdot\mathbf{v}+\frac{\rho'}{\rho}f\cdot\mathbf{v}'\right\rangle,\end{aligned}$$

which is identical to Equation (14) in the main text. In the first line of Equation (A2), we recognize the flux terms of the developed form of the divergence of the structure function $\langle \delta \rangle$ $(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} \rangle$:

$$\begin{aligned} \nabla_{\ell} \cdot \langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} \rangle &= \nabla_{\ell} \cdot \langle \rho \mathbf{v} \cdot \mathbf{v}' \mathbf{v} - \rho \mathbf{v} \cdot \mathbf{v}' \mathbf{v}' \\ &- \rho' \mathbf{v}' \cdot \mathbf{v} \mathbf{v}' + \rho' \mathbf{v}' \cdot \mathbf{v} \mathbf{v} \\ &+ \langle \rho \mathbf{v} \cdot \mathbf{v} \nabla' \cdot \mathbf{v}' + \rho' \mathbf{v}' \cdot \mathbf{v}' \nabla \cdot \mathbf{v} \rangle, \end{aligned}$$
(A3)

where by homogeneity, $\nabla_{\ell} \cdot \langle \rho' v' \cdot v' v' - \rho v \cdot v v \rangle = 0$ and $\nabla_{\ell} \cdot \langle \rho \mathbf{v} \cdot \mathbf{v} \mathbf{v}' - \rho \mathbf{v}' \cdot \mathbf{v}' \mathbf{v} \rangle = \langle \rho \mathbf{v} \cdot \mathbf{v} \nabla' \cdot \mathbf{v}' + \rho' \mathbf{v}' \cdot \mathbf{v}' \nabla \cdot \mathbf{v} \rangle.$

Then Equation (A2) becomes:

$$2\langle \partial_{t}(R_{k}+R_{k}')\rangle = \nabla_{\ell} \cdot \langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} \rangle$$

$$-\nabla_{\ell} \cdot \langle \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}' \mathbf{v}_{\mathbf{A}} - \rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' - \rho' \mathbf{v}_{\mathbf{A}}' \cdot \mathbf{v} \mathbf{v}_{\mathbf{A}}' + \rho' \mathbf{v}' \cdot \mathbf{v}_{\mathbf{A}} \mathbf{v}_{\mathbf{A}} \rangle$$

$$+ \nabla_{\ell} \cdot \left\langle (P+P_{M}) \mathbf{v}' - (P'+P_{M}') \mathbf{v} - \frac{\rho}{\rho'} (P'+P_{M}') \mathbf{v} \right\rangle$$

$$+ \left\langle -\rho' \mathbf{v}' \cdot \delta \mathbf{v} \nabla \cdot \mathbf{v} + \rho \mathbf{v} \cdot \delta \mathbf{v} \nabla' \cdot \mathbf{v}' - 2\rho' \mathbf{v}' \cdot \mathbf{v}_{\mathbf{A}} \nabla \cdot \mathbf{v}_{\mathbf{A}} \right\rangle$$

$$- 2\rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' \nabla' \cdot \mathbf{v}_{\mathbf{A}}' - \frac{P_{M}'}{P'} \nabla' \cdot (\rho u' \mathbf{v}) - \frac{P_{M}}{P} \nabla \cdot (\rho' u \mathbf{v}') \right\rangle$$

$$+ \left\langle d_{k} \cdot \mathbf{v}' + \frac{\rho}{\rho'} d_{k}' \cdot \mathbf{v} + d_{k}' \cdot \mathbf{v} + \frac{\rho'}{\rho} d_{k} \cdot \mathbf{v}' \right\rangle.$$
(A4)

The three first lines of Equation (A4) are expressed as a divergence of flux terms, while the fourth line as source terms Simon & Sahraoui

(i.e., proportional to field divergence such as $\nabla \cdot \mathbf{v}$ or $\nabla \cdot \mathbf{v}_A$). The last line contains the forcing and dissipation terms. Note however that this choice of presentation is not unique as some of the flux terms above can be expressed as sources (and vice versa), hence the terminology of hybrid terms introduced by Andrés & Sahraoui (2017).

ORCID iDs

P. Simon (1) https://orcid.org/0000-0003-2091-2093

References

- Andrés, N., Galtier, S., & Sahraoui, F. 2016a, PhRvE, 94, 063206
- Andrés, N., Galtier, S., & Sahraoui, F. 2018a, PhRvE, 97, 013204
- Andrés, N., Mininni, P. D., Dmitruk, P., & Gómez, D. O. 2016b, PhRvE, 93, 063202
- Andrés, N., Romanelli, N., Hadid, L. Z., et al. 2020, ApJ, 902, 134
- Andrés, N., & Sahraoui, F. 2017, PhRvE, 96, 053205
- Andrés, N., Sahraoui, F., Galtier, S., et al. 2018b, JPIPh, 84, 905840404
- Andrés, N., Sahraoui, F., Galtier, S., et al. 2019, PhRvL, 123, 245101
- Andrés, N., Sahraoui, F., Hadid, L. Z., et al. 2021, arXiv:2102.11781
- Antonia, R. A., Ould-Rouis, M., Anselmet, F., & Zhu, Y. 1997, JFM, 332, 395
- Bale, S. D., Goetz, K., Harvey, P. R., et al. 2016, SSRv, 204, 49
- Bandyopadhyay, R., Sorriso-Valvo, L., Chasapis, A., et al. 2020, PhRvL, 124, 225101
- Banerjee, S., & Andrés, N. 2020, PhRvE, 101, 043212
- Banerjee, S., & Galtier, S. 2013, PhRvE, 87, 013019
- Banerjee, S., & Galtier, S. 2014, JFM, 742, 230
- Banerjee, S., & Galtier, S. 2017, JPhA, 50, 015501
- Banerjee, S., Hadid, L. Z., Sahraoui, F., & Galtier, S. 2016, ApJL, 829, L27
- Bruno, R., & Carbone, V. 2013, LRSP, 10, 2
- Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A., & Bruno, R. 2009, hRvL, 103, 061102
- Coburn, J. T., Forman, M. A., Smith, C. W., Vasquez, B. J., & Stawarz, J. E. 2015, RSPTA, 373, 20140150
- Eyink, G. L., & Drivas, T. D. 2018, PhRvX, 8, 011022
- Ferrand, R., Galtier, S., & Sahraoui, F. 2021, JPIPh, 87, 905870220
- Ferrand, R., Galtier, S., Sahraoui, F., et al. 2019, ApJ, 881, 50
- Ferrand, R., Galtier, S., Sahraoui, F., & Federrath, C. 2020, ApJ, 904, 160
- Fox, N. J., Velli, M. C., Bale, S. D., et al. 2016, SSRv, 204, 7
- Frisch, U. 1995, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge: Cambridge Univ. Press)

Galtier, S. 2008, PhRvE, 77, 015302

- Galtier, S. 2016, Introduction to Modern Magnetohydrodynamics (Cambridge: Cambridge Univ. Press)
- Galtier, S., & Banerjee, S. 2011, PhRvL, 107, 134501
- Hadid, L., Sahraoui, F., Galtier, S., & Huang, S. 2018, PhRvL, 120, 055102 Hadid, L. Z., Sahraoui, F., & Galtier, S. 2017, ApJ, 838, 9
- Hellinger, P. 2018, ApJL, 857, L19
- Kasper, J. C., Abiad, R., Austin, G., et al. 2016, SSRv, 204, 131
- Kolmogorov, A. N. 1991, RSPSA, 434, 15
- Marino, R., Sorriso-Valvo, L., D'Amicis, R., et al. 2012, ApJ, 750, 41
- Parashar, T. N., Goldstein, M. L., Maruca, B. A., et al. 2020, ApJS, 246, 58 Politano, H., & Pouquet, A. 1998, PhRvE, 57, R21
- Quijia, P., Fraternale, F., Stawarz, J. E., et al. 2021, MNRAS, 503, 4815
- Richardson, J. D., Paularena, K. I., Lazarus, A. J., & Belcher, J. W. 1995, GeoRL, 22, 325
- Sahraoui, F. 2008, PhRvE, 78, 026402
- Sahraoui, F., Hadid, L., & Huang, S. 2020, RvMPP, 4, 4
- Smith, C. W., Hamilton, K., Vasquez, B. J., & Leamon, R. J. 2006, ApJL, 645, L85
- Sorriso-Valvo, L., Catapano, F., Retinò, A., et al. 2019, PhRvL, 122, 035102
- Sorriso-Valvo, L., Marino, R., Carbone, V., et al. 2007, PhRvL, 99, 115001
- Stawarz, J. E., Smith, C. W., Vasquez, B. J., Forman, M. A., & MacBride, B. T. 2010, ApJ, 713, 920

Yoshimatsu, K. 2012, PhRvE, 85, 066313

Zakharov, V. E., L'vov, V. S., & Falkovich, G. 1992, Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer Series in Nonlinear Dynamics (Berlin: Springer)

Exact law for compressible pressure-anisotropic magnetohydrodynamic turbulence: Toward linking energy cascade and instabilities

P. Simon D* and F. Sahraoui

Laboratoire de Physique des Plasmas (LPP), CNRS, Observatoire de Paris, Sorbonne Université, Université Paris-Saclay, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

(Received 2 December 2021; accepted 4 May 2022; published 27 May 2022)

We derive an exact law for compressible pressure-anisotropic magnetohydrodynamic turbulence. For a gyrotropic pressure tensor, we study the double-adiabatic case and show the presence of new flux and source terms in the exact law, reminiscent of the plasma instability conditions due to pressure anisotropy. The Hall term is shown to bring ion-scale corrections to the exact law without affecting explicitly the pressure terms. In the pressure isotropy limit we recover all known results obtained for isothermal and polytropic closures. The incompressible limit of the gyrotropic system leads to a generalization of the Politano and Pouquet's law where a new *incompressible* source term is revealed and reflects exchanges of the magnetic and kinetic energies with the no-longer-conserved internal energy. We highlight the possibilities offered by the new laws to investigate potential links between turbulence cascade and instabilities widely observed in laboratory and astrophysical plasmas.

DOI: 10.1103/PhysRevE.105.055111

I. INTRODUCTION

In recent years there has been a growing interest in deriving von Kármán-Howarth-Monin (vKHM) [1-3] equations that describe turbulent energy cascade in magnetized plasmas. Those equations present the double advantage of being fully nonlinear and of linking the turbulent energy cascade (or dissipation) rate to measurable fields [4-10]. The cascade rate is used to estimate energy dissipation from spacecraft data taken in the solar wind (SW) and the planetary plasma environments [11-16]. Efforts were thus put in generalizing the laws to more realistic conditions met in those plasmas at the cost of increasing complexity. Two main lines of research are pursued: one aiming at extending the range of the described scales, from magnetohydrodynamics (MHD), to Hall-MHD and two-fluids [17-24]; the second by incorporating density fluctuations described within isothermal or polytropic closures [25-34] or gravitational effects to study star formation in the interstellar medium [35,36].

Despite these important improvements, a key missing ingredient that none of the existing models can describe is the presence of pressure anisotropy (with respect to the background magnetic field \mathbf{B}_0). Indeed, while the existing laws do consider the presence of a background magnetic field, which allows one to study energy transfers along the parallel and perpendicular directions to \mathbf{B}_0 [37–41], they however all assume a scalar pressure, which is unrealistic to describe most of the magnetized collisionless astrophysical (or laboratory) plasmas where ion and electron pressure anisotropies are frequently reported from particle measurements [42–47].

In order to include pressure anisotropy in fluid modeling of magnetized plasmas, Chew *et al.* [48] introduced the double-

2470-0045/2022/105(5)/055111(8)

adiabatic closure (known also as CGL). One of the main changes to the dynamics of the plasma brought up by pressure anisotropy in CGL-MHD equations is the presence of instabilities, which in the linear limit coincide with the firehose when $\frac{\beta_{\parallel}}{2}[1-a_p] > 1$ and the mirror when $\beta_{\parallel}a_p + 1 < \frac{\beta_{\parallel}a_p^2}{6}$ (β_{\parallel} is the ratio of the parallel thermal to the magnetic pressure, $a_p =$ $T_{\parallel}/T_{\parallel}$ is the ratio between the proton perpendicular and parallel temperatures [49–51]). These instabilities (or their kinetic counterparts) were shown to constrain part of the dynamics of the SW [45,46] and are thought to operate in laboratory devices [52], clusters of galaxies [53], and black holes' accretion disks [54]. However, the interplay between turbulence and instabilities remains an unsettled question although some hints were already reported. These include driving of subion-scale turbulence [47,55,56], influencing the scaling of the high-frequency magnetic energy spectra in the SW [45], or linking unstable plasmas to high-energy cascade rates as measured in the near-Earth space [41,57], which remains to date not fully understood.

It is the goal of this paper to fill the existing gap by providing a self-consistent (fluid) theoretical framework to investigate the potential coupling between plasma turbulence and instabilities.

II. THEORETICAL MODEL

We use the classical MHD equations but assume a (symmetric) pressure tensor rather than a scalar one,

$$\partial_t \rho = -\nabla \cdot (\rho \mathbf{v}), \tag{1}$$

$$\partial_t(\rho \mathbf{v}) = \nabla \cdot (\rho \mathbf{v}_{\mathbf{A}} \mathbf{v}_{\mathbf{A}} - \rho \mathbf{v} \mathbf{v} - \overline{\overline{P_*}}) + \mathbf{d}_{\mathbf{k}} + \mathbf{f}, \qquad (2)$$

$$\partial_t (\rho \mathbf{v}_{\mathbf{A}}) = \nabla \cdot (\rho \mathbf{v}_{\mathbf{A}} \mathbf{v} - \rho \mathbf{v} \mathbf{v}_{\mathbf{A}}) + \rho \mathbf{v} \nabla \cdot \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \nabla \cdot \mathbf{v} + \mathbf{d}_{\mathbf{m}},$$
(3)

^{*}pauline.simon@lpp.polytechnique.fr

where ρ is the mass density, **v** the velocity field, $\mathbf{v}_{\mathbf{A}} = \frac{\mathbf{B}}{\sqrt{\mu_0 \rho}}$ the Alfvén velocity with **B** the magnetic field, and $\overline{\overline{P_*}} = \overline{\overline{P}} + \overline{\overline{P}}_M$ is the total pressure tensor, i.e., the sum of the pressure tensor $\overline{\overline{P}}$ and the magnetic pressure tensor $\overline{\overline{P}}_M = P_M \overline{\overline{I}} = (\rho v_A^2/2)\overline{\overline{I}}$ ($\overline{\overline{I}}$ is the identity 3×3 matrix), \mathbf{d}_k the kinetic viscous dissipation, \mathbf{d}_m the magnetic diffusivity, and **f** a stationary homogeneous external force assumed to act on the largest scales.

Since we want to derive the exact law for the total energy of the system, Eqs. (1)–(3) are complemented by that of the (specific) internal energy *u*, which reads

$$\partial_t u = -\nabla \cdot (u\mathbf{v}) + u\nabla \cdot \mathbf{v} - \frac{\overline{\overline{P}}}{\rho} : \nabla \mathbf{v}, \qquad (4)$$

since $\overline{\overline{P}}$ and $\overline{\overline{P_*}}$ are symmetrical tensors, i.e., $P_{ij} = P_{ji}$, the dual product between two such tensors $\overline{\overline{P}}$ and $\overline{\overline{A}}$ obeys $\overline{\overline{P}}$: $\overline{\overline{A}} = P_{ij}A_{ij} = P_{ji}A_{ij}$. Equation (4), valid for any symmetric pressure tensor when the heat flux is neglected, can be derived from thermodynamical considerations [58] or from the moments of the Vlasov-Maxwell equations [50]. For a scalar pressure, i.e., $\overline{\overline{P}} = P\overline{\overline{I}}$, we recover the equation of the internal energy used in Ref. [34].

Equations (1)–(4) will be used in the following section to derive the exact law of interest.

III. GENERAL EXACT LAW FOR COMPRESSIBLE PRESSURE-ANISOTROPIC MHD TURBULENCE

Following the standard approach used in statistical theories of fully developed turbulence [4–6,9], we define the spatial increment (or scale) ℓ connecting two points \mathbf{x} and \mathbf{x}' as $\mathbf{x}' = \mathbf{x} + \ell$ and introduce the notations, $\xi(\mathbf{x}) \equiv \xi$, its conjugate (i.e., taken at the position \mathbf{x}') $\xi(\mathbf{x}') \equiv \xi'$, and the incremental quantity $\delta \xi \equiv \xi' - \xi$. These definitions impose that $\partial_x \xi' =$ $\partial_{x'}\xi = 0$, while the hypothesis of space homogeneity implies the relations $\langle \nabla' \cdot \rangle = \nabla_{\ell} \cdot \langle \rangle$ and $\langle \nabla \cdot \rangle = -\nabla_{\ell} \cdot \langle \rangle$, where ∇_{ℓ} denotes the derivative operator along the increment vector ℓ and $\langle \rangle$ an ensemble average. We consider the mean correlation function of the total energy $R_{\text{tot}} = (R + R')/2$ with $R = \langle \rho \mathbf{v} \cdot \mathbf{v}'/2 + \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}'/2 + \rho u' \rangle = R_k + R_B + R_u$ a correlation function taken at the point \mathbf{x} and R' its conjugate. We remark that if $\mathbf{x} = \mathbf{x}'$, $R_{\text{tot}} = E = \langle \rho v^2/2 + \rho v_A^2/2 + \rho u \rangle$, i.e., the mean total energy of the system.

Using the property $\partial_t \langle \rangle = \langle \partial_t \rangle$, Eqs. (1)–(4) written at the independent positions **x** then **x**' and multiplied by the appropriate variables [e.g., Eq. (2) multiplied by **v**'] and the space homogeneity assumption (see Ref. [34] for more details), we obtain the temporal evolution of the kinetic, R_k , the magnetic, R_B , and the internal energy, R_u , correlators:

$$2\partial_{t}R_{k} = -\nabla_{\ell} \cdot \langle \rho \mathbf{v} \cdot \mathbf{v}' \delta \mathbf{v} + \rho \mathbf{v}_{A} \cdot \mathbf{v}' \mathbf{v}_{A} - \rho \mathbf{v} \cdot \mathbf{v}'_{A} \mathbf{v}'_{A} \rangle + \nabla_{\ell} \cdot \left\langle \overline{\overline{P_{*}}} \cdot \mathbf{v}' - \frac{\rho}{\rho'} \overline{\overline{P_{*}'}} \cdot \mathbf{v} \right\rangle + \langle \rho \mathbf{v} \cdot \mathbf{v}' \nabla' \cdot \mathbf{v}' \rangle - \left\langle \frac{\rho}{\rho'} \mathbf{v} \cdot \overline{\overline{P_{*}'}} \cdot \frac{\nabla' \rho'}{\rho'} + 2\rho \mathbf{v} \cdot \mathbf{v}'_{A} \nabla' \cdot \mathbf{v}'_{A} \right\rangle + \mathcal{F} + \mathcal{D}_{k},$$
(5)

$$2\partial_{t}R_{B} = -\nabla_{\ell} \cdot \langle \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' \delta \mathbf{v} + \rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' \mathbf{v}_{\mathbf{A}} \rangle$$
$$-\nabla_{\ell} \cdot \langle \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' \rangle + \left\langle \frac{1}{2} \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}' (\nabla' \cdot \mathbf{v}' - \nabla \cdot \mathbf{v}) \right\rangle$$
$$+ \left\langle \rho \mathbf{v} \cdot \mathbf{v}_{\mathbf{A}}' \nabla \cdot \mathbf{v}_{\mathbf{A}} - \rho \mathbf{v}_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{V}}' \nabla' \cdot \mathbf{v}_{\mathbf{A}}' \right\rangle + \mathcal{D}_{m}, \quad (6)$$

$$\partial_t R_u = -\nabla_\ell \cdot \langle \rho u' \delta \mathbf{v} \rangle + \left\langle \rho u' \nabla' \cdot \mathbf{v}' - \frac{\rho}{\rho'} \overline{\overline{P'}} : \nabla' \mathbf{v}' \right\rangle, \quad (7)$$

where the terms depending on the forcing, the kinetic, and magnetic dissipation are regrouped respectively in \mathcal{F} , \mathcal{D}_k , and \mathcal{D}_m . Then the temporal evolution of R_{tot} is the sum of the relations (5)–(7) and of their conjugates (written at position \mathbf{x}'). By recognizing the developed form of the structure functions $\langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} \rangle$, $\langle \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v}_{\mathbf{A}} \delta \mathbf{v} \rangle$, $\langle \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v} \delta \mathbf{v} \delta \mathbf{v} \rangle$, $\langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} \delta \mathbf{v} \rangle$, $\langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} \delta \mathbf{v} \rangle$, $\langle \delta \rho \delta d(\overline{P}/\rho) \cdot \delta \mathbf{v} \rangle$, and $\langle \delta \rho \delta(\overline{P}_M/\rho) \cdot \delta \mathbf{v} \rangle$, the final expression for the temporal evolution of the total energy correlator reads

$$\begin{aligned} 4\partial_{t}R_{\text{tot}} &= \nabla_{\ell} \cdot \left\langle [\delta(\rho\mathbf{v}) \cdot \delta\mathbf{v} + \delta(\rho\mathbf{v}_{A}) \cdot \delta\mathbf{v}_{A} + 2\delta\rho\delta u]\delta\mathbf{v} - [\delta(\rho\mathbf{v}_{A}) \cdot \delta\mathbf{v} + \delta(\rho\mathbf{v}) \cdot \delta\mathbf{v}_{A}]\delta\mathbf{v}_{A} - \delta\rho\delta\left(\frac{\overline{P}_{*}}{\rho}\right) \cdot \delta\mathbf{v} \right\rangle \\ &+ \left\langle \left(\rho\mathbf{v} \cdot \delta\mathbf{v} + \frac{1}{2}\rho\mathbf{v}_{A} \cdot \delta\mathbf{v}_{A} - \frac{1}{2}\mathbf{v}_{A} \cdot \delta(\rho\mathbf{v}_{A}) + 2\rho\delta u\right)\nabla' \cdot \mathbf{v}' - 2\rho\delta\left(\frac{\overline{P}}{\rho}\right) : \nabla'\mathbf{v}' \right\rangle \\ &+ \left\langle \left(-\rho'\mathbf{v}' \cdot \delta\mathbf{v} - \frac{1}{2}\rho'\mathbf{v}_{A}' \cdot \delta\mathbf{v}_{A} + \frac{1}{2}\delta(\rho\mathbf{v}_{A}) \cdot \mathbf{v}_{A}' - 2\rho'\delta u\right)\nabla \cdot \mathbf{v} + 2\rho'\delta\left(\frac{\overline{P}}{\rho}\right) : \nabla\mathbf{v} \right\rangle \\ &+ \langle \left[-2\rho\mathbf{v} \cdot \delta\mathbf{v}_{A} - \rho\mathbf{v}_{A} \cdot \delta\mathbf{v} + \delta(\rho\mathbf{v}) \cdot \mathbf{v}_{A}\right]\nabla' \cdot \mathbf{v}_{A}' + \left[2\rho'\mathbf{v}' \cdot \delta\mathbf{v}_{A} + \rho'\mathbf{v}_{A}' \cdot \delta\mathbf{v} - \delta(\rho\mathbf{v}) \cdot \mathbf{v}_{A}'\right]\nabla \cdot \mathbf{v}_{A} \rangle \\ &+ \left\langle \left[\delta\rho\frac{\overline{P}_{*}}{\rho} \cdot \mathbf{v} - \rho\delta\left(\frac{\overline{P}_{*}}{\rho}\right) \cdot \mathbf{v}\right] \cdot \frac{\nabla'\rho'}{\rho'} + \left[\rho'\delta\left(\frac{\overline{P}_{*}}{\rho}\right) \cdot \mathbf{v}' - \delta\rho\frac{\overline{P}_{*}'}{\rho'} \cdot \mathbf{v}'\right] \cdot \frac{\nabla\rho}{\rho} \right\rangle + \mathcal{F} + \mathcal{F}' + \mathcal{D}_{k} + \mathcal{D}_{k}' + \mathcal{D}_{m} + \mathcal{D}_{m}'. \end{aligned}$$

$$\tag{8}$$

From this relation and following the usual assumptions used in fully developed homogeneous turbulence, namely infinite kinetic and magnetic Reynolds numbers, stationary state, balance between forcing (at the largest scales), and dissipation (at the

smallest ones) [5,6,25], we obtain the following exact law valid in the inertial range:

$$-4\varepsilon^{\mathrm{MHD}} = \nabla_{\ell} \cdot \mathcal{F}^{\mathrm{MHD}} + \mathcal{S}^{\mathrm{MHD}} + \mathcal{S}^{\prime \mathrm{MHD}},$$

with

$$\begin{aligned} \boldsymbol{\mathcal{F}}^{\text{MHD}} &= \left\langle \left[\delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v}_{\mathbf{A}} + 2\delta\rho\delta u \right] \delta \mathbf{v} - \left[\delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{\mathbf{A}} \right] \delta \mathbf{v}_{\mathbf{A}} - \delta\rho\delta \left(\frac{\overline{P_{\mathbf{x}}}}{\rho} \right) \cdot \delta \mathbf{v} \right\rangle, \\ \mathcal{S}^{\text{MHD}} &= \left\langle \left(\rho \mathbf{v} \cdot \delta \mathbf{v} + \frac{1}{2}\rho \mathbf{v}_{\mathbf{A}} \cdot \delta \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \mathbf{v}_{\mathbf{A}} \cdot \delta(\rho \mathbf{v}_{\mathbf{A}}) + 2\rho\delta u \right) \nabla' \cdot \mathbf{v}' - 2\rho\delta \left(\frac{\overline{P}}{\rho} \right) : \nabla' \mathbf{v}' \right\rangle \\ &+ \langle \left[-2\rho \mathbf{v} \cdot \delta \mathbf{v}_{\mathbf{A}} - \rho \mathbf{v}_{\mathbf{A}} \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \mathbf{v}_{\mathbf{A}} \right] \nabla' \cdot \mathbf{v}'_{\mathbf{A}} \rangle + \left\langle \left[\delta\rho \frac{\overline{P_{\mathbf{x}}}}{\rho} \cdot \mathbf{v} - \rho\delta \left(\frac{\overline{P_{\mathbf{x}}}}{\rho} \right) \cdot \mathbf{v} \right] \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle, \\ \mathcal{S}'^{\text{MHD}} &= \text{conjugate}(\mathcal{S}^{\text{MHD}}), \end{aligned}$$
(9)

where ε^{MHD} is the classical mean energy dissipation rate by unit mass assumed to be equal to the injection rate due to the forcing, i.e., $\mathcal{F} + \mathcal{F}' \simeq 4\varepsilon^{\text{MHD}}$, and to the cascade rate in the inertial range due to nonlinearities. The exact law (9) is the first main result of this paper. It is valid for any MHD flow with a (symmetric) pressure tensor when the heat flux is neglected.

As in other compressible exact laws, we can recognize the terms introduced by Ref. [29]: \mathcal{F}^{MHD} is the flux terms (increment derivative $\nabla_{\ell} \cdot \langle \rangle$), and \mathcal{S}^{MHD} and its conjugate $\mathcal{S}^{\prime \text{MHD}}$ are generally known as source terms (see below about the physical meaning of this terminology) where terms in $\langle \nabla \cdot \mathbf{v} \rangle$ reflect the role of velocity dilatation, terms in $\langle \nabla \cdot \mathbf{v}_{A} \rangle$ involve the (compressible) Alfvén speed dilatation, and terms in $\langle \nabla \rho \rangle$ contain density dilatation. Note that some hybrid and the β -dependent terms introduced in Ref. [29] are hidden in the new structure function $\langle \delta \rho \delta(\overline{\frac{\overline{P_{i}}}{\rho}}) \cdot \delta \mathbf{v} \rangle$ and the terms in $\langle \nabla \rho \rangle$.

A. Extension to pressure anisotropic Hall-MHD

The extension of the previous MHD model to Hall-MHD flows can be readily obtained by noticing that the only change to the original model is to introduce the Hall term in Eq. (3), while the internal energy equation remains unchanged. Therefore, the changes to the exact law (9) will occur through the sole terms that depend on the current density, which were already derived in Ref. [30] for compressible isothermal MHD, without impacting pressure terms. The final exact law for Hall-MHD thus writes

$$-4\varepsilon^{\text{HMHD}} = -4\varepsilon^{\text{MHD}} + 2d_i \nabla_{\ell} \cdot \langle \overline{\rho \mathbf{J}_{\mathbf{c}} \times \mathbf{v}_{\mathbf{A}}} \times \delta \mathbf{v}_{\mathbf{A}} - \delta(\mathbf{J}_{\mathbf{c}} \times \mathbf{v}_{\mathbf{A}}) \times \overline{\rho \mathbf{v}_{\mathbf{A}}} \rangle - \frac{d_i}{2} \langle (\delta \rho \mathbf{v}'_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}) \nabla \cdot \mathbf{J}_{\mathbf{c}} - (\delta \rho \mathbf{v}'_{\mathbf{A}} \cdot \mathbf{v}_{\mathbf{A}}) \nabla' \cdot \mathbf{J}'_{\mathbf{c}} \rangle + d_i \langle (\delta \rho \mathbf{J}_{\mathbf{c}} \cdot \mathbf{v}'_{\mathbf{A}}) \nabla \cdot \mathbf{v}_{\mathbf{A}} - (\delta \rho \mathbf{J}'_{\mathbf{c}} \cdot \mathbf{v}_{\mathbf{A}}) \nabla' \cdot \mathbf{v}'_{\mathbf{A}} \rangle.$$
(10)

where ε^{MHD} is given by Eq. (9), d_i is the ion inertial length, and $\mathbf{J} = \rho \mathbf{J}_{\mathbf{c}}$ is the current density in Alfvénic units.

B. In the isotropic pressure case

When considering a (total) scalar pressure $\overline{\overline{P}} = P\overline{\overline{I}}$ the MHD exact law (9) takes the form

$$-4\varepsilon^{\text{MHD}} = \nabla_{\ell} \cdot \mathcal{F}^{\text{MHD}} + \mathcal{S}^{\text{MHD}} + \mathcal{S}^{\prime \text{MHD}}.$$

with

$$\begin{aligned} \boldsymbol{\mathcal{F}}^{\text{MHD}} &= \left\langle \left[\delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v}_{\mathbf{A}} + 2\delta\rho\delta u \right] \delta \mathbf{v} - \left[\delta(\rho \mathbf{v}_{\mathbf{A}}) \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{\mathbf{A}} \right] \delta \mathbf{v}_{\mathbf{A}} - \delta\rho\delta\left(\frac{P_{*}}{\rho}\right) \delta \mathbf{v} \right\rangle, \\ \mathcal{S}^{\text{MHD}} &= \left\langle \left[\rho \mathbf{v} \cdot \delta \mathbf{v} + \frac{1}{2}\rho \mathbf{v}_{\mathbf{A}} \cdot \delta \mathbf{v}_{\mathbf{A}} - \frac{1}{2} \mathbf{v}_{\mathbf{A}} \cdot \delta(\rho \mathbf{v}_{\mathbf{A}}) + 2\rho\delta u - 2\rho\delta\left(\frac{P}{\rho}\right) \right] \nabla' \cdot \mathbf{v}' \right\rangle \\ &+ \left\langle \left[-2\rho \mathbf{v} \cdot \delta \mathbf{v}_{\mathbf{A}} - \rho \mathbf{v}_{\mathbf{A}} \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \mathbf{v}_{\mathbf{A}} \right] \nabla' \cdot \mathbf{v}'_{\mathbf{A}} \right\rangle + \left\langle \left[\delta\rho \frac{P_{*}}{\rho} \cdot \mathbf{v} - \rho\delta\left(\frac{P_{*}}{\rho}\right) \cdot \mathbf{v} \right] \cdot \frac{\nabla'\rho'}{\rho'} \right\rangle, \\ \mathcal{S}'^{\text{MHD}} &= \text{conjugate}(\mathcal{S}^{\text{MHD}}). \end{aligned}$$
(11)

One can notice in relation (11) the presence of a new flux term that was not recognized as such in the previous models derived for scalar pressure [26,29,34]: $\nabla_{\ell} \cdot \langle -\delta\rho\delta(\frac{\overline{P_*}}{\rho}) \cdot \delta \mathbf{v} \rangle = \nabla_{\ell} \cdot \langle -\delta\rho\delta(\frac{P_*}{\rho})\delta \mathbf{v} \rangle$. Using the first law of thermodynamics $\rho^2 \nabla u = P \nabla \rho$, one can write the term in $\nabla' \rho'$ of \mathcal{S}^{MHD} of Eq. (11) as (the same holds for its conjugate)

$$\left\langle \left[\delta(\rho) \frac{P_*}{\rho} \mathbf{v} - \rho \delta\left(\frac{P_*}{\rho}\right) \mathbf{v} \right] \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle = \left\langle \left[\delta\left(\frac{\rho^2}{P}\right) \frac{P_*}{\rho} \mathbf{v} - \delta\left(\frac{P_*}{P}\right) \rho \mathbf{v} \right] \cdot \nabla' u' \right\rangle = \left\langle \frac{P_*}{\rho} \mathbf{v} \cdot \nabla' \rho' - \frac{P'_*}{P'} \nabla' \cdot (\rho u' \mathbf{v}) \right\rangle.$$
(12)

It is worth noting that the β -dependent term introduced by Ref. [29] is hidden in this line since $P_*/P = 1 + P_M/P = 1 + \beta^{-1}$. After some other manipulations, we recover the general exact law for isentropic flows derived in Ref. [34]:

$$-4\varepsilon^{\text{MHD}} = \nabla_{\boldsymbol{\ell}} \cdot \langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} + \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v}_{A} \delta \mathbf{v} + 2\delta\rho \delta u \delta \mathbf{v} - \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v} \delta \mathbf{v}_{A} - \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{A} \delta \mathbf{v}_{A} \rangle + \nabla_{\boldsymbol{\ell}} \cdot \left\langle \left(1 + \frac{\rho'}{\rho} \right) (P + P_{M}) \mathbf{v}' - \left(1 + \frac{\rho}{\rho'} \right) (P' + P'_{M}) \mathbf{v} + \rho' u \mathbf{v}' - \rho u' \mathbf{v} \right\rangle + \left\langle (\nabla' \cdot \mathbf{v}') \left[\rho \mathbf{v} \cdot \delta \mathbf{v} + \rho \mathbf{v}_{A} \cdot \delta \mathbf{v}_{A} - \frac{1}{2} \rho' \mathbf{v}_{A}' \cdot \mathbf{v}_{A} - \frac{1}{2} \rho \mathbf{v}_{A} \cdot \mathbf{v}_{A}' + 2\rho \left(\delta u - \frac{P'}{\rho'} \right) \right] \right\rangle + \left\langle (\nabla \cdot \mathbf{v}) \left[-\rho' \mathbf{v}' \cdot \delta \mathbf{v} - \rho' \mathbf{v}_{A}' \cdot \delta \mathbf{v}_{A} - \frac{1}{2} \rho \mathbf{v}_{A} \cdot \mathbf{v}_{A}' - \frac{1}{2} \rho' \mathbf{v}_{A}' \cdot \mathbf{v}_{A} - 2\rho' \left(\delta u + \frac{P}{\rho} \right) \right] \right\rangle - \left\langle (\nabla' \cdot \mathbf{v}_{A}') (2\rho \mathbf{v} \cdot \delta \mathbf{v}_{A} - \rho' \mathbf{v}' \cdot \mathbf{v}_{A} + \rho \mathbf{v}_{A} \cdot \mathbf{v}') - (\nabla \cdot \mathbf{v}_{A}) (2\rho' \mathbf{v}' \cdot \delta \mathbf{v}_{A} + \rho \mathbf{v} \cdot \mathbf{v}_{A}' - \rho' \mathbf{v}_{A}' \cdot \mathbf{v}) \right\rangle - \left\langle \frac{P'_{M}}{P'} \nabla' \cdot (\rho u' \mathbf{v}) + \frac{P_{M}}{P} \nabla \cdot (\rho' u \mathbf{v}') \right\rangle.$$
(13)

It is worth recalling that this exact law is an extension of all scalar pressure models such as the isothermal and polytropic, which can be obtained by introducing the adequate state equation in relation (13) (i.e., specifying the relation between the pressure P and the density ρ) that are compatible with the isentropic hypothesis [34].

IV. COMPRESSIBLE MHD EXACT LAW WITH A GYROTROPIC PRESSURE

The gyrotropic exact law can be readily obtained from relation (9) by imposing the pressure tensor decomposition $\overline{P} = P_{\perp}\overline{I} + (P_{\parallel} - P_{\perp})\mathbf{bb}$, with $\mathbf{b} = \mathbf{v}_{\mathbf{A}}/|\mathbf{v}_{\mathbf{A}}|$ the magnetic field direction [50]. These definitions yield the following form of the total pressure, $\overline{P_{\mathbf{x}}} = (P_{\perp} + P_{M})\overline{I} + (P_{\parallel} - P_{\perp})\mathbf{bb}$. Using the tensor pressure equation, one can define the internal energy density as $\rho u = \frac{1}{2}\overline{P}$. $\overline{I} = \frac{1}{2}P_{\parallel} + P_{\perp}$ [50,58]. To highlight the terms in the exact law (9) that can be linked to known (linear) plasma instabilities [50], we further introduce the parameters $\beta_{\parallel} = \frac{P_{\parallel}}{P_{M}}$ and $a_{p} = \frac{P_{\perp}}{P_{\parallel}} = T_{\perp}/T_{\parallel}$. Injecting these relations in Eq. (9) yields the new gyrotropic-MHD exact law, which is the second main result of this paper:

$$-4\varepsilon^{\rm GYR} = \nabla_{\boldsymbol{\ell}} \cdot \boldsymbol{\mathcal{F}}^{\rm GYR} + \boldsymbol{\mathcal{S}}^{\rm GYR} + \boldsymbol{\mathcal{S}}^{\prime \rm GYR},$$

with

$$\begin{aligned} \mathcal{F}^{\text{GYR}} &= \langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} + \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v}_{A} \delta \mathbf{v} - \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v} \delta \mathbf{v}_{A} - \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{A} \delta \mathbf{v}_{A} \rangle \\ &+ \left\langle \delta \rho \delta \left(\frac{\mathbf{v}_{A}^{2}}{2} (\beta_{\parallel} [1 + a_{p}] - 1) \right) \delta \mathbf{v} - \delta \rho \delta \left(\frac{\beta_{\parallel}}{2} [1 - a_{p}] \mathbf{v}_{A} \mathbf{v}_{A} \right) \cdot \delta \mathbf{v} \right\rangle, \\ \mathcal{S}^{\text{GYR}} &= \left\langle \left[\rho \mathbf{v} \cdot \delta \mathbf{v} + \frac{1}{2} \rho \mathbf{v}_{A} \cdot \delta \mathbf{v}_{A} - \frac{1}{2} \mathbf{v}_{A} \cdot \delta(\rho \mathbf{v}_{A}) + \rho \delta \left(\frac{\mathbf{v}_{A}^{2} \beta_{\parallel}}{2} \right) \right] \nabla' \cdot \mathbf{v}' - \rho \delta(\beta_{\parallel} [1 - a_{p}] \mathbf{v}_{A} \mathbf{v}_{A}) : \nabla' \mathbf{v}' \right\rangle \\ &+ \langle [-2\rho \mathbf{v} \cdot \delta \mathbf{v}_{A} - \rho \mathbf{v}_{A} \cdot \delta \mathbf{v} + \delta(\rho \mathbf{v}) \cdot \mathbf{v}_{A}] \nabla' \cdot \mathbf{v}'_{A} \rangle \\ &+ \left\langle \left[(\delta \rho) \frac{\mathbf{v}_{A}^{2}}{2} [a_{p} \beta_{\parallel} + 1] \mathbf{v} - \rho \delta \left(\frac{\mathbf{v}_{A}^{2}}{2} [a_{p} \beta_{\parallel} + 1] \right) \mathbf{v} \right] \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle \\ &+ \left\langle \left[(\delta \rho) \frac{\beta_{\parallel}}{2} [1 - a_{p}] \mathbf{v}_{A} \mathbf{v}_{A} \cdot \mathbf{v} - \rho \delta \left(\frac{\beta_{\parallel}}{2} [1 - a_{p}] \mathbf{v}_{A} \mathbf{v}_{A} \right) \cdot \mathbf{v} \right] \cdot \frac{\nabla' \rho'}{\rho'} \right\rangle, \\ \mathcal{S}'^{\text{GYR}} = \text{conjugate}(\mathcal{S}^{\text{GYR}}). \end{aligned}$$

Equation (14) shows the presence of new terms brought in by pressure anisotropy, which reveals how the turbulent cascade can be connected to the plasma instability conditions. For instance, the terms proportional to $1 - a_p$ will have either a positive or negative contribution to the cascade rate depending on the stability condition $a_p > 1$ or $a_p < 1$. In the case of a positive (respectively negative) contribution to the cascade rate, pressure anisotropy can be seen as a source of "free energy" (respectively a sink) that can reinforce (respectively diminish) the turbulence cascade. Furthermore, if the pressure anisotropy terms dominate the cascade, then the instability would impact both the value of the energy cascade rate and its "sense" (direct versus inverse). Equation (14), which can be used on simulation and spacecraft data, may thus provide a solid theoretical explanation of the results reported in Refs. [39,41] and to the overall prominent role of the instabilities (not necessarily linear) in controlling part of the dynamics in astrophysical plasmas [45,46,56,59].

In relation (14) the parameters β_{\parallel} and a_p that depend on the pressure components P_{\parallel} and P_{\perp} are not yet determined since

this relation derives from the internal energy equation (4), which constrains the sum of the two pressure components but not the individual ones. The latter can be determined by further introducing any closure equation compatible with the definition of the internal energy $\rho u = \frac{1}{2}\overline{\overline{P}} : \overline{\overline{I}}$ for each pressure component as done in the CGL-MHD theory.

We note finally that the Hall correction derived in Sec. III A remains valid with this gyrotropic version of the exact law.

A. Exact law for the CGL-MHD system

The CGL-MHD closure equations written in their conservative form [50] read

$$\frac{d}{dt}\left(\frac{P_{\parallel}B^2}{\rho^3}\right) = 0 \quad \text{and} \quad \frac{d}{dt}\left(\frac{P_{\perp}}{\rho B}\right) = 0, \tag{15}$$

where d/dt is the total time derivative. Equations (15) lead to the integrated form of the pressures and, consequently, to the forms of the parameters $\beta_{\parallel} = 2C_{\parallel} \frac{\rho}{v_A^4}$ and $a_p = C_p \frac{|v_A|^3}{\rho^{1/2}}$, where the constants C_{\parallel} and C_p guarantee the homogeneity. Injecting these integrated relations in Eq. (14) yields the new CGL-MHD exact law, which is the third result of this paper:

$$-4\varepsilon^{\mathrm{CGL}} = \nabla_{\ell} \cdot \mathcal{F}^{\mathrm{CGL}} + \mathcal{S}^{\mathrm{CGL}} + \mathcal{S}^{\prime\mathrm{CGL}},$$

with

$$\begin{aligned} \mathcal{F}^{\text{CGL}} &= \langle \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v} \delta \mathbf{v} + \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v}_{A} \delta \mathbf{v} - \delta(\rho \mathbf{v}_{A}) \cdot \delta \mathbf{v} \delta \mathbf{v}_{A} - \delta(\rho \mathbf{v}) \cdot \delta \mathbf{v}_{A} \delta \mathbf{v}_{A} \rangle \\ &+ \left\langle \delta \rho \delta \left[\frac{\mathbf{v}_{A}^{2}}{2} \left(2C_{\parallel} \frac{\rho}{\mathbf{v}_{A}^{4}} \left[1 + C_{p} \frac{|\mathbf{v}_{A}|^{3}}{\rho^{1/2}} \right] - 1 \right) \right] \delta \mathbf{v} - \delta \rho \delta \left(C_{\parallel} \frac{\rho}{\mathbf{v}_{A}^{4}} \left[1 - C_{p} \frac{|\mathbf{v}_{A}|^{3}}{\rho^{1/2}} \right] \mathbf{v}_{A} \mathbf{v}_{A} \right) \cdot \delta \mathbf{v} \right\rangle, \\ \mathcal{S}^{\text{CGL}} &= \left\langle \left[\rho \mathbf{v} \cdot \delta \mathbf{v} + \frac{1}{2} \rho \mathbf{v}_{A} \cdot \delta \mathbf{v}_{A} - \frac{1}{2} \mathbf{v}_{A} \cdot \delta(\rho \mathbf{v}_{A}) + \rho \delta \left(\frac{C_{\parallel} \rho}{\mathbf{v}_{A}^{2}} \right) \right] \mathbf{\nabla}' \cdot \mathbf{v}' \right\rangle \\ &- \left\langle 2\rho \delta \left(C_{\parallel} \frac{\rho}{\mathbf{v}_{A}^{4}} \left[1 - C_{p} \frac{|\mathbf{v}_{A}|^{3}}{\rho^{1/2}} \right] \mathbf{v}_{A} \mathbf{v}_{A} \right) : \mathbf{\nabla}' \mathbf{v}' + \left[2\rho \mathbf{v} \cdot \delta \mathbf{v}_{A} + \rho \mathbf{v}_{A} \cdot \delta \mathbf{v} - \delta(\rho \mathbf{v}) \cdot \mathbf{v}_{A} \right] \mathbf{\nabla}' \cdot \mathbf{v}'_{A} \right\rangle \\ &+ \left\langle \left[(\delta\rho) \frac{\mathbf{v}_{A}^{2}}{2} \left[2C_{p} C_{\parallel} \frac{\rho^{1/2}}{|\mathbf{v}_{A}|} + 1 \right] \mathbf{v} - \rho \delta \left(\frac{\mathbf{v}_{A}^{2}}{2} \left[2C_{p} C_{\parallel} \frac{\rho^{1/2}}{|\mathbf{v}_{A}|} + 1 \right] \right) \mathbf{v} \right] \cdot \frac{\mathbf{\nabla}' \rho'}{\rho'} \right\rangle \\ &+ \left\langle \left[(\delta\rho) C_{\parallel} \frac{\rho}{\mathbf{v}_{A}^{4}} \left[1 - C_{p} \frac{|\mathbf{v}_{A}|^{3}}{\rho^{1/2}} \right] \mathbf{v}_{A} \mathbf{v}_{A} \cdot \mathbf{v} - \rho \delta \left(C_{\parallel} \frac{\rho}{\mathbf{v}_{A}^{4}} \left[1 - C_{p} \frac{|\mathbf{v}_{A}|^{3}}{\rho^{1/2}} \right] \mathbf{v}_{A} \mathbf{v}_{A} \right) \cdot \mathbf{v} \right] \cdot \frac{\mathbf{\nabla}' \rho'}{\rho'} \right\rangle, \end{aligned}$$
(16)

In the isotropic limit $P_{\parallel} = P_{\perp}$ one finds the adiabatic (monoatomic) case with a polytropic index $\gamma = 5/3$ and $\rho u = 3P/2$. Note that in the CGL-Hall-MHD the pressure equations do not write in a conservative form as those of the CGL-MHD [see Eq. (15)] [50]. This prevents us from obtaining a reduced form of the exact law for the CGL-Hall-MHD as that of the CGL-MHD. Nevertheless, the exact law (10) is applicable to any CGL-Hall-MHD simulation data since the closure equations of the latter are compatible with the internal energy [Eq. (4)] used to derive the law (10) above.

B. The incompressible MHD with a gyrotropic pressure: A generalization of the Politano and Pouquet's law

In the incompressible limit, i.e., $\rho = \rho_0$ and $\nabla \cdot \mathbf{v} = 0$, Eq. (14) becomes

$$4\varepsilon^{\text{IGYR}} = 4\varepsilon^{\text{PP98}} + \rho_0 \langle \delta(\beta_{\parallel} [1 - a_p] \mathbf{v}_{\mathbf{A}} \mathbf{v}_{\mathbf{A}}) : \delta(\nabla \mathbf{v}) \rangle, \quad (17)$$

where $\varepsilon^{\text{IGYR}}$ stands for the cascade rate of incompressible gyrotropic model and $-4\varepsilon^{\text{PP98}} = \rho_0 \nabla_{\ell} \cdot \langle (\delta \mathbf{v} \cdot \delta \mathbf{v} + \delta \mathbf{v_A} \cdot \delta \mathbf{v_A}) \delta \mathbf{v} - 2\delta \mathbf{v_A} \cdot \delta \mathbf{v} \delta \mathbf{v_A} \rangle$ is the so-called Politano and Pouquet's law [18], hereafter PP98. Interestingly, we evidence in Eq. (17) the presence of a new *source* term brought in by the anisotropy of the pressure tensor, which is written as a contraction of two increment tensors. Equation (17) is the fourth result of this paper. It generalizes PP98 to incompressible plasmas with a gyrotropic pressure and the notion of source terms. Indeed, so far the terminology of "source" terms introduced in Ref. [25] reflects compression (respectively dilatation) of the plasma that can sustain (respectively oppose) the cascade in the inertial range [33]. Here, we evidence a new source term in the incompressible gyrotropic limit that is not tied to plasma contraction/dilatation, but to pressure anisotropy. It reflects the exchange between the no-longer-conserved internal energy (unlike in incompressible pressure-isotropic flows [34]) with the sum of the magnetic and kinetic energies as can be seen in Eq. (4) where we have $-\frac{\overline{P}}{\rho_0}$: $\nabla \mathbf{v} \neq \mathbf{0}$. This leads us to propose the following generalization of the notion of source: For compressible isentropic flows with a gyrotropic pressure tensor, the cascade of the kinetic and magnetic energies can be opposed/sustained by compression/dilatation of the fluid and by pressure anisotropy, the latter being relevant even in incompressible flows. For weakly compressible plasmas (e.g., SW), this result implies that the first-order correction to the PP98 law would not come from density fluctuations, but rather from (incompressible) pressure anisotropy.

Similarly to the compressible gyrotropic case discussed above, the parameters β_{\parallel} and a_p remain undetermined. To determine the pressure components P_{\parallel} and P_{\perp} the internal energy equation (4) (now with $\rho = \rho_0$) is complemented by a new equation coming from imposing the incompressibility condition $\nabla \cdot \mathbf{v} = \mathbf{0}$ on the momentum equation (2) (with $\rho = \rho_0$, and $\mathbf{d_k} = \mathbf{f} = \mathbf{0}$ for simplicity), as done for incompressible isotropic hydrodynamics [6] or Hall-MHD [60]. This yields the generalized pressure balance equation for incompressible gyrotropic pressure tensor, namely,

$$\nabla \cdot \nabla \cdot (\rho \mathbf{v}_{\mathbf{A}} \mathbf{v}_{\mathbf{A}} - \rho \mathbf{v} \mathbf{v} - \overline{P_*}) = \mathbf{0}.$$
 (18)

Solving Eqs. (4) (with $\rho = \rho_0$) and (18) allows one to close the new incompressible gyrotropic MHD system proposed here and to self-consistently determine P_{\parallel} and P_{\perp} . However, for nearly incompressible plasmas such as the SW, the exact law (17) can be directly applied to spacecraft data when P_{\parallel} and P_{\perp} are accessible to measurements assuming Eq. (18) to hold, as it has been done in all previous observational studies that used the PP98 model (assuming a scalar pressure).

Note finally that the new model of incompressible gyrotropic [whose exact law is given by Eq. (17)] admits the oblique firehose instability as a linear solution, which is the unstable version of the known shear Alfvén mode [50].

- T. de Karman and L. Howarth, On the statistical theory of isotropic turbulence, Proc. R. Soc. London, Ser. A 164, 192 (1938).
- [2] A. S. Monin and A. M. Jaglom, *Statistical Fluid Mechanics: Mechanics of Turbulence*, Vol. 1 (MIT Press, Cambridge, MA, 1971).
- [3] A. S. Monin and A. M. Jaglom, *Statistical Fluid Mechanics: Mechanics of Turbulence*, 2nd ed., Vol. 2 (MIT Press, Cambridge, MA, 1975).
- [4] A. N. Kolmogorov, Dissipation of energy in the locally isotropic turbulence, Proc. R. Soc. London, Ser. A 434, 15 (1991).
- [5] A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proc. R. Soc. London, Ser. A 434, 9 (1991).
- [6] U. Frisch, *Turbulence: The Legacy of A. N. Kolmogorov* (Cambridge University Press, Cambridge, U.K., 1995).
- [7] R. A. Antonia, M. Ould-Rouis, F. Anselmet, and Y. Zhu, Analogy between predictions of Kolmogorov and Yaglom, J. Fluid Mech. 332, 395 (1997).
- [8] V. E. Zakharov, V. S. L'vov, and G. Falkovich, *Kolmogorov Spectra of Turbulence I: Wave Turbulence*, Springer Series in Nonlinear Dynamics (Springer, Berlin, 1992).
- [9] S. Galtier, *Introduction to Modern Magnetohydrodynamics* (Cambridge University Press, Cambridge, U.K., 2016).
- [10] S. Galtier, *Physique de la Turbulence: des tourbillons aux ondes* (CNRS Editions/EDP Sciences (Savoirs Actuels), Les Ulis/Paris, 2021).
- [11] C. W. Smith, K. Hamilton, B. J. Vasquez, and R. J. Leamon, Dependence of the dissipation range spectrum of interplanetary

V. CONCLUSION

We derived general exact laws for homogeneous MHD and Hall-MHD turbulent flows that go beyond the pressure isotropy assumption, which make them more realistic to study strong turbulence in magnetized plasmas. By considering the specific case of a CGL closure, we showed that the new law involves new flux and source terms that potentially can reflect the impact of plasma instabilities on the turbulent cascade. In the limit of incompressible MHD with a gyrotropic pressure we provided a generalization of the Politano and Pouquet's law [17] to pressure anisotropic plasmas, where a new incompressible source term is revealed and highlights a fundamental difference between pressure isotropic and anisotropic plasmas: Internal energy is not conserved in the latter and pressure anisotropy can act as a source of free energy to supply the turbulent cascade with an additional energy. This work thus paves the road to different and more rigorous (albeit fluid) studies of the interplay between turbulent (fluid) cascade and plasma instabilities, both in numerical simulations and spacecraft observations when the full pressure tensor is accessible to measurements.

ACKNOWLEDGMENT

P.S. is funded by a DIM-ACAV + Doctoral fellowship (2020). F.S. thanks T. Passot for fruitful discussions.

magnetic fluctuations on the rate of energy cascade, Astrophys. J. **645**, L85 (2006).

- [12] L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, and E. Pietropaolo, Observation of Inertial Energy Cascade in Interplanetary Space Plasma, Phys. Rev. Lett. **99**, 115001 (2007).
- [13] N. Andrés, F. Sahraoui, S. Galtier, L. Z. Hadid, R. Ferrand, and S. Y. Huang, Energy Cascade Rate Measured in a Collisionless Space Plasma with MMS Data and Compressible Hall Magnetohydrodynamic Turbulence Theory, Phys. Rev. Lett. 123, 245101 (2019).
- [14] L. Sorriso-Valvo, F. Catapano, A. Retino, O. Le Contel, D. Perrone, O. W. Roberts, J. T. Coburn, V. Panebianco, F. Valentini, S. Perri, A. Greco, F. Malara, V. Carbone, P. Veltri, O. Pezzi, F. Fraternale, F. Di Mare, R. Marino, B. Giles, T. E. Moore *et al.*, Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability, Phys. Rev. Lett. **122**, 035102 (2019).
- [15] R. Bandyopadhyay, L. Sorriso-Valvo, A. Chasapis, P. Hellinger, W. H. Matthaeus, A. Verdini, S. Landi, L. Franci, L. Matteini, B. L. Giles, D. J. Gershman, T. E. Moore, C. J. Pollock, C. T. Russell, R. J. Strangeway, R. B. Torbert, and J. L. Burch, *In Situ* Observation of Hall Magnetohydrodynamic Cascade in Space Plasma, Phys. Rev. Lett. **124**, 225101 (2020).
- [16] P. Quijia, F. Fraternale, J. E. Stawarz, C. L. Vsconez, S. Perri, R. Marino, E. Yordanova, and L. Sorriso-Valvo, Comparing turbulence in a Kelvin-Helmholtz instability region across the terrestrial magnetopause, Mon. Not. R. Astron. Soc. 503, 4815 (2021).

- [17] H. Politano and A. Pouquet, Dynamical length scales for turbulent magnetized flows, Geophys. Res. Lett. 25, 273 (1998).
- [18] H. Politano and A. Pouquet, von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions, Phys. Rev. E 57, R21 (1998).
- [19] S. Galtier, von Kármán–Howarth equations for Hall magnetohydrodynamic flows, Phys. Rev. E 77, 015302(R) (2008).
- [20] N. Andrés, S. Galtier, and F. Sahraoui, Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas, Phys. Rev. E 94, 063206 (2016).
- [21] N. Andrés, P. D. Mininni, P. Dmitruk, and D. O. Gomez, von Kármán–Howarth equation for three-dimensional two-fluid plasmas, Phys. Rev. E 93, 063202 (2016).
- [22] S. Banerjee and S. Galtier, An alternative formulation for exact scaling relations in hydrodynamic and magnetohydrodynamic turbulence, J. Phys. A: Math. Theor. 50, 015501 (2017).
- [23] P. Hellinger, A. Verdini, S. Landi, L. Franci, and L. Matteini, von Kármán–Howarth equation for Hall magnetohydrodynamics: Hybrid simulations, Astrophys. J. 857, L19 (2018).
- [24] R. Ferrand, S. Galtier, F. Sahraoui, R. Meyrand, N. Andrés, and S. Banerjee, On exact laws in incompressible Hall magnetohydrodynamic turbulence, Astrophys. J. 881, 50 (2019).
- [25] S. Galtier and S. Banerjee, Exact Relation for Correlation Functions in Compressible Isothermal Turbulence, Phys. Rev. Lett. 107, 134501 (2011).
- [26] S. Banerjee and S. Galtier, Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence, Phys. Rev. E 87, 013019 (2013).
- [27] S. Banerjee and S. Galtier, A Kolmogorov-like exact relation for compressible polytropic turbulence, J. Fluid Mech. 742, 230 (2014).
- [28] S. Banerjee, L. Z. Hadid, F. Sahraoui, and S. Galtier, Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind, Astrophys. J., Lett. 829, L27 (2016).
- [29] N. Andrés and F. Sahraoui, Alternative derivation of exact law for compressible and isothermal magnetohydrodynamics turbulence, Phys. Rev. E 96, 053205 (2017).
- [30] N. Andrés, S. Galtier, and F. Sahraoui, Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence, Phys. Rev. E 97, 013204 (2018).
- [31] N. Andrés, F. Sahraoui, S. Galtier, L. Z. Hadid, P. Dmitruk, and P. D. Mininni, Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence, J. Plasma Phys. 84, 21 (2018).
- [32] S. Banerjee and N. Andrés, Scale-to-scale energy transfer rate in compressible two-fluid plasma turbulence, Phys. Rev. E 101, 043212 (2020).
- [33] R. Ferrand, S. Galtier, F. Sahraoui, and C. Federrath, Compressible turbulence in the interstellar medium: New insights from a high-resolution supersonic turbulence simulation, Astrophys. J. 904, 160 (2020).
- [34] P. Simon and F. Sahraoui, General exact law of compressible isentropic magnetohydrodynamic flows: Theory and spacecraft observations in the solar wind, Astrophys. J. 916, 49 (2021).
- [35] S. Banerjee and A. G. Kritsuk, Exact relations for energy transfer in self-gravitating isothermal turbulence, Phys. Rev. E 96, 053116 (2017).

- [36] S. Banerjee and A. G. Kritsuk, Energy transfer in compressible magnetohydrodynamic turbulence for isothermal selfgravitating fluids, Phys. Rev. E 97, 023107 (2018).
- [37] B. T. MacBride, C. W. Smith, and M. A. Forman, The turbulent cascade at 1 AU: Energy transfer and the third-order scaling for MHD, Astrophys. J. 679, 1644 (2008).
- [38] J. E. Stawarz, C. W. Smith, B. J. Vasquez, M. A. Forman, and B. T. MacBride, The turbulent cascade and proton heating in the solar wind at 1 AU, Astrophys. J. 697, 1119 (2009).
- [39] K. T. Osman, M. Wan, W. H. Matthaeus, J. M. Weygand, and S. Dasso, Anisotropic Third-Moment Estimates of the Energy Cascade in Solar Wind Turbulence Using Multispacecraft Data, Phys. Rev. Lett. **107**, 165001 (2011).
- [40] L. Z. Hadid, F. Sahraoui, and S. Galtier, Energy cascade rate in compressible fast and slow solar wind turbulence, Astrophys. J. 838, 9 (2017).
- [41] L. Z. Hadid, F. Sahraoui, S. Galtier, and S. Y. Huang, Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using *In Situ* Spacecraft Data, Phys. Rev. Lett. **120**, 055102 (2018).
- [42] D. Griffel and L. Davis, The anisotropy of the solar wind, Planet. Space Sci. 17, 1009 (1969).
- [43] S. P. Gary, R. M. Skoug, J. T. Steinberg, and C. W. Smith, Proton temperature anisotropy constraint in the solar wind: ACE observations, Geophys. Res. Lett. 28, 2759 (2001).
- [44] J. C. Kasper, A. J. Lazarus, and S. P. Gary, Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy, Geophys. Res. Lett. 29, 20 (2002).
- [45] S. D. Bale, J. C. Kasper, G. G. Howes, E. Quataert, C. Salem, and D. Sundkvist, Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind, Phys. Rev. Lett. **103**, 211101 (2009).
- [46] P. Hellinger, P. Trvnek, J. C. Kasper, and A. J. Lazarus, Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations, Geophys. Res. Lett. 33, L09101 (2006).
- [47] F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J. L. Pincon, and A. Balogh, Anisotropic Turbulent Spectra in the Terrestrial Magnetosheath as Seen by the Cluster Spacecraft, Phys. Rev. Lett. 96, 075002 (2006).
- [48] G. F. Chew, M. Goldberger, and F. E. Low, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. R. Soc. London, Ser. A 236, 112 (1956).
- [49] T. Passot and P. L. Sulem, Collisionless magnetohydrodynamics with gyrokinetic effects, Phys. Plasmas 14, 082502 (2007).
- [50] P. Hunana, A. Tenerani, G. P. Zank, E. Khomenko, M. L. Goldstein, G. M. Webb, P. S. Cally, M. Collados, M. Velli, and L. Adhikari, An introductory guide to fluid models with anisotropic temperatures. Part 1. CGL description and collision-less fluid hierarchy, J. Plasma Phys. 85, 205850602 (2019).
- [51] L. N. Hau and B. J. Wang, On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas, Nonlinear Processes Geophys. 14, 557 (2007).
- [52] E. E. Scime, P. A. Keiter, M. M. Balkey, R. F. Boivin, J. L. Kline, M. Blackburn, and S. P. Gary, Ion temperature anisotropy limitation in high beta plasmas, Phys. Plasmas 7, 2157 (2000).

- [53] A. Schekochihin, S. Cowley, R. Kulsrud, G. Hammett, and P. Sharma, Magnetised plasma turbulence in clusters of galaxies, in *The Magnetized Plasma in Galaxy Evolution*, edited by K. T. Chyzy, K. Otmianowska-Mazur, M. Soida, and R.-J. Dettmar (Jagiellonian University, Kraków, 2005), pp. 86–92.
- [54] P. Sharma, G. W. Hammett, and E. Quataert, Shearing box simulations of the MRI in a collisionless plasma, Astrophys. J. 637, 952 (2006).
- [55] F. Sahraoui, G. Belmont, J. L. Pincon, L. Rezeau, A. Balogh, P. Robert, and N. Cornilleau-Wehrlin, Magnetic turbulent spectra in the magnetosheath: new insights, Ann. Geophys. 22, 2283 (2004).
- [56] M. W. Kunz, A. A. Schekochihin, and J. M. Stone, Firehose and Mirror Instabilities in a Collisionless Shearing Plasma, Phys. Rev. Lett. 112, 205003 (2014).

- [57] K. T. Osman, W. H. Matthaeus, K. H. Kiyani, B. Hnat, and S. C. Chapman, Proton Kinetic Effects and Turbulent Energy Cascade Rate in the Solar Wind, Phys. Rev. Lett. 111, 201101 (2013).
- [58] R. D. Hazeltine, S. M. Mahajan, and P. J. Morrison, Local thermodynamics of a magnetized, anisotropic plasma, Phys. Plasmas 20, 022506 (2013).
- [59] A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W. Hammett, G. G. Howes, E. Quataert, and T. Tatsuno, Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasma, Astrophys. J., Suppl. Series 182, 310 (2009).
- [60] F. Sahraoui, S. Galtier, and G. Belmont, On waves in incompressible Hall magnetohydrodynamics, J. Plasma Phys. 73, 723 (2007).

D'une pression isotrope à l'anisotropie de pression dans les plasmas spatiaux turbulents

Résumé :

Le Vent Solaire (VS) est un gaz ionisé et magnétisé, éjecté par le Soleil dans l'espace interplanétaire. La pression n'y est pas définie par une seule valeur, mais par au moins deux valeurs, suivant si l'on regarde le plasma dans la direction du champ magnétique moyen ou perpendiculairement à cette direction. Cette anisotropie de pression impacte le plasma et peut même le rendre instable. Le VS est aussi un milieu turbulent. La turbulence engendre une cascade d'énergie des grandes vers les petites échelles, permettant ainsi un chauffage du plasma. Dans ce travail, nous posons la question de l'impact de l'anisotropie de pression sur la turbulence d'un plasma tel que le VS. La première étape est analytique et étend, à tout type de pression, la théorie des lois exactes de Kolmogorov, qui permet une estimation du taux de cascade. Puis une étude numérique est menée afin de comprendre l'apport de cette extension à notre interprétation de la dynamique turbulente.

Mots clés :

Plasmas, Turbulence, Magnétohydrodynamique, Théorie, Simulation, Observations in situ

From isotropic pressure to pressure anisotropy in turbulent space plasmas

Abstract :

The Solar Wind (SW) is a plasma, an ionized gas that interacts with the magnetic and electric fields and is ejected by the Sun, in the interplanetary space. In this medium, the pressure is not defined as a single quantity, but rather by, at least, two quantities, parallel and perpendicular to the magnetic field. Such anisotropy impacts the plasma that can become unstable. The SW is also a turbulent fluid. The turbulence results in a cascade of energy from large scales to small ones, where the energy can heat the plasma. In this work, we investigate the impact of the pressure anisotropy on the turbulence of the SW. The first step is analytical and extends the theory of Kolmogorov that gives an estimation of the turbulent cascade rate, to all types of pressure. Then a numerical study is led to understand the impact of this extension in our interpretation of a turbulent behaviour.

Keywords :

Plasmas, Turbulence, Magnetohydrodynamics, Theory, Simulation, In-situ observations