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Résumé: Les environnements de capteurs mobiles
sont devenus le paradigme de référence pour ex-
ploiter les capacités de collecte des appareils mo-
biles et recueillir des données variées en conditions
réelles. Pour autant, garantir la qualité des don-
nées recueillies reste une tâche complexe car les
capteurs, souvent à bas coûts et ne fonctionnant
pas toujours de façon optimale, peuvent être su-
jets à des dysfonctionnements, des erreurs, voire
des pannes. Comme la qualité des données a un
impact direct et significatif sur les résultats des
analyses ultérieures, il est crucial de l’évaluer.

Dans notre travail, nous nous intéressons à
deux problématiques majeures liées à la qualité des
données recueillies par les environnements de cap-
teurs mobiles.

Nous nous intéressons en premier à la com-
plétude des données et nous proposons un ensem-
ble de facteurs de qualité adapté à ce contexte,
ainsi que des métriques permettant de les éval-
uer. En effet, les facteurs et métriques existants
ne capturent pas l’ensemble des caractéristiques
associées à la collecte de données par des cap-
teurs. Afin d’améliorer la complétude des don-
nées, nous nous sommes intéressés au problème
de génération des données manquantes. Les tech-
niques actuelles d’imputation de données génèrent

les données manquantes en se reposant sur les
données existantes, c’est à dire les mesures déjà
réalisées par les capteurs, sans tenir compte de
la qualité de ces données qui peut être très vari-
able. Nous proposons donc une approche qui
étend les techniques existantes pour permettre la
prise en compte de la qualité des données pendant
l’imputation.

La deuxième partie de nos travaux est con-
sacrée à la détection d’anomalies dans les données
de capteurs. Tout comme pour l’imputation de
données, les techniques permettant de détecter des
anomalies utilisent des métriques sur les données
mais ignorent la qualité des ces dernières. Pour
améliorer la détection, nous proposons une ap-
proche fondés sur des algorithmes de clustering qui
intègrent la qualité des capteurs dans le processus
de détection des anomalies.

Enfin, nous nous sommes intéressés à la façon
dont la qualité des données pourrait être prise en
compte lors de l’analyse de données issues de cap-
teurs. Nous proposons deux contributions prélim-
inaires: des opérateurs d’agrégation qui considère
la qualité des mesures, et une approche pour éval-
uer la qualité d’un agrégat en fonction des données
utilisées dans son calcul.
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Abstract: Mobile crowdsensing has emerged as
a powerful paradigm for harnessing the collective
sensing capabilities of mobile devices to gather
diverse data in real-world settings. However, en-
suring the quality of the collected data in mo-
bile crowdsensing environments (MCS) remains a
challenge because low-cost nomadic sensors can
be prone to malfunctions, faults, and points of
failure. The quality of the collected data can
significantly impact the results of the subsequent
analyses. Therefore, monitoring the quality of sen-
sor data is crucial for effective analytics.

In this thesis, we have addressed some of the
issues related to data quality in mobile crowdsens-
ing environments. First, we have explored issues
related to data completeness. The mobile crowd-
sensing context has specific characteristics that are
not all captured by the existing factors and met-
rics. We have proposed a set of quality factors of
data completeness suitable for mobile crowdsens-
ing environments. We have also proposed a set of
metrics to evaluate each of these factors. In order
to improve data completeness, we have tackled
the problem of generating missing values. Existing
data imputation techniques generate missing val-

ues by relying on existing measurements without
considering the disparate quality levels of these
measurements. We propose a quality-aware data
imputation approach that extends existing data
imputation techniques by taking into account the
quality of the measurements.

In the second part of our work, we have fo-
cused on anomaly detection, which is another
major problem that sensor data face. Existing
anomaly detection approaches use available data
measurements to detect anomalies, and are obliv-
ious of the quality of the measurements. In order
to improve the detection of anomalies, we propose
an approach relying on clustering algorithms that
detects pattern anomalies while integrating the
quality of the sensor into the algorithm.

Finally, we have studied the way data quality
could be taken into account for analysing sensor
data. We have proposed some contributions which
are the first step towards quality-aware sensor data
analytics, which consist of quality- aware aggrega-
tion operators, and an approach that evaluates the
quality of a given aggregate considering the data
used in its computation.
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Résumé substantiel en français

Les environnements de capteurs mobiles sont devenus
le paradigme de référence qui exploite les capacités de
collecte des appareils mobiles pour recueillir des don-
nées variées en conditions réelles à des fins d’analyse.
Pour autant, garantir la qualité des données recueil-
lies reste une tâche complexe car les capteurs, sou-
vent à bas coûts et ne fonctionnant pas toujours de
façon optimale, peuvent être sujets à des dysfonction-
nements, des erreurs ou des pannes. Comme la qual-
ité des données a un impact direct et significatif sur
les résultats des analyses ultérieures, il est important
de disposer d’outils d’évaluation et d’amélioration de
la qualité. Dans notre travail, nous nous intéressons
à deux problèmes liés à la qualité des données dans les
environnements de capteurs mobiles, la complétude
des données et la détection d’anomalies.

Notre première contribution porte sur la com-
plétude des données. Nous nous sommes intéressés
à l’évaluation de la complétude dans des environ-
nements de capteurs mobiles, et étudié l’adéquation
des facteurs de complétude existants dans ce con-
texte. Nous avons proposé trois facteurs de qual-
ité : (i) la complétude temporelle, qui représente la
façon dont une période de temps est couverte par
les mesures de capteurs disponibles ; (ii) la com-
plétude spatiale, qui représente la façon dont une
zone géographique est couverte par les mesures de
capteurs disponibles et (iii) la complétude d’un cap-
teur qui représente la capacité du capteur à fournir
les mesures attendues pour une période de référence.
Nous avons proposé des métriques d’évaluation pour
chacun de ces facteurs.

Afin d’améliorer la complétude des données, nous
nous sommes intéressés au problème de génération
des données manquantes. Les techniques existantes
d’imputation de données génèrent les données man-
quantes en exploitant les données existantes, c’est
à dire dans notre contexte les mesures déjà réal-
isées par les capteurs. Le résultat est donc très
dépendant de la qualité des données utilisées pour
l’imputation. Nous avons proposé des extensions
d’approches d’imputation existantes qui intègrent la
qualité des données lors de l’imputation, et nous
avons en particulier étendu les approches ST-MVL,
KNN-Impute et SVD-Impute.

Nous avons évalué les métriques de complétude
ainsi que les approches d’imputation de données
fondées sur la qualité dans le cadre du projet ANR

Polluscope, sur des données réelles. L’objectif du
projet est de quantifier l’impact de l’exposition in-
dividuelle à la pollution de l’air. Nous avons no-
tamment montré que la prise en compte de la qual-
ité lors de l’imputation permet d’améliorer de façon
significative les résultats obtenus. Notre deuxième
contribution porte sur la détection d’anomalies dans
les données collectées dans des environnements de
capteurs mobiles. Plusieurs catégories d’approches
ont été proposées, comme les approches statistiques,
les approches à base de clustering ou encore les ap-
proches fondées sur les réseaux de neurones. Toutes
ces approches exploitent les données existantes pour
identifier les données considérées comme des anoma-
lies. Afin d’améliorer leur détection, nous avons pro-
posé une approche fondée sur l’algorithme de cluster-
ing k-means. Notre approche décompose les séries
temporelles collectées par les capteurs en séquences
de taille fixe, puis regroupe ces séquences en clus-
ters en tenant compte de la qualité des données ainsi
que de certains éléments de contexte lorsqu’ils sont
disponibles. Nous avons introduit les notions de qual-
ité d’un cluster et de qualité d’une séquence, que
nous utilisons pour assigner un score d’anomalie à
chaque séquence, permettant de déterminer s’il s’agit
d’une anomalie ou non. Nous avons réalisé des éval-
uations et montré que notre approche améliore la
détection des anomalies comparée à des approches
existantes fondées sur k-means.

Notre troisième contribution porte sur l’étude des
approches possibles pour prendre en compte la qual-
ité des données lors du calcul d’indicateurs à par-
tir de données issues de capteurs. Nous avons pro-
posé des opérateurs qui considèrent la qualité des
données pendant le calcul d’agrégat. Nous avons
défini deux façons de prendre en compte la qualité
lors de l’agrégation : (i) la pondération des données,
qui consiste à assigner à chaque donnée un poids
représentant sa qualité, et (ii) le filtrage des don-
nées, qui consiste à considérer uniquement les don-
nées dont la qualité est supérieure à un seuil prédéfini
lors de l’agrégation. Enfin, nous avons proposé une
approche d’évaluation de la qualité d’un agrégat à
partir de la qualité des données utilisées pour son cal-
cul. Dans ce volet de notre travail, nous utilisé nos
métriques de qualité précédemment définies, notam-
ment pour la complétude des données et la qualité
d’un capteur.
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1 - Introduction

1.1 . Context and Motivation

The advent of the smart city concept has given rise to a profusion of
innovative technologies using IoT (Internet of Things) [Zappatore et al., 2017],
[Okafor et al., 2020] in several areas such as transportation, energy or en-
vironment. Indeed, the recent development of low-cost micro-sensor tech-
nology has inspired new fields of research and development in these areas
[Joglekar and Kulkarni, 2016], [Zappatore et al., 2019], [Alvear et al., 2018],
[Mehanna et al., 2020], [Dessimond et al., 2021]. The aim of this research
is to respond to the problems raised by the growth of urban densification1,
requiring continuous adaptations of the urban system, particularly in terms of
environmental quality, mobility and health safety. One of the key issues in all
of these projects concerns the quality of data from sensors, whether fixed or
mobile [Ehrlinger and Wöß, 2018], [Liu et al., 2019]. This is a fundamental issue
because the reliability of the analyses performed on the data and the quality of
the decision-making process depend essentially on data quality. This is precisely
what our research is focusing on.

As mentioned above, the rise of nomadic sensor usage in various domains, such
as medical monitoring equipment, banking transactions, road traffic surveillance,
air pollution quantification, etc., increases the need for good-quality data. This
growth generates vast volumes of data, necessitating their constant monitoring
to ensure informed decision-making. Thus, in this context, data quality control
is essential for the reliability of the results of the analyses and the associated
decisions. However, these nomadic sensors are vulnerable which leads to various
intrinsic malfunctions, such as calibration problems, battery, etc., and extrinsic
ones, such as transmission or reception problems, misuse, etc. The loss of data
and the presence of anomalies can happen during the acquisition or the integration
process, due to several problems, such as the points of failure of the measuring
sensors, the manufacturing defects in the sensors, and other losses of data chunks
during the data integration process. Such issues can raise questions about the
reliability of this data. Hence, ensuring a good quality data is an indispensable
part of the data analysis process to enable informed decision-making. Thus,
many research works are carried out in this direction [Zappatore et al., 2019],
[Safaei et al., 2020], [Mehanna et al., 2020], [Thomas and J.E, 2021].

The goal of our work is to study data quality issues in mobile crowdsensing

1According to the World Bank, the urban population, currently 56%, will almost
double by 2050: https://www.banquemondiale.org/fr/home.
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environments. We are interested in the limitations of existing quality dimensions
and factors in order to better capture the different facets of quality in this specific
context. One of our goals is to propose new dimensions and factors and their
associated metrics that are adequate for this mobile crowdsensing context. We also
aim to propose approaches to improve the quality of sensor data in this context.
Finally, we want to use these quality metadata in order to compute more reliable
indicators and analyses. Similarly to the work of [Berti-Équille et al., 2011],
we consider that data quality could be described by several dimensions. Each
dimension has several factors that capture a particular quality facet. The quality
factors are measured by instruments called metrics. For example, data accuracy
is a quality dimension which could be refined into several quality factors. One of
these factors is syntactic accuracy, which could be assessed using several metrics,
one of them could be the comparison of the data to a regular expression defining
the pattern this data must follow; this could be the general form of an email for
example. In our work, we have focused on two data quality problems related to
the missing values and the presence of anomalies. We propose some approaches
to improve the quality of the data considering the data quality. We also initiate a
work towards taking into account the quality while computing indicators from the
data.

The work in this manuscript was done within the context of the ANR Polluscope
project2 [Brahem et al., 2021], [Languille et al., 2020], [Abboud et al., 2021].
The project lies in the context of environmental smart cities. The main objec-
tive of this project is to quantify human exposure to air pollutants. As human
beings spend up to 60% of their daily time indoors [Languille et al., 2020], it does
not seem reasonable to rely on stations that measure the air quality outdoors only
for adequate human exposure. Reference machines are placed at a height of 2.5
meters, which is not at the same level as the height of an average human be-
ing. This means that reference stations do not target the actual human exposure.
Hence, the main goal of the project is to have human carriers of mobile, low-cost
sensor units that can be carried throughout the daily routines of individuals for a
specific period to study their exposure to air pollutants. In addition to measuring
air quality at the individual scale, it also offers the possibility of measuring air qual-
ity in indoor and outdoor environments. However, in the chain of data acquisition
via micro-sensors, we are confronted with issues related to the completeness of
the data, the presence of anomalies, and the introduction of data quality when
computing aggregates on sensor data.

1.2 . Challenges

2For more information, please follow this link: https://polluscope.uvsq.fr
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The advantages of recent low-cost nomadic sensor technology are numerous.
In addition to cost, this technology is a real opportunity to facilitate data
acquisition in many fields. However, for a variety of reasons, data (measurements)
from this type of sensor are likely to have imperfections (inaccuracy, inconsistency,
etc.). In other words, the quality of such data is likely to be impaired. These data
quality issues can result from several possible problems that happen during either
the acquisition or the integration processes. Missing values and anomalies are
the most frequent problems in mobile crowdsensing environments. Missing values
have been studied in the related works on data quality and are related to the
data completeness dimension. The presence of anomalies in the data is related to
another dimension of data quality which is the accuracy. We have focused in our
work on the problem of missing values and the presence of anomalies in the data.

Many definitions and metrics exist in the literature on data completeness. How-
ever, mobile crowdsensing environments have specific characteristics that are not
all captured by these metrics. Hence, the existing metrics are not suitable to cap-
ture all the characteristics of data completeness in this context. For example, an
existing metric of completeness is the proportion of null values in the dataset. How-
ever, there are other factors of completeness in mobile crowdsensing environments.
For example, we could be interested in the extent to which our measurements cover
a specific geographical area, and the proportion of null values would fail to capture
this facet of the data.

In order to improve the completeness of the data, one solution is to generate
the values for the missing ones in the dataset. There are numerous approaches
targeting the generation of missing values using data imputation techniques for
sensor data. However, the replacement of missing values is still a challenging task.
Data imputation techniques rely on existing data to generate a missing measure-
ment value. The problem with existing approaches is that they neglect that the
sensors may not always operate in an optimal way, which may result in poor quality
data. This means that measurements coming from sensors that performed poorly
due to some reason are considered in the same way as those coming from a sensor
that is performing optimally. This results in imputed values that are of poor quality.

Another major problem faced when dealing with sensor data is the presence
of undetected anomalies. Anomalies are data points or sequences that do not
conform to the normal behavior observed in the data. They could manifest as
spikes, unusual points, or unusual patterns that often reveal interesting information
in the data. To this day, detecting pattern anomalies remains challenging. There
is a wide variety of approaches targeting anomaly detection [Khayati et al., 2020],
[Braei and Wagner, 2020], [Blázquez-García et al., 2021]. Many of these ap-
proaches rely on existing data measurements to identify anomalies. This means
that the quality of the detection results also relies on the quality of this input
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data. Given the vulnerable nature of the emerging low-cost nomadic sensors to
errors, anomaly detection techniques could deal with measurements of various
qualities. Therefore, a major challenge is improving the quality of these anomaly
detection approaches by considering the quality of the underlying measurements.

Given a dataset and a set of tools to measure its quality, another challenge is
to take data quality into account in the computation of indicators. As the quality
of the measurements used to compute an aggregate is not always optimal, another
challenge is assessing the quality of this aggregate given the quality values of the
data measurements used in the computation.

1.3 . Contributions

In our work, we have proposed some contributions related to the data complete-
ness, the presence of anomalies in the data, and computing indicators considering
data quality. Our contributions are the following.

■ We define a set of data completeness factors dedicated to mobile crowd-
sensing environments. We identify three data completeness factors suitable
for this context: sensor completeness, spatial completeness, and temporal
completeness. We characterize and propose the associated metrics to assess
these factors.

■ We propose a quality-aware data imputation technique in order to take data
quality into account during the generation of the missing values. We extend
three data imputation techniques: ST-MVL, SVDImpute, and KNNImpute.
We consider that the data quality is captured by aggregating different quality
facets related to the device, user behavior, and reference datasets. We
evaluate the proposed approach on real data from the Polluscope project 3

[Brahem et al., 2021], [Languille et al., 2020] and prove that the results of
the data imputation are improved when using data quality for the imputation.

■ We propose a quality-aware anomaly detection approach that detects anoma-
lies while taking into account the quality of the data measurements. The
data quality and other relevant contextual information help understand the
surrounding environment, making it easier to detect anomalies tied to their
surrounding context. Our approach is based on clustering methods and tar-
gets pattern anomalies, which are more challenging to detect according to
[Braei and Wagner, 2020].

■ We propose a first contribution towards quality-aware sensor data analytics,
consisting of some basic building blocks. We propose quality-aware aggre-
gation operators that take quality into account to aggregate data measure-

3http://polluscope.uvsq.fr
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ments, and we also propose an assessment method to compute the quality
of the aggregates.

1.4 . Outline of the thesis

The remaining of this manuscript is organized into five chapters.

In chapter 2, we present some related works on existing data quality dimensions
for traditional databases and the data quality dimensions proposed for sensor data.
We survey works defining and proposing metrics for the evaluation of different
data quality dimensions and specifically for data completeness. We identify several
open research problems: the generation of missing values in mobile crowdsensing
environments, anomaly detection, and specifically the challenge of identifying
pattern anomalies that could reveal interesting knowledge about the measured
element once detected. Also, improving existing data aggregation operators and
assessing the quality of aggregates.

Chapter 3 is devoted to the assessment and improvement of data completeness
in mobile crowdsensing environments. We characterize three factors for data
completeness that are relevant in mobile crowdsensing environments (MCS).
We propose metrics to assess these different factors. We present our approach
to improving the data completeness quality dimension by proposing a quality
extension to three existing data imputation techniques to generate the missing
values in the dataset using the quality of the data measurements.

In chapter 4, we present our quality-aware anomaly detection approach. The
approach injects data quality into the process of identifying anomalies. The
quality of the data and some contextual information are employed to group similar
subsequences together and to compute an anomaly score taking into account the
quality of the measurements.

Chapter 5 is a first step towards a quality-enhanced data integration system.
The idea is that when computing indicators and when performing analyses on
the data, we need to take into account the quality of the sensor that captured
the measurements because analysis based on poor quality data will lead to poor
quality indicators. In this chapter, we present the way data quality could be
used to improve sensor data analytics by introducing quality-aware aggregation
operators that consider data quality in the aggregation process. We also present
a method to compute the quality of a given aggregate.

Finally, in chapter 6, we conclude the manuscript by first summarizing our con-
tributions, and then presenting some perspectives and future research directions.





2 - State of the Art

2.1 . Introduction

With the development of micro-sensor technologies and the diversi-
fication of data sources, the data quality problem has grown and has
given rise to numerous research projects in different application areas
[Batini and Scannapieco, 2006, Sidi et al., 2012, Wang et al., 2016]. Data
quality (DQ) is defined by [Hassany Shariat Panahy et al., 2013] as fitness for
use and as conformance to requirements [De Feo, 2017]. Several approaches
address data quality issues for general contexts as well as for mobile crowdsensing
contexts. There is no agreement on a standard definition of data quality that can
be applied across all data domains [Jesil,evska, 2017]. In the context of mobile
crowdsensing environments, there are numerous works that target different quality
issues. However, there is no consensus in the definition of quality factors, which
may be overlapping and contradicting [Peralta, 2006].

In this chapter, we study several research issues related to data quality in
mobile crowdsensing environments. Many existing works defined the quality
factors of sensor data [Östman, 1997], [Rodríguez and Servigne, 2013]. Some
works focused on the definition and characterization of data quality in this context
and the identification of the different quality dimensions. Other works focus
on the evaluation and assessment of the quality factors and their dimensions or
the quality of service as provided by the sensors such as [Serhani et al., 2016],
[Biswas et al., 2006]. Other works focus on improving the quality of the data
from several aspects and dimensions. We present in this chapter the existing
data quality factors and discuss their applicability to mobile crowdsensing
environments. We also discuss approaches that improve the quality of the data
in this context. Our work is focused on studying two data quality problems,
the missing values and the presence of anomalies. Missing values are related
to data completeness quality dimension and the anomalies are related to data
accuracy. Several works define the data completeness quality factor in different
contexts [Klein et al., 2007], [Liu et al., 2017], [Azimi and Pahl, 2021], and
others propose metrics to evaluate it [Biswas et al., 2006], [Todoran et al., 2015],
[Ehrlinger and Wöß, 2022]. We also study the improvement of data completeness
by exploring approaches that generate missing values using data imputation tech-
niques such as [Troyanskaya et al., 2001],[Yi et al., 2016],[Khayati et al., 2020].

Anomaly detection has been the focus of several works. Some approaches have
worked on defining anomalies in time series and proposed techniques to detect
the different types of anomalies [Gupta et al., 2014], [Braei and Wagner, 2020],

19



20 CHAPTER 2. STATE OF THE ART

[Blázquez-García et al., 2021]. Some approaches also discussed contextual
anomaly detection in the presence of knowledge about the surrounding
circumstances and conditions of the sensors collecting the measurements
[Tsay et al., 2000], [Liang and Parthasarathy, 2016],[Zheng et al., 2017].

Finally, we have also reviewed some existing works that include data quality
information in the data integration process in order to analyze the impact of data
quality on the analysis process and on the computation of indicators from the data.
We have studied approaches that incorporate data quality for spatiotemporal
data [Boulil et al., 2013], [Berrahou et al., 2015], for data collected within a
mobile crowdsensing context [Huang et al., 2022] and for spatial data in SOLAP
systems [Devillers et al., 2007a] because we are interested in ways to integrate
quality of the data in the integration process within a mobile crowdsensing context.

The remainder of this chapter is organized as follows. Quality dimensions and
data quality assessments are presented in section 2.2. Section 2.3 discusses the
quality dimensions specific to mobile crowdsensing environments (MCS). In sec-
tion 2.4, we discuss data imputation approaches. Section 2.5 presents approaches
that studied the detection of anomalies. Section 2.6 discusses quality-aware data
integration approaches. Finally, section 2.7 concludes the chapter.

2.2 . Data quality definition and assessment

Many works have defined data quality dimensions for different application
domains and contexts of data. The work of [Berti-Équille et al., 2011] proposes
quality abstraction composed of data quality dimensions, quality factors, and
quality metrics. Each dimension has several factors, and a quality metric measures
a quality factor. Many existing approaches propose systems that monitor the
quality of the data and metrics to evaluate the different quality dimensions.
The authors of [Alizamini et al., 2010] define the data quality dimensions and
propose the use of fuzzy association rules to measure data accuracy. Another
definition for data quality is fitness for use [Hassany Shariat Panahy et al., 2013],
[Sidi et al., 2012]. Each dimension captures a specific aspect of the quality of the
data [Batini and Scannapieco, 2006]. The authors of [Sidi et al., 2012] defined a
data quality dimension as a characteristic or part of the information that provides
a way for measuring and managing data quality. The work of [McGilvray, 2021]
states that a data quality dimension offers a way for measuring and managing
data quality as well as information.

In this section, we present some existing dimensions defined in the data quality
management community that are not necessarily specific to mobile crowdsensing
environments. We then present metrics that have been proposed for quality as-
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sessment of several data quality dimensions. We finally provide an analysis of these
definitions and metrics proposed.

2.2.1 . Data quality dimensions
Many works have defined data quality dimensions for different contexts. This

section presents existing definitions of some data quality dimensions. Some ap-
proaches worked on grouping the data quality dimensions into categories. The au-
thors of [Wang and Strong, 1996] defined and categorized the dimensions of data
quality according to four categories, (1) intrinsic, (2) accessibility, (3) contextual,
and (4) representational data quality, as described below:

• Intrinsic: captures the quality that data has on its own. The following four
quality dimensions: accuracy, objectivity, believability, and reputation are
classified under this category because they capture the intrinsic aspect of
the data.

• Accessibility: refers to the extent to which data are available or obtainable.
The following data quality dimensions are classified under this category:
accessibility and access security.

• Contextual: highlights the requirement that data quality must be considered
within the context of the task at hand;. The following data quality dimen-
sions are classified under this category: relevancy, value-added, timeliness,
completeness, and amount of data.

• Representational: describes how understandable and representative the data
is. The following data quality dimensions are classified under this category:
interpretability, ease of understanding, conciseness of representation, and
consistency of representation.

Figure 2.1: A typology of some data quality dimensions proposed by
[Wang and Strong, 1996]
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The authors of [Wang and Strong, 1996] proposed a possible typology of data
quality dimensions shown in Figure 2.1. Several other works have defined differ-
ent typologies. In what follows, we present some data quality dimensions in the
literature from each one of these categories.

Accuracy

Several works have defined data accuracy in the literature. The authors of
[Wang and Strong, 1996] defined accuracy as the extent to which data is correct,
reliable, and certified. Some works have defined data accuracy compared to some
ground truth or reference. It has been defined by [Batini and Scannapieco, 2006]
as the closeness between a value v and a value v′, considered the correct repre-
sentation of the real-life phenomenon that v aims to represent. Data accuracy
measures the degree of similarity between the actual data and the ground truth
[Alfred., 1972]. The ISO 25000 standards for data quality [iso25000, ] define
accuracy as the degree to which data has attributes that correctly represent the
true value of the intended feature or event in a specific context of use. The authors
of [Ehrlinger and Wöß, 2022] defined accuracy as the magnitude of an error. The
magnitude of error in this definition means the value of the difference between
the actual data and the ground truth. The authors of [McGilvray, 2021] also
considered accuracy as a measure of the correction of the data, which requires an
authoritative source of reference to be identified and accessible. [Östman, 1997]
defined accuracy as the closeness of observation to true values or values accepted
to be true. Data accuracy refers to the degree to which the primary data differ
from the population’s true parameters determined by using established secondary
data sources [Nonnemacher et al., 2014, Jacke et al., 2012]

Some works have defined different factors of data accuracy. The authors
of [Batini and Scannapieco, 2006] identified two factors of accuracy: syntactic
and semantic. Syntactic accuracy is defined as the closeness of a value v to
the elements of the corresponding definition domain D. It is measured by the
number of syntactic operations that need to be applied to a value v to convert
it to another element belonging to the domain of definition. For example, the
syntactic accuracy of a registered customer name in a database "Jhon" takes one
syntactic operation by moving one letter to be converted to the correct value
which is "John". The authors of this work also define semantic accuracy as the
closeness of a value v to the true value v′.

The work of [Östman, 1997] identified three factors of data accuracy: po-
sitional, temporal, and thematic. The authors defined positional accuracy as
a quality parameter indicating the accuracy of geographic positions. The au-
thors later distinguished two types of accuracy: structural and temporal. The
authors referred to temporal accuracy as the rapidity with which the change



2.2. DATA QUALITY DEFINITION AND ASSESSMENT 23

in the real-world phenomenon is reflected in the update of the data value
[Batini and Scannapieco, 2016]. This type of accuracy measures how fast the data
is updated in the information system once a change happens in the real world. The
other type is structural accuracy which characterizes the accuracy of data as ob-
served in a specific time frame, where the data value can be considered as stable
and unchanged [Batini and Scannapieco, 2016].

Data Completeness

The problem of data completeness has been known in the literature as the
problem of missing information [Emran, 2015]. Data completeness is related to
the presence and the absence of the data in an information system.

Several works have defined the meaning of data completeness. The authors of
[Wang and Strong, 1996] defined completeness as the extent to which data are of
sufficient breadth, depth, and scope for the task at hand. ISO 25000 [iso25000, ]
defined data completeness as the degree to which subject data associated with
an entity has values for all expected attributes and related entity instances
in a specific context of use. The authors of [Batini and Scannapieco, 2006]
defined data completeness in relational databases as the extent to which the
table represents the corresponding real world. For example, considering a
transactions data table containing different information about bank transactions,
data completeness is defined as how representative the data in this table is of
the actual transactions that happened at the bank. Data completeness within
an entity has been defined as data for which all required information is present
[Bovee et al., 2003]. According to [Fox et al., 1994], completeness was defined as
the degree to which a data collection has values for all attributes of all entities.
The latter definition was proposed in the context of relational data, where the
completeness of a table is related to the completeness of all the records and the
attributes in this table. The authors of [Nonnemacher et al., 2014] have defined
data completeness for health data in databases as the degree to which the data
have captured all relevant patients in accordance with the inclusion criteria. In
the healthcare context, the completeness of the data covers all the expected data
about relevant patients. The work of [Östman, 1997] defined completeness for
spatial data as the degree of conformance of a geographic dataset compared to
its nominal ground with respect to the presence of objects, association instances,
and property instances.

Another set of works has defined data completeness on different levels for re-
lational database contexts. The authors of [Liu et al., 2016] have defined data
completeness over several parts: attribute, tuple, and relation. Attribute com-
pleteness is defined as the extent to which an attribute cell stores information.
tuple completeness is defined as the extent to which all the cells of the tuple



24 CHAPTER 2. STATE OF THE ART

store information. Finally, the authors defined relation completeness as the extent
to which a relation describes entities of interest [Liu et al., 2016]. The work of
[Pipino et al., 2002] identified two data completeness factors column complete-
ness, and population completeness, defined as follows.

• Column Completeness: a measure of the missing values for a specific
property or column in a table.

• Population Completeness: evaluates missing values with respect to a
reference population.

Data freshness

The work of [Peralta, 2006] relates data freshness to how old data is and states
that it is a quality dimension that represents a family of quality factors, each
representing some freshness aspect and having its own metrics. The author of this
work then distinguishes two quality factors for this quality dimension: timeliness
and currency.

Some works, such as [Batini and Scannapieco, 2006], have defined timeliness
as a factor that shows how current the data are for the task at hand. The authors
of [Wang and Strong, 1996] defined timeliness as the extent to which the age
of the data is appropriated for the task at hand. The author of [Peralta, 2006]
characterizes timeliness as a quality factor that describes how old is the data. It
captures the gap between the data creation/update and data delivery no matter
when the data was extracted from the sources. It is often estimated as the
time elapsed from the last update to a source [Peralta, 2006]. ISO standard
[iso25000, ] defined timeliness as the degree to which data has attributes that are
of the right age in a specific context of use.

Age or currency is defined by [Bovee et al., 2003] as a measure of how old
the information is, based on how long ago it was recorded. A datum is said to
be current or up-to-date at time t according to [Fox et al., 1994] if it is correct at
time t, and considered not up-to-date if it is incorrect at time t but was correct
at some moment preceding t. For example, assume there is a table describing the
salary of employees, if an employee gets a raise but their salary in the table is not
updated, then the data is not up-to-date.

[Batini and Scannapieco, 2006] defined currency as how frequently data
is updated. Currency is considered high when the data is up-to-date
[Batini and Scannapieco, 2006]. It captures how promptly data are updated with
respect to changes occurring in the real world [Batini and Scannapieco, 2016].
Currency describes how old data is with respect to the sources according to
[Segev and Fang, 1989]. It captures the gap between the extraction of data from
the sources and its delivery to the users. It is often measured as the time elapsed
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since data was extracted from the source [Peralta, 2006].

The authors of [Langefors and Sundgren, 1975] suggest that it is required for
each datum to have a time indicator. The authors of [Fox et al., 1994] recognize
the special relationship between change over time and data quality and propose
the definition of the following: currency, age, and timeliness that take into
consideration the change of data over time.

Volatility is another data quality dimension that is relevant to timeliness and
currency. The authors of [Bovee et al., 2003] described volatility of information
as a measure of information instability. It is the frequency of change of the value
for an entity attribute. Non-volatile information are stable, they do not change nor
become dated. Volatility characterizes the frequency with which data vary in time
[Batini and Scannapieco, 2006], [Batini and Scannapieco, 2016].

Consistency

Data consistency is a data quality dimension that refers to whether the data
match certain rules or constraints. The authors of [Wang and Strong, 1996]
define consistency as the extent to which data is presented in the same format
and consistently represented and formatted. [iso25000, ] defined consistency as
the degree to which data has attributes that are free from contradiction and are
coherent with other data in a specific context of use.

According to [Batini and Scannapieco, 2006], consistency captures the viola-
tion of semantic rules defined over (a set of) data items, where items can be tuples
of relational tables or records in a file.

The authors of [Wang and Strong, 1996] have categorized data consistency
under the representational data quality category. Representational data quality
captures aspects related to the quality of data representation, such as inter-
pretability. The work of [Bovee et al., 2003] proposes a model of information
quality, its attributes, and their respective sub-attributes. This work has listed
the data consistency quality dimension under the integrity category that implies
that the data is free from defects or flaws or has the state of being unimpaired or
sound [Bovee et al., 2003].

Synchronization is a quality dimension that is relevant to consistency and ex-
presses how data is aligned and consistent across different systems. Some works
in the literature associate it with data consistency such as [McGilvray, 2021]. The
authors of [McGilvray, 2021] define consistency and synchronization in the context
where the data is replicated among several data stores, applications, or systems.
It is defined as the extent to which the data stored across these various systems is
equivalent.
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Interpretability, Accessibility

Many other data quality dimensions have been proposed and defined in the litera-
ture. We previously discussed the quality dimensions of accuracy, completeness,
timeliness, and consistency identified by [Donoghue et al., 2011] as the four most
important data quality dimensions. However, other quality dimensions exist, such
as interpretability and accessibility.

The authors of [Batini and Scannapieco, 2006] defined interpretability as a
dimension that is related to the documentation and metadata available that help us
understand and interpret the meaning and properties of the data. The authors of
[Bovee et al., 2003] defined the interpretability of data as data that is understand-
able, and data that we are able to derive meaning from. [Wang and Strong, 1996]
defined understandability as the extent to which data are clear without ambiguity
and easily comprehended. The work of [Batini and Scannapieco, 2016] defined
interpretability as the ability of the user to correctly interpret values from their
format.

Data accessibility is a quality dimension that refers to the degree to which the
data is available to authorized users. As defined by [Batini and Scannapieco, 2006],
accessibility is the ability of the user to access data from his culture, physical
status, and available technologies. [Wang and Strong, 1996] defined accessibility
as the extent to which information is available or easily and quickly retrievable. The
authors of [Batini and Scannapieco, 2016] defined accessibility in data as data that
is available or easily and quickly retrieved.

2.2.2 . Data quality assessment

Many research works have dealt with data quality assessment. This subsection
presents some of the metrics from the literature that propose the assessment and
evaluation of several data quality dimensions such as: accuracy, completeness,
consistency, freshness, etc. In this subsection, we will focus on quality assessment
in general, not only the ones that are specific to mobile crowdsensing environment.

Accuracy

Some works proposed metrics to assess data accuracy. The authors of
[Jacke et al., 2012] proposed metrics to evaluate the accuracy of health data col-
lected within a breast cancer study. The authors propose to evaluate the accu-
racy of this data by comparing all available risk, prognostic, and predictive fac-
tors to distributions available from external reference databases. The authors of
[Östman, 1997] surveyed existing works for data quality assessment metrics and
found that the most used metric to evaluate temporal accuracy was the date of
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the last update. In the work of [Redman, 2005], the authors proposed to evaluate
field-level and record-level accuracy as follows:

field level accuracy =
number of correct fields
number of fields tested

The field-level accuracy is defined at the attribute level. The authors also proposed
to assess record-level accuracy with respect to the number of records found to be
accurate as follows:

record level accuracy =
number of accurate records
number of records tested

Completeness

Numerous works have proposed metrics to evaluate the data completeness quality
dimension. The work of [Östman, 1997] surveyed some quality dimensions
and the metrics to evaluate them on spatial data such as techniques for the
assessment of the data completeness quality dimension; the most used evalua-
tion metric of data completeness was the percentage of missing objects in the data.

The work of [Köpcke et al., 2013] aimed to evaluate the completeness of
electronic health record (EHR) data for the purpose of patient recruitment into
clinical trials. The study focused on evaluating the presence of 16 data elements
that are commonly required for patient recruitment into clinical trials, including
demographics, diagnoses, procedures, medications, and laboratory test results.
The authors matched the desirable patient characteristics to specific elements in
the EHR data. This means that one patient characteristic is composed of several
elements found in the EHR data. They defined corresponding data elements of a
patient characteristic as those fields in the EHR’s database which hold for at least
one patient the information whether the patient has the characteristic or not.
Data completeness was evaluated by the authors of [Köpcke et al., 2013] as the
fraction of patient characteristics with at least one corresponding data element,
multiplied by the fraction of patients with any data in at least one corresponding
element.

The authors of [Xiao et al., 2017] developed a data quality evaluation tool
that evaluates data completeness for health data collected from records at hospi-
tals. The authors identified 34 variables in the recorded data and evaluated data
completeness as the ratio of the number of available variables that had a value
recorded out of the total 34 variables.
The work of [Batini and Scannapieco, 2006] considered that data completeness is
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evaluated as the ratio of presence/absence of null values while considering different
granularity levels: the value, tuple, attribute, and relation levels.

A generic metric for data completeness was proposed by the authors of
[Ehrlinger and Wöß, 2022] based on the literature. The authors refer to an ele-
ment as any data unit, such as an attribute, a record, or a table. The completeness
metric is as follows:

Completeness =
|eC |
|e|

Where eC is the number of complete elements and |e| is the total number of
elements.

The work of [Lee et al., 2009] stated that completeness could be viewed from
at least three perspectives: schema completeness, column completeness, and pop-
ulation completeness. The authors of this work proposed that each of these com-
pleteness perspectives can be measured by the following simple ratio:

Completeness = 1− Number of incomplete items
Total number of items

Timeliness, Currency, Volatility

A set of works have assessed time-dependent data quality dimension such as volatil-
ity and factors such as timeliness, and currency. A timeliness definition has been
proposed by the authors of [Bernd et al., 2007] that was later used and extended
by the work of [Heinrich and Klier, 2009] to propose the following.

Qw
Time(t) = exp(−decline(A).t)

Where w is the attribute value and decline(A) is the decline rate specifying the
average number of attributes that become outdated within the time period t.

The authors of [Ballou et al., 1998] postulate that the timeliness of the data
depends upon when it is delivered to the consumer. It is evaluated as a function
of the ratio of currency and volatility. The currency is the overall age of a data
unit and is good or bad depending on the volatility, also called the shelf-life, of the
data unit. Volatility is defined as the length of time data remains valid. A large
value for currency is unimportant if the volatility/shelf-life is infinite. On the other
hand, a small value for currency can deteriorate timeliness if volatility is very short.
Therefore, is evaluated as follows:

Timeliness = max{0, 1− currency
volatility

}

In some cases, data can be very up-to-date and have a high currency, while at the
same time, it might exhibit low volatility if the data values remain relatively stable
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or do not change significantly over time. In such cases, timeliness equals zero.
The authors of [Ballou et al., 1998] also proposed to evaluate data currency as
follows:

Currency = Age + (Delivery Time− Input Time)

Where Age measures how old the data is when received, Delivery Time is the time
when the data was delivered, and Input Time is the time the data was obtained.

Consistency

The authors of [Lee et al., 2009] defined several perspectives of data consistency.
One of these perspectives is the consistency between two related data elements,
such as the name of a city and the postal code that must be consistent. Another
perspective of data consistency identified by [Lee et al., 2009] is the consistency
of format for the same data element used in different data tables. The authors
proposed to evaluate consistency as follows:

Consistency =
Number of instances violating specific consistency type

Total number of consistency checks performed

The work of [Fox et al., 1994] found that a possible measure of the consistency
of an individual datum is a binary indication (Yes or No) of whether the datum
satisfies all constraints. This can be extended into a measure for an entire data
collection by determining the fraction of inconsistent data.

The authors of [Hinrichs, 2002, Ehrlinger and Wöß, 2022] proposed to evaluate
the consistency of an attribute w as follows:

Q(w) =
1∑n

j=1 rj(w).gj + 1

Where rj(w) is the violation of consistency rule rj applied to attribute w, and gj
is the degree of severity of rj(w). The value of rj(w) is assigned according to the
following:

rj(w)

{
0 if w satisfies rj

1 otherwise

Other data quality dimensions

The authors of [Lee et al., 2009] proposed several other metrics to evaluate differ-
ent quality dimensions. The accessibility of data reflects the ease of attainability
of the data. The authors proposed a metric that emphasizes the time aspect of
accessibility as follows:

Accessibility = max[(1−
IRequest-Delivery

IRequest-No longer of use
), 0]



30 CHAPTER 2. STATE OF THE ART

Where IRequest-Delivery is the interval from request time to delivery time to the
user, and IRequest-No longer of use is the interval from request time to time at which
the data is no longer of use. In some cases, data is no longer of use or outdated,
while data is being requested and delivered to users. In such cases, the accessibility
of the data is close to zero.

The authors of [Lee et al., 2009] also evaluated the appropriate amount of data
quality dimension. This dimension reflects a state where the amount of data is
neither too little nor too much. Their proposed metric for this dimension is as
follows:

Appropriate amount of data = min[
Nb of data units provided
Nb of data units needed

,
Nb of data units needed
Nb of data units provided

]

2.2.3 . Analysis
In this section, we discussed definitions of data quality dimensions and their

corresponding evaluation metrics proposed within contexts that are not necessarily
mobile crowdsensing. We studied several works defining some well-known data
quality dimensions.

Data accuracy has been frequently defined as the closeness of the data to
the ground truth. Among the works we studied, two metrics were proposed to
measure data accuracy. The first one is by comparing the value of the data to
another in a reference dataset. The second one is by computing the fraction of
data fields or records that are correct.

Data completeness has always been associated with missing values in the data.
It is evaluated with the presence or absence of a value for a given characteristic
in the dataset. Some works computed it using the percentage of missing values
and others with the ratio of available data. Even though some of the works were
defined within healthcare contexts, the metrics proposed are still applicable to
other application domains.

Timeliness is a time-dependent data quality dimension associated with how
recent and up-to-date the data are for tasks at hand. It has been evaluated using
the rate at which data attributes become outdated with time.

Consistency was associated with (i) certain consistency rules/constraints on
the data such as the format, and (ii) the consistency of the same data at different
places, machines, or tables. It has been evaluated with the number of instances
of data violating or conforming to the defined consistency rules.

The timeliness evaluation definition and proposed metrics study how the data
age. The time dimension is an intrinsic characteristic in mobile crowdsensing
data. Once a data measurement is registered, its value does not change, only new
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measurements with new values are captured and recorded.

The proposed metrics for data accuracy, completeness, and consistency
are directly applicable to mobile crowdsensing environments. However, they
sometimes fail to capture the quality of data in the MCS context. If we consider
the data completeness quality dimension of a set of data measurements as an
example, even if the set has no null values and no attributes in the existing
measurements are missing, the set could still be missing full records. Hence, these
existing metrics are applicable and relevant to mobile crowdsensing environments
but they are not sufficient.

Anomalies, being data points that deviate significantly from the norm, have the
potential to introduce errors and inaccuracies into datasets. Detecting anomalies
enables the identification of erroneous or anomalous data points and patterns that
may arise from measurement errors, sensor malfunctions, or other irregularities.
Addressing these anomalies can improve data accuracy. Improved data accuracy
translates to more reliable analysis, robust decision-making, and the ability to
extract meaningful insights from the data.

2.3 . Data quality in mobile crowdsensing environments

In the previous section, we have described existing definitions and metrics of
data quality dimensions in contexts that are not necessarily mobile crowdsensing.
The rise of sensing technologies raises the question of the applicability of these
traditional dimensions to the MCS context. This section focuses on definitions and
metrics of data quality dimensions applied to mobile crowdsensing environments.
We study existing works that define data quality dimensions in sensing contexts.
We then examine approaches that propose metrics to evaluate different quality
dimensions in this context. Finally, we present our analysis of these proposed
definitions and metrics.

2.3.1 . Data quality dimensions in MCS
Many works have defined different quality dimensions in mobile crowdsensing

environments and sometimes to specific application domains [Juddoo et al., 2018,
Serhani et al., 2016, Klein et al., 2007, Liu et al., 2019, Emran, 2015]. The work
of [Juddoo et al., 2018] investigated the applicability of existing data quality
dimensions to healthcare data in a big data context and surveyed the ex-
isting works studying data quality dimensions for healthcare. The work of
[Serhani et al., 2016] discussed enforcement of data quality of healthcare data in
a big data context. They also identified metrics for their evaluation. The authors
of [Klein et al., 2007] defined sensor data quality in a smart environment. The
authors of [Liu et al., 2019] discuss data quality problems and dimensions for sen-
sor data in the context of the Internet of Things. The author of [Emran, 2015]
conducts a review of the literature on the definitions of data completeness and
the associated metrics. We discuss in this section the definitions of data qual-
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ity dimensions applicable in mobile crowdsensing environments (MCS) and their
corresponding evaluation metrics.

Accuracy

Data accuracy is defined in mobile crowdsensing contexts as a dimension that
describes the numerical precision of a data value and states the absolute or relative
error of a physical value [Klein et al., 2007]. It could be affected by several issues
such as the lack of the sensor taking the measurement or the loss of calibration
of this sensor or even low accuracy especially when the sensors are of low cost.
There are numerous works that studied data accuracy and its importance in mobile
crowdsensing environments. The work of [Juddoo et al., 2018] found that data
accuracy was the quality dimension that was most cited among the works they
studied.

The authors of [Rodríguez and Servigne, 2013] defined accuracy for sensor data
in an environmental context as the correctness of data according to a reference
value and sensor technical precision. [Liu et al., 2019] stated that data accuracy is
the extent to which observation of the object truly reflects its real-world situation.
For example, in the context of health data monitoring the heart rate, the accuracy
of this data represents how close the obtained measurements are to the actual
heart rate being measured.
The work of [Serhani et al., 2016] stipulates that data accuracy measures how
much the recorded data is correct and hence is reliable.

Completeness

Data completeness in mobile crowdsensing environments is a dimension that
expresses the extent to which all expected data is provided by IoT services
[Liu et al., 2019]. Data completeness in this context could b[]e affected by
the occasional data losses by the sensors, the issues in the integration process
such as losses of measurements during the merging process of data from dif-
ferent sources, or any technical issues with the acquisition mechanism of the sensor.

Many approaches defined data completeness for different application domains
within a mobile crowdsensing context. The authors of [Serhani et al., 2016] mainly
defined data completeness to be related to the existence of missing or null val-
ues. According to [Klein et al., 2007], data completeness addresses the problem
of missing values due to sensor failures or malfunctions. Some sensor failures or
malfunctions could be the battery drain which causes the sensor to shut down,
leading to some measurement losses while the sensor is down. The work of
[Todoran et al., 2015] defines completeness as a dimension that measures the pres-
ence of all values for all the variables. The authors of [Fizza et al., 2022] defined
sensor data completeness as the degree to which sensor data values are not missing
for a given time window. The authors of [Fishbain et al., 2017] defined in their
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toolkit a quality dimension called the presence, which is a quality dimension that
measures the sensor’s or the system’s availability of a measurement at a given time.

Consistency

Consistency can be affected by factors such as sensor calibration, data processing
methods, and user behavior. It is a data quality dimension that reflects the extent
to which data are of the same format and respect some consistency rules defined on
the data. Logical consistency was defined by the authors of [Östman, 1997] as the
degree of conformance of a geographical dataset with respect to the constraints
defined in the application schema. [Liu et al., 2019] defined concordance, which
is a quality dimension that is relevant to consistency, as the extent to which the
data elements from a data source are in agreement with the data elements from
further individual data sources that report correlating effects.

Other quality dimensions

Many other data quality dimensions are relevant to the context of mobile
crowdsensing environments. The authors of [Han et al., 2010] have characterized
multidimensional requirements for the service of sensor data applications. The
authors defined requirements for the quality of service in this context, such
as reliability and timeliness of the services. They also defined requirements
for the data from the sensors and focused on the accuracy and freshness
of the data readings. Timeliness requirements are specified in the format of
periodicity, deadline, or a certain relative order of different tasks [Han et al., 2010].

Timeliness is usually related to the age of the data and the degree of its
validity in the system or in the real world [Serhani et al., 2016]. The authors of
[Liu et al., 2019] defined timeliness for data collected by IoT devices as the extent
to which an observation for the object is updated at a desired time of interest.

Currency was defined as the degree to which data is current or updated.
Volatility was defined for sensor data as a value representing the variation of
data over time [Han et al., 2010]. The authors of [Todoran et al., 2015] defined
data currency as the percentage of extracted elements that are up-to-date. The
authors of [Serhani et al., 2016] describe currency as a dimension that describes
the extent to which data is up-to-date.

[Han et al., 2010] defined data availability as a dimension representing the ac-
cessibility of data for the intended use. Adequacy was also defined as an estimation
of usability or quality of use.

[Liu et al., 2019] defined utility as the extent to which relevant data is accessed
by data consumers from IoT datasets during a certain period of time.
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2.3.2 . Data quality assessment
Numerous approaches have evaluated data quality for sensor data. This

subsection discusses approaches that have proposed metrics to assess different
data quality dimensions applicable to mobile crowdsensing environments.

Assessing data completeness

Many works focused on proposing metrics to evaluate data completeness in mo-
bile crowdsensing environments. The work of [Serhani et al., 2016] proposed two
metrics to evaluate data completeness. The first metric evaluates it as the ratio
of the number of empty or null values over the total number of values as follows:

completeness =
number of empty values
total number of values

The second metric for evaluating data completeness by the work of
[Serhani et al., 2016] evaluates completeness as the total number of the stored
actual records over the expected number of records as follows:

completeness =
Actual Total Number

Expected Total Number

The authors of [Klein et al., 2007] propose a metric to measure the stream
completeness c. The stream here represents the data stream of the measurements
sent by a sensor, and the stream length is represented by m. Data stream com-
pleteness is defined as follows:

c = 1− count(missing Values)
m

The authors of [Rodríguez and Servigne, 2013] evaluated data completeness
for sensor data in a mobile crowdsensing context by comparing the actual values
with an estimated number of data records computed using the time period and
the acquisition rate of the sensor.

The work of [Emran, 2015] surveyed many works assessing null-based,
tuple-based, and schema-based completeness while the authors proposed an
approach towards population-based completeness in which its completeness is
determined by the number of missing individuals from a reference population.
[Todoran et al., 2015] assessed data completeness for sensor data as the propor-
tion of registered values over the expected values.

Completeness has also been addressed by the work of [Biswas et al., 2006],
where the authors developed a quality model to assess data completeness for sensor
data by translating data rates to completeness values measured over a period of
time. They considered a specific "smart home" application context to demonstrate
how completeness can be calculated. The authors define completeness in the



2.3. DATA QUALITY IN MCS ENVIRONMENTS 35

smart homes context, then define each system completeness, query completeness
and present the metrics to evaluate both. The system completeness is defined as
the fraction of actual measurements from the existing sensors over the expected
measurements from these sensors:

SysComp =
v

n · d

Where v is the number of non-null values, n is the number of sensors in the
system, and d is the duration of measurement of an application or a query. Then,
to define query completeness, the authors first define the query data rate (QDR)
and the system data rate (SysDR), where the SysDR is the system’s data rate.
The SysDR is defined as the maximum rate of all the resources in the system
including the sensors. The QDR is the query data rate which is defined as the
rate at which the application would like to see data delivered in a query response.
It is dictated by the application requirements. Hence, the query completeness was
defined as follows:

QComp =
SysComp · SysDR

QDR

where SysComp is the system completeness, SysDR is the system data rate, and
finally, QDR is the query data rate.
Finally, the authors define the sensor data rate as the rate at which a sensor
communicates data to the outside world. The authors consider that the rate at
which a sensor outputs its data defines the completeness of a sensor. The sensor
data completeness is defined as follows:

SysComp(si) =
SensDR(si)

SysDR

where si is a sensor unit, SensDR(si) is the output data rate of si, and SysDR
is the system’s data rate.

The authors of [Dasu et al., 2016] address several data quality issues, among
them missing and incomplete data. The authors propose data quality checks to
assess completeness after the data gathering process. One of these checks is the
proportion of received data files over the expected number of data files. Another
data quality check relevant to data completeness is the proportion of the size of
the received data file over the expected file size. The expected size of each data
file indicates whether the file is complete or not. This means that if the size of the
actual data file is the same as that of the expected file, then they are complete,
and no further checks on the content of the files are necessary.

Assessing data accuracy

Other data quality dimensions have been assessed in mobile crowdsensing envi-
ronments, such as data accuracy. The authors of [Serhani et al., 2016] evaluated
data accuracy for health data collected using sensors on patients. Accuracy was
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evaluated as the ratio between the number of correct values stored and the total
number of values as follows:

accuracy =
Number Of Correct Values
Total number of Values

Data accuracy was evaluated by [Rodríguez and Servigne, 2013] compared to a
reference value from a reference datase, and while considering the sensor technical
precision by the manufacturer. The work of [Todoran et al., 2015] proposed to
measure data accuracy as the rate between the correct values and the total
number of values.

The authors of [Fizza et al., 2022] suggest that data accuracy is measured
based on the stability of sensor data. They compute the variation of data value
v, coming from a sensor, relative to its mean using moving standard deviation
(mSD) as follows:

mSDk =

√√√√ 1

m− 1

k∑
i=k−m+1

(vi − v̄)2, ∀k = 1, . . . , n

Where vi is the data value at the ith row, v̄ average of data values, n is the number
of rows, and m is the time window size defined by the application.
Then the accuracy of sensor data is defined by this work as follows:

A =

1−

∑k
i=1

mSDi√
m

n/m


Where n is the number of rows and m is the time window size defined by the
application.
In [Karagulian et al., 2019], the authors have reviewed the existing works related
to these types of sensors and they have introduced a comparison of the existing
studies and an evaluation of the agreement between low-cost sensors and reference
datasets.

Assessing data consistency

[Dasu et al., 2016] proposed a framework to measure data quality for temporal
streams. The authors tackle data quality issues in temporal data and address more
specifically spikes in the data or some inconsistencies that can deteriorate the value
of data quality dimensions such as the consistency and the accuracy of the data.
The approach aims at detecting data glitches or errors in the data. This is done
by comparing the data to some constraints defined on the data using a statistical
distortion approach that measures the distance between a defined reference, and
the actual data. The authors apply some quality checks on the content of the
data to assess the accuracy and consistency of the data. These quality checks
include the definition of different types of data constraints. For each type of
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data constraint, the approach discusses using statistical distortion to compute
the distance between the ideal, which is the reference dataset, and the actual data.

Consistency was also evaluated by the authors of [Serhani et al., 2016] as the
ratio of the total number of inconsistent values over the total number of values as
follows:

consistency =
Number of Inconsistent Values

Total number of Values

Assessing data integrity

The author of [Ray, 2018] first introduces the context of maritime vessels on
spatial data and how everything works within an Automatic Identification System
(AIS). Then, the author highlights the weaknesses in such systems in terms of
message falsification attacks or spoofing by external malicious actors. A variety of
data types are introduced in the context as follows: the navigation data indicating
the positions of the vessels as acquired by the AIS receivers, the vessel-oriented
data indicating the official nominative vessel position, the geographic data
(cartographic, topographic), and finally, the environmental data such as the
weather and ocean conditions data from forecast models and actual observations.
The work assesses the integrity of maritime messages through message-based and
signal-based analysis. The message-based approach relies on four ways to identify
the integrity of the messages. The four ways use a comparison of the individual
fields within a message and the message type to infer the integrity of a message.
As for the signal-based analysis, the author considered several parameters such as
the power of the received signal and others that are time-dependent and relative
to the shape of the signal.

Assessing micro-sensing units

Some works have also addressed quality evaluation at the sensor level such as
[Fishbain et al., 2017] who proposed a toolkit for the evaluation of micro-sensing
units explaining all the factors and their metrics. The toolkit consisted of eight
different measures for the quantification of the quality of a sensor unit compared
to data from a reference device as follows:

• RMSE and Pearson correlation: RMSE measures the total bias (devia-
tion) between two time series, while Pearson evaluates the correlation be-
tween two time series.

• Kendall and Spearman: both are correlations that are sensitive to mono-
tonic but non-linear relationships because the correlation between a reference
and a sensor does not necessarily have to be linear, which is an aspect that
RMSE and Pearson cannot deal with.
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• Presence: this measure accounts for the sensor’s availability of a measure-
ment at a given time where limited presence always brings the question of
representativity of the measurements.

• Source Analysis: this measure assesses the ability of the sensor device
to react to changes in observations within a time interval that corresponds
to wind direction and be sensitive to concentration changes by calculating
bivariate polar plots (Pearson Correlation Coefficients) between the reference
dataset and the data from the sensors treating them as two-dimensional
matrices.

• Match score: it is the proportion of agreement among strata of partitions
between a reference dataset and the sensor measurements. Both the ref-
erence dataset and the data coming from the sensors are divided into d
partitions. Then the partition labels of all the measurements at each stud-
ied timestamp are compared among the reference and the sensor data to
compute the agreement between the two datasets.

• lower frequencies energy (LFE): is rather a characteristic of the sensor
than a metric to measure the quality of the data. The signal’s energy in
the lower frequencies can be used for evaluating the capability of the sensor
to capture the temporal variability of the pollutant. Thus, the smaller the
energy portion in the higher frequencies, the better the sensor can capture
the signal’s temporal variability

2.3.3 . Analysis
We have studied definitions and metrics to evaluate several data quality

dimensions relevant to mobile crowdsensing environments. We have presented
metrics for completeness, accuracy, consistency, and integrity.

For data accuracy, most definitions in the existing works have defined data
accuracy as the dimension of data that measures how close a measurement is to
describing a real-world phenomenon. Data accuracy was either evaluated with the
closeness of a value to a reference value or with the ratio of correct values over
the total.

Data completeness in the context of mobile crowdsensing environments has
also been associated with the presence of data and with missing values. The
difference with the definitions in section 2.2 is that the missing values are not just
identified with null values but also with entire records missing.
There are two metrics proposed to evaluate data completeness. The first is the
proportion of missing values from the total number of values. And the second mea-
sures the available number of data values compared to some expected value. Some
works defined this expected value using the sampling rate of the measuring sensors.

In order to assess data consistency, we need some prior knowledge about
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the data in the form of rules or data constraints, which are not always easy to define.

These studied approaches fail to measure the quality dimensions considering
the different aspects of the data being studied, such as the time, location, or
the sensor unit taking the measurements. Consider that the data completeness
quality dimension is being studied for sensor data in an air pollution context
where the sensors are carried by users at different timestamps and locations.
Evaluating data completeness using some existing metrics from the literature
would result in a value that relies on the frequency at which a sensor is supposed
to take measurements. The only aspect of the data that is considered is the
sensor. Other aspects of the data, such as the user, the time, and the location,
are not considered. The studied existing metrics fail to capture in this example
is, for example, the completeness of the data of a specific location, or of a
certain period of time, or even the completeness of the user. The existing
metrics of completeness for instance, need to consider the completeness of
the different aspects of the data that characterize mobile crowdsensing envi-
ronments, not just focus on the sensor as done in the work of [Biswas et al., 2006].

To the best of our knowledge, the existing metrics fail to answer these ques-
tions. Therefore, new metrics considering the different aspects of sensor data
need to be defined. Some works such as [Östman, 1997] have considered defin-
ing accuracy from several aspects: thematic, temporal, and positional for spatial
data. However, no works have addressed the sensor data in a mobile crowdsens-
ing context, and no works also focused on the different understandings of data
completeness in this context.

2.4 . Data imputation for completeness improvement in MCS

Missing data is a major problem specifically in mobile crowdsensing environ-
ments. To improve the completeness of the data, data imputation and other
techniques are used to replace the missing values. Data imputation techniques
and inference have gained massive popularity in research due to the impact of
missing points or chunks of data on the quality of the indicators resulting from
data analysis. A wide variety of approaches have been proposed to generate miss-
ing values to improve the quality of the data. These approaches aim to avoid faulty
indicators and analysis since poor-quality data can result in poor-quality analysis.
The approach presented in [Wang et al., 2016] infers data of unsensed cells in a
mobile crowdsensing environment for meteorological and traffic data using k near-
est neighbors (KNN), compressive sensing (CS), and spatio-temporal compressive
sensing (STCS). Several families of data imputation techniques exist to address dif-
ferent types of data and different application domains [Khayati et al., 2020]. The
imputation techniques could be categorized into 3 different families according to
[Khayati et al., 2020]:

• Matrix-based approaches such as SVDImpute [Troyanskaya et al., 2001],
SoftImpute [Mazumder et al., 2010], CDRec, that will be discussed in fur-
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ther details later on in this section. This family of techniques transforms
the data using dimensionality reduction methods. Principal Component
Analysis (PCA) [Jolliffe, 2011] and Singular Value Decomposition (SVD)
[Skillicorn, 2007] are the most commonly used techniques for dimensionality
reduction. Other techniques exist such as Centroid Decomposition (CD)
[Chu and Funderlic, 2002], Matrix Factorization (MF) [Koren et al., 2009],
and Non-Negative Matrix Factorization (NMF) [Kim et al., 2015].

• Pattern-based approaches such as DynaMMo [Li et al., 2009], ST-MVL
[Yi et al., 2016]and TKCM. This family of approaches rely on finding high
similarity patterns in the data in order to impute a missing value. They study
the pattern of the missing block and then look for candidate replacement
patterns in other series.

• Neural networks-based like LSTM and other recurrent neural networks
(RNN) techniques. This family employs neural networks to study and gen-
erate the missing blocks of data.

In the following subsections, we present approaches from the first two families
of approaches: pattern-based data imputation techniques and matrix-based data
imputation techniques. We describe some approaches from these two families
that address missing data challenges within the context of mobile crowdsensing
environments.

2.4.1 . Matrix-based Techniques
Matrix-based data imputation techniques work by leveraging the patterns and

relationships present in the available data to estimate and fill in the missing values
within a matrix structure. A common approach in this family is to use matrix
factorization methods, such as singular value decomposition (SVD) or principal
component analysis (PCA), to decompose the data matrix into lower-dimensional
representations.

The authors of [Troyanskaya et al., 2001] propose two techniques to estimate
missing values for DNA microarrays data: SVDImpute and KNNImpute. SVDIm-
pute employs the Singular Value Decomposition (SVD) to obtain the principle
components of the matrix containing the gene expression microarrays in every row
in the matrix. For datasets with missing values, the first step is replacing missing
values in the data matrix A by row average because SVD works only on complete
matrices. Then, SVD factorizes the matrix A, containing the data, into 3 singular
matrices as follows:

Am×n = Um×mΣm×nV
T
n×n

Matrix V T
n×n contains eigenvectors that are quantified by their corresponding eigen-

values on the diagonal of matrix Σ, and U contains the left singular vectors. The
eigenvectors represent gene expresssion microarrays, and are also referred to as
eigengenes. After the principle components are computed, the k most significant
eigengenes are selected. Then, we estimate a missing value j in gene i by first
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regressing this gene against the k eigengenes to get the coefficients (β0, β1, ..., βn)
in the below regression equation:

v̂ij = β0 + β1x1 + β2x2 + ...+ βnxn + ϵ (2.1)

Where β0 is the intercept, (β1, ..., βn) are the regression coefficients and ϵ
represents the residuals. The approach finally uses the coefficients of the
regression to reconstruct the missing measurement j from a linear combination
of the k eigenvalues. All missing values in the data matrix A are imputed using
the technique aforementioned to provide a new matrix A′. Finally, the difference
between A and A′ is computed, and if the difference is greater than a certain
threshold, then a new iteration is started and all the steps mentioned earlier are
repeated. In the new iteration, the value of A is set to A′ and the same steps
computing the new A′ are repeated to compute the new A′ until it converges.
SVDImpute in this case is iterative SVD.

The authors of [Troyanskaya et al., 2001] also presented another approach for
data imputation: KNNImpute. This approach is based on k-nearest neighbors ap-
plied on the data matrix containing data measurements of k sensors at timestamp t.
KNNImpute generates a missing value at timestamp t based on the measurements
from neighboring sensors with the same timestamp. The value of the measure-
ment from each sensor is weighted according to its similarity with the target sensor
st. The similarity metric is the Euclidean distance between a sensor si and the
target sensor st with the missing measurement. Finally, a weighted average of the
k-nearest sensors is computed to impute a missing value using similarity as the
weight. The missing value inferred using KNNImpute is defined by:

v̂j =

k∑
l=1

vlj ∗ dsl,st
k∑

l=1

dsl,st

(2.2)

Where v̂j is the imputed value of target sensor st at timestamp tj , k is the number
of nearest sensors, vlj is the measurement value of sensor sl at timestamp tj , and
dsl,st is the Euclidean distance between sensor sl and target sensor st.

Computing distances between data points without taking the quality of the
measurements has a negative impact and can deteriorate the imputation precision.
For instance, two measurements can be geographically close but in different en-
vironments, as one could be captured inside a bus and the other in the street,
which could have a great impact on the imputation. Techniques that rely on the
study of correlations between the data points without considering the quality of
the measurements could end up finding correlations between points with actual
high values and others that are just spikes or noise due to a quality issue, which
will result in a faulty imputation.

2.4.2 . Pattern-based Techniques
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Pattern-based data imputation techniques are approaches used to fill missing
values in datasets by identifying patterns and relationships within the available
data. When dealing with datasets with missing values, imputation methods aim
to estimate or predict the missing values based on the patterns observed in the
existing data. In this subsection, we explore some pattern-based data imputation
approaches that were proposed for time series data.

The DynaMMo Approach

The authors of [Li et al., 2009] developed a pattern-based approach relying on
expectation maximization to identify hidden variables in order to recover missing
values. This approach leverages the two main characteristics of time series:
temporal continuity and spatial correlation.

Given a time series X with duration T (T measurements) in m dimensions,
X = {x1, . . . , xT }, W is a matrix indicating missing values where wt,k = 0
indicates that the k-th dimensional observation is missing at time t and wt,k = 1
means the observation is present, the observed part is denoted by Xg, and the
missing part as Xm. The authors use expectation maximization to estimate the
missing values conditioned on the observed ones E[Xm|Xg].

However, since it is difficult to directly maximize the data likelihood in the
missing value setting, the authors maximize the expected log-likelihood of the
observation sequence instead. They use a sequence of latent variables zn, to
model the hidden patterns of the observation sequence. The estimated sequence
X̂ is then computed.

First, the sequence X̂ is initialized with the data from the observed (actual)
sequence Xg, and the missing values are filled using interpolation methods. The
authors assume a mapping function G that captures the correlations between the
observation dimensions. These learned correlations will help infer missing dimen-
sions from the latent variables. The mapping G is a linear projection matrix from
the latent variables to the data sequence (both observed and missing) for each
time tick. The authors leverage the temporal continuity in time series and assume
that the latent variables are time-dependent on the values determined from the
previous timestamp. Temporal continuity in time series refers to the sequential
and uninterrupted flow of data points over time, capturing possible dependencies
between successive observations. This temporal continuity is modeled by a linear
mapping F.

Where z0 is the initial state of the latent variables. F is the linear mapping
between the latent variables and the values determined from the previous
timestamp, and G is the observation projection. w0, wi i (i = 1 ... T), and ϵi are
multivariate noises with Gaussian distributions.

Then, the algorithm iteratively estimates the latent variables, maximizes with
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respect to parameters and estimates the missing values until convergence. The goal
of estimating the parameters θ = [F,G,z0,Γ,Λ,Σ] is achieved through maximizing
the likelihood of observed data, L(θ) = P(Xg). But since it is complicated to
directly estimate the data likelihood, the authors chose to maximize the expected
log-likelihood of the observation sequence. Then, the authors define the objective
function as the expected log-likelihood Q(θ) with respect to the parameters θ =
[F,G,z0,Γ,Λ,Σ]:

Q(θ) = EXm,Z|Xg ,W [P (Xg, Xm, Z)]

= EXm,Z|Xg ,W [−D(z1, z0,Γ)−
T∑
t=2

D(zt,Fzt−1,Γ)−
T∑
t=1

D(xt,Gzt,Σ)−
log|Γ|
2

−(T − 1)log|Λ|
2

− T log|Σ|
2

]

Where W is the missing value indication matrix, D() is the square of the
Mahalanobis distance D(x, y,Σ) = (x− y)TΣ−1(x− y).

Finally, to estimate the missing values, the authors use a belief propagation al-
gorithm to estimate the posterior expectations of latent variables using the Markov
property, so they propose to estimate a missing value Xi,j as follows:

X̂new
i,j = Gnew.E[Z|X̂; θ]{i,j}

Where the authors later take the derivatives of the objective function equations
with respect to the parameters of θnew and set them to zero in order to estimate
the new parameters.

The ST-MVL Approach

The approach presented in [Yi et al., 2016] is also a pattern-based approach
that uses a multi-view learning algorithm to compute a weighted sum of im-
puted values from four different algorithms on both local and global views.
The global view represents the whole dataset, and the local view represents a
local data matrix constructed using measurements in the spatial and temporal
neighborhood of the missing measurement. On the global view, the Inverse
Distance Weighting (IDW) technique is used to impute missing value based on
spatial aspects while Simple Exponential Smoothing (SES) generates a missing
value based on temporal aspects. On the local view, User-based Collaborative
Filtering (UCF) is an imputation technique that generates a missing value
based on spatial distance in a defined window size and Item-based Collaborative
Filtering (ICF) imputes missing values based on temporally adjacent measure-
ments in a defined time window size. Multi-view learning of the weighted sum of
all the aforementioned techniques represents the final generated value by ST-MVL.
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The first sub-technique of ST-MVL is the Inverse Distance Weighting (IDW),
which is a statistical model used to interpolate missing values at a given times-
tamp, based on the spatially closest sensor measurements. To estimate a missing
measurement v̂gs, IDW retrieves all measurements from geospatially adjacent sen-
sors at timestamp t and assigns weight to every measurement according to its
distance from the target sensor which is the sensor with the missing measure-
ment. This weight assignment according to the distance gives the closest sensors
a higher weight than further ones. The measurements are then aggregated using
the following equation to generate the missing value v̂gs:

v̂gs =

m∑
i=1

vi ∗ d−α
i

m∑
i=1

d−α
i

(2.3)

Where di is the spatial distance between sensor i and target sensor. α is a
positive power parameter.

α controls the decay rate of sensor’s weight by d−α
i . A higher α means a faster

decay of weight by distance.

The second sub-technique is Simple Exponential Smoothing (SES), which
is a technique used to estimate a missing measurement based on the most recent
adjacent measurements from the same sensor. To estimate a missing measurement
v̂gt, SES takes all measurements from the measuring sensor and assigns a weight
to a measurement according to its time-adjacency to the missing measurement.
The measurements are later aggregated according to the following equation:

v̂gt =

n∑
j=1

vj ∗ β ∗ (1− β)tj−1

n∑
j=1

β ∗ (1− β)tj−1

(2.4)

Where tj is a time interval between a candidate measurement vj and target
measurement. β is a smoothing parameter that ranges between 0 and 1.

β controls the decay rate of weight over time intervals as temporally closer
measurements get higher weights. β ∗ (1 − β)t−1 indicates the weight given to
a measurement, and assigns a higher weight to temporally closer measurements
than the distant ones.

The third sub-technique is User-based Collaborative Filtering (UCF), which
is an algorithm used to impute a missing measurement at a given timestamp by
computing the similarity between sensor measurements and a target sensor for a
given window size w. To estimate a missing measurement v̂2j , UCF first constructs
a local data matrix which is a subset of the existing data limited by the window
size w. The target sensor is the sensor that has the missing measurement in study.
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It then computes the similarity between every sensor si and the target sensor s1
for every measurement in the local data matrix as follows.

sim(si, s1) =
1√√√√ j+w−1

2∑
k=j−w−1

2

(vik−v1k)2

NT

(2.5)

Finally, a weighted average v̂ls is computed where the weight is the similarity score
as follows.

v̂ls =

m∑
i=1

vi ∗ simi

m∑
i=1

simi

(2.6)

NT is the number of timestamps where both sensors have measurements. w
is the window size. The local data matrix is a subset of the data where a
row stands for a sensor and a column denotes a timestamp. It is built from
data from all the sensors in the pre-defined spatial neighborhood, and from the
time-adjacent measurements according to the window size w, and the timestamp
j of the missing measurement. The measurements vi,j from all sensors in
the spatial neighborhood are included in the data matrix and denoted by v∗,j .
The local data matrix is constructed as follows: [v∗,(j−(w−1)/2), . . . , v∗,(j+(w−1)/2)].

The last sub-technique is Item-based Collaborative Filtering (ICF), which is
an algorithm used to impute a missing measurement by computing the similarity
between temporally adjacent measurements within a preset window size w. To
estimate a missing value, this technique constructs a local data matrix which is
a subset of the initial dataset. The similarity between two timestamps based on
measurements from the local data matrix is then computed:

sim(t1, t2) =
1√

m∑
i=1

(vi1−vi2)2

NS

(2.7)

Where m is the number of available sensors. A weighted average v̂lt where the
weight is the similarity score is then computed to estimate a missing value as
follows:

v̂lt =

j2∑
j=j1

vj ∗ simj

j2∑
j=j1

simj

(2.8)

Where NS is the number of sensors that have measurements at both timestamps
t1 and t2, and w is the window size.

Finally, ST-MVL integrates the predictions of the four aforementioned sub-
techniques to generate a final result using a multi-view learning algorithm that
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computes a weighted sum of the generated predictions according to the following
formula, where the weights of each technique are learned during the training phase:

v̂mvl = w1 ∗ v̂gs + w2 ∗ v̂gt + w3 ∗ v̂ls + w4 ∗ v̂lt + b

where b is a residual and wi(i = 1, 2, 3, 4) is a weight assigned to each view.

Analysis

Matrix-based approaches use dimensionality reduction techniques such as singular
value decomposition (SVD) or Principal Component Analysis (PCA) to reduce
the dimension of the feature set and expose the number of linearly independent
dimensions and the linear relationships in the data. Such approaches are also
called matrix completion (recovery) approaches because the data is represented
in a data matrix where the algorithm recovers the missing data measurements.
Some dimensionality reduction techniques such as SVD and PCA rely on linear
relationships between the data features but these relationships do not always
necessarily exist depending on the data. This family of approaches works better
for high-dimensional data than pattern-based approaches because it has the
advantage of reducing the dimension space to a size that is convenient for
the generation of missing values using data mining techniques. Matrix-based
approaches could also work better on large datasets because the dimensionality
reduction techniques could reduce the data size. The pattern-based family of
techniques might struggle with the curse of dimensionality and the computation
time of patterns in large datasets.

Pattern-based approaches learn patterns in the data in order to estimate the
missing values of the data. This family of approaches works best on datasets
with high similarities in the data series. When a block is missing in some series,
the algorithm would use the similarity to several other series in order to generate
the missing values in the block. This family of techniques requires adequate
parameterization. For example, one of the parameters is the size of the patterns we
are looking for. If this parameter has a very low value, we might miss real pattern
anomalies in the data that have a greater length. Moreover, if this parameter is
too high, the similarity computation becomes costly in terms of computational
time. Data imputation using this family of approaches on large datasets can also
be expensive in terms of computational time. This family of approaches works
best on data with high correlations among the time series, which means that
the values of the measurements in the different series vary closely together. We
consider as an example an air quality monitoring context with several sensors
measuring different pollutants. If a sensor loses data, pattern-based approaches
can be very useful since there are many air pollutants that are highly correlated
to each other.

Another type of pattern-based approaches are the works that manually
set similarity rules which sometimes can be very accurate because of human
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validation. However, these works require an important amount of knowledge on
the data and domain experts in order to be able to set these similarity rules. This
can be expensive in terms of time, cost, and resources.

One of the characteristics of both families of data imputation approaches is
that they rely on available measurements to generate a missing value, either using
measurements from the same sensor at different timestamps or from other sensors.
However, these data measurements could be coming from sensors facing quality
problems such as calibration issues, inaccurate measurements, anomalies, etc. This
means that the imputations will rely on data of poor quality, which implies that
the quality of the imputed values will also be poor. One way to improve these
approaches, given the quality of the measuring sensors, would be to take into
account this quality during the data imputation process. This means that mea-
surements from high-quality sensors will be given higher priority than those coming
from lower-quality sensors. This will lead to a greater impact of measurements
with high quality than the ones with poor quality, and therefore to more reliable
indicators computed from this data.

2.5 . Anomaly Detection in Time Series

Anomaly detection has long been a research problem in large databases
and in wireless sensor networks. Mobile, low-cost sensors are subject to many
points of failure, spikes in acquired measurements, and malfunctions. Sometimes,
meteorological events such as tornadoes, heatwaves, wildfires, and sandstorms
are represented as abrupt spikes and unusual patterns in the data called pattern
anomalies. We are interested in detecting pattern anomalies. Sometimes, an
anomaly is an inconsistent data point that is either a spike or a noise and hence
has to be removed because it disrupts the quality of the data. At other times, an
anomaly is a characterization of an unusual data sequence, also called an unusual
pattern, that can provide many insights about the data once detected. These
patterns can reveal an interesting new behavior or important events that need to
be addressed.

This section introduces anomalies and focuses on the existing definitions
and types of anomalies found in mobile crowdsensing environments. It also
presents studied works from the different families of anomaly detection ap-
proaches: statistical-based, deviation-based, clustering-based, and distance-based
approaches. We conclude this section by analyzing the studied works.

2.5.1 . Existing definitions and types of anomalies
The problem of detecting and correcting outliers is not new

[Grubbs, 1950, Grubbs, 1969]. Before we discuss the different types of anomalies
in the literature, we start with the meaning of this notion of outliers and the
existing definitions of outliers/anomalies. These definitions were proposed in
different contexts such as traditional databases and time series data.
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It should be noted that there is no universally accepted definition of the no-
tion of outliers. Several works in different domains have addressed outlier de-
tection. For example, in [Hawkins, 1980], an outlier is defined as an observation
that deviates so much from other observations as to arouse suspicions that a dif-
ferent mechanism generated it. In [Aggarwal, 2016], outliers are referred to as
abnormalities, discordants, deviants, or anomalies in the data mining and statis-
tics literature. [Grubbs, 1969] defined an outlying observation, or outlier, as one
that appears to deviate markedly from other members of the sample in which it
occurs. In [Gupta et al., 2014], outliers are considered deviations from expected
values (forecasts). In [Braei and Wagner, 2020], the authors defined an anomaly
as an observation or a sequence of observations that deviates remarkably from the
general distribution of data. The set of anomalies forms a very small part of the
dataset. The authors of [Chandola et al., 2009] also defined anomalies as patterns
in data that do not conform to a well-defined notion of normal behavior.
To summarize, outliers have been defined as deviations in some data observations
that arouse suspicion. This definition was later extended in mobile crowdsensing
environments to deviation in a data observation or a sequence of data observations
from the expected values, forecasts, or distributions.

Existing types of anomalies

Many works have defined types of anomalies in different contexts.
[Blázquez-García et al., 2021] differentiate between the meaning of anomalies that
are unwanted data and have to be detected then cleaned, and anomalies that are
events of interest and hence, need to be detected and studied in time series data.
The authors also defined three types of outliers: a point, a subsequence, and a
series.

• Point outlier: A point outlier is a datum that behaves unusually at a specific
point in time when compared either to the other values in the time series
where it is considered a global outlier or compared to its neighboring points
where it is considered a local outlier.

• Subsequence outlier: This term refers to consecutive points in time whose
joint behavior is unusual, although each observation individually is not nec-
essarily a point outlier.

• Outlier time series: Entire time series can also be outliers, but they can
only be detected when the input data is a multivariate time series such that
the other variables that have normal values can help identify the outliers in
one variable.

There are other typologies of anomalies in the literature. For example, the authors
of [Braei and Wagner, 2020] define the following three types of anomalies in time
series.
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• Point anomalies: If a point deviates significantly from the rest of the data,
it is considered a point anomaly. For example, a big purchase transaction
that significantly differs from other transactions is a point anomaly. Hence,
a point Xt is considered a point anomaly, if its value differs significantly
from all the points in the interval [Xt−k, Xt+k], k ∈ R and k is sufficiently
large.

• Collective anomalies: There are cases where individual points are not
anomalous, but a sequence of points is labeled as an anomaly. For example,
if a bank customer withdraws $500 from her bank account every day of the
week. Although withdrawing $500 occasionally is normal for the customer,
this sequence of withdrawals is an anomalous behavior.

• Contextual anomalies: Some points can be normal in a certain context,
while detected as an anomaly in another context. For example, in a meteo-
rological context, having a daily temperature of 40◦C in summer is normal,
while the same temperature during the winter is regarded as an anomaly.

Detecting unusual pattern anomalies is far more challenging than detecting
point anomalies [Gupta et al., 2014] because they are less trivial to detect, and
there are more parameters that need to be considered to detect them. For example,
the size of the pattern to look for in the data could vary depending on the data
and the context, knowing which patterns are normal and which are not, requires
more knowledge about the data than a single point whose value is outside the
accepted range of the measured phenomena. The work of [Gupta et al., 2014]
studied outliers within a given time series. The authors tackled two distinct types
of outliers: the first is single data points, which are referred to as point outliers.
The second is a sequence of several consecutive data points in a series that are
denoted by subsequence outliers.

2.5.2 . Statistical-based methods
The statistical techniques are methods that use statistical concepts to detect

an anomaly. Several works have used statistical-based methods for anomaly/outlier
detection. The authors of [Bakar et al., 2006] compared the performance of three
outlier detection techniques on air quality data, among which is the control chart
technique (CCT).

The CCT technique [Hackl and Ledolter, 1991] is a statistical-based method
usually used to determine whether a process is operating in statistical control or
not. It detects any unwanted changes in the process. It consists of a center line
that is the average of all samples plotted. Upper and lower control limits define the
constraints of common variations out of which any data point will be considered
as an outlier. The center line is plotted over time as follows.
The average of the samples plotted is computed by:

X̄ =

∑n
i=1Xi

n
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where Xi is a data measurement value (Xi,...,Xn), n is the total number of the
data.
Upper (UCL) and lower (LCL) limits are computed by:

UCL = X̄ + Zσx

LCL = X̄ − Zσx

σx =
σ√
n

σ = standarddeviation =

((
Xi − X̄

)2
n− 1

)1/2

The authors of [Zhang et al., 2020] employs the median filter (MF) statistical
method as a preprocessor to detect obvious anomalies. The median filter (MF)
[Brownrigg, 1984] preprocessor is a window-based statistical algorithm that is
useful in reducing random noise. The median filter operates on a sliding window
of a predefined length. Within each window, the median value is calculated and
compared with a predefined threshold. If the difference between the current
data point and the median value exceeds the threshold, it is considered an anomaly.

A data quality assessment framework, called Hygieia, has been proposed in
the work of [Aquino et al., 2019] within a smart sensor network context to detect
outliers. The authors defined a framework that receives a continuous flow of data
and then computes the interquartile range (IQR) of the data, according to which
they evaluate several quality aspects of the data. Hygieia sorts the data and
calculates the 25 (P25) and 75 (P75) percentiles. It then analyzes if the received
data is greater than the upper boundary or smaller than the lower boundary. If
the received data is lower or greater than the boundaries, it is considered an outlier.

The approach presented in [Giannoni et al., 2018] experiments the perfor-
mance of several techniques, two of which are statistical-based: the average
low-high pass filter and the seasonal ESD algorithm.

The average low-high pass filter is a widely used statistical-based solution
in the field of sensors’ anomaly detection. The basic idea is to make use of the
running average computed based on the last W acquisitions, W being a sliding
window of fixed size. A data point will be detected as anomalous if it significantly
differs from the running average. There are two implemented versions of this
technique, the online and the offline version. The offline version assumes the
entire series is available and therefore has the standard deviation of it. Hence, for
a new data point coming, if the distance from this point and the running average
is greater than the standard deviation, this point is considered anomalous. The
online version is similar, only the standard deviation is not computed for the whole
series but approximated for the acquisitions in the window at each iteration.

The Seasonal-Extreme Studentized Deviate algorithm (S-ESD) is also a
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statistical-based algorithm released by Twitter in [Hochenbaum et al., 2017], and
can only be applied on time series with the symmetrically distributed residual
component. First, the seasonal S and the trend T components are extracted.
The median X∗, which can be regarded as a stable approximation of the trend, is
computed from the trend. Then the residual is computed as R = X - S - X∗. The
algorithm then uses the ESD statistical test to identify any anomalous events.

2.5.3 . Deviation-based methods
Deviation-based methods use past measurements or data to train a model

to predict an upcoming measurements in the data. The underlying idea of these
methods is that if the predicted value deviates significantly from the observed
value, the observed value is regarded as anomalous. There are several prediction
based methods, some are simple with no or little parameters to define and
tune such as ARIMA models and the 1-class SVMs, while others that are more
complicated to train, find the proper parameters like RNNs and LSTMs.

The authors of [Bakar et al., 2006] studied an anomaly detection method using
linear regression. The linear regression technique [Aalen, 1989] is used to evaluate
the strength of a relationship between two variables, a dependent and an indepen-
dent one. The linear regression technique estimates the linear relationship between
x, the predictor, and y, the response variable as follows:

y = α+ βx

where the variance of y is assumed constant and α and β are regression coefficients
specifying the y-intercept and the slope of the line respectively.
Given s data points of the form (x1, y1), (x2, y2), ... , (xs, ys), α and β are
estimated as follows:

β =

∑s
i=1 (xi − x̄) (yi − ȳ)∑s

i=1 (xi − x̄)2

α = ȳ − βx̄

where x̄ is the average of x1, x2, ... , xs and ȳ is the average of y1, y2, ... , ys.

The survey conducted by [Braei and Wagner, 2020] introduces a set of
deviation-based methods. The auto-regressive (AR), moving average (MA),
auto-regressive moving average (ARMA), and auto-regressive integrated moving
average (ARIMA) models are statistical techniques that estimate a measurement
value and then compute its deviation from the actual value to identify whether it
is anomalous or not.

Auto-regressive model is a basic method for univariate time series. It is a
linear model where Xt, the dependent variable, is based on a finite set of previous
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values having length p known as independent variables, and an error value ϵ. A
measurement is estimated using this model as follows.

Xt =

p∑
i=1

ai.Xt−i + c+ ϵt

The auto-regressive model, in this case, is of order p and is represented by ARp.
The error values ϵt are considered uncorrelated and have a constant mean of zero
and constant variance σ. To detect an outlier, we compute an outlier score which
is the difference between the estimated value and the observed/actual one. AR
models assume that the data is stationary, so in case the data is not, it has to be
transformed.

The moving average model considers the current observation Xt to be a com-
bination of the last q prediction errors ϵt,ϵt−1,...,ϵt−q. The MA model equation
estimates is computed as follows.

Xt =

p∑
i=1

ai.Xt−i +

q∑
i=1

bi.ϵt−i + ϵt

The coefficients a0,...,aq are learned from the data. Unlike in the auto-regressive
model, the errors in the moving average model are known after the model is fitted.

A time series of the ARMA(p, q) model is dependent of the last p observations
and q errors:

Xt =

q∑
i=1

ai.ϵt−i + µ+ ϵt

Xt is a an ARMA model iff Xt is stationary, µ is the mean of the data. The
main challenge here is to select the proper p and q because high values of p and
q can result in overfitting the model and hence, a high number of false negatives
in anomaly detection. In case p and q are too low, this leads to underfitting the
model and hence a high number of false positives. The ARIMA model is a more
generalized version of the ARMA model. The data can be non-stationary and in
addition to the p and q parameters, there is the d parameter that states how many
times the series is differenced.
For d = 1, the time series x0,...,xT is differenced as follows:

X ′
t = Xi −Xi−1∀i ∈ 1, ..., T

The authors of [Zhang et al., 2020] present a deviation-based method used to
predict the value of the tested data point based on two stacked LSTM cells. The
control chart technique is then used to compute the deviation of the actual data
measurement from the accepted range of values computed by this technique. The
stacked model consists of multiple LSTM layers. It improves the training efficiency
and obtains higher accuracy by adding depth to the network. One LSTM cell
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Figure 2.2: Internal architecture of an LSTM cell by [Zhang et al., 2020].

is shown in Figure 2.2. The prediction of output ht of a single LSTM layer is
calculated as follows:

ht = ot ∗ tanh(ct)
Where ot is the output gate, and ct is the current cell. These two gates are
computed as follows:

ot = σ(Wo.[ht−1, xt] + bo)

Where Wo represents the weight matrix, and bo is the bias. The current cell ct is
computed as follows:

ct = ft ∗ ct−1 + it ∗ ct
Where "*" represents the dot product, ct represents the current cell, and ct−1

represents the last cell.

[Giannoni et al., 2018] also experiments with a deviation-based technique
which is the univariate Gaussian predictor, to find the parameters of the Gaus-
sian model. It is trained on time series and uses Maximum Likelihood Estimation
(MLE) to approximate the parameters of the Gaussian model, which are the mean
and variance. The model classifies each new acquisition xi based on the probabil-
ity of that value in the distribution p(xi). Any new observation with a probability
value less than a certain set threshold is then considered anomalous.

2.5.4 . Clustering-based methods
Clustering-based approaches mainly rely on clustering techniques to identify

anomalous data. This category of techniques groups similar data and patterns in
clusters. The fundamental principle behind clustering-based anomaly detection is
that anomalies exhibit distinct characteristics that set them apart from normal
data measurements.

The authors of [Giannoni et al., 2018] present their clustering-based approach:
the local density cluster-based outlier factor. It is an extension of the Cluster-
Based Local Outlier Factor algorithm (CBLOF). It works by clustering samples
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using any clustering algorithm (e.g. k-means). It then separates large clusters
from small clusters (hyper-parameters to be pre-set). An average distance from
the centroid is then computed for each large cluster. These distances are used
to approximate the densities of large clusters. If a sample is placed in a small
cluster, its outlier score is the ratio between its distance to the closest large cluster
centroid and the average distance of points in that large cluster from the centroid.
Otherwise, if a sample is placed in a large cluster, its outlier score is simply the
ratio between its distance from the cluster’s centroid and the average distance of
points in the cluster from the centroid. Data points with an outlier score above a
certain threshold are considered anomalous.

The work of [Yoseph and Heikkilä, 2019] conducts comparative experiments
on real point-of-sales (POS) database between two clustering-based methods:
the k-means (KM) and the fuzzy C-means (FCM). The main objective of the
k-means algorithm is to partition n objects into k clusters so that the inter-cluster
similarity as the distance between observations is minimum and the intra-cluster
similarity is maximum. In brief, the clusters are first initialized by picking random
cluster centers for the k clusters. The measurements are then assigned to clusters
depending on their distance to the nearest cluster. After all the measurements
have been assigned to a cluster, the centers of these clusters are updated. Finally,
the two aforementioned steps are repeated until the cluster assignments converge.

Using k-means, an outlier score is computed after each iteration for all the
data measurements. This outlier score is the ratio of the distance of a data point
to the centroid divided by the mean or median distance of all cluster members to
the centroid of the cluster. Outliers are detected according to two different rules.
The first one considers the element with the highest outlier score as anomalous.
The second one identifies all data measurements with an outlier score above a
certain threshold to be anomalous.

The other clustering algorithm studied by [Yoseph and Heikkilä, 2019] is the
fuzzy C-means clustering algorithm introduced by [Bezdek et al., 1984], it allows
a point to belong to more than one cluster in any of the j = 1, .., k clusters.
However, it associates a value µj = [0, 1] that determines the degree of its
belonging to the cluster j. Membership of the data point i to k clusters are
indicated with vector µij . For a given data point i, the vector µij contains for
each cluster j a value of zero if the data point does not belong to cluster j, or
a value of one if it belongs to cluster j. A data point i with several µij > 0
may indicate outliers in the spaces between cluster centers. A data point close to
the cluster center has a high-degree of non exclusive membership in that cluster
meaning that it most probably belongs also to other clusters, and generally has
lower memberships in other clusters. As for a data point that is farther away from
the cluster center, the non-exclusive membership in the cluster in question is lower
but may also have memberships in other clusters.
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The authors of [He et al., 2003] employ a clustering algorithm that focuses
on finding clusters as much as assigning a cluster-based outlier score to each data
measurement in the dataset. The authors use the Squeezer algorithm introduced by
[He et al., 2002] for clustering the data. They propose definitions of their notions
of small and large clusters. To detect outliers, the authors leverage the concept
of "local outlier" proposed by [Breunig et al., 2000b] to introduce the notion of
a cluster-based local outlier factor (CBLOF) that can determine the degree of
deviation of a record. All data measurements in the dataset are associated with
an outlier score. To assign an outlier score to a record t, the distance between the
record and the closest large cluster is computed because large clusters are assumed
in this work to have a smaller probability of being anomalous. If the record t
already belongs to a large cluster, the outlier score is the distance to the centroid
of its cluster. For any record t, the cluster-based local outlier factor of t is defined
as follows.

CBLOF (t) =

{
|Ci|∗ min(distance(t, Cj)) where t ∈ Ci, Ci ∈ SC and Cj ∈ LC for j = 1 to b

|Ci|∗ distance(t, Ci) where t ∈ Ci, and Ci ∈ LC

Where Ci is a cluster, b is the threshold of large cluster, SC is a small cluster, and
LC is a large cluster.

2.5.5 . Distance-based methods
These approaches rely on the distances between the data measurements to

determine if a measurement is anomalous or not. Distance-based approaches were
introduced to overcome the problems raised by the statistical approaches, such as
the assumptions about the underlying data distribution.

The work of [Bakar et al., 2006] performs a comparative study of statistical-
based techniques with the distance-based technique discussed in the following.
Outlier detection is done using this technique based on two parameters: parameter
(p) and distance (d). The authors first compute the distances d1 of each data point
from all the other existing data points. The maximum distance value recorded
d2 between any two data points is then identified. A threshold distance d3 is
determined based on the maximum distance value d2, where the threshold is a
value that is smaller than d2. To determine the value of parameter p, d1 and d3
are compared, and if if d1 is greater or equals d3, then p is assigned the value of
if d1, otherwise, it is assigned the value of if d3. Another threshold value t is later
determined and compared with p in order to identify the outliers in the data. The
Manhattan Distance is used to compute the distances in this approach as follows.

d(ti, tj) =
k∑

h=1

| (tih − tjh) |

where ti =< ti1, ..., tik> and tj =< tj1, ..., tjk> are tuples in a database.
With this distance-based approach, distances are compared to a simple data

threshold determined based on the maximum distance value, which is able to
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detect obvious anomalies but will not be able to detect pattern anomalies that are
within the range value.

The work of [Tran et al., 2016] presents a comparative evaluation study of
several distance-based outlier detection methods on data streams based on the
definition of distance-based outliers presented in [Knorr and Ng, 1998]. The
definition of [Knorr and Ng, 1998] stipulates that given a dataset D, a count
threshold k(k > 0) and a distance threshold R(R > 0), a distance-based outlier
in D is a data point that has less than k neighbors in D. The authors of
[Tran et al., 2016] evaluate several distance-based approaches on synthesized and
real datasets in similar conditions. The evaluation metrics are the CPU time and
the peak memory requirement.

The data streams are considered to be received in batches and examined
using a sliding window. The problem addressed in the studied approaches is: what
happens if one point has k or more neighbors in one slide but does not have
k neighbors in the next slide? These distance-based outlier detection for data
streams (DODDS) approaches are described in the sequel.

The work of [Angiulli and Fassetti, 2007] introduced the Exact-Storm algo-
rithm that stores for each data point o, up to k preceding neighbors of o in a
preceding neighbors list (pn) denoted by o.pn, and list o.sn stores the number
of succeeding neighbors (sn) of o. This technique employs an index structure to
store data points that supports range queries that find neighbors of data point o.
A range query is a type of database query that retrieves data within a specified
range of values. It is commonly used to extract subsets of data that fall within
a particular range. When a slide of data points expires, data points are removed
from the slide and moved to the preceding neighbors list (pn). After the range
calculation in the new slide, outliers are verified by verifying if o has less than k
neighbors, including succeeding neighbors and old non-expired preceding ones.

The work of [Yang et al., 2009] proposes the Abstract-C technique that uses
the list o.lt− cnt to store the neighbors of o in every sliding window point o is in.
It also employs an index structure to store data points that support range query.
To detect an outlier, the algorithm checks for every active data point o. If it has
less than k neighbors in the current window, it is an outlier.

The work of [Kontaki et al., 2011] proposes the Micro-Cluster Based Algo-
rithm (MCOD) where micro-clusters are formed instead of employing a range
query. A micro-cluster has no less than k + 1 data points, of radius R/2, and
is centered at one data point where R is a distance threshold. All points in
micro-clusters are inliers. A new coming data point o, can either join another
micro-cluster, form its own cluster (it being the center) if it can find at least k
new points are found the PD. The PD is a list where data points not belonging
to any micro-cluster, meaning they could either be outliers or inliers and have
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neighbors from separate micro-clusters, are stored.

Finally, the last technique studied in the work of [Tran et al., 2016], Thresh-
LEAP, is introduced in the work of [Cao et al., 2014]. Thresh-LEAP reduces the
expense of the range query here by not storing data points in the same index struc-
ture and each slide having a separate, smaller index which reduces the expensive
range query cost and facilitates the minimal probing principle. The intuition behind
this technique is that it first looks for the succeeding neighbors and then subse-
quently the preceding neighbors per slide in a reverse chronological order. Data
points keep the number of their neighbors from a slide in o.evil and the number
of succeeding ones in o.ns. Once a new data point o arrives, the technique adopts
the minimal probing principle by finding o’s neighbors in the same slide and the
next slides until k neighbors are found. In worst-case scenarios, all the slides are
probed. o.evil[] and o.ns are updated after probing, and o is added to the trigger
list of each probed slide.

The approach presented in [Zheng et al., 2017] tackles the problem of spatial
outlier detection with context. The authors developed a local model that leverages
contextual neighbors of the data samples to predict the value of a current data
sample using kNN kernel regression with Gaussian kernel weight. The difference
between the predicted value and the ground-truth is then computed to represent
the global outlier score assigned to the data sample. Then, local confidence is
defined and combined with the global outlier score to provide the local confidence
outlier score that is assigned to each data sample signifying its probability of being
an outlier.
Each data point in the studied dataset has a contextual attribute vector xi ∈ Rd

(including spatial coordinates) and a behavioral attribute value yi ∈ R.
Adopting the first Law of geography by Waldo Tobler [Tobler, 1970] that says:

“everything is related to everything else, but near things are more related than
distant things,” they first find the contextual neighbors for each data sample, and
then use the behavioral attribute of these neighbors to predict the behavioral value
for the current data sample in the study. The kNN kernel regression is used:

ŷi = Σj∈Niwiyj

where wij is the Gaussian kernel weight:

wij =
1

σ
√
2π

exp

(
−
d2ij
σ2

)

where dij is the distance between two samples, σ is the standard deviation of the
distance distribution. Ni denotes the set of k-nearest contextual neighbors of a
sample zi.

This approach then uses robust metric learning using the Mahalanobis distance
between two data points.
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2.5.6 . Neural network-based methods
Neural network-based anomaly detection approaches leverage the power of

neural networks to detect anomalous patterns for time series. These approaches
use different neural networks, such as autoencoders, recurrent neural networks
(RNNs), and generative adversarial networks (GANs).

Autoencoder and GAN-based anomaly detection approach

The authors of [Audibert et al., 2020] developed an unsupervised anomaly
detection approach based on adversely trained autoencoders. The autoencoder
architecture makes it possible to learn in an unsupervised way on non anomalous
data. The use of adversarial training and its architecture allows it to isolate
anomalies while providing fast training.

The autoencoder [Rumelhart et al., 1986] is composed of an encoder E and a
decoder D. The encoder part E takes an input X and encodes it into a set of latent
variables Z. Then, the decoder part D, takes as input this set of latent variables
Z and attempts to decode it back into the input as a reconstructed set R. The
objective function of the autoencoder neural network is as follows Equation 2.9:

LAE = ∥X −AE(X)∥2 (2.9)

Where AE(X) = D(Z), Z = E(X), and ∥.∥2 denotes the L2-norm. For anomaly
detection, the trivial approach is for autoencoders to use the reconstruction error
as an anomaly score and set a threshold δ where points having an anomaly score
above the threshold are said to be anomalies [Audibert et al., 2020]. However,
this approach is not efficient if an anomaly has a value not too far away from the
non anomalous data points. Hence, [Audibert et al., 2020] proposes combining
the autoencoders architecture with the adversarial training from the generative
adversarial networks (GAN)s [Goodfellow et al., 2014], which trains the network
to isolate the anomalies during the training phase. The architecture of the method
proposed by the authors of [Audibert et al., 2020] is composed of three elements:
an encoder network E and two decoder networks D1 and D2. When applied to time
series, the series is transformed to windows of a specific size, then the training and
detection are applied on windows instead of data points. The training is conducted
over two phases. The first phase consists of both decoders D1 and D2 making an
attempt to reconstruct the initial input with the objectives as follows:

LAE1 = ∥X −AE1(W )∥2
LAE2 = ∥X −AE2(W )∥2

Where each decoder attempts to reproduce the initial input window W.
The adversarial training is the second phase of the training during which the

output of the first decoder AE1 is encoded by the encoder E and then passed to
AE2. The objective of AE2 here is to maximize the difference between the real
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data and the data coming from AE1 in order to distinguish which is real input data
and which is not. The objective of AE1, on the other hand, is to fool AE2 by
minimizing the difference between the real input W and the output of AE2. The
training objective function is as follows:

minAE1maxAE2∥W −AE2(AE1(W ))∥2 (2.10)

Where W is the input window W.
During the anomaly detection phase, an anomaly score is defined to each unseen
window as:

A (Ŵ ) = α∥Ŵ −AE1(Ŵ )∥2 + β∥Ŵ −AE2(AE1(Ŵ ))∥2 (2.11)

where α+β= 1 and are used to parameterize the trade-off be- tween false positives
and true positives.

LSTM-based anomaly detection approaches

The authors of [Braei and Wagner, 2020] surveyed several neural network-based
approaches. One of the approaches surveyed is an approach based on long short-
term memory (LSTM), first introduced by [Hochreiter and Schmidhuber, 1997].
LSTM belongs to the recurrent neural network (RNN) architectures with feed-
back connections that enable them to output information to the next input in the
sequence. LSTMs were designed to avoid the long-term dependency problem of
conventional RNNs. The output of a neuron of a recurrent neural network is the
following:

yt = ϕ(xTt .wx + yTt−1.wy + b) (2.12)

LSTMs, like all recurrent neural networks, have a chain-like repeating struc-
ture. Each cell in the LSTM network is shown in Figure 2.2. The authors of
[Malhotra et al., 2015] stack two hidden layers of LSTM networks to predict the
values of l upcoming timestamps of a univariate time series XT = x1, ..., xT . The
authors of [Chauhan and Vig, 2015] also propose an approach where the probabil-
ity distribution of the prediction error is used to predict whether a data point is
anomalous.

For both approaches, the error value ei of each prediction xi where i ∈ 1, ..., T
is computed. Then, the error vector of all predictions is used to fit to a normal
distribution N = N (µ,Σ) using the Maximum Likelihood Estimation (MLE) to
determine the values of µ and Σ. Finally, an anomaly threshold δ is determined
during the training phase to distinguish anomalous data points from normal ones.

2.5.7 . Analysis
While basic statistical methods work very well in detecting anomalies for

spikes and noise anomalies, they cannot be as effective with data with high
variations. They can be too simple to detect hidden pattern anomalies, such as
contextual anomalies that can only be detected while considering their context.
For example, in the context of bank transactions, a customer making several
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money withdrawals from an ATM may seem normal as the customer has already
withdrawn that amount of money before, but when the consecutive transactions
are considered together, the pattern that the customer is exhibiting is anomalous
and could reveal bank card theft.

Deviation-based methods are methods that predict the value and compute its
deviation from the observed one in order to detect an anomaly. This family of
methods requires a clean training dataset that the model can learn non-anomalous
data measurements. The discussed distance-based techniques perform well for
real-time detection. However, they are unable to detect pattern anomalies.
Neural network-based techniques are gaining remarkable attention in the literature
recently for anomaly detection. However, neural network methods require a clean
or a semi-clean dataset and are highly sensitive to their training data.

The techniques from all the different families rely on existing data either
from the same sensor or from other nearby sensors to detect an anomaly. Data
measurements collected by low-cost mobile sensors can sometimes have good
quality and, at other times, have poor quality. This is due to the faulty nature of
these nomadic sensors that makes them prone to quality issues that can affect their
performance, such as manufacture defects, points of failure, battery drainage, etc.
If anomalous data measurements are compared with data that is already of poor
quality, the result of the detection will be poor because these measurements could
be faulty in the first place and are not reliable. In order to improve the quality
of the detection of anomalies, we could consider the quality of the sensors taking
the measurements at the time they were taken. This allows for better detection
because the measurements with poor qualities are given lower priorities than those
with higher ones in order to limit their impact on the detection process.

As some anomalies can only be detected when considering the context they
are in, it is sometimes impossible to detect an anomaly if we have no information
about the context surrounding it. For example, in an air quality measuring
context, assume we know from the existing data that the sensor holder is only
exposed to a certain pattern of air pollutants when they take the metro on their
way home from work. If this same pattern is recorded on the user’s way back
home from work and we do not have the context information that indicates that
the user did not take the metro that day on the way home, the pattern will not
be identified as anomalous, while the truth is that it is.

The detection of anomalies could be improved using the quality of the sen-
sors and the contextual information. These information can be integrated in the
similarity function to group similar data measurements together. The quality of
the sensor can also be integrated in the anomaly detection process knowing that
groups with higher quality measurements are less likely to be anomalous.

2.6 . Quality-based Data integration
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In the preceding sections, we have introduced various dimensions of data
quality, both for the mobile crowdsensing context and for other contexts. Our
focus has been on two prevalent data quality challenges in mobile crowdsensing
environments, namely missing values, and outliers. We have presented approaches
from the literature that addressed these issues and proposed algorithms and tools
for data quality improvement. The data gathered by the sensors will eventually
be integrated for computing indicators and analysis. It would be interesting to
include the quality of the data in the analysis process.

The main objective in sensor data integration systems is to compute indicators
and extract insights from the integrated information coming from several sources.
If we know what is the quality of each measurement coming from the sensor, the
question of how we can consider this quality during the integration of the data and
during the computation of the indicators arises. The intuition is that considering
the data quality should lead to better indicators. This problem of integrating the
quality of the data in the integration of data coming from multiple data sources
has been the focus of some works in the literature.

Some systems have studied the way quality can be integrated in data analyt-
ics. An example of such systems is the Spatial On-Line Analytical Processing
(SOLAP) systems. Spatial OLAP systems [Bédard et al., 2006] can be defined as
software that allows rapid and easy navigation within spatial databases and offers
many levels of information granularity. The SOLAP (Spatial OLAP) concepts
support the multidimensional paradigm and enriched data exploration based on
an explicit spatial reference represented on maps. SOLAP systems can provide
powerful analytical capabilities for exploring and visualizing spatial and temporal
aspects of mobile crowdsensing data, enabling users to gain deeper insights and
make informed decisions based on the geospatial context and evolving patterns
within the data.

In this section, we focus on two problems. The first problem is how data
quality is represented. For this, we will present approaches that propose quality
models for data warehouses. The second problem is how quality is taken into
account for data aggregation.

2.6.1 . Quality Models for Data Warehouses

With the rise of new geographical data acquisition technologies, the number
of available temporally geo-tagged datasets is also rising. The urge for proper
tools for storing and representing this data is also increasing. The authors of
[Berrahou et al., 2015] propose a multidimensional model star schema of their
data while including quality in the fact table. The authors present their multi-
dimensional data model showing the fact table that measures hydro-ecological
watercourse sampling data. The authors integrate thematic, temporal, and spatial
accuracy in the data modeling process, where each facet of the accuracy is
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attributed to one or more different data packages. The quality weight is stored
as a measure directly in the Fact table Quality is later weighted by the facts
in the aggregation-based analysis, which will be discussed in further detail in
subsection 2.6.2.

The work of [Jarke, 2003] defines data quality in data warehouses at several
levels; the authors define the quality at the design and administration where
quality schema with all the quality dimensions is proposed. Another level is
the software implementation quality level, where the authors adopt standards
proposed by ISO 9126. Finally, there is the quality at the data usage level, where
a schema for data usage quality dimensions is proposed and explained. Moreover,
the authors define a quality meta-model for data warehouse quality, where quality
goals are linked to a set of quality queries used to decide whether or not a quality
goal is attained.

The authors of [Devillers et al., 2005] first propose a model named Quality
Information Management Model (QIMM) that allows the management of spatial
data quality information within a datacube. The spatial data quality information
stored within the QIMM model are later manipulated using SOLAP to allow
the expert to navigate into quality dimensions and to intersect them for any
level of detail. The authors integrated the quality values into the data models.
They proposed approaches that allow drilling down and rolling up on different
granularities of data quality dimensions along with their corresponding data. For
example, drilling down from a general data quality value to a specific quality value
of logical consistency or semantic accuracy.

The authors of [Devillers et al., 2007b] developed a prototype to support data
experts in the assessment of the fitness of certain data for an intended use based
on the QIMM data structure within a spatial data context. They store the quality
information within the multidimensional database. The authors develop a tool that
show some quality indicators on the data on several granularity levels of the data.
This approach allows users also to explore data quality along a quality indicator
hierarchy. The quality indicators in the dashboard can be drilled down and rolled
up. It allows users to explore the quality of the data as well as the aggregated
data. For example, if the user can see quality information at highl level such as the
completeness of the data, the user will be able to drill down into factors of data
completeness, such as spatial completeness.

The authors do not provide one single way to aggregate quality information
but rather provide an approach that helps data users select the aggregation process
that best fits their needs.

2.6.2 . Quality aggregation operators

The authors of [Boulil et al., 2013] propose a unique framework to represent,
at the conceptual abstraction level, integrity constraints in spatial warehoused data
context where the integrity constraints are defined on the data, aggregation, and
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spatial-multidimensional query levels. The authors defined three integrity con-
straint (IC) classes: the data IC, the aggregation IC, and the queries IC. These
integrity rules were specific to the context of meteorological spatio-temporal data
and were implemented using object constraint language (OCL). The data integrity
constraints ensure the logical consistency and completeness of the spatial data.
The data IC can be defined on all elements of the spatial data warehouse (SDW),
such as facts and members. The aggregation integrity constraints guarantee cor-
rect and meaningful aggregations of the measures. There are two defined sub-types
of aggregation integrity constraints; the first one is semantic constraints that check
if an aggregation function applies to the measures according to the semantic na-
ture and the type of the measures, the aggregate functions, and the dimensions.
The other sub-type defined is schema constraints that impose conditions that must
be satisfied by dimension hierarchies and respect the relationships between the di-
mensions and the facts in order to avoid redundancy and incompleteness of the
aggregations. And finally, the authors also defined query integrity constraints that
refer to conditions that ensure that SOLAP queries are valid to avoid any misin-
terpretation resulting from empty query results.

The work of [Berrahou et al., 2015] is in the environmental context. The
authors work on integrating quality in the aggregation-based querying on the
spatial on-line analytical processing information system. The thematic, temporal,
and topological accuracy of each record in the system is computed, then the
computed quality value is stored in the fact table. All records in the fact table
can be queried on several dimensions. Each value is weighted by the three
quality values computed. The quality values are computed by function weighting
and combining several logical rule-based constraints to validate the consistency
and completeness of the record. Temporal accuracy is a constraint that checks
whether the date and time attributes are not null and are valid. The thematic
dimension of the accuracy data quality factor is computed compared to a set
of domain-specific constraints and characteristics regarding the consistency of
multiple physio-chemical parameters that the record/measurement needs to
fit. The topological/spatial accuracy is computed as the distance between a
measurement and a reference water site. Finally, the authors have integrated
these data quality values in the aggregation queries on the data. This approach
used different data quality factors as filters while executing queries on the data.

The authors of [Bimonte et al., 2006] propose an extension to a multidimen-
sional data model that can support complex objects as measures to integrate
spatial data. The approach also focuses on aggregation measures and designing
ad-hoc aggregation functions. The defined ad-hoc aggregation approach supports
semantics for the correctness of the aggregation and dependencies across aggre-
gation functions. The authors define entity, hierarchy, and cube schemas in the
geographical spatial context. Also, the authors focus on defining the notion of
aggregation that allows the creation of ad-hoc aggregation functions that support
hierarchies.
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To our knowledge, no works integrate data quality when aggregating sensor
data in mobile crowdsensing environments. The data measurements coming from
low-cost nomadic sensors can sometimes have very poor qualities and high quality
at other times. Therefore, assigning equal weights to all the available measure-
ments will compute aggregations that are also of poor quality.

2.7 . Conclusion

In this chapter, we studied approaches defining different quality dimensions in
general contexts as well as in the context of mobile crowdsensing environments
with sensor data. The existing definitions of the data completeness quality
dimension are insufficient and lack a clear representation of the various aspects
of data that characterize the context. Also, the existing metrics evaluate the
data completeness in a quantitative manner only rather than qualitative. These
existing evaluation metrics require improvement to better assess the completeness
aspects. In order to improve the data completeness, many works proposed several
approaches to generate the missing values using data imputation techniques
[Troyanskaya et al., 2001], [Li et al., 2009], [Yi et al., 2016]. The generation of
missing values that are accurate and can replace big chunks of missing data are
still research problems to be studied and improved. The existing approaches are
completely oblivious to the quality of the sensors taking the data measurements,
which makes the imputation also quality-oblivious.

Another main flaw of the sensor data is the presence of undetected anomalies.
There are numerous works targeting anomaly detection for sensor data, but
obviously, the state-of-the-art still lacks a clear guide to which family of techniques
is most suitable to which context and what data. Detecting anomalies is still
a topic of research with the rise of data acquisition sources that may not be
completely reliable. Even though in the past recent years, there have been more
works trying to leverage the context to help improve predicting or detecting an
anomaly in the data, the contextual data are still vaguely defined and incomplete.

During the acquisition process, big chunks of the data could be lost, noise
could be introduced to the data, there could be calibration issues with the
measuring sensor, etc. Analytics and insights that are oblivious to the quality of
the sensors taking the data result in indicators that are aggregation or queries
that do not know the quality of the computed aggregates.

In this thesis, we target some of the aforementioned discussed problems. We
introduce quality factors adequate for mobile crowdsensing environments and
provide the associated metrics. We characterize different factors of completeness
and propose metrics to evaluate each of them in chapter 3. We also tackle
in chapter 3 the data completeness improvement by extending existing data
imputation techniques with the quality of the sensor to impute a single missing
value measurement at a time.
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In chapter 4, we address the accuracy data quality dimension. We propose an
anomaly detection approach within mobile crowdsensing environments considering
data about the quality of the measuring sensors and some other contextual
information. In our approach, we propose an anomaly detection approach that
takes data quality into account. We also take into account the contextual
information if available.

And finally, we address in chapter 5 some ways of integrating data quality in
sensor data analytics. We address the problems related to taking data quality into
account during the analysis of sensor data. To this end, we introduce quality-
based data aggregation operators. We also characterize the quality of a computed
aggregate given the quality of the underlying data measurements.





3 - Data Completeness in MCS

3.1 . Introduction

Data completeness is a data quality factor that measures if a dataset is not
missing information. It is applicable in a wide variety of application contexts.
Data completeness is defined in relational data as the extent to which the table
represents the corresponding real-world objects[Batini and Scannapieco, 2006].
Studying the impact of data completeness, assessing, and improving it are
ongoing research topics in different application contexts [Azimi and Pahl, 2021],
[Liu et al., 2017]. For example, the authors of [Azimi and Pahl, 2021] study
the impact of data completeness levels on machine learning models, and the
authors of [Liu et al., 2017] survey the literature for existing problems of data
completeness in the healthcare sector. To the best of our knowledge, there
are no works that study the relevant quality dimensions in mobile crowdsensing
environments for data completeness. We study in this chapter the charac-
terization, assessment, and improvement of the data completeness quality
factor in mobile crowdsensing environments. Mobile crowdsensing (MCS) is an
emerging sensing model which primarily depends on the strength of the people’s
sensor-enabled mobile devices to collect the data for a particular acquisition task
[Ma et al., 2014, Brahem et al., 2021]. Data collected by sensors in this context
are spatiotemporal series that are time series where each data measurement is
tagged by coordinates of the geographic location it was taken at.

Several metrics have been proposed to evaluate data completeness for different
data types. For example, the data completeness quality dimension is evaluated
in relational databases as the percentage of null values if the data contains
null values. Otherwise, data completeness is evaluated compared to a reference
dataset and has missing records [Batini and Scannapieco, 2006]. Either way,
these definitions are insufficient to evaluate data completeness for sensor data in
a mobile crowdsensing environment because, in the case of the presence of null
values, it is possible to have a table that does not contain any null value and still
not be complete because there are records that are missing. Otherwise, comparing
the actual data to a fixed reference is also insufficient because they do not capture
the several understandings of data completeness that exist in mobile crowdsensing
environments. Hence, this existing definition is also insufficient.

Missing data is a very commonly encountered problem when dealing with
data coming from nomadic sensors. The missing values or chunks of the data
degrade the completeness of the data if left untreated. Analytical studies based
on data with untreated missing values can be misleading and unreliable. Hence,
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existing works employ data imputation techniques as one way to generate the
missing values [Khayati et al., 2020]. Data imputation techniques are techniques
that can generate and fill in a missing measurement value based on the other
adjacent existing measurements. For example, a data imputation technique T
may generate a missing measurement in a time series at timestamp t by looking
at the other existing measurements at timestamps t-1 and t+1. Sometimes an
imputation technique T considers spatially adjacent existing measurements that
are geographically close to the missing one. The problem with existing approaches
is that they neglect the faulty nature of the sensors which may result in poor
quality data. This makes sensors that are having quality issues at the moment be
treated equally to the perfectly working ones. Measurements from sensors with
bad quality may tend to have values that are further away from the ground truth
than those from good-quality sensors.

This chapter characterizes the data completeness quality dimension in a mo-
bile crowdsensing environment (MCS) with its different factors. We introduce a
multidimensional data model to characterize data captured within a mobile crowd-
sensing environment that helps us visualize the data analytically. We define three
data completeness factors: sensor completeness, temporal completeness, and spa-
tial completeness. We propose a set of metrics for the evaluation of these different
factors. We then present some solutions for data completeness improvement. We
define the quality of the sensor in the context and present some possible met-
rics that can assess the quality of data measurements coming from these sensors.
We extend three existing data imputation approaches from different families, ST-
MVL, SVDImpute, and KNNImpute, to improve the completeness of the data.
The quality-aware data imputation approach aims at considering the quality of the
measurements during the imputation by assigning a lower priority to low-quality
measurements and a higher priority to high-quality measurements to improve the
quality of the imputation.

In the remainder of this chapter, we provide a motivating example for data
completeness in mobile crowdsensing environments in section 3.2. Then, the mul-
tidimensional model is presented and defined in section 3.3. The three factors of
data completeness are defined in section 3.4 where we propose the metrics for their
evaluation. The quality-aware data imputation approach is presented in section 3.5
where we introduce and define sensor quality as well as our proposed extensions
of the three aforementioned techniques. Finally, we evaluate the proposed metrics
as well as our quality-aware extended approach in the experiments discussed in
section 3.7, and conclude the chapter in section 3.8.

3.2 . Motivating example
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According to the authors of [Batini and Scannapieco, 2006], data completeness
has been defined as “the extent to which data are of sufficient breadth, depth, and
scope for the task at hand”. The authors propose several metrics to evaluate data
completeness in relational databases. The first one is the presence of null values in a
given table or column. The second metric is the comparison of the tuples present in
the database to an existing set of reference tuples [Batini and Scannapieco, 2006].
The first metric is insufficient because it is possible to have a table that does not
contain any null value and is still incomplete if, for example, an entire record is
missing. The second metric is also insufficient because it does not consider the
different aspects of data taken in a mobile crowdsensing context. For example,
the measurements could happen to be all taken according to the reference dataset
but not according to another aspect of the data such as the spatial aspect. This
is demonstrated in the following example 3.2.1.

Example 3.2.1. Assume we have data collected by nomadic sensors measuring a
particular physical phenomenon with time and geographic location. The collected
data measurements by a sensor are represented by a series Xn = {v1, . . . , vn}.
We assume that the measurements are taken at a frequency f for the considered
time period. If all the sensors have provided the measurements according to f,
we could say that the data is complete. However, if the measurements happen
to all be taken in a very small partition of the studied area, this means that the
measurements do not cover the considered area, and are hence incomplete with
respect to the spatial dimension.

Consider, for example, the table in Figure 3.1 which shows a sample of the
measurements from one sensor. This table contains the timestamp at which the
measurement was taken, the value of the measured element, and the longitude and
latitude indicating the location of the sensor at that time. Let us consider that
data completeness is evaluated as the proportion of Null values in the table. We
can see from Figure 3.1 that there are no such values for any of the records in the
table, and we can therefore say that our data is complete.

Figure 3.1: Snapshot of the data captured by sensors.

After plotting these data measurements on a map as shown in Figure 3.2, we
can see that these measurements cover only three cells in the studied area. We
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also notice that no measurements are recorded in the remaining cells of the grid.
This means that even though the data has no null values, the data measurements
however are not covering the spatial area being studied which implies that the
data is not complete spatially. Therefore, the traditional metric of computing the
proportion of null values of the data is not sufficient for our context.

We consider another example where we assume that the rate of measurement
of the sensor is 1 measurement/second. This means that we expect 10 minutes ×
60 measurements/minute = 600 measurements during this 10 minutes period of
our study. Even though the data has no null values in Figure 3.1, there are 590
missing measurements in that table. Hence, the data in our table is incomplete.

The examples presented above show that the existing completeness definitions
and metrics are not appropriate to capture all the dimensions of data completeness
in MCS environments. In the following section, we will present a multi-dimensional
model for storing pollution measurement data generated within a mobile crowd-
sensing (MCS) context, and we will discuss the different factors of completeness
in this context.

Figure 3.2: Map showing the spread of the pollution measurements over
the grids of a given area.

3.3 . Multidimensional data model in MCS environments

In order to understand the characteristics of data in a mobile crowdsensing en-
vironment, we propose our multidimensional data model presented in Figure 3.3.
This model helps us understand the different dimensions of the data, it simplifies
its analysis and helps visualize the different quality factors concerning this data.
The multidimensional data model presents the measurement (fact) and the dimen-
sions of sensor data. The measurement value in fact table represents a physical



3.3. MULTIDIMENSIONAL DATA MODEL IN MCS 71

element measuring a real-life phenomenon captured within the context of a mobile
crowdsensing environment (MCS). We will use this model to illustrate the different
factors of data completeness.

Figure 3.3: A Multi-Dimensional Model for Pollution Data.

3.3.1 . Sensor data in a MCS environment

A sensor si in a mobile crowdsensing environment collects a set of measure-
ments Xn = {vi1, vi2, . . . vin}, where vij is a measurement vector taken by sensor
si at timestamp tj , and measuring any physical real-world phenomenon. Each
vector vij contains a measurement v and a set of r features that represent the
dimensions of this measurement. The vector vij = (v, f1, . . . , fr) ∈ {Dv× D1×
... ×Dr}, r ∈ N+ being the number of features each measurement has, Dv is the
domain of the measurement value, and Di i ∈ 1, ..., r, is the domain of a feature
fi in the vector vij .

Assume a context where a data measurement represents some physical phe-
nomenon and the dataset comprises a set R of time series, R = {X1, X2, ..., Xn},
acquired by a set of sensors S = {s1, s2, ..., sn}. Each sensor collects measurement
values of any physical phenomenon alongside the timestamp and other features of
the data. Suppose that the measured physical element is a given air pollutant. Each
measurement vector vij is collected by a sensor si and has the following features.
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The measurement value is the level of the measured phenomenon (e.g. meteorol-
ogy, air pollution, water composition, online transaction, etc.). The measurement
is taken at timestamp tj which indicates the time at which the measurement was
taken. The pair (lat,lon) indicates the spatial geographic coordinates where the
measurement was taken. The activity a represents the environment where the
measurement was taken. Finally, si represents the sensor unit that took the mea-
surement.
For analysis purposes, the measurement vector vij has to have at least the follow-
ing features: vij = (v, si, tj , (lat, lon), si) which is a general set of some features
that represent a measurement in a mobile crowdsensing environment (MCS). More
features could be added to model the data when characterizing the model to a
specific application domain in the crowdsensing context.

3.3.2 . The data model
This subsection presents the multidimensional data model that describes data

in a mobile crowdsensing environment. The model covers several dimensions that
are typically found in sensor data, such as user, campaign, sensor, time, location
and the physical phenomenon being measured.

Figure 3.3 depicts our multi-dimensional model. A single sensor reading is
represented in the fact table Measurement. The value of the measurement is the
attribute measurementValue which represents the value of the reading captured
by the sensor of a certain measured element. The Measurement fact table has 6
dimensions that are defined as follows:

• Campaign: represents the duration of time, with a start and end date where
a number of users carried sets of sensors to collect data.

• User: identifies the participant who was carrying the sensor that took this
measurement; user-identity information is not saved for privacy reasons; the
gender and age are recorded for analysis purposes.

• Sensor: represents the sensor that took the measurement, described by a
sensor id, a type, and a name.

• Location: represents the spatial coordinates where the measurement value
was taken.

• Time: gives information about the date and time when the measurement
value was taken.

• Measured Element: provides information about the name of the physical
phenomenon that is being measured.

To instantiate the data model with the features described in this model, a data
measurement can be described by the vector vij = (v, si, tj , (lat, long), u, c). The
measurement value of the vector vij is denoted by v, the sensor that captured



3.3. MULTIDIMENSIONAL DATA MODEL IN MCS 73

the measurement is denoted by si, the user that carried the sensor is represented
by u, the timestamp at which the measurement was taken is denoted by tj , the
geographic location where the measurement was taken is represented by the pair
(lat, long), the campaign c during which the measurement was taken.

3.3.3 . Quality factors for data completeness in MCS

Considering the model presented in Figure 3.3, we leverage the different dimen-
sions of the data measurement to propose the data completeness factors of data
in this context. Completeness in mobile crowdsensing environments has different
facets, and there are several understandings of how completeness can be perceived
and represented. The multidimensional model in figure Figure 3.3 helps us analyze
the different facets and perspectives of completeness, we present five of them in
the following.

Completeness of a campaign

The completeness of a campaign expresses the overall completeness of a campaign.
It represents the extent to which the measurements expected during this campaign
coming from all the sensors that were used by the participants are actually stored
and available.

Completeness for a user

Completeness for one user over a period of time expresses the completeness of the
measurements from all sensors carried by this user during their participation over
a specific period of time. User completeness measures the extent to which the
data expected from a user is complete considering the number of sensors the user
carried and the duration over which the user carried the sensor.

Example 3.3.1. Consider two users user1 and user2 that carried each a sensor unit
of the same type measuring the same physical element, for the same duration. User
completeness of user1 and user2 are supposed to be equal given they have identical
conditions. This might not always be the case in real-life scenarios because the
usages of each one of the sensors by each user are different. If the user completeness
of user1 is higher than that of user2, this could imply that maybe user2 turned off
their sensor at some point. Hence, it allows us to compare the usage of the sensors
by each user.

Completeness of a sensor

Sensor Completeness reflects the completeness of a single sensor unit over a specific
preset period of time. During a certain time period, a sensor could be used several
times by different users for variable durations. The study of sensor completeness
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over a time period shows the extent to which this sensor has provided the expected
measurements at the frequency it was supposed to deliver.

Example 3.3.2. Assume a sensor unit s1 has been employed to collect data over
a certain period of time T. If sensor s1 is deactivated or turned off for the second
half of the time within period T, then the sensor will only collect measurements
for the first half of period T.

Completeness of a spatial area

Completeness for a spatial area represents the spatial coverage of a preset area. It
indicates the spatial dispersion of the measurements over this area. The goal is to
understand the way measurements are distributed in the considered area of study.
It is also used to study how well the measurements cover the designated area.

Example 3.3.3. Assume we have a preset area A and a total of 100 measurements
in this area. Suppose the reference completeness of any area measures the distri-
bution of the available measurements equally over the different sub-parts of the
designated area. If the 100 measurements are clustered in two small parts only of
the area of study, the spatial completeness, in this case, would be very low.

Completeness of a time period

Temporal Completeness characterizes the extent to which a given period of time
is covered by the collected measurements. This completeness factor measures
whether the collected measurements were distributed across the different chunks
in the time period or not. Temporal completeness depends on several elements
such as the number of operating sensors, the physical element studied and its
optimal reference, etc.

Example 3.3.4. Suppose we want to study the completeness of a time period P,
and assume 10 sensors are expected to be capturing measurements during this
period. If only 2 out of the 10 sensors were turned on during the first third and all
10 sensors were turned on during the last two-thirds of this time period, then the
temporal completeness of the remaining two-thirds is higher than that of the first
third.

3.4 . Completeness factors and their evaluation metrics

The data completeness quality dimension, like several other quality dimensions,
is defined for various contexts and application domains. For example, the authors of
[Batini and Scannapieco, 2006] defined data completeness for relational databases
as "the extent to which the table represents the corresponding real world". How-
ever, this definition of data completeness is not sufficient for mobile crowdsensing
environments because the data has several dimensions and the data completeness
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could be considered from multiple points of view. This raises the need for a new
definition that is more appropriate for the MCS context.

In this section, we define three data completeness factors considering the model
described in Figure 3.3, sensor, temporal, and spatial completeness. These facets
of data completeness reveal important knowledge about the different character-
istics of mobile crowdsensing environments. The completeness factors provide a
different perspective of completeness for every dimension of the data compared
to existing definitions for traditional databases which are not multidimensional.
We present our definitions of each of these factors, sensor completeness, spatial
completeness, and temporal completeness consecutively. We give definitions, de-
scriptions, and examples. We also present some quality metrics allowing to assess
each completeness factor.

3.4.1 . Sensor completeness
Sensor completeness is a factor that expresses the completeness of the data

captured and sent by a specific sensor unit si during a preset time period. Given
the erroneous nature of some sensors, studying sensor completeness can show how
reliable a sensor unit is over a certain time period T by giving information about
the completeness of the data captured and sent by the sensor. Sensor completeness
is a quality factor that captures the extent to which the measurements of a given
sensor are complete over a certain time period.

A sensor unit can be used several times by different users and over one or
more time intervals. A single sensor usage is carried out and associated with one
single user over a certain duration. To study the completeness of one sensor over
a certain period of time T , we have to study its completeness over the cumulative
time duration within T regardless of the participant carrying the sensor. Hence,
if a sensor has been used four times during a period T , we have to study its
completeness over the accumulated time intervals within T where it was being used.

We evaluate the completeness of a specific sensor si as follows:

• Identifying all the usages of sensor si in the specified time period, as a sensor
might have been used several times during the time period.

• Evaluating sensor completeness for each usage of si separately.

• Aggregating the computed evaluations of each usage to calculate the com-
pleteness of sensor si.

Definition 3.4.1 (Sensor completeness). Sensor completeness represents the ex-
tent to which the measurements of a given sensor are complete over a certain
period of time. The completeness for a single sensor si over a time period is
evaluated as the number of available measurements over the required number of
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measurements.
SenCsi =

AMSi

RMsi

(3.1)

Where AMsi is the actual number of measurements sensor si has taken during
all its usages in the specified period of time, and RMsi is the expected number of
measurements from sensor si during its usages in this time period.

The required number of measurements RMsi for a sensor si throughout a
specific time period is defined as:

RMsi = ΣK
j=1nsij (3.2)

Where K is the number of usages of sensor si over the specified time period,
and nsij is the number of required measurements for sensor si in usage j.

For every single usage denoted j including the sensor si, nsij is computed as
follows:

nsij = fsi ∗DCj (3.3)

Where fsi is the sampling rate of the sensor si and DCj is the duration of the
usage j of the sensor.
To illustrate this evaluation of sensor completeness, let us consider the following
example.

Example 3.4.1. Given a sensor unit s1 measuring black carbon (BC) used by three
participants within a time duration d, the sensor completeness of sensor s1 over d
is the ratio of the actual number of measurements observed by s1, to the required
number. The required number of measurements is defined by the sampling rate
of the sensor. If we assume the required number of each usage of the sensor is
500 measurements, and the actual observed numbers are 350,200,480 respectively,
then the sensor completeness of s1 over d is (350+200+480)/500*3 = 0.69.

3.4.2 . Spatial completeness
Spatial completeness is a factor of completeness that describes the distribution

of the measurements in the considered spatial area. It indicates how sufficient and
comprehensive the current measurements are for a particular area. The optimal
case can vary according to the requirements of the data in the application context.
For example, an application could require for the measurements to be uniformly
distributed over space. In this case, it is similar to the concept of data skewness
[Belussi et al., 2018]. Another application could require for the measurements to
be more concentrated in some areas rather than others because there is a higher
population which means a better understanding of the studied element around
highly populated areas.

Spatial completeness is the extent to which data sufficiently represents a
specific spatial area, and it characterizes the coverage of this area considering
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the available measurements. The spatial completeness of measurements does
not necessarily mean the more the better. It only means that the available
measurements are distributed over the area and they cover all of the parts of
the studied area. Spatial completeness is quantifying the distance between the
reference distribution and the actual placement of the measurements. We give an
example of spatial completeness in the following.

The specification of a reference spatial coverage in order to assess spatial
completeness can be based on different assumptions. We propose several interpre-
tations for the required number of measurements for a specific area. This reference
can differ from one application to another depending on the requirements. For in-
stance, one interpretation that we propose in this chapter would be to divide the
designated area into equal grid cells and compare the actual data to a uniform
distribution of the measurements over the grid cells. This means that the mea-
surements taken by the sensor are not grouped in a few portions of the area but are
rather evenly distributed all over it. The spatial completeness would be comparing
the actual distribution of the measurement with the reference distribution. For
this particular interpretation, the evaluation steps of spatial completeness over the
designated area are as follows.

• Dividing the area of study into equal-sized grid cells

• Computing the required number of measurements RMCi for each grid cell
and evaluating the spatial completeness of each grid cell

• Aggregating the computed evaluations of each grid cell to compute the
spatial completeness of the area of study

Different assumptions could be made in order to estimate RMCi , the required
number of measurements in a given cell. Two of them are presented hereafter:

• Assumption 1: We consider as a reference, a uniform distribution of the
measurements over the area of study A. This means that the number of
measurements should be evenly distributed over the cells in the grid. Hence
the required number of measurements would be:

RMCi =
AM

|A|
(3.4)

Where AM is the actual number of available measurements for the whole
grid, and |A| is the number of grid cells in area A.

• Assumption 2: We consider as a reference, a distribution of the measure-
ments that takes into account the variation of measured element levels in
the different cells of the area of study A. The variability of the measured
element here will be studied from existing data (trends, seasonality, etc).
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If for a given cell the data shows that there is a low variation of the mea-
sured element levels in all the spatial area represented by this cell, then the
number of required measurements for this cell can be low without a loss
of coverage. Conversely, if there is high variability in a given cell, then the
required number of measurements should be higher to better represent this
cell.

Once we have divided the area of study into grid cells, we compute the spatial
completeness of each cell Ci as follows.

Spatial Completeness of a Cell Ci

After dividing the designated area of study into equal-sized grid cells, we compute
the spatial completeness for each cell in the grid.

Definition 3.4.2 (Spatial completeness of a cell). Spatial completeness of a grid
cell Ci, denoted SCi, is computed as follows:

SCi =
AMCi

RMCi

(3.5)

Where AMCi is the actual number of measurements in a grid cell Ci, and RMCi

is the required number of measurements in a grid cell Ci.

The value of the spatial completeness of a cell SCi ranges from 0 to 1. A
value of 1 means that the available measurements are equally distributed over the
different parts of the considered area. A low value represents the fact that the
measurements are unevenly distributed over the area. It is worth noting that a
high spatial completeness value does not represent the fact that a high number of
measurements is available but that the available measurements, regardless of the
quantity, are better distributed.

Spatial Completeness of Area A

After computing spatial completeness for each cell in the grid separately, the overall
spatial completeness for the whole area of study A is computed by aggregating the
spatial completeness of all the cells. This could be done in different ways, for
example, using the average, the median, the minimum, or the maximum functions.

We propose two quality metrics to compute the overall spatial completeness.

Definition 3.4.3 (Completeness of an area using cumulative average). Spatial
completeness is the extent to which the available measurements cover a spatial
area A. Evaluating the spatial completeness of an area A using the cumulative
average computes the average of all cells’ spatial completeness, as shown in the
formula below.

SC(A) =

∑|A|
i=1 SCCi

|A|
(3.6)
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Where SCCi is the spatial completeness of one grid cell Ci, and |A| is the number
of cells in the grid covering area A.

Definition 3.4.4 (Completeness of an area using completeness above threshold).
Evaluating the spatial completeness of an area A using the completeness above a
threshold computes the proportion of cells having their spatial completeness above
a given threshold t, as shown in the formula below:

SC(A) =

∑|A|
i=1 αi

|A|
(3.7)

where

{
αi = 1 ifSCCi ≥ t

αi = 0 ifSCCi < t

The difference between these two definitions is that the completeness of an
area using the cumulative average considers the value of the spatial completeness
of all cells in the area while computing the average while the completeness of
an area using the completeness above threshold considers only the cells with a
completeness value above the predefined threshold.

The following is an example of the spatial completeness of area A using the
cumulative average to compute the spatial completeness of a cell.

Example 3.4.2. Given a specified area of study unit A with data coming from
5 sensors within a time duration d, the spatial completeness of area A over d is
the ratio of the actual number of measurements observed by all sensors within
the designated area A, to the reference number. If we assume that the reference
assumption is a uniform distribution of the measurements, the actual number of
collected measurements by these 5 sensors is 2000, the area is divided into 10
cells, and the actual observed measurements in each cell are 200, 100, 155, 5, 590,
50, 600, 300, 0, 0. The required number of measurements in each cell should be
2000/10 = 200, and the spatial completeness over area A is 0.45.

3.4.3 . Temporal completeness
Temporal completeness is a factor of completeness that describes the distri-

bution of the measurements temporally compared to a reference. It indicates how
sufficient and comprehensive the current measurements are for a certain period of
time T. The reference can vary according to the requirements of the data in the
application context. Temporal completeness is defined in our context as follows.
Temporal completeness is another factor of data completeness that expresses
the extent to which a considered period of time is covered by the available
measurements.

On the one hand, sensors capturing measurements at a very high frequency
may, at some point, add redundancy to the data, but on the other hand, a very
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low frequency will lead to a number of measurements that is not sufficient. There-
fore, we need a clear characterization of temporal completeness. High temporal
completeness indicates a high coverage of the acquired measurements over a time
period P . To assess temporal completeness, we divide a period P into n equal
chunks and then compare the number of acquired measurements during time pe-
riod P to a reference number of measurements defined for each chunk.
The evaluation of temporal completeness for a specified period of study is done as
follows.

• Dividing the period of study P into equal-sized chunks of time Di where i
∈ {i = 0, 1, 2..., n} as it is shown in Equation 3.5.3

• Computing the required number of measurements denoted by RMDi, and
evaluating the temporal completeness for each chunk Di.

• Aggregating the computed evaluations to calculate the overall temporal com-
pleteness of period P .

Different assumptions could be made in order to estimate the temporal com-
pleteness for a single time chunk Di. Two of them are presented hereafter:

• Assumption 1: We consider as a reference, a uniform distribution of the
measurements over time. RMDi is defined for a chunk of time Di as:

RMDi = ΣK
j=1nsj (3.8)

Where K is the number of sensors, nsj is the number of required measure-
ments for sensor sj during the time chunk Di.

For a sensor sj , the number of required measurements during a chunk of
time Di is computed as:

nsj = fsj ∗ |Di| (3.9)

Where fsj is the sampling rate of the sensor sj expressed in the number of
measurements per minute, and |Di| is the size of the chunk Di expressed in
minutes.

• Assumption 2: We consider that the measurements are distributed con-
sidering the variation of measured element levels at different times of the
day, month, or year. Some physical phenomena could be highly time depen-
dent (for example, the air pollutants levels are higher at rush hours than at
other times of the day). A possible approach would be to analyze the avail-
able data to detect variation patterns by studying the trends in the existing
data. The number of required measurements can then be set based on these
patterns in order to compute the temporal completeness.
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Figure 3.4: Period P divided into chunks Di.

Temporal Completeness of a Specified Chunk of Time Di

After dividing the time period P into time chunks, we compute the temporal com-
pleteness for each time chunk in period P.

Definition 3.4.5 (Temporal completeness). Temporal completeness is the extent
to which the available measurements cover a period of time P. The temporal
completeness for a single time chunk Di in P is computed as:

TCi =
AMDi

RMDi
(3.10)

Where AMDi is the actual number of measurements in a chunk of time Di

and RMDi is the required number of measurements in the chunk of time Di.

We give an example of temporal completeness in the following.

Example 3.4.3. Given data coming from 4 sensors within a time period d, the tem-
poral completeness over period d is the ratio of the actual number of measurements
observed by all sensors within the time period d, to the required/reference number.
If we assume the required number of measurements within this time period d is
2000 measurements computed by an estimation of rush hours and the traffic during
this period. The actual observed numbers from the 10 sensors s1, . . . , s4 = { 350,
200, 480, 400} respectively, then the temporal completeness over time period d is
their sum (350 + 200 + 480 + 400)1430/5000 = 0.715.

Temporal Completeness of a Period P

The temporal completeness of a period of time P provides information about the
way the available measurements are distributed over P, and how well P is covered
by these measurements. It is computed by aggregating the temporal completeness
values computed for all the time chunks in P.

Definition 3.4.6 (Temporal completeness of a period P). Temporal completeness
for a time period P can be computed as the average of all the temporal complete-
ness values of its chunks, as shown below:

TCP =
Σ
|P |
i=1TCi

|P |
(3.11)
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Where |P | is the number of chunks in a period of time P, and TCi the temporal
completeness of chunk Di.

3.5 . Quality-aware data imputation for completeness improve-
ment

To improve the completeness of data in an application context, one of the
available approaches is to use data imputation techniques to generate and replace
the missing values. Data imputation techniques rely on existing data measure-
ments, from other sensors for example, or from the same sensor but at different
timestamps, to replace a missing value. Some techniques impute a value based
on geographically close measurements. Other techniques generate a missing value
based on historical data measurements taken at the same location a year or a
month ago depending on the seasonality. Mobile light low-cost sensors are prone
to points of failure, and other malfunctions can take a long time to be fixed, lead-
ing to important missing chunks in the data. If we analyze the data and compute
indicators based on data with low completeness, the findings could be misleading,
resulting in wrong decisions taken. There are many reasons why low-cost mobile
sensors could perform poorly, for example, a sensor can perform poorly due to mis-
uses such as wrong orientation, the regular shutdown of the sensor, or a degraded
battery.

Several works have focused on improving data completeness by generating the
missing values using data imputation techniques for time series data coming from
sensors [Yi et al., 2016], [Khayati et al., 2014], [Troyanskaya et al., 2001], but
none of these works take the quality aspect into consideration. Considering quality
helps data imputation techniques prioritize measurements coming from good-
quality sensors over measurements coming from low-quality ones. For example, if
a sensor unit si was showing a series of aberrant measurements between two time
periods, we could choose to ignore the measurements coming from this sensor
between these two time periods for any imputation task. Our goal is to enhance
data imputation by taking into account the available information about the quality
of the data. This quality could be either a quality value related to a single quality
factor or the aggregation of quality values corresponding to several quality factors.

In this section, we discuss some existing data imputation techniques from dif-
ferent families explored in depth in section 2.4 in the Related Works chapter. Then,
we define sensor quality and its metrics. The sensor quality is later used to extend
three existing data imputation techniques ST-MVL, SVDImpute, and KNNImpute.

3.5.1 . Sensor quality metrics

Before we present our quality-aware extensions of existing data imputation
techniques, we first define the notion of the quality of a sensor. Then, we give the
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idea behind sensor quality and provide the metrics as measures to characterize it.
We then propose a function to aggregate several measures that characterize the
sensor. We consider that the resulting quality score of the sensor is a weighted
average of these different normalized quality metrics. Finally, we showcase our
proposed metrics and aggregation function on a real case study with sensor units
measuring particulate matter.

External circumstances and conditions can impact the way a sensor performs.
Various reasons could cause some sensors to perform better than others, such
as the characteristics of the device itself, like the measurement acquisition rate
or the technologies at the heart of this device. In addition, the performance
of sensor units of the same type and coming from the same manufacturer may
vary depending on the meteorological context in which the measurements were
taken. For example, the indoor air quality measuring sensor, NETATMO1 operates
correctly only for an external temperature between 0°C and 50°C with a humidity
level between 0% and 100%. We can therefore deduce that the quality of the
data provided by this sensor when the temperature is negative, is of poor quality.
The quality of the measurements can also be impacted by the way the sensor
is used by its carrier. Indeed, a sensor whose battery is discharged, will provide
data of lower quality than a sensor operating continuously with a high battery
level. Hence, the data coming from each sensor unit can be disparate in terms of
quality due to all of the aforementioned factors. These can therefore be used to
determine the level of quality of a sensor.

Many external and internal circumstances can have either a significant
negative or positive impact on the performance of a sensor unit. Hence, metrics
are required in order to assess the performance of a sensor unit to understand
the reliability of a given sensor. There are different ways of evaluating sensor
quality. We can assess any of the data quality factors like completeness, accuracy,
consistency, timeliness, reliability, among others. To evaluate the accuracy of the
data coming from a sensor, we can compare the measurements values to data
from reference devices if available. Moreover, it is possible to assess a sensor unit
based on the physical features and the technologies that constitute the sensor,
such as the sensitivity of the sensor to concentration changes or its capability
to capture the temporal variability of the measured element as proposed by the
authors of [Fishbain et al., 2017]. It is also possible to aggregate several quality
metrics to assess sensor quality. However, it is not always the case that such
resources are available. There are different perspectives on how to define sensor
quality and many quality measures could be added, normalized, and aggregated to
represent sensor quality. In our work, we assess sensor quality as the aggregation
of three different quality measures described hereafter.

1https://www.netatmo.com/fr-fr/aircare/homecoach/specifications.
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Device level metric: device-level metrics include metrics that describe the
quality of the sensor at the device level. These metrics could assess some physical
characteristics of the sensor. The set tool [Fishbain et al., 2017] was used by
[Languille et al., 2020] to conduct static tests to do an initial evaluation of the
sensor units within the project to evaluate the actual quality performance index of
the sensor units available. The tool comprises metrics that test the data coming
from the sensor, such as presence that accounts for the sensor’s availability
of a measurement at a given time, as well as some physical features, such as
source analysis, which assesses the ability of the sensor to react to changes in
observations within a time interval that corresponds to wind direction change.
The results of the evaluation using the SET tool were used as a measure in our
evaluation of the quality of our sensors.

Usage Related metric: This category of metrics evaluates the performance
of the sensor after usage because metrics from this family are based on analyzing
the data collected by a sensor over a certain period of time. Metrics that evaluate
any quality dimension of the data lie under this category of metrics. In this
category of measures, it is possible to have a metric that evaluates, for example,
the data completeness, accuracy, detection of anomalies, etc. We used the sensor
completeness metric proposed in subsection 3.4.1 to evaluate the usage-related
performance of the sensors. We evaluate our sensors using this metric that studies
the overall completeness of the measurements coming from the sensor across
multiple usages of the sensor unit over a certain period of time.

Reference-Related metric: This category of metrics evaluates the data com-
ing from the sensor compared to some reference data if available. For this metric,
we compare the available dataset and the reference dataset using correlation co-
efficients that help detect the degree of correlation between the two datasets, and
some error metrics such as the RMSE that computes the error between the values
of both datasets. For example, the Pearson coefficient expresses how coherent
the two datasets are without amplifying the differences. And the RMSE tells us
how different these two datasets are. Hence, if the data from a sensor has a high
correlation coefficient and a low RMSE at the same time, then this is most proba-
bly good-quality data because this means that the differences between the values
among the two datasets are relatively low and they are coherent.

Aggregated sensor quality

In order to compute a global quality value, we propose to aggregate all of the
available quality values provided by a set of quality metrics that assess different
aspects of the sensor. The aggregated value is computed by a weighted average of
each quality metric that is assigned a weight value. The weight value associated
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with each computed quality value is assigned depending on the reliability of the
computed value. For example, if the reference data are of high reliability, we
assign a high weight to the values computed using the metrics comparing the data
with reference data.

Assume that n quality metrics {qm1, . . . , qmn} are available to define the
quality of sensor si. We define an aggregated quality measure for sensor quality
Q(sk) that uses a weight vector ω = (w1, . . . , wn) to weight the values computed
using the quality metrics and compute a global quality index of the sensor sk that
summarizes the quality values computed by all the available metrics.

Definition 3.5.1 (Sensor quality). Sensor quality is a global quality value assigned
to a sensor at a specific time to assess its performance. The global quality value
is computed as a weighted aggregate of several quality values that are computed
to assess different aspects of the sensor. The aggregated value is computed as
follows.

Qsk =

∑n
i=1wi × qmi

n
(3.12)

Where n is the number of quality measures, qmi is a quality measure computed
by some quality metric, sk is the assessed sensor, and wi is the weight assigned to
quality measure qmi.

Example 3.5.1. In our context, we applied this definition to compute the quality
value of available sensors. We computed the three different metrics assessing
different aspects of the sensors discussed earlier. We then assigned equal weights
to the metrics computed to compute a final global aggregated value of each sensor
presented in Table 3.1.
Table 3.1 shows an application of this concept on data collected by sensors in
a mobile crowdsensing environment (MCS) where we present the results of the
aggregation of three computed metrics from each category of measures.

Table 3.1: Example of computation of sensor quality.

Sensor Unit F1 F2 F3 F4 F5 F6 F7 F8 F9
Sensor Quality Value 0.64 0.63 0.69 0.64 0.69 0.67 0.1 0.65 0.51

Sensor Unit F10 F11 F12 F13 F14 F15 F16 F17
Sensor Quality Value 0.46 0.53 0.61 0.59 0.55 0.68 0.49 0.85
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3.5.2 . Extension of ST-MVL
ST-MVL is a pattern-based approach that uses a multi-view learning algorithm

to compute a weighted average of imputed values from four different techniques.
The first sub-technique is the inverse distance weighting (IDW) technique which
interpolates a missing value based on its spatial neighborhoods. The second sub-
technique is the simple exponential smoothing (SES) that estimates the missing
value based on the readings of the same sensor at other timestamps. The third sub-
technique is user-based collaborative filtering (UCF) which computes similarities
between users to estimate a missing value. The last sub-technique is item-based
filtering (ICF) which computes the similarity between two timestamps to estimate
a missing value. Finally, ST-MVL integrates the predictions of the views of the
four aforementioned sub-techniques to generate a final value through a multi-view
learning algorithm that learns the weights to assign to each one of the four sub-
techniques based on existing data. Finally, it computes a weighted average of the
four sub-techniques estimations to generate a missing value.

As presented in the Related Works chapter, suppose the value estimated by
IDW is denoted by v̂gs, the value estimated by SES is denoted by v̂gt, the value
estimated by UCF is denoted by v̂ls, and the value estimated by ICF is denoted by
v̂lt. The weights assigned to the techniques are represented by wi, i ∈ {1, 2, 3, 4}
corresponding to each sub-technique respectively. The final generated value by
ST-MVL v̂mvl of a single missing value v is computed as follows.

v̂mvl = w1 ∗ v̂gs + w2 ∗ v̂gt + w3 ∗ v̂ls + w4 ∗ v̂lt + b (3.13)

where b is a residual and wi (i = 1,2,3,4) is the weight assigned to each
sub-technique respectively.

As part of our proposition, we extend the existing algorithm by taking into
account the sensor quality, which gives insight into the quality of the sensor pre-
sented in subsection 3.5.1. We extend these techniques with quality of the sensors
as evaluated with the metrics proposed earlier to show that considering the quality
of the measurements improves the imputation of a missing value.

Extending IDW

Inverse distance weighting (IDW) is a statistical model used to interpolate miss-
ing values at a given timestamp, based on the spatially closest sensor readings.
It assigns weights to the measurements according to their spatial distance from
the target/missing measurement. The technique is discussed in further detail in
subsection 2.4.2. To extend this technique with quality, we compute a weighted av-
erage of the measurements weighted by their distance to the target measurement,
over the sum of both weights (i.e., distance and quality) to amplify the magnitude
of measurements with higher quality over others with lower quality. The intuition
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here is to consider sensor quality in a similar way to the distance by this algorithm.
The technique considers distance a weight that gives higher importance to closer
measurements and lower importance to further ones. Likewise, our extension as-
signs higher-quality measurements a greater importance than lower-quality ones.
Extended IDW estimates a missing value vi according to the following formula.

v̂gs =

m∑
i=1

vi ∗ d−α
i ∗ qsi

m∑
i=1

d−α
i ∗ qsi

(3.14)

Where α is a positive power parameter that controls the decay rate of a sensor’s
weight by distance, and qsi is the quality of sensor si.

Extending SES

Simple exponential smoothing (SES) is a technique that estimates the missing
value based on the temporally adjacent measurements of the same sensor. It
assigns higher weights to measurements that are temporally closer to the target
missing measurement than the others. The technique is discussed in detail in
subsection 2.4.2. SES is extended by introducing the sensor quality to the product
of the measurements that are already weighted by their temporal closeness to
the target measurement, by the quality of the sensor taking the measurement.
The intuition here is similar to that in Equation 3.5.2, to assign a higher weight to
measurements with higher sensor quality in a similar way it is done by the technique
to recent measurements.
Extended SES estimates a missing value vj according to the following.

v̂gt =

n∑
j=1

vj ∗ β ∗ (1− β)tj−1 ∗ qsi
n∑

j=1
β ∗ (1− β)tj−1 ∗ qsi

(3.15)

Where β is a smoothing parameter, β ∗ (1− β)t−1 is used to give a higher weight
to recent readings than distance ones, and qsi is the quality of sensor si.

Extending UCF and ICF

User-based, and item-based collaborative filtering are two techniques wildly used in
recommender systems [Li et al., 2009]. The idea behind user-based collaborative
filtering (UCF) is that similar sensors produce similar measurements. Hence, it uses
the similarity between two sensors as a weight to prioritize some measurements
over others. To extend UCF with sensor quality, a measurement is weighted by the
quality of the sensor that took the measurement that is later in the UCF weighted
by the similarity between the sensor taking it and the target sensor. This is meant
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to give a higher importance to measurements with higher quality. Extended UCF
estimates a missing value based on Equation 3.16.

v̂ls =

m∑
i=1

vi ∗ simi ∗ qsi
m∑
i=1

simi ∗ qsi
(3.16)

Where simi is the similarity between the sensor that took vi and the target sensor
of the missing measurement, and qsi is the quality of the sensor si. Similarly,
item-based collaborative filtering assumes identical timestamps must have similar
measurements. Hence, it uses the similarity between two timestamps as a weight
to prioritize some measurements over others. To extend ICF with sensor quality,
we weight a measurement that is weighted by the similarity between the timestamp
at which it was taken and the timestamp at-which the target measurement was
taken, by the quality of the sensor taking the measurement. Extended ICF
estimates a missing value vi as shown in Equation 3.17.

Similarly to extended IDW and SES, the intuition behind this proposed ex-
tension with sensor quality is to weight the computed values by the quality of the
measuring sensor such that we dedicate a higher significance to measurements with
higher quality than others with lower quality.

v̂lt =

j2∑
j=j1

vj ∗ simj ∗ qsi

j2∑
j=j1

simj ∗ qsi

(3.17)

Where simj is the similarity between the timestamp at which vi was taken and
the timestamp of the missing measurement, and qsi is the quality of sensor si.

3.5.3 . Filtering of SVDImpute
SVDImpute is a technique that employs the Singular Value Decomposition

(SVD) to obtain the principal components of the matrix A that comprises the data
measurements from sensors at their collected timestamps, and regresses these
principal components against the existing data measurements from the target
sensor. The technique is explained further in subsection 2.4.1. We propose two
possible extensions to SVDImpute in order to take into account sensor quality.
One considers only a certain percentage of sensors having the highest quality. For
example, data coming from only top 70% quality sensors are considered in the
imputation. The second takes sensors having a quality score above a predefined
threshold where only the data measurements with a quality value above a certain
threshold are taken into account during the imputation.
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The proposed extension of SVDImpute comprises a preprocessing step that
filters the data that the technique is going to use in the imputation according
to quality criteria. The first proposed extension considers only the data of the
percentage p of the sensors having the highest quality score. For example, if we
set p = 70% and if we have data from 10 sensors, SVDImpute will consider only
the data from the seven sensors with the higher quality scores. The data from the
three remaining sensors with lower quality scores will be discarded.
The second proposed extension is similar to the first one, but instead of considering
the percentage p of sensors having the highest quality score, it considers sensors
having a quality score above a threshold γ, where γ ranges between 0 and 1. In
this proposition, we are only interested in the data from the sensors that have a
quality score above a predefined threshold. If we consider the previous example
and assume our threshold is 70% and only four sensors out of 10 have a quality
score above 70%. In this case, we only consider the data from these four sensors
and discard the remaining ones.

Assume we have data measurements from sensors si = {a1, . . . , am} where
each measurement is taken at timestamp tj . A data matrix Am,n is a matrix com-
prising data from m sensors having measurements at n timestamps. We represent
a filter Km,m by a matrix of ones with values of zero at the locations that filter
out the rows that need to be discarded.

For both extensions, we filter out the data of the unwanted sensors by multiply-
ing the data matrix Am,n by a filter Km,m that nullifies the rows of the unwanted
sensors. Hence, the resulting matrix A′

m,n only contains the rows of data from
the selected sensors. For example, if matrix A is of size 4 × 5 as shown below,
representing data from 4 sensors over 5 timestamps, and suppose only sensors s2
and s3 have a quality score above the considered threshold. Then, the matrix A′

m,n

will be computed as follows:

A′
m,n = Km,m ×Am,n (3.18)
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3.5.4 . Extension of KNNImpute
KNNImpute is a technique that generates a missing value at a specific

timestamp based on the measurements from neighboring sensors at the same
timestamp. It chooses the k-nearest sensors to be used for the imputation of the
missing value. The technique is explained further in subsection 2.4.1.

To extend KNNImpute, we weight the measurements with the quality score of
the measuring sensors. This will result in giving more importance to the measure-
ments coming from good-quality sensors over those from poor-quality ones.
Consider a set of sensors S = {s1,..., sn} where each sensor si has a quality score
qsi . Assume sensor st has a missing measurement vj at timestamp tj . The imputed
value v̂j generated by the extended version of KNNImpute is defined by:

v̂j =

k∑
l=1

vlj ∗ dsl,st ∗ qsl
k∑

l=1

dsl,st ∗ qsl

(3.19)

Where k is the number of neighboring sensors, dsl,st is the Euclidean distance
between sensor sl and target sensor st, and vlj is the measurement value of sensor
sl at timestamp tj .
In the following two sections, we will present the evaluations of the quality metrics
proposed to assess each of the proposed completeness factors, and the evaluations
of the three extended techniques using quality on time series data taken within the
context of a mobile crowdsensing environment.

3.6 . Data completeness metrics evaluation

This section presents our experiments on evaluating the three defined data
completeness factors: sensor completeness, spatial completeness, and temporal
completeness.

3.6.1 . Experimental setup and dataset
We have conducted our experiments within the context of the Polluscope

project2 [Brahem et al., 2021], [Languille et al., 2020] that aims to quantify
human exposure to air pollutants within a mobile crowdsensing environment. A
sensor si in a mobile crowdsensing environment collects a set of measurements
Xn = {vi1, vi2, . . . vin}, where vij is a measurement vector taken by sensor si at
timestamp tj , and measuring a certain physical element.

In our context, the dataset comprises a set D of time series,
D = {X1, X2, ..., Xn}, acquired by a set of sensors S = {s1,s2, ..., sn}.

2http://polluscope.uvsq.fr
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Each series Xi is composed of data measurements vij . Each sensor collects
measurement values of a specific air pollutant alongside the timestamp and other
features. The air pollutants collected in the Polluscope project are nitrogen
dioxide NO2, particulate matter with three different diameters: PM1.0, PM2.5,
PM10.0, and black carbon BC.

As defined in subsection 3.3.1, each measurement vector vij has the follow-
ing features. The measurement value which is the level of the measured pol-
lutant v ∈ R, the timestamp tj that indicates the time at which the measure-
ment was taken, a pair (lat,lon) that indicates the spatial geographic coordinates
where the measurement was taken, and si that represents the sensor unit that
took the measurement. Hence, the measurement vector vij is represented by
vij = (v, tj , (lat, lon), si) which is the set of all the features that characterize this
measurement.

Setup of the experiments

We conduct our experiments to evaluate the three factors of data completeness:
sensor, temporal, and spatial completeness presented in section 3.4 using our
proposed metrics over a real dataset collected within the context of the Polluscope
project [Brahem et al., 2021], [Languille et al., 2020] with a total size of 5 856
540 data measurements measuring the following air pollutants: NO2, BC, PM1.0,
PM2.5, PM10.0. The data was collected over two distinct campaigns. 1 627
487 data measurements were taken during the first campaign, and 4 229 053
measurements were taken during the second campaign. The campaigns took
place in île-de-france. Each campaign has a start and an end date. People
participating in a campaign are called users. The users carry several sensors of
different types measuring different pollutants, which they carry around their daily
lives and usual routines, for a predefined time duration. The measured pollutants
are particulate matter (PM10, PM2.5, and PM1.0), NO2, or black carbon (BC).
A sensor unit may be used twice within the same campaign by two different users
at different time periods. Each measurement is associated with a timestamp and
a geographical location.

For the sensor completeness experiments, we have considered a subset of
this data taken by one sensor unit measuring NO2 over two campaigns. We
have extracted 21 398 NO2 measurements from the first campaign, and 38 834
measurements from the second campaign for the sensor completeness experiments.

For the spatial completeness experiments, we have considered all the datasets
from campaigns one and two to evaluate the spatial completeness per pollutant.

Finally, to evaluate the temporal completeness we have extracted a subset of
the initial dataset that is measuring three pollutants PM2.5, BC, and NO2 over
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both campaigns. The subset contains 582 506 measurements from campaign one
and 1 378 497 measurements from campaign two.

3.6.2 . Evaluating sensor completeness
For this experiment, we have selected one sensor unit that measures the NO2

pollutant. The experiments are performed on the NO2 pollutant measurements
obtained both in campaigns 1 and 2 by this sensor. Hence the sensor completeness
of the selected sensor unit measuring NO2 is studied over the period of the two
separately, then studied over the 2 campaigns combined. The sensor completeness
value was 58.66% and 59.92% for campaigns 1 and 2, respectively. Generally,
the sensor has performed slightly better on the second campaign than the first.
However, values achieved by the sensor over the two campaigns are in the same
range. Table 3.2 shows the sensor completeness of the selected sensor in all its
usages during campaign 2.

Table 3.2: Completeness of a sensor measuring NO2 for all its usages
during campaign 2.

Usage Nb Sen-Comp

1 37.65%
2 77.3%
3 70.20%
4 28.55%
5 87.89%

3.6.3 . Evaluating spatial completeness
We conducted the experiments to evaluate spatial completeness on each of

the following air pollutants: PM1.0, PM2.5, PM10, NO2, and BC over both cam-
paigns 1 and 2. The evaluations are done over a manually pre-selected area in Paris.

Campaign 1 has less collected data than campaign 2. We first compute
spatial completeness as described in subsection 3.4.2 for every pollutant and for
each of the sensors used in this campaign, and then we compute an average of
all the sensors to get the total spatial completeness. The fact that campaign 1
has less collected data than campaign 2 should be taken into consideration when
analyzing spatial completeness because it means that with more data in campaign
2, there is the possibility of wider spatial coverage. Table 3.3 shows the spatial
completeness values computed for campaigns 1 and 2. The values of the different

pollutants were more or less in the same range, and significantly lower in the first
campaign. However, we notice an improvement in the second campaign, and the
spatial completeness is still fairly low for all of the measured pollutants.
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Table 3.3: Spatial Completeness of all pollutants during campaigns 1 and
2.

Pollutants SC Campaign 1 SC Campaign 2

PM1.0 15.10% 33.02%
PM2.5 15.10% 33.02%
PM10 15.10% 33.02%
NO2 18.17% 35.15%
BC 20.38% 34.99%
Temperature 15.10% 32.91%
Humidity 15.10% 32.91%
Pressure 15.10% 33.024%

3.6.4 . Evaluating temporal completeness
Over the two campaigns 1 and 2, we have also evaluated temporal completeness

for each of the pollutants PM2.5, NO2 and BC. Table 3.4 shows the temporal
completeness of the three pollutants PM2.5, NO2 and BC over campaigns 1 and
2. The results of both campaigns 1 and 2 appear to be in the same range for the

Table 3.4: Aggregated total average of Temporal Completeness of all
pollutants during each sensing campaign.

Pollutants TC Campaign 1 TC Campaign 2

PM2.5 7.75% 42.23%
NO2 60.91% 63.66%
BC 68.53% 59.49%

two pollutants NO2 and BC, around 60% which is relatively high. Aside from the
one extremely poor temporal completeness value achieved in the first campaign for
PM2.5, the remaining temporal completeness values achieved are around 60%.

3.6.5 . Discussion
The purpose of the experiments was to analyze the quality of the collected

data using the proposed data completeness factors and their associated met-
rics. The first assessed factor was sensor completeness, where we selected
one sensor unit to evaluate over two campaigns. The disparate values of the
achieved sensor completeness by the same sensor unit show that our metrics
succeeded at capturing the real faulty nature of the sensors at times or the
poor usage of the sensor by the carrier. The same sensor unit performed very
well, 87.89% at times and poorly at other times, 27.55% most certainly due to
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conditional circumstances that happened to the sensor unit around the time of
the measurements. This means that a sensor unit performing poorly at the mo-
ment could later perform with better conditions and/or better usage by the carrier.

The second assessed facet was spatial completeness where we manually
selected the designated area to study in the heart of Paris. We evaluated all of the
pollutants PM1.0, PM2.5, PM10, NO2, and BC over two campaigns 1 and 2. The
studied area appears to have better spatial completeness in the second campaign
than in the first.

Given the fact that more users have participated in the second campaign than
the first one, this can explain the result because it means less possibilities of
spatial coverage. We noticed the existence of patterns in the trajectories followed
by the users (e.g. mostly back and forth from home to work) which explains the
low spatial completeness covered by the participants in general. This shows that
our metric for spatial completeness facets proved useful because the computed
value reflects the reality of the spatial completeness of this data.

Finally, the experiments of the temporal completeness factor were conducted
for the duration of the two campaigns of the three pollutants PM2.5, NO2, and BC.

The temporal completeness achieved in campaign 1 for PM2.5 is significantly
low because several PM2.5 sensors had a software defect during the first campaign
that made them lose vast chunks of their collected data. Otherwise, the remaining
achieved temporal completeness for NO2 and BC is better because we have noticed
that these sensors functioned more steadily because they did not lose their collected
data due to malfunctions with sensors measuring PM. This implies that the metric
for temporal completeness correctly reflects the reality of the completeness of the
data captured by the different sensor types.

3.7 . Evaluation of our quality-aware data imputation approach

In this section, we present our experiments and the results achieved with the
proposed quality based extensions of the three data imputation approaches: ST-
MVL, SVDImpute, and KNNImpute. We first describe our experimental setup, and
then we show the evaluation metrics that we will use throughout the experiments.
Finally, we show the main results achieved for all of the three techniques. The
rest of the experiments presenting more quality thresholds and percentages of
SVDImpute, and results of the sub-techniques of ST-MVL will be found in the
appendix in Appendix A.

3.7.1 . Experimental Setup
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We have taken all the available data related to one participant which initially
represents 7 700 measurements. We have evaluated the performance of our exten-
sions on two datasets:

1. Dataset 1: represents a partition of the data where we have 2 other par-
ticipants geographically close to the target participant. This is because the
techniques rely on the spatial distance between the missing measurement
and the other available measurements.

2. Dataset 2: represents the entire set of data for our participant.

During our experiments, we test the performance of our proposals by first assuming
every measurement in the subset is missing. We recall that the sensor quality we
test is composed of quality values resulting from three categories of quality metrics.
The first computed measure is from the device-level category where the set tool
[Fishbain et al., 2017] has been used by the work of [Languille et al., 2020] to
evaluate the sensors and compute an index that is denoted by the IPI index
throughout our experiments. The second measure is the sensor completeness
computed in our work in [Mehanna et al., 2020], subsection 3.4.1, and finally,
the third measure computed using correlation coefficient and RMSE from the
comparison-related category of metrics.

We then study the performance of our extensions on ten different sets of
weight configurations represented by the percentages set [w1, w2, w3]. Each one
of the three weights wi i ∈ {1, 2, 3} corresponds to a quality value computed using
a quality metric from each of the categories discussed earlier in subsection 3.5.1
in order to assess the quality of a sensor. The value of the weight w1 is the
weight percentage assigned to the quality value computed using a device-level
metric, the value of the weight w2 is the weight percentage assigned to the
quality value computed using a usage-related metric, and finally the weight
w3 is the weight percentage assigned to the quality vallue computed using a
comparison-to-reference metric. We select ten weight configurations to test our
extensions with, as shown in Table 3.5. The ten weight configurations correspond
to different settings: (i) some where all three categories of quality factors are
assigned a similar weight, (ii) others where only one of the three factors is
considered, and (iii) others where the weights are distributed while giving one
factor a higher weight than the other two. These ten weight configurations are
used to determine the impact of each quality factor on the results of our extensions.

The quality of the sensor is instantiated in our experiments with the following
data evaluated by quality metrics from each category presented in subsection 3.5.1.

• The SET tool is a device-level tool that comprises metrics used to compute
the IPI index that represents a global quality value that assesses different
aspects of sensor devices.
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• The metric proposed to measure sensor completeness in subsection 3.4.1 is
a metric that we use in our experiments as a usage-related measure charac-
terizing one aspect of the quality of the sensor.

• The comparison with reference data is the third metric used in our experi-
ments where we compare the data collected by our sensors with data from
reference devices provided by AirParif.

Table 3.5: The distribution of the 10 weight configurations over the 3
measures of sensor quality.

IPI index% Sensor Completeness% Correlations with Reference%
33 33 34
100 0 0
0 100 0
0 0 100
60 20 20
20 60 20
20 20 60
40 40 20
40 20 40
20 40 40

3.7.2 . Evaluation Metrics
To assess the performance of the proposed extension to the existing data

imputation approaches, we evaluate the error using the RMSE metric to compute
the error between a generated series and the actual values. This metric can be
computed between the actual data and the imputed data by the basic technique as
well as between the actual data and the imputed data by the extended techniques.
We then compare the error metric resulting from the basic technique and the error
metric resulting from the extended techniques.

We also compute other performance indicators: the proportion of measure-
ments improved, the proportion unchanged and the proportion worsened. The
proportion of measurements improved is the proportion of measurements that
were more accurately imputed by our extensions than by the basic approach.
Those worsened are the measurements that were less accurately imputed by our
extensions that by the basic approach. Finally, the unchanged are the ones for
which both the basic and the extended approach provided the same imputed
value.
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RMSE Error Metric

RMSE measures the quality of an estimator. To quantify the error of the estima-
tion models, we compute the root mean squared error (RMSE) metric between a
vector of estimated/predicted values v̂ij and a vector of the actual/observed values
vij . The RMSE could be computed for the estimation of the baseline approaches
as well as the estimation from the extended approaches proposed in this chapter in
section 3.5. With this, we can compare the error metric RMSE between the esti-
mations from the baseline approach such as SVDImpute, ST-MVL or KNNImpute
vs. the extended versions of the aforementioned approaches.

Statistical Indicators

The proportion of improved measurements shows the number of measurements
improved using the quality-based data imputation compared to the baseline
approach. The proportion of worsened measurements shows the number of those
that had a more accurate estimation of the missing measurements using the
baseline approach. Finally, the proportion of unchanged measurements represents
those with the same imputed value using both approaches. The intuition behind
this is that the further the imputed value is from the actual one, the worse the
imputation approach. Hence, the imputation of a missing measurement has been
improved using our extension if the absolute value of the difference between the
actual measurement and the imputed measurement using the extensions has to be
smaller than the absolute value of the difference between the actual measurement
and the imputed measurement by the baseline approach.

Assume an actual measurement is denoted by vij , an imputed measurement
generated by our extensions is denoted by v̂eij , and an imputed measurement gen-
erated by the baseline approach is denoted by v̂ij .

|vij − v̂eij | < |vij − v̂ij | (3.20)

In equation 3.20, |vij − v̂eij | is the absolute difference between the actual value
and the imputed value generated by the extended approach, and |vij − v̂ij | is the
absolute difference between the actual value and the imputed value generated by
the baseline approach.

If equation 3.20 holds, this means that the extended approach was more ac-
curate than the baseline approach. This implies that the imputed extended value
here is closer to the actual one from the value imputed by the baseline approach.

However, if the equation 3.20 does not hold, and |vij − v̂eij | = |vij − v̂ij |, this
means that both the baseline/baseline and the extended approaches both imputed
the same value. Therefore, the proposed extension did not improve the imputation.

Finally, if |vij − v̂eij | > |vij − v̂ij |, this means that the imputed value generated
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by the baseline approach was closer to the actual value than that of the value
imputed by our extended approach. In this case, the imputation is not improved
using the extended approach.

3.7.3 . Evaluation of extended ST-MVL
We have tested our extension of ST-MVL on the two datasets presented in

subsection 3.7.1. First, we have tested our proposal with a subset of the data re-
lated to some selected users. The participants for this dataset were selected if they
were close to at least two other participants. We have set this condition because
the studied techniques rely on the spatial distance between two measurements.
Then, we have tested our extension on another dataset which comprises the entire
data collected during the usage of the selected participant including times where
the participant was at proximity and the times where the participant was not at
proximity with other users.

Results on Dataset 1

Table 3.6: Results of ST-MVL for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 46% 20% 34% 1.11
[100, 0, 0] 30% 7% 63% 1.11
[0, 100, 0] 51% 20% 29% 1.11
[0, 0, 100] 47% 37% 16% 1.11
[60, 20, 20] 40% 11% 49% 1.11
[20, 60, 20] 47% 17% 36% 1.11
[20, 20, 60] 45% 27% 28% 1.11
[40, 40, 20] 43% 15% 42% 1.11
[40, 20, 40] 44% 21% 35% 1.11
[20, 40, 40] 47% 22% 31% 1.11

Table 3.6 shows the results of the evaluation of the proposed extension of
ST-MVL on the first dataset. The best improvement result was 51% achieved
using the weight configuration [0, 100, 0]. 20% of the measurements computed
using this weight configuration were worsened with a very small RMSE error
value 1.11. 29% of the measurements remained unchanged with this weight
configuration.

The weight configuration [100, 0, 0] had the highest unchanged percentage
63%, showing again, that the IPI index facet alone, does not have a huge impact
in improving or worsening the imputation. It also showed 30% improvement of
the imputations and 7% worsening with 1.11 RMSE error value. The RMSE
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error value was constant at 1.11 for all the different weight configurations of this
experiment.

Generally, more measurements were improved than worsened for this dataset for
ST-MVL. The percentage of worsened measurements are generally low except for
the weight configuration [0, 0, 100] which produced 37% worsened measurements.

Results on Dataset 2

Table 3.7: Results of ST-MVL for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 48% 43% 9% 19
[100, 0, 0] 52% 40% 8% 19.1
[0, 100, 0] 53% 30% 17% 19
[0, 0, 100] 49% 43% 8% 19.2
[60, 20, 20] 49% 31% 20% 19
[20, 60, 20] 48% 33% 19 18.9
[20, 20, 60] 52% 41% 7% 19.1
[40, 40, 20] 49% 42% 9% 19
[40, 20, 40] 49% 43% 8% 19.1
[20, 40, 40] 47% 35% 18% 19

Table 3.7 shows the results of the evaluation of the extension of ST-MVL on
the whole dataset of the designated participant. The improvement percentage
range of this dataset shows similar results for the different weight configurations
but with tenuous differences. 53% is the highest achieved improvement result for
the weight configuration [0, 100, 0] that considers only the sensor completeness
factor.

The percentages of measurements worsened for this experiment are similar
to the percentages of the measurements improved, this shows that our extension
did not work out very well for this technique and dataset. However, the RMSE
error was not high, so this could mean that even though some measurements were
worsened, the difference between the extended and the baseline was not high.

Analysis of the achieved results

There are more improved measurements in the imputation of the measurements
than worsened in both datasets for the experiments performed using the ex-
tension of ST-MVL with quality-related information. The improvement results
were almost the same among the two datasets with the best improvement
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achieved with the [0, 100, 0] weight configuration. The proportion of wors-
ened measurements was higher for dataset 2 than for dataset 1. There is a
significant difference in the percentages of measurements unchanged between
the two datasets. This indicates that the extension helped improve the quality
of the imputation by the technique when there were other users at a close distance.

The RMSE is higher for dataset 2 than for dataset 1. This might be due to the
fact that there is a higher possibility for errors in 7 700 measurements than in 480
measurements. Another reason for the higher error rate is that the inverse distance
weighting sub-technique of ST-MVL relies on imputing missing values according
to neighboring sensors at proximity.

3.7.4 . Evaluation of SVDImpute after filtering data
We present in this subsection the results of the evaluation of our two proposed

filtering methods of SVDImpute on the two datasets presented earlier. The first
filtering method of SVDImpute includes data that have a quality above a certain
threshold. For this filtering method, we test the quality thresholds 0.45, 0.55, 0.65,
and 0.75 The second filtering method includes data that are among a certain value
of the top quality data. For this filtering method, we test the k percentages 40%,
50%, 70%, and 90%.

Results on dataset 1 for filtering using quality-above-threshold

Table 3.8: Results of Quality above threshold 0.45 for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 38% 23% 39% 28
[100, 0, 0] 27% 13% 63% 12
[0, 100, 0] 62% 24% 14% 5.2
[0, 0, 100] 43% 41% 16% 19.9
[60, 20, 20] 26% 15% 59% 9.4
[20, 60, 20] 38% 26% 36% 24.4
[20, 20, 60] 36% 45% 19% 19.3
[40, 40, 20] 41% 22% 37% 8.7
[40, 20, 40] 38% 30% 32% 14.3
[20, 40, 40] 42% 37% 21% 17.1

Table 3.8 shows the results of the filtering method of SVDImpute considering
only sensors above a threshold. In the experiment, we have set the threshold to
0.45. The quality threshold 0.45 allows more measurements, including those with
quality below 50% (i.e 0.5), to participate in the generation of the missing values.
This could result in lower quality imputations because data measurements from
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sensors with lower quality are introduced to the imputation.

The weight configuration [0,100,0], which only considers sensor completeness
facet to compute the sensor quality index, shows the best improvement perfor-
mance. It shows 62% of improved values in the generation of missing values,
meaning that sensor completeness alone achieves a significant improvement of
data imputation despite including sensors with a quality value below 0.5. It also
shows 14% of unchanged measurement values and 24% of worsened values with
small RMSE values of 5.2.

The weight configuration [100,0,0] shows a relatively high percentage of
unchanged measurement values: 63%, which means that the IPI index, which is
the quality facet computed compared to reference data at the beginning of the
campaign, almost does not have an impact on the quality of the imputation,
because despite it being enriched with sensor quality information, the imputation
performance is mostly the same as with and without the extensions. This is also
proven with the weight configuration [60,20,20] that results in 59% of unchanged
imputed measurements.

The weight configuration [20,20,60] produced the worst performance for sen-
sors with a quality measure above the threshold 0.45. It showed 45% of mea-
surements worsened with an error metric 19.3, and only 36% improved. More
measurements were worsened than improved with this configuration. In brief, this
means that giving a high weight to the comparison with the reference data while
keeping the other two facets mainly worsens the performance of the technique.
This is also shown with the weight configuration [0,0,100] producing 41% wors-
ened generated missing measurements.

Results on dataset 2 for filtering using quality-above-threshold

Table 3.9 shows the results of the filtering method of SVDImpute considering only
sensors above a 0.65 threshold on dataset 2. The best results achieved are when
the weight was distributed on all the quality factors with the value of the IPI index
having a slightly smaller weight than the rest [20,40,40]. The improvement with
this weight configuration has a value of 63%, 33% of the measurements worsened
and 5% unchanged. The two other set of weights [20, 60, 20] and [33, 33, 34] also
show a similar performance with 62% improved measurements and 33% of them
worsened.

The set of weights [100, 0, 0] shows the highest unchanged value of 62% and
only 26% improved values. This indicates that the IPI index alone does not have
a huge impact on the imputation techniques. For the quality above 0.65 thresh-
old, the results show that either distributing the weights over all the factors or
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Table 3.9: Results of Quality above threshold 0.65 for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 62% 33% 5% 9.1
[100, 0, 0] 26% 12% 62% 2.1
[0, 100, 0] 54% 39% 7% 6.7
[0, 0, 100] 54% 39% 7% 10.8
[60, 20, 20] 53% 34% 13% 10
[20, 60, 20] 62% 33% 5% 9.3
[20, 20, 60] 54% 39% 7% 11.2
[40, 40, 20] 59% 34% 7% 6.8
[40, 20, 40] 53% 39% 8% 11.2
[20, 40, 40] 63% 33% 4% 9.1

giving a greater weight to sensor completeness than the others, produce the best
improvement results.

Conclusions on Quality-above-threshold filtering

For dataset 1, the following are our conclusions on the quality above threshold
filtering to SVDImpute. The quality threshold 0.45 and 0.55 results also showed
that giving the sensor completeness the greater weight in combination with the
others show the best improvement results. As with the 2 experiments on quality
thresholds above 0.45 and 0.55, the quality threshold 0.65 also shows that giving
sensor completeness the greater weight. However, when in combination with the
other two factors, it shows the best improvement performance. This indicates
that sensor completeness facet plays a major role in determining the quality of the
sensor.

RMSE is an error metric that amplifies the aberrant outliers, so one outlier
measurement with a very high difference can hugely amplify the value of RMSE.
So, sometimes when the RMSE value is very high, it could be due to several
outlier measurements in the studied sensors.

As for the dataset 2, different performances of the weight configurations were
observed. Unlike for dataset 1 where we have at least 3 sensors at a very close
proximity to each other, experiments on dataset 2 show that giving greater weight
to the sensor completeness alone, does not produce the best results. It produced
the highest percentage of unchanged for quality above 0.45 threshold, meaning
that it had an insignificant impact on the performance of the technique. However,
it had good impact improving the imputation for quality above 0.65 threshold. In
terms of improvement, the results achieved on the dataset 1 are better than those
achieved on dataset 2. We generalize that for dataset 2 in this filtering method,
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the improvement percentage is always higher than that worsened. The 0.65 quality
threshold shows better results for dataset 2 than the 0.45 and 0.55 thresholds.

Results on dataset 1 for filtering using 40% top-quality sensors

Table 3.10: Results of Top 40% sensors for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 63% 28% 9% 8.8
[100, 0, 0] 56% 37% 7% 3.8
[0, 100, 0] 71% 21% 8% 2.7
[0, 0, 100] 63% 30% 7% 7.8
[60, 20, 20] 60% 31% 9% 9.5
[20, 60, 20] 61% 29% 10% 4.3
[20, 20, 60] 60% 33% 7% 9.6
[40, 40, 20] 64% 27% 9% 3.9
[40, 20, 40] 62% 31% 7% 7.7
[20, 40, 40] 61% 30% 9% 9.5

Table 3.10 shows the results of the filtering method of SVDImpute considering
only top 40% sensors on dataset 1. This experiment shows the best results
achieved among our filtering methods for SVDImpute. The weights configuration
set [0, 100, 0] shows 71% improved values, which is the best result achieved for
the filtering methods for SVDImpute. It also shows 21% worsened values and 8%
unchanged with this configuration. Beside the weight set configuration [0, 100, 0]

being the set with the best results, the other results also performed very well with
above 60% of improved values.

The weight configuration set [100, 0, 0] is the only configuration with improved
values below 60%. It also showed the highest worsened values of 37%. This may
mean that considering only the IPI index does not achieve the best results. The
unchanged values proportion among the different configurations were almost the
same.

Results on dataset 2 of filtering using 70% top-quality sensors

Table 3.11 shows the result performance of applying a filtering on the data
before applying SVDImpute considering only the top 70% sensors on dataset 2.
The weight configuration [33, 33, 34] has no results for this experiment because
there were not enough data from the top 70% sensors with this distribution
set of the weights to do the imputation by the extended approach. The best
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Table 3.11: Results of Top 70% sensors for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] -% -% -% -
[100, 0, 0] 48% 25% 27% 62533496
[0, 100, 0] 50% 18% 32% 218179
[0, 0, 100] 48% 21% 31% 27.1
[60, 20, 20] 49% 22% 19% 275749
[20, 60, 20] 49% 19% 32% 25.3
[20, 20, 60] 48% 21% 31% 6165529
[40, 40, 20] 56% 19% 25% 25.9
[40, 20, 40] 59% 19% 22% 41.6
[20, 40, 40] 62% 18% 20% 35.7

improvement performance was achieved with the weight configuration [20, 40, 40]

with 62% improved values, 18% worsened and 20% unchanged. The improvement
performance of the other weight configurations ranges between 48% and 59%.

There are more unchanged measurements than worsened for this experiment.
Both weight configurations [0, 100, 0] and [20, 60, 20] show the highest unchanged
measurements percentage. The RMSE error value of most of the weight config-
urations is high indicating that the filtering with this setting can generate noise
peaks at times.

Conclusions on top k% top-quality sensors filtering

For dataset 1, the following are our conclusions on the top 40%, 50%, 70% and
90% sensors filtering methods of SVDImpute. The top 40% and 50% quality
sensors experiments showed very good results for the improvement of measure-
ments on all the different weight configurations tested with [0, 100, 0] being the
best for top 40% quality sensor. For the 40% top quality sensors experiment,
results showed that the set configuration [100, 0, 0] performed the worst in terms
of improvement with a value below 60%. However, when considering 50% of
the top performing sensors, this weight configuration still performs less than the
others, but we also observe that the weight configuration [0, 0, 100] performs
worse than the others. This means that as we add more sensors with lower quality,
considering the comparison with reference data measure alone performs poorly.

When considering one factor only, we achieved both best and worst per-
formances in terms of improvement, sensor completeness factor achieves the
best results while the other two factors alone lead to the worst results. The
improvement percentages for top 40% and top 50% experiments are in the same
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range which is different from both top 70% and top 90% that lie in the same
ranges as well. The results of the top 40% and top 50% are better than those
of the latter. This proves that considering more data from low quality sensors
leads to less accurate imputation results. Also, as we include top 70% and
top 90% data, the values of unchanged measurements increase compared to
those of top 40% and top 50%. This conclusion is plausible given that the base-
line approach is practically considering 100% of the existing sensors measurements.

As for dataset 2, different performances were observed. In this experiment
dataset, the more sensors we add from 40% to 50%, then to 70%, and finally to
90%, the higher the values of unchanged measurements. The consecutive differ-
ences are tenuous, yet, on average, the unchanged average values were increasing
as we increased the percentage of included top-quality sensors. The best improve-
ment result was 62%, achieved with the experiment considering top 70% quality
sensors. This setting was better than the other percentages of top quality sensors
studied. In general, the results achieved with this dataset are relatively good but
not the best compared to the others. Compared to dataset 1, experiments on
dataset 1 show significantly better results. This could be due to the fact that
dataset 1 was generated such that there are at least 2 neighboring sensors at
proximity within 30 meters diameter.

Analysis of the achieved results

The top k% sensors filtering method showed better results than the quality above
threshold filtering. Experiments on dataset 1 showed better results than those on
dataset 2. The main difference is that for dataset 1, there are neighboring sensors
taking measurements at the same time. Generally, giving the sensor completeness
the major role in the weights distribution shows better results meaning that sensor
completeness is a good indicator of the quality of a sensor. IPI index showed that
it either does not have a huge impact on the technique or that it induces the least
improvement percentages. This means that the initial evaluation of the sensing
units does not necessarily mean that the sensors are going to pursue the same
performances in terms of quality.

3.7.5 . Evaluation of extended KNNImpute

We have evaluated our extension of KNNImpute on the two datasets discussed
earlier in subsection 3.7.1. The first dataset takes a subset of data from a desig-
nated participant where there are data from other participants at a close spatial
distance. The second dataset takes the entire dataset of the designated participant.
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Table 3.12: Results of KNNImpute for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 56% 20% 24% 6.5
[100, 0, 0] 31% 26% 43% 6.7
[0, 100, 0] 69% 11% 20% 5.4
[0, 0, 100] 13% 69% 18% 7.5
[60, 20, 20] 55% 17% 31% 6.6
[20, 60, 20] 67% 12% 21% 6.1
[20, 20, 60] 44% 36% 20% 6.8
[40, 40, 20] 65% 11% 24% 6.4
[40, 20, 40] 42% 35% 23% 6.7
[20, 40, 40] 60% 20% 20% 6.4

Results on dataset 1

Table 3.12 shows the results of the extension of KNNImpute on dataset 1. The
weight configuration [0, 100, 0], that takes only the sensor completeness into ac-
count, shows the best improvement result with 69% improved values, only 11%
worsened with RMSE 5.4, and 20% unchanged measurements. This shows that
giving sensor completeness a bigger weight amplifies the improvement percentage.
The second best performing weight configuration is [20, 60, 20], showing 67% im-
provement of the measurements, 12% worsened and 21% unchanged. Once again,
giving sensor completeness the greatest weight results in higher improvement.

The weight configuration [0, 0, 100] shows the worst results with 69% of mea-
surements worsened. This is confirmed given the second worst performing weight
configuration is [20, 20, 60]. The worsening percentage is significantly smaller be-
cause other factors were included, so it was not the only contributing factor. The
weight configuration [100, 0, 0] shows the highest value of unchanged measure-
ments: 43%. This configuration considers only the IPI index into account. This
can indicate that the IPI index has the least impact on the imputation using the
technique.

Results on dataset 2

Table 3.13 shows the results of the evaluation of the proposed extension of KNNIm-
pute on dataset 2. The improved measurements percentage is relatively low. The
highest achieved improvement was 35% for both weight configurations [33, 33, 34]
and [20, 40, 40], where the weights are distributed among the three quality fac-
tors either equally or with slight differences. However, the weight configuration
[20, 40, 40] is the most significant because it generated the same improved value
as that by the weight configuration [33, 33, 34], but also the lowest worsened value
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Table 3.13: Results of KNNImpute for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 35% 12% 53% 61.8
[100, 0, 0] 27% 13% 60% 58.7
[0, 100, 0] 29% 12% 59% 52.9
[0, 0, 100] 31% 20% 49% 72.3
[60, 20, 20] 34% 13% 53% 60.3
[20, 60, 20] 32% 8% 60% 59.1
[20, 20, 60] 33% 11% 56% 66.1
[40, 40, 20] 34% 6% 60% 59.7
[40, 20, 40] 32% 7% 61% 63.1
[20, 40, 40] 35% 6% 59% 62.9

with only 6% worsened measurements. It also shows 59% which is a very high per-
centage possibly indicating that the sensor quality extension did not have a huge
impact on this imputation technique. The unchanged measurements percentages
score the highest on average. The maximum value achieved for unchanged mea-
surements is 61% for the weight configuration set [40, 20, 40].

Analysis of the achieved results

The improvement results were disparate among the two datasets studied. The
improved measurements reaches significantly higher values with dataset 1 than
dataset 2. The best improvement was 69% achieved with the weight configuration
[0,100,0] for dataset 1. There are far more measurements unchanged with dataset
2 than for dataset 1, this could mean that when there are neighboring sensors
around, less measurements remain unchanged. However, the range of values of
measurements worsened were higher for dataset 1 than for dataset 2. This means
that the extensions are less prone to errors when the neighboring sensors were not
close and disparate. This could be due to the fact that sometimes, the neighboring
sensors acquire faulty measurements for some reasons and hence, the imputation
technique is more affected by these faulty measurements than other ones.

KNNImpute is fundamentally based on neighboring sensors at proximity, we
notice that when the sensor with the missing value that we are trying to impute is
at a close distance to other sensors, our extensions perform better.

3.7.6 . Discussion

Generally, giving the sensor completeness the major role in the weights distri-
bution and specifically most of the times the [0, 100, 0] weight configuration shows
best results meaning sensor completeness is a good indicator of the quality of a
sensor. IPI index showed that it either does not have a huge impact on the tech-
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niques in most of the cases, or that it induces the least improved values. This
means that the initial evaluation of the sensing units does not necessarily mean
that the sensors are going to pursue the same performances in terms of quality.
Experiments on dataset 1 showed better results than dataset 2. The RMSE is
higher in dataset 2 than in dataset 1. This might be due to the fact that there is
a higher possibility for errors in 7 700 measurements than in 480 measurements.
For SVDImpute, the top k% sensors filtering method showed better results than
the quality above threshold filtering. As for KNNImpute, the improvement results
were disparate among the two datasets studied.

3.8 . Conclusion

In this chapter, we presented our proposals on data completeness assessment
and improvement. We first presented a multidimensional data model representing
any physical element collected using a sensor within the context of a mobile
crowdsensing environment. With this model, we have tried to identify the
most significant dimensions in order to analyze data in a mobile crowdsensing
environment. This model can be used to support different types of analysis such
as descriptive analysis using aggregation and mining techniques. Inspired by the
multidimensional model, we defined three factors of data completeness: sensor,
spatial, and temporal completeness which are applicable to the MCS context. The
sensor completeness factor characterizes the completeness of the data coming
from sensors, and temporal and spatial completeness study the extent to which
the data coming from these sensors are distributed over specified time period
and designated spacial area. Then, we proposed metrics to evaluate each of the
different proposed factors of data completeness.

We have also addressed completeness improvement and proposed an approach
for improving the data completeness for mobile crowdsensing environments.
Three data imputation techniques were extended with the quality of the sensor
to improve the generation of missing values in the dataset. Our extensions
consider that enriching the techniques with the quality of the data measurements
improves the quality of their imputation. The extensions with quality prioritize
data measurements with higher qualities than others. The approach is evaluated
on real data coming from mobile sensors in the opportunistic context of the
Polluscope project.

The experiments were done on different weight configurations but proved that
giving the sensor completeness factor the major role in the weights distribution
of the sensor quality, and specifically, the [0, 100, 0] weight configuration shows
the best improvement impact on the results of the data imputation techniques
with 71% improvement in the imputation compared to the basic approaches. This
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means that our proposed sensor completeness facet is a very good indicator of the
quality of a sensor. IPI index showed that it either does not have a huge impact
on the techniques in most of the cases or that it induces the least improvement
percentages.

Our approach does not tackle the generation of huge missing data chunks in
the dataset which could be useful to explore in our future studies. Besides, as
the experiments show that the sensor completeness is a very good indicator of the
quality of the sensor among what was available for our experiments, it would be
interesting to investigate in future studies, the impact of other quality dimensions
of the sensor on the imputation. Our approach is limited to three imputation
algorithms while it would be interesting to investigate more and different imputation
algorithms that are able to impute an entire missing series for example. We only
focused in our definition of data completeness on three dimensions of the data,
we could in future works refine these definitions and propose new definitions and
metrics for the other dimensions of the data that were not addressed in our work.





4 - Anomaly Detection in Mobile Crowdsens-
ing Environments

4.1 . Introduction

One of the most common problems in sensor data is the presence of
anomalies. Anomalies can impact and deteriorate the quality of the data.
Anomalies are data points or sequences that do not conform to the normal
behavior observed. They could manifest as spikes, unusual points, or unusual
patterns that often reveal interesting information in the data. There are many
causes for the presence of anomalies. Often, the acquisition, integration, and
transformation processes can result in faults or errors in the data, such as
sensor calibration issues. Among these flaws is the introduction of anomalies.
We could also consider anomalies in the data as unusual legitimate data pat-
terns resulting from a normal process but unseen before, which, if not studied
with the right perspective or in a special context, could seem faulty and redundant.

Undetected anomalies in a dataset can lead to inaccurate analytics and indi-
cators. For example, the presence of spikes and noise data points can deteriorate
the quality of the indicators or the analyses generated from the data. Analytical
indicators based on data with undetected anomalies can lead to insights that are
a misrepresentation of reality. A sequence of data points (a pattern) that have
unusual values could be falsely interpreted as noise when in fact the sequence
could indicate interesting information about the data. Such patterns could reveal a
fraudulent transaction in transactional contexts, a malicious packet in networking,
the malfunctioning of an industrial facility in an air pollution context, or cancer
in a medical context. Therefore, detecting anomalies is an essential step in the
analysis process because it reinforces the reliability of the predictions and insights
and helps better understand the data.

Many anomaly detection techniques are trained on datasets clean of anomalies
in order to learn the normal patterns and behaviors in the dataset. The techniques
are later tested on datasets with anomalies to detect those that do not conform
to the normal learned behaviors. Some anomalies, such as spikes, are very obvious
to detect, while others are not as straightforward. Some works are able to detect
point anomalies [Bakar et al., 2006], [Zhang et al., 2020]; however, sequences
of legitimate point anomalies that reveal unusual behavior remain challenging
to detect [Braei and Wagner, 2020]. In many cases, these sequences of point
anomalies in the data can only be detected once considered in their specific context
[Braei and Wagner, 2020]. Many recent existing works consider the context in the
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detection process, such as the work presented in [Zheng et al., 2017]. However,
data coming from low-cost nomadic sensors can sometimes be of poor quality due
to the erroneous nature of these sensor devices. Low-cost nomadic sensors are
prone to points of failure, calibration issues, battery problems, loss of data, and
other quality problems. These problems can create a gap between the quality of
some data measurements and others. Sensors faced with a quality problem during
a time period will produce data measurements of poor quality, while other sensors
functioning in perfect conditions can produce high-quality data measurements.
To the best of our knowledge, none of the existing works for detecting anomalies
in sensor data consider the quality of the measuring sensor. Considering sensor
quality and contextual information could improve the quality of the detection
of anomalies because they help group patterns with similar values, quality, and
context together. A major challenge could be to monitor the quality of the sensor
and quantify its quality.

This chapter addresses the detection of anomalies in a mobile crowdsensing
environment. It presents a quality-aware approach that aims to detect pattern
anomalies using the quality of the sensor and some information about the context.
A pattern is a succession of consecutive data points that form a sequence. Our
approach aims to show that integrating the quality of the measuring sensors and
other contextual information helps improve the quality of anomaly detection. We
have explored approaches that aim to improve the detection of anomalies and
identified the relevant types of anomalies for the MCS context. We present our
approach that integrates the quality of the sensors and the context in which the
measurements have been taken, in the anomaly detection process. We first use
this information to better group similar patterns together and assign anomaly
scores in order to improve the detection of anomalies eventually. We also use
it to assign an anomaly score to patterns based on quality such that those that
are far away from clusters containing high-quality observations are assigned a
higher anomaly score and are more likely to be anomalous. We also evaluate
our approach compared to an existing approach which does not take quality into
account in order to show the improvement.

This chapter is structured as follows. In section 4.3, we present a general
overview of the approach and the intuition behind it. Section 4.2 defines the
types of anomalies in mobile crowdsensing environments. In section 4.4 we present
an overview of our proposal. Section 4.5 presents our approach on quality-aware
anomaly detection for time series. Then, in section 4.6 we present our experiments
and evaluation of our quality-based anomaly detection approach on real data. Fi-
nally, we conclude the chapter in section 4.7 and present some future works.

4.2 . Types of anomalies in MCS Environments
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In this section, we identify the types of anomalies that could be observed
in mobile crowdsensing environments and then define each type based on the
literature that has long been studying and investigating anomalies in various
contexts. We also give examples of each type in different contexts to ease their
comprehension.
There are many definitions and types of anomalies discussed in the litera-
ture [Hawkins, 1980, Grubbs, 1950, Grubbs, 1969, Braei and Wagner, 2020,
Blázquez-García et al., 2021, Fox, 1972, Tsay, 1988]. These are discussed in
further detail in subsection 2.5.1. However, to this day, there are no established
definitions and types of anomalies across the different application domains and
contexts [Carreño et al., 2019].

Anomalies are aberrant data points with values divergent from the norm, be it
due to external factors or internal anomalous behaviors. Based on many definitions
from the literature, we identify the types of anomalies that are applicable to mobile
crowdsensing environments. The mobile crowdsensing environment refers to a
context where a large number of mobile devices, equipped with various sensors
and connected to the internet, collaborate to collect and share valuable data.
Detecting single-point spike anomalies is more straightforward than detecting
pattern anomalies [Gupta et al., 2014]. This is because spikes are more obvious
to detect by either having a value that is out of the accepted range of the
physical element being measured, such as a negative air pollutant level, or by
being the only point with a huge sudden drop or rise in value. We identify three
types of anomalies in mobile crowdsensing environments: noise anomalies, point
anomalies, and pattern anomalies. These anomalies will be detailed in the
following subsections.

The context of our work is mobile crowdsensing environments, where mo-
bile low-cost sensors are employed to measure a physical phenomenon in a given
crowdsensing context. The collected measurements form a dataset of time series
Xn composed of n measurements Xn = {vi1, . . . , vin} taken by a sensor si at
consecutive timestamps tj where j ∈ {1, 2, ..., n}.

4.2.1 . Noise Anomalies

Noise anomalies are observations that are introduced to the data through some
form of erroneous behavior. In sensor data, a faulty behavior of a sensor unit or
a sensor that needs calibration are examples of behaviors that can generate noise
anomalies. In the literature, such as in the work of [Braei and Wagner, 2020], a
noise anomaly is defined as follows:

Definition 4.2.1 (Noise Anomaly). A noise anomaly is an individual point vij that
deviates significantly from the rest of the data or is not within the normal range.

Noise anomaly points are usually erroneous data points that either have their
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values outside the accepted range or are duplicates of other existing data points.
For example, a negative value for a physical element that cannot have a negative
value or an out-of-the-accepted range value are also examples of noise anomalies.
We present an example hereafter.

Example 4.2.1. In the context of air quality sensing, a data point indicating PM2.5

in the air cannot have a negative value of -999,895,666 µg/m3 or -3,455 µg/m3.
Such observations are considered noise points because it is impossible to have a
negative value of air pollutant, and it is not realistic to have a measurement of
9,895,666 µg/m3 in a series where other time-adjacent measurements have values
≤ 50 µg/m3.

Noise anomalies are of no significant value for data analysts as they distort the
analysis [Aggarwal, 2016]. Cleaning the dataset of these noise points is necessary
as a pre-processing step before analyzing the data.

4.2.2 . Point Anomalies

According to the works of [Blázquez-García et al., 2021],
[Braei and Wagner, 2020], point anomalies in the data are data points that
are different from the other adjacent data points, and are defined in these works
as follows:

Definition 4.2.2 (Point Anomaly). A point anomaly is a single faulty measurement
vij , whose value is remarkably different from the dominant majority distribution
of the data and, more specifically, different from its neighboring measurements,
spatially or temporally.

However, unlike the noise anomalies, a point anomaly, despite having aber-
rant values compared to neighbors, has a value within the accepted range of the
studied pollutant. In time series taken by some sensor si at timestamp tj , a
point vij is a point anomaly if its value is within the accepted range but also
that is either too high or too low compared to its neighboring measurements
{vij−k, vij−k+1, . . . , vij , ..., vij+k}, k defines the length of the range of accepted
values. Considering the spatial aspect into account also indicates that a data point
vij is recognized as an anomaly if it has a value that is significantly different from
other measurements that are at a distance d to vij that is less than or equal to a
certain threshold δ. We illustrate this in the following example 4.2.2.

Example 4.2.2. Consider, for example, the context of air quality monitoring col-
lecting a time series of the pollutant NO2 with the following measurements Xn =
{10, 11, 9, 12, 892, 10, 9, 11, 8}. We assume k=4 and δ = 450, where the data
point having a difference with all of its neighboring measurements greater than
this threshold is considered anomalous, the measurement with 892 value is a point
anomaly given the difference between the value of the measurement and all of its
eight neighboring measurements is > 450.

4.2.3 . Pattern Anomalies
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Several works have defined pattern anomalies (subsequence outlier)
[Blázquez-García et al., 2021], [Braei and Wagner, 2020] as a sequence of data
points whose joint behavior is unusual. In these works, a pattern anomaly is de-
fined as follows:

Definition 4.2.3 (Pattern Anomaly). A pattern anomaly is a sequence of con-
secutive data measurements {vij−k,..., vij ,..., vij+k}, where the value of each
measurement vij falls within the accepted limits of the distribution of the dataset
yet, the sequence of these measurements shows an anomalous pattern or behavior.

Pattern anomalies are defined as a sequence of measurements that do not
conform to the norm compared with most sequences in the dataset. A pattern
anomaly could be a sequence of normal data points that form a pattern known to
be anomalous.

Example 4.2.3. Consider a series of data measurements representing temperature
values measured in degrees Celsius TM= {35◦, 1◦, 35◦, 1◦, 35◦, 1◦}, with mea-
surements taken every minute on a wind-free quiet night, because it does not make
sense that temperature value changes from 80 to 1 in one minute.

A pattern anomaly could also be a sequence of data points that all have aber-
rant values outside the observed values in the dataset. These anomalous patterns
can be of a high value if recognized, such as heatwaves, nearby fuel combustion,
and a tornado in air quality data.

Example 4.2.4. A pattern anomaly where a series of particulate matter PM2.5

measurements Xn = {vij−3, ..., vij ,..., vij+3} acquired by a sensor si with values
{88, 87, 85, 89, 86, 84, 88} µg/m3 taken after midnight at timestamps {t1, . . . , t7}
respectively. These PM2.5 values are within the range of what can sometimes be
observed for this pollutant, but, at this time and location, this succession of values
is not usually recorded. Hence, this pattern could be anomalous.

The example above shows that when the measurement values do not align
with the surrounding context, it could be due to an interference in the sensor
unit between specific air pollutants, causing the sensor to read aberrant values, or
sometimes due to problems in the data integration or loading processes or even at
times can be explained with additional contextual information that would explain
the behavior observed.
In this chapter, we are going to address the detection of pattern anomalies. We will
later introduce our approach that detects pattern anomalies for data in a mobile
crowdsensing environment.

4.3 . General approach for anomaly detection

This section describes the general overview of our proposed anomaly detection
approach which aims to detect pattern anomalies in time series data from sensors.
We propose a quality-aware anomaly detection approach based on grouping
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subsequences of time series into clusters comprising subsequences of similar
behaviors taking quality into account and the context information. The idea of
our proposal is to show that considering the quality and the context during the
detection process, essentially the quality of the measuring sensors, improves the
detection of anomalies. We also want to show that adding contextual information
to the processing offers more insightful similarity computation between the data
sequences, eventually improving the detection results.

Figure 4.1 illustrates the general workflow of our anomaly detection approach.
The approach is composed of three components, which are described as follows.
The data transformation component is responsible for transforming the time series
input into a set of subsequences of a fixed length. This transformation allows
us to study the patterns in the time series instead of single data observations.
Given inputs of several time series Xn = {vi1, . . . , vin} taken by sensor si, a
window size w that determines the number of data points that constitute one
subsequence/window, and a sliding step length L that determines the increment
step. During the data transformation step, the input time series XN is transformed
into a set of subsequences S where each subsequence has a fixed length w. The
output of this component is a set of subsequences, each subsequence containing
w data points such that the clustering is done on patterns instead of single data
points in order to identify pattern anomalies.

Figure 4.1: A workflow showing the steps of our proposal.

The data grouping component handles the clustering of the subsequences
into k-clusters of similar subsequences taking quality and context into account.
It takes the subsequences as input from the data transformation component
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and groups them into k clusters while considering the quality of the measuring
sensors and the context information. This component groups subsequences that
exhibit similar patterns or characteristics together. The goal is to identify clusters
of subsequences that share common features and behaviors such that normal
subsequences are grouped in some clusters, and anomalous subsequences are
grouped together in other clusters. The output of this component is the set of
k clusters with k centroids comprising the entire set of subsequences in each cluster.

The last component is the assignment of an anomaly score. This component
leverages quality to assign anomaly scores to all the subsequences in the dataset.
In this component, we assess the quality of a cluster and then propose a scoring
method that assigns an anomaly score value to each subsequence depending on
its distance from clusters with a certain quality index. An anomaly score ei is
computed for every subsequence si where i ∈ {1, . . . n}, n is the number of data
points in initial series Xn to form a set e comprising all the anomaly scores of the
subsequences in S. This set of computed anomaly scores helps identify anomalous
subsequences from the normal ones. All subsequences with an anomaly score
above a certain predefined threshold are considered anomalous.

4.4 . Using k-means for anomaly detection

We provide in this section some preliminaries about the existing anomaly
detection method we founded our quality approach on. We present the existing
approach with the techniques it uses. We present the k-means algorithm
and the approach that uses it for anomaly detection. Numerous machine
learning approaches use a variety of techniques for anomaly detection in time
series. Recently, many works in anomaly detection have focused on time
series data. Many approaches have worked on contextual anomaly detection
[Tsay et al., 2000],[Liang and Parthasarathy, 2016],[Zheng et al., 2017]. Con-
textual anomaly detection approaches leverage information about the context
to better detect anomalies in the data. There are five categories of anomaly
detection approaches: statistical-based [Braei and Wagner, 2020], distance-based
[Tran et al., 2016], clustering-based [Breunig et al., 2000a], deviation-based
[Giannoni et al., 2018], and neural network-based [Audibert et al., 2020]. The
details of each category of approaches are discussed in more detail in section 2.5

This section describes the subsequence clustering approach for anomaly de-
tection based on the k-means clustering algorithm, an unsupervised learning tech-
nique. This approach is a clustering-based anomaly detection approach. This
family of works groups similar data together and can detect pattern anomalies.
k-means is a common clustering technique tested on time series for anomaly
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detection [Braei and Wagner, 2020]. We first describe the method and present
its principles. Then, we discuss in detail how k-means is used in the work of
[Braei and Wagner, 2020] to detect anomalies in time series.

4.4.1 . The k-means algorithm

k-means is an unsupervised machine learning algorithm used to cluster data
observations into k clusters depending on their similarities [MacQueen, 1967]. The
k-means algorithm minimizes the intra-cluster distances and maximizes the inter-
cluster distances. k-means uses the expectation maximization approach to solve the
problem of assigning data observations to the closest clusters and computing new
centroids [Bishop, 2016]. Assume we have a set containing N data observations
x1,x2,...,xN where each xi is D-dimensional. The objective function minimizes
the distance between the data points and the cluster centroids while assigning
them to clusters so as to maximize the similarity between the subsequences within
the same cluster. It represents the sum of the squares of the distance of each
data point to its assigned centroid µp multiplied by wip which is a binary indicator
variable that will be assigned a value of 1 if data observation xi belongs to cluster
p, and a value of 0 otherwise. We first randomly choose initial values for µp, ∀ p
∈ {1,2..,k}. According to [Bishop, 2016], the objective function θ is computed as
shown below:

θ =
N∑
i=1

k∑
p=1

wip∥xi − µp∥2

Where µp is the centroid of cluster p, N is the number of data observations in the
dataset.
The goal is to find values for the wip and the values of µp so as to minimize θ.
Hence, it is a minimization problem of two parts: minimizing by differentiating θ

w.r.t wip, then w.r.t µp. We first assign each data observation xi to the closest
cluster based on its distance from the cluster centroids as shown in the formulas
below. This results in wip having a value of 0 if data observation xi does not
belong to cluster p, otherwise, it will be assigned a value of 1 when the distance
between this data observation and centroid µp of cluster p is the minimum among
other centroids.

∂θ

∂wip
=

|S|∑
i=1

k∑
p=1

∥xi − µp∥2

⇒ wip =

{
1 if p = argminj∥xi − µj∥2

0 otherwise
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The derivative is then computed w.r.t µp and the centroids of each cluster are later
recomputed to reflect the new assignments of the subsequences in the clusters:

∂θ

∂µp
= 2

|S|∑
i=1

wip(xi − µp) = 0⇒ µp =

∑|S|
i=1wipxi∑|S|
i=1wip

The difference achieved by the objective function θ is reduced with each iteration
until the algorithm converges at some point. However, it may converge to a
local minimum rather than the global minimum of θ [MacQueen, 1967]. The two
steps of assigning data observations to clusters and then recomputing the centroids
of the clusters are repeated until the algorithm converges or until it reaches the
maximum number of iterations set. When the algorithm converges, there are no
new assignments of subsequences to clusters, and the computed cluster centroids
are the same as with the previous iteration.

4.4.2 . Using k-means for subsequence time series anomaly detec-
tion (STSC)

Clustering techniques such as k-means [MacQueen, 1967] have been used for
anomaly detection tasks in several application domains. One of the existing ap-
proaches for anomaly detection in time series using k-means is the work presented
in [Braei and Wagner, 2020]. The authors in this work employ a sliding window-
based approach where the algorithm clusters subsequences of the dataset instead
of single data observations.
Given a time series XN with N data observations over N timestamps: {XN} =
{x1, x2, ..., xN}, a window length w, and a sliding step length γ, the time series
{XN} results in a set of subsequences S ⊆ R(N−w)×w:

S = {(x0, x1, ..., xw)T , (x0+γ , x1+γ , ..., xw+γ)
T , ..., (xN−w, xN−w+1, ..., xN )T }

k-means clustering is applied on the data after a preprocessing step that transforms
the series of data measurements to a set of subsequences S, where |S| is the
magnitude of set S, signifying the number of subsequences in S. The input data
for k-means in this approach is the set S = { s1, ..., s|S| } which is constituted of
subsequences of data observations instead of regular data points.

The approach uses the Euclidean distance as the similarity metric to compute
the assignments of subsequences to clusters and to compute the distances between
subsequences and centroids. k-means is later applied on the set of subsequences
S until it converges or reaches the maximum number of iterations limit, resulting
in k clusters with their corresponding k centroids. The centroids are computed as
the mean of the subsequences in the cluster they belong to.
For each subsequence in S, a value is computed as the anomaly score corresponding
to each subsequence. This anomaly score is calculated as the Euclidean distance
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of each subsequence in S to its nearest centroid.

ei = min(d(si − c)) ∀ c ∈ C

Where C is the set of the centroids computed by the algorithm, si is subsequence
at index i , and d is the Euclidean distance.
The set ε comprises the computed anomaly scores of all the subsequences in S as
follows:

ε = (e0, e1, ..., e|S|) where ei for i ∈ {0, ..., |S|}

Finally, to distinguish anomalous subsequences from normal ones, a threshold
is defined to identify all subsequences with an anomaly score above this threshold,
as anomalous subsequences. A subsequence si ∈ S is an anomalous subsequence
according to the following:{

ei > δ si is anomalous
ei ≤ δ si is not anomalous

Where δ ∈ R is a predefined threshold. The approach is described by algorithm 1
bellow.

4.5 . Quality-aware anomaly detection approach

In this section, we present our quality-based anomaly detection approach
that uses sensor quality and contextual information to improve the detection
of anomalies. The idea behind our approach is to primarily introduce the
quality of the sensors into the anomaly detection process. The quality of a
data point xij is represented by the quality of the sensor si capturing this data
point over the time period T , including the time when the data point xij was taken.

We also introduce context information that makes the clustering algorithm
aware of the context surrounding the measurement at the time it was taken. Con-
textual information is used in order to improve grouping similar subsequences to-
gether.

Our goal is to show that introducing quality and context information in the
clustering and assigning anomaly scores can improve the detection of anomalies
because understanding the context implies a better understanding of the data.

In this section, we first present the quality of the sensor in subsection 4.5.1
and the context information in subsection 4.5.2 that are used to improve existing
anomaly detection techniques. We then describe the steps of our approach within
each component according to the general architecture presented in Figure 4.1. We
discuss how we improve anomaly detection by introducing information about the
context and the quality of each measurement to the anomaly detection process.
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Algorithm 1 STSC for anomaly detection
1: Input: Time series XN , window size w, sliding step length l, k num-

ber of clusters, anomaly threshold δ.
2: S ← {(x0, x1, ..., xN)

T , (x0+γ, x1+γ, ..., xN+γ)
T , ..., (xN−W , xN−W+1, ..., xN)

T

3: µp ← random subsequence from S ∀ p ∈ {1, 2.., k}
4: for si ∈ S do
5: d← argminj∥si − µj∥2 ∀ j ∈ {1, 2.., k}
6: if si ∈ cluster cp then
7: wip ← 1
8: else
9: wip ← 0

10: end if
11: end for
12: for p ∈ {1,2..,k} do

13: µp ←
∑|S|

i=1 wipsi∑|S|
i=1 wip

14: end for
15: Repeat steps 4-14 until convergence
16: for si ∈ S do
17: ei ← min(d(si − cj)) ∀ j ∈ {1, 2.., k}
18: if ei > δ then
19: si ← anomalous
20: else
21: si ← not anomalous
22: end if
23: end for
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4.5.1 . Sensor quality for anomaly detection

This subsection presents the quality of the sensor that we will introduce into
our anomaly detection approach. The quality of the sensor is used in the clustering
and anomaly scoring steps.

The quality of the sensor gives information about the quality of the sensing unit
taking the measurement. In order to characterize the quality of the measurement,
the quality of the device that took the measurement at the time it was captured is
considered. We define sensor quality and provide categories of measures to assess
the quality of a sensor. We then propose an aggregation that computes a final
global value of the quality of a sensor.

The quality of the data measurements is defined by the quality of the
measuring sensors. The assessed quality value of a sensor at a certain timestamp
is associated with the measurements that are taken around this time. The quality
of a data measurement is the quality of the sensor taking this measurement
around the time it was taken.

A variety of external and internal circumstances can have a significant impact
on the performance of a sensor unit. Some of these circumstances have to do
with the device itself, others have to do with external factors, and others have to
do with the usage of the sensor. Two sensors of the same type and from the same
manufacturer can perform differently after a certain time.

We define three categories of metrics to evaluate the quality of the sensors
as follows: metrics at the device level such as initial evaluations of the sensor
units, others related to the device usage such as studying accuracy after a sensor
has been used for a period of time, and others related to the comparison with
reference data such as studying correlations between actual data from the sensor
and reference data. The assessed quality factors of the data using different
metrics from each category, are finally aggregated to compute a global quality
score. In order to aggregate the values resulting from different quality evaluations,
all these values must be normalized. Once the values of the assessed factors are
normalized, we compute a global quality score that represents the overall quality
of a single data measurement.
We recall the three categories of metrics introduced in chapter 3 (in subsec-
tion 3.5.1) as follows.

Device-related metrics assess the quality at the device level. It could be related
to the physical characteristics of the sensor itself. An example of a device-level
metric is the sensor’s capacity to capture a physical element in the presence of
challenging factors such as heat, wind, etc. Usage-related metrics assess the
performance of a sensor while being used or after a period of time. It is impacted
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by how the sensor is being used by the carrier and the external conditions it was
exposed to. For example, the completeness of the measurements collected by a
sensor. Reference-related metrics compare the data to other reference data. For
example, studying the correlation of the actual data with reference data.

In order to compute a global quality score of the sensor at a timestamp tj ,
an aggregation method is employed to combine multiple quality values obtained
from different categories of quality metrics. The evaluation of a certain quality
factor of the sensor at a timestamp tj is done for all the data measurements
recorded by this sensor starting at timestamp t1 that marks the time of the last
evaluation of this factor for this sensor, up until timestamp tj . This means that
the data measurements from this sensor that were recorded after the time of
the last registered evaluation will be included in the next evaluation, and all the
measurements taken by this sensor until timestamp tj will be included in this new
evaluation.

The values of the assessed quality factors are first normalized. Normalizing
the values involves scaling or transforming them to a common range or standard,
ensuring that they are comparable and facilitating meaningful aggregation. Our
aggregation process enables an evaluation of data quality by considering a single
or multiple quality values as follows.

Definition 4.5.1 (Sensor Quality at Timestamp tj). Sensor quality at a timestamp
tj is a weighted aggregation of the quality values resulting from the assessment of
a set of quality factors for this sensor. For each factor, the considered value is the
closest in time to timestamp tj .

Qsk,tj =

∑n
i=1wi × qmi

n
(4.1)

Where n is the number of considered factors, qmi is the quality value of factor qfi,
which is the closest in time to tj , sk is the assessed sensor, and wi is the weight
assigned to each quality value qmi. The sum of all weights wi i ∈ {1,. . . ,n} is
equal to 1.

4.5.2 . Contextual information for anomaly detection

Information about the context are related to the environment or the context
surrounding the sensor while collecting measurements about a physical element
in the real world. This information about the context could be intrinsic, related
to the sensing device internally; or extrinsic related to the outside world and
the factors surrounding the device. For example, the battery level is intrinsic
context information while the temperature, wind speed, and humidity are extrinsic
information.
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Contextual information can reveal important relationships, dependencies, or
patterns that may not be apparent from the data alone. This descriptive context
aids in uncovering patterns, relationships, and dependencies that contribute to a
deeper analysis and interpretation of the data.

The external conditions surrounding a sensor unit at a certain timestamp
can significantly impact the interpretation of the measurements taken by this
sensor at that time. In air quality contexts, for instance, several air components,
device-intrinsic, and other external factors directly impact the levels of some air
pollutants, making them strongly correlated.

In the context of meteorological data, the authors of [qin Han et al., 2011]
found that a polynomial relationship exists between O3 and NO2/NO. The
study presented in [Liu et al., 2020] has shown that the concentration of air
pollutants at most measuring stations was significantly negatively correlated with
wind speed, precipitation, and relative humidity but positively correlated with
atmospheric pressure. For instance, contextual information could be the user’s
activity in the context of air quality monitoring that can justify the high pollutant
levels. Therefore, factors in the surrounding context can noticeably impact the
understanding of a measured element.

Definition 4.5.2 (The Context). The context is defined as a set of features Cij

surrounding a data measurement vij that helps better understand it. Each con-
textual feature cfk has a value cvk that describes a relevant aspect of the physical
surrounding environment of a data measurement to enhance its understanding.

CF = {(cfk, cvk)} k ∈ N+

In the context of air quality monitoring using mobile sensors, the contextual
information could indicate the environment where the measurement was taken.
This information can be very useful because air pollutant levels differ from one
context to another. For example, the air is 10 times more polluted near the metros
than in the outdoor streets.

4.5.3 . Data transformation
The process of data transformation is responsible for transforming our input

dataset from a set of time series collected by several sensors into one set comprising
all the subsequences constructed. It is represented by the data transformation
component in Figure 4.1. This step is similar to the transformation of the data
discussed in the STSC approach in subsection 4.4.2.

Our dataset is composed of a set of N time series XN = {X1, . . . , XN}
each collected by a sensor si. Each series collected by a sensor si has a set of
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n measurements Xn = {vi1, . . . , vin}. In a mobile crowdsensing context, each
measurement vector vij is taken by sensor si, has a value v, timestamp tj and
other features such as the geographic coordinates (latitude, longitude), and the
set of contextual information about the surrounding context CF. Hence, the
measurement vector vij is represented by: vij = vij = (v, si, tj , (lat, lon), si)

which is a general set of some features that represent a measurement in a mobile
crowdsensing environment (MCS).

The time series is first transformed into a set of subsequences each having a
fixed size created with a sliding step length that is also predefined. The resulting
set of subsequences will be the new dataset where each subsequence will be treated
as a data point.
Given a time series with N measurements XN = {vi1, ..., viN }, where each has
a number of measurements in ∈ N+, a window length w, and a sliding step length
γ, the time series {XN} results in a set of subsequences S ⊆ R(N−w)×w:

S = {(v0, v1, ..., vw)T , (v0+γ , v1+γ , ..., vw+γ)
T , ..., (vN−w, vN−w+1, ..., vN )T }

(4.2)

Example 4.5.1. Suppose we have a set of time series XN that has the following
values XN = {20, 21, 22, 23}, a window length 2, and a sliding step 1. The
resulting set of subsequences is S = {(20,21), (21,22), (22,23).}

The window length w can be determined empirically in the experiments. The
number of sequences P can be computed as follows:

|S| = N

w
+ (w − γ)

N is the total number of measurements, w is the fixed subsequence length defined
earlier, and γ is the sliding step length.

The clustering algorithm is then applied to the set of subsequences instead
of single data points. The input data for k-means in this approach is the set S,
composed of subsequences of data observations instead of regular data points:

S = {s1, ..., s|S|}

Where |S| is the number of subsequences in set S, and si is a subsequence, i is
the index of the subsequences with values ∈ {1, . . . , |S|}.

4.5.4 . Quality-based data clustering
In this component, we use the k-means clustering algorithm to group sub-

sequences of similar behavior together. We enrich the clustering process with
information about the quality of the sensor and the context. The quality of the
sensor is propagated to the measurements in each subsequence. It is possible to



126 CHAPTER 4. ANOMALY DETECTION IN MCS

have data measurements from different sensors within the same subsequence. We
introduce our notion of subsequence quality.

Definition 4.5.3 (Subsequence Quality). Subsequence quality (qsk) is a quality
vector that indicates the quality of the data points in a subsequence sk. It is a
subsequence of fixed predefined length w comprising the corresponding quality
values of each one of the data observations that constitute the subsequence
sk. Hence, if the subsequence sk has the measurements {v1, v2, v3}, it has a
subsequence quality qsk = (qv1 , qv2 , qv3).

Computing the similarity between two subsequences:
To compute the distance between two subsequences, we propose a quality-aware
similarity function that uses the Euclidean distance and takes into consideration
the quality of the subsequence and the contextual information in addition to the
values of the measurements. The subsequence is a vector that contains the mea-
surements, and the quality of the subsequence is also a vector containing the quality
of each measurement in the subsequence. Finally, the contextual information is
also represented by a vector of values indicating the context of each measurement
in the subsequence. The context values are encoded to integers to facilitate the
computation of the similarity. The similarity between two context vectors is com-
puted as one if all the values are equal; otherwise, zero. Hence, we compute the
distance between two subsequences s1 and s2 using the L2 norm as follows:

Ds1,s2 = ∥s1.qs1 .cvs1 − s2.qs2 .cvs2∥2 (4.3)

Where si is a subsequence of measurements, qsi is the subsequence quality vector
of si, and cvsi is the context vector of subsequence si.

Assigning subsequences into clusters

To assign a subsequence si to a cluster p, the distance between the subsequence
and the centroid of the k clusters is computed. Subsequence si is assigned to the
closest cluster in the distance. The value of wip indicates whether a subsequence
si belongs to cluster p or not:

wip =

{
1 if p = argminj∥si.qsi .cvsi − µj .qj .cvj∥2

0 otherwise
(4.4)

Where µj is the centroid of cluster j, qj is the quality vector of the centroid of
cluster j, and cvj is the context vector of the centroid of cluster j.
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Computing the cluster centroids

After assigning subsequences into clusters, we need to recompute the centroids of
the clusters. For the computation of the centroids, we also take into account the
quality of each subsequence in computing the centroids. Where each considered
subsequence is weighted by its quality, as shown in the following equation:

µp =

∑|S|
i=1wip.si.qsi .cvsi∑|S|
i=1wip.qsi .cvsi

(4.5)

The objective function of the clustering is a quality-aware objective function θ

that considers the quality of the measurements. wip is assigned a value of 1 if
a subsequence si belongs to cluster p. Otherwise, wip will have a value of zero,
indicating that it does not belong to this cluster. The objective function θ is
defined as follows.

θ =

|S|∑
i=1

k∑
p=1

wip∥si.qsi .cvsi − µp∥2 (4.6)

Where qsi is the quality of subsequence si, µp is the centroid of cluster p, and
cvsi is the context information vector of subsequence si.

4.5.5 . Assigning anomaly score and detecting anomalies
This subsection presents the computation of an anomaly score to all the sub-

sequences in the dataset taking the quality of the sensor into account. It also
describes the approach to identify anomalous subsequences from non-anomalous
ones.

Computing anomaly score

After the subsequences have been clustered into k-clusters taking quality and
context into account, a quality anomaly score for every subsequence in the dataset
is computed. We first introduce the concept of high-quality cluster. The anomaly
score of a subsequence is then computed as the distance from this subsequence to
its nearest high-quality cluster. Hence, if a subsequence belongs to a high-quality
cluster, it will be assigned a lower anomaly score than another subsequence that
does not belong to a high-quality cluster. This is because we assume that clusters
with high quality are not anomalous.

The centroid of a cluster is computed as the average of the subsequences in
the cluster. The quality of the centroid is computed as the average of the quality
of the subsequences in this cluster. The cluster quality qCk

is a single value that



128 CHAPTER 4. ANOMALY DETECTION IN MCS

represents the quality of the whole cluster Ck. It is computed using the quality
of the centroid µk of cluster Ck. The centroid of the cluster is a subsequence
composed of L measurements. Each measurement is characterized by a quality
value computed as in definition 4.5.1. The cluster-quality qCk

is defined as follows.

Definition 4.5.4 (Cluster Quality). The quality of a cluster Ck is computed as
the aggregation of the quality values corresponding to all the measurements in the
centroid subsequence µk:

qCk
=

∑L
j=1 qvj

L

Where L is the fixed subsequence length, and qvj represents the quality of a
measurement vj in µk of cluster Ck. qvj is computed according to definition 4.5.1.

We provide hereafter, an example of cluster quality in example 4.5.2.

Example 4.5.2. Suppose we have a cluster C1 with a centroid that has the fol-
lowing quality vector qµ1 = {0.6,0.4,0.6,0.8}. Then the quality of cluster c1 is
computed as avg(0.6 + 0.4 + 0.6 + 0.8) = 0.6.

Based on cluster quality, the anomaly score of a subsequence is computed while
taking the quality of the clusters into account. The anomaly score is greater for
subsequences that do not belong to a high-quality cluster than for subsequences
that do belong to a high-quality cluster.

Definition 4.5.5 (High-Quality Cluster). A cluster is said to be of high quality if its
cluster quality index is greater or equal to a predefined threshold. This threshold is
denoted by α and could be computed empirically in the experiments or predefined
by a domain expert.

Assume a dataset of time series that is transformed into a set of subsequences
S = {s1, . . . , s|S|}. An anomaly score ei is computed for each subsequence si in
S.

Definition 4.5.6 (Anomaly Score). The anomaly score ei assigned to a subse-
quence si is computed as the multivariate Euclidean distance of subsequence si to
the nearest high-quality cluster centroid µk according to the following :

ei =

{
d(si, µj) for qCj ≥ α

min(d(si, µp)) ∀ µp, p ∈ {1, ..., n}, qCp ≥ α for qCj < α

(4.7)
Where si is a subsequence ∈ Cj , µj centroid of cluster Cj , ∀ j ∈ {1, ..., n}, qCj

is quality of cluster Cj , and α is a predefined threshold.

This means that if a subsequence already belongs to a high-quality cluster Cj ,
the distance would be between the subsequence and the centroid µj of the cluster
Cj . Otherwise, if a subsequence belongs to a cluster with a quality that falls below
the predefined threshold, the anomaly score would be the distance between the
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subsequence and the nearest centroid of a high-quality cluster. This is illustrated
in example 4.5.3.

Example 4.5.3. Figure 4.2 shows a subsequence s1 belonging to cluster C1. We
set the threshold δ = 0.7. Hence, cluster C1 is a high-quality cluster because it
has a quality qC1 = 0.80. The anomaly score e1 is the distance between s1 and the
centroid µ1 of cluster C1 since the subsequence belongs to a high-quality cluster.
Subsequence s2 belongs to cluster C2 of quality qC2 = 0.20. Cluster C3 also is
a high-quality cluster with quality qC3 = 0.75, the anomaly score e2 of s2 is the
distance between subsequence s2 and the nearest centroid of a high-quality cluster,
in this case, µ1 because centroid µ1 of cluster C1 is closer to s2 than centroid µ3.

Figure 4.2: Computing anomaly score of a subsequence that belongs to
low-quality cluster.

Identifying Anomalous Subsequences

Subsequences that do not belong to a high-quality cluster have a higher possibility
of being anomalous. Hence, once the anomaly score of all subsequences in the
dataset is computed, we diagnose a subsequence as anomalous if its corresponding
anomaly score is greater than a predefined threshold δ. Any subsequence with an
anomaly score less than the threshold δ is considered non-anomalous.

Definition 4.5.7 (Anomalous subsequence). An anomalous subsequence is a sub-
sequence whose anomaly score is greater than a predefined threshold δ.

4.6 . Evaluation of Quality-Aware Anomaly Detection Approach



130 CHAPTER 4. ANOMALY DETECTION IN MCS

This section introduces the experiments and evaluations of the proposed quality
anomaly detection approach on time series data collected within a mobile crowd-
sensing environment. Our experiments aim to show whether introducing quality
and context information into anomaly detection would improve the detection of
anomalies. We evaluate our quality-aware anomaly detection approach compared
to an existing approach that uses the k-means algorithm for subsequence time
series clustering-based anomaly detection [Idé, 2006].

4.6.1 . Context and Datasets

The evaluations are done on air quality data collected using nomadic low-cost
sensors within the context of an opportunistic air quality project, Polluscope
[Brahem et al., 2021]. Opportunistic crowdsensing means that sensor carriers
go by their daily routines without changing their routes or usual destinations.
The observed pollutant is measured by low-cost nomadic sensor units along with
timestamps and geographic location. The collected data is a set of time series.
The data acquisition process within the project was divided into three campaigns
of different durations. During each campaign, volunteer users carried a set of
sensors with them over their daily routines. The carried sensors collected data
measurements of a different pollutant annotated with time, geolocation, and
context information. In our settings, we consider the context as the activity that
represents the environment that the sensor carrier is in.

The experiments are conducted on time series measuring the particulate
matter air pollutant of diameter 2.5 PM2.5. The data used in the experiments
were acquired between 1st of January 2020 and the end of March 2020 by several
users and several sensors measuring the same pollutant.

The data were manually annotated by the sensor carriers to describe the
context of the location they were in at different times of their day, such as home,
work, shops, restaurants, cars, metro, etc. This gives us insights into the context
where the measurements were taken. In our experiments, the context can either
be indoors or outdoors. We have selected the subset of the initial dataset for the
experiments where the context of data measurements was manually validated to
ensure the annotations are correct.

We have performed two types of experiments described as follows.

• Experiment type 1: in this experiment, we compare our approach to the
baseline approach while varying the window length w, referred to as the
subsequence length, number of clusters k, anomaly threshold δ, and per-
centage of injected anomalies. The dataset of this experiment contains
measurements of the PM2.5 pollutant. It comprises 33 000 data measure-
ments and has been selected for which the annotations were confirmed. This
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dataset is referred to in the sequel as dataset 1.

• Experiment type 2: in this experiment, the parameters including the window
length, number of clusters, and anomaly threshold, were concluded from the
type 1 experiment. Hence, for this experiment, these parameters were fixed,
and we only varied the percentage of injected anomalies. In this experiment,
we refined dataset 1 by further cleaning 20 000 data measurements from
dataset 1. We will refer to this dataset as dataset 2.

4.6.2 . Methodology

The experiments are done on an Apple M1 chip processor with 16GB RAM.
We used Python 3.9.7 on Jupyter Notebook to automate the pipeline of the
experiments as well as to generate anomalies using our customized anomaly
generator subsection 4.6.3. We conduct two types of experiments.

We perform the first type of experiments on dataset 1 while varying some
parameters of the approach. The experiments include various percentages of
injected anomalies: 1%, 2%, 3%, and 4%, we also vary the window length w

also referred to as the subsequence length, the number of clusters k, the anomaly
threshold δ. We aim to compare the achieved results from the baseline with the
results of our approach. Another goal of this type of experiment is to help us
learn the best parameter values of the anomaly detection approach.

We later conduct the second type of experiments on dataset 2 but with
increasing data anomaly percentages injected 5%, 10%, 15%, 20%, and 25% since
the type 1 experiments showed that the approaches could work better with higher
percentage of injected anomalies. We set the values of the following parameters
of the approach: the window length w = 7, the number of clusters k=4, and the
anomaly threshold δ = 0.7, both on the baseline and our approach. We have
repeated this experiment three times, each time with a new random generation
and injection of the various percentages of anomalies tested.

Before all the experiments, the initially selected dataset for the experiments
was not clean of anomalies. Hence, we manually clean the data from spikes. We
also remove data measurements with a negative value because it is physically
impossible to have a negative value of the measured element we studied in our
experiments.

To test the usefulness of our approach, we have implemented an anomaly
generator that is further described in subsection 4.6.3 to generate pattern
anomalies. The generated pattern anomalies are randomly injected into the
data. In the experiments, we apply both the baseline approach presented
in subsection 4.4.2 and our quality-aware approach presented in section 4.5
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on this data with the injected anomalies. We then compare the precision, re-
call, F1-score, and accuracy of each approach in detecting these injected anomalies.

Finally, the elbow method was used to determine the number of clusters for
the k-means clustering method. It is a heuristic method used to determine the
number of clusters k for clustering algorithms [Dangeti, 2017].

4.6.3 . Anomaly Generation and Injection
For our experiments, we have implemented a customized automated anomaly

generator capable of generating anomalies of the various types defined earlier for
MCS environments in section 4.2. Our anomaly generator is automated as shown in
Figure 4.3. It takes as input the data file as a csv file and the following parameters:
the window size W , which is also the size of the pattern anomaly to be injected.
The second parameter, anomalies-per, is the percentage of anomalies to be injected
into the data. Given our anomaly generator creates the values of the anomalies
randomly, this means that for each attempt of anomaly generation, the values are
different than the previous run even if we had the same anomalies percentage in
parameter anomalies-per. The last parameter comprises the specification of the
percentage of each type of anomaly to be injected. In our experiments, we only
injected pattern anomalies. Hence the percentages for noise and point anomalies
were set to zero.

Figure 4.3: The Anomaly Generator.

The anomaly generator provides anomaly values randomly. The indices at
which the anomalies will be injected are also chosen randomly with the setting
that generates a value within a specific range and allows for a random generated
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value to be repeated more than once. The pattern anomaly length is defined by
the window size parameter and has randomly generated values within the possible
range of values of the studied pollutant. The range of accepted values of the
studied element is also an input to the generator.

The last feature of our anomaly generator is that it outputs 2 files. The first
output file contains the original data records with the injected anomalies as a csv

file. The second output file is a guide that indicates where the anomalies were
injected, their types in case different types of anomalies were injected, and their
corresponding values. This guiding file is mandatory for the experiments in order
to be able to track which anomalies were successfully detected and which ones
were not.

4.6.4 . Evaluation Metrics
To assess the usefulness of our quality-aware approach to anomaly detection

on time series in mobile crowdsensing environments, we evaluate the results using
the following metrics:

Precision =
TruePositive

TruePositive+ FalsePositive

Precision measures the proportion of positive predictions that are actually posi-
tive. Precision is very useful in contexts with a high cost of false positives.

Recall =
TruePositive

TruePositive+ FalseNegative

Recall measures the proportion of positive cases that the classifier correctly
predicted. The recall is useful when a high cost is associated with false negatives.

The F1 − score is a trade-off between precision and recall. It is computed as
their harmonic mean. F1-Score is needed when a balance between Precision and
Recall is desired. In our experiments, we use F1 − score to evaluate our results
because there is no additional cost associated with either false positives or false
negatives. Both have to be equally avoided. Originally, F1-score is Fβ-score where
β controls giving higher importance to either precision or recall depending on the
context of the application and which metric has higher importance than the other.

F1 = 2× Precision×Recall

Precision+Recall

FPRate =
FalsePositive

FalsePositive+ TrueNegative

FP − rate is the false positivity rate that tells us the ratio of false positives over
the total number of ground truth negatives.

Accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative
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Accuracy is the ratio of the correctly identified points (positives and negatives)
in the dataset. Accuracy is important to characterize the number of the model’s
predictions that were correct. This metric is relevant in most applications.

4.6.5 . Results

In this subsection, we present the results of our experiments. The first
experiment is done on dataset 1 comprising 32 000 data records. We experiment
on both the baseline approach and our quality-aware approach injecting different
percentages of anomalies in the dataset. We first try injecting 1%, 2%, 3%, and
4% of anomalies in dataset 1, and compare the F1-Score and accuracy achieved
by both the baseline approach and our approach. Figure 4.4 shows the F1-score
achieved by both approaches. Our approach outperforms the baseline approach.
However, the achieved results from both approaches both fall below 0.2, especially
for the baseline approach. The baseline approach has a very poor F1-Score for all
of the tested anomaly percentages injected. The main reason is that the precision
was low, with a value of 0.1. This means that the number of false positives is
significantly greater than the number of true positives.
Figure 4.5 shows the achieved accuracy of this experiment by both the baseline

Figure 4.4: F1-Score achieved by both baseline approach and our ap-
proach after injecting 1%, 2%, 3% and 4% of anomalies on dataset 1.

and our approach. We can see that the values of accuracy for this experiment
are higher than the F1-Score for both approaches. When 2% of anomalies are
injected, our approach achieves a high accuracy value of 0.94 while the baseline
approach is 0,72 accurate. We also observe that the accuracy achieved by both
approaches for 3% of injected is similar, with a slightly higher value achieved by
our approach. The accuracy of the baseline approach later decreases with 4%
injected anomalies, while our approach scores a higher accuracy of 0.9.

We then examine, on the same dataset, the impact of changing the values of
other parameters of the algorithm, such as the window size w, the threshold δ used
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Figure 4.5: Accuracy values achieved by both baseline approach and our
approach after injecting 1%, 2%, 3% and 4% of anomalies on dataset 1.

to determine whether an anomaly score of a subsequence means it is anomalous
or not, and the number of clusters k. Figure 4.6 shows the values of precision,

Figure 4.6: Quality of the baseline approach on dataset 1 with w = 7,
k=4, and 4% injected anomalies.

recall, F1-Score, FP-rate, and accuracy achieved by the baseline approach when
4% of anomalies were injected in dataset 1, with window size w=7, and the
number of clusters k=4. The graph shows the values of the evaluated metrics as
a function of the δ threshold. The precision values result in a lower F1-score than
those obtained by our approach in Figure 4.7. We notice that the FP-rate is at
its highest value, in both figures, at the lowest anomaly threshold δ, and then it
decreases as the δ threshold increases. This is an intuitive behavior because, with
a higher threshold, a smaller number of sequences are detected as anomalous.
The FP-rate and F1-Score are inversely correlated, meaning for example, as
FP-rate decreases, the F1-score increases. Nonetheless, the F1-score still falls
below 0.1 with this experiment. However, both approaches obtain high accuracy
scores with a noticeable difference between the baseline and our approach where
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our approach shows higher accuracy scores than those of the baseline one.

Figure 4.8 and Figure 4.9 show the results of the studied metrics for the
same data setting as the latter experiment, but we increase the window size to
be w=8 and keep the number of clusters k=4. Figure 4.8 shows similar scores to
that of Figure 4.6. Both precision and F1-Score show low scores that fall below
0.1. Recall is higher with values between 0.5 and 0.25 for δ threshold between
0.55 and 0.68, but lower than 0.25 for δ value > 0.68. However, the results of
our approach in Figure 4.9 show that the precision and recall had their highest
values at δ = 0.7 with values of 0.31 and 0.42 respectively. The accuracy at this
δ threshold is high with a value of 0.84.

Figure 4.7: Quality of our approach on dataset 1 with w = 7, k=4, and
4% injected anomalies.

Figure 4.10 and Figure 4.11 show the results of the studied metrics achieved
by the baseline and our approach for the same data settings as the latter setup,
but with window size W= 9 and number of clusters k = 5. Figure 4.10 shows the
results achieved by the baseline approach, which shows similar values to that of
Figure 4.8 where precision and F1-Score are below 0.1 for all δ thresholds. The
accuracy is higher than 0.5 for δ ≥ 0.73. Figure 4.11 here shows the scores of
the evaluated metrics by our approach for window size W= 9 and the number of
clusters k = 5. We observe that recall, precision, and F1-Score are at the highest
achieved values 0.92, 0.31, and 0.48 respectively at threshold δ = 0.8. Accuracy
is also at the highest levels with a value of 0.93 for the same δ threshold.

The achieved accuracy results are above 0.5 for this experiment starting at
a threshold value of δ = 0.7. However, the F1-Score results of the baseline
approach were always below 0.1. Our approach works better for this data setup.
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Figure 4.8: Quality of the baseline approach on dataset 1 with w = 8,
k=4, and 4% injected anomalies.

This leads us to the second type of experiments conducted on dataset 2. On
this dataset, we examine the F1-Score and accuracy achieved after injecting
different percentages of anomalies into the dataset 5%, 10%, 15%, 20%, and 25%.

Figure 4.12 shows the achieved F1-scores of both the baseline and our
approach on dataset 2 for 5%, 10%, 15%, 20%, and 25% injected anomalies. We
notice that for small percentages, the baseline approach works better for dataset
2 than dataset 1. We also observe that with higher injected anomaly percentages,
both the baseline approach and our approach score significantly higher F1-score.
This graph also shows that our approach always scores a higher F1-Score than the
baseline approach. We notice a higher F1-score achieved by the baseline approach
as we increase the percentage of anomalies in the dataset. The highest F1-score
is achieved by the baseline approach at 25% of injected anomalies. On the
other hand, our approach shows higher F1-scores when the injected percentage
of anomalies was 10%, 15%, 20%, and 25%, having the highest value of 0,82
at 25% injected anomalies compared to 0.68 F1-score by the baseline approach.
As for the accuracy, Figure 4.13 shows improved accuracy scores for both the
baseline approach and our approach. The accuracy of the baseline approach is
at its highest with a value of 0.55 for 25% injected anomalies, while the highest
achieved by our approach, with a value of 0,92, was at 10% injected anomalies.

Finally, knowing that the anomalies were generated and injected randomly
in the dataset, we validate our achieved results by supporting them with two
additional executions of the anomalies injection percentages, with the same
experimental setup, to confirm the achieved results.

Figure 4.14 and Figure 4.15 show the F1-Score of the two additional executions
of anomalies injection to confirm the achieved results. We notice a slight change
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Figure 4.9: Quality of our approach on dataset 1 with w = 8, k=4, and
4% injected anomalies.

Figure 4.10: Quality of the baseline approach on dataset 1 with w = 9,
k=5, and 4% injected anomalies.
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Figure 4.11: Quality of our approach on dataset 1 with w = 9, k=5, and
4% injected anomalies.

Figure 4.12: F1-Score for baseline and our approach with different per-
centages of anomalies on dataset 2.

Figure 4.13: Accuracy for baseline and our approach with different per-
centages of anomalies on dataset 2.
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in the achieved F1-Score of some experiments but with a very small margin. Our
approach maintains higher F1-scores than the baseline approach for all of the
percentages of injected anomalies.

Likewise, Figure 4.16 and Figure 4.17 show the accuracy achieved by the base-
line approach and our approach over the second and the third executions of the
various percentages of anomalies injected. The graphs clearly show that our ap-
proach maintains higher accuracy scores when compared to the baseline approach.
We also notice an insignificant change in the achieved accuracy among the differ-
ent executions. Furthermore, the results are consistent among the three different
executions, which confirms the validity of the achieved results on accuracy and
F1-score.
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Figure 4.14: F1-Score of the 2nd execution of anomalies injection for
baseline and our approach with different percentages of anomalies on
dataset 2.

Figure 4.15: F1-Score of the 3rd execution of anomalies injection for
baseline and our approach with different percentages of anomalies on
dataset 2.
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Figure 4.16: Accuracy of the 2nd execution of anomalies injection for
baseline and our approach with different percentages of anomalies on
dataset 2.

Figure 4.17: Accuracy of the 3rd execution of anomalies injection for
baseline and our approach with different percentages of anomalies on
dataset 2.
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4.6.6 . Discussion

Our experiments have shown significant advantages of our quality-aware
approach over the baseline approach in identifying anomalies for time series data.
For injected percentages of anomalies less than or equal to 4%, our approach
performed remarkably better than the baseline approach with a highest F1-score of
0.5 with our approach compared to a value less than 0.1 for the baseline approach.
The accuracy for this experiment type where the window length, the number of
clusters, and the δ threshold were varied, vary inversely for both approaches with
the FP-rate. Precision scored the lowest values among the studied metrics both
approaches for this setup with a highest value of 0.3 with our approach compared
to a value less than 0.1 for the baseline one.

Experiments using dataset 2 with the increasing injected percentages of anoma-
lies, 5% through 25%, worked remarkably better on both the baseline and our
approach. However, despite significantly improving precision and F1-Score, the
accuracy achieved by the baseline approach on dataset 1 was better than when ex-
ecuted on dataset 2. The accuracy achieved by the baseline approach on dataset
2 was around 0.5 compared to values always greater than 0.5 by our approach.
F1-scores achieved on both approaches were considerably improved on dataset 2
with a highest value of 0.84 by our approach at 25% injected anomalies compared
to a highest value of 0.68 by the baseline approach at the same percentage of
injected anomalies.

4.7 . Conclusions

In this chapter, we presented a quality-aware anomaly detection approach that
uses the quality of the sensor and the context on time series data collected within
the context of mobile crowdsensing environments (MCS). We defined anomalies
for the MCS context and defined the types of anomalies in this context: noise,
point, and pattern anomalies. Our proposed approach improves the detection
of anomalies by grouping similar subsequences together using the quality of
the sensor and some contextual information. The similarity function takes into
account the measurement values of the subsequence as well as both the quality
and the context of each subsequence. In our approach, we define the notion of
subsequence quality that helps group subsequences of similar qualities together
and compute the quality of the clusters. We also define the notion of cluster
quality that was used to assign an anomaly score to the subsequences in the
dataset.

We showed through the experiments that an anomaly detection approach
driven by quality and contextual information always performs better than an
approach that works without taking the quality and the context into account.
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We achieved an F1-score that is almost twice better using our approach than
the baseline approach at the experiment setup with 10% added anomalies. An
accuracy of 0.92 was achieved with our approach compared to 0.53 with the
baseline one at this percentage of anomalies injected in the data. Our approach
heavily relies on the quality of the measuring sensors. The quality of the sensor is
an aggregate of several quality dimensions that assess various facets of the sensors
and hence is a value of the quality of the measurements taken by the sensor at
the time of the evaluation.

For future works, it would to investigate approaches that assess the uncertainty
of the estimations of the anomaly detection model. Uncertainty estimation in
the context of anomaly detection involves quantifying and propagating the
uncertainty associated with the detection results. Anomaly detection algorithms
typically assign anomaly scores or probabilities to data points, indicating their
likelihood of being anomalous. Uncertainty estimation goes further by providing
a measure of confidence or uncertainty associated with these scores. This can
provide users with a better understanding of the reliability of detected anomalies
and support decision-making processes. For datasets with a large number of
features or dimensions, we must explore anomaly detection techniques that
work for high-dimensional data. In such datasets, the number of features can
be comparable to or even exceed the number of data points, posing unique
challenges for anomaly detection algorithms. Addressing such a challenge requires
a combination of appropriate preprocessing techniques, specialized algorithms,
feature selection methods, and possibly some domain knowledge.

We can also investigate techniques that can leverage knowledge learned from
one domain or dataset to improve anomaly detection in another related domain or
dataset. This includes developing transfer learning or domain adaptation methods
to mitigate the challenge of limited labeled data in new domains.



5 - Towards Quality-Aware Sensor Data An-
alytics in MCS

5.1 . Introduction

In mobile crowdsensing environments, mobile, low-cost sensors are used to
collect a huge number of data measurements for some measurable elements,
such as the pollution level in the air, traffic congestion, etc. This data has to be
reconciled in order to be cleaned and stored to be made available for the users in a
centralized repository comprising all the collected measurements ready for analysis.

When analyzing this integrated data, the users may be manipulating mea-
surements of varying levels of quality due to potential sensor malfunctions,
manufacturing defects, and sometimes due to the usage of the sensor by the
carrier. As a result, the data provided by these sensors can have a low quality
which could lead to indicators of poor quality.

In the previous chapters, we have dealt with two quality dimensions. The first
is data completeness, where we characterize and propose metrics to measure com-
pleteness factors. Furthermore, we enhance data completeness by implementing
an approach that generates missing values while considering the quality of the
measuring sensors. The second is accuracy, where we propose a quality-aware
anomaly detection to detect pattern anomalies in the data. Likewise, other
existing metrics could be relevant for mobile crowdsensing environments. In this
chapter, our objective is to take quality into account when using the data provided
by the sensors. Our proposal in this chapter is a first step towards a quality-aware
data analytics pipeline in which data quality plays a central role in computing
indicators and analysis.

Given a set of metrics suitable for assessing the quality of the data in mobile
crowdsensing environments, our goal is twofold: the first is to compute indicators
of higher quality by considering the quality of the input data, and the second is to
use the quality of the data to characterize the quality of an indicator computed
based on this data. For example, in an air quality monitoring context, if we want
to determine the pollution levels of particulate matter in a certain city, we would
like to take into account the variation of quality among the sensors and give more
importance to the ones that are of higher quality. Assuming this set of metrics,
we are also interested in providing centralized storage of this information about
quality in order to exploit it along with the data during the analysis process.

145
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The authors of [Berrahou et al., 2015, Boulil et al., 2013] have integrated
quality in their data models, and incorporated this data about the quality in their
analysis. Likewise, we follow a similar approach in representing the data quality
information in our model, and integrate the data quality in the computation of
indicators based on it.

In chapter 3, we have introduced a multidimensional data model representing
data provided by sensors within a mobile crowdsensing environment. In this
chapter, we enrich this model with information about quality, allowing the
representation of quality-related aspects in mobile crowdsensing environments.

The quality of the indicators depends on the quality of the underlying data.
Hence, we propose to enrich basic aggregation operators with the quality of this
data. The first operator computes a quality score for each data measurement of
a given measured element taken by a sensor. To deliver higher-quality insights
using queries and aggregation operators on the extended model, we then propose
two quality-aware aggregation operators that consider quality while computing the
aggregate. The first aggregation operator uses quality as a weight to aggregate
data measurements. The second operator filters out some data measurements
depending on their levels of quality.

We propose a method that computes the quality of an aggregate given the
quality of the input data used to compute this aggregate. Our approach utilizes
the quality scores of the data measurements used in the aggregation, in order
to assess the quality of the aggregate. The goal of this method of qualify-
ing the computed indicators is to provide the level of quality of an aggregated
so the users can take this quality into account during their decision-making process.

The remainder of this chapter is organized as follows. Section 5.2 presents the
quality multidimensional representation of data in the MCS environment. Section
5.3 discusses the two proposed quality-aware aggregation operators. In section 5.4,
we present an approach to characterize the quality of computed aggregates. Finally,
we conclude the chapter in section 5.5.

5.2 . A quality multidimensional model of MCS data

In this section, we present the representation of data quality for sensor data in
a mobile crowdsensing environment. We recall the multidimensional data model
presented in chapter 3 that introduced the representation of sensor data in this
context. This model consisted of a fact table Measurement that describes a data
measurement in the MCS environment. This measurement describes a physical
element in real-life measured by a sensor unit. The other dimensions of this
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measurement are the user that is carrying the sensor, the time at which the
measurement is taken, and the geographic location where the measurement was
captured.

This section presents our representation of data quality information within
a mobile crowdsensing environment in Figure 5.2. This multidimensional
data model enriched with quality values provides the data consumer with the
quality values corresponding to different aspects of a sensor. The sensor qual-
ity value fact table has the following dimensions: time, sensor, and sensor quality.

The content of the fact table depends on the quality goals of the application.
Similarly to the work defined in [Berti-Équille et al., 2011], a data quality analyst
defines the quality goals that are refined and decomposed into a set of quality
questions. The answer to a quality question is defined by choosing and refining
a quality factor that best characterizes the question and a set of quality metrics
that are appropriate to measure this factor [Berti-Équille et al., 2011]. The values
resulting from these evaluations are called quality values in our work, similarly to the
meta-model defined in [Berti-Équille et al., 2011], these quality values represent
the result of executing a measurement method, for a measurable object, at a given
point in time.

Example 5.2.1. Suppose a data quality analyst manages the quality of sensor
data measuring air pollution in a specific area. Assume the analyst has ten sensors
measuring black carbon and wants to detect those that underperform because their
level of completeness is deteriorating. A possible quality scenario would be to assess
sensor completeness every three days. Hence, after one month, there would be ten
values of data completeness quality factor for each sensor. In Figure 5.1, we show
the instances of the fact table of the data values collected for one sensor unit s1
for the data completeness quality factor.

Figure 5.1: Instances of the fact table showing the recorded quality values
of the completeness factor of one sensor unit.
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Each sensor can be assessed using one or several quality factors at different
timestamps. Evaluating one quality factor QFk, for instance, accuracy would result
in a quality value instance qvki,j of ID qid, quantifying the accuracy of a sensor unit
si at a specific timestamp tj . This instance is denoted by (qid, QFk, si, tj , qvki,j ).

Example 5.2.2. O Consider a mobile crowdsensing application deployed in an ur-
ban area to monitor black carbon levels at various locations throughout the city.
Assume we have two sensors s1 and s2 that captured measurements of black carbon
at timestamps t1, t2, and t3. Sensor s1 captured the measurements {(1,t1), (5,t2),
(18,t3)} and sensor s2 captured the measurements {(1,t1), (10,t2), (15,t3)}.
In order to meet the quality assessment goals for the data, this data is continuously
evaluated. The assessed quality factors and their corresponding values are stored
in the quality multidimensional data model. Hence, values of the accuracy, com-
pleteness, and consistency of the data coming from sensors s1 and s2 at different
timestamps are stored in the model as instances shown below.
(1, ’Consistency’, s1, t1, 0.22), (2, ’Completeness’, s1, t2, 0.67), (3, ’Accuracy’,
s1, t3, 0.91)
(4, ’Consistency’, s2, t1, 0.85), (5, ’Completeness’, s2, t1, 0.40), (6, ’Accuracy’,
s2, t1, 0.73).

The model presented in Figure 5.2 focuses on representing the quality factors
and values of the sensors capturing a physical element in the fact table Sen-
sorQualityValue and its dimension SensorQualityFactor. The SensorQualityValue
fact table and its relevant dimensions are described as follows.

Sensor Quality Value Fact Table

The fact table describes the values of the measured quality factors of each sensor
unit at a certain timestamp. Each instance of this fact table represents a quality
value corresponding to the evaluation of a given factor for a given sensor at a given
timestamp. For example, a quality value of 0.7 could be the quality value for the
consistency quality factor of a sensor s1 at timestamp t1.

Sensor dimension

The sensor dimension represents the sensor unit that captures measurements of
the physical element. In this table, the sensor has a sensorType attribute and a
sensorName. It could also contain other attributes describing the characteristics of
the sensor, such as its weight, or its frequency. The sensor is associated with the
fact table SensorQualityValue where each instance in this fact table corresponds
to a quality factor for a specific sensor unit.
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Figure 5.2: Quality Multidimensional Model.

Sensor quality factor dimension

This dimension represents the quality factors that describe a quality aspect of the
sensor. Instances of this dimension are quality factors that characterize data coming
from a sensor such as completeness, comparison with reference data, consistency,
etc. For example, a factor could be data completeness, which indicates the sensor
completeness described in subsection 3.4.1.

Time dimension

Another dimension of interest is the time. It is composed of two attributes: time
and date. It will be used to characterize the time of an assessment of a quality
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factor of some sensor.

Quality goals are set on sensors to assess their performances by evaluating
some quality factors that are relevant to them. For instance, if we are interested in
evaluating the accuracy of the data coming from a sensor over the month of May,
a data quality goal is set to evaluate the accuracy of this sensor everyday during
this month. A sensor could have several quality values of the same quality factor
evaluated at different timestamps.

5.3 . Quality-aware Aggregation Operators

In multidimensional data models, aggregation operators can be executed while
taking into consideration data from some dimensions. An aggregation operator
is conventionally defined as a function that is applied to a collection of tuples
and returns a single value [Damiani and Spaccapietra, 2006],[López et al., 2005].
Examples of existing aggregation functions are min, max, avg, sum, spatial fusion
in geographical systems, and others. The authors of [Bimonte et al., 2006] defined
aggregation operators that support geographical data in the Spatial OLAP context.

In this section, we present our approach on quality-aware aggregation operators.
The approach integrates data quality in the aggregation operator. This proposal
of quality-aware aggregation operators is based on the multidimensional model
defined in section 5.2 that integrates the data quality aspects.

Mobile sensors are vulnerable to errors and are likely to face points of failure,
which leads to some collected measurements by these sensors that may not be
reliable. Manufacturing defects in a sensor can cause significant disruptions on the
functioning of the sensor and can therefore lead to collected data measurements
by this sensor that are of poor quality. Reliability concerns are brought to question
on the data coming from some sensors due to dissipated power of the sensor
unit [Ergun et al., 2021], and several other causes. Hence, the data aggregation
operators need to be aware of the quality of the data being used. We propose
aggregation operators that could allocate a higher weight to sensors that are more
reliable during a certain period of time. The idea is to give a higher importance
to measurements coming from high-quality sensors and less importance to those
coming from low-quality ones. We illustrate this in the following.

Example 5.3.1. Assume we have 2 data measurements of a given measurable
physical element, such as the level of pollution, from sensors s1 and s2 having
values of 10 and 20 at timestamp tj respectively. Suppose sensor s1 has an assessed
quality score of 0.95, and sensor s2 has a quality score of 0.25 at timestamp tk
that is the closest in time to timestamp tj than other registered quality scores.
If we want to compute the average of the measurements at timestamp tj , the
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conventional average aggregation operator would compute the average of the value
of both values, which is 15. However, if we take quality into account, the value of
the average would be closer to that of the high-quality sensor s1 rather than a value
right in the middle between s1 and s2. Hence, the new value of this aggregation
would be closer to 10 than 15.

In the following subsections, we present our method to compute a global qual-
ity score of the sensor. We also present our quality-aware aggregation operators
extended while taking data quality into account.

5.3.1 . Computing a sensor quality score
This subsection discusses the quality score of a single data measurement

in mobile crowdsensing environments. In Figure 5.2, we have presented the
representation of quality in the multidimensional model. In this section, we discuss
how we could use the model to compute a global quality score of a given sensor
at a specific timestamp.

We consider that the quality of a given measurement is characterized by the
quality score of the sensor that has taken this measurement. This means that
the data measurements have the same quality as the sensors taking them around
the acquisition time. We recall that in our work, we consider that the quality of
the sensor is characterized by some quality factors related to different aspects of
the sensor that are device-related, usage-related, or related to comparison with
reference data.

A data measurement taken by some sensor is associated with the registered
evaluations of the quality factors that are the closest in time to it. This means
that the closest value qvki,j of the quality factor QFk in time, is associated with
the data measurement vi,j .

Figure 5.3: An example of quality assessments of completeness and ac-
curacy of a sensor s1 at different timestamps.

Example 5.3.2. Assume we are interested in the completeness and accuracy
quality factors, and that these two factors have been evaluated according to
the timeline presented in Figure 5.3 Suppose the completeness quality factor of
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sensor s1 has been evaluated at timestamps t1, t3, and t5 with quality values
C1 = 0.2, C3 = 0.85, and C1 = 0.9 respectively. The accuracy factor of the same
sensor is also evaluated at two other timestamps, t2, and t4, with the quality values
A1 = 0.85 and A2 = 0.55 respectively.
The timestamp t3 of the completeness value C2, and the timestamp t4 of the ac-
curacy value A2 are the closest to the timestamp tk of measurement vi,k. Hence,
the completeness value C2=0.2 and the accuracy value A2=0.55 are associated to
measurement vi,k.

This data quality information can be retrieved from the multidimensional data
model using the three tables Sensor, SensorQualityValue, and SensorQualityFactor.
For example, if our multidimensional data model is implemented as a relational
model, we could retrieve the quality values that are the closest to a measurement
taken at a certain timestamp using the following SQL query shown in Figure 5.4.

Figure 5.4: Query to retrieve the closest quality value to the timestamp
of a measurement assuming a relational implementation of our multidi-
mensional model.

Depending on the considered quality goal set, some factors could be relevant
to an aggregation task, and others would not. We assume that the quality values
correspond to the quality factors in a set F = {QF1, . . . , QFn} where n is the
number of chosen relevant quality factors. For some quality goals, the quality
value of a single quality factor could be relevant, and for other quality goals, a set
of selected quality factors could be relevant.

The sensor global quality score is a value that summarizes the quality of a set
of predefined quality factors F . The quality factors in the set F are determined
according to the quality goals of a specific application. If the quality values of the
factors are all normalized, it is possible to compute an aggregate that represents
the global quality score of a single data measurement.

Definition 5.3.1. (Sensor Global Quality Score) Consider a set of quality values
that correspond to the quality factors in a predefined set F = {QF1, . . . , QFn}.
The quality score Qscorei,j of sensor si at timestamp tj is computed as follows.

Qscorei,j(F ) =

n∑
k=1

qvki,j

n
(5.1)
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Where qvki,j is the value of a quality factor QFk of sensor si assessed at a times-
tamp that is the closest to tj considering only the quality values related to a quality
factor in F, n is the number of relevant quality factors.

Example 5.3.3. Consider the sensors s1 and s2 and their quality values presented
in example 5.2.2. The global quality score of both sensors s1 and s2 at timestamp
t3 can be computed as follows:
Qscore1,3 = avg(0.22 + 0.67 + 0.91) = 0.60
and Qscore2,3 = avg(0.85 + 0.4 + 0.73) = 0.66.
Hence, the global quality score of a measurement taken by sensor s1 at timestamp
t3 is 0.6, and the global quality score of a measurement taken by sensor s2 at
timestamp t3 is 0.66.

5.3.2 . Extending existing aggregation operators
Some approaches have proposed extensions of aggregation operators. For

example, the authors of [Bimonte et al., 2006] defined operators for the Spa-
tial OLAP context that support spatial data aggregations. The authors of
[Berrahou et al., 2015] extend existing aggregation operators with data quality
values. During the aggregation, they use the quality values to filter out data
measurements that have a quality value below a certain threshold. Similarly, in this
section, we present our quality-aware approach that extends existing aggregation
operators using the data quality. A quality-aware aggregation operator is one where
the data quality values are considered during the computation of an aggregate.
The idea behind this proposal is to improve the quality of the aggregation results
by taking quality into account. This means that measurements with higher quality
will be assigned higher importance and, thus, weights than those with lower quality.

We propose two different aggregation methods that take data quality into
account. The first method is for the average aggregation operator. The second
method can be applied to any aggregation operator, such as the average, sum, etc.

Weighting-based Aggregation

In this aggregation approach, each measurement is weighted by its quality value.
This would lead to high-quality measurements being assigned a higher weight than
those with lower quality. We consider that the quality of a data measurement is
in fact the global quality score of the sensor taking that measurement evaluated
at the closest timestamp to the time of the measurement. We recall that in our
work, we consider that sensor quality is defined by quality values computed using
device-related, usage-related, and reference-related metrics. The weight is the
global quality score of a measurement that is either computed as the value of a
single factor or as an aggregate of several quality values corresponding to several
quality factors.
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Definition 5.3.2 (Weighting-based Aggregation). The weighting-based aggrega-
tion operator ϕ1 on the set of measurements XN = {v1, . . . , vN} collected by
multiple sensors sk with k = {1, . . . , n} and having the corresponding global qual-
ity scores {Qscore1, . . . , QscoreN} is computed as follows.

ϕ1(XN ) =

∑N
i=1 vi ×Qscorei∑N

i=1Qscorei

Where ϕ1(XN ) is the quality aggregation operator, N is the total number of
measurements, vi is a data measurement, and Qscorei is the global quality score
of data measurement vi.

We illustrate an aggregation of this method with the following example that
shows how quality is integrated into the aggregation.

Example 5.3.4. Consider the measurements collected by sensors s1 and s2 and
their corresponding quality values presented in example 5.2.2. The average levels
of black carbon in the city at a certain timestamp t3 can be computed using quality
aggregation operator. To this end, we aggregate the available measurements from
sensors s1 and s2 at timestamp t3 weighted by their quality:

ϕ1 =
(18× 0.6) + (15× 0.66)

0.6 + 0.66
= 16.4

Filtering-based Aggregation

The work of [Berrahou et al., 2015] uses the data quality to filter out the data
measurements whose quality value falls below a predefined threshold. Likewise, we
propose a filtering-based aggregation operator that filters out the data measure-
ments that have a global quality score that is below a certain predefined threshold
δ. We recall that we consider that the quality score of a data measurement is the
quality score of the sensor taking that measurement.

A quality aggregation operator ϕ2 is an aggregation that uses quality to filter
out the data measurements that have a global quality score below a certain
predefined threshold δ. We define a quality-aware aggregation operator ϕ2 on the
set of measurements XN as follows.

Suppose a set of measurements XN = {v1, . . . , vN} collected by multiple
sensors sk with k = {1, . . . , n} having the corresponding global quality scores
{Qscore1, . . . , QscoreN}.

Definition 5.3.3 (Filtering-based Aggregation). The filtering-based aggregation
operator ϕ2 applied on the set of measurements XN = {v1, . . . , vN} considering
a quality threshold δ and an aggregation function Λ is computed as follows.

ϕ2(XN ) = Λ(vi × fi) where

{
fi = 1 if Qscorei ≥ δ

fi = 0 otherwise
(5.2)
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Where Qscorei is the global quality score of measurement vi, δ is a predefined
threshold, and Λ is an aggregation function, such as max, sum, average, etc.

5.4 . Assessing the quality of an aggregate

We have discussed in the previous sections quality-aware aggregation operators
that take data quality into account. In this section, we discuss our approach to
assess the quality of an aggregate.

Data measurements in a dataset could come from different sensors with
different levels of quality. This implies that some data measurements that the
aggregation is based on, could have very low levels of quality and others very high
ones. This raises the question on the reliability of the aggregate. Providing the
quality of the aggregate along with the aggregated value can help the end users
better characterize the level of trust that can be drawn on these indicators. For
example, assume an aggregate with a very low-quality score, important decisions
would not be made based on this aggregate. Likewise, given an aggregate of a
very high quality, we are more confident in making important decisions based on
this aggregate.

Example 5.4.1. Suppose 2 sets of 5 data measurements each, d1 = {m1, m2,
m3, m4, m5} and d2 = {m6, m7, m8, m9, m10} both measuring the same element
and having the following quality scores respectively {0.1, 0.05, 0.15, 0.11, 0.08}
and {0.9, 0.85, 0.95, 1, 0.88}. This means that in d1, measurement m1 has a
quality score of 0.1. Assume we use the same aggregation operator to aggregate
the values of each set of measurements and obtain 2 aggregates. The quality of
the aggregate resulting from set d1 will be much lower than that of set d2 because
the measurements in set d1 have quality scores that are much lower than those in
set d2.

The idea is to propose an approach that computes the quality of an aggregate
based on the quality of the measurements that have been used to compute it. We
propose an aggregation method that reuses the quality score of each measurement
that was proposed in subsection 5.3.1. The quality of an aggregate depends on
the quality of the underlying measurements.

Suppose a set of measurements XN = {v1, . . . , vN} collected by multiple
sensors sk with k = {1, . . . , n} having the corresponding global quality scores
{Qscore1, . . . , QscoreN}.

Definition 5.4.1. The quality of an aggregate computed by an aggrega-
tion method ϕ(XN ) that computes an aggregate of the set of measure-
ments XN = {v1, . . . , vN} having the corresponding global quality scores
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{Qscore1, . . . , QscoreN}, is computed as follows.

Qϕ(XN ) =

N∑
i=1

Qscorei

N
(5.3)

Where Qscorei is the global quality score of a measurement vi.

Example 5.4.2. Consider the measurements collected by sensors s1 and s2 and
their corresponding quality values presented in example 5.2.2. Assume that the
aggregation operator ϕ computes the aggregate value of the average levels of
black carbon a human is exposed to during timestamps t1 and t2 with a value of
20. The underlying data is composed of a set XN of 4 measurements coming from
sensors s1 and s2 of respective quality values of 0.6 and 0.66 at the time.
According to our proposed evaluation technique, the quality of this aggregate
Qϕ(XN ) is:
sum( 0.6 + 0.6 + 0.66 + 0.66 )/4 = 0.63

5.5 . Conclusion

In this chapter, we illustrated how the data quality can be used to either
compute an aggregate taking quality into account or to assess the quality level of
a given aggregate. We enriched the multidimensional data model by integrating
information about the quality factors and their corresponding quality values at
a given timestamp and for a given sensor. These quality values are recorded at
specific timestamps. The quality of the measurement is determined by the value
that is closest in time to the timestamp of the measurement. We proposed an
aggregation operator that computes a global quality score of a data measurement.

We have also proposed two quality-aware aggregation operators that in-
tegrates the quality of the data during the aggregation. The first operator
is weighting-based that uses the data quality as a weight to compute an
aggregate. The second operator is filtering-based that filters out data mea-
surements according to their quality scores. We also introduce a method to
characterize the quality of an aggregate. This method computes the quality of
computed aggregates by relying on the quality of the measurements that this
aggregate is performed on to help data consumers make quality-informed decisions.

The chapter proposes preliminary ideas in order to implement a quality-based
data analytics pipeline. In future works, it would be interesting take data quality
into account in more complex data manipulations, such as in data mining algo-
rithms and machine learning pipelines.

Moreover, exploring how different stakeholders perceive and prioritize data
quality in decision-making processes would help tailor data analytics pipelines to
meet specific quality-related user needs and preferences.



6 - Conclusions and Perspectives

Data quality issues for sensor data in mobile crowdsensing environments have
recently gained attention and have been addressed by several reseach works. With
the rise of smart cities and connected objects in almost every aspect of our daily
lives, data scientists spend a significant part of their time ensuring a data quality
level suitable for analytics. Numerous recent works have studied quality problems
related to sensor data, and have proposed solutions to assess and improve data
quality. Ensuring good data quality has become a crucial process to accomplish
good-level indicators for decision-making in mobile crowdsensing environments.

In this chapter, we first summarize the contributions of this thesis. We then
present some perspectives and possible directions for future works.

6.1 . Summary of our contributions

In this thesis, we have targeted several major data quality issues in mobile
crowdsensing environments. We first addressed data completeness issues in this
context. We defined a set of quality factors for data completeness suitable for
mobile crowdsensing environments. We then proposed metrics for the evaluation
of the various data completeness factors identified. We have also addressed the
improvement of data completeness, and we proposed a quality-aware data impu-
tation approach based on existing imputation techniques that takes data quality
into account during the generation of the missing values. In the second part of our
work, we have also addressed issues related to the presence of anomalies in sensor
data. To this end, we have designed a quality-aware anomaly detection approach
to better detect pattern anomalies while considering the quality of data in mo-
bile crowdsensing environments. We finally proposed a first contribution towards
quality-aware sensor data analytics. We have proposed quality-aware aggregation
operators and a method to assess the quality of an aggregate.

We have studied the limitations of existing quality factors for mobile crowd-
sensing environments. We proposed three data completeness factors suitable for
this context: sensor completeness, spatial completeness, and temporal complete-
ness. These three factors allow for capturing facets of data that are specific to
mobile crowdsensing environments. We have tested the metrics to evaluate each
of the proposed completeness factors on real data. We introduced the definition
of sensor quality and presented a way to compute a quality score for each sensor.
We also extended three existing data imputation techniques and presented a way
to take into account the quality of the sensors in the generation process in order to
improve the quality of the generated values. We have also evaluated our approach
on real data. The experiments showed that integrating quality helps improve the
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generation of missing values.

We presented a quality-aware anomaly detection approach that uses quality to
compute the anomaly scores of sequences in the time series. We defined anomalies
for mobile crowdsensing environments and identified three types of anomalies. We
presented a novel anomaly score computation based on the quality of the existing
data. We have also incorporated some features about the context in our anomaly
detection approach. The experiments showed that our quality-based approach
achieves a significant improvement in the F1-score and accuracy compared to the
baseline approach. Our approach achieves an F1-score of 0.81 and 0.92 accuracy
compared to 0.41 F1-score and 0.53 accuracy achieved by the baseline approach.

Finally, we have proposed a first step towards quality-aware sensor data an-
alytics. We have defined an approach to compute a global quality score of a
data measurement in mobile crowdsensing environments. The computation of the
quality score can be parameterized by the set of quality factors that have to be
considered, which depends on the specific quality goal of the application. We have
proposed two types of aggregation operators that take data quality into account
while computing the aggregates, a weighting-based operator and a filtering-based
one. Given a computed aggregate, we also propose an assessment method that
evaluates the quality of this aggregate based on the quality of the input data used
in the aggregation.

6.2 . Future works

In this section, we outline the perspectives and propose future directions to
further advance the research in data quality for mobile crowdsensing environments
and explore new opportunities for potential contributions.

In the same way as we have characterized data completeness for mobile crowd-
sensing environments, we could explore other dimensions of data quality which
capture a quality facet that is not covered by existing dimensions. An interesting
dimension in this context is the quality of the information related to the spatial
coordinates of data measurements. Many works have studied positioning tech-
nologies [Evennou, 2007], [Kammoun, 2016]. It would be useful to characterize
the quality of the spatial positioning of data measurements and to and propose
metrics to assess this quality.

The evaluations of the data completeness factors showed that the performance
could vary significantly from one sensor unit to the other. The performance of the
sensors also degrade over time. Another perspective we could explore in future
works is to use our approach to evaluate the quality of the data generated by
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a sensor regularly over intervals of time, then use these evaluations to learn the
pattern of how the quality of sensors change over the time in order to predict the
quality of new coming sensors. We are also interested in studying the impact of
the usage of the sensor by its carrier on the quality of the data generated by this
sensor by studying the quality of sensors from same manufacturer, type, measuring
the same element, and in the same city over a period of time.

To improve the completeness of sensor data, we proposed a quality-aware data
imputation approach that was limited to imputing a single data measurement at
a time in time series. This means that our approach assumed that only one data
measurement would be missing at one timestamp and not a huge chunk of con-
secutive missing values. However, sensors could sometimes blackout and hence,
lose massive chunks of their data. In future works, we would like to study the
imputation of big chunks of data by exploring approaches that exploit nearby sen-
sors while considering the time and the context of this missing data. For example,
if a sensor that was placed inside a metro station loses data of one whole week.
We could explore techniques that leverage data from other nearby sensors that
were inside the metro station at the time of the blackout, and data from other sen-
sors that captured the same element at metro station to generate the missing data.

In order to detect anomalies for massive amounts of data due to the rise of
smart cities and the proliferation of mobile sensors in MCS environments, one op-
portunity that we can investigate is efficient and scalable anomaly detection. In
order to cope with the scalability problems posed by massive datasets such as the
computational complexities on the anomaly detection models or the processing
time, we could leverage distributed computing. One way is to extend our anomaly
detection approach by parallelizing the processing of the different steps on dis-
tributed machines in order to handle bigger datasets in less time.

Finally, we have proposed in chapter 5 two different quality-aware aggregation
operators. It would be interesting to investigate automated generic aggregation
operators that could be customized and instantiated according to different prefer-
ences of the users. For example, if the user stores information about their quality
goals and preferences, the generic aggregation operators would automatically take
the quality preferences of this user profile, set the relevant quality factors to the
quality goals, and integrate their values in the aggregation accordingly.





A - Further Evaluations of Data Complete-
ness

In this chapter, we present the remainder of the results performed for improving
data completeness in chapter 3. The datasets and the methodology of the experi-
ments were presented in chapter 3. We present the results of our experiments on
both extended techniques SVDImpute and ST-MVL proposed to generate missing
values. For ST-MVL, we only present the results of the sub-techniques of this
approach.

Results of SVDImpute extension on both datasets for filtering using
quality-above-threshold

Table A.1: Results of Quality above threshold 0.55 for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 30% 64% 6% 23.5
[100, 0, 0] 23% 18% 59% 9.6
[0, 100, 0] 60% 27% 13% 1.6
[0, 0, 100] 34% 51% 15% 18.7
[60, 20, 20] 36% 24% 38% 2.3
[20, 60, 20] 67% 31% 2% 8.3
[20, 20, 60] 37% 60% 3% 24.1
[40, 40, 20] 41% 39% 20% 16.8
[40, 20, 40] 28% 64% 8% 23.1
[20, 40, 40] 49% 50% 1% 13.3

Table A.1 shows the results of the filtering method of SVDImpute considering
only sensors above the threshold of 0.55 on dataset 1. The weight configuration
[20,60,20], mainly highlighting the sensor completeness facet showed the best im-
provement results with 67% also validated by the weight configuration [0,100,0]
that also shows 60% improvement, a relatively high improvement percentage. The
[20,60,20] and [0,100,0] weight configurations showed 31% and 27% worsening
percentages with RMSE of 8.3 and 1.6 respectively, indicating that the error dif-
ference between the generated value with our extension and the actual value is not
huge despite being less accurate than that generated with the baseline approach.
The two weight configurations also showed 2% and 13% of unchanged measure-
ments respectively.

Both [33,33,34] and [40,20,40] weight configurations showed the worst results
of 64% of worsened values with, respectively, 23.5 and 23.1 RMSE error metric

161



162 APPENDIX A. FURTHER EVALUATIONS OF DC

values.

The weight configuration [20,20,60] shows a 60% of worsened values, which
is also a high percentage. This weight configuration gives the major importance
to the third facet which is the correlations from the comparison with reference
data. This may indicate that for this quality threshold (0.55), the third facet in
combination with the other facets induce poor results.

For the weight configuration [0,0,100], keeping only the third facet, 51% of
the measurements were worsened. This means that for this weight configuration,
keeping only sensors with a quality threshold above 0.55, almost 50% of the values
were worse with our extensions.

The wight configuration [100,0,0] shows the most unchanged measurements
percentage with a value of 59% meaning the IPI index alone does not have a huge
impact on the improvement of the performance of the technique.

The rest of the weight configurations highlighting the IPI index [60,20,20], or
the IPI index and the sensor completeness equally [40,40,20], showed slightly more
improved values than worsened ones.

Table A.2: Results of Quality above threshold 0.65 for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] - - - -
[100, 0, 0] 25% 13% 62% 7343
[0, 100, 0] - - - -
[0, 0, 100] 40% 57% 3% 19.5
[60, 20, 20] 55% 43% 2% 12.3
[20, 60, 20] 62% 36% 2% 6.3
[20, 20, 60] 44% 53% 3% 20
[40, 40, 20] 53% 47% 0% 5.5
[40, 20, 40] 41% 57% 2% 21.2
[20, 40, 40] 50% 48% 2% 6.6

Table A.2 shows the results of the filtering method of SVDImpute considering
only sensors above the threshold of 0.65 on dataset 1. The weight configurations
[33,33,34] and [0,100,0] have no data because, for these weight configurations, ex-
tended SVDImpute does not have measurements from sensors with quality above
the 0.65 threshold.
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The weight configuration [20,60,20] showed the best result with 62% improved
measurements. It also had 36% of measurements worsened with RMSE 6.3 and
2% of unchanged measurements. This means that giving sensor completeness the
bigger weight increases the percentage of improved values.

The two weight configurations [0,0,100] and [40,20,40] show the worst results
with 57% worsened values. We notice that for both configurations, the sensor
completeness facet was either zero or assigned the smallest weight. These config-
urations also show 41% and 40% of improved values respectively, and 3% and 2%
of unchanged values.

The weight configuration [100,0,0] has the biggest unchanged measurements:
62%. Yet, it produced more improved measurements than worsened with 25%
improved and 13% worsened. This weight configuration gives major importance
to IPI index, which is the quality facet that evaluates the sensors at the beginning
of the campaign, so the big unchanged measurements percentage may mean here
that this facet alone does not have a great impact on the technique.

Table A.3: Results of Quality above threshold 0.75 for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] - - - -
[100, 0, 0] 37% 62% 1% 6.6
[0, 100, 0] - - - -
[0, 0, 100] - - - -
[60, 20, 20] - - - -
[20, 60, 20] - - - -
[20, 20, 60] - - - -
[40, 40, 20] - - - -
[40, 20, 40] - - - -
[20, 40, 40] - - - -

Table A.3 shows the results of the filtering method of SVDImpute considering
only sensors above the threshold of 0.75 on dataset 1. For this experiment, we
notice that only the weight configuration [100,0,0] has data, meaning that all the
others did not have sensor measurements with quality above the 0.75 threshold.
This weight configuration is [100,0,0], which resulted in 62% of the values wors-
ened, 6.6 RMSE value, 37% improved, and 1% of the values remained unchanged.

Table A.4 shows the results of the filtering method of SVDImpute considering
only sensors above the threshold of 0.45 on dataset 2. The percentage of improved
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Table A.4: Results of Quality above threshold 0.45 for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 26% 14% 60% 697.9
[100, 0, 0] 25% 13% 62% 750.9
[0, 100, 0] 42% 17% 41% 627179
[0, 0, 100] 51% 38% 11% 12.8
[60, 20, 20] 26% 13% 61% 101.4
[20, 60, 20] 19% 12% 69% 181.8
[20, 20, 60] 45% 37% 18% 435976
[40, 40, 20] 26% 14% 60% 247986
[40, 20, 40] 44% 30% 26% 174.3
[20, 40, 40] 43% 32% 25% 10.7

measurements is greater than that of worsened for all the 10 experimented weight
configurations. As there are a lot more data in this dataset, there are more spike
values from the sensors resulting in an amplified RMSE value.

The best improvement result is produced by the weight configuration [0,0,100],
where the major importance is given to the facet of sensor quality that compares the
measurements from the sensors to reference data. 38% of the measurements were
worsened with this configuration with an RMSE value of 12.8. This configuration
resulted in the highest worsened number of measurements.

Table A.5: Results of Quality above threshold 0.55 for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 45% 38% 17% 8.1
[100, 0, 0] 25% 13% 62% 1.7
[0, 100, 0] 42% 17% 41% 162612
[0, 0, 100] 48% 42% 10% 12.5
[60, 20, 20] 26% 14% 60% 117.7
[20, 60, 20] 48% 31% 22% 254050
[20, 20, 60] 50% 41% 9% 13.2
[40, 40, 20] 44% 31% 25% 10.6
[40, 20, 40] 44% 39% 17% 1650
[20, 40, 40] 49% 36% 15% 86.3

Table A.5 shows the results of the filtering method of SVDImpute considering
only sensors above the threshold of 0.55 on dataset 2. The percentages of improve-
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ment were higher than those worsened for all the 10 studied weight configurations.
However, there is no major difference between the percentages of the values that
improved and those that worsened.

The best improvement result achieved with the weight configuration [20,20,60]
is 50%, where the correlations from the comparison with reference data are given
the highest importance. At the same time, it has almost the highest rate of wors-
ened measurements, yet the number of improved values is still higher than those
worsened. The RMSE value is 13.2, which is also relatively not high.

The highest percentage of worsened value is achieved in the weight configura-
tion [0,0,100]. The RMSE is 12.5, which is relatively not high.

The two weight configurations [100,0,0] and [60,20,20] which either take only
the IPI index facet or give the IPI index the greatest importance, show the highest
percentage of unchanged measurements 62% and 60% respectively, indicating that
this facet, once more, does not have a huge impact on the technique.

Table A.6: Results of Quality above threshold 0.75 for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] - - - -
[100, 0, 0] 55% 39% 6% 7.3
[0, 100, 0] - - - -
[0, 0, 100] - - - -
[60, 20, 20] - - - -
[20, 60, 20] - - - -
[20, 20, 60] - - - -
[40, 40, 20] - - - -
[40, 20, 40] - - - -
[20, 40, 40] - - - -

Table A.6 shows the results of the filtering method of SVDImpute considering
only sensors above the threshold of 0.75 on dataset 2. Only the [100, 0, 0] weights
set configuration has results for this quality threshold. It shows 55% improvement
and 39% with a 7.3 RMSE error value. Even though more measurements were
improved with our approach than worsened, the worsened percentage is relatively
high.
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Table A.7: Results of Top 50% sensors for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 61% 30% 9% 7.3
[100, 0, 0] 53% 37% 10% 7.3
[0, 100, 0] 62% 28% 10% 3.7
[0, 0, 100] 57% 33% 10% 11.2
[60, 20, 20] 63% 27% 10% 8.3
[20, 60, 20] 64% 25% 11% 4.2
[20, 20, 60] 60% 30% 10% 8.2
[40, 40, 20] 62% 27% 11% 4.2
[40, 20, 40] 61% 30% 9% 7.9
[20, 40, 40] 61% 27% 12% 8.2

Results of SVDImpute extension on both datasets for filtering using
50% top-quality sensors

Table A.7 shows the results of the filtering method of SVDImpute consider-
ing only top 50% sensors on dataset 1. In this experiment, we also observe high
improvement percentages as with the top 40% sensors for this setting. Most of
the weight configurations show 60% and above improved values. The worsened
percentages range between 25% and 30%.

The two weight configurations [100, 0, 0] and [0, 0, 100] are the only configu-
rations with improved values less than 60%.
The weight configuration with best improved values is once again [20, 60, 20] giv-
ing the most importance to the sensor completeness facet.

Table A.8 shows the results of the filtering method of SVDImpute considering
only top 70% sensors on dataset 1. Generally, our extension works worse with all
the weight configurations in this experiment than the previous two percentages
40% and 50$ because most of the weight configurations lead to less than 60%
improved values. However, the weight configuration [20, 60, 20] has the highest
improved values: 65%. The second best set of weights are [0, 100, 0] with only
sensor completeness facet, and [20, 40, 40]; with weights distributed evenly between
sensor completeness and correlation coefficients and a less weight given to IPI index.

The worsened values achieved by the different weight configurations ranged
between 18% with [20, 40, 40] weight configuration and 37% for the weight con-
figuration [0, 0, 100].
The unchanged values were in the same range for all the weight configurations
ranging between 11% and 19%.
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Table A.8: Results of Top 70% sensors for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 54% 33% 12% 9.7
[100, 0, 0] 46% 28% 16% 10.2
[0, 100, 0] 63% 24% 14% 28.3
[0, 0, 100] 47% 37% 16% 13
[60, 20, 20] 56% 32% 12% 10
[20, 60, 20] 65% 22% 13% 5
[20, 20, 60] 52% 36% 12% 12.9
[40, 40, 20] 62% 23% 15% 7.2
[40, 20, 40] 53% 36% 11% 12.7
[20, 40, 40] 63% 18% 19% 9.5

Table A.9: Results of Top 90% sensors for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 51% 30% 19% 11.3
[100, 0, 0] 45% 32% 23% 165.7
[0, 100, 0] 55% 28% 17% 23.3
[0, 0, 100] 46% 35% 19% 14.4
[60, 20, 20] 51% 29% 20% 11.2
[20, 60, 20] 55% 26% 19% 6.3
[20, 20, 60] 48% 33% 19% 14.1
[40, 40, 20] 58% 22% 20% 6.1
[40, 20, 40] 50% 29% 21% 13.6
[20, 40, 40] 50% 32% 18% 11.8

Table A.9 shows the results of the filtering method of SVDImpute considering
only top 90% sensors on dataset 1. All of the achieved improved values by the dif-
ferent weight configurations range between 45% and 58%; 58% being the highest
with the weight configuration [40, 40, 20].

The percentage of unchanged measurements was the highest at 23% for the
[100, 0, 0] weight configuration.
The range of the values worsened almost remains the same among the different
weight configurations. This indicates that for 90% of the top performing sensors,
which is almost all the sensors there is, more values remain unchanged while less
values are improved. This conclusion makes sense as 90% of top performing sensors
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is not too far away from 100% which is the baseline approach.

Table A.10: Results of Top 40% sensors for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 53% 27% 20% 24.1
[100, 0, 0] 53% 29% 18% 23.6
[0, 100, 0] 50% 28% 22% 23.7
[0, 0, 100] 52% 28% 20% 24.4
[60, 20, 20] 53% 27% 20% 24.8
[20, 60, 20] 51% 29% 20% 23.5
[20, 20, 60] 52% 28% 20% 24.3
[40, 40, 20] 52% 27% 21% 23.5
[40, 20, 40] 54% 26% 20% 25.2
[20, 40, 40] 55% 25% 20% 191610

Table A.10 shows the results of the filtering method of SVDImpute considering
only top 40% sensors on dataset 2. The range of improved values is small for this
experiment as it ranges between 51% and 55% only. This means that the different
weight configurations studied had a similar impact on the technique with small
differences.

Generally, more improvement was done to the measurements imputation than
worsened. However, the worsened percentage is relatively comparable to that
improved ones where it ranged between 15% and 28%.

Table A.11: Results of Top 50% sensors for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 52% 26% 22% 3.8
[100, 0, 0] 51% 28% 21% 23.2
[0, 100, 0] 51% 26% 23% 16792498
[0, 0, 100] 50% 28% 23% 25.9
[60, 20, 20] 51% 26% 23% 25.8
[20, 60, 20] 50% 27% 23% 26
[20, 20, 60] 51% 24% 25% 25.7
[40, 40, 20] 52% 22% 26% 25.9
[40, 20, 40] 52% 20% 28% 25.6
[20, 40, 40] 60% 15% 25% 19.1
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Table A.11 shows the results of the filtering method of SVDImpute considering
only top 50% sensors on dataset 2. The achieved percentage of improved values
were almost the same between the top 40% and top 50% for this data setting,
except for the weight configuration [20, 40, 40] which shows 60% of improved values
of the measurements. Only 15% of the measurements are worsened for this weight
configuration and 25% of the measurements remained unchanged.

The percentages of unchanged measurements slightly rose from selecting top
40% to top 50% and the percentages worsened slightly diminished.

Table A.12: Results of Top 90% sensors for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 42% 17% 41% 100.2
[100, 0, 0] 41% 19% 40% 35.9
[0, 100, 0] 42% 16% 42% 96
[0, 0, 100] 40% 19% 41% 120.7
[60, 20, 20] 42% 17% 41% 196456767
[20, 60, 20] 43% 17% 40% 112.2
[20, 20, 60] 40% 18% 42% 97.3
[40, 40, 20] 43% 17% 40% 140.4
[40, 20, 40] 41% 18% 41% 111.2
[20, 40, 40] 44% 18% 38% 114

Table A.12 shows the results of the filtering method of SVDImpute considering
only top 90% sensors on dataset 2. As we take top 90% performing sensors, which
is close to 100% which is the baseline approach, we notice that the improved and
unchanged values are almost the same in most of the weight configurations.
The percentages of the worsened values are relatively low, ranging between 17%
and 19% compared to improved values ranging between 40% and 44%.

Results of ST-MVL sub-techniques

Table A.13 shows the results of the evaluation of the proposed extension of
IDW, a sub-technique of ST-MVL, on dataset 1. The four different weight config-
urations [0, 100, 0], [20, 60, 20], [40, 40, 20] and [20, 40, 40] show 70% of improved
values. These weight configurations mainly focus the majority of the weight on
the sensor completeness facet.

The weight configuration [100, 0, 0] showed the worst results where it produced
only 16% of the measurements improved while 69% of them were worsened. It also
shows 15% of them remained unchanged. The weight configuration [0, 0, 100] also
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Table A.13: Results of IDW for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 68% 18% 14% 4.7
[100, 0, 0] 16% 69% 15% 5.1
[0, 100, 0] 70% 17% 13% 3.5
[0, 0, 100] 43% 44% 13% 5.2
[60, 20, 20] 66% 19% 15% 4.8
[20, 60, 20] 70% 16% 14% 4.2
[20, 20, 60] 59% 27% 14% 4.8
[40, 40, 20] 70% 17% 13% 4.6
[40, 20, 40] 60% 25% 15% 4.9
[20, 40, 40] 70% 17% 13% 4.5

shows poor results with 44% of the measurements worsened and 43% improved.

When taking only one facet at a time, the sensor completeness is the only
facet that shows good results. The other two facets show poor results when taken
alone. The percentages of measurements unchanged are generally below 16%.

Table A.14: Results of IDW for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 36% 25% 39% 42.2
[100, 0, 0] 28% 30% 42% 40.1
[0, 100, 0] 30% 30% 40% 35.9
[0, 0, 100] 31% 19% 50% 50.9
[60, 20, 20] 34% 25% 41% 41.2
[20, 60, 20] 34% 7% 59% 40.2
[20, 20, 60] 33% 19% 58% 45.5
[40, 40, 20] 37% 6% 57% 40.6
[40, 20, 40] 33% 6% 61% 43.3
[20, 40, 40] 35% 6% 59% 43

Table A.14 shows the results of the evaluation of the proposed extension of
IDW, a sub-technique of ST-MVL, on dataset 2. The improvement values of IDW
for dataset 2 is low with a highest improvement value of 37%. The percentages
range between 28% and 37%. However, only 6% of the measurements were wors-
ened and 57% remained unchanged, which means a significant number of the
measurements were not affected with the extension.
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The worsened measurements range between 6% and 30%. Hence, even though
our extensions did not show high improvement percentages, they showed a little
worsening of the measurements with most of the weight configurations.

Table A.15: Results of UCF for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 10% 90% 0% 3.1
[100, 0, 0] 15% 84% 1% 2.4
[0, 100, 0] 8% 92% 0% 3.5
[0, 0, 100] 7% 93% 0% 3.5
[60, 20, 20] 11% 89% 0% 2.3
[20, 60, 20] 8% 92% 0% 3.3
[20, 20, 60] 8% 92% 0% 3.3
[40, 40, 20] 10% 90% 0% 3
[40, 20, 40] 10% 90% 0% 3
[20, 40, 40] 8% 92% 0% 3.2

Table A.15 shows the results of the evaluation of the proposed extension of
UCF, a sub-technique of ST-MVL, on dataset 1. UCF mostly performed poorly
for this data setting with more than 90% of measurements worsened on average
for all the weight configurations studied.

The percentages of improvement are insignificant with a highest recorded value
of 15% by the [100, 0, 0] weight configuration. The unchanged measurement are
almost zero for this experiment.

Even though around 90% of the measurements were worsened for this setting,
the RMSE error is very small. This shows that the imputation value by our exten-
sion was slightly further than the actual one than baseline approach.

Table A.16 shows the results of the evaluation of the proposed extension of
UCF, a sub-technique of ST-MVL, on dataset 2. This technique performed better
for dataset 2 than for dataset 1. Nevertheless, the improvement percentages were
still less than those worsened. The improvement percentages ranged between 39%
and 44% for weight configurations [0, 0, 100] and [0, 100, 0] respectively.

The highest improvement achieved considered one facet only, which is the
sensor completeness with the weight configuration [0, 100, 0]. However, this con-
figuration had 54% of the measurements worsened which is high in comparison
with the improved measurements. The highest worsening percentage achieved was
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Table A.16: Results of UCF for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 42% 56% 2% 19.9
[100, 0, 0] 43% 55% 2% 19.8
[0, 100, 0] 44% 54% 2% 20
[0, 0, 100] 39% 56% 5% 20.1
[60, 20, 20] 43% 53% 4% 19.9
[20, 60, 20] 42% 53% 5% 19.9
[20, 20, 60] 41% 55% 4% 20
[40, 40, 20] 43% 53% 4% 19.9
[40, 20, 40] 41% 54% 5% 19.9
[20, 40, 40] 42% 54% 4% 20

with the [0, 0, 100] weight configuration whose improvement percentage was the
lowest.

Table A.17: Results of ICF for dataset 1.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 19% 18% 63% 1.3
[100, 0, 0] 7% 10% 83% 1.3
[0, 100, 0] 32% 29% 39% 1.2
[0, 0, 100] 32% 32% 36% 1.3
[60, 20, 20] 12% 14% 74% 1.3
[20, 60, 20] 24% 22% 54% 1.3
[20, 20, 60] 26% 25% 49% 1.3
[40, 40, 20] 18% 17% 65% 1.3
[40, 20, 40] 20% 19% 61% 1.3
[20, 40, 40] 22% 24% 54% 1.2

Table A.17 shows the results of the evaluation of the proposed extension of
ICF, a sub-technique of ST-MVL, on dataset 1. The highest improvement percent-
age achieved was 32% with both weight configurations [0, 100, 0] and [0, 0, 100].

The high percentage of the measurements in this experiment remained un-
changed with our extensions for this sub-technique. The unchanged measurements
percentage reached 83% for the weight configuration [100, 0, 0].

Table A.18 shows the results of the evaluation of the proposed extension of
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Table A.18: Results of ICF for dataset 2.
Weights% Improved Worsened Unchanged RMSE
[33, 33, 34] 22% 25% 53% 28.3
[100, 0, 0] 14% 23% 63% 28.3
[0, 100, 0] 26% 25% 49% 28.3
[0, 0, 100] 34% 35% 31% 28.3
[60, 20, 20] 18% 21% 61% 28.3
[20, 60, 20] 22% 22% 56% 28.3
[20, 20, 60] 28% 21% 41% 28.3
[40, 40, 20] 19% 22% 58% 28.3
[40, 20, 40] 23% 27% 50% 28.3
[20, 40, 40] 25% 25% 50% 28.3

ICF, a sub-technique of ST-MVL, on dataset 2. The improved measurements
percentages varied slightly for dataset 2 from that datasest 1 with an insignificant
improvement for this setting. The unchanged measurements percentages remain
relatively high for almost more than 50% with all the weight configurations.

Summary of the results of the extensions of the sub-techniques of ST-MVL
Our extension not having an impact on IDW for dataset 2 may indicate that even
though the technique gives better results, in this case when neighboring sensors
are ensured to exist in close proximity and similar indoor environment, which is
dataset 1, our extensions can still show significant percentages of improvement.

SES technique relies on time-neighboring measurements from the same sensor,
so enriching this technique with sensor quality was inapplicable as the data comes
from the same sensor with the missing measurement.

Unlike the other studied techniques, UCF performed very poorly on dataset 1
and slightly better with dataset 2. With ICF extension, we notice higher percent-
ages of unchanged values for both data settings.
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