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Résumé : Les ondes élastiques guidées émises
et reçues par des transducteurs piézoélectriques
minces sont reconnues comme une technologie
prometteuse pour plusieurs applications de sur-
veillance de l’état de santé des structures (ou
Structural Health Monitoring - SHM), en particu-
lier pour les composants aérospatiaux. La démons-
tration des performances de ces systèmes, souvent
exprimées en termes de courbe de probabilité de
détection (POD), est un élément clé du déploie-
ment réussi de cette technologie dans l’industrie.
La détermination expérimentale de la courbe POD
nécessite de nombreux échantillons instrumentés,
ce qui rend son coût prohibitif. Une approche ba-
sée sur la simulation, ou assistée par un modèle,
est une alternative intéressante. Cependant, la si-
mulation de systèmes SHM basés sur les ondes gui-
dées et la détermination de la courbe POD de tels
systèmes sont jusqu’à présent limitées en raison
d’un manque de méthodologie spécifique, de pro-
cédures, de méthodes statistiques appropriées et
de validation.

Cette thèse propose une méthodologie géné-
rale pour une approche POD assistée par la simu-
lation de système SHM par ondes guidées, avec
une démonstration sur la surveillance d’une fissure
croissante à partir d’un trou dans une plaque d’alu-
minium. La méthodologie tire parti de l’outil de si-
mulation par éléments finis spectraux transitoires
dans le domaine temporel développé au CEA-List
(module CIVA SHM) qui permet d’exécuter les
grandes campagnes de simulation nécessaires pour

déterminer une courbe POD.

Un nouveau modèle d’actionneur hybride a été
proposé dans ce travail en considérant le compor-
tement dépendant de la fréquence du transducteur
et la contrainte normale en plus de la contrainte ra-
diale comme charges surfaciques afin de permettre
l’utilisation de la simulation sur une plus grande
gamme de fréquences d’excitation, adaptées à l’ap-
plication visée. Deux méthodes récentes et appro-
priées d’un point de vue statistique : la length-at-
detection et random effects, ont ensuite été adap-
tées pour estimer et comparer la courbe POD à
partir des ensembles de données expérimentales et
simulées. L’approche bayésienne s’est avérée plus
utile que l’estimation du maximum de vraisem-
blance pour l’estimation des paramètres du modèle
de la méthode random effects afin de comparer la
limite d’incertitude pour chaque paramètre du mo-
dèle à partir des ensembles de données expérimen-
tales et simulées. Enfin, une étude de détermina-
tion de la taille de l’échantillon a été menée sur la
base de la méthode random effects afin d’identifier
le nombre d’échantillons nécessaires pour répondre
aux exigences d’une application SHM particulière.

Tous ces résultats montrent une grande
confiance dans l’approche assistée par la simula-
tion pour l’estimation de la POD et confirment le
potentiel de cette solution en tant qu’outil com-
patible avec les exigences industrielles pour la dé-
monstration des performances des systèmes SHM
basés sur les ondes guidées.
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Abstract : Guided elastic waves emitted and re-
ceived by thin piezoelectric transducers are reco-
gnized as a promising technology for several appli-
cations of Structural Health Monitoring, especially
for aerospace components. Demonstration of the
performances of such systems, often expressed in
terms of Probability Of Detection (POD) curve, is
a key enabler of the successful deployment of the
technology in industry. POD curve experimental
determination requires many instrumented samples
making its cost prohibitive. A simulation-based ap-
proach, or model-assisted, is an attractive alterna-
tive. However, simulation in guided waves based
SHM and POD determination of such systems are
so far limited due to a lack of specific methodo-
logy, procedures, appropriate statistical methods,
and validation.

This thesis proposes a general methodology for
a model-assisted POD approach of guided waves
based SHM, with a demonstration of monitoring a
growing crack from a hole in an aluminum plate.
The methodology benefits from the efficient time
domain transient spectral finite element simulation
tool developed at CEA-List (CIVA SHM module)
that allows running the large simulation campaigns
required to determine a POD curve.

A new hybrid actuator model has been pro-
posed in this work by considering the transducer
frequency-dependent behavior and normal stress in
addition to radial stress as surface loads to enable
the use of simulation on a higher range of exci-
tation frequencies, suitable for the targeted appli-
cation. Two recent suitable statistical methods :
length-at-detection and random effects, have then
been adapted to estimate and compare the POD
curve from both experimental and simulated data-
sets. The Bayesian approach is found to be more
useful in model parameter estimation of random ef-
fects method for comparing the uncertainty bound
for each model parameter from experimental and
simulated datasets than Maximum Likelihood Esti-
mation. Finally, a sample size determination study
has been conducted based on the random effects
method to identify how many samples are required
to achieve the requirement of a particular SHM
application.

All these results show great confidence in the
model-assisted approach to POD estimation me-
thodology and confirm the potential of this solu-
tion as a cost-effective tool for performance de-
monstration of guided waves based SHM systems.
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1.1 Introduction
Recent advances in new materials and manufacturing, such as additive manufacturing
and composites, are improving automobile, aerospace, and nuclear engineering structures.
These advances ensure that the built structures are safe and deliver maximum service life.
However, every day these structures encounter various hostile working environments and
loading conditions (e.g., corrosion, fatigue, aging...) that may degrade their service life
and operational performance. These degradations sometimes lead to unexpected structural
failures due to prolonged service. For example, the structural failure in the De Havilland
Comet that crashed in 1954 was due to fatigue [1]. Most recently, the Polsevera Viaduct
(Genoa, Italy) cable-stayed concrete bridge collapsed in 2018 due to the combined effects of
corrosion and fatigue [2], and the 2004 gas pipeline explosion in Ghisleghion, Belgium, was
caused by a leak in the pipeline [3]. Several similar accidents have been reported due to the
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structural failure resulting in heavy financial losses as well as many casualties. Therefore,
maintenance of critical infrastructures is essential to avoid such undesirable circumstances
and guarantee that an engineering structure safely performs over a designed service period.

In aerospace industry, as in other industrial sectors, maintenance also plays an im-
portant role in operating costs, as it directly affects economic benefits, depending on the
nature and purpose of maintenance work and its frequency [4]. Maintenance aims to pre-
serve engineering structures in an operational condition by either preventing the transition
to a failed state or restoring them following a failure by servicing, repairing, or replacing
the required components. Maintenance costs involve not only the direct costs of the main-
tenance crew, repairs, and parts replacement, but also indirect costs such as unexpected
maintenance costs due to sudden downtime of engineering structures (e.g., delay in flights),
causing larger inconvenience to the users. Based on cost-effectiveness, maintenance strate-
gies have evolved from corrective to preventive maintenance over the past several decades.
Corrective maintenance, also named fault based detection, means this maintenance activ-
ity becomes engaged after damage or failure happens in the structure. Whereas preventive
maintenance, also named time based detection, is carried out at predetermined intervals,
in which structural components are timely replaced, despite remaining useful life. At
present, inspection-based maintenance has become more prevalent, commonly known as
nondestructive evaluation (NDE) or nondestructive techniques (NDT), to inspect and
maintain these engineering structures. More precisely, these techniques evaluate the in-
tegrity of a structural component at predetermined intervals to provide a red/green signal
for repairing and replacing activities. Many NDE techniques are currently functionally and
routinely applied in industries, including, but not limited to, visual inspection, magnetic
testing, liquid penetrant, eddy current, radiography, and ultrasonic testing [5]. Based on
their application, these techniques are currently the primary approach for damage detec-
tion of aerospace structures (and also in other industrial sectors) with a lower replacement
cost and better spare inventory management than preventive maintenance [6]. Despite
their extensive uses in industries, most NDT techniques are offline (inspection in the lab-
oratory or plant) and schedule-based, which means that inspections are planned based on
running hours of a structure or on specified dates, resulting in high maintenance costs
with many human interventions. For example, American Airlines maintenance and repair
costs are around 25% of its operating costs to keep the structure running due to scheduled
maintenance [7]. Furthermore, these costs further increase rapidly as the aircraft structure
ages due to additional tasks to perform for the airworthiness certificate given by regulatory
authorities like FAA (Federal Aviation Administration) and EASA (European Union Avi-
ation Safety Agency). Sometimes unanticipated failures also lead to higher maintenance
costs in NDT-based inspections due to the non-availability of spare parts or tight plant
schedules.

In recent years, the number of commercial flights has proliferated, increasing the com-
plexity of maintenance strategy and task scheduling. Hence, maintenance costs are re-
quested to decrease, and the service level (rate of the flights on time) is expected to
increase. Therefore, the aerospace industry is increasingly interested in condition-based
maintenance/monitoring to perform cost-effective maintenance. This requirement has
given rise to a new NDE approach called structural health monitoring (SHM) with the
help of recent advance in sensors technology, embedded electronic instruments, and signal
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processing [8–10]. This approach is envisaged as a damage prognosis system that would
provide a real-time structure’s health information and, ultimately, predicts the engineering
structure’s remaining useful life while they are in service. It promises cost savings over
schedule-based inspections, as monitoring will be done only when and where it is needed.
This would help to perform maintenance at a scheduled time when the maintenance activ-
ity is most cost-effective but before the structure fails in service. Ideally, the SHM system
would keep the operational structure’s reliability and maintenance costs constant over the
years with reducing downtime and the safety of users.

1.1.1 SHM System, techniques, and application examples
A typical SHM system consists of a sensor network permanently integrated or embedded
in the structure for data acquisition with a few central processing units to assess structural
health [11–13]. This system uses analyzed historical trends with real-time recorded sensor
data to continuously evaluate the current structure’s health and raise the alarm whenever
an operational structure suffers a malfunction or is damaged. The primary function of
sensors is to transform structure states, such as damage, load, and temperature, into
corresponding sensing signals to monitor structural health. As described by Rytter [14],
an SHM system can ensure four levels of a damage assessment scale for an operational
structure. Level 1 and Level 2 give information about the damage presence and location
in the structure, respectively. Whereas Level 3 provides classification and quantification
of damage (e.g., damage size), and the final Level 4 provides a prognosis for the remaining
useful life of the structure. Each level requires information about a lower level, which
means that subsequent levels contain more information about the damage.

Over the past two decades, numerous SHM techniques have been researched and de-
veloped based on either the global (assess the state of the entire structure) or the local
(monitoring a specific part of a structure) interrogation of the structure [15, 16]. Types
of SHM techniques entirely depend on a measurement of the physical effects and type of
sensors, i.e., optical fibers, piezoelectric materials, and air/vacuum galleries, used to mon-
itor the structure’s health [17]. Based on the monitoring objectives, SHM techniques can

Damage

Sensor Sensor

Actuator Sensor

Data acquisition Central processing

Monitored structure

(a) Active

Damage

Sensor Sensor

Sensor Sensor

Data acquisition Central processing

Monitored structure

(b) Passive

Figure 1.1: Types of damage monitoring.

generally be classified into operational and damage monitoring. Operational monitoring
refers to the indirect assessment of the health status of a structure using measurements of
operational and environmental parameters (e.g., pressure, temperature, vibration, stress,
strain, and loading), whereas damage monitoring refers to the direct measurement of dam-
age (e.g., cracks, delamination) in the structure which can be viewed as an embedded NDT
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system. Furthermore, the damage monitoring-based SHM system can be passive or active
depending on how the sensor works during the damage assessment. An active damage
monitoring uses a diagnostic input signal, i.e., an actuation signal, through a signal gener-
ator to excite the structure by activating one sensor or all sensors sequentially. At the same
time, other remaining sensors simultaneously use the data acquisition devices to record
the propagating damage interacted signals in the structure, as shown in Figure 1.1(a). In
contrast, under passive damage monitoring, all structural sensors only record the stress
waves emanating from cracks, fiber breakage, and expansion of the matrix cracking, i.e.,
no need for diagnostic input, as shown in Figure 1.1(b). Many operational monitoring
techniques have been studied for a long time and are relatively more mature than damage
monitoring. The maturity, development, rank, and rate of evolution of SHM techniques
are estimated based on Technology Readiness Levels (TRL) from 1 to 9, with 1 being the
least and 9 being the most mature technology (similar to NASA TRL metric), as described
by Roach and Neidigk [18]. Currently, most SHM techniques lie between 3 to 5 TRL (in
the development phase), while some SHM techniques have reached TRL 8 (ready to use).

Test object

Air galleries Vacuum galleries 

CVM sensor

Damage

Flow meter

Vacuum pump

Figure 1.2: Schematic of comparative vacuum monitoring.

For example, one of the highest SHM TRL in aerospace is Comparative Vacuum Moni-
toring (CVM), which uses a sensor pad consisting of air/vacuum galleries, i.e., a pattern of
alternating vacuum and atmospheric pressure galleries, as shown in Figure 1.2. Vacuum
galleries maintain lower pressure with the help of a pump, while a flowmeter measures
pressure in vacuum galleries. Whenever a crack initiates/propagates under the sensor,
the pressure in vacuum galleries increases due to air leakage from atmospheric pressure
galleries. This indicates a crack in structure based on the differential pressure between
the recorded baseline and current pressure in the flowmeter. It was first installed and
successfully tested in 2002 as part of a test program on a US Navy H-53 helicopter [19].
This technique provided the structure health in 5 minutes without any requirement of dis-
assembling the structural parts. While in old conventional methods, where disassemble,
inspection, and reassemble takes approximately 4 hours and need of scheduled inspection
after every 25 fights hours. However, a significant limitation of CVM is that it can only
detect damage underneath the sensor, i.e., the detection range is zero. This technique is
most helpful in detecting damage at a hotspot where the damage location is well-known.
It is the first (and currently the only one) SHM system certified by FAA in 2017 [20].

Another mature and promising monitoring technique is Acoustic Emission monitoring
[21]. In it, sensors record radiation of acoustic (elastic) waves that occur in structure
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when a material undergoes irreversible changes in its internal structure due to deforma-
tion, fiber breakage, and any other type of damage. Generally, this technique measures
acoustic emission parameters, such as amplitude and arrival time, through piezoelectric
sensors and estimates the presence and location of damage based on the measured pa-
rameters. An example of a successful application is the Acoustic Emission Helicopter
Health and Use Monitoring System (AE-HUMS) as a tool for damage detection in heli-
copter drivetrains [22]. This technique was tested on an SH-60 drivetrain and identified
a growing crack in a pinion gear more than fifteen minutes before gear failure. Other op-
erational monitoring techniques, such as vibration-based monitoring [23, 24], measure the
changes in a structure’s modal characteristics for damage identification and are primarily
used in rotating machinery. Similarly, local strain monitoring measures the local strain
using strain gauges [25] and Fiber Bragg Grating (FBG) sensors [26] but suffers from the
drawbacks of requiring more sensors on the structure.

Additionally, it should be noted that among various types of transducers, piezoelectric
transducer-based SHM techniques are widely used due to their unique characteristics of
dual coupling phenomena, allowing them to act as both actuator and sensor. The elec-
tromechanical impedance SHM technique is one of the monitoring techniques that mainly
uses piezoelectric transducers, which can readily be bonded to structure and measures the
electrical impedance of piezoelectric transducers for damage identification [10, 27, 28]. The
damage changes the stiffness near the piezoelectric transducer, i.e., change in resonance
frequency of a structure, resulting in a change in the piezoelectric transducer’s impedance.
It actively sends frequency broadband signals to record current impedance and diagnose
based on the baseline impedance response. The advantage of this technique is that in-
sensitive to changes in the boundary condition or operational vibrations. The low power
requirement for piezoelectric transducer excitation and model-independent nature makes
them suitable for complex structures. This technique has the potential to identify small
damage, but their sensitivity drops off dramatically with increasing distance between the
damaged location and the transducer. A bigger network of impedance-based transducers
is needed to provide an effective damage detection tool for larger structure inspection.

Another monitoring technique, based on the use of guided waves (GWs) emitted and
received by piezoelectric transducers, has evolved as a promising technology for structural
health monitoring since they can quickly determine the location, severity, and type of
damage whenever needed [29–31]. It is already well established in NDT, commonly known
as ultrasonic guided waves testing [32], and is now part of an extensive research effort
especially for aerospace structures [33]. A significant advantage of guided waves over other
inspection/monitoring techniques is that they can help to monitor over long distances with
high sensitivity to damage, resulting in the need of a limited number of sensors to monitor
a given zone. They also have the ability to monitor the hard-to-reach hidden or complex
structures [34]. The following section explains their specific advantages and application in
details.
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1.2 Ultrasonic wave techniques
Ultrasonic NDT wave techniques are generally based on measuring changes in the propa-
gation characteristics of ultrasonic waves in a structure due to local damage interactions.
Based on ultrasonic waves, many ultrasonic testing have been developed and are cur-
rently used in the industry. In conventional ultrasonic testing, a movable ultrasonic trans-
ducer is attached to a diagnostic machine to record ultrasonic bulk waves [35]. Through-
transmission or pitch-catch system sends a wave from one side of the structure, and a
separate transducer records the signal of the wave as it travels through the structure. Any
fault between the transducer and the receiver reduces the wave amplitude or changes the
phase, indicating damage to the structure. While a pulse-echo system technique measures
reflection from damage using a single transducer. These techniques have shown their abil-
ity to detect small defects with high sensitivity in many industrial applications. The major
limitations of these techniques are the narrow inspection area and the necessity of direct
access of an inspector or robot close to the inspected part. These constraints make these
conventional techniques not very appropriate for SHM or real-time monitoring.

A particular type of ultrasonic waves, called guided waves (GWs) have become more
popular among researchers and industries in this perspective for SHM due to their pos-
sibility to propagate on large distances with low attenuation, which makes them more
cost-effective for monitoring larger and extended structures. These waves use the struc-
ture as a waveguide, e.g., in a plate, the waves propagate between two free surfaces called
guides [34]. Several GW classes have been studied depending on the stress boundary con-
ditions of the bounded surfaces. Rayleigh waves are a type of GWs that travel along the
stress-free surface of the structure with the decay amplitude in the direction of the thick-
ness. Similarly, other classes of GWs are the Love waves that travel between two layers
of a material, the Stoneley waves that propagate along the interface of two materials [36],
and the more common Lamb waves that propagate in a thin structure bounded by two
stress-free surfaces. Lamb waves exist when their wavelength is higher than or comparable
to the thickness of a structure. These waves have an adjustable frequency range to inspect
various sizes (a few millimeters to a few centimeters) and damage types, making them sen-
sitive to various defects [37]. GWs in plate-like structures have long-range propagation and
low attenuation characteristics, which significantly limit the number of sensors required
to monitor a given critical zone or a component. Therefore, quick inspection is possible
without the need for direct human or robot access to the structure, which makes GWs
potentially suitable for SHM and meets most of the real-time inspection requirements.

An essential requirement for performing ultrasonic testing is transducer type, where
the most commonly used transducers in ultrasonic testing are piezoelectric (e.g., angle
wedge and comb piezoelectric transducers) [38, 39] and electromagnetic acoustic transduc-
ers (EMAT) [40] and are routinely used in the industry for monitoring and maintenance.
The use of ultrasonic transducers is inconvenient for SHM applications as these transduc-
ers are generally bulky, expensive, and cannot be easily integrated or embedded in the
structure. However, new advancements in transducer technology have overcome these im-
pediments for enabling on-demand interrogation of structures for GWs based SHM. The
small and thin piezoelectric transducer has become more appealing to researchers since it
is inexpensive, lightweight, readily available in various shapes (square, rectangular, and
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circular), and can be fabricated with a low thickness (typically 0.15 to 1 mm) [31, 41].
Their compact dimensions and characteristics make them easily mountable via an adhesive
film (e.g., epoxy) to a structure or inserted between plies of a composite laminate during
its fabrication. The dual coupling phenomenon between electrical and mechanical prop-
erties, known as the direct or inverse piezoelectric effect, makes them more suitable for
GWs based SHM inspection [42]. The direct piezoelectric effect induces mechanical strain
in the piezoelectric transducer under an electric voltage and transfers mechanical strain
to the structure via an adhesive film. While the inverse piezoelectric effect generates an
electric voltage under the mechanical strain in the structure. Hence, a single piezoelectric
transducer can actuate and sense the GWs on the structure by covering a larger area [43].
Many types of piezoelectric materials are available, e.g., it is PZT material (Lead Zirconate
Titanate) and a PolyVinyliDene Fluoride piezoelectric transducer (PVDF) [44] is an al-
ternative that offers flexibility, and can be incorporated into the curved and deformable
structure, whereas ceramic piezoelectric transducers are brittle in nature restricting them
to use on rigid surfaces.

Other transducers can also be used in GWs based SHM. Fiber optics, especially Fiber
Bragg Grating (FBG), have the potential for SHM due to their flexibility, easy inte-
gration in structure, and improved robustness to harsh environmental conditions (high
temperature, chemical and radiations aggression...), making them attractive to SHM [45].
However, the acquisition is complicated and costly in practice. Other transducers, such
as magnetostrictive sensors [46, 47], are also available, but they are still underdeveloped.

A laser Doppler vibrometer (LDV) is also a popular device for measuring GWs without
contacting a structure based on the Doppler effect [48]. It helps in imaging techniques
for detecting and understanding the interaction of GWs with damage from recorded grid
points on the structure. However, they cannot be included in a structure for SHM as they
are large in size, making it only a tool to better design GW based SHM systems.

Previous research emphasized GWs potential use in detecting cracks and delaminations
by employing conventional angle-probe ultrasonic transducers studied by Rose [49]. Al-
leyne et al. [50] have used GWs to detect circumferential cracks and corrosion in steel pipes
and Dalton et al. [51] has studied the potential use of GWs for monitoring metallic aircraft
structures. Moreover, Cawley and Alleyne [52] have shown Lamb waves’ applicability for
long range in composites material.

Hence, GWs based monitoring has the possibility to facilitate on-demand inspection
using few piezoelectric transducers or fiber optics to monitor real-time structure health
for SHM. Their propagation in thin structures makes them more suitable for thin plate,
shell-type-thin-walled, stiffeners, and other airframe parts of aircraft structures.

1.2.1 Guided waves based SHM
A typical active GWs based SHM system requires sensors, data acquisition devices, signal
processing systems, and power systems [10, 53]. Sensors are permanently installed on the
structure and are usually connected to a signal generator with data acquisition devices,
as shown in Figure 1.3. Thin piezoelectric transducers, have been employed in the ma-
jority of GWs based SHM systems [54, 55]. These transducers are attached to or in the
structure and generate various elastic wave modes, generally low order antisymmetric and
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symmetric Lamb modes in isotropic plate-like structures or similar waves in anisotropic
plate-like specimens (more explanation are given in chapter 2). The recorded GW signals
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Figure 1.3: Schematic of active GWs based SHM.

through sensors are often complicated due to having multimode, dispersive, and containing
reflection from the boundaries of a structure [45, 56]. Their interaction with geometrical
features of the waveguide and potential structural flaws shows nearly similar mode con-
version, reflection, and diffraction in the recorded signals. Similarly, environmental and
operational conditions also change the GWs propagation [57]. For example, the tempera-
ture effect on GWs shows the changes in GW signals without any damage to the structure,
as shown in Figure 1.4. Therefore, advanced signal processing is often needed, along with
a sound knowledge of wave propagation, to extract the damage information from these
complex variations in the signals.

Figure 1.4: Temperature effects on GW signals at 120kHz [58].

Considerable work has been done on signal processing techniques of GW signals, as
reported in [59]. Mainly two techniques are used for damage identification: baseline and
baseline-free. A baseline technique compares a current recorded signal to a reference signal
(pristine signal) [60]. This technique has become more widespread since it holds exclu-
sively information related to damage after removing all other information in the signals,
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e.g., reflection from the geometrical features. Damage index (DI) based damage detection
has become more prevalent in the baseline technique since the estimation of DIs is simple,
repeatable, fast, and highly sensitive to small damage. For example, Rizzo and di Scalea
[61] and Giurgiutiu [10] presented a root mean square DI, peak-to-peak amplitude DI by
Su and Ye [53] and Betz et al. [62], Time of flight (TOF) based DI [63], and some other
types of DIs were recently published by Barreto et al. [64]. Imaging techniques are also
developed to detect the location and size of damage based on array transducers, e.g., Delay
and sum [65], correlation based Excitelet [66], minimum variance [67], and probabilistic
imaging [68]. Recently, Kulakovskyi et al. [69] have reported a comparison of these imag-
ing techniques. However, baseline techniques are highly affected by environmental and
operational conditions [57], which often leads to false damage results in image analysis
and other feature extraction techniques. In order to compensate for environmental effects,
Croxford et al. [70] have reported a baseline subtraction technique. Similarly, Konstan-
tinidis et al. [71] have reported optimal baseline selection (OBS), and Croxford et al. [72]
used OBS with the baseline stretch method (BSM) [73]. While, baseline-free techniques
are also extensively reported in the literature [74–76] to overcome temperature compen-
sation methods. These techniques rely on the current recorded GW signals without a
reference signal, making them environmentally less vulnerable to monitoring the damage
but are much complicated to develop and have not reached high level of maturity so far.

Recently, many data-driven techniques such as machine learning and deep learning are
rapidly emerging for identifying damage characteristics and temperature compensation
[55, 77–80]. Numerous studies are reported on their use in GWs based SHM, as mentioned
in a recent review paper by Sattarifar and Nestorović [81]. However, these techniques
require a large amount of reliable data, which is limited in SHM studies.

As mentioned above, all GWs based SHM detecting algorithms have matured in the
literature and laboratories. Although, their use in the industry is still insignificant, espe-
cially in the aerospace industry. The lack of performance demonstration methodology is
identified by the SHM community as a major difficulty for such inspection systems tran-
sitioning to the industry [82]. The following section explains a complete understanding of
the requirement and challenges of performance demonstration for GWs based SHM.

1.2.2 Industry adoption issue for GWs based SHM
A vast amount of literature has been reviewed on GWs use in SHM [13, 31, 45, 83]. Such
SHM techniques are subjected to various sources of variabilities (the stochastic nature
of physical phenomena) associated with uncertainties in the environment (temperature,
radiation, humidity) and operating conditions, which may affect the performance of the
SHM system [84, 85]. Therefore, an SHM system should be robust enough to detect the
required minimum damage even in the presence of such variabilities. This requirement
leads us to the need for a performance demonstration of SHM system to bridge the gap
between scientific research and industrial [29].

The performance demonstration is already addressed in NDT system and the method-
ology is widely accepted by the industry. The MIL-HDBK-1823A [86] assesses NDT
methods using the Probability of Detection (POD) curve. This curve is mapped via a
standard statistical method (hit & miss or signal response) from the relationship between
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the measured responses (e.g., damage index) under all the influencing variabilities and
damage characteristics (e.g., crack length). The threshold is often defined above the noise
in the inspection system and can be varied to find a compromise between the Probability
of False Alarms (PFA) and POD [87]. POD curve is usually expressed as a function of
crack length a with a90 (POD is 0.90 or 90% for a crack length) and a90|95 (an upper bound
95% confidence interval for a90) scaler values, as shown in Figure 1.5. It identifies largest
defect size with a 95% confidence value that could be missed during inspection denoted as
a90|95. In a POD computation, capturing all the variabilities are necessary; otherwise, the
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Figure 1.5: Illustration of the estimation of the POD curve from the relationship between
the measured response and the crack length (left) to the POD curve (right) with its 95%
confidence interval in blue.

POD curve can lead to a biased estimation. The most significant variabilities in the NDT
system usually come from crack morphology, sensor devices (manufactured by various
vendors and properties) and human factors [88, 89].

Similarly, the SHM system inherits all the variabilities from the NDE system. But in
addition, in situ effects (temperature, humidity and, load) and sensor mounting variabili-
ties affect the SHM system. Whereas in NDE, the in situ effects are generally less influent
than human factor variability since most of the inspection happened in the laboratory
or controlled environment where temperature, humidity and load do not change between
the calibration step and the measurement. A table of main differences between NDE and
SHM variabilities is mentioned in [82].

The same methodology of POD computation for NDT could be extended for SHM
as reported in [29, 90–92]. Roach and Rice [93] have shown the potential need for SHM
and POD study with a demonstration of an SHM experiment on an engine mount beam.
However, one of the primary issues associated with POD estimation is to perform large-
scale experiments containing all variabilities. It requires a large number of experiments
with similar configurations, which is costly and cumbersome in NDT, but in SHM, it is
prohibitively expensive due to the fixed nature of the sensor on the structure. In many
NDT POD studies, this cost is overcome by a simulation-based approach, i.e., a physics-
based approach to generate large amounts of data with many variabilities, even with those
that are very difficult to acquire experimentally [94–98]. This simulation based approach
POD estimation is also known as Model Assisted Probability of Detection (MAPOD) [99].

However, the SHM based POD or MAPOD studies are so far limited in the SHM
community, as mentioned in [82, 100]. There are two main reasons behind it, the first is
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Chapter 1. General introduction

the cost of performing a complete POD study either by experiment or simulation. Even
MAPOD is computationally expensive, e.g., most of the GW based simulation and mod-
eling tools are based on the traditional finite element method (FE), as mentioned in [101],
that requires almost 10 to 20 degrees of freedom per smallest wavelength [102], whereas
typical structures are several tens or hundreds of wavelengths long. For this reason, it is
generally prohibitive to conduct MAPOD computations where hundreds or thousands of
simulations must be executed. The second reason is the assumption of the data indepen-
dence in the standard statistical methods used in NDT POD computations is invalid in
the SHM system. Indeed in NDT, independent measurements are created by multiplying
acquisition steps by different operators and transducers on a limited number of samples.
In contrast, in SHM, the transducers are fixed to the structure; therefore, creating inde-
pendent acquisitions on the same structure is impossible, which is why multiple structures
are necessary. Shook et al. [103] have mathematically shown the effects on the POD curve
of dependent and independent data.

However, to make use of the standard methods in SHM, Janapati et al. [104] have clas-
sified the SHM system into four categories based on data collection and damage location.
Based on data collection, it is divided into two categories, first scheduled-based SHM (S-
SHM) and second automatic-based SHM (A-SHM). The scheduled-based SHM means data
can be collected over predetermined time intervals, whereas automatic-based SHM collects
the data continuously in an automated way. They further divided S-SHM and A-SHM
into known damage location and unknown damage location. They have mentioned that
only known damage location with S-SHM can consider independent acquisitions, where
one sample provides several measurements within a specific time interval. With this phi-
losophy, many studies used standard statistical methods for POD computation of SHM, as
mentioned in [105–108]. However, the repeated measurements from a fixed sensor on the
structure and the two acquisition time intervals to define independent samples remains an
open question.

Nevertheless, several SHM systems are designed for automatic damage identification,
characterization, localization, and damage growth prediction, which create data dependent
on repeated measurements on the same configuration. Some notable works are done toward
enabling a POD study for A-SHM for considering dependency in the SHM data, i.e.,
Shook et al. [103] have developed a mathematical technique to construct a POD curve for
dependent and independent data. Similarly, Kabban et al. [109] have presented a linear
mixed effect statistical model for repeatedly measured fatigue crack growth in the wing
spar lug of an aircraft to produce a POD curve. They have also calculated the number of
samples required to reach the desired a90|95 values for SHM. Recently, Meeker et al. [110]
have proposed two new statistical methods for A-SHM: length-at-detection (LaD) and
random effects. They have conducted crack detection experiments over thirteen metal
plates, where plates were subjected to the cyclic fatigue load so that the crack grows over
time. They have produced several POD curves for a growing crack and stated that LaD
values follow the normal distribution. Later, O’Connor [111] quantified these two methods
and specified that LaD is suitable for smaller samples (less than 10). Whereas, for bigger
samples, the random effects method is more appropriate.

Only two research papers described above (Kabban et al. [109] and Meeker et al. [110])
have computed complete experimental POD for SHM. Kabban et al. [109] have used only
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1.2. Ultrasonic wave techniques

three samples, which is insufficient to conclude on the POD curve. In fact, in NDT POD,
about 40 to 60 samples are required to reach a robust POD curve [86]. But in SHM POD
there is no specific study that how many samples are needed to capture the maximum
number of variabilities. Therefore, the MAPOD approach has raised a lot of interest
in the SHM community to determine the appropriate statistical methodology further to
estimate POD curves with high confidence.

1.2.3 Modeling and simulation of GWs based SHM for MAPOD
Modeling and simulation play a vital role in the GW based SHM system for under-
standing transducers structure interaction, complex wave patterns, dispersion relation,
wave-damage interaction, and especially comprehending experiments findings [69, 76, 112].
Simulation is not only limited to MAPOD but also enables the use of various data-driven
damage identification algorithms, e.g., machine learning and deep learning [79, 113]. Since
they require a vast amount of datasets due to a high number of influencing parameters,
conducting such analysis is experimentally expensive.

The extensive research on simulation and modeling tools for GW based SHM are
presented in Willberg et al. [114] and Lee and Staszewski [115]. The modeling is not
only limited to numerical techniques but also includes analytical and semi-analytical tech-
niques. Numerical techniques mainly include the finite element method (FE), the finite
difference method (FD), the spectral finite element method (SFE), and the boundary ele-
ment method. Analytical [10, 116–118] and semi-analytical [119, 120] methods are studied
to propagate GWs in infinite structures of finite cross-sections. However, such techniques
are limited in terms of the structure’s geometry [121, 122]. Another choice of simulation
is FE for the research to enable the 3D modeling of GW based SHM. Some of the FE soft-
ware offers multiphysics modules for modeling the transducer-structure coupling, which is
often a critical and challenging part of the simulations [123]. A benchmark of the most
common finite element software (Abaqus, COMSOL, and Ansys) platforms was conducted
on a single composite of 120 × 60 × 1 mm3 with eight plies [101]. They noted that a single
simulation at 300 kHz of central frequency requires 20 h to up to 1 week to complete with
a powerful computer. Even GPU-based FE solvers are limited by the memory available
on the GPU, and also massive data transfer from GPU is a bit slow [101]. Hence, FE
is generally prohibitive for the MAPOD computations where hundreds or thousands of
simulations must be executed.

This numerical computational cost issue is overcome by the SFE by reducing the num-
ber of degrees of freedom and a more efficient computation at each time step, reducing
the overall computational cost [124–126]. Recently, Mesnil et al. [127] have reported com-
paring transient SFE integrated into the CIVA software platform with the experimental
data of the Open Guided Wave database [128]. They have shown a good fit of the results
below 100 kHz at a computational cost of a few hours [129], whereas conventional FE
software provides similar results in several days to about a week of computation. These
results prove that SFE has excellent potential to produce numerous simulations when
performing MAPOD computations. In order to achieve such competitive computational
performances of CIVA, two approaches are combined. First, SFE, using the higher-order
elements compared to a classical formulation [130] and mesh parametrized with the help
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Chapter 1. General introduction

of macro mesh [126]. The second approach is a simplified transducers model called as Pin
force [131] model for transmitting and receiving the signals. Both approaches enable the
CIVA for MAPOD, but the transducers model drastically limits the CIVA for larger GWs
based SHM configurations of interest regarding higher excitation frequency [132]. More
information on CIVA software can be extracted from EXTENDE company website1. As
far as the author’s knowledge is concerned, MAPOD based on SFE has not been done in
the literature.

1.3 Motivations and objectives of thesis
Despite having demonstrated great potential in GWs based SHM for inspecting a structure
in a laboratory, the industry transition is still a bit slow for it. While Airbus, Boeing,
and other industries are paying close attention to it, they still have not fully succeeded in
incorporating it into their aircraft [133]. One of the main barrier to mainstream adoption
of the technology is the difficulty of demonstrating the performances of such a system.
Especially for aerospace industries, the performances must be quantified in terms of the
POD curve and certified before any usage of such inspection technologies. A major hin-
drance is the requirement of enormous expenditures to perform experimental POD curves
and also a strong need for statistical expertise associated with the SHM POD study. This

Figure 1.6: Trend of SHM and SHM+POD publications till 2021 mentioned by Falcetelli
et al. [82].

limits the awareness of POD study in the SHM community against the SHM study, as
shown in Figure 1.6. Scientists and researchers in this field are strongly encouraged to
use the MAPOD method to demonstrate their performance, as mentioned in [109, 110] .

1https://www.extende.com/
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In order to enable the MAPOD studies for GWs based SHM, as noted by Chapuis et al.
[134] for NDT, similarly, the acceptance of MAPOD in the SHM community depends on
three primary requirements:

1. Reliable and computationally fast simulation tools for SHM and wave interaction
with damage [108].

2. Validation of the simulation with experiments for a maximum number of variabilities
that influenced the SHM system is a solid requirement to produce consistent results
of the physical model used in the simulation.

3. Validation of statistical algorithms that are to be used for SHM.

This thesis presents a general methodology and framework to demonstrate the perfor-
mance of GWs based SHM through a MAPOD approach. A fast, reliable, and validated
simulation tool is a primary requirement to achieve the above described objectives. A spe-
cific effort has therefore been spent to identify configurations on which the simulation tool
used to generate the data in this thesis (CIVA SHM module) is validated. In particular,
a new transducer model, compatible with the spectral finite element scheme implemented
in the CIVA SHM module, has been proposed to demonstrate the applicability of the
methodology at higher frequencies than allowed by the current model for configurations
of practical interest in the aerospace industry.

The full methodology has finally been applied to the specific case of growing crack in
aluminum plate’s hole detection and compared with experimental data acquired on a large
set of samples.

1.4 Contributions and outlines of thesis
Two major contributions have been made to achieve the above-mentioned requirements
using simulation, experimentation, statistics, and sensor modeling. These contributions
are presented as follows.

Chapter 2: A general overview of the Lamb wave theory for isotropic plates is de-
scribed based on the famous Navier–Lamé equation. Along with it, a complete description
of the transient spectral finite element scheme in CIVA is explained as a surface load with
a pin force transducer model. Furthermore, the analytical formulation of the transduction
equations is compared to that of the transient spectral finite element. Finally, in COM-
SOL, a complete piezoelectric transducer model with an adhesive is used to derive the
limitations of the pin force transducer model based on a considered configuration.

Chapter 3: A hybrid actuator model (HAM) is proposed to overcome the previous
limitations of the pin force model while being compatible with efficient transient spectral
finite element scheme in CIVA. The HAM-obtained signals at two different configurations
are compared with a pin force model and a COMSOL simulation with a fully described
transducer using finite elements. An experimental study is also conducted using the cor-
relation coefficient metric to compare quantitatively. [Paper under review in Ultrasonics]

Chapter 4: The complete methodological steps of POD calculations are presented
for both experimental and model assisted SHM studies of a growing crack from a hole in
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Chapter 1. General introduction

an aluminum plate. This simplified configuration is representative of numerous aerospace
bolt components submitted to cracks introduced by fatigue. An extensive experimental
procedure is conducted to obtain stochastic responses and also used to validate acquired
datasets from a deterministic simulation tool under the considered variabilities. Both
experimental and simulation time domain signals are compared and quantified in damage
responses based on the damage index. In addition, the DI sensitivity study is presented
with the sensor path and normalized crack length by wavelength.

Chapter 5: Two recently proposed POD statistical methods are demonstrated with
their assumptions and formulation for computing the POD curve for the experimental and
model assisted SHM datasets. Both experimental and simulated POD curves are com-
pared and two common POD curve values, a90 and a90|95, are calculated and compared
with both statistical methods. Bayesian analysis-based parameter estimation and the un-
derlying distribution of damage characteristics are used to validate the MAPOD approach
with experimental POD. In addition, based on Bayesian analysis, a study is presented to
calculate a sample size to estimate the required a90|95 for a particular application.

At last, a conclusion and perspectives chapter is added, the research progress has been
presented at three international conferences, one journal paper is under review, and the
second is to be submitted to the SHM journal. Additionally, one more journal paper is
currently under review, where experimental datasets are used from this thesis work, as
mentioned in the following section.

1.5 Conferences and journal papers
1. Sanjay Sharma, Olivier Mesnil, Bastien Chapuis,& Pierre Calmon, Model Assisted

POD for Guided Wave based Structural Health Monitoring of growing cracks, NDE
2019, Bangalore, India [Oral presentation]

2. Sanjay Sharma, Olivier Mesnil, Arnaud Recoquillay, & Bastien Chapuis, An Im-
proved sensor model for efficient Guided Wave based Structural Health Monitoring
simulation, the 13th International Symposium on NDT in Aerospace 2021, [Oral
presentation]

3. Sanjay Sharma, Olivier Mesnil, Arnaud Recoquillay, & Bastien Chapuis, A Hybrid
Actuator Model for Efficient Guided Wave Based Structural Health Monitoring Sim-
ulations Ultrasonics, 2022, [Under review]

4. Olivier Mesnil, Arnaud Recoquillay, Clément Fisher, Valentin Serey, Sanjay Sharma,
& Oscar d’Almeida, Self-referenced robust guided wave based defect detection: appli-
cation to woven composite parts of complex shape Ultrasonics, 2022, [Under review]

5. Sanjay Sharma, Olivier Mesnil, Arnaud Recoquillay, & Bastien Chapuis, Methodol-
ogy for Probability of Detection curve of Guided Wave Structural Health Monitoring
Journal of structural health monitoring, 2022, [To be submitted]
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Lamb waves in isotropic plates
Outline
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2.1 Introduction
Lamb waves, one of the types of guided waves (GWs), propagate between two parallel
surfaces that are guided between the upper and lower surface of a plate. As one of the most
promising elastic waves for SHM applications, they propagate in the thin structural media
by activating an attached transducer on or in the structure. These waves exhibit various
elastic wave modes in the structure, which are classified into antisymmetric and symmetric
modes. Lamb waves generated by a source or transducer of omnidirectional effects that
cause propagation in a circular pattern in the structure are known as axisymmetric Lamb
waves. A detailed derivation of axisymmetric Lamb waves is presented in the cylindrical
coordinate system with the help of Hankel transformation in this chapter. After that, the
dispersion relations are obtained for both modes.
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2.2. Axisymmetric guided waves in isotropic plates

An approximate transducer model of a circular piezoelectric transducer called the pin
force (PF) model is considered to obtain an analytical formulation of the Lamb waves
displacement field and sensor response. This chapter also provides validation of the trans-
duction in the time-domain transient spectral finite element scheme for GWs based SHM
recently implemented into CIVA software. The theoretical dispersion curve is compared
with the computed one through a B-scan of displacement measurement from CIVA. Addi-
tionally, the lower-order modes amplitude response of displacement and sensor from CIVA
is compared with analytically driven equations. Finally, an entire piezoelectric transducer
is considered in COMSOL, which provides a PF model range in CIVA for a configuration.

2.2 Axisymmetric guided waves in isotropic plates

∞

𝑧 = +𝑑

𝑧 = −𝑑

𝑧

𝑟
u𝑟

u𝑧

Revolution axis

𝜏𝑟𝑧 𝑟, 𝑡 = 𝜏 𝑟 𝑒−𝑖𝜔𝑡

Figure 2.1: Axisymmetric structure.

Omnidirectional Lamb waves are often considered in SHM as they cover a larger area
for inspection from a single transducer location. An infinite axisymmetric structure with
thickness 2d is considered to obtain circular Lamb waves equations in a metallic plate, as
shown in Figure 2.1. An approximate transducer model is assumed with a shear stress τrz
in the radial direction at the upper surface with time-domain excitation, where ω is the
frequency of excitation and t is the time. To formulate wave propagation, the Navier-Lamé
equation of elastic solid can be represented as shown below:

(λ+ µ)∇ (∇ · u) + µ∇2u = ρü, (2.1)

where u = urer + uθeθ + uzez denotes displacement filed vector, (∇, ∇2) representing
a grad and a Laplacian operator, respectively. (λ, µ) denote Lame coefficients, and ρ is
the density of the elastic structure. The displacement field is assumed to be expressed in
terms of two potential functions, a scalar potential Φ and a non-rotational vector potential
H = Hrer +Hθeθ +Hzez, which is represented in the following form

u = ∇Φ + ∇ × H (2.2)
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Chapter 2. Lamb waves in isotropic plates

Equation 2.2 is the Helmholtz decomposition and provides a unique condition ∇ · H = 0.
To obtain solution for the guided waves, Equation 2.2 is substituted into the Equation 2.1,
which yields,

(λ+ µ)∇
(
∇2Φ

)
+ µ

(
∇2∇Φ + ∇2∇ × H

)
= ρ

(
∇Φ̈ + ∇Ḧ

)
(2.3)

Equation 2.3 can be rearranged in the following form

∇
[
(λ+ µ)∇2Φ − ρΦ̈

]
+ ∇ ×

[
µ∇2H − ρḦ

]
= 0 (2.4)

where the components (shown in brackets) in Equation 2.4 must be independently zero,
as shown below:

C2
p∇2Φ − Φ̈ = 0 (2.5)

C2
s∇2H − Ḧ = 0 (2.6)

Equation 2.5 indicates a wave equation for the scalar potential, Φ, propagates with longi-
tudinal wave speed Cp =

√
λ+2µ
ρ

, whereas Equation 2.6 indicates a wave equation for the
vector potential, H, propagates with the shear speed Cs =

√
µ
ρ
. The displacement filed u

can be represented in the full vector form of scalar and vector potential, i.e.,

u =
(
∂Φ
∂r

− ∂Hθ

∂z

)
er +

(
∂Hr

∂r
− ∂Hz

∂z

)
eθ +

(
∂Φ
∂z

+ 1
r

∂(rHθ)
∂z

)
ez (2.7)

where ∂Hr

∂r
− ∂Hz

∂z
= 0, since circular waves are axisymmetric and do not change along with

circumference
(
∂
∂θ

= 0
)
, the displacement filed in tangential direction uθ is zero. Only two

direction displacements (ur, uz) are considered in further analysis that requires only two
potential functions, Φ and Hθ. The wave Equations 2.5 and 2.6 can be expanded with the
Laplacian operator in polar coordinates for scalar Φ and vector H, as shown below:

1
r

∂

∂r

(
r
∂Φ
∂r

)
+ ∂2Φ
∂z2 − 1

C2
p

Φ̈ = 0 (2.8)

1
r

∂

∂r

(
r
∂(rH)
∂r

)
+ ∂2H

∂z2 − 1
C2
p

Ḧ = 0 (2.9)

The wave potentials Φ and H are harmonic in time t, i.e., Φ̈ = −ω2Φ and Ḧ = −ω2H.
The Equations 2.8 and 2.9 solutions could be obtained from Fourier transformation, which
may lead to complex formalism due to the axisymmetric. For this problem, Hankel trans-
formation is more suitable, which is represented as Hankel transformation of order ν of a
function g(r) as shown below:

g(ξ̃) =
∫ ∞

0
rg(r)Jν(ξr)dr (2.10)
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The Hankel transformation of Equations 2.8 and 2.9 are shown below:

−ξ2Φ̃J0 + ∂2Φ̃J0

∂z2 + ω2

C2
p

Φ̃J0 = 0

−ξ2H̃J1 + ∂2H̃J1

∂z2 + ω2

C2
s

H̃J1 = 0
(2.11)

where Φ̃J0 =
∫∞

0 rϕ(r)J0(ξr)dr and H̃J1 =
∫∞

0 rH(r)J1(ξr)dr are Hankel transformations
of order zero and one for Φ and H, respectively, Equation 2.11 can be rearranged as

∂2Φ̃J0

∂z2 + Λ2
pΦ̃J0 = 0

∂2H̃J1

∂z2 + Λ2
sH̃J1 = 0

(2.12)

where ξ2 = ω2

C2
p

− Λ2
p and ξ2 = ω2

C2
s

− Λ2
s, ξ is a wavenumber in the radial direction. The

general solution of Equations in 2.12 is given by

Φ̃J0 = C1 sin Λpz + C2 cos Λpz

H̃J1 = C3 sin ΛSz + C4 cos ΛSz
(2.13)

where C1, C2, C3, and C4 are constants, the Equation 2.13 must be solved for boundary
conditions to obtain these constant values. The boundary condition can be obtained
from the constitutive law of materials, as explained in Appendix [10]. Therefore, the
displacement u and required stresses to solve constants are shown below after Hankel
transformation of displacements ur and uz,

(ũr)J1 = −ξΦ̃J0 − ∂H̃J1

∂z

(ũz)J0 = ∂Φ̃J0

∂z
+ ξH̃J1

(2.14)

and stresses τrz and τzz,

(τ̃rz)J1 =
∫ ∞

0
rτrzJ(ξr)1dr = −2µξ∂Φ̃J0

∂z
− ξ2µH̃J1 − µ

∂2H̃J1

∂z2

(τ̃zz)J0 =
∫ ∞

0
rτzzJ0(ξr)dr = −λω

2

C2
p

Φ̃J0 + 2µ∂
2Φ̃J0

∂z2 + 2µξ∂H̃J1

∂z

(2.15)

where the boundary conditions are (τ̃zz)J0|±d = 0 and (τ̃rz)J1|+d = τ̃ given in Hankel
transformation of τrz. Substituting Φ̃J0 and H̃J1 from Equation 2.13 into Equation 2.15
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and after simplification, yields

(τ̃rz)J1 = −2µξ (C1Λp cos Λpz − C2Λp sin Λpz) − µ
(
ξ2 − Λ2

s

)
(C3 sin Λsz + C4 cos Λsz)

(τ̃zz)J0 = µ
(
ξ2 − Λ2

s

)
(C1 sin Λpz + C2 cos Λpz) + 2µξ (C3Λs cos Λsz − C4Λs sin Λsz)

(2.16)
Putting boundary conditions into Equation 2.16

(τ̃rz)J1

µ
|z=+d = −2µξ (C1Λp cos Λpd− C2Λp sin Λpd) − µ

(
ξ2 − Λ2

s

)
(C3 sin Λsd+ C4 cos Λsd)

(2.17)
(τ̃rz)J1

µ
|z=−d = −2µξ (C1Λp cos Λpd+ C2Λp sin Λpd) − µ

(
ξ2 − Λ2

s

)
(−C3 sin Λsd+ C4 cos Λsd)

(2.18)
(τ̃zz)J0

µ
|z=+d = µ

(
ξ2 − Λ2

s

)
(C1 sin Λpd+ C2 cos Λpd) + 2µξ (C3Λs cos Λsd− C4Λs sin Λsd)

(2.19)
(τ̃zz)J0

µ
|z=−d = µ

(
ξ2 − Λ2

s

)
(−C1 sin Λpd+ C2 cos Λpd) + 2µξ (C3Λs cos Λsd+ C4Λs sin Λsd)

(2.20)

The above displayed four equations make a 4 × 4 matrix that can be decomposed into
two 2 × 2 matrices, one for symmetric particle motion and the other for antisymmetric
motion. The motion of particles is called the modes, as shown in Figure 2.2 for symmetric
and antisymmetric modes, and matrices are mentioned in the next two sections.

2.2.1 Symmetric mode

The symmetric modes are also known as longitudinal modes because the particle motion
is primarily in the longitudinal direction below the cutoff frequency. The symmetric mode
matrix is shown below, obtained after adding Equations 2.19 and 2.20 and subtracting
Equations 2.18 and 2.17.

𝑧 = +𝑑

𝑧 = −𝑑

𝑧

u𝑟

u𝑧

Wave propagation 𝑟

u𝑟

u𝑧

(a) Symmetric mode

𝑧 = +𝑑

𝑧 = −𝑑

𝑧

u𝑟
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u𝑧

Wave propagation

𝑟

(b) Antisymmetric mode

Figure 2.2: Lamb wave modes of symmetric plate.
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[
(ξ2 − Λ2

s) cos Λsd 2ξΛs cos Λsd
−2ξΛp sin Λsd (ξ2 − Λ2

s) sin Λsd

] [
C2
C3

]
=
[

0
− τ̃

2µ

]
(2.21)

After solving Matrix 2.21 for C2 and C3 are expressed below:

C2 = −2ξΛs cos Λsd

DS

(
− τ̃

2µ

)
C3 = (ξ2 − Λ2

s) cos Λpd

DS

(
− τ̃

2µ

)
(2.22)

where DS = (ξ2 − Λ2
s)2 sin ΛSd cos ΛPd+ 4ζ2ΛPΛS sin ΛPd cos ΛS.

2.2.2 Antisymmetric mode
The antisymmetric mode is also called a flexural mode because the particle motion is
primarily in the transverse direction below the cutoff frequency. Similarly, the antisym-
metric mode matrix is shown below, obtained after subtracting Equations 2.19 and 2.20
and adding Equations 2.18 and 2.17.

[
(ξ2 − Λ2

s) sin ΛPd −2ξΛs sin ΛSd
−2ξΛp cos ΛPd (ξ2 − Λ2

s) cos ΛSd

] [
C1
C4

]
=
[

0
− τ̃

2µ

]
(2.23)

After solving Matrix 2.23 for C1 and C4 are expressed below:

C1 = 2ξΛs sin Λsd

DA

(
− τ̃

2µ

)
C4 = (ξ2 − Λ2

s) sin Λpd

DA

(
− τ̃

2µ

)
(2.24)

where DA = (ξ2 − Λ2
s)2 sin Λpd cos Λsd+ 4ξ2ΛpΛs sin Λsd cos Λpd.

2.2.3 Dispersion curve
The DS and DA are called Rayleigh-Lamb wave equations for symmetric and antisym-
metric modes. The roots of these transcendental equations are the wavenumber ξ, and
DS roots are represented as ξs for symmetric, and DA roots are denoted as ξA for an-
tisymmetric modes. The roots of DS and DA bring a relationship between wavenumber
ξ and frequency ω or phase velocity CP and frequency ω, called the dispersion relation.
There are infinite wavenumbers (roots) for a given frequency, which satisfies DS and DA.
However, a finite number of these wavenumbers are purely real and imaginary, while oth-
ers are complex. The real wavenumbers represent propagating modes, mainly used for
SHM applications since they propagate longer distances than imaginary roots. The real
roots corresponding ten first modes for both symmetric and antisymmetric are shown in
Figure 2.3.

2.2.4 Complete solution of displacement
Once the constants and roots are calculated, then it is straightforward to show the dis-
placement u of axisymmetric Lamb waves after substituting Equation 2.13 with the value
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of the constant into Equation 2.14, which shows

(ũr)J1 = − τ̃
2µ

1
ξ

(
NS

DS
+ NA

DA

)
, (ũz)J0 = − τ̃

2µ
1
ξ

(
MS

DS
+ MA

DA

)
(2.25)

where 



NS = ξΛS (ξ2 + Λ2
s) cos(ΛPd) cos(ΛSd)

NA = −ξΛS(ξ2 − Λ2
s) sin(ΛPd) sin(ΛSd)

MS = 2ξ2ΛsΛp cos(Λsd) sin(Λpd) + ξ2(ξ2 − Λ2
s) cos(Λpd) sin(Λsd)

MA = 2ξ2ΛsΛp cos(Λpd) sin(Λsd) + ξ2(ξ2 − Λ2
s) cos(Λsd) sin(Λpd)

The inverse Hankel transformation can be used to represent displacement Equation 2.25
into the physical domain at d (upper surface) from wavenumber domain ξ. With the help
of the residual integral theorem, the radial ur and transverse uz displacements can be
represented as follows:

ur(r, d)|z=d = − πi

2µ


∑

ξS

τ̃(ξS)NS(ξS)
D′
S(ξS)H

1
1 (ξSr)e−iωt +

∑

ξA

τ̃(ξA)NA(ξA)
D′
A(ξS)H

1
1 (ξAr)e−iωt




(2.26)

uz(r, d)|z=d = − πi

2µ


∑

ξS

τ̃(ξS)MS(ξS)
D′
S(ξS)H

1
0 (ξSr)e−iωt +

∑

ξA

τ̃(ξA)MA(ξA)
D′
A(ζS)H

1
0 (ζAr)e−iωt




(2.27)

where H1
0 and H1

1 Hankel functions are the first type of order zero and one, respectively.
The D′

S and D′
A are derivatives of DS and DA defined in the above section. However,

function τ̃(ξ) is a Hankel transformation of circular excitation and is explained in the next
section.

23



2.2. Axisymmetric guided waves in isotropic plates

2.2.5 Excitation and sensing of axisymmetric Lamb waves

Piezoelectric transducer is widely used in exciting and measuring the guided waves for
SHM applications since they are lightweight and inexpensive. Generally, piezoelectric
transducers are coupled with elastic structure through an adhesive, as shown in Figure
2.5(a). Upon electric excitation, the piezoelectric transducer undergoes oscillatory con-
tractions and expansions that transfer stress through the adhesive bonding layer to excite
guided waves into the structure. Crawley and De Luis [135] first developed an analyt-
ical interaction model between piezoelectric transducer and structure. They estimated
a uniform strain based analytical equation of stress transmission between piezoelectric
transducer and structure. Later on, Giurgiutiu [131] used uniform strain assumption to
deduce an analytical expression of stress transmission from the piezoelectric transducer
to the structure in the form of interfacial stress for exciting the guided waves for SHM
application, as shown below,

τ (x) =
(

Ψ
Ψ + α

)(
Eptp
a

)
εISA

Γa
cosh Γa sinh Γx, where Γ2 = Gb

tb

1
Eata

ψ + α

ψ
(2.28)

where α is a constant value to describe both longitudinal and bending excitation in the
transducer. The Ep and tp denote the elastic modulus and thickness of the piezoelectric
transducer, respectively, while the E and d denote the elastic modulus and thickness of
the structure. Similarly, Gb and tb represent adhesive shear modulus and thickness layer
of the adhesive. While εISA = d13V /tp denotes strain in a piezoelectric transducer, where
d13 is a piezoelectric coupling effect, and V is applied voltage. The ψ = Ed/Eptp repre-
sents the stiffness ratio that denotes the maximum fraction of the piezoelectric strain that
can be induced. Similarly, Γ denotes the shear lag effect that defines bonding between
piezoelectric transducer and structure. As shown in Figure 2.5(b), as the thickness of the
adhesive layer tb decreases, i.e., Γ increases, the stress transmission between the piezoelec-
tric transducer and structure along the radius of the transducer appears at the edge of the
transducer. It means that stress transmission can be represented by,

τ(r) = a2τ0
δ(r − a)

r
(2.29)

where τ0 is a constant and δ is a Dirac delta function. The Equation 2.29 is assumed
to produce surface shear stress with dynamic loading e−iωt and generate radial shear
stress along its circumference on the plate at the surface z = d. It is worth noting that
the uniform strain assumption is only appropriate when the thickness ratio (d/tp) of the
structure and the piezoelectric transducer is above six, as shown in Figure 2.5(c). This
curve compares bending strain from the uniform and Euler-Bernoulli strain models with
varying thickness ratios. The uniform strain model assumes strain in the transducer is
uniform regardless of extension and bending in the structure. In contrast, the Euler-
Bernoulli strain model assumes that the transducer exhibits linear variation in strain
during structural bending, as shown in Figure 2.4. The more details of their formulation
is defined in [136].

Nevertheless, the first order Hankel transformation of τ(r) mentioned in Equation 2.29
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Transducer
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Figure 2.4: Comparison of normalized bending strains from uniform strain model and
Euler-Bernoulli strain model.

can be represented as follows,
τ̃(ξ) = a2τ0J1(ξa) (2.30)

where τ̃(ξ) is a Hankel transforms of τ(r), which can be substituted in Equation 2.25 to
obtain the displacement of ur and uz. At the same time, the piezoelectric transducer can
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Figure 2.5: (a) Shear layer interaction between piezoelectric actuator and structure (b)
Variation of interfacial stress τrz with the thickness of adhesive tb (c) Strain assumption
in piezoelectric transducer for shear lag solution [136].

sense the guided waves from the structure through an accumulated charge on the surface
(integration of electric displacement over a surface). The output can be represented in
voltage as follows:

Vout = QP

CP
= SP

∫

A
ϵii = SP

∫ ∫

A

(
∂ur
∂r

+ ur
r

)
rdrdθ (2.31)
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2.3. Simulation study

where SP is a constant value (assumed one), ϵii is a surface strain (sum of ϵrr and ϵθ).
Furthermore, A is the surface area of the circular sensor. On simplification of Equation 2.31
after substituting ur from Equation 2.26 with τ̃(ξ) (from Equation 2.30) yields,

Vout = SP

[∑
ξS
J1(ξSa)NS(ξS)

D′
S(ξS)

∫ ∫
A ξSH

2
0 (ξSr)rdrdθe−iωt

+∑
ξA
J1(ξAa)NA(ξA)

D′
A(ξA)

∫ ∫
A ξAH

2
0 (ξAr)rdrdθe−iωt

] (2.32)

where H2
0 is a complex Hankel function of order 0 of the second type.

2.3 Simulation study
A simulation study is performed to compare the theoretical displacement and sensor re-
sponse, as mentioned in Equations 2.25, 2.30, and 2.32 with a time-domain transient
spectral finite element scheme for GWs based SHM implemented recently as the basis of
the SHM module of CIVA software. It solves the elastodynamics problem given by,





div(σ(u)) − ρ∂ttu = 0 Ω × R+

σ(u)n = τ Γ × R+

u(., 0) = ∂tu(., 0) = 0
(2.33)

Equation 2.33 is a more general representation of Equation 2.1. Where u and ρ are
field vector and density, respectively, σ(u) = C

(
∇u+ ∇uT

)
from Hook’s law, τ is a

surface load with a compact support on ∂Ω, and Ω and Γ are computation and surface
load (source) domains, respectively. To solve this, CIVA relies on two approaches: High-
order spectral finite elements enabling a parametric meshing procedure based on macro-
elements [126], and Pin Force (mentioned in Equation 2.29) approximated piezoelectric
transducer model, as a surface load for actuating the GW. The surface load is defined as
τ(X, d) = p(X)g(d), where p(X) is spatial load and g(t) is an actuation signal of sinusoidal
tone burst modulated by a Hann window represented in the following mathematical form:

g(t) = A sin(ωct)
[
1 − cos(ωct)

N

]
H
(

2πN
ωc

− t
)

(2.34)

where N , A, and ωc denote the number of cycles, signal amplitude, and central frequency,
respectively. H is the Heaviside function. To define the surface load τPF for PF, we obtain
the following form:

τPF =
(
τ̄rr
τ̄zz

)
=
(
g(t)δ(r − a)/a

0

)
(2.35)

where τ̄rr and τ̄zz are surface loads in radial and normal directions, respetively. An
aluminum plate of 1000 × 1000 × 1.5 mm3 is considered in CIVA, as shown in Figure 2.7,
where a 5 mm radius circular transducer (actuator) is placed at the center of the plate,
and a second similar transducer (receiver) is placed at 100 mm from the actuator. The
properties of the aluminum plate and both transducers are shown in Table 2.1. A one-
cycle actuation signal is considered with a central frequency of 320 kHz, which excites the
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Figure 2.6: (a) Excitation signal g(t) and (b) FFT of actuation signal g(t).

E1 E2 E3 ν23 ν13 ν12 ρ
Material [GPa] [GPa] [GPa] - - - [kg m−3]

Aluminum 70 70 70 0.33 0.33 0.33 2700
Adhesive 3.0 3.0 3.0 0.2 0.2 0.2 1600
PZT [137] 120.14 120.41 110.10 0.35 0.35 0.35 7750

Table 2.1: Mechanical properties.

range from 110 kHz to 650 kHz (above 6 dB), as shown in Figure 2.6.

𝝉𝒓𝒛
r

Piezoelectric actuator

Circular waves

Piezoelectric sensor

1.5 mm

1 m

z

Figure 2.7: A schematic of surface-bonded circular piezoelectric actuator and sensor on
the aluminum plate in CIVA.
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2.3. Simulation study

In order to verify the transduction model, both displacements ur(r, d) and uz(r, d) are
measured on a line in r-direction (B-scan) from 550 mm to 650 mm with a spacing of 0.5
mm on the top of the surface, as shown in Figures 2.8(a) and 2.8(b). A two-dimension
displacement matrix denoted as Ur(r, d) and Uz(r, d) of size (M,N) are formed, where
M and N are a number of points in space and time, respectively. The time sampling
frequency is 10 MHz. The dispersion curves for both displacements are obtained from
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Figure 2.8: (a,b) Image of B-scan displacement matrix of Ur(r, d) and Uz(r, d).

two dimensional Fourier transformation [138] of the given two displacements matrix, as
mentioned below:

Ūr (ξ, ω) =
∫ ∞

−∞
Ur(r, d)e−i(ξr+ωt)drdt

Ūz (ξ, ω) =
∫ ∞

−∞
Uz(r, d)e−i(ξr+ωt)drdt

The magnitude of Ūr (ξ, ω) and Ūz (ξ, ω) are represented in Figures 2.9(a) and 2.9(b) with
theoretically computed wavenumber and frequency relationship. It exhibits two lower-
order modes (S0 and A0) and a cut-off frequency of around 1100 kHz for A1 mode. The
amplitude of S0 and A0 modes from |Ūr (ξ, ω)| and |Ūz (ξ, ω)| are compared with the theo-
retical amplitude response from Equations 2.26 and 2.26. Similarly, the sensor amplitude
response in CIVA is compared with theoretical Equation 2.32, as shown in Figures 2.10(a),
2.10(a), and 2.11. It shows that the transduction of waves through the Pin Force actu-
ator model in CIVA correctly measures the wave amplitude from the sensor and both
displacements. Note that in the above analysis, we removed the reflection signal from the
boundaries in CIVA since the theoretical model is considered infinitely long, meaning that
there is no reflection from boundaries. Figures 2.10(a), 2.10(a), and 2.11 are also called
excitability curves. From these curves, Lamb waves can be tunned to a particular wave
mode at a particular frequency, as mentioned in [131], which becomes very useful in signal
processing for SHM in identifying defects or image reconstruction. Tunning of wave modes
depends upon parameters such as the radius of a piezoelectric transducer, plate thickness,
adhesive thickness, and material properties of both transducer and structure.
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(b) |Ūz (ξ, ω)|
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Figure 2.10: (a,b) Comparison of amplitude response from |Ūr (ξ, ω)| and |Ūz (ξ, ω)| of the
maximum value for a given frequency ω (denoted as ⋆ points for S0 and ◦ for A0) with
analytical amplitude response from Equations 2.26 and 2.27(denoted as dash line (−−)
for S0 and solid line (–) for A0).

So far, we have verified the PF transduction model in CIVA with the analytical formula-
tion. However, the PF model is limited in excitation frequency, as mentioned in literature
[10, 139]. The limitation of the PF model hinges on the selection of thickness ratio of
structure to a piezoelectric transducer, adhesive thickness, and material properties. PF
assumes that coupled dynamics of transducer (dynamics of the transducer when attached
to a structure by an adhesive) are insignificant, which is fulfilled by a thin transducer
and minimum adhesive thickness. However, as excitation frequency increases and reaches
the nearby foremost electromechanical resonance frequency of the coupled transducer, it
begins influencing the GW signals. Experimentally, it becomes cumbersome to follow the
assumptions since it is challenging to keep the minimum adhesive thickness between the
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Figure 2.11: Comparison of sensor amplitude response from CIVA (denoted as ⋆ points
for S0 and ◦ for A0) and theoretical Equation 2.32 (denoted as dash line (−−) for S0 and
solid line (–) for A0).

structure and transducer. Therefore, sometimes PF fails far below the first resonance
frequency; for example, Quaegebeur et al. [140] have mentioned the 60 kHz upper limit
of the PF model validity for their configuration. However this result cannot be directly
extrapolated to other configurations. Therefore, in the next section, we have presented
the effect on GW signals through the Finite element modeling (FE) of a piezoelectric
transducer as the frequency of excitation increases.

2.4 Comparison of PF model and full piezoelectric
transducer model
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Figure 2.12: 2D axisymmetric configuration in FE.

This section demonstrates the limitations of the PF model with excitation frequency
by comparing the Finite element model of an entire piezoelectric transducer. The config-
uration considered in COMSOL is similar to the one used in the previous section. Since
the piezoelectric transducer disc is polarized in the thickness direction and the material
properties of the host structure and adhesive are isotropic, an axisymmetric configuration
is considered in COMSOL with a 5 mm radius of piezoelectric transducer attached with
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an adhesive layer of 25 µm„ as shown in Figure 2.12. This study is performed in the time
domain at the four central frequencies of 100, 200, 300, and 500 kHz with five cycles in
both simulation devices, while the other conditions are assumed to be the same in both.

0 20 40 60 80 100
Time [µs]

−1

1

[A
.U

.]

FE PF

(a) 100 kHz

0 20 40 60 80
Time [µs]

−1

1

[A
.U

.]

FE PF

(b) 200 kHz

0 20 40 60
Time [µs]

−1

1

[A
.U

.]

FE PF

(c) 300 kHz

0 20 40 60
Time [µs]

−1

1

[A
.U

.]

FE PF

(d) 500 kHz

Figure 2.13: Time domain signal of ur comparison between PF and full piezoelectric
model in FE at 100, 200, 300, and 500 kHz.

The displacement signals in the radial direction (ur) are measured corresponding to
excitation frequencies at 100 mm from the actuator and compared with the PF model
used in CIVA, as shown in Figure 2.13. It can be seen that at 100 kHz, both the PF and
FE signals show a good fit, while little change is observed, especially in the A0 mode when
the excitation frequency is increased to 200 kHz. Furthermore, at 300 and 500 kHz, the
PF model fails to observe phase shifts, amplitude variations, and additional cycles in the
signals. It can be seen that considering a complete model of the transducer in FE affects
the phase and amplitude of the GWs signals after a specific excitation frequency, as the
other conditions were ensured the same in both simulation tools. Therefore, it is concluded
with this analysis that we need a new model for modeling high excitation frequencies that
are often of practical interest for defect monitoring.
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2.5. Conclusion

2.5 Conclusion
This chapter presented an introduction to axisymmetric guided waves in isotropic plate-
like structures. The PF model, widely used in the literature, has been implemented in
CIVA to excite and sense the guided waves. However, the PF model limits the use of a
large frequency excitation range in the simulation tool. Therefore, a new transducer model
is presented in the next chapter to overcome the limitations of the PF model to allow the
use of CIVA simulations in a much broader range of practical applications.
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3.1. Introduction

3.1 Introduction

In GWs based SHM, a transducer plays a significant role in exciting and receiving guided
waves in a structure. Modeling a piezoelectric transducer coupled with adhesive for GWs
based SHM simulation is challenging, except to model the entire configuration with finite
element modeling (FE). However, the computational cost associated with fully describing
the transducer using finite elements does not allow performing a large number of simula-
tions. Currently, the time-domain transient spectral finite element scheme in CIVA uses
an approximate transducer model, i.e., the pin force (PF) model, to account for coupled
piezoelectric transducers, as mentioned in the previous chapter. The PF model consists
of constant stress traction applied in the radial direction at the periphery of a circular
piezoelectric transducer. It relies on two main assumptions: first, the coupling between
the transducer and the host structure is ideal (i.e., the adhesive layer is zero thickness).
Second, the thickness of the transducer is small compared to the one of the instrumented
structure. These assumptions hold at a low-frequency region, i.e., below the first elec-
tromechanical resonance frequency of the piezoelectric transducer, due to not considering
the dynamics and normal stress of the transducer. Therefore, the constant radial stress
traction is limited in excitation frequency [132], which may limit the range of validity and,
therefore, the value of the simulation tool for performance demonstrations.

Therefore, this chapter presents a hybrid actuator model that considers frequency-
dependent complex stresses in radial and normal directions computed from finite ele-
ments. These surface stresses are compatible with the time domain transient spectral
finite element schemes without affecting the performances required for intensive simula-
tion campaigns. Simulation and experimental studies are performed in order to validate
the proposed approach. A parametric study is performed to quantify the hybrid actuator
model’s validity in a large range of excitation frequencies. It is shown that the proposed
hybrid actuator model accurately models the transduction signal above the first free elec-
tromechanical resonance frequency of a piezoelectric transducer.

This chapter is organized as follows. Section second presents state-of-the-art piezo-
electric transducer modeling for GWs based SHM simulations. Section three describes the
formulation of the proposed hybrid actuator model. Finally, the fourth section presents
the numerical and experimental validation of the proposed model and discusses the validity
limits.

3.2 State of the art of circular piezoelectric trans-
ducer modeling for GWs based SHM

The main challenge in GWs based SHM transducer modeling is the coupling of the trans-
ducer to the host structure through an adhesive layer. This has been addressed to a
certain extent by the shear lag solution of the interfacial stress between the transducer
and host structure. Crawley and De Luis [135, 136] were the first to introduce the shear
lag solution where, as the thickness of the adhesive decreases and the stiffness ratio be-
tween the host structure and the transducer increases, the interfacial stress transfer is
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focused at the circumference of the transducer. Since then, many shear lag formulations
have been proposed [141–144], particularly in the modeling of the transducer coupling to
the host structure. However, these models are primarily suitable for a directional wave-
field (e.g., from a rectangular transducer), where the wavefield propagates mainly in one
or two directions. However, to ensure large area cover, omnidirectional transducers are
used in general [145]. The following section contains some notable articles on the circular
piezoelectric transducer modeling for GWs based SHM.

3.2.1 Pin force model

Giurgiutiu [131] studied the coupling of one piezoelectric transducer to a host structure
through an adhesive layer and introduced the PF model. The PF model is an idealized
model under the assumptions of zero adhesive thickness and negligible transducer thick-
ness. As the thickness of the adhesive decreases, the interfacial stress between the circular
piezoelectric transducer and the host structure is concentrated at the edges of the piezo-
electric transducer [10]. This interfacial stress is represented by τ̄rr = τ0δ(r− a)/a, where
a is the radius of a transducer, and τ0 is a constant. Therefore, it can readily be applied as
a traction boundary condition in order to obtain the dynamic response of the GWs based
SHM [117]. The PF surface load τPF is defined as:

τPF (r, t) =
[
τ̄rr(r, t)
τ̄zz(r, t)

]
=
[
g(t)δ(r − a)/a

0

]
(3.1)

where τ̄rr and τ̄zz are surface loads in radial and normal directions, respectively.
However, the PF model assumes a static interfacial stress between the transducer and

host structure and does not consider the transducer frequency dependent behavior and
the adhesive thickness. Thus, it should be noted that the PF model is limited in terms of
the excitation frequency and the transducer size [139].

3.2.2 Lamb wave tuning curve model

Sohn and Lee [146] improved the PF model by introducing two calibration methods for the
excitability curve of the transducer in order to expand the validity range of the model. The
first method is an amplitude adjustment based on the frequency dependent strain energy
distribution in the host structure. The second method is the effective area calculation of
the circular piezoelectric transducer based on the linear admittance ratio of the bonded
and unbonded transducer. This is equivalent to reducing the transducer’s effective area.
For example, in [146], the effective area of a transducer is 59% of the original area of the
given transducer at the excitation frequency of 250 kHz. This model takes into account the
adhesive effect and provides limited improvement to the excitability curve. However, the
calibrated PF model does not consider the normal stress between the transducer and host
structure, as well as the frequency-dependent behavior of the transducer, as mentioned in
[146].
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3.2.3 Hybrid-empirical sensor model
Quaegebeur et al. [140] proposed a variable separation method for hybrid sensor modeling
with an empirical calibration of the transducer dynamics estimation using FE computation
and transducer impedance. The transducer stresses are computed in both radial and nor-
mal directions, which becomes essential as the excitation frequency increases. Therefore,
this model proposes bi-direction complex load functions with six hyperparameters. These
hyperparameters are computed by best fitting the complex stress distribution computed
by FE over the proposed analytical traction functions. This hybrid model is validated
below the second electromechanical resonance frequency of the transducer. However, this
model is limited to specific values for the thickness ratio, frequency range, wavenumber,
and host structure properties. For every new configuration, expensive calibration and
validation steps are required.

3.2.4 Equivalent pin force model
Li et al. [147] proposed a two directions equivalent pin force model. This model is similar
to the hybrid-empirical sensor model mentioned in the previous section. However, it is
applied in the Laplace domain on a boundary element formulation to model the S0 and
A0 modes below the first cutoff frequency. This model computes the radial and normal
tractions from FE and then projects them to the S0 and A0 modes using an integral
transformation. This model is validated up to 300 kHz frequency in the configuration of
the paper.

Hybrid-empirical sensor and equivalent pin force models are applied in simulations
in which the mode decomposition of GWs are possible. These models are hence not
suitable for a 3D time domain spectral finite element method with no possibility of mode
decomposition, which is why a new model is presented in this chapter. To discuss the
results, the proposed model is compared to the PF model, i.e., the most widely used
model in the literature.

3.3 Theoretical framework for the hybrid actuator
model

3.3.1 Hybrid actuator model (HAM)
The stress between a transducer and a structure is made of radial and normal components,
as shown in the Figure 3.1. The stress distributions vary with the frequency, and as
mentioned in the previous subsections 3.2.3 and 3.2.4, the normal component increases
with the excitation frequency. These stresses are assumed omnidirectional:

τ̄rr(r, ω) = τ̃rr(ω)δ(r − arre )/arre
τ̄zz(r, ω) = τ̃zz(ω)δ(r − azze )/azze

(3.2)

where τ̃rr(ω) and τ̃zz(ω) capture the frequency dependent behavior of the transducer in
radial and normal directions, respectively, τ̄rr(r, ω) and τ̄zz(r, ω) are complex loads in radial
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and normal directions, and arre and azze are effective radii of the transducer in radial and
normal directions. In this study, finite elements are used to pre-compute the complex stress

Piezoelectric transducer

z
Adhesive−𝑎 +𝑎

Normal stress
𝜏𝑧𝑧(𝑟, 𝜔)

Radial stress
𝜏𝑟𝑟(𝑟, 𝜔)

Host structure
r

Figure 3.1: Side view of a circular piezoelectric transducer attached through an adhesive
layer to a host structure. Radial τrr(r, ω) and normal stresses τzz(r, ω) under the transducer
are shown by the black arrows.

distributions under the transducer in the normal τzz(r, ω) and radial τrr(r, ω) directions
for a given excitation frequency ω as shown in Figure 3.1 and described in the following
section. The HAM assumes that the effect of the loads in Equation 3.2 are the same as
the effect of the stresses obtained from finite elements. Therefore:

∫ a

0
τ̃rr(ω)δ(r − arre )

arre
2πr dr =

∫ a

0
τrr(r, ω)2πr dr

∫ a

0
τ̃zz(ω)δ(r − azze )

azze
2πr dr =

∫ a

0
τzz(r, ω)2πr dr

(3.3)

This leads to:
τ̃rr(ω) =

∫ a

0
τrr(r, ω)r dr

τ̃zz(ω) =
∫ a

0
τzz(r, ω)r dr

(3.4)

The effective radius in the radial direction is estimated from the admittance ratio of
the bonded (Ybonded) and unbonded (Yunbonded) transducers by,

arre = 2

√[
Ybonded

Yunbonded

]
a (3.5)

The effective radius in the normal direction is chosen such that azze = 0.99 × arre , based
on [140], where the ratio between normal and radial radii is 0.99. This value has been
proven effective in the configurations and validations presented hereafter but this param-
eter might be adjusted accordingly in other cases.

To obtain the surface load to apply in HAM, the Fourier transform of the excitation
function g̃(ω) is multiplied by the frequency-dependent behavior terms, leading to two
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modified frequency domain actuation signals in radial S̃rr(ω) = g̃(ω)τ̃rr(ω) and normal
S̃zz(ω) = g̃(ω)τ̃zz(ω) directions. The inverse Fourier transformation then leads to the
modified actuation signals Srr(t) and Szz(t) in the time domain:

τHAM(r, t) =
[
τ̄rr(r, t)
τ̄zz(r, t)

]
=
[
Srr(t)δ(r − arre )/arre
Szz(t)δ(r − azze )/azze

]
(3.6)

3.3.2 Computation of the dynamic behavior of the transducer
Recently, Kapuria et al. [148] have analytically estimated the complex stress distribution
of a transducer as a function of the frequency; however, this model is not applicable to a
circular transducer. Therefore to pre-compute the τrr(r, ω) and τzz(r, ω), this study uses
COMSOL Multiphysics. Since the transducer is polarized in the thickness direction and

Absorbing 
region

Adhesive
Piezoelectric transducer

𝑡

𝑡𝑝

𝑎
z

𝑉(𝜔𝑖)

𝑙Axisymmetric structure

Figure 3.2: Scheme of a 2D axisymmetric finite element model to compute the frequency
dependent behavior of the transducer.

the material properties of the structure and the adhesive are isotropic, a 2D axisymmetric
model is considered to compute the stress distribution under the transducer, as shown in
Figure 3.2. A thin elastic layer condition is assumed between the transducer and the host
structure to model the adhesive layer with a normal (kn) and tangential (kt) stiffnesses as
follows:

kn = Ea(1 − νa)
ha(1 + νa)(1 − 2νa)

, kt = Ea
2ha(1 + νa)

where Ea, νa, and ha are the elastic modulus, Poisson’s ratio, and thickness of the adhesive,
respectively. The mesh is defined with 15 elements per wavelength of the mode with the
smallest wavelength and free quadratic triangles are used. A local refinement of mesh is
made around the transducer to extract the stresses under the transducer. The absorbing
region (AR) is used to avoid the reflection from the boundaries as defined in [149]. The
frequency-domain analysis is computed on a desktop computer in a few minutes, and
the complex stresses (τrr(r, ω)andτzz(r, ω)) under the transducer are extracted at every
excitation frequency ω for an applied voltage V (ω). These complex stresses are then used
in Equation 3.4.
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3.4 Validation

Two configurations denoted C1 and C2, shown in Table 3.1, are studied for the validation of
the HAM. Each is an isotropic aluminum plate with a permanently bonded piezoelectric
transducer in its center. To ensure a relatively large validation range, distinct elastic
and piezoelectric properties, dimensions, and coupling conditions are studied. The host
structure, piezoelectric transducer, and adhesive properties for both configurations are
mentioned in Tables 3.2 and 3.3. Additionally, the adhesive damping values for C1 and
C2 are used as 0.05 and 0.018 [140], respectively. The energy velocity curves for both

Configuration Plate size Piezoelectric transducer Adhesive
(l × w × t) size (a× tp) thickness

[mm3] [mm2] (ha) [µm]
C1 600 × 600 × 1.5 5 × 0.4 25
C2 1200 × 1200 × 3 5 × 0.4 100

Table 3.1: Dimensions of C1 and C2.

E1 E2 E3 ν23 ν13 ν12 ρ
Material [GPa] [GPa] [GPa] - - - [kg m−3]

Aluminum-C1 70 70 70 0.33 0.33 0.33 2700
Adhesive-C1 3.0 3.0 3.0 0.2 0.2 0.2 1600
PZT-C1 [137] 120.14 120.41 110.10 0.35 0.35 0.35 7750
Aluminum-C2 75 75 75 0.33 0.33 0.33 2660
Adhesive-C2 3.1 3.1 3.1 0.4 0.4 0.4 1600
PZT-C2 [150] 112.14 112.41 86.10 0.35 0.35 0.35 7900

Table 3.2: Mechanical properties.

d31 d33 ϵ11/ϵ0 ϵ22/ϵ0 ϵ33/ϵ0
×10−12 ×10−12

Material [m V−1] [m V−1] - - -
PZT-C1 [137] -1.71 3.74 1730 1730 1700
PZT-C2 [150] -1.40 3.20 1475 1475 1250

Table 3.3: Electrical properties of piezoelectric transducer. The electrical permittivity of
air ϵ0 = 8.854 × 10−12 F m−1.

configurations are shown in Figure 3.3, in which it is visible that the first cutoff frequency
is approximately 1.1 MHz for C1 and 550 kHz for C2.
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Figure 3.3: Energy velocity dispersion curves for (a) C1 and (b) C2.

3.4.1 Computation of the frequency-dependent behavior terms
of the piezoelectric transducer

The requirement for the HAM is to pre-compute the frequency-dependent behavior terms
of the piezoelectric transducer in radial τ̃rr(ω) and normal τ̃zz(ω) directions, as well as
the effective radius of the transducer over the entire range of excitation frequency, thus
allowing the computation of the loads defined in Equation (3.2). The stress distributions
τrr(r, ω) and τzz(r, ω) are estimated based on section 3.3.2 for both configurations. After
that, the frequency-dependent behavior terms for configurations C1 and C2 are estimated
through Equation (3.4), where the numerical computation is performed from 30 kHz to
1000 kHz with a 5 kHz step. The results are plotted in Figure 3.4.

For configuration C1, the normal stress τ̃zz(ω) is near zero until 250 kHz and increases
to be equal to the radial stress τ̃rr(ω) at 550 kHz. In contrast, radial stress grows linearly
and shows a local maximum at 300 kHz. Similarly, for configuration C2, radial stress
exhibits a similar trend to C1 with higher values. The normal component is near zero
up to 150 kHz and shows a local maximum at 300 kHz. The local maximum in both
configurations is observed due to the first electromechanical resonance of the coupled
piezoelectric transducers, as shown in Figures 3.5(a) and 3.5(b). Hence, the modeling of
the normal stress becomes necessary at high excitation frequencies, i.e., around 300 to 500
kHz in the cases under consideration.

The effective radii of the transducers, shown in Figures 3.5(c) and 3.5(d), are computed
based on the ratio of the slopes at f = 0 kHz of admittances of the bonded and unbonded
transducers. The slope at the origin is computed by a linear fit of the admittance up to
140 kHz to ensure a regression coefficient around 0.99, as shown in Figures 3.5(a) and
3.5(b). It can be observed that, as the excitation frequency increases, the effective radius
decreases, therefore, it is required to compute Equation (3.2) at every excitation frequency.
The estimated loads are then applied as a surface load in the time domain spectral finite
element schemes, with frequency dependent support.
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Figure 3.4: Frequency-dependent behavior terms for configurations (a) C1 and (b) C2.

3.4.2 Validation with simulations

This section compares the radial Urr and transverse Uzz displacements computed by finite
elements for two transducer models: PF and HAM. A 2D axisymmetric model is used to
compute the FE time domain displacement signal. The computed loads from the previous
section are imported into the full 3D spectral finite element model implemented in CIVA.
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Figure 3.5: (a,b) The imaginary part of the admittance for bonded (black line) and un-
bonded (blue line) piezoelectric transducers obtained from finite element simulations and
their linear fit (dashed line) and (c,d) ratio of the effective radius to the physical radius a
of the piezoelectric transducer.

The excitation function is a 5-cycle sinusoidal tone burst described as:

g(t) = A sin(ωct)
[
1 − cos(ωct)

N

]
H
(2πN
ωc

− t
)
,

where N , A, and ωc denote the number of cycles, signal amplitude, and central frequency,
respectively, while H is the Heaviside function.

The normalized displacements in both directions at 100 mm from the transducer are
shown in Figures 3.6 and 3.7 for C1 and Figures 3.8 and 3.9 for C2. The first two signals are
shown at 100 and 200 kHz, i.e., below the transducers first electromechanical resonance. In
the other two displacement signals, the first signal is shown at the first resonance frequency
of 300 kHz for both configurations, and the second is shown at 500 kHz for C1, i.e., at the
second resonance frequency and 440 kHz for C2 near the second resonance frequency. The
selected frequency locations are shown with the red circles in Figures 3.5(a) and 3.5(b).

For C1 at 100 and 200 kHz, both PF and HAM concur with the finite element results,
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Figure 3.6: Comparison of displacement signals (Urr and Uzz) computed from FE, PF,
and HAM for C1 at 100 mm.

as shown in Figures 3.6(a) to 3.6(d). This is due to the fact that up to 200 kHz, the
normal stresses are nearly zero, as shown in Figure 3.4(a); therefore, the PF assumptions
remain valid. Furthermore, at 300 and 500 kHz (shown in Figures 3.7(a) to 3.7(d)), phase
and amplitude differences are observed between the FE and the PF. At the same time, the
HAM model captures these variations effectively. It is also noted that at 500 kHz, the A0
mode is longer than 5 cycles, due to the high admittance value, leading to a local resonance
phenomenon. Similar conclusions can be made for C2 at 100 and 200 kHz, as shown in
Figures 3.8(a) to 3.8(d). The same variations between the signals obtained with PF and
the finite elements are observed at 300 kHz and 440 kHz, as shown in Figures 3.9(a) to
3.9(b). In contrast to PF, HAM captures the phase-amplitude variations considerably well
at 300 kHz. However, little phase and amplitude variations are observed at 440 kHz in the
HAM result compared to the finite element results. It should be noted that the bandwidth
centered on 440 kHz goes from 300 to 600 kHz, meaning that the first cutoff frequency
of C2 is excited. In this case, the assumption of spatial and frequency independence
(Equation (3.2)) is inadequate. Additionally, the signal at 500 kHz for C2 is added to
highlight the limits of the model in Figures 3.9(e) and 3.9(e). In this case, the match
between both models and the FE signals is poor because the excitation bandwidth at
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Figure 3.7: Comparison of displacement signals (Urr and Uzz) computed from FE, PF,
and HAM for C1 at 100 mm.

ranges from 350 to 700 kHz, thus exciting multiple modes, including A1 with zero velocity,
as shown in Figure 3.3(b). Moreover, the S0 mode group velocity also drastically changes
from 5 to 2 mm/µs, meaning that the S0 mode is highly dispersive and is superimposed
with other modes. Therefore, locating the modes and transducer effect is impossible.
Nevertheless, HAM is in phase with FEM results, whereas PF is out of phase.

Hence, this simulation study shows that the frequency-dependent behavior term affects
the propagated wavepackets in terms of both phase and amplitude. Particularly, additional
cycles are observed when an electromechanical resonance is excited. The HAM successfully
reproduces these phenomena while the PF does not.

3.4.3 Experimental validation

An aluminum plate of 1200 × 1200 × 3 mm3 is used for validation. A circular piezoelectric
transducer of diameter a = 5 mm and thickness tp = 0.4 mm is attached at the center of
the plate with epoxy adhesive, as shown in Figure 3.10. A waveform generator is used to
excite a five-cycle sinusoidal tone burst of varying center frequencies from 60 kHz to 440
kHz with a 20 kHz step. The transverse displacement Uzz is measured by a Laser-Doppler
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Figure 3.8: Comparison of displacement signals (Urr and Uzz) computed from FE, PF,
and HAM for C2 at 100 mm.

vibrometer at a distance of 60, 100, and 200 mm from the center of the piezoelectric
transducer. The experimental configuration is similar to the C2 configuration shown in
Table 3.1, and the same parameters are used. Therefore, the frequency-dependent behavior
terms of C2 shown previously are used as an input to the HAM. The effective radius is
computed based on the linear fit of the admittance curve ratio of bonded and unbonded
transducers measured with an impedance analyzer, as shown in Figure 3.11. Figure 3.11.
The recorded displacements are compared with the signals simulated with PF and HAM
computed through CIVA. Similarly to the simulation study, four displacement signals at
100 kHz, 200 kHz, 300 kHz, and 440 kHz are shown in Figures 3.12 and 3.13 at three
distances from the transducer. It has been observed that the experimental signals have
a constant time delay with respect to the simulated results, which is likely due to the
uncertainty of the material properties. The time difference between experimental and
simulated signals is equal to 1.5 µs and is compensated in the plots by a constant shift of
the time axis.

The conclusion of the experimental study is analogous to the one of the simulation
study at all frequencies and at all locations. More specifically, at 100 and 200 kHz, both
PF and HAM match the experimental signals, as shown in Figure 3.12. Furthermore, at
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Figure 3.9: Comparison of displacement signals (Urr and Uzz) computed from FE, PF,
and HAM for C2 at 100 mm. (e,f) The high amplitude signals are the superimposition of
multi modes of guided waves at 500 kHz.

300 kHz and 440 kHz, shown in Figure 3.13, the same phase-amplitude variations and
additional cycles in the experimental signals are observed. These are correctly modeled
by HAM for both modes but not by PF. Nevertheless, small differences in terms of phase
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Figure 3.10: Experimental setup
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Figure 3.11: (a) The imaginary part of the admittance for bonded (black line) and
unbonded (blue line) piezoelectric transducers measured by an impedance analyzer and
their linear fit (dashed line) and (b) effective radius as a percentage of the original radius
a.

and amplitude are observed between the HAM and experimental signal at the end of the
A0 wave packet.
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Figure 3.12: Comparison of experimental Uzz with PF and HAM at 100 kHz (left) and
200 kHz (right).

Additionally, at 440 kHz, an additional wave packet is observed in the experimental
signals at all three locations, as shown in Figure 3.13 (b,d,f), while there is no sign of such
an additional wave packet in the simulated signals for C2, as shown in Figure 3.9(d). The
simulations confirm that the additional wave packet is not due to an echo from the edge of
the plate. To explain this phenomenon, the admittance of the bonded piezoelectric trans-
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Figure 3.13: Comparison of experimental Uzz with PF and HAM at 300 kHz (left) and
440 kHz (right).

ducer is compared between the finite element and the experimental cases in Figure 3.14.
While the imaginary part is well matched, the real part shows a significant mismatch
at high frequencies, potentially due to the uncertainty of the material properties. The
two main electromechanical resonance peaks around 320 kHz and 650 kHz are observed
in both results with a good match. However, an additional peak is also observed in the
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Figure 3.14: Comparison of admittance of bonded piezoelectric transducer obtained from
finite element (denoted in red) and recorded experimentally (denoted in blue) where the
bandwidth of the excitation signals g(t) at 440 kHz is shown in light black: (a) real part
(b) imaginary part.

experimental admittance around 500 kHz, but not in the simulated admittance. This ad-
ditional peak could be due to an incomplete bonding between the transducer and the host
structure or, more probably, to the asymmetry of the piezoelectric transducer electrodes,
as discussed in [151]. Since the bandwidth of the 440 kHz excitation ranges from 300 kHz
to 600 kHz approximately, as shown in Figure 3.14, the additional wave packet is assumed
to be due to this additional resonance frequency of around 500kHz, thus explaining the
mismatch.

3.4.4 Parametric study
Previous results show that the quality of the models is better at low frequencies than
at higher frequencies. The goal of this section is to validate the models over a range of
frequencies quantitatively. A normalized running correlation coefficient (CX

Y ) is defined,
where X denotes the experimental signal and Y denotes signals obtained with either PF
or HAM. The coefficient is calculated by:

CX
Y = maxk

(
RX

Y [k]√
RX

X [k]RY
Y [k]

)

where RX
Y [k] = ∑n

m=0 X[m]Y [m − k] is the cross-correlation between X and Y , n is the
number of time samples in the signals, and k is an integer between 0 and n. In addition, the
time delay at maximum correlation ∆TXY is also calculated as TX [kmax] − TY [kmax], where
TX and TY are the time vectors of X and Y , and kmax is argmax

k
RX
Y [k]. The calculation of

CX
Y is conducted twice over normalized signals, first windowed signals to avoid boundary

reflections from the plate edges, and second, signals windowed up to the end of the A0
wave packet, as shown in Figures 3.15(a) and 3.15(b). For the first, the correlation is
above 0.9 up to 250 kHz at all the locations for the HAM, while this value reached 150
kHz for PF. For the second, the 0.9 correlation value is crossed at 350 kHz for HAM and
200 kHz for PF. In addition, the time delay, shown in Figures 3.16(a) and 3.16(a), is nearly
constant for HAM, while its curve is discontinuous for PF because the signals are out of
phase at higher frequencies. The constant but non-zero value for HAM is likely due to the
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Figure 3.15: Normalized running correlation coefficient CX
Y at three locations 60, 100, and

200 mm for the (a) full time domain signal and (b) signal windowed up to end of A0 wave
packet.

uncertainty of the material and piezoelectric properties. Hence, the validity range of the
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Figure 3.16: Time delay at maximum correlation ∆TXY of (a) full time domain signal and
(b) up to end of A0 wave packet.

PF model is limited below the first electromechanical frequency of the coupled transducer,
as shown in Figure 3.14(b), while HAM remains valid beyond this resonance. However,
it should be noted that the correlation for HAM decreases beyond this resonance, which
is either due to the aforementioned asymmetric electrodes of the transducer or imperfect
bonding.
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3.4.5 Discussion
Through the simulation, it has been observed that as excitation frequency increases, the
loads applied to the plate become more and more different compared to the actuation
signal g(t). This effect is shown in the Figures 3.17(a) and 3.17(b) at 100 and 300 kHz;
in which the surface loads Srr(t)/max(|Srr(t)|) and Szz(t)/max(|Srr(t)|) are represented,
as defined in Equation 3.6. At 100 kHz, the loads are similar to the actuation signal
g(t). At 300 kHz and due to the transducer effect, the loads are different in both phase
and amplitude from g(t) at a higher frequency. This is why it is essential to consider the
bi-directional loads as well as to take into account the frequency-dependent behavior of
the transducer for modeling the GWs, near or beyond the first resonance frequency.
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Figure 3.17: Comparison of PF actuation signal g(t), and HAM actuation signals
Srr(t)/max(|Srr(t)|) and Szz(t)/max(|Srr(t)|) at 100 and 300 kHz.

3.5 Conclusion

This chapter proposed a new circular piezoelectric actuator model (denoted HAM for
Hybrid Actuator Model). The model is based on 1) the use of the radial and normal stresses
between the transducer and the host structure, pre-computed by finite elements taking
into account the adhesive layer, and 2) an effective area calibrated with an experimentally-
measured electromechanical impedance. The HAM is compared with the Pin Force (PF)
model and validated on both numerical and experimental data. In the low-frequency
regime, i.e., well below the first free resonant frequency of the transducer, both models
match fairly well the experimental data. However, in the vicinity of the first free resonant
frequency, the PF model fails while the HAM successfully reproduces the experimental
signals up to the first free resonant frequency. For precise quantification of the domain
of validity of both models, a criterion is proposed and evaluated. This new hybrid model
is valuable as it is fully compatible with computation using a surface load as a source in
the time domain, in particular for computationally-efficient explicit spectral finite element
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codes. It will therefore be a crucial enabler of the model-assisted probability of detection
or other computation-intensive studies beyond the PF validity range.
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Part II

Performance demonstration for SHM
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4.1 Introduction
The objective of an inspection/monitoring system is to identify the condition of a structure,
i.e., to decide whether critical flaws are absent or present in the structure. The decision-
making process is influenced by many factors that affect the response from an inspection
system, for example, multiple inspections of the same structure can lead to different re-
sponses due to minimal setup changes. Even defects of the same type and size can produce
different responses due to variability of defects (shape, roughness, location, material, etc.),
inspection system (hardware, process, algorithms), and many others (temperature, humid-
ity, wind, moistures). Therefore, performance demonstration of an inspection/monitoring
system is essential for increasing reliability and reducing false maintenance calls before
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their implementation in industries. Performance demonstration is achieved by repeating
the inspection procedure several times on similar configurations in the presence of repre-
sentative variabilities and making a decision based on observed responses on the presence
and absence of defects. The procedure of performance demonstration of NDE techniques
is well documented in the MIL-HDBK-1823A and ENIQ report 41 [86] and quantified
through the determination of probability of detection (POD) curves.

Similarly, for SHM systems, the POD curve determination is identified as a key enabler
of SHM in the aerospace industry. For example, Sandia National Laboratory, Boeing, and
Delta Airlines [152] demonstrated the performance of the Comparative Vacuum Monitor-
ing based SHM system (explained in introduction section 1.1.1) on a thin panel of aircraft
under fatigue loading based on the POD curve and finally FAA certified their use in aircraft
in 2017 [20]. Apart from this SHM system, there is no other SHM system in civil aircraft
industry that has been certified so far. This is because of two major challenges in the per-
formance demonstration of SHM system (more details are presented in the introduction
section 1.2.2). The first is that due to the fixed nature of the sensor, multiple instrumented
structures are required to evaluate the performance, so the cost is prohibitive. And, the
second is to address the issue of statistical dependency in the observed responses from the
sensor (explained more precisely in the next chapter). Therefore, a cost-effective proce-
dure based on simulation, called a model-assisted probability of detection (MAPOD), and
inspired by the same approach developed in NDE, has become an essential requirement
for the quantitative evaluation of SHM systems. For this, as mentioned in the previous
chapters, the CIVA simulation tool has the potential to produce many repeated measure-
ments: recently, Mesnil et al. [153] has presented a MAPOD computation by creating a
metamodel for GWs based SHM imaging by using CIVA. However, an essential step of
MAPOD procedure is to evaluate the accuracy of the simulation tool to produce consistent
results under the range of variation of the influencing variabilities for successful use in real
cases [134]. This study was limited in the previous MAPOD studies, i.e., no actual link
was established between experimental and simulation POD studies.

Therefore, this chapter proposes both experimental and simulation methodological
steps to obtain performance demonstration of GWs based SHM responses for a use case
under multiple variabilities. The simulation methodology allows for reproduced variation
in output response even if deterministic software is used for the numerical simulation. Four
basic methodological steps are proposed to measure the performance of the SHM system
in terms of the probability of detection curve, as shown in Figure 4.1. The first step is
basically to define the configuration of interest under consideration for the POD study,
such as specimen (geometry and material properties), monitoring system, sensor location
and positions, and, more importantly, the targeted defect type (geometry, position, and
orientation) and sources of variabilities (with their statistical distribution). The second
step is to obtain, generate and validate the SHM POD data under the considered influ-
encing variabilities. SHM POD data can be generated through experimental, simulation,
or both. However, before using a simulation-based study, it is highly recommended to
use an experimental study where multiple identical structures are needed to validate the
simulation-based approach under the considered influencing variabilities. If the simulation-
based responses do not agree with the experimental study, some calibration methods can
be used to associate the simulation responses with the real-case scenario. The third step
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Figure 4.1: Methodological steps to obtain experimental and model-based probability of
detection curves for GWs based SHM.

is based on the damage detection strategy to measure the damage response from the ac-
quired signal, which is directly related to step four of the POD curve estimation since
inappropriate damage detection algorithm will result in the unacceptable performance of
the SHM system established by the POD curve. Some specialized statistical methods are
needed to estimate the relationship of the measured response to damage characteristics.
However, before developing the POD curve determination, i.e., step 4, in the next chapter,
this chapter focuses on creating the required data. The data on a specific use case is gen-
erated through experimental and simulation studies. Specific care is given to validation
to ensure data quality confidence before POD computations.

4.2 Objective

The objective here is to compare simulation output response to a well-controlled experi-
mental estimation and validate that it is possible to apply model-based POD assessments
for GWs based SHM. The use case under study is similar to the use case of Kabban et al.
[109] and Meeker et al. [110], where a crack grows from a hole of an isotropic aluminum
plate under a fatigue load. Although much research emphasizes the detection and localiza-
tion of crack length through GWs based SHM, fewer articles show the probability of crack
length detection or localization. Because of influencing variabilities, the GWs based SHM
signals tend to be stochastic in response. Therefore, twelve identical aluminum plates with
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a hole where a crack grows with the help of a saw tooth are considered in this study to
elicit GW stochastic responses. Furthermore, variabilities, e.g., temperature, crack length,
and material properties, are recorded during experiments and used to determine variability
limits for a MAPOD study. Then the complex stochastic GW signals measured from both
experimental and simulation studies are compared to guarantee the validity of simulation
results. Both experimental and simulated signals are mapped to the damage index (DI)
as a scalar quantity to identify the relation between crack length and DI. Lastly, a study
of DI variation with normalized crack length by wavelength is presented to exhibit higher
sensitivity towards crack length with frequency.

4.2.1 Specimen description

A simplified structure of a square aluminum plate 600 × 600 × 3 mm3 with a hole in the
center is considered to monitor crack growth via GWs based SHM. Four circular transduc-
ers of radius 5 mm are permanently glued to the structure, denoted as #1, #2, #3, and
#4, where two transducers (#1 and #2) are in direct paths and the other two transducers
(#3 and #4) are in the diagonal path of crack initiation and the entire configuration is
represented as a single unit, as shown in Figure 4.2.
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Figure 4.2: Configuration of interest (twelve of such units are created experimentally).

4.2.2 Actuation signal and frequency selection
A transducer is actuated by an actuation signal to transmit guided wave signals into the
structure. A sinusoidal tone burst modulated by the Hahn window is chosen because it
limits the bandwidth of the frequency in the actuation signal, reducing dispersion in GWs.
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The mathematical form of the actuation signal is represented below:

g(t) = A sin(ωct)
[
1 − cos(ωct)

N

]
H
(2πN
ωc

− t
)

where N , A, and ωc denote the number of cycles, signal amplitude, and central actuation
frequency, respectively, whileH is the Heaviside function. In isotropic plate-like structures,
guided waves always have at least two propagating modes, denoted as S0 and A0. As
the actuation frequency ωc or thickness of the structure increases, the number of modes
increases simultaneously, as reported in chapter section’s 2.2.3. The selection of ωc depends
on the wavelength of propagating wave modes because wave modes are only sensitive to
those damage sizes that exceed half the wavelength of the wave mode [107]. While as
ωc increases, the wavelength of modes decreases, which increases the chance of detecting
smaller defects. However, identifying defect signatures at a higher actuation frequency is
complex work due to the multimode nature of guided waves. Therefore, ωc is typically
kept below the first cut-off frequency, meaning that only two modes (S0 and A0) are
allowed to propagate. Furthermore, the amplitude trade-off between S0 and A0 wave
modes depends on the excitability curve, which can be estimated based on transducer
response (Equation 2.32 in chapter 1) or explained in [131], as shown in Figure 4.3(a).
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Figure 4.3: (a) Transducer excitability curve (solid line) for 5 mm radius piezoelectric
transducer, and on the right axis energy velocity curve (marker ◦) computed from SAFE
(red and black colors denote A0 and S0 modes, respectively) (b) Wavelength of guided
waves as a function of frequency.

In order to obtain the maximum response of guide wave signals after interaction with
minimum damage size while keeping the maximum amplitude of mode, this study is se-
lected a 100 kHz central frequency with five cycles based on the A0 mode since the wave-
length of A0 mode is lower than S0 mode, as shown in Figure 4.3(b).
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4.2.3 Experimental study

Twelve identical and independent aluminum units based on the configuration described in
the previous section 4.2.1 are considered for the SHM POD study. The experimental setup
is shown in Figure 4.4, where four Steminc piezoelectric transducers [150] were glued to
each aluminum plate using epoxy adhesive. A round-robin condition is used, which means
one transducer acts as an actuator, whereas all others act as receivers. A series of five-cycle
tone burst actuation signals of central frequencies of 60 to 340 kHz are generated by a wave
generator (Keysight Technologies) with a step size of 20 kHz. These actuation signals are
amplified to a peak-to-peak amplitude of 40 volts with the help of a power amplifier. The
signals measured by the receivers are first filtered analogically and amplified by a low-
noise preamplifier (Stanford Research Systems) with a second-order high-pass filter with
a cutoff frequency of 10 kHz. Then, the signals are digitized using NI-DAQ at a 2 MHz
sampling frequency and averaged 50 times to increase the signal-to-noise ratio. The overall
acquisition process is fully automated thanks to a LABVIEW code and multiplexers that
allow switching between the piezoelectric transducers.
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Figure 4.4: Experimental setup of 12 aluminum plate units for GWs based SHM.

Experimental GW signals are recorded on two configurations denoted as pristine and
damaged units. A pristine unit represents an aluminum unit with a hole, and a damaged
unit represents when a crack begins on the pristine unit and progresses. Firstly, pristine
signals, i.e., baseline signals, are acquired on the 12 pristine units and stored in a multi-
dimensional array (dimension is 12 × 4 × 4)1, denoted as experimental pristine signals.
After that, GW signals are acquired on the 12 damaged units, where a saw tooth helps to
cut a through-thickness slit as a crack at the one side of the hole. This process is repeated
for 21 days, and on each day, a 1 mm to 1.5 mm slit length, i.e., crack length, is increased
to make representative of a growing crack under fatigue load. These damaged signals are
stored in another multidimensional array (dimension is 21 × 12 × 4 × 4)2, denoted as
experimental damaged signals. The crack length distribution (measured on each unit with

1It represents 12 units, 4 emitters, and 4 receivers.
2It represents, 21 crack lengths, 12 units, 4 emitters, and 4 receivers.
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Figure 4.5: Distribution of crack length and temperature measured during the experiment.
The temperature is recorded every hour in the laboratory on three different days. First
when the transducer is attached, second when a hole is drilled, and third at a crack length
of 5 mm.

the help of a ruler during the growing crack) and temperature distribution (recorded by a
thermocouple in the laboratory) are shown in Figure 4.5.
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Figure 4.6: Transducer admittance curve of all 48 bonded piezoelectric transducers in blue
and their ±3 standard deviation bound in light black colors.

Additionally, it is essential to check the admittance curve for each attached transducer
in GWs based SHM to ensure a sufficient bond between the transducer and structure,
as mentioned in [10]. Therefore, admittance curves are recorded from each transducer of
each pristine unit (total of 48 transducers) with the help of an impedance analyzer and
represented with a bound of their ±3 standard deviations in Figure 4.6. This figure shows a
good bond between transducers and all the aluminum plates, while variation in admittance
curves is due to uncertainty in the properties of piezoelectric transducer and adhesive
materials and different thicknesses of an adhesive layer on each unit, as mentioned in
chapter section 3.3.1. It is also worth noting that debonding, degradation, and transducer
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breakage also change the admittance curve amplitude and resonance points, as mentioned
in [154], but are not observed in the data.

4.2.4 Simulation study

This study describes obtaining GWs based SHM stochastic responses by simulation, i.e.,
through the MAPOD methodology. As mentioned earlier, such SHM systems are af-
fected by the variability of various influencing parameters, such as damage characteristics
(e.g., size, orientation, positions...), inspection variables (e.g., transducers positions, ge-
ometry, materials...), and environmental variables (temperature, humidity, moisture...).
These variables result in the stochastic nature of the SHM system, i.e., the variability
in their responses. Variability of the various influencing parameters is always associated
with uncertainty due to a lack of knowledge of the parameters (i.e., the limited amount
of data). Therefore, a simulation model should adequately represent the actual response
under influencing variabilities, i.e., reproduce the variability of the response in the SHM
system. This could be achieved by introducing uncertainties on the model’s input pa-
rameters, which are identified as influencing variabilities to generate a large number of
slightly different configurations representative of actual usages of the SHM system. An
efficient and validated simulation tool, such as CIVA [153], is required to simulate many
configurations. To induce the variability in the output of the GWs based SHM response,
a detailed simulation study with three levels is carried out as follows.

Level 1: Define all nominal input parameters

This defines all the necessary information about all nominal input parameters (e.g., di-
mension, geometry, transducer locations, elastic properties...) for monitoring structure in
the simulation tool. This study considered the configuration described in the previous
section 4.2.1 and listed their important nominal parameters in Table 4.1.

Input Parameters Values

Mechanical properties
of structure

E=75 [GPa]
ρ=2660 [kg m−3]
ν=0.33

Transducer location in mm

#1=(220,310)
#2=(370,310)
#3=(340,240)
#4=(265,370)

Hole location in mm (300, 300)
Hole diameter 5 mm

Central frequency 100 kHz
with 5 cycles

Table 4.1: Nominal input parameters of configuration of interest.
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Level 2: Identity influencing variabilities

Based on a previous study by Janapati et al. [104], the five most influencing variables
have been considered in the simulation tool for the MAPOD study of growing cracks
on an aluminum plate. Then, each variability is assigned a statistical distribution by
its functional forms (e.g., normal, uniform...) and associated parameters (e.g., mean,
variance...). It should be ensured that the variation range of the statistical distribution
bounds all values of the source of the variability encountered during the inspection due
to lack of control. However, the choice of a statistical distribution and its parameters
are often based on previous studies, experimental studies, or engineering judgment. Some
variability ranges and distributions are recorded during the experiment, such as crack
length, temperature, and transducer admittance, as mentioned in Figures 4.5 and 4.6.

Variability Distribution Parameters Unit
Transducer and Hole

Location Normal µ=Table 4.1
σ=2 mm

Temperature Normal µ=25
σ=5

◦C

Effective radius Normal µ=4.4
σ=0.1 mm

Crack length (CL) Uniform min CL=1
max CL=30 mm

Table 4.2: Variabilities and their uncertainty parameters with distribution characteristics
(µ: mean, σ: standard deviation).

Variability in transducer installation and hole location: An approximately ±5
mm transducer and hole location variations in X and Y coordinates were observed from
their nominal values when attaching 48 piezoelectric transducers and drilling holes on 12
aluminum plates. A normal distribution with a mean value of their nominal values and a
standard deviation of 2 mm is a reasonable assumption to represent transducer installation
and hole location variabilities.

Variability in temperature: Variation in temperature is counted as one of the most
influencing variability for GWs, as explained in [57]. The temperature changes in the
simulation tool are obtained by changing the elastic properties of the structure, i.e., the
change in longitudinal and shear wave velocities. It can be modeled based on a linear
relationship between the temperature and the two elastic wave velocities, as noted in [155]
and the mathematical form of their linear relationship is shown below:

Cs = Cs0 + kS(T − T0)
Cp = Cp0 + kL(T − T0)

where Cs and Cp denote shear and longitudinal velocity, respectively, Cs0 and Cp0 are
the velocities at reference temperature (T0 is assumed to be 25 ◦C), ks and kp are the

67



4.2. SHM POD case study

temperature dependence constants, while T is a measured temperature. The ks and kp
are -0.752 and -1.089 m s−1 ◦C−1 [155], and Cs0 and Cp0 values are 3130 m s−1 and 6132
m s−1 (computed based on Cp and Cs explained in the chapter 2.2).

The temperature variability is recorded in a close laboratory and varies from 20 to 22.5
◦C, as shown in Figure 4.5(b). A normal distribution is again assumed to describe the
temperature variability with a mean temperature of 25 ◦C and a standard deviation of 5
◦C, enclosing the recorded temperature range. Note that this is a conservative assump-
tion of the temperature distribution that may influence the results, whereas the recorded
temperature distribution was only for three days. Therefore, we expect a temperature
distribution at standard room temperature.

Variability in transducer as effective radius: Variation in the transducer admit-
tance can be representative of many variabilities due to transducers such as degradation,
aging, breakage, and adhesive thickness in between transducers and structure that directly
affect GWs propagation in the structure. As discussed in previous chapters, an approx-
imate transducer model called the Pin Force (only radius of excitation can be varied in
this model) is used in the CIVA simulation tool. Therefore, experimentally, the measured
transducers admittance curve variations are converted into an effective radius calculated
based on a bonded and unbonded transducer admittance ratio, as explained in Equation
(3.5). It is worth noting that some of the calculated effective radii appear to increase with
frequency, while others appear to decrease with frequency. This is highly likely due to
using only the single transducer unbonded admittance curve in calculating the effective
radius. While other 47 transducers’ unbonded admittance curves were unfortunately not
recorded prior to attachment to the structure during the experiment, as all transducers
were assumed to be similar in characteristics. Indeed, they have larger variability than
initially thought.
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Figure 4.7: a) The effective radius of all 48 piezoelectric transducers is displayed in blue
lines with their ±3 standard deviations bounded in light black color. It is computed
based on the admittance ratio of the bonded and unbonded piezoelectric transducers. (b)
Computed effective radius distribution at 100 kHz.
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Chapter 4. Model assisted POD methodology

It should also be noted that the effective radius variation is lower than the transducer’s
actual radius (5 mm) at a 100 kHz frequency, as shown in Figure 4.7. Similarly, a normal
distribution is assumed to represent transducer variability as effective radius with a mean
of effective radius 4.4 mm with a very small standard deviation of 0.1 mm. Note that the
estimated effective radius distribution is not fully representative of a Normal distribution
but more toward double Normal distribution with two peaks (smaller at 4.1 mm and larger
at 4.4 mm).

Variability in crack length: This variability considers a uniform distribution of crack
lengths similar to the experimentally recorded crack length distribution, as shown in Figure
4.5(a). The minimum crack length is 1 mm, and the maximum is considered 30 mm, e.g.,
to illustrate the crack length with meshed configuration in CIVA a configuration of 15 mm
crack length is shown in Figure 4.8.

Straight crack

15 mm
Hole 

Figure 4.8: Crack length of 15 mm from hole mesh configuration obtained from CIVA.

Level 3: Simulation run

A Monte Carlo simulation-based strategy is used to take the uncertainty distribution for
each variable as input to determine the variability in the output response from determinis-
tic software. A complete strategy of the simulation run is shown in Figure 4.10, where 100
random units are first selected from the transducer and hole distributions. The simulation
run is performed over two configurations which are represented as pristine and damaged
units. Similar to the experimental study, a pristine unit represents an aluminum unit with
a hole and a damaged unit when a crack begins on the pristine unit and progresses in the
simulation. A Monte Carlo simulation is used to run pristine unit, where the two inputs
from two variability distributions, temperature and effective radius, are randomly selected
in the simulation. This process is repeated 100 times to run the simulation for a total
of 100 pristine units, and each time with a sampling frequency of 2 MHz, the simulation
output is stored in a multidimensional array (dimension is 100 × 4 × 4)3 as a time domain
signal, denoted as simulated pristine signals.

Similarly, for damaged units, first, twenty crack lengths from the crack length vari-
ability are selected based on jittered sampling [156] for each unit. This sampling samples
a crack length from a uniform distribution in such a way that it covers the entire area
of interest while ensuring some randomness in the process. As shown in Figure 4.9, the

3It represents 100 units, 4 emitters, and 4 receivers.
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1 mm 2.45  mm 3.9 mm 30 mm

Sampling points 

Figure 4.9: A jittered sampling of the cracklength: the region of interest is split into
segments (black lines), and one measurement (red circles) is taken randomly within each
segment.

Hole

Randomly selected 
100 pristine units

100 × 20

Jittered sampling (20) 

Damaged units 

Pristine signals

Damaged signals

Crack length samples

Simulation run

Temperature [°𝐶]

Effective radius [mm]

Crack length [mm]

Figure 4.10: Simulation run strategy for MAPOD study of a growing crack on an aluminum
plate.

crack length from 1 mm to 30 mm is divided into 20 segments, and sampling points are
randomly selected between each segment in order to compromise between randomness and
regularity. Now, each damaged unit contains 20 crack length samples (refer to the Figure
4.10 at the left bottom) and covers the entire region of interest. Like the pristine units
simulation, a Monte Carlo simulation is used to run damaged unit, where two inputs from
two variability distributions, temperature and effective radius, are chosen randomly in
the simulation. This process is performed for 100 × 20 times to run the simulation for a
total of 100 × 20 damaged units, and each time with a sampling frequency of 2 MHz, the
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simulation output is stored in another multidimensional array (dimension is 20 × 100 ×
4 × 4)4 as a time domain signal, represented as simulated damaged signals.

4.2.5 Comparison of experimental and simulation signals

This section compares simulated and experimental time signals of pristine and damaged
units. Only four out of twelve paths on each unit of simulated pristine and experimental
pristine signals are compared at 100 kHz, as shown in Figures 4.11 and 4.12, as other
path signals show similar findings. Also, these signals are normalized with their maximum
amplitude and windowed to the complete cycle of A0 mode. In addition, the electrome-
chanical coupling is also removed from all experimental signals. For a better understanding
of path signals, a notation Path #E to #R is used, indicating that transducer E acts as an
emitter and transducer R acts as a receiver, while E and R represent transducers number
from 1 to 4.

It is indeed visible, as the blue signals are included inside the grey area, that the
simulated signals capture all the variabilities of the output of the GW response signals
from the experiments. The simulation also provides more significant signal variation, which
has not been observed in experimental studies due to the non-availability of large variation
in variability during the experiment (e.g., temperature variation, number of units...). It
is also observed that GW signals have time shifts and amplitude variations among all
identical pristine units due to influencing variabilities in the SHM system.

Furthermore, simulated damaged and experimental damaged signals with increasing
crack length from the hole are shown in Figure 4.13. A direct path of one unit, i.e., Path
#1 to #2 signal for both simulated and experiment is displayed for simplicity. Note that
these damaged signals are normalized with the same normalization factor as their pristine
signals. As crack length increases, a monotonic reduction of the signal amplitude and a
monotonically increasing delay in both simulated and experimental damaged signals are
observed. These signals exhibit similar effects that were observed due to the variabilities
among pristine signals.

4.2.6 Damage Index

Identification of damage in signals is defined as the third step of the POD methodology
study, as mentioned in Figure 4.1. In GWs based SHM systems, it is an essential consid-
eration how to decode complex SHM signals into damage features. A damage index (DI)
based strategy for damage identification has become very popular since it is simple, fast,
and repeatable. As mentioned earlier, GWs are either reflected, scattered, or converted
to other wave modes if structural integrity changes or damage occurs between the path of
propagation of waves in the structure. DI measures these changes to identify the damage
severity in the working structure. Several DI estimation methods exist in the literature
[64, 157]. But the DI chosen for this study is based on high sensitivity to the crack length

4It represents 20 crack lengths, 100 units, 4 emitters, and 4 receivers.
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Figure 4.11: Comparison of experimental and simulated time signals of direct and diagonal
paths of all pristine units. A bound of ±2 standard deviations of the simulation signal is
represented by light black color.
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Figure 4.12: Comparison of experimental and simulated time signals of indirect paths of all
pristine units. A bound of ±2 standard deviations of the simulation signal is represented
by light black color.

as defined below:

DI = ∥Rp(t) −RD(t)∥2
∥Rp(t)∥2

(4.1)

where ∥·∥2 denotes L2-norm, while Rp(t) and RD(t) represent pristine and damage signals,
respectively. DI is calculated for both simulated and experimental time signals of pristine
and damaged units and are denoted as simulated DI and experimental DI datasets. Both
simulated and experimental DI datasets show a good agreement in Path #1 to #2 and
Path #1 to #3, as shown in Figure 4.15. In contrast, the entire experimental DI dataset
in Path #3 to #4 and Path #1 to #4 is slightly smaller than the simulated DI dataset,
which may be due to the crack not being straightly elongated during the increment of the
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Figure 4.13: Crack length effect over the damaged signals of Path #1 to #2 of simulated
and experimental damaged units for any randomly selected one unit.

crack length in the experiment, as shown in Figure 4.14(a). Furthermore, Figures 4.15(a)
and 4.15(b) show that the DI increases with the crack length when a crack is between the
emitter and receiver transducer path, i.e., direct path (Path #1 to #2) and diagonal path
(Path #3 to #4). Note that DI increases rapidly along the crack length in the direct path
up to 4.5 mm crack length, then gradually increases to 21 mm, and then begins to decrease
with crack length. In comparison, the DI in the diagonal path exhibits smaller oscillations
with the crack length while maintaining an increasing trend. A similar oscillating effect is
observed in two other paths, Path #1 to #3 and Path #1 to #4, while the amplitude of
DI is much lower than that of the direct and diagonal paths, as shown in Figures 4.15(c)
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Figure 4.14: Crack growth during experiment with a thin saw tooth cutter.
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Figure 4.15: Experimental (blue ◦ marker) and simulated (white ◦ marker) damage index
variations with crack length in the presence of variabilities at 100 kHz presented for all
units (Experimental units are 12 and simulation units are 986).

and 4.15(d).
This oscillating, i.e., non-linear behavior depends on the crack interaction with GWs,

which means that the received GW signals can undergo diffraction (from the tip of the
crack length), transmission, reflection, mode conversion, and interference, depending on
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how waves incident the crack, as mentioned in [158]. To understand more about crack
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(a) Emitter #1
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(b) Emitter #3

Figure 4.16: Two snapshots of GWs interaction with hole and crack length (15 mm)
obtained from CIVA (a) Emitter #1 and (b) Emitter #3.

interactions with GWs, two snapshots of crack lengths of 15 mm from the CIVA simulation
tool are shown in Figure 4.16. It is observed in Figure 4.16(a) that when the emitter is #1,
then receiver #2 records primarily the transmission of waves from the crack. At the same
time, receivers #3 and #4 record the reflection and transmission of waves or interference.
Similarly, Figure 4.16(b) can be explained that when the emitter is #3, then receiver #4
records interference of transmission, reflection, and may diffraction of waves from the tip
of the crack as it follows a diagonal path. Therefore, non-linear behavior is observed in
DI because of their constructive and destructive interventions.

Moreover, it should also be noted that the DI of Path #1 to #2 has a higher sensitivity
to the crack length than the other DI paths. These DI slopes are steeper for shorter crack
lengths (up to 4.5 mm) than for higher ones. Although, at 100 kHz excitation frequency,
only the A0 mode dominates, i.e., the amplitude of the A0 mode is greater than that of
the S0 mode while the half-wavelength of A0 mode is 7.5 mm, which exceeds the crack
size, which means that DIs are effective even for short crack length. Therefore, a DI study
is carried out with different wavelengths by changing the excitation frequency from 60 to
340 kHz. Two kinds of DI studies are performed based on the amplitude of the modes in
the transducer excitability curve (i.e., assumed that low amplitude mode does not appear
in the signal, as shown in Figure 4.3(a)), denoted as A0 mode DI (up to 200 kHz) and S0
mode DI (from 280 to 340 kHz). The A0 and S0 mode DIs are divided into four regions
based on the DI trend with normalized crack length (normalized by corresponding A0 and
S0 modes wavelength), as shown in Figure 4.17. Based on these four regions, the following
points are described below:

Region 1 (CL/λ < 1/4): This region ranges from 0 to 1/4 and shows that the relation
between DI and CL/λ is linear for both mode DIs, but A0 mode DI slopes steeper than
the S0 mode DI. It is worth noting that there is significantly less effect on the slope of

6Two simulation unit results were corrupted during data transfer.
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Figure 4.17: The damage index variation in Path #1 to #2 with the wavelength (λ) of
the wave mode calculated on a single unit.
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both mode DIs with frequency.
Region 2 (1/4 ≤ CL/λ < 1/2): This region starts at 1/4 and ends at 1/2, indicating

that the relationship between DI and CL/λ is stable for both modes of DI. As the frequency
increases, both A0 mode DI up to 160 kHz and S0 mode DI do not change. Whereas above
160 kHz, the A0 mode DI begins to decrease as the amplitude of the A0 mode decreases
in the transducer excitability curve.

Region 3 (1/2 ≤ CL/λ < 5/4): This region is between 1/2 and 5/4 and over half
the wavelength of the wave mode. It exhibits a slow increase in DI with CL/λ, but DI
reaches its highest level for both modes. However, A0 mode DI decreases with increasing
frequency, while S0 mode DI is significantly less affected by frequency.

Region 4 (CL/λ ≥ 5/4): This region is above 5/4, and DI reaches its maximum
value with CL/λ and then begins to decrease for both modes due to the destructive and
constructive interference of the waves. As the frequency increases, the peak point of the A0
mode DI shifts to the right with decreasing values, while the S0 mode DI is not significantly
affected by the frequency.

It can be concluded that lower frequencies are more effective for A0 mode DI with
crack length, while for higher frequencies, S0 mode DI is more effective. However, the
DI values trend is not much changed in both modes when both modes have the highest
amplitude in the transducer excitability curve. For example, as shown in Figure 4.17, 100
kHz (highest wave amplitude for A0 mode) and 300 kHz (highest wave amplitude for S0
mode) behave similar DI trend with CL/λ in both modes DI. Note that when the signal
has both modes with roughly the same ratio of amplitude, then it is impossible to say
which mode is interacting with the crack and their associated wavelengths. Therefore,
three in between frequencies (220, 240, and 260 kHz) are not described here.

4.3 Conclusion
A complete methodology is presented for the MAPOD and experimental POD study of a
crack growing from a hole in an aluminum plate to obtain the stochastic response in GW
signals. It is observed that the MAPOD strategy with influencing variability reproduces
all sources of variability in their output response, similar to an experimental study. The
variability obtained in both the DI and time domain signals from the simulation study
agrees well with the experimental study. Even the simulation study provides a wider
range in output variability, thanks to considering the large temperature variation in the
simulation study. The study also identified that the direct and diagonal paths are the most
sensitive for crack growth detection with this definition of DI. Furthermore, a wavelength
interaction with the crack length is studied, and four regions are indicated based on their
DI change with the crack length in the direct path and the excitation frequency. It is found
that S0 mode DI is less effective than A0 mode DI for lower frequencies, but both show
roughly equal response in DI for higher frequencies. In the next chapter, i.e., step 4, the
performance is quantified through a POD curve based on two recent statistical methods
on experimental and simulated DI datasets computed from this study.
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5.1 Introduction
Probability of detection (POD) applied in Nondestructive Testing was started at NASA in
the early 1970s, while the concept imported from other technology sectors such as telecom-
munications, radar, and medicine [159]. To illustrate the POD, suppose an operator wishes
to guarantee that no defect of size above 10 mm lies in several similar structures using an
inspection technique. Will he always detect a 10 mm defect, or will he only catch it 80%
of the time? POD is the answer to this question, ensuring the reliability of inspection
technology. Initially, POD for the evaluation of NDT methods was based on the ratio of
the number of defects nd detected (or above a given detection threshold) by the number
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of defects/samples Nd inspected. Then, POD can be estimated using the probability law
nd

Nd
, which assigns one POD value for each set of defect sizes in the samples. Later on, it

is found that separating cracks by length makes more sense since larger defect sizes are
more accessible to detection than smaller ones [100]. Subsequently, two statistical POD
computation methods performed on a continuous scale of defect size: 1) Hit and miss
and 2) Signal response, have been introduced, as reported in MIL-HDBK-1823A [86]. Of
these two statistical methods, the signal response is one of the most widely accepted and
currently used methods for POD calculation in the NDT system. However, conventional
statistical methods cannot be directly applied to SHM systems, especially for monitoring
repeated measurements of cracks growing over time due to the statistical assumption of
data independency that is not respected, as explained in chapter 4.

Therefore, this chapter uses two alternatives and suitable statistical methods recently
proposed by Meeker et al. [110] to estimate a POD curve for the SHM system. These
methods have been modified and expanded on conventional statistical methods to handle
repeated measures data properly. The purpose of this chapter is to describe how these
methods can be applied in SHM POD studies and how they differ from existing methods.
A complete POD curve illustration and terminology are mentioned in the introduction
chapter (in Figure 1.5). Both experimental and simulated DI datasets from the use case of
increasing crack length from a hole in an aluminum plate under the influencing variabilities
obtained from the previous chapter are used as a measured response to make a detection
decision through the POD curve. Note again that the experimental DI dataset consists
of 12 units, each containing 21 crack length responses, whereas the simulated DI dataset
contains 981 units and 20 crack length responses each.

This chapter is organized as follows: The first section presents all the assumptions and
the process of POD curve estimation through the traditional signal response method. The
second section describes the limitation of signal response and the need for a new statistical
method for repeated measurements in the SHM system. Two revisited statistical methods
follow this section: length-at-detection and random effects, which are described in detail
and demonstrated on experimental and simulated DI datasets for POD curve estimation.
Finally, both new statistical methods are compared qualitatively, and an additional study
is presented to calculate a sample size to estimate a90|95 based on the random effects
method.

5.2 Signal response method

Signal response method for POD computation is also known as â vs. a, where â denotes
measured response and a denotes the crack length. For simplicity here, we denote â as
y and a as x. The signal response is a linear regression analysis between response y and
crack length x, as mentioned below:

y = β0 + β1x+ ϵ (5.1)

1Two simulation unit results were corrupted during data transfer.
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where β0 and β1 are regression coefficients of a linear model, and ϵ ∼ N(0, τ 2) is an error
term, which follows the Normal distribution having zero mean and standard deviation
τ 2. The computation of the POD curve based on the signal response assumes that the
response variable y follows the Normal distribution for an observed crack length x. This
means that a linear model Equation (5.1) can be expressed in terms of Pr (y | x, θ) =
N (y | µ(x), σ(x)), where µ(x) = β0 + β1x and σ(x) = τ 2 (constant with x) are the mean
and variance values of a probability distribution of the response y at an observed x, while
θ is a model parameter including of β0, β1, and τ 2. Therefore, the dataset, i.e., x and y
for signal response analysis must respect certain assumptions:

1. Data linearity: linear relationship between x and y.

2. Homoscedasticity: variance σ in response y must be constant with the crack length
x, meaning the scatter of data points must be uniform along a straight line.

3. The response/observation y should be independent and identically distributed (i.i.d),
i.e., uncorrelated.

4. The error term must follow the Normal distributions.

Additionally, an inspection system always has inherent noise during real-time inspections
which increases the response level even when damage is not present in the structure.
Therefore, a threshold (yth) is often needed to avoid background noise for computing the
POD curve. Then, as shown in Figure 5.1, the POD estimate of an observed crack length
x is an integration of the distribution of the response variable y over the threshold as
shown below:

POD(x) = Pr (y > yth | x,Θ)
= 1 − Pr (y < yth | x,Θ)

= 1 −
∫ yth

−∞
Pr(y | x,Θ) dy

∵ Pr (y | x,Θ) = N
(
y | µ(x), τ 2

)

=⇒
∫ yth

−∞
Pr(y | x,Θ)dy = ΦNorm[Z]

= 1 − ΦNorm[Z]

(5.2)

where ΦNorm[Z] is a Cumulative Density Function (CDF) of standard Normal distribution,
and Z is:

Z = yth − µ(x)
τ 2

= yth − (β0 + β1x)
τ 2

The model parameter Θ = [β0, β1, τ
2] is generally estimated based on maximum likeli-

hood estimation (MLE) from the best fit of observed datasets, denoted Θ̂MLE. This allows
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Figure 5.1: The illustration of Equation (5.2) for an observed x.

to estimate P̂OD(x) at a observed crack length x

P̂OD(x) = 1 − ΦNorm


yth − (β̂0 + β̂1x)

τ̂ 2


 (5.3)

In addition, a 95% confidence interval of P̂OD(x) at each x value, denoted as a P̂OD95(x),
is also generally estimated due to the limited amount of data. It provides lower uncertainty
bound in the computation of P̂OD(x), which reduces as the number of data increases.
The details about a confidence interval computation for the signal response can be found
in MIL-HDBK-1823A and ENIQ report 41 [86].

5.2.1 Defining x90 and x90|95 values
The different x values in Equation 5.3 can estimate the entire POD curve, while the two
x90 and x90|95 popular values are often calculated to compare different POD curves easily.
The x90 value represents the crack length where the POD value is 90%, while the x90|95
value represents a 95% confidence of upper bound for x90 value. The x90 value can be
easily calculated from Equation 5.3 after substituting 0.9 at P̂OD(x), as shown below:

1 − ΦNorm


yth − (β̂0 + β̂1x90)

τ̂ 2


 =0.9 (5.4)

yth − β̂0 + τ̂ 2Φ−1
Norm[0.1]

β̂1
=x90 (5.5)

where Φ−1
Norm[0.1] is CDF value of Normal distribution at 0.1 that can be obtained from

any standard statistical book. Similarly, x90|95 is corresponding value of P̂OD95(x) = 0.9
in the curve, as explained in [86]. In practice, this value x90|95 is generally used in industry
to claim the performances of an inspection system. In addition, the absolute difference
value between the x90|95 and x90 helps in comparing the confidence interval thicknesses in
the POD curves denoted as δ95|90−90.
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5.3 Probability of detection methods for SHM

The assumptions of signal response method are similar to Normal linear regression, which
can be found in many statistics books [160–162]. A major limitation of using the existing
signal response method in SHM is the assumption of the independent responses, which
is not verified in SHM. Since the sensors are permanently immobilized on the structure,
they repeatedly measure the crack growth response, making the responses dependent. In
the SHM system, these measurements form structured group data where a group is called
a unit (aluminum plate with a sensor attached), and each unit contains responses to the
crack length. Note that two randomly selected responses from the same unit are more
similar than two responses selected from different units because the sensors are identical
in one unit [163]. From a statistical perspective, this leads to a within-unit correlation2.
Therefore, signal response analysis is not applicable for SHM POD calculation in the
case of a growing crack. It is also worth noting that in the SHM system, dependent or
independent responses depend on the type of inspections. For example, an inspection of a
one-time impact load on a structure can yield only one response from a single unit, making
responses independent. Therefore, a POD study can be performed using conventional
statistical methods but would require one structure with a sensor network for each defect,
making it extremely expensive too.

Nevertheless, two newly proposed statistical methods for SHM POD: length-at-detection
and random effects [110], are explained and applied to the experimental and simulated
DI datasets of repeated measurements in the following subsequent sections. Since these
methods are more generalizations of traditional statistical methods, i.e., based on linear
regression, they require linearity check between the crack length and the observed response.

5.3.1 Linearity and threshold decision

The relationship between x and y can be transform in four possible ways [165]: 1) y vs. x,
2) y vs. log(x), 3) log(y) vs. log(x), and 4) log(y) vs. x, as shown in Figure 5.2. Note that
this study considers DI only for Path #1 to #2, which has a more significant sensitivity
toward crack length, as mentioned in the previous chapter section 4.2.6. Generally, the
choice of transformed relationship between x and y depends on the best fit parameter
of the linear line, e.g., coefficient of determination (R2) value. However, visually can be
interpreted that Figure 5.2(d) is more linear compared to the other three plots for regions
2 and 3. It is also noted that region 1 in all four plots is linear but is far less than the
half wavelength (7.5 mm) of the wave at 100 kHz, and corresponding DI values are much
smaller. At the same time, region 4 shows heteroscedasticity, i.e., scatter of data points
not uniform along the crack length. Therefore, at this moment, from Figure 5.2(d), both
regions 1 and 4 have been dropped, and only regions 2 and 3 are considered for further

2As mentioned by Hoff [164], form an example, i.e., let yij be the ith response of jth unit, and yij =
µ+γj + ϵij , where {γ1 . . . γm} represent heterogeneity of group, µ is constant, and

{
ϵ1j . . . ϵnjj

}
represent

heterogeneity of samples within unit j. Suppose var [γj ] = τ2 and var [ϵij ] = σ2 are variances of unit
and within units. Then correlation between two random variables is Cor[yi1j1 , yi2j2 ] = τ2

τ2+σ2 if j1 = j2
otherwise is 0.
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Figure 5.2: Four possible representations of experimental (blue ◦ marker) and simulated
(white ◦ marker) DI of Path #1 to #2 with crack length.

SHM POD study. Note that R2 values for each unit of Figure 5.2(d) are shown in Figure
5.3.

The arbitrary detection threshold is chosen to be 0.6, which is slightly above that in
region 2. Ideally, the threshold should be fixed in real-time in the presence of environmental
noise, but that study is not presented here. Although lowering the threshold will improve
the POD curve, it also increases the probability of false alarms (PFA).

5.3.2 Length-at-detection method
The length-at-detection (LaD) method addresses the dependency issue in repeatedly ac-
quired SHM responses during the growing cracks [110]. This method uses only the first
detected crack length, i.e., when the response from each unit reaches the threshold line,
the corresponding crack length value is called the first detected crack length. To achieve
this, linear regression fits a linear line to each unit to calculate the intersection point be-
tween the linear line and a threshold line, i.e., computes only first-time threshold crossing
response values of crack length. These crack length values are defined as LaD values.
Since it uses only one crack length from each unit, the dependency in repeated responses
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Figure 5.3: Coefficient of determination (R2) values for both experimental (in light blue)
and simulated (in gray) units linear regressions.

does not affect the POD computation, i.e., one unit provides only one LaD value.
LaD method based POD computation relies on an underlying statistical distribution of

the first detected crack length, i.e., LaD values distribution. Suppose x1, x2, . . . xN denote
LaD values of N number of units and assume that these LaD values follow a normal
distribution with a sample mean µ̂ and variance σ̂ of LaD values. Then, the POD at crack
length xLaD can be estimated as,

P̂OD(xLaD) = Pr(x ≤ xLaD) = ΦNorm

(
xLaD − µ̂

σ̂

)
(5.6)

where ΦNorm[Z] is a CDF of standard Normal distribution, and Z is xLaD−µ̂
σ̂

. The 95%
confidence interval of the lower bound for P̂OD(xLaD)3 can be calculated from the non-
central-t distribution as follows:

P̂OD95(xLaD) = ΦNorm

(
δ√
N

)
(5.7)

where δ is the non-central parameter, and the computation of δ relies on CDF of non-
central-t distribution which is represented as pt(k

√
N ;N − 1, δ) = 1 − 0.05, where pt is

a symbol for the CDF function of non-central-t distribution and k =
(
xLaD−µ̂

σ̂

)
represents

the observed value. The value of δ for given k and N can be found in the textbook of
Meeker et al. [166], which is substituted in Equation (5.7) to compute 95% confidence of
P̂OD(xLaD) for each xLaD values. Similarly, as mentioned in the section 5.2.1, x90 and
x90|95 popular values can be computed from Equations (5.6) and (5.7), respectively.

3POD(xLaD) is represented as P̂OD(xLaD) because the POD on xLAD is based on an approximate
sample mean and standard deviation calculation.
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Figure 5.4: log(y) and x response plot with a linear regression line for each unit of both
experimental (denoted in blue ◦ marker and dashed line - -) and simulated (denoted in
white ◦ marker and black dashed line - -) DI datasets. The LaD values for both experi-
mental (denoted in green ◦ marker) and simulated (denoted in bigger white ◦ marker) DI
datasets at the threshold line (denoted in solid red -).

Application of LaD

Both experimental and simulated DI datasets are fitted with linear regression lines com-
puted based on the ordinary least square method, as shown in Figure 5.4. The LaD values
are calculated based on the intersections between all linear lines and a threshold line, i.e.,
those crack sizes in which the DI crosses the threshold for the first time.

A Quantile-Quantile (QQ), i.e., probability plot, is used to assess the adequacy of
underlying statistical distribution for LaD values. QQ plot is a graphical method for com-
paring the distribution of observed value with a particular theoretical distribution through
plotting their quantities against each other. If the quantile points lie approximately on
a straight line, then the observed value distribution is similar to the theoretical distribu-
tion. As shown in Figure 5.5(a), LaD values as observed quantities are plotted against
theoretical Normal distribution quantities, indicating that their quantile points lie on a
straight line to provide sufficient justification that the LaD values follow a Normal distri-
bution. Note that length-at-detection is not only restricted to the Normal distribution of
LaD values but also for other distributions, such as Weibull, log-normal, and exponential.
However, it is mandatory to check LaD values distribution once the threshold is fixed. It
is also worth noting that both the experimental and simulated LAD values show an ap-
proximately Normal distribution while they are obtained from a different source of study.

The POD curve for the experimental and simulated LaD values can be estimated based
on Equation (5.6) via the CDF of a Normal distribution from their sample mean and
standard deviation. Similarly, their confidence intervals are calculated based on Equation
(5.7), while their non-central parameter δ is obtained based on the values given in the
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Figure 5.5: (a) A QQ plot of experimental (denoted in blue ◦ marker) and simulated
(denoted in white ◦ marker) LaD values. (b) POD curve (denoted in solid line) with 95%
confidence interval bound (denoted in dashed line - -) for both experimental (in blue) and
simulated (in black) LaD values.

book [166] for each of k and N . Both the experimental and simulated POD curves with
their confidence intervals are shown in Figure 5.5(b), where the confidence interval of
the experimental POD is broader than that of the simulated POD due to a fewer units
considered in the experimental study (N=12), i.e., the difference value δ90|95−90 (mentioned
in section 5.2.1) value is around 0.60 mm and 0.20 mm for experimental and simulated
POD curves, respectively. This is expected since the simulation study used 98 units
(N=98), i.e., a large number of LaD values, that provides a narrow confidence interval
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(x90 = 11.16 mm and x90|95 = 11.36 mm). It should also be noted that the simulation study,
i.e., the MAPOD study, considered more variabilities, resulting in a larger sample standard
deviation (σ̂) that provides a conservative side of x90|95 compared to the experimental POD
study. Based on the length-at-detection POD curve study, it can be concluded that x90|95
values for both experimental (x90|95 = 10.95 mm) and simulated (x90|95 = 11.36 mm) POD
are pretty close, which presents good confidence in the potential of the MAPOD approach
to demonstrate the performance of such an SHM system.

5.3.3 Random effects method

Basic principle

The random effects method is based on a statistical model similar to signal response which
generalizes it to enable POD studies on repeated measurements in SHM [110]. It follows
a similar linear relationship between the response and the crack length, as explained in
the signal response method indicated in Equation (5.1). The basic idea is that each unit
has its own slope and intercept, rather than just one slope and intercept for all units,
i.e., model parameters are assumed to be random variables. This method assumes that
each unit is sampled from a population of units; therefore, each unit is connected and
contains valuable information for the other unit. It is then possible to perform a linear
random-effects regression, a particular case of popularly known multilevel or hierarchical
linear regression [167], so that the crack-to-crack variability of each unit can be connected
through their intercepts and slopes. Therefore, a hierarchical linear regression is explained
in the next section to understand properly this method.

Hierarchical linear regression

Some layers of analysis are associated with a hierarchical linear regression, as shown in
Figure 5.6. The top layer is the population of units, not just the ones in the analysis,
denoted as unit population. The middle layer is N units sampled from the above popu-
lation. While the next layer of the hierarchy consists of multiple crack length responses
per unit, often referred to as repeated measurements (on a growing crack). These lay-
ers ensure that the repeated measurements are conditionally independent at each layer.
Once the unit-specific distribution is defined, such as each unit slope and intercept, the
responses are independent of the top layer distribution, i.e., the responses are independent
of unit population [168]. To understand appropriately, two subscripts, i and j, are used to
track two pieces of information: j indicates a unit, and i indicates within each unit. For
example, yij refers to a ith response in a jth unit due to xij crack length value of ith crack
length in a jth unit. Then, a hierarchical linear regression analysis between response yij
and crack length xij describes as follows:

yij = β0j + β1jxij + ϵij, i = 1 . . . nj, j = 1 . . . N (5.8)

where nj denotes the number of crack length responses for the jth unit, while β0j and
β1j denote intercept and slope, respectively, for the jth unit. Whereas ϵij = N(0, τ 2) is
an error term for a ith response in a jth unit, which follows a Normal distribution with
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Figure 5.6: A graphical representation of a hierarchical linear regression for repeated
measurements.

zero mean and standard deviation τ 2 around each response. Both β0j and β1j unit-specific
parameters are random variables and sampled from the top layer of the hierarchy of unit
population distribution assumed to have a bi-variate Normal distribution, as shown below:

(
β0j
β1j

)
∼ N

(
µβ0

µβ1
, Σ

)
(5.9)

where Σ is a covariance matrix, represented as follows:

Σ =
(
σβ0 0
0 σβ1

)(
1 ρ
ρ 1

)(
σβ0 0
0 σβ1

)

where

1. µβ0 and µβ1 are mean of intercepts and slopes of all units, respectively.

2. σβ0 and σβ1 are the standard deviations of all intercepts and slopes, respectively.

3. τ 2 represents standard deviation of all response values irrespective of units.

4. ρ is a correlation coefficient between slopes and intercepts.

Then it is easy to calculate the joint distribution of the response yij after substituting
the independently distributed error term ϵij and the bi-variate distribution of the unit-
specific parameters (β0j and β1j) (from Equation (5.9)) into Equation (5.8). Note that
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the subscripts i and j can be dropped from yij. Which leads to a Normal distribution
N (yij | µ(x), σ(x)) of yij with mean µ(x) and standard deviation σ(x), where both µ(x)
and σ(x) can be estimated as follows:

E[yij] = E[β0j + β1jx] + E[ϵij]
µ(x) = µβ0 + µβ1x

(5.10)

where E represents an expected mean symbol, µ(x) denotes the mean response of yij and
x is a non-random variable (therefore dropping the subscripts i and j). While σ(x) can
be estimated by the variance var(x) = σ(x)2 as follows:

var[yij] = var[β0j + β1jx] + var[ϵij]

σ(x) =
(
σ2
β0 + σ2

β1x
2 + 2xρσβ0σβ1 + τ 2

)1/2 (5.11)

where σ(x) is a standard deviation of the response yij. Note that the variance of two
dependent random variables (A and B), such as var[A + kB] can represented as σ2

A +
σ2
Bk

2 + 2ρABσBσA, where k is a constant and σA and σB are the standard deviations of A
and B, respectively. While ρAB denotes the correlation coefficient between A and B.

Computation of POD

Based on the random effects method, the POD curve can be estimated in the same way as
the signal response method. As mentioned, the response yij follows a Normal distribution
that can be represented in terms of Pr (yij | x, θ) = N (yij | µ(x), σ(x)) for an observed
crack length x and θ, where θ denotes a model parameter. Then, the POD(x) value at x
for a given threshold yth for the random effects model can be defined based on Equation
(5.2) as follows:

POD(x) = 1 − ΦNorm(Z) (5.12)

ΦNorm(Z) is a CDF of standard Normal, and Z is:

Z = yth − µ(x)
σ(x) =


 yth − (µβ0 + µβ1x)√

σ2
β0 + σ2

β1x
2 + 2xρσβ0σβ1 + τ 2




leads to

POD(x) = 1 − ΦNorm


 yth − (µβ0 + µβ1x)√

σ2
β0 + σ2

β1x
2 + 2xρσβ0σβ1 + τ 2


 (5.13)

The model parameter θ, which includes µβ0 , µβ1 , σβ0 , σβ1 , ρ and τ 2 for POD computation
can be estimated by MLE or Bayesian analysis. However, using Bayesian analysis to
characterize the uncertainty or confidence interval in the modeling parameters is highly
recommended as suggested by Prof. Meeker [110], which is explained in the following
section.
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Application of random effects method based on Bayesian analysis

Bayesian analysis uses priors of the model parameters to calculate their posterior distri-
butions based on Bayes’ theorem [167, 168]. The aim of this study to compute the model
parameters θ for POD curve computation from Equation (5.13). To achieve this, two
layers of Bayesian estimation are required: in the first layer, the unit population parame-
ters (µβ0 , µβ1 , σβ0 , σβ1 , and ρ) are denoted as hyper priors, and in the second layer, τ 2 and
unit-specific parameters (β0j and β1j), i.e., each unit slope and intercept are considered
as priors. Based on these priors and hyperpriors, the posterior distributions of model
parameters are estimated on the same experimental and simulated DI datasets that were
considered in length-at-detection, as described in section 5.3.2. As noted in [110], these
priors and hyperpriors are considered weakly informative, i.e., diffuse, as mentioned below:

[
β0j
β1j

]
∼ MvNormal

[
µβ0

µβ1
, Σ

]

τ 2 ∼ HalfCauchy(100)





Priors (5.14)





µβ0 ∼ Normal(0, 100)
µβ1 ∼ Normal(0, 100)

σβ0 ∼ Exponential(100)
σβ1 ∼ Exponential(100)

ρ ∼ LKJcorr(η = 1)





Hyper priors (5.15)

The weakly informative priors and hyperpriors are associated with a much larger standard
deviation of Normal distribution than measured responses in datasets. The correlation
ρ hyperprior is based on the LKJcorr distribution [167], which is controlled by only a
constant value parameter η. When the η value is one, the correlation prior is a uniform
distribution between -1 and 1.

Then, the computation of marginal posterior distributions of the model parameters and
unit-specific parameters is performed based on the PyMc3 package in a python program-
ming language [167, 169]. A No-U-Turn (NUTS) sampling strategy based on Hamilton
Monte Carlo with two chains is used to sample a large number of draws around 20000 from
their marginal posterior distributions. This procedure is performed over both experimental
and simulated DI datasets.

The marginal posterior distribution of model parameters with their median value4 and
highest density interval (HDI) are shown in Figures 5.7 and 5.9, respectively, for both the
experimental and simulation datasets. The HDI summarizes a distribution specifying an
interval that spans most of the distribution. All draws within this interval have a higher
probability density than draws outside the interval. Generally, the HDI is used in the
uncertainty characterization of posterior distributions as credible or confidence interval.
Note that unit-specific parameters have a large number of marginal posteriors, therefore,
they are not presented here. In addition, a scatter pair-plots of marginal distributions
of model parameters are shown in Figures 7.2 and 7.1 (in Appendix 7). These plots

4For simplicity the symbol ˆ over model parameters denotes their median values of posterior distribu-
tion, e.g., the µ̂β0 median value of µβ0 posterior distributions.

91



5.3. Probability of detection methods for SHM

0.50 0.55 0.60 0.65 0.70 0.75
1e 1

0.056  0.068

95% HDI

median=0.062

(a) τ2

11.4 11.2 11.0 10.8 10.6 10.4
1e 1

-1.1  -1.1

95% HDI

median=-1.1

(b) µβ0

0.56 0.58 0.60 0.62 0.64
1e 1

0.058  0.062

95% HDI

median=0.06

(c) µβ1

0.0 0.1 0.2 0.3 0.4 0.5
1e 1

0.0071  0.031

95% HDI

median=0.019

(d) σβ0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1e 1

0.00012  0.0028

95% HDI

median=0.0012

(e) σβ1

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1e 1

-0.89  0.61

95% HDI

median=-0.13

(f) ρ

Figure 5.7: The marginal posterior distribution of model parameters with their median
value and 95% HDI (denoted in black) for experimental datasets.

generally ensure and diagnose whether the draws accurately describe the joint posterior
distribution of model parameters. Furthermore, a non-centered parameterization is used
to avoid divergence during NUTS sampling.

Based on the median value of the marginal posterior distribution of unit-specific pa-
rameters, i.e., median values of each unit slope β̂1j and intercept β̂0j are used to fit a liner
line for each unit. In contrast, the median values µ̂β0 and µ̂β1 are used to fit the mean
response of whole units based on Equation (5.10) for both experimental and simulated DI
datasets, as shown in Figure 5.8 (in thick blue straight line). It should be noted that these
plots are displayed with response y as Normal distribution (in yellow color) at four crack
lengths estimated based on mean and standard deviation Equations (5.10) and (5.11) of
the response distribution after substituting the median values of model parameters. It de-
fines the response strength i.e., capability at a given threshold for each crack length during
inspection or monitoring. For example, the response strength at 11 mm crack length is
higher than 8 mm crack length and increases as the crack length increases and changes
with threshold settings.

Futhermore, POD and their 95% confidence curve are computed based on Equation
(5.13), where median and 0.05 quantile values of posterior distributions of model param-
eters are substituted, respectively, to compute the P̂OD(x) and P̂OD95(x) curve with
varying x values, as shown in Figure 5.10. Similar to length-at-detection method, the con-
fidence interval for experimental POD curve is wider than simulated POD curve because
of the smaller number of units, i.e., the difference value δ90|95−90 for experimental and
simulated POD curves are observed 0.61 mm and 0.36 mm, respectively. Note that x90|95
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Figure 5.8: log(y) and x response plot with a random effects regression line (black dashed
line - -) for each unit of both (a) experimental and (b) simulated DI datasets (denoted in
white ◦ marker). A mean response line (solid blue) is fitted based on the median response
of marginal posterior distributions of the model parameters.

and x90 values for both the experimental and simulated datasets are slightly increased
from the length-at-detection method due to the additional parameters consideration in the
random effects method. In contrast, the length-at-detection method considers only the
first detected crack length and is based only on two parameters, the sample mean and
standard deviation.

It is also worth noting that the marginal posterior distribution of model parameters
for the experimental dataset is more uncertain than for the simulated dataset due to
fewer units. Specifically, the correlation coefficient distribution ρ, i.e., the correlation
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Figure 5.9: The marginal posterior distribution of model parameters with their median
value and 95% HDI (denoted in black) for simulated datasets.
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Figure 5.10: POD curve with 95% confidence interval bound (denoted in dashed line - -)
computed from draws of joint distribution of the posterior distribution of random effects
model parameters for both experimental (in blue) and simulated (in black line) datasets.

coefficient between slopes and intercepts for the experimental dataset, exhibits a nearly
flat distribution, as shown in Figure 5.7(f). In contrast, as shown in Figure 5.9(f), the ρ
distribution for the simulated dataset with 95% HDI ranging from -1 to -0.73 achieved

94



Chapter 5. Probability of detection curves for SHM

high confidence via MAPOD. Also, note that σ̂β1 marginal distribution is almost zero
for both experimental and simulated datasets, i.e., the variation in slope is almost zero
between units, as mentioned in Figures 5.7(e) and 5.9(e). While σ̂β0 , as mentioned in
Figures 5.7(d) and 5.9(d), has some variations suggesting that a fixed slope and varying
intercept regression model is also sufficient to model these experimental and simulated
datasets, commonly known as the linear mixed model and also used by Kabban et al.
[109] for repeated measurement.

It can be observed that the MAPOD study provides less uncertainty with more confi-
dence over the results, while the experimental study with 12 units provides larger uncer-
tainty. Similar to the length-at-detection based POD, the simulated POD curve exhibits
a conservative side from the experimentally calculated POD curves due more variabilities
in simulation. In the next section, both length-at-detection and random effects of POD
computation methods are compared.

5.3.4 Comparison of length-at-detection and random effects meth-
ods

The length-at-detection method is fast, easy to perform, and understandable once the
CDF of the underlying distribution is known along with the corresponding confidence
interval. An important issue with the length-at-detection method is that it uses only the
first crossing crack length values to predict the distribution of crack lengths and ignores
the rest of the data. Also, an underlying distribution of length-at-detection values varies
with threshold settings, and the calculation of confidence intervals is often based on the
empirical distribution, which requires solid statistical expertise. Whereas the random
effects method uses all the repeated SHM data to calculate the model parameters to define
a POD curve, making it more reliable than length-at-detection. This method is a more
generalized version of the signal response method, which is already documented in [86]
for certification of NDT inspection systems. The significant advantage of random effects
over length-at-detection is the model parameter estimation based on Bayesian analysis,
which can provide informative priors to experimental datasets via the MAPOD framework,
therefore requiring fewer units for experimental POD calculations. However, the random
effects method is computationally expensive because of estimating the two layers of the
posterior distribution via Bayesian analysis. Nevertheless, this computational cost is not
a significant challenge in today’s practices.

Furthermore, based on experimental and simulated datasets, the random effects method
provides a slightly conservative value of x90|95 compared to the length-at-detection method,
as shown in Figure 5.11. Another thing that should be noted is that random effects and
length-at-detection methods do not share a common statistical framework except for the
assumption of a Normal distribution; Therefore, it is difficult to show comparisons based
on model parameters. However, the random effects method estimates six parameters to
define a POD curve, while the length-at-detection method is straightforward in analysis
based on two parameters (sample mean and standard deviation). The choice between
these two methods can be made based on the number of units under consideration, i.e.,
the length-at-detection method is more helpful for POD calculations when fewer units
(about 10) are present because fitting the six parameters via random effects may not be
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Figure 5.11: Comparison of x90|95 values from the length-at-detection and random effects
for simulated (denoted in blue) and experimental POD curves (denoted in black).

appropriate [111].

5.3.5 Sample size determination for estimating x90|95

A study of sample size determination is carried out for estimating x90|95 value based on
the random effects method. This study is useful for determining how many units are
needed to achieve a certain level of accuracy in the confidence interval, specifically for
the upper limit of x90. This is done through the random effects method based on the
absolute difference between x90 and x90|95 values, i.e., δ90|95−90 = |x90|95 − x90|, with the
increasing number of units in sample size. The study is carried out on both experimental
and simulated datasets, where the experimental and simulated datasets contain 12 and
98 units, respectively. These units are chosen randomly in increasing order of sample
size without replacement for the simulated dataset, i.e., the sample size does not contain
repeating units. In comparison, due to fewer units in the experimental dataset, the sample
size increases with replacement, i.e., the repetition of units is allowed in the sample size
of the experimental dataset. Note that repeating units in the sample size do not add
any new information. For both experimental and simulated datasets based on Bayesian
analysis, the random effects method is fitted with the increasing number of units (starting
at N=3 with a step size of 3) in the sample size. As mentioned earlier, the x90 and x90|95
are obtained from POD curve computation and their corresponding δ90|95−90 values are
calculated by increasing the sample size, as shown in Figure 5.12. In addition, the six
model parameters with the increasing sample size and their 95% HDI estimated through
Bayesian analysis is shown in Figure 7.3 (in Appendix 7).

It can be seen that the δ90|95−90 values for both the experimental and simulated datasets
decrease as the number of units increases in the sample size, while the δ90|95−90 values for
the experimental datasets stabilize after 30 units due to repetition of units in sample size.
Also, after 20 units of both the experimental and simulated datasets, the δ90|95−90 values
do not show much improvement. Therefore, it shows that to get 0.6 mm of the δ90|95−90, it
only needs 20 units, while for 0.3 mm, it needs about 60 units. For example, if a particular
application allows 0.6 mm to be a δ90|95−90, it needs about 60 units to achieve sufficient
confidence, i.e., the uncertainty on the x90 prediction should not exceed 0.6 mm. Note
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Figure 5.12: Determination of number of units in sample size with δ90 for estimating the
required upper bound value of x90|95.

that we are not sure that a δ90|95−90 value would ever be required for SHM applications.
This study expects more on the value of x90|95. However, if an x90 value is "good enough"
but x90|95 is not good enough, this result provides an idea of how many samples would
be required to reduce x90|95 to a good enough value (or if it is possible even then). It
is also worth noting that both the experimental and simulated datasets show an almost
similar trend of the δ90|95−90 with the increasing number of units. Therefore, the MAPOD
approach could be used to decide the number of units in sample size required to reach a
certain precision for any particular application.

5.4 Conclusion

This chapter has presented step 4 to the methodology of SHM POD estimation for the
repeated measurements of an increasing crack length in a GWs-based SHM system through
two recently proposed statistical methods: length-at-detection and random effect. These
methods have been used for the first time to demonstrate performance via the POD curve
on both experimental and simulated SHM datasets. It is exhibited that the MAPOD
study agrees well with the experimental POD study, whereas the x90|95 value of the POD
curve obtained from the MAPOD is slightly conservative from the experimental study due
to the larger variability in the simulation study. Similarly, the x90|95 value obtained from
random effects methods shows a conservative side compared to length-at-detection method
due to considering all data of repeated measurements. A linearity check of the dataset
based on the R2 value and selecting the appropriate crack length range based on the DI
variation with the crack length is described before applying these methods. In addition,
a sample size requirement study based on the random effects method is conducted over
experimental and simulated datasets to reach the precision required to estimate the x90|95
value for a particular application.
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5.4. Conclusion

It can be concluded that performance demonstration via MAPOD study of a plate-like
isotropic structure of a growing crack length monitoring through SHM is reasonable under
the considered variabilities. However, extending this methodology to other configurations
requires new studies and validation of simulation tools. Nevertheless, MAPOD study based
on Bayesian parameter estimation in the random effects method can help to reduce the
number of units during a new experimental study by providing informative priors for their
parameters. Note that the methodology presented for the MAPOD study was performed
on a standard computer, whereas an extensive experimental campaign was carried out to
obtain similar results. The feedback on the subject, described in information in Table 5.1
on this particular study, confirms the interest and potential of MAPOD methodology for
SHM. Therefore, this MAPOD study opens up many potential ways to use simulations to
generate large amounts of data with zero expenses, excluding computational costs.

Task Time cost
Experimental

POD
MAPOD

(Simulation)
Configuration preparation 4 weeks 4 days

Data acquisition, generation
and validation 4 weeks 1 week

Length-at-detection 1 second 1 second
Data analysis

Random effects 5 minutes 5 minutes

Human efforts and
expenditure High Limited

Table 5.1: Return on experience over time cost during this thesis to study MAPOD and
experimental POD.
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CHAPTER66
Conclusion & perspectives

6.1 Conclusion
POD curve estimation is a significant challenge for SHM due to the high cost and lengthy
experimental campaigns required. To overcome this cost, this thesis presented for the first
time a validated general methodology to demonstrate the performance of guided waves
based SHM in terms of the probability of detection curve through a model-assisted ap-
proach. This thesis also presented a hybrid actuator model to enable a larger range of
frequency excitation in guided waves simulation. Under the considered variabilities and
use case of a growing crack from a hole in an aluminum plate, the model-assisted approach
is found reliable and provides a robust POD curve comparable to the experimental POD
curve. Hence, this model-assisted approach can be used in similar use cases to demonstrate
their performance in other industrial applications. A significant interest of the presented
methodology is that it is based on the already established methodology of performance
demonstration for non-destructive testing, which is widely accepted by the industry and
extensively documented. However, modifications were presented to align these methodolo-
gies with the requirements of the considered SHM system, such as variabilities selection,
identification and quantification of damage, and selection of the best suitable datasets.
In addition, the demonstration of new statistical methods for addressing dependency in
SHM data and selecting a proper linear region of datasets based on the wavelength inter-
action of guided waves are presented for POD computation. Finally, a study of sample
size requirement is conducted based on x90|95 value for a particular application of SHM.

This thesis benefited from the recently developed time domain transient spectral finite
element schemes implemented in CIVA software to perform fast and reliable computation
allowing to run the large simulation campaigns necessary for POD curve determination.
Since simulation relies on many assumptions and approximations of reality, it is never
straightforward to use simulations to obtain such reliable results. Therefore, chapter 2
presented CIVA simulation validations, specifically for an approximate pin force transducer
model. The basic theory of the Lamb waves has been recalled based on the Navier-Lamé
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equations for an isotropic plate. The previously established analytical displacement and
sensor response transduction equations based on the pin force transducer model have
been compared with CIVA simulations after converting the time domain signals into the
frequency domain. The limits of the pin force model implemented in CIVA have been
estimated by comparing a full finite element transducer model in COMSOL (FE tool),
while other conditions (e.g., mesh size, geometry, and boundary conditions) were kept
the same in both simulation tools. It has been observed that at high frequencies, i.e.,
above 200 kHz, pin force model does not match COMSOL time signals and exhibits phase
shifting, amplitude differences, and extra cycles at the end of the complete burst signals.

Therefore, chapter 3 proposes a new hybrid actuator model with stress functions in
both radial and normal directions to overcome the previous limitations of the pin force
model while being compatible with the efficient transient spectral finite element schemes
in CIVA. These stress functions consider frequency-dependent terms pre-computed from
the finite element method and adhesive thickness effect terms estimated through admit-
tance curve ratios of bounded and unbounded piezoelectric transducers. Simulated signals
obtained from hybrid actuator model, pin force, and COMSOL (full piezoelectric model)
over two distinct configurations have been compared to confirm the validity of the hybrid
actuator model on a larger frequency range than pin force model. In addition, an experi-
mental study has been conducted where a correlation coefficient metric is used to compare
quantitatively approximated transducer models with experimental signals over a range of
excitation frequencies. It has been demonstrated that the proposed hybrid actuator model
accurately models the transduction signal above the first free electromechanical resonance
frequency of a piezoelectric transducer.

Chapter 4 presented a complete methodology for the performance demonstration of
GWs based SHM via a model-assisted approach. Experimental and simulation studies
have been carried out on the use case of growing cracks from a hole on an aluminum
plate. Repeated measurements have been obtained experimentally from 12 identical and
independent aluminum plates with cracks up to 30 mm long to obtain stochastic time
domain responses. Experimental variabilities limits have also been recorded to reproduce
the variability in the output response from the simulation tool. Both experimental and
model-assisted time domain signal datasets are mapped to the damage index and compared
to characterize the validity of a model-assisted approach to data generation. It is noted
that the experimental and simulated datasets agreed very well in both the time domain and
damage index (DI) scatter points. In addition, DI scatter points exhibit higher sensitivity
with crack length in the direct and diagonal sensor paths than in indirect sensor paths.
However, in the indirect sensor paths, the experimental DI dataset is slightly offset from
the DI of the simulated dataset because the crack not being straight during the elongation
in the experiment. Some non-linear trends in DI are also marked along the crack length,
which is explained by normalized crack length by the wavelength with frequency variation
study and divided into four regions based on the wavelength interaction of the wave modes.
From this, it is observed that DI is more influenced at higher frequencies for S0 and lower
frequencies for A0 modes, respectively.

Chapter 5 presented two recently proposed statistical methods (length-at-detection
and random effects) to compute the POD curve for repeatedly measured experimental
and simulated DI datasets derived from chapter four. Before applying these methods,
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a linearity check has been introduced to identify the linear plot based on the coefficient
of determination (R2) value. Length-at-detection POD computation method is fast and
simple once the underlying distribution is known to us. At the same time, the random
effects model is a more generalized form of the conventional signal response method defined
in NDT POD computation. Bayesian analysis of model parameter estimation in random
effects helps to compare the uncertainty distributions of model parameters obtained from
both experimental and simulated datasets. It is observed that the simulated POD x90|95
values are slightly conservative compared to the experimental POD values due to more
significant variabilities and the larger number of units considered in the model-assisted
approach. Both length-at-detection and random effects methods provide roughly similar
values, but the random effects method is a bit more conservative due to considering all
repeated measurements in the analysis. In addition, a sample size calculation has also
been presented to estimate the required x90|95 value for a particular SHM application.
This demonstrates the potential of the simulation tool to estimate the number of samples
required for SHM application before performing experimental studies.

With these four chapters of this thesis, we conclude that the MAPOD approach for
guided waves SHM is reliable and can be used for similar use cases in the future, provided
that a careful study of the variabilities is performed as well as a validation of the simulation
tool in the whole range of these variabilities.

6.2 Perspectives
This thesis has led to extensive work on a simplified aluminum plate-like structure, en-
abling model assisted POD studies. However, much work is needed in the future on POD
studies for SHM, especially on real use cases. This thesis observed that the model assisted
POD approach is reliable through the use of very large datasets for POD calculations
obtained with minimal effort thanks to the use of a simulation tool. Therefore, the same
model assisted POD methodology for computing the POD curve of GWs based SHM can
be extended to other structures and materials, such as composites, with different known
and unknown locations of damage types. In practice, there may be some future work to
extend each of the methodological steps of the model assisted POD computation, which
are explained below:

Transducer modeling in simulation tool: Transducer modeling is challenging,
especially for a circular piezoelectric transducer. This thesis proposed a hybrid actuator
model, compatible with the transient spectral finite element scheme developed at CEA,
that relies on the pre-computation of bi-directional stresses from COMSOL for each new
configuration. Indeed, no analytical formulation of stress computation for the circular
piezoelectric transducer is available due to no closed-form equation solution. Therefore,
some data-driven approaches, such as meta-model techniques, could be used to address
this problem and provide a self-sufficient algorithm that does not require to use of an
external simulation code. In addition, the proposed model could be extended to anisotropic
materials/structures by computing directional depended stresses from COMSOL.

Variabilities in simulation and experimental POD studies: The demonstration
of MAPOD methodology in this thesis has been performed in a rather controlled (lab-

101



6.2. Perspectives

oratory) environment. It would be interesting to consider more realistic/real use cases
that include other or more severe sources of variabilities (larger temperature ranges, crack
orientation and complex shape, variable structural loads...). Using this methodology on
more complex structures, for example, composite plates requires careful and essential ef-
forts to validate the simulation tools. For example, composite materials exhibit larger
inter specimen material properties variations and attenuation of guided waves, this must
be appropriately captured through experimental characterization campaigns, and simu-
lation must be validated on the full range of expected configurations. These study and
validations must be repeated for each source of variability, as in every POD analysis, and
is use case dependent. A methodological question then still remains open and would be
worth studying: how to take into account the confidence bound of the simulation (i.e.,
the inevitable discrepancy between simulation and experiment, neglected in this thesis)
into MAPOD? Finally, an important phenomenon and source of variability that has not
been considered in this study is the aging of the elements that compose the SHM system
(such as sensors) and its consequences on the global performance of the SHM system. This
difficult topic will require a specific analysis and will be a major step toward improving
the confidence of guided waves based SHM.

Damage identification, quantification, and POD computation methods: There
is a more prominent use of the machine learning approach found in the literature for dam-
age identification and quantification in guided waves based SHM. From that perspective,
it is natural to consider applying the methodology developed in this thesis to quantify
the performance of guided waves based SHM systems that use machine learning to de-
tect defects. However, some specificities of machine learning algorithms, primarily due to
their non-explainable (black-box) characteristics, might require some adapted performance
demonstration approaches. For example, the sensitivity of machine learning algorithms
to the database used for training is a recognized difficulty [170]. How to update this
database for continuously learning systems while claiming the performances based on an
initial POD estimation is, for example, an open and difficult question. More generally,
POD is the golden tool to compare analysis processes: POD with/without temperature
compensation, for one data processing or another... MAPOD has the potential to easily
and rapidly answer the question of the most efficient analysis process for a given config-
uration. MAPOD of guided waves based SHM systems based on imaging analysis, such
as tomography algorithms, also has potential for further investigations. It would require
a non-trivial extension of the current methodology based on the recent concepts of the
probability of location (POL) [171] and POD map studies [108]. Finally, yet importantly,
very few studies have been performed so far on the probability of false alarms (and conse-
quently, receiving operating characteristics) of guided waves based SHM systems. This is
a crucial research topic to fully characterize the performances of the monitoring system,
closely linked to the definition of detection threshold and analysis processes described just
above, which would certainly be of great interest to the final users.
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Appendix: Probability of
detection
Additional figures of chapter 5
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Figure 7.1: A matrix scatter plot of draws from joint posterior distribution of model
parameters for simulated DI datasets.

Figure 7.2: A matrix scatter plot of draws from joint posterior distribution of model
parameters for experimental DI datasets.
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Figure 7.3: The median of marginal posterior distribution of six parameters with sample
size for experimental dataset (blue line) and simulated dataset (black line) with an un-
certainty of 95% HDI in light red and black for the simulated and experimental datasets,
respectively.
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CHAPTER88
Synthèse en français
La surveillance de l’état des structures (SHM) consiste à intégrer des capteurs dans une
structure afin d’évaluer son intégrité sans interrompre son fonctionnement. Les ondes
élastiques guidées sont reconnues comme une technologie prometteuse pour le SHM dans
les domaines de l’aérospatiale, du pétrole et du gaz, et des industries nucléaires. En effet,
les ondes guidées dans des structures en forme de plaques ont des caractéristiques de
propagation à longue distance et de faible atténuation, ce qui limite considérablement le
nombre de capteurs nécessaires pour surveiller une zone critique donnée ou un composant.
Des transducteurs piézoélectriques minces, légers et peu coûteux, ont été utilisés dans la
majorité des systèmes basés sur les ondes guidées (GW). Ces transducteurs sont fixés à ou
dans la structure et génèrent divers modes d’ondes élastiques, généralement des modes de
Lamb antisymétriques et symétriques de faible ordre dans des structures isotropes en forme
de plaque ou des ondes similaires dans des spécimens anisotropes en forme de plaque. Les
modes d’onde sont soit réfléchis, soit diffusés, soit convertis en d’autres modes d’onde par
les perturbations géométriques du guide d’onde et les défauts structurels potentiels. Des
techniques spécifiques de traitement du signal sont ensuite utilisées pour extraire l’état
actuel de la structure par l’analyse des signaux capturés par les transducteurs.

Bien que le domaine du SHM basé sur les GWs ait reçu une attention considérable
de la part de la communauté des chercheurs, très peu de techniques d’inspection SHM
basées sur les GWs ont encore trouvé des applications industrielles, notamment en rai-
son de la difficulté à démontrer la performance du système de surveillance. Pour les
techniques non destructives (CND), la performance est caractérisée par la courbe de prob-
abilité de détection (POD). Largement acceptée par l’industrie, la courbe POD est estimée
par de multiples expériences indépendantes sur des structures inspectées données. Alors
que pour les essais non destructifs, les expériences indépendantes sont créées en multipli-
ant les étapes d’acquisition par différents opérateurs sur un nombre limité d’échantillons,
alors que dans la méthode GW-SHM, les transducteurs sont fixés à la structure ; par
conséquent, la création d’acquisitions indépendantes est coûteuse et fastidieuse. Pour sur-
monter ce problème, une démonstration de performance basée sur la simulation, telle que
la probabilité de détection assistée par modèle (MAPOD), est une solution intéressante.
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Cependant, MAPOD nécessite un outil validé et efficace capable de générer un nombre
statistiquement significatif de simulations à un coût de calcul raisonnable.

Actuellement, de nombreux outils de simulation et de modélisation sont disponibles
pour le GW-SHM, et la plupart d’entre eux sont basés sur la modélisation par éléments finis
(FE). Certains logiciels FE offrent des modules multiphysiques pour modéliser le couplage
transducteur-structure, qui est souvent une partie critique et difficile des simulations.
Cependant, les structures typiques sont longues de plusieurs dizaines ou centaines de
longueurs d’onde, avec une exigence de 10 à 20 degrés de liberté par plus petite longueur
d’onde, ce qui rend les calculs très coûteux. Ceci est généralement prohibitif pour les
calculs MAPOD où des centaines ou des milliers de simulations doivent être exécutées.

Pour surmonter ce problème de coût de calcul, la méthode des éléments finis spectraux
(SFE) a été introduite et, grâce à une réduction du nombre de degrés de liberté et un calcul
plus efficace à chaque pas de temps, elle réduit le coût de calcul global. Récemment, la
méthode SFE en régime transitoire a été intégrée au logiciel CIVA afin de réduire le coût
de calcul, alors que les logiciels FE conventionnels fournissent des résultats similaires en
plusieurs jours à environ une semaine de calcul. Par conséquent, le logiciel CIVA a un
excellent potentiel pour produire de nombreuses simulations lors des calculs MAPOD.

Pour obtenir de telles performances de calcul, la plateforme CIVA s’appuie sur deux
approches : les éléments finis spectraux d’ordre élevé permettant une procédure de maillage
paramétrique basée sur des macro-éléments, et le modèle approximatif de transducteur
piézoélectrique appelé Pin Force (PF) est utilisé comme charge de surface pour l’excitation
GW.

Le modèle PF consiste en une traction de contrainte constante appliquée dans la di-
rection radiale à la périphérie du transducteur piézoélectrique circulaire. Il convient de
noter qu’en raison de l’hypothèse d’un couplage adhésif idéal entre le transducteur pié-
zoélectrique et la structure hôte, et de l’hypothèse d’un transducteur mince, l’hypothèse
d’une traction de contrainte radiale constante est limitée à la fréquence d’excitation.
La fréquence d’excitation pour le modèle PF est validée bien en dessous de la première
fréquence de résonance électromécanique du transducteur piézoélectrique en raison de la
non prise en compte de la dynamique et de la contrainte normale du transducteur. Pour
surmonter cette limitation, un nouveau modèle est nécessaire qui n’affecte pas le temps
de calcul et les performances.

Ici, dans le chapitre 3, nous avons proposé un modèle d’actionneur hybride (HAM)
pour la modélisation du transducteur piézoélectrique qui inclut deux directions de trac-
tions, radiale et normale, ainsi que la dynamique du transducteur piézoélectrique. Pour
reproduire le comportement en fonction de la fréquence, une épaisseur d’adhésif finie est
introduite. Au cours de l’étape de pré-calcul, la dynamique du transducteur piézoélec-
trique dans les deux directions est calculée par le biais de la FE (COMSOL Multiphysics),
et l’effet de l’épaisseur finie de l’adhésif est estimé sur la base du rapport d’admittance du
transducteur piézoélectrique collé et non collé. Une étude paramétrique est réalisée pour
quantifier la validité du modèle d’actionneur hybride en termes de fréquence d’excitation.
On observe que le modèle d’actionneur hybride proposé modélise également avec précision
le signal de transduction au-dessus de la première fréquence de résonance électromécanique
d’un transducteur piézoélectrique.

Ensuite, dans le chapitre 4, nous avons présenté une méthodologie complète pour la
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démonstration des performances du SHM basé sur les GWs via une approche assistée par
modèle. Des études expérimentales et de simulation ont été réalisées sur le cas d’utilisation
de fissures croissantes à partir d’un trou sur une plaque d’aluminium. Des mesures répétées
ont été obtenues expérimentalement à partir de 12 plaques d’aluminium identiques et in-
dépendantes avec des fissures jusqu’à 30 mm de long pour obtenir des réponses stochas-
tiques dans le domaine temporel. Les limites des variabilités expérimentales ont également
été enregistrées pour reproduire la variabilité de la réponse de sortie de l’outil de simula-
tion. Les ensembles de signaux dans le domaine temporel, expérimentaux et assistés par
modèle, sont mis en correspondance avec l’indice de dommage et comparés pour carac-
tériser la validité d’une approche assistée par modèle pour la génération de données. On
constate que les ensembles de données expérimentales et simulées concordent très bien dans
les points de dispersion du domaine temporel et de l’indice de dommages (DI). En outre,
les points de dispersion de l’indice de dommages présentent une sensibilité plus élevée à la
longueur de la fissure dans les trajets de capteurs directs et diagonaux que dans les trajets
de capteurs indirects. Cependant, dans les trajectoires de capteurs indirects, l’ensemble
de données DI expérimentales est légèrement décalé par rapport à l’ensemble de données
simulées parce que la fissure n’est pas droite pendant l’élongation dans l’expérience. Cer-
taines tendances non linéaires de l’ID sont également marquées le long de la longueur
de la fissure, ce qui est expliqué par la longueur de fissure normalisée par la longueur
d’onde avec l’étude de la variation de fréquence et divisée en quatre régions basées sur
l’interaction de longueur d’onde des modes d’onde. On observe ainsi que la DI est plus
influencée à des fréquences plus élevées pour les modes S0 et plus basses pour les modes
A0, respectivement.

Dans le dernier chapitre 5, nous avons présenté deux méthodes statistiques récemment
proposées (longueur à la détection et effets aléatoires) pour calculer la courbe POD pour
des ensembles de données DI expérimentales et simulées mesurées à plusieurs reprises et
dérivées du chapitre 4. Avant d’appliquer ces méthodes, un contrôle de linéarité a été intro-
duit pour identifier le tracé linéaire sur la base de la valeur du coefficient de détermination
(R2). La méthode de calcul POD de Length-at-detection est rapide et simple une fois
que l’on connaît la distribution sous-jacente. En même temps, le modèle random effects
est une forme plus généralisée de la méthode conventionnelle de réponse au signal définie
dans le calcul POD des CND. L’analyse bayésienne de l’estimation des paramètres du
modèle dans le modèle random effects permet de comparer les distributions d’incertitude
des paramètres du modèle obtenues à partir des ensembles de données expérimentales et
simulées. On observe que les valeurs POD x90|95 simulées sont légèrement conservatrices
par rapport aux valeurs POD expérimentales en raison de variabilités plus importantes
et du plus grand nombre d’unités considérées dans l’approche assistée par modèle. Les
méthodes Length-at-detection et random effects fournissent des valeurs à peu près sim-
ilaires, mais la méthode random effects est un peu plus conservatrice car elle prend en
compte toutes les mesures répétées dans l’analyse. En outre, un calcul de la taille de
l’échantillon a également été présenté pour estimer la valeur x90|95 requise pour une appli-
cation SHM particulière. Cela démontre le potentiel de l’outil de simulation pour estimer
le nombre d’échantillons requis pour une application SHM avant de réaliser des études
expérimentales.

Avec ces quatre chapitres de cette thèse, nous concluons que l’approche MAPOD pour
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le SHM des ondes guidées est fiable et peut être utilisée pour des cas d’utilisation similaires
dans le futur, à condition qu’une étude minutieuse des variabilités soit effectuée ainsi
qu’une validation de l’outil de simulation dans toute la gamme de ces variabilités.

Cette thèse a conduit à un travail approfondi sur une structure simplifiée de type plaque
d’aluminium, permettant des études POD assistées par modèle. Cependant, beaucoup de
travail est nécessaire à l’avenir sur les études POD pour SHM, en particulier sur des cas
d’utilisation réels. Cette thèse a observé que l’approche POD assistée par modèle est fiable
grâce à l’utilisation de très grands ensembles de données pour les calculs POD obtenus avec
un effort minimal grâce à l’utilisation d’un outil de simulation. Par conséquent, la même
méthodologie POD assistée par modèle pour le calcul de la courbe POD du SHM basé
sur les GWs peut être étendue à d’autres structures et matériaux, tels que les composites,
avec différents emplacements connus et inconnus des types de dommages.
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