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CITOLINO, L. V. L. Materials for nanostructured organic devices: theoretical and 

experimental studies of donors and acceptors. 2022. 132 pp. Thesis (PhD in Science and 

Technology of Materials) - UNESP and (PhD in Polymer Chemistry) - UPPA, Bauru, 2022. 

 

ABSTRACT 

The frontier energy levels of conjugated polymers are critical to their performance in 

organic electronic devices. In organic solar cells the magnitude of the HOMO and LUMO levels 

directly affects parameters, such as the short circuit current and the open-circuit voltage, which 

are very important to achieve high efficiency. Accordingly, density functional theory (DFT) 

has become useful to model orbital energies of conjugated organic molecules. But, performing 

DFT calculations on conjugated polymers is challenging due to their size (large number of 

atoms), besides the problems to predict accurate values for virtual orbitals. In this context, the 

main aim of this work is set out the general considerations for the use of DFT approaches in 

organic molecules with large number of atoms, in particular when one has to describe one or 

more electronic states of more or less strongly correlated electrons. Thereby, a series of DFT 

calculations were performed, using different basis set and functionals, in singlet and triplet 

states on a set of promising donor-acceptor pairs to estimate accurate values on molecular 

orbital energies. In addition, DFT calculations was used to optimise the molecular geometries 

and determine energies of unpublished polyfullerenes to compare with Langmuir-Schaefer thin 

films properties. To obtain experimentally the HOMO and LUMO from polyfullerenes thin 

films, measurements of absorption were performed using Ultraviolet-visible spectroscopy and 

electrical characterizations were carried out through cyclic voltammetry measurements. In a 

series of DFT calculations in singlet state, with different functionals and basis set, the B3LYP 

functional together with 6-311G(d,p) basis set give the best values for HOMO and LUMO. For 

saving computational resources, 6-31G(d) can be used to provide good values for energy levels 

from frontier molecular orbitals. For donors, the correlation between the LUMO calculated with 

experimental results is too poor, while for acceptors, is acceptable. The DFT calculations in 

triplet states give good correlation for donors, where the LUMO energy is most accurately 

approximated from the αHOMO energy. In the study of polyfullerene thin films, the π-A 

isotherms indicated that depending on the solvent, the arrangement of molecules is altered, 

indicating higher solubility and lower level of aggregation, and vice versa. In UV-Vis and CV 

measurements the influence of solvent is also evidenced being directly related to the maximum 

absorption and difference in the position of the absorption peak, and also to shifting of oxidation 

and reduction peaks. In the junction between DFT calculations and CV and UV-Vis 

measurements, the DFT/B3LYP/6-31+G(d) method provide LUMO values close to 

experimental values, thus being an important tool for comparing results, since there is no 

previous literature from these exact polyfullerenes. 

 

Keywords: DFT, HOMO, LUMO, B3LYP, electron donor, electron acceptor, polyfullerenes.  
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RÉSUMÉ 

Les niveaux d'énergie frontière des polymères conjugués sont essentiels à leur 

performance dans les dispositifs électroniques organiques. Dans les cellules solaires 

organiques, l'amplitude des niveaux HOMO et LUMO affecte directement des paramètres, tels 

que le courant de court-circuit et la tension en circuit ouvert, qui sont très importants pour 

obtenir un rendement élevé. En conséquence, la théorie de la fonctionnelle de la densité (DFT) 

est devenue utile pour modéliser les énergies orbitales des molécules organiques conjuguées. 

Mais, effectuer des calculs DFT sur des polymères conjugués est difficile en raison de leur taille 

(grand nombre d'atomes), en plus des problèmes de prédiction de valeurs précises pour les 

orbitales virtuelles. Dans ce contexte, l'objectif principal de ce travail est d'exposer les 

considérations générales pour l'utilisation des approches DFT dans les molécules organiques à 

grand nombre d'atomes, en particulier lorsqu'il s'agit de décrire un ou plusieurs états 

électroniques d'électrons plus ou moins fortement corrélés. Ainsi, une série de calculs DFT ont 

été effectués, en utilisant différents ensembles de bases et fonctionnelles, dans des états singulet 

et triplet sur un ensemble de paires donneur-accepteur prometteuses pour estimer des valeurs 

précises sur les énergies orbitales moléculaires. De plus, des calculs DFT ont été utilisés pour 

optimiser les géométries et déterminer les énergies de polyfullerènes non publiés à comparer 

avec les propriétés des couches minces de Langmuir-Schaefer. Pour obtenir expérimentalement 

l’HOMO et le LUMO à partir de couches minces de polyfullerènes, des mesures d'absorption 

ont été réalisées par spectroscopie ultraviolet-visible et des caractérisations électriques ont été 

réalisées par des mesures de voltampérométrie cyclique (VC). Dans une série de calculs DFT 

en état singulet, avec différentes fonctionnelles et ensemble de base, la fonctionnelle B3LYP 

associée à l'ensemble de base 6-311G(d,p) donne les meilleures valeurs pour HOMO et LUMO. 

Pour économiser les ressources de calcul, 6-31G(d) peut être utilisé pour fournir de bonnes 

valeurs pour les niveaux d'énergie des orbitales moléculaires frontières. Pour les donneurs, la 

corrélation entre le LUMO calculé avec les résultats expérimentaux est trop faible, alors que 

pour les accepteurs, elle est acceptable. Les calculs DFT dans les états triplets donnent une 

bonne corrélation pour les donneurs, où l'énergie LUMO est la plus précisément approximée à 

partir de l'énergie αHOMO. Dans l'étude des films minces de polyfullerène, les isothermes π-A 

ont indiqué qu'en fonction du solvant, l'arrangement des molécules est modifié, indiquant une 

solubilité plus élevée et un niveau d'agrégation plus faible, et vice versa. Dans les mesures UV-

Vis et VC, l'influence du solvant est également mise en évidence comme étant directement liée 

à l'absorption maximale et à la différence de position du pic d'absorption, ainsi qu'au 

déplacement des pics d'oxydation et de réduction. A la jonction entre les calculs DFT et les 

mesures UV-Vis et VC, la méthode DFT/B3LYP/6-31+G(d) fournit des valeurs LUMO 

proches des valeurs expérimentales, étant ainsi un outil important pour comparer les résultats, 

puisqu'il n'y a pas d'antécédents littérature à partir de ces polyfullerènes exacts. 

 

Mots-clés: DFT, HOMO, LUMO, B3LYP, donneur d'électrons, accepteur d'électrons, 

polyfullerènes.  
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RESUMO 

Os níveis de energia de fronteira de polímeros conjugados são importantíssimos para 

seu desempenho em dispositivos eletrônicos orgânicos. Nas células solares orgânicas, a 

magnitude dos níveis HOMO e LUMO afeta diretamente parâmetros, como a corrente de curto-

circuito e a tensão de circuito aberto, que são essenciais para alcançar alta eficiência. Assim, a 

teoria do funcional da densidade (DFT) tornou-se útil para modelar energias orbitais de 

moléculas orgânicas conjugadas. Porém, realizar cálculos DFT em polímeros conjugados é 

desafiador devido ao seu tamanho (grande número de átomos), além dos problemas para 

predizer valores precisos de orbitais virtuais. Neste contexto, o principal objetivo deste trabalho 

é expor as considerações gerais para o uso de abordagens DFT em moléculas orgânicas com 

grande número de átomos, em particular quando se tem que descrever um ou mais estados 

eletrônicos de elétrons mais ou menos fortemente correlacionados. Assim, uma série de cálculos 

de DFT foram realizados, usando diferentes funções de base e funcionais, em estados singleto 

e tripleto em um conjunto de pares doador-aceptor promissores para estimar valores precisos 

nas energias dos orbitais moleculares. Além disso, cálculos de DFT foram usados para otimizar 

geometrias e determinar energias de polifulerenos (materiais inéditos) para comparar com 

propriedades de filmes finos de Langmuir-Schaefer. Para obter experimentalmente os valores 

de HOMO e o LUMO a partir dos filmes finos, as medidas de absorção foram realizadas 

espectroscopia de absorção óptica UV-visível, e as medidas elétricas foram realizadas através 

da voltametria cíclica (VC). Em uma série de cálculos DFT no estado singleto, com diferentes 

funções de base e funcionais, o funcional B3LYP junto com a função de base 6-311G(d,p) 

fornecem os melhores valores para HOMO e LUMO. Para economizar recursos 

computacionais, a função de base 6-31G(d) pode ser usada para fornecer bons valores para os 

níveis de energia de orbitais moleculares de fronteira. Para os doadores, a correlação entre o 

LUMO calculado com os resultados experimentais é baixa, enquanto para os aceitadores, é 

aceitável. Os cálculos DFT em estados tripletos fornecem boa correlação para doadores, onde 

a energia LUMO é aproximada com mais precisão da energia do αHOMO. No estudo de filmes 

finos de polifulereno, as isotermas π-A indicaram que dependendo do solvente, o arranjo das 

moléculas é alterado, indicando maior solubilidade e menor nível de agregação, e vice-versa. 

Nas medidas de UV-Vis e VC também foi evidenciada a influência do solvente, estando 

diretamente relacionada à absorção máxima e diferença na posição do pico de absorção, além 

dos deslocamentos dos picos de oxidação e redução. Na junção entre cálculos de DFT e medidas 

de CV e UV-Vis, o método DFT/B3LYP/6-31+G(d) fornece valores de LUMO próximos aos 

valores experimentais, sendo uma ferramenta importante para comparação de resultados, pois 

não há estudos desses polifulerenos na literatura. 

 

Palavras-chave: DFT, HOMO, LUMO, B3LYP, doador de elétrons, aceitador de elétrons, 

polifulerenos. 
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CHAPTER 1 

1. Introduction 

1.1 Organic solar cells 

The population growth and global economic activities result in an increasing expansion 

in the production, distribution and consumption of energy, which leads to increased efforts in 

scientific studies to develop alternatives regarding the use of fossil fuels and their impacts on 

the environment [1, 2]. With more than 80% of the energy coming from fossil fuels, along with 

its depletion and increased CO2 emissions caused by its combustion, sustainable energy sources 

are already in use, such as solar energy and wind energy, to help supply the energy demand [3, 

4].  Thus, the development of devices that can convert solar energy constitutes a very important 

study and a vast potential for application, since solar energy is the only inexhaustible source of 

energy on Earth [5]. One of the tools for converting solar energy into electrical energy are solar 

cells or photovoltaic devices [6]. Consequently, studies aimed at improving the efficiency of 

devices in converting solar energy into electrical energy become essential [6].  

The basic principle of operation of a solar cell is the photovoltaic effect that was first 

observed by the French physicist Alexandre Edmond Becquerel (1820-1891) in 1839 [7, 8]. 

Becquerel observed the generation of electric current illuminating platinum electrodes, covered 

with silver bromides or silver chloride, immersed in electrolyte solution [7, 8]. The first solar 

cell, consisting of a layer of selenium covered by a thin film of gold, was fabricated and studied 

by Charles Fritts in 1884, but had a very low efficiency [9]. The first solar cell with reasonable 

efficiency was developed at Bell Laboratories, in 1953, through studies of energy sources and 

diffusion in the solid state at p-n junction by Pearson, Fuller and Chapin [10]. The solar cell 

was fabricated using silicon (Si) and achieved an efficiency of around 6% [10]. In the 1960s, 

with the advancement of technology, the efficiency of a silicon solar cell, with AM1 

illumination, was 12% to 13%. The violet cell reached an efficiency of 16% in 1973 [11]. A Si-

based solar cell using a non-reflecting light system (black cell), in 1974, showed an efficiency 

between 18% and 19% [11]. Nowadays, Geisz and coworkers fabricated in the laboratory an 

inorganic multijunction solar cell (six-junction III–V) reaching an efficiency of 47.1% [12]. 

The device has six junctions of active layers based on gallium arsenide, a very expensive 

material in relation to common Si, in addition to a complex and relatively expensive fabrication 

process due to the much slower vapor deposition processes used [12]. Therefore, efforts 

continue in the search and development of low-cost solar cells. 
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The technological evolution of solar cells is usually divided into three categories called 

as first, second and third generation devices [6]. The first-generation one is based on solar cells 

fabricated using monocrystalline and polycrystalline Si wafers [6]. The devices in this 

generation present an efficiency of up to 24% and are well established in the market, however 

they need a large amount of Si in the wafers, which raises their costs [6].  The second generation 

one innovates with the fabrication of flexible devices using thin film technology of 

semiconductor materials such as amorphous Si, cadmium telluride (CdTe), and copper indium 

gallium selenide (CIGS) [6]. This generation introduces new features such as new fabrication 

techniques reduced amount of material leading to reduce costs compared to the first generation 

[6]. The third generation one brings the exploration of new materials and architectures in solar 

cells, seeking to lower production costs and higher efficiencies [6]. Some examples of such 

devices are multijunction solar cells (MJSCs), dye sensitized solar cells (DSSCs), quantum dot-

sensitized solar cells, organic solar cells (OSCs), and perovskite solar cells (PSCs) [6].  

The chart in Figure 1 shows the highest efficiencies for solar cells from 1976 to the 

present, being divided into 5 categories (multifunctional cells, single junction gallium arsenide 

cells, crystalline silicon cells, thin film technologies, photovoltaic (PV) emerging), and 

subdivided into 28 subcategories [13]. The chart is maintained and updated every year by the 

National Renewable Energy Laboratory which is a national laboratory of the U.S. Department 

of Energy [14]. 
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Figure 1. The highest efficiencies for solar cells from 1976 to the present. 

 

Source: Extracted from [13]. 

Currently, photovoltaic devices based on inorganic materials, mainly in crystalline Si, 

lead the world market with higher stability and efficiencies [15]. The multijunction devices 

present high efficiencies, however they use several expensive inorganic materials, mainly III-

V semiconductors, and present a complex architecture, leading to high production costs [16, 

17]. In emerging devices, perovskite solar cells show promising efficiencies, but are based on 

heavy metals, such as lead, making them toxic to the environment [18, 19]. Still in emerging 

devices, there is a great interest in organic solar cells due to the study and use of low-cost organic 

materials and simple solution processing method, in addition to the flexibility of the devices and 

large production volume [20, 21].  

Using photoactive heterojunctions, OSCs have been widely studied and highlighting 

with devices reaching efficiency around 16-18% [22, 23]. The photovoltaic effect in OSCs 

occurs by means of the electronic structure of the arrangement of carbon and heteroatoms on 

the molecular level, which leads to different electron donor (p-type) or acceptor (n-type) 

characteristics for each molecule and the species are locally and globally neutral, most of the 

time [24]. The desired semiconductor character of these organic materials is assured by the 

Peierls distortion mechanism, which creates the energy gaps necessary for ultraviolet-visible 

(UV-Vis) light absorption [24]. Then, under illumination, following a π → π∗ transition, neutral 
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excitons can be formed either in one or both materials (Figure 2) [25, 26]. If one has a large 

enough energy offset between the lowest unoccupied molecular orbital (LUMO) of the p-type 

material and the LUMO of the n-type one, the exciton will dissociate via an ultrafast electron 

transfer into long-lived charged species called polarons (namely, an electron on the n-type 

molecule and a hole on the p-type one) [25, 26]. The same process can happen when the highest 

occupied molecular orbital (HOMO) offsets are large enough as well [25, 26]. In order to avoid 

exciton recombination, the bulk heterojunctions (BHJs), i.e., a blend of an electron donor and 

an electron acceptor material is the key component in OSCs for improvement of the efficient 

[27, 28, 29].  

Figure 3 shows a typic energy levels configuration of donor and acceptor materials and 

the charge cascade processes in the device [28]. In this type of heterojunction (Figure 4), small 

electron donor and acceptor domains are mixed, guaranteeing short distances for diffusion, and 

leading to efficient dissociation of excitons at the interface of these domains before 

recombination [27, 28, 29]. The difference in HOMO and LUMO between donor and acceptor 

layers creates electrostatic forces at the interface [27, 28, 29]. Give an appropriate of materials, 

such differences generate an electric field that leads to the efficient break-up of excitons into 

electrons and holes [27, 28, 29]. After exciton splitting, free electrons and holes are transported 

in the acceptor and donor networks (Figure 2 and 4) [27, 28, 29]. The free electrons are then 

accepted by the material with lower LUMO level and holes by the material with higher HOMO 

[27, 28, 29]. The transportation of charge carriers in organic semiconductors mostly takes place 

by hopping from one localized state to the next, until reaching to their respective electrodes [27, 

28, 29].  

Figure 2. Explanation of basic operational physics that is unique to OSCs. 

 

Source: Extracted from [30]. 
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Figure 3. Schematic diagram showing the energy level of the materials and the 

charge cascade process in a BHJ. 

 

Source: Extracted from [28]. 

Figure 4. Schematic diagram of the BHJ in 2D and 3D in an OSC. 

 

Source: Adapted from [29, 31]. 

In the past decades, a conjugated polymer and a fullerene derivative have been the most 

commonly used electron donor and electron acceptor, respectively [32, 33, 34]. Recently, non-

fullerene acceptor materials, particularly small molecules and oligomers, have emerged as a 

promising alternative to replace fullerene derivatives [35, 36, 37]. Compared to fullerenes, these 

new acceptors are generally synthesized from diversified, low-cost routes based on building 

block materials with extraordinary chemical, thermal, and photostability [35, 36, 37]. 

So, the use of electron donating polymers combined with fullerene and non-fullerene 

electron acceptors in active layers of OSCs has shown significant efficiency in devices [38]. Fu 

et al. showed that active ternary layers using donor polymers with fullerenes and non-fullerenes 

acceptors showed higher efficiency than in binary active layers (donor polymers only with non-

fullerenes) [39]. The optical absorption of fullerene is complementary to that of polymer and non-

fullerene, in addition to bringing higher stability to the device when exposed to the environment 

[39]. Meng et al. fabricating a device with two layers of BHJs, each combining different electron 
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donor and acceptor polymers, achieved an efficiency of 17.3% [40]. In the first layer, a mixture 

of donor and non-fullerene acceptors was used, and in the second layer the donor polymer was 

mixed with fullerene and non-fullerene acceptor [40]. The final overlap of the absorbances 

showed that the materials absorbed a large part of the solar spectrum [40]. However, the device 

required complex and careful fabrication with several layers, including a zinc oxide (ZnO) one to 

ensure charge transfer between the two layers and the electrodes [40]. 

In this context, the computational quantum chemistry plays an important role for 

understanding and designing new organic materials to optimize OSCs performance [41]. 

Distinct molecular modelling techniques can be chosen considering the type of system under 

study and the properties that are required to be described [41]. Thereby, several approaches 

exist to treat either small (a few dozen atoms) or big molecules (several hundred atoms), ranging 

from electronic structure-based ab initio methods to molecular mechanics ones [42]. Such 

approaches will be discussed in the next section. 

 

1.2 Molecular modelling techniques 

As our studies were restricted to methods involving the electronic structure of 

molecules, the advantages and disadvantages of some widely used methods at this level of 

structure are presented here.  

The study of the electronic structure of molecules requires the knowledge of the 

solutions of the Schrödinger equation [43]. The impossibility to reach the analytical solutions 

of this integrodifferential equation has led theoretical chemists to develop a whole strategy and 

a set of methods allowing to reach and calculate the main observables with a precision that is 

constantly increasing with the development of the computational capacity [43]. 

In the Born-Oppenheimer (BO) approximation the basic assumption is that of the 

independent particle model which proposes to write at order zero an eigenfunction of the 

adiabatic electronic Hamiltonian (stationary state) as a product of functions depending on only 

one electronic variable (spin-orbits) [43]. This hypothesis completed the necessity to 

antisymmetrize the simple product of spin-orbitals, and on the other hand, the adoption of the 

model of the double occupation of space functions, is at the basis of the self-consistent field 

(SCF) model whose objective is the determination of molecular orbitals [43]. 

In particular, the Restricted Hartree-Fock (RHF) method allows to account for multi-

electron interactions by a model that stipulates that each electron is in an average field of the 

others (independent-particle model) always in the hypothesis of the double occupation of the 
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molecular orbitals [44]. From these approximations it results an error on the evaluation of the 

electronic energy which, while being weak (a few percent of the total electronic energy), has 

disastrous consequences on the calculation of quantities such as orbital energies, binding 

energy, etc [44]. Unlike the RHF solution which corresponds, as we have just recalled, to the 

description of a Slater determinant made up of N/2 doubly occupied orbitals (the other orbitals 

being empty), the exact solution that we are trying to describe by taking into account the 

correlation is in fact made up of an infinite number of configurations that can be thought of as 

excitations with respect to the N-electron RHF determinant in an infinitely large base. This 

comes out of the fact that only the occupied orbitals are used in the energy minimization process 

of the N electron system. For a more appropriate description one should also consider the other 

(virtual) states also occupied. And, of course, it is impossible to work in a complete or infinite 

basis. 

Various methods are then proposed by theoretical chemists to evaluate as accurately as 

possible this correlation. Three types of approaches are used: 1) the methods aiming at solving 

variably the Schrodinger equation in the eigenstates by using a basis of Slater determinants or 

configurations. These are Configuration Interaction (C.I.) type approaches [45]; 2) perturbation 

methods requiring the definition of a minimal basis and a partition of the Hamiltonian operator 

adapted to ensure the convergence of the perturbation series in a Rayleigh-Schrodinger type 

approach [46]; 3) Pairwise methods which consist in evaluating the correlation energy of pairs 

of electrons assumed without interactions (Independent Electron Pair Approximation - IEPA) 

or in interaction (Coupled Pair Theory) [47, 48]. 

On the contrary, in the Multiconfigurational Self-Consistent Field (MCSCF) methods, 

the objective is to optimize with the use of a variational method both the monoelectronic 

functions used and the multiconfigurational development of the eigenfunction of the electronic 

Hamiltonian [49, 50, 51]. Among the numerous developments proposed, the Complete Active 

Space Self-Consistent Field (CASSCF) approaches lead to the development of the 

multiconfigurational wave function on the totality of the configurations generated by the set of 

all possible excitations in a restricted space of occupied and virtual molecular orbitals (active 

space) [52].  

However, the dimensional aspect of the systems selected by the experimenters in the 

OSCs processes (without mentioning the effects of the environment, the solvent, etc, which are 

generally neglected and considerably increase the dimension of the system to be modelled) 
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constrain the researchers in the use of fast approaches, although more approximated, but able 

of treating electronic correlation like the Density Functional Theory (DFT) [53]. 

Within the DFT approach which is actually the most known one, defining LUMO (or 

whichever other orbital) is not a problem often overlooked by modelers [54]. This is due to the 

fact that DFT is not a wave function method and, hence, it does not lead to explicit orbitals, but 

to Kohn-Sham (KS) ones [54, 55]. These KS orbitals have been, for a long time, viewed as an 

auxiliary concept, not necessarily meaningful and just a way to build the total density [54, 55]. 

This is so based on the fact that, in the process of construction of these orbitals, an 

approximative exchange-correlation potential has to be used, and it may keep reality away of 

their definition [54, 55]. A complete and extensive discussion on the evolution of this concept 

is done by Stowasser and Hoffmann, but we can jump to the general conclusion achieved by 

Baerends et al., who argue that these orbitals are very suitable for qualitative, chemical 

applications [55, 56]. That is why care must be taken if one wants absolute LUMO energy 

values when designing new molecules [57]. Furthermore, identifying the open-circuit voltage 

(VOC) via the LUMO energies relies on a one-electron picture (orbital relaxation is not 

considered) and on the validity of the Koopmans’ theorem [58]. 

In the same time, the calculation of the LUMO energies, can be done experimentally by 

electrochemical methods, as cyclic voltammetry (CV), and the values so-obtained do not 

considering approximations to the energies of this orbital as well. The usual procedure consists 

of measuring the onset reduction potential of the molecule to calculate LUMO energy and 

correlate it with the electron affinity of a standard molecule, assuming the validity of 

Koopmans’ theorem [59]. 

McCormick et al. reported in their very useful work on conjugated polymers that the 

use of DFT methods could be justified in the OSCs context [60]. We believe that the approach 

proposed by McCormick is even the better compromise disponible available today between 

theoretical DFT LUMO estimation and experimental CV LUMO energy measurement. In order 

to situate the limits avoided by McCormick and collaborators by the use of DFT in the OSCs 

context it is necessary look at to the strengths and weaknesses of each of the computational 

techniques disponible for the modeler. 

Post-DFT treatments appropriate to describe open shell states exist and allow to solve 

all or part of the problems above mentioned. Let us first mention the Broken-Symmetry (BS) 

approach which is certainly one of the approaches that allows the study of higher dimensional 

systems and which is among the most used to "estimate" the energy of multi-configuration 



 
 

32 
 

states in KS-DFT [61, 62, 63, 64]. Indeed, its implementation does not require any additional 

methodological input to what is commonly found in a standard quantum chemistry program. 

The principle is to approximate the "multi-deterministic" state by a single Slater determinant, 

which allows the use of KS-DFT [61, 62, 63, 64].  This determinant, which is not an eigenvector 

of the S2 operator, is said to be broken symmetry [61, 62, 63, 64]. The only way to obtain such 

a determinant is to use the unrestricted formalism [61, 62, 63, 64]. This formalism allows the 

space parts of the α and β orbitals to be different, unlike the restricted formalism [61, 62, 63, 

64]. Nevertheless, this formalism suffers from the spin contamination problem which limits the 

accuracy of such an approach compared to the multi-determinant approaches cited above [61, 

62, 63, 64]. The Yamaguchi method is the most widely used the BS approach at present [65, 

66, 67, 68]. The simplest of the open layer states consists of two electrons located in two orbitals 

leading to the description of a singlet state, called open shell system, and a triplet state. The 

Yamaguchi method is based on the approximation that the unique determinant BS sought is a 

pure linear combination between the singlet state and the triplet state and that the spin 

polarization introduced by the unrestricted formalism is negligible in the triplet state [65, 66, 

67, 68]. Thus, the BS determinant can be expressed very easily and cheaply [65, 66, 67, 68]. 

Another advantage of these approaches is that it is commonly accepted that for the most 

classical functionals in the molecular domain (hybrid-Generalized Gradient Approximation 

(GGA) such as B3LYP, PBE0, etc), the BS approach with the Yamaguchi formula represents 

more or less correctly the open shell system state and at lower computational cost [65, 66, 67, 

68].  

However, this should not make us forget the main limitation of this approach.  One may 

wonder what is the meaning of using the mean value of the S2 operator in DFT. Indeed, this 

value is most often computed as in wave function theory on the determinant KS by a 2-body 

operator. This determinant is that of a fictitious system without interaction and this average 

value should normally be calculated on the wave function of the real system. Experience shows 

that the BS method is efficient when the difference between the average value obtained for the 

KS determinant and the real system is small, which is unfortunately not the case in the systems 

we have studied.  

A last alternative to the BS methods exists, and it is the Spin-Flip approaches [69]. Shao, 

Head-Gordon and Krylov have proposed an approach to calculate the low spin and open layer 

states using Time Dependent (TD)-DFT [69]. In a very general way, the principle is to compute 

the ms = 1 state of the triplet (unrestricted formalism) and to make a time dependent perturbation 
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with a spin flip. We thus obtain all the mono-excitations with a spin change [69]. The goal is to 

obtain in fine the states characterized by the determinants ms = 0 allowing to describe correctly 

the low spin state [69].  

So it is finally in this state of mind and aware of the advantages, disadvantages and 

limitations of each approach that we conclude that the most efficient approach at present to 

describe both singlet excited states and the orbital parameters of the molecules involved 

throughout the excitation process in the OSCs domain is the one based on the joint description 

of the singlet ground state and its first triplet excited state at the KS-DFT level in the spirit of 

the spin-flip method as very efficiently shown by McCormick from 2013. 

As we have just recalled, the use of post-DFT treatments allows to more or less 

accurately access to energy magnitudes of the HOMO, LUMO and excited triplet and singlet 

states parameters of organic molecules involved in OSCs parameters as short circuit current 

and open-circuit voltage and linked with power conversion efficiency. But the interest in 

producing these models does not stop there. 

Last reason to study triplet states concern the role of charge recombination to triplet 

excitons in organic solar cells [70, 71, 72]. In particular, for Gillett and collaborators the organic 

solar cells have low open-circuit voltages because of their short optical bandgaps, owing to non-

radiative recombination [73]. In particular, authors showed that in most organic solar cells that 

use non-fullerene acceptors, the majority of charge recombination under open-circuit conditions 

proceeds via the formation of non-emissive non-fullerene acceptors triplet excitons via the way 

of the first excited singlet state S1. These non-radiative loss pathways must be identified and 

suppressed. Once again, the modelling can be a very useful tool in this domain but only if the 

methods used are able to accurately describe open shell systems like T1 and S1 (which refers 

the reader to the considerations mentioned above). 

 

1.3 Objectives 

The main objective of this work is set out the general considerations for the use of DFT 

approaches in particular when one has to describe one or more electronic states of more or less 

strongly correlated electrons. To estimate accurate values on molecular orbital energies a series 

of DFT calculations were performed in singlet and triplet states on a set of promising donor-

acceptor pairs in OSCs. In addition, to study polyfullerenes and compare theoretical and 

experimental values, DFT was used to geometry optimizations and determine HOMO and 
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LUMO energy levels (monomers) with Langmuir-Schaefer thin films properties obtained 

experimentally.   

 

CHAPTER 2 

2. Methodology 

2.1. The Schrodinger equation 

In 1926, through the publication of a series of papers called “Quantization as an 

Eigenvalue Problem” (Quantisierung als Eigenwert problem), Schrodinger presents the 

problem of determining the orbital energies of the electron in an atom as an eigenvalue problem. 

[74]. In these series of papers, Schrodinger proposed a new equation combining wave matter 

descriptions with the Hamilton–Jacobi equation (HJE) in the time-independent form [74]. This 

new equation we now know as the Schrödinger equation and is identical to the matrix equation 

suggested by Heisenberg [75, 76].  

The HJE is an extremely powerful and sophisticated method for solving the equations 

of motion in analytical mechanics [77]. The method is based on the search for a canonical 

transformation that is capable of making the transformed Hamiltonian identically zero [77]. 

HJE is particularly important as it is the only mathematical formulation of mechanics in which 

the motion of a particle can be represented as a wave, and for this reason, HJE is considered the 

closest approximation of classical mechanics to quantum mechanics [77, 78]. The complete and 

time-dependent HJE is given by: 

𝜕𝑆

𝜕𝑡
= −𝐻(𝑞𝑖 , 𝑝𝑖 , 𝑡) =  −𝐻 (𝑞𝑖 ,

𝜕𝑆

𝜕𝑞𝑖
, 𝑡) (2.1) 

where L is the Lagrangian of the system. The Lagrangian is the kinetic energy minus the 

potential energy of the system. The 𝑆 is a generating function that depends on spatial 

coordinates (𝑞𝑖), momenta (𝑝𝑖) and time (𝑡) [77, 79]. The generating function 𝑆(𝑞𝑖 , 𝑡) is central 

to analytical mechanics, and while everything that can be known about the system can be 

derived from it, it is defined by [77, 79]: 

𝑆 = ∫ 𝐿(𝑞𝑖 , 𝑝𝑖 , 𝑡)𝑑𝑡
𝑡2

𝑡1

 (2.2) 

From 𝑆(𝑞𝑖 , 𝑡) it is possible to obtain the canonical moments of system as [77,79]: 
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𝑝𝑖 =
𝜕𝑆

𝜕𝑞𝑖
 (2.3) 

and the Hamiltonian as [77, 79]: 

𝐻 = −
𝜕𝑆

𝜕𝑡
 (2.4) 

In case of conservative systems, the Hamiltonian is the total energy E (sum of kinetic 

and potential energies), which is constant [77, 79]. Thus, applying the Equation 2.4 to the 

hydrogen atom, and considering 𝜕𝑆 𝜕𝑡⁄ = −𝐸, the Equation 2.1 becomes [77, 78, 79] 

𝐻 (𝑞,
𝜕𝑆

𝜕𝑞
) = 𝐸 (2.5) 

which is also called the time-independent HJE or the energy conservation equation [77, 78, 79]. 

Applying a logarithmic function 𝛹 spatial which is the logical equivalent of 𝑆 in Equation 2.5 

[78, 79] 

𝑆 = 𝑖ħ𝑙𝑛(𝛹) (2.6) 

being 𝛹 defined by [78, 79]: 

𝛹 = exp (−
𝑖𝑆

ħ
) (2.7) 

Since Equation 2.7 is considered to be the amplitude of matter waves, the finitude and 

definition of can be assumed by a normalization condition [77, 78, 79]: 

∫|𝛹|2𝑑𝑉 = 1 (2.8) 

This 𝛹 is called a wavefunction [78, 79]. Substituting Equation 2.6 in Equation 2.1, 

using this wavefunction, into the time-dependent and time-independent HJEs in Equations 2.1 

and 2.5 gives [78, 79]: 

𝐻̂𝛹 = 𝑖ħ
𝜕𝛹

𝜕𝑡
 (2.9) 

and 

𝐻̂𝛹 = 𝐸𝛹 (2.10) 
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respectively. Equations 2.9 and 2.10 are called the time-dependent and time-independent 

Schrödinger equations, respectively, and the Hamiltonian is replaced by the Hamiltonian 

operator acting on spatial functions [78, 79]. Because of its definition in terms of the principal 

function 𝑆, 𝛹 also has no physical meaning and cannot be measured, but contain all system 

information [78, 79].  Considering a one-dimensional and time-independent system of particles, 

the Hamiltonian operator is [78, 79]: 

𝐻̂ = ∑
𝑝𝑖

2

2𝑚𝑖
𝑖

+ 𝑉 = ∑
1

2𝑚𝑖
𝑖

(
𝜕𝑆

𝜕𝑞𝑖
)

2

+ 𝑉 = − ∑
ħ2

2𝑚𝑖
𝑖

1

|𝛹|2
(

𝜕𝛹

𝜕𝑞𝑖
)

2

+ 𝑉 = 𝐸 (2.11) 

For energy conservation, it is obtained [78,79]: 

− ∑
ħ2

2𝑚𝑖
𝑖

(
𝜕𝛹

𝜕𝑞𝑖
)

2

+ (𝑉 − 𝐸)|𝛹|2 = 0 (2.12) 

Using the variational method, the stationary condition is obtained under the 

normalization condition [78,79]: 

− ∑
ħ2

2𝑚𝑖
(

𝜕2𝛹

𝜕𝑞𝑖
2 )

𝑖

+ (𝑉 − 𝐸)𝛹 = 0 (2.13) 

For a multidimensional system: 

− ∑
ħ2

2𝑚𝑖
𝑖

∇𝑖
2𝛹 + (𝑉 − 𝐸)𝛹 = 0 (2.14) 

here the moment 𝑝𝑖 is transformed into the moment operator 𝑝𝑖 = −𝑖ħ∇𝑖, which produces 

discrete energy levels under the boundary condition of the potential 𝑉 to make the wave 

functions finite [78, 79]. The discrete energy values and the corresponding wave functions are 

called eigenvalues and eigenfunctions, respectively [78, 79]. 

Since the Schrödinger equation was developed, various realistic and idealistic 

interpretations of the wavefunction has been vigorously discussed [78]. Schrödinger originally 

regarded the wavefunction as a description of real physical wave, where the physical existence 

of a matter consists only of waves [78, 80]. As this interpretation has many serious problems, 

other interpretations soon emerged. Born proposed the probabilistic interpretation of the wave 

function, becoming the mainstream interpretation of the wavefunction today [78, 80]. 

According to Born, what has direct physical meaning been not spatial-temporal wave functions, 
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which may even be imaginary functions [81]. The physical meaning is in the magnitude 

|𝛹(𝑟, 𝑡)|2 [81]. The squared modulus of the wave function gives the probability density 

probability of finding the particle at point 𝑥, at time 𝑡: 

𝜌(𝑥, 𝑦, 𝑧, 𝑡) =
𝑑𝑃(𝑟, 𝑡)

𝑑𝑉
= |𝛹(𝑟, 𝑡)|2 =  𝛹∗(𝑟, 𝑡)𝛹(𝑟, 𝑡) (2.15) 

where 𝑑𝑃(𝑟, 𝑡) is the probability that a single particle is at position 𝑟, inside the volume 𝑑𝑉 =

𝑑𝑥𝑑𝑦𝑑𝑧 (in Cartesian coordinates), in the time 𝑡, per unit of 𝑑𝑉. This interpretation is 

considered idealist (orthodox position) and only focuses attention on the existence probability 

in discussions on the wave-particle relation, where the observations not only disturb what is to 

be measured, they produce it, and the particle assume a definite position [78, 80]. Eventually, 

the Copenhagen school, led by Bohr, Heisenberg and Pauli, advocated Born’s probabilistic 

interpretation [82]. Some alternative realistic interpretations of the wave function have been 

proposed and widely studied, as for example, the Schrödinger’s cat and Everett’s many-worlds 

interpretation [83, 84]. 

 

2.2 The many-body Schrodinger equation 

The physical properties of matter at the atomic level are described using the formalism 

of quantum mechanics [80]. In the case of optoelectronic properties, for example, the wave 

functions of electrons are fundamental to describe the frontier energy levels in molecular 

orbitals [85]. Thus, a multielectron atom systems are considered as a many-body problem [86]. 

Thus, the interactions of a system with 𝑁 electrons and 𝑀 nuclei, with coordinates {𝑟𝑖} =

(𝑟1, 𝑟2, … , 𝑟𝑁) and {𝑅⃗⃗𝛼} = (𝑅1, 𝑅2, … , 𝑅⃗⃗𝑀), respectively, can be described by the non-

relativistic Hamiltonian operator [87]: 

𝐻̂ = 𝑇̂𝑛 + 𝑇̂𝑒 + 𝑉̂𝑛𝑛 + 𝑉̂𝑛𝑒 + 𝑉̂𝑒𝑒 (2.16) 

The terms 𝑇̂𝑛 and 𝑇̂𝑒 represent the kinetic energy of nuclei and electrons, respectively, 

given by: 

𝑇̂𝑛 = ∑ −
1

2𝑀𝑀

𝑀

𝛼<1

∇
𝑅⃗⃗𝛼

2 ,   𝑇̂𝑒 = ∑ −
1

2

𝑁

𝑖=1

∇𝑟𝑖

2  (2.17) 

where, 𝑀𝑀 is the mass of the 𝑀-th nucleus. Atomic units are a convenient system of units 

commonly used in electronic property calculations, so, 𝑚𝑒 = ħ = 𝑒 = 1, where 𝑚𝑒 and 𝑒 are 
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the electron's mass and charge, respectively; furthermore, it is also 4𝜋𝜀0 = 1. The Coulomb 

interactions between nucleus-nucleus (𝑉̂𝑛𝑛), nucleus-electron (𝑉̂𝑛𝑒) and electron-electron (𝑉̂𝑒𝑒) 

are given by: 

𝑉̂𝑛𝑛 =
1

2
∑ ∑

𝑍𝛼𝑍𝛽

|𝑅⃗⃗𝛼 − 𝑅⃗⃗𝛽|

𝑀

𝛽=1

𝑀

𝛼=1
𝛼≠𝛽

, 𝑉̂𝑛𝑒 = ∑ ∑ −
𝑍𝛼

|𝑅⃗⃗𝛼 − 𝑟𝑖|

𝑁

𝑖=1

,

𝑀

𝛼=1

 𝑉̂𝑒𝑒 =
1

2
∑ ∑

1

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑗=1

𝑁

𝑖=1
𝑗≠1

 (2.18) 

with 𝑍𝛼 and 𝑍𝛽 the atomic number of nuclei, 𝑅⃗⃗𝛼 and 𝑟𝑖 the positions of nuclei and electrons, 

respectively. In the interaction of the system, neglecting the nuclear motions is one of the most 

important approaches, as it makes possible the decoupling of the nuclear and electronic parts in 

the time-independent Schrödinger equation with the application of the Hamiltonian (Equation 

2.16) [88]. As the atomic nucleus is heavier than the electron (𝑚𝑝 𝑚𝑒⁄ ≈ 1836), it is considered 

that electrons move much faster than nuclei, so in the absence of nuclei movement there is no 

exchange of thermal energy with the external environment [88]. This approximation is adiabatic 

and known as the BO approximation [88]. With electronic movement being considered 

instantaneous in relation to nuclear movement, decoupling is given by: 

𝜓({𝑟𝑖}, {𝑅⃗⃗𝛼}) = 𝜓𝑛({𝑅⃗⃗𝛼})𝜓𝑒({𝑟𝑖}, {𝑅⃗⃗𝛼
′ }) (2.19) 

where 𝑅⃗⃗𝛼
′  indicates the parametric dependence of the wavefunction on the position of the nuclei. 

After decoupling and applying only the wavefunction of the electronic part to the Schrödinger 

equation, a new Hamiltonian is written: 

𝐻̂𝑒 = 𝑇̂𝑒 + 𝑉̂𝑛𝑒({𝑟𝑖}, {𝑅⃗⃗𝛼
′ }) + 𝑉̂𝑒𝑒({𝑟𝑖}) (2.20) 

 With the BO approximation, the interaction term of the nuclei 𝑉̂𝑛𝑛, which can be 

considered constant, is omitted from the Equation 2.20 [88]. In addition, once electrons have a 

much higher velocity than the nucleus, the nucleus is considered fixed and generates an 

effective potential under which the electrons move. Thus, there is a new time-independent 

Schrodinger equation for the electronic part to be solved: 

𝐻̂𝑒𝜓𝑒({𝑟𝑖}, {𝑅⃗⃗𝛼
′ }) = 𝐸𝑒𝜓𝑒({𝑟𝑖}, {𝑅⃗⃗𝛼

′ }) (2.21) 

 Although the Schrödinger equation for the electronic part (Equation 2.21) is simpler, its 

analytical solution is not yet possible (quantum many-body problem), except for extremely 

simple systems such as the hydrogen atom and hydrogen-like atoms [80]. The numerical 
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solution is hardly viable due to the large number of variables, with three spatial coordinates per 

electron, in addition to the spin [87]. Thus, over the years, new quantum methods have been 

proposed to reduce the cost of this type of calculation and obtain information from 𝑁-electron 

atom systems [89]. 

 

2.3 The Hartree-Fock method 

In 1928, in order to simplify the solution to the Schrodinger equation for N-electron 

atoms, Hartree proposed a solution method using BO approximation and assuming that each 

electron interacts only with the average potential of the other electrons [90]. As this 

approximation assumed independent electrons, the Hamiltonian operator is divided into terms 

for the different electrons and the wave function 𝜓(𝑟1, 𝑟2, … , 𝑟𝑖) is represented as the product of 

different electronic wave functions 𝜙𝑖(𝑟𝑖) [90]: 

𝜓(𝑟1, 𝑟2, … , 𝑟𝑖) = 𝜙1(𝑟1)𝜙2(𝑟2) … 𝜙𝑖(𝑟𝑖) (2.22) 

With the variational method, which minimizes the energy value of each electron, the 

Schrödinger equation for obtaining the set of wave functions of an electron 𝜙𝑖 is represented as 

𝐻̂(𝑟𝑖)𝜙𝑖(𝑟𝑖) = 𝜀𝑖𝜙𝑖(𝑟𝑖) (2.23) 

Since the eigenvalue of the Equation 2.23, 𝜀𝑖, is interpreted as an eigenenergy for the 

movement to the i-th electron, the total wave function can be obtained by solving the 

eigenequation for each electron. Thus, in Hartree method, the total self-energy is the sum of the 

self-energy corresponding to different electronic movements, 

𝐻̂𝜓 = (𝜀1 + 𝜀2 + ⋯ + 𝜀𝑖)𝜙1𝜙2𝜙𝑖 = 𝜀𝜓 (2.24) 

However, the Hartree method does not consider that the wave function of electronic 

motion must be antisymmetric [89]. Since electrons are indistinguishable, and to satisfy the 

Pauli exclusion principle, the fermion particles must be represented by antisymmetric functions 

in terms of changing coordinates [91]. This is because the wave functions must be zero for the 

case where the same electron, with the same spin, occupies the same orbital. As a result, 

electrons always have antisymmetric wave functions [92, 93]. The new electron-electron 

interaction resulting from antisymmetrization is called the exchange interaction [89]. Thus, the 

antisymmetric wave function can be written as a determinant, as proposed, independently, by 

Heisenberg and Dirac [92, 93]. 
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In 1929, Slater introduced the normalized determinant that guaranteed the antisymmetry 

of a many-electrons wave function [94]. In the Slater determinant, each row represents an 

electron and each column an spin-orbital. So, for the case of two or more electrons, the 

antisymmetric wavefunction is written by 

𝜓(𝑟1, 𝑟2, … , 𝑟𝑁) =
1

√𝑁!
|

𝜙1(𝑟1) 𝜙1(𝑟2) … 𝜙1(𝑟𝑁)

𝜙2(𝑟1)
⋮

𝜙2(𝑟2)
⋮

…
⋱

𝜙2(𝑟𝑁)
⋮

𝜙𝑁(𝑟1) 𝜙𝑁(𝑟2) … 𝜙𝑁(𝑟𝑁)

| (2.25) 

and its determinant is 

𝜓(𝑟1, 𝑟2, … , 𝑟𝑁) =
1

√𝑁!
𝑑𝑒𝑡|𝜙1(𝑟1)𝜙2(𝑟2) … 𝜙𝑁(𝑟𝑁)| (2.26) 

Then, in 1930, Fock applied the Slater determinant to the Hartree method and proposed 

the Hartree-Fock (HF) method [95]. Thus, the HF method is based on the HF equation 

(Equation 2.27) in which the total antisymmetric wave function is the combination of wave 

functions of each electron individually, and uses an operator that acts on each individual wave 

function, and with that, we obtain individual energies for each electron or orbital. This operator 

is called the closed shell Fock operator and is given by Equation 2.28. 

𝐹̂𝜙𝑖 = 𝜖𝑖𝜙𝑖 (2.27) 

𝐹̂ = ℎ̂ + ∑ (2𝐽𝑗

𝑛=𝑁 2⁄

𝑗

− 𝐾𝑗) 
(2.28) 

From the variational principle, in the Equation 2.28, 𝐽𝑗 and 𝐾𝑗 are called the Coulomb 

operator and the exchange operator, respectively, which are defined as 

𝐽𝑗(𝑟1)𝜙𝑖(𝑟1) = ∫ 𝑑3𝑟2 𝜙𝑗
∗(𝑟2)𝜙𝑗(𝑟2)

1

𝑟12
𝜙𝑖(𝑟1) (2.29) 

 

𝐾𝑗(𝑟1)𝜙𝑖(𝑟1) = ∫ 𝑑3𝑟2 𝜙𝑗
∗(𝑟2)𝜙𝑖(𝑟2)

1

𝑟12
𝜙𝑗(𝑟1) (2.30) 

When the Coulomb operator acts on the wave function it generates the Coulomb integral 

[89]. The Coulomb integral is the potential energy of electrostatic repulsion between two 

electrons in the same orbital [89]. Coulomb interactions are described as classical mechanical 
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interactions between electrically charged particles [89]. When the exchange operator acts on 

the wave function, the exchange integral is generated, where the electron is in an orbital on one 

side of the operator and a different orbital on the other side [89]. Unlike Coulomb interaction, 

exchange interactions are purely quantum interactions, have no classical analogue and are 

related to the antisymmetry of the wave function [89]. Due to these interactions, the total 

electronic energies are reduced, stabilizing the electronic states. A significant proportion of the 

exchange interactions are absorbed by the self-interactions of the electrons themselves [89]. 

Consequently, these self-exchange interactions remove the Coulomb potential of an electron 

[89]. The exchange interactions increase orbital overlap to produce attractions between orbitals 

[89]. As a result, these attractions lead to the delocalization of electron distribution, which 

causes the far-reaching nature of exchange interactions [89]. 

Then, using the HF equation in closed shell systems, the orbital energy 𝜖𝑖 is represented 

as 

𝜖𝑖 = ∫ 𝑑3𝑟1 𝜙𝑖
∗(𝑟1)𝐹̂𝜙𝑖(𝑟1) = ℎ𝑖𝑖 + ∑ (2𝐽𝑖𝑗

𝑛=𝑁 2⁄

𝑗

− 𝐾𝑖𝑗) (2.31) 

where 𝐽𝑖𝑗(𝑟1) = ∫ 𝑑3𝑟1𝑑3𝑟2 𝜙𝑖
∗(𝑟1)𝜙𝑗

∗(𝑟2)
1

𝑟12
𝜙𝑖(𝑟1)𝜙𝑗(𝑟2) and is called as Coulomb integral; 

it represents the electrostatic (i.e. Coulombic) repulsion between an electron in 𝜙𝑖 and one in 

𝜙𝑗 (ψii for repulsion between electrons in the same spatial orbital). 𝐾𝑖𝑗  is called as exchange 

integral, that arises from Slater determinant expansion terms that differ only in exchange of 

electrons, and is defined by 𝐾𝑖𝑗(𝑟1) = ∫ 𝑑3𝑟1𝑑3𝑟2 𝜙𝑖
∗(𝑟1)𝜙𝑗

∗(𝑟2)
1

𝑟12
𝜙𝑗(𝑟1)𝜙𝑖(𝑟2). For this 

orbital energy, the total electronic energy is written as 

𝐸 = 2 ∑ ℎ𝑖𝑖

𝑛

𝑖

+ ∑(2𝐽𝑖𝑗

𝑛

𝑖,𝑗

− 𝐾𝑖𝑗) = ∑(𝜖𝑖

𝑛

𝑖

+ ℎ𝑖) (2.32) 

 

2.3.1 Basis sets 

The HF equations can be solved numerically for atoms, but this method has been shown 

to be computationally inadequate for polyatomic molecules. Then, in 1951, Roothaan proposed 

a method, known as the Roothaan method, to solve the computational difficulty of 

implementing the HF method for molecular calculations [96]. In this method, Roothaan solved 

this problem by suggesting linear combinations of atomic orbitals through the HF equations, 



 
 

42 
 

with the functions used to represent molecular orbitals being written in terms of functions that 

represent atomic orbitals, thus forming the Hartree-Fock-Roothaan method [96]. The linear 

combination of atomic orbitals-molecular orbitals (LCAO-MO) approximation was proposed 

by Lennard-Jones, in 1929 [97]. Subsequently, Roothan's method was initially implemented for 

computational calculations in HF methods. It is noteworthy that Hall, also in 1951, 

independently suggested this method, which is also called the Roothaan-Hall method [98]. 

In LCAO-MO approximation the number of molecular orbitals (molecular 

eigenfunctions) is equal to the number of atomic orbitals (molecular eigenfunctions) included 

in the linear expansion. In a sense, 𝑛𝐴𝑂 atomic orbitals combine to form 𝑛𝑀𝑂 molecular orbitals, 

which can be numbered 𝑝 = 𝑖 to 𝑛𝐴𝑂 and which may not all be the same. The expression (linear 

expansion) for the {𝜙𝑖} molecular orbital can be expanded as: 

𝜙𝑖(𝑟) = 𝐶1𝑖𝜒1 + 𝐶2𝑖𝜒2 + 𝐶3𝑖𝜒3 + ⋯ + 𝐶𝑝𝑖𝜒𝑝 (2.33) 

or 

𝜙𝑖(𝑟) = ∑ 𝜒𝑝(𝑟)𝐶𝑝𝑖

𝑛𝐴𝑂

𝑝=𝑖

 (2.34) 

being 𝑛𝐴𝑂 is the number of atomic orbitals. The expansion coefficient 𝐶𝑝𝑖 is called the molecular 

orbital coefficient and weight the contributions of the atomic orbitals to the molecular orbitals 

to be adjusted to get the best 𝜙𝑖(𝑟). Although {𝜒𝑝} is essentially the set of atomic orbitals, it is 

more efficient and general to use base functions modeling atomic orbitals. Thus, starting from 

the Hartree-Fock-Roothaan method, an incessant search for finite sets of bases that accurately 

describe the physical and chemical properties of atomic and molecular systems became intense. 

The basic functions chosen are usually real and Slater or Gaussian type. A choice of 

base functions can be the Slater-type orbitals (STOs) which adequately describe the electronic 

behavior in regions near and far from the nucleus, and have been extensively used in atomic 

calculations. However, for molecular calculations, STOs are not desired, since multicentric 

integrals involving this type of function generate computational difficulties. In fact, the "four-

center, two-electron integral problem" was once considered one of the greatest problems in 

quantum chemistry [85]. 

On the other hand, multicentric integrals involving Gaussian-type functions are easier 

to evaluate. Gaussian type basis functions were suggested by Boys, in 1950, and are widely 

used in quantum chemistry calculations, as they have a specific product rule for them 

("Gaussian Product Theorem"), where the product of Gaussian-type functions is given by a 
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Gaussian-type function centered at a different point, and this dramatically speeds up two-

electron integral calculations [99]. Based on this theorem, four-center integrals can be reduced 

to finite sums of two-center integrals and, in a next step, to finite sums of one-center integrals, 

and this dramatically speeds up two-electron integral calculations compared to the Slater 

orbitals, outweighing the extra cost of having more basic functions usually needed in a Gaussian 

calculus. 

However, in the hydrogen atom wave function, the real atomic orbitals are close to the 

Slater-type function, 𝑒𝑥𝑝(−𝜁𝑟), thus, as proposed by Boys, the use of the contracted Gaussian-

type base function, which is linear combinations of Gaussian-type functions (Equation 2.35), 

are needed to simulate STOs, as a single Gaussian-type function gives a poor representation of 

a Slater-type function. 

𝜒𝑝(𝑟 − 𝑅𝐴) = ∑ 𝑐𝜇𝑝𝑒𝑥𝑝(−𝛼𝜇𝑝|𝑟 − 𝑅𝐴|2)

𝜇

 (2.35) 

In this equation, the original Gaussian-type functions are called primitive functions to 

distinguish them from contracted ones. Primitive functions are specified only by the orbital 

exponent, 𝛼𝜇𝑝, contracted coefficient, 𝑐𝜇𝑝 and coordinate vector of the center of the function, 

𝑅𝐴. Primitive functions generally have a standardized form and are represented analogously to 

spherical harmonic functions to those corresponding to s, p, d, and f atomic orbitals as [89] 

s function: 𝑒𝑥𝑝(−𝛼𝑟2) 

p function: (𝑥, 𝑦, 𝑧)𝑒𝑥𝑝(−𝛼𝑟2) 

d function: (𝑥2, 𝑦2, 𝑧2, 𝑥𝑦, 𝑦𝑧, 𝑧𝑥)𝑒𝑥𝑝(−𝛼𝑟2) 

f function: (𝑥3, 𝑦3, 𝑧3, 𝑥2𝑦, 𝑥2𝑧, 𝑥𝑦2, 𝑦2𝑧, 𝑦𝑧2, 𝑥𝑧2, 𝑥𝑦𝑧)𝑒𝑥𝑝(−𝛼𝑟2) 

 

For contracted Gaussian base functions, several types of functions have been suggested 

[100, 101]. The minimal basic functions, e.g., STO-LG contain only primitive functions needed 

for each atom. The letter L represents the number of primitive Gaussian functions used to 

represent each Slater-type orbital in the atom. 

Since the valence orbitals are responsible for chemical bonds, while the central orbitals 

hardly participate in bonds, the study of atomic orbitals can be divided into core and valence 

region. Thus, split valence basis functions use a contracted Gaussian-type function for central 
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orbitals and multiple contracted functions for valence orbitals. The notation for split valence 

basis sets, that arise from Pople-type basis functions, is typically X-YZWG [102]. In a minimal 

or single zeta basis set (SZ), there is one set of basis functions for each subshell occupied in the 

ground state of the atom. The double, triple, quadruple, quintuple, and hextuple zeta base sets 

are defined similarly and are in abbreviated forms denoted by DZ, TZ, QZ, 5Z, and 6Z. For 

example, in base 6-31G, "6-31" indicates the extent of contraction and division, where "6" 

means the use of contracted base functions from 6 primitive functions for central orbitals and 

"31" means the use of doubly divided valence basis functions combining contracted basis 

functions from three primitive functions with one uncontracted basis function for valence 

orbitals. 

To incorporate the anisotropic nature of molecular orbitals originated from chemical 

bonds, the polarization functions are added to the basic sets, in addition to the divided valence 

basis. In Pople-type basis functions, the inclusion of polarization functions for heavy atoms is 

represented by an asterisk “*”, such as “6-31G*”, or letter d in parentheses (d). While two 

asterisks "**" or letter p in parentheses (p), indicate that the polarization functions p are also 

added to light atoms (hydrogen and helium). 

Another common addition to basic sets is the addition of diffuse functions to account 

for loosely bound electrons. Adding diffuse functions is shown by a plus sign “+” in Pople-type 

basis functions. “6-311+G(d)” augments the sp diffuse functions by mixing s and p orbitals for 

all atoms except hydrogen atoms, and “6-311++G(2df, 2pd)” adds two diffuse functions d and 

one f to all atoms, except hydrogen, and two orbital functions p and one d for hydrogen.  

In general, the equations of the HF method are solved using the SCF [89]. Basically, the 

SCF method follows these steps: 1) starts setting the molecular geometry (coordinates of atomic 

nuclei); 2) choose basis functions; 3) calculate one and two-electron integrals; 4) initial guess 

coefficients {𝐶𝑖}, 5) compute the Fock matrix 𝑭; 6) calculate Fock matrix; 7) solve Roothan 

equations for 𝐶𝑖 ; 8) if SCF converges, calculate molecular properties or, if no, return to step 5 

and continue with the calculation. This method is known as the SCF-HF method. Despite the 

simplicity of the procedure, it soon became clear that solving this equation is not trivial for 

usual molecular electronic systems. 

 

2.4 Density Functional Theory 
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2.4.1 Thomas-Fermi-Dirac method 

 

The solution of the HF equation, using the formalism of wave function manipulation, 

can be used for the electronic description of a system. Since the wavefunction for a single 

electron depends on three spatial variables plus one of spin, the solution for systems with a large 

number of electrons requires a high computational cost, due to the scaling of computational 

time for this type of solution.  

A second totally different approach for calculating the electronic structures of atoms 

was initially developed by Thomas (1926) and Fermi (1928) treating electron density as a 

fundamental variable [103, 104]. This approach sought to show that the kinetic energy and 

potential energy of the electrons could be directly related to the electron density, 𝑛(𝑟), instead 

of the electron wave function, and thus the number of variables in the system depends only on 

three spatial coordinates, i.e., it is independent of the number of electrons in the system. 

The starting point used by Thomas was that an atom can be approximated to a uniform 

electron gas model, where in electronic movements in solid crystals, electrons are uniformly 

distributed in the proportion of two per unit cell of 𝐿 side and volume 𝐿3 in addition to 

containing 𝑁 non-interacting electrons evenly distributed for a grand total of  𝑁𝑒 electrons 

[103]. Thus, the total kinetic energy of electrons is a functional of electron density 𝑛(𝑟) given 

by 

𝑇𝑇𝐹[𝑛(𝑟)] = 𝐶𝐹 ∫ 𝑑3𝑟𝑛5 3⁄ (𝑟) (2.36) 

where 𝐶𝐹 =
3

10
(3𝜋2)2 3⁄ . 

Deriving the same kinetic energy functional obtained by Thomas, Fermi completes the 

Thomas method, now known as the Thomas-Fermi (TF) method, using a Fermi statistic at the 

absolute zero point [104]. Thus, the total energy functional in the TF method for one atom is 

𝐸𝑇𝐹[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] + 𝑉𝑛𝑒[𝑛(𝑟)] + 𝑉𝑒𝑒[𝑛(𝑟)] (2.37) 

The TF method proved to be promising, but it did not formulate the terms of exchange 

(obtained in the HF model) and correlation, thus leading to the impossibility of calculations in 

real electronic states. Then, in 1930, Dirac proposed the first exchange functional of electron 

density 𝑛(𝑟), taking the distribution of electrons to be that of a uniform gas in each region 

where the atom is divided as in the Thomas–Fermi model [105]. Thus, Dirac expresses the 
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exchange contribution as a local density approximation (LDA) where the term depends on the 

electron density at one point  

𝐸𝑋
𝐿𝐷𝐴 = −

3

2
(

3

𝜋
)

1 3⁄

∫ 𝑑3𝑟𝑛4 3⁄ (𝑟) (2.38) 

 

The Thomas-Fermi-Dirac (TFD) method cannot establish the uniqueness of the 

solutions and the existence of density functionals, and cannot reproduce chemical bonds 

quantitatively or qualitatively. Thus, this method was despised until the mid-1960s, but it is 

considered a springboard for the modern DFT [89]. 

 

2.4.2 Hohenberg-Kohn formalism 

In 1964, the concept of the TF method was revived and the total energy was fully 

proposed (relating classical and quantum interactions) and expressed in terms of electron 

density by two Hohenberg-Kohn (HK) theorems [106]. From these theorems the ground state 

properties of a system can be expressed in terms of electron density, thus creating the bases of 

the DFT, and are presented below. 

Theorem 1: For each electron density there is only a single external potential, 𝑉𝑛𝑒, associated, 

i.e., the external potential is a unique functional of the electron density. 

Theorem 2: A universal functional for energy 𝐸[𝑛(𝑟)] can be defined in terms of electron 

density. The ground state density is the global minimum of this functional. 

From the first theorem, in an electronic state, the number of electrons 𝑁 per unit volume in a 

given state is the electron density 

𝑁 = ∫ 𝑛(𝑟)𝑑3𝑟 (2.39) 

The first theorem states that the ground state properties of the many-electron system 

depend only on electron density. Where, knowing the external potential, the terms of the 

Hamiltonian operator will be fixed as well as the electron density, consequently all observable 

properties of a quantum system can be determined, just like in the wave function. Among the 

observable properties is the total electronic energy, which is density dependent, which can be 

expressed by 

𝐸[𝑛(𝑟)] = 𝑇𝑒[𝑛(𝑟)] + 𝑉𝑛𝑒[𝑛(𝑟)] + 𝑉𝑒𝑒[𝑛(𝑟)] (2.40) 
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where 𝑉𝑒𝑒[𝑛(𝑟)] lists all interactions between electrons. 

The kinetic energy and interaction energy of a non-relativistic Coulomb system are 

described by universal operators, so Hohenberg and Kohn grouped all the functionals from 

Equation 2.40 that depended directly on the external potential into a single term called the HK 

functional, being a universal functional because electron density determines 𝐸[𝑛(𝑟)] and 

𝑉𝑛𝑒[𝑛(𝑟)]. So, the total electronic energy can be rewritten as: 

𝐸[𝑛(𝑟)] = 𝑉𝑛𝑒[𝑛(𝑟)] + 𝐹𝐻𝐾[𝑛(𝑟)] (2.41) 

The second theorem states that the correct ground-state density for a system is one that 

minimizes the total energy through the functional 𝐸[𝑛(𝑟)]. Thus, by the variational principle, 

when the Hamiltonian is applied to an electronic density, other than that of the ground state, the 

system energy will always be higher than the ground state energy 𝐸[𝑛(𝑟)] > 𝐸0[𝑛0(𝑟)]. To 

find the ground state electron density, the Lagrange multiplier method is used, setting 

𝛿𝐸[𝑛(𝑟)] = 0 with the restriction that the total number of electrons is constant as 𝑛(𝑟) is varied. 

The variation theorem implies that the variation in electron density subject to restriction 

corresponds to an extreme, in this case, the minimum point: 

𝛿 {𝐸[𝑛(𝑟)] − 𝜇 [∫ 𝑛(𝑟)𝑑3𝑟 − 𝑁]} = 0 (2.42) 

 Equation 2.43 is the fundamental equation of the DFT, being the third part of the 

equality written as a function of the external potential. 

𝜇 =
𝛿𝐸[𝑛(𝑟)]

𝛿𝑛(𝑟)
= 𝑉̂𝑛𝑒(𝑟) +

𝛿𝐹𝐻𝐾[𝑛(𝑟)]

𝛿𝑛(𝑟)
 (2.43) 

 

2.4.3 Kohn-Sham Formalism 

Although the HK theorems are stated as the fundamental theorems of quantum 

chemistry, based on electron density, they say nothing about how to obtain the ground-state 

density, of which all observable properties of the system are functional. Then, in 1965, Kohn 

and Sham were the first to present a method for calculating the electronic structure of systems 

involving many particles using 𝐸[𝑛(𝑟)] [107]. In this new method, it was considered that for 

each real system of interacting particles there would be an auxiliary system composed of non-

interacting particles under the action of an effective potential capable of maintaining the spatial 

arrangement of these particles so that its electronic density is identical to that of the real system. 
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So, the KS method is a variational approach using the electron–electron interaction potential of 

the density functional to give the ground state energy, molecular orbitals and orbital energies 

by means of the Lagrange multiplier method. 

By the TF model it is possible to calculate the kinetic energy as a function of the 

electronic density, considering a gas of non-interacting electrons, and knowing the wave 

function of the system, the determination of the kinetic energy of the system becomes a much 

simpler process. Given these characteristics, Kohn and Sham proposed a model of union of 

electronic density with the wave function, where the total energy of the system could be 

rewritten as: 

𝐸[𝑛(𝑟)] = 𝑇0[𝑛(𝑟)] + 𝑉𝑛𝑒[𝑛(𝑟)] + 𝑉𝐻[𝑛(𝑟)] + 𝐸𝑋𝐶[𝑛(𝑟)] (2.44) 

where 𝑇0[𝑛(𝑟)] represents the kinetic energy of a non-interacting electron gas, having a density 

equal to that of the real system, and 𝐸𝑋𝐶[𝑛(𝑟)] indicates the exchange and correlation functional 

of an interacting system with density 𝑛(𝑟). Both the TF and the KS methods use the premise of 

a non-interacting electron gas, but the determination of kinetic energy differs, because the KS 

method considers the antisymmetric characteristic of the function. Thus, the wavefunction of 

the system is described through the representation of a Slater determinant. By the variational 

principle, both the energy and the electronic density of the ground state of the non-interacting 

auxiliary system can be obtained through eigenvectors 𝜙𝑖(𝑟) and eigenvalues 𝜖𝑖 of the 

monoelectronic HF equations. Thus, Kohn and Sham proposed to introduce monoelectronic 

orbitals, called KS orbitals (𝜙𝑖
𝐾𝑆(𝑟)), into DFT to effectively describe the kinetic energy term 

of a non-interacting system. Through these orbitals, the kinetic energy of the system can be 

calculated by  

𝑇0[𝜌(𝑟)] = ∑ ∫ 𝜙𝑖
∗𝐾𝑆(𝑟) (

−∇2

2
)

𝑁

𝑖

𝜙𝑖
𝐾𝑆(𝑟)𝑑3𝑟 (2.45) 

 

Since all 𝜙𝑖
𝐾𝑆(𝑟) are electron density functionals, Equation 2.45 is an explicit functional 

of the orbitals and an implicit one of the electron density, since the electron density 

unequivocally determines the KS orbitals. Of the other terms in Equation 2.44, the nuclear-

electron interaction potential, 𝑉𝑛𝑒[𝑛(𝑟)], is given by 

𝑉𝑛𝑒[𝑛(𝑟)] = ∫ 𝑉̂𝑛𝑒𝑛(𝑟)𝑑3𝑟 = − ∑ ∫
𝑍𝛼𝑛(𝑟)

|𝑅⃗⃗𝛼 − 𝑟|

𝑀

𝛼=1

𝑑3𝑟 (2.46) 
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and 𝑉𝐻[𝑛(𝑟)] is the Hartree potential calculated by 

𝑉𝐻[𝑛(𝑟)] =
1

2
∫ 𝑉̂𝐻𝑛(𝑟)𝑑3𝑟 = ∬

𝑛(𝑟′)𝑛(𝑟)

|𝑟′ − 𝑟|
𝑑3𝑟𝑑3𝑟′ (2.47) 

  

The Hartree potential is responsible for the classical electrostatic interaction between 

electrons, and should not be confused with the electron-electron interaction presented in the HK 

formalism of Equation 2.40, since 𝑉𝑒𝑒[𝑛(𝑟)] considers the contributions of 𝑉𝐻[𝑛(𝑟)] and non-

classical terms. The term 𝐸𝑋𝐶[𝑛(𝑟)] gets the name of exchange-correlation energy, and 

considers the exchange term, the correlation term, the kinetic energy correction term and the 

electrons self-interaction correction term. 

𝐸𝑋𝐶[𝑛(𝑟)] = (𝑇[𝑛(𝑟)] − 𝑇0[𝑛(𝑟)]) + 𝑉𝐶[𝑛(𝑟)] + 𝑉𝑋[𝑛(𝑟)] (2.48) 

It is possible to minimize the energy functional again, to obtain the ground-state 

electronic density, by means of the Lagrange multipliers, with the link that the electronic density 

integral over all space is equal to the number of electrons in the system. Mathematically, this 

idea is represented by 

𝛿 {𝐸[𝑛(𝑟)] − 𝜇 [∫ 𝑛(𝑟)𝑑3𝑟 − 𝑁]} = 0 (2.49) 

 
where, 𝜇 is the Lagrange multiplier, and have the physical sense of the chemical potential of 

the system. So, the solution of the Equation. 2.49, leads to the equation called the KS equation 

[−
1

2
∇𝑟

2 + 𝑉̂𝑒𝑓𝑓(𝑟)] 𝜙𝑖
𝐾𝑆(𝑟) = 𝜖𝑖

𝐾𝑆𝜙𝑖
𝐾𝑆(𝑟) (2.50) 

with 𝑉̂𝑒𝑓𝑓(𝑟) being the effective KS potential composed by Hartree potential, the electron-

nucleus interaction and the exchange-correlation potential, with the exchange-correlation 

potential given by the first derivative of the exchange-correlation energy functional with respect 

to electron density 

𝑉̂𝑋𝐶(𝑟) =
𝛿𝐸𝑋𝐶[𝑛(𝑟)]

𝛿𝑛(𝑟)
 (2.51) 

 

 The KS equation is also transformed into a matrix equation based on the Roothaan 

method. Similar to the HF equation, a Kohn-Sham-Roothaan (KSR) equation is written as 
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𝑭𝑪𝒊 = 𝜺𝑺𝑪𝒊 (2.52) 

The 𝑪𝒊 matrix is the coefficients matrix, whose elements are the weighting factors 𝐶𝑝𝑖 

that determine to what extent each basis function ϕ (roughly, each atomic orbital on an atom) 

contributes to each MO 𝜙. 𝑺 matrix is the overlap matrix, whose elements are overlap integrals 

𝑆𝑖𝑗 which are a measure of how well pairs of basis functions (roughly, atomic orbitals) overlap. 

The diagonal 𝜺 matrix is an energy-levels matrix, whose diagonal elements are MO energy 

levels 𝜙, corresponding to the MOs 𝜀𝑖. 𝑭 is an energy-elements matrix, the Fock matrix, whose 

elements are 

 

𝐹𝑝𝑞 = ℎ𝑝𝑞 + ∑ 𝑃𝑟𝑠⟨𝑝𝑟|𝑞𝑠⟩

𝑛𝑏𝑎𝑠𝑖𝑠

𝑟,𝑠=1

+ (𝑉𝑋𝐶)𝑝𝑞 (2.53) 

where 

(𝑉𝑋𝐶)𝑝𝑞 = ∫ 𝑑3𝑟𝜒𝑝
∗(𝑟)𝑉𝑋𝐶𝜒𝑞(𝑟) (2.54) 

The KS method is solved by the SCF method, since the effective KS potential depends 

on the electron density, which in turn depends on the KS orbitals. The SCF method is solved 

for nonlinear equations through the following steps: 1) provide an initial (trial) value for the 

electron density, 𝑛(1)(𝑟), which allows to obtain the initial effective potential, 𝑉𝑒𝑓𝑓
(1)(𝑟); 2) solve 

the KS equation with 𝑛(1)(𝑟) and obtain single electron wave functions 𝜙𝑖
𝐾𝑆(1)(𝑟); 3) calculate 

the electron density based on the wavefunctions of a single electron and 4) From this moment 

on, a new electron density, 𝑛(2)(𝑟), can be calculated using the new KS orbitals 𝜙𝑖
𝐾𝑆(2)(𝑟), and 

consequently, a new effective potential, 𝑉𝑒𝑓𝑓
(2)(𝑟), can be determined. This procedure is applied 

repeatedly until a minimum condition of electronic density difference is found, or another 

convergence condition adopted is satisfied, such as the variation of the total energy. 

Once the ground state electronic density is found, the total electronic energy of the 

system can be calculated using the eigenvalues of the KS equation, through: 

𝐸[𝑛(𝑟)] = ∑ 𝜖𝑖
𝐾𝑆

𝑁

𝑖=1

−
1

2
∬

𝑛(𝑟′)𝑛(𝑟)

|𝑟′ − 𝑟|
𝑑3𝑟𝑑3𝑟′ − ∫ 𝑉̂𝑋𝐶(𝑟)𝑛(𝑟)𝑑3𝑟 + 𝐸𝑋𝐶[𝑛(𝑟)] (2.55) 
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The sum being made over all occupied orbitals and all 𝑁-KS orbitals obtained by the 

monoelectronic Schrodinger equation. 

 

2.4.3 Exchange-correlation functional 

The exchange-correlation functional is very important in the fundamentals of the KS 

method, because it is from these specific forms of functions that all observable properties of a 

quantum system are obtained exactly [89]. Thus, it becomes necessary the existence of an ideal 

functional, which describes all exchange and correlation interactions, however, this functional 

is far from being determined [89]. So, this is the only part of the KS method that is based on 

approximations, in which the known functionals are determined [89]. The physical properties 

obtained by known functionals depend directly on the class of approximations, which try to 

minimize errors in the description of exchange-correlation energy, as well as correct the kinetic 

energy of a non-interacting system and self-interaction [89]. Thus, the more efficient these 

approximations are, the better results will be obtained through DFT calculations.   

2.4.3.1 Density Functional Approximations  

The LDA is the simplest functional for exchange-correlation energy, which is based on 

an uniform electron gas (UEG) model as the basis of its foundation. UEG is a system of 

electrons with constant density everywhere. Thus, the of exchange-correlation energy can be 

written as 

𝐸𝑋𝐶[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝜀𝑋𝐶
𝑢𝑛𝑖𝑓[𝑛(𝑟)]𝑑3𝑟 (2.56) 

where 𝜀𝑋𝐶
𝑢𝑛𝑖𝑓[𝑛(𝑟)] is the exchange-correlation energy per electron for an UEG. So, Kohn and 

Sham proposed, in the original paper on the density functional theory, the first approximations 

for 𝜀𝑋𝐶
𝑢𝑛𝑖𝑓[𝑛(𝑟)] and that the energy density (non-homogeneous) is the energy (exchange plus 

correlation) by electron of a homogeneous electron gas 

𝐸𝑋𝐶[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝜀𝑋
𝑢𝑛𝑖𝑓[𝑛(𝑟)]𝑑3𝑟 + ∫ 𝑛(𝑟)𝜀𝐶

𝑢𝑛𝑖𝑓[𝑛(𝑟)]𝑑3𝑟 (2.57) 

The 𝜀𝑋
𝑢𝑛𝑖𝑓[𝑛(𝑟)] can be explicitly written with the exchange term being obtained by 

substituting the wave function that describes a non-interacting electron gas system in 2.15, 

resulting in 
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𝜀𝑋
𝑢𝑛𝑖𝑓[𝑛(𝑟)] =

−3𝑒2𝑘𝑓

4𝜋
 (2.58) 

The problem with this functional is in determining the correct value for the correlation 

part 𝜀𝐶
𝑢𝑛𝑖𝑓[𝑛(𝑟)], as there is no exact LDA correlation functional. As alternatives, several 

approximate LDA correlation functionals have been suggested, for example, in quantum 

chemistry, the Vosko–Wilk–Nusair (VWN) functional is widely used and is calculated based 

on Monte Carlo quantum methods of a gas of uniform density and in Padè's interpolation [108]. 

LDA tends to underestimate the exchange energy and overestimate the correlation 

energy by assuming that the density is the same everywhere [109]. Errors due to the exchange 

and correlation parts tend to compensate each other to some extent, caused by the fact that for 

any density the LDA satisfies a number of so-called sum rules [110, 111, 112]. To solve the 

problem of inhomogeneity in the real electron density of the electron, it is necessary to perform 

density expansions in terms of the gradient and higher order derivatives [112]. These 

expansions are called generalized gradient approximations (GGA) which consider not only the 

density at a position, but also the density gradient around that point [112]. Thus, the GGA 

functional has a semi-local character and the exchange-correlation energy is written as 

𝐸𝑋𝐶[𝑛(𝑟)] = ∫ 𝑓[𝑛(𝑟), ∇⃗⃗⃗𝑛(𝑟)]𝑑3𝑟 (2.59) 

where the function 𝑓 is an “exchange enhancement factor” that modifies the LDA expression 

according to the density variation in the neighborhoods of a considered point. Thus, several 

descriptions for the GGA 𝑓 function have been proposed, among them we can highlight the 

introduction of the B88 functional proposed by Beck, and then the PW91 functional developed 

by Perdew and Wang, the first GGA functional used in large scale [113, 114, 115]. 

𝐸𝑋
𝐵88[𝑛] = 𝐸𝑋

𝐿𝐷𝐴[𝑛] − 𝛽 ∑ ∫ 𝑛𝜎
4 3⁄ 𝑥𝜎

2

(1 + 6𝛽𝑥𝜎𝑠𝑖𝑛ℎ−1𝑥𝜎)
𝜎

𝑑3𝑟 (2.60) 

where 𝛽 is the only parameter with value equal to 0.0042.  

𝐸𝐶
𝑃𝑊91[𝑛, 𝑠, 𝑡] = 𝐸𝐶

𝑃𝑊−𝐿𝐷𝐴[𝑛] + ∫ 𝑑3𝑟 𝜌𝐻[𝑛, 𝑠, 𝑡] (2.61) 
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𝐻[𝑛, 𝑠, 𝑡] =
𝛽2

2𝛼
ln [1 +

2𝛼

𝛽

𝑡2 + 𝐴𝑡4

1 + 𝐴𝑡2 + 𝐴2𝑡4
]

+ 𝐶𝐶0
[𝐶1 +

𝐶2 + 𝐶3𝑟𝑠 + 𝐶1𝑟𝑠
2

1 + 𝐶5𝑟𝑠 + 𝐶6𝑟𝑠
2 + 𝐶7𝑟𝑠

3 − 𝐶𝐶1
] × 𝑡2𝑒𝑥𝑝(−100𝑠2) 

(2.62) 

where coefficient A is 

𝐴 =
2𝛼

𝛽
[𝑒𝑥𝑝 (

−2𝛼𝐸̅𝑐
𝑃𝑊−𝐿𝐷𝐴[𝑛]

𝛽2𝑛
) − 1]

−1

 (2.63) 

and the dimensionless parameters s and t are 

𝑠 =
|∇𝑛|

2𝑘𝑓𝜌
 (2.64) 

 

𝑡 =
|∇𝑛|

2𝑘𝑠𝑛
 (2.65) 

where 𝑘𝑓 = (3𝜋2𝑛)1 3⁄  and 𝑘𝑠 = (4𝑘𝑓/𝜋)
1 2⁄

. 𝐸̅𝑐
𝑃𝑊−𝐿𝐷𝐴 it is the integral core of the PW-LDA 

correlation functional. In the GGA term of this functional, there are 11 fundamental constants 

in total, which are determined to satisfy various exact exchange and correlation functional 

conditions, incorporate the inhomogeneity of the system and at the same time maintain the good 

characteristics of the LDA functional. However, several problems such as over-

parameterization and the complicated form of 𝐸𝑋𝐶, caused new GGA functionals to be 

proposed. 

The GGA functional developed by Perdew, Burke and Ernzerhof (PBE) was the most 

efficient presented, as it is a simplification of the PW91 functional, where only the most 

favorable energetically satisfied conditions of the PW91 are maintained in the PBE, drastically 

reducing the parameters, from 11 to 2 [116]. The functional is written as 

𝐸𝐶
𝑃𝐵𝐸[𝑛, 𝜁, 𝑡] = 𝐸𝐶

𝑃𝑊−𝐿𝐷𝐴[𝑛] + ∫ 𝑑3𝑟 𝑛𝐻[𝑛, 𝜁, 𝑡] (2.66) 

 

𝐻[𝑛, 𝜁, 𝑡] = 𝛾𝜙3 ln [1 +
𝛽

𝛾
𝑡′2 (

1 + 𝐴𝑡′2

1 + 𝐴𝑡′2 + 𝐴2𝑡′4
)] (2.67) 
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𝐴 =
𝛽

𝛾
[𝑒𝑥𝑝 (−

𝐸̅𝑐
𝑃𝑊−𝐿𝐷𝐴[𝑛]

𝛾𝜙2𝑛
) − 1]

−1

 (2.68) 

 

𝜙 =
1

2
[(1 + 𝜁)2 3⁄ + (1 − 𝜁)2 3⁄ ] (2.69) 

 

where 𝛾 = (1 − ln 2)/𝜋2 = 0.031091, 𝛽 = 0.066725 e 𝜁 = 𝑛𝛼 − 𝑛𝛽 𝑛𝛼 + 𝑛𝛽⁄ . 

  

2.4.3.2 Hybrid functionals 

The hybrid functionals, so called because they contain an additional part of exact 

exchange energy, were created to improve the description of the physical properties of a system 

such as bond length, ionization energy, vibrational frequencies, among others [89]. Hybrid 

functionals connect the HF exchange integral with the GGA exchange functionals at a constant 

ratio, based on the concepts of adiabatic connection, which causes the KS energies of the 

independent electron model to bond with those of the fully interactive electron 

𝐸𝑋 = ∫ 𝑑𝜆𝐸𝑋
𝜆 ≈ 𝐸𝑋

𝐺𝐺𝐴 + 𝜆(𝐸𝑋
𝐻𝐹 − 𝐸𝑋

𝐺𝐺𝐴)
1

0

 (2.70) 

Hybrid functional term should be understood from the ansatz that the exact energy 

exchange is situated between the GGA energy exchange functional and the HF exchange 

integral, and not as the combination of the HF exchange integral with exchange functionals 

[89]. 

The hybrid functional B3LYP, the first proposed hybrid functional, is the most 

frequently used functional among in all functionals in quantum chemistry calculations and has 

reasonable accuracy at affordable computational costs [117, 118]. This functional use three 

parameters such as the mixing ratios to form the adiabatic connections between a fixed global 

fraction 20% HF exchange integral, and the LDA exchange functional and between the LYP-

GGA correlation functional and the LDA correlation functional, and to match the GGA 

attenuated term of the B88 exchange functional 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = 𝐸𝑋𝐶

𝐿𝐷𝐴 + 𝑎1(𝐸𝑋
𝐻𝐹 − 𝐸𝑋

𝐿𝐷𝐴) + 𝑎2∆𝐸𝑋
𝐵88 + 𝑎3(𝐸𝐶

𝐿𝑌𝑃 − 𝐸𝐶
𝑉𝑊𝑁−𝐿𝐷𝐴) (2.71) 

The LYP correlation functional is derived from the Colle-Salvetti energy correlation 

functional and is a key component of the B3LYP functional, providing very accurate correlation 
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energies in molecular property calculations [119]. In this functional, five semi-empirical 

parameters, 𝑎 = 0.04918, 𝑏 = 0.7628, 𝑐 = 0.58, 𝑑 = 0.8 and 𝑞 = 2.29 are contained, 

without fundamental constant, and is written as 

𝐸𝑐
𝐿𝑌𝑃[𝑛, ∇𝑛, ∇2𝑛]

= − ∫ 𝑑3𝑟
𝑎

1 + 𝑑𝑛−1 3⁄ {𝑛

+ 𝑏𝑛−2 3⁄ [𝐶𝐹𝑛5 3⁄ − 2𝑡𝑊 +
1

9
(𝑡𝑊 +

1

2
∇2𝑛)] 𝑒𝑥𝑝(−𝑐𝑛−1 3⁄ )} 

(2.72) 

where 

𝛽 = 𝑞𝑝1 3⁄  (2.73) 

 

𝑡𝑊 =
1

8
(

|∇𝜌|2

𝜌
− ∇2𝑛) (2.74) 

 

𝐶𝑓 =
3

10
(3𝜋2)2 3⁄  (2.75) 

As shown, the hybrid functionals contain the HF exchange integral, which is not 

formulated from the electron density, so it is not strictly correct to use the hybrid functionals 

within the framework of the KS method, which depends on formulated functionals from the 

electronic density. However, Levy et al. solved this problem by extending the restricted search 

formulation to the one using functionals containing the HF exchange integral and suggested the 

generalized KS method as an extension of the KS method [120, 121]. 

As exchange energy contributions are generally much higher than the correlation ones, 

the non-Coulomb part of exchange functionals, typically decreases very quickly in relation to 

distance, becoming imprecise at large distances, and inappropriate for calculate some properties 

such as binding energies van der Waals, electronic excitation spectra, optical response 

properties and orbital energies [122]. Thus, it is necessary to consider several types of 

corrections in the exchange functionals to improve the description of the physical properties of 

a quantum system. Then, range-separated hybrid functionals developed a correction in which 

the exchange interactions are divided into short-range (SR) and long-range (LR) parts, and then 

a general exchange functional and the HF exchange integral are adopted in the short-range 
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calculations and long range, respectively. The separation of the SR and LR term is given 

through the general function 

1

𝑟12
=

1 − erf (𝜔𝑟12)

𝑟12
+

erf (𝜔𝑟12)

𝑟12
 (2.76) 

where erf (𝜔𝑟12) is the error function, and the first term refers to the LR and the second to the 

SR, and the value of 𝜔 delimits the interface between the SR and LR terms. 

For instance, the CAM-B3LYP functional is a LR corrected functional hybrid that uses 

the Coulomb-attenuating method (CAM) [123], using 

1

𝑟12
=

1 − [𝛼 + 𝛽 ∙ erf(𝜔𝑟12)]

𝑟12
+

𝛼 + 𝛽 ∙ erf(𝜔𝑟12)

𝑟12
 (2.77) 

as a replacement for Equation 2.76 to perform the LR correction for the B3LYP hybrid 

functional. The exchange functional is a mix of exact exchange, i.e., inclusion of the LR HF 

exchange integral at a constant ratio, and SR DFT exchange, but unlike B3LYP, the exact 

exchange ratio to DFT varies in different regions of the molecule. The degree of mixing of 

exact exchange and DFT is controlled by the 𝛼 and 𝛽 parameters, whose values used are 0.19 

and 0.46 for 𝛼 and 𝛽, respectively. Specifically, the SR part of the exchange interaction is 

incorporated by modifying the usual exchange functional form 

𝐸𝑋
𝑆𝑅 = −

1

2
∑ ∫ 𝑛𝜎

4 3⁄
𝐾𝜎

𝜎

× {1 −
8

3
𝑎𝜎 [√𝜋𝑒𝑟𝑓 (

1

2𝑎𝜎
) + 2𝑎𝜎(𝑏𝜎 − 𝑐𝜎)]} 𝑑3𝑟 (2.78) 

where 𝑎𝜎, 𝑏𝜎 e 𝑐𝜎 are 

𝑎𝜎 =
𝜇𝐾𝜎

1 2⁄

6√𝜋𝑛𝜎
1 3⁄  (2.79) 

𝑏𝜎 = 𝑒𝑥𝑝 (−
1

4𝑎𝜎
2

) − 1 
(2.80) 

𝑐𝜎 = 2𝑎𝜎
2 𝑏𝜎 +

1

2
 

(2.81) 

The LR part of the exchange interaction is expressed with the HF exchange integral 
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𝐸𝑋
𝐿𝑅−𝐻𝐹 = −

1

2
∑ ∑ ∑ ∫ ∫ 𝜓𝑖𝜎

∗ (𝑟1)𝜓𝑗𝜎
∗ (𝑟1)

𝑜𝑐𝑐

𝑗

𝑜𝑐𝑐

𝑖𝜎

×
erf (𝜔𝑟12)

𝑟12
𝜓𝑖𝜎(𝑟2)𝜓𝑗𝜎(𝑟2) 𝑑3𝑟1𝑑3𝑟2 

(2.82) 

where 𝜓𝑖𝜎 is the i-th molecular σ-spin orbital. The correlation functional uses 20% of the VWN 

LDA parameterization along with 80% of the LYP GGA functional, similarly to the B3LYP 

functional. 

In empirical functionals, LR correction has also been applied and often produces more 

accurate results for properties, including atomization energies, than the originals in reference 

set calculations [124, 125]. The first significant advance was made by Becke with the B97 

functional, proposing the expansion of 𝐸𝑋𝐶[𝑛(𝑟)] using a power series expansion involving 

only the local spin density and its first derivative, in addition to a small fraction of the HF 

exchange [126]. The linear coefficients in the expansions are optimized from a systematic 

adjustment procedure to a set of reliable experimental data, called the training set. The first LR 

corrected semi-empirical functional is the ωB97X functional in the form [124], 

𝐸𝑋𝐶
𝜔𝐵97𝑋 = 𝐸𝑋

𝐿𝑅−𝐻𝐹 + 𝑐𝑋𝐸𝑋
𝑆𝑅−𝐻𝐹 + 𝐸𝑋

𝑆𝑅−𝐵97 + 𝐸𝐶
𝐵97 (2.83) 

where 

𝐸𝑋
𝑆𝑅−𝐻𝐹 = −

1

2
∑ ∑ ∑ ∫ ∫ 𝜓𝑖𝜎

∗ (𝑟1)𝜓𝑗𝜎
∗ (𝑟1)

𝑜𝑐𝑐

𝑗

𝑜𝑐𝑐

𝑖𝜎

×
erfc(𝜔𝑟12)

𝑟12
𝜓𝑖𝜎(𝑟2)𝜓𝑗𝜎(𝑟2) 𝑑3𝑟1𝑑3𝑟2 

(2.84) 

 

𝐸𝑋
𝑆𝑅−𝐵97 = ∑ ∫ 𝑒𝑥𝜎

𝑆𝑅−𝐿𝑆𝐷𝐴(𝑛𝜎)𝑔𝑥𝜎(𝑠𝜎
2)𝑑𝑟

𝜎

 (2.85) 

 

𝐸𝑐
𝐵97 = ∑ 𝐸𝑐𝜎𝜎

𝐵97 + 𝐸𝑐𝛼𝛽
𝐵97

𝜎

 (2.86) 

where 𝑔𝑥𝜎(𝑠𝜎
2) is a dimensionless inhomogeneity correction factor depending on the 

dimensionless reduced rotation density gradient 𝑠𝜎 = |∇𝑛𝜎| 𝑛𝜎
4 3⁄⁄ , and the B97 functional is 

divided into components 𝐸𝑐𝜎𝜎
𝐵97 of the same spin and 𝐸𝑐𝛼𝛽

𝐵97 of opposite spin. The equations for 
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each term can be found in the original articles. The ωB97X functional includes a 16% fraction 

of SR exact exchange, with the “X” representing the use of SR HF exchange. This functional 

contains many 17 semi-empirical parameters and produces more accurate results for physical 

properties. The ωB97X-D functional is a van der Waals correction for the ωB97X functional, 

in which a parameterized classical dispersion term is combined, and includes 100% LR exact 

exchange, 22% SR exact exchange, a modified B97 exchange density for SR interaction and a 

B97 correlation density function [125] 

𝐸𝑋𝐶
𝜔𝐵97𝑋𝐷 = 𝐸𝑋

𝐿𝑅−𝐻𝐹 + 𝑐𝑋𝐸𝑋
𝑆𝑅−𝐻𝐹 + 𝐸𝑋

𝑆𝑅−𝐵97 + 𝐸𝐶
𝐵97 + 𝐸𝑑𝑖𝑠𝑝 (2.87) 

 

𝐸𝑑𝑖𝑠𝑝 = − ∑ ∑
𝐶6

𝑖𝑗

𝑅𝑖𝑗
6 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗)

𝑁𝑎𝑡

𝑗=𝑖+1

𝑁𝑎𝑡−1

𝑖=1

 (2.88) 

where 𝑐𝑋 is a fractional number to be determined, 𝑁𝑎𝑡 is the number of atoms in the system, 𝐶6
𝑖𝑗

 

is the dispersion coefficient for the atom pair 𝑖𝑗, 𝑅𝑖𝑗 is an interatomic distance and 𝑓𝑑𝑎𝑚𝑝 is the 

damping function 

𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) =
1

1 + 𝑎(𝑅𝑖𝑗 𝑅𝑟⁄ )
−12 (2.89) 

where, 𝑅𝑟 is the sum of the van der Waals radii of a pair of atoms 𝑖𝑗, and the only nonlinear 

parameter 𝑎, which controls the strength of the dispersion corrections. 

 

2.4.4 Time-Dependent Kohn–Sham Method 

When electrons are under the influence of a generic time-dependent potential, 𝑉𝑒𝑥𝑡(𝑟, 𝑡), 

the electronic Hamiltonian of system, 𝐻̂𝑒(𝑟, 𝑡), also becomes time-dependent and describes a 

variety of physical and chemical situations, including atoms, molecules and solids, in arbitrary 

time-dependent electric or magnetic fields, scattering experiments, etc [127]. Thus, the time-

dependent density functional theory (TD-DFT) extends the basic ideas of the stationary ground 

state of DFT to the treatment of more general time-dependent excitations or phenomena. TD-

DFT can be seen as an alternative formulation of time-dependent quantum mechanics, its basic 

variable is the electron density of system, 𝑛(𝑟, 𝑡) [127]. 
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2.4.4.1 Runge-Gross theorem 

With the HK theorems being the basis of DFT, for the description of periodically time-

dependent electronic states, Runge and Gross proposed the Runge-Gross (RG) theorem, as a 

time-dependent generalization of the HK theorems [128]. The RG theorem establishes a 

correspondence between the time-dependent densities 𝑛(𝑟, 𝑡) and the time-dependent potentials 

𝑉𝑒𝑥𝑡(𝑟, 𝑡) for a given initial state [128].  

A given evolution of electron density can be generated by, at most, a potential as a 

function of time. Thus, if two systems evolve from the same initial state |𝛹0⟩ = |𝛹0(𝑡0)⟩, but 

submitted to two distinct potentials 𝑉𝑒𝑥𝑡(𝑟, 𝑡) and 𝑉𝑒𝑥𝑡
′ (𝑟, 𝑡), their respective densities, 𝑛(𝑟, 𝑡) 

and 𝑛′(𝑟, 𝑡), will be different from each other. Such a statement is valid if we consider that the 

potentials differ from each other by more than a function of time, 

𝑉(𝑟, 𝑡) ≠ 𝑉′(𝑟, 𝑡) +  𝐶(𝑡) (2.90) 

for 𝑡 > 𝑡0. Thus, 𝑉𝑒𝑥𝑡(𝑟, 𝑡) can be expanded in Taylor series in terms of the initial time 𝑡0, and 

defining that the transformation 𝑉𝑒𝑥𝑡(𝑟, 𝑡) → 𝑛(𝑟, 𝑡) corresponds to the resolution of the time-

dependent Schrödinger equation [129], so 

𝑉(𝑟, 𝑡)
1: 1
←→

𝛹0  𝑐𝑡
𝑛(𝑟⃗⃗⃗, 𝑡) (2.91) 

If 𝑉(𝑟, 𝑡) ≠ 𝑉′(𝑟, 𝑡) +  𝐶(𝑡), then the current densities 𝑗 and 𝑗′, generated by 𝑉(𝑟, 𝑡) and 

𝑉′(𝑟, 𝑡), are also different. The current density 𝑗 can be written as the expected value of the 

current density operator 

𝑗(𝑟, 𝑡) = ⟨𝛹(𝑡)|𝑗̂(𝑟)|𝛹(𝑡)⟩ (2.92) 

where the operator 𝑗̂(𝑟) is given by 

𝑗̂(𝑟) = −
1

2𝑖
{[∇𝛹̂∗(𝑟)]𝛹̂(𝑟) − 𝛹̂∗(𝑟)[∇𝛹̂(𝑟⃗)]} (2.93) 

Using the quantum-mechanics equation of motion, which is valid for any operator, 𝑂̂(𝑡), 

𝑖
𝑑

𝑑𝑡
⟨𝛹(𝑡)|𝑂̂(𝑡)|𝛹(𝑡)⟩ = ⟨𝛹(𝑡)|𝑖

𝜕
𝜕𝑡

𝑂̂(𝑡) + [𝑂̂(𝑡), 𝐻̂(𝑡)]|𝛹(𝑡)⟩ (2.94) 

to write the equations of motion for the current densities 𝑗 and 𝑗′, 
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𝑖
𝑑

𝑑𝑡
𝑗̂(𝑟, 𝑡) = ⟨𝛹(𝑡)|[𝑗̂(𝑟), 𝐻̂(𝑡)]|𝛹(𝑡)⟩ (2.95) 

 

𝑖
𝑑

𝑑𝑡
𝑗̂′(𝑟, 𝑡) = ⟨𝛹′(𝑡)|[𝑗̂(𝑟), 𝐻̂′(𝑡)]|𝛹′(𝑡)⟩ (2.96) 

Since it starts from a fixed state, at 𝑡0 the wave functions, current densities and current densities 

between systems and prime systems 

|𝛹(𝑡0)⟩ ≡|𝛹′(𝑡0)⟩ ≡|𝛹0⟩ (2.97) 

 

𝑛(𝑟, 𝑡0) =  𝑛′(𝑟, 𝑡0) ≡ 𝑛0 (2.98) 

 

𝑗(𝑟, 𝑡0) =  𝑗′(𝑟, 𝑡0) ≡ 𝑗0⃗⃗⃗ ⃗ (2.99) 

Taking the difference between Equations 2.95 and 2.96, we obtain, when 𝑡 = 𝑡0 

𝑑

𝑑𝑡
[𝑗(𝑟, 𝑡) − 𝑗′(𝑟, 𝑡)]𝑡=𝑡0

= 𝑛0(𝑟)∇[𝑉(𝑟, 𝑡0) − 𝑉′(𝑟, 𝑡0)] (2.100) 

As the external potentials are constrained and expandable in Taylor series with respect 

to the time coordinate around the initial moment 𝑡0, we obtain 

𝑉(𝑟, 𝑡) = ∑ 𝑐𝑘(𝑟)(𝑡 − 𝑡0)𝑘

∞

𝑘=0

 (2.101) 

where the coefficients 𝑐𝑘(𝑟) are given by 

𝑐𝑘(𝑟) =
1

𝑘!

𝜕𝑘

𝜕𝑡𝑘
𝑉(𝑟, 𝑡)|𝑡=𝑡0

 (2.102) 

In addition, the function 𝑢𝑘(𝑟) is define 

𝑢𝑘(𝑟) =
1

𝑘!

𝜕𝑘

𝜕𝑡𝑘
[𝑉(𝑟, 𝑡0) − 𝑉′(𝑟, 𝑡0)]|𝑡=𝑡0

 (2.103) 

If the difference between the two potentials is more than a purely time-dependent 

function, at least one of the expansion coefficients in Taylor expansion around 𝑡0 will differ by 

more than one constant 
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∃𝑘≥0: 𝑢𝑘(𝑟) ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.104) 

If the above condition is satisfied from 𝑘 = 0, that is, the two potentials, 𝑉(𝑟, 𝑡) and 

𝑉′(𝑟, 𝑡), differ since 𝑡0. This implies that the left-hand derivative in the equation x is nonzero, 

since ∇[𝑉(𝑟, 𝑡0) − 𝑉′(𝑟, 𝑡0)] ≠ 0. The two current densities 𝑗 and 𝑗′, will therefore be different 

for 𝑡 > 𝑡0. If 𝑘 is much higher than zero, the equation of motion is applied 𝑘 + 1 times 

producing the result 

𝑑𝑘+1

𝑑𝑡𝑘+1
{𝑗(𝑟, 𝑡) − 𝑗′(𝑟, 𝑡)}|𝑡=𝑡0

= 𝑛0(𝑟)∇𝑢𝑘(𝑟) (2.105) 

The right member of the above equation is nonzero, which again implies that 𝑗(𝑟, 𝑡) ≠

 𝑗′(𝑟, 𝑡) for 𝑡 > 𝑡0. From the continuity equation,  

𝜕

𝜕𝑡
𝑛(𝑟, 𝑡) = −∇𝑗(𝑟, 𝑡) (2.106) 

If the above equation is written for the system and prime system and take the difference 

between them,  

𝜕

𝜕𝑡
{𝑛(𝑟, 𝑡) − 𝑛′(𝑟, 𝑡)} = −∇{𝑗(𝑟, 𝑡) − 𝑗′(𝑟, 𝑡)} (2.107) 

With the expression involving the 𝑘-th derivative of the external potential. Taking (𝑘 +

1) times in the time derivative in the equation above,  

𝑑𝑘+2

𝑑𝑡𝑘+2
{𝑛(𝑟, 𝑡) − 𝑛′(𝑟, 𝑡)}|𝑡=𝑡0

= −∇
𝑑𝑘+1

𝑑𝑡𝑘+1
{𝑗(𝑟, 𝑡) −  𝑗′(𝑟, 𝑡)}|𝑡=𝑡0

 (2.108) 

substituting the expression y,  

𝑑𝑘+2

𝑑𝑡𝑘+2
{𝑛(𝑟, 𝑡) − 𝑛′(𝑟, 𝑡)}|𝑡=𝑡0

= −∇{𝑛0(𝑟)∇𝑢𝑘(𝑟)} (2.109) 

by the restriction of 𝑢𝑘(𝑟) ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  

∇{𝑛0(𝑟)∇𝑢𝑘(𝑟)} ≠ 0 (2.110) 

therefore, 𝑛(𝑟, 𝑡) ≠  𝑛′(𝑟, 𝑡). Thus, from the proof, the Runge-Gross theorem is then the 

analogue of the Hohenberg-Kohn theorem for the time-dependent system [128]. 
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2.4.4.2 Time-dependent Kohn-Sham Equations 

The formalism developed by KS has been successful in determining the fundamental 

state properties in DFT. Therefore, trying to generalize them is the first step towards obtaining 

the desired properties. As mentioned in the previous subsection, the RG theorem broadly 

restates that any observable can be calculated if the electron density is known. However, is not 

told how to calculate this quantity, so, similarly to the Section 2.3.2, a generalization of the KS 

equations is searched to give all the information about the system. In the time-dependent case, 

the natural extension of the KS equation has the following form 

[−
1

2
∇𝑟

2 + 𝑉̂𝑒𝑓𝑓(𝑟, 𝑡)] 𝜙𝑖(𝑟, 𝑡) = 𝑖
𝜕

𝜕𝑡
𝜙𝑖(𝑟, 𝑡) (2.111) 

where 𝑉̂𝑒𝑓𝑓(𝑟, 𝑡) is given by  

𝑉̂𝑒𝑓𝑓[𝑟, 𝑡; 𝜌(𝑟, 𝑡)] = 𝑉𝑒𝑥𝑡[𝑟, 𝑡] + ∫ 𝑑3𝑟
𝜌(𝑟′, 𝑡)

|𝑟 − 𝑟′|
−

𝛿𝑆𝑋𝐶[𝜌]

𝛿𝜌(𝑟, 𝑡)
 (2.112) 

The Equation 2.111 using the effective potential in Equation 2.112 is called the time-

dependent Kohn-Sham (TD-KS) equation [128]. 

In DFT, 𝑉𝑋𝐶[𝜌] is normally written as a derivative of the exchange-correlation energy, 

as can be seen in Equation 2.51. This result was obtained via total energy minimization, but in 

the case of TD-DFT this is no longer true [127]. In time-dependent systems, total energy is not 

a conserved quantity, so there is no variational principle. However, there is the action, a quantity 

analogous to energy, defined as 

𝑆 = ∫ 𝑑𝑡𝜙(𝑡) (𝑖
𝜕

𝜕𝑡
− 𝐻̂)

𝑡1

𝑡0

𝜙(𝑡) (2.113) 

and is representable as a density functional, 𝑆[𝜌], and can be decomposed into 

𝑆[𝜌] = ∫ 𝑑𝑡𝜙∗(𝑡) [𝑖
𝜕

𝜕𝑡
− (𝑇̂ + 𝑉̂𝑒𝑒)]

𝑡1

𝑡0

𝜙(𝑡) − ∫ 𝑑𝑡
𝑡1

𝑡0

∫ 𝑑3𝑟𝜌(𝑟, 𝑡)𝑉𝑒𝑥𝑡(𝑟, 𝑡)
𝑡1

𝑡0

 (2.114) 

Two properties of 𝑆[𝜌] are obtained: (i) when performing the functional derivative of 

the action with respect to 𝜙∗(𝑡) and equaling it to zero, the time-dependent Schrödinger 

equation is obtained. Thus, the function 𝜙(𝑡) that makes the action stationary will be the time-

dependent solution of the Schrödinger equation. It should be noted that here there is no 
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"minimum principle", as in the case of DFT, but rather a "stationary principle". (ii) At the 

solution point, always have 𝑆[𝜌] = 0. 

Van Leeuwen using the Keldish formalism, defined a new action that would circumvent 

the causal problems contained in the theory. So, with the new action, the potential for exchange 

and correlation could be found [127]. The form of this potential is as follows 

𝛿𝑆𝑋𝐶[𝜌]

𝛿𝜌(𝑟, 𝑡)
≈ 𝑉𝑋𝐶[𝜌](𝑟, 𝑡) =

𝛿𝐸𝑋𝐶[𝜌]

𝛿𝜌(𝑟, 𝑡)
 (2.115) 

where 𝑆𝑋𝐶 is the exchange-correlation part of the action integral and is approximated based on 

the BO approximation. 

Applying the TD-KS equation to linear response theory, excitation energies can be 

calculated and assigned to corresponding transitions [130]. Following the RG theorem, it is 

assumed that only a weak perturbation, 𝛿𝑉𝑒𝑥𝑡, is added to the external potential. Under this 

assumption, it is interpreted that the electron density also undergoes an infinitesimal change, 

𝛿𝜌(𝑟, 𝑡), in the stationary part, 𝜌𝑠𝑡𝑎𝑡 [130]. The exchange-correlation potential, 𝑉𝑋𝐶, is, 

therefore, represented as 

𝑉𝑋𝐶[𝜌](𝑟1, 𝑡1) = 𝑉𝑋𝐶
𝑠𝑡𝑎𝑡[𝜌](𝑟1) + ∬ 𝑑𝑡2𝑑3𝑟2𝑓𝑋𝐶[𝜌𝑠𝑡𝑎𝑡] (𝑟1, 𝑟2, 𝑡2 − 𝑡1)𝛿𝜌(𝑟2, 𝑡2) (2.116) 

 

𝑓𝑋𝐶[𝜌𝑠𝑡𝑎𝑡](𝑟1, 𝑟2, 𝑡2 − 𝑡1) =
𝛿𝑉𝑋𝐶(𝑟1, 𝑡1)

𝛿𝜌(𝑟2, 𝑡2)
|
𝜌=𝜌𝑠𝑡𝑎𝑡

 (2.117) 

The derivative of the exchange-correlation potential in terms of electron density, 𝑓𝑋𝐶, is 

called the exchange correlation-integral kernel. Define the response function of the electron 

density, 𝜒𝐾𝑆, for the infinitesimal change in KS potential, 𝛿𝑉𝐾𝑆, as 

𝛿𝜌(𝑟1, 𝑡1) = ∬ 𝑑𝑡2𝑑3𝑟2𝜒𝐾𝑆[𝜌𝑠𝑡𝑎𝑡] (𝑟1, 𝑟2, 𝑡2 − 𝑡1)𝛿𝑉𝐾𝑆(𝑟2, 𝑡2) (2.118) 

 In this definition, the response function is given by Green function theory as 

𝜒𝐾𝑆(𝑟1, 𝑟2, 𝜔) = 2 lim
𝜂→0+

∑ ∑ [
𝜙𝑖

∗(𝑟1)𝜙𝑎(𝑟1)𝜙𝑖(𝑟2)𝜙𝑎
∗(𝑟2)

𝜔 − (𝜖𝑎 − 𝜖𝑖) + 𝑖𝜂

𝑛𝑣𝑖𝑟

𝑎

𝑛𝑜𝑐𝑐

𝑖

−
𝜙𝑖(𝑟1)𝜙𝑎

∗(𝑟1)𝜙𝑖
∗(𝑟2)𝜙𝑎(𝑟2)

𝜔 − (𝜖𝑎 − 𝜖𝑖) + 𝑖𝜂
] 

(2.119) 
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Note that this response function is Fourier-transformed (𝑡 → 𝜔). What is important is 

that this response function has poles in the excitation energies. Casida proposed that the pole 

energies of the response function in Equation 2.119, i.e., excitation energies, can be calculated 

by solving the following simultaneous matrix equations [131]: 

∑[𝛿𝜎𝜏𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎𝜎 + 𝜖𝑖𝜎 + 𝜔) + 𝐾𝑖𝑎,𝑗𝑏
𝜎𝜏 ]𝑋𝑗𝑏

𝜏 + 𝐾𝑖𝑎,𝑗𝑏
𝜎𝜏 𝑋𝑗𝑏

𝜏

𝑗𝑏𝜏

= 0 (2.120) 

and  

∑[𝛿𝜎𝜏𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎𝜎 − 𝜖𝑖𝜎 + 𝜔) + 𝐾𝑎𝑖,𝑏𝑗
𝜎𝜏 ]𝑋𝑏𝑗

𝜏 + 𝐾𝑎𝑖,𝑗𝑏
𝜎𝜏 𝑋𝑗𝑏

𝜏

𝑗𝑏𝜏

= 0 (2.121) 

In these equations, the spins of the orbitals (𝜎, 𝜏, 𝜎′ ≠ 𝜎) are explicitly displayed for 

purposes of accuracy. The simultaneous matrix equations are also represented for singlet and 

triplet excitations as follows 

𝛺𝑭𝑖𝑎𝜎 = 𝜔𝑖𝑎
2 𝑭𝑖𝑎𝜎 (2.122) 

 

𝛺𝑖𝑎𝜎,𝑗𝑏𝜏
𝑠𝑖𝑛𝑔𝑙𝑒𝑡 = 𝛿𝜎𝜏𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎𝜎 − 𝜖𝑖𝜎)2

+ 2(𝜖𝑎𝜎 − 𝜖𝑖𝜎)1 2⁄ (𝐾𝑖𝑎,𝑗𝑏
𝜎𝜎 + 𝐾𝑖𝑎,𝑗𝑏

𝜎𝜎′
)(𝜖𝑏𝜏 − 𝜖𝑗𝜏)

1 2⁄
 

(2.123) 

and 

𝛺𝑖𝑎𝜎,𝑗𝑏𝜏
𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝛿𝜎𝜏𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎𝜏 − 𝜖𝑖𝜏)2

+ 2(𝜖𝑎𝜎 − 𝜖𝑖𝜎)1 2⁄ (𝐾𝑖𝑎,𝑗𝑏
𝜎𝜎 + 𝐾𝑖𝑎,𝑗𝑏

𝜎𝜎′
)(𝜖𝑏𝜏 − 𝜖𝑗𝜏)

1 2⁄
 

(2.124) 

where 𝐹𝑖𝑎𝜎 is the response coefficient matrix given by 

𝐹𝑖𝑎𝜎 = (𝜖𝑎𝜎 − 𝜖𝑖𝜎)−1 2⁄ (𝜒𝑖𝑎𝜎 − 𝜒𝑎𝑖𝜎) (2.125) 

 

𝜒𝑖𝑎𝜎(𝜔) =
−1

𝜔 + (𝜖𝑎𝜎 − 𝜖𝑖𝜎)
× ∫ 𝑑3𝑟𝜙𝑖𝜎

∗ (𝑟) 𝛿 (2 ∑ 𝐽𝑖 + 𝑉𝑋𝐶

𝑛

𝑗

) (𝑟, 𝜔)𝜙𝑎𝜎(𝑟) (2.126) 

𝜖𝑖 is the i -th orbital energy, and 𝐾𝑖𝑎,𝑗𝑏
𝜎𝜏  is provided as 
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𝐾𝑖𝑎,𝑗𝑏
𝜎𝜏 = ⟨𝑖𝑏|𝑎𝑗⟩𝜎𝜏 + ∬ 𝑑3𝑟1𝑑3𝑟2𝜙𝑖𝜎

∗ (𝑟1)𝜙𝑏𝜏
∗ (𝑟2)𝑓𝑋𝐶(𝑟1, 𝑟2)𝜙𝑎𝜎(𝑟1)𝜙𝑗𝜏(𝑟2) (2.127) 

 

2.4.5 Orbital Energy 

 

2.4.5.1 Koopmans’ Theorem 

Ionization energies (IE) and electron affinities (EA) can be calculated simply as the 

energy difference between the neutral and the ion [132]. In HF theory, approximate IEs can be 

obtained by applying Koopmans’ theorem which says that the energy required to remove an 

electron from an orbital is the negative of the orbital energy [132]. Thus, the IE of a molecule 

is approximately the negative of the energy of its HOMO. The proof assumes that the orbitals 

of the neutral system and those of the resulting ionized system with an electron removed are 

the same, and that there is no relaxation of the orbitals of the latter. For orbital 𝜙𝑖, the orbital 

energy of the HF equation is represented by 

𝜖𝑖 = ∫ 𝑑3𝑟𝜙𝑖
∗(𝑟) 𝐹̂𝜙𝑖(𝑟) = ℎ𝑖 + ∑(2𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑛

𝑗

 (2.128) 

where  ℎ𝑖, 𝐽𝑖𝑗 and 𝐾𝑖𝑗are the one-electron and two-electron integrals, and in this case, the total 

energy is provided as 

𝐸0 = ∑ ℎ𝑖

𝑛

𝑖

+ ∑(2𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑛

𝑖<𝑗

= ∑ 𝜖𝑖

𝑛

𝑖

− ∑(2𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑛

𝑖<𝑗

 (2.129) 

Moreover, the energy after removing one electron from orbital 𝜙𝑖 derived as 

𝐼𝑃 = 𝐸′ − 𝐸0 = −ℎ𝑖 − ∑(2𝐽𝑖𝑗 − 𝐾𝑖𝑗) = −𝜖𝑖

𝑛

𝑗

 (2.130) 

 

This indicates that the occupied orbital energies are the corresponding negative of the ionization 

potentials (IP) [132]. The Koopmans’ theorem is also established for unoccupied orbitals, being 

the unoccupied orbital energies are the corresponding negative of the electron affinities [132]. 

Considering the energy after adding one electron to an unoccupied orbital as 
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𝐸′′ = 𝐸0 + ℎ𝑎 + ∑(2𝐽𝑎𝑗 − 𝐾𝑎𝑗)

𝑛

𝑗

 (2.131) 

Therefore, the electron affinity, which is the energy difference from 𝐸′′ to 𝐸0, is proven 

to be 

𝐸𝐴 = 𝐸0 − 𝐸′ = −ℎ𝑎 − ∑(2𝐽𝑎𝑗 − 𝐾𝑎𝑗) =

𝑛

𝑗

− 𝜖𝑎 (2.132) 

 

2.4.5.2 Janak’s Theorem 

In analogy to HF theory, and according to Koopmans' theorem, the variation in the total 

energy of a molecule in relation to occupancy coincides with the HF eigenvalue of its spin-

orbital 𝜙𝑖. Regardless of the detailed form of the exchange-correlation functional, it happens in 

parallel for the DFT theory due to the Janak's theorem [133]. With Janak's theorem, the 

possibility of describing the energies of excited states also takes shape according to the DFT 

formalism. Strictly speaking, DFT theory is applicable to the ground state of a system and a 

situation in which the occupancy number of one (or some) of the states is modified by an 

infinitesimal amount, which is not necessarily a ground state. The generalization due to Janak's 

theorem consists in the introduction of occupation numbers of the {𝑛𝑖} orbitals for each state. 

The 𝑛𝑖 are allowed occupancy numbers with 0 ≤ 𝑛𝑖 ≤ 1. Fractionally occupied KS orbitals 

arise naturally in the ground state formalism when the highest occupied level degenerates. By 

showing the occupancy numbers of the orbitals, the KS equation is written as 

(−
1

2
∇2 + 𝑉𝑒𝑥𝑡 + 2 ∑  𝐽𝑖 + 𝑉𝑋𝐶

𝑛

𝑖

) 𝜙𝑖 = 𝜖𝑖𝜙𝑖 (2.133) 

The functional of total electronic energy 𝐸 corresponds 

𝐸 = 𝑇 + 𝐸𝑒𝑥𝑡[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌] (2.134) 

where 𝑇, 𝐸𝑒𝑥𝑡 and 𝐽 are the kinetic energies, external field and Coulomb interaction, 

respectively, which are given by 

𝑇 = ∑ ∫ 𝜙𝑖
∗(𝑟) (

−∇2

2
)

𝑛

𝑖

𝜙𝑖(𝑟)𝑑3𝑟 = ∑ 𝑛𝑖𝑡𝑖

𝑖

 (2.135) 
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𝐸𝑒𝑥𝑡[𝜌] = ∫ 𝜌 (𝑟)𝑉𝑒𝑥𝑡𝑑3𝑟 (2.136) 

 

𝐽[𝜌] =
1

2
∫

𝜌(𝑟1)𝜌(𝑟2)

𝑟12
𝑑3𝑟1𝑑3𝑟2 (2.137) 

In this case, the electron density, 𝜌, is represented by 

𝜌 = ∑ 𝑛𝑖|𝜙𝑖|2

𝑛

𝑖

 (2.138) 

The variation of electronic energy 𝐸 in terms of the occupation number is, therefore, 

given by 

𝜕𝐸

𝜕𝑛𝑖
=

𝜕𝑇

𝜕𝑛𝑖
+

𝜕(𝐸𝑒𝑥𝑡 + 𝐽 + 𝐸𝑋𝐶)

𝜕𝑛𝑖
∙

𝜕𝜌

𝜕𝑛𝑖
 (2.139) 

 

𝜕𝐸

𝜕𝑛𝑖
= 𝑡𝑖 + 2 ∑ 𝑛𝑗

𝜕𝑡𝑗

𝜕𝑛𝑖
+

𝑛

𝑗

∫ (2 ∑  𝐽𝑗 + 𝑉𝑋𝐶

𝑛

𝑗

) ∙ (|𝜙𝑖|
2 + ∑  𝑛𝑗 +

𝜕|𝜙𝑗|
2

𝜕𝑛𝑖

𝑛

𝑗

) 𝑑3𝑟 (2.140) 

Since using Equations 2.133 and 2.135, 

𝑡𝑖 = 𝜖𝑖 − ∫ (2 ∑  𝐽𝑗 + 𝑉𝑋𝐶

𝑛

𝑗

) |𝜙𝑖|
2𝑑3𝑟 (2.141) 

is provided, substituting this into Equation 2.140 leads to 

𝜕𝐸

𝜕𝑛𝑖
= 𝜖𝑖 + ∑ 𝑛𝑗 [

𝜕𝑡𝑗

𝜕𝑛𝑖
+ ∫ (2 ∑  𝐽𝑗 + 𝑉𝑋𝐶

𝑛

𝑗

)
𝜕|𝜙𝑗|

2

𝜕𝑛𝑖
𝑑3𝑟]

𝑛

𝑗

 (2.142) 

By substituting 

𝜕𝑡𝑗

𝜕𝑛𝑖
= ∫

𝜕𝜙𝑗
∗

𝜕𝑛𝑖
(

−∇2

2
) 𝜙𝑗𝑑3𝑟 + ∫ 𝜙𝑗

∗ (
−∇2

2
)

𝜕𝜙𝑗
∗

𝜕𝑛𝑖
𝑑3𝑟 (2.143) 

from Equation 2.135 into Equation 2.140, the energy derivative in terms of the occupation 

number is derived for an arbitrary orbital 𝜙𝑖 as 



 
 

68 
 

𝜕𝐸

𝜕𝑛𝑖
= 𝜖𝑖 + ∑ 𝑛𝑗 [

𝜕𝜙𝑗
∗

𝜕𝑛𝑖
(

−∇2

2
+ 2 ∑  𝐽𝑗 + 𝑉𝑋𝐶

𝑛

𝑗

) 𝜙𝑗𝑑3𝑟

𝑛

𝑗

+ 𝜙𝑗
∗ (

−∇2

2
+ 2 ∑  𝐽𝑗 + 𝑉𝑋𝐶

𝑛

𝑗

)
𝜕𝜙𝑗

𝜕𝑛𝑖
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𝑛
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𝜕
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Therefore, the relationship between the total electronic energy and orbital energy is 

proven to be 

𝜕𝐸

𝜕𝑛𝑖
= 𝜖𝑖 (2.147) 

This equation indicates that the derivative of the total electronic energy in relation to the 

occupancy number of an orbital is identical to the orbital energy, this is called Janak’s theorem, 

and from it is observed that only the highest occupied (HO) orbital can be fractionally, and that 

all orbitals with 𝜖𝑖 < 𝜖𝐻𝑂 must have full occupancy [133]. The energy linearity theorem for 

fractional occupations proves that the total electronic energy varies linearly as a function of its 

fractional occupation number, that is, 

𝐸 (𝑛 +
𝑝

𝑞
) =

𝑝

𝑞
𝐸(𝑛 + 1) +

𝑞 − 𝑝

𝑞
𝐸(𝑛) (2.148) 

and combined with Janak's theorem, the physical meaning of the orbital energies is obtained 

[134]. Figure 5 clearly indicates that if the total electron energy meets the energy linearity 

theorem, it is proved by Janak's theorem that the HOMO and LUMO energies are identical to 

the corresponding negative of the ionization potential and the electron affinity, respectively 

[134]. 
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Figure 5. Schematic diagram of total electronic energy as a function of fractional occupation 

number variation, Δn. 

 
Source: Elaborated by the author. 
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CHAPTER 3 

3. Materials 

3.1 Electron donor-acceptor organic polymers 

In the last few decades, considerable progress has been made in the development of BHJ 

in OSCs based on a blend of a p-type organic semiconductor as donor and an n-type organic 

semiconductor as acceptor. In general, to produce efficient OSCs, one needs donor and acceptor 

materials with high charge carrier mobility, complementary absorption bands in the Vis-NIR 

range, and a small energy offset to minimize voltage losses. In this context, seven molecules 

described in the next sections, with unique or alternating moieties of electron-rich donor and 

electron-deficient acceptor have been studied in this work, which ones are seen to be promising 

materials for photovoltaic application. 

 

3.1.1 Electron donor polymers 

Low-bandgap polymers with high HOMO energy level are used as electron donor 

material of OCSs for harvest more sunlight then reaching high efficiency and present the same 

structure: a donor core (electron-rich unit) and an acceptor core (electron-deficient unit). This 

structure is also known as donor-acceptor (D-A) structure.  

The poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene) 

)-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-

dione)], named as PBDB-T (Figure 6), was proposed by Qian et al., a non-halogenated donor 

polymer based on benzodithiophene (BDT) core (donor unit) with two 2-(2-

ethylhexyl)thiophene to extending the BDT electron donating capability and solubility, besides 

a benzodithiophene-dione (BDD) core being an acceptor unit [135]. The BDT, 2-(2-

ethylhexyl)thiophene and BDD unit are highlighted in blue, yellow and red, respectively, in 

Figure 6.  
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Figure 6. Molecular structure of PBDB-T. 

 

Source: Elaborated by the author. 

The poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]di 

thiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophe 

ne-4,8-dione)], named as PM6 (Figure 7), was proposed by Zang et al., and shows the same 

structure of PBDB-T, but use a fluorine-substituted benzodithiophene (BDT-F) core as the 

donor unit [136]. The BDT-F, 2-(2-ethylhexyl)thiophene and BDD unit are highlighted in blue, 

yellow and red, respectively, in Figure 7.  
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Figure 7. Molecular structure of PM6. 

 

Source: Elaborated by the author. 

Following the low-bandgap polymers using the structure donor-acceptor (D-A), Liao et 

al. proposed a novel PBDB-T-type polymer, poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-

yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophe 

ne-)-2-carboxylate-2-6-diyl)], named as PTB7-Th (Figure 8), maintaining the BDT core as a 

donor unit, and as acceptor unit the core is composed by a thieno[3,4-b]thipheno (TT) unit with 

electron-withdrawing fluorine atoms and 2-ethylhexyl carboxylate group (F-TT) [137]. The 

BDT, 2-(2-ethylhexyl)thiophene and F-TT unit are highlighted in blue, yellow and red, 

respectively, in Figure 8. 

 



 
 

73 
 

Figure 8. Molecular structure of PTB7-Th. 

 

Source: Elaborated by the author. 

 

3.1.2 Electron acceptor polymers 

Fullerenes are a family of large all-carbon cage molecules [138]. The most abundant 

and stable form of fullerene is buckminster fullerene (C60) first discovered in 1985 by Kroto, 

Heath, O’Brien, Curl and Smalley during experiments on the mechanism of formation of long-

chain carbon molecules in interstellar space and circumstellar shells [138]. The low solubility 

makes fullerenes difficult to handle [34]. It is well-known that this problem can be in part solved 

by the chemical functionalization of this carbon allotrope [34]. So, fullerenes (Figure 9) and 

their derivates have been predominately used as electron acceptor of OSCs, because of their 

isotropic charge transport, high electron mobility and high LUMO energy level [34]. 
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Figure 9. Molecular structure of PC71BM. 

 

Source: Elaborated by the author. 

However, fullerene derivatives have weak absorption in the visible (Vis) and near-

infrared (NIR) regions and low solubility due to high symmetry of these molecules, so there are 

challenges to be overcome to use fullerenes as acceptors [36, 139]. Thereby, in the last 3–4 

years, rapid development of low-bandgap non-fullerene acceptors (NFAs) has provided 

effective ways to improve the performance of OPVs due to their tunable energy levels and 

strong absorption in the near-infrared region (NIR) [36, 139].  

The 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thia 

diazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-

b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-

diylidene))dimalononitrile, named as Y6 (Figure 10) is small-molecule acceptor, proposed by 

Cui et al., based on strategy of using a ladder type multi-fused ring with an electron-deficient 

core as a central unit that showed a narrow bandgap [140]. The central unit is 2, 1, 3-

benzothiadiazole (BT), highlighted in blue in the Figure 10, that have sp2-hybridized nitrogen 

atoms endowing electron-withdrawing character, so creating a charge-deficient region in the 

middle of the central core [140]. Based on the above considerations, the BT unit was fused with 

dithienothiophen[3.2-b]-pyrrole, generating a new BT-core-based fused-unit 

dithienothiophen[3.2-b]-pyrrolobenzothiadiazole, TPBT [140]. The fused TPBT central unit 

preserves conjugation along the length of the molecule, which allows tuning of the electron 

affinity. 2-(5,6-Difluoro-3-oxo-2,3-dihydro-1H-inden-1 ylidene)malononitrile (2FIC) units, 

highlighted in red in the Figure 10, were used as flanking groups to enhance absorption and 

promote intermolecular interactions and, hence, facilitate charge transport [140]. Moreover, 

long alkyl side chains were introduced on the terminal of the central unit to increase the 

solubility [140]. 
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Figure 10. Molecular structure of Y6. 

 

Source: Elaborated by the author. 

Following the same structure acceptor-donor-acceptor (A-D-A), the 3,9-bis(2-

methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno 

[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene , named as ITIC (Figure 11), was 

proposed by Lin et al. and based on a bulky seven-ring fused core (indacenodithieno[3,2-

b]thiophene, IT), highlighted in blue, end-capped with 2-(3-oxo-2,3-dihydroinden-1-

ylidene)malononitrile (INCN) groups, highlighted in red, and with four 4-hexylphenyl groups 

substituted on it, highlighted in yellow in the Figure 11 [141]. Each INCN has one carbonyl and 

two cyano groups, and these electron-withdrawing groups can downshift LUMO levels [141]. 

The push–pull structure in ITIC can induce intramolecular charge transfer and extend 

absorption [141]. Furthermore, the four rigid 4-hexylphenyl substituents out of the IT main 

plane can restrict molecular planarity, aggregation, and large phase separation in BHJ blend 

films [141]. ITIC possesses strong and broad absorption, low LUMO and HOMO energy levels, 

good electron transport ability, and good miscibility with polymer donors [141].  
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Figure 11. Molecular structure of ITIC. 

 

Source: Elaborated by the author. 

The 2-[(2E)-2-[[16-[(E)-[1-(dicyanomethylidene)-3-oxoinden-2-ylidene]methyl]-3,3, 

13,13-tetrakis(4-hexylphenyl)-7,10,17,20-tetrathiahexacyclo[9.9.0.02,9.04,8.012,19.014,18]icosa-1 

(11),2(9),4(8),5,12(19),14(18),15-heptaen-6-yl]methylidene]-3-oxoinden-1-ylidene]propane 

dinitrile, named as O6T-4F, was proposed by Xiao et al. based on donor carbon-oxygen-bridged 

units, COi8, fused with thienothiophene moieties [142]. COi8, highlighted in blue the Figure 9, 

possesses higher electron-donating capability due to three electron-richer thienothiophene 

moieties. Second, a stronger electron-accepting unit, difluoro-substituted IC (DFIC), 

highlighted in red the Figure 12 was used as the end groups [142]. The enhanced electron-

donating capability and electron-accepting capability lead to a very small optical gap (1.26 eV) 

for O6T-4F, besides the enhanced planarity also renders good charge-transporting property 

[142]. 
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Figure 12. Molecular structure of O6T-4F. 

 
Source: Elaborated by the author. 

 

3.2 Polyfullerenes 

The association between the electronic properties of fullerene and the mechanical 

properties, the stability, as well as the processibility of polymers gives a promising mixture that 

is interesting in photovoltaic applications [143]. Over the years, polyfullerenes have been 

proposed in the role of n-type material in all-polymer blends and as electron-selective-layer 

(ESL) in devices [143]. Here was studied the properties of new classes of soluble main-chain 

polyfullerenes (Figure 13), HSS-8 (short sidechain) and HSS-16 (long sidechain), synthesized 

by Dr. Roger Hiorns' group (CNRS-IPREM). All previous information about these 

polyfullerenes are contained in the work of Santos Silva et al. [143]. 
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Figure 13. Molecular structure of di-bromo monomer. 

 

Source: Elaborated by the author. 
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CHAPTER 4 

4.1 Fabrication of thin films and characterization 

4.1.1 Langmuir and Langmuir-Schaefer Films 

The performance of organic electronic devices based on conjugated polymers, such as 

in the mobility of charge carriers, is influenced by the orientation of the molecules and the 

molecular aggregation morphology of the polymer. Within this context, the Langmuir, 

Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques stand out, as they provide 

higher organization at the molecular level and control over the thickness and uniformity of the 

thin film [144, 145, 146]. Within this context, the polyfullerenes were studied using the 

Langmuir and LS techniques. 

A Langmuir trough (Figure 14) is used to fabricate the thin films, which is basically 

composed of a teflon trough top (3), which inside is filled with a liquid subphase, two mobile 

barriers (2), also made of teflon, for symmetrical compression of the film [144, 145, 146]. The 

trough is also equipped with a surface pressure sensor (4), barrier position detection (1 and 6) 

and a dipping mechanism (5) used to transfer the film to a solid substrate where it is possible 

to control the speed of vertical deposition [144, 145, 146]. 

Figure 14. Langmuir trough 

 

 Source: Extracted from [147]. 

Langmuir films are monomolecular films obtained by spreading a small amount of a 

material consisting of amphiphilic molecules on a liquid surface [144, 145, 146]. Amphiphilic 

molecules have both hydrophilic and hydrophobic parts. The hydrophilic part (head) is 

responsible for spreading while the hydrophobic part (tail) is responsible for the flotation of the 
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material [144, 145, 146]. The spread material, such as a fatty acid, a polymer or others, is 

initially dissolved in a volatile solvent, which evaporates after the solution is spread over water 

[144, 145, 146]. When the monomolecular layer is compressed through mobile barriers, the 

molecules orient themselves with the hydrophobic parts rising from the surface, generating a 

highly organized film in the condensed state [144, 145, 146]. Figure 15 represents the 

organization of a Langmuir film. 

Figure 15. Schematic representation of Langmuir principle. 

 

Source: Extracted from [147]. 

With film compression, the phases of the Langmuir film can be characterized through 

isotherms of surface pressure versus average molecular area (Figure 16), also known as π-A 

isotherms [144, 145, 146]. During film compression, it is possible to characterize three distinct 

phases of the film: gas phase, in which there is no interaction between molecules; liquid phase, 

in which the molecules begin to interact with each other; and the solid (condensed) phase, with 

the molecules arranged in a regular arrangement forming a monomolecular thin film [144, 145, 

146]. When the film is compressed beyond the solid phase, the molecules can clump together 

disorderly on top of each other causing the film to collapse, thus losing its monomolecular shape 
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[144, 145, 146]. In Figure 16, the points G, L1, L2 and S represent the gaseous phase, liquid-

expanded state, the liquid-condensed state and solid state, respectively. 

Figure 16. π-A isotherms of a phospholipid in different phases. 

 

Source: Extracted from [147]. 

The successive deposition of monolayers of a Langmuir film on the same solid substrate 

can be performed using the LB and LS techniques (Figure 17). In the LB technique, the film is 

transferred onto the substrate by immersion and vertical elevation, while in the LS technique, 

the deposition is carried out by horizontal contact of the substrate with the monolayer [144, 

145, 146]. To ensure better deposition, the substrate is slowly brought to the interface with the 

stabilized Langmuir film [144, 145, 146]. Then, the substrate is also slowly raised, and with 

this technique, the hydrophobic part of the molecule is in contact with the substrate [144, 145, 

146]. 
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Figure 17. LB deposition (to the left) and LS deposition (to the right). 

 

Source: Extracted from [147]. 

To produce ultrathin films, the LB technique is widely used [144, 145, 146]. However, 

in the case of some conjugated polymers, the deposition of uniform LB films becomes a 

problem of great difficulty due to the stiffness of the thin film in the aqueous subphase, which 

leads to a poor-quality deposition of the film monolayers on solid substrates [144, 145, 146]. 

An alternative to this problem would be the use of the LS technique, because, in addition to 

allowing a better transfer, it also allows a faster transfer of the film monolayers to the solid 

substrate [144, 145, 146]. 

In this work, the Langmuir and LS films were fabricated using a Langmuir KSV trough 

model 5000. The first procedure for fabricating the films is to clean the trough and compression 

barriers, using chloroform to avoid contamination in subphase. Therefore, the liquid subphase 

is poured over the trough, which in this work was approximately 1350 mL of ultrapure water. 

The water is obtained from Millipore's water purification system, with a resistivity of 18.2 MΩ. 

With the end of the previous procedures, the fabrication of the films starts from the process of 

spreading the solution. 

The solutions were made using the materials HSS8 and HSS16, and the solvents were 

chloroform and xylene. For fabricate the films, the concentration of the solutions for both, HSS8 

and HSS16, were 0.2 mg/mL. For a higher quality in the fabricating process, the control 

parameters are provided in the KSV trough software. The parameters are: volume of the 

subphase, concentration of the solution, volume to be spread from the solution, molecular mass 

of the material to be deposited. In concentration used is considered the mass of the respective 

polyfullerene and the total volume of the solution. Thus, the solutions were spread in the 

subphase with the aid of a micro syringe, with the total volume spread equal to 750 µL. After 

spreading, a waiting time of 15 minutes is necessary, so that the chloroform or xylene 

evaporates, and thus begins the compression of the barriers. Through the pressure isotherm of 



 
 

83 
 

the film present in the subphase, a pressure analysis is performed to choose the deposition 

pressure. In this case, the deposition pressure is equivalent to the point where the film is in the 

condensed phase with monomolecular thickness. The depositions of the thin film layers on the 

substrates were carried out at a constant surface pressure equal to 30 mN/m. Symmetrically, the 

monolayers were compressed by the barriers at a speed of 10 mm/min. For UV absorption were 

deposited 5 layers onto quartz and for cyclic voltammetry measurements were deposited 30 

layers onto ITO. 

 

4.1.2 Optical Characterization in Ultraviolet-Visible (UV-Vis) 

One way of optical characterization of thin films is through the measurement of 

radiation absorption of the sample in the ultraviolet (UV) and visible (Vis) regions of the 

electromagnetic spectrum, being the regions between 190 and 800 nm where the molecules 

undergo electronic transitions [148, 149]. 

The transitions are related to the wavelength (λ) of absorption, while the intensity is 

dependent on the probability of the transition occurring when the molecular system and the 

radiation interact [148, 149]. The electrons in a molecule involved in the transitions are non-

bonding paired electrons (n electron), such as in N, O, S and halogens, and the electrons in π 

orbitals, in double or triple bonds [148, 149]. These are the most easily excited electrons and 

are responsible for most of the electronic spectra in the UV and visible regions [148, 149]. 

The molecules that contain π electrons or non-bonding electrons can absorb energy in 

the range of ultraviolet or visible light to excite these electrons to unoccupied anti-bonding 

orbitals, which correspond to the energy level of the excited state (σ* or π orbitals) [148, 149]. 

Therefore, the absorption of radiation results in an electronic transition to an anti-bonding 

orbital. The most common transitions are from π or n orbitals to π* orbitals, and these are 

represented by π → π* and n → π* transitions [148, 149]. 

For the UV-Vis characterization of thin films, deposited on ITO substrates, through UV-

Vis optical absorption spectroscopy, a VarianCary 100 spectrophotometer was used. The 

spectrophotometer basically consists of two lamp that produces different wavelengths 

(deuterium lamp - 200 to 400 nm and tungsten lamp – 400 to 700 nm + NIR), a selector 

(diffraction grating) that selects the wavelengths, the sample holder and a detector to determine 

the intensity with which the sample is traversed for the different wavelengths of incident light, 

providing, per wavelength, the absorption of light. These measurements were taken from the 
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incidence of light in the range of 200 to 800 nm. The results are presented in the form of unit 

absorbance.  

 

4.1.3 Cyclic Voltammetry Measurements 

Electrochemistry is a powerful tool to probe reactions involving electron transfers [149, 

150]. Among electrochemical techniques, CV is a powerful and popular technique commonly 

employed to investigate the reduction and oxidation processes of molecular species. By the 

measurement of the electric current as a function of the applied voltage, under proper conditions 

that promote the polarization of a reference electrode, or a work electrode [149, 150]. CV is a 

potential-controlled "reversal" electrochemical experiment, whereas a stationary electrode, 

immersed in a solution without stirring, provides a current as a function of a triangle–shaped 

excitation potential signal [149, 150]. A linear voltage sweep between two defined values is 

initially applied. It first goes to the maximum and then returns to the initial value at the same 

rate [149, 150]. When the applied potential polarizes the electrode surface positively, oxidation 

occurs, while the opposite direction (negatively polarizes) occurs the reduction of the species 

present at the electrode interface [149, 150]. The oxidation and reduction currents are limited 

by mass transport of analyte from the bulk to the diffuse double layer interface [149, 150].  

The ‘duck-shaped’ plot generated by cyclic voltammetry is called a cyclic 

voltammogram [149, 150]. The Figure 18 shows important variables in a cyclic voltammogram 

as the cathodic peak potential (Epc), the anodic peak potential (Epa), the cathodic peak current 

(ipc), and the anodic peak current (ipa) [149, 150]. In the ipa current reaches peak maximum 

(point c) for oxidation at the Epa, and the process for reduction mirrors that for the oxidation, 

only with an opposite scan direction and an ipc at the Epc (point f) [149, 150]. 
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Figura 18. The ‘duck-shaped’ plot generated by cyclic voltammetry. 

 

Source: Extracted from [151]. 

In this work, the CV measurements were carried out using an μAutolab Tipo III 

potentiostat/galvanostat, in a potential range of –1.0 to 1.5 V with a scan rate of 50 mV/s. This 

excitation cycle was repeated three times. The supporting electrolyte was a solution of 0.1 

mol/L tetrabutylammonium perchlorate (TBAP) in acetonitrile (ACN). The cell was composed 

of an Ag/AgCl/KCl as the reference electrode, a platinum wire as the counter electrode and cast 

and LS films over ITO substrates as the working electrode. ITO substrates have geometric 

surface area equal to 1 cm2 and sheet resistance between 5 and 15 Ω. The schematic 

representation setup is shown in Figure 19. 

Figure 19. An electrochemical cell setup for CV experiments. 

 

Source: Extracted from [150].  
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CHAPTER 5 

5. Orbital energy modeling for electron donor and acceptor molecules 

The energy of the frontier molecular orbitals (HOMO and LUMO) of organic molecules 

affect a set of distinct OSCs parameters, as short circuit current and open-circuit voltage, linked 

with power conversion efficiency [152, 153]. Originally, the VOC parameter is proportional to the 

difference between the energy of the HOMO of the p-type material and the LUMO of the n-

type one [152, 153]. On the other hand, in order to have a charge transfer (with less energy 

losses) in place, a threshold value of about 0.2-0.5 eV in energy gap of the p-type LUMO and 

n-type LUMO should be respected [152, 153]. So, when the LUMO of the n-type is raised to 

reduce the energy gap between it and the LUMO of the p-type, then the offset energy brought 

by the junction is reduced and the Voc further improved [152, 153]. 

Therefore, computational methods are relevant tools to estimate these specific HOMO 

and LUMO values. In this context, DFT generally predicts the energy levels and molecular 

geometries in most organic molecules with high accuracy and yields a qualitatively and often 

also quantitatively correct picture of the electronic structure of molecules [154, 155]. The 

hybrid functional B3LYP is the most frequently used functional in quantum chemistry 

calculations and has reasonable accuracy at affordable computational costs [155, 156]. So, 

B3LYP was used in this work, and all initial calculations were performed using the Gaussian 

09 program package with, a relatively small and computationally cheap, 6-31G(d) basis set 

[157]. The geometry was optimized in the neutral singlet ground state and all computations 

considered only the isolated monomer in vacuum. The optical parameters of the small 

molecules were investigated using the TD-DFT. After the DFT calculations, the optimized 

chemical structure and the values of HOMO and LUMO were obtained.  

Figures 20 and 21 present the optimized structures and molecular orbitals for PBDB-T 

monomer. The values obtained from DFT calculations for the HOMO and LUMO were -5.02 

and -2.35 eV, respectively. Using the same basis set, Lu et al. obtained -4.932 and -2.302 eV 

values for the HOMO and LUMO, respectively. The difference between the results is small and 

probably due to the calculations carried out by Lu et al. substitute the alkyl branches by ethyl 

groups to save computing resources [158]. On the experimental side, Qian et al. obtained -5.23 

and -3.18 eV for HOMO and LUMO, respectively, by CV measurements [135].  
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Figure 20. Optimized structure of PBDB-T monomer. 

 

Source: Elaborated by the author. 

Figure 21. HOMO (to the left) and LUMO (to the right) orbitals of PBDB-T monomer.  

 

Source: Elaborated by the author. 

Figures 22 and 23 present the optimized structure and molecular orbitals for PM6 

monomer. The values obtained from DFT calculations for the HOMO and LUMO were -5.12 

and -2.46 eV, respectively. Using DFT/6-31G(d,p) basis set, Zhang et al. obtained -5.0 and                        

-2.62 eV values for the HOMO and LUMO, respectively, and using CV measurements obtained 

-5.45 eV for HOMO and -3.65 eV for LUMO [136]. Zhang et al. carried out calculations on a 

dimer and added the light atoms (letter p) in the basis set, which is the main reason for the small 

difference between our results and theirs [136].   
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Figure 22. Optimized structure of PM6 monomer. 

 

Source: Elaborated by the author. 

Figure 23. HOMO (to the left) and LUMO (to the right) orbitals of PM6 monomer. 

 

Source: Elaborated by the author. 

Figures 24 and 25 present the optimized structure and molecular orbitals for PTB7-Th 

monomer. For PTB7-Th molecule, the values obtained from DFT calculations for the HOMO 

and LUMO were -5.12 and -2.27 eV, respectively. In studies carried out by Liao et al. using 

DFT/6-31G+(d,p) basis set, the values of HOMO and LUMO were -5.13 and -2.23 eV, and by 

CV measurements were -5.22 eV and -3.64 and, respectively [137]. Our DFT results are slightly 

different from those reported by Zhang et al., who used a larger basis function by adding diffuse 

functions (signal +) and the light atoms (letter p). 
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Figure 24. Optimized structure of PTB7-Th monomer. 

 

Source: Elaborated by the author. 

Figure 25. HOMO (to the left) and LUMO (to the right) orbitals of PTB7-Th monomer. 

                   

Source: Elaborated by the author. 

Figures 26 and 27 present the optimized structure and molecular orbitals for Y6 

monomer. The values obtained from DFT calculations for the HOMO and LUMO were -5.55 

and -3.51 eV, respectively. In studies carried out by Cui et al. using DFT/6-31G(d,p) basis set, 

the values of HOMO and LUMO were -5.60 and -3.55 eV, and by CV measurements by Yuan 

et al. were -5.56 and -3.50 eV, respectively [140, 159]. Even adding the light atoms in the basis 

set, our results is are slightly different, mainly for the value of LUMO, from those reported by 

Cui et al. 
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Figure 26. Optimized structure of Y6 monomer. 

 

Source: Elaborated by the author. 

Figure 27. HOMO (to the left) and LUMO (to the right) orbitals of Y6 monomer. 

 

Source: Elaborated by the author. 

Figures 28 and 29 present the optimized structure and molecular orbitals for ITIC 

monomer. The values obtained from DFT calculations for the HOMO and LUMO were -5.46 

and -3.35 eV, respectively. The values of HOMO and LUMO, obtained by Lv et al. using 

DFT/6-31G(d,p) basis set, were -5.49 and -3.37 eV, and by CV measurements, carried out by 

Lin et al., were -5.48 and -3.83 eV, respectively [141, 160]. 
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Figure 28. Optimized structure of ITIC monomer. 

 
Source: Elaborated by the author. 

Figure 29. HOMO (to the right) and LUMO (to the left) orbitals of ITIC monomer. 

 

Source: Elaborated by the author. 

Figures 30 and 31 present the optimized structure and molecular orbitals for O6T-4F 

monomer. The values obtained from DFT calculations for the HOMO and LUMO were -5.37 

and -3.52 eV, respectively. The values of HOMO and LUMO, obtained by Xiao et al. using CV 

measurements were -5.50 and -3.88 eV, respectively [142]. 
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Figure 30. Optimized structure of O6T-4F monomer. 

 

Source: Elaborated by the author. 

Figure 31. HOMO (to the right) and LUMO (to the left) orbitals of O6T-4F monomer. 

 

Source: Elaborated by the author. 

Figures 32 and 33 present the optimized structure and molecular orbitals for PC71BM 

monomer. The values obtained from DFT calculations for the HOMO and LUMO were -5.55 

and -3.51 eV, respectively. The values of HOMO and LUMO, obtained by Pal et al. using 

DFT/6-31G+(d,p), were -5.99 and -3.49 eV, respectively, and by CV measurements, obtained 

by Pan et al., were -5.96 and -3.90 eV, respectively [161, 162]. 
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Figure 32. Optimized structure of PC71BM monomer. 

 

Source: Elaborated by the author. 

Figure 33. HOMO (to the right) and LUMO (to the left) orbitals of PC71BM monomer. 

 

Source: Elaborated by the author. 

Table 1 sets up the results from DFT/B3LYP/6-31G(d) for donors and acceptors. 

Table 1. HOMO and LUMO values obtained by DFT/B3LYP/6-31G(d) method. 

Method 
Molecules 

DFT/B3LYP/6-

31G(d) PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -5.02 -5.12 -5.12 -5.55 -5.46 -5.37 -5.55 

LUMO (eV) -2.35 -2.46 -2.27 -3.51 -3.35 -3.52 -3.51 

Source: Elaborated by the author. 
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Using the mean signed error (MSE) is possible determine how well our theoretical 

energy values estimated match the experimental energy values from literature. In the donor 

molecules, the MSE for HOMO energies is equal to -0.213 eV and for LUMO is 1.13 eV. For 

the acceptors, the MSE for HOMO energies is -0.165 eV and for LUMO is 0.46 eV. Analyzing, 

for both donor and acceptor molecules, B3LYP gives good correlation to experimental HOMO 

energies, and for the LUMO, B3LYP gives better estimations than in donors, however the 

correlation is still poor. This situation is not surprising given all problems that the quantum 

methods have to calculate virtual orbitals. 

An alternative to try better estimate the LUMO values is to perform TD-DFT 

calculations. Table 2 presents the results from TD-DFT/B3LYP/6-31G(d). In donors, the MSE 

for LUMO energies is 1.09 eV and for acceptors is 0.46 eV, so, despite the TD-DFT 

calculations, B3LYP continues giving a poor correlation for LUMO values.  

Table 2. HOMO and LUMO values obtained by TD-DFT/B3LYP/6-31G(d) method. 

Method 
Molecules 

TD-

DFT/B3LYP/6-

31G(d) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -5.02 -5.12 -5.13 -5.56 -5.46 -5.37 -5.56 

LUMO (eV) -2.35 -2.46 -2.39 -3.50 -3.35 -3.52 -3.50 

Source: Elaborated by the author. 

In the literature, it is found that the TD-DFT/CAM-B3LYP method can better describe 

the excited states than B3LYP method [89, 127]. So, a series of calculations was performed by 

DFT/CAM-B3LYP and TD-DFT/CAM-B3LYP methods using 6-31G(d) basis set, and the 

results are present in Tables 3 and 4. Using TD-DFT/CAM-B3LYP method, in donors, the MSE 

for LUMO energies is equal to 2.33 eV, and for acceptors, the MSE for LUMO is 1.57 eV. 

Thus, for this set of molecules, the correlation for TD-DFT/CAM-B3LYP method is much poor 

than B3LYP.  
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Table 3. HOMO and LUMO values obtained by DFT/CAM-B3LYP/6-31G(d) method. 

Method 
Molecules 

TD-

DFT/CAM-

B3LYP/6-

31G(d) 

PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.30 -6.43 -6.39 -6.60 -6.54 -6.44 -6.62 

LUMO (eV) -1.19 -1.23 -1.06 -2.51 -2.30 -2.50 -2.11 

Source: Elaborated by the author. 

Table 4. HOMO and LUMO values obtained by TD-DFT/CAM-B3LYP/6-31G(d) method. 

Method 
Molecules 

TD-

DFT/CAM-

B3LYP/6-

31G(d) 

PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.20 -6.66 -6.40 -6.60 -6.54 -6.44 -6.62 

LUMO (eV) -1.30 -1.39 -1.30 -2.51 -2.30 -2.50 -2.11 

Source: Elaborated by the author. 

As the CAM-B3LYP functional failed to predict the values of HOMO and LUMO, it 

was necessary to use another functional. The problem in predict LUMO values may be related 

to what can be described as the many-electron self-interaction error (MSIE) or the 

localization/delocalization error, wherein this error directly influences the DFT description of 

the ground and excited states [163, 164]. Where, one of the major issues of global hybrid 

functionals with a fixed fraction of HF exchange is to find a good trade-off between semilocal 

and HF exchange [163, 164]. On the other hand, full HF exchange is needed for a complete 

correction of self-interaction and, thus, a correct description of the asymptotic region of the xc 

potential [163, 164]. On the other hand, however, semilocal exchange is known to mimic short-

range static correlation effects that are important for chemical bonding [163, 164]. So, global 

hybrids must choose between semilocal and HF exchange. One way to try to correct this error 

is using range-separated hybrid functionals that have the correct asymptotic behavior and 

system-specific range-separation parameters [163, 164]. Therefore, a series of calculations were 



 
 

96 
 

carried out using the ωB97-XD functional with 6-31G(d) basis set, in addition to TD-DFT 

calculations. 

The results from HOMO and LUMO values obtained by ωB97-XD and TD-ωB97-XD 

are presented in Tables 5 and 6. For both donor and acceptor molecules, the MSE values for 

HOMO and LUMO was the same for independent and time-dependent approaches. In the donor 

molecules, the MSE for HOMO energies is equal to -1.68 eV and for LUMO is 2.84 eV. For 

the acceptors, the MSE for HOMO energies is -1.48 eV and for LUMO is 2.05 eV. Even with 

all corrections presented by ωB97-XD functional, the results of the correlations are poorer than 

B3LYP and CAM-B3LYP functionals.  

Table 5. HOMO and LUMO values obtained by DFT/ωB97-XD/6-31G(d) method. 

Method 
Molecules 

DFT/ωB97-

XD /6-31G(d) PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.91 -7.025 -7.00 -7.15 -7.12 -7.00 -7.24 

LUMO (eV) -0.64 -0.745 -0.56 -2.012 -1.80 -2.00 -1.68 

Source: Elaborated by the author. 

Table 6. HOMO and LUMO values obtained by TD-DFT/ωB97-XD/6-31G(d) method. 

Method 
Molecules 

DFT/TD-

ωB97-XD /6-

31G(d) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.91 -7.025 -7.00 -7.15 -7.12 -7.00 -7.24 

LUMO (eV) -0.64 -0.745 -0.56 -2.012 -1.80 -2.00 -1.68 

Source: Elaborated by the author. 

After a series of calculations using different functionals and maintaining the 6-31G(d) 

basis it was possible to set up a diagram energy for independent (Figure 34 and 36) and time-

dependent (Figure 35 and 37) values.  
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Figure 34. Diagram energy obtained by DFT methods for donor molecules. 

 

Source: Elaborated by the author. 

Figure 35. Diagram energy obtained by TD-DFT methods for donor molecules. 

 

Source: Elaborated by the author. 
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Figure 36. Diagram energy obtained by DFT methods for acceptor molecules. 

 

Source: Elaborated by the author. 

Figure 37. Diagram energy obtained by TD-DFT methods for acceptor molecules. 

 
Source: Elaborated by the author. 

As 6-31G(d) is a small basis set, it has some limitations to describe the energy of the 

frontier molecular orbitals. So a new series of calculations were carried out using larger basis 

set, such as: 6-31G(d,p) and 6-311G(d,p), in B3LYP, CAM-B3LYP and ωB97-XD functionals. 

Tables 7 - 18 summarize the results coming from all these series of calculations.  
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Table 7. HOMO and LUMO values from DFT/B3LYP/6-31G(d,p) method. 

Method 
Molecules 

DFT/ 

B3LYP/6-

31G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -5.03 -5.13 -4.41 -5.56 -5.47 -5.37 -5.6 

LUMO (eV) -2.36 -2.47 -2.29 -3.52 -3.36 -3.53 -3.06 

Source: Elaborated by the author. 

Table 8. HOMO and LUMO values from TD-DFT/B3LYP/6-31G(d,p) method. 

Method 
Molecules 

DFT/ TD-

B3LYP/6-

31G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -5.03 -5.13 -4.41 -5.56 -5.47 -5.37 -5.6 

LUMO (eV) -2.36 -2.47 -2.29 -3.52 -3.36 -3.53 -3.06 

Source: Elaborated by the author. 

Table 9. HOMO and LUMO values from DFT/CAM-B3LYP/6-31G(d,p) method. 

Method 
Molecules 

DFT/ CAM-

B3LYP/6-

31G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.30 -6.30 -5.92 -6.61 -6.54 -6.45 -6.62 

LUMO (eV) -1.20 -1.47 -1.29 -2.52 -2.31 -2.70 -2.12 

Source: Elaborated by the author. 
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Table 10. HOMO and LUMO values from TD-DFT/CAM-B3LYP/6-31G(d,p) method. 

Method 
Molecules 

DFT/ TD-

CAM-

B3LYP/6-

31G(d,p) 

PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.30 -6.30 -5.92 -6.61 -6.54 -6.45 -6.62 

LUMO (eV) -1.20 -1.47 -1.29 -2.52 -2.31 -2.70 -2.12 

Source: Elaborated by the author. 

Table 11. HOMO and LUMO values from DFT/ωB97-XD /6-31G(d,p) method. 

Method 
Molecules 

DFT/ ωB97-

XD/6-

31G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.93 -7.03 -7.00 -7.16 -7.12 -7.00 -7.24 

LUMO (eV) -0.65 -0.757 -0.57 -2.016 -1.81 -2.00 -1.68 

Source: Elaborated by the author. 

Table 12. HOMO and LUMO values from DFT/TD-ωB97-XD/6-31G(d,p) method. 

Method 
Molecules 

DFT/ TD- 

ωB97-XD /6-

31G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.93 -7.03 -7.00 -7.16 -7.12 -7.00 -7.24 

LUMO (eV) -0.65 -0.757 -0.57 -2.016 -1.81 -2.00 -1.68 

Source: Elaborated by the author. 
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Table 13. HOMO and LUMO values from DFT/B3LYP /6-311G(d,p) method. 

Method 
Molecules 

DFT/ 

B3LYP/6-

311G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -5.30 -5.38 -5.36 -5.98 -5.69 -5.61 -5.98 

LUMO (eV) -2.60 -2.67 -2.47 -3.76 -3.58 -3.76 -3.46 

Source: Elaborated by the author. 

Table 14. HOMO and LUMO values from DFT/TD-B3LYP/6-311G(d,p) method. 

Method 
Molecules 

DFT/ TD-

B3LYP/6-

311G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -5.30 -5.38 -5.36 -5.98 -5.69 -5.61 -5.98 

LUMO (eV) -2.60 -2.67 -2.47 -3.76 -3.58 -3.76 -3.46 

Source: Elaborated by the author. 

Table 15. HOMO and LUMO values from DFT/CAM-B3LYP/6-311G(d,p) method. 

Method 
Molecules 

DFT/ CAM-

B3LYP/6-

311G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.47 -6.30 -6.68 -6.83 -6.76 -6.65 -6.62 

LUMO (eV) -1.52 -1.47 -1.36 -2.77 -2.54 -2.90 -2.12 

Source: Elaborated by the author. 
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Table 16. HOMO and LUMO values obtained by DFT/TD-CAM-B3LYP/6-311G(d,p) 

method. 

Method 
Molecules 

DFT/ TD-

CAM-

B3LYP/6-

311G(d,p) 

PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -6.47 -6.30 -6.68 -6.83 -6.76 -6.65 -6.62 

LUMO (eV) -1.52 -1.47 -1.50 -2.77 -2.54 -2.90 -2.12 

Source: Elaborated by the author. 

Table 17. Table 17. HOMO and LUMO values obtained by DFT/ωB97-XD/6-311G(d,p) 

method. 

Method 
Molecules 

DFT/ωB97-

XD/6-

311G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -7.071 -7.27 -7.23 -7.35 -7.29 -7.21 -7.24 

LUMO (eV) -0.88 -0.888 -0.74 -2.22 -1.99 -2.18 -1.68 

Source: Elaborated by the author. 

Table 18. HOMO and LUMO values obtained by DFT/TD-ωB97-XD/6-311G(d,p) method. 

Method 
Molecules 

DFT/TD-

ωB97-XD/6-

311G(d,p) 
PBDB-T PM6 PTB7-Th Y6 ITIC OT6-4F PC71BM 

HOMO (eV) -7.071 -7.27 -7.23 -7.35 -7.29 -7.21 -7.24 

LUMO (eV) -0.88 -0.888 -0.74 -2.22 -1.99 -2.18 -1.68 

Source: Elaborated by the author. 
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For all these series of calculations, the MSE values for HOMO and LUMO of donor and 

acceptor molecules were the same for time-independent and time-dependent approaches. Table 

19 set up all MSE results from HOMO and LUMO from all DFT calculations. It is possible 

observe that, for all calculations, the calculated LUMO energy, consistently gives values that 

are less negative (higher lying) than those experimentally determined. From MSE values, the 

B3LYP functional together with 6-311G(d,p) basis set give the best values for HOMO and 

LUMO, but the problem of obtaining more accurate values for LUMO remains, even for 

approaches based on 6-311G(d,p) basis set. So, such results highlight that 6-31G(d) small basis 

set can provide good values for energy levels from frontier molecular orbitals, in addition to 

saving computational resources. 

Table 19. The MSE results from HOMO and LUMO from all DFT calculations. 

 
MSE 

Donors Acceptors 

Functional/Basis set HOMO (eV) LUMO (eV) HOMO (eV) LUMO (eV) 

B3LYP/6-31G(d) -0.213 1.13 -0.165 0.46 

B3LYP/6-31G(d,p) -0.443 1.11 -0.147 0.65 

B3LYP/6-311G(d,p) -0.047 0.91 -0.167 0.29 

CAM-B3LYP/6-31G(d) -1.073 2.33 -0.90 1.57 

CAM-B3LYP/6-31G(d,p) -0.873 2.17 -0.91 1.51 

CAM-B3LYP/6-311G(d,p) -1.183 2.04 -1.07 1.345 

ωB97-XD/6-31G(d) -1.68 2.84 -1.48 2.055 

ωB97-XD/6-31G(d,p) -1.40 2.83 -1.48 2.052 

ωB97-XD/6-311G(d,p) -1.89 2.654 -1.63 2.41 

Source: Elaborated by the author. 

The same problem in estimating LUMO values for conjugated polymers was reported 

by McCormick. Where they presented a series of DFT/B3LYP computations for 22 different 

conjugated polymer model compounds, and the MSE for LUMO energies was equal to 0.59 

eV. Therefore, an alternative presented was calculate the molecular orbital energy in the triplet 

state, with the molecules being optimized in the neutral singlet ground state and then the single 

point energy being calculated in the triplet state, both were calculated with B3LYP/6-311G(d). 
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The MSE was equal to −0.13 eV for energy of the αHOMO of the triplet state, thereby, giving 

the best correlation with experiment, and, so, αHOMO energy of the triplet state energy is most 

accurately approximated from the LUMO.  

So, another alternative was carried out calculations in the triplet state for our systems. 

As in the singlet state, all B3LYP/6-31G(d) computations considered only the isolated 

monomer in vacuum. Here we add one more step to what was proposed by McCormick et al., 

before to obtain the energy of the αHOMO, the molecules also were optimized in the neutral 

triplet state after being optimized in the neutral singlet ground state.  

Figures 38 and 39 present the αHOMO energy of the triplet state for donors and 

acceptors, respectively, compared to energy levels in singlet state. In triplet state, the MSE for 

the energy of the αHOMO in donors and acceptors is equal to -0.22 and -0.47 eV, respectively. 

So, for donors, the LUMO energy is most accurately approximated from the αHOMO energy 

of the triplet state, but, in relation to the donors, the correlation worsens compared to singlet 

state.  

Figure 38. Energy diagram comparing HOMO and LUMO values in singlet and triplet states 

for donor molecules. 

 
Source: Elaborated by the author. 
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Figure 39. Energy diagram comparing HOMO and LUMO values in singlet and triplet states 

for acceptor molecules. 

 

Source: Elaborated by the author. 
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CHAPTER 6 

6. Polyfullerenes 

6.1 Langmuir-Schaefer thin films  

The study of PCBM and its derivatives using Langmuir techniques aims to characterize 

the nanostructure of the material which is spread as very thin layers at the water–air interface. 

Figure 40 shows the surface pressure versus the mean area isotherms (π–A) of HSS8 and 

HSS16, both of them previously solubilized in either chloroform or xylene (0.2 mg/mL). 

Figure 40. π–A isotherms of HSS8 (to the up) and HSS16 (to the down). 

 

Source: Elaborated by the author. 
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As the materials are based on PCBM, it is compelling to start with the interpretation of 

PCBM isotherms because it is possible to find many literature reports regarding fullerene-type 

monolayers [165, 166]. According to the literature, in PCBM isotherms, it is possible notice the 

absence of the usual sharp phase transitions of the typical molecule isotherms, and this is a 

strong indication that this is a liquid-expanded isotherm (according to Harkins’ classification), 

so, the isotherms show a strong indication of the formation disordered aggregates onto the 

aqueous subphase [165, 166]. The cross-surface area of PCBM is 100 Å2 and the estimated area 

from the π–A isotherms range from 9.0 to 30 Å2; this means that there is a strong aggregation 

of PCBM regardless of the solvent used [165, 166].  

These results may be due the functional group of the molecule generally is oriented 

toward the water, a vertical build-up of the molecules in the air–water interface, and this can be 

a major contribution for the area, and therefore the apparent values are reduced [165, 166]. As 

reported by Roncaselli et al., the mean area for the PCBM is 23 and 9 Å2 for chloroform and 

xylene solutions, respectively, suggesting that water surfaces are less appealing to the PCBM 

when coming from these solutions [166]. Surprisingly, even when in good non-polar solvents 

such as xylene, one cannot ignore the possibility that PCBM readily forms very small 

nanoaggregates of several units that arises from the strong fullerene-fullerene interactions, 

hindering the formation of a true monolayer [166].  

In Figure 40, it is possible to see the pristine polyfullerenes with isotherms attained at 

the Langmuir trough. The area per monomer found for HSS8 was 48 and 12 Å2 for chloroform 

and xylene solution, respectively, while, for HSS16 was 126 and 33 Å2 for chloroform and 

xylene solution, respectively. In regard to the isotherms, it can be observed that the polymers, 

like the PCBM, can be classified as a liquid-expanded type, not achieving the phase related to 

a condensed phase either [165, 166]. However, the overall isotherm behaviors are quite 

divergent from one another. The HSS8, both chloroform and xylene solution, presents no 

distinct phase transitions and has a rather steady upward trend until it reaches the collapse 

pressure. The collapse pressure for chloroform is 62 mN/m, while, for xylene, the isotherm does 

not reach the collapse pressure. While the HSS16, the collapse pressure for chloroform is 52 

mN/m, and, again, for xylene, the isotherm does not reach the collapse pressure. A possible 

explanation is that the arrangement and interaction of these materials on the aqueous surface 

change according to the functional group of each material, which is generally water-oriented, 

explaining the differences between the areas obtained in the analysis of isotherms, with HSS16 

showing the largest area and HSS8 showing the intermediate area in relation to the area of the 
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PCBM [165, 166]. Through Tables 20 and 21, a relationship can be established between the 

solvent used and the molecular area obtained in the study of isotherms. The use of different 

solvents changes the arrangement of molecules because these materials have a low solubility in 

chloroform, so we found a relatively larger area, while for the xylene solvent, these areas 

decreased considerably, indicating higher solubility and lower level of aggregation [166]. 

Table 20. Solubility values for C60 in different solvents. 

Solvent Solubility of C60 

(mg/ml) 

Chloroform 0.16 

Xylene 5.2 

Source: Elaborated by the author. 

Table 21. Area per molecule for different types of polyfullerene solutions. 

Solution 
Area per molecule (Å2) 

PCBM HSS8 HSS16 

Chloroform 23 48 126 

Xylene 9 12 33 

Source: Elaborated by the author. 

Since there is no previous literature from these exact polymers, to estimate monomer 

areas, were carried out the theoretical calculations using DFT/B3LYP/6-31+G(d) method for 

optimizations of geometries and energies. Calculations were performed using the Gaussian 09 

program package. DFT calculations were combined with the Grimme's D3 method to account 

for longer range dispersion interactions. Using the same parameters, Roncaselli et al. carried 

out the calculations for C60 and PCBM [166].  

According to the DFT/6-31+G(d) results presented in Figure 41, HSS8 and HSS16 have 

structural differences. HSS16 has an elongation (i) in the ‘X’ direction of about 34% compared 

to HSS8; (ii) in the ‘Y’ direction, has an elongation direction of about 19% compared to HSS8; 

and (iii) in the ‘Z’ direction, HSS8 has a strong shortening of about 6%. Table 22 presents the 

areas of the monomers calculated based on the DFT results. To avoid 'crossing' each other, the 

arms of the HSS16 molecules (although surrounding mostly the fullerene) start to extend. We 

found that the calculated molecular areas are all higher than the ones estimated in the π–A 

isotherms of Figure 40 and Table 21, indicating that both materials aggregate in the Langmuir 
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trough. In spite of this, the areas obtained by DFT are smaller in ‘XY’ and ‘XZ’ planes than 

that in the ‘YZ’ plane, which suggests an orientation closer to a ‘XY’ or ‘XZ’ configuration 

against the air–water interface. Another important point is the volume occupied by these 

materials; HSS8 is 42% smaller than HSS16, which is a significant difference. These results go 

in the same direction as those obtained for Roncaselli et al. studying PCBM-based oligomers 

[166].  

Figure 41. Theoretical DFT model of the disposition of HSS8 and HSS16 monomers in 

different orientations. 

 

Source: Elaborated by the author. 

Table 22. Structural parameters, areas and volumes of C60, PCBM, HSS8 and HSS16 

monomers extracted by DFT calculations. 

 Structural parameters (Å) 
Area in different orientations 

(Å2) 

Volume 

(Å3) 

Materials X Y Z XY YZ XZ XYZ 

C60 7.02 6.90 6.88 48.4 47.5 48.3 333.2 

PCBM 14.79 9.82 6.96 145.2 68.4 102.9 1010.9 

HSS8 12.24 15.58 16.62 190.7 258.9 203.4 3169.4 

HSS16 18.52 19.18 20.82 355.2 399.3 385.6 7395.5 

Source: Elaborated by the author. 
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Complementary calculations were carried out under an implicit model of the solvent 

(Polarizable Continuum Model, PCM), making it possible to implicitly average the degrees of 

freedom of the solvent and to treat the electrostatic interactions (generally dominant in the 

solvation) for C60, PCBM, HS88 and HSS16 systems. These new calculations show that neither 

the volumes nor the calculated surfaces are modified whatever the considered the chloroform.  

The results from chloroform effects, reveal an important information, i.e., that it is not 

the electrostatic interactions that govern the behavior of the HSS8 and HSS16 molecules in the 

solutions in our experiments as xylene and chloroform. The dielectric constant of chloroform 

and xylene is 4.809 and 2.562, respectively [167]. The origin of the observed differences 

between the PCM calculations and the experiments is, therefore, to be found elsewhere and in 

particular in the absence of explicit consideration of the first solvation layer in the PCM model. 

Because of its smaller size and the presence of chlorine, chloroform is, of the two solvents used 

in this work, the one that will most likely favor the setting up of these interactions by inserting 

itself more easily into the structures of the HSS8 and HSS16 molecules, automatically 

increasing the volume and the surfaces of these systems [166]. 

 

6.2 Cyclic Voltammetry 

CV is a sophisticated tool to analyze the redox processes of a molecular species, and 

these processes provide a way to investigate the electronic bandgap diagram of the chosen 

material [168, 169]. Whereas the HOMO and LUMO of a material are related to the ionization 

potential (by oxidation potential) and the electron affinity (by reduction potential), respectively 

[168, 169]. Figures 42 to 45 show the cyclic voltammograms for cast and LS films of the HSS8 

and HSS16 materials, solubilized in chloroform and xylene, on an ITO substrate, in a 0.1 mol/L 

solution of TBAP in acetonitrile, the sweeping was carried out at a scan rate of 50 mV/s. 
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Figure 42. Cyclic voltammogram for cast films of HSS8 solubilized in chloroform (to the 

left) and xylene (to the right). 

 

Source: Elaborated by the author. 

Figure 43. Cyclic voltammogram for LS films of HSS8 (30 layers) solubilized in chloroform 

(to the left) and xylene (to the right). 

 

Source: Elaborated by the author. 

Figure 44. Cyclic voltammogram for cast films of HSS16 solubilized in chloroform (to the 

left) and xylene (to the right). 

 

Source: Elaborated by the author. 
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Figure 45. Cyclic voltammogram for LS films of HSS16 (30 layers) solubilized in 

chloroform (to the left) and xylene (to the right). 

 

Source: Elaborated by the author. 

In the cyclic voltammograms shown in Figure 42, it is possible to observe that the cast 

film of HSS8 solubilized in chloroform has three oxidation peaks at -0.41, 0.22 and 1.18 V, and 

a reduction peak at -0.61 V. In the cast film solubilized in xylene, it has two oxidation peaks at 

0.15 and 1.18 V, and a reduction peak at -0.50 V. The LS film of HSS8 solubilized in 

chloroform (Figure 43) has two oxidation peaks at 0.19 V and 1.25 V, and a reduction peak at 

-0.54 V, while the LS film solubilized in xylene (Figure 43) shows the same pattern, with two 

reduction peaks at 0.21 and 1.25 V, and a reduction peak at -0.57 V.  

For the HSS16 films, from the cyclic voltammograms in Figure 44, it is possible to 

observe that the cast film solubilized in chloroform has two oxidation peaks at 0.17 and 1.36 

V, and a reduction peak at -0.59 V. The cast film solubilized in xylene shows the same pattern, 

however, with two oxidation peaks at 0.11 and 1.21 V, and a reduction peak at -0.57 V. The LS 

film solubilized in chloroform (Figure 45) has three oxidation peaks at -0.50, 0.21 and 1.18 V, 

and a reduction peak at -0.62 V, while the LS film solubilized in xylene (Figure 45) has two 

reduction peaks at 0.18 and 1.18 V, and a reduction peak at -0.50 V. 

Since the measurements were carried out in solution and not under vacuum, the values 

must be corrected for each type of reference electrode and solution that was employed. The 

voltammograms show the ionization potential of the thin films at the point where the start of 

the current increase (onset) occurs before the first oxidation peak. For the 

HSS8/Cast/Chloroform and HSS16/LS/Chloroform films, the onset before the second oxidation 

peak was used, due to the difficulty in accurately determine the onset before the first oxidation 

peak. The energy level for the HOMO can be calculated through the relation 𝐸𝐻𝑂𝑀𝑂 =
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−(𝐸𝑂𝑋
′ + 4.40), and for the Ag/AgCl/KCl electrode, the correction of 4.40 eV was made 

[170,171].  

From the voltammograms, the 𝐸𝐻𝑂𝑀𝑂 calculated for the cast films of the HSS8, 

solubilized in chloroform and xylene, for the first oxidation peak is the same for both and equal 

to -4.23 eV, and for the second oxidation peak also the same for both and equal to -5.16 eV. 

This same pattern is observed for the first oxidation peak in the LS films of HSS8, where in 

both chloroform and xylene, the 𝐸𝐻𝑂𝑀𝑂 calculated for is- 4.12 eV, for the second oxidation 

peak is -5.28 and -5.37 eV for HSS8 in chloroform and xylene, respectively. The HSS16 films 

also shows the same pattern as HSS8 films for the first oxidation peak, where for the cast films 

solubilized in chloroform and xylene, the 𝐸𝐻𝑂𝑀𝑂 calculated is -4.16 eV, and for the second 

oxidation peak is -5.36 and -5.17 eV in chloroform and xylene, respectively. For LS films 

solubilized in chloroform, the 𝐸𝐻𝑂𝑀𝑂 calculated is -4.17 and -5.20 eV for the first and second 

oxidation peak, respectively, and in xylene is -4.15 and -5.28 eV for the first and second 

oxidation peak, respectively. 

It was not possible to estimate the electronic affinity in the region of the cathodic 

potential of the voltammograms (related to the LUMO of the considered material) due to the 

difficulty to accurately determine the potentials’ onset for the second reduction peak. In spite 

of the electrochemical bandgap being usually higher than the optical bandgap in conjugated 

polymers, an outcome generally attributed to the formation of free ions in the electrochemical 

experiment rather than a neutral excited state [172]. So, the optical bandgap can be used in 

many cases as an approximation for electronic bandgaps, this was already reported for some 

low-bandgap polymers.  

Thence, the optical bandgap energy (𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

) was obtained from the UV-Vis absorption 

measurements, the wavelength related to the optical bandgap is attained by the edge of the 

absorption spectrum of the film, and allows the calculation of the 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

 [173]. The 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

can be 

calculated through the relation 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡 =

ℎ𝑐

𝜆
=

1240

𝜆
𝑒𝑉, where h represents the Planck’s constant 

in eV·s and c the speed of light in vacuum, in m/s. 

In cast films, the absorption spectrum of HSS8 in chloroform (Figure 46) has two peaks 

at 265 and 355 nm, while in xylene (Figure 46) has three peaks at 227, 277 and 348 nm. Both 

films have a broad absorption maximum between 420 and 540 nm, which is possibly due to the 

presence of two or more absorption bands in that region of the spectrum. For HSS16 in 

chloroform (Figure 48), the absorption spectrum has three peaks at 235, 270 and 350 nm, while 

in xylene (Figure 48) also has three peaks, but at 233, 275 and 348 nm. For both solvents, the 
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broad absorption maximum is in the same range as for the HSS8. The absorption spectrum of 

LS films of HSS8 in chloroform (Figure 47) has three peaks at 200, 270 and 345 nm, while in 

xylene (Figure 47) also has three absorption peaks, but with values at 200, 270 and 348 nm. 

Both films have a broad absorption maximum between 400 and 500 nm. For HSS16 in 

chloroform (Figure 49), has thee peaks at 200, 267 and 340 nm, and in xylene (Figure 49) has 

thee peaks at 209, 267 and 348 nm. Both films have a broad absorption maximum between 400 

and 500 nm.  

Figure 46. Absorption spectra for cast films of HSS8 solubilized in chloroform (to the left) 

and xylene (to the right). 

 

Source: Elaborated by the author. 

Figure 47. Absorption spectra for LS films of HSS8 solubilized in chloroform (to the left) 

and xylene (to the right). 

 

Source: Elaborated by the author. 
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Figure 48. Absorption spectra for cast films of HSS16 solubilized in chloroform (to the left) 

and xylene (to the right). 

 

Source: Elaborated by the author. 

Figure 49. Absorption spectra for LS films of HSS16 solubilized in chloroform (to the left) 

and xylene (to the right). 

 

Source: Elaborated by the author. 

Comparing with PCBM, in its spectrum has three feature peaks of fullerene derivatives, 

the [6-6]-addition at 260 nm, 330 nm (C60) and 430 nm ([6,6]-addition in C60) [174, 175]. In 

LS films, for both solvents, it is possible to observe the peak referring to C60, and the broad 

absorption is an overlapping between the [6,6]-addition in C60 and 1,4-bis adducts (445 nm), 

that would result from the ATRAP due to steric effects [143]. The broad absorption is also 

indicative of the presence of 1,2-adducts (400 nm) [143]. The spectra show more peaks related 

to PCBM, it is related to the large proportion of PCBM contained in the materials can 

overlapping many of the electronic properties of oligomers [143, 176]. 

The use of chloroform and xylene, as solvents, showed a difference in the position of 

the absorption peaks. This show that the solvent influences not only the aggregation as shown 

in the study of isotherms, but also the absorption, in which he found that the propensity to form 
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aggregates depends mainly on solvent polarization and has a direct relationship with the 

maximum absorption [177, 178]. Due to the organization of the films, these peaks and bands 

are more evident in the LS films, and not in the cast films [179]. 

The 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

 determined for the LS film of HSS8 solubilized in chloroform and xylene 

(Figure 47) were 2.38 eV (λonset = 520 nm) for both. For HSS16, the LS film solubilized in 

chloroform (Figure 49) were 2.32 eV (λonset = 535 nm), and for film solubilized in xylene 

(Figure 49) were 2.34 eV (λonset = 530 nm). For cast films of HSS8 solubilized in chloroform 

(Figure 47) were 2.38 eV (λonset = 520 nm), and for the film solubilized in xylene (Figure 47) 

were 2.32 eV (λonset = 534 nm). For HSS16, the cast film solubilized in chloroform (Figure 49) 

were 2.30 eV (λonset = 542 nm), and for film solubilized in xylene (Figure 49) were 2.32 eV 

(λonset = 535 nm). From the 𝐸𝐻𝑂𝑀𝑂 and 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

 computed heretofore, it is conceivable to estimate 

the LUMO energy level, 𝐸𝐿𝑈𝑀𝑂, by means of the relation 𝐸𝐿𝑈𝑀𝑂 = 𝐸𝐻𝑂𝑀𝑂 + 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

. Table 23 

depicts the values aforementioned attained for the films, that will be used to estimate the energy 

diagrams.  

Table 23. Values of oxidation potential, 𝐸𝑔𝑎𝑝
𝑜𝑝𝑡

, 𝐸𝐿𝑈𝑀𝑂 and 𝐸𝐻𝑂𝑀𝑂 for polyfullerene thin films. 

Thin film Solvent 
𝑬𝑯𝑶𝑴𝑶

𝑶𝑿𝑰  

(eV) 
𝑬𝑳𝑼𝑴𝑶

𝑶𝑿𝑰  

(eV) 

𝑬𝑯𝑶𝑴𝑶
𝑶𝑿𝑰𝑰  

(eV) 
𝑬𝑳𝑼𝑴𝑶

𝑶𝑿𝑰𝑰  

(eV) 

𝑬𝒈𝒂𝒑
𝒐𝒑𝒕

 

(eV) 

HSS8/Cast Chloroform -4.23 -1.85 -5.16 -2.78 2.38 

HSS8/Cast Xylene -4.23 -1.91 -5.16 -2.84 2.32 

HSS8/LS Chloroform -4.12 -1.74 -5.28 -2.90 2.38 

HSS8/LS Xylene -4.12 -1.74 -5.37 -2.99 2.38 

HSS16/Cast Chloroform -4.16 -1.86 -5.36 -3.06 2.30 

HSS16/Cast Xylene -4.16 -1.84 -5.17 -2.85 2.32 

HSS16/LS Chloroform -4.17 -1.85 -5.20 -2.88 2.32 

HSS16/LS Xylene -4.15 -1.81 -5.28 -2.94 2.34 

Source: Elaborated by the author. 

Since there is no previous literature from these exact polyfullerenes, to estimate the 

energy of HOMO and LUMO levels of the monomers, were also carried out the theoretical 

calculations using DFT/B3LYP/6-31+G(d) method for optimizations of geometries and 

energies. Calculations were performed using the Gaussian 09 program package. DFT 
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calculations were combined with the Grimme's D3 method to account for longer range 

dispersion interactions. 

According to the DFT/6-31+G(d) results, for HSS8 monomer in vacuum, the 𝐸𝐻𝑂𝑀𝑂 is 

-5.36 eV, and the 𝐸𝐿𝑈𝑀𝑂 is -3.13 eV. Considering the chloroform effects, the 𝐸𝐻𝑂𝑀𝑂 and 𝐸𝐿𝑈𝑀𝑂 

is -5.37 and -3.09 eV, respectively. In vacuum, for HSS16 monomer, the 𝐸𝐻𝑂𝑀𝑂 and 𝐸𝐿𝑈𝑀𝑂 is 

-5.36 and -3.18 eV, respectively, and in chloroform, the 𝐸𝐻𝑂𝑀𝑂 and 𝐸𝐿𝑈𝑀𝑂 is -5.35 and -3.13 

eV, respectively. Comparing with experimental results, it is possible observe that the theoretical 

results are close to the experimental values calculated from the second oxidation peak, and the 

discrepancy between experimental values could be related to the CV measurements contains 

experimental errors and it is noticeable that solid-state packing effects are not included in the 

DFT calculations, which tend to affect the HOMO and LUMO energy levels in a thin film 

compared to an isolated monomer as considered in the calculations [180, 181, 182, 183]. 
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CHAPTER 7 

7. Conclusion 

In this work, in a series of DFT calculations in singlet state, with different functionals 

and basis set, the B3LYP functional together with 6-311G(d,p) basis set give the best values 

for HOMO and LUMO, and 6-31G(d) can be used to provide good values for energy levels 

from frontier molecular orbitals and saving computational resources. For donors, the correlation 

between the LUMO calculated with experimental results is too poor, while for acceptors, is 

acceptable. Faced to the problem in DFT calculations predict accurately LUMO values, DFT 

calculations in triplet states give good correlation for donors, where the LUMO energy is most 

accurately approximated from the αHOMO energy.  

Through the π-A isotherms of polyfullerenes Langmuir films, a strong indication of the 

formation of disordered aggregates in the aqueous subphase is shown, even when in good non-

polar solvents, such as xylene, one cannot ignore the possibility that the PCBM readily form 

nanoaggregates. Thus, a relationship is established between the solvent used and the molecular 

area obtained in the study of isotherms. The use of different solvents changes the arrangement 

of molecules, indicating higher solubility and lower level of aggregation. 

The influence of solvent is also evidenced both in UV-Vis and CV measurements. In 

UV-Vis measurements was found that the propensity to form aggregates depends mainly on the 

polarization of the solvent and is directly related to the maximum absorption and difference in 

the position of the absorption peaks. And in CV measurements, the type of solvent influences 

the oxidation and reduction peaks of the materials, consequently, in the HOMO and LUMO 

energy levels. 

In the junction between DFT calculations and CV and UV-Vis measurements allowed 

the study of optoelectronic properties. The DFT/B3LYP/6-31+G(d) method provide LUMO 

values close to experimental values, thus being an important tool for comparing results, since 

there is no previous literature from these exact polyfullerenes. 
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