
HAL Id: tel-04319443
https://theses.hal.science/tel-04319443

Submitted on 2 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two variants of the Ring Star Problem
Julien Khamphousone

To cite this version:
Julien Khamphousone. Two variants of the Ring Star Problem. Other [cs.OH]. Université Paris
sciences et lettres, 2023. English. �NNT : 2023UPSLD021�. �tel-04319443�

https://theses.hal.science/tel-04319443
https://hal.archives-ouvertes.fr

Préparée à l'Université Dauphine PSL

Two variants of the Ring Star Problem

Soutenue par
Julien KHAMPHOUSONE
Le 10 Novembre 2023

École doctorale no543

Spécialité
Informatique

Composition du jury :

Safia KEDAD-SIDHOUM Rapportrice
Professeure des Universités, CNAM Paris

Laurent HOUSSIN Rapporteur
Professeur Associé, ISAE-SUPAERO

Dominique QUADRI Présidente du Jury
Professeure des Universités
Université Paris-Saclay

André ROSSI Directeur de thèse
Professeur des Universités
Université Paris Dauphine - PSL

Fabián CASTAÑO Encadrant de thèse
Chercheur R&D, Frubana

Sonia TOUBALINE Encadrante de thèse
Maîtresse de Conférences
Université Paris Dauphine - PSL

1

“Cette thèse en informatique qui a pour sujet, en anglais, "Branch-and-Benders-cut exact
methods for two fault-tolerant Ring Star problem variants", prolonge le chemin entrepris
depuis ce premier ordinateur à écran cathodique que mon père m’a fait découvrir à quatre
ans.”

Julien Khamphousone

Dedicated to Shagana Mary Progam

Acknowledgements

I acknowledge...

Scolarity

Professor André Rossi, Doctor Sonia Toubaline and Doctor Fabián Castaño,
PhD supervisors. Safia Kedad-Sidhoum, Laurent Houssin and Dominique Quadri
that accepted to be my PhD jury members. Every student I had the chance to be
alongside in my school classes and in particular the The LAMSADE’s PhD stu-
dents. Every teacher I had the chance to learn from, in particular:

(Français) École du Parc, Choisy-Le-Roi

• Maîtresse Autin [CPA] (2002-2003)

• Maîtresse Belsœur [CE1]

• Maîtresses Dayraud et Ruffieux [CE2A]

• Maîtresse Belsœur [CM1]

• Maîtresse Prévost [CM2B] (2006-2007)

Collège Saint-André, Choisy-Le-Roi

• Mme Helluy [6e B, Mathématiques] (2007-2008)

• M. Chedid [5e D, Mathématiques]

• Mme Foucriat [4e B, Mathématiques]

• Mme Chemin [4e B, Sciences Physiques]

• Mme Nollent [3e A, Éducation Musicale]

• Mme Chemin [3e A, Sciences Physiques]

3

4

• M. Azeba [3e A, Mathematics] (2010-2011)

(French and English) Lycée Guillaume Apollinaire, Thiais (94)

• Mme Castano [2de générale, Physics and Chemistry] (2011-2012)

• Mme Grosol [2de générale, English]

• M. Filey [2de générale, Mathematics]

• Mme Wong [1re S1-SI, Mathematics]

• Mme Chauvin [1re S1-SI, Physics and Chemistry]

• Mme Bonneron [1re S1-SI, English] (2012-2013)

Lycée Lakanal, Sceaux (92)

• Mme Proix, [Tle S, Physics and Chemistry] (2013-2014)

• M. Leterrier, Agrégation jury member [Tle S, Mathematics]

Lycée Paul Valéry, Paris 12e

• Dr. Chloé Mullaert [Mathematics] (2014-2015, MPSI)

• Dr. Gael Benabou [Mathematics] (2015-2016, MP)

Top French Engineering School ENSIIE, Évry

• Dr. Dimitri Watel [Computer Science] (2016-2019)

• Dr. Alain Faye [Computer Science] (2016-2019)

Conservatoire National des Arts et Métiers, Paris 3e

• The Master Parisien de Recherche Opérationnelle (MPRO) Professorship [Oper-
ations Research] (2018 - 2019)

Université Paris Dauphine, Paris 16e

• Pr. Jérôme Lang, [Operations Research and Artificial Intelligence] (2023)

• The (French) Laboratoire d’Analyse et de Modélisation de Systèmes pour
l’Aide à la Décision (LAMSADE) researchers

5

Family

Jeannie Lao, grandmother, Martin Lao, grandfather, Virginie Lao, mother, Pang
Khamphousone, father, Manivanh Khamphousone, grandmother, Oudone Kham-
phousone, grandfather, Alicia Khamphousone, younger sister. My five uncles and
two aunties: Éric Lao, Saly Ly, adopted, Hélène Panyanouvath, Jacques Khamp-
housone, Somchit Khamphousone, Padit Khamphousone, Mouang Khamphousone
My cousins and in particular Andy Panyanouvath and Pranavong Khamphousone.

Kiwi Khamphousone, a little like my young brother, my cat and my love for
biology.

Healthcare

• Dr. Pascale Romain, general practitioner

• Dr. Guillaume Laperrousaz, Confidential

• Dr. Isaac Salem, Confidential

• Dr. Georges Kill, Confidential

• Dr. Olivier Confidential, virologist and CNRS researcher

Future

Shagana Progam and her family until the end of my life.

Friends

Pierre-François Villard (ENPC), qui a relevé un homme à terre pendant Das-
sault Systèmes. Dr. Ali Tlili (Dassault Systèmes), pour son humour si Ali ! Églan-
tine Boucher (MPSI-MP comrade), pour m’avoir transmis l’importance de l’amitié.
Séverine Bonnechère (MPRO comrade), Bastien Rolland (MPRO comrade), Victor
Kani (MPRO comrade), Guillaume Crognier (MPRO comrade), impressionants
en recherche opérationnelle, impressionants humainement. Toby Ratantely (NA-
Motorsports and Orange), pour son aide, sa gentillesse et sa bienveillance.

The NA-Motorsports community and the three FMWC titles, FMWC Individ-
ual (2021 and 2022) and FMWC Duo (2022).

Technology

6

Alan Mathison Turing, The Massachusetts Institute of Technology (MIT) for
the Julia Mathematical Programming Language and the European Organization
for Nuclear Research (CERN) for the World Wide Web. Maurice Diamantini (Chercheur
R&D, ENSTA Paris).

Spirituality and open-mindedness

Julie Sergeant, former Haute École de Commerce de Paris student (HEC Paris).
Daniel HUYNH (français), HUYNH-Buntha (Cambodgien avec lettres françaises),
Christelle Ngor’s adoptive father that open myself into the path of spirituality.

Contents

Introduction 9

1 State of the Art 13

1.1 Networks design . 13

1.2 Ring Star Problem . 14

1.3 Robustness . 16

1.4 Survivability . 17

1.5 Resilience . 18

1.6 Benders decomposition method . 19

1.6.1 Litterature review on Benders decomposition method 19

1.6.2 Illustration of the classical Benders decomposition 20

2 A Survivable variant of the Ring Star Problem 25

2.1 Chapter’s abstract . 25

2.2 Chapter’s structure . 26

2.3 Survivable Ring Star Problem definition 26

2.4 An ILP formulation of 1-S-RSP . 27

2.4.1 Brute-force algorithms of polynomial time complexity for
the cases of three and four hubs 28

2.4.2 An ILP formulation for at least five hubs 28

2.5 A Branch-and-Benders-cut decomposition of 1-S-RSP 32

2.5.1 Description of the master problem and the subproblem . . . 32

2.5.2 Linear programming formulation of the subproblem 35

2.5.3 Computing the dual of LP0 and LP+
i for all the nodes i in V 40

2.5.4 Computing optimal primal and dual solutions to the sub-
problems . 41

2.5.5 Polynomial-time algorithm to the subproblem’s dual 43

2.5.6 Optimality cuts of the Benders decomposition 44

2.5.7 Polyhedral analysis of constraints (2.14) 44

2.5.8 An instance transformation for 1-S-RSP 48

7

8 CONTENTS

2.6 Enhancing and solving the ILP and the Branch-and-Benders-cut of
1-S-RSP . 50
2.6.1 Introduction of 2-opt backup 50
2.6.2 Description of the ILP and Branch-and-Benders-cut algorithms 51

2.7 Numerical Experiments . 51

3 A Resilient variant of the Ring Star Problem 61
3.1 Chapter’s abstract . 61
3.2 Chapter’s structure . 61
3.3 Resilient Ring Star Problem definition 61
3.4 A MILP formulation for Resilient RSP 62

3.4.1 Post-optimization procedure 66
3.5 A Branch-and-Benders-cut decomposition of 1-R-RSP 68

3.5.1 Master problem . 68
3.5.2 Benders subproblem . 69
3.5.3 Benders optimality cut . 75

3.6 Numerical Experiments . 76
3.7 Resilient or Survivable Ring Star Problem? 78

3.7.1 Properties . 78
3.7.2 Computational method to solve 1-R-RSP(F) on an interval . 80
3.7.3 Solving 1-R-RSP(F) for all F ≥ Fℓ 83
3.7.4 Comparing the cost of 1-S-RSP and 1-R-RSP(F) 84
3.7.5 Numerical experiments to choose between Survivable or Re-

silient RSP . 84

4 Conclusions 91
4.1 Overview . 91
4.2 Limitations . 91
4.3 Future works . 92

List of Figures 95

List of Tables 97

Bibliography 99

Introduction

In the context of telecommunications, transportation, and logistics, among others,
designing networks based on specific architectures is an important task as it de-
scribes how the components and entities should be linked together in order to con-
struct a desired network that performs efficiently and achieves predefined goals.
A typical application of such a network design arises in the field of telecommuni-
cation networks, in which user nodes lie on an access network, and are connected
to concentrators. These concentrators are linked together to form a backbone net-
work, which is connected to a central unit called the root [26]. More applications
and references can be found in the survey [37]. There are many ways to design
networks and several architectural models can be proposed. In this thesis, we
consider a tributary and backbone architecture where we seek to select a set of
nodes, called hubs, and interconnect them to define the backbone network. The
remaining nodes, called terminals are connected to hubs and form the tributary
network. The objective is to determine an efficient and cost-effective tributary and
backbone network.

We consider in particular the Ring Star problem where the ring is the back-
bone network and the star the tributary one. This problem has been studied many
times in the literature, and has applications in telecommunications, logistics, ur-
banism, and more. The famous Traveling Salesman Problem is a particular case of
the Ring Star Problem where every node belongs to the ring. Hence, the Ring Star
Problem is also NP-Hard. Resilience and survivability are two concepts related to
robustness and have been receiving a lot of attention in recent years.

Resilience and survivability are responses to uncertainty that occur when un-
expected events disturb the system. There have been applications for resilience
and survivability not only in combinatorial optimization but in many fields in sci-
ences, from biology to economy. Thus, we are motivated to introduce during my
thesis two variants of the Ring Star Problem, a Survivable one and a Resilient one.
Both variants consider the case where at most one hub fails. In the Survivable

9

10

variant, the ring star network will be preserved whatever hub fails while in the
Resilient variant, two corrective operations occurs when a hub fails to preserve
the ring star network.

Chapter 1 contains the state of the art in fields of Networks design, the Ring
Star Problem, Robustness, Survivability, Resilience, and presents the Benders De-
composition method used to solve our two variants problems. Chapter 2 intro-
duces the variant "a Survivable variant of the Ring Star Problem named 1-S-RSP".
It studies the case where at most one node in a given subset of so-called uncer-
tain nodes can fail if selected as a hub. The variant’s objective is to minimize the
ring star network design plus the costs associated with coping with the failure
of any uncertain hub. This survivable variant of RSP is modeled as an Integer
Linear Program (ILP) and also a Branch-and-Benders-cut decomposition, the sub-
problem of this decomposition being solved by a polynomial algorithm. Several
other improvements are made to both solving approaches, in particular taking ad-
vantage of an advanced two-opt heuristic adapted for the survivable case and a
transformation of the input instance. Mathematical proofs and extended numeri-
cal experiments are carried out.

Chapter 3 is about a second variant of the Ring Star Problem named "Resilient
RSP" that is solved using both an ILP and a Branch-and-Benders-cut algorithm.
The Resilient RSP is a problem where when a node fails in a given subset of
so-called uncertain nodes two corrective operations occur to repair the Ring Star
structure, first, a backup edge is paid to reconnect the ring and all non-hubs that
were connected to the failing hub must be reallocated to the nearest remaining
hub. Extensive numerical experiments are also carried out. At the end of this
chapter, a tradeoff is studied, we address the question of deciding whether the
survivable or the resilient approach is the most appropriate one, as a function of
the failure duration.
The conclusion in Chapter 4 discusses some limitations of our work and some
interesting perspectives. This thesis manuscript ends with a Bibliography section.

Branch-and-Benders-cut exact
methods for two fault-tolerant
Ring Star problem variants

11

12

Chapter 1

State of the Art

This State of the Art is organized in topics, first we review networks design, after-
wards the Ring Star Problem which is a network design problem, then we focus on
three concepts of uncertainty, robustness, survivability and resilience and finally
we cover the Benders decomposition.

1.1 Networks design

Networks design is a wide field with many problems that have been studied in the
literature. Networks design have applications in telecommunications as it is criti-
cal to decide where to locate for instance the antennas or other key structures. In
(1993), Kershenbaum [34] wrote a book on telecommunications networks design
algorithms. Network design also have applications in transportation networks
where one should decide where to build stations, roads, bridges, etc. for buses,
trucks, airports for planes, ports for boats and so on. Farahani [21] et al. (2013)
published a review of urban transportation network design problems. It also has
applications in supply chain. For instance, in a warehouse implementing a pallet
rack storage system, network design may be of great help.

A well known and interesting network design problem is the facility location
problem that has been extensively studied in operations research and network de-
sign. Shmoys et al. [52] (1997) present new approximation algorithms in facility
locations problems. In every facility location problem that they study, there is a
set of locations where facilities may be built with a fixed cost and a set of clients
that are assigned to a facility location with another allocated cost. The objective is
to determine a set of locations where facilities are opened and minimize the total
facility and assignment costs. In the uncapacitated case, the facility can serve as
many clients as necessary and in the capacitated case, each facility can serve at

13

14

most Q clients where Q is an input parameter. Farahani et al. [22] (2010) present a
survey on multiple criteria facility location problems while Ortiz-Astorquiza et al.
[46] (2018) conduct a review on multi-level facility location problems.

Other famous and attracting problems in networks design are Hub location
problems (HLP). HLP are usually harder to solve than facility location problems.
These problems consist of locating hub facilities, designing the network, often de-
ciding the origins and destinations, and choosing the routing of flows through the
network, while optimizing an objective function. After a state of the art of hub
location problem in Alumur et al. [1] (2008), Alumur et al. [2] (2021) provide in-
sights for better modeling HLPs to help create a roadmap for future HLP research.
Several variants of HLP exist, Martins et al. [51] (2015) introduce the Hub Line Lo-
cation Problem (HLLP) where the hubs are connected by a line and non-hubs are
connected to hubs. They present an exact Benders decomposition algorithm for
this problem. A topology that also has a backbone and tributary architecture is
the hub-and-spoke system, introduced by O’Kelly [45] (1987). Many works on
hub-and-spoke problems were published in operations research and location or
transportation journals. In a hub-and-spoke structure, every pair of hubs is con-
nected, while non-hubs are connected to the closest hub. Bryan et al. [12] (1999)
survey advances in analysis of the hub location problem and its variants including
the hub-and-spoke problem.

Another problem that is in the scope of networks design is the Median Cycle
Problem (MCP) introduced by Labbé et al. [39] (2005). In this problem, the aim is
to determine a single cycle through a subset of nodes involving the sum of the two
next costs: a routing cost associated with the aforementioned cycle and the cost of
assigning nodes not on the cycle to visited nodes. The objective is to minimize the
cycle’s cost and the assignment cost subject to an upper bound on the total assign-
ment cost. They present a MILP and enhance it with a class of valid inequalities.
A branch-and-cut algorithm is also described alongside separation procedures.

In the next section, we describe and give a literature review of the Ring Star
Problem which is the primary topology of interest in this thesis and is a backbone
and tributary structure.

1.2 Ring Star Problem

We consider a specific tributary and backbone architecture, a subfield of networks
design, called the ring-star network. The problem input is a complete mixed

15

weighted graph, with arcs from and to every node as well as edges between any
two different nodes and having a specific node called the depot. The RING STAR

PROBLEM (RSP) consists in selecting a subset of hubs including the depot and
linking them with edges to form a cycle called the ring. Each remaining node is
called a terminal and must be connected to exactly one hub using an arc, which is
the star topology part. The objective of RSP is to minimize the sum of three costs
corresponding to (i) selecting the hubs, (ii) selecting the edges to form the ring,
and (iii) selecting the arcs to connect each terminal to a hub. RSP is known to be
NP-hard since the Traveling Salesman Problem is a special case when the assign-
ment costs are large compared to the ring costs. Figure 1.1 shows an example of
such a network.

RSP has been widely studied in the literature. Xu et al. [56] (1999) considered a
digital data service problem in the telecommunication industry where hubs have
to be selected among a given subset and link end offices to hubs at minimum cost.
They model this problem as RSP, propose an Integer Linear Problem (ILP) formu-
lation, and address it with a tabu search method. Labbé et al. [40] (2004) proposed
the first Mixed Integer Programming model, strengthened with valid inequalities
resulting of a polyhedral analysis and solved it with a branch-and-cut algorithm.
Kedad-Sidhoum and Nguyen [32] (2010) later proposed a strengthened approach
where the depot is duplicated and that changes the ring to an st-chain that starts
from the depot and ends at a special node that is a duplicate of the depot. Their
formulation allows to derive facet-defining inequalities and their branch-and-cut
algorithm is shown to be more efficient than the cycle based branch-and-cut from
Labbé. Simonetti et al. [53] (2011) also proposed a new integer programming
formulation. They implemented a branch-and-cut algorithm for RSP based on a
reduction of the latter to a minimum Steiner tree problem defined over a layered
graph, with the introduction of side constraints.

Several heuristics and approximation algorithms have been proposed to ad-
dress RSP. Dias et al. [17] (2006) use a hybrid method composed of a General
Variable Neighborhood Search (GVNS) alongside a Greedy Randomized Adap-
tive Search Procedure (GRASP) to approach heuristically the Ring Star Problem
while Calvete et al. [13] (2013) model the problem using a bi-level optimization
formulation and propose an evolutionary algorithm to solve it. Recently, Zang et
al. [57] (2020) proposed an ant colony system heuristic for RSP. Chen et al. [14]
(2021) gave three approximation algorithms for the RSP with fixed edge-cost ra-
tio. In the variant they studied, the edge and arcs costs are proportional and their
ratio is an additional problem input. Baldacci et al. [4] (2007) studied a variant of

16

the Ring Star Problem, the Capacitated m-Ring-Star Problem which consists of se-
lecting a set of m rings that pass through the depot and non-hubs (customers) and
a potential subset of hubs nodes (Steiner nodes), while customers not belonging to
any ring must be assigned to a visited (customer or Steiner) node. Moreover, the
rings must be node-disjoint and the number of customers assigned to the rings is
bounded by an input capacity Q. This problem is also a generalization of the Trav-
eling Salesman problem, hence is also NP-Hard. Najiami et al. [44] (2010) gave a
heuristic procedure variant of RSP. They propose two Integer Programming for-
mulations for this problem and strengthen it with valid inequalities.

Some hubs may fail, hence building a robust Ring Star network that keeps the
structure of the architecture even if one hub fails is an interesting problem to study.
To the best of our knowledge, survivable and resilient variants of RSP have never
been studied in the literature. We will consider these two variants in this thesis.
Therefore we will review the concepts of robustness, survivability, and resilience
in a network design context.

hubs

depot

terminals

Figure 1.1: Ring Star network

1.3 Robustness

Robustness in optimization aims to deal with data uncertainty. When data is un-
certain, the question of designing a solution that is relevant towards such uncer-
tainty is natural. Such design is called "Robust". The case study by Ben-Tal and
Nemirovski [7] (2000) on 90 linear programs from the NETLIB collection shows
that a solution to a linear program can be completely meaningless with data con-
taminated with small uncertainty. Two groups of authors independently stud-

17

ied robust optimization, El Ghaoui et al. [18, 19] (1997, 1998) and Ben-Tal and
Nemirovski [6, 8, 7] (1998, 1999, 2000). Bertsimas and Sim [10] (2004) introduce
a smart way to control what they call "the price of robustness": traditional ap-
proaches of robustness are focused on the worst-case scenario, which tends to
make robust solutions too conservative (or overly pessimistic). Hence, they pro-
pose to use a new input parameter, often denoted by Γ which is an upper bound
on the number of parameters that can be simultaneously affected by uncertainty.
This gives the decision maker more control over how conservative the robust so-
lution should be. The notion of robustness has many definitions and is frequently
revisited and extended, see for instance Kouvelis et al. [38] (1996) and Ben-Tal et
al. [5] (2009) which are two books with different visions on robust optimization.
Kouvelis et al. [38] (1996) deal with decision-making with data uncertainty and a
strong importance on operations and production management applications. Roy
[49] (2010) studied robustness in operational research and decision aiding and
in particular describes "robustness concerns" as an a priori concerns that must be
taken into account at the moment the problem is formulated, as opposed to "ro-
bustness analysis" or "sensitivity analysis" which are conducted after the problem
is solved. More recently, in the context of attack scenarios, robust optimization has
also been studied considering multiobjective decision-making. Wang et al. [54]
(2021) consider a multiobjective network robustness optimization problem which
they solve with a computationally efficient evolutionary algorithm. In all these
works described above uncertainty is related to data input. Some other types of
uncertainties exist such as those concerned with maintaining network structures
after some disturbances when designing it. The conservation of properties when
unexpected failures affect the network can be achieved in two different ways.
If the solution can stand the considered class of failures without any corrective
action, we talk about survivability, whereas resilience is concerned with the pre-
planning at the design time of corrective actions, which may incur additional costs
when they are applied.

1.4 Survivability

In the presence of hazardous events (attacks, failures, and so on), designing a re-
liable topological network is essential. Survivable network design problems have
widely been studied in the literature [27, 33] (1995, 2005). These problems aim
at building survivable networks, i.e., networks that remain operational despite the
occurrence of failures or attacks. In the field of survivable network design prob-
lems, Labbé et al. [41] (2005) consider a fully interconnected star problem where
the hubs are linked by a clique. The authors perform a polyhedral analysis of

18

the proposed model and solve it with a branch-and-cut algorithm. Fouilhoux et
al. [24] (2012) study a 2-edge connected star problem where the backbone is a 2-
edge connected subgraph. For all k ∈ N, a graph is k-edge connected, if there
are at least k edge-disjoint paths between any two different nodes. In [31] (2014),
Karaşan et al. consider 2-edge connected star problems where each terminal is
connected to two hubs. Both papers provide integer programming formulations
and valid inequalities for those problems, analyze facet-defining inequalities and
present both heuristic and exact separation algorithms. In such works, the surviv-
ability is considered either for both tributary and backbone networks Karsan et al.
[31] (2014) or only for the backbone network [41, 24] (2005, 2012). In both cases,
the topological structure may not be preserved if a hub fails. Indeed, as shown
in Figure 1.2, the backbone structure is not connected anymore when the shaded
hub fails.

hubs

depot

terminals

Figure 1.2: 2-edge connected star, dual homed network [31]

1.5 Resilience

Resilience is often described in the literature as when a system or a network gets
damaged, how long or how much resource or energy will it need to recover its
full functionality. Holling [29] (1973) first introduced the term of resilience in the
context of ecology. Since then, in the field of computer science, Liao et al. [43]
(2018) have proposed a resilience optimization model for transportation networks
under natural or man-made disasters. They here describe "resilience" as the fac-
ulty to recover from damage under unexpected conditions and seek to improve

19

the resilience of transportation infrastructures.. Zang et al. [58] (2017) study a
stochastic programming approach for resilient hub location in a power projection
network considering random hub failures. The failures of the hubs, which are crit-
ical facilities, due to uncertainty threats like natural disasters or man-made attacks
could lead to excessive loss or cost. They have the same definition of resilience as
in Liao et al. [43] (2018), i.e., resilience is the ability of a network to withstand
and reduce the impact of damages. In Gu et al. [28] (2020), the performance of
a transportation network is studied under three types of perturbations: reliabil-
ity, vulneralibity and resilience. In An et al. [3] (2015), they study the failures
of hubs in a hub-and-spoke network by addressing resilient hub-and-spoke net-
works where backup hubs and alternative routes are taken into consideration to
handle hub failures. They model nonlinear mixed integer formulations for such
networks problems.

1.6 Benders decomposition method

1.6.1 Litterature review on Benders decomposition method

In this thesis, we resort to the Benders decomposition approach which is imple-
mented in a more efficient way than in the original approach. The combination of
Benders decomposition and a cutting plane algorithm is referred to as the Branch-
and-Benders-cut method Cotado [15] (2006). The Benders decomposition method
has been introduced by Jacques Benders [9] (1962), it is an exact method and many
works have been carried out using this approach since then. It consists of de-
composing the studied problem into two problems called master problem and
subproblem. The master problem includes the complicating variables and the
subproblem is easy to solve once the complicating variables are fixed. At each it-
eration, the master problem, written as a mixed integer linear program, is solved
to optimality, then the subproblem is also solved, using the decision variables of
the master problem as input parameters. After solving the subproblem, a feasibil-
ity cut or an optimality cut is added to the master problem or the current solution
of the master problem is proven optimal. Many papers are related to this decom-
position. Geoffrion et al. [25] (1972) generalized Benders’ approach to a broader
class of programs in which the parametrized subproblem can be non linear and
convex instead of being linear. Bloom [11] (1983) used the generalized Benders de-
composition from Geoffrion to solve an electricity generating capacity expansion
planning problem. In Rahmaniani et al. [47] (2017) a comprehensive survey of the
Benders decomposition algorithm is provided. Dieter et al. [55] (2019) present two
algorithms to clarify some of the Benders decomposition algorithms presented be-

20

tween 2000 and 2010. In general Benders decompositions, we consider problems
of the form min{cx + dy : Gx + Hy ≥ b, x ∈ Nm1 , y ∈ R

m2
+ }. The problem is

split into a master problem on the x variables and a subproblem on the y variables
which are generally of linear form. Fakhri et al. [20] (2017) consider the case where
the subproblem variables are integer and present an exact method for this partic-
ular case. Keyvanshokooh et al. [35] (2016) have used an accelerated Benders
decomposition to solve a hybrid robust and stochastic optimization for closed-
loop supply chain network design. Recently, Juvin et al. [30] (2023) studied the
flexible job-shop scheduling problem, a generalization of the job-shop scheduling
problem, and considered preemptible tasks for this generalization. They use a
logic-based Benders decomposition to solve this problem.

1.6.2 Illustration of the classical Benders decomposition

We consider the mixed integer linear program below, referred to as the original
problem, that will be addressed using the Benders decomposition.

Minimize cx + dy
Gx + Hy ≥ b
x ∈ Nm1

y ∈ R
m2
+

The input data are as follows: c is a vector of Rm1 , d is a vector of Rm2 , b is a
vector of Rn, G is an n-by-m1 real matrix and H is an n-by-m2 real matrix.

We also make the following two assumptions: first, we suppose there exist
n1 and n2 such that n1 ≥ 1 and n = n1 + n2, and H(i, j) = 0 for all (i, j) ∈
{1, . . . , n1}× {1, . . . , m2}. Hence G, H and the vector b can be partitioned into two
blocks having n1 and n2 rows:

G =
G1

G2

m1

n1

n2
H =

H1

H2

m2

n1

n2
b =

b1

b2

1
n1

n2

Where H1 is the zero n1-by-m2 matrix.

Now, we apply the Benders decomposition of the original problem by creat-
ing a master problem and a subproblem, based on a partition of the variables: x are
the complicating variables, because once they are fixed, solving for the remaining y
variables is an easy problem. In this section, the partition is given, but in general,
the user has to determine this partition, that may not be unique.

21

The master problem is denoted by MP, and is built by replacing the contribu-
tion of the y variables in the objective function of the original problem, i.e., dy, by
a new nonnegative variable denoted by η. The constraints of the master problem
are the first m1 ones, i.e., those of the original problem for which the y-variables
are absent:

MP :

Minimize cx + η

G1x ≥ b1

x ∈ Nm1

η ≥ 0

The subproblem is denoted by SP(x̂) because it is solved only once MP has
been solved to optimality. The optimal solution of MP is denoted by the pair
(x̂, η̂), where x̂ is a constant vector of Nm1 , and η̂ is a constant nonnegative real
number. The subproblem is to minimize the contribution of the y-variables in the
objective function of the original problem, while satisfying the constraints of the
original problem for the (fixed) solution vector x̂ returned by the master problem:

SP(x̂) :

Minimize dy

H2y ≥ b2 − G2 x̂
y ∈ R

m2
+

It can be observed that SP(x̂) is a linear program, so it can be solved in polyno-
mial time. We then solve SP(x̂) to optimality, one of the following four situations
occurs.

1. SP(x̂) turns out to be unbounded. This means that the original problem is
also unbounded, and the solution process stops.

2. SP(x̂) turns out to be infeasible. This means that x̂, the optimal solution
found for the subproblem does not allow to set the y-variables, i.e., (x̂, ŷ)
is not a feasible solution to the original problem. As a consequence, a Ben-
ders feasibility cut must be added to the master problem before iterating the
process.

3. SP(x̂) has an optimal solution ŷ, and η̂ < dŷ. Then, (x̂, ŷ) is a feasible so-
lution to the original problem, but is not optimal, as the contribution of the
subproblem in MP (namely η) is not set appropriately. This indicates that a
Benders optimality cut must be added to the master problem before iterating
the process.

4. SP(x̂) has an optimal solution ŷ, and η̂ = dŷ. Then, (x̂, ŷ) is an optimal
solution to the original problem, and the solution process stops.

22

When situations 2 or 3 occur, we need to separate a feasibility cut, or an opti-
mality cut. To do this, we use the fact that SP(x̂) is a linear program, and consider
its dual denoted by DSP(x̂), whose objective function is to maximize α(b− G2 x̂),
where α is an n2-element vector of decision variables. We now reexamine situa-
tions 2 and 3 in more details:

2. SP(x̂) is infeasible implies that DSP(x̂) is unbounded. By the Minkowski-
Weyl theorem, the feasible set of DSP(x̂) can be expressed as a convex combi-
nation of extreme points, plus a nonnegative linear combination of extreme
rays. Since DSP(x̂) is a maximization problem, there exists an extreme ray in
the feasible set representation of DSP(x̂) that is responsible for its unbound-
edness. This extreme ray, denoted by αr, should be banned, which leads to
an inequality of the form αr(b− G2 x̂) ≤ 0. This feasibility cut actually cuts
off the current solution x̂ of MP, so it should be added to MP.

3. SP(x̂) has an optimal solution ŷ that satisfies η̂ < dŷ. Again, by the Minkowski-
Weyl theorem, the optimal solution to SP(x̂) corresponds to an extreme point
αp of the feasible set of DSP(x̂). Because of this solution, η̂ cannot be less than
the optimal objective value of DSP(x̂), hence αp(b− G2 x̂) ≤ η is an optimal-
ity cut to be added to MP.

Figure 1.3 shows the framework for the classical Benders decomposition method
with a flowchart. In this figure, SP(x̂) is the optimal objective value of the sub-
problem. In the classical Benders decomposition approach, one Master Problem
(a Mixed Integer Linear Program) is solved to optimality at each iteration. At each
iteration, a new branch-and-bound tree is built from scratch and a lot of time is
likely spent revisiting candidate solutions that have been eliminated earlier in the
search. We can instead build a single search tree and generate valid cuts for the
integer (and fractional) solutions encountered inside the tree, attaining the same
optimal solution, this is what we call the Branch-and-Benders-cut scheme that will
be used during this thesis.

23

Start

Solve master (MP, η)

Solve subproblem SP(x̂)

Subproblem
feasible?

η̂ =SP(x̂)?

Add a
feasibility cut

Add an
optimality cut

Stop

yes

no

no

yes

Figure 1.3: Classical Benders decomposition scheme

24

Chapter 2

A Survivable variant of the Ring
Star Problem

2.1 Chapter’s abstract

The Ring Star Problem consists in selecting a subset of nodes called hubs includ-
ing the depot and linking them with a cycle, the remaining nodes being connected
to exactly one hub, at minimum cost. We study a survivable variant of the Ring
Star Problem where at most one node in a given subset of so-called uncertain
nodes can fail if selected as a hub. We model this problem as an Integer Linear
Program (ILP), that is also addressed with a Branch-and-Benders-cut decomposi-
tion. The Benders subproblem is turned into a linear program with the addition
of new inequalities that are shown to be facet-defining, and several enhancements
to both the ILP and Branch-and-Benders-cut algorithm are also presented. Both
approaches are compared on the basis of extensive numerical experiments that
bring the following conclusions. First, the survivable variant is shown to be much
harder than the original Ring Star Problem, and the extra cost induced by surviv-
ability is significant. Second, the ILP formulation tends to produce tighter lower
bounds but memory issues are frequent for large instances. Finally, the Branch-
and-Benders-cut algorithm returns feasible solutions that are often of better qual-
ity than those produced by ILP, and is less frequently subjected to memory issues
on the considered set of instances. This chapter’s content has been submitted to
Networks journal and part of it has been published in INOC [36] (2022). It has
also been presented in ROADEF 2022.

25

26

2.2 Chapter’s structure

This chapter is structured as follows: in Section 2.3 we introduce the SURVIVABLE

RING STAR PROBLEM and present an ILP formulation in Section 2.4. We describe a
Branch-and-Benders-cut decomposition in Section 2.5, and propose enhancements
in Section 2.6. Finally, numerical experiments are reported in Section 2.7 where
both approaches to address the SURVIVABLE RING STAR PROBLEM are compared,
and the results are discussed.

2.3 Survivable Ring Star Problem definition

We define in Table 2.1 some of the notations used in this work. In this section,
we first recall the Ring Star problem and then introduce the Survivable Ring Star
Problem.

The input of RSP is the complete mixed graph G = (V, E ∪ A) with |V| = n ∈
N nodes, n ≥ 3 where node 1 is a specific node called the depot, E = {ij| (i, j) ∈
V2, i < j} is the edge set and A is the arc set. Building the ring consists of
selecting a subset H ⊆ V, which cardinality is not known in advance and 1 ≤
|H| ≤ n, then linking the selected hubs of H by a cycle using |H| edges of E. The
depot node has to be in H. The cost of opening a hub i ∈ V is oi ∈ R+ and the cost
of selecting edge ij ∈ E between hubs i and j is rij ∈ R+. The star requirement of
the problem asks that each terminal in T = V \ H be connected to exactly one hub
in H. The cost of selecting arc (i, j) ∈ A to connect terminal i ∈ T to hub j ∈ H is
sij ∈ R+. Finally, the RSP is to design a minimum-cost Ring Star network, where
the cost is composed of the sum of selecting the hubs, linking them to form the
ring and connecting the terminals.

The SURVIVABLE RING STAR PROBLEM, referred to as 1-S-RSP where 1 is the
maximum number of simultaneous hub failures, has one more input than RSP:
Ṽ ⊆ V is a subset of nodes that can fail if they are selected as hubs. Following
the terminology of Rossi et al. [48], the hubs in Ṽ are called uncertain, whereas
the hubs of V \ Ṽ are called certain as they are not supposed to fail. The aim of
problem 1-S-RSP is to build a minimum-cost subgraph of G such that if at most
one uncertain hub fails, the ring can be restored using a backup edge, and each
terminal is still connected to at least one surviving hub. To achieve this, for any
uncertain hub, an additional edge has to join its two neighbors in the ring. This
edge is called a backup edge, and is used whenever the hub in question fails. Each
terminal is connected either to a single certain hub or to two uncertain hubs. Thus,
when an uncertain hub fails, the terminals connected to it are still connected to
the ring. Note that when Ṽ is empty, 1-S-RSP reduces to RSP. Figure 2.1 shows an

27

illustration of a solution to the 1-S-RSP with Ṽ = V \ {1, 11}. In this solution, the
terminals are T = {2, 3, 7} and the hubs are H = V \ T. Backup edges are shown
in blue, and it can be observed that the number of backup edges is equal to the
number of uncertain hubs. This property can be shown to hold when the ring is
made of 5 or more hubs.

Table 2.1: Table of Notations

V Set of nodes, V = {1, 2, . . . , n}
Ṽ Set of uncertain nodes, Ṽ ⊆ V
V ̸= Set of couples of different nodes V ̸= = {(i, j) ∈ V2 : i ̸= j}
E Set of edges, E = {ij| (i, j) ∈ V2, i < j}
A Set of arcs, A = {(i, j)| (i, j) ∈ V ̸=}
J̃ Set of triplets where the second element is an uncertain node

J̃ = {(i, j, k) ∈ V3 : j ∈ Ṽ, i ̸= j, j ̸= k, i < k}
s n-by-n nonnegative matrix of star costs
r n-by-n nonnegative symmetric matrix of ring costs
o n-element nonnegative array of opening costs

1
2

3

4

6
7

8 9

10

5

11

5

Figure 2.1: An 11-node solution of the 1-S-RSP with Ṽ = V \ {1, 11}

2.4 An ILP formulation of 1-S-RSP

In this section, we present an ILP formulation for 1-S-RSP. This ILP exploits the
fact that the number of backup edges is equal to the number of uncertain hubs.
However, this property does not hold when the ring contains 3 or 4 hubs, so these
two particular cases are dealt with by two brute-force algorithms. Problem 1-S-
RSP is then addressed as follows: first, a brute-force algorithm is called for rings
containing 3 hubs; second, another brute-force algorithm is used for 4-hub rings;

28

and third, the ILP formulation where the ring has at least 5 hubs is solved. The
best solution found is then returned.

2.4.1 Brute-force algorithms of polynomial time complexity for the cases
of three and four hubs

A feasible solution to 1-S-RSP has a three-hub ring only if all these hubs are certain.
Indeed, if one of these three hubs is uncertain, then its failure leaves only two hubs
which are not enough to form a ring. The case of a four-hub ring is also special
in the sense that a single backup edge can be used to cope with the failure of two
different hubs. As shown in Figure 2.2, the backup edge that joins nodes 1 and 3
is used when either hub 2 or 4 fails. It can also be seen that the number of backup
edges (two) is not equal to the number of uncertain hubs (three). We introduce
two brute-force algorithms to deal with the particular cases where the ring has
three or four hubs. Then, the proposed ILP formulation assumes that the ring has
at least 5 hubs and the cutoff parameter of the solver is set to the best solution
value found by the brute-force algorithms. Hence, the solver stops as soon as it
finds out that there is no optimal solution with at least 5 hubs. Algorithms 1 and
2 are based on an exhaustive enumeration to determine an optimal solution with
3 hubs in O(n3) time and 4 hubs in O(n4) time.

12

3
4

Figure 2.2: 1-S-RSP instance with Ṽ = {2, 3, 4} where the dashed backup edge is
used when hub 2 or 4 fails.

2.4.2 An ILP formulation for at least five hubs

The core of the ILP formulation of 1-S-RSP is inspired from [41], and uses mostly
the same notations. All the decision variables of 1-S-RSP are Boolean, and in
the sequel, B denotes the discrete set {0, 1}. The x variables are used to model
the selection of the edges of the ring and the y variables model the status of the
nodes (to distinguish hubs and terminals), as well as the connection of terminals
to hubs. The additional new x′ variables are introduced to model the selection of
the backup edges. More precisely, for all ij in E, xij is set to one if and only if edge
ij belongs to the ring. For the sake of readability, we may sometimes refer to xij

for i > j, in which case xij is replaced with xji in the computer implementation.
For all (i, j) ∈ V2, variable yij is set to one if and only if terminal i is assigned to
hub j ̸= i. The variable yjj is set to one if j is selected as a hub, and it is set to 0

29

Algorithm 1: A brute-force algorithm to find a three-hub optimal solution
to 1-S-RSP
1 bestobjval ← +∞
2 bestsol ← ∅
3 foreach v1 ∈ V \ (Ṽ ∪ {1}) do
4 foreach v2 ∈ V \ (Ṽ ∪ {1}) : v2 > v1 do
5 currentobjval ← o1 + ov1 + ov2 + r1v1 + r1v2 + rv1v2

6 foreach v ∈ V \ {1, v1, v2} do
7 starcost← sv1
8 if svv1 < starcost then
9 starcost← svv1

10 if svv2 < starcost then
11 starcost← svv2

12 currentobjval ← currentobjval + starcost

13 if currentobjval < bestobjval then
14 bestobjval ← currentobjval
15 bestsol ← {1, v1, v2}

16 return bestsol, bestobjval

if it is a terminal. Finally, for all (i, k) ∈ V2 such that i < k, variable x′ik indicate
whether hubs i and k are the common neighbor of an uncertain hub and thus a
backup connection is established between them. Note that the backup edges do
not need to form a cycle, as can be seen in the example of Figure 2.1. For the sake
of illustration, Figure 2.3 shows all nonzero x, x′, and y variables of an 11-node
instance of 1-S-RSP, except nonzero yii variables. The number of edges in the ring
is equal to the number of hubs, and there are six backup edges (i.e., nonzero x′ij
variables) because there are six uncertain hubs.

1

4
5

6
8 9

10

11

x
4,6

x 4,11

x1,11

x1,5

x 5,
9

x6,8

x 8,1
0 x9,10

x ′4,8

x′6,10

x′5,10

x′8,9

x ′1,9x
′ 6,1
1

2
3

7

y2,11

y 3,1

y 7,9

y 7
,5

Figure 2.3: Nonzero variables for a solution to an 11-node instance of 1-S-RSP

30

Algorithm 2: A brute-force algorithm to find a four-hub optimal solution
to 1-S-RSP
1 bestobjval ← +∞
2 bestsol ← ∅
3 for v1 = 2 to n− 2 do
4 for v2 = v1 + 1 to n− 1 do
5 for v3 = v2 + 1 to n do
6 currentobjval ← o1 + ov1 + ov2 + ov3

7 H ← {1, v1, v2, v3}
8 foreach v ∈ V \ {1, v1, v2, v3} do
9 costcertain← +∞

10 costuncertain← [+∞,+∞]
11 foreach h ∈ H do
12 if h ∈ V \ Ṽ and svh < costcertain then
13 costcertain← svh

14 else if h ∈ Ṽ then
15 if svh < costuncertain[1] then
16 costuncertain[2]← costuncertain[1]
17 costuncertain[1]← svh

18 else if svh < costuncertain[2] then
19 costuncertain[2]← svh

20 currentobjval ← currentobjval +
min(costcertain, costuncertain[1] + costuncertain[2])

/* Testing three solutions based on 1, v1, v2 and v3
*/

21 sol1 ← r1v1 + rv1v2 + rv2v3 + r1v3

22 if v1 ∈ Ṽ or v3 ∈ Ṽ then
23 sol1 ← sol1 + r1v2

24 if 1 ∈ Ṽ or v2 ∈ Ṽ then
25 sol1 ← sol1 + rv1v3

26 sol2 ← r1v1 + rv1v3 + rv2v3 + r1v2

27 if v1 ∈ Ṽ or v2 ∈ Ṽ then
28 sol2 ← sol2 + r1v3

29 if 1 ∈ Ṽ or v3 ∈ Ṽ then
30 sol2 ← sol2 + rv1v2

31 sol3 ← r1v2 + rv1v2 + rv1v3 + r1v3

32 if v2 ∈ Ṽ or v3 ∈ Ṽ then
33 sol3 ← sol3 + r1v1

34 if 1 ∈ Ṽ or v1 ∈ Ṽ then
35 sol3 ← sol3 + rv2v3

36 if currentobjval + min(sol1, sol2, sol3) < bestobjval then
37 bestobjval ← currentobjval + min(sol1, sol2, sol3)
38 bestsol ← {1, v1, v2, v3}

39 return bestsol, bestobjval

31

The ILP formulation for 1-S-RSP is as follows:

Min z = ∑
ij∈E

rij(xij + x′ij) + ∑
i∈V

oiyii + ∑
(i,j)∈A

sijyij

∑
j∈V
i<j

xij + ∑
j∈V
i>j

xji = 2yii ∀i ∈ V (2.1)

x(δ(S)) ≥ 2 ∑
j∈S

yij ∀S ⊂ V, 1 /∈ S, i ∈ S (2.2)

∑
j∈V\Ṽ

i ̸=j

2yij + ∑
j∈Ṽ
i ̸=j

yij = 2(1− yii) ∀i ∈ V (2.3)

∑
i∈V

∑
j∈V,i<j

xij ≥ 5 (2.4)

xij + xjk ≤ 1 + x′ik ∀(i, j, k) ∈ J̃ (2.5)

yij ≤ yjj ∀(i, j) ∈ A (2.6)

y11 = 1 (2.7)

yij ∈ B ∀(i, j) ∈ V2

xij ∈ B ∀ij ∈ E

x′ij ∈ B ∀ij ∈ E

In the sequel, for any subset S of V, we define δ(S) as the set of all the edges of
E that have one endpoint in S and another endpoint in V\S. We also define x(F) =

∑i∈F,i<j xij for all F ⊆ E. Constraints (2.1) enforce that each hub is incident to two
edges in the ring, and each terminal is incident to zero edges. Constraints (2.2) are
connectivity constraints, they are identical to the ones in [40]. They state that any
set S that does not contain the depot must be connected to V \ S by at least two
edges, if S contains a hub i. In that case, yii is equal to one, and so is ∑j∈S yij. The
latter expression appears in the right-and side of (2.2) as the resulting inequalities
are stronger when ∑j∈S yij is used instead of just yii. Constraints (2.3) enforce that
each terminal is connected to either one certain hub or two distinct uncertain hubs.
Constraint (2.4) states that the ring contains at least five hubs. Constraints (2.5)
enforce that edge ik has to be selected as a backup edge if node j is an uncertain
hub adjacent to hubs i and k in the ring; there are 1

2
|Ṽ|(n− 1)(n− 2) = O(|Ṽ|n2)

such inequalities. Constraints (2.6) enforce that terminals can be connected to
hubs only. Constraint (2.7) sets the depot as a hub, and the remaining constraints
define the domain of the variables. This model can be solved using a branch-and-
cut or a Branch-and-Benders-cut approach where subtour elimination constraints

32

are relaxed and separated on-the-fly when they are found to be violated.

2.5 A Branch-and-Benders-cut decomposition of 1-S-RSP

In the framework of Benders decomposition described in Section 1.6, a new branch-
and-bound search tree is built from scratch for the master problem, which may not
be very efficient. Consequently, we devise a Branch-and-Benders-cut decomposi-
tion for 1-S-RSP that differs from the classical Benders decomposition by gener-
ating a unique branch-and-bound search tree for the master problem where the
subproblem is solved whenever an integer solution is found. The corresponding
cuts are added to the master problem following a cutting-plane procedure. This
method has been used by Fortz et al. [23] to address a multi-layer network de-
sign problem. Figure 2.4 illustrates with a flowchart the Branch-and-Benders-cut
decomposition scheme. In the context of this chapter, the feasibility cuts are sub-
tour elimination constraints and the optimality cuts enforce the contribution of
the star cost in the Master problem. Finally, connectivity cuts can also be added
to the Master problem at fractional nodes, using the Edmonds-Karp Min cut algo-
rithm [42]. In this section, we propose new subtour elimination constraints for the
master problem, and then state the master problem and subproblem of the decom-
position. Subsection 2.5.2 shows how to rewrite the latter one as a linear program
by adding valid inequalities. In Subsections 2.5.3 and 2.5.4, after decomposing the
subproblem into n + 1 smaller linear problems, we give the solution of the dual
of each part. Finally, Subsection 2.5.5 presents a polynomial algorithm to solve
the subproblem, Subsection 2.5.6 shows the corresponding optimality cuts, and a
polyhedral analysis of the valid inequalities added to the subproblem is given in
Subsection 2.5.7.

2.5.1 Description of the master problem and the subproblem

If the ring is known, i.e., the yii variables and the xij variables are fixed, determin-
ing all the remaining variables is easy. Indeed, when the ring has 5 or more hubs,
x′ik can be set to one if and only if j ∈ Ṽ and yjj = xij = xjk = 1. Otherwise, x′ik
is set to zero. Furthermore, for each terminal i, the optimal decision is to select
the option that incurs the minimum cost: the first option consists of connecting
terminal i to the closest certain hub, and the second one is to connect it to its two
nearest uncertain hubs. As a consequence, we devise a Benders decomposition
of the ILP formulation of 1-S-RSP, in which the master problem is to determine
the ring, i.e. the yii and xij variables, and the subproblem is to complement the
ring with backup edges and to connect the terminals to the ring at minimum cost.

33

See Section 2.6.2

Start

Master Problem
Solution process

Integer
solution?

Solve subproblem SP(x̂)

Subproblem
feasible?

η̂ =SP(x̂)?

Add a
feasibility cut

Connectivity
cut found?

Add a
connectivity cut

Add an
optimality cut

yes

yes

yes

no

no

yes

no

no

Figure 2.4: Branch-and-Benders-cut decomposition scheme

A new variable λ ∈ R+ is added to the master problem to account for the con-
tribution of the subproblem to the objective function as in the classical Benders
decomposition method.

Before we can apply the Benders decomposition, the subtour elimination con-
straints (2.2) must be replaced because they mix variables of the master problem
(x variables) and variables of the subproblems yij (when i ̸= j). We then propose
the following constraints to enforce subtour elimination in the master problem:

x(S) ≤ |S| − 1 ∀S ⊆ V, 1 /∈ S (2.8)

x(S) ≤ |S| − yii ∀S ⊆ V, 1 ∈ S, i ∈ V\S (2.9)

34

In order to show that these inequalities are valid subtour elimination constraints,
let RP be the ILP formulation of 1-S-RSP where constraints (2.2) are relaxed. For
each feasible solution to RP, let Gx = (V, Ex) be the non-directed graph on the
vertex set V, where Ex = {ij ∈ E : xij = 1}. This graph represents the edges of the
ring and may contain one or more cycles. A cycle in Gx that does not contain the
depot is called a subtour. A solution to 1-S-RSP is a solution to RP in which the
associated graph Gx is free of subtours. By constraints (2.1), the vertices in Gx have
degree 0 or 2, so any feasible solution to RP satisfies the following properties:
Property 1: |S| − x(S) ≥ 0 ∀S ⊆ V.
Proof: We prove this property by contradiction. Assume that there exists S ⊆ V
such that |S| − x(S) < 0. The quantity x(S) is the number of edges of Gx with
both endpoints in S, which is also the number of edges of Gx[S], the subgraph of
Gx induced by S. Since each of these edges contributes 2 to the degree sum, we
have

|S| − 1
2 ∑

i∈S
dGx(i) < 0 which is equivalent to: 2|S| < ∑

i∈S
dGx(i)

Where dGx(i) is the degree of vertex i ∈ V in the graph Gx. After dividing the last
inequality by |S|, we obtain that the average degree of the vertices in S is strictly
larger than 2 in Gx, which is a contradiction as constraints (2.1) enforce that the
maximum degree in the ring is 2.
■
Property 2: |S| − x(S) = 0 if and only if Gx[S] is a collection of cycles.
Proof: We first assume that Gx[S] is a collection of cycles. This implies that Gx[S]
has |S| edges, so |S| = x(S). Conversely, if 2|S| = ∑i∈S dGx(i), then the average
degree is 2 in Gx[S], so each node of S must have degree 2, hence Gx[S] is a collec-
tion of cycles.
■
If Gx[S] is not a collection of cycles, then |S| − x(S) ≥ 1 because the left-hand side
is an integer quantity. It can be deduced that if Gx[S] is a collection of cycles and
there exists at least one hub in V\S, then the current solution to RP has a subtour.
So to prevent subtours, one could enforce the following constraints:

|S| − x(S) ≥ 1
|V\S| ∑

i∈V\S
yii ∀S ⊆ V

Where 1
|V\S| ∑i∈V\S yii is in (0, 1] if there exists a hub in V\S, and zero otherwise.

If S is a subset of V that does not contain the depot, then in that case, |S| − x(S)
is strictly positive, because 1 ∈ V\S and y11 = 1. So for all the sets S that do
not contain 1, we can strengthen the above inequalities to (2.8). These constraints
dominate the above inequalities, since 1 ≥ 1

|V\S| ∑i∈V\S yii. Now, if S contains 1,

35

we can also strengthen the inequalities to (2.9). Again, these constraints dominate
the above inequalities if we choose i ∈ V\S such that yii = 1, as we have yii ≥

1
|V\S| ∑j∈V\S yjj.
The master problem can then be stated as:

Min ∑
ij∈E

rijxij + ∑
i∈V

oiyii + λ

Subject to (2.1), (2.4), (2.7), (2.8), (2.9) and

yii ∈ B ∀i ∈ V

xij ∈ B ∀ij ∈ E

λ ∈ R+

After solving the master problem, the numerical value of the xij and yjj vari-
ables are stored as x̂ij and ŷjj, then passed to the subproblem, whose primal can
be stated as:

Min λ = ∑
ij∈E

rijx′ij + ∑
(i,j)∈A

sijyij

∑
j∈V\Ṽ

i ̸=j

2yij + ∑
j∈Ṽ
i ̸=j

yij = 2(1− ŷii) ∀i ∈ V (2.10)

x′ik ≥ x̂ij + x̂jk − 1 ∀(i, j, k) ∈ J̃ (2.11)

yij ≤ ŷjj ∀(i, j) ∈ A, (2.12)

yij ∈ B ∀(i, j) ∈ A (2.13)

x′ij ∈ B ∀ij ∈ E

Constraints (2.10), (2.11) and (2.12) are derived from (2.3), (2.5) and (2.6) re-
spectively. This subproblem is easy to solve. Indeed, for each uncertain hub j
having hubs i and k as neighbors in the ring, we should set x′ik = 1.

2.5.2 Linear programming formulation of the subproblem

If node i is a terminal (i.e., ŷii = 0), we define mi and m′i as the two distinct closest
hubs in Ṽ, and m⋆

i as the closest hub in V\Ṽ, if they exist. If not, the corresponding
values are set to zero.

• mi =

0 if |{j ∈ Ṽ : ŷjj = 1}| = 0
arg min
j∈Ṽ:ŷjj=1

sij otherwise

36

• m′i =

0 if |{j ∈ Ṽ\{mi} : ŷjj = 1}| = 0

arg min
j∈Ṽ\{mi}:ŷjj=1

sij otherwise

• m⋆
i =

0 if |{j ∈ V\Ṽ : ŷjj = 1}| = 0
arg min

j∈V\Ṽ:ŷjj=1

sij otherwise

Because mi, m′i, and m⋆
i are indices in V ∪ {0}, we let 0 be a dummy vertex for

which si,0 is infinite for all i ∈ V. Node 0 cannot be a hub or a terminal and it does
not appear in any solution to 1-S-RSP, as its only purpose is to let si,mi be infinite
when there is no uncertain hub, si,m′i

be infinite when there is at most one uncertain
hub, and si,m⋆

i
be infinite when there is no certain hub in the ring. If si,mi + si,m′i

<

si,m⋆
i
, then terminal i is connected to its two closest uncertain neighbors in the ring.

Otherwise, terminal i is connected to the closest certain hub in the ring. Since the
ring has at most three hubs, si,mi + si,m′i

and si,m⋆
i

cannot be both set to infinity.

If {j ∈ Ṽ : ŷjj = 1} is empty, then the linear programming relaxation of the
subproblem is integral. Otherwise, the subproblem, originally an integer linear
program, can be stated as a linear program by adding the following constraint:
yik ≤ ∑

j∈Ṽ\{k}:ŷjj=1

yij for all i ∈ V such that ŷii = 0, and for all k ∈ Ṽ such that sik =

min
j∈Ṽ:ŷjj=1

sij. This constraint states that if terminal i is connected to an uncertain

hub, then it should be connected to at least another one. If {j ∈ Ṽ\{k} : ŷjj = 1} is
empty, then this inequality reads yik ≤ 0 which forbids terminal i to be connected
to the unique uncertain hub k.

Since (2.12) dominates (2.13), and because the objective function “pushes” the
x′ variables downward, integrality constraints can be dropped, and it is shown
that the linear relaxation of the subproblem (with the new constraints above) has
an integral optimal solution.

We can take advantage of the subproblem’s structure and decompose it as
n + 1 independent subsubproblems: IP0 sets the backup edges, and for all i ∈ V,
IPi sets the yij variables for all j ∈ V\{i}. The objective function of the subproblem
is then the sum of the n + 1 objective values. More precisely, we have:

(IP0) :

Min ∑

ij∈E
rijx′ij

x′ik ≥ x̂ij + x̂jk − 1 ∀(i, j, k) ∈ J̃

x′ij ∈ B ∀ij ∈ E

37

(IPi) :

Min ∑
j∈V\{i}

sijyij

∑
j∈V\Ṽ

i ̸=j

2yij + ∑
j∈Ṽ
i ̸=j

yij = 2(1− ŷii)

−yij ≥ −ŷjj ∀j ∈ V \ {i}

yij ∈ B ∀j ∈ V \ {i}

(2.10)

(2.12)

First, we show that the LP-relaxation of IP0 has an integer solution. Indeed, IP0

is a minimization problem on x′ variables, they appear in the objective function
with a nonnegative coefficient and the constraints allow to set them to their lower
bound, which are all integer. Hence, setting x′ik to max(0, x̂ij + x̂jk − 1) yields an
optimal integer solution. Note that in the LP-relaxation of IP0, we can also ignore
x′ik ≤ 1, as there is no optimal solution with x′ik > 1.

Second, for any given i ∈ V, we search for an optimal solution to IPi. If ŷii = 1,
then the unique solution is to set yij to zero for all j ∈ V \ {i} and it incurs a zero
optimal objective value. This solution is also the only one for the LP-relaxation of
IPi.

Now, let i be a terminal, i.e., ŷii = 0. We distinguish two sub-cases:

• if Ṽ is empty, or yij is set to zero for all j ∈ Ṽ \ {i} by constraint (2.12), then
constraint (2.10) becomes ∑

j∈V\Ṽ
i ̸=j

yij = 1. Then IPi and its LP-relaxation have

the same optimal solution, which consists in setting yim⋆
i

to one and all other
decision variables to zero, the optimal objective value being sim⋆

i
.

• if V \ (Ṽ ∪ {i}) is empty, or yij is set to zero for all j ∈ V \ (Ṽ ∪ {i}) by
constraint (2.12), then constraint (2.10) becomes ∑

j∈Ṽ\{i}
yij = 2. Then IPi and

its LP-relaxation have an optimal solution in common, that consists in set-
ting yimi and yim′i

to one and all other decision variables to zero, the optimal
objective value being simi + sim′i

.

The remaining cases are less straightforward: node i is a terminal and both
the set of uncertain hubs, i.e., (Ṽ \ {i}) ∩ {j ∈ V : ŷjj = 1} and the set of cer-
tain hubs, i.e., (V \ (Ṽ ∪ {i}) ∩ {j ∈ V : ŷjj = 1} are nonempty. In that case,
the LP-relaxation of IPi may have a non-integer optimal solution. Even if solv-
ing IPi remains straightforward, we need to formulate it as a linear program, so
that its dual can be solved, as separating Benders optimality cuts requires an op-
timal solution to the subproblem’s dual. To this end, we propose a pure linear

38

programming formulation for IPi, by adding valid inequalities and then show-
ing that the LP-relaxation of this improved formulation is integral. We define
Ωi = {j ∈ Ṽ \ {i} : ŷjj = 1, sij = simi} as the set containing all the uncertain hubs
that are at minimum distance from terminal i, including hub mi if it exists. We
now introduce valid inequalities for IPi to enforce that if a minimum-cost uncer-
tain hub has been selected to connect terminal i, then at least another uncertain
hub should be selected as well. This is due to the requirement that any terminal
should either be connected to a certain hub, or to two uncertain hubs.

yik ≤ ∑
j∈Ṽ\{k}

ŷjj=1

yij ∀k ∈ Ωi (2.14)

Let LP+
i be the LP-relaxation of IPi with the addition of (2.14). Relaxing the in-

tegrality constraints yields to yij ≤ 1 for all j ∈ V \ {i}, but it can be observed
that (2.12) dominate these constraints, so they can be dropped and all decision
variables in LP+

i are simply subject to non-negativity constraints. We now show
that LP+

i has an optimal solution that is integral. To this end, we use the following
lemma:

Lemma 1. In any optimal solution to LP+
i , yij = 0 for all j in V \ (Ṽ ∪ {i}) such that

sij > sim⋆
i

and for all j in Ṽ \ {i} such that sij > sim′i
.

Proof Lemma 1 is proven by contradiction. Let (yij)j∈V\{i} be an optimal solu-
tion to LP+

i . We first assume that there exists q in V \ (Ṽ ∪ {i}) with siq > sim⋆
i

and
yiq > 0. Then we can transform this optimal solution by increasing yim⋆

i
by yiq and

by setting yiq to zero. The resulting solution is still feasible, but since its objective
value has decreased by (siq − sim⋆

i
)yiq > 0, the original solution cannot be optimal

which is a contradiction.
We now assume that (yij)j∈V\{i} is an optimal solution to LP+

i such that there
exists q in Ṽ \ {i} such that siq > sim′i

≥ smi and yiq > 0. We consider the fol-
lowing two subcases. If simi = sim′i

, then both mi and m′i are subjected to con-
straint (2.14). If one of them is not tight, say m′i, then we can transform the cur-
rent optimal solution to LP+

i into a feasible solution by increasing yim′i
by ε =

min

yiq,
1
2 ∑

j∈Ωi\{m′i}
yij −

1
2

yim′i

 > 0 and by decreasing yiq by ε. In the process,

the objective value of the new feasible solution has been decreased by ε(siq −
sim′i

) > 0, which is a contradiction. The argument and the conclusion are the
same if constraint (2.14) is not tight for mi. This means that constraint (2.14) has

39

to be tight for both mi and m′i. The corresponding two equalities yield yij = 0 for
all j ∈ Ṽ \ {i, mi, m′i}, which again contradicts yiq > 0. The second subcase occurs
when simi < sim′i

. Now, constraint (2.14) does not apply to m′i as m′i /∈ Ωi, so we
can transform the optimal solution to LP+

i by increasing yim′i
by yiq and by setting

yiq to zero. The resulting solution is feasible and its objective value has decreased
by (siq − sim′i

)yiq > 0, which again contradicts the fact that the initially considered
solution was optimal. ■

Corollary 1.1. Any optimal solution to LPi can be transformed into another optimal
solution such that yim⋆

i
is the only nonzero yij variable for all j in V \ (Ṽ ∪ {i}) and

yimi = yim′i
are the only nonzero variables for all j in Ṽ \ {i}.

Proof By Lemma 1, the only values of j ∈ V \ (Ṽ ∪ {i}) such that yij can be
nonzero in an optimal solution to LP+

i are those for which sij = sim⋆
i
. If there

are more that one such yij variables, we can transform any optimal solution by
updating yim⋆

i
to ∑

j∈V\(Ṽ∪{i})
yij and by setting yij to zero for all j ∈ V \ (Ṽ ∪{i, m⋆

i }).

This transformation yields a feasible solution and does not change its optimal
objective value, since sij = sim⋆

i
for all j in V \ (Ṽ ∪ {i}). Still by Lemma 1, the only

values of j ∈ Ṽ \ {i} such that yij can be nonzero in an optimal solution to LP+
i

are those for which sij ≤ sim′i
.

• We first consider the subcase in which simi = sim′i
. This implies that con-

straint (2.14) applies for all j ∈ Ṽ \ {i} such that yij can be nonzero. If
constraint (2.14) is tight for both mi and m′i, then the corresponding two
equalities imply that yimi = yim′i

are the only nonzero variables for all j in
Ṽ \ {i}. If constraint (2.14) is not tight for m′i, or similarly, for mi, then there
exists q ∈ Ṽ \ {i, mi, m′i} such that yiq > 0 and the current optimal solu-
tion to LP+

i can be transformed into a feasible solution by increasing yi,m′i

by ε = min

yiq,
1
2 ∑

j∈Ṽ\{i,m′i}
yij −

1
2

yim′i

 > 0 and by decrementing yiq by

ε. This transformation yields a feasible solution to LP+
i , which is still op-

timal as the objective value of the initial optimal solution has been added
(sim′i

− siq)ε = 0, but the new optimal solution has one nonzero variable less
than the original one. This process can be repeated at most |Ṽ \ {i, mi, m′i}|
times to produce a solution in which yimi = yim′i

are the only nonzero vari-
ables for all j in Ṽ \ {i}.

40

• We now consider the subcase in which simi < sim′i
. This implies that con-

straint (2.14) applies to mi only, so any optimal solution to LP+
i can be trans-

formed by updating yim′i
to ∑

j∈Ṽ\{i,mi}
yij and by setting yij to zero for all

j ∈ Ṽ \ {i, mi, m′i}. This yields a feasible solution whose objective value is
the same as the one of the original optimal solution. As a result, constraint
(2.14), which only applies to mi, is tight. It implies that yimi = yim′i

and these
two are the only nonzero variables for all j in Ṽ \ {i}. ■

Corollary 1.2. Any optimal solution to LP+
i can be transformed into an integral optimal

solution.

Proof By corollary 1.1, any optimal solution to LP+
i can be transformed into an

optimal solution having at most three nonzero decision variables, namely yim⋆
i
,

yimi and yim′i
. It has also been shown that yimi = yim′i

. Hence, by dropping all the
zero decision variables, constraint (2.10) reduces to yim⋆

i
+ yimi = 1, which means

that variable yimi can be eliminated. By definition of m⋆
i , constraint (2.12) is yim⋆

i
≤

1, so LP+
i is a single continuous variable linear program which is to minimize

sim⋆
i
yim⋆

i
+ (simi + sim′i

)(1− yim⋆
i
) = (simi + sim′i

) + (sim⋆
i
− simi − sim′i

)yim⋆
i

subject to
0 ≤ yim⋆

i
≤ 1. So when sim⋆

i
≤ simi + sim′i

, the optimal solution is to set yim⋆
i
= 1,

which yields an optimal objective value of sim⋆
i

and implies that yimi = yim′i
= 0.

When sim⋆
i
> simi + sim′i

, the optimal solution is to set yim⋆
i
= 0, which yields an

optimal objective value of simi + sim′i
and implies that yimi = yim′i

= 1. This shows
that in all cases, an integral optimal solution to LP+

i can be found. ■

2.5.3 Computing the dual of LP0 and LP+
i for all the nodes i in V

The dual DLP0 of LP0 is

(DLP0) :

Maximize ∑
(i,j,k)∈ J̃

(x̂ij + x̂jk − 1)βijk

∑
j∈Ṽ:j ̸=i,j ̸=k

βijk ≤ rik, ∀ik ∈ E

βijk ≥ 0, ∀(i, j, k) ∈ J̃

(2.15)

For all i ∈ V, the dual of LP+
i is denoted by DLP+

i and is defined as follows:

41

If ŷii = 1,

(DLP+
i) :

Max λi = 2(1− ŷii)αi − ∑
j∈V\{i}

ŷjjγij

2αi − γij ≤ sij ∀j ∈ V \ (Ṽ ∪ {i})

αi − γij ≤ sij ∀j ∈ V \ {i}

αi ∈ R

γij ≥ 0 ∀j ∈ V \ {i}

If ŷii = 0,

(DLP+
i) :

Maximize λi = 2(1− ŷii)αi − ∑
j∈V\{i}

ŷjjγij

2αi − γij ≤ sij ∀j ∈ V \ (Ṽ ∪ {i})

αi − γij − δij + ∑
k∈Ωi\{j}

δik ≤ sij ∀j ∈ Ωi

αi − γij + ∑
k∈Ωi

δik ≤ sij ∀j ∈ Ṽ \ (Ωi ∪ {i})

αi ∈ R

γij ≥ 0 ∀j ∈ V \ {i}

δij ≥ 0 ∀j ∈ Ωi

2.5.4 Computing optimal primal and dual solutions to the subproblems

For all i ∈ V, we propose a feasible solution to LP+
i and a feasible solution to

DLP+
i and show that they have the same objective value in the primal and in

the dual respectively, for providing the proof of their optimality. This common
numerical value is the cost incurred by the connection of node i to the ring. The
study distinguishes 5 cases.

Case 1: Node i is a hub

For all node i ∈ V such that ŷii = 1, the unique feasible solution to LP+
i is to set yij

to zero for all j ∈ V \ {i}, leading to a zero objective value for the primal. Similarly,
a feasible solution to DLP+

i is to set αi and γij to zero for all j ∈ V \ {i}, leading to a
zero objective value for the dual. But we can propose an alternative solution, that
can be shown to yield stronger optimality cuts. This solution consists in setting

αi = min

(
min

j∈V\(Ṽ∪{i})

1
2

sij, min
j∈Ṽ\{i}

sij

)
, with γij = 0 for all j ∈ V \ {i}. This solution

is also feasible for DLP+
i and leads to a zero objective value as well. Now we show

42

that it produces a stronger optimality cut than the one we get by setting all the
dual variables to zero. The optimality cut that we have when dual variables are
set to zero for all hubs is

λ ≥ ∑
i∈V,ŷii=0

2(1− yii)αi + ∑
(i,j,k)∈ J̃

(xij + xjk − 1)βijk − ∑
(i,j)∈V ̸=

yjjγij

Now, if we set αi = min

(
min

j∈V\(Ṽ∪{i})

1
2

sij, min
j∈Ṽ\{i}

sij

)
for all i ∈ V such that

ŷii = 1, we have the following optimality cut:

λ ≥ ∑
i∈V,ŷii=1

(1− yii)αi + ∑
i∈V,ŷii=0

2(1− yii)αi + ∑
(i,j,k)∈ J̃

(xij + xjk− 1)βijk− ∑
(i,j)∈V ̸=

yjjγij

Since ∑
i∈V,ŷii=1

(1 − yii)αi ≥ 0, the new optimality cut dominates the original

one.

Case 2: Node i is a terminal and sim⋆
i
≤ 2simi

For all node i ∈ V such that ŷii = 0 and sim⋆
i
≤ 2simi , the primal optimal solution

consists in connecting i to the certain hub m⋆
i at a cost of simi⋆, so yim⋆

i
= 1 and

yij = 0 for all j ∈ V \ {i, m⋆
i }. A feasible solution to DLP+

i can be to set αi =
1
2

sim⋆
i
,

γij = max(0, sim⋆
i
− sij) for all j ∈ V \ (Ṽ ∪ {i}), γij = max

(
0, 1

2
sim⋆

i
− sij

)
for all

j ∈ Ṽ \ {i} and δij = 0 for all j ∈ Ωi. Since sim⋆
i
≤ 2simi , γij = 0 for all j ∈ V such

that ŷjj = 1, so the corresponding objective value of the dual is sim⋆
i
.

Case 3: Node i is a terminal and 2simi < sim⋆
i
≤ simi + sim′i

First, it should be observed that if |Ωi| ≥ 2, then simi = sim′i
, which contradicts the

hypothesis of the present case. Hence we now assume that |Ωi| = 1.
For all node i ∈ V such that ŷii = 0 and 2simi < sim⋆

i
≤ simi + sim′i

, the primal
optimal solution consists in connecting i to the certain hub m⋆

i , at a cost of simi⋆, so
yim⋆

i
= 1 and yij = 0 for all j ∈ V \ {i, m⋆

i }. A feasible solution to DLP+
i can be to

set αi =
1
2

sim⋆
i
, γij = max(0, sim⋆

i
− sij) for all j ∈ V \ (Ṽ ∪ {i}).

Now, we consider j ∈ Ṽ \ {i}. Since |Ωi| = 1, we have simi < sim′i
and the

second constraint of DLP+
i reads αi − γimi − δimi ≤ simi . Since ŷmimi = 1 by defini-

tion, we shall have γimi = 0 to let the objective function be sim⋆
i
. Hence, the only

option left to satisfy the constraint is to set δimi =
1
2

sim⋆
i
− simi , which is strictly

positive. Now, the third constraint of DLP+
i reads: αi − γij + δimi ≤ sij for all

j ∈ Ṽ \ {i, mi}. Replacing αi and δimi by their values yields: sim⋆
i
− simi − γij ≤ sij

for all j ∈ Ṽ \ {i, mi}. We know that sij ≥ sim′i
for all j ∈ Ṽ \ {i, mi} such that

43

ŷjj = 1, so setting γij = max(0, sim⋆
i
− simi − sij) for all j ∈ Ṽ \ {i, mi} ensures that

the dual solution is feasible since we can show that γij = 0 for all j ∈ Ṽ \ {i, mi}
such that ŷjj = 1.

Case 4: Node i is a terminal and 2sim′i
≤ sim⋆

i

For all node i ∈ V such that ŷii = 0 and 2sim′i
≤ sim⋆

i
, an optimal solution to LP+

i

consists in connecting i to the uncertain hubs mi and m′i, at a cost of simi + sim′i
,

so yimi = yim′i
= 1 and yij = 0 for all j ∈ V \ {i, mi, m′i}. A feasible solution

to DLP+
i can be to set αi =

1
2

(
simi + sim′i

)
, γij = max(0, simi + sim′i

− sij) for all

j ∈ V \ (Ṽ ∪ {i}), γij = 0 and δij = max
(

0, 1
2
(simi + sim′i

)− sij

)
for all j ∈ Ωi and

γij = max
(

0, 1
2 (simi + sim′i

)
− sij) for all j ∈ Ṽ \ (Ωi ∪ {i}). Since sim⋆

i
≥ 2sim′i

≥
simi + sim′i

, γij = 0 for all j ∈ V such that ŷjj = 1, so the corresponding objective
value of the dual is simi + sim′i

.

Case 5: Node i is a terminal and simi + sim′i
< sim⋆

i
< 2sim′i

First, it should be observed that if |Ωi| ≥ 2, then simi = sim′i
, which contradicts the

hypothesis of the present case. Hence we now assume that |Ωi| = 1.
For all node i ∈ V such that ŷii = 0 and simi + sim′i

< sim⋆
i
< 2sim′i

, an optimal
solution to LP+

i consists in connecting i to the uncertain hubs mi and m′i, at a cost
of simi + sim′i

, so yimi = yim′i
= 1 and yij = 0 for all j ∈ V \ {i, mi, m′i}. A feasible

solution to DLP+
i can be to set αi =

1
2

(
simi + sim′i

)
and γij = max(0, simi + sim′i −

sij) for all j ∈ V \ (Ṽ ∪ {i}). We can easily check that for all j ∈ V \ (Ṽ ∪ {i}) such
that ŷjj = 1, γij is zero.

Now, we consider j ∈ Ṽ \ {i}. Since |Ωi| = 1, we have simi < sim′i
and the

second constraint of DLP+
i reads αi − γimi − δimi ≤ simi . Since ŷmimi = 1 by def-

inition, we shall have γimi = 0 to let the objective function be simi + sim′i
. Hence,

the only option left to satisfy the constraint is to set δimi =
1
2

(
sim′i
− simi

)
, which

is strictly positive. Now, the third constraint of DLP+
i reads: αi − γij + δimi ≤ sij

for all j ∈ Ṽ \ {i, mi}. Replacing αi and δimi by their values yields: sim′i
− γij ≤ sij

for all j ∈ Ṽ \ {i, mi}. We know that sij ≥ sim′i
for all j ∈ Ṽ \ {i, mi} such that

ŷjj = 1, so setting γij = max(0, sim′i
− sij) for all j ∈ Ṽ \ {i, mi} ensures that the

dual solution is has an objective of simi + sim′i, since we can show that γij = 0 for
all j ∈ Ṽ \ {i, mi} such that ŷjj = 1.

2.5.5 Polynomial-time algorithm to the subproblem’s dual

Even if the subproblem can be stated as a linear program, it has a cubic number
of βijk variables, which makes it long to solve. In order to solve it faster, we take

44

advantage of the fact that these variables are independent of the other variables.
Algorithm 3 solves the dual of Benders subproblem’s relaxation. It takes advan-
tage of the fact that at most |Ṽ| of the βijk are non-zeros and compute them in a
quadratic running time. Knowing x̂ij and ŷjj, we initially let β′j be the adjacency
list of node j ∈ Ṽ such that ŷjj = 1: β′j[1] and β′j[2] are its two neighbors in the ring.
Note that for all (i, j, k) ∈ J̃, βijk ̸= 0 implies that β′j is nonempty (the converse does
not hold when some ring costs are zero). Algorithm 3 returns an optimal solution
to the subproblem’s dual in O(|V|2) time.

2.5.6 Optimality cuts of the Benders decomposition

The optimality cut that is added to the master problem of the Benders decompo-
sition is:

λ ≥ ∑
i∈V

2(1− yii)αi + ∑
(i,j,k)∈ J̃

(xij + xjk − 1)βijk − ∑
(i,j)∈A

yjjγij

When Algorithm 3 terminates, βijk is set to rik for all (i, j, k) ∈ J̃ and the opti-
mality cut can be written as:

λ ≥ ∑
i∈V:ŷii=0

2(1− yii)αi − ∑
(i,j)∈A:ŷii=0

γijyjj + ∑
j∈Ṽ:β′j ̸=∅

(xβ′j[1]j
+ xjβ′j[2]

− 1)rβ′j[1]β
′
j[2]

2.5.7 Polyhedral analysis of constraints (2.14)

In this section, we consider a terminal i ∈ V and show that constraint (2.14) is
facet-defining for IPi when H ∩ (V \ Ṽ) is nonempty and H ∩ Ṽ has cardinality at
least three where H = {j ∈ V : ŷjj = 1} is the set of hubs as per the solution of the
master problem.

Constraint (2.10) is an equality, so it can be removed by substituting one vari-
able of IPi, say yim⋆

i
. Hence

yim⋆
i
= 1− ∑

j∈H∩(V\Ṽ)
j ̸=m⋆

i

yij −
1
2 ∑

j∈H∩Ṽ

yij

As a result, the original nonnegativity constraint yim⋆
i
≥ 0 becomes:

∑
j∈H∩(V\Ṽ)

j ̸=m⋆
i

yij +
1
2 ∑

j∈H∩Ṽ

yij ≤ 1

We can also remove all the decision variables yij ≤ ŷjj for which ŷjj = 0. This
leads to a |H| − 1 decision variable formulation of IPi:

45

Algorithm 3: Solving the subproblem’s dual of 1-S-RSP
1 Input: (ŷii)i∈V , (x̂ij)ij∈E booleans
2 Output: (αi)i∈V , (β′j)j∈Ṽ , (γij)(i,j)∈A, (δij)i∈V:ŷii=0,j∈Ωi

3 foreach j ∈ Ṽ do
4 β′j ← []

5 foreach i ∈ V do
6 αi ← 0
7 foreach j ∈ V : j ̸= i do
8 if j > i and x̂ij = 1 and i ∈ Ṽ then
9 Append j to β′i

10 if j > i and x̂ij = 1 and j ∈ Ṽ then
11 Append i to β′j

12 γij ← 0

13 foreach i ∈ V : ŷii = 0 do
14 Ωi ← {j ∈ Ṽ \ {i} : ŷjj = 1, sij = simi}
15 foreach j ∈ Ωi do
16 δij ← 0

17 if sim⋆
i
≤ 2simi then

18 αi ←
1
2

sim⋆
i

19 foreach j ∈ V \ (Ṽ ∪ {i}) do γij ← max(0, sim⋆
i
− sij)

20 foreach j ∈ Ṽ \ {i} do γij ← max
(

0, 1
2

sim⋆
i
− sij

)
21 else if 2simi < sim⋆

i
and sim⋆

i
≤ simi + sim′i

then

22 αi ←
1
2

sim⋆
i
, δimi ←

1
2

sim⋆
i
− simi

23 foreach j ∈ V \ (Ṽ ∪ {i}) do γij ← max(0, sim⋆
i
− sij)

24 foreach j ∈ Ṽ \ (Ωi ∪ {i}) do γij ← max(0, sim⋆
i
− simi − sij)

25 else if 2sim′i
≤ sim⋆

i
then

26 αi ←
1
2
(simi + sim′i

)

27 foreach j ∈ V \ (Ṽ ∪ {i}) do γij ← max(0, simi + sim′i
− sij)

28 foreach j ∈ Ωi do γij ← 0, δij ← max
(

0, 1
2
(simi + sim′i

)− sij

)
29 foreach j ∈ Ṽ \ (Ωi ∪ {i}) do γij ← max

(
0, 1

2
(simi + sim′i

)− sij

)
30 else if simi + sim′i

< sim⋆
i

and sim⋆
i
< 2sim′i

then

31 αi ←
1
2
(simi + sim′i

), δimi ←
1
2
(sim′i

− simi)

32 foreach j ∈ V \ (Ṽ ∪ {i}) do γij ← max(0, simi + sim′i
− sij)

33 foreach j ∈ Ṽ \ (Ωi ∪ {i}) do γij ← max(0, sim′i
− sij)

34 return (αi)i∈V , (β′j)j∈Ṽ , (γij)(i,j)∈A, (δij)i∈V:ŷii=0,j∈Ωi

46

(IPi) :

Min sim⋆
i
+ ∑

j∈(H\{m⋆
i })∩(V\Ṽ)

(sij − sim⋆
i
)yij + ∑

j∈H∩Ṽ

(sij −
1
2

sim⋆
i
)yij

yij ≤ 1 ∀j ∈ H \ {m⋆
i }

∑
j∈H∩(V\Ṽ)

j ̸=m⋆
i

yij +
1
2 ∑

j∈H∩Ṽ

yij ≤ 1

yik ≤ ∑
j∈(H∩Ṽ)\{k}

yij ∀k ∈ Ωi

yij ∈ B ∀j ∈ H \ {m⋆
i }

Determining the dimension of conv(IPi)

We show that conv(IPi) has dimension |H| − 1. To do so, we build |H| affinely
independent points of B|H|−1 in conv(IPi) as follows:

• Point Pm⋆
i has all its entries equal to zero.

• For all j ∈ (H \ {m⋆
i }) ∩ (V \ Ṽ), point Pj is defined by Pj

j = 1, other entries
are zero.

• For all j ∈ H ∩ (Ṽ \ {mi}), point Pj is defined by Pj
j = 1 and Pj

mi = 1. Other
entries are zero, so Pj has two nonzero entries.

• Point Pmi is defined by Pmi
j1

= Pmi
j2

= 1 for some j1 ̸= j2 in H ∩ (Ṽ \ {mi}),
other entries are zero. Note that j1 and j2 can always be found since H ∩ Ṽ
has cardinality at least three.

We form M, the (|H| − 1)-by-|H| matrix using Pj as its columns for all j ∈ H.
Assuming that the nodes in the set H∩ (V \ Ṽ) are reindexed in {1, . . . , h1} (where
m⋆

i has index 1) and the nodes in H ∩ Ṽ are reindexed in {h1 + 1, . . . , |H|}, (where
mi has index |H|), we can represent M as:

M =

0 1 · · · 0 0 · · · 0 0
...

...
. . .

...
...

...
...

... 0 · · · 1 0 · · · 0 0

... 0 · · · 0 1 · · · 0 0

...
...

. . .
... 0

. . . 1 1
0 0 · · · 0 1 · · · 1 0

M′ =

1 · · · 0 0 · · · 0 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0 0
0 · · · 0 1 · · · 0 0
...

. . .
... 0

. . . 1 1
0 · · · 0 1 · · · 1 0

To show that the |H| points that constitute the columns of M are affinely inde-

pendent, we subtract the first column of M to all the other ones in order to create

47

|H| − 1 directions, then the first column is removed. This yields M′, a block diago-
nal (|H|− 1)-by-(|H|− 1) matrix that can be written as diag(A, B). The first diago-
nal block, denoted by A, is the identity matrix of order h1 = |(H \ {m⋆

i })∩ (V \ Ṽ)|
and B, which is a square matrix of order |H ∩ Ṽ|, can itself be split into diagonal
blocks. Block B1,1 is the identity matrix of order |(H \ {mi}) ∩ Ṽ|, block B1,2 is
an |(H \ {mi}) ∩ Ṽ|-element column vector full of zeros, except for rows j1 and
j2 where it has one entries, j1 and j2 are two distinct elements of (H \ {mi}) ∩ Ṽ.
Block B2,1 is an |(H \ {mi})∩ Ṽ|-element row vector full of ones and block B2,2 is a
one-by-one matrix that contains zero. It will be shown that M′ is non-singular by
expressing its determinant, as det(A)×det(B) = det(B). It is first shown that B is
non-singular: Since B1,1 is the identity matrix of order |(H \ {mi}) ∩ Ṽ|, the rank
of B is at least |(H \ {mi}) ∩ Ṽ|. Now, if the last column of B could be written as
a linear combination of the first |(H \ {mi}) ∩ Ṽ| columns of B, we could express
this column as ∑

j∈(H\{mi})∩Ṽ

µjBj = Bmi where Bj denotes the j-th column of B and

µj is a real number. This would imply µj = 0 for all j ∈ (H \ {mi, j1, j2}) ∩ Ṽ,
µj1 = µj2 = 1 and µj1 + µj2 = 0 because of the last row of B. This system has
no solution, which implies that all the columns of B are linearly independent. As
a result, det(B) is nonzero and M′ is non-singular. Consequently, conv(IPi) has
dimension |H| − 1.

Showing that constraint (2.14) is facet-defining

We show that for all k ∈ Ωi, the inequality induced by constraint (2.14) is facet-
defining:

yik ≤ ∑
j∈(H∩Ṽ)\{k}

yij

To this end, we find |H| − 1 points in conv(IPi) as we did for showing that
conv(IPi) has dimension |H| − 1, but we use k instead of mi and we do not take
point Pk as it does not satisfy constraint (2.14) to equality. It can be checked that
constraint (2.14) is satisfied to equality for all the points Pj with j ∈ H ∩ (V \ Ṽ)

as 0 = 0 and for all Pj with j ∈ H ∩ (Ṽ \ {mi}) we have 1 = 1.
We form Mk, the (|H| − 1)-by-(|H| − 1) matrix using Pj as its columns for

all j ∈ H \ {k}. Assuming that the nodes in the set H ∩ (V \ Ṽ) are reindexed
in {1, . . . , h1} (where m⋆

i has index 1) and the nodes in H ∩ Ṽ are reindexed in
{h1 + 1, . . . , |H|}, (where k has index |H|). Then, we form M′k by subtracting the
first column to all the other columns of Mk and we remove the first column and
the last row. This yields the identity matrix of order |H| − 2, hence we have found
|H| − 1 affinely independent points of conv(IPi) that satisfy (2.14) to equality. This

48

proves that (2.14) is facet-defining.

Mk =

0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
... 0 · · · 1 0 · · · 0
... 0 · · · 0 1 · · · 0
...

...
. . .

... 0
. . . 1

0 0 · · · 0 1 · · · 1

M′k =

1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1

2.5.8 An instance transformation for 1-S-RSP

In this section, we propose an instance transformation to modify the expression
of the objective function of 1-S-RSP so that the Benders decomposition algorithm
performs better. Indeed, when star costs are high, they are “invisible” to the mas-
ter problem and many optimality cuts are required for improving the lower bound
of the master problem which discovers these costs gradually through the introduc-
tion of optimality cuts. The proposed transformation aims at transferring as much
cost as possible from the subproblem to the master problem in order to improve
the lower bound of the latter. The idea is then to minimize the contribution of the
subproblem to the original objective function value.

Transformation for the star costs

For all i ∈ V, let ci be the contribution of this node to the solution cost. It is defined
as:

ci = oiyii + ∑
j∈V\(Ṽ∪{i})

sijyij + ∑
j∈Ṽ\{i}

sijyij

We can observe that exactly one of the following three situations happens in
any optimal solution to 1-S-RSP:

1. Node i is selected as a hub, so yii = 1 and yij = 0 for all j ∈ V \ {i}, which
yields ci = oi

2. Node i is a terminal connected to a certain hub j, so yij = 1 and yik = 0 for
all k ∈ V \ {j}, which yields ci = sij

3. Node i is a terminal connected to two distinct uncertain hubs j and j′, so
yij = yij′ = 1 and yik = 0 for all k ∈ V \ {j, j′}, which yields ci = sij + sij′

For all i ∈ V, let offseti be a lower bound on the cost incurred by node i if it is
a terminal:

49

offseti = min

(
min

k∈V\(Ṽ∪{i})
sik, 2 min

k∈Ṽ\{i}
sik

)

This lower bound returns the minimum over two quantities. The first one is the
minimum cost for connecting i to a certain hub, and the second one is the mini-
mum cost for connecting i to two uncertain hubs. We can now express ci as fol-
lows:

ci = offseti +
(

oi − offseti

)
yii + ∑

j∈V\(Ṽ∪{i})

(
sij − offseti

)
yij + ∑

j∈Ṽ\{i}

(
sij −

1
2

offseti

)
yij

The numerical value of ci can be checked to be correct in the above-mentioned
three cases, and it can be observed that the yij variables are all multiplied by a
nonnegative constant. The objective function of the ILP formulation of 1-S-RSP
can be updated accordingly.

Transformation of the contribution of backup edges

The presence of backup edges in any optimal solution to 1-S-RSP is the conse-
quence of the selection of hubs in Ṽ. So if edge ij is selected as a ring edge (i.e.,
xij = 1), with i ∈ Ṽ, then the selection of this edge implies that a backup edge,
incident to j should be present to cope the failure of node i. The cost of this edge is
at least mink∈V\{j} r′kj and since this backup edge is also connected to another hub,
we can raise the cost of edge (i, j) to rij +

1
2 ϵj where we define ϵj = mink∈V\{j} r′kj

for all j ∈ V, as the minimum cost of a backup edge incident to j. Consequently,
the cost of any backup edge (i, j) must be decreased by 1

2 (ϵi + ϵj), which maintains
nonnegativity.

offset← ∑
i∈V

offseti

oi ← oi − offseti ∀i ∈ V
rij ← rij ∀i ∈ V \ Ṽ, ∀j ∈ V \ Ṽ : i < j
rij ← rij +

1
2 ϵj ∀i ∈ Ṽ, ∀j ∈ V \ Ṽ : i < j

rij ← rij +
1
2 ϵi ∀i ∈ V \ Ṽ, ∀j ∈ Ṽ : i < j

rij ← rij +
1
2 ϵi +

1
2 ϵj ∀i ∈ Ṽ, ∀j ∈ Ṽ : i < j

r′ij ← r′ij − 1
2 ϵi − 1

2 ϵj ∀i ∈ V, ∀j ∈ V : i < j

sij ← sij − offseti ∀i ∈ V, ∀j ∈ V \ (Ṽ ∪ {i})
sij ← sij − 1

2 offseti ∀i ∈ V, ∀j ∈ Ṽ \ {i}

Consequently the objective function of 1-S-RSP is now:

Minimize offset + ∑
i∈V\Ṽ

oiyii + ∑
i∈V

∑
j∈V
i<j

(
rijxij + r′ijx

′
ij

)
+ ∑

i∈V
∑

j∈V\{i}
sijyij

50

The advantage of this instance transformation is that the objective value of
the master problem gets larger, while the objective value of the subproblem gets
smaller (the sum remains the same). The transformation also guarantees that ring
costs and star costs remain nonnegative, which is necessary for solving the sub-
problem, as stated in Subsection 2.5.2. By contrast, transformed hub selection
costs oi are unrestricted in sign.

2.6 Enhancing and solving the ILP and the Branch-and-Benders-
cut of 1-S-RSP

2.6.1 Introduction of 2-opt backup

In order to improve a 1-S-RSP feasible solution, we introduce a strategy, called
2-opt backup, an extension of the classical 2-opt algorithm proposed by G.A.
Croes [16]. 2-opt backup is applied to both ILP and Branch-and-Benders-cut de-
composition. It consists of improving the ring of the current solution by the
mean of 2-opt backup moves. These moves differ from classical 2-opt moves as
they also consider backup edges. Algorithm 4 describes the 2-opt backup pro-
cedure which takes as input argument the ring and backup edges x and x′ as
well as their associated costs r and r′, the array of hubs H that appear in the
same order as in the ring, the cost of the input solution stored in previous_cost
and Ṽ. We use Hi for i ∈ {1, . . . , |H|} to denote the i-th element of H, that
is H[i]. Figure 2.5 illustrate a 2-opt backup move where the old backup edge
x′i−1,i+1 is shown and replaced by x′i−1,j, and a part of the ring is replaced from
[i− 1, i, i + 1, i + 2, . . . , j− 1, j, j + 1, j + 2] to [i− 1, i, j, j− 1, . . . , i + 2, i + 1, j + 1, j + 2]
exactly as in Algorithm 4.

j + 2

j + 1

j

j− 1

i + 2

i + 1

i

i− 1

ring edges removed by 2-opt backup

unchanged ring edges

backup edges removed by 2-opt backup

j + 2

j + 1

j

j− 1

i + 2

i + 1

i

i− 1

ring edges added by 2-opt backup

unchanged ring edges

backup edges added by 2-opt backup

Figure 2.5: Illustration of edges before (left) and after (right) a 2-opt backup move

51

2.6.2 Description of the ILP and Branch-and-Benders-cut algorithms

The ILP model is solved without constraints (2.2). Subtour elimination constraints
are separated at fractional nodes using the Edmonds-Karp Min cut algorithm [42]
and are added to the model thanks to user cuts callbacks. We stop separating such
constraints as soon as 2000 inequalities have been generated. This limitation does
not apply to the inequalities that are generated at integer nodes of the solver’s
branch-and-bound tree under the form of lazy constraints, like the subtour elimi-
nation constraints found at integer nodes, and the Benders optimality cuts. Every
time an integer solution is found, we check whether it contains a subtour or not.
If it contains a subtour, we add the corresponding violated constraint (2.2), oth-
erwise we try to improve the ring with 2-opt backup from Section 2.6.1. If the
improved solution is better than the incumbent, then the incumbent is updated
accordingly.

The Branch-and-Benders-cut algorithm is implemented as follows. The in-
stance transformation introduced in Subsection 2.5.8 is first applied. Similarly
to ILP, constraints (2.8) and (2.9) are not initially present in the model, and we
separate them at fractional nodes of the search tree as in the ILP, using the same
limit of 2000 user cuts callbacks. Every time the Branch-and-Benders-cut algo-
rithm finds an integer solution, we check whether it contains a subtour or not. We
add a subtour elimination constraint implemented as a lazy constraint if it does
have a subtour, otherwise, we call 2-opt backup. If the improved solution outper-
forms the integer solution of the current node in the search tree, then it replaces
it. We then solve the subproblem and submit an optimality cut as in Subsection
2.5.6.

2.7 Numerical Experiments

The ILP introduced in Section 2.4 and the Branch-and-Benders-cut algorithm pre-
sented in Section 2.5, are implemented with the improvements described in Sec-
tion 2.6.2, and tested on two classes of instances. Class I is a collection of 32× 3 =

96 TSP instances taken from TSPLIB [50] involving between 51 and 200 nodes. In
these instances, the nodes are described by their coordinates. Let lij be the Eu-
clidean distance between nodes i and j of V. Following [41], we define the ring
cost by rij = ⌈αlij⌉ and the star cost by sij = ⌈(10− α)lij⌉ where α is in the set
{3, 5, 7}, for all (i, j) in V2. The influence of parameter α on solutions structure
is shown on Figure 2.6 which originates from Calvete [13] et al. (2013). Open-
ing costs are zero for these instances, that have been used in [32] and in [41] to
compare solution approaches for RSP.

52

Algorithm 4: A 2-opt backup algorithm to improve a feasible solution of
1-S-RSP
1 Input: (xij)ij∈E, (x′ij)ij∈E, H, previous_cost, Ṽ, (rij)ij∈E, (r′ij)ij∈E

2 Output: (xij)ij∈E: Improved ring, (x′ij)ij∈E: Corresponding improved backup edges,
new_cost

3 improving← true
4 new_cost← previous_cost
5 while improving do
6 improving← f alse
7 foreach hi ∈ H do
8 foreach hj ∈ H and j /∈ {i− 1, i, i + 1, i + 2} do
9 saving← rHi ,Hi+1 + rHj ,Hj+1 − rHi ,Hj − rHi+1,Hj+1

10 if Hi ∈ Ṽ then
11 saving← saving + r′Hi−1,Hi+1

− r′Hi−1,Hj

12 if Hj ∈ Ṽ then
13 saving← saving + r′Hj−1,Hj+1

− r′Hi ,Hj−1

14 if Hi+1 ∈ Ṽ then
15 saving← saving + r′Hi ,Hi+2

− r′Hi+2,Hj+1

16 if Hj+1 ∈ Ṽ then
17 saving← saving + r′Hj ,Hj+2

− r′Hi+1,Hj+2

18 if saving > 0 then
19 new_cost← new_cost− saving
20 Replace edges xi,i+1 and xj,j+1 by xi,j and xi+1,j+1 in H
21 Set the following backup edges variables to zero: x′i−1,i+1, x′i,i+2,

x′j−1,j+1 and x′j,j+2

22 if Hi ∈ Ṽ then
23 Set the backup edge variable x′i−1,j to one

24 if Hj ∈ Ṽ then
25 Set the backup edge variable x′i,j−1 to one

26 if Hi+1 ∈ Ṽ then
27 Set the backup edge variable x′i+2,j+1 to one

28 if Hj+1 ∈ Ṽ then
29 Set the backup edge variable x′i+1,j+2 to one
30 In the ring H, replace the hub sequence

[i, i + 1, i + 2, . . . , j− 1, j, j + 1] by the hub sequence
[i, j, j− 1, . . . , i + 2, i + 1, j + 1]

31 improving← true

32 return (xij)ij∈E, (x′ij)ij∈E, new_cost

53

Figure 2.6: 4 optimal RSP solutions with the same instance except the ring and
star costs for 4 values of input paramter α

Class II is a collection of 8× 5 = 40 new, artificially generated instances where
nodes have coordinates uniformly drawn from {0, . . . , 1000}2. Ring and star costs
are both computed as the Euclidean distance, rij = sij = ⌈lij⌉ for all (i, j) in V2.
For all i in V, oi is uniformly drawn from {0, . . . , 1000}. The number of nodes n
varies in {20, 30, 40, 60, 100, 125, 150, 200}. The depot is always chosen as the first
node. For each n, we randomly generate 5 of those instances.

We use Julia v1.8.5, JuMP v1.10.0, and Gurobi v10.0.1 to solve all linear pro-
grams and integer linear programs. Gurobi is used with default settings, except
for the number of threads which is set to four, and PreCrush which is set to one,
to enable user cuts in the B&BC algorithm. We enforce a time limit of one hour
per instance. The computer used to carry out the computational experiments is
equipped with an Intel(R) Core i7-7700 processor running at 3.60 GHz and 16
GBytes of RAM, under GNU/Linux.

Table 2.2 presents an analysis of the impact of Ṽ based on Class II instances
30.1 and 60.1 where Ṽ takes 5 different sizes. All instances are solved with ILP.
In particular when Ṽ = ∅, the problem reduces to RSP. The columns of this table
are as follows: CPU is the CPU time in seconds to solve the ILP model. “TL” is
indicated when the time limit of one hour is reached; Gap represents the relative

optimality gap of ILP. Its formula is
UB− LB

UB
where LB and UB are the ILP objec-

tive bound and incumbent objective value, both LB and UB are also displayed in
Table 2.2. Column n_constraints shows the number of rows resulting from con-

54

straints (2.1) and (2.3)–(2.7) in the ILP model. It can be seen in this table that the
problem difficulty increases drastically with the size of Ṽ, so it is clear that 1-S-RSP
is much harder than the Ring Star Problem. Moreover, the number of uncertain
nodes has a significant impact on the total number of constraints, since (2.5) has a
cubic number of inequalities. We consider the most challenging setting, as a con-
sequence, Ṽ is set to V \ {1} for both Class I and Class II instances, meaning the
depot is certain and all other nodes are uncertain.

Tables 2.3 and 2.4 present the results for Class I and Class II instances, respec-
tively. The columns of these tables are as follows: CPU BF is the CPU time spent
by brute-force Algorithms 1 and 2, it is the same for the ILP and the Branch-and-
Benders-cut models. The brute-force algorithms are launched prior to the ILP and
the Branch-and-Benders-cut models. CPU is the total CPU time in seconds, it in-
cludes the CPU time of column CPU BF. “TL” is indicated when the time limit of
one hour is reached; Gap represents the relative optimality gap of both methods.
Its formula is the same as in Table 2.2. Both LB and UB are also displayed in Ta-
bles 2.3 and 2.4; |H| is the number of hubs in the best solution found. When |H| = 4,
the best solution is the one returned by Algorithm 2. Note that since there is a single cer-
tain node in the considered instances, Algorithm 1 cannot find any ring with three hubs.
n_subtour is the number of subtour elimination constraints, i.e., feasibility cuts for
Benders, and lazy constraints for ILP. Columns Nodes show the total number of
explored nodes in the solver’s branch-and-bound tree during the search. CPU SP
is the CPU time in seconds for solving the Benders subproblems. To obtain the
running time of the master problem, we should subtract CPU BF and CPU SP to
CPU. n_cut gives the number of optimality cuts in the Benders decomposition,
which is also the number of times the subproblem is solved.

Each line in Table 2.3 presents an instance with the format “Instance name n−
α” where n is the total number of nodes in the instance and α is the aforementioned
parameter. For Table 2.4, the format is “Class II n.ID” where ID varies from 1 to 5
and corresponds to the 5 randomly generated instances.

It can be seen in Table 2.3 that for Class I instances, the ILP model runs out
of memory for 17 instances when the number of nodes exceeds 150, whereas this
happens only once for the instance d 198-7 with the Branch-and-Benders-cut al-
gorithm. The upper bound returned by the Branch-and-Benders-cut algorithm
is always less than or equal to the one returned by ILP. The gap is better for
the Branch-and-Benders-cut algorithm on 63 instances out of 95, and the lower
bound is better for the Branch-and-Benders-cut algorithm on 30 instances out of
95. When an algorithm runs out of memory, we consider the other one to be better
for LB, UB, and the gap. No comparison can be made for the instance d 198-7
as both algorithms run out of memory. From these observations, we conclude

55

that Branch-and-Benders-cut tends to produce better quality solutions, while ILP
tends to return better lower bounds (except for α = 3). The Branch-and-Benders-
cut algorithm has fewer memory issues than the ILP model on larger instances.
As expected, the number of explored nodes in the solver’s branch-and-bound tree
is significantly less with the ILP due to its size. The Branch-and-Benders-cut al-
gorithm has always a better gap than the ILP model when α = 3, which sug-
gests that it is more efficient when edge costs are relatively low. On the opposite,
when α = 7, ILP returns a better gap except when memory issues occur, and
for instances pr 136-7 and pr 152-7. It can also be observed that the CPU time
spent solving Benders subproblems increases with α at a much faster pace than
the number of optimality cuts. Indeed, the computational effort required to solve
the Benders subproblem is larger when the ring has a low number of hubs. This
is because there are a lot of terminals to assign to the (small) ring and the running
time of the algorithm that solves the subproblem increases quadratically with the
number of terminals. Not surprisingly, we also observe that for α = 3, the best
available solutions have very few terminals, because of relatively large star costs.

Table 2.4 reports results on Class II instances, for which ILP finds an optimal
solution to seven small instances. The average value of the integrality gap of ILP
in these instances is 1.29 with a standard deviation of 0.05. This relatively large
integrality gap suggests that the problem formulation may be improved, inde-
pendently of the subtour elimination constraints, that do not need to be added in
large number for these instances. On Class II instances, the Branch-and-Benders-
cut model is much less efficient than ILP for small values of n, however, ILP shows
memory difficulties for all instances with 150 nodes and more while the Branch-
and-Benders-cut model succeeds in obtaining solutions. We observe that for small
instances, the number of optimality cuts varies a lot from one instance to another
even if they have the same characteristics, see for example Class II - 20. The same
happens with the CPU time and the number of nodes in the branch-and-bound
tree. For the remaining instances of Table 2.4, the number of optimality cuts seems
homogeneous but this is just because the time limit is the same for all instances
and they are not solved to optimality. So the number of optimality cuts that are
reported corresponds to the number of cuts that have been generated in one hour,
but the total number of cuts needed to obtain an optimal solution may vary sig-
nificantly from one instance to the next for the same value of n.

In Table 2.5, six instances of Class I and six instances of Class II are solved with-
out 2-opt backup, and the variation of the results with respect to those obtained
with 2-opt backup in Tables 3.1 and 2.4 are displayed. When no solution improv-
ing over the one returned by the brute-force algorithms is found, 2-opt backup is
not called and the results remain the same as in Tables 3.1 and 2.4. This happens

56

for eil 51-7, pr 124-3, pr 124-5, and pr 124-7. It can be seen that for ClassII
- 20.1, the only instance solved to optimality, 2-opt backup is detrimental to the
CPU time of ILP, but beneficial to the running time of the Branch-and-Benders-cut
algorithm. The optimality gap of the ILP is generally increased when 2-opt backup
is not used, and the effect is even more significant for Benders. When no time is
consumed by 2-opt backup, the solver runs out of memory in less than one hour
with instance ClassII - 125.1 while it does not have enough time to saturate all
the memory when 2-opt backup is used. The effect of 2-opt backup on the lower
bound seems to be slightly detrimental for large instances, but improves the up-
per bound very significantly, especially in the case of the Branch-and-Benders-cut
algorithm.

Table 2.2: Impact of Ṽ’s cardinality

Instance n.ID ILP

n = |V| Ṽ CPU Gap LB UB n_constraints

ClassII - 30.1

∅ (Ring Star Problem) 5.59 0% 6,912 6,912 871

{2, . . . , 8} 5.44 0% 7,545 7,545 3,713

{2, . . . , 15} 5.86 0% 8,335 8,335 6,555

{2, . . . , 23} 5.10 0% 8,800 8,800 9,803

{2, . . . , 30} = V \ {1} TL 5.0% 13,535 14,247 12,645

ClassII - 60.1

∅ (Ring Star Problem) 5.92 0% 9,906 9,906 3,541

{2, . . . , 15} 6.24 0% 9,920 9,920 27,495

{2, . . . , 30} 7.63 0% 10,862 10,862 53,160

{2, . . . , 45} 22.76 0% 13,980 13,980 78,825

{2, . . . , 60} = V \ {1} TL 19.8% 18,626 23,229 104,490

Concluding remarks on the present chapter are given in Chapter 4.

57

Table 2.3: TSPLIB instances Class I

Instance n–α ILP Branch-and-Benders-cut

n = |V| CPU BF CPU Gap LB UB |H| n_subtour Nodes CPU CPU SP Gap LB UB |H| n_subtour n_cut Nodes

eil 51-3 0.31 TL 37.0% 2,257 3,588 50 121 78,603 TL 0.56 24.0% 2,457 3,236 50 5,176 2,423 468,554

eil 51-5 0.32 TL 32.4% 3,656 5,415 42 107 54,287 TL 16.42 28.9% 3,607 5,078 27 13,233 5,278 708,228

eil 51-7 0.37 TL 15.3% 3,532 4,171 4 16 32,403 TL 22.44 27.7% 3,013 4,171 4 10,705 5,552 945,219

berlin 52-3 0.34 TL 36.8% 39,849 63,065 52 167 63,312 TL 0.78 28.5% 41,225 57,728 52 6,364 2,709 423,356

berlin 52-5 0.41 TL 37.0% 62,860 99,903 4 287 67,975 TL 11.32 33.7% 59,510 89,875 25 11,946 3,989 618,813

berlin 52-7 0.32 TL 2.4% 63,689 65,307 4 20 41,342 TL 18.19 19.8% 52,348 65,307 4 11,064 4,686 853,647

brazil 58-3 0.50 TL 41.5% 133,661 228,852 57 68 37,606 TL 0.62 38.3% 125,103 202,818 58 3,969 2,510 431,328

brazil 58-5 0.53 TL 45.0% 204,560 372,410 52 102 27,887 TL 9.59 46.7% 171,404 321,835 36 14,922 2,547 606,453

brazil 58-7 0.56 TL 31.8% 199,565 292,931 4 29 36,218 TL 14.39 57.4% 124,501 292,931 4 18,845 2,951 951,187

st 70-3 1.30 TL 42.5% 3,462 6,030 67 59 15,626 TL 1.21 33.8% 3,475 5,252 70 4,138 1,833 413,721

st 70-5 1.73 TL 41.0% 5,573 9,453 55 51 8,315 TL 14.21 43.0% 4,903 8,616 47 12,134 2,450 620,976

st 70-7 1.21 TL 47.6% 5,475 10,455 4 25 21,826 TL 36.72 57.1% 3,909 9,126 25 15,980 4,069 650,581

eil 76-3 1.78 TL 42.4% 2,817 4,895 75 74 2,640 TL 0.33 24.1% 3,151 4,155 76 5,138 1,019 385,440

eil 76-5 1.81 TL 55.7% 4,522 10,215 4 39 3,603 TL 22.68 27.3% 4,542 6,253 43 12,202 2,387 628,758

eil 76-7 1.78 TL 37.9% 4,204 6,777 4 20 13,126 TL 50.41 45.0% 3,455 6,283 24 17,298 4,341 668,284

pr 76-3 1.74 TL 67.4% 570,777 1,754,414 76 127 4,449 TL 1.00 38.1% 533,226 862,198 74 5,225 1,180 315,232

pr 76-5 1.68 TL 39.0% 874,185 1,434,512 62 72 13,798 TL 14.18 46.4% 718,698 1,341,315 62 10,506 1,893 531,147

pr 76-7 1.75 TL 50.0% 876,968 1,755,899 4 35 26,342 TL 41.84 58.1% 598,681 1,429,548 29 15,609 3,398 621,739

gr 96-3 5.71 TL 67.3% 2,670 8,188 63 81 1,868 TL 0.81 31.6% 2,775 4,058 96 4,346 750 365,752

gr 96-5 5.56 TL 71.3% 4,235 14,773 4 34 2,336 TL 14.47 41.5% 3,828 6,547 70 11,525 1,086 523,031

gr 96-7 5.55 TL 57.1% 4,184 9,767 4 6 2,254 TL 40.12 59.0% 2,838 6,928 40 17,009 1,997 576,887

rat 99-3 6.44 TL 80.4% 6,525 33,320 98 77 1,614 TL 0.36 27.5% 7,033 9,707 99 3,495 737 305,698

rat 99-5 6.47 TL 70.9% 10,669 36,675 4 37 1,741 TL 15.50 36.9% 10,258 16,272 78 12,847 1,091 580,581

rat 99-7 6.45 TL 56.5% 10,568 24,319 4 8 4,407 TL 45.44 57.7% 7,746 18,322 32 17,895 1,942 561,885

kroA 100-3 7.03 TL 47.2% 106,098 201,237 94 56 2,070 TL 0.82 34.3% 109,571 166,981 100 4,021 577 369,882

kroA 100-5 6.96 TL 44.0% 172,987 308,973 85 64 1,672 TL 17.73 45.3% 149,994 274,401 73 11,337 1,152 586,367

kroA 100-7 6.84 TL 50.0% 181,029 362,424 4 10 1,852 TL 37.10 63.7% 114,866 316,689 37 17,722 1,544 533,958

kroB 100-3 6.87 TL 52.7% 113,430 239,810 95 59 1,750 TL 1.16 36.2% 111,470 174,824 99 4,753 673 322,061

kroB 100-5 6.70 TL 55.6% 181,735 409,546 90 46 1,877 TL 19.43 50.0% 150,203 300,691 62 13,596 1,145 617,033

kroB 100-7 6.76 TL 47.4% 185,176 352,463 4 19 1,847 TL 41.84 64.3% 112,557 315,676 25 18,412 1,884 643,089

kroC 100-3 6.81 TL 87.1% 108,214 840,469 4 42 1,835 TL 1.24 33.7% 107,916 162,886 99 4,294 819 294,617

kroC 100-5 7.00 TL 71.9% 175,217 625,252 4 33 1,914 TL 17.86 47.1% 148,107 280,119 71 11,595 1,153 578,464

kroC 100-7 6.74 TL 56.3% 177,666 407,063 4 10 1,948 TL 51.97 64.8% 112,115 319,311 36 16,428 2,159 661,483

kroD 100-3 6.79 TL 86.1% 110,184 797,532 4 32 2,057 TL 1.05 36.0% 108,531 169,665 99 4,215 667 375,163

kroD 100-5 6.74 TL 70.1% 178,337 596,592 4 39 2,115 TL 20.87 49.5% 148,546 294,483 76 13,683 1,204 562,854

kroD 100-7 6.78 TL 54.2% 179,828 393,163 4 6 1,903 TL 36.23 62.5% 118,856 317,381 33 14,114 1,573 486,118

kroE 100-3 6.81 TL 84.6% 115,327 752,307 4 39 1,692 TL 1.02 36.1% 112,565 176,378 98 4,391 631 368,760

kroE 100-5 7.06 TL 50.9% 183,571 374,493 88 54 1,725 TL 16.02 47.3% 152,610 289,726 73 12,598 1,017 574,439

kroE 100-7 6.89 TL 51.6% 185,232 383,418 4 11 1,914 TL 40.56 66.4% 112,096 334,026 29 18,039 1,664 562,033

rd 100-3 8.59 TL 86.5% 40,868 303,678 4 43 1,648 TL 0.82 32.8% 41,839 62,299 100 41,11 655 364,425

rd 100-5 7.87 TL 71.1% 65,339 226,679 4 47 1,762 TL 19.19 44.2% 57,356 102,863 71 10,253 1,111 518,493

rd 100-7 7.24 TL 55.9% 65,467 148,579 4 8 1,935 TL 43.19 60.5% 43,571 110,381 37 12,873 1,746 511,121

eil 101-3 7.14 TL 79.5% 3,287 16,047 4 45 1,453 TL 0.37 24.1% 3,674 4,841 101 5,229 620 333,443

eil 101-5 7.21 TL 54.8% 5,357 11,863 4 27 1,634 TL 17.66 30.7% 5,461 7,882 65 10,663 1,122 506,929

eil 101-7 7.05 TL 33.4% 5,062 7,611 4 2 1,748 TL 62.91 40.9% 4,168 7,062 25 15,147 2,545 674,635

lin 105-3 7.80 TL 76.4% 75,081 318,579 103 71 1,632 TL 1.60 41.3% 67,715 115,490 105 5,223 516 315,384

lin 105-5 7.83 TL 76.0% 120,579 504,308 4 42 1,533 TL 13.87 57.8% 86,959 206,402 72 12,720 778 516,862

lin 105-7 7.79 TL 61.5% 128,352 333,495 4 12 1,771 TL 28.14 72.2% 69,366 250,115 44 15,067 1,128 461,921

58

Table 2.3: TSPLIB instances Class I (Continued)

Instance n–α ILP Branch-and-Benders-cut

n = |V| CPU BF CPU Gap LB UB |H| n_subtour Nodes CPU CPU SP Gap LB UB |H| n_subtour n_cut Nodes

pr 107-3 9.32 TL 91.9% 190,911 2,385,632 4 30 2,691 TL 1.11 41.1% 199,286 338,561 107 3,345 1,083 349,290

pr 107-5 8.59 TL 59.4% 295,875 728,943 88 52 2,196 TL 11.48 62.1% 220,363 582,574 63 26,069 500 636,886

pr 107-7 8.51 TL 60.3% 305,257 770,197 56 36 2,422 TL 29.31 77.7% 157,259 707,651 50 30,922 996 758,536

gr 120-3 15.63 TL 86.4% 8,187 60,433 4 56 1,260 TL 0.36 27.1% 8,871 12,175 120 4,196 377 316,598

gr 120-5 15.62 TL 69.9% 13,348 44,448 4 41 1,771 TL 19.41 38.1% 12,633 20,417 70 12,538 733 565,381

gr 120-7 16.05 TL 54.6% 12,898 28,444 4 15 1,653 TL 53.43 56.9% 9,248 21,485 35 19,144 1,426 641,049

pr 124-3 17.78 TL 91.9% 303,039 3,761,838 4 40 1,472 TL 0.73 43.1% 286,074 503,516 123 4,172 295 353,965

pr 124-5 18.03 TL 82.7% 480,318 2,789,242 4 33 1,518 TL 12.37 57.3% 379,314 889,813 100 11,396 459 416,275

pr 124-7 18.35 TL 71.3% 510,575 1,780,801 4 21 1,482 TL 33.73 71.4% 295,194 1,034,222 48 13,645 833 473,415

bier 127-3 20.41 TL 70.8% 578,263 1,986,425 45 28 1,769 TL 0.88 32.7% 611,707 909,386 127 4,187 338 222,848

bier 127-5 20.16 TL 53.1% 953,785 2,034,727 4 31 1,229 TL 13.70 43.1% 809,667 1,424,299 93 9,449 526 396,276

bier 127-7 20.13 TL 30.5% 893,477 1,286,204 4 20 1,273 TL 21.62 53.9% 592,431 1,286,204 4 11,146 520 609,578

ch 130-3 23.11 TL 86.4% 31,120 229,913 4 64 1,479 TL 1.18 39.2% 30,131 49,579 130 4,879 388 420,793

ch 130-5 23.17 TL 70.2% 50,168 168,914 4 38 2,047 TL 20.09 51.6% 40,161 83,019 88 9,700 658 480,737

ch 130-7 23.31 TL 51.8% 51,812 107,549 4 9 1,167 TL 53.26 65.3% 30,237 87,323 37 15,141 1,181 580,641

pr 136-3 30.15 TL 73.7% 451,092 1,716,241 135 52 1,842 TL 0.54 30.1% 528,825 756,690 136 3,600 346 284,840

pr 136-5 30.45 TL 76.5% 786,663 3,357,899 4 63 1,441 TL 21.58 39.6% 762,796 1,264,352 84 13,435 552 542,474

pr 136-7 30.26 TL 64.0% 773,278 2,151,626 4 30 1,227 TL 53.78 62.1% 537,144 1,418,319 35 16,061 858 523,914

gr 137-3 30.00 TL 92.5% 2,087 28,100 4 34 1,291 TL 11.34 85.3% 784 5,338 101 7,823 349 399,114

gr 137-5 29.99 TL 84.4% 3,239 20,888 4 31 1,386 TL 24.62 88.5% 820 7,181 80 12,748 578 503,091

gr 137-7 31.40 TL 73.1% 3,665 13,645 4 32 1,224 TL 43.82 90.1% 730 7,419 51 17,289 848 606,392

pr 144-3 40.51 TL 94.0% 262,330 4,440,560 4 38 1,163 TL 3.89 56.3% 227,456 520,611 141 3,826 406 213,421

pr 144-5 45.04 TL 88.2% 384,567 3,270,326 4 36 1,291 TL 17.16 78.8% 200,821 950,844 109 12,864 435 541,317

pr 144-7 38.00 TL 81.4% 389,988 2,097,469 4 14 1,352 TL 44.06 84.7% 180,516 1,181,508 52 12,236 656 435,516

ch 150-3 50.59 OUT OF MEMORY TL 0.64 31.5% 35,479 51,845 148 3,861 215 419,994

ch 150-5 53.92 OUT OF MEMORY TL 32.86 45.6% 49,582 91,204 96 11,235 564 503,043

ch 150-7 51.09 TL 61.6% 57,221 149,030 4 17 1,135 TL 53.82 64.2% 36,116 100,907 40 12,819 738 485,936

kroA 150-3 53.21 TL 75.6% 128,106 526,826 81 44 1,566 TL 0.83 37.0% 133,195 211,459 149 3,962 219 429,156

kroA 150-5 51.87 OUT OF MEMORY TL 22.44 47.8% 181,269 347,620 109 9,818 463 432,975

kroA 150-7 48.99 TL 56.3% 225,404 515,900 4 12 1,171 TL 53.73 65.5% 135,500 393,675 45 15,027 717 523,385

kroB 150-3 54.15 OUT OF MEMORY TL 0.99 35.7% 131,973 205,416 148 3,859 212 417,708

kroB 150-5 53.48 TL 76.4% 213,880 909,950 4 29 1,500 TL 30.61 51.6% 178,051 368,236 124 11,666 564 574,035

kroB 150-7 54.37 TL 62.1% 219,400 580,224 4 14 1,808 TL 72.43 66.5% 129,009 385,297 57 14,616 933 564,083

pr 152-3 53.82 TL 95.2% 304,290 634,0458 4 14 1,454 TL 3.26 50.7% 308,839 626,591 146 4,842 260 202,203

pr 152-5 54.63 OUT OF MEMORY TL 25.62 67.7% 368,917 1,144,246 85 11,262 408 420,985

pr 152-7 53.95 TL 83.8% 481,421 2,976,190 4 30 2,183 TL 33.39 80.2% 279,497 1,417,690 54 13,544 456 413,989

u 159-3 67.84 OUT OF MEMORY TL 0.44 33.9% 227,697 344,631 158 3,607 171 379,612

u 159-5 68.67 OUT OF MEMORY TL 12.94 46.0% 320,234 593,091 124 10,119 268 385,372

u 159-7 74.41 OUT OF MEMORY TL 30.89 66.8% 232,807 701,283 53 11,619 369 395,303

d 198-3 217.97 OUT OF MEMORY TL 0.80 40.0% 74,440 124,172 198 4,355 139 205,655

d 198-5 183.70 OUT OF MEMORY TL 13.26 66.0% 94,576 278,430 90 15,103 92 506,090

d 198-7 206.90 OUT OF MEMORY OUT OF MEMORY

kroA 200-3 199.44 OUT OF MEMORY TL 0.88 38.6% 147,393 240,394 197 3,116 107 342,036

kroA 200-5 215.01 OUT OF MEMORY TL 28.83 53.4% 200,507 430,430 127 9,422 258 381,768

kroA 200-7 224.94 OUT OF MEMORY TL 74.11 69.2% 140,250 456,037 64 14,084 468 539,046

kroB 200-3 225.57 OUT OF MEMORY TL 0.72 35.8% 149,463 232,886 200 3,378 100 282,332

kroB 200-5 227.45 OUT OF MEMORY TL 36.56 57.0% 203,088 472,837 108 10,584 274 406,513

kroB 200-7 248.91 OUT OF MEMORY TL 28.74 69.4% 143,055 468,114 60 9,713 186 333,348

59

Table 2.4: Randomly generated instances Class II

Instance n.ID ILP Branch-and-Benders-cut

n = |V| CPU BF CPU Gap LB UB |H| n_subtour Nodes CPU CPU SP Gap LB UB |H| n_subtour n_cut Nodes

ClassII - 20.1 0.00 9.11 0.0% 10,200 10,200 4 3 3,578 156.11 0.77 0.0% 10,200 10,200 4 367 2028 318,762

ClassII - 20.2 0.00 6.57 0.0% 9,748 9,748 4 4 2,456 19.17 0.27 0.0% 9,748 9,748 4 51 613 39,770

ClassII - 20.3 0.00 5.53 0.0% 10,626 10,626 4 0 362 12.05 0.16 0.0% 10,626 10,626 4 32 303 17,521

ClassII - 20.4 0.00 5.49 0.0% 8,973 8,973 4 0 59 8.60 0.06 0.0% 8,973 8,973 4 14 201 6,538

ClassII - 20.5 0.00 6.70 0.0% 10,636 10,636 4 1 2,913 26.49 0.34 0.0% 10,636 10,636 4 45 801 52,752

ClassII - 30.1 0.03 TL 5.0% 13,535 14,247 12 122 336,852 TL 11.31 23.1% 10,818 14,071 9 6,644 11,149 690,368

ClassII - 30.2 0.03 TL 7.3% 15,216 16,422 11 211 432,828 TL 9.85 20.1% 12,579 15,760 8 7,268 11,419 725,196

ClassII - 30.3 0.03 14.09 0.0% 13,562 13,562 4 0 4,318 59.39 1.21 0.0% 13,562 13,562 4 71 1,065 92,113

ClassII - 30.4 0.01 707.83 0.0% 14,226 14,226 4 21 59,512 TL 13.47 14.3% 12,178 14,226 4 3,841 14,313 723,707

ClassII - 30.5 0.03 TL 1.1% 16,665 16,866 4 29 348,546 TL 14.37 19.8% 13,520 16,866 4 6,355 13,213 834,502

ClassII - 40.1 0.09 TL 12.8% 16,387 18,807 14 182 87,176 TL 18.64 25.0% 13,519 18,044 14 9,694 9,055 720,714

ClassII - 40.2 0.09 TL 12.4% 16,993 19,418 4 147 71,162 TL 19.15 27.0% 13,773 18,868 10 9,729 9,800 702,605

ClassII - 40.3 0.09 TL 15.0% 17,562 20,663 18 126 82,723 TL 17.33 31.2% 14,198 20,663 13 10,936 8,364 696,748

ClassII - 40.4 0.09 TL 7.7% 16,457 17,848 4 60 61,405 TL 24.08 18.5% 14,542 17,848 4 6,583 10,719 819,114

ClassII - 40.5 0.08 TL 10.4% 16,431 18,349 15 95 74,015 TL 21.99 28.0% 13,091 18,205 13 9,276 9,860 690,326

ClassII - 60.1 0.57 TL 19.8% 18,626 23,229 18 124 21,647 TL 38.19 32.1% 15,124 22,298 16 11,797 6,210 776,880

ClassII - 60.2 0.53 TL 13.0% 18,743 21,553 17 103 18,928 TL 48.81 24.0% 15,982 21,040 14 10,695 7,092 781,985

ClassII - 60.3 0.53 TL 14.7% 20,732 24,328 4 120 28,213 TL 45.62 23.5% 17,666 23,108 15 10,362 6,562 686,436

ClassII - 60.4 0.53 TL 21.3% 22,348 28,409 20 142 44,166 TL 44.80 29.6% 17,850 25,359 13 12,673 6,542 772,988

ClassII - 60.5 0.54 TL 20.1% 20,912 26,191 19 71 32,436 TL 31.23 29.6% 17,026 24,199 15 11,048 5,451 658,263

ClassII - 100.1 5.98 TL 16.7% 26,563 31,902 32 79 2,088 TL 73.76 31.3% 21,356 31,102 21 10,526 2,888 557,919

ClassII - 100.2 6.01 TL 37.1% 23,846 37,918 4 41 1,753 TL 61.85 40.7% 18,062 30,485 23 11,056 2,605 583,691

ClassII - 100.3 5.96 TL 34.9% 25,881 39,776 4 71 1,958 TL 87.13 28.7% 21,331 29,952 18 10,788 3,572 700,113

ClassII - 100.4 5.96 TL 28.4% 25,253 35,284 38 70 1,875 TL 56.41 34.6% 19,660 30,091 26 10,758 2,414 560,264

ClassII - 100.5 5.89 TL 15.1% 26,871 31,685 29 82 1,768 TL 52.31 36.7% 20,505 32,427 24 9,887 2,205 478,566

ClassII - 125.1 16.40 TL 37.2% 30,752 49,028 33 99 1,363 TL 86.19 33.8% 24,318 36,737 28 11,462 1,919 584,555

ClassII - 125.2 16.28 TL 19.1% 30,306 37,483 36 51 1,502 TL 78.09 31.7% 24,575 36,014 24 10,112 1,825 521,375

ClassII - 125.3 16.08 TL 35.1% 29,856 46,008 4 50 1,491 TL 63.30 35.1% 23,735 36,599 22 9,573 1,454 468,394

ClassII - 125.4 15.84 TL 36.3% 28,817 45,257 4 64 1,727 TL 76.93 39.8% 21,122 35,128 33 11,189 1,673 554,088

ClassII - 125.5 16.30 TL 47.1% 29,860 56,531 4 70 1,553 TL 79.23 34.0% 23,485 35,594 29 11,085 1,783 571,615

ClassII - 150.1 39.01 OUT OF MEMORY TL 79.30 34.3% 26,027 39,664 35 8,443 1,036 441,501

ClassII - 150.2 39.19 OUT OF MEMORY TL 95.37 34.4% 26,594 40,563 27 9,625 1,240 472,963

ClassII - 150.3 39.67 OUT OF MEMORY TL 94.80 35.7% 25,283 39,330 33 9,983 1,246 514,406

ClassII - 150.4 40.03 OUT OF MEMORY TL 98.45 38.3% 25,687 41,682 32 10,111 1,325 550,316

ClassII - 150.5 40.03 OUT OF MEMORY TL 95.33 35.6% 27,252 42,339 32 9,563 1,315 485,729

ClassII - 200.1 173.61 OUT OF MEMORY TL 110.18 38.7% 30,212 49,353 43 8,407 714 428,736

ClassII - 200.2 174.60 OUT OF MEMORY TL 108.87 37.1% 29,995 47,761 43 8,276 642 395,399

ClassII - 200.3 173.61 OUT OF MEMORY TL 113.77 40.4% 29,816 50,077 36 8,263 729 444,891

ClassII - 200.4 180.11 OUT OF MEMORY TL 107.59 40.0% 29,572 49,344 44 8,822 696 446,267

ClassII - 200.5 173.63 OUT OF MEMORY TL 111.37 40.2% 29,482 49,379 43 7,345 668 389,473

Table 2.5: Variation of the results when 2-opt backup is not used

Instance n–α ILP Branch-and-Benders-cut

n = |V| CPU Gap LB UB CPU Gap LB UB

eil 51-3 TL +14.05% −1.02% +7.80% TL +187.92% −0.60% +144.78%

eil 51-5 TL +15.43% −2.43% +5.36% TL +42.91% −0.36% +20.76%

eil 51-7 TL 0.00% 0.00% 0.00% TL 0.00% 0.00% 0.00%

pr 124-3 TL 0.00% 0.00% 0.00% TL +113.92% +2.41% +647.11%

pr 124-5 TL 0.00% 0.00% 0.00% TL +51.13% −1.59% +213.46%

pr 124-7 TL 0.00% 0.00% 0.00% TL +17.09% −1.53% +72.19%

ClassII - 20.1 −1.54% 0.00% 0.00% 0.00% +20.86% 0.00% 0.00% 0.00%

ClassII - 30.1 TL +38.00% +0.97% +3.05% TL +17.75% +1.46% +7.16%

ClassII - 40.1 TL +35.16% −1.32% +4.07% TL +42.00% +0.45% +16.81%

ClassII - 60.1 TL −1.52% +0.27% −0.09% TL +41.43% −1.37% +22.54%

ClassII - 100.1 TL +22.16% +0.26% +5.00% TL +40.89% +1.09% +24.28%

ClassII - 125.1 OUT OF MEMORY TL +22.49% +0.16% +13.33%

60

Chapter 3

A Resilient variant of the Ring
Star Problem

3.1 Chapter’s abstract

We study a Resilient variant of the Ring Star Problem named 1-R-RSP in which
the failure of a node in a given subset of so-called uncertain nodes triggers two
corrective operations to repair the Ring Star structure. We model this problem
as an Integer Linear Program (ILP), that is also addressed with a Branch-and-
Benders-cut decomposition. Several enhancements to both the ILP and Branch-
and-Benders-cut algorithm are also presented. We then compare the solutions of
the resilient and survivable variants, in order to determine which variant is the
most appropriate, as a function of failure frequency. This chapter’s work has been
presented in ROADEF 2021 and 2023.

3.2 Chapter’s structure

This chapter is structured as follows: in Section 3.3 we introduce the RESILIENT

RING STAR PROBLEM and present an ILP formulation in Section 3.4. We describe a
Branch-and-Benders-cut approach in Section 3.5. Numerical experiments are car-
ried out for the two aforementioned approaches in Section 3.6. Finally, in Section
3.7, we address the question of determining which of the two strategies leads to
the smallest cost, as a function of the failures duration.

3.3 Resilient Ring Star Problem definition

The Ring part aims to select a subset H ⊆ V and link up all hubs of H with a
cycle using edges of E. The cost of opening a hub i ∈ V is di ∈ R+ and the cost of

61

62

selecting an edge ij ∈ E between two hubs i and j is cij ∈ R+.
The Star requires that each terminal in T = V \ H must be connected to exactly
one hub in H. The cost of selecting an arc (i, j) ∈ A to connect a terminal i ∈ T to
a hub j ∈ H is dij ∈ R+.

The resilient ring-star network is designed so that when a hub h ∈ Ṽ fails, two
corrective operations occur:

• The Ring correction consists in restoring the ring by adding a backup edge
that joins the two neighbors of the failed hub h. The cost of selecting a
backup edge ij ∈ E is c′ij ∈ R+.

• The Star repair operation is to connect the terminals that were originally
connected to the failing hub to another hub with backup arcs. The cost of
selecting a backup arc (i, j) ∈ A ̸= is d′ij ∈ R+ where A ̸= = {(i, j) ∈ A| i ̸=
j}.

For the rest of this document we will use the following notations: For a set of
nodes S ⊆ H, E(S) = {ij ∈ E| (i, j) ∈ S2}, E(S) is the set of all edges of E having
both their endpoints in S. For a node i ∈ V, δ(i) = {ij| ij ∈ E} is the set of all
edges incident to i.

3.4 A MILP formulation for Resilient RSP

We consider the case where k = 1 and let F ∈ R+ be the total duration of failures
where a failure is a state when an uncertain hub is down. The 1-R-RSP can be
formulated as a MILP described below. We will adapt the st-chains formulation
for RSP given by Kedad-Sidhoum and Nguyen to 1-R-RSP. In particular, we set
s = v1 because 1 is the depot. We also add a dummy node t, a clone of the de-
pot s in G to obtain a new graph G′ = (V ′, E′ ∪ A ̸=) where V ′ = V ∪ {t}, E′ =
E ∪ {st} ∪ {tu|su ∈ E}. We note J̃ = {(i, j, k) ∈ V × Ṽ × V ′ : i ̸= j, j ̸= k, i < k}.
The following decision variables are used.

The binary variable xij, ∀ij ∈ E′ is such that xij = 1 if edge ij is selected as a
regular edge for connecting hubs i and j. The binary variable yij, ∀(i, j) ∈ A ̸= is
such that yij = 1 if arc (i, j) is selected as a regular arc for connecting terminal i to
hub j. The binary variable yii, ∀i ∈ V ′ is such that yii = 1 if node i is selected as
a hub. The binary variable x′ij, ∀ij ∈ E′ is such that x′ij = 1 if edge ij is selected as
a backup edge between hubs i and j. The binary variable y′ij ∈ B, ∀(i, j) ∈ A ̸= is
such that y′ij = 1 if arc (i, j) is selected as a backup arc between terminal i to hub j.

63

There are also two other decision variables, θij ∈ R+, ∀(i, j) ∈ V × Ṽ, i ̸= j
which is an upper bound on the cost of the re-connection of terminal i ∈ T to
the ring when hub j ∈ Ṽ fails and B ∈ R+ which is the maximum total cost per
unit of time incurred by re-connecting the terminals to the ring when the hub they
are regularly connected to fails and fixing the ring by adding a backup edge in
between two neighbors of the failing hub.

Constraints

Ring constraints

(3.1) The ring must be made of at least four hubs. Indeed, if the ring has 3 or less
hubs, the number of surviving hubs upon failure of any of them does not
leave enough hubs to reform a ring by adding a backup edge. This case is
sorted out by a brute force algorithm.

(3.2) The selected edges in E must form a cycle while (3.3) prevent two or more
distinct cycles. For all strict subset S of V having cardinality at most 1

2 |V|,
the number of edges joining pairs of hubs in S must be strictly less than |S|
(to avoid having a cycle) provided that at least one hub is selected in V \ S.

(3.4), (3.5) The depot and its clone must be connected.

(3.6) The depot is a hub and cannot by assigned to another node.

∑
i∈V

yii ≥ 4 (3.1)

∑
ij∈δ(i)

xij = 2yii, ∀i ∈ V ′ \ {s, t} (3.2)

x(δ(S)) ≥ 2 ∑
j∈S

yij, ∀S ⊂ V ′ \ {s, t}, ∀i ∈ S (3.3)

∑
i∈V\{s}

xsi = 1 (3.4)

∑
i∈V\{s}

xit = 1 (3.5)

yss = ytt = 1, ysi = 0, ∀i ∈ V ′ \ {s, t} (3.6)

Star constraints

(3.7) A node is either selected as a hub or is a terminal and is connected to exactly
one hub.

(3.8) If a terminal is connected to a hub, then this hub must be opened and the
edge between the terminal and the hub must not be in the cycle.

64

∑
j∈V

yij = 1, ∀i ∈ V (3.7)

yij ≤ yjj − xij, ∀(i, j) ∈ A ̸= (3.8)

Backup constraints

(3.9) For a selected uncertain hub and its neighbors in the ring, the edge between
those two last hubs is a backup edge.

(3.9′) If we consider that the depot can fail, we must select a backup edge between
its two neighbors. These constraints can be removed if the depot is certain.

(3.10) Every terminal has a backup arc to recover from a failure only if it is con-
nected to an uncertain hub.

(3.11) Whenever a backup arc joins a terminal to a hub, this hub should be opened
and this arc can not be a regular arc

(3.11′) There is at most one arc or edge between any two nodes i and j. In addition,
j must be a hub if there is an edge or an arc from i to j. If we have (3.11′)
then we can remove (3.11) and (3.8) in the ILP. This is not the case when the
Benders decomposition is applied because we want the Master problem of
the Benders decomposition to have classical RSP solutions.

xij + xjk − 1 ≤ x′ik, ∀(i, j, k) ∈ J̃ (3.9)

xsi + xkt − 1 ≤ x′ik, ∀(i, k) ∈ (V \ {s})2, i < k (3.9′)

∑
(i,j)∈A ̸=

y′ij = 1− yii − ∑
j∈V\{Ṽ∪{i}}

yij, ∀i ∈ V (3.10)

y′ij ≤ yjj − yij, ∀(i, j) ∈ A ̸= (3.11)

xij + yij + x′ij + y′ij ≤ yjj, ∀(i, j) ∈ A ̸= (3.11′)

Backup cost constraints

(3.12) Let i ∈ V be a terminal regularly connected to a hub j ∈ Ṽ. The existence
of this regular connection in the solution leads to yij = 1. The cost for re-
connecting terminal i to another hub whenever hub j fails can be computed
as:

max
k∈V\{i,j}

d′iky′ik

Let θij be an upper bound on the cost of reconnecting terminal i to the ring
when hub j ∈ Ṽ fails.

65

(3.13) Finally, the maximum cost incurred by the failure of any hub is B. The first
term of the left hand side is the cost of fixing the ring by using the backup
edge ik when hub j ∈ Ṽ fails. The second one is the cost of using backup
arcs to reconnect the terminals to surviving hubs when h, the hub to which
they were regularly connected to, fails

∑
k∈V\{i,j}

d′ik(y
′
ik + yij − 1) ≤ θij, ∀(i, j) ∈ V × Ṽ \ {i} (3.12)

c′ik(x′ik + xij + xjk − 2) + ∑
t∈V\{j}

θtj ≤ B, ∀(i, j, k) ∈ J̃ (3.13)

Objective function

An optimal solution to 1-R-RSP should minimize the total cost which is the de-
ployment cost: (selecting hubs, connecting them with the ring, and connecting
terminals to the ring), plus an upper bound of the fixing cost, which is computed
by assuming that the hub incurring the highest fixing cost fails for F units of time
during the time horizon, i.e., minimize:

1. The cost of selecting hubs that will be part of the ring;

2. The cost of connecting all terminals to the ring with regular arcs;

3. The cost of regular edges to form the ring;

4. An upper bound of the fixing cost, which is computed by assuming that the
hub incurring the highest fixing cost fails for F units of time during the time
horizon

Minimize ∑
i∈V

diyii + ∑
(i,j)∈A ̸=

dijyij + ∑
ij∈E′

cijxij + FB

The mathematical model of 1-R-RSP is then given by the following MILP:

66

Minimize ∑
i∈V

diyii + ∑
(i,j)∈A ̸=

dijyij + ∑
ij∈E′

cijxij + FB

∑
i∈V

yii ≥ 4

∑
ij∈δ(i)

xij = 2yii ∀i ∈ V ′ \ {s, t}

x(δ(S)) ≥ 2 ∑
j∈S

yij ∀S ⊂ V ′ \ {s, t}, ∀i ∈ S

∑
i∈V\{s}

xsi = 1

∑
i∈V\{s}

xit = 1

ysi = 0 ∀i ∈ V ′ \ {s, t}
ytt = 1
yss = 1

∑
j∈V

yij = 1 ∀i ∈ V

x′ik ≥ xij + xjk − 1 ∀(i, j, k) ∈ J̃
x′ik ≥ xsi + xkt − 1 ∀(i, k) ∈ (V \ {s})2, i < k
yjj ≥ xij + yij + y′ij + x′ij ∀(i, j) ∈ A ̸=

1− yii − ∑
j∈V\{Ṽ∪{i}}

yij = ∑
(i,j)∈A ̸=

y′ij ∀i ∈ V

∑
k∈V\{i,j}

d′ik(y
′
ik + yij − 1) ≤ θij ∀(i, j) ∈ V × Ṽ \ {i}

c′ik(x′ik + xij + xjk − 2) + ∑
t∈V\{j}

θtj ≤ B ∀(i, j, k) ∈ J̃

xij ∈ B ∀ij ∈ E′

x′ij ∈ B ∀ij ∈ E′

yij ∈ B ∀(i, j) ∈ A
y′ij ∈ B ∀(i, j) ∈ A ̸=

θij ∈ R+ ∀i ∈ V, ∀j ∈ Ṽ \ {i}
B ∈ R+

3.4.1 Post-optimization procedure

After solving the MILP formulation of 1-R-RSP, we either have B = 0 or B > 0.
The case where B = 0 occurs when all the hubs are certain, it is possible only
when the number of certain nodes is at least three. The corresponding solution
has a zero fixing cost because no hub can fail. If B > 0, then there exists at least
one uncertain hub that incurs a maximum fixing cost when it fails. This hub is
said to be critical, as it sets the numerical value of B. Non-critical uncertain hubs
have a fixing cost that is strictly less than B, so there may be optimal solutions
to 1-R-RSP in which some non-critical hubs have a non-minimum fixing cost. In
order to avoid this, the post-optimization procedure described in Algorithm 5 is
executed. It recomputes the value of all the θ decision variables, knowing ŷ and
ŷ′, the numerical value of the y and y′ variables in an optimal solution to the MILP
formulation of 1-R-RSP.

For the sake of illustration, Figure 3.1 shows the nonzero x, y, x′ and y′ vari-
ables of an optimal solution to the MILP formulation of 1-R-RSP on a 10-node

67

Algorithm 5: A post-optimization procedure that sets the θ variables to
their minimum value
1 foreach i ∈ V do
2 foreach j ∈ V do
3 if ŷij = 1 and i ̸= j and j ∈ Ṽ then
4 k← 1
5 while ŷ′ik = 0 do
6 k← k + 1

7 θij ← d′ik
8 else
9 θij ← 0

instance in which the depot is the only certain node. The x and y nonzero vari-
ables form a solution to RSP on that instance, it is shown in red. The plain blue
edges are the backup edges. In particular, the backup edge (1,6) is used to fix the
failure of hubs 3 and 10. The blue dashed arcs are the nonzero backup arcs in that
solution. It can be seen than no backup arc is needed for terminals 5 and 9, as
they are connected to a certain hub. All the other terminals are associated exactly
one backup arc, to be used upon failure of the uncertain hub they are regularly
connected to.

1 10

63

4

27

9

85

x1,10

x 1
,3

x 6
,1

0

x3,6

x
′

1,6
x ′
3,10

y4,10

y
2,6y 7,

3

y9,1

y 8,1
0

y
5,1 y ′

4,6

y′ 2,3

y ′7,6

y′8,6

Figure 3.1: The nonzero x, x′, y and y′ variables of a solution to 1-R-RSP

The numerical value of B in the optimal solution to 1-R-RSP shown in Fig-
ure 3.1 can also be deduced, as well as the minimum value for all the nonzero θ

variables:

68

B = max
(

c′1,6 + d′7,6, c′3,10 + d′2,3, c′1,6 + d′4,6 + d′8,6

)
θ2,6 ≥ d′2,3

θ4,10 ≥ d′4,6

θ7,3 ≥ d′7,6

θ8,10 ≥ d′8,6

The value of B is the maximum over 3 quantities, that represent the cost in-
curred by the failure of hubs 3, 6 and 10 respectively. θ2,6 is an upper bound on the
cost of reconnecting terminal 2 when hub 6 fails. This cost may be strictly larger
than d′2,3 if hub 6 is non-critical, as long as c′3,10 + d′2,3 is strictly less than B.

3.5 A Branch-and-Benders-cut decomposition of 1-R-RSP

The complicating variables are x and y because when they are known in advance,
the subproblem becomes easy to solve and consists of computing the worst-case
repairing cost among each hub failure of the ring. This means that the master
problem is to solve RSP which is a hard problem.

3.5.1 Master problem

In a regular Benders decomposition approach, (3.11’) is in the subproblem, so the
master problem would return solutions in which terminals may possibly be con-
nected to some other terminals. Hence the solutions of the master problem are
not RSP solutions, and may be overly relaxed. To avoid this, we add (3.8) in the
master problem which guarantees that the solutions to the master problem are

69

solutions to RSP.

Minimize ∑
i∈V

diyii + ∑
(i,j)∈A ̸=

dijyij + ∑
ij∈E′

cijxij + η

∑
i∈V

yii ≥ 4

∑
ij∈δ(i)

xij = 2yii ∀i ∈ V ′ \ {s, t}

x(δ(S)) ≥ 2 ∑
j∈S

yij ∀S ⊂ V ′ \ {s, t}, ∀i ∈ S

∑
i∈V\{s}

xsi = 1

∑
i∈V\{s}

xit = 1

ysi = 0 ∀i ∈ V ′ \ {s, t}
ytt = 1
yss = 1

∑
j∈V

yij = 1 ∀i ∈ V

yjj − xij ≥ yij ∀(i, j) ∈ A ̸=

xij ∈ B ∀ij ∈ E′

yij ∈ B ∀(i, j) ∈ A
η ∈ R+

3.5.2 Benders subproblem

Assuming that the complicating variables are given as input parameters x̂ and ŷ,
the primal subproblem can be formulated as follows:

η = Minimize FB
x′ik ≥ x̂ij + x̂jk − 1 ∀(i, j, k) ∈ J̃

∑
(i,j)∈A ̸=

y′ij = 1− ŷii − ∑
j∈V\{Ṽ∪{i}}

ŷij ∀i ∈ V

θij − ∑
k∈V\{i,j}

d′iky′ik ≥ ∑
k∈V\{i,j}

d′ik(ŷij − 1) ∀i ∈ V, ∀j ∈ Ṽ \ {i}

B− c′ikx′ik − ∑
t∈V\{j}

θtj ≥ c′ik(x̂ij + x̂jk − 2) ∀(i, j, k) ∈ J̃

x′ij + y′ij ≤ ŷjj − x̂ij − ŷij ∀(i, j) ∈ A ̸=

x′ij ∈ B (i, j) ∈ V ×V ′, i < j
y′ij ∈ B ∀(i, j) ∈ A ̸=

θij ∈ R+ ∀i ∈ V, ∀j ∈ Ṽ \ {i}
B ∈ R+

Moreover, this integer linear program is easy to solve, and the optimal objective
value is B(x̂, ŷ) = 0 if the set {j : j ∈ Ṽ, ŷjj = 1} is empty, otherwise:

70

B(x̂, ŷ) = min
(i,j,k)∈ J̃

x̂ij=x̂jk=1

c′ik + ∑
i′∈V\{j}

ŷi′ j=1

min
k′∈V\{j}

ŷk′k′=1

d′i′k′

A feasible solution to this integer linear program can be built as follows:

• x′ij is initialized to zero for all (i, j) ∈ A ̸=.

• If ∑
i∈V

ŷii = 4, let s, a, b, c, t be the st-chain that represents the ring. If s ∈ Ṽ or

b ∈ Ṽ, then set x′ac to one. If a ∈ Ṽ or c ∈ Ṽ, then set x′sb to one.

• Otherwise, i.e., ∑
i∈V

ŷii ≥ 5, then for all (i, j, k) ∈ J̃, if x̂ij = x̂jk = 1, then x′ik is

set to one.

• For all i ∈ V such that ŷii = 1, i.e., node i is a hub, there is no backup arc
leaving i, so y′ij is set to zero for all j ∈ V\{i}, and θij is set to zero for all
j ∈ Ṽ\{i}.

• For all i ∈ V such that ŷii = 0, i.e., node i is a terminal, there exists a unique
hub j ∈ V\{i} such that ŷij = 1. One of the following two sub-cases applies:

– If j ∈ V\(Ṽ ∪ {i}), i.e., node j is a certain hub, then j cannot fail and
there is no backup arc leaving i, so y′ik is set to zero for all k ∈ V\{i},
and θik is set to zero for all k ∈ Ṽ\{i}.

– If j ∈ Ṽ\{i}, i.e., node j is an uncertain hub, let k be a hub such that
d′ik = min

q∈V\{j}
ŷqq=1

d′iq, hence y′ik is set to one, and y′iq is set to zero for all q ∈

V\{i, k}. Also, θij is set to d′ik as this is the cost incurred by reconnecting
terminal i to hub k when hub j fails, and θiq is set to zero for all q ∈
Ṽ\{i, j}.

Now, we consider the LP-relaxation of the primal of the Benders subproblem,
where the upper bound on x′ and y′ are relaxed, because there exists an optimal
solution to this LP that satisfies them:

71

η = Minimize FB

∑
(i,j)∈A ̸=

y′ij = 1− ŷii − ∑
j∈V\{Ṽ∪{i}}

ŷij ∀i ∈ V [αi]

x′ik ≥ x̂ij + x̂jk − 1 ∀(i, j, k) ∈ J̃ [βijk]

θij − ∑
k∈V\{i,j}

d′iky′ik ≥ ∑
k∈V\{i,j}

d′ik(ŷij − 1) ∀i ∈ V, ∀j ∈ Ṽ \ {i} [γij]

B− c′ikx′ik − ∑
t∈V\{j}

θtj ≥ c′ik(x̂ij + x̂jk − 2) ∀(i, j, k) ∈ J̃ [δijk]

−x′ij − y′ij ≥ x̂ij + ŷij − ŷjj ∀(i, j) ∈ A ̸= [ϵij]

x′ij ≥ 0 ∀ij ∈ E′

y′ij ≥ 0 ∀(i, j) ∈ A ̸=

θij ≥ 0 ∀i ∈ V, ∀j ∈ Ṽ \ {i}
B ≥ 0

The dual of this linear program is

η = Maximize ∑
i∈V

1− ŷii − ∑
j∈V\{Ṽ∪{i}}

ŷij

 αi + ∑
(i,j,k)∈ J̃

(x̂ij + x̂jk − 1)βijk

+ ∑
(i,j)∈V×Ṽ\{i}

 ∑
k∈V\{i,j}

d′ik(ŷij − 1)

 γij + ∑
(i,j,k)∈ J̃

c′ik(x̂ij + x̂jk − 2)δijk

+ ∑
(i,j)∈A ̸=

(x̂ij + ŷij − ŷjj)ϵij

∑
(i,j,k)∈ J̃

(
βijk − c′ikδijk

)
− ϵik − ϵki ≤ 0 ∀(i, k) ∈ V ×V, i < k [x′ik]

∑
(i,j,t)∈ J̃

(
βijt − c′itδijt

)
≤ 0 ∀i ∈ V [x′it]

∑
(i,j,k)∈ J̃

δijk ≤ F [B]

αi − d′ij ∑
k∈Ṽ\{i,j}

γik − ϵij ≤ 0 ∀i ∈ V, ∀j ∈ V\{i} [y′ij]

γij − ∑
(q,j,k)∈ J̃

δqjk ≤ 0 ∀i ∈ V, ∀j ∈ Ṽ \ {i} [θij]

αi ∈ R ∀i ∈ V
βijk ≥ 0 ∀(i, j, k) ∈ J̃
γij ≥ 0 ∀(i, j) ∈ V × Ṽ\{i}
δijk ≥ 0 ∀(i, j, k) ∈ J̃
ϵij ≥ 0 ∀(i, j) ∈ A ̸=

We propose an optimal solution to the dual, that is built as shown in Algorithm
7. To compute this solution, we need to determine the critical triplet (i⋆, j⋆, k⋆) ∈ J̃
such that x̂i⋆ j⋆ = x̂j⋆k⋆ = 1, and

72

c′i⋆k⋆ + ∑
i∈V\{j⋆}

ŷij⋆=1

min
k∈V\{j⋆}

ŷkk=1

d′ik = min
(i,j,k)∈ J̃

x̂ij=x̂jk=1

c′ik + ∑
i′∈V\{j}

ŷi′ j=1

min
k′∈V\{j}

ŷk′k′=1

d′i′k′

73

Algorithm 6: CRITICALTRIPLET(n, V, Ṽ, V ′, E′, c′, d′, x̂, ŷ)
returns B and the critical triplet (i⋆, j⋆, k⋆)

1 Let adj be an array of |V ′| empty lists;
2 foreach (i, j) ∈ E′ do
3 if x̂ij = 1 then
4 adj[i].append(j);
5 adj[j].append(i);

6 foreach i ∈ V : ŷii = 1 do
7 if adj[i][1] > adj[i][2] then
8 Exchange adj[i][1] and adj[i][2];

9 Let costReconnection be a |V|-element array;
10 foreach i ∈ V do
11 costReconnection[i]← 0.0;

12 foreach i ∈ V : ŷii = 0 do
/* Determining j such that ŷij = 1 */

13 j← 1;
14 while ŷij = 0 do
15 j← j + 1;

16 if j ∈ Ṽ then
17 costReconnection[i]← ∞;
18 foreach k ∈ V\{j} : ŷkk = 1 do
19 if d′ik < costReconnection[i] then
20 costReconnection[i]← d′ik;

/* Computing the critical triplet (i⋆, j⋆, k⋆) */
21 B← 0.0;
22 (i⋆, j⋆, k⋆)← (−1,−1,−1);
23 foreach j ∈ Ṽ : ŷjj = 1 do
24 hubFixingCost← c′adj[j][1]adj[j][2];

25 foreach i ∈ V\{j} do
26 if ŷij = 1 then
27 hubFixingCost←

hubFixingCost + costReconnection[i];

28 if hubFixingCost > B then
29 B← hubFixingCost;
30 (i⋆, j⋆, k⋆)← (adj[j][1], j, adj[j][2]);

31 return B, i⋆, j⋆, k⋆;

74

Algorithm 7: Computation of an optimal solution to the subproblem’s
dual
1 Input: n, Ṽ, F, c′, d′, x̂, ŷ

/* Initialization */
2 for i = 1 to n do
3 αi ← 0

4 for i = 1 to n do
5 for j = 1 to n do
6 if j ̸= i and j ∈ Ṽ then
7 for k = i + 1 to n + 1 do
8 if k ̸= j then
9 βijk ← 0

10 δijk ← 0

11 for i = 1 to n do
12 for j = 1 to n do
13 if j ̸= i and j ∈ Ṽ then
14 γij ← 0

15 for i = 1 to n do
16 for j = 1 to n do
17 if j ̸= i then
18 ϵij ← 0

/* Setting the nonzero variables */
19 B, i⋆, j⋆, k⋆ ← CRITICALTRIPLET(n, Ṽ, c′, d′, x̂, ŷ)
20 for i = 1 to n do
21 if i ̸= j⋆ and ŷij⋆ = 1 then
22 mind← +∞
23 for k = 1 to n do
24 if k ̸= i and k ̸= j⋆ and ŷkk = 1 and d′ik < mind then
25 mind← d′ik

26 αi ← F ·mind

27 βi⋆ j⋆k⋆ = F · c′i⋆k⋆

28 δi⋆ j⋆k⋆ = F
29 for i = 1 to n do
30 if i ̸= j⋆ and ŷij⋆ = 1 then
31 γij⋆ ← F

32 for i = 1 to n do
33 if i ̸= j⋆ and ŷij⋆ = 1 then
34 ϵij⋆ ← αi

35 for j = 1 to n do
36 if j ̸= i and ŷjj = 0 and αi > F · d′ij then
37 ϵij ← αi − F · d′ij

38 return α, β, δ, γ

75

This is achieved by Algorithm 6. The solution returned by Algorithm 7 is feasi-
ble for the dual, and the corresponding objective value is c′i⋆k⋆ + ∑

i∈V\{j⋆}
ŷij⋆=1

min
k∈V\{j⋆}

ŷkk=1

d′ik,

i.e., it is the same as the one of the LP relaxation of the primal, and also the same
as the one of the integer linear programming formulation of the Benders subprob-
lem, which proves that both these solutions are optimal.

3.5.3 Benders optimality cut

The objective function of the dual of the subproblem is

η = ∑
i∈V

1− ŷii − ∑
j∈V\{Ṽ∪{i}}

ŷij

 αi + ∑
(i,j,k)∈ J̃

(x̂ij + x̂jk − 1)βijk

+ ∑
(i,j)∈V×Ṽ\{i}

 ∑
k∈V\{i,j}

d′ik(ŷij − 1)

 γij + ∑
(i,j,k)∈ J̃

c′ik(x̂ij + x̂jk − 2)δijk

+ ∑
(i,j)∈A ̸=

(x̂ij + ŷij − ŷjj)ϵij

The solution of the dual of the LP relaxation is used and in the master problem,
we should add the optimality cut:

η ≥ ∑
i∈V\{j⋆}

ŷij⋆=1

1− yii − ∑
j∈V\{Ṽ∪{i}}

yij

F min

k∈V\{i,j⋆}
ŷkk=1

d′ik

 +(xi⋆ j⋆ + xj⋆k⋆ − 1)
(

Fc′i⋆k⋆
)

+ ∑
i∈V\{j⋆}

ŷij⋆=1

 ∑
k∈V\{i,j⋆}

d′ik(yij⋆ − 1)

 F +c′i⋆k⋆(xi⋆ j⋆ + xj⋆k⋆ − 2)F

+ ∑
i∈V\{j⋆}

ŷij⋆=1

∑

j∈V\{i}
ŷjj=0

min
k∈V\{i,j⋆}

ŷkk=1

d′ik > d′ij

F · min
k∈V\{i,j⋆}

ŷkk=1

d′ik − F · d′ij

(xij + yij − yjj
)
+

F · min
k∈V\{i,j⋆}

ŷkk=1

d′ik

(xij⋆ + yij⋆ − yj⋆ j⋆
)

Since η = FB, we can simplify this optimality cut to

B ≥ ∑
i∈V\{j⋆}

ŷij⋆=1

1− yii − ∑
j∈V\{Ṽ∪{i}}

yij

 min

k∈V\{i,j⋆}
ŷkk=1

d′ik

 +(2xi⋆ j⋆ + 2xj⋆k⋆ − 3)c′i⋆k⋆

+ ∑
i∈V\{j⋆}

ŷij⋆=1

∑
k∈V\{i,j⋆}

d′ik(yij⋆ − 1)

+ ∑
i∈V\{j⋆}

ŷij⋆=1

∑

j∈V\{i}
ŷjj=0

min
k∈V\{i,j⋆}

ŷkk=1

d′ik > d′ij

 min
k∈V\{i,j⋆}

ŷkk=1

d′ik − d′ij

(xij + yij − yjj
)
+

 min
k∈V\{i,j⋆}

ŷkk=1

d′ik

(xij⋆ + yij⋆ − yj⋆ j⋆
)

76

B ≥ ∑
i∈V\{j⋆}

ŷij⋆=1

1− yii + xij⋆ + yij⋆ − yj⋆ j⋆ − ∑
j∈V\{Ṽ∪{i}}

yij

 min

k∈V\{i,j⋆}
ŷkk=1

d′ik

 +(2xi⋆ j⋆ + 2xj⋆k⋆ − 3)c′i⋆k⋆

+ ∑
i∈V\{j⋆}

ŷij⋆=1

∑
k∈V\{i,j⋆}

d′ik(yij⋆ − 1)

+ ∑
i∈V\{j⋆}

ŷij⋆=1

∑
j∈V\{i}

ŷjj=0

min
k∈V\{i,j⋆}

ŷkk=1

d′ik > d′ij

 min
k∈V\{i,j⋆}

ŷkk=1

d′ik − d′ij

(xij + yij − yjj
)

Note that now, the objective function of the master problem is exactly the same
as the one of the MILP formulation (η has been replaced by FB), which implies that
η is no longer a decision variable of the master problem. Instead, B is now part of
the complicating variables, and is a decision variable of the master problem.

Algorithm 7 runs in cubic time because of the initialization phase (there is a
cubic number of βijk variables for instance). But if we ignore initialization, the
running time of Algorithm 7 is simply quadratic. So now, we can argue that the
Benders optimality cut can be separated in quadratic time because:

• The last expression of the Benders optimality cut has at most two nested
sums, so it requires to add O(n2) terms.

• What we need to build this optimality cut are the non-zero dual variables
only, so we can drop the initialization phase of Algorithm 7, in practice.
This is due to the fact that a unique βijk variable has a non-zero value (same
thing for δijk), this is the key for “killing” the cubic factor.

By contrast, the separation of the original Benders optimality cut requires mak-
ing the sum of a cubic number of terms (the fact that the cardinality of J̃ is in O(n3)

is sufficient to show it). So we have an efficient separation algorithm based upon
the computation of the critical triplet (in quadratic time), and Algorithm 7 which
is quadratic also provided we skip the initialization phase.

3.6 Numerical Experiments

The ILP introduced in Section 3.4 as well as the Branch-and-Benders cut decom-
position algorithm in Section 3.5, are implemented with the post-procedure op-
timization described in Subsection 3.4.1 and tested on a set of TSPLIB instances.
Similarly to Section 2.7, these TSPLIB instances are a collection of 32× 3× 4 = 384
TSP instances involving between 51 and 200 nodes. Let lij be the Euclidian dis-
tance between nodes i and j of V, we define the ring cost by cij = ⌈αlij⌉ and the
star cost by dij = ⌈(10− α)lij⌉ where α is in the set {3, 5, 7}, for all (i, j) in V2. c′ij

77

is set to 0.01cij and is a cost per day in a one-year time horizon. d′ij is set to 0.01dij

and is also a cost per day in a one-year horizon. Opening costs are zero for these
instances. F is expressed in days, set to 4 values, F = 0 which means there is no
failures, F = 7 which is one week, F = 31 (one month) and F = 183 (6 months).

We use Julia v1.8.0, JuMP v1.2.1 and Gurobi v9.0.3 to solve all integer and lin-
ear programs. The same settings for Gurobi as in Section 2.7 are used. We enforce
a time limit of one hour per instance. The computer used to run the numerical ex-
periments is a DELL equiped with a Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz
and 16GBytes of RAM, under GNU/Linux. Table 3.1 present the results for the
TSPLIB class. Two methods are tested, the ILP mentioned in Section 3.4 and the
Branch-and-Benders scheme mentioned in Section 3.5. The columns of this table
are as follows: F is the aforementioned parameter, it is the total duration of failures
in days, CPU is the total CPU time in seconds, it includes the Brute Force Algo-
rithm 1 CPU times which can be adapted for Resilient RSP. “TL” is indicated when
the time limit of one hour is reached; Gap represents the relative optimality gap
of both methods. Its formula is the same as in Table 2.2. Both LB and UB are also
displayed in Table 3.1; |H| is the number of hubs in the best solution found. Note
that since there is a single certain node in the considered instances, Algorithm 1
cannot find any ring with three hubs. n_subtour is the number of subtour elim-
ination constraints, i.e., feasibility cuts for Benders, and lazy constraints for ILP.
Columns Nodes show the total number of explored nodes in the solver’s branch-
and-bound tree during the search. CPU SP is the CPU time in seconds for solving
the Benders subproblems. n_cut gives the number of optimality cuts in the Ben-
ders decomposition, which is also the number of times the subproblem is solved.
Each line in Table 3.1 presents an instance with the format “Instance name n− α”
where n is the total number of nodes in the instance and α is the aforementioned
parameter.

Some instances does not appear in Table 3.1, these are the instances where both
ILP and Branch-and-Benders-cut algorithm run out of memory. When "NO SO-
LUTION FOUND" is printed, that means the algorithm could not find a solution
within the one hour time limit. We noticed that ILP finds a valid solution without
going out of memory on 64 out of 384 instances while Branch-and-Benders-cut
algorithm finds a valid solution without going out of memory on 95 instances
out of 384 instances. That means the Branch-and-Benders-cut algorithm is able
to find solutions more often than the ILP model. Moreover, considering that an
algorithm is better than another when both gaps are 0% and its CPU is lower or
both gap or greater than 0% but its gap is lower then, when F = 0 (no failures),
the Branch-and-Benders-cut algorithm is better on 13 instances while the ILP is
better on three instances. When F = 7 (one week), the Branch-and-Benders-cut al-

78

gorithm is better on 31 instances while the ILP is better on three instances. When
F = 31 (one month), the Branch-and-Benders-cut algorithm is better on 23 in-
stances and the ILP is better on 6 instances. When F = 183 (six months), the
Branch-and-Benders-cut algorithm is better on 11 instances and the ILP is better
on 9 instances. We observe that the easiest instances for the Branch-and-Benders-
cut are the ones with lower F, except for F = 0 (no failures). Moreover, when both
algorithms find an optimal solution, the CPU times tend to be from 2 times faster
up to 15 times faster for the Branch-and-Benders-cut algorithm. We observe that
among the values of the parameter α, the easiest instances to solve are the ones
with α = 3 for the Branch-and-Benders-cut algorithm. We also observe that no
instances with more than 105 nodes (lin-105) can be solved within the time limit
for the Branch-and-Benders-cut algorithm while the ILP cannot solve instances
bigger than 76 nodes (pr-76).

3.7 Resilient or Survivable Ring Star Problem?

In Chapter 2, we studied a Survivable variant of the Ring Star Problem and in
Chapter 3 a Resilient variant of the same problem. In this subsection, we address
the question of determining which of the two strategies leads to the smallest cost,
as a function of the failures duration.

3.7.1 Properties

It is shown in this section that g(F), the function that associates the optimal ob-
jective function value of 1-R-RSP(F) as a function of F, is continuous piecewise
linear and concave.

For all F ≥ 0, we denote by σ(F) the set of all the optimal solutions to 1-
R-RSP(F). The objective value of any feasible solution S to 1-R-RSP(F) can be
written as KS + FBS , where KS = ∑

ij∈E′
cijxij + ∑

(i,j)∈A ̸=
dijyij + ∑

i∈V
diiyii and BS = B

are nonnegative constants. For all F0 ≥ 0, an optimal solution SF0 to 1-R-RSP(F0)

is said to be B-optimal for 1-R-RSP(F0) if it is such that BSF0 = min
S∈σ(F0)

BS .

Observation 1: If solution SF0 is B-optimal for 1-R-RSP(F0), then for all S ∈ σ(F0),
we have KSF0 + F0BSF0 = KS + F0BS . By definition of a B-optimal solution, we
have BSF0 ≤ BS for all S ∈ σ(F0). So adding BSF0 (F− F0) ≤ BS (F− F0) to the last
equality yields KSF0 + FBSF0 ≤ KS + FBS for all F ≥ F0.

Lemma: For all F0 ≥ 0, there exists ε > 0 such that any B-optimal solution SF0 to

79

1-R-RSP(F0) is an optimal solution to 1-R-RSP(F) for all F ∈ [F0, F0 + ε].

Proof: If there does not exist any optimal solution S ′ to 1-R-RSP(F) such that
KS

′
+ FBS

′
< KSF0 + FBSF0 for any F ≥ F0, the lemma obviously holds. Hence,

we now assume that there exists F > F0 such that an optimal solution S ′ to 1-
R-RSP(F) satisfies KS

′
+ FBS

′
< KSF0 + FBSF0 , this inequality is denoted by (A).

Note that S ′ cannot be optimal for 1-R-RSP(F0) because no optimal solution S to 1-
R-RSP(F0) can satisfy (A), by Observation 1. Consequently we have KS

′
+ F0BS

′
>

KSF0 + F0BSF0 which can also be written as KS
′ − KSF0 > F0

(
BSF0 − BS

′
)

. Using

(A) we have BSF0 − BS
′
> 1

F

(
KS

′ − KSF0

)
, hence KS

′ − KSF0 > F0
F

(
KS

′ − KSF0

)
,

so
(

KS
′ − KSF0

)
(F− F0) > 0. Since F > F0, this implies KS

′
> KSF0 . Now, using

this inequality and (A), it follows that BSF0 > BS
′
.

Hence we have KSF0 + (F0 + ε)BSF0 ≤ KS
′
+ (F0 + ε)BS

′
for all ε ≤ KS

′−K
SF0

B
SF0−BS′

,

where KS
′−K

SF0

B
SF0−BS′

> 0. ■

Corollary: Let F1 > F0 be the largest value for which SF0 , a B-optimal solution
to 1-R-RSP(F0), is an optimal solution to 1-R-RSP(F1). Since SF0 is no longer an
optimal solution to 1-R-RSP(F) for F > F1, it can be concluded by the previous
lemma that it is not a B-optimal solution to 1-R-RSP(F1). This means that any
B-optimal solution to 1-R-RSP(F1), denoted by SF1 is such that BSF1 < BSF0 and
KSF0 + F1BSF0 = KSF1 + F1BSF1 . This shows that g(F), the function that associates
the optimal objective function value of 1-R-RSP(F) as a function of F, is continu-
ous, piecewise linear, and concave.

Consequently, g(F) can be specified by an ordered sequence of q pairs
(F0,S0), (F1,S1), . . . (Fq−1,Sq−1), where F0 = 0, and Fk−1 < Fk for all k ∈ {1, . . . , q−
1}. For all k ∈ {0, . . . , q− 1}, solution Sk is a B-optimal solution to 1-R-RSP(Fk)

whose objective value is Kk + FkBk. An illustration of g(F) when q = 4 is given
in Figure 3.2. For all k ∈ {0, . . . , q− 1}, solution Sk is optimal for 1-R-RSP(F) for
all F ∈ [Fk, Fk+1]. The slope of line segment k of g(F) is Bk, and the corresponding
value of Kk can be visualized at the intersection of the line segment with the line
F = 0. Figure 3.2 also shows the interval upon which Sk is optimal.

80

F0

B0

S0

F1

B1

S1

F2

B2

S2

F3

B3

S3
K0

K1

K2

K3

F

g(F)

Figure 3.2: Illustration of the shape of g(F) with q = 4

Property 3: Let F0 < F1. Let S0 (resp. S1) be an optimal solution to 1-R-RSP(F0)

(resp. 1-R-RSP(F1)). If BS0 = BS1 , then S0 is an optimal solution to 1-R-RSP(F) for
all F ∈ [F0, F1].

Proof: Property 3 is the consequence of the fact that g(F) is concave. Indeed, for all
F ∈ (F0, F1), the optimal solution SF to 1-R-RSP(F) is such that g(F) = KSF + FBSF ,
with BS0 ≤ BSF ≤ BS1 . Since BS0 = BS1 , we have BSF = BS0 for all F ∈ [F0, F1],
hence SF = S0.

3.7.2 Computational method to solve 1-R-RSP(F) on an interval

We wish to find an optimal solution to 1-R-RSP(F) for all F ∈ [Fℓ, Fr]. But we wish
to avoid determining B-optimal solutions to 1-R-RSP, because this may be costly.
In the sequel, if S is a solution to 1-R-RSP(F), S .B denotes the associated value of
B, and S .K denotes KS .

• Solve 1-R-RSP(Fℓ), and obtain solution Sℓ (so BSℓ ← Sℓ.B, and KSℓ ←
g(Fℓ)− FℓBSℓ = Sℓ.K are known)

• Solve 1-R-RSP(Fr), and obtain solution Sr (so BSr ← Sr.B, and KSr ← g(Fr)−
FrBSr = Sr.K are known)

• Store (Fℓ,Sℓ)

• Store (Fr,Sr)

• Explore the interval [Fℓ, Fr] by calling EXPLORE(Fℓ,Sℓ, Fr,Sr). This function
recursively splits the interval to determine the different line segments of

81

g(F)

• Sort the stored pairs (F,S) by increasing order of F. If we find two consecu-
tive pairs with the same value of F, delete the one with the largest BS value.
If two consecutive pairs have the same B value, the pair associated with the
largest F value should be deleted.

The pseudocode of EXPLORE(Fℓ,Sℓ, Fr,Sr) is given in Algorithm 8, and the dif-
ferent situations that can occur in the course of the algorithm are illustrated by
Figures 3.3 and 3.4. In both these figures, the objective value of solution Sℓ as a
function of F, i.e., KSℓ + FBSℓ is show in blue, and the objective value of Sr as a
function of F is plotted in red.

Algorithm 8: EXPLORE(Fℓ,Sℓ, Fr,Sr)

1 KSℓ ← Sℓ.K
2 BSℓ ← Sℓ.B
3 KSr ← Sr.K
4 BSr ← Sr.B
5 if BSℓ = BSr then
6 return

7 Fm ← KSr−KSℓ
BSℓ−BSr

8 if Fm = Fℓ then
9 Store (Fℓ,Sr)

10 return

11 if Fm = Fr then
12 Store (Fℓ,Sℓ)
13 return

14 Sm ← 1-R-RSP(Fm)

15 if KSℓ + FmBSℓ = KSm + FmBSm then
16 Store (Fm,Sr)
17 return

18 EXPLORE(Fℓ,Sℓ, Fm,Sm)
19 EXPLORE(Fm,Sm, Fr,Sr)

Prior to each call to EXPLORE(Fℓ,Sℓ, Fr,Sr), solution Sℓ is optimal for 1-R-
RSP(Fℓ) and Sr is optimal for 1-R-RSP(Fr). If BSℓ = BSr , 3 ensures that solution
Sℓ (or Sr) is an optimal solution to 1-R-RSP(F) for all F ∈ [Fℓ, Fr], this situation
is pictured in Figure 3.3, left, where the red line and the blue one overlap. Oth-
erwise, BSℓ < BSr and we compute Fm as the value of F for which the cost of
solutions Sℓ and Sr are equal, i.e., KSℓ + FmBSℓ = KSr + FmBSr . If Fm = Fℓ (see
Figure 3.3, center), then solution Sr is an optimal solution to 1-R-RSP(F) for all
F ∈ [Fℓ, Fr], and the pair (Fℓ,Sr) is stored. Symmetrically, if Fm = Fr (see Figure
3.3, right), then solution Sℓ is an optimal solution to 1-R-RSP(F) for all F ∈ [Fℓ, Fr]

82

and the pair (Fℓ,Sℓ) is stored. Now, we assume that Fm is in (Fℓ, Fr), and we
compute Sm, an optimal solution to 1-R-RSP(Fm). If KSℓ + FmBSℓ = KSm + FmBSm

(see Figure 3.4, left), then we know that solution Sℓ is an optimal solution to 1-
R-RSP(F) for all F ∈ [Fℓ, Fm] by Property 3, hence we store the pair (Fm,Sr). If
KSℓ + FmBSℓ > KSm + FmBSm (see Figure 3.4, right), then solution Sm has a slope
BSm ∈ (BSℓ , BSr), so the interval [Fℓ, Fr] is halved, and the exploration is launched
recursively on the intervals [Fℓ, Fm] and [Fm, Fr].

Fℓ

g(Fℓ)

Fr

g(Fr)

F

Obj. val.

Fℓ = Fm

g(Fℓ)

Fr

g(Fr)

F

Obj. val.

Fℓ

g(Fℓ)

Fr = Fm

g(Fr)

F

Obj. val.

BSℓ = BSr Fm = Fℓ Fm = Fr
Figure 3.3: Illustration of the situations that can occur when EX-
PLORE(Fℓ,Sℓ, Fr,Sr) is run

Fℓ

g(Fℓ)

Fr

g(Fr)

Fm

g(Fm)

F

Obj. val.

Fℓ

g(Fℓ)

Fr

g(Fr)

Fm

g(Fm)

F

Obj. val.

KSℓ + FmBSℓ = KSm + FmBSm KSℓ + FmBSℓ > KSm + FmBSm

Figure 3.4: Illustration of the situations that can occur when Fm ∈ (Fℓ, Fr) in EX-
PLORE(Fℓ,Sℓ, Fr,Sr)

83

3.7.3 Solving 1-R-RSP(F) for all F ≥ Fℓ

Let Fℓ be a given nonnegative constant, and suppose that we want to solve 1-R-
RSP(F) for all F ≥ Fℓ. Note that such a problem may not be very relevant in
practice, as we may assume that an upper bound for the total time during which
a hub is down may not exceed the time horizon. We cannot apply the previous
approach to address this problem, because [Fℓ,+∞) is not a closed interval. How-
ever, we may circumvent the issue by considering the solution S∞, defined as
follows:

• BS∞ = min
S∈σ

BS

• KS∞ = min
S∈σ

BS=BS∞

KS

Where σ is the set of all the feasible solutions to 1-R-RSP(F) for some F ≥ 0.
By the corollary, g(F) is continuous, linear piecewise and concave, so it follows
that there exists F0 ≥ 0 such that the objective value of solution S∞ is less than or
equal to the solution value to any feasible solution to 1-R-RSP(F), for all F ≥ F0.
Solution S∞ can be computed by solving the following two successive variants of
1-R-RSP, in which there is no F input parameter:

• Obtain BS∞ by solving a variant of 1-R-RSP where the objective function is
to minimize B

• Obtain KS∞ by solving a second variant of 1-R-RSP where the objective is to
minimize ∑

ij∈E′
cijxij + ∑

(i,j)∈A ̸=
dijyij + ∑

i∈V
diiyii, and by enforcing the constraint

B = BS∞ .

It can be observed that if |V\Ṽ| ≥ 3, then S∞ is such that BS∞ = 0. Indeed,
any solution where the ring is made of certain hubs only is insensitive to failures.
In such a case, there is no need to address the first variant of 1-R-RSP, since we
already know that BS∞ is zero.

We can solve 1-R-RSP(F) for all F ≥ Fℓ as follows:

• Solve 1-R-RSP(Fℓ), and obtain solution Sℓ (so KSℓ and BSℓ are known)

• Compute solution S∞ as shown above

• Store (Fℓ,Sℓ)

• Explore the half-open interval [Fℓ,+∞) by calling EXPLORE+(Fℓ, KSℓ , BSℓ , KS∞ , BS∞)

The pseudocode of EXPLORE+(Fℓ, KSℓ , BSℓ , KS∞ , BS∞) is given in Algorithm 9

84

Algorithm 9: EXPLORE+(Fℓ, KSℓ , BSℓ , KS∞ , BS∞)

1 if BSℓ = BS∞ then
2 return

3 Fm ← KS∞−KSℓ
BSℓ−BS∞

4 if Fm = Fℓ then
5 Store (Fℓ,S∞);
6 return

7 Sm ← 1-R-RSP(Fm);
8 if KSℓ + FmBSℓ = KSm + FmBSm then
9 Store (Fm,S∞);

10 return

11 EXPLORE(Fℓ, KSℓ , BSℓ , Fm, KSm , BSm)

12 EXPLORE+(Fm, KSm , BSm , KS∞ , BS∞)

3.7.4 Comparing the cost of 1-S-RSP and 1-R-RSP(F)

Now, we can compare an optimal solution of problem 1-S-RSP with the optimal
solutions of 1-R-RSP(F) for F in some interval using a graphical approach. It
suffices to plot g(F) in the considered interval, as well as the horizontal line cor-
responding to the cost of an optimal solution to 1-S-RSP (because this cost is con-
stant, and does not depend on F). There are two possibilities:

• g(F) and the horizontal line intersect. In that case, the intersection occurs
at F⋆, and the solutions to 1-R-RSP(F) are less expensive for all F ≤ F⋆,
whereas an optimal solution to 1-S-RSP is preferable for all F ≥ F⋆. This
situation is illustrated in Figure 3.5, where the optimal objective value of
1-S-RSP is denoted by f1-S-RSP.

• g(F) and the horizontal line do not intersect. This can happen either if the
values considered for F are too low, in which case no optimal solution to
1-S-RSP is competitive compared to optimal solutions to 1-R-RSP(F), or if
the considered values for F are too large, in which case no optimal solution
to 1-R-RSP(F) is competitive compared to an optimal solution to 1-S-RSP.

3.7.5 Numerical experiments to choose between Survivable or Resilient
RSP

Some numerical experiments are reported in Table 3.2. We selected two instances
with 10 and 12 nodes and displayed the CPU times for Resilient RSP and Sur-
vivable RSP solved by the Branch-and-Benders-cut approach, |Si| the number of
optimal solutions to 1-R-RSP(F), the F values and F⋆. We can see in this table
that for the instance of 10 nodes, the user should choose the Resilient RSP below

85

S0 S1 S2 S3

F

g(F)

f1-S-RSP

F⋆

Figure 3.5: Comparing the optimal solutions of 1-R-RSP(F) and 1-S-RSP

F⋆ = 569.76 and Survivable RSP above. We see in Table 3.2 that the number of
optimal solutions |Si| is equal to the number of F values. This means that the
proposed approach is efficient in the sense that we solve the minimum number
of instances of 1-R-RSP(F). Figures 3.6, 3.7, 3.8, 3.9 and 3.10 show the 5 solutions
Si, i ∈ {1, . . . , 5} for the instance of 10 nodes. The critical hub which incurs the
worst-case repairing cost among each hub failure of the ring is represented in
green as well as its corresponding backup edge and the decision variable B. As
expected, solution S1 has a low cost when F = 0, but this cost increases signifi-
cantly with F. Symmetrically, solution S5 has a large cost, but it increases at a slow
pace when F increases.

86

.

1

2

3

4

5
6

78

9

10
B = 205

Figure 3.6: S1, a 10-node solution of
the 1-R-RSP(F) with Ṽ = V \ {1},
F = 0 (no failures) and g(F) = 908

.

1

2

3

4

5
6

7 B = 1718

9

10

Figure 3.7: S2, a 10-node solution of
the 1-R-RSP(F) with Ṽ = V \ {1},
F = 779.4 and g(F) = 2505.8

.

1

2

3

4

5
6

7 B = 1568

9

10

Figure 3.8: S3, a 10-node solution of
the 1-R-RSP(F) with Ṽ = V \ {1},
F = 933.3 and g(F) = 2769

.

1

2

3

4 B = 152

5
6

78

9

10

Figure 3.9: S4, a 10-node solution of
the 1-R-RSP(F) with Ṽ = V \ {1},
F = 1025 and g(F) = 2912

.

1

2

3
B = 45

4

5
6

78

9

10

Figure 3.10: S5, a 10-node solution of the 1-R-RSP(F) with Ṽ = V \ {1}, F = 1544.9
and g(F) = 3702.2

Concluding remarks about this chapter are given in Chapter 4.

87

Table 3.1: TSPLIB instances

Instance n–α ILP Branch-and-Benders-cut

n = |V| F CPU Gap LB UB |H| n_subtour Nodes CPU CPU SP Gap LB UB |H| n_subtour n_cut Nodes

eil51-3 0 (no failures) 40.41 0% 1311.00 1311.00 51 13 1 7.79 0.00 0% 1311.00 1311.00 51 16 0 1

eil51-3 7 (one week) 42.67 0% 1315.76 1315.76 51 16 1 9.32 0.16 0% 1315.76 1315.76 51 29 5 1

eil51-3 31 (one month) 41.31 0% 1332.08 1332.08 51 11 1 9.59 0.27 0% 1332.08 1332.08 51 32 14 31

eil51-3 183 (six months) 102.10 0% 1435.44 1435.44 51 56 397 50.90 2.29 0% 1435.44 1435.44 51 1457 232 8246

eil51-5 0 (no failures) 17.50 0% 2042.00 2042.00 37 1 1 10.42 0.00 0% 2042.00 2042.00 37 335 0 390

eil51-5 7 (one week) 22.42 0% 2052.08 2052.08 37 3 1 11.61 0.17 0% 2052.08 2052.08 37 483 7 567

eil51-5 31 (one month) 45.88 0% 2086.64 2086.64 37 17 1 19.76 0.32 0% 2086.64 2086.64 37 1311 22 1194

eil51-5 183 (six months) 996.89 0% 2290.41 2290.41 40 791 5455 TL 5.00 5.8% 2157.00 2290.41 40 14263 479 225870

eil51-7 0 (no failures) 284.10 0% 2147.00 2147.00 16 173 259 14.88 0.00 0% 2147.00 2147.00 17 234 0 280

eil51-7 7 (one week) 301.48 0% 2168.51 2168.51 16 211 492 34.95 0.53 0% 2168.51 2168.51 17 1184 37 1813

eil51-7 31 (one month) 2017.40 0% 2232.86 2232.86 20 1483 6945 912.89 5.29 0% 2232.86 2232.86 19 2006 520 274318

eil51-7 183 (six months) TL 11.0% 2246.73 2524.89 23 2000 4134 TL 50.10 12.9% 2200.52 2526.72 24 2815 5665 375421

berlin52-3 0 (no failures) 14.90 0% 22657.00 22657.00 52 2 0 7.42 0.00 0% 22657.00 22657.00 52 14 0 1

berlin52-3 7 (one week) 19.79 0% 22805.33 22805.33 52 3 1 8.80 0.13 0% 22805.33 22805.33 52 11 3 1

berlin52-3 31 (one month) 22.44 0% 23313.89 23313.89 52 5 1 9.07 0.16 0% 23313.89 23313.89 52 15 8 1

berlin52-3 183 (six months) 152.98 0% 26534.77 26534.77 52 79 359 41.40 3.12 0% 26534.77 26534.77 52 1252 328 4956

berlin52-5 0 (no failures) 106.62 0% 36147.00 36147.00 41 92 1 TL 0.00 8.7% 33904.00 37141.00 35 20498 0 101754

berlin52-5 7 (one week) 136.64 0% 36471.68 36471.68 42 98 1 TL 0.21 9.2% 34058.00 37493.25 40 20367 14 117002

berlin52-5 31 (one month) 83.80 0% 37365.44 37365.44 42 61 43 TL 0.52 27.2% 33656.00 46214.32 43 17637 46 109241

berlin52-5 183 (six months) 2532.18 0% 42915.82 42915.82 43 611 8077 TL 0.29 NO SOLUTION FOUND 34033.00 16712 17 0

berlin52-7 0 (no failures) 180.30 0% 37413.00 37413.00 24 100 1 32.54 0.00 0% 37413.00 37413.00 24 2411 0 4817

berlin52-7 7 (one week) 189.71 0% 37840.19 37840.19 24 109 51 13.74 0.23 0% 37840.19 37840.19 24 163 9 115

berlin52-7 31 (one month) 286.66 0% 39116.27 39116.27 24 158 354 63.03 1.02 0% 39116.27 39116.27 24 948 99 8353

berlin52-7 183 (six months) TL 10.1% 41679.79 46362.58 26 1661 4189 TL 37.73 5.7% 39741.62 42122.89 28 2893 4148 253820

brazil58-3 0 (no failures) 73.31 0% 76185.00 76185.00 58 22 1 8.08 0.00 0% 76185.00 76185.00 58 35 0 1

brazil58-3 7 (one week) 83.91 0% 76856.25 76859.82 58 29 11 10.64 0.51 0% 76859.82 76859.82 58 32 30 76

brazil58-3 31 (one month) 115.47 0% 79122.06 79122.06 58 60 438 37.66 4.33 0% 79122.06 79122.06 58 385 349 3521

brazil58-3 183 (six months) 1769.39 0% 93449.58 93449.58 58 345 4663 TL 37.43 4.4% 89354.40 93449.56 58 2780 3146 1416737

brazil58-5 0 (no failures) 244.64 0% 115045.00 115045.00 40 113 1 TL 0.00 42.2% 103755.00 179530.00 44 16626 0 62438

brazil58-5 7 (one week) 140.88 0% 116802.25 116802.25 41 55 1 TL 0.17 NO SOLUTION FOUND 103736.67 19186 2 0

brazil58-5 31 (one month) 158.42 0% 121404.25 121404.25 41 53 43 TL 0.17 NO SOLUTION FOUND 103731.25 19058 2 0

brazil58-5 183 (six months) TL 1.3% 144714.39 146551.75 43 767 7705 TL 0.16 NO SOLUTION FOUND 103725.71 18830 2 0

brazil58-7 0 (no failures) 247.84 0% 126807.00 126807.00 28 78 1 TL 0.00 45.1% 110746.00 201549.00 35 17638 0 78122

brazil58-7 7 (one week) 311.28 0% 129743.78 129743.78 28 114 13 22.28 0.55 0% 129743.78 129743.78 28 1355 23 1705

brazil58-7 31 (one month) 1832.18 0% 138217.58 138217.58 29 371 4055 TL 1.55 5.2% 131753.92 138968.04 27 15676 120 53177

brazil58-7 183 (six months) TL 14.8% 139208.49 163387.80 27 892 1971 TL 2.72 26.0% 131682.10 177913.63 25 17139 153 70674

st70-3 0 (no failures) 218.86 0% 2059.00 2059.00 70 24 1 10.05 0.00 0% 2059.00 2059.00 70 87 0 57

st70-3 7 (one week) 189.08 0% 2065.79 2065.79 70 19 1 17.19 0.25 0% 2065.79 2065.79 70 665 9 874

st70-3 31 (one month) 183.24 0% 2089.07 2089.07 70 25 1 20.96 0.45 0% 2089.07 2089.07 70 936 17 1325

st70-3 183 (six months) 446.91 0% 2223.21 2223.21 70 93 616 170.86 11.94 0% 2223.21 2223.21 70 2080 499 35811

st70-5 0 (no failures) 424.43 0% 3164.00 3164.00 56 85 1 279.73 0.00 0% 3164.00 3164.00 54 5879 0 14915

st70-5 7 (one week) 278.03 0% 3177.16 3177.23 56 80 75 50.05 0.30 0% 3177.23 3177.23 55 1583 9 1436

st70-5 31 (one month) 473.24 0% 3222.59 3222.59 55 81 24 54.60 0.62 0% 3222.59 3222.59 56 1895 19 2123

st70-5 183 (six months) TL 1.8% 3430.53 3492.42 57 758 3598 TL 2.49 14.7% 3174.00 3719.04 56 12110 110 89331

st70-7 0 (no failures) 860.21 0% 3449.00 3449.00 31 125 1 16.70 0.00 0% 3449.00 3449.00 31 157 0 1

st70-7 7 (one week) 768.83 0% 3472.49 3472.49 31 137 109 29.26 0.73 0% 3472.45 3472.49 31 251 34 589

st70-7 31 (one month) 1180.62 0% 3543.73 3543.73 33 458 1551 179.73 3.28 0% 3543.73 3543.73 33 2000 158 22641

st70-7 183 (six months) TL 9.4% 3558.85 3928.54 34 700 1073 TL 74.84 10.2% 3526.29 3928.54 33 3296 3836 177428

eil76-3 0 (no failures) 142.99 0% 1666.00 1666.00 76 10 1 8.03 0.00 0% 1666.00 1666.00 76 13 0 1

eil76-3 7 (one week) 159.02 0% 1672.37 1672.37 76 12 1 9.78 0.30 0% 1672.37 1672.37 76 22 4 1

eil76-3 31 (one month) 211.92 0% 1690.84 1690.84 76 22 1 11.48 0.64 0% 1690.84 1690.84 76 57 14 25

eil76-3 183 (six months) 753.11 0% 1782.97 1782.97 76 137 822 121.82 9.16 0% 1782.97 1782.97 76 1697 248 8516

eil76-5 0 (no failures) 467.66 0% 2533.00 2533.00 57 28 1 9.40 0.00 0% 2533.00 2533.00 57 69 0 1

eil76-5 7 (one week) 166.37 0% 2542.52 2542.52 57 34 31 OUT OF MEMORY

eil76-5 31 (one month) 589.25 0% 2575.16 2575.16 57 38 1 OUT OF MEMORY

eil76-5 183 (six months) OUT OF MEMORY TL 6.03 5.5% 2633.90 2787.22 58 11168 160 112676

eil76-7 0 (no failures) 2456.89 0% 2572.00 2572.00 31 180 64 104.07 0.00 0% 2572.00 2572.00 31 1333 0 1106

eil76-7 7 (one week) 1096.08 0% 2586.70 2586.70 31 197 187 40.87 0.56 0% 2586.70 2586.70 31 232 12 220

eil76-7 31 (one month) TL 0.6% 2621.65 2637.10 31 627 1167 243.32 4.09 0% 2637.10 2637.10 31 2005 113 12707

eil76-7 183 (six months) OUT OF MEMORY TL 105.35 9.4% 2636.20 2909.10 30 2383 3009 184774

pr76-3 0 (no failures) OUT OF MEMORY 34.08 0.00 0% 324510.00 324510.00 76 525 0 2281

pr76-3 7 (one week) 493.67 0% 325972.72 325972.72 76 176 1716 33.76 0.39 0% 325972.72 325972.72 76 616 6 2134

pr76-3 31 (one month) 435.28 0% 330987.76 330987.76 76 132 1266 157.83 1.44 0% 330987.76 330987.76 76 2000 29 18954

pr76-3 183 (six months) OUT OF MEMORY TL 48.56 1.1% 358901.03 362749.66 76 2998 1327 1038213

pr76-5 0 (no failures) 2029.15 0% 500431.00 500431.00 61 172 7 3240.21 0.00 0% 500428.50 500431.00 61 12118 0 486372

pr76-5 7 (one week) OUT OF MEMORY TL 0.64 21.4% 486662.33 619456.84 66 12282 13 107716

pr76-5 31 (one month) 960.01 0% 510667.05 510667.05 61 360 717 TL 1.04 23.7% 486734.83 637978.88 61 12300 25 102296

pr76-5 183 (six months) OUT OF MEMORY TL 0.37 NO SOLUTION FOUND 486431.64 10407 6 0

pr76-7 0 (no failures) OUT OF MEMORY 158.88 0.00 0% 555888.00 555888.00 39 1754 0 2401

pr76-7 7 (one week) 2555.39 0% 560503.45 560503.45 39 1162 4291 243.31 1.69 0% 560503.45 560503.45 39 2000 32 6184

pr76-7 31 (one month) TL 4.0% 556861.08 579846.96 44 612 1056 TL 8.02 1.2% 565851.01 572902.66 42 2065 212 511976

pr76-7 183 (six months) OUT OF MEMORY TL 47.38 12.3% 559427.44 637935.65 45 4587 1386 156188

gr96-3 7 (one week) OUT OF MEMORY 16.48 1.03 0% 1592.10 1592.10 96 122 9 284

gr96-3 31 (one month) OUT OF MEMORY 50.02 3.62 0% 1619.72 1619.72 96 1203 41 1427

gr96-5 7 (one week) OUT OF MEMORY 76.75 1.48 0% 2442.65 2442.77 75 1433 11 1237

gr96-7 31 (one month) OUT OF MEMORY TL 0.59 NO SOLUTION FOUND 2405.09 8579 4 0

gr96-7 183 (six months) OUT OF MEMORY TL 0.37 NO SOLUTION FOUND 2399.99 8625 2 0

rat99-3 7 (one week) OUT OF MEMORY 12.75 0.85 0% 3710.84 3710.84 99 36 8 30

rat99-3 31 (one month) OUT OF MEMORY 16.08 1.66 0% 3737.72 3737.72 99 79 12 165

rat99-5 7 (one week) OUT OF MEMORY 141.40 2.03 0% 5998.00 5998.58 89 2696 13 8485

rat99-5 31 (one month) OUT OF MEMORY 1406.29 5.74 0% 6045.00 6045.14 89 10006 53 133939

rat99-7 7 (one week) OUT OF MEMORY 210.01 1.96 0% 6559.30 6559.30 41 478 19 549

88

Table 3.1: TSPLIB instances (continued)

Instance n–α ILP Branch-and-Benders-cut

n = |V| F CPU Gap LB UB |H| n_subtour Nodes CPU CPU SP Gap LB UB |H| n_subtour n_cut Nodes

kroA100-3 7 (one week) OUT OF MEMORY 40.12 1.41 0% 64120.60 64120.60 100 1019 12 1666

kroA100-3 31 (one month) OUT OF MEMORY 72.49 2.98 0% 64698.55 64698.55 100 1376 28 1359

kroA100-5 7 (one week) OUT OF MEMORY TL 0.54 NO SOLUTION FOUND 98483.50 8917 4 0

kroA100-5 31 (one month) OUT OF MEMORY TL 0.55 NO SOLUTION FOUND 98482.00 8947 4 0

kroA100-5 183 (six months) OUT OF MEMORY TL 0.34 NO SOLUTION FOUND 98520.50 9110 2 0

kroA100-7 7 (one week) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 98676.11 7820 2 0

kroA100-7 31 (one month) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 98588.38 7889 2 0

kroA100-7 183 (six months) OUT OF MEMORY TL 0.32 NO SOLUTION FOUND 98676.58 7802 2 0

kroB100-3 7 (one week) OUT OF MEMORY 36.16 1.27 0% 66634.35 66634.35 100 530 10 1099

kroB100-3 31 (one month) OUT OF MEMORY 52.19 2.95 0% 67168.76 67168.76 100 757 26 1353

kroB100-5 31 (one month) OUT OF MEMORY TL 1.17 NO SOLUTION FOUND 104452.00 9078 11 0

kroB100-5 183 (six months) OUT OF MEMORY TL 1.25 NO SOLUTION FOUND 104399.90 9436 12 0

kroB100-7 7 (one week) OUT OF MEMORY 146.54 2.24 0% 118718.67 118718.67 47 1528 20 1379

kroC100-3 7 (one week) OUT OF MEMORY 22.69 1.06 0% 62465.97 62465.97 100 163 6 629

kroC100-7 7 (one week) OUT OF MEMORY TL 0.34 NO SOLUTION FOUND 95471.74 8096 2 0

kroC100-7 31 (one month) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 95440.01 7783 2 0

kroC100-7 183 (six months) OUT OF MEMORY TL 0.34 NO SOLUTION FOUND 95440.01 7783 2 0

kroD100-3 7 (one week) OUT OF MEMORY 18.37 1.17 0% 64128.11 64128.11 100 119 9 172

kroD100-3 31 (one month) OUT OF MEMORY 25.85 2.62 0% 64713.60 64713.60 100 148 23 372

kroD100-5 7 (one week) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 95806.38 8434 2 0

kroD100-5 31 (one month) OUT OF MEMORY TL 0.38 NO SOLUTION FOUND 95791.67 8065 2 0

kroD100-5 183 (six months) OUT OF MEMORY TL 0.34 NO SOLUTION FOUND 95794.00 8185 2 0

kroD100-7 7 (one week) OUT OF MEMORY 182.22 4.22 0% 117571.65 117571.65 48 1513 43 1607

kroD100-7 31 (one month) OUT OF MEMORY 2164.30 32.31 0% 119490.21 119490.21 53 2013 301 167663

kroE100-3 7 (one week) OUT OF MEMORY 53.12 1.34 0% 66437.39 66437.39 100 1264 11 1222

kroE100-3 31 (one month) OUT OF MEMORY 77.78 2.80 0% 67055.87 67055.87 100 1340 29 1807

kroE100-5 183 (six months) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 102621.00 9126 2 0

kroE100-7 7 (one week) OUT OF MEMORY 94.10 2.00 0% 117103.25 117103.25 51 1708 18 1523

kroE100-7 31 (one month) OUT OF MEMORY 200.64 5.64 0% 119113.25 119113.25 51 1970 58 2998

rd100-3 7 (one week) OUT OF MEMORY 17.04 0.97 0% 23851.97 23851.97 100 127 8 85

rd100-3 31 (one month) OUT OF MEMORY 23.52 1.47 0% 24083.12 24083.12 100 243 11 253

rd100-5 7 (one week) OUT OF MEMORY TL 0.38 NO SOLUTION FOUND 35610.00 7945 2 0

rd100-5 31 (one month) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 35597.00 7826 2 0

rd100-5 183 (six months) OUT OF MEMORY TL 0.41 NO SOLUTION FOUND 35599.00 7962 2 0

rd100-7 7 (one week) OUT OF MEMORY 168.53 2.59 0% 41213.96 41213.96 46 1521 24 1578

rd100-7 31 (one month) OUT OF MEMORY 863.01 18.82 0% 41832.19 41832.19 47 2040 183 32859

eil101-3 7 (one week) OUT OF MEMORY 13.25 0.49 0% 1968.55 1968.55 101 56 4 69

eil101-3 31 (one month) OUT OF MEMORY 18.18 1.44 0% 1984.15 1984.15 101 95 11 210

eil101-3 183 (six months) OUT OF MEMORY 432.02 20.39 0% 2082.95 2082.95 101 1709 169 15437

eil101-5 7 (one week) OUT OF MEMORY 28.27 1.06 0% 3039.23 3039.23 78 653 9 1033

lin105-3 183 (six months) OUT OF MEMORY 271.74 37.64 0% 46943.99 46943.99 105 2150 360 33070

lin105-5 7 (one week) OUT OF MEMORY TL 0.36 NO SOLUTION FOUND 65083.67 8670 2 0

lin105-5 31 (one month) OUT OF MEMORY TL 0.35 NO SOLUTION FOUND 65065.86 7928 2 0

lin105-5 183 (six months) OUT OF MEMORY TL 0.35 NO SOLUTION FOUND 65077.50 8385 2 0

lin105-7 7 (one week) OUT OF MEMORY TL 0.38 NO SOLUTION FOUND 73087.75 10716 2 0

lin105-7 31 (one month) OUT OF MEMORY TL 0.36 NO SOLUTION FOUND 73073.70 10233 2 0

pr107-5 183 (six months) OUT OF MEMORY TL 0.40 NO SOLUTION FOUND 143454.00 12456 2 0

pr107-7 7 (one week) OUT OF MEMORY TL 0.50 NO SOLUTION FOUND 224795.14 8004 3 0

pr107-7 31 (one month) OUT OF MEMORY TL 0.69 NO SOLUTION FOUND 224749.38 7611 3 0

pr107-7 183 (six months) OUT OF MEMORY TL 0.50 NO SOLUTION FOUND 224766.64 7696 3 0

gr120-5 7 (one week) OUT OF MEMORY TL 0.34 NO SOLUTION FOUND 7350.78 6693 1 0

gr120-5 31 (one month) OUT OF MEMORY TL 0.33 NO SOLUTION FOUND 7349.00 6305 1 0

gr120-5 183 (six months) OUT OF MEMORY TL 0.34 NO SOLUTION FOUND 7346.33 6202 1 0

gr120-7 7 (one week) OUT OF MEMORY TL 0.57 NO SOLUTION FOUND 7452.32 5051 2 0

gr120-7 31 (one month) OUT OF MEMORY TL 0.63 NO SOLUTION FOUND 7452.59 4469 2 0

gr120-7 183 (six months) OUT OF MEMORY TL 0.57 NO SOLUTION FOUND 7458.37 4725 2 0

pr124-5 7 (one week) OUT OF MEMORY TL 0.58 NO SOLUTION FOUND 271613.50 7142 2 0

pr124-5 31 (one month) OUT OF MEMORY TL 0.58 NO SOLUTION FOUND 271573.62 6817 2 0

pr124-5 183 (six months) OUT OF MEMORY TL 0.57 NO SOLUTION FOUND 271569.50 6684 2 0

bier127-5 7 (one week) OUT OF MEMORY TL 0.69 NO SOLUTION FOUND 527657.56 7718 2 0

bier127-5 183 (six months) OUT OF MEMORY TL 0.68 NO SOLUTION FOUND 527657.56 7720 2 0

ch130-7 7 (one week) OUT OF MEMORY TL 0.95 NO SOLUTION FOUND 26315.37 6475 2 0

ch130-7 31 (one month) OUT OF MEMORY TL 0.98 NO SOLUTION FOUND 26301.28 5981 2 0

ch130-7 183 (six months) OUT OF MEMORY TL 0.91 NO SOLUTION FOUND 26308.19 6212 2 0

pr136-5 7 (one week) OUT OF MEMORY TL 0.69 NO SOLUTION FOUND 449036.00 8565 2 0

pr136-5 31 (one month) OUT OF MEMORY TL 0.96 NO SOLUTION FOUND 449023.17 8499 2 0

pr136-5 183 (six months) OUT OF MEMORY TL 0.98 NO SOLUTION FOUND 449036.00 8563 2 0

89

Table 3.1: TSPLIB instances (continued)

Instance n–α ILP Branch-and-Benders-cut

n = |V| F CPU Gap LB UB |H| n_subtour Nodes CPU CPU SP Gap LB UB |H| n_subtour n_cut Nodes

gr137-3 7 (one week) OUT OF MEMORY TL 0.70 NO SOLUTION FOUND 1109.44 5761 2 0

gr137-3 31 (one month) OUT OF MEMORY TL 0.70 NO SOLUTION FOUND 1103.00 5916 2 0

gr137-3 183 (six months) OUT OF MEMORY TL 0.71 NO SOLUTION FOUND 1103.00 5968 2 0

gr137-5 7 (one week) OUT OF MEMORY TL 0.97 NO SOLUTION FOUND 1831.00 6147 3 0

gr137-5 31 (one month) OUT OF MEMORY TL 0.98 NO SOLUTION FOUND 1830.50 5731 3 0

gr137-5 183 (six months) OUT OF MEMORY TL 0.97 NO SOLUTION FOUND 1789.00 6579 3 0

gr137-7 7 (one week) OUT OF MEMORY TL 0.99 NO SOLUTION FOUND 2256.88 6310 3 0

gr137-7 31 (one month) OUT OF MEMORY TL 0.98 NO SOLUTION FOUND 2324.77 5648 3 0

gr137-7 183 (six months) OUT OF MEMORY TL 0.70 NO SOLUTION FOUND 2309.88 5871 2 0

pr144-3 7 (one week) OUT OF MEMORY TL 2.24 NO SOLUTION FOUND 142777.17 4076 4 0

pr144-5 7 (one week) OUT OF MEMORY TL 1.86 NO SOLUTION FOUND 229849.50 4249 3 0

pr144-5 31 (one month) OUT OF MEMORY TL 1.78 NO SOLUTION FOUND 229849.50 4233 3 0

pr144-5 183 (six months) OUT OF MEMORY TL 1.72 NO SOLUTION FOUND 229834.50 4265 3 0

ch150-5 7 (one week) OUT OF MEMORY TL 1.14 NO SOLUTION FOUND 29902.00 6100 2 0

ch150-5 31 (one month) OUT OF MEMORY TL 1.13 NO SOLUTION FOUND 29891.00 6057 2 0

ch150-5 183 (six months) OUT OF MEMORY TL 1.12 NO SOLUTION FOUND 29906.33 5886 2 0

ch150-7 7 (one week) OUT OF MEMORY TL 1.14 NO SOLUTION FOUND 30741.90 5004 2 0

ch150-7 31 (one month) OUT OF MEMORY TL 1.14 NO SOLUTION FOUND 30749.51 5221 2 0

ch150-7 183 (six months) OUT OF MEMORY TL 1.13 NO SOLUTION FOUND 30729.73 4948 2 0

kroA150-5 7 (one week) OUT OF MEMORY TL 1.36 NO SOLUTION FOUND 116620.00 5403 2 0

kroA150-5 31 (one month) OUT OF MEMORY TL 1.39 NO SOLUTION FOUND 116620.00 5390 2 0

kroA150-5 183 (six months) OUT OF MEMORY TL 1.39 NO SOLUTION FOUND 116620.00 5403 2 0

kroB150-5 7 (one week) OUT OF MEMORY TL 1.37 NO SOLUTION FOUND 115046.87 5125 2 0

kroB150-5 31 (one month) OUT OF MEMORY TL 2.99 NO SOLUTION FOUND 115047.39 5152 5 0

kroB150-5 183 (six months) OUT OF MEMORY TL 2.92 NO SOLUTION FOUND 115049.37 5173 5 0

kroB150-7 7 (one week) OUT OF MEMORY TL 1.40 NO SOLUTION FOUND 116568.17 5733 2 0

kroB150-7 183 (six months) OUT OF MEMORY TL 1.40 NO SOLUTION FOUND 116478.55 5702 2 0

pr152-3 7 (one week) OUT OF MEMORY TL 1.38 NO SOLUTION FOUND 216172.00 4699 2 0

pr152-3 31 (one month) OUT OF MEMORY TL 1.40 NO SOLUTION FOUND 216154.81 4661 2 0

pr152-5 7 (one week) OUT OF MEMORY TL 1.46 NO SOLUTION FOUND 259239.33 6034 2 0

pr152-5 31 (one month) OUT OF MEMORY TL 1.53 NO SOLUTION FOUND 259161.17 5815 2 0

pr152-5 183 (six months) OUT OF MEMORY TL 1.45 NO SOLUTION FOUND 259239.33 6043 2 0

pr152-7 31 (one month) OUT OF MEMORY TL 3.94 NO SOLUTION FOUND 448642.29 3726 6 0

pr152-7 183 (six months) OUT OF MEMORY TL 1.46 NO SOLUTION FOUND 447520.33 4375 2 0

u159-5 7 (one week) OUT OF MEMORY TL 2.25 NO SOLUTION FOUND 197366.14 5333 4 0

u159-5 31 (one month) OUT OF MEMORY TL 3.13 NO SOLUTION FOUND 197335.50 4916 4 0

u159-5 183 (six months) OUT OF MEMORY TL 1.17 NO SOLUTION FOUND 198057.58 5582 2 0

d198-5 31 (one month) OUT OF MEMORY TL 3.94 NO SOLUTION FOUND 69319.57 3965 3 0

d198-5 183 (six months) OUT OF MEMORY TL 3.77 NO SOLUTION FOUND 69346.73 4252 3 0

d198-7 7 (one week) OUT OF MEMORY TL 2.79 NO SOLUTION FOUND 68892.88 4114 2 0

d198-7 31 (one month) OUT OF MEMORY TL 2.72 NO SOLUTION FOUND 68892.88 4117 2 0

d198-7 183 (six months) OUT OF MEMORY TL 2.81 NO SOLUTION FOUND 68892.88 4123 2 0

kroA200-3 7 (one week) OUT OF MEMORY TL 2.84 NO SOLUTION FOUND 83722.12 3323 2 0

kroA200-3 31 (one month) OUT OF MEMORY TL 2.88 NO SOLUTION FOUND 83722.12 3350 2 0

kroA200-3 183 (six months) OUT OF MEMORY TL 2.83 NO SOLUTION FOUND 83722.12 3350 2 0

kroA200-5 7 (one week) OUT OF MEMORY TL 2.84 NO SOLUTION FOUND 127573.50 4522 2 0

kroA200-5 31 (one month) OUT OF MEMORY TL 2.74 NO SOLUTION FOUND 127573.50 4525 2 0

kroA200-5 183 (six months) OUT OF MEMORY TL 2.84 NO SOLUTION FOUND 127573.50 4528 2 0

kroA200-7 7 (one week) OUT OF MEMORY TL 2.94 NO SOLUTION FOUND 130447.11 4836 2 0

kroA200-7 31 (one month) OUT OF MEMORY TL 2.94 NO SOLUTION FOUND 130428.05 4592 2 0

kroA200-7 183 (six months) OUT OF MEMORY TL 3.00 NO SOLUTION FOUND 130287.12 4947 2 0

kroB200-3 7 (one week) OUT OF MEMORY TL 3.89 NO SOLUTION FOUND 87553.25 3180 3 0

kroB200-3 31 (one month) OUT OF MEMORY TL 3.76 NO SOLUTION FOUND 87553.25 3202 3 0

kroB200-3 183 (six months) OUT OF MEMORY TL 3.89 NO SOLUTION FOUND 87553.25 3191 3 0

kroB200-5 7 (one week) OUT OF MEMORY TL 3.91 NO SOLUTION FOUND 127515.63 4212 3 0

kroB200-5 31 (one month) OUT OF MEMORY TL 3.85 NO SOLUTION FOUND 127515.63 4213 3 0

kroB200-5 183 (six months) OUT OF MEMORY TL 3.99 NO SOLUTION FOUND 127515.63 4212 3 0

kroB200-7 7 (one week) OUT OF MEMORY TL 2.98 NO SOLUTION FOUND 130634.83 4205 2 0

kroB200-7 31 (one month) OUT OF MEMORY TL 2.85 NO SOLUTION FOUND 130634.83 4204 2 0

kroB200-7 183 (six months) OUT OF MEMORY TL 2.88 NO SOLUTION FOUND 130598.21 3997 2 0

90

Nb.
nodes |Si| : Nb. opt.

Solutions F values 1-R-RSP(F)
CPU Time

1-S-RSP
CPU Time F⋆

10 5 0.0, 779.4, 933.3 30.87s 3.28s 569.76
1025.0, 1544.9

12 6 0.0, 0.96, 164.71 187.66s 286.96s 574.87
728.78, 1727.27, 2866.66

Table 3.2: Numerical experiments for comparing 1-R-RSP and 1-S-RSP

Chapter 4

Conclusions

4.1 Overview

In this thesis, we introduced a survivable and a resilient variant of the Ring Star
Problem. The survivable variant called 1-S-RSP reduces to RSP when there are
no uncertain nodes and is shown to be much harder to solve when the cardi-
nality of the uncertain nodes grows. We introduced an ILP formulation to ad-
dress this problem as well as a Branch-and-Benders-cut algorithm. We improved
both ILP and Branch-and-Benders-cut and in particular, generalized the 2-opt
heuristic from the traveling salesman problem to deal with uncertain hubs. We
also introduce an instance transformation to enhance the master problem perfor-
mance. Extensive numerical experiments have been carried out and the Branch-
and-Benders-cut is shown to have a better performance for instances with a large
number of nodes. Both methods have been tested on instances up to 200 nodes.
The second problem we introduced, Resilient RSP, was modeled with an ILP and
a Branch-and-Benders-cut model similarly to the first problem, the performance
of the Branch-and-Benders-cut is shown to be much better than the ILP, solving
instances up to 105 nodes. The practical question of determining which approach
to use as a function of the duration of the failures has also been addressed. RSP
has been studied since 1998 and exact and heuristics methods have been devel-
oped for this problem. Resilience and Survivability are concepts studied in many
fields including combinatorial optimization and in this thesis, we filled the gap in
the RSP literature by the study of the resilient and the survivable variants.

4.2 Limitations

For the Resilient variant of RSP, the Branch-and-Benders-cut scheme and the ILP
can be improved. The Branch-and-Benders-cut scheme does not have an instance

91

92

transformation for its master problem and both models do not take advantage of a
2-opt heuristic adapted method. As a result, instances of more than 105 nodes are
not solved by the Branch-and-Benders-cut scheme. Extensive numerical experi-
ments should be carried out to deepen the analysis of the analysis of these early
results. Regarding the solution of 1-R-RSP(F) for all F, it is applicable only to small
instances for which 1-R-RSP(F) can be solved to optimality in a reasonable amount
of time. In addition, even if we know that the number of linear pieces in g(F) is
finite (because the number of distinct solutions to RSP is finite), determining the
number of linear pieces of g(F) is still an open question.

4.3 Future works

The following future work directions may be considered promising. First, any
feasible solution found by ILP may be attempted for improvement by solving
the subproblem of the Branch-and-Benders-cut algorithm. Moreover, other ex-
isting heuristic approaches may be used to try to improve the ring by changing
some hubs, not just the edges that join them. In the same vein, existing heuris-
tics or metaheuristics could be extended to 1-S-RSP and used to warm start ILP
and the Branch-and-Benders-cut model. We could also develop heuristics for
large instances. A more challenging research direction consists in searching for
a fast way to generate optimality cuts before solving the Branch-and-Benders-cut
model. Such valid inequalities may be obtained from feasible solutions to 1-S-RSP,
but not all of them are useful. Another promising future work direction would be
to decompose the subproblem of 1-S-RSP to |V \ H| + 1 subproblems and solve
the dual for each of them. That would lead to |V \ H| + 1 optimality cuts that
could be of better quality than the single optimality cut added in the Branch-and-
Benders-cut algorithm presented in this thesis. Second, it may be relevant to adapt
the st-chains formulation introduced in [32] for RSP to 1-S-RSP. This st-chains for-
mulation has been adapted for 1-R-RSP in this thesis but the blossom inequalities
have not been exploited. When we cannot afford to solve 1-R-RSP(F) many times,
how can we estimate F⋆? A research direction may be to store and transfer all
the subtour constraints (for the ILP model) and all the optimality cuts (for the
Branch-and-Benders-cut scheme) to the next 1-R-RSP solution. We could also use
a 1-R-RSP solution for the closest values of F to warm-start the solving process.

As shown in Table 2.2, the extra cost required to offer survivability is very
large, which means that the proposed solution is adapted to situations where the
failure of a hub is frequent. If it is not the case, it may be more relevant to favor
solutions that are easy or inexpensive to fix. Finally, a natural research direction
is to consider the situation where more than one hub can fail in both variants. For

93

the case of 1-S-RSP we would consider k ∈ N failing hubs and study k-S-RSP.

94

List of Figures

1.1 Ring Star network . 16
1.2 2-edge connected star, dual homed network [31] 18
1.3 Classical Benders decomposition scheme 23

2.1 An 11-node solution of the 1-S-RSP with Ṽ = V \ {1, 11} 27
2.2 1-S-RSP instance with Ṽ = {2, 3, 4} where the dashed backup edge is 28
2.3 Nonzero variables for a solution to an 11-node instance of 1-S-RSP 29
2.4 Branch-and-Benders-cut decomposition scheme 33
2.5 Illustration of edges before (left) and after (right) a 2-opt backup move 50
2.6 4 optimal RSP solutions with the same instance except the ring and

star costs for 4 values of input paramter α 53

3.1 The nonzero x, x′, y and y′ variables of a solution to 1-R-RSP 67
3.2 Illustration of the shape of g(F) with q = 4 80
3.3 Illustration of the situations that can occur when EXPLORE(Fℓ,Sℓ, Fr,Sr)

is run . 82
3.4 Illustration of the situations that can occur when Fm ∈ (Fℓ, Fr) in

EXPLORE(Fℓ,Sℓ, Fr,Sr) . 82
3.5 Comparing the optimal solutions of 1-R-RSP(F) and 1-S-RSP 85
3.6 S1, a 10-node solution of the 1-R-RSP(F) with Ṽ = V \ {1}, F = 0

(no failures) and g(F) = 908 . 86
3.7 S2, a 10-node solution of the 1-R-RSP(F) with Ṽ = V \ {1}, F =

779.4 and g(F) = 2505.8 . 86
3.8 S3, a 10-node solution of the 1-R-RSP(F) with Ṽ = V \ {1}, F =

933.3 and g(F) = 2769 . 86
3.9 S4, a 10-node solution of the 1-R-RSP(F) with Ṽ = V \ {1}, F = 1025

and g(F) = 2912 . 86
3.10 S5, a 10-node solution of the 1-R-RSP(F) with Ṽ = V \ {1}, F =

1544.9 and g(F) = 3702.2 . 86

95

96

List of Tables

2.1 Table of Notations . 27
2.2 Impact of Ṽ’s cardinality . 56
2.3 TSPLIB instances Class I . 57
2.3 TSPLIB instances Class I (Continued) 58
2.4 Randomly generated instances Class II 59
2.5 Variation of the results when 2-opt backup is not used 59

3.1 TSPLIB instances . 87
3.1 TSPLIB instances (continued) . 88
3.1 TSPLIB instances (continued) . 89
3.2 Numerical experiments for comparing 1-R-RSP and 1-S-RSP 90

97

98

Bibliography

[1] S. Alumur and B.Y. Kara. “Network hub location problems: The state of the
art”. In: European Journal of Operational Research 190.1 (2008), pp. 1–21.

[2] S.A. Alumur, J.F. Campbell, I. Contreras, B.Y. Kara, V. Marianov, and M.E.
O’Kelly. “Perspectives on modeling hub location problems”. In: European
Journal of Operational Research 291.1 (2021), pp. 1–17.

[3] Y. An, Y. Zhang, and B. Zeng. “The reliable hub-and-spoke design problem:
Models and algorithms”. In: Transportation Research Part B: Methodological 77
(2015), pp. 103–122.

[4] R. Baldacci, M. Dell’Amico, and J.S. González. “The capacitated m-ring-star
problem”. In: Operations Research 55.6 (2007), pp. 1147–1162.

[5] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Vol. 28.
Princeton university press, 2009.

[6] A. Ben-Tal and A. Nemirovski. “Robust convex optimization”. In: Mathe-
matics of Operations Research 23.4 (1998), pp. 769–805.

[7] A. Ben-Tal and A. Nemirovski. “Robust solutions of linear programming
problems contaminated with uncertain data”. In: Mathematical Programming
88 (2000), pp. 411–424.

[8] A. Ben-Tal and A. Nemirovski. “Robust solutions of uncertain linear pro-
grams”. In: Operations Research letters 25.1 (1999), pp. 1–13.

[9] J. F. Benders. “Partitioning procedures for solving mixed-variables program-
ming problems”. In: Numerische Mathematik 4.1 (1962), pp. 238–252.

[10] D. Berstimas and M. Sim. “The price of robustness”. In: Operations Research
52.1 (2004), pp. 35–53.

[11] J.A. Bloom. “Solving an electricity generating capacity expansion planning
problem by generalized Benders’ decomposition”. In: Operations Research
31.1 (1983), pp. 84–100.

99

100

[12] D.L. Bryan and M.E. O’Kelly. “Hub-and-spoke networks in air transporta-
tion: an analytical review”. In: Journal of Regional Science 39.2 (1999), pp. 275–
295.

[13] H.I. Calvete and J.A. Iranzo. “An efficient evolutionary algorithm for the
ring star problem”. In: European Journal of Operational Research 231.1 (2013),
pp. 22–33.

[14] X. Chen, X. Hu, X. Jia, Z. Tang, C. Wang, and Y. Zhang. “Algorithms for the
metric ring star problem with fixed edge-cost ratio”. In: Journal of Combina-
torial Optimization 42.3 (2021), pp. 499–523.

[15] G. Codato and M. Fischetti. “Combinatorial Benders’ cuts for mixed-integer
linear programming”. In: Operations Research 54.4 (2006), pp. 756–766.

[16] G.A. Croes. “A method for solving traveling-salesman problems”. In: Oper-
ations Research 6.6 (1958), pp. 791–812.

[17] T.C.S. Dias, G.F. de Sousa Filho, E.M. Macambira, L.D.A.F. Cabral, and M.H.C.
Fampa. “An efficient heuristic for the ring star problem”. In: Experimental Al-
gorithms: 5th International Workshop, WEA 2006, Cala Galdana, Menorca, Spain,
May 24-27, 2006. Proceedings 5. Springer. 2006, pp. 24–35.

[18] L. El Ghaoui and H. Lebret. “Robust solutions to least-square problems to
uncertain data matrices”. In: SIAM Journal on Matrix Analysis and Applica-
tions 18 (1997), pp. 1035–1064.

[19] L. El Ghaoui, F. Oustry, and H. Lebret. “Robust solutions to uncertain semidef-
inite programs”. In: SIAM Journal on Optimization 9.1 (1998), pp. 33–52.

[20] A. Fakhri, M. Ghatee, A. Fragkogios, and G.K.D. Saharidis. “Benders de-
composition with integer subproblem”. In: Expert Systems with Applications
89 (2017), pp. 20–30.

[21] R. Z. Farahani, E. Miandoabchi, W. Y. Szeto, and H. Rashidi. “A review of
urban transportation network design problems”. In: European Journal of Op-
erational Research 229.2 (2013), pp. 281–302.

[22] R. Z. Farahani, M. SteadieSeifi, and N. Asgari. “Multiple criteria facility lo-
cation problems: A survey”. In: Applied Mathematical Modelling 34.7 (2010),
pp. 1689–1709. ISSN: 0307-904X. DOI: https://doi.org/10.1016/j.apm.
2009.10.005. URL: https://www.sciencedirect.com/science/article/
pii/S0307904X09003242.

[23] B. Fortz and M. Poss. “An improved Benders decomposition applied to a
multi-layer network design problem”. In: Operations Research Letters 37.5
(2009), pp. 359–364.

https://doi.org/https://doi.org/10.1016/j.apm.2009.10.005
https://doi.org/https://doi.org/10.1016/j.apm.2009.10.005
https://www.sciencedirect.com/science/article/pii/S0307904X09003242
https://www.sciencedirect.com/science/article/pii/S0307904X09003242

101

[24] P. Fouilhoux, O. Ekin Karaan, A. R. Mahjoub, O. Özkök, and H. Yaman.
“Survivability in hierarchical telecommunications networks”. In: Networks
59.1 (2012), pp. 37–58.

[25] A.M. Geoffrion. “Generalized Benders decomposition”. In: Journal of Opti-
mization Theory and Applications 10 (1972), pp. 237–260.

[26] E. Gourdin, M. Labbé, and H. Yaman. “Telecommunication and location”.
In: Location Problems in Telecommunications. Ed. by Z. Drezner and H. Hamacher.
Springer, 2002, pp. 275–305.

[27] M. Grötschel, C. L. Monma, and M. Stoer. “Design of survivable networks”.
In: Handbooks in Operations Research and Management Science. Ed. by C.L.
Monma M.O. Ball T.L. Magnanti and G.L. Nemhauser. Vol. 7. Elsevier, Am-
sterdam, 1995, pp. 617–671.

[28] Y. Gu, X. Fu, Z. Liu, X. Xu, and A. Chen. “Performance of transportation
network under perturbations: Reliability, vulnerability, and resilience”. In:
Transportation Research Part E: Logistics and Transportation Review 133 (2020),
p. 101809.

[29] C. S. Holling. “Resilience and stability of ecological systems”. In: Annual
Review of Ecology and Systematics 4.1 (1973), pp. 1–23.

[30] C. Juvin, L. Houssin, and P. Lopez. “Logic-based Benders decomposition
for the preemptive flexible job-shop scheduling problem”. In: Computers &
Operations Research 106156 (2023).

[31] O. Ekin Karaşan, A. R. Mahjoub, O. Özkök, and H. Yaman. “Survivability
in hierarchical telecommunications networks under dual homing”. In: IN-
FORMS Journal on Computing 26.1 (2014), pp. 1–15.

[32] S. Kedad-Sidhoum and V.H. Nguyen. “An exact algorithm for solving the
ring star problem”. In: Optimization 59.1 (2010), pp. 125–140.

[33] H. Kerivin and A. R. Mahjoub. “Design of survivable networks: A review”.
In: Networks 46 (2005), pp. 1–21.

[34] A. Kershenbaum. Telecommunications network design algorithms. McGraw-Hill,
Inc., 1993.

[35] E. Keyvanshokooh, S.M. Ryan, and E. Kabir. “Hybrid robust and stochastic
optimization for closed-loop supply chain network design using accelerated
Benders decomposition”. In: European Journal of Operational Research 249.1
(2016), pp. 76–92.

102

[36] J. Khamphousone, A. Rossi, F. Castaño, and S. Toubaline. “Proc. 10th In-
ternational Networks Optimization Conference (INOC, Aachen, Germany,
June 7-10 2022)”. In: Proc. 10th International Networks Optimization Conference
(INOC, Aachen, Germany, June 7-10 2022). Aachen, Germany: OpenProceed-
ings.org, 2022. URL: https://openproceedings.org/2022/conf/inoc/
INOC_2022_paper_11.pdf.

[37] J. G. Klincewicz. “Hub location in backbone/tributary network design: a
review”. In: Location Science 6.1-4 (1998), pp. 307–335.

[38] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Vol. 14.
Springer Science & Business Media, 1996.

[39] M. Labbé, G. Laporte, I.R. Martin, and J.J.S. González. “Locating median
cycles in networks”. In: European Journal of Operational Research 160.2 (2005).
Decision Support Systems in the Internet Age, pp. 457–470. ISSN: 0377-2217.
DOI: https://doi.org/10.1016/j.ejor.2003.07.010. URL: https:
//www.sciencedirect.com/science/article/pii/S0377221703005563.

[40] M. Labbé, G. Laporte, I.R. Martin, and J.J.S. González. “The ring star prob-
lem: Polyhedral analysis and exact algorithm”. In: Networks 43.3 (2004), pp. 177–
189.

[41] M. Labbé, H. Yaman, and É. Gourdin. “A branch and cut algorithm for hub
location problems with single assignment”. In: Mathematical Programming
102 (2005), pp. 371–405.

[42] P. Lammich and S.R. Sefidgar. “Formalizing the Edmonds-Karp algorithm”.
In: International Conference on Interactive Theorem Proving. Springer. 2016, pp. 219–
234.

[43] T.-Y. Liao, T.-Y. Hu, and Y.-N. Ko. “A resilience optimization model for
transportation networks under disasters”. In: Natural Hazards 93 (2018), pp. 469–
489.

[44] Z. Naji-Azimi, M. Salari, and P. Toth. “A heuristic procedure for the Ca-
pacitated m-Ring-Star problem”. In: European Journal of Operational Research
207.3 (2010), pp. 1227–1234. ISSN: 0377-2217. DOI: https://doi.org/10.
1016/j.ejor.2010.06.030. URL: https://www.sciencedirect.com/
science/article/pii/S0377221710004698.

[45] M. E. O’Kelly. “A quadratic integer program for the location of interact-
ing hub facilities”. In: European Journal of Operational Research 32.3 (1987),
pp. 393–404. ISSN: 0377-2217. DOI: https://doi.org/10.1016/S0377-
2217(87) 80007 - 3. URL: https : / / www . sciencedirect . com / science /
article/pii/S0377221787800073.

https://openproceedings.org/2022/conf/inoc/INOC_2022_paper_11.pdf
https://openproceedings.org/2022/conf/inoc/INOC_2022_paper_11.pdf
https://doi.org/https://doi.org/10.1016/j.ejor.2003.07.010
https://www.sciencedirect.com/science/article/pii/S0377221703005563
https://www.sciencedirect.com/science/article/pii/S0377221703005563
https://doi.org/https://doi.org/10.1016/j.ejor.2010.06.030
https://doi.org/https://doi.org/10.1016/j.ejor.2010.06.030
https://www.sciencedirect.com/science/article/pii/S0377221710004698
https://www.sciencedirect.com/science/article/pii/S0377221710004698
https://doi.org/https://doi.org/10.1016/S0377-2217(87)80007-3
https://doi.org/https://doi.org/10.1016/S0377-2217(87)80007-3
https://www.sciencedirect.com/science/article/pii/S0377221787800073
https://www.sciencedirect.com/science/article/pii/S0377221787800073

103

[46] C. Ortiz-Astorquiza, I. Contreras, and G. Laporte. “Multi-level facility lo-
cation problems”. In: European Journal of Operational Research 267.3 (2018),
pp. 791–805. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.
2017.10.019. URL: https://www.sciencedirect.com/science/article/
pii/S0377221717309323.

[47] R. Rahmaniani, T.G. Crainic, M. Gendreau, and W. Rei. “The Benders de-
composition algorithm: A literature review”. In: European Journal of Opera-
tional Research 259.3 (2017), pp. 801–817. ISSN: 0377-2217. DOI: https://doi.
org/10.1016/j.ejor.2016.12.005. URL: https://www.sciencedirect.
com/science/article/pii/S0377221716310244.

[48] A. Rossi, E. Gurevsky, O. Battaïa, and A. Dolgui. “Maximizing the robust-
ness for simple assembly lines with fixed cycle time and limited number of
workstations”. In: Discrete Applied Mathematics 208 (2016), pp. 123–136.

[49] B. Roy. “Robustness in operational research and decision aiding: A multi-
faceted issue”. In: European Journal of Operational Research 200.3 (2010), pp. 629–
638. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2008.12.
036. URL: https : / / www . sciencedirect . com / science / article / pii /
S0377221708010564.

[50] Ruprecht-Karls-Universität Heidelberg. TSPLIB 95. Available at http : / /
comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[51] E. M. de Sá, I. Contreras, J.-F. Cordeau, R. Saraiva de Camargo, and G. de Mi-
randa. “The hub line location problem”. In: Transportation Science 49.3 (2015),
pp. 500–518.

[52] D.B. Shmoys, É. Tardos, and K. Aardal. “Approximation algorithms for fa-
cility location problems”. In: Proceedings of the twenty-ninth annual ACM sym-
posium on Theory of computing. 1997, pp. 265–274.

[53] L. Simonetti, Y. Frota, and C.C. de Souza. “The ring-star problem: a new inte-
ger programming formulation and a branch-and-cut algorithm”. In: Discrete
Applied Mathematics 159.16 (2011), pp. 1901–1914.

[54] S. Wang, J. Liu, and Y. Jin. “A computationally efficient evolutionary algo-
rithm for multiobjective network robustness optimization”. In: IEEE Trans-
actions on Evolutionary Computation 25.3 (2021), pp. 419–432.

[55] D. Weninger and L.A. Wolsey. “Benders algorithm with (mixed)-integer
subproblems”. In: Université catholique de Louvain (2019).

[56] J. Xu, S.Y. Chiu, and F. Glover. “Optimizing a ring-based private line telecom-
munication network using tabu search”. In: Management Science 45.3 (1999),
pp. 330–345.

https://doi.org/https://doi.org/10.1016/j.ejor.2017.10.019
https://doi.org/https://doi.org/10.1016/j.ejor.2017.10.019
https://www.sciencedirect.com/science/article/pii/S0377221717309323
https://www.sciencedirect.com/science/article/pii/S0377221717309323
https://doi.org/https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/https://doi.org/10.1016/j.ejor.2016.12.005
https://www.sciencedirect.com/science/article/pii/S0377221716310244
https://www.sciencedirect.com/science/article/pii/S0377221716310244
https://doi.org/https://doi.org/10.1016/j.ejor.2008.12.036
https://doi.org/https://doi.org/10.1016/j.ejor.2008.12.036
https://www.sciencedirect.com/science/article/pii/S0377221708010564
https://www.sciencedirect.com/science/article/pii/S0377221708010564
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

104

[57] X. Zang, L. Jiang, B. Ding, and X. Fang. “A hybrid ant colony system algo-
rithm for solving the ring star problem”. In: Applied Intelligence 51 (2020),
pp. 3789–3800.

[58] X.-T. Zhang, H.-L. Bi, and Y. Wang. “A stochastic programming approach
for resilient hub location in power projection network considering random
hub failures”. In: Mathematical Problems in Engineering 6517453 (2017).

MOTS CLÉS

Conception de réseaux, Problème Ring Star, Survivabilité, Résilience, Programmation Linéaire en Nombres
Entiers, Décomposition de Benders, Branch-and-Benders-cut

RÉSUMÉ

Dans les réseaux de télécommunication, les réseaux de transport, la logistique et plusieurs autres domaines, la conception
de réseaux induit de nombreux problèmes sous-jacents. Dans cette thèse, nous nous intéressons à la structure à deux
niveaux composée d'une ossature et d'une partie tributaire. L'un des problèmes avec cette architecture est le problème
Ring Star où un dépot est défini à l'avance. Les nœuds sont sélectionnés ou non en tant qu'hubs et ces hubs et le dépôt
sont reliés par un "Ring" tandis que les nœuds non sélectionnés forment la partie tributaire en étant connectés à un nœud
du ring pour former la partie "Star". Nous introduisons deux variantes du problème Ring Star. Une variante à capacité de
survie et une variante résiliente. Nous formulons un PLNE ainsi qu'un algorithme de Branch-and-Benders-cut pour les
deux problèmes. Des propriétés sont étudiées, elles permettent des améliorations computationnelles mises en évidence
par des expérimentations numériques.

ABSTRACT

In telecommunication networks, transportation networks, logistics, and many other fields, networks design is a vast subject
inducingmany underlying problems. In this thesis, we focus on the two-level structure, backbone and tributary architecture.
One of the problems with such an architecture is the Ring Star Problem where there is a fixed depot. Nodes must then
be selected as hubs or non-hubs. Hubs and the depot are linked by a Ring to form the backbone architecture while the
non-hubs form the tributary architecture by being connected to the ring to form a star. In this thesis, we introduce two
variants of the Ring Star Problem. A survivable variant and a resilient one. We formulate an Integer Linear Program and a
Branch-and-Benders-cut algorithm for both problems. Some properties are studied, allowing to improve the computational
performance, and numerical experiments are carried out.

KEYWORDS

Network Design, Ring Star Problem, Survivability, Resilience, Integer Linear Programming, Benders Decom-
position, Branch-and-Benders-cut

	Introduction
	State of the Art
	Networks design
	Ring Star Problem
	Robustness
	Survivability
	Resilience
	Benders decomposition method
	Litterature review on Benders decomposition method
	Illustration of the classical Benders decomposition

	A Survivable variant of the Ring Star Problem
	Chapter's abstract
	Chapter's structure
	Survivable Ring Star Problem definition
	An ILP formulation of 1-S-RSP
	Brute-force algorithms of polynomial time complexity for the cases of three and four hubs
	An ILP formulation for at least five hubs

	A Branch-and-Benders-cut decomposition of 1-S-RSP
	Description of the master problem and the subproblem
	Linear programming formulation of the subproblem
	Computing the dual of LP0 and LPi+ for all the nodes i in V
	Computing optimal primal and dual solutions to the subproblems
	Polynomial-time algorithm to the subproblem's dual
	Optimality cuts of the Benders decomposition
	Polyhedral analysis of constraints (2.14)
	An instance transformation for 1-S-RSP

	Enhancing and solving the ILP and the Branch-and-Benders-cut of 1-S-RSP
	Introduction of 2-opt backup
	Description of the ILP and Branch-and-Benders-cut algorithms

	Numerical Experiments

	A Resilient variant of the Ring Star Problem
	Chapter's abstract
	Chapter's structure
	Resilient Ring Star Problem definition
	A MILP formulation for Resilient RSP
	Post-optimization procedure

	A Branch-and-Benders-cut decomposition of 1-R-RSP
	Master problem
	Benders subproblem
	Benders optimality cut

	Numerical Experiments
	Resilient or Survivable Ring Star Problem?
	Properties
	Computational method to solve 1-R-RSP(F) on an interval
	Solving 1-R-RSP(F) for all F F
	Comparing the cost of 1-S-RSP and 1-R-RSP(F)
	Numerical experiments to choose between Survivable or Resilient RSP

	Conclusions
	Overview
	Limitations
	Future works

	List of Figures
	List of Tables
	Bibliography

