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Titre : Etude du comportement mécanique des interfaces acier/béton : apport de I'analyse à l'échelle 

mésoscopique 

Mots clés : Béton armé, Interfaces acier-béton, Échelle mésoscopique, Modèle de zone cohésive avec 

frottement, nervures en acier 

Résumé : Afin de prédire l'importance et la 

répartition des dommages dans les structures en 

béton armé soumises à des chargements sévères, la 

modélisation du comportement de l’interface entre 

les armatures en acier et le béton est essentielle, car 

elle influence directement la distribution des fissures. 

Les modèles d'interface macroscopiques 

couramment utilisés dans les simulations de 

structures incluent différents paramètres dont la 

signification physique est parfois limitée et pour 

lesquels l'identification reste difficile. Pour améliorer 

la compréhension du comportement de l'interface, 

l'échelle mésoscopique est retenue pour développer 

des outils de modélisation à l'échelle de la nervure. 

Pour ce faire, des volumes tridimensionnels de béton 

armé représentant des spécimens d’essais de 

« pullout » et contenant explicitement l'armature 

sont modélisés, en y intégrant des barres d'acier 

nervurées ou lisses. Des simulations linéaires sont 

tout d’abord effectuées à l'aide d'un modèle 

d'interface de type “ressort” pour vérifier l'effet des 

paramètres de rigidité. Ensuite, afin de décrire la 

fissuration dans le béton dans le cadre de simulations 

non linéaires, le modèle d'endommagement isotrope 

de Mazars est introduit avec régularisation en 

traction et en compression. Des simulations sont 

ensuite effectuées sur un échantillon de “pullout test” 

avec une barre lisse en associant à l’interface soit un 

modèle de zone cohésive modifié (CZM) basé sur 

l'approche de Tvergaard, soit un modèle de 

frottement, pour montrer les limites de ces modèles. 

Pour pallier ces limites, un modèle d'interface de 

zone cohésive avec frottement en 3D (FCZM) est 

proposé et implémenté. Dans ce modèle, l'interface 

est divisée en une partie non endommagée où le 

modèle CZM s'applique et une partie endommagée 

où le modèle de frottement domine. La réponse 

globale des essais de pullout est étudiée en termes 

d'endommagement      et      de      distribution    des 

contraintes principales à proximité de la barre 

d'acier. Les courbes force appliquée - déplacement 

à l'extrémité libre de la barre sont comparées aux 

données expérimentales disponibles. Un bon 

accord entre les simulations et les résultats 

expérimentaux est obtenu en utilisant le modèle 

mis en œuvre, à la fois pour les barres lisses et 

nervurées 

A l'aide du modèle FCZM, l'impact de l'introduction 

explicite des granulats est étudié en remplaçant la 

partie homogène par un béton hétérogène à deux 

phases constituées des granulats ayant des formes 

polyhédriques et de la matrice de mortier. Les 

résultats montrent également un bon accord avec 

les résultats expérimentaux moyennant une 

calibration adéquate des paramètres du mortier, 

mais avec un coût de calcul plus élevé, ce qui milite 

en faveur de l'utilisation d’un béton homogène. Un 

autre aspect important est l’analyse des effets de la 

forme et des dimensions des nervures. Ainsi une 

étude est réalisée en utilisant une barre d'acier avec 

une seule nervure, et en faisant varier ses 

dimensions. Des simulations sont également 

effectuées sur des barres à chevrons et des barres 

nervurées rectangulaires. Les résultats confirment 

les quelques conclusions de la littérature qui relient 

l'augmentation de la force d’adhérence à 

l'augmentation de la surface de la nervure. 

Néanmoins, le paramètre le plus influent pour 

l’effort de liaison est la surface projetée normale de 

la nervure, et non la surface totale habituellement 

calculée. La surface normale projetée est donc 

proposée comme un paramètre pouvant être 

utilisé par des modèles macroscopiques de liaison. 

Enfin, l'effet du confinement externe est étudié et 

les résultats montrent que l’approche développée 

permet de décrire correctement cet aspect. 
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Title : Study of the mechanical behavior of steel/concrete interfaces: contribution of the analysis at the 

mesoscopic scale 

Keywords : Reinforced Concrete, Steel-concrete interfaces, Mesoscopic Scale, Frictional coheisve zone model, 

steel ribs 

Abstract : In order to predict the importance and 

distribution of damage in reinforced concrete 

structures subjected to severe loadings, the modeling 

of the behavior of the interfaces between 

reinforcement steel and concrete is essential, 

because it directly influences the crack patterns. The 

macroscopic interface models commonly used in 

structure simulations are functions of various 

parameters whose physical significance is sometimes 

not very clear and identification is difficult. Hence, the 

mesoscopic scale is investigated here to improve the 

understanding of the behavior of the interface by 

developing modeling tools at the scale of the rib. To 

do so, numerical three dimensional reinforced 

concrete volumes designed for classical pullout tests 

containing explicitly the reinforcement are 

generated, using either ribbed or smooth steel bars. 

Linear pull-out test simulations are first performed 

using spring interface model to check the effect of 

stiffness parameters. Following, in order to describe 

cracking in concrete in non-linear simulations, 

Mazars isotropic damage approach is introduced 

with regularization in tension and in compression. 

Simulations are then performed on a sample with a 

smooth bar by assigning a modified cohesive zone 

model (CZM) based on Tvergaard’s approach, and a 

frictional model to the steel-concrete interface, to 

show the limitations in such models. To overcome 

these limitations, a 3D frictional cohesive zone 

interface model (FCZM) is proposed and 

implemented. In this model, the interface is divided 

into an undamaged part where the CZM model 

applies and a damaged part where the frictional 

model dominates. The overall response of the pullout 

test simulations is studied in terms of damage and 

distribution of the principle stresses near the steel 

bar,   and    the    applied    force   versus    free     end  

displacements curves which are compared to 

available experimental data. A good agreement 

between simulations and experimental results for 

both smooth and ribbed bars cases is obtained 

using the implemented model. 

Using FCZM, the impact of introducing explicitly 

the aggregates is studied by replacing the 

homogenous part by a two phase heterogeneous 

concrete made up of coarse aggregates having 

polyhedrons shapes and the surrounding mortar. 

The results showed good agreement with 

experimental data after providing an appropriate 

calibration of the mortar parameters, still with a 

higher computation cost encouraging the usage of 

homogenous concrete. Another important aspect 

is varying shapes and dimensions of the ribs. In this 

regard, a study is done by using a steel bar with 

only one rib and varying the dimensions of this rib 

to characterize the corresponding effects. In 

addition, simulations are performed on 

herringbone bar and rectangular ribbed bars. 

Eventually, the results coincide with some 

conclusions in literature which relate the increase 

in the bond strength to the increase of the rib 

surface area. Still, it has been found that the most 

important part is the normal projected surface of 

the rib, and not the total surface area usually 

calculated. In addition, the overall formation of the 

ribs have an effect and may affect importantly the 

bond strength. The projected normal surface area 

is then proposed as a parameter that can be sued 

by macroscopic models to predict the increase in 

the bond strength. Finally, the effect of external 

confinement is investigated, and the results show 

that the model can correctly describe this aspect. 
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1 GENERAL INTRODUCTION 

1.1 INTRODUCTION  

Civil Engineering structures do not only aim to sustain external loadings. 

Their success or failure is neither only evaluated by their simple mechanical 

resistance nor only dependent on it. For instance, cracking has a direct 

impact on the transfer properties that govern the potential leakage rate in 

containment buildings for nuclear power plants. In some cases, information 

about the cracking behavior related to the quasi-brittle evolution of 

concrete can become essential. This complex quasi-brittle failure 

characteristics can be associated with the local or meso scale 

heterogeneities of concrete and to the localization behavior with micro-

scale cracking, due the heterogeneous nature of concrete. 

 

Figure 1.1 Distribution of stresses in steel and concrete in a reinforced concrete 

tie after the first crack; 𝝈𝒄  and 𝝈𝒔  are the stresses in concrete and steel 

respectively, and 𝝈𝒄
𝒔𝒕 is the concrete strength, based on (Casanova et al., 2012) 

For reinforced concrete structures, the bond between steel and concrete 

plays an essential role in determining the structural performance. In the case 

of a reinforced concrete tie for example, once the first crack appears in the 

weakest point of the structure, the concrete stress in the cracked zone drops 

to zero while the load is totally supported by the steel reinforcement. A part 



 

2 

of stresses in the steel is then progressively transferred from steel to 

concrete (Figure 1.1). This transition zone has an impact on the crack 

properties and is directly influenced by the bond between steel and concrete 

(Casanova et al., 2012). The mechanical behavior of the steel-concrete 

interface is very complicated due to the presence of various phenomena at 

this region as can be seen in Figure 1.2. For instance, they include corrosion 

of steel, air voids, moisture, bleed water zones, slip/separation phenomenon 

and the overall inhomogeneity of concrete. Thus, numerical approaches are 

necessary to evaluate the bond properties and their impact on the structural 

performance.  

 

Figure 1.2 Schematic illustration of selected characteristics at the steel– 

concrete interface (SCI) (Angst et al., 2017) 

This steel-concrete interface is usually characterized by pull-out tests (RILEM, 
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1970). Numerically, macroscopic approaches were widely used to model the 

bond for huge concrete structures. Such models depend on plenty of 

parameters, which are measured in tests, and they are generally developed 

for specific loading histories and bond conditions. In addition, it is also hard 

to show the mechanical behavior at the mesoscopic scale for the steel-

concrete bond. Hence, mesoscopic approaches, which are at the scale of the 

steel rib, can be used to help the calibration process. The steel bars used can 

be either smooth bar having no ribs, or ribbed bars having different shapes 

of the ribs, and the latter being the most commonly used in practice. For 

instance, as smooth bar behavior may be seen as an initial step to capture 

the more complex ribbed bar behavior, it is believed that a comprehensive 

mesoscopic model should be able to reproduce the response of both bar 

types.  

1.2 OBJECTIVES 

In order to predict the importance and distribution of damage in reinforced 

concrete structures subjected to severe loadings, the modelling of the 

behavior of the interfaces between reinforcement steel and concrete is 

essential, because it directly influences the crack patterns. 

The global objective here is to develop modeling tools at the mesoscopic 

scale to better understand the underlying phenomena of the steel concrete 

bond, and that can be helpful to calibrate the macroscopic interface laws. 

The aim is to propose a mesoscopic methodology with the necessary 

components to reproduce the pull-out test behavior by performing 

simulations on generated samples. After validation of the model on 

reference cases, it is applied by launching different numerical applications. 

This model, which is developed in 3D, is expected to improve the 

understanding and the prediction of the mesoscopic steel-concrete 

interface behavior in various configurations and loading conditions. 

Ultimately, it can be used as a future perspective to help calibrating a 

macroscopic simplified interface model developed for structure simulations, 

whose parameters identification would necessitate a complex experimental 

procedure. In this regard, the developed model is not intended to be applied 

at the structure level, which enables the use of fine meshes at the local scale.  

The numerical representation of the interface between steel and concrete is 

a key component of the simulation. In this document, a new interface model 

is especially developed and compared to more classical interface models. 

This newly proposed and implemented frictional cohesive zone model 
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combines a modified Tvergaard’s approach initially presented in (Tvergaard, 

2003, 1990), and Coulomb’s simple friction. It should be able to capture the 

behavior of the pull-out test when using either ribbed or smooth bars. The 

impact on the interface behavior of various factors such as the presence of 

aggregates, the external loading and confinement effect, the different 

shapes of the ribs of steel bar, will be investigated. The numerical responses 

in terms of mean bond stress versus free end displacement are compared 

to available experimental data. The propagation of damage and the 

principle stresses and strains that develop in the concrete and the interfaces 

are analyzed locally to highlight their role in the bond behavior. 

This approach will help in the understanding of the cracking phenomena 

near the steel-concrete interface, especially in the presence of particles (i.e. 

aggregates, sand grains) having complex shapes near the rebar. 

1.3 METHODOLOGY 

In order to reach the objective, a certain methodology is followed: 

A bibliographic study on the whole topic from literature is first done in 

Chapter 2, including the different modelling scales and methods used to 

study the steel-concrete interface. In addition, its description and 

representation are discussed, along with the description of the pullout test, 

which is used to identify the model parameters. 

In Chapter 3, the detailed generation procedure of the 3D pullout 

reinforced concrete samples is presented, using either homogenous or 

heterogeneous concrete. Following that, linear simulations are carried out 

on the meshed samples to study the effect of the stiffness parameters in the 

linear spring model applied for the interface and described in Chapter 2. 

Mazars classical damage model (Mazars, 1986, 1984) is presented, followed 

by its regularization method in tension and in compression. The 

formulations of Tvergaard’s cohesive zone model (Tvergaard, 2003, 1990; 

Wu and Wriggers, 2015) and Coulomb’s interface models are shown, then 

pullout test simulations are performed on a sample with a smooth bar, and 

compared to experimental results to highlight the drawbacks of these two 

models to reproduce the behavior separately. 

A new frictional cohesive zone model (FCZM) is proposed in Chapter 4, and 

its detailed formulation and implementation are presented throughout the 

chapter. The calibration process of the FCZM is discussed by using the 
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smooth bar case, and a more complicated spiral-ribbed bar sample, in order 

to complete the calibration process. Finally, another spiral-ribbed bar case 

is chosen to verify the applied procedure. 

In Chapter 5, several numerical applications of the frictional cohesive zone 

model are presented, including simulations on samples having coarse 

aggregates and mortar, i.e. heterogeneous concrete. In addition, a study is 

performed using different shapes of the ribs of the steel bar to understand 

the effect of the mechanical interlock on the bond behavior, and on the 

overall behavior, whose purpose is to check the ability of the proposed 

procedure to improve the calibration of the macroscopic approaches.  

Eventually, simulations are performed by applying external confining 

pressure on the sample, and compared to experimental cases. 

Finally, the conclusions and perspectives are discussed in Chapter 6. 
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2 BIBLIOGRAPHIC STUDY - STATE OF THE ART  

2.1 INTRODUCTION 

This chapter presents the main characteristics related to the steel-concrete 

interface, previously dealt with in literature. The following aspects are 

detailed: 

- Physical description of the steel-concrete interface and the influential 

parameters 

- Principle of the pull-out test and the representation of the behavior of the 

steel-concrete interface. 

- Scales of the simulations and modeling procedures at the mesoscopic 

scale  

- Models assigned for concrete at the mesoscopic scale 

- Interface models, including frictional, cohesive zone models  and frictional 

cohesive zone models are shortly introduced, mainly the one that was 

initially proposed by (Alfano and Sacco, 2006). 

2.2 STEEL-CONCRETE BOND BEHAVIOR 

2.2.1 Main parameters affecting the steel-concrete interface behavior 

The behavior of steel concrete interface is very complicated due to the 

existence of different phenomena that affect this zone (Figure 1.2). One 

important aspect is the presence of corrosion and rust layers, which was 

studied previously in plenty of studies such as (Andrade et al., 1993; 

Bensabra and Azzouz, 2013; Bhargava et al., 2006; Liu et al., 2022a, 2022b; 

Mammoliti et al., 1996; Mohammed and Hamada, 2006; Nguyen et al., 2011, 

2015; Pantazopoulou and Papoulia, 2001; Suda et al., 1993). Corrosion of 

steel is one of the main phenomenon that leads to a mechanical damage in 

both the medium and long range due to the formation of expansive 

corrosion products. These expansions are at the origin of tensile stresses 

initiating internal cracks that propagate from this interface into the concrete 

bulk. 

Another phenomenon at the steel interface is the existence and formation 

of mill scale on the steel surface (Raman, 2006), which consists of iron oxides, 
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and may also contain magnetite, hematite and maghemite. It is different 

from corrosion and rust products in origin, formation, morphology and 

composition (Angst et al., 2017). This product is more brittle and may crack 

during bending of reinforcing steel bars, which may lead to the formation 

of corrosion products at the exposed surface after breakage (Doi et al., 2020; 

Zhao et al., 2013). Thus, mill scale presence on the steel surface can reduce 

the resistance of the bars to corrosion, except if there are no initial defects, 

which cannot be avoided (Doi et al., 2020).  

Passive protective iron oxide films can also be found at the steel surface in 

the steel-concrete region (Angst et al., 2017). The existence of these passive 

films thin layers reduce the corrosion rate (Li and Sagüés, 2001; Sanchez et 

al., 2007; Volpi et al., 2015), which are less damageable under tensile stresses 

than under compressive stresses (Feng et al., 2011). 

In addition, the interfaces may be affected by different aspects and 

characteristics, like macroscopic voids of different natures. When rising air 

bubbles become trapped beneath horizontal surfaces of the steel bars 

during concrete compaction, it produces air voids at the steel concrete 

interface. Since air does not mix with the surrounding concrete, it exists in 

the form of bubbles in concrete, which differ both in shapes and sizes 

(Mielenz et al., 1958). In addition, bleed water may accumulate at the steel 

concrete interface in the form of voids having limited lateral dimensions, 

which can appear similar to entrapped air voids, according to (Angst et al., 

2017). Compared to the air voids, the bleed water voids are able to achieve 

bigger contact area with the steel bar surface, because of their more 

elongated nature.   

Moreover, the capillary porosity in the bulk concrete that is further far from 

the steel-concrete bond is lower than those at the steel-concrete interface 

(Angst et al., 2017). This affects the degree of saturation at a given relative 

humidity and the rate of diffusion of air. For instance, there may exist a non-

equilibrium moisture conditions, which might lead to condensation at the 

steel surface because of cooling of the steel, due to the possible 

temperature differences between steel and concrete. This may lead to an 

increase in the corrosion rate as relative humidity increases (Stefanoni et al., 

2018), which further weakens the bond. Furthermore, another phenomena 

is the precipitation of ettringite that is a hydrous calcium aluminum sulfate 

mineral, which is thermodynamically possible in voids, and it is not limited 

to partially saturated conditions (Samson et al., 2002), which may lead to 

internal cracks that is because of volume expansion due to its late formation 
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and precipitation. 

Furthermore, when primary cracks are formed, internal micro cracks are 

produced around the steel bar ribs near the primary crack as a result of the 

transfer of tensile load through the ribs of the steel bar into the concrete 

and it extends with increasing load, leading to additional damage at the 

steel-concrete interface (Angst et al., 2017).  

The flow direction of concrete during its placement may lead to the concrete 

inhomogeneity, which may decrease the content of coarse aggregates 

behind the steel bar and may also lead to the additional formation of voids. 

Likewise, the compaction and flow of concrete at the steel concrete interface 

can be geometrically restricted by tie wires when steel bar intersects. 

Moreover, spacers, which are usually used when reinforcing to maintain the 

cover (Lancaster, 1989), also affects the concrete micro structure locally 

leading to additional crevices at the steel-concrete interface (Alzyoud et al., 

2016; Angst et al., 2017). Additionally, substance like oil and dust may be 

deposited on the steel surface before casting (Taber et al., 2002). 

Such aspects reflect the complicated nature of the steel concrete interface, 

making it extremely hard to deal with numerically, especially in terms of 

exact representation. Hence, different simplified approaches have been 

used to represent this zone. 

2.2.2 Experimental characterization throughout pull-out tests 

According to RILEM recommendations (RILEM TC, 1994) the steel-concrete 

bond can be characterized by pull out tests. These tests consist in the direct 

wrenching of a steel bar from a concrete specimen. The pull-out test, 

described below, is intended to determine the adhesion of non-prestressed 

steel reinforcements, which is to serve as a basis for the comparison of 

shaped reinforcements of different kinds. 

2.2.2.1 Description of the pull-out test 

In the pull-out test, a bar incorporated in a concrete cube along a defined 

length is strained at one end by a tensile force, the other end remaining 

without stress. The relation between the tensile force and the relative 

displacement between steel and concrete is measured. The load is increased 

up to failure of the adhesion (RILEM, 1970).  

According to (RILEM, 1970), the effective encasement height of the bar 
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corresponds only to the half-height of the specimen: in the other half the 

bar does not adhere, this is in order to reduce the influence of the disturbed 

area that forms close to the bearing plate. The bar to be tested extends 

beyond the two sides of the specimen; the tension is applied to the longer 

end, and the device for measuring the displacement between steel and 

concrete is set on the shorter end. The height of the concrete specimen is 

10𝑑 with 𝑑 as the diameter of the bar: encasement height or the adhesive 

length of the bar 𝑙𝑎𝑑ℎ is 5𝑑 and pre-length is 5𝑑 (without adhesion), and the 

length of the sides of the concrete specimen is 10d (Figure 2.1). 

 

Figure 2.1 Description and dimensions of the test piece, based on (RILEM, 1970) 

The results of this test are generally expressed by a sliding curve 

representing the variation of the pull out force as a function of the bar 

sliding measured at the free end of the bar, as shown in Figure 2.2. 

The applied pull force 𝐹  can be replaced by the mean bond stress 𝜎𝑚𝑏 , 

which is calculated as follows: 

 𝜎𝑚𝑏 =
𝐹

𝜋 ∙ 𝑑 ∙ 𝑙𝑎𝑑ℎ
 (2.1) 

Several pull-out tests were performed in literature using the RILEM 

recommendations, with some minor differences. In (Torre-Casanova et al., 

2013), instead of dividing the bar section which is within the concrete section 

into two parts, it was divided into three parts. The effective encasement 

length of the bar or the anchorage is the center part of the bar, as seen in 
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Figure 2.3.  

 

Figure 2.2 Experimental result for a pull-out test  showing the applied Force 

versus slip (glissement) for samples having a smooth (lisse) and a ribbed bar 

(Hamouine and Lorrain, 1995) 

 

Figure 2.3 Pull-out set up (Torre-Casanova et al., 2013) 

2.2.2.2 Description of the steel-interface bond behavior 

The bond between steel and concrete maintains the transfer of  forces 

between the two materials. This phenomenon is directly related to the shape 

of the steel bar and to the degradation of the concrete on its outer surface. 

Tangential stresses parallel to the surface of the steel bar, and radial stresses 

perpendicular to the surface develop. This causes content to fail forming 

inclined surfaces at an angle 45° with respect to the axis of the steel bar 

(Tepfers, 1979; Tilanter et al., 1977), which can be seen as a group of inclined 

cracks, as observed by (Goto, 1971), and showing regions of total de-

cohesion between the concrete and the embedded steel bar. 

According to (Eligehausen et al., 1983; Lin et al., 2019; Lutz and Gergely, 1967; 

Park and Paulino, 2013; Tepfers, 1979; Xu et al., 2017), the steel-concrete 
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bond process can be divided into three different phenomena: 

 Chemical adhesion between the steel and concrete, which is related 

to the composition and the initial procedure of placement of each 

material 

 Micro interlocking resembles the different mechanical interactions 

that exists, mainly due to the presence of ribs along the steel bars. 

 Friction phenomenon, which is due to the contact between the two 

surfaces 

Usually, an adhesion law is used to associate the adhesive stress at the 

interface with the tangential slip, which is the relative displacement between 

steel and concrete in the direction parallel to the steel bar. The phases of 

this law can be directly related to the three phenomena observed. The three 

successive phases of this constitutive law, shown in Figure 2.4, is described 

as follows: 

1) Initial phase ( A → B ):  

At the initial stage, the cohesion between concrete and steel is 

perfectly maintained, which is due to chemical adhesion and static 

friction that prevents the relative movement between the steel bar 

and the surrounding concrete. Adhesive stresses start developing 

with a very little increase in the slip.  According to some studies such 

as (Lin et al., 2019; Xu et al., 2017), the cementing adhesive force 

between the steel bar and concrete has a little effect. 

2) Cracking phase ( B → C → D ): 

After the breakage of the chemical adhesion, the steel bar starts 

relative movement with respect to the surrounding concrete. Based 

on the mechanical characteristic of the interface, including the 

existence of ribs and their corresponding geometry, and roughness 

of this steel-concrete surface of contact, concrete resists the 

movement of the steel bar causing an increase in the bond stress. 

Micro cracks start appearing in the concrete at an angle of about 45° 

with respect to the axis of the steel bar. These cracks are gradually 

localized, causing the de-cohesion of the steel bar, and eventually a 

softening of the adhesive behavior is observed in the post peak, as 

seen from C to D. Notice that this micro interlocking phenomenon 

has important effect only if ribbed bars are considered (Park and 

Paulay, 1991; Tepfers, 1979), more precisely in the presence of ribs, 

since using  a smooth bar the behavior will be similar to a purely 

frictional behavior. 
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Figure 2.4  Illustration of adhesion law and shear transfer mechanism in steel-

concrete interface, based on (Torre-Casanova, 2012)  
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3) Rupture phase ( D → E ): 

As the applied loading keeps increasing, the propagation of the 

cracks leads to the final rupture of the interface region. The behavior 

is fully controlled by the friction between steel and concrete and the 

zone between the two materials can no more resist. Hence, the slip 

finally generates a constant residual stress. 

2.2.2.3 Properties affecting the bond stress - bond slip law 

In pull-out tests, steel and concrete properties are considered very 

important parameters that affect the response of the bond behavior. Several 

parameters that influence this behavior have been previously tested during 

experimental pullout tests. The main parameters are as follows: 

A. Characteristics of the steel bar 

The two main geometric characteristics of the steel bar are its diameter 

and its roughness. The mechanical properties of the steel are less 

effective considering that steel bars usually used have very similar 

properties, and the bar in pull-out test hardly reaches its yield stress. 

A.1.1. Effect of the roughness of the steel bar: 

The roughness of the steel bar is usually observed by using the 

relative rib area parameter, which is defined as the ratio between the 

rib area above the core, projected on a plane perpendicular to the 

steel bar axis, and the nominal bar surface area between two 

consecutive ribs. For instance, (Cairns and Jones, 1995) showed that, 

the bond strength increased by 30% after increasing the relative rib 

area from 0.05 to 0.10, because of the lower bursting force 

generated by more highly ribbed bars, in an experimental study on 

the strength of lapped joints. Similarly, (Darwin and Graham, 1993; 

Metelli and Plizzari, 2014; Tastani and Pantazopoulou, 2010; Zuo and 

Darwin, 2000) observed an increase in the bond stress with the 

increase of the relative rib area of the steel bar. Hence, one can 

conclude that the increase of the relative rib area of steel bar 

increases the mechanical effect of the ribs on the bond stress.  

A.1.2. Effect of the diameter of the steel bar: 

More water is hold under the steel bar forming a thicker transition 

zone, when the diameter and the ribs of the bar are larger, making 
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it more porous, thus aiding the crushing phenomenon under 

compression by steel bar ribs. However, different experimental 

observations are reached making it difficult to give a clear 

conclusion. For instance, (Bouazaoui and Li, 2008) have seen a better 

resistance of the bond for ribbed bars of small diameters than for 

those with a larger diameter, which was previously observed for 

smooth bars by (Abrams, 1913). Still, (Daoud et al., 2002) showed the 

opposite and (Walker et al., 1997) two different behaviors depending 

on the compressive strength of the concrete. 

B. Characteristics of concrete 

The characteristics that are usually studied are the tensile and 

compressive strength of concrete, along with the dimensions and 

distribution of aggregates in the interface zone. 

B.1.1. Tensile and compressive strength of concrete 

(Tepfers, 1979) has assumed that there is a proportional relationship 

between the bond stress and the tensile stress of concrete, and it 

confirmed this hypothesis using a group of pull-out tests on samples 

with a very low concrete cover. For compression, (Eligehausen et al., 

1983) noticed that the peak bond stress was proportional to the 

square root of the compressive stress of concrete, while (Barbosa et 

al., 2008) focused on the initial bond behavior before the peak, and 

have shown the bond strength increases with the compressive 

strength of the concrete using identical steel bars. Similarly, (Torre-

Casanova et al., 2013) showed that the maximum bond stress and 

the corresponding slip were a function of tensile and compressive 

strength of concrete. For instance, the presence of fly ash increases 

the strength and the bond of the concrete (Barbosa, 2002; Daoud et 

al., 2002), which is due to the more compacted concrete and the 

reduced thickness of the transition zone. Thus, one can conclude 

that the increase in the tensile and compressive strength of concrete 

increases the bond strength.  

B.1.2. Placement of concrete 

(Daoud and Lorrain, 2003) have previously studied the effect of 

placement process of concrete, while (Söylev and François, 2006) 

studied the quality of the interface after drying of concrete, which 
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concluded that bond strength decreases as a function of the 

concrete depth underneath horizontal bars and that the bleeding of 

fresh concrete leads to the formation of a void under these bars and 

reduce the bond strength. One can conclude that the production 

and placement of  concrete influences the bond in the same way as 

the strength of concrete (Barbosa, 2002). 

B.1.3.  Age effect: 

Not only the age affects the mechanical strength of the concrete, 

but it also influences the steel-concrete bond in the same way. For 

instance, (Chapman and Shah, 1987) performed pullout tests on 

samples having different ages varying from 1 day up to 28 days. They 

observed that smooth bars did not show any age effect, while the 

corresponding bond characteristics of ribbed bars has shown an 

important age effect. 

C. Confinement of concrete 

Concrete confinement can either be active, by applying external loading, 

or passive, either by using secondary reinforcements that prevent the 

concrete from cracking in certain directions or by increasing the concrete 

cover. In another words, confinement is eventually applying load 

perpendicular to the steel-concrete interface. 

C.1.1.  Active confinement: 

In such cases, the external compressing load is applied on the 

sample on the external surfaces of concrete. Thus, the resistance of 

concrete increases by reducing its potentiality to crack. For instance, 

(Malvar, 1992) have seen an increase in the peak bond stress and the 

residual stress with the increase in the external confinement, applied 

on samples with a thin concrete cover. In (La Borderie and Pijaudier-

Cabot, 1992), a similar increase in peak  bond stress is observed 

using less thinner samples. Still, the percentage of increase is much 

less than that observed in (Malvar, 1992) for thin covered samples. 

Obviously, active confinement has an influence on the bond stress, 

but still less effective when concrete cover around the steel bar 

increases. 

C.1.2. Passive confinement: 
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In such cases, secondary reinforcements can be added to prevent 

the concrete from cracking in certain directions, or as a replacement, 

the concrete cover can be increased. This type of confinement has a 

similar role like the active confinement through reducing the 

cracking of the concrete, by increasing the resistance of the sample 

in the direction of the tensile stresses and by preventing the micro 

cracking expansion in the concrete. (Eligehausen et al., 1983) used 

additional stirrups in the samples, which have shown an obvious 

increase in the peak bond stress, and similar effects were seen in 

(Desnerck et al., 2010). Concrete cover has an important effect on 

the bond stress, as it can lead to differentiate between a pullout 

failure and a splitting failure like in (Jin et al., 2020a; Torre-Casanova 

et al., 2013). Hence, passive confinement has an influence on the 

bond stress, just like active confinement. 

2.3 NUMERICAL REPRESENTATION OF THE BOND 

2.3.1 Introduction to the different modelling scales 

Concrete can be modelled on four hierarchical levels as proposed by 

(Zaitsev and Wittmann, 1981): macroscopic, mesoscopic, microscopic and 

nanoscopic levels, as shown in Figure 2.5. The microscopic and nanoscopic 

levels are mainly related to the physical properties of mortar, coarse 

aggregates and the interface between them. However, the macroscopic and 

mesoscopic levels are usually used to characterize the mechanical behavior 

of overall concrete structures. For instance, the macroscopic level is used for 

the structural analysis of an overall concrete structure, while the mesoscopic 

level is usually employed to calibrate the macroscopic level analysis by 

obtaining a constitutive relation.  

 

Figure 2.5 Structural scales and simulation models for concretes and 

reinforced concrete structures (Asai et al., 2003) 
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In principle, macroscopic models capture the global behavior; nevertheless, 

they have generally a poor description of the local one. They include 

enriched models or interface elements, some of which are composed of 

bond geometries, in which their calibration depends on many parameters 

too. Mesoscopic models are considered a better way for describing the local 

behavior. Still, it is difficult to have the structural scale at this scale due to 

the huge number of elements and details necessary to represent the 

structures. Therefore, these meso-models could be used to help in the 

calibration process of macro-models. 

In other words, the bond response, which controls the cracking phenomena 

in concrete that, in general, follows the weakest links in such heterogeneous 

materials, may be modelled at three different scales: the dimensions of the 

structural elements, the reinforcing steel bar and the ribs on the steel bar. In 

order to model the bond behavior at the structural scale, a model that 

characterizes the effect of bond-zone response on beam, column or 

connection response is usually developed. The bond zone is represented as 

a homogenous continuum at the bar scale that is characterized by concrete 

and steel material properties (Rehm, 1961), which are defined by 

standardized tests such as pull-out tests and beam tests. At the scale of the 

ribs of the steel bar, the response depends on several aspects, such as the 

material properties of the mortar and coarse aggregates and the steel bar 

deformation pattern (Rehm, 1961). In addition, the load transfer between 

both mortar and coarse aggregates can also play a certain role in the whole 

response. 

2.3.2 Bond models at the macroscopic scale 

In macroscopic models, concrete is modelled as a homogeneous material 

and the governing equations are formulated within the framework of 

continuum mechanics. Different models were built to represent the steel-

concrete interface behavior such as (Ngo and Scordelis, 1967) that proposed 

a spring element, associated with a linear law, to relate concrete and steel 

nodes. The bond behavior was improved by developing interface elements. 

Such zero thickness elements, which are introduced at the interface between 

concrete and steel, allow the use of a nonlinear law like in (Brancherie and 

Ibrahimbegovic, 2009; Dominguez et al., 2005; Lowes et al., 2004; Richard et 

al., 2010). (Dominguez, 2005; Ibrahimbegovic et al., 2010) and others, 

developed embedded elements that aim to describe the steel-concrete 

bond behavior through an enrichment of the degrees of freedom. By 

treating steel bar as ribbed rod elements, they took into account adhesion 
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between the steel bar and concrete by adding cohesive elements like 

(Dehestani and Mousavi, 2015; Rezazadeh et al., 2017; Richard et al., 2010), 

or spring elements like in (Jin et al., 2019a). The rust behavior of steel bars 

was simulated in 2D by using a damage method in (Berto et al., 2008), in 

which  elastic quadrilateral elements are inserted between concrete and 

steel bars. In addition, an axisymmetric model was used in (Lundgren, 2005) 

to insert a contact element between concrete and steel bar to study the 

anchorage bond of the rusted concrete.  

In (Monti et al., 1997), finite elements were proposed to enclose the material 

behavior and the bond effects in the same concrete or steel element. These 

models require representing explicitly the interface between steel and 

concrete, which increases the computational cost. As a result, some models 

like (Ilgadi, 2013) used a perfect relation between steel and concrete and 

modelled the reinforcement using truss elements to overcome the previous 

problem, thus imposing the same strain in both materials using this 

approach.  

(Mang et al., 2015) combined the advantages of these two approaches, in 

which the model proposed neither needs the explicit representation of the 

steel-concrete interface nor uses a perfect relation, representing a good 

alternative for such computations in the macroscopic scale. This approach, 

used in (Mang et al., 2016), is based on what was first proposed by 

(Casanova et al., 2012), in order to represent bond effects between the 3D 

concrete and the embedded steel, modeled with truss elements, through a 

1D-3D interface element. This approach was improved in (Turgut et al., 2020) 

in order to take into account the influence of the stress state of the bond 

behavior.  

Such macroscopic models depend on bond slip-stress constitutive 

relationships that are measured in tests. It is also hard to show the 

mechanical behavior at the mesoscopic scale for the steel-concrete bond. 

Hence, the mesoscopic scale is an important alternative in order to 

overcome such difficulties. 

2.4 MESOSCOPIC REPRESENTATION OF THE STEEL-CONCRETE INTERACTIONS 

At another level, the mesoscale analysis can reveal the local responses of 

concrete and reinforcement and their interactions with cracking. It aims to 

capture the behavior at the scale of the ribs of the steel bar.  
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2.4.1 Mesoscopic representation of the concrete behavior 

The modeling and representation of concrete can be essential at the 

mesoscopic scale, since the steel-concrete interface is considered as a 

continuation of the concrete volume, with different properties. Based on the 

concrete model, the interface model and representation can change, which 

is not limited to the steel-concrete bond behavior. 

Different methods are available to represent the concrete numerically at the 

mesoscopic scale. In most of the mesoscopic models, the concrete is 

subdivided into matrix and coarse aggregates. In 2D representations, 

circular shapes resembling the coarse aggregates in the concrete sample 

were used in studies such as (Daoud et al., 2013; Jin et al., 2019b; Wang et 

al., 2019; Xu et al., 2012a, 2012b), while more complex geometries were 

considered in (Zheng et al., 2022), and discussed in details in (Thilakarathna 

et al., 2020; Zhou et al., 2019), in which a laser scanning technique was used 

to scan aggregate particles in order to obtain their real shape, then 

generated a 2D aggregate shape library by a spatial random cutting 

technique. In (Asai et al., 2003), tomographic images of a concrete section 

were used in order to reproduce the shapes of these particles in 2D. 

In the 3D representation, spherical particles were used in studies (Jin et al., 

2019a, 2020b, 2021b; Nguyen et al., 2010, 2012; Wu and Wriggers, 2015) 

and ellipsoidal particles in other studies (Häfner et al., 2006; Leite et al., 2004). 

In addition, more complex shapes were used in other 3D studies, such as 

(Zhang et al., 2018), in which concave polyhedrons were generated by 

shrinking algorithms based on 3D Voronoi technique. Also, in (Caballero et 

al., 2006) similar polyhedron particles have been used, where the polyhedral 

geometry was numerically generated by standard Voronoi technique from 

a regular array of points that is slightly perturbed. These polyhedra were 

then shrunk to become the aggregate particles while the space between 

them represents the mortar. Moreover, convex polyhedrons were used too, 

such as in (Bary et al., 2017; Bernachy-Barbe and Bary, 2019; Larrard et al., 

2013; Nguyen et al., 2015), but they used a different generation technique 

of the sample. (Bernachy-Barbe and Bary, 2019) also used real shapes 

obtained by tomography imaged. Aggregates in concrete were generated 

in (Mazzucco et al., 2018) using a laser scanner to generate their accurate 

geometry, then these laser scanned particles were simplified using a CAD 

software in order to reduce the computational costs. 

Some 3D mesoscopic models that were applied to study the steel-concrete 
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bond did not consider concrete as heterogeneous material, but as a 

homogeneous material like recently in (Jin et al., 2021a, 2020a; Liu et al., 

2022a). Still, the detailed geometry of the ribs was modelled as a 

replacement in order to consider the complexity of the bond at this scale. In 

addition, homogenous concrete was used in several other studies, such as 

(Eddy and Nagai, 2016; Hayashi et al., 2017; Yamamoto et al., 2014). 

2.4.1.1 Numerical modelling methods for the steel-concrete bond  

Lattice models are used to simulate structural elements using either truss 

elements or beam elements. Such approaches were used in plenty of studies 

(Bazant et al., 1990; Fraternali et al., 2002; Hansen, A. et al., 1989; Herrmann 

et al., 1989; Hrennikoff, 1941; Kiousis et al., 2010; Li and Tran, 2008; Lilliu and 

Mier, 2003; Niwa et al., 1995; Salem and Maekawa, 2004; Schlangen and 

Garboczi, 1997, 1996; Schlangen and van Mier, 1992; Van Mier and Van Vliet, 

2003). The main difference between the two approaches is that beam 

elements have 6 translational and 6 rotational degrees of freedom, which 

are divided equally at each end of the beam, while the deformation of truss 

elements is expressed by a total of 6 translational degrees of freedom, 3 at 

each end of the truss element. 

The truss model is one of the discrete element methods previously used in 

(Bazant et al., 1990), in which the coarse aggregates are connected to each 

other by truss members linking both mass centers. Each truss member is 

subdivided into three segments, two representing the radius of the two 

particles, which are considered circular, and the third part representing the 

mortar in between. The center of each particle, resembling a joint between 

truss elements, is connected to all the adjacent particles. A truss element 

breakage resembles a crack in the mortar at this position. 

 

Figure 2.6 Lattice method used in (Schlangen and van Mier, 1992) showing 

the triangular lattice projected on the grain skeleton and the definition of 

aggregate, bond and matrix bars 
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In (Schlangen and van Mier, 1992), a regular triangular mesh was imposed 

on the numerical sample, and the bars connecting the nodes of the mesh 

were considered as the elements resembling materials in the simulations. A 

bar inside an aggregate has the properties of an aggregate material, a bar 

fully inside the matrix has the properties of the mortar and a bar intersecting 

the interface of the particle has the properties of the interface (Figure 2.6). 

Similarly, (Asai et al., 2003) used the same model, but the nodes in the 

previous case were replaced by the centers of the pixels, where the concrete 

sample built was based on tomography images. These centers are 

connected to all the adjacent nodes by bars, of which each bar takes the 

same properties of the materials it is fully embedded inside, or the 

properties of the interface if it is connecting two pixels of different materials, 

as previously mentioned. 

Rigid Body Spring Model (RBSM) was also used for numerical concrete in 

several studies such as (Bolander et al., 2008; Eddy and Nagai, 2016; Gedik 

et al., 2011; Hayashi et al., 2017; Yamamoto et al., 2014) and others. In such 

discrete element model, concrete is considered as a homogenous material. 

This homogeneous material is meshed using a Voronoi diagram, or any 

similar method while it was constructed manually near the steel bar, like in 

(Eddy and Nagai, 2016). Each element has six degrees of freedom, consisting 

of three translational degrees of freedom and three rotational degrees of 

freedom. Moreover, each element is connected to other elements by three 

springs. Two are shear springs and one is a normal spring as shown in Figure 

2.7 .  

In (Daoud et al., 2013), which used finite element method (FEM) the 

mesoscopic mesh is obtained by using the diffuse meshing method as in 

(Nguyen et al., 2010), where the heterogeneous material properties are 

projected on the shape functions of the finite element mesh, in which the 

corresponding material properties is taken by each gauss point. Recently, 

(Wang et al., 2019) used FEM to study the steel-concrete behavior in 2D 

while (Jin et al., 2021a, 2020a) studied the bond behavior in 3D. For instance, 

FEM can be more adapted at the mesoscopic scale in order to take 

advantage of methods and tools developed for other finite element 

applications, like Cast3M (The Finite element code Cast3M, www-

cast3m.cea.fr) and Salome (Salome, www.salome-platform.org), which were 

used in different studies like (Bary et al., 2017; Bernachy-Barbe and Bary, 

2019; Daoud et al., 2013; Mang et al., 2015; Nguyen et al., 2015; Richard et 

al., 2010; Torre-Casanova, 2012; Turgut et al., 2020). Finite element 
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modelling is also a good choice for complex geometries, like that of the 

concrete, aggregates and the steel-concrete interface, in this study. 

 

Figure 2.7 3D RBSM mechanical model and steel concrete sample in (Eddy 

and Nagai, 2016) 

2.4.1.2 Constitutive models for concrete  

The type of microstructural evolution in concrete mainly depends on the 

stress state. The cracking can be dealt with by Continuum Damage 

Mechanics (CDM), which is based on the progressive reduction of the 

material stiffness in the framework of continuum mechanics at the 

mesoscopic scale. 

In some mesoscopic studies, like (Jin et al., 2020a), concrete was assigned 

the plastic-damage model proposed in (Chi et al., 2017; Lubliner et al., 1989) 

and improved by (Lee and Fenves, 1998). It is a continuum, plasticity based 

model for concrete, which assumes that the main failure mechanisms of the 

concrete are cracking in tension and crushing in compression. (Daoud et al., 

2013) has used Fichant’s damage model (Fichant et al., 1999) which is based 

on Mazars model (Mazars, 1986, 1984),  which simplifies the number of input 

parameters defining the tension and compression asymmetry. Modified 

Drucker–Prager plasticity model, as defined initially by (Drucker and Prager, 

1952), was used in (Serpieri and Alfano, 2011), as it has been applied to 

describe pressure-sensitive materials like concrete. In the studies that used 
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RBSM, (Eddy and Nagai, 2016; Hayashi et al., 2017; Yamamoto et al., 2014), 

compressive failure of concrete is not allowed at the mesoscale according 

to the same concept as adopted in the original simulation system developed 

by (Nagai et al., 2005). Local damage is uniquely represented by local 

cracking when the tensile stress of a spring exceeds the tensile strength and 

the shear failure. In such models, the cracking width is calculated as the 

relative displacement between two rigid bodies. 

The phase field approach has been used to simulate fracture as in (Ambati 

et al., 2015), which tracks the evolution of the cracks approximated as 

continuous entities in the domain. As developed by (Bourdin et al., 2000), a 

surface density function is used to represent the crack that depends on a 

process zone parameter 𝑙0 (Figure 2.8). Although the failure due to crack 

initiation and propagation was first treated by (Griffith, 1921; Irwin, 1958), in 

which crack propagates in the body when a critical value for the energy 

released rate is reached, the criterion was unable to determine the 

curvilinear cracks paths and cracking angles. This was solved by (Francfort 

and Marigo, 1998), in which the variational formulation of Griffith’s theory 

based on energy minimization for brittle fracture was introduced. After that, 

(Bourdin et al., 2008) developed the regularized version for this approach, 

detailed in (Bourdin et al., 2008), after which (Miehe et al., 2010) established 

the thermodynamic framework, which was then extended to dynamic 

fracture in (Borden et al., 2014; Hofacker and Miehe, 2013). To the best of 

our knowledge, this approach has not been previously used for concrete in 

pull-out test simulations, but widely used for concrete representation in 

other applications like (Cheng et al., 2022; Feng and Wu, 2018; Wu, 2017; 

Yang et al., 2019). 

 

Figure 2.8 Schematic depiction of the phase field method, in which the crack 

is modelled by the field c where a black color corresponds to a fully damaged 

material (𝑪 =  𝟏) and a white color corresponds to a fully intact material 

(𝑪 =  𝟎); the 𝒍𝟎 parameter controls the width of the process zone (Arriaga and 

Waisman, 2018) 
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2.4.2 Interface models 

2.4.2.1 General context 

In most of the mesoscopic numerical studies dealing with steel-concrete 

bond, an interfacial transition zone (ITZ) between the aggregates and mortar 

(Jin et al., 2019a), or between mortar and steel, depending on the case, which 

affects the initiation and propagation of cracks, is considered. Since the 

mechanical behavior of the concrete portion belonging to this zone is 

different from that of the surrounding concrete, and due to its tiny 

dimensions, it is very difficult to obtain the mechanical parameters of this 

zone.  

In (Asai et al., 2003; Grassl, 2009), the bars in the lattice model connecting 

two centers of pixels that represent different materials were considered to 

be interface bars. The tensile strength of these bars representing the 

aggregate-mortar interface was considered to be three-fifths that of mortar, 

and the same applied for the bars representing the steel-mortar interface 

but with different values. In (Eddy and Nagai, 2016), which used a rigid body 

spring model RBSM, the springs connecting a steel element with a concrete 

element was assigned a tensile strength that is half the tensile strength of 

the springs connecting concrete elements to each other. Similarly, the 

thickness of the ITZ was taken to be equal to the length of one element 

surrounding the aggregate particle in (Bernard et al., 2008) which used a 

finite element approach. Some models tried to add joint element in between 

the two different materials and assign certain opening and closing behavior 

such as (Salem and Maekawa, 2004). Still, it is difficult to choose the behavior 

of this interface, which certainly controls at least partially the crack initiation 

and propagation, thus impacting significantly the simulations. This is one of 

the concerns in this study. In addition, zero-thickness elements were used 

in e.g. (Raous and Karray, 2009; Serpieri and Alfano, 2011), in which the 

surface of contact between concrete and steel represented the interface, 

while a contact friction was recently deployed in (Jin et al., 2020a) to simulate 

the steel-concrete bond without using any interface elements. In such zero-

thickness approaches, friction can be applied directly to the surface of 

contact, along with other phenomena that are a direct reflection of 

properties of concrete, thus combining both concrete properties and 

contact friction between the two surfaces. For instance, a frictional model 

called the RCCM was previously used to simulate the behavior of smooth 

bars in (Raous and Karray, 2009), using a variable friction coefficient that 

depends on the sliding displacements.  
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One basic interface model is the linear elastic spring model (LSM). The two 

stiffness parameters included in this model are commonly used in other 

interface models. These two parameters are the normal stiffness 𝐾𝑛 and the 

shear stiffness 𝐾𝑠  (Figure 2.9). Usually, it is hard to determine these two 

parameters without using any experimental results, as they are purely 

numerical parameters resembling both the normal and shear resistance at 

the interface. As the behavior at the interface is controlled by different 

parameters such as friction, applying the elastic spring model with only the 

two aforementioned stiffnesses is necessarily a strong simplification, and the 

results may be seen as merely approximate. 

According to (Duan et al., 2007; Hashin, 1991; Qu, 1993; Wang et al., 2005), 

the interface conditions for the linear spring model can be written as: 

 [𝜎] ∙ 𝑛 = 0    ;     𝐾 ∙ [𝑢] = 𝜎 ∙ 𝑛 (2.2) 

where 𝑛  is the unit normal vector to the interface Γ between the steel and 

mortar, and [. ]= (out) - (in) is the jump operator. 

𝐾 is a second-order tensor, 𝐾 = 𝐾𝑛𝑛 ⊗ 𝑛 + 𝐾𝑠𝑠 ⊗ 𝑠 + 𝐾𝑡𝑡 ⊗ 𝑡, where 𝐾𝑛, 𝐾𝑠 

and 𝐾𝑡  represent the interface elastic parameters in the normal and 

tangential directions, respectively, and 𝑠  and 𝑡  represent the two 

orthogonal unit vectors in the tangent plane of the interface. 

The linear-spring model can be used to simulate a thin interphase. In such 

case, 𝐾𝑛 , 𝐾𝑠  and 𝐾𝑡  can be expressed by the interphase modulus and 

interphase thickness as follows: 

 
𝐾𝑛 =

2𝐺𝑖𝑛𝑡(1 − 𝜈𝑖𝑛𝑡)

𝑡(1 − 2𝜈𝑖𝑛𝑡)
=

𝐸𝑖𝑛𝑡(1 − 𝜈𝑖𝑛𝑡)

𝑡(1 + 𝜈𝑖𝑛𝑡)(1 − 2𝜈𝑖𝑛𝑡)
 (2.3) 

 𝐾𝑠 = 𝐾𝑡 =
𝐺𝑖𝑛𝑡
𝑡
=

𝐸𝑖𝑛𝑡
2(1 + 𝜈𝑖𝑛𝑡)𝑡

 (2.4) 

where 𝑡 is the thickness of the interphase, and 𝜈𝑖𝑛𝑡 , 𝐸𝑖𝑛𝑡  and 𝐺𝑖𝑛𝑡  are the 

Poisson’s ratio, Young’s modulus and shear modulus of the interfacial 

element, respectively. Since 𝐾𝑠  and 𝐾𝑡  are identical, 𝐾𝑠  will be used to 

represent both shear directions in this document, for the sake of simplicity. 
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Figure 2.9 Normal and shear spring stiffnesses between a steel element and a 

concrete element 

2.4.2.2 Frictional behavior  

Due to the complexity of the steel-concrete zone, the choice of the interface 

model representing the complex behavior of this bond is not trivial. In 

pullout tests, friction is an important parameter in such partial sliding 

situations (Lin et al., 2019; Xu et al., 2017). 

Contact friction was recently used in (Jin et al., 2021a, 2020a; Yi et al., 2020) 

to simulate the steel-concrete bond. In addition, a frictional model called 

the RCCM was previously used to simulate the behavior of smooth bars in 

(Raous and Karray, 2009), but using a variable friction coefficient that 

depends on the sliding displacements. To investigate such approaches, 

Coulomb’s 3D interface frictional model is going to be used that is based on 

Mohr-Coulomb’s failure criterion, in order to describe the debonding 

between concrete and steel bar. In such model, interface failure occurs due 

to either shear or tension according to the aforementioned failure criterion, 

while compression is entirely elastic. It will be described more in subsection 

3.4.5.1. It was previously used in several applications to represent a sliding 

friction between two materials, such as recently in (Bui et al., 2021) where it 

was applied to represent the mortar joint element between each two blocks 

in masonry walls. 
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2.4.2.3 Cohesive zone models 

The concept of cohesive zone model (Figure 2.10) was first introduced by 

(Dugdale, 1960) and (Barenblatt, 1962). The former suggested that in the 

zone ahead of slits in steel plates, which are subjected to a static tension 

load, the stress in this zone is constant and equal to the yield strength of 

the material. On the contrary, the latter pointed out the stresses in the 

softening region were variable. Since then, the cohesive zone model has 

been applied to predict failure in various materials, such as composites (Li 

et al., 2005) and concrete (Elices et al., 2009), and many others. Such 

approaches were discussed or used in several studies (Alfano and Crisfield, 

2001; Camacho and Ortiz, 1996; Chandra et al., 2002; Foulk et al., 2000; 

Geubelle and Baylor, 1998; Hutchinson and Evans, 2000; Mohammed and 

Liechti, 2000; Needleman, 1997; Park and Paulino, 2013; Rahulkumar et al., 

2000; Rice and Wang, 1989; Tvergaard, 2003, 1990; Tvergaard and 

Hutchinson, 1992; Wells et al., 2002; Xu and Needleman, 1994). 

 

Figure 2.10 Schematics of the cohesive zone model, based on (Hallett and 

Harper, 2015) 

This approach describes the failure of the material by introducing a 

strength-based fracture criterion along with an energy based fracture 

criterion for the part ahead of the crack tip that somehow preserves Griffith 

energy balance. The Cohesive zone elements are embedded along the 

fracture plane, which deforms according to a traction–separation law that 
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takes into account the appropriate strength and toughness (Needleman, 

1987). 

Such models gave good solutions when they were previously assigned to 

aggregates-mortar interface (Wu and Wriggers, 2015), fiber reinforced 

polymer FRP-steel joints (Heshmati et al., 2018), FRP-concrete interface 

(zhang and Huang, 2022). Recently, it has been assigned to retarded-

bonded tendons and concrete interface in (Xiong and Xiao, 2021), 

encouraging its introduction to steel-concrete interfaces at the mesoscopic 

scale. In such model, damage initiates in the interface element when a 

certain threshold is exceeded, either in shear or tension, while the 

compressive behavior is fully elastic. Tvergaard’s model (Tvergaard, 2003, 

1990; Wu and Wriggers, 2015) is going to be detailed in subsection 3.4.5.2. 

2.4.2.4 Frictional cohesive zone models 

The steel-concrete interfacial region, where friction plays an essential role, 

is still a continuation of the surrounding concrete. Since intense stresses 

develop in this region in loaded structures, cracks will generally propagate 

in concrete starting from the surface that is in direct contact with the steel 

bar. Similar to the cracking in concrete volume, the cracks at the interface 

can be represented by a damage parameter, which was previously combined 

with friction in a 2D steel-concrete interface model in (Serpieri and Alfano, 

2011). 

The frictional cohesive zone model approach is based on what was initially 

proposed by (Alfano et al., 2006; Alfano and Sacco, 2006) as a 2D model, in 

which the cohesive crack propagation phenomena, which are governed by 

nonlinear fracture mechanics, can be modelled at a meso-mechanical level 

by assuming that a representative elementary area 𝐴 of the interface can be 

decomposed into an undamaged part and a completely damaged part. This 

2D model, which was extended in (Roberto Serpieri et al., 2015; R Serpieri et 

al., 2015; Serpieri and Alfano, 2011) to a 3D approach, is able to capture 

crack initiation, damage propagation and their coupling with friction, 

interlocking and associated dilation. It was generalized to 3D in (Albarella et 

al., 2015; Roberto Serpieri et al., 2017; R. Serpieri et al., 2017). In these 

formulations, damage evolves based on Crisfield’s bilinear damage model 

presented in (Alfano and Crisfield, 2001), while the frictional behavior is 

governed by a Coulomb’s law. This approach was used once to study steel-

concrete interface in (Serpieri and Alfano, 2011) in 2D. Recently, (Jaaranen 

and Fink, 2021) used this 2D model to represent the contact between timber 
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and concrete by varying the friction coefficient. In addition, (Venzal et al., 

2020) proposed a similar frictional cohesive zone model for masonry 

simulations applied in 2D using discrete element modelling. 

2.5 CONCLUSIONS 

In this chapter, a bibliographic study related to the steel-concrete interface 

was presented. This includes the physical description of the steel-concrete 

interface showing the complexity in this region, followed by description of 

the pull-out test and different properties that affect the resulting bond 

stress-bond slip law. The scales of the modeling of the bond were presented, 

mainly the macroscopic scale and the mesoscopic scale, and the procedures 

of modeling previously adopted for numerical concrete and for the steel-

concrete bond. Furthermore, the formulations of the linear spring model 

and Coulomb model were introduced. Finally, the concept of the frictional 

cohesive zone approach was stated.  

A large part of the mesoscopic studies used 2D simulations when studying 

the steel-concrete interface. The aggregates were also mainly considered 

circular or spherical, unlike the RBSM that used 3D simulations to study this 

interface, but used concrete as a homogenous material. Other studies used 

smooth steel bar in the simulation or ribbed bars having a square ribbed 

section like (Wang et al., 2019). 

Therefore, it is important to conduct a 3D study that considers the detailed 

geometry of the steel ribs. This is essential in order to take into account the 

geometrical interlock of the steel-concrete interface, which is a crucial 

parameter itself at this scale. The importance of the interlock at the 

mesoscopic scale will be demonstrated, which is not deeply studied 

previously. This can pave the way for including the effect of different 

interlocks on the macroscopic behavior in macroscopic models. Finite 

element methods will be used in order to take advantage of the tools 

developed, mainly Cast3M and Salome, which can be effectively used for 

different finite element applications. This makes it possible to model the 

complex geometry of the sample, including that of the concrete, coarse 

aggregates and the steel-concrete interface. For instance, due to the 

computational costs and difficulty of convergences at this scale, 

homogenous concrete will be considered, mainly to limit the number of 

elements in the mesh, like in (Jin et al., 2021a, 2020a). Nonetheless, 

heterogeneous concrete will be adopted at a certain stage to investigate the 

effects of the presence of aggregates. On this matter, polyhedrons will be 
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used, which are more realistic, compared to spherical or even ellipsoidal 

shapes, to represent aggregates in concrete as shown in (Thilakarathna et 

al., 2020). Still, aggregates add an important computational cost, which 

encourages the investigation of the importance of adding it compared to 

this corresponding cost. The capability of classical interface models, like 

frictional model and cohesive zone model, to reproduce the bond behavior 

in 3D will be studied at the first stage. The results will be a motivator for the 

development of a frictional cohesive zone interface model, based on the two 

aforementioned approaches, and to relate its parameters to the surrounding 

steel and concrete, which is rarely done in other models. The model should 

be able to reproduce the behavior for both smooth and ribbed bars.  

The next chapter deals with the generation process of the pullout test 

samples. It includes the linear simulations using LSM, and pullout test 

simulations using a smooth bar and two classical interface models, whose 

results are compared to experimental ones. Additionally, Mazars classical 

damage model and a regularization procedure in tension and the 

corresponding modification of the model in compression is presented. 
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3 SIMULATIONS WITH CLASSICAL INTERFACE MODELS 

3.1 INTRODUCTION 

The aim of this chapter is to investigate the ability and limitations of classical 

interface models to reproduce the experimental behavior of pull-out tests, 

regardless of the assigned parameters. To fulfill this objective, a certain 

methodology is followed. 

First, in order to perform pullout test simulations on reinforced concrete, 

different samples are to be generated. As explained in section 2.4, various 

representations were previously used for both numerical concrete and steel-

concrete bond. In the current study, the detailed representation of the 

reinforced concrete samples is taken into account in order to preserve their 

geometrical complexity, in particular regarding the steel bar ribs. Thus, in 

the whole study, three-dimensional samples are only used in order to 

guarantee a behavior as realistic as possible. The generation process is 

detailed in this chapter, starting by smooth and ribbed steel bars, and then 

the detailed generation procedure of the aggregates is explained, followed 

by the final step of filling concrete or mortar. Those generated samples are 

eventually meshed to finalize the process. 

Following, linear simulations are performed using linear spring interface 

model in order to elucidate the effect of the two stiffness parameters for the 

different shapes of steel bar, which are a part of different interface models, 

defined initially in subsection 2.4.1.2.  

Nonlinear calculations are then perform to achieve the objective. First, 

concrete is assigned Mazars damage model. The regularization in tension 

and the proposed modification of the response in compression is detailed, 

which is important to avert mesh dependency of the results. Then, a simple 

nonlinear yield model for steel is assigned. Coulomb’s interface model, 

which reflects mainly the effect of friction, is presented in the next section, 

based on the importance of friction in the bond behavior as discussed in 

subsections 2.2.2.2 and 2.4.2.2. In addition, the detailed formulation of the 

damageable Tvergaard’s cohesive zone model as discussed in subsection 

2.4.2.3, with certain modifications in its elastic part, is shown (Tvergaard, 

2003, 1990; Wu and Wriggers, 2015).   

In the final part of the chapter, these two interface models coupled with 
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concrete damage model are used separately on the generated sample 

having smooth bar to prove their ineffectiveness to reproduce the behavior 

of pull-out tests as observed experimentally in terms of mean bond vs free 

end displacement. 

3.2 METHOD OF SAMPLES GENERATION 

3.2.1 General description 

The aim is to generate different pull-out test samples with different 

characteristics. In these pull-out samples, a steel bar is placed in the central 

axis of a concrete sample, as mentioned in subsection 2.2.2.1. The contact 

area between concrete and steel is divided into an adhesive surface area 

that is the position where the steel-concrete interface is effective, which is 

termed either ribbed or smooth depending on the shape of the bar, and a 

non-adhesive surface area with no contact between concrete and steel, 

which is always kept smooth to simplify. This adhesive length can either be 

half the full embedded length of the bar in the concrete section as shown in 

Figure 2.1, or any other value depending on the test case considered, like in 

Figure 2.3. 

The geometry of the samples is generated via a script, Combs (Bourcier et 

al., 2014), developed in python language, which makes use of the geometry 

module of the integration platform for numerical simulations Salome 

(Salome, www.salome-platform.org). This procedure was developed and 

applied in several studies previously such as (Bary et al., 2017; Bernachy-

Barbe and Bary, 2019; Larrard et al., 2013; Nguyen et al., 2015). In here, each 

cubic sample is composed of different phases: 

 Steel bar embedded in the central axis of the sample. 

 Concrete surrounding the steel bar, which can be either: 

• Homogenous, as one phase material. 

• Heterogeneous, as a two phase material. It is made up of 

coarse aggregates spread inside the sample around the 

steel bar, and of mortar, which fills the space between the 

coarse aggregates and the steel bar (resembling the mix-

ture of cementitious material and fine aggregates). 

 Steel-concrete or steel-mortar interface, which is a small zone sur-

rounding the steel bar. 
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3.2.2 Steel bar generation 

Steel bar is widely considered as one of the most important component in 

any construction work with reinforced concrete. Steel bars have different 

shapes and sizes; there are angle bars, square bars, round bars and flat bars, 

the bars with circular sections being much more commonly used. In pull-out 

tests, round bars are used, either smooth or ribbed depending on the 

purpose of each test. The objective is to model a ribbed steel bar taking into 

account the detailed geometry of ribs. The spiral shape is modelled in here, 

which is one of the most common steel bars used in construction work. In 

addition, a smooth bar is also modelled, as well as a herringbone shape bar, 

which has different ribs than the spiral bar. The three modelled bars can be 

seen in Figure 3.1, in which the adhesive part is half the full embedded 

length of the bar in the concrete cube. This process of generation of steel 

bars is developed specifically and introduced in the program. 

The spiral steel bar modelled can be described as follows: 

 Core: They all have a cylindrical round shape, whose radius is the 

radius of the steel bar. Its length is the total embedded length of 

the steel bar in the concrete sample in a pull-out test (adhesive 

and non-adhesive length). 

 Longitudinal ribs: They all have two longitudinal ribs along the 

length of the cylinder that are exactly opposite to each other, hav-

ing an isosceles trapezoidal section. 

 Transversal ribs: Each rib spans from one of the longitudinal ribs 

to the other longitudinal rib, thus covering half a circle (an angle 

of 180°) and it is inclined a certain angle with respect to the plane 

whose normal vector is the axis of the bar. In addition, the ribs on 

one side are symmetric to the ribs of the other side with respect 

to the axis of the steel bar. They have an isosceles trapezoidal sec-

tion. 

The smooth bar is made up of the cylindrical part only, as shown in Figure 

3.1 . The herringbone bar differs from the spiral bar in the shapes and the 

orientation of the transversal ribs. Its transversal ribs, which also spans from 

one of the longitudinal ribs to the other longitudinal rib, are not inclined but 

normal to the axis of the bar. In addition, the distance between two consec-

utive ribs on the same side is two times the distance between two consecu-

tive ribs each on an opposite side.  
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Figure 3.1 The three modelled steel bars; smooth bar, herringbone-ribbed bar 

and spiral-ribbed bar 

3.2.3 Coarse aggregates 

Following the generation of the steel bar, coarse aggregates were generated 

and positioned. Unlike previous studies in literature that used either circles 

for two-dimensional cases or spherical shapes for three-dimensional cases, 

the aggregates in here were modelled as convex polyhedrons that are 

Voronoi particles (Figure 3.2), whose shape is believed to be more realistic. 

However, different shapes can be considered, including real ones coming 

from tomography images. 

In here, 15 different shapes of polyhedrons are considered, and for each 

shape different scaling ratios of dimensions which makes the particle unique 

to a certain point. 

 

Figure 3.2 Polyhedrons resembling coarse aggregates 

During the generation process, aggregates can be neither in contact with 

the steel bar nor in contact with each other. In addition, they cannot be in 

contact with the outer face of concrete, which means that they cannot be 
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visible for an outside viewer. However, it is possible to generate a sample 

whose particles are allowed to be in contact with the outer surface, but this 

is ignored in the current generation of particles, since each aggregate will 

be covered by a layer of mortar in any sample, even a very thin layer of 

mortar. 

The dimensions of the whole sample and the dimensions of the desired steel 

bar are initially defined and the steel bar is then generated. Following the 

generation of the steel bar, aggregates are generated (for the 

heterogeneous concrete cases). The procedure for the generation, scaling 

and spreading of the particles, which was used in (Bary et al., 2017; 

Bernachy-Barbe and Bary, 2019; Larrard et al., 2013; Nguyen et al., 2015) and 

others, is used as is it with no proposed modification. It is explained in details 

as follows: 

1) For the heterogeneous concrete samples the polyhedrons shapes in-

tended to be used for resembling the particles are defined. The range of 

dimensions of the aggregates, the maximum dimensions of the aggre-

gates (called maxdim) and the volume fractions for each dimension are 

assigned based on experimental granulometry of aggregates in concrete. 

In addition, the intervals for the scaling of the dimensions of the polyhe-

dron shapes are defined. 

2) The total volume of the sample is calculated using the predefined di-

mensions. 

3) For each dimension range of aggregates, and starting by the larger one, 

a particle shape is chosen from the predefined polyhedron shapes. One 

of the three dimensions (local x, y and z directions of the particle) of this 

particle is fixed, while the other two dimensions are resized by randomly 

choosing a ratio for each of these two dimensions from the interval used 

for scaling. For example, for a scaling interval [a,b], two ratios c and d 

that are in between a and b are randomly chosen by the program. These 

two ratios are used to resize the dimensions of the initial chosen particle; 

first dimension (x direction) is kept fixed, second dimension (y direction) 

is multiplied by c and the third one (z direction) is multiplied by d. An 

example of the resizing of one dimension is shown in Figure 3.3 . 

4) Following the resizing of the particle, the box bounding the particle is 

formed and then the corresponding three dimensions of this box are 

extracted. These dimensions are then sorted and the middle value is con-

sidered (called mid), which is expected to be the greatest one that passes 

through the sieve, as it is enough for two dimensions of the particle to 
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be less than or equal to the sieve size, for the particle to pass through 

this sieve, regardless of the third dimension of the particle (which is 

called larg). 

5) From the dimension range, a random value belonging to the interval is 

chosen as a dimension for this particle (called dim), then the following 

ratio is calculated:  

 𝑑𝑖𝑚

𝑚𝑖𝑑
× 𝑙𝑎𝑟𝑔 (3.1) 

If this ratio is greater than the predefined maximum dimension of 

aggregates maxdim, then the middle dimension is corrected as follow:  

 𝑚𝑖𝑑 = 𝑙𝑎𝑟𝑔 ×  
𝑑𝑖𝑚

𝑚𝑎𝑥𝑑𝑖𝑚
 (3.2) 

 

Figure 3.3 Resizing one dimension of a polyhedron particle 

6) The whole particle is then scaled, from its center of gravity, using the 

following ratio: 

 
𝑠𝑐𝑎𝑙𝑒 =  

𝑑𝑖𝑚

𝑚𝑖𝑑
 (3.3) 
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At this point, the particle is well scaled and can pass through the 

corresponding sieve; two of its dimensions are less than or equal to the 

chosen dimension which is within the dimension range of this particle, 

and the third dimension of this particle is now less than the maximum 

dimension of aggregates defined for the whole sample. 

 

Figure 3.4 Flowchart to generate and place the aggregates 
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7) This particle with its new dimensions is saved in a list that includes all the 

particles generated. The volume of this particle is calculated and added 

to the total volume of particles generated. The same procedure for gen-

erating particles is repeated for the same dimension range until the cor-

responding volume fraction is reached. 

8) The procedure is then repeated for all dimension ranges, and the gener-

ated particles are saved in the previously mentioned list. Note that the 

particles are sorted from the greater to the lower dimension in the sense 

of their bounding box. 

9) After placing the steel bar in its right position inside the sample, the 

placement of the aggregates starts. The particles from the list are added 

from the greater to the lower one by randomly choosing a position in-

side the sample; then the program checks if its boundaries are overlap-

ping the boundaries of the steel bar, of the sample or of the already 

placed particles. If so, a new position is randomly chosen and the same 

conditions are checked again until they are fulfilled. This procedure is 

repeated for every particle in the list. 

At this point, the steel bar is in its right position and all the aggregates are 

in their right positions surrounding the steel bar; each particle is standing 

independently without overlapping any of the surrounding particles, the 

steel bar and the boundaries of the sample. 

 

Figure 3.5 The generated aggregates surrounding the steel bar (colored cyan) 

in a modelled sample 
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This whole procedure, which is divided into three phases, input, generation 

and placing, is shown in details in Figure 3.4. An example of mesostructure 

obtained is shown in Figure 3.5.  

3.2.4 Adding concrete or mortar     

Following the generation and the placement of both steel bar and coarse 

aggregates, the mortar is automatically generated via the Combs scipt: the 

program subtracts the volume of the steel bar and the volume of the 

aggregates from the total volume of the sample previously calculated, using 

a Boolean operator. The geometry of the mortar is then not defined but 

controlled by the geometries of the steel bar and aggregates phases, and 

its boundaries are defined as follows: 

 The six exterior surfaces of the sample forming the boundaries of 

the cube. 

 The exterior surfaces of the steel bar previously generated and 

placed inside the sample. 

 The exterior surfaces of the coarse aggregates previously gener-

ated and placed inside the sample. 

  

(a) (b) 

Figure 3.6 (a) Mortar generated for a certain sample viewed from outside (b) 

A section view showing the mortar generated for a certain sample and its 

complex geometry  
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Since the coarse aggregates do not overlap the boundaries of the sample 

as mentioned in subsection 3.2.3, the mortar will cover all these boundaries 

except the two opposite sections where the steel bar intersects the outer 

surface of the sample, as can be seen in Figure 3.6(a). The boundaries of the 

mortar inside the sample are the exterior surfaces of the aggregates and of 

the steel bar, forming a very complex geometry as shown in Figure 3.6(b).  

For the homogenous concrete samples that contain no aggregates, the 

generation procedure of aggregates is omitted. Thus, the program subtracts 

the volume of the steel bar from the total volume of the sample in order to 

calculate the volume of concrete.  

3.2.5 Meshing of the pull-out test samples 

Following the generation of the geometry of the pullout test samples, 

meshing is carried out. The mesh is generated via a script also developed in 

python language, which makes use of the SMESH meshing module plugged 

to Salome, and MG-CADSurf meshing tool within it. Due to the complex 

geometries and the different phases, an unstructured mesh is build, 

composed of linear tetrahedral elements.  

The process is automatic and starts with the meshing of the surfaces of the 

different phases. To this aim, triangles are generated, meaning that the 

curved surfaces of the steel bar are discretized. The size of these triangles is 

controlled by a length parameter; in addition, the discretization of the 

curved surfaces is parameterized by a coefficient corresponding to the 

maximum admissible angle between two consecutive triangles. This leads in 

general to a large number of tetrahedral elements, especially for 

heterogeneous concrete. An example of the mesh of the aggregates can be 

seen in Figure 3.7 . 

The size of a tetrahedral element varies widely throughout the sample. It is 

determined by calculating the average value of its three dimensions. The 

average size of the elements on the exterior surface of the mortar is larger 

than that of the elements inside the mortar block, and the elements with the 

smallest average size are at the steel-concrete interface. It has been indeed 

chosen to increase the number of elements at this interface which is of great 

importance for this study.  
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Figure 3.7 Sample meshing of aggregates in the generated samples  

It is important to note that the meshes are voluntarily very fine, especially in 

the samples used in the non-linear simulations, in order to obtain accurate 

results. Although it is possible to reach close results with less finer mesh, the 

aim is also to visualize the distribution of damage and stresses in the mortar 

and concrete, which is better achieved when using fine meshes. 

3.2.6 The steel-concrete interface 

The steel-concrete interface is a surface made up of specific interface finite 

elements of zero thickness between the steel bar and the mortar or concrete. 

They are built up following the meshing of the sample in Salome after 

importing the generated mesh to the finite element code Cast3M, by 

duplicating the mesh nodes at the external surface of the steel bar in contact 

with mortar or concrete. Eventually, this produces a centrally hollow 

cylindrical shaped meshed surface surrounding the steel bar.  

3.3 SIMULATIONS OF PULL-OUT TESTS USING LINEAR SPRING INTERFACE 

MODEL 

3.3.1 Description of the test case 

In order to verify the functionality of the model in simple cases, a simplified 

linear elastic case is initially considered to perform simulations, before 

moving to the more complicated nonlinear cases. 

As mentioned previously in subsection 2.2.2.1, the pull-out test is carried out 

by direct pulling of a steel bar from the concrete block. A displacement is 
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imposed on the external exposed face of the steel bar as shown in Figure 

3.8, while the surrounding mortar face is restrained from moving in the same 

direction of the imposed displacement (x-direction). The other external 

exposed face of the steel bar on the opposite side of the block is free, at 

which the free end displacement FED is measured. In addition, two points 

P1 and P3 on the external concrete blocked face are restrained from moving 

in the y-direction as shown in Figure 3.8, while a third point P2 is restrained 

from moving in the z-direction, in order to prevent any solid movements of 

the whole microstructure. 

 

 

Figure 3.8 Boundary conditions applied on the generated pull-out samples 

3.3.2 Generated samples 

In order to perform linear pull-out tests simulations, two different samples 

are modelled, one with a herringbone bar and the other with a smooth bar.  

For the herringbone ribbed bar used in this part, the adhesive length, or 

effective encasement length, is equal to one third the total length of the bar, 

as in the setup used in (Torre-Casanova et al., 2013). The adhesive part is 

modelled as a fully ribbed section, while the non-adhesive part does not 
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include the transversal ribs, but only longitudinal ones. The detailed 

dimensions of the herringbone bar used are shown in Figure 3.9. The 

concrete cubic sample side length is 150 mm, and the total adhesive length 

is 50 mm. As explained in subsection 3.2.5, an unstructured mesh is 

generated using linear tetrahedral meshing elements. The number of mesh 

elements in the concrete and steel bar is about 1 116 000 and 450 000, 

respectively. The characteristic size of each mesh element at the outer 

surface of the concrete sample is equal to about 8 mm, while the triangular 

edge of each element at the steel concrete interface is almost 0.8 mm. 

 

 

Figure 3.9 Dimensions of the modelled herringbone steel bar (in mm) 

In addition, a sample with a smooth bar is generated for the sake of 

comparison, i.e. to study the effect of the ribs. The central region of the steel 

bar is adhesive, like the aforementioned herringbone bar, but it is fully 

smooth. The bar diameter is 16 mm. The concrete cubic sample side length 

is then 150 mm and the total adhesive length is 50 mm. The number of mesh 

elements in the concrete is 1 077 000 and in the steel bar 464 000. This is 

achieved by imposing the same characteristic size of mesh element at the 

outer surface and at the steel concrete interface as in the herringbone case. 

3.3.3 Simulations and results 

3.3.3.1 General description  

The steel-concrete interface has a crucial role in the overall behavior as 

reported in all studies in literature. In this section, the elastic part of the 

interface is investigated. The two parameters studied are the normal 
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stiffness 𝐾𝑛  and the shear stiffnesse 𝐾𝑠 , defined in section 2.4.2. Those 

parameters appear in a wide range of interface models. Usually, it is hard to 

determine them without using any experiment results, as they are  numerical 

parameters. 

The effects of these two parameters are studied in terms of free end 

displacements. To do so, linear simulations are performed using linear 

models for steel and concrete, where one stiffness parameter is fixed at a 

certain value while the other is varied from one simulation to another, then 

the corresponding free end displacement is recorded. 

The normal stiffness quantifies the degree to which the material resist 

deformation in the normal direction between the two surfaces, which would 

be affected by both tension and compression forces. Considering the shape 

of the steel bar and the direction of the pulling force, which is parallel to the 

external cylindrical surface of the steel bar, the normal stiffness is expected 

to play an important role at the sides of ribs of the steel bar, with a less 

significant effect elsewhere. 

Similarly, the shear stiffness quantifies the degree to which the material 

resist deformation in the direction parallel to the surfaces, which is obviously 

affected by shearing forces. It is expected to take the upper hand in all the 

surfaces whose direction is parallel to the axis of the steel bar, which are the 

cylindrical surface and the tips of the steel ribs. On the other hand, it is 

expected to play a less important role at the sides of the ribs. 

Several simulations were carried out in order to check the validity of these 

two points summarized in Figure 3.10. 

 

Figure 3.10 The dominating parameters at and near a rib of a steel bar 
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3.3.3.2 Variation of the shear stiffness 

In order to study the effect of varying the shear stiffness, a group of 

simulations was carried out using the herringbone and the smooth samples 

defined in subsection 3.3.2 . Concrete and steel are both assigned elastic 

models, by taking steel’s Young’s modulus 200 GPa and concrete Young’s 

modulus 25 GPa, while steel’s Poisson’s ratio is 0.3 and concrete’s Poisson’s 

ratio is set to 0.2 . The normal stiffness was fixed at certain values throughout 

all these simulations, while the shear stiffness was changed from one 

simulation to another, starting from 107  𝑁 𝑚3⁄  in the first couple of 

simulations up to 1018  𝑁 𝑚3⁄  in the last two simulations. The values for the 

normal stiffness are 1010 , 1012 and 1015  𝑁 𝑚3⁄ . Those values are chosen in 

order to understand the general phenomenon, by covering the range of 

stiffnesses usually used, regardless of the specific assignment. 

The imposed displacement on one of the exposed steel bar external sections 

was fixed at 0.05 mm throughout all simulations. The free end displacement 

was measured for each simulation at the center of the opposite exposed 

steel bar external section. 

The plot of the free end displacements at the end of the simulations as a 

function of the shear stiffnesses for the two herringbone and smooth bars 

is shown in Figure 3.11. The free end displacement curves have the same 

lower bound in all cases, but they have a very different upper bound.  

 

Figure 3.11 Variation of the free end displacement as a function of the shear 

stiffness for the herringbone sample and the smooth sample; normal stiffness 

𝐾𝑛 is fixed at 1010 , 1012  and 1015 𝑁/𝑚3 in each group, and the final imposed 

displacement is 0.05 mm 
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Based on Figure 3.11, each one of the curves can be divided into three 

different parts: 

 For 𝐾𝑠  in between 107𝑁 𝑚3⁄  and 1010𝑁 𝑚3⁄ , the free end dis-

placement is almost constant at a unique maximum for each case: 

• For the herringbone sample: it varies based on the value of 

𝐾𝑛, giving a lower displacement when 𝐾𝑛 is high, and a dis-

placement which is close to the imposed displacement when 

𝐾𝑛 is low. 

• For the smooth sample: it is almost equal to the imposed 

displacement, when 𝐾𝑛 is low, but shows a certain resistance 

to pulling when 𝐾𝑛 is 1015𝑁 𝑚3⁄ . 

 For 𝐾𝑠  in between 1010𝑁 𝑚3⁄  and 1013𝑁 𝑚3⁄ , the free end dis-

placement decreases gradually, except for the herringbone case 

when 𝐾𝑛 is 1015𝑁 𝑚3⁄  in which this drop is barely visible. 

 For 𝐾𝑠 greater than 1013𝑁 𝑚3⁄  the free end displacement is con-

stant at an almost common minimum for all curves. 

For the smooth bar sample, a low value for the shear stiffness has led to a 

total loss in the ability to resist the pulling force, when the normal stiffness, 

is low, but showed some resistance when the normal stiffness is high. This 

can somehow be justified by the ability of the shear stiffness to resist directly 

the slipping of the steel bar against the concrete (Figure 3.10). If the shear 

stiffness is so low as in the first parts of the curves, this ability to resist the 

pulling of bar will vanish and the bar will slip easily with no real resisting 

effort. Still, when the normal stiffness is high, it can play a role in preventing 

the total slipping of the bar. 

On the other hand, the herringbone ribbed bar can still depend on its ribs 

to resist the pulling force up to a certain point, when its shear stiffness is 

low, except when the normal stiffness is low. Unlike the low normal stiffness 

case when herringbone almost fully slipped, a loss of slipping resistance did 

not lead to a full slipping of the bar when the normal stiffness is higher, but 

to an almost 60% and 30% slip, in where the total slip was certainly 

prevented by the ribs. 

For the second part, the values of both the normal and shear stiffnesses are 

somehow close to each other for both samples. The ability to resist the 

slipping of the bar will increase for both cases as the shear stiffness 

increases. This is more marked for the smooth sample because the shear 

stiffness is fully dominant in this case, and the whole resistance of the bar 
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depends mostly on the shear stiffness in the absence of the ribs. For ribbed 

sample, the ability to resist the pulling force increased too, mainly for the 

case with low normal stiffness, but obviously not in the same manner for 

other two cases that have a higher normal stiffness that already resists 

important part of the pulling. 

For the last part, the two samples reached the same free end displacement 

as can be seen in Figure 3.11 . In this part, the shear stiffness is much higher 

than the normal stiffness, which leads to a total domination of the shearing 

resistance at this stage. The fully smooth bar case has the same free end 

displacement as the ribbed herringbone sample, meaning that the ribs did 

not play any role in preventing the slipping behavior, as the pulling 

resistance is already fully grabbed by the shear stiffness. As a conclusion, 

one can say that very high values of the shear stiffness clearly gives 

indistinguishable behavior in terms free end displacement for both the 

herringbone and smooth bar. 

3.3.3.3 Variation of the normal stiffness 

Another group of simulations was performed in order to study the effect of 

varying the normal stiffness. Unlike the previous case, the shear stiffness was 

fixe throughout all these simulations, while the normal stiffness was 

changed, starting from 107  𝑁 𝑚3⁄  in the first two simulations up to 

1018  𝑁 𝑚3⁄  in the last two simulations, similar to the previous case. The 

values for the shear stiffness are 1010 , 1012 and 1015  𝑁 𝑚3⁄ . Here again, 

those values are chosen in order to analyse the macroscopic response by 

covering the range of stiffnesses usually used. 

The imposed displacement on one of the exposed steel bar external sections 

was fixed at 0.05 mm throughout all simulations likewise the previous case. 

The plot of the free end displacements at the end of the simulations as a 

function of the normal stiffnesses for the two samples is shown in Figure 

3.12 . 

As can be seen in Figure 3.12, each two curves have almost the same 

beginning and ending in this case unlike the previous case.  

Concerning Figure 3.12, the curves for cases when 𝐾𝑠  is 1010𝑁 𝑚3⁄  and 

1012𝑁 𝑚3⁄  can be divided into three different parts: 
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 For 𝐾𝑛  in between 107𝑁 𝑚3⁄  and 1011𝑁 𝑚3⁄ , the free end dis-

placement is constant at a unique maximum for each case which 

are close to each other. 

 For 𝐾𝑛  in between 1011𝑁 𝑚3⁄  and 1016𝑁 𝑚3⁄ , the free end dis-

placement decreases gradually. 

 For 𝐾𝑛  from 1016𝑁 𝑚3⁄  to 1018𝑁 𝑚3⁄  and beyond, the free end 

displacement is barely decreasing with the increase of the normal 

stiffness, and all the cases have very close values. 

 

Figure 3.12 Variation of the free end displacement as a function of the normal 

stiffness for the herringbone sample and the smooth sample; shear stiffness 

𝐾𝑠 is fixed at 1010 , 1012  and 1015 𝑁/𝑚3 in each group, and the final imposed 

displacement is 0.05 mm 

For the first part of the curves, a low value for the normal stiffness has led 

to a certain loss in the ability to resist the pulling force, when the value of 

the shear stiffness was fixed at 1012𝑁 𝑚3⁄ . This can also be justified by the 

ability of the shear stiffness to resist directly the slipping of the steel bar 

against the concrete (Figure 3.10). When the value of the normal stiffness is 

low, both bars depend on their shear resistance to prevent sliding, and they 

both have very large surface where the shear stiffness dominates, as 

mentioned previously. The size of the surface of the smooth steel bar where 

the shear stiffness is expected to dominate is slightly larger compared to the 

size of the surface of the ribbed steel bar where the shear stiffness is 

expected to dominate. Thus, the steel bar in smooth sample is expected to 

have a higher resistance compared to the herringbone sample, which can 

probably explain the small difference between the free end displacements. 
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For the second part, the free end displacement of the ribbed steel bar had 

decreased with the increase of the normal stiffness. The ribs gained a certain 

strength to resist the slipping of the bar at this point, unlike the smooth steel 

bar that needed higher value of the normal stiffness in order to gain the 

resisting strength previously acquired by the ribbed bar. When the shear 

stiffness is high, this drop cannot be seen. 

For the last part of the curves, the free end displacements kept decreasing 

very slowly and had a similar value throughout this interval. The shear 

stiffness still has an effect in this part too, as the normal stiffness is not fully 

controlling the slipping and preventing it, especially when the difference 

between the shear and normal stiffnesses is very high. It is important to keep 

in mind that the first part to encounter the pulling force in the pulling 

process is the cylindrical surfaces of the bars where the shear resistance 

certainly dominates. Although by definition the normal stiffness is not 

supposed to have a big influence on the smooth bar behavior, the effect is 

obvious in this case. Such very high normal stiffness can still effect the 

cylindrical surface of bar, preventing it from slipping easily, probably due to 

the compressive stresses in concrete. 

It is important to note that although the free end displacement may be the 

same between the two samples, the displacement in within the steel bar may 

vary, especially near the ribs of herringbone steel bar, which can therefore 

show a different distribution of stresses. Thus, the free end displacement 

provides a partial view of the effectivity of the ribbed steel bar compared to 

the smooth bar, as it only shows the global resistance to slipping. 

These results strengths, to a certain point, the validity of the two points 

stated in subsection 3.3.3.1 and shown in Figure 3.10 . Nonetheless, more 

studies should be performed using non-linear models, by coupling the 

elastic behavior of the interface model with the behavior of the surrounding 

concrete, which is the weakest material in this process.  

3.4 SIMULATIONS ON PULL-OUT TESTS USING CLASSICAL NONLINEAR 

INTERFACE ELEMENTS 

3.4.1 General description 

In order to study the capability of classical nonlinear interface models to 

simulate the steel-concrete interface, more realistic simulations are 

performed using a damage model for concrete and two different SCI models. 
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The test case and the corresponding boundary conditions are the same as 

the ones described in subsection 3.3.1 and shown in Figure 3.8 . 

3.4.2 Generated sample 

In order to perform nonlinear pull-out tests simulations in this section, a 

smooth bar sample is modelled using the procedure described in section 

3.2 . The adhesive length is half the total length of the bar, as defined in 

(RILEM, 1970). The diameter 𝑑  of the cylindrical bar is 8 mm, and the 

concrete cubic sample side length is equal to 10𝑑  as recommended by 

(RILEM, 1970), that is 80 mm; the total adhesive length is then equal to 5𝑑, 

that is 40 mm. The number of mesh elements in the concrete and steel bar 

are 303 000 and 310 000, respectively. The characteristic size of each mesh 

element at the outer surface of the concrete sample is equal to about 5 mm, 

while the triangular edge of each element at the steel concrete interface is 

almost 0.4 mm, as shown in Figure 3.13 . 

  

Figure 3.13 Concrete meshed section, showing the total embedded length of 

the bar that is divided into contact and non-contact zones, and the 

characteristic or average size of the sides of the interface surface element and 

the concrete external tetrahedral elements. 
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3.4.3 Nonlinear model for concrete: Mazars’ model and regularization 

Concrete is to be assigned the Mazars damage model (Mazars, 1986, 1984), 

in order to be able to describe cracking phenomena through a damage 

parameter. It is one of the widely used damage models for geomaterials 

such as concrete. This model is able to reproduce the direct cracking under 

both tensile and compressive stresses (or strain). It is formulated as follows: 

Constitutive law: 

 𝜎𝑖𝑗 = (1 − 𝐷)ℂ𝑖𝑗𝑘𝑙휀𝑘𝑙 (3.4) 

where 𝜎 is the stress tensor, 휀 is the strain tensor, 𝐷 is the total damage and 

ℂ is the stiffness tensor. The criterion for damage evolution reads:  

 𝑓(휀𝑒𝑞 , 𝐷) =  휀𝑒𝑞 − 𝜅(𝐷) (3.5) 

where the threshold of damage growth 𝜅(𝐷) and the equivalent strain 휀𝑒𝑞 

are written as: 

 
𝜅(𝐷) = max

ℎ𝑖𝑠𝑡𝑜𝑟𝑦
휀𝑒𝑞    and     휀𝑒𝑞 = √∑ 〈휀𝑖〉+

23
𝑖=1  (3.6) 

and the initial value of 𝜅(0) =  휀𝐷0, where 휀𝐷0 is the initial damage threshold, 

which can be related to the ultimate tensile stress of concrete in uniaxial 

tension 𝑓𝑡 𝑐𝑜𝑛  and Young’s modulus of the undamaged concrete E𝑐𝑜𝑛 

(Pijaudier-Cabot and Mazars, 2001): 

 
휀𝐷0 =

𝑓𝑡 𝑐𝑜𝑛
E𝑐𝑜𝑛

 (3.7) 

Also, 〈∙〉+ represents the positive part of the principle strains 휀𝑖. In order to 

emphasize the unsymmetrical behavior between tensile and compressive 

states of stresses, the total damage 𝐷 is a linear combination of damage in 

tension 𝐷𝑡 and in compression 𝐷𝑐 following: 
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 𝐷 = 𝛼𝑡
𝛽
𝐷𝑡 + 𝛼𝑐

𝛽
𝐷𝑐 (3.8) 

where 𝐷𝑡 and 𝐷𝑐 have their own evolution law: 

 
𝐷𝑡,𝑐 = 1 −

휀𝐷0(1 − 𝐴𝑡,𝑐)

휀𝑒𝑞
−

𝐴𝑡,𝑐

exp (𝐵𝑡,𝑐(휀𝑒𝑞 − 휀𝐷0))
 (3.9) 

where 𝛼𝑐 = 1 − 𝛼𝑡 .  𝛼𝑡 is computed from the strain and stress tensors such 

as:  

 
𝛼𝑡 =∑

〈휀𝑡𝑖〉 〈휀〉+
휀𝑒𝑞2

3

𝑖=1

 (3.10) 

where 휀𝑡𝑖  are the principal values of the strain tensor due to traction 

(positive) stress, defined as follows:  

 
휀𝑡 =

1 + 𝜐𝑐𝑜𝑛
E𝑐𝑜𝑛

𝜎+ −
𝜐𝑐𝑜𝑛
E𝑐𝑜𝑛

𝑡𝑟(𝜎+) (3.11) 

with the following partition for the stress tensor:  

 𝜎 = 𝜎+ + 𝜎− (3.12) 

where 𝜎+ is the tensor containing the positive principal stresses and zero 

elsewhere, while 𝜎− is the tensor containing the negative principal stresses 

and zero elsewhere. 𝜐𝑐𝑜𝑛 is the Poisson’s ratio of concrete, 𝐴𝑡 is responsible 

for the residual stress and 𝐵𝑡 for the descending slope after the peak in a 

uniaxial tension test, while 𝐴𝑐 is responsible for the residual stress and 𝐵𝑐 for 

the descending slope after the peak in a uniaxial compression test. In 

addition, 𝛽 is a variable for correction of the shear in order not to neglect 

the effect of shearing, which will be underestimated if it is taken equal to 1 

(Pijaudier‐Cabot et al., 1991). In other words, the purpose of this varaible 𝛽 

is to reduce the effect of damage on the response of the material under 

shear compared to tension where 𝛼𝑡 = 1 (Pijaudier‐Cabot et al., 1991). 
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According to (Hillerborg et al., 1976), softening models, such as Mazars 

damage model, leads to a strong mesh size dependency, in which a strain 

localization occurs in a certain group of elements redirecting the behavior 

in the structure. This can be seen in Figure 3.14(a), which shows the stress -

displacement response of uniaxial tensile test performed on two concrete 

finite elements of different sizes. Thus, less energy is dissipated in the 

structure in such models when the mesh size is small. To prevent such effect, 

a regularization method is used based on Hillerborg concept of fracture 

energy (Hillerborg et al., 1976). 

The evolution proposed in here is an exponential evolution, in which the 

damage due to tension 𝐷𝑡 , initially proposed in equation (3.8) is replaced by 

the following equation : 

 𝐷𝑡 = 1 −
휀𝐷0
휀𝑒𝑞

exp (𝐵𝑡(휀𝐷0 − 휀𝑒𝑞)) (3.13) 

while 𝐵𝑡 is calculated as follows: 

 
𝐵𝑡 =

𝑙 ∙ 𝐸𝑐𝑜𝑛 ∙ 휀𝐷0

𝐺𝑓 𝑐𝑜𝑛 −
𝑙 ∙ 휀𝐷0

2

2𝐸𝑐𝑜𝑛

 
(3.14) 

where 𝑙 is the characteristic size of the finite element, 𝐺𝑓 𝑐𝑜𝑛 is the fracture 

energy and 𝐸𝑐𝑜𝑛  is concrete’s Young modulus. Thus, the value of 𝐵𝑡 

assigned in the pull-out simulations is unique to each finite element. The 

same response can be seen in Figure 3.14(b) for the two finite elements, 

which shows the stress-displacement behavior of uniaxial tensile simulations. 

By considering a regular tetrahedron formula, the characteristic size 𝑙  is 

calculated as follows: 

 
𝑙 = √

12𝑉

√2

3

 (3.15) 

where 𝑉 is the volume of the finite tetrahedral element. 
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(a) 

 

(b) 

Figure 3.14 Stress - displacement response under tension on two concrete 

finite elements whose sizes are 1 mm and 5 mm of (a) the classical Mazars 

model using 𝐴𝑡 = 0.8 , 𝐵𝑡 = 17000, 𝐸𝑐𝑜𝑛 = 25 𝐺𝑃𝑎  and 𝑓𝑡 𝑐𝑜𝑛 = 2.5 𝑀𝑃𝑎 (b) 

the regularized Mazars model using 𝐺𝑓 𝑐𝑜𝑛 = 120 𝑁/𝑚 , 𝐸𝑐𝑜𝑛 = 25 𝐺𝑃𝑎  and 

𝑓𝑡 𝑐𝑜𝑛 = 2.5 𝑀𝑃𝑎 

As a consequence of the regularization, one can see that the stress-strain 

response becomes different for each element (to ensure the same stress – 

displacement curve). 

Additionally, (Mier, 1984) showed that the stress-strain curve in compression 

is influenced by the slenderness of the specimen, unlike the stress-
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displacement curve, which was also found in different experimental results 

like (Comi and Perego, 2001; Jansen and Shah, 1997; Lee and Willam, 1997; 

Markeset, 1993; Rokugo and Koyanagi, 2018). Thus, just like in tension, 

numerical behavior in compression should be also independent of the size 

of the mesh elements. This justifies the need to develop a methodology for 

regularizing the compressive behavior of concrete. Hence, a similar problem 

occurs under compression when assigning 𝐴𝑐  and 𝐵𝑐  the values 

recommended by (Pijaudier-Cabot and Mazars, 2001), because the sizes of 

the finite elements may be very small. This effect can be seen in Figure 3.15 

(a), in which a uniaxial compressive test is performed on a concrete cube 

whose Young’s modulus is 𝐸𝑐𝑜𝑛 = 25 GPa and maximum compressive 

strength is slightly larger than 30 MPa. The values of the parameters 𝐴𝑐 and 

𝐵𝑐 are varied for each case until reaching a very similar general behavior, 

following the methodology from (Calixte et al., 2022). These chosen values 

of 𝐴𝑐  and 𝐵𝑐  that best fit are shown in Table 3.1, and the corresponding 

behavior can be seen in Figure 3.15 (b). 

Table 3.1. Mazars parameters 𝐴𝑐 and 𝐵𝑐 assigned for different element sizes 

𝒍(𝒊𝒏 𝒎𝒎) 𝑨𝒄 𝑩𝒄 

0.2 0.0033 4.9 

1 0.0169 25 

2 0.0343 50 

3 0.0517 75 

5 0.09 129 

Finally, a fitted evolution law for each of these two parameters as a function 

of 𝑙 is eventually used, by using a second-degree polynomial, as follows: 

 𝐴𝑐 = −335.9133 𝑙2 + 16.2746 𝑙 − 0.0002 (3.16) 

 𝐵𝑐 = 338073.9767 𝑙2 + 24023.4962 𝑙 − 0.3277 (3.17) 
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(a) 

 

(b) 

Figure 3.15 Stress - displacement response of Mazars model under 

compression on five concrete finite elements with prescribed sizes using (a) 

common values 𝐴𝑐 = 1.4,  𝐵𝑐 = 1600; (b) modified values of 𝐴𝑐 and 𝐵𝑐 (see 

Table 3.1) unique for each case 

Regarding the other parameters of the concrete model, the shear correction 

coefficient is β = 1.06, which is within the acceptable range 1 ≤ 𝛽 ≤ 1.06 . 

For instance, the more the value is close to lower limit, the more the effect 

of shearing is underestimated (Pijaudier-Cabot and Mazars, 2001). It also 

makes it more and more difficult to converge. Concrete’s Young’s modulus, 
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Poisson’s ratio and fracture energy in tension are too assigned for each case. 

3.4.4 Nonlinear model for steel 

The steel bar is assigned a classical perfect yielding elastic model, where its 

Young’s modulus is 200 GPa and its Poisson’s ratio is 0.3. The yield stress 

limit is 365 MPa followed by a perfect yield behavior for which the Von Mises 

stress will always be equal to the yield stress as the steel is strained. 

3.4.5 Nonlinear steel-concrete interface models 

3.4.5.1 Coulomb’s frictional interface model 

Coulomb’s 3D interface frictional model is based on Mohr-Coulomb’s failure 

criterion, and is intended to describe the debonding between concrete and 

steel bar. It was previously used in several applications to represent a sliding 

friction between two objects, such as recently in (Bui et al., 2021) where it 

was used to represent the mortar joint element between each two blocks in 

masonry walls. 

In the elastic part of the model, the stress tensor 𝜎 of the interface element 

is governed by normal and shear stiffness of the interfaces 𝐾𝑛 and 𝐾𝑠 

according to the linear elastic spring model formulation: 

 
(

𝜎𝑛
𝜎𝑡
𝜎ℎ
) = (

𝐾𝑛 0 0
0 𝐾𝑠 0
0 0 𝐾𝑠

)(

𝑢𝑛
𝑢𝑡
𝑢ℎ
) (3.18) 

The interface failure occurs due to either shear or tension according to the 

Mohr-Coulomb’s failure criterion simplified in Figure 3.16. 

The maximum shear stresses 𝜎𝑡 𝑚𝑎𝑥  and 𝜎ℎ 𝑚𝑎𝑥  in the two tangential 

directions are given by: 

 𝜎𝑠 𝑚𝑎𝑥 = 𝐶 + |min (𝜎𝑛, 0)| ∙ tan ∅ (3.19) 

where 𝐶 is the interface’s cohesion, ∅ is the interface’s friction angle, and 

min is the minimum between the two terms, meaning that only compressive 

stress is taken into account. The maximum normal stress 𝜎𝑛 𝑚𝑎𝑥 is equal to 

the maximum tensile strength 𝑓𝑡 , which should be predefined initially as one 
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of the model parameters, taking into account the following constraint: 

 𝜎𝑛 𝑚𝑎𝑥 = 𝑓𝑡           𝑎𝑛𝑑          0 ≤  𝑓𝑡  ≤  
𝐶

tan∅
 (3.20) 

When 𝑓𝑡 is null, the interface has no strength in tension, which means the 

two surfaces will instantly separate under any applied tension, resembling a 

contact formulation. 

 

Figure 3.16 Mohr-Coulomb’s failure criterion for the Coulomb’s interface 

model 

In order to observe the interface element behavior under different 

conditions, several simulations are performed on one interface element 

connecting two blocks to each other (Figure 3.17), whose side length is 1 

mm. A certain shearing or normal displacement is applied either in 

compression or in tension and the corresponding applied force is calculated. 

The behavior in the normal direction for Coulomb’s interface model is shown 

Figure 3.18(a). The maximum tensile strength 𝑓𝑡 is taken equal to 3 MPa, the 

cohesion 𝐶 is 3 MPa, the friction angle ∅ is 45°, while the normal stiffness 𝐾𝑛 

and the shear stiffness 𝐾𝑠  are both taken equal to 1011  𝑁 𝑚3⁄ . These 

parameters are only chosen to illustrate graphically the behavior of the 

model in a simple case.  

One can see that the compressive behavior is equivalent to a linear elastic 

spring model with no peak, which is due to the non-existence of failure in 

compression in this model and due to elastic behavior clearly stated in Eq. 

(3.18). Thus, the compressive behavior depends uniquely on the value of the 

normal stiffness 𝐾𝑛. On the other hand, the behavior in tension does not 

only depend on the normal stiffness 𝐾𝑛, but also on the maximum tensile 
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strength 𝑓𝑡 . One can see that the elastic behavior is similar to that in 

compression, and separation failure is captured when the normal stress 

reaches the maximum normal strength 𝑓𝑡 , after which the normal stress 

decreases to zero instantly.  

 

Figure 3.17 Geometric model for the one-interface element simulations 

In addition, the tangential behaviors of the interface model are shown in 

Figure 3.18(b), after performing several simulations on the same interface 

element, by imposing a certain compressive displacement then applying a 

tangential displacement. The parameters are assigned the same values as 

the previous case, except for the friction angle ∅ , which is assigned a 

different value in each simulation; 15°, 30° and 45° .  

Concerning the tangential behavior with initial tensile displacement, one can 

deduce from Eq. (3.19) that imposing an initial tensile displacement will 

reproduce the same response as the pure shearing or tangential case 

without initial imposed normal displacement. By observing Figure 3.18(b), 

one can see that the tangential behavior is different from the exhibited 

behavior in the normal direction. This behavior consists of two parts: a linear 

increase in stress followed by a constant stress. The first part is the elastic 

part, which depends uniquely on the shear stiffness 𝐾𝑠. This behavior ceases 

when the maximum shear stress 𝜎𝑠 𝑚𝑎𝑥 expressed in Eq. (3.19) is reached, 

maintaining a constant stress. This second part depends on the compressive 

stress applied 𝜎𝑛 according to Eq.(3.20), on the cohesion C and the friction 

angle ∅. The residual stress will always be equal to the peak stress, without 

any change in the stress during the post peak behavior, except if 𝜎𝑛 evolves. 
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(a) (b) 

Figure 3.18 For the Coulomb’s interface model: (a) The normal stress versus 

the normal displacement (b) The shear stress versus tangential displacement 

under an imposed compressive displacement and for different values of the 

friction angle ∅ (in degrees) 

3.4.5.2 Tvergaard’s modified cohesive zone model 

A modified version of Tvergaard’s cohesive zone model, which was initially 

presented in (Tvergaard, 2003, 1990), and used in other works such as (Wu 

and Wriggers, 2015), is presented.  

The displacement jump across the interface element ⟦𝑢𝑖⟧ is obtained from 

the displacements 𝑢𝑖
+ and 𝑢𝑖

− of the points located on the top and bottom 

sides of the interface respectively, which are calculated with respect to a 

fixed coordinate system, as follows: 

 ⟦𝑢𝑖⟧ =  𝑢𝑖
+ − 𝑢𝑖

− (3.21) 

where ⟦𝑢𝑛⟧  is the normal displacement jump,  ⟦𝑢𝑡⟧ and ⟦𝑢ℎ⟧ are the two 

tangential displacements jumps. 

A parameter 𝜆  representing the equivalent opening of the interface is 

defined as follows: 
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𝜆 = √〈⟦𝑢𝑛⟧〉+
2 +

⟦𝑢𝑡⟧2 + ⟦𝑢ℎ⟧2

𝛿𝑠
 (3.22) 

〈∙〉+  indicates that the positive displacement jump is only considered. In 

addition, 𝛿𝑠 is the stiffness ratio defined as follows: 

 𝛿𝑠 = 𝐾𝑛 𝐾𝑠⁄  (3.23) 

The damage indicator 𝜆 ̃ is calculated as a function of 𝜆 and of the initially 

assigned damage threshold 𝜆0 parameter: 

 
{
𝜆 ̃ = 𝜆 − 𝜆0                  𝑖𝑓  𝜆 > 𝜆0  𝑎𝑛𝑑    �̇̃� > 0

𝜆 ̃ = 𝑚𝑎𝑥(𝜆�̃�, 0)                                      𝑖𝑓 𝑒𝑙𝑠𝑒 
 (3.24) 

where 𝜆�̃�  represents the previous damage indicator attained, which is 

initially zero, and �̇̃� is the evolution of the damage indicator, which has the 

same sign as 𝜆 ̃ − 𝜆�̃�, and 𝑚𝑎𝑥 represents the maximum between the two 

terms. 

In the elastic part of the model, that is when 𝜆0 > 𝜆, the behavior is governed 

by normal and shear stiffness of the interfaces 𝐾𝑛 and 𝐾𝑠 according to Eq. 

(3.18). 

When there is no propagation of damage, or when the damage is still null, 

the evolution of the damage indicator �̇̃� = 0 and in this case, the normal 

stress 𝜎𝑛 is calculated as follows: 

 

{
𝜎𝑛 =

𝑓𝑡

𝜆 ̃ + 𝜆0
 exp (

−𝑓𝑡  𝜆 ̃

𝐺𝑓
) ⟦𝑢𝑛⟧           𝑖𝑓 ⟦𝑢𝑛⟧ ≥ 0

𝜎𝑛 = 𝐾𝑛⟦𝑢𝑛⟧                                             𝑖𝑓 ⟦𝑢𝑛⟧ < 0

 (3.25) 

where 𝑓𝑡  is the maximum tensile strength of the interface, and 𝐺𝑓  is the 

fracture energy of the interface. Note that in order to maintain continuity of 

the normal stress when damage is null in Eq. (3.25), the normal stiffness 𝐾𝑛 

should be initially defined as follows: 
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 𝐾𝑛 = 𝑓𝑡 𝜆0⁄  (3.26) 

while the tangential stress 𝜎𝑠 in each of the two tangential directions 𝑡 and 

ℎ is calculated as follows: 

 
𝜎𝑠 =

𝑓𝑡

𝜆 ̃+ 𝜆0
 exp (

−𝑓𝑡 𝜆 ̃

𝐺𝑓
)
⟦𝑢𝑠⟧ 

𝛿𝑠
 (3.27) 

Notice that Eqs. (3.25) and (3.27) verify Eq. (3.18) when the damage is null, 

i.e.  𝜆 ̃ = 0, which represents the elastic part of the model. 

On the other hand, when �̇̃� > 0, damage 𝐷𝑖𝑛𝑡 propagates in the interface 

and it is defined as: 

 
𝐷𝑖𝑛𝑡 = 1 −  exp (

−𝑓𝑡 𝜆 ̃

𝐺𝑓
) (3.28) 

In this case, the normal stress is calculated as follows: 

 

{
𝜎𝑛 = (1 − 𝐷𝑖𝑛𝑡)

𝑓𝑡
𝜆
⟦𝑢𝑛⟧ =

𝑓𝑡
𝜆
 exp (

−𝑓𝑡  𝜆 ̃

𝐺𝑓
) ⟦𝑢𝑛⟧      𝑖𝑓 ⟦𝑢𝑛⟧ ≥ 0

𝜎𝑛 = 𝐾𝑛⟦𝑢𝑛⟧                                                                       𝑖𝑓 ⟦𝑢𝑛⟧ < 0

 (3.29) 

while the tangential stress in each direction is calculated as follows: 

 
𝜎𝑠 =

𝑓𝑡
𝜆
 exp (

−𝑓𝑡 𝜆 ̃

𝐺𝑓
)
⟦𝑢𝑠⟧ 

𝛿𝑠
 (3.30) 

In order to understand graphically the behavior of Tvergaard’s cohesive 

zone model, a simulation is done on one-interface element connecting two 

blocks to each other (Figure 3.17). First, a certain normal displacement is 

applied either in compression or in tension with no tangential displacement 

then the corresponding applied force is calculated, and the results are 

shown in Figure 3.19(a). The maximum tensile strength 𝑓𝑡 is taken equal to 
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3 MPa, the fracture energy 𝐺𝑓 is 200 N/m, the damage threshold 𝜆0 is 0.01 

mm, while the normal stiffness 𝐾𝑛  is calculated according to Eq. (3.26) and 

the shear stiffness 𝐾𝑠  is taken equal to it, i.e. 3 × 1011  N/m3. These 

parameters are only chosen to illustrate graphically the behavior of the 

model in a simple case. 

One can see that the behavior is equivalent to an elastic spring model in 

compression, depending uniquely on the value of 𝐾𝑛. However, the behavior 

is different in tension. Before reaching the damage threshold 𝜆0, there is an 

elastic increase of the stress until reaching the peak, which is equivalent to 

the maximum tensile strength 𝑓𝑡 . After reaching the peak stress, damage 

initiates and the normal stress decreases exponentially until reaching zero 

stress, and the area under the curve should be equal to the fracture energy 

𝐺𝑓.  

Second, the tangential responses are shown in Figure 3.19(b), after 

performing several simulations on the same interface element, by imposing 

a certain initial tensile displacement then applying a tangential displacement. 

The same values are maintained for the parameters of the interface model. 

 
 

(a) (b) 

Figure 3.19 For the modified Tvergaard’s interface model: (a) The normal 

stress versus the normal displacement (b) The shear stress versus the 

tangential displacement under an imposed normal positive displacement 

Concerning the tangential behavior with initial imposed compressive 

displacement, one can see from Eq. (3.22) that the equivalent opening 𝜆 
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itself depends on the positive normal displacement only. Thus, any 

compressive displacement applied would not change  𝜆. Additionally, the 

tangential stress 𝜎𝑠 , which is either calculated by Eq. (3.27) or Eq. (3.30), 

depending on the case, is in both equations only affected by 𝜆. As a result, 

𝜎𝑠  is independent of the compressive displacement. Hence, the 

corresponding shear behavior will be the same as the pure shear behavior 

regardless of the value of the compressive displacement initially imposed. 

In case of pure shear, the behavior is similar to the tensile behavior, while 

when a certain tensile displacement is initially imposed on the interface, one 

can see a drop in the peak shear stress. The higher the imposed 

displacement, the lower the peak shear stress. This is due to the propagation 

of damage in the interface before the application of tangential displacement 

for high tensile stresses, because the equivalent opening 𝜆 depends on the 

positive normal displacement according to Eq. (3.22).  

3.5 SMOOTH BAR PULL-OUT TEST SIMULATIONS WITH CLASSICAL INTERFACE 

MODELS 

In order to show the importance of the steel-concrete interface on the 

general behavior of the smooth bar in the pullout test, two simulations are 

performed on the smooth bar sample described in subsection 3.4.2, using 

the two different interface models described in subsection 3.4.5.2 and 3.4.5.1.  

The aforementioned behaviors are introduced using the open source 

MFront code generator (Helfer et al., 2015; MFront, tfel.sourceforge.net), 

then they have been imported to the finite element code Cast3M along with 

the previously generated reinforced concrete model to perform the pull-out 

test simulations. 

The experimental pull-out test results on a smooth bar from (Anwar Hossain, 

2008) are extracted in order to compare it with the numerical results and 

check the validity of the interface models; it uses Portland concrete of 28 

days, whose ultimate compressive strength is almost 31 MPa.  

The damage in the interface may be interpreted as a direct damage of the 

concrete surrounding immediately the bar, since the interface actually 

resembles a concrete layer that is slightly weaker than the concrete block 

and experiencing complex phenomena. Thus, it plays the role of the first 

initial surface of contact of concrete with steel, at which a full damage 

reflects the start of the cracking phenomena in concrete. This shows a direct 
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relation of the interface damage with the concrete volume. 

Table 3.2 Assigned values to the parameters of the Mazars model for concrete 

in the smooth bar pull-out simulations 

𝑬𝒄𝒐𝒏 (𝐆𝐏𝐚) 𝒗𝒄𝒐𝒏 𝒇𝒕 𝒄𝒐𝒏 (𝑴𝑷𝒂) 𝑮𝒇 𝒄𝒐𝒏 (𝑵 𝒎⁄ ) 

𝟐𝟓 0.2 2.5 120 

𝜺𝑫𝟎   𝑨𝒄  𝑩𝒄  𝜷 

Eq. (3.7) ⇛ 𝟏𝟎−𝟒 Eq. (3.16) Eq. (3.17) 1.06 

In the two simulations performed using the aforementioned interface 

models, steel is assigned the perfect yield model as described in subsection 

3.4.4, and concrete is assigned Mazars model with all the modifications 

described before in section 3.4.3. The values of the parameters for concrete 

are summarized in Table 3.2, and the values of the parameters assigned for 

each of the two interface models are shown in Table 3.3. These values are 

chosen in a way that they do not exceed the material properties of the 

surrounding concrete, since the interface resembles a less stiff concrete layer. 

The friction coefficient of the steel-concrete interface is considered 0.3, 

according to (Wang and Liu, 2004; Xu et al., 1994), while 𝐾𝑛 is calculated 

from Eq. (3.26). Parameters, like 𝐾𝑠 , are adjusted to produce parts of the 

experimental curve, since the aim here is to check the ability of any of the 

models to reproduce the general behavior. The mean bond stresses versus 

the free end displacement, which is the displacement measured at the free 

end of the steel bar, are plotted Figure 3.20 for the two simulations along 

with the experimental results. 

One can see that the cohesive zone model is able to reproduce the peak 

stress along with the general post peak behavior, but not a non-null residual 

stress. On the contrary, Coulomb’s interface model shows a different 

behavior, by maintaining an equivalent peak and residual stresses. This is 

related also to the shear stress formulas that ensure such behavior. One can 

see that both results are very similar to the behavior of the interface model 

under pure shearing or shearing with compression shown in Figure 3.19(b) 

and Figure 3.18(c). This is due to the smooth shape of the rebar where 
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shearing dominates, and the low value of normal stresses. Additionally, no 

visible damage can be seen in concrete in both cases. This can be explained 

by the slipping failure that occurs in both cases, which is reflected in the full 

damage of the interface for the CZM that had obviously failed due to 

shearing. 

Table 3.3. Assigned values to the parameters of the Tvergaard’s CZM and 

Coulomb’s interface model in the smooth bar pull-out simulations 

Tvergaard’s 

modified 

CZM 

𝑲𝒏 (𝐍/𝒎𝟑) 𝑲𝒔 (𝐍/𝒎𝟑) 𝒇𝒕 (𝑴𝑷𝒂) 𝑮𝒇 (𝑵 𝒎⁄ ) 𝝀𝟎(𝒎) 

3.6 × 1010 4.5 × 1010 1.8 80 5 × 10−5 

Coulomb’s 

interface 

model 

𝑲𝒏 (𝐍/𝒎𝟑) 𝑲𝒔 (𝐍/𝒎𝟑) 𝒇𝒕 (𝑴𝑷𝒂) 𝑪 (𝑴𝑷𝒂) ∅(°) 

3.6 × 1010 4.5 × 1010 1.8 1.8 17 

 

 

Figure 3.20 Numerical results of the two simulations using Tvergaard’s CZM 

and Coulomb’s interface model, compared to the experimental results 

extracted from (Anwar Hossain, 2008) 

Based on the general experimental behavior, and due to the existence of a 
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very small compressive stress, one can conclude that the smooth bar 

behavior is a direct reflection of the shearing behavior with (low) 

compression of the interface model. For the CZM, the disadvantage of this 

model in this case is the non-existence of any effect of compression on the 

shearing phenomenon, which leads always to zero residual shear stress. Still, 

an important advantage is the non-linear decrease of stress and the use of 

damage to represent the cracking in the interface, which is as stated before, 

a continuation of the surrounding concrete. On the other hand, an 

advantage of Coulomb’s interface model is the constant none zero residual 

stress observed. However, this model does not contain damage and the 

residual stress is always close to the peak stress. Thus, a combination of both 

models is to be proposed, in order to take into account these advantages of 

both interface models. 

3.6 CONCLUSIONS 

In this chapter, the generation process of the pullout numerical samples was 

detailed, including the generation of the steel bar, the aggregates and the 

surrounding mortar or concrete, followed by the final applied mesh.  

This generation procedure, which was previously used in other studies to 

represent coarse aggregates, can give a very good 3D representation of the 

reinforced concrete sample at the mesoscopic scale. It can capture the 

detailed geometry of the steel bar, especially the detailed shape of the ribs. 

A fine mesh can be used, which is essential for the purpose to study the 

distribution of cracks and stresses near the steel further on in this study. The 

mesh is certainly much more complicated when coarse aggregates are used, 

since they will control the meshing procedure. This certainly makes the 

simulations times consuming, but is still essential at such mesoscopic scale. 

Linear simulations were performed on a smooth and a herringbone ribbed 

bar in order to study the stiffness parameters involved in the linear spring 

model in subsection 2.4.1.2. The study has proved the domination of the 

normal stiffness at the sides of the ribs, mobilizing the resistance in the 

normal direction, while the shear stiffness controls at the cylindrical part and 

the tips of the steel ribs, resembling the resistance in the direction parallel 

to the surfaces that is affected by shearing forces.  

The last part of the chapter dealt with nonlinear simulations using non-linear 

model for concrete, steel and the steel-concrete interface. For concrete 

model, Mazars classical model and its regularization in tension was 
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presented, along with the proposed modification in compression. It is 

essential to prevent the mesh dependency of the concrete model. 

The inability of the corresponding behaviors of Tvergaards cohesive zone 

model and Coulomb’s frictional model, which were introduced in this 

chapter, to reproduce the experimental results of pull-out test extracted 

from literature was shown on a smooth bar sample. As expected and seen 

in Figure 3.20, the smooth bar pull-out test is directly affected by the 

interface model, as it reproduces the shearing behavior of the interface. This 

can be justified by the smooth shape of the bar experiencing very low 

normal stress, and where shearing behavior dominates. This justifies the 

need to propose a new model that combines the advantages of both 

cohesive zone and frictional models, in order to be able to reproduce the 

experimental behavior correctly. 

The next chapter deals with the implementation of a frictional cohesive zone 

model, and includes simulations using a smooth bar compared to 

experimental results. In addition, the calibration of the proposed interface 

model is detailed. 
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4 DEVELOPMENT OF A NEW FRICTIONAL COHESIVE ZONE MODEL  

4.1 INTRODUCTION 

This chapter deals with the development and implementation of a new 

frictional cohesive zone model, named FCZM in the following chapters, and 

the calibration process of the model parameters using both smooth and 

ribbed bars. 

It has been demonstrated in section 3.5 that classical approaches for the 

steel-concrete interface cannot correctly reproduce the general behavior of 

pull-out test. Thus, a new interface model should be implemented, which 

combines the advantages of the classical interface models introduced in 

susbections 3.4.5.1 and 3.4.5.2. Hence, the new frictional cohesive zone 

model proposed is a combination of an elastoplastic model, which is the 

Coulomb’s frictional model (subsection 3.4.5.1), and a damage-based 

cohesive approach, which is the Tvergaard’s cohesive zone model 

(subsection 3.4.5.2). It is based mainly on what was initially proposed by 

(Alfano and Sacco, 2006) as a 2D model, as part of frictional cohesive zone 

approaches discussed in subsection 2.4.2.4. According to (Alfano and Sacco, 

2006), the cohesive crack propagation phenomena, which are governed by 

nonlinear fracture mechanics, can be modelled at a meso-mechanical level 

by assuming that a representative elementary area 𝐴 of the interface can be 

decomposed into an undamaged part (1 − 𝐷𝑖𝑛𝑡)𝐴  and a completely 

damaged part 𝐷𝑖𝑛𝑡𝐴 , with the damage parameter 𝐷𝑖𝑛𝑡  being the relative 

measure of the damaged part (Figure 4.1). 

 

Figure 4.1 Meso-mechanical interpretation of the cohesive frictional interface 

model showing the decomposition of the representative interface element and 

the kinematic assumptions, based on (Alfano and Sacco, 2006) 

In this model, which was generalized to a 3D approach in (Albarella et al., 

2015; Roberto Serpieri et al., 2017; R. Serpieri et al., 2017), damage evolves 

based on Crisfield’s bilinear damage model presented in (Alfano and 
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Crisfield, 2001), while the frictional behavior is governed by a Coulomb’s law.  

Recently, (Jaaranen and Fink, 2021) used this 2D model to represent the 

contact between timber and concrete by varying the friction coefficient. 

Here, the approach initially proposed in (Albarella et al., 2015; Alfano and 

Sacco, 2006) is extended by using the Tvergaard’s cohesive zone model, 

along with certain modifications in compression to maintain continuity of 

stress when there is a sudden change in the type of stress, for describing the 

undamaged stress at the interface. The choice is made following the 

introduction of this interface model in subsection 3.4.5.2 and its application 

in section 3.5. Tvergaard’s model has shown that it can give a better general 

behavior for the smooth case, when compared to Crisfield’s model in 

(Serpieri and Alfano, 2011), except for the residual stress which is almost 

zero. 

In the next part of the chapter, the calibration process is discussed with both 

the smooth and ribbed bar cases using the newly implemented FCZM, by 

comparing the corresponding results to experimental data for each case, 

followed by a verification of the method on another ribbed bar sample. In 

the last part, the results are finally analyzed in terms of damage and 

distributions of principle stresses. 

4.2 THE FRICTIONAL COHESIVE ZONE MODEL 

4.2.1 Description and formulation 

In this section, a 3D interface model is proposed and detailed, based on the 

existence of a predefined interface of zero thickness between two 

volumetric elements, and on the possibility of a displacement jump across 

the interface element, as shown in Eq. (3.21). The frictional cohesive zone 

model proposed is a combination of a damage-based cohesive approach, 

which plays a role whenever the interface is not fully damaged, and an 

elastoplastic model that occurs whenever damage is initiated, and 

eventually fully controls the interface stress when the interface is fully 

damaged. 

The initial frictional cohesive zone model proposed in 2D by (Albarella et al., 

2015; Alfano and Sacco, 2006) used Crisfield’s bilinear model (Alfano and 

Crisfield, 2001). Here by, as mentioned above it is modified using the 

Tvergaard’s cohesive zone model for describing the undamaged stress at 

the interface. A modification is proposed in compression to prevent any 
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discontinuity of the stress when the nature of normal stress is reversed from 

tension to compression and vice versa. In contrary to Crisfield’s model, 

Tvergaard’s CZM is adopted due to its more realistic post-peak behavior, 

and to prevent reaching a null stress, which may lead to some numerical 

problems. 

The model is implemented using the open source MFront code generator 

(Helfer et al., 2015), then it has been imported to the finite element code 

Cast3M to perform the pull-out test simulations. 

Similarly to (Alfano et al., 2006; Alfano and Sacco, 2006), the element is 

divided into an undamaged part 𝐴𝑢, where the interface is fully bonded, and 

a damaged part 𝐴𝑑 , where frictional contact takes place. This can be written 

as shown in Figure 4.1, where 𝐴  is the area and 𝐷𝑖𝑛𝑡  is the damage 

parameter of the interface element. In addition, the relative displacement 𝑢 

is assumed completely constant over the whole interface element, and the 

relative displacement in the damaged part 𝑢𝑑  is divided into an elastic 

displacement 𝑢𝑑𝑒  and an inelastic displacement 𝑢𝑑𝑖 in the tangential 

direction only, since there is no contact in this part under tension. Moreover, 

the relative displacement of the undamaged part 𝑢𝑢 is assumed to be fully 

elastic and equal to the elastic displacement of the undamaged part 𝑢𝑢𝑒 .  

The interface total stress 𝜎 is supposed to be constant on each part. The 

stress on the undamaged part of the interface is denoted by 𝜎𝑢, while the 

stress on the damaged part of the interface is denoted by 𝜎𝑑 .  

Total stress 𝜎: 

The total stress 𝜎 is calculated according to the following additive formula: 

 𝜎 =  𝐷𝑖𝑛𝑡𝜎
𝑑 + (1 −  𝐷𝑖𝑛𝑡)𝜎

𝑢 (4.1) 

Damaged part stress 𝜎𝑑 : 

For the damaged part, the law deployed is considered as a perfect plastic 

behavior as there is no hardening. The normal part complies a unilateral 

elastic law, while a non-associative Coulomb’s frictional law with tangential 

sliding (Simo and Hughes, 1998) is assigned to the tangential part. Hence, 

the displacement is decomposed, as previously mentioned, into an elastic 

displacement 𝑢𝑑𝑒  and an inelastic displacement 𝑢𝑑𝑖 , in which the inelastic 
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part is fully tangential. 

Taking into account that there is no contact in this part under tension, the 

stress of the damaged part of the interface 𝜎𝑑  is related to the elastic 

displacement 𝑢𝑑𝑒 as follows: 

 𝜎𝑑 = 𝐻𝑢𝑑𝑒 = 𝐻(𝑢‐𝑢𝑑𝑖) (4.2) 

where 𝐻 is defined as: 

𝐻= 𝑑𝑖𝑎𝑔 [(1 − 𝑣(𝑢𝑛 − 𝑢𝑛
𝑑𝑖))𝐾𝑛, 𝐾𝑠, 𝐾𝑠]

= (
(1 − 𝑣(𝑢𝑛))𝐾𝑛 0 0

0 𝐾𝑠 0
0 0 𝐾𝑠

) 
(4.3) 

where 𝑑𝑖𝑎𝑔[𝑀] represents the terms on the diagonal of the matrix M. 

Since the normal inelastic displacement un
di  is always null, and 𝑣 is the 

Heaviside function defined as: 

 𝑣(𝑥) =  {
0 𝑖𝑓 𝑥 ≥ 0
1 𝑖𝑓 𝑥 < 0

 (4.4) 

Thus, the term (1 − v(un)) is null when un ≥ 0 , because it is a no tension 

relation by definition, and it is equal to 1 when un < 0, representing the 

compressive behavior. 

The inelastic displacement 𝑢𝑑𝑖  represents the inelastic sliding that has 

occurred on the damaged part of the interface element. It is described in 

the framework of non-associated elastoplasticity as in (Alfano and Sacco, 

2006) and (Simo and Hughes, 1998) by introducing a Coulomb yield friction 

function 휁(𝜎𝑑): 

휁(𝜎𝑑) = 𝜇 ∙ 〈𝜎𝑑𝑛〉− +√(𝜎𝑑𝑡)2 + (𝜎𝑑ℎ)2 = 𝜇 ∙ 𝜎𝑑𝑛 +√(𝜎𝑑𝑡)2 + (𝜎𝑑ℎ)2 (4.5) 

where 𝜎𝑑𝑛 is the normal stress in the damaged part and 𝜎𝑑𝑡 and 𝜎𝑑ℎ are the 
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two shear stresses in the damaged part in the two tangential directions 𝑡 

and ℎ. 𝜇 is the friction coefficient and 〈∙〉− represents the negative part of 

the stress. The second equation is always true since 𝜎𝑑𝑛 is always negative 

in accordance with Eqs. (4.2), (4.3) and (4.4) . 

The evolution of �̇�𝑑𝑖 is controlled by a non-associative relationship, which is 

expressed using a nonnegative plastic multiplier 𝜔 , which is a common 

choice in computational inelasticity (Simo and Hughes, 1998), according to 

the formula: 

 

�̇�𝑑𝑖 = �̇�

(

  
 

0
𝜎𝑑𝑡

√(𝜎𝑑𝑡)2 + (𝜎𝑑ℎ)2

𝜎𝑑ℎ

√(𝜎𝑑𝑡)2 + (𝜎𝑑ℎ)2)

  
 

 (4.6) 

by considering Kuhn–Tucker conditions (Kuhn and Tucker, 1951) and in 

order to take into account the irreversible nature of frictional sliding: 

 

{

  �̇� ≥ 0                (𝟏)

  휁(𝜎𝑑) ≤ 0        (𝟐)

 �̇� 휁(𝜎𝑑) = 0     (𝟑)

  (4.7) 

By using Eqs.(4.6) and (4.7), the inelastic displacement 𝑢𝑑𝑖 can be calculated 

via the following procedure. The time interval is decomposed into a 

sequence of time increments by using a Newton-Raphson solution scheme. 

Let (∙)𝜏  and (∙)𝜏+∆𝜏  denote the values of the variable (∙) at the beginning 

and at the end of timestep. The aim is to calculate 𝑢𝑑𝑖𝑡
𝜏+∆𝜏 and 𝑢𝑑𝑖ℎ

𝜏+∆𝜏, which 

are the tangential inelastic displacements of the damaged part of the 

interface in the two directions 𝑡 and ℎ. At the time step 𝜏 + ∆𝜏, 𝑢𝜏 and 𝑢𝜏+∆𝜏 

are known variables, and so are the previously calculated variables 𝑢𝑑𝑖𝑡
𝜏  and 

𝑢𝑑𝑖ℎ
𝜏 , which is 𝑢𝑑𝑖

𝜏 . Eventually, the equations to be solved are the following: 
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𝑢𝑑𝑖
𝜏+∆τ = 𝑢𝑑𝑖

𝜏 + ∆𝜔𝜏

(

 
 
 
 
 

0
𝜎𝑑𝑡
τ+∆τ

√(𝜎𝑑𝑡
τ+∆τ)2 + (𝜎𝑑ℎ

τ+∆τ)2

𝜎𝑑ℎ
τ+∆τ

√(𝜎𝑑𝑡
τ+∆τ)2 + (𝜎𝑑ℎ

τ+∆τ)2
)

 
 
 
 
 

 
(4.8) 

 ∆𝜔𝜏 ≥ 0 
(4.9) 

 
𝜇 ∙ 𝜎𝑑𝑛

τ+∆τ +√(𝜎𝑑𝑡
τ+∆τ)2 + (𝜎𝑑ℎ

τ+∆τ)2 ≤ 0 (4.10) 

 
∆𝜔𝜏 (𝜇 ∙ 𝜎𝑑𝑛

τ+∆τ +√(𝜎𝑑𝑡
τ+∆τ)2 + (𝜎𝑑ℎ

τ+∆τ)2) = 0 
(4.11) 

First, an elastic prediction is calculated, by using the previous inelastic 

displacement according to the equation: 

 𝜎𝑑𝑒
𝜏 = Hτ+∆τ(uτ+∆τ−𝑢di

τ ) 
(4.12) 

Then, a trial value of the yield function 휁(𝜎𝑑𝑒
𝜏+∆τ) is calculated, leading to two 

cases : 

 If 휁(𝜎𝑑𝑒
𝜏+∆τ) is negative in accordance with Eq. (4.10), then there is no 

evolution of the inelastic variables.  Thus, �̇� = 0, and so the new val-

ues of the variables are calculated according to Eqs. (4.2) and (4.8) as 

follows: 

 𝑢𝑑𝑖
𝜏+∆τ = 𝑢𝑑𝑖

𝜏  

𝜎𝑑
𝜏+∆τ = Hτ+∆τ(uτ+∆τ − 𝑢𝑑𝑖

𝜏+∆τ) 
(4.13) 

 if 휁(𝜎𝑑𝑒
𝜏+∆τ) is positive, then ∆𝜔𝜏 should be strictly positive, or else 

𝑢𝑑𝑖
𝜏+∆τ = 𝑢𝑑𝑖

𝜏  according to Eq. (4.8), resulting in a positive yield func-

tion, contrary to Eq. (4.10). Thus, Eq. (4.11) will be fulfilled when 

휁(𝜎𝑑
𝜏+∆τ) = 0 . After some development, the following solution is 

reached: 

 
∆𝜔 =

1

𝐾𝑠
( 휁(𝜎𝑑𝑒

𝜏+∆τ)) =
1

𝐾𝑠
(𝜇 ∙ 𝜎𝑑𝑒𝑛

τ+∆τ +√(𝜎𝑑𝑒𝑡
τ+∆τ)2 + (𝜎𝑑𝑒ℎ

τ+∆τ)2) 
(4.14) 

 𝜎𝑑𝑛
τ+∆τ = 𝜎𝑑𝑒𝑛

τ+∆τ 
(4.15) 
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𝜎𝑑𝑡
τ+∆τ = −𝜇 ∙ 𝜎𝑑𝑒𝑛

τ+∆τ
𝜎𝑑𝑒𝑡
τ+∆τ

√(𝜎𝑑𝑒𝑡
τ+∆τ)2 + (𝜎𝑑𝑒ℎ

τ+∆τ)2
 

(4.16) 

 
𝜎𝑑ℎ
τ+∆τ = −𝜇 ∙ 𝜎𝑑𝑒𝑛

τ+∆τ
𝜎𝑑𝑒ℎ
τ+∆τ

√(𝜎𝑑𝑒𝑡
τ+∆τ)2 + (𝜎𝑑𝑒ℎ

τ+∆τ)2
 

(4.17) 

These equations are used to calculate the inelastic displacement 𝑢𝑑𝑖 

according to Eq. (4.8), then 𝜎𝑑 according to Eq. (4.2). 

Undamaged part stress 𝜎𝑢: 

Tvergaard’s cohesive zone model is used here to represent the stress in the 

undamaged part of the interface, with some additional modifications 

applied in order to take into account the non-linear behavior, especially 

under compression. On contrary to Crisfield’s model where the damage 

evolution is linear in tension, Tvergaard’s model has an exponential 

evolution that is believed to be more realistic in particular in the smooth bar 

case which reflects the evolution of the interface model, as previously seen. 

In addition, as mentioned no zero stress is reached finally, which prevents 

the occurrence of convergence problems in the numerical solving process. 

The parameter 𝜆 representing the equivalent opening of the interface is 

defined according to Eq. (3.22) and the stiffness ratio 𝛿𝑠 is defined according 

to Eq. (3.23). The damage indicator 𝜆 ̃ is also calculated based on Eq. (3.24), 

while the damage variable𝐷𝑖𝑛𝑡 is determined as follows:  

 
𝐷𝑖𝑛𝑡 = 1 −  exp(

−𝑓𝑡 𝜆 ̃

𝜍 𝐺𝑓
) (4.18) 

where 𝜍  is a non-zero correcting coefficient to be assigned,  𝑓𝑡  is the 

maximum tensile strength of the interface and 𝐺𝑓 is the fracture energy. 

In addition, the normal stiffness 𝐾𝑛 is defined according to Eq. (3.26). 

The undamaged part stress 𝜎𝑢 is calculated based on the following equation: 

 𝜎𝑢 = 𝛤𝛫𝑢 (4.19) 
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𝜎𝑢 = (

𝜎𝑢𝑛
𝜎𝑢𝑡
𝜎𝑢ℎ

)   ;    𝛤 = (𝛽 𝛼 𝛼)   ;    𝛫 = (

𝐾𝑛 0 0
0 𝐾𝑠 0
0 0 𝐾𝑠

)     

;    𝑢 = (

𝑢𝑛
𝑢𝑡
𝑢ℎ
) 

This can be simplified as: 

 {
𝜎𝑢𝑛 = 𝛽𝐾𝑛𝑢𝑛
𝜎𝑢𝑠 = 𝛼𝐾𝑠𝑢𝑠

 (4.20) 

where 𝑠 represents the two tangential directions 𝑡 and ℎ.  

The two coefficients 𝛼 and 𝛽 are introduced in order to reflect the damaged 

and non-damaged cases, and to try to represent a more logical behavior of 

the shear stress under compression. In Tvergaard’s modified cohesive zone 

model, shearing with initial compression is the same as the pure shearing 

case. Here instead, it is modified to produce a stiffer response when 

compression is applied, which seems realistic since a higher effort is in 

general needed to shear when this certain surface is under compression. 

The coefficient 𝛽 is defined as follows: 

 

{
 
 

 
 
     𝛽 = 1                                       𝐹𝑜𝑟  𝐷𝑖𝑛𝑡 = 0  𝑎𝑛𝑑    ∀   𝜎𝑑𝑛      

   𝛽 =  
𝜆0
𝜆
                                    𝐹𝑜𝑟  𝐷𝑖𝑛𝑡 ≠ 0   𝑎𝑛𝑑     𝜎𝑑𝑛 ≥ 0

𝛽 = exp(
𝑓𝑡  𝜆 ̃

𝜍 𝐺𝑓
)                     𝐹𝑜𝑟  𝐷𝑖𝑛𝑡 ≠ 0   𝑎𝑛𝑑    0 ≥ 𝜎𝑑𝑛

 (4.21) 

while the coefficient 𝛼 is defined as follows: 
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{
 
 
 
 

 
 
 
 
       𝛼 =  1                                       𝐹𝑜𝑟  𝐷𝑖𝑛𝑡 = 0    𝑎𝑛𝑑    ∀   𝜎𝑑𝑛          

𝛼 =
𝜆0
𝜆
                                          𝐹𝑜𝑟  𝐷𝑖𝑛𝑡 ≠ 0   𝑎𝑛𝑑   𝜎𝑑𝑛 ≥ 0

 𝛼 =

𝜆0
𝜆
+ 𝐷 − 1

𝛾
𝜎𝑑𝑛 +

𝜆0
𝜆
          𝐹𝑜𝑟  𝐷𝑖𝑛𝑡 ≠ 0   𝑎𝑛𝑑   0 ≥ 𝜎𝑑𝑛 ≥ 𝛾 

𝛼 = 1 − 𝐷 =  exp (
−𝑓𝑡 𝜆 ̃

𝜍 𝐺𝑓
)        𝐹𝑜𝑟 𝐷𝑖𝑛𝑡 ≠ 0   𝑎𝑛𝑑  𝛾 ≥ 𝜎𝑑𝑛

 (4.22) 

where 𝜎𝑑𝑛 is the normal stress in the damaged part of the interface that is 

calculated using Eqs. (4.2) and (4.3). 𝛾 is a stress value, taken -1 MPa in here, 

but it can be changed. It is a small value chosen in order to maintain 

continuity of stress when the displacement changes from positive to 

negative or the opposite, preventing any kind of sudden drop in stress and 

preserving the smooth continuity of stress, which will be shown clearly 

below.  

Note that the three values of 𝛽 in Eq. (4.21) are introduced so that the term 

(1 −  𝐷𝑖𝑛𝑡)𝜎𝑢𝑛  is equal to Tvergaard’s normal stresses 𝜎𝑛  defined in Eqs. 

(3.25) and (3.29) when 𝜍 = 1. The first two values of 𝛼 in Eq. (4.22) are also 

chosen so that the term (1 −  𝐷𝑖𝑛𝑡)𝜎𝑢𝑠  is equal to the Tvergaard’s shear 

stresses 𝜎𝑠  defined in Eqs. (3.27) and (3.30), except when the element is 

under normal compressive stress. Here, the proposed modification to 

Tvergaard’s 𝜎𝑠 is in the fourth value, which gives a stiffer response when 

there exists a compressive stress. In addition, the third value is assigned in 

order to maintain continuity between the second and the fourth case, when 

there is a change in the direction of the displacements, to prevent a sudden 

drop in stress. 

Eventually, the new 3D zero thickness frictional cohesive zone interface 

model introduced has combined the Tvergaard’s damage-based cohesive 

zone approach that plays a role whenever the interface is not fully damaged, 

and an elastoplastic model that is Coulomb’s frictional model, which occurs 

whenever damage is initiated, and finally controls utterly the interface stress 

when the interface element is entirely damaged. The input parameters and 

coefficient that are used in this model, and have to be calibrated, are listed 

in Table 4.1. 
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Table 4.1 List of input parameters and coefficients of the newly implemented 

FCZM 

Symbol Unit Description 

𝜹𝒔 − Stiffness ratio of the interface element 

𝒇𝒕 𝑴𝑷𝒂 Ultimate tensile stress of the interface element 

𝑮𝒇 𝑵 𝒎⁄  Fracture energy of the interface element 

𝝀𝟎 𝒎 Initial damage threshold of the interface element 

𝝁 − Friction coefficient 

𝝇 − Correcting coefficient for the softening behavior 

4.2.2 Validation of the implemented model  

In order to verify the implementation of the FCZM, several simulations are 

performed on one interface element connecting two blocks to each other 

(Figure 3.17), whose side length is 1 mm, in order to observe the interface 

element behavior under different conditions. The values assigned to the 

parameters of FCZM described above in these one-element simulations are 

shown in Table 4.2. Additionally, the coefficient 𝜍 defined in Eq. (4.18) is 

taken equal to 1. The choice is only to show the different aspects of the 

model, but it will be calibrated and related to the material parameters in the 

next section. 

Table 4.2 Assigned values to the parameters of the FCZM in the one-joint 

element simulations 

𝜹𝒔 𝒇𝒕 (𝑴𝑷𝒂) 𝑮𝒇 (𝑵 𝒎⁄ ) 𝝀𝟎(𝒎) 𝝁 

𝟏 3 300 2 × 10−5 0.4 

Comparing the frictional cohesive zone model and Tvergaard’s cohesive 

zone model described in subsection 3.4.5.2 in Figure 4.2(a), one can see that 

the behavior in tension reflects purely the behavior of the Tvergaard’s model, 

and so does the behavior in compression. Obviously, friction in pure tension 
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or compression plays no role. Thus, the Tvergaard’s cohesive zone model is 

totally reflected in the overall results. The tangential behavior is also 

investigated by performing several simulations on the same interface 

element. A certain normal stress, either tension or compression, is initially 

imposed then a tangential displacement is applied. The corresponding 

tangential displacements and applied shear stresses are recorded, and 

plotted as shown in Figure 4.2(b) and Figure 4.2(c). 

Similarly to the tensile case, the pure shear case shown in Figure 4.2(b) 

reflects Tvergaard’s model pure shear case. This is also the case when a 

certain tensile stress is initially imposed.  

To sum up, one can see that in case of pure tension, pure compression, and 

pure shear and shearing with initial tension, friction has no role, and 

Tvergaard’s modified model is entirely reflected by the FCZM model. This 

can be inferred from the values 𝛽 and 𝛼 defined in Eqs. (4.21) and (4.22), 

respectively.  

On the other hand, the behavior when shearing with initial compression is 

different and more complex. The peak stress goes beyond 𝑓𝑡 when there is 

an initial compression 𝜎𝑁 , and keeps increasing whenever the initial 

compressive stress is increased. This can be observed in Figure 4.2(b), and 

in Figure 4.2(c) where higher compressive stresses are imposed. In addition, 

the residual stress is equal to |𝜇 𝜎𝑁|. One can see that for high compressive 

stresses like -20 MPa, the peak stresses is similar to the residual stress, which 

is similar to the behavior captured when using Coulomb’s interface model 

described in subsection 3.4.5.1. This shows the transition from the 

Tvergaard’s modified cohesive zone model to a more frictional model like 

Coulomb’s interface model as the imposed compressive stress increases. 

This behavior is in accordance with what is numerically observed using 

Crisfield’s damage model in (Albarella et al., 2015). 

Figure 4.3 shows the two terms that form the total shear stress. As discussed 

before, one can see that the shear stress of the undamaged part of the 

interface behaves like a cohesive zone model, while the shear stress of the 

damaged part of the interface behaves like a frictional model, with a 

nonlinear initial increase, unlike Coulomb’s interface model behavior. 
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(a) (b) 

 

(c) 

Figure 4.2 (a) Normal stress versus normal displacement for FCZM and CZM 

(b) Shear stress versus tangential displacement for the FCZM and CZM under 

different imposed normal stresses (c) Shear stress versus tangential 

displacement for the FCZM under different imposed compressive stresses 
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Figure 4.3 Total shear stress, damaged part’s shear stress and undamaged 

part’s shear stress versus tangential displacement for the frictional cohesive 

zone model under -3 MPa compressive stress 

The damage evolutions of the interface element under different initial 

tensile imposed displacements are shown in Figure 4.4, including the pure 

case without initial imposed displacement. Recall that damage does not 

evolve under pure compression, so the damage evolution under initial 

compression is the same as the evolution in the case without any initial 

imposed displacement. One can see that the evolution is non-linear, which 

is because of the exponential evolution used in Tvergaard’s model. The 

initial value of damage is related to the state of the interface before the 

application of the shear loading. 

 

Figure 4.4 Damage evolution for the frictional cohesive zone model in pure 

shearing mode and in shearing preceded by different initial tensile imposed 

displacements 
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Moreover, a couple of simulations are performed to verify the continuity of 

the shear stress under a varied normal stress, using the same data from 

Table 4.2.  

The first simulation is performed by imposing a certain initial compressive 

displacement, then applying a shear displacement as previously done, until 

reaching a certain tangential displacement, at which no additional shearing 

is applied. At this point, the tangential displacement is fixed, and the 

imposed compressive displacement is reversed gradually until reaching a 

certain positive tensile displacement. The detailed results are shown in 

Figure 4.5. 

The imposed normal and tangential displacements are plotted in Figure 

4.5(a) as function of the different stages, named in the time order: O, A, B, 

C, D, E and F. The shear stresses versus the tangential and normal 

displacements are plotted in Figure 4.5(b) and Figure 4.5(d) respectively, and 

the normal stress versus the normal displacement in Figure 4.5(c). 

The behavior captured in Figure 4.5(b) is expected, based on the description 

of the simulation. The first part of the curve (from the origin point O to C) is 

identical to those of the simulations previously performed, without reversing 

the normal stress (Figure 4.2(b) and Figure 4.2(c)). In the second part (C to 

F), the tangential displacement is fixed; the shear stress will decrease when 

reversing the normal displacement from compression to tension. This 

explains the vertical line observed, which represents a continuous and linear 

decrease of the shear stress. 

In Figure 4.5(c), the compressive displacement is linearly applied until 

reaching -0.02 mm (curve OA), and then a shearing is applied. This cannot 

be viewed as a curve on the Figure, as the normal stress is fixed and the 

normal displacement is not being changed (point AB and BC). Thus, the 

entire shearing process is represented by the point (-0.02 mm; -3 MPa). After 

that, the shear displacement is fixed, and the normal displacement is 

reversed gradually by taking the same path used initially when the 

compressive displacement was applied (curves CD and DE). When normal 

displacement becomes positive (curve EF), the behavior will be similar to the 

non-linear behavior previously obtained, but without an initial elastic 

behavior like the one obtained in Figure 4.2(a). This is because the interface 

is already damaged, since the tangential displacement reached is equal to 

0.1 mm, while the damage threshold 𝜆0  is equal to 0.02 mm. This also 

explains the lower peak stress obtained. 
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(a) 

  

(b) (c) 

  

(d) 

Figure 4.5 Results for FCZM under an initial imposed compressive 

displacement -0.02 mm with shearing followed by the application of tensile 

displacement: (a) normal and tangential imposed displacement at the 

different stages from O to F; (b) shear stress versus tangential displacement; 

(c) normal stress versus normal displacement; (d) shear stress versus normal 

displacement  
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In Figure 4.5(d), one can see the effect of the different values of the 

coefficient 𝛼. In the first simulation, -0.02 mm compressive displacement is 

initially imposed (curve OA), then shearing is applied, which is represented 

by the vertical line AB, reaching a shear peak stress equal to around 4.5 MPa, 

then decreasing until 3.7 MPa (curve BC) as in Figure 4.5 (b). At this point, 

the shear displacement is fixed, and the normal displacement is gradually 

reversed. The shear stress starts decreasing linearly with a constant slope 

(curve CD), until reaching a specific compressive displacement which is 

equivalent to 1MPa compressive stress, at which the slope changes (curve 

DE). This is because 𝛼  changes from the fourth case to the third case 

according to the different conditions in Eq. (4.22). The linear behavior 

changes to a nonlinear behavior taking the second value for 𝛼  when the 

normal displacement becomes positive (curve EF). From here on, the 

behavior is expected, as the interface is already damaged, and the shear 

stress will decrease to zero.  

The choice of the third case for 𝛼 in Eq. (4.22) can be justified in here, as if 

this case does not exist, the shear stress will keep decreasing linearly (curve 

CD) with the same slope until reaching zero normal displacement, hence 

omitting curve (DE). Thus, the curve will be discontinuous at this point, since 

the shear stress will drop instantly in accordance with the second value that 

𝛼 takes under tension. 

In the same manner, a second simulation is performed in a way that an initial 

tensile stress is imposed, and then a shearing displacement is applied, until 

reaching a certain tangential displacement, at which no additional shearing 

is applied. Then, the tangential displacement is fixed, and the imposed 

tensile stress is reversed gradually until reaching a certain compressive 

stress. The detailed results are shown in Figure 4.6. The imposed normal and 

tangential displacements are plotted in Figure 4.6 (a) as function of the 

different stages, named in the time order from o to f, and the shear stresses 

versus the tangential and normal displacements in Figure 4.6 (b) and Figure 

4.6 (d) accordingly. Likewise the first simulation, this simulation acts in the 

same way, and the different values of 𝛼 are reflected directly on the behavior. 

The whole behavior is verified to be continuous.  



 

85 

 
(a) 

 
(b) 

  
(c) 

Figure 4.6 Results for FCZM under an initial imposed tensile displacement of 

0.02 mm with shearing followed by the application of compressive 

displacement: (a) normal and tangential imposed displacement at the 

different stages from o to f ; (b) shear stress versus tangential displacement; 

(c) shear stress versus normal displacement 
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4.3 CALIBRATION OF THE IMPLEMENTED FCZM 

We describe in this section the main aspects related to the identification 

procedure of parameters of the FCZM, listed in Table 4.1, based on pull out 

test simulation results with smooth and ribbed bars. 

4.3.1 Verification and calibration using the smooth bar sample 

4.3.1.1 General description and generated sample 

In order to verify the functionality of the newly implemented frictional 

cohesive zone model developed in section 4.2 when assigned to the steel-

concrete interface, a group of simulations is performed on a smooth bar 

sample. The test case and the corresponding boundary conditions are the 

same as the ones described in subsection 3.3.1 and shown in Figure 3.8 . 

As in section 3.5, the experimental pull-out test results on a smooth bar are 

extracted from (Anwar Hossain, 2008). The smooth sample introduced in 

subsection 3.4.2 and shown in Figure 3.13 is used here. 

4.3.1.2 Calibration process 

In this simulation, steel is assigned the perfect yield model as described in 

subsection 3.4.4. Additonally, concrete is assigned Mazars model with the 

extensions described before in section 3.4.3. The values of parameters 

summarized in Table 3.2 are used, since the same experimental case is 

simulated. Thus, concrete’s Young’s modulus is 25 GPa, ultimate tensile 

stress 𝑓𝑡 𝑐𝑜𝑛= 2.5 MPa, while fracture energy is 120 N/m.  

As mentioned, in this procedure parameters are varied separately or in 

parallel at the same time, in order to study their effect on the general 

behavior. Four parameters are considered: 𝑓𝑡 , 𝜆0 , 𝛿𝑠  and 𝐺𝑓  and the 

coefficient ς. After varying the parameters in parallel and analyzing different 

combinations, it has been observed that the parameters can be divided into 

two main categories, those that control principally the peak of the mean 

bond stress and it’s maximum value: 𝑓𝑡 , 𝜆0 and 𝛿𝑠 , while 𝐺𝑓 , along with ς, 

control the post peak behavior. In addition, a unique combination of the 

parameters 𝑓𝑡 , 𝜆0 and 𝛿𝑠 gives a unique peak of mean bond stress and the 

associated displacement, which can be seen clearly in Figure 4.7. Plenty of 

different combinations were applied, and one can conclude that it is not 

possible to reach the same exact peak stress and the exact displacement  at 
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the peak, using two different combinations. Thus, although it is possible to 

get a similar peak stress for two different values of 𝑓𝑡 by changing both 𝜆0 

and 𝛿𝑠, the corresponding displacement at the peak is clearly not the same. 

Eventually, adjusting those parameters will finally give a good fit. Those final 

values assigned to the parameters are shown in Table 4.3. The separate 

variation for each parameter is discussed below to show the effect of each 

parameter, after which a general calibration for each parameter is to be 

eventually concluded. In these separate variations, the other unvaried 

parameters are fixed to the values shown in Table 4.3. As this calibration 

process is manual, and difficult due to the presence of several parameters, 

a potential future work may be done on a numerical campaign using design 

of experiments (DOE) methods, to facilitate the calibration process and 

make it more systematic. 

Table 4.3 Assigned values to the parameters of the FCZM in the smooth bar 

pullout simulation 

𝜹𝒔 𝒇𝒕 (𝑴𝑷𝒂) 𝑮𝒇 (𝑵 𝒎⁄ ) 𝝀𝟎(𝒎) 𝝁 𝛓 

0.3 1.8 85 5 × 10−5 0.3 8 

Figure 4.8 shows the results of the simulations for different values of 𝑓𝑡 , all 

of which are considered to be less than or equal to 𝑓𝑡 𝑐𝑜𝑛 since the interface 

layer is supposed to be a weaker layer with many irregularities. One can see 

that 𝑓𝑡 obviously affects the peak stress. The value 𝑓𝑡= 1.8 MPa gives the 

best fit. Therefore, the ratio 𝜉 between concrete tensile ultimate stress and 

the interface ultimate stress is  𝜉 = 0.72. We assume that this identified ratio 

may be applied on the other simulations without any need to recalibration, 

according to the following formula: 

 𝑓𝑡 = 𝜉 𝑓𝑡 𝑐𝑜𝑛 (4.23) 
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Figure 4.7 Mean bond stress versus free end displacement for the numerical 

simulations performed on the sample having a smooth bar and for the 

experimental results extracted from (Anwar Hossain, 2008) by varying 𝒇𝒕 (in 

MPa), 𝝀𝟎 (in m) and 𝜹𝒔  

 

Figure 4.8 Mean bond stress versus free end displacement for the numerical 

simulations performed on the sample having a smooth bar and for the 

experimental results extracted from (Anwar Hossain, 2008) by varying 𝒇𝒕 

For the initial damage threshold 𝜆0, one can expect this value to be constant 

from one simulation to another, as long as concrete’s initial damage strain 

parameter 휀𝐷0 assigned in Mazars model in section 3.4 has the same value 

calculated according to Eq. (3.7). This interface damage threshold 𝜆0 

controls the displacement position of the peak stress and is identified as 

shown in Figure 4.9. One can see that the best fit is obtained when 𝜆0 = 5 ×
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10−5 𝑚, which will be used for the further simulations. Note that although 

this value affects both damage initiation in tension and in shearing, the 

shearing obviously dominates in such cases. In terms of shearing and 

frictional behavior, one do expect the interface to behave differently 

compared to concrete as it is the surface of contact with steel, where unlike 

the other parts of concrete, frictional and shearing behavior parallel to the 

axis of the bar dominates. 

 

Figure 4.9 Mean bond stress versus free end displacement for the numerical 

simulations performed on the sample having a smooth bar and for the 

experimental results extracted from (Anwar Hossain, 2008) by varying 𝝀𝟎 

 

Figure 4.10 Mean bond stress versus free end displacement for the numerical 

simulations performed on the sample having a smooth bar and the 

experimental results extracted from (Anwar Hossain, 2008) by varying 𝝇 
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In a similar way, the stiffness ratio 𝛿𝑠 is varied in order to get the best fit, 

which is reached when 𝛿𝑠 = 0.3. This sensitive ratio will be discussed in more 

details in the ribbed bar section. A formulation will be reached based on the 

smooth and the ribbed bar simulations, allowing us to identify the ratio 

without the need of prediction from then on. 

The fracture energy 𝐺𝑓, which is a function of the tensile strength and the 

softening behavior of the interface, is considered less than that of concrete. 

The proposition is that the tensile behavior of concrete and interface is not 

the same (Eq. (3.23)), while the softening behavior is supposed to be same, 

but should be corrected by the coefficient ς. Thus, the fracture energy 𝐺𝑓 is 

calculated using the same coefficient 𝜉 previously identified, as follows: 

𝐺𝑓 = 𝜉𝐺𝑓 𝑐𝑜𝑛 (4.24) 

In addition, the effect of the coefficient ς used to correct the softening 

behavior introduced in Eq. (4.18) can be observed in Figure 4.10. One can 

see that the best fit is when 𝜍 = 8 , which is considered the reference 

simulation. For other values of this coefficient 𝜍, the post peak behavior is 

not very well reproduced. In particular, a more brittle post peak behavior is 

obtained for smaller values of  𝜍. This coefficient will be kept constant in all 

simulations, while the parameter 𝐺𝑓 will be changed and determined using 

Eq. (4.24) depending on the fracture energy of concrete, as these two values 

have the same purpose and effect on the fracture energy, as seen in Eq. 

(4.18), and their variation affects the post peak behavior in the same manner.  

Finally, the friction coefficient of the steel-concrete interface is considered 

0.3, based on (Wang and Liu, 2004; Xu et al., 1994) among others.  

Thus, almost all the parameters are now related to the surrounding material, 

except for 𝛿𝑠, which needs an additional calibration. The identified ratios and 

coefficients will be applied directly to the parameters in the ribbed bar 

simulations in order to check and verify the functionality of both of the 

calibration procedure and the FCZM. 

Following the verification of the ability of the FCZM to capture the behavior 

of the pull-out test on a sample with a smooth bar (Figure 4.11), we now 

assess its performance on a more complex and common case with a spiral-

ribbed bar. 
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Figure 4.11 The reference simulation of pull-out test with smooth bar 

performed using the FCZM with the final values assigned to the FCZM 

parameters as shown in Table 4.3, compared to the experimental results 

extracted from (Anwar Hossain, 2008) 

4.3.2 Application on a ribbed bar case and complementary calibration process 

4.3.2.1 Generated sample 

In order to perform additional calibration on the stiffness ratio 𝛿𝑠 , 

simulations are performed using a sample with a spiral ribbed bar. The pull-

out test experimental results used for comparison in this simulation are 

those derived from (La Borderie and Pijaudier-Cabot, 1992). A numerical 

sample with a spiral ribbed bar is generated using the procedure described 

in section 3.2 . A cubic sample is generated that takes into account the 

experimental concrete cover and nominal diameter of the bar. Hence, the 

concrete cubic sample side length is 80 mm, and bar’s nominal diameter is 

8mm. The total adhesive length is 40 mm, which is half the total length of 

the bar, as in (RILEM, 1970).  The detailed dimensions of the spiral bar used 

are shown in Figure 4.12 . Finally, an unstructured mesh is applied using 

linear tetrahedral meshing elements as detailed in subsection 3.2.5. The 

characteristic size of each mesh element at the outer surface of the concrete 

sample is equal to about 5 mm, while the triangular edge of each element 

at the steel concrete interface is almost 0.4 mm. As a result, the number of 

mesh elements in the steel bar is 298 000, while the number of mesh 

elements in the concrete is 308 000. 
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Figure 4.12 Dimensions of the modelled spiral steel bar (in mm) 

Similarly to the was previously explained, the test case and the 

corresponding boundary conditions are the same as the ones described in 

subsection 3.3.1 and shown in Figure 3.8 . 

4.3.2.2 Additional calibration process 

In this simulation, steel is assigned the perfect yield model as described in 

subsection 3.4.4. Moreover, concrete is assigned Mazars model with all the 

modifications described before in section 3.4.3. In addition, based on the 

experimental data, concrete’s Young’s modulus is considered 30 GPa, and 

Poisson’s ratio is 0.25. Concrete’s ultimate tensile stress 𝑓𝑡 𝑐𝑜𝑛 is 3 MPa and 

the corresponding fracture energy is 130 N/m. For the compressive damage 

parameters 𝐴𝑐 and 𝐵𝑐, the same methodology described in subsection 3.4.3 

is applied. As a result, 𝐴𝑐 is calculated using Eq. (3.16), while 𝐵𝑐 is assigned 

based on the following equation : 

𝐵𝑐 = 340589.7285 𝑙2 + 20577.3197 𝑙 − 0.5075 (4.25) 

where 𝑙 is the characteristic size of the finite element, calculated according 

to Eq. (3.15). The values of the parameters of the concrete are summarized 

in Table 4.4.  

Also for the FCZM, the final values assigned to the parameters, which are 

based on the calibration process mentioned in subsection 4.3.1.2, except for 

𝛿𝑠, are shown in Table 4.4 . 
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Table 4.4. Assigned values to the parameters of the Mazars model for concrete 

and final values assigned to the parameters of the FCZM in the spiral bar pull-

out simulation 

Concrete parameters 

𝑬𝒄𝒐𝒏 (𝐆𝐏𝐚) 𝒗𝒄𝒐𝒏 𝒇𝒕 𝒄𝒐𝒏 (𝑴𝑷𝒂) 𝑮𝒇 𝒄𝒐𝒏 (𝑵 𝒎⁄ ) 

𝟑𝟎 0.25 3 130 

𝜺𝑫𝟎   𝑨𝒄  𝑩𝒄  𝜷 

Eq. (3.7) ⇛ 𝟏𝟎−𝟒 Eq. (3.16) Eq. (4.25) 1.06 

FCZM parameters 

𝜹𝒔 𝒇𝒕 (𝑴𝑷𝒂) 𝑮𝒇 (𝑵 𝒎⁄ ) 

0.16 Eq. (4.23) ⇛ 2.16 Eq. (4.24) ⇛ 97 

𝝀𝟎(𝒎) 𝝁 𝝇 

𝟓 × 𝟏𝟎−𝟓 0.3 8 

The initial value extracted from the smooth bar simulation for 𝛿𝑠  cannot 

actually produce the experimental behavior. Thus, the stiffness ratio 𝛿𝑠  is 

assigned a different value in each simulation in order to understand its effect 

on the overall behavior, and in order to complete the calibration process 

before final validation. The mean bond stresses versus the bar displacement 

along with the experimental results extracted from (La Borderie and 

Pijaudier-Cabot, 1992) are shown in Figure 4.13. 

By considering the case produced when 𝛿𝑠 = 0.16, one can see that the 

macroscopic curve agrees well with experimental results. While when the 

value of 𝛿𝑠 is lower, the behavior seems to be much stiffer at later stages, 

and it is much weaker when this value is greater than unity. Still, at the 

beginning of the loading phase, one can see an initial change of slope for 

all four cases. This transition of slope is smooth when 𝛿𝑠 is smaller, while it 

tends to form an initial peak when this value is higher. Obviously, one needs 

to assign a value for 𝛿𝑠 smaller than 1 in order to capture a more realistic 
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behavior. 

 

Figure 4.13 Mean bond stress versus bar slip for the numerical simulations 

performed on the 8 mm spiral sample using different stiffness ratios and the 

corresponding experimental results extracted from (La Borderie and Pijaudier-

Cabot, 1992) 

One can see that the two stiffness ratios used for the smooth bar simulation 

and the ribbed bar simulation are different. A certain relation should be 

proposed in order to prevent the prediction of this parameter in each 

simulation. Since 𝐾𝑛 depends uniquely on 𝑓𝑡 and 𝜆0 according to Eq. (3.26), 

and since 𝛿𝑠 is a direct ratio between 𝐾𝑛 and 𝐾𝑠 according to Eq. (3.23), one 

can relate 𝛿𝑠 to both parameters. However, by taking into consideration that 

𝜆0 was kept constant in both cases, and by taking into account the variation 

of the ultimate tensile stress 𝑓𝑡  of the interface in each case, one can 

propose a direct linear interpolation between 𝛿𝑠  and 𝑓𝑡 . For instance, by 

considering the smooth bar simulation values, which are 𝑓𝑡 = 1.8 MPa and 

𝛿𝑠 = 0.3, and the ribbed bar simulation values, which are 𝑓𝑡 = 2.16 MPa and 

𝛿𝑠 = 0.16, the following linear formulation is proposed: 
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 𝛿𝑠 = −0.3889 × 10
−6 𝑓𝑡 + 1 

𝛿𝑠 = −0.3889 × 10
−6  𝜉 𝑓𝑡 𝑐𝑜𝑛 + 1 

(4.26) 

4.3.3 Verification of the calibration process using a spiral ribbed bar sample 

4.3.3.1 Generated sample 

In order to verify the calibration process, another simulation is performed 

using a sample with a spiral ribbed bar. The pull-out test experimental 

results for comparison are those derived from (Xu et al., 2017). The test 

results considered are those of specimen M-C50-F0, which includes high 

strength concrete C50 with a ribbed steel bar. The nominal diameter of the 

bar is 16 mm, while its adhesive length is 80 mm. Based on these properties, 

a numerical sample is generated and meshed using the procedure described 

in section 3.2. The characteristic size of each mesh element at the outer 

surface of the concrete sample is equal to about 8 mm, while the triangular 

edge of each element at the steel concrete interface is almost 0.8 mm. As a 

result, the number of mesh elements in the steel bar and the concrete are 

487 000 and 1 279 000, respectively. 

The boundary conditions applied are the same as the ones described in 

subsection 3.3.1 and shown in Figure 3.8. 

4.3.3.2 Verification of the calibration process 

Once again, steel is assigned the perfect yield model as described in 

subsection 3.4.4, and concrete the Mazars model with all the modifications 

described in section 3.4.3. For the compressive damage parameters 𝐴𝑐 and 

𝐵𝑐, the same methodology described in subsection 3.4.3 is again applied, 

giving two relations as a function of the characteristic size 𝑙 of the interface 

element, where 𝐴𝑐 is calculated using  Eq. (3.16), while 𝐵𝑐 is calculated using 

the following equation: 

𝐵𝑐 = 251095.4475 𝑙2 + 19284.2475 𝑙 − 0.2227 (4.27) 

The values of the parameters of the concrete are summarized in Table 4.5.  

The calibration process, recalled and summarized in Table 4.6, is applied in 

this simulation to determine the values of the parameters of the FCZM. The 
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coefficient 𝜉 is taken 0.72, calculated in subsection 4.3.1.2. The stiffness ratio 

𝛿𝑠 , interface ultimate tensile stress 𝑓𝑡  and interface fracture energy 𝐺𝑓  are 

calculated according to Eqs. (4.26), (4.23) and (4.24), respectively, which 

gives 0.02, 2.52 MPa and 108 N/m, accordingly. As mentioned in subsection 

4.3.1.2, 𝜆0  is taken 5 × 10−5 m. The friction coefficient 𝜇  of the steel-

concrete interface is still considered 0.3, based on (Wang and Liu, 2004; Xu 

et al., 1994). Finally, the correcting coefficient 𝜍 is fixed to 8, as mentioned 

in subsection 4.3.1.2.Those values are summarized in Table 4.5 . 

Table 4.5 Assigned values to the parameters of the Mazars model for concrete 

and the final values assigned to the parameters of the FCZM in the 16 mm 

spiral bar sample pull-out simulation 

Concrete parameters 

𝑬𝒄𝒐𝒏 (𝐆𝐏𝐚) 𝒗𝒄𝒐𝒏 𝒇𝒕 𝒄𝒐𝒏 (𝑴𝑷𝒂) 𝑮𝒇 𝒄𝒐𝒏 (𝑵 𝒎⁄ ) 

𝟑𝟓 0.2 3.5 150 

𝜺𝑫𝟎   𝑨𝒄  𝑩𝒄  𝜷 

Eq. (3.7) ⇛ 𝟏𝟎−𝟒 Eq. (3.16) Eq. (4.27) 1.06 

FCZM parameters 

𝜹𝒔 𝒇𝒕 (𝑴𝑷𝒂) 𝑮𝒇 (𝑵 𝒎⁄ ) 

Eq. (4.26) ⇛ 𝟎. 𝟎𝟐 Eq. (4.23) ⇛ 2.52 Eq. (4.24) ⇛ 108 

𝝀𝟎(𝒎) 𝝁 𝝇 

𝟓 × 𝟏𝟎−𝟓 0.3 8 

The corresponding results are shown in Figure 4.14 in terms of mean bond 

stress versus free end displacement and are compared to the experimental 

data. One can see that the general behavior is correctly reproduced using 

the assigned values for the FCZM parameters. Thus, we consider that the 

FCZM is able to reproduce the ribbed bar pullout test behaviors by applying 

simple formulations for the parameters. Hence, the final values for the 

calibration of the parameters and coefficients of FCZM are as listed in Table 
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4.6. 

 

Figure 4.14 Mean bond stress versus free end displacement for the numerical 

simulation performed on 16 mm spiral ribbed bar sample and the 

corresponding experimental results extracted from (Xu et al., 2017) 

Table 4.6 Values assigned to the parameters and the coefficients of the FCZM 

based on the calibration process  

𝜹𝒔 𝒇𝒕 (𝑴𝑷𝒂) 𝑮𝒇 (𝑵 𝒎⁄ ) 𝝀𝟎(𝒎) 𝝁 

−𝟎. 𝟑𝟖𝟖𝟗  𝛏 𝐟𝐭 𝐜𝐨𝐧 + 𝟏 𝜉𝑓𝑡 𝑐𝑜𝑛 𝜉𝐺𝑓 𝑐𝑜𝑛 5 × 10−5 

0.3 based on 

(Wang and Liu, 

2004; Xu et al., 

1994) 

𝝃 𝝇 

0.72 8 

𝒇𝒕 𝒄𝒐𝒏 in MPa ; 𝑮𝒇 𝒄𝒐𝒏 in N/m 
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4.4 DISCUSSION OF THE RESULTS 

Following the calibration of the FCZM, the damage and stresses 

distributions in two of the simulations are considered and discussed, in 

particular the results of the reference simulation for the smooth sample in 

subsection 4.3.1.2, and those of the 8 mm ribbed sample in subsection 

4.3.2.2. 

4.4.1 Smooth sample 

In this part, the results obtained for the simulation performed on the smooth 

bar sample in subsection 4.3.1.2, whose macroscopic behavior is plotted in 

Figure 4.11, are analyzed. 

Figure 4.15 shows the distribution of damage in the concrete and the 

interface at the end of the simulation, when the free end displacement is 3.6 

mm. One can see that there is almost no visible damage in the concrete, but 

only in the interface which is fully damaged. This can explain the similarity 

between the interface model in shearing under compression and the result 

of the simulation, since the whole damage phenomena are mainly occurring 

at the interface itself. This eventually leads to the total loss of adhesion and 

the slipping of the steel bar without affecting significantly the concrete 

volume, but almost exclusively the steel-concrete interface. 

 

Figure 4.15 Distribution of damage in the concrete and the interface at the 

end of the simulation (FED = 3.6 mm) for the reference simulation performed 

on the smooth sample using FCZM 

Figure 4.16 shows the values of the stresses in the steel-concrete interface 
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elements along a certain line at the interface at three different free end 

displacements FED.  

 

 

 

Figure 4.16 Normal stress, and the shear stress in the direction parallel to the 

axis of the steel bar, in the steel-concrete interface elements at three different 

FED for the reference simulation  

One can observe the variation of normal and shear stresses in the direction 

parallel to the axis of the bar of the interface elements as a function of the 

FED. Apparently, the normal compressive stress keeps increasing in 
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magnitude after the post peak near the two ends of the interface, and those 

normal stresses are almost null along the length of the interface in the 

central part at different moments during the simulation. Additionally, at the 

peak, the values near the ends of the interface are already very small and 

the normal stresses appears to be homogenous. On the other hand, the 

shear stresses are almost null near the ends of the interface while they are 

more homogenous in the central part of the interface. The shear stresses 

decreases as the free end displacement keeps increasing. Such behavior is 

expected since the steel bar starts losing part of its adhesion. 

4.4.2 Spiral ribbed sample 

In here, the results obtained for the simulation performed on the 8 mm spiral 

ribbed sample in subsection 4.3.2.2 are analyzed. 

Figure 4.17(a) shows the distribution of the damage 𝐷 in the concrete at 

different stages. Clearly, damage deepens inside the concrete block with the 

increase of the external loading. Figure 4.17(b) shows the full cracks at the 

end of the loading. One can see that the fully damaged cracks are similar to 

what was observed in other studies like (Jin et al., 2020a). It can be described 

by a crack at each rib and an inclined crack at the last rib near the 

unconstrained concrete surface. One can see that concrete is fully damaged 

at the ribs, and less damaged in between two ribs. Such damaged concrete 

is what is expected at the surface of contact, and corresponds to what is 

observed experimentally, like shown in (Goto, 1971). It is because the ribs 

prevent the bar from slipping, thus applying an additional pressure on the 

surrounding concrete, which leads to the initiation of the inclined cracks at 

the top of each rib. 

Figure 4.18 shows the distribution of damage in the interface elements. 

Damage starts increasing with the imposed displacement until reaching 1, 

i.e. full damage of the interface, before the end of the simulation. One 

observation is that the inclined surfaces of the transversal ribs which are 

directed toward the positive x-direction of bar pulling, are less damaged at 

each stage compared to the interface elements that are on the cylindrical 

surface. This can be explained by the very definition of 𝜆 in Eq. (3.22), in 

which compression does not increase the damage in the interface. These 

surfaces are under compression, since the concrete in front of the ribs is 

being crushed by the transversal ribs. Thus, only tangential displacements 

can increase 𝜆. Nonetheless, these tangential displacements are smaller in 

the inclined ribs compared to the tangential displacements of the interface 
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elements present at the cylindrical surface of the bar. 

 
(a) 

 
 (b) 

Figure 4.17 Spiral ribbed sample; (a) distribution of damage D in the concrete 

at different displacements (b) full cracks in the concrete (𝐷 ≥ 0.99) at the end 

of the simulation 
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Figure 4.18 Distribution of damage in the interface at different displacements 

in the simulation performed on the spiral ribbed bar sample ; direction of 

pullings is in the x-direction.  

The principle stresses in the concrete are visualized in Figure 4.19 and Figure 

4.20 at the end of the loading (slip= 1.2 mm). In Figure 4.19(a), one can see 

that the elements having tensile principle stresses in all three directions are 

slightly extending from the ribs, in an inclined direction, with a main 

extension behind the last rib. This mostly coincides with the fully damage 

pattern observed in Figure 4.17(b). On the other hand, Figure 4.19(b) shows 

that the concrete elements in front of the ribs have compressive stresses in 

the three principle directions. This can be related to the phenomenon of 

crushing that occurs at this area because of the movement of the ribs when 

applying the pulling effort. 

In Figure 4.20, we can observe the existence of very large compressive 

stresses in some of the elements. These elements are in front of the ribs and 

are subjected to compressive stresses in the three principal directions. The 

behavior is very complex near steel-concrete interface and it is difficult to 
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extract any experimental results from pull-out tests at this scale. Due to the 

lack of such experimental data that could quantify or visualize this 

phenomenon, one cannot evaluate and compare the principle stresses 

obtained. The existence of such very high compressive stresses can be 

related to the concrete’s model, as Mazars model could be not particularly 

well adapted to describe such uncommon states of stresses. Hence, in the 

future, it could be instructive to investigate more deeply the behavior in this 

region with different approaches to model the concrete behavior subjected 

to high compressive states of stresses. 

 

(a) 

 

(b) 

Figure 4.19 At the end of the simulation on the spiral ribbed bar sample: (a) 

concrete regions in blue having tensile principle stresses in the three directions 

(b) concrete regions in green having compressive principle stresses in the three 

directions 
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Figure 4.20 Distribution of the three principle stresses in a specific region at 

the steel-concrete surface for the spiral ribbed bar sample at the end of the 

simulation 
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4.5 CONCLUSIONS 

In this chapter, a frictional cohesive zone model was presented in details, 

and a calibration procedure was applied to identify its parameters.  

The FCZM was able to reproduce the experimental behavior after an 

appropriate adjustment of the parameters. This model has overcome the 

main limitations of the CZM and Coulomb’s frictional interface model in 

reproducing the experimental behavior of the smooth bar pullout 

simulation. This strengthen the conclusion of Chapter 3 about the smooth 

bar, which is apparently directly affected by the interface model, and only 

negligibly by the volumetric models representing both concrete and steel.  

In addition, the model was able to reproduce the behaviors of pull out tests 

using ribbed bars. A calibration was applied to the interface model 

parameters, and it proved that it is possible to get good results by applying 

such procedure. The parameters of the FCZM were related to the 

surrounding concrete and steel throughout this process.  

Furthermore, the fully damaged patterns representing cracks in the concrete 

visualized for the ribbed bar sample were close to the patterns observed 

previously in other numerical simulations in literature (Jin et al., 2020a). One 

crack is initiated from the tip of each transversal rib, and all those cracks 

have a similar inclination pattern with respect to the axial position of the 

steel bar.  

Moreover, the existence of tensile principle stresses in all three directions 

have been observed in the fully damaged regions. However, concrete 

elements in front of the ribs have compressive stresses in the three principle 

directions, which can be related to the phenomenon of crushing that occurs 

because of the movement of the ribs when applying the pulling effort. 

Additionally, there exist some very large compressive stresses in some of the 

elements. Unfortunately, one cannot evaluate and compare the principle 

stresses obtained because of the lack of any experimental data that quantify 

or visualize this phenomenon. Still, the concrete’s model could be 

responsible for the existence of such very high compressive stresses, as it is 

not well adapted for such uncommon states of stresses.   

Although some existing steel-concrete interface models are able to 

reproduce the overall behavior of the pull-out tests, they mainly succeed 

when using a sample with ribbed bar. However, such models cannot in 
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general easily capture the overall behavior when using a smooth bar. For 

example, contact friction formulation used recently in (Jin et al., 2022, 2021a, 

2020a; Liu et al., 2022b, 2022a) has proved to be well-adapted to 3D 

approach, and has been further used in different related studies (Jin et al., 

2020b; Zhang et al., 2022). Nonetheless, it seems not able to reproduce 

efficiently the response of concrete-steel bond with smooth bar. 

Additionally, such formulations have a big cost in terms of computational 

time (Lebon, 2003) when used with even more finer meshes compared to 

(Jin et al., 2022, 2021a, 2020a; Liu et al., 2022b, 2022a). In order to analyze 

results locally at a very small scale near each rib as done in subsection 4.4.2, 

there is a clear interest to use a different approach. Likewise, the 3D frictional 

approach used recently in (Chiriatti et al., 2019) possesses a similar difficulty 

when applied on large meshes. The FCZM introduced is able to reproduce 

both the behavior of smooth and ribbed bars, and, although it has a non 

negligible computational cost, this cost is likely to be less than that of 

contact frictional approaches when used with this big number of elements 

as modeled here. Those very fine meshes are required to study the effects 

of the steel-concrete interface through the mean bond stress-displacement 

behavior and distributions of the damage and stresses locally.  

FCZM can be used to investigate the effects of many phenomena and 

aspects that are hardly observed when using macroscopic models. For 

instance, the FCZM will be used in a mesoscopic study to elaborate the effect 

of including coarse aggregates in the concrete mix, instead of homogenous 

concrete as considered in here. In addition, it can also help in understanding 

the effect of the geometry of the ribs on the bond behavior. These 

geometries are usually ignored on a macroscopic scale used to model 

bigger structures. Thus, it may aid in giving additional information about the 

parameters that should be included in the macroscopic models, and/or in 

calibrating these parameters. Those two applications are one of the 

concerns of this study. 

The next chapter deals with the numerical applications of the FCZM, 

including the simulations using heterogeneous concrete with coarse 

aggregates, the effect of different shapes of the steel bar representing 

different mechanical interlocks and the effect of external confinement. 
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5 NUMERICAL APPLICATIONS OF THE FRICTIONAL COHESIVE 

ZONE MODEL 

5.1 INTRODUCTION 

Following the implementation of the FCZM described in section 4.2, and the 

calibration of the model on different pull-out test samples, numerical 

applications are performed in this chapter using this interface model to 

study different aspects related to the steel-concrete bond. 

In the first section, simulations are applied on samples with heterogeneous 

concrete, which is divided into mortar and coarse aggregates. The aim is to 

analyze the effects of aggregates on the bond behavior at the mesoscale. 

The second section deals with the geometrical properties of the steel-

concrete interface, by studying the effect of varying the dimensions of the 

steel ribs, and comparing the results using two different steel bars, in order 

to verify the importance of the shapes of the ribs, as discussed in subsection 

2.2.2.3. 

The third section aims to verify the importance of confinement on the bond 

behavior. Its effect is studied by applying active confinement on the external 

surfaces of the concrete section, and then comparing the results accordingly 

to experimental results.  

5.2 HETEROGENEOUS CONCRETE WITH COARSE AGGREGATES 

In this section, heterogeneous concrete is used instead of homogeneous 

concrete, by dividing the concrete into coarse aggregates and the 

surrounding mortar, together forming and taking the properties of the 

concrete volume. The usage of heterogeneous concrete aims at identifying 

if the aggregates have global or local impacts on the behavior. 

5.2.1 General description 

In order to perform the simulations using the newly implemented frictional 

cohesive zone model described in section 4.2 on samples having 

heterogeneous concrete, a certain procedure is followed. Since the 

heterogeneous concrete is made up of mortar and embedded aggregates, 

both mortar and coarse aggregates together should give the same behavior 
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as the homogenous concrete on representative samples. Likewise 

homogenous concrete, mortar is assigned Mazars model, introduced in 

subsection 3.4.3. Thus, one should expect mortar to have different material 

and damage parameters from concrete. Aggregates are going to be 

assigned an elastic behavior, since cracks propagate in the weaker material, 

which is mortar. Hence, the aim first is to determine the material and 

damage parameters of mortar, based on the macroscopic properties of 

homogenous concrete. To do so, uniaxial tensile and compressive tests are 

performed on heterogeneous concrete samples, and then the results are 

compared to the results of uniaxial tensile and compressive tests performed 

on homogenous concrete samples, in order to validate the mortar 

parameters.  

After the calibration process on uniaxial tests, pull-out tests simulations are 

performed on generated samples having heterogeneous concrete, whose 

properties are the same as those of the aforementioned heterogeneous 

concrete samples. The corresponding pull-out test boundary conditions are 

the same as the ones described in subsection 3.3.1 and shown in Figure 3.8. 

The numerical pull-out results are compared to the pull-out test 

experimental results derived from (La Borderie and Pijaudier-Cabot, 1992), 

which were used in subsection 4.3.2. 

5.2.2 Generated samples 

5.2.2.1 Pull-out test generated samples 

In order to perform pull-out tests simulations, three pull-out heterogeneous 

concrete samples are generated in order to have more than one result, 

named shortly SAgg1, SAgg2 and SAgg3. The concrete in these samples is 

a two phase material made up of coarse aggregates and surrounding mortar, 

while the steel bar is a spiral ribbed bar. The geometrical properties of the 

sample generated in subsection 4.3.2.1 are preserved. 

For all the three samples, the percentage by volume of aggregates is taken 

equal to 35%. Usually, fine and coarse aggregates make 60-80% of concrete 

by volume, of which 55% are fine aggregates and 45% are coarse aggregates, 

making the choice of 35% realistic. In addition, the minimum range 

dimension of the particles is 4.5 mm, while the largest dimension of 

aggregates should not exceed 32 mm. All three samples have exactly the 

same grading of coarse aggregates. The difference between the three 

samples results from the generation and placement procedure, as described 
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in subsection 3.2.3, which gives different number, positioning and sizes of 

aggregates in the samples. This produces a more statistical based study, by 

trying to check the effects of these factors on the overall results. The grading 

and distribution of aggregates are chosen in a way that they fall within the 

acceptable standard limits provided by (ASTM Standard C33, 2003), which 

can be seen in Figure 5.1. 

 

Figure 5.1 Grading of the coarse aggregates in the heterogeneous concrete, 

compared to the standard limits provided by (ASTM Standard C33, 2003) 

Table 5.1 Meshing elements in the pull-out generated samples 

Name 

Number of 

coarse 

aggregates 

Number of meshing elements of  

Steel bar 
Coarse 

aggregates 
Mortar 

SAgg1 1291 291 000 256 000 685 000 

SAgg2 1245 292 000 247 000 659 000 

SAgg3 1276 291 000 253 000 684 000 

One can see that the chosen grading is fully contained within ASTM C33 

standard limits. As a result of the random generation process, the number 
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of coarse aggregates in samples SAgg1, SAgg2 and SAgg3 is 1291, 1245 

and 1276, respectively. 

As detailed in subsection 3.2.5, an unstructured mesh is finally built on the 

three generated samples using linear tetrahedral elements. The triangular 

edge of each element at the steel-concrete interface is almost 0.4 mm in 

each of the three samples. The meshing results for the three samples SAgg1, 

SAgg2 and SAgg3 are listed in Table 5.1, and sample SAgg3 is visualized in 

Figure 5.2. 

 

Figure 5.2 Visualization of sample SAgg3, showing the aggregates phase (in 

white), ribbed steel bar (in blue) and mortar (transparent)  

5.2.2.2 Concrete cubic generated samples 

In order to perform uniaxial tensile and compressive numerical tests to 

determine the values of the parameters of mortar, three heterogeneous 

cubic concrete samples are generated, named shortly CubeA, CubeB and 

CubeC, in order to have an idea of the representativity. The side length of 

each sample is 80 mm, which is chosen to limit the mesh size. The dimension 

is also based on the pullout test samples previously generated in subsection 

5.2.2.1, which preserves the dimensions and the properties of the pull-out 

samples. Similarly, the percentage of volume of coarse aggregates is 35% 

for all the concrete samples, and the same grading of coarse aggregates 

shown in Figure 5.1 is also used in the 3 cubic samples. Those samples are 

finally meshed, as shown for sample CubeB in Figure 5.3, and the 

corresponding mesh results are shown in Table 5.2. 
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Figure 5.3 Visualization of sample CubeB, showing the aggregates phase 

(colored) and mortar (transparent) 

Table 5.2 Meshing elements in the cubic heterogeneous concrete generated 

samples 

Name 

Number of 

coarse 

aggregates 

Number of meshing elements of  

Coarse 

aggregates 
Mortar 

CubeA 1269 252 000 600 000 

CubeB 1252 247 000 590 000 

CubeC 1295 257 000 615 000 

In addition, a homogenous concrete cubic sample is generated in order to 
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compare the uniaxial tests results from both homogeneous and 

heterogeneous concretes. Likewise the heterogeneous samples, the side 

length of the homogenous sample is 80 mm. The number of mesh elements 

of the concrete is 130 000, which is expected to be less than the three 

aforementioned heterogeneous samples considering it is a one-phase 

material with no steel bar. 

5.2.3 Identification of the mechanical properties of mortar 

In order to determine the material and damage parameters of mortar, the 

three heterogeneous concrete samples CubeA, CubeB and CubeC and the 

homogenous sample generated in subsection 5.2.2.2 are considered. 

In the homogenous concrete model, concrete is assigned the same values 

to the parameters that were previously used in the pull-out test performed 

in subsection 4.3.2.2. Those values are listed in Table 4.4. 

In the heterogeneous concrete model, mortar is assigned Mazars damage 

model, described in 3.4.3, while a simple elastic model is assigned to the 

coarse aggregates, in which the Young’s modulus 𝐸𝑎𝑔𝑔 is 70 GPa and the 

Poisson’s ratio 𝑣𝑎𝑔𝑔 is 0.3, as in (Bary et al., 2017). In addition, the contact 

between the aggregates and the mortar is considered to be perfect. This is 

limits the number of parameters to be determined, which would have 

increased if an interface model was assigned to aggregates-mortar 

interfaces. This perfect contact will certainly affect the values of the 

parameters of mortar. 

In order to predict a first estimation of the mechanical properties of mortar, 

homogenization approaches are used. In such schemes, mortar represents 

the matrix part and aggregates represents the inclusive phase. Hansen 

model, introduced in (Hansen, A. et al., 1989), proposed a micromechanical 

equation to calculate the Young’s modulus of concrete: 

𝐸𝑐𝑜𝑛 = (
𝑝𝑚𝑜𝑟𝐸𝑚𝑜𝑟 + (1 + 𝑝𝑎𝑔𝑔)𝐸𝑎𝑔𝑔

(1 + 𝑝𝑎𝑔𝑔)𝐸𝑚𝑜𝑟 + 𝑝𝑚𝑜𝑟𝐸𝑎𝑔𝑔
)𝐸𝑚𝑜𝑟 (5.1) 

where 𝑝𝑎𝑔𝑔 is the percentage of aggregates by volume, which is 0.35, while 

𝑝𝑚𝑜𝑟 is the percentage of mortar by volume, which is 0.65. 

Similarly, Young’s modulus can be calculated by Cavento model, proposed 
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by (Counto, 1964) as follows: 

1

𝐸𝑐𝑜𝑛
=
1 −√𝑝𝑎𝑔𝑔

𝐸𝑚𝑜𝑟
+

1

(
1 − √𝑝𝑎𝑔𝑔

√𝑝𝑎𝑔𝑔
)𝐸𝑚𝑜𝑟 + 𝐸𝑎𝑔𝑔

 
(5.2) 

Likewise, batch model introduced in (Baalbaki et al., 1992) proposed the 

following simple equation to calculate Young’s modulus: 

𝐸𝑐𝑜𝑛 = 𝐸𝑚𝑜𝑟
𝑝𝑚𝑜𝑟 ∙ 𝐸𝑎𝑔𝑔

𝑝𝑎𝑔𝑔 (5.3) 

By using these equations, 𝐸𝑚𝑜𝑟 is calculated using concrete and aggregates 

mechanical parameters. Hansen, Cavento and batch models give 20.6 GPa, 

19.63 GPa and 19.57 GPa, respectively. Still, these approaches cannot 

calculate the Poisson’s ratio. 

Mori-Tanaka homogenization scheme, which was first introduced by (Mori 

and Tanaka, 1973), is a well-known scheme that can be used to determine 

both mortar’s Young’s modulus and Poisson’s ratio from those of concrete 

and aggregates. For elastic isotropic behaviors and randomly oriented 

aggregates (if not spherical), the scheme can be described as follows: 

𝕋𝑐𝑜𝑛 = (𝑝𝑚𝑜𝑟𝕋𝑚𝑜𝑟 + 𝑝𝑎𝑔𝑔𝕋𝑎𝑔𝑔ℂ𝑝)(𝑝𝑚𝑜𝑟𝕀 + 𝑝𝑎𝑔𝑔ℂ𝑝)
−1 (5.4) 

where 𝕋𝑐𝑜𝑛, 𝕋𝑚𝑜𝑟 and 𝕋𝑎𝑔𝑔 are the 4rth order elasticity tensors of concrete, 

mortar and aggregates, respectively, which depend on Young’s modus and 

Poisson’s ratio of each material. 𝕀 is the 4rth order identity tensor. ℂ𝑝 is the 

tensor of strain localization of aggregates calculated as follows: 

ℂ𝑝 = (𝕀 + 𝕊𝑝: (𝕋𝑚𝑜𝑟)
−1: [𝕋𝑚𝑜𝑟 − 𝕋𝑎𝑔𝑔])

−1
 (5.5) 

where 𝕊𝑝 is the Eshelby tensor, which depends on the geometrical form for 

the aggregates. By considering spherical shapes for the aggregates, 

elements of Eshelby tensor are calculated as follows: 



 

114 

𝕊𝑝1111 = 𝕊𝑝2222 = 𝕊𝑝3333 =
7 − 5𝑣𝑚𝑜𝑟

15(1 − 𝑣𝑚𝑜𝑟)
 

𝕊𝑝1122 = 𝕊𝑝2233 = 𝕊𝑝3311 = 𝕊𝑝1133 = 𝕊𝑝2211 = 𝕊𝑝3322

=
5𝑣𝑚𝑜𝑟 − 1

15(1 − 𝑣𝑚𝑜𝑟)
 

𝕊𝑝1212 = 𝕊𝑝2323 = 𝕊𝑝3131 =
4 − 5𝑣𝑚𝑜𝑟

15(1 − 𝑣𝑚𝑜𝑟)
 

(5.6) 

By applying Mori-Tanaka scheme, supposing spherical particles, it yields 

𝐸𝑚𝑜𝑟 = 21.2 GPa. One can see the highest value for Young’s modulus 

between Hansen model, Cavento model, batch model and Mori-Tanaka 

scheme is when applying the latter. Using Mori-Tanaka by supposing 

ellipsoidal particles with an aspect ratio of 3, 𝐸𝑚𝑜𝑟 will almost be 23 GPa. 

Since the considered polyhedron particles are closer in shape to ellipsoidal 

particles having an aspect ratio of 3 than to spherical particles, 𝐸𝑚𝑜𝑟 and 

𝑣𝑚𝑜𝑟  are taken equal to those calculated by applying Mori-Tanaka on 

ellipsoidal particles, which are 23 GPa and 0.22, respectively. 

Concerning the damage parameters, regularization is used in tension by 

applying the procedure described in subsection 3.4.3. Mortar’s fracture 

energy is considered to be 70 N/m as a first estimate, which is close to values 

observed experimentally in (Restuccia et al., 2020), while mortar’s ultimate 

tensile stress 𝑓𝑡 𝑚𝑜𝑟 is chosen so that the peak stress of the homogenous and 

heterogeneous case is the same. In addition, 𝛽  is taken 1.06 as done in 

subsection 3.4.3. 

The normal stress versus the normal displacement of the uniaxial tensile 

tests of the homogenous concrete sample and CubeA sample are shown in 

Figure 5.4, for different values of 𝑓𝑡 𝑚𝑜𝑟 and 𝐺𝑓 𝑚𝑜𝑟 . 

From Figure 5.4, one can see that the best fit is reached when 𝑓𝑡 𝑚𝑜𝑟= 2.8 

MPa and 𝐺𝑓 𝑚𝑜𝑟 = 110 N/m. Thus, according to Eq. (3.7), 휀𝐷0 is 1.2 × 10−4. 

One can see that the value of the fracture energy is now larger than what is 

expected for mortar. Still, we expect to get a lower value if an imperfect 

aggregate-mortar interface is used, which has certainly an effect on the 

overall behavior. Still, a separate study and calibration is needed in this case, 

as it has an effect on both the pattern and the slope of the stress-

displacement curve too. For instance, by assigning linear elastic model, used 
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in subsection 3.3.3, to the aggregate-mortar interface, and by simple 

variation of the stiffness, one can see a change in the whole slope as shown 

in Figure 5.5. Thus, the current choice is acceptable for the current study. 

 

Figure 5.4 Normal stress versus normal displacement for uniaxial tensile tests 

performed on the homogenous concrete sample using the values listed in 

Table 4.4 for Mazars model parameters, and on CubeA by taking 𝐸𝑚𝑜𝑟 =

23 𝐺𝑃𝑎, and choosing different values for 𝐺𝑓 𝑚𝑜𝑟 and 𝑓𝑡 𝑚𝑜𝑟 

 

Figure 5.5 Normal stress versus normal displacement for uniaxial tensile tests 

performed on the homogenous concrete sample using the values listed in 

Table 4.4 for Mazars model parameters, and on CubeA by taking 𝐸𝑚𝑜𝑟 =

23 𝐺𝑃𝑎 , with linear spring model for the mortar-aggregates interface; 

Stiffnesses are in 𝑁/𝑚3 

In order to verify these results, simulations are performed on the other two 

samples CubeB and CubeC, using the same values used in CubeA simulation. 
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The corresponding results are shown in Figure 5.6. One can see that those 

values gave a good fit for the three different samples. As a result, tensile 

damage parameters and material parameters of mortar will be fixed to the 

aforementioned values, while the compressive parameters are kept intact to 

this point. 

Regarding the compressive behavior, uniaxial compressive tests are 

performed on the homogenous and heterogeneous samples. For the 

homogenous concrete, as previously stated, concrete is assigned the same 

values as the parameters that were used in the pull-out test performed in 

subsection 4.3.2.2, which are listed in Table 4.4. For the heterogeneous 

sample, the mechanical and damage parameters of mortar are fixed as 

mentioned before, and 𝐴𝑐 𝑚𝑜𝑟  varied starting from the initial value of 𝐴𝑐  

defined by Eq. (3.16) and 𝐵𝑐 𝑚𝑜𝑟 is varied from the initial value of 𝐵𝑐  defined 

in Eq. (4.25), until reaching the best fit. By varying the parameters, and 

performing several tests, one can get a good fit when 𝐴𝑐 𝑚𝑜𝑟 = 0.3𝐴𝑐  and 

𝐵𝑐 𝑚𝑜𝑟 = 𝐵𝑐 , which are written in details as follows: 

𝐴𝑐 𝑚𝑜𝑟 = 0.3𝐴𝑐 = −100.774 𝑙2 + 4.8824 𝑙 − 0.00006 (5.7) 

𝐵𝑐 𝑚𝑜𝑟 = 𝐵𝑐 = 340589.7285 𝑙
2 + 20577.3197 𝑙 − 0.5075 (5.8) 

 

Figure 5.6 Normal stress versus normal displacement for uniaxial tensile tests 

performed on the homogenous concrete sample using the values listed in 

Table 4.4 for Mazars model parameters, and on CubeA, CubeB and CubeC by 

taking 𝐸𝑚𝑜𝑟 = 23  𝐺𝑃𝑎, 𝑓𝑡 𝑚𝑜𝑟 = 2.8 𝑀𝑃𝑎 and 𝐺𝑓 𝑚𝑜𝑟 = 110 𝑁/𝑚 
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The normal stress versus normal displacement for the uniaxial compressive 

tests performed on the homogenous concrete sample and samples CubeA, 

CubeB and CubeC using the aforementioned values for the parameters are 

shown in Figure 5.7. One can see that those values gave a good fit for the 

three different samples. As a result, compressive damage parameters 𝐴𝑐 𝑚𝑜𝑟 

and 𝐵𝑐 𝑚𝑜𝑟  are assigned according to Eqs. (5.7) and (5.8), respectively. 

Similarly to the fracture energy, the adjustment of 𝐴𝑐 𝑚𝑜𝑟 could be affected 

by the type of contact between aggregates and mortar. Introducing an 

interface will affect the tensile parameters and as a consequence the 

compressive parameters, and requires a different calibration.  

 

Figure 5.7 Normal stress versus normal displacement for uniaxial compressive 

tests performed on the homogenous concrete sample using the values listed 

in Table 4.4 for Mazars model parameters, and on CubeA, CubeB and CubeC 

by taking 𝐴𝑐 𝑚𝑜𝑟 and 𝐵𝑐 𝑚𝑜𝑟 according to Eqs. (5.7) and (5.8), respectively 

Finally, the values assigned to the different parameters of mortar are 

summarized in Table 5.3. 

Table 5.3 Assigned values to the parameters of Mazars model for mortar  

𝑬𝒎𝒐𝒓 (𝐆𝐏𝐚) 𝒗𝒎𝒐𝒓 𝒇𝒕 𝒎𝒐𝒓 (𝑴𝑷𝒂) 𝑮𝒇 𝒎𝒐𝒓 (𝑵 𝒎⁄ ) 

𝟐𝟑 0.22 2.8 110 

𝑩𝒕  𝑨𝒄 𝒎𝒐𝒓  𝑩𝒄 𝒎𝒐𝒓  𝜷 

Eq. (3.14) Eq. (5.7) Eq. (5.8) 1.06 
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5.2.4 Discussions on the results of pull-out test simulations 

In order to perform simulations on heterogeneous concrete pull-out 

samples, the three heterogeneous concrete pull-out samples SAgg1, SAgg2 

and SAgg3, generated in subsection 5.2.2.1, are considered. Additionally, the 

results of the pull-out test performed on homogeneous concrete samples 

detailed in subsections 4.3.2.2 and 4.4.2 are also considered. 

In the heterogeneous simulations, steel is assigned the perfect yield model 

as described in subsection 3.4.4, mortar is assigned Mazars model using the 

parameters described in Table 5.3. The steel-mortar interface is assigned 

FCZM described in section 4.2, using the values for the parameters shown 

in Table 5.3, since the steel-concrete bond in the heterogeneous case do 

not differ from the homogenous case. In other words, the steel-concrete 

interface is still the surface of contact between steel and concrete, regardless 

of the phases within concrete. Mortar is one of the phases of concrete, which 

forms, together with aggregates, the homogeneous concrete that is in 

contact with steel. Thus, if aggregates were in contact with the steel bar, and 

they were part of this mix, the FCZM parameters would not be changed, as 

the calibration and assignment of the parameters is based on the properties 

of the homogeneous concrete containing them, and not on the phase that 

is in contact with steel.  

As done in subsection 5.2.3, the aggregates are assumed linear elastic with 

𝐸𝑎𝑔𝑔 =  70 GPa and 𝑣𝑎𝑔𝑔 =  0.3. Additionally, the contact between the 

aggregates and the mortar is considered to be perfect. The mean bond 

stress versus the bar’s displacement for the three simulations are plotted in 

Figure 5.8.  

One can observe that the overall behavior for the three samples is almost 

the same. In addition, the initial part of the curves is the same for the 

homogenous case and the heterogeneous cases, but the final part shows 

that the peak bond stress for the homogenous case is slightly higher than 

that of the heterogeneous cases. One explanation is that the presence of 

aggregates affects the orientation and propagation of cracks. To analyze 

more closely the results, damage in the mortar should be visualized. 

In order to compare the damage behavior, the distribution of damage in 

concrete for the homogenous case, and in mortar for the heterogeneous 

cases, are shown. To do so, a certain volume of the sample is extracted, as 

shown in Figure 5.9. This volume includes entirely the steel-concrete 
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interface, and the surrounding zones in the three directions. The dimension 

of the extracted volume in the x (bar) direction is 50mm, including the 40 

mm adhesive part of the bond, and 40 mm in both the y direction and the z 

directions. 

 

Figure 5.8 Mean bond stress versus slip for the homogenous pull-out test 

discussed in subsection 4.3.3.2, and for the heterogeneous pull-out test 

simulations performed on samples SAgg1, SAgg2 and SAgg3 

 

Figure 5.9 The extracted volume, whose dimensions are 50 mm in the x 

direction, 40 mm in y direction and 40 mm in z direction 
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The distributions of damage for the four cases at the central part of the 

extracted volume when bar’s displacement is 1 mm are shown in Figure 5.10. 

 

Figure 5.10 Distribution of damage in concrete for the homogenous case, and 

in mortar for the three heterogeneous cases, at the central plane normal to 

the z-axis of the extracted volume, when bar’s displacement is 1 mm 

One can see that the region where damage is not null is almost the same 

for the four different cases. Still, it is not easy to make a comparison between 
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these cases visually. Hence, a certain parameter or index should be used for 

comparison. For this sake, we propose a global unitless damage parameter 

𝛥, which calculates the average damage in the considered volume, using the 

following formula: 

𝛥 =
∑𝐷𝑘𝑉𝑘
∑𝑉𝑘

 (5.9) 

where 𝐷𝑘 and 𝑉𝑘 are the damage and the volume of the 𝑘𝑡ℎ finite element 

of the considered volume, respectively. Damage for an element is calculated 

as the average damage associated to the four nodes forming the tetrahedral 

element. The summation 𝛴 covers all the finite elements in the volume. 

By considering the extracted volumes shown in Figure 5.9 for the 

homogenous and heterogeneous samples, the corresponding values of the 

global damage parameter of the extracted volume  𝛥𝑠𝑒 are calculated using 

Eq. (5.9) when bar’s displacement is 1mm, along with volume 𝑉𝑠𝑒  of the 

extracted volume. Similarly, the global damage parameter for all the whole 

sample 𝛥𝑡  is calculated using Eq. (5.9) for the four samples, when bar’s 

displacement is 1mm, along with whole considered volume 𝑉𝑡. The detailed 

results are summarized in Table 5.4. 

From Table 5.4, one can see that the global damage 𝛥𝑡 in the total volume 

is higher in the homogenous case, when compared to the heterogeneous 

case. For the extracted section, global damage 𝛥𝑠𝑒  is lower in the 

homogenous case, compared to the heterogeneous case. Indeed, it is not 

appropriate to compare the ratios of global damage 𝛥 for the total volume 

to that of the extracted volume since the percentage of aggregates differs, 

by checking the ratio of volumes 𝑉 𝑡 𝑉𝑡  ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠⁄  and 𝑉 𝑠𝑒 𝑉𝑠𝑒 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠⁄  

for the heterogeneous cases.  

Although the values of the global damage parameter for the heterogeneous 

samples are close to each other, a certain difference in values exits. This is 

due to the different distribution of aggregates in the sample, which affects 

the directions of the cracks in the mortar and may reorient others. The exact 

distributions and shapes of the aggregates can only be determined by 3D 

tomography images, which should lead to a different final damage value, 

but that should still be close to the ones already calculated. 𝛥𝑡 is higher in 

the homogenous case because damage can propagate anywhere in such 

concrete, without being affected by the presence of aggregates. This is not 
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the case in heterogeneous samples, where these aggregates block the 

propagation of damage, and force it to go around the particles. 

Table 5.4 Values of the global damage 𝛥 of the extracted volume and the total 

volume for the homogenous sample and the three heterogeneous samples 

SAgg1, SAgg2 and SAgg3, along with the volume of each extracted volume in 

each case, all when bar’s displacement is 1 mm 

Parameter Homogenous  SAgg1 SAgg2 SAgg3 

𝑉𝑡 (in 𝑚𝑚3) 499 231 324 500.2 324 500.2 324 500.2 

𝑉 𝑡 𝑉𝑡  ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠⁄  100% 65% 65% 65% 

𝛥𝑡 0.023325 0.020724 0.022031 0.021038 

𝛥𝑡 𝛥𝑡 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠⁄  100% 88.85% 94.45% 90.2% 

𝑉 𝑠𝑒 (in 𝑚𝑚3) 93 185.4 53 533.6 54 557.6 53 093.6 

𝑉 𝑠𝑒 𝑉𝑠𝑒 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠⁄  100% 57.45% 58.55% 56.98% 

𝛥𝑠𝑒 0.124962 0.125752 0.13127 0.129602 

𝛥𝑠𝑒 𝛥𝑠𝑒 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠⁄  100% 100.63% 105.05% 103.71% 

𝑉 𝑠𝑒 𝑉𝑡⁄  0.1866 0.165 0.1681 0.1636 

𝛥𝑡 𝛥𝑠𝑒 ⁄  0.1866 0.165 0.1678 0.1636 

Figure 5.11 shows the distribution of the fully damaged cracks, i.e. D≥0.99, 

for the homogenous sample and the three heterogeneous samples, when 

bar’s displacement is 1 mm. One can see that in all cases, cracks are mainly 

surrounding the ribs. The general pattern is similar in all cases, although 
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some cracks are blocked at certain positions by aggregates in the 

heterogeneous samples.  

 

Figure 5.11 Full damage (𝐷 ≥ 0.99) in concrete for the homogenous case, and 

in mortar for the three heterogeneous cases, at the central plane normal to 

the z-axis of the extracted volume, when bar’s displacement is 1 mm 

Figure 5.12 shows the regions in concrete in the homogenous sample and 

in mortar in the three heterogeneous samples where compressive stresses 

exist in the three principle directions.  

In all the cases, the regions where there exist compressive stresses in all 

three principle directions are mainly in front of the ribs. Additionally, one 

can see that there are several regions near the aggregates in the 

heterogeneous samples, which are also under three compressive principle 

stresses. These are mainly at the mortar aggregates interface, where mortar 

and aggregates interact as the stresses resulting from the pulling force 

affect the concrete block. 
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Figure 5.12 Concrete and mortar regions having three compressive principle 

stresses for the homogenous case and the three heterogeneous cases, at the 

central plane normal to the z-axis of the extracted volume, when bar’s 

displacement is 1 mm 

As a conclusion, one can say that even using heterogeneous concrete, it is 

possible to reproduce the macroscopic behavior using FCZM for the steel-

concrete interface. The propagation of damage in the heterogeneous 

sample appears similar to that in the homogenous sample. However, for 

each heterogeneous case, the global damage is not the same, which shows 

the effect of the placement and distribution of aggregates in the mortar 

block. Adding of aggregates had increased the computational cost 

importantly, and also led to additional convergence difficulties. Still, the 

outcome difference is not that huge compared to this cost, especially in 

terms of mean bond stresses. One expects to get similar bond stress as long 

as the properties of concrete are preserved in homogenous concrete, as 

those properties have an effect on the bond behavior as stated in subsection 



 

125 

2.2.2.3. Still, the interface is mainly affected by the concrete region very close 

to the steel bar, and not deep inside the concrete block. For example, the 

phenomena that exist near the interface, described in subsection 2.2.1, can 

lead to the entrapping of some finer aggregates near the interface, which 

may affect the interface behavior. Coarse aggregates may not be very close 

to the concrete surface, contrary to finer aggregates (sand) that are present 

in this region near the interface. Fine aggregates can also affect the 

directions and initiation of cracks, especially with their very huge number. 

However, adding such aggregates near the interface is complex in practice 

since they lead to much finer meshes, exceeding several millions elements 

in the sample. This is extremely difficult to perform such simulations, 

especially with already existing convergence problems with the presence of 

coarse aggregates alone. One can say that as long as the properties of 

concrete are correctly assigned, homogenous concrete is sufficient to 

produce satisfactory results in terms of bond strength. Finally, since the 

interface region is more important than the concrete block, it may be 

affected by more crucial phenomena, like the shape of the ribs changing the 

shape of interface itself. This is the concern of the next section.    

5.3 EFFECT OF THE SHAPE OF THE STEEL BAR RIBS  

In this section, the effect of varying the shapes of the steels’ ribs on the 

macroscopic behavior is studied numerically, in order to understand the 

importance of modelling the exact geometry of the steel-concrete interface, 

and its general influence on the bond behavior. 

5.3.1 General description 

To analyze the effect of the geometrical shape of the ribs, pull-out test 

simulations are performed using the newly implemented frictional cohesive 

zone model described in section 4.2 on homogenous concrete samples. The 

corresponding pull-out test boundary conditions are the same as the ones 

described in subsection 3.3.1 and shown in Figure 3.8. 

First, simulations are performed on samples having a steel bar with only one 

rib, to understand the effect of changing the dimensions of the rib in a 

certain pattern on the bond behavior. Next, a pull-out simulation is 

performed using a herringbone steel bar, and the results are compared to 

those of a spiral bar. 
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5.3.2 Pull-out test simulations using samples with a one-rib bar 

In this section, simulations are performed on samples with one-rib bar, in 

which the geometry of the rib in each sample differs in terms of thickness, 

height or inclination angle. The aim is to study the effect of the varying rib’s 

surface area on the bond strength, and to verify that the bond stress 

increases with the increase of the rib’s surface area in accordance with the 

state-of-the-art in subsection 2.2.2.3. 

5.3.2.1 Generated samples 

Nine cubic homogenous concrete samples with one-rib bar are generated 

using the procedure described in section 3.2. In all the samples, the total 

length of the steel bar is 80 mm, the adhesive length is 40 mm and the side 

length of the cubic samples is 80 mm. The steel bar is formed of a cylindrical 

part whose diameter is 8 mm, and of one transversal rib at the middle of the 

adhesive part of the bar, with no longitudinal ribs. The shape bar, along with 

its total surface area, non-adhesive surface area, adhesive surface area and 

the rib’s surface area are all shown in Figure 5.13. Notice that the rib’s 

surface area is fully included in the adhesive surface area. 

 

Figure 5.13 Total surface area (in grey), non-adhesive surface area (in green), 

adhesive surface area (in blue) and rib’s surface area (in red) for a one-rib 

steel bar 

All the ribs are spiral ribs having an isosceles trapezoidal section as shown 
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in Figure 5.14. The larger width is the bottom part of the rib embedded in 

the cylindrical part, while the smaller width is the farthest point from the 

cylindrical surface, and the height of the rib defines the perpendicular 

distance between the larger and the smaller widths. The angle of the rib is 

the one in between the larger width and the sides of the trapezoid. 

 

Figure 5.14 Geometrical parameters of the isosceles trapezoidal ribs of the 

steel bar 

These nine samples are divided into three groups. In the reference sample, 

the smaller width, the larger width, the height and the angle of the rib are 

0.8 mm, 1.6 mm, 0.8 mm and 63.4°, respectively. The detailed dimensions of 

the different ribs of the samples within the three groups are shown in Figure 

5.15. 



 

128 

  

Figure 5.15 Detailed dimensions of the different one-rib steel bars modelled 

Each of the three divided groups, shown in Figure 5.15, has a certain 

intended variation pattern of at least one of the four aforementioned 

dimensions of the rib. The patterns can be described as follows: 

a) Varying rib’s height: It is made up of four samples, including the 

reference sample. In these four samples, the smaller and the larger 

width of the rib are fixed to 0.8 mm and 1.6 mm, respectively, while 

the rib’s height differs in each sample: 0.7 mm, 0.8 mm, 0.9 mm and 

1mm. As a result, the rib’s angle changes slightly from one case to 

another. 

b) Varying rib’s smaller and larger width equally: It is made up of three 

samples, including the reference sample. In these three samples, the 
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height and angle of the rib are fixed to 0.8 mm and 63.4°, respectively, 

while the rib’s smaller and larger width are varied equally from one 

sample to another, in a way that the difference between these two is 

fixed to 0.8 mm. The smaller widths are 0.6 mm, 0.8 mm and 1.2 mm, 

while in the same order for the three samples, the larger widths are 

1.4 mm, 1.6 mm and 2 mm.  

c) Varying rib’s angle: It is made up of four samples, including the 

reference sample. In these four samples, the smaller and the height 

of the rib are both fixed to 0.8 mm, while the rib’s angle differs in 

each sample: 45°, 63.4°, 76° and 90°. As a result, the larger width 

changes too: 2.4 mm, 1.6 mm, 1.2 mm and 0.8 mm. 

Finally, an unstructured mesh is generated using linear tetrahedral meshing 

elements as detailed in subsection 3.2.5. The characteristic size of each mesh 

element at the outer surface of the concrete sample is equal to about 7 mm, 

while the triangular edge of each element at the steel concrete interface is 

almost 0.6 mm. 

5.3.2.2 Discussion on the results 

Several pull-out simulations are performed on the generated homogenous 

concrete one-rib samples. Steel is assigned the perfect yield model as 

described in subsection 3.4.4 and concrete the Mazars model using the 

parameters described in Table 4.4. The interface is assigned the FCZM 

described in section 4.2, using the values for the parameters shown in Table 

4.4. 

The mean bond stress versus the free end displacement for the nine 

simulations are plotted in Figure 5.16, by showing each group on one graph. 

In here, the mean bond stress is calculated by dividing the pulling force by 

the exact adhesive surface area, which is calculated using the CAD code 

Salome. 

One can see in Figure 5.16(a) that the mean bond stress at FED = 2 mm is 

higher when the rib’s height increases. For instance, Figure 5.17(a) shows 

that the mean bond stress increases, almost linearly in this case, with the 

increase of the height of the rib. Similarly, increasing the smaller and larger 

width equally has increased the mean bond stress according to Figure 

5.16(b). However, Figure 5.16(c) shows that higher angles have given lower 

mean bond stresses, which can be seen in Figure 5.17(b), when plotting the 

mean bond stress at FED = 2 mm, with respect to the rib’s angle. Apparently, 
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the decrease is not linear, as the mean bond stress from the two cases 76° 

and 90° is almost the same. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.16 Mean bond stress versus free end displacement for the pull-out 

tests performed on the samples with one-rib steel bar having: (a) different rib’s 

height; (b) different smaller and larger width; (c) different rib’s angle 
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(a) 

 

(b) 

Figure 5.17 Mean bond stress, at FED = 2 mm, versus: (a) rib’s height for the 

first group, whose pattern is varying rib’s height; (b) rib’s angle for the third 

group, whose pattern is varying rib’s angle 

In order to explain the reasons behind these results, it is essential to 

compare the behavior with respect to the rib’s surface area, and the adhesive 

surface area of the steel bar for each case. The rib’s surface area represents 

the area of non-cylindrical surfaces of the adhesive part of the steel bar. The 

adhesive surface area and the rib’s surface for all the samples are listed in 

Table 5.5. 

Using the data from Figure 5.16 and Table 5.5, the mean bond stresses when 

the free end displacement is 2 mm, versus the rib’s surface area for the three 

groups of simulations are plotted in Figure 5.18. 
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Table 5.5 Adhesive surface area and ribs surface area for the one-rib steel bars 

Sample 
Adhesive SA 

(in mm²) 

Rib’s SA 

(in mm²) 

Adhesive SA -Rib’s SA 

(in mm²) 

Reference 1033.161 61.544 971.617 

Reference 

but rib’s 

height is: 

0.7 mm 1028.901 56.735 972.166 

0.9 mm 1037.763 66.648 971.115 

1 mm 1042.674 71.959 970.715 

Reference 

but rib’s 

smaller and 

larger width 

are, 

respectively: 

0.6 mm & 

1.4 mm 
1032.291 56.478 975.813 

1.2 mm & 

2 mm 
1035.084 71.687 963.397 

Reference 

but rib’s 

angle is: 

45° 1028.719 78.249 950.47 

76° 1037.851 57.056 980.795 

90° 1044.678 55.226 989.452 

One can see that in all the three cases, the mean bond stress increases with 

the increase of the rib’s surface area. This coincides with the property stated 

in the state-of-the-art in subsection 2.2.2.3, concerning the increase of the 

mechanical effect of the ribs on the bond stress, when the relative rib area 

of steel bar increases. 
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(a) (b) 

  
(c) (d) 

Figure 5.18 Mean bond stress, at FED = 2 mm, versus rib’s surface area for the 

groups of samples having the following pattern: (a) varying rib’s height; (b) 

varying rib’s smaller and larger width equally; (c) varying rib’s angle (d) all 

three groups together 

For each group, the following discussions and conclusion can be made: 

a) Varying rib’s height: When increasing the height of the rib, the rib’s 

surface area increases and so does the adhesive surface area. Still, the 

increase in the adhesive surface area is mainly related to the increase 

in rib surface area. The increase in the bond stress is directly related 

to the increase of embedment of the rib in the concrete. This certainly 

augments the interaction of the concrete with the rib, thus resisting 

more the pulling force at the inclined sides of the rib. 

b) Varying rib’s smaller and larger width equally: In this case, the rib’s 
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surface area increases importantly, mainly at the tips of the rib, while 

the adhesive surface area slightly increases. The mean bond stresses 

increase, but not as much as they did when increasing the height of 

the rib. This is because by increasing the height of the ribs, the surface 

areas of the inclined sides of the ribs increases, while increasing the 

widths equally increases the tips of the ribs, and keeps the sides 

almost the same. The tips of the ribs are parallel to the direction of 

pulling, which mean shearing mainly dominates and gives less effect 

to the normal stresses, while those normal stresses are much more 

effective at the inclined surfaces, along with the shear forces. These 

points were discussed using linear simulations in section 3.3. 

c) Varying rib’s angle: in this case, one can see that adhesive surface 

area increases with the increase of the angle. On the contrary, the 

rib’s surface area decreases. This explains the decrease in the mean 

bond stress with the increase of the angle. Although a rib with 90° 

angle is expected to block more forces normally, the surface area of 

the rib itself decreases. This case shows that it is more important to 

increase the surface area of the rib, than to increase that of the 

cylindrical part through the adhesive surface area.  

For instance, the increase of the surface area of the rib and the increase of 

the adhesive surface area are not directly related. This can be seen in Figure 

5.19, where the adhesive surface area for all the bars are plotted as a 

function of the rib surface area. The Pearson correlation coefficient, which is 

a measure of linear correlation between these two sets, calculated as the 

ratio between their covariance and the product of their standard deviations, 

is almost -0.15, close to 0, which means there is no direct relation between 

the surface area of the rib and the adhesive surface area of the bar. This is 

expected, as one can make different adhesive surface areas by using 

different dimensions of the ribs, thus choosing to increase or decrease the 

rib’s surface area within the adhesive surface area. 

As a conclusion, one can say that the model has shown that the increase of 

the rib surface area is the main parameter that affects the bond stress, and 

not the total adhesive surface area. Thus, an increase in the rib surface area 

increases the bond stress, which is in accordance with the conclusion 

previously reached in (Cairns and Jones, 1995; Darwin and Graham, 1993; 

Metelli and Plizzari, 2014; Tastani and Pantazopoulou, 2010; Zuo and Darwin, 

2000), as discussed in subsection 2.2.2.3. This shows the importance of 

modelling the ribs at the mesoscopic scale, as a slight change in the 
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dimensions leads to a change in the bond behavior. Note that those 

conclusions are likely to be valid for similar shapes and configurations of 

ribs. 

 

Figure 5.19 Distribution of the adhesive surface area of the bar with respect 

to the rib’s surface area 

5.3.3 Pull-out test simulation using rectangular ribbed bar 

5.3.3.1 Generated sample 

In order to check the effect of increasing the rib’s height of a steel bar with 

multiple ribs in a practical situation, two simulations are performed using 

two samples each with a rectangular-ribbed bar, and the corresponding 

results are compared to experimental results extracted from (Tastani and 

Pantazopoulou, 2010). 

Two rectangular ribbed bars, h1.1 and h0.5, are generated using the 

procedure described in section 3.2. The dimensions of these modelled steel 

bars and concrete samples are similar to the ones tested in (Tastani and 

Pantazopoulou, 2010). The difference between two bars is in their rib’s 

height: it is 1.1 mm for h1.1 and 0.5 mm for h0.5. The side length of both 

concrete cubic samples is 60 mm, and the adhesive length of the ribbed bars 

is also 60 mm. The detailed dimensions of the two rectangular ribbed bars 

used are shown in Figure 5.20. 

Eventually, an unstructured mesh is applied using linear tetrahedral meshing 
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elements as detailed in subsection 3.2.5. The characteristic size of each mesh 

element at the outer surface of the concrete sample is equal to 5 mm, while 

the triangular edge of each element at the steel concrete surface of contact 

is almost 0.6 mm. As a result, the number of mesh elements for h1.1 bar in 

the steel bar is 39 000 and in concrete is 145 000, while for h0.5 bar it is 

39 000 in the steel bar and 149 000 in concrete. 

 

Figure 5.20 Dimensions of the two modelled rectangular ribbed steel bars h0.5 

and h1.1 (in mm) 

5.3.3.2 Simulations and results 

In this simulation, steel is as before assigned the perfect yield model as 

described in subsection 3.4.4, while concrete is assigned Mazars model with 

all the modifications described in section 3.4.3. In addition, based on the 

experimental data, concrete’s ultimate tensile stress 𝑓𝑡 𝑐𝑜𝑛  is 2 MPa, and 

concrete’s compressive stress is 27 MPa. The corresponding fracture energy 

is taken 120 N/m. For the compressive damage parameters 𝐴𝑐 and 𝐵𝑐, the 

same methodology described in subsection 3.4.3 is applied. For the FCZM, 

the values assigned are based on the calibration process mentioned in 

subsection 4.3.1.2, and summerized in Table 4.6. As result, 𝐾𝑠 = 4.91 × 1011 

N/m3, 𝑓𝑡= 1.4 MPa, 𝐺𝑓= 86 N/m, 𝜆0 = 5 × 10−5m and 𝜇=0.3. The mean bond 

stress versus bar’s slip for the rectangular ribbed samples and the 

corresponding experimental results are plotted in Figure 5.21. 



 

137 

 

Figure 5.21 Mean bond stress versus bar’s slip for the rectangular ribbed pull-

out simulations compared to the experimental results extracted from (Tastani 

and Pantazopoulou, 2010) 

One can see that h1.1 bar produced much stiffer response compared to h0.5. 

This is in accordance with experimental results shown, although the initial 

part of the curve in the numerical case is slightly different form the 

experimental case, but still acceptable. Experimentally, the initial peak is 

reached instantly, after which the curve shows many slight decrease and 

increase, so that only the general pattern is reproduced here. Note that the 

concrete cover is two times less than what is recommended in subsection 

2.2.2.1, which may lead to splitting failure. 

The results indicate that the increase of the bond stress is directly related to 

the increase in the height of the ribs. For instance, when the rib height has 

increased by 120%, the bond stress experimentally increased by almost 90%. 

This proves the great importance of the geometry of the ribs, and their effect 

on the bond behavior. 

Finally, we conclude that the FCZM was able to reproduce the macroscopic 

bond behavior by changing the dimensions of the ribs in a practical 

situation. More complicated shapes may lead to much more complicated 

behavior, like when using a herringbone and spiral bar, which is dealt with 

numerically in the next section. 
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5.3.4 Pull-out test simulation using herringbone ribbed bar 

5.3.4.1 Generated sample 

In order to understand the effect of changing the shapes of the ribs on a 

steel bar with multiple ribs in a practical situation, a simulation is performed 

using a sample with a herringbone ribbed bar, which is described in 

subsection 3.2.2. In order to compare the results to a spiral pull-out 

simulation, the results of the pull-out test performed and detailed in 

subsections 4.3.3.2 and 4.4.2 are considered as well. 

For a scientific comparison, the geometrical properties of the spiral sample 

are maintained, and a herringbone sample is generated using the procedure 

described in section 3.2. Thus, the side length of this concrete cubic sample 

is 80 mm. Like the spiral bar, the adhesive length of the herringbone bar is 

40 mm, and its total length is 80 mm. The detailed dimensions of the 

herringbone bar used are shown in Figure 5.22. The adhesive surface area 

of the herringbone bar is 1265.184 mm² and is then almost equal to that of 

the spiral bar 1262.334 mm², using the dimensions chosen.  Still, the ribs’ 

surface areas are different, which are 634.933 mm² and 645.987 mm² for the 

spiral and herringbone bars, respectively. 

 

Figure 5.22 Dimensions of the modelled herringbone steel bar (in mm) 

Eventually, an unstructured mesh is applied using linear tetrahedral meshing 

elements as detailed in subsection 3.2.5. The characteristic size of each mesh 

element at the outer surface of the concrete sample is equal to 5 mm, while 

the triangular edge of each element at the steel concrete surface of contact 

is almost 0.4 mm. As a result, the number of mesh elements for the 

herringbone sample in the steel bar is 307 000, while the number of mesh 
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elements in the concrete is 277 000. 

5.3.4.2 Discussion on the results 

Since the comparison is done with spiral simulation performed in subsection 

4.3.2.2, steel, concrete and the steel-concrete interface of the generated 

herringbone sample are assigned the same models used for the 

aforementioned spiral simulation. 

The mean bond stress versus the free end displacement for the spiral and 

the herringbone simulations are plotted in Figure 5.23. 

 

Figure 5.23 Mean bond stress versus bar’s displacement for the herringbone 

and spiral pull-out simulations 

One can see that the herringbone sample shows a stiffer response compared 

to the spiral sample. Although both samples have the same models for the 

different materials, the same values for the parameters, and even almost the 

same adhesive surface area between steel and concrete, the bond behavior 

is different. This can be explained by comparing the total ribs’ surface area, 

containing both transversal and longitudinal ribs, listed in Table 5.6, and the 

shapes of the ribs of the two steel bars. 

Based on the conclusions made in subsection 5.3.2.2, one expects the bar 

with higher ribs’ surface area to produce a higher mean bond stress, which 

is the case in here, see Table 5.6. Still, the difference between the two surface 

areas is very small, about 1.7%, compared to the difference in mean bond 

stress, which is about 33.8%. 
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Table 5.6 Adhesive surface area, ribs’ surface area and mean bond stress when 

bar’s slip is 1 mm, for the spiral and herringbone bars 

Bar type Spiral Herringbone 

Adhesive surface area (mm²) 1262.334 1265.184 

Ribs’ surface area (mm²) 634.933 645.987 

Ribs’ SA/Spiral bar rib’s SA 100% 101.7% 

Mean bond stress (MPa) at 1 mm 10.12 13.54 

Bond stress/Spiral bar bond stress, both at 1 mm 100% 133.8% 

 

Figure 5.24 A closer view of the herringbone and the spiral steel bars  
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This can be justified by the geometry of the herringbone bar when 

compared to the spiral bar: by getting a closer look to Figure 5.24, one can 

see that the herringbone bar does not only differ from the spiral bar in the 

shapes and the orientation of the transversal ribs, but also in the connection 

between the longitudinal and transversal ribs. Indeed, the longitudinal ribs 

and transversal ribs are connected in the herringbone bar. This is not the 

case in the spiral bar, where the two ends of the transversal ribs lay on the 

cylindrical surface itself, before reaching the longitudinal rib. Thus, the 

surface area of the longitudinal ribs in the spiral bar is higher when 

compared to that of the herringbone. Hence, although the two ribs’ surface 

areas are close, their nature is different. More inclined surfaces of the 

transversal ribs are included in the herringbone rib’s surface area, while less 

areas from the longitudinal ribs are included. The longitudinal ribs are 

parallel to the direction of pulling and to the axis of the bar, thus are much 

less effective in blocking the movement compared to the transversal ribs, as 

mainly shear behavior dominates at their surfaces. As expected, one can 

conclude that not only the ribs’ surface area of the bar is important, but its 

nature has a crucial role on the steel-concrete bond behavior. It also shows 

that the model is capable to account for this aspect and to predict 

accordingly the difference of behavior. 

By trying to quantify these differences for the spiral and the herringbone 

ribs, two parameters are considered: the surface area of one side of the rib 

and the normal projected surface area, which are shown in 2D in Figure 5.25.  

 

Figure 5.25 Original surface area (in blue) and normal projected surface area 

(in red) of one side of a steel bar rib in 2D 

The surface area of one side of the rib for the part shown in Figure 5.25 is 

10.869 mm² for the spiral rib and 11.284 mm² for the herringbone rib. Thus, 

the original surface area for the herringbone rib’s side is only 4 % larger than 
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that of the spiral rib. However, when projecting the side of the rib on the 

plane perpendicular to the axis of the bar, the normal projected area for the 

spiral rib is 8.0448 mm² while it is 10.0924 mm² for the herringbone rib. 

Hence, the normal projected area for the herringbone rib is 25.45% more 

than that of the spiral rib. This value is significanlty different, and it can 

explain the important increase in the bond stress. 

Still, one cannot say that the projected area is sufficient to predict the 

increase in the bond strength. For instance, very recently (Higuchi et al., 2022) 

performed experimental tests on steel plates having uncommon ribs, i.e. 

triangular and semicircular ribs. The height of the triangular isosceles ribs 

considered was the same as the radius of the semicircular ribs and the 

thickness of the triangular ribs is equivalent to the diameter of the circle as 

shown in Figure 5.26. Thus, the nodes of triangular rib are fully included on 

the circumference of the semicircular rib, and the triangular rib itself can fit 

within the semicircular rib. Hence, the normal projected area of these two 

ribs is exactly the same. Still, the average bond stress for the circular rib was 

slightly higher. The difference here is related to the original surface area of 

the sides of each rib. The circular rib has a bigger surface area before 

projection, compared to the triangular rib. Hence, it is essential to compare 

both the original surface area and the normal projected surface area of the 

side of the rib. Nonetheless, the normal projected surface area appears more 

important, as the case when both sides have the same original surface area 

is rare. 

 

Figure 5.26 Original surface area (in blue) and projected surface area (in red) 

in 2D for a semicircular rib and a triangular rib used in (Higuchi et al., 2022)  

In addition, one could say that the orientation of the spiral rib in between 

the two longitudinal ribs may have an effect also on the behavior. Indeed, 

although the rib surface area is a good parameter to predict the bond 
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increase, it considers the effect of all the rib surfaces the same. Still, surface 

where normal effect dominates are much more important, as seen here. 

They can give a better prediction of the bond increase, and they neglect the 

effect of the parts of the ribs that are parallel to the cylindrical part of the 

bar, like the tips of the ribs. 

Thus, one important parameter to check is the projected normal surface area 

of the side of the rib. This parameter when compared to a reference rib can 

give a correct prediction of the bond strength variation, especially when the 

two ribs have very similar geometry. To elucidate more deeply its influence, 

experimental pull-out tests should be performed using common shapes of 

the ribs of the steel bar, like the spiral shape, by varying the dimensions of 

the ribs like in subsection 5.3.2, on more than one sample. These detailed 

experimental results can be used to calibrate more accurately the projected 

normal area parameter by taking into account the effect of the orientation 

of the rib itself, and the different original surface areas of the side of the rib, 

as it is important in some cases as observed in (Higuchi et al., 2022). Still, 

with the lack of such experimental results, the projected normal surface area 

of the side of the rib can be used directly and can give a good prediction. 

In order to compare the distributions of damage in the samples, the same 

volume previously extracted in Figure 5.9 is considered, and the distribution 

of full damage are shown in Figure 5.27. One can see that the full damage 

is similar to a certain point, except that the damage in last rib is slightly more 

extended, and more inclined. 

 

Figure 5.27 Pull-out test simulations on the spiral and herringbone samples, 

at ID=1 mm, showing the full damage (𝐷 ≥ 0.99) in concrete at the central 
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plane normal to the z-axis of the extracted section 

As a conclusion, the herringbone bar gives a stiffer bond response 

compared to the spiral bar. The shape of the ribs has an important effect on 

the bond behavior in pull-out test, in which the bond stress increases with 

the increase of ribs’ surface area. Nonetheless, the nature of the rib surface 

area has also a very important effect on the bond stress. Thus, the increase 

of the ribs’ surface area is not enough to predict the increase in the bond 

strength, and it is essential to check and characterize the nature of the ribs’ 

surface area. The projected normal surface of the side of the transversal rib 

is an important parameter that can be used to predict the bond strength 

variation. A function can be introduced in macroscopic models to take into 

account this variation, where a simulation is performed on a certain rib case 

and this value will be one for this reference case, then by choosing another 

bar having different dimensions of its rib, the coefficient will be equivalent 

to the normal projected surface area of the new bar divided by that of the 

reference case. Finally, this study highlights the importance of the 

mechanical interlock on the bond behavior, as stated previously by (Lin et 

al., 2019). It has also shown the ability of FCZM to reproduce this behavior 

using different shapes of ribs. 

5.4 EFFECT OF EXTERNAL CONFINEMENT 

In this section, the effect of applying an active confinement on pullout 

samples is investigated, in order to check the ability of the FCZM to 

reproduce the macroscopic bond behavior in this case. 

5.4.1 General description and considered sample 

In order to understand the effect of applying an external confinement on 

the macroscopic bond behavior, simulations are performed using a sample 

with a spiral ribbed bar. The simulation is performed on the same spiral 

sample described in subsection 4.3.2, and the results of the corresponding 

pull-out test performed and detailed in subsections 4.3.2.2 and 4.4.2 are 

considered, along with pull-out test experimental results extracted from (La 

Borderie and Pijaudier-Cabot, 1992). 

In order to apply an external confinement on the sample, the initial 

boundary conditions are modified as shown in Figure 5.28. In this set up, 5 

MPa normal compressing stress is imposed on the four concrete surfaces 

parallel to the x direction. 
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Figure 5.28 Boundary condition of the pull-out test simulation under external 

confinement 

5.4.2 Discussion on the pull-out results 

Steel, concrete and the steel-concrete interface of the spiral sample are 

assigned the same models used in the simulation performed and discussed 

in subsections 4.3.2.2 and 4.4.2. 

The mean bond stress versus the free end displacement for the spiral 

simulations with and without external confinement, along with the 

experimental results, are shown in Figure 5.29. 

One can see that the sample under confinement experiences a stiffer 

response. This is in accordance with what is observed experimentally. Such 

behavior is expected as the external confinement of concrete plays an 

additional role in making it more difficult for the cracks to propagate, and 

adds an additional compressive stress at the steel-concrete interface. 

Nevertheless, the response is weaker when compared to experimental 

results. It is important to note that even experimentally it is difficult to 

observe the confinement effect when the concrete cover is large. This is the 

reason why (Malvar, 1992) used thin concrete layer, since the effect will be 
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more important and possible to capture. Still, this may lead to splitting 

failure. Under confinement, concrete gains additional resistance, and cracks 

are affected by supplementary compressive stresses that limit their 

formation and propagation. Thus, the concrete behavior at the mesoscale is 

important in this case. For instance, (Tastani and Pantazopoulou, 2010) 

proposed to calibrate the model when under confinement by changing the 

properties of concrete and the properties of the interface, in order to 

introduce the confinement effects and reproduce correctly the behavior. 

This can be done by modifying concrete compressive stress and interface 

friction. 

 

Figure 5.29 Mean bond stress versus free end displacement of the pull-out test 

performed on the spiral sample under 0 MPa, 5 MPa or 10 MPa external 

confinement, compared to the experimental results extracted from (La 

Borderie and Pijaudier-Cabot, 1992) 

As a conclusion, the sample under confinement gives a stiffer response 

compared to the unconfined sample in pull-out simulations; this is in 

accordance with what was mentioned in subsection 2.2.2.3 concerning the 

influence of active confinement, as observed in (La Borderie and Pijaudier-

0

3

6

9

12

15

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4

M
ea

n
 b

o
n

d
 s

tr
es

s 
(M

P
a)

Bar's slip (mm)

La Borderie and  Pijaudier-Cabot 1992: Confinement = 0 MPa
La Borderie and  Pijaudier-Cabot 1992: Confinement = 5 MPa
La Borderie and  Pijaudier-Cabot 1992: Confinement = 10 MPa
Numerical: Confinement = 0 MPa
Numerical: Confinement = 5 MPa
Numerical: Confinement = 10 MPa



 

147 

Cabot, 1992; Malvar, 1992). Thus, the model is able to reproduce to some 

extent confinement effects, although less obviously when using thick 

concrete covers, since confinements effects depends directly on the 

concrete cover as stated in subsection 2.2.2.3. 

5.5 CONCLUSIONS 

In this chapter, several numerical applications were discussed, using the 

FCZM for the steel-concrete interface, presented in chapter 4.  

In the first part, concrete was divided into two-phase material, made up of 

coarse aggregates and surrounding mortar. The material and damage 

parameters of mortar were determined using a procedure that aims to get 

the same uniaxial tensile and compressive behaviors for the homogenous 

and heterogeneous concrete. Pull-out test simulations were performed on 

three heterogeneous samples, who differ in the placement and generation 

procedure of aggregates. It was eventually proved that it is possible to 

reproduce the macroscopic behavior using heterogeneous concrete. In 

addition, for each heterogeneous case, the global damage is not the same, 

which shows the importance of the placement and distribution of 

aggregates in the mortar block, and its effect on the global damage in the 

whole sample. Still, the computational cost is much higher than the 

simulations with homogenous concrete, but the bond stress difference is 

not that big. Thus, taking a homogenous concrete proves to be more 

efficient. 

In the second part, the mechanical interlock between steel and concrete was 

studied numerically. One rib-bar was used first to study the effect of 

changing the dimensions of one rib. It was shown that for given rib shape 

and configuration (i.e. spiral), the increase of the rib surface area is the main 

parameter that affects the bond stress, and not the total adhesive surface 

area, which is in accordance with the conclusion previously reached in 

(Cairns and Jones, 1995; Darwin and Graham, 1993; Metelli and Plizzari, 2014; 

Tastani and Pantazopoulou, 2010; Zuo and Darwin, 2000), as discussed in 

subsection 2.2.2.3. After then, two simulations were performed on ribbed 

samples having rectangular ribs with two heights, and were compared to 

experimental results. The result had shown the ability of the FCZM to 

simulate the behavior due to the effect of different ribs. It has also 

strengthen the aforementioned conclusions about the one-rib bar. 

Following, a sample with herringbone bar was used, to replace the spiral bar 

previously used in the samples in subsections 4.3.2, 4.3.3.2 and 0. It has 
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shown a stiffer bond response compared to the spiral bar. Since both bars 

have very similar ribs’ surface area, this shows that the nature of the rib 

surface area has a very important effect on the bond stress, not only its value. 

This proves the importance of the mechanical interlock on the bond 

behavior, as stated previously by (Lin et al., 2019), especially at the 

mesoscopic scale. Thus, it is important to model the ribs at the mesoscopic 

scale, since a small change in the dimensions may influence significantly the 

bond behavior, depending on the shape nature of the each rib. In addition, 

the normal projected area of the side of the transversal rib is the most 

important parameter that can be used to predict the variation of the bond 

strength. This simple parameter can be introduced to macroscopic models, 

as this aspect is not captured in macroscopic models, which to a certain 

point neglect the detailed geometry of the bar. 

In the last part, an external confinement was applied on the spiral sample. 

Numerical results were compared to experimental ones, and they have 

shown a stiffer response when compared to the unconfined sample in pull-

out simulations. This is in accordance with what was mentioned in 

subsection 2.2.2.3, concerning the influence of active confinement on the 

bond stress, as observed in (La Borderie and Pijaudier-Cabot, 1992; Malvar, 

1992). Still, the behavior was less stiff when compared to experimental 

results. This can be related to the concrete model, which plays the main role 

in transporting the confining stresses inside the sample before reaching the 

interface. In addition, smaller concrete covers are expected to give a stiffer 

response, as the active confinement is directly related to the concrete cover 

as stated in subsection 2.2.2.3. 

The FCZM was able to give satisfactory results when applied to different 

numerical cases. It has shown the high importance of modelling the exact 

geometry of the ribs of the steel bar, which is a crucial aspect that is not 

much dealt with in details in literature. This aspect has a great impact on the 

bond strength of the steel-concrete bond in reinforced concrete structures. 

One can say it is very essential to take into account the geometry of the rib 

by certain parameters in macroscopic models, like projected normal surface 

area, which gives importantly different bond stresses. This would aid these 

models, used at the structural scale, in reaching more accurate bond 

strengths for the simulated reinforced concrete structures.   

Furthermore, the addition of coarse aggregates at the mesoscopic scale, 

which has a much higher computational cost, shows that taking a 

homogenous concrete is sufficient to evaluate the bond stress. Moreover, it 
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shows different damage patterns depending on the distribution of the 

aggregates in the concrete mix, which shows the importance of introducing 

aggregates at these zones to predict the exact cracking. Still, coarse 

aggregates are not solely in control for the crack propagation, but more 

importantly fine aggregates just near the vicinity of the interface. However, 

introducing finer aggregates would increase the already large-size mesh 

greatly, making it extremely difficult to perform such studies. In addition, 

due to the lack of experimental data on the exact distribution of the meso-

cracks just near the interface, it possesses an additional difficulty on 

proofing that for a given distribution of aggregates, the cracking 

phenomena performed numerically is very close to that produced 

experimentally. This can be only limited by the general description of the 

phenomena described in subsection 2.2.2.2, concerning the formation of 

one major crack at the tip of each rib with 45° inclination. The distribution 

of the aggregates numerically would change the evolution and patterns of 

these cracks at the mesoscale. It is also important to assign to mortar the 

correct model behavior that can reproduce the cracking phenomena once 

these data are available. 

The next chapter shows the overall conclusions of the work, and some 

perspectives. 
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6 CONCLUSIONS AND PERSPECTIVES 

6.1 CONCLUSIONS 

The global objective of this thesis was to develop modeling tools at the 

mesoscopic scale to better understand the underlying phenomena of the 

steel-concrete bond, because this region is of great importance for cracking 

description. Simulations on pullout tests were performed at the mesoscopic 

scale using a certain proposed methodology mainly based on implementing 

a 3D frictional cohesive zone interface model. Effect of adding coarse 

aggregates, using different shapes of the ribs and applying external 

confinement were then studied. 

In Chapter 1, a general introduction was done, and the objectives of the 

thesis were presented, followed by the adopted methodology. 

In Chapter 2, a bibliographic study was done. It focused especially on the 

complex physical phenomena occurring at the steel-concrete interface. The 

pull-out test commonly used for characterizing the bond was introduced 

along with the different properties that affect the corresponding bond 

stress-bond slip law. The macroscopic and mesoscopic scales of the 

modeling of the bond were discussed, and the main procedures for 

describing both numerical concrete and steel-concrete bond in literature 

were presented. In particular, zero-thickness interface models were 

discussed; mainly the elastic spring model, frictional model, cohesive zone 

model and the frictional cohesive zone model. Based on this bibliographic 

study, and to reach the objective of the thesis, the decision was made to 

model 3D samples that take into account the detailed geometry of the steel 

ribs, which was rarely done previously in literature, and paved the way for 

studying the effect of the interlock mechanisms. In addition, the finite 

element method was chosen in order to deploy developed tools in Cast3M, 

Salome and MFront, which can be effectively used for different finite 

element applications. 

In Chapter 3, the detailed procedure of generation of the numerical three 

dimensional pull-out test specimens was presented. It used Combs script, 

mainly for generating the aggregates in the considered matrix. In this thesis, 

the generation of the steel bar and the detailed geometry of its ribs were 

introduced to the script, giving the option to generate different shapes of 

steel bars. Those samples were meshed using a sufficiently fine mesh to 
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study accurately the distribution of cracks and stresses near the steel. Linear 

simulations, including linear spring interface element model for the bond, 

were then performed on a smooth and a herringbone ribbed bar in order to 

study the stiffness parameters. As expected, the shear stiffness dominates 

at the cylindrical part and at the tips of the steel ribs, while the normal 

stiffness dominates at the sides of the ribs. Those basic studies cleared the 

way for performing non-linear simulations using non-linear models for 

concrete and steel-concrete interfaces.  

Mazars damage model (Mazars, 1986, 1984) was used in the concrete to 

represent the fracture phenomena, i.e. initiation and propagation of cracks. 

It was supplemented by an exponential Hillerborg regularization in tension, 

and modifications in compression were also introduced in order to prevent 

a mesh dependency of the damaged response in compression. Those 

modifications proved to be essential to prevent the mesh dependency of 

the concrete model. 

Classical models were considered at this stage to evaluate their validity when 

assigned to the steel-concrete interface. The formulations of the modified 

Tvergaard’s cohesive zone model, initially presented in (Tvergaard, 2003, 

1990; Wu and Wriggers, 2015), and Coulomb’s frictional interface models, 

were introduced and their response analyzed on one-interface element. The 

inability of these two models to reproduce accurately the experimental 

results extracted from literature on pull-out test carried out on a smooth bar 

sample was demonstrated. This highlighted the drawbacks of these two 

models and encouraged the proposition of a new model that includes the 

advantages of both cohesive zone and frictional models, in order to 

reproduce the experimental behavior correctly. 

In Chapter 4, a new frictional cohesive zone model (FCZM) was proposed, 

and its detailed formulation and implementation on one-interface element 

were presented. The proposed FCZM is a combination of the two 

aforementioned CZM and frictional model. The FCZM was able to reproduce 

the experimental behavior of the smooth bar after an appropriate 

adjustment of the parameters, overcoming the limitations of the CZM and 

Coulomb’s frictional interface model. Furthermore, the model was capable 

to reproduce the behavior of pull out test with ribbed bar samples. A certain 

calibration was applied to the interface model parameters, by relating most 

of these parameters to the surrounding concrete and steel properties, and 

it proved to give good results. In addition, the full damage pattern was very 

similar to what was observed in previous numerical simulations in literature, 
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showing one crack at the top of each rib and an extended crack at the last 

rib. Moreover, the regions with fully damaged concrete are mostly under 

either tensile stresses in the three principal directions. On the other hand, 

the regions in front of the ribs were all under compressive stresses in three 

directions, at which very high compressive stresses were observed.  

In Chapter 5, the FCZM was used in different numerical applications. It was 

first deployed to examine the effect of including coarse aggregates in the 

concrete mix, instead of homogenous concrete. Parameters of mortar were 

calibrated based on those of homogenous concrete previously used. 

Simulations were performed on three different samples, and the ability of 

the model to reproduce the macroscopic behavior using heterogeneous 

concrete was proved. Still, the global damage in the sample, used to 

compare the amount of damage in the mortar volume, had given different 

values for each heterogeneous case. This was explained by the different 

placements and distributions of aggregates in the mortar block. However, it 

showed that considering a heterogeneous sample, which has a very high 

computational cost, leads to small differences in mean bond stress when 

compared to results with homogenous samples. Hence, the conclusion 

reached is that taking a homogenous concrete seems sufficient to evaluate 

this macroscopic quantity. However, it may be insufficient if e.g. an accurate 

estimation of damage is needed, in order for instance to predict cover 

cracking. 

Another important aspect studied was the effect of the geometry of the ribs 

on the bond behavior, since macroscopic models usually ignore this 

characteristic. Simulations on bars with one rib-bar were performed, by 

varying the dimensions of the rib. It was found that the bond strength was 

affected mainly by the rib surface area, and not the total adhesive surface 

area, which was in accordance with some conclusions previously reached in 

literature. Simulations performed on two ribbed bars with different 

rectangular sections had shown good results when compared to experiment. 

This proved even more the importance of the mechanical interlock on the 

bond behavior, as stated previously by (Lin et al., 2019). Following, 

herringbone bar was used and compared to the spiral bar previously used. 

It had shown a stiffer bond response compared to the spiral bar. Since both 

bars had similar surface area, the difference in the bond stress was related 

to the nature of the rib surface area. This is because the rib surface area 

usually calculated contains surface areas that are parallel to the cylindrical 

surface and surface areas that intersect the cylindrical surface. It is thus 
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important to model the ribs at the mesoscopic scale, due to the sensitivity 

of the bond stress to the dimensions and the shape of the ribs. This 

additional information can be used and included as a parameter in the 

macroscopic models for their calibration. The normal projected area of the 

side of the transversal rib is here considered as the most important 

parameter that can be adopted by macroscopic models to predict the 

variation of the bond strength.  

Another applications studied is the effect of the external confinement on a 

ribbed sample. A stiffer response was shown when compared to the 

unconfined sample in pull-out simulations, which coincides with the 

observations in literature. However, the behavior was less stiff when 

compared to experimental results. Thus, it would be interesting to validate 

this aspect of the model by comparing with samples having smaller cover 

thickness. 

It is important to note that the numerical model has a high computational 

cost, and even higher when including aggregates. The difficulty of 

convergence is another problem related to the nonlinear behaviors 

considered. They may limit the application domain of the methodology, and 

prevent investigating more deeply some aspects. 

6.2 PERSPECTIVES 

Following the conclusions of this thesis, several perspectives can be 

proposed: 

 At the mesoscale, a more accurate analysis of the distribution of 

damage and stresses in the concrete near the interfaces could be 

carried out with a different model for concrete behavior; in particular, 

the effects of tri-compressive states of stresses could be investigated 

by means of consistent and appropriate criteria. One possibility is to 

propose a phase field approach by taking different criterions in 

tension and compression. In addition, effect of creep and shrinkage 

of concrete on the overall behavior is to be analyzed with the 

influence of the loading, environmental, hydric and thermal 

conditions, as well as the impact of material properties changes due 

to the use of different types of cement. Still, this would always face 

the convergence difficulty and computational cost obstacles. 

 

 In nuclear applications, where transfer properties are important, it is 
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possible to extend this model in order to analysis the transport 

capacities at the steel/concrete interface. Moreover, it can be applied 

to study the corrosion of the steel bar, by taking into account the 

detailed geometry of the ribbed bar and expansions due to the 

formation of corrosion products. 

 

 The proposed FCZM is not only specific to the steel-concrete 

interface. It can be applied for other engineering applications like 

assigning it to the mortar joint of the masonry walls (D’Altri et al., 

2018), UHPC-NC composite member (Tong et al., 2022), timber-

concrete interface (Jaaranen and Fink, 2021) and many other 

composite-like materials in which CZM is applied, but where the 

frictional effect could be important like fiber-matrix interfaces 

(Heshmati et al., 2018; zhang and Huang, 2022) and aggregates-

mortar interface (Wu and Wriggers, 2015). 

 

 Due to the lack of experimental data on pullout test with steel bar 

having various dimensions and shapes of ribs, it would be of interest 

to add such data to the pool of bond studies. Recently, (Higuchi et 

al., 2022) tried different shapes of ribs built using 3D printing. Still, 

the steel plates used were rectangular, not circular, and smooth in 

two sides. It would be valuable to perform several pull-out tests using 

an approach similar to the one adopted in subsection 5.3.2, that is, 

to vary one of the dimensions (including the height, angle, thickness 

and orientation) at a time and to observe the effect. Using different 

shapes of the bars having equivalent surface areas is important and 

such data is missing in literature. More than one experiment should 

be done on each case to be representative, as sometimes the 

experiments performed on the same bar do not give very close 

results, like in (Higuchi et al., 2022). The results of such long-term 

study would be very valuable and unique, and could give an 

alternative and complementary view on the mechanical interlock, and 

help understand the importance of the shape of the ribs, which are 

usually neglected at large scales. 

 

 At the macroscopic scale, the models should evolve more by 

including more precisely the effect of the mechanical interlock. This 

can be done by introducing the projected normal surface area of the 

rib, which can be quantified using CAD. Macroscopic models that 

neglect the geometry of the rib may give similar results when varying 
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the geometry of the ribs, which is not realistic. A challenge would be 

able to predict this coefficient using the projected normal surface 

area of the one side of the rib, which can give a good prediction of 

the variation in the bond strength. Moreover, it is expected to reach 

a very accurate prediction after obtaining the aforementioned 

experimental data. 
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RÉSUMÉ ÉTENDU EN FRANÇAIS 

L'objectif global de cette thèse était de développer des outils de 

modélisation à l'échelle mésoscopique pour mieux comprendre les 

phénomènes sous-jacents de la liaison acier-béton, car cette région est 

d'une grande importance pour la description de la fissuration des structures 

en béton armé. Des simulations sur des essais d'arrachement ont été 

réalisées en 3D à l'échelle mésoscopique en utilisant une méthodologie 

principalement basée sur la mise en œuvre d'un modèle d'interface de zone 

cohésive avec frottement. L'effet de l'ajout de granulats, l'utilisation de 

différentes formes de nervures sur les aciers et l'application d'un 

confinement externe ont ensuite été étudiés. 

Dans un premier temps une étude bibliographique a été réalisée. Elle s'est 

concentrée en particulier sur les phénomènes physiques complexes qui se 

produisent à l'interface acier-béton. L'essai d'arrachement couramment 

utilisé pour caractériser l'adhérence a été présenté ainsi que les différentes 

propriétés qui affectent la loi correspondante de contrainte et de glissement 

de l'adhérence. Les échelles macroscopique et mésoscopique de la 

modélisation de la liaison ont été discutées et les principales procédures de 

description numérique de la liaison acier-béton dans la littérature ont été 

présentées. En particulier, les modèles d'interface d'épaisseur nulle ont été 

discutés : modèle de ressort élastique, modèle de friction, modèle de zone 

cohésive et modèle de zone cohésive frictionnelle. Sur la base de cette étude 

bibliographique, et pour atteindre l'objectif de la thèse, le choix a été fait de 

modéliser des échantillons 3D qui prennent en compte la géométrie 

détaillée des nervures en acier, ce qui était rarement fait auparavant dans la 

littérature, et qui ouvre la voie à l'étude de l'effet des mécanismes de 

verrouillage. En outre, la méthode des éléments finis a été choisie afin de 

déployer les outils développés dans Cast3M, Salome et MFront, qui peuvent 

être utilisés efficacement pour différentes applications. 

Ensuite, la procédure détaillée de génération des spécimens d'essai 

d'arrachement tridimensionnels numériques a été présentée. Elle utilise le 

script Combs, principalement pour générer les agrégats dans la matrice 

considérée. Dans cette thèse, la génération de la barre d'acier et la 

géométrie détaillée de ses nervures ont été introduites dans le script, 

donnant la possibilité de générer différentes formes de barres d'acier. Ces 

échantillons ont été maillés avec un maillage suffisamment fin pour étudier 

avec précision la distribution des fissures et des contraintes à proximité de 
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l'acier. Des simulations linéaires, incluant un modèle d'élément d'interface 

linéaire pour la liaison, ont ensuite été réalisées sur une barre lisse et une 

barre nervurée en chevron afin d'étudier les paramètres de rigidité. Comme 

prévu, la rigidité en cisaillement domine dans la partie cylindrique et aux 

extrémités des nervures en acier, tandis que la rigidité normale domine sur 

les côtés des nervures. Ces études de base ont ouvert la voie à la réalisation 

de simulations non linéaires à l'aide de modèles d’endommagement pour 

le béton et non linéaire pour les interfaces acier-béton.  

Le modèle d'endommagement de Mazars (Mazars, 1986, 1984) a été utilisé 

dans le béton pour représenter les phénomènes de rupture, c'est-à-dire 

l'initiation et la propagation des fissures. Il a été complété par une 

régularisation exponentielle de Hillerborg en tension, et des modifications 

en compression ont également été introduites afin d'éviter une dépendance 

du maillage de la réponse endommagée en compression. 

Les modèles classiques ont été considérés à ce stade pour évaluer leur 

validité lorsqu'ils sont affectés à l'interface acier-béton. Les formulations du 

modèle de zone cohésive de Tvergaard modifié, initialement présenté dans 

(Tvergaard, 2003, 1990 ; Wu et Wriggers, 2015), et les modèles d'interface 

frictionnelle de Coulomb, ont été introduits et leur réponse analysée sur un 

élément à une interface. L'incapacité de ces deux modèles à reproduire avec 

précision les résultats expérimentaux extraits de la littérature sur l'essai 

d'arrachement réalisé sur un échantillon de barre lisse a été démontrée. Ceci 

a mis en évidence les inconvénients de ces deux modèles et a encouragé la 

proposition d'un nouveau modèle qui intègre les avantages des deux 

modèles de zone cohésive et de friction, afin de reproduire correctement le 

comportement expérimental. 

Sur la base de ce résultat, un nouveau modèle de zone cohésive avec 

frottement (FCZM) a été proposé, et sa formulation détaillée ainsi que sa 

mise en œuvre sur un élément à une interface ont été présentées. Le modèle 

FCZM proposé est une combinaison des deux modèles de zone cohésive et 

de frottement susmentionnés. Le FCZM a pu reproduire le comportement 

expérimental de la barre lisse après un ajustement approprié des 

paramètres, en surmontant les limites du modèle de zone cohésive et du 

modèle d'interface frictionnelle de Coulomb. En outre, le modèle a été 

capable de reproduire le comportement de l'essai d'arrachement avec des 

échantillons de barres nervurées. Une certaine calibration a été appliquée 

aux paramètres du modèle d'interface, en reliant la plupart de ces 

paramètres aux propriétés du béton et de l'acier environnants, ce qui a 
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donné de bons résultats. En outre, le modèle d'endommagement a produit 

des résultats similaire à ce qui a été observé dans des simulations 

numériques issues de la littérature, montrant une fissure au sommet de 

chaque nervure et une fissure étendue à la dernière nervure. De plus, les 

régions où le béton est entièrement endommagé sont principalement 

soumises à des contraintes de traction dans les trois directions principales. 

D'autre part, les régions devant les nervures étaient toutes sous des 

contraintes de compression dans les trois directions principales, où des 

intensités de contraintes très élevées ont été observées.  

Par la suite, le FCZM a été utilisé dans différentes applications numériques. 

Il a d'abord été déployé pour examiner l'effet de l'inclusion de granulats 

grossiers dans le mélange de béton, au lieu d'un béton homogène. Les 

paramètres du mortier ont été calibrés sur la base de ceux du béton 

homogène précédemment utilisé. Des simulations ont été effectuées sur 

trois échantillons différents, et la capacité du modèle à reproduire le 

comportement macroscopique en utilisant un béton hétérogène a été 

prouvée. Cependant, l'endommagement global de l'échantillon, utilisé pour 

comparer la quantité d'endommagement dans le volume de mortier, a 

donné des valeurs différentes pour chaque cas hétérogène. Ceci a été 

expliqué par les différents placements et distributions des granulats dans le 

volume de mortier. Ainsi, la prise en compte d'un échantillon hétérogène, 

qui a un coût de calcul très élevé, conduit à de petites différences dans la 

contrainte d'adhérence moyenne par rapport aux résultats avec des 

échantillons homogènes. La conclusion est donc que la prise en compte 

d'un béton homogène semble suffisante pour évaluer cette quantité 

macroscopique. Cependant, cela peut être insuffisant si, par exemple, une 

estimation précise de l'endommagement est nécessaire afin de prédire la 

fissuration dans la zone d’enrobage de l’armature . 

Un autre aspect important étudié était l'effet de la géométrie des nervures 

sur le comportement de la liaison, car les modèles macroscopiques ignorent 

généralement cette caractéristique. Des simulations sur des barres avec une 

seule nervure ont été réalisées en faisant varier les dimensions de la nervure. 

Il a été constaté que la force d'adhérence était principalement affectée par 

la surface de la nervure, et non par la surface totale adhésive, ce qui est en 

accord avec certaines conclusions tirées précédemment dans la littérature. 

Les simulations effectuées sur deux barres nervurées de sections 

rectangulaires différentes ont donné de bons résultats par rapport à 

l'expérience. Cela prouve encore plus l'importance du verrouillage 
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mécanique sur le comportement de l'adhésif, comme l'ont indiqué 

précédemment (Lin et al., 2019). Ensuite, une barre à chevrons a été utilisée 

et comparée à la barre en spirale utilisée précédemment. Elle a montré une 

réponse de liaison plus rigide par rapport à la barre en spirale. Les deux 

barres ayant une surface similaire, la différence dans la contrainte de liaison 

est liée à la nature de la surface de la nervure. En effet, la surface des 

nervures habituellement calculée contient des surfaces parallèles à la surface 

cylindrique et des surfaces qui coupent la surface cylindrique. Il est donc 

important de modéliser les nervures à l'échelle mésoscopique, en raison de 

la sensibilité de la contrainte de liaison aux dimensions et à la forme des 

nervures. Cette information supplémentaire peut être utilisée et incluse 

comme paramètre dans les modèles macroscopiques pour leur calibration. 

La surface normale projetée du côté de la nervure transversale est ici 

considérée comme le paramètre le plus important qui peut être adopté par 

les modèles macroscopiques pour prédire la variation de la force de liaison.  

Dans la dernière partie, l'effet du confinement externe sur un échantillon 

nervuré a été étudié. Une réponse plus rigide a été montrée en comparaison 

avec l'échantillon non confiné dans les simulations d'arrachement, ce qui 

coïncide avec les observations de la littérature. Cependant, le 

comportement était moins rigide lorsque comparé aux résultats 

expérimentaux. Ainsi, il serait intéressant de valider cet aspect du modèle en 

le comparant avec des échantillons ayant une épaisseur d’enrobage plus 

faible. 

Il est important de noter que le modèle numérique a un coût de calcul élevé, 

et encore plus élevé lorsqu'il inclut les agrégats. La difficulté de convergence 

est un autre problème lié aux comportements non linéaires considérés. Ils 

peuvent limiter le domaine d'application de la méthodologie, et empêcher 

d'approfondir certains aspects. 

Suite aux conclusions de cette thèse, plusieurs perspectives ont été 

proposées. Numériquement, à la méso-échelle, des analyses 

supplémentaires pourraient être effectuées en utilisant un modèle de béton 

différent, et pour étudier l'influence des effets thermiques et hydriques. De 

même, à l'échelle macroscopique, les modèles pourraient évoluer en 

incluant davantage l'effet des formes des nervures des barres d'acier, en 

utilisant une certaine fonction de prédiction. D'autre part, il faut davantage 

de résultats expérimentaux d'essais d'arrachement qui étudient l'effet de la 

variation de la géométrie des barres d'acier, ce qui serait unique et précieux. 

En outre, la méthode FCZM proposée n'est pas seulement spécifique à 
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l'interface acier-béton, car elle peut être appliquée à d'autres applications 

techniques. 


