
HAL Id: tel-04319578
https://theses.hal.science/tel-04319578

Submitted on 3 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determination of nonlinear optical properties with
quantum chemistry : from benchmarks to experimental

systems
Carmelo Naim

To cite this version:
Carmelo Naim. Determination of nonlinear optical properties with quantum chemistry : from bench-
marks to experimental systems. Other. Université de Bordeaux; Universidad del País Vasco, 2022.
English. �NNT : 2022BORD0335�. �tel-04319578�

https://theses.hal.science/tel-04319578
https://hal.archives-ouvertes.fr


THESIS
submitted to the

UNIVERSITY OF BORDEAUX
DOCTORAL SCHOOL OF CHEMICAL SCIENCES

by
Carmelo NAIM

in fulfillment for the Degree of
DOCTOR OF PHILOSOPHY

in PHYSICAL CHEMISTRY

DETERMINATION OF NONLINEAR OPTICAL

PROPERTIES WITH QUANTUM CHEMISTRY:

FROM BENCHMARKS TO EXPERIMENTAL

SYSTEMS

Thesis Directors: Prof. Frédéric CASTET and Dr. Eduard MATITO

Defense date: 02 of December, 2022

Review committee members:

Prof. Juan-Carlos SANCHO-GARCIA University of Alicante President
Prof. Denis JACQUEMIN University of Nantes Reviewer
Dr. Marc de WERGIFOSSE Catholic University of Louvain Reviewer
Prof. Jesus UGALDE University of the Basque Country Examiner
Dr. Lionel TRUFLANDIER University of Bordeaux Examiner





Acknowledgements

Finally, after three incredible years, I can’t believe that I am writing these lines. People
who know me well are aware of my difficulties in expressing my feelings clearly (and this
is particularly true on paper :)). So I did my best, and sorry if it will sound a bit too
cheesy eheh.
When I started my PhD in 2019 I felt very excited about this adventure, moving into a
new country (two actually!), learning new things, knowing new people, and finally starting
to do science, kind of a dream since I was a young student. However, I soon realized that
the life of a PhD student is tough, most of the time you feel anxiety, loneliness, and the
feeling of inadequacy which always follows you. And moreover, we have been forced to
deal with the terrifying thoughts of a Pandemic, and recently a war close to us. So these
years have not been easy at all, but at on the other hand they have been really reward-
ing. I got passionate about the world of Quantum Chemistry, I learned two languages,
I discovered two amazing cities and I learned to have more trust in myself and how to
handle some of the challenges that work and life might put in your way. But more than
that I met some amazing people who accompanied me along this journey. So I would like
to thank them all (I am very sorry if I forgot someone I hope you will forgive me :))

First, I would like to thank the people who gave me the opportunity of doing this
amazing experience, my two supervisors Dr. Eduard Matito and Prof. Frédéric Castet.
I would like to thank them for all the effort that they made in designing interesting and
challenging projects, for always trying to make me feel comfortable, for answering my
stupid questions, for being patient with my mistakes, and for being supportive when I
had doubts and problems.
Edu, who since I first landed at DIPC in 2017 (I was basically a child) welcomed me,
trusted me, and gave me from the beginning all the necessary means that I needed for
letting me learn and grow. Your passion, enthusiasm, and commitment to science and to
sharing your knowledge with students are very inspirational.
I am very grateful to Fred, who was brave enough to accept me in his group without know-
ing me at all, and has helped me since the very first day also with the French bureaucracy.
Thanks for having been always being confident in me, positive and supportive especially



when I was in a bad mood (almost always in the last year), and sorry if I obliged you to
work also on weekends because of my delays :)

I would like also to thank all the collaborators who helped me in the development of
my projects, in particular to Claire Tonnéle who followed step by step my evolution from
child-Carmelo to adult-Carmelo 2.0: she is an incredible friend, always there to listen
to me, giving me advices and scold me (gruuunt) if needed. Muchas gracias por todo
mamá :) A special thanks goes to Pau Besalú-Sala with whom I shared the calculations
and the emotional burden of the benchmark projects (ha sido dificil pero parece que va-
mos acabando ya). Thanks also to Josep Maria Luis, Benoît Champagne and Mirielle
Blanchard-Desce.
I would like to thank also the member of the jury for the interesting comments and ques-
tions during the defense: Prof. Marc de Wergifosse, Prof. Denis Jacquemin, Prof. Jesus
Ugalde, Dr. Lionel Trufflandier and Prof. Juan Carlos Sancho-Garcia.

Muchas gracias a todas las personas que he conocido en Donostia durante los primeros
dos años de thesis. Muchas gracias a Maru y Irene por todo el apoyo quotidiano que me
han dado y por los desayunos, tortillas, pintxos, tartas, cervezas, cenas (que cenas?),
vermouths, nadadas, y en general por todo el tiempo pasado juntos.
Un gracias especial a Aaron por toda la amistad y las locuras de estos años que no creo
que hace falta compartirlas publicamente (estoy seguro de que Señor tortilla nos mira
contento desde la estrella más bonita del ciel :’))
Quería agradecer al resto del grupo QuantumChemDev: Sebastian (my NLO-friend),
mama Mireia, Ruben, Silvia, Eloy, Xiang, Andrei, Markel, Javier y Luis. Muchas gracias
por las discussiones, los coffee breaks y la cenas a la sociedad que hemos disfrutado mu-
cho! Mil gracias tambíen a la otra gente del grupo de Kimika Teorika del DIPC y de la
universidad por haberme acogido y haberme ayudado cuando lo necesitaba.
Muchas gracias a todos las otras personas de la comunidad DIPC/CFM/Nanogune que he
conocido en este tiempo y que han hecho más ligera la vida del doctorado. En particular
quería agredecer los otros compañeros del Krusty-Camp Matteo y Alex que me han siem-
pre acogido en la casa (también si les robaba comida) y que han aguantado mis gustos
musicales particulares en tiempos de pandemia. Muchísimas gracias a los otros amiguitos
del doctorado con los que hemos compartido muchos momentos y con los cuales tengo
muy buenos recuerdos, gracias: Pablo, Raul, Jose, Mariarita, Numera, Giovanni, Matteo
y Rodrigo. Grazie anche ad Antonella e Federico per aver sopportato le lamentele di
questi anni e la mia proverbiale goffagine e sbadatezza.
Un gracias especial a Roberto por haberme aguantado durante la peor parte de la pan-
demia y haberme ayudado a mejorar mis habilidades como mastro pizzero. Muchas gracias
a Mala-Gissona por el sustentamiento alcoholico que necesitaba!



La dernière année de mon doctorat, je suis enfin venu à Bordeaux, j’aimerais bien
dire merci à Tout le monde (lol) du Groupe Theo, désolé pour ma mauvaise humeur et
pour mon bruit quand j’écrivais, et merci beaucoup pour tout l’aide et le soutien pour
cette année. J’ai eu la chance de terminer dans un Labo où tous sont gentils et sympa et
chacun prend soin de l’autre. Je crois que cette ambiance d’amitié et de convivialité créé
d’abord pour les permanents est rare et précieuse, et c’est une des raisons du succès de
ce groupe (même si parfois, ils ont l’humour un peu trop beauf).
Merci à Angela, per tutte le avventure di quest’anno, é stato un onore scoprire Bordeaux
e fare follie insieme! Merci beaucoup à Raidel pour être eté mon coach de vie en cette
année très compliqué (nunca me olvidaré cuando en momentos desesperados en uno de los
bares más feo popular de Bordeaux me dijiste “Tranquilo, hoy no se piensa, hoy se baila
y se comen manís”). Muchas gracias a Vero que estaba tan preocupada por mi que quiso
mudarse hasta Burdeos para ser segura que todo me hubiera ido bien. Merci beaucoup à
tous les autres membres de l’aquarium avec qui j’ai partagé cette année: Josi (qu’est mon
apoptosis préfère), Marilú, Felana, Ricardo, Josh, Kevin et Genmercy.
Merci à tous les autres jeunes que j’ai eu la chance de croiser pendant mon expérience
Bordelaise. Grazie infinite Adriana per tutto quello che hai fatto per me quest’anno, é
stato un anno folle della nostra vita ma abbiamo avuto la fortuna di conoscerci giusto
quando ne avevamo piú bisogno! Grazie mille a zia Angela per avermi accudito e inseg-
nato a vedere le cose in prospettiva e grazie a Bianca per i consigli di vita.
Merci à tous les jeunes du cours de français pour les après-midi à parler du Liban, pour
les cours organisées pour se plaindre et de se libérer de l’anxiété et pour toutes les soirées
ensembles, merci: Klara, Cynthia, Ian(Igor), Juan et Rebecca.
Merci à Léa pour avoir fait sortir (finalement) mon côté kitsch et pour m’aider à être plus
tranquille et plus DalaïLollo.

Inoltre vorrei ringraziare tutte le persone che dall’Italia mi sono state vicino in questi
anni. Grazie ai miei amici della Coop con i quali ho avuto la fortuna di essere cresciuto
insieme e che mai mi hanno fatto mancare momenti di risate e di leggerezza. Grazie mille:
Franca, Jacopo, Arturo, Giusi, Dalila, Elisa, Stefano, Alessandra, Paolo e Fabio. Grazie
mille a Federico per aver realizzato questa fantastica cover! Grazie a Laura, Eugenia e Zi-
paro per essermi stati accanto quando ne avevo bisogno nonostante la lontananza. Grazie
ad Alberto per non avermi mai giudicato per le mie manine. Grazie mille anche Allegra
per tutto quello che sei stata e hai fatto per me.

Infine (wooow é stata dura) dedico questa tesi alla mia famiglia per avermi reso ció
che sono e avermi dato tutti i mezzi economici e direi anche emozionali per affrontare
questo percorso.

La tesi é servita e... buon appetito!



Abstract

This thesis addresses different aspects related to the computation of nonlinear optical
(NLO) properties, from the investigation of reference benchmark systems using highly
accurate wavefunction methods to that of experimental systems by means of Density
Functional Theory (DFT) approaches.

In a first part, we address the performances of several acceleration techniques to the
calculation of static NLO properties of small reference systems. The first family of meth-
ods tested is based on the Resolution of Identity approximation, which allows reducing
the computational cost by reducing the four-index integrals to three-index integrals by a
density-fitting procedure. The other family of methods is based on the so-called domain-
localized based approximation, which exploits the local nature of dynamic correlation by
employing different localization schemes for orbitals. These methods simplify the wave-
function through a judicious employment of several thresholds, cutoffs and parameters
which heavily cut-down the computational cost. Two families of methods which aims at
enhancing the performances of canonical methods without increasing their computational
cost have been studied. The first one is the spin-component scaled Møller-Plesset second-
order Perturbation theory (SCS-MP2) methods, which consists in decomposing the MP2
correlation energy in spin components and scaling them in different manners. The last
method tested is the Møller-Plesset third-order Perturbation theory Kohn-Sham method
(MP3:KS), which uses canonical KS reference orbitals in place of standard Hartree-Fock
orbitals.

In a second part, wavefunction-based methods and DFT are employed to decipher the
impact of Van der Waals interactions on the structures and NLO properties of a series of
azobenzene molecules symmetrically substituted in meta-position with functional groups
of different bulkiness. We assess the performance of a large set of density functional ap-
proximations in reproducing the geometry, the relative energy and first hyperpolarizability
of E and Z azobenzene isomers in comparison with calculations using MP2 and Coupled
Cluster approaches. Moreover, we analyze the individual contribution of the substituents
on the NLO response of this series of compounds, giving insights into the precise role of
the functional groups responsible for dispersion interactions.

Finally, we report a joint theoretical and experimental investigation of the second-order



nonlinear optical properties of four series of amphiphilic cationic chromophores, which
involve different push–pull extremities and increasingly large polyenic bridges. These sys-
tems have an enhanced second-harmonic response and are of interest for use as probes
in biological systems such as lipid membranes. Experimental Electric Field Induced Sec-
ond Harmonic Generation (EFISHG) measures are made possible for these cationic chro-
mophores by using a solvent with a low relative permittivity, which induces the formation
of neutral ion pairs including the positively charged dye and its iodine counterion. The
theoretical methodology that has been employed combines classical molecular dynamics
and DFT calculations, describing the effects of structural fluctuations on the EFISHG
properties of the complexes formed by the dye and its iodine counterion, and providing a
rationale to EFISHG experimental measurements.
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Introduction

Nonlinear optics begins in the 1960s with the invention of the Ruby laser by Mainan [1]
and the subsequent measurement of the Second Harmonic Generation (SHG) by Franken
et al. in 1961 [2]. Since then, this field has continuously grown, bringing a huge impact on
the development of photonic technologies. Among all the possible applications, nonlinear
optical (NLO) processes are widely employed in dynamic image processing [3], data storage
[4], sensing [5] and microscopic imaging [6, 7].

NLO phenomena occur when systems subjected to electromagnetic fields respond non
linearly with respect to the field strength [8]. Among all the NLO processes, the already
mentioned SHG is one of the most exploited. SHG occurs when two incident photons in-
teract through a medium and combine into one single photon with twice the frequency of
the incident ones. This process takes place in specific range of energies that do not match
resonant frequencies of molecules that build the medium. Therefore, differently from an
absorption/emission process, it takes place in an ultra-short time scale and does not in-
volve energy transfer between the photons and the NLO medium. Nowadays, SHG finds a
wide range of applications in optoelectronics [4] but also in bioimaging and therapy [9, 10].
The SHG response is deeply connected to the structural and electronic characteristics of
the NLO material and of its constitutive components. Therefore, a proper characteriza-
tion of a SHG signal provided by a system requires a deep knowledge of its microscopic
properties, its response in bulk, and its interaction with the external environment.

The rational design of efficient materials with large SHG response combines differ-
ent disciplines: chemical synthesis, spectroscopic characterization, and computational
modelling. The latter has become essential since it allows the interpretation of struc-
ture/properties relationships that can not be fully understood through experimental mea-
surements. For this purpose, identifying an appropriate computational protocol able to
model the target phenomena, and that guarantees an acceptable compromise between
accuracy and computational cost, is of paramount importance.

At the microscopic level, if a molecule is irradiated with an external electric field F,
it experiences an induced polarization or, in other words, a change in its dipole moment
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µ, which can be expressed as a Taylor expansion with respect to the strength of F :

µi = µ0
i +

∑
j

αijFj +
∑
j,k

βijkFjFk +
∑
j,k,l

γijlFjFkFl + ..., (1)

where the expansion coefficients are the components of the optical response tensors,
namely the permanent dipole moment µ0

i , the linear polarizability αij, and the nonlinear
first hyperpolarizabilty βijk and second hyperpolarizability γijkl. If the applied electric
fields are oscillating, the optical responses of the molecule are dynamic and depend on the
frequency of the incident fields, while static electric fields generate static NLO properties.

The proper modeling of molecular NLO properties relies on quantum mechanical (QM)
simulations. However, their practical computation can be particularly challenging. In
fact, in order to accurately describe NLO phenomena, a computational method should
account for electron correlation effects, employ extended basis sets to make the electronic
cloud flexible enough, use tight numerical thresholds criteria and, for embedded systems,
model properly the external environment. Therefore, extensive computational resources
are needed, which limits the size of the systems that can be investigated and/or the quality
of the QM approximations that can be used. A smart selection of the appropriate method
according to the scale of the system investigated is thus fundamental.

Generally, the class of methods that provides the best accuracy are wavefunction-based
methods (WFN). In particular, post-HF schemes such as Coupled Cluster (CC) or Møller
Plesset Perturbation theory (MPn) are considered as the most effective techniques for
computing NLO properties. However, because of computational limitations, they can be
applied only to small size systems [11–13], and are mainly employed for benchmark pur-
poses on isolated chromophores. On the other hand, Density Functional Theory (DFT) is
considered as an excellent alternative to wavefunction methods from the computational
point of view and it is widely used in the field of NLO simulations. However, a large
number of density functional approximations (DFAs) are not able to quantitatively repro-
duce the absolute magnitude of NLO responses. These failures are typically attributed
to the so-called delocalization error which, in standard DFAs, leads to an over delocal-
ization of the electrons [13–18]. Range-separated DFAs are usually able to reduce the
delocalization error, but they usually do not reach the accuracy of wavefunction methods
[16, 17]. Nevertheless, provided a proper choice of the exchange-correlation functional,
DFT calculations are usually suitable for reproducing experimental trends and provide
qualitative structure/property relationships.

In this thesis, different aspects related to the computation of NLO properties have been
addressed, from the investigation of reference benchmark systems using highly accurate
wavefunction methods to that of experimental systems by means of DFT approaches.

The manuscript starts by a general overview of nonlinear optical phenomena and pro-
vides a physical and mathematical description of their microscopical origin. Focusing on
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SHG, we show the connection between chemical structure and NLO response, identifying
the important structural features for designing molecules able to deliver large SHG sig-
nal. Moreover, we present the most common experimental techniques for measuring SHG
properties of chromophores in solution.

In Chapter 2, the principle and basic equations of quantum chemical methods em-
ployed throughout the thesis are presented, with an highlight on their advantages, limita-
tions, and computational performances. Acceleration techniques based on the Resolution
of Identity (RI) approximation or on the use of localized orbitals, whose performance for
computing static first and second hyperpolarizabilities are addressed in Chapter 4, are
also presented.

Chapter 3 focuses more specifically on the methods employed for computing NLO
properties. Three classes of methods are presented with their adavantages and limitations:
1) Sum-Over-State (SOS) approaches based on time-dependent perturbation theory [19],
2) Finite Field methods (FF), which allow to straightforwardly determine the static NLO
properties through numerical derivatives of perturbed ground-state energies [20–23], and
3) response theory that allows, for variational wavefunctions, to determine static and
dynamic response properties through time averaged derivatives of the so-called “quasi-
energy” with respect to the electric field [24, 25].

In Chapters 4 and 5, we address the performances of some state-of-the-art wavefunction
methods for the FF calculation of static NLO properties of small benchmark systems of
different nature. These methods aim to improve the cost-efficiency of standard post-HF
methods by following different strategies. They can be classified into two groups: the
acceleration techniques, which aim at reducing the computational cost of standard WFN
approximations without affecting their accuracy, and enhancement techniques which aim
at improving the accuracy without increasing the computational effort. Although the
performances of accelerated and enhanced methods for calculations of thermodynamic,
kinetics, and molecular properties have been already assessed [26–36], a systematic study
of their performances on NLO properties has been overlooked so far in literature.

Chapter 4 reports the performances of several acceleration techniques applied to MP2
and CC methods. The first family of methods tested is based on the RI approximation [26–
28], which allows reducing the computational cost by reducing the four-index integrals
to three-index integrals by a density-fitting procedure. Another family of methods is
based on the so-called domain-localized based approximation, which exploits the local
nature of dynamic correlation by employing different localization schemes for orbitals
[29–34]. These methods simplify the wavefunction through the employment of several
thresholds and parameters which heavily cut-down the computational cost. The last
family of methods tested in this chapter is the spin-component scaled MP2 methods,
which consist in decomposing the MP2 correlation energy in same spin and opposite
spin components and scaling them in different manners [37, 38]. These last methods,
although they do not explicitly accelerate canonical MP2, they are supposed to improve
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its performances.
In Chapter 5, the performance of the so-called MP3 Kohn-Sham method (MP3:KS)

[35, 36] are evaluated. This method improves standard MP3 (referred to as MP3:HF) by
using canonical KS reference orbitals in place of standard HF orbitals. MP3:KS was shown
to improve MP3:HF in the calculation of thermochemical properties, barrier heights and
dipole moments, being comparable to CCSD with a fraction of its computational cost
[36]. The performance of MP3:KS was addressed for several DFAs including different
percentages of explicit HF exchange, highlighting the importance of the delocalization
error in DFT.

In Chapter 6, we employed WFN and DFT methods to decipher the impact of Van der
Waals (vdW) interactions on the structures and NLO properties of a series of azobenzene
molecules symmetrically substituted in meta-position with functional groups of different
bulkiness. It has been already observed how vdW interactions impact the thermal sta-
bility and the photochemistry of molecular switches [39, 40], however, their impact on
NLO has been overlooked so far. We assess the performance of a large set of DFAs in
reproducing the geometry, the relative energy and static first hyperpolarizability of E and
Z azobenzene isomers in comparison with MP2 and Couple Cluster singels and doubles
(CC2) calculations. Moreover, we analyze the individual contribution of the substituents
on the NLO response of this series of compounds, giving insights into the precise role of
the functional groups responsible for dispersion interactions.

Finally, in Chapter 7, the second-order nonlinear optical properties of four series of
amphiphilic cationic chromophores involving different push–pull extremities and increas-
ingly large polyenic bridges have been investigated both theoretically and experimentally.
These systems have an enhanced second-harmonic response and are of interest for use
as probes in biological systems such as lipid membranes [4]. Experimental Electric Field
Induced Second Harmonic Generation (EFISHG) measures are made possible for these
cationic chromophores by using a solvent with a low relative permittivity, which induces
the formation of neutral ion pairs including the positively-charged dye and its iodine
counterion [41]. The computational approach combines sequentially classical molecular
dynamics (MD) and DFT calculations. This theoretical methodology has been employed
to describe the effects of structural fluctuations on the EFISHG properties of the com-
plexes formed by the dye and its iodine counterion, and provides a rationale to EFISHG
experimental measurements.
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Chapter 1
Introduction to nonlinear optical properties

1.1 The source of nonlinear optical properties

Optical properties find their origin in the response of molecules or materials to an external
electric field, i.e., to the electric component of the electromagnetic wave in the case of
light irradiation. In order to trigger electronic and vibrational excitations of molecules,
external oscillatory radiations generally have a wavelength of a few hundred nanome-
ters, thus ranging from the infrared to the visible. Having molecules the size of a few
nanometers, the electric fields can be considered uniform over the molecular volume. If
the energy carried by the incident photons is not in resonance with the excitation energy
of the system, they might interact with the molecule through a scattering process. In this
case, each incident photon transfers its momentum to the molecule, which absorbs it and
re-emits it without losing any energy, namely, the total energy of the scattered photons
is the same as the incident ones.

From the molecular point of view, a scattering process can be described by considering
that the molecule absorbs a photon and lays in a so-called virtual state with a short lifetime
(∝ fs) and energy far from any of the electronic excited states. From a classical point of
view, when the electric field F(t) interacts with the molecule, the electrons and the nuclei
start to oscillate as antennas and propagate the signal. For low field strengths, these
oscillating charges generate an induced dipole µµµind(t) moment that responds linearly to
the applied field and depends on the electric polarizability tensor ααα. The ith component
of µµµind(t) is expressed as follows:

µind
i (t) = µ0

i + αijFj(t), (1.1)

where µµµ0 is the intrinsic dipole moment of the molecule, and the convention of intrinsic
summation over the repeated j is used. This process is referred to as linear scattering
and it is illustrated in Fig. 1.1a.
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(a) (b)

Figure 1.1: Schematic representation of a linear scattering process (a) and a Second
Harmonic Generation process (b). In the figure |0⟩ indicates the ground state, |1⟩ the
first excited state and |v⟩ a virtual state in which the scattering process takes place.

If the radiation is intense and focalized on the system (typically produced by a laser
field), two or more photons can interact in a single process, and the response of the
molecule is no longer linear. The induced dipole moment is then expressed as a Taylor
expansion with respect to the external electric fields:

µind
i (t) = µ0

i + αijFj(t) + βijkFj(t)Fk(t) + γijklFj(t)Fk(t)Fl(t) + ..., (1.2)

where the coefficients αij are the components of the linear polarizability tensor defined
previously, while βijk and γijkl are the components of the tensors describing the nonlinear
optical (NLO) behavior of the system, respectively referred to as the first and second
hyperpolarizabilities. Equation 1.2 describes the scattering processes in which several
incident photons can be combined to produce a resulting photon with a frequency cor-
responding to the sum of the incident ones. If the incident light can be decomposed in
different spectral components, these might combine giving rise to several effects, which
can be described by expanding the electric field components as a Fourier series:

Fi(t) =
∑
ω

F ω
i e

−iωt (1.3)

where F ω
i represents the amplitude of the field associated to each frequency ω. By re-

porting Eq. 1.3 into Eq. 1.2, the induced dipole moment can be then expressed as:

µind
i (t) =µ0

i +
∑
ω

αij(−ω;ω)F ω
j e

−iωt +
∑
ω1,ω2

βijk(−ωσ;ω1, ω2)F
ω1
j F ω2

k e−iωσt+

+
∑

ω1,ω2,ω3

γijkl(−ωσ;ω1, ω2, ω3)F
ω1
j F ω2

k F ω3
l e−iωσt + ...

(1.4)

where ωσ represents the frequency of the scattered photons, which conventionally appear
with a negative sign in order to differentiate from the incident ones. The values of ωσ

for the second- and third-order responses are obtained by summing the frequencies of the
incident photons, ωσ = ω1 + ω2 and ωσ = ω1 + ω2 + ω3 respectively. The sum runs also
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over negative frequencies, indeed both of sum and differences of frequencies are possible.
According to the number of photons that are combined and their frequencies, different
NLO phenomena can occur. The most common first-, second-, and third-order NLO
processes are reported in Table 1.1.

Table 1.1: Most common linear and second- and third-order nonlinear optical processes.

Response Property
α(0; 0) Static polarizability
α(−ω;ω) Light Scattering
β(0; 0, 0) Static first hyperpolarizability
β(0;ω,−ω) Optical Rectification (OR)
β(−ω;ω, 0) Linear change of birefringence (EO-Pockels)
β(−2ω;ω, ω) Second Harmonic Generation (SHG)
γ(0; 0, 0, 0) Static second hyperpolarizability
γ(0;ω,−ω, 0) dc optical rectification (dc-OR)
γ(−ω;ω, 0, 0) Quadratic change of birefringence (EO-Kerr)
γ(−ω;ω,−ω, ω) Intensity dependent refractive index (DFWM)
γ(−2ω;ω, ω, 0) Electric field induced SHG (EFISHG)
γ(−3ω;ω, ω, ω) Third-harmonic generation (THG)

A large part of this work is dedicated to the study of the Second Harmonic Generation
(SHG), in which two incident photons with the same frequency ω interact through the
molecule to generate a photon of frequency 2ω (see a schematic representation of this
process in Fig. 1.1b).

1.1.1 Impact of symmetry on the (hyper)polarizability tensors

According to Eq. 1.4, α, β, and γ tensors must be fully determined to decipher the linear,
second-, and third-order NLO responses of a molecule. However, their expression can be
simplified according to the symmetry, which is linked to the experimental conditions and
the molecular structure. In practice, the tensors β and γ have, respectively, 27 and 81
independent components. However, when the incident photons have the same frequency,
the tensor components stay invariant upon permutation of the last indices:

βijk = βikj (1.5)

γijkl = γijlk = γikjl = γiklj = γilkj = γiljk. (1.6)

Therefore, the number of independent components is reduced to 18 for β and 30 for γ.
Moreover, if ω and ωσ are far from any resonance frequency of the system, the number of
independent coefficients of β and γ can be further reduced by applying the Kleinman’s
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permutation rules [1]:
βkij = βijk (1.7)

γlijk = γijkl, (1.8)

which is strictly valid only for static properties (ω = 0). With this formulation, the inde-
pendent components of β and γ tensors are respectively reduced to 10 and 15.

If the system possesses a particular spatial symmetry, the number of independent
components in the β and γ tensors can be further reduced. A very particular situation
is when the system has an inversion center, i.e., it is centrosymmetric. In this case, each
of the components of the βijk tensor is 0. This can be easily understood by invoking
Neumann’s principle [2], which states that if a system is invariant with respect to a
symmetry operation, each of its properties is also invariant to it. Consequently, for a
centrosymmetric system subjected to an inversion of the coordinates (described by the
operator Î), the electric field and the dipole moment transform by inversion as F → −F

and µ0 → −µ0. The expression of Eq. 1.2 under the inversion operation is thus:

Îµind
i = −µind

i = −µ0
i − αijFj + βijkFjFk − γijklFjFkFl + ... (1.9)

By comparing term by term Eq. 1.2 and Eq. 1.9, we deduce that β (and any even order
NLO property) must be 0. More generally, if a molecule belongs to a given symmetry
group, it is possible to straightforwardly identify the components of the β tensor that are
different from 0 (the form of the first hyperpolarizabilty tensor of molecules belonging to
the most current point groups can be found in [3]). It must be noticed that in the case
of supramolecular aggregates, the entire system must have a non-centrosymmetric spatial
organization in order to have a non-zero second-order response.

1.1.2 Macroscopic nonlinear optical properties

We focused so far on the microscopic responses of molecules to external electric fields.
However, since experimental measurements are usually performed in liquids or solids, it is
also crucial to interpret the optical responses of bulk systems. At the macroscopic level,
the components of the polarization vector P(t) of a medium polarized by a time-dependent
electric field F(t), can be expanded as a sum of terms of different orders:

Pi(t) = P
(0)
i (t) + P

(1)
i (t) + P

(2)
i (t) + P

(3)
i (t) + ..., (1.10)

where P(0)(t) is the intrinsic polarization, P(1)(t) the linear polarization, P(2)(t) the
quadratic one, and so on. Similarly to the microscopic properties, if the electric field
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has different spectral components, by including Eq. 1.3 in Eq. 1.10 we obtain:

Pi(t) =P
(0)
i (t) + ϵ0

∑
ω

χ
(1)
ij (−ω;ω)F ω

j e
−iωt + ϵ0

∑
ω1,ω2

χ
(2)
ijk(−ωσ;ω1, ω2)F

ω1
j F ω2

k e−iωσt

+ ϵ0
∑
ω1,ω2

χ
(3)
ijkl(−ωσ;ω1, ω2, ω3)F

ω1
j F ω2

k F ω3
l e−iωσt + ...,

(1.11)

where ϵ0 is the dielectric constant of the vacuum, while χ(1), χ(2) and χ(3) are respectively
the linear, quadratic and cubic susceptibilities, which are expressed as tensors of rank
2, 3, and 4. By comparing Eq. 1.11 and Eq. 1.4 and considering that the electric field
is constant in the system, we observe a direct correspondence between the microscopic
(hyper)polarizabilities and the macroscopic susceptibilities:

χ(1) =
α

ϵ0
(1.12)

χ(2) =
β

2ϵ0
(1.13)

χ(3) =
γ

6ϵ0
(1.14)

However, it is important to stress that the electric fields experienced by a given molecule
within a macroscopic medium are different from the external one. In fact, the presence
of the medium perturbs the macroscopic electric field and each molecule experiences a
so-called local field Eω

loc. This effective field depends on the shape, the dimension, and the
kind of medium which surrounds the molecules and remains challenging to predict [4].

1.2 Practical applications of Second Harmonic Gener-

ation

The first measure of SHG was made by Franken and coworkers in 1961 [5]. Since then,
SHG has received an ever-growing attention from the scientific community, owing to the
wide range of applications in which this phenomenon can be exploited, ranging from data
storage, sensing, to bioimaging [6–9]. Systems displaying large first hyperpolarizability
are for instance used as functional components in electro-optical materials or as exoge-
nous probes in microscopy techniques used for investigating biological media such as cell
membranes.

Among NLO materials, organic compounds are nowadays popular systems for the
fabrication of NLO devices, as they can display faster responses, higher flexibility, lower
environmental impact, and higher NLO response than inorganic systems [10]. A particular
relevant class of compounds are push-pull D−π−A systems, which are composed of an
electron-donor unit (D) and an electron-acceptor (A) one linked by a π-conjugated bridge.
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These molecules usually exhibit intense NLO responses due to the intramolecular charge
transfer between the donor and the acceptor substituents. The conjugated π-bridge acts
as a reservoir of easily delocalizable electrons and thus contributes to the enhancement of
the NLO response, as schematized in Figure 1.2.

D An
D An

Figure 1.2: Schematic representation of a generic D-π-A push-pull system with the asso-
ciated Lewis resonance structures.

A large variety of D−π−A systems have been studied both from the experimental
and computational sides. In fact, exploring different combinations of D/A components
and optimizing the nature and length of the π-bridge is the most effective way to design
novel materials with enhanced NLO properties [10–13]. As detailed in Chapter 3, it is
possible to rationalize the response of D−π−A systems by using the two-level approxi-
mation first formulated by Oudar [14], which connects the response of push-pull systems
to spectroscopic quantities related to the one-photon absorption of the molecule.

The magnitude of the nonlinear optical properties of D−π−A conjugated systems is
directly related to the strength of the electron conjugation within the molecule, which is
reflected in the Bond Length Alternation (BLA) [15–17] that measures the average differ-
ence in length between double and single bonds along the π-bridge. For a π-conjugated
chain composed of N carbon atoms with an interatomic distance di,j between carbons i
and j, the BLA is defined as:

BLA =
1

N − 2

N−2∑
i=1

(−1)i+1(di+1,i+2 − di,i+1) (1.15)

Another class of compounds exhibiting large NLO responses are octupolar molecules,
i.e., systems which belong to the D3h, T , or Td groups of symmetry with a null dipole
moment [18]. The simplest example is the 1,3,5-triamino-2,4,6-trinitro-benzene (TATB)
[19] which has a response twice larger than the para-nitroaniline molecule, its dipolar
counterpart (Fig. 1.3). A large variety of structures belonging to this family have been
designed and studied both computationally and experimentally [20–22].
Since they can be used as building blocks for designing responsive materials, molecular

systems that exhibit switchable second-order NLO responses, i.e., that can commute be-
tween two forms displaying contrast in their first hyperpolarizabilities, have also witnessed
a growing interest during the last three decades [23–25]. The commutation between the
two forms can be triggered using different techniques, such as variation of pH [26], of
temperature [27], application of a redox potential [28] or illumination with an external
light [29]. Photochromic molecules often constitute the most appropriate candidates for
technological applications since light is a fast and non-invasive way to remotely control
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(a) TATB (b) PNA

Figure 1.3: Molecular representation of: (a) 1,3,5-triamino-2,4,6-trinitro-benzene and (b)
para-nitroaniline.

(a) trans (E) (b) cis (Z)

Figure 1.4: Molecular representation of: (a) trans-azobenzene, and (b) cis-azobenzene.

the state of a system. Nowadays, azobenzene derivatives are the most prominent class of
photochromic molecules employed in the design of NLO devices and have been incorpo-
rated into Langimur-Blodgett films [30], liquid-crystalline polymers [31] or self-assembled
monolayers [32, 33]. They include two phenyl rings linked by an azo bond, and can in-
terconvert between trans (E) and cis (Z) isomers through light irradiation (Fig. 1.4).
The two forms present different first hyperpolarizability values, whose contrast can be en-
hanced by adding appropriate substituents onto the terminal phenyl groups [34, 35]. Deep
knowledge of the relationships linking the chemical structure of azobenzenes to their NLO
properties is thus fundamental for a rational design of efficient NLO devices. In chapter 6
of this thesis, we investigate how van der Waals interactions between substituents grafted
in meta positions of the phenyl groups impact the relative stability of the two isomers of
various azobenzene derivatives, as well as the first hyperpolarizability of the cis form.

Besides photoresponsive materials, the second-order NLO responses of organic com-
pounds are also largely employed in imaging microscopy. Second harmonic imaging mi-
croscopy (SHIM) is complementary and presents advantages compared to two-photon
absorption microscopy, because it allows a faster and more sensitive detection while avoid-
ing issues such as dye bleaching, signal saturation or tissue autofluorescence [36]. SHIM
allows to investigate biological structures such as cells or entire tissues which have a non-
centrosymmetric structure. In this case, the SHG signal originates from their constituent
proteins such as collagen [37], myosin [38], and microtubules [39]. Moreover, by labeling
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centrosymmetric tissues with functional NLO dyes, it is possible to characterize biological
media which in principle lack or have a small SHG signal [40]. In this context, organic
dyes with a large SHG response such as amphiphilic chromophores are frequently em-
ployed as exogenous probes for bi-lipid membranes in high-resolution SHG microscopy
techniques [40–43]. These dyes are characterized by a polar head that can be anchored
into the membrane and a hydrophobic tail which interacts with the cellular fluid. Their
response can be enhanced by their functionalization with D and A moieties. A series of
positively amphiphilic chromophores relevant for SHIM applications and incorporating
pyridinium or quinolinium acceptor moieties are characterized both computationally and
experimentally in Chapter 7 of this thesis.

1.3 Experimental techniques for measuring molecular

second harmonic responses

As this thesis focuses on the characterization of molecular NLO responses, we limit this
section to the description of experimental techniques allowing the measurement of the SHG
signal of molecules in solution, namely the Electric Field-Induced Second Harmonic Gen-
eration (EFISHG) and the Hyper-Rayleigh Scattering (HRS) [3]. As mentioned above, in
order to have an appreciable SHG signal, the target systems must be non-centrosymmetric.
However, molecules in solutions tend to be on average isotropically oriented, and there-
fore the resulting medium is on average centrosymmetric. Therefore, even molecules with
large first hyperpolarizability such as the dipolar or octupolar systems discussed above
are challenging to characterize when they are solvated. We discuss in the next sections
how EFISHG and HRS techniques overcome this limitation.

1.3.1 Electric Field-Induced Second Harmonic Generation

The EFISHG method is the first technique employed for measuring SHG in solids [44],
gas [45, 46] and solutions [47, 48]. Besides the oscillating electric field used for evaluating
the SHG signals, an additional static electric field is applied in order to give a preferential
orientation to the bulk system (see a schematic representation of this process in Fig. 1.5).

Figure 1.5: Schematic representation of an EFISHG process.

Therefore, EFISHG is a technique based on the third-order response. The EFISHG
response is obtained by measuring the intensity I2ω of the resulting field, which depends
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quadratically on the γEFISHG second-hyperpolarizability:

I2ω ∝ (γEFISHG)
2I2ω (1.16)

Formally, γEFISHG can be expressed as a sum of two contributions:

γEFISHG = γ||(−2ω;ω, ω, 0) +
µβ||(−2ω;ω, ω)

3kT
(1.17)

The first term (γ||) is a pure third-order term that can be expressed as a function of the
components of the molecular γ tensor:

γ|| =
1

15

x,y,z∑
i,j

(2γiijj + γijji) (1.18)

The second term involves the norm of the permanent dipole moment µ = |µµµ| and a second
order term (β||), which is the projection of the tensor βββ along the dipole moment direction:

β|| =
3

5

µiβi
µ

(1.19)

where βi are the components of the β vector defined as :

βi =
1

3

x,y,z∑
j

(βijj + 2βjij) (1.20)

Obtaining separately the two components of Eq. 1.17 is experimentally challenging be-
cause it requires a complex experimental setup for measuring γEFISHG at different temper-
atures. However, in practice, it has been observed that the term γ|| is generally negligible
with respect to µβ||/(3kT ). Therefore, the EFISHG response is usually reported as an
effective second-order response:

γEFISHG =
[µβ||(−2ω;ω, ω)]eff

3kT
, (1.21)

which results convenient from the experimental point of view considering that measure-
ments can be then performed at a single temperature. Although this approximation is
generally valid for dipolar molecules with large hyperpolarizabilities, computational stud-
ies nevertheless proved that γ|| can be large and even predominant in particular conditions
(see for example [49] and Chapter 7 of this thesis).

An important limitation of the EFISHG technique is that it can not be employed for
systems with null dipole moments such as octupolar molecules, as well as for charged
molecules, for which the external static electric field would cause a migration of the
ions. However, if the solvent employed has a low polarity (such as chloroform), ions and
counterions stay in close proximity in the solution, forming neutral entities that allow
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performing EFISHG measurements [50–52]. This specific case is discussed in detail in
Chapter 7.

1.3.2 Hyper-Rayleigh Scattering

The HRS technique, developed in 1965, [53] is a method that allows measuring directly
the second-Harmonic generation, without applying a static field to break the isotopic
orientational order of the solution, and thus without including third-order contributions.
This approach is based on the assumption that, although molecules in solution are on
average distributed centrosymmetrically, some noncentrosymmetric deviations can be ob-
served because of density or rotational fluctuations. In fact, the molecular scatterers are
timely uncorrelated, i.e., there is no phase relation between scattered fields; therefore,
the resulting signal is incoherent and the time-average of µ(t) is different from 0. Thus,
contrary to the EFISHG technique, HRS can be applied straightforwardly to ions and
octupolar molecules. The global signal is related to the first hyperpolarizability of each
individual molecule, which is averaged in all possible orientations in the term ⟨β2

HRS⟩.
Moreover, the total intensity depends on the molecular concentration C, so that [3]:

I2ω ∝ C ⟨β2
HRS⟩ I2ω. (1.22)

The connection between ⟨β2
HRS⟩ and the βijk tensor components depends on the polar-

ization of the incident light. Denoting by X, Y , and Z are the axis of the laboratory
frame, a typical experimental HRS setup is schematized in Fig. 1.6. The incident light
is propagated in the Y -direction and polarized in the XZ-plane, while the HRS signal is
measured in the X-direction. The incident beams are usually polarized either horizontally
(parallel to X) or vertically (parallel to Z), while the scattered light is measured using
vertical polarization.

Figure 1.6: Schematic representation of the experimental setup of an HRS measurement.

With this setup, the total HRS hyperpolarizability, βHRS, can be expressed as:

βHRS =
√

⟨β2
HRS⟩ =

√
⟨β2

ZZZ⟩+ ⟨β2
ZXX⟩, (1.23)
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where ⟨β2
ZZZ⟩ and ⟨β2

ZXX⟩ correspond to the scattered signal measured for a vertical po-
larization using incident beams polarized along Z and X, respectively. The relationships
between the experimental HRS components expressed in the laboratory frame (XY Z) and
the components of the first hyperpolarizability tensor expressed in the molecular frame
(xyz) are obtained by the following equations [54]:

⟨β2
ZZZ⟩ =

1

7

x,y,z∑
ζ

β2
ζζζ +

4

35

x,y,z∑
ζ ̸=η

β2
ζζη +

2

35

x,y,z∑
ζ ̸=η

βζζζβζηη

+
4

35

x,y,z∑
ζ ̸=η

βηζζβζζη +
4

35

x,y,z∑
ζ ̸=η

βζζζβηηζ +
1

35

x,y,z∑
ζ ̸=η

β2
ηζζ

+
4

105

x,y,z∑
ζ ̸=η ̸=ξ

βζζηβηξξ +
1

105

x,y,z∑
ζ ̸=η ̸=ξ

βηζζβηξξ

+
4

105

x,y,z∑
ζ ̸=η ̸=ξ

βζζηβξξη

+
2

105

x,y,z∑
ζ ̸=η ̸=ξ

β2
ζηξ +

4

105

x,y,z∑
ζ ̸=η ̸=ξ

βζηξβηζξ

(1.24)

⟨β2
ZXX⟩ =

1

35

x,y,z∑
ζ

β2
ζζζ +

4

105

x,y,z∑
ζ ̸=η

βζζζβζηη −
2

35

x,y,z∑
ζ ̸=η

βζζζβηηζ

+
8

105

x,y,z∑
ζ ̸=η

β2
ζζη +

3

35

x,y,z∑
ζ ̸=η

β2
ζηη −

2

35

x,y,z∑
ζ ̸=η

βζζηβηζζ

+
1

35

x,y,z∑
ζ ̸=η ̸=ξ

βζηηβζξξ −
2

105

x,y,z∑
ζ ̸=η ̸=ξ

βζζξβηηξ

− 2

105

x,y,z∑
ζ ̸=η ̸=ξ

βζζηβηξξ

+
2

35

x,y,z∑
ζ ̸=η ̸=ξ

β2
ζηξ −

2

105

x,y,z∑
ζ ̸=η ̸=ξ

βζηξβηζξ

(1.25)

Interestingly, the HRS signals can be also employed to investigate the molecular symmetry
of a molecule. An indicator of the symmetry is the ratio between the two polarization
components of the scattered signal, namely, the depolarization ratio (DR):

DR =
⟨β2

ZZZ⟩
⟨β2

ZXX⟩
. (1.26)

DR adopts specific values according to the symmetry of the system under study. For
instance, for a system with a symmetry C2v with the charge transfer direction oriented
along the z axis, the Eqs. 1.24 and 1.25 can be simplified as:

⟨β2
ZZZ⟩ =

1

7
β2
zzz +

6

35
βzzzβzxx +

9

35
β2
zxx (1.27)
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⟨β2
ZXX⟩ =

1

35
β2
zzz −

2

105
βzzzβzxx −

38

105
β2
zxx (1.28)

For a system where the longitudinal β response strongly dominates (βzzz >> βzxx),
DR = 5, and the system has a 1D response. For an octupolar molecule with Td symmetry,
the only non-zero tensor component is βxyz, so that:

⟨β2
ZZZ⟩ =

12

35
β2
xyz ⟨β2

ZXX⟩ =
8

35
β2
xyz (1.29)

and therefore DR = 1.5.

It is worth mentioning that, for systems in solution, both the solute and the solvent
can contribute to the optical response, and the total response is the sum of these two
contributions:

I2ω ∝ (Cs ⟨β2
HRS⟩s + Cx ⟨β2

HRS⟩x)I
2
ω, (1.30)

where Cs is the concentration of the solvent, Cx the concentration of the solute, while
⟨β2

HRS⟩s and ⟨β2
HRS⟩x are their respective HRS signals. The response of the solute is then

obtained by excluding the contributions of the solvent. This calibration can be made by
two different approaches. In the first, defined as the internal reference method, ⟨β2

HRS⟩x is
obtained by performing the measurements at different concentrations of the solute, while
in the second one, the "external reference" method, the solvent contribution ⟨β2

HRS⟩s is
measured independently.

The HRS method is generally preferred to EFISHG because it can be straightforwardly
applied to measure SHG on charged and octupolar molecules. However, since it is an
incoherent process with no collective enhancement of the NLO response by means of an
artificial orientation of the molecules, the intensity is low and high-sensitivity detection
tools are necessary.
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Chapter 2
Theoretical methods

2.1 The many-body problem

The main goal of computational chemistry is to investigate and predict chemical and
physical properties of molecules and materials. This objective requires an accurate de-
scription of the interactions of electrons and nuclei in atoms and molecules which could be
guaranteed only by a proper treatment of quantum mechanical effects. The position and
the time evolution of a system are described at the quantum mechanical level by the wave-
function Ψt. In order to determine it, it is necessary to solve the so-called time-dependent
Schrödinger equation, namely:

ĤΨt = i
∂

∂t
Ψt (2.1)

The quantity Ĥ is the Hamiltonian of the system which describes the interactions among
electrons and nuclei as well as with the external environment. The first step toward the
solution of Eq. 2.1 is to find the so-called stationary states which describe the system
at a specific time (t0 = 0 for convenience), and then compute its time-evolution. If the
Hamiltonian is time independent, the stationary states are found from the solution of the
time-independent non-relativistic Schrödinger equation, namely,

ĤΨ0 = EΨ0. (2.2)

If the system is isolated, the Hamiltonian is composed of two operators, the kinetic energy
(T̂ ) and the Coulomb potential (V̂ ),

Ĥ = T̂ + V̂ . (2.3)

T̂ can be separated into electronic (T̂e) and nuclear contributions (T̂N). Therefore, for a
system of n electrons and M nuclei it can be expressed as:

T̂ = T̂e + T̂N = −
n∑
i

∇2
i

2
−

M∑
I

∇2
I

2mI

, (2.4)
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where the summation on lowercase letters runs over the electrons, the summation on
uppercase letters runs over nuclei, and mI stays for the mass of the nucleus I. The
Coulomb potential can be decomposed in three terms: the attraction between electrons
and nuclei (V̂eN), the Coulomb repulsion between electrons V̂ee, and the repulsion between
nuclei (V̂NN). The expression of these terms is collected in the following Eq.:

V̂ = V̂eN + V̂ee + V̂NN = −
n,M∑
i,I

ZI

|ri −RI |
+

n∑
i>j

1

|ri − rj|
+

M∑
I>J

ZIZJ

|RJ −RJ |
(2.5)

where RI identifies the position of the nucleus I, ri of the electron i, while ZI indicates
the charges of the nucleus. Unfortunately, an exact analytic solution of Eq. 2.2 is possible
just for systems of one electron and one nucleus; for more complicated systems it is nec-
essary to find appropriate approximations. During the last century, several methods have
been developed to find approximated solutions of Eq. 2.2 able to reproduce accurately
chemical and physical phenomena with an affordable computational cost. The methods
for solving Eq. 2.2 that do not employ empirical parameters are called ab initio. One of
the most basic approximations is the Born-Oppenheimer (BO) approximation [1] which
consists in decoupling the wavefunction in nuclear and electronic contributions. Indeed,
this approximation is based on the fact that the nuclei are much heavier than the electrons
and therefore slower. Following BO, the wavefunction of Eq. 2.2 could be decoupled as:

Ψ(r,R) ≈ ψ(r,R)ϕ(R) (2.6)

According to this approximation, we can identify the electronic part of the Hamiltonian,
where the positions of the nuclei are parameters. Therefore, in order to determine the
electronic contribution in terms of nuclei positions, we solve the following eigenvalues
equation:

Ĥeψ(r,R) = Ee(R)ψ(r,R), (2.7)

Where Ĥe is:
Ĥe = T̂e + V̂NN + V̂eN + V̂ee. (2.8)

A similar equation is obtained for the nuclei, which lie in the potential energy surface
(PES) set up by the electrons. Although the BO approximation is a crude approximation,
it is in general very accurate for most of systems. However, in some cases, it is necessary to
include explicitly the interactions of electrons and nuclei due to the non-adiabatic effects,
for instance in the case of conical intersections [2]. In order to solve Eq. 2.7, it is necessary
to find appropriate approximations to the actual wavefunction ψ. The wavefunction of a
system of N electrons can be expressed as a product of n molecular spin-orbitals. Each
molecular spin-orbital is composed of a molecular orbital (MO) ϕ(r), which gives the
location of the electrons in the molecule, and a spin function χ(σi), which, considering
that the electrons are fermions, has two possible values for identifying the spin-up or the
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spin-down states. Moreover, according to the Pauli principle, the wavefunction of the
system must be antisymmetric with respect to the exchange of the coordinates of any
pair of electrons.

2.2 Hartree Fock method

For solving the electronic structure problem the easiest way is to employ the independent
particle model, in which the instantaneous interactions between electrons are replaced by
an average field generated by all the electrons. In particular, in the Hartree Fock (HF)
method, each electron is described by a molecular orbital and for a system of N electrons,
the wavefunction is made by an antysimmetrized product of N molecular orbitals. This
ensures the fulfillment of the Pauli principle for the total wavefunction. The resulting
wavefunction is called Slater Determinant and its expression is:

ψHF(x1, ...xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ̃1(x1) ϕ̃2(x1) ... ϕ̃N(x1)

ϕ̃1(x2) ϕ̃2(x2) ... ϕ̃N(x2)

... ... ... ...

ϕ̃1(xN) ϕ̃2(xN) ... ϕ̃N(xN)

∣∣∣∣∣∣∣∣∣∣
(2.9)

where ϕ̃(xi) is the product of a spatial orbital ϕ(ri) and a spin function χ(σi). The factor
1/
√
N ! is a normalization coefficient. The energy of this wavefunction can be found by

minimizing the expectation value of the Hamiltonian of Eq. 2.10. Indeed, according to
the variational principle, the best wavefunction of the system is the one that minimizes
the energy (see Eq. 2.10).

EHF = ⟨ψHF
trial|Ĥ|ψHF

trial⟩ ≥ Eexact (2.10)

By including Eq. 2.9 in Eq. 2.10, we can obtain the expression of the HF energy, namely:

EHF =
∑
i

hi +
1

2

∑
i,j

(Jij −Kij), (2.11)

where the quantity hi is the independent particle energy:

hi = ⟨ϕi| −
∇2

i

2
+
∑
I

ZI

rIi
|ϕi⟩ (2.12)

Jij accounts for the repulsion between the electrons, andKij is the so-called exchange term
that arises because the wavefunction is antisymmetric. The expression of these integrals
are:

Jij = ⟨ϕiϕj|
1

rij
|ϕiϕj⟩

Kij = ⟨ϕiϕj|
1

rij
|ϕjϕi⟩

(2.13)
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By minimizing the Eq. 2.11 with respect to the spin-orbitals ϕ we obtain the so-called
HF eigenvalues equations, namely:

f̂iϕi(r) = ϵiϕi(r) (2.14)

where f̂ is a one-electron operator called Fock operator, while ϵi are the single-particle
energies associated to each orbital. These quantities have in general no physical inter-
pretations, with the exceptions of the energies corresponding to the HOMO (ϵHOMO)
and LUMO (ϵLUMO) which according to the Koopman’s theorem [3] can be associated
respectively to the ionization potential and electron affinity. This approach is defined as
restricted HF because in this formulation electrons with different spins have an identi-
cal molecular orbital which is multiplied by the corresponding spin function. The Fock
operator has the following expression:

f̂i = ĥi +
m∑
j

(Ĵj − K̂j) (2.15)

where the quantities Ĵj and K̂j are the Coulomb and exchange operators, which are
defined as:

Ĵjϕi =

(
⟨ϕj|

1

rij
|ϕj⟩

)
ϕi

K̂jϕi =

(
⟨ϕj|

1

rij
|ϕi⟩
)
ϕj

(2.16)

The expressions in Eq. 2.16 show that each orbital feels the presence on average of all
the orbitals.

2.2.1 Unrestricted approach

For the description of open-shell systems, the restricted Hartree Fock framework in which
electrons with different spins occupy the same orbitals is not appropriate. The standard
way to overcome this problem is through the so-called unrestricted HF method (UHF)
which consists in computing two different sets of equations 2.14 for electrons with different
spins (α and β), namely:

f̂α
i ϕ

α
i (r) = ϵαi ϕ

α
i (r) f̂β

i ϕ
β
i (r) = ϵβi ϕ

β
i (r) (2.17)

This method increases the accuracy of HF calculations for which the RHF picture is com-
pletely wrong (such as for the study of bond dissociations), and allows the treatment of
open-shell systems. However, the UHF wavefunction is not anymore an eigenfunction of
the spin operator Ŝ2, bringing to the system the so-called "spin-contamination". There-
fore, even though through the unrestricted approach the energy could be improved, the
wavefunction is generally unreliable, affecting particularly the computation of molecular
properties. The amount of spin contamination can be easily monitored by computing
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< Ŝ2 >, which identifies the average value of the Ŝ2 operator.

2.2.2 Basis sets approximation

For solving the HF equations it is convenient to use a basis of functions for which the
integrals of equations 2.15 are easy to calculate. In principle, any kind of function can be
used, however, in Quantum Chemistry the most common approximation is the so-called
linear combination of atomic orbitals (LCAO), which consists in expanding the molecular
orbitals in a Mb basis of functions centered into the positions of the nuclei ({ψµ}), namely:

ϕi =

Mb∑
µ

cµiψµ. (2.18)

Therefore, by including Eq. 2.18 in Eq. 2.14 and by projecting to the set of basis functions,
we obtain a set of equations which could be expressed in matrix notation as:

FC = SCϵ, (2.19)

Where F and S are respectively the matrix representation of the Fock operator in the
atomic basis set and the overlap matrix, with respectively elements:

Fµν = ⟨ψµ|f̂ |ψν⟩ Sµν = ⟨ψµ|ψν⟩ (2.20)

Eq. 2.19 are called the Roothan (Poble-Nesbet-Berthier equations for the unrestricted
approach) equations and can be solved iteratively by the so-called Self Consistent Pro-
cedure (SCF). The selection of the basis set is arbitrary, however, in general, the most
common choices are the Slater Types Orbitals (STOs) and the Gaussian Type Orbitals
(GTOs). STOs integrals reproduce the correct electron-nuclear cusp conditions at short
distance (∝ e−r) and therefore, they reproduce the exact behavior of the wavefunction.
However, the computation of two-electron integrals of Eq. 2.16 with STOs basis require
numerical integration and therefore they are more challenging and time-consuming. On
the other hand, GTOs functions are Gaussians (∝ e−r2) and, therefore, the resulting in-
tegrals can be computed analytically. These basis functions can be further improved for
tackling challenging systems, for example, we have the so-called diffuse functions which
are designed for taking into account long-range interactions, and polarization functions
which increase the accuracy in bond regions. In this work, we employed just GTOs basis
sets, in particular, testing two different basis sets schemes the Pople’s [4] basis sets and
the Dunning’s [5], where the second ones have been designed mostly for post-Hartree Fock
methods.
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2.3 Post-HF methods

Employing the HF approximation and a large basis set it is possible to reproduce up to
∼99% of the exact energy of most of molecular systems, however, a reproduction of the
remaining ∼1% is fundamental to properly understanding the chemistry of the system.
This energy difference has been firstly defined by Löwdin [6] as electron correlation energy,
namely:

Ecorr = Eexact − EHF (2.21)

The source of this discrepancy is related to the neglect of the instant interactions between
electrons due to the mean-field approach. There are different ways of classifying electron
correlation, and this is strictly related to the system and the context that we are investi-
gating. One example of correlation effect is the Fermi repulsion of electrons which is due
to their fermionic nature. It is automatically taken into account in the HF method by
the Slater determinant wavefunction. In fact, in the HF method two electrons with the
same spin can not occupy the same position because of the antisymmetry of the wave-
function. However, we will see that this is not generally true for DFT approximations.
Moreover, the so-called Coulomb correlation refers to the fact that the electrons repel
each other because of their electrostatic interactions. In the HF model, we do not observe
this correlation between electrons with opposite spins because of the nature of the f̂HF

operator: indeed, if two electrons have opposite spins they can occupy the same position
in space. The most relevant way of classifying correlation effects is by the separation
between the dynamic and nondynamic correlation. The name dynamic correlation is re-
ferred to the motion of electrons and it is important in systems for which the ground state
is generally well described by the single determinant wavefunction and could be improved
just by small corrections to it. On the other hand, nondynamic (or static) correlation
arises when two or more configurations are needed to properly describe a system, in this
case, the HF picture is completely wrong and more sophisticated methods are needed
to be employed. In the last decades, several different methods have been developed to
face these problems. Although there is not a clear-cut separation between dynamic and
nondynamic correlation, in general, quantum chemistry methods can include one or the
other type of correlation. Methods for treating dynamic correlation effects are known
as post-HF methods and include: the Configuration Interaction (CI), the Møller Plesset
Perturbation theory (MPn) and the Coupled Clusters approximations. We will introduce
these methods in the following subsections. On the other hand, for reproducing nondy-
namic correlation effects, it is necessary to employ specific methods that take into account
degeneracies or pseudo-degeneracies of orbital energies such as the Multi Configuration
Self Consistent Field (MCSCF) or the Quantum Monte Carlo methods. These methods
will not be studied in this thesis because we did not include in our studies systems in
which nondynamic correlation is relevant.
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2.3.1 Configuration Interaction

The conceptually easiest way to overcome the single determinant HF formulation is to
build a wavefunction made of several determinants. The full configuration interaction
method consists in minimizing the expansion coefficients following the variational prin-
ciple. A preliminary HF calculation is performed, and a set of excited determinants are
constructed by exciting electrons from the HF occupied orbitals to the virtual ones. Ac-
cording to the number of orbitals that we excite with respect to the HF configuration, we
can separate the determinants into singly, doubly, triply, etc.. excited determinants. The
resulting wavefunction could be expressed as:

Ψ = a0ΦHF +
∑
S

aSΦS +
∑
D

aDΦD +
∑
T

aTΦT + ... (2.22)

If m is the number of orbitals and N is the number of electrons, the resulting number of
determinants in the restricted formulation will be

(
m
N/2

)
. Unfortunately, computing and

storing all these determinants and diagonalizing the resulting CI matrix is prohibitive even
for the most modern computational resources, and therefore the full CI (FCI) method can
be applied only to systems of few electrons. On the other hand, if the HF calculation is
already a good approximation we can decide to reduce the number of determinants by
truncating the CI expansion considering just the most important excitations. Therefore,
by truncating the CI expansion to singles(S), doubles(D) or triples(T), etc. We will
obtain, respectively, the methods CIS, CISD and CISDT. Although these methods allow
to save computational time with respect to FCI, they have some limitations that may
affect their performances. For example, the CISD method scales as

(
Nocc

2

)(
Nvir

2

)
, however,

it is neither size consistent nor size extensive, and therefore it might give misleading results
for example in calculations of barriers, thermodynamic or dissociation energies.

2.3.2 Rayleigh–Schrödinger perturbation theory

An alternative way to include correlation in a many-body system is through perturbation
theory. If the Hamiltonian of a system can be decoupled into a reference Hamiltonian
(for which the solution of the Schrödinger equation is known), and a small perturbation,
the energy can be found as a perturbative expansion in terms of a coupling parameter.
Indeed, the total Hamiltonian of the system can be written as:

Ĥλ = Ĥ(0) + λV̂ , (2.23)

Ĥ0 is the unperturbed Hamiltonian, V̂ is the perturbation and λ is the coupling parameter.
Therefore, the Schrödinger Equation is expressed as:

Ĥλψλ
n = Eλ

nψ
λ
n, (2.24)

32



where the energy and the wavefunction can be expressed as a sum of different perturbative
terms:

Eλ
n = E(0)

n + λE(1)
n + λ2E(2)

n + ... (2.25)

ψλ
n = ψ(0)

n + λψ(1)
n + λ2ψ(2)

n + ..., (2.26)

and ψ(0)
n is the wavefunction of the unperturbed Hamiltonian Ĥ(0)

n :

Ĥ(0)
n ψ(0)

n = E(0)
n ψ(0)

n (2.27)

To find the solution of Eq. 2.24 it is convenient to impose normalization constraints as:

⟨ψ(0)
n |ψ(0)

n ⟩ = 1 (2.28)

⟨ψ(0)
n |ψ(i)

n ⟩ = 0 i = 1, 2, ... (2.29)

Substituing Eq. 2.26 in Eq. 2.24, equating the coefficients of the same power of λ, and
then multiplying by ⟨ψ(0)

n | we obtain the expression of the perturbed energies:

E(0)
n = ⟨ψ(0)

n |Ĥ(0)|ψ(0)
n ⟩ (2.30)

E(1)
n = ⟨ψ(0)

n |V̂ |ψ(0)
n ⟩ (2.31)

E(2)
n = ⟨ψ(0)

n |V̂ |ψ(1)
n ⟩ (2.32)

E(3)
n = ⟨ψ(0)

n |V̂ |ψ(2)
n ⟩ (2.33)

...

To find the perturbed wavefunctions ⟨ψ(1)
n |, ⟨ψ(2)

n |, ... we need to expand the solution in
a set of known basis functions, which for convenience is usually {ψ(0)

n }. The first two
perturbations of the wavefunction can be thus written as:

ψ(1)
n =

∑
m

⟨ψ(0)
m |ψ(1)

n ⟩ψ(0)
m (2.34)

ψ(2)
n =

∑
m

⟨ψ(0)
m |ψ(2)

n ⟩ψ(0)
m (2.35)

In order to find the second-order perturbed energy, we can substitute Eq. 2.34 in Eq.
2.32, obtaining:

E(2)
n = ⟨ψ(0)

n |V̂ |ψ(1)
n ⟩ =

∑
m

′ ⟨ψ
(0)
n |V̂ |ψ(0)

m ⟩ ⟨ψ(0)
m |V̂ |ψ(0)

n ⟩
E

(0)
n − E

(0)
m

(2.36)
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where
∑′ indicates that the terms m = n are excluded from the summation. Similarly

we can obtain the third-order expression:

E(3)
n =

∑
pq

′ ⟨ψ
(0)
n |V̂ |ψ(0)

p ⟩ ⟨ψ(0)
p |V̂ |ψ(0)

q ⟩ ⟨ψ(0)
q |V̂ |ψ(0)

n ⟩
(E

(0)
n − E

(0)
p )(E

(0)
n − E

(0)
q )

− ⟨ψ(0)
n |V̂ |ψ(0)

n ⟩
∑
p

′ | ⟨ψ
(0)
n |V̂ |ψ(0)

p ⟩ |2

(E
(0)
n − E

(0)
p )2

(2.37)

2.3.3 Møller-Plesset Perturbation Theory

The Møller-Plesset (MP) theory is a specific application of the RS perturbation theory.
In this case, the ψ0 is the HF wavefunction, therefore, the unperturbed Hamiltonian can
be expressed as the sum of the 1-particle Hamiltonian and the HF potential:

Ĥ(0) =
∑
i

f̂i =
∑
i

[ĥi + v̂HF
i ] (2.38)

where the operator v̂HF
i is the Fock potential and f̂i is defined by solving Eq. 2.14. The

perturbation operator is:

V̂ =
∑
i<j

1

rij
−
∑
i

v̂HF
i (2.39)

The expression of the averaging at the zeroth and first order of perturbation are therefore:

EMP0 =
∑
i

ϵi (2.40)

EMP1 =
∑
i

ϵi −
1

2

∑
i,j

⟨ϕiϕj||ϕiϕj⟩ = EHF , (2.41)

where ⟨ϕiϕj||ϕiϕj⟩ = Jij −Kij.
In this formulation, the zero-th order excited states wavefunction {ψ(0)

n }, are created
by combination of excited determinants obtained by promoting electrons from occupied
to virtual orbitals. According to the number of electrons that we excite we can obtain
single {ψr

a}, double {ψrs
ab}, ... excited determinants. The subscript indicates the occupied

orbitals from which the electrons are removed and the superscript the virtual ones to
which they are moved. However, considering that that V̂ is a two-particle operator,
triple and higher excitations do not mix with ψ

(0)
0 . Moreover, because the orbitals are

orthonormal we can apply the Brillouin theorem obtaining null contribution also from
integrals computing the reference HF configuration to single excitations, namely:

⟨ψ(0)
0 |V̂ |ψr

a⟩ = 0. (2.42)

Therefore, we can only have contributions from the double excitations {ψrs
ab}. Considering
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Figure 2.1: Schematic representation of the oscillatory behavior of MPn energy calcula-
tions.

that the contribution of the doubly excited energy is:

Ers
ab = E0 + ϵr + ϵs − ϵa − ϵb. (2.43)

The expression of the second-order correction to the energy is:

EMP2 = EHF −
∑

a<b,r<s

| ⟨ab||rs⟩ |2

ϵr + ϵs − ϵa − ϵb
(2.44)

Where the sum on a, b run over occupied orbitals and the sum on r , s runs over virtual
ones. Similarly to Eq. 2.44, we can obtain the results for MP3:

EMP3 = EMP2 +
1

8

∑
a,b,c,d,r,s

⟨ab||rs⟩ ⟨rs||cd⟩ ⟨cd||ab⟩
(ϵr + ϵs − ϵa − ϵb)(ϵr + ϵs − ϵc − ϵd)

+
1

8

∑
a,b,r,s,t,u

⟨ab||rs⟩ ⟨rs||tu⟩ ⟨tu||ab⟩
(ϵr + ϵs − ϵa − ϵb)(ϵt + ϵu − ϵa − ϵb)

+
1

8

∑
a,b,c,s,t,u

⟨ab||rs⟩ ⟨cs||tb⟩ ⟨rt||ac⟩
(ϵr + ϵs − ϵa − ϵb)(ϵr + ϵt − ϵa − ϵc)

In general, going beyond the third-order perturbation, results too computational demand-
ing and generally not convenient with respect to other alternatives such as Coupled Cluster
Methods. Moreover, the improvement obtained by expanding to larger order it is not sys-
tematic. Indeed, it is widely known that for several systems including larger perturbation
terms brings to an oscillating series which slowly converge to the exact value (see Fig.
2.1). However, it has been observed in particularly challenging cases a divergent behavior
of MPn series linked mainly to nondynamic correlation effects [7].
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2.3.4 The Møller-Plesset Kohn-Sham method

Another limitation of standard MPn approaches is that the employment of HF wavefunc-
tion as reference. For example, in UHF calculations with large spin contamination, MPn
calculations performs poorly [8] giving results even worse than the uncorrelated ones [9].
Several schemes for improving the reference orbitals used in MP2 calculations have been
developed specifically for open-shell systems, such as orbital optimized MP2 (OO-MP2)
methods [10] and the regularized OO-MP2 methods (the so-called δ-OO-MP2 [11] and
κ-OO-MP2 [12] methods). Recently, a novel scheme for MP2 and MP3 methods which
employs as a reference wavefunction k-OO-MP2 [13] or Kohn-Sham (KS) [14] orbitals has
been proposed. In this paragraph, we will briefly introduce the construction of the second
one and we will refer to it as MPn:KS to distinguish it from the standard MPn:HF. If
we apply Møller-Plesset perturbation theory to Kohn-Sham orbitals we need to take into
account that the orbitals corresponding to the zeroth-order DFT computation come from
the KS operator f̂KS, which expression will be defined in the DFT section of this chapter.
The matrix representation of this operator is not diagonal in the basis of the HF orbitals,
therefore, in order to employ the same perturbation operator V̂ as in Eq. 2.39, we need
to solve the eigenvalue equations separately for occupied and virtual orbitals:

f̂HF
i ϕKS,p

i = ϵpiϕ
KS,p
i (2.45)

This passage is called semi-canonicalization of molecular orbitals and the new set of or-
bitals ϕKS,p are called canonical orbitals. To calculate the excited states of this wavefunc-
tion we must take into account that the Fock matrix in the basis of canonical orbitals is
not completely diagonal, and couples between occupied and virtual orbitals. For this rea-
son, the Brillouin theorem is not anymore valid and we need to include in the expression
of the perturbation energy, besides the standard double excitations contributions (DE)
also the so-called non Brillouin single excitations (SE). Therefore, the expressions for
MP2:KS and MP3:KS are the following:

EMP2:KS = EDFT + EMP2−SE + EMP2−DE (2.46)

EMP3:KS = EDFT + EMP2−SE + EMP2−DE + EMP3−SE + EMP3−DE (2.47)

It has been observed [13, 14] that while EMP2−SE is crucial for correcting the energy,
EMP3−SE does not significantly affect the results and, therefore, could be neglected to
save computational time. For energy calculations, MP2:KS generally does not improve
the performance of standard MP2:HF methods. However, MP3:KS improves significantly
MP3:HF calculations overperforming also more costly methods such as CCSD. The per-
formance of this method in the calculation of nonlinear optical properties will be discussed
in chapter 5.
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2.3.5 Spin component scaling MP2

When evaluating the correlation of an MPn calculation it is possible to split the con-
tributions to the energy into antiparallel- and parallel-spin pairs of electrons. Indeed, it
has been observed that MP2 tends to overestimate the contributions of the same-spin
(SS) electrons and to underestimate the opposite-spin (OS) ones. The SCS-MPn method
compensates this error by introducing two parameters to scale the SS and OS correlation
contributions. The SS contribution mainly controls the long-range behavior of the MP2
energy taking into account moderate nondynamic correlation effects. Conversely, the OS
contribution refers to short-range effects and therefore it is associated with the dynamic
correlation of the system. In general, it has been observed that MP2 tends to overesti-
mate the nondynamic correlation and underestimate short-range ones. Therefore, being
cSS and cOS the scaling coefficients, an effective parameterization is achieved by decreas-
ing the SS (cSS<1) and increasing the OS (cOS>1) energy contributions. The expression
of the SCS-MP2 method will be then:

ESCS−MP2 = EHF + cSS · EMP2
SS + cOS · EMP2

OS (2.48)

For standard MP2 calculation we have cSS=cOS=1. The values of the coefficients cSS and
cOS have been parameterized by Grimme [15] and they are: cSS = 0.3 and cOS = 1.2. It is
important to remark that this method improves the MP2 results without increasing the
computational cost. An analogue scheme has been developed also for MP3 [16]. Another
scaling method is the scale opposite spin MP2 (SOS-MP2) [17] in which the SS component
is neglected (cSS = 0) and cOS = 1.3. Interestingly, this method can scale as O(M4) (being
more convenient than MP2 which scales as O(M5) ). The performances of SCS-MP2 and
SOS-MP2 in the calculation of nonlinear optical properties will be discussed in Chapter
4.

2.3.6 Coupled Cluster Theory

Coupled Cluster (CC) methods are another popular family of methods used in computa-
tional chemistry for evaluating the correlation energy. These methods are based on the
hypothesis that the CC wavefunction is the eigenfunction of the many-body Hamiltonian.
This wavefunction consists in applying an exponential operator eT̂ to the HF wavefunction
(Φ0):

ΦCC = eT̂Φ0, (2.49)

where the operator T̂ contains all the excitations of electrons from occupied to virtual
orbitals, namely:

T̂ = T̂1 + T̂2 + T̂3 + ...+ T̂N (2.50)
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If we perform a Taylor expansion on the operator eT̂ we obtain:

eT̂ = 1 + T̂ +
1

2
T̂ 2 +

1

6
T̂ 3 + ... =

∞∑
k=0

1

k!
T̂ k. (2.51)

Using Eq. 2.50, the expression in Eq. 2.51 can be separated by the order of excitations:

eT̂ = 1 + T̂1 + (T̂2 +
1

2
T̂ 2
1 ) + (T̂3 + T̂2T̂1 +

1

6
T̂ 3
1 ) + ... (2.52)

The operators T̂i are defined with respect to the HF reference wavefunction as the excited
Slater determinants, for example the first two terms in Eq. 2.50 are:

T̂1Φ0 =
occ∑
i

vir∑
a

taiΦ
a
i (2.53)

T̂2Φ0 =
occ∑
i<j

vir∑
a<b

tabijΦ
ab
ij , (2.54)

where the sum over i and j runs over the occupied orbitals, while the one over a and b

spans all the virtuals. The coefficients tai and tabij in Eqs. 2.53 and 2.54 correspond to the
aS and aD coefficients in Eq. 2.22 and are defined as excitation amplitudes. In order to
solve the many-body problem we need to solve the following Schrödinger equation:

ĤeT̂Φ0 = EeT̂Φ0. (2.55)

For extracting the energy it is thus necessary to evaluate the excitation amplitudes of the
cluster expansion. Unfortunately, obtaining a solution by the variational method is not
affordable for systems bigger than few electrons (in fact it is even more expensive than
FCI), therefore the common way to proceed is to project < Φ0| into Eq. 2.55, obtaining
an expression for the CC energy:

⟨Φ0|ĤeT̂ |Φ0⟩ = ECC ⟨Φ0|eT̂Φ0⟩ (2.56)

ECC = ⟨Φ0|ĤeT̂ |Φ0⟩ . (2.57)

The explicit expansion of ECC is obtained by expanding the eT̂ operator. Considering
that the Coulomb interaction in the many-body Hamiltonian allows excitations up to two
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electrons, the expression of the energy becomes:

ECC = ⟨Φ0|Ĥ(1 + T̂1 + T̂2 +
1

2
T̂ 2
1 )|Φ0⟩

= ⟨Φ0|Ĥ|Φ0⟩+ ⟨Φ0|Ĥ|T̂1Φ0⟩+ ⟨Φ0|Ĥ|T̂2Φ0⟩+
1

2
⟨Φ0|Ĥ|T̂ 2

1Φ0⟩

= E0 +
occ∑
i

vir∑
a

tai ⟨Φ0|H|Φa
i ⟩+

occ∑
i<j

vir∑
a<b

tabij ⟨Φ0|Ĥ|Φab
ij ⟩+

+
occ∑
i<j

vir∑
a<b

(tai t
b
j − tbit

a
j ) ⟨Φ0|Ĥ|Φab

ij ⟩

(2.58)

As it could be observed ECC depends only on singles (tai ) and doubles (tabij ) amplitudes. In
order to determine these amplitudes it is necessary to project the excited determinants in
Eq. 2.55. Being the wavefunction orthonormal, we obtain then the following equations:

⟨Φa
i |e−T̂ ĤeT̂ |Φ0⟩ = 0

⟨Φab
ij |e−T̂ ĤeT̂ |Φ0⟩ = 0

⟨Φabc
ijk |e−T̂ ĤeT̂ |Φ0⟩ = 0

(2.59)

...

In Eqs. 2.59, the terms involving single excitations and the reference state are 0 because
of the Brillouin theorem, and therefore the remaining terms generate a set of equations
in which the singles, doubles, triples, etc. configurations are coupled. These equations
are the so-called CC equations, which are solved iteratively. In order to perform a CC
calculation, the Cluster operator must be truncated according to the accuracy needed.
One of the most popular CC approximations is the CCSD method which consists in
including just the single and double excitations, therefore the ΦCCSD wavefunction will
have the following expression:

ΦCCSD = eT̂1+T̂2Φ0 (2.60)

Unlike CISD, this method is both size extensive and size consistent and it scales as
O(nM6), where M is the size of the basis sets and n are the number of iterations neces-
sary for solving the CC equations (usually ∼10). If also the triples are included explicitly
we refer to the CCSDT method, which scales as O(nM8) and, therefore, requires an excep-
tional computational effort both regarding the time necessary to solve the CC equations
and the disk space. A more affordable method is CCSD(T), in which triples excitations
are included perturbatively after the calculation of the ECCSD energies. This method is
one of the most efficient methods for including dynamic correlation. Indeed, it is usually
referred as the "gold standard" of computational chemistry.
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Table 2.1: Thresholds values of different diagnostic tools for the CCSD wavefunction.

Indicator Value
T1 0.002
D1 0.05
D2 0.18

2.3.6.1 CC2 and CC3 methods

Other populars CCs approximations are CC2 and CC3 [18]. The first method is an
approximation of a CCSD calculation, in which the double contributions are computed in a
perturbative way, as in the MP perturbation theory. In this scheme, the tabij amplitudes are
expressed as a combination of tai , which are the only terms that are evaluated iteratively.
This method scales as O(nM5) and it has a similar accuracy to MP2 for ground-state
calculations. However, it admits a linear response formulation that allows well-reproduced
excited states. In the same way, the CC3 method consists in to simplify the CCSDT
method by evaluating the triples excitations in a perturbative scheme.

2.3.6.2 Multireference diagnostic

Post-HF methods can be used only for systems where dynamic correlation is predominant,
i.e., systems which are well described with a single Slater Determinant. In order to assess
the multiconfigurational character of a particular wavefunction, several diagnostic tools
have been developed. The first example is given by the T1 diagnostic [19], which has
been developed for coupled-cluster type wavefunctions. This indicator is constructed as
the Euclidean norm of the single excitations coefficients (t1) divided by the square root
of the number of correlated electrons. This diagnostic takes advantage of the property of
single excitations to control the orbital relaxations responsible for the multiconfigurational
character of the system. Other diagnostics have been developed for CC-type wavefunctions
such as D1 [20] and D2 [21] diagnostics. For these methods, reference thresholds for
assessing the quality of the reference calculations have been investigated for different
computational methods. For instance, for CCSD the thresholds values of T1, D1 and D2
exceeded which the system is considered multireference are reported in Table 2.1. Other
kind of indicators, based on the natural occupation numbers, have been also developed.
To this group belong the indicators based on the entanglement entropy [22] or the ID and
IND [23] which are based on a decomposition of the Coulomb hole. Natural occupation
based indicators are not strictly limited to CC methods but they can be employed to all
the methods for which the wavefunctions are available.

2.4 Accelerated wavefunction methods

Post-HF methods provide very accurate results, reaching up to the chemical accuracy
for small molecules. However, at present, their computational cost scales unfavorably
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with the size of the system, preventing the application of these methods in medium to
large molecules. For this reason, a huge effort has been made in the last years to reduce
the computational cost of these methods. These developments are mainly related to more
efficient implementations but also to the development of a novel class of methods for which
the wavefunctions are optimized and less computational heavy. These methods, that
are known as accelerated wavefunction techniques, through numerical fitting, rotation
of orbitals and truncation techniques, etc.. are able to simplify or neglect superfluous
components of standard wavefunction methods without a significant loss of accuracy. In
this section, we present some of these methods.

2.4.1 Resolution of Identity

When performing a post-HF calculation, the most time-consuming part is the transforma-
tion of the electronic repulsion integrals (ERI) from the AO basis to the MOs, a process
that scales as O(N5). Indeed, it is necessary to perform a four-index transformation:

⟨ϕiϕj|ϕkϕl⟩ =
N∑

µ,ν,λ,σ

CµiCνjCλkCσl ⟨χµχν |χλχσ⟩ (2.61)

One very popular way of reducing the computational effort is by the resolution of identity
approximations (RI). Following this scheme, the ERIs are approximated as two- or three-
index integrals, thus reducing the scaling with respect to the basis set size. Indeed the
orbital products are expanded into auxiliary basis functions centered in the position of
the atoms (χ̄P ):

χµχν ≈
m∑
P

C̃P
µνχ̄P (2.62)

where m is the number of auxiliary basis functions. The expansion coefficients C̃µP are
obtained by minimizing the error integral:

∂

∂C̃P
µν

⟨Rµν |Rλσ⟩ =
∂

∂C̃P
µν

∫
Rµνr

−1
12 Rλσ = 0 (2.63)

where Rµν is
Rµν = χµχν −

∑
P

C̃P
µνχ̄P . (2.64)

Rµν is orthogonal to the {χP}, and, therefore, the following expression containing three-
and two-index integrals can be derived:

⟨χµχν |χλχσ⟩ =
∑
PQ

⟨χµχν |χ̄P ⟩[⟨χ̄P |χ̄Q⟩]−1⟨χλχσ|χ̄Q⟩. (2.65)

Although we do not reduce the formal scaling, with Eq. 2.65 it is possible to increase the
efficiency for solving Eq. 2.61 by a factor of ∼10. Moreover, a reduction of the disk space
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to store the integrals is obtained by this transformation, passing from O(N4) for MP2
to O(N2m) for RI-MP2. The accuracy of this approximation depends on the size of the
auxiliary basis set chosen, which is usually parameterized according to the standard basis
employed. The computational time and disk space needs increase with the size of the AO
basis. Hence, employing the RI approximation is particularly appropriate for performing
calculations with large basis sets, for example, the Dunning ones [5]. RI algorithms have
been implemented for the CC2 method [24] in Turbomole, resulting in one of the methods
with the best balance between accuracy and computational cost for evaluating excited
states. Generally, when RI approximations are applied to other coupled cluster methods,
such as RI-CCSD and RI-CCSD(T), they do not improve the computational efficiency
because of the way the coupled cluster equations are implemented. However, they provide
a consistent saving of storing resources. As a result of this approximation, generally, HF
becomes the bottleneck for computations of small- and medium-size molecules with large
basis sets. RI approximations have been implemented also for SCF methods. In fact,
RI approximation on the Coulomb integrals reduces the computational time by a factor
of 10-100. However, if the exact exchange must be computed, such as for HF case or
hybrid density functional calculations, it becomes the most time-consuming part of the
SCF procedure scaling as O(N4). A popular implementation of the resolution of identity
of the exchange part is the RI-J-K method [25], which reduces the computational cost
of the exchange integrals by one order of magnitude. Another popular approximation is
the so-called "Resolution of identity chain of spheres method" (RI-J-COSX)[26], which
substitutes the exchange part by a numerical integration which scales linearly with the
system size. This method underperforms the RI-J-K method for small and medium-size
systems. However, it brings large time savings for systems bigger than 100 atoms [27].
Each of these methods have specific auxiliary basis sets which are different from the
RI-MP2 ones.

2.4.2 Localization techniques

Post-HF methods are designed to appropriately reproduce dynamic correlation, which is
prevalently of short-range nature [28]. However, standard HF orbitals which are employed
for constructing excitation amplitudes are generally delocalized over the whole molecule
(especially virtual orbitals) and, therefore, they are not the optimal choice for recovering
the dynamic correlation effects. This difficulty is even enhanced for KS orbitals because of
the delocalization error (see section 2.5). For this reason, novel approximation techniques
of Post-HF methods have been developed. They are based on the idea of simplifying the
standard correlated wavefunction to obtain a more compact form in which the orbitals
employed are localized. These methods, through a complex combination of screening
thresholds, cutoffs, parameters and through a large employment of the resolution of iden-
tity approximation, can reach linear scaling with the size of the system.
Nowadays, one of the most popular implementations following this philosophy is the do-
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main local pair natural orbital (DLPNO) method by Neese and coworkers implemented in
Orca [29]. This technique exploits the concept of localization, in fact localized occupied
orbitals are associated with a reduced number of virtual orbitals localized on the atoms
(the so-called "domains") which are employed to compute the correlation energy.
The occupied and virtual orbitals are localized following different schemes. The occupied
ones are obtained by popular localization schemes such as the Foster-Boys [30] or the
Pipek-Mezey [31] algorithms. To each orbital i is assigned a domain {A}i of atoms A
on which it has a significant amplitude pAi . Only the atoms in which the Mulliken pop-
ulation of the orbital i is larger than an arbitrary cutoff (TCutMKN) are included in the
domain {A}i. The virtual orbitals are then constructed in each of the domains obtained
from the occupied ones. In an older implementation [32] (the so-called LPNO method),
the virtual orbitals associated with each domain were expanded on the AOs. However, in
novel implementations, it was preferred to employ the so-called Projected Atomic Orbitals
(PAOs) [33], which are obtained by applying a projecting operator on the AOs to remove
the contribution of localized internal orbitals, namely each µPAO could be expressed as:

µPAO = (1− |i >< i|)µAO. (2.66)

This transformation allows to span all the virtual orbitals keeping the locality. For the
evaluation of the electron pairs contributions, the pair domains {A}ij are defined as
{A}ij = {A}i ∪ {A}j. The number of electron pairs which should be included in the
calculation is not defined by a spatial criteria but from the semicanonical correlation of
the MP2 pair energy ϵSC−MP2

ij , which is computed at the MP2 level:

ϵSC−MP2
ij = −

∑
ab

4 ⟨ia|jb⟩ ⟨ia|jb⟩ − 2 ⟨ia|jb⟩ ⟨ib|ja⟩
ϵa + ϵb − Fii − Fjj

. (2.67)

The number of correlated orbitals is further reduced by employing a cutoff (TCutPairs) on
ϵSC−MP2
ij . The virtual orbitals are extracted for each pair by the diagonalization of the

pair-specific density (Dij) computed at the MP2 level:

Dijdij = nijdij, (2.68)

where in Eq. 2.68 dij and nij are the Pair Natural Orbitals (PNOs) and the respective
occupancy. The extended expression of Dij can be found in [34]. Even in this case, the
number of PNOs associated with each domain is reduced by a cutoff (TCutPNO), which
results crucial for reducing the computational time of a DLPNO calculation. The values
of these thresholds: TCutMKN , TCutPairs, and TCutPNO are the main parameters that rule
the accuracy of these methods. In particular, the developers of Orca, through several
benchmark studies, have identified three levels of ascending accuracy for these thresholds,
which have been defined as [35]: LoosePNO, NormalPNO, and TightPNO, which give
these methods a black-box character.
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These acceleration techniques have been efficiently implemented for single-point energy
calculations of the DLPNO-MP2 [36], DLPNO-CCSD [37] and DLPNO-CCSD(T) meth-
ods. In particular, for the DLPNO-CCSD(T) method, two different ways of computing the
perturbative triple corrections have been developed. In the standard DLPNO-CCSD(T)
[38] the off-diagonal terms of the Fock matrix elements are neglected, corresponding to the
analog CCSD(T0) method for standard CC. The second way of computing the triples leads
to the DLPNO-CCSD(T1) method [39], in which the perturbative triples are computed
entirely, resulting in a considerable increase of the computational cost. Analytical gradi-
ents for both DLPNO-MP2 [40] and DLPNO-CCSD [41] methods have been implemented,
making possible the geometry optimization and computation of several molecular proper-
ties such as analytic dipole moments. Interestingly, analytic second derivatives have been
also implemented for DLPNO-MP2, which allows to compute analytic polarizabilities and
NMR shieldings [42].

Other linear scaling localization techniques have been developed for MP2 and CC
methods, particularly relevant are PNO-LCCSD and PNO-LCCSD(T) [43]. These meth-
ods have been implemented in MOLPRO [44] and are conceptually very similar to the
DLPNO methods. Their main differences is the implementation: even if they both con-
struct the domains using the PAOs, they differ on how the domains are constructed.
Indeed, in this method, PNO based methods use a spatial criteria to identify and sepa-
rate the domains. As a result, the domains obtained are more compact. Considering the
similarity of this method with the DLPNO approach, and considering that we have not
employed this method in any part of this thesis, we will not go further in the description
of this method.
A different approach comes from the localizations developed by Kallay and coworkers
in MRCC [45]. They have developed the LMP2 [46], LNO-CCSD [47] and the LNO-
CCSD(T) [48, 49] methods, in which the correlation energy is partitioned into localized
molecular orbital (LMOs) contributions. In this technique each domain is adjusted in-
dividually, and even in this case the virtual orbitals are expanded on the PAOs basis.
The pair contributions are then evaluated through the MP2 correlation energy. Irrele-
vant contributions are neglected even in the LNO case by a particular cutoff. The main
difference between this method and the DLPNO one lies in the evaluation of amplitudes,
which consists in dividing the molecule into different fragments and to compute the en-
ergies and the amplitudes independently for each fragment. Also for LNO methods a
set of thresholds have been parameterized according to the different levels of accuracy
and efficiency needed. The latter are ruled by the keyword lcorthr in an MRCC input
and it can be defined as: Normal, Tight and V T ight. The DLPNO and LNO methods
have similar performances for the evaluation of energy and low-order molecular proper-
ties. However, it has been shown that the LNO-CCSD(T) reproduce better moderate
nondynamic correlation effects as compared to DLPNO-CCSD(T0/T1) [50].
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2.5 Density functional theory

During the last 40 years, Density Functional Theory (DFT) became the most popular
electronic structure method. With the development of the theory and the increase of
computational facilities its audience of users has expanded from specialized theoretical
chemists to experimentalists, giving this theory an almost black-box character at least
for the simplest calculations. This popularity is due to its unbeatable balance between
accuracy and computational cost. In fact, while for standard quantum chemical methods
the fundamental quantity to be determined is the electronic wavefunction (a function of
3N spatial variables), in DFT the main unknown variable is the electronic density (a
function of three spatial variables), which is directly connected to the wavefunction by
the following relation:

ρ(r) = N

∫
dσ

∫
dx2...dxn|ψ({xi})|2, (2.69)

where the integral over σ indicates the integral over the spin, and N is a normalization
coefficient that depends on the number of electrons in the system. The first attempt
to describe the energy in function of the electronic density has been the Thomas-Fermi
model [51, 52]. This method, which is considered a precursor of DFT, describes the
kinetic energy of a uniform electron gas surrounded by a uniform positive charge only
as a function of the electronic density. Later, Hohenberg and Kohn proved that the
solution of the Schrödinger equation for the ground state depends on the knowledge of
the electronic density. For a system of electrons in the BO approximation they formulate
the Hohenberg and Kohn’s theorems [53]:

• The ground-state energy of a system of electrons is uniquely determined by the
electronic density. Therefore the ground state energy can be written as a functional
of the electronic density E0[ρ] .

• The electronic density that minimizes E0[ρ] is the density of the ground state ρ0,
i.e., the variational principle is valid, therefore if ρ̃ is a trial density:

E0[ρ̃] ≥ E0[ρ0] (2.70)

The expression of the energy can be decomposed in three terms:

E[ρ] = T [ρ] + U [ρ] + V [ρ], (2.71)

where T is the kinetic energy of the system, U is the electronic potential between the elec-
trons and V is the energy of the electrons due to the external potential of the nuclei. The
quantity T + V is defined as the HK functional (FHK) and it has a universal expression,
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while V is system dependent and can be expressed as:

V [ρ] =

∫
drvextρ(r), (2.72)

where vext is the external potential generated by the nuclei. In order to determine the
energy in Eq. 2.71 it is necessary to determine the FHK , which unfortunately it is unknown
in its explicit form. Therefore, the goal of DFT developers is to find proper approximations
to it. The most employed technique in DFT is the Kohn-Sham method(KS), which allows
to reintroduce the spin-orbitals in DFT [54]. In this formulation the electron density
of the KS System (i.e. a fictitious system of non interacting electrons) have the same
electronic density as the real one, namely:

ρ̃(r) = ρ(r) (2.73)

If ϕ(r) are the occupied molecular orbitals also the KS system ρ̃ has the expression:

ρ̃(r) =
occ∑
i

ϕ∗
i (r)ϕi(r) (2.74)

In the formulation of KS ρ̃ is employed in order to obtain a simpler expression of Eq.
2.71:

E[ρ̃] = TS[ρ̃] + J [ρ̃] + EXC [ρ̃] (2.75)

where TS and J are respectively the kinetic energy of the non-interacting system and the
classical Coulomb potential. Their expression is known explicitly:

TS[ρ̃] = −1

2

∑
i

⟨ϕi|∇2
i |ϕi⟩ (2.76)

J [ρ̃] =
∑
i

⟨ϕi|Ĵ |ϕi⟩ where: Ĵ =

∫
dr1

ρ̃(r1)

|r− r1|
(2.77)

The term EXC is called exchange correlation functional and contains all the terms which
can not be described by the non-interacting framework. In principle, Eq. 2.75 is exact.
However, the exact expression of EXC is not known and must be approximated. Anal-
ogously to the HF calculation, the MOs minimizing the total energy in Eq. 2.75 are
obtained through a set of equations called KS equations:

f̂KSϕi = ϵKS
i ϕi (2.78)

where f̂KS is the KS operator and has the following expression:

f̂KS(r) = −∇2
i

2
+ V̂ne(r) + Ĵ(r) + V̂XC(r) (2.79)
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where the exchange-correlation potential V̂XC is defined as:

V̂XC(r) =
δEXC

δρ̃(r)
(2.80)

By expanding Eq. 2.78 in a basis set we obtain a set of equations analogous to the
Roothan equations for the HF method.

2.5.1 Classification of Density Functional Approximations

The most critical aspect of DFT is the choice of the appropriate density functional ap-
proximation (DFA). Indeed, in the last years, hundreds of DFAs have been constructed
according to the different strategies, targets, and levels of accuracy needed. Although
DFT is usually considered an ab initio method, several DFAs make use of semi-empirical
parameters obtained from extensive benchmarks of experimental data or wavefunction
methods. An exhaustive general classification of all the DFAs is not possible, however, a
general used ranking of the different DFAs is given by the so-called " Jacob’s ladder" [55].
Here, the functionals are ranked in different rungs according to the complexity of the den-
sity functional construction and therefore the computational cost. Although by climbing
Jacob’s ladder we expect methods with increased accuracy, it is not always the case. The
performance of each DFA is strongly dependent on the system and the target property
we want to investigate. Jacob’s ladder is composed of 5 rungs: functionals constructed
by the local spin-density approximation (LSDA), the Generalized Gradient approximation
(GGA), the meta-GGAs, hybrids functionals and finally the double hybrids or RPA-based
functionals. The LSDA functionals are the most simple approximations in DFT and they
depend only on the electronic density. This formulation works properly for the homoge-
nous electronic gas but it is inappropriate for real systems because it can not reproduce
the inhomogeneities of the electronic density. An example is the SVWN [56] functional,
for which empirical parameters are extracted from Quantum Monte Carlo computations.
The GGA functionals belong to the second rung in which the construction of the func-
tional besides ρ(r), also includes its gradient (∇ρ(r)) to take into account the variations
of the electronic density. Examples of these functionals are PBE [57] and BLYP [58]. A
further step is given by meta-GGA functionals which also include second derivatives (or
kinetic energies) of ρ(r). The most popular functionals which belong to this family are
TPSS [59] and M06L [60].

One of the main problems of the functionals of the first rungs is the so-called self
interaction error (SIE) [61]. This error is due to a fictitious interaction of the electrons
with themselves and is absent in HF because the exchange term exactly cancels out
the contribution of the Coulomb potential. This issue leads to a delocalization of the
electronic density which is usually referred to as " delocalization error" and it is associated
with the inability of semi-local density functionals to describe fractional charges [62]. A
possible solution to this problem is obtained by replacing the local GGA exchange with
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the exact HF exchange. The theoretical justification for these functionals is given by the
adiabatic connection [63] which allows to connect the non-interacting KS energy with
the exact one through one external parameter. This principle guided the development of
hybrid functionals, which belong to the fourth rung of Jacob’s ladder. In fact, in these
functionals, the exchange part of EXC contains a fraction of the exact HF exchange and
a fraction of the GGA’s:

EX = aEHF
X + (1− a)EGGA

X (2.81)

Where a is a parameter determined empirically. The famous B3LYP [64] belongs to this
group of functionals, which, especially in the 00’s found huge popularity in quantum
chemistry. Usually, the parameter a varies between 0.2 to 0.6, therefore, these methods
only partially account for the SIE. Indeed, it has been observed that with a bigger per-
centage of HF exchange, even if the delocalization error is absent, the performance of
these functionals is drastically reduced compared to GGA’s. A further step in hybrid
functionals consists in including the contribution of the exact exchange depending on
the interelectronic distance. In this formulation, the two-electron operator of the exact
exchange integrals is splitted in a short range part and a long range part by the erf

function:
1

r12
=

1− erf(ωr12)

r12
+
erf(ωr12)

r12
, (2.82)

Where ω is the parameter that controls the relevance of the long-range term of the ex-
change. If ω is equal to 0 the exchange part will be only short-range, while if it is ∞ it will
be only long-range. Several schemes of range separation have been developed: the long
range correction (LC) [65], which allows to develop the LC-BLYP [65] and LC-ωPBE [66]
functionals, while the Coulomb attenuated correction is used for the functionals CAM-
B3LYP[67] and for the ωB97 family of functionals [68, 69]. In the DFAs presented so far
the expression of the EXC depends on the occupied orbitals which describe the electronic
density. In the fifth (and last until now) rung of Jacob’s ladder, there are the functionals
that included also the dependency on the virtual orbitals. In particular, double hybrids
are functionals that include to a standard DFA a correction coming from wavefunction
theories, commonly from MP2 calculations. The most famous example is the B2-PLYP
functional [70]. These functionals have a large % of the HF exchange (>50%), therefore,
they do not suffer from SIE, while excessive localization effects are balanced by the inclu-
sion of virtual orbitals. However, they significantly increase the computational cost (see
below).

2.5.2 General problems in DFT

Although standard DFAs are generally able to target most of the chemical systems, there
are still some problems that can not be solved in a systematic way. These problems are
the already mentioned delocalization error, which could be partially avoided by employing
range separated or double hybrid functionals, the London’s dispersion interactions and
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the problem of nondynamic correlation. The problem of a correct reproduction of dis-
persion interactions, is related to the fact that standard DFAs are not able to reproduce
their long-range C6/R

6 asymptotic behavior. Although there are some functionals, such
as the Minnesota functionals [71], for which the parameterization is able to include the
effects of dispersion, standard DFAs are generally not able to account for these effects
in a systematic way. The most common solution to this issue is obtained by including
empirical corrections to the standard DFT energy. This is the case for the Grimme’s
D [15], D2 [72] and D3 [73] corrections. Other approximations include the explicit de-
pendency on the electronic density through a nonlocal potential. The most common
functionals of these kinds are the D4 corrections [74] and the VV10 [75] functional. The
problem of nondynamic correlation is related to the single-determinant nature of the KS
wavefunction. Standard density functional approximations are generally not able to take
into account nondynamic correlation effects or they reproduce them in a partial and non
systematic manner [76]. As in the HF method, an alternative solution is to employ the
unrestricted formalism. However, this approach besides suffering from spin contamination
results effective for some systems but inadequate for others [77, 78]. These issues led to
the development to a series of functionals able to reproduce strong correlation effects to
some extent, some example are the B05 [79], B13 [80] and KP16/B13 [81] functionals.
These functionals are able to recover most nondynamic correlation in systems where it is
very strong but they underperform for regular systems.

2.5.2.1 The Computational Cost of DFT approximations

DFT presents nowadays the most convenient balance between accuracy and computational
cost in computational chemistry. If N is the dimension of the basis set, GGA and meta-
GGA functionals usually scale asymptotically as O(N3), while for hybrid functionals the
computing of the exchange part scales as O(N4). However, this scaling could be reduced
one order of magnitude also for DFAs by applying RI-J approximations for Coulomb
terms and RI-JK or RIJCOSX approximations for the exchange. Double hybrids scale as
O(N5) (the same scaling as MP2), however, in this case it is possible to apply the same
RI approximation employed in the RI-MP2 method, which can reduce the scaling one
order of magnitude.

2.6 Solvent effects

All methods described above consider the molecules as isolated in the gas phase. However,
for a proper reproduction of experimental results it is necessary to include the effects of
the external environments. The ideal way for treating solvation at the QM level is to
include explicitly the solvent molecules in the calculation. However, in order to reproduce
long-range effects a large number of molecules should be included, which is prohibitive
from the computational point of view. The most popular approaches nowadays to account
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for solvent effects are the continuum solvation models. In these models, the solute is intro-
duced in a cavity that is surrounded by the solvent substituted by a continuous dielectric
medium. Using the approximation that the dielectric polarization is described by the lin-
ear response (LR), the total electrostatic potential V (r) of the system solute+continuous
solvent can be evaluated by solving the Poisson equation:

−∇ · [ϵ(r)∇V (r)] = 4πρ(r), (2.83)

where ρ(r) is the electronic density of the solute, and ϵ(r) is the dielectric constant. Using
the approximation that the medium is isotropic and homogeneous, ϵ(r) has the following
expression:

ϵ(r) =

{
1, r ∈ cavity

ϵs, r /∈ cavity
(2.84)

Therefore, the only external parameters needed to define the solute are the dielectric
constant ϵs and the shape of the cavity. Usually, the cavity is modeled following the
Van der Waals surface of the molecule. The most effective way to solve this electrostatic
problem is to decompose the potential V (r) in two contributions: one coming from the
solute charge density V ρ(r) and the other generated from a surface charge σ located on
the boundary(Γ) of the cavity:

V (r) = V ρ(r) + V σ(r) =

∫
dr′

ρ(r)

|r− r′|
+

∫
Γ

dr′
σ(r)

|r− r′|
(2.85)

where the expression of σ(r) depends on the model and implementation used. The most
common are the polarizable continuum model (PCM) [82, 83] and the conductor-like
screening model (COSMO) [27], which are largely employed in computational chemistry
because of their great versatility for different molecular solutes and high accuracy/cost
ratio. In this thesis we employed the PCM model by using the Integral Equation For-
malism (IEP) [84] implemented in Gaussian. For the numerical implementation of the
PCM algorithm it is necessary to divide the surface of the cavity in discrete parts in order
to solve the problem numerically. To each element of the surface of the cavity ai we can
associate the corresponding superficial charge σi. If we assume that the charge is constant
in each ai, we can rewrite it in terms of point charges qi, which can be expressed as:

qi = σiai. (2.86)

This discretization can be made following different schemes such as the so-called GEPOL
method [85] or the continuous surface charge (CSC) formalism [86]. The coupling with
the QM part is made by defining an effective Hamiltonian (Ĥeff ) obtained by adding a
reaction potential V̂ R to the vacuum Hamiltonian Ĥ0:

Ĥeff = Ĥ0 + V̂ R, (2.87)
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where V̂ R is:
V̂ R =

∑
i

qiV̂i, (2.88)

in which qi are the point charges defined in Eq. 2.86 and V̂i is the potential defined in
each area ai. Therefore, for evaluating the electronic solvation energy, the Schrödinger
equation corresponding to this Hamiltonian must be solved. Considering that there is a
mutual polarization between the solute and the solvent, the most efficient way to compute
the solvation energy is solving iteratively the KS equations with the effective Hamiltonian
2.87 and Eq. 2.83. These calculations do not increase significantly the computational cost
of standard DFT calculations, considering that the expression for the evaluation of the
V̂ R is a one-particle operator.

2.7 Molecular dynamics

Through QM methods, it is generally too computational demanding to explicitly evaluate
the effects of the environment and the dynamic evolution of a system. One efficient alter-
native is to capture these effects by classical mechanics. Among the available modelling
techniques at the classical level, atomistic Molecular dynamics (MD) is a widely-used
computational method that study the time-evolution of the interactions of atoms and
molecules. MD simulation consists in describing the trajectories of the nuclei, which are
computed by solving Newton’s equations of motion:

mir̈i = fi = −∇Vi (2.89)

The forces acting on the nuclei fi are determined according to a potential energy Vi (see
below) which act on the atom i. Therefore, the motion of the electrons is not considered
and quantum effects are neglected. The solution of these equations for each time t will
define the microstate of the system characterized by the positions and the momenta of all
of its particles. Therefore, for a system composed of N particles, each microstate depends
on 6N variables. Given a thermodynamic state, the set of all possible microstates is
defined as an ensemble. Fixing the thermodynamic state of the system (i. e., fixing some
state functions such as the pressure or the temperature), knowing the position r and the
momentum p, we can compute any macroscopic observable which can be expressed as
ensemble averages. According to the quantity we keep fixed, several possible statistical
ensembles can be considered:

• The microcanonical ensemble (NVE) is the standard ensemble for MD; it consists in
creating a thermodynamically isolated system with a constant number of particles,
volume and energy.

• The canonical ensemble (NVT) consists in a system with a fixed number of particles,
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a fixed volume and temperature. It can be modeled by coupling the system with a
thermostat in the MD simulation, such as for example the Noose-Hoover thermostat
[87, 88].

• The isothermal isobaric ensemble (NPT) for which we keep fixed the number of
particles, the pressure and the temperature. To maintain the pressure constant the
system is coupled with a barostat such as the one developed by Berendsen [89] and
a thermostat.

Once the macrostate is fixed, for evaluating a macroscopic observable A is evaluated from
its statistical distribution over the ensemble < A >ens:

Aobs =< A >ens=
∑
i

Aiρens(i) (2.90)

where in Eq. 2.90 the sum over i runs over all the microstates defined by the selected
ensemble and ρens(i) represents the probability distribution of each microstate in the
ensemble. However, in practical applications, we consider just a finite number of config-
urations on which we evaluate the observables. In MD each configuration is determined
by Eqs. 2.89 by numerical techniques. Therefore, Eq. 2.90 isreduced to:

Aobs =< A >ens≃
1

N

∑
ti

Ati , (2.91)

Where N is the number of configurations computed and Ati is the value of A at each
timestep ti. This process is analogous to perform a measurement of a real experiment.
First the sample is prepared in a "box", with specific initial conditions, before the system
is left to evolve in time. The properties are evaluated from the configurations generated,
and the observable is computed as a statistical average of them.

2.7.1 Solution of Newton equations

An analytic solution of equations 2.89 does not exist for a many-body system, therefore,
they need to be solved numerically. There are several numerical schemes employed nowa-
days to integrate the equations of motions [90]. One of the most efficient is the so-called
velocity Verlet algorithm [91], which allows to compute positions and momenta as Taylor
expansions with respect to the time. If we fix the initial conditions at t = 0 as r(0) = r0

and p(0) = p0 and ∆t is the time step chosen for the numerical integration, we can define
the evolution of r as:

r(∆t) = r0 +∆t
p0

m
+∆t2

f0
2m

, (2.92)

where f0 are the forces evaluated at time t = 0. The forces f(∆t) are then evaluated
according to the new positions and, therefore, an analogue equation for p(∆t) is computed:

p(∆t) = p0 +∆t
f0 + f(∆t)

2m
(2.93)
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The most time-consuming part of the procedure is the evaluation of the forces. Indeed
for N particles, it scales asymptotically as O(N2). While the choice of the time step is
arbitrary, it should be long enough to allow a proper sample of the phase space without
performing a large number of integration steps, but small enough to ensure a proper
numerical integration (a proper choice of the time step is usually of few fs).
In order to simulate periodic systems, such as crystals or polymers or to remove unphysical
edge effects given by the choice of the simulation box, periodic boundary conditions (PBC)
are usually employed. Using this approximation the simulation cell is replicated all over
the space in order to form an infinite system. If a molecule moves in the central cell
its copies in the other cells also will move following the same trajectory. Therefore, if a
molecule gets out to one cell it will be replaced by one from another cell. In order to avoid
the interaction between each molecule replicated in different cells, particular care should
be taken when choosing the size of the box and the cutoff parameters for evaluating the
long-range interactions.

2.7.2 Description of the Force Field

In MD simulations, the interactions between atoms is described using a set of potential
functions and associated parameters commonly referred as force field (FF). Considering
that the electrons are not included in the MD description, the different chemical prop-
erties of the nuclei are reproduced by defining different atom types that are associated
to different parameters of the FF. For instance, if we want to reproduce three different
hybridization states of a carbon atom, we need to include 3 different atom types and for
each one a different set of FF parameters. Obviously, the more atom types we include
in the model, the more costly will be the computation. Each FF has been parameterized
for different types of systems and for the specific property one wants to evaluate; in this
work, we employed the generalized amber force field (GAFF) [92] although several other
FFs have been produced, such as the DREIDING [93] or CHARMM [94]. For the GAFF
model, the atom types can not change during the simulation and therefore the connectiv-
ity must be defined before starting the simulation. The FFs can be generally decomposed
in bonded and non− bonded components:

V FF = Vbonded + Vnon−bonded (2.94)

The bonded part includes the stretching of the bonds (Vbond), the bending of the angles
(Vangles) and the torsion of dihedrals (Vdih). The expression of these functions are:

Vbond =
bonds∑

i

kri
2
(ri−reqi )2 Vangles =

angles∑
l

kθl
2
(θl−θeql )2 Vdih =

dih∑
n

kn
2
(1+cos(nα−β))

(2.95)
where kri , r

eq
i , kθl , θ

eq
i , kn, α and β are the empirical parameters of the model. In the

non − bonded interactions, all the other contributions which are not related to bonding
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termsare included. In standard GAFF we have two terms which are described by pairwise
interactions: the Van der Waals (VV dW ) and Coulomb electrostatic potentials (Velec),
namely:

VV dW =
∑
i,j

4ϵi,j

[(
σij
rij

)12

−
(
σij
rij

)6
]

Velec =
∑
i,j

qiqj
rij

(2.96)

where i and j indicate two different atoms of the system, rij identifies the distance between
them, qi the atomic charge, σij and ϵij are the empirical parameters related to London’s
dispersion forces. The number of pairs included in the computation of these terms is
defined by a spatial criterium and limited by a truncation parameter (cutoff). All the
parameters of the FF are determined by benchmark studies on more accurate methods
(such as DFT or wavefunction methods) or by direct interpolation of experimental data.

2.7.2.1 Reparameterization of a Force Field

As FF are generally derived for a given type of systems their straightforward transferability
to all kind of compounds should not be assumed. Therefore, depending what is being
investigated, it might be necessary to actually reparameterize it according to the specific
systems studied. For example, for the study of the NLO properties, it is necessary to
accurately reproduce the response of the molecules. Generally, this can be made by
parameterizing the BLA and the torsion angles according to reference QM calculations.
In order to reproduce the BLA of a system with a π-conjugated bridge, different atom
types for adjacent carbons must be defined in order to obtain different bond lengths for
each component of the bridge. The corresponding equilibrium bond lengths and angles are
usually taken from optimized DFT geometries. For the reparameterization of the force
constants of Vbond and Vangles and the coefficients kn, n of Vdih more complex methods
are needed. One of the most employed techniques is the adaptive biased force (ABF)
method. This is an iterative procedure that consists in mimicking the reference potential
energy surface (which might be obtained from DFT calculations) of the interaction that
we want to parameterize, with the analogue obtained by an MD sampling. More details
of this procedure can be found in the literature [95]. Moreover, the atomic charges of
Coulomb potentials are also generally reparameterized specifically for the systems studied.
Usually, they are extracted from DFT calculations on optimized molecular geometries
by evaluating the electrostatic fitted potentials (ESP). In chapter 8, starting from the
standard GAFF parameterization [92], we applied this procedure to reproduce the NLO
response of a polyenic system.
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Chapter 3
Computation of Nonlinear optical properties

3.1 Sum over states method

Linear and nonlinear optical properties can be modeled as a response of a quantum me-
chanical system to a classical external electric field. In the general case, the electric fields
are time-dependent, therefore the wavefunction of this system is determined by the time-
dependent Schrödinger equation (2.1). The Hamiltonian of the system can be expressed
as:

Ĥ = Ĥ0 + V̂ (t), (3.1)

where Ĥ0 is the Hamiltonian of the isolated molecule and V̂ (t) is the potential associated
with the external electric field F(t), namely:

V̂ (t) = −µ̂iFi(t), (3.2)

where µ̂ is the dipole moment operator and the Einstein notation is used. Generally, the
field coming from the external source is much weaker than the fields that hold atoms and
molecules, this interaction can be then treated in the framework of perturbation theory.
Therefore, the wavefunction can be expressed in terms of eigenstates of the unperturbed
system, so if |n⟩ are the exact eigenstates of the Hamiltonian Ĥ0, we have:

Ĥ0 |n⟩ = En |n⟩ , (3.3)

where En are the energies of each state. The resulting perturbed time-dependent wave-
function can be expressed as:

|ψ(t)⟩ =
∑
n

dn(t)e
−iEnt/ℏ |n⟩ , (3.4)
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where dn(t) are the unknown expansion coefficients which satisfy dn(−∞) = δn0. We can
expand dn(t) in a perturbation series, namely:

dn(t) = d(0)n + d(1)n (t) + d(2)n (t) + d(3)n (t) + ... =
∞∑
N

d(N)
n (t). (3.5)

By including Eq. 3.5 in Eq. 3.4 and multiplying Eq. 2.1 by ⟨m| eiEmt/ℏ we can obtain the
equations to determine the d(N)

m (t):

iℏ
∂

∂t
d(N)
m (t) =

∑
n

⟨m|µ̂i|n⟩Fi(t)e
iωmntd(N−1)

n (t), (3.6)

where ωmn = Em−En

ℏ . These equations are recursive with d(0)n = δn0. We can then express
also |ψ(t)⟩ in a perturbative series as:

|ψ(t)⟩ = |ψ(0)(t)⟩+ |ψ(1)(t)⟩+ |ψ(2)(t)⟩+ ... =
∞∑
N

|ψ(N)(t)⟩ , (3.7)

where:
|ψ(N)(t)⟩ =

∑
n

d(N)
n e

−iEnt
ℏ |n⟩ . (3.8)

The expectation values of the Hamiltonian or any other operator will be therefore time-
dependent. In particular, the expectation value of the electric dipole moment µ̂ can be
expressed as a perturbation expansion:

⟨ψ(t)|µ̂i|ψ(t)⟩ = ⟨µ̂i⟩(0) + ⟨µ̂i⟩(1) + ⟨µ̂i⟩(2) + ⟨µ̂i⟩(3) + ... (3.9)

The first four terms of Eq. 3.9 are:

⟨µ̂i⟩(0) = ⟨0|µ̂i|0⟩ (3.10)

⟨µ̂i⟩(1) = ⟨0|µ̂i|ψ(1)⟩+ ⟨ψ(1)|µ̂i|0⟩ (3.11)

⟨µ̂i⟩(2) = ⟨0|µ̂i|ψ(2)⟩+ ⟨ψ(2)|µ̂i|0⟩+ ⟨ψ(1)|µ̂i|ψ(1)⟩ (3.12)

⟨µ̂i⟩(3) = ⟨0|µ̂i|ψ(3)⟩+ ⟨ψ(3)|µ̂i|0⟩+ ⟨ψ(1)|µ̂i|ψ(2)⟩+ ⟨ψ(2)|µ̂i|ψ(1)⟩ (3.13)

In Eq. 3.10 we have the permanent dipole moment, while from Eqs 3.11-3.13 we can
recover the expressions of α, β, and γ. For instance, expressing the electric field in its
spectral components as in Eq. 1.3, we can expand Eq. 3.11 as:

⟨µ̂i⟩(1) =
∑
ω

1

ℏ
∑′

n

[⟨0|µ̂i|n⟩ ⟨n|µ̂j|0⟩
ωn0 − ω

+
⟨0|µ̂j|n⟩ ⟨n|µ̂i|0⟩

ωn0 + ω

]
F ω
j e

−iωt, (3.14)
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where
∑′ indicates that n = 0 is excluded from the summation. By a direct comparison

between Eq. 3.14 and Eq. 1.4 we can obtain the expression of the dynamic polarizability:

αij(−ω;ω) =
1

ℏ
∑′

n

[⟨0|µ̂i|n⟩ ⟨n|µ̂j|0⟩
ωn0 − ω

+
⟨0|µ̂j|n⟩ ⟨n|µ̂i|0⟩

ωn0 + ω

]
, (3.15)

where we assumed that the frequency ω of the incident radiation is different from the
resonance frequencies ωn0 of the system to avoid divergences. In the same way, we can
express the first hyperpolarizabilty as:

βijk(−ωσ;ω1, ω2) =
1

ℏ2
∑

P−σ,1,2

∑′

np

⟨0|µ̂i|n⟩ ⟨n|µ̂j|p⟩ ⟨p|µ̂k|0⟩
(ωn0 − ωσ)(ωp0 − ω2)

, (3.16)

where
∑

P−σ,1,2 indicates the 6 elements obtained by permuting the pairs of indices (i,
−ωσ), (j, ω1) and (k, ω2), while µ̂j indicates the difference between the excited state
dipole moment with respect to the ground state one: µ̂j = µ̂j − ⟨0|µ̂j|0⟩. An analog
expression can be obtained for the second hyperpolarizability:

γijkl(−ωσ;ω1, ω2, ω3) =
1

ℏ3
∑

P−σ,1,2,3

[∑′

nmp

⟨0|µ̂i|n⟩ ⟨n|µ̂j|m⟩ ⟨m|µ̂k|p⟩ ⟨p|µ̂l|0⟩
(ωn0 − ωσ)(ωp0 − ω2 − ω3)(ωp0 − ω3)

+

−
∑′

nm

⟨0|µ̂i|n⟩ ⟨n|µ̂j|0⟩ ⟨0|µ̂k|m⟩ ⟨m|µ̂l|0⟩
(ωn0 − ωσ)(ωm0 − ω3)(ωm0 + ω2)

]
,

(3.17)

where in this case
∑

P−σ,1,2,3 indicates the 24 elements obtained by permuting the pairs
of indices (i, −ωσ), (j, ω1), (k, ω2) and (l, ω3). The Eqs. 3.15-3.17 are the so-called sum-
over-states (SOS) expressions of linear and nonlinear optical properties. We made this
derivation by assuming that these states are the exact eigenstates of the Hamiltonian and
consequently the properties are exact. Therefore, both electronic and nuclear degrees of
freedom are included and each excited state is the exact non-adiabatic vibronic state of the
system. However, if we employ the Born-Oppenheimer approximation, the wavefunction
can be described as a product of the electronic and vibrational parts. In this case, the
electronic and nuclear contributions can be separated and for this thesis, we focus only on
the electronic part. The SOS scheme is rigorous only if the exact wavefunction is known
(impossible in practical cases), however, it can be employed also for standard electronic
structure calculations (HF, DFT, CC,...) although it has been observed that in order
to reach the convergence a large number of states must be included in the summation.
Some schemes based on the truncation of the SOS series are effective for some particular
systems, the most popular being the two-level approximation for charge transfer systems
(see next sections).
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3.1.1 Residues Analysis

If the explicit expressions of the optical properties are known it is possible to determine
the transition moments between excited states which can be connected to spectroscopic
quantities. This analysis can be made by computing the residues of Eqs. 3.15-3.17 [1]. In
fact, being f(z) a function of a complex variable z, divergent in a which can be expressed
as :

f(z) =
g(z)

(z − a)n
(3.18)

where a is defined as pole of order n of f(z) and g(z) is a function non singular in a. The
residues related to the pole a can be computed as:

Res(f, a) =
1

(n− 1)!
lim
z→a

dn−1

dzn−1
[(z − a)nf(z)]. (3.19)

For example, from Eq. 3.15 the frequencies ωn0 are poles of order 1 of the polarizability
(which corresponds to the excitation energies of the system), while the corresponding
residues are:

lim
ω→ωn0

(ωn0 − ω)αij(−ω;ω) = ⟨0|µ̂i|n⟩ ⟨n|µ̂j|0⟩ , (3.20)

which are the transition dipole moments between the ground and excited states, associated
with the intensity of the one-photon absorption. Other transition matrix elements can
be evaluated by computing the residues of β and γ, a list of the main optical properties
which can be obtained from residue analysis is collected in Table 3.1.

3.1.2 Two-level approximation

When computing the optical properties of systems that have a single dominant one-photon
transition (from the ground state |0⟩ to the excited state |f⟩), it is convenient to include
in the SOS expansion only the state |f⟩ and neglect contributions from all other excited
states. This model is called two-level approximation (TLA) and allows a qualitative
description of linear and nonlinear optical properties of specific systems. For instance,
TLA is particularly performing for push-pull systems which are made of a donor and an
acceptor tied by a π-bridge, having a strong charge transfer along a particular direction.
If the charge transfer is along z the only relevant component of the polarizability tensor
is αzz, which, applying the TLA on Eq. 3.15, can be expressed as:

αTLA
zz (−ω;ω) = αTLA

zz (0)F (ω), (3.21)
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Table 3.1: Scheme of the main properties which can be obtained by residue analy-
sis of the polarizability α(−ω;ω), first-hyperpolarizability β(−ωσ;ω1, ω2) and second-
hyperpolarizability γ(−ωσ;ω1, ω2, ω3).

Response Pole Residue property
α(−ω;ω) ω = ωf0 One-photon transition matrix elements be-

tween the ground state |0⟩ and the excited
state |f⟩

β(−ωσ;ω1, ω2) ω2 = ωf0 Two-photon transition matrix elements be-
tween the ground state |0⟩ and the excited
state |f⟩

ω1 = −ωf0, ω2 = ωg0 One-photon transition matrix elements be-
tween the excited states |f⟩ and |g⟩

ω1 = −ωf0, ω2 = ωf0 Electric dipole moment of the excited state
|f⟩

γ(−ωσ;ω1, ω2, ω3) ω3 = ωf0 Three-photon transition matrix elements be-
tween the ground state |0⟩ and the excited
state |f⟩

ω2 = −ωf0, ω3 = ωg0 Two-photon transition matrix elements be-
tween the excited states |f⟩ and |g⟩

ω2 = −ωf0, ω3 = ωf0 Linear electric dipole polarizability of the ex-
cited state |f⟩

where αTLA
zz (0) is the static polarizability and F (ω) is the dispersion correction to the

polarizability. αTLA
zz (0) can be expressed as:

αTLA
zz (0) = 2

|µ0f
z |2

ℏωf0

, (3.22)

where µ0f
z indicates the transition dipole moment matrix element ⟨0|µ̂|f⟩. The expression

of F (ω) is:

F (ω) =
1

1− ω2/ω2
f0

. (3.23)

With the TLA we can also approximate βzzz:

βTLA
zzz (−ωσ;ω1, ω2) = βTLA(0)G(ω1, ω2), (3.24)

where the static component βTLA
zzz (0) is:

βTLA
zzz (0) = 3

|µ0f
z |2(µff

z − µ00
z )

ℏ2ω2
f0

, (3.25)

and the frequency dispersion factor G(ω1, ω2) is:

G(ω1, ω2) =
1− ω1ω2/ω

2
f0

(1− ω2
1/ω

2
f0)(1− ω2

2/ω
2
f0)(1− (ω1 + ω2)2/ω2

f0)
. (3.26)
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Eq. 3.24 was used by Oudar and Chemla [2] to study the para-nitroaniline molecule. From
Eq. 3.25 we can therefore identify the characteristics that enhance the first hyperpolar-
izability for push-pull systems: a small excitation energy, a large difference between the
ground and excited state dipole moments, and a large transition dipole moments between
the ground and the excited state. Push-pull systems have a low-energy charge-transfer
state, which generally consists of an excitation of the electron from the HOMO orbital
(mainly localized on the donor) to the LUMO orbital (mainly localized on the acceptor).
By increasing the relative strength of the D/A units and the length of the π-conjugated
bridge the difference in energy between the ground and the excited state decreases and
therefore the optical response is enhanced.

3.2 Practical computation of static optical properties

Considering that the SOS approximation is not an efficient way of computing the NLOPs
with standard electronic structure methods, other techniques have been developed for this
purpose. In this section, we will focus on the evaluation of static NLOPs. If the system
is subject to a weak static electric field F, the external potential defined in Eq. 3.2 is
time-independent and defined as:

V̂ = −µiFi. (3.27)

The perturbed ground state energy E(F) can be then expressed as a Taylor expansion
with respect to the field components as:

E(F) = ⟨ψ|Ĥ0 + V̂ |ψ⟩ = E0 +
∂E(F)

∂Fi

∣∣∣
0
Fi +

∂2E(F)

∂Fi∂Fj

∣∣∣
0
FiFj +

∂3E(F)

∂Fi∂Fj∂Fk

∣∣∣
0
FiFjFk+

+
∂4E(F)

∂Fi∂Fj∂Fk∂Fl

∣∣∣
0
FiFjFkFl + ...

(3.28)

The expansion coefficients are the static linear and nonlinear optical properties:

µi(0) =
∂E(F)

∂Fi

∣∣∣
0

(3.29)

αij(0) =
∂2E(F)

∂Fi∂Fj

∣∣∣
0

(3.30)

βijk(0) =
∂3E(F)

∂Fi∂Fj∂Fk

∣∣∣
0

(3.31)

γijkl(0) =
∂4E(F)

∂Fi∂Fj∂Fk∂Fl

∣∣∣
0

(3.32)

The NLOPs are therefore derivatives of the perturbed energy and can be evaluated by
using two main computational approaches, namely numerical or analytic differentiation
methods.
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3.2.1 Numerical differentiation

The numerical or finite field method (FF) is the easiest and most straightforward way to
evaluate static optical properties. The idea of the FF method is that if f(x) is a function
of one variable x it is possible to estimate its derivatives by using some specific values
of the function. In fact, if h is a small perturbation of the variable x we can expand,
according to the Taylor formula, the function f(x + h) in terms of derivatives of f(x),
namely:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

3!
f ′′′(x) + ..+

hn

n!
fn(x) +O(hn), (3.33)

where O(hn) indicates that the polynomials with an exponent larger than n are neglected.
The most simple estimation of the first derivative is then:

f ′(x) ≈ f(x+ h)− f(x)

h
+O(h). (3.34)

The difference between the exact value of the derivative and the approximated one deter-
mines the accuracy of the numerical derivative. There are two different sources of errors
in numerical differentiation: the rounding error and the truncation error. The rounding
error arises because computers work with finite-precision numbers. Indeed, each number
computed by a machine is not exact but it comes from a rounding operation, which plays
a major role in numerical differentiation. When we use finite precision numbers, the digits
after a certain precision are assigned randomly by the calculator. This issue is particularly
relevant when computing differences between nearly equal numbers. In fact, if x and y are
two numbers with p equal digits on a total of k, the difference between the two is a number
with k− p digits of significance, and the remaining k-digits are assigned randomly. In the
case of numerical derivatives, the magnitude of this contribution is further enhanced by
dividing by the small parameter h . One way to reduce this error is by using larger values
of the interval h.
The other source of error is the truncation error, which comes from the contributions of
the higher order derivatives neglected in Eq. 3.34. The formula used for defining the
numerical derivative in Eq. 3.34 is called forward difference, another expression employed
for reducing the truncation error is the so-called central difference formula, i.e.:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
+O(h2), (3.35)

which, according to Eq. 3.33, reduces the error from O(h) to O(h2). Moreover, the
truncation error can be further reduced by combining differences from different steps. If
for example we define the differences d(1)h and d(1)2h (where x = 0 for convenience) as:

d
(1)
h =

f(h)− f(−h)
2h

(3.36)
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Figure 3.1: Schematic representation of the Romberg triangle. The arrows identify the
elements which are combined for each step of the triangle.

d
(1)
2h =

f(2h)− f(−2h)

2h
. (3.37)

We notice that, by simple algebraic operations, we can obtain the expression of f ′(0) as:

f ′(0) ≈ 4d
(1)
h − d

(1)
2h

3
+O(h4), (3.38)

obtaining an approximation of the fourth order with respect to h. This expression can be
generalized by an arbitrary number of steps k resulting in the so-called Rutishauser–Romberg
(RR) procedure [3–5]. Being a an arbitrary value for the quotient, the expressions of Eqs
3.36 and 3.37 can be then generalized as:

d
(1)
kh =

f(akh)− f(−akh)
2akh

. (3.39)

The RR procedure consists in evaluating f on a geometrical sequence of points with the
step a, namely: 0, ±h, ±ah, ±a2h, ..., ±akmaxh. The expressions of Eq. 3.39 for different
k can be combined in order to remove higher order differentiation terms as observed in
Eq. 3.38 by the recursive formula:

P [k,m] =
a2mP [k − 1,m]− P [k − 1,m+ 1]

a2m − 1
k = 1, 2, ..., kmax, (3.40)

where P [k,m] is the required derivative of the m-th iteration of the RR procedure. For
first order derivatives, the starting points of the recursive procedure are P [k, 0] = d

(1)
kh .

The result of this analysis can be represented as a triangle (Fig. 3.1) which can be used
to monitor the convergence of the derivative. The values in the RR triangle in principle
tend to converge when moving from left to right and from down to up. The value with the
lowest numerical error is chosen by evaluating the minimum value of the matrix ϵ[k,m],
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that contains the differences between the P [k,m] in consecutive lines, namely:

min{ϵ[k,m]} = min{P [k + 1,m]− P [k,m]} = ϵ[m̃, k̃], (3.41)

where m̃ and k̃ are the indices of the matrix ϵ associated with the minimum value. Then,
according to this scheme, the corresponding number in the RR procedure with the lowest
numeric error is P [k̃+1, m̃]. This formulation can be extended to higher-order derivatives,
changing the initial steps of the RR procedure. However, it must be taken into account
that the higher the order of the derivative, the higher the numerical error associated. The
expressions of the central difference for the second, third, and fourth numerical derivatives
are:

d
(2)
kh =

f(−akh) + f(akh)− 2f(0)

(akh)2
(3.42)

d
(3)
kh = 3

−f(−ak+1h) + af(−akh)− af(akh) + f(ak+1h)

a(a2 − 1)(akh)3
(3.43)

d
(4)
hk = 12

f(−ak+1h)− a2f(−akh) + 2(a2 − 1)f(0)− a2f(akh) + f(ak+1h)

a2(a2 − 1)(akh)4
(3.44)

3.2.1.1 Computation of static NLOP by numerical differentiation

By using the RR presented in this section, it is possible to compute the static NLOPs.
In fact, if for instance the function f(x) is the perturbed energy E(F) and the step h is
the amplitude F of the field, according to Eqs. 3.39, 3.42-3.44, it is possible to obtain the
expression of µ, α, β, and γ as first, second, third, and fourth order numerical derivatives
of E(F). This method can be applied to any electronic structure calculation for which
field-dependent energies can be calculated. For HF or DFT calculations, the static electric
field corrects the expression of the Fock operator by including another term in the one-
electron Hamiltonian at each step of the SCF procedure:

⟨ϕ|f̂ |ϕ⟩ → ⟨ϕ|f̂ |ϕ⟩+ ⟨ϕ|r̂j|ϕ⟩Fj, (3.45)

where r̂j is the position vector operator. This change on the Fock operator will perturb
the converged orbitals, which afterward depend on the magnitude of the electric field.
Usually, this procedure does not increase the computational cost of the energy calculation.
However, this calculation generally is more time-consuming because the SCF procedure
requires more steps to reach convergence. In post-HF methods, the effects of the electric
field are included in the correlation energy by constructing the excitation amplitudes
with the field-dependent orbitals. As explained in the previous section, for computing
the NLOPs, the energies must be computed with a large number of digits to reduce
rounding errors. However, it is worth remembering that in practical QC computations
several truncation schemes and cutoffs are employed, and these approximations affect the
numerical precision. It is therefore advised to use the tightest criteria affordable for the QC
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computations. For example, in the SCF all two-electron integrals larger than 10−12 should
be included, and a threshold at least of 10−10 a.u. should be used for the convergence of
the SCF procedure, while for CC calculations a threshold at least of 10−8 a.u. should be
chosen for solving the CC equations [4, 6, 7]. The magnitude of the electric fields must
also be selected carefully in the RR procedure. If the fields are too small (smaller than
10−4 a.u.) the energy differences will suffer from large rounding errors; while if the fields
are too large the SCF might converge to an excited state. The value of the quotient a is
also relevant for reducing the truncation error. Generally, it is taken as 2, however, it has
been observed that the efficiency of the RR procedure can be increased by reducing the
value of a in a range between 1 and 2. In particular, optimal results have been obtained
with a =

√
2 [4].

3.2.2 Analytic computation of static optical properties

Analytic computations of NLOPs rely on response theory. According to RS perturbation
theory (see Chapter 2), the electronic energy of a system under a small linear perturbation
defined by a parameter λ can be expressed as:

E(λ,p) = ⟨ψ(p)|Ĥλ|ψ(p)⟩ , (3.46)

where with p = (p1, p2, ...) we indicate the parameters of the electronic wavefunction,
such as the orbital parameters for an HF/DFT calculation, or the coefficients of the
determinants for a CI calculation, while Ĥλ is defined in Eq. 2.23. The optimal parameters
obtained from a converged energy calculation are indicated as p0, and the optimal energy
is defined as:

E(λ) = E(λ,p0) (3.47)

The first order derivative of E(F) with respect to the parameter λ can be written as:

dE(λ)

dλ
=
∂E(λ,p0)

∂λ
+
∑
i

∂E(λ,p)

∂pi

∣∣∣∣
p=p0

∂pi
∂λ

. (3.48)

For a stationary wavefunction the second term of Eq. 3.48 is equal to 0, in fact we
have:

∂E(λ,p)

∂pi

∣∣∣∣
p=p0

= 0 ∀ pi. (3.49)

As a result of this expression, the coefficients ∂pi/∂λ, which describe how the wave-
function parameters evolve with respect to the perturbation, are not necessary for the
determination of first-order derivatives. By writing explicitly Eq. 3.48 we obtain the
Hellmann–Feynman theorem [8] for a wavefunction stationary with respect to all wave-
function parameters:

dE(λ)

dλ
= ⟨ψ(p0)|

∂Ĥλ

∂λ
|ψ(p0)⟩ . (3.50)
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The second derivative with respect to λ can be obtained by deriving Eq. 3.48:

d2E

d2λ
=
∑
i

∂2E(λ,p)

∂λ∂pi

∣∣∣∣
p=p0

∂pi
∂λ

. (3.51)

For second-order derivatives, the variation of the parameters p can be determined by
deriving Eq. 3.49, and we obtain the following set of equations:

∑
j

∂2E(λ,p)

∂pi∂pj

∣∣∣∣
p=p0

∂pi
∂λ

= −∂
2E(λ,p)

∂λ∂pi
(3.52)

These are the so-called linear response equations. In the next section, we will show how
these equations are expressed for the HF and DFT methods, and how to use those results
to compute the polarizability.

3.2.2.1 Coupled Perturbed Hartree Fock and DFT

We start the derivation from the HF wavefunction Φ0. The perturbed wavefunction ϕ can
be expressed through an exponential parameterization:

|ϕ(κ)⟩ = eκ̂(κ) |Φ0⟩ , (3.53)

where κ̂ is the orbital excitation operator which includes the one-particle excitation pa-
rameters from occupied to virtual orbitals κ = {κar}, namely:

κ̂(κ) =
occ∑
a

vir∑
r

(κarĉ
†
rĉa − κ∗arĉ

†
aĉr), (3.54)

where the operators ĉ†r and ĉa are, respectively, the creation and destruction operators in
the second quantization formalism. The expression of the HF energy in the presence of a
perturbation field is:

EHF (F ,κ) = ⟨Φ(κ)|Ĥ0 − µ̂iFi|Φ(κ)⟩ . (3.55)

The expression of the polarizability in the CPHF approximation will be then:

αCPHF
ij = −∂

2EHF (F)

∂Fi∂Fj

= −
occ∑
a

vir∑
r

∂2EHF (F,κ)

∂Fi∂κar

∣∣∣∣
κ=0

∂κar
∂Fj

. (3.56)

The perturbed electronic gradient can be evaluated by some algebraic operations as:

∂2EHF

∂Fi∂κar

∣∣∣∣
k=0

= −2 ⟨r|µ̂i|a⟩ . (3.57)
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For evaluating the coefficients ∂κar/∂Fj we need to compute the linear response equations
3.52. The Hessian of EHF for the parameters k is:

∂2EHF (κ)

∂κar∂κbs

∣∣∣∣
k=0

= 2(Aar,bs +Bar,bs), (3.58)

where:
Aar,bs = (ϵr − ϵa)δabδrs + ⟨ra|bs⟩ − ⟨ra|sb⟩ (3.59)

Bar,bs = ⟨rb|as⟩ − ⟨rb|sa⟩ . (3.60)

In which ϵa and ϵr are the single-particle energies of occupied and virtual orbitals, while
⟨ra|bs⟩ and ⟨ra|sb⟩ represent, respectively, the Coulomb and the exchange integrals. In-
serting Eq. 3.58 and Eq. 3.57 into Eq. 3.52 we obtain the CPHF equations:

occ∑
b

vir∑
s

(Aar,bs +Bar,bs)
∂κbs
∂Fj

= ⟨r|µ̂j|a⟩ . (3.61)

An analogous formulation can be obtained for DFT calculations by slightly modifying
the A and B matrices (see below). The solution of the linear Eqs. 3.61 is found by a
combination of direct and iterative methods implemented for a solution of large systems
of linear equations called direct inversion in the iterative subspace (DIIS) method [9, 10].
The computation of the first hyperpolarizability in principle requires solving the quadratic
response equations, however, according to the 2n + 1 rule [11, 12], it can be obtained as
a function of the linear response vectors. This rule states that by the knowledge of a
wavefunction of order n it is possible to obtain derivatives on the energy up to order
2n+ 1.

3.2.2.2 Comparison between numerical and analytical derivatives

In principle, for static optical properties, analytic and numerical derivatives are expected
to give identical results, both approaches having advantages and limitations. In fact,
through FF calculations, we can compute derivatives in a simple way for each computa-
tional method which allows the calculation of the energy perturbed by an electric field,
while analytic derivatives need complicated implementations which are specific for each
method. On the other hand, analytic derivatives are not sensitive to numerical errors,
which are significant for FF derivatives. Moreover, analytic derivatives allow to compute
efficiently cross derivatives, for which several single-point calculations are necessary in the
case of numerical ones (see for example, ref. [7] for the expression of each component of
the tensor β). However, solving the CPHF equations might result challenging (or even
out of reach) for big systems, because it requires larger memory (RAM) than energy com-
putations. Therefore, we generally advise employing analytic derivatives when available
and computationally feasible, and performing FF differentiation on the highest order an-
alytical derivatives available (for example, compute the first-order numerical derivatives
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of analytic α to obtain β).
It is worth reminding that numerical procedures can be applied only for static properties,
however, they can be combined with analytical frequency-dependent quantities to obtain
some specific dynamic properties. For example, the numerical derivative of the dynamic
polarizability αij(ω;ω) allows to evaluate the Pockel effect βijk(ω;ω, 0) and the numerical
derivative of the analytic first-hyperpolarizability βijk(2ω;ω, ω) is need to compute the
EFISHG response γijkl(2ω;ω, ω, 0).

3.2.3 Inclusion of electron correlation in static NLOP calculations

In NLOP calculations the inclusion of electron correlation is fundamental. Nowadays, the
reference wavefunction method for computing NLOPs including correlation is CCSD(T).
However, its application is limited to small systems considering the big computational
effort needed. When CCSD(T) is out of reach, CCSD is generally considered the best
method. However, MP2 is also considered an excellent alternative in terms of compu-
tational savings. MP2 has been shown to give accurate hyperpolarizabilities for various
systems (see ref [6] and Chapter 4) with a more favorable computational scaling with re-
spect to CCSD. Higher expansion series MPn generally do not considerably improve the
MP2 description of hyperpolarizabilities [6]. As an example, with respect to CCSD(T),
we compare in Table 3.2 the performances of HF, MP2, MP3, and CCSD methods for
the calculation of γzzzz for 5 polydiacetylene molecules (PDAn) with increasing size of the
π-bridge (n = 1 − 5), where the z axis is orientated along the direction of the principal
inertia axis (see Chapter 4 for more information on these geometries).

Table 3.2: Comparison of γzzzz computed with different wavefunction methods for PDAn.
The values in the table are expressed in [105 a. u.]. The values between parenthesis repre-
sent the ratio with the reference CCSD(T) values. The derivatives have been computed
numerically, see Chapter 4 for more details on the numerical procedure employed.

Molecule HF MP2 MP3 CCSD CCSD(T)
PDA1 0.8(0.7) 1.3(1.1) 1.1(1.0) 1.1(1.0) 1.1(1.0)
PDA2 5.4(0.7) 9.0(1.2) 7.6(1.0) 6.7(0.9) 7.6(1.0)
PDA3 17.4(0.7) 31.6(1.3) 25.2(1.0) 20.3(0.8) 24.4(1.0)
PDA4 38.0(0.7) 64.0(1.2) 51.5(1.0) 44.9(0.8) 53.0(1.0)
PDA5 65.8(0.6) 121.1(1.1) 90.9(0.8) 83.9(0.8) 111.0(1.0)

From this table, we have that HF generally underestimates the γ values but remains
with a constant ratio with respect to the reference CCSD(T). MP3 and CCSD show very
similar performances, MP3 being slightly better than CCSD. On the other hand, MP2
despite overestimating the CCSD(T) values, gives excellent results considering the saving
of computational efforts. The selection of an appropriate basis set is also fundamental for
the accurate evaluation of NLOPs. It has been observed [6, 13–15] that polarization and
diffuse functions are generally needed for the accurate computation of first- and second-
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hyperpolarizabilities. On the other hand, passing from double to triple zeta basis sets
gives a marginal improvement of the absolute magnitude of these properties.

3.2.3.1 Computing Static NLOP with DFT

For medium- and large-size systems, evaluating NLOPs through wavefunction methods
is too computationally demanding. Nowadays, the best alternative is DFT. However,
standard DFAs are generally designed and optimized for reproducing energies and not
molecular properties. As a result, the accurate prediction of NLOPs is still very chal-
lenging for DFAs. The main issues for computing high order NLOPs are due to the
wrong asymptotic behavior of standard DFAs, which is related to the SIE [6, 16–20].
It has been observed that LDA and GGA functionals tend to drastically overestimate
first- and second-hyperpolarizabilities because of the delocalization error [7, 20]. For sys-
tems in which the exchange is dominant with respect to correlation, this behavior can be
explained by an excessive delocalization of the electronic density which leads to an over-
estimation of the response properties. By increasing the percentage of exact exchange
this phenomenon is partially corrected, however, including the exact HF exchange might
lead to an overlocalization of the electronic density and, therefore, an underestimation
of the property (such as in the HF case). Excellent static NLOPs are usually obtained
with hybrid functionals with an intermediate percentage of HF exchange (such as M06-2X
[18, 20]) and range-separated functionals (in which the high percentage of HF exchange
at a long-range assures accurate results [16, 19]). For the range-separated functionals,
it is also relevant the value of the parameter ω in Eq. 2.82, which controls the balance
between the short range and long range part.
For instance, in Table 3.3 we report, for the calculation of γzzzz in the PDAn molecules,
the performances of 5 functionals with the same approximation for the correlation and dif-
ferent ways of including the exchange part: BLYP which is a GGA functional, B3LYP and
BH&HLYP which are global hybrids with respectively 20% and 50% of exchange, CAM-
B3LYP(ω = 0.33) and LC-BLYP(ω = 0.47) which are two range separated functionals
with a percentage of explicit exchange included between 20-65% and 0-100% respectively.

Table 3.3: Comparison of γzzzz computed with different DFAs for the PDAn molecules.
The values in the table are expressed in [105 a. u.]. The values between parenthesis repre-
sent the ratio with the reference CCSD(T) values. The derivatives have been computed
numerically. More details on the numerical procedure employed can be found in Chapter
5.

Molecule BLYP B3LYP BH&HLYP CAM-B3LYP LC-BLYP
PDA1 1.7(1.5) 1.5(1.3) 1.2(1.0) 1.2(1.1) 1.0(0.8)
PDA2 17.8(2.3) 13.9(1.8) 15.9(2.1) 9.7(1.3) 6.7(0.9)
PDA3 98.8(4.0) 67.4(2.8) 37.8(1.5) 37.8(1.5) 22.3(0.9)
PDA4 365.6(6.9) 212.5(4.0) 98.5(1.9) 96.4(1.8) 49.6(0.9)
PDA5 1022.5(9.2) 502.0(4.5) 196.0(1.8) 188.1(1.7) 95.4(0.9)
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As observed in this table, by increasing the amount of HF exchange γzzzz decreases,
passing from a huge overestimation with BLYP to a slight underestimation with LC-
BLYP (and HF in Table 3.2). The best results for these molecules are obtained with
the LC-BLYP functionals. Worth mentioning in this context are the novel DFAs, which
tend to minimize the delocalization error and therefore improve the accuracy of NLOPs
computations by optimizing the parameter ω with different strategies [16–19].

3.3 Time-dependent response theory

If the external potential is time-dependent and periodic, it is necessary to construct the
dynamic response functions to compute molecular properties. If V̂ (λ, t) is the perturbation
potential that oscillates with a frequency ω, the time-dependent Hamiltonian is:

Ĥ(λ, t) = Ĥ0 + V̂ (λ, t) (3.62)

The exact wavefunction ψ(t) will be therefore time-dependent and can be obtained by
solving the time-dependent Schrödinger equation, Eq. 2.1. For computing response prop-
erties we consider the wavefunction ψ(κ, t) dependent of a general set of parameters κi

as for the time-independent case. Being F(t) a unitary matrix, it is possible to rotate the
wavefunction as:

|ψ̄(κ, t)⟩ = e−iF(t) |ψ̄(κ, t)⟩ . (3.63)

Including Eq. 3.63 in Eq. 2.1 we can obtain the following Eq. :[
Ĥ(t)− i

∂

∂t

]
|ψ̄(κ, t)⟩ = Q(t)|ψ̄(κ, t)⟩, (3.64)

in which Q(t) is defined as:

Q(t) =
δF(t)

δt
= ⟨ψ̄(κ, t)|

(
Ĥ(t)− i

∂

∂t

)
|ψ̄(κ, t)⟩ , (3.65)

which is named quasi-energy and it is usually expressed as the time-average Q:

Q =

∫ 2π
ω

0

Q(t)dt = {Q(t)}T . (3.66)

If we restrict our analysis to variational methods, by differentiating Eq. 3.66 we can
obtain the response functions analogously to the energy in the time-independent case.
The time-averaged quasi-energy in the time-independent limit recovers the expression of
the ground state energy. The advantage of the quasi-energy is given by the time-averaged
variational conditions which determine the time evolution of Q:

∂Q
∂κi

= 0. (3.67)
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Moreover, it admits the TD extension of the Hellmann-Feynmann theorem [21]:

dQ
dλ

=

{〈
ψ̄({κi}, t)

∣∣∣∂H(λ, t)

∂λ

∣∣∣ψ̄(κ, t)〉}
T

. (3.68)

For computing explicitly the terms in Eq. 3.68, we can express the external perturbation
in terms of its Fourier expansion as:

V̂ (λ{ωk}t) =
∑
k

λωk V̂ e−iωkt, (3.69)

where {ωk} are multiple of the perturbation frequency ω, λωk are the perturbation param-
eters, and V̂ is a time-independent operator. The parameters of Eq. 3.69 are chosen in or-
der to leave the Hamiltonian hermitian, therefore: V̂ = V̂ †, ω−k = −ωk and λ−ω = (λω)∗.
From Eq. 3.69 we can obtain the derivative with respect to each perturbation parameter
as:

∂V̂ (λ{ωk}t)

∂λωk
= V̂ e−iωkt. (3.70)

Therefore, by substituting Eq. 3.70 in Eq. 3.68 we can obtain:

dQ
dλω0

=
{〈

Ψ̄({κi}, t)
∣∣∣V̂ ∣∣∣Ψ̄({κi}, t)

〉
e−iω0t

}
T
. (3.71)

The expression in the bracket represents the expectation value of an operator V̂ on a time-
dependent wavefunction, it could be expressed in the perturbation theory framework as:

⟨V̂ ⟩ (t) = ⟨⟨V̂ ⟩⟩0 +
∑
k

λωk ⟨⟨V̂ ; V̂ ⟩⟩ωk
e−iωkt+

+
1

2!

∑
k,l

λωkλωl ⟨⟨V̂ ; V̂ , V̂ ⟩⟩ωkωl
e−i(ωk+ωl)t+

+
1

3!

∑
k,l,m

λωkλωlλωm ⟨⟨V̂ ; V̂ , V̂ , V̂ ⟩⟩ωkωlωm
e−i(ωk+ωl+ωm)t + ...,

(3.72)

where the terms ⟨⟨V̂ ⟩⟩0, ⟨⟨V̂ ; V̂ ⟩⟩ωk
, ⟨⟨V̂ ; V̂ , V̂ ⟩⟩ωkωl

and ⟨⟨V̂ ; V̂ , V̂ , V̂ ⟩⟩ωkωlωm
are respec-

tively the zero-order, linear, quadratic and cubic dynamic response functions which re-
spectively rule how a time-dependent operator respond to perturbations of zeroth-, first-,
second- and third-order. By including Eq. 3.72 into Eq. 3.71 and by employing the
equality {eiωt}T = δ(ω) we obtain:

dQ
dλω

= ⟨⟨V̂ ⟩⟩0 δ(ω) +
∑
k

λωk ⟨⟨V̂ ; V̂ ⟩⟩ωk
δ(ω0 + ωk)+

+
1

2!

∑
k,l

λωkλωl ⟨⟨V̂ ; V̂ , V̂ ⟩⟩ωkωl
δ(ω0 + ωk + ωl)+

+
1

3!

∑
k,l,m

λωkλωlλωm ⟨⟨V̂ ; V̂ , V̂ , V̂ ⟩⟩ωkωlωm
δ(ω0 + ωk + ωl + ωm) + ...,

(3.73)
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where energy conservation is provided by the Dirac δ which allows that the combination of
the incident frequencies sums up to the response frequency, i.e., ω0 =

∑
k ωk. Therefore,

we can connect the response equations to the perturbation expansion of the time-averaged
quasi-energy as:

⟨⟨V̂ ; V̂ ⟩⟩ω =
dQ

dλ−ωdλω
(3.74)

⟨⟨V̂ ; V̂ , V̂ ⟩⟩ωAωB
=

dQ
dλ−ωσdλωAdλωB

(3.75)

⟨⟨V̂ ; V̂ , V̂ , V̂ ⟩⟩ωAωBωC
=

dQ
dλ−ωσdλωAdλωBdλωC

, (3.76)

where in Eqs. 3.75 and 3.76 the response frequency ωσ is respectively equal to ωA + ωB

and ωA + ωB + ωC . For finding the analytical expression of the response functions it is
necessary to perturbatively expand the parameters κ which are time and perturbation
dependent:

κ(λ, t) = κ(0) + κ(1)(λ, t) + ..., (3.77)

where for example the first terms κ(1) can be expressed as:

κ(1)(λ, t) =
∑
ωk

κωkλωke−iωkt. (3.78)

The expression of the linear response function can be then obtained in terms of the κω

parameters as:
d2Q

dλ−ωdλω
=
∑
i

∂2Q
∂λ−ω∂κωi

∂κωi
∂λω

. (3.79)

The expression of ∂κωi /∂λω are evaluated by deriving Eq. 3.67, resulting into the linear
first-order response equations:

∑
j

∂2Q
∂κ−ω

i ∂κωj

∂κωj
∂λω

= − ∂2Q
∂κ−ω

i ∂λω
. (3.80)

By solving these equations we can compute the dynamic polarizability α(−ω;ω). Equiv-
alent equations can be obtained for the quadratic response functions to compute the first
hyperpolarizability β(−2ω;ω, ω). However, as already observed for the static case, be-
cause of the 2n + 1 rule [11, 12], it can be expressed in terms of the linear response
vectors.

3.3.1 Applications to TD-HF and TD-DFT

Through response theory is possible to compute all the dynamic optical properties. In
this thesis, we have employed response functions to compute the dynamic polarizability
α(−ω;ω) and the dynamic first hyperpolarizability for the second harmonic generation
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β(−2ω;ω, ω), which corresponds to the following linear and quadratic response properties:

αij(−ω;ω) = ⟨⟨µ̂i; µ̂j⟩⟩ω (3.81)

βijk(−2ω;ω, ω) = ⟨⟨µ̂i; µ̂j, µ̂k⟩⟩ωω . (3.82)

For an HF wavefunction we can rewrite Eq. 3.80 as:[(
A B

B A

)
− ω

(
1 0

0 −1

)](
Xω

j

Y ω
j

)
=

(
µj

µj

)
, (3.83)

where the matrices A and B have been already defined, respectively, in Eqs. 3.59 and
3.60, and Xω

j and Y ω
j are the frequency-dependent linear response vectors which contain

the coefficients of excitations and de-excitations. Solving these Eqs. we can then calculate
αTD−HF
ij and βTD−HF

ijk . For example, the expression of αTD−HF (−ω, ω) is:

αTD−HF (−ω, ω) = −

(
µi

µ∗
i

)†(
Xω

j

Y ω∗
j

)
= −2

occ.∑
a

vir.∑
r

⟨a|µi|r⟩ (Xω
j,ar + Y ω

j,ar), (3.84)

where Xω
j,ar and Y ω

j,ar are the coefficients of the frequency-dependent linear response vec-
tors which contain the excitations a → r and de-excitations r → a. An extension of
this formalism to DFT is given by the Runge and Groos theorem [22], which extends the
Hohenberg-Kohn theorem to time-dependent Hamiltonian showing that there is a one-
to-one correspondence between the time-dependent electronic density and the external
potential. If the adiabatic approximation is employed, the time-dependent exchange-
correlation functional can be approximated as:

V̂XC(r, t) ≈
δEXC [ρ]

δρ(r, t)
(3.85)

The inclusion of the V̂XC potential will slightly modify the expression of Eqs. 3.59 and
3.60, which will become:

Aar,bs = (ϵr − ϵa)δabδrs + 2 ⟨ra|bs⟩ − ax ⟨ab|rs⟩+ (1− ax) ⟨ra|fXC |sb⟩ (3.86)

Bar,bs = 2 ⟨rb|as⟩ − ax ⟨rb|sa⟩+ (1− ax) ⟨ra|fXC |sb⟩ , (3.87)

where ax is the amount of the exact exchange included in the definition of the DFA and
fXC is the exchange-correlation kernel, defined as:

fXC(r1, r2) =
δVXC(r1)

δρ(r2)
(3.88)
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3.3.1.1 Photoabsorption spectrum

Through TD-HF/TD-DFT it is possible to compute also the absorption spectrum of the
system. In fact, by neglecting the perturbation on Eq. 3.83, we obtain the so-called
Casida’s Equations [23]:[(

A B

B A

)
− ωn

(
1 0

0 −1

)](
Xωn

i

Y ωn
i

)
= 0 (3.89)

By solving these pseudo-eigenvalues equations we can obtain the excitation frequencies
ωn from the ground state to the n-th excited state. The explicit computation of the
inversion matrix is usually prohibitive for practical applications, therefore, usually, these
equations are solved by the so-called Davidson method [24], which allows to obtain low-
lying excited state frequencies through an iterative procedure that consists in expanding
the matrices and vectors in smaller subspaces. The eigenvectors Xωn

i and Y ωn
i can be

used for determining the oscillator strengths of these transitions:

fn =
2

3
ωn

∑
i

[(Xωn
i + Y ωn

i )Tµi] =
2

3
ωn

∑
i

⟨0|µ̂i|n⟩ ⟨n|µ̂i|0⟩ (3.90)

3.3.2 Computation of experimental NLO response

The degree of reliability of computational protocols is subjected to their capability to
reproduce experimental results. However, the exact reproduction of experimental condi-
tions through computational methods is a highly challenging task. In fact, beyond the
chemical complexity of the system under investigation, the computational method should
take into account effects such as frequency dispersion, environmental effects arising from
interactions with the molecular surrounding, as well as dynamic fluctuations.
Frequency dispersion occurs when the frequency ω of the laser probe enters in resonance
with one of the possible electron excitations of the investigated chromophore, i.e. when
the chromophore absorbs light in a spectral region close to ω. Even if the use of tunable
lasers in experimental setups allows in principle to select a laser frequency far from any
absorption band of the chromophore, it is often not possible to completely remove fre-
quency dispersion effects from experimental data. Accounting accurately for these effects
is thus fundamental for obtaining reliable predictions of the NLO responses. As discussed
previously, dynamic NLOP of large systems are not computationally affordable using cor-
related wavefunction-based approximations; therefore, they are generally evaluated at the
DFT level by solving the TD-DFT equations. However, it has been demonstrated in sev-
eral previous works [18, 25, 26] that XC functionals that reproduce well the absorption
properties of π-conjugated molecules are not the same as those reliable for predicting the
NLO responses, which requires making a compromise. A common alternative allowing
includes frequency dispersion effects consists in correcting the static response (computed
at any level of approximation including electron correlation) by a multiplicative factor,
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defined as the ratio between the dynamic and static hyperpolarizabilities (both computed
at the DFT level). This approximation assumes that frequency dispersion and electron
correlation effects can be treated independently, which is suitable for a variety of com-
pounds [14].
Another key element for reproducing experimental data is the appropriate modeling of
the environment. In the second part of this thesis, we focus on the simulation of the NLO
responses of molecules in solution, for which a proper treatment of the interaction between
the solute and the solvent is necessary. The solute might polarize or induce structural
changes in the solute, which can strongly affect its NLO properties. Computational models
for describing the solute-solvent interactions can be divided into two groups, the implicit
and the explicit ones [27]. The PCM method presented in Chapter 2 belongs to the first
group: the solvent is treated as a continuous medium characterized by its macroscopic
dielectric constants. The interaction between the solvent and solute is then modeled by
an interaction potential that implicitly takes into account the mutual polarization effects.
This method often ensures a good approximation of homogenous solutions. However,
it might result inadequate when there exist specific and spatially oriented solute-solvent
interactions at the atomic level, such as hydrogen bonds or π-stacking. In these cases,
models in which the solvent molecules are explicitly included in the calculations are more
appropriate. A compromise combining both the implicit and explicit approaches consists
in including explicitly a few solvent molecules around the solute, all embedded within a
dielectric continuum. Another alternative is given by hybrid QM/QM’ or QM/MM cal-
culations. The two levels of theory can be combined in a single run treating the core-shell
at a QM level and the outer shell (the solvent molecules) at a lower (QM’) level, or with
a polarizable force field (MM) accounting for polarization effects in a self-consistent way.
The interface between the two regions can be treated at different levels of complexity such
as by employing fixed charges models [28–30], induced dipoles [31] or fluctuating charges
[32].
However, the theoretical approaches described above rely on the assumption that the in-
vestigated system and its environment have a rigid nature. Yet, recent theoretical studies
have evidenced the significant role of structural fluctuations on the NLO responses of
neutral or ionic chromophores in solution [33–38]. A cost-effective strategy for including
structural dynamics effects consists of the sequential application of MD simulations and
QM calculations. The accuracy of these approaches depends on the choice of the MM force
field, which should be specifically parameterized to reproduce the most relevant structural
features, i.e. those having the highest impact on the targeted NLO property. In Chapter
7, we report a study in which such a sequential MD/DFT approach is used to investigate
the EFISHG response of an ionic amphiphilic dye in solution. In principle, dynamical
fluctuations could also be modeled at a full quantum mechanical level by relying on ab
initio molecular dynamics methods [39]. However, these approaches are nowadays still
too computationally demanding to be employed in real-life systems.
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Chapter 4
Acceleration and enhancement wavefunction
methods for calculations of static linear and
nonlinear optical properties

This chapter has been realized in the framework of a collaboration involving:
Besalú-Sala P. (Univ. of Girona), Zaleśny R. (Univ. of Wrocław), and Luis J. M. (Univ.
of Girona)

4.1 Introduction

In several fields as different as molecular biology or material science, the demand for
functional materials bearing specific electro-optical features is increasing yearly [1–3] as for
instance in the construction of two-photon absorption or non-invasive three-dimensional
fluorescence microscopy devices [4, 5]. The key compounds used for building such devices
are, however, difficult to design or optimize since most of the newest applications are based
on the nonlinear response of these molecular units upon interaction with light, which is a
physical process difficult to model or rationalize.

As we have already observed in Section 3.2, the energy of a molecule subjected to an
external static electric field F can be expressed as a Taylor expansion of its unperturbed
energy, E0, with respect to F:

E(F ) = E0 −
x,y,z∑
i

µiFi −
1

2!

x,y,z∑
i,j

αijFiFj −
1

3!

x,y,z∑
i,j,k

βijkFiFjFk −
1

4!

x,y,z∑
i,j,k,l

γijklFiFjFkFl ...

(4.1)
The expansion coefficients in Eq. 4.1 are respectively the components of the dipole mo-
ment µi, polarizability αij, first hyperpolarizabilty βijk, and second hyperpolarizability
γijkl tensors, which can be expressed as consecutive derivatives of the energy with re-
spected to Fi calculated at Fi = 0. Considering electric fields applied along the z direction
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(Fi = Fz), the corresponding diagonal components of the tensors are:

µz = − ∂E

∂Fz

∣∣∣
Fz=0

(4.2)
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(4.5)

These quantities describe the magnitude of the linear and nonlinear responses of the
chemical system to an external electric field, hence their accurate computation is crucial
for the bottom-up design of optic, electro-optic, and optoelectronic devices. Despite the
broad scope of application of density functional approximations (DFAs), these methods
often struggle at reproducing linear and nonlinear optical responses of molecular sys-
tems. Despite some DFAs (usually implying hybrid exchange-correlation functionals with
a large percentage of Hartree-Fock exchange) can reproduce the correct trends in the
evolution of properties within series of molecules, they often fail to accurately reproduce
the magnitude of the electrical response properties [6–10]. At the heart of this problem
is the delocalization error [11], inducing the overdelocalization of electrons, which also
leads to the underestimation of reaction barriers and charge-transfer excitation energies
and rate-constants [11, 12], the overestimation of the conductance of molecular junctions,
the magnetizability of strong antiaromatic molecules [13], electron conjugation [14], and
aromaticity [15–20]. A necessary condition to avoid the consequences of the delocalization
error on electrical responses is the correct asymptotic decay of the exchange-correlation
potentials [21, 22]. The latter is easily imposed using range-separated (RS) DFA. However,
even state-of-the-art DFAs using optimally-tuned range-separation parameters sometimes
incorrectly reproduce the magnitude of β and γ for relatively simple molecules [7, 23].
Even though the delocalization error is often the main problem in DFAs, electron cor-
relation (beyond the local or semi-local approximations included in most DFAs) is also
an essential factor to consider. Indeed, double hybrids often improve the performance of
their hybrid or range-separated peers for computing nonlinear optical (NLO) properties
[24].

On the other hand, wavefunction methods (WFMs) are exempt from many prob-
lems of DFAs, in particular from the delocalization error. The hierarchical structure
of WFMs, such as configuration interaction (CI), Møller-Plesset perturbation theory, or
coupled-cluster (CC), provides a systematic way toward the exact solution for a given ba-
sis set. As a DFT counterpart, Perdew defined the Jacob ladder in the DFT framework,
which gives a qualitative indication of the expected accuracy of DFA according to its
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type; unfortunately, these expectations are not always met for NLO Properties (NLOPs)
[6, 25]. High-order WFMs are often considered more accurate than DFAs. In particu-
lar, CC including single and double excitations with a perturbative estimation of triples
[CCSD(T)][26] is often regarded as the gold standard of WFMs. The computational time
of canonical CCSD(T) single-point energy calculation scales as O(N3M4), where N is
the number of electrons and M is the number of basis functions of the system. Hence,
despite the advantages of WFMs over DFAs, the computational cost of the former usually
prevents the calculation of NLOPs beyond cost-effective methods such as the second-order
Møller-Plesset perturbation theory (MP2) [24]. Besides, MP2 still presents an unfavor-
able scaling (O(M5)) compared to most DFAs and lacks the accuracy to compete with
CCSD(T) in a number of situations [27–29].

Many attempts have been made to increase the cost-efficiency of WFMs [30–36]. They
can be classified into two groups: methods aiming at increasing the accuracy of the low-
cost WFMs (enhanced WFMs) and techniques developed to bring down the computational
cost of WFMs (accelerated WFMs). Among the available acceleration techniques, resolu-
tion of identity (RI)[37, 38] approximations have become of routine use in many WFMs,
the most popular being RI-MP and RI-CC methods [30, 39]. RI techniques have also been
introduced for Hartree-Fock (HF) and DFT methods [40–42]. These methods show excel-
lent performance in calculating energies, with considerable time savings [43–46]. Other
methods are based on orbital localization, exploiting the local nature of dynamic corre-
lation [47]. They are usually coupled with RI approximations and by localizing natural
orbitals they can drastically reduce the computational cost and reach an almost linear
scaling with the size of the system, i.e., O(M) [48–53]. Enhancement techniques ex-
ploit some of the systematic deficiencies of WFMs. For instance, MP2 underestimates
the opposite-spin (OS) correlation, which is unbalanced with respect to the amount of
same-spin correlation (SS) because it is based on Hartree-Fock, which considers the Pauli
principle but treats OS pairs as statistically independent pairs. One way to compensate
for it is to introduce variable amounts of SS and OS MP2 correlation in what is known
as the spin-component scaled MP2 (SCS-MP2) method [54].

Benchmark studies of thermodynamics, kinetics, and molecular properties have been
performed on accelerated and enhanced methods [55–58]. However, thus far, a systematic
study of the performance of these methods for computing NLO properties is missing in the
literature. In this work, we assess the accuracy and computational cost of several enhanced
and accelerated techniques applied to CCSD, CCSD(T) and MP2 methods against their
canonical counterparts, focusing on the calculation of dipole moments, polarizabilities,
and first and second hyperpolarizabilities.
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4.2 Methodology

4.2.1 Theoretical Methods

In this section, we briefly review various accelerated and enhanced WFMs. Accelera-
tion techniques aim to reduce the genuine (unaccelerated) method’s computational time
without sacrificing accuracy. On the other hand, enhancement techniques aim at increas-
ing the accuracy of the canonical method without increasing the computational cost. A
summary of the methods considered in this study is provided in Figure 4.1.

Figure 4.1: Summary of methods studied in this work

4.2.1.1 Accelerated Methods

Among acceleration techniques, one of the most popular methods is the resolution of iden-
tity (RI). Within this scheme, the two-electron (four-index) integrals, are approximated
as two- or three-index integrals through a density-fitting procedure, thus reducing the
scaling with respect to the basis set size. The expression of the fundamental equations
regarding RI approximations are reported in Section 2.4.1. The main limitation of the RI
method is that the density fitting has to be parameterized for a specific canonical basis
set [59, 60], and auxiliary basis sets are not available for all basis sets reported in the
literature. Implementations of RI for MP2, CC, or DFT are available. However, the per-
fomance of most RI-CCSD implementations is not as good as expected. For instance, the
implementation of RI-CCSD in ORCA [61] is in practice slower than the canonical CCSD.
For this reason, in this chapter, we have limited our assessment to RI-MP2 variants.
The RI approximation can be applied independently to the self-consistent field (SCF)
part of the calculation, to the post-HF, or to both. In the present work, we applied the
RI either to the MP2 part only [62–64] (RI-MP2, hereafter) or to both the SCF and
MP2 parts. Two different versions of RI-SCF calculations have been tested, the RI-JK-
SCF method [65], in which both the Coulomb (J) and exchange (K) integrals are treated
with the RI method, and the chain of spheres method (RI-J-COSX-SCF), in which the
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Coulomb part is computed with the RI approximation and the exchange part is computed
by numerical integration over a predefined grid [66]. Both methods are implemented in
ORCA [61] and we refer to them throughout as RIJK-MP2 and RIJCOSX-MP2, respec-
tively. Additionally, we have tested a tighter COSX grid referred as COSX2 in this chapter
(GridX=4 in ORCA input).
The second family of acceleration techniques tested in this work is designed to take ad-
vantage from the eminently local character of electron correlation [47]. In this regard, the
transformation from canonical to localized orbitals can be achieved by a unitary transfor-
mation of the wavefunction. Depending on the constraints added to the unitary transfor-
mation, several localization schemes may arise. Recently, methods based on the localized
pair natural orbitals (LPNOs) are becoming very popular as they introduce a drastic re-
duction of the computational cost, resulting in an almost-linear scaling with the molecular
size. These methods employ the pair natural orbitals (PNOs) formulation, reducing the
virtual space of the calculation [67] by localizing its orbitals through the Foster-Boys al-
gorithm [68, 69], which consists in minimizing ⟨L̂⟩ (with L̂ = |r⃗1− r⃗2|2). Other important
localization schemes used in alternative contexts are the Edmiston-Rudenberg [70] or the
Pipek-Mezey [71] ones, which impose the minimization of the orbital self-repulsion and
of the atomic Mulliken charges, respectively. It is important to distinguish methods that
localize the orbitals after the SCF calculations from those like the Extremely Localized
Molecular Orbitals (ELMO)[72] scheme, which applies directly the variational principle
on the constrained many-body Slater determinant. Among the localization methods avail-
able in the literature, we decided to test two different schemes for the calculation of the
nonlinear optical properties. First, the domain localized pair natural orbital (DLPNO)
method [49, 50, 53] implemented in ORCA [61]. Second, the localized natural orbital
method (LNO) developed by Kállay and coworkers [73] implemented in the MRCC pack-
age [74]. These two methodologies use different strategies to construct the virtual domain.
The machinery behind DLPNO is rather convoluted and can be summarized as follows. A
set of pair natural orbitals (PNOs) providing the most compact description of the virtual
space is constructed. The latter PNOs are obtained through the diagonalization of the
pair density matrix for every pair of localized occupied orbitals. Finally, the DLPNO
method expands the PNOs in terms of certain basis functions, more specifically, into the
set of Pulay’s projected atomic orbitals (PAOs) [47], belonging to a specific electron-pair
domain [32]. Alternatively, the LNO method first localizes the MOs using a distance
criterion. Subsequently, each localized MO is assigned to a local subspace of occupied
and virtual orbitals, which is constructed from approximate Møller-Plesset frozen natu-
ral orbitals. Finally, the CC equations are solved for each LNO subspace and the total
correlation energy is obtained from the summation over all the sub-spaces. The main
difference between DLPNO and LNO schemes is that the former defines the interacting
subspaces from electron pairs, while the latter uses individual electrons [51, 74–76].
Such definitions for the localized orbitals (either LNO or DLPNO) can be used to effi-
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ciently compute post-HF energies and wavefunctions. More informataions over DLPNO
and LNO methods can be found in Section 2.4.2. In this chapter, we have assessed LMP2
[35, 52], which uses the LNO localization method, LNO-CCSD [52, 74], DLPNO-MP2
[49], and DLPNO-CCSD energy derivatives [32]. We also computed analytic DLPNO-
MP2 polarizabilities using ORCA 5.0 [57, 77]. We refer to this method as DLPNO-MP2-
α. We compared DLPNO-MP2-α analytic polarizabilities with numerical (from energy)
DLPNO-MP2 polarizabilities to evaluate the magnitude of the numerical errors in the cal-
culation of polarizabilities using the Rutishauser–Romberg technique (see below). We also
considered triple perturbative corrections to DLPNO-CCSD using the two alternative ap-
proximations available: DLPNO-CCSD(T0) [48], in which the triples corrections are cal-
culated following a purely perturbational approach, and DLPNO-CCSD(T1) [53], which
is more expensive (and considered more accurate) because it is partially self-consistent.
The triple perturbative corrections have been also tested for the LNO scheme, referred as
LNO-CCSD(T) [73, 78].

4.2.1.2 Enhancement Methods

Regarding the enhancement methodology, we assessed the spin-scaled component MP2
method. As it has been already anticipated in Section 2.3.5, SCS-MP2 does not reduce
the computational time explicitly, but it effectively improves the quality of the results of
a canonical MP2 calculation by increasing the amount of opposite-spin (OS) correlation
and scaling down same-spin (SS) correlation,

ESCS−MP2 = EHF + cSSE
MP2
c,SS + cOSE

MP2
c,OS , (4.6)

where cOS = 6/5 and cSS = 1/3 for Grimme’s SCS-MP2 (as opposed to canonical MP2,
where cOS = 1 and cSS = 1) [79]. Head-Gordon and co-workers suggested a scaled
opposite-spin MP2 (SOS-MP2), which takes values cOS = 1.3 and cSS = 0. By excluding
the same-spin correlation the computational complexity might be reduced from fifth to
fourth order [80].

4.2.2 Computational details

Single-point calculations have been performed using an energy threshold of 10−9 a.u. for
convergence of both the SCF and CC calculations. A tighter convergence criterion (10−14

a.u.) was also tested, however, the results for the (hyper)polarizabilities showed no sig-
nificant improvement, whereas medium/large systems showed hampered convergence. All
calculations have been performed with the aug-cc-pVDZ in conjunction with the corre-
sponding auxiliary basis set when needed. Test on the time performances of the different
methods employed in this chapter with our computational facilities have been collected
in Section A.1 of the Annex.

Static linear polarizabilities and first and second hyperpolarizabilities have been eval-
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uated numerically through finite-field central derivatives of the total energy. These cal-
culations have been performed on the range of external electric fields ±2j · 10−4 a.u. with
j = [0, 9] (1 a.u.= 51.422 V·Å-1). By construction, the finite-field central derivatives re-
move the truncation error due to the higher-order terms of the Taylor expansion of the
field-dependent energy with different parity of the derivative evaluated. In order to reduce
the truncation error coming from neglecting the latter higher-order terms with the same
parity than the derivative evaluated, the Rutishauser–Romberg (RR) formula has been
employed [81, 82], which we recall from Section 3.2.1:

P i,j =
4i · P (i−1),j − P (i−1),(j+1)

4i − 1
, (4.7)

where P is the calculated property, i is the RR iteration number, and j is the exponent
entering the expression of the electric field amplitude (±2j · 10−4 a.u.). In order to choose
the i and j values minimizing the truncation error, the minimum of the difference between
the jth and (j+1)th rows for the same i column of the matrix P i,j is evaluated and defined
as the Romberg Error (RE ), namely:

RE = min
i,j

|P i,j − P i,(j+1)| (4.8)

The generalized RR formula was employed for systems presenting convergence problems
on the RR iterations (i.e., presenting a relatively large rounding error) [81]. However, for
the molecules studied in this chapter, the rounding error coming from the generalized RR
expression did not decrease significantly compared to the standard RR. In order to verify
which methods are numerically stable, we reported the Mean Absolute Romberg Error
(MARoE) of each property and the relative MARoE (%MARoE) calculated by dividing
MARoE by the average value.
The localization schemes depend on a wide range of cutoffs, thresholds, and parameters
that control the accuracy of the energy calculations and, subsequently, their derivatives
[56]. The developers of the DLPNO method identified three different sets of thresholds
for the localization schemes, associated with a particular computational cost and accu-
racy. They employ the keywords LoosePNO, NormalPNO, and TightPNO to refer to
these approximations [83]. At the same time, LNO developers identified three sets of
parameters controlled by the variable lcorthr in the MRCC input [84]. After a few tests,
it became obvious that to reduce the numerical error associated to each single-point cal-
culation, TightPNO should be used for DLPNO calculations and lcorthr=VeryTight for
LNO. Calculations with looser cuttoffs are included in the Annex for comparison. As an
illustrative example, the relative errors committed by the numerical differentiation (mea-
sured by %MARoE) of α, β and γ applying several thresholds at the DLPNO-CCSD(T)
level of theory for the γ-NLO set (see below) are summarized in Table 4.1.
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Table 4.1: Relative mean absolute Romberg error (%MARoE) on α, β and γ values ob-
tained from the numerical derivatives of the energy, calculated for molecules of the γ-NLO
set (see next section) by using various DLPNO methods employing different thresholds
for the SCF/CC equations and orbital localization scheme.

%MARoE
Method SCF/CC Localization

α β γ

DLPNO-CCSD(T0) VeryTight NormalPNO 1 50 70
DLPNO-CCSD(T0) VeryTight TightPNO 0 40 64
DLPNO-CCSD(T0) ExtremeSCF TightPNO 0 35 64

DLPNO-CCSD(T1) VeryTight NormalPNO 0 53 98
DLPNO-CCSD(T1) VeryTight TightPNO 0 29 51

Improving the SCF/CC convergence from VeryTight to ExtremeSCF criterion provides
comparable %MARoE for α and β, and γ values. Therefore, considering the computa-
tional cost of using ExtremeSCF, we only employed the former criterion. The numerical
derivative errors also show a large dependency on the localization cutoffs. In order to
minimize these errors, we employed the highest TightPNO criterion. We also tested user-
tailored combinations of the set of parameters, seeking an increase of accuracy for NLOP
calculations but we did not find a situation where one particular parameter was singled
out as the most relevant or dominant to improve the quality of the NLOs. In practice,
the errors increase significantly with the order of the energy derivatives, hence, β and
γ require the tightest criteria. Notice that in some cases, the numerical instability of
the energies are so large that the error committed can exceed %MARoE=95%. These
conclusions about the need of high localization cutoffs are in line with the findings of
Alonso, Martin, and co-workers [56], who identified that very tight cuttoffs for DLPNO
are needed to reproduce the relative energy of extended porphyrins.
The performance of enhanced and accelerated CCSD(T), CCSD, and MP2 WFMs has
been assessed by comparison to reference values obtained using the corresponding canon-
ical methods, by considering four statistical measures: the Mean Absolute Error (MAE),
the Root Mean-Square Error (RMSE), the Maximum Error (MAX), and the percentage
MAE (%MAE)

MAE =
1

n

n∑
i=1

|xi − ti| (4.9)

RMSE =

√√√√ 1

n

n∑
i=1

(xi − ti)2 (4.10)

MAX = max
i

|xi − ti| (4.11)

%MAE =
MAE

1
n

∑n
i=1 ti

(4.12)
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where ti and xi are the reference and the predicted values for system i, respectively.

4.2.3 Benchmark sets

Two benchmark sets are used in this chapter: the γ-NLO set[7] and the β-NLO set (see
Figure 4.2). The γ-NLO set contains 60 molecules, formed by 2 to 36 atoms of the second
period and/or hydrogen. The latter set can be split into two subsets: The first one (γ-
NLO-A, 37 molecules) contains molecules that, for the adopted orientation, are symmetric
along the z-axis; while the second set (γ-NLO-B, 23 molecules) includes polar molecules
oriented aligning their inertia axis to z axis, and thus they are not symmetric along z-axis.
The γ-NLO-A set includes the first oligomers of two series of well-known NLO compounds
—the all-trans polyacetylene (PA), and the polydiacetilene (PDA)— as well as some small
organic and inorganic molecules, and weakly-interacting H2 chains, which are particularly
challenging systems for the computation of second hyperpolarizabilities [85]. This set has
been only employed for the evaluation of αzz and γzzzz (even derivatives with respect to
the electric field) because these molecules present, by construction, null µz and βzzz (odd
derivatives). Conversely, the γ-NLO-B has been employed to evaluate µz, αzz, βzzz, and
γzzzz. This set includes the first six oligomers of all-trans polymethineimine (PMI), the
NLOP calculation of which proves difficult for electronic structure methods.
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Figure 4.2: Benchmark γ- and β-NLO sets studied in this chapter. The subset γ-NLO-A
contains molecules that, on the adopted orientation, are symmetric along the z-axis; while
the subset γ-NLO-B contains molecules that are not symmetric along the z-axis.

The β-NLO set contains molecules with expected large β and γ. In particular, it con-
sists of 56 π-conjugated push-pull systems that result from the functionalization of the
terminal positions of PA1−6, PDA1−3, and PMI1−5 oligomers with two possible electron-
withdrawing (-NO2, -CHO) and two possible electron-donor (-NH2, -OH) substituents.

Molecular geometries and reference CCSD(T) energy derivatives for γ-NLO set are
available and have been published elsewhere [7], whereas the data corresponding to the
β-NLO is included in the Annex of this chapter. All the molecules have a singlet ground
state, with the exception of O2, which is a triplet molecule. Unrestricted calculations with
localized methods are still not implemented in MRCC, therefore, O2 was excluded from
this study.
The single-reference character of the molecules was assessed through a series of multiref-
erences diagnostic criteria. On one side, we computed D1[86], D2 [87], and T1 [88–90]
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over the CCSD wavefunctions. We employed various natural-occupancy-based diagnos-
tics for MP2 calculations, namely: NON, V, MRI [91], and IND [92–95]. According to the
latter diagnostics, none of the molecules presents a high multiconfigurational character
(see A.7 and A.8) and, therefore, coupled-cluster and MP2 wavefunction are appropriate
methodologies to assess the electronic structure of such systems. Only the longitudinal
components of the dipole moment vector (µz), and of the polarizability (αzz) and hyper-
polarizability tensors (βzzz and γzzzz) were computed for all the molecules (see Figure 4.2).
For simplicity, hereafter the indices will be dropped and the diagonal tensor components
will be noted µ, α, β and γ. All properties have been reported without sign in order to
allow direct comparison between the different sign conventions adopted by the packages
utilized, and facilitate the analysis.

4.3 Results

In this section, we will only show statistical errors with respect to some reference values.
Absolute magnitudes of the linear and nonlinear optical properties are available in the
Annex. The results are organized as follows: the performance of accelerated methods are
first checked against their canonical counterparts. Then, we consider their accuracy by
comparing the computed optical responses with CCSD(T)/aug-cc-pVDZ reference values.
Finally, we assess enhanced wavefunction methods.

4.3.1 Relative performance of accelerated methods

In this section, we consider the performance of accelerated MP2 and CCSD calculations,
whereas accelerated CCSD(T) methods will be assessed in Section 4.3.2. As detailed
above, different statistical measures were collected to quantify the errors. However, all
statistical parameters generally provide a similar assessment of the methods. Hence,
unless otherwise indicated, we mainly use the relative mean average error (%MAE) to
analyze the data.

4.3.1.1 Accelerated MP2 calculations

Table 4.2 reports the statistical measures assessing the performance of six accelerated
MP2 methods with respect to canonical MP2. The errors committed by MP2 accelerated
methods for the lowest-order properties (dipole moment and polarizability) are minimal
(ca. %1). Therefore, employing any of these methods is advisable to reduce the computa-
tional cost of these properties. However, the highest accuracy is achieved by RIJK-MP2,
closely followed by RI-MP2 and the analytical calculation of the polarizability at the
DLPNO-MP2 level (DLPNO-MP2-α). The remarkable accuracy of the analytical field-
free and field-dependent linear polarizabilities obtained from DLPNO-MP2 is reflected by
the accuracy of DLPNO-MP2-α first and second hyperpolarizabilities (calculated from
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Table 4.2: Performance of accelerated MP2 methods with respect to canonical MP2 for
the γ-NLO set. Units are a.u.

Method RI-MP2 RIJK-MP2 RIJCOSX2-MP2 LMP2 DLPNO-MP2-α DLPNO-MP2

µ

MAE 1.9E-04 1.9E-04 2.2E-04 4.3E-04 2.2E-04 5.8E-04
RMSE 3.3E-04 3.8E-04 1.7E-03 8.3E-04 3.9E-04 1.2E-03
MAX 1.2E-03 1.4E-03 2.6E-03 3.1E-03 1.5E-03 4.7E-03

%MAE 0 0 0 0 0 0

α

MAE 4.6E-02 3.9E-02 1.2E+00 5.1E-01 7.6E-02 9.5E-01
RMSE 1.6E-01 1.2E-01 7.6E+00 1.8E+00 2.8E-01 3.0E+00
MAX 1.1E+00 8.4E-01 5.8E+01 1.2E+01 1.8E+00 2.0E+01

%MAE 0 0 1 0 0 1

β

MAE 5.7E-01 3.7E+00 1.2E+01 7.1E+01 2.9E+00 1.2E+02
RMSE 1.7E+00 1.5E+01 3.8E+01 2.3E+02 8.9E+00 2.5E+02
MAX 6.6E+00 7.0E+01 1.7E+02 9.9E+02 3.9E+01 8.8E+02

%MAE 0 2 5 29 1 49

γ

MAE 2.7E+04 5.5E+04 5.4E+04 2.6E+05 3.3E+04 1.9E+05
RMSE 1.3E+05 2.6E+05 1.4E+05 1.3E+06 1.5E+05 4.7E+05
MAX 8.7E+05 1.7E+06 6.0E+05 9.5E+06 1.1E+06 1.8E+06

%MAE 5 11 10 51 6 36

numerical derivatives of the former). Together with RI-MP2, DLPNO-MP2-α provides
the most accurate values for the whole range of optical properties. Since RIJK-MP2 and
RIJCOSX2-MP2 only display a slight increase of the relative MAE on β and γ while they
reduce the computational cost of RI-MP2 by applying the resolution of identity also at the
SCF level, one should likewise consider these methods to compute hyperpolarizabilities
to obtain values close to the MP2 accuracy.

4.3.1.2 Accelerated CCSD methods

Table 4.3 collects data to assess the performance of DLPNO-CCSD and LNO-CCSD
against canonical CCSD. The errors committed by CCSD accelerated methods for the
dipole moment and the polarizability are slightly larger than their counterparts at the
MP2 level, presenting also very small (%MAE ≤ 2%). However, none of these meth-
ods provides reasonable values for the first and the second polarizabilities. The excellent
results obtained from analytical DLPNO-MP2-α suggest that if analytical values of the
polarizability at the DLPNO-CCSD were available, we would also obtain accurate hyper-
polarizabilities at this level of theory.
The poor results obtained for the high-order optical properties from DLPNO-CCSD and
LNO-CCSD are due to numerical errors (see Tables A.9 and A.10 for the Romberg errors)
that cannot be avoided using other numerical differentiation techniques. The poor quality
of the single-point DLPNO-CCSD and LNO-CCSD field-dependent energies is responsible
for it, and it cannot be solved by using tighter convergence criteria for the localization
schemes. Table A.11 shows that these results are even worse if we employ looser criteria.
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Table 4.3: Performance of accelerated CCSD methods with respect to canonical CCSD
for the γ-NLO set. Units are a.u.

Method DLPNO-CCSD LNO-CCSD

µ

MAE 2.4E-03 1.6E-03
RMSE 4.7E-03 3.5E-03
MAX 1.8E-02 1.3E-02

%MAE 0 0

α

MAE 1.5E+00 1.9E+00
RMSE 8.5E+00 1.2E+01
MAX 3.8E+01 4.4E+01

%MAE 1 2

β

MAE 2.1E+02 4.7E+01
RMSE 3.0E+02 1.2E+02
MAX 6.5E+02 4.6E+02

%MAE 114 25

γ

MAE 4.7E+05 2.1E+05
RMSD 1.3E+06 1.2E+06
MAX 5.9E+06 4.1E+06

%MAE 122 54

Table 4.4: Performance of acceleration methods with respect to CCSD(T) references for
the evaluation of µ and α for the γ-NLO set. Units are a.u.

Method DLPNO-CCSD(T0) DLPNO-CCSD(T1) LNO-CCSD(T) MP2 CCSD

µ

MAE 3.4E-03 3.2E-03 2.3E-03 2.9E-02 2.2E-02
RMSE 6.6E-03 7.5E-03 6.3E-03 4.3E-02 3.4E-02
MAX 2.6E-02 2.6E-02 2.6E-02 1.3E-01 9.5E-02

%MAE 1 1 0 4 3

α

MAE 1.5E+00 8.2E-01 1.2E+00 3.7E+00 3.0E+00
RMSE 4.2E+00 2.1E+00 3.9E+00 7.2E+00 3.0E+00
MAX 2.0E+01 1.0E+01 2.1E+01 3.1E+01 6.5E+01

%MAE 1 1 1 3 3

4.3.2 Absolute performance of accelerated methods

Thus far, we have evaluated the efficiency of accelerated MP2 and CCSD to reproduce
their canonical counterparts. In this section, we benchmark accelerated methods against
the reference CCSD(T) calculations for the calculation of NLOPs, including accelerated
CCSD(T) variants, which are assessed for the first time.
Table 4.4 collects the statistical data for the dipole moment and the polarizability. Ac-
celerated MP2 and CCSD methods are omitted from these analyses, since we demon-
strated above that they have the same accuracy as their canonical counterparts. DLPNO-
CCSD(T) variants show excellent performance with errors below or equal to 1% with
respect to the canonical CCSD(T). MP2 and CCSD methods also provide very good ap-
proximations of the two properties.
The data in Tables 4.5 and 4.6 illustrate the performance of various methods to com-

pute the first and second hyperpolarizability, respectively. We have omitted the data for
the RI approximations and DLPNO-MP2-α, since we can expect that the accuracy of
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Table 4.5: Performance of acceleration methods with respect to CCSD(T) references for
the evaluation of β for the γ-NLO set.

DLPNO LNO Canonical
Method CCSD CCSD(T0) CCSD(T1) CCSD CCSD(T) LMP2 MP2 CCSD

β

MAE 2.3E+02 1.1E+02 2.7E+01 9.2E+01 6.4E+01 5.7E+01 1.1E+02 5.1E+01
RMSE 3.6E+02 3.1E+02 4.8E+01 2.5E+02 2.0E+02 1.2E+02 2.6E+02 1.3E+02
MAX 1.1E+03 1.3E+03 1.9E+02 9.2E+02 9.1E+02 3.6E+02 8.3E+02 4.6E+02

%MAE 165 78 19 67 46 41 78 37

Table 4.6: Performances of acceleration methods with respect to CCSD(T) references for
the evaluation of γ for the γ-NLO set. Units are a.u.

DLPNO LNO Canonical
Method CCSD CCSD(T0) CCSD(T1) CCSD CCSD(T) LMP2 MP2 CCSD

γ

MAE 5.3E+05 7.0E+05 2.3E+05 2.2E+05 4.6E+05 2.6E+05 7.7E+04 8.4E+04
RMSE 1.9E+06 3.8E+06 1.1E+06 1.5E+06 2.2E+06 1.2E+06 2.4E+05 6.0E+05
MAX 8.6E+06 2.8E+07 8.3E+06 6.8E+06 1.5E+07 8.9E+06 1.2E+06 2.7E+06

%MAE 117 155 51 49 103 58 17 19

these methods is similar to that of MP2 (see Table 4.2). None of the methods tested
give a relative MAE below 15% for the first hyperpolarizability, the best methods being
DLPNO-CCSD(T1) followed by canonical CCSD. The latter results indicate that the ac-
curate evaluation of triples is crucial in reproducing CCSD(T) values. All DLPNO-based
methods show significant numerical derivative errors (see MARoE values in Tables A.9
and A.10), which can be partially (but not sufficiently) reduced by employing tighter
cutoffs (see Table A.12). Interestingly, the accuracy of DLPNO methods in reproduc-
ing triple excitations goes hand in hand with the numerical stability of the energies.
Indeed, for the same cutoffs, we find more stable energies (lower MARoE values) for
DLPNO-CCSD(T1) than for DLPNO-CCSD(T0) —see Table A.12. The LNO-CCSD
(LNO-CCSD(T)) method gives somewhat more accurate first hyperpolarizabilities than
DLPNO-CCSD (DLPNO-CCSD(T0)); however, both LNO methods exhibit relative MAE
errors above 45%. Interestingly, LMP2 outperforms MP2, mainly because of a better re-
production of the first hyperpolarizabilities of the PMI oligomers by LMP2 —which is
probably due to a fortuitous cancellation of errors.
In Table 4.6, we collect the statistics for the second hyperpolarizabilities. In this case,

none of the accelerated methods gives a relative MAE below 50%. All the methods also
show substantial numerical derivative errors, evidencing that numerical instabilities in the
energy values hinder an accurate calculation of their fourth-order derivatives. Interest-
ingly, MP2 performs better than CCSD. In this sense, RI-based accelerated MP2 methods
(see Table 4.2) are an economical alternative for computing second hyperpolarizabilities.

4.3.3 Performance of enhanced MP2 methods: SCS-MP2

In this section, we assess the accuracy of several spin-scaled methods designed to improve
the performance of MP2 energies by adjusting the amount of same-spin (cSS) and opposite-

100



Table 4.7: Performance of different spin-component scaled MP2 methods with respect to
CCSD(T) for the evaluation of the linear and nonlinear optical properties for the γ-NLO
set. Units are a.u.

Method MP2 SCS-MP2 SOS-MP2
cSS 1 0.3 0
cOS 1 1.2 1.3

µ

MAE 2.9E-02 2.0E-02 1.5E-02
RMSE 4.3E-02 2.7E-02 1.9E-02
MAX 1.3E-01 6.6E-02 4.3E-02

%MAE 4 3 2

α

MAE 3.7E+00 2.9E+00 4.8E+00
RMSE 7.2E+00 8.4E+00 1.4E+01
MAX 3.1E+01 5.0E+01 8.3E+01

%MAE 3 3 4

β

MAE 1.1E+02 1.7E+02 2.0E+02
RMSE 2.6E+02 4.4E+02 5.4E+02
MAX 8.3E+02 1.6E+03 2.0E+03

%MAE 78 125 148

γ

MAE 7.7E+04 6.4E+04 5.6E+04
RMSE 2.4E+05 1.9E+05 1.7E+05
MAX 1.2E+06 9.3E+05 8.5E+05

%MAE 17 14 12

spin (cOS) correlation. As described in above, we tested two different popular schemes:
the Grimme’s SCS-MP2[79] in which cSS = 1/3 and cOS = 6/5, and SOS-MP2[96] that
takes cSS = 0 and cOS = 1.3. The computational cost of SCS-MP2 is insignificantly
larger than canonical MP2, whereas SOS-MP2 can be formally implemented to reduce
the scaling by one order in the number of basis functions. We collected the statistics of
their performance in Table 4.7.
The results for the dipole moment and the polarizability show only a marginal improve-

ment over MP2, which already exhibits pretty accurate results. According to all statistical
measures, the first hyperpolarizability is better estimated by canonical MP2 than by spin-
scaled methods. Reversely, both SCS-MP2 and SOS-MP2 marginally better reproduce
the second hyperpolarizability. Although there is not much improvement, it might be
worth exploring the possibility of an accelerated SOS-MP2 method as an economical way
to compute γ.

4.3.4 Performances of accelerated methods on push-pull systems

From the results of the previous sections, we have identified β and γ as the most chal-
lenging properties for accelerated wavefunction methods. We have also pinpointed the
best-performing methods for β is DLPNO-CCSD(T1), and for gamma are CCSD, RI-
MP2, and MP2. In this section, we put these methods to the test by analyzing further
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Table 4.8: Performance of DLPNO-CCSD(T1), MP2, RI-MP2, and CCSD methods with
respect to the CCSD(T) references for the evaluation of β and γ for the β-set. Units are
a.u.

Method DLPNO-CCSD(T1) RI-MP2 MP2 CCSD

β

MAE 1.7E+03 2.8E+03 2.7E+03 7.7E+02
RMSE 2.6E+03 4.5E+03 4.5E+03 1.2E+03
MAX 6.8E+03 1.3E+04 1.3E+04 4.5E+03

%MAE 17 28 27 8

γ

MAE - 5.6E+05 5.2E+05 3.9E+05
RMSE - 9.8E+05 8.7E+05 7.0E+05
MAX - 3.1E+06 2.9E+06 3.2E+06

%MAE - 21 19 14

their relative accuracy for computing the NLO properties of the push-pull molecules con-
tained in the β-NLO set. These molecules are expected to exhibit a significant β response
that is susceptible to be impacted by larger errors. In the case of γ, we have excluded
DLPNO-CCSD(T1) because it presented too large energy derivative errors. The statisti-
cal results are collected in Table 4.8.
Although the molecules in the β-NLO set present larger absolute errors than those in the
γ-NLO set, the relative errors are smaller because of the larger average β and γ values.
The performance of DLPNO-CCSD(T1) compared to CCSD is not as good as in γ-NLO
set. DLPNO-CCSD(T1) hyperpolarizabilities have average errors about twice as large
as those of CCSD, although it outperforms MP2. The results of MP2 and RI-MP2 are
comparable for the first and second polarizability, showing that the resolution of identity
methods can be safely employed as substitutes for MP2 also for π-conjugated push-pull
derivatives. The comparison between MP2 and CCSD shows that for molecules with
larger responses, MP2 exhibit larger deviations than CCSD for the first hyperpolariz-
ability, while both methods lead to similar %MAEs for the second hyperpolarizability.

4.4 Conclusions

In this chapter, we have benchmarked various alternatives to wavefunction methods that
either reduce the computational cost or improve the performance of the canonical meth-
ods. In particular, we have tested RI-MP2, RIJK-MP2, RIJCOSX2-MP2, LMP2, SCS-
MP2, SOS-MP2, DLPNO-MP2, LNO-CCSD, LNO-CCSD(T), DLPNO-CCSD, DLPNO-
CCSD(T0), and DLPNO-CCSD(T1). Our results indicate that all these methods produce
numerically stable energies to compute first and second derivatives of the energy with re-
spect to an external electric field. Since, in general, these derivatives are not highly
affected by correlation energy, we can safely employ any of the latter methods to calcu-
late the dipole moment and the polarizability with average relative errors below 5%.
On the other hand, the calculation of higher-order derivatives represents a challenge for
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accelerated and enhanced wavefunction methods. In particular, the third and fourth
derivatives of the energy, required to compute the first and second polarizability, critically
depend on the numerical stability of the single-point field-dependent energy calculations.

Our results show that RI-based methods produce reliable energies from which to com-
pute up to fourth-order derivatives of the energy with respect to an external field. Hence,
methods like RI-MP2, RIJK-MP2, or RIJCOSX2-MP2 are a cost-effective way to obtain
first and second hyperpolarizabilities with a marginal average error with respect to canon-
ical MP2 (up to 5% for β and up to 11% for γ). Conversely, methods based on orbital
localizations (LNO and DLPNO techniques) applied to MP2 suffer from large numerical
instabilities that result in large errors for β (29-49%) and γ (36-51%). The same tech-
niques applied to CCSD and CCSD(T) result in even larger errors, which exceed 100% in
the worse cases. The only exception is DLPNO-CCSD(T1), which produces an acceptable
relative error of 19% for the calculation of β.
The precision of single-point energy calculations with LNO and DLPNO critically de-
pends on the cutoffs for the SCF/CC equations and the orbital localization scheme. In
addition, the accuracy of DLPNO methods in reproducing triple excitations goes hand in
hand with the numerical stability of the energies. Hence, for the same cutoffs, we have
more stable energies for DLPNO-CCSD(T1) than for DLPNO-CCSD(T0).
Analytical field-dependent polarizabilities are available at the DLPNO-MP2 level of the-
ory, from which we have numerically computed first and second hyperpolarizabilities that
are in excellent agreement with their canonical MP2 counterparts. We can thus antic-
ipate that if analytical DLPNO-CCSD polarizabilities were available, we would have a
cost-effective method to compute accurate hyperpolarizabilities.
Finally, we assessed spin-component scaled methods as techniques that improve the per-
formance of MP2 at the same cost. Unfortunately, these techniques produce only produce
only a marginal improvement in the case of the second polarizability.

To summarize, we recommend RIJK-MP2, RIJCOSX2-MP2, and DLPNO-MP2 (using
analytical polarizabilities to compute γ) to compute the dipole moment, the polarizability,
and the second hyperpolarizability, whereas only DLPNO-CCSD(T1) using tight cutoffs
can be employed to obtain reasonably accurate first hyperpolarizabilities. We hope that
these results will prompt the implementation of analytical low-order properties for ac-
celerated wavefunction methods and/or more precise single-point energies that can be
employed to compute numerical derivatives.
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Chapter 5
Performance of MP3:KS methods for the
computation of static linear and nonlinear
optical properties

This chapter has been realized in the framework of a collaboration involving:
Besalú-Sala P. (Univ. of Girona), Ramos-Cordoba E. (Univ. of Basque Country), Zaleśny
R. (Univ. of Wrocław), and Luis J. M. (Univ. of Girona)

5.1 Introduction

As discussed in the previous chapters, the inclusion of electron correlation is crucial for
an accurate evaluation of molecular nonlinear optical properties. However, high-level
CCSD(T) calculations are out of the reach of current computational resources for real-
life molecules, as this method scales as O(N 7) (with N the number of basis functions
used for expanding the molecular orbitals). Therefore, it is often necessary to make the
compromise of decreasing the level of theory in order to reduce the computational cost.

In this context, the preferred wavefunction-based methods for computing NLO proper-
ties of medium-size molecules are CCSD, which needs several iterations scaling as O(N 6),
and MP2, which scales as O(N 5). MP3 methods also scale O(N 6) but they are less time
consuming because they do not need several iterations to reach the convergence. However,
they are rarely used because they do not systematically improve the MP2 results.

Nevertheless, we address in this chapter the performance of a recent implementation
of the MP3 method, in which the reference molecular orbitals are obtained from DFT
(KS-MOs) instead of the standard HF orbitals. The MP3:KS method, has been shown to
increase the accuracy of MP3:HF, and provide results comparable to CCSD for thermo-
chemical barriers, noncovalent interactions and dipole moments [1, 2]. The success of this
method is attributed to the deficiencies of the HF method which brings a fictitious spin
contamination even in closed-shell systems and tends to give poor reference MOs. In fact,
HF tends to overlocalize the MOs giving a poor reference to the subsequent wavefunction
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calculations [3]. This issue led to the development of the so-called orbital optimized MP2
method (OO-MP2) [4], in which HF orbitals are optimized in the presence of MP2 corre-
lation. A more appropriate reference is given by KS-MOs, which conversely, might suffer
from the delocalization error depending on the choice of the functional (see section 2.5).
However, it has been observed [2] that MP2:KS and MP3:KS methods are not particu-
larly sensitive to the choice of the reference functional for the computation of energies.
Because of the use of canonical orbitals, non-Brillouin single excitations between occupied
and virtual orbitals are present at both MP2 and MP3 level. However, MP3:KS method
is optimized by including MP2 single excitations, and neglecting the corresponding MP3
ones. Interesting, with this construction MP2:KS overestimates the correlation effects
underperforming with respect to MP2:HF (see the expression of MP2:KS and MP3:KS
energies in Section 2.3.4). On the other hand, in MP3:KS this contribution is mitigated
by the presence of MP3 doubles which reduces it and allows to improve canonical MP3.
In this chapter, we address the efficiency of MP3:KS for computing the static linear and
nonlinear optical properties (α, β, and γ) of reference molecules.

5.2 Computational details

The main equations of the MP3:KS method are provided in Section 2.3.4. Calculations
have been performed by neglecting the non-Brillouin single excitations of the MP3 per-
turbation while including the corresponding MP2 ones, as suggested by the developers of
the method [2]. The systems studied are the molecules belonging to the γ-NLO ( both
γ-NLO-A and γ-NLO-B ) and β-NLO sets employed in Chapter 4. The single-reference
character of the molecules of the β-NLO-set has been further assessed through the T1
diagnostic criterion [5–7] over the CCSD wavefunctions. To reduce the computational
cost, MP3 corrections were calculated by making use of the resolution of identity (RI)
approximation. We demonstrated in Chapter 4 that the use of this acceleration scheme
at the MP2 level does not significantly impact the computed NLO properties. The very
good agreement between MP3 and RI-MP3 results was further demonstrated here (see
Table B.4) by computing the NLO responses of molecules from the γ-set (excluding the
largest molecules PDA4 and PDA5 that are not computationally affordable at the MP3
level). Thus, we will not make any distinction between MP3 and RI-MP3.

Reference CCSD(T) values of the NLO properties are taken from Chapter 4. All
the calculations have been performed on a developer’s version of Qchem [8] using the
aug-cc-pVDZ basis set, while the corresponding aug-cc-pVDZ auxiliary basis set was
employed whenever RI is applied. Single-point calculations have been performed using an
energy threshold of 10−9 a.u. Several density functional approximations (DFAs) belonging
to different rungs of Jacob’s ladder have been used to generate the reference orbitals
used in the MP3:KS scheme. In particular, we tested three functionals making use of
the Becke88 [9] exchange functional and LYP correlation functional [10], differing in the
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amount (if any) and treatment of exact HF exchange: BLYP, [9], B3LYP [11], and CAM-
B3LYP [12], which belong to the GGA, hybrid GGA and long-range corrected hybrid GGA
families, respectively (see section 2.5.1). In addition, we tested three range-separated
functionals of the ωB97 series, namely ωB97-XD [13], ωB97-XV [14], and ωB97-MV
[15]. NLO properties have been computed as numerical derivatives of the field-dependent
electronic energies using the finite-field procedure, as described in the previous chapter.
The performance of the various MP3:KS approximations are evaluated by using the same
statistical measures as in Chapter 4, namely the Mean Value (MV), Mean Absolute Error
(MAE), the Root Mean-Square Error (RMSE), the Maximum Error (MAX), and the
percentage MAE (%MAE).

5.3 Results

5.3.1 Performance of unrestricted MP3 calculations

Before testing the MP3:KS methods, we evaluated the error originating from spin contam-
ination when using an unrestricted framework. When using the UHF MOs, we found that
21 molecules over the 60 ones composing the γ-set have a broken symmetry ground state,
as reflected by the mean values of the Ŝ2 operator reported in Table B.2, which are signif-
icantly larger than the expected value of 0 for closed-shell systems. (Note that ⟨Ŝ2⟩ = 2.0

for the O2 molecule owing to its triplet ground state). Very large spin contamination
errors were also obtained for molecules of the β-set, as reported in Table B.3.
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Table 5.1: Performance of HF:MP3 and UHF:MP3 for calculating NLOPs with respect
to CCSD(T) for the γ-NLO-set.

MP3
Ref. orbitals HF UHF

MV 7.0E-01 1.0E+00
MAE 2.0E-02 3.0E-01

RMSE 4.0E-02 5.0E-01
MAX 9.0E-02 1.0E+00

µ

%MAE 3 41

MV 1.1E+02 1.6E+02
MAE 3.4E+00 4.6E+01

RMSE 1.2E+01 2.7E+02
MAX 4.3E+01 1.2E+03

α

%MAE 3 40

MV 2.2E+02 4.9E+03
MAE 8.9E+01 4.8E+03

RMSE 2.1E+02 1.3E+04
MAX 6.6E+02 5.2E+04

β

%MAE 65 3443

MV 4.2E+05 3.5E+06
MAE 6.4E+04 3.0E+06

RMSE 2.8E+05 1.9E+07
MAX 2.0E+06 1.5E+08

γ

%MAE 14 668

The NLO properties calculated using the MP3 and UMP3 methods are compared to
reference CCSD(T) calculations for the γ-set in Table 5.1. When allowing the wave-
function to relax towards the unrestricted solution, the NLO properties get much worse,
showing error indices one order of magnitude larger than those associated to restricted
calculations. This behavior can be related to a well-known problem of MP2 and MP3
calculations, which lose accuracy when moving to an unrestricted frame [16–18]. Unre-
stricted HF orbitals should be therefore avoided for a proper reproduction of molecular
NLO responses.

On the other hand, when using DFT we observe that the only molecule which presents
a broken symmetry solution for some of the selected functionals is HNO, while for the rest
of the systems the most stable solution is the closed-shell one (see Table B.2). Unrestricted
KS MOs can thus be used as reference orbitals in the MP3:KS scheme, at least from the
viewpoint of spin contamination issues.
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5.3.2 Performance of MP3:KS methods for α and γ

Table 5.2 reports the performance of MP3:KS methods with respect to CCSD(T) reference
for computing even-order NLO properties. Molecules of both the γ-NLO and β-NLO sets
have been considered. Results provided by standard CCSD, MP2 and MP3 methods using
HF orbitals are also reported for comparison.

Table 5.2: Performance of MP2, MP3, CCSD, and various MP3:KS methods with respect
to the reference CCSD(T) for computing odd-order NLO responses (α and γ) of molecules
of the γ-NLO and β-NLO sets. CAM-B3LYP, ωB97-XD, ωB97-XV, and ωB97-MV func-
tionals are abbreviated respectively as CAM, ωXD, ωXV, and ωMV.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

α

MV 2.4E+02 2.2E+02 2.2E+02 2.3E+02 2.3E+02 2.3E+02 2.3E+02 2.3E+02 2.3E+02
MAE 1.0E+01 5.4E+00 7.6E+00 1.5E+01 8.6E+00 4.5E+00 5.7E+00 3.5E+00 3.4E+00

RMSE 2.0E+01 9.9E+00 1.4E+01 3.7E+01 1.8E+01 7.6E+00 1.2E+01 5.1E+00 5.1E+00
MAX 9.4E+01 4.3E+01 5.9E+01 2.7E+02 9.9E+01 3.4E+01 8.5E+01 1.8E+01 1.9E+01

%MAE 4 2 3 7 4 2 3 2 2

γ

MV 1.7E+06 1.4E+06 1.3E+06 3.6E+06 2.7E+06 1.9E+06 1.7E+06 1.6E+06 1.6E+06
MAE 2.9E+05 1.9E+05 2.3E+05 2.2E+06 1.3E+06 4.1E+05 3.1E+05 1.5E+05 1.6E+05

RMSE 6.3E+05 3.9E+05 5.6E+05 7.2E+06 4.4E+06 1.1E+06 7.8E+05 3.0E+05 3.5E+05
MAX 2.9E+06 2.0E+06 3.2E+06 4.7E+07 3.2E+07 6.5E+06 4.2E+06 1.4E+06 2.0E+06

%MAE 19 12 15 140 85 27 20 10 11

For calculations of α, MP2, MP3 and CCSD present similar errors and could be em-
ployed indistinctly as alternative to CCSD(T). MP3 is the best method, slightly outper-
forming CCSD for all error indicators. For γ, MP3 still outperforms the other canonical
wavefunction methods for all of the indices considered (MAE, RMSE, MAX and %MAE).

Moving to MP3:KS results, we observe that varying the density functional approxima-
tions (i.e., the reference orbitals included in the perturbational analysis) has a significant
impact on the quality of the results. MP3:BLYP and MP3:B3LYP underperform regu-
lar MP3 for both α and γ. On the other hand, employing as reference range-separated
functionals CAM-B3LYP, ωB97-XD, ωB97-XV and ωB97-MV, generally increases the
accuracy of the calculations.

Interestingly, in the case of α, smaller or equal values for all error indicators are ob-
served for MP3:CAM-B3LYP, MP3:ωB97-XV and MP3:ωB97-MV with respect to regular
MP3 calculations, while MP3:ωB97-XD performs slightly worse for all the indicators. The
best results are obtained with MP3:ωB97-XV ad MP3:ωB97-MV which show very similar
indicators. In fact, with respect to MP3:HF, they reduce the MAE from 5.4 to 3.5 and 3.4
a.u. respectively, the RMSE from 9.9 to 5.1 a.u., the MAX from 43 to 18 and 19 a.u., and
have the same %MAE equal to 2.%. Considering γ, MP3:ωB97-XV and MP3:ωB97-MV
outperform MP3 for all statistical indices, while MP3:CAM-B3LYP and MP3:ωB97-XD
underperform for all the indicators. As we have observed for α, the best results are ob-
tained with MP3:ωB97-XV, which slightly outperforms MP3:ωB97-MV for all indicators.
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Interestingly, this method outperform even CCSD for all the indicators. The same con-
siderations are obtained from the separated analysis of NLO properties calculated from
the γ-NLO and β-NLO sets (see Tables B.6 and B.7).

5.3.3 Performance of MP3:KS methods for µ and β

Dipole moment values calculated at the MP3:KS level for the various functionals are com-
pared in Table B.5 to values calculated using standard post-HF methods (MP2, MP3 and
CCSD). MP3:KS calculations show homogeneous results and very little variations when
changing the exchange-correlation functional. However, differently from what observed
by Bertels and coworkers [1], none of the MP3:KS method beats MP3:HF for the dipole
moments, although they have a comparable accuracy.

Table 5.3: Performance of MP2, MP3, CCSD and of various MP3:KS methods with
respect to the reference CCSD(T) for computing β of molecules of the γ-NLO-B and β-
NLO sets. CAM-B3LYP, ωB97-XD, ωB97-XV and ωB97-MV functionals are abbreviated
respectively as CAM, ωXD, ωXV and ωMV.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

β

MV 8.5E+03 7.5E+03 6.6E+03 1.6E+04 1.2E+04 8.3E+03 8.0E+03 7.3E+03 7.3E+03
MAE 2.0E+03 1.3E+03 5.6E+02 9.4E+03 5.0E+03 1.8E+03 1.5E+03 9.1E+02 9.5E+02

RMSE 4.5E+03 2.7E+03 1.2E+03 2.7E+04 1.3E+04 4.1E+03 3.2E+03 1.8E+03 1.9E+03
MAX 1.3E+04 7.8E+03 4.5E+03 1.2E+05 5.3E+04 1.3E+04 9.5E+03 4.9E+03 5.3E+03

%MAE 28 18 8 131 70 26 21 13 13

The results related to first hyperpolarizabilities are collected in Table 5.3. Among the
three standard ab initio methods, CCSD provides the most accurate β values, while the
MP3 scheme is better than MP2 for all indicators.

Considering MP3:KS approximations, MP3:BLYP and MP3:B3LYP perform worse
than MP3, as it was already observed for odd-order NLO properties. MP3:CAM-B3LYP
and MP3:ωB97-XD provide similar errors as MP3 without outperforming it. Interest-
ingly, the two best methods identified for computing α and γ, namely MP3:ωB97-MV
and more specifically MP3:ωB97-XV, are also those giving the best performance for β
calculations imrpoving MP3. Overall, these methods give results comparable to CCSD,
without outperforming the latter in none of the indicators.

In order to gain better insights into the nature of the systems for which MP3:KS
methods show worse performances than CCSD for computing β, we compare in Tables
5.4 and 5.5 the statistical indicators separately for molecules of the γ-NLO-B and β-NLO
sets. For the γ-NLO-B set, which contains molecules with small β responses, all the
methods which include range separated functionals MP3:CAM-B3LYP, MP3:ωB97-XD,
MP3:ωB97-XV and MP3:ωB97-MV outperform CCSD for all indicators. For the β-NLO
set, which contains molecules with larger β responses (including donor-acceptor push-pull
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systems), none of the MP3:KS methods outperfoms CCSD. Nevertheless, MP3:ωB97-XV
and MP3:ωB97-MV show performances similar to CCSD, and provide better results than
the regular MP3 scheme.

Table 5.4: Performance of MP2, MP3, CCSD and various MP3:KS methods with respect
to the reference CCSD(T) for computing β of molecules of the γ-NLO-B set. CAM-
B3LYP, ωB97-XD, ωB97-XV, and ωB97-MV functionals are abbreviated respectively as
CAM, ωXD, ωXV, and ωMV.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

β

MV 2.4E+02 2.2E+02 1.8E+02 2.3E+02 2.0E+02 1.1E+02 1.1E+02 9.7E+01 1.0E+02
MAE 1.1E+02 8.9E+01 5.0E+01 1.0E+02 6.7E+01 2.6E+01 2.8E+01 4.3E+01 3.9E+01

RMSE 2.7E+02 2.1E+02 1.3E+02 3.0E+02 2.2E+02 7.3E+01 7.6E+01 1.2E+02 1.1E+02
MAX 9.1E+02 6.6E+02 4.7E+02 1.2E+03 9.4E+02 3.1E+02 3.3E+02 5.2E+02 4.7E+02

%MAE 80 65 37 72 48 19 20 31 28

Table 5.5: Performance of MP2, MP3, CCSD and various MP3:KS methods with respect
to the reference CCSD(T) for computing β of molecules of the β-NLO set. CAM-B3LYP,
ωB97-XD, ωB97-XV and ωB97-MV functionals are abbreviated respectively as CAM,
ωXD, ωXV and ωMV.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

β

MV 1.2E+04 1.0E+04 9.2E+03 2.2E+04 1.6E+04 1.2E+04 1.1E+04 1.0E+04 1.0E+04
MAE 2.8E+03 1.8E+03 7.7E+02 1.3E+04 7.0E+03 2.6E+03 2.1E+03 1.3E+03 1.3E+03

RMSE 4.5E+03 2.7E+03 1.2E+03 2.7E+04 1.3E+04 4.1E+03 3.2E+03 1.8E+03 1.9E+03
MAX 1.3E+04 7.8E+03 4.5E+03 1.2E+05 5.3E+04 1.3E+04 9.5E+03 4.9E+03 5.3E+03

%MAE 28 18 8 131 70 26 21 13 13

5.3.4 Performance of MP3:KS for large molecules

In this section, the accuracy of the most promising functionals according to the results of
the previous section, namely ωB97-XV and ωB97-MV, is further analyzed for computing
the γ and β responses of the largest molecules belonging to the γ-NLO and β-NLO sets.
For the evaluation of β, this subset comprises 16 push-pull derivatives: PA10, PA12, PMI6,
and PDA3 combining four donor-acceptor pairs at their extremities. The non-substituted
PMI6 molecule was also considered, since it has a non centrosymmetric shape for a total
of 17 molecules. For the evaluation of γ, the considered subset includes the 17 molecules
used for β, plus PA10, PA12, PDA3, PDA4, and PDA5 without any substituents, for a
total of 22 molecules.

The results for γ are collected in Table 5.6. As can be seen, MP2 shows error indices
comparable to CCSD, with slightly worse MAE, RMSE and %MAE values but better
MAX. On the other hand, the standard MP3 scheme outperforms CCSD and MP2 for all
indicators. Employing MP3:ωB97-XV and MP3:ωB97-MV improves also the accuracy of
the MP3 γ values, roughly reducing by half all error indicators with respect to CCSD.
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The results for β are collected in Table 5.7. In this case, we observe that CCSD
outperforms all the other methods with respect to all statistical indicators. Overall,
MP3 outperforms MP2 for all error indices, but the difference is too small to justify
the computational effort. On the other hand, MP3:KS methods, and more especially
MP3:ωB97-XV as already observed for γ, result particularly effective for this specific set
of molecules, with a reduction of the relative errors with respect to canonical MP3. In
particular, the %MAE value is lowered more than half compared to MP2 calculations.

Table 5.6: Performance of MP2, MP3, CCSD and various MP3:KS methods with respect
to the reference CCSD(T) for the calculation of γ, for a subset of 22 molecules selected in
the γ-NLO and β-NLO sets (see text). CAM-B3LYP, ωB97-XD, ωB97-XV and ωB97-MV
functionals are abbreviated respectively as CAM, ωXD, ωXV and ωMV.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF ωXV ωMV

γ

MV 4.5E+06 3.8E+06 3.5E+06 4.2E+06 4.2E+06
MAE 9.0E+05 5.4E+05 7.0E+05 4.3E+05 4.8E+05

RMSE 1.2E+06 7.2E+05 1.1E+06 5.6E+05 6.6E+05
MAX 2.9E+06 2.0E+06 3.2E+06 1.4E+06 2.0E+06

%MAE 22 13 17 10 12

Table 5.7: Performance of MP2, MP3, CCSD and of various MP3:KS methods with
respect to the reference CCSD(T) for the calculation of β, for a subset of 17 molecules
selected in the γ-NLO-B and β-NLO sets (see text). CAM-B3LYP, ωB97-XD, ωB97-XV
and ωB97-MV functionals are abbreviated respectively as CAM, ωXD, ωXV and ωMV.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF ωXV ωMV

β

MV 1.7E+06 1.5E+06 1.3E+06 1.4E+06 1.4E+06
MAE 4.4E+03 3.0E+03 1.1E+03 2.0E+03 2.0E+03

RMSE 5.9E+03 3.5E+03 1.6E+03 2.4E+03 2.5E+03
MAX 1.3E+04 7.8E+03 4.5E+03 4.9E+03 5.3E+03

%MAE 31 21 8 14 15

5.3.5 Performance of the MP2:KS and DFT methods for com-

puting NLO properties

For the sake of completeness, we also addressed the performance of the MP2:KS method
for computing NLO properties. The results are reported in Tables B.8-B.10. As already
observed for the calculation of ground-state energies and dipole moments, [2] these meth-
ods do not introduce any improvement with respect to standard MP2 methods. Moreover,
in Tables B.11-B.13 we report the results obtained with the standard DFAs for the com-
putation of static linear and nonlinear optical properties. By comparing these results with
those gathered in Tables 5.2, 5.3, 5.4 and 5.5 we can see that MP3:KS calculations have
a better accuracy than regular DFT calculations using the same functional, pointing out
the need of wavefunction methods to optimally reproduce NLOPs.
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5.4 Conclusions

In this study, we have addressed the performance of MP3:KS schemes for computing static
NLO properties of small organic molecules. We observed that for closed-shell molecules
NLO properties evaluated with unrestricted HF reference orbitals are not reliable because
of spin contamination, therefore, using reference KS orbitals which avoid in most of the
cases the break of the spin symmetry allows to improve the results. Moreover, we ob-
served that even for MP3 the employment of the RI approximation reduces substantially
the computational cost without affecting accuracy of the properties evaluated. We have
demonstrated that, when employed in association with range separated functionals involv-
ing a large amount of HF exchange, MP3:KS improves the accuracy of the computed NLO
responses with respect to standard MP3. For α and γ, MP3:ωB97-XV provides accurate
results and can be used as a cheaper alternative to CCSD. For β we observe two distinct
behaviors. For molecules from the γ-NLO set, some of the MP3:KS schemes outperform
CCSD, in particular MP3:CAM-B3LYP. For the β-NLO set containing systems with large
β, CCSD remains the best method among the tested ones. However, MP3:KS schemes
still provides better results than the standard MP3 method, and MP3:ωB97-XV emerges
as the best among the latter.

As mentioned in the computational section, all MP3:KS calculations reported in this
chapter have been performed by neglecting the non-Brillouin single excitations from the
MP3 corrections. Further tests are thus needed to address the reliability of this ap-
proximation for computing NLO properties, especially in the case of large π-conjugated
molecules, for which the MP3:KS method does not improve the quality of the results
compared to CCSD calculations.
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Chapter 6
Impact of van der Waals interactions on the
structural and nonlinear optical properties of
azobenzene switches

This chapter is based on the publication:
Naim C., Castet F. and Matito E., Phys. Chem. Chem. Phys., 2021,23, 21227-21239

6.1 Introduction

Materials and molecules that exhibit large second-order nonlinear optical properties (NLOPs),
i.e., whose dielectric polarization responds quadratically to the electric-field component
of light, find applications in laser components, optical communications, data processing,
and storage [1, 2] as well as in bioimaging and therapy [3–5]. In addition to the quest for
materials able to deliver high second harmonic generation (SHG) responses, an important
research topic in the field is the design of new molecular systems with commutable second-
order NLOPs. Indeed, such systems that can isomerize between two (or more) stable and
reversibly interconvertible forms with a large difference in their first hyperpolarizabilities
(β) present high interest for exploitation in optoelectronic and photonic devices, such as
high-density optical memories with multiple storages and nondestructive readout capacity
[6–8].

Since light is a fast, non-invasive, and low-cost way to trigger the interconversion be-
tween the different isomeric forms, photochromic molecules constitute the most prominent
class of candidates for eventual exploitation in NLO devices. One of the most studied
families of photochromes that exhibit large β contrasts is that of double-bond isomer
derivatives, which undergo a reversible isomerization between a stable trans (E) and
a metastable cis (Z) form upon illumination in the UV range. Among them, azoben-
zene derivatives have been the subject of many theoretical and experimental investiga-
tions, mostly due to the high first hyperpolarizabilities obtained when adding donor and
acceptor groups to both ends of the azobenzene core [9–17]. Reversible SHG switch-
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Figure 6.1: Substituted azobenzene derivatives investigated in this study (Cy = cyclo-
hexyl, Ad = adamantyl) and geometrical parameters used to characterize the cis con-
formers.

ing in solid-state structures incorporating azobenzenes as NLO functional units was also
demonstrated, whether in poled polymers [18, 19], LB films [7], liquid-crystalline polymers
[20, 21], or self-assembled monolayers [22–25]. Recent theoretical works also highlighted
that azobenzene NLO switches could be exploited as versatile probes for phase recognition
in biological environments [26, 27].

At the molecular level, it is well known that the nature of the chemical substituents
determines the relative thermodynamic stability of the trans and cis forms of azobenzene
derivatives and thus plays a critical role in their photo-isomerization process. In particular,
chemical functionalization in the meta-position with bulky substituents has been shown
to lower the cis → trans thermal reaction rates due to the attractive London dispersion
forces that stabilize the cis isomer [28]. In addition to their key role in the structure
and photochemical processes of molecular switches, Van der Waals interactions are also
expected to impact their NLO properties. However, although the impact of London
dispersion forces on molecular properties has recently received some attention [29–31],
their influence on the NLOPs of molecular switches has been overlooked thus far.

In this work, we report a comprehensive theoretical study of the structural and NLO
properties of a collection of azobenzene molecules symmetrically substituted in meta-
position with functional groups of different bulkiness (Figure 6.1). In the first part,
we address the performance of a large set of density functional approximations (DFAs)
for calculating the geometries and relative energies of the E and Z isomers by using
the second-order approximate coupled-cluster singles and doubles (CC2) results as the
theoretical reference. Computational results are also compared to previously reported
data [28]. In the second part, we investigate the accuracy of the different DFAs for
reproducing the static first hyperpolarizability of the cis forms compared to ab initio
second-order Møller–Plesset (MP2) and CC2 calculations. Finally, we use the partition
of NLOPs in terms of orbital contributions (PNOC) [32] to decipher the individual role
of the meta-substituents on the NLO responses of this series of compounds.
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6.2 Computational methodology

Reference geometries were optimized at the CC2 level [33] using the Resolution of Identity
(RI) [34] and frozen core approximations. Despite MP2 has been reported to fail for some
intermolecular complexes [35], it remains an important approach for evaluating interaction
energies, particularly of large molecules for which higher-level calculations are prohibitive.
In Table C.1, based on the results of the Diet-GMTKN55 benchmark set [36], we show that
CC2 and MP2 offer very similar performance for intramolecular noncovalent interactions
(MAE below 2 kcal/mol and RMSE below 1.5 kcal/mol for both methods). The cc-pVDZ
basis set [37] was used in all calculations and employed as the auxiliary basis for RI
computations [38]. This basis set guarantees a good compromise between accuracy and
computational cost because it provides very similar geometrical structures and energy
differences between Z and E isomers as those obtained using the more extended cc-pVTZ
basis set (see Tables C.2 and C.3). The energy convergence threshold in both single-point
SCF and CC calculations has been set to 10−6 a.u. RI-MP2, a wide range of DFAs (see
Table C.4), and the Hartree-Fock (HF) method were tested to address their ability to
reproduce reference RI-CC2 structures. HF completely neglects electron correlation and
thus is expected to perform poorly in the systems affected by dispersion. It is included here
as a means to quantify the amount of electron correlation (and dispersion) introduced by
the other methods. The selected DFAs involve two different dispersion correction schemes:
the Grimme’s D3 scheme [39–42] and the nonlocal Van Der Waals density functional
(VV) scheme developed by Vydrov and Van Voorhis [43]. To size up the impact of
these corrections on the molecular structures, calculations were also performed using the
uncorrected counterparts of the DFAs. We have also employed Tα-LC-BLYP, recently
designed by Besalú-Sala et al [44]. Tα-LC-BLYP employs LC-BLYP with a molecule-
dependent value of the range-separation parameter. This parameter is determined from
the static polarizability obtained with the original LC-BLYP employing an empirical
equation obtained from the calibration of the CCSD(T) static second hyperpolarizabilities
[44].

In order to confirm the single-reference nature of the title molecules, we have performed
the D1 diagnostics [45] on the CC2 wavefunctions. In all cases, D1 values are close
to the threshold value of 0.05, indicating the partial multireference character of these
wavefunctions (see C.5). We have also computed the IND index [46, 47] obtained from
the range-separation partition of the Coulomb hole [48, 49]. IND is proportional to the
deviation from idempotency of the first-order reduced density matrix [50, 51]. In all cases,
IND values are rather small compared to other multireference molecules [52] (see C.5). All
in all, we can conclude that these molecules present a rather mild multireference character
and they can be reasonably well described with single-reference methods such as MP2 and
CC2.

The selected set of DFAs was then employed to evaluate the static components of
the first hyperpolarizability tensor (i.e., in the zero frequency limit) of the azobenzene
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derivatives, as well as the total first hyperpolarizability defined as follows:

β(0; 0, 0) = β =
1

5

√
β2
x + β2

y + β2
z (6.1)

where
βi =

∑
j=x,y,z

(βijj + βjij + βjji) (6.2)

and i=x,y,z. Since trans forms have a centrosymmetric shape with no second-order NLO
responses, β values were calculated for cis forms only. Reference values were computed
using a finite field (FF) differentiation procedure of the CC2 and MP2 electronic ener-
gies. The performance of RI-MP2 and MP2 were evaluated for the molecule R=H in
Section C.10 of the Annex in order to verify that the RI approximation does not influence
the numerical stability of third-order derivatives. For the compound with the adamantyl
substituent, NLOP calculations were performed only at the CAM-B3LYP level due to
computational limitations. Linear and nonlinear optical properties were calculated using
the coupled-pertubed Kohn-Sham (CPKS) equations implemented in Gaussian [53] for all
the DFAs, except for the VV ones. In all other cases, the optical response was calculated
using numerical differentiation. A Romberg scheme [54, 55] was employed to control and
improve the accuracy of the numerical derivatives, employing field amplitudes starting
from ±0.001 a.u. with a multiplicative step of 1.4142. All first hyperpolarizability cal-
culations were performed using the aug-cc-pVTZ basis set. For some of the molecules,
the combination of aug-cc-pVTZ and M06L converged to the wrong SCF minimum. Pre-
liminary calculations with the cc-pVTZ basis set were performed and used as a guess to
avoid this problem. The pertinent integrals resulting from the electronic energy calcula-
tion using DFAs were done numerically using the "Ultrafine" integration grid involving
99 radial shells around each atom and 590 angular points per shell. RI-CC2 and RI-MP2
calculations were performed with TURBOMOLE [56], where the RIJK approximation
was employed in addition to the RI approximation for some of the largest molecules (d-Z,
e-Z, and f -Z) since it has been shown to reduce the computational cost without affecting
the accuracy of the energies [57]. Calculations using DFAs involving the VV approxima-
tion were performed with Qchem [58], whereas calculations involving all other DFAs were
performed with Gaussian 16 [53]. The root mean square deviation (RMSD) of distances
between equivalent atoms of the two molecules has been calculated to quantify the struc-
tural differences of two optimized geometries. The RMSD of two structures was calculated
using the software provided in Ref. 59. This program calculates the RMSD between two
Cartesian geometries using the Kabsch algorithm (1976) [60] or the Quaternion algorithm
[61] if rotation is needed before calculating the RMSD. Following the authors recommen-
dation, we have excluded the hydrogen atoms in the calculation of the RMSD. For the
sake of completeness, the RMSD values including all the atoms in the molecule are given
in Tables C.10-C.11.
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6.3 Results and discussion

6.3.1 Structure and relative energies of the conformers

6.3.1.1 Reference ab initio calculations

Table 6.1 reports selected structural parameters of the cis isomers calculated at the HF,
RI-MP2, and RI-CC2 levels with the cc-pVDZ basis set, namely, the N=N and C-N bond
lengths (dNN and dCN), the N=N-C bond angles (θNNC), the torsional angles around the
N=N and C-N bonds (ϕCNNC and ϕNNCC), as well as the distance dPhPh between the
centroids of the two phenyl rings (see Figure 6.1). As expected, geometries calculated
using HF, which does not account for dispersion effects, significantly differ from the MP2
and CC2 ones. In particular, HF N=N distances are shorter, while the θNNC and ϕNNCC

angles are larger, resulting in larger dPhPh distances between the lateral phenyl rings.
The geometries calculated using MP2 and CC2 are quite similar (largest RMSD=0.08

Å, see Table C.2), dNN , dCN , θNNC , and ϕCNNC barely changing from one compound to
another. In contrast, dPhPh and ϕNNCC , which are directly linked to the relative orienta-
tion of the meta-substituents, show slight variations. These two geometrical parameters
reflect the interplay between attractive dispersion interactions and repulsive steric hin-
drance. For MP2 and CC2, the dPhPh distance mostly decreases when increasing the size
of the R groups as a consequence of the increase of the dispersion interactions. How-
ever, the size of the substituents is not the only factor controlling the strength of the
noncovalent interaction. Compound e (R = Ph) exhibits the smallest dNN value within
the series, owing to the planar shape of the phenyl substituents that allows larger spatial
overlap and hence larger attractive London dispersion forces, together with the possibil-
ity to adopt a relative spatial orientation minimizing the steric hindrance (e also has the
smallest ϕNNCC and the largest ϕCNNC). Taken as a whole, the geometrical parameters
of the cis conformer computed at the CC2 and MP2 levels clearly evidence the balance
between repulsive steric hindrance and attractive VdW interactions: increasing the bulk-
iness of the substituents in meta position both enhances steric repulsion and dispersion
attraction, resulting in slight changes in the geometry of the central part of the com-
pounds. The enhancement of attractive non-covalent interactions (NCI) as the bulkiness
of meta-substituents increases is further illustrated in Figure 6.2, where the surface area
of the NCI isosurface clearly increases with the size of R. In Table C.10, we collect the ge-
ometrical data of the trans conformers, which are far less affected by electron correlation.
Indeed, only dNN is stretched upon the inclusion of electron correlation, the differences
between CC2 and MP2 being insignificant.

As demonstrated recently [28], the existence of these attractive VdW interactions has a
crucial impact on the thermodynamics of the isomerization reaction by stabilizing the cis
form relative to the trans one. As shown in Figure 6.3 and Table C.12, HF calculations do
not reproduce these effects correctly and provide very similar energy differences between
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(a) R = H (b) R = Me (c) R = iPr

(d) R = tBu (e) R = Ph (f) R = Cy

(g) R = Ad

Figure 6.2: Isosurfaces indicating the regions of weakly attractive intramolecular nonco-
valent interactions (NCI) in the different molecules, generated using the NCI software
[62, 63] with the promolecular density obtained from the CC2 geometries.
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Table 6.1: Characteristic distances and angles of the cis isomers of compounds a-g (see
Figure 6.1), as calculated at the RI-CC2/cc-pVDZ level (see also Table C.6 for trans
isomers).

Molecule dNN [Å] dNC [Å] dPhPh [Å] θNNC [°] ϕCNNC [°] ϕNNCC [°]
HF/cc-pVDZ
a (R = H) 1.215 1.43 4.60 123.9 -5.0 -58.2
b (R = Me) 1.215 1.44 4.59 123.8 -4.9 -60.3
c (R = iPr) 1.215 1.44 4.58 123.8 -5.0 -60.0
d (R = tBu) 1.215 1.44 4.60 124.0 -5.2 -59.7
e (R = Ph) 1.215 1.44 4.58 123.6 -4.7 -58.9
f (R = Cy) 1.215 1.44 4.58 123.8 -5.0 -59.8
g (R = Ad) 1.215 1.44 4.60 124.0 -5.2 -59.0
RI-MP2/cc-pVDZ
a (R = H) 1.271 1.44 4.42 120.7 -6.8 -53.9
b (R = Me) 1.272 1.44 4.43 121.0 -6.6 -52.5
c (R = iPr) 1.275 1.44 4.15 119.1 -6.2 -56.9
d (R = tBu) 1.276 1.44 4.12 119.1 -6.8 -55.1
e (R = Ph) 1.277 1.45 3.91 117.8 -4.7 -60.2
f (R = Cy) 1.276 1.44 4.14 119.0 -6.7 -56.9
g (R = Ad) 1.277 1.44 4.05 118.6 -6.9 -55.8
RI-CC2/cc-pVDZ
a (R = H) 1.269 1.43 4.40 121.0 -7.6 -52.7
b (R = Me) 1.279 1.45 4.40 120.9 -5.9 -51.1
c (R = iPr) 1.282 1.45 4.16 119.1 -6.5 -56.2
d (R = tBu) 1.283 1.45 4.12 119.0 -6.8 -55.0
e (R = Ph) 1.284 1.45 3.92 117.8 -5.3 -59.6
f (R = Cy) 1.282 1.45 4.14 119.0 -7.0 -56.4
g (R = Ad) 1.284 1.45 4.07 118.9 -5.7 -54.1

the two isomers (∆EEZ) for all compounds, as a result of the neglect of dispersion inter-
actions. On the contrary, both CC2 and MP2 calculations confirm the lowering of ∆EEZ

when increasing the bulkiness of the R groups. Although CC2 provides slightly smaller
∆EEZ values than MP2, we note the good agreement between these two levels of approx-
imation, with differences in the ∆EEZ values smaller than 1.0 kcal/mol for compounds
a-e and equal to 1.25 kcal/mol for f. A larger deviation (1.87 kcal/mol) is obtained for
the largest compound g (R = Ad).

6.3.1.2 DFT calculations

Using the CC2 results as a reference, we now analyze the performance of different DFAs
in reproducing the geometrical structures and relative energies of the trans and cis forms
of the investigated series of azobenzenes. As above, the similarity between DFT and
CC2 geometries is measured for both the trans and cis isomers forms using the RMSD of
atomic positions.

In the Annex, we report the differences in the geometries provided by the DFAs in-
cluding D3 or VV dispersion corrections and their uncorrected counterparts. As expected,
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Figure 6.3: Difference in the energy of the trans (E) and cis (Z) forms, ∆EEZ = EZ−EE,
as calculated at the HF, RI-MP2, and RI-CC2 levels with the cc-pVDZ basis set.

the RMSD values reported in Table C.7 and Figures C.1 and C.2 show that structural
differences are small for trans isomers and large for cis isomers (in particular for com-
pounds incorporating bulky substituents). The RMSD values calculated for cis isomers
using ωB97X-D and, especially, M06-2X-D3 are much smaller than those calculated us-
ing the other selected DFAs, which confirms that these functionals already include some
dispersion corrections in their native form [64, 65].

Geometries of the cis isomers optimized using dispersion-corrected DFAs are com-
pared to CC2 geometries in Figure 6.4. The results clearly show that adding disper-
sion corrections using either the D3 or VV scheme largely improves the matching with
the reference geometries. Although acceptable results are obtained with all the tested
dispersion-corrected functionals, ωB97-X-D shows the smallest average RMSD (0.10 Å),
followed by M06-2X-D3 (0.13 Å), LC-ωPBE08-VV (0.14 Å), B3LYP-D3 (0.16 Å), PBE0-
D3 and CAM-B3LYP-D3 (both at 0.17 Å). The values of all the RMSD averaged over
the total number of compounds are collected in Table C.9.

We now analyze the performance of the selected DFAs in reproducing the energy
difference between the two isomers optimized at the corresponding level of theory (Figure
6.5 and Table C.13). The best agreement with CC2 ∆EZE values is obtained with the
LC-ωPBE-D3 and ωB97-X-D functionals, which display average errors of 1.40 and 1.57
kcal/mol, respectively, for the molecular series. Interestingly, among the studied DFAs,
ωB97-X-D was already the best functional to obtain accurate geometries. On the other
hand, notice that the molecule with R = Ph gives rise to errors of at least 3 kcal/mol for
all the functionals considered. As we can check in Table C.14, it is not due to a wrong
estimation of the geometry with these DFAs. Finally, for the sake of completeness, we
also calculated the differences in the Gibbs free energies (Table C.13). In general, ∆GZE
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Figure 6.4: RMSD excluding hydrogen atoms between DFAs and CC2 geometries for cis
isomers. RI-MP2 results are also shown for comparison.

follows the same trend as ∆EZE, showing a strong reduction upon addition of dispersion
corrections to compounds bearing bulky meta-substituents.

6.3.2 Second-order NLO properties

6.3.2.1 Reference ab initio calculations

Hereafter, all the calculations will be performed using the geometries optimized at RI-
CC2/cc-pVDZ level of theory. The total static first hyperpolarizabilities (Eq. 6.1) of the
cis isomers, calculated at the HF, MP2, and CC2 ab initio levels are reported in Table 6.2.
Comparison of MP2 and CC2 β values with HF ones provides a direct assessment of the
magnitude of electron correlation effects. The first hyperpolarizability increases from HF
to MP2, as expected from the localized nature of HF densities. Going from MP2 to CC2
further increases the β values. An excellent linear correlation is obtained between MP2
and CC2 β values (see Figure 6.6), with a very small intercept, suggesting that MP2
values are systematically 64% smaller than CC2 ones. Hence, the trends among different
compounds are perfectly reproduced using either MP2 or CC2, and it thus indifferent
which method we employ for benchmarking. We will choose MP2 values as the reference
ones because their absolute values provide a better agreement with most DFAs (vide in-
fra). Notice also that despite the complete neglect of electron correlation, for the first five
molecules of the series, HF static polarizabilities also show a very good linear correlation
with the MP2 counterparts (see Figure 6.6). Compound e (R = Ph) is not shown in the
latter figure and it will be discussed in detail in the following section.
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Figure 6.5: Differences in the Z-E isomerization energies calculated at the CC2 level and
at the DFT level using DFAs with dispersion corrections (∆∆EZE = ∆EZE(DFT ) −
∆EZE(CC2), in kcal/mol).

Table 6.2: Total static first hyperpolarizabilities (β, a.u.) calculated using different ab
initio levels of approximation together with the aug-cc-pVTZ basis set.

Molecule HF MP2 CC2
a (R = H) 7.7 52.5 80.8
b (R = Me) 40.7 119.3 161.7
c (R = iPr) 31.6 99.8 148.5
d (R = tBu) 32.9 84.1 136.1
e (R = Ph) 21.3 152.4 239.8
f (R = Cy) 50.7 127.7 191.0
g (R = Ad) 60.2 - -

6.3.2.2 DFT calculations

We now address the performance of DFAs in reproducing the static first hyperpolarizabil-
ity of the azobenzene derivatives a-f. Since D3 corrections do not affect the electronic
density at fixed geometry, D3-corrected functionals are excluded from the benchmark.
DFAs incorporating dispersion effects through the VV scheme are considered. The latter
will be informative about the effect of dispersion corrections in the calculation of nonlinear
optical properties, beyond the indirect effect of dispersion on the geometries.

In the last three columns of Table 6.3, we collect three different measures of the er-
ror committed in the hyperpolarizability using a collection of DFAs and RI-CC2 with
respect to RI-MP2. These data are reported in Figure 6.6 for all molecules except g (R =
Ad). The three DFAs that provide the lowest mean absolute error (MAE), mean absolute
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Figure 6.6: Correlation between static hyperpolarizabilities (β, a.u.) of the series of
azobenzenes calculated at the MP2 level with respect to the values calculated using CC2
and HF. The β value calculated for compound e (R = Ph) is excluded from the fit in HF
calculations.

percentage error (MAPE), and root mean square deviation (RMSD) are CAM-B3LYP,
M06-2X, and ωB97X-D (unlike other dispersion-corrected DFAs, ωB97-X-D employs a dif-
ferent parameterization than the native functional, ωB97X). Hence, the latter functionals,
which outperform RI-CC2, provide the closest agreement to the RI-MP2 hyperpolariz-
ability values. However, these results would hide the fact that if we are only concerned
about the relative magnitude of hyperpolarizability among the compounds, many other
methods work just fine. The latter is even more relevant if we consider the difficulty in
reproducing absolute values of nonlinear optical properties and the fact that we are using
RI-MP2 values for comparison, which are approximate too. Table 6.3 provides the results
for the linear regression of RI-MP2 vs. other methods using all the molecules except for
compounds e (R = Ph) and g (R = Ad); we will use the former compound’s results to
measure the ability of the methods to provide a correct trend of the hyperpolarizability
for this series of compounds. The Pearson coefficient, R2, shows that 9 out of 20 methods
(including RI-CC2, CAM-B3LYP, and M06-2X) give excellent results (R2 ≥ 0.95) for the
five smallest compounds of the series. The difference between the value predicted by the
linear regression and the MP2 hyperpolarizability, ∆βPh = β̂Ph,meth − βPh,MP2, provides
an estimate of the predictability of the linear regression for molecule e including phenyl
meso-substituents. Despite the excellent correlations found for the first five compounds,
only six methods give an estimate of βPh,MP2 with an error below 20 a.u. (RI-CC2, PBE,
rPW86-PBE-VV, M06, M06L, and M06-2X). For many DFAs and RI-CC2, the value of
the intercept (b) is rather small (below 20 a.u.) and the Pearson coefficient is rather
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high. In these cases, the prediction of β is dominated by the slope, a, which determines
whether the quantity is overestimated (a < 1) or underestimated (a > 1) with respect to
the RI-MP2 values. Our conjecture is that, in the latter DFAs, the error on the hyperpo-
larizability is dominated by the delocalization error [66]. In Figure 6.7, we represent the
% of HF exchange at long range (large r12) that is included in the XCF against the value
of a. The plot reflects clearly how DFAs with a small percentage of HF exchange tend
to overestimate the hyperpolarizability with respect to RI-MP2, whereas the opposite
occurs for DFAs with a large percentage of HF exchange (see also Tables C.16-C.17). If
we consider all the measures included in Table 6.3, the best performing DFA is M06-2X.
We also obtain quite good results using CAM-B3LYP, ωB97-X-D, and Tα-LC-BLYP. All
these functionals include at least 54% of HF exchange at long range. Hence, a percentage
of nearly 50% between DFT and HF exchange is the adequate balance for computing
the NLO properties of these systems, as it was also concluded from previous works on
smaller molecules [67] and conjugated push-pull chromophores [68, 69]. These results
thus contribute to the recent findings about the importance of the delocalization error in
the calculation of linear and nonlinear optical properties [44, 68, 70–72] as well as other
properties such as aromaticity [73–76] and conjugation [77]. It is worth noticing that the
recent strategy [44] of finding the optimal range-separation parameter to calculate γ from
the values of α works quite well to calculate the value of β for these systems. Indeed,
Tα-LC-BLYP and LC-BLYP give a similar Pearson coefficient, whereas for the former a
and b are closer to 1 and 0, respectively. As a result, Tα-LC-BLYP significantly improves
MAE, MAPE, and RMSD.

Figure 6.7: Results of the fit of the a parameter correlated with the % of Long Range HF
exchange for each functional included in the set.

Regarding the impact of dispersion corrections, β values computed using rPW86PBE-
VV show an improvement compared to those computed with its uncorrected parent. Al-
though some error measurements like RSMD, MAE, or MAPE are only marginally im-
proved upon including of VV dispersion corrections, ∆βPh, a and the Pearson coefficient
are much better for rPW86PBE-VV. Conversely, LC-ωPBE08-VV and LC-ωPBE08 show
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Table 6.3: Results of the linear correlation between the MP2 hyperpolarizabilities and
several other methods, together with several error measures (see text). The linear regres-
sion function is: β̂MP2 = aβmeth + b, where βmeth is value of the hyperpolarizability for
one the methods listed in the table. ∆βPh = β̂Ph,meth − βPh,MP2.

Method a b [a.u.] ∆β̂Ph [a.u.] R2 RMSD [a.u.] MAPE [%] MAE [a.u.]
RI-CC2 0.72 -6.98 -13.72 0.96 56.75 34 53.68
HF 1.81 37.29 76.48 0.93 80.18 318 75.15
PBE 0.52 4.57 10.23 0.84 90.69 45 86.87
rPW86-PBE 0.28 38.85 41.73 0.68 119.55 49 107.03
rPW86-PBE-VV 0.52 -0.87 -0.77 0.88 102.73 48 98.33
PBE0 0.91 -14.05 22.00 0.97 23.18 18 21.55
B3LYP 0.85 -18.98 22.37 0.96 37.21 27 36.14
BH&H 1.22 4.26 25.71 0.96 29.44 32 26.27
CAM-B3LYP 1.11 -7.42 49.61 0.96 22.22 13 13.24
ωB97-X 1.12 3.78 54.46 0.91 31.32 27 22.52
ωB97X-D 0.97 -5.19 53.57 0.88 21.62 16 16.19
LC-BLYP 1.32 20.43 60.79 0.93 54.40 94 48.89
Tα-LC-BLYP 1.11 0.72 57.32 0.94 29.75 24 20.02
LC-ωPBE 1.26 10.86 57.70 0.95 44.17 59 37.93
LC-ωPBE08 1.33 15.59 56.13 0.95 50.45 79 45.18
LC-ωPBE08-VV 1.30 17.54 48.07 0.95 48.37 75 43.99
M06 0.73 -16.27 17.24 0.86 59.20 36 57.85
M06L 0.59 -25.23 14.96 0.84 115.56 53 113.92
M06-2X 1.15 -0.06 19.53 0.97 19.45 18 16.36
M06-HF 1.27 47.23 59.12 0.86 71.55 693 67.37
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Table 6.4: Vector (βi) and tensor (βijk) components of the total first hyperpolarizability,
as calculated at the CAM-B3LYP/aug-cc-pVTZ level. The Cartesian frame used for the
calculations is shown in Figure 6.8. Units are a.u.

Molecule β βx βy βz βzxx βzyy βzzz
a (R = H) 52 0 -17 -261 -135 21 27
b (R = Me) 115 0 -30 -576 -159 -14 -19
c (R = iPr) 93 -4 -7 -463 -149 16 -22
d (R = tBu) 91 -82 50 -447 -167 43 -25
e (R = Ph) 100 -1 22 -498 -122 -62 19
f (R = Cy) 119 60 28 -592 -144 -33 -20
g (R = Ad) 148 -9 -201 -714 -170 2 -69

a similar performance. Finally, going from ωB97X to ωB97X-D significantly improves
the RSMD, MAE, and MAPE, while only slightly modifies the linear regression plot;
i.e., both functionals give similar trends among the series of compounds but ωB97X-D
provide better estimates of the MP2 hyperpolarizabilities. It is worth stressing that the
differences in the β values computed using the two latter functionals cannot be only as-
cribed to dispersion corrections since the whole set of their parameters (including the
range separation, ω) is different.

6.3.2.3 Partition of the hyperpolarizability into orbital contributions

To gain a deeper insight into the contribution of the meta-substituents to the total first
hyperpolarizability, we now examine in more detail the vector (βi) and tensor (βijk) com-
ponents of the total first hyperpolarizability (Eqs. 6.1 and 6.2) of the investigated com-
pounds. A common Cartesian frame, in which the origin is placed at the center of the
N=N bond, the x axis is oriented along this bond, and the xz plane contains the two
nitrogen atoms and one of the adjacent carbon atom (see Figure 6.8) is used for all the
molecules. CAM-B3LYP/aug-cc-pVTZ hyperpolarizabilities are considered in the anal-
yses since, as discussed in the previous section, they are in close agreement with the
absolute MP2 reference values. As shown in Table 6.4, the βz component is one order
of magnitude larger than βx and βy in all compounds, except for compound g (R = Ad)
for which βz/βy = 3.55, the larger contribution from the y being due to bulkiness of the
adamantyl substituent. In turn, decomposition of βz in terms of tensor elements evidence
that the dominant contribution to the first hyperpolarizability arises from the transverse
βzxx component. Note that, as shown in the Annex (Table C.19), a very similar picture of
the relative magnitude of the β components can be drawn from CAM-B3LYP calculations
carried out using the smaller 6-311++G** basis set.

To rationalize the role of molecular substituents in the value of the hyperpolarizability,
we use the PNOC scheme developed by Sitkiewicz and coworkers [32] to decompose the
NLO responses into contributions of the molecular orbitals (MOs) of the unperturbed
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system:
βijk =

∑
p

βijk,p = −
∑
p

∆(jk)
pp M (i)

pp −
∑
p̸=q

∆(jk)
pq M (i)

pq , (6.3)

where Mi is the transition dipole matrix along the i direction, and ∆(jk) is the second-
order derivative of the one-particle reduced density matrix with respect to external fields
oriented along j and k axes. This expression is an exact decomposition of β based on the
assumption that the terms that depend on two different MOs can be equally distributed
between them. In this framework, for an orthonormal set of orbitals, a real-space repre-
sentation of the largest βzxx component can be obtained according to:

βzxx(r) =
∑
p

βzxx,p|ϕp(r)|2, (6.4)

where |ϕp(r)|2 is the square of the amplitude of molecular orbital p. The PNOC represen-
tations of βzxx(r) in the Cartesian space are displayed in Figure 6.8 for the azobenzene
series at the CAM-B3LYP/6-311++G** level. The main contribution to the first hy-
perpolarizability arises from the N=N bond for all the molecules, although for bulkier
substituents there are also important contributions. Some contributions are due to ortho
and para carbon atoms of the adjacent phenyl rings, although, in general, the adjacent
phenyl ring shows rather small contributions to β. Interestingly, the phenyl substituents
in compound e (R = Ph) show an important contribution to β from π orbitals. In com-
pounds c, d, f, and g, βzxx(r) also shows contributions due to C-C σ-bonds of the R
alkyl groups, although larger contributions from the substituents are obtained for bulkier
substituents such as cyclohexyl and adamantyl.

Individual orbital contribution analysis reveals that the hyperpolarizibility of these
compounds cannot be qualitatively explained from the contribution of a few molecular
orbitals. Many MOs must be included in the summation of the Eq. 6.3 to obtain a good
estimate of the total βzxx component (see Figure C.12), hampering a simple deconvolution
of the total NLO response in terms of individual MOs. However, for all compounds except
e (R = Ph), the highest occupied MO, which is mainly associated with the p orbitals of
the nitrogen atoms (the π orbitals and the lone pairs) and to the C-N σ bonds, provides
the largest contribution to βzxx (Table C.20).

Finally, we have used the PNOC as a tool to analyze the delocalization errors com-
mitted by some DFAs. As a measure of the extent of electron delocalization, we have
computed the Laplacian of the electron density [78], ∇2ρ(r), which attains large negative
values in delocalized regions. Table 6.5 gives PNOC and ∇2ρ(r) values for e (R = Ph)
and c (R = iPr) at the PBE and CAM-B3LYP levels of theory. Since PBE suffers from
larger delocalization errors than CAM-B3LYP, it is expected that both the PNOC and
-∇2ρ(r) display regions with larger values for PBE. In order to clearly visualize these
differences, in Table 6.5, we have also plotted the difference between these two DFAs. For
both molecules, the main difference in the distribution of the hyperpolarizability across
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(a) R = H (b) R = Me (c) R = iPr

(d) R = tBu (e) R = Ph (f) R = Cy

(g) R = Ad

Figure 6.8: Isosurfaces of βzxx(r) for the azobenzene molecules obtained using the PNOC
partition at the CAM-B3LYP/6-311++G** level. Isocontour values of ±5 a.u. were used
for all compounds.
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the molecule comes from the lone pair of the nitrogen atoms. ∆∇2ρ(r) values are also
larger around the nitrogen atoms. Hence, one is deemed to conclude that the delocaliza-
tion error is the main source of error in the calculation of the hyperpolarizability and it
comes mostly from a wrong description of the electron density in the vicinity of the N=N
bond (in particular, the p orbitals involved in the π bond and the lone pairs).

Table 6.5: Comparison of βzxx(r) calculated through PNOC for the functionals PBE and
CAM-B3LYP evaluated for the molecules c (R = iPr) and e (R = Ph). The isosurface
∆βzxx(r) is calculated as: ∆βzxx(r) = β

(PBE)
zxx −β

(CAM-B3LYP)
zxx . Isocontour values of ±5 a.u.

were used for all the βzxx . For the Laplacian of the electronic density isocontour ±0.7 was
used for the Laplacians, while ±0.09 was used for the difference between the laplacian
(∆∇2) of the PBE and the CAM-B3LYP densities. Positive numbers are displayed in
blue, negative ones in purple.

Molecule βzxx(r)
(PBE) βzxx(r)

(CAM−B3LY P ) ∆βzxx(r)

R = iPr

R = Ph
Molecule ∇2ρ(r)(PBE) ∇2ρ(r)(CAM−B3LY P ) ∆∇2ρ(r)

R = Ph

R = Ph
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6.4 Conclusions

The reliability of a large selection of exchange-correlation density functional approxima-
tions to predict the geometrical structure, relative Z-E energies (∆EZE), and second-order
nonlinear responses of a series of azobenzene molecules has been assessed with respect to
reference correlated ab initio calculations carried out at the RI-MP2 and RI-CC2 levels.
Our calculations show that RI-MP2 and RI-CC2 approximations provide very similar
performance for intramolecular noncovalent interactions, based on the results of Diet-
GMTKN55 and the series of azobenzene molecules studied in this paper. Comparisons
with Hartree-Fock results show that electron correlation and, in particular, dispersion in-
teractions are the driving forces behind the stabilization of the cis conformer with respect
to the trans one. Indeed, the cis isomer stabilizes upon functionalization of the meta-
position with bulky substituents that develop mutual attractive London interactions.

Among the selected dispersion-corrected exchange-correlation functionals, ωB97-X-
D provides the closest agreement with reference RI-CC2 geometries and ∆EZE values.
CAM-B3LYP-D3 and LC-ωPBE-D3 also provide reasonably good geometries, the latter
giving excellent ∆EZE values too.

This study shows an excellent linear correlation between static first hyperpolarizabil-
ities computed at the RI-MP2 and RI-CC2 levels using RI-CC2 geometries. RI-MP2
provides β values systematically underestimated compared to RI-CC2. Despite density
functional approximations do not give accurate first hyperpolarizabilities, many of the
selected functionals qualitatively reproduce the evolution of β along the series of azoben-
zene derivatives. The most accurate functionals are CAM-B3LYP, ωB97-X-D, and Tα-
LC-BLYP. In general, the best performing functionals include at least 50% of the exact
HF exchange. ωB97X-D seems to be the best suited functional to describe all the relevant
features of these compounds: the geometry, the energy difference between the isomers,
and the first hyperpolarizabilities.

Subsequently, we analyzed the property-structure relationship for the first hyperpo-
larizability of azobenzene derivatives to identify the effect of the meta-substituents on
the NLO responses. For all molecules, the dominant contribution to β comes from the
βzxx tensor component. The PNOC decomposition analysis [32] was employed to analyze
the molecular orbitals and the real-space contributions to the optical response. A sim-
ple inspection of the orbital contributions shows that it is impossible to obtain a simple
description of the total first hyperpolarizability in terms of a few orbital contributions.
However, the PNOC real-space analysis reveals that the main contribution to β comes
mostly from N=N, followed by smaller contributions from the adjacent phenyl rings. In-
terestingly, phenyl substituents attached in meso of the adjacent phenyl rings also show
important contributions from the π system to the first hyperpolarizability.

Finally, we studied the relationship between the real-space PNOC analysis and the de-
localization error. We found a qualitative correlation between the electron delocalization
differences (measured through the Laplacian of the electron density) and the real-space
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PNOC representations. Hence, it seems that the regions of the molecule most affected by
the delocalization error are, in turn, the ones responsible for the inaccuracy of the first
hyperpolarizability.
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Chapter 7
Electric-field induced second harmonic
generation responses of push–pull polyenic
dyes: Experimental and theoretical
characterizations

This chapter has been realized in the framework of a collaboration involving:
Vangheluwe R. (Univ. of Bordeaux), Ledoux-Rak I. (Univ. of Paris-Saclay), Champagne
B. (Univ. of Namur), Tonnelé C. (Donostia International Physics Center), and Blanchard-
Desce M. (Univ. of Bordeaux)

7.1 Introduction

The design of organic dyes delivering high second-order nonlinear optical (NLO) proper-
ties is an important issue in many (bio)technological fields for probing asymmetric media
such as artificial interfaces or cell membranes [1]. In particular, the exogenous labeling
of lipid bilayers by amphiphilic potential-sensitive dyes displaying large second harmonic
generation (SHG) responses is at the heart of high resolution imaging microscopy tech-
niques [2–5]. SHG probes are usually designed by functionalizing the two extremities of
a π-conjugated linker by electron-donating and electron-withdrawing substituents, which
provide the asymmetry required for quadratic NLO phenomena. The elaboration of SHG
chromophores based on this dipolar architecture [6–9], including responsive systems such
as NLO switches [10–12], has been the object of intense research in the last 30 years.
In this context, the synthesis and characterization of the SHG responses of amphiphilic
chromophores incorporating a pyridinium acceptor and a dibutylaminophenyl donor as
terminal groups, connected through increasingly large polyenic bridges (series A, Fig-
ure 7.1) it has been reported [13]. The presence of the hydrophobic butyl chains on
the donor group, together with the positively-charged hydrophilic acceptor moiety, con-
fers an amphiphilic character to these push–pull dyes, which facilitates their interaction
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with a lipidic membrane. In addition to their use as SHG probes, pyridinium-based
derivatives have been widely used in the last decades for producing materials with large
quadratic NLO responses, owing to their structural diversity and ability to form different
non-centrosymmetric crystal packings when associated with different anions [14].
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Figure 7.1: Structure of the push–pull polyenic dyes A-D investigated in this study
(n = 1 − 5). On the right: structure of D3 with the conjugated segment (in bold) used
to calculate the bond length alternation and the torsional angles θi discussed in the text.
See the Annex for a more detailed definition of the geometrical parameters.

In continuation to the efforts in designing new SHG chromophores, we report in this
contribution three new families of derivatives (Figure 7.1), for which enhanced optical
nonlinearities are expected compared to the original series. In series B and D the pyri-
dinium acceptor is replaced by a quinolinium, while C and D involve a thienyl linker
in place of the original phenyl. The SHG responses of these dyes are probed by means
of electric-field induced second harmonic generation (EFISHG). The use of the EFISHG
technique was made possible for these cationic chromophores by using a solvent of low rela-
tive permittivity, which prevents the ion pairs from dissociating into the postively-charged
dye and its iodide counterion. The role of such ion pairs interactions in the second-order
NLO responses of pyridinium-based salts was investigated in several experimental [15]
and theoretical works [16, 17].

In this study, experimental characterizations are complemented by theoretical chem-
istry calculations, which provide a fundamental understanding on the origin of the NLO
responses in these complexes. The computational approach is based on a methodology
developed in previous works, combining classical molecular dynamics (MD) simulations
and quantum chemical (QM) calculations based on time-dependent density functional
theory (TD-DFT). This MD/QM scheme was formerly employed to investigate ion pairs
in solution [16–18], but also more complex systems such as organic nanoparticles [19], self-
assembled monolayers [20, 21], and stained lipid bilayers [22, 23]. Here, MD simulations
carried out on the reference D3/iodine complex bring key information on the average po-
sition of the iodide anion with respect to the organic chromophore, as well as on the effect
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of dynamical structural fluctuations on the NLO properties. Then, systematic TD-DFT
calculations performed on the whole set of systems provide a rationale to experimental
data and allow to establish precise relationships between the structure of the dye and the
magnitude of the second- and third-order contributions to the EFISHG intensity.

7.2 Experimental and computational details

7.2.1 EFISHG measurements

In the EFISHG setup [24], the probed SHG response results from a third-order process
described by γ(−2ω;ω, ω, 0). The expression of the NLO quantities connected to the
EFISHG response have been presented in Section 1.3.1 and reported here for convenience.
γEFISHG can be decomposed as :

γ(−2ω;ω, ω, 0) = γEFISHG = γ||(−2ω;ω, ω, 0) +
µβ||(−2ω;ω, ω)

3kT
(7.1)

where µ is the norm of the ground state dipole moment, k is the Boltzmann constant
and 3kT = 2.833 × 10−3 a.u. at room temperature (298.15 K). The γ||(−2ω;ω, ω, 0)

contribution corresponds to the isotropic invariant of the γ tensor:

γ||(−2ω;ω, ω, 0) = γ|| =
1

15

x,y,z∑
i,j

(2γiijj + γijji) (7.2)

The second term in equation 7.1 implies the projection of the vectorial representation of
the β tensor on the dipole moment:

β||(−2ω;ω, ω) = β|| =
3

5µ
µ⃗ · β⃗ (7.3)

where the β vector components read:

βi =
1

3

x,y,z∑
j

(βijj + 2βjij) (7.4)

The relative amplitudes of the second- and third-order contributions to the global EFISHG
response can be analyzed using the R3/2 ratio:

R3/2 = 3kT
γ||
µβ||

(7.5)

As already anticpated in Section 1.3.1, in principle, the use of the EFISHG technique
is precluded in the case of ionic species, because the dc electric field necessary to break
the centrosymmetry induces the migration of ions. However, operating in a solvent of low
polarity substantiates the formation of electrically neutral dye/iodine ion pairs, which
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enables the characterization of their NLO responses by means of EFISHG. In this work,
all experiments were carried out in chloroform, with dielectric constants ϵ0 = 4.711 in the
static limit and ϵ∞ = 2.091 at infinite frequency. An incident laser wavelength of 1907
nm was used, in order to minimize the frequency dispersion effects due to absorption
of the second harmonic light. Moreover, as evidenced from equation 7.1, measurements
should be performed at different temperatures to evaluate the relative amplitude of the
second- and third-order contributions in the total EFISHG response. Here, experimental
results were analyzed assuming that the γ|| contribution is negligible with respect to the
µβ||/3kT term, so that R3/2 ∼ 0. Therefore, EFISHG responses are analyzed as effective
second-order responses:

γEFISHG ≡

[
µβ||
]
eff

3kT
(7.6)

The validity of this assumption is discussed hereafter at the light of computational results.

7.2.2 Computational methodology

The computational methodology consisted of two steps. By using D3 as reference system,
we first addressed the dynamical behavior of the complex composed by the dye and its
counterion, as well as the impact of structural fluctuations on the EFISHG response. This
first step was achieved by adopting the same framework as used in previous studies [16–
18]: i) the structures of chloroform-solvated ion pairs were first generated using classical
molecular dynamics (MD) simulations employing a system-specific force field (see next
section), and ii) non-correlated structural snapshots were eventually extracted at regular
time intervals of the trajectories to calculate their EFISHG responses by means of time-
dependent density functional theory (TD-DFT). This MD/TD-DFT approach allowed us
to assess the relative magnitude of the γ// and µβ||/3kT contributions (R3/2, equation
7.5), as well as to identify the average position of the iodine with respect to the cationic
chromophore. In a second step, we extended the calculations to the whole set of molecules
by optimizing the structure of the dye/iodine complexes at the DFT level. The average
position of the iodine with respect to the chromophore derived from MD simulations on D3
was used to prepare the initial dye/iodine structures for geometry optimization. On the
basis of the relaxed structures, the EFISHG responses of all complexes were calculated
using TD-DFT and compared to experimental results. EFISHG responses have been
computed and measured at λ = 1907 nm.

7.2.2.1 Force field parameterization and MD simulations

The general AMBER force field (FF) was partially modified to finely reproduce the equi-
librium geometry and torsional degrees of freedom of D3, which is prerequisite to obtain
reliable description of the NLO responses. In particular, we have modified the FF bond
lengths to accurately reproduce (with a mean absolute error of 0.002 Å) those calculated
at the M06-2X/6-311G(d) level, in which solvent effects (chloroform) were accounted for
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by using the integral equation formalism of the polarizable continuum model (IEF-PCM)
[25]. Electrostatic potential-fitted (ESP) atomic charges of the chromophore, iodide an-
ion and chloroform have been obtained at the same level of theory. In addition, relaxed
potential energy scans were performed at the M06-2X/6-311G(d) level in gas phase for
five relevant dihedral angles (θ1-θ5, see Figure 7.1) and fitted by employing the procedure
described in Ref. [26]. These torsional potentials were calculated using a simplified struc-
ture of the D3 molecule, in which butyl chains were removed from the chromophore since
they are irrelevant for the FF parameterization. The FF potentials are free-energy profiles
obtained using the adapting biasing force (ABF) method considering the chromophore in-
side a box with 40 Ar atoms at the temperature of 298.15 K. Reparameterization of the
bonds and torsion potentials was done iteratively until convergence. All the details of
force field parameterization are reported in the Annex.

7.2.2.2 Molecular dynamics simulations

The MD simulations have been performed using the NAMD software [27], starting from a
low density cubic box of size 120 Å and equilibrated for 10 ns in the NpT ensemble (p =
1 atm and T = 298.15 K). The production run was performed in the NVT ensemble. In
order to better span the conformational degrees of freedom of the dye, two different initial
conformations corresponding to different values of the θ3 dihedral were considered. Each
MD run was of 20 ns with timestep of 1 fs and performed by rescaling the temperature
to 298.15 K every 100 steps. 200 structural snapshots were extracted from each MD
trajectory, providing a total set of 400 structures for calculating the NLO properties. The
probability distributions of the values of relevant geometrical parameters (bond length
alternation, torsional angles, anion-cation distances, see Annex B) for the 400 geometrical
snapshots were found to coincide with the distributions obtained by using the 40000
structures extracted at every timestep of the simulation, confirming that the set of selected
geometries is representative of the dynamics of the system.

7.2.2.3 Calculation of the EFISHG responses

For all compounds, the molecular geometries of the dye/iodide complexes were opti-
mized at IEF-PCM:M06-2X/6-311G(d) level in chloroform. The optimized structures
were confirmed to be real minima of the potential energy surface on the basis of their
harmonic vibrational frequencies, which were found real for all normal modes. Calcu-
lations of hyperpolarizabilities have been evaluated at the TD-DFT level employing the
M06-2X exchange-correlation (XC) functional [28]. First hyperpolarizabilities were com-
puted analytically using the standard TD-DFT method [29], while calculations of the
second hyperpolarizabilities were performed by using the first-order numerical derivatives
of the analytical first hyperpolarizabilities. The suitability of M06-2X for computing the
second-order NLO properties of push-pull π-conjugated dyes was demonstrated in previous
computational works [30, 31]. To further assess its adequacy for the compounds inves-
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tigated here, static first hyperpolarizabilities were also calculated using the second-order
Møller–Plesset perturbation theory (MP2), in which the energy derivatives are calculated
using a numerical finite field (FF) procedure and refined by using a Romberg scheme.
As reported in Annex (Figure D.15), a very good correlation was found between the two
sets of data. Preliminary calculations on series D were also performed for choosing the
most appropriate basis set. Three basis sets of decreasing complexity were tested for
computing the static first hyperpolarizability of the chromophores, namely aug-cc-pVTZ,
aug-cc-pVDZ and 6-311+G(d). As reported in Figure D.16, both the 6-311+G(d) and
aug-cc-pVDZ basis sets provide static β values very similar to those obtained using the
larger aug-cc-pVTZ basis. Therefore, the computationally-cheaper 6-311+G(d) basis was
chosen to describe the chromophore. To model the iodide anion, we employed the aug-
cc-pVDZ basis set and the associated pseudopotential, although the basis set used for
the counterion does not have a significant impact on the first hyperpolarizability of the
complexes (Table D.5). All DFT calculations were performed using Gaussian 16 [32].
Graphical representations of the molecules were realized with the Chemcraft package [33].

7.3 Results and discussion

7.3.1 Dynamics of the EFISHG response of the D3/iodine com-

plex

The probability distributions issued from MD samplings reveal large fluctuations in the
BLA values along the conjugated linker, with BLA = (−0.045 ± 0.023) Å when consid-
ering the 400 geometries used for NLO calculations. MD simulations also show that the
position of the iodine with respect to the chromophore is highly dynamical, the counterion
nevertheless remaining in close proximity to the dye with an average distance from the
quinolinium nitrogen dNI = (4.57± 0.47) Å. Moreover, the iodide anion oscillates around
an average position located within the mean plane of the quinolinium moiety, with values
of the dihedral angle between the terminal phenyl and the anion θPhI = 175.1◦ ± 45.9◦.
(Figure D.9). Figure 7.2 illustrates how the iodide anion is fluctuating around the dye for
the 400 selected snapshots extracted from the MD simulations.

154



(a) θ3 = 0◦, top view (b) θ3 = 180◦, top view

(c) θ3 = 0◦, side view (d) θ3 = 180◦, side view

Figure 7.2: Distribution of the iodide counterion positions with respect to the D3 chro-
mophore (fixed in its initial position) for the two different initial conformations of the
dihedral θ3.

The time evolution of the various terms involved in the EFISHG signal (namely
γEFISHG, γ||, µ, β|| and µβ, see equations 7.1-7.4), as well as of the angle θ between the µ⃗
and β⃗ vectors, are collected in Figure D.10. Their average values and standard deviations
are reported in Table 7.1. The results show that both the second- and third-order contri-
butions of the EFISHG response display high sensitivity to structural fluctuations, with
standard deviations reaching about 50% of their average values. Moreover, the EFISHG
response is strongly dominated by the second-order term µβ||/3kT , which is two orders
of magnitude larger than γ|| and confirms the experimental hypothesis assuming that
R3/2 ∼ 0. Therefore, the effective EFISHG response defined in equation 7.6, regrouping
both second- and third- order NLO contributions, can be adopted for direct comparisons
with experiment. As reported in Table 7.1, the [µβ||]eff value predicted by MD/TD-DFT
calculations (3.5 10−6 a.u.) is overestimated compared to experimental measurements (1.5
10−6 a.u.), but the order of magnitude of the NLO response is well reproduced.
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Table 7.1: Average values and standard deviations (σ) of the EFISHG properties computed
at the IEF-PCM:M06-2X/6-311+G(d) level in chloroform for the D3 molecule, using the
400 snapshots extracted from the MD trajectories. The NLO properties and the norm of
the dipole moment are given in atomic units, the angle θ is given in degrees.

Property Average σ

γEFISHG × 10−7 124.1 55.4
µβ||/3kT × 10−7 121.6 55.5
γ|| × 10−7 2.6 1.3
R3/2 0.02 0.07
µβ|| × 10−6 3.4 1.6
β|| × 10−4 16.8 6.1
µ 12 2
θ 48 15
[µβ||]eff × 10−6 3.5 1.6
[µβ||]eff × 10−6 (exp.) 1.5 -

To gain further insight into the relationship between the EFISHG response and the
dynamical structure of the dye/iodine complex, Figure 7.3a reports the distribution of the
second- and third-order contributions to the EFISHG response with respect to the angle
θ between the µ⃗ and β⃗ vectors. These plots show that γ|| displays weak variations with
respect to θ, despite a small set of structures give rise to negative γ|| values, as discussed
later on. Figure D.13e further shows that the variations of the γ|| values are not correlated
to those of the θ angle. On the contrary, the second-order contribution µβ||/3kT strongly
depends on θ, since β|| involves the scalar product between the µ⃗ and β⃗ vectors (equation
7.3). Therefore, µβ||/3kT progressively decreases as the θ value increases, and cancels out
for θ = 90◦ before changing sign. In the θ ∼ 90◦ region, the EFISHG response is thus
dominated by the third-order term γ||, which translates into a divergence of the R3/2 ratio
(Figure 7.3b). As illustrated in Figure 7.4, the value of the θ angle is entirely driven by the
position of the iodine anion with respect to the chromophore. When I− is located close to
the polyenic bridge, the µ⃗ and β⃗ vectors are quasi perpendicular (θ ∼ 90◦), giving rise to a
vanishing µβ||/3kT contribution, while when I− is found close to the electron-withdrawing
extremity of the dye (θ ∼ 0◦), the µβ||/3kT contribution is maximized. The average
position of I− deduced from the MD trajectories corresponds to an intermediate value of
θ = 48◦, situation in which γ|| is negligible with respect to µβ||/3kT (R3/2 = 0.02). Note
that, in addition to β||, the norm of the total dipole moment is also strongly correlated with
the θ angle, and thus with the position of the iodide anion. The evolution of β|| and µ with
respect to θ is illustrated in Figure D.13. Consistent with the dipole variations, we can
also notice in Figure 7.4 that the position of the counterion induces significant variation in
the electrostatic potential within the molecule. For θ ∼ 0◦, the charge transfer along the
long molecular axis is enhanced, reinforcing the asymmetry of the electron density, while
for θ ∼ 90◦ the potential displays a more symmetrical shape. However, as illustrated in
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Figure D.13, the total first hyperpolarizability (βtot) does not exhibit any clear correlation
with θ, indicating that the changes in the electronic density of the chromophore induced
by the iodide position has no significant impact on the second-order NLO response itself,
but only on its projection onto the dipole moment direction. This is further illustrated in
Figure D.12, which shows that βtot values calculated in presence of the iodide and those
calculated for the same geometries of the chromophore after removing the anion evolve
similarly.

(a) (b)

Figure 7.3: Distribution of the total EFISHG response and of its second- and third-order
contributions (µβ||/3kT and γ||) (a) and of the R3/2 ratio (b) as a function of the angle θ
for the D3. The y-axis in plot (a) is in logarithmic scale.
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(a) θ = 94◦ (b) MEP

(c) θ = 48◦ (d) MEP

(e) θ = 7◦ (f) MEP

Figure 7.4: Left: Structure of the D3/iodine complex for three different positions of the
anion, with the value of the θ angle between the (normalized) µ⃗ (red) and β⃗ (blue) vectors;
Right: Molecular Electrostatic Potential (MEP) for the three configurations.

It is also instructive to address the variations of the NLO properties with respect to
the BLA along the conjugated segment of the chromophore. Figure D.11 first reveals
that the BLA values calculated along the MD trajectories are spread over a broad range,
from negative to positive values. In addition, the BLA globally increases as the θ angle
decreases, which indicates that the position of the iodide anion somehow influences the
conjugation along the polyenic linker, although the two quantities do not show a clear di-
rect correlation. Recent calculations also demonstrated a similar influence of the position
of the anion on the BLA of the organic cation in cyanine crystals [34].

As illustrated in Figure D.14, γ|| evidences a global reverse correlation with BLA,
negative γ|| values being associated to highly conjugated structures with BLA values close
to zero. A similar relationship between γ|| and BLA values was recently observed for the
phenol blue, another typical cyanine dye [35]. Interestingly, the variations of the isotropic
linear polarizability (αiso) of D3 are also clearly correlated with BLA, while µ and βtot

are not. This evidences that odd-order optical quantities are mainly impacted by the
fluctuations in the degree of conjugation within the chromophore, while even-order ones
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mainly depends on the fluctuations in the iodide position.

7.3.2 EFISHG response of the dye/iodide complexes

In a second step, the structure of all the dye/iodide complexes represented in Figure 7.1
were optimized at the IEF-PCM:M06-2X/6-311G(d) level, by setting the initial position
of the anion to its average position according to the MD samplings. The BLA along the
polyenic linker of the dye, the value of the θ2 and θ3 torsional angles, as well as the dNI

and θPhI values associated to the position of the iodide anion are reported in Table 7.2
for all complexes. As indicated by the latter parameters, the optimization process did not
change significantly the position of the iodine (see Figures D.17, D.18, D.19, D.20 for a
scheme of the optimized geometries). In series A and B, the absolute BLA values slightly
decrease with increasing n, while they are significantly smaller and regularly increase in
series C and D, indicating that the conjugation along the polyenic bridge is mostly driven
by the nature of the donor moiety. Note that, for very extended linkers (n >> 5), the BLA
is expected to converge towards similar values independently on the nature of the donor
and acceptor moieties, as the conjugated segment resembles in this case an unsubstituted
polyene. Furthermore, the values of θ2 show that molecules incorporating a quinolinium
acceptor (series B and D) display larger deviation from planarity than their pyridinium
analogs.
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Table 7.2: Bond length alternation (BLA, Å), torsional angles θ2 and θ3 (degrees), as well
as dNI (Å) and θPhI (degrees) values associated to the position of the iodide anion in all
dye/iodide complexes.

Molecule BLA θ2 θ3 dNI θPhI

A1 -0.096 -177.6 -177.6 4.49 -177.6
A2 -0.088 -179.5 -178.0 4.49 174.2
A3 -0.086 179.2 177.3 4.49 -177.2
A4 -0.087 -178.4 179.3 4.49 -179.3
A5 -0.087 178.9 178.1 4.47 172.8
B1 -0.095 156.9 174.0 4.50 -175.2
B2 -0.086 -160.2 -178.9 4.51 -179.3
B3 -0.086 -159.7 -177.6 4.50 177.0
B4 -0.085 -161.6 178.5 4.51 -177.9
B5 -0.087 -159.4 179.4 4.50 -177.0
C1 -0.066 -179.8 -179.3 4.50 -178.7
C2 -0.069 -179.6 -179.6 4.49 -178.1
C3 -0.074 177.6 179.8 4.48 -173.0
C4 -0.077 179.8 -179.5 4.49 177.9
C5 -0.080 -179.3 -179.3 4.49 177.5
D1 -0.055 -172.1 -178.3 4.53 -179.1
D2 -0.061 -167.7 -179.2 4.52 -179.9
D3 -0.067 167.2 -179.1 4.52 178.3
D4 -0.074 163.0 -180.0 4.51 -177.9
D5 -0.077 163.8 -179.1 4.51 176.8

The computed NLO responses collected in Table 7.3 show that, whatever the nature
of the dye, the third-order contribution to the total EFISHG response remains small
with respect to the second-order contribution, with R3/2 ratios not exceeding 8%. This
result is consistent with an older report on stilbazolium-anion complexes [16]. Neverthe-
less, the R3/2 ratio monotically increases in the four series when elongating the polyenic
linker, indicating that the γ|| contribution should be considered in the case of highly
extended systems. Series C and D incorporating a dibutyl-aminothienyl donor display
larger second-order β|| responses, which inversely correlate with the BLA values (Figure
7.5). Consistently, series A and B, which display small variations of BLA with n, show a
lower enhancement of β|| when increasing the size of the bridge, although without showing
any BLA-β|| correlation. Interestingly, the values of the dipole moment do not vary sig-
nificantly with n in any of the molecular series, so that the magnitude of the second-order
contribution of the EFISHG response, µβ||/3kT , is essentially driven by the value of β||
and that of the θ angle between the µ⃗ and β⃗ vectors. While β|| smoothly increases with
n in the four series, θ increases in the A, B and D families, which has for effect to damp
the increase of the µβ||/3kT term. On the contrary, the θ angle decreases in the C series,
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making the µ⃗ and β⃗ vectors more and more parallel as elongating the linker, and thus
contributing to the enhancement of the second-order response.

Table 7.3: Components of the dynamic (λ = 1907 nm) EFISHG responses of the
dye/iodine complexes calculated at the IEF-PCM:M06-2X/6-311+G(d) level: dipole mo-
ment norm (µ, a.u.), parallel first hyperpolarizability (β||, 104 a.u.), angle between µ⃗ and
β⃗ (θ, degrees), µβ|| (105 a.u.), µβ||/3kT (108 a.u.), parallel second hyperpolarizability (γ||,
106 a.u.), total EFISHG signal (γEFISHG, 108 a.u.), effective EFISHG response ([µβ||]eff ,
105 a.u.), and R3/2(×102) ratio.

Molecule µ β|| θ µβ|| µβ||/3kT γ|| γEFISHG [µβ||]eff R3/2

A1 10.5 2.1 45 3.7 1.3 2.4 1.3 3.8 1.8
A2 10.5 4.0 47 6.9 2.4 6.5 2.5 7.1 2.7
A3 10.6 6.7 47 11.9 4.2 15.2 4.3 12.3 3.6
A4 10.7 9.8 48 17.4 6.2 28.5 6.4 18.2 4.6
A5 10.5 12.4 51 21.7 7.7 46.2 8.1 23.0 6.0
B1 10.8 2.3 53 4.2 1.5 3.7 1.5 4.3 2.5
B2 10.7 4.8 53 8.5 3.0 10.3 3.1 8.8 3.4
B3 10.7 7.5 54 13.4 4.7 22.5 5.0 14.1 4.7
B4 10.6 10.8 56 19.1 6.7 42.2 7.1 20.3 6.3
B5 10.6 13.8 56 24.3 8.6 66.0 9.2 26.1 7.7
C1 11.5 2.3 37 4.5 1.6 1.3 1.6 4.5 0.8
C2 12.2 6.0 30 12.2 4.3 5.5 4.4 12.4 1.3
C3 12.6 11.9 27 25.0 8.8 17.4 9.0 25.5 2.0
C4 12.8 19.6 24 41.9 14.8 40.6 15.2 43.0 2.7
C5 13.0 27.5 22 59.3 20.9 74.2 21.7 61.4 3.5
D1 12.1 2.6 44 5.3 1.9 1.3 1.9 5.3 0.7
D2 12.0 6.6 47 13.2 4.6 7.6 4.7 13.4 1.6
D3 12.0 13.2 48 26.4 9.3 28.1 9.6 27.2 3.0
D4 11.8 19.7 51 38.7 13.7 68.4 14.3 40.6 5.0
D5 11.5 25.7 53 49.4 17.4 124.6 18.7 52.9 7.1
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Figure 7.5: Correlation between β|| (104 a.u.) and BLA (Å) values in (a) series A (black)
and B (blue) and (b) in series C (black) and D (blue).

7.3.3 Comparison to experiment

The experimental EFISHG data are collected in Table 7.4, together with the maximum
absorption wavelength. The static EFISHG responses extrapolated using the two-state
approximation are also reported. Consistently with the red shift of the main absorp-
tion band, the EFISHG intensity increases in each series with the size of the polyenic
bridge. As expected, removing frequency dispersion effects by extrapolating responses to
the infinite-wavelength limit attenuates the increase of µβ|| with chain length. As shown
in Figure 7.6, theoretical results are in good agreement with measured data. All series
display Pearson correlation coefficients larger than 0.89 between computed and experi-
mental [µβ||]eff values, with R2 values very close to 1.0 for series C and D. However, the
relative ordering of the [µβ||]eff values in the different series is only partially reproduced:
while DFT calculations predict that series A and B display the smallest NLO responses
in agreement with experimental results, the relative magnitude of the EFISHG signal is
inverted in series C and D. The enhancement of the [µβ||]eff values with the elongation
of the polyenic chain is also underestimated in the two latter series.
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Table 7.4: Experimental EFISHG responses (µβ||(2ω) ≡
[
µβ||(−2ω;ω, ω)

]
eff

) measured
at λ = 1907 nm, maximum absorption wavelength (λmax, nm), two-state frequency disper-
sion factors F (ω),a and static EFISHG responses extrapolated as µβ||(0) = µβ||(2ω)/F (ω).
All NLO data are given in 10−48 esu (1 a.u. of β = 8.6392 10−33 esu).

Molecule µβ||(0) µβ||(2ω) λmax F (ω)

A1b 549 841 517 1.53
A2b 1338 2230 558 1.67
A3b 1537 2700 581 1.76
A4b 1887 3380 589 1.79
A5b 2014 3690 598 1.83
B1 783 1380 582 1.76
B2 1098 2156 582 1.96
B3 1566 3250 624 2.08
B4 4050 8750 624 2.16
B5 4284 9435 643 2.20
C1 523 891 568 1.70
C2 1332 2669 631 2.00
C3 2946 6366 656 2.16
C4 4954 10946 663 2.21
D1 445 900 634 2.02
D2 1793 4770 714 2.66
D3 4083 13600 763 3.33
D4 5710 18170 754 3.18
D5 7281 22500 748 3.09
a 1/F (ω) = (1− λ2max/λ

2) (1− 4λ2max/λ
2)

b From Ref. 13
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(a) series A (b) series B

(c) series C (d) series D

Figure 7.6: Correlation between experimental and computational µβ||(2ω) values (in 107

a.u.) for the four series of molecules.

7.4 Conclusions

In this work, the NLO responses of four series of amphiphilic cationic chromophores have
been investigated by means of EFISHG experiments and quantum chemical calculations.
EFISHG measurements were made possible owing to the electric neutrality of the pairs
formed, in chloroform, by the cationic dye and the iodine anion. The computational ap-
proach combining MD simulations and time-dependent DFT calculations performed on a
representative dye/iodine pair allowed us to describe the geometrical fluctuations of the
complexes, and to highlight their impact on the NLO responses. These calculations con-
firmed that the iodine anion remains in the proximity of the dye all along the simulations,
with an average position close to the charged heterocyclic acceptor. The position of the
iodine relative to the dye was also shown to be at the origin of the relative magnitude of
the second- and third-order contributions of the EFISHG signal. In the investigated sys-
tem, the third-order component was found negligible compared to the second-order one,
supporting the experimental assumptions. Overall, the good agreement between experi-
mental and theoretical characterizations demonstrates the reliability of the computational
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protocol, which provides a tractable strategy towards systematic and accurate in silico
characterization of novel molecular probes for SHG imaging.
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Conclusions and perspectives

This thesis work contributes to the field of computational chemistry applied to the study,
interpretation, and rationalization of electronic nonlinear optical (NLO) properties of
molecular systems. We especially focused on assessing the most appropriate computa-
tional protocols depending on the nature of the investigated systems. Important challenges
have been addressed: i) the accurate description of NLO properties of small molecules in
gas phase through state-of-the-art wavefunction methods, ii) the investigation by means
of Density Functional Theory (DFT) of the impact of dispersion effects on the second-
order NLO properties of molecular switches, and iii) the rationalization of experimental
second-order responses of ion pairs in solution, including dynamic effects through a mul-
tiscale Molecular Dynamics (MD)/DFT computational protocol.

In Chapters 4 and 5, the performances of some state-of-the-art wavefunction methods
have been evaluated for the computation of linear and nonlinear optical properties of
small molecules. This study focused on static electronic properties, namely: the dipole
moment (µ), the polarizability (α), the first-hyperpolarizability (β), and the second-
hyperpolarizability (γ), which are computed numerically through the Finite Field deriva-
tives of field dependent energies. The methods tested either reduce the computational
cost or improve the performance of canonical methods for the computation of energies
by reformulation of the wavefunction employing judicious mathematical transformations,
empirical parameters, thresholds, and cutoffs.

In particular, Resolution of Identity (RI) approximation techniques (RI-MP2, RIJK-
MP2, and RIJCOSX-MP2), methods based on the localization of molecular orbitals
(DLPNO-MP2, DLPNO-CCSD, DLPNO-CCSD(T0), DLPNO-CCSD(T1), LMP2, LNO-
CCSD, and LNO-CCSD(T)) and Spin Component Scaling methods (SCS-MP2 and SOS-
MP2) were assessed in Chapter 4. Our results evidenced that all these methods accurately
reproduce the µ and α values provided by reference CCSD(T) calculations. On the other
hand, we observed that the numerical errors arising from numerical instabilities of the
field-dependent energies highly impact the higher-order derivatives. Methods based on the
RI approximation give stable high-order derivatives, and therefore they are a cost-effective
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way to obtain first and second hyperpolarizabilities with a negligible error with respect
to canonical MP2 for β and γ. Reversely, methods based on orbital localization (namely,
LNO and DLPNO schemes) applied to MP2, CCSD, and CCSD(T) wavefunctions, suffer
from numerical instabilities that result in large numerical errors for β and γ. The only
exception is DLPNO-CCSD(T1), which produces acceptable errors for the calculation of
β. Interestingly, numerically β and γ values computed from analytical polarizabilities
with the DLPNO-MP2 method, are in excellent agreement with the canonical MP2 coun-
terparts, suggesting that the implementation of analytical DLPNO-CCSD polarizabilities
would offer a cost-effective method to compute accurate hyperpolarizabilities. Finally,
spin-component scaled methods do not produce any relevant improvement compared to
canonical MP2, except in the case of γ.

In Chapter 5, we have addressed the performance of MP3:KS schemes for computing
static NLO properties. This method, by a formulation that combines wavefunction theory
and density functional approximations (DFAs), aims at outperforming standard MP3 and
challenges CCSD. We have demonstrated that, differently from what has been observed
in previous works for the computation of energies, selecting a reference DFA that does not
suffer from the delocalization error is fundamental for calculating the NLO properties. In
particular, the MP3:ωB97-XV method can be used as a cheaper alternative to CCSD for
computations of α and γ. For β, MP3:KS schemes outperform CCSD only for molecules
with a small response, the best performance being obtained with MP3:CAM-B3LYP. For
systems with large β, CCSD remains the best method among all the approximations con-
sidered. However, MP3:KS schemes still improve the standard MP3, and MP3:ωB97-XV
emerges as the best among the latter.

In Chapter 6, we investigated the reliability of a series of DFAs and wavefunction
methods as tools for modeling the structure and interpreting the second-order NLO re-
sponse of a series of azobenzene switches bearing different meta-substituents. We observed
that electron correlation and, in particular, dispersion interactions are the driving forces
behind the stabilization of the cis conformer with respect to the trans one. Indeed, the
cis isomer stabilizes upon functionalization of the meta-position with bulky substituents
because of van der Waals interactions. Despite most of DFAs do not accurately reproduce
the magnitude of β, DFAs including at least 50% of the exact HF exchange reproduce the
evolution of β along the series of azobenzene derivatives. By comparing to RI-CC2 and
RI-MP2 methods, we found that ωB97X-D is the best functional to describe the relevant
features of these compounds: the geometry, the energy difference between the isomers,
and the magnitude of β. Through the PNOC decomposition analysis, we further demon-
strated that the main contribution to β mostly comes from the double bond between the
nitrogen atoms, followed by smaller contributions arising from the adjacent phenyl rings.
Moreover, by a comparison between the PNOC decomposition and the laplacian of the
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electronic density, we showed that the regions of the molecule that are the most affected
by the delocalization error are the ones responsible for the inaccuracy of β.

In Chapter 7, the Second Harmonic Generation (SHG) responses of a series of am-
phiphilic cationic dyes and their corresponding iodine counterions in chloroform solution
have been investigated using a sequential MD/DFT approach. These calculations con-
firmed that the iodine anion remains in the proximity of the dye, with an average position
close to the charged acceptor. The position of the iodine relative to the dye was also
shown to be at the origin of the relative magnitude of the second- and third-order contri-
butions of the EFISHG signal. In the amphiphilic chromophores studied, the third-order
component was found negligible compared to the second-order one, supporting the ex-
perimental assumptions. The excellent agreement between experimental and theoretical
results proves that this MD/QM scheme constitutes a useful tool for the design of SHG
dyes driven by computational studies.

Overall, this thesis gives an overview of some of the capabilities and limitations of
modern computational chemistry methods for computing NLO properties of small and
medium-size organic molecules. For small molecules in the gas phase, accurate static
NLO properties can be obtained by means of correlated wavefunction methods, the unfa-
vorable size/cost scaling of which can be improved by means of acceleration techniques.
For medium size molecules, which are still out of the reach of highly accurate wavefunction
methods, DFT remains the workhorse for a qualitative reproduction and interpretation of
NLO processes. We have demonstrated in Chapter 6 that recent DFAs such as range sepa-
rated hybrids have the potential to reach the accuracy of wavefunction methods. However,
these methods are designed through an extensive parameterization of the ground-state en-
ergies, and are generally not transferable to systems or molecular properties different from
those they have been designed for.

Research progresses in the field of computational chemistry applied to NLO could
thus be divided in two complementary strategies, namely i) the development of ab ini-
tio schemes enabling a systematic improvement of the accuracy and/or a lowering of the
computational cost, and ii) the development of methods specifically tailored in order to
reproduce target systems and properties. Among the latter, recent schemes that mix DFT
response theory and semi-empirical parameterizations, referred to as simplified (s)DFT
schemes, have been proven successful for computing the NLO responses of systems with
thousands of electrons [1, 2], these methods are promising for the study of complex molec-
ular and supramolecular systems.

In the aim of reproducing experimental NLO measurements, other important effects
such as structural fluctuations and interactions of the investigated system with its en-
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vironment should be also taken into account. As illustrated in Chapter 7 of this thesis
and recently reviewed [3], the former effects can be included in the simulations by using
multiscale methods combining sequentially classical molecular dynamics and QM calcu-
lations. The association of MD simulations with low-cost methods will certainly broaden
the scope of systems affordable for computational chemistry in the near future.
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Appendix A
Supporting information of Chapter 4

A.1 Computational time

Before computing the optical properties of the molecules belonging to the γ-NLO set, we
performed a test to have a rough idea about the relative computational time required for
computing the electrical (hyper)polarizabilities with all the methods considered in this
study. Regarding CCSD(T) and CCSD calculations, we performed free-field single point
(SP) calculations on the five PA oligomers of the γ-NLO set, as they cover a reasonable
range of molecular sizes representative of the whole set. For MP2, the SP calculations
were much faster. For this reason, we decided to switch from PA oligomers to PDA
oligomers, which are the biggest molecules of the γ-NLO set. All the calculations have
been performed on a single node with 16 processors Intel Xeon Gold 6140, with a disk
memory of 384 GB and 64 GB of RAM. For CCSD and CCSD(T) calculations all the
processors were used in the calculations, while MP2 calculations were run serially. The
all times in minutes for each calculation are collected in Tables A.2, A.1 and A.3. The
asymptotic behavior of these methods has been evaluated by a polynomial fit correlating
the time consumed to the number of basis functions associated with each studied system.
The fitting has been performed by adjusting a and b in the function y = axb, and including
the point (0,0) in the fit. We also included CAM-B3LYP SP calculations for the same
molecules in order to verify how these methods perform time-wise with respect to a
range separated density functional approach time scaling. The results are collected in
Figures A.1, A.2, A.3 and Table A.4. From the resulting fit of CC approximations,
in general CCSD and CCSD(T) are faster than their corresponding RI counterparts.
This behavior is associated to the density fitting implementations, which might not be
optimal for these methods. On the contrary, when employing RI-MP2 and RIJK-MP2
schemes, the computational cost drops substantially with respect to MP2. Regarding
the RIJCOSX method we observed that moving from the default COSX grid to the
COSX2 one (more dense grid) does not substantially affect the cost, and therefore only
the second one is presented in the manuscript. Surprisingly, RI approximations result
computationally cheaper even with respect to CAM-B3LYP computations, confirming
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Table A.1: Wall time for approximate CCSD calculations tested on PA chains of different
lengths. These calculations have been performed employing 16 cpus. The values in the
table are in minutes / 1 cpu.

DLPNO-CCSD LNO-CCSD
Molecule CCSD RI-CCSD Normal Tight Normal Tight VeryTight
PA2 3 25 12 5 5 5 5
PA4 14 53 7 14 19 19 24
PA6 52 260 15 31 46 59 87
PA8 185 1041 28 67 96 140 234
PA10 594 3349 44 95 175 259 469
PA12 1538 8803 71 139 281 423 773

that the bottleneck of the calculation for systems of this size is the SCF and not anymore
the (accelerated) MP2 part. Considering localized methods, moving to tighter convergence
criteria does not drastically increase the computational cost, and therefore owing to the
huge accuracy gained in the NLOPs, we only present the calculations employing the
Tight criteria on the DLPNO and the veryTight criteria on the LNO construction. For
CCSD and CCSD(T) calculations, LNO based methods generally need more time than
the corresponding DLPNO counterparts, showing a larger exponent of the fit. On the
other hand, T1 corrections for DLPNO-CCSD present a smaller exponent with respect to
standard T corrections, but the parameter a is one order of magnitude larger, indicating
that time savings start to become relevant only for big molecules (more than 400 basis
functions). To finalize, DLPNO-MP2 schemes show comparable timings with respect to
MP2. Instead, LMP2 is more efficient than DLPNO and show a scaling comparable to
CAM-B3LYP.

Table A.2: Wall time for approximate CCSD(T) calculations tested on PA chains of
different lengths. These calculations have been performed employing 16 cpus. The values
in the table are in minutes / 1 cpu.

DLPNO-CCSD(T0) DLPNO-CCSD(T1) LNO-CCSD(T)

Molecule CCSD(T) RI-CCSD(T) Normal Tight Normal Tight Normal Tight vTight

PA2 18 6 4 6 12 6 5 7 6
PA4 12 64 9 15 23 31 20 27 36
PA6 78 253 18 34 38 39 63 86 135
PA8 301 1083 34 78 73 83 131 203 350
PA10 1068 3572 50 113 111 121 221 374 737
PA12 3212 9519 73 172 146 171 339 576 1171
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Table A.3: Wall time for approximate MP2 calculations tested on PDA chains of different
lengths. These calculations have been performed employing 1 cpu. The values in the
table are in minutes / 1 cpu.

RI-MP2 DLPNO-MP2 LMP2

Molecule MP2 SCF RI-JK-SCF RI-JCOSX RI-JCOSX2 Normal Tight Normal Tight vTight

PDA1 3 2 1 1 2 5 3 1 1 1
PDA2 9 7 2 2 4 11 12 5 5 5
PDA3 22 16 4 5 8 28 27 12 12 12
PDA4 46 31 8 8 13 48 50 23 23 27
PDA5 72 48 14 13 21 72 84 39 37 45
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Figure A.1: Wall time for approximate CCSD calculations tested on PA chains of different
lengths with respect to the number of electrons. These calculations have been performed
employing 16 cpus. The time values are in minutes.
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Figure A.2: Wall time in minutes for approximate CCSD(T) calculations tested on PA
chains of different lengths with respect to the number of electrons and the corresponding
best fits. Data computed using 16 CPUs in a single node.
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of electrons. Data computed using 1 CPU.
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Table A.4: Parameters obtained from the best fits of the wall time with respect to the num-
ber of electrons of approximated CCSD(T), CCSD, CAM-B3LYP calculations performed
using 16 cpus for the PA chains, and from those of MP2 and CAM-B3LYP calculations
performed with 1 cpu for the PDA chains.

Method Approx a b [min / 1 cpu] r2

CCSD(T) - 6.28 1.44E-13 1.00
RI-CCSD(T) - 5.65 1.80E-11 1.00
DLPNO-CCSD(T0) Normal 2.13 2.11E-04 1.00
DLPNO-CCSD(T0) Tight 2.34 1.39E-04 1.00
DLPNO-CCSD(T1) Normal 1.90 1.68E-03 1.00
DLPNO-CCSD(T1) Tight 1.97 1.27E-03 1.00
LNO-CCSD(T) Normal 2.56 7.50E-05 1.00
LNO-CCSD(T) Tight 2.76 3.67E-05 1.00
LNO-CCSD(T) vTight 3.10 1.01E-05 1.00
CCSD - 5.48 8.24E-12 1.00
RI-CCSD - 5.56 2.87E-11 1.00
DLPNO-CCSD Normal 2.17 1.57E-04 0.97
DLPNO-CCSD Tight 2.13 4.05E-04 1.00
LNO-CCSD Normal 2.77 1.72E-05 1.00
LNO-CCSD Tight 2.93 1.02E-05 1.00
LNO-CCSD vTight 3.13 5.36E-06 1.00
MP2:SCF - 2.68 1.33E-04 1.00
RI-MP2:SCF - 2.55 2.13E-04 1.00
RI-MP2:RIJK-SCF - 2.98 3.74E-06 1.00
RI-MP2:RICOSX-SCF - 2.33 2.43E-04 1.00
RI-MP2:RICOSX2-SCF - 2.35 3.33E-04 1.00
DLPNO-MP2 Normal 2.27 1.92E-03 1.00
DLPNO-MP2 Tight 2.68 1.62E-04 1.00
LMP2 Normal 2.78 3.88E-05 1.00
LMP2 Tight 2.70 5.99E-05 1.00
LMP2 vTight 2.96 1.43E-05 1.00
CAM-B3LYP (from PAi) - 2.35 2.63E-05 0.95
CAM-B3LYP (from PDAi) - 2.28 1.40E-03 0.99
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A.1.0.1 Comparison between DLPNO-MP2 and DLPNO-MP2-α

We compare here the performance of analytic DLPNO-MP2 calculations for computing
polarizabilities (DLPNO-MP2-α) with numerical (from 9 energy computations) DLPNO-
MP2 calculations in Orca 5.

Table A.5: Wall time in minutes for approximate DLPNO-MP2 calculations tested on the
PDA chains of different lengths. The values of DLPNO-MP2 have been multiplied for 9
in order to properly estimate the time necessary to compute NLOPs. These calculations
have been performed employing 16 cpus. The values in the table are in minutes / 1 cpu.

DLPNO-MP2 DLPNO-MP2-α
Molecule Normal Tight Normal Tight
PDA1 90 72 191 55
PDA2 153 180 824 142
PDA3 324 378 267 311
PDA4 576 648 452 532
PDA5 873 1026 705 844

Figure A.4: Wall time for approximate DLPNO-MP2 calculations tested on the PDA
chains of different lengths with respect to the number of electrons and the corresponding
best fit. The values of DLPNO-MP2 have been multiplied for 9 in order to properly
estimate the time necessary to compute NLOPs. Data computed using 16 CPUs in a
single node.
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Table A.6: Parameters obtained from the best fits of the wall time with respect to the
number of electrons of approximated MP2 calculations computed with 16 cpus for PDA
chains.

Method Approx a b [min /1 cpu] r2

DLPNO-MP2 Normal 2.20 2.28E-03 0.98
DLPNO-MP2 Tight 2.26 1.73E-03 0.99
DLPNO-MP2-α Normal 2.25 1.29E-03 1.00
DLPNO-MP2-α Tight 2.41 5.54E-04 1.00
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A.2 Indicators of correlation

Table A.7: D1, D2 and T1 diagnostics calculated on the CCSD(T) wavefunction for
each molecule of the set. In red are highlighted the molecules which are multireference
according to the indicator proposed, namely: T1 ≥ 0.002, D1 ≥ 0.05 and D2 ≥ 0.18.

Molecule D1 D2 T1 Molecule D1 D2 T1
Carbon Monoxide 0.042 0.164 0.020 Pentane 0.017 0.146 0.008
Hydrogen fluoride 0.022 0.120 0.013 Cyclohexane 0.018 0.146 0.009
Dinitrogen 0.024 0.175 0.013 Hexane 0.017 0.147 0.008
Dioxygen 0.038 0.245 0.016 Heptane 0.017 0.147 0.008
Water 0.027 0.127 0.012 Octane 0.018 0.148 0.008
Carbon dioxide 0.051 0.156 0.020 H1 0.017 0.184 0.012
Cyanogen fluoride 0.031 0.180 0.016 H2 0.017 0.191 0.011
Hydrogen cyanide 0.028 0.185 0.015 H3 0.017 0.193 0.011
Hydrogen isocyanide 0.028 0.185 0.015 H4 0.017 0.195 0.011
Nitroxyl 0.045 0.213 0.018 H5 0.017 0.195 0.011
Dinitrogen oxide 0.049 0.192 0.021 H6 0.017 0.196 0.011
Ammonia 0.023 0.134 0.010 H7 0.017 0.196 0.011
Acetylene 0.027 0.188 0.013 H8 0.017 0.197 0.011
Formaldehyde 0.048 0.186 0.017 PMI1 0.034 0.197 0.013
Hydrogen Peroxide 0.030 0.183 0.015 PMI2 0.046 0.208 0.015
Nitrous acid 0.067 0.199 0.024 PMI3 0.058 0.213 0.016
Nitric acid 0.065 0.200 0.020 PMI4 0.070 0.215 0.017
Metane 0.011 0.135 0.007 PMI5 0.081 0.216 0.018
Carbonic acid 0.058 0.158 0.016 PMI6 0.090 0.217 0.019
Boric acid 0.048 0.129 0.014 PA2 0.028 0.197 0.010
Ethane 0.014 0.140 0.007 PA4 0.031 0.211 0.011
Propane 0.015 0.143 0.008 PA6 0.033 0.218 0.011
1-Butane 0.029 0.197 0.010 PA8 0.035 0.222 0.011
Benzene 0.024 0.191 0.010 PA10 0.036 0.225 0.011
Butane 0.016 0.144 0.008 PA12 0.037 0.227 0.011
1-Butanol 0.029 0.145 0.010 PDA1 0.033 0.208 0.011
Pentanal 0.051 0.179 0.013 PDA2 0.033 0.213 0.012
n-Buthylamine 0.027 0.145 0.009 PDA3 0.033 0.215 0.012
1-Penthanoic acid 0.058 0.163 0.014 PDA4 0.034 0.220 0.012
1-Pentanamide 0.059 0.163 0.013 PDA5 0.036 0.232 0.012
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Table A.8: Indicators based on natural orbital occupancies on the MP2 wavefunction for
each molecule of the set. In red are highlighted the molecules which are multireference
according to the indicator proposed. The threshold values have been published for a
CCSD wavefunction: NON ≥ 0.058, V̄ ≥ 0.03, MRI ≤ 0, and IND ≥ 0.03.

Molecule NON V̄ MRI IND

1-Butane 0.024 0.022 0.971 0.013
Water 0.013 0.020 0.997 0.012
Ammonia 0.011 0.021 0.997 0.012
Benzene 0.035 0.026 0.786 0.015
Butane 0.013 0.020 0.990 0.012
Pentanal 0.028 0.021 0.971 0.012
1-Pentanamide 0.027 0.021 0.974 0.012
1-Penthanoic acid 0.027 0.021 0.974 0.012
n-Buthylamine 0.015 0.021 0.987 0.012
1-Butanol 0.017 0.021 0.987 0.012
Acetylene 0.027 0.028 0.943 0.016
Ciclohexane 0.013 0.021 0.983 0.012
Carbon Monoxide 0.026 0.025 0.981 0.014
Carbon dioxide 0.031 0.024 0.967 0.013
Ethane 0.011 0.019 0.995 0.012
Cyanogen fluoride 0.033 0.025 0.926 0.014
H1 0.009 0.023 0.999 0.014
H2 0.012 0.025 0.999 0.015
Formaldehyde 0.029 0.023 0.977 0.013
Carbonic acid 0.027 0.021 0.983 0.012
Hydrogen Peroxide 0.030 0.023 0.971 0.013
H3 0.013 0.025 0.998 0.015
Boric acid 0.018 0.020 0.991 0.011
H4 0.014 0.026 0.997 0.016
H5 0.014 0.026 0.996 0.016
H6 0.014 0.026 0.996 0.016
H7 0.015 0.026 0.995 0.016
H8 0.015 0.026 0.994 0.016
Hydrogen cyanide 0.032 0.030 0.919 0.016
Heptane 0.014 0.021 0.982 0.012
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Molecule NON V̄ MRI IND

Hexane 0.014 0.020 0.985 0.012
Hydrogen fluoride 0.012 0.017 0.998 0.009
Hydrogen isocyanide 0.032 0.030 0.919 0.016
Nitroxyl 0.038 0.026 0.916 0.014
Nitrous acid 0.034 0.024 0.941 0.013
Nitric acid 0.046 0.025 0.854 0.014
Metane 0.008 0.018 0.998 0.011
Dinitrogen 0.032 0.029 0.935 0.016
Dinitrogen oxide 0.048 0.031 0.603 0.017
Dioxygen 0.036 0.024 0.935 0.013
Octane 0.015 0.021 0.980 0.012
PA10 0.037 0.024 0.806 0.014
PA12 0.039 0.024 0.763 0.014
PA2 0.022 0.022 0.982 0.013
PA4 0.029 0.023 0.947 0.014
PA6 0.033 0.024 0.902 0.014
PA8 0.036 0.024 0.853 0.014
PDA1 0.035 0.025 0.887 0.014
PDA2 0.039 0.026 0.784 0.015
PDA3 0.041 0.026 0.695 0.015
PDA4 0.043 0.026 0.618 0.015
PDA5 0.043 0.027 0.550 0.015
Pentane 0.013 0.020 0.987 0.012
PMI1 0.028 0.024 0.972 0.014
PMI2 0.032 0.025 0.931 0.014
PMI3 0.034 0.025 0.892 0.014
PMI4 0.034 0.025 0.865 0.014
PMI5 0.034 0.025 0.847 0.014
PMI6 0.034 0.025 0.835 0.014
Propane 0.012 0.020 0.992 0.012

A.3 Numerical errors

Before verifying the accuracy of the NLOPs, the associated numerical errors were ad-
dressed. In Table A.9, we collect the MARoE and the ratio %MARoE of the Romberg
error associated to each property for for the canonical and accelerated MP2 methods. We
shall stress here that the Romberg error is not equal to the numerical error, but constitutes
an estimation of its order of magnitude.
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Table A.10: Mean Absolute Romberg Error (MARoE) and the ratio between MARoE
and the mean value (%MARoE) obtained using the canonical and accelerated CCSD and
CCSD(T) methods for molecules of the of γ-NLO set.

DLPNO-CCSD DLPNO-CCSD(T0) DLPNO-CCSD(T1) LNO-CCSD LNO-CCSD(T) CCSD CCSD(T)

µ
MARoE 3.5E-04 2.2E-04 1.7E-04 1.2E-04 1.5E-04 1.1E-04 8.4E-05

%MARoE 0 0 0 0 0 0 0

α
MARoE 3.5E-01 6.0E-01 3.0E-01 2.1E-01 3.8E-01 2.4E-01 2.5E-01

%MARoE 0 1 0 0 0 0 0

β
MARoE 2.9E+02 7.0E+01 4.3E+01 3.8E+01 5.0E+01 3.3E+01 1.2E+01

%MARoE 59 40 29 17 26 15 15

γ
MARoE 4.2E+05 6.6E+05 3.4E+05 1.7E+05 3.4E+05 3.1E+04 3.1E+04

%MARoE 73 175 98 40 37 5 6

Table A.9: Mean Absolute Romberg Error (MARoE) and ratio between MARoE and the
mean value (%MARoE) of γ-NLO set for the acceleration techniques of MP2 method.
For the DLPNO-MP2-α method, the values of µ and α are computed analytically and
therefore there is no associated RE.

RI-MP2 RIJK-MP2 RIJCOSX2-MP2 LMP2 DLPNO-MP2 DLPNO-MP2(α) MP2

µ
MARoE 2.3E-07 1.1E-07 6.6E-07 1.9E-04 1.5E-04 - 2.3E-07

%MARoE 0 0 0 0 0 - 0

α
MARoE 7.4E-03 1.2E-03 2.7E-02 1.2E-01 4.0E-01 - 1.5E-03

%MARoE 0 0 0 0 0 - 0

β
MARoE 5.9E-01 2.1E-01 1.3E+00 2.9E+01 4.8E+01 2.4E-01 6.2E-01

%MARoE 0 0 1 16 18 0 0

γ
MARoE 2.2E+03 4.4E+03 1.6E+04 3.2E+05 4.0E+05 5.8E+03 2.3E+03

%MARoE 0 1 3 87 80 1 0

In Table A.10, we collect the MARoE and %MARoE of CCSD and CCSD(T) methods
and the corresponding approximations.
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A.4 Impact of the different convergence criteria on the

accuracy of localization schemes

Table A.11: Performance of localized CCSD methods with respect to CCSD(T) references
for molecules of the γ-NLO set. MV, MAE , RMSE and MAX are in [a.u.]

DLPNO-CCSD LNO-CCSD
Normal Tight Normal Tight vTight CCSD

µ

MV 7.2E-01 7.2E-01 7.2E-01 7.0E-01 7.2E-01 7.2E-01
MARoE 4.8E-04 3.5E-04 5.0E-04 1.3E-04 1.2E-04 1.1E-04

MAE 1.8E-02 2.1E-02 2.1E-02 2.2E-02 2.2E-02 2.2E-02
RMSE 2.7E-02 3.1E-02 3.1E-02 3.1E-02 3.2E-02 3.4E-02
MAX 7.1E-02 7.7E-02 8.9E-02 7.2E-02 8.2E-02 9.5E-02

%MAE 3 3 3 3 3 3

α

MV 1.2E+02 1.1E+02 1.1E+02 1.1E+02 1.1E+02 1.1E+02
MARoE 1.8E+00 3.5E-01 2.0E+00 5.4E-01 2.1E-01 2.5E-01

MAE 1.7E+01 3.8E+00 6.9E+00 4.5E+00 3.6E+00 3.0E+00
RMSE 7.1E+01 1.0E+01 2.2E+01 1.1E+01 8.5E+00 8.8E+00
MAX 4.3E+02 6.1E+01 1.4E+02 5.5E+01 4.4E+01 5.9E+01

%MAE 15 3 6 4 3 3

β

MV 7.5E+02 3.5E+02 3.7E+02 2.5E+02 2.2E+02 1.9E+02
MARoE 3.7E+02 2.1E+02 9.9E+01 4.5E+01 3.8E+01 3.3E+01

MAE 6.2E+02 2.3E+02 2.4E+02 1.2E+02 9.2E+01 5.1E+01
RMSE 2.0E+03 3.6E+02 6.2E+02 3.1E+02 2.5E+02 1.3E+02
MAX 7.9E+03 1.1E+03 2.3E+03 1.2E+03 9.2E+02 4.6E+02

%MAE 445 165 172 90 67 37

γ

MV 4.9E+06 5.7E+05 1.5E+07 1.2E+06 4.3E+05 3.8E+05
MARoE 3.1E+06 4.2E+05 6.7E+06 6.5E+05 1.7E+05 3.1E+04

MAE 4.5E+06 5.3E+05 1.5E+07 7.2E+05 2.2E+05 8.4E+04
RMSE 4.5E+07 1.9E+06 6.6E+07 5.3E+06 1.5E+06 6.0E+05
MAX 2.1E+08 8.6E+06 3.9E+08 2.5E+07 6.8E+06 2.7E+06

%MAE 992 117 3202 159 49 19
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Table A.12: Performance of localized CCSD(T) methods with respect to CCSD(T) refer-
ences for molecules of the γ-NLO set. MV, MAE , RMSE and MAX are in [a.u.]

DLPNO-CCSD(T0) DLPNO-CCSD(T1) LNO-CCSD(T)
Normal Tight Normal Tight Normal Tight vTight

µ

MV 7.0E-01 7.0E-01 7.0E-01 7.0E-01 7.0E-01 7.0E-01 7.0E-01
MARoE 3.5E-04 2.1E-04 4.1E-04 1.7E-04 3.2E-04 3.6E-04 1.5E-04

MAE 7.3E-03 3.4E-03 9.6E-03 3.2E-03 6.7E-03 4.1E-03 2.3E-03
RMSE 1.7E-02 6.6E-03 2.5E-02 7.5E-03 1.4E-02 8.9E-03 6.3E-03
MAX 7.6E-02 2.6E-02 8.2E-02 2.6E-02 5.2E-02 2.9E-02 2.6E-02

%MAE 1 1 1 1 1 1 0

α

MV 1.2E+02 1.1E+02 1.2E+02 1.2E+02 1.1E+02 1.2E+02 1.2E+02
MARoE 1.3E+00 6.0E-01 4.9E-01 3.0E-01 3.1E+00 6.4E-01 3.9E-01

MAE 1.2E+01 1.5E+00 2.9E+01 8.2E-01 7.3E+00 2.7E+00 1.2E+00
RMSE 5.7E+01 4.2E+00 1.1E+02 2.1E+00 2.2E+01 7.7E+00 3.9E+00
MAX 3.3E+02 2.0E+01 5.3E+02 1.0E+01 1.2E+02 4.0E+01 2.1E+01

%MAE 10 1 25 1 6 2 1

β

MV 7.3E+02 1.7E+02 6.9E+02 1.5E+02 4.2E+02 2.6E+02 1.9E+02
MARoE 3.7E+02 7.0E+01 3.7E+02 4.3E+01 1.6E+02 1.0E+02 5.0E+01

MAE 5.9E+02 1.1E+02 5.7E+02 2.7E+01 2.9E+02 1.3E+02 6.4E+01
RMSE 1.9E+03 3.1E+02 1.8E+03 4.8E+01 7.7E+02 3.2E+02 2.0E+02
MAX 7.7E+03 1.3E+03 7.5E+03 1.9E+02 3.0E+03 1.1E+03 9.1E+02

%MAE 433 78 414 19 209 92 46

γ

MV 1.1E+07 1.0E+06 3.7E+05 3.5E+05 6.9E+06 2.1E+06 9.1E+05
MARoE 7.9E+06 6.6E+05 1.9E+05 3.4E+05 7.9E+06 1.7E+08 3.4E+05

MAE 1.1E+07 7.0E+05 5.2E+05 2.3E+05 6.5E+06 1.8E+06 4.6E+05
RMSE 6.2E+07 3.8E+06 1.8E+06 1.1E+06 3.5E+07 7.4E+06 2.2E+06
MAX 4.4E+08 2.8E+07 1.0E+07 8.3E+06 2.7E+08 5.0E+07 1.5E+07

%MAE 2416 155 115 51 1430 403 103
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Table A.13: Performance of RI-MP2 methods with respect to CCSD(T) references for
molecules of the γ-NLO set. MV, MAE , RMSE and MAX are in [a. u.]

RI-MP2 RI-MP2:RIJK RIJCOSX-MP2 RIJCOSX2-MP2 MP2

µ

MV 7.2E-01 7.2E-01 7.2E-01 7.2E-01 7.2E-01
MARoE 2.3E-07 1.1E-07 1.0E-05 6.1E-07 2.3E-07

MAE 2.9E-02 2.9E-02 3.0E-02 3.0E-02 2.9E-02
RMSE 4.4E-02 4.4E-02 4.5E-02 4.4E-02 4.3E-02
MAX 1.3E-01 1.3E-01 1.3E-01 1.3E-01 1.3E-01

%MAE 4 4 4 4 4

α

MV 1.2E+02 1.2E+02 1.2E+02 1.2E+02 1.2E+02
MARoE 7.4E-03 1.2E-03 2.1E-02 2.7E-02 1.5E-03

MAE 3.7E+00 3.7E+00 5.0E+00 4.1E+00 3.7E+00
RMSE 7.2E+00 7.3E+00 1.4E+01 9.1E+00 7.3E+00
MAX 3.1E+01 3.1E+01 9.1E+01 4.6E+01 3.1E+01

%MAE 3 3 4 4 3

β

MV 2.4E+02 2.4E+02 2.2E+02 2.4E+02 2.4E+02
MARoE 5.9E-01 2.1E-01 1.7E+01 3.1E+00 6.2E-01

MAE 1.1E+02 1.1E+02 9.2E+01 1.1E+02 1.1E+02
RMSE 2.6E+02 2.7E+02 2.2E+02 2.8E+02 2.6E+02
MAX 8.3E+02 9.0E+02 8.4E+02 1.0E+03 8.3E+02

%MAE 77 80 67 81 78

γ

MV 6.0E+05 5.7E+05 5.6E+05 5.6E+05 5.2E+05
MARoE 2.2E+03 4.4E+03 1.3E+04 1.6E+04 2.3E+03

MAE 1.5E+05 1.3E+05 1.2E+05 1.1E+05 7.7E+04
RMSE 6.0E+05 4.4E+05 4.2E+05 3.4E+05 2.4E+05
MAX 3.4E+06 2.3E+06 2.3E+06 1.6E+06 1.2E+06

%MAE 34 28 27 25 17
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Table A.14: Performance of localized MP2 methods with respect to CCSD(T) references
for molecules of the γ-NLO set. MV, MAE , RMSE and MAX are in [a. u.].

LMP2 DLPNO-MP2 DLPNO-MP2-α
Normal Tight vTight Normal Tight Normal Tight

µ

MV 7.2E-01 7.2E-01 7.2E-01 7.2E-01 7.2E-01 7.2E-01 7.2E-01
MARoE 1.9E-04 1.4E-05 1.9E-04 2.1E-04 1.5E-04 x x

MAE 3.0E-02 3.0E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-02 2.9E-02
RMSE 4.6E-02 4.5E-02 4.3E-02 4.3E-02 4.3E-02 4.4E-02 4.4E-02
MAX 1.4E-01 1.3E-01 1.2E-01 1.3E-01 1.3E-01 1.3E-01 1.3E-01

%MAE 4 4 4 4 4 4 4

α

MV 1.2E+02 1.2E+02 1.2E+02 1.2E+02 1.2E+02 1.2E+02 1.2E+02
MARoE 2.0E+00 3.0E-01 1.2E-01 6.0E-01 4.0E-01 x x

MAE 4.4E+00 3.8E+00 3.4E+00 4.1E+00 4.3E+00 3.5E+00 3.6E+00
RMSE 9.9E+00 7.8E+00 6.7E+00 9.2E+00 9.3E+00 6.8E+00 7.1E+00
MAX 4.5E+01 3.4E+01 2.8E+01 4.8E+01 5.0E+01 2.9E+01 3.0E+01

%MAE 4 3 3 4 4 3 3

β

MV 3.1E+02 1.5E+02 1.8E+02 2.2E+02 2.7E+02 2.3E+02 2.4E+02
MARoE 4.2E+02 1.3E+01 2.9E+01 1.3E+02 4.8E+01 4.7E-01 2.4E-01

MAE 1.8E+02 6.1E+01 5.7E+01 9.5E+01 1.5E+02 1.0E+02 1.1E+02
RMSE 4.3E+02 1.3E+02 1.2E+02 2.4E+02 4.0E+02 2.5E+02 2.6E+02
MAX 1.7E+03 4.4E+02 3.6E+02 1.1E+03 1.7E+03 8.2E+02 8.7E+02

%MAE 133 44 41 69 105 74 78

γ

MV 1.2E+06 1.2E+06 3.7E+05 4.4E+05 5.0E+05 5.7E+05 5.5E+05
MARoE 6.0E+06 8.6E+05 3.2E+05 6.2E+05 4.0E+05 5.6E+03 5.8E+03

MAE 7.9E+05 7.6E+05 2.6E+05 1.9E+05 1.5E+05 1.3E+05 1.0E+05
RMSE 3.4E+06 4.2E+06 1.2E+06 6.6E+05 3.8E+05 4.5E+05 3.7E+05
MAX 2.0E+07 3.2E+07 8.9E+06 4.5E+06 1.9E+06 2.2E+06 2.1E+06

%MAE 174 166 58 42 32 28 23
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A.5 Performances of accelerated methods on the β-Set

Table A.15: Performance of DLPNO-CCSD(T1), MP2, RI-MP2 and CCSD methods for
the β-NLO set with respect to the reference CCSD(T). MV, MAE , RMSE and MAX are
in [a. u.].

DLPNO-CCSD(T1) RI-MP2 MP2 CCSD

µ

MV 3.3E+00 3.4E+00 3.4E+00 3.3E+00
MARoE 1.9E-03 2.8E-05 1.7E-08 5.0E-06

MAE 2.3E-02 1.0E-01 1.0E-01 5.6E-02
RMSE 3.1E-02 1.3E-01 1.2E-01 6.8E-02
MAX 9.8E-02 2.9E-01 2.9E-01 1.4E-01

%MAE 1 3 3 2

α

MV 3.5E+02 3.6E+02 3.6E+02 3.3E+02
MARoE 6.0E+00 6.0E-02 9.9E-05 7.3E-03

MAE 1.0E+01 1.7E+01 1.7E+01 1.3E+01
RMSE 2.3E+01 2.7E+01 2.7E+01 1.7E+01
MAX 1.2E+02 9.5E+01 9.4E+01 2.8E+01

%MAE 3 5 5 4

β

MV 1.0E+04 1.2E+04 1.2E+04 9.2E+03
MARoE 6.6E+03 1.0E+02 4.7E-01 1.8E+01

MAE 1.7E+03 2.8E+03 2.7E+03 7.7E+02
RMSE 2.6E+03 4.5E+03 4.5E+03 1.2E+03
MAX 6.8E+03 1.3E+04 1.3E+04 4.5E+03

%MAE 17 28 27 8

γ

MV 1.2E+07 2.9E+06 2.9E+06 2.3E+06
MARoE 2.3E+04 1.1E+05 1.6E+03 5.6E+04

MAE 9.6E+06 5.6E+05 5.2E+05 3.9E+05
RMSE 2.9E+07 9.8E+05 8.7E+05 7.0E+05
MAX 1.3E+08 3.1E+06 2.9E+06 3.2E+06

%MAE 355 20 21 14
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A.6 Performances of the accelerated methods merging

the β-NLO and γ-NLO-B sets.

Table A.16: Performance of DLPNO-CCSD(T1), MP2, RI-MP2 and CCSD methods for
β merging the β-NLO and γ-NLO-B set with respect to the reference CCSD(T). MV,
MAE , RMSE and MAX are in [a. u.].

DLPNO-CCSD(T1) RI-MP2 MP2 CCSD

β

MV 7.1E+03 8.5E+03 8.5E+03 6.6E+03
MAE 1.2E+03 2.0E+03 2.0E+03 5.6E+02

RMSE 2.2E+03 3.8E+03 3.8E+03 1.0E+03
MAX 6.8E+03 1.3E+04 1.3E+04 4.5E+03

%MAE 17 28 27 8
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Appendix B
Supporting information of Chapter 5

B.1 T1 diagnostics for molecules of the β-set

Table B.1: Values of T1 diagnostics for molecules of the β-set computed on the CCSD(T)
wavefunctions. The system is considered multireference if the value of the T1 diagnostic
is larger than 0.02.

Molecule T1 Molecule T1
PA2-NH2-CHO 0.017 PMI4-OH-NO2 0.021
PA2-NH2-NO2 0.020 PMI5-NH2-CHO 0.020
PA2-OH-CHO 0.017 PMI5-OH-CHO 0.020
PA2-OH-NO2 0.020 PMI5-OH-NO2 0.022
PA4-NH2-CHO 0.016 PA10-NH2-CHO 0.015
PA4-NH2-NO2 0.020 PA10-NH2-NO2 0.018
PA4-OH-CHO 0.016 PA10-OH-CHO 0.015
PA4-OH-NO2 0.019 PA10-OH-NO2 0.018
PA6-NH2-CHO 0.016 PA12-NH2-CHO 0.015
PA6-OH-CHO 0.016 PA12-NH2-NO2 0.017
PDA1-CHO-OH 0.017 PA12-OH-CHO 0.015
PDA1-NH2-CHO 0.016 PA12-OH-NO2 0.017
PDA1-OH-NO2 0.019 PA6-OH-NO2 0.019
PMI2-NH2-CHO 0.019 PA8-NH2-CHO 0.016
PMI2-NH2-NO2 0.021 PA8-NH2-NO2 0.018
PMI2-OH-CHO 0.019 PDA2-NH2-CHO 0.015
PMI2-OH-NO2 0.021 PDA2-NH2-NO2 0.018
PMI3-NH2-CHO 0.019 PDA2-OH-CHO 0.015
PMI3-NH2-NO2 0.021 PDA2-OH-NO2 0.018
PMI3-OH-CHO 0.019 PDA3-NH2-CHO 0.015
PMI3-OH-NO2 0.021 PDA3-NH2-NO2 0.017
PMI4-OH-CHO 0.019 PDA3-OH-CHO 0.015
PA6-NH2-NO2 0.019 PDA3-OH-NO2 0.017
PA8-OH-CHO 0.015 PMI5-NH2-NO2 0.022
PA8-OH-NO2 0.018 PMI6-NH2-CHO 0.020
PDA1-NH2-NO2 0.019 PMI6-NH2-NO2 0.022
PMI4-NH2-CHO 0.020 PMI6-OH-CHO 0.020
PMI4-NH2-NO2 0.021 PMI6-OH-NO2 0.022
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B.2 Evaluation of spin contamination in the unrestricted

framework

Table B.2: ⟨Ŝ2⟩ values calculated for molecules of the γ-NLO-set using unrestricted HF
and DFT methods with different exchange-correlation functionals.

Molecule Functional ⟨Ŝ2⟩ Molecule Functional ⟨Ŝ2⟩
O2 UHF 2.0 PA10 UHF 1.3
HNO UHF 0.5 PDA3 UHF 1.6
N2O UHF 0.3 PA12 UHF 1.6
HNO2 UHF 0.2 PDA4 UHF 2.2
HNO3 UHF 0.2 PDA5 UHF 2.7
PMI1 UHF 0.1 O2 UCAM-B3LYP 2.0
PMI2 UHF 0.4 HNO UCAM-B3LYP 0.2
PMI3 UHF 0.7 O2 UB3LYP 2.0
Benzene UHF 0.5 HNO UB3LYP 0.2
PDA1 UHF 0.5 O2 UBLYP 2.0
PA6 UHF 0.7 HNO UBLYP 0.2
PMI4 UHF 1.0 O2 UωB97X-D 2.0
PMI5 UHF 1.4 HNO UωB97X-D 0.1
PA8 UHF 1.0 O2 UωB97M-D 2.0
PDA2 UHF 1.1 O2 UωB97X-D 2.0
PMI6 UHF 1.7 HNO UωB97X-V 0.0
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Table B.3: ⟨Ŝ2⟩ values calculated for molecules of the β-NLO-set using the unrestricted
HF method.

Molecule Functional ⟨Ŝ2⟩ Molecule Functional ⟨Ŝ2⟩
PA2-OH-CHO UHF 0.1 PA8-OH-CHO UHF 1.4
PA2-OH-NO2 UHF 0.5 PA8-OH-NO2 UHF 1.7
PA2-NH2-NO2 UHF 0.4 PDA2-OH-CHO UHF 1.8
PMI2-OH-CHO UHF 0.0 PDA2-OH-NO2 UHF 2.1
PMI2-OH-NO2 UHF 0.5 PMI5-NH2-CHO UHF 0.9
PMI2-NH2-NO2 UHF 0.4 PMI5-NH2-NO2 UHF 1.2
PA4-OH-CHO UHF 0.6 PA8-NH2-CHO UHF 1.4
PA4-OH-NO2 UHF 0.9 PA8-NH2-NO2 UHF 1.6
PA4-NH2-CHO UHF 0.6 PDA2-NH2-CHO UHF 1.8
PA4-NH2-NO2 UHF 0.9 PDA2-NH2-NO2 UHF 2.1
PMI3-OH-CHO UHF 0.5 PMI6-OH-CHO UHF 1.6
PMI3-OH-NO2 UHF 0.8 PMI6-OH-NO2 UHF 1.8
PDA1-CHO-OH UHF 1.1 PMI6-NH2-CHO UHF 1.3
PDA1-OH-NO2 UHF 1.3 PMI6-NH2-NO2 UHF 1.6
PMI3-NH2-NO2 UHF 0.4 PA10-OH-CHO UHF 1.7
PDA1-NH2-CHO UHF 1.0 PA10-OH-NO2 UHF 2.0
PDA1-NH2-NO2 UHF 1.3 PA10-NH2-CHO UHF 1.7
PA6-OH-CHO UHF 1.0 PA10-NH2-NO2 UHF 2.0
PA6-OH-NO2 UHF 1.3 PDA3-OH-CHO UHF 2.5
PMI4-OH-CHO UHF 0.9 PDA3-OH-NO2 UHF 2.8
PMI4-OH-NO2 UHF 1.2 PDA3-NH2-CHO UHF 2.5
PA6-NH2-CHO UHF 1.0 PDA3-NH2-NO2 UHF 2.8
PA6-NH2-NO2 UHF 1.3 PA12-OH-CHO UHF 2.1
PMI4-NH2-CHO UHF 0.5 PA12-OH-NO2 UHF 2.4
PMI4-NH2-NO2 UHF 0.8 PA12-NH2-CHO UHF 2.0
PMI5-OH-CHO UHF 1.2 PA12-NH2-NO2 UHF 2.3
PMI5-OH-NO2 UHF 1.5

194



B.3 Comparison between MP3:HF and RI-MP3:HF

Table B.4: Performance of MP3:HF and RI-MP3:HF methods for calculating NLO prop-
erties with respect to the reference CCSD(T) values, for molecules of the γ-NLO-set.
Units are a. u.

MP3 RI-MP3
Ref. orbitals HF HF

µ

MV 7.3E-01 7.3E-01
MAE 2.4E-02 2.4E-02

RMSD 3.6E-02 3.6E-02
MAX 9.4E-02 9.4E-02

%MAE 3 3

α

MV 9.3E+01 9.3E+01
MAE 2.3E+00 2.3E+00

RMSD 4.2E+00 4.1E+00
MAX 1.8E+01 1.8E+01

%MAE 2 2

β

MV 2.2E+02 2.2E+02
MAE 8.9E+01 8.6E+01

RMSD 2.1E+02 2.0E+02
MAX 6.6E+02 6.1E+02

%MAE 65 62

γ

MV 1.9E+05 1.9E+05
MAE 2.9E+04 2.9E+04

RMSD 9.5E+04 1.0E+05
MAX 5.0E+05 5.6E+05

%MAE 6 6
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B.4 Performance of MP3:KS for computing dipole mo-

ments

Table B.5: Performances of MP3:KS methods for the calculation of the dipole moment
with respect to reference CCSD(T) values, for molecules from the joint γ-NLO-B and
β-NLO sets. Units are a.u.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 2.6E+00 2.6E+00 2.6E+00 2.7E+00 2.7E+00 2.7E+00 2.7E+00 2.7E+00 2.7E+00
MAE 8.0E-02 7.2E-02 8.0E-02 1.4E-01 1.3E-01 1.3E-01 1.3E-01 1.3E-01 1.3E-01

RMSD 1.1E-01 1.0E-01 1.1E-01 1.7E-01 1.7E-01 1.6E-01 1.6E-01 1.6E-01 1.6E-01
MAX 2.9E-01 3.1E-01 2.9E-01 4.3E-01 4.2E-01 3.9E-01 3.9E-01 3.9E-01 4.0E-01

%MAE 3 3 3 5 5 5 5 5 5
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B.5 Performance of MP3:KS for computing NLO prop-

erties

Table B.6: Performance of MP3:KS methods for the calculation of the NLO properties
with respect to reference CCSD(T) values, for molecules from the γ-NLO set. Units are
a.u.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

MV 7.2E-01 7.3E-01 7.2E-01 7.5E-01 7.4E-01 7.4E-01 7.4E-01 7.4E-01 7.5E-01
MAE 3.0E-02 2.0E-02 2.0E-02 5.0E-02 4.0E-02 4.0E-02 4.0E-02 4.0E-02 4.0E-02

RMSD 4.0E-02 4.0E-02 3.0E-02 8.0E-02 7.0E-02 7.0E-02 6.0E-02 7.0E-02 7.0E-02
MAX 1.0E-01 9.0E-02 9.0E-02 2.0E-01 2.0E-01 2.0E-01 2.0E-01 2.0E-01 2.0E-01

µ

%MAE 4 3 3 7 6 6 6 6 6
MV 1.2E+02 1.1E+02 1.1E+02 1.1E+02 1.1E+02 1.2E+02 1.2E+02 1.2E+02 1.2E+02

MAE 3.7E+00 3.4E+00 3.0E+00 8.4E+00 3.5E+00 1.5E+00 1.5E+00 1.5E+00 1.3E+00
RMSD 1.1E+01 1.2E+01 1.4E+01 6.2E+01 2.3E+01 2.9E+00 2.9E+00 2.4E+00 2.3E+00
MAX 3.1E+01 4.3E+01 5.9E+01 2.7E+02 9.9E+01 7.3E+00 7.5E+00 8.3E+00 5.1E+00

α

%MAE 3 3 3 7 3 1 1 1 1
MV 2.4E+02 2.2E+02 1.8E+02 2.3E+02 2.0E+02 1.1E+02 1.1E+02 9.7E+01 1.0E+02

MAE 1.1E+02 8.9E+01 5.0E+01 1.0E+02 6.7E+01 2.6E+01 2.8E+01 4.3E+01 3.9E+01
RMSD 2.7E+02 2.1E+02 1.3E+02 3.0E+02 2.2E+02 7.3E+01 7.6E+01 1.2E+02 1.1E+02
MAX 9.1E+02 6.6E+02 4.7E+02 1.2E+03 9.4E+02 3.1E+02 3.3E+02 5.2E+02 4.7E+02

β

%MAE 80 65 36 72 48 19 20 31 28
MV 5.2E+05 4.2E+05 3.8E+05 8.8E+05 3.8E+05 8.8E+04 4.6E+05 4.5E+05 4.5E+05

MAE 8.2E+04 6.4E+04 8.4E+04 4.4E+05 1.6E+05 5.0E+04 4.9E+04 3.8E+04 4.1E+04
RMSD 2.6E+05 2.8E+05 3.7E+05 1.8E+06 7.9E+05 1.6E+05 1.6E+05 1.3E+05 1.5E+05
MAX 1.1E+06 2.0E+06 2.7E+06 1.2E+07 5.9E+06 7.5E+05 9.6E+05 8.7E+05 9.9E+05

γ

%MAE 18 14 19 98 36 11 11 8 9
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Table B.7: Performance of MP3:KS methods for the calculation of the NLO properties
with respect to reference CCSD(T) values, for molecules from the β-NLO set. Units are
a.u.

MP2 MP3 CCSD MP3:KS
Ref. orbitals HF HF HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 3.4E+00 3.4E+00 3.3E+00 3.5E+00 3.5E+00 3.5E+00 3.5E+00 3.5E+00 3.5E+00
MAE 1.0E-01 9.2E-02 5.6E-02 1.8E-01 1.7E-01 1.6E-01 1.6E-01 1.6E-01 1.7E-01

RMSD 1.2E-01 1.2E-01 6.7E-02 2.0E-01 2.0E-01 1.8E-01 1.8E-01 1.8E-01 1.9E-01
MAX 2.9E-01 3.1E-01 1.4E-01 4.3E-01 4.2E-01 3.9E-01 3.9E-01 3.9E-01 4.0E-01

%MAE 3 3 2 5 5 5 5 5 5

α

MV 3.6E+02 3.4E+02 3.3E+02 3.7E+02 3.6E+02 3.5E+02 3.5E+02 3.5E+02 3.5E+02
MAE 1.7E+01 7.5E+00 1.3E+01 2.2E+01 1.4E+01 7.7E+00 1.0E+01 5.6E+00 5.7E+00

RMSD 2.7E+01 1.2E+01 1.7E+01 3.5E+01 2.2E+01 1.1E+01 1.7E+01 7.0E+00 7.1E+00
MAX 9.4E+01 3.8E+01 5.1E+01 1.2E+02 7.8E+01 3.4E+01 8.5E+01 1.8E+01 1.9E+01

%MAE 5 2 4 6 4 2 3 2 2

β

MV 1.2E+04 1.0E+04 9.2E+03 2.2E+04 1.6E+04 1.2E+04 1.1E+04 1.0E+04 1.0E+04
MAE 2.8E+03 1.8E+03 7.7E+02 1.3E+04 7.0E+03 2.6E+03 2.1E+03 1.3E+03 1.3E+03

RMSD 4.5E+03 2.7E+03 1.2E+03 2.7E+04 1.3E+04 4.1E+03 3.2E+03 1.8E+03 1.9E+03
MAX 1.3E+04 7.8E+03 4.5E+03 1.2E+05 5.3E+04 1.3E+04 9.5E+03 4.9E+03 5.3E+03

%MAE 28 18 8 131 70 26 21 13 13

γ

MV 2.9E+06 2.5E+06 2.3E+06 6.6E+06 5.1E+06 3.3E+06 3.1E+06 2.7E+06 2.8E+06
MAE 5.2E+05 3.2E+05 3.9E+05 4.0E+06 2.5E+06 8.0E+05 5.9E+05 2.7E+05 3.0E+05

RMSD 8.7E+05 4.8E+05 7.0E+05 1.0E+07 6.3E+06 1.6E+06 1.1E+06 4.1E+05 4.9E+05
MAX 2.9E+06 1.6E+06 3.2E+06 4.7E+07 3.2E+07 6.5E+06 4.2E+06 1.4E+06 2.0E+06

%MAE 19 12 14 147 94 30 22 10 11
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B.6 Performance of MP2:KS for computing NLO prop-

erties

Table B.8: Performance of MP2:KS methods for the calculation of the NLO properties
with respect to reference CCSD(T) values, for molecules from both the γ-NLO and β-
NLO sets. Units are a.u.

MP2 MP2:KS
Ref. orbitals HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 2.6E+00 9.7E-01 7.3E-01 7.4E-01 7.4E-01 7.4E-01 7.5E-01
MAE 8.0E-02 6.6E-01 5.4E-01 4.7E-01 4.5E-01 4.3E-01 4.4E-01

RMSD 1.1E-01 9.6E-01 7.1E-01 6.5E-01 6.4E-01 6.2E-01 6.3E-01
MAX 2.9E-01 4.4E+00 2.8E+00 2.9E+00 2.9E+00 2.9E+00 2.8E+00

%MAE 3 68 73 63 61 58 58

α

MV 2.4E+02 1.4E+02 1.3E+02 1.3E+02 1.3E+02 1.9E+02 1.1E+02
MAE 1.0E+01 8.2E+01 6.2E+01 4.2E+01 3.8E+01 6.7E+01 3.8E+01

RMSD 2.0E+01 1.5E+02 1.1E+02 7.1E+01 6.4E+01 2.7E+02 6.8E+01
MAX 9.4E+01 6.9E+00 5.1E+00 4.1E+00 4.0E+00 3.6E+00 3.8E+00

%MAE 4 71 53 36 33 58 33

β

MV 1.7E+06 1.9E+04 1.4E+04 1.1E+04 1.0E+04 9.4E+03 9.5E+03
MAE 2.9E+05 1.3E+04 8.2E+03 4.7E+03 3.7E+03 2.8E+03 2.9E+03

RMSD 6.3E+05 2.8E+04 2.0E+04 1.0E+04 7.9E+03 5.7E+03 6.0E+03
MAX 2.9E+06 1.4E+05 1.1E+05 4.7E+04 3.4E+04 2.3E+04 2.4E+04

%MAE 19 176 114 65 52 39 41

γ

MV 8.5E+03 5.1E+06 3.8E+06 2.6E+06 3.0E+06 2.2E+06 1.8E+06
MAE 2.0E+03 4.0E+06 2.3E+06 1.1E+06 1.6E+06 7.1E+05 6.9E+05

RMSD 4.5E+03 1.9E+07 8.3E+06 3.5E+06 4.8E+06 2.3E+06 2.0E+06
MAX 1.3E+04 1.1E+04 1.0E+03 2.7E+03 3.3E+03 2.8E+03 3.1E+03

%MAE 28 262 150 73 104 46 45
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Table B.9: Performance of MP2:KS methods for the calculation of the NLO properties
with respect to reference CCSD(T) values, for molecules of the γ-NLO set. Units are a.u.

MP2 MP2:KS
Ref. orbitals HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 7.0E-01 9.7E-01 7.3E-01 7.4E-01 7.4E-01 7.4E-01 7.5E-01
MAE 3.0E-02 2.7E-01 4.5E-02 4.9E-02 4.9E-02 5.0E-02 4.4E-02

RMSD 4.0E-02 5.0E-01 6.7E-02 7.9E-02 7.8E-02 8.2E-02 7.3E-02
MAX 1.0E-01 1.8E+00 1.8E-01 2.5E-01 2.5E-01 2.6E-01 2.3E-01

%MAE 4 38 6 7 7 7 6

α

MV 1.2E+02 1.5E+02 1.4E+02 1.3E+02 1.3E+02 1.8E+02 1.1E+02
MAE 3.7E+00 2.9E+01 2.2E+01 1.5E+01 1.4E+01 6.5E+01 1.8E+01

RMSD 1.1E+01 1.5E+02 1.0E+02 6.2E+01 5.7E+01 3.5E+02 9.8E+01
MAX 3.1E+01 5.5E+02 3.7E+02 2.1E+02 1.9E+02 1.7E+03 3.7E+02

%MAE 3 25 19 13 12 56 15

β

MV 2.4E+02 7.7E+02 3.4E+02 6.5E+01 3.7E+01 5.8E+01 2.4E+02
MAE 1.1E+02 6.3E+02 2.0E+02 8.9E+01 1.2E+02 9.3E+01 1.1E+02

RMSD 2.7E+02 2.2E+03 7.1E+02 2.5E+02 3.4E+02 2.7E+02 2.6E+02
MAX 9.1E+02 1.0E+04 3.2E+03 1.0E+03 1.5E+03 1.1E+03 8.3E+02

%MAE 80 456 147 65 84 67 78

γ

MV 5.2E+05 4.0E+06 2.0E+06 1.0E+04 9.0E+05 7.0E+05 1.5E+05
MAE 8.2E+04 3.5E+06 1.6E+06 5.8E+05 4.4E+05 2.8E+05 3.6E+05

RMSD 2.6E+05 2.1E+07 8.5E+06 2.7E+06 2.0E+06 1.2E+06 1.6E+06
MAX 1.1E+06 1.5E+08 6.1E+07 1.8E+07 1.3E+07 7.3E+06 1.1E+07

%MAE 18 776 363 129 98 62 80

Table B.10: Performance of MP2:KS methods for the calculation of the NLO properties
with respect to reference CCSD(T) values, for molecules of the β-NLO set. Units are in
a.u.

MP2 MP2:KS
Ref. orbitals HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 3.4E+00 3.8E+00 3.8E+00 3.7E+00 3.7E+00 3.6E+00 3.6E+00
MAE 1.0E-01 5.3E-01 4.6E-01 3.6E-01 3.3E-01 3.0E-01 3.1E-01

RMSD 1.2E-01 6.7E-01 5.5E-01 4.2E-01 3.9E-01 3.5E-01 3.6E-01
MAX 2.9E-01 1.4E+00 1.2E+00 9.1E-01 8.4E-01 7.4E-01 7.5E-01

%MAE 3 16 14 11 10 9 9

α

MV 3.6E+02 4.9E+02 4.5E+02 4.2E+02 4.1E+02 4.0E+02 4.0E+02
MAE 1.7E+01 1.4E+02 1.0E+02 6.9E+01 6.0E+01 5.1E+01 5.3E+01

RMSD 2.7E+01 2.0E+02 1.5E+02 9.6E+01 8.5E+01 7.1E+01 7.3E+01
MAX 9.4E+01 5.9E+02 4.1E+02 2.5E+02 2.2E+02 1.9E+02 1.9E+02

%MAE 5 42 30 20 17 15 15

β

MV 1.2E+04 2.4E+04 2.0E+04 1.6E+04 1.4E+04 1.3E+04 1.3E+04
MAE 2.8E+03 1.5E+04 1.1E+04 6.4E+03 5.2E+03 3.9E+03 4.1E+03

RMSD 4.5E+03 3.1E+04 2.3E+04 1.2E+04 9.3E+03 6.8E+03 7.1E+03
MAX 1.3E+04 1.4E+05 1.1E+05 4.7E+04 3.4E+04 2.3E+04 2.4E+04

%MAE 28 149 112 64 52 39 41

γ

MV 2.9E+06 6.1E+06 5.6E+06 4.4E+06 5.3E+06 3.8E+06 3.7E+06
MAE 5.2E+05 4.0E+06 3.1E+06 1.8E+06 3.0E+06 1.1E+06 1.0E+06

RMSD 8.7E+05 8.9E+06 8.3E+06 4.3E+06 6.8E+06 3.0E+06 2.3E+06
MAX 2.9E+06 3.2E+07 4.0E+07 2.0E+07 2.7E+07 1.8E+07 9.4E+06

%MAE 19 148 113 65 109 42 38
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B.7 Performance of DFT

Table B.11: Performance of HF and DFT methods for the calculation of the NLO proper-
ties with respect to reference CCSD(T) values, for molecules from the γ-NLO and β-NLO
sets. Units are a.u.

Ref. orbitals HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 3.2E+00 3.2E+00 3.2E+00 3.0E+00 3.0E+00 3.0E+00 3.9E+00
MAE 6.5E-01 7.9E-01 6.8E-01 6.7E-01 6.1E-01 6.1E-01 6.1E-01

RMSD 8.0E-01 9.6E-01 8.4E-01 8.3E-01 7.8E-01 7.9E-01 7.9E-01
MAX 1.8E+00 3.0E+00 3.2E+00 3.2E+00 3.3E+00 3.2E+00 3.2E+00

%MAE 25 31 27 26 24 24 21

α

MV 2.3E+02 2.1E+02 2.2E+02 2.3E+02 2.3E+02 2.3E+02 2.3E+02
MAE 2.2E+01 7.2E+01 4.5E+01 2.3E+01 2.2E+01 2.0E+01 2.7E+01

RMSD 3.5E+01 1.4E+02 8.9E+01 4.3E+01 4.0E+01 3.3E+01 4.8E+01
MAX 4.9E+00 9.8E+00 7.5E+00 6.7E+00 6.7E+00 6.4E+00 6.5E+00

%MAE 10 32 20 10 10 9 12

β

MV 3.5E+03 9.0E+03 8.3E+03 6.9E+03 6.4E+03 5.8E+03 5.9E+03
MAE 3.7E+03 4.5E+03 4.1E+03 2.3E+03 2.0E+03 1.7E+03 1.7E+03

RMSD 5.5E+03 1.1E+04 9.2E+03 4.2E+03 3.4E+03 2.7E+03 2.7E+03
MAX 1.9E+04 5.8E+04 5.1E+04 2.0E+04 1.3E+04 9.5E+03 9.6E+03

%MAE 52 63 57 32 28 24 24

γ

MV 7.4E+05 2.8E+06 2.2E+06 1.6E+06 1.4E+06 1.3E+06 1.4E+06
MAE 8.0E+05 2.1E+06 1.2E+06 5.1E+05 4.2E+05 3.5E+05 4.7E+05

RMSD 1.7E+06 9.2E+06 4.4E+06 1.3E+06 9.2E+05 7.4E+05 1.3E+06
MAX 1.4E+04 3.3E+03 8.4E+03 9.3E+03 9.8E+03 9.5E+03 9.3E+03

%MAE 52 134 80 33 27 23 30
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Table B.12: Performance of HF and DFT methods for the calculation of the NLO prop-
erties with respect to reference CCSD(T) values, for molecules of the γ-NLO set. Units
are a.u.

Ref. orbitals HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 9.0E-01 7.0E-01 8.0E-01 8.0E-01 8.0E-01 8.0E-01 8.0E-01
MAE 2.4E-01 3.1E-02 6.3E-02 9.2E-02 9.6E-02 9.9E-02 1.2E-01

RMSD 4.2E-01 4.3E-02 1.2E-01 1.7E-01 1.8E-01 2.0E-01 2.4E-01
MAX 1.4E+00 1.2E-01 4.2E-01 5.9E-01 6.3E-01 6.7E-01 7.4E-01

%MAE 34 4 9 13 14 14 17

α

MV 1.2E+02 1.7E+02 1.5E+02 1.3E+02 1.3E+02 1.3E+02 1.4E+02
MAE 9.4E+00 5.2E+01 3.4E+01 1.9E+01 1.7E+01 1.2E+01 2.9E+01

RMSD 3.1E+01 2.3E+02 1.5E+02 7.4E+01 6.8E+01 4.4E+01 1.4E+02
MAX 8.0E+01 8.7E+02 5.4E+02 2.5E+02 2.3E+02 1.4E+02 5.4E+02

%MAE 8 44 30 16 15 10 25

β

MV 2.4E+02 9.0E+02 5.5E+02 2.2E+02 1.9E+02 1.2E+02 1.4E+02
MAE 1.1E+02 7.6E+02 4.1E+02 8.4E+01 5.8E+01 4.9E+01 5.1E+01

RMSD 2.4E+02 2.4E+03 1.2E+03 2.0E+02 1.3E+02 1.6E+02 1.4E+02
MAX 7.5E+02 1.0E+04 5.2E+03 6.3E+02 4.7E+02 7.4E+02 6.0E+02

%MAE 76 552 298 61 42 35 37

γ

MV 2.9E+05 2.8E+06 1.6E+06 7.1E+05 6.2E+05 5.2E+05 6.3E+05
MAE 1.6E+05 2.4E+06 1.1E+06 2.6E+05 1.7E+05 7.1E+04 2.1E+05

RMSD 1.6E+05 1.2E+07 5.5E+06 1.2E+06 7.3E+05 2.3E+05 1.0E+06
MAX 4.5E+06 9.1E+07 3.9E+07 7.7E+06 4.7E+06 1.3E+06 7.9E+06

%MAE 35 527 244 57 37 16 46

Table B.13: Performance of HF and DFT methods for the calculation of the NLO prop-
erties with respect to reference CCSD(T) values, for molecules of the β-NLO set. Units
are a.u.

Ref. orbitals HF BLYP B3LYP CAM ωXD ωXV ωMV

µ

MV 4.1E+00 4.2E+00 4.1E+00 4.0E+00 3.9E+00 3.9E+00 3.9E+00
MAE 8.2E-01 8.8E-01 8.0E-01 6.3E-01 6.2E-01 5.3E-01 5.3E-01

RMSD 9.1E-01 1.1E+00 9.1E-01 6.9E-01 6.7E-01 5.7E-01 5.7E-01
MAX 1.8E+00 2.4E+00 1.9E+00 1.2E+00 1.2E+00 1.0E+00 9.7E-01

%MAE 25 26 24 19 19 16 16

α

MV 3.5E+02 2.5E+02 2.9E+02 3.3E+02 3.3E+02 3.4E+02 3.4E+02
MAE 3.5E+01 9.4E+01 5.6E+01 2.8E+01 2.7E+01 2.9E+01 2.9E+01

RMSD 4.6E+01 1.4E+02 8.2E+01 3.8E+01 3.7E+01 3.8E+01 3.8E+01
MAX 1.1E+02 5.9E+02 4.1E+02 2.5E+02 2.2E+02 1.9E+02 1.9E+02

%MAE 10 27 16 8 8 8 8

β

MV 4.9E+03 1.2E+04 1.2E+04 9.7E+03 9.0E+03 8.2E+03 8.3E+03
MAE 5.2E+03 5.9E+03 5.5E+03 3.1E+03 2.8E+03 2.4E+03 2.4E+03

RMSD 6.6E+03 1.3E+04 1.1E+04 5.0E+03 4.0E+03 3.2E+03 3.2E+03
MAX 1.9E+04 5.8E+04 5.1E+04 2.0E+04 1.3E+04 9.5E+03 9.6E+03

%MAE 52 59 55 31 28 24 24

γ

MV 1.2E+06 2.8E+06 2.9E+06 2.5E+06 2.3E+06 2.1E+06 2.1E+06
MAE 1.5E+06 1.7E+06 1.4E+06 7.8E+05 6.9E+05 6.4E+05 6.1E+05

RMSD 2.3E+06 2.9E+06 2.9E+06 1.4E+06 1.1E+06 1.0E+06 9.8E+05
MAX 7.5E+06 8.7E+06 1.2E+07 5.0E+06 3.5E+06 3.9E+06 3.7E+06

%MAE 55 64 50 29 26 24 23
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Appendix C
Supporting information of Chapter 6

C.1 Performance of RI-CC2 and RI-MP2 methods for

dispersion interactions

In order to verify that the choice of RI-CC2 as reference geometry is valid for the sys-
tems under investigation, we evaluated the performances of both RI-CC2 and RI-MP2
methods on the benchmark dataset Diet-GMTKN55[1]. Among all the molecules of the
set we reproduced 20 energy differences which belong to the subset of "Intramolecular
noncovalent interactions", namely the molecules of Diet-GMTKN55 which also belong to
the sets: ACONF, BUT14DIOL, IDISP, MCONF, PCONF21, SCONF and UPU23. The
calculations have been performed using the cc-pVDZ basis set. The results are reported
in Table C.1. Both RI-CC2 and RI-MP2 methods reproduce the reference data to a good
accuracy (the MAE is 1.93 for RI-CC2 and 1.76 for RI-MP2).
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Table C.1: Collection of the energies of the Intramolecular non-covalent interactions on
the Diet-GMTKN55. On the first column is indicated the name of the corresponding
subset, while on the second and third columns the molecules considered as reactant and
product for the calculation of the energy difference. All the energies are in kcal/mol. The
geometries and reference methods can be found in the reference paper[1].

Dataset Reactants Products ∆ERef ∆ERI−CC2 ∆ERI−MP2

ACONF H_ttt H_g+x-t+ 2.63 2.78 2.79
H_ttt H_x+g-g- 3.08 3.26 3.29

BUt14DIOL B1 B3 0.30 0.50 0.44
B1 B30 2.85 4.24 4.15
B1 B33 2.63 5.57 5.25
B1 B39 3.06 4.71 4.58
B1 B40 3.10 5.40 5.05
B1 B43 3.29 4.97 4.75
B1 B44 3.59 6.04 5.67
B1 B54 3.15 6.04 5.67

IDISP octane1 octane2 -1.21 4.27 3.53
MCONF 1 12 4.45 4.31 3.83

1 21 3.11 5.60 5.38
1 31 4.86 6.62 6.42

PCONF21 99 366 0.70 3.96 3.62
SCONF G1 G3 6.16 -0.63 0.29
UPU23 2p 1b 2.97 1.20 1.80

2p 1g 2.20 1.58 1.81
2p 7a 7.26 7.43 5.80
2p 4b 5.48 5.74 5.80

RMSE 1.41 1.28
MAE 1.93 1.76
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C.2 Impact of the basis set

Table C.2: Z-E energy differences (∆EEZ , kcal/mol) calculated at the RI-CC2 level using
the cc-pVDZ and cc-pVTZ basis sets.

a (R = H) b (R = Me)
cc-pVDZ 11.5 10.9
cc-pVTZ 10.8 10.0
Difference 0.7 0.9

Table C.3: RMSD (Å) between geometries optimized at the RI-CC2/cc-pVDZ and RI-
CC2/cc-pVTZ levels for E and Z isomers.

Molecule RMSD (E ) RMSD (Z )
a (R = H) 0.000 0.000
b (R = Me) 0.000 0.026

C.3 Density functional approximations

Table C.4: DFT exchange-correlation functionals (DFAs) considered in this study, with
the type of approximation, amount of exact HF exchange (HFX) and applied dispersion
correction (Disp.).

DFA acronym Type % of HFX Ref. Disp.
PBE pure GGA 0 2 PBE-D3
M06L pure GGA 0 3 -
rPW86PBE pure GGA 0 4 rPW86PBE-VV
B3LYP hybrid GGA 20 5 B3LYP-D3
PBE0 hybrid GGA 25 6 PBE0-D3
M06 hybrid GGA 27 3 -
BH&H hybrid GGA 50 7 (G16 version) -
M06-2X hybrid GGA 57 3 M06-2X-D3
M06-HF hybrid GGA 100 3 -
CAM-B3LYP hybrid RS (0.33) 19 (SR), 65 (LR) 8 CAM-B3LYP-D3
LC-ωPBE hybrid RS (0.40) 0 (SR), 100 (LR) 9 LC-ωPBE-D3
LC-ωPBE08 hybrid RS (0.45) 0 (SR), 100 (LR) 4 LC-ωPBE08-VV
LC-BLYP hybrid RS (0.47) 0 (SR), 100 (LR) 10 -
Tα-BLYP hybrid RS (variable) 0 (SR), 100 (LR) 11 -
ωB97X hybrid RS (0.30) 15.8 (SR), 100 (LR) 12 ωB97X-D
ωB97X-D hybrid RS (0.20) 22.2 (SR), 100 (LR) 13 -

GGA: Generalized Gradient Approximation; RS: Range Separated (with standard range
parameter ω given in Bohr−1); SR: Short Range; LR: Long Range.
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C.4 Correlation indicators for CC2 calculations

Table C.5: Evaluation of D1 and IND diagnostic calculated on the optimized geometry
at the CC2 level with the cc-pVDZ basis set. The D1 threshold for molecules with a
potential multireference character is 0.05. In the case of IND, we can take the dissociation
of the H2 molecule as a reference. The dissociated molecule gives IND = 0.5, whereas
IND = 0.025 corresponds to the equilibrium geometry of H2 molecule.[14] In the present
case, all the molecules display IND ≤ 0.025, and, hence, they are not expected to present
large multireference character.

Isomer E Z
Molecule D1 IND D1 IND

a (R = H) 0.046 0.023 0.053 0.024
b (R = Me) 0.049 0.022 0.053 0.022
c (R = iPr) 0.049 0.021 0.051 0.021
d (R = tBu) 0.050 0.021 0.052 0.021
e (R = Ph) 0.048 0.024 0.050 0.025
f (R = Cy) 0.050 0.020 0.051 0.020
g (R = Ad) 0.051 0.020 0.052 0.021
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C.5 Geometrical parameters of E isomers

Table C.6: Characteristic distances and angles in the E isomers of the investigated
molecules (Figure 1), as calculated at the RI-CC2, RI-MP2 and HF methods levels.

Molecule dNN [Å] dNC [Å] θNNC [°] ϕCNNC [°]
HF/cc-pVDZ
a (R = H) 1.22 1.43 116 180
b (R = Me) 1.22 1.43 116 180
c (R = iPr) 1.22 1.43 116 180
d (R = tBu) 1.22 1.43 116 180
e (R = Ph) 1.22 1.43 116 180
f (R = Cy) 1.22 1.43 116 180
g (R = Ad) 1.22 1.43 116 180
RI-MP2/cc-pVDZ
a (R = H) 1.28 1.43 113 180
b (R = Me) 1.28 1.42 113 180
c (R = iPr) 1.28 1.42 113 180
d (R = tBu) 1.28 1.42 113 180
e (R = Ph) 1.28 1.42 113 180
f (R = Cy) 1.28 1.42 113 180
g (R = Ad) 1.28 1.42 113 180
RI-CC2/cc-pVDZ
a (R = H) 1.28 1.43 113 180
b (R = Me) 1.29 1.43 113 180
c (R = iPr) 1.29 1.43 113 180
d (R = tBu) 1.29 1.42 113 180
e (R = Ph) 1.29 1.43 113 180
f (R = Cy) 1.29 1.42 114 180
g (R = Ad) 1.29 1.42 113 180
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(a) (b)

Figure C.1: RMSD without hydrogens between DFT and CC2 geometries for trans iso-
mers, calculated using DFAs without (left) and with (right) dispersion corrections. RI-
MP2 results are also shown for comparison.

Figure C.2: RMSD without hydrogens between DFAs and CC2 geometries for cis isomers,
calculated using DFAs without dispersion corrections. RI-MP2 results are also shown for
comparison.
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C.6 RMSD analysis without hydrogens

Table C.7: RMSD without hydrogens (Å) between geometries optimized using DFAs with
and without dispersion corrections (in parenthesis) for E and Z isomers.

Molecule Approx. RMSD (E ) RMSD (Z )
a (R = H ) PBE(D3) 0.00 0.04

rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.00 0.04
B3LYP(D3) 0.00 0.00
M06-2X(D3) 0.00 0.00
CAM-B3LYP(D3) 0.00 0.00
LC-ωPBE(D3) 0.00 0.05
LC-ωPBE(VV) 0.00 0.00
ωB97X(D) 0.00 0.01

b (R = Meth) PBE(D3) 0.00 0.07
rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.00 0.07
B3LYP(D3) 0.00 0.00
M06-2X(D3) 0.00 0.01
CAM-B3LYP(D3) 0.00 0.00
LC-ωPBE(D3) 0.00 0.01
LC-ωPBE08(VV) 0.00 0.00
ωB97-X(D) 0.00 0.05

c (R = iProp) PBE(D3) 0.01 0.52
rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.01 0.45
B3LYP(D3) 0.01 0.00
M06-2X(D3) 0.00 0.04
CAM-B3LYP(D3) 0.01 0.44
LC-ωPBE(D3) 0.01 0.00
LC-ωPBE08(VV) 0.00 0.00
ωB97-X(D) 0.00 0.12
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Molecule Approx. RMSD (E ) RMSD (Z )
d (R = tBut) PBE(D3) 0.00 0.42

rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.00 0.63
B3LYP(D3) 0.01 0.00
M06-2X(D3) 0.00 0.04
CAM-B3LYP(D3) 0.00 0.35
LC-ωPBE(D3) 0.00 0.38
LC-ωPBE08(VV) 0.00 0.00
ωB97-X(D) 0.00 0.18

e (R = Phen ) PBE(D3) 0.03 0.87
rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.03 0.79
B3LYP(D3) 0.02 0.00
M062X(D3) 0.04 0.04
CAM-B3LYP(D3) 0.03 0.80
LC-ωPBE(D3) 0.03 0.65
LC-ωPBE08(VV) 0.00 0.00
ωB97-X(D) 0.02 0.20

f (R = Cycl) PBE(D3) 0.02 0.82
rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.02 0.75
B3LYP(D3) 0.03 0.00
M06-2X(D3) 0.01 0.03
CAM-B3LYP(D3) 0.02 0.75
LC-ωPBE(D3) 0.02 0.63
LC-PBE08(VV) 0.00 0.00
ωB97-X(D) 0.01 0.13

g (R = Adam ) PBE(D3) 0.01 0.79
rPW86PBE(VV) 0.00 0.00
PBE0(D3) 0.01 0.70
B3LYP(D3) 0.02 0.00
M06-2X(D3) 0.00 0.06
CAM-B3LYP(D3) 0.01 0.61
LC-ωPBE(D3) 0.01 0.54
LC-ωPBE08(VV) 0.00 0.00
ωB97-X(D) 0.01 0.22
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Table C.8: RMSD without hydrogens (Å) between DFAs and CC2 geometries for E and Z
isomers, calculated using DFAs without and with dispersion corrections. RMSD between
MP2 and CC2 geometries are also reported.

Compound Approx. RMSD (E ) RMSD (Z )
a (R = H) RI-MP2 0.02 0.01

PBE 0.02 0.20
PBE-D3 0.02 0.17
rPW86PBE 0.03 0.22
rPW86PBE-VV 0.02 0.17
PBE0 0.01 0.14
PBE0-D3 0.01 0.11
B3LYP 0.01 0.18
B3LYP-D3 0.01 0.13
CAM-B3LYP 0.01 0.12
CAM-B3LYP-D3 0.01 0.08
LC-ωPBE 0.01 0.07
LC-ωPBE-D3 0.01 0.05
LC-ωPBE08 0.01 0.07
LC-ωPBE08-VV 0.02 0.04
ωB97-X 0.01 0.08
ωB97-X-D 0.01 0.07
BH&H 0.04 0.09
M06 0.01 0.11
M06L 0.00 0.14
M06-2X 0.01 0.08
M06-2X-D3 0.01 0.08
M06-HF 0.01 0.02
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Compound Approx. RMSD (E ) RMSD (Z )
b (R = Me) RI-MP2 0.02 0.06

PBE 0.02 0.24
PBE-D3 0.02 0.17
rPW86PBE 0.03 0.27
rPW86PBE-VV 0.03 0.21
PBE0 0.01 0.18
PBE0-D3 0.01 0.11
B3LYP 0.02 0.23
B3LYP-D3 0.02 0.14
CAM-B3LYP 0.01 0.18
CAM-B3LYP-D3 0.01 0.12
LC-ωPBE 0.01 0.17
LC-ωPBE-D3 0.01 0.17
LC-ωPBE08 0.02 0.17
LC-ωPBE08-VV 0.02 0.14
ωB97-X 0.01 0.15
ωB97-X-D 0.01 0.11
BH&H 0.04 0.11
M06 0.01 0.15
M06L 0.01 0.18
M06-2X 0.01 0.10
M06-2X-D3 0.01 0.10
M06-HF 0.01 0.05

c (R = iPr) RI-MP2 0.03 0.01
PBE 0.05 0.57
PBE-D3 0.04 0.15
rPW86PBE 0.25 0.59
rPW86PBE-VV 0.24 0.30
PBE0 0.02 0.49
PBE0-D3 0.01 0.13
B3LYP 0.04 0.58
B3LYP-D3 0.03 0.12
CAM-B3LYP 0.02 0.45
CAM-B3LYP-D3 0.01 0.13
LC-ωPBE 0.01 0.36
LC-ωPBE-D3 0.01 0.36
LC-ωPBE08 0.01 0.35
LC-ωPBE08-VV 0.02 0.09
ωB97-X 0.02 0.15
ωB97-X-D 0.02 0.08
BH&H 0.05 0.18
M06 0.01 0.29
M06L 0.01 0.27
M06-2X 0.01 0.33
M06-2X-D3 0.01 0.31
M06-HF 0.02 0.28
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Compound Approx. RMSD (E ) RMSD (Z )
d (R = tBu) RI-MP2 0.00 0.00

PBE 0.01 0.55
PBE-D3 0.01 0.13
rPW86PBE 0.03 0.56
rPW86PBE-VV 0.02 0.09
PBE0 0.03 0.48
PBE0-D3 0.03 0.11
B3LYP 0.01 0.59
B3LYP-D3 0.01 0.09
CAM-B3LYP 0.02 0.45
CAM-B3LYP-D3 0.02 0.12
LC-ωPBE 0.03 0.38
LC-ωPBE-D3 0.04 0.08
LC-ωPBE08 0.04 0.38
LC-ωPBE08-VV 0.05 0.07
ωB97-X 0.02 0.15
ωB97-X-D 0.02 0.07
BH&H 0.08 0.11
M06 0.03 0.12
M06L 0.02 0.07
M06-2X 0.02 0.05
M06-2X-D3 0.02 0.04
M06-HF 0.03 0.08

e (R = Ph) RI-MP2 0.01 0.02
PBE 0.09 1.08
PBE-D3 0.11 0.22
rPW86PBE 0.28 0.99
rPW86PBE-VV 0.28 0.44
PBE0 0.10 0.97
PBE0-D3 0.12 0.20
B3LYP 0.08 1.07
B3LYP-D3 0.10 0.14
CAM-B3LYP 0.08 0.92
CAM-B3LYP-D3 0.10 0.18
LC-ωPBE 0.10 0.74
LC-ωPBE-D3 0.12 0.12
LC-ωPBE08 0.13 0.73
LC-ωPBE08-VV 0.14 0.11
ωB97-X 0.16 0.31
ωB97-X-D 0.17 0.12
BH&H 0.16 0.14
M06 0.07 0.28
M06L 0.26 0.42
M06-2X 0.18 0.17
M06-2X-D3 0.14 0.13
M06-HF 0.09 0.21
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Compound Approx. RMSD (E ) RMSD (Z )
f (R = Cy) RI-MP2 0.03 0.01

PBE 0.05 0.85
PBE-D3 0.05 0.14
rPW86PBE 0.19 0.96
rPW86PBE-VV 0.18 0.10
PBE0 0.02 0.76
PBE0-D3 0.03 0.11
B3LYP 0.05 0.89
B3LYP-D3 0.05 0.11
CAM-B3LYP 0.03 0.73
CAM-B3LYP-D3 0.04 0.13
LC-ωPBE 0.02 0.61
LC-ωPBE-D3 0.04 0.10
LC-ωPBE08 0.02 0.60
LC-ωPBE08-VV 0.05 0.09
ωB97-X 0.03 0.14
ωB97-X-D 0.04 0.17
BH&H 0.07 0.25
M06 0.02 0.31
M06L 0.03 0.27
M06-2X 0.03 0.20
M06-2X-D3 0.04 0.19
M06-HF 0.03 0.27

g (R = Ad) RI-MP2 0.02 0.03
PBE 0.02 0.87
PBE-D3 0.02 0.43
rPW86PBE 0.04 0.79
rPW86PBE-VV 0.03 0.20
PBE0 0.03 0.79
PBE0-D3 0.03 0.43
B3LYP 0.02 0.99
B3LYP-D3 0.02 0.42
CAM-B3LYP 0.03 0.74
CAM-B3LYP-D3 0.03 0.43
LC-ωPBE 0.04 0.67
LC-ωPBE-D3 0.04 0.43
LC-ωPBE08 0.05 0.66
LC-ωPBE08-VV 0.06 0.45
ωB97-X 0.02 0.23
ωB97-X-D 0.02 0.06
BH&H 0.10 0.15
M06 0.03 0.11
M06L 0.03 0.10
M06-2X 0.03 0.12
M06-2X-D3 0.03 0.08
M06-HF 0.03 0.17
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Table C.9: Average values of the RMSD calculations (Å) without the hydrogens for each
set of molecules in E and Z isomers.

Functional Average RMSD (E) Average RMSD (Z)
RI-MP2 0.02 0.02
PBE 0.04 0.62
PBE-D3 0.04 0.20
rPW86PBE 0.12 0.62
rPW86PBE-VV 0.11 0.22
B3LYP 0.03 0.65
B3LYP-D3 0.03 0.16
PBE0 0.03 0.55
PBE0-D3 0.03 0.17
M06-2X 0.04 0.15
M06-2X-D3 0.04 0.13
CAM-B3LYP 0.03 0.51
CAM-B3LYP-D3 0.03 0.17
ωB97X 0.04 0.17
ωB97X-D 0.04 0.10
LC-ωPBE 0.03 0.43
LC-ωPBE-D3 0.04 0.19
LC-ωPBE08 0.04 0.42
LC-ωPBE08-VV 0.05 0.14
M06 0.02 0.20
M06L 0.05 0.21
M06-HF 0.03 0.15
BH&H 0.08 0.15
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C.7 RMSD analysis with hydrogens
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Figure C.3: RMSD with hydrogens (Å) between DFAs and CC2 geometries for trans (left)
and cis isomers (right), calculated using DFAs without dispersion corrections. RI-MP2
results are also shown for comparison.
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Table C.10: RMSD (Å) between geometries optimized using DFAs with and without
dispersion corrections (in parenthesis) for E and Z isomers.

Molecule Approx. RMSD (E ) RMSD (Z )
a (R = H) PBE(D3) 0.00 0.05

rPW86PBE (VV) 0.01 0.06
PBE0(D3) 0.00 0.05
B3LYP(D3) 0.00 0.07
M06-2X(D3) 0.00 0.00
CAM-B3LYP(D3) 0.00 0.05
LC-ωPBE(D3) 0.00 0.06
LC-ωPBE08(VV) 0.01 0.01
ωB97X(D) 0.00 0.02

b (R = Me) PBE(D3) 0.00 0.01
rPW86PBE(VV) 0.01 0.08
PBE0(D3) 0.00 0.10
B3LYP(D3) 0.01 0.12
M06-2X(D3) 0.00 0.03
CAM-B3LYP(D3) 0.00 0.10
LC-ωPBE(D3) 0.00 0.12
LC-ωPBE08(VV) 0.01 0.16
ωB97X(D) 0.00 0.06

c (R = iPr) PBE(D3) 0.01 0.72
rPW86PBE(VV) 0.03 0.73
PBE0(D3) 0.01 0.64
B3LYP(D3) 0.02 0.77
M06-2X(D3) 0.00 0.05
CAM-B3LYP(D3) 0.02 0.62
LC-ωPBE(D3) 0.02 0.65
LC-ωPBE08(VV) 0.01 0.53
ωB97X(D) 0.00 0.15
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Molecule Approx. RMSD (E ) RMSD (Z )
d (R = tBu) PBE(D3) 0.01 0.53

rPW86PBE(VV) 0.02 0.59
PBE0(D3) 0.01 0.47
B3LYP(D3) 0.01 0.64
M06-2X(D3) 0.00 0.05
CAM-B3LYP(D3) 0.01 0.44
LC-ωPBE(D3) 0.01 0.49
LC-ωPBE08(VV) 0.01 0.49
ωB97X(D) 0.01 0.23

e (R = Ph) PBE(D3) 0.03 0.97
rPW86PBE(VV) 0.02 0.74
PBE0(D3) 0.03 0.88
B3LYP(D3) 0.03 1.07
M06-2X(D3) 0.04 0.05
CAM-B3LYP(D3) 0.03 0.89
LC-ωPBE(D3) 0.03 0.72
LC-ωPBE08(VV) 0.03 0.71
ωB97X(D) 0.03 0.22

f (R = Cy) PBE(D3) 0.03 1.00
rPW86PBE(VV) 0.03 1.08
PBE0(D3) 0.03 0.94
B3LYP(D3) 0.04 1.11
M06-2X(D3) 0.01 0.04
CAM-B3LYP(D3) 0.03 0.94
LC-ωPBE(D3) 0.03 0.81
LC-ωPBE08(VV) 0.03 0.76
ωB97X(D) 0.01 0.18

g (R = Ad) PBE(D3) 0.02 0.90
rPW86PBE(VV) 0.02 1.15
PBE0(D3) 0.02 0.79
B3LYP(D3) 0.02 1.02
M06-2X(D3) 0.00 0.07
CAM-B3LYP(D3) 0.02 0.69
LC-ωPBE(D3) 0.02 0.61
LC-ωPBE08(VV) 0.02 0.61
ωB97X(D) 0.01 0.27
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Table C.11: RMSD (Å) between DFAs and CC2 geometries for E and Z isomers, cal-
culated using DFAs without and with dispersion corrections. RMSD between MP2 and
CC2 geometries are also reported.

Compound Approx. RMSD (E ) RMSD (Z )
a (R = H) RI-MP2 0.02 0.02

PBE 0.03 0.24
PBE-D3 0.03 0.20
rPW86PBE-VV 0.03 0.21
rPW86PBE 0.03 0.26
PBE0 0.01 0.17
PBE0-D3 0.01 0.13
B3LYP 0.02 0.22
B3LYP-D3 0.02 0.15
CAM-B3LYP 0.01 0.14
CAM-B3LYP-D3 0.01 0.10
LC-ωPBE 0.01 0.10
LC-ωPBE-D3 0.01 0.08
LC-ωPBE08 0.01 0.09
LC-ωPBE08-VV 0.02 0.26
ωB97-X 0.01 0.10
ωB97-X-D 0.01 0.08
BH&H 0.04 0.11
M06 0.01 0.13
M06L 0.01 0.18
M06-2X 0.01 0.10
M06-2X-D3 0.01 0.09
M06-HF 0.01 0.03
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Compound Approx. RMSD (E ) RMSD (Z )
b (R = Me) RI-MP2 0.03 0.08

PBE 0.04 0.35
PBE-D3 0.03 0.27
rPW86PBE-VV 0.04 0.26
rPW86PBE 0.04 0.34
PBE0 0.01 0.30
PBE0-D3 0.01 0.22
B3LYP 0.02 0.36
B3LYP-D3 0.02 0.26
CAM-B3LYP 0.01 0.32
CAM-B3LYP-D3 0.01 0.28
LC-ωPBE 0.01 0.34
LC-ωPBE-D3 0.01 0.34
LC-ωPBE08 0.01 0.34
LC-ωPBE08-VV 0.02 0.26
ωB97-X 0.01 0.30
ωB97-X-D 0.01 0.27
BH&H 0.05 0.20
M06 0.01 0.23
M06L 0.01 0.24
M06-2X 0.01 0.27
M06-2X-D3 0.01 0.26
M06-HF 0.02 0.27

c (R = iPr) RI-MP2 0.04 0.01
PBE 0.07 0.74
PBE-D3 0.06 0.22
rPW86PBE-VV 0.32 0.26
rPW86PBE 0.34 0.68
PBE0 0.03 0.64
PBE0-D3 0.02 0.20
B3LYP 0.06 0.80
B3LYP-D3 0.04 0.19
CAM-B3LYP 0.04 0.58
CAM-B3LYP-D3 0.02 0.20
LC-ωPBE 0.03 0.48
LC-ωPBE-D3 0.01 0.38
LC-ωPBE08 0.02 0.47
LC-ωPBE08-VV 0.02 0.14
ωB97-X 0.03 0.21
ωB97-X-D 0.03 0.14
BH&H 0.05 0.30
M06 0.02 0.50
M06L 0.02 0.36
M06-2X 0.02 0.53
M06-2X-D3 0.02 0.25
M06-HF 0.02 0.49
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Compound Approx. RMSD (E ) RMSD (Z )
d (R = tBu) RI-MP2 0.003 0.002

PBE 0.02 0.67
PBE-D3 0.02 0.14
rPW86PBE-VV 0.02 0.11
rPW86PBE 0.03 0.69
PBE0 0.03 0.60
PBE0-D3 0.03 0.12
B3LYP 0.02 0.73
B3LYP-D3 0.01 0.10
CAM-B3LYP 0.02 0.56
CAM-B3LYP-D3 0.02 0.15
LC-ωPBE 0.04 0.48
LC-ωPBE-D3 0.04 0.09
LC-ωPBE08 0.04 0.47
LC-ωPBE08-VV 0.05 0.09
ωB97-X 0.02 0.19
ωB97-X-D 0.02 0.09
BH&H 0.09 0.15
M06 0.03 0.16
M06L 0.03 0.08
M06-2X 0.03 0.06
M06-2X-D3 0.03 0.04
M06-HF 0.03 0.10

e (R = Ph) RI-MP2 0.01 0.03
PBE 0.12 1.19
PBE-D3 0.14 0.24
rPW86PBE-VV 0.32 0.48
rPW86PBE 0.32 1.09
PBE0 0.12 1.08
PBE0-D3 0.14 0.21
B3LYP 0.10 1.18
B3LYP-D3 0.12 0.15
CAM-B3LYP 0.09 1.02
CAM-B3LYP-D3 0.12 0.21
LC-ωPBE 0.12 0.84
LC-ωPBE-D3 0.14 0.15
LC-ωPBE08 0.15 0.81
LC-ωPBE08-VV 0.16 0.13
ωB97-X 0.19 0.35
ωB97-X-D 0.20 0.14
BH&H 0.20 0.16
M06 0.09 0.31
M06L 0.32 0.46
M06-2X 0.21 0.19
M06-2X-D3 0.17 0.14
M06-HF 0.12 0.25
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Compound Approx. RMSD (E ) RMSD (Z )
f (R = Cy) RI-MP2 0.04 0.01

PBE 0.03 1.03
PBE-D3 0.03 0.20
rPW86PBE-VV 0.22 0.13
rPW86PBE 0.23 1.06
PBE0 0.03 0.94
PBE0-D3 0.04 0.16
B3LYP 0.03 1.06
B3LYP-D3 0.03 0.16
CAM-B3LYP 0.03 0.92
CAM-B3LYP-D3 0.04 0.18
LC-ωPBE 0.04 0.75
LC-ωPBE-D3 0.06 0.15
LC-ωPBE08 0.03 0.74
LC-ωPBE08-VV 0.05 0.13
ωB97-X 0.03 0.20
ωB97-X-D 0.04 0.24
BH&H 0.11 0.36
M06 0.04 0.46
M06L 0.04 0.37
M06-2X 0.04 0.29
M06-2X-D3 0.05 0.29
M06-HF 0.03 0.41

g (R = Ad) RI-MP2 0.02 0.03
PBE 0.03 0.97
PBE-D3 0.02 0.43
rPw86PBE-VV 0.04 0.27
rPw86PBE 0.05 0.87
PBE0 0.03 0.88
PBE0-D3 0.03 0.43
B3LYP 0.03 1.09
B3LYP-D3 0.02 0.42
CAM-B3LYP 0.03 0.81
CAM-B3LYP-D3 0.03 0.43
LC-ωPBE 0.04 0.74
LC-ωPBE-D3 0.04 0.42
LC-ωPBE08 0.06 0.73
LC-ωPBE08-VV 0.06 0.44
wB97-X 0.03 0.27
wB97-X-D 0.02 0.06
BH&H 0.10 0.19
M06 0.04 0.13
M06L 0.03 0.12
M06-2X 0.03 0.15
M06-2X-D3 0.03 0.10
M06-HF 0.03 0.21
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Figure C.4: RMSD between DFAs and CC2 geometries for cis isomers, calculated using
DFAs without (left) and with (right) dispersion corrections. RI-MP2 results are also
shown for comparison.
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Figure C.5: RMSD between DFAs and CC2 geometries for trans isomers, calculated
using DFAs without (left) and with (right) dispersion corrections. RI-MP2 results are
also shown for comparison.
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Figure C.6: RMSD (Å) excluding hydrogen atoms between geometries optimized using
DFAs with and without dispersion corrections for trans (left) and cis (right) isomers.
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C.8 Relative Z-E energies

C.8.1 CC2 vs MP2

Table C.12: Difference in the energy of the trans (E) and cis (Z) forms, ∆EEZ = EZ−EE,
as calculated at the HF, RI-CC2 and RI-MP2 levels with the cc-pVDZ basis set. All energy
values are in kcal.mol−1.

Molecule Approx. ∆EEZ

a (R = H) RI-CC2 11.46
RI-MP2 12.01
HF 17.9

b (R = Me) RI-CC2 10.87
RI-MP2 11.43
HF 17.4

c (R = iPr) RI-CC2 8.06
RI-MP2 8.90
HF 17.5

d (R = tBu) RI-CC2 6.73
RI-MP2 7.70
HF 17.7

e (R = Ph) RI-CC2 4.04
RI-MP2 4.9
HF 17.4

f (R = Cy) RI-CC2 5.16
RI-MP2 6.41
HF 17.3

g (R = Ad) RI-CC2 0.80
RI-MP2 2.67
HF 17.4
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(a)

Figure C.7: Z-E energy differences calculated at the CC2 level and DFAs without disper-
sion corrections (∆∆EZE = ∆EZE(DFT )−∆EZE(CC2), in kcal/mol).

(a) (b)

Figure C.8: Difference in the energy of the trans (E) and cis (Z) forms, ∆EEZ = EZ−EE,
as calculated using DFAs without (left) and with (right) dispersion corrections and the
cc-pVDZ basis set.
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C.8.2 DFT relative Z-E energies

Table C.13: Relative electronic energies of the E and Z conformers, ∆EZE = EE −
EZ , and relative Gibbs free energies (∆GZE = GE − GZ), calculated at T = 300 K
and P = 1 atm. All calculations were done using the cc-pVDZ basis set. All energy
values are in kcal.mol−1. The Gibbs free energy have been calculated for the functionals
implemented in Gaussian using the quasi-harmonic approximation (qa-G) employing the
software goodvibes.py [15]. The vibrational entropy was tested using the Grimme scheme
[16], while the enthalpy contributions were evaluated with the Head-Gordon scheme [17].
The threshold for which the qa-G was employed is 100 cm−1. For the functionals calculated
with Q-Chem (namely, rPW86-PBE, rPW86-PBE-VV, LC-ωPBE08 and LC-ωPBE08-
VV) frequency calculations do not have been performed because analytical calculations
are not implemented, and therefore free energies are not available. For RI-CC2 and RI-
MP2 the Gibbs free energies correspond to normal computations.

Compound Approx. ∆EZE ∆GZE

a (R = H) RI-CC2 -11.5 -11.6
RI-MP2 -12.0 -12.3
PBE -14.3 -13.6
PBE-D3 -12.8 -12.2
PBE0 -15.2 -14.7
PBE0-D3 -13.6 -13.1
rPW86-PBE -14.5
rPW86-PBE-VV -13.1
B3LYP -16.0 -15.4
B3LYP-D3 -13.5 -13.0
BH&H -16.2 -15.7
CAM-B3LYP -15.8 -15.3
CAM-B3LYP-D3 -14.0 -13.6
ωB97-X -14.1 -13.7
ωB97-X-D -12.7 -12.4
LC-ωPBE -14.2 -14.0
LC-ωPBE-D3 -12.2 -12.1
LC-ωPBE08 -14.5
LC-ωPBE08-VV -12.8
M06 -13.9 -13.5
M06L -12.9 -12.4
M06-2X -13.6 -13.1
M06-2X-D3 -13.5 -12.8
M06-HF -13.8 -13.4
HF -17.9 -17.5
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Compound Approx. ∆EZE ∆GZE

b (R = Me) RI-CC2 -10.9 -11.4
RI-MP2 -11.4 -12.1
PBE -14.3 -13.5
PBE-D3 -12.5 -11.9
PBE0 -15.1 -14.7
PBE0-D3 -13.1 -12.7
rPW86-PBE -14.4
rPW86-PBE-VV -12.7
B3LYP -15.9 -15.4
B3LYP-D3 -13.0 -12.7
BH&H -16.0 -15.2
CAM-B3LYP -15.6 -15.3
CAM-B3LYP-D3 -13.4 -13.2
ωB97-X -13.8 -13.7
ωB97-X-D -12.0 -11.4
LC-ωPBE -14.0 -14.0
LC-ωPBE-D3 -11.4 -11.5
LC-ωPBE08 -14.1
LC-ωPBE08-VV -12.1
M06 -13.6 -13.8
M06L -12.8 -12.3
M06-2X -13.3 -13.7
M06-2X-D3 -12.9 -13.2
M06-HF -13.4 -13.9
HF -17.4 -17.2
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Compound Approx. ∆EZE ∆GZE

c (R = iPr) RI-CC2 -8.1 -8.4
RI-MP2 -8.9 -9.5
PBE -13.9 -14.1
PBE-D3 -9.7 -10.5
PBE0 -14.9 -15.1
PBE0-D3 -10.4 -11.1
rPW86-PBE -14.4
rPW86-PBE-VV -10.3
B3LYP -16.0 -16.1
B3LYP-D3 -10.4 -11.5
BH&H -13.7 -14.5
CAM-B3LYP -15.5 -15.7
CAM-B3LYP-D3 -10.9 -11.8
ωB97-X -12.3 -13.6
ωB97-X-D -9.0 -10.1
LC-ωPBE -13.9 -14.6
LC-ωPBE-D3 -8.5 -10.2
LC-ωPBE08 -14.1
LC-ωPBE08-VV -9.2
M06 -11.0 -13.0
M06L -10.2 -11.3
M06-2X -11.4 -12.6
M06-2X-D3 -10.3 -11.4
M06-HF -11.2 -14.0
HF -17.5 -17.7

229



Compound Approx. ∆EZE ∆GZE

d (R = tBu) RI-CC2 -6.7 -7.5
RI-MP2 -7.7 -8.6
PBE -14.1 -13.9
PBE-D3 -9.1 -9.5
PBE0 -15.0 -15.0
PBE0-D3 -9.7 -10.3
rPW86-PBE -14.3
rPW86-PBE-VV -9.1
B3LYP -16.3 -16.2
B3LYP-D3 -9.7 -10.5
BH&H -13.6 -14.2
CAM-B3LYP -15.7 -15.8
CAM-B3LYP-D3 -10.2 -11.0
ωB97-X -12.2 -13.0
ωB97-X-D -8.0 -9.9
LC-ωPBE -14.0 -14.4
LC-ωPBE-D3 -7.7 -8.8
LC-ωPBE08 -14.2
LC-ωPBE08-VV -8.2
M06 -10.3 -11.5
M06L -10.2 -11.6
M06-2X -11.3 -11.9
M06-2X-D3 -9.7 -10.2
M06-HF -11.0 -11.6
HF -17.7 -18.0
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Compound Approx. ∆EZE ∆GZE

e (R = Ph) RI-CC2 -4.0 -5.9
RI-MP2 -4.9 -7.0
PBE -13.8 -13.3
PBE-D3 -9.1 -9.3
PBE0 -14.6 -14.3
PBE0-D3 -9.5 -9.7
rPW86-PBE -14.4
rPW86-PBE-VV -9.9
B3LYP -15.8 -15.3
B3LYP-D3 -9.2 -10.0
BH&H -14.3 -14.4
CAM-B3LYP -15.4 -15.0
CAM-B3LYP-D3 -10.0 -10.7
ωB97-X -12.4 -12.4
ωB97-X-D -7.8 -8.5
LC-ωPBE -13.7 -13.5
LC-ωPBE-D3 -7.0 -8.0
LC-ωPBE08 -13.9
LC-ωPBE08-VV -7.9
M06 -11.1 -11.6
M06L -10.9 -10.9
M06-2X -11.2 -11.0
M06-2X-D3 -9.7 -9.9
M06-HF -10.3 -10.5
HF -17.4 -17.2
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Compound Approx. ∆EZE ∆GZE

f (R = Cy) RI-CC2 -5.2 -5.5
RI-MP2 -6.4 -7.0
PBE -13.7 -13.5
PBE-D3 -7.6 -8.6
PBE0 -14.6 -14.4
PBE0-D3 -8.2 -9.4
rPW86-PBE -14.2
rPW86-PBE-VV -7.6
B3LYP -15.9 -15.8
B3LYP-D3 -8.1 -9.7
BH&H -11.8 -13.2
CAM-B3LYP -15.3 -15.3
CAM-B3LYP-D3 -8.7 -10.3
ωB97-X -11.4 -12.5
ωB97-X-D -6.1 -8.2
LC-ωPBE -13.7 -13.8
LC-ωPBE-D3 -6.1 -7.9
LC-ωPBE08 -13.9
LC-ωPBE08-VV -6.8
M06 -9.3 -10.1
M06L -9.1 9.0
M06-2X -10.3 -11.5
M06-2X-D3 -8.0 -9.5
M06-HF -10.3 -12.2
HF -17.3 -17.5
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Compound Approx. ∆EZE ∆GZE

g (R = Ad) RI-CC2 -0.8
RI-MP2 -2.7 -4.9
PBE -13.8 -13.7
PBE-D3 -5.8 -6.9
PBE0 -14.7 -14.5
PBE0-D3 -6.2 -7.5
rPW86-PBE -14.2
rPW86-PBE-VV -5.1
B3LYP -16.2 -15.7
B3LYP-D3 -6.1 -7.7
BH&H -11.1 -12.4
CAM-B3LYP -15.5 -14.7
CAM-B3LYP-D3 -6.7 -8.3
ωB97-X -10.6 -12.1
ωB97-X-D -2.6 -3.7
LC-ωPBE -13.8 -13.9
LC-ωPBE-D3 -4.1 -6.2
LC-ωPBE08 -14.0
LC-ωPBE08-VV -4.2
M06 -7.9 8.2
M06L -7.6 -9.1
M06-2X -9.0 -10.4
M06-2X-D3 -5.5 -6.8
M06-HF -9.1 -10.4
HF -17.4 -17.8
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C.9 Calculations for the Ph molecule

DFAs with dispersion corrections are able to reproduce qualitatively well the energy gap
of all the systems considered. However, we observed that are much less accurate for
the compound f, which includes phenyl substituents in the meso position. In order to
investigate these discrepancies, we performed single-point calculations on the RI-CC2
geometries for this molecule. The results are collected in Table C.14 and Fig. C.9.
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Figure C.9: Z − E energy differences with respect to RI-CC2 issued from DFAs for
the molecule with R = Ph, using reference RI-CC2 geometries (left) and optimized
DFAs geometries (right) with dispersion corrections (∆∆EZE = ∆EDFT

ZE (DFT/CC2)
−∆ECC2

ZE (CC2), in kcal/mol).

Table C.14: Z − E energy differences issued from RI-CC2 and DFAs for the molecule
with R = Ph, using reference RI-CC2 geometries (left) and optimized DFAs’ geometries
(right) with dispersion corrections (in kcal/mol).

Compound Approx. ∆EEZ(RI − CC2) ∆EEZ(DFT )

Ph RI-CC2 -4.0 -
ωB97-X-D -8.6 -7.8
PBE-D3 -10.2 -9.1
PBE0-D3 -10.5 -9.5
B3LYP-D3 -10.2 -9.2
M06-2X-D3 -10.3 -9.7
CAM-B3LYP-D3 -11.1 -10.0
LC-ωPBE-D3 -7.6 -6.9
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C.10 Nonlinear Optical properties

C.10.1 Reference RI-MP2 results

The accuracy of the RI approximation in the evaluation of β has been tested for the
molecule R=H, with respect to the standard MP2 calculation.

Molecule βMP2 βRI−MP2

R= H 52.55 52.52

C.10.2 ab initio results
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Figure C.10: Correlation between static hyperpolarizabilities (a.u.) of the series of azoben-
zenes calculated at the MP2 level with respect to the values calculated using CC2 and
HF.
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C.10.3 DFT results

Table C.15: Total first hyperpolarizabilities (β, a.u.) of the cis isomers, calculated using
various levels of approximation with the aug-cc-pVTZ basis set, using RI-CC2/cc-pVDZ
geometries.

Compound Approx. β

a (R = H) RI-MP2 52.5
RI-CC2 80.8
PBE 99.6
rPW86-PBE 107.2
rPW86-PBE-VV 104.0
PBE0 73.1
B3LYP 83.3
BH&H 41.1
CAM-B3LYP 52.4
ωB97X 44.0
ωB97X-D 61.5
LC-BLYP 22.2
Tα-LC-BLYP 44.3
LC-PBE 23.6
LC-ωPBE 31.2
LC-PBE-VV 42.5
M06 96.8
M06L 136.3
M06-2X 43.8
M06-HF 1.5
HF 7.7
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Compound Approx. β

b (R = Me) RI-MP2 119.3
RI-CC2 161.7
PBE 186.6
rPW86-PBE 196.4
rPW86-PBE-VV 200.4
PBE0 142.8
B3LYP 155.8
BH&H 99.3
CAM-B3LYP 115.4
ωB97X 107.2
ωB97X-D 132.0
LC-BLYP 75.6
Tα-LC-BLYP 109.6
LC-PBE 76.6
LC-ωPBE 87.5
LC-PBE-VV 85.5
M06 166.0
M06L 227.1
M06-2X 100.0
M06-HF 46.7
HF 40.7

c (R = iPr) RI-MP2 99.8
RI-CC2 148.5
PBE 176.1
rPW86-PBE 183.9
rPW86-PBE-VV 186.0
PBE0 117.3
B3LYP 132.7
BH&H 71.6
CAM-B3LYP 92.7
ωB97X 76.8
ωB97X-D 95.4
LC-BLYP 56.7
Tα-LC-BLYP 86.1
LC-PBE 55.3
LC-ωPBE 66.9
LC-PBE-VV 58.9
M06 150.4
M06L 196.5
M06-2X 84.8
M06-HF 46.3
HF 31.6
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Compound Approx. β

d (R = tBu) RI-MP2 84.1
RI-CC2 136.1
PBE 179.2
rPW86-PBE 188.2
rPW86-PBE-VV 187.5
PBE0 115.5
B3LYP 130.8
BH&H 68.3
CAM-B3LYP 91.3
ωB97X 83.2
ωB97X-D 107.1
LC-BLYP 58.4
Tα-LC-BLYP 84.9
LC-PBE 56.4
LC-ωPBE 67.5
LC-PBE-VV 70.4
M06 159.5
M06L 218.0
M06-2X 81.6
M06-HF 41.6
HF 32.9

e (R = Ph) RI-MP2 152.4
RI-CC2 239.8
PBE 266.2
rPW86-PBE 253.3
rPW86-PBE-VV 294.2
PBE0 158.3
B3LYP 174.7
BH&H 100.2
CAM-B3LYP 99.7
ωB97X 84.4
ωB97X-D 107.6
LC-BLYP 53.9
Tα-LC-BLYP 85.0
LC-PBE 59.5
LC-ωPBE 66.7
LC-PBE-VV 72.8
M06 207.8
M06L 277.9
M06-2X 115.9
M06-HF 36.4
HF 21.3
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Compound Approx. β

f (R = Cy) RI-MP2 127.7
RI-CC2 191.0
PBE 294.3
rPW86-PBE 348
rPW86-PBE-VV 253.7
PBE0 158.0
B3LYP 175.3
BH&H 97.8
CAM-B3LYP 119.2
ωB97X 105.1
ωB97X-D 131.0
LC-BLYP 75.7
Tα-LC-BLYP 107.2
LC-PBE 75.7
LC-ωPBE 88.4
LC-PBE-VV 79.3
M06 202.3
M06L 263.4
M06-2X 111.6
M06-HF 59.1
HF 50.1
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Figure C.11: Evolution of the static hyperpolarizabilities (a.u.) of the series of azoben-
zenes calculated using various DFAs in combination with the aug-cc-pVTZ basis set, as
a function of the percentage of exact Hartree-Fock exchange.
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Table C.18: Vector (βi) and tensor (βijk) components of the total first hyperpolarizability,
as calculated summing all the orbital contributions of the hyperpolarizzability tensors
obtained by the PNOC analysis at CAM-B3LYP/6-311++G** level.

Molecule βxxx βyyx βzzx βx βyyy βxxy βzzy βy βzzz βxxz βyyz βz βtot
a (R = H) -0.0 -0.1 0.0 -0.4 2.9 -10.4 0.1 -22.3 31.4 -155.9 14.5 -330.2 66.2
b (R = Me) -0.4 -2.2 1.9 -2.1 4.2 8.3 -1.1 34.3 -30.7 -160.7 -26.7 -654.4 131.1
c (R = iPr) -2.3 -0.9 0.6 -7.9 -16.0 8.6 8.2 2.0 -15.6 -145.6 17.7 -430.6 86.1
d (R = tBu) -32.2 10.1 -9.5 -94.9 -3.0 0.5 18.4 47.8 -21.7 -170.2 52.4 -418.5 86.3
e (R = Ph) -0.3 -6.3 5.9 -1.9 13.7 6.6 -10.2 30.3 22.7 -148.1 -98.6 -672.3 134.6
f (R = Cy) 5.4 6.0 -12.1 -2.2 7.7 5.4 -1.7 34.2 -13.5 -142.5 -39.9 -587.8 117.8
g (R = Ad) 2.7 -22.4 14.3 -15.9 -54.3 -18.5 4.1 -206.0 -70.2 -170.0 4.2 -708.0 147.5

Table C.16: Absolute errors relative to MP2 (AE(%) = |βDFT −βMP2|/βMP2×100) on the
total first hyperpolarizabilities of cis isomers, as calculated for selected hybrid functionals.

DFA R = H R = Me R = iPr R = tBu R = Ph R = Cy Mean AE
PBE0 52.4 38.7 43.1 109.4 24.2 23.7 48.6
B3LYP 61.9 30.2 56.1 57.8 14.2 44.0 37.3
BH&H 4.8 65.5 0.5 14.9 55.2 23.4 27.4
M06 48.6 18.9 66.3 78.8 4.7 58.4 46.0
M06-2X 2.9 63.3 0.2 0.8 46.5 12.6 21.0
M06-HF 90.5 98.7 53.2 44.9 72.7 53.7 69.0
best DFA M06-2X M06 M06-2X M06-2X M06 M06-2X M06-2X

Table C.17: Absolute errors relative to MP2 (AE(%) = |βDFT − βMP2|/βMP2 × 100)
on the total first hyperpolarizabilities of cis isomers, as calculated for selected hybrid
range-separated functionals.

DFA R = H R = Me R = iPr R = tBu R = Ph R = Cy Mean AE
CAM-B3LYP 0.2 3.3 7.1 8.6 34.6 6.7 10.1
LC-BLYP 57.7 36.6 43.2 30.6 64.6 40.7 45.6
LC-PBE 55.0 35.8 44.6 32.9 61.0 40.7 45.0
LC-ωPBE 40.6 26.7 33.0 19.7 56.2 30.8 34.5
ωB97X 16.2 10.1 23.0 1.1 44.6 17.7 18.8
ωB97X-D 17.1 10.6 4.4 27.3 29.4 2.6 15.3
best DFA CAM CAM ωB97X-D ωB97X ωB97X-D ωB97X-D CAM

C.11 PNOC analysis
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Table C.19: Vector (βi) and tensor (βijk) components of the total first hyperpolarizability,
as calculated through the CPKS method at CAM-B3LYP/6-311++G** level.

Molecule βxxx βyyx βzzx βx βyyy βxxy βzzy βy βzzz βxxz βyyz βz βtot
a (R = H) 0.0 0.0 0.1 0.2 2.8 -10.5 0.2 -22.4 31.3 -155.9 14.4 -330.3 66.2
b (R = Me) 0.1 -2.0 2.1 0.8 4.1 8.3 -1.1 33.6 -30.2 -160.5 -26.5 -651.5 130.5
c (R = iP) -1.8 -0.7 0.7 -5.4 -16.4 8.5 8.2 0.8 -15.3 -145.7 18.1 -428.8 85.8
d (R = tBu) -31.7 10.1 -9.4 -92.7 -3.2 0.7 18.6 48.4 -21.8 -170.3 52.3 -419.7 86.5
e (R = Ph) 0.1 -6.1 6.0 0.1 13.7 6.7 -10.3 30.3 23.1 -148.3 -98.5 -671.2 134.4
f (R = Cy) 6.0 6.3 12.1 73.4 8.3 5.4 -1.5 36.6 -12.9 -142.2 -39.2 -582.9 117.7
g (R = Ad) 0.8 -22.6 16.6 -16.6 -55.7 -8.3 8.7 -166.1 -68.0 -170.4 0.6 -713.3 146.5

Figure C.12: Accumulation of the first most important 800 orbital contributions of βxyz,p
for the azobenzene derivatives. The index p indicates the corresponding orbital that is
included.
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Table C.20: Predominant orbitals and corresponding hyperpolarizability contribution ac-
cording to PNOC decomposition, ordered by importance. Units are a.u. Calculations done
with CAM-B3LYP functional for the azobenzene series. H and L indicate the HOMO
and LUMO for each compound. NH is the total number of occupied MOs.

R=H NH=48

Norb βzxx Norb βzyy Norb βzzz

H 397.0 H-1 137.0 H-3 182.5
H-3 268.5 L+2 -127.4 H-2 181.2
H-2 261.6 H-3 118.7 L+3 -169.9
H-4 240.2 H-2 109.9 L+7 -114.3
L+3 -200.2 L+3 -94.7 L+1 -103.7
L+8 -193.5 H 79.6 H-1 100.4

R=Me NH=64

Norb βzxx Norb βzyy Norb βzzz

H 464.7 H-1 204.5 H-3 221.8
H-3 356.5 H-2 181.5 H-2 212.8
L+4 -300.3 L+2 -149.0 L+4 -156.9
H-2 268.7 L+7 -146.2 H-1 152.6
L+2 -244.7 H-3 142.2 L+2 -145.4
H-1 224.3 H 122.5 L+7 -132.5

R=iPr NH=96

Norb βzxx Norb βzyy Norb βzzz

H 410.9 H-1 263.8 H-3 216.7
H-3 337.4 H-2 215.0 H-2 187.9
H-2 246.0 L+4 -199.6 H-1 143.0
L+5 -231.1 H-3 182.8 L+5 -113.2
H-1 184.5 H-5 157.4 L+8 -111.0
L+6 -181.5 H 148.4 L+4 -107.4

R=tBu NH=112

Norb βzxx Norb βzyy Norb βzzz

H 459.0 H-1 253.9 H-3 222.5
H-3 381.5 H-2 203.2 H-2 209.7
H-2 239.9 H-5 163.5 L+6 -151.8
L+5 -219.2 H-4 162.9 H-1 141.6
H-1 190.5 H 143.0 L+5 -134.6
105 186.9 L+4 -138.1 L+1 -100.8

242



R=Ph NH=128

Norb βzxx Norb βzyy Norb βzzz

L+2 -638.7 H-1 1030.9 H-1 631.0
H-3 624.6 H-2 997.7 H-2 533.1
L+1 -605.1 L+2 -953.8 L+2 -451.5
H-1 528.4 H-3 942.6 L+3 -434.8
H-2 505.2 L+3 -862.9 H+2 -285.8
H-5 494.8 H+2 -860.3 H-6 272.5

R=Cy NH=140

Norb βzxx Norb βzyy Norb βzzz

H 408.4 H-1 327.0 H-3 214.1
H-3 332.7 H-2 286.2 H-2 193.2
H-2 265.1 H-3 224.2 H-1 158.6
H-1 207.8 H-5 213.8 L+5 -151.1
L+5 -185.3 H-16 198.8 H-16 149.2
H-7 169.9 L+5 -197.4 H-13 148.8

R=Ad NH=196

Norb βzxx Norb βzyy Norb βzzz

H 448.86 H-1 330.88 H-3 229.41
H-3 352.31 H-2 287.14 H-2 205.59
H-2 265.25 H-3 208.47 H-1 175.41
H-1 235.28 H-5 207.32 H-9 158.35
H-6 224.77 H 189.34 H-12 157.32
H-7 205.63 H-7 184.2 H-15 134.75
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Table C.21: Comparison between the predominant orbital contribution of the hyperpo-
larizability (in a. u.) tested for the functionals CAM-B3LYP and PBE performed on the
substituents R=iPr and R=Ph. H indicates the number of the HOMO orbital for each
compound while L indicates the corresponding LUMO.

R=iP NH=96

CAM-B3LYP PBE

Norb βzxx Norb βzxx

H 410.9 H-3 561.7
H-3 337.4 H-4 514.8
H-2 246.0 L+3 -405.5
L+4 -231.1 L+2 -357.6
H-1 184.5 L+1 -335.4
L+5 -181.5 H 268.4

R=Ph NH=128

CAM-B3LYP PBE

Norb βzxx Norb βzxx

L+2 -638.7 L+2 -918.82
H-3 624.6 H-3 862.83
L+1 -605.1 L+1 -795.17
H-1 528.4 H-2 685.38
H-2 505.2 H-4 608.30
H-5 494.8 H-1 593.97
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Appendix D
Supporting information of Chapter 7

D.1 Definition of the geometrical parameters

D.1.1 Bond length alternation

The bond length alternation (BLA) along the conjugated polyenic bridge connecting the
donor and acceptor units is calculated as:

BLA =
1

N − 2

N−2∑
i=1

(−1)i+1(di+1,i+2 − di,i+1) (D.1)

where N is the total number of carbon atoms in the π-conjugated chain and di,j is the
interatomic distance between carbons i and j. According to the 2-state resonance picture
schematized in Figure D.1 for D3, a negative (positive) value of the BLA calculated
along the C1-C8 chain indicates that the ground-state electronic structure is dominated by
structure 1 (2). A value equal to zero indicates that the two resonance forms equivalently
contribute to the ground-state.

N

SBu2N
1

2

3
4

5
6

7
8

N

SBu2N

resonance form 1 resonance form 2

a

b

Figure D.1: Resonance structures of D3 and labels of atoms used to calculate the bond
length alternation.
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D.1.2 Torsional angles

Table D.1: Definition of the dihedral angles θ1-θ8 schematized in Figure D.2b.

Angle atoms
θ1 S-C-N-C
θ2 C-1-2-3
θ3 6-7-8-S
θ4 1-2-3-4
θ5 5-6-7-8
θ6 2-3-4-5
θ7 4-5-6-7
θ8 3-4-5-6

D.2 Derivation of an optimal force field for the D3 dye

D.2.1 Iterative parameterization of bond lengths and torsional

potentials

At the DFT level, the BLA along the polyenic bridge amounts to -0.043 Å while the
original GAFF (Generalized Amber Force Field) relaxed geometry yields a value of -0.054
Å due to the limited number of atom types used (ca and c2). Besides, the planarity
of the DFT structure is not well reproduced, with out-of-plane deviations of up to 14◦.
These discrepancies in the molecular structure with respect to DFT expectedly translate
into poor estimations of the first hyperpolarizability, namely β||(GAFF) = 2.269 105 a.u.
against 1.924 105 a.u. with the reference DFT geometry.

To achieve a more accurate description of the molecular geometry, we derived con-
sistently new parameters for both bonds and torsional potentials following an iterative
approach using a simplified structure of the D3 molecule, in which butyl chains were
removed from the chromophore (Figure D.2). Practically, several new atom types were
added to the original GAFF (Figure S2a) to properly reproduce the bond lengths (and
thus, the BLA) and the torsional potentials around the dihedral angles θ1-θ5, fitted on
relaxed potential energy scans performed at the M06-2X/6-311G(d) level in the gas phase
(Figure D.3). Note that the torsional potentials around the θ6-θ8 angles were not repa-
rameterized and used as defined in the standard version of GAFF in all MD simulations.
Converged parameters were used as starting point to describe the whole D3 molecule,
including butyl chains. A final refinement of the bonds was done so as to reproduce ac-
curately the DFT geometry of the whole system and proper description of the dihedrals
was checked.
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Figure D.2: Geometry of the fragment employed in the optimization of the AMBER force
field. (a) Atom types defined in the modified GAFF, (b) The reparametrized dihedrals
are θ1−5. The torsional potentials around θ6-θ8 (in blue) were not reparameterized.

(a) (b)

(c) (d)

(e)

Figure D.3: Relaxed potential energy scans calculated at the M06-2X/6-311G(d) level
(red) and force field fitted potentials (blue).
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D.2.2 Assessment of the quality of the modified force field

In order to assess the quality of the reparameterized force field, the geometry of the D3
molecule was optimized using molecular mechanics (MM) with the original and system-
specific derived force fields and compared to the geometry optimized using the reference
DFT level. Results gathered in Table D.3 show that MM calculations using the reparam-
eterized GAFF reproduce well the BLA along the π-conjugated bridge, while they give
rise to a slightly less planar structure compared to DFT, with differences in the θ2 and
θ5 dihedrals of the order of 10°. Note that the deviation from planarity resulting from
the MM optimization is canceled out by the subsequent MD simulations, which predict a
strictly planar average structure (Table D.4).

Table D.2: Values of the bond distances dij and BLA (Å), and of dihedrals (degrees)
optimized at the DFT and MM levels with the original and reparameterized GAFF.
Absolute differences with DFT values are also reported.

Parameters DFT MM (GAFF rep.) Diff. MM (GAFF orig.) Diff.
d12 1.424 1.423 -0.001 1.506 0.082
d23 1.372 1.373 0.001 1.334 -0.038
d34 1.411 1.411 0.000 1.332 -0.079
d45 1.372 1.374 0.002 1.330 -0.042
d56 1.412 1.411 -0.001 1.331 -0.081
d67 1.370 1.371 0.001 1.333 -0.036
d78 1.415 1.416 0.001 1.490 0.075

BLA -0.043 -0.041 0.002 -0.054 -0.097
θ1 1.4 4.6 3.3 -4.6 3.2
θ2 2.8 14.0 11.2 16.9 14.1
θ3 -178.9 -176.8 2.0 -179.9 1.1
θ4 -179.3 179.7 0.4 179.8 0.6
θ5 179.9 171.8 8.0 180.0 0.1
θ6 -179.3 -179.3 0.1 -179.3 0.0
θ7 179.8 179.0 0.8 179.9 0.1
θ8 179.9 179.4 0.5 179.9 0.0

To assess the impact of the geometry mismatches on the NLO responses, β|| has been
computed at the IEF-PCM/M06-2X/6-311+G(d) level by using both the DFT and MM
geometries (Table D.3). Using the MM structure optimized with the original GAFF
provides a β|| value overestimated by more than 15%, while the overestimation is reduced
to about 7% with the reparameterized force field. Note that fixing all dihedral angles
to their DFT-optimized values only slightly reduces the overestimation of β||, indicating
that the difference can only be partly ascribed to the deviation from planarity of the MM
geometry.
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Table D.3: Static β|| values (a.u.) calculated at the IEF-PCM/M06-2X/6-311+G(d) level
in chloroform using the DFT and MM geometries, and using the MM geometry while
fixing all dihedral angles listed in Table D.2 to their DFT-optimized values. Deviations
(in %) with respect to values computed using the DFT geometry are listed in the last
column.

Geometry β||(0; 0, 0) % wrt DFT
DFT 1.92E+05 -
MM (GAFF original) 2.27E+05 15.2
MM (GAFF reparameterized) 2.08E+05 7.3
MM (GAFF rep. + DFT dihedrals) 2.05E+05 6.0

D.2.3 Assessment of the quality of the force field used for chlo-

roform

The quality of the solvent description using standard GAFF parameters and DFT-derived
charges has been verified by comparing the calculated mass density with the experimental
one (1.468 g/cm−3). For this purpose we performed an NPT simulation on 1600 chloroform
molecules at 1 atm and 298.15 K obtaining a density of 1.415 g/cm−3.

D.3 MD simulations

D.3.1 Probability distributions of geometrical parameters

The distributions of the dihedral angles along the π-conjugated linker, of the average
bond length alternation (BLA) and of the average distance (dNI) between the counterion
I− and the nitrogen of the quinolinium group have been calculated for the 20000 frames
extracted from each NVT simulation starting at two different initial values of the dihedral
θ3, i.e. for 40000 geometrical structures. These distributions are compared in Figure D.4
with those obtained using the 400 geometries used for computing the NLO properties.
The average values of the geometrical parameters, extracted from the full and reduced
sets of structures, are reported in Table D.4. The correlation of the results show that
the 400 snapshots selected for calculation of the NLO properties are representative of the
dynamics of the system.
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Table D.4: Values of geometrical parameters (BLA and dNI in Å, and dihedral angles
θi in degrees) averaged over 40000 structures and over the 400 snapshots selected for
calculation of the NLO properties.

Property MD (40000 snapshots) MD (400 snapshots)
BLA -0.042 ± 0.022 -0.045 ± 0.023
dNI 4.56 ± 0.48 4.57 ± 0.47
θ1 -0.4 ± 14.1 0.4 ± 12.9
θ2 0.0 ± 14.1 -0.7 ± 14.6
θ3 (sim 1) 180.1 ± 11.1 180.1 ± 10.1
θ3 (sim 2) 0.0 ± 9.4 -0.3 ± 10.5
θ4 180.0 ± 8.9 180.4 ± 8.8
θ5 180.0 ± 10.2 179.4 ± 10.5
θ6 180.0 ± 6.3 180.3 ± 6.5
θ7 180.0 ± 6.1 179.9 ± 6.1
θ8 180.0 ± 6.4 180.2 ± 6.3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure D.4: Potential energy curves (left) and probability distributions associated to the
rotation of the dihedrals θ1, θ2 and θ3 of D3 obtained using 40000 structures (middle) and
the selected 400 structural snapshots (right) extracted from the MD trajectories. The two
colors in the distributions of θ3 (plots (h) and (i)) correspond to two different trajectories
starting from θ3 = 0◦ (purple) and θ3 = 180◦ (blue).

252



(a) θ6 (b) θ7 (c) θ8

Figure D.6: Probability distributions associated to the rotation around the internal dihe-
drals θ6, θ7 and θ8 of D3.

(a) (b)

Figure D.7: Probability distributions of the BLA along the conjugated bridge of D3,
obtained using 40000 structures (left) and the selected 400 structural snapshots (right)
extracted from the MD trajectories.

(a) (b) (c)

(d) (e) (f)

Figure D.5: Potential energy curves (left) and probability distributions associated to the
rotation of the dihedrals θ4 and θ5 of D3 obtained using 40000 structures (middle) and
the selected 400 structural snapshots (right) extracted from the MD trajectories.
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(a) (b)

Figure D.8: Probability distributions of the distances between the nitrogen of the quino-
linium group and the iodine atom in D3, obtained using 40000 structures (left) and the
selected 400 structural snapshots (right) extracted from the MD trajectories.

(a) (b)

Figure D.9: Probability distributions of the dihedral angle θPhI = (I-a-N-b) (see Figure
D.1 for atom labels) in D3, obtained using 40000 structures (left) and the selected 400
structural snapshots (right) extracted from the MD trajectories.
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D.3.2 Time evolution of the EFISHG properties over the MD

trajectories

(a) (b) (c)

(d) (e) (f)

Figure D.10: Time evolution of the EFISHG properties along the MD trajectories.

D.3.3 Structure - NLO properties relationships

Figure D.11: Evolution of the θ angle (degrees) between the µ⃗ and β⃗ vectors with respect
to the bond length alternation (Å).
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Figure D.12: Evolution of βtot values (in 104 a.u.) calculated in presence of the iodide with
respect to those calculated for the same geometries of the chromophore after removing
the anion.
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(a) (b)

(c) (d)

(e)

Figure D.13: Evolution of the optical quantities with respect to the θ angle (degrees)
between the µ⃗ and β⃗ vectors: (a) dipole moment (a.u.), (b) isotropic polarizability (αiso,
a.u.), β|| (104 a.u.), βtot (104 a.u.), and γ|| (107 a.u.).
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(a) (b)

(c) (d)

(e)

Figure D.14: Evolution of the optical quantities with respect to the bond length alterna-
tion (Å): (a) dipole moment (a.u.), (b) isotropic polarizability (αiso, a.u.), β|| (104 a.u.),
βtot (104 a.u.), and γ|| (107 a.u.).

D.4 Assessment of the DFT approximation for comput-

ing NLO properties

D.4.1 Performance of M06-2X with respect to MP2

To assess the reliability of the selected exchange-correlation functional, the static first
hyperpolarizabilities (in vacuum) of compounds of series D were calculated at the M06-
2X/6-311+G(d) level and compared to MP2 calculations carried out with the same basis
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Figure D.15: Comparison of static first hyperpolarizabilities (equation D.2, in a.u.) of
compounds of series D, computed at the M06-2X and MP2 levels using the 6-311+G(d)
basis set.

set. Comparisons were made considering the norm of the static beta vector, defined as:

β = βtot =
1

5

√
β2
x + β2

y + β2
z (D.2)

As shown in Figure D.15, the very good correlation observed for the two sets of values
validates the suitability of the M06-2X exchange-correlation functional for the series of
investigated systems.

D.4.2 Impact of the basis set

Three basis sets of increasing size (6-311+G(d), aug-cc-pVDZ and aug-cc-pVTZ) have
been tested for molecules of series D, by calculating their static first hyperpolarizabilities
at the M06-2X level. The results displayed in Figure D.16 show that the two smaller basis
sets (6-311+G(d) and aug-cc-pVDZ) provide similar results to the ones obtained using
aug-cc-pVTZ, validating the choice of 6-311+G(d) for calculation of the NLO properties
of the dyes.
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Figure D.16: Comparison of static first hyperpolarizabilities (equation D.2, in a.u.) of
compounds D1-D4, calculated at the TD-DFT/M06-2X level using different basis sets.

Three basis set used for describing the iodine counterion were also evaluated, by cal-
culating the static first hyperpolarizability of the D3/iodine complex. In these tests the
6-311+G(d) basis set was used for the dye. The results collected in Table D.5 show that
varying the basis set for iodine does not impact significantly the values of β.

Table D.5: Static first hyperpolarizabilities (equation D.2, in 104 a.u.) of the D3/iodine
complex as a function of the basis set used for describing the iodine anion. These compu-
tations have been performed on 24 cpus on a Xeon node with 64 Gb of RAM. The total
number Nbasis of basis functions and the computation time (min) are also provided.

Dye basis Iodine basis β Nbasis Time
6-311+G(d) 6-311G(d) 16.8 857 19
6-311+G(d) aug-cc-pvdz(PP) 17.0 827 18
6-311+G(d) aug-cc-pvtz(PP) 17.0 850 35
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D.5 Optimized structures of the dye/iodine complexes

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5

Figure D.17: Optimized structures of the dye/iodine complexes for dyes of series A.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5

Figure D.18: Optimized structures of the dye/iodine complexes for dyes of series B.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5

Figure D.19: Optimized structures of the dye/iodine complexes for dyes of series C.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5

Figure D.20: Optimized structures of the dye/iodine complexes for dyes of series D.
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