
HAL Id: tel-04321191
https://theses.hal.science/tel-04321191

Submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the interaction between cortex and
hippocampus to build spatial and visual grid cells :
contributions to retrosplenial and entorhinal cortex

modelling
Mingda Ju

To cite this version:
Mingda Ju. Exploring the interaction between cortex and hippocampus to build spatial and visual
grid cells : contributions to retrosplenial and entorhinal cortex modelling. Neurons and Cognition
[q-bio.NC]. CY Cergy Paris Université, 2023. English. �NNT : 2023CYUN1168�. �tel-04321191�

https://theses.hal.science/tel-04321191
https://hal.archives-ouvertes.fr


Explorer l’interaction entre le cortex et
l’hippocampe pour construire des cellules

de grille spatiales et visuelles :
contributions à la modélisation du cortex

rétrosplénial et du cortex entorhinal

Exploring the interaction between cortex
and hippocampus to build spatial and
visual grid cells: contributions to

retrosplenial and entorhinal cortex
modelling

Thèse de doctorat pour l’obtention du titre de docteur délivré par CY Cergy Paris
Université

Ecole doctorale n°405 Économie, Management, Mathématiques, Physique et
Sciences Informatiques (EM2PSI)

Thèse présentée et soutenue à Cergy, le 09/02/2023, par
Mingda Ju

Devant le jury composé de :

Nicolas
Rougier

Université de Bordeaux Rapporteur

Denis
Sheynikhovich

Sorbonne Université Rapporteur

Emmanuel
Daucé

Institut de Neurosciences de la Timone Examinateur

Sylvia Wirth
Institute of Cognitive Sciences Marc Jean-
nerod Examinatrice

Philippe
Gaussier

CY Cergy Paris Université Directeur de thèse



Acknowledgments

First of all, I would like to thank my Ph.D. supervisor, Prof. Philippe Gaussier. I
remember the first day I came to the lab for an interview, his affability, and enthu-
siasm for research infected me and made me determined to follow in his footsteps.
I was lucky to have a mentor who was professional but funny, rigorous but flexible.
During these four years, he has taught me not only his vast knowledge but also his
attitude toward research. During the epidemic, it was his encouragement and under-
standing that allowed me to persevere through the most challenging times and finish
this thesis. I would also like to thank my master’s supervisor, Prof. Gang Zheng,
who recommended me to participate in this Ph.D. project. I learned a lot from him
during the six months of my internship at Inria, and I am deeply aware of my short-
comings. His humility, selflessness, and professionalism have always made him a role
model for me on my research path. I am also grateful to my friends, Mehdi Louis,
and Yuechen, who have seen me through the ups and downs of my life and research
work, and who have been by my side, giving me great encouragement and help. I
would also like to thank the etis lab family. Many of my colleagues have helped me
in various ways, and I am grateful to all of them for their kindness and goodwill so
that I don’t feel isolated and lonely in a foreign country. I owe my current platform
to the support and encouragement of my family, especially my parents. Thank them
for their selfless dedication. They are also the motivation for my efforts and the
wellspring of my life.

致我的外公：

今天是一月十七日，我的外公吴士铸老先生于七年前的今天在和运动神经元疾

病（渐冻症）抗争了八年之后与世长辞。他是我见过最坚强而又最温柔的人。当我

在新冠疫情期间因为连续十天的咳嗽而身心疲惫之时，我想到他在生命最后三年的

每一天都要承受因为肌肉萎缩而造成的剧烈咳嗽，而他所受的煎熬远不止此。可我

却丝毫不记得他有过任何怨天尤人或是脆弱的表情。他的仁慈和悲悯则总在面对他

人的苦难时出现。于他而言，被烈日暴晒的蚯蚓和路边晕倒的人类一样值得被帮

助，他也确实付诸于行动。在二十年前，作为机械工程师的他用自己的机床手工打

造了一辆四轮电动自行车，于是他便可以和我的外婆并肩骑行在扬州的大街小巷。

1



我问他明明就可以买到前后双人自行车，为什么要费力造一辆四轮的呢。他说两个

人并肩坐着可以平等地欣赏风景，那年，他七十五岁。他让我明白了尊重的意义，

他教会了我如何去爱别人，爱这个世界，爱一切生灵. . . . . .他是我世界的光明。这
篇论文对于人类科学来说，犹如沧海一粟微不足道，于我而言是人生中的一个节

点。生命中的一切，我都期待能与你分享。

希望你平安，快乐。

i



Contents

List of Figures iv

List of Tables viii

Glossary of Symbols ix

Abstract 1

Résumé français 2

1 Biological background and State of the art 8
1.1 Spatial role and connectivity of retrosplenial cortex . . . . . . . . . . 8
1.2 Path integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Neural field and Continuous attractor . . . . . . . . . . . . . 13
1.2.2 Head direction cell . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Integration of activity of head direction cell . . . . . . . . . . 16

1.3 Self-organized maps to mimic cortical columns . . . . . . . . . . . . . 18
1.4 The place cell and hippocampal system . . . . . . . . . . . . . . . . . 20
1.5 Grid cells and the compressing role of entorhinal cortex . . . . . . . 24
1.6 Continuous attractor model . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 1D continuous attractor models for head direction cells . . . 25
1.6.2 2D continuous attractor models for place cells . . . . . . . . . 26
1.6.3 2D continuous attractor models for grid cells . . . . . . . . . 26

1.7 Oscillatory interference model for place cells and grid cells . . . . . . 27
1.8 Adaptive resonance theory and a model of grid cell . . . . . . . . . . 29
1.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 A model of path integration and representation of spatial context
in the retrosplenial cortex 34
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Simulation in a spiral maze . . . . . . . . . . . . . . . . . . . 42
2.4.2 Simulation in W mazes . . . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Simulation on a treadmill . . . . . . . . . . . . . . . . . . . . 50

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Contribution of the retrosplenial cortex to path integration and
spatial codes 60
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Computational model . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Parameters and moving pattern . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Recording of neurons learning MD activities in RSC . . . . . 66
3.4.2 Building place cells from PI information . . . . . . . . . . . . 67
3.4.3 Robustness of the model . . . . . . . . . . . . . . . . . . . . . 68

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Self organization of the entorhinal cortex grid cells: impact of the
hippocampal feedback 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Ad hoc computational model of grid cells . . . . . . . . . . . . . . . 74

4.2.1 Septal signal generated from cortical signature . . . . . . . . 84

5 A computational model of visual grid cells applied to image recog-
nition 94
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Computational model . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Model of the recognition mechanism relying on ’where’ and ’what’

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Results of simulations of the image recognition . . . . . . . . . . . . 107
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Discussion 121

Bibliography 126

iii



List of Figures

1.1 Anatomy of RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Anatomy of RSC across species . . . . . . . . . . . . . . . . . . . . . 12
1.3 An example of path integration . . . . . . . . . . . . . . . . . . . . . 13
1.4 Illustration of dynamic neural field . . . . . . . . . . . . . . . . . . . 14
1.5 Comparison between HD cells and Gaussian shapes . . . . . . . . . . 16
1.6 Equivalence between the STM scheme (left) and a feed-forward scheme

using synaptic learning from a constant input context (right). . . . . 18
1.7 Cerebral cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Demonstration of the discretization of the activity of neurons on the

PI field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 A schematic representation of the extended hippocampal system . . 21
1.10 Memory classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.11 One-dimensional attractor map model for head direction encoding

based on neural integration of head angular velocity signals. (Mc-
Naughton et al., 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.12 Extension of the one-dimensional attractor map concept to two di-
mensions: a model for path integration. (McNaughton et al., 2006) . 27

1.13 Linear interference patterns in 2D . . . . . . . . . . . . . . . . . . . . 28
1.14 Two linear interference patterns with preferred directions differing by

60° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.15 Anesthesia disrupts distance, but not direction, of path integration

memory. (Pisokas et al., 2022) . . . . . . . . . . . . . . . . . . . . . . 31
1.16 Comparison of continuous attractor model, oscillatory interference

model and our model of the path integration and the grid cells. . . . 33

2.1 Comparison between the Gaussian shape and the firing range of HD
cells found in biological experiments . . . . . . . . . . . . . . . . . . 36

2.2 Model of the retrosplenial cortex with 1D field performing path inte-
gration and self-organizing blobs . . . . . . . . . . . . . . . . . . . . 37

2.3 Schema of the contextual input Cj . . . . . . . . . . . . . . . . . . . 39

iv



2.4 Activity of one neuron in PI field when the animal moves in one di-
rection at a constant speed . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Activity of neurons on PI field when the rat moves in a square spiral
maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 The rat moves in a square spiral maze . . . . . . . . . . . . . . . . . 45
2.7 Performance of PI mechanism under the perturbation of a white noise 45
2.8 Activity of neurons on PI field when the rat moves in a square spiral

maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9 PI in the square spiral maze . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 Activity of neurons on PI field when the rat moves in a triangle spiral

maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.11 The rat moves in a triangle spiral maze . . . . . . . . . . . . . . . . . 48
2.12 Representative neural activity from the W maze simulations using

different decay constants . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.13 Simulation where the mouse is head-fixed and running for 150cm on

a treadmill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.14 Activity of three neurons on 3 different 1D Kohonen maps . . . . . . 52
2.15 Place cell-like activity recorded from a global self-organizing map . . 53
2.16 Building MEC grid cells from the projection of RSC blob activity

using a modulo operator . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.17 Shape of the lateral interaction function . . . . . . . . . . . . . . . . 59

3.1 Computation model of path integration (PI) in the retrosplenial cortex 62
3.2 Example of one activated neuron showing MD cell activity on the

SOM when λ equals to 0.1 . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Example of one activated neuron showing place cell activity on the SOM 67
3.4 The average directional and spatial information rates of the activity

of neurons using different learning rates . . . . . . . . . . . . . . . . 68
3.5 Activity of two neurons under the situation of High(top) and low(bottom)

frequency recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Simple illustration of the modulo operation . . . . . . . . . . . . . . 71

4.1 Architecture of a computational model to build grid cells from path
integration fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Illustration of the modulo mechanism between neurons of the dis-
cretization layer and of the modulo layer . . . . . . . . . . . . . . . . 75

4.3 Ad hoc selection of four grid cells each representing one quadrant of
the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Two grid cells built from 2 pairs of neurons distant from 60 degrees
on a path integration field . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 A grid cell built by the architecture . . . . . . . . . . . . . . . . . . . 77

v



4.6 A model of grid cell using classical conditioning learning rule based
on LMS to learn the grid pattern from a preexisting grid cell . . . . 79

4.7 Firing field of a preexisting grid cell built by our computational model
as a teaching signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Grid cells learned by a classical conditioning learning rule . . . . . . 80
4.9 Two PI neural fields used as the input to the discretization field . . . 81
4.10 Build GC using a blob-structured Kohonen map to learn the dis-

cretization in each direction . . . . . . . . . . . . . . . . . . . . . . . 82
4.11 Illustration of the Hebbian/anti-Hebbian learning mechanism. . . . . 83
4.12 Illustration of the update of activities and synaptic connections of

neurons subject to the anti-Hebbian learning rule . . . . . . . . . . . 84
4.13 Build GC using a 2D anti-Hebb group to learn the modulo operation 85
4.14 Model of the grid cell based on the reciprocal connection between the

hippocampus and the entorhinal cortex. . . . . . . . . . . . . . . . . 86
4.15 activities of the product of random pairs of neurons taken from 20000

neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.16 Grid cells learned from the hexagonal signal by one-shot learning . . 87
4.17 Septal signals built by one-dimensional Kohonen map with respec-

tively a) 10, b) 20, and c) 50 neurons on the Kohonen map. . . . . . 88
4.18 septal signals built by two-dimensional Kohonen map . . . . . . . . . 89
4.19 Activity of the septal signal learned by a self-organizing map when

introducing a neighbour kernel in the second stage. . . . . . . . . . . 89
4.20 Activity of the septal signal learned by a self-organizing map when

introducing a neighbour kernel in the second stage . . . . . . . . . . 90
4.21 Illustration of the generation of grid cells . . . . . . . . . . . . . . . . 92

5.1 Spatial representation in the primate entorhinal cortex. . . . . . . . . 95
5.2 Parallel processing streams into the hippocampus . . . . . . . . . . . 97
5.3 Visual place cell from the merging of ‘what’ and ‘where’ information 98
5.4 Biological model for the learning of one grid cell . . . . . . . . . . . . 99
5.5 Hexagonal teaching signal and the activity of one grid cell learned

from it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Illustration of the log-polar mapping . . . . . . . . . . . . . . . . . . 102
5.7 Images recognition using the combination of ’where’ and ’what’ infor-

mation on the image . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.8 Distribution of the firing field of the grid cell used for the recognition

tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 One image used for the training session . . . . . . . . . . . . . . . . . 108
5.10 For the test session, 7 images are randomly selected from the data set

of 200 images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



5.11 activity of 7 cells represents respectively 7 images presented sequentially111
5.12 Example of Seven successive views from the data-set of 4000 images

on the road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.13 The activities of 7 neurons in response to 70 successive views . . . . 113
5.14 The activities of 7 neurons in response to 70 successive views . . . . 114
5.15 The activities of 7 neurons in response to 70 successive views . . . . 115
5.16 Illustration of the generalization score (GS) and the robustness level

of 3 sampled neurons during the process of the testing session . . . . 116
5.17 Scatter figure showing the GS and Robustness of the recognition of 7

neurons under different setups for visual localization . . . . . . . . . 117
5.18 The comparison of mean values of the GS and Robustness of the recog-

nition of 7 neurons under different setups . . . . . . . . . . . . . . . 118

6.1 Illustration of pathways between cortices and the hippocampus ac-
counting for the spatial representation and image recognition . . . . 124

vii



List of Tables

2.1 Comparison of the properties of the neurons in a VIF according to the
learning rate or decay value and the recalibration method used . . . 50

5.1 Parameters of the model. Nbnr stands for the number of neurons.
DoG: difference of Gaussian. GC: grid cells. AoI: area of interest. . . 119

viii



Glossary of Symbols

Symbol Meaning

General notations

ADN anterior dorsal nucleus of the thalamus
DG dentate gyrus
EC entorhinal cortex
Hipp hippocampus
HD head direction
IT inferior temporal cortex
LEC lateral entorhinal cortex
MEC medial entorhinal cortex
Ph parahippocampus
PI Path integration
PPC posterior parietal cortex
Pr perirhinal cortex
RSC retrosplenial cortex
Sub subiculum
V IF vector integration field
1D one-directional
2D two-directional
· Dot product

ix



Abstract

Since the discovery of place cells in the hippocampus, many structures including
the entorhinal cortex and retrosplenial cortex, and their interactions with subcorti-
cal regions, such as the striatum and the septum, are proven to be involved in the
spatial representation which contributes to the formation of the episodic memory
along with the temporal representation. The main point of this thesis is to model
the interaction of cortical areas and the hippocampus in the medial temporal lobe in
order to understand the spatial representation and the recognition mechanism at the
neuronal level of humans. Experiments conducted on monkeys, rodents and insects
provided us with a global point of view in understanding the basic mechanism on
which rely the spatial function, one of the most vital and primary functions to the
survival of animals. Thereby, we assume that the spatial functions share some com-
mon properties across different species. Following this assumption, a generic model
of the spatial function was perceived and has been tested, evolved, and improved
for decades taking into account the contemporary biological recordings. Our current
model aims to explain from the spatial function to more general functions such as
visual recognition using a simple and comprehensive mechanism with respect to bio-
logical plausibility. We mainly address four questions: 1) What is the contribution of
the retrosplenial cortex in conveying the information of path integration? 2) What
is the role of the path integration neural field in the spatial function? 3) How to
extend the retrosplenial cortex model to a more generic model explaining the process
of perceptions other than the proprioception of self-motion? 4) What is the causal
relationship between place cells and grid cells and how do they participate in the
navigation and even in other perception processes such as the recognition of views?
Our model explains the place cell-like activity found in the retrosplenial cortex and
predicts local connectivity between the retrosplenial cortex and the path integration
neural field. Grid cells can be generated from cortical inputs during navigation and
visual exploration owing to a modulo mechanism implemented in our model. A re-
ciprocal leaning mechanism is proposed to entangle the causal relationship between
place cells and grid cells. We suppose that the spatial representation could be the
epiphenomenon of a more general recognition mechanism.

1



Résumé français

Depuis la découverte des cellules de lieu dans l’hippocampe, de nombreuses structures
incluant le cortex entorhinal, le cortex rétrosplénial, et leurs interactions avec des ré-
gions sous-corticales, telles que le striatum et le septum, sont prouvées comme étant
impliquées dans la représentation spatiale qui, avec la représentation temporelle,
contribue à la formation de la mémoire épisodique. Le point principal de cette thèse
est de modéliser l’interaction des zones corticales et de l’hippocampe dans le lobe
temporal médian afin de comprendre la représentation spatiale et le mécanisme de
reconnaissance au niveau neuronal chez l’homme. Les expériences menées sur des
singes, des rongeurs et des insectes nous ont fourni un point de vue global sur la
compréhension du mécanisme de base sur lequel repose la fonction spatiale, l’une des
fonctions les plus vitales et primaires à la survie des animaux. Ainsi, nous supposons
que les fonctions spatiales partagent certaines propriétés communes à différentes es-
pèces. Suite à cette hypothèse, un modèle générique de la fonction spatiale a été
perçu et a été testé, évolué et amélioré pendant des décennies en tenant compte des
enregistrements biologiques contemporains. Notre modèle actuel vise à expliquer de
la fonction spatiale à des fonctions plus générales telles que la reconnaissance vi-
suelle en utilisant un mécanisme simple et complet en ce qui concerne la plausibilité
biologique. Nous abordons principalement quatre questions : 1) Quelle est la contri-
bution du cortex rétrosplénial dans la transmission de l’information de l’intégration
du chemin ? 2) Quel est le rôle du champ neuronal de l’intégration du chemin dans
la fonction spatiale ? 3) Comment étendre le modèle du cortex rétrosplénial à un
modèle plus générique expliquant le processus des perceptions autres que la proprio-
ception de l’auto-mouvement ? 4) Quelle est la relation causale entre les cellules de
lieu et les cellules de grille et comment participent-elles à la navigation et même à
d’autres processus de perception tels que la reconnaissance de vues ? Notre modèle
explique l’activité des cellules de lieu trouvée dans le cortex rétrosplénial et prédit
la connectivité locale entre le cortex rétrosplénial et le champ neuronal d’intégration
du chemin. Les cellules de grille peuvent être générées à partir des entrées corti-
cales pendant la navigation et l’exploration visuelle grâce à un mécanisme modulo
mis en œuvre dans notre modèle. Un mécanisme d’appui réciproque est proposé
pour enchevêtrer la relation causale entre les cellules de lieu et les cellules de grille.

2



Nous supposons que la représentation spatiale pourrait être l’épiphénomène d’un
mécanisme de reconnaissance plus général.
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Introduction

Since the discovery of the place cells in the hippocampus (Hipp) and the grid cells
in the entorhinal cortex (EC) we understand better how information related to in-
ternal information (vestibular and proprioceptive system, optical flow to compute
path integration) or external information (visual landmark, sound, tactile or olfac-
tory information) are exploited by the brain to create codes characterizing a specific
place in the environment. Different models such as two-dimensional attractor mod-
els, oscillatory interference models and adaptive resonance theory models compete to
understand how this information is constructed and how it is handled in behavioural
tasks. One of the strong ideas in this thesis is to jointly consider the wide variety of
behaviours involving ego and allocentric codes in order to develop and characterize
a generic model explaining the observations made by biologists including the place
cell-like activity in the retrosplenial cortex (RSC), grid cells in navigation and visual
grid cells in EC. This thesis starts with the issue of the role of path integration
computation in spatial processing. RSC is known to process path integration and
visual information and to translate between egocentric (self-centred) and allocentric
(world-centred) spatial information. The contribution of RSC in conveying infor-
mation of path integration is further studied by complementary simulations using
a novel network structure. Next, we propose a simple compression mechanism at
the level of EC to address both the formation of grid cells (explaining the hexago-
nal paving) and the capability of Hipp in merging multimodel information necessary
to explain the involvement of Hipp in the formation of episodic memories. Finally,
our model proposes a new view of the hippocampal system where the hippocampus
proper involves in the self-organization of EC.

Contributions

Several papers are associated with the present thesis. One submitted paper entitled:
Temporal Integration Can Explain a Range of Spatial Representations in Cortex pro-
poses a temporal integration mechanism (or a low pass filter) can be used to explain
the building of diverse spatial representations in cortices (e.g., RSC, posterior parietal
cortex). We show the low pass filtering of movement direction cell activity is suffi-
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cient to perform path integration and to explain the route-related activities recorded
in RSC. We propose that various neural fields of path integration can be built to
track different targets and to update information according to different references.
We discuss the ability of RSC to maintain a perception of progress along a route
and to switch between egocentric and allocentric frames of reference. Changing the
neuron’s time constant, its preferred direction, its initial activity level and the direc-
tion of the movement can produce a wide range of results that can be interpreted as
cells having different functions or frames of reference in RSC. The model shows path
integration can be approximated from low pass filters if their input is HD cells-like
activities (1D ring of neurons). The simulation shows that the different recordings
in RSC may correspond to the "signature" of path integration coded on a 1D ring
of neurons. Simulations show that the cell activities are consistent with recordings
from RSC (Alexander and Nitz, 2015) using our biologically inspired model.

In a published paper called: A model of path integration and representation of
spatial context in the retrosplenial cortex, we studied in detail the impact of our vector
integration field hypothesis. We explained different results obtained by Mao Mao et
al., 2017 assuming Kohonen maps are clustering the local activities of our VIF.
Inspired by recent biological experiments (Mao et al., 2017), we simulate animals
moving in different environments (open space, spiral mazes and on a treadmill) to
test the performances of our simple model of RSC conveying information of the
path integration. The effect of different sizes of the bump of movement direction
cells is studied to approximate path integration. The diverse activities obtained
from self-organizing maps are also discussed to explain some results of the biological
experiments. Taking inputs coming from a narrow neighbouring projection of our
path integration field creates place cell-like activities in RSC when the mouse runs on
the treadmill. This can be the result of local self-organizing maps representing blobs
of neurons in RSC (e.g. cortical columns). Other simulations show that accessing
the whole path integration field would induce place cells whatever the environment
is. Since this property is not observed, we conclude that the categorization neurons
in RSC should have access to only a small fraction of the path integration field.
The connection between Hipp, RSC and EC is revealed through a novel perspective.
We defend the idea that path integration can be performed outside Hipp by the
information coming from RSC. We suppose some neurons in EC perform a code
compression taking inputs from our path integration fields in RSC. The observation
of visual grid cells is a good example of such a general compression mechanism
in addition to classical grid cells. We suppose Hipp detects and codes transitions
between multi-model states which is very important to detect new complex states
for the learning of complex conditioning and/or the building of episodic memories.
The mapping property can be an incidental effect of this general property when we
study animals doing only navigation tasks.
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An ongoing paper is now focusing on building grid cells in EC from the com-
pression of afferent cortical activity using modulo operators that could result from
a self-organization mechanism. Our model could explain why the visual exploration
of an image (Killian et al., 2012) could induce grid cell activities in EC. We aim to
design a coherent model accounting for different loops between the cortex and the
hippocampal system (including EC) to explain the generation of grid cells in EC
from the hippocampal place cells and the different cortical and subcortical inputs.

Layout of the thesis

The biological background and state of the art of our model are introduced in chapter
2. Chapters 3, 4 and 6 in this thesis are written as individual papers. Each of them
contains a complete abstract, introduction, simulation, and conclusion.

In chapter 3, we simulate animals moving in different environments (open space,
spiral mazes and on a treadmill) to test the performances of a simple model of RSC
acting as a path integration (PI) and as a categorization mechanism. The connection
between Hipp, RSC and EC is revealed through a novel perspective. In our model,
PI is performed by a 1D field of neurons acting as a simple low-pass filter of head
direction (HD) cells modulated by the linear velocity of the animal. Recording of
neurons on our 1D PI field shows these neurons would not be intuitively interpreted
as performing PI. Using inputs coming from a narrow neighbouring projection of our
PI field creates place cell-like activities in RSC when the mouse runs on the treadmill.
Other simulations show that accessing the whole PI field would induce place cells
whatever the environment is. Since this property is not observed, we conclude that
the categorization neurons in RSC should have access to only a small fraction of the
PI field.

In chapter 4, we emphasize the idea that RSC conveys path integration(PI) in-
formation to the hippocampal system. We further emphasize that the absence of
place cells in RSC is due to the difficulty of neurons accessing the whole PI neural
field. Our model shows the potential of the PI neural field in reproducing diverse
neuronal activities such as place cells and movement direction cells involved in the
spatial representation of animals. To address the cost and capability issue of Hipp
due to the limited number of neurons and synaptic connections of each neuron and
numerous afferent signals to Hipp including the proprioception of self-motion and
the information of different types of perceptions. We propose the crucial role of EC
as a hub to merge the different afferent cortical activities in order to build an efficient
hash code for complex pattern recognition and novelty detection at the level of Hipp.
We suppose the grid cells in navigation could be an epiphenomenon of this generic
compression mechanism in EC.

In chapter 5, we introduce the hypothesis of the important role of the causal
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relationship between the place cells and EC in the generation of grid cells and place
cells during early development. Due to time constraints, the model accounting for
the dynamic adaptation of the synaptic connectivity between Hipp and cortices and
the interactive generation of place cells and grid cells has not been accomplished.
Some of the preliminary simulation results are shown to support our hypothesis and
encourage further research in the elaboration of this model.

In chapter 6, we propose a general model explaining the generation of the visual
grid cell along with its involvement in the visual recognition tasks independent of the
locomotion or speed information. We suggest EC plays the role of a compressor of not
only the spatial information but also visual input in order to establish an efficient and
stable representation of recognition in the hippocampal formation. The navigation
feature could be the epiphenomenon of this general recognition mechanism.
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Chapter 1

Biological background and State
of the art

In this chapter, we will introduce neurobiological data related to the retrosplenial
cortex (RSC), entorhinal cortex (EC) and hippocampus (Hipp) and modelling back-
ground, as well as an overview of the most discussed models. We will try to model
in the next chapters for place recognition and navigation tasks. For decades, the
aim of our group has been to build a general model accounting for basic mechanisms
underpinning the navigation and recognition across species in order to contribute to
a better understanding of the human brain. We therefore focused on the illustra-
tion and demonstration of the hippocampal formation and surrounding cortices of
humans, which are widely considered to play an important role in spatial navigation
and declarative memory. Nevertheless, biological studies in other species including
insects, rodents and other mammals have also provided us insights to build a general
model. It is well known that the human and rodent brain share common proper-
ties (Andersen et al., 2006) in their architecture and cell types not to mention the
similarities in the neural layout and pathways within the hippocampal formation
and surrounding cortices in all mammals. Experiments have shown that the primate
Hipp has different spatial representations compared to the rodent Hipp due to the
development of the primate fovea (Rolls and Wirth, 2018). The representations of
spatial scenes rely on the spatial view cells in the primate Hipp while the place cell
found in the rodent Hipp provides a representation of where the rodent is located.
Nevertheless, the spatial representation of primates and rodents could still originate
from homologous mechanisms.

1.1 Spatial role and connectivity of retrosplenial cortex

The retrosplenial cortex has long been associated with navigation, owing to its con-
nectivity to other navigation-related regions. It is centrally situated between the
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limbic areas including the hippocampus formation, the anterior thalamic nuclei, and
the parahippocampal region and the cortical areas such as the prefrontal cortex,
the parietal cortex and the visual cortex (Wyass and Van Groen, 1992; Reep et al.,
1994; Vann et al., 2009; Czajkowski et al., 2013). In figure 1.1, we have a schematic
overview of the organization of retrosplenial circuitry in rodents.

Its significance in navigation has been proven in the last twenty years. Techni-
cally, studies in humans can be problematic due to the position of RSC deep in the
callosal sulcus and the difficulty in distinguishing RSC participation from that of
surrounding areas (Fig. 1.2). Rodent models, on the other hand, are comparatively
easier in assessing RSC contributions because of their relative size and accessibility,
as well as similarities in structure and connectivity across species. The conception of
our model of the PI process in RSC is directly inspired by the biological recordings
of various species in order to preserve the generality of our model. Different record-
ings in RSC point to the possibility that RSC could play a crucial role in the PI.
The spatial firing of hippocampal place cells has been found in blind rats by Save
Etienne (Save et al., 1998). Cooper’s team found that RSC inactivation selectively
impairs navigation in darkness (Cooper and Mizumori, 1999) and they also found
that RSC contributes to spatial memory and navigation without visual cues (Cooper
et al., 2001). Other recordings indicate the involvement of RSC in the encoding and
storage of spatial information (Czajkowski et al., 2014). The place cell activity found
in RSC could also be a trace of this PI. In 2017, Mao and Mcnaughton’s team (Mao
et al., 2017) found a Sparse orthogonal population representation of spatial context
in RSC. They have mice head-fixed moving on a 150-cm linear treadmill. A drop of
sucrose water was delivered at a fixed location for every complete lap performing as
a reset of one treadmill loop. When the mice run on the treadmill, the activity of
neurons in RSC of mice is recorded. The authors found place cell-like activities with
distinct neurons firing as the animal travels a specific distance in the treadmill.

Spatial navigation requires a continuous perception of progress along a route such
as path integration and the ability to seamlessly switch between different frames of
reference. The spatial information in an allocentric frame of reference often represents
the position of objects relative to the environment extrinsic to the perceiver (e.g.
place cells). An egocentric frame of reference includes spatial information about
the location or action of the perceiver related to which the position of objects is
represented (e.g. a desk to my left). A route-centric frame may be related to how
much progress one has made on a navigation plan (e.g. ramped activity with the
animal’s progression) or may specify a route-specific action (e.g. stronger responses
to one turn in a series of turns). In both cases, these responses are informative of the
animal’s position along route space, differing from place-specific or proprioceptive
information.

All three of these reference frames have been observed in rodent brain record-
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Figure 1.1: Schematic overview of the organization of retrosplenial circuitry in ro-
dents. Retrosplenial cortex (RC) layer 1 integrates glutamatergic thalamic and
GABAergic hippocampal inputs. Neurons from layers 2/3 and 5 extend their den-
drites to this layer. Although the subicular input densely innervates layer 3, in mice,
it evokes mainly perisomatic responses in layer 5 neurons, indicating functional col-
laterals in deeper layers. Inhibitory neurons of layer 1 possibly contact pyramidal
neurons of layer 2, as in rats, those are inhibited by stimulation of layer 1. The
inhibitory neurons of layer 1 innervate layer 1, but some axons also reach deep lay-
ers 5–6. Late spiking layer 2 neurons project to the contralateral hemisphere but
also show extensive axonal arborizations in layer 5 and 6 in rats. Parvalbumin ex-
pressing GABAergic neurons in layer 2 may provide further feedforward inhibition
to layer 2 pyramidal neurons. These interneurons extend their dendrites to layer 1,
possibly receiving the same thalamic input. Together with layer 2 pyramidal neu-
rons, their apical dendrites form dendritic bundles typical for the rat RC. Input from
parahippocampal, parietal, and visual regions based on anatomical tracing in rats
are shown in grey. Note that the RC is reciprocally connected with these regions,
but for clarity, only the inputs are shown and the exact laminar termination may
differ depending on specific subregions. The head direction, locomotion, and land-
mark information (yellow) that is provided by the different regions is integrated by
both somatic and dendritic parts of the neurons. Abbreviations: EC, entorhinal
cortex; PaS, parasubiculum; PER, perirhinal cortex; POR, postrhinal cortex; PrS,
presubiculum. (Stacho and Manahan-Vaughan, 2022)

ings. Neurons in Hipp and several regions demonstrate that allocentric place fields
respond to head direction, a form of allocentric coding (Cullen and Taube, 2017).
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route modulated turn cells and cells that encode route progress in the posterior pari-
etal cortex (PPC) have been found to encode route specificity (Nitz, 2006; Nitz,
2012). Recordings of neurons in RSC suggest an important role of RSC in translat-
ing between egocentric (perceiver-centered) and allocentric (environment-centered)
frameworks (Vann et al., 2009; Mitchell et al., 2018). Studies indicate the role of
RSC in processing ”where and when” information (Ritchey et al., 2015; Todd and
Bucci, 2015). Some neural models of spatial memory and imagery (Byrne et al.,
2007; Bicanski and Burgess, 2018) emphasize the role of RSC in transforming an
egocentric frame of reference to an allocentric frame of reference.

Experiments (Alexander and Nitz, 2015) showed the capability of RSC in me-
diating different forms of spatial representation due to its dense interconnections
with multiple cortical and subcortical brain regions involved in the registration of
animal’s position. These regions having reciprocal connections with RSC includes
the parietal cortex, hippocampus, MEC, subiculum, anterior cingulate and anterior
thalamic nuclei (Wyass and Van Groen, 1992; Reep et al., 1994; Czajkowski et al.,
2013). In the experiments, neurons in RSC fire selectively to the position in two
distinct, external spatial frames of reference while simultaneously distinguishing the
animal’s left- versus right-turning behaviour which is characterized as an egocentric
perception.

Works in (Bicanski and Burgess, 2016) focus on modelling head direction cells
in RSC using a conjunctive representation of place and head directions to correct
parallax issues related to visual landmarks.

The path integration mechanism and the transformation between allocentric and
egocentric reference which are probably processed in RSC could underpin the navi-
gation tasks in the Morris water maze (Morris, 1981), a task where the animal learns
a platform location in the water and must then navigate to that location from four
different starting locations using both proximal and distal cues or only the distal
ones. The experiment showed that the rats managed to learn the platform location
even without the proximal cues sustaining slightly longer escaping time than those
who got access to the proximal cues. Impairments of goal finding in the Morris water
maze are also observed after lesions of EC (Steffenach et al., 2005) or lesions of the
medial septum (Marston et al., 1993). Lesions of RSC (Czajkowski et al., 2014) and
parietal lesions (Hoh et al., 2003) both disrupt the performance in this task.

All these recordings suggest that navigation tasks require a system consisting
of RSC and hippocampus formation which is consistent with the predictions of our
model.
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Figure 1.2: Anatomy of RSC across species. The gross anatomy of the retrosplenial
cortex (RSC) across species is preserved. Human and macaque RSC wraps around
the caudal aspect of the splenium of the corpus callosum while in rodents, it is lo-
cated dorsally and spans nearly half the length of the cerebrum. RSC is subdivided
into granular and dysgranular regions, corresponding to Brodmann areas 29 and 30,
respectively. Despite differences in relative location and size, primate and rodent
RSC displays similar cytoarchitectonic properties and shares homologous connectiv-
ity with other regions (Milczarek and Vann, 2020).

1.2 Path integration

Path integration calculates the current position and path back to a starting place by
summing the vectors of distance and direction travelled. In the following sections,
a primary model of path integration in RSC is introduced. In addition, some of
the biologically inspired learning rules wildly used in our model are also explained
preliminarily.

Our original model takes a theoretical one-dimensional ring of neurons to perform
PI. The process of the path integration is based on the integration of movement
direction information over a virtual vector integration field as illustrated in (fig.
1.3). Let’s imagine an animal travels from origin to points A, B, and stopped at C.

12



The global homing vector from point C to the origin will be C0, the inverse of the sum
of vectors 0A, AB and BC. The activity of neural fields with a cosine shape centered
on each movement direction is shown in (fig. 1.3, right). The sum of the 3 curves has
a maximum activity (bold curve) for the direction of the global movement. Details
of the calculation of the path integration in our model will be further discussed in
the next chapter.

Figure 1.3: An example of path integration. Left figure shows a simulated trajectory
composed of 3 movements of the same length in the direction 45°, 60°and 90°from
an absolute direction. Right figure shows the sum of the associated 3 inputs (neural
fields with a cosine shape centered on each movement direction). The sum of the 3
curves has a maximum activity for the direction of the global movement (Gaussier
et al., 2007).

The conceptual path integration neural field is derived from the firing distribution
of the head direction cells. The peak of each bump resides in the preferred direction of
the corresponding HD cell. The ring of neurons is an attractor network as described
in (McNaughton et al., 1991) as shown in (fig. 1.11).

1.2.1 Neural field and Continuous attractor

Population coding based on a population of neurons on a neural field is a way of
coding information in a distributed manner opposite to single neuron coding. A
popular concept of single neuron coding is the grandmother cell which would be
activated only when we think of our grandmother. Similarly, other neurons could
combine with different objects and be activated by the corresponding stimuli. The
information contained in a single neuron is more intuitive and accessible compared to
the information conveyed by a neural field. However, the population coding based on
the neural field is redundant and stable which is crucial for the survival of animals
and to avoid hard-wiring complex mathematical functions. The perturbation or
damage in several neurons in a neural field would not dramatically disturb the overall
information processed for each neuron in the neural field conveying a small portion of
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the information. Bubbles of activity in brain tissue were found in 1956 (Beurle, 1956)
leading to the study of continuous attractor in the neural field in which neighbouring
neurons share similar characteristics and therefore creates a continuity in the neural
space with the help of lateral connectivity. In the model of Amari (Amari, 1977b)
the dynamic neural field was proposed in which neurons are subject to a center-
on surrounding-off lateral connectivity (local excitation and distal inhibition). The
lateral interaction kernel is often simulated by a difference of Gaussian functions
(DoG) with the shape reminiscent of a Mexican Hat (fig. 1.4 top). The dynamic
neural field model maintains a balance between competition and cooperation while
the winner takes all mechanism is exclusively competitive. Let’s imagine a neural field
with a population of neurons linked closely together, forming a one-dimensional map.
Each neuron is connected to its neighbors according to a rule defined by the lateral
interaction kernel. This kernel is calculated by a difference of Gaussian functions
(DoG), which gives it the shape of a Mexican hat. The center-on surrounding-off
lateral connectivity is demonstrated in (fig. 1.4 bottom).

Figure 1.4: Top, an example of a lateral interaction kernel. Bottom, strength and
type of lateral connections between the central neuron and its neighboring neurons
as a function of distance.

This structure gives the population of neurons the attractor property that con-
verges to the local maxima of the activity field. Let’s imagine a circumstance where
two bumps of activity appear in the local neural field. The competition feature of
the network will dominate if two bumps are far away enough. The dynamics of the
field will tend to select a more active one between them. On the other hand, if the
two inputs are sufficiently close, the two fields will converge towards a single bump.
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This bump results from the average of the two inputs which means the cooperation
feature of the network acts.

The structure of the self-organizing map (Kohonen, 1982) which is "a gener-
alization of the formation of direct topographic projections between two laminar
structures known as retinotectal mapping" (Amari, 1980) is based on the dynamic
neural field (Amari, 1977b). A neural field model was proposed to computationally
investigate the formation and reorganization of topographic maps in the somatosen-
sory cortex (Detorakis and Rougier, 2012). The concept of continuous attractor and
neural field dynamics has been implemented into the application of an autonomous
robot architecture. The robot system was endowed with a form of obstacle mem-
ory and thereby realized target acquisition and obstacle avoidance (Schöner et al.,
1995b). The shape of the interaction kernel is important and must be parameterised
according to the desired task. The width of the excitation bubble (positive part of
the kernel) can be modulated for example. Note that a "Winner Takes All" type
network is a special case of the neural field for which the excitation bubble of the
kernel is reduced to the minimum (only 1 neuron). The network also includes recur-
rent links, which are not shown in the figures. This recurrence allows for temporal
smoothing and thus effective filtering against noise or oscillations in the input. For
example, if an input appears episodically following the malfunction of a sensor, the
temporal dynamics of the network will not allow it to impose itself. It is necessary
for input to remain stable and immobile for a certain period of time in order to be
considered trustworthy and thus for a bubble of activity to emerge at the output.
In contrast to the dynamic neural field, neurons on the path integration field do not
require lateral interaction which frees itself from the topological constraint.

1.2.2 Head direction cell

The recorded HD cell activity can cover an area which seems to vary from 60° to
180° (Taube, 1995; Taube, 1998; Taube et al., 1990b). The Gaussian function shown
in (fig. 1.5 b) with a positive value covering 120° looks like the HD cells found in
the lateral mammillary nuclei. The cosine-shape bump of the firing rate is needed
to perform a perfect computational integration while the use of the Gaussian-shape
bump of the firing rate is more biologically plausible. The results differ according
to the exact shape of the kernel used. It induces over or underestimations of the
PI that could explain some of the systematic bias in PI observed in different species
(Wehner et al., 1996; Wittmann and Schwegler, 1995).

In our model, the primary inputs are the head rotational speed and the linear
speed. According to the head rotational speed, a bubble of activity is moved clockwise
or counterclockwise on a ring of neurons corresponding to the HD cells.

The bump of the activity of HD cells is simply simulated by a cosine shape or
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Figure 1.5: Comparison between HD cells and Gaussian shapes. a, Recording from
Taube (Taube, 1998) of the mean frequency activity of one head direction cell. b,
Comparison with a shifted cosine shape (in black) and two Gaussian shapes: in blue
σ = 1 and in red σ = 0.5 with x-axis the θ angle converted in degrees x=θ/π · 180
and θ0 = π/2

a gaussian shape. To simplify, we will assume in the following sections that head
direction corresponds to the direction of movement and that the recognition of some
cues Dj can be used to recalibrate the head direction.

1.2.3 Integration of activity of head direction cell

To calculate the path integration, short-term memory (STM) (fig. 1.6. left) and
classical conditioning mechanism with least mean square rule (fig. 1.6. right) are
two plausible candidates (Widrow and Hoff, 1960; Rescorla, Wagner, et al., 1972).
Equations of the classical conditioning mechanism with LMS:

Vi(t) = f(
∑

Wij · Cj) with f(x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x > 1

(1.1)

The weight modification of the conditioning mechanism implemented with the
LMS in our model is defined as:

dWij = λCj(Hi − Vi) (1.2)

with Cj (context) the conditional input, Vi the output and Hi (speed modulation
HD activity) the desired output or the unconditional input. The conditional input
is activated (activity = 1) when the animal moves (Cj = 0 otherwise). The weight
Wij converges to the average of the Hi values. λ controls the learning rate of the
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neuron’s potential (0 < λ < 1). In the LMS rule, the learning rate is identical to the
decay rate of the neuron’s potential.

The simple feed-forward classical learning mechanism using LMS rule in our
model is equal to using some recurrent connection (Grossberg, 1969; Grossberg,
1978; Elman, 1993; Dominey et al., 1995) representing a linear first-order recurrent
filtering or an STM (see fig. 1.6).

Equations of the STM:

Vi(t) = (1− λ)Vi(t− dt) + λHi(t) (1.3)

On the other side, if we consider a conditioning mechanism implemented with the
LMS (Least Mean square rule (Widrow and Hoff, 1960; Rescorla, Wagner, et al.,
1972)) then the weight modification is defined as:

dWij = λIj(O
d
i −Oi) (1.4)

with Ij the conditional input, Oi the output, and Od
i the desired output or the uncon-

ditional input. If we consider the unconditional stimulus is Hi and the conditional
link is related to one context always activated for the past (its activity is 1) and the
conditional output is our vector field Vi then the equation (1.4) is equivalent to:

dWij = λ(Hi − Vi) (1.5)

Since the conditional input (i.e context) is set to 1 in a given experiment then the
neuron output Vi = Wi ·1. If we replace Wi(t) by Wi(t−dt)+dWi(t−dt), we obtain:

Vi = Wi(t− dt) + λ(Hi(t− dt)− Vi(t− dt)) (1.6)

Since we have also Vi(t− dt) = Wi(t− dt) · 1, equation (1.6) can be rewritten as :

Vi = Vi(t− dt) + λ(Hi(t− dt)− Vi(t− dt))

= (1− λ)Vi(t− dt) + λHi(t− dt) (1.7)

We can see that equation (1.7) is the same as equation (1.3) except for the time step
of Hi. The main difference is of course that in the first case, the memory relies on the
recurrent reactivation of neurons while in the second case the memory is stored in the
synaptic weights which makes the model simple and more feasible. The feedforward
solution is also an easy way to modulate the time constant at the synaptic level and
to maintain the field memory over a longer period if the animal is not moving. Thus,
avoiding the risk of STM deterioration related to the need to always reenter the past
activity. Moreover, since the constant input can be a context, a better control of
when the field has to be modified can be achieved.
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Figure 1.6: Equivalence between the STM scheme (left) and a feed-forward scheme
using synaptic learning from a constant input context (right).

1.3 Self-organized maps to mimic cortical columns

The cerebral cortex mostly consists of the six-layered neocortex. It is usually sub-
divided into cortical columns that self-organize and perform categorization of their
inputs (Burnod et al., 1999). There are 50–100 cortical minicolumns (1.7) in a hyper-
column, each comprising around 80 neurons. Connections “up” and “down” between
neurons within the thickness of the cortex are much denser than connections that
spread from side to side. Within an orientation column, neurons throughout the
vertical thickness of the cortex respond to stimuli oriented at the same angle (Hubel
and Wiesel, 1968; Hubel et al., 1977). A neighboring column will then have neu-
rons responding to a slightly different orientation from the one next to it. In our
model, we implement a self-organization map (SOM) in order to simulate the hy-
percolumns. Neurons on the cortical minicolumns are simulated by neurons on the
one-dimensional SOM. The activity of neurons on the PI field is projected to a set
of 1D SOM. Each neuron on the PI field projects to every neuron on a 1D SOM
(Fig. 1.8). The problem with training the Kohonen map is that using subtraction
to calculate the difference between the input vector and the weight vector is hard to
find in the biological neurons. Cosine similarity is an alternative metric to avoid the
subtraction operation.

The activity of neuron k on the SOM is the following:

Ej =

( ∑
Pi(t) ·Wij(t)√∑

Pi(t)2 ·
∑

Wij(t)2

)
, j ∈ [1,M ] , i ∈ [1, N ] (1.8)

The index of the winner neuron jw is defined as:

jw(t) = arg max (Ej) , j ∈ [1,M ] (1.9)
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N is the number of neurons on the PI field. M is the number of neurons on each 1D
SOM. The synaptic weights between neurons on the input field Pi and neurons on
the SOM is updated by:

Wij(t+ dt) = λsom · (Pi(t)−Wij(t)) · Sj(t) (1.10)

λsom is the learning rate of self-organization. The lateral connectivity of neurons on
the 1D SOM is subject to a simple Gaussian function h(d) such as:

Sj(t) = h(dj) · Sjw(t), with

h(dj) = (
1

σ ·
√
2 · π

· exp−
d2k
2·σ (1.11)

Sj(t) is the potential of the j-th neuron. dk represents the distance between the
winner neuron jw and other neurons j on the SOM.

Figure 1.7: Cerebral cortex. To the left, the groups of cells; to the right, the systems
of fibers. Quite to the left of the figure, a sensory nerve fiber is shown. Cell body
layers are labelled on the left, and fiber layers are labelled on the right. (Gray, 1878)
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Figure 1.8: Demonstration of the discretization of the activity of neurons on the PI
field.

The cortical hypercolumn is thereby simulated by the combination of multiple
1D SOMs with each neuron in the hypercolumn selectively sensitive to a certain
travelling vector of the path integration.

1.4 The place cell and hippocampal system

The place cell responding specifically to the current location of the animal was first
found by O’Keefe and Dostrovsky (O’Keefe and Dostrovsky, 1971) in Hipp. Different
place cells have different firing locations (place field) (O’Keefe, 1976). No topologi-
cal correlation was found among neighboring place cells (Wilson and McNaughton,
1993) while the size of the firing fields of place cells increases from dorsal to ventral
hippocampus (Jung et al., 1994; Kjelstrup et al., 2008).

The hippocampus is important for spatial navigation, short-term memory, recog-
nition, novelty detection, and long-term memory consolidation. It is composed of
three substructures: the subiculum, CA1, CA2, CA3 regions and the dentate gyrus.

The entorhinal cortex communicates spatial and objects information to Hipp from
the parahippocampal and perirhinal cortices, respectively. The fornix then transmits
object-in-context information to the mammillary bodies, which in turn transport it
to the anterior thalamic nuclei through the mammillothalamic tract. Despite the
diffusion of the system, much of the information is conveyed through the cingulum
to RSC, frontal and posterior neocortical regions, and back to Hipp.

The feed-forward link from the grid cell to the place cell has been widely accepted
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Figure 1.9: A schematic representation of the extended hippocampal system. Spatial
and object information converge into the parahippocampal and perirhinal cortices,
respectively, and are relayed to the hippocampus through the entorhinal cortex. Ob-
ject in context information is then transmitted through the fornix to the mammillary
bodies, and through the mammillothalamic tract to the anterior thalamic nuclei.
From that point, the system becomes more diffuse, but much of the information is
relayed through the cingulum to the retrosplenial cortex and to frontal and posterior
neocortical structures, as well as back to the hippocampus. Amyg, amygdala; AT,
anterior thalamus; EC, entorhinal cortex; MB, mammillary bodies; PHC, parahip-
pocampal cortex; Prh, perirhinal cortex; RSC, retrosplenial cortex; Thal, thalamus.
(Rosenbaum et al., 2014)

and thus become one of the essential pathways that account for the emergence of
the place selectivity in Hipp (O’keefe and Burgess, 2005; Fuhs and Touretzky, 2006;
McNaughton et al., 2006; Sheynikhovich et al., 2009; Pilly and Grossberg, 2012).

Nevertheless, biologists also found PC emerges before the maturation of the GC
(Langston et al., 2010; Wills et al., 2010; Muessig et al., 2015), and new place codes
can be generated under the septal disruption which disrupts theta oscillations and
grid cell firing (Brandon et al., 2014). These recordings indicate that clear place
selectivity in Hipp can emerge even without well-stabilized grid cells.

Besides the spatial information carried by grid cells, heterogeneous input includ-
ing olfactory information, auditory information, and tactile information can con-
tribute to the place selectivity in Hipp (Zhang and Manahan-Vaughan, 2015; O’keefe
and Nadel, 1979; Save et al., 1998). It seems the motion-related information in con-
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junction with stimulus recognition is sufficient for the location-specialized firing of
place cells. In addition, the Visual information alone was sufficient for localized firing
by 25 percent of place cells examined in experiments on head-fixed mice navigating
in a virtual environment (Chen et al., 2013).

Redish and Touretzky (Redish and Touretzky, 1997) presented a conceptual
framework accounting for the function of Hipp and its connected structures in nav-
igation. The spatial code of place cells is supposed to be created from visual infor-
mation of local views and idiomatic information conveyed by path integration via
the subiculum. Hippocampal place cell models taking inputs from visual sensory
and idiothetic path integration have been successfully implemented in real robots to
accomplish navigation tasks (Arleo and Gerstner, 2000; Gaussier et al., 2002; Milford
et al., 2004).

Since the discovery of the place cells, studies on the role of Hipp started from its
involvement in spatial navigation and extend to a crucial contribution to the storage
and retrieval of explicit (declarative) memories (Moser et al., 2015), including the
recognition memory and the memory of the location underlying the episodic memory.

In 1957, WB Scoville and B Milner have shown dramatic evidence that bilat-
eral removal of large portions of the hippocampal system and other temporal lobe
structures produce a profound deficit in recent memory while leaving other cognitive
functions and memory performance based on experience acquired before the lesion
intact (Scoville and Milner, 1957). One hypothesis has been made that memories
are first stored via synaptic changes in the hippocampal system, and that remote
memory is based on accumulated neocortical changes (McClelland et al., 1995).

A memory category tree chart is illustrated in (fig.1.10), the bolded topics will
be further discussed in this thesis.

Inspired by a neurobiological model of temporal sequences learning in Hipp (Ban-
quet et al., 1997; Gaussier et al., 1998), the transition cell was introduced in (Gaussier
et al., 2002; Cuperlier et al., 2006) to address the limitation of sequence learning
based on the gradient-descend mechanism. The transition-prediction cell is crucial
for the action selection when more than one movement is associated with one single
place recognition. Each movement should link to one specific internal representation
which is derived not from only the scene recognition but also the transition state. The
transition cells take inputs from the derivative of the current place and the memory
of the previous input. The activity of the transition cells is determined by the sum-
mation of the activity of all the inputs with a threshold mechanism. The synaptic
linkage between the preceding input and the transition states on the cognitive map
can be updated subject to the Hebbian learning rule, and thus enable the prediction
of transitions. The transition memory used for the generation of the cognitive map
in navigation tasks could be the epiphenomenon of the general contribution of Hipp
in declarative memory.
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Figure 1.10: Memory category. Bolded parts are topics discussed in this thesis.

The self-organizing entorhinal–hippocampal loop underpinned the spatial repre-
sentation and general recognition memory is mainly discussed in the last two chapters
of this thesis. The connectivity between Hipp, medial septum (MS), and MEC is
crucial for the self-organization of the grid cell modulated by the hippocampal sig-
nal. Various recordings have revealed that these three regions cooperate to establish
spatial learning and memory. At the anatomical level, the MS has dense projections
to Hipp and a reciprocal connection with EC (Alonso and Köhler, 1984). Both in-
hibitory and excitatory MS inputs are afferent to the MEC, from long-range Gamma-
Aminobutyric acid GABAergic, cholinergic and glutamatergic neurons (Manns et al.,
2001). Bonnevie’s study (Bonnevie et al., 2013) discovered disruption of grid cell spa-
tial firing after hippocampal inactivation, pointing to a putative excitatory drive from
Hipp to the MEC. In our model, the hexagonal firing pattern of grid cells could be
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self-organized taking afferent signals via the hippocampal-septal-entorhinal pathway.
In addition, the spatial and visual input could be compressed in EC and afferent to
Hipp in order to establish an efficient and stable representation of recognition. This
recognition mechanism could be approximated by a pattern recognition algorithm
using one-shot learning.

1.5 Grid cells and the compressing role of entorhinal cor-
tex

The grid cell was first found in the dorsocaudal medial entorhinal cortex (Hafting
et al., 2005). Grid cells are activated whenever "the animal’s position coincides with
any vertex of a regular grid of equilateral triangles spanning the surface of the en-
vironment". Their orientation and spacing maintain persistent among neighbouring
neurons with the spacing and size of individual fields increasing along dorsal-ventral
axis of the dorsocaudal medial entorhinal cortex. Their vertex locations (phases)
differ and tend to pave the whole exploring environment. External landmarks are
required to anchor the grid map but are not necessary for the maintenance of the
map. These findings suggest the relevance between grid cells and the path integration
mechanism. The important contribution of grid cells in navigation has been progres-
sively accepted during the last two decades. The grid pattern activity in EC has
been widely reported among various species including rodents (Hafting et al., 2005),
bats (Yartsev et al., 2011), primates (Killian et al., 2012), and humans (Jacobs et al.,
2013; Nau et al., 2018). Two years after the first recording of grid cells in the mEC,
Philippe Gaussier conceived a computational model of the grid cell resulting from
a long-distance path integration system located outside the hippocampal formation,
presumably in RSC.

We suggest in our model EC receives compressed information from different cor-
tical regions to establish an efficient and stable representation of recognition in the
hippocampal formation. The grid cells found in navigation and vision could be the
epiphenomenon of this general compression mechanism.

The entorhinal cortex consists of medial and lateral parts. The medial entorhinal
cortex is important for spatial processing and path integration while the lateral
entorhinal cortex has some influence on both spatial and nonspatial processes in the
object exploration task. (Van Cauter et al., 2013; Wilson et al., 2013)

Head direction cells are also recorded in the medial entorhinal cortex (Sargolini,
2005) following the findings of the grid cells. The same team proved that path inte-
gration is instrumental for grid cell spatial firing of rats in a circular 1D environment
(Jacob et al., 2019). Increased size or scale of the grid firing field between the arena
and the track was observed, while it was unmodified in arenas of different sizes. One
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hypothesis has been proposed that the lack of visual cues during navigation could
be responsible for the metrical properties of the grid cell map.

Our model is compatible with these biological findings and can be used to repro-
duce various results without modifying the model structure.

1.6 Continuous attractor model

George E. P. Box, who has been called "one of the great statistical minds of the
20th century", famously wrote, in various books and papers, that "all models are
wrong, but some are useful". Except for our model, two other widely studied com-
putational models are discussed in order to provide a general and objective point
of view. One of them is the two-dimensional continuous attractor model (Fuhs and
Touretzky, 2006; McNaughton et al., 2006; Burak and Fiete, 2009; Bonnevie et al.,
2013) which is homogeneous to the broadly accepted model of the head direction cells
based on the one-dimensional attractor ring model (Skaggs et al., 1994; Samsonovich
and McNaughton, 1997). The oscillatory interference model (Burgess et al., 2007;
Hasselmo, 2008) which was initially proposed to explain theta-phase precession in
place cell firing (O’Keefe and Recce, 1993) evolved to explain the path integration
and the generation of the grid cells. Indeed, each model has its own constraints and
disadvantages which are hardly explained by biological recordings. Nevertheless, the
development of these heterogeneous models trying to explain the spatial representa-
tion in the hippocampal system broadens our minds and is truly helpful to a better
understanding of the nature of the brain.

1.6.1 1D continuous attractor models for head direction cells

In the one-dimensional attractor map model (Skaggs et al., 1994; Samsonovich and
McNaughton, 1997) for head direction encoding (fig. 1.11), neurons are arranged in
order of their preferential head direction. Each of them has connections with neigh-
boring neurons with which the synaptic strength declines as a function of distance.
A bump of activity is likely to be finally formed centered on the most active neuron
with neighboring neurons having successively decreasing activity. The shape of the
activity bump depends on the distribution of the neighboring synaptic connections.
The distribution contains two factors: 1. The furthest neighboring neuron one neu-
ron could innervate. 2. The decline rate of the synaptic strength. The decline rate
determines the sharpness of the bump while the extension of the innervation controls
the width. This one-dimensional continuous attractor model is widely accepted in
explaining the property and the update of HD cells when the animal rotates.
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Figure 1.11: One-dimensional attractor map model for head direction encoding based
on neural integration of head angular velocity signals. (McNaughton et al., 2006)

1.6.2 2D continuous attractor models for place cells

The 2D continuous attractor model (fig. 1.12) suggests that the path integration
is performed in EC (Fuhs and Touretzky, 2006; McNaughton et al., 2006; Burak
and Fiete, 2009; Bonnevie et al., 2013). A pre-existing regular map is required
for the continuous update of the path integration. One pre-existing neuronal sheet
corresponds to one movement direction of the animal. A large number of neurons on
these sheets are required in order to maintain the accuracy of the path integration.
The memory of the path integration in the continuous attractor model is stored in
the reverberating neuronal activity. The torus is proposed to solve the boundary
issue of the continuous attractor model. The place cells built from the torus map
are essentially periodic depending on the size of the torus.

1.6.3 2D continuous attractor models for grid cells

The grid cell activity can be generated with the teaching signal from a self-organizing
Turing network with short-range excitatory and long-range inhibitory connections.
The activity of neurons in the sheet can converge to a steady state, which is charac-
terized by a group of scattered peaks of activity ranging in a hexagonal form. The
velocity input to the activity makes the pattern move in concert with the animal.
When a peak passes over a neuron in the sheet, it spikes and behaves as a grid cell.
In this model, grid cells must stabilize before Place cells to finally build the latter.
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In the work of (Burak and Fiete, 2009), the accurate path integration and the peri-
odic hexagonal spatial tuning pattern can be reproduced by the CANN with inputs
to the model network conveying information about the rat’s velocity and heading.
The toroidal topology of the network avoids the border issues and thus enables ac-
curate grid-cell-like responses over trajectories lasting around 10 minutes, with an
integrated path of hundreds of meters. An aperiodic network is also discussed to ac-
curately integrate rat velocity with an appropriate choice of parameters and inputs
and without any perturbations. However, even subtle distortions of the pattern near
the edges can globally destroy the grid-like responses for any neuron, including those
far away from the edge of the network where the pattern is locally undistorted. A
recent study (Gardner et al., 2022) conducted by the same researcher showed that
the joint activity of grid cells from an individual module resides on a toroidal mani-
fold by simultaneously recording hundreds of grid cells and investigating subsequent
topological data analysis. The toroidal topology persists during awake states and
sleep. This finding promotes the hypothesis that the grid cells firing derived from
the CANN is based on the network of the periodic toroidal manifold.

Figure 1.12: Extension of the one-dimensional attractor map concept to two dimen-
sions: a model for path integration. (McNaughton et al., 2006)

1.7 Oscillatory interference model for place cells and grid
cells

The oscillatory interference model (Burgess et al., 2007; Hasselmo, 2008) was ini-
tially proposed to explain theta-phase precession in place cell firing (O’Keefe and
Recce, 1993) where place cells preferentially activate in bursts with a slightly shorter
period than that of the extracellular theta rhythm. Typically, spikes of place cells
appear at the theta rhythm’s trough when the animal enters a place field and pro-
gressively advance in phase as the animal moves through the firing field. According
to the oscillatory interference theory, interference patterns between neural oscillators
give rise to spatial patterns of activity. These oscillators in rats have a frequency
that is quite similar to the theta frequency. A pair of cosinoidal oscillators having
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slightly different frequencies are composed of a velocity-controlled oscillator and a
baseline theta oscillation. The beating interference pattern could emerge owing to
the difference in frequency and thereby generates simultaneously the place fields and
phase precession. A neural oscillator is a population of neurons that cycles through a
periodic state while velocity-controlled oscillators modify their frequency in response
to the animal’s motion. The periodic stripe activity in (fig. 1.13 a) is formed by the
product of the two cosinoidal oscillators in (fig. 1.13 c and d). This model predicts
the periodic firing field of place cells due to the periodicity of the stripe activity
which has not been observed in biology.

Figure 1.13: Linear interference patterns in 2D. (a) Interference between a velocity-
controlled oscillator (VCO) and a baseline oscillation during constant velocity runs
from the origin (bottom left). Expanded view (b–d) shows the baseline oscillation (c)
and the VCO (d, gray arrow shows preferred direction). Both component oscillations
are sinusoidal and the combined oscillation is the thresholded sum (a,b). (e) The
firing of a neuronal VCO as the rat follows a 10 min foraging path (black line) in a
square box. The VCO fires spikes at the peaks of its membrane potential oscillation
(MPO). The locations of spike firing are shown colored by the phase of firing relative
to the baseline oscillation. (f) The firing of the neuronal VCO in (e) when its MPO
is modulated by the baseline oscillation and a firing threshold of 0.5 is applied. Color
bar (top right) shows amplitude (0–1) and phase. (Burgess, 2008)

One hypothesis posits that constructive interference only occurs in the limited
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spatial place field, whereas destructive interference which is generated by oscillators
with equal frequencies but opposite phases occurs in the environment other than the
place fields.

This issue was finally circumvented, following the discovery of periodic grid cell
firing patterns in EC, by reapplying the model to the explanation of the path inte-
gration and the grid cell activity. The grid cell activity is supposed to be generated
by the combination of two or more linear interference patterns of oscillators with
preferred directions differing by 60°(fig. 1.14).

Figure 1.14: Two linear interference patterns with preferred directions differing by
60°(gray arrows, left and right, above) combine to produce a triangular grid (below
grid scale = G). The linear interference patterns are the thresholded sum of a velocity-
controlled oscillator and a baseline oscillation during constant velocity runs from the
origin (bottom left). These patterns are multiplied to produce the grid pattern
(below). The colorbar shows amplitude. (Burgess, 2008)

1.8 Adaptive resonance theory and a model of grid cell

The adaptive resonance theory is "a cognitive and neural theory of how advanced
brains autonomously learn to attend, recognize, and predict objects and events in a
changing world" with the prediction that "all conscious states are resonant states"
(Grossberg, 2017). This theory was first introduced (Grossberg, 1982) in order to
solve the stability–plasticity dilemma about how the brain combines fast learning and
stable memory. The basic learning process based on the adaptive resonance theory
consists of three parts: the feature pattern as the input, the outcome category, and
the expectation. The linkage between the input feature pattern and the outcome
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category is learned by adaptive weights so does the linkage between the outcome
category and the expectation. The linkage is reinforced if the input feature pattern
matches the category and is inhibited if the extent of the mismatch exceeds a certain
vigilance level. The vigilance level determines how badly a match will be tolerated or
how often a new match between an input pattern and a category is learned. The work
in (Grossberg and Pilly, 2012) demonstrated the generation of entorhinal grid cells
with spatial scales that increase along the dorsoventral axis using the self-organizing
map. The hexagonal structure formation is generated by the coactivation of three
stripe cells with preferred directions apart from 60°. The difference of 60°is assumed
to be realised by a self-organizing mechanism (Mhatre et al., 2012). However, the
number of stripe cells is originally selected which is not self-organized. Place cells
representing much larger spaces than grid cells are supposed to be generated from
the combination of grid cells of multiple scales. With the help of the adaptive reso-
nance theory, the memory of the learned self-organizing map could be dynamically
stabilized and therefore stabilize both the learned grid and place cell receptive fields.
In addition, signals from the hippocampal place cells may also help to improve the
spatial stability of learned grid fields. Our original model (Gaussier et al., 2002)
focusing on the transition and prediction in the sequence learning and navigation
tasks shares some common aspects with the adaptive resonance theory.

1.9 Discussion

Recent biological results (Pisokas et al., 2022) raised an objection to the continuous
attractor models because of their dependence on the reverberating electrical activity
of neurons maintaining the memory of the path integration. Ants were anesthetized
(frozen) after their foraging journey and put into a new environment without any
familiar sensory cues (fig. 1.15). During the freeze, no electrical activity is found in
ants’ brains. This freezing process therefore disrupts any kind of dynamics memories
related to reverberating electrical activity in some neural circuits. Ants maintain
the direction memory of PI activity after the complete cease of the activity. Only
the distance memory is degraded due to the anesthesia. This finding suggests a fast-
updating persistent process for the storage of the memory instead of the recurrent
neural circuit. The memory of the path integration in the continuous attractor
model is stored on the reverberating activity which is not robust to perturbations.
The memory could be stored at the synaptic level to maintain robustness. We showed
previously the mathematical equivalence between a classical conditioning mechanism
with LMS and a STM mechanism (fig. 1.6). The advantage of a classical conditioning
mechanism is that the memory is stored at the synaptic level which is robust to
perturbation. The feedforward structure avoids the risk of STM deterioration related
to the need to always retrieve the past activity.
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In our model, the leaky integrator is implemented in order to integrate the activity
and store at the synaptic level.

It is well known that insects and rodents have different brain structures and the
mechanism that the path integration relies on could be different. Nevertheless, both
of the species have similar HD cells property which is supposed to be one of the
major inputs for the path interaction. Since the storage of the path integration
of insects resides in the synaptic connectivity, we could ask if the path integration
of rodents or mammalians is also maintained on the synaptic level as the classical
conditioning rule we implemented in our model. Since path integration is an ancient
ability of creatures, we have reasons to believe that different species share some
common properties of path integration such as the storage of the path integration
memory.

Figure 1.15: Anesthesia disrupts distance, but not direction, of path integration
memory. (Pisokas et al., 2022)

Studies have shown that bats do not exhibit continuous theta rhythm when they
crawl but still have grid cell activity. This finding has led to a dispute about the oscil-
latory interference model based on the theta oscillation despite some work proposing
that the oscillatory interference models can perform velocity integration indepen-
dently of any baseline oscillation including theta oscillations.

In addition, the hexagonal pattern of grid cells in the oscillatory interference
models is generated by the product of three linear interference patterns with preferred
directions differing by 60°. This selection of 60°is assumed to be realized by a self-
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organizing mechanism which was not demonstrated in (Burgess et al., 2007).
Place cells built from the oscillatory interference model can not avoid the periodic

firing field. The periodicity is induced by the periodic stripe activity. However, the
periodicity of place cells is seldom observed in biological experiments. There is no
such constraint on the periodicity of place cells in our model.

Both of the 2-D continuous attractor model and the oscillatory interference model
adapted to the findings of grid cells and head direction cells in EC by claiming that
the PI takes place inside EC. In 2-D continuous attractor models, path integration
happens at the level of grid cells while in the oscillatory interference models, path
integration occurs at the level of stripe cells, input to grid cells. These models take
the movement direction calculated from sequential positions in the experimental data
comprising the velocity input, rather than the HD at each position while citing HD
recordings as the justification for velocity input. Recordings in EC (Raudies et al.,
2015) indicate that coding of movement direction is not prominent in the medial
EC, and HD can not directly replace movement direction in the mentioned types
of models using PI to build the grid cells. Cortices such as RSC and the parietal
cortex could be candidates for the seeking of the moving directional tuning and as
the potential origin of the PI. Our model of the PI in RSC doesn’t rely on the HD
cell activity from EC.

In chapter 3, we simulate animals moving in different environments (open space,
spiral mazes, and on a treadmill) to test the performances of a simple model of RSC
acting as a path integration (PI) and as a categorization mechanism. The connection
between Hipp, RSC, and EC is revealed through a novel perspective. In chapter 4,
we emphasize the idea that RSC conveys PI information to the hippocampal system.
We further emphasize that the absence of place cells in RSC is due to the difficulty of
neurons accessing the whole PI neural field. In chapter 5, we introduce the hypothesis
of the important role of the causal relationship between the place cells and EC in the
generation of grid cells and place cells during early development. In chapter 6, we
propose a general model explaining the generation of the visual grid cell along with
its involvement in the visual recognition tasks independent of the locomotion or speed
information. We suggest EC could compress not only the spatial information but also
visual input in order to establish an efficient and stable representation of recognition
in the hippocampal formation. The navigation feature could be the epiphenomenon
of this general recognition mechanism.
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Figure 1.16: Comparison of continuous attractor model, oscillatory interference
model and our model of the path integration and the grid cells.
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Chapter 2

A model of path integration and
representation of spatial context in
the retrosplenial cortex 1

2.1 Abstract

Inspired by recent biological experiments, we simulate animals moving in different
environments (open space, spiral mazes and on a treadmill) to test the performances
of a simple model of the retrosplenial cortex (RSC) acting as a path integration (PI)
and as a categorization mechanism. The connection between the hippocampus, RSC
and the entorhinal cortex (EC) is revealed through a novel perspective. We suppose
that the path integration is performed by the information coming from RSC. Grid
cells in the entorhinal cortex then can be built as the result of a modulo projection
of RSC activity. In our model, PI is performed by a 1D field of neurons acting as a
simple low-pass filter of head direction (HD) cells modulated by the linear velocity
of the animal. Our paper focuses on the constraints on the HD cell shape for a good
approximation of PI. Recording of neurons on our 1D PI field shows these neurons
would not be intuitively interpreted as performing PI. Using inputs coming from a
narrow neighbouring projection of our PI field creates place cell-like activities in the
RSC when the mouse runs on the treadmill. This can be the result of local self-
organizing maps representing blobs of neurons in the RSC (e.g. cortical columns).
Other simulations show that accessing the whole PI field would induce place cells
whatever the environment is. Since this property is not observed, we conclude that
the categorization neurons in the RSC should have access to only a small fraction of
the PI field.

1Ju, M., Gaussier, P. (2020). A model of path integration and representation of spatial context
in the retrosplenial cortex. Biological Cybernetics, 114(2), 303-313.
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Keywords: path integration, retrosplenial cortex, self-organization, allocentric
navigation, egocentric navigation, entorhinal cortex

2.2 Introduction

The path integration mechanism has been found in many different species, from
insects (Collett et al., 1996; Stone et al., 2017) to mammals (Etienne and Jeffery,
2004). The head direction (Sharp et al., 2001; Zhang, 1996) and the linear velocity
of animals are vital to constructing PI which is considered as the integration of
linear and angular self-motion (McNaughton et al., 2006). However, how and where
this information is coded to build PI is still an open issue. Different recordings
in the retrosplenial cortex (RSC) (Cooper and Mizumori, 1999; Save et al., 2001;
Czajkowski et al., 2014) point to the possibility that RSC could play a crucial role in
PI (Cooper et al., 2001). The ‘place cells’ activity found in RSC (Mao et al., 2017)
could also be a trace of this PI. Thereby, we simulate in our model, the connection
between head direction (HD) cells, which are found in many parts of the brain (Taube
et al., 1990b; Taube, 1995) and ‘place cells’ in RSC. We suppose that PI could be
integrated in this loop despite many other models (McNaughton et al., 1996; Redish
and Touretzky, 1997; Fuhs and Touretzky, 2006) proposing that PI is built inside
the hippocampus. In our model, the representation of the spatial location in RSC is
supposed to be the discretization of PI. The correlation between the diverse activity
in RSC and the local and global connectivity from PI field to RSC is revealed by the
simulations.

By extracting the information from PI field generated by our model, we can
mathematically rebuild the approximate animal trajectory using the activity of at
least two distant neurons from one PI field (Gaussier et al., 2007). Essentially, the
bump of the activity of neurons on a PI field represents nothing more than a homing
vector. The way we interpret the activity of PI field to reveal the diverse activities
of RSC is one of the critical contributions of this paper.

The recalibration strategy used when the animals perform a navigation task
(Poucet et al., 2015) is discussed in a companion paper. An allocentric reference
frame can be built from distant visual landmarks while an egocentric reference frame
can be built from the local cues (Byrne et al., 2007). For instance, when the animal
moves in the W mazes located at two different places in the environment (Alexander
and Nitz, 2015), one local cue (orientation of the entrance of the w maze) can be
used to create an egocentric reference frame.

It has been 30 years since the general properties of head direction cells were first
described in (Taube et al., 1990a). Head direction tuning curves of HD cells recorded
from different brain areas are illustrated in (fig. 2.1a). The directional firing range of
the HD cells in rodents’ brains is from around 90 to 240 degrees. Fig. 2.1b shows the
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similarity between head direction tuning curves and a Gaussian shape with different
σ. In this paper, we focus on a model where PI is integrated from one-dimensional
bumps of HD cells in contrast to the usual two-dimensional attractor models (Mc-
Naughton et al., 2006). In our model, HD cells activity modulated by the linear speed
of the animal is the input to generate an approximation of PI. RSC neurons activity
is achieved through a low pass filter approximating the integration process. We also
study the impact of the size of the HD bump on the performance of PI. Moreover, we
will show that a simple discretization performed by self-organizing maps (Kohonen,
1990) can explain the results in (Mao et al., 2017) showing different place cell-like
activities when a mouse runs on a treadmill (without spatial displacement). Our
results also explain the absence of real place cell activity in RSC in many biological
experiments where animals move freely in a 2D environment. Moreover, our model
has no specific mechanism for navigation, which gives itself the possibility to be a
global model for simulating the activity of neurons in different cortical areas.

(a)

0 180 360 0 180 360

(b)

Figure 2.1: Comparison between the Gaussian shape and the firing range of HD
cells found in biological experiments (Taube, 1998). a. biological results. b. left,
Gaussian shape with σ = 15, firing range = 90 degrees. b.right, Gaussian shape with
σ = 40, firing range = 240 degrees
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2.3 Computational Model

Σ

global
distance

1

centralization

temporal
inte ration

path inte ration
 d1

lobal 
orientation

S(t)

x(t)
 

y(t)
 

traj. rebuilt:
 

0° 90°

ain field

inhibitory 

excitatory 

plastic & excitatory 

VIF

(1 x N)

LMS

l 

modulation

t

y

p

e

L

i

n

k

. . .

1D Kohonen map

 (blobs)

reset

..
.

(1 x N)

...

Figure 2.2: Model of the retrosplenial cortex with 1D field performing path integra-
tion and self-organizing blobs

Path integration (PI) is the integration of linear and angular movements of the
animal. In our model, PI is constructed based on the integration of the activity of HD
cells over time. As an input to our model, HD cells are modelled as a one-dimensional
attractor network (McNaughton et al., 1991). The head direction is represented as
a bump of activation on a ring of neurons. The movement of the bump and the
head direction is controlled by the animal’s angular speed. In our model, we take
the HD cell activity as the input. Nevertheless, except for the HD cells input, visual
landmarks and bidirectional HD cells (Jacob et al., 2017) could also be the input of
our model.

Instead of using a cosine shape as the bump of HD cells in (Gaussier et al., 2007),
we use a Gaussian shape which causes more errors but is more similar to the HD

cells found in biological experiments (fig. 2.1). We take Gi(θ) = e−
(θ−θi)

2

2σ2 where σ

determines the width of the firing range of HD cells and θi is the absolute orientation
of the animal with the common hypothesis that animals move in the direction where
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their heads face.
The input of the model is the absolute orientation and the linear velocity of

the animal. We suppose that a group of neurons is equally distributed to represent
360 degrees in order to simulate HD cells. Each neuron has a preferred direction
depending on the amount (N) of total neurons. The interval between each preferred
direction is 360/N . The group of neurons can represent 360 degrees with good
precision if we have enough neurons (e.g. a precision of 1.8 degrees if N = 200). A
reset or recalibration mechanism is implemented to eliminate the accumulation of
errors. There is no need of lateral interaction between neurons on the PI field.

To perform the HD vector integration, two solutions are possible: use STM
(short-term memories) or modify the synaptic weights. In our initial works, we were
using the STM but there is a potential issue with the biological plausibility of the
STM time constant and the precision of the neurons’ firing rate. In this paper, we
use the second solution which is mathematically equal to the first one. A classical
conditioning mechanism which is identical to (Rescorla, Wagner, et al., 1972; Widrow
and Hoff, 1960) is implemented in the model. Using the following learning rule to
modify the synaptic weights Wij :

dWij = λ · (Ui −Oi) · Cj (2.1)

where Cj is a binary value associated to a spatial context j (the conditional input).
Oi is the output:

Oi(t) = f(
∑

Wij · Cj) , with f(x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x > 1

(2.2)

The context Cj is the output of a network shown in fig. 2.3. The origin of the
computed PI starts at the moment the context Rj is first activated. Rj is triggered
ON when the animal comes back near the learned location and activates an STM
Mj to maintain the context active even when the animal moves far away from the
recalibration point. If another context was maintained in the STM, this context loses
against the strong feedforward input Rj which leads to updating the memory of the
current context (see fig. 2.3). When the animal stops moving, the motionless state
is active: S(t)=1 if V(t)=0 and 0 otherwise. We suppose this specific node inhibits
the spatial context Cj .

Hence, the RSC output Oi is set to zero. This accounts for the lack of RSC
activation in (Mao et al., 2017) where the mouse stops moving on a treadmill to get
the reward (sugar water) at the end of each lap.

Cj is computed as follows:
Cj(t) = H(Mj(t)− S(t)) with H(x) the Heavy-side function: H(x) = 1 if x > 0
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Figure 2.3: Schema of the contextual input Cj . Rj represents the recognition of
recalibration positions. Mj is the STM.

and 0 otherwise. M ′
j(t) = f(λM .Mj(t − 1) + Rj(t)) with 0 < λ < 1. Mj(t) is the

result of a competition mechanism between M ′
j . Mj(t) = M ′

j(t) if j = argmaxM ′

and 0 otherwise.
The firing rate of all RSC neurons is scaled to [0,1] interval. Hence, the maximum

activity in our simulation corresponds to 160Hz, the maximum firing rate coming
from the recordings of RSC neurons (Alexander and Nitz, 2015). In our model, most
RSC neurons have a firing rate around 30Hz which is consistent with the results
of biological experiments carried out by Alexander and Nitz (Alexander and Nitz,
2015).

The variation of the synapses dWij relates to the difference between Ui and Oi.
Since Ui is bounded between 0 to 1, with equations in the appendix, Wij and Oi

tend towards Ui which is limited to 1 (the maximum of the firing rate).
Ui represents the unconditional stimulus (one HD cell) which is modulated by V ,

the linear velocity of the animal and Gi(θ), the activity of the associated HD cell:
Ui = V ·Gi

The modulation of the HD cells by the linear velocity of the animal can be
explained by the speed-modulated cells found in different cortices. For instance,
(Lozano et al., 2017) found the firing rate of the HD cells in RSC is correlated with
running speed (Lozano et al., 2017). Speed cells in the medial entorhinal cortex
(MEC) were also found by (Kropff et al., 2015).

As shown in the appendix, the output Oi can be finally rewritten as:

Oi(t+ dt) = (1− λ) ·Oi(t) + λ · Ui (2.3)

This clearly shows our conditioning rule functions as a short-term memory or a
first-order low pass filter.
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Neurons perform a temporal sum of their inputs through synaptic plasticity,
which approximates the PI (fig. 1.3) (Gaussier et al., 2007). The synaptic links from
the context neurons Cj to the Oi neurons allow to update and store the value of
the PI. When a context Cj is activated (Cj = 1) and the learning rate is low, the
synaptic weights between Cj and Oi work as short-term memories (STM) integrating
the unconditional input Ui. With a high learning rate and a reset of Hi the synaptic
weights can be reset to perform a recalibration when coming back to a known place
for instance.

At this stage, Oi activity is not really homologous to PI since the Oi neurons are
only excited by the HD activity. The field of Oi always increases and PI can not come
back to the starting point because the activity of neurons can not be negative. We
calculate the mean activity of every neuron in the field of Oi and at each time step,
the field is centred by subtracting the average value of the activity of all neurons. A
global feed-forward inhibition S(t) is added to obtain the output field Pi(t) including
positive and negative parts representing an approximation of the PI. The theoretical
computation of the PI supposes the input pattern has a symmetric sine or cosine
shape (with both positive and negative activities). Since the output of the neurons
cannot be negative, we need to introduce a mechanism to come back to a symmetric
computation otherwise the neuron’s activity would only increase. Coming back to
the starting location would not be correctly encoded as a global null activity. Hence,
the integral over the different angles of the sum of the instantaneous movements has
to remain constant (moving of a distance d in the direction θi also implies moving of
a distance -d in the direction π+θi. This can be obtained by applying a feedforward
inhibition on Oi activities:

Pi(t) = Oi(t)− γ.S(t) (2.4)

with S(t) =
∑N

i=0Oi(t) and usually γ = 1
N . Because Pi activities are centred,

the activity of Pk with k = argmax(Vi) is proportional to the distance travelled in
direction i from the reset point. The neural field Pi is entitled the vector integration
field (VIF).

In our model, the direction of the animal’s instantaneous movement and the result
of PI are coded on a neural map covering 360◦ (similar to a 1D neural field (Amari,
1977a; Schöner et al., 1995a)), besides that, there is no need of lateral interaction
between the neurons in the vector integration field. Each neuron codes for a given
direction θi relative to an arbitrary reference possibly obtained from vestibular or
visual information. Since in our integration fields each neuron is coding for a specific
direction, the field activity can also be seen as a memory to store one vector. In fact,
each neuron codes for the projection of one vector onto its associated direction. The
other models introduced in this thesis are all extended from this original model.
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The integration of the activity modulated by the linear speed and the absolute
orientation of the animal is proportional to the path the animal moved (Alexander
and Nitz, 2015).

Our model can adapt to different sizes of environment using different λ. In the
following simulation, we suppose the size of the environment for training the animal
is 2m x 2m. A learning rate = 0.001 is sufficient to build a correct PI within this
environment.

Our PI model has a limitation for a long travelling time when the animal moves
in the same direction at a constant speed. Our system of PI can be considered as
a linear time-invariant system with a time constant (τ) depending on the learning
rate. τ is inversely proportional to the learning rate. The quicker the animal learns,
the faster the system arrives at the saturation state, which means PI can no longer
represent precisely the variation of the distance. The time constant of the system
using two different learning rates is illustrated in (fig. 2.4).
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Figure 2.4: Activity of one neuron in PI field when the animal moves in one direction
at a constant speed. Left, time constant = 201s when the learning rate is 0.001.
Right, τ = 403s when λ = 0.0005

Our PI saturates if the animal moves too far away from the initialization point. To
avoid the accumulation of errors, a general reset mechanism should be implemented.
Nevertheless, the animals’ movement patterns can be variable when the speed or the
direction changes. With the learning rate alone, we can not predict when the system
reaches saturation, while in classical grid cell models, this issue is avoided thanks to
the precise toroid shape of the underlying 2D map. In our model, the general reset
can be realized by the detection of the novelty (Markou and Singh, 2003; Jauffret
et al., 2013). The reset of PI is activated when the gradient of novelty becomes flat.
In our simulation, we define novelty as the distance of the path integration updated
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at each time step. One time step after the reset mechanism activates, the conditional
input Cj and the reset learning rate (λreset = 1) are activated and the unconditional
input of the PI is inhibited to 0. By substituting the parameters in (eq. 2.3) with
their reset values, we have Oi(t+ dt) = Ui so that PI is reset to 0.

Although the time constant of the system is much longer than that of neurons
(Rall, 1960). The activity of neurons on PI field with a low learning rate (long
time constant) can be achieved by several fields connected in cascade with a higher
learning rate (shorter time constant). If we connect several fields in cascade, we can
have a system with lower λ. Hence, neurons with a short time constant (10ms-1s)
can be used to build PI system with a higher time constant by increasing the number
of fields in the cascade.

We suppose that the approximated PI could be built in RSC. The ‘place cell’
activity can be discretized by the activity of neurons on PI field. Hence, to simulate
the representation of spatial context in RSC, we project the activity of PI field to
the Kohonen maps (blobs on fig. 2.2). Instead of using the distance between the
vector of the input activity and the vector of weight pointing to each neuron on the
Kohonen map, we use the dot product which is considered as a more plausible way to
determine which pattern of weights is the most similar to the vector of input activity.
The normalization is not necessary when the dimension of the input space is high
enough (Blayo, 1992).

Following simulations are designed to show the performance of the approximate
PI and the representation of the spatial context in RSC using our model.

2.4 Simulations

The animal is simulated according to its (x,y) coordinates, its head direction and its
instantaneous linear speed. At each time step, PI field receives an input composed
of the direction and linear velocity of the current movement of the animal.

The quantitative analysis is not studied in this paper. We focus on the qualita-
tive proof for our model. The quantitative analysis relating to the selection of the
appropriate decay rate λ will be discussed in future works.

2.4.1 Simulation in a spiral maze

To test the performance of PI mechanism, we simulate a rat moving at 10 cm/s
inside a square spiral maze (fig. 2.6a). The external length of the maze is 80 cm
and the distance between parallel corridors is 8 cm. The turning angle between two
corridors is 90 degrees. The duration of the simulation is 880 time steps (88 seconds)
with a learning rate = 0.001 (τ = 201s). We use 200 neurons for the HD cells so
the precision of orientation is 1.8 degrees. The number of neurons can be increased
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if higher precision of the orientation is needed. However, for animals, the balance
between precision and the consumption of energy should be maintained.

To visualize the meaning of the PI field, we record the activity of two neurons
with an interval of N · 90

360 = N
4 . x(t) = Pi(t) and y(t) = Pi+N/4(t). If we use

the activity of the first neuron as the x coordinate and the activity of the second
neuron as the y coordinate, we can artificially rebuild the trajectory (fig. 2.6a) of the
simulated animal. Since the field represents a projection of PI, taking the activity
of 2 neurons distant from 90 degrees is equal to taking the cosine and sine of the
associated PI vector (Gaussier et al., 2007). More neurons can always be used to
rebuild more precisely the trajectory. In fig. 2.15 we will show neurons having access
to the whole field or to 10% of the field can easily learn to rebuild specific places.

For the size of HD bumps, we take σ = 60 degrees. The sum of the two Gaussian
shapes has one peak which presents the orientation of the path integration (fig. 2.6b).
The red and green curves represent PI field when the rat’s orientation is 0 and 90
degrees respectively (when the animal moves from one corridor to the next in the
spiral maze). The black curve is the sum of two previous curves representing the
updated homing direction and distance of PI.

Fig. 2.5c and 2.5d show the temporal activity of two neurons on PI field which
is consistent with the recordings of RSC neurons (Alexander and Nitz, 2015). Intu-
itively, the temporal activity of these two neurons can not remind us of PI or the
trajectory the animal moved. However, we can rebuild the animal trajectory by the
activity of these two neurons (fig. 2.6a). The activity of all the neurons on PI field
should correspond to a one-peak bump (fig. 2.6b) of PI pointing to the starting posi-
tion as long as PI mechanism works well. In brief, a simple low-pass filter mechanism
is adequate to generate PI field in RSC.

To test the effect of the noise on the performance of PI. We add a white noise with
an amplitude of 10% and 40% of the maximum neuronal activity to the bump of the
HD cells. The unconditional stimulus Ui is thereby written as Ui = V ·Gi + noise.
In (fig. 2.7a), PI mechanism stays robust to the white noise of 10%. For a noise
level of 40%, the effect on the trajectory is more important (fig. 2.7b). However, in
both cases, PI always maintains the general space information. Our model is robust
to the white noise because PI mechanism in our model acts as a low pass filter. In
the next section, the effect of noise on the output of PI mechanism is discussed.

PI performs well when the firing range spreads over 360 degrees with an animal
performing an instantaneous rotation of 90 degrees. However, the real firing range
of the HD cell is not that large. The largest firing range found in the LMN (Lateral
Mammillary Nucleus) is about 240 degrees (fig. 2.1a). In the following simulations,
we test PI with a smaller size for the HD cells to be more similar to those observed
in biological experiments. We still use the square spiral maze but with the bump
size of 240 degrees, σ of the Gaussian shape = 240/6 = 40. We use neurons 25 and
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Figure 2.5: Activity of neurons on PI field when the rat moves in a square spiral
maze with σ of the Gaussian shape = 60 degrees. a, b. Activity of neurons 100,
150 along the trajectory. c, d. Temporal activity of neurons 100 and 150 during the
locomotion of the simulated rat.

75 (fig. 2.8a, b) from PI field to rebuild the trajectory. If PI field is working well, we
should be able to rebuild the trajectory up to a rotation factor related to the choice
of the 2 neurons used in the reconstruction. Fig. 2.9b shows the overlap of two bell
curves associated with the sum of the activity of 2 HD cells. The peak of the curve
is no longer in the middle. In spite of the error in PI (fig. 2.9a), the model is still
quite useful to navigate in 3/4 of the cases which means our model is robust to the
error in the direction of PI.

To discover the relationship between the turning angle of the movement and the
size of bump, we simulate a rat moving at 10 cm/s in a triangle spiral maze, the
external length of the maze is 136 cm and the distance between parallel corridors
is 8 cm. The turning angle between two arms is 120 degrees. The duration of the
simulation is 928 time steps (92.8 s) with a learning rate = 0.001 (τ = 201s).

We use neurons 100 and 150 (fig. 2.11a, b) from PI field to rebuild the trajectory.
In this case, PI tends to be inaccurate even using the HD cell with the largest firing
range observed from biological experiments. Hence, our model has the constraint
that the instantaneous turning angle should not exceed twice the size of the bump to
ensure the accuracy of PI. It is coherent with what we see in animals and humans that
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Figure 2.6: The rat moves in a square spiral maze with σ = 60 degrees and learning
rate = 0.001. a) Trajectory rebuilt by neuron100 and 150. b) Overlap of two Gaussian
shapes distant from 90 degrees, showing the path integration is done correctly.
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Figure 2.7: Performance of PI mechanism under the perturbation of a white noise
added to all the neurons on the input field of PI mechanism. a. PI under a 10%
white noise. b. PI under a 40% white noise.

are disoriented under too fast rotations. We don’t adapt to the too-sharp turning.

2.4.2 Simulation in W mazes

The following simulation will show that our model is capable to reveal the ability of
RSC to ‘map the conjunction of internal and external space’ which is discovered in
(Alexander and Nitz, 2015). We simulate a W maze whose corridor is 66cm and the
angle between two conjoint corridors is 90 degrees. The animal moves at 10cm/s in
the maze with a learning rate = 0.001. We record simulated neurons’ activity of the
PI field and compare them with the results found in biological experiments. Neurons
in PI field are equally distributed to the orientation and react not strictly to only
one direction because of the wide firing range of HD cells which is supposed to be
240 degrees in our simulation. The activities of neurons can be considered as the
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Figure 2.8: Activity of neurons on PI field when the rat moves in a square spiral
maze with σ of the Gaussian shape = 40 degrees. a, b. Activity of neurons 75, 25
along the trajectory.
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Figure 2.9: PI with σ = 40 and learning rate = 0.001 in the square spiral maze. a)
Trajectory rebuilt by neurons 25 and 75. b) Overlap of two Gaussian shapes distant
from 90 degrees, showing the path integration is not done correctly.

projection of the trajectory to a different axis. 200 neurons are equally distributed
to represent 360 degrees. During the w maze simulation, about half of the neurons
have no action specificity which accords with the results from (Alexander and Nitz,
2015).

To compare the properties of our VIF to the neurons in RSC, we plot the ac-
tivity of neurons selected on a VIF while the agent follows a predefined trajectory
corresponding to a W maze used for rodent recordings in the RSC (Alexander and
Nitz, 2015). The impact of the learning rate will be enlightened using 3 different
time constants showing the model’s ability to encode allocentric, egocentric, and PI
information.

Fig. 2.12 (upper part) shows the temporal activity of few neurons on the field
according to the decay rate λ used and to the direction of displacement in the maze.

46



x

(a)

0.02

-0.02

a
c
tiv

ity

x

(b)

Figure 2.10: Activity of neurons on PI field when the rat moves in a triangle spiral
maze with σ of the Gaussian shape = 40 degrees. a, b. Activity of neurons 100, 150
along the trajectory.

In fig. 2.12 a), the recording looks like a head direction cell with the cell active for
a given branch (and direction) in the W maze.

With a very fast decay λ = 0.2 (τ ≃ 70 ms), the cell activity looks like the
activity of the HD cells with a small temporal filtering (see fig. 2.12 a). Using a
mirror W shape or entering from the opposite side of the maze (blue RLR instead
of black LRL rotations) shows that half the cells are more active for either the right
or the left turn. These cells are "turn-related" cells. With λ = 0.02 (τ ≃ 0.7 s), the
cells capture the global direction of the motion and can be active all along the W
maze.

Most of the neurons in fig. 2.12 seem as if they are reacting to a specific turn in
the maze but as soon as λ is small enough (long time constant) the neuron activity
is modulated by the animal’s position in the maze. When the neuron direction is not
well aligned with the main direction of the maze, the neuron is only active for the
parts of the trajectory pointing in its preferred direction and when the integration
is high enough. Otherwise, the global feed-forward inhibition S(t) suppresses its
activity. Hence, our model can explain the responses of neurons in the rat’s RSC
(Alexander and Nitz, 2015) showing differences in neuronal activity for the first and
the second turn (see lower part of fig. 2.12). This could be the result of the temporal
integration performed by leaky integrators according to the preferred orientation of
the recorded cell.

In our simulations, if a high value is used to preset the field (HP) we see a
decreasing activity for the neurons having previously an increasing activity because
the initial vector was high (in a given direction) and is decreasing. With a decay
λ = 0.02 the neurons are "turn-related" but not "complete route-modulated" since
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Figure 2.11: The rat moves in a triangle spiral maze with σ = 40 and learning rate
= 0.001. a) Trajectory rebuilt by neuron 100 and 150. b) Overlap of two Gaussian
shapes distant from 90 degrees, showing the path integration is not done correctly.

the decay is too fast (no difference can be seen because no activity/memory remaining
of the first turn in the field). The neurons only provide a trace of the local trajectory.

For a decay slow enough (λ = 0.005 or τ ≃ 2.8 s) the cells in our model are also
"complete route-modulated" since their activity level is different for the first and the
second right turn for instance. Their activity looks much more like one would expect
from PI. Most of these cells are either always active or inactive, which may explain
why they are oftentimes overlooked. Fig. 2.12 f shows an extreme case of one neuron
with a single peak activity for the last turn. It is clearly route related and could
even be seen as a place cell.

Route-centric responses could be in the form of 1) stronger responses to one turn
in a series of turns, or 2) ramped activity with the animal’s progression along a
route. Responses that have both of the two forms in the W maze experiment can
be considered as "complete route-modulated". In both cases, these responses will be
informative of the animal’s position along route space, as opposed to place specific or
allocentric space. Bicanski and Burgess, 2018 and Byrne et al., 2007 suggested that
the RSC transformed an egocentric reference frame to an allocentric frame. Here
instead, we suggest that RSC responds in all three frames, as Alexander and Nitz,
2015, by varying the temporal integration time constant. It could be related to the
use of different kinds of synapses or a push-pull cascade of fields having the same
time constant. Table 1 summarizes the properties that can be exhibited by our VIF
according to the value of the decay and the kind of context used.

In the simulation, both allocentric and egocentric references can be built by using
distant or local landmarks to recalibrate the field of HD cells. For instance, when the
animal moves in the w maze located in two different locations in the environment.
The activity of neurons can be allocentric when the animal uses a distant visual
landmark to recalibrate. The local cue(orientation of the entrance of the w maze)
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DRAFTFig. 4. Simulation of the model proposed fig. 2. top: Activity on the field
of neurons V Õ

i when gaussian HD cells are used as input. Theta is the
index of the recorded neuron in a field of N=100 neurons (3.6 ¶ per neuron).
Superimposed blue curves show the level of activation of the 100 neurons
recorded in V Õ

i after each time step. The final activation level is displayed in
red (⁄ = 0.02 or · ƒ 0.7 s), number of iterations = 50, displacement during
1 iteration: speed=1). Bottom: Reconstruction of the spatial trajectory from
the mean frequency activity of two neurons of the V Õ

i field (top curve):
neurons i=0 on the x axis and i=25 on the axis associated respectively to
the orientation 0¶ and fi/2 (y).

look very similar to HD cells since the averaging of their value
is performed over a short time period. At the opposite, with
⁄ = 0.02 and ⁄ = 0.002 (· ƒ 0.7 s and · ƒ 7 s) we see some
properties clearly related to the path integration, since one
cell activity represents how much the agent has moved in a
given direction. Recording of the VIF activities shows some
similar results with the W maze (fig. 12 in the supplementary
information). If the field is reset to 0 at the starting point (
(0,0) coordinates), because of the global inhibition the number
of neurons in the field having a positive value will be limited
since all the displacement are limited in one quadrant of the
space from the departure point (starting spiraling from one
corner of a square means the direction of the path integration
vector is limited to an interval of 90¶ i.e. from the positive
x-axis to the positive y-axis ). Neurons on the field associated
to the [0,90] orientations will be activated as well as a lim-
ited number of outer neurons receiving some di�used activity
thanks to the shape of the HD cells covering (120¶ (see fig. 1).
Hence, the maximum number of neurons that can be activated
covers a field of [-60+0,90+60]=[-60,150] and should cover al-
most 210¶ and 60% of the neurons in the field. Similar to (7),
the interesting result is that some of these activities appear
related to global information such as places or portions of
the maze while the others (working on a smaller time period)
seem related to more local information like the head direction

simulation : turn-related, no route modulation

a) b)

⁄ = 0.02 (neuron 32) ⁄ = 0.005 (neuron 64)

simulation : turn-related, route modulated

c) d)

⁄ = 0.02 HP (neuron 32) ⁄ = 0.005 (neuron 32)

e) f)

⁄ = 0.02 HP (neuron 64) ⁄ = 0.005 HP (neuron 64)
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Thus, subpopulations of RSC neurons reliably mapped the space along 
RLR and/or LRL trajectories regardless of allocentric position.

Next, we determined whether neurons that exhibited action corre-
lates also exhibited modulation of their action-specific activity accord-
ing to route position. Evidence of such modulation would suggest that 
route position information in RSC could take the form of changes in 
the ‘gain’ on action-related firing according to the position of actions 
in a sequence. Of the neurons (45.6% of all, n = 104/228) exhibiting 
differential activation across all left versus right turns, 43.3% (n = 45 
neurons, or 19.7% of all neurons, Wilcoxon rank-sum test, P < 0.05)  
also exhibited significantly different rates depending on the location 
of the preferred turn type in a route (for example, differential firing 
for the first versus second right turn of the RLR route). Such differ-
ences in turn-related firing were not secondary to differences in the 
angular or linear velocities associated with turning behavior given the 
poor correlation between the two measures (Supplementary Figs. 6 
and 7). Thus, this subgroup encoded spatial information concerning 
movement types as well as the specific location of those movements 
in routes (Fig. 3a,c). In contrast, a separate 26% of all neurons had 
left- and right-turn activity rates that were insensitive to the route 
positioning of turns (Figs. 2a,b and 3d).

These analyses identified two forms by which RSC neurons, similar 
to PPC neurons, can map route position and suggest that the ani-
mal’s position in a route can be discerned from positional firing rate 
profiles for the full ensemble of RSC neurons. To determine whether 
this is indeed the case, we used a simple correlative reconstruction 
process. First, the ensemble firing rate vectors for every route posi-
tion for all even-numbered trials were correlated with the ensemble 
firing rate vectors for all route positions for all odd-numbered trials 
(Supplementary Fig. 8). Such cross-positional correlations in ensemble 
firing patterns were color-mapped for each route and each track loca-
tion separately (Fig. 3e). Second, for each row, the column associated  

with the highest correlation value was determined. To the extent that 
ensemble rate vectors were unique and reliably observed for each route 
position, we expected the points of highest correlation between odd 
and even-trial data to vary minimally along a ‘perfect prediction’ line 
that moves from the upper left to lower right. As indicated by the high 
correlations along these diagonals, the even-trial ensemble activity  
at all route positions was most strongly correlated with odd-trial 
ensemble activity for the same or nearby positions. Although track 
positions sharing the same behaviors (for example, right or left turn-
ing) yielded high correlations as well (appearing as off-diagonal red 
patches), the patterns of activation were distinct enough to enable a 
very accurate prediction of the animal’s location, evidencing strong 
mapping of route position by RSC neurons.

RSC neurons map track location in allocentric space
We also sought to examine whether RSC firing patterns, similar to 
HPC neurons (Fig. 4a) can reflect the position of the track in the 
allocentric frame of reference. To the best of our knowledge, such 
a finding would represent the first evidence of a single brain region 
exhibiting conjunctive encoding of position in the three reference 
frames most relevant to fluid, efficient navigation in an environment. 
Some evidence for sensitivity to the allocentric frame of reference 
came in the form of a small contingent of neurons (6% of all) sensi-
tive to head orientation relative to allocentric space (Supplementary  
Fig. 9), a result consistent with prior findings26,28.

More directly consistent with the hypothesis that RSC neuron fir-
ing is sensitive to the track’s position in the environment (that is, the 
allocentric space), the mean correlation across all RSC neurons for 
positional rate profiles taken from track locations  and  was low, but 
statistically different than what was observed in the HPC ( RSC = 0.16, 
nRSC = 374 (both routes); HPC = 0.07, nHPC = 218; Kruskal-Wallis 
with post hoc Scheffe test, P = 0.0009; Fig. 4a). This difference between 

Figure 3 RSC neurons map position in route-
centered space. (a) A subpopulation of RSC  
neurons did not exhibit left- versus right-turn  
rate differences (gray, see b). RSC neurons that 
did exhibit left- and right-turn rate differences 
could be split into two groups: those that also  
exhibited rate differences for the preferred turn 
type depending on route position (dark blue,  
see c) and those that exhibited similar rates  
for preferred turns at different route positions 
(light blue, see d). (b) LRL and RLR mean  
rate ( s.e.m.) profiles for an RSC neuron 
without left- and right-turn rate differences, yet 
reliably encoding route position. The complex 
rate profiles were very similar at the  (upper)  
and  (lower) track positions, as evidenced 
by high Pearson correlations for LRL-  versus 
LRL-  and RLR-  versus RLR-  rate profiles. 
Bottom, two-dimensional rate color maps for 
the same neuron. Bottom left schematic depicts 
relative positions of  and  track locations.  
(c) An RSC neuron with right-turn rate increases 
significantly modulated by route position.  
Both mean rates (dark blue and black) and 
individual trial rates (light traces) are shown for the  and  track locations. Peak rates across turns were significantly different at both track  
locations, indicating sensitivity to the route-centered frame of reference. (d) An example neuron significantly modulated by left- versus right-turning 
behavior, but not by the positions of turns in a route. (e) Reconstruction of position in route-centered space. Correlation matrices were computed from 
odd and even trial ensemble rate vectors (n = 228) for both routes and both track positions. Each row corresponds to the correlation of the odd-trial 
ensemble rate vector at that route position with the even-trial ensemble rate vectors at that and all other route positions. Across odd-trial positions,  
the highest correlation is marked in black and reflects the reconstructed position of the animal. The degree of deviation from a perfect diagonal across  
all positions (white dashed line) reflects the error in route position reconstruction. Pattern differences across track positions, even those associated  
with the same turn type, yielded enough information to allow precise reconstruction.

20%

26%

No action specificity (n = 124)
Turn, route mod. (n = 45)
Turn, no mod. (n = 59)

No action specificity (n = 124)
LRL60

110

50

LRL

LRL

RLR

RLR

0.92

0.34

L R L R L R

Track position/even trials

T
rack

position/odd trials

r 
va

lu
e

110

50

Turn-related, route modulated (n = 45)

Turn-related, not route modulated (n = 59)

R L R
L R L

60

F
iri

ng
 r

at
e 

(H
z)

F
iri

ng
 r

at
e

(H
z)

F
iri

ng
 r

at
e

(H
z)

50

0

F
iri

ng
 r

at
e 

(H
z)

L
R

L
rLRL = 0.52
rRLR = 0.76

R
R
L

RLR

54%

a

b d

c

e
g)

1146 VOLUME 18 | NUMBER 8 | AUGUST 2015 NATURE NEUROSCIENCE

A R T I C L E S

Thus, subpopulations of RSC neurons reliably mapped the space along 
RLR and/or LRL trajectories regardless of allocentric position.

Next, we determined whether neurons that exhibited action corre-
lates also exhibited modulation of their action-specific activity accord-
ing to route position. Evidence of such modulation would suggest that 
route position information in RSC could take the form of changes in 
the ‘gain’ on action-related firing according to the position of actions 
in a sequence. Of the neurons (45.6% of all, n = 104/228) exhibiting 
differential activation across all left versus right turns, 43.3% (n = 45 
neurons, or 19.7% of all neurons, Wilcoxon rank-sum test, P < 0.05)  
also exhibited significantly different rates depending on the location 
of the preferred turn type in a route (for example, differential firing 
for the first versus second right turn of the RLR route). Such differ-
ences in turn-related firing were not secondary to differences in the 
angular or linear velocities associated with turning behavior given the 
poor correlation between the two measures (Supplementary Figs. 6 
and 7). Thus, this subgroup encoded spatial information concerning 
movement types as well as the specific location of those movements 
in routes (Fig. 3a,c). In contrast, a separate 26% of all neurons had 
left- and right-turn activity rates that were insensitive to the route 
positioning of turns (Figs. 2a,b and 3d).

These analyses identified two forms by which RSC neurons, similar 
to PPC neurons, can map route position and suggest that the ani-
mal’s position in a route can be discerned from positional firing rate 
profiles for the full ensemble of RSC neurons. To determine whether 
this is indeed the case, we used a simple correlative reconstruction 
process. First, the ensemble firing rate vectors for every route posi-
tion for all even-numbered trials were correlated with the ensemble 
firing rate vectors for all route positions for all odd-numbered trials 
(Supplementary Fig. 8). Such cross-positional correlations in ensemble 
firing patterns were color-mapped for each route and each track loca-
tion separately (Fig. 3e). Second, for each row, the column associated  

with the highest correlation value was determined. To the extent that 
ensemble rate vectors were unique and reliably observed for each route 
position, we expected the points of highest correlation between odd 
and even-trial data to vary minimally along a ‘perfect prediction’ line 
that moves from the upper left to lower right. As indicated by the high 
correlations along these diagonals, the even-trial ensemble activity  
at all route positions was most strongly correlated with odd-trial 
ensemble activity for the same or nearby positions. Although track 
positions sharing the same behaviors (for example, right or left turn-
ing) yielded high correlations as well (appearing as off-diagonal red 
patches), the patterns of activation were distinct enough to enable a 
very accurate prediction of the animal’s location, evidencing strong 
mapping of route position by RSC neurons.

RSC neurons map track location in allocentric space
We also sought to examine whether RSC firing patterns, similar to 
HPC neurons (Fig. 4a) can reflect the position of the track in the 
allocentric frame of reference. To the best of our knowledge, such 
a finding would represent the first evidence of a single brain region 
exhibiting conjunctive encoding of position in the three reference 
frames most relevant to fluid, efficient navigation in an environment. 
Some evidence for sensitivity to the allocentric frame of reference 
came in the form of a small contingent of neurons (6% of all) sensi-
tive to head orientation relative to allocentric space (Supplementary  
Fig. 9), a result consistent with prior findings26,28.

More directly consistent with the hypothesis that RSC neuron fir-
ing is sensitive to the track’s position in the environment (that is, the 
allocentric space), the mean correlation across all RSC neurons for 
positional rate profiles taken from track locations  and  was low, but 
statistically different than what was observed in the HPC ( RSC = 0.16, 
nRSC = 374 (both routes); HPC = 0.07, nHPC = 218; Kruskal-Wallis 
with post hoc Scheffe test, P = 0.0009; Fig. 4a). This difference between 

Figure 3 RSC neurons map position in route-
centered space. (a) A subpopulation of RSC  
neurons did not exhibit left- versus right-turn  
rate differences (gray, see b). RSC neurons that 
did exhibit left- and right-turn rate differences 
could be split into two groups: those that also  
exhibited rate differences for the preferred turn 
type depending on route position (dark blue,  
see c) and those that exhibited similar rates  
for preferred turns at different route positions 
(light blue, see d). (b) LRL and RLR mean  
rate ( s.e.m.) profiles for an RSC neuron 
without left- and right-turn rate differences, yet 
reliably encoding route position. The complex 
rate profiles were very similar at the  (upper)  
and  (lower) track positions, as evidenced 
by high Pearson correlations for LRL-  versus 
LRL-  and RLR-  versus RLR-  rate profiles. 
Bottom, two-dimensional rate color maps for 
the same neuron. Bottom left schematic depicts 
relative positions of  and  track locations.  
(c) An RSC neuron with right-turn rate increases 
significantly modulated by route position.  
Both mean rates (dark blue and black) and 
individual trial rates (light traces) are shown for the  and  track locations. Peak rates across turns were significantly different at both track  
locations, indicating sensitivity to the route-centered frame of reference. (d) An example neuron significantly modulated by left- versus right-turning 
behavior, but not by the positions of turns in a route. (e) Reconstruction of position in route-centered space. Correlation matrices were computed from 
odd and even trial ensemble rate vectors (n = 228) for both routes and both track positions. Each row corresponds to the correlation of the odd-trial 
ensemble rate vector at that route position with the even-trial ensemble rate vectors at that and all other route positions. Across odd-trial positions,  
the highest correlation is marked in black and reflects the reconstructed position of the animal. The degree of deviation from a perfect diagonal across  
all positions (white dashed line) reflects the error in route position reconstruction. Pattern differences across track positions, even those associated  
with the same turn type, yielded enough information to allow precise reconstruction.
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Fig. 5. W maze: Temporal activity of 2 cells in a field of 100 neurons
according to the direction used in W maze (blue RLR, black LRL) and to
the decay. a) to f) correspond to simulated neurons with x axis the time
in number of iterations. Vertical lines in red represent the right or left turn
in the W maze. HP (High Preset) represents cases where the simulated
field is preset with a high value. Higher decay ⁄ induces more route related
behavior but it depends also on the neuron preferred direction. g) and h)
Temporal activity of neurons recorded by (2) in the RSC during experiments
in a "W" maze showing route sensitive neurons.

according to the value of the decay factor.
Fig. 9 a) in the supplementary information shows a decrease

of the global neuron responses when the agent is spiraling
inward the maze. This can be explained by the fact the
variation of the global distance from one lap to the next is
decreasing in average as the agent moves inward the spiral
maze (during the first lap the maximum distance from the
starting point - at the opposite corner of the first square -
is longer that the last one ending in the middle of the first
square). Yet, these results are not su�cient to explain the
shape of some neurons recorded in the rat’s PPC ((7) - fig.
6 b) since our simulated cells are mainly selective to the
corridor orientation while the experimentally recorded neurons
seem sensitive to the corners themselves. On a lap in our
simulations, a cell is activated once and not for all the 4 parts
of the trajectory and cannot reach 0 at or before each turn
because the approximation of the PI computed by our neurons
is not coming back to 0 at each corner of the spiral maze.
To obtain results similar to the neurobiological data, we can
speculate the existence of conjunctive cells receiving both the
activities from our path integration field and an estimation of
the agent rotational speed (see additional material for more
details and fig. 10). Since the approximation of the rotational
speed will come back quickly to 0 in each linear part of the

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

Gaussier et al.

1146 VOLUME 18 | NUMBER 8 | AUGUST 2015 NATURE NEUROSCIENCE

A R T I C L E S

Thus, subpopulations of RSC neurons reliably mapped the space along 
RLR and/or LRL trajectories regardless of allocentric position.

Next, we determined whether neurons that exhibited action corre-
lates also exhibited modulation of their action-specific activity accord-
ing to route position. Evidence of such modulation would suggest that 
route position information in RSC could take the form of changes in 
the ‘gain’ on action-related firing according to the position of actions 
in a sequence. Of the neurons (45.6% of all, n = 104/228) exhibiting 
differential activation across all left versus right turns, 43.3% (n = 45 
neurons, or 19.7% of all neurons, Wilcoxon rank-sum test, P < 0.05)  
also exhibited significantly different rates depending on the location 
of the preferred turn type in a route (for example, differential firing 
for the first versus second right turn of the RLR route). Such differ-
ences in turn-related firing were not secondary to differences in the 
angular or linear velocities associated with turning behavior given the 
poor correlation between the two measures (Supplementary Figs. 6 
and 7). Thus, this subgroup encoded spatial information concerning 
movement types as well as the specific location of those movements 
in routes (Fig. 3a,c). In contrast, a separate 26% of all neurons had 
left- and right-turn activity rates that were insensitive to the route 
positioning of turns (Figs. 2a,b and 3d).

These analyses identified two forms by which RSC neurons, similar 
to PPC neurons, can map route position and suggest that the ani-
mal’s position in a route can be discerned from positional firing rate 
profiles for the full ensemble of RSC neurons. To determine whether 
this is indeed the case, we used a simple correlative reconstruction 
process. First, the ensemble firing rate vectors for every route posi-
tion for all even-numbered trials were correlated with the ensemble 
firing rate vectors for all route positions for all odd-numbered trials 
(Supplementary Fig. 8). Such cross-positional correlations in ensemble 
firing patterns were color-mapped for each route and each track loca-
tion separately (Fig. 3e). Second, for each row, the column associated  

with the highest correlation value was determined. To the extent that 
ensemble rate vectors were unique and reliably observed for each route 
position, we expected the points of highest correlation between odd 
and even-trial data to vary minimally along a ‘perfect prediction’ line 
that moves from the upper left to lower right. As indicated by the high 
correlations along these diagonals, the even-trial ensemble activity  
at all route positions was most strongly correlated with odd-trial 
ensemble activity for the same or nearby positions. Although track 
positions sharing the same behaviors (for example, right or left turn-
ing) yielded high correlations as well (appearing as off-diagonal red 
patches), the patterns of activation were distinct enough to enable a 
very accurate prediction of the animal’s location, evidencing strong 
mapping of route position by RSC neurons.

RSC neurons map track location in allocentric space
We also sought to examine whether RSC firing patterns, similar to 
HPC neurons (Fig. 4a) can reflect the position of the track in the 
allocentric frame of reference. To the best of our knowledge, such 
a finding would represent the first evidence of a single brain region 
exhibiting conjunctive encoding of position in the three reference 
frames most relevant to fluid, efficient navigation in an environment. 
Some evidence for sensitivity to the allocentric frame of reference 
came in the form of a small contingent of neurons (6% of all) sensi-
tive to head orientation relative to allocentric space (Supplementary  
Fig. 9), a result consistent with prior findings26,28.

More directly consistent with the hypothesis that RSC neuron fir-
ing is sensitive to the track’s position in the environment (that is, the 
allocentric space), the mean correlation across all RSC neurons for 
positional rate profiles taken from track locations  and  was low, but 
statistically different than what was observed in the HPC ( RSC = 0.16, 
nRSC = 374 (both routes); HPC = 0.07, nHPC = 218; Kruskal-Wallis 
with post hoc Scheffe test, P = 0.0009; Fig. 4a). This difference between 

Figure 3 RSC neurons map position in route-
centered space. (a) A subpopulation of RSC  
neurons did not exhibit left- versus right-turn  
rate differences (gray, see b). RSC neurons that 
did exhibit left- and right-turn rate differences 
could be split into two groups: those that also  
exhibited rate differences for the preferred turn 
type depending on route position (dark blue,  
see c) and those that exhibited similar rates  
for preferred turns at different route positions 
(light blue, see d). (b) LRL and RLR mean  
rate ( s.e.m.) profiles for an RSC neuron 
without left- and right-turn rate differences, yet 
reliably encoding route position. The complex 
rate profiles were very similar at the  (upper)  
and  (lower) track positions, as evidenced 
by high Pearson correlations for LRL-  versus 
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Bottom, two-dimensional rate color maps for 
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(c) An RSC neuron with right-turn rate increases 
significantly modulated by route position.  
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Thus, subpopulations of RSC neurons reliably mapped the space along 
RLR and/or LRL trajectories regardless of allocentric position.

Next, we determined whether neurons that exhibited action corre-
lates also exhibited modulation of their action-specific activity accord-
ing to route position. Evidence of such modulation would suggest that 
route position information in RSC could take the form of changes in 
the ‘gain’ on action-related firing according to the position of actions 
in a sequence. Of the neurons (45.6% of all, n = 104/228) exhibiting 
differential activation across all left versus right turns, 43.3% (n = 45 
neurons, or 19.7% of all neurons, Wilcoxon rank-sum test, P < 0.05)  
also exhibited significantly different rates depending on the location 
of the preferred turn type in a route (for example, differential firing 
for the first versus second right turn of the RLR route). Such differ-
ences in turn-related firing were not secondary to differences in the 
angular or linear velocities associated with turning behavior given the 
poor correlation between the two measures (Supplementary Figs. 6 
and 7). Thus, this subgroup encoded spatial information concerning 
movement types as well as the specific location of those movements 
in routes (Fig. 3a,c). In contrast, a separate 26% of all neurons had 
left- and right-turn activity rates that were insensitive to the route 
positioning of turns (Figs. 2a,b and 3d).

These analyses identified two forms by which RSC neurons, similar 
to PPC neurons, can map route position and suggest that the ani-
mal’s position in a route can be discerned from positional firing rate 
profiles for the full ensemble of RSC neurons. To determine whether 
this is indeed the case, we used a simple correlative reconstruction 
process. First, the ensemble firing rate vectors for every route posi-
tion for all even-numbered trials were correlated with the ensemble 
firing rate vectors for all route positions for all odd-numbered trials 
(Supplementary Fig. 8). Such cross-positional correlations in ensemble 
firing patterns were color-mapped for each route and each track loca-
tion separately (Fig. 3e). Second, for each row, the column associated  

with the highest correlation value was determined. To the extent that 
ensemble rate vectors were unique and reliably observed for each route 
position, we expected the points of highest correlation between odd 
and even-trial data to vary minimally along a ‘perfect prediction’ line 
that moves from the upper left to lower right. As indicated by the high 
correlations along these diagonals, the even-trial ensemble activity  
at all route positions was most strongly correlated with odd-trial 
ensemble activity for the same or nearby positions. Although track 
positions sharing the same behaviors (for example, right or left turn-
ing) yielded high correlations as well (appearing as off-diagonal red 
patches), the patterns of activation were distinct enough to enable a 
very accurate prediction of the animal’s location, evidencing strong 
mapping of route position by RSC neurons.

RSC neurons map track location in allocentric space
We also sought to examine whether RSC firing patterns, similar to 
HPC neurons (Fig. 4a) can reflect the position of the track in the 
allocentric frame of reference. To the best of our knowledge, such 
a finding would represent the first evidence of a single brain region 
exhibiting conjunctive encoding of position in the three reference 
frames most relevant to fluid, efficient navigation in an environment. 
Some evidence for sensitivity to the allocentric frame of reference 
came in the form of a small contingent of neurons (6% of all) sensi-
tive to head orientation relative to allocentric space (Supplementary  
Fig. 9), a result consistent with prior findings26,28.

More directly consistent with the hypothesis that RSC neuron fir-
ing is sensitive to the track’s position in the environment (that is, the 
allocentric space), the mean correlation across all RSC neurons for 
positional rate profiles taken from track locations  and  was low, but 
statistically different than what was observed in the HPC ( RSC = 0.16, 
nRSC = 374 (both routes); HPC = 0.07, nHPC = 218; Kruskal-Wallis 
with post hoc Scheffe test, P = 0.0009; Fig. 4a). This difference between 
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Figure 2.12: Representative neural activity from the W maze simulations using dif-
ferent decay constants (or learning rate). The temporal activity of 2 cells from the
field of 100 neurons according to the direction used in the W maze (blue RLR, black
LRL). a) to f) correspond to simulated neural activity. The x-axis represents time
travelling on a trajectory. Vertical lines in red represent the right or left turn in the
W maze. HP (High Preset) represents cases where the simulated field is preset with
a high value. Lower decay/learning rate λ induces more route-related behaviour but
it depends also on the neuron’s preferred direction. g) and h) Temporal activity of
neurons recorded by (Alexander and Nitz, 2015) in the RSC during experiments in
a "W" maze showing route-sensitive neurons.
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Table 2.1: Comparison of the properties of the neurons in a VIF according to the
learning rate or decay value and the recalibration method used

can be used for the recalibration to have the egocentric activity of neurons in the
field of HD cells.

However, the geometrical representation is precise only when the bump of the
HD cells is a cosine shape with a size of 180 degrees. The centralization mechanism
will also cause a shift in the projection. Despite all these effects, the activity of
simulated neurons will always maintain the tendency to increase or decrease.

Our model performs PI in RSC using only the HD cell activity as input. It fits
with the results obtained by (Alexander and Nitz, 2015). In the next section, we
will show our model can also simulate some particular results obtained in (Mao et
al., 2017) showing place cell-like activities while usual recordings show no place cell
activity in RSC.

2.4.3 Simulation on a treadmill

To reproduce the experiment done in (Mao et al., 2017), we simulate a mouse running
on a treadmill whose length is 150cm. The mouse is head-fixed on the treadmill so
the position of the mouse doesn’t change. The travelling distance of the mouse is
recorded by the movement of the belt. A reward (a drop of sucrose water ) is delivered
to the mouse at the end of each lap. In our simulation, before being fixed on the
treadmill, the mouse moves freely in an open wide space. To avoid any problem
caused by the environment, we ensure the longest distance in one direction in an
open space is longer than the longest path on the treadmill.

In our model (fig. 2.2), each neuron on the 1D PI field projects to one particular
1xM Kohonen map. So we can have up to N 1D Kohonen map representing N
blobs or hypercolumns. Our model supports the hypothesis that RSC should be
a cortex with the same organization as V1 (blobs) (Crawford et al., 2001). The
mouse’s PI is reset at the beginning of the simulation. After learning, the activities
of our cortical columns in RSC are similar to the ’place cells’ recorded in (Mao et al.,
2017). Distinct neurons are active when the mouse crosses the distinct positions on
the treadmill. When the mouse stops running, the PI field activity is null because
Cj is null (see fig. 2.3). Hence, the same neuron will be active no matter how long
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Figure 2.13: Simulation where the mouse is head-fixed and running for 150cm on
a treadmill. (a.top) Plot of recorded activity of 24 neurons on a one-dimensional
Kohonen map. (a.mid) Position of the mouse on the treadmill. (a.bottom) Speed of
the mouse during one lap on the treadmill. Reward (blue) is placed at the end of
each lap. (b) Activation time points of 24 neurons in 10 consecutive laps. (c)Average
activity of 10 laps for 24 neurons from b

the mouse has moved. No specific place-oriented neuron is active when the mouse
stays still (fig. 2.13a.top). Thereby, the representation of the spatial context in RSC
is realized using PI field as the input. However, this experiment is very specific since
the mouse moves always in one direction. In many other biological experiments,
animals move in a two-dimensional environment. In that case, biologists do not find
‘place cells’ in RSC. Therefore, we simulate the random movements of the mouse in
a 2D environment with the same network and record the activity of all the neurons
in the Kohonen maps to test if we still find ‘place cells’ in RSC (in the same region
that we recorded the activity of neurons in the treadmill simulation).

From (fig. 2.14a), we can see that the mouse has explored almost everywhere in
the 2D environment. In (fig. 2.14b, c, d), each neuron in 3 different blobs is active in
many different places on the trajectory. The non place-cell activity is not observed
coincidentally. There is no apparent spatial correlation between the cell activity
and the animal’s position. We find no more place cell-like activity. No cluster of
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Figure 2.14: a. The trajectory of the mouse. The mouse starts moving from the
middle of the environment indicated by a blue point and the stop position is marked
by a red point. b, c, d. Activity of three neurons on 3 different 1D Kohonen maps
(blobs).

activity is observed. This is quite normal since we are using local self-organizing
maps focusing on quantifying the distance in a given direction. The neurons on the
Kohonen map are associated only to a local neighbourhood of PI field to quantify
one part of the bump (i.e. PI). They cannot access to the 2D information on PI field.

However, if the neurons on the Kohonen map can access to the whole PI field
(global self-organization), place cells can be rebuilt in a 2D environment (fig. 2.15a,
b) like it is done in the hippocampus after the entorhinal cortex (EC) merging.

Moreover, the place cell activity emerges as well using the global self-organizing
map with random connections to a small part of the neurons on the path integration
(fig. 2.15c, d) because even random connections can capture the spatial property of
the bump of PI field as long as a "global" access to PI field is ensured.

That’s totally different from what we got from a Kohonen map connected only
to neighbour neurons on the PI field. The local self-organizing map is good enough
to simulate a place cell-like activity in RSC when the animal moves in one single
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Figure 2.15: Place cell-like activity recorded from a global self-organizing map. Yel-
low line is the trajectory of the simulated animal. Blue points in each figure are the
activity of one neuron on the global self-organizing map representing one place. a,
b. Activity of two different neurons on one global self-organizing map with a com-
plete connection to PI filed. c, d. Activity of two different neurons on one global
self-organizing map with a random connection to 6% of the neurons on PI field. e,
f. Activity of two different neurons on one global self-organizing map with a random
connection to 10% of the neurons on PI field. Activity of 25% neurons in PI field is
killed.

direction on the treadmill (Mao et al., 2017). When the animal moves freely, the
connectivity from PI field to the self-organizing map is not sufficient to access to the
2D information for generating place cells in RSC.

The effect of the noise on PI mechanism is also shown by killing the activity of
25% neurons in PI field (fig. 2.15e, f). Place cell-like activity can still be observed in
RSC thanks to the connection with full access to PI field. The spatial information
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in RSC simulated in our model is robust to the noise from the input (fig. 2.7) and
the output of PI mechanism.

Our model also supports the idea that RSC projects onto EC and the hippocam-
pus to build grid cells and place cells.

2.5 Conclusion

In this paper, we show the capability of our model to approximate PI using the bumps
of HD cells as inputs. The robust PI built by our low pass filter mechanism therefore
supports the representation of the spatial context in RSC via local self-organizing
maps.

The learning rate plays a crucial role in our model. Different learning rates can
be used cooperatively to have a variable resolution for representing environments of
different sizes. Using different amounts of PI fields connected in cascade with the
same learning rate can also provide the variable scale of the environment (Gaussier
et al., 2020)

In the spiral maze simulation, we tested our model with different learning rates
and sizes of HD cell bumps. A correlation between the performance of PI and the
size of the bump of HD cells is predicted. The size of the bump should be larger
enough than the turning angle to ensure the precision of PI. We hypothesize that the
rodent will be disoriented under too sharp rotation (e.g. turn more than 90 degrees
within a short time). Hence, if our model is correct, according to the width of the
HD cells, we should be able to predict when an animal will be disoriented.

Our model also has the capability to build the grid cell activity recorded in the
dorso Medial Entorhinal Cortex (Sargolini et al., 2006). We suppose the grid cell
activity can be the compression of the cortical activities on the 1D discretization of
PI field in RSC (Gaussier et al., 2007). As illustrated in (fig. 2.16), the activity
of neurons in PI field is discretized by the Kohonen maps. The activity of each
neuron on the Kohonen map represents the distance of PI in their respective preferred
orientation on a Cartesian plane. By adding a modulo projection, the neurons on the
1D Kohonen map will be active recurrently with the same distant interval depending
on the modulo operator. The activity of two different neurons on the Kohonen map
is projected separately onto two modulo fields which can be considered as 1D vectors.
The grid cell activity can be built by the activity of neurons on these two modulo
fields using conjunctive cells. The grid orientation is determined by the selection of
two neurons distant from 60 degrees. Ongoing works focus on how a learning process
can be used to build at the same time modulo mechanism and the preference for 60
degrees.

Our work advocates the hypothesis that the path integration could pre-exist
before EC ‘grid cells’ and hippocampal ‘place cells’ as proposed by (Gaussier et al.,
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Figure 2.16: Building MEC grid cells from the projection of RSC blob activity using
a modulo operator

2007). In our model, RSC is nothing more than a classical cortex performing a
low pass filtering to its inputs related to HD cells and using blobs of neurons to
‘recognize’ or quantify those activities. In the treadmill simulation, the mouse is
head-fixed on a linear treadmill rewarded once per lap. The activity of neurons on
the Kohonen map shows similarity with the activity of RSC ‘place cell’ found in
(Mao et al., 2017). Our model also explains why (Mao et al., 2017) were able to find
‘place cells’ in their treadmill experiment while nobody else found such an activity
in the case that the animal is moving in a 2D environment. Restricted movements
in a spiral maze however allow obtaining cells that react to the followed route (Nitz,
2012) and correspond to what we expect from the recording of some neurons in our
PI fields.

The spatial navigation at different scales can be realized by using high or low
learning rates in our model. This model can also realize both allocentric and ego-
centric tasks by using distant or local cues as the landmark to recalibrate HD cells
and/or PI as long as the visual information is added. RSC in our model could play
a role as a hub where the visual and proprioceptive information can be merged. The
interaction of the allocentric and egocentric information should allow the animal to
switch between different reference frames for complex spatial navigation tasks.
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Appendix of chapter 2

Classical conditioning mechanism used as an STM

In the classical conditioning mechanism, dWij = Wij(t + dt) − Wij(t), we substi-
tute dWij in (eq. 2.1). Thereby, the conditional output (vector field) Oi can be
represented as:

Oi(t+ dt) = Cj ·Wij(t) + λ · C2
j · (Ui −Oi) (2.5)

Oi(t+ dt) is inhibited to 0 when Vi(t− dt) = 0, otherwise,

Oi(t+ dt) = Wij(t) + λ · (Ui −Oi) (2.6)

when Cj = 1, Oi = Cj ·Wij = Wij . Finally, the output can be rewritten as:

Oi(t+ dt) = (1− λ) ·Oi(t) + λ · Ui (2.7)

where λ is the learning rate altered between no stimulated rate 0.001 and strong
stimulated rate 1 (when the animal meets the reward or the reset mechanism is
triggered. When λ is small enough as the one we use for the simulation (λ = 0.001),
the animal reserves most of the state of the past PI and updates PI field step by step.
While the reset is activated (λ = 1), the animal erases all the past PI and updates
to the current state immediately.

Approximation of path integration with the LMS

We suppose the animat is moving from position 0 (at time t0) to position C (at time
tC) with a reset in 0. So ∀i ∈ [0, N − 1], Oi(tO) = 0. Using a constant speed of 1, we
have C = 1. The cumulative activity of any neuron i of the Vector Integration Field
with a cosine bump of activation for Ui is Oi(t) = (1 − λ)Oi(t − dt) + λUi(t − dt)

because of the equivalence between STM and classical conditioning demonstrated
earlier. If we recursively replace Ui(t) by its value at time t− 1, we obtain:

Ui(t) =

tC∑
t=tO

λ(1− λ)tC−tUi(t) = λ

tC∑
t=tO

(1− λ)tC−tUi(t)

Oi(t) =

tC∑
t=tO

α(t)Ui(t)

with α(t) = λ(1 − λ)tC−t an exponentially decreasing function. Since Ui(t) is a
discretized positive cosine function over i with a maximum for the angle θi. We can
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write Ui(t) = 1 + cos(Φ(t)− θi) and then

Oi(t) =

tC∑
t=tO

α(t)(1 + cos(Φ(t)− θi))

=

tC∑
t=tO

α(t) +

tC∑
t=tO

α(t) cos(Φ(t)− θi))

We note A =
∑tC

t=tO
α(t), then

Oi(t) = A+

tC∑
t=tO

α(t) (cosΦ(t) · cos θi + sinΦ(t) · sin θi)

Using the classical trigonometrical transform: cos(a−b) = cos(a)cos(b)+sin(a)sin(b),
we obtain:

Oi(t) = A+ cos θi

tC∑
t=tO

α(t) cosΦ(t) + sin θi

tC∑
t=tO

α(t) sinΦ(t)

On a short time scale, with λ small enough, we can consider α(t) ≈ α then

Oi(t) = A+ α(cos θi

tC∑
t=tO

cosΦ(t) + sin θi

tC∑
t=tO

sinΦ(t)) (2.8)

If we note ΦT and D the direction and the distance of the straight line displace-
ment from O to C then we have also D cosΦT =

∑tC
t=tO

cosΦ(t) and D sinΦT =∑tC
t=tO

sinΦ(t) (projections of all the displacements on the x and y axis respectively
if the angles Φ(t) are always relative to the same absolute or allocentric direction).
Hence eq. 2.8 can be rewritten as follow:

Oi(t) = A+ α (D cos θi cosΦT +D sin θi sinΦT ))

= A+ αD cos(θi − ΦT )

The average activity on the whole field Oit() is A since
∫
cos(θi − ΦT )dT = 0 and

1/N
∑N

i=1A = A. If as proposed in our model, we use a feedforward inhibition to
suppress the average activity over the field the resulting field Oi is:

Oi(t) = αD cos(θi − ΦT )

As a result, the winning neuron in the path integration field corresponds to the final
direction of the movement ΦT since the last reset of the field activity. Its activity
level corresponds to the distance travelled in this direction from the starting point if
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we suppose the decay can be neglected.

In practice, because of the decay, the result is not exactly a path integration. It
is similar to a path integration with the strength of the first movements lower than
the strength of the most recent movements. Hence, with a cosine bump, we have
a correct approximation of the path integration if the learning rate is sufficiently
small. For a Gaussian bump similar to a cosine the error is quite limited as shown
by the experimental results. If the size of the bump is sharper than the cosine shape
the approximation is still correct if the rotation speed is sufficiently slow so that the
bump can continuously move on the field. This is verified by our different simulations.

Kohonen map algorithm using scalar product

The activity of neurons on the Kohonen map Sk(t) is discretized from the PI field. To
cluster the activity on the map, we use the dot product to determine which pattern
of weights Wik(t) is the most similar to the vector of input activities Pi(t) (fig.2.2).
The number of the winner neuron kw is defined by :

kw(t) = arg max(
Pi(t) ·Wik(t)√
Pi(t)2 ·Wik(t)2

), k ∈ {1, ..,M} (2.9)

M is the number of neurons on a 1D Kohonen map. The weight between the neurons
on the PI field and the Kohonen map is updated by:

Wik(t+ dt) = ϵ · (Pi(t)−Wik(t)) · Sk(t) (2.10)

ϵ is the learning rate of self-organizing. With a neighborhood function hkkw(t), we
have the activity on the Kohonen map :

Sk(t+ 1) = hkkw(t, d) (2.11)

d is the coordinate distance between the winner neuron kw and other neurons on a
1D Kohonen map. Fig(2.17) shows the shape of the neighbourhood function.

58



-0.2

0

0.2

0.4

0.6

0.8

1

0 d

Figure 2.17: Shape of the lateral interaction function

Perspective

Our model could be further extended to recalibrate and generate the bi-directional
cells observed in (Jacob et al., 2017) by merging visual information and propriocep-
tive information. RSC is known to manipulate visual information and to translate
between egocentric (self-centred) and allocentric (world-centred) spatial information
(Alexander and Nitz, 2015). Visual information could be very important for the re-
calibration of HD cells in RSC. However, further study in the bi-directional cells has
not been conducted due to time limitations. In the next chapter, we will focus on
the important contribution of the RSC in conveying information of path integration.
Complementary simulations will be made to prove our proposed hypothesis that the
RSC only has a local connection to the path integration field. Modulo connectivity
between the RSC and the EC will be introduced to explain the compression role of
the EC and the grid cells generated by self-motion. Notably, no specific mechanism
is used in our RSC model. Therefore, it could be a general model not only for PI
but also for modelling sensory information or other cortical areas.
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Chapter 3

Contribution of the retrosplenial
cortex to path integration and
spatial codes 1

3.1 Abstract

In the proposed model, we suppose the retrosplenial cortex(RSC) conveys path inte-
gration(PI) information to the hippocampal system. Our model shows the potential
of the PI field in reproducing diverse neuronal activities involved in the spatial rep-
resentation of animals. We explain the absence of places cells in RSC because of the
difficulty of neurons accessing the whole PI field. The simulated activity with only
local connections fits with the recorded activities in RSC. Moreover, we emphasize
the importance of the entorhinal cortex(EC) as a hub to merge the different afferent
cortical activities in order to build an efficient hash code for complex pattern recog-
nition and novelty detection at the level of the hippocampus. The grid cells could
be an epiphenomenon of this compression mechanism in EC.

Keywords: path integration, retrosplenial cortex, entorhinal cortex, head direc-
tion cell, place cell, grid cell

3.2 Introduction

Path integration(PI) is the estimation of distance and direction as a function of
velocity and time. It enables animals to return to a starting point even in the
absence of visual cues. Many different species, from insects (Collett et al., 1996)) to
mammals (Etienne and Jeffery, 2004)), have the ability to perform PI. However, it

1Ju, Mingda, and Philippe Gaussier. "Contribution of the Retrosplenial Cortex to Path Integra-
tion and Spatial Codes." International Conference on Simulation of Adaptive Behavior. Springer,
Cham, 2022.
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remains unknown where and how this information is integrated. Various recordings
in the retrosplenial cortex (RSC) (Cooper and Mizumori, 1999; Save et al., 2001;
Czajkowski et al., 2014) suggest that RSC might play an important role in PI (Cooper
et al., 2001; Elduayen and Save, 2014). The place cell-like activity found in RSC
(Mao et al., 2017) could also be a sign of the PI information conveyed via RSC.
Many prior models (McNaughton et al., 1996; Redish et al., 1996) propose that
PI is performed in the hippocampus (Hipp). Some of the models adapted to the
findings of grid cells and head direction(HD) cells in the entorhinal cortex (EC) by
reclaiming that the PI takes place inside EC. Grid cell models including oscillatory
interference model (Burgess et al., 2007; Hasselmo, 2008) and attractor models (Fuhs
and Touretzky, 2006; McNaughton et al., 2006; Burak and Fiete, 2009; Bonnevie
et al., 2013) rely on velocity input consisting of the movement direction and the
linear speed. These models take the movement direction calculated from sequential
positions in the experimental data comprising the velocity input, rather than the
HD at each position while citing HD recordings as the justification for velocity input
(Fuhs and Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007; Hasselmo,
2008; Burak and Fiete, 2009) Recordings in EC (Raudies et al., 2015) indicate that
coding of MD is not prominent in the medial EC, and HD cannot directly replace
MD in the mentioned models using PI to build the grid cells. Cortices such as
RSC and the parietal cortex could be candidates for the seeking of the moving
directional tuning and as the potential origin of the PI. Our model of the PI is
independent of Hipp or the HD cells in EC. We suppose grid cells (Hafting et al.,
2005) is the result of a generic compression mechanism of the cortical activities when
applied on PI fields primarily computed outside Hipp (Gaussier et al., 2007; Ju and
Gaussier, 2020). The hippocampus could play a role of indexing or building hash
codes of the cortical activity (Teyler and Rudy, 2007) in order to detect new events
or patterns that have to be stored in the cortex (Eichenbaum et al., 1994; Bunsey
and Eichenbaum, 1996; Buzsáki and Moser, 2013). In this research, we used a
simple learning rule(classical conditioning) (Rescorla, Wagner, et al., 1972) as a low
path filtering to directly compute PI from movement direction cells. Following the
biological recordings of the place cell-like activity in RSC (Mao et al., 2017) which has
been successfully simulated using our PI model (Ju and Gaussier, 2020), our model
of PI is also able to account for diverse neuronal activities in the corticohippocampal
circuit including activities of place cells, grid cells and movement direction-modulated
cells. We emphasized in our simple model the potential of the PI as the substrate
of the spatial representation of animals and the richness of the spatial information
conveyed by the PI might have been underestimated.
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3.3 Computational model

The preliminary inputs to our PI model are the HD cells simulated by a one-
directional ring attractor (McNaughton et al., 1991) with the presumption that the
moving direction is consistent with the HD while recordings (Raudies et al., 2015)
proved the contrary. We thereby replace the HD cells with the movement direction
cells as the input to our model and hypothesize that the MD cells share common
properties as the HD cells. To simplify, the potential MD cells are simulated by the
one-directional ring attractor.

Figure 3.1: Computation model of path integration (PI) in the retrosplenial cortex.
Since there is no need of lateral interaction between the neurons on the PI field,
the global bump of activation is only visible if neurons are reordered according to
their preferred direction. Self-organization properties in RSC with local or global
connections to some neurons in the PI field allow the building of different spatial
signatures. Compression of this information at the level of EC allows the building of
a compact code (grid cells). Hippocampal neurons having global access to the whole
PI field from EC grid cells can recognize associated places to PI information.

The activity of MD cells is represented as a bump of activity of a ring of neurons:

Gi(θ) = e−
(θ−θi)

2

2σ2 where σ determines the width of the firing range of MD cells and
θi is the absolute orientation of the animal.
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The input of the model (Fig. 3.1) is the absolute orientation and the linear ve-
locity of the animal. We suppose that a group of neurons is equally distributed to
represent 360 degrees in order to simulate MD cells. Each neuron has a preferred
direction depending on the number(N) of neurons. The interval between each pre-
ferred direction is 360 degrees divided by N. This group of neurons can represent
360 degrees with good precision if we have enough neurons. Visual place recogni-
tion of the starting location for PI is used to reset the PI field and limit the error
accumulation. Each time the animal comes back in the vicinity of this location the
reset is performed. Using border cells could also be useful for the recalibration of
animals during navigation tasks. For the following simulations, the reset point is in
the middle of the environment. No movement constraint is introduced after the reset
while the movement is limited to half of the environment if the reset point is near
the border of the environment. There is no lateral interaction or adjacency among
neurons on the PI field.

Now we will describe how a simple condition mechanism can be used to perform
path integration if the input activity is a bump of activity of a ring of neurons. Start-
ing from the linear velocity of the animal V and a field of neurons Gi(θ) representing
the M cells, conjunctive cells are used to build the field Ui defined as V ·Gi(θ). Ui is
used as the unconditional stimulus to perform temporal integration on Oi neurons.

Oi(t) = f(
∑

Wij · Cj) , with f(x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x > 1

(3.1)

The update of the synapses dWij is subject to the least mean square algorithm
which is identical to a classical conditioning (Widrow and Hoff, 1960; Rescorla,
Wagner, et al., 1972):

dWij = λ · (Ui −Oi) · Cj (3.2)

where λ is the learning rate of classical conditioning. Cj is a binary value associ-
ated to a spatial context j (the conditional input). To simplify, we maintain the
environmental context which is the conditional stimulus Cj constant and equal to 1
during the simulations in this work. However, replacing this constant neuron with a
set of neurons representing different contexts might be used to compute in parallel
different path integration according to different positions or contextual goals in the
environment.

The output Oi can be finally written as:

Oi(t+ dt) = (1− λ) ·Oi(t) + λ · Ui (3.3)

We obtain the path integration field composed of positive and negative values by
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subtracting the average activity of all neurons:

Pi = Oi −
N∑
i=0

Oi/N (3.4)

The integration of the activity modulated by the linear speed and the absolute
orientation of the animal is proportional to the path the animal moved (Alexander
and Nitz, 2015).

The reset of the PI can be realized by the detection of the novelty (Markou and
Singh, 2003; Jauffret et al., 2013) in order to avoid the overloaded accumulated error.
This reset is activated when the gradient of novelty becomes flat. In our simulation,
we define novelty as the difference between PI fields updated at sequential time steps.
During the reset, the learning rate λ is set to 1 and the unconditional input of the PI
is inhibited to 0 one time step after the reset mechanism activates. By substituting
the parameters in (eq. 3.3) with their reset values, we have Oi(t+ dt) = Ui so that
PI is reset to 0 in one time step.

The activity of PI field is projected to a set of Kohonen self-organizing maps
(SOM) (blobs on Fig. 3.1). Each neuron on the PI field projects selectively to every
neuron on the SOM depending on the connectivity (local or global) from PI field to
the SOM. The activity of neuron k on the SOM is the following:

Ek =

( ∑
Pi(t) ·Wik(t)√∑

Pi(t)2 ·
∑

Wik(t)2

)
, k ∈ [1, ..,M ] (3.5)

The index of the winner neuron kw is defined as:

kw(t) = arg max (Ek) , k ∈ [1, ..,M ] (3.6)

M is the number of neurons on the SOM. The synaptic weights between neurons on
the input field Pi and neurons on the SOM is updated by:

Wik(t+ dt) = λsom · (Pi(t)−Wik(t)) · Sk(t) (3.7)

λsom is the learning rate of self-organization. The potential of neurons on the self-
organizing map is subject to a Mexican hat function hkkw(t) such as:

Sk(t) = hkkw(dk) · Skw(t), k ∈ [1, Q] with

hkkw(dk) = (
1

σ1 ·
√
2 · π

· exp
− d2k

2·σ2
1 − 1

σ2 ·
√
2 · π

· exp
− d2k

2·σ2
2 ) · 15 (3.8)

Here we take σ1 equals to 3 and σ2 equals to 6 for the SOM containing 36 neurons.
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Sk(t) is the potential of the k-th neuron with Q the size of the Mexican hat. dk

represents the distance between the winner neuron kw and other neurons k on the
SOM.

In the next section, we discuss in detail the potential of our PI model to simulate
diverse neuronal activity related to the PI in RSC according to the learning rate of
the temporal integration field.

3.4 Parameters and moving pattern

In the following simulations without special indication, the animal moves freely in
a 2x2 metres square arena for 40000 time steps. One iteration in the simulation
corresponds to 0.1 seconds. The product of the learning rate λ and its associated
time constant τ equals 0.1 seconds in order to scale the simulation from time steps to
seconds. The moving pattern of the animal is adjusted to be biologically plausible.
The acceleration of linear and angular speed has been introduced. The linear speed
varies from 10cm/s to 40cm/s. The acceleration of linear speed is 20cm/s2 (Høydal
et al., 2007) while the angular speed of the animal’s body is 90◦/s (Pasquet et al.,
2016).

The (x,y) coordinate of the animal are updated as follow:

x(t+ dt) = x(t) + d.cos(θ(t))

y(t+ dt) = y(t) + d.sin(θ(t)) (3.9)

with θ(t) the animal’s MD according to an absolute referential and d = v · dt with v
its instantaneous speed.

Simulations are conducted using bumps of activity of MD cells as the input. The
bump is simulated by a Gaussian function with σ = 60◦. MD is analyzed with a 6
degrees bin width. The metric to characterize the MD cells (Taube et al., 1990a) is
the directional information rate:

MDscore =
N∑
i

pi
λi

λ
log2

λi

λ
(3.10)

where N equals 60, λi is the mean firing rate of a neuron in the i-th bin, λ is the
overall mean firing rate, and pi is the probability that the animal’s MD pointed to
the direction which is represented by the i-th bin. The spatial information rate is
calculated to characterize the place cells:

PCscore =

M∑
j

pj
λj

λ
log2

λj

λ
(3.11)
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where the environment is divided into 100 non-overlapping spatial bins which means
M equals 100, pj is the occupancy probability of bin j,λj is the mean firing rate of
bin j, and λ is the overall firing rate of the cell.

The sparsity of cells (Skaggs et al., 1996) measures the fraction of the environment
in which a cell is active:

Sparsity =
∑

(pj · λj)
2/
∑

pj · λ2
j (3.12)

Intuitively, a sparsity of 0.1 means that the place field of the cell occupies 1/10 of
the area the rat traverses. The selectivity measure is equal to the spatial maximum
firing rate divided by the mean firing rate of the cell. The more tightly concentrated
the cell’s activity, the higher the selectivity is. A cell with no spatial tuning at all
will have a selectivity of 1. The main variable modulated during all the simulations
is the learning rate λ used for the temporal integration of the gain field in Fig. 3.1
and in Eq. 3.2, 3.3. The performance of the PI model with learning rates ranging
from 0.1 to 0.001 (τ from 1s to 100s) will be tested.

3.4.1 Recording of neurons learning MD activities in RSC

The first simulation tests the capability of our path integration to retrieve the activity
of MD or HD cells by using a high learning rate λ equal to 0.1. The activity of one
neuron on a SOM showing MD cell’s activity is recorded in Fig. 3.2.

(a) activity of one neuron as
a function of MD

(b) activity of the same
neuron as a function of MD
in polar coordinates

(c) winner position of the
same neuron along the tra-
jectory

Figure 3.2: Example of one activated neuron showing MD cell activity on the SOM
when λ equals to 0.1

The mean values of the directional and spatial information rates are 2.35 and
2.43 with STD of 0.73 and 1.41 respectively. MD cells present a high directional
information rate but a very random spatial information rate. The high standard
derivation in the spatial information rate is related to the freely moving pattern in
which the probability of the animal facing each direction can be different. The width
of the bump of activity of MD cells before the competition depends on the shape of
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the bump of activity of the initial MD cells which are the input to our model. The
dependency between the retrieval MD cells and the original MD cells as the input to
the PI model leads to a hypothesis that the HD or potential MD cells in RSC could
be homogeneous to the ones found in Hipp. A high learning rate leads to the early
saturation of the PI field and realizes the retrieval of the MD cells homogeneous to
the input MD cell.

3.4.2 Building place cells from PI information

The involvement of the spatial information conveyed by the PI in the generation
of place cells is tested using a comparatively low learning rate equal to 0.001 with
neurons fully connected to the virtual PI field. The activity of one neuron on a SOM
is shown in Fig. 3.3.

(a) winner position of one neuron along
the trajectory

(b) activity of the same neuron as a func-
tion of MD in polar coordinates

Figure 3.3: Example of one activated neuron showing place cell activity on the SOM
when λ equals to 0.001 when using connections to the whole path integration field

The mean values of the directional and spatial information rates are 1.08 and
4.44 with STD of 0.62 and 0.66 respectively. No MD cell activity is observed. By
accessing the whole PI field, our model is able to build place cell activity by simply
using a low learning rate. Classical conditioning thereby plays a role of short-term
memory or a low pass filter.

The average directional and spatial information rates of the activity of neurons
using different learning rate is shown in Fig. 3.4. Our PI model is capable of building
a wide range of neuronal activity by exclusively modulating the learning rate as long
as the downstream region gets full access to the upstream cortex conveying the PI
information.

Notably, no place cell in an open environment was found in RSC. It means the
connectivity from the PI field to the SOM in RSC is not global but only local as is
the case for the classical cortical column.
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PC
0.001

intermediate cell
0.01              0.05

MD
0.1

(a) spatial information rate

PC
0.001

intermediate cell
0.01              0.05

MD
0.1

(b) directional information rate

Figure 3.4: The average directional and spatial information rates of the activity of
neurons using different learning rates. The square indicates the mean value. The
interval of STD is represented by horizontal lines.

3.4.3 Robustness of the model

High frequency recalibration

To test the robustness of our model, the uniform white noise with an amplitude of 10
percent of the value of linear and angular speed is implemented at the stage of the
gain field. The learning rate is fixed at 0.001. The animal is forced to go through the
recalibration point once per 10 seconds. The activity of neurons is recorded when the
animal moves freely in a 2x2 metres square environment for 7500 seconds(1 iteration
= 0.1s).

The equation of the gain field in Fig. 3.1 can be rewritten as:

Ui(t) = speed(t) · (1 + speed_noise) · fθi(θ(t))
with θ(t+ 1) = θ(t) + angular_s · (1 + angular_noise) (3.13)

This noise will accumulate during the PI until the animal moves to a point of recal-
ibration. The activity of one neuron is illustrated in Fig. 3.5. top.

The mean values of the directional and spatial information rates are 1.19 and
4.16 with STD of 0.83 and 0.92 respectively.

Low frequency recalibration

To test the limit of our model, the frequency of the recalibration is decreased tenfold
to once per 100 seconds. The duration of the free movement of the animal is still

68



7500 seconds. The activity of one neuron is illustrated in Fig. 3.5. bottom.
The mean values of the directional and spatial information rates are 1.12 and

3.27 with STD of 0.99 and 1.71 respectively. The spacial information rate decreases
significantly along with the destruction of the place cell activity.

(a) (b)

(c) (d)

Figure 3.5: Activity of two neurons under the situation of High(top) and low(bottom)
frequency recalibration. a and c show the winner position of the two neurons along
the trajectory. b and d show the activity of the same two neurons as a function of
MD in polar coordinates.

Under a high-frequency recalibration, the mean activity and the standard devi-
ation of neurons are consistent with the values obtained without the interference of
the noise. Our model is robust to convey information of different spatially related
neuronal activities using different learning rates even under the interference of con-
siderable noise. Nevertheless, the generation of the spatial activity is destructed due
to the accumulated error of the PI caused by the lack of a solid recalibration mecha-
nism. The recalibration of the path integration field could be realized by visual cues
or other sensory inputs such as olfactory or tactile stimuli.
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Grid cells in EC from RSC activities

We have shown in our prior works the capability of reproducing the place cell-like
activity (Mao et al., 2017) in RSC when the animal runs on a treadmill using our
PI model (Ju and Gaussier, 2020). Notably, place cells can be obtained even in
a 2D environment with a global connection from the PI field to a SOM. However,
biologists didn’t find place cells in RSC when the animal moves freely instead of
running in a fixed direction on a treadmill. We thereby suppose the connectivity
between neurons performing PI and the SOM is local and define blobs of neurons
working as local Kohonen maps. Neurons in EC could have global access to the PI
field and compress the PI information using a simple modulo operation. To build
grid cells, one pair of neurons (Pi1, Pi2) distant from 60 degrees (i2 = i1 + [ N

360 · 60])
on the path integration field is selected as the input to two Kohonen maps (Ej and
Ek calculated by eq. 3.5) which are compressed by two modulo layers (MOl and
MOn) according to the equation:

MOl =

1 if l = 1 + argmax(Ej) mod Q

0 else
(3.14)

A population of grid cells (FGC) can be built from the tensor product of the
activity of neurons on the two modulo layers in EC:

FGC = MOl ⊗MOn (3.15)

A simple illustration of the modulo operation and an example of the activity of
one grid cell are shown in Fig. 3.6.

For sake of simplicity, the self-organization of the Kohonen maps used to discretize
the path integration field was done during a long random walk limited to the arena. It
is therefore normal the same cell is activated 4 times (compression ratio Cr = M : Q)
in the diagonal direction (longest distance in our environment) when Kohonen maps
recruit 32 neurons (M) and the divisor Q equals to 8 in the modulo operation.

It is known that one of the most important roles of Hipp is the detection of the
novelty and the recognition of complex states, but the number of neurons in Hipp
is very limited. EC could play the role of a compression mechanism providing Hipp
with the capability to detect and learn quickly complex cortical patterns.

3.5 Conclusion

The potential of the PI to convey spatial information is studied in this work. Due
to the local connectivity between cortices, the place cell-like activity can be only
observed in RSC when the animal moves in one direction on the treadmill with its
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Figure 3.6: a, a simple illustration of the modulo operation. Neurons in EC(bottom)
connect alternately to neurons in one cortical column(top) representing the dis-
cretization of the activity of one neuron on the path integration field. b, an example
of the firing field of one grid cell built by our PI model applied the modulo operation.
Left, firing field of a grid cell built by our PI model. Right, auto-correlation of the
activity of the grid cell in b. left. Kohonen maps have 32 neurons (M in eq. 3.5)
and the divisor Q equals to 8 in the modulo operation (eq. 3.14).
.

head fixed (Mao et al., 2017). A wide range of spatially involved neuronal activity
such as place cells and head direction cells has been produced by our PI model
assuming the brain area has full access to the upstream cortex or subcortex where
the PI could originate. We have shown in our simulation that a global connection
to the path integration neural field requires a large number of neurons and synaptic
connections. The cost even increases if we consider the need for redundant neurons
for robust coding in case of perturbation and malfunction of neurons. Therefore, the
global connectivity between cortices and Hipp lacks biological plausibility considering
the limited number of neurons and synaptic connections of each neuron in Hipp, not
to mention numerous afferent signals to Hipp including the proprioception of self-
motion and the information of different types of perceptions. Considering the rich
innervation between EC and Hipp, we thereby propose that EC could play the role of
a hub to compress the cortical information involved in navigation, vision, and other
recognition tasks and interact with Hipp to generate place cells. EC could maintain
the global feature of the cortical information with sparse connectivity to the afferent
cortices owing to the modulo projection. The grid cell activity in EC could be an
epiphenomenon of this general compression mechanism.
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Perspective

We will present in the next chapter the mathematical basis to build the grid cells
from the compressed afferent cortical activity and how the reciprocal connectivity
between Hipp and EC could play a crucial role in the self-organization of both spatial
and visual grid cells. The place cells activity from Hipp could be the teaching signal
to the medial entorhinal cortex (Bonnevie et al., 2013) during the early development.

The place cell activity in Hipp could be generated by a provisionally global con-
nection to the path integration neural field or neural fields processing other types
of perception such as saccade. This global connection could exist during the early
development and become obsolete after the maturity of grid cells.

The recruitment of place cells could be controlled by a constant vigilance param-
eter with the adaptation maximizing the distance between firing fields of different
place cells. Each recognized place area should have the same size and be surrounded
by other place areas (i.e., the place area which is near the learned area will not ac-
tivate the same cell. There exists a competition between cells learning place areas).
This process could be modulated by the medial septum as the ACh modulation re-
lated to the loop between CA and the medial septum (Hasselmo et al., 1995). We
suppose neurons activated by the peak activity of a set of place cells will show a
grid pattern of activation that modulates the learning of grid cells in EC. During the
early development, Place cells could also emerge by a threshold summation of the
non-grid activity of immature grid cells from EC. The immature grid cells during
the early development could still emerge non-grid activity having random conditional
synaptic connections with the cortical columns in the PPC or RSC. This reciprocal
mechanism between place cells and grid cells is consistent with the biological record-
ings where place cells emerge before the maturation of the grid cell (Langston et al.,
2010; Wills et al., 2010).
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Chapter 4

Self organization of the entorhinal
cortex grid cells: impact of the
hippocampal feedback

4.1 Introduction

The debate about the causal relationship between place cells and grid cells has been
conducted during decades (Langston et al., 2010; Wills et al., 2010; Bonnevie et al.,
2013; Bush et al., 2014; Gaussier et al., 2019). Biological experiments in 2.5–3-wk-old
rat pups suggest that place cells (PC) can be generated by self-motion proprioception
in the absence of fully mature grid cells (GC) whose firing field is not yet a regular
hexagonal pattern (Bjerknes et al., 2018). Compromised grid-cell-like representations
along with path integration (PI) deficits have been found in the human entorhinal
cortex (EC) in old age. This recording suggests that impaired grid cell function or
PI deficits might predict an age-related decline of cognitive functions (Stangl et al.,
2018). In this chapter, we address the causal dilemma between place cells and grid
cells by introducing the reciprocal connections between the hippocampus (Hipp) and
EC. This connection could be modulated by the medial septum as the acetylcholine
modulation related to the loop between CA and the medial septum (Hasselmo et al.,
1995). In our model, grid cells could emerge as a correlate to PC peak activities. In
addition, PC could also be generated by combining the activity of mature grid cells
(Jauffret et al., 2015) or even benefits from the immature GC whose firing field is not
yet following a stable periodic hexagonal pattern. Considering the limited number
of neurons in Hipp compared to that of input cortices, a compression mechanism is
required at the level of Hipp in order to form an efficient coding. In our model, EC
could receive compressed information afferent from different cortical regions such as
RSC and PPC. In this chapter, we will explain how to generate grid cells by our ad
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hoc computational model. Some learning processes will be introduced for biological
plausibility. Simulations will be conducted under a scenario where an animal moves
randomly in an enclosure. Grid cells taking input derived from the path integration
field can be learned from the septal signal. Due to time constraints, some of the
results are still preliminary.

4.2 Ad hoc computational model of grid cells

The computational model of the path integration (fig. 4.1, left) in this chapter is
identical to the ones in the preceding two chapters.

Figure 4.1: Architecture of a computational model to build grid cells from path
integration fields

The main input of our model is a ring of neuron modelling movement direction
(MD) cells. Each MD cell has a peak activity when the animal moves to a precise
direction θi and the cell activity decreases as a bell function modelled as a non-
normalized Gaussian shape, with σ a parameter defining the width of the bump
and θ being the absolute orientation of the animal at time t. The gain field Ui
is modulated by the bump of MD cells and the linear velocity of the animal. We
implement a classical conditioning mechanism with the least mean square rule to
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calculate the path integration. Oi is the output which is the product between W
and C in a ramp function. C represents a bunch of binary values associated with
different spatial contexts (the conditioned input). At this stage, Oi activity is not
really homologous to PI since the Oi neurons are only excited by the MD activity.
A global feed-forward inhibition S(t) is added to obtain the PI neural field Pi(t)
including positive and negative parts representing an approximation of the PI.

We suppose the grid cell activity can be the compression of the cortical activities
on the 1D discretization of PI field in RSC (Gaussier et al., 2007). As illustrated in
(fig. 4.1, right), the activity of neurons in PI field is discretized in the discretization
layer. The activity of each neuron in the discretization layer represents the distance
of PI in their respective preferred orientation on a Cartesian plane. By adding a
modulo mechanism (fig. 4.2), neurons in the discretization layer will be connected
recurrently to the neurons on the modulo layer. The modulo layer can be considered
as a ring of neurons where the first neuron is adjacent to the last one so that each
neuron of the discretization layer can link to one neuron of the modulo layer in
succession even if the number of neurons of the afferent and efferent layer is not
identical. In other words, neurons of the modulo layer will be activated periodically
by neurons of the discretization layer. The connection pattern depends on the ratio
between the number of neurons in the discretization layer and the number of neurons
in the modulo layer. This ratio is the compression ratio of the cortical information
in our model.

Figure 4.2: Illustration of the modulo mechanism between neurons of the discretiza-
tion layer and of the modulo layer. The modulo layer can be considered as a ring
of neurons where the first neuron is adjacent to the last one so that each neuron of
the discretization layer can link to one neuron of the modulo layer in succession. a,
compression ratio equals 3. b, compression ratio equals 2.

The activity of neurons in the two discretization layers is projected respectively
onto two modulo layers which can be considered as 1D vectors. The grid cell activity
can be built by the activity of neurons on these two modulo layers using conjunctive
cells (fig. 4.1, left). The grid orientation is determined by the selection of the pair
of neurons of the path integration field. However, the activity of the PI neural field
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could be negative due to the global feed-forward inhibition S(t). From the biological
point of view, the negative firing rate of neurons doesn’t exist. We need to transfer
the information on the negative field to the positive part without destroying the
geometric properties.

Our field covers 360 degrees which means the value of one neuron representing
orientation 0 equals the inverse value of the neuron representing orientation 180
(mathematical proof of the calculation of PI field can be· found in the appendix
of chapter 2). This property allows us to use the field of only positive activity of
neurons to represent the PI when the animals move freely in a 2D environment.
In the following simulations without specific indication, the animal moves freely at
10 cm/s in a 2x2 metres square arena for 20000 time steps. One iteration in the
simulation corresponds to 0.1 seconds. The product of the learning rate λ and its
associated time constant τ equals 0.1 seconds in order to scale the simulation from
time steps to seconds. The animal is simulated according to its (x,y) coordinates, its
movement direction, and its instantaneous linear speed. At each time step, the PI
field receives an input composed of the direction and linear velocity of the current
movement of the animal. We use 360 neurons for the HD cells so the precision of
orientation is one degree. The number of neurons in the modulo layer is 18. To
test the feasibility of our concept in a fast way, we replace the Kohonen map with
a simple algorithm without learning for the discretization of the activity of the PI
neural field. The number of neurons in the discretization layer is 90.

We use two homologous fields each covering 360 degrees. Neurons in these two
fields only have positive activities. Instead of taking one pair of 2 neurons distant
from 60 on the global VIF, we need to take two pairs of the same two neurons in the
two fields respectively.

Figure 4.3: Ad hoc selection of four grid cells each representing one quadrant of the
environment.

The activity of these 4 neurons needs to be discretized before being conducted
product operations in pairs. Then we have 4 different grid cells each representing
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one quadrant of the environment. Grid cell activities in two symmetric quadrants
are shown in (fig.4.4a) and (fig.4.4b). We then moved the origin of the animal
to the middle of the environment. The merged grid cell activity in the complete
environment is shown in (fig.4.5). A reset mechanism of the path integration field is
activated each time the animal passing by the origin.

(a) Grid cells using neurons in the direc-
tion of 105 and 165 degrees.

(b) Grid cells using neurons in the oppo-
site direction of 105 and 165 degrees.

Figure 4.4: Two grid cells built from 2 pairs of neurons distant from 60 degrees on
a path integration field. The origins of the animal in these two situations are in
two different diagonal corners. Reset mechanism is activated each time the animal
passing by the origin.

Figure 4.5: A grid cell built by the architecture illustrated in figure 4.3. The origin
of the animal is in the middle of the environment. Reset mechanism is activated each
time the animal passing by the origin.

The mathematical way of building the grid cells is based on 2 preconditions.
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The first one is taking neurons of which the preferred directions are distant from 60
degrees. The second one is the compression of the neural information realized by
the modulo operation between two layers of neurons. The two preconditions can be
realized by the learning of neurons which will be further discussed in the following
section.

Grid cells generated by a classical conditioning learning mechanism

First of all, we tested if we can use a classical conditioning learning rule based on least
mean square (LMS) to learn the grid pattern from a preexisting grid cell (fig.4.7)
built by our computational model. The unconditioned input USi(t) is the teaching
signal coming from Hipp while the conditioned stimulus CSi(t) comes from neurons
on the modulo layer:

SGC
i (t) = f(

∑
Wij(t) · CSi(t)) , f(x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x > 1

(4.1)

SGC
i (t) is the activity of the learned grid cells. The modification of the synaptic

weights between the conditioned stimulus from the PI field and the grid cell can be
presented as:

dWij(t) = λ · (USi(t)− SGC
i (t)) · CSj(t) (4.2)

Where λ represents the learning rate. The unconditioned input is activated 5 per-
cent of the time during the whole learning process and it will be forced to activate
whenever the input grid cell is active. The illustration of the model is shown in figure
(fig.4.6)

When the number of neurons in the discretization layer equals that of the modulo
layer (i.e. a compression ratio of 1), the learned grid cell has the same hexagonal
firing pattern (fig.4.8a) as the teaching signal.

To test if our classical conditioning learning mechanism is still capable to learn
the GC using the compressed information. We decrease the number of neurons in the
modulo layer in order to introduce a compression ratio of 6 to the information of the
discretization layer. The firing field of a grid cell built by the same unconditioned
stimulus is shown in figure 4.8b. The scale or the spacing of the grid pattern decreases
when the conditioned stimulus is compressed. Notably, the scale of the modulo
projection and the scale of the hexagonal teaching signal are independent. The
conditioned input derives from path integration neural field while the hexagonal
signal derives from Hipp. The classical conditioning learning mechanism based on
the LMS algorithm can provide the generalization property for the learned grid cells.
For instance, the grid cell learned by the hexagonal signal can be active outside the
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Figure 4.6: A model of grid cell using classical conditioning learning rule based on
LMS to learn the grid pattern from a preexisting grid cell

Figure 4.7: Firing field of a preexisting grid cell built by our computational model
as a teaching signal.

firing field of the teaching signal.

Discretization of the cortical information

The preceding results have proved the potential of our model in generating grid
cells based on a classical conditioning learning mechanism with LMS. The grid cell
taking input from a regular hexagonal signal can be generalized in a novel envi-
ronment. Nevertheless, the discretization mechanism was mathematically realized
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(a) Learning threshold of LMS equals 0.9,
iterations equal 50000, number of neurons
in the discretization layer equals 90, com-
pression ratio equals 1

(b) Number of neurons in the discretiza-
tion layer equals 90. The conditioned
stimulus is compressed from the dis-
cretization layer with a compression ratio
equal to 6

Figure 4.8: Grid cells learned by a classical conditioning learning rule based on LMS
taking unconditioned stimulus from the preexisting grid cell built by our computa-
tional model.

without considering the biological plausibility. We turn to the Kohonen map for
the discretization of the VIF and try to implement the compression after that. For
the self-organizing algorithm of Kohonen, instead of using the distance between the
vector of the input activity and the vector of weight pointing to each neuron on the
Kohonen map, we use the scalar product to determine which pattern of weights is
the most similar with the vector of input activity. Using scalar product can neglect
0 values of input activity and provide a more explicit representation of the differ-
ence between the vector of the input activity and the vector of weight. Nevertheless,
that induces another problem in our model. The field to be discretized represents
the path integration of an animal. The Cosine similarity will be almost constant if
the animal keeps moving in one direction in which case the bell curve in the VIF
will maintain almost the same shape even with different amplitudes leading to lit-
tle change to the cos similarity. Thereby, we implement the input normalization
by using two path integration fields Pi and Qi as the input for the Kohonen map.
Qi(t) = max(Pi) − Pi. An explicit representation of the spatial context in RSC
is obtained when the animal moves in one direction, The maximum of Pi updates
during the process of the PI. One Kohonen map representing a blob or a cortical
column corresponds to one neuron on the path integration field (fig.4.9). Blobs or
cortical columns in our model could be similar to sections of the visual cortex where
groups of neurons that are sensitive to color assemble in cylindrical shapes. These
two PI fields Pi and Qi constitute an input field Ij to the Kohonen map.
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Figure 4.9: Two PI neural fields used as the input to the discretization field. The
activity of neurons of the neural field Q is the maximum of the activity of neurons
of the neural field P subtracting the activity of neurons of the neural field P.

The index of the winner neuron kw is defined by :

kw(t) = arg max

( ∑
Ij(t) ·Wjk(t)√∑

Ij(t)2 ·
∑

Wjk(t)2

)
, k ∈ [1, ..,M ] (4.3)

M is the number of neurons on the 1D Kohonen map. The synaptic weights between
neurons on the input field Ij and neurons on the Kohonen map are updated by:

Wjk(t+ dt) = λ · (Ij(t)−Wjk(t)) · Sk(t) (4.4)

λ is the learning rate of self-organization. The activity of neurons on the Kohonen
map is subject to a DoG function hkkw(t) similar to the Mexican hat.

Sk(t) = hkkw(t, dk) · Skw(t), k ∈ [1, kmax] (4.5)

Sk(t) is the activity of the kth neuron on the input PI field with kmax the number
of input neurons projecting to the self-organizing map. dk represents the distance
between the winner neuron kw and neurons k on the Kohonen map.

We have the following results (fig.4.10) from our model replacing the discretiza-
tion group with a set of cortical column-structured Kohonen maps.
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(a) Firing field of a preexisting grid cell
built by our computational model re-
placing the discretization group with a
set of cortical column-structured Koho-
nen maps.

(b) Grid cells learned by a classical condi-
tioning learning rule based on LMS taking
unconditioned stimulus from the preexist-
ing grid cell.

Figure 4.10: Build GC using a blob-structured Kohonen map to learn the discretiza-
tion in each direction

Compression of the cortical information

The modulo operation can be learned from a local learning rule maximizing the
independence of the output neurons in EC. This learning process is entitled as the
anti-Hebbian learning rule where the weight between two neurons increases if the two
neurons activate simultaneously, and reduces if they activate separately. The excita-
tory synaptic connection between the neuron on the discretized field in the PPC or
RSC and the neuron in EC is bindingly formed or maintained if the synaptic connec-
tion between these two neurons is the most excitatory or the least inhibitory. The
lateral effect of neurons is simulated by the excitatory neuron of the discretization
layer convolved with a Gaussian distribution as shown in (fig.4.11).

The synaptic connections between neighboring neurons of the excitatory neuron
on the modulo field and the excitatory neuron on the discretized field are inhibited
according to the lateral distance between the neighboring neurons and the excitatory
neuron on the modulo field.

Sj =

Ei ·Wij if maxiEi ·Wij ≥ |miniEi ·Wij |

0 otherwise
(4.6)

The synaptic weight is updated in one shot subject to the following rule:

Wik =

Ei if Ei = 1

−Ei otherwise
with k = argmax

j
Sj (4.7)

Simple processing of the learning of the neuronal firing periodicity is illustrated
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Figure 4.11: Illustration of the Hebbian/anti-Hebbian learning mechanism.

in figure 4.12.
The number of neurons indicates the order of their excitation. One single neuron

is active on the upper layer each time. The neuron on the lower layer with the
strongest synaptic connection with the exciting neuron on the upper layer will be
bindingly active. The excitatory synaptic (red solid line) connection between them
is thereby formed and will not be destroyed by lateral competition. The synaptic
connection of the excitatory neuron on the upper layer and neighboring neurons of
the active neuron on the lower layer will be inhibited. The strength of the inhibitory
synaptic connection (black dashed lines) depends on the lateral distance between
the active neuron and its neighboring neurons on the lower layer. There exists
competition between the inhibitory connections in order to maximize the sparsity
of the activation of neighbouring neurons on the lower layer. i.e. The inhibitory
synaptic connection will only be updated by stronger lateral inhibition before the
excitatory synaptic connection is formed.

A group of the limited number of neurons on the modulo field connected to the
discretized field thereby realize the compression of the information from PPC or RSC
to EC. We have the following results (fig.4.13) from our model with the compression
mechanism based on the anti-Hebbian learning rule. 15 neurons are recruited for the
modulo layer while the number of neurons in the discretization field equals to 90.
Therefore, the compression ratio is equal to 6 (90/15).
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Figure 4.12: Illustration of the update of activities and synaptic connections of
neurons subject to the anti-Hebbian learning rule. Left, the curve represents the
strength of the synaptic weight as a function of the distance between the winning
neuron and its neighbouring neurons in the cortical column. Right, the upper layer
of neurons in the PPC is the input to the lower layer of neurons in EC.

The advantage of our modulo learning mechanism compared to the preceding
used ring structure (fig. 4.2) is that the learning mechanism does not depend on the
prerequisite wiring between neurons of the discretization layer and the modulo layer
and has the possibility to deal with the issue of imprecision from the input layer.

4.2.1 Septal signal generated from cortical signature

We have proven in the previous sections that the grid cell activity could be learned
by an LMS classical conditioning mechanism taking a regular hexagonal signal as
the unconditioned input. However, how this hexagonal signal generates remains to
be discovered. The PC activity from Hipp could be the teaching signal to the medial
entorhinal cortex (Bonnevie et al., 2013) during early development. At this stage,
place cells could emerge subject to a WTA learning rule based on the detection
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(a) Firing field of a preexisting grid cell
built by our computational model with
the compression mechanism based on the
anti-Hebbian learning rule.

(b) Grid cells learned by a classical condi-
tioning learning rule based on LMS taking
unconditioned stimulus from the preexist-
ing grid cell.

Figure 4.13: Build GC using a 2D anti-Hebb group to learn the modulo operation

of novelty taking input of non-grid activity of immature grid cells from EC. The
immature grid cells during the early development could still emerge non-grid activity
having random conditional synaptic connections with the cortical columns in PPC
or RSC even without the unconditioned stimuli from Hipp which could be adapted
during the development. If the recruitment of place cells is controlled by a winner
take all mechanism then we obtain neurons coding for different places. The firing area
of each neuron should have the same size depending on a constant vigilance parameter
of the winner take all mechanism and form a hexagonal paving of the environment
(as orange circles in figure 4.14). We suppose some septal neurons connected to a set
of place cells will show a grid pattern of activation that will modulate the learning of
neurons in EC as it is the case for the acetylcholine modulation related to the loop
between CA and the septum (Hasselmo et al., 1995).

This reciprocal mechanism between PC and GC is consistent with the biologi-
cal recordings where biologists found PC emerges before the maturation of the GC
(Langston et al., 2010; Wills et al., 2010). We may question that if we’ve already had
the grid cells pattern by merging the place cells firing field then why bother using
EC to learn to build grid cells? It is known that one of the most important roles of
Hipp is the detection of novelty, but the amount of neurons in Hipp is very limited.
So we suppose EC can play the role of compressing and generalizing the information
coming from cortices and Hipp. This hypothesis leads to our global model of the
interaction between cortices and Hipp. For the sake of simplification in the following
simulations, we build the hexagonal signal from the activity of immature grid cells
and then use the hexagonal signal as the input to the learning mechanism of the grid
cell with a regular hexagonal pattern. We thereby prevent the dynamic issue where
the learning of grid cells could affect the learning of the hexagonal signal. A dynamic
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Figure 4.14: Model of the grid cell based on the reciprocal connection between the
hippocampus and the entorhinal cortex.

and reciprocal learning mechanism between EC and Hipp is worth being studied in
the future.

We build direct grid activities using a low-probability random connection from
the discretization field. The activities of the product of different pairs of neurons
taken from 20000 neurons are shown in figure 4.15.

Some of the activities show hexagonal grid patterns while most of them show a
periodic non-hexagonal pattern. This simple simulation implicates the potential of
neurons on the discretization field in forming the grid activity as long as the specific
pair of neurons is correctly selected.

We suspect if our learning mechanism learns to find the appropriate pairs of
neurons from the modulo layer, then the conjunction cell taking input from the pair
of neurons should show grid pattern activity even if the animal explores outside the
familiar area where the learning process took place. The hexagonal teaching signal
generated by one-shot learning is shown in figure 4.16, a.

The activity of the grid cell learned from the hexagonal teaching signal (fig. 4.16,
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Figure 4.15: activities of the product of random pairs of neurons taken from 20000
neurons

(a) (b) (c)

Figure 4.16: Grid cells learned from the hexagonal signal by one-shot learning. a)
Hexagonal signal by one-shot learning. b) Grid cells learned from the hexagonal
signal. Probability to activate the learning: 1. Learning rate of the classical condi-
tioning mechanism: 0.01 c) Grid cells learned from the hexagonal signal. Probability
to activate the learning: 0.5. Learning rate of the classical conditioning mechanism:
0.01

b, c) is more salient inside the learning area and fades away along with the distance
from the learning position. The hexagonal signal built from the one-shot learning
rule is not regular enough to modulate the grid cells in order to form a hexagonal
grid pattern. As expected, different place cells possess firing fields with the same size
owing to the constant vigilance value of one-shot learning. However, the position of
different firing fields is not close to each other so the firing pattern of neurons is
not compact enough to be hexagonal because the animal moves freely rather than
diverges outward around the centre of the enclosure. In the last simulation, the
vigilance had to be set to a value ensuring only 7 places were recognized in order to
have a compact firing pattern. An adaptation mechanism should be added to the
one-shot learning rule to solve the issue of irregular patterns. The firing fields of
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winning neurons should be forced to adaptively moves close to each other. Due to
time constraints, we turned to use the Kohonen map as discussed in chapter 3 to
adaptively build the hexagonal signal. Notably, the topology of the SOM has not
been found in the hippocampus. In a more realistic way, the hexagonal signal should
be obtained by the dentate gyrus recruitment of neurons modulated by the septal
signal. Multi-resolution of the grid pattern implies the possibility of several parts of
the septum working in parallel with different thresholds of learning. We suppose if
we succeed to build the hexagonal signal from the signature of immature grid cells
by a SOM, then we will be able to implement an adaptive learning rule without any
topological constraints to generate the hexagonal signal from the same input.

The recruitment of place cells is realized by implementing the self-organizing
learning rule with a simplified Mexican hat-like distribution. i.e., the winning neu-
ron on the self-organizing map has inhibitory connections to its neighbouring neurons
subject to the simplified Mexican-hat-like distribution in order to maximize the dis-
tance between firing fields of different place cells. Each recognized place area should
have the same size and be surrounded by other place areas. The place area which is
near the learned area will not activate the same cell. We suppose neurons activated
by the peak activity of a set of place cells will show a grid pattern of activation
that modulates the learning of GC in EC. This process could be modulated by the
medial septum as the acetylcholine modulation related to the loop between CA and
the medial septum (Hasselmo et al., 1995).

We first tried with a one-dimensional Kohonen map with a few neurons. The size
of the Mexican hat is modulated during the learning in order to maximize the firing
field of each neuron on the Kohonen map.

(a) (b) (c)

Figure 4.17: Septal signals built by one-dimensional Kohonen map with respectively
a) 10, b) 20, and c) 50 neurons on the Kohonen map.

The one-directional Kohonen map failed to build a compact septal signal. A
certain topology is required to map the two-dimensional environment. We then
moved to the two-dimensional Kohonen map.

The number of neurons on the map should be large enough to increase the possi-
bility of finally learning a hexagonal pattern, or the paving will be square. However,
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(a) (b) (c)

Figure 4.18: septal signals built by two-dimensional Kohonen map. a) Arrangement
of neurons on the map: 5x5, b) Arrangement of neurons on the map: 10x10, c)
Arrangement of neurons on the map: 20x20

if the number of neurons is too large, then the paving could be too crowded. The
negative neighbourhood needs to be adjusted in order to ignore some of the neurons
on the map. We then introduce one stage where we manipulate the neighbour kernel
in the learning process. In the first stage of learning, a large positive neighbour ker-
nel is used. Different shapes of the neighbour kernel are implemented in the second
stage of the learning (fig. 4.19.a and 4.20.a). A negative neighbour kernel is used
during the third stage. The size of the neighbour kernel is doubled to manipulate
the spacing of the grid pattern after the third stage (fig. 4.20.c).

(a) neighbour kernel in the second stage (b) activity of the septal signal

Figure 4.19: Activity of the septal signal learned by a self-organizing map when
introducing a neighbour kernel in the second stage.

In the next chapter, we will assess the property of one grid cell built by the
self-organizing mechanism presented in this chapter.
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(a) (b) (c)

Figure 4.20: Activity of the septal signal learned by a self-organizing map when
introducing a neighbour kernel in the second stage. a) Neighbor kernel in the second
stage, b) Activity of the septal signal, c) Activity of the septal signal with the doubled
size of the neighbour kernel.

Discussion

The reciprocal connection between the entorhinal cortex and Hipp in our model could
untangle the dilemma of the causal relationship between place cells and grid cells.
Preliminary results showed the potential of our model in generating grid cells under
a self-organizing learning mechanism.

The modulo compression mechanism can be built from a simple Hebbian/anti-
Hebbian learning mechanism and the existence of positive lateral interactions over
the bump of RSC activities. This feature could be generalized to any kind of other
cortical information.

The hexagonal paving was not obtained as an emergent property of RSC pro-
jection from RSC to EC even if some interesting code can be built from the sole
feedforward connections. To stabilize hexagonal grid patterns, we need to suppose
the grid information is sufficient to form place cells. The self-organization of place
cells then results in the building of a grid according to the threshold used to detect
novel places. Different thresholds imply various maps of place cells and grid cells
with different orientations and scales or spacing.

In our model, the interaction in the formation of place and grid cells agrees with
some biological observations showing that place cells become stable before grid cells
do and that grid cells remain stable when passing through an unknown environment
as opposed to place cells.

The firing field of gird cells with the same grid orientation could pave the whole
explored environment by slightly shifting in the grid phase. A population of grid
cells with the same orientation but slightly different phases could be generated in
our model (fig. 4.21) by introducing an aspect of replay of experience. Biological
recordings revealed that one-directional ’place cells’ with geographically neighbouring
firing fields in one cortical column could fire in sequence during a Theta Cycle even
without requiring the movement of the animal (Lisman and Jensen, 2013). These
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one-directional place cells could be homogeneous to the ones found in RSC in (Mao et
al., 2017) which has been successfully explained and reproduced by our model of the
spatial representation in RSC (Ju and Gaussier, 2020). The neighbouring positions
in one direction of the animal are thereby represented by these neighbouring 1D place
cells as the unconditioned input to grid cells with the same hexagonal conditional
signal leading to the learning of an ensemble of grid cells with phase shifts and the
same orientation and space. Notably, place cell spiking patterns that occur during
active states have been shown to reoccur in theta during subsequent REM sleep.
REM sleep-associated theta may have a role in memory consolidation. Accordingly,
the retrieval of experience such as going through the neighbouring area of the current
position of animals could also be explained by the spacial memory reply during the
sharp wave-ripples (Colgin, 2016).
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Figure 4.21: Illustration of the generation of grid cells. The input of the model is a
path integration neural field. The activity of each neuron on the PI neural field is
discretized before being performed the modulo operation. The Green points on top
represent a grid cell built by performing a product operation between two discretized
neurons distant from 60◦ on the PI neural field. Green points on the bottom indicate
the active field of the grid cell in the environment. Blue and orange neurons are the
neighbouring place cells on the cortical columns generated owing to the theta rhythm
or the sharp wave ripples.

Perspective

The self-organized generation of the grid cell relying on the reciprocal connection
between Hipp and EC is worth further studying. Due to time limits, only preliminary
results have been shown to prove the feasibility of this concept. The adaptive one-
shot learning rule of the septal hexagonal signal and the dynamic and reciprocal
learning mechanism between EC and Hipp should be addressed in the future.

In the next chapter, we will demonstrate how the visual stimuli (Saccade) could
replace the self-motion proprioception (path integration) as the input to our model
to generate visual grid cells while the model structure is unmodified. We will focus
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on the role of the visual grid cell in visual recognition. The generalization capability
of visual recognition is tested during movement on country roads and highways in
simulation. The recognition mechanism based on visual grid cells could be combined
with a self-motion-based system to provide efficient and stable spatial representation
for robots during navigation tasks.
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Chapter 5

A computational model of visual
grid cells applied to image
recognition

5.1 Abstract

The important contribution of grid cells in navigation has been widely accepted dur-
ing the last two decades. Recent experiments revealed the emergence of the visual
grid cells which are modulated by saccades or even the attention of animals during
visual exploration. We propose here a general model explaining visual grid cells
along with their involvement in visual recognition tasks irrelevant to navigation. We
suggest that the entorhinal cortex builds a compressed code of the cortical activity in
order to detect novel multi-model situations (i.e. situations involving new conjunc-
tion of patterns that may be not novel by themselves) or novel transitions between
known multi-model states. The navigation features such as spatial grid cells and
place cells could be the epiphenomenon of this general processing mechanism.

5.2 Introduction

The grid pattern activity in the entorhinal cortex has been widely reported among
various species including rodents (Hafting et al., 2005), bats (Yartsev et al., 2011),
primates (Killian et al., 2012), and humans (Jacobs et al., 2013; Nau et al., 2018).
Considering the diverse findings of spatial, visual, or even mental grid cells, we have
no reason not to think about the hypothesis that the grid cells could participate in
the visual recognition of a complex visual scene besides navigation. This hypothesis
attracts more attention from researchers following the discoveries of visual grid cells
in primates and humans.
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In 2012, Buffalo’s team examined spatial representations in EC of head-fixed
monkeys performing a free-viewing visual memory task (Killian et al., 2012). They
found that EC neurons encode space during visual exploration, even without loco-
motion. The firing field of these EC neurons had spatial periodicity similar to a
hexagonal pattern. Along with recordings of visual grid cells in primate entorhinal
cortex modulated by saccade during visual exploration without locomotion, the same
team found the emergence of hexagonal firing pattern in EC of monkeys in response
to the spatial attention independent of any physical movements (Wilming et al.,
2018). In addition to experiments on monkeys, research has been conducted on hu-
mans doing visual exploration tasks (Julian et al., 2018) where the human entorhinal
cortex represents visual space using a boundary-anchored grid which is analogous to
recordings in rodents performing navigation tasks.

Figure 5.1: a, Recordings were carried out using a linear electrode array placed in
the entorhinal cortex (red arrow). Three examples 10-s scan paths are shown in
yellow. b, An example of an entorhinal grid cell. Left, plots of eye position (grey)
and spikes (red) reveal non-uniform spatial density of spiking. For clarity, only spikes
corresponding to locations of firing rate above half of the mean rate were plotted.
The monkey’s name and unit number are indicated at the top. Middle, spatial
firing-rate maps show multiple distinct firing fields. Maps are colour coded from low
(blue) to high (red) firing rates. The maximum firing rate of the map is indicated
at the top. Right, the spatial periodicity of the firing fields shown against spatial
autocorrelations. The colour scale limits are 61 (blue to red), with green being 0
correlation. d.v.a., degrees of visual angle; g, gridness score. (Killian et al., 2012)

Recent research provided evidence that neurons in EC could also display hexag-
onal firing patterns even without locomotion or any physical movement. We hereby
aim to create a general model which is compatible with the generation of grid cells
involved in the navigation (Gaussier et al., 2007) but also accounts for visual grid
cells during the visual exploration.

It is known that EC receives multi-sensory information from various associative
cortical and subcortical areas such as the parietal cortex (Colby, Goldberg, et al.,
1999) and thalamic nuclei (Schlag-Rey and Schlag, 1984) of primates or the postrhi-
nal cortex (Burwell and Amaral, 1998) and superior colliculus (Wang et al., 2015)
of rodents. It also receives information of the path integration from the retrosple-
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nial cortex (Ju and Gaussier, 2020), and the information of objects (Deshmukh and
Knierim, 2011) from the inferior temporal cortex. We suppose this information is
merged and compressed because of the connection pattern from afferent cortical ar-
eas to EC with the medial (MEC) and lateral (LEC) part conveying the spatial and
object information respectively (fig.5.2).

We will suppose here that the recognition mechanism implies the merging of the
’where’ and ’what’ information in the perirhinal cortex (Mishkin et al., 1983). We
made a comparison between the original model (Gaussier and Zrehen, 1995; Banquet
et al., 2005) which takes relative azimuth to the landmark as the ’where’ information
(fig.5.3) and the current model using directly the firing field of grid cells to build
a cognitive map combining the information of Area of interest (AoI) on images or
views. The performance of the generalization of recognition and the robustness of
our model is examined by modulating the compression effect of EC which is the main
gateway to the hippocampus (Hipp).

With the successful implementation of our recognition model into the navigation
and vision process (Gaussier et al., 1997; Giovannangeli et al., 2006; Jauffret et al.,
2015), we hypothesise that our model provides a general method dealing with the
global recognition process.

5.3 Computational model

Model of the visual grid cell

We illustrate the model for the generation of visual grid cells in figure 5.4. The
input to our model is the activity of neurons of the saccade field when the animal
scans images (sequential exploration of an image). An efficient saccade selection
was implemented by a dual foveal-peripheral visual processing model considering
biological constraints (Daucé et al., 2020). The saccade selection is simplified in
our model since the visuomotor process is not the focus of our work. Nevertheless,
the computational model of visual attention based on the salient map proposed in
(Itti and Koch, 2001) can be useful to further enrich our model. In our model,
the sequential visual exploration of the animal is simulated by tracing the areas of
interest in the image. To do so, a difference of Gaussian (DoG) filter is applied on
the gradient image [G]. Local maxima are calculated to control attention.

The Gaussian filter is expressed as follows:

Fσ (xf , yf ) =
1

2πσ2
e−

x2f+y2f

σ2

DoG is the difference between two F with different σ: DOG (xf , yf ) = Fσ1 (xf , yf )−
Fσ2 (xf , yf ). The filtered map [M ] is the convolution between the DoG and the gra-
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Figure 5.2: Parallel processing streams into the hippocampus. The structure of
the diagram emphasizes the dual processing streams that pass through the LEC
and MEC. Prior diagrams of these processing streams stressed their origins in the
perirhinal-LEC and postrhinal-MEC connections [5–8]. Here, we add the critical
connectivity between the MEC and limbic regions involved in movement, location and
head direction processing (presubiculum, parasubiculum, retrosplenial cortex and
anterior dorsal thalamus). The LEC and MEC connect to distinct regions of CA1 and
subiculum, segregated along the transverse axis of the hippocampus (proximal–distal
relative to the DG). CA1 and subiculum send return projections to the deep layers
of the entorhinal cortex (EC), completing a processing loop. There is crosstalk along
these pathways, both prior to their entry into the hippocampus and especially in the
convergent projections to the DG and CA3. In this illustration, the DG and CA3 are
represented as a ‘side loop’ of processing, in which the MEC and LEC streams are
merged onto the same CA3 pyramidal cells and DG granule cells and the combined
representations are then merged in CA1 with the separate input streams from the
direct EC– CA1 projections. Specific mnemonic properties of the DG and CA3
regions are thought to be supported by the recurrent feedback loops represented by
the dashed circles. ADN, anterior dorsal nucleus of the thalamus; DG, dentate gyrus;
Subic., subiculum (Knierim et al., 2014).
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Figure 5.3: Visual place cell from the merging of ‘what’ and ‘where’ information.
Landmark angular variation induces a decrease in landmark recognition. Li, neuron
associated with the recognition of landmark i; P1, classical neuron performing the vi-
sual place recognition from the conjunctive (product) units; θi, azimuth of landmark
i (here, the black star) according to an absolute referential; θ′i, landmark azimuth
after a movement shown by the vector mvt; STM, short-term memory. (Gaussier
et al., 2019)

dient image:

M (x, y) = [DoG] ∗ [G]

=

imax
2∑

− imax
2

imax
2∑

− jmax
2

DoG (i, j) · (x+ i, y + j)

where imax and jmax indicate the size of the DoG filter with x and y the coordi-
nates of the filtered map. To obtain the points of interest relatively paving the whole
image, the image is separated into different areas with the size of (imax, jmax). Then
a competition mechanism is applied on different areas in order to successively select
salient spots on the map with the locally highest score of [M ]. We suppose saccades
attracted by focus points are coded in absolute polar coordinates in the parietal
cortex (Sereno et al., 2001). The polar angle and the amplitude of the saccade are
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Figure 5.4: Biological model for the learning of one grid cell. The input of the
model is the activity of neurons of the saccade field derived from the absolute polar
coordinates of the gaze center during the saccade. We predict a kind of neuron in
Hipp coding for the position of focus points on an image which is similar to place
cells during navigation. Dark red points indicate the conditional input signal for the
learning of a generalized pattern to build VGCs.

represented as a bump of activation on a ring of neurons. We suppose that a group of
neurons is equally distributed to represent 360 degrees in order to simulate a vector
integration field of the saccade. Each neuron has a preferred direction depending
on the amount (N) of total neurons. The interval between each preferred direction
is 360/N . One neuron is excited when its preferred direction is accordant with the
saccade direction while the intensity of the excitation depends on the saccade dis-
tance. The lateral neurons on the saccade field are active decreasingly subject to the
Gaussian distribution along the distance from the excited neuron. The activity of the

neuron whose preferential firing direction is θ on the saccade field: S(θ) = e−
(θ−θi)

2

2σ2

where σ determines the width of the firing range of neurons on the saccade field with
θi denoting the absolute orientation of the saccade. To simplify the calculation, we
take S(θ) = cos(θ − θi). The saccade cells share some common properties with the
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Head direction cells (Killian et al., 2015).
To realize the discretization of the activity of the bump of the saccade vector, we

project the activity of each neuron of the saccade field onto a set of one-dimensional
Kohonen maps. Each 1D self-organizing map can be considered as one cortical col-
umn (used to discretize the distance information in a given direction) (fig.5.4). A
population of around one hundred mini-columns forms a hyper-column which dis-
cretizes the whole saccade field covering all the directions of saccades. This structure
of hyper-column has been implemented in our model of RSC (Ju and Gaussier, 2020)
to reproduce the biological results of (Mao et al., 2017) and explains the diverse spa-
tial coding accessing to different levels of information efferent from this structure.
The activity of each neuron on one mini-column represents one specific distance in
the same direction. Within an orientation column, neurons throughout the vertical
thickness of the cortex respond to stimuli oriented at the same angle (Hubel et al.,
1977) with neighboring columns responding to a slightly different orientation. The
cortical columns in RSC and PPC could be homogeneous considering their anatomic
proximity and the similar nature between the neural field of path integration and
the one of the saccade.

We presume the visual grid cell activity recorded in MEC can be a compressed
code of the cortical activities in the PPC. The connection between the visual grid
cells and neurons in the PPC can be modulated by the teaching signal from Hipp.
The compression and learning mechanism is homologous to the one in chapter 4
implemented among Hipp, RSC, and dorsal MEC to generate grid cells when the
animal moves in an open environment (Gaussier et al., 2007). We predict that a
kind of neuron whose activity is modulated by the position of the eye, fovea, focus or
attentional spotlight could be found in CA similar to the activity of place cells during
the navigation of rodents. In our model, neurons recognizing the focus position could
be built by a self-organizing map having a global connection to neurons of the saccade
field (fig.5.4). This mechanism is identical to the one explained in chapter 2. The
self-organizing generation of the visual grid cell could be homologous to that of the
grid cells during navigation explained in the last chapter.

If ’what’ information can be merged with ’where’ information, we could obtain
cells homologous to the spatial view cells (Rolls et al., 1997) found in the primate
hippocampus responding when the monkey looked at a part of the environment.
These hippocampal neurons depend on where the monkey is looking not on the
place where the monkey is.

In the preceding results, grid cells during navigation can be learned if the con-
ditioned input follows a regular grid pattern. We tried to generate the visual grid
cells without modifying the structure of the model. The saccade instead of the path
integration will be the primary input to our model. The saccade is more irregular
and unpredictable compared to the self-motion in an enclosure. The generation of
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the grid cell in our model will be more challenging considering the property of the
saccade input. The simulation is performed based on the same biological basis as
the visual grid cell studied in monkeys (Killian et al., 2012). In each training session,
2000 images are serially presented to the animal. An image is removed after the ani-
mal has at least 40 gaze locations on the image. The model used during the learning
of visual grid cells is homologous to the one of grid cells during the simulation of
navigation discussed in the last chapter. The activity of one grid cell learned from
the septal teaching signal is shown in figure 5.5. The gridness score of this neuron is
0.59 which makes the neuron eligible to be considered as a grid cell. The gridness is
calculated by the minimum between the rotational correlations at 60 and 120 degrees
minus the maximum among the rotational correlations at 30, 90, and 150 degrees.

Figure 5.5: Hexagonal teaching signal and the activity of one grid cell learned from
it. a.left, hexagonal teaching signal built from the self-organization of visual place
cells activity in the hippocampus. a.middle, firing rate map of one grid cell. Yellow
square circumscribes the middle part of the map which avoids the interference of the
border effect of the environment. a.right, confined part by yellow square in a.left.
b.first, autocorrelation of the firing rate map. The inner annulus masks the central
peak of the autocorrelation in order to have an explicit autocorrelogram. Six peaks
around the central peak are encircled by an outer annulus. b.second and b.third are
the rotational correlations at 120 and 150 degrees. b.fourth, correlation coefficients
from rotations of 30, 60, 90, 120, and 150 degrees. The gridness is calculated by the
minimum of the set of rotational correlations at 60 and 120 degrees (b.left has the
lower rotational correlation) minus the maximum of the set of rotational correlations
at 30, 90, and 150 degrees (b.middle has the highest rotational correlation).
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5.4 Model of the recognition mechanism relying on ’where’
and ’what’ information

In our current model, the information of location is provided by the visual grid cells
from EC instead of the relative azimuth to the AoI. The information of AoI or objects
could be conveyed from the temporal cortical area. The AoI is determined by the
local-view exploration around focus points which are the start and end spots of each
saccade. The focus points are obtained by detecting the transition of areas on views
using gradient information. A circular focusing area is selected centered on each
focus point as shown in figure 5.6.left. We suppose the fovea corresponds to the
center of the focusing area. The Cartesian coordinates x and y in figure 5.6.right will
then be transformed into our log-polar map in figure 5.6.left with L = log

√
x2 + y2

and θ = atan2 (y, x).

ϴ
L

distance

angle

ϴ

Lx

y

0

Figure 5.6: Illustration of the log-polar mapping. Left, a retinal image projection
from a selected circular focusing area centered on each focus point with the fovea
corresponding to the center of the focusing area. Right, the Cortical representation
log-polar transformed from the retinal image projection. These two representations
correspond colorwise.

This transformation emulates the retinal image projection based on studies about
optic nerves and visual stimulus representation in the cerebellar cortex (Schwartz,
1977; Schwartz, 1980). The information near the center of the focusing area has
the greatest weight. The weight of visual information decreases along the distance
from the center of the focusing area (the darkest color on the map) and reaches
the minimum at the outer ring of the visual field (the lightest color on the map).
This process allows eyes to concentrate on the visual variation near the focus center
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without losing the general perspective of the whole focusing area and could provide a
conformal cortical representation of a visual stimulus. The focusing area transformed
onto a log-polar map will then be the input to a winner take all competition layer
where a new AoI cell is recruited and form the synaptic connection with input neurons
when the local view input pattern obtained by log-polar mapping of optic flow is
categorized as a new one. The competition of the input pattern is subject to a
learning rule (eq.5.3 and 5.4) where one AoI neuron is recruited once the recognition
level of the local view falls under a certain vigilance level. Increasing the vigilance
value induces more neurons to be recruited. Each AoI Neuron receives input from
all the neurons on the polar local-view field. The activity of the AoI neuron depends
on the summation of the difference between the activity of the input neurons and
the weights of synapses from input neurons to the AoI neuron. A constellation map
combining AoI and their locations can be used as the input to the recognition cells in
the Hipp to identify an image or an instant view. This merging mechanism is based
on units calculating the product of ’what’ and ’where’ information.

SPR
k (t) = SPR

k (t− 1) · (1−Rs (t)) + SEC−PR
i,k (t) · SIT−PR

j,k (t)

k = (i− 1) · jmax + j
(5.1)

with i ∈ [1, imax] and j ∈ [1, jmax]. imax is the number of grid cells conveying the
spatial information of the AoI while jmax represents the number of AoI neurons.
S represents the normalized activity of neurons fluctuating between 0 and 1. In
equation 5.1, we suppose the activity of constellation neuronsSPR

k in the perirhinal
cortex is the product of the activity of grid cellsSEC−PR

i,k in the entorhinal cortex
and the activity of AoI neuronsSIT−PR

j,k coming from the inferotemporal cortex. At
each time step, one AoI neuron having the highest activity dominates the spatial
information afferent to the constellation map: j = arg

(
maxq∈[1,jmax]S

IT−PR
q,k (t)

)
.

SPR
k (t) is thereby the product of the activity of the winner of the AoI neurons and

the activity of the simultaneously activated grid cells at time t. Neurons on the
constellation map successively memorize the sequential combination of the winner
of the AoI neurons and the simultaneously activated grid cells during the saccade
exploration of one image (fig.5.7).

Rs (t) is the activity of a strong inhibitory neuron connected to the constellation
neurons. It plays the role of a reset mechanism of the constellation map:

Rs (t) =

1 if t = tnew image

0 otherwise
(5.2)

The inhibitory neuron is only activated only when a new image is shown to the agent
and thereby resets the constellation map for the representation of a new image.
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Figure 5.7: Images recognition using the combination of ’where’ and ’what’ informa-
tion on the image. a, Sequence of the focus points: 1,2,3,4,5; We assume that the
area of interest (AOI) around focus points 1, 4 and 5 are similar and thereby activate
the same landmark cell A. Focus point 2 and 3 corresponds to landmark cell B and C
respectively. The coding in the constellation map represents the ’where’ and ’what’
information of the image and is irrelevant to the temporal order of the focus points.
Notably, no topology contiguity is required by any of the structures shown in the
scheme. Neurons are conceptually arranged in order to simplify the illustration. b,
Pink squares indicate the firing fields of a grid cell whose spacing and size are 1.5
times greater than those in fig.a.
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Each Neuron on the recognition layer receives input from all the neurons on
the constellation map. The activity of the recognition neuronSHC

l+1 depends on the
summation of the difference between the activity of the input neuronsSPR

k and the
weights of synapses from input neurons to the recognition neuronWPR−HC

k,l+1 . The
activity of the recognition neuron or the recognition level approaches maximum if
the summation of the difference tends to zero. The competition of the recognition
neurons is subject to the local Winner-take-all learning rule. A new recognition
neuron is recruited once the highest recognition level of recruited neurons on the
recognition layer is under a certain vigilance level. A higher vigilance level leads to
more recognition neurons being recruited.

SHC
l+1 = f

(
1−

kmax∑
k=1

WPR−HC
k,l+1 · SPR

k

)
; ∀l ∈ [0, l] , SHC

l < V ig

with l ∈ [0, lmax] and SHC
0 = 0

f (x) =

x if x > 0

0 otherwise

(5.3)

We suppose the synaptic weights between neurons on the constellation map and
the recognition neurons are subject to the one-shot learning rule:

WPR−HC
k,l = SPR

k · SHC
l (5.4)

The synaptic connection between neurons on the constellation map and the winning
neuron on the recognition layer restores the input pattern and thereby combines
the winning recognition neuron with the concurrent firing pattern of neurons on the
constellation map in the perirhinal cortex.

The competitive recognition process is realized by sigma-pi units (Rumelhart
and Zipser, 1985) with the part of sigma (summation) and pi (product) as shown in
equation 5.1 and 5.3 respectively.

This constellation map coupling ’what’ and ’where’ information originates from
the work of Philippe Gaussier (Gaussier, 1992; Gaussier et al., 2002) where the
recognition map could be memorized via ’what’ and ’where’ pathways (Mishkin et al.,
1983) into the perirhinal cortex and the parahippocampus of primates (Aggleton and
Brown, 1999) or postrhinal cortex of rodents. The ’where’ information is conveyed
via the pathway from the parietal cortex with the information of AoI or objects
coming from the inferotemporal cortex. The performance and the feasibility of this
recognition process based on the constellation map of ’where’ and ’what’ information
has been widely tested in autonomous robots and vehicles (Hoang, 2021; Colomer
et al., 2021). In our current model, we predict the constellation map could take place
in EC of which the lateral part conveys information about items and events (’what’)

105



and the medial part codes for the spatial framework (’where’).
"What" and "Where" information collaborate together to provide a stable and

efficient representation of the visual world. Instead of recruiting numerous neurons
for the learning of the position of various AoI on different images, the combination
of their positions on each image could be represented by a sequence of the product
of the activation of grid cells and the appearance of the corresponding AoI (fig.5.7).
Unlike the original model where the azimuth information of AoI is required, our cur-
rent model recruits grid cells to indicate the location of AoI considering the direct
connection between the perirhinal cortical and parahippocampal areas which pos-
sess the memory capacities (Aggleton and Brown, 1999) and EC where grid cells are
found. Grid cells with an offset of the spatial phase sharing the same grid spacing
and orientation pave the whole environment and thereby provide an efficient repre-
sentation of the ’where’ information. In figure 5.7.a, the firing field of three neurons
is shown for a simple illustration knowing that the whole environment can be com-
pletely paved by grid cells having spatial offsets which are not drawn in the scheme.
Recruiting one population of grid cells having the same grid spacing and orientation
to provide the spatial information of AoI is the method we refer to as the monoscale
GC mechanism. Notably, the representation realized by one set of grid cells having
the same spacing and orientation is not exclusive. If one AoI cell is activated in
different locations where the firing field of one grid cell is superposed, e.g., focus
points 1 and 5 which are categorized as the same AoI in the different locations on
the image are represented by the same product ’blue A’ in the perirhinal cortex. In
this case, recognition confusion gets severe with the increase of occurrences that the
same AoI appears in the position that is covered by the firing field of one single grid
cell. We further propose a second mechanism combining the ’where’ information
from two grid cells with different spatial scales knowing that the spacing and the size
of the firing field of grid cells increase along the dorso-ventral axis of dorsal MEC
(Hafting et al., 2005). In figure 5.7.b, focus point 5 is explicitly represented by the
combination of the activity of AoI cells and the spatial information consisting of the
activation of 2 grid cells with different spatial scales. This mechanism is capable of
creating a relatively exclusive representation of the vision and therefore causes less
confusion in the recognition. Combining more than one population of grid cells to
form an explicit spatial code should increase robustness. It will be referred to as the
multi-scale grid cell mechanism. Notably, only a few grid cells are shown while the
whole environment can be completely paved by a set of grid cells having spatial offset
with the same orientation. The firing field along with the firing rate of one grid cell is
shown in figure 5.8. The x and y axis represent the coordinates on the image shown
to the animal during the simulation. The color of the curve and the z-axis indicate
the firing rate of the grid cell with darker color representing a higher firing rate.
To simplify the simulation without losing biological plausibility, the distribution of
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the firing rate on each firing field of the grid cell is assumed to be subject to the
normal distribution. The distribution of the firing rate allows the measurement of
the positional difference of AoI between the learned view and the current view and
therefore improves the capability of the generalization of recognition.

Figure 5.8: Distribution of the firing field of the grid cell used for the recognition
tasks. Left, the firing field of one grid cell with the x and y axis representing the
coordinates on the image shown to the animal during the simulation. The color of the
curve and z-axis indicates the firing rate of the grid cell with darker color representing
a higher firing rate. The distribution of the firing rate on each firing field of the grid
cell is assumed to be subject to the normal distribution. The distribution of the firing
rate allows the measurement of the positional difference of AoI between the learned
view and the current view and therefore improves the capability of the generalization
of recognition. Right, the firing field of the grid cell superposed with an image used
for the testing session.

For the recognition task in the next session, the use of the monoscale GC mecha-
nism is sufficient to perform the recognition tasks where a large set of different visual
stimuli exist in the environment.

5.5 Results of simulations of the image recognition

The simulation is performed based on the same biological basis as the visual grid cell
studied in monkeys (Killian et al., 2012). In each training session, 2000 images are
serially presented to the animal. An image is removed after the animal has explored
at least 40 gaze locations on the image. In our model, the gaze locations of animals
are simulated by searching for the local maxima of an off-center filter applied on the
gradient image in order to obtain potential focus points (fig. 5.9).
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Figure 5.9: One image used for the training session. Left, original image. Middle,
gray-scale image with blue circles indicating the focus points, and the number in
orange representing the order of focus points. Right, gradient extraction image.

Non spatial task: object or image recognition

We presume the mature grid cells (as shown in chapter 4, fig 4.21) have been gen-
erated by our proposed reciprocal mechanism between PC and VGC after the early
development and thereby participate in the recognition process. Nevertheless, more
biological evidence remains to be further revealed to support our hypothesis of the
reciprocal connection.

To assess the recognition performance, we present 200 images during the train-
ing session. An image is removed when the animal has explored 10 locations on
the image. 9 grid cells with different spatial offsets paving the whole image are
combined with 2000 Area of interest (AoI) cells to build the ’where’-’what’ coding.
A population of no more than 200 neurons will be recruited for the recognition of
images. Notably, depending on the learning vigilance, one AoI cell could activate
different focus points if they have a similar local view and one recognition cell could
also respond to multiple similar input patterns from the constellation map. After
the training session, 7 images are randomly selected from the data set of 200 images
(fig.5.10). The activity of 200 cells in response to these 7 images is shown in figure
5.11.top. The results indicated that 7 neurons activate selectively in response to the
corresponding image. These winning neurons almost recognize their corresponding
images instantly after the first gaze on the image owing to the explicit coding in
the constellation map. However, explicit coding is not efficient on the level of the
number of neurons used. A compress mechanism which is homogeneous to the one
implemented in the generation of grid cells based on the anti-Hebbian learning rule
is thereby implemented in the AoI cells. We hypothesize that the visual and ob-
ject information (Wilson et al., 2013) could both be compressed respectively in the
MEC and LEC depending on the homogeneous modulo mechanism. The activity of
the same neurons in figure 5.11.top with a supplementary compress mechanism are
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Figure 5.10: For the test session, 7 images are randomly selected from the data set
of 200 images. On each image, the top part is the gray-scale image with the gradient
extraction image on the bottom. The blue circle on gray-scale images indicates
the focus points, and the number in orange represents the order of focus points.
Sequential order has no effect on recognition. 10 AoI are obtained for each image
during training and testing session

shown in figure 5.11.middle. 2000 AoI cells are compressed into 20 cells. With such a
large compression of the AoI information from the image, the confusion is high at the
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beginning of the image exploration. However, after the exploration of several images,
neurons manage to recognize their corresponding images. The exploration of no more
than 4 areas is sufficient for good recognition. To further decrease the confusion level
during the recognition, we implement the combined VGC mechanism illustrated in
figure 5.7.b to introduce an explicit ’where’ information (fig.5.11.bottom).

A larger data set is further used to assess the generalization of our recognition
mechanism of which the statistical analysis is conducted.

Generalization of the recognition to neighbor views

The generalization of the recognition is tested by showing the agent a sequence of
images successively recorded from the view of the driver in a car slowly travelling on
the country road. Each image is removed when the animal has 10 gaze locations on
the image. The video of 300 seconds is averagely sampled into 4000 images as the
data set. 400 images averagely selected at the same interval from the data set are
used for the training session. The generalization of the recognition is tested with the
whole data set. 9 grid cells with spatial offset paving the whole image are combined
with 4000 AoI cells to build the recognition coding. The views during the travel for 4
seconds sampled into 7 images as in figure 5.12 are learned respectively by 7 neurons.
10 gazes are made on each image taking 10 time steps. The testing session is ten
times longer than the training session with 9 images reinserting between every two
images of the training session. The activities of 7 neurons in response to 70 successive
views are shown in figure 5.13. The performance of generalized recognition is tested
by taking ’where’ information from two different mechanisms. On top of the figure
is the result obtained by using ’where’ information from 9 neurons representing the
azimuth of AoI while on the bottom, a population of 9 grid cells paving the whole
view is used to provide the spatial information of AoI in views. We could find that
each neuron managed to learn a generalized recognition of not only the view during
the training session but also the adjacent views with slight differences. The statistical
analysis of the performance of generalization using these two mechanisms is discussed
in the following section.

A compression modulation which is homogeneous to the one of the saccade infor-
mation to generate VGC in EC is later implemented to the AoI cells. The results are
shown in figure 5.14 with top, the activity of 7 neurons taking ’where’ information
from 9 neurons representing azimuth of AoI and bottom, the activity of the same
7 neurons using the activity of one population of 9 grid cells as ’where’ informa-
tion. i.e., 9 grid cells with spatial offset paving the whole image are combined with
40 AoI cells to build the recognition coding. In both cases, the AoI information is
compressed by a factor of 1/100s. 100 times fewer AoI cells are recruited for the
recognition compared to the setup of the last simulation. We observed that many
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Figure 5.11: top, the activity of 7 cells represents respectively 7 images presented
sequentially. middle, the activity of the same neurons in (a) with a supplementary
compress mechanism implemented to the AoI cells. 2000 AoI cells are compressed
into 20 cells. bottom, results with a multi-scale VGC mechanism are added as
illustrated in figure 5.7.b
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Figure 5.12: Example of Seven successive views from the data-set of 4000 images on
the road which are respectively learned by 7 neurons during the training session. The
blue circle on gray-scale images indicates the focus points, and the number in orange
represents the order of focus points. Sequential order has no effect on recognition.
10 AoI points are obtained for each image during the training and testing sessions.

other neurons start to respond to their non-preferential views due to the increas-
ing ambiguity of the adjacent views caused by the compression of AoI information.
Nevertheless, the winning neurons maintain their maximum activity in response to
their learned view and its adjacent views which are reinserted during the testing
session. The generalized recognition is not destroyed by the compression operation.
However, with the increasing activity of neurons in response to their non-preferential
views, the robustness of the recognition declines. In other words, the probability of

112



10 20 30 40 50 60 70
number of images

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
tiv

ity

10 20 30 40 50 60 70
number of images

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
tiv

ity

Figure 5.13: top, The activities of 7 neurons in response to 70 successive views taking
’where’ information from 9 neurons representing azimuth of AoI. bottom, activities of
7 neurons using the activity of one population of 9 grid cells as ’where’ information.

neurons winning at their non-preferential views increases and therefore interrupts
the recognition during the task of successive views. To deal with the recession of
performance due to the compression of information, we implement a multi-scale grid
cell mechanism combining the ’where’ information from two grid cells with different
spatial scales as shown in figure 5.7.b. This mechanism is capable of creating a more
exclusive representation of the vision compared to the monoscale grid cell mechanism
and therefore produces less confusion in the recognition with a negligibly increasing
energy cost. The activity of the same seven neurons during the task of the successive
view as in the previous simulations is shown in figure 5.15. The conflict between
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Figure 5.14: The activities of 7 neurons in response to 70 successive views taking
AoI information compressed by a factor of 100. top, The activities of 7 neurons
taking ’where’ information from 9 neurons representing the azimuth of AoI. bottom,
activities of 7 neurons using the activity of one population of 9 grid cells as ’where’
information.

different neurons during the recognition task has been intuitively reduced.
To assess the generalization and its robustness of our model performing the recog-

nition tasks, two metrics are introduced. 7 neurons win respectively to their prefer-
ential sequence of views during the sample time step. The generalization score (GS)
of the i-th (i ∈ [1, 7]) winning neuron is calculated by its winning times of views
(Nwin

i ) during its preferential sequence of views divided by the number of reinserted
views (Nview = 10).
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Figure 5.15: The activities of 7 neurons in response to 70 successive views taking
’where’ information from a population of multi-scale grid cells. top, without the
compression of the AoI information. bottom, information of AoI is compressed by a
factor of 1/100.

G = f

(
Nwin

i

Nview

)
, f (x) =

1 if x > 1

0 otherwise
(5.5)

The mean score of seven neurons responding to their preferential sequence of
views represents the recognition score of the model.

The robustness level is defined by the average sum of the difference(Ri in fig.5.16)
between the activity of the i-th winning neuron Smax

i and the activity of the i-
th second highest neuron Ssh

i during the winner’s preferential sequence of views
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Figure 5.16: Illustration of the generalization score (GS) and the robustness level of
3 sampled neurons during the process of the testing session. top, curves of activity
of the last three neurons in the previous simulations. Nwin

i is the winning times
of views of i-th neuron which is in direct proportion to the GS. Ri indicates its ro-
bustness of the generalization of the recognition. bottom, views enclosed by orange
rectangles are those learned by the corresponding neurons during the training ses-
sion, and views without the orange rectangles are those reinserted during the testing
session. Between each pair of training views, 10 successive views are inserted for the
recognition task.

(t ∈ [1, Nview]).

Ri =

∑t=Nview
t=1

(
Smax
i (t)− Ssh

i (t)
)

Nview
(5.6)

The winner’s preferential sequence of views is composed of 10 successive views
(Nview = 10) reinserted between views of the training session. Notably, the robust-
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ness level alone is meaningless without considering the GS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ge
ne

ra
liz

at
io

n 
sc

or
e(

G
S)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ge
ne

ra
liz

at
io

n 
sc

or
e(

GS
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

monoscale GC multiscale GC only Azimuth

Robustness

Results with the compression of SOI information

Results without the compression of SOI information

Figure 5.17: Scatter figure showing the GS and Robustness of the recognition of 7
neurons under different setups for visual localization. Blue circles indicate results
without the compression of AoI information while red circles are those with the com-
pression. X and Y axis represent respectively the normalized GS and the robustness
level which are both scaled from 0 to 1 with a higher value indicating better per-
formance. From the left figure to the right, the spatial information of the AoI is
performed by three different mechanisms which are respectively monoscale grid cells,
multi-scale grid cells, and azimuth to the AoI provided by the foveated vision.

In figure 5.17, we showed the GS and the robustness level of models using three
different mechanisms retrieving the location of the AoI with or without the compres-
sion of the AoI cells. Curves from the left to the right correspond respectively to the
mechanism of single-scaled GC, multi-scale GC, and Azimuth. In each figure, blue
dots represent results with the compression of AoI information while the red ones
are those without the implementation of the compression. Y-axis shows the GS of
the recognition with the x-axis indicating the robustness of the generalization. The
dot with the SEM bar represents the mean value of each group.

To better visualize the comparison of the performance of the model using different
mechanisms to retrieve the location of AoI before and after the compression of AoI
cells, the results of three recognition setups are compared: the classical one without
compression (fig. 5.18.a) and those undergoing the compression of AoI cells (fig.
5.18.b). Blue bars represent the GS of the recognition with red ones indicating the
robustness of the generalization.

We observed that all three setups undergo a declining performance after the
implementation of the compression of AoI cells. Nevertheless, except for the model
with the single-scared GC whose GS and the robustness level are all sensitive to the
compression mechanism, the model of the multi-scale GC and the azimuth showed
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Figure 5.18: The comparison of mean values of the GS and Robustness of the recog-
nition of 7 neurons under different setups. The blue bar represents the GS while
the red stands for the robustness level. a, results without the compression of AoI
information. b, results with the compression of AoI information.

high consistency of the generalization of the recognition after the implementation of
the compression of the AoI cells. The recognition mechanism in our model is robust
to the misrecognition of a few AoI or the noise inside the activity of grid cells owing
to the combination of the two types of visual information (what and where) creating
an explicit and generalized recognition coding in the constellation map.
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Description Module Symbol & Value

Variance of the Gaussian filter DoG σ1 = 2, σ2 = 5(pixels)
Size of the filter imax, jmax = 10
Nbnr representing 360° Saccade field N = 30
Nbnr on the Kohonen map Discretization M = 15
Nbnr on the modulo field Anti-Hebbian learning j1 = 3

j2 = 5
Nbnr conveying spatial information Azimuth Nazi = 9
Nbnr on the polar local-view field Retinal projection 400
Learning rate of LMS conditioning learning Generation of GC λ = 0.01
Nb of monoscale grid cells Nmono = j21 = 9
Nb of multi-scale grid cells Nmulti = Nmono + j22 = 34
Vigilance value during learning process AoI V ig = 0.95
Vigilance value after learning process V ig = 0
Nbnr recruited for the learning of local views = NAoI = 2000
Nbnr on the constellation map Constellation map Mmono = Nmono ·NAoI

Mmulti = Nmulti ·NAoI

Mazimuth = Nazi ·NAoI

Vigilance value during learning process Recognition V ig = 1
Vigilance value after learning process V ig = 0
Nbnr recruited for the recognition 400
Modulo factor applied to the AoI Compression ratio 100

Table 5.1: Parameters of the model. Nbnr stands for the number of neurons.
DoG: difference of Gaussian. GC: grid cells. AoI: area of interest.
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5.6 Conclusion

We explained how a homogeneous model as the one of the path integration proposed
precedingly could be applied to the visual exploration by saccade and account for
the generation of the visual grid cells. We emphasized that the place cell and grid
cell could form reciprocal connectivity with the medial septum playing the role of
a modulator to eventually stabilize an efficient representation of the space or view
after the early development of the brain.

We proposed a recognition mechanism combining the firing field of grid cells
and the activity of the corresponding AoI cells of the images. The learning rule is
based on novelty detection. A new neuron will be recruited if the input pattern is
relatively new to all the learned neurons. This new neuron thereby represents the
input pattern by forming certain synaptic connections with the input neurons subject
to the Hebbian learning rule. The recruitment of the AoI neurons for the detection
of the novel focus points relies on the same learning rule.

We assessed the compression effect of the modulo mechanism during image recog-
nition. The performance of the recognition was maintained intact even with a very
high compression ratio. The constellation map combining compressed ’where’ and
’what’ information provides an efficient and quasi-explicit coding of the visual rep-
resentation.

In addition, the misrecognition of a few focus points due to the unstable learning
process or the noise in the firing field of grid cells can not destroy the recognition of
images owing to the redundant localized AoI.

The generalization capability of visual recognition is tested during movement
on country roads and highways in simulation. The recognition mechanism based
on visual grid cells could be combined with a self-motion-based system to provide
efficient and stable spatial representation for robots during navigation tasks.

The visual and spatial grid cells are two different sets of similar neurons in our
model. They have a similar property while receiving different kinds of input. The
recognition level increases and decreases continuously as the agent approaches and
moves away from one certain view as shown in figure 5.15 during the recognition task.
This recognition variance based on visual information can be helpful to indicate the
distance between the agent and the view during navigation tasks.
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Chapter 6

Discussion

The retrosplenial cortex (RSC) is densely innervated with the hippocampus (Hipp)
and shares reciprocal connections with the entorhinal cortex. Biological recordings
have shown that RSC is directly linked to rodent spatial behaviours. Our work
advocates the hypothesis that the path integration could pre-exist before EC ‘grid
cells’ and hippocampal ‘place cells’ as proposed by (Gaussier et al., 2007). In our
model, RSC is nothing more than a classical cortex performing a low pass filtering
of its inputs related to HD cells and using blobs of neurons to ‘recognize’ or quantify
those activities. We predict in our model that the path integration could be computed
outside the hippocampal formation and is conveyed via RSC. Notably, place cell-like
activity is found in RSC when a mouse moves on a one-way treadmill with its head
fixed. We simulated the same experiment using our computational model of RSC.
Neurons in RSC are simulated by a one-dimensional self-organizing map. Those
neurons fire in sequences during movement on the treadmill in the same direction
showing the same property as neurons recorded in biological experiments. Place
cells and head direction cells are also generated during free movement by simply
modifying the learning rate of the path integration field and the breadth of the
connectivity between cortices in our model. Our simulation results explain why the
place cell-like activity in RSC can be found during movement in the same direction
while no such activity has been reported during free movement. Due to the local
connectivity between cortices, the place cell-like activity can be only observed in
RSC when the animal moves in one direction on the treadmill with its head fixed
(Mao et al., 2017). A wide range of spatially involved neuronal activity such as
place cells and head direction cells has been produced by our PI model assuming
the brain area has full access to the upstream cortex or subcortex where the PI
could originate. We have shown in our simulations that a global connection to
the path integration neural field requires a large number of neurons and synaptic
connections. The cost even increases if we consider the need for redundant neurons
for robust coding in case of perturbation and malfunction of neurons. Therefore,
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the global connectivity between cortices and Hipp is not plausible considering the
limited number of neurons and synaptic connections of each neuron in Hipp, not
to mention numerous afferent signals to Hipp including the proprioception of self-
motion and the information of different types of perceptions. Considering the rich
innervation between EC and Hipp, we propose that EC could play the role of a hub to
compress the cortical information involved in navigation, vision and other recognition
tasks and interact with Hipp to generate place cells. The entorhinal cortex could
maintain the global feature of the cortical information with sparse connectivity to the
afferent cortices owing to the modulo projection. The grid cell activity in EC could
be an epiphenomenon of this general compression mechanism. This compression
mechanism is realized by introducing a modulo operation between EC and its afferent
cortices.

The path integration is proven to be instrumental for grid cell spatial firing of rats
in a circular 1D environment (Jacob et al., 2019). An increased size/scale of the grid
firing field between the arena and the track was observed, while it was unmodified
in arenas of different sizes. One hypothesis has been proposed that the lack of visual
cues during navigation could be responsible for the metrical properties of the grid
cell map.

Our model of the generation of grid cells is compatible with this hypothesis.
During the early development, the firing field spacing/grid scale is determined by
the teaching signal from Hipp. The larger the size of the place cell firing field is, the
larger will be the spacing or scale of the grid firing field. We predict that the size of
the place cell firing field is relatively larger when there are fewer external cues and
animals have to depend more on the path integration for navigation. After the early
development, the grid firing field spacing can be simply modulated by the divisor
of the modulo operation mechanism in our model. Increasing the divisor (recruiting
more grid cells in our model) will enlarge the spacing or scale of the grid firing field.
We predict that more grid cells will be recruited to compensate for the reduced
accuracy of the self-localization solely depending on the self-motion proprioception
when the availability of the external information is reduced.

We proposed a reciprocal mechanism between Hipp and EC explaining the hexag-
onal pattern of grid cells and the emergency of place cells and grid cells. The hexag-
onal pattern can be learned without the need for topological contiguity or artificial
selection of neurons that many other models require. In some other models, the
generation of place cells highly depends on the stable grid cells. However, places
cells could exist before grid cells during the development of the brain and affect the
generation of the latter. In our model, we don’t have to deal with the causality
dilemma of the egg or the chicken. We hold the view that these two cells could form
reciprocal connectivity with the medial septum playing the role of a modulator in
order to eventually stabilize an efficient representation of the space after the early
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development of the brain.
We propose an image recognition mechanism combining ’where’ information from

the visual grid cells and ’what’ information from the activity of the neurons coding
for areas of interest in the images. Our model explains the existence of the visual grid
cells found in primates during visual exploration and predicts the contribution of the
visual grid cell in recognition. We suppose that the formation of a constellation map
could take place in EC taking compressed ’where’ input from MEC and compressed
’what’ input from LEC. Grid cells with periodic firing fields can be a trace of the
compression mechanism we proposed in our model.

We assessed the compression effect of the modulo mechanism during image recog-
nition. The performance of the recognition was maintained intact even with a very
high compression ratio. The constellation map combining compressed ’where’ and
’what’ information provides an efficient and quasi-explicit coding of the visual repre-
sentation. The generalization capability of visual recognition is tested during move-
ment on country roads and highways in simulation. The recognition mechanism
based on visual grid cells could be combined with a self-motion-based system to
provide efficient and stable spatial representation for robots during navigation tasks.

An illustration of pathways between cortices and the hippocampus accounting
for the spatial representation and image recognition is shown in figure 6.1. Color
bars indicate the contribution of different chapters.

Our model can also realize both allocentric and egocentric tasks by using distant
or local cues as the landmark to recalibrate HD cells and/or PI as long as the visual
information is added. RSC in our model could play a role as a hub where the visual
and proprioceptive information can be merged. The interaction of the allocentric and
egocentric information should allow the animal to switch between different reference
frames for complex spatial navigation tasks. Simulation results and interpretations
are in an ongoing paper.

Our model could be further extended to recalibrate and generate the bi-directional
cells observed in (Jacob et al., 2017) by merging visual and proprioceptive informa-
tion. RSC is known to manipulate visual information and to translate between ego-
centric (self-centered) and allocentric (world-centered) spatial information (Alexan-
der and Nitz, 2015). Visual information can be very important for the recalibration
of HD cells in RSC. The bi-directional HD cells found in RSC might be explained
by the local connectivity between RSC and the afferent areas. For instance, if one
RSC neuron receives input from only two neurons of the afferent neural field, this
RSC neuron will probably present a bi-directional HD cell activity.

The results of the reciprocal learning mechanism between grid cells and place cells
are still preliminary. Some difficulty remains unsolved. The self-organized hexagonal
signal could be stabilized with the help of border cells or other information as a
recalibration mechanism. The adaptive one-shot learning rule of the septal hexagonal
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Figure 6.1: Illustration of pathways between cortices and the hippocampus account-
ing for the spatial representation and image recognition. Color bars indicate the
contribution of different chapters.

signal and the dynamic and reciprocal learning mechanism between EC and Hipp
need to be further studied. The synchronization of place cells and grid cells might be
achieved by taking into consideration of the theta and gamma rhythm. We predict
that a mechanism of the replay of experience realised by theta and gamma rhythm
(Lisman and Jensen, 2013) or sharp wave ripples (Jadhav et al., 2012; Eschenko
et al., 2008) could account for the generation of grid cells with a spatial offset of
which the firing field tiles the whole environment.

Disrupted Place Cell Remapping and Impaired Grid Cells are found in amyloid
precursor protein knockin mice with impaired spatial memory (Jun et al., 2020).
Recent research found that the impairment of the Gcs in the EC of aged people could
be a forewarning of Alzheimer’s disease. Compromised grid-cell-like representations
along with path integration (PI) deficits have been found in the human entorhinal
cortex (EC) in old age. This recording suggests that impaired grid cell function or
PI deficits might predict an age-related decline in cognitive functions (Stangl et al.,
2018). The dysfunction of the Hipp may impair the acetylcholine modulation so
as to cause the impairment of the Gcs, the deficits of PI can also have the same
effect on GCs. Our model explaining the generation of place cells and grid cells
could be further studied and has the potential to help the understanding of the
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circuit mechanism underlying the spatial disorder related to Alzheimer’s disease and
therefore helps with the prediction and intervention of Alzheimer’s disease.

Our model of the interaction between RSC, EC, and Hipp has the potential to
be a paradigm explaining not only the place and visual recognition but also the
formation of episodic memories.
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