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Résumé

Cette thèse propose des contributions dans di�érents problèmes issus du domaine de l'analyse
topologique de données musicales : les objets étudiés sont des partitions représentées symbol-
iquement par des �chiers MIDI, et les outils utilisés sont la Transformée de Fourier Discrète et
l'homologie persistante. Le manuscrit se découpe en trois parties : les deux premières sont con-
sacrées à l'étude des objets mathématiques précédemment cités et à la mise en place du modèle.
Plus précisément, la notion de DFT introduite par Lewin est généralisée au cas de la dimension
deux, en explicitant le passage d'une mesure d'un morceau à un sous-ensemble de Z ~tZ�Z ~pZ,
ce qui conduit naturellement à une notion de métrique sur l'ensemble des mesures via leurs coef-
�cients de Fourier. De cette construction naît un nuage de points auquel est associé le complexe
�ltré de Vietoris-Rips, et par suite une famille de codes-barres donnés par l'homologie persis-
tante. Cette approche permet également de généraliser des résultats classiques tels que le lemme
de Lewin ou encore le théorème de l'hexachorde de Babitt. La dernière partie de cette thèse
est consacrée aux applications musicales du modèle basé sur la DFT : la première expérience
consiste à extraire des codes-barres provenant de partitions arti�ciellement construites, telles
que des gammes ou des accords plaqués. Cette étude mène en particulier à l'harmonisation de
chansons que l'on réduit à leur mélodie et leur grille d'accords, ce qui permet entre autre de
dé�nir les notions de graphe et de complexité d'un morceau. L'homologie persistante se prête
également au problème de la classi�cation automatique du style musical, qui sera traité ici sous
le prisme de descripteurs symboliques donnés par des statistiques calculées directement sur les
codes-barres. En�n, la dernière application propose un encodage des mesures basé sur la distance
de Hausdor� conduisant à l'étude des textures musicales.

Abstract

This thesis proposes contributions to various problems in the �eld of topological analysis of
musical data: the objects studied are scores represented symbolically by MIDI �les, and the tools
used are the discrete Fourier transform and persistent homology. The manuscript is divided into
three parts: the �rst two are devoted to the study of the aforementioned mathematical objects
and the implementation of the model. More precisely, the notion of DFT introduced by Lewin
is generalized to the case of dimension two, by making explicit the passage of a musical bar from
a piece to a subset of Z ~tZ�Z ~pZ, which leads naturally to a notion of metric on the set of
musical bars by their Fourier coe�cients. This construction gives rise to a point cloud, to which
the �ltered Vietoris-Rips complex is associated, and consequently a family of barcodes given by
persistent homology. This approach also makes it possible to generalize classical results such as
Lewin's lemma and Babitt's Hexachord theorem. The last part of this thesis is devoted to musical
applications of the model: the �rst experiment consists in extracting barcodes from arti�cially
constructed scores, such as scales or chords. This study leads naturally to song harmonization
process, which reduces a song to its melody and chord grid, thus de�ning the notions of graph
and complexity of a piece. Persistent homology also lends itself to the problem of automatic
classi�cation of musical style, which will be treated here under the prism of symbolic descriptors
given by statistics calculated directly on barcodes. Finally, the last application proposes a
encoding of musical bars based on the Hausdor� distance, which leads to the study of musical
textures.
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Introduction (Français)

Cette thèse s'intéresse à di�érents problèmes d'analyse musicale vus sous le prisme de la topologie
algébrique. Plus précisément, notre but est de faire intervenir l'homologie persistante dans
le cadre de l'analyse topologique de données appliquée à des représentations symboliques de
partitions de musique, à savoir des �chiers MIDI. Les travaux que nous présentons ici s'inscrivent
donc dans l'axe de recherche � traitement de l'information musicale à partir de représentations
symboliques � de la communauté Music Information Research (voir [46]).

Dans cette introduction, nous proposons de dresser un état de l'art du domaine, puis nous
donnons la problématique générale et présentons l'organisation du manuscrit.

Historique

✭ Partitions, fichiers MIDI et complexes simpliciaux

En analyse symbolique, le support de travail qui sert de représentation de morceaux de musique
est donné par les �chiers MIDI. Un �chier MIDI (Musical Instrument Digital Interface) est une
liste des évènements musicaux qui se produisent dans une partition donnée et qui sont présentés
sous la forme d'une suite de messages symboliques. Ces données correspondent à des notes qui
peuvent être organisées temporellement de la façon suivante :

(onset, length, pitch).

La hauteur (pitch) d'une note est encodée en midicent, à savoir des nombres entiers codés
sur 7 bits permettant ainsi de travailler sur plus de dix octaves (C�1 � 0 et G9 � 127 sur l'échelle
chromatique tempérée). Le temps (onset et length) est quant à lui encodé à l'aide de ticks selon
la correspondance usuelle suivante :

	 � 1920, � � � 960, � � � 480, � �( � 240, � �) � 120, � �* � 60

Une vélocité est également associée à chaque note pour préciser l'intensité avec laquelle celle-
ci est jouée. De telles suites de messages symboliques sont souvent représentées via le � Piano
Roll �, comme l'illustre la �gure 1 (voir [49]).

Un �chier MIDI est donc une suite de messages qu'il est également possible de traiter par le
biais de langages de programmation simples tels que Python. Dans cette thèse, nous utiliserons
le langage Sage ([51]), qui s'apparente à ce dernier, et nous proposons quelques extraits de codes
dans l'annexe A. de ce manuscrit. A noter qu'un �chier MIDI ne contient pas de son numérique,
et que l'étude de ce type de données se fait par opposition à l'étude audio et au traitement du
signal. Par ailleurs, l'une des problématiques de cette thèse fut centrée sur la recherche et le
regroupement de �chiers MIDI sous la forme d'une base de données que nous présentons dans
l'annexe B. de ce document. Cette base de données est disponible sur la page web dédiée :

https://math-musique.pages.math.unistra.fr/midi.html.

13
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Figure 1: Piano Roll d'un �chier MIDI (�gure extraite de [49]).

L'étude des �chiers MIDI fournit en outre une représentation �dèle d'un morceau de musique
et a l'avantage de se modéliser aisément de façon géométrique, plus précisément au moyen de
complexes simpliciaux. En e�et, depuis une dizaine d'années, une telle modélisation symbolique
est devenue un axe d'étude courant dans la communauté MIR, et l'on peut citer entre autre
la thèse de L. Bigo présentée en 2013 ([11]) ainsi que les articles publiés à la suite de celle-ci
([15],[16]) qui constituent les premières contributions sur le sujet. Dans ces travaux, le principe
consiste essentiellement à représenter des collections d'accords par des complexes simpliciaux
dont les sommets sont donnés par des classes de hauteurs, comme l'illustre la �gure 2. Parmi
les applications proposées, on retrouve une représentation simpliciale du Tonnetz d'Euler, dont
nous reprendrons la dé�nition dans ce manuscrit (voir chapitre 5, section 5.2). Cette modélisation
permet en particulier de visualiser un morceau de musique via sa représentation simpliciale en
le projetant en deux dimensions dans le Tonnetz. En particulier, cette étude donnera naissance
aux notions de trajectoire et de compliance d'une pièce, notions toutes deux introduites dans la
thèse de L. Bigo. En parallèle, A. Spicher et ce dernier ont développé le locigiel � HexaChord �
permettant de visualiser la trajectoire d'un �chier MIDI dans un Tonnetz choisi (voir [16]).

Figure 2: Les quinze premiers accords du Prélude Op. 28 No. 4 de F. Chopin. A gauche, sa
représentation simpliciale. A droite, un chemin qui représente l'ordre des accords dans une

région du complexe (�gure extraite de [15]).
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Cependant, cette représentation géométrique d'un morceau de musique reste incomplète
compte tenu de la perte d'informations (notamment temporelle) qu'elle induit. En e�et, un
complexe simplicial représente une � photographie � d'un �chier MIDI à un instant donné, mais
la notion de temps qui semble pourtant centrale dans l'étude d'un morceau de musique est lais-
sée de côté a�n de s'intéresser essentiellement à l'organisation des hauteurs. C'est ainsi que les
notions de persistance et de �ltration entre en jeu.

✭ Filtration, persistance et premiers codes barres

L'idée d'étendre le procédé présenté dans le paragraphe précédent à l'homologie persistante est
apparue naturellement dans la modélisation de morceaux de musique : en e�et, si un complexe
simplicial fournit une représentation géométrique d'une pièce à un instant donné (par exemple
en associant un sommet à une classe de hauteur), la perte de l'information temporelle semble
non négligeable. En ce sens, une �ltration de complexes simpliciaux permet de contourner ce
problème en ajoutant une dimension supplémentaire. Comme premiers travaux de recherche face
à cette nouvelle problématique, on peut citer l'article de W. A. Sethares écrit en 2010 (voir [47])
et notamment la thèse de M. G. Bergomi présentée en 2016 (voir [8]).

Le principe fondamental de l'homologie persistante est de généraliser le calcul de l'homologie
simpliciale d'un complexe à celui d'une �ltration, soit une suite de complexes imbriqués les uns
dans les autres, et d'observer l'évolution des classes d'homologie à travers des diagrammes appelés
codes-barres. Un code-barres est un graphique sur lequel sont représentées les durées de vie des
classes d'homologie à degré �xé dans une �ltration donnée. Ces durées sont matérialisés par des
� barres � dont le début et la �n correspondent respectivement à la � naissance � et à la � mort �
d'une classe. Ainsi, si F � �Ki�i est une �ltration (�nie) de complexes simpliciaux et BCd�F� le
code-barres associé à un degré �xé d, on peut simplement décrire ce code-barres par un ensemble
de points dans N2 :

BCd�F� � ��bi, di� S bi début de la classe i, di �n de la classe i� ` N2.

La �gure 3 donne un exemple de �ltration de complexes simpliciaux et de la famille de
codes-barres associée (en degrés 0 et 1).
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4 1
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3

4 1

2

3

4 1
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3
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3

4 1
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4

(a) Une �ltration de complexes simpliciaux.

(b) La famille de codes-barres associée à la �ltration 3a en degré 0 (gauche) et degré 1
(droite).

Figure 3: Filtration de complexes simpliciaux et codes-barres.
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En analyse topologique de données, un des objectifs principaux est d'étudier un objet �xé
(dans notre cas un morceau de musique) à travers ses caractéristiques topologiques. Pour ce
faire, on en extrait un nuage de points dont on construit un complexe �ltré, puis on calcule
l'homologie persistante associée, que l'on représente par une famille de codes-barres. En e�et,
ce sont ces représentations graphiques de l'homologie persistante qui nous aident à identi�er les
éléments topologiques caractéristiques de notre objet de départ : plus précisément, une classe qui
� survit � durant une majeure partie de la �ltration est un élément qui persiste et qui représente
donc potentiellement une propriété topologique importante, tandis qu'une classe qui � meurt �
rapidement représente du bruit et peut être ignorée. Ces notions de durée de vie se traduisent
aisément par la longueur des barres dans le code-barres considéré.

Ainsi, l'homologie persistante permet d'associer une signature topologique à une partition de
musique via les codes-barres. Dans la littérature, on retrouve souvent une représentation de ces
graphiques sous la forme de diagrammes de persistance. Il s'agit de graphiques où les abscisses
et ordonnées représentent respectivement la naissance et la mort des classes d'homologie, et où
une classe qui persistent est une barre verticale. Par exemple, la �gure 4 extraite de la thèse de
Bergomi illustre des diagrammes de persistance obtenus sur une famille de morceaux de musique
classique. Ces diagrammes ont été construits en plongeant des séquences musicales dans le
Tonnetz suivant le travail e�ectué dans [15], et en utilisant ensuite la durée des notes dans le but
de � déformer � le Tonnetz et ainsi de �ltrer les séquences étudiées.

Parmi les travaux actuels d'applications de l'homologie persistante à l'analyse musicale es-
sentiellement basés sur la thèse de Bergomi, on peut citer entre autre les articles [10], [14], [39]
et [52].

Figure 4: Les diagrammes de persistance en degrés 0 représentants les empreintes topologiques
associées à trois compositions di�érentes (�gure extraite de [8]).

Un autre travail réalisé quelques années plus tôt autour de l'analyse topologique de données
musicales est celui de W. A. Sethares (voir [47]). Dans cet article paru en 2010, l'auteur ne
propose pas de transformer une pièce en un complexe simplicial via les classes de hauteurs et
ne mentionne pas le Tonnetz. En revanche, il propose de reconnaître trois structures musicales
classiques - le cercle chromatique, le cercle des quintes et une représentation circulaire du rythme
- dans di�érentes morceaux de musique. En mettant en place une distance sur les classes de
hauteurs et les rythmes, l'auteur convertit un �chier MIDI en une matrice, lui permettant ainsi
de passer à un nuage de points puis à un complexe simplicial �ltré en appliquant la méthode
de Vietoris-Rips (ou clique-complexes). Ce procédé consiste à ajouter des n-simplexes au nuage
de points à mesure qu'un certain paramètre augmente. Plus ce paramètre est petit et plus les
points sont séparés tandis qu'à l'inverse, plus ce paramètre est grand et plus le complexe obtenu
est trivial et topologiquement équivalent à un seul point. L'intérêt est donc d'arrêter la �ltration
et d'analyser le complexe correspondant au � bon � paramètre, c'est à dire au moment où les
caractéristiques topologiques sont correctement représentées. Cette méthode de construction est
présentée dans l'article [27] de R. Ghrist ainsi que dans le chapitre 4 de cette thèse, et la �gure
5 en illustre le procédé.
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(a) Une �ltration de Rips associée à un nuage de
points représentant un anneau. Plus ϵ augmente,
plus des cycles apparaissent et disparaissent.

Lesquels d'entre eux sont réels et lesquels sont du
bruit ?

(b) [en bas] Un exemple de codes-barres pour
H
�
�R� dans l'exemple de la �gure 5a. [en haut]
Le rang de Hk�Rϵi� est égal au nombre

d'intervalles du code-barres de Hk�R� selon la
ligne (en pointillés) ϵ � ϵi.

Figure 5: Filtration de Vietoris-Rips et codes-barres associés (�gures extraites de [27]).

De cette façon, Sethares calcule des codes-barres sur des morceaux arti�ciellement construits
dans un premier temps comme des gammes, puis sur une base de données de �chiers MIDI : il y
retrouve les structures musicales attendues en étudiant essentiellement les degrés 0 et 1. A titre
d'exemple, on peut citer la �gure 6 extraite de [47] qui représente di�érents codes-barres obtenu
à partir d'un Choral de Bach.

Figure 6: Codes-barres obtenus à partir du Choral de Bach No. 19 (�gure extraite de [47]).

Les travaux de la dernière décennie e�ectués autour de l'homologie persistante appliquée à
l'analyse musicale présentent les pistes de recherche actuelles, et toutes démarrent avec la même
question fondamentale, qui constitue également la problématique de départ de cette thèse :
comment représenter un morceau de musique par une �ltration de complexes simpliciaux ? L'idée
d'associer une classe de hauteur à un sommet semble intuitive mais a l'inconvénient de produire
des complexes de très grande dimension (au moins douze si on ne se restreint qu'à une seule
octave) et de laisser de côté les rythmes ainsi que les durées des notes. Projeter dans un Tonnetz
ou encore �ltrer en utilisant les durées sont des choix qui permettent d'a�ner la première idée
et qui semblent produire des résultats prometteurs en ce qui concerne la classi�cation stylistique
(voir le paragraphe suivant). Dans cette thèse, nous ferons le choix arbitraire de décrire une pièce
de musique à travers ses mesures : pour une partition donnée, il existe un découpage naturel
donné par la signature rythmique du morceau. Ce découpage permet ainsi de � zoomer � sur
des morceaux de la partition, de la même façon qu'on découperait une image en plusieurs pièces
d'un même puzzle. Chacune de ces pièces peut alors être décrite comme un sous-ensemble B de
la forme :
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�n � �onset, pitch� S n > B� (�)

où les coordonnées onset et pitch vivent respectivement dans Z ~tZ et Z ~pZ, avec t une unité de
temps et p une unité de hauteur. Ainsi, une partition est dé�nie comme un ensemble �ni non-
ordonné de mesures distinctes, et cette description permet d'associer un nuage de points à une
partition, où chaque point est alors donné par une mesure contenant les informations rythmiques
et fréquentielles des notes jouées.

✭ Le problème de la classification automatique du style

Parmi les applications majeures de l'analyse topologique de données musicales, on retrouve bien
souvent la question de la classi�cation automatique du style, qui fera l'objet du chapitre 7 de
cette thèse. L'article [10] de Bergomi en est un précurseur, et on peut citer à titre d'exemple la
�gure 7 sur laquelle on observe un dendrogramme obtenu à l'aide des diagrammes de persistance
munis de la distance Bottleneck.

Figure 7: Dendrogramme basé sur la persistance de neuf pièces classiques et contemporaines
(�gure extraite de [10]).

Une question essentielle ici est donc celle de la distance sur l'ensemble des codes-barres : en
e�et, si ces derniers permettent d'associer une signature topologique à un morceau de musique, il
semble nécessaire de dé�nir une distance sur l'ensemble de ces objets si l'objectif est de comparer
plusieurs pièces entre elles. Comme nous l'avons énoncé brièvement plus haut, la métrique la
plus populaire sur les diagrammes de persistance est donnée par la distance Bottleneck (voir par
exemple [10], [19], ou encore [32]). Si BC1 et BC2 sont deux diagrammes de persistantes (ou
codes-barres), on pose ϕ � BC1 � BC2 une des applications qui, à chaque élément de BC1, associe
soit un élément de BC2 si les codes-barres sont de même cardinaux, soit dans le cas contraire
son projeté sur la diagonale x � y. La distance Bottleneck entre BC1 et BC2 est alors donnée
par (��) :

dq�BC1,BC2� � inf
ϕ � BC1�BC2

�� sup
�b,d�>BC1

Õ �b, d� � ϕ�b, d� Õq�� (��)

La �gure 8 extraite de [32] présente un exemple de calcul de la distance Bottleneck. Sur cette
illustration, on constate bien que cette dé�nition provient d'une interprétation géométrique des
diagrammes de persistance, mais qui laisse de côté l'interprétation des codes-barres du point de
vue de la durée de vie des classes d'homologie, et donc de la longueur des barres. Dans cette thèse,
notre représentation de l'homologie persistante sera exclusivement donnée par des codes-barres,
qui nous semblent en e�et plus proches de l'interprétation en terme de persistance des classes,
et donc bien de la longueur des barres. De ce fait, la distance Bottleneck n'apparaît pas comme
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un outil de comparaison intuitif de tels graphiques, et nous proposons donc de comparer deux
codes-barres en calculant des statistiques (moyenne, écart-type et entropie) sur ces ensembles,
comme présenté dans l'article [39]. Ce point de vue nous permettra entre autre de produire des
résultats de classi�cations prometteurs qui seront présentés dans le chapitre 7 de ce manuscrit.

Figure 8: Description schématique de la manière de calculer la distance Bottleneck entre deux
diagrammes de persistance (PD) (�gure extraite de [32]).

Notons par ailleurs que le problème de la classi�cation automatique du style et de distance
entre les codes-barres n'est pas l'unique sujet auquel se prête l'homologie persistante dans le
contexte de l'analyse musicale, et qu'il ne constitue qu'une seule des quatre applications pro-
posées dans cette thèse. Par exemple, l'objectif de Sethares était essentiellement de retrouver,
au moyen des codes-barres, des structures musicales dans des morceaux parfois arti�ciellement
construits, comme simplement des gammes. Cette étude se rapproche des problèmes traités dans
les chapitres 5 et 6 de ce manuscrit, dans lesquels notre objectif est d'analyser des codes-barres
provenant de partitions construites à partir de gammes, de Tonnetze ou encore de morceaux
harmonisés extraits de la musique Pop.

✭ De l'analyse de données à la DFT

Associer une �ltration de complexes à un morceau de musique nécessite d'en extraire un nuage
de points, à savoir une collection de points dans un espace métrique. Comme mentionné dans les
paragraphes précédents, nous appliquerons pour cela la méthode de Vietoris-Rips sur un nuage
de points donné par les mesures d'une partition. Il reste donc à établir une distance entre nos
sommets, et c'est à cet endroit qu'intervient la Transformée de Fourier Discrète (DFT).

La DFT est un outil mathématique qui permet de modéliser des séquences musicales simples,
comme des gammes ou des collections de rythmes. Historiquement, elle a été introduite dans le
contexte de l'analyse musicale en 1959 par D. Lewin (voir [35]), dont l'objectif était de formaliser
la notion de contenu intervallique entre deux ensembles de classes de hauteur. Cette formalisation
a conduit au lemme de Lewin, que nous généralisons dans cette thèse au cas de la dimension
deux (voir théorème 2.2.4). Au début des années 2000, une série de travaux ont suivi le dernier
article de Lewin sur le sujet ([36]), parmi lesquels on peut citer les problèmes liés à la notion
d'homométrie (voir [37], [38]) ou encore de canons rythmiques (voir [3], [55]). Suite à cela, la
DFT et ses applications à l'analyse musicale se sont réellement popularisées notamment grâce
aux travaux d'E. Amiot et J. Yust (voir par exemple [4], [5], [54] et [56]).

Dans cette thèse, nous nous intéressons essentiellement à la modélisation d'une séquence
musicale au moyen de la DFT : si P � �p1, . . . , pN� est une suite de classes de hauteurs (ou de
données rythmiques) dans Z ~nZ, alors on peut lui associer une liste de n coe�cients de Fourier�FP�0�, . . . ,FP�n� 1��, où FP�x� est donné par la somme d'exponentielles complexes suivante
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FP�x� � Q
k>P

exp��2iπkx
n

� .
Ainsi, comparer deux séquences musicales données revient à comparer leur liste respectives

de coe�cients de Fourier. La �gure 9 extraite du livre d'Amiot [4] illustre la comparaison entre
une mélodie et son accompagnement dans un morceau de Bartok. Les séquences musicales sont
modélisées via le module des coe�cients de Fourier.

Figure 9: La DFT (en module) d'une mélodie et son accompagnement chez Bartok (�gure
extraite de [4]).

Comme nous l'avons mentionné précédemment, l'objectif principal de cette thèse est de mod-
éliser des partitions en utilisant une description donnée par leurs mesures. Dans ce contexte,
la DFT se révèle prometteuse car, en généralisant le modèle précédent au cas de la dimension
deux, on obtient une représentation similaire à la notion de mesure évoquée en (�), et comparer
deux telles mesures revient alors à comparer les matrices de coe�cients de Fourier associées.
Notre modèle est donc le suivant : une partition de musique est un ensemble �ni non-ordonnés
de mesures distinctes �B1, . . .BN�, et chaque mesure est un sous-ensemble de Z ~tZ�Z ~pZ, où
t est une unité de temps (par exemple t � 8 si on choisit la croche comme unité) et p une unité
de hauteurs (par exemple p � 12 si on travaille dans une octave). On note Bt,p l'ensemble de
toutes les mesures de Z/tZ �Z/pZ. Alors, on associe à Bt,p la métrique donnée par la DFT en
deux dimensions : si B et B� sont deux mesures dans Bt,p, alors leur distance est donnée par

dDFT�B,B�� � t

Q
x�1

p

Q
y�1

SFB�x, y� �FB��x, y�S
où FB�x, y� est le �x, y�-coe�cient de Fourier de B dé�ni par

FB�x, y� � Q
�k,l�>B

exp��2iπkx
t

� exp��2iπly
p

� .
Ainsi, �Bt,p,dDFT� est un espace métrique, et une partition de musique devient un nuage

de points, où chaque point est donné par un sous-ensemble de �Bt,p,dDFT�. Alors, grâce à
la méthode de Vietoris-Rips présentée plus haut, on associe une �ltration de complexes à un
morceau de musique via le nuage de points ainsi construit, ce qui permet alors de calculer
l'homologie persistante et d'en extraire une famille de codes-barres. Il s'agit du point de vue qui
sera étudié tout au long de ce manuscrit. D'autre part, cette modélisation o�re la possibilité
de généraliser des résultats théoriques classiques sur la DFT en dimension deux, comme par
exemple le lemme de Lewin sur le contenu intervallique que nous avons déjà évoqué, ou encore
le théorème de l'hexachorde de Babbitt ([6]).
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Organisation du document

Ce manuscrit se découpe en trois grandes parties : les deux premières sont consacrées à l'étude
des objets mathématiques utilisés, à savoir l'homologie persistante et la transformée de Fourier
discrète, tandis que la troisième est réservée aux di�érentes applications musicales.

Dans la première partie (I), nous généralisons la notion de DFT introduite par Lewin au
cas de la dimension deux. Plus précisément, nous explicitons dans le chapitre 1 le passage
d'une mesure à un sous-ensemble de Z/tZ �Z/pZ, puis nous dé�nissons la notion de DFT-
distance sur l'ensemble des mesures. Dans le chapitre 2, nous proposons de généraliser certains
résultats théoriques classiques sur la DFT tels que le lemme de Lewin sur le contenu intervallique
(théorème 2.2.4) ou encore le théorème de l'hexachorde de Babbitt (théorème 2.3.1). En�n, nous
clôturons cette première partie par l'étude des isométries sur l'ensemble �Bt,p,dDFT� des mesures
de Z/tZ �Z/pZ (section 2.4).

La deuxième partie de cette thèse (II) est découpée en deux chapitres : dans le premier (3),
nous faisons quelques rappels de théorie simpliciale, puis nous nous concentrons sur la dé�nition
de �ltration, d'homologie persistante et plus particulièrement de codes-barres. Dans le chapitre
suivant (4), nous dé�nissons le modèle qui servira de support tout au long de cette thèse, à savoir
la modélisation d'une partition comme nuage de points via ses mesures et la DFT-distance.

Dans la troisième et dernière partie de ce manuscrit (III), nous proposons quatre applications
musicales de notre modèle. La première est consacrée au problème inverse, à savoir appliquer
notre procédé d'extraction de codes-barres à des partitions arti�ciellement construites, telles
que des gammes ou des Tonnetze. On retrouve alors des caractéristiques topologiques connues
comme par exemple le tore sur le Tonnetz d'Euler (chapitre 5). Dans le chapitre 6, nous proposons
d'étudier des morceaux de musique Pop harmonisés en réduisant uniquement à deux pistes, la
mélodie et l'accompagnement. Ce procédé permet notamment d'associer un � graphe-type � et
une � complexité � à un morceau donné. La troisième application constitue une partie essentielle
de cette thèse, puisqu'on s'intéresse ici à la problématique de la classi�cation automatique du
style musical via l'homologie persistante (chapitre 7), où notre modèle basé sur la DFT semble
produire des résultats prometteurs. En�n, le chapitre 8 est consacré à une façon di�érente
d'encoder les mesures d'un morceau via une autre distance donnée par la métrique de Hausdor�,
qui fournit notamment des résultats satisfaisants sur la structure globale de certains morceaux
de musique.

Nous clôturons ce manuscrit par une conclusion générale et des annexes consacrées aux codes
utilisés pour notre travaux (Annexe A.) et à une présentation de notre base de données MIDI
(Annexe B.).





Introduction (English)

This thesis focuses on various music-analytical problems seen through the prism of algebraic
topology. More speci�cally, our aim is to apply persistent homology to topological data analysis
with symbolic representations of musical scores such as MIDI �les. The work we present here
is therefore part of the "processing musical information from symbolic representations" research
axis of the Music Information Research community (see [46]).

In this introduction, we present the state of the art in the �eld, then outline the general
problem and present the organization of the manuscript.

Historical survey

✭ Scores, MIDI files and simplicial complexes

In symbolic analysis, the support for representing musical pieces and scores is provided by MIDI
�les. A MIDI �le (Musical Instrument Digital Interface) is a list of musical events occurring in
a given score, presented in the form of a sequence of symbolic messages. These data correspond
to notes, which can be organized temporally as follows:

(onset, length, pitch).

The pitch of a note is encoded in midicent, i.e. whole numbers encoded on 7 bits, enabling
us to work on more than ten octaves (C�1 � 0 and G9 � 127 on the tempered chromatic scale).
Time (onset and length) is encoded using ticks according to the following usual correspondence:

	 � 1920, � � � 960, � � � 480, � �( � 240, � �) � 120, � �* � 60

A velocity is also associated with each note to specify the intensity with which it is played.
Such symbolic message sequences can be interpreted via the "Piano Roll", as illustrated in Figure
1 (see [49]).

A MIDI �le is therefore a sequence of messages that can also be processed using simple
programming languages such as Python. In this thesis, we will be using the Sage language ([51]),
which is similar to Python, and we will be providing some extracts of codes in Appendix A. of
this manuscript. Note that a MIDI �le contains no digital sound, and that the study of this
type of data is complementary to the study of audio and signal processing. In addition, one of
the issues addressed in this thesis was the retrieval and grouping of MIDI �les in the form of a
database, which we present in Appendix B. of this document. This database is also available on
the dedicated web page:

https://math-musique.pages.math.unistra.fr/midi.html.
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Figure 1: Piano Roll of an MIDI �le (extract from [49]).

The study of MIDI �les also provides a faithful representation of a piece of music, and has the
advantage of being easily modeled geometrically, more precisely by means of simplicial complexes.
In fact, over the last ten years, such symbolic modeling has become a common line of study in
the MIR community: we can mention L. Bigo's thesis defended in 2013 ([11]) and the articles
published following it ([15],[16]), which are the �rst contributions on the subject. In this paper,
the principle essentially consists in representing collections of chords by simplicial complexes
whose vertices are given by pitch-classes, as illustrated in Figure 2. Among the applications
proposed, the authors provide a simplicial representation of Euler's Tonnetz, whose de�nition is
summarized in this manuscript (see Chapter 5, Section 5.2). In particular, this modeling allows
us to visualize a piece of music by its simplicial representation, by projecting it in two dimensions
into the Tonnetz. In particular, this study gave rise to the notions of trajectory and compliance
of a piece, notions both introduced in L. Bigo's thesis. At the same time, A. Spicher and L. Bigo
developed the "HexaChord" software for visualizing the trajectory of a MIDI �le in a selected
Tonnetz (see [16]).

Figure 2: Fifteen �rst chords of Chopin's Prelude Op. 28, No. 4. On the left its simplicial
representation. On the right, a path represents the order of chords in a region of the complex

(extract from [15]).

However, this geometric representation of a piece of music remains incomplete, given the loss
of (temporal) information that it induces. Indeed, a simplicial complex represents a "picture"
of a MIDI �le at a given moment, but the notion of time, which seems central in the study of
a musical piece, is left aside in order to focus essentially on the organization of pitches. This is
how the notions of persistence and �ltration comes into play.
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✭ Filtration, persistence and first barcodes

The idea of extending the procedure presented in the previous paragraph to persistent homology
came naturally in the modeling of musical pieces: indeed, if a simplicial complex provides a
geometric representation of a piece at a given instant (for example, by associating a vertex with
a pitch class), the loss of temporal information seems non-negligible. In this sense, a �ltration of
simplicial complexes allows us to get around this problem by adding an extra dimension. Initial
research work on this new problem includes W. A. Sethares's paper written in 2010 (see [47])
and M. G. Bergomi's thesis defended in 2016 (see [8]).

The fundamental principle of persistent homology is to generalize the calculation of the
simplicial homology of a single complex to a whole �ltration, i.e. a sequence of complexes nested
within each other, and to observe the evolution of homology classes through diagrams called
barcodes. A barcode is a graph on which are represented the lifetimes of homology classes at a
�xed degree in a given �ltration. These durations are represented by "bars", whose beginning
and end correspond respectively to the "birth" and "death" of classes. Thus, if F � �Ki�i is a
(�nite) �ltration of simplicial complexes and BCd�F� the associated barcode with a �xed degree
d, we can simply describe this barcode by a set of points in N2:

BCd�F� � ��bi, di� S bi birth of class i, di death of class i� ` N2.

Figure 3 shows an example of simplicial complex �ltration and its associated family of bar-
codes (in degrees 0 and 1).
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(a) A �ltration of a simplicial complex.

(b) The associated family of barcodes with 3a in degree 0 (left) and degree 1 (right).

Figure 3: Filtration and barcodes.

In topological data analysis, one of the main objectives is to study a �xed object (in our
case, a piece of music) through its topological features. To do this, we extract a point cloud from
which we construct a �ltered complex, then calculate the associated persistent homology, which
we represent by a family of barcodes. Indeed, these graphical representations of the persistent
homology help us to identify the characteristic topological elements of our starting object: more
precisely, a class that "survives" for a major part of the �ltration is an element that persists
and therefore represents an important topological property, whereas a class that "dies" quickly
represents noise and can be ignored. These notions of lifetime are easily translated into the
length of the bars in barcodes.

In this way, persistent homology makes it possible to associate a topological signature with
a musical score by means of barcodes. In the literature, these graphs are often represented as
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persistence diagrams, which are graphs where the x-axis and y-axis represent respectively the
birth and death of homology classes, and where a persisting class is a vertical bar. For example,
Figure 4 from Bergomi's thesis illustrates persistence diagrams obtained on a family of classical
music pieces. These diagrams were constructed by embedding musical sequences into the Euler's
Tonnetz following the approach described in [15], and then using note duration to "deform" the
resulting Tonnetz and �lter the studied sequences.

Among current works on the application of persistent homology to music analysis essentially
based on Bergomi's thesis, we can mention the articles [10], [14], [39] and [52].

Figure 4: The 0-persistence diagrams representing the topological �ngerprints associated to
three di�erent compositions (extract from [8]).

Another work carried out a few years earlier around the topological analysis of musical data
is the article by W. A. Sethares in 2010 (see [47]). In this paper, the author does not propose to
transform a piece into a simplicial complex via pitch-classes, nor does he mention the Tonnetz.
Instead, he proposes to recognize three classical musical structures - the chromatic circle, the
circle of �fths and a circular representation of rhythm - in di�erent pieces of music. By setting up
a distance on pitch-classes and rhythms, the author converts a MIDI �le into a matrix, allowing
him to pass to a point cloud and then to a �ltered simplicial complex by applying the Vietoris-
Rips (or clique-complex) method. This process consists of adding n-simplices to the point cloud
as a certain parameter increases. The smaller the parameter is, the more separated the points
are, while conversely, the larger the parameter is, the more trivial and topologically equivalent
to a single point the resulting complex is. The point is therefore to analyze the complex for the
"right" parameter, i.e. when the topological features are correctly represented. This construction
method is presented in the article [27] by R. Ghrist and in Chapter 4 of this thesis, and Figure 5
illustrates the procedure. In this way, Sethares �rst calculates barcodes on arti�cially constructed
pieces such as musical scales, then on a database of MIDI �les: he �nds the expected musical
structures by essentially studying the 0 and 1 degrees. An example is Figure 6 from [47], which
represents some barcodes obtained from a Bach Chorale.

During the last decade, work on persistent homology applied to music analysis presents the
current lines of research, all raising the same fundamental question, which is also the starting
point of this thesis: how can a piece of music be represented by a �ltration of simplicial complexes?
The idea of associating a pitch class with a vertex seems intuitive, but has the disadvantage of
producing very high-dimensional complexes (at least twelve if we restrict the study to a single
octave!) and leaving out the rhythms and durations of the notes. Projecting into a Tonnetz or
�ltering using durations are choices that help re�ne the �rst idea and seem to produce promising
classi�cation results (see next paragraph). In this thesis, we will make the arbitrary choice of
describing a piece of music through its musical bars: for a given score, there is a natural division
given by the meter of the piece. This division allows us to zoom in on parts of the score, in
the same way as we would divide a picture into several pieces of the same puzzle. Each of these
pieces can then be described as a B subset of the form
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�n � �onset, pitch� S n > B� (�)

where the coordinates both live in Z ~tZ and Z ~pZ respectively, with t a unit of time and p a
unit of pitch. Thus, a score is de�ned as a �nite, non-ordered set of distinct musical bars, and
this description allows us to associate a point cloud with a score, where each point is then given
by a musical bar containing the rhythmic and frequency information of the notes that are played.

(a) A sequence of Rips complexes for a point
cloud data set representing an annulus. Upon

increasing ϵ, holes appear and disappear. Which
holes are real and which are noise?)

.

(b) [bottom] An example of the barcodes for
H
�
�R� in the example of Figure 5a. [top] The

rank of Hk�Rϵi� equals the number of intervals in
the barcode for Hk�R� intersecting the (dashed)

line ϵ � ϵi.

Figure 5: Vietoris-Rips �ltration and associated barcodes (extract from [27]).

Figure 6: Barcodes for Bach's Chorale No. 19 (extract from [47]).

✭ The automatic style classification problem

Among the major applications of topological analysis of musical data, we often �nd the question
of automatic style classi�cation, which will be the subject of Chapter 7 of this thesis. Bergomi's
article [10] is a precursor, and we can mention as an example Figure 7 on which we observe a
dendrogram obtained using persistence diagrams equipped with Bottleneck distance.

An important question here is about the metric on the set of barcodes: indeed, if the latter
enable us to associate a topological signature with a piece of music, it seems necessary to de�ne a
distance on the set of these objects if the aim is to compare several pieces with each other. As we
brie�y stated above, the most popular metric on persistence diagrams is given by the Bottleneck
distance (see for example [10], [19], or [32]). If BC1 and BC2 are two persistent diagrams (or
barcodes), let ϕ � BC1 � BC2 be one of the applications which associates with each element of
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BC1 either an element of BC2 if the barcodes have the same cardinalities, or its projection on
the diagonal x � y otherwise. The Bottleneck distance between BC1 and BC2 is then given by
(��):

dq�BC1,BC2� � inf
ϕ � BC1�BC2

�� sup
�b,d�>BC1

Õ �b, d� � ϕ�b, d� Õq�� (��)

Figure 7: Persistence-based clustering of nine classical and modern pieces (extract from [10]).

Figure 8 from [32] shows an example of Bottleneck distance calculation. In this illustration,
it is clear that the de�nition (��) comes from a geometric interpretation of persistence diagrams,
but which leaves out the interpretation of barcodes from the point of view of homology class
lifetimes and therefore bar lengths. In this thesis, our representation of persistent homology will
be given exclusively by barcodes, which indeed seem to us closer to the interpretation in terms of
class persistence, and indeed of bar length. As a result, the Bottleneck distance does not appear
to be an intuitive tool for comparing such graphs, and we thus propose to compare two barcodes
by computing statistics (mean, standard deviation and entropy) on these sets, as presented in
the article [39]. This approach will enable us to produce satisfactory classi�cation results, which
will be presented in Chapter 7 of this manuscript.

It should also be noted that the problem of automatic classi�cation of style and distance
between barcodes is not the only subject to which persistent homology lends itself in the context
of music analysis, and that it constitutes only one of the four applications proposed in this thesis.
For example, the aim of Sethares was essentially to use barcodes to recover musical structures
in sometimes arti�cially constructed pieces (such as scales), which is similar to the problems we
focus on in Chapters 5 and 6 of this manuscript, in which our aim is to analyze barcodes from
scores built on scales, Tonnetze or harmonized pieces extracted from Pop music.

Figure 8: A schematic description how to calculate the bottleneck distance between two
persistence diagrams (PDs). A point without a counterpart in the other PD is regarded as

corresponding to the diagonal line (extract from [32]).
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✭ From data anlysis to Discrete Fourier Transform

Associating a �ltered complex with a piece of music requires extracting a point cloud, i.e. a
collection of points in a metric space. As mentioned in the previous paragraphs, we will apply
the Vietoris-Rips method to a point cloud built from the musical bars of a score. All that remains
is to establish a distance between our vertices, and this is where the Discrete Fourier Transform
(DFT) comes in.

The DFT is a mathematical tool for modeling simple musical sequences, such as scales or
collections of rhythms. Historically, it was introduced into the context of music analysis by D.
Lewin in 1959 (see [35]), whose aim was to formalize the notion of interval content between two
sets of pitch-classes. This formalization leads to Lewin's Lemma, which we generalize in this
thesis to the two-dimensional case (see Theorem 2.2.4). In the early 2000s, a series of works
followed Lewin's last paper on the subject ([36]), including problems linked to the notion of
homometry (see [37], [38]) or rhythmic canons (see [3], [55]). Following this, the DFT and its
applications to music analysis became truly popular, notably thanks to the work of E. Amiot
and J. Yust (see for example [4], [5], [54] and [56]).

In this thesis, we are primarily interested in modeling a musical sequence using the DFT:
if P � �p1, . . . , pN� is a sequence of pitch-classes (or rhythmic data) in Z ~nZ, then it can be
associated with a list of n Fourier coe�cients �FP�0�, . . . ,FP�n � 1��, where FP�x� is de�ned
by the sum of complex exponentials

FP�x� � Q
k>P

exp��2iπkx
n

� .
Thus, to compare two given musical sequences is to compare their respective lists of Fourier

coe�cients. Figure 9 from Amiot's book [4] illustrates the comparison between a melody and its
accompaniment in a piece by Bartok. The musical sequences are modeled using the module of
the Fourier coe�cients.

Figure 9: DFT magnitudes of melody and accompaniment in Bartok (extract from [4]).

As brie�y mentioned above, our aim in this thesis is to model scores using a description
given by their musical bars. In this context, the DFT seems promising because, by generalizing
the previous model to the case of dimension two, we obtain a representation similar to the
notion of musical bar we presented with (�), and comparing two such musical bars then amounts
to comparing the associated Fourier coe�cient matrices. Our model is therefore as follows: a
musical score is a �nite non-ordered set of distinct musical bars �B1, . . .BN�, and each musical
bar is a subset of Z ~tZ�Z ~pZ, where t is a time-unit (for instance t � 8 if we choose the eighth
note as unit) and p a pitch-unit (for instance p � 12 if we work in an octave). Let Bt,p be the
set of all musical bars in Z/tZ �Z/pZ. If B and B� are two elements of Bt,p, then their distance
is given by

dDFT�B,B�� � t

Q
x�1

p

Q
y�1

SFB�x, y� �FB��x, y�S
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where FB�x, y� is the �x, y�-Fourier coe�cient of B de�ned by

FB�x, y� � Q
�k,l�>B

exp��2iπkx
t

� exp��2iπly
p

� .
Thus, �Bt,p,dDFT� is a metric space, and a musical score becomes a point cloud, where each

point is given by a subset of �Bt,p,dDFT�. Then, thanks to the Vietoris-Rips method presented
above, we associate a complex �ltration with a piece of music by means of the point cloud thus
constructed, which then allows us to compute the persistent homology and extract a family of
barcodes. This is the point of view that will be studied throughout this manuscript. On the other
hand, this modeling o�ers the possibility of generalizing classical theoretical results on the DFT
in dimension two, such as Lewin's lemma on interval content that we have already mentioned,
or also Babbitt's Hexachord theorem ([6]).

Document layout

The manuscript is divided into three main parts: the �rst two are devoted to the study of the
mathematical objects we used, namely persistent homology and the discrete Fourier transform,
while the third is devoted to various musical applications.

In the �rst Part (I), we generalize the notion of DFT introduced by Lewin to the case of
dimension two. More speci�cally, in Chapter 1, we make explicit the transition from a musical
bar to a subset of Z/tZ �Z/pZ, then de�ne the notion of DFT-distance on the set of bars. In
Chapter 2, we propose to generalize some classical theoretical results on the DFT such as Lewin's
lemma on the interval content (Theorem 2.2.4) or Babbitt's Hexachord theorem (Theorem 2.3.1).
Finally, we close this �rst part with a study of isometries on the set �Bt,p,dDFT� of musical bars
in Z/tZ �Z/pZ (Section 2.4).

The second part of this thesis (II) is divided into two chapters: in the �rst one (3), we give a
few reminders of simplicial theory, then focus on the de�nition of �ltration, persistent homology
and, more speci�cally, barcodes. In the next Chapter (4), we de�ne our model, that means
extract a point cloud from a score by means of its musical bars and the DFT-distance.

In the third and �nal Part of this manuscript (III), we propose four musical applications
of our model. The �rst is devoted to the inverse problem, that means applying our barcode
extraction procedure to arti�cially constructed scores, such as scales or Tonnetze. Here, we
�nd back some well-known topological features such as the torus on Euler's Tonnetz (Chapter
5). In Chapter 6, we propose to study harmonized pieces of Pop music by reducing them to
just two tracks: the melody and accompaniment. This process makes it possible to associate a
"graph-type" and a "complexity" with a given song. The third application is an essential part
of this thesis, as it deals with the problem of automatic classi�cation of musical style by means
of persistent homology (Chapter 7), where our DFT-approach seems to provide some promising
results. Finally, Chapter 8 is devoted to a di�erent way of encoding of musical bars with another
distance given by the Hausdor� metric, which notably provides satisfactory results on the global
structure of certain pieces of music.

We end this manuscript with a general Conclusion and Appendices devoted to the codes used
in our work (Appendice A.) and a presentation of our MIDI database (Appendice B.).
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The two-dimensional Discrete

Fourier Transform
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Chapter 1.

The DFT for modeling basic musical
structures

1.1. Introduction: the model

The Discrete Fourier Transform is commonly used in music theory as a model for basic musical
structures such as scales, chords, rhythms, etc. The idea is the following: for a given musical
sentence, let us say a musical bar, we can consider the set of attack-times or the onsets
(horizontal row) or the set of pitch-classes (vertical column). In both cases, we need to choose
a unit of time and a number of octaves to work with. For instance, in Figure 1.1.1, we consider
a musical bar for which we can look at the set of attack-times as a subset of Z ~8Z, if we take
the quaver note as the unit of time ( � �( � 1), or the set of pitch-classes as a subset of Z ~12Z, if
we choose to work in one octave (twelve notes).

G 4
4 (� � � � �

attack-time
(in Z ~8Z)

pitch-classes
(in Z ~12Z)

Y
0

Y
1

Y
3

Y
5

YA � 9

YE � 4
YF � 5

YD � 2

Figure 1.1.1: A musical bar where the x-axis and y-axis represent time and pitches,
respectively. Using the quaver note as the time-unit ( � �( � 1) and the octave as the ambitus

(twelve notes), T � �0,1,3,5� becomes the set of attack-times and P � �9,4,5,2� becomes the
set of pitch-classes.

Either by looking at the attack-times or the pitch-classes set, we can model these musi-
cal informations with functions of �0,1�Z ~nZ (De�nition 1.1.1) with the aim of computing the
associated Discrete Fourier Transform (De�nition 1.1.2).

De�nition 1.1.1. Let M ` Z ~nZ be a musical structure (chords, scales, rhythms, etc.). The
associated characteristic map 1M � Z ~nZ� �0,1� is given by:

1M � x( � 1 if x >M

0 otherwise.

In general, a function of AZ ~nZ for any subset A ` C can be seen as the n-tuple of its value
in each element of �0,1, . . . , n � 1�. For instance, the associated characteristics maps with the

33
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musical bar of Figure 1.1.1 (for attack-times set T and pitch-classes set P) are respectively given
by:

1T � �0,1,3,5�( �1,1,0,1,0,1,0,0�
and

1P � �9,4,5,2�( �0,0,1,0,1,1,0,0,0,1,0,0�.
We can thus compute their associated Discrete Fourier Transform by following the next

de�nition.

De�nition 1.1.2. Let M ` Z ~nZ be a musical structure (chords, scales, rhythms, etc.).

1. The associated Discrete Fourier Transform FM � Z ~nZ � C (DFT) is the DFT of its
characteristic map 1M � Z ~nZ� �0,1� with the usual de�nition, that is:

FM �Ä1M � Z ~nZ Ð� C

x z�
n�1

P
k�0

1M�k� exp ��2iπkxn
� � P

k>M
exp ��2iπkxn

�
2. The associated Fourier coe�cients are given by the n-tuple of the DFT values on Z ~nZ:

�FM�0�,FM�1�, . . . ,FM�n � 1��
With this de�nition, the DFTs associated with the musical bar of Figure 1.1.1 (for attack-

times set T and pitch-classes set P) are given by the following applications:

FT � Ã1T � Z ~8Z Ð� C

x z� P
k>T

exp ��2iπkx8
�

FP � Ã1P � Z ~12Z Ð� C

x z� P
k>P

exp ��2iπkx12
�

In general, we are interested in the corresponding Fourier coe�cients, which in some cases may
be indicative of some musical information for basic structures such as chords, scales or rhythms
(see [4] for more details in the topic). In our case, we will mostly use the Fourier coe�cients
as a metric to compare several musical bars from the same score together (see Section 4.2). In
the example of Figure 1.1.1, the associated Fourier coe�cients of attack-times T ` Z ~8Z and
pitch-classes set P ` Z ~12Z are given respectively by

�FT �0�,FT �1�, . . . ,FT �7�� � �4,1 � �1
2
i �

1

2
�º2, . . . ,1 � �1

2
i �

1

2
�º2�

and

�FP�0�,FP�1�, . . . ,FP�11�� � �4, �1 � 2
º
3�

2
i �

º
3

2
, . . . ,

�2º3 � 1�
2

i �

º
3

2
� .

Remark 1.1.3. Basic musical structures are also usually represented as n-gons, where n is the
number of notes they contain. For instance, the corresponding illustration for the musical bar
from Figure 1.1.1 is given in Figure 1.1.2. This type of representation for chords, scales, rhythms,
etc. is often used to give a geometric representation of some common musical transformations
such as translations or inversions (see Section 2.4). Also notice that, while this is an intuitive
representation, it is also limited by the musical structure we are studying, such as when we
consider chords together with single notes. Furthermore, we can imagine that the polygon we
draw is not convex if we respect the order of appearance of the notes (see Figure 1.1.3).
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T = �0,1,3,5� ` Z ~8Z
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A ®Y

B Y

P = �9,4,5,2� ` Z ~12Z
Figure 1.1.2: A musical bar and the representations of its attack-times set in Z ~8Z and its

pitch-classes set in Z ~12Z as convex n-gons (n � 4).
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T � �0,1,3,5� ` Z ~8Z

C
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D ®Y

EY
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F ®
YGY

G ®Y

AY

A ®Y

B Y

P � �9,2,4,5� ` Z ~12Z
Figure 1.1.3: A musical bar and the representations its attack-times set in Z ~8Z and its

pitch-classes set in Z ~12Z as non-convex n-gons (n � 4) by respecting the order in which the
notes appear.

1.2. The two-dimensional DFT

The idea now is to use the previous model that is given by the DFT for attack-times set T and
pitch-classes set P by combining both representations. In other words, we will consider T and P
together as a subset of Z ~8Z�Z ~12Z, and we will call it a musical bar, denoted �rst by BT ,P .
Let us take back our example of Figure 1.1.1: Figure 1.2.1 gives a representation of attack-times
set T � �0,1,3,5� and pitch-classes set P � �9,4,5,2� together as a subset of Z ~8Z�Z ~12Z
with the following description:

BT ,P � ��0,9�, �1,4�, �3,5�, �5,2�� ` Z ~8Z�Z ~12Z
This two-dimensional representation leads to the natural de�nition of a musical bar, which

is the musical structure we will always consider in the persistent homology part (see Section II).
For this purpose, we need to �x a unit of time t, which can be chosen by taking the shortest
note in the bar (sometimes called the elementary rhythm) and respecting the correspondence
of Table 1.2.1.

	 � � � � � �( � �) � �*
1 2 4 8 16 32

Table 1.2.1: The table of correspondence between basic note durations and time-units.
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G 4
4 (� � � � �

attack-time
(in Z ~8Z)

pitch-classes
(in Z ~12Z)

Y
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Y
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YA � 9

YE � 4
YF � 5

YD � 2

�9,4,5,2�
�0,1,3,5�

0
Y

1
Y

3
Y

5
Y

DY

EY

FY

AY

Figure 1.2.1: A musical sentence bar with its associated combined two-dimensional modeling
BT ,P � ��0,9�, �1,4�, �3,5�, �5,2�� in Z ~8Z�Z ~12Z

In this table, we give only the usual rhythms, but we can also choose a particular time-unit
when there are irregular divisions like tuplets: for instance, if we want to encode the following
sequence of rhythms

we need to consider that the quarter note � � is divided in half and third, so the sentence is given
by the following beats sequence

1
1

3

1

3

1

3

1

2

1

2
.

Thus, by taking the least common multiple of the denominator, we get our unit of time, which
here is t � 2 � 3 and in this example T � �0,6,8,10,12,15,18�. This method works for any
irregular subdivision of time in a musical bar. We also need to �x th number of notes p we are
working with. Instead of taking one single octave and setting P in Z ~12Z, as is often done in
the one-dimensional case, we will rather consider the number of octaves m > N� �0� in which all
the notes live and therefore set p � 12m. We will call this number p the ambitus.

Remark 1.2.1. Notice that, in this introduction, we rather speak about T and P as sets from
which we build a musical bar BT ,P , but in practice there is no canonical way to reconstruct T
and P from this musical bar. For instance, if BT ,P consists of only one chord with onset 0, such
as BT ,P � ��0,0�, �0,4�, �0,7�� for example, then T should only contain the onset 0 but with
multiplicity 3. There is also the problem of order, since we need to associate the correct elements
of T with those of P. If it is possible to �nd T and P from BT ,P in the simplest cases, as in
Figure 1.2.1, where all the onsets and pitches are di�erent, in practice we would not need to work
with T and P. Indeed, we will only be focusing on a musical bar as a subset of Z/tZ �Z/pZ in
itself, and so we will simply denote this object by B and forget about T and P.

We can now give the proper de�nition of a musical bar.

De�nitions 1.2.2. Let t be a unit of time and p an ambitus, both �xed.

1. A musical bar B with n elements is a subset of Z/tZ �Z/pZ given by

B � ��t1, p1�, . . . , �tn, pn��
where an element �tj , pj� of B is called a note which is characterized by two coordinates:

i� its attack-time or onset tj modulo t
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ii� its pitch-class pj modulo p

2. A musical score S is the non-ordered set of its N distinct musical bars modulo �t, p�:
S � �B1,B2, . . . ,BN� with Bi ` Z/tZ �Z/pZ and Bi x Bj if i x j

We will denoted by Bt,p the set of all the musical bars in Z/tZ �Z/pZ.

Remark 1.2.3. We can also describe any musical bar by using a polynomial point of view: let
B be a musical bar in Z/tZ �Z/pZ. The characteristic polynomial associated with B is given
by

PB�X,Y � � Q
�k,l�>B

XkY l
>

C�X,Y ���Xt � 1, Y p � 1�
Basically, attack-times are encoded by the power of the �rst variable X while pitch-classes

are represented by the power of the second variable Y . For instance, the associated characteristic
polynomial with the musical bar B from Figure 1.2.1 is given by

PB�X,Y � � Y 9 �XY 4 �X2Y 5 �X3
>

C�X,Y ���X8 � 1, Y 12 � 1�
This idea was already developed in [4] for basic musical sentences in Z ~nZ in the one-

dimensional case.

Remark 1.2.4. De�nition 1.2.2 is arbitrary but based on the natural idea of generalizing a
theory that already exists in the one-dimensional case, where we study rhythms and pitches
separately by working respectively with attack-times and pitch-classes sets (see [4]). However,
our de�nition does not provide a bijection between subsets of Z/tZ �Z/pZ and Bt,p: in fact, if
we can describe any musical bar of a given score by characterizing a note with its position and its
pitch in the bar, there are several musical bars that will correspond to the obtained description.
To get the bijection, one can add for example the duration of the note as a third coordinate, as
we will make in the Hausdor� part (see Section 8).

We can now generalize the notion of DFT from one-dimension in two and get a new description
of any musical bar of a given score using a matrix of Fourier coe�cients.

De�nitions 1.2.5. Let B � �T ,P� be a musical bar in Z ~tZ�Z ~pZ.
1. The associated characteristic map 1B � Z ~tZ�Z ~pZ is given by:

1B � �x, y�( � 1 if �x, y� > B
0 otherwise.

2. The associated DFT is the DFT of the characteristic map 1B:

FB � Ã1B � Z ~tZ�Z ~pZ Ð� C

�x, y� z� P
�k,l�>B

exp ��2iπkxt
� exp ��2iπly

p �
3. The associated Fourier coe�cients are given by the following matrix MB >Mt�p�C�:

MB � �FB�x, y��
�x,y�>Z ~tZ�Z ~pZ
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Remark 1.2.6. The DFT of a musical bar B can also be alternatively de�ned by its real and
imaginary values: for every pair �x, y� > Z ~tZ�Z ~pZ, we have

R�FB�x, y�� � P
�k,l�>B

cos �2πkxt �
2πly
p �

I�FB�x, y�� � � P
�k,l�>B

sin �2πkxt �
2πly
p �

and we have the magnitude of a musical bar B:

SFBS �½R�FB �2 � I�FB �2
Remark 1.2.7. This remark follows the 1.2.3 one: recall that we can associate a characteristic
polynomial with any musical bar B. From this polynomial PB, we can also �nd back the Fourier
coe�cients associated with B using the following map:

C�X,Y ���Xt � 1, Y p � 1� � Ctp

PB ( FB

and taking the polynomial evaluation for every pair �k, l� > Z/tZ �Z/pZ:

FB�k, l� � PB�e�2ikπ
t , e

�2ilπ
p �

In this chapter, we de�ned the notion of a musical bar B as a subset of Z/tZ �Z/pZ, and
it was associated with a matrix of Fourier coe�cients MB. In the musical applications, we will
use this matrix to compare several musical bars together: indeed, we can also de�ne a metric on
the set Bt,p using the DFT, and this metric will be the basis of the computations for the next
parts of this manuscript. We de�ne this metric now to prove some theoretical results for the
next chapter.

De�nition 1.2.8. Let B and B� be two elements of Bt,p. The DFT-distance between B and
B� is given by the 1-distance between their respective Fourier coe�cients matrices:

dDFT�B,B�� �ÕMB �MB
� Õ1�

t

Q
x�1

p

Q
y�1

SFB�x, y� �FB��x, y�S
We denoted by �Bt,p,dDFT� the metric space of all the musical bars of Z/tZ �Z/pZ equipped
with the DFT-distance.

We are now able to model any musical bar as a subset of Z/tZ �Z/pZ and use the DFT to
associate a matrix of Fourier coe�cients with it. We have also de�ned a metric for comparing
two musical bars together. Starting from this, we have two general lines of research: a natural
thing to do is to try to generalize some theoretical results from the one-dimensional case (see
next Chapter 2) or we can use this new approach in the context of persistent homology and
Topological Data Analysis by using this new metric from 1.2.8 in order to extract a point cloud
from a given score (see Chapter 4 and Part III).



Chapter 2.

Generalization of theoretical results

In this chapter, our purpose is to generalize some musical properties that the DFT already
satis�es in one dimension, such as the interval content our the Hexachordal Theorem. In fact,
most of the properties that are true in one dimension are also satis�ed in higher dimensions, which
is treated in [50] (Generalization of the DFT in the case of abelian groups): indeed, all the basic
theorems can be extended to this case, and here we simply recall some basic facts (inversion
and convolution) that we need for our musical applications. Notice that we are doing this for
any application f � Z/tZ �Z/pZ � C, and we will use it in the case of the characteristic map
associated with a musical bar B > Ztp.

Theorem 2.0.1 (DFT-inversion in two dimensions). Let f be an application from Z/tZ �Z/pZ
to C. The DFT of f is given by the application

F�f� � Âf � Z ~tZ�Z ~pZ Ð� C

�x, y� z�
t�1

P
k�0

p�1

P
l�0

f�x, y� exp ��2iπkxt
� exp ��2iπly

p �
Then, the two-dimensional DFT is a linear automorphism of Ctp, and its reciprocal map F�1 is
given by

F�1� Âf� � Z ~tZ�Z ~pZ Ð� C

�x, y� z� 1
tp �t�1P

k�0

p�1

P
l�0

Âf�x, y� exp �2iπkxt
� exp �2iπlyp ��

Theorem 2.0.2 (DFT-convolution in two dimensions). Let f and g be two applications from
Z/tZ �Z/pZ to C. We de�ne the convolution product of f and g by

f � g � Z ~tZ�Z ~pZ Ð� C

�x, y� z�
t�1

P
k�0

p�1

P
l�0

f�x � k, y � l�g�k, l�
Then, the DFT of a convolution product is the termwise product of the DFTs of the maps:

¦�x, y� > Z/tZ �Z/pZ, Åf � g�x, y� � Âf�x, y� �Âg�x, y�
Remark 2.0.3. Recall Remarks 1.2.3 and 1.2.7: any musical bar B has an associated charac-
teristic polynomial PB. Now if B and B� are two musical bars, then the convolution product of
B and B� corresponds to the convolution product de�ned in 2.0.2 for the characteristic maps 1B
and 1B� :

B �B� �� 1B �1B�

Then, this convolution product can alternatively be de�ned by the termwise product of the
characteristic polynomial:

B �B� �� PB � PB�

39
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2.1. Basic properties

This �rst section generalizes some basic properties that the DFT satis�es in the one-dimensional
case. It corresponds to the �rst chapter of [4] and it will be useful for the next sections of this
chapter. We will use it to generalize Lewins's Lemma and Hexachordal Theorem.

Proposition 2.1.1. Let B be a musical bar in Z/tZ �Z/pZ.

1. FZ/tZ�Z/pZ�0,0� � tp and FB�0,0� � card�B�.
2. The DFT of a musical bar with only one element B � ��a, b�� is given by the product of

complex exponential:

FB�x, y� � exp��2iπax
t

� exp��2iπby
p

�
3. The DFT of a musical bar containing all possible notes, i.e.

B � ��a, b� S �a, b� > Z/tZ �Z/pZ�
is given by

FB�x, y� � � 0 if �x, y� x �0,0�
tp else

Proof. 1. This comes directly from the de�nition of the DFT.

2. This is a sum with only one element.

3. The coe�cient for �x, y� � �0,0� is given by the �rst point. For �x, y� x �0,0�, we have
FB�x, y� � P

�k,l�>B
exp ��2iπkxt

� exp ��2iπly
p �

�

t�1

P
k�0

p�1

P
l�0

exp ��2iπkxt
� exp ��2iπly

p �
�

t�1

P
k�0

exp ��2iπkxt
� p�1P
l�0

exp ��2iπly
p �

� 0

Ì

In order to generalize Hexachordal Theorem in the two-dimensional case, we need to de�ne
the complement of a musical bar.

De�nition 2.1.2. Let B > Z/tZ �Z/pZ be a musical bar. We de�ne the complement musical
bar B of B as follow:

B � Z/tZ �Z/pZ � B

Example 2.1.3. 1. For t � 1 and p � 12, B is a chord bar, i.e. a musical bar containing only
one group of n notes at the same position 0. For instance, if B is the chord corresponding
to the C-Major scale (the white keys on a piano),

B � ��0,0�, �0,2�, �0,4�, �0,5�, �0,7�, �0,9�, �0,11�� > Z ~1Z�Z ~12Z
then the complement B is the chord that corresponds to the pentatonic scale (the black
keys)

B � ��0,1�, �0,3�, �0,6�, �0,8�, �0,10�� > Z ~1Z�Z ~12Z .
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2. For t � 2 and p � 12, B is a bar that might contain elements on position 0 and position 1
(two half notes � �). For instance, we can build the musical bar B with white keys in position
0 and black keys in position 1:

B � � �0,0�, �0,2�, �0,4�, �0,5�, �0,7�, �0,9�, �0,11�,�1,1�, �1,3�, �1,6�, �1,8�, �1,10� ¡ > Z ~2Z�Z ~12Z
Thus the complement bar B is the musical bar with the same chords with reversed positions:

B � � ��0,1�, �0,3�, �0,6�, �0,8�, �0,10�,�1,0�, �1,2�, �1,4�, �1,5�, �1,7�, �1,9�, �1,11� ¡ > Z ~2Z�Z ~12Z
In this particular case, card�B� � card�B� � 2�12

2 � 12.

Proposition 2.1.4. Let B be a musical bar in Z/tZ �Z/pZ. For all pairs �x, y� x �0,0� in
Z/tZ �Z/pZ, we have

F
B
�x, y� � �FB�x, y�

Proof. For each pair �x, y� > Z/tZ �Z/pZ, we have the sum

FZ ~tZ�Z ~pZ�x, y� � FB�x, y� �FB�x, y�
and with Proposition 2.1.1, for �x, y� x �0,0� we get that F

B
�x, y� � �FB�x, y�. Ì

2.2. Intervallic content

We �rst recall the de�nition in the one-dimensional case.

De�nition 2.2.1. Let M ` Z ~nZ be a musical structure (chords, scales, rhythms, etc.). The
interval content associated with M is given by the following function of NZ ~nZ:

ICM � Z ~nZ � N
k ( card��i, i � k� >M �M�

This de�nition can easily be adapted to the two-dimensional case:

De�nition 2.2.2. Let B be a musical bar in Z/tZ �Z/pZ. The interval content associated
with B is de�ned by:

ICB � Z/tZ �Z/pZ Ð� N

�k, l� z� #���i, j�, �i � k, j � l�� > B2�
In practice, for a pair �k, l� > Z/tZ �Z/pZ , IC�k, l� is the number of pairs ��i, j�, �t, u�� that

are shifted exactly by k on the time-axis modulo t and exactly by l in the pitch-axis modulo p.

Example 2.2.3. Recall the musical bar B � ��0,9�, �1,4�, �3,5�, �5,2�� from Figure 1.1.1:

G 4
4 (� � � ��
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Its interval content (in Z ~8Z�Z ~12Z) is given by the following 8 � 12 matrix:

���������������

4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0

���������������
For instance, ICB�2,1� � 1 and it corresponds to the pair ��1,4�, �3,5��.
In one dimension, there is a musical interpretation of the interval content given by Lewin

([35]): basically, for one pitch-class set P, ICP measures the probability of occurrence of an
interval between two notes in P. In our case, it does the same but it takes into account the
onsets and the pitches at the same time. We can now give a generalization of the the Lewin's
Lemma in this context:

Theorem 2.2.4 (Lewin's Lemma in two dimensions). Let B be a musical bar in Z/tZ �Z/pZ.
The DFT of the interval content of B is equal to the square of the magnitude of the DFT of B:

ÄICB � SFBS2
Proof. Let �k, l� > Zt p. Using the de�nition of a convolution product, we get that

ICB�k, l� � #���i, j�, �i � k, j � l�� > B2, �i, j� > B�
� P

�i,j�>B
1B�i, j�1B�i � k, j � l�

� P
�i,j�>B

1�B��i,�j�1B �k � ��i�, l � ��j��
� P

�t,u�>�B
1�B�t, u�1B�k � t, l � t�

� 1�B �1B�k, l�
Then, by computing the DFT of IC and using Theorem 2.0.2, we get that

ÃICB�k, l� � Æ1�B �1B�k, l�
� Â1�B�k, l� � Â1B�k, l�
� Ã1B�k, l� �Ã1B�k, l�
� SÂ1B�k, l�S2
� SFB�k, l�S2

Ì
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2.3. Hexachordal Theorem

In this section, we aim to generalize the proof of Babbitt's Hexachordal Theorem ([6]) in the
two-dimensional case. In fact, the proof given by [4] essentially uses Lewin's lemma, which we
have just generalized.

Theorem 2.3.1 (Hexachordal Theorem in two dimensions). Let B be a musical bar in
Z/tZ �Z/pZ and B its complement bar. We assume that card�B� � card�B�. Then, B and
B have the same interval content:

ICB � IC
B

Proof. By Proposition 2.1.1, we have

FB�0,0� � card�B� � card�B� � FB�0,0�
and Proposition 2.1.4 says that, for any �x, y� x �0,0�,

F
B
�x, y� � �FB�x, y�.

We thus have for any �x, y� > Z/tZ �Z/pZ

SFB�x, y�S � TFB�x, y�T .
Therefore, by applying Lewin's Lemma in two dimensions 2.2.4, we get that

ÃICB � SFBS2 � TFBT2 �ÃICB
and by DFT-inverse from Theorem 2.0.1, ICB � IC

B
. Ì

Example 2.3.2. 1. For t � 1 and p � 12, we �nd the classical Hexachordal Theorem in one
dimension. For instance, if B is the musical bar containing only one chord with 6 elements

B � ��0,0�, �0,2�, �0,3�, �0,7�, �0,8�, �0,10��
with its complement bar B

B � ��0,1�, �0,4�, �0,5�, �0,6�, �0,9�, �0,11��,
then we have

ICB � IC
B
� �6,2,3,2,3,4,2,4,3,2,3,2�.

This interval content is the same as the one associated with the pitch-classes set�2,3,7,8,10� and its complement, which are both hexachords (see Figure 2.3.1).

2. For t � 2 and p � 12, a hexachord contains 12 elements. For instance, the musical bar B
from the second point of Example 2.1.3 has white keys at position 0 and black keys at
position 1:

B � � �0,0�, �0,2�, �0,4�, �0,5�, �0,7�, �0,9�, �0,11�,�1,1�, �1,3�, �1,6�, �1,8�, �1,10� ¡
We have card�B� � 12 and B is the same bar with the chords position reverse. The
corresponding interval content is given by

ICB � IC
B
� � 12 2 8 6 4 10 2 10 4 6 8 2

0 10 4 6 8 2 10 2 8 6 4 10
�

3. In general, for any t and p, we can always construct a hexachord B containing tp
2 elements

with a p
2 -chord at each position of the bar, and the complement B will have the same

interval content.



44 CHAPTER 2. GENERALIZATION OF THEORETICAL RESULTS

C
Y

C ®Y

DY

D ®Y

EY

FY

F ®
YGY

G ®Y

AY

A ®Y

B Y

P � �0,2,3,7,8,10�

C
Y

C ®Y

DY

D ®Y

EY

FY

F ®
YGY

G ®Y

AY

A ®Y

B Y
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Figure 2.3.1: Two hexachords B and B in Z ~1Z�Z ~12Z reduces to their pitch-classes set in

one dimension.

2.4. Musical bar transformations and isometries

In this section, we are interested in the basic transformations we can perform on a musical bar.
More precisely, it seems natural to focus on which of them preserve the metric we de�ned with
the DFT.

2.4.1. Rotations and reflections

De�nitions 2.4.1. Let B be a musical bar in Z/tZ �Z/pZ and �α,β� be an element of
Z/tZ �Z/pZ.

i� A �α,β�-rotation of B is a map ρα,β � Z/tZ �Z/pZ� Z/tZ �Z/pZ such that, for all pairs�x, y� in Z/tZ �Z/pZ, we have

ρα,β�x, y� � �α � x,β � y�
and thus

ρα,β � B � ��α � t, β � p�, �t, p� > B�.
ii� A �α,β�-re�ection of B is a map σα,β � Z/tZ �Z/pZ � Z/tZ �Z/pZ such that, for all

pairs �x, y� in Z/tZ �Z/pZ, we have

σα,β�x, y� � �α � x,β � y�
and thus

σα,β � B � ��α � t, β � p�, �t, p� > B�.
Examples 2.4.2. In the following examples, we will consider the musical bar

B � ��0,0�, �1,2�, �2,4�, �3,5��
with time-unit 4 (one quarter note � �) and pitch-unit 12 (one octave). In other words, all rotations
and re�ections will go from Z ~4Z�Z ~12Z to itself.

1) For α � 1, β � 0, ρ1,0 is a �1,0�-rotation of B:

ρ1,0 � B � ��0,5�, �1,0�, �2,2�, �3,4��
which gives us the following permutation of the notes:
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G 4
4 � � � � z� G 4

4 � � � �
2) For α � 0, β � 5, ρ0,5 is a �0,5�-rotation of B:

ρ0,5 � B � ��0,5�, �1,7�, �2,9�, �3,10��
which gives us the following transposition of the notes:

G 4
4 � � � � z� G 4

4 � � � 4�
3) For α � 2, β � 2, σ2,2 is a �2,2�-re�ection of B:

σ2,2 � B � ��2,2�, �1,0�, �0,10�, �3,9��
which gives us the following transposition and permutation of the notes:

G 4
4 � � � � z� G 4

4 4� � � �

Remarks 2.4.3. 1� If β � 0, then ρα,0 a�ects only the attack-times of the musical bar, while
if α � 0, then ρ0,β a�ects only the pitches. In the �rst case, we will call ρα,0 a permutation
of the musical bar (a cyclic permutation of the attack-times) and in the second case, we
will say that ρ0,β is a transposition (a pitches transposition of the musical bar). Notice
that a rotation can act on attack-times or pitch-classes separately, while a re�ection always
changes both sets.

2� Every re�ection σα,β satis�es the relation

σα,β � ρα,β X σ0,0

which simply means that, for any musical bar B, σα,β � B is the reversed musical bar �B
with an α-permutation of the onsets and a β-transposition of the pitches.

3� In this context, we use the words rotations and re�ections because the maps we just de�ned
simply correspond to the dihedral group, which acts on two polygons at the same time:
the attack-times and the pitch-classes sets of the notes of the considered musical bar. In
music theory, it corresponds to the generalized group "T ~I" of musical translations and
inversions, but we prefer to keep the dihedral vocabulary and notation to avoid confusion
with quotient groups. In fact, we can still think of a bar in Z/tZ �Z/pZ as a pair of (not
necessarily convex) polygons on the circles of Z/tZ �Z/pZ, and it seems quite natural to
use the action of the dihedral group on these two polygons. For example, recall the musical
bar B of the above example, we had

B � ��0,0�, �1,2�, �2,4�, �3,5�� ` Z ~4Z�Z ~12Z,
and B is also the following pair of polygons
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where we use color to underline the relationship between onsets and pitches. Then, we can
represent the action of ρ1,5 or σ2,2 on B by the following corresponding drawings:

ρ1,5 � B � ��0,10�, �1,5�, �2,7�, �3,9��
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σ2,2 � B � ��0,10�, �1,0�, �2,2�, �3,9��
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We will now focus on the relationship between these well-de�ned rotations and re�ections
and the DFT-distance we de�ned in the �rst chapter (De�nition 1.2.8). More precisely, we want
to show that our metric is invariant under the action of the dihedral group or, in other words,
that rotations and symmetries are isometries for our metric. We begin with the following lemma:

Lemma 2.4.4. Let B be a musical bar in Z/tZ �Z/pZ. The magnitude of the DFT of B is
invariant under rotations and re�ections. More precisely, for any �α,β� > Z/tZ �Z/pZ, we have

i� Fρα,β �B�x, y� � exp ��2iπαxt
� exp ��2iπβy

p � �FB�x, y�
ii� Fσα,β �B�x, y� � exp �2iπαxt

� exp �2iπβyp � �FB�x, y�
which directly implies that TFρα,β �BT � SFBS � TFσα,β �BT.
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Proof. Let ρα,β be a rotation of B:

Fρα,β �B�x, y� � P
�k,l�>ρα,β �B

exp ��2iπkxt
� exp ��2iπly

p �
� P

�k�α,l�β�>B
exp ��2iπkxt

� exp ��2iπly
p �

� P
�u,v�>B

exp ��2iπ�u�α�x
t � exp ��2iπ�v�β�y

p �
� exp ��2iπαxt

� exp ��2iπβy
p � P

�u,v�>B
exp ��2iπuxt

� exp ��2iπvy
p �

� exp ��2iπαxt
� exp ��2iπβy

p �FB�x, y�
Now let σα,β be a re�ection of B, and we have similar calculations:

Fσα,β �B�x, y� � P
�k,l�>σα,β �B

exp ��2iπkxt
� exp ��2iπly

p �
� P

��k�α,l�β�>B
exp ��2iπkxt

� exp ��2iπly
p �

� P
�u,v�>B

exp ��2iπ��α�u�x
t � exp ��2iπ��β�v�y

p �
� exp �2iπαxt

� exp �2iπβyp � P
�u,v�>B

exp �2iπuxt
� exp �2iπvyp �

� exp �2iπαxt
� exp �2iπβyp �FB�x, y�

Ì

We can now prove the isometry theorem:

Theorem 2.4.5. Let B and B� be two musical bars in Z/tZ �Z/pZ. For any rotation ρ and
re�ection σ in Z/tZ �Z/pZ, we have

dDFT�B,B�� � dDFT �ρ � B, ρ � B� � � dDFT �σ � B, σ � B� �.
which means that rotations and re�ections are isometries on the metric set Bt,p of all the musical
bars together with the DFT-distance. In other words, the DFT-distance is invariant under the
action of the dihedral group.

Proof. It all comes from previous Lemma 2.4.4 and De�nition 1.2.8 of the metric dDFT: for ρα,β
a rotation in Z/tZ �Z/pZ, we have

dDFT �ρα,β � B, ρα,β � B� � � d1�Mρα,β �B,Mρα,β �B
��

�

t

P
k�1

p

P
l�1
UFρα,β �B�k, l� �Fρα,β �B

��k, l�U
�

t

P
k�1

p

P
l�1
Uexp ��2iπαkt

� exp ��2iπβl
p �U SFB�k, l� �FB��k, l�S

�

t

P
k�1

p

P
l�1
SFB�k, l� �FB��k, l�S

� dDFT�B,B��
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Now for a re�ection σα,β :

dDFT �σα,β � B, σα,β � B� � �

t

P
k�1

p

P
l�1
UFσα,β �B�k, l� �Fσα,β �B

��k, l�U
�

t

P
k�1

p

P
l�1
Uexp �2iπαxt

� exp �2iπβyp � �FB�k, l� �FB��k, l��U
�

t

P
k�1

p

P
l�1
UFB�k, l� �FB��k, l�U

�

t

P
k�1

p

P
l�1
UFB�k, l� �FB��k, l�U

� dDFT�B,B��
Ì

Examples 2.4.6. Let us consider the following score S � �B1,B2�
G 4

4

B1� �
-�
� � B2� > �

which has the following description in Z ~8Z�Z ~24Z
B1 � ��0,15�, �3,14�, �4,15�, �6,19��
B2 � ��0,14�, �6,7��

1) We take the rotation ρ2,12 that shifts B1 and B2 with a quarter note and translates the
pitch-classes set by an octave. We then complete S with B3 � ρ2,12 � B1 and B4 � ρ2,12 � B2

and get the following score:

G244
B1��
-�
� � B2� > �

B3

� �4� (� 4�
B4�

� >

with B3 and B4 described by

B3 � ��0,7�, �2,3�, �5,2�, �6,3��
B4 � ��0,19�, �2,2��

This resulting new score satis�es the relation

dDFT�B1,B2� � dDFT�B3,B4� � 414.648

2) Now let us take the re�ection σ2,6 which inerts B1 and B2 and then adds a quarter note
on attack-times sets and transposes the pitch-classes one by half on octave. We then get
the following score:

G22244
B1� �
-�
� � B2� > �

B3

> � 6� ���6�
B4

> 6�
6�

>
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with B3 � σ2,6 � B1 and B4 � σ2,6 � B2 described by

B3 � ��2,15�, �4,11�, �6,15�, �7,16��
B4 � ��2,16�, �4,23��

This resulting new score satis�es the relation

dDFT�B1,B2� � dDFT�B3,B4� � 414.648

We now give some musical applications of Theorem 2.4.5.

Corollary 2.4.7. Let B be a musical bar in Z/tZ �Z/pZ. For every pair �α,β� in Z/tZ �Z/pZ,
we have

dDFT �ρα�1,β�1 � B, ρα,β � B � � dDFT �ρα,β � B, ρα�1,β�1 � B �
Proof. We just have to notice that ρ1,1 X ρα,β � ρα�1,β�1 and, since ρα,β is an isometry, it follows
that

dDFT �ρα�1,β�1 �B, ρα,β �B � � dDFT �ρ1,1 Xρα�1,β�1 �B, ρ1,1 Xρα,β �B � � dDFT �ρα,β �B, ρα�1,β�1 �B �.
Ì

Examples 2.4.8. This corollary has a particular musical meaning, especially when we exactly
apply t times the same rotation ρ1,0 to a musical bar in Z/tZ �Z/pZ, that means all the cyclic
permutations until we get back to the initial musical bar. For instance, the following score is
constructed in this way

G 4
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� � � �
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� � � �
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and we have the successive relations

dDFT�B1,B2� � dDFT�B2,B3� � dDFT�B3,B4� � dDFT�B1,B4� � 98,886.

Obviously, we also have dDFT�B1,B3� � dDFT�B2,B4� � 82,359 because the same rotation
(ρ1,0) is applied: ρ1,0 � B1 � B2 and ρ1,0 � B3 � B4.

On the same idea, we could choose to apply the same transposition p times on the set of
pitch-classes, that is, apply the rotation ρ0,1 on B1 until get back to the initial bar:
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G 4
4

B1

� � � �
B2

4� 4� � 4�
B3

� � 4� �
. . .

G 4
4

B10

� � 4� �
B11

4� � � 4�
B12� 4� 4� �

In this case, ρ0,1 � Bn � Bn�1 for any n > �1, . . . ,11� and so we get that

dDFT�B1,B2� � dDFT�B2,B3� � . . . � dDFT�B10,B11� � dDFT�B11,B12� � dDFT�B12,B1� � 110,978

2.4.2. Conjugate musical bar

Recall Lemma 2.4.4: let B > Z/tZ �Z/pZ be a musical bar and take the particular case where
α � β � 0. We thus have

Fρ0,0�B�x, y� � FB�x, y� and Fσ0,0�B�x, y� � FB�x, y�
and it turns out that taking a �0,0�-rotation does not change the Fourier coe�cients, but a�0,0�-re�ection is the same as taking the conjugated associated matrix. Therefore, we de�ne the
conjugate bar of B, denoted by B, the musical bar which is given by

B � σ0,0 � B .

The Fourier coe�cients for B are the conjugate of those for B:

F
B
�x, y� � FB�x, y� for all �x, y� > Z/tZ �Z/pZ .

Example 2.4.9. We take back the musical bar B � ��0,0�, �1,2�, �2,4�, �3,5�� from Example
2.4.2. The corresponding conjugate musical bar of B is given by

B � σ0,0 � B � ��0,0�, �3,10�, �2,8�, �1,7�� � ��0,0�, �1,7�, �2,8�, �3,10��
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The following theorem directly comes from the isometry Theorem 2.4.5 for re�ections:

Theorem 2.4.10. The DFT-distance is invariant under the complex conjugate: for two musical
bars B and B�, we have

dDFT�B,B�� � dDFT�B,B��
In other words, conjugate a musical bar is an isometry for the DFT-distance.
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Example 2.4.11. Recall the score S � �B1,B2� from Example 2.4.6, with time-unit 8 and pitch-
unit 24. We decide to complete this score by computing B1 � σ0,0 � B1 and B2 � σ0,0 � B2, which
gives us:

G22244
B1� �
-�
� � B2� > �

B3

6� � 6���
� >

B4� �
>

with B1 and B2 described by

B3 � ��0,9�, �2,5�, �4,9�, �5,10��
B4 � ��0,10�, �2,17��

This new score thus satis�es the relation

dDFT�B1,B2� � dDFT�B3,B4� � 414.648

2.4.3. Homotheties

We will now de�ne an other type of musical transformation.

De�nition 2.4.12. Let B be a musical bar in Z/tZ �Z/pZ and �α,β� be a pair of invertible
elements in Z/tZ �Z/pZ. The homothety with ratio �α,β�, or �α,β�-homothety of B is a
map λα,β � Z/tZ �Z/pZ� Z/tZ �Z/pZ such that, for each pair �x, y� in Z/tZ �Z/pZ, we have

λα,β�x, y� � �αx,βy�
and thus we de�ne

λα,β � B � ��αt, βp�, �t, p� > B�.
Examples 2.4.13.

1) Let B � ��0,0�, �1,2�, �2,4�, �3,5�� be the musical bar from Example 2.4.2, with time-unit
4 and pitch-unit 12. For α � 1 and β � 5, λ1,5 is a �1,5�-homothety of B that preserves the
onsets and extends the pitches by a fourth, and we have

λ1,5 � B � ��0,0�, �1,10�, �2,8�, �3,1�� �
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2) Let B � ��0,0�, �1,1�, �2,2��, still in Z ~4Z�Z ~12Z. For α � 3 and β � 7, λ3,7 is a�3,7�-homothety of B and we have

λ3,7 � B � ��0,0�, �3,7�, �2,2�� � ��0,0�, �2,2�, �3,7�� �
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We also have an isometry theorem in the case of homothety:

Theorem 2.4.14. Let B and B� be two musical bars in Z/tZ �Z/pZ. If λα,β is a �α,β�-
homothety in Z/tZ �Z/pZ with �α,β� invertible elements, we have

dDFT�B,B�� � dDFT �λα,β � B, λα,β � B
� �

which means that homotheties are isometries on the set Bt,p of all the musical bars with the
DFT-distance.

Proof. Let �x, y� > Z/tZ �Z/pZ. We can write the Fourier coe�cients of λα,β �B in term of FB,
and because �α,β� is invertible in Z/tZ �Z/pZ, we have the following description:

Fλα,β �B�x, y� � P
�k,l�>λ�B

exp ��2ikπxt
� exp ��2ilπy

p �
� P

�k�,l��>B
exp ��2iαk�πx

t � exp ��2iβl�πy
p �

� FB�αx,βy�
Now because �α,β� is invertible in Z/tZ �Z/pZ, the distance is the same so we �nally get

that

dDFT�λα,β � B, λα,β � B
�� �

t

P
k�1

p

P
l�1
UFλα,β �B�k, l� �Fλα,β �B

��k, l�U
�

t

P
k��1

t

P
l��1

SFB�αk�, βl�� �FB��αk�, βl��S
� dDFT�B,B��

Ì

Example 2.4.15. Recall the score S � �B1,B2� from Example 2.4.6, with time-unit 8 and
pitch-unit 24. If we apply the homothety of a quaver note and �fth h1,7 on B1 and B2, we get

G22244
B1��
-�
� � B2� > �

B3

�6� (� � 4�
B4

� > 4�
with B3 � λ1,7 � B1 and B4 � λ1,7 � B2 described by

B3 � ��0,9�, �3,2�, �4,9�, �6,13��
B4 � ��0,2�, �6,1��

The resulting new scores thus satis�es the relation

dDFT�B1,B2� � dDFT�B3,B4� � 414.648.
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Chapter 3.

Mathematical background

In this chapter, we will introduce persistent homology, which is the mathematical tool we are
going to use to apply the process of Topological Data Analysis to musical analysis. We will begin
with a brief reminder of simplicial homology, and then move on to the de�nitions of �ltration,
persistence and barcodes. Notice that all computations will be done in F2, the ground �eld with
two elements.

3.1. Simplicial homology

In this �rst section, we simply give an overview of simplicial theory and the basic elements we
will need in order to de�ne persistent homology. We refer to [28] for more details on this topic.

De�nition 3.1.1. A simplicial complex is a pair �K,V � where V is a set of vertices and
K ` P�V � is a set of simplices, such as

i� V � �
σ>K

σ

ii� if σ `K and τ ` σ, then τ >K.

Most of the time, we will refer to K as a simplicial complex by omitting the set of vertices.

If σ >K is a simplex of K and τ ` σ, we say that τ is a face of σ. The dimension of σ >K is
given by its number of vertices: dimσ � SσS� 1. If dimσ � n, we then say that σ is a n-simplex.
The dimension of a simplicial complex K is given by dimK � sup

σ>K
dimσ.

We can always think of a simplex by representing its geometric realization: a n-simplex
is realized by the convex hull of n� 1 a�nely independent points in Rd, for any d C n. Then, the
geometric realization of a simplicial complex is given by the realization of each simplex where
the simplices are glued together on common faces (see Figure 3.1.1).

a

0-simplex
vertex

a b

1-simplex
edge

a b

c

2-simplex
triangle

a
b

c
d

3-simplex
tetrahedron

a

d c

b

e

A simplicial complex

Figure 3.1.1: The geometric realization of low-dimensional n-simplices for n > �0,1,2,3� (left)
and a simplicial complex �V,K� of dimension 2: the set of vertices is V � �a, b, c, d, e� and the

largest simplex is the triangle �b, c, e�.
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De�nition 3.1.2. Let �V1,K1� and �V2,K2� be two simplicial complexes. A simplicial mor-
phism between these two complexes is an application de�ned on the set of vertices

f � V1 � V2

such as, if σ >K1, then f�σ� >K2 (with f�σ� � �f�v� S v > σ�).
Furthermore, if f � �V1,K1� � �V2,K2� is a simplicial morphism, there exists a linear appli-

cation R�V1� � R�V2� induced by f and which sends S�V1,K1�S on S�V2,K2�S. We denote by Sf S
the resulting continuous map: Sf S � S�V1,K1�S� S�V2,K2�S .

Now we want to build an algebraic structure on any simplicial complex, so that we can de�ne
the simplicial homology of a complex.

De�nitions 3.1.3. Let K be a simplicial complex.

1. The nth-chain group Cn�K,F2� � Cn�K� of K is the F2-vector space generated by the
n-simplices of K. An element of Cn�K� is called a n-chain c > Cn�K� and is given by the
formal sum

c �Q
σ

λσσ, with λσ > F2 .

2. The nth-boundary operator ∂n � Cn�K� � Cn�1�K� is a morphism linearly de�ned on
a chain c � P

σ
λσσ > Cn�K� by its action on its n-simplices:

∂n�σ� �Q
i

�v0, v1, . . . , v̂i, . . . , vn� and ∂n�c� � λσQ
σ

∂n�σ�
The most important thing with the boundary operator is the following fundamental lemma:

Lemma 3.1.4. For any n, we have ∂n X ∂n�1 � 0.

This property means that, for any simplicial complex K, there exists a sequence of chain
groups with boundary operators

. . . Cn�1�K� Cn�K� Cn�1�K� . . .
∂n�2 ∂n�1 ∂n ∂n�1

where for each dimension n, im∂n�1 ` ker∂n. In other words, for any simplicial complex K, we
have a family of chain groups �C�K�n�n>N together with a family of boundary operators �∂n�n>N
that satis�es the above inclusion. This kind of structure is called a chain complex.

Example 3.1.5. As an illustration of these notions, we can describe all the chain groups for the
one-dimensional sphere S1:

0 1

2

S1

Indeed, dimS1 � 1 so Cn�S1� � �0� for any n @ 0 and n C 2. Therefore, we just need to look
at the set of vertices and the set of edges to get that

C0�S1� � F2 �`0e` F2 �`1e` F2 �`2e � F2
3

C1�S1� � F2 �`01e` F2 �`12e` F2 �`02e � F2
3
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As an example of a 1-chain, we can consider the outline of S1, which is given by the sum

c � `01e � `12e � `02e.
Moreover, the only non zero boundary operator is ∂1 � C1�S1� � C0�S1�, and its action on

any edge of S1 is simply given by

∂1`01e � `1e � `0e, ∂1`12e � `2e � `1e, ∂1`02e � `2e � `0e.
Finally, we can look at ∂1 applied on the above 1-chain c � `01e � `12e � `02e, and we have

∂1�`01e � `12e � `02e� � �`1e � `1e� � �`0e � `0e� � �`2e � `2e� � 0.

Notations: Let K be a simplicial complex, and �∂n�n>N be its associated family of boundary
operators. For each n > N, we denote by Zn�K� and Bn�K� respectively the kernel and the
image of ∂n and ∂n�1, i.e.

Zn�K� � ker∂n and Bn�K� � im∂n�1.

We call Zn�K� and Bn�K� the n-cycles and the n-boundaries of K, respectively. Therefore,
by fundamental Lemma 3.1.4, we have Bn�K� ` Zn�K�. This inclusion leads to the de�nition
of simplicial homology.

De�nition 3.1.6. The nth-homology group of K is the quotient

Hn�K,F2� �Hn�K� �� Zn�K��Bn�K�.
This is a F2-vector space and its dimension is called the nth-Betti number:

βn�K� � dimHn�K�.
Example 3.1.7. For instance, let us compute the homology of S1. Recall from Example 3.1.5
the following sequence of chain groups

0 C1�S1� C0�S1� 0
∂2 ∂1 ∂0

First, we have B1�S1� � im∂2 � 0 soH1�S1� � Z1�S1��
B1�S1� � ker∂1.Moreover, any element

of ker∂1 is generated by the cycle `01e � `12e � `02e, and so

H1�S1� � F2 and β1�S1� � 1.

On the other hand, H0�S1� �
Z0�S1��

B0�S1� and since dimker∂1 � 1, dimB0�S1� �

dim im∂1 � 2, so Z0�S1� � ker∂0 � C0�S1�. We thus get that

H0�S1� � F2 and β0�S1� � 1.

Finally, we obviously have Hn�S1� � 0 in any other case. We can also generalize this result
for any dimensional sphere and any ground �eld: indeed, for any n, any m and any �eld k we
have

Hn�Sm, k� � � k if n � 0 or m
0 otherwise



58 CHAPTER 3. MATHEMATICAL BACKGROUND

3.2. Persistent homology

The idea now is to generalize these previous notions by computing simplicial homology for an
entire �ltration of simplicial complex. The purpose is to study the topological features that
persist along time of �ltration. Again, we give here an overview of persistent homology and we
refer to [59] for more details on this topic.

De�nition 3.2.1. A �ltered simplicial complex K � �Ki�i is a nested sequence of simplicial
complexes, such as

g �K�1
`K0

bK1
b . . . bKN

b . . .

We say that the �ltration is �nite if the sequence is eventually constant:

g �K�1
`K0

bK1
b . . . bKN

�K

In that case, we say that �0,1, . . . ,N� is the set of �ltration times.

In all this manuscript, we will always consider �nite �ltered simplicial complexes, with N �1
times of �ltration. As an illustration of this de�nition, Figure 3.2.1 represents a �ltered complex
with six times of �ltration.

1

2

3

4

K0

1

2

3

4

K1

1

2

3

4

K2

1

2

3

4

K3

1

2

3

4

K4

1

2

3

4

K5
�K

Figure 3.2.1: A �ltered simplicial complex K with six times of �ltration.

Let �i, p� > N2 be a couple of integers. For any �ltered complex K, we have a natural inclusion
map

ηi,p �Ki 0Ki�p

that induces a homological morphism

ηi,p� �H��Ki��H��Ki�p�.
Each one of the maps ηi,p� sends a homological class to the one containing it. Therefore, for

each degree n, we get the following sequence of nth-homology groups:

0 Hn�K0� Hn�K1� ...Hn�KN�1� Hn�KN� �Hn�K�η0,1n η1,1n ηN�1,1
n

Thus, the image of each map ηi,p� will describe the homology evolution during the �ltration,
which is exactly the goal of persistent homology.

De�nitions 3.2.2. Let K be a �ltered complex, and i, p, n be integers in N.

1. The p-persistent homology group associated with Ki in degree n is given by

H i,p
n �K,F2� �H i,p

n �K� �� imηi,pn �Ki �Ki�p.

2. The p-persistent Betti number associated with Ki is the dimension of H i,p
n :

βi,p
n �K� �� dimH i,p

n �K�.
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Remark 3.2.3. For each pair of integers �n, i� > N2, there is a boundary operator ∂i
n � Cn�Ki��

Cn�1�Ki� so we can also de�ne cycles, boundaries and homology groups as follows:

Zi
n�K� � Zn�Ki�, Bi

n�K� � Bn�Ki� and H i
n�K� �Hn�Ki�.

Thus, an equivalent and perhaps more intuitive de�nition of persistent homology is given by the
following quotient:

H i,p
n �K� � Zi

n�
Zi
n 9Bi�p

n
.

In fact, by the �rst de�nition, an element ofH i,p
n �K� is a generate at time i of the �ltration that is

still not a boundary after p times of �ltration. This is exactly the meaning of the quotient above.
In other words, the purpose is to look for homology classes that persist along the �ltration, that
means cycles that do not become boundaries.

From [59], we have the following structure theorem of persistent homology:

Theorem 3.2.4. Let K be a �ltered simplicial complex. In any degree n, we have the following
isomorphism of F2�t�-module:

?
i

Hn�Ki� � �?
i

tai Y F2�t��` �?
j

tbj Y
F2�t���tcj�� (3.2.1)

Theorem's equivalence 3.2.1 encodes the homology for a whole �ltration of a simplicial com-
plexK in a single formula. Moreover, it shows that there are two families of homology generators:
indeed, we have classes that arise at time ai of the �ltration and never die (left side of 3.2.1, also
called the free part), and we have the others that arise at time bj and die at time bj�cj (right side
of 3.2.1, also called the torsion part). Notice that, in the case of �nite �ltration, there are no free
part in 3.2.1. This observation naturally leads to the construction of barcodes (or persistence
diagrams), which are graphics that provide a natural visualization of persistent homology.

De�nition 3.2.5. Let K be a �ltered simplicial complex and d > N be a �xed degree. The
barcode BCd�K� associated with Hd�K� is the graph where the x-axis describes the time of
�ltration and each generator of Hd�K� corresponds to a bar whose start and end are given by
Theorem's equivalence 3.2.1:

� a class that was born at time ai and never dies is a bar that starts at the abscissa point ai
and never stops

� a class that was born at time bj and died at time bj � cj is a bar that starts and ends at
abscissa points bj and bj � cj , respectively.

Remark 3.2.6. The above equivalence is cited in general case, but in practice we will only
consider �nite �ltration (see De�nition 3.2.1): therefore, there is no free part and Theorem's
equivalence 3.2.1 simply becomes

?
i

Hn�Ki� �?
j

tbj Y
F2�t���tcj� (3.2.2)

Consequently a barcode BCd�K� associated with a �nite �ltered complex and a �xed degree d
contains only �nite bars. For d � 0, there is always at least one bar of the form �0,N � 1�, where�0,1, . . . ,N� is the set of �ltration times.

An illustration of Theorem 4.2 and De�nition of barcodes 3.2.5 is given in Figure 3.2.2,
where we computed the associated family of barcodes with �ltration from Figure 3.2.1: in degree
0 (left), we see that there are 4 bars at time 0, and the �rst two stop when the edges �13� and
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�24� appear, while the third stops when the �ltration becomes connected. After that, there is
only one last bar which never stops and which corresponds to the only connected component
of the �ltered complex. This description corresponds to the following equivalence in degree 0
according to Remark 3.2.6:

5

?
i�0

H0�Ki� � �F2�t��t�` �F2�t��t�` �F2�t��
t2
�` �F2�t��

t5
�

In degree 1 (right), there is a single bar corresponding to the cycle that appears at time 3 of
the �ltration, when the outline of the square is completed. This cycle becomes a boundary at time
4, when the square is �lled. The barcode in degree 1 corresponds to the following isomorphism:

6

?
i�0

H1�Ki� � t3 � F2�t��t

Figure 3.2.2: The associated barcodes with �ltration from Figure 3.2.1.

Moreover, we can easily give a generator for each bar of this family of barcodes: in degree 1,
there is only one bar and we just saw that it corresponds to the cycle

�13� � �34� � �42� � �21�.
In degree 0, we have the following sequence of homology groups

H0�K0� H0�K1� H0�K2� H0�K3� H0�K4� H0�K5�
and each arrow sends a class in degree 0 to a class containing it. For instance, between time 0
and time 1, there are two generators that disappear so we look for two elements of H0�K0� that
become boundaries for K1: since the edges �13� and �24� appear at time 1 of the �ltration, the
generators for the �rst two bars are given by

�1� � �3� and �2� � �4�.
In the same way, the third bar corresponds to the birth of the edge �34�, so a generator of this
bar is given by the element �3� � �4� > C0�K2�.
Finally, the last bar is given by a homology class that rises at time 0 and never dies, so it simply
corresponds to any element of C0�K0�, that means for instance the vertex �1�.

Barcodes are commonly used in the context of Topological Data Analysis, where the general
purpose is to associate a family of such graphs with a starting object, and then study and use
them as a kind of topological signature. This is what we will set up in the next sections.



Chapter 4.

Musical scores and filtration

In this chapter we show in what context we use persistent homology for musical analysis. More
speci�cally, we are going to explain how we turn a musical score into a �ltration, in order to
extract a topological signature from it using barcodes. This is what we call Topological Data
Analysis, which we will introduce in the �rst section. We will then show how we apply this
process to musical scores, using the DFT as a metric.

4.1. Topological Data Analysis

Before using persistent homology in the context of musical analysis, we must understand in
what way this tool can be used to analyze any starting object (see [26] to have an overview
of the possible applications): in practice, there is an object to study with a hidden topological
structure that potentially allows us to understand it, in a sense that remains to be precise. For
this purpose, the object is transformed into a point cloud, that is to say into a �nite metric set.
From this point cloud, we build a �ltered simplicial complex using the Vietoris-Rips algorithm,
which will be presented below. Once this is done, it is possible to compute persistent homology
and then extract the associated family of barcodes. Therefore, we can use this family as a
topological �ngerprint to characterize the starting object, as we will see in applications Part
III. This general TDA process is summarized in Figure 4.1.1.

Starting object Point cloud

Vietoris-Rips
method

Filtered complex Barcodes Analysis

Figure 4.1.1: Topological Data Analysis process.

The �rst step is not trivial, and obviously there are several arbitrary choices we can make,
depending on the starting object and what we want to obtain. In this work, we will study musical
pieces, and more precisely associated musical scores, represented by a corresponding MIDI �le.
From this type of object, we will extract a point cloud using the musical bars of the score, as
this is presented in the next Section 4.2. The other step that needs to be clari�ed is the arrow
that links the point cloud together with the �ltered complex. Here we have chosen to use the
Vietoris-Rips method, which is presented in the following de�nition.

De�nition 4.1.1. Let X � �x1, ..., xN� be a point cloud, that means a collection of points in a
metric space, and let ϵ C 0 be a non-negative parameter. The Vietoris-Rips complex Rϵ�X�
is the simplicial complex where :

i� X is the set of vertices

61
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ii� σ � �x1, ..., xn� is a n-simplex if and only if the vertices it contains are pairwise close, i.e.
if d�xi, xj� B ϵ for all pairs xi, xj of σ.

Remark 4.1.2. Notice that a complex obtained in this way has the distinctive property that it
is determined by its 1-skeleton (i.e. the induced graph): indeed, a collection of vertices of the
complex spans a simplex if and only if they form clique (that is, a complete subgraph) of the
1-skeleton. Therefore, there is no loss of information by focusing on the 1-skeleton instead of the
whole complex.

Let us look at Figure 4.1.2 as an illustration of this de�nition. One can immediately notice
that if two parameters ϵ and ϵ� are chosen such as ϵ @ ϵ�, there is a simple inclusion Rϵ�X� 0
Rϵ��X�. With this observation, we understand how the �ltration arises from this construction:
let us take X � �x1, ..., xN� as our starting point cloud and consider a very small value for ϵ.
For instance, R0�X� is the 0-dimensional simplicial complex with N connected components.
Also by simply increasing the parameter ϵ, we will get a natural sequence of nested simplicial
complexes, that means a �ltered simplicial complex. Also notice that when we talk about "time
of �ltration", we implicitly assume that we choose each parameter in a discrete set, and that the
time is discretized. Here we refer to [27] for details on Vietoris-Rips �ltration and Topological
Data Analysis.

Y
Y

Y

Y
Y

Y
Y Y

Y
Y ϵ

Y

Y
Y

Y
Y Y

Y
Y

Y

Y
Y

Y
Y Y

Figure 4.1.2: A �xed point cloud X (on the left) from which we extract a simplicial complex
Rϵ�X� (on the right) for a given paramater ϵ using the Vietoris-Rips method.

We understand here that the most important question now is the choice of the point cloud,
and especially the distance we will use to compare all the points together. This question will be
discussed in the next section.

Remark 4.1.3. In the musical applications, we will essentially use the �ltered complexes pro-
duced by the Vietoris-Rips method, since this is the most common practice in Topological Data
Analysis. In Chapter 6 and more precisely in Section 6.4, we will adapt this �ltration construction
by associating a "graph-type" to any musical score, using Remark 4.1.2.

4.2. From a score to a filtered complex

In this section, we will use what we just introduced, and also the �rst Part I of this manuscript.
In fact, recalling TDA process from Figure 4.1.1, in the very �rst step we have to make a choice,
that is, which point cloud we are going to extract from our starting musical piece P. Following
the idea from Section 1.2, we will represent our musical piece we are working with by a score SP.
For implementation, we will also turn SP into a MIDI �le.

Let P be any musical piece and SP be the score representing it. In Section 1.2 and more
precisely De�nition 1.2.2, we de�ned the notion of musical bar of a score: if t is the time unit
and p the ambitus, then a musical bar B is of Z/tZ �Z/pZ and an element of B is a note which
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is characterized by its attack-time modulo t and its pitch-class modulo p. Thus, a musical
score S becomes simply the set of its distinct musical bars modulo �t, p�.

Now let SP � �B1,B2, . . . ,BN� be the associated score with P, where Bi x Bj for i x j and
N is the number of distinct musical bars of P. By De�nition 1.2.5, each musical bar Bj > SP is
represented by a matrix of Fourier coe�cients MBj , where

MBj � �FBj�x, y��
�x,y�>Z ~tZ�Z ~pZ

and FBj�x, y� � Q
�k,l�>Bj

exp ��2iπkx
t

� exp ��2iπly
p

�.
Starting from there, we want to create a metric on the set of all the musical bars, as we

previously mentioned in the �rst part of this manuscript (recall De�nition 1.2.8): indeed, all
we have to do is to compare the associated matrix of Fourier coe�cients together, that means
simply choose a metric under the set of matrices of Mt�p�C�. For computational constraints,
we choose to work with the metric that comes from the 1-norm, as in the following de�nition:

De�nition 4.2.1. Let A � �aij�1BiBm
1BjBn

be an element of Mm�n�C�. The 1-norm of A is de�ned

as follow:

Õ A Õ1�
m

Q
i�1

n

Q
j�1

Saij S.
If A and B are two elements of Mm�n�C�, then the distance between A and B is given by

Õ A �B Õ1 .

The above de�nition provides a natural metric under the set of all the musical bars Bt,p:

De�nition 4.2.2. Let B and B� be two elements of Bt,p. The DFT-distance between B and
B� is given by the 1-distance between their respective Fourier coe�cients matrices:

dDFT�B,B�� �ÕMB �MB
� Õ1�

t

Q
x�1

p

Q
y�1

SFB�x, y� �FB��x, y�S
We denoted by �Bt,p,dDFT� the metric space of all the musical bars of Z/tZ �Z/pZ equipped
with the DFT-distance.

We are now able to turn any musical piece P into a point cloud, that means a subset of a
metric set. The following de�nition summarizes the process, and we will use it in most of the
applications of Part III.

De�nition 4.2.3. Let P be a musical piece and SP � �B1,B2, . . . ,BN� the score that represents
it. Then, SP is a subset of the metric space �Bt,p,dDFT�, and the associated point cloud with
P is built in the following way:

i� Each point is a musical bar Bi.

ii� The distance between two musical bars Bi and Bj is given by the DFT-distance, that
means dDFT�Bi,Bj� �Õ MBi �MBj Õ1 where MBi and MBj are the respective matrix of
Fourier coe�cients.

Example 4.2.4. To illustrate the previous de�nitions, let us consider the score S from Figure
4.2.1 which is excerpt from the music piece One summer's day, composed by Joe Hisaishi in 2001
for the movie Spirited Away.



64 CHAPTER 4. MUSICAL SCORES AND FILTRATION

G 4
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Figure 4.2.1: The score S extracted from One summer's day written by Joe Hisaishi in 2001 for

the movie Chihiro of the same year.

The above score is divided into �ve distinct musical bars: S � �B1,B2,B3,B4,B5�. Further-
more, the shortest note here is a quaver one, so the time unit will be t � 8. Also the lowest note
used is a C4, the C on the fourth octave of the piano, while the highest one is a D5. We then
cross two octaves in this score, so the pitch unit will be p � 24, with C4 � 0 � C6, C5 � 12 and
B5 � 23. With these observations, we have for each Bi > S:

Bi > Z ~8Z�Z ~24Z
By De�nition 1.2.2, we are now able to give a description for each musical bar Bi:

B1 � ��6,9�, �7,11��
B2 � ��0,12�, �1,12�, �2,14�, �3,12�, �4,11�, �6,4�, �7,7��
B3 � ��0,9�, �1,9�, �2,7�, �3,5�, �4,7�, �7,7��
B4 � ��0,7�, �1,5�, �2,5�, �3,3�, �4,5�, �6,0�, �7,5��
B5 � ��0,2�, �0,7�, �0,11��

For each one of the Bi, there is a matrix Mi of Fourier coe�cients, which provides a natural
way to compare the musical bars of S together, using De�nition 4.2.2. Figure 4.2.1 gives the
table of these computing distances.

B1 B2 B3 B4 B5

B1 0 515.114 488.053 492.526 387.27

B2 0 550.136 605.697 550.149

B3 0 572.54 523.797

B4 0 476.545

B5 0

Table 4.2.1: The table of distances between musical bars of S from One summer's day.

At this moment, we have exactly our expected point cloud, where the points are�B1,B2,B3,B4,B5� and the metric is given by the distances from Table 4.2.1. We can then
construct the associated �ltered complex using the Vietoris-Rips method from De�nition 4.1.1.
To do this, we discretize time using Table 4.2.1: each distance is a time of �ltration that corre-
sponds to a parameter ϵ and, for each value, we build the associated complex Rϵ�S�, by adding
a new edge for the corresponding pair of bars. In this example, the di�erent values of ϵ are given
by

�0, 387.27, 476.545, 488.053, 492.526, 515.114

523.797, 550.136, 550.149, 572.541, 605.697�
For instance, for a parameter ϵ � 387.27, Rϵ�S� is the complex with S � �B1,B2,B3,B4,B5�

as the set of vertices and only one edge �B1,B5�. Then, for ϵ � 476.545, we simply add the edge�B4,B5� to the previous complex, and so on. We thus obtain a �ltration, which is shown in
Figure 4.2.2, where each complex is represented by its corresponding graph (only vertices and
edges) for ease of illustration.
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Once we have the �ltration, we are able to compute persistent homology, that is, the as-
sociated family of barcodes. Here and throughout this paper, we will focus only on barcodes
in degree 0 and degree 1: indeed, the intuition of a musical interpretation goes with these low
dimensions, as for instance we think of a cycle in dimension 1 as a musical loop. Of course,
higher dimensions could be interpreted in future works. Figure 4.2.3 shows associated family
of barcodes with One summer's day in degree 0 and degree 1. We can notice that there is no
element of homology in degree 1, which is not that surprising considering the number of musical
bars in the score.
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Figure 4.2.2: The �ltered simplicial complex associated with score S from One summer's day :
each distance from Table 4.2.1 is used as a discretization of time and we represent each

complex of the �ltration by its associated graph.

Figure 4.2.3: The family of barcodes (in degrees 0 and 1) associated with the score S from One
summer's day.
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4.3. Normalization and scaling parameter

In Example 4.2.4 of the previous section, the time was discretized in order to compute the
Vietoris-Rips complex associated with S, and the di�erent values of the parameter ϵ were taken
into a set of �nite number of distances. In particular, for two di�erent scores we might have
several di�erent values of ϵ, and the resulting family of barcodes might have completely di�erent
scales. However, one of the main purposes of this thesis is to compare di�erent scores with each
other, that means to compare di�erent �ltered complexes and families of barcodes. Therefore, it
would be reasonable to ask that all the barcodes to be written in the same scale.

Following on this observation, we make a choice here that we will keep for the rest of this
paper: for any given musical score SP associated with any given musical piece P, the resulting
�ltration will be encoded with discretized time values of the form ϵ � tρ, where t > �0,1, . . . ,100�
and ρ is a �xed constant. At this point, each �ltration will have the same number of complexes
and each associated barcodes will be onthe same scale, more precisely between 0 and 100. Ac-
tually, the �xed constant ρ is computed as follows: for a given score S � �B1, . . . ,BN�, let us set
dmax as the maximum distance of all the values of ϵ. We then de�ne ρ as the precision we want
to work with, that is:

ρ �
dmax

100

Thus for each t > �0,1, . . . ,100� we consider the associated Vietoris-Rips complex Rtρ�S�. More
precisely, for each value of ϵi,j � dDFT�Bi,Bj�, which corresponds to a distance between two
musical bars Bi,Bj , we associate a value ti,j > �0,1, . . . ,100� given by

ti,j �

¢̈̈¦̈̈¤
1 if ϵi,j @ 1� ϵi,jρ � if ϵi,j C 1

Furthermore, instead of talking about "time t of the �ltration", we will now say that we are
looking at the complex on the musical piece on with a scaling parameter (or sometimes an
error-margin) of t%. Indeed, we think of the presence of an edge between two musical bars as
an indication that they are "similar", and the parameter t controls the way in which we choose
to make this rigorous: for a small value of t, there are few edges which means that the bars are
�nely distinguished, while for t large enough we allow coarser identi�cations.

As an application of this remark, in the previous Example 4.2.4 we have dmax � 605.697 so
our precision-constant ρ is given by

ρ � 6.05697

If we take ϵ1,3 � 488.053, we get that the corresponding t > �0,1, . . . ,100� is given by

t1,3 � 
ϵ1,3
ρ
� � 
488.053

6.05697
� � 80

so the edge �B1,B3� comes at 80% of the �ltration. Figure 4.3.1 gives the new table of distances
after normalization. The last edge �B2,B4� comes at the end of the �ltration, that means with
a scale of 100%. Furthermore, Figure 4.3.1 gives the corresponding �ltration (illustrated with
graphs only), where one can see that, with a scale of 90%, there are two edges that appears:�B2,B5� and �B2,B3�. This is due to the fact that the distances computed with the DFT-distance
were really closed, so our normalization simply combines them. Finally, Figure 4.3.2 gives the
new associated family of barcodes, with the scale between 0% and 100%.
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B1 B2 B3 B4 B5

B1 0% 85% 80% 81% 63%

B2 0% 90% 100% 90%

B3 0% 94% 86%

B4 0% 78%

B5 0%

Table 4.3.1: The table of distances between musical bars of S from One summer's day after
normalization.
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Figure 4.3.1: The �ltered simplicial complex associated with score S from One summer's day
after normalization.

Figure 4.3.2: The family of barcodes associated with the score S from One summer's day after
normalization. The barcodes scales are between 0% and 100%.
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Chapter 5.

The DFT as a metric on the set of notes
and chords

In this chapter, our aim is to understand in depth how the DFT works as a metric, and in
particular to answer the question of whether this new metric makes musical sense. To do this,
we will try it on some arti�cially created musical scores: more precisely, recall that in our
De�nition 1.2.2 a score is given by a non-ordered set of musical bars. In fact, we can construct a
musical score made of very simple musical bars, such as bars containing only a N -chord. In this
case, the pitches are all given with onset 0, so we take t � 1 as a unit of time. In particular, this
means that we are back in the one-dimensional case. However, we can use the DFT to measure
the distance between two given N -chords, and to do this we compute barcodes that lead us to
understand the connection between the musical bars.

For this analysis, we are going to build three types of musical scores:

Y the set of all the musical bars made up of a single arbitrary note from Z ~12Z (the chromatic
scale)

Y the set of all the musical bars made up of a single note taken from a given scale (diatonic,
pentatonic)

Y the set of all the musical bars made up of a 3-chords from a given family, such as the major
and minor chords (the Euler's Tonnetz)

In the �rst case, the results are inconclusive but the method provides an order between the
intervals of the chromatic scale based on the DFT. For speci�c sets of musical bars such as scales
or Tonnetze, the �ltrations are much more interesting: for a given scaling parameter, we recover
some shapes that are characteristic of the studied scores (the torus for the Euler's Tonnetz, for
instance). We also see the PLR-group, which arises naturally from this construction. With
these results, the metric based on the DFT together with persistent homology seem to be some
worthwhile tools to highlight the structure of a musical piece.

5.1. A metric on the set of notes

The model described in Chapter 4 is now reduced to a simpler case: a note can be seen as a
musical bar of the form

Bn � ��0, n�� ` Z ~1Z�Z ~pZ
where n is the pitch-class associated with the note in Z ~pZ. In this chapter, we will be working
most of the time in one octave, that means for p � 12. Also notice that, for this model, we are
somehow back in the one-dimensional case: in fact, using De�nition 1.2.5, each musical bar Bn

corresponds to a family of Fourier coe�cients �FBn�y��y>�0,1,...,11� of the simple form:
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FBn�y� � exp ��2iπn
12

�y (5.1.1)

In other words, each musical bar of one single note with pitch-class n > Z ~12Z has a corre-
sponding matrix of Fourier coe�cients Mn >M1�12�C� of the above form. This means that by
using the DFT-distance of De�nition 4.2.2, we are able to compute the distance between any two
notes of respective pitches na and nb, and this is reduced to the following simple calculation:

dDFT�na, nb� � dDFT�Bna ,Bnb
� � 12

Q
y�1

Vexp ��2iπnay

12
� � exp ��2iπnby

12
�V (5.1.2)

In this case, we can apply our model to any musical scale by converting it into a score
and then into a point cloud (see De�nition 4.2.3): therefore, we can compute and analyze the
corresponding family of barcodes. In the following examples, we will compare di�erent scales to
understand the musical meaning of Distance 5.1.2, and what the di�erent �ltrations and barcodes
bring to the study.

Furthermore, with the model given by the DFT and Equation 5.1.1, each musical pitch in
Z ~12Z is associated with a family of Fourier coe�cients that are given by the successive powers
of a 12th root of unity. We set up this correspondence in Table 5.1.1, which can be useful for
calculations.

Label
Pitch (in
Z ~12Z) Fourier coe�cients Label

Pitch (in
Z ~12Z) Fourier coe�cients

C 0 �1y�y�0,1,...,11 F ® 6 ���1�y�
y�0,1,...,11

C® 1 �e�iπy
6 �

y�0,1,...,11
G 7 �e 5iπy

6 �
y�0,1,...,11

D 2 �e�iπy
3 �

y�0,1,...,11
G® 8 �e 2iπy

3 �
y�0,1,...,11

D® 3 ���i�y�
y�0,1,...,11

A 9 �iy�y�0,1,...,11
E 4 �e�2iπy

3 �
y�0,1,...,11

A® 10 �e iπy
3 �

y�0,1,...,11

F 5 �e�5iπy
6 �

y�0,1,...,11
B 11 �e iπy

6 �
y�0,1,...,11

Table 5.1.1: Correspondence between pitch-classes in Z ~12Z and their family of Fourier
coe�cients.

5.1.1. The chromatic scale

Let us start with the chromatic scale, whose score is presented in Figure 5.1.1. This scale contains
all the pitch-classes in Z ~12Z, so here we are studying a score S � �B0,B1, . . . ,B11� where for
each n:

Bn � ��0, n�� ` Z ~1Z�Z ~12Z .

Notice that we are still using the convention that C is 0 and B is 11, but everything can be
done for any musical transposition. In score from Figure 5.1.1, we have chosen to represent each
note by a whole note, but we could also use quarter notes or any other duration (only the onset
matters here).

Using the distance between the notes from Table 5.1.1 and persistent homology, we can now
compute the family of barcodes associated with the chromatic scale, which is shown in Figure
5.1.2. The advantage of such examples with a small number of musical bars is that we can also
analyze the �ltration itself, describe the cycles and compare the di�erent distances. Therefore,
the table of distances between all the notes of the chromatic scale is given in Table 5.1.2.



5.1. A METRIC ON THE SET OF NOTES 73

G 4
4

C

	
C®

4	
D

	
D®

4	
E

	
F

	
F ®

4	
G	 G®

4	 A	 A®

4	 B	
Figure 5.1.1: The chromatic scale with whole notes in Z ~12Z.

Figure 5.1.2: The associated family of barcodes with the chromatic scale.

F ® E G® D® A D A® C® F G B

C 12.0 13.856 13.856 14.485 14.485 14.928 14.928 15.192 15.192 15.192 15.192

0 �6 �4 �4 �3 �3 �2 �2 �1 �5 �7 �11

Table 5.1.2: The table of distances between the di�erent notes of the chromatic scale. Here we
have made the calculations starting with C � 0, but we can transpose them to any other

pitch-class. The �rst row gives the distances computed with the DFT, and the second one gives
the corresponding harmonic intervals.

Table 5.1.2 shows that the closest note of one given pitch-class (here C) is given by its
augmented fourth (here F ®). In fact, using Distance 5.1.2 and Table 5.1.1, we get that

dDFT�C,F ®� � 12

Q
y�1

S1 � ��1�y S � 12.

Furthermore, we can generalize this calculation for any pair of pitch-classes �na, nb� >�Z ~12Z�2 using 5.1.2, and we get that 12 is actually the minimal DFT-distance between na

and nb:

dDFT�na, nb� �

12

P
y�1

Uexp ��2iπnay
12 � � exp ��2iπnby

12 �U
�

12

P
y�1

U1 � exp ��2iπ�nb�na�y
12 �U

C W 12P
y�1

1 � exp ��2iπ�nb�na�
12 �yW

� 12

because we have
11

P
y�0

ωy
� 0 for any 12th root of unity ω. In other words, the closest pitch to

a given one is always its augmented fourth. In terms of �ltration and considering barcode in
degree 0, at a scale of 78%, which is the �rst connection moment, there are exactly six connected
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components rising at the same time. These components are given by the joining of the augmented
fourths together, as it is shown in Figure 5.1.3.

C C® D D® E F

F ® G G® A A® B

�6 �6 �6 �6 �6 �6

Figure 5.1.3: The �ltration associated with the chromatic scale at a scale of 78%.

If we still focus on barcode in degree 0, we can see that the next step where the components
of the �ltration are gathering is given with a scaling parameter of 91%, and we now have two
connected components. In fact, this corresponds to the moment when major thirds appear, as
shown in Figure 5.1.4. Actually, this complex has a particular structure that is interesting to
understand: we can observe that it is in two components, and each of them is made up of major
thirds for the vertical edges, and augmented fourths for the horizontal ones. We have chosen
to give a second representation in Figure 5.1.5 of these components by drawing them into the
chromatic circle: in fact, each component has exactly six pitch-classes, the "odd-ones" and the
"even-ones", which are given by the following step of major seconds in the circle. Therefore, we
have linked the pitches with major thirds and augmented fourths (and diagonals) to underline
the symmetric disposition of the pitches in the complex.

D

F ®

A®

C

G®

E
�4

�6

D®

G

B

C®

A
F

�4

�6

Figure 5.1.4: The associated complex with the chromatic scale and DFT distance at 91%: it is
split in two connected components.

Furthermore, with a scaling parameter of 91%, the dimension of the homology group in degree
1 goes from 0 to 4. We have two generators for each component, which are given by alternating
major thirds and augmented fourths, as shown in Figure 5.1.6. Since in our construction the
triangles are �lled, we can also extract a third one-dimensional cycle for each component.

Finally, the two components from Figure 5.1.4 are gathering at 95% of the �ltration, and we
show this in Figure 5.1.7: each pitch-class has now exactly �ve neighbors, given by the minor
third (�3) and the reversed minor third (�9 � �3). Generators of homology in degree 1 from
Figure 5.1.6 are still present in the complex, but we also have new ones given by alternating
augmented fourth and reversed minor third. At this point of the �ltration, we have a lot of edges
and thus a lot of (�lled) triangles, so many cycles in degree 1 are the same in H1.

From 95% to 100%, the other harmonic intervals (�2, �1 and �5) appear successively in the
�ltration. This con�rms the fact that the DFT sets the di�erent harmonic intervals using the
successive divisors of 12 (and their opposite in Z ~12Z), as shown in Table 5.1.2 of distances.
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Figure 5.1.5: Another representation of the complex from Figure 5.1.4: each circle is a
component, and the pitches are gathered by alternating major thirds and augmented fourths

but without taking the order into account.
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Figure 5.1.6: The one-dimensional cycles from the �ltered complex, which appear at a scale of
91%: only two cycles generate H1 for each component, and the third is a sum of the �rst two

up to boundaries.

✔ Conclusion for the chromatic scale. We have seen that the metric given by the DFT
applied to the set of all pitches gives a particular clustering, since a note is directly related to its
augmented fourth (C with F ®). This �rst result seems musically questionable, but we will see
that it becomes consistent when we choose our notes in some particular sets of pitches, such as
more speci�c scales.

5.1.2. The diatonic scale

In order to explore this question of metrics on a set of notes, we could try to change the initial
set of pitches we are working with: in fact, when we want to apply the same method to a set of
chords, the natural approach would be to look �rst at a set of particular chords, such as minor
and major chords (the Tonnetz T �3,4,5�). In the previous paragraph, we have chosen to look
at the chromatic scale, which means all the pitches in Z ~12Z together, but we could also study
some particular scales. We will start by looking at the major and minor diatonic scales.



76 CHAPTER 5. THE DFT AS A METRIC ON THE SET OF NOTES AND CHORDS

C G®
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Figure 5.1.7: The �ltered complex with a scaling parameter of 95%. Each point has exactly �ve
neighbors: its minor and major third (�3, �4), their reversed (�3, �4) and its augmented

fourth (�6).

❃ C-Major scale. Let us start with the major scale given by the fundamental C, which is
shown in Figure 5.1.8. The set of pitches is also simply given by

�C,D,E,F,G,A,B� � �0,2,4,5,7,9,11�.
Following on from what we have done for the chromatic scale (Table 5.1.2), we can say that

the closest pitch to C are successively the major and minor thirds E and A, the major second D
and �nally the fourth F , the �fth G and the seventh B. We have also computed the corresponding
family of barcodes in degree 0 and 1, and the result is presented in Figure 5.1.9.
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C

	
D

	
E

	
F

	
G	 A	 B	

Figure 5.1.8: The C-major scale with whole notes in Z ~12Z.

Figure 5.1.9: The associated family of barcodes with both C-major and C-minor scale.
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We start by analyzing the barcode in degree 0: the �rst connection is given at 78%, and links
together vertices F and B. In fact, these two pitches are the only ones in the C-major scale that
are exactly separated by an augmented fourth. Then, there are only two �ltration steps, at a
scale of 91% and 95%, respectively. These two moments are illustrated in Figure 5.1.10. With a
scaling parameter of 91%, the pitch C is immediately joined to its major third E, while the two
other major thirds �G,B� and �F,A� are joined to the augmented fourth �B,F�.

At 95% of the �ltration, the corresponding graph with the C-major scale takes on a remark-
able shape: in fact, a circle of alternating major and minor thirds is formed:

�C,E� � �E,G� � �G,B� � �B,D� � �D,F� � �F,A� � �A,C�.
This circle is also the generator of homology in degree 1, that means the one-dimensional

cycle that lasts from 95% to 99% of the �ltration. Furthermore, this circle of thirds seems to be
a nice illustration and characteristic topological feature of the major scale, and the fact that it
appears by using the DFT as a metric to build the associated point cloud reinforces and con�rms
the fact that this approach has a particular musical meaning that needs to be exploited. This
idea will also be con�rmed when we will build the associated graph-type with a score in Section
6.4, and �nd back this particular circle of thirds for any major scale.

C E
�4

G B F A
�6

D

B

G E

C

AF
D

�6

�3

�4

Figure 5.1.10: The associated �ltration with the C-major scale with a scale of 91% (left) and
95% (right), respectively. The graph at 95% also represents the one-dimensional generator that

lasts until 99% of the �ltration, which is a circle of alternating major and minor thirds.

In degree 1, we see that there is also a second generator that starts only at 98% of the
�ltration but lasts until 100%. The associated complex is presented in Figure 5.1.11: we see that
the major seconds appear on the graph and provide three new one-dimensional cycles, that are
actually the same up to boundaries:

�C,A� � �A,G� � �G,E� � �C,E�
�C,A� � �A,F� � �F,D� � �D,C�
�E,D� � �D,E� � �E,G� � �G,B�

The circle of minor and major thirds is preserved in this con�guration, and since these new
one-dimensional cycles are shorter than the �rst one, we might then consider the circle of thirds
to be most representative of the major scale.

❃ C-minor scale. Let us do the same analysis for a minor scale. For comparison, we naturally
choose to study the C-minor scale (Figure 5.1.12), with associated set of pitches

�C,D,D®, F,G,G®,A®� � �0,2,3,5,7,8,10�.
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D�2

Figure 5.1.11: The associated �ltration with the C-major scale at a scale of 98%. The new
edges are given by the major seconds �C,D�, �D,E�, �G,A� and �A,B�, which provide a new

one-dimensional cycle that lasts until 100% of the �ltration.
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Figure 5.1.12: The C-minor scale with whole notes in Z ~12Z.

We can see that the major and minor scales are connected by the minor third transposition
z ( z � 3 for z > Z ~12Z, which sends the C-major scale �C,D,E,F,G,A,B� to the D®-major
scale �D®, F,G,G®,A®,C,D�. This transposition corresponds to a rotation, and Theorem 2.4.5
from Chapter 2 tells us that such transformations are isometries for the DFT-distance. Therefore,
the resulting barcodes and �ltrations will be the same for major and minor scales (with just a
relabelling of the vertices). In particular, we will recover the circle of thirds from Figure 5.1.10
as a characteristic shape of the C-minor scale, according to the third transposition of pitches.

5.1.3. The pentatonic scale

In this paragraph, we simply replace the diatonic scales with the pentatonic ones, and we keep
C as our fundamental pitch. Let us start with the major pentatonic scale, which is shown in
Figure 5.1.13. The set of pitches is given by

�C,D,E,G,A� � �0,2,4,7,9�.
Following on from what we have done for the chromatic scale (Table 5.1.2), we can say that

the pitches that are closest to C are successfully the major and minor thirds E and A, the major
second D and �nally the �fth G.
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C

	
D
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G	 A	

Figure 5.1.13: The C-major pentatonic scale with whole notes in Z ~12Z.
We have computed the associated family of barcodes in degree 0 and 1, and the results are

presented in Figure 5.1.14. Recall that in this particular example, we only have �ve musical
bars, so we do not expect complex barcodes. With a scaling parameter of 91%, the major third
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�C,E� appears on the �ltration, and, at 95%, the two minor thirds �C,A� and �E,G� follow.
As for the general major scale, the pitch D is still an isolated vertex at this point.

With a scaling parameter of 98%, the �ltration is thus in one connected component, which is
given by the connection of all the major seconds �C,D�, �D,E� and �G,A�. Moreover, at this
moment there is a one-dimensional cycle, visible on the barcode in degree 1, which remains only
one time of the �ltration. This cycle is given by two minor thirds, one major and one second
ones: �C,E� � �E,G� � �G,A� � �A,C�.

The graphs with a scaling parameter of 95% and 98% are shown in Figure 5.1.15, where the
one-dimensional cycle is visible. Furthermore, this particular cycle is also the complementary of
the sequence of �fths on which the major pentatonic scale is built:

�C,G� � �G,D� � �D,A� � �A,E�.
This complementary relationship is represented in Figure 5.1.16. The fourth �E,A� appears

at 99% and the graph is fully connected at 100%.

Figure 5.1.14: The associated family of barcodes with both C-major and C-minor pentatonic
scales.

A C E G
�4�3

D

D

C A

GE

�2

�3

�4

Figure 5.1.15: The associated �ltration with the C-major pentatoic scale with a scale of 95%
(left) and 98% (right), respectively. The graph at 98% represents also the only one-dimensional

generator that lasts until 99% of the �ltration.

Finally, as for the case of the diatonic scales, the minor pentatonic scale is given by the
major one with a translation of pitches z ( z � 3 for z > Z ~12Z, which sends �C,D,E,G,A�
to �D®, F,G,A®,C�. Therefore, such rotations of pitches are isometries (Theorem 2.4.5 from
Chapter 2), so the resulting barcodes and �ltrations will be the same for pentatonic major
and minor scales (with just a relabelling of the vertices). In particular, we will recover the
characteristic shapes from Figures 5.1.15 and 5.1.16 for the C-minor pentatonic scale.
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D

C A

GE

�2

�3

�4 D

C A

GE

Figure 5.1.16: The associated �ltration with the C-major pentatonic scale, with a scaling
parameter respectively of 98% (left) and its complement (right): we recover the sequence of

�fths on which the pentatonic major scale is built.

✔ Conclusion for the diatonic and pentatonic scales. These last two examples provide
rewarding examples of the application of the DFT as a metric on some speci�c set of pitches.
In particular, it shows that the classi�cation and comparison of notes depend on the choice of
the initial set. It also allows us to highlight some interesting topological features that we can
associate with di�erent scales, which we will recover in Section 6.4. Our aim now is to generalize
this construction to compare chords instead of single notes.

5.2. A metric on the set of 3-chords

The aim of this section is to apply the metric given by the DFT to some particular sets of chords.
More precisely, we will assume that a chord is given by three notes, so we will really be talking
about 3-chords. In the previous paragraph, we �rst decided to use the DFT as a metric between
all the pitches in Z ~12Z, and the results were inconclusive. Therefore, we adjusted the initial set
of pitches by taking certain scales and then found much more interesting topological features.

In this purpose, we will choose the set of 3-chords to work with: a natural start might be to
take all the major and minor chords, that means the twenty-four elements of the Euler's Tonnetz.
Then we can generalize to all the two-dimensional Tonnetze of the classical form T �a, b, c�. Before
doing so, we will begin this section with a rigorous de�nition of the two-dimensional Tonnetz.

5.2.1. The two-dimensional Tonnetz: definition

In the literature, the Tonnetz is presented under many di�erent forms, such as a simplicial
complex, a lattice or a topological space (see for example [15] or [33]). Our aim here is to
formalize these de�nitions in order to be able to use the word "Tonnetz" without any ambiguity.

De�nition 5.2.1. Let a, b, c > Z ~12Z��0� be such that a � b � c � 0. We de�ne a simplicial
complex T �a, b, c� of dimension two with Z ~12Z as its set of vertices, and where

Y �x, y� is an edge if and only if x � y > ��a,�b,�c�
Y the triangles are the sets of the form �x,x � a, x � a � b� or �x,x � b, x � a � b�

For simplicity, the notation T �a, b, c� may refer in what follows to the corresponding topological
space ST �a, b, c�S.
Remark 5.2.2. Permuting a, b, c does not a�ect T �a, b, c�. For example, T �c, b, a� contains
triangles of the form �x,x�c, x�c�b�: then, by putting y � x�c, this set becomes �y, y�b, y�a�b�,
which is a triangle of T �a, b, c�. Similarly, the simplicial complex T ��a,�b,�c� contains the same
triangles as T �a, b, c�, so we have T �a, b, c� � T ��a,�b,�c�.
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From this last remark, we can enumerate all the two-dimensional Tonnetz, and there are
twelve of them:

T �1,1,10�, T �1,2,9�, T �1,3,8�, T �1,4,7�, T �1,5,6�, T �2,2,8�
T �2,3,7�, T �2,4,6�, T �2,5,5�, T �3,3,6�, T �3,4,5�, T �4,4,4�

Furthermore, with the work done in [33], each of these Tonnetze can be described by direct
inspection in a topological way, as shown in Table 5.2.1. We will explain below how the di�erent
topologies appear from De�nition 5.2.1.

Tonnetz Topology
Betti number

β0 β1 β2

T �1,2,9�, T �2,3,7�
Torus 1 2 1T �1,3,8�, T �3,4,5�

T �1,4,7�
T �1,1,10�, T �2,5,5� Cylinders 1 1 0

T �1,5,6� Necklace of six tetrahedra 1 1 6

T �2,2,8� Two cylinders 2 2 0

T �2,4,6� Two necklaces
2 2 6

of three tetrahedra

T �3,3,6� Three tetrahedra 3 0 3

T �4,4,4� Four triangles 4 0 0

Table 5.2.1: Classi�cation of the twelve two-dimensional Tonnetze according to their topology.

We now want to give a visual representation of a Tonnetz, so we are going to represent it as a
lattice. More precisely, if �e1, e2� is the canonical basis of Z2, let us consider the homomorphism
ϕ � ϕa,b,c � Z2 � Z ~12Z de�ned by

ϕ�e1� � a, ϕ�e2� � b

so that c � �ϕ�e1 � e2�. It is easy to see that the image of ϕ is the connected component of 0 in
T �a, b, c�. More generally, Z ~12Z is given by the disjoint union of the connected components of
T �a, b, c�, so their number is given by the index of the image of ϕ in Z ~12Z.

We take now �ϵ1, ϵ2� a basis of R2, and we draw the lattice L generated by these, which we
identify with Z2 using the basis just chosen. Then, we de�ne a structure of in�nite simplicial
complex on R2 in a way that is similar to De�nition 5.2.1, i.e. the vertices are the elements of L
and

Y �x, y� is an edge when x � y > ��ϵ1,�ϵ2,��ϵ1 � ϵ2��
Y the triangles are the sets of the form �x,x � ϵ1, x � ϵ1 � ϵ2� or �x,x � ϵ2, x � ϵ1 � ϵ2�
Thus, we can see our homomorphism ϕ as a map between the set of vertices of R2 and

T �a, b, c�. By construction, it is a simplicial map. The geometric realization SLS can be seen as
a triangulation of R2, and we then obtain a continuous map SϕS � R2 � T �a, b, c� (see De�nition
3.1.2 from Chapter 3). The image of SϕS is the connected component containing 0, given our
conventions, and this gives us a representation of T �a, b, c� as a lattice.
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To make it even more visual, next to each lattice point v > L, we write ϕ�v� as a label,
usually using the musical dictionary 0 � C,1 � C® and so on. The picture �nally obtained
is often colloquially refered to as the Tonnetz itself (the word "Tonnetz" being German for
"network of notes", see [41]). For instance, we give the visual representation of T �3,4,5� and
T �4,4,4� in Figure 5.2.1.

In Table 5.2.1, we speak about the topology of a Tonnetz T �a, b, c�. To visualize this, it is
helpful to de�ne the fundamental domain of a Tonnetz. Let us start by observe that the map SϕS
is far from being injective, and in fact it can make drastic identi�cations. Firstly, if we consider
kerϕ as a subgroup of L and thus of R2, we have

SϕS�x � k� � SϕS�x�
for all k > kerϕ. In fact, the quotient of Z2 by kerϕ is a subgroup of Z ~12Z, so kerϕ is a
�nite-index subgroup of L, and thus is a lattice itself generated say by u1 and u2. In the case
of T �3,4,5�, we can take u1 � 3ϵ1 and u2 � 4ϵ2. We write Da,b,c for the parallelogram with
the origin as a vertex and u1 and u2 as sides, and we call Da,b,c the fundamental domain
for the Tonnetz T �a, b, c� (with respect to the choice of u1 and u2, which are not unique).
We give the representation for T �3,4,5� and T �4,4,4� in Figure 5.2.1a and 5.2.1b respectively.
Moreover, we have SϕS �Da,b,c� � T �a, b, c� when ϕ is surjective (otherwise SϕS �Da,b,c� is simply the
connected component containing 0) so, in other words, the Tonnetz T �a, b, c� is obtained from
the fundamental domain by making identi�cations. More precisely, let us de�ne

Ta,b,c ��
R2�kerϕ

so that Ta,b,c is a torus obtained from Da,b,c by identifying the opposite sides. In fact, there is
an induced map Ta,b,c � T �a, b, c� and, in some cases, such as that of T �3,4,5�, it is a home-
omorphism. On the other hand, for T �4,4,4�, every single triangle of R2 is sent by ϕ to the
unique triangle in the corresponding connected component of T �4,4,4�, which is consistent with
the classi�cation Table 5.2.1 already given.

Remark 5.2.3. We can go a little further with the classi�cations of the Tonnetze: in fact, still
according to [33], we can arrange them in pairs by considering basic transformations. More
precisely, there is an isomorphism of simplicial complex between T �3,4,5� and T �1,3,8�, which
is given by the homothetie z ( 5z for z > Z ~12Z. Therefore, using Theorem 2.4.14 from Chapter
2, this map is an isometry so the �ltrations and barcodes for T �1,3,8� and T �3,4,5� will be
exactly the same. The same identi�cation holds for the pair of Tonnetze T �1,2,9� and T �2,3,7�
(z ( 7z), and also for T �1,1,10� and T �2,5,5� (z ( 5z).

5.2.2. The Tonnetz of major and minor chords

Let us focus on the Tonnetz T �3,4,5�. Musically, this Tonnetz is the one given by minor and
major chords: indeed, if we recall the fundamental domain D3,4,5, one side is given by the major
thirds (�4), while the other is given by the minor thirds (�3), so the diagonals are given by
the �fths (�7 � �5). Actually, this is the most famous Tonnetz because it is the original one,
de�ned by Leonhard Euler (1707-1783) himself in 1739 for historical musical reasons: his idea
at that time was to group pitch-classes according to their acoustic proximity (see [41]). For this
purpose, he only used majord thirds and �fths, so a chord was not correctly represented as a
triangle. The Tonnetz was then generalized by Arthur von Oettingen (1836-1920) and Hugo
Riemann (1849-1919) who added minor thirds and extended the Tonnetz as an in�nite plan.
Such construction is sometimes called the Neo-Riemannian Tonnetz (see [42]). The eleven
other two-dimensional Tonnetze T �a, b, c� are an extension of this de�nition, coming much later
with [15], [21] or [33] for example.
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(a) The Tonnetz T �3,4,5� as a lattice with its fundamental domain D3,4,5.

(b) The Tonnetz T �4,4,4� as a lattice with its fundamental domain D4,4,4.

Figure 5.2.1: Visual representation of the Tonnetze T �3,4,5� and T �4,4,4� as lattices together
with their respective fundamental domain D3,4,5 and D4,4,4. The pictures are extracted from

the web-hexachord application https://guichaoua.gitlab.io/web-hexachord/.

https://guichaoua.gitlab.io/web-hexachord/
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Our purpose here is to apply the DFT together with persistent homology to the set of major
and minor chords: as we did in the previous Section 5.1, we will associate a score with the
Tonnetz (instead of a scale) and then compute persistent homology using the DFT on this point
cloud.

We will start by analyzing the barcode in degree 0 obtained from the �ltration built on the
set of major and minor chords, and it will turn out that the PLR-group of basic transformations
between such chords will emerge from the study. Let us begin with a few reminders about this
group. Then, the barcode in degree 1 will provide some interesting one-dimensional cycles, which
we will describe manually.

✭ The PLR-group in degree 0.

A Tonnetz is a simplicial complex of dimension two, so we can de�ne some applications that
transform a triangle from the Tonnetz into another. In the particular case of T �3,4,5�, a triangle
corresponds to either a major or a minor chord and it happens that, for a given triangle let us
say a major one, the three neighbors are given by a minor one. Therefore we de�ne three basic
transformations that change a minor chord into a major one and vice versa. These operations
are sometimes called the Neo-Riemannien transformations (de�ned by Hugo Riemann in
1880) and are denoted by:

P (parallel), L (leading-tone) and R (Relative).

We start by giving some basic de�nitions and properties of these operations that we will use
in the rest of this section, and we refer to [42] for more details on the subject.

De�nition 5.2.4. A triad is a chord made up of three notes (pitch-classes): a root r, a third
(minor tm or major tM ) and a �fth f , with r, t and f in Z ~12Z. Obviously, the choice of
t and f depends on the root, and we have tm � r � 3, tM � r � 4 and f � r � 7. We denote
by rM � �r, tM , f� and rm � �r, tm, f� respectively the major and minor chord built from
the root r. By successively �xing r, tM (or tm) and f , we can transform rM (or rm) into
a minor (or major) chord with the fewest possible moves (�xing one edge for each transformation):

� P �rM� � �r, t � 1, f� � rm

� L�rM� � �r � 1, t, f� � �r � 4�m
� R�rM� � �r, t, f � 2� � �r � 3�m

� P �rm� � �r, t � 1, f� � rM

� L�rm� � �r, t, f � 1� � �r � 4�M
� R�rm� � �r � 2, t, f� � �r � 3�M

These three transformations P , L and R are given by basic re�ections on the chromatic circle:
if we take C � 0M � �0,4,7� as an example, then we get that

P �C� � 0m � �0,3,7� � Cm

L�C� � 3m � �11,4,7� � Em

R�C� � 9m � �0,4,9� � Am

An illustration of these operations is given in Figure 5.2.2. It is important here to notice that
the resulting minor chords are the exact three neighbors of C in the Tonnetz T �3,4,5�.

Moreover, these three operations are involutions (P 2
� L2

� R2
� 1) and form a group called

the PLR-group, which is generated by L and R with P � R�LR�3. The element �RP �2 � �PR�2
is sometimes simply denoted by T6: in fact, for a chord given by root r � �r, t, f� (major or minor),
T6 is given by the translation of an augmented fourth

T6�r� � �r � 6, t � 6, f � 6�,
which is equivalent to applying the operation �RP �2 � �PR�2. Finally, we have the following
proposition from [42]:
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Figure 5.2.2: P , L and R transformations on the major chord C � �0,4,7�:
P �C� � Cm, L�C� � Em and R�C� � Am

Proposition 5.2.5. The action of the PLR-group on the set of the twenty-four minor and major
chords is simply transitive.

Let us go back to our model: there are exactly twenty-four chords in the fundamental domain
of T �3,4,5�, so we can set a bijection between D3,4,5 and �1,2, . . . ,24�, as we did in Figure
5.2.3, where we start with the C-major chord as B1. Therefore, there is a corresponding score
ST �3,4,5� � �B1,B2, . . . ,B24� with the Tonnetz T �3,4,5�, also shown in Figure 5.2.3.

As we did for the scales in Equation 5.1.1, we can directly compute the distance between two
chords using the Fourier coe�cients: more precisely, if r and r� are two (minor or major) chords
given by the set of pitches �r, t, f� and �r�, t�, f �� respectively, the distance between r and r� is
given by

dDFT�r, r�� � 12

Q
y�1

TFr,t,f�y� �Fr�,t�,f ��y�T (5.2.1)

�

12

Q
y�1

V� exp ��2iπry
12

� � exp ��2iπty
12

� � exp ��2iπfy
12

��
� � exp ��2iπr�y

12
� � exp ��2iπt�y

12
� � exp ��2iπf �y

12
��W

Therefore, we can compute the distances between each chord of the Tonnetz T �3,4,5� by
simply using the above calculation. We summarize all this information in Table 5.2.2, where we
have chosen to include the correspondence between a chord (C as an example) and operations of
the PLR-group, whose action on the Tonnetz is simply transitive (Proposition 5.2.5). Finally,
from this table we can compute the associated family of barcodes, which is shown in Figure 5.2.4.

Let us analyze these two barcodes in degree 0: there are two characterized moments, suc-
cessive in time, at 58% and 59% of the �ltration. At a scale of 58%, the complex looks like in
Figure 5.2.5, where there are exactly twelve connected components. Notice that the chords are
grouped together with their relative ones. For instance, C and Am are connected by an edge.
In fact, using 5.2.1, the distance between C � �0,4,7� and Am � �9,0,4� is simply given by the
following calculation:



86 CHAPTER 5. THE DFT AS A METRIC ON THE SET OF NOTES AND CHORDS
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(a) The fundamental domain D3,4,5 of the Tonnetz T �3,4,5� with an arbitrarily numbered chords.
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(b) The score ST �3,4,5� � �B1,B2, . . . ,B24� made up of the twenty-four minor and major chords of the
Euler's Tonnetz.

Figure 5.2.3: The associated score ST �3,4,5� with the fundamental domain D3,4,5 of the Euler's
Tonnetz.

id R P L PLR � RLP PL LP T6

0 14.928 15.192 17.856 17.949 18.742

C Am Cm Em Fm E G® F ®

PRL � LRP RPL � LPR RP PR RL LR RLR LRL

18.928 19.253 20.325 21.413 21.856

Gm C®m D® A G F Dm Bm

RT6 PLT6 LPT6 RLT6 LRT6 PT6 LT6 LPL

22.928 23.307 24.325 24.435 25.555

D®m A® D F ®m A®m C® B G®m

Table 5.2.2: The table of distances between the twenty-four major and minor chords (starting
from the C-major chord): here we give the correspondence with the twenty-four elements of the

PLR-group.



5.2. A METRIC ON THE SET OF 3-CHORDS 87

Figure 5.2.4: The associated family of barcodes with the Tonnetz T �3,4,5�.

dDFT�C,Am� �

12

P
y�1

Texp ��2�0iπy12
� � exp ��2�9iπy12

�T
�

12

P
y�1

S1 � iy S
� 3� S1 � iS � S1 � iS � 2�
� 6

º
2 � 6

� 14.485

Notice that this calculation is the same as computing the distance between the pitches C and
A. In fact, just take the three neighbors of the C-major chord which are given by Em, Am and
Cm, remove the two common notes and simply compute the distance between the remaining
pitches, according to Table 5.1.2 from the previous section. In this case, we have

14.485 � dDFT�C,A�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�dDFT�C,Am�

B dDFT�C,B�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�dDFT�C,Em�

� dDFT�C,D®�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�dDFT�C,Cm�

� 15.192.

Therefore, the chord that minimizes the DFT-distance is given by its relative one, which is
musically consistent.

C C® D D
® E F
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m Bm Cm C®

m Dm

R R R R R R

F ® G G® A A® B

D®
m Em Fm F ®

m Gm G®
m

R R R R R R

Figure 5.2.5: The graph of the �ltration associated with the Tonnetz T �3,4,5� at a scale of 58%.
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With a scaling parameter of 59%, the complex looks like in Figure 5.2.6 (left), where we have
shown only the graphs (with vertices in �1,2, . . . ,24� from Tonnetz 5.2.3): in this illustration, we
have chosen to show the complexes at 59% and 69% because the �ltration stagnates at 59% (the
�rst moment where it is connected) and remains the same until it becomes as in 69%. There are
several things to notice here: �rstly, in both cases we recover the shape of a torus, the quotiented
fundamental domain of T �3,4,5�, with a relationship of duality since a triangle is a vertex in our
graph. We also get some more informations considering the number of one-dimensional cycles
that we will study in the next paragraph. Secondly, each vertex of the complex at 59% has
exactly three neighbors: for instance, the C-major chord (bar B1, vertex �1�) is connected to the
bars B2, B8 and B10. Looking back at the Tonnetz 5.2.3, we see that it corresponds respectively
to the minor chords Cm, Am and Em, the three neighbors of C in the fundamental domain of
the Tonnetz. In other words, the C-major chord is connected to its parallel, leading-tone and
relative chord (De�nition 5.2.4), which are exactly the three minor chords that minimize the
DFT-distance from one given chord. This observation is illustrated in Figure 5.2.7 and also leads
to Theorem 5.2.6.

Figure 5.2.6: The �ltration associated with the Tonnetz T �3,4,5� at a scale of 59% (left) and
69% (right).

B1

B2

B8 B10

C

Cm

Am Em

P

R L

id

P

R L

Figure 5.2.7: A zoom on the graph associated with the Tonnetz T �3,4,5� at 59% of the
�ltration: each chord has exactly three neighbors that are given by the three basic

transformations P , L and R. Here we give the example of the C-major chord with its neighbors
P �C� � Cm, L�C� � Em and R�C� � Am.

Theorem 5.2.6. The graph associated with the twenty-four major and minor chords of the
Tonnetz T �3,4,5�, given by the �ltration below with a scaling parameter of 59%, corresponds to
the Cayley graph of the PLR-group generated by the three transformations P , L and R.
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Proof. From Proposition 5.2.5, the action of the PLR-group on the set of the twenty-four major
and minor chords is simply transitive, so there is a bijection between the elements of the PLR-
group and the chords of the Tonnetz. Therefore, using the illustration from Figure 5.2.7, the left
graph from Figure 5.2.6 is exactly the corresponding Cayley graph. Ì

✭ One-dimensional cycles on the Tonnetz.

We can now focus on the barcode in degree 1 from 5.2.4: �rst, we observe that when the complex
is fully connected (at a scale of 59%), there are twelve generators of homology H1 rising, and
one lasts until 74% of the �ltration. By computing these classes by hand, we see that there are
exactly three di�erent types of cycles that can be described by the operations P , L and R:

❃ First type of cycle. Starting from a given note, take all the minor and major chords
that contain it (see Figure 5.2.8): this corresponds to applying the operation �PLR�2 to the
corresponding major chord. For instance, starting from G, we get

�PLR�2�G� � �PLR�PL�Em� � �PLR�P �C� � �PLR��Cm� � �PL��D®� � P �Gm� � G

and we then obtain the cycle of length 6

�G,Em� � �Em,C� � �C,Cm� � �Cm,D®� � �D®,Gm� � �Gm,G�
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Figure 5.2.8: The homology class in degree 1 for T �3,4,5� which is obtained by turning around
one given note (here G) and taking all minor and major chords containing it. There are exactly

six such chords for one given note so the result is a cycle of length 6.

❃ Second type of cycle. Starting from a minor third, take all the successive chords given
by the following major third side (see Figure 5.2.9): this corresponds to applying the operation�LP �3 to a starting chord. For instance, starting from the C-minor chord, we get

�LP �3�Cm� � �LP �2L�C� � �LP �2�Em� � LPL�E� � LP �AZm� � L�AZ� � Cm

and we then obtain the cycle of length 6

�Cm,C� � �C,Em� � �Em,E� � �E,AZm� � �AZm,AZ� � �AZ,Cm�
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Figure 5.2.9: The homology class in degree 1 for T �3,4,5�, obtained by starting from a minor
third (here �C �D®�) and going to the major third side (�4). Since gcd�4,12� � 3, there are

only three edges before returning to the starting minor third, so there are exactly 2 � 3 � 6 such
chords for a given minor third, and the result is a cycle of length 6.

❃ Third type of cycle. Starting from a major third, take all the successive chords that are
given by following the minor third side (see Figure 5.2.10): this corresponds to applying the
operation �RP �4 (or smply T 2

6 ) to a starting chord. For instance, starting the C-major chord,
we get �RP �4�C� � �RP �3R�Cm�

� �RP �3�D®�
� �RP �2R�D®m�
� �RP �2�F ®�
� RPR�F ®m�
� RP �A�
� R�Am�
� C

and we then obtain the cycle of length 8:

�C,Cm� � �Cm,D®� � �D®,D®m� � �D®m,F ®� � �F ®, F ®m� � �F ®m,A� � �A,Am� � �Am,C�
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Figure 5.2.10: The homology class in degree 1 for T �3,4,5�, which is obtained by starting from
a major (here �C �E�) and going to the the minor third (�3). Since gcd�3,12� � 4, there are
four edges before returning to the starting third, so there are exactly 2 � 4 � 8 such chords for a

given minor third, and the result is a cycle of length 8.

Remark 5.2.7. We have shown how to build cycles by hand, following the sides of the minor
and major thirds (�3 and �4). Notice that there is no such equivalent for the side of the �fth
(�7): in fact, 7 is a generator of Z ~12Z, so by following this side, we will get every note of the
chromatic scale, that is every minor and major chord. On the other hand, we can create twelve
cycles of the �rst type for each note, and twenty-four of the other two types for each chord.
However, since there are several �lled triangles connecting the cycles together, the dimension of
H1 is much smaller than the total number of possible cycles.
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In the barcode for H1, there are also many short bars representing some cycles of length 4:
they can be considered as noises by looking at their lifetime in the �ltration (only 1% or 2%
compared to more than 10% for the cycles described below). In fact, persistent homology focuses
on the bars that last during the �ltration, and here the longest bars can be classi�ed in di�erent
types of cycles, so there are relevant of some topological features about the Tonnetz, while these
short bars can be considered simply as accidents.

However, there remains one bar that goes from 59% to 74%: an illustration of these two
moments is given in Figure 5.2.11. This bar has many di�erent generators considering all the
�lled triangles, and we can take for instance the "outline" of the graph in the illustration. In
other words, this cycle could be one of the element of homology in degree 1 characterizing the
torus. We also show the moment when only this cycle remains, i.e. between 71% and 73% of the
�ltration, which is also when the graph looks exactly like a torus.

Figure 5.2.11: The �ltration associated with the Tonnetz T �3,4,5� with an increasing scaling
parameter of 59%, 71% and 74%.

✔ Conclusion for Euler's Tonnetz. In the light of the above results, we can conclude that
our approach is able to capture much information about the Tonnetz of minor and major chords:
in degree 0 we recover the topological structure of its fundamental domain, the torus, and we also
recover the Cayley group of the PLR-group. In degree 1 we obtain some interesting homology
generators, which can be classi�ed with the elements of the PLR-group and which also allow us
to create one-dimensional cycles by hand. We will see in the next parts of this section that we
can do the same thing with the other two-dimensional Tonnetze T �a, b, c�.
5.2.3. A study of the eleven other Tonnetze

Now that we have analyzed the Tonnetz T �3,4,5� of major and minor chords using our DFT-
distance, we can compare the work with that of the eleven other two-dimensional Tonnetze:

T �1,1,10�, T �1,2,9�, T �1,3,8�, T �1,4,7�, T �1,5,6�, T �2,2,8�
T �2,3,7�, T �2,4,6�, T �2,5,5�, T �3,3,6�, T �4,4,4�

For this purpose, we will use exactly the same procedure as we did for T �3,4,5�, that means
set up a bijection between the chords of T �a, b, c� and the set �1,2, . . . ,Na,b,c�, where Na,b,c is
the number of chords containing the studied Tonnetz. We will then create the associated score,
compute barcodes and analyze the results. We will also compare them with those obtained for
the Tonnetz of minor and major chords, and provide a classi�cation of the di�erent Tonnetze
using barcodes in degree 0 and 1.
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This analysis will be done using classi�cation Table 5.2.1: indeed, we will start by studying
the eight connected Tonnetze (the �ve tori, the two cylinders and the necklace of six tetrahedra),
and then focus on the four non-connected ones (the two cylinders, the two necklaces of three
tetrahedra, the three tetrahedrons and the four triangles). Also recall Remark 5.2.3 which says
that there are simplicial isomorphisms between some pair of Tonnetze, given by the homotheties
z ( 5z and z ( 7z. More precisely, we have

T �1,3,8� � T �3,4,5�, T �1,2,9� � T �2,3,7� and T �1,1,10� � T �2,5,5�
Since homotheties are isometries for the DFT-distance (see Theorem 2.4.14 from Chapter 2),

the resulting �ltations and barcodes will be exactly the same for these pairs of Tonnetze.

✭ The connected Tonnetze.

Let us start with the eight connected Tonnetz:

T �1,1,10�, T �1,2,9�, T �1,3,8�, T �1,4,7�, T �1,5,6�, T �2,3,7�, T �2,5,5�, T �3,4,5�
❃ The �ve tori - (T �1,2,9�, T �1,3,8�, T �1,4,7�, T �2,3,7�, T �3,4,5�). We will perform
exactly the same analysis as we already did for T �3,4,5�, and we will recover the tori given by
the classi�cation from Table 5.2.1. The analysis for T �1,3,8� has already been done, since this
Tonnetz is isomorphic with T �3,4,5�.

Let us focus on T �1,2,9� and T �2,3,7�: the corresponding family of barcodes is shown in
Figure 5.2.12, and the main steps of the �ltration are illustrated in Figure 5.2.13. These di�erent
levels correspond successively to the moment when the complex is connected for the �rst time
and when the �rst round of cycles appears (56%), then to the moment when the second round of
cycles appears (65%) and �nally to the moment when the graph changes for the �rst time after
that second step (77%). We �nd back the shape of a torus at each one of these levels. Moreover,
the elements of homology in degree 1 can again be classi�ed in three types: the cycles obtained
by turning around a given pitch-class (cycles of length 6) and cycles corresponding respectively
to the ��3� � ��9�-side (length 8) and the ��2�-side (length 12). Note that we are now able to
generate a one-dimensional cycle of length 12 by hand.

Figure 5.2.12: The associated family of barcodes with the Tonnetze T �1,2,9� and T �2,3,7�.
Let us consider the isolated torus T �1,4,7�: since only one side is generated by a non-generator

of Z ~12Z (�4), there are only two types of one-dimensional cycles here. Actually, they are all
of length 6 and are respectively given by the major third side and the action of rotating around
one given pitch. We give the corresponding family of barcodes in Figure 5.2.14, and we have
chosen to represent some particular moments of the �ltration: here we have taken four di�erent
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Figure 5.2.13: The �ltration associated with the Tonnetze T �1,2,9� and T �2,3,7� with an
increasing scale of 56%, 65% and 77%.

steps that are given by the �rst moment where the �ltration is connected (59%), the moment
when the second and third round of cycles appear (65% and 75%), and also the moment when
the longest bar of degree 1, which lasts from from 59% to 83%, remains alone (82%). This is
shown in Figure 5.2.15. The torus is clearly visible for the �rst two steps of the �ltration.

Figure 5.2.14: The associated family of barcodes with the Tonnetz T �1,4,7�.

Figure 5.2.15: The �ltration associated with the Tonnetz T �1,4,7� with an increasing scale of
59%, 65%, 75% and 82%.
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❃ The two cylinders - (T �1,1,10�, T �2,5,5�). These two Tonnetze are connected and, from
Table 5.2.1, they both have the topology of a cylinder. Moreover, they have twelve chords (instead
of twenty-four for the tori), and are isomorphic with the homothetie z ( 5z. The corresponding
family of barcodes in degree 0 and 1 is shown in Figure 5.2.16, while some particular steps of the
�ltration (the �rst moment when it is connected and the di�erent rounds of cycles) are illustrated
in Figure 5.2.17.

For these two Tonnetze, and unlike for the tori, we are no longer able to build one-dimensional
cycles by rotation: in fact, two triangles with a common edge given either by the side ��2� or
the side ��10� are the same. Consequently, there are only three di�erent chords around a given
note, so we cannot form a one-dimensional cycle. On the other hand, following either the side��2� or the side ��10� provide cycles of length 12.

Figure 5.2.16: The associated family of barcodes with the cylinders Tonnetze T �1,1,10� and
T �2,5,5�.

Figure 5.2.17: The �ltration associated with the Tonnetze T �1,1,10� and T �2,5,5� with an
increasing scale of 64%, 78% and 83%.

❃ The necklace of six tetrahedra - (T �1,5,6�). We see from Table 5.2.1 that T �1,5,6�
has a particular triplet of Betti numbers (β0 � 1, β1 � 0 and β2 � 6), so this Tonnetz has the
topology of a necklace of six tetrahedra. The corresponding family of barcodes is presented in
Figure 5.2.18.

The barcode in degree 0 is di�erent from the other connected Tonnetze: in fact, in this case
we have three main �ltration steps given by 46%, 53% and 58%. At 46%, half of the vertices are
connected, and two vertices are linked together if they share one edge from the ��6�-side. The
�ltration is shown at 53% and 58% in Figure 5.2.19. In the �rst case, the complex is divided
into two components, where each vertex has exactly three neighbors, and these components are
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connected only 5% of the �ltration later. With a scaling parameter of 56%, we have six groups
of four vertices connected: more precisely, these are the six groups of chords that form the six
tetrahedra of our necklace, so we recover the expected topological structure. We zoom in one
of these tetrahedra in Figure 5.2.20, and we also put the description of each musical bar: this
tetrahedron is connected to the next one by a chromatic step ��1� or a fourth ��5�.

Figure 5.2.18: The associated family of barcodes with the Tonnetz T �1,5,6�.

Figure 5.2.19: The �ltration associated with the Tonnetz T �1,5,6� at a scale of 53% and 58%.
The right complex remains the same from 58% to 80% and corresponds to the necklace of six

tetrahedra.

14
1

13

2
B1 � �E,F,B� � �5,6,11�
B2 � �E,F,A®� � �5,6,10�
B13 � �F,A®,B� � �6,10,11�
B14 � �A®,B,E� � �10,11,5�

Figure 5.2.20: A zoom to one of the six tetrahedra of the Tonnetz T �1,5,6�.
Concerning degree 1, T �1,5,6� is the only connected Tonnetz where we do not have a natural

way to produce one-dimensional cycles. In fact, two sides of this Tonnetz are generators of
Z ~12Z and one has period two, so the triangles are all very close in terms of distances. However,
we see that the barcode is far from being empty and that there are indeed di�erent types of
cycles that last during the �ltration: in fact, some of them last only 5% (from 53% to 58%)
and correspond to the twelve outlines (cycles of length 4) that we can clearly see on the graph
of Figure 5.2.19. At 58%, half of them disappear because they are connected by boundaries, so
we still have one-dimensional cycles of length 4. On the other hand, we also get new generators
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which are given by the fourth side, but in a special way which is speci�c to this Tonnetz and
shown in Figure 5.2.21. In fact, we see that this cycle has length 10 and is glued together to
one of the above cycles of length 4. Also notice that this type of one-dimensional cycle appears
only twice in this Tonnetz: in fact, it is generated by twelve chords and the Tonnetz T �1,5,6�
contains twenty-four ones. These two cycles are linked together by boundaries and they can be
given by the outline of the necklace. Nevertheless, we obtain with T �1,5,6� a new family of
one-dimensional cycles of length 10.
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Figure 5.2.21: The one-dimensional cycle of length 10 which is given by the Tonnetz T �1,5,6�.
✭ The non-connected Tonnetze.

We will now complete this analysis by looking at the four non-connected Tonnetze:

T �2,2,8�, T �2,4,6�, T �3,3,6�, T �4,4,4�.
The �rst observation we can make is that some of these Tonnetze contain very few di�erent

chords (four, twelve and twenty-four) so we will not get one-dimensional cycles as easily as we
did for the connected ones. However, we have seen in the previous analysis that the barcodes in
degree 0 provide a good illustration of the topological structure of the Tonnetz, so we expect to
�nd here the di�erent connected components that actually compose these di�erent Tonnetze.

❃ The two cylinders - (T �2,2,8�). This Tonnetz contains only twelve chords and has two
similar generators, given by the major second side ��2�. Consequently, two triangles that share
a ��8�-side are the same. Thus, as for the two cylinders T �1,1,10� and T �2,5,5�, we will not
have one-dimensional cycles by turning around a given note.

Let us focus on the barcode in degree 0, as shown in Figure 5.2.22. We can immediately see
that there are two general steps in this graph: the �rst one, where only two components remain
(59%), and the second, which comes much more later, with a scaling parameter of 92%. These
two moments are shown in Figure 5.2.23. Moreover, the two components at 59% are exactly
given by the two cylinders and the �ltration remains divided for more than 30% of the �ltration,
which we never had with the connected Tonnetze. Therefore, the persistent interpretation of
the degree 0 tells us that this set of 3-chords is divided into two di�erent parts. Furthermore,
these two parts are also the two one-dimensional cycles of the barcode in degree 1, which are of
length 6. This analysis shows us that we have recovered the non-connected characteristic from
this Tonnetz and also a new way of creating one-dimensional cycles of length 6.

❃ The two necklaces of three tetrahedra - (T �2,4,6�). This Tonnetz contains twenty-four
chords, and the associated family of barcodes is shown in Figure 5.2.24. With this Tonnetz, we
still get the idea that the barcode in degree 0 reveals two general steps of the �ltration: the
one at 53%, when the twenty-four chords are divided into two parts and thus provide the two
di�erent necklaces, and the one at 82%, when these two components are grouped. These two
moments are shown in Figure 5.2.25.
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Figure 5.2.22: The associated family of barcodes with the Tonnetz T �2,2,8�.

Figure 5.2.23: The �ltration associated with the Tonnetz T �2,2,8� with a scaling parameter of
59% (left) and 92% (right). The left complex remains the same from 59% to 68%, which is also

the length of the two one-dimensional cycles.

The analysis of the one-dimensional cycles is roughly similar to the one for the necklace
T �1,5,6�: indeed, there are cycles of length 4 that are given by the twelve outlines that we can
clearly see on the graph at a scale of 53%. At 58%, half of these cycles disappear because they
become boundaries. By using the major third side, we also get cycles of length 6. In degree 1,
we can see that two bars rise when the complex is connected, with a scaling parameter of 82%:
as it already was the case before, these two cycles are given by the outline of the graph.

Figure 5.2.24: The associated family of barcodes with the Tonnetz T �2,4,6�.
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Figure 5.2.25: The �ltration associated with the Tonnetz T �2,4,6� from the moment when the
two necklaces appear (53%) and the one when it is connected (82%).

❃ The three tetrahedra - (T �3,3,6�). This Tonnetz contains only twelve chords and is
generated by two similar sides, the minor third ��3�. The associated family of barcodes in
degree 0 and 1 is given in Figure 5.2.26.

For this Tonnetz, whose fundamental domain is divided into three parts each containing four
chords, we �nd two main steps of �ltration in degree 0: at 65%, when the twelve vertices are
divided into three connected graphs (the three tetrahedra), and at 93%, when these graphs are
glued together. These two moments are illustrated in Figure 5.2.27. Notice that this graph is
in three parts for almost 30% of the �ltration. It is also at the end of this moment that the
one-dimensional cycles appear, with the connection of the tetrahedra forming cycles of length 4.
However, the barcode in degree 0 again con�rms that this Tonnetz is in three di�erent parts.

Figure 5.2.26: The associated family of barcodes with the Tonnetz T �3,3,6�.

Figure 5.2.27: The �ltration associated with the Tonnetz T �3,3,6� from the moment when the
three tetrahedra appear (65%) and the one when it is connected (93%).
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❃ The four triangles - (T �4,4,4�). This Tonnetz is the least interesting, since it is formed
with the same side ��4�, so there are only four chords in it. These four chords are all obtained
by a simple 1-transposition, as shown below:

B1 � �C,E,G®� � �0,4,8�
B2 � �C®, F,A� � �1,5,9�
B3 � �D,F ®,A®� � �2,6,10�
B4 � �D®,G,B� � �3,7,11�

However, if there are no one-dimensional cycles given the number of musical bars, the cor-
responding family of barcodes, shown in Figure 5.2.28, shows us that the Tonnetz T �4,4,4� is
separated for most of the �ltration time, more precisely until 82%. At this moment, two chords
are connected until 100% of the �ltration, when we �nally get the complete graph. These two
moments are shown in Figure 5.2.29, and it con�rms that this Tonnetz is well composed of
distinct components.

Figure 5.2.28: The associated family of barcodes with the Tonnetz T �4,4,4�.

Figure 5.2.29: The �ltration associated with the Tonnetz T �4,4,4� from the moment when the
�rst chords are connected (82%) and the one when it is fully connected, which is simply the

end of the �ltration (100%).

5.2.4. A classification of the Tonnetze using the DFT

We conclude with a summary of what we have done in this section: we decided to apply our
DFT-distance on di�erent sets of 3-chords, which we selected using the di�erent two-dimensional
Tonnetze. This analysis shows that barcodes in degree 0 allow us to recover the topological
structure of each Tonnetz. Note that we have arbitrarily chosen a moment of �ltration (most of
the time, this was the �rst moment when the �ltration was connected) and we will re�ne this
choice in the next chapter (see Section 6.4). In particular, Table 6.4.4 proposes a "graph-type" for
each Tonnetz and scale studied. For each graph-type, we will recover the di�erent characteristic
shapes we found in this �rst analysis.
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In addition, barcodes of degree 1 allow us to manually generate one-dimensional cycles. Each
Tonnetz provides speci�c types of generator of H1, and it is interesting to compare them: for
some Tonnetz we have cycles of length 4, while for others it can go up to 12. Table 5.2.3 classi�es
the di�erent types of cycles we can �nd in these two-dimensional Tonnetze.

Tonnetz Topology (degree 0)
Lengths of H1-cycles

4 6 8 10 12

T �1,2,9�, T �2,3,7� � � �

T �1,3,8�, T �3,4,5� � �

T �1,4,7� �

T �1,1,10�, T �2,5,5� �

T �1,5,6� �

T �2,2,8� �

T �2,4,6� � �

T �3,3,6� �

T �4,4,4�
Table 5.2.3: A classi�cation of the twelve two-dimensional Tonnetz T �a, b,��a � b�� by their

topological structure and their respective types of cycles in H1 found using the DFT.

In conclusion, this �rst analysis con�rms our belief that the distance constructed by means
of the DFT together with persistent homology seems to be a reasonable tool for understanding
known musical structures.



Chapter 6.

Harmonization of Pop songs

6.1. General idea

The main idea of this chapter is to look at music pieces built on a certain number N of chords:
indeed, if the general purpose of using persistent homology in music analysis is to apply it on
any possible piece of music, we might want to have a deep understanding of what happens on
very basic examples. In that order, we have chosen to apply our TDA approach together with
the two-dimensional DFT to the most possible reduced songs.

The process is the following: let us consider a music pieceP, which is assumed to be extracted
from the large database of Pop music. In other words, P represents a song, with di�erent type
of musical instruments: voice, piano, guitar, bass, drums, etc. Here we are mostly interested in
the accompaniment, and more precisely the chord chart, so we are going to create the associated
score SP made of two tracks:

Y First track: the melody played as in the original score, living in Z ~tZ�Z ~pZ for a well-
chosen time-unit t and a pitch-unit p.

Y Second track: the accompaniment with chords in Z ~tZ�Z ~12Z and the minimal time-
unit is always a quarter note � �, so the accompaniment is as minimal as possible.

We call this process the harmonization of a song. We will then have several level of
analysis, depending on what we are looking at between the chord chart, the accompaniment or
the global harmonized song. We are now going to illustrate this process with a basic example.

Example 6.1.1. Let us consider the song Forever Young from the Pop group Alphaville (1984).
This song is based on the �ve following chords:

C � G � Am � F � Dm.

Now, if we only keep the melody and the accompaniment with quarter notes, we get the score
that is presented in Figure 6.1.1, which illustrates the �rst theme of the song.

Figure 6.1.1: An excerpt of the harmonization of the pop song Forever Young from the group
Alphaville (1984). This song is based on the �ve chords C �G �Am � F �Dm.
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The idea of reducing a music piece to the most simple structure (melody + accompaniment)
comes naturally in the idea of understanding our new process of musical analysis: in fact, it
allows us to have a deeper overview of how it works in reduced case before extending it to more
general contexts.

Moreover, in our case this approach has a further justi�cation especially after the works that
was done on the di�erent Tonnetze in Section 5.2: in fact, we saw that the DFT, together with
persistent homology, has a worthwhile musical interpretation when it is applied on chords, so we
expect it to work particularly well for this construction.

In that purpose, we propose a protocol made of di�erent and progressive levels of analysis:
each level will correspond to a way of extracting a �ltered complex and a family of barcodes
from the original score based on the Fourier point cloud method (see De�nition 4.2.3). Then,
the idea is to compare barcodes and complexes between the di�erent level of analysis, and �nally
between several songs. For each level, we will illustrate our analysis with the harmonized song
Forever Young from Example 6.1.1.

❃ Three levels of analysis for harmonized Pop songs.

Y Level 0: Only look at the chord chart, that means that a chord of the song is a musical
bar, which contains only this chord (played with whole notes, as we did for the Tonnetze).
Then, each bar is living in Z ~1Z�Z ~12Z and we thus get complexes with N vertices,
where N is the number of chords into the chord chart. For instance, in the case of Forever
Young, the result is the score from Figure 6.1.2, and it leads to a �ltered complex with only
�ve vertices. Thus, we build the associated �ltration and compute persistent homology, so
it allows us to compare the di�erent chord charts that are commonly used in Pop music.

G 4
4

C

			
G

			
Am

			
F

			
Dm

			

Figure 6.1.2: The chord chart of Forever Young from Alphaville (1984). Since each chord from�C,G,Am,F,Dm� represents a musical bar, the associated �ltered complex has �ve vertices.

Y Level 1: Study the accompaniment in itself, that means taking into account the rhythms
and also the chord's order. Since we reduced the score at much as possible, we consider
that for every song the time-unit for the accompaniment is measured with a quarter note.
A chord can thus be placed in n di�erent places in the bar, where n is the number of
beats for the song (for instance 4 if the meter is 4~4), and we are looking at the di�erent
con�gurations we might have. For instance, some songs could have all their chords in
the �rst time of the bar so the �ltration will be the same at level 0 and level 1, while
some others will use various permutations of chords and have a richer and more complex
accompaniment. Figure 6.1.3 shows an excerpt of the accompaniment of Forever Young.
If this song contains only �ve di�erent chords in its chord chart, at level 1 we have nine
distinct musical bars, given by:

B1 � ��0,C�, �16,G��
B2 � ��0,Am�, �16, F ��
B3 � ��0,G�, �16,Dm��
B4 � ��0, F �, �16,Am��
B5 � ��0,Dm�, �8, F �, �16,Am��

B6 � ��0, F �, �16,G��
B7 � ��0,Am�, �16,C�, �24,G��
B8 � ��0, F �, �16,C��
B9 � ��0,C��

With this description, it is implied that each point is actually a 3-chord, so for instance
B1 does not contains two but six notes. If the beat unit is given by a quarter note for the
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accompaniment, in that song the shortest note for the melody is a sixteenth note so the
time-unit will be given by t � 32. The half note value is thus equal to 16 and the quarter
ones to 8, which is why the accompaniment is encoded as above.

G 4
4

C

���
G

�� �
Am

���
F

���
G

���
Dm

���
Dm

���
F

���
Am

� ��
C

���
G

�� �
Figure 6.1.3: An excerpt of the accompaniment of Forever Young from Alphaville (1984). Here
we have �ve di�erent musical bars, where the �ve chords of �C,G,Am,F,Dm� are distributed

according to the four possible positions.

In this example, we started with a song with �ve di�erent chords in its chord chart and still
obtain an accompaniment which contains nine di�erent musical bars: in terms of �ltration,
we go from one �ltered complex with �ve vertices to one that has nine. Moreover, this
complex has vertices of the form

t1.Ch1 � . . . � tn.Chn

with n being the number of chords Chi in the bar and ti the corresponding onset. For
instance, in this example the �rst bar B1 will be represented by the vertex

0.C � 16.F.

This level provides a natural axis of study: comparing these two levels of analysis in order
to see what the rhythms and chords ordering bring to the song, and how our DFT-distance
analyzes it.

Y Level 2: This level studies the global reduced song in itself, that means the melody in
the �rst voice and the accompaniment in the second. It allows us to see what the melody
brings to the song: in fact, some songs could have a very basic accompaniment and still
have a complex melody, in a sense that needs to be precise. In the case of Forever Young
from Alphaville at that level of analysis, we go back to the score from Figure 6.1.1.

Remark 6.1.2. If we are particularly interested in the chord chart and the accompaniment here,
we might also want to study the melody of a given song as a score itself, and thus conversely
see what the accompaniment brings to this melody, or even do some comparison between several
melodies (with and without accompaniment). This could be a trail for future possible work.

Also notice that, in order to reduce the songs as much as possible, we will restrict our work
to songs built only on major and minor chords, that is, chords from the Tonnetz T �3,4,5�.
This will allow us to look at the chord chart into this Tonnetz. Again, an idea for extending this
work might be to work with more general types of chords.

For each level of analysis, we will look at several key moments of the �ltration: in degree 0, we
arbitrarily choose in a �rst place to look at the scale for which the complex is connected.
In fact, this moment can be considered as a well-chosen time of analysis, especially after the
classi�cation we made for the Tonnetze, where the �rst connected time allowed us to recognize
the topological structure (see Section 5.2). We will then re�ne this moment in a second place.

In the di�erent description of the analysis levels, we understood that an important part of
this section consists on comparing the di�erent levels together. In particular, we are interested
in the comparison between levels 0 and 1: if we take two songs that are built on the same chord
chart, for instance the famous

C � G � Am � F
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or any of its transposition, we will have exactly the same �ltration and family of barcodes in level
0, but we also might get a di�erent �ltration in level 1. More precisely, the �ltration for a song
in level 1 might seems more complex than the one for another song. This kind of comparison
will lead to the de�nition of complexity of the accompaniment, that allows us to classify
several songs together (see Paragraph 6.4.3).

Furthermore, we will propose a way to compare level 1 with level 2 by looking at both
�ltrations and adding colors to the second graph according to its accompaniment, that means
gathering the musical bars that share the same accompaniment. In other words, we will study
the bundles, and this will allows us to analyze the behavior of the melody according to the
chords, and how the DFT gathers the musical bars.

Remark 6.1.3. By studying songs based on N chords for small values of N (2, 3, 4, 5 and 6), we
will see that it often yields to some recognizable �ltrations, that we may want to study manually
by visualizing them with graphs. Thus, as we already discussed in Remark 4.1.3 when we de�ned
the Vietoris-Rips �ltration, it will seem natural to look at the homology of the graphs instead of
the complexes, so we will naturally construct a method to associate a graph-type to any pop
song built by this harmonization process, and we will also extend it in more general cases. In
particular, we will apply it to the previous work with scales and the Tonnetz, and recover the
di�erent results we have found in those sections.

For all the following analyzes, we say that a song based on N chords is a N-chords song,
and we have created corresponding MIDI �les that are available on the online database:

https://math-musique.pages.math.unistra.fr/midi.html.

6.2. Borderline cases: two and three chords

In this section, we start by analyzing the most simple case, that means Pop songs that are
built on two or three chords. This case shows the relevance of this analysis and especially the
comparison part between level 0 and level 1: in fact, the �ltration associated with the chord
chart will eventually go to an edge or a triangle, and there is no other choice, while level 1 might
be even more complex than that.

6.2.1. 2-chords songs

We start by taking three songs from three di�erent groups and which are built on only two
chords: Something in the Way, Born in the USA and Eleonar Rigby. The songs are presented
on Table 6.2.1.

Song Artist Year Chord chart
Something in the way Nirvana 1991 F ®m � D

Born in the USA Bruce Springsteen 1984 E � B

Eleanor Rigby The Beatles 1966 C � Em

Table 6.2.1: The list of the three studied 2-chords songs.

We can immediately notice that the choice of the two chords on which the songs are built is
not systematic: in fact, the songs by The Beatles and Nirvana are built on a major and a minor
chord, and more precisely on chords that are linked by a leading-tone transformation (see Section
5.2.2, De�nition 5.2.4). On the other hand, Born in the USA is built on two major chords, i.e.
chords that are separated at least from two transformations on the Tonnetz T �3,4,5�: more
precisely, we use a transformation LP to go from E to B.

https://math-musique.pages.math.unistra.fr/midi.html
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Notice that, for these three songs, the level 0 of analysis will be the same, that means that
the �ltration will be in two components (one vertex for each chord), and it will be non-connected
until the end of the �ltration (100%). The most interesting aspect here is the di�erence between
level 0 and level 1.

❃ Something in the Way. This song from the group Nirvana is built on the two chords F ®m
and D that are distant from a leading-tone transformation on the Tonnetz T �3,4,5�. Thus, the
complex at level 0 (chord chart) has only two vertices that are two components until the end
of the �ltration. At level 1, we are in the most simple case where the accompaniment is only
given by whole notes: in consequence, the �ltration is the same for both levels, and the family
of barcodes is given in Figure 6.2.1. The only di�erence goes with the labels of vertices: at level
0, the complex has two vertices given by �F ®m� and �D�, while at level 1 the vertices are of the
form �0.F ®m� and �0.D�.

Figure 6.2.1: The associated family of barcodes for the harmonization of Something in the Way
for levels 0 and 1 of analysis (the �ltrations are the same in both cases).

For level 2 of analysis, we add the melody and get nineteen distinct musical bars so the
�ltration has nineteen vertices, and each of them has a color of type �F ®m� or �D�. The
associated family of barcodes is given in Figure 6.2.2. Moreover, we chose to represent the
�ltration for each level in Figure 6.2.3 at a scale of 61%: in fact, because here level 0 and
level 1 are the same and the associated �ltrations are connected at 100%, we only represented
the moment where the complex in level 2 is connected, that means at 61%. In that colored
complex, we see that there is a clear separation between the musical bars according to their
accompaniment, which seems to con�rm the bene�ts of taking the DFT as a metric.

Figure 6.2.2: The associated family of barcodes for the harmonization of Something in the Way
at level 2 of analysis.
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Chord chart Accompaniment With Melody

61%

Figure 6.2.3: Comparison of the three levels of analysis for Something in the Way at a scale of
61%. We can observe at level 2 the clear separation between the two types of musical bars

according to their accompaniment.

❃ Born in the USA. The analysis of this song by Bruce Springsteen is roughly similar to
the previous one, at least for the �rst levels: in fact, the levels 0 and 1 are the same (each chord
falls at the �rst time of the musical bar) and the associated family of barcodes is thus exactly
the same as for Nirvana (Figure 6.2.1).

However, we have chosen to study this song because of the di�erence that brings the melody
compare to Something in the Way : in fact, if levels 0 and 1 are the same for both songs, the
�rst is a slow ballade and the melody is repetitive (which results in a small numbers of musical
bars), so the complex seems more "simple". On the contrary, if Born in the USA counts only
two chords in its chord chart, the harmonized song counts forty-eight distinct musical bars and
seems more complicated according to the resulting complex that we can see in Figure 6.2.5.
This di�erence of "complexity" can also be observed in both barcodes in degree 1: in fact, the
number of generator of homology are not the same and there is much more in the second song.
The di�erent bars are also longest for Born in the USA. We thus see with this example that
two songs with the same �ltrations at levels 0 and 1 can be di�erentiated by the third level of
analysis. Moreover, we still observe for this song the separation between the two colored kinds
of musical bars at level 2.

Figure 6.2.4: The associated family of barcodes for the harmonization of Born in the USA at
level 2 of analysis.

❃ Eleanor Rigby. This last song we chose to study is representative of what is possible to do
with only two chords: in fact, if the family of barcodes are the same as for Something in the Way
and Born in the USA at level 0 (Figure 6.2.1), one can observe the real di�erence at level 1. The
associated family of barcodes is presented in Figure 6.2.6. Instead of having only two distinct
musical bars, with that song we have now nine distinct ones, and the �ltration is thus much
more complicated than the ones with the previous songs at the same level of analysis. There are
also two long bars in degree 1, with one that lasts almost 20% of the �ltration, which is quite a
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Chord chart Accompaniment With Melody

62%

Figure 6.2.5: Comparison of the three levels of analysis for Born in the USA at a scale of 62%.
We can observe at level 2 the clear separation between the two types of musical bars according

to their accompaniment.

while. On the contrary, the melody is much more repetitive for this song than for Born in the
USA, and the complex in level 2 counts only twenty-�ve distinct musical bars. The di�erence
of complexity can be observed by comparing both barcodes in degree 1, where we can see that
there are much less bars for Eleanor Rigby.

Let us brie�y focus on the �ltration for Eleonar Rigby at level 1. As for the two previous 2
chords songs, we compare the three levels of analysis in Figure 6.2.8: the di�erence here is that
we represent the moments when level 1 and level 2 are connected (respectively 62% and 60%).
At a scale of 60%, the complex at level 1 has four components and each component is a "type of
accompaniment", according to the position of the chord Chi and Chj :

0.Ch1 � 0.Ch2 ; 0.Chi � 4.Chj ; 0.Chi � 8.Chj ; 0.Chi � 12.Chj

At 62%, all these components are connected. At level 2, the complex has nine di�erent colors
and eleven vertices out of twenty-�ve have color associated with the musical bar �0.Em�. It
turns out that the tonality of Eleanor Rigby is Em, which means that this new information can
now be found out automatically through this analysis.

Figure 6.2.6: The associated family of barcodes for the harmonization of Eleanor Rigby at level
1 of analysis.

✔ Conclusion for 2-chords songs. We saw here three di�erent kinds of songs that are all built
on only two chords and each level of analysis revels di�erent musical features. For Something in
the Way and Born in the USA, the �rst two levels of analysis are the same but the melody brings
more complexity for the second. In both cases, the musical bars are gathered by accompaniment.
For Eleanor Rigby, if the general �ltration at level 2 is less complex than Born in the USA, the
one at level 1 reveals another kind of complexity that is also visible by looking at the barcodes
in degree 1. The general comparison of these three songs is illustrated in Figure 6.2.9.
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Figure 6.2.7: The associated family of barcodes for the harmonization of Eleanor Rigby at level
2 of analysis.

Chord
chart

Accompaniment With Melody

60%

62%

Figure 6.2.8: Comparison of the three levels of analysis for Eleanor Rigby with a scale
respectively of 60% and 62%. We can observe the complexity of the �ltration at level 1, and the
majority of vertices have color �0.Em� at level 2, which indicates that the song tonality is Em.

6.2.2. 3-chords songs

We will now consider three songs from three di�erent groups that are built this time on three
chords: What's up, I have a dream and I love Rock N'Roll. The songs are presented on Table
6.2.2.

Song Artist Year Chord chart
What's up 4 Non Blonds 1993 A � Bm � D

I have a dream ABBA 1979 BZ � F � E Z
I love Rock N'Roll Joan Lett 1981 E � A � B

Table 6.2.2: The list of the three studied 3-chords songs.

As for the 2-chords songs, the choice of the chord chart is not systematic: for instance, the �rst
song have two major chords and one minor, while the two other songs have only major chords.
However and unlike the previous paragraph, this time the chord chart will in�uence the �ltration
at level 0 of analysis. In fact, since now we have three chords, there will be di�erent �ltrations
depending on the construction of the chord chart, and not only two separated components that
are gluing together at 100% of the �ltration. Let us analyze each song.
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Figure 6.2.9: Comparison of the three songs Something in the Way, Born in the USA and
Eleanor Rigby which are all built on two chords.

❃ What's up. This �rst song is based on one minor chord and two majors one. More precisely,
D and Bm are linked by a relative transformation R, and we have:

R�D� � Bm ; LR�A� �D ; RLR�A� � R�D� � Bm

In consequence, the �ltration at level 0 has three main scales of �ltration, and barcodes is
represented in Figure 6.2.10: at 69%, the edge �Bm,D� appears, at 94% it is completed with
the edge �A,D�, and �nally the triangle is formed at 100% of the �ltration. At level 1, we are
in the basic case where there are only three vertices �0.A�, �0.D� and �0.Bm�, so the family of
barcodes and the �ltration are the same.

On the opposite, we get �fty-nine distinct musical bars by adding the melody at level 2, so
the melody seems to bring complexity to the song. The associated family of barcodes is given
in Figure 6.2.11 and we can see that, if there are many bars in degree 0, there are not so many
in degree 1. In addition they are quite short, especially compared to level 2 for Born in the
USA in the previous analysis, where the melody also seems to add complexity to the song (the
longest bar here lasts only 7% of the �ltration, while the longest one for Bruce Springsteen's
song lasts 20%). An illustration of the di�erent levels of analysis for this �ltration is given in
Figure 6.2.12. At level 2, we still observe the property which says that the most colored vertex
is the one associated with the tonality of the song: here it is the color �0.A� that is the most
represented, and A is the tonality of the song What's up.

❃ I have a dream. This second song is also based on three chords but, unlike the previous
one, they are all major chords. In particular, that means that they are all connected by at least
two successive PLR-transformations in T �3,4,5�: in fact, here we have BZ, F and E Z and the
following relations:

LR�E Z� � BZ � LR�F � and LRLR�E Z� � F
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Figure 6.2.10: The associated family of barcodes for the harmonization of What's up at levels 0
and 1 of analysis.

Figure 6.2.11: The associated family of barcodes for the harmonization of What's up at level 2
of analysis.

Chord chart Accompaniment With Melody

65%

94%

Figure 6.2.12: Comparison of the three levels of analysis for What's up at a scale of 65% and
94%. We can observe at level 2 the clear separation between the three types of musical bars

according to their accompaniment.

Notice that this progression is a classical one given by I-IV-V starting with BZ. Thus, the
complex at level 0 becomes connected at 87% where both edges �BZ, F� and �BZ,E Z� appear
together, and becomes a triangle at a scale of 100%. These moments of the �ltration are visible
on barcodes from Figure 6.2.13.
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At level 1, we are in the same case than for What's up, which means that all the chords fall
on the �rst position of the musical bar. In consequence, the �ltrations are the same at level 0
and 1. The di�erence with the previous song comes with the melody: if both of them are built
on three chords and level 1 does not allow to di�erentiate the songs, the addition of the melody
(sixty-seven musical bars) at level 2 seems to reveal more complexity for I have a dream, which is
quite visible with degree 1. In fact, the longest one-dimensional cycle lasts 19% of the �ltration
(see barcodes from Figure 6.2.14), while for What's up it was only 7%. For these two examples,
there is no di�erence between the two �rst levels of analysis and the accompaniment, but the
complexity of the melody is visible with level 2.

Finally, we give an illustration of the di�erent �ltrations for What's up respectively at a scale
of 55% (the moment when level 2 becomes connected) and 87% (the same levels 0 and 1) on
Figure 6.2.15: at level 2, we still have the same clustering between colored vertices according to
their accompaniment.

Figure 6.2.13: The associated family of barcodes for the harmonization of I have a dream at
level 0 of analysis.

Figure 6.2.14: The associated family of barcodes for the harmonization of I have a dream at
level 2 of analysis.

❃ I love Rock N'Roll. We �nish this analysis with this three chords song that has an in-
teresting level 1 of analysis. In fact, we have the same chord chart construction than for the
previous one, that means construction I-IV-V starting with an E, so we have three major chords
distant from transformations LR:

LR�B� � E � LR�A� and LRLR�B� � A

Thus, the associated family of barcodes at level 0 is the same than for I have a dream (Figure
6.2.13). For this example, the di�erence comes at level 1, where nine distinct musical bars
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Chord chart Accompaniment With Melody
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Figure 6.2.15: Comparison of the three levels of analysis for I have a dream at a scale of 55%
and 87%. We can observe at level 2 the clear separation between the three types of musical

bars according to their accompaniment.

appear. The family of barcodes is given in Figure 6.2.16: here the �ltration becomes connected
at a scale of 56% and it is also the moment when the longest one-dimensional cycle appears (it
lasts precisely from 52% to 66%). This moment is represented in Figure 6.2.18: the musical bars
are gathered by chords together with position and for instance, the generator in degree 1 is given
by the �ve bars that start with 0.A.

Figure 6.2.16: The associated family of barcodes for the harmonization of I love Rock N'Roll at
level 1 of analysis.

At level 2, we have �fty-eight distinct musical bars and the barcodes are given in Figure
6.2.17. We still have a long generator in degree 1 that lasts 18% of the �ltration (from 59% to
77%), and the complex at 70% seems to show this complexity. Moreover, the most represented
color is the one that corresponds to the vertex �0.E�, and E is the tonality of this song.

✔ Conclusion for 3-chords songs. We saw here three di�erent kinds of songs that are all
built on only three chords and each level of analysis revels di�erent musical features. Thus, we
have a similar conclusion as for the 2-chords songs: for What's up and I have a dream, the two
�rst levels of analysis are the same but the melody brings complexity for the second. In both
cases, the musical bars are gathered by accompaniment. For I love Rock N' Roll, the �ltration at
level 1 reveals a much more complexity in the accompaniment than the two previous ones. This
complexity is always visible by looking at barcodes in degree 1. The comparison of these three
songs is illustrated in Figure 6.2.19.



6.3. GENERAL CASE: SONGS WITH FOUR CHORDS 113

Figure 6.2.17: The associated family of barcodes for the harmonization of I love Rock N'Roll at
level 2 of analysis.

Chord chart Accompaniment With Melody

56%

70%

Figure 6.2.18: Comparison of the three levels of analysis for I love Rock N'Roll at a scale of
56% and 70%. We can observe at level 2 the clear separation between the three types of

musical bars according to their accompaniment.

6.3. General case: songs with four chords

Now that we studied 2 and 3-chords songs, we can move to the most common case in Pop music,
that means the one of songs that are built on four chords. More precisely, we will focus in a �rst
place on the most famous harmonic progression of four chords, which is given by the following
degrees progression:

I - V - vi - IV

where "I" is the tonic, "V" the dominant, "vi" the minor relative and "IV" the sub-dominant.
For instance, starting with C-major chord as the tonic, we get the progression from Figure 6.3.1,
and will call it the Pop chord progression. We will then study two other songs that have a
di�erent progression.

G 4
4

C

I

			
G

V

			
Am

vi			
F

IV

			
Figure 6.3.1: The classical Pop chord progression I-V-vi-IV starting with C major chord.
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Chord chart Accompaniment With Melody
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Figure 6.2.19: Comparison of the three songs What's up, I have a dream and I love Rock N'
Roll which are all built on three chords.

Notice that, since our DFT-distance is invariant by transposition and obviously does not care
about the order of musical bars, all the songs that are built on the Pop chord progression will get
the same �ltration at level 0 (by relabelling the vertices). In particular, it will be interesting to
see how level 1 allows us to di�erentiate songs with that same chords progression. More precisely,
we will be able to �nd back the chord chart by looking at the �ltration at level 0 in a �rst place
and then, we will look at the accompaniment in itself by studying level 1 and compare di�erent
scores with the same harmonic progression. Finally, we will add the melody and see what it
brings to the song. As for the 2 and 3-chords songs, we will see that, in despite of the same
chord chart, 4-chords songs can also be di�erentiated and classi�ed by complexity, using the
comparison between these several levels of analysis.

For this study, we chose ten songs which are listed in Table 6.3.1. Notice that eight of
them follow the I-V-vi-IV chord progression, while the last two have a di�erent construction for
comparison.

6.3.1. Pop chord progression I-V-vi-IV

Let us start with the classic harmonic progression I-V-vi-IV. We take as an example the song
from U2, With or Without You (1987). This song has the Pop chord progression from Figure
6.3.1 but starting with a D:

D � A � Bm � G.

Notice that, in terms of PLR-transformation, we have the following relationship:

R�D� � Bm ; L�Bm� � G ; RL�D� � G ; RL�A� �D.

We computed the associated family of barcodes which is presented in Figure 6.3.2, and we also
draw the whole associated �ltration in Figure 6.3.3 (for level 0 of analysis). The barcodes and
�ltrations are the same for every 4-chords songs that are built on this progression (one just needs
to rename the vertices).
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Song Artist Year Chord chart
Let it be The Beatles 1970 C � G � Am � F

With or Without You U2 1987 A � D � Bm � G

Zombie The Cranberries 1994 C � G � Em � D

Happy Ending Mika 2007 C® � G® � A®m � F ®

Viva la Vida Coldplay 2008 G® � D® � Fm � C®

Danza Kuduro Don Omar 2010 C � G � Am � F

Rude Magic! 2014 C® � G® � A®m � F ®

Despacito Luis Fonsi 2016 D � A � Bm � G

We Found Love Rihanna 2011 F ® � D®m � G®m � B

Get Lucky Daft Punk 2013 D � E � F ®m � Bm

Table 6.3.1: The list of the ten studied 4-chords songs. The eight �rst follow the classical
harmonic progression I-V-vi-IV, and the two others have a di�erent construction for

comparison.

Figure 6.3.2: The associated family of barcodes with the Pop chord progression I-V-vi-IV.

64% 65% 87% 91% 100%
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Figure 6.3.3: The �ltration associated with the classical progression I-V-vi-IV starting with a
D (for With or Without You in this example).

In degree 0, we have three main moments of �ltration, which correspond respectively to
transformations R (64%), L (65%) and composition LR (87%). In degree 1, there is no element
of homology because of the triangle made of R, L and RL transformations that appears with a
scaling parameter of 87%. Notice that all the complexes from Figure 6.3.3 respect the compo-
sition, which is consistent with the PLR-group and Cayley's graphs results from Theorem 5.2.6
(Section 5.2.2). For instance, at 87% of the �ltration, we have the following diagram
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Bm

G D A

RL

RL RL

We want now to look at the other levels of analysis. Here because we have eight songs to
compare, we would not presented the associated family of barcodes for each songs as we did
for 2 and 3-chords songs. We will simply illustrate the �ltration of each song by displaying the
�rst moment where it becomes connected, and thus for each moment of analysis. The table that
summarized all these informations is presented in Figure 6.3.4. Level 0 is the same for each song
because of the same chords progression, but we can easily observe the di�erence of complexity
between levels 0 and 1: in fact, we have songs that are the same for both levels (Viva la Vida,
Zombie) while some of them become much more complex (Happy Ending, Rude). In the same
way, the complexity can be increased at level 2, like for Viva la Vida for example, while it seems
more simple for other songs (Rude, Zombie). In Section 6.4, we will look for a way to quantify
this notion of complexity and classify the di�erent songs using this descriptor. We will also try
to re�ne the graph we choose as a representative of the song.

6.3.2. Other 4-chords songs progressions

In this paragraph, we focus on the two 4-chords songs from Table 6.3.1 that do not follow the
classical Pop chord progression I-V-vi-IV. These songs are Get Lucky from the French band Daft
Punk (2013) and We Found Love from the American singer Rihanna (2011). We will present
�ltrations and barcodes in both cases, and compare them with the previous results.

❃ Get Lucky. This song is based on the 4-chords �D,E,F ®m,Bm�, which is not a progression
I-V-vi-IV. Actually, we have the following relationships between chords:

R�D� � Bm, L�D� � F ®m, RL�F ®� � Bm, PRL�Bm� � E

LRPRL�E� � F ®m and RPRL�D� � E.

Notice that using the transformation P provides more complicated relationships than the
simple Pop progression. Using this, we build the �ltration from Figure 6.3.5 at level 0 of analysis.
In this illustration, we see that the �ltration is closed from the one associated with the progression
I-V-vi-IV, mainly because we have exactly the same shapes from 87% to the end. The most
important change is at 82%, the �rst moment when the �ltration is connected: in fact, here the
graph is a tree that looks like a simple line

�F ®m,D� � �D,Bm� � �Bm,E�
which is something we never get with the previous progression.

64% and 65% 65% 87% 91% 100%
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D

Bm

E F ®

D

Bm

E F ®

D

Bm

E F ®

D

Bm

E F ®

D

Bm

E

R and L PRL RL LRPRL RPRL

Figure 6.3.5: The �ltration associated with Get Lucky at level 0 of analysis.
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Chord chart Accompaniment With Melody

Let it be

87% 94% 65%

With or
Without
You

87% 66% 61%

Zombie

87% 87% 65%

Happy
Ending

87% 63% 69%

Viva la
Vida

87% 87% 58%

Danza
Kuduro

87% 68% 64%

Rude

87% 63% 63%

Despacito

87% 59% 64%

Figure 6.3.4: Comparison of the 4-chords songs that are built on the Pop chord progression
I-V-vi-IV. For each level, we have chosen the �rst moment when the �ltration becomes

connected.
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At level 1, we have the same �ltration, since each chord is played at the �rst position of the
musical bar. At level 2, musical bars are also gathered by accompaniment. We represented the
three levels of analysis in Figure 6.3.6 (according to the �rst moment where it is connected).
Notice that, for this last level, the complex has only twenty-six vertices so it looks quite light.

Chord chart Accompaniment With Melody

Get Lucky

82% 82% 61%

Figure 6.3.6: The associated graphs for Get Lucky for each level of analysis. The chosen scale
for each graph is the one that corresponds to the �rst moment when the �ltration becomes

connected.

❃ We Found Love. This second song is based on four chords �F ®,D®m,B,G®m�, which is
again not a progression I-V-vi-IV. Unlike Get Lucky, the progression here is more simple in terms
of PLR-transformations:

R�F ®� �D®m, R�B� � G®m, L�B� �D®m

RL�B� � F ®, RL�G®m� �D®m, and RLR�G®m� � F ®.

In particular, the �ltration becomes connected at 71%, with the basic line given by successive
transformations R, L and R:

�F ®,D®m� � �D®m,B� � �B,G®m�.
As for Get Lucky, we recover a simple tree, but this time not the same complexes as for the
classical Pop progression. We display the general �ltration at this level of analysis in Figure
6.3.7. Also notice that, unlike all the previous �ltrations, we only have four main times of
�ltrations before it is fully connected: 69%, 70% and 94%.

69% 70% 94% 100%
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B
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m

R L RL RLR

Figure 6.3.7: The �ltration associated with We Found Love at level 0 of analysis.

If the chord chart looks more simple with this progression, we will get with that song a
general accompaniment that looks much more complicated. This is visible on Figure 6.3.8,
where we compare the di�erent level of analysis according to the �rst moment where the �ltration
becomes connected. With only four chords at the basis, we get eight distinct musical bars for
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the accompaniment. At level 2, we have forty-two vertices, and notice that the musical bars are
gathered by accompaniment. Moreover, the complex we represented for level 1 shows vertices
that are grouped around the vertex �0.F ®�, with a direct relative edge �0.F ®,0.D®m�, which
provides the tonality: actually, R�F ®� � D®m, and the most colored vertex at level 2 is the one
associated with musical bar �0.D®m�, which is the tonality of We Found Love.

Chord chart Accompaniment With Melody

We Found
Love

70% 79% 56%

Figure 6.3.8: The associated graphs for We Found Love for each level of analysis. The chosen
scale is the one that corresponds to the �rst moment when the �ltration becomes connected.

We see with this example that, if this song and Get Lucky have the same shape at level 0 as
a �rst connected moment (a tree in a direct line), the complexity of the general accompaniment
di�ers and level 1 allows us to see this di�erence. The same remark goes for the melody, and this
di�erence of complexity is also visible on barcodes at degree 1, which we represented in Figure
6.3.9 for both songs: in fact, for We Found Love, we have much more bars which are also quite
long compare to Get Lucky.

Figure 6.3.9: Comparison of barcodes in degree 1 for Get Lucky (left) and We Found Love
(right) at level 2 of analysis.

✔ Conclusion for 4-chords songs. The 4-chords analysis con�rms the borderline cases in the
sense that several songs with exactly the same chord chart (up to transpositions) can have less or
more complicated accompaniment and melody. The comparison between level 0 and 1 underlines
these di�erences. Moreover, level 1 shows that we can have a complicated accompaniment,
and the addition of the melody can reduce this complexity or, on the contrary, increase this
complexity. This is also true for songs that do not follow the same 4-chords progression. Our
purpose now is to to quantify this complexity and, in this perspective, we need to decide precisely
in a canonical way which representative complex (or graph) we choose to represent a given song.
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6.4. A graph-type for any musical score

6.4.1. The general construction

In the previous sections, we studied di�erent Pop songs based on two, three and four chords.
For each song and each level of analysis, we arbitrarily choose to display the �rst moment when
the �ltration becomes connected and simply displayed this graph as a kind of representative
of the song. The idea now is to re�ne this moment and create an algorithm that provides a
representative graph-type for any of these studied Pop songs, and which can next be extended
to any music piece.

First notice that we commonly use either the word "graph" or "complex" to designate the
illustration of a song at a given scale. In fact, the representations we show in this paper are always
given by graphs, for the simple reason that �lled triangles and higher dimensional simplices would
overload the drawing, and thus prevent the hand study. Also recall that we build our �ltrations
with the Vietoris-Rips method, which is the most common practice in Topological Data Analysis.
From Remark 4.1.2, we know that a complex obtained in this way (at a given scale) is fully
determined by its 1-skeleton, since a collection of vertices is a simplex if and only if they form
a complete subgraph, so there is no loss of information in focusing on the 1-skeleton instead of
the whole complex. For example, the Vietoris-Rips complex in two dimensions is given by the
graph with �lled triangles.

Of course, the homology of the complex depends on the higher simplices, and one must decide
whether this is the most relevant calculation to perform. In many applications of TDA, the point
cloud is made of points sampled from a larger space, very close together, and one does not expect
signi�cant cycles of short length, but rather large, "macroscopic" ones. In particular, �lling every
triangle seems natural, when computing the homology.

As we have realized when studying 2, 3 and 4-chords songs, the 1-skeleton is often an inter-
esting object in and of itself, and we have started to discuss the graphs and not the complexes.
Even the 3-cycles seem to convey information that should not be discarded: for instance, if we
just focus on the classic Pop progression of four chords I-V-vi-IV we previously studied, there
is no homology in degree 1 for the �rst level of analysis. Indeed, there are four vertices and no
time to have the outline of the square before the diagonals appear. The result is that we can not
quantify the one-dimensional homology in this case other than by zero, which is not satisfying
because of the presence of loops. Moreover, for Get Lucky orWe Found Love, which do not follow
this same progression of chords, we would also have to quantify the one-dimensional homology
by zero while the �ltrations are de�nitely not the same.

Thus, we have elected to study more closely the 1-skeleton, to be called simply the graph of
the point cloud, and to compute its homology (still in degrees 0 and 1), rather than that of the
full complex. As an example, we computed the associated family of barcodes associated with
graphs for �ltration I-V-vi-IV, and the result is given in Figure 6.4.1.

In this illustration, degree 0 is the same than the original construction, but the barcode in
degree 1 has changed: in fact, at the �rst moment when the �ltration is connected (87%), instead
of considering that the homology is zero, the triangle

�D,G� � �G,Bm� � �Bm,D�
provides a one-dimensional cycle (illustrated in this example with the progression D�A�Bm�G
from With or Without You, see Figure 6.3.3). Morever, this cycle represents a bar that lasts until
the end of the �ltration. In the same way, at a scale of 91%, there is a second triangle

�D,A� � �A,Bm� � �Bm,D�
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that appears, and together with the �rst, they give the outline of the square. The last edge�D,E� complete the graph and provides the last element of homology in degree 1, which is here
simply a point (a bar that starts at 100% of the �ltration).

Figure 6.4.1: The associated family of barcodes with the classical progression I-V-vi-IV by
looking at the �ltration made of graphs (level 0 of analysis).

For comparison, we chose to display the associated family of barcodes with �ltration for We
Found Love at level 0, i.e. for the chord chart F ®�D ®m,B,G ®m. The results are presented in
Figure 6.4.2: we can see that now the �ltration are well di�erentiated with these new barcodes.
In fact, homology in degree 1 are not the same any more, and we see for instance the apparition
of two triangles at 94% that are not present for I-V-vi-IV progression. This new analysis will
thus allows us to better compare �ltrations and also complexity for several songs.

Figure 6.4.2: The associated family of barcodes with the song We Found Love by looking at the
�ltration made of graphs (level 0 of analysis).

We now want to extract just one graph from this construction, called the graph-type.
First, we can notice the particular shape of the barcodes and particularly the complementarity
in the progression of the bars between the two degrees: in degree 0, each bar starts at 0% and
successively stops before 100%, whereas in degree 1 they all end at 100% and start after 0%. More
precisely, all the bars in degree 1 start after the �rst moment when a �rst connection appears in
degree 0, and we will use this property to re�ne the scale we choose to study for our �ltrations. In
fact, the graph-type should be de�ned using the main ideas of persistent homology, that means
looking at the length of the bars and more precisely the ones that persist. The algorithm we
propose to compute the graph-type is the following one:
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❃ Graph-type Protocol. Let �BC0�S�,BC1�S�� be the family of barcodes (in degrees 0
and 1) associated with a score S. Each one of the two barcodes de�nes a natural subdvision
s0 � 0, s1, s2, . . . , sk � 100 of the interval �0,100�, where the si's are the integers where some bar
either starts or ends (or put di�erently, the complex stays the same when the scaling parameter
goes through �si, si�1�).

i� In degree 0, de�ne t0 A 0 to be the integer si such that Ssi�1 � siS is maximal (the longest
interval on which the graph remains the same, as far as homology in degree 0 can see).

ii� In degree 1, take t1 A t0 to be the integer si such that Ssi�1 � siS is maximal (the longest
interval on which the graph remains the same, as far as homology in degree 1 can see). If
there is only one bar that starts at 100%, take t1 � t0.

iii� Take the complex associated with �ltration at a scale of t1%. The associated 1-skeleton is
called the graph-type of the �ltration.

Remark 6.4.1. For the scale t0, we voluntarily take t0 A 0 since the very �rst interval �s0, s1�
is usually the longest, while the graph is obviously not interesting at these scales yet. We could
also choose to de�ne t1 in the same way as we de�ned t0, but there would be no guarantee that
t1 A t0 (think of a complex which starts with a large number of disjoint triangles, which are
then connected by segments not creating new cycles, so that H0 decreases as H1 stays constant).
However, the rationale is that small values of the scaling parameter should be ignored until the
homology in degree 0 "stabilises", and then homology in degree 1 should be used to select the
most signi�cant interval, presumably discarding large values of the scaling parameter. Thus, we
compute t1 as t0 but with the constraint that t1 A t0, which is why we truncate BC1�S�.
Remark 6.4.2. Note that with this construction it is always possible to return to the initial
�ltration of complexes instead of the graphs by simply computing the associated clique-complex
for each graph. Note also that the graph we get from this protocol can be non connected.

We will now end this section by computing the associated graph-type with the previous
protocol for the classical Pop chord progression I-V-vi-IV.

Example 6.4.3. Recall the classical progression I-V-vi-IV, from which for instance the chord
chart of With or Without You is built on. We are going to construct the associated graph-type
for level 0. The �ltration was given in Figure 6.3.3 and associated family of barcodes in 6.4.1.

Let us apply our algorithm. In degree 0, the �rst bar stops at 64% of the �ltration, and then
the three left bars stop respectively at 65%, 87% and 100%. Thus, by computing the successive
di�erences, we have

65% � 64% � 1%, 87% � 65% � 22% and 100% � 87% � 13%

so the longest bar lasts 22% and starts at 65%. Therefore, we have t0 � 65%. Then, we truncate
the barcode in degree 1 at 65%, which does not change anything in that case because the �rst bar
starts at 87%, and we have three di�erent bars that start respectively at 87%, 91% and 100%.
By computing again successive di�erences, we get that

91% � 87% � 4% and 100% � 91% � 9%

so the longest bar lasts 9% and starts at 91%, and thus t1 � 91%. Finally, the graph-type is
given by the �ltration at a scale of 91%. We display the result graph-type for this example in
Figure 6.4.3, and compare it with the moment we choose in a �rst place (the �rst moment where
the �ltration becomes connected). Here we re�ned the chosen scale by taking into account both
degrees 0 and 1, and the persistent interpretation of the the barcodes in terms of length of the
bars.
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87% (one component) 91% (graph-type)

Figure 6.4.3: The graph-type associated with the classical progression I-V-vi-IV (here precisely
for With or Without You) which is given at a scale of 91% (right) compare with the �rst

moment when the �ltration is connected (at 87%, left).

As a musical interpretation of this �rst example, we can observe that the graph with a scaling
parameter of 91% is given by a square that is cut by an edge in the middle: this edge gives the
tonality of the song, to the relative minor. In above Example 6.4.3, this edge is given by �D,Bm�
so we know that the song is either in D major or in Bm minor key, and �nally the mode can be
�nd with the color graphs by comparing level 1 with level 2, as we already saw. The graph-type
for this progression seems therefore to be a good representative of the score.

We thus created an algorithm that provides an associated graph-type for any musical piece,
and we saw with the example of progression I-V-vi-IV that it �xes the scaling parameter we
chose in a �rst place. Moreover, it takes into account the degree 1 that was not present because
of the �lled triangles in the Vietoris-Rips �ltration, so it seems to be a more precise approach.
We already used the �ltrations to compare songs in terms of complexity, now we are going to use
these particular graphs to quantify this notion. We will apply this analysis in the case of 5 and
6-chords songs (see Section 6.5), and we will also propose a direct application of graph-types to
scales in Tonnetze in the next paragraph.

The construction of an algorithm that takes a MIDI �le and gives a corresponding graph by
analyzing persistent homology (in degree 0 and 1) is a satisfying result in itself.

6.4.2. Digression: graph-types for scales and Tonnetze

To support our de�nition of a graph-type associated with a musical score, we applied this
process to musical objects from Chapter 5, that is, scales and Tonnetze. The results are presented
in Figure 6.4.4. We recover the di�erent shapes we studied for the di�erent musical objects: for
example, we have the circle of thirds for the major and minor scales, and the torus for di�erent
two-dimensional Tonnetze T �a, b, c�. This seems to con�rm that we are indeed associating a
musically consistent graph (or complex, by taking the corresponding clique-complex) with our
musical objects, and this supports our algorithm.

6.4.3. How to measure the complexity of a song

In the previous section, we give an algorithm that takes a musical piece and returns the associated
graph-type. We already compared graphs together in the study of 2, 3 and 4-chords and tried
to measure the complexity of the di�erent songs. We will now quantify this notion using this
particular graph-type and its homology.

The process is quite simple: in order to continue to base our work on homology, we will just
measure the complexity of a graph by looking at the number of its one-dimensional loops, that
means taking a basis for H1. Thus, by computing the Betti numbers β1 � dimH1, we obtain a
way to compare several graphs together.
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Chromatic scale (91%) Diatonic Major/minor scale (95%)

Pentatonic Major/minor scale (98%) T �1,2,9� and T �2,3,7� (56%)

T �1,3,8� and T �3,4,5� (56%) T �1,4,7� (89%)

T �1,1,10� and T �2,5,5� (64%) T �1,5,6� (58%)

T �2,2,8� (68%) T �2,4,6� (57%)

T �3,3,6� (65%) T �4,4,4� (82%)

Figure 6.4.4: The associated graph-types for some musical objects (scales and Tonnetze).
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De�nition 6.4.4. Let SP be a score that corresponds to a given musical piece P. By applying
the graph-type protocol, we can associate a graph GSP to SP. The complexity CSP of the
score SP is then de�ned by

CSP � β1�GSP� � dimH1�GSP�.
As an example, we produced the associated graph-type for some 4-chords songs of Table

6.3.1 at level 1 (accompaniment) and computed the associated Betti numbers β1. The results
are presented in Figure 6.4.5.

With or Without
you (76%)

Viva La Vida (91%)
Happy Ending

(76%)
Despacito (76%)

β1 � 4 β1 � 2 β1 � 10 β1 � 16

Figure 6.4.5: The associated graph-types and Betti numbers β1 for di�erent 4-chords songs at
level 1 of analysis (accompaniment).

We can now compare these di�erent graphs by their complexity: we con�rm that Viva la
Vida has the simplest accompaniment (same as at level 0), while in this case Despacito has the
most complex one. For these examples, we do not have a lot of vertices so the complexity simply
con�rms what we can observe on the graphs, but it allows us to have a better visualization for
more complicated cases. For instance, we compare the complexity of the graph-types for levels 0,
1 and 2 in the case of 4-chords songs, and we display these informations in an histogram given in
Figure 6.4.6. Each graph of this �gure represents one level of analysis, and we simply normalized
the Betti numbers to quantify the complexity as a percentage.

Figure 6.4.6: The complexity of the ten studied 4-chords songs for each level of analysis.

The complexity at level 0 is the same for each piece because the associated graph-type is
always the same (the square with the diagonal). At level 1, we have di�erences that appear, and
the most complex song is Rude (β1 � 19%), while the less are Zombie, Viva la Vida and Get
Lucky, which are the songs that have the same �ltration for chord chart and accompaniment. By
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adding the melody at level 2, we have songs that earn complexity as Viva la Vida for instance,
which was already what we observed by looking at graphs with the previous hand analysis.

Remark 6.4.5. Notice that our construction did not allow us to di�erentiate the chords chart,
especially between We Found Love, Get Lucky and the progression I-V-vi-IV. This is due to the
fact that we decided to look at the graph-type using both 0 and 1 degrees, and here the �ltrations
are di�erent before the bars appear in degree 1. One idea might be to adjust the graph-type
even more precisely by looking at the time that the �ltration spends not having one-dimensional
cycle. However, the graph-types we propose are a compromise that seems to have a consistent
musical interpretation, considering the previous results. In any case, it is always possible to go
back to the initial �ltration to analyze the score in depth and compare other features.

6.5. To go further: songs with five and six

chords

To conclude with this section devoted to the problem of harmonization songs, we simply give
an application of what we have done for songs with �ve and six chords. In these cases, it
becomes much more complicated to analyze the results by hand, �rstly because we have less
canonical choice for the chord chart (most of the time in the studied songs, the base will be the
famous progression I-V-vi-IV, but with one or two additional chords that can be really di�erent).
Secondly, the number of vertices can increase quickly at level 1 (in some cases, we have about
thirty distinct musical bars), so the comparison can be di�cult. We will thus use the graph-
types as a representation of the songs for each level, and then the complexity to compare them
together.

For doing the analysis, we took ten songs built on �ve chords and ten others based on six,
from di�erent artists or groups and di�erent generations of the Pop category (from the '80s to
nowadays). The lists of the pieces are presented in Table 6.5.1. For each song, we represented
the complexities for all songs in Figures 6.5.1 and 6.5.1, and we also computed the associated
family of graph-types, shown in Figure 6.5.3 and 6.5.4.

Song Artist Year Chord chart

5-chords

Eye of the Tiger Survivor 1982 BZ � Fm � AZ � Cm � E Z
Sweet Dreams Eurythmic 1983 Cm � G® � G � F � Fm
Forever Young Alphaville 1984 C � G � Am � F � Dm
Hallelujah Rufus Wainwright 2001 C � Am � F � G � Em

The Scientist Coldplay 2002 D � E Z � F � Dm � C
Bad Romance Lady Gaga 2009 F � G � Am � C � E
Skyscraper Demi Lovato 2011 G � C � Em � D � Am
Let Her Go Passenger 2012 C � D � Em � G � B
Wake Me Up Avicci 2014 Bm � G � D � E Z

Hello Adele 2014 Fm � AZ � E Z � DZ � Cm

6-chords

Imagine John Lennon 1971 C � F � Am � Dm � G � E
You're the one that I want J. Travolta, O. Newton-John 1978 Am � G � F � C � Em � Em

Hold the Line Toto 1978 Bm � E � F ®m � D � C® � Dm
Wind of Change Scorpions 1990 F � Dm � Am � G � C � E
Wonderwall Oasis 1995 F ®m � A � E � B � D � G
It's My Life Bon Jovi 2000 Cm � AZ � E Z � BZ � C � F
Complicated Avril Lavigne 2002 Dm � BZ � F � C � Dm � Gm

Party in the USA Miley Cyrus 2009 F ® � D®m � C® � A®m � G®m � B
Someone Like You Adele 2001 A � C®m � F ®m � D � E � Bm

The Sound of Silence Disturbed 2015 F ®m � E � D � A � Bm � F ®

Table 6.5.1: The list of the twenty studied 5-chords and 6-chords songs.



6.5. TO GO FURTHER: SONGS WITH FIVE AND SIX CHORDS 127

Figure 6.5.1: The complexity of the ten studied 5-chords songs for each level of analysis.

Figure 6.5.2: The complexity of the ten studied 6-chords songs for each level of analysis.

Let us brie�y analyze the results for the songs with �ve chords: the �rst histogram shows
that more than half of the songs have a complexity of 100%, and these are the songs whose
graph type looks like a diamond. At level 1, only one song keeps this maximum value (Hello),
and we see that its graph-type seems to be the most complicated one, with a large number of
vertices and also a scale close to 100%, so the graph is almost complete. On the contrary, some
songs like Let Her Go get a very simple accompaniment, which can be seen in the graph-type.
Moreover, the song with the lowest values for its chord chart and accompaniment (The Scientist)
is the only one with an non-connected graph. Note also that its graph-type is almost complete
at level 2, and its complexity is a bit higher (which means that the melody adds complexity to
the song). On the contrary, the song Wake me up has a quite high complexity at level 0 (80%),
the second highest at level 1 (43%) and the higher for the whole song. Therefore, we have songs
with constant complexity and others that gain or lose complexity with the level of analysis.

For songs with six chords, we have almost the same results: for example, the song with the
highest value at each level is The Sound of Silence, and it is quite clear considering the successive
graph-types. On the other hand, the song Party in the USA has almost the lowest value for each
level, and the graphs are really light. Note that the graph-type at level 0 for this song and
for Someone like you looks the same (same chord chart up to a transposition), and the graph
represents a loop of 6 chords, which shows that there is a particular choice of chords in the
Euler's Tonnetz (simply a direct line that loops after a while). There are also some songs that
can have a low complexity for the chord chart and accompaniment, but a high value for the song
itself, as is the case for You're the One that I want or Someone Like You. Again, some songs
have varying complexity depending on the level of analysis, while others are fairly constant, and
our approach provides a way to compare and analyze this.



128 CHAPTER 6. HARMONIZATION OF POP SONGS

Chord chart Accompaniment With Melody

Eye of the
Tiger

91% 77% 95%

Sweet
Dreams

83% 69% 97%

Forever
Young

91% 88% 53%

Hallelujah

93% 91% 94%

The
Scientist

64% 80% 95%

Bad
Romance

88% 86% 69%

Skyscraper

91% 88% 97%

Let Her Go

93% 69% 67%

Wake Me
Up

88% 88% 97%

Hello

93% 96% 97%

Figure 6.5.3: Comparison of the ten studied 5-chords songs from Table 6.5.1 by their
graph-type.
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Chord chart Accompaniment With Melody

Imagine

87% 66% 97%

You're the
one that I

want

73% 53% 97%

Hold the
line

89% 87% 97%

Wind of
Change

87% 63% 66%

Wonderwall

75% 86% 95%

It's My Life

91% 76% 96%

Complicated

91% 58% 56%

Party in
the USA

81% 60% 64%

Someone
like you

93% 78% 96%

The Sound
of Silence

91% 90% 98%

Figure 6.5.4: Comparison of the ten studied 6-chords songs from Table 6.5.1 by their
graph-type.





Chapter 7.

Classification of musical style

In this section, we aim to apply our DFT-approach to the well-known problem of automatic
classi�cation of musical style. In fact, one of the main goals of applying persistent homology
and Topological Data Analysis to music is to provide some algorithms that would be able to
"recognize" the style of a given music piece by analyzing the associated family of barcodes.
There is already some work on this topic, and we can cite the famous article by Bergomi [10]
which is a precursor of the subject. In this chapter, we propose a new way of approaching
automatic style analysis by combining the DFT together with persistent homology.

We will start by detailing the strategy, which consists of transforming a barcode into a family
of points in N2, and computing statistical features on the length of the bars (mean, standard
deviation and entropy), as suggested in [39]. Therefore, we will select several MIDI �les from of
di�erent musical styles, starting from Heavy Metal to Baroque, and compare them by clustering
in R3. All the musical data we are going to use are listed in a database which is available on the
following dedicated web page: https://math-musique.pages.math.unistra.fr/midi.html.

7.1. Statistics on barcodes

First of all, we need to clarify what we mean by comparing barcodes. In fact, it seems that there
are several ways to analyze a barcode, and we propose here a statistical approach. We assume
that any musical piece P can be associated with a score SP and thus a family of barcodes�BCd�SP��dC0 by applying the DFT-method, as described in Part II of this manuscript. As
with the previous musical applications, we will essentially focus on d > �0,1� as a starting point,
leaving higher dimensions for future work. We start by turning any barcode BCd�SP� into a
family of points in N2, following the de�nition below.

De�nition 7.1.1. Let SP � �B1, . . . ,BN� be a score associated with a music piece P containing
N distinct musical bars. Let �BCd�SP��dC0 be the corresponding family of barcodes. We denote
by rd the number of bars for the barcode BCd�SP�. For each degree d, an element of the BCd�SP�
is a generator of the associated homology group Hd, so it can be seen as a pair of element

�bi, di� > N2

where bi and di are respectively referring to the birth and the death time of the corresponding
ith homology generator. Note that in our case di is always �nite since we are only dealing with
�nite �ltration. Therefore, each BCd�SP� is as a subset of N2:

BCd�SP� � ��bi, di� S 1 B i B rd, with �bi, di� > N2�
Now each musical score SP has a corresponding family of barcodes �BCd�SP��dC0 and, for

each d C 0, BCd�SP� ` N2. We can thus compute some basic statistics on each barcode, by
considering the length of the bars.
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De�nitions 7.1.2. Let SP � �B1, . . . ,BN� be a score associated with a music piece P containing
N distinct musical bars, and let �BCd�SP��dC0 be the corresponding family of barcodes. We
denote by rd the number of bars in degree d. We de�ne three statistical values on the length of
the bars for BCd�SP�:

1. The d-persistent mean value associated with SP is given by

µd�SP� � 1

rd

rd

Q
i�1

�di � bi�
2. The d-persistent standard deviation associated with SP is given by

σd�SP� �
¿ÁÁÀ 1

rd

rd

Q
i�1

��di � bi� � µd�SP��2
3. The d-persistent entropy associated with SP is given by

ϵd�SP� � � rd

Q
i�1

ρi log ρi

where the coe�cients ρi are de�ned by ρi �
di�bi

rd
P
i�1

di�bi

.

At this point, we want to compare several musical pieces together, and we are now able
to transform each associated musical score into a family of points in R3. In fact, through our
DFT-approach, a musical piece corresponds to a family of barcodes which is itself a subset in
N2, that can be summarized by three coordinates: its mean, its standard deviation and its
entropy. Thus, for a �xed degree d, we can represent a given family of musical pieces in R3 by
displaying the corresponding barcodes using these statistics. A natural analysis would then be
to observe the distribution of the points, potential clusters, and then conclude whether or not
our DFT-approach is able to classify di�erent musical styles. The general process we will follow
throughout this chapter is summarized in Figure 7.1.1. For computational constraints and as
previously announced, we will only work with the barcodes in degrees 0 and 1, and especially in
degree 0, which seems to provide the most consistent results so far.

Music piece P

Point cloud �SP,dDFT�

Barcode BCd�SP� for each d C 0

d-mean µd�SP� d-standard deviation σd�SP� d-entropy ϵd�SP�
Figure 7.1.1: The transition from a music piece P into a point �µd�SP�, σd�SP�, ϵd�SP�� > R3.
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7.2. Comparison between Heavy Metal and

Classical music

For this �rst analysis, we deliberately chose the most obvious possible comparison: Heavy Metal
compare to Classical music. Before doing some sharp analysis, our �rst goal is to provide a way
to con�rm our approach: indeed, if it turns out that the results do not separate these two styles
that seem di�erent in many ways, then we would have to make some modi�cations. Otherwise
it would be a �rst validation of the process.

In all this section, we are going to oppose Heavy Metal style against di�erent types of Classical
music: Baroque, Classical and Romantic. The idea is to take di�erent bands from Heavy Metal
against one representative of these di�erent styles of Classical musical, which will be musical
pieces by J.S. Bach, W.A. Mozart and F. Chopin, respectively. In that purpose, we have chosen
�ve bands that are representative of the Metal style: Metallica, Iron Maiden, Judas Priest,
Scorpions and Nightwish. Each group represents a di�erent way of approaching the Heavy Metal
style, and here is a short presentation of the bands:

Y Metallica is an American band formed in 1981 and specialized in Thrash Metal.

Y Iron Maiden is an English band formed in 1975 which is representative of the new wave
of British Heavy Metal.

Y Judas Priest is an English band formed in 1969 and specialized in traditional Heavy
Metal.

Y Scorpions is a German band formed in 1965 and specialized in Hard Rock.

Y Nightwish is a Finnish band formed in 1996 which is representative of the Symphonic
Metal.

For each band, we took �fteen songs from their discography, making sure that the data
covered as much of the band's run as possible. The used data are presented in Table 7.2.1.

Heavy Metal
Metallica Iron Maiden Judas Priest Scorpions Nigthwish

Bleeding Me (1996) Aces High (1984) Beyond the Realms of Death (1978) Always somewhere (1979) Amaranth (2007)
Creeping death (1984) Blood Brothers (2000) Breaking the Law (1980)) Bad boys running wild (1984) Bless the Child (2002)
Disposable Heros (1986) Dance of Death (2003) Diamonds and Rust (1977) Believe in love (1988) Bye Bye Beautiful (2007)
Enter Sandman (1991) Die with your boots on (2015) Electric Eye (1982) Big city nights (1984) Elan (2015)
Fade to Black (1984) Fear of the Dark (1992) Halls of Valhalla (1982) Blackout (1982) End of All Hope (2002)

Fuel (1997) Hallowed be thy Name (1982) Hell Bent for Leather (1978) Catch your train (1976) I Want My Tears Back (2011)
Hero of the day (1996) Phantom of the Opera (1980) Hell Patrol (1990) No one like you (1982) Last Ride of the Day (2011)

Master of Puppets (1986) Run to the Hills (1982) Living after Midnight (1980) Passion rules the game (1988) Nemo (2004)
Nothing Else Matters (1991) The Book of Souls (2015) Metal Gods (1980) Rock you like a Hurricane (1984) Over the Hills and Far Away (2001)

Orion (1986) The Clansman (1998) Nightcrawler (1990) Rhythm of love (1988) She is My Sin (2000)
Sanitarium (1986) The Evil that Men Do (1988) Painkiller (1990) Send me an Angel (1990) Sleeping Sun (1998)

Seek and destroy (1982) The Number of the Beats (1982) The Sentinel (1983) Still Loving You (1984) Storytime (2011)
St Anger (2003) The Trooper (1983) Touch of Evil (1986) Tease me please me (1990) The Islander (2007)

The call of Ktulu (1984) Total Eclipse (1982) Turbo Lover (1976) Wind of Change (1990) The Phantom of the Opera (2002)
The memory remains (1997) Wasted Years (1986) Victim of Changes (1976) When the smoke is going down (1982) Wish I Had an Angel (2004)

Table 7.2.1: The �ve representative Heavy Metal bands and the �fteen corresponding songs
used in the analysis.

7.2.1. Baroque: Johann Sebastian Bach

Let us begin with the �rst comparison: Baroque and Heavy Metal. The Baroque music was
composed around 1600 to 1750 and represents a transition between the Renaissance and the
Classical periods. One of the main characteristics of the Baroque music is the basso continuo,
which is a bass line played throughout a piece by one or more low instruments such as a cello,
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a viola or a double bass, and is built around one or two soloists. The main instruments of the
Baroque music are the recorder, the viola, the harpsichord, the lute and the organ.

As a representative of the Baroque style, we choose to focus on Johann Sebastian Bach
(1685-1750), and more speci�cally on three di�erent styles of composition from his repertoire:
the Chorals, the Preludes and the Fugues. The data used for the analysis are presented in Table
7.2.2 (�fteen pieces for each style).

Johann Sebastian Bach
Chorals Preludes Fugues

No. 1 BWV 269 No 6. BWV 281 No 11. BWV 41 No. 1 BWV 870 No. 7 BWV 876 No. 14 BWV 883 No. 1 BWV 870 No. 7 BWV 876 No. 14 BWV 883
No. 2 BWV 347 No 7. BWV 389 No 12. BWV 65 No. 3 BWV 872 No. 8 BWV 877 No. 16 BWV 885 No. 3 BWV 872 No. 8 BWV 877 No. 16 BWV 885
No. 3 BWV 2 No 8. BWV 40 No. 13 BWV 261 No. 4 BWV 873 No. 9 BWV 878 No. 17 BWV 886 No. 4 BWV 873 No. 9 BWV 878 No. 17 BWV 886
No 4. BWV 9 No 9. BWV 248 No. 14 BWV 184 No. 5 BWV 874 No. 10 BWV 879 No. 21 BWV 890 No. 5 BWV 874 No. 10 BWV 879 No. 21 BWV 890
No 5. BWV 9 No 10. BWV 687 No. 15 BWV 277 No. 6 BWV 875 No. 11 BWV 880 No. 23 BWV 892 No. 6 BWV 875 No. 11 BWV 880 No. 23 BWV 892

Table 7.2.2: The forty-�ve pieces from Chorals, Preludes and Fugues from Johann Sebastian
Bach repertory that are used for analyzing the Baroque style.

We have the working data: each music piece has an associated MIDI �le and thus a score.
Then, following the process that is presented in Figure 7.1.1 and De�nition 7.1.1, for any degree
d > �0,1�, each musical piece is transformed into a barcode in N2, and then into a point in R3,
characterized by three coordinates: its mean value, its standard deviation and its entropy. We
then display all the points and compare the distribution and possible clusters. The �rst results
of the comparison between the Heavy Metal and the Baroque style are shown in Figure 7.2.1,
where each line corresponds to a Heavy Metal band and each column represents a degree (0 or
1).

This �gure shows immediate clusters at degree 0: indeed, there is a clear separation between
each one of the representative bands of Heavy Metal and all the pieces of Bach, which are on
the contrary clustered together. On the other hand, degree 1 does not seem to reveal such
information: in fact, we have much fewer points, especially for the Chorals, which means that
there are not always generators of homology in degree 1 for these pieces. One explication could
be that the pieces we took from Bach, and especially the Chorals, have on average less distinct
musical bars than the Heavy Metal ones (about twenty for the Chorals compared to more than
a hundred for the pieces from Metallica).

We therefore focus more speci�cally on degree 0, which we detailed in Figure 7.2.2: in partic-
ular, we highlighted the clusters by showing the projection on each axis and adding the convex
hull for each piece of Bach and each band of Heavy Metal. We thus see an interesting phe-
nomenon appearing: there is indeed a clear separation between each band of Heavy Metal and
Bach, but this separation is the same for each group considered. For instance, let us look at the
�rst projection on the (mean, standard deviation)-axis: for Metallica, it is clear that each piece
has a mean of less than 50, while Chorals, Fugues and Preludes from Bach have a mean greater
than this value. This is a �rst result, that needs to be understood in itself. It is interesting to
note that for Iron Maiden, Judas Priest, Scorpions and Nightwish, we have the same separation
on the �rst projection, with a persistent mean around 50. In the same way, the two left projec-
tions show a clear separation when the entropy is around 5 or 6, and this is the same separation
for all the bands analyzed. More precisely, each Heavy Metal song from each band seems to be
in the same window, delimited by a mean value less than 50, a standard deviation greater than
10 and an entropy greater than 6. This is something worthwhile because our DFT-approach not
only separates each group from Bach, but it does so for each band together. This means that
it understands that Heavy Metal is a style in itself, while Baroque, at least for Bach, is another
style. We can assumes from this example that this approach is able to capture two very di�erent
styles of composition.
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Figure 7.2.1: Metallica, Iron Maiden, Judas Priest, Scorpions and Nightwish compared to Bach
(Chorals, Preludes and Fugues): here the results are presented in R3 and both degree 0 and 1.
In the �rst column, there are clusters that separate each band of Heavy Metal from Bach. On

the other hand, there are no obvious clusters in degree 1.
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Figure 7.2.2: Metallica, Iron Maiden, Judas Priest, Scorpions and Nightwish compared to Bach
(Chorals, Preludes and Fugues) in degree 0 (with projection on each pair of axes): here we

show how clusters appear by projecting on each axis and drawing the convex hull around each
opponents.
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Furthermore, we have seen that the persistent mean and entropy seem to play a particular
role in the separation of Heavy Metal and Bach: indeed, it seems that each piece of Metal has
a mean of less than 50, while it is the exact opposite for Bach. For the entropy, it is around 5
or 6. A natural question would be to interpret these results in a musical way: what do mean
and entropy tell us about the musical style? A small mean corresponds to short bars on average,
which seems to be the case for Heavy Metal songs. In degree 0, short bars mean that the di�erent
components of the �ltration are quickly connected, so these components may look similar and
there should be a global structure for the song. On the contrary, for Bach the mean is higher,
which corresponds to long bars on average, and it means that components of the �ltration remain
separated for a long time. This could possibly mean that the DFT-distance captures several parts
of the same musical piece. On the other hand, the entropy is a statistical value that measures
the average level of surprise or uncertainty that is speci�c to the studied object. A low entropy
means that there is certain amount of redundancy while a high entropy means that there are
more surprises and unexpected elements in the piece. For Bach, we have a low entropy, which
is related to a possible redundancy of the barcodes while, for Heavy Metal songs, it seems that
there is a high level of surprise. It should also be noted that, whereas entropy and mean values
have a speci�c musical meaning, we are not yet able to provide the same kind of interpretation
for the standard deviation, which does not seem to exhibit a clear separation between points.
However, we can see that all the Heavy Metal songs are clustered in terms of standard deviation,
which ranges from 10 to 18, while Bach's pieces have a larger range, from about 4 to 17 (but
only until 12 for the Preludes and Fugues).

Finally, we have summarized this �rst comparison in Figure 7.2.3, which shows how Heavy
Metal and Bach form two well-separated clusters at degree 0. It also con�rms our previous
conclusions: indeed the DFT is able to separate each band of Metal from Bach, which is already
satisfactory, but it is also able to say that the di�erent bands of Heavy Metal are similar, since
all the corresponding points are mixed together and form a cluster in itself, compared to the one
formed by Bach's pieces. Let us see how it works with Classical and Romantic styles.

Figure 7.2.3: A synthesis of Heavy Metal compared to Baroque (Bach). At degree 0, the two
styles are well separated: the points from Heavy Metal are mixed together to form one cluster,

while Chorals, Preludes and Fugues from Bach form another one.
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7.2.2. Classical: Wolfgang Amadeus Mozart

The period of Classical musical is roughly between 1750 and 1820, between the Baroque and
Romantic periods. This style is known for its sophisticated compositions. During this period,
new styles of composition such as Sonatas, Quartet, Concertos and Symphonies appeared. The
main instruments used in Classical music are strings (violins, violoncellos, double basses,...),
woodwinds (�utes, oboes, clarinets,...) and piano.

As a representative of the Classical style, we will focus on Wolfgang Amadeus Mozart (1756-
1791). In the same way we did for Bach, we focus on three di�erent styles of composition from
his repertoire: the Piano Sonatas, the Violin Concertos and some vocal works (songs with piano
accompaniment). The data used for the analysis are presented in Table 7.2.3 (again, �fteen
pieces for each style).

Wolfgang Amadeus Mozart
Piano Sonatas

No. 8 1st Mvt, KV311 No. 10 3rd Mvt, KV330 No. 12 2nd Mvt, KV332
No. 8 2nd Mvt, KV311 No. 11 1st Mvt, KV331 No. 12 3rd Mvt, KV332
No. 8 3rd Mvt, KV311 No. 11 2nd Mvt, KV331 No. 13 1st Mvt, KV332
No. 10 1st Mvt, KV330 No. 11 3rd Mvt, KV331 No. 13 2nd Mvt, KV332
No. 10 2nd Mvt, KV330 No. 12 1st Mvt, KV332 No. 13 3rd Mvt, KV332

Violin Concertos
No. 1 1st Mvt, K207 No. 2 3rd Mvt, K211 No. 4 2nd Mvt, K218
No. 1 2nd Mvt, K207 No. 3 1st Mvt, K216 No. 4 3rd Mvt, K218
No. 1 3rd Mvt, K207 No. 3 2nd Mvt, K216 No. 5 1st Mvt, K219
No. 2 1st Mvt, K211 No. 3 3rd Mvt, K216 No. 5 2nd Mvt, K219
No. 2 2nd Mvt, K211 No. 4 1st Mvt, K218 No. 5 3rd Mvt, K219

Songs
Daphne, deine Rosenwangen, K52 Die groÿmüthige Gelaÿenheit, KV149 Ich würd auf meinem Pfad, KV 390
An die Freude, K53 Die Zufriedenheit in niedrigen Stande, KV151 Sei du mein Trost, KV 391
O Gotteslamm, K343 Canzonetta Ridenta la calm, KV152 Verdankt sei es dem Glanz, KV 392
Wie unglücklich bin ich nit, KV147 Ariette Oiseaux, si tous les ans, KV307 Ah! spiegarti, oh Dio, KV 417e
O heilges Band, KV148 Ariette Dans un bois solitaire, KV308 (Lied zur) Gesellenreise, KV 468

Table 7.2.3: The forty-�ve pieces from Piano Sonatas, the Violin Concertos and some vocal
works with Songs (with piano accompaniment) from Wolfgang Amadeus Mozart repertory we

used for analyzing the Classical style.

Let us focus on degree 0: the comparison between each band of Heavy Metal and the three
types of pieces from Mozart is presented in Figure 7.2.4. In this �gure, we can immediately see
that the separation is less clear than it was for Bach, especially for the last projection. In fact,
when the mean value still acts as a separation between the two types of points (around 40), it
no longer works well with the entropy. However, we have an interesting fact that comes here: it
seems that we have a separation between the Mozart's Songs on the one hand, and his Sonatas
and Concertos on the other. In other words, there is a separation between Mozart's compositions
per se. This is quite visible on the (mean, entropy)-axis, where the Songs are living in an area
delimited by a mean greater than 50 and an entropy less than 5, while Sonatas and Concertos
are between 40 and 60 for the mean and 5 and 8 for the entropy. This is musically consistent,
since the Mozart's songs we analyzed here are more similar in terms of composition to Bach's
Chorals than to his own Sonatas and Concertos, and the DFT-approach seems to capture this
di�erence.

Furthermore, we propose a general comparison in Figure 7.2.5, on which we can con�rm that
we have clusters given by the mean value (the �rst two projections). On the other hand, if the
(entropy, standard deviation)-axis seems to separate Mozart's Songs from the Metal bands, it
is much less clear for the Concertos and the Sonatas, whose entropy value is much higher on
average. We underline again the di�erences between Heavy Metal and Mozart with the �rst two
axes, as well as a di�erence of style composition for Mozart's pieces studied.
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Figure 7.2.4: Metallica, Iron Maiden, Judas Priest, Scorpions and Nightwish compared to
Mozart (Piano Sonatas, Violin Concertos, Songs) in degree 0 (with projection on each pair of
axes): here we show how clusters appear by projecting on each axis and drawing the convex
hull around each opponent. There is also a separation between Mozart's Songs on the one

hand, and his Sonatas and Concertos on the other.
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Figure 7.2.5: A synthesis of Heavy Metal compared to Classic (Mozart): in degree 0, there is a
separation, especially in the �rst two projections. There is also a separation between Mozart's

Songs on the one hand, and his Sonatas and Concertos on the other.

7.2.3. Romantic: Frédéric Chopin

We conclude this �rst general analysis with the Romantic style, which is a stylistic movement
that comes after the Classical period and lasts during the 19th century, from about 1800 to
1910. Compared to the Classical, Romantic music favours drama and spirituality with much
expressive music and also allows for new musical forms such as the rhapsody, the nocturne, the
concert étude, the polonaise and the mazurka. The main instruments of this period are piano
and the violin.

As a representative of the Romantic style, we have chosen to focus on Frédéric Chopin (1810-
1849). More precisely, we focused on three di�erent styles of composition from its repertoire: the
Études, the Waltzes and the Nocturnes. The data used for the analysis are presented in Table
7.2.4 (�fteen pieces for each style).

Frédéric Chopin
Études Waltzes Nocturnes

Op. 10 No. 1 Op. 10 No. 12 Op. 25 No. 6 Op. 18 No. 1 Op. 64 No. 2 Op. 70 No. 2 Op. 9 No. 1 Op. 15 No. 3 Op. 48 No. 1
Op. 10 No. 3 Op. 25 No. 2 Op. 25 No. 7 Op. 34 No. 1 Op. 64 No. 3 Op. 70 No. 3 Op. 9 No. 2 Op. 27 No. 1 Op. 48 No. 2
Op. 10 No. 4 Op. 25 No. 3 Op. 25 No. 9 Op. 34 No. 2 Op. 69 No. 1 Posth. No. 14 Op. 9 No. 3 Op. 32 No. 1 Op. 55 No. 1
Op. 10 No. 5 Op. 25 No. 4 Op. 25 No. 10 Op. 42 No. 5 Op. 69 No. 2 Posth. No. 15 Op. 15 No. 1 Op. 37 No. 1 Op. 62 No. 1
Op. 10 No. 9 Op. 25 No. 5 Op. 25 No. 11 Op. 64 No. 1 Op. 70 No. 1 Posth. No. 19 Op. 15 No. 2 Op. 37 No. 2 Op. 72 No. 1

Table 7.2.4: The forty-�ve pieces from Études, Waltzes and Nocturnes from Frédéric Chopin
repertory that are used in the analysis of Romantic style against Heavy Metal one.

As we did for Bach and Mozart, we have illustrated the comparison between each Heavy
Metal band and Chopin in degree 0 in Figure 7.2.6, and we have also summarized the general
comparison in Figure 7.2.7. Here we still �nd back that most of the Chopin's pieces have a
mean greater than 40 (almost 90%), but on the contrary the projection (standard deviation,
entropy) seems to completely mix the styles together. However, if we take a closer look at this
last graph, we can see that the entropy separates Chopin's Études from all the Heavy Metal



7.2. COMPARISON BETWEEN HEAVY METAL AND CLASSICAL MUSIC 141

bands, just as it does for Mozart's Songs. It is interesting to note that the Études have a lower
entropy than the Nocturnes or Waltzes, and this is musically consistent with the fact that the
entropy measures the redundancy of the pieces. Finally, in terms of persistent mean and entropy,
Chopin's Études are the pieces that are the closest to Bach's Chorals and Mozart's Songs, while
Chopin's Nocturnes show a completely di�erent behavior, which is consistent considering the
di�erence of composition. However, Figures 7.2.6 and 7.2.7 both con�rm that we are also able
to separate Heavy Metal from Romantic music by focusing especially on the (mean, standard
deviation) and the (mean, entropy) projections. These �rst results lead to a natural comparison
between Classical styles per se, which we will discuss in detail in the next section of this chapter.

Figure 7.2.6: Metallica, Iron Maiden, Judas Priest, Scorpions and Nightwish compared to
Chopin (Études, Waltzes and Nocturnes) in degree 0 (with projection on each pair of axes):
here we show how clusters appear by projecting on each axis and drawing the convex hull

around each opponent. There is also a separation between Chopin's Études on the one hand,
and his Nocturnes and Waltzes on the other.
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Figure 7.2.7: Heavy Metal compared to Romantic (Chopin): in degree 0, the points of heavy
Metal are mixed together and form a cluster, and we have a separation especially given by the
mean value. There is also a separation between Chopin's Études on the one hand, and his

Nocturnes and Waltzes on the other.

7.3. A study of the Classical style

In the previous section, we have performed �rst comparison tests between Heavy Metal and
Classical style with three sub-genres: Baroque, Classical and Romantic. It turned out that the
DFT-approach seems to be able to capture the compositional style of Heavy Metal: in fact, all
the songs of each band lived in the same windows, delimited by a mean value less than 50, a
standard deviation greater than 10 and an entropy greater than 6. On the contrary, we do not
obtain the same results with the Classical pieces studied, as we could observe with Mozart's Songs
or Chopin's Études. Therefore, we want to analyze this in depth by looking at the Classical style
itself, and this will allow us to re�ne our approach and see in what the DFT understands from
this style. We will also complete this analysis by looking at di�erent styles of composition with
Chopin. The data used are the same as in the previous section (Tables 7.2.2, 7.2.3 and 7.2.4).

7.3.1. J.S. Bach, W.A. Mozart and F. Chopin

This paragraph focuses on the Classical style by comparing Bach, Mozart and Chopin together.
The results are presented in Figure 7.3.1, where we have performed pairwise comparisons of these
styles in degree 0.

The �rst column shows the comparison between Bach and Mozart and we see that there
is indeed a separation between the Sonatas and Concertos from Mozart, which live in a small
window delimited by a mean greater than 50, a standard deviation between 8 and 15 and an
entropy less than 5. On the contrary, Mozart's Songs seem to completely incorporate the pieces
from Bach, with the greatest extent for the standard deviation (from 3 to 20). The separation is
present in every projection and seems to place Mozart's Songs in the same compositional style
as for Bach's Chorals, Preludes and Fugues.
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Bach VS Mozart Bach VS Chopin Mozart VS Chopin

Figure 7.3.1: Pairwise comparisons between Baroque, Classical and Romantic music in degree 0.

We have roughly the same phenomena in the study of Bach against Chopin, and we could
observe the separation between Chopin's Nocturnes and Waltzes from Bach. In fact, we still
recover a slight separation with a mean of about 50 and an entropy of about 5. On the contrary,
Chopin's Études seem to belong to the same compositional style as for Bach's Chorals, Preludes
and Fugues, which is also not so surprising since they are much more academic and regulated
than the Nocturnes, and therefore the corresponding entropy is lower. Finally, the last column
compares Mozart and Chopin, and we still have the idea that here the Classical and Romantic
styles are not always separated but the result depends on the studied pieces: here Chopin's
Études and Mozart's Songs live in the same windows, delimited by a mean greater than 50, an
entropy less then 6 and a large standard deviation. On the other hand, the Piano Sonatas, Violin
Concertos, Nocturnes and Waltzes live in the same small window, with a mean between 40 and
60, a standard deviation between 8 and 20 and an entropy between 5 and 9.

In conclusion, the DFT-distance does not separate the studied sub-genres of the Classical
style, but it does separate the style of composition, telling us that a Chopin's Étude is closest
to a Mozart's Song in terms of compositional style than a Nocturne or a Waltze, which are less
codi�ed. In order to support this hypothesis, let us take a �nal example in the Romantic style,
given by Mazurkas from Chopin.
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7.3.2. F. Chopin's Mazurkas and Waltzes

The Mazurkas are a Polish musical form based on folk dances in triple time, reminiscent of
Waltzes, so it seems to be an interesting approach to confront these two styles We have therefore
chosen �fteen Mazurkas from Chopin, which are presented in Table 7.3.1. We keep the original
data from Table 7.2.4 and especially the �fteen Waltzes to compare the two styles. We have
performed a �rst comparison between all the Chopin's pieces, and then just between Mazurkas
and Waltzes. The results are shown in Figure 7.3.2.

Frédéric Chopin - Mazurkas
Op. 6 No. 1 Op. 30 No. 4 Op. 41 No. 1 Op. 59 No. 1 Op. 67 No. 1
Op. 7 No. 3 Op. 33 No. 2 Op. 50 No. 1 Op. 59 No. 2 Op. 67 No. 2
Op. 24 No. 4 Op. 33 No. 4 Op. 50 No. 2 Op. 66 No. 3 Op. 68 No. 2

Table 7.3.1: The �fteen pieces from the Mazurkas from Frédéric Chopin.

Figure 7.3.2: F. Chopin in four di�erent styles of composition: Nocturnes, Études, Waltzes and
Mazurkas. The second line only kept the two last to underline how Mazurkas are included into

Waltzes.

In this �gure, the �rst line represents the four compositional styles studied: Nocturnes,
Études, Waltzes and Mazurkas. First of all, we can see that the Nocturnes and the Études seem
to be di�erent, as it was already mentioned in the previous general analysis. If there is no clear
separation, we still have more than 90% of the Nocturnes points having a mean less than 50,
while it is greater for 90% of the Études point. We have exactly the same separation with the
entropy around 6. This is not so surprising, since among the four types of Chopin's pieces studied
here, the Nocturnes and the Études are clearly the most di�erent. This again supports the idea
that the DFT is able to capture a style of composition.

The second line of Figure 7.3.2 shows only the Mazurkas against the Waltzes, and there is a
surprising fact that appears here: indeed, most of the Mazurkas points are included in the area
of the Waltzes points. Therefore, we can assume from this observation that the Mazurkas are a
kind of "sub-genre" of the Waltzes in terms of composition, which is a rewarding and musically
consistent result that the DFT is thus able to capture.
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7.4. What about Pop music?

Now that we have compared trivial opponents and con�rmed that the DFT can separate them
most of the time, we can focus on less speci�c genres and turn our attention to Pop music.

Pop music is a genre that originated in the United Kingdom and the United States around
1960. The main idea is to focus on a "popular" accessibility with catchy melodies, dancing
rhythms and short songs. By de�nition, Pop music designates "popular music" so it is something
that is constantly evolving over time. The main instruments used in Pop music are electric or
acoustic guitars, bass, drums, piano or synthesizers and also drum machines.

There are many choices of groups and artists to represent this style of music, so we decided
to cover as wide a time period as possible. We start with The Beatles, who are considered to be
the forerunners of pop music in the United Kingdom, and then we move on to nowadays popular
music. Here are the �ve artists we chose to represent pop music:

Y The Beatles are one of the most famous English band of all the times, formed in Liverpool
in 1960, known to be the pioneers of Pop/Rock style.

Y Elton John is a British singer, pianist, composer and representative of Pop music of the
80's. His �rst album was released in 1969 and, he is still in activity.

Y ABBA are a Swedish group formed in 1972 which are representative of Pop/Disco style.

Y Coldplay are a British band formed in London in 1997, known to represent the Pop and
Pop/Rock style of the 2000's until nowadays.

Y Lady Gaga is an American singer and songwriter, who is a representative of Pop/Dance
style. Her �rst album was released in 2008, and she is still in activity.

As we did for the Heavy Metal style, we took �fteen songs for each Pop artist, and the data
are presented in Table 7.4.1.

At this point, we have Classical music data (Baroque, Classical and Romantic, with forty-�ve
pieces per style), Heavy Metal and now Pop music data (�ve representatives and �fteen songs
for each one). The most natural way to follow this analysis would be to confront Pop music
with the two previous styles we have analyzed. For Pop compared to Classical, we expect to �nd
similar results as for Classical compared to Metal. However, the most interesting and non-trivial
analysis would probably be the comparison between Pop and Heavy Metal music.

Pop
The Beatles Elton John ABBA Coldplay Lady Gaga

A Day in the Life (1967) Can You Feel The Love Tonight ? (1994) Dancing Queen (1976) A Sky Full of Stars (2014) Alejandro (2009)
Across the Universe (1969) Candle in the Wind (1973) Does Your Mother Know (1979) Adventure of a Lifetime (2015) Bad Romance (2009)

All My Loving (1963) Crocodile Rock (1972) Fernando (1976) Charlie Brown (2011) Born This Way (2009)
All You Need is Love (1967) Daniel (1973) Gimme Gimme Gimme! (1979) Clocks (2002) Brown Eyes (2008)

Come Together (1969) Don't Let The Sun Go Down On Me (1976) I Have A Dream (1979) Fix You (2005) Judas (2011)
Eleanor Rigby (1966) Goodbye Yellow Brick Road (1993) Lay All Your Love On Me (1980) Higher Power (2021) Just Dance (2009)

Help! (1965) I Guess That Why They Call It The Blues (1983) Mamma Mia (1975) Hymn for the Weekend (2015) Monster (2009)
Here Comes the Sun (1969) I'm Still Standing (1983) Money Money Money (1976) Paradise (2011) Paparazzi (2009)

Hey Jude (1968) Nikita (1985) People Need Love (1972) Princess of China (2011) Poker Face (2008)
Let It Be (1970) Rocket Man (1972) SOS (1975) Sparks (2000) Rain on Me (2020)

Love You To (1966) Sacri�ce (1989) Super Trouper (1980) Speed of Sound (2005) Shallow (2018)
She Said She Said (1966) Sad Songs Say So Much (1984) The Day Before You Came (1982) The Scientist (2002) Speechless (2009)

Something (1969) Sorry Seems To Be The Hardest Word (2002) The Winner Takes It All (1980) Trouble (2000) Summerboy (2008)
Yellow Submarine (1966) Tiny Dancer (1971) Voulez-vous (1979) Violet Hill (2008) Telephone (2009)

Yesterday (1965) Your Song (1971) Waterloo (1974) Viva La Vida (2008) The Edge Of Glory (2011)

Table 7.4.1: The �ve representative Pop bands and the �fteen corresponding songs used in the
analysis.
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7.4.1. Pop and Classical music

We begin the study of the Pop style by by comparing Pop and Classical music. More precisely,
we are going to make the same comparisons that we performed for Heavy Metal, that is, we are
going to confront each band of the Pop style successively with Baroque, Classical and Romantic
style, by mean of their respective representative that we have chosen in the �rst section. We will
use the data already collected, from Tables 7.2.2, 7.2.3 and 7.2.4 for Bach, Chopin and Mozart
respectively, and Table 7.4.1 for Pop music. We have presented the results of each comparison
in Figures 7.4.1, 7.4.2 and 7.4.3.

Figure 7.4.1: The Beatles, Elton John, ABBA, Coldplay and Lady Gaga compared to Bach
(Chorals, Preludes and Fugues) in degree 0 (with projection on each pair of axes): here we

show how clusters appear by projecting on each axis and drawing the convex hull around each
opponent. Bach seems to be clearly separated from the Pop bands.
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Figure 7.4.2: The Beatles, Elton John, ABBA, Coldplay and Lady Gaga compared to Mozart
(Sonatas, Concertos and Songs) in degree 0 (with projection on each pair of axes): here we

show how clusters appear by projecting on each axis and drawing the convex hull around each
opponent. The �rst two projections seem to clearly separate Mozart from the Pop bands.
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Figure 7.4.3: The Beatles, Elton John, ABBA, Coldplay and Lady Gaga compared to Chopin
(Études, Waltzes and Nocturnes) in degree 0 (with projection on each pair of axes): here we
show how clusters appear by projecting on each axis and drawing the convex hull around each
opponent. The separation is less clear for The Beatles and Elton John, while the �rst two

projections seem to separate the other three Pop bands from Chopin.
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As expected, the results are roughly similar to those for Heavy Metal compared to Classical
music: for Bach, the separation is clear, especially for ABBA, Coldplay and Lady Gaga, where
a mean around 50 and an entropy around 6 seem to create clusters. For Elton John and The
Beatles, the mean can go up to 60 while the entropy is very low (around 3 for The Beatles).
However, most of the songs studied (more than 95%) are in a di�erent cluster than the pieces
of Bach. For Mozart, the projection (mean, entropy) seems to provide a separation between
Pop and Classical pieces studied. As it was already the case with the Heavy Metal analysis, the
last projection (standard deviation, entropy) seems to mix the points together, especially for the
Sonatas and Concertos but still not for Mozart's Songs. It is even more visible in the comparison
between Pop and Romantic, where the Nocturnes and also some Waltzes are closed to some
Pop songs in the last column. For songs by Elton John and the Beatles, the mean value does
not separate the Romantic style as well as it does for Bach and even Mozart. One explanation
could that these two artists use the piano mainly as an accompaniment. However, if the clusters
are less obvious for Elton John and The Beatles, they are for ABBA, Coldplay and Lady Gaga
especially when looking at the �rst two projections.

7.4.2. A distance between musical styles

The previous section summarizes some comparisons between Pop and Classical music. Most of
the time, the results are quite clear and our DFT-distance seems to separate the styles, whether it
is with Baroque, Classical or Romantic. However, in some cases it seemed di�cult to see clusters
in our R3 representation. In the next section, our aim will be to use the data we have already
collected to compare Pop and Heavy Metal together. Therefore, to deal with the problem we
encountered with classical music, we �rst propose a simple and natural way to compare clusters
given by the average points.

Since the beginning of this section devoted to the classi�cation issue, we have chosen several
musical styles represented by a group or an artist. For each one of them, we took �fteen MIDI
�les of the corresponding discography, and each song has a barcode that we turned into a point
in R3, using statistical values. Therefore, for two styles, we have two sets of colored points in R3.
In the simplest and most trivial cases, the clusters appear naturally, but sometimes it is not that
obvious and we need to be able to perform more complicated comparisons. We thus propose
a way to compare groups of points by taking the average point in R3, and more precisely
its projection on each pair of statistical axes. We then compare styles by taking the distance
between these resulting points. Notice that this distance would also be useful for future work,
when we will extend the study and deal with a larger amount of data.

We start with a formalization of the described distance:

De�nition 7.4.1. Let P be a family of musical pieces (or MIDI �les), i.e. P � �S1, . . .Sn�
where each Si is a score and n > N�. For each i, Si corresponds to a barcode BC0�Si� which
is identi�ed with a point Xi � �µi, σi, ϵi� > R3, where µi � µ0�Si�, σi � σ0�Si� and ϵi � ϵ0�Si�
are respectively the 0-mean, the 0-standard deviation and the 0-entropy. Therefore, P can be
associated with a n-uplet �X1, . . . ,Xn�, where each Xi is de�ned as below. We then de�ne the
barycenter of the family P by the average on each coordinate, i.e.

XP �
1

n
� n

Q
i�1

µi,
n

Q
i�1

σi,
n

Q
i�1
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We then denote by xP, yP and zP the points in R2 de�ned by the projection of the barycenter

XP on each pair of statistical axes, i.e.
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Now let P and P� be two families of musical pieces, i.e. P � �S1, . . .Sn� and P�
��S �

1, . . . ,S
�
p�, where n and p are not necessarily equal. We de�ne the distance between P and

P� by

d �P,P�� � d �XP,XP�� �max�Õ xP � xP� Õ2,Õ yP � yP� Õ2,Õ zP � z�P Õ2�
with the notation below and Õ � Õ2 is the Euclidean norm in R2. In other words, the distance
between P and P� corresponds to the maximum distance between their respective barycenters
on each projection in R2.

Proposition 7.4.2. The distance d just de�ned is a metric in R3.

Proof. Since our distance d is de�ned with a maximum and the Euclidean norm Õ � Õ2, we
immediately have d�XP,XP�� � d�XP� ,XP� and d�XP,XP�� � 0 if and only if XP � XP� .
Then, using the triangular inequality from Õ � Õ2, it remains to prove that

max�a1 � b1, a2 � b2, a3 � b3� Bmax�a1, a2, a3� �max�b1, b2, b3�.
Now assume that the left part of this inequality is given by ai � bi for some i, and that the two
terms of the right sum are given by aj and bk respectively, where i, j and k not necessarily
distinct. Then, we have ai B aj and bi B bk, so ai � bi B aj � bi B aj � bk, and this show the
triangular inequality for d. Ì

Remark 7.4.3. In this de�nition, we have chosen to work with degree 0 as it seems to be the
most consistent dimension to focus on at this stage of our research, but we plan to include higher
degrees in our future work. Also notice that we could simply take the distance between the
barycenters in R3 directly, but the previous tests seem to indicate that the choice of the axes in
which we project has an in�uence on the analysis, so we wanted to take this into account in our
de�nition.

The metric we have just de�ned here is only a suggestion for comparing families of barcodes
together, as we decided not to use the Bottleneck distance. This is a research trail that probably
has some shortcomings and needs to be exploited, but it has the advantage of using the persistent
meaning of barcodes, since it comes discretely from statistical values of bars length. Furthermore,
this metric will give some satisfying and musically consistent results (see the clustering trees from
the next summary paragraph 7.5).

Example 7.4.4. As a �rst application of this distance, we have chosen to compare together two
bands from Heavy Metal - Scorpions and Nightwish - with two artists from Pop - Lady Gaga
and Elton John. In Figure 7.4.4, we show the comparison in R3 in degree 0 and we add the
barycenter point for each group of points (represented by a cross point). Now we can apply our
De�nition 7.4.1 to compute the distance between the four bands, and the results are presented
in Table 7.4.2.

Figure 7.4.4: A comparison between Scorpions, Nightwish, Lady Gaga and Elton John in
degree 0. Here we add the average point for each artist.
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Scorpions Nighwish Lady Gaga Elton John
Scorpions 0 0.958 1.542 9.613

Nightwish 0 1.76 9.792

Lady Gaga 0 8.631

Elton John 0

Table 7.4.2: The table of distances between Scorpions, Nightwish, Lady Gaga and Elton John
in degree 0 by taking the maximal distances of their average points.

By analyzing Table 7.4.2 of distances, we see that the closest groups are Nightwish and
Scorpions, and that Lady Gaga is closer to these two Heavy Metal bands than she is to Elton
John. The latter is also the most distant artist from the others, which was already visible in the
graphs of Figure 7.4.4, but now con�rmed by this new distance.

Finally, we collected the information by drawing the corresponding clustering tree, or
dendrogram, which is shown in Figure 7.4.7. The x-axis corresponds to the computed distances
from Table 7.4.4. This representation allows us to immediately visualize the clustering between
our studied groups and artists, which is particularly interesting when the classi�cation using
visual clusters on R3 becomes non-trivial or needs to be more precise, as it will be the case with
Heavy Metal and Pop music.

Figure 7.4.5: The dendrogram associated with the comparisons between Iron Maiden,
Scorpions, Elton John and Lady Gaga in degree 0.

Remark 7.4.5. Notice that the construction of a dendrogram is equivalent to computing per-
sistent homology in degree 0 and analyzing the evolution of the components during the �ltration
(as we did in most of our analyses from the previous chapters). In fact, in this context, a point is
given by a family of MIDI �les represented by its barycenter, according to De�nition 7.4.1. The
metric between these points is given by the latter de�nition. From such a point cloud, we can
compute the Vietoris-Rips �ltration and focus on the grouping of classes in degree 0. This is a
"meta-analysis" of the problem, since we compute persistent homology on a family of barcodes.

7.4.3. Pop and Heavy Metal: results and classification

Finally, we computed the di�erent comparisons between each artist or group from our Pop and
Heavy Metal data (Table 7.4.1 and 7.2.1 respectively). We give the table of all the di�erent
comparisons in the general Figure 7.4.6 for degree 0. For each comparison, we add the the
distance between the two groups concerned, as de�ned in 7.4.1.
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The Beatles Y Elton John Y ABBA Y Coldplay Y Lady Gaga Y

Metallica

Y

4.064 3.302 2.185 1.486 1.68

Iron

Maiden

Y

2.776 1.912 1.381 0.453 0.739

Judas

Priest

Y

1.618 1.07 0.598 1.001 0.695

Scorpions

Y

2.384 1.573 0.729 0.3 1.093

Nightwish

Y

3.185 2.486 0.522 0.667 1.287

Figure 7.4.6: The twenty-�ve comparisons between each representative of Pop and Heavy Metal
music in degree 0. The rows correspond to Metal bands while the columns are for Pop bands.

In these di�erent comparisons we can see that for some groups the clusters are well visible, as
for instance in the �rst two columns (The Beatles and Elton John). On the other hand, for some
of the other comparisons, especially the last three columns, it is sometimes not clear. In the
previous paragraph, we suggested measuring the distance between groups by taking the average
points, projecting them on each pair of axes and taking the maximum di�erence (see De�nition
7.4.1). This allows us to quantify the distance between groups, and also to construct a clustering
tree that gives a visual representation of the di�erent clusters. We have thus constructed the
corresponding dendrogram with all these comparisons, and the result is presented in Figure 7.4.7.
On this dendrogram, we have a cluster between Elton John and The Beatles, who are probably
the closest style within the studied Pop groups. Therefore, we have almost a separation between
Pop and Metal, except for Lady Gaga, who is between Iron Maiden and Judas Priest, and
Metallica, who is between Coldplay and The Beatles.

We conclude this section with a few criticisms of this analysis: �rst of all, we have to keep in
mind that we have completely removed the drums from the MIDI �les, which will certainly a�ect
the comparisons, especially when the songs studied comes from Heavy Metal style. Secondly,
the clusters necessarily depend on the choice of the songs studied, even though we tried to keep
them as diverse as possible: if the �fteen songs by Scorpions are mostly Metal ballads, then
without drums it can be really close to songs from a Pop/Rock group like ABBA. This analysis
is just the beginning of what can be done by combining persistent homology and the DFT, and
it certainly needs to be re�ned - by adding higher degrees, for example - and tested on a much
larger set of data. Nevertheless, we still have consistent results and a search trail in classi�cation
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that is promising, especially considering the separation between Pop and Metal that is almost
given with this dendrogram. In the next section, we give a list of possible dendrograms that we
can construct from our collected data.

Figure 7.4.7: The dendrogram associated with comparisons between Pop and Heavy Metal
music in degree 0. The x-axis is the distance from 7.4.1.

7.5. Synthesis of the various comparisons

This paragraph simply gives a summary of all the comparisons we can make with the data
we have collected by illustrating them with clustering trees. The general results are shown in
Figure 7.5.1. We start by giving the dendrogram associated with each style (Figures 7.5.1a,
7.5.1b and 7.5.1c for Metal, Classical and Pop respectively). This allows us to cluster the groups
and artists within a given genre. For example, with the Classical one, we recover the cluster
given by Chopin's Mazurkas and Waltzes, the one given by Bach's Fugues and Chorals, or also
Mozart's Songs and Bach's Chopin's Études. These clusters were all visually given by the R3

representation and are now con�rmed by our new metric. For the Pop style, we recover the
clusters given by The Beatles and Elton John.

We also show the clustering tree associated with the Heavy Metal and Classical comparisons
from the �rst paragraph of this chapter (Figure 7.5.1d), and we recover two separate clusters given
by these two styles. The comparison between Pop and Classical gives exactly the same results
(Figure 7.5.1e). Pop and Heavy Metal have already been compared in the previous paragraph
(Figure 7.4.7). Finally, the meta-clustering tree summarized all the possible comparisons between
all the 285 studied pieces (Figure 7.5.1f), on which we can clearly see a separation between
Classical and the two other styles, and the mix between Pop and Metal. Even if this could be
reconstructed from the previous classi�cations, it also shows that we can immediately apply our
approach to a larger data set, and �nd clusters easily on this representation (compared to the
�rst visualization in R3), which is promising for future work.

In conclusion, our approach seems to have a real consistent musical meaning, especially in
terms of compositional style. The distance from De�nition 7.4.1 between families of musical
pieces based on their barcodes in degree 0 allows us to compute large comparisons and give a
strong visual representation of the works.
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(a) Metal style (b) Classical style

(c) Pop style (d) Metal VS Classical style

(e) Pop VS Classical style (f) Classical, Metal and Pop styles

Figure 7.5.1: A synthesis of all comparisons of the di�erent classi�cations within and between
each studied style. The x-axis is the distance from 7.4.1.
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7.6. Comparison within one given group: Queen

In this section we propose a di�erent point of view: if our approach can naturally be used to
classify several groups or musical styles together, it might be interesting to see what it brings
to the study of one given group. For this purpose, we choose to analyze a group with a large
discography in terms of musical style: the famous British band Queen.

7.6.1. Different styles for each Queen's member

Queen is one of the most famous British Rock bands, formed in London in 1970. The group
is particularly known for its heterogeneous discography, with many di�erent styles throughout
its �fteen albums, mainly revolving around Rock. In fact, it goes from Progressive Rock, Hard
Rock, sometimes Heavy Metal but mostly Arena Rock and Pop Rock.

The British band played for almost twenty years (from 1973 to 1991) with four members:
Freddie Mercury (lead vocals and piano), Brian May (guitar and vocals), Roger Taylor (drums
and vocals) and John Deacon (bass). During this time, the group released fourteen albums, and
produced a last one in 1995, following Mercury's death in 1991.

Each member of the band has composed for these �fteen albums, and our aim here is to
see how our DFT-approach can capture the compositional style that characterized the di�erent
pieces. In that purpose, we have chosen �fty-�ve songs from Queen's discography: twenty of
which were composed by F. Mercury, �fteen by B. May, �fteen by R. Taylor and �ve by J.
Deacon. We made this unbalanced selection according to the availability of MIDI �les and the
proportion of songs composed by each member. The MIDI �les we considered are listed in Table
7.6.1.

Queen
F. Mercury B. May R. Taylor J. Deacon

Bicycle Race (1978) 39' (1975) A Kind of Magic (1986) Another One Bites the Dust (1980)
Bohemian Rhapsody (1975) Fat Bottomed Girls (1978) Action This Day (1982) I Want to Break Free (1984)

Crazy Little Things Called Love (1979) Hammer to Fall (1984) Calling All Girls (1982) Need Your Loving Tonight (1980)
Don't Stop Me Now (1978) Headlong (1991) Drowse (1976) Spread Your Wings (1977)

Good Old Fashioned Lover Boy (1975) I Want it All (1989) Fun it (1976) You're My Best Friend (1975)
I'm Going Slightly Mad (1991) It's Late (1977) Heaven For Everyone (1995)

Innuendo (1991) Keep Yourself Alive (1973) I'm in Love With My Car (1975)
It's a Hard Life (1984) Long Away (1976) Modern Times Rock 'n' Roll (1973)

Jealousy (1978) Now I'm Here (1974) Radio Ga Ga (1984)
Killer Queen (1974) Save Me (1980) Rock it (1980)

Liar (1973) The Show Must Go On (1991) Tenement Funster (1974)
Lilly of the Valley (1974) Tie Your Mother Down (1975) Thank God It's Christmas (1984)
Love of My Life (1975) Too Much Love Will Kill You (1992) The Invisible Man (1989)
Made in Heaven (1995) We Will Rock You (1977) The Loser in the End (1974)

March of the Black Queen (1974) Who Wants To Live Forever (1986) You Don't Fool Me (1995)
Play The Game (1980)

Princes of the Universe (1986)
Seven Seas of Rhye (1973)
Somebody to Love (1976)

We Are the Champions (1977)

Table 7.6.1: The songs selected from Queen's discography and sorted by composer. There are
twenty for F. Mercury, �fteen for B. May, �fteen for R. Taylor and �ve for J. Deacon.

As a starting point, Figure 7.6.1 shows all the points without any color, simply plotted in
R3 to see how they are distributed. At degree 0, more than 80% of them have a mean between
30 and 50, an entropy between 5 and 9 and a standard deviation between 10 and 16. In degree
1, more than 90% of the points have a mean between 1 and 5 while the standard deviation and
the entropy go from 0 to 0.4 for all the points. For the rest of the analysis and as we did for the
others before, we will focus only on degree 0.

In Figure 7.6.2, we have represented in the �rst row the �fty-�ve points by adding a color for
each composer. Considering the low number of points for J. Deacon, we will concentrate mainly



156 CHAPTER 7. CLASSIFICATION OF MUSICAL STYLE

Figure 7.6.1: The �fty-�ve songs from the discography of Queen in degree 0 and degree 1.

on the other three colors. We can see that most of the points for R. Taylor (70%) have a mean
less than 40 and most of the points for F. Mercury and B. May (70%) have a mean greater than
40. For the entropy, we have the opposite: most of the points from B. May have an entropy less
than 5.5, while most of the points for F. Mercury and R. Taylor have an entropy greater than
5.5. Therefore, F. Mercury seems to be in the middle of the two styles. We thus decided to
display a second line in Figure 7.6.2 where only B. May and R. Taylor are compared.

Figure 7.6.2: The �fty-�ve songs from Queen's discography sorted by composer: in the second
line, we have removed F. Mercury and J. Deacon to leave only B. May and R. Taylor. In this
case, most of the points are slightly separated, and we plot the region where most of the points

lived for each composer.

On these new graphs, we see a slight separation between the two composers, which is given
by the mean in the �rst two projections: the bars of R. Taylor's songs are shortest on average,
which probably means that the musical bars are connected quickly and that there is a global
structure in the score. On the other hand, most of the B. May's songs have a mean value greater
than 40, so the bars are longer on average, and thus there are several pieces in the score that
remain separated longer in the �ltration. We also have a separation given by the entropy around
5.5, which means that the redundancy in the composition is lower for B. May than it is for R.
Taylor. We have displayed these regions for each member and each composer to emphasize the
distinction made by the DFT. However, we did not expect the scores to be clearly separated,
since B. May and R. Taylor both composed songs for the same group, but the results still show
that the DFT distinguishes two styles of composition. Also notice that, in the second row of
Figure 7.6.2, we have plotted the barycenter point from De�nition 7.4.1 for each color, so we
con�rm that the points for R. Taylor have on average a mean of less than 40, an entropy of more
than 5.5 and also a standard deviation of less than 14, while it is the exact opposite for B. May.
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We �nally conclude that these two members of the same band have two di�erent compositional
styles.

Finally, we confronted these previous results by adding four songs extracted from the discog-
raphy of B. May during his solo career. In fact, Queen's guitarist released two albums in 1992
and 1998, Back to the Light and Another World respectively, and we found four MIDI �les for
these albums: Driven By You, Last Horizon and Resurrection from the former and Another
World from the latter. We then computed barcodes for these songs and got that all of them have
a persistent mean greater than 40 (as 80% of Queen's songs written by B. May) and three of
them have an entropy less than 6 (as 70% of Queen's songs written by B. May). The graphical
results are presented in 7.6.3.

Figure 7.6.3: Thirty songs from the discography of Queen classi�ed by composition (B. May
and R. Taylor), together with four songs written by B. May in his solo career.

With this example, we support our belief that DFT can be used in the context of musical
style recognition and classi�cation, or more precisely, compositional style, as we have already
understood with the previous examples. To conclude this section on Queen, we will again re�ne
our study by applying the DFT to an even more speci�c case, which is the study of simply a
given song from the discography.

7.6.2. Focus on a song: Bohemian Rhapsody

We conclude this section devoted to the classi�cation problem with a paragraph that focuses on
just one given song. More precisely, we have made many di�erent comparisons between musical
styles, artists and groups and we gave di�erent possible musical interpretations. Here we will
try a new approach, by taking just one MIDI �le which is itself cut into several parts, in a sense
that we will precise. We will then analyze these di�erent parts within the single song.

Since we were working on Queen's discography, we decided to focus on the famous song
Bohemian Rhapsody, composed by Freddie Mercury in 1975 and released as the lead single from
their fourth album A Night at the Opera (1975). This song is known to contain several styles in
itself: it consists of Rock, Pop and also an Opera part. Our goal is to split this song in order to
analyze each part by computing the di�erent statistical values. We will then make a comparison
with a pure Thrash Metal song from Metallica, Master of Puppets.

Let us start with the cutting of Bohemian Rhapsody. The original score contains 154 musical
bars (not necessarily distinct), and we split it into six sub-�les in the following way:

Y Part 1 : A Capella introduction, from bars 1 to 16.

Y Part 2 : Verses 1 and 2 (Ballade), from bars 16 to 48.

Y Part 3 : Guitar Solo, from bars 48 to 56.

Y Part 4 : Opera part, from bars 56 to 97.

Y Part 5 : Rock part, from bars 97 to 137.

Y Part 6 : Coda ending, from bars 137 to 154.
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For each part, we computed di�erent statistical values (in degree 0) and presented the results
in the form of histograms, which are shown in Figure 7.6.4. For comparison, the original MIDI
�le for Bohemian Rhapsody has the following statistics in degree 0:

Mean value : 39, Standard Deviation : 13.7 and Entropy : 7.89.

Figure 7.6.4: Mean, standard deviation and entropy in degree 0 for the song Bohemian
Rhapsody.

Let us analyze these results. First of all, notice that the mean value is always higher than the
one for the original song (between 43 and 60), unlike with the entropy which is always lower than
8 (between 2.5 and 5.5). The standard deviation goes from 11 to 17, and the original is in the
middle of this interval. What is quite surprising is the way in which a high mean is associated
with a low entropy, and vice versa. For instance, the introduction, solo and �nale part have the
highest mean value (60) but the lowest entropy (around 3), while the opera is one of the smallest
mean parts (45) with the highest entropy (5.5). The second thing is the entropy, which is much
more variable than the mean or standard deviation: in fact, we notice the di�erence between
the Opera part, which has the highest entropy value at 5.5 and the Solo, which has the lowest
at 2.5. In Figure 7.6.5, we give the same histograms in degree 1, which tells us that we do not
have many one-dimensional homology generators.

Figure 7.6.5: Mean, standard deviation and entropy in degree 1 for the song Bohemian
Rhapsody.

Finally, we give a classi�cation of the di�erent parts of Bohemian Rhapsody in terms of a
clustering tree in Figure 7.6.6, considering the distance from De�nition 7.4.1. This classi�cation
seems consistent with the statistical values: in fact, it shows that the introduction (A Capella),
the ending (Coda), the middle of the song (Solo) and the Pop part (Rock) are successively
clustered together, while the Opera and the Pop (Ballade) parts form another group.
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Figure 7.6.6: The clustering tree for the di�erent parts of Bohemian Rhapsody (in degree 0).
The x-axis is the distance from 7.4.1.

❃ A comparison - Master of Puppets. To make a second analysis and compare it with the
previous one, we chose to do the same kind of cutting with the Thrash Metal song Master of
Puppets by Metallica. This song was released in 1986 as the only single from the album of the
same name. Notice that it contains much more musical bars than Bohemian Rhapsody (401, but
not necessarily distinct). We chose this song to have something very di�erent from Bohemian
Rhapsody, but still with several parts in it. Therefore, the song can easily be cut in the following
way:

Y Part 1 : Introduction, from bars 1 to 54.

Y Part 2 : Strophes 1 and 2, from bars 55 to 197.

Y Part 3 : Ballade, from bars 198 to 238.

Y Part 4 : Bridge, from bars 239 to 307.

Y Part 5 : Strophe 3, from bars 308 to 382.

Y Part 6 : Coda, from bars 383 to 401.

Note that one of the main characteristics of Thrash metal is the use of fast percussive beats,
and in our analysis we have suppressed the drums from the MIDI �les. Nevertheless, the com-
parison is probably appropriate, especially considering the clusters formed by Metallica in the
previous analysis, which con�rm that the group has its particular compositional signature. We
give the di�erent statistical values (in degree 0) in Figure 7.6.7. For comparison, the original
MIDI �le for Master of Puppets has the following statistical values in degree 0:

Mean value : 31.1, Standard Deviation : 11.33 and Entropy : 8.65.

We can immediately obverse that the mean value of this song is more constant than that of
Queen, except for the end (Coda), which is even higher (65). The balance with the entropy is also
satis�ed here: the highest mean value (65) corresponds to the lowest entropy (1.6), given by the
Coda. The standard deviation also seems to be more constant (between 12 and 14 except for the
Coda which goes to 9). In fact, the analysis reveals that the Coda part is the most di�erent part,
which seems musically consistent considering the song. Furthermore, as for Bohemian Rhapsody,
the entropy for the original song is higher than for the di�erent parts, and vice versa for the
mean value, while it seems to be in the middle for the standard deviation. We also illustrate
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the same results in degree 1 in Figure 7.6.8, especially to show the di�erence with Bohemian
Rhapsody where only 3 parts contain a generator of homology in this dimension. For Master of
Puppets, almost all of them (except for the Coda) have at least one.

Figure 7.6.7: Mean, standard deviation and entropy in degree 0 for the song Master of Puppet.

Figure 7.6.8: Mean, standard deviation and entropy in degree 1 for the song Master of Puppet.

Finally, we give the corresponding dendrogram in degree 0 in Figure 7.6.9. It is interesting
to note that the structure looks quite di�erent than the one from that of Bohemian Rhapsody.
In fact, we have three main clusters, one given by the verses and the introduction, one given by
the bridge and the middle of the song (Ballade), and the Coda, which remains isolated. These
clusters are consistent with the statistical values, as it was the case for Bohemian Rhapsody.

Figure 7.6.9: The clustering tree for the di�erent parts of Master of Puppets (in degree 0). The
x-axis is the distance from 7.4.1.
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To conclude this part, in Figure 7.6.10 we show the corresponding dendrogram in degree 0
with di�erent sections of Bohemian Rhapsody together with those of Master of Puppets. This
clustering tree shows that we have clusters between parts of each song, such as the Coda, Solo,
A Capella and Rock parts from Bohamian Rhapsody. On the other hand, some parts are mixed
together, like the Ballade from the latter, which is placed between the two verses of Master of
Puppets. However, this new approach based on the DFT and persistent homology seems to be
an interesting starting point as a tool which is able to compare two songs in depth.

Figure 7.6.10: The clustering tree for the di�erent parts Bohemian Rhapsody together with the
parts of Master of Puppets (in degree 0). The x-axis is the distance from 7.4.1.





Chapter 8.

A different approach: the Hausdorff
distance

This chapter is the only part of the manuscript where we will not use the Discrete Fourier Trans-
form to model our scores. More precisely, we keep the idea that a musical piece is represented by
a score, which is de�ned as a �nite set of non-ordered distinct musical bars. What is changing
here is the modeling of such a bar: in fact, instead of having B ` Z/tZ �Z/pZ, we will simply
have B ` R3 with coordinates that obviously need to be speci�ed, and we will use the metric
given by the Hausdor� distance to compare such musical bars. This model was actually the �rst
we try in our approach of looking at a score as the set of its musical bars. It led to worthwhile
results about the global structure of the score and musical texture, shortly presented in [18].

8.1. The model: musical bars in R3

We keep in mind what we did in Chapter 4: for a musical piece piece P, let SP be its corre-
sponding score which is cut in N distinct musical bars, so that SP � �B1, . . . ,BN�. Starting from
now, any musical bar Bi of SP will be living in R3, according to the following de�nition.

De�nition 8.1.1. A musical bar is a �nite subset B of R3 where an element of B is called a
note characterized by three coordinates:

i� the position or onset which refers to its place in the bar

ii� the duration, expressed in beats according to the meter

iii� the pitch, which is the value of the note in terms of its fundamental frequency

We are thus considering subsets of R3 by choosing to represent a note by its onset, its
duration and its pitch. This new representation provides a complete and bijective description of
any musical bar. One can notice that the �rst two coordinates are related with time, where the
third one is about frequency. To encode time, we obviously need to use the meter �b, u�, where
b is the number of beats and u the unit (as we already did in the DFT-case). For instance, if the
meter is �4,4�, as it often happens, the unit is the quarter note and there are four such durations
in each musical bar of the score (we assume that the musical score has only one meter). As a
consequence, a quaver note will by given by 1

2 , a half note by 2 and so on. Also the �rst two
coordinates could never exceed b.

On the other hand, frequencies are encoded using midicent, which are basically the unit of
frequency in a MIDI �le. A small presentation of this encoding is given in Figure 8.1.1 for the
three middle octaves of a piano. The middle C, also named C4, is given by 60 and the midicents
go from 0 to 127 (see the introduction part).

We start by giving an example of such an encoding of a musical bar in R3.

163
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G
48 50 52 ... 59

� � � � � � �
60 62 64 ... 71

� � � � � � �
72 ...� � � � � � �

Figure 8.1.1: Encoding the frequency in a MIDI �le using the midicents. We have C3, C4, C5

and C6 which are respectively labelled by 48, 60, 72 and 84.

Example 8.1.2. Let us consider the musical bar from Figure 8.1.2.

G 4
4 -� ? � �

Figure 8.1.2: A musical bar B encoded in R3 by B � ��0, 12 ,71�, �1,2,69�, �3,1,72�� .
Here the meter is given by �4,4� so the unit of time is a quarter note and there are four such

durations in the bar. More precisely, we have here the following durations:

� �( �
1

2
, � � � 1 and � � � 2.

Concerning frequencies, we have

A4 � 69, B4 � 71 and C5 � 72.

According to De�nition 8.1.1, the encoding of this bar B in R3 is thus given by:

B � ��0, 1
2
,71�, �1,2,69�, �3,1,72� 

Notice that if there are some rests in the bar, we can ignore them, since the information is already
encoded in the position of the next note (which was not the case with the DFT-encoding, where
we had no information about the duration of the notes).

Remark 8.1.3. In such encoding, the �rst two coordinates are really di�erent from the pitch
one: in fact, onsets and durations are taking small values depending on the meter, while the
frequency encoding with midicent can go from 0 to 127 (most of the time around 60). That was
not the case with the DFT-approach where both coordinates of a note were living in Z ~nZ, with
an appropriate n. To address this problem, we will make a normalization before computing
persistent homology, so that we have each musical bar as a subset of �0,1�3 instead of just R3.

Remark 8.1.4. As mentioned in Remark 1.2.4 from Section 1.1, there is no bijection between
our two-dimensional encoding of a score modulo �t, p� and subsets of Z/tZ �Z/pZ. On the
contrary here, with the Hausdor� approach, there is a complete description of musical bars and
scores. Moreover, since we add the duration of a note as a second dimension, we can reconstruct
the original musical bar associated with one subset of R3. Of course, this representation has also
some limits, because here we give more weights to coordinates that concern time compared to
pitches.

As we did for the DFT-approach and according with our new de�nition of a musical bar, we
can now give the de�nition of a musical bar in this new context.
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De�nition 8.1.5. A musical score S is the non-ordered set of its N distinct musical bars in�0,1�3:
S � �B1,B2, . . . ,BN� with Bi ` �0,1�3 and Bi x Bj if i x j

We denote by B3 the set of all musical bars in �0,1�3 according to De�nition 8.1.1.

Now that we can describe any musical score as a set of �nite subsets of �0,1�3, we need to
de�ne a metric under the set of these bars that is appropriated. In that purpose, a natural idea
is to use a well-known distance to compare metric sets, that means the Hausdor� distance.

De�nition 8.1.6. If X and Y are two non-empty subsets of a metric space �M,d�, we de�ne a
metric dH called the Hausdor� distance between X and Y by:

dH�X,Y � �max�sup
x>X

d�x,Y � ; sup
y>Y

d�X,y�¡
with d�x,Y � � inf

y>Y
d�x, y�.

An illustration of this metric is given in Figure 8.1.3.

X

Y
sup
x>X

d�x,Y �

Y

sup
y>Y

d�X,y�

Y

Figure 8.1.3: Calculation of the Hausdor� distance between two metric spaces X (the ellipse)
and Y (the square).

This de�nition leads to a natural metric on the set of musical bars in R3:

De�nition 8.1.7. Let S � �B1,B2, . . . ,BN� be a musical score with Bi > �0,1�3 for any i. For
any pair of musical bar �Bi,Bj�, their distance is given by

d3H�Bi,Bj� �max�max
ni>Bi

min
nj>Bj

d1�ni, nj� ; max
nj>Bj

min
ni>Bi

d1�nj , ni�¡
where d1�ni, nj� � P

i
Sni � nj S. We denote by �B3, d3H� the metric space of all musical bars

encoded as subsets of �0,1�3 equipped with the Hausdor� distance.

Remark 8.1.8. For computational constraints and as we did for the DFT-distance, we chose
here to work with the metric on R3 given by the 1-norm.

We will now turn any musical piece P as a point cloud, so we can apply the Vietoris-
Rips method from Chapter 4, and thus compute persistent homology and associated family of
barcodes.

De�nition 8.1.9. Let P be a musical piece and SP � �B1,B2, . . . ,BN� the score that represents
it. Then, SP is a subset of the metric space �B3, d3H� and the associated point cloud with P
is built in the following way:
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i� Each point is a musical bar Bi ` �0,1�33 (De�nition 8.1.1).

ii� The distance between two musical bars Bi and Bj is given by the Hausdor� distance d3H
(De�nition 8.1.7).

The previous de�nition leads to the application of Topological Data Analysis in this context,
according to the process described in Chapter 4. The next section of this chapter will be devoted
to such applications, but �rst we will give an example of the general process that leads from a
musical score to a family of barcodes, according to our new model.

Example 8.1.10. Let us consider the score S from Figure 8.1.4 which is an excerpt from the
music piece Laputa: Castle in the Sky composed by Joe Hisaishi in 1986 for the movie of the
same name.

G2244
B1�< � ��� B2��

-�
� � B3� > �

B4� �
-�
� � B5	

Figure 8.1.4: A score extracted from Laputa: Castle in the Sky written by Joe Hisaishi in 1986
for the same called movie.

Following on 8.1.1 and 8.1.5, this score is entirely represented with subsets of R3 by:

B1 � ��3, 12 ,72�, �72 , 12 ,74��
B2 � ��0, 32 ,75�, �32 , 12 ,74�, �2,1,75�, �3,1,79��
B3 � ��0,2,74�, �3,1,67��
B4 � ��0, 32 ,72�, �32 , 12 ,59�, �2,1,70�, �3,1,75��
B5 � ��0,4,59��

Then, after doing the normalization process for each coordinate (Remark 8.1.3), we get that
Bi ` �0,1�3 for each i, as follows:

B1 � ��0.75,0.118,0.586�, �0.875,0.118,0.609��
B2 � ��0,0.356,0.621�, �0.375,0.118,0.609�, �0.5,0.237,0.628�, �0.75,0.237,0.667��
B3 � ��0,0.474,0.609�, �0.75,0.237,0.529��
B4 � ��0,0.356,0.586�, �0.375,0.118,0.563�, �0.5,0.237,0.586�, �0.75,0.237,0.621��
B5 � ��0,0.949,0.563��
Now we can simply use the Hausdor� distance from De�nition 8.1.7 and Table 8.1.1 of dis-

tances (left). In order to compare barcodes together, we apply the same distances normalization
process than in the DFT context (see Section 4.3). We then get every distances between 0 and
100 as presented in Table 8.1.1 (right): the time of �ltration is now measuring with scaling
parameter (%).

Finally, we have our point cloud and we can now apply the Topological Data Analyis process,
that means computing the corresponding �ltration and family of barcodes. The results are
presented in Figures 8.1.5 and 8.1.6, respectively.

Let us brie�y analyze this example: here we do not have homology in dimension 1, which
is not so surprising considering the low number of musical bars in the score. However, there is
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B1 B2 B3 B4 B5

B1 0 1.02 1.13 0.987 1.75

B2 0 0.574 0.045 1.57

B3 0 0.528 1.5

B4 0 1.52

B5 0

B1 B2 B3 B4 B5

B1 0 58% 64% 56% 100%

B2 0 32% 2% 89%

B3 0 30% 85%

B4 0 86%

B5 0

Table 8.1.1: Tables of distances before and after distances normalization (respectively left and
right) for the musical score S from Laputa: Castle in the Sky. On the right we simply apply the

DFT normalization process from Section 4.3.

an interesting process that should be noticed here, since it will be the starting point of the next
paragraph: the �rst two musical bars that are connected together are B2 and B4, with a very
small distance (a scale of 2%). Then, we have B2, B3 and B4 that form a triangle while B1 and
B5 are still isolated (at 32%). Finally, if B1 joins the triangle at 56% of the �ltration, and we
need to wait 85% before having the same property for B5. In other words, half of the time B1 and
B5 are two isolated components, and quarter of the time B5 is a single one. This progression has
a very particular musical meaning: �rstly, B2 and B4 are almost the same up to a transposition,
and at least these two musical bars share the exact same rhythmic structure. We will say that
B2 is the theme part that is reused in B4. Then, B1 sounds like the beginning of the musical
sentence, while B5 is the conclusion, and B3 acts as a transition (or bridge). With this small
example, we see the premises of the results we can obtain with the Hausdor� distance, that is to
say, describe in an automatic way the general structure of a piece.
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Figure 8.1.5: The �ltered simplicial complex associated with score S from Laputa: Castle in the
Sky : here each distance from Table 8.1.1 is used as a discretization of time and we represent

each complex of the �ltration by its associated graph.
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Figure 8.1.6: The family of barcodes associated with score S from Laputa: Castle in the Sky
after normalization. Barcode's scale is between 0% and 100%.

Remark 8.1.11. For comparison, we applied the same example with the DFT-approach and
get completely di�erent results. The distances between musical bars of score S from Figure 8.1.4
is presented in Table 8.1.2. The closest bars are B1 and B5 (66%) and then each musical bar
either join B1 or B5. The most distant bars are B2 and B4. Therefore, whereas the DFT used
as a metric has a strong and consistent musical meaning (Tonnetz, harmonization, classi�cation,
etc.), the Hausdor� distance seems to have a completely di�erent musical sense that focuses on
the global structure of the score. This new kind of results needs to be exploited, and we give
two applications in the following sections: one for a particular musical piece (a lullaby from J.
Brahms), and one for a particular musical style (minimalist, with Y. Tiersen).

B1 B2 B3 B4 B5

B1 0 96% 76% 91% 66%

B2 0 92% 100% 85%

B3 0 93% 67%

B4 0 85%

B5 0

Table 8.1.2: Table of distances for the musical score S from Laputa: Castle in the Sky using the
DFT-distance. The musical bar seems to be gathered according to the number of notes, and

not the general structure of the bars.

8.2. Structure of a score and musical texture

8.2.1. General idea

In the light of the previous Example 8.1.10, we want to deeply understand what this new point
cloud based on the Hausdor� distance brings to musical analysis: we saw that it deals with
the general structure of a score, but also to the construction of a musical bar in itself. Here
what we call the musical texture is deeply linked to the beats structure of a musical bar:
this means that we give less importance to pitches and focus more on the rhythms. Actually,
recalling De�nition 8.1.1, a musical bar is a subset of �0,1�3 where two of the three coordinates
are related to the time. At the end of this �rst section, we will do some tests to try to normalize
the coordinates.

Let us start by considering the well-known lullaby from Johannes Brahms (1833-1897):
Wiegenlied Op.49-4. Lullabies are usually little music pieces that can be studied in a �rst
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place, in order to understand what musical characteristics we can capture. The score we use for
the example is presented in Figure 8.2.1. Here we simplify the original score and especially the
accompaniment, which we reduced to the tonic with the corresponding 3-chord, and we focus on
the general structure of the melody. Actually, each musical bar contains a part of the melody
(�rst voice) and the second voice is made of the corresponding chord (three notes) with half notes
together with the tonic. Notice that the score from Figure 8.2.1 has seventeen musical bars but
only �fteen distinct ones (B10 � B14 and B11 � B15).

We computed the �ltered complex and the associated family of barcodes according to our
new Hausdor� method. This family of barcodes is presented in Figure 8.2.2.

Before starting the analysis, one can notice that the arrangement of the lullaby we made has
an accompaniment which is the same in the whole score: actually, each musical bar has a second
voice made of one quarter note and the corresponding 3-chords in half notes. It is also the same
accompaniment in the original version, but with a di�erent structure. A direct consequence of
this fact is that the �ltration, and especially the di�erent connected components, (refer to degree
0) will ignore the accompaniment, and we will do the analysis with this innuendo. At the end
of this section, we will quickly compare this approach with the DFT-distance and see that the
accompaniment has more importance in that case (see Section 8.2.3). Also recall that, to have
a bijection in the Hausdor� approach, we decided to have three coordinates, and two of them
concerned time and rhythms. We will have to make some tests to normalize these coordinates
and compare the results (see Section 8.2.2).

Let us look at the barcode in degree 0 from Figure 8.2.2. There are several levels of analysis
depending on the scale we choose to take, and the main idea of persistent homology is to focus
on the largest bars (those which persist), while the smallest ones can be considered as noise.
In this case, after 28% of the �ltration there are only two connected components that remain:
musical bar B1 is one component and the other is a large dimensional complex where all the
other musical bars are connected together. Between 15% and 28%, there are three components:
B1, B15 and the other large complex. We see then that the beginning and the ending of the
piece are clearly separated from the rest of the score. Before 11%, there are only small bars in
the barcode (noises). We thus need to focus on what happened between 11% and 15% (more
precisely at 11%, 12% and 13%): we see that, at a scale of 13%, the �ltration looks like in Figure
8.2.3, i.e. the �ltered complex made of �ve connected components.

Now let us analyze this complex. First, since there are exactly �ve bars in the barcode, the
complex is in �ve components: one sub-complex is made of six musical bars and corresponds to
a complete graph, one is a line made of also six musical bars, and there are three isolated ver-
tices. Each component is associated with a type of musical bar and these types are successively
represented in Figures 8.2.4, 8.2.5 and 8.2.6. The �rst type forms a complete graph, and most
of the vertices correspond to a musical bar that contains one or two half notes (isolated or in a
2-chord) together with two quaver notes. The only one that is slightly di�erent is the musical bar
B2, which contains a dotted quarter note together with a quaver and a quarter note. However,
this bar can be linked with this group since, whereas the pitches of the melody are living in the
same small space (only seven di�erent pitches for the whole piece: �F4,G4,A4,B4Z,C5,D5, F5�),
the construction of the beats is almost the same: for B3, B7, B9, B10 and B11, we have

� � � �( � �( Ð� 2
1

2

1

2

whereas for B2 we have

� � � � �( � � Ð�
3

2
1

1

2
.

Finally, these six musical bars share almost the same structure (exactly for �ve of them and
almost for one). Since pitches are really closed to each other, the result is the complete graph
we get on the right part of Figure 8.1.5.
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Figure 8.2.1: An arrangement of the original lullaby Wiegenlied Op.49-4 written by Johannes
Brahms in 1868. The original score has been adapted for the analysis: the accompaniment is

reduced to the tonic and the corresponding chords, and we are interested in the general
structure of the melody.
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Figure 8.2.2: The associated family of barcodes for Wiegenlied Op.49-4 in degree 0 (left) and
degree 1 (right).
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Figure 8.2.3: The �ltered complex for Wiegenlied Op.49-4 at a scale of 13%. There are two
main connected components made of the two types of musical bars in the score (a half note
with two quaver ones and two quarter notes with two quaver ones), and three made of one
vertex, bar B1 (the beginning), bar B15 (the ending) and bar B12 (a transition made of three

quarter notes).

The second type of musical bars is not that obvious, and we see immediately that the graph
is simply a straight line, so the bars are only pairwise close. Nevertheless, we understand why
these six musical bars can be gathered in only one component: as we did for the �rst group, we
will mostly focus on the rhythms. First, three of these musical contains two quarter and two
quaver notes (B5 and B6 in this exact order, and B8 in the reversed one):

� � � � � �( � �( Ð� 1 1
1

2

1

2

This gives us the edge �B5,B6�. If B8 contains two quaver notes and two quarter ones (in that
order), B14 has the structure

� �( � �) � �) � � � � Ð�
1

2

1

4

1

4
1 1

which seems roughly similar (only the quaver note has been changed for two sixteenths), so we
understand the edge �B8,B14�. Similarly, the beats structure for B13 is close to B5 and B6, since
it also ends with a quarter note and two quaver ones, and it simply begins with two quaver notes
instead of a quarter one. This gives us the edge �B6,B13�. Finally, B4 has the same beginning
and ending (a quarter and a quaver note) than B5 and B6:

� � � � � � �( Ð� 1
3

2

1

2

so we complete the line with the edge �B4,B5�.
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Finally, Figure 8.2.6 shows the isolated alone components with the corresponding musical
bars: B1, B12 and B15. Obviously, B1 is the beginning of the song and B15 the �nal bar, so
we clearly see that these bars do not belong to one of the above group. This is quite satisfying
because we can conclude that, with a scaling parameter of 13%, the complex separates the
beginning and the ending of the score from the rest of it. Concerning B12, we see that this
musical bar is the only one which is made of exactly three quarter notes, so it does not belong
to any of the other components. Notice that, at the next step of the �ltration (15%), B12 joins
the second component by being connected to B5, B6 and B8, the three musical bars containing
two quarter notes. At that moment, B2 is linked with B6, and that is also interesting because
B2 was the only musical bar of the �rst group that was slightly di�erent from the �ve others,
while B6 represents the second group. At that time, B1 and B15 are in two separated connected
component.
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Figure 8.2.4: The �rst type of musical bar in Wiegenlied Op.49-4 that form a complete graph
(right): most of these bars (B3, B7 and B9) look like the left musical bar, that means a half

note with two quaver ones. Musical bars B10 and B11 are made of a chord with two half notes
together with two quaver ones, so very similar to the previous case. The musical bar B2 is

made of a dotted quarter note, a quaver and a quarter one.
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Figure 8.2.5: The second type of musical bar in Wiegenlied Op.49-4 that forms a straight line:
two of these six musical bars share exactly beats structures (B5 and B6) and B8 has the

reversed one. B4, B13 and B14 has same ending or beginning than B5 or B6.

Here we give an analysis of what happens in degree 0, and we understand how the musical
bars are connected by their general structure, mostly using the beats and rhythms. Let us now
brie�y talk about degree 1: on the barcode from Figure 8.2.2, we see that there are exactly two
generators of homology: one that starts at 3% and ends at 5% and the other that starts at 15%
and ends at 18%. The �rst thing to note is that it corresponds to very short bars, especially
compared to barcodes from Fourier analysis from other sections (see for instance the barcodes
associated with the Tonnetze (see Chapter 5).
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Figure 8.2.6: The three components made of only one vertex in Wiegenlied Op.49-4 : B1 and
B15 are respectively the beginning and the end of the score, which are separated from the rest

of the score, and B12 is the only one which contains exactly three quarter notes.

We represented these two one-dimensional cycles in Figure 8.2.7. The �rst one (left) is a
cycle that linked musical bars from the �rst group that share the exact same type: indeed, the
musical bars B3 and B7 are made of one half note and two quaver ones, while B10 and B11 are
made of a 2-chords with half notes and two quaver ones.

One the other hand, the second cycle (right) has length 5 and is made of musical bars from
the second type together with B12, which was one of the isolated vertices. Unlike the �rst cycle,
this one links B5 with its reverse one B8 and B13 with B164, which are musical bars having speci�c
structure in this group.
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Figure 8.2.7: One-dimensional cycles from Wiegenlied Op.49-4 that appear at a scale of 3%
(left) and 15% (right).

To conclude with this �rst example, we saw that the Hausdor� approach seems to have a
particular musical meaning concerning the structure of the musical bars and the score in itself.
With Wiegenlied Op.49-4, we saw that the degree 0 seems to gather the di�erent musical bars
and classify them according to their beats structure. We will change the coordinate weights of
each note from our De�nition 8.1.1.

8.2.2. Change coordinate weights

The Hausdor� point clouds we de�ne in 8.1.9 are built in R3, and each note has two coordinates
concerning time and only one concerning pitches. We might want to see what happens if we
put a weight on these coordinates, that means a triplet �a, b, c� > R3 that we apply on a note�n1, n2, n3� > �0,1�3 with the termwise product �an1, bn2, cn3�.
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❃ Weight �12 , 12 ,1�: With this �rst triplet, we want to give equal importance to time and
frequencies. The result is the barcode from Figure 8.2.8: we see that it is roughly similar to the
original barcodes. Indeed, we have short bars (noises) until 15%, only two components at 32%
that corresponds to bars B1 and B15 so this aspect is preserved. Between 15% and 32%, we have
several levels of �ltration and more precisely, at 16%, the complex looks like in Figure 8.2.9. We
see on this graph that the �rst group is preserved but bar B2 is only linked to B11 instead of every
vertices. This is probably due to the fact that B11 has the most common pitches with B2, and
here we give more weight to pitches. On the other hand, the second group is split in two parts.
Musical bars B1, B12 and B15 are still alone in their respective components. Concerning degree
1, we also have only two components, that are exactly the same as in the original analysis, and
these one-dimension cycles appear almost at the same time (from 7% to 10% for the �rst one
and from 23% to 25% for the second one). In conclusion, the analysis is almost the same, with
some small details that change inside each component but the general structure is preserved.

Figure 8.2.8: The family of barcodes for Wiegenlied Op.49-4 obtained with the Hausdor�
distance by adding a weight �12 , 12 ,1�.
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Figure 8.2.9: The �ltered complex for Wiegenlied Op.49-4 at a scale of 16%. The point cloud
here is computed by adding a weight �12 , 12 ,1�.

❃ Weight �1,0,1�: In this paragraph, we try a di�erent approach by building the same point
cloud as we did for the Fourier analysis, i.e. we simply keep the onsets and the pitches. The
resulting barcodes are given in Figure 8.2.10. We can immediately notice that the �ltration stays
longer in two components (until 91% here against 56% for the basic analysis and 63% for the
weight �12 , 12 ,1�). The musical bar that stays outside the large complex is still the beginning B1,
the only one which does not have an accompaniment. The musical bars B12 and B15 are still
two isolated components during a while (respectively until 17% and 19%). For comparison with
the previous weight, we chose to represent the �ltration with a scaling parameter of 12%, so the
complex is in six components, as shown in Figure 8.2.11.
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In this Figure, if B8, B13 and B14 still represent a component, we see that B4, B5 and B6

have joined the �rst group: for instance, B6 is now linked with B7, and we can observe that these
two musical bars share the same accompaniment, so this is now taken into account. Concerning
degree 1, there is only one remaining bar which starts at 6% and stops at 8%, and it is given by
the same �rst one as for the previous analysis:

�B3,B7� � �B7,B11� � �B11,B10� � �B10,B3�.
In conclusion, the biggest change here is the accompaniment that is now taken into consid-

eration, and the fact that we not only focus on the melody anymore. These results are roughly
closed to the DFT-approach (see the next paragraph), so for the rest of the analysis and espe-
cially the paragraph on the minimalist music 8.3, we will still keep the classical distance, without
additional weights. In fact, what is interesting now is the way the Hausdor� distance captures
the global structure of the score. This works particularly well when applied to minimalist music,
since the accompaniment has the same rhythmic structure regardless of pitches. We conclude
this section by comparing the results with those obtained using the DFT-approach on the same
score.

Figure 8.2.10: The family of barcodes for Wiegenlied Op.49-4 obtained with the Hausdor�
distance by adding a weight �1,0,1�.
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Figure 8.2.11: The �ltered complex for Wiegenlied Op.49-4 at a scale of 12%. The point cloud
here is computed with an adding weight of �1,0,1�.

8.2.3. Comparison with the DFT-distance

To conclude with the lullaby from Johannes Brahms, we simply give a comparison with the
DFT-approach: the resulting barcodes are given in Figure 8.2.12. For degree 1, there is also one
generator, as it was the case for the weight �1,0,1�. However, this new one-dimensional cycle is
now given by �B1,B4� � �B4,B10� � �B10,B7� � �B7,B1�
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which is di�erent from the previous cycles. In the same way, the barcode in degree 0 looks not
the same from the one obtained with the Hausdor� distance: in fact, it seems more homogeneous,
all the musical bars seem to come together from 37% and with regular scale. The complex stays
in two components until 79%, and these components are given by the edge �B4,B10� on the one
hand (two bars that share the same accompaniment, and not the beginning and the ending of
the score), and the rest of the complex on the other.

In order to compare with the Hausdor� approach, we now try to �nd a scale where the
complex is in several components and see how these groups are connecting. We represent the
complex at 58% of the �ltration, as shown in Figure 8.2.3 . The complex is in six components, and
there are some obvious di�erences with the previous analyses, but also some similarities: here B1

and B12 are isolated vertices, but B15 is included into a graph, while B8 is now a component itself.
Secondly, the two �rst components of the Hausdor� analysis are now mixed together. If we focus
on each component, we might see that they are now gathered according to their accompaniment,
and not only the global structure anymore. For instance, edge �B4,B10� represents the only
two musical bars which accompaniment is a BZ together with 3-chords �F,BZ,D�. The triangle�B6,B7,B14� represents the three musical bars which accompaniment is a C together with 3-
chords �G,BZ,C�.

Therefore, we understand that the DFT-approach seems to focus more on the accompaniment,
and even more than the Hausdor� did with weight �1,0,1�. Therefore, we decided to keep
working with the classical Hausdor� distance: indeed, it seems to be the metric that captures
the global structure of a score as well as possible in our study. However, if we rather want to
take the accompaniment into account, we can still consider the DFT-distance, which seems more
appropriate in this context, according to what has just been done.

Figure 8.2.12: The barcodes family for Wiegenlied Op.49-4 obtained with the DFT-method in
degree 0 (left) and degree 1 (right).
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Figure 8.2.13: The �ltered complex for Wiegenlied Op.49-4 at a scale of 58%. The point cloud
here is computed with the DFT-method.
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8.3. Application to minimalist music: Yann

Tiersen

Yann Tiersen (born June 23, 1970) is a French musician and composer known among other
things for the soundtrack of the �lm Le Fabuleux Destin d'Amélie Poulain, directed by Jean-
Pierre Jeunet (2001). The musical style of Yann Tiersen is often classi�ed as minimalism and
repetitive music: in fact, many of his songs are composed over the same accompaniment by
making variation of one or several main themes. These are the main reasons why we chose to
study this composer in the context of the Hausdor� analysis, in light of the results obtained for
the lullaby of Johannes Brahms in the previous sections. Our aim is thus to see how this can be
applied on di�erent music pieces from this particular minimalist musical style.

Here we are going to study three important pieces of this style: Comptine d'un autre été:
l'Après-midi (2001), Comptine d'été No. 2 (1996) and La Dispute (1998).

8.3.1. Comptine d'un autre été: l'Après-midi

The score has �fty-three musical bars, but seems some of them are repeated, it only contains
thirty-nine distinct bars. It is also made of two main parts: actually, the music has three di�erent
themes in the �rst part that are played again one octave higher in the second one. These three
themes are presented in Figure 8.3.1. Notice that there are some repetitions of these themes
in the original score, but here we suppress them in order to work with distinct musical bars
only. Moreover, all the melody is constructed over four musical bars that are repeated and which
constitute the musical accompaniment from Figure 8.3.2. Finally, the ending bar B39 contains
only one chord Em played with whole notes, as shown in Figure 8.3.3.
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Figure 8.3.1: Part of each theme of Comptine d'un autre été: l'Après-midi. The �rst one goes
from B5 to B8 and is repeated one octave higher from B22 to B25. The second goes from B9 to
B12, then is repeated with extra notes from B13 to B16 and the whole eight bars are played one
octave higher from B26 to B33. The third one goes from B17 to B21 and is repeated one octave

higher from B34 to B38, with a slight change in B38 to bring us to the end of the piece.

I4 4
4

�� � ����
� �� � ����

� �� � ����
� �� � ����

� �� � ����
� �� � ����

� �� � ����
� �� � ����

�

Figure 8.3.2: The musical accompaniment of Comptine d'un autre été: l'Après-midi. These four
bars consists of four arpeggiated chords Em �G �B �D and are played once at the beginning

of the score without any melody, from B1 to B4.
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G4
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Figure 8.3.3: The end of the piece of Comptine d'un autre été: l'Après-midi which corresponds
to the last bar of the score (the 39th). We recover the main chord Em played with whole note.

Figure 8.3.4: The associated family of barcodes with Comptine d'un autre été : L'Après-midi
in degree 0 (left) and degree 1 (right).

Let us look at the barcode in degree 0 from Figure 8.3.4: in our case, there are two bars that
stand out when we take a scale larger than 21%, that means that the corresponding complex
has only two connected components. One of them corresponds to the last musical bar B39 of the
score, which only consists of the �nal chord Em played with whole notes, and the other is a large
dimensional complex where all the musical bars are connected together. This �rst analysis shows
that the barcode in degree 0 separates the end from the rest of the piece, which is a start. For
a scaling parameter smaller than 8%, there are only small bars so we ignore them and consider
as noise. Between 8% and 21%, there are �ve, six seven classes that seem to last and more
precisely, we found that at a scale of 14%, the associated complex in the �ltration looks like in
Figure 8.3.5, which is really remarkable: actually, there are six connected components and if we
look at the vertices, we see that each one corresponds to a theme of the song, except for B8 and
B28 which have a slight di�erent structure than the rest of the �rst theme (see the fourth musical
bar in the �rst score of Figure 8.3.1). We may then conclude that, with a well-chosen scale, the
barcode in degree 0 captures the structure of this piece by separating its di�erent themes in the
associated complex.
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Figure 8.3.5: The associated complex of Comptine d'un autre été: l'Après-midi at a scale of
14%: each component characterizes a theme of the piece.
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On the other hand, the barcode in degree 1 displays three di�erent one-dimensional cycles,
which are presented in Figure 8.3.6. Note that some edges of these cycles connect musical bars
of one given theme to the same one octave higher, but not systematically and for now we are
not able to interpret these cycles musically. Moreover, these cycles have very short lifetimes in
the barcode (only 1% and 2%), so they can be considered as noise. For these reasons and as we
already did for the Lullaby, we will mainly focus on degree 0 in the following analyses.
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Figure 8.3.6: One-dimensional cycles from Comptine d'un autre été : L'Après-midi that appear
at a scale of 8% (left) and 26% (middle and right).

8.3.2. Comptine d'été No.2

This song is roughly similar to the previous "comptine": the score has sixty-�ve musical bars
but only thirty distinct ones and is built on an accompaniment made of four distinct musical
bars that are presented in Figure 8.3.8. This accompaniment is played without melody on the
eight �rst bars of the score: then, there are several themes that follow one after the other and
which are brie�y presented in Figure 8.3.7. By counting with distinct bars, the �rst goes from
B5 to B12, the second from B13 to B18, the third from B19 to B25 and the last one from B26 to
B29. As for the Comptine d'un autre été: l'Après-midi, the song ends with a chord of conclusion
in musical bar B30, as presented in Figure 8.3.9.

According to the �rst analysis we did with Comptine d'un autre été: l'Après-midi, we are
expected here to �nd a scale for which the �ltered complex would be in six components: one for
each theme, one for the four musical bars of accompaniment and one for the conclusion chord.
We computed persistent homology and the family of barcodes is presented in Figure 8.3.10.
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Figure 8.3.7: Part of each theme of Comptine d'été No. 2. The �rst one goes from B5 to B12,
while the second goes from B13 to B18 and which is close to the last theme, at least in terms of

beats structure. The third theme goes from B19 to B25.
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Figure 8.3.8: The musical accompaniment of Comptine d'été No. 2. These four bars consist of
four arpeggiated chords and are played once at the beginning of the score without any melody,

from B1 to B4.
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Figure 8.3.9: The end of the piece of Comptine d'été No. 2 which corresponds to the last bar of
the score B30, made of the 2-chords �E3,B4� played with whole notes.

Figure 8.3.10: The associated family of barcodes for Comptine d'été No. 2 in degree 0 (left)
and degree 1 (right).

We can immediately notice that this family of barcodes is roughly similar to the one from
Comptine d'un autre été: l'Après-midi. Actually, in degree 1, we see only one generator which is
a very short bar that corresponds to a one-dimensional cycle. As we already saw in the previous
example and before, this kind of cycle is rather di�cult to interpret musically and also because
it represents a really short bar in the barcode, we will consider it as noise and thus ignore it.

Let us focus on the barcode in degree 0. As for Comptine d'un autre été: l'Après-midi, we
only have two bars left when we take a scale larger than 16% here: one of them corresponds
to the last musical bar B31 and the other is the large dimensional complex with all the other
interconnected musical bars of the score. Here we �nd that, at a scale of 5%, which is rather a
small parameter, the complex looks like in Figure 8.3.11. On this complex, we recover several
connected components (exactly eight by counting the isolated vertices), and we see that each
group represents again a theme in the score. In fact, the largest complex (on the left) corresponds
to the second theme together with the last one, the two being exactly the same in terms of beats
structure (same accompaniment and eight quaver notes for each musical bar of the melody). The
second complex on the left is the �rst theme, while the completed square is the musical bars of
accompaniment and the isolated right vertex is the ending bar.

Concerning the middle complex, which has several components itself, the six vertices belong
to the third theme: in fact, if the musical bars that compose it are closed, they are still slightly
di�erent at least compared to the rest of the score. That is why they would not be linked before
some of the other components are glued together: when these six components are connected, the
�rst and second theme will also be gathered, so we prefer to display the complex with this scale.
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However, all these six vertices belong to the same theme anyway, so we still recognize this part
of the song. In conclusion, we �nd back in this degree 0 analysis, with a well chosen scale, a
moment when the �ltered complex classi�es the di�erent part of the song.
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Figure 8.3.11: The associated complex of Comptine d'été No. 2 at a scale of 5%: each
component characterizes a theme of the piece.

8.3.3. La Dispute

This last score has ninety-six musical bars but only �fty-four distinct ones. This music piece is
quite di�erent from the two "comptines" we studied previously: in fact, here the song does not
start with the same four musical bars of accompaniment but it begins directly with a waltz in
two voices. The other main di�erence is that the accompaniment is not the same during the
whole piece: more precisely, the song is divided in three main parts, a waltz (from B1 to B48,
see Figure 8.3.12), a bridge with arpeggio accompaniment (from B49 to B72, see Figure 8.3.13)
and an octave passage (from B73 to B94, see Figure 8.3.14). The song ends with two musical
bars: B95 brings to the �nal Cm chord with half dotted notes, which is shown in Figure 8.3.15.
According to this description, we would expect here to �nd a scale for which the �ltered complex
is in four or �ve components. The family of barcodes is presented in Figure 8.3.16. As we did
for the two previous songs, we only focus here on barcode in degree 0.
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Figure 8.3.12: The beginning of the �rst theme of La Dispute: it goes from musical bars B1 to
B13 and is then repeated by adding the same melody voice one octave higher, from musical

bars B14 to B24.
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Figure 8.3.13: The beginning of the second theme of La Dispute: it goes from musical bar B25

to B39.
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Figure 8.3.14: The beginning of the third theme of La Dispute: it goes from musical bar B40 to
B53.
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Figure 8.3.15: The end of the piece of La Dispute which corresponds to the last two bars of the
score B54 and B55, made of a bridge and a Cm chord played with half dotted notes.

Figure 8.3.16: The associated family of barcodes for La Dispute in degree 0 (left) and degree 1
(right).

These two barcodes are again roughly similar than the ones obtained for the two other songs
from Yann Tiersen: we recover the two main components after a certain level of �ltration, here
with a scaling parameter of 21%, and noises for scales smaller than 11%. Between these two
moments, and more precisely at a scale of 16%, we see that the �ltration looks like in Figure
8.3.17, where the complex is divided in eight components instead of the expected �ve complexes.
However, this moment of the �ltration is quite relevant of the general structure of the score: in
fact, the complex on the very left of the �gure corresponds to the third part of the score. The
second complex just next to it, which is actually in two components, is the middle theme of the
piece: indeed, most of the musical bars contains a half dotted note or at least a half one with
some quaver notes, except for two musical bars (B26 and B28) whose beats structure is given by

� � � � � � �( Ð� 1
3

2

1

2

Because of this slight di�erence (they still share the same arpeggio accompaniment), these
two musical bars are isolated from the complex. On the right, we see two alone vertices, that
are the two �nal musical bars B54 and B55, as expected. Then, we have this middle complex
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which represents the �rst waltz part of the song and which is actually in three components: two
exact complexes and two edges. In this waltz part, there are two types of musical bars that we
di�erentiate with the melody: the one with a half dotted note and the other with a half note
together with a eighth or sixteenth notes. Here we recover these two types of musical bars in
each one of the biggest middle complexes, which is satisfying. Finally, the isolated edge is given
by musical bars B12 together with the same but one octave higher B23, whose beats structure is
di�erent from the rest since it is given by three quarter notes. In conclusion, with a well chosen
scale, the degree 0 provides a moment when the �ltered complex classi�es the di�erent part of
the song.
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Figure 8.3.17: The associated complex of La Dispute at a scale of 16%: each component
characterizes a theme of the piece.





Conclusion and perspectives for future
research

In this thesis we have tried to answer general questions that are fundamental to topological
analysis applied to musical data: how should we associate a �ltered complex with a given piece
of music? What can such a representation contribute to musical analysis? How much does it
help us to understand music? For example, is it able to classify several di�erent styles? In this
particular context, we focused on the symbolic representation of music, as opposed to audio and
signal, and such a representation is given by MIDI �les.

In the introduction, we saw that the question of how to associate a �ltration with a musical
score is central to the symbolic part of the MIR community, and there are many choices to be
made. In our work, we decided to de�ne a score as an non-ordered �nite set of distinct musical
bars: therefore, we simply zoom in on each part of the piece and keep the information given by
pitches and onsets. More precisely, a musical bar is a subset of Z ~tZ�Z ~pZ, where t and p are
units of time and pitch respectively, and a note played in the piece is characterized by its onset
and its pitch.

This representation allows us to use the DFT in order to associate a matrix of Fourier
coe�cients with each musical bar of a given score, and thus to compare two musical bars using
the so-called DFT-distance. In this way, it is possible to extract a point cloud from a musical
score, and �ltration comes naturally using the Vietoris-Rips method. We created a new model
to associate a topological �ngerprint to any musical score, given by the corresponding family of
barcodes.

As a direct application of this model, our �rst aim was to generalize some classical results
about the DFT in a musical context, such as Lewin's Lemma or Hexachordal Theorems (see
Section 2). In particular, since we de�ned a metric space given by the set of all musical bars
in Z/tZ �Z/pZ together with the DFT-distance �Bt,p,dDFT�, a natural question was to look
at the isometry group for this metric. By generalizing work on the dihedral group applied to
basic musical structures, we found that rotations (musical transpositions), re�ections (musical
inversions) and homotheties are all isometries for our DFT-distance. A natural question that we
plan to consider in our future work is to look at other isometries for this metric, and obviously
this is a tricky question considering the number of elements in Bt,p.

In this conclusion and opening chapter, we want to give an overview of the work done in this
thesis: more precisely, for each musical application, we mention the main results and propose
some research axes for future work.

Inverse problem: applications on scales and

chords

In the �rst two Parts I and II of this manuscript, we introduced a new method for extracting
a �ltered complex from a score. To support this approach, we wanted to consider the inverse
problem, that is, to apply the DFT together with persistent homology to arti�cially constructed
musical scores and show that the DFT is a reasonable choice of metric.

185
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✭ The results

The musical scores we built were �rst given by single notes in a musical bar: for instance, the
chromatic scale is a score with twelve distinct musical bars, each containing only one element in
Z ~1Z�Z ~12Z. When the scale is well chosen, as in the case of diatonic scales, the DFT seems to
recognize some musical features, such as the circle of thirds, which appears as a one-dimensional
cycle in H1, as shown in Figure 1.
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Figure 1: The associated family of barcodes with the C-major scale (left) and the graph of the
�ltration with a scale of 95% (right).

We then extended this construction to musical bars containing 3-chords from a speci�c space,
such as Euler's Tonnetz, or more generally any two-dimensional Tonnetz of the classical form
T �a, b, c�. As in the case of the scales, the barcodes here reveal consistent musical features: more
precisely, we �nd back the topological structure associated with the Tonnetz, such as the torus in
the case of T �3,4,5� shown in Figure 2. In this particular case, we also recover the PLR-group
of fundamental transformations on the Tonnetz, as illustrated by Theorem 1.

Figure 2: The associated family of barcodes with the Euler's Tonnetz (left) and the graph of
the �ltration with a scale of 59% (right).

Theorem 1. The graph associated with the twenty-four major and minor chords of the Euler's
Tonnetz, given by the Rips �ltration and the DFT-distance with a scaling parameter of 59%,
corresponds to the Cayley graph of the PLR-group generated by the three transformations P , L
and R.

✭ Prospect and future work

This chapter con�rms our belief that the distance thus constructed by means of the DFT, to-
gether with persistent homology, seems to be a reasonable tool for understanding known musical
structures.

However, there are several other arti�cial musical scores on which we might want to test our
model. As a natural starting point, there are di�erent musical modes and scales that need to
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be tested, and we could imagine making a general classi�cation of most of the common ones.
We also computed the DFT-distance on the twelve two-dimensional Tonnetze, and there are
further generalizations to be made here: as we did for the chromatic scale, we could also try the
metric on the set of all the 3-chords in Z ~12Z (the 220 possibilities). For a given 3-chord, the
closest would still be its relative, then its leading-tone and its parallel, but this will allow us to
classify all the 220 chords with our metric, and this will also give a meta-classi�cation between
the twelve Tonnetze. Finally, the DFT-distance could also be applied to n-chords, or simply to
higher dimensional Tonnetze, as presented in [53].

To go further, we could also imagine trying our distance on musical objects that focus more
on rhythms, such as the general Zeitnetze that is introduced in [57].

Harmonization, graph-type and complexity

This chapter presents a new way of analyzing some musical pieces from the speci�c register of
Pop music, and measuring their complexity using associated graph-types built from barcodes.
The harmonization of Pop songs, i.e. their reduction to melody and accompaniment, allows us
to take several points of study, especially by considering scores with increasing levels of analysis.

✭ The results

The �rst idea was to look at di�erent tracks from a given score: the chord chart, the accompani-
ment and the complete harmonized song. By comparing these levels of analysis, we can observe
what the accompaniment or the melody brings to the song. In the example of Figure 3, the
studied song becomes more complex from level 0 to level 1, and the vertices are classi�ed by
chord types at level 2. This last observation is common to most of the songs we analyzed.

Chord Chart Accompaniment With Melody

Happy
Ending

87% 63% 69%

Figure 3: Comparison of the three levels of analysis for the song Happy Ending.

The comparison between di�erent levels of analysis gave rise to the notion of complexity: in
fact, we set up an algorithm based on barcodes in degrees 0 and 1 that produces a graph-type
for each song (for a given level of analysis). By comparing these graphs, we can then distinguish
several songs according to their complexity, that means their 1-Betti numbers. For instance,
Figure 4 shows di�erent graph-types for four di�erent songs at level 1 of analysis, and Figure 5
illustrates the notion of complexity with histograms representation.

✭ Prospect and future work

Associating a graph with a song sounds like a reasonable idea, but we have to be careful here to
avoid the approach of providing a "picture" of the song at a �xed moment, and giving up the
temporal dimension. Here the construction is di�erent: we �rst build a �ltration, and then use
barcodes to choose the most representative moment to look at our song.
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With or Without
you (76%)

Viva La Vida (91%)
Happy Ending

(76%)
Despacito (76%)

β1 � 4 β1 � 2 β1 � 10 β1 � 16

Figure 4: The associated graph-types and Betti numbers β1 for di�erent songs based on four
chords at level 1 of analysis (accompaniment).

Figure 5: The complexity of ten songs based on six chords for each level of analysis.

In future work, we plan to consider higher dimensions of homology and not limit the study to
only degrees 0 and 1: indeed, we can imagine an algorithm that provides a graph-type depending
on the degree of homology we choose to stop at. This will necessarily have an impact on our
de�nition of complexity, which we will then have to adjust by looking at higher Betti numbers.
Furthermore, if we worked with a small number of chords, we could also apply the harmonization
process to songs based on N -chords, for larger values of N . In the same way, we need to consider
graphs that include di�erent types of chords (seventh chords, suspended chords, etc.), that is,
not restrict the study to chords that come only from Euler's Tonnetz.

Automatic music style classification

This chapter deals with the well-known problem of automatic classi�cation of musical styles.
Here we propose to confront our DFT-approach to this problem by converting the resulting
barcode (in degree 0) associated with a score into a point in R3, which is expressed by three
basic statistics on the length of the bars (mean value, standard deviation and entropy). This
idea allows us to visualize a family of MIDI �les in R3, and then to analyze the distribution of
the points to see possible clusters.

✭ The results

The proposed method gives satisfactory results when the artists studied come from distant styles,
as it is shown in Figure 6, which has the merit of con�rming that the metric used seems musically
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consistent. When the chosen styles are more di�cult to distinguish, such as when comparing
Pop/Rock with Heavy Metal, or when the number of MIDI �les increases, it becomes more
di�cult to visually establish clusters. We then set up a method to create clustering trees from
several families of scores, by taking into account the distance between the average points for each
style studied. The results are illustrated with the classi�cation trees from Figure 7.

Figure 6: Classi�cation of di�erent musical styles by clustering in R3: Heavy Metal VS
Baroque (left) and Pop VS Baroque (right).

Figure 7: Classi�cation of di�erent musical styles by clustering trees: Heavy Metal VS Classical
(left) and Pop VS Classical (right).

✭ Prospect and future work

Our approach seems to be musically consistent, considering the classi�cation results. However,
we have to keep in mind that the tests were done with a small amount of data for each style
(�fteen MIDI �les for each artist/group), so we plan to push the analysis further by increasing
the number of data. In the same idea, we have started to collect di�erent musical styles in our
database, such as jazz or even �lm and video game music, and obviously it would be a natural
idea to extend our analysis to other musical styles.

On the other hand, a line of research that needs to be exploited is the degree of homology we
are working with: in fact, as in the previous applications, here we only considered the dimension
0 here, which has the merit to produce convincing results, but perhaps it could be interesting
to understand what other degrees might bring to the analysis. This would certainly change our
clustering tree and perhaps allow us to obtain even more precise results. Similarly, we could
work on the musical interpretation of the mean, the standard deviation and the entropy in the
case of dimension 0, but also in higher degrees.
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Hausdorff distance and scores global structure

This chapter proposes to extract a �ltered complex from a piece of music, using the same musical
bar method but with a di�erent metric than the DFT, given by the Hausdor� distance. This new
construction shows some interesting results on a precise style of composition, namely minimalist
music.

✭ The results

By applying the Hausdor� metric to minimalist music, represented in this study by the French
composer Yann Tiersen, we found that persistent homology seems to be able to capture the
global structure of the piece using barcodes in degree 0. More precisely, if a song is built on
a precise model, such as "introduction - theme 1 - theme 2 - theme 3 - conclusion", then the
�ltration for a well-chosen scale describes this structure. This is illustrated by Figure 8 on which
we can read the di�erent themes of the musical piece Comptine d'un autre été: l'Après-midi.
These results are also shortly presented in [18].
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Figure 8: The associated �ltration with Comptine d'un autre été: l'Après-midi, with a scale of
14%: each component characterizes a theme of the piece.

✭ Prospect and future work

The Hausdor� metric provides another type of analysis based on the global structure of a song,
which is captured by degree 0. In contrast, barcodes in degree 1 have no obvious musical
interpretation yet, and a natural trail for future research would be to focus on this dimension
and even higher ones, as for the other musical applications given in this thesis. We believe that
one-dimensional cycles could indeed be related to repetitive patterns or musical loops in the
score, and we are working to highlight this interpretation from our construction. Furthermore,
we could try to relate this work to the notion of musical texture, as presented in the work [22].

On the other hand, this new metric based on the Hausdor� distance seems to be musically
consistent in the minimalist musical style, and we could generalize the results to other composers
of this style in a �rst place, but also to a more general and diverse corpus of musical data, as for
the classi�cation issue. In this sense, we could try to understand how the Hausdor� distance is
able to capture the global structure of stylistically di�erent musical pieces that are not necessarily
built on a precise sequence of themes.



Annexe A. Codes

Une partie importante de notre travail a porté sur la mise en ÷uvre de codes pour nos calculs.
Dans cette thèse, nous avons choisi d'utiliser SageMath, le système logiciel Sage Mathematics
(Version 9.1.0). SageMath est un logiciel libre basé sur le langage Python, qui utilise de nombreux
logiciels libres existants tels que NumPy, SciPy, matplotlib et bien d'autres (voir https://www.
sagemath.org et [51]).

Dans cette annexe, nous ne visons pas à énumérer tous les codes mis en ÷uvre pour cette
thèse, mais simplement à donner un aperçu de ce qui a été construit en présentant les principaux
algorithmes. Les codes complets sont disponibles sur la page web dédiée :

https://math-musique.pages.math.unistra.fr/programmation.html

MIDI et DFT

La première partie du processus de codage a consisté à la lecture d'un �chier MIDI : pour
cela, nous avons choisi d'utiliser le package py-midi (Version 2.0.1) de Python3, qui permet
notamment de recevoir des messages MIDI (voir https://pypi.org/project/py-midi/). Plus
précisément, étant donné un �chier MIDI en entrée, le module renvoie une liste de triplets de la
forme

(onset, length, pitch)

Cette sortie correspond aux deux premières lignes que nous utilisons dans le code présenté
ci-dessous. Avec ce type de données, étant donné un �chier MIDI et un chi�rage correspondant
en entrée, nous pouvons écrire un algorithme simple qui extrait les mesures musicales du �chier
donné sous la forme d'une liste de paires de sous-listes [onset, pitch] dans Z/tZ �Z/pZ, confor-
mément à la dé�nition 1.2.2 du premier chapitre. L'unité de temps t et l'unité de hauteur p
peuvent être calculées directement à partir du �chier MIDI en examinant la note la plus courte
et l'ambitus global de la partition. Les valeurs onset et pitch sont encodées en utilisant respec-
tivement les notions de tiks et midicent (voir la section introduction), et peuvent être converties
modulo t et p. La fonction �nale FourierBars est représentée ci-dessous.

#a first function for extracting bars for a specific track

import midi

def ExtBarsTrack(filename , track , meter):

track = MIDI_Track(filename , track) #using midi module

L = track.notes () #list of tuples (start , end , pitch)

m = meter [0] #nbr of beats per bar

n = meter [1] #time unit (1=whole ,2=half ,4= quarter ,8= quaver)

u = 1920/n #time unit in midi tiks (1920= whole =1)

d = m*u #length of a bar in midi tiks
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#creation of bars_list

l = len(L) #nbr of notes in track

if l==0:

bars_list = []

else:

nbr_bars = floor(L[l -1][1]/ int(d)) +1

bars_list = nbr_bars *[[]]

#placing each note in the corresponding bar

for x in L:

i = int(x[1]/d)

x.remove(x[1])

if bars_list[i] == []:

bars_list[i] = [x]

else:

bars_list[i]. append(x)

return bars_list

#the function we use for extracting bars for all tracks

def FourierBars(filename ,track_list ,meter):

m = meter [0]

n = meter [1]

u = 1920/n

d = m*u

onsets = [] #list of onsets

pitches = [] #list of pitches

len_t = [] #length of each track t

#first get the time and pitch -unit

for t in track_list:

bars_list_t = ExtBarsTrack(filename ,t,meter)

len_t.append(len(bars_list_t))

for bar in bars_list_t:

pitches.append(bar [0][1])

for i in range(1,len(bar)):

pitches.append(bar[i][1])

ons = bar[i][0]-bar[i -1][0]

if ons !=0:

onsets.append(ons)

if onsets == []:

time_unit = 0

else:

m = min(onsets)

T = [0 ,30 ,60 ,96 ,120 ,160 ,240 ,480 ,960 ,1920] #the tikz values

for k in range(len(T)):

if T[k] < m <= T[k+1]:

p = T[k+1]

time_unit = 1920/p

onset = 1920/ time_unit

pitch_unit = min(pitches) - min(pitches)%12 #minimal pitch C

len_bars = max(len_t)

#list of final bars for all tracks
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Bars = [[] for i in range(len_bars)]

for t in track_list:

bars_list_t = dftBarsTrack(filename ,t,meter)

if bars_list_t == []:

bars_list_t = [[] for i in range(len_bars)]

for i in range(len(Bars)):

Bars[i] = Bars[i] + bars_list_t[i]

else:

for i in range(len(Bars)):

if len(bars_list_t) < len_bars:

for k in range(l-len(bars_list_t)):

brs_list_t.append ([])

Bars[i] = Bars[i] + bars_list_t[i]

else:

Bars[i] = Bars[i] + bars_list_t[i]

#transposition modulo time and pitch unit

for i in range(len(Bars)):

for j in range(len(Bars[i])):

Bars[i][j][0] = ((Bars[i][j][0] - d*i)/onset)%time_unit

Bars[i][j][1] = ((Bars[i][j][1] - pitch_unit))

Bars[i].sort()

dist_bars = []

for B in Bars:

if B not in dist_bars and B != []:

dist_bars.append(B)

return dist_bars

Une fois que la liste de toutes les mesures musicales d'un �chier MIDI donné est extraite, nous
utilisons le module NumPy numpy.fft2 pour calculer la DFT bidimensionnelle, de sorte à créer
un algorithme qui calcule la DFT-distance de la dé�nition 1.2.5 entre deux mesures musicales
données. Le résultat est donné sous forme d'un dictionnaire dont les clés sont les paramètres
d'échelle (de 0 à 100 après le processus de normalisation, voir la section 4.3) et, pour chaque clé, la
valeur est la paire de mesures musicales correspondante. La fonction �nale FourierMetricNorm
prend en entrée une liste de mesures musicales extraites via la méthode proposée ci-dessus, une
unité de temps et une unité de hauteur.

import numpy as np

#characteristic function

def carFunctionBar(bar ,u_time ,u_pitch):

M = np.zeros ((u_time ,u_pitch))

for i,j in bar:

M[i,j] = 1

return M

#DFT of a musical bar

def dft(bar ,u_time ,u_pitch):

A = carFunctionBar(bar ,u_time ,u_pitch)

if u_time ==1:

dft = np.fft.fft(A)

else:

dft = np.fft.fft2(A)
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return dft

#DFT between two musical bars

def dftMetricBars(bar1 ,bar2 ,u_time ,u_pitch):

A = dft(bar1 ,u_time ,u_pitch)

B = dft(bar2 ,u_time ,u_pitch)

N = np.abs(A-B)

M = N.sum()

return M

#the final function that provides the dictionary of distances

def FourierMetricNorm(bars_list ,u_time ,u_pitch):

nbr_bars = len(bars_list)

#list of triplet [distance(i,j), bar_i , bar_j)

dist = []

for i in range(nbr_bars):

for j in range(i+1,nbr_bars):

dist.append ([ dftMetricBars(bars_list[i],bars_list[j],u_time ,

u_pitch))

epsilon = [e for e in dist]

M = max(epsilon)

prec = (M/100) #precision we work with

dist_prec = dict()

dist_prec [0] = [(i+1) for i in range(nbr_bars)] #initialisation

for i in range(len(bars_list)):

for j in range(i+1,nbr_bars):

d = dftMetricBars(bars_list[i],bars_list[j],u_time ,u_pitch)

k = int(d/prec) #k*prec <= d < (k+1)*prec

if (k==0) and 0 not in dist_prec:

dist_prec [1] = []

dist_prec [1] = [(i+1,j+1)]

elif (k==0) and 0 in dist_prec:

dist_prec [1] = []

dist_prec [1]. append ((i+1,j+1))

elif k not in dist_prec:

dist_prec[k] = [(i+1,j+1)]

elif k in dist_prec:

dist_prec[k]. append ((i+1,j+1))

#induction

for k in range (1 ,101):

if k not in dist_prec:

dist_prec[k] = dist_prec[k-1]

#sorting the dictionnary

dist_prec_sort = dict()

L = list(dist_prec.keys())

L.sort()

for k in L:

dist_prec_sort[k]= dist_prec[k]

return dist_prec_sort
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Filtration et codes-barres

À partir d'un �chier MIDI donné, nous pouvons maintenant extraire la liste des mesures mu-
sicales et calculer la DFT-distance associée. Cette dernière information est stockée dans un
dictionnaire, où les clés sont les paramètres d'échelle et les valeurs sont les paires de mesures
musicales correspondantes. Ainsi, nous sommes en mesure d'extraire un nuage de points d'un
�chier MIDI, et nous donnons ici le code qui nous permet de calculer la �ltration de Vietoris-Rips
correspondante.

def RipsFiltration(bars_list ,dft_dict):

bars = bars_list #list of distinct musical bars , modulo t and p

dist = dft_dict #dictionnary of DFT -distances with pair of bars

nbr_bars = len(bars)

vertices = [i+1 for i in range(nbr_bars)] #a vertex = a musical bar

epsilon = [e for e in dist] #scaling parameters

epsilon.remove (0)

epsilon.sort()

#initialisation = complex at time 0 with only vertices

graph_0 = Graph()

graph_0.add_vertices(vertices)

filt_graph = [graph_0] #list of graphs

filt_complex = dict() #list of complexes

filt_complex [0] = {'vertices ':vertices ,'edges':[],'triangles ':[]}

for i,e in enumerate(epsilon , start = 1):

#for each scale e put the corresponding edges to the ith graph

graph_i = filt_graph[i-1]. copy()

if type(dist[e][0]) == Integer:

graph_i.add_vertices(dist[e])

else:

graph_i.add_edges(dist[e])

filt_graph.append(graph_i)

#for each parameter "e" we create the corresponding ith complex

edges_e =[] #edges list for the ith complex at scale e

E = filt_graph[i].edges(labels=False)

for k in range(len(E)):

edges_e.append(list(E[k]))

triangles_e =[] #triangles list for the ith complex at a scale e

triangles = Set ([])

S = filt_graph[i]. vertices ()

gr = filt_graph[i].copy()

for s in S:

Ls = gr.neighbors(s)

Gs = gr.subgraph(Ls)

Es = Gs.edges(labels = False)

triangles = triangles.union( Set([ Set([s, edge[0], edge
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[1]]) for edge in Es ]) )

gr.delete_vertex(s)

for t in list(triangles):

triangles_e.append(list(t))

filt_complex[e] = {'vertices ' : vertices , 'edges ' : edges_e , '

triangles ' : triangles_e}

return filt_complex

Il est important de noter que nous n'ajoutons que les simplexes de dimensions 0, 1 et 2
(sommets, arêtes et triangles), puisque nous n'avons besoin de calculer que l'homologie de degré
0 et 1 dans nos applications. Pour a�cher les codes-barres correspondants, nous utilisons un
module nommé persil implémenté par G. Rousseau (voir [45]), qui est basé sur l'article de G.
Carlsson et A. Zomorodian ([59]). En e�et, ce module nous permet de calculer à partir d'une
�ltration de Rips la liste des "P-intervalles", qui correspondent simplement à la liste des paires�bi,d, di,d� pour bi,d et di,d respectivement la naissance et la mort de la ith classe d'homologie de
degré d. L'algorithme ci-dessous montre comment nous récupérons ces P-intervalles en utilisant
le module persil. Les codes-barres sont facilement tracés à partir de ces intervalles à l'aide du
package matplotlib.

def RipsIntervals(filtration ,degree):

F = filtration

N = len(F) #number of complexes (generally 100)

list_simplex_degree = [] #list of pairs (simplex ,apparition time)

#initialisation (vertices at time 0)

sommets = F[0]['vertices ']

for v in sommets:

list_simplex_degree.append (([v],0))

#induction

for t in range(1,N):

E_t = F[t]['edges']

for edge in E_t:

list_simplex_degree.append ((edge ,t)) #edges

T_t = F[t]['triangles ']

for triangle in T_t:

list_simplex_degree.append ((triangle ,t)) #triangles

#creation of barcodes in degree d using persil module

fc = FilteredComplex ()

for (simplex , value) in list_simplex_degree:

fc.insert(simplex ,value)

zc = ZomorodianCarlsson(fc ,strict = True) #persil module

zc.computeIntervals ()

return zc.intervals[d]
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Classification du style musical

Grâce aux codes présentés dans le paragraphe précédent, nous sommes en mesure de calculer les
codes-barres d'un �chier MIDI, c'est-à-dire les éléments de la forme

��bi, di� S bi naissance de la classe i, di mort de la classe i� ` N2.

Dans le chapitre 7, nous proposons de calculer plusieurs statistiques sur la longueur des barres
des codes-barres (moyenne, écart-type et entropie). Ces statistiques nous permettent de classer
une famille de morceaux de musique en les regroupant dans R3. Le premier algorithme montre
comment nous calculons les valeurs moyennes d'une famille de �chiers MIDI sous la forme d'un
dictionnaire. Plus précisément, dict_artist est un dictionnaire dont les clés sont les titres des
chansons (les �chiers MIDI) et les valeurs sont des dictionnaires de la forme

�'degree0':[barcode_degree0],'degree1':[barcode_dergee1]�
Bien entendu, nous pouvons écrire des algorithmes similaires pour l'écart-type et l'entropie.

Le second algorithme montre comment nous pouvons représenter plusieurs familles de �chiers
MIDI dans R3, en entrant un dictionnaire adversaires dont les clés sont les dict_artiste tels
que dé�nis ci-dessous. Pour les résultats présentés dans cette thèse, nous avons également écrit
des algorithmes similaires pour tracer les points dans R2.

def PersMeanBarcodes(dict_artist ,degree):

mean = {}

for midi in dict_artist:

m = []

D = dict_artist[title ]['degree0 ']

s = 0

for i in range(len(D))):

s = s+(D[i][1]-D[i][0])

m.append(s/len(D))

mean[title] = [m]

return mean

import matploblib.pyplot as plt

import matploblib.colors as mcolors

def PersComparison3D(adversaries ,degree):

fig = plt.figure ()

ax = fig.add_subplot (111, projection='3d')

colors = list(mcolors.values ())

A = list(adversaries.keys())

for i in range(len(A)):

#statistical values for each adversary of the comparison

mean = []

dev = []

ent = []

for j in range(len(A[i])):
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a = adversaries[A[i]]

mean_adversary = PersMeanBarcodes(a)

dev_adversary = PersDevBarcodes(a)

ent_adversary = PersEntBarcodes(a)

for title in mean_adversary:

mean.append(mean_adversary[title ][ degree ])

deg.append(dev_adversary[title][ degree ])

ent.append(ent_adversary[title][ degree ])

ax.scatter(mean , var , ent , c=colors[i], label = A[i])

ax.set_xlabel('Mean')

ax.set_ylabel('Standard deviation ')

ax.set_zlabel('Entropy ')

ax.legend ()

Graph-type et fichiers MIDI

Le dernier code que nous présentons dans cette annexe est celui qui fournit ce que nous avons
appelé un � graph-type � associé à n'importe quel �chier MIDI. En e�et, dans la section 6.4,
nous avons proposé une méthode pour associer un certain graphe à un �chier MIDI donné : ce
protocole est présenté dans 6.4.1 et est basé sur l'interprétation persistante des codes-barres, c'est-
à-dire la longueur des barres. L'implémentation de cette approche est présentée ci-dessous, et
nécessite les fonctions de la première partie (FourierBars, FourierMetricNorm, RipsFiltration
et RipsIntervals).

#list of associated graphs for a filtration

def RipsGraphs(filtration):

list_graph = []

nbrComplexes = len(filtration)

for t in range(nbrComplexes):

C = filtration[t]

G = Graph()

G.add_vertices(C['vertices '])

G.add_edges(C['edges'])

list_graph.append(G)

return list_graph

#the graph -type for a midi file

def MusicGraph(filename ,track_list ,meter ,u_time ,u_pitch):

bars_list = FourierBars(filename ,track_list ,meter)

dist = FourierMetricNorm(bars_list ,u_time ,u_pitch)

filtration = RipsFiltration(bars_list ,dft_dict)

graph = RipsGraphs(filtration)

inter_1 = RipsIntervals(filtFilename ,1)

inter_0 = RipsIntervals(filtFilename ,0)

inter_0e = [inter_0[i][1] for i in range(len(inter_0))] #end of each

bar in degree 0

inter_1s = [inter_1[i][0] for i in range(len(inter_1))] #start of

each bar in degree 1

#longest bar for H0
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m0 = {}

for i in range(1,len(inter_0e)):

time = inter_0e[i]-inter_0e[i-1]

if time not in m0:

m0[time] = [inter_0e[i-1]]

else:

m0[time]. append(inter_0e[i-1])

m00 = max(list(m0.keys()))

t0 = m0[m00 ][0]

#truncation of H1 from t0

L = [i for i in range (101)]

L0 = L[t0:]

m = []

for i in L0:

if i in inter_1s:

m.append(i)

s = inter_1s.index(min(m))

inter_1s = inter_1s[s:]

#longest bar for H1

m1 = {}

for i in range(1,len(inter_1s)):

time = inter_1s[i]-inter_1s[i-1]

if time not in m1:

m1[time] = [inter_1s[i-1]]

else:

m1[time]. append(inter_1s[i-1])

m11 = max(list(m1.keys()))

t1 = m1[m11 ][0]

if t1 == 100:

t1 = t0

#final graph -type

print('Error margin t0 (%):', t0)

print('Error margin t1 (%):', t1)

return graph[t1]
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Dans le cadre des travaux de cette thèse, nous avons été confrontés au problème des bases de
données de �chiers MIDI : en e�et, pour e�ectuer des tests sur la distance et le complexe simplicial
�ltré que nous construisons, il est nécessaire de tester nos programmes sur un très grand nombre
de �chiers. Il existe cependant très peu de bases de données disponibles en ligne, et encore moins
avec une grande variété de styles musicaux. Nous avons donc décidé de consacrer une partie de
cette thèse à la construction d'une telle base de données et disponible en ligne. Ce travail tente
de répondre à la question de savoir comment collecter des données et les rassembler dans une
base de données unique, et il s'agit bien sûr d'un travail qui doit être poursuivi. Nous avons donc
créé un site web dédié à cette base de données, accessible à l'adresse suivante :

https://math-musique.pages.math.unistra.fr/.

Dans la section "Base de données", nous proposons douze styles musicaux di�érents : Clas-
sique, Electro, Folk/Country, Hard Rock/Heavy Metal, Jazz/Blues/Soul, Musique de �lm et
de série, Musique de jeu vidéo, Pop/Rock, Rap, Reggae, RnB/Funk/Disco et Variété française.
Cette classi�cation des �chiers MIDI est illustrée via la �gure B.1. Par exemple, la �gure B.2
montre les �chiers MIDI disponibles pour les styles Hard Rock et Heavy Metal, utilisés notam-
ment dans le cadre de la classi�cation automatique du chapitre 7.

Figure B.1: Le menu de la base de données des �chiers MIDI avec douze styles musicaux
di�érents (https://math-musique.pages.math.unistra.fr/midi.html).

La base de données proposée se compose de �chiers MIDI collectés sur di�érents sites tels que
Musescore, Kunstderfuge ou Bitmidi. Pour chaque morceau, le groupe ou l'artiste est indiqué,
ainsi que l'année de composition, le style et la source.
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A noter que dans le cadre de notre travail, nous avons fait le choix de supprimer les pistes de
batterie et de percussion de nos �chiers MIDI, et ce dans le but de travailler avec une représen-
tation symbolique. Pour retrouver le �chier original et complet, il su�t de se rendre sur le site
source indiqué dans la bibliographie.

Figure B.2: Un exemple de �chiers MIDI disponibles pour les styles Hard Rock et Heavy Metal
(https://math-musique.pages.math.unistra.fr/midi/hardrock-metal-midi.html).

https://math-musique.pages.math.unistra.fr/midi/hardrock-metal-midi.html
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processus musicaux 
 

 

Résumé 

Cette thèse propose des contributions dans différents problèmes issus du domaine de l'analyse 

topologique de données musicales : les objets étudiés sont des partitions représentées 
symboliquement par des fichiers MIDI, et les outils utilisés sont la Transformée de Fourier Discrète et 
l'homologie persistante. Le manuscrit se découpe en trois parties : les deux premières sont consacrées 

à l'étude des objets mathématiques précédemment cités et à la mise en place du modèle. Plus 
précisément, la notion de DFT introduite par Lewin est généralisée au cas de la dimension deux, en 
explicitant le passage d'une mesure d'un morceau à un sous-ensemble de Z/tZ x Z/pZ, ce qui conduit 

naturellement à une notion de métrique sur l'ensemble des mesures via leurs coefficients de Fourier. 
De cette construction naît un nuage de points auquel est associé le complexe filtré de Vietoris-Rips, 
et par suite une famille de codes-barres donnés par l'homologie persistante. Cette approche permet 

également de généraliser des résultats classiques tels que le lemme de Lewin ou encore le théorème 
de l'hexachorde de Babitt. La dernière partie de cette thèse est consacrée aux applications musicales 
du modèle basé sur la DFT : la première expérience consiste à extraire des codes-barres provenant 

de partitions artificiellement construites, telles que des gammes ou des accords plaqués. Cette étude 
mène en particulier à l'harmonisation de chansons que l'on réduit à leur mélodie et leur grille d'accords, 
ce qui permet entre autre de définir les notions de graphe et de complexité d'un morceau. L'homologie 

persistante se prête également au problème de la classification automatique du style musical, qui sera 
traité ici sous le prisme de descripteurs symboliques donnés par des statistiques calculées directement 
sur les codes-barres. Enfin, la dernière application propose un encodage des mesures basé sur la 

distance de Hausdorff conduisant à l'étude des textures musicales. 

 

Résumé en anglais 

This thesis proposes contributions to various problems in the field of topological analysis of musical 

data: the objects studied are scores represented symbolically by MIDI files, and the tools used are the 
discrete Fourier transform and persistent homology. The manuscript is divided into three parts: the first 
two are devoted to the study of the aforementioned mathematical objects and the implementation of 

the model. More precisely, the notion of DFT introduced by Lewin is generalized to the case of 
dimension two, by making explicit the passage of a musical bar from a piece to a subset of Z/tZ x Z/pZ 
which leads naturally to a notion of metric on the set of musical bars by their Fourier coefficients. This 

construction gives rise to a point cloud, to which the filtered Vietoris-Rips complex is associated, and 
consequently a family of barcodes given by persistent homology. This approach also makes it possible 
to generalize classical results such as Lewin's lemma and Babitt's Hexachord theorem. The last part 

of this thesis is devoted to musical applications of the model: the first experiment consists in extracting 
barcodes from artificially constructed scores, such as scales or chords. This study leads naturally to 
song harmonization process, which reduces a song to its melody and chord grid, thus defining the 

notions of graph and complexity of a piece. Persistent homology also lends itself to the problem of 
automatic classification of musical style, which will be treated here under the prism of symbolic 
descriptors given by statistics calculated directly on barcodes. Finally, the last application proposes a 

encoding of musical bars based on the Hausdorff distance, which leads to the study of musical 
textures. 

Mots-clés : homologie persistante, analyse topologique de données, complexes simpliciaux, filtration, 

Vietoris-Rips, analyse musicale, classification, transformée de Fourier discrète 


