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Introduction

N umerical simulations have enabled an enormous progress in the description and under- standing of matter at the atomic and molecular scales, where quantum physics can cause the emergence of a completely new behavior. Examples are the quantum phase transitions, measurement induced phase transitions, the atomic physics, the rules of chemistry, the spin physics, resulting in quantum magnetism, quantum dots, many-body localization and quantum many-body scars. Understanding this phenomena is of paramount importance for the modern medicine, technology of semi-conductors and the development of quantum computers, to name just a few. However, quantum mechanics severely restricts the applicability of numerical methods due to the quantum many-body problem, caused by quantum entanglement, the correlations that forbid us to describe an entangled system in terms of its constituents, but as an inseparable whole. For this reason many physical phenomena, like high temperature superconductivity in cuprates [START_REF] Orenstein | Advances in the physics of high-temperature superconductivity[END_REF][START_REF] Simon | Detection and implications of a time-reversal breaking state in underdoped cuprates[END_REF][START_REF] Varma | Theory of the pseudogap state of the cuprates[END_REF][START_REF] Lee | From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics[END_REF][START_REF] Kim | Theory of the nodal nematic quantum phase transition in superconductors[END_REF][START_REF] Sachdev | Where is the quantum critical point in the cuprate superconductors? physica status solidi[END_REF][START_REF] Kowalski | Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity[END_REF] , structural phase transitions involving protons in water [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient langevin approach[END_REF][START_REF] Cherubini | The microscopic origin of the anomalous isotopic properties of ice relies on the strong quantum anharmonic regime of atomic vibration[END_REF][START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Reinhardt | Thermodynamics of high-pressure ice phases explored with atomistic simulations[END_REF][START_REF] Pruzan | Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature[END_REF][START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF][START_REF] Guthrie | Neutron diffraction observations of interstitial protons in dense ice[END_REF][START_REF] Yoshimura | High-pressure x-ray diffraction and Raman spectroscopy of ice VIII[END_REF][START_REF] Loubeyre | Modulated phases and proton centring in ice observed by x-ray diffraction up to 170?gpa[END_REF][START_REF] Loubeyre | Modulated phases and proton centring in ice observed by x-ray diffraction up to 170?gpa[END_REF][START_REF] Polian | New high-pressure phase of h 2 o: Ice x[END_REF][START_REF] Zha | Optical study of H2O ice to 120GPa: Dielectric function, molecular polarizability, and equation of state[END_REF][START_REF] Somayazulu | In situ high-pressure x-ray diffraction study of H2O ice VII[END_REF][START_REF] Caracas | Dynamical instabilities of ice x[END_REF][START_REF] Goncharov | Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase[END_REF][START_REF] Nelmes | Neutron diffraction study of the structure of deuterated ice viii to 10 gpa[END_REF][START_REF] Hemley | Static compression of h2o-ice to 128 gpa (1.28 mbar)[END_REF][START_REF] Wolanin | Equation of state of ice vii up to 106 gpa[END_REF] , LaH 10 [START_REF] Drozdov | Superconductivity at 250 K in lanthanum hydride under high pressures[END_REF] , YH n [START_REF] Kong | Superconductivity up to 243 K in the Yttrium-Hydrogen system under high pressure[END_REF] , and H 3 S [START_REF] Drozdov | Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[END_REF] , and even fundamental concepts such as thermalisation [START_REF] D'alessio | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics[END_REF][START_REF] Bertini | Growth of rényi entropies in interacting integrable models and the breakdown of the quasiparticle picture[END_REF] , are not fully understood.

Recent important developments have made it possible to tackle the many-body problem and simulate molecular systems such as liquids, solids, chemical reactions etc. with the ab initio accuracy [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] , meaning that these systems are treated at the level of electrons orbiting the nuclei [START_REF] Born | Zur quantentheorie der molekeln[END_REF] , interacting through the Coulomb potential. Nevertheless, these methods typically have to introduce some approximations to reduce the complexity of the quantum many-body problem. One of such approximations is the assumption that nuclei are so heavy that they can be regarded as classical objects, having no Nuclear Quantum Effects (NQE). However, it was showed that hydrogen, the most abundant element in the universe, accounting for 73% of normal matter [START_REF] Asplund | The chemical composition of the sun[END_REF] , has quantum behavior even at room temperature [START_REF] Tuckerman | On the quantum nature of the shared proton in hydrogen bonds[END_REF][START_REF] Nilsson | The structural origin of anomalous properties of liquid water[END_REF][START_REF] Markland | Nuclear quantum effects enter the mainstream[END_REF][START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF] . This has immense effects, on structural phase transitions in hydrogen-rich materials [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient langevin approach[END_REF][START_REF] Cherubini | The microscopic origin of the anomalous isotopic properties of ice relies on the strong quantum anharmonic regime of atomic vibration[END_REF][START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Reinhardt | Thermodynamics of high-pressure ice phases explored with atomistic simulations[END_REF] , on proton transfer reactions in biology [START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF][START_REF] Pereyaslavets | On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations[END_REF][START_REF] Pusuluk | Quantum entanglement shared in hydrogen bonds and its usage as a resource in molecular recognition[END_REF][START_REF] Amico | Entanglement in many-body systems[END_REF][START_REF] Kinz-Thompson | Proton transfer in adenine-thymine radical cation embedded in b-form dna[END_REF][START_REF] Angiolari | Environmental and nuclear quantum effects on double proton transfer in the guanine-cytosine base pair[END_REF][START_REF] Miura | An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer[END_REF][START_REF] Ivanov | Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated[END_REF][START_REF] Litman | Elucidating the nuclear quantum dynamics of intramolecular double hydrogen transfer in porphycene[END_REF] and on properties of water [START_REF] Nilsson | The structural origin of anomalous properties of liquid water[END_REF][START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF] , where it was shown, among other things, to cause nearly 15% increase of the heat capacity between normal water (protonated) and heavy water (deuterated) dubbed as isotopic effect. Comparatively strong isotopic effect causes the phase transition between high pressure ice phases VIII and X to happen at 15% lower pressures in normal water, than in heavy water [START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF] .

NQEs are well captured by numerical simulations based on Path Integral Molecular Dynamics (PIMD) [START_REF] Craig | Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics[END_REF][START_REF] Braams | On the short-time limit of ring polymer molecular dynamics[END_REF][START_REF] Ceriotti | A python interface for ab initio path integral molecular dynamics simulations[END_REF][START_REF] Hirshberg | Path integral molecular dynamics for bosons[END_REF][START_REF] Marx | Path integral simulations of rotors: theory and applications[END_REF][START_REF] Marx | Ab initio path integral molecular dynamics: Basic ideas[END_REF][START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF][START_REF] Morresi | Probing anharmonic phonons by quantum correlators: A path integral approach[END_REF] and Path Integral Monte Carlo (PIMC) [START_REF] Thirumalai | A path integral Monte Carlo study of liquid neon and the quantum effective pair potential[END_REF][START_REF] Ceperley | Path integrals in the theory of condensed helium[END_REF][START_REF] Barker | A quantum-statistical Monte Carlo method; path integrals with boundary conditions[END_REF][START_REF] Walewski | Reactive path integral quantum simulations of molecules solvated in superfluid helium[END_REF] . These methods are built on the insights from the path integral formulation of quantum mechanics [START_REF] Feynman | Statistical Mechanics: A Set Of Lectures Advanced Books Classics[END_REF] . In this formulation the future state of a quantum system is described by a sum of probabilities of all the possible paths that can lead to it. When the system is described in this way the temperature and time appear to play similar roles. If the system is in thermal equilibrium, the inverse of temperature β = 1/T plays a role of imaginary time and all particles in the system can be seen as paths traveling from infinite temperature to T . Since such paths would be too expensive to evaluate, a truncation in quantum effects is introduced by considering finite discrete steps in inverse temperature ∆β. By varying these steps we can systematically control quantumness in the simulation [START_REF] Samson | Time discretization of functional integrals[END_REF][START_REF] Bruch | Direct evaluation of statistical mechanical path integrals[END_REF][START_REF] Hoffman | The effect of discretization on a path integral expression for the one-electron density[END_REF] . PIMD simulations of realistic systems are extremely computationally expensive, for which reason not much progress has been made in studying computationally demanding quantities such as entropy, which precisely counts the number of all available configurations in a system.

Entropy is an essential concept of statistical mechanics that appears ever again in mysteriously many different contexts -quantifying the disorder, information, quantum entanglement, and internal energy that cannot be used to do work. Entropy forms the basis of statistical mechanics, and it is a valuable tool for characterizing different thermodynamic phases. Additionally, as a measure of entanglement, the entropy of a subsystem quantifies the entanglement with the rest of the system at zero temperature, while its derivatives such as conditional entropy, mutual information, and entanglement negativity set upper or lower bounds to entanglement even at finite temperature [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF] . The calculation of entropy would be therefore very useful in systems with NQE, such as double proton transfer, where entanglement could cause a concerted motion in place of step-wise motion [START_REF] Fillaux | Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues[END_REF] , and structural quantum phase transitions in hydrogen-rich materials, where in the vicinity of the Quantum Critical Point (QCP) hydrogen atoms could become entangled. Due to the essential role that entropy plays in thermodynamic systems, also the calculation of entropy at finite temperature in systems with NQE would be an invaluable contribution.

Even though entropy is computationally expensive , there exist generalized notions of entropy, which are simpler to compute. These entropies were first described by Alfred Rényi [START_REF] Rényi | On measures of entropy and information[END_REF] and have found many applications in information [START_REF] Amigó | A brief review of generalized entropies[END_REF] and physical sciences [START_REF] Calabrese | Entanglement entropy and quantum field theory[END_REF][START_REF] Calabrese | Entanglement negativity in quantum field theory[END_REF][START_REF] Fuentes | Rényi entropy in statistical mechanics[END_REF] . In the study of physical systems at thermodynamic equilibrium the Rényi entropy becomes attractive, because it reduces the computational cost of evaluating entropy by approximating it with a free energy difference. Calculations of free energy difference are commonplace in stochastic sampling frameworks, such as PIMD and PIMC, with many efficient existing methods [START_REF] Lelièvre | Free Energy Computations[END_REF] . Rényi entropy becomes particularly handy in quantum systems, where in path integral formulation the replica trick [START_REF] Calabrese | Entanglement entropy and quantum field theory[END_REF][START_REF] Hastings | Locality in quantum and markov dynamics on lattices and networks[END_REF] maps the problem of evaluating the Rényi entropy to the evaluation of the free energy required to merge paths in the subsytem of interest. This approach was used to study quantum entanglement in otherwise unattainable model systems in higher dimensions [START_REF] Hastings | Measuring renyi entanglement entropy in quantum monte carlo simulations[END_REF][START_REF] Hastings | Measuring renyi entanglement entropy in quantum monte carlo simulations[END_REF][START_REF] Mcminis | Renyi entropy of the interacting fermi liquid[END_REF][START_REF] Herdman | Particle entanglement in continuum many-body systems via quantum monte carlo[END_REF][START_REF] Herdman | Spatial entanglement entropy in the ground state of the lieb-liniger model[END_REF][START_REF] Alba | Entanglement negativity and conformal field theory: a monte carlo study[END_REF][START_REF] Singh | Finite-temperature critical behavior of mutual information[END_REF][START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF][START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF][START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF][START_REF] Bennett | Efficient estimation of free energy differences from monte carlo data[END_REF][START_REF] Broecker | Rényi entropies of interacting fermions from determinantal quantum monte carlo simulations[END_REF][START_REF] Fodor | Qcd thermodynamics[END_REF][START_REF] Endrodi | The equation of state at high temperatures from lattice qcd[END_REF][START_REF] Buividovich | Numerical study of entanglement entropy in su(2) lattice gauge theory[END_REF][START_REF] Alba | Out-of-equilibrium protocol for rényi entropies via the jarzynski equality[END_REF][START_REF] Demidio | Entanglement Entropy from Nonequilibrium Work[END_REF][START_REF] D'emidio | Universal features of entanglement entropy in the honeycomb hubbard model[END_REF][START_REF] Zhao | Scaling of entanglement entropy at deconfined quantum criticality[END_REF][START_REF] Zhao | Measuring rényi entanglement entropy with high efficiency and precision in quantum monte carlo simulations[END_REF] , where state-of-the-art one-dimensional (1D) methods such as Density Matrix Renormalization Group (DMRG) fail, giving new insights about the nature of quantum phase transitions.

In this work we aim to study these developments and design new tools for the Rényi entropy evaluation in complex higher dimensional systems, where it can be used to study quantum phase transitions. We aim to apply these tools to the simulations of systems with NQE such as double proton transfer system of formic-acid dimer and water ice across the phases VIII-VII-X, but also to model systems such as 1D quantum Ising model, and discrete ϕ 4 model, describing a chain of anharmonic oscillators with properties similar to the chain of hydrogen bonds.

The thesis is structured as follows:

In Chapter 1 we present the entropy and the Rényi entropy from the perspective of information theory. We especially focus on the properties of the Rényi entropy, its features and limitations and its connection to the free energy differences. This perspective allows us to define concepts like (Rényi) conditional entropy, (Rényi) Mutual information and entanglement (Rényi) negativity, that are essential for understanding and quantifying quantum entanglement. Finally, towards the end of the chapter we discuss how these concepts gain practical importance when studying quantum phase transitions, where we make a distinction between 1D and higher-dimensional systems.

In Chapter 2 we present the path integral based methods of representing quantum mechanical systems. In this methods Rényi entropy, and many other concepts, obtain an intuitive explanation as the free energy cost of merging paths belonging to replicas of the system. Consequently, the quantities become easier to evaluate due to the many existing methods for computing free energy differences [START_REF] Lelièvre | Free Energy Computations[END_REF] . We review and compare different methods, such as free energy perturbation, bridging, out of equilibrium methods and the thermodynamic integration. In the last section we build upon the last method, and introduce the path regularization scheme, developed during the thesis. The new scheme introduces a systematic way of regularizing thermodynamic integration paths used for the evaluation of Rényi entropy, and opens the way of evaluating Rényi entropy in strongly entangled and complex higher dimensional systems, such as water ice.

In Chapter 3 we describe the models we used to test the path regularization procedure. This includes the Ising model in transverse magnetic field and a system of two protons forming a hydrogen bond in the formic-acid dimer complex. Both models are exactly solvable, but challenging from the computational point of view. In both models the path regularization proves to be very effective and allows us to reach much larger system sizes than some of the other state-of-the-art existing numerical methods in the Ising model, and to quantify entanglement between protons in a realistic two particle potential. In the later case, the simulation appears to suffer from ergodicity breaking, of the same kind as the one observed also in the chain of anharmonic oscillators and water ice under high pressure. We introduce the swap move that successfully restores the ergodicty of the simulations in all of these systems, and is transferable to cases of symmetry braking in other systems.

In Chapter 4 we report on the first implementation of the Rényi entropy algorithms in PIMD simulations, based on Path Integral Ornstein-Uhlenbeck Dynamics (PIOUD) developed by Mouhat et al. [START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF] . To date, the only implementations reported in the literature were done with PIMC. We develop a framework, based on hybrid PIMC-PIMD algorithm, that allows to transfer the swap move used in PIMC simulations to the simulations done with PIOUD. Without this powerful hybrid scheme, the simulations of systems reported in this thesis would not be feasible. In the chapter we also describe the tests of performance of the new implementation done by benchmarking PIOUD against the system of two coupled harmonic oscillators by computing entanglement entropy and mutual information of different orders between two oscillators. We present this exactly solvable strongly entangled system with continuous de-grees of freedom, which can be used for various benchmarks, including the exact evaluation of path integrals and exact path regularization (exact analogue of the procedure described in Chapter 2).

In hydrogen-rich materials under high pressure the hydrogen atoms form hydrogen bonds that eventually, undergo a symmetrization transition, meaning that hydrogen lies exactly in the midpoint between two neighboring heavier chemical partners. Before starting with realistic computationally cumbersome calculations, we focused on a model that closely approximates such crystals. In Chapter 5 we study the discrete ϕ 4 model (or an anharmonic chain) that undergoes a displacive phase transition, analogously to the transition in water ice under high pressure. We summarize the results and argue that Rényi entropy detects the crossover at finite temperature. The Rényi entropy study further lead us to describe a crossover in terms of the local moment formation (also known as spin-freezing in the context of strongly correlated electron systems [START_REF] Werner | Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model[END_REF] ) and design a procedure based on the imaginary-time correlation function that can locate the crossover. We show that the finite temperature phase diagram closely resembles the phase diagram of water ice at high pressure and suggest that a similar mechanism could be at play in this complex transition. Furthermore, we study the effects of the inverse temperature discretisation ∆β and demonstrate that it affects the position of the critical point. By understanding this dependence we extrapolate the phase diagram to ∆β → 0.

Finally, in Chapter 6, we focus on the transitions in high-pressure water ice. We report on previous numerical and experimental investigations of the system and discuss the phase diagram and the importance of NQE. We discuss the symmetries of different phases, and the expected properties of the entropy of the system. We explain the numerical details of this extremely computationally demanding simulation, and the moves introduced in order to preserve ergodicity of the simulation with the hybrid PIMC-PIMD framework. We present the analysis of the phase diagram, resolved in terms of the Rényi entropy and order parameters. We show that the Rényi entropy peak again coincides with the formation of local moments observed in the anharmonic chain, and the breaking of the proton-symmetrization order parameter at low temperatures. This transition does not depend on temperature, and marks the boundary between phase X to phases VIII and VII. On the other hand the transition from ice VII to ice VIII depends on the temperature and causes the water molecules to assume one of the two long range ordered configurations of phase VIII. Surprisingly, the analysis of the Rényi entropy also gives insight in the proposed disordered regime of phase X.

The research that led to the findings presented in this thesis has been conducted during the three years of my Ph.D. together with my advisors Rodolphe Vuilleumier and Michele Casula and collaborators. The results in Chapters 2 and 3 were published in Ref. [START_REF] Srdinsek | Quantum rényi entropy by optimal thermodynamic integration paths[END_REF] , and the results in Chapters 4 and 5 were published in a pre-print Ref. [START_REF] Srdinšek | Rényi entropy of quantum anharmonic chain at non-zero temperature[END_REF] , and are currently under a review. The results shown in Chapter 6 have not been published yet. T his chapter presents entropy from the viewpoint of the information theory and demon- strates how the quantity appears as essential property to study thermodynamic systems, quantum entanglement and quantum phase transitions.

Chapter 1

Entropy and entanglement

Entropy

In 1961 Alfréd Rényi defined an entropy of order α [START_REF] Rényi | On measures of entropy and information[END_REF] , which is now known as the Rényi entropy. He introduced the concept hand in hand with the measure of amount of information of order α. This was possible due to decades of previous research, that culminated in the discovery that thermodynamic entropy, statistical entropy and information [START_REF] Shannon | A mathematical theory of communication[END_REF] are different corners/vertices of the same triangle. What Alfréd Rényi and many other researchers after him have shown is that initial definition of this quantity was focusing on only one particular example, while more general definitions exist and are sometimes more useful or appropriate for a given problem.

Entropy

Information

The information content of a transmitted message depends on the amount of new knowledge obtained by the receiver. The less expected the content is, the more information it conveys since, by definition, expecting a certain message entails that some prior information was already obtained by the receiver. Of course, we also expect that if information is received in smaller separate batches, the amount of information transferred stays the same.

This can be made more concrete if we consider a discrete random variable X that can take N values A N = {x 1 , x 1 , ..., x N }. Every time we read the random variable, it returns one of the values from the set A N . If measurements are repeated many times, each outcome can be assigned the frequency by which it occurs as p i = N i /N , where N i is the number of times it occurred during N measurements. The frequency is called probability p i = P (X = x i ). It is a real number on the interval [0, 1] and the sum of all probabilities should add to one i p i = 1. The presented definition is based on frequentist interpretation of probability, which suffers from the fact that such measurements are not guaranteed to converge to the actual probability p i . In the following discussion we will assume that such limit exists.

Given the initial reasoning, the information learned by detecting an outcome x i should increase when p i is small and vanish for p i = 1, since this means that we were certain to observe the outcome x i and we learned nothing new. The probability of observing independent events x i and x j equals p ij = p i p j , and hence the additional requirement is I(p ij ) = I(p i ) + I(p j ) (called additivity), if I(p i ) is information obtained, by observing the outcome x i . The last condition is obeyed by additive functions, a prominent example of which is the logarithm of any basis b. It was shown by C.E. Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF] , that logarithm is the only such function suitable for quantifying information

I(p i ) = -log b p i . (1.1)
Standard choice of base is b = 2 in which the unit of information is called bit. A toggle switch can therefore store one bit of information, and N switches N bits of information.

The definition of information strongly relies on a random variable X of a set A N . It quantifies information conveyed by observing an event. However, different random variables can also be compared by their corresponding information content. This is quantified by the entropy (also known as uncertainty) H(p 1 , p 2 , ..., p N ) of a random variable. As described by Shannon, such quantity can be defined in terms of the mean E[] over the set

A N , of information in a random variable X H(X) = E[-log 2 p(X)]. (1.2)
It quantifies the average number of bits required to describe a random variable, or in other words, the minimum number of binary questions required to determine the value of X. For example, if a random variable returns values from A N with equal probability, then the uncertainty is maximal H(X) = N and on average we need N binary questions (or bits of information) to describe the outcome. However, if probabilities are not equal, we can assign shorter labels, with less bits to more probable events and in the end use less bits on average to describe a random variable [START_REF] Cover | Elements of Information Theory[END_REF] . The Shannon's entropy in Eq. 1.2 is a concave function, as can be sen in Figure 1.1. It vanishes when any of the events occur with probability 1 and is maximal, when all the probabilities are equal. It is also additive H(X × Y ) = H(X) + H(Y ) for independent variables, analogously to the information itself, symmetric in parameters p i , continuous and positive. It fulfills many other properties, of which the most important ones are strong additivity, subadditivity and Shannon inequality. These properties were compactly reviewed by Aczél and Daróczy [START_REF] Aczél | On Measures of Information and Their Characterizations[END_REF] .

Entropy can be used also for quantifying the correlations between different random variables, a property that we will exploit in this work. To this end we define the conditional entropy

H(Y |X) = i p i H(Y |X = x i ), (1.3) 
as the uncertainty (or the entropy) of another random variable Y after the random variable X was measured. 

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ). (1.4) 
From this it follows, that the conditional entropy cannot be negative, since the joint entropy cannot be smaller than max[H(X), H(Y )]. Therefore, as the correlation between two variables increases, the conditional entropy decreases. Exactly this reduction should be equal to the information shared. We can then quantify the reduction of the uncertainty of variable X due to the knowledge of Y as

I(X : Y ) = H(X) -H(X|Y ) = H(X) + H(Y ) -H(X, Y ). (1.5)
the quantity known as Mutual information. Because entropy is a concave function, the use of Jensen's inequality (

E[f (X)] ≥ f (E[X]) further shows (see Appendix A) that 0 ≤ I(X : Y ) (1.6)
the mutual information is greater than zero, except for the random variables X, Y that are independent, in which case it vanishes. From this, it directly follows that the conditional entropy of a variable X over some other variable, cannot be greater than the uncertainty of X, which can be interpreted as "knowledge never increases uncertainty". Additionally, the non negativity of the conditional entropy constrains the upper bound to mutual information

I(X : Y ) ≤ H(X) = H(Y ). (1.7)
This result will be very important later, when we will show that this is not anymore the case in quantum systems, where the conditional entropy can be also negative, due to the presence of quantum entanglement. The Shannon's measure of uncertainty in Eq. 1.2 was derived with an assumption that we are interested only in the arithmetic average of the information contained in a random variable. However, for certain applications we could also be interested in the shape of the distribution. This can be achieved, by noting that a general mean is defined as H(X) = g -1 ( i p i g(I(p i )), where y = g(x) is an arbitrary continuous strictly increasing function, defined for all real x, such that x = g -1 (y) is its inverse function [START_REF] Rényi | On measures of entropy and information[END_REF] . The function g(x) is called Kolmogorov-Nagumo function. If we demand that the generalised measure of uncertainty fulfills all the esential properties of the Shannon entropy we end up with the definition in Eq. 1.11. However, we can keep only some of the properties. By demanding that a measure of uncertainty should be additive, symmetric in parameters p i , continuous, positive, and maximal for equally probable events, we are already very restrictive, and only the following two choices of functions g can satisfy them [START_REF] Rényi | On measures of entropy and information[END_REF] g(x) = ax + c (1.8)

g α b (x) = b (α-1)x .
(1.9)

By using the second g α b (Eq. 1.9) and the information defined as log b p i , the uncertainty reduces to

H α (X) = 1 1 -α log b i p α i . (1.10) 
It is called the entropy of order α, or Rényi entropy of order α. This uncertainty is defined also in the limit α → 1. In this limit the numerator and the denominator vanish, hence the L'Hospital rule should be used, giving us H 0 counts the number of bits, while H ∞ measures the information stored in maximally probable events. (right panel ) Only Rényi entropy of α ≤ 1 is strictly concave [START_REF] Ben-Bassat | Renyi's entropy and the probability of error[END_REF] , however for N = 2 it is concave up to α < 2, the collision entropy has vanishing second derivative at p 1 = 0, p 2 = 1).

H 1 (X) = lim α→1 1 1 -α log b i p α i = lim α→1 1 -1 i ln(p i )p α i i p α i ln(b) = - i p i log b (p i ). ( 1 
∂ p ∂ p H α (p, 1 -p) ×10 -9 α = 1.0 α = 1.5 α = 2.0 α = 2.5 α = 3.0 Shannon
The resulting distribution is equivalent to the Shannon entropy in Eq. 1.11, and corresponds to the arithmetic average, defined by Eq. 1.8. Even though we preserved the listed properties for a general order, there are additional constraints that are not always preserved, like concavity, strong additivity and subadditivity (preserved only for α = 1, 0). We have already seen that we need concavity to prove non negativity of the mutual information, but Rényi entropies can be shown to be strictly concave only for α ≤ 1 [START_REF] Ben-Bassat | Renyi's entropy and the probability of error[END_REF] . Therefore Rényi Mutual information is not a proper measure of correlations for α > 1. Additionaly, the Rényi conditional entropy does not have an agreed upon definition [START_REF] Teixeira | Conditional rényi entropies[END_REF] . Nevertheless, all the orders of Rényi entropy can be used to test Bell's inequality, since they remain non negative, and therefore the conditional entropy H α (X|Y ) = H α (X, Y ) -H α (Y ) again cannot be negative.

For some applications generalized entropies, such as Rényi entropy, are better suited: for example in random search, cryptography and machine learning [START_REF] Amigó | A brief review of generalized entropies[END_REF] . In physics Rényi entropies of even integer order larger than 1 naturally arise as close approximations to the logarithm of a trace norm of a matrix (see Section 1.2.3.4).

Entropy maximization principle

Now we will consider the opposite. Instead of knowing the random variable and estimating its information content, we imagine that we do not know what the probability distribution of the random variable is. By knowing nothing about the distribution, the best guess is that all the outcomes are equally probable. This assumption is known as Laplace's principle [START_REF] Sirca | Probability for Physicists[END_REF] . This guess can be rationalized by noticing that equally probable events maximize the entropy or uncertainty of the random variable. Therefore, by being maximally uncertain about the variable, we cannot assume any other distribution. By learning new information about the variable, the uncertainly should reduce, but the distribution that we guess should always be the one that maximizes the uncertainty given the information that we have. This is known as entropy maximization principle, discovered by Jaynes [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] .

For example, when we are dealing with a physical system with unknown probability distribution of energy levels, but a known average energy ⟨ϵ⟩, we can use this principle to predict the probability p i of a system being at certain energy ϵ i . We can write the function

L = i p i log(p i ) + λ 0 i p i -1 + λ 1 i p i ϵ i -⟨ϵ⟩ , (1.12) 
with the entropy as the first term and the additional constraints in the form of Lagrange multipliers. Now we can maximize the entropy, by finding the minimum of this function as

∂L ∂p i = log(p i ) + 1 + λ 0 + λ 1 ϵ i = 0. (1.13)
We can solve this expression for p i

p i = e -λ 0 -1 e -λ 1 ϵ i , (1.14) 
and observe that in this case the most reasonable distribution features an exponential dependence on the energy levels. We are left with two unknowns λ 0 , λ 1 , which we fix by the two conditions that we have. First the normalization p i = 1 fixes the value of the fist multiplier

i e -λ 1 ϵ i = e λ 0 +1 = Z, (1.15) 
which results in what is known as the phase sum of the partition function Z. The second condition

i ϵ i e -λ 1 ϵ i i e -λ 1 ϵ i = ⟨ϵ⟩, (1.16) 
is considerably harder to solve, and tells us that the parameter λ 1 fixes the average energy.

In order to find the distribution with desirable average energy, we should solve for it. The parameter λ 1 is called also inverse temperature β = 1/k b T It is related to the actual physical temperature through the theory of statistical thermodynamics. In such a system, where only the average energy is known, the bits (the value of entropy) get also a physical interpretation. They count the number of physically relevant configurations at given temperature. At very low temperature, β will be large, and the system will be almost with certainty in the configuration with the lowest energy ϵ 0 . The entropy in this case will vanish. As temperature increases, the entropy grows as well, as larger and larger number of energy levels become accessible. Similarly, during a phase transition, entropy can show a sharp jump. For example, when water is boiling, the molecules can suddenly occupy many more configurations with similar energy, causing the number of energy levels at given energy window to sharply increase, which results in larger entropy. Throughout the derivation we did not make any assumptions about the dynamical theory governing the motion of the constituents. Such assumptions are not needed, because we are actually not interested in the time evolution of the system. The laws of motion therefore do not give us any additional information about the system, if the system preserves energy (system is conservative, and the volume in the phase space is preserved) [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] .

Thermodynamics

In a generic physical system we usually know much more than just an average energy of the system. However, after a long time, due to the interaction with the environment and its own time evolution, we lose all necessary information about the system. When this state is reached we say it is in thermal equilibrium. In this work we will restrict ourselves only to systems in thermal equilibrium. In this case we know from the Section 1.1.2 that the probability distribution is given by

p i = 1 Z e -βϵ i , (1.17) 
where ϵ i is the energy of configuration i and can be itself a function of other parameters, like volume, electromagnetic filed, gravitational field etc. This distribution is commonly refered to as Gibbs-Boltzman distribution. We can then define the quantity called free energy as

F = - 1 β log(Z), (1.18) 
and express various other quantities in terms of this one. This is relevant because these quantities are experimentally measurable. The effects of the hidden parameters γ n in the function of the energy E i (γ 1 , γ2, ...), can be seen in thermodynamic "forces", which can do work

Γ n = ∂F ∂γ n T = ∂ϵ ∂γ n T . (1.19)
The products γ n Γ n therefore quantify work, and are called conjugate pairs. Examples of such pairs are the volume and pressure V, p, the number of particles and chemical potential N, µ, and the magnetization and magnetic field M, B. Similarly one can define thermodynamic entropy as

S = - ∂F ∂T = -k b i p i log(p i ), (1.20) 
which is exactly the quantity that we used during our calculations. From the equation it immediately follows that ⟨ϵ⟩ = F + ST.

(1.21)

Therefore the thermodynamic entropy also forms a conjugate pair together with temperature, quantifying heat. Entropy is an extensive quantity, such as V, N, M , meaning that by doubling the size of a system, the entropy doubles S(2V ) = S(V ) + S(V ). This is a feature that can be seen as a consequence of the information theory, discussed in Section 1.1.1.1. Another property of entropy is that the entropy of a closed system can only increase, consequence of which is that heat flows from a hot to a cold body. Historically, these laws were discovered before their microscopic interpretation was known. The microscopic interpretation was first introduced by Boltzman and Gibbs, mostly inspired by the known behavior or experimental and analytically solvable dynamical systems. The perspective presented in this work is even more recent and is a consequence of the development of information theory, which demonstrates that the theory can also be derived from basic principles of information theory.

Rényi thermodynamics

The entropy maximization principle, introduced in Section 1.1.2, was made with an assumption that Rényi entropy of order 1 is the most reasonable measure of entropy. Even though we have good justifications to believe so, it turns out that it is unnecessarily restrictive. By maximizing the Rényi entropy, we get a different probability distribution [START_REF] Parvan | Extensive rényi statistics from non-extensive entropy[END_REF] ,

p i = 1 Z 1 α-1 1 + α -1 α β ⟨ϵ⟩ -ϵ i 1 α-1 , (1.22) 
with Z = i p α i , that nevertheless gives us the same thermodynamic relations, as the ones described in Section 1.1.3. Therefore the Rényi statistics just duplicates the thermodynamic relations given by H 1 , even though the probability distribution is not the same. As a result, the equation of state for the ideal gas, for example, does not depend on the order of Rényi statistics used [START_REF] Parvan | Rényi statistics in equilibrium statistical mechanics[END_REF] .

In this work we will always use the probability distribution given by Eq. 1.17, and not the one in Eq. 1.22, derived from Rényi statistics. Nevertheless, we will be measuring Rényi entropy of order α ̸ = 1, while sampling the distribution in Eq. 1.17 obtained by minimising H 1 . In this sense we will not measure the thermodynamic entropy of the system, but some sort of relative entropy, that one gets by plugging the distribution from Eq. 1.17 into Eq. 1.10 for the Rényi entropy

H α = 1 1 -α log 1 Z α i e -βαϵ i = 1 1 -α log i e -βαϵ i - α 1 -α log(Z).
(1.23)

Entropy

In fact this expression can be directly expressed in terms of the relative entropy [START_REF] Fuentes | Rényi entropy in statistical mechanics[END_REF] . After expanding the logarithm (the second equality in Eq. 1.23), we can see that Rényi entropy closely relates to a free energy difference, since F =log(Z)/β. Even more, by equating α = T /T ′ , where T ′ is some fictitious temperature, the expression becomes

H α = T ′ T ′ -T log i e -β ′ ϵ i + T T ′ -T βF = - 1 k b F (T ) -F (T ′ ) T -T ′ .
(1.24)

In the limit of α → 1, the expression becomes

lim α→1 H α = - 1 k b lim ∆T →0 ∆F ∆T = 1 k b S, (1.25) 
something that we of course expect, since in the limit of α → 1 the Rényi entropy, should describe the thermodynamic entropy, given by Eq. 1.20. This finite difference expression gives a thermodynamic interpretation of what the Rényi entropy of Gibbs-Boltzmann distribution measures. It is a measure of a free energy difference between the same ensemble at different temperatures. Rényi entropy of Gibbs-Boltzmann distribution is therefore free energy cost of changing the temperature per unit of temperature difference. Given this definition we also see that the Rényi entropy actually closely approximates the Shannon entropy and is just a finite difference approximation to the actual thermodynamic entropy. Hence, even though it is not the thermodynamic entropy of the ensemble, it is a rough estimate of it. In fact, if we wanted to measure thermodynamic entropy through numerical differentiation of the free energy, we would be actually measuring the Rényi entropy of α ≈ 1. Additionally, it can be shown that the Rényi entropy varies monotonically with α, meaning that it can be used for establishing upper and lower bound of the actual entropy as H α≥1 ≤ S ≤ H α≤1 . As a demonstration of this, Figure 1.1 clearly shows the entropies with α > 1 lay below the Shannon entropy, while the entropies with α < 1 lay above it. In Figure 1.2 we show how Gibbs-Boltzmann and Rényi entropy of second order depend on temperature for two different density of states. Indeed, the second order Rényi entropy never exceeds the Shannon entropy, but the gap between them changes with temperature.

Numerical evaluation of entropy

From the above discussion we can see that Rényi entropy alleviates the problem that the expression of thermodynamic entropy in Eq. 1.20 introduces. The direct evaluation of entropy requires us to go through all the possible configurations of the system, evaluate the energy of each configuration and add it to the sum. In a dynamical system, with many continuous degrees of freedom this volume becomes intractable to calculate. The difficulty becomes even more exacerbated when quantum systems are considered, since the states have to be represented in the Hilbert space. The solution offered is that instead of estimating the thermodynamic entropy directly, we can estimate its close approximation -Rényi entropy. This is because the Rényi entropy replaces the need to count the number of configurations by requiring only the calculation of the free energy difference in Eq. 1.23. Free energy difference can be very effectively measured in stochastic simulations (see Chapter 2), where only a small portion of configurations are visited in order to evaluate it. There exist a plethora of computational approaches to quantify free energy in this way [START_REF] Lelièvre | Free Energy Computations[END_REF] and we will review them in the next Chapter 2.

There is a family of similar approaches, that reduce the evaluation of entropy to the evaluation of expectation values, that do not use Rényi entropy. For glassy systems with a lot of distinct minima a method was introduced in Refs. [START_REF] Xu | Direct determination of the size of basins of attraction of jammed solids[END_REF][START_REF] Asenjo | Numerical calculation of granular entropy[END_REF] ; for evaluation of absolute value of entropy in water there have been many proposed methods (Refs. [START_REF] White | A simulation method for calculating the absolute entropy and free energy of fluids: Application to liquid argon and water[END_REF][START_REF] Lin | Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations[END_REF][START_REF] Do | Density of states partitioning method for calculating the free energy of solids[END_REF][START_REF] Minakov | Vibrational spectrum and entropy in simulation of melting[END_REF] ) that estimate it indirectly from Boltzmann distribution, pairwise correlation functions, from velocity correlation function, from simulations of melting out of the unphysical (alchemical) harmonic state and others.

Another possibility is to evaluate the entropy by integrating over the heat dQ needed to warm up the system to temperature T , following equation 

S = dQ T . ( 1 

Quantum entropy

Quantum mechanics is a considerably more challenging playground for discussing information theory and probability. The reason for this is the existence of two underlying uncertainties. One is the familiar uncertainty that comes from a random variable, for example in having an ensemble of quantum states, but knowing only the probability of having one. Another, is the uncertainty steaming from the quantum superposition, which is again probabilistic in nature.

Even when a quantum state is a single one, the outcome of quantum measurements depends on the observable: A quantum state is in a superposition of different possible outcomes, where only the probabilities for the outcomes can be known.

In order to resolve this confusion, John von Neumann introduced a new concept, called the density matrix [START_REF] Neumann | Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik[END_REF] . In terms of the density matrix, the value of the entropy does not depend on a particular experiment (basis), but genuinely evaluates the uncertainty of the ensemble of quantum states. However, the consequence of this formalism is that the density matrix contains all the information that we have about the system. This information is indeed redundant, when only statistical treatment is desired, however when we want to study probabilistic microscopic properties of quantum states, such as quantum entanglement, this information again becomes useful.

In the following we will present the density matrix formalism and translate the concepts described in Section 1.1 to the quantum case. We will see that entropy in this case gains additional meaning as a measure of quantum entanglement.

The density matrix

A quantum mechanical system is described in terms of a Hilbert space of states H. Each element |v⟩ ∈ H of this Hilbert space is called a quantum state. The metric on the space is given as the inner product ⟨u|v⟩, where ⟨u| = |u⟩ † is hermitian conjugation of the state |u⟩ ∈ H. The scalar product with itself is fixed to be ⟨v|v⟩ = 1. Since this is a Hilbert space, any vector |v⟩ can be expressed as a linear combination |v⟩ = n c v n |n⟩ in another basis |n⟩ ∈ H, which spans the whole Hilbert space. The moduli of complex coefficients |c v n | 2 are interpreted as probabilities p n , which is ensured by the normalization condition n |c v n | 2 = 1. A system prepared in one quantum state can be treated only probabilistically in the other basis.

Now we consider an ensemble of quantum states |ψ i ⟩ ∈ H, where each state is assigned a probability p i . We define the self-adjoint positive semi-definite density matrix as

ρ = i p i |ψ i ⟩⟨ψ i |, (1.27) 
where Trρ = 1. The definition becomes even more meaningful if we find the orthonormal eigenbasis |ϕ i ⟩, such that ρ|ϕ i ⟩ = q i |ϕ i ⟩, and by definition of the trace also i q i = 1. In this basis we can define the Von Neumann entropy as

S(ρ) = -Tr ρ log ρ , (1.28) 
which is invariant under the change of basis. This can be easily seen by expressing a general density matrix operator as ρ = U DU T , where D is a diagonal matrix, and plugging it back into the Eq. 1.28, giving us S(ρ) = Tr D log(D) , which is simply the expression for the Shannon entropy,

S(ρ) = - i q i log(q i ) (1.29)
introduced in Eq. 1.11. The same can be done also with the other orders of the entropy, so that we define a quantum Rényi entropy of order α as .30) Defined in this way, we discard the information content of a quantum state, which depends on the basis in which quantum state is expanded, and focus on the classical probability. For example, if we have only one quantum state |ψ⟩, the density matrix reduces to

H α (ρ) = 1 1 -α log Tr ρ α . ( 1 
ρ 0 = |ψ⟩⟨ψ|, (1.31) 
and is called a pure state. Only for a pure state the purity, defined as γ = Tr[ρ 2 ], equals to one. We are therefore certain that upon measuring the system, we will detect only one state, which is reflected by the fact that S(ρ 0 ) = 1 log(1) = 0, and similarly H α (ρ 0 ) = 0. The state itself, on the other hand, can still be in a superposition in some other basis |ψ 0 ⟩ = i c i |n⟩, with large entropy of coefficients c i .

As we can see from these definitions, the quantum entropy becomes a computationally extremely challenging quantity. Given that the Hilbert space grows exponentially with the number of particles, the density matrix quickly becomes computationally unmanageable. Even more so, the direct evaluation of entropy requires us to find the eigenvalues of this matrix, or evaluate the logarithm of the matrix. In this sense the Rényi entropy gains another advantage. For an integer value of the parameter α, the entropy requires only α matrix multiplications. The most striking simplification is the case of H 2 , where the evaluation of the entropy reduces to i,j ρ ij ρ j,i , with ρ ij being matrix elements of the density matrix. Since α = 2 is a closer approximation to Shannon entropy than α = 3, we really do not need to perform more matrix multiplications, unless we are interested in extrapolating the value at α = 1, or in the so-called entanglement spectrum [START_REF] Li | Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states[END_REF][START_REF] Calabrese | Entanglement spectrum in one-dimensional systems[END_REF][START_REF] Deng | Bosonization and entanglement spectrum for one-dimensional polar bosons on disordered lattices[END_REF] .

Entanglement in a pure state

Quantum entanglement is a quantity that does not exist in classical theories. Entanglement is an important consequence of quantum effects. It causes main computational problems and is the main resource for modern quantum technologies [START_REF] Chitambar | Quantum resource theories[END_REF] . It is a direct consequence of the quantum superposition when the system's space can be defined as a tensor product of Hilbert sub-spaces. In such a case a Hilbert space can be decomposed into a tensor product of smaller Hilbert spaces H = H 1 ⊗ H 2 ⊗ ... ⊗ H N , with each H i being a subspace describing a subset of degrees of freedom. In this regard, we can distinguish between multipartite and bipartite entanglement. Multipartite entanglement is considerably more complicated and rare, and cannot be covered in this work (see Bengtsson [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF] ). Instead, we will focus on the case, where the Hilbert space is split in two, the subsystem H A and the environment H B , so that

H = H A ⊗ H B .
A pure quantum state |ψ AB ⟩ ∈ H can then be expressed in the extended basis as

|ψ AB ⟩ = ij c AB ij |e A i ⟩ ⊗ |e B j ⟩. (1.32)
In a classical statistical system we would expect that such state can simply be decomposed to be itself a product of two states The reduced density matrix of a pure product state again describes a pure state, while the reduced density matrix of an entangled state describes a mixed ensemble. The figure was borrowed from Ref. [START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF] .

|ψ AB ⟩ = ij c A i c B j |e A i ⟩ ⊗ |e B j ⟩ = |ψ A ⟩ ⊗ |ψ B ⟩, (1.33) 

Product state Entangled state

called a product state or a separable state. However, it is not always the case. A state that cannot be expressed as a product state is called entangled. The level of entanglement depends on the bipartition, and a state can be a product state in one, while entangled in the other.

In order to analyze the consequences of quantum entanglement, we define a density matrix of the full system as ρ = ij p ij |ψ ij ⟩⟨ψ ij |, and a reduced density matrix of the subsystem A as

ρ A = Tr B ρ = kij (I A ⊗ ⟨e B k |)p ij |ψ ij ⟩⟨ψ ij |(I A ⊗ |e B k ⟩). (1.34)
Analogously we get the reduced density matrix of the environment B, by tracing over the subsystem ρ B = Tr A ρ. By this we see that the reduced density matrix ρ A acts on a subspace, spanned by the basis |e A i ⟩. If the full density matrix is a pure product state, then the reduced density ρ A = |ψ A ⟩⟨ψ A | is a pure state as well. However, in the case of an entangled pure state, the state cannot be expressed as a tensor product, therefore performing the trace will return us a mixed reduced density matrix.As a consequence we see that the purity Trρ 2

A of a reduced density matrix of a pure state, is smaller than 1 only when the subsystems A and B are entangled.

Building on this, we can define an entanglement measure of a pure state. A reasonable measure of entanglement must have at least the following properties [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF] : E(ρ) = 0 if and only if ρ is separable, E(ρ) should not increase under operations on only one subsystem (monotonicity), and E(ρ A ⊗ρ B ) of a product state should be equal to the sum of entanglements of its factors E(ρ A ) + E(ρ B ) (additivity) [START_REF] Orenstein | Advances in the physics of high-temperature superconductivity[END_REF] . It is also desirable, that the measure has an upper bound, so that we can distinguish an compare between different levels of entanglement. Even though the measure Trρ 2

A -1 satisfies some of the conditions, we know from the Section 1.1.1.1, that the Von Neumann entropy of a reduced density matrix H 1 (ρ A ) and the Rényi entropy H α (ρ A ) should satisfy all of these criteria in a pure state. By going back to the Eq. 1.32, we can see that pure states are fully defined by a matrix C = c AB ij . The reduced matrix of a subsystem can then be calculated as ρ A = CC † , while the reduced matrix of the other system equals ρ B = C † C. Since these are Gram matrices, they have the same eigenvalues2 , and therefore their entropy is equivalent H α (A) = H α (B). Furthermore, we can see that since H α (ρ AB ) = 0, being ρ AB a pure state, the entropy of a subsystem directly equals the conditional entropy via Eq. 1.4

H α (B|A) = H α (ρ AB ) -H α (ρ A ) = -H α (ρ A ). (1.35)
This is quite surprising, given that H α (ρ A ) ≥ 0. Consequently the conditional entropy can take negative value. In classical probability theory, this is not possible. Looking at the right hand side of Eq. 1.5 in Section 1.1.1 for mutual information

I α (A : B) = H α (ρ A ) + H α (ρ B ) = 2H α (ρ A ),
we see that a negative conditional entropy increases the upper bound.

Knowing the state of a subsystem B of an entangled state therefore tells us 2H 1 (ρ A ) bits of information about the system A, showing that entanglement is a resource for storing mutual information [START_REF] Chitambar | Quantum resource theories[END_REF] .

Entanglement in a mixed state

Entanglement in a mixed state is considerably harder to quantify. One of the reasons is that we have entanglement only inside of each state, and a full amount of entanglement must be some kind of sum of individual entanglements. A general mixed state, represented by the density matrix ρ AB , a linear map over the Hilbert space

H A ⊗ H B , is considered to be separable (product) state if ρ AB = j λ j ρ j A ⊗ ρ j B , (1.36) 
and ρ j A and ρ j B are density matrices with λ j > 0. In this case, H α (ρ AB ) ≥ 0, as we are not in a pure state. Therefore, also the subsystem does not have to be in a pure state even if the state is not entangled. The entropy of a reduced density matrix is therefore not a good entanglement measure. Nevertheless, there still exist ways to detect entanglement, but now the entanglement measures must fulfill more conditions [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF][START_REF] Chitambar | Quantum resource theories[END_REF][START_REF] Horodecki | Quantum entanglement[END_REF] . Here we will list just four measures of entanglement: conditional entropy, quantum mutual information, entanglement negativity, and Rényi negativity.

Quantum conditional entropy

We already showed that in a classical system, the conditional entropy should be greater or equal to zero. Since separable systems are examples of a classical system, we know that negative conditional entropy can be only a result of entanglement. The conditional entropy can be calculated directly from the density matrix [START_REF] Gruska | Quantum Computing. Advanced topics in computer science series[END_REF] , or simply by evaluating the difference S(ρ AB ) -S(ρ A ). However, this measure is not a precise measure, since an entangled state can still have also positive conditional entropy. The conditional entropy only puts a lower bound to the amount of entanglement, but is not able to quantify it.

Quantum Mutual information

Another challenge is the case of entanglement between two parties in a tripartite system (H A ⊗ H B ⊗ H C ). The entanglement entropy H α (A) quantifies the entanglement with B ∪ C and is not able to distinguish between B and C. In this case, a closely related quantity, the Mutual information (Eq. 1.5), can be used. We define a reduced density matrix of the bipartite system as ρ AB = Tr C ρ, and then

I α (A : B) = H α (A) + H α (B) -H α (AB), or I α (A : B) = H α (Tr B,C ρ) + H α (Tr A,C ρ) -H α (Tr C ρ), (1.37) 
directly quantifies mutual information between two parties, neglecting H C degrees of freedom. Quantum mutual information is of paramount importance for understanding some of the quantum effects on thermodynamics [START_REF] Partovi | Entanglement versus stosszahlansatz: Disappearance of the thermodynamic arrow in a high-correlation environment[END_REF][START_REF] Jennings | Entanglement and the thermodynamic arrow of time[END_REF][START_REF] Micadei | Reversing the direction of heat flow using quantum correlations[END_REF] . The problem with using this quantity as an entanglement measure is that it does not distinguish between classical and quantum correlations [START_REF] Groisman | Quantum, classical, and total amount of correlations in a quantum state[END_REF][START_REF] Wolf | Area laws in quantum systems: Mutual information and correlations[END_REF] , but evaluates the total amount of correlations between the two sub-regions, therefore putting only the upper bound on the amount of entanglement. Additionally, the Rényi entropy violates the subadditivity criterion [START_REF] Linden | The structure of rényi entropic inequalities[END_REF][START_REF] Kormos | Temperature driven quenches in the ising model: appearance of negative rényi mutual information[END_REF] from Eq. 1.6, meaning that the Rényi mutual information is not non-negative and cannot be interpreted even as a measure of correlations. Still, for thermal states and α close to 1, it can be considered as a close approximation to the Von Neumann Mutual information. In many physical systems [START_REF] Srdinšek | Rényi entropy of quantum anharmonic chain at non-zero temperature[END_REF][START_REF] Adesso | Measuring gaussian quantum information and correlations using the rényi entropy of order 2[END_REF][START_REF] Camilo | Strong subadditivity of the rényi entropies for bosonic and fermionic gaussian states[END_REF] it can be shown that the mutual information for small α is non-negative. Alternative definitions of Rényi Mutual information that are just measures of correlations, such as Petz Rényi relative entropy, have also been proposed [START_REF] Kudler-Flam | Rényi mutual information in quantum field theory[END_REF] .

Entanglement negativity

Entanglement negativity is built on a concept of a partial transpose. We can define a partial transpose over the subspace A of a density matrix ρ :

H A ⊗ H B → H A ⊗ H B , as (ρ (i A ,j B ),(k A ,l B ) ) T A = ρ (k A ,j B ),(i A ,l B ) , (1.38) 
where

ρ (i A ,j B ),(k A ,l B ) is a coefficient of the density matrix belonging to the element |i A ⟩ ⊗ |j B ⟩⟨k A | ⊗ ⟨l B |.
Analogously we can define the transpose over the subsystem B. In operator form, we can write the operation as (ρ) T A = (T ⊗ I B )ρ and (ρ) T B = (I A ⊗ T )ρ. The partially transposed matrix ρ T A has again unit trace Tr(ρ T A ) = 1 [START_REF] Varma | Theory of the pseudogap state of the cuprates[END_REF] . Now we can show that the partial transpose of a separable state in Eq. 1.36 is always positive semi-definite, e.i. its eigenvalues are all non-negative, which is denoted with ρ T A ≥ 0. We know that density matrices of sub spaces must be positive semi-definite, and that transpose of a matrix does not change its eigenvalues. Two positive matrices A and B also form positive tensor product [START_REF] Lee | From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics[END_REF] A ⊗ B and, when of the same size, positive sum5 A + B. Therefore the partial transpose of a separable state

ρ T A = j λ j (ρ j A ) T ⊗ ρ j B , (1.39) 
is positive semi-definite. From this it directly follows that when some eigenvalues are negative, denoted with ρ T A < 0, the state must be entangled. Just as in the case of the conditional entropy, this does not mean that when ρ T A is positive semi-definite (ρ T A ≥ 0), the state is not entangled, except for the Hilbert spaces up to the dimension of 6 [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF] .

Building on this, we can define the logarithmic entanglement negativity as

E N = log ||ρ T A || 1 , (1.40) 
where ||.|| 1 is a trace norm, equal to the sum of the absolute values of the eigenvalues. Therefore, when the state is entangled ||ρ

T A || 1 > Tr(ρ T A ) = 1
, and E N > 0, because some of the eigenvalues are negative and even though their sum equals 1, the sum of absolute values exceeds 1.

Logarithmic negativity is capable of detecting entanglement also between two parties in a tripartite system (H A ⊗ H B ⊗ H C ) by considering the entanglement negativity of the reduced density matrix ρ AB = Tr C ρ. The advantage over the mutual information from Section 1.2.3.1 is that this measure does not detect classical correlations and is therefore unambiguously detecting the lower bound to entanglement.

Rényi negativity

The trace norm, introduced in the definition of the logarithmic negativity in Eq. 1.40, can be generalized by noting that the trace of the partially transposed density matrix

Tr(ρ T A ) α = i λ α i , (1.41) 
generalizes the trace norm for even values of α, since the signs of the eigenvalues λ i are removed, and therefore Tr(ρ T A ) α ≥ Tr(ρ) α . It was therefore proposed by Calabrese et al. [START_REF] Calabrese | Entanglement negativity in quantum field theory[END_REF] that Rényi entropy of a partially transposed matrix (called Rényi negativity) can be used to quantify entanglement in mixed states. It was shown that by performing a continuation of Tr(ρ T A ) α for even α one can then estimate the actual value of negativity [START_REF] Calabrese | Entanglement negativity in quantum field theory[END_REF] .

The main problem of this approach is that for α = 2 the trace of the partial transpose equals to the trace of the reduced density matrix, and is therefore equal to the entanglement entropy. The next possible candidate is α = 4 (since it is even), which is already a very crude approximation to the trace norm. Surprisingly, it was discovered that in the systems of interests, the Rényi negativities with odd α = 3 and even α = 4 were not much different, which suggest that even odd α = 3 (computationally more accessible than α = 4) can be considered as a reasonable approximation [START_REF] Calabrese | Entanglement negativity in quantum field theory[END_REF][START_REF] Alba | Entanglement negativity and conformal field theory: a monte carlo study[END_REF][START_REF] Chung | Entanglement negativity via the replica trick: A quantum monte carlo approach[END_REF][START_REF] Wu | Entanglement renyi negativity across a finite temperature transition: A monte carlo study[END_REF] .

Quantum phase transitions

Concepts introduced in this chapter gain additional relevance when discussing quantum phase transitions. These are abrupt changes in the properties of the ground state (at zero temperature). They can happen sharply, due to a level crossing upon the variation of an external parameter, or gradually. In the latter case, the true transition happens only in the thermodynamic limit (N → ∞), when the gap ∆ of the avoided level-crossing vanishes, while at finite N it results in a crossover [START_REF] Vojta | Quantum phase transitions[END_REF] . The transitions discussed in this work, are of the second (continuous) kind.

These gradual phase transitions are, just like classical continuous phase transitions, accompanied by a divergence of correlation length and susceptibility of a quantum order parameter and power law decays of correlation functions close to criticality. Due to the divergence of correlation lengths the microscopic details become negligible close to criticality. This means that very different critical systems can behave similarly on large scales and can be classified in universality classes. When all the microscopic details about the system are removed, only the underlying symmetry of the ground state specifies the behavior of the critical system.

Classical and quantum phase transitions are nevertheless strongly related. As will be described in a greater detail in the next chapter, a quantum mechanical system can be mapped to a classical analogue. During the mapping we cannot neglect the dynamical part of the Hamiltonian as is the case in a classical system, since kinetic K and potential V operators do not commute [K, V ] ̸ = 0. This means that quantum systems live in a higher dimensional space, with a new finite coordinate of length β = 1/k b T . Treated in this way, at β → ∞ all quantum transitions have a classical analogue in higher dimensions, with the same critical exponents. This is why quantum phase transitions are often named after the corresponding classical higher dimensional transition. For example, quantum 1D Ising model in transversal magnetic field undergoes a quantum phase transition of classical Two Dimensional (2D) Ising universality class.

Classical fluctuations dominate in the vicinity of the transition, but this window becomes narrower and narrower upon approaching T = 0 [START_REF] Vojta | Quantum phase transitions[END_REF] . The other regimes stay as in the first scenario.

There are many examples of both scenarios. The first is very common in low dimensional systems, while higher dimensions introduce additional symmetry breaking mechanisms, that lead to the temperature dependent transition. A good illustration of the effect of dimensions is the quantum Ising model in transversal magnetic field. It is given by the Hamiltonian

H = ij J i,j σ z i σ z j -h i σ x i , (1.42) 
where σ x,y,z i are Pauli matrices, representing a small magnet (or spin) at lattice position i. In one dimensional case with all J i,j zero, except for J i,i+1 = J, the system undergoes a quantum phase transition at r = h/J = 1. The order parameter that is broken is the total magnetization in z direction, but only at zero temperature. At any higher temperature the order parameter vanishes for all values of h/J. However, as discussed, there still exist three distinct regimes. The quantum disordered one, with very large magnetic field h >> J, and all the dipoles pointing in the x direction. In this regime thermal fluctuations create single spin flips that break the global order. Next is the quantum critical regime with power-law like scaling laws, and finally at small magnetic field h << J there is the thermally disordered regime. In this regime the dipole interaction between neighboring spins aligns the spins to either all point up or all point down in z direction. The thermal fluctuations in thermally disordered regime break the long range order by creating domains of spins pointing up and down. The situation is interesting because in higher dimensions, controlled by J i,j , the domains are not able to break the order. When a domain of certain volume forms in higher dimensions, its energy cost of creation grows with its boundary surface. The order in one dimensional system is therefore easily broken, since the size of the domain does not increase the energy cost of creation. However, to break the order in higher dimensions the cost of creation of sufficiently large domains increases with the size, leading to the non-vanishing magnetization even at non-zero temperature. This creates a thermodynamic phase transition at the temperature that is large enough to create big domains that can break the global order. As a consequence, a higher dimensional Ising model follows the second scenario, which was experimentally realized in LiHoF 4 [START_REF] Bitko | Quantum critical behavior for a model magnet[END_REF] .

Quantum phase transitions are very common and some of them are a field of active research, because order parameters and physical mechanisms behind are not necessarily easy to explain. An example of such transitions are cuprate superconductors [START_REF] Orenstein | Advances in the physics of high-temperature superconductivity[END_REF][START_REF] Simon | Detection and implications of a time-reversal breaking state in underdoped cuprates[END_REF][START_REF] Varma | Theory of the pseudogap state of the cuprates[END_REF][START_REF] Lee | From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics[END_REF][START_REF] Kim | Theory of the nodal nematic quantum phase transition in superconductors[END_REF][START_REF] Sachdev | Where is the quantum critical point in the cuprate superconductors? physica status solidi[END_REF][START_REF] Kowalski | Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity[END_REF] , where the diagram around the critical point becomes extremely complex. Similar transitions happen also in crystals rich in hydrogen. Since hydrogen is very light, its position is strongly affected by quantum fluctuations, which makes transitions in hydrogen-rich materials very complex, such as the one in high pressure water ice [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient langevin approach[END_REF][START_REF] Cherubini | The microscopic origin of the anomalous isotopic properties of ice relies on the strong quantum anharmonic regime of atomic vibration[END_REF][START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Reinhardt | Thermodynamics of high-pressure ice phases explored with atomistic simulations[END_REF] , superconducting hydrides LaH 10 [START_REF] Drozdov | Superconductivity at 250 K in lanthanum hydride under high pressures[END_REF] , YH n [START_REF] Kong | Superconductivity up to 243 K in the Yttrium-Hydrogen system under high pressure[END_REF] , H 3 S [START_REF] Drozdov | Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[END_REF] , and hydrogen halides, like HF and HBr [START_REF] Jansen | Theoretical aspects of solid hydrogen halides under pressure[END_REF][START_REF] Springborg | Energy surfaces and electronic properties of hydrogen fluoride[END_REF][START_REF] Wang | Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials[END_REF] . Another prominent example of quantum phase transition is the Mott metal-insulator transition [START_REF] Furukawa | Quantum criticality of mott transition in organic materials[END_REF] . (right panel ) Second type of the transition -there is a finite T phase transition approaching the critical point in the limit of T → 0. In both cases there are three quantum regimes in the low temperature phase diagram. Figure was borrowed from Ref. [START_REF] Vojta | Quantum phase transitions[END_REF] .

Entanglement and phase transitions

The derivatives of thermodynamic entropy typically show a divergence close to the critical point. An example is specific heat T ∂ T S in a classical transition and ∂ λ S in a quantum transition, dependent on parameter λ. However, in a general quantum phase transition the entropy does not have to change with λ and a more universal observable is desired. This observable is entanglement, and more specifically the entanglement entropy. Entanglement entropy of a generic quantum state grows with the volume of the subsystem [START_REF] Vidmar | Volume law and quantum criticality in the entanglement entropy of excited eigenstates of the quantum ising model[END_REF] . However, entanglement entropy in the ground state of a gapped Hamiltonian (A Hamiltonian with a finite energy gap between the ground state and the first excited state) typically follows an area law [START_REF] Wolf | Area laws in quantum systems: Mutual information and correlations[END_REF][START_REF] Hastings | An area law for one-dimensional quantum systems[END_REF][START_REF] Masanes | Area law for the entropy of low-energy states[END_REF][START_REF] Gong | Entanglement area laws for long-range interacting systems[END_REF] : the entanglement grows as the boundary of the subsystem and not as a function of the volume. This is a direct consequence of the ground state properties of the systems with finite gap, which have exponentially decaying correlation functions [START_REF] Hastings | Locality in quantum and markov dynamics on lattices and networks[END_REF] . Therefore, neglecting the rest of the system leaves only the uncertainty related to excitations close to the boundary of the partition. However, at the critical point the gap vanishes, and hence this assumption cannot hold. The correlation functions in a ground state of a gapless model have infinite range and decay as power laws. In one-dimensional systems these power laws can be shown to result in logarithmic volume correction to the scaling. In higher dimensional systems, a similar correction can often be found, but in general the area law appears much harder to violate [START_REF] Amico | Entanglement in many-body systems[END_REF][START_REF] Eisert | Colloquium: Area laws for the entanglement entropy[END_REF] .

1D systems

One-dimensional systems are very different form higher dimensional systems. One of the peculiarities is that in 1D all the systems that are scale invariant, are also invariant under conformal transformations [START_REF] Zamolodchikov | Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory[END_REF] . These are transformations that preserve angles in the plane spanned by time and space coordinate. From this it follows that all critical one-dimensional systems should be describable by a Conformal Field Theory (CFT). CFTs are uniquely classified based on the central charge c [START_REF] Francesco | Conformal Field Theory[END_REF] , which for half-integer values quantifies the number of fermionic and bosonic degrees of freedom. All the correlation functions of CFTs are indeed just power laws and the theories are simple enough to allow an exact analytical evaluation of the entanglement entropy. This can be done by using the path integral representation (formally introduced in Chapeter 2) and the replica trick,

S(ρ A ) = -lim n→1 ∂ ∂n Tr[ρ n A ] [Trρ] n , (1.43) 
which is very similar to the expresion for the Rényi entropy in the limit of α = 1, analogously to Eq. 1.22. By using the mapping to the path integral representation of CFT, one can show that power-law correlations result in logarithmic correction to the entanglement entropy [START_REF] Holzhey | Geometric and renormalized entropy in conformal field theory[END_REF][START_REF] Vidal | Entanglement in quantum critical phenomena[END_REF] . Even more, the prefactor of the logarithmic correction is a linear function of a conformal charge c. A precise expressions for these scaling in various systems at nonzero temperatures, were derived by Calabrese and Cardy [START_REF] Calabrese | Entanglement entropy and quantum field theory[END_REF] . They showed that the Rényi entropy of a stripe of length l scales as

H α = c 6 α 2 -1 α log( β πa sinh( πl β )). (1.44)
which then in the limit of zero temperature, or l << β, gives a correction log(l/a) and in the limit of large temperature, or l >> β reduces to a volume law πl/β for 1D systems. In a similar way, one can calculate the scaling of the entropy in the ground state of a finite system of length L and periodic boundary conditions as

H α = c 6 α 2 -1 α log( L πa sin( πl L )). (1.45) 
Note that sinh() changed to sin(). This expression ensures that the full entropy again vanishes and that the entropy is symmetric under transformation l → Ll.

Logarithmic correction in 1D systems has been confirmed in a number of systems [START_REF] Calabrese | Entanglement entropy and quantum field theory[END_REF][START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF][START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF][START_REF] Holzhey | Geometric and renormalized entropy in conformal field theory[END_REF][START_REF] Vidal | Entanglement in quantum critical phenomena[END_REF] , reviewed in Ref. [START_REF] Eisert | Colloquium: Area laws for the entanglement entropy[END_REF] , and explains the increase in computational cost of DMRG methods at the critical point.

Higher dimensional systems

In higher dimensions the area law is more common [START_REF] Eisert | Colloquium: Area laws for the entanglement entropy[END_REF] . Even bosonic critical systems obey the area law [START_REF] Srednicki | Entropy and area[END_REF][START_REF] Barthel | Entanglement scaling in critical two-dimensional fermionic and bosonic systems[END_REF] . However, when violations to the are law are found, they can go both ways. Fermionic systems with a finite gap were shown to have sub-area law scaling of the entanglement [START_REF] Ding | Subarea law of entanglement in nodal fermionic systems[END_REF] , while unlike bosonic counterparts, fermionic critical systems violate the area law with at most a logarithmic correction (which can be also negative) [START_REF] Masanes | Area law for the entropy of low-energy states[END_REF][START_REF] Gioev | Entanglement entropy of fermions in any dimension and the widom conjecture[END_REF][START_REF] Cramer | Statistics dependence of the entanglement entropy[END_REF] 

S = c[∂R, ∂Γ](|∂R|) log |R|, (1.46) 
where |R| is the volume of the subsystem, |∂R| the surface of the boundary, and c[∂R, ∂Γ] the prefactor that depends on |∂R| and the boundary of the Fermi surface ∂Γ. If the Fermi surface is zero dimensional the correction is sub-logarithmic, due to the prefactor c [START_REF] Barthel | Entanglement scaling in critical two-dimensional fermionic and bosonic systems[END_REF] . The law is typically written for a hypercube of length L and dimension d as S ∝ L d-1 log L. These theoretical results were tested numerically in a plethora of two dimensional models, such as XYZ(Heisenberg, XX and, XY) models [START_REF] Hastings | Measuring renyi entanglement entropy in quantum monte carlo simulations[END_REF][START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF][START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF][START_REF] Kallin | Anomalies in the entanglement properties of the square-lattice heisenberg model[END_REF][START_REF] Luitz | Universal logarithmic corrections to entanglement entropies in two dimensions with spontaneously broken continuous symmetries[END_REF] , higher SU (N ) Heisenberg models [START_REF] Demidio | Entanglement Entropy from Nonequilibrium Work[END_REF] and the honeycomb Hubbard model [START_REF] D'emidio | Universal features of entanglement entropy in the honeycomb hubbard model[END_REF] . In the case of critical 2D Ising model in transverse magnetic field, the logarithmic correction has a negative term. Because three and higher dimensional models still suffer from the exponential wall of the many-body Hilbert space, only a handful of tests were done. An example is the groundbreaking evaluation of entanglement entropy in a superfluid (bosonic system) by Herdman et.al. [START_REF] Herdman | Particle entanglement in continuum many-body systems via quantum monte carlo[END_REF] , where the predicted area law was confirmed. /

Chapter 2

Design of efficient methods for computing quantum entropy Q uantum entropy is a term that we use to describe entropies of the reduced density matrix.

As we have seen in the previous Section 1.2, such entropy contains also information about quantum entanglement. For a pure state it constitutes an entanglement monotone (measure of entanglement), while at higher temperatures it combines classical as well as quantum correlations.

Evaluation of quantum entropy is very expensive, since the density matrix in general cannot be expressed as a finite matrix. When really large irreducible systems are considered, the ⟨ψ|ρ|ψ⟩ has infinite number of elements, growing as D 2 , if D is the dimension of the Hilbert space. In some special cases it can be found that a smaller subset of eigenstates closely approximates the system and a finite expression for the Hamiltonian can be found. Similarly, for sufficiently simple cases, the space and time can be discretized and truncated, leaving an accurate finite Hamiltonian matrix. However, eventually, when more states, more degrees of freedom and more entanglement are added, this approaches fail, as they aim at exactly describing the density matrix. This makes evaluation of the logarithm, diagonalisation and even the trace very hard computational problems.

In the following sections we will present how entropy can be evaluated efficiently in quantum many-body systems in thermal equilibrium. First we will describe the framework of path integral quantum simulations, and then various methods developed to approach this problem. Finally, in Section 2.3 we will present the method that we have developed for evaluation of Rényi entropy in very complex simulations of realistic systems.

Path integrals

The evaluation of matrix elements of a quantum density matrix can be simplified by assigning a weight to each element needed for the evaluation of the expectation value, and then performing only the operations that considerably contribute to the expectation, rejecting those that do not. The operations and their weight can be distilled by expressing the density matrix as a product1 

e βH = [e τ H ] P , (2.1) 
where τ = β/P . For sufficiently small τ , we can typically find a basis in which all the matrix elements are non-negative. This is because in most systems, the off-diagonal elements of the Hamiltonian are all negative, and hence

P i,j = ⟨i|e -τ H |j⟩ = δ i,j -τ ⟨i|H|j⟩ + O(τ 2
) is always non-negative. The systems where this holds true are called stochastic quantum Hamiltonians, while the rest are said to be suffering from a sign problem [START_REF] Bravyi | The complexity of stoquastic local hamiltonian problems[END_REF] , and the following procedure does not apply. When matrix products of the stochastic Hamiltonian in Eq. 2.1 are written out explicitly, we end up with a sum over products of P matrix elements

⟨j|e -βH |i⟩ = n 1 ,...,n P -1 P j,n P -1 . . . P n 3 ,n 2 P n 2 ,n 1 P n 1 ,i , (2.2) 
belonging to P incremental real valued propagators P n i+1 ,n i = ⟨n i+1 |e -τ H |n i ⟩. Because all of the matrix elements, described by the chain of states i, n 1 , n 2 , . . . , n P -1 , j are non-negative, we can interpret them probabilistically, by normalizing them with the partition function Z = Tre -βH . This assigns the probability (or weight) to each chain of states i, n 1 , n 2 , . . . , n P -1 , j visited along the path. An expectation value Tr(Aρ) of a quantum operator A that is diagonal in the basis is then expressed as 

Tr(Ae -βH ) = n 1 ,.
where the denominator represents the normalization factor Z. Using the cyclicity of the trace, the expectation value can be evaluated at any slice, allowing for averaging over P slices. For non-diagonal observables, their action on a chain should be derived separately, and is not necessarily unique (e.g. kinetic energy in a position basis) [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] . By rewriting the density matrix as a product of incremental propagators we killed two birds with one stone. Namely, by making the number of steps P larger and larger, we effectively work with the density matrix at much higher temperature τ . Density matrix at high temperature behaves more classically and non-zero commutators become negligible. As a result one can use the Trotter formula, which states that e -β(A+B) = lim

P →∞ e -τ A e -τ B P + O(1/P 2 ), (2.4) 
even when operators A and B do not commute [A, B] ̸ = 0. This allows us to decompose our Hamiltonian in two real propagators that are easier to solve exactly. The estimation can be further improved, by expanding the exponent

e -τ (A+B) = 1 + τ A + τ B + τ 2 2 (A + B) 2 + O(τ 3 ), (2.5) 
and finding higher order Trotter formulas of the form e -τ α 1 A e -τ β 1 B e -τ α2 A e -τ β 2 B . . . , for which the expansion on the right side is equivalent to the left one up to the corrections of the order O(τ n ) [START_REF] Janke | Properties of higher-order trotter formulas[END_REF] . For example, a second order decomposition with error O(τ 3 ), is simply

e -β(A+B) = lim P →∞ e -τ B/2 e -τ A e -τ B/2 P + O(1/P 3 ). (2.6) 
Higher orders are more involved and are derived with the help of Baker-Campbell-Hausdorff (BCH) formula.

In the limit of P → ∞ the summation over paths results in a Feynman path integral, formally developed and popularized by famous Nobel laureate Richard Feynman. The procedure can be repeated also for the unitary time propagator e -it/ℏH and Hamiltonians with a sign problem, but in this case does not correspond to a probability distribution. Nevertheless, the expression leads to a new interpretation of quantum dynamics, where the time propagation is interpreted as a summation over all possible paths, whose contribution to the target wave function is given by a phase factor dependent on the classical action [START_REF] Grosche | Handbook of Feynman Path Integrals[END_REF] .

Distinguishable particles

Now we will apply the presented procedure in the case of a collection of N distinguishable particles with mass m i , interacting through a potential that is only a function of particles' positions V (x 1 , . . . , x N ). The Hamiltonian is given by

Ĥ = N i p 2 i 2m i + V (x 1 , x 2 , ..., x N ). (2.7)
Following the above procedure we can decompose the propagator e -βH in shorter steps with inverse temperature τ , which have all-negative off-diagonal elements in the position basis.

As anticipated, due to the non-vanishing commutator [x, p] = iℏ, this propagator is still not trivial to evaluate 2 .

Instead of finding a solution for each individual system that we want to consider, we can use the Trotter breakup in Eq. 2.4 (or higher orders) to split the propagation on a kinetic and potential part3 . Since the potential is diagonal in the position basis, the density matrix e -τ V , also gets a trivial diagonal form, giving us the probability of being in a configuration x 1 , x 2 , ..., x N . After that, we are left with N free-particle density matrices, which are not diagonal in the position basis and need a separate derivation. However, the kinetic energy operators of individual particles commute ([p 2 i , p 2 j ] = 0) and a full propagator can be easily obtained by multiplying single particle propagators ρ 0 . The density matrix ρ 0 of a single free particle, can be derived by performing a partial derivative of the thermal density matrix e -τ H 0 with respect to τ

- ∂ρ 0 (x, x ′ ; τ ) ∂τ = Kρ 0 (x, x ′ ; τ ) = - ℏ 2 2m ∇ x ρ 0 (x, x ′ ; τ ). (2.8)
This shows that the density matrix of a single particle obeys the heat equation [START_REF] Feynman | Statistical Mechanics: A Set Of Lectures Advanced Books Classics[END_REF] and therefore has a known solution. It has the initial condition ρ 0 (x, x ′ ; 0) = δ(xx ′ ), justified by the fact that at infinite temperature τ = 0 a particle should be maximally delocalised and classical, with no quantum coherence. Given the initial condition, the solution in d dimensions should be given by the Green's function

ρ 0 (x, x ′ ; τ ) = m 2πℏ 2 τ d 2 exp - m 2ℏ 2 τ ||x -x ′ || 2 , (2.9) 
which is again always positive and quantifies the probability to end up at a position x if initialized at a position x ′ . Using the Trotter breakup in Eq. 2.4, we can now build the full density matrix as a chain of propagators in a position basis. We got rid of all the commutators and quantum states. Thus we arrived at a a completely classical expression for the quantum density matrix ρ(x 1 , . . . ,

x N , x ′ 1 , . . . , x ′ N ; β) lim P →∞ m 2πℏ 2 τ dP N 2 e -1 2ℏ 2 τ N,P i,j m i ||x (j) i -x (j+1) i || 2 -τ P j V (x (j) 1 ,...,x (j) 
N ) dx 1 . . . dx P -1 , (2.10)

with the lower index i running trough particles, while the upper index j is running trough the imaginary time, with the endpoints fixed to x

(1) i = x i and x

(P ) i = x ′ i .
By factoring out -τ in the argument of exponential, we end up with a classical Hamiltonian for an extended set of degrees of freedom.

When comparing the argument of the exponential in Eq. 2.10 to the classical Hamiltonian we cannot but notice that the kinetic term is missing. However, the kinetic therm is there, but already integrated over. The prefactor of the integral is actually a Gaussian integral over the kinetic part of the classical Hamiltonian exp(-τ p 2 /2m)dp = 2πm/τ . Therefore, we can finally write a quantum partition function as a partition function of a classical system Tr e -β Ĥ = lim

P →∞ 1 2πℏ dN P d f pd f xe -τ H P (p,x) , (2.11) 
where f = P N and the classical Hamiltonian is given by

H P (p, x) = N i=1 P j=1 [p (j) i ] 2 2m i + 1 2 m i ω 2 P ||x (j) i -x (j+1) i || 2 + P j=1 V (x (j) 1 , ..., x (j) 
N ), (2.12) with again the lower index i running through particles, while the upper index j is running trough the imaginary time, with periodic boundary conditions x

(P +j) i = x (j)
i . This expression differs from a classical Hamiltonian, through the sum over P . It can be interpreted as a creation of P copies of the system (typically called beads), where each particle interacts through a harmonic coupling, of frequency ω P = 1/ℏτ , with itself in neighboring copies. Since each particle interacts only with the neighbors, this leads to the interpretation of ℏτ as a quantum dimension of time, as promised in Section 1.3, that vanishes at T → ∞ and is infinite at zero temperature.

The harmonic rings are often described as ring polymers that move in a potential V and capture the nature of quantum fluctuations. As the temperature is decreased, the polymer spreads more and more, allowing the particle to move, even though classically it would start to freeze. The spread of the particle can be shown to be proportional to the prefactor of the free-particle propagator in Eq. 2.9, known also as de Broglie wavelength Λ = 2πℏ 2 /mk b T .

In numerical simulations the limit of P → ∞ cannot be achieved, and a finite P is used. However, by modifying P at fixed temperature, we can get a set of approximations to the P → ∞ limit, allowing us to include quantum effects (or reduce dimensions) in a controlled manner. The study of systems described by Eq. 2.12 therefore gives us the framework for truncating quantum effects.

Spin models

A model studied in the thesis is the 1D Ising model in transverse magnetic field with periodic boundary conditions. Its Hamiltonian reads

Ĥ = i σz i σz i+1 -rσ x i , (2.13) 
where σx,z i are Pauli matrices acting on i-th site, and r the strength of the magnetic field in the x direction. It is an integrable model (it can be analytically solved using Jordan-Wigner transformation [START_REF] Mbeng | The quantum Ising chain for beginners[END_REF] ), and therefore represents an ideal benchmark for quantum many-body algorithms. Additionally, it undergoes a quantum phase transition at r = 1.

The model does not suffer from the sign problem and can be recast in path integral form. Following the same procedure as before, we write the density matrix as a product, and due to small τ , we can solve the propagators for i σz i σz i+1 and i σx i separately. We will express them in the eigenbasis of the σz i operator, which does not commute with σx i . In this case the only nontrivial propagator remains exp(τ r i σx i ). It can be split in single-spin propagators, which are simple to solve, since (σ x i ) 2 = I. As a consequence the expansion of the single-spin exponent in τ gives

ρσ x = I cosh(τ r) + σx sinh(τ r), (2.14) 
where the density matrix is a 2 × 2 matrix. The density matrix in this basis, has a sign problem for r < 0, because of sinh(-τ r) =sinh(τ r), but is always positive for r > 0. We will therefore restrict to positive r. The expression can be further expressed as a function of classical local spins σ ∈ {-1, 1} as

e -τ Hx(σ,σ ′ ,τ r) = 1 2 cosh(τ r)(1 + σσ ′ ) + 1 2 sinh(τ r)(1 -σσ ′ ), (2.15) 
where H x represents the classical Hamiltonian representing the term σx . The Hamiltonian H x is equal to the logarithm of the Eq. 2.15. We can see that this logarithm is not defined for negative r, which is one of the manifestations of the sign problem. Now we write down H x as

H x (σ, σ ′ , τ r) = - 1 2τ log(cosh(τ r))(1 + σσ ′ ) + 1 2τ log(sinh(τ r))(1 -σσ ′ ), (2.16) 
by using the property that the two conditions (1 + σσ ′ )/2 ̸ = 0 and (1σσ ′ )/2 ̸ = 0 cannot be satisfied at the same time [START_REF] Lee | From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics[END_REF] . The full density matrix is then obtained by multiplying together single site propagators and using the Trotter formula in Eq. 2.4, which gives us a path integral classical Hamiltonian

H(σ) = N i P j σ i,j σ i+1,j - log(tanh(τ r)) 2β σ i,j σ i,j+1 + P N 2τ log(cosh(τ r) sinh(τ r)),(2.17)
In this Hamiltonian, the first index of σ refers to the spin position in the quantum chain and the second one to the position in the imaginary-time axis. The last result demonstrates that classical 2D anisotropic (the interaction with the neighbors in the imaginary time and in the real lattice is not always the same) Ising model describes statistical properties of quantum 1D Ising model. Path integrals therefore just add an extra dimension, which is sufficient to describe all quantum effects. An analogous procedure can be followed for a general SU(N) model, where the Trotter breakup is done on even and odd lattice indices, and the basis of σz operator is used. Notice that interaction in the imaginary time diverges as τ → 0 or r → 0. This means that in this limit there is no quantum superposition, since all the copies of a given spin freeze in the imaginary time, and take the same value. By writing down the classical analogue in Eq. 2.17 we also extracted a divergent constant contribution, which is canceled by the normalization constant. In numerical calculations this term can often be dropped, which reduces numerical error and proves usefulness of expressing the density matrix in terms of the classical Hamiltonian in Eq. 2.17 rather than working with Eq. 2.15.

Rényi entropy in Path integral formulation

Looking back at the Eq. 1.23 for the Rényi entropy of a Gibbs-Boltzmann distribution, we can see that the quantum Rényi entropy of a thermal density matrix becomes

H α = 1 1 -α log Tre -αβ Ĥ [Tre -β Ĥ ] α . (2.18)
In the language of path integrals this means that the Rényi entropy equals the free energy difference between an ensemble with imaginary time dimension αβ and α ensembles with imaginary time dimension β. In other words, it is the free energy cost of increasing the length of a chain by a factor α (where α can take also rational values). Instead of evaluating the free energy at two different temperatures, as suggested by Eq. 1.25, we can evaluate them at the same τ , with different lengths! For integer values of α, the chain [Tre -β Ĥ ] α can also be seen as a chain of length αβ, that was split in α rings. In this way, the entropy equals the free energy cost of changing the boundary conditions in the imaginary time dimension. This perspective becomes crucial, when considering the evaluation of a quantum Rényi entropy of a subsystem A in a bipartite Hilber space H = H A ⊗ H B , given by Eq. 1.30. In this case the basis can be represented by |i A ⟩|n B ⟩ ∈ H, where |i A ⟩ spans the subspace H A , and |n B ⟩ the subspace H B . Written in this basis, the matrix elements of the reduced density matrix of subsystem A equal

[ρ A ] i A ,j A = n B ⟨i A |⟨n B |e -βH |j A ⟩|n B ⟩.
In the path integral language this means that the particles in the rest of the system B form close rings, due to the trace, while the particles in the subsystem A remain open. When two reduced density matrices are multiplied this merges the open chains to form longer chains of length 2β. As a result, the ensemble Tr(ρ α A ) represents a system where particles in A form closed rings of length αβ, while particles in B form α shorter rings of length β, just like in [Tre -β Ĥ ] α ensemble.

The quantum Rényi entropy then becomes the free energy cost of changing the boundary conditions of the particles in the subsystem of interest. In the case of the Rényi entropy of α = 2 the Eq. 1.30 can be explicitly written down as

H 2 A = -log ⟨i A |⟨n B |e -β Ĥ |j A ⟩|n B ⟩⟨j A |⟨m B |e -β Ĥ |i A ⟩|m B ⟩ ⟨i A |⟨n B |e -β Ĥ |i A ⟩|n B ⟩⟨j A |⟨m B |e -β Ĥ |j A ⟩|m B ⟩ , (2.19) 
with the summation implied by the Einstein convention. Due to the trace, both sides can be interpreted as partition functions Z G , with G signifying the set of particles in the subsystem. The numerator in the above case can be therefore written as Z A and the denominator as Z ∅ .

The ensemble Z A is presented in the Figure 2.2. The interactions that enforce boundary conditions are colored in blue (matrix multiplication and trace) and red (trace). The interactions between particles at one imaginary time slice are represented with dashed lines, and interactions in the imaginary time with solid black lines. The particles in B do not directly interact with each other in different replicas, but interact indirectly through the particles in A. This perspective tells us that Rényi entropy quantifies the effect of fixing particles in A on the number of accessible configurations, hence the name collision entropy for α = 2.

Numerical evaluation of Path integrals

We showed that the density matrix can be decomposed as a sum of paths with known weights. However, by knowing the weights we learned much more than just what paths we are allowed to reject -if the system is not suffering from the sign problem, we learned the whole probability distribution.

If the probability distribution f (x(t)) of paths x(t) in imaginary time t is known, then one can evaluate the expectation value of any observable, by sampling the paths according to their probability distribution f (x(t)). This is known as the central limit theorem, and means that one can design a random path generator, that creates M paths, with frequencies that agree with the probability distribution and approximate the expectation value as [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] 

I = 1 M m A(x m (τ )) ± 1 √ M [⟨A 2 ⟩ f -⟨A⟩ 2 f ] 1/2 , (2.20) 
with ⟨•⟩ f signifying the exact expectation value of the operator evaluated over the distribution f . Therefore, instead of exactly solving these integrals, which is in most circumstances impossible, we can generate random paths according to their distribution and get results with error that is decreasing as 1/ √ M . In the Appendix B we present a Monte Carlo method of generating paths according to their probability distribution, and in the Chapter 4 we present a method based on Langevin dynamics, achieving the same goal by solving stochastic equations of motion.

Free energy computation for Rényi entropy

The free energy is a quantity that is often of interest in natural sciences , which is the reason why many methods have been developed that aim at evaluating it [START_REF] Lelièvre | Free Energy Computations[END_REF] . In this section we will present methods one after another, applied to the problem of estimating the Rényi entropy as a free energy cost of changing the boundary conditions in the imaginary time, between the ensembles Z A , with particles in the subsystem A merged into a ring of length αP (see Figure 2.2), and Z ∅ , where no rings are extended (A = ∅).

Free energy perturbation

Free energy perturbation, first described by Zwanzig [START_REF] Zwanzig | High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases[END_REF] , is not a perturbative method, as the name might suggest. The method is exact for arbitrary large free energy differences, however its convergence is exponentially suppressed when free energy differences increase. The method, samples the free energy difference between ensembles with partition functions Z A and Z ∅ , by sampling the ratio between them, since log(Z A /Z ∅ ) = log(Z A )log(Z ∅ ). The ratio can be then sampled very easily, as expectation value of the SWAP operator

Z A Z ∅ = e -β(H A -H ∅ ) Z ∅ = e -β(H ∅ -H A ) -1 Z A , (2.21) 
where H A is the classical path integral Hamiltonian of an ensemble Z A with merged rings and H ∅ the Hamiltonian of the split ensemble. The equality on the right shows that SWAP is symmetric, however typically the convergence is faster in one direction than the other, depending on the magnitude of the variance from Eq. 2.20. The variance is typically greater in the Z ∅ ensemble, because individual rings move in an uncorrelated manner, meaning that it samples over a lot of very improbable events with large ∆H = H A -H ∅ . The convergence of the sampling in Z ∅ can be improved due to the cyclicity of the trace. The number of possible pairs of imaginary time boundary conditions that we can change at each simulation step is proportional to P α . Therefore, each step results in P α estimations, which increases the statistics of the observable. Similarly, when A equals the full system, each configuration in the simulation of the Z A ensemble reveals P possible splittings. The Eq. 2.21 can be proved easily, by expanding the definition of the ensemble average as a sum over all configurations x with a weight factor given by Eq. B.5

e -β(H A -H ∅ ) Z ∅ = x e -β(H A -H ∅ ) e -βH ∅ x e -βH ∅ = Z A Z ∅ , (2.22) 
and symmetrically for the right hand side of Eq. 2.21. However, the convergence worsens exponentially by increasing the free energy difference (increasing the entropy). This is because when the free energy difference log(Z A /Z ∅ ) is large, the exponential factor e -β(H A -H ∅ ) becomes very small, meaning that configurations sampled from Z ∅ are not the states of high probability in ensemble Z A . A common solution to this problem is to split the evaluation on smaller steps. This can be done by noting that

log Z A Z ∅ = log Z A Z λ Z λ Z ∅ = log Z A Z λ + log Z λ Z ∅ , (2.23) 
known as staging [START_REF] Lelièvre | Free Energy Computations[END_REF] , and sometimes refereed to as ratio trick [START_REF] Hastings | Measuring renyi entanglement entropy in quantum monte carlo simulations[END_REF] , and hence a discrete path can be designed, where we visit intermediate states separated by smaller free energy differences.

In the case of Rényi entropy a logical option, typically employed, is to gradually grow the size of subsystem A, first taking as a subsystem only a few particles A 1 ⊂ A, then adding more particles A 1 ⊂ A 2 ⊂ A, and continuing until after M steps the full subsystem is recovered

A 1 ⊂ A 2 ⊂ . . . A M -1 ⊂ A M = A.
The resulting path is then evaluated as

Z A Z ∅ = Z A Z A M -1 • • • Z A 2 Z A 1 Z A 1 Z ∅ . (2.24)
This way the entropy is computed sequentially and added up at the end from all the simulations. For the case of entanglement entropy this is actually desired, since often subsystem size scaling is investigated and here it is obtained as a byproduct of the analysis of the entropy of a subsystem A. The simulations of ensembles Z A i+1 /Z A i are performed by starting in a configuration with particles in A i merged, and proposing to change the boundary conditions for the new ones, or the other way around. This breaks the cyclicity of the trace and hence, only one estimation of the SWAP operator can be obtained at each simulation step.

The pioneering study of Rényi entropy with this method was done by Hastings et al. [START_REF] Hastings | Measuring renyi entanglement entropy in quantum monte carlo simulations[END_REF] and demonstrated that the method can be used to study entanglement in a quantum many-body systems. It was used in the context of ground state path integral Monte Carlo [START_REF] Hastings | Measuring renyi entanglement entropy in quantum monte carlo simulations[END_REF][START_REF] Mcminis | Renyi entropy of the interacting fermi liquid[END_REF] , and applied also to systems with bosonic statistics [START_REF] Herdman | Particle entanglement in continuum many-body systems via quantum monte carlo[END_REF][START_REF] Herdman | Spatial entanglement entropy in the ground state of the lieb-liniger model[END_REF] . An enhanced approach was used by Alba [START_REF] Alba | Entanglement negativity and conformal field theory: a monte carlo study[END_REF] to obtain also Rényi entanglement negativity. An extension based on high-temperature expansion (HTE), which does not suffer from the sign problem, was proposed for the evaluation of Rényi Mutual information [START_REF] Singh | Finite-temperature critical behavior of mutual information[END_REF] . However, the problem is that this method is extremely inefficient and unstable even when intermediate steps are taken. The performance strongly depends on the system and its convergence worsens incredibly with temperature, system size and entropy [START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF][START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF] . Free energy perturbation can still be improved upon by using biased sampling, such as Umbrella sampling [START_REF] Lelièvre | Free Energy Computations[END_REF] .

Bridge sampling -Metropolis SWAP in generalized ensemble

As we have shown in Eq. 2.21, the perturbative method suffers from asymmetry. The free energy difference can be estimated as the average value of the SWAP operator in the ensemble Z ∅ or the ensemble Z A and typically the two choices do not work equally well. The approach, which has a long history in free energy calculations [START_REF] Bennett | Efficient estimation of free energy differences from monte carlo data[END_REF] , proposed by Humeniuk et al. [START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF] is to perform a generalized simulation, where at each step the more favorable direction of the two is taken, using the best parts of the convergence. Instead of sampling the expectation value of the SWAP, we introduce a metropolis move that performs the SWAP and in the end simply count the ratio between the time N A spend in Z A ensemble and the time N ∅ spent in Z ∅ ensemble

S α = 1 α -1 log N A N ∅ . (2.25) 
The SWAP leaves the configuration untouched, but modifies the potential energy by changing the boundary conditions. Let us show that this is indeed the case. The SWAP move, that moves from one Hamiltonian to the other must fulfill the detailed balance condition (see Appendix B), which requires that

R(A|∅)f ∅ (x) = R(∅|A)f A (x), (2.26) 
with f A (x) = exp(-βH A (x))/Z A the probability to have particles in A joined, and f ∅ (x) = exp(-βH ∅ (x))/Z ∅ the probability to have them split. The function T in Eq. B.3 is equal to one, because we always propose to move to the opposite ensemble. The R(A|∅) is therefore equal to the acceptance probability, given by the Eq. B.7, where x = y, while the Hamiltonian changes

R(A|∅) = A(H A |H ∅ ) = min 1, e -β[H A (x)-H ∅ (x)] . (2.27)
And symmetrically under the exchange of A and ∅. We now arrive at the formula in Eq. 2.25, by expressing f A /f ∅ out of the Eq. 2.26 and performing the ensemble average over the left and right hand side

Z A Z ∅ = ⟨A(H A |H ∅ )⟩ ∅ ⟨A(H ∅ |H A )⟩ A = N A N ∅ .
(2.28)

The average acceptance rate simply tells us that when we end up in the ensemble Z ∅ , we will leave it N A times out of N , and after we arrived in the ensemble Z ∅ we will leave it N ∅ times out of N . Since the total number should be preserved N A + N ∅ = N , we can finally write the right hand side and demonstrate the Eq. 2.25.

Performing a simulation of the generalized ensemble is often a bit unstable and cumbersome. This is why usually the simulation is split in two by running separate simulations of Z A and Z ∅ and evaluating the average of the Metropolis acceptance probability of a SWAP move, without actually performing the move [START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF][START_REF] Bennett | Efficient estimation of free energy differences from monte carlo data[END_REF][START_REF] Srdinšek | Quantum rényi entropy by optimal thermodynamic integration paths[END_REF] . This kind of simulations typically perform considerably better than a pure estimation of the average of the SWAP [START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF][START_REF] Luitz | Improving entanglement and thermodynamic rényi entropy measurements in quantum monte carlo[END_REF][START_REF] Bennett | Efficient estimation of free energy differences from monte carlo data[END_REF][START_REF] Broecker | Rényi entropies of interacting fermions from determinantal quantum monte carlo simulations[END_REF] . The method also works very well at large temperature, where β is small. This is because the acceptance probability in Eq. 2.27 is bounded by 1, and hence the average is well behaved, without very large values as in the case of free energy perturbation, thus leading to lower variance.

However, just like in the case of the free energy perturbation, this methods does not work well when there is no significant overlap between the configurations of the two ensembles (when entropy is large). In this case the average of the acceptance probability goes to one in one of the ensembles and to zero in the other, making the final estimation very sensitive to stochastic error. This can be again relieved by staging and, as shown by Bennett [START_REF] Bennett | Efficient estimation of free energy differences from monte carlo data[END_REF] , by using a logistic function A(A|∅) = 1/(1 + exp(+β(H A -H ∅ ) + c)), called Fermi acceptance probability, in place of the Metropolis acceptance probability. Note that all acceptance probabilities fulfilling the detailed balance condition (see Appendix B) are allowed. The free parameter c in the logistic function allows to modify the acceptance probability, so that the average is non-zero in both ensembles, improving the statistics. Fermi acceptance probability has so far never been applied to the problem of the evaluation of the Rényi entropy. In this work we did not explore this possibility, however due to the strong asymmetry observed in some models it is possible that using Fermi acceptance probability in place of Metropolis, could improve the performance of bridge sampling in evaluation of Rényi entropy.

Thermodynamic integration

The thermodynamic integration is a method which predates the free energy perturbation, the generalized ensemble method and non-equilibrium methods. It was first reported by Kirkwood [START_REF] Kirkwood | Statistical Mechanics of Fluid Mixtures[END_REF] in 1935. All the other methods can be seen as a particular limits or approximations of thermodynamic integration.

Thermodynamic integration is based on a simple observation that the derivative of the free energy with respect to some parameter λ in the Hamitonian is simply equal to the average of the derivative of the Hamiltonian (Hellmann-Feynman theorem)

F ′ = ∂ λ log Z[λ] = -β ∂ λ H(λ) Z[λ]
.

(2.29)

Now we can define smooth deformation of a Hamiltonian, parameterized by λ, such that

SWAP

First copy

Second copy

Figure 2.3: Thermodynamic integration. Instead of swapping between configuration a smooth path is taken, that changes the boundary conditions.

Z[0] = Z ∅ and Z[1] = Z A .
The Rényi entropy of the subsystem A, then becomes

H α A = -β 1 0 ∂ λ H(λ) Z[λ]
dλ.

(2.30)

This way, the entropy is defined as the work required to change the boundary conditions. In the simulation, the λ-integral is performed numerically on a finite grid. This is an approximation that leads to the estimation of Rényi entropy that is not as accurate as the one of the perturbative methods (see Figure 2.4).

The simplest choice of integration path is taking H(λ) = H ∅ + λ(H A -H ∅ ). According to Eq. 2.30, this leads to the average of the energy difference H A -H ∅ over the Z[λ] ensemble. In the case of Rényi entropy, the difference vanishes, except at the boundary condition. Looking back at Eq. 2.21 for the free energy perturbation, and expanding the SWAP operator in the powers of β

S A = ⟨e -β(H A -H ∅ ) ⟩ ∅ = 1 -β⟨H A -H ∅ ⟩ ∅ + O(β 2 ), (2.31) 
we see that while perturbation exactly evaluates the area under the curve, the thermodynamic integration uses only the first order in the expansion, and evaluates it across ensembles visited by the path. Because perturbation takes into account all the orders in the expansion, this considerably slows down the convergence. The integration is similar to bridging, and indeed bridging can be performed along the same path, however the variance of thermodynamic integration does not depend on the area under the curve between two neighboring points. As a result, for sufficiently large free energy difference, the thermodynamic integration should outperform perturbation. Still, along any thermodynamic integration path, an evaluation of Metropolis probability to switch between H(λ) and H(λ ± ∆λ) can be performed and compared, so that the best option is taken (see Figure 2.4). When applied to the evaluations of the Rényi entropy [START_REF] Fodor | Qcd thermodynamics[END_REF][START_REF] Endrodi | The equation of state at high temperatures from lattice qcd[END_REF][START_REF] Buividovich | Numerical study of entanglement entropy in su(2) lattice gauge theory[END_REF][START_REF] Srdinšek | Quantum rényi entropy by optimal thermodynamic integration paths[END_REF] the simplest path typically appears with two contributions of opposite sign coming from λ < 1/2 and λ > 1/2. By

Area computed with integration

Accurate area under the curve 0 0 1 0.1 Figure 2.4: Comparison between thermodynamic integration and free energy perturbation. Free energy perturbation gives an exact estimation of the area, but has a large variance. Numerical integration has smaller variance, but at the cost of introducing an integration error. The perturbation can be used along any integration path, by using staging, and the two estimations can be compared, so that the best one is taken.

increasing the temperature a large peak appears in the vicinity of the ensemble Z ∅ (see Figure 2.5), which in the end requires high precision and a large number of integration steps in order to get low variance estimates of the entropy. The asymmetry, causing problems already in the other approaches, therefore enters again also in the case of thermodynamic integration.

However, the method is very flexible, and any path can be taken. By understanding the landscape of the problem, a regularized path can be envisioned, that improves the shape of the free energy derivative. Additionally, the variance of the final estimation can be reduced by rescaling the parameter λ ′ = f (λ), so that more grid points are placed in the regions with larger variance, and less in the regions with lower variance [START_REF] Lelièvre | Free Energy Computations[END_REF][START_REF] D'emidio | Universal features of entanglement entropy in the honeycomb hubbard model[END_REF][START_REF] Srdinšek | Quantum rényi entropy by optimal thermodynamic integration paths[END_REF] . In the Section 2.3 we will present our work on the problem of finding a better path, designed for Rényi entropy evaluation, and in the Section 3.1 report on how using the freedom of rescaling the parameter λ, one can improve the estimate of Rényi entropy in the Ising model.

Non-equilibrium methods

Non-equilibrium methods present relatively new class of methods, first discovered by Jarzinsky [START_REF] Jarzynski | Nonequilibrium equality for free energy differences[END_REF] . In the context of quantum Rényi entropy they were first used by Alba [START_REF] Alba | Out-of-equilibrium protocol for rényi entropies via the jarzynski equality[END_REF] , and very recently revitalized after an improvement was proposed by D'Emidio [START_REF] Demidio | Entanglement Entropy from Nonequilibrium Work[END_REF] , which sparked further developments in this direction [START_REF] D'emidio | Universal features of entanglement entropy in the honeycomb hubbard model[END_REF][START_REF] Zhao | Scaling of entanglement entropy at deconfined quantum criticality[END_REF][START_REF] Zhao | Measuring rényi entanglement entropy with high efficiency and precision in quantum monte carlo simulations[END_REF] . The method scales much better with the size of the system and was repeatedly used to calculate Rényi entropies of order α > 2. As is in general the case with non-equilibrium methods, they can be challenging to design and generalize. Also, the convergence of the method worsens with the free energy difference, and often it under performs with respect to thermodynamic integration, presented in the previous section [START_REF] Oberhofer | Biased sampling of nonequilibrium trajectories: Can fast switching simulations outperform conventional free energy calculation methods[END_REF] .

The methods are based on quantifying the work W t , done by the system that started in configuration x 0 , and was evolved up to time t with dynamical equations that leave Boltzmann-Gibbs distribution invariant. Examples of such dynamics are Langevin dynamics and Monte Carlo, presented in Appendix D. This work can be then related to the free energy difference via what is called Jarzinsky's equality [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF][START_REF] Lelièvre | Free Energy Computations[END_REF][START_REF] Jarzynski | Nonequilibrium equality for free energy differences[END_REF] 

H α A = 1 β(1 -α) log(E[e -βWt ]), (2.32) 
where the average E is done over all the initial configurations and all the possible realizations of the dynamics from each initial condition x 0 .

In the approach, proposed by D'Emidio [START_REF] Demidio | Entanglement Entropy from Nonequilibrium Work[END_REF] , the non-equilibrium simulations are used in order to speed up the evaluation of the thermodynamic integration. The system is initialized in various configurations in the ensemble Z[0] = Z ∅ and the parameter λ is gradually increased until Z[1] = Z A is reached. By averaging the work done along the path, according to the Eq. 2.32, the entropy is estimated.

Path regularization for thermodynamic integration

As mentioned in Section 2.2.3, the thermodynamic integration equates the work needed to change the boundary conditions in imaginary time to the Rényi entropy. Even though work is not path dependent, different paths lead to the Rényi entropy estimation with greater of smaller variance. In the following we will discuss how one can approach this problem and what is the path that regularizes the derivative and leads to low variance estimate of quantum Rényi entropy.

In its most general form, there is an infinite number of paths that lead from one ensemble to the other. In order to simplify the search we have to restrict to most reasonable subspace of paths. We will assume, that in the case of the Rényi entropy only the boundary conditions that change, should be modified. Paths that modify a larger number of imaginary-time interactions will be more expensive to sample, with larger variance, as more interactions will have to be averaged over [START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF] for any given subsystem size. A search for optimal path will be simplified by having a smaller set of free parameters, which leads us to the simplest 2D parameter space (g, h) of Hamiltonians

H(g, h) = H ∅ + (g -1)K ∅ + hK A , (2.33) 
were K ∅,A operators correspond to the interactions that enforce the boundary conditions: K ∅ (K A ) drives the intra (inter) -replica closure of the particle rings. These terms are depicted in red (blue) in Figure 2.3. This means that the point (1, 0) in the parameter space equals H = H ∅ and the point (0, 1) equals H = H A . In the case of distinguishable particles, which we will mostly focus on, this leads to

H(λ) = H ∅ (p, x) + i∈A α j=1 m i ω 2 P (g(λ) -1)(x (jP ) i -x (jP -P +1) i ) 2 +m i ω 2 P h(λ)(x (jP ) i -x (jP +1) i ) 2 , (2.34) 
where H ∅ is the extended Hamiltonian of split rings given by Eq. 2.12. We use the periodic notation q Now the question is how can we decide over which path is better, given that the only constraint we have is that the path should start at (1, 0) (H = H ∅ ) and end at (0, 1) (H = H A ). To this end we will define cost functions that lead to optimal paths with respect to the integration error and the variance. Fist we will define a new notation. A path will be defined as a vector p ≡ (g(λ), h(λ)) assigned to every point along the path. In this language the entropy can be written as A natural choice of cost functions would therefore be a line integral over the scalar product between the velocity and the gradient of the variance

(αP +1) i = q (1) 
H α A = 1 0 (∂ λ p) • ⟨K⟩ Z[λ] dλ ( 
F Variance [p] = 1 0 (∂ λ p) 2 • var[K]dλ, (2.36) 
as this will tell us what will be the total variance that we will accumulate along the path. Another possible choice is a line integral over the absolute value of the derivative of the entropy

F Abs [p] = 1 |(∂ λ p)|dλ 1 0 |(∂ λ p) • ⟨K⟩|dλ, (2.37) 
as this will be minimized, when there are no unnecessary negative contributions to the integral. Additionally, numerical integration will perform worse, if the integrand is very fluctuating.

To find the optimal path in this respect we can define another cost function

F Slope [p] = 1 |(∂ λ p)|dλ 1 0 |∂ λ ((∂ λ p) • ⟨K⟩)|dλ, (2.38) 
which is a line integral over the absolute value of the slope of the integrand. Either choice makes the integrand flat as a function of λ. This scheme acts therefore as a path regularization.

Potential spikes at the endpoints will be cut off, and variance decreased. The line integral can be then computed on a much coarser grid, speeding up the calculation and reducing stochastic errors.

In order to study the space of optimal paths we focus on the exactly solvable model of harmonic oscillator and its Rényi entropy of second order, since it reproduces unfavorable behavior reported by Buividovich and Polikarpov [START_REF] Buividovich | Numerical study of entanglement entropy in su(2) lattice gauge theory[END_REF] . We hope that this will give us insights, that will lead to a design of transferable optimal integration path. In the Path Integral (PI) formulation of Z ∅ , each copy of the quantum harmonic oscillator of mass m and frequency ω is described by a ring polymer with beads {x k } k=1,...,P connected by harmonic springs [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] , such that

H = m 2 P k=1 1 τ 2 ℏ 2 (x (k+1) -x (k) ) 2 + ω 2 [x (k) ] 2
x (P +1) =x [START_REF] Orenstein | Advances in the physics of high-temperature superconductivity[END_REF] .

(2.39)

In this model the path is described by a Hamiltonian in Eq. 2.34, and the corresponding gradient fields can readily be computed, by visiting different points on the (g, h) plane and recording average spring energy of corresponding boundary conditions K = α j=1 ((x

(jP ) i A - x (jP -P +1) i A ) 2 , (x (jP ) i A -x (jP +1) i A ) 2 )
. By inspecting the gradient field of the 1D Harmonic oscillator (Figure 2.5c), we can clearly see that the path connecting linearly the two endpoints, i.e. the one that has commonly been employed so far, produces two spikes in ⟨∂ λ H(λ)⟩ Z[λ] at (1, 0) and (0, 1), exactly where the scalar product of the path direction (∂ λ p) with the gradient field is the largest. The origin of spikes can be traced down to the increase of K A when approaching the (g, 0) axis and to the increase of K ∅ when approaching the (0, h) axis. The values of K A and K ∅ along these axes further increase with temperature. The increase in K A upon approaching (g, 0) happens because the average energy of the joint interaction computed over Z ∅ is greater than the split one, because copies do not interact with each other in Z ∅ and, thus, they can be at relatively large distances. This contribution grows with the square of the interbead distance and with the phase-space size. Moreover, as the temperature increases the de Broglie wavelength shrinks, since the interaction energy goes as 1/β. Copies collapse to almost point-like particles and this further contributes to the diverging cost of joining them. An analogous contribution to K ∅ appears upon approaching (0, h), further increasing the overall uncertainty of the integral. These drawbacks should be present in any system where entropy and intra-bead interaction is large, be it due to temperature, or due to some other parameter.

This teaches us that in order to regularize the path, one should avoid moving towards directions where previously non-existing interactions are switched on in H(g, h). Thus ideal path starting at (1, 0) should be moving towards decreasing g, while keeping h constant. However, eventually the path must reach the point (0, 1) and hence has to slightly increase also h. The optimal path is the one that balances between both processes. An family of curves with these properties can be parameterized with a real parameter λ as

g(λ), h(λ) = (1 -λ) l , λ l with λ ∈ [0, 1]. (2.40)
Looking at the Figures 2.5a-b, we can see that indeed these curves move much more perpendicular to the gradient, while at the same time they end up at the correct endpoints. Now we can use the cost functionals to find the optimal value of the parameter l. Looking at the Figure 2.6(a), it turns out that l = 2 optimizes the path based on |(∂ λ p) • K|, while l = 3 is the optimal power law based on var[K] (Figure 2.6(c)) and the overall slope along the path (Figure 2.6(b)). From these results a good option at high temperatures (systems with strong imaginary time interaction) is l = 3. In the next chapter we will report on various tests of this choice on exactly solvable models, where we will demonstrate that the methods works in models spanning from spin chains to systems of coupled harmonic oscillators and simulations of protons in molecules. /

Chapter 3

Benchmarking on simple Systems In the following, we will report on our studies done by using the path regularization method presented in Section 2.3 in two classes of simple models: the Ising model (an integrable model undergoing a quantum phase transition) and the system of two protons moving in the potential of the formic acid dimer.

The 1D Ising model in transverse magnetic field

The Ising model was presented in Section 2.1.2. It is a very simple discrete model, commonly used in the literature for comparison between different methods. It describes a quantum many-body system, featuring a quantum phase transition at r = 1, and large entanglement. Since in this case the regularizing parameters (g(λ), h(λ)) introduced in Section 2.3, describing a thermodynamic integration path, modify the boundary condition of all the particles in a subsystem, this offers a good test to the extensivity of our approach (Section 2.3), as well as generality, given that this is very different system in comparison with the harmonic oscillator on which the path was optimized. We show that the method performs very well for large subsystem sizes and large values of entropy, where it outperforms the perturbation method based on bridging and staging (see Figure 3.1).

Within the PI framework, the model is mapped into the 2D classical anisotropic Ising model, described by Eq. 2.17. The Ising model substantially differs from the ab initio Hamiltonian already by the fact that spins are allowed to take only two values. This bounds the interaction in the imaginary-time direction [START_REF] Orenstein | Advances in the physics of high-temperature superconductivity[END_REF] and the divergence at T → ∞ such as the one observed in the harmonic oscillator (see Figure 2.5) does not appear. However, the interaction strength still diverges with r → 0, causing large variance of the potential energy of connecting two split ensembles. This means that the linear path does not perform well for small values 0.0 0.5 1.0 1.5 2.0 2.5 3. 2)) in the units of ln(2) computed with thermodynamic integration via path regularization (red crosses) and transition probability sampling based on the SWAP operator (blue crosses) compared with analytical results (dashed-black line) for L = 64 and β = 3. Inset: Comparison of system-size scaling for both methods at different r, where lines are linear fits.

of r (see Figure 3.2). The regularizing path introduced in Section 2.3 is therefore relevant again, because it significantly reduces the variance and allows one to obtain accurate results at any value of r up to very large system sizes.

The most efficient sampling scheme for this system is not the standard Metropolis-Hastings algorithm, but the cluster algorithm adapted to the anisotropic 2D classical Ising model [START_REF] Blöte | Cluster monte carlo simulation of the transverse ising model[END_REF] , where all proposed moves are accepted. Instead of flipping one spin or the whole row, a cluster of spins pointing to the same direction is created. The algorithm starts by choosing one spin at random. Then all the neighboring parallel spins are added to the cluster with a probability p c = 1exp(-2βJ), where J = 1 for the neighbors in the first index in Eq. 2.17 and J =log(tanh(τ r))/2τ for the neighbors in the second index. Each spin that is added to the cluster is also placed into a stack. After all the neighbors of the first spin have been considered for inclusion in the cluster, spins are retrieved from the stack, and now their neighbors are considered for inclusion in the cluster. The algorithm proceeds until the stack is empty. The acceptance probability p c fulfills the detailed balance condition and cancels out other terms, so that after the growth of the cluster stops all the spins are inverted.

The algorithm has to be slightly modified for the purpose of thermodynamic integration, where the spins lying on the boundary have three neighbors in the imaginary-time index. The cluster can grow in both directions there, while the probability of growing in each direction is controlled by the same probability p c , just that now J depends on the weights (g, h), so that J = -g(λ) log(tanh(τ r))/τ for adding a parallel spin according to the Z ∅ boundary conditions, and J = -h(λ) log(tanh(τ r))/τ for adding a parallel spin according to the Z A boundary conditions. The code is available on github [161] .

Comparison between the methods

In order to make a fair comparison between the thermodynamic integration with the path regularization and the direct evaluation of the partition function ratios in Eq. 2.24, the SWAP 2)) in the units of ln(2) computed with different integration paths l = 3 and l = 1 in the Ising model with 64 spins and β = 3. Rescaling λ is not sufficient to obtain a reliable result at l = 1 and path regularization is needed. The error bars were computed with the block analysis and numerical integration error was not considered, for which reason the error bars are smaller than the total error for r = 0. Indeed, when the variance is large, integration error increases as well.

operator was split in a number of steps equal to the number of steps in the thermodynamic integration, and the same sampling scheme was used, with the same number of cluster algorithm steps. We computed the Rényi entropy of second order S 2 full with the whole system as a subsystem, because it is the hardest quantity to evaluate. We ran 16 integration steps and 8 intermediate points with "SWAP" operator, based on Metropolis-Hastings transition probabilities ⟨min(1, exp(-β∆H))⟩ Z ∅ /⟨min(1, exp(β∆H))⟩ Z A . The results of this comparison are shown in Figure 3.1.

The full entropies obtained with the SWAP scheme and the path regularization both agree well with analytical results over a wide range of magnetic field strengths (Figure 3.1). S 2 full nicely captures the quantum phase transition at r = 1, by showing a clear peak. In order to estimate the maximum system size that the path regularization procedure can afford, we pushed the entropy calculation to very long spin chains, where the thermodynamic limit is reached. In the limit of large L, the full entropy scales as L, due to the finite temperature. From the inset of Figure 3.1, it can be seen that this limit is reached at relatively small system sizes. It is also seen that our procedure outperforms the SWAP-based one, since the former can still be applied to systems larger than 600 sites where S 2 full exceeds the value of 50, while the latter is broken already before 400 sites [START_REF] Humeniuk | Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems[END_REF] , and even for lower values of entropy (squares in the inset of Figure 3.1). Indeed, one of the strengths of the path regularization method is that the number of integration steps remains constant with the subsystem size. By increasing the level of entanglement, the time cost grows linearly, while in methods based on Eq. 2.21, it grows exponentially.

Different integration paths in 1D quantum Ising model

Although the path regularization with l = 3 leads to good results with low variance in the 1D Ising model (Figure 3.4b), one is still left with the freedom of adjusting the density of points (speed) along the path, based on some quadrature rule. Thus, more points can be added close to the difficult endpoints, resulting in a slower pace along the path and, hence, reducing the weight of integration steps with high-density points. This reshapes the integrand and can further reduce the integration error (see Section 2.2.3). The drawback of this approach is that a denser integration grid could lead to an increased computational cost, if there is no particular gain in making the integrand smoother. 

∂ λ g(λ )
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∂ λ h(λ ) b) g(λ )
g(sin 2 (πλ /2)) Figure 3.3: Comparison between the path in Eq. 2.40 and the rescaled path in Eq. 3.1. a) The parameters in the Hamiltonian as functions of λ for parameters in Eq. 2.40 (blue) and rescaled λ ′ (purple). The rescaling increases the density of points close to the endpoints. b) The derivatives of the parameters in Eq. 2.40 and the rescaled ones. When the derivative of the Hamiltonian with respect to λ is sampled along the integration path, the kinetic terms are weighted by the derivatives, according to Eq. 2.30 and Eq. 2.35. Not just that more points are added at the origins, also the prefactor at the derivative changes, which reshapes the integrand. for the path regularization in Eq. 5 with l = 6 (blue crosses) and for the same path but with rescaled λ, according to Eq. 3.1 (green points). b) Second order Rényi entanglement entropy computed for half of the system (S half ) as a function of r, for the two path regularizations, compared to the analytical result [START_REF] Mbeng | The quantum Ising chain for beginners[END_REF] .

In our analysis of the Ising model, λ was rescaled according to

λ ′ = sin 2 (πλ/2), (3.1) 
so that the density of points increases at the endpoints of the integration path. This helps to further reduce the integration error coming from the unfavorable shape of the integrand (Figure 3.4a). The path regularization proposed in Section 2.3, based on a flexible path direction in the (g, h) Hamiltonian space, is already sufficient to reduce the variance. Rescaling the parameter λ according to Eq. 3.1 on top of the path regularization can merely be used to further enhance the integration efficiency by reducing the number of integration steps required, as shown in Figure 3.4a. The need for path regularisation is demonstrated in Figure 3.2, where the linear path (l = 1) is used together with the rescaled λ ′ , which is not sufficient to reduce the variance.

Formic acid dimer

Proton transfer plays an important role in various chemical and biological processes, such as DNA mutation [START_REF] Jacquemin | Assessing the importance of proton transfer reactions in dna[END_REF] , and enzyme catalysis [START_REF] Klinman | Hydrogen tunneling links protein dynamics to enzyme catalysis[END_REF] , due to the abundance of hydrogen bonds in biological systems. Of particular importance is the double proton transfer, involving only two hydrogen bonds, since it plays a major role in breaking base pairs in DNA [START_REF] Pusuluk | Quantum entanglement shared in hydrogen bonds and its usage as a resource in molecular recognition[END_REF][START_REF] Amico | Entanglement in many-body systems[END_REF][START_REF] Kinz-Thompson | Proton transfer in adenine-thymine radical cation embedded in b-form dna[END_REF] . The formic acid dimer is the smallest system featuring double proton transfer, for which reason it has long been considered as the minimal model of the double proton transfer [START_REF] Li | The barrier to proton transfer in the dimer of formic acid: A pure rotational study[END_REF] . Due to the light mass of hydrogen, quantum effects such as tunneling and zero point motion of the hydrogen's nuclei, called Nuclear Quantum Effects (NQE), play a major role whenever hydrogen bonds are involved [START_REF] Markland | Nuclear quantum effects enter the mainstream[END_REF][START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF][START_REF] Pereyaslavets | On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations[END_REF] . NQE effects were observed to play a major role also in the system of formic acid dimer [START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF][START_REF] Miura | An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer[END_REF][START_REF] Ivanov | Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated[END_REF] , and DNA base pairs [START_REF] Pusuluk | Quantum entanglement shared in hydrogen bonds and its usage as a resource in molecular recognition[END_REF][START_REF] Amico | Entanglement in many-body systems[END_REF][START_REF] Kinz-Thompson | Proton transfer in adenine-thymine radical cation embedded in b-form dna[END_REF][START_REF] Angiolari | Environmental and nuclear quantum effects on double proton transfer in the guanine-cytosine base pair[END_REF][START_REF] Fang | Inverse temperature dependence of nuclear quantum effects in dna base pairs[END_REF] . One of the effects that is believed to lead to concerted proton transfer, as opposed to a step-wise transfer, where ions are created along the way, is quantum entanglement [START_REF] Fillaux | Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues[END_REF] . Such concerted motion is believed to stabilize the complex, as ionization is avoided. In order to explore the possibility of evaluating quantum entanglement in a truly ab initio system we therefore chose to study the formic acid dimer, where proton-proton entanglement is believed to exist. It is made of two molecules that form a dimer via a double hydrogen bond (Figure 3.5c). Due to the 180 • rotation symmetry around the axis connecting the carbon atoms, the PES has two minima, which correspond to the two hydrogen configurations shown in Figure 3.5. They are separated by a barrier that grows with the inter-dimer distance d between the oxygen atoms (d = 2.7 Å in equilibrium [START_REF] Miura | An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer[END_REF][START_REF] Tachikawa | Proton transfer vs complex formation channels in ionized formic acid dimer: A direct ab initio molecular dynamics study[END_REF] ), which determines also the hydrogen bond stretch. During the double proton transfer the two molecules get closer, up to d = 2.4 Å, and the barrier dwindles. Due to the light hydrogen mass, at intermediate distances quantum effect become prominent [START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF][START_REF] Miura | An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer[END_REF][START_REF] Ivanov | Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated[END_REF][START_REF] Fillaux | Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues[END_REF] and the barrier is low enough that the two configurations are expected to be entangled, leading to a concerted proton motion.

In our simulations, we restricted the protons to move along the hydrogen bond, and we fixed the positions of all the other atoms, thus reducing the PES to two dimensions. We evaluated the PES as a function of d by means of the Coupled-Cluster with Single, Double and perturbative Triple excitations (CCSD(T)) method, using the standard library implemented in the Python-based Simulations of Chemistry Framework (PySCF) package [START_REF] Sun | Pyscf: the python-based simulations of chemistry framework[END_REF][START_REF] Sun | Recent developments in the PySCF program package[END_REF] with the 'STO-3G' basis set. The PES constructed in this way has a global minimum close to the one of the transition state (see Figure 3.6). Because the method is time consuming, the PES was first determined on a 30 × 30 points grid, and then Bspline-interpolated on a denser grid of 10, 000 × 10, 000 points. The position of the other atoms was obtained by optimizing the geometry of the system in a symmetric configuration, i.e. at the transition state, where the two protons are equally shared. This could affect the results at larger distances, however we are not interested in the effect of heavy atoms on the entanglement.

Numerical evaluation

We evaluated the Rényi entropy using two methods: Monte Carlo sampling, used to get the main results, and exact diagonalization, used for benchmarking when accessible. The comparison between the two further assesses the robustness of the path regularization in Section 2.3.

For the simulation of the ab initio Hamiltonian only a simple algorithm was used in path integral Monte Carlo, consisting of two types of moves. The first move consists in displacing a randomly chosen pair of beads with a random vector drawn from the uniform distribution of width τ ℏ 2 /(2m). The second possible move is a reflection transformation, obtained by changing the sign in front of all the particles' positions in one replica. The potential energy cost of this move is zero, because the potential energy is an even function of positions U (x 1 , x 2 ) = U (-x 1 , -x 2 ). Also the sum over the squares of the distances between beads within each replica, present in the kinetic term (x

(j) 1 -x (j+1) 1
) 2 of Eq. 2.34, remains unchanged. The only contribution to the energy difference comes from the interactions between the replicas, weighted by the parameter h, because the sign changes only for particles in one of the replicas 

(j) i ) = -x (j) 
i . If positions of one of the replicas are reflected, the potential energy does not change, due to the symmetry of the potential. Also the inter-bead distances (black lines and red lines) do not change. The only contribution to the energy difference comes from the interactions between the two replicas (blue lines), captures by Eqs. 3.2 and 3.3.

and equals

∆H = i∈A α j=1 h(λ)m i ω 2 P (x (jP ) i + x (jP +1) i ) 2 -(x (jP ) i -x (jP +1) i ) 2 , (3.2) 
with the notation used in Eq. 2.34, where index i runs through all the particles in the subsystem A, and index j over all the α replicas. Again, the periodic boundary notation q

(αP +1) i = q
(1) i is used. The Eq. 3.2 can be further simplified, by canceling the quadratic terms and writing

∆H -= 2h(λ)ω 2 P i∈A α j=1 m i x (jP ) i x (jP +1) i . (3.3)
Therefore, the energy cost of flipping all the particles in one replica is zero in Z ∅ ensemble, and all the flips are accepted, while for the connected particles the only energy difference involved comes from the boundary, and is proportional to h(λ). In the connected ensembles the moves are accepted with Monte Carlo probability min 1, exp(-τ ∆H -) , as discussed in Appendix B. This second type of move was necessary for sampling the double well potential, where particles get stuck in one of the wells when the barrier is too high. In this case, ergodicity would not be preserved without the reflection move (for more information see Section 4.2.1). This additional Monte Carlo move was enough to preserve ergodicity in our simulations. Exact diagonalization was performed using the Hamiltonian truncation method. With this method the infinite Hilbert space is truncated in such a way that the space becomes finite and the low-energy properties stay the same. One can test the correctness of the results by gradually increasing the space and by looking at the eigenvalues. Since the Hilbert space of the system is a product of two one-particle states, V 1 ⊗ V 2 , the space can be truncated by introducing only a finite number of possible positions for each particle. In the position space, the kinetic term is represented by finite differences while the potential is diagonal in the basis. We performed calculations on grids spanning from 30 × 30 to 100 × 100 points. For the potentials considered, small grids were already extremely accurate. Once the low-lying eigenvalues are known (at low temperature the high-energy contributions can be neglected), the evaluation of the full entropy is straightforward. However, for the entanglement entropy the partial trace has to be performed. Because we know how the space is constructed, the trace can be expressed as

ρ A = i p i,i x ′ ,x ′′ y c i,x ′ ,y c * i,x ′′ ,y |x ′ ⟩⟨x ′′ |, (3.4) 
where i runs over the eigenstates, c i,x ′′ ,y are the coefficients that determine the eigenstates expansion over the position basis set: |v i ⟩ = x y c i,x,y |x⟩ ⊗ |y⟩. The partial trace requires just the sum over y. After this is computed for each pair x ′ , x ′′ , a reduced density matrix is obtained. The remaining object to calculate is the trace of ρ A raised to the power α (Eq. 1.30), which can be done without any diagonalization. Using these methods, we obtained the results presented in Figure 3.5. Since the Rényi entropy of the 2-proton subspace ("full" entropy) is nonzero at distances where the system is in a mixed state, we can extract a lower bound for quantum correlations by computing the quantum conditional entropy (Section 1.2.3.1) between the full and the single proton subspace. With increasing d, the PES minimum splits in two (see Figure 3.6), and entanglement between the protons drastically increases. The results show that the entanglement is present along the full range of distances, explored during the double proton transfer (d = 2.4 -2.7Å [START_REF] Miura | An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer[END_REF] ). However, the temperature plays a major role. At room temperature the entanglement is considerably lower compared to the one at 100K. Remarkably, it persists up to temperatures as large as 500K for some intermolecular distance. This is because the configurations with maximally entangled protons are not the configurations with the lowest energy. We note that at high temperatures the thermal motion of the full molecular complex must be taken into account. Nevertheless, the effect is so strong that the entanglement should still be relevant well above room temperature even in this case. /

Chapter 4

Path Integral Ornstein-Uhlenbeck Dynamics (PIOUD) Similarly to Metropolis-Hastings algorithm, used to obtain results in the Chapter 3, PIMD algorithms generate random paths sequentially. However, the new paths are generated by evolving an initial path according to dynamical equations of motion [START_REF] Marx | Ab initio path integral molecular dynamics: Basic ideas[END_REF][START_REF] Markland | Nuclear quantum effects enter the mainstream[END_REF] , with 100% acceptance rate. The equations of motion are governed by the full path integral Hamiltonian in Eq. 2.12. Among various PIMD algorithms, Path Integral Ornstein-Uhlenbeck Dynamics (PIOUD) uses dynamical equations [START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF] driven by the forces acting on the coordinates along the trajectory, and a Langevin thermostat. Langevin dynamics equations are solved in order to introduce the coupling with a thermal bath. This approach is free from the need of designing smart Monte Carlo moves and is therefore much more transferable to the simulations of more complex higher dimensional models. Nevertheless, solving the Langevin equations of motion should be done efficiently. To this end, we developed a framework that allows the evaluation of Rényi entropy using PIOUD.

Langevin dynamics and PIOUD

Langevin equations are a set of stochastic equations of motion, that sample the phase space according to the canonical distribution [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] . For the path integral Hamiltonian in Eq. 2.12, the equations are given by the prescription [START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF] ṗ = -γ p -Kx + f (x) + η(t) (4.1) ẋ = p, where p and x are DN P α-dimensional vectors of momenta and positions of the whole system rescaled by mass (p i = p i / √ m i and xi = x i √ m i ), and f is the vector of forces. The forces are calculated as derivatives of the potential energy surface V , as f = -∇ xV . The matrix

Langevin dynamics and PIOUD

K is non-diagonal in the imaginary time indices, and represents the harmonic interaction in imaginary time, according to Eq. 2.12. It can be written out as

K (j)(k) il = ω 2 P δ il 2δ (j)(k) -δ (j)(k-1) -δ (j)(k+1) . (4.2)
The only stochastic contribution comes from η, a normally distributed noise with zero mean and unit variance. Together with the damping, controlled by γ, these two terms fix the temperature in accordance with the fluctuation-dissipation theorem [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] . Usually, γ is a diagonal matrix. In a more general setting, where forces are sampled stochastically because affected by intrinsic errors, such as the ones evaluated, for instance, by electronic quantum Monte Carlo methods [START_REF] Attaccalite | Stable liquid hydrogen at high pressure by a novel ab initio molecular-dynamics calculation[END_REF] , it can also have off-diagonal terms, related to the force covariance matrix. The forces in Eq. 4.1 come from both the harmonic and inter-particle interactions, thus they span very different energy scales. This renders the sampling very inefficient. The solution employed in the PIOUD algorithm is to split the time evolution in two operators, using the Trotterisation from Eq. 2.4. Indeed, the time evolution described by the action of the Fokker-Planck Liouville operator is split with symmetric trotterization to yield e iLδt = e iL BO δt/2 e iL harm δt e iL BO δt/2 + O(δt 3 ),

where L BO (BO stands for Born-Oppenheimer [START_REF] Born | Zur quantentheorie der molekeln[END_REF] ) contains the propagation of the particles interacting at each imaginary time slice through the forces f, neglecting the harmonic interaction between the beads, which is instead included in L harm . Both L BO and L harm contain stochastic and dissipation terms, where the γ matrix is adjusted for each propagator. While in the BO ensemble the γ matrix is used as a user-defined constant, in the harmonic one it is chosen according to the optimal damping scheme for harmonic oscillators [START_REF] Rossi | How to remove the spurious resonances from ring polymer molecular dynamics[END_REF] . This corresponds to writing it in the eigenbasis of the matrix K in Eq. 4.2, where γ is a diagonal matrix with elements [START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF] γ

(k) harm = 2Ω k if 2Ω k ≥ γ 0 , γ 0 otherwise. (4.4)
Ω k are eigenvalues of matrix K, and now the upper index (k) indicates the corresponding k-th eigenvector in the beads space. This choice for γ harm not only optimizes the damping process but also guarantees that [γ harm , K] = 0. This latter condition is needed to integrate exactly the Ornstein Uhlenbeck dynamics, i.e. the thermalized Brownian quantum diffusion, encoded in L harm [START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF] . This step is at variance with the Path Integral Langevin equation (PILE) algorithm [START_REF] Ceriotti | Efficient stochastic thermostatting of path integral molecular dynamics[END_REF] , where the Langevin thermalization and the deterministic evolution of the harmonic part of the Hamiltonian are done separately, with an additional Trotterization break-up. As in the BO ensemble, the damping coefficient related to the center of mass dynamics (γ 0 ) has to be found by optimizing the diffusion coefficient of the process by running short simulations. Once the optimal value found, it is transferable to similar systems. The algorithm then proceeds as follows. First, the eigenvalues of K are found. The propagator e iL harm δt can be evaluated exactly if written in the K eigenbasis, owing to the fact that there are no contributions from physical forces f present. From here on the algorithm consists of rotating the coordinates back and forth between the eigenbasis of K and the coordinate basis, according to the following prescription:

1. Update the particles momenta by applying the e iL BO δt/2 propagator, according to the equation p(t) = e -γ BO δt/2 p(tδt/2)

+ t t-δt/2 dt ′ e γ BO (t ′ -t) [f(t -δt/2) + η(t ′ )]; (4.5)
2. Transform the vectors of positions and momenta of each particle from the coordinates basis to the K eigenbasis;

3. Propagate them exactly, by means of the e iL harm δt propagator;

4. Perform the inverse transformation, back to the coordinate basis;

5. Evaluate the forces coming from the physical potential as f(t + δt) = -∇ qV (t + δt),

6. Close the symmetric form by applying the e iL BO δt/2 propagator in Eq. 4.5 again, according to Eq. 4.3.

We specify that when deterministic forces are used (as the ones we employ generated by effective potentials), one can safely set γ BO = 0 in step 1. and 6. Indeed, the coupling with the Langevin thermostat in L harm is enough to thermalize the system at the target temperature [START_REF] Mouhat | Fully quantum description of the zundel ion: Combining variational quantum monte carlo with path integral langevin dynamics[END_REF] . In that case, steps 1. and 6. are reduced to simple velocity Verlet updates.

Path regularization with PIOUD

In the case of the Rényi entropy we want to simulate the extended ensembles Z A . This affects also the PIOUD algorithm, since in this case the matrix K in Eq. 4.2 depends on the lower index as well. Indeed, particles belonging to the subsystem A have modified boundary conditions, that are functions of the parameters g and h (Eq. 2.33). The new K matrix should therefore be

ω 2 P δ il δ i∈A K(j)(k) (g, h) + δ i / ∈A K(j)(k) (1, 0) , (4.6) 
when the subsystem A is considered in the evaluation of the Rényi entropy. The upper index is again periodic, with period αP . The new smaller matrix K(j)(k) (g, h) includes all the ensembles described by Eq. 2.34. It is a function of parameters g and h, defined as

K(j)(k) (g, h) =          ω 2 P (1 + g + h)δ (j)(k) -hδ (j)(k-1) -δ (j)(k+1) -gδ (j)(k+P -1)
for (j mod P ) = 0

ω 2 P (1 + g + h)δ (j)(k) -δ (j)(k-1)
hδ (j)(k+1)gδ (j)(k-P +1) for (j mod P ) = 1

ω 2 P 2δ (j)(k) -δ (j)(k-1) -δ (j)(k+1)
otherwise.

(4.7) The structure of the K matrix is illustrated in Figure 4.1.

In consequence, with the new K matrix of Eq. 4.6, different particles have different eigenvalues and eigenvectors, depending on which subsystem they belong to. The same should therefore hold also for the γ matrix, that now depends on the particle (lower) index as well, since the K eigenvalues depend on it. What we proposed [START_REF] Srdinšek | Rényi entropy of quantum anharmonic chain at non-zero temperature[END_REF] is to simply extend the prescription in Eq. 4.4, and write

                         gh -1 -g -h -1 2 . . . . . . . . . . . . . . . 2 -1 -g -1 gh -h -h gh -1 -g -1 2 . . . . . . . . . . . . . . . 2 -1 -h -g -1 gh                          (1) 
[γ (k) harm ] i = 2Ω (k) i if 2Ω (k) i ≥ γ 0 , γ 0 otherwise. (4.8)
This has profound implications, as it shows that this type of Langevin thermalization cannot work in an integration scheme where the propagation of the harmonic part is not diagonal in the lower index. Nevertheless, our choice of γ harm in Eq. 4.8 still fulfills the condition [γ harm , K] = 0 by construction. Therefore, L harm can be exactly integrated even with the optimal damping scheme of Eq. 4.8, appropriately generalized for the extended Hamiltonian in Eq. 2.34. The algorithm presented in the previous section is then modified only at the beginning. Now, the eigenvalues of K(j)(k) (g, h) are found for either of the two cases in Eq. 4.6, and coordinate transformation has to be performed for each case separately.

Hybrid PIMD-PIMC implementation

Thermodynamic integration is based on sampling the derivative of the Hamiltonian of the system along the integration path defined by the parameters (g(λ), h(λ)). In the case of the regularizing path, this reduces to the sampling of the interaction energy in the imaginary time according to Eq. 2.33, between the beads that enforce the imaginary-time boundary conditions. In order to accurately evaluate the Rényi entropy the two replicas of the system must visit all the relevant regions of the phase space, because the energy of the interaction K A , connecting the two replicas, depends on the distance between them. Therefore, if replicas of the system get trapped in a global minimum, the value of K A will get either too large, if the two replicas are in different minima, or too small if they are in the same minima.

Examples of such systems are the protons in the formic acid dimer in Section 3.2, the anharmonic chain in Chapter 5 and water ice under high pressure in Chapter 6. In all of these systems there exist phases with two or more degenerate global minima. If in these systems two replicas get trapped in two different global minima because the potential energy barrier ∆V is much larger than K A , the entropy will become extremely large, due to large K A . On the other hand, if replicas get trapped in the same minima, the entropy will be too small, because other configurations should be visited in ensembles with small λ, close to Z ∅ , where there is no interaction between the replicas. In the case of the anharmonic chain, the first case results in vary large entropy, diverging with the minimum-minimum distance, while the second case results in vanishing entropy, even though the entropy should equal to log(2), since the two minima are degenerate and have the same volume.

In order to resolve this issue, we developed a hybrid PIMD-PIMC sampling scheme. In this scheme, at every N f steps of a regular PIMD simulation, a Monte Carlo move (see Appendix B) is proposed that performs a symmetry operation on one of the replicas, and maps it to the other minimum. The move is then accepted with Metropolis-Hastings probability min 1, exp(-τ ∆K A ) , according to Eq. B.7, because the other terms in the initial and the transformed Hamiltonian cancel out.

The potential energy difference between the initial configuration x 1 , ..., x N and the flipped one F (x 1 ), ..., F (x N ), where F designates the symmetry operation that flips a coordinate form one minimum to another, should vanish ∆V = V (F (x 1 ), ..., F (x N )) -V (x 1 , ..., x N ) = 0 because the two minima are degenerate. Sometimes, the symmetry is not exact, and connect only local minima, so that ∆V ̸ = 0. Even in this case, the algorithm could be used, as in the simulations of ice VII, to speed up the sampling of different local minima, which can improve the statistics of K A .

The energy difference coming from the interaction in the imaginary time in Eq. 2.34 should again cancel out for transformations F that preserve inter-bead distances in each replica. This is because the interaction depends on the inter-bead distance, and therefore ∆K = F (x

(j) 1 ) -F (x (j+1) 1 ) 2 -x (j) 1 -x (j+1) 1 2 = 0.
The only change in the energy, given by the Hamiltonian in Eq. 2.34, comes from the interactions K A at the boundary, weighted by h(λ). The energy cost can therefore be expressed as

∆K A = i∈A α j=1 h(λ)m i ω 2 P F (x (jP ) i ) -F (x (jP +1) i ) 2 -x (jP ) i -x (jP +1) i 2 , (4.9)
with the notation used in Eq. 2.34, where index i runs through all the particles in the subsystem A, and index j over all the α replicas. Again, the periodic boundary notation q

(αP +1) i = q
(1) i is used. Therefore, the energy cost of flipping all the particles in one replica is zero in Z ∅ ensemble, and all the flips are accepted, while for the connected particles the only energy difference involved comes from the boundary, and is proportional to h(λ). If it is impossible to devise a symmetry operation F which preserved the distances, the move becomes very expensive, and will be always rejected.

Another contribution to the energy, comes from the classical kinetic energy in Eq. 2.12. The symmetry F , changes only the positions, and does not have to change the momenta, however, any transformation of momenta, that preserves the total classical kinetic energy can be proposed, and accepted with no cost. Therefore, it is useful to transform the momenta in such a way as to help to sample the ensemble.

In Chapters 5-6, the two symmetry operations are different. In Chapters 5 the system is symmetric under F (x

(j) i ) = -x (j)
i , just like in the formic acid dimer in Section 3.2. In this case, the velocities of particles can be reflected as well, so that particles moving away from the origin, will move away from the origin, also in the other minimum. In Chapter 6 the system is symmetric under the translation in the direction of the polarization F (x

(j) i ) = x (j)
i ↑z, where |z| is equal to the size of the unit cell, and x (j) i ↑ are the coordinates of the particle above the particle with index i. In this case the momenta can simply be mapped by F v (p

(j) i ) = p (j) i ↑ ,
since the new configuration is merely a translated one.

Testing the PIOUD implementation

A good testing ground for continuous implementations are quadratic Hamiltonians (integrable systems), describing systems of coupled harmonic oscillators, that can be solved exactly. The models are called quadratic, because their Hamiltonian can be expressed as a quadratic form

H = K + x T Ax, (4.10)
in terms of the symmetric matrix A of dimension D × D, and a vector x of "displacements" of D oscillators. K is the kinetic term. If he hamiltonian includes an additional linear term, we can again recast it in the form of Eq. 4.10 by completing the square. The evaluation of Tre -βH then reduces to trivial Gaussian integrals. By consequence all the solutions can be written as Gaussian functions, allowing for an analytical treatment. Diagonalisation of such Hamiltonian, amounts to finding the eigenvalue decomposition of matrix A = O T E A O. In this form, the Hamiltonian describes D independent harmonic oscillators with eigenmodes Ox, and frequencies given by E A . This means that such systems can be strongly entangled in the original basis x. For this reasons such Hamiltonian offer an ideal benchmark for methods aiming to quantify entanglement in continuous many-body models. In the following we will use the system of two coupled oscillators for such tests, as in this case a complete analytical formula can be easily obtained. The model can be used to describe also many other physically relevant systems. Notable examples are free massive bosonic fields [START_REF] Srednicki | Entropy and area[END_REF] and coupling between matter and light [START_REF] Dubail | Large random arrowhead matrices: Multifractality, semilocalization, and protected transport in disordered quantum spins coupled to a cavity[END_REF][START_REF] Wellnitz | Disorder enhanced vibrational entanglement and dynamics in polaritonic chemistry[END_REF] .

Another potentially interesting application of these models is the exact evaluation of their path integral representations at finite P (see Section 2.1). Such an evaluation offers a way of analyzing the error introduced by restricting to finite P , and also performing exact path regularization done only numerically in Section 2.3.

Two oscillators

The model of two coupled harmonic oscillators is described by the Hamiltonian

H(p 1 , p 2 , q 1 , q 2 ) = p 2 1 2m 1 + p 2 2 2m 2 + m 1 ω 2 1 2 q 2 1 + m 2 ω 2 2 2 q 2 2 -mω 1 ω 2 Γq 1 q 2 (4.11)
The Hamiltonian is bounded from below only for |Γ| < 1 where there exist a global minimum at the point (x 1 , x 2 ) = (0, 0). Since the Hamiltonian comes in a quadratic form, the coordinate system can be rotated in such a way that it actually describes two non-interacting Harmonic oscillators y 1 = cos δ q 1sin δ q 2 y 2 = sin δ q 1 + cos δ q 2 , (4.12)

with the angles expressed as [START_REF] Makarov | Coupled harmonic oscillators and their quantum entanglement[END_REF] ϵ

= ω 2 2 -ω 2 1 2ω 1 ω 2 Γ , (4.13) tan δ = ϵ ∥ϵ∥ ϵ 2 + 1 -ϵ, (4.14) 
and the new frequencies given by ω2 i = ω 2 i ± ω 1 ω 2 Γ tan δ. Each of these oscillators has a well known density matrix ρ 0 , given by a Gaussian distribution [START_REF] Feynman | Statistical Mechanics: A Set Of Lectures Advanced Books Classics[END_REF] ρ 0 (y i , y

′ i ; β) = 2ξ i -ψ i π e -ξ i (y 2 i +y ′2 i )+ψ i y i y ′ i , (4.15) 
with the new parameters ξ i , ψ i defined as

ξ i = mω i 2ℏ coth(ℏω i β), (4.16 
)

ψ i = mω i ℏ 1 sinh(ℏω i β) . (4.17)
The density matrix of the full system is therefore given by ρ = ρ 0 ( ω1 , y 1 )ρ 0 ( ω2 , y 2 ). In order to perform the traces over original degrees of freedom q 1,2 , we perform a back rotation, by using Eq. 4.12. Now all the traces of all the powers of the density matrix and of the reduced density matrix can be evaluated analytically with multivariate Gaussian integrals.

For the full Rényi entropy of order α, we need to evaluate the trace of the density matrix to the integer power α, ρ α . It can be again expressed as a product of Gaussian distributions, given by the tridiagonal quadratic forms ρ α 0 (y i ; β) = exp(-y T i A i y i /2) of dimension α × α. The new vectors y i contain coordinates y i belonging to separate replicas of a corresponding free mode, and the matrix coupling them is given by a tridiagonal matrix, with terms 4ξ i on the main diagonal and terms -ψ i as sub-and supra-diagonals. There are also two additional -ψ i terms added to the off-diagonal corners. To proceed, we note that the multivariate Gaussian integral of a quadratic form equals the inverse of the square root of its determinant. Therefore, to evaluate the Rényi entropy of the full complex it is enough to evaluate the two determinants |A i |, so that

S α = 1 1 -α log Π i 2ξ i -ψ i π α 2 (2π) α 2 |A i | 1 2 , ( 4.18) 
where Π i represents a product over the index i. For example, when α = 2 it equals to

S 2 = -log(tanh(ℏω 1 β/2) tanh(ℏω 2 β/2)), (4.19) 
demonstrating that indeed the system has a non-degenerate ground state, since S 2 = 0 in the limit of T = 0.

Completely analogous steps have to be done also for the reduced density matrix. By integrating over q 1 we obtain the reduced density matrix of the second oscillator, defined as where the new parameters are given through the prescriptions below: Finally, to get the trace of any power of the reduced density matrix, one can notice that the density matrix of integer power α, ρ α 2 (q 2 , q 2 : β), is again a Gaussian distribution, given by the tridiagonal quadratic form exp(-q T 2 Aq 2 /2) of dimension α × α. Now the vector q 2 contains coordinates q 2 belonging to separate replicas. The matrix A has 4(Φ 2 -Ξ) on the main diagonal and terms (2Φ 2 + Ψ) as sub-and supra-diagonals. There are also two additional (2Φ 2 + Ψ) terms added to the off-diagonal corners. By using the same formula for the multivariate Gaussian integral of a quadratic form, we get the result for the Rényi entropy of subsystem 2:

ρ 2 (q 2 , q ′ 2 ; β) = B exp q 2 2 (Φ 2 -Ξ) +q 2 q ′ 2 (2Φ 2 + Ψ) + q ′2 2 (Φ 2 -Ξ) , ( 4 
Ξ = ξ 1 sin 2 δ + ξ 2 cos 2 δ, (4.21) 
Ψ = ψ 1 sin 2 δ + ψ 2 cos 2 δ, (4.22) Φ = 2ξ 1 -ψ 1 -2ξ 2 +ψ 2 2 2ξ 1 -ψ 1 sin 2 δ + 2ξ 2 -ψ 2 cos 2 δ , ( 4 
S α 2 = 1 1 -α log B α (2π) α 2 |A| 1 2 . (4.25)
which in the case of α = 2 reduces to a much simpler expression

S 2 2 = -log B 2 π 4(Ξ -Φ 2 ) 2 -(2Φ 2 + Ψ) 2 . ( 4.26) 
A similar expression can be found also for the first oscillator, by everywhere replacing cos δ with sin δ and vice versa.

The system represents an ideal continuous model with entanglement and can be used as a benchmarking model for algorithms evaluating entanglement entropy. The level of entanglement in this system can be very large and is diverging upon approaching the limit of Γ = 1 [START_REF] Zhou | Quantum entanglement maintained by virtual excitations in an ultrastrongly-coupled-oscillator system[END_REF] . In the following tests we used the value Γ = 0.94868 that is very close to the critical point Γ = 1, but distant enough to preserve good convergence of the PIOUD algorithm.

First we used the model to confirm that the coupling to the thermal bath in PIOUD implementation of the path regularization is done correctly with the prescription given in Appendix B. We tested the coupling to the thermal bath by looking at the distribution of kinetic energy, expressed as an instantaneous temperature, along the trajectories for different ensembles of coupled Harmonic oscillator along the regularized path, corresponding to the evaluation of the entropy of one subsystem. In this case the friction changes from particle to particle and for different values of the coupling constant, according to the optimal damping scheme. As can be seen in Figure 4.2, all trajectories are correctly thermalized, validating the implemented algorithm. b) 

I = 2 (1 : 2) I = 3 (1 : 2) I = 4 ( 1 : 2) 

Higher orders of the Rényi entropy

We then compared numerical and analytical results for the entropy, and tested the performance of the algorithm in evaluating higher orders of the Rényi entropy. At higher orders of Rényi entropy the test was performed by comparing the simulation with the exact result for the Rényi mutual information from Section 1.2.3.2. It can be expressed as

I α (1 : 2) = S α 1 + S α 2 -S α , (4.27) 
where the lower index specifies which oscillator was chosen as a subsystem in the evaluation of Rényi entropy of order α. This quantity is useful because it cancels out the correlations of the full system and really quantifies the correlations between the particles. However, the quantity is really related to the correlation only in the limit of α → 1, when it cannot be negative. In the system of coupled harmonic oscillators the mutual information of integer order is never negative and follows a similar curve as α = 1. This suggests that it is related to the actual correlation.

It can be seen from the Figure 4.3 that the method agrees well with the analytical results, with a small bias due to numerical integration. The method can cover a very large span of temperatures, thanks to the choice of optimal integration path. However, the bias increases slightly with temperature, see Figure 4.3a, and with increasing order α, see Figure 4.3b. The bias can be alleviated by rescaling the integration parameter λ, but for our purpose this is not needed, since in this work we analyze the low-temperature behavior of the second-order Rényi entropy. /

Chapter 5 I n this chapter we present a study of low-temperature phase diagram of the 1D chain of coupled anharmonic oscillators, which is a discretised ϕ 4 model. By using our new hybrid PIOUD-PIMC algorithm, presented in Chapter 4, we evaluate the Rényi entropy, and show that it can characterize the phase diagram of critical systems not only around the QCP but also away from it, thanks to its capability to detect the emergence of local moments at finite temperature.

Quantum anharmonic chain

The model

The discrete ϕ 4 model, where the field ϕ is discretised in space, analogous to an ultraviolet cutoff, is described by the Hamiltonian

Ĥ(p, q) = N i p2 i 2m + N i θ 2 (q i -qi+1 ) 2 -mω 2 q2 i + λq 4 i , (5.1) 
where q i = ϕ(i) are values of the field at fixed positions i. It depicts a chain of N particles trapped in an external double-well potential of the form U = (θmω 2 )q 2 i + λq 4 i , coupled via the harmonic interaction (-θ qi qi+1 ). The model approximates many condensed matter systems, depending on the interpretation of coordinates q i . If interpreted as displacements of protons in the system, the model can describe hydrogen halides, like HF and HBr [START_REF] Jansen | Theoretical aspects of solid hydrogen halides under pressure[END_REF][START_REF] Springborg | Energy surfaces and electronic properties of hydrogen fluoride[END_REF][START_REF] Wang | Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials[END_REF] , while in higher dimensions it describes super-hydrides, such as LaH 10 [START_REF] Drozdov | Superconductivity at 250 K in lanthanum hydride under high pressures[END_REF] , YH n [START_REF] Kong | Superconductivity up to 243 K in the Yttrium-Hydrogen system under high pressure[END_REF] , H 3 S [START_REF] Drozdov | Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[END_REF] , and even water ice phases, such as VII, VIII, and X [START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Reinhardt | Thermodynamics of high-pressure ice phases explored with atomistic simulations[END_REF][START_REF] Holzapfel | On the symmetry of the hydrogen bonds in ice vii[END_REF][START_REF] Mao | Hydrogen clusters in clathrate hydrate[END_REF] . On the other hand, if q i are interpreted as local dipoles, the same higher dimensional model can represent quantum 5.1. The model dielectric materials [START_REF] Hotta | Quantum critical dynamics in two-dimensional transverse ising model[END_REF] , such as κ-ET 2 Cu 2 (CN) 3 and κ-ET 2 Cu[N(CN) 2 ]Cl, possessing electronic ferro-electricity [START_REF] Lunkenheimer | Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism[END_REF] , and if q i coordinates represent local magnetic moments, the model describes magnetic materials, such as LiHoF 4 [START_REF] Bitko | Quantum critical behavior for a model magnet[END_REF] .

Anharmonic chain

In this work, we study a particular limit of the discrete ϕ 4 model, where the quadratic term is removed, resulting in a single-well anharmonic potential. This is achieved by fixing θ = mω 2 and re-scaling the mass through m → mλ, thus reducing the number of free parameters in the potential term to one, yielding

V (q) = N i q4 i + D 2 qi qi-1 , (5.2) 
for the system with periodic boundary conditions (q N +1 = q1 ). The positive (negative) sign in front of D 2 corresponds to ω 2 < 0 (> 0), resulting in antiferro (ferro) order. In Figure 5.1 we show some possible potential energy surfaces, for the case of two classical particles described by Eq. 5.1. In this case the classical potential features four minima, with two global minima located at

q m 0 = q m 1 = ± mω 2 2λ , (5.3) 
and two other minima described by

q m 0 = -q m 1 = ± mω 2 2λ - θ λ . (5.4) 
The last solutions (Eq. 5.4) become imaginary for θ > mω 2 /2. Thus by fixing θ = mω 2 , we are left only with the global minima, as shown in Figure 5.1.

Quantum phase transition

Classical analysis tells us that there are two degenerate global minima, with ferro (antiferro) order if the coupling constant is purely imaginary (real). The two models are equivalent up to the symmetry transformation of flipping every second coordinate. Here, we chose the antiferroelectric situation for illustrative purpose in Section 5.3. The following solution represents the two minima in the antiferro case:

θ = 0.1 θ = 0.3 θ = 0.5 θ = 1
q m 2i = ± D √ 2 , q m 2i-1 = ∓q m 2i , (5.5) 
if the number of oscillators N is even. A system with odd number of oscillators is frustrated and avoided in this analysis. When N > 8, the classical system can move from one minimum to the other through the creation of kink-antiking pair by flipping only one particle. Once a kink-antikink pair is created, it can grow a domain without additional energy cost. The classical energy cost of kink-antikink pair creation is ∆V = 2D 4 , as opposed to the collective crossing of the saddle point, when the cost increases with the system size N as ∆U = N D 4 /4. By increasing D, particles are pushed further away, while the height of the barrier increases.

In the following, we will focus on the system at temperatures much lower than the height of the barrier, such that k b T << ∆V . Thus, by choosing θ = mω 2 in Eq. 5.1, and fixing the mass, we have one external parameter, D, that tunes the height of the potential energy barrier, similar to pressure in, say, ice. A classical chain would therefore at zero temperature always end up in one of the two global minima, resulting in a long-range order, with particles displaced for a distance 2D/ √ 2. However, due to quantum fluctuations, the particles can tunnel through the barrier for some values of D, and thus on average restore the symmetry ⟨q⟩ = 0, breaking long-range order. Since the height of the barrier increases with D, there must exist a critical value D * , for which quantum fluctuations are not strong enough to restore the symmetry, and the oscillators freeze in a long-range ordered configuration. Indeed such phase transition exist in these models, and was shown to belong to the Ising universality class [START_REF] Wang | Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials[END_REF][START_REF] Milchev | Finite-size scaling analysis of the phi4 field theory on the square lattice[END_REF][START_REF] Toral | Numerical determination of the phase diagram for the cphi 4 model in two dimensions[END_REF][START_REF] Rubtsov | Quantum phase transitions in the discrete φ 4 model: The crossover between two types of transition[END_REF][START_REF] Savkin | Quantum discrete φ 4 model at finite temperatures[END_REF][START_REF] Kim | Path integral monte carlo study of the interacting quantum double-well model: Quantum phase transition and phase diagram[END_REF][186] . The transition can be of displacive (soft mode) or order-disorder type, depending on the height of the double-well barrier. When the barrier is low, particles fluctuate around the origin until the interaction displaces them (hence displacive transition), by softening their shuttling vibrational mode. Conversely, in the large barrier regime, particles tunnel or switch between off-centered positions and, eventually, their interaction can force them to occupy the same double-well minimum if the coupling is ferro, or the opposite one in an antiferro model (hence order-disorder transition). Phase transition can be observed also in the continuous case. However, in this case the critical value of the parameter is not agreed upon [START_REF] Rychkov | Hamiltonian truncation study of the φ 4 theory in two dimensions[END_REF] .

In order to simplify the comparison with realistic systems, we fixed the energy scale by considering oscillators with the proton mass m p = 1837.1799a.u. in atomic units. Indeed, for such choice we observe a phase transition at physical H-H distances and physical height of the potential barrier of 15 kJ/mol -1 per hydrogen bond.

Finite temperature

At finite temperature, where higher excited states also play a role, the phase diagram of the ϕ 4 model is not completely understood, and continues to be a field of active research. It strongly depends on the regime and the dimension of the system [START_REF] Hotta | Quantum critical dynamics in two-dimensional transverse ising model[END_REF] . In higher dimensions, it was discovered that the phase diagram shows the occurrence of classical phase transition, induced by thermal fluctuations, emerging from quantum criticality [START_REF] Savkin | Quantum discrete φ 4 model at finite temperatures[END_REF] . However, different regimes surrounding the QCP are not well understood. In this respect the exception is the infinite-barrier limit, which is analogous to the Ising model (see Section 1.3), with known finite temperature phase diagram in one dimensions.

With the new algorithm introduced in Section 2.3, we aim at pin-pointing the position of the QCP using the Rényi entropy of the system. We will show that the D dependence of the entropy strongly resembles the one of the Ising model criticality and can be used to locate the phase transition, and evaluate its central charge. Then we will present a full study of the low-temperature phase diagram of the model. In the explored temperature range, we discover three regimes. A para regime, with no local order parameter, a disordered regime with local order in imaginary time -corresponding to a local moment formation -but with broken long-range order, and a regime of quasi long-range order, analogous to the domain wall regime of the Ising model. This demonstrates that the Rényi entropy indeed detects the local moment formation. Results show that the line separating the para and disordered regimes, as identified by the maximum of Rényi entropy, exhibits no temperature dependence. This behavior is analogous to the spin-freezing crossover, described by Werner et al. [START_REF] Werner | Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model[END_REF] for fermionic systems, and detectable through imaginary time correlations. On the contrary, the crossover between the disordered and antiferro regimes shows a temperature dependence, with classical fluctuations aiding to break the global symmetry at finite system sizes.

Rényi entropy and quantum critical point

As explained in the Chapter 1, the entropy of a subsystem at zero temperature in 1D grows with the subsystem size only up to a certain threshold. This rule is violated only in the vicinity of the QCP, where the growth is logarithmic and never saturates [START_REF] Eisert | Colloquium: Area laws for the entanglement entropy[END_REF] . One can also reverse this point and claim that by looking at the entropy of a fixed subsystem size, were it is sufficiently large (for example half of the system), one could spot the critical point by the spike in the entropy. Upon increasing the system size, one should see that the entropy saturates everywhere except in the vicinity of the phase transition. Given that the critical system is gapless, the entropy should diverge exactly at the QCP. Extracting the peak is therefore often sufficient for its detection [START_REF] Frérot | Entanglement entropy across the superfluid-insulator transition: A signature of bosonic criticality[END_REF][START_REF] Sharma | Quantum critical behavior of entanglement in lattice bosons with cavity-mediated long-range interactions[END_REF][START_REF] Latorre | Fine-grained entanglement loss along renormalization-group flows[END_REF][START_REF] Lambert | Entanglement and the phase transition in single-mode superradiance[END_REF][START_REF] Serwatka | A quantum phase transition in the onedimensional water chain[END_REF] , however care has to be taken, to show that away from the peak entropy eventually saturates. This will be done, after we fully resolve the position of the peak as a function of the system size N and imaginary-time discretization τ . The same can be said also about the entropy of the system at finite (sufficiently low) temperature. A very nice example of this is the 1D Ising model, where the peak of the entropy at finite temperature exactly coincides with the QCP, at relatively small system sizes [START_REF] Srdinšek | Quantum rényi entropy by optimal thermodynamic integration paths[END_REF] .

In Figure 5.2a we show the scan over the parameter D at 100 K and plot the entropy of half of the system. By increasing the system size, the appearance of the peak is clearly visible already at N = 64. The peak is positioned exactly where it would be expected, at the point where an abrupt change in entropy appears. Because the temperature is not exactly zero, the entropy computed here does not quantify only pure quantum fluctuations.

So far, we neglected the effect of the discretisation in the imaginary time. The phase transition to a para phase is driven by quantum fluctuations, which restore the symmetry of the ground state, while the discretisation in imaginary time exactly truncates these fluctuations. Thus, at finite P the restoration of the symmetric para state will occur slower than in the P → ∞ limit, and the critical value of D, dubbed D * P , will be always smaller than D * ≡ D * ∞ . ) Critical D * depends on how many beads we use. This is demonstrated at 100 K for the entropy of full (solid lines) and half of the system (dashed lines) and N = 64. Also the level of quantum correlations, S 2 half -S 2 f ull (See Section 1.2.3.1), is affected. c) D * P dependence on the reciprocal of ratio τ = 300/P T at N = 64. The plot includes points extracted from data at 100 K (blue color ) and 300 K (orange color ), which seem to agree, for the peaks of the entropy of the half (empty circles) and the full (filled circles) system. In the inset, a clear dependence on τ is demonstrated. By a linear extrapolation in τ , the critical D is predicted to be D * ∞ = 0.405 ± 0.001. Continuous curves in a-b) are splines fitted on the data. They have been used to determine the maxima.

The discretisation error typically depends on the parameter τ = β/P , and should be studied for each observable separately [START_REF] Samson | Time discretization of functional integrals[END_REF][START_REF] Bruch | Direct evaluation of statistical mechanical path integrals[END_REF] . Convergence can be slow, or even not reachable for some observables [START_REF] Hoffman | The effect of discretization on a path integral expression for the one-electron density[END_REF] . In this model, the effects are quite strong on the position of the phase transition (Figure 5.2b), if compared with the case of N = 2, where τ = 0.06 already coincides with the analytical result. It can be clearly seen that τ shifts the position of the critical point, but also affects the scaling with the subsystem size, since the curves of S 2 half (D) and S 2 f ull (D) depend also on τ . By decreasing τ , the full entropy decreases, which means that the system is more entangled, which is consistent with a better description of the quantumness of the particles.

In order to extrapolate our results to the exact limit, we also studied the dependence of the critical value on τ in Figure 5.2c. There, we compared the results at two different temperatures and for the entropy of the half and full system at fixed N . By doing so, we can see that the peaks at different temperatures and different subsystem sizes fall on a universal curve (see Figure 5.2c). Moreover, for sufficiently small τ the dependence becomes linear in τ , as shown in the inset of Figure 5.2c. This is not surprising, and it is observed for many convergent observables [START_REF] Samson | Time discretization of functional integrals[END_REF][START_REF] Bruch | Direct evaluation of statistical mechanical path integrals[END_REF] . A linear extrapolation can thus be used to extract the critical value D * in the limit of τ = 0, which we compare with a previous estimate reported by Wang et.al [START_REF] Wang | Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials[END_REF] . By using the Cumulant intersection method [START_REF] Milchev | Finite-size scaling analysis of the phi4 field theory on the square lattice[END_REF] (CIM) at fixed τ , they predicted the critical value of D * = 0.4. However, the Figure 5.3 shows that a careful scaling analysis shifts the transition to the slightly higher value of D * = 0.405 ± 0.001. The colored sets of points are in the vicinity of the phase transition. It is clearly visible that for a general D the entropy saturates, while it keeps growing in the critical regime. c) Scaling for the N = 64 chain at critical D, for various values of the ratio τ = 300/P T . The solid lines are fits to the points. Effects are relatively small and convergence is fast. In the inset, we show the parameter in front of the fitted logarithmic terms as a function of τ . By a crude linear extrapolation, c τ =0 is extracted.

Scaling of the entropy

The previous procedure could raise some objections, because we analyzed the entanglement of a ground state still dressed by thermal fluctuations ( although at a very small temperature, as dictated by the use of path integrals). In view of this, we wanted to see if the critical point, discovered by inspecting the peak, corresponds to a logarithmic scaling as a function of the subsystem size. In Figure 5.3a-b we show, that for the values below and above the critical point, the entropy indeed saturates upon increasing the subsystem size. This feature persists even upon increasing the number of particles in the system.

Since the entropy clearly diverges close to the QCP and saturates elsewhere, we compared the scaling with the logarithmic curve, as discussed in Section 1.3.2.1. Due to the remarkable connection between conformal invariant quantum field theories (CFT) and critical phenomena, the scaling depends on the CFT central charge c of the same universality class [START_REF] Vidal | Entanglement in quantum critical phenomena[END_REF] . The exact dependence is given by Eq. 1.43, and for low enough temperature gives

S α l ∼ c 6 α - 1 α log(l). (5.6) 
In Figure 5.3c, we vary the parameter τ and perform the scaling analysis at a D value that corresponds to the peak of the entropy for given τ . The entropy clearly grows as logarithm, as in Eq. 5.6. From this, we were able to extract the prefactor of the logarithm, which directly depends on the central charge of the critical point. We noticed that, at fixed τ , the value does not agree with the universality class of the Ising model, c = 0.5. However, the τ -dependence analysis suggests that this is again an imaginary-time discretisation effect. Indeed, in the limit of τ = 0, the data agree with the central charge being equal to 0.5.

Phase diagram at non-zero temperature

So far, we have been focusing on the critical phenomena at small fixed temperature with the purpose of locating and characterizing the zero-temperature phase transition. However, the phase diagram around a quantum phase transition usually features rich temperature dependence [START_REF] Vojta | Quantum phase transitions[END_REF][START_REF] Sachdev | Quantum criticality[END_REF][START_REF] Chakravarty | Two-dimensional quantum heisenberg antiferromagnet at low temperatures[END_REF][START_REF] Sachdev | Finite temperature correlations of the ising chain in a transverse field[END_REF][START_REF] Gabbrielli | Multipartite entanglement at finite temperature[END_REF][START_REF] Lu | Structure of quantum entanglement at a finite temperature critical point[END_REF] , as discussed in Section 1.3.

Studies of higher dimensional systems found the emergence of classical order-disorder phase transition in the double well chain with finite barrier and a displacive transition at vanishing barrier [START_REF] Savkin | Quantum discrete φ 4 model at finite temperatures[END_REF] , however investigations in 1D discrete ϕ 4 model were done only for the transverse Ising model (i.e. the limit of large double-well barrier). As already discussed in Section 1.3, the Ising model at finite temperature splits in three distinct regimes [START_REF] Sachdev | Finite temperature correlations of the ising chain in a transverse field[END_REF] . This raises the question whether the same regimes persist after the double well barrier is removed. To address this question, let us now discuss the finite temperature phase diagram of the coupled anharmonic chain, exploiting once more the evaluation of the Rényi entropy. Similarly to the Ising chain, we observe three different regimes. However, these regimes are distinct form the ones in the Ising model, and we will describe them as para, disordered and antiferro. They can be found in this order by raising the coupling D. They are separated by two crossovers, that merge in the limit of low temperature at the QCP. My calculations suggest that the disordered regime disappears close to zero temperature, which results in a direct transition between the antiferro and para regimes.

Crossover from antiferro to disordered regime

Let us start by looking at the strong coupling side of the phase diagram at finite temperature, and progressively reduce D. In order to investigate the crossover from antiferro to disordered regime, we consider the total polarization as order parameter, and extend the study of the ground-state symmetry done by Wang et al. [START_REF] Wang | Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials[END_REF] to higher temperatures. For the model in Eq. 5.2, displaying anti-ferromagnetic order, we write the order parameter as

Φ = 1 P N P j=1 N/2 i=1 q (j) 2i , (5.7) 
where the sign of the interaction is taken into account by looking at one of the two bipartite lattices. Figure 5.4 displays the computed order parameter ⟨Φ(D)⟩ at different temperatures. Two regimes are clearly visible. Due to the presence of quantum fluctuations, the average ⟨Φ(D)⟩ vanishes for small enough D even at the lowest temperature we could access (50 K (upper panel of Figure 5.4). The interparticle interaction counteracts the effect of quantum and thermal fluctuations, which have the tendency to restore the symmetry of the potential. By increasing D, the value of ⟨Φ(D)⟩ sharply increases and the system undergoes a phase transition in the limit of T → 0 (Figure 5.4). Thermal fluctuations, although smaller than the energy cost of a flip (k b T << ∆V ), delay the crossover to larger D.

In 1D systems, thermal fluctuations not only delay the transition but also break true long-range order, due to the formation of domain walls (kink-antikink pairs). A way to locate the crossover between the disordered and anti-ferro regimes is to compute the susceptibility of the order parameter, defined as χ = βP N ⟨Φ 2 ⟩ -⟨Φ⟩ 2 , and looking at the position of its maximum. Just as for the Rényi entropy, the position of the peak displays a strong dependence on the imaginary time step τ , with scaling almost identical to the one of the Rényi entropy (Figure 5.6). The extrapolated location of the susceptibility peak is shown on the T -D diagram in Figure 5.9. It shows a linear dependence on D, even though classical analysis would suggest a dependence on D 4 , since this is the cost of the creation of a domain. This indicates that its behavior is strongly affected by quantum effects. Now we will investigate the full entropy of the system as a function of D and temperature, displayed in Figure 5.5. Except for very low temperature, already discussed in Section 5.2, we can distinguish three regimes. At low D the Rényi entropy is seen to be increasing with D, followed by a decrease after reaching a maximum. Then, at even larger values of D, the Rényi entropy plateaus at S 2 = ln(2), as expected in the ordered regime, with two degenerate ground states. The crossover between the last two regimes can be estimated as the intersection of a linear extrapolation of the Rényi entropy at the inflection point on the right side of the peak, with the S 2 = ln(2) line. These linear fits are shown in Figure 5.5 and the crossover values of D at each temperature obtained by this procedure at each temperature are very close to our estimate of the disorder-to-order crossover from the susceptibility χ.

We observed that the position of the peak of the Rényi entropy strongly depends on the size of the imaginary-time step τ (Fig. 5.2). This suggests that also the disordered-ordered transition line, visible in the landing strip of the Rényi entropy, depends on τ . In order to determine the full effect of τ on the phase diagram shown in Figure 5.9, we further studied the scaling of the susceptibility upon the discretisation in the imaginary-time. In Figure 5 show the position of the Φ susceptibility peak for different temperatures and imaginary-time steps. The maximum of the Rényi entropy is shown on the same plot. It can be seen that, at these temperatures, the relative positions of these maxima converges very early, while the absolute position converges, linearly, as the position of the peak of the Rényi entropy. Since we observed no temperature dependence on the convergence rate, we expect this approximation to hold also at higher temperatures, covered in Figure 5.9. Therefore the phase diagram in the limit of zero imaginary-time can be obtained, by just recording the positions of the peaks at sufficiently small imaginary-time step and then shifting all of them with the linear fit in Figure 5.6.

Crossover from disordered to para regime

The maximum of the Rényi entropy in Figure 5.5 occurs at the strength D corresponding to the critical value for the quantum phase transition observed at low temperature. This suggest that it is the signature of a crossover from a regime where the particles are fully delocalized over the two minima, through a combination of quantum and thermal fluctuations, to a regime where individual particles localize in one basin, with formation of local moments. This is consistent with an expansion of the available phase space, through the formation of a double well, as D increases, and the macroscopic localization in one local minimum as D is increased further. The corresponding increase in the entropy in the first regime and the decrease in the second regime, leads to the maximum at the transition point. Due to thermal fluctuations, this does not result in long range order, but in a regime where the formed local moments are spatially disordered (Figure 5.9).

This crossover thus appears analogous to the spin-freezing phenomenon, described by Werner et al. [START_REF] Werner | Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model[END_REF] for some strongly correlated fermionic systems, and we denote the two regimes 

Rényi entropy Peak of χ[Φ] at T=100K

Peak of χ[Φ] at T=300K Figure 5.6: τ = 300/P T dependence of the peaks of the susceptibility of the order parameter, introduced in Eq.5.7. Red points correspond to the susceptibility at 300K and green points to the susceptibility at 100K. For comparison we show also the positions of the peaks of the Rényi entropy in blue, for both temperatures and two subsystem sizes. The linear interpolation shows that the peaks of all the quantities drift as a function of τ with the same rate.

as the para phase at low D and the disordered phase at intermediate D. To check this interpretation, it is possible to look at the correlation in the imaginary time, defined as

C T (kτ ) = 1 N P N i P j q (j) i q (j+k) i . (5.8) 
It is averaged over the simulation time, while k is an integer running from 0 to P , specifying the distance in imaginary time, bounded by β = 1/k b T . In the para regime the particles do not distinguish between being right and left, and their position is randomly distributed in imaginary time. When the interaction is increased and the underlying ground state undergoes a displacive transition, a whole ring or sections of a ring become trapped in one of the minima and the correlation increases. Upon crossing the para-to-disorder crossover, individual particles are locked in the minima and correlation saturates, which is the hallmark of the local moment regime. Looking at the imaginary time correlation at half inverse temperature in the upper panel of Figure 5.7, we see that indeed the correlation vanishes at low temperatures in the para regime and increases with temperature, due to the decrease of de Broglie wavelength Λ = 2πℏ 2 /mk b T , which determines the spread of the particle's ring. After the crossover line of local moment formation is crossed, the imaginary time correlation saturates and does not show temperature dependence any more, because thermal fluctuations can at most move the full particle or a large section of the ring. Indeed, the particles are already localized due to the interaction D, and displacing each individual bead becomes too expensive. We located the crossover by using a similar procedure to the one described by Werner et al. [START_REF] Werner | Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model[END_REF] . We computed the C T correlations at different temperatures and compared them to the one at T = 100 K. By noticing that the ratio of correlation functions scales exponentially, we were able to precisely locate the critical value of D, where the ratio reaches unity. Indeed, the saturation point happens almost exactly at the value of D where the Rényi entropy reaches its maximum (see Figure 5.9), unambiguously identifying the local moment formation point. The described behavior is clearly visible, if a system configuration is taken at random along Analogously to the spin freezing [START_REF] Werner | Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model[END_REF] , the temperature dependence of C T (β/2) is suppressed. Lower panel -The ratio between C T (β/2) at T = 100 K and the correlation function at higher temperatures. Inset -In logarithmic scale the dependence is linear and the critical D can be estimated. (Colors palette:) from dark blue at 100 K to red at 1000 K.

the PIMD trajectory, and all the beads positions are mapped to {-1, 1}, i.e. left and right, with a sign function (see Figure 5.8). Ordering in imaginary time starts to appear around the QCP , when world-line paths become much stiffer.

Based on all these observations, we finally draw the converged phase diagram of the anharmonic chain in Figure 5.9. In a general 1D ϕ 4 model we expect to see a gradual disappearance of the para regime, upon increase of the double well barrier. This should be replaced by the disordered regime so that eventually, in the limit of infinite double well barrier, the phase diagram resembles the one of the Ising model.

Connection to water ice

The resulting phase diagram is particularly exciting, because it shows features very similar to the ones of hydrogen rich materials. In particular, it is worth to comment on the apparent similarity between our 1D chain and the phase diagram of high-pressure water ice across the VIII-VII-X phase transitions, a region of its complex phase diagram that recently attracted significant attention [START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF] . Phase VIII of water ice is a crystalline phase, where a global network of hydrogen bonds is created. While at low-enough pressure (low density) the individual water molecules still have some mobility, as they can rotate and switch between 6 different configurations, phase VIII is a proton-ordered phase, with an order parameter analogous to our polarisation parameter. After the phase boundary to ice VII is crossed, protons can hop between neighbouring oxygen atoms. This is due to the increase of either temperature or pressure, and it is again analogous to the order-disorder crossover observed in our model. In realistic simulations and experiments, this is a first-order thermodynamic phase transition [START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Reinhardt | Thermodynamics of high-pressure ice phases explored with atomistic simulations[END_REF] . By further increasing the pressure and still following our analogy, the transition from ice VII to ice X can be interpreted as a quantum phase transition where quantum fluctuations destroy the local moments, created by the off-centered proton positions with respect to the two flanking oxygen atoms. Therefore, phases VII and X are represented by the disordered quantum critical phase and the para phase of our model, respectively. Based on our analogy, a direct transition from phase VIII to phase X is then expected at low temperature. This analysis is however a very crude simplification, and a full quantum mechanical treatment of the realistic system should be carried out. With the method developed and presented in this work, this is certainly within our reach. Nevertheless, VIII-VII-X water ice is only one of the practical realizations of the more general ϕ 4 model. Our Rényi entropy approach can thus be fruitfully applied to a large variety of quantum critical systems.

Conclusion

In conclusion, we have shown that the Rényi entropy can be used to detect local moments formation in many-body quantum systems. This owes to the fact that the Rényi entropy counts the average number of occupied states in the system. As a result, at sufficiently low temperature, the local moments formation leads to an abrupt change in entropy, which can be seamlessly connected with the entropy divergence at the zero-temperature QCP. Therefore, the Rényi entropy can be used to characterize temperature-dependent phase diagrams of quantum systems, and its sensitiveness to emergent local symmetry breakings makes it a precious tool to localize elusive phase transitions that otherwise would be very hard to detect. / .9: Phase diagram of 1D anharmonic chain in Eq. 5.2. We observe three distinct regimespara (red ), disordered (blue) and antiferro (green). The crossovers between these regimes are located by looking at the peak of the Rényi entropy (red points), the ratio of the correlation functions in imaginary-time C T (β/2) of Eq. 5.8 and Figure 5.7 (black points, "Spin freezing"), and the susceptibility χ of the order parameter in Eq. 5. 

Chapter 6

Water ice under high pressure W ater is a compound with a very complex phase diagram, with 17 distinct crystalline phases [START_REF] Salzmann | Advances in the experimental exploration of water's phase diagram[END_REF][START_REF] Lobban | The structure of a new phase of ice[END_REF][START_REF] Kamb | Ice. II. A proton-ordered form of ice[END_REF][START_REF] Kamb | Ice vii, the densest form of ice[END_REF][START_REF] Benoit | New high-pressure phase of ice[END_REF] . This is mostly due to the strong influence of the hydrogen bonds, which cause effects such as negative thermal expansion, possible liquid-liquid phase transitions [START_REF] Debenedetti | Second critical point in two realistic models of water[END_REF][START_REF] Palmer | Metastable liquid-liquid transition in a molecular model of water[END_REF][START_REF] Gartner | Liquidliquid transition in water from first principles[END_REF] and rich quantum effects appearing throughout the phase diagram [START_REF] Ceriotti | Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges[END_REF] , dominating in the high pressure regime [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Bronstein | Quantum-driven phase transition in ice described via an efficient langevin approach[END_REF][START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Pruzan | Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature[END_REF][START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF] .

In this chapter we will focus on the high pressure phases VII, VIII and X. These phases are encountered in planetary science, where it is hypothesized that they lay on the ocean floor of Europa and exoplanets that are largely made out of water [START_REF] Gillon | Detection of transits of the nearby hot neptune gj 436 b[END_REF] . Recently, the phase VII of water was observed trapped in diamonds in the earth's mantle [START_REF] Tschauner | Ice-vii inclusions in diamonds: Evidence for aqueous fluid in earth&#x2019;s deep mantle[END_REF] (the part of the mantle known as the transition zone). Despite their importance, these phases are not fully understood. A strong anharmonic regime close to the transition between VII and X is causing experiments based on vibrational spectroscopies to give conflicting results [START_REF] Yoshimura | High-pressure x-ray diffraction and Raman spectroscopy of ice VIII[END_REF][START_REF] Loubeyre | Modulated phases and proton centring in ice observed by x-ray diffraction up to 170?gpa[END_REF][START_REF] Polian | New high-pressure phase of h 2 o: Ice x[END_REF][START_REF] Zha | Optical study of H2O ice to 120GPa: Dielectric function, molecular polarizability, and equation of state[END_REF][START_REF] Somayazulu | In situ high-pressure x-ray diffraction study of H2O ice VII[END_REF] . At the same time strong quantum effects hamper classical computational studies [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF] , where it was demonstrated that quantum simulations of hydrogen atoms are needed to yield experimentally observed transition pressures and to reproduce the isotopic effect1 . Due to conflicting results, it is still debated if there exists an intermediate phase X', located along the transition from the phase VII to the phase X [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Caracas | Dynamical instabilities of ice x[END_REF] .

In the following we will show that the physics introduced in Chapter 5 describes well the high pressure phase diagram of water ice. We will illustrate how the quantum transition of the proton wave function causes the transition from the crystal phase X to the phases of individual molecules VII and VIII. This transitions are of displacive type. After the molecules are formed, there is another phase transition between the disordered phase VII and the ordered phase VIII.

The results shown in this chapter have not been published yet.

Different phases of ice

Ices at high pressures are classified according to the d OO distance between two neighboring oxygen atoms and according to the orientation of water molecules. In each phase, the oxygen atoms form a crystal structure with a particular symmetry, while hydrogen atoms bind to oxygen atoms according to the Bernal-Fowler ice rules [START_REF] Bernal | A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions[END_REF] . The rules state that there must be precisely one hydrogen atom between each pair of neighboring oxygen atoms. Additionally, each oxygen atom forms two covalent bonds with two hydrogen atoms and two hydrogen bonds with two neighboring water molecules [START_REF] Singer | Hydrogen-bond topology and the ice VII/VIII and ice Ih/XI proton-ordering phase transitions[END_REF] . In all the phases X, VIII and VII, the oxygen atoms arrange in a crystal with eight neighboring oxygen atoms. The symmetry of the cell is bcc, and a slightly distorted bcc in the phase VIII. The network of hydrogen bonds is split in two equivalent entangled but independent networks, so that each oxygen atom forms hydrogen bond with only four neighboring oxygen atoms, that belong to the same sub-lattice. [208] . Right panel -The phase diagram of high-pressure phases, borrowed from Ref. [START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF] . The X ord corresponds to normal phase X, while X dis corresponds to the hypothesized phase X'. Filled points correspond to heavy water, and empty points to normal water. The points were obtained by Raman scattering, while the lines are fits to the experimental data. Crosses show the location of X-VII transition, extrapolated from the behavior at lower pressures.

Consequently, high-pressure ice represents an ideal laboratory for the study of the hydrogen bond, because as pressure is increased the oxygen atoms arrange in a denser crustal, with a shorter hydrogen bond. Depending on the d OO distance, the protons (hydrogen atoms) then move in either a double-well or symmetric single well potential [START_REF] Novak | Hydrogen bonding in solids correlation of spectroscopic and crystallographic data[END_REF] .

Ice X

Under pressures above 62 GPa it is believed that the oxygen atoms form a bcc lattice, with hydrogen atoms laying exactly at the midpoint between neighboring oxygen atoms. In this configurations hydrogens' protons move in a symmetric single well potential. The arrangement of ice is therefore isomorphic to the Cu 2 O structure, belonging to Pn-2m space group (see Figure 6.2), and cannot be seen anymore as a molecular crystal, but rather as a crystal made of H + and O 2-ions. The resulting ionic arrangement of the atoms is characteristic of hydrogen-bonded compounds at high pressure, such as H 3 S and other super-hydrides.

Even though computational studies agree on this (see Figure 6.3), experimental observations so far were not able to establish if this is really the case. The strongest evidence for the transition comes from the ultrahigh-pressure synchrotron InfraRed (IR) reflectivity spectroscopy [START_REF] Goncharov | Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase[END_REF] , where the reflected light is measured instead of the absorption. The frequencies probed by this methods are the Raman-active symmetric O-H stretching mode ν 1 , and the infrared IR-active anti-symmetric mode ν 3 , and both are expected to soften upon approaching the symmetrisation transition, since the hydrogen atom will move in broader and broader potential as the double well hydrogen bond transforms into a single well. In IR absorption spectroscopy, the ν 1 mode becomes very strong and the absorption peak so broad, that the peak position cannot be identified with sufficient precision, while in the IR reflectivity spectroscopy this problem is resolved [START_REF] Goncharov | Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase[END_REF] . In these experiments they can see a softening of the ν 3 mode below the transition, followed by a hardening (positive pressure shift) of the mode above it (this is also called superharmonic behavior). From this, it can be deduced that the covalent bond length between the oxygen and hydrogen atoms non-linearly increases, as the oxygen-oxygen distance is decreased, which is interpreted as the VIII/VII-X phase transition. 3) between the position of each hydrogen atom and the midpoint between its flanking oxygen atoms for different pressures at 50 K. The distribution was obtained in the simulations, described in Section 6.2. The distributions peaked at δ = 0 correspond to high pressures and phase X, while the bimodal distributions correspond to either the phase VII or VIII, where water molecules are formed.

The configurational entropy (entropy at zero temperature) in ice X is equal to zero, since there exists a unique ground state. Thermal fluctuations should nevertheless increase the entropy.

Ice VIII

Once pressure is decreased below 62 GPa, phase X undergoes a transition to phase VIII or VII. Below the critical pressure, water molecules form out of H + and O2-ions, according to the ice rules. Once water molecules are formed, they can take six different orientations, which have different energies, due to the dipole-dipole interactions 2 . In consequence, at low-enough temperature and pressure, the system lives in a global minimum, with an antiferroelectric structure, where the dipole moments of the sub-lattices point in the opposite direction, resulting in an antiferroelectric structure that belongs to the I 41 /amd space group. The oxygen atoms in the global minimum are arranged in a slightly distorted cubic cell of phase X, so that they form a tetragonal parallelepiped with one of the two sub-lattices displaced in the direction of the polarization.

Since the system is invariant under the inversion of all local polarizations, which can be achieved also by inverting all the protons positions, the minimum is not unique and is doubly degenerate. The entropy in the limit of zero temperature is therefore equal to one bit (ln(2)).

Ice VII

As the mobility of protons is increased, either due to the increase in temperature, or decrease in oxygen-oxygen distance d OO (increase in pressure), phase VIII transforms into the disordered phase VII. In contrast with the transition between ice X and VIII (Section 6.1.1), the transition between phase VIII and VII is well understood. It was studied extensively using IR and Raman spectroscopy [START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF][START_REF] Pruzan | Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature[END_REF][START_REF] Yoshimura | High-pressure x-ray diffraction and Raman spectroscopy of ice VIII[END_REF] and neutron scattering [START_REF] Klotz | Bulk moduli and equations of state of ice vii and ice viii[END_REF][START_REF] Komatsu | Anomalous hydrogen dynamics of the ice vii-viii transition revealed by high-pressure neutron diffraction[END_REF] . The VIII/VII phase boundary can be split in three regimes, according to the dT * /dp slope in Figure 6.1b, with T * being the critical temperature, and p the pressure. At low pressure (from 2 to 15 GPa) the critical temperature almost does not depend on pressure, signaling that the transition is driven by pure thermal effects, which enable molecules to rotate. In the intermediate region, the critical pressure and temperature were observed to be linearly dependent, which is typical of phase boundaries that depend on proton mobility. Hence, the transition happens when either the temperature is large enough to allow proton hopping at a given pressure, or pressure is large enough to allow hopping at the given temperature (the system can be described with a pseudospin model). The third regime is found in the vicinity of the hypothesized VIII/X and VII/X phase transition, where the critical temperature abruptly drops to zero. This is a clear sign that at this point the transition is dominated by quantum effects.

Different orientations of water molecules, which fulfill the ice rules, were found to be very close in energy, and can be regarded as degenerate. As a result, the phase VII can be described as a disordered phase. By counting the number of configurations that fulfill the ice rule, we can estimate the entropy of the system. In a simulation cell containing N molecules, we can roughly estimate the number of such configurations. Since each hydrogen can be found at only two positions, the upper bound must be equal to S = 2N log(2). However, ice rules substantially reduce the number of allowed configurations, and the actual entropy equals to S = N log(W ), where W ≈ 1.5 was estimated by Pauling, and later confirmed by Nagle's numerical calculations [START_REF] Nagle | Lattice Statistics of Hydrogen Bonded Crystals. I. The Residual Entropy of Ice[END_REF] .

Ice X'

Some quantum calculations proposed the possibility of the existence of an intermediate phase X' or X dis in between the VII/VIII to X transition [START_REF] Benoit | Tunnelling and zero-point motion in high-pressure ice[END_REF][START_REF] Caracas | Dynamical instabilities of ice x[END_REF] , as displayed in Figure 6.1b. The phase is described as a disordered solid, where the density of protons (Such as the one in Figure 6.3) is uni-modal, but broad, while in phase X it is nicely peaked. At the same time, several experimental anomalies, both in X-ray diffraction and spectroscopic experiments, were reported indicating a number of transitions occurring at moderate pressure ranges [START_REF] Yoshimura | High-pressure x-ray diffraction and Raman spectroscopy of ice VIII[END_REF][START_REF] Loubeyre | Modulated phases and proton centring in ice observed by x-ray diffraction up to 170?gpa[END_REF][START_REF] Polian | New high-pressure phase of h 2 o: Ice x[END_REF][START_REF] Zha | Optical study of H2O ice to 120GPa: Dielectric function, molecular polarizability, and equation of state[END_REF][START_REF] Somayazulu | In situ high-pressure x-ray diffraction study of H2O ice VII[END_REF] . The hypothesis of the intermediate phase mainly relies on the presence of very broad peaks in the vibrational spectra around the critical pressures of VIII-X transition before they become tall and narrower in phase X, which is then labeled as X ord , to dinstinguish it from the disordered phase X' [START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF] .

Simulations of water ice

The system of water ice is considerably more computationally demanding than the anharmonic chain studied in Section 5. This is because of additional dimensions, long-range interactions, and the computational cost of ab initio calculations needed for solving the electronic problem in order to obtain potential energies and forces. Additional dimensions and complex interactions were tackled by using PIMD in place of PIMC. This ensures that the phase space is sampled by collective moves with 100% acceptance probability. However, the problem of computational cost of ab initio simulations is harder. The simulations are done by using the Born-Oppenheimer (BO) approximation [START_REF] Born | Zur quantentheorie der molekeln[END_REF] , where it is assumed that at low-enough tem-peratures, the electrons move much faster than the nuclei around which they orbit. If this is granted, then we can split the dynamics of molecular systems in two components. The electrons are assumed to move in a potential created by static nuclei, while the nuclei feel the forces created by the electrons. After the nuclei are evolved by classical, PIMD or PIMC equations of motion, the electronic problem is solved again with the new configuration in order to obtain the new forces.

Actually solving the electronic problem at each simulation step for all of αP replicas, would be too expensive. Instead of this, we used a Machine Learning (ML) potential, based on neural networks, and developed by the group of Roberto Car [START_REF] Zhang | Phase diagram of a deep potential water model[END_REF] in the framework of deepmd [START_REF] Wang | Deepmd-kit: A deep learning package for manybody potential energy representation and molecular dynamics[END_REF] , which is written in the Python programming language. The potential was trained to yield the Strongly Constrained and Appropriately Normed (SCAN)-Density Functional Theory (DFT) potential energy surface, a non-empirical functional that describes well several properties of water [START_REF] Sun | Strongly constrained and appropriately normed semilocal density functional[END_REF][START_REF] Sun | Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional[END_REF] . We coupled the code developed by his group with PIOUD, so that Python (deepmd) is running in parallel with fortran (PIOUD). At each step of PIOUD where forces are needed, the fortran program stops and sends all the configurations to deepmd. The neural network calculates the potential energy, the forces, and the pressure and sends the results back to PIOUD. Since this still remains computationally expensive, we parallelized deepmd, by running more parallel processes, where each program calculates the forces only for a smaller batch of imaginary time slices. This is possible, because PIOUD decouples the imaginary time interactions from the interactions within each individual bead, as explained in Section 4.2. Further numerical details are given in Appendix E.

System properties

We work with a small system of 16 water molecules, or 32 hydrogen and 16 oxygen atoms. The molecules are placed in a cubic super-cell, made out of 8 unit cells of ice X with periodic boundary conditions. The unit cell of ice VIII is similar enough to ice X, that the phase still forms, even if the cubic cell is used. The size of the cell is then varied, and hydrogen atoms are placed in positions according to the ice rules. We always choose the initial configuration to be the one of ice VIII. The configurations and the dimensions of the super cell were taken from Cherubini et al. [START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF] , where they used the same ML potential. The unit cell sizes were varied from the size of 2.64 Å to 3.1 Å, which corresponds to the pressure range from 15 GPa to 110 GPa. In the simulations done by Cherubini et al. [START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF] , the direct transition between ice X and VIII was observed around 52 GPa, corresponding to the unit cell size of 2.8 Å. In the simulations done in PIMD by the group of Roberto Car (and the same ML potential) the direct transition between ice VIII and X at 50 K was observed between 40 -42 GPa in a cell with 432 molecules, by looking at the polarization order parameter [START_REF] Yang | Personal communication[END_REF] .

When choosing the size of the super-cell, one has to be very careful. The phase VIII, with long-range order exists only if the two sub-lattices have the same number of molecules. Indeed, this is the case for the system with 16 molecules, while in the system with 54 molecules, obtained by translating the unit cell 3-times, the system is frustrated. Another peculiarity is that in the system with 16 molecules the effective dimension of the lattice created by the hydrogen bonds is affected by the periodic boundary conditions. The shortest loop of hydrogen bonds becomes a loop visiting 4 oxygen atoms in the sub-lattice, while in the bulk, the shortest loop visits 6 oxygen atoms. Additionally, because it is believed that the phase transition between phase VII and VIII is first order, we do not expect to see a clear phase transition in a system with only 16 molecules. We nevertheless studied the cell of 16 molecules because it is computationally less expensive, while the study of larger cells is still on the way.

Translational symmetry

As discussed, all the ice phases are constructed by translating the unit cell of ice X or VII by the lattice spacing in all directions. However the ice rules break the translational symmetry. We can use exactly this property to design smart symmetry operations F , analogous to the reflection operation presented in Section 4.2.1, that move a system from one global minimum to another.

When the system is in phase VIII, each sub-lattice polarizes in the opposite direction. In consequence, above each molecule there is another one oriented in the opposite direction, at a distance that is almost exactly equal to the size of the unit cell. The symmetry is not exact, due to the distortion of the unit cell upon the transition from phase X to VIII. Therefore, a system can be moved from one minimum to another, with two distinct operations. One is a reflection of all the protons over the plane at the mid-point between all the neighboring oxygen atoms. This operation exactly inverts all the molecules, and moves the system to another minimum. Another operation consists of translating all the molecules in the direction of the polarization for a unit cell size. In this case we map each molecule to the molecule above, translated for the unit cell spacing. The configuration obtained with this translation is exactly a configuration with flipped protons, however in this case also the oxygen atoms are translated.

For the use in the hybrid algorithm, the translation is preferable. This is because the reflection over the plane either reflects all the imaginary time slices over the same plane, or each imaginary time slice over its own plane. In the first case this means that the obtained configuration will not be exactly symmetric, and hence ∆V = V (F (x 1 ), ..., F (x N )) -V (x 1 , ..., x N ) ̸ = 0, while the distances between the beads are preserved, and hence ∆E = ∆K A + ∆V , according to the notation in Section 4.2.1. In the second case it is not guaranteed that the potential energy difference will vanish, but it will be much smaller. However, the problem in this case is that the distances between the beads are modified, which is very expensive, and all the moves would be rejected.

On the other hand, the translation is expressed as F (x i. It therefore preserves the distances in the imaginary time, while at the same time does not change the potential energy, because the potential is symmetric under the translation for a lattice spacing. Still, great care must be taken with regard to the periodic boundary conditions, because atoms must be placed on top of other. This is the only setback of the translation operation. However, the pairs i, i ↑ can be chosen in advance, and then used throughout the simulation. The translation works even in the phase where molecules start to rotate. In that case the operation swaps between different ice rules, and improves the statistics. Additionally, at higher temperatures, where we expect to observe disordered ice VII, the translations in other two directions can be added. The two translations would be simply identity mappings in the phase VIII and X, but in phase VII, they would swap between different orientations of water molecules, given that in the latter phase at least one proton left the configuration of ice VIII.

(j) i ) = x (j) i ↑ -z,

Order parameter of polarization and local order formation

In direct analogy with the analysis done for the chain of anharmonic oscillators in Section 5, we study the order parameters of global order and ordering in the imaginary time.

In order to define the long-range ordering in phase VIII, we could use various order parameters. One order parameter, common in the literature, is the ordering of molecular dipole moments, calculated for each oxygen atom, with respect to all of its four neighbors. However, another possible order parameter is the ordering of hydrogen atoms. In this case we record the distance δ of each proton from the plane perpendicular to the line connecting two neighboring oxygen atoms. The signs in front of the normals to the planes n i are taken from the initial phase VIII configuration for each proton i. The sign of the distance, calculated as δ i = s i • n i , with s being a vector pointing from the proton to any point on a plane, therefore takes the same role as the sign in the case of the anharmonic chain. If positive, the proton is found on the same side as in the initial VIII configuration, while for negative δ the proton is found on the opposite side. When all protons are placed at the opposite side, the system describes the other degenerate minimum of phase VIII. We can therefore rewrite the definition of the order parameter from Eq. 5.7 as

C T =50 (β /2) / C T (β /2) b) T = 350 K T = 233 K T = 175 K T = 140 K T = 100 K
Φ(P, T ) = 1 P N p P j=1 Np i=1 s (j) i • n (j) i , (6.1) 
with N p being the number of protons. This order parameter will vanish in the phase X and phase VII, and reach a finite value in phase VIII. In the phase X it vanishes, because of the disappearance of local moments, while in the disordered phase VII it vanishes because of other ice rules, not belonging to the long-range order of ice VIII. We show the order parameter and its susceptibility at different temperatures as a function of pressure in Figures 6.5a-b. In this case we can see that the critical pressure for symmetry breaking decreases with the temperature, which is further confirmed by the peak of the susceptibility of the order parameter in Eq. 6.1. However, the statistics of this susceptibility is bad, due to short simulation times, and averaging over particles and imaginary time. Nevertheless, we extracted the peaks, and displayed them on the phase diagram in Section 6.5.

As was already the case for the chain of anharmonic oscillators, the order parameter in Eq. 6.1 detects the transition between the long-range ordered and the disordered phase, while for the elusive para-disordered displacive phase transition, no clear order parameter exists. However, it was shown in Section 5.3.2 that a good candidate for such transitions is the correlation in the imaginary time in Eq. 5.8, capable of detecting local moments formation. The correlation between the imaginary-time slices at imaginary-time distance β/2 shows no temperature dependence in the disordered regime (after the formation of local moments), and visible dependence in the para regime. We probed the same correlation function, this time defined as

C T (τ ζ) = 1 N P Np i P j δ (j) i δ (j+τ ) i . ( 6.2) 
The correlation function at imaginary time β/2 is displayed in Figure 6.6a. Indeed, we see that upon increasing the pressure at 40 GPa, the correlation function shows clear temperature dependence, while it is constant in the phases VII and VIII, where the local moments are formed and frozen. In order to precisely determine the critical pressure of the local moment formation, we calculated the ratio between the correlations at a given temperature and a reference temperature of 50 K in Figure 6.6b. The result is very similar to the one shown in Figure 5.7b. The ratio decays exponentially with pressure, which allows us to again use exponential scaling for a systematic analysis, just like in the case of anharmonic chain. The obtained critical pressures are plotted on the phase diagram in Section 6.5. Also in the case of water ice, one can take a system configuration at random along the PIMD trajectory, and map all the beads positions to {-1, 1}, according to the sign of the corresponding δ (j) i . In this case we can see a clear difference in the world-lines in Figure 6.7 between the para regime of phase X, the disordered regime at the triple point between phases VIII, VII and X, and the long-range ordered regime in phase VIII. Note that in comparison to Figure 5.8 the particle index and the imaginary time index are swapped for convenience in Figure 6.7, since P > N p in the latter case. Ordering in imaginary time starts to appear around the transition, when world-line paths become much stiffer, so that individual protons stay localized in the imaginary time, while they can still occupy different sites, leading to the spatially disordered phase VII.

Rényi Entropy

The properties observed by the order parameters in the previous section can also be seen by looking at the Rényi entropy. Just like in the case of the anharmonic chain, the displacive transition between phases X and VII and between X and VIII, causes a divergence of the Rényi entropy.

In order to see how Rényi entropy depends on pressure, we studied the Rényi entropy at 50 K. In this case, we should be close to the ground state, and the contributions stemming from entanglement should be clearly visible. We chose the following subsystems: the full system, the subsystem of all the protons, the subsystem of one oxygen, with its four neighboring hydrogen atoms (Ball 1), and finally a subsystem of three oxygen atoms, with all of their 10 neighboring hydrogen atoms (Ball 2). The subsystems Ball1 and Ball2 are displayed in Figure 6.8.

We plot the results of the calculations in Figure 6.9. The results show that at 50 K we are still far from the ground state, since the Rényi entropy of all the atoms does not vanish at higher pressures (phase X). Nevertheless, it is clearly visible that at high pressures the entropy shows no pressure dependence. This is a clear mark of phase X, where protons are localized in the midpoint between flanking oxygen atoms. When pressure is decreased, the entropy starts to increase below 60 GPa for all the subsystems. In larger subsystems (all the protons and the whole complex) the entropy increases very sharply, with a slope that diverges at 43 GPa. This is a consequence of a rapid increase of the available phase space, which we 2) for different subsystems. Quantum Rényi entropy of a system with 16 water molecules as a function of pressure for various system sizes and fixed imaginary time step ζ (P = 126 at 50 K). The subsystems Ball 1 and Ball 2 are displayed in Figure 6.8. The dependence shows existence of two phases, with divergence of the Rényi entropy in the one with low pressure. The phase with constant entropy corresponds to ice X, while the one with increasing entropy corresponds to ice VIII. The divergence is a clear mark of a phase transition. Its location agrees with the local-moment formation order parameters discussed in Section 6.3.

interpret to be caused by a quantum phase transition of the ground state wave function at the Quantum Critical Point (QCP). The increase of the available space is visible by looking at the probability density of finding a proton at distance δ at pressure 43 GPa in Figure 6.3. The distribution shows a large range of displacements δ with high probability of finding a proton, compared to distributions at other pressures. At even lower pressures the entropy returns to the original slope before the divergence. In Ball 1 the divergence is not clearly visible.

These results clearly point to phase transitions, occurring at pressures seen already by the two order parameters in Section 6.3. However, due to the high thermodynamic temperature, it is not possible to quantify entanglement. Therefore, future studies should be performed at lower temperatures to see clear signatures of quantum entanglement.

Finally, we can look at the temperature dependence of the Rényi entropy, as was suggested in Section 5.3.1. Because these calculations require a lot of computational time, we had to restrict them to one of the subsystems. We chose the subsystem with all the hydrogen atoms, since in this subsystem the peak was the most pronounced, and the variance of the results was the lowest. The results of the calculation are plotted in Figure 6.10a, showing the dependence of Rényi entropy S 2 (p) on pressure p. The most pronounced change in the S 2 (p) dependence is the broadening of the peak of the Rényi entropy as temperature is increased, while the position of peak does not change with temperature, and exactly coincides with the local moment formation transition visible from the correlations in the imaginary time (see Figure 6.11). On the low-pressure side of the peak, the entropy decreases as the pressure is decreased, until it quickly returns to the trend observed at the high-pressure side of the peak. This turning point could be a sign of a classical VII-VIII phase transition.

The growth at low pressures is found to be exactly proportional to ∆S = N log(V /V ′ ), with V ′ the initial volume, and V the final volume 3 . This scaling shows that at pressures below 60 GPa the phase space available to protons increases by the same factor as the volume of the supercell. If we subtract this trend from the results in Figure 6.10a, we can see the peak at the QCP much more clearly, as shown in Figure 6.10b. We used this data to extract the location of the peak and the pressures at which the Rényi entropy quickly changes the slope S(p) on the low-pressure side of the QCP. We then compare the obtained pressures to the ones of the local moment formation, and to the pressures of the χ peaks in Figure 6.11.

The growth of the Rényi entropy at pressures below 60 GPa (which is on the right hand side of the QCP), is visible also in Figures 6.9 and 6.10a. The observed behavior could be interpreted as an existence of two regimes inside of phase X, on the high-pressure side of the peak. Under this interpretation, the behavior of Rényi entropy in the region between 43 GPa and 60 GPa could be interpreted as the debated phase X' discussed in Section 6.1.4. However, the transition does not seem to cause any sharp changes in the Rényi entropy, meaning that it most likely corresponds to a crossover.

3 Such dependence can be found in an ideal gas. Upper panel -Quantum Rényi entropy of a system with 16 water molecules as a function of pressure for the subsystem of all the protons and fixed imaginary time step ζ (P = 126 at 50 K). The shape of the distrubtion does not substantially change with temperature. However, the peak at the quantum phase transition broadens to form a bump. The broadening can be explained by the formation of the disordered phase VII, that sharply ends at lower pressures, where the S 2 (p) slope resumes the phase VIII behavior. Lower panel -The entropy of an ideal gas is subtracted from the quantum Rényi entropy in the upper panel. Below 60 GPa the system's entropy scales as an ideal gas, with the exception of the peak at the QCP. The error bars are smaller than the width of the points.

I n this thesis, we have presented a novel algorithm for the calculation of Rényi entropy, particularly suitable for complex ab initio simulations of NQE. We implemented the algorithm in PIMC, PIMD and hybrid PIMC-PIMD simulations and demonstrated that it works in the case of the Ising model, two coupled harmonic oscillators, formic-acid dimer, chain of anharmonic oscillators and water ice under high pressure.

By using regularized thermodynamic integration paths the algorithm yields low variance estimates of Rényi entropy regardless of the value of the entropy and subsystem size. The coupling with PIOUD further guarantees efficient sampling of the phase space, so that short simulation times already result in precise estimations of the Rényi entropy even in threedimensional strongly interacting system of water ice under high pressure. In the simulations of hydrogen atoms in the formic acid dimer, anharmonic chain and water ice, we introduced a systematic procedure that forces the system to sample all the configurations in the phase space even in the regime with broken ergodicity, due to many degenerate energy levels, separated by large barriers. In these systems we developed a hybrid PIMC -PIMD scheme, where protons in one of the replicas are flipped with Monte Carlo probability according to the symmetry of the potential energy.

Using these procedures we showed that the method outperforms some of the state-of-theart existing methods in the simulations of 1D quantum Ising model. Further, we studied the system of the formic acid dimer and discovered that the two protons are strongly entangled in physically visited configurations, and observed the persistence of entanglement even at temperatures considerably above the room temperature of 300 K. This shows that in the absence of water, the proton transfer should be concerted.

We then studied the critical behavior of a linear chain of anharmonic oscillators, a particular realization of the ϕ 4 model. We fully resolved its phase diagram, as a function of both temperature and interaction strength. At finite temperature, we found a sequence of three regimes -para, disordered and quasi long-range ordered -, met as the interaction is increased. The Rényi entropy divergence coincides with the crossover between the para and disordered regime, which shows no temperature dependence. The occurrence of quasi longrange order, on the other hand, is temperature dependent. The two crossover lines merge in proximity of the QCP, at zero temperature, where the Rényi entropy is sharply peaked. Via its subsystem-size scaling, we confirmed that the transition belongs to the two-dimensional Ising universality class. This phenomenology is expected to happen in all ϕ 4 -like systems, as well as in the elusive water ice transition across phases VII, VIII and X, which we studied next.

In the case of the water ice transition we studied a smaller cluster of 16 water molecules at various pressures and temperatures with the Machine Learning (ML) potential trained on the data obtained by the Density Functional Theory (DFT). We discovered analogous regimes to the ones seen in the anharmonic chain. The temperature dependent transition between ice VII and VIII was observed by the polarization order parameter, as well as by a sharp change in behavior in the Rényi entropy. Analogously, the temperature independent transition between ice X and VII/VIII was observed by the correlations in imaginary time and the peak of the Rényi entropy. In comparison to experiments the phase diagram drawn from the analysis corresponds to a shifted experimental diagram, which can be due to the finite size effects and the potential used to train the ML model. In order to understand the finite size effects and the system size scaling of the Rényi entropy, simulations with 128 water molecules are under way.

The presented results show the potential of using the quantum Rényi entropy analysis in the simulations of structural phase transitions in materials rich in hydrogen. Additionally, the results show that the creation of local moments, visible by the correlations in the imaginary time exactly coincide with the divergence of the Rényi entropy. However, the Rényi entropy provides a much clearer information about the local moment formation, bearing signatures of the QCP. This analysis, based on the Rényi entropy, has therefore a potential to improve our understanding of elusive displacive-type phase transitions and more generally, of systems close to quantum criticality.

The analysis of Rényi entropy in anharmonic chain and water ice shows that Rényi entropy is a useful tool for characterizing phase transitions in systems with strong NQE. The study of the Rényi entropy in anharmonic chain lead us to use the correlations in imaginary time as a smoking gun for quantum critical point in displacive type phase transitions. Later, the same was further confirmed in the case of water ice, where the peak of the Rényi entropy clearly coincides with freezing of protons in imaginary time and the breaking of proton symmetrization order parameter at low temperatures.

These results show that the same analysis can be performed in other systems with elusive displacive type structural phase transitions, such as H 3 S, LaH and YH n . In such simulations it is essential to use PIMD, so to obtain results already with short simulations. However, at the moment such simulations are clearly impossible without the use of ML force fields and potentials, such as the ones used in this work, because the direct evaluations of ab initio calculations such as the ones performed by DFT and CCSD(T) are too slow. The development of such potentials, trained on the most accurate training sets, and the development of faster GPU algorithms is crucial for future investigations of the materials such as H 3 S. Nevertheless, our results also show a clear link between the signatures of a quantum phase transition (peak in entanglement entropy) and the formation of local moments. Therefore, even in systems where Rényi entropy is computationally unreachable, the correlations in imaginary time can be used as a reliable measure of local moment formation. The presented algorithm also paves the way for the computation of Rényi entropy in systems at higher temperature, such as entropy of solution [220] .

On a similar note, the path integral formulation could inspire new measures of entanglement, that are not based on the concept of entropy and the replica trick. From the PI perspective, the quantum correlations arise due to the interaction between particles through the imaginary time direction, caused by the kinetic term. Therefore methods that could separate between correlations in imaginary time and real space, or measures of energy flow in the imaginary time, could be shown to quantify entanglement. In this work we introduced a class of quadratic Hamiltonians, which could be used for the study of such new measures, due to the possibility to exactly evaluate their path integrals. If such measures could indeed be found, this would severely lower the computational cost of measuring entanglement, and perhaps shed light on new experimental probes of entanglement.

B.1.2 Wolff cluster algorithm

In the study of 1D quantum Ising chain, we used a particular realization of the algorithm, called Wolff cluster algorithm. In this algorithm clusters of neighboring parallel spins are created by accepting each neighbor with some fixed probability p c . After spins are added to the cluster, the neighbors of these spins are again joined with the same probability p c , until all the neighbors were considered. After the cluster is created, all the spins in the cluster are inverted.

Now we can express the acceptance probability for this algorithm that fulfills the detailed balance condition from Eq. B.2. For this we need to estimate the ratios f (x)/f (y) and T (y|x)/T (x|y). First let us estimate the ratio f (x)/f (y). For each cluster we can count the number n p of neighboring parallel spins, and the number n x of neighboring anti-parallel spins. The energy of the initial configuration with this cluster is therefore proportional to E ∝ J(n x -n p ), where J is the strength of the ferromagnetic interaction1 . From this it follows that the energy difference between the initial configuration and the configuration of flipped spins is equal to ∆E = J(2n x -2n p ), because all the spins in the cluster are parallel, meaning that after the flip, their interaction energy does not change, according to the Ising model classical Hamiltonian in Eq. 2.17. The only spin-spin interaction contributing to the energy difference, are the spins at the boundary. Now we can write f (x)/f (y) = exp(-βJ(2n x -2n p )).

We can also calculate the probability to construct a given cluster with n p neighboring parallel spins, and n x neighboring anti-parallel spins. Again we see that T (y|x) and T (x|y) differ only for the spins at the boundary, because each spin was added to the cluster with the same probability p c , while the spins that were rejected, are rejected with probability (1p c ). Since the algorithm halts only after the cluster is constructed, we can see that the probability to create a cluster must be proportional to the (1p c ) np , since all the neighboring parallel spins had to be rejected. However, the probability to grow the inverted cluster is proportional to (1p c ) nx , since after the cluster is inverted, the spins in the cluster will be parallel to n x spins and anti-parallel to n p spins. This result contains all the power of the cluster algorithm, because it allows us to tune the acceptance probability to flip a cluster. Since ideally we want all the clusters to be flipped, we can set the expression on the right to be equal to unity, by choosing p c = 1e -βJ . Hence, all the moves of the cluster algorithm will be accepted. When interaction is small, the clusters will be small as well, and the algorithm reduces to a single spin flip approach. However, when interaction grows, the clusters will get bigger and bigger, so that in the limit of very large J the cluster will contain almost all the spins of the system. Hence, cluster algorithms work by correctly setting the acceptance probability. In simple systems, like the Ising model, the probability p c can be tuned so precisely as to give zero rejected moves, but even for less precise p c , a cluster algorithm can be used, if the final flip is accepted with the probability in Eq. B.8. In the simulations of 1D quantum Ising model, the acceptance probability differs for neighboring spins in different directions on the square lattice. In this case, the Eq. B.8 contains two probabilities, for each direction, given as where n 1 p and n 1

x is the number of parallel and anti-parallel spins in the direction of the first index in Eq. 2.17 with interaction J 1 , and n 2 p , n 2

x is the number of parallel and anti-parallel spins in the direction of the second index in Eq. 2.17 with interaction J 2 . In order to have all the flips accepted, the probabilities to add a spin to the cluster can be set to p w c = 1e -βJw , where w ∈ {1, 2}.

Résumé

Les transitions de phases quantiques et l'intrication quantique peuvent être étudiés à l'aide de l'entropie quantique de Rényi, une généralisation de l'entropie de Von Neumann. Cependant, les calculs de l'entropie de Rényi ont encore une grande complexité computationnelle. Dans cette thèse, nous présentons une nouvelle technique numérique basée sur l'intégration thermodynamique via des chemins d'intégration régularisés. Le chemin optimal est construit en minimisant la variance de l'estimateur de l'entropie de Rényi, conduisant à une évaluation efficace de cette quantité pour des systèmes quantiques complexes de particules discernables, caractérisés par une intrication et des tailles de systèmes sans précédents. Nous avons inclus cette méthode dans les méthodes Monte Carlo à intégrale de chemin (PIMC) et dynamique moléculaire à intégrale de chemin (PIMD). Nous démontrons, dans le cas du modèle d'Ising unidimensionnel dans un champ magnétique transversal, que cette méthode surpasse les méthodes numériques existantes. Ensuite, nous étudions le complexe de dimère d'acide formique et montrons que les deux protons impliqués dans les liaisons hydrogènes sont intriqués même au-dessus de la température ambiante. À l'aide d'un schéma hybride PIMC-PIMD, nous avons pu résoudre entièrement le diagramme de phase du modèle discret ϕ 4 et montrons que le pic de l'entropie de Rényi à température finie coïncide exactement avec le point critique quantique (QCP) et le gel du champ en temps imaginaire, interprété comme la formation de moments locaux. Nous utilisons ensuite l'entropie de Rényi pour déterminer le diagramme de phase des phases VIII, VII et X de la glace d'eau à haute pression. L'entropie quantique de Rényi des protons atteint un pic marqué à une pression de 43 GPa, qui est une signature d'un QCP. Ce pic coïncide précisément avec le gel des protons en temps imaginaire, où la phase X est perdue, et la formation d'une polarisation macroscopique à basse température, caractéristique de la phase VIII. De cette manière, nous sommes capables d'explorer entièrement le diagramme de phase de la glace d'eau à haute pression en observant les variations de l'entropie de Rényi en fonction de la pression et de la température.

Povzetek

Kvantne fazne prehode in kvantno prepletenost je mogoče preučevati z uporabo kvantne Rényijeve entropije, ki je generalizacija Von Neumannove entropije, vendar so zaradi njihove računske kompleksnosti izračuni pogosto omejeni. V tej disertaciji predstavljamo novo numerično metodo, ki temelji na termodinamični integraciji z regulariziranimi integracijskimi potmi. Optimalno pot konstruiramo z minimizacijo variance estimatorja Rényijeve entropije, kar omogoča učinkovit izračun te količine v kompleksnih kvantnih sistemih razločljivih delcev z visoko kvantno prepletenostjo in velikim številom delcev. Postopek implementiramo v metodi Monte Carlo s popotnimi integrali (PIMC) in v molekularni dinamiki popothin integralov (PIMD). V primeru enodimenzionalnega Isingovega modela v prečnem magnetnem polju pokažemo, da metoda presega nekatere od najnaprednejših obstoječih metod. Nato preučujemo kompleks dimera mravljične kisline in odkrijemo, da sta njegova dva deljena protona kvantno prepletena celo pri sobni temperaturi. S pomočjo hibridne metode PIMC-PIMD natančno določimo fazni diagram diskretnega ϕ 4 modela in pokažemo, da se vrh Renyijeve entropije pri končni temperaturi natančno ujema s kvantno kritično točko (QCP) in zamrznitvijo polja v imaginarnem času, kar interpretiramo kot tvorbo lokalnih momentov. Nato uporabimo Rényijevo entropijo za določitev faznega diagrama ledu v visokotlačnih fazah VIII, VII in X. Kvantna Rényijeva entropija protonov strmo naraste pri tlaku 43 GPa, kar je značilno za kvantno kritično točko (QCP). Vrh se natančno ujema z zamrznitvijo protonov v imaginarnem času, kjer izgine faza X, in tvorbo makroskopske polarizacije pri nizki temperaturi, kar je značilno za fazo VIII. Na ta način lahko v celoti preučimo fazni diagram ledu pri visokem tlaku, z opazovanjem sprememb obnašanja Rényijeve entropije v odvisnosti od tlaka in temperature.
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 11 Figure 1.1: Rényi entropy of different orders α for different random variables with N = 2. (left panel )H 0 counts the number of bits, while H ∞ measures the information stored in maximally probable events. (right panel ) Only Rényi entropy of α ≤ 1 is strictly concave[START_REF] Ben-Bassat | Renyi's entropy and the probability of error[END_REF] , however for N = 2 it is concave up to α < 2, the collision entropy has vanishing second derivative at p 1 = 0, p 2 = 1).
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 12 Figure 1.2: Entropy for different densities of states as a function of T = 1/β, for N = 10 5 energy levels (S max = log 2 (N ) ≈ 16.6). When density is growing exponentially with energy, the entropy grows slowly with temperature and reaches a lower maximum value. Rényi entropy is added for comparison in black color. It puts a lower bound to Von Numann entropy and closely approximates it at low and large temperature.

Figure 1 . 3 :

 13 Figure 1.3: Quantum entanglement in a pure state.The reduced density matrix of a pure product state again describes a pure state, while the reduced density matrix of an entangled state describes a mixed ensemble. The figure was borrowed from Ref.[START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF] .
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 14 Figure 1.4: Quantum phase transitions (left panel ) First type of the transition -there is no transition at T > 0.(right panel ) Second type of the transition -there is a finite T phase transition approaching the critical point in the limit of T → 0. In both cases there are three quantum regimes in the low temperature phase diagram. Figure was borrowed from Ref.[START_REF] Vojta | Quantum phase transitions[END_REF] .
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 21 Figure 2.1: Chain of propagators in the sum of Eq. 2.2.
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 22 Figure 2.2: Ensemble Z A of quantum Rényi entropy. The interactions enforcing boundary conditions are colored blue and red, according to Figure 2.3. The interactions between particles at one imaginary time slice are represented with dashed lines, and interactions in the imaginary time with solid black lines.
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 25 Figure 2.5: a) Stream plot of the gradient field(⟨K ∅ ⟩ Z[λ] , ⟨K A ⟩ Z[λ]) for the single-particle 1D harmonic oscillator at β = 10 as a function of (g, h). Colors indicate the magnitude of the gradient, according to the palette above the frame. b) Stream plot of the variance field (var[K ∅ ], var[K A ]). The black (blue) line represents the path in Eq. 2.40 with l = 2 (l = 3). The red line is the linear path (l = 1). Changing the path from linear to black or to blue, regularizes the integrand by cutting off its spikes at the edges, shown at different temperatures for l = 1, 2, 3 in panels c), d) and e), respectively.
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 235 with the vector K being the gradient field of the energy, given as K ≡ (∂H/∂g, ∂H/∂h) = (K ∅ , K A ), shown in Figs.2.5(a). Similarly we can define the variance field var[K] ≡ (var[K ∅ ], var[K A ])in the (g, h) plane, shown in Figs.2.5(b). Inspecting the Eq. 2.35, we see that the direction of the field K at a given point indicates the velocity of the path ∂ λ p that would yield the largest possible increment to the line integral for a given dλ. Similarly, the direction of the variance field indicates the velocity of the path ∂ λ p that would yield the largest possible variance to the line integral.
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 26 Figure 2.6: Cost functionals estimating a) excess area under the integrand (F Abs in Eq. 2.37), b) deviations from a linear integrand (F Slope in Eq. 2.38) and c) variance of the integral (F Variance in Eq. 2.36) for different regularizing paths defined by the parameter l. Three values of the temperature are shown. The lighter the color, the higher the temperature.
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 531 Figure 3.1: Ising model. r dependence of the full Rényi entropy of second order (S 2full / log(2)) in the units of ln(2) computed with thermodynamic integration via path regularization (red crosses) and transition probability sampling based on the SWAP operator (blue crosses) compared with analytical results (dashed-black line) for L = 64 and β = 3. Inset: Comparison of system-size scaling for both methods at different r, where lines are linear fits.
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 32 Figure 3.2: Comparison of r dependence of the full Rényi entropy of second order (S 2full / log(2)) in the units of ln(2) computed with different integration paths l = 3 and l = 1 in the Ising model with 64 spins and β = 3. Rescaling λ is not sufficient to obtain a reliable result at l = 1 and path regularization is needed. The error bars were computed with the block analysis and numerical integration error was not considered, for which reason the error bars are smaller than the total error for r = 0. Indeed, when the variance is large, integration error increases as well.
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 34 Figure 3.4: a) Integrand ⟨∂ λ H⟩ as a function of λ in the Ising model at β = 5for the path regularization in Eq. 5 with l = 6 (blue crosses) and for the same path but with rescaled λ, according to Eq. 3.1 (green points). b) Second order Rényi entanglement entropy computed for half of the system (S half ) as a function of r, for the two path regularizations, compared to the analytical result[START_REF] Mbeng | The quantum Ising chain for beginners[END_REF] .
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 35 Figure 3.5: a) Full (black solid line) entropy and the entropy of a single proton subspace (S 2 A / log(2)) (black dashed line) as a function of the distance d between the formic acid molecules at 300K. The negative of conditional entropy (S f ull -S one , as discussed in Section 1.2.3.1) is also shown (purple solid line). b) Temperature dependence of negative of conditional entropy. c) 2D Potential Energy Surface (PES) spanned by the position of the hydrogen atoms along the hydrogen bonds at d = 2.87Å.
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 3637 Figure 3.6: Evolution of the formic acid dimer PES as a function of d. As d increases, the single minimum splits in two around d = 2.4 Å. The distance between the two minima is shown in the main panel (gray points), together with their energy (blue curve). The bifurcation point is very close to the global minimum. The relative entanglement entropy at 102.0 K is also plotted for comparison (dashed-gray line). The most entangled states appear at energies considerably above the classical minimum. Inset: PES profile along the diagonal for a few values of d.
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 41 Figure 4.1: The matrix K(g, h) for α = 2. Abbreviation gh = 1 + g + h is used.
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 42 Figure 4.2: Temperature distribution along the integration path evaluating the entropy of Harmonic oscillator with ω = 0.01, when coupled to another with ω = 0.004, through Γ = 0.94868, defined in Eq. 4.11.

  tanh(ℏω 1 β/2) tanh(ℏω 2 β/2) (2ξ 1 -ψ 1 ) cos 2 δ+(2ξ 2 -ψ 2 ) sin 2 δ (4.24) 
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 43 Figure 4.3: Evaluation of Rényi entropy of harmonic oscillator with ω = 0.01 and an oscillator with ω = 0.004 that are coupled through Γ = 0.94868, defined in Eq. 4.11. a) Entropy at different temperatures in the units of ln(2). b) Rényi Mutual information (see Eq. 4.27) of higher orders α = 2, 3, 4 in the units of ln(2). Numerical results (crosses) are compared to the exact analytical ones (line).
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 51 Figure 5.1: Classical potential as a function of parameter θ. For simplicity, only a classical potential of two particles is shown, with all the other parameters fixed to one m = ω = λ = 1.
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 52 Figure 5.2: Rényi entropy in the units of ln(2) as a function of D. a) Rényi entropy of half of the system for different system sizes N at τ = 0.06. Peak forming at the phase transition point appears when N is sufficiently large. b) Critical D * depends on how many beads we use. This is demonstrated at 100 K for the entropy of full (solid lines) and half of the system (dashed lines) and N = 64. Also the level of quantum correlations, S 2 half -S 2 f ull (See Section 1.2.3.1), is affected. c) D * P dependence on the reciprocal of ratio τ = 300/P T at N = 64. The plot includes points extracted from data at 100 K (blue color ) and 300 K (orange color ), which seem to agree, for the peaks of the entropy of the half (empty circles) and the full (filled circles) system. In the inset, a clear dependence on τ is demonstrated. By a linear extrapolation in τ , the critical D is predicted to be D * ∞ = 0.405 ± 0.001. Continuous curves in a-b) are splines fitted on the data. They have been used to determine the maxima.
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 53 Figure 5.3: Rényi entropy in the units of ln(2) as a function of subsystem size in the neighborhood of the phase transition at 100 K. a-b) Scaling for the N = 32 (a) and N = 64 (b) chains for equally spaced values of D. The colored sets of points are in the vicinity of the phase transition. It is clearly visible that for a general D the entropy saturates, while it keeps growing in the critical regime. c) Scaling for the N = 64 chain at critical D, for various values of the ratio τ = 300/P T . The solid lines are fits to the points. Effects are relatively small and convergence is fast. In the inset, we show the parameter in front of the fitted logarithmic terms as a function of τ . By a crude linear extrapolation, c τ =0 is extracted.
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 54 Figure 5.4: Order-disorder order parameter Φ for N = 128. Upper panel -The value of the parameter Φ across the transition at various temperatures. The restoration of the broken symmetry is marked by a sudden drop of the parameter values. The effect is visible also at higher temperatures. The dashed line is the position of the minima of the classical potential. Lower panel -Fluctuations (susceptibility) of the order parameter, weighted by the temperature to improve readability. By increasing the temperature the peak of susceptibility function drifts to higher D. (Colors palette:) from purple at 50 K to red at 1000 K.
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 55 Figure 5.5: Temperature dependence of the Rényi entropy in the units of ln(2). Rényi entropy of a system of N = 128 particles as a function of coupling D at different temperatures and fixed imaginary time step τ . Different regimes, described by the order parameter Φ (Eq. 5.7) and imaginary time correlations C T (Eq. 5.8), are marked by dashed (para), solid (disordered) and dotted (antiferro) lines. These regimes are clearly visible in the Rényi entropy -Exponential growth of fluctuations with D in para regime, divergence of the Rényi entropy at the QCP, almost linear suppression of correlation with increased D in the disordered regime and fast relaxation of entropy to the value of S 2 = ln(2) in the antiferro regime. (colors) From purple at 100 K to red at 1000 K.
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 57 Figure 5.7: Local moment formation. Upper panel -The imaginary-time correlation function at half time C T (β/2) for various temperatures. In the local moment regime, C T (β/2) saturates to a finite value.Analogously to the spin freezing[START_REF] Werner | Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model[END_REF] , the temperature dependence of C T (β/2) is suppressed. Lower panel -The ratio between C T (β/2) at T = 100 K and the correlation function at higher temperatures. Inset -In logarithmic scale the dependence is linear and the critical D can be estimated. (Colors palette:) from dark blue at 100 K to red at 1000 K.
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 58 Figure 5.8: Word-lines snapshots in different regimes. Each ring is collapsed according to the sign in front of the bead position to either -1 (dark blue) or +1 (light blue). At the point of local moment formation (middle panel), the ordering in imaginary time appears, but it is not frozen. Upon increasing the interaction further, entire rings get trapped to the left-or right-hand side with respect to the central symmetric position. The snapshots are taken at 200K with 25 beads and N = 128.
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 5 Figure 5.9: Phase diagram of 1D anharmonic chain in Eq. 5.2. We observe three distinct regimespara (red ), disordered (blue) and antiferro (green). The crossovers between these regimes are located by looking at the peak of the Rényi entropy (red points), the ratio of the correlation functions in imaginary-time C T (β/2) of Eq. 5.8 and Figure5.7 (black points, "Spin freezing"), and the susceptibility χ of the order parameter in Eq. 5.7 and Figure5.4 (blue points, "Susceptibility"). Results are obtained at finite τ and for N = 128, and then extrapolated to τ = 0, by shifting all points by δD = 0.01546 to the right, as demonstrated for the Rényi entropy and susceptibility peaks (see Figure5.6). At N = 128, size effects are marginal. The error bars represent the width of the peaks at 95% of their height.
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 61 Figure 6.1: Phase diagram of water. Left panel -Semi-log pressure-temperature phase diagram of water for a large span of temperatures and pressures, adjusted from Wikipedia[208] . Right panel -The phase diagram of high-pressure phases, borrowed from Ref.[START_REF] Pruzan | Phase diagram of ice in the vii-viii-x domain. vibrational and structural data for strongly compressed ice viii[END_REF] . The X ord corresponds to normal phase X, while X dis corresponds to the hypothesized phase X'. Filled points correspond to heavy water, and empty points to normal water. The points were obtained by Raman scattering, while the lines are fits to the experimental data. Crosses show the location of X-VII transition, extrapolated from the behavior at lower pressures.

Figure 6 . 2 :Figure 6 . 3 :

 6263 Figure 6.2: Crystal structure of (a) ice VIII and (b) ice X.
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 6465 Figure 6.4: Reflection of hydrogen atoms with the translation operator F (x (j) i ) = x (j) i ↑z, where |z| is equal to the size of the unit cell, and x (j)i ↑ are the coordinates of the particle above the particle with index i. Translated configuration is the one with flipped positions of hydrogen atoms.
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 3 Order parameter of polarization and local order formation

Figure 6 . 6 :

 66 Figure 6.6: Local moment formation at the transition from ice VII to X. Upper panel -The imaginarytime correlation function at half time C T (β/2) for various temperatures. In the broken-symmetry regime, there exists long-range order in imaginary time, which results in a finite value of the correlation function. Due to the formation of local moments the temperature can not destroy the order. Lower panel -The ratio between C T (β/2) at T = 100 K and the correlation function at higher temperatures. Inset -In logarithmic scale the dependence is linear and the critical pressure can be estimated.

Figure 6 . 7 :

 67 Figure 6.7: Word-lines snapshots in different regimes for protons in ice. Each ring of distances δ (j) i is collapsed according to the sign in front of the bead position to either -1 (dark blue) or +1 (light blue). Note that in comparison to Figure 5.8 the particle index and the imaginary time index were swapped for convenience, since P > N p . At the point of local moment formation (middle panel), the ordering in imaginary time appears, but it is not frozen. Upon increasing the interaction further, entire rings get trapped to the left-or right-hand side with respect to the central symmetric position. The snapshots are taken at 50 K with 126 beads, and 110 GPa for para, 44.5 GPa for disordered, and 15 GPa for the ordered regime.

Figure 6 . 8 :

 68 Figure 6.8: The subsystems Ball1 and Ball2. One sub-lattice is drawn in gold and the second in blue. Oxygen atoms are represented by bigger circles, while hydrogen atoms are represented by smaller circles. The particles belonging to the subsystem are encapsulated by green spheres.
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 69 Figure 6.9: Pressure dependence of the Rényi entropy in the units of ln(2) for different subsystems. Quantum Rényi entropy of a system with 16 water molecules as a function of pressure for various system sizes and fixed imaginary time step ζ (P = 126 at 50 K). The subsystems Ball 1 and Ball 2 are displayed in Figure6.8. The dependence shows existence of two phases, with divergence of the Rényi entropy in the one with low pressure. The phase with constant entropy corresponds to ice X, while the one with increasing entropy corresponds to ice VIII. The divergence is a clear mark of a phase transition. Its location agrees with the local-moment formation order parameters discussed in Section 6.3.
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 610 Figure 6.10: Pressure dependence of the Rényi entropy in the units of ln(2) at various temperatures.Upper panel -Quantum Rényi entropy of a system with 16 water molecules as a function of pressure for the subsystem of all the protons and fixed imaginary time step ζ (P = 126 at 50 K). The shape of the distrubtion does not substantially change with temperature. However, the peak at the quantum phase transition broadens to form a bump. The broadening can be explained by the formation of the disordered phase VII, that sharply ends at lower pressures, where the S 2 (p) slope resumes the phase VIII behavior. Lower panel -The entropy of an ideal gas is subtracted from the quantum Rényi entropy in the upper panel. Below 60 GPa the system's entropy scales as an ideal gas, with the exception of the peak at the QCP. The error bars are smaller than the width of the points.
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Usually, it is also assumed that entanglement should not increase under Local Operations and Classical Communication (LOCC), which is rigorously defined in Bengtsson[START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF] .

If X T Xu = λu, then XX T (Xu) = λ(Xu).

Note that Tr(A ⊗ B) = Tr(A) ⊗ Tr(B), for any pair of matrices A and B.

A is positive semi-definite if eigenvalues λ A i ≥ 0 for ∀i. The eigenvalues of tensor product A ⊗ B are λ A i λ B j for ∀i, j. If A and B are positive semi-definite, then their eigenvalues are all non-negative and A ⊗ B ≥ 0.

A is positive semi-definite if uAu T ≥ 0 for ∀u. If A and B are positive semi-definite, then u(A + B)u T = uAu T + uBu T ≥ 0.

1.3.1 Thermal phase diagramSurprisingly, presence of a quantum phase transition strongly affects phase diagrams even at higher temperature. The new phase diagram is a result of the competition between the energy scale of quantum fluctuations ℏω c , controlled by the external parameter, and the energy scale of thermal fluctuations k b T , controlled by temperature. Thermal fluctuations come in the form of a Boltzmann distribution of higher energy states, while quantum come in the form of tunneling, superposition and zero-point energy.The transitions in general follow two typical scenarios displayed in Figure1.4. In the first scenario (Figure1.4a) the phase transition happens only at T = 0. Nevertheless, at finite temperature, three regimes appear as a consequence. Two of the regimes are found respectively at higher/lower strength of the external parameter. In one of the regimes the order parameter is broken by thermal fluctuations and in the other by quantum fluctuations. In between there lays the third regime, dubbed a quantum critical regime, where the ground state is undergoing a transition, while thermal fluctuations introduce contributions from higher energy states and modify the power-law decaying correlation functions. However, even higher energy states are affected by the transition in the ground state, since the continuous transition is driven by the coupling with high-energy states. One of the consequences is that the critical ground state has no quasi-particle excitations. As a result, quantum critical region features unconventional properties, marked by unconventional power laws[START_REF] Vojta | Quantum phase transitions[END_REF][START_REF] Sachdev | Quantum magnetism and criticality[END_REF][START_REF] Sachdev | Quantum criticality[END_REF] . Upon increasing the temperature further, quantum effects disappear as thermal fluctuation are so large that the quantum dimension β becomes irrelevant.In the second scenario (Figure1.4b) there are both a quantum phase transition at T = 0 and a classical transition at T ̸ = 0. In this case the two cooperate and meet at T = 0.

Thermal density matrix on its own represents a propagation of a state from the initial state to the ensemble at temperature β. Therefore, the split described in Eq.

2.1 represents a propagation up to temperature β in steps of τ . We can see that lim β→∞ e -βH |ψ⟩ = c0|E0⟩, where |E0⟩ is the ground state, and c0 the coefficient in the expansion of |ψ⟩ in the eigenbasis of H.

Profundity of this can be demonstrated by considering only one particle N = 1 and potential V (x) = n cnx n . In this case the commutator [K, V ] = iℏ 2m n ncn{p, x n-1 } is nonzero, and even the commutator itself again does not commute with neither K nor V . This necessitates the calculation of infinite number of coefficients in the BCH expansion and prohibits us from expressing the density matrix as a product of finite number of density matrices even for a simple harmonic potential V = x 2 .

Note that the error depends also on the number of particles N , since both kinetic and potential term grow at least linearly in N . The error can be therefore estimated to be at least of order O(τ n N n ), where n is the order of the breakup. For this reason it is common to set P = cN , with c being an integer constant.

Indeed, one can show that log ( cosh(τ r)δ σ,σ ′ + sinh(τ r)δ σ,-σ ′ ) = log(cosh(τ r))δ σ,σ ′ + log(sinh(τ r))δ σ,-σ ′ .

Note that σ z i,j σ z i,j+1 ∈ {-1, 1}, for any interaction strength.

If Hydrogens are replaced by a heavier isotope, their de Broglie wavelength shrinks and severely reduces quantum effects. As a result the phase transition of the proton wave-function is shifted to much higher, almost classical, pressures. This is an experimental probe of nuclear quantum effects, called isotopic effect.

Other experimental methods, however, remain inconclusive. Indeed, in the X-ray experiments, the intensity of the diffracted peaks depends on the arrangement of the atoms in a crystal, but also on the electronic density of given atomic spices. Since hydrogen atoms contain only one electron, and oxygen atoms eight, the protons remain practically undetectable in X-ray diffraction experiments[START_REF] Goncharov | Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase[END_REF] . On the other hand neutron diffraction can be used with deuterium atoms (in place of hydrogen atoms), but is not able to reach such critical pressures, that in this case become even larger, due to the isotopic effect[START_REF] Guthrie | Neutron diffraction observations of interstitial protons in dense ice[END_REF][START_REF] Nelmes | Neutron diffraction study of the structure of deuterated ice viii to 10 gpa[END_REF] . Similarly, Raman spectroscopy works well up to 50 GPa, but then the intensity of Raman spectra decreases with increasing pressure, up to the point where it becomes impossible to detect the transition. However, also in this case the H-O distance agrees with the theoretical predictions, and the critical point can be extrapolated from the behavior at lower pressures (crosses in Figure6.1).Nevertheless, X-ray diffraction can be used to investigate the lattice of oxygen atoms. In these experiments it was observed that the ice retains the bcc structure from 2.GPa up to 100 GPa. Since ice VIII is described by a weakly distorted bcc structure, an abrupt change could be a probe of a VIII-VII phase transition. However, the experimental methods so far were not able to measure oxygens' positions with sufficient precision[START_REF] Loubeyre | Modulated phases and proton centring in ice observed by x-ray diffraction up to 170?gpa[END_REF][START_REF] Hemley | Static compression of h2o-ice to 128 gpa (1.28 mbar)[END_REF][START_REF] Wolanin | Equation of state of ice vii up to 106 gpa[END_REF] .

Water is a polar molecule.

The algorithm for the anti-ferromagnetic interaction is obtained by simply changing the sign of J.

Remerciements

Phase diagram of water under high pressure, extracted from the simulation of a super cell with only 16 molecules. We observe three distinct regimes -para in phase X, disordered in phase VII and ordered in phase VIII. The transition pressures between these regimes are obtained by the ratio of correlation functions in imaginary time C T (β/2) from Eq. 6.2, the susceptibility of the polarization order parameter from Eq. 6.1, the peak of the Rényi entropy of all the protons, and the turning point of the Rényi entropy of all the protons, where Rényi entropy quickly changes its behavior upon entering in the phase VIII. Results are obtained at finite ζ, with P = 126 at 50 K (see Appendix E). The size effects are expected to be very strong.

Phase diagram of water ice under high pressure

In Figure 6.11 we collect all the transition pressures obtained in Section 6.4 and Section 6.3. The results tell a clear and consistent story. The proton wave function undergoes a quantum phase transition, which affects also the phase diagram away from the QCP. The transition between ice VII/VIII and X corresponds to the creation of local moments, which is visible in imaginary time correlation functions and it is unambiguously apparent in the Rényi entropy. Also the thermodynamic phase transition between ice VII and VIII is affected by QCP, as the critical region approaches the QCP at low temperatures. This causes strong isotopic effect.

We can see that the observed critical pressures perfectly overlap for the case of the X-VII and X-VIII transitions. On the other hand, in the case of the VIII-VII transition the two obtained critical pressures follow the same trend, while the overlap depends on the procedure of extracting the location of the turning point, whose pressure is less clear compared to the peak of the Rényi entropy. However, the discrepancy could be simply a consequence of bad statistics of the polarization order parameter. The transition between ice VII and VIII is expected to be of the first kind, which can explain why the data from this transition is bad, and why long simulation times and larger super cells are needed.

The critical pressure seen in simulations does not agree with experimentally reported values, displayed in Figure 6.1. This is a known consequence of using SCAN-DFT as a reference potential for the ML model [START_REF] Zhang | Phase diagram of a deep potential water model[END_REF] , and our results agree about the critical pressure of the direct VIII-X transition at 50 K with other simulations done with the same potential [START_REF] Cherubini | Phase diagram, structure and spectroscopy of ordinary and high pressure ice: impact of quantum anharmonic nuclear motion[END_REF][START_REF] Yang | Personal communication[END_REF] . However, the effect is possibly amplified due to the finite size effects.

The presented path regularization scheme shows that thermodynamic integration is a viable method for studying entanglement. Most importantly, the method removes the need for staging (the ratio trick) , and is able to directly yield low variance estimate for the entropy of the full system, useful among other things for the calculation of conditional entropy, the lower bound to entanglement at finite temperature. Even in lattice systems where staging is desired, because scaling analysis is of interest, the thermodynamic integration can allow for larger steps. The method therefore opens the possibility of studying entanglement in higher dimensional lattice systems. The framework of looking at the landscape spanned by thermodynamic integration parameters is general and could be replicated also for other thermodynamic integration paths, such as the one proposed by D'Emidio [START_REF] Demidio | Entanglement Entropy from Nonequilibrium Work[END_REF] , visiting various subsystems along the way. It could be also extended to the case of the Rényi negativity. Nevertheless, the presented method was not extended to systems with indistinguishable particles. In this case one is usually interested in the entanglement of spatial regions, while the presented method works by labeling the particle, not the spatial region. Possibly one could design a procedure where the coupling in the imaginary time, controlled by parameters (g(λ), h(λ)), is tied to the spatial region, and not to the particles. However, this has not been tried yet. Another possibility is to use the path regularization to enhance Rényi entropy evaluation in Ground-State Path Integral quantum Monte Carlo (GSPIMC) simulations, which were shown by Herdman et al. [START_REF] Herdman | Particle entanglement in continuum many-body systems via quantum monte carlo[END_REF][START_REF] Herdman | Spatial entanglement entropy in the ground state of the lieb-liniger model[END_REF] to be extendable to bosonic systems.

The path regularization algorithm, presented in this thesis, is very general, and we have shown it to be transferable from PIMC to PIMD. The method could be easily implemented in already existing distributions, such as i-PI [START_REF] Ceriotti | A python interface for ab initio path integral molecular dynamics simulations[END_REF] , LAMMPS [START_REF] Thompson | Lammps -a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[END_REF] and Quantum Espresso [START_REF] Giannozzi | Quantum espresso: a modular and open-source software project for quantum simulations of materials[END_REF] . Implemented in the framework of PIOUD, the method can be used also with the forces obtained by more accurate stochastic electronic structure methods. Given this, it is possible that the thermodynamic integration with path regularization will become a reference method to compute the Rényi entropy in wide variety of systems, from lattice models to ab initio simulations.

Appendix

Appendix A

Jensen's inequality for Mutual information

In the Chapter 1 we mention that the mutual information I(X, Y ) between random variables X and Y , defined as

is always non-negative. Following the notation of the Chapter 1, H(X) denotes the entropy (or uncertainty) of random variable X, that can take values from the set A X . We can then write out the expression for the mutual information explicitly as

where the sum x,y designates the sum over all the values in the sets of random variables X and Y . The equality in the Equation A.3 is solely the consequence of the additivity of the logarithm. At this point we can use the Jensen's inequality

) to move the function f (.) =log 2 (.) out of the average E[f (.)] = x,y p x,y f (.). This gives us the lower bound to the mutual information

The expression on the right hand side of Equation A.4 can be exactly evaluated, since p x,y cancels out, so that we get

which is zero, due to the normalization condition for the probability. The equality in Equation A.4 holds only for the case, where the ratio p x p y /p x,y is constant for all the values of x and y, because in this case one can move the logarithm of the ratio out of the sums in Equation A.3 and Equation A.4. However, due to the normalization condition

, the constant must be equal to one, meaning that the mutual information vanishes only when the two random variables are independent p(X, Y ) = p(X)(Y ). Further properties and more rigorous derivations can be found in [START_REF] Cover | Elements of Information Theory[END_REF] .

Appendix B

Path Integral Monte Carlo (PIMC)

We showed that the density matrix can be decomposed as a sum of paths with known weights. However, by knowing the importance we learned much more than just what paths we are allowed to reject -if the system is not suffering from the sign problem, we learned the whole probability distribution.

If the probability distribution f (x) of paths x in imaginary time t is known, then one can evaluate the expectation values of any observable, by sampling the paths according to their probability distribution f (x). This is known as central limit theorem, and means that one can design a random path generator, that creates M paths, with frequencies that agree with the probability distribution and approximate the expectation value as [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] 

with ⟨•⟩ f signifying the exact expectation value of the operator evaluated over the distribution f . Therefore, instead of exactly solving these integrals, which is in most circumstances impossible, we can generate random paths according to their distribution and get results with error that is decreasing as 1/ √ M .

B.1 Monte Carlo

Instead of generating random paths independently, in this approach we aim to generate random paths sequentially, by modifications of the random path that was proposed before. This considerably simplifies the generation of paths and speeds up the convergence [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] .

A new path x at step m + 1 is generated from the previous path y at step m according to the rule R(x|y), which has to satisfy a detailed balance condition

Function f (y) is again just the actual probability of path y. The condition simply states that the probability of generating x from y must equal the probability of generating y from x, ensuring that the sampling is microscopically reversible and not altering the distribution f . The rule R(x|y) is typically (in sampling techniques known as Metropolis-Hastings) decomposed in two factors -the probability with which we generate the new path T (x|y) and the probability with which we accept the new path A(x|y). Plugging this back into the Eq. B.2, it gives us a rule of calculating acceptance probability that obeys the detailed balance condition

A common choice of A(x|y) that fulfills this condition [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] is given by

Therefore, by developing a scheme that generates path x from path y with a probability T (x|y) we already know with what probability the new path x(τ ) should be accepted. A new path x is accepted whenever r(x|y) > 1, while for r(x|y) ≤ 1, the path is accepted with probability r(x|y). In practice this means that a random number w is generated in the interval w ∈ [0, 1] and the new path x is accepted if w < r(x|y). When the new path x is rejected, the original path y is used in the evaluation of the observable. The algorithm has been proven to lead to the sampling of configurations according to the probability distribution f [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF] .

B.1.1 Metropolis-Hastings algorithm for distinguishable particles

In order to evaluate any observable A(x) in a quantum thermal ensemble of distinguishable particles, described by Eq. 2.11 and coordinates x (j) i , we need to sample it over the probability distribution

with H P (x) given by the Eq. 2.12 and kinetic energy integrated over. The lower index i runs through all the particles, and the upper index (j) over all the imaginary-time slices. By noticing that the Hamiltonian describes ring polymers we can design a simple protocol of generating a new configuration from the old one. We can take the initial configuration and chose with equal probability a pair of upper and lower indices x (j)

i . By noticing that the bead x (j) i interacts harmonically with its neighbors, and that a ring should spread by a distance given by De Broglie wavelength Λ = 2πℏ 2 /m i k b T , we can safely say that the new path should be given by preserving all the positions and displacing x (j) i for a random vector, distributed uniformly in a ball with radius ∆ = aΛ, for some a > Λ. Combined, this gives

if V is the volume of the ball, N the number of particles and P the number of steps in the imaginary time. The distribution T is clearly reversible T (x|y) = T (y|x) and thus the acceptance probability in Eq. B. 4 gives

Similarly one can extend the procedure and displace all the positions with the same upper index, or design other analogous moves. An example of such a move is the reflection move, used in the simulations of the formic acid dimer (See Section 3.2.1), the chain of anharmonic oscillators (See Chapter 5), and the water ice under high pressure (See Chapter 6). For particularly nice potentials (free particle or harmonic oscillator) a distribution T (x|y) can be designed in such a way to give lower or even zero (in this case called heat bath algorithm) rejection rates [START_REF] Tuckerman | Statistical Mechanics: Theory and Molecular Simulation[END_REF][START_REF] Ceperley | Path integrals in the theory of condensed helium[END_REF] .

Appendix C Connection to other models

There exist many different parametrisations of the model. For making comparison with previous results, I will list the mappings from our parametrisation to some others. In the works [START_REF] Rubtsov | Quantum phase transitions in the discrete φ 4 model: The crossover between two types of transition[END_REF][START_REF] Savkin | Quantum discrete φ 4 model at finite temperatures[END_REF] the Hamiltoniain is written in terms of parameters a, σ and d, such that

With a simple comparison we can see that then λ = a/4, θ = σ and ω = 3a 4m -2 d m . This Hamiltonian is particularly useful for exploring the limit of the Ising model (a → ∞), where particles are strongly localized to positions around -1 and 1, and the model describes a two level system. The mass controls the tunneling rate and plays a role analogous to the strength of the transverse magnetic field in the Ising model.

In the work of Wang et al. [START_REF] Wang | Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials[END_REF] they show that the model can be recast to depend on only two parameters κ and ϵ. The two parameters represented in the Hamiltonian formulation appear as

and can be expressed in terms of our parameters as ω = (ϵλ/m 2 ) 1/3 and κ = θ/2mω 2 . From our analysis we can see that the last one controls the type of the transition and the number of minima, while the first one controls the strength of quantum effects. The larger the value of ϵ, closer we are to the classical limit. By making the restriction γ = mω 2 , we choose the value κ ′ = 1/2 and vary only ϵ. In this case ϵ ′ = m 2 ω 3 /λ = √ m ′ D 3 , which we can use to compare results obtained by the parametrization in Eq. 5.1, with the ones obtained by Eq. C.2.

The model is extensively studied also in the continuous limit, describing a relativistic quantum scalar field. It is arguably the simplest model that contains kinks, defined as abrupt changes of the field configuration jumping from one minima of the double well to the other. In this limit the re-normalisation of the diverging quadratic term reduces the number of free parameters to one [START_REF] Rychkov | Hamiltonian truncation study of the φ 4 theory in two dimensions[END_REF][START_REF] Harindranath | Stability of the vacuum in scalar field models in 1+1 dimensions[END_REF][START_REF] Lee | The diagonalization of quantum field hamiltonians[END_REF][START_REF] Sugihara | Density matrix renormalization group in a two-dimensional [equation] hamiltonian lattice model[END_REF][START_REF] Schaich | Improved lattice measurement of the critical coupling in ϕ 4 2 theory[END_REF][START_REF] Milsted | Matrix product states and variational methods applied to critical quantum field theory[END_REF] . In the continuous limit the Hamiltonian in Eq. C.2 reduces to the actual ϕ 4 model, with continuous parameter i, defined as the field q(x), and the interaction term as (q(x)q(x + δx)

Appendix D

Numerical details of the study of the anharmonic chain

The value of the damping constant γ 0 was fixed to γ 0 = 0.005855 a.u., close to the optimal damping for harmonic oscillators [START_REF] Rossi | How to remove the spurious resonances from ring polymer molecular dynamics[END_REF] . A typical simulation was split in blocks of 10000 time propagation steps, and usually 140 to 400 blocks were evaluated. The time step was calculated with the formula ∆t = 0.25D/0.334 fs, with D defined in Eq. 5.2, and varied form 0.25-0.375 fs. Final simulation times were therefore ranging from 0.1 ns to 0.28 ns. This long simulation times were needed in the vicinity of the QCP, due to symmetry breaking, after which two distinct copies of the system got trapped in distinct global minima. Even though the hybrid PIMC-PIMD algorithm presented in Chapter 4 was used, longer simulation times were still needed, to reach low error estimates. Temperature was varied from 50 K to 1000 K. This resulted in the range of β from 315 Ha -1 to 6313 Ha -1 , where Ha is atomic unit of energy. The maximum number of beads used was 50. For the numerical integration over the regularized thermodynamic integration path we used 10 integration steps.

Appendix E

Numerical details of the study of water ice

The value of the damping constant γ 0 was fixed to γ 0 = 0.00146 a.u., the optimal damping for harmonic oscillators [START_REF] Rossi | How to remove the spurious resonances from ring polymer molecular dynamics[END_REF] . A typical simulation was split in blocks of 100 time propagation steps, and usually 170 to 250 blocks were evaluated. The time step was set to ∆t = 1 fs. Final simulation times were therefore ranging from 17 ps to 25 ps. For the pressures close to the VII-VIII phase transition at higher temperatures, the simulation times were extended up to 120 ps. Temperature was varied from 50 K to 350 K. This resulted in the range of β from 902 Ha -1 to 6313 Ha -1 , where Ha is atomic unit of energy. The imaginary time discretization parameter τ was fixed by τ = β 50K /126 = 50 Ha -1 , where β 50K = 6313 Ha -1 . For comparison, in the anharmonic chain τ reached the minimum value for 300 K, where it equaled τ = β 300K /50 = 21 Ha -1 , but was much larger for 50 K, where it equaled τ = 126 Ha -1 . For the numerical integration over the regularized thermodynamic integration path we used 10 integration steps. The thermodynamic integration was done using Simpson's rule. The flip of all the protons was performed every 10 steps, and positions of particles, needed for the polarization order parameter and correlations in the imaginary time, were recorded once per block.

The code was parallelized by integration steps and by the batches of imaginary time slices. Due to the computing nodes architecture, and the optimal acceleration factor of our parallelization, we used 10 computing cores for each integration step at 50 K, and 4 computing cores for each integration step at 350 K and 233 K. A simulation at 50 K (such as the results in Figure 6.8) required 100 CPU hours for 2 ps of dynamics.

Abstract

Quantum phase transitions and quantum entanglement can be studied by quantum Rényi entropy, a generalization of Von Neumann entropy. However, Rényi entropy calculations have been plagued by their computational complexity. In this thesis we present a new numerical technique based on thermodynamic integration via regularized integration paths. The optimal path is constructed by minimizing the variance of the Rényi entropy estimator leading to an efficient evaluation of its quantity for complex quantum systems of distinguishable particles with unprecedented entanglement and size. We implement the method in path integral Monte Carlo (PIMC) and path integral molecular dynamics (PIMD) schemes. We demonstrate in the case of the one-dimensional Ising model in transverse magnetic field, that the method outperforms some of the existing state-of-the-art numerical methods. We then study the complex of formic acid dimer and discover that its two shared protons are entangled even above room temperature. By the means of hybrid PIMC-PIMD scheme we then fully resolve the phase diagram of the discrete ϕ 4 model, and show that the peak of the Rényi entropy at finite temperature exactly coincides with the quantum critical point (QCP) and the freezing of the field in the imaginary time, interpreted as the local moments formation. We then use the Rényi entropy to determine the phase diagram of high-pressure water ice phases VIII, VII and X. The quantum Rényi entropy of protons sharply peaks at the pressure of 43 GPa, which is a signature of a QCP. The peak precisely coincides with the freezing of protons in the imaginary time, where phase X is lost, and the formation of a macroscopic polarization at lower temperature, characteristic of phase VIII. In this way we are able to scan the full phase diagram of high pressure water ice by looking at the changes in Rényi entropy behavior as a function of pressure and temperature.