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Abstract 

Title: Molecular mechanisms of phase II metabolizing enzymes and ABC transporters, and their 

interactions with small molecules modeled through structure-based and machine learning 

methods 

Key words: drug metabolizing enzymes, SULT, UGT, ABC transporters, BCRP, ABCG2, efflux 

mechanism, conformational exploration, molecular dynamics, normal modes, docking, machine 

learning 

The complex process of drug elimination is governed by drug metabolizing enzymes (DMEs) 

and transporters. Xenobiotics and endogenous compounds that should be eliminated from the 

human body can undergo phase I and/or phase II metabolism and then be excreted by efflux 

transporters. Phase I metabolism reactions primarily involve oxidation-reduction and are 

predominantly catalyzed by the cytochrome P450 enzymes, whereas phase II metabolism 

(conjugation) reactions include catalysis by, among others, sulfotransferases (SULTs) and UDP-

glucuronosyltransferases (UGTs). Their conjugates are generally considered inactive and due to 

their reduced lipophilicity, they rely on transporters to cross cell membranes, such as ATP-

binding cassette (ABC) transporters. Inhibition of DMEs and ABC transporters can lead to 

undesirable drug-drug interactions (DDI). Conformational changes are driving forces for the 

accommodation of the diverse ligands of the DMEs and for the substrate translocation of the 

different transporters due to their large promiscuity. Current machine learning (ML) models 

predicting the inhibition of DMEs and ABC transporters mostly neglect protein structure and 

dynamics, both being essential for the recognition of various substrates and inhibitors. To 

better understand their molecular mechanisms and their interactions with small molecules in 

all its complexity, we employed structure-based and ML approaches. In the present thesis work, 

the phase II DMEs SULT1A1 and UGT1A1, and the ABC transporter ABCG2 (BCRP) are studied 

in detail. 

SULT1A1 catalyzes the sulfoconjugation from the cofactor 3′-Phosphoadenosine 5′-

Phosphosulfate (PAPS). We performed molecular dynamics (MD) and the recently developed 

MD with excited Normal Modes (MDeNM) simulations which allowed an extended exploration 

of the conformational space of the PAPS-bound SULT1A1. The generated ensembles combined 

with the docking of SULT1A1 ligands shed new light on its substrate and inhibitor binding 

mechanism. Unexpectedly, our simulations demonstrated that large conformational changes 

of the PAPS-bound SULT1A1 could occur. Our results suggest that a wide range of drugs could 

be recognized by the PAPS-bound SULT1A1 independently of the cofactor presence and 

highlight the utility of including MDeNM in protein-ligand interactions studies where major 

rearrangements are expected. 

UGT1A1 catalyzes the covalent addition of the glucuronic acid sugar moiety from the 

cofactor uridine-diphosphate glucuronic acid (UDPGA). Strong inhibition of UGT1A1 may trigger 

adverse drug interactions, or result in endobiotic metabolism disorders. We performed MD 



 

 

simulations on a human UGT1A1 homology model and created, to the best of our knowledge, 

the first prediction models of UGT1A1 inhibition by integrating information on UGT1A1 

structure and dynamics, interactions with diverse ligands, and ML methodologies. Our models 

can be helpful for the prediction of DDI of new drug candidates. 

ABCG2 (BCRP) is involved in multidrug resistance (MDR), understanding its complex 

efflux mechanism is essential to prevent MDR and DDI. ABCG2 export is characterized by two 

major conformational transitions between inward- and outward-facing states, the structures 

of which have been resolved. We developed an innovative enhanced MD simulation approach, 

‘kinetically excited targeted MD’, and successfully simulated the transitions between the 

inward- and outward-facing states in both directions and the transport of the endogenous 

substrate estrone 3-sulfate. We discovered an additional pocket between the two substrate-

binding cavities and found that the presence of the substrate in the first cavity is essential to 

couple the movements between the nucleotide-binding and transmembrane domains. The 

generated transient conformations and the revealed translocation pathway can facilitate the 

identification of novel ABCG2 substrates and inhibitors, and the probing of new drug candidates 

for MDR and DDI. 

Résumé 

Titre : Mécanismes moléculaires des enzymes de métabolisme de phase II et des transporteurs 

ABC, et leurs interactions avec de petites molécules modélisées par des méthodes structurales 

et d'apprentissage automatique 

Mots clés : enzymes métabolisant des médicaments, SULT, UGT, transporteurs ABC, BCRP, 

ABCG2, mécanisme d'efflux, exploration conformationnelle, dynamique moléculaire, modes 

normaux, arrimage moléculaire, apprentissage automatique  

Le processus d'élimination des médicaments est régi par des enzymes métabolisant des 

médicaments (DME) et des transporteurs. Les xénobiotiques sont métabolisés dans le corps 

humain par des enzymes de phase I et/ou de phase II, et excrétés par des transporteurs. Les 

réactions de phase I impliquent principalement l'oxydation-réduction faisant intervenir les 

enzymes de cytochrome P450, tandis que les réactions de phase II (conjugaison) incluent le 

plus souvent les sulfotransférases (SULT) et les UDP-glucuronosyltransférases (UGT). Leurs 

conjugués sont généralement considérés comme inactifs et sont éliminés à travers la 

membrane par des transporteurs tels que les transporteurs ABC (ATP-binding cassette). 

L'inhibition des DME et transporteurs ABC peut entraîner des interactions médicamenteuses 

indésirables (DDI). Les changements conformationnels des DME et transporteurs sont 

essentiels pour la transformation et la translocation du substrat. Les modèles actuels 

d'apprentissage automatique (ML) prédisant l'inhibition des DME et des transporteurs ABC 



 

 

négligent principalement leur structure et dynamique, toutes deux essentielles à la 

reconnaissance de divers substrats et inhibiteurs. Pour mieux comprendre leurs mécanismes 

moléculaires et leurs interactions avec les petites molécules, nous avons utilisé des approches 

structurales et ML. Dans cette thèse, les DME de phase II SULT1A1 et UGT1A1, et la protéine 

ABCG2 (BCRP) sont étudiés en détail. 

SULT1A1 catalyse la sulfoconjugaison par le cofacteur 3′-Phosphoadénosine 5′-

Phosphosulfate (PAPS). Nous avons effectué des simulations de dynamique moléculaire (MD) 

et de MDeNM (MD with excited Normal Modes), permettant une exploration étendue de 

l'espace conformationnel du SULT1A1 lié au PAPS. Les ensembles générés, combinés au 

criblage des ligands de SULT1A1, ont apporté un nouvel éclairage sur le mécanisme de fixations 

des composés. De manière inattendue, nos simulations ont montré que de grands 

changements conformationnels de SULT1A1 contenant le PAPS peuvent se produire. Elles 

suggèrent qu'une large gamme de médicaments peuvent être reconnus par SULT1A1 avec ou 

sans le cofacteur et soulignent l'utilité d'inclure MDeNM dans les études d'interaction protéine-

ligand où des réarrangements majeurs sont attendus. 

UGT1A1 catalyse l’inclusion de la partie sucre de l'acide glucuronique provenant du 

cofacteur acide uridine-diphosphate glucuronique (UDPGA). Une inhibition de l'UGT1A1 peut 

conduire à des DDI, ou à des troubles métaboliques endobiotiques. Nous avons effectué des 

simulations MD sur un modèle de l'UGT1A1 humain et créé les premiers modèles prédictifs de 

l'inhibition de cette protéine en intégrant des informations structurales et de dynamique, les 

interactions avec divers ligands et des techniques de ML. Nous montrons l’utilité de notre 

approche pour la prédiction DDI de nouveaux candidats médicaments. 

ABCG2 est impliqué dans la multirésistance aux médicaments (MDR). La compréhension 

de son mécanisme pour la translocation de composés est essentielle pour prévenir la MDR et 

la DDI. Il est caractérisé par deux transitions conformationnelles majeures entre un état ouvert 

vers l'intérieur de la cellule et l’autre vers l'extérieur, dont les structures ont été résolues 

expérimentalement. Nous avons développé une approche de simulation MD innovante, 

'kinetically excited targeted MD', pour simuler les transitions entre ces deux états et le 

transport du substrat endogène estrone 3-sulfate. Nous avons caractérisé une cavité 

supplémentaire entre les deux cavités de fixation du substrat, et mis en évidence que la 

présence du substrat dans la première cavité est essentielle pour coupler les mouvements 

entre le domaine nucléotidique et le domaine transmembranaire. Les structures transitoires 

dans le processus de translocation qui ont été générées seront utiles à l'identification de 

nouveaux substrats et inhibiteurs d'ABCG2, et la prédiction de la MDR et DDI de nouveaux 

médicaments candidats. 
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I. Introduction 

 

 

„Nem én vagyok bonyolult, hanem a dolog, amiről beszélek.” 

“It’s not me who is complicated, it’s the things I talk about.” 

Karinthy Frigyes  
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A. Biological Background 

Drug discovery and development is an expensive and slow process. According to the study of 

DiMasi et al. in 2016, development of a single drug cost $2.6 billion and took over 10 years on 

average [1]. A major challenge associated with the identification of promising drug candidates 

is to find a good balance between the required efficacy, selectivity, and affinity against their 

intended therapeutic target while at the same time showing appropriate absorption, 

distribution, metabolism, excretion, and toxicity (ADME-Tox) properties. ADME-Tox is a 

complex process that determines the pharmacokinetics of a drug molecule in the body which 

includes both transporters and drug metabolizing enzymes (DMEs) with physiological 

consequences on pharmacological and toxicological effects [2]. 

 

Figure A.1: Drug transport and metabolism at the most important drug metabolism sites (liver, 
kidneys, intestine) and at an important tissue barrier (blood brain barrier). 

1. Drug elimination from the human body 

Drug elimination through metabolism and excretion is a complex process that is governed by 

metabolizing enzymes and membrane transporters. Metabolism in the body is a 
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biotransformation process where compounds are structurally modified to different molecules 

(metabolites) by various metabolizing enzymes. Endogenous compounds as well as drugs and 

other xenobiotics that should be eliminated from the human body can undergo phase I and/or 

phase II metabolism catalyzed by drug metabolizing enzymes (DMEs). In general, DMEs 

contribute to the protection of the body against harmful compounds, both against xenobiotics 

(compounds from the environment, substances that are foreign to the given living organism; 

from the Greek xenos meaning ‘stranger’ and biotic ‘related to living beings’) and certain 

endogenous compounds that appear during different biological processes (compounds that 

originate within the given living organism). Such enzymes play a key role in the detoxification 

of organisms, and in some cases in the bioactivation of some so-called prodrugs, by chemically 

modifying toxic substances and that way they generally make them less active or even inactive. 

Following phase I and/or phase II metabolism, or even directly, compounds can be excreted to 

the extracellular space by transporters. Together with the metabolizing enzymes, efflux 

transporters modulate the intracellular bioavailability and pharmacokinetics of drugs and other 

xenobiotics. Drug metabolism influences drug pharmacodynamics and pharmacokinetics. 

The rate of metabolism of a given drug, which can be highly influenced by different 

DMEs, as well as its rate of export are important factors in drug design. Both have a crucial 

impact on the intensity and the duration of the drug’s effect in the body. The metabolic 

reprogramming and the resulting metabolic shift in certain tumorous cells (e.g. by the 

overexpression of DMEs and drug exporters) alters the rate of metabolism of several drugs and 

can contribute to the multidrug resistance (MDR) phenotype. MDR promotes resistance to 

drugs of different structures and mechanism of action [3]. When DMEs are overexpressed in 

tumorous tissues, they can cause resistance by metabolizing the drugs and rendering them 

inactive whereas the overexpression of efflux transporters and the resulting increase in the 

export activity can significantly impair treatment success by effluxing drugs from the cytosol 

[4]. Furthermore, the effects of some drugs as substrates (through the creation of toxic 

metabolites) or inhibitors of DMEs and drug transporters can cause high level of intracellular 

toxicity and are a common reason for hazardous adverse drug reactions (ADRs, unintended 

harmful effects) and drug-drug interactions (DDIs, alterations in the way a given drug acts when 

applied together with other drugs).  

The inhibition of DMEs and drug transporters can directly increase intracellular toxicity 

while the formation of reactive or toxic metabolites are also a safety liability. Furthermore, high 

affinity substrates of a given efflux transporter or a given DME can have very low intracellular 

efficacy. As a consequence, the prediction of interactions with DMEs and drug transporters and 

associated drug side effects in early drug development stages can help reducing drug candidate 

failure. An efficient in silico prefiltering can also significantly decrease the experimental toxicity 

evaluation of a large number of poor drug candidates which are both costly and currently 

primarily rely on animal studies raising also ethical aspects.  
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2. Drug metabolism reactions 

A large portion of drugs are small molecules that are mostly classified as xenobiotics. 

Nevertheless, several endogenous molecules, such as steroids and hormones, are also used for 

the treatment of certain disease conditions and are also referred to as drugs. The term 

metabolism refers to the process of biotransformation of chemicals catalyzed by an enzyme 

[5]. The primary objective of metabolism is the excretion of both endogenous and exogenous 

molecules from the body generally by converting hydrophobic compounds into more 

hydrophilic metabolites promoting their elimination. DMEs play a fundamental role through 

metabolic reactions in the detoxification and elimination of drugs and other xenobiotics 

introduced into the human body [6]. Most of the human tissues and organs express diverse and 

various DMEs either at their basal unstimulated level or at elevated levels in a response to 

exposure to xenobiotics [7]. The principal metabolic site can be found in the liver, more 

precisely in its hepatocytes [8], but other metabolic sites include the kidneys and the lungs. 

Within the cells, most DMEs are either anchored to the endoplasmic reticulum (ER) membrane 

(e.g. majority of cytochrome P450 enzymes, epoxide hydrolases, glucuronosyl transferases, or 

glutathione S-transferases) or are cytosolic enzymes (e.g. aldehyde oxidase, alcohol 

dehydrogenase, xanthine oxidase, or sulfotransferases) [9-11].  

The rate of metabolism of a given drug is an important aspect upon drug design and 

development. It is necessary to find a good balance so that the drug can carry out its effects in 

the body without being rapidly eliminated and reaching its desired target; but at the same time 

it should also not accumulate to toxic levels in the body over time. Also, in some cases, drug 

metabolism can generate more active metabolites than the corresponding parent drug. If this 

mechanism is exploited intentionally (approximately 5 % of all drugs are design in this way), the 

parent drugs are called prodrugs [12]. An example for prodrugs is acetylsalicylate, better known 

as aspirin, which is a synthetic prodrug of the metabolite salicylate which is responsible for 

most of the anti-inflammatory and analgesic effects of aspirin. (Besides aspirin being a prodrug, 

aspirin itself can be an active moiety with antiplatelet-aggregating effects) [13]. Similarly, 

lovastatin, a drug administered to treat high blood cholesterol and reduce the risk of 

cardiovascular diseases, is a prodrug which is converted to its active (open ring) form only at 

the site of action by in vivo hydrolysis [14]. In such cases the administrated drug has a lower 

activity and usually is better absorbed from the gastrointestinal tract [15, 16]. At the same time, 

reactive metabolites also arise from adverse or unintended drug reactions and can cause 

serious side effects, even interacting with macromolecules like the DNA and induce 

mutagenesis and cancer [17].  

Drug biotransformation reactions are classified as either phase I (functionalization) 

reactions, or phase II (conjugation) reactions [18, 19]. In many cases phase I reactions produce 

a reactive functional group on a given molecule so that it can be attacked by phase II DMEs. 

However, numerous compounds can be directly conjugated by phase II DMEs, without a 

preceding phase I reaction (e.g. bilirubin, steroids, or paracetamol [20]).  
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2.1. Phase I metabolism 

Phase I metabolism (functionalization, conversion of functional groups) includes oxidation, 

reduction, hydrolysis, and hydration reactions as well as some rarer reactions like 

isomerization, dimerization, or decarboxylation. Many pharmacologically active molecules are 

of hydrophobic nature and are unionized or only partially ionized at physiological pH. Without 

biotransformation they could be reabsorbed after glomerular filtration in the kidney and 

remain in the body [6]. Phase I DMEs aim to unmask a polar functional group on their 

substrates. Phase I metabolites may be directly eliminated or further metabolized by a 

consecutive conjugation reaction step catalyzed by phase II DMEs which render their substrates 

even more hydrophilic. 

2.1.1. Cytochrome P450 superfamily 

The most important phase I DMEs belong to the cytochrome P450 (CYP; EC1.14.14.1) 

superfamily that are capable of catalyzing the oxidative biotransformation of most drugs and 

other lipophilic xenobiotics [21]. CYP enzymes catalyze several reactions, including oxidation, 

aromatic hydroxylation, aliphatic hydroxylation, N-dealkylation, and O-dealkylation[5], 

oxidation being the primary reaction which results in the addition of one or more oxygen atoms 

to the parent drug [19]. The human CYP superfamily contains 57 functional genes (and 58 

pseudogenes which are nonfunctional segments of the DNA that resemble functional genes). 

Cytochrome P-450 is the terminal oxidase component of an electron transfer system present 

in the endoplasmic reticulum (imbedded in the membrane) and is classified as a (non-covalently 

bound) haem-containing enzyme superfamily (haemoproteins) [18]. The P450 enzymes 

dominate the metabolism of drugs, the different CYP isoforms metabolize almost three-

quarters of all clinical drugs [22, 23]. Based on protein sequence homology CYPs are classified 

into 18 families and 44 subfamilies. Most of the human CYP isoforms have specific endogenous 

functions e.g. the biosynthesis of steroid hormones, prostaglandins, or bile acids [24]. Even 

though the CYP isoforms exhibit broad and overlapping substrate specificities, most drugs are 

metabolized by one or few enzymes only [25]. Almost exclusively members belonging to three 

specific families (CYP1, CYP2, and CYP3) catalyze drug metabolism, they are accountable for the 

oxidative metabolism of more than 90 % of all drugs catalyzed by the CYP superfamily (46 % is 

catalyzed by the members of CYP3A, 16 % by CYP2C9, 12 % by both CYP2C19 and CYP2D6, 9% 

by members of the CYP1A family, and 2-2 % by both CYP2B6 and CYP2E1) [22, 26].  

The CYP1 family members have overlapping catalytic activities and include 

hydroxylation and other oxidative transformations of many polycyclic aromatic hydrocarbons 

and other aromatic substances. In the CYP2 family, members of the CYP2C subfamily are of 

particular interest, which consist of the four highly homologous genes (>82 %) CYP2C18, 

CYP2C19, CYP2C9, and CYP2C8, yet each of them has a very unique substrate specificity and 

role in drug metabolism [27]; while CYP2D6 is the only protein-coding gene in the CYP2D 

subfamily, and its hepatic protein content varies dramatically from person to person mainly 

due to its genetic polymorphism [28, 29]. The human CYP3 family has one single subfamily, 

CYP3A, consisting of four genes, 3A4, 3A5, 3A7, and 3A43 [25]. 
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CYP3A4 is the most abundant isoform in the liver and small intestine and plays a role in 

the metabolism of over 30 % of all drugs on the market and in development in almost all 

therapeutic categories [30], its substrates are large and lipophilic molecules of very diverse 

structures. Other important DMEs of the CYP1 and CYP2 families are CYP1A2, CYP2C9, 

CYP2C19, and CYP2D6. The isoform  CYP1A2 typically metabolizes smaller and planar, aromatic, 

polyaromatic, and heterocyclic amides and amines, its typical biotransformations include 7-

ethoxyresorufin O-deethylation (breaking of a covalent bond between a substrate and its -

CH2CH3 group), phenacetin O-deethylation, and caffeine N3-demethylation (breaking of a 

covalent bond between a substrate and its -CH3 group) to paraxanthine [8, 31]. The major 

enzyme CYP2C9 of the CYP2C subfamily metabolizes more than 15 % of clinically administrated 

drugs [32] and typically interacts with weakly acidic substances having a hydrogen bond 

acceptor (including most nonsteroidal anti-inflammatory drugs) [33]. The isoform CYP2C19 on 

the other hand accepts neutral or weakly basic molecules or amides of higher molecular weight, 

possessing 2 or 3 hydrogen bond acceptors (including most proton pump inhibitors), and also 

plays an important role in the metabolism of numerous first- and second-generation 

antidepressants. Finally, the isoform CYP2D6 typically transforms basic molecules with a 

protonatable nitrogen atom 4-7 Å from the metabolism site (including many plant alkaloids and 

antidepressants, and other nervous system drugs) [25, 34-36].  

 

Figure A.2: Crystal structure (PDB 1OG5) of CYP2C9 in the presence of heme (white sticks) and 
warfarin (green sticks). 

2.1.2. Other phase I DMEs 

Apart from the CYP superfamily, several other phase I DMEs can contribute to the elimination 

of drugs. Flavin-containing monooxygenases (FMOs) oxygenate nucleophilic O, N, S, and Se 

atoms of a wide range of substrates, such as amines, amides, thiols, sulfides, and phosphites 

[37]. The enzymatic mechanism of FMOs differ from other monooxygenases as they only 

require the cofactor NADPH for the enzymatic activity on their substrates, as the prosthetic 



Introduction Biological Background 

21 

group FAD (flavin adenine dinucleotide, a redox-active coenzyme associated with various 

proteins) is an integral part of the protein, FMOs are flavoproteins [38]. Monoamine oxidases 

(MAOs) were identified to catalyze the oxidative degradation of a number of neurologically 

important amine substrates like dopamine or serotonin. MAOs are also flavoenzymes 

containing a single covalent FAD cofactor per monomer [39]. Molybdenum-containing 

hydroxylases, unlike monooxygenases, use oxygen derived ultimately from water to catalyze 

the hydroxylation of carbon centers as the source of the oxygen atom incorporated into the 

product, rather than dioxygen [40]. Further examples of non-CYP450 phase I DMEs are alcohol 

and aldehyde dehydrogenases (that catalyze the general oxidation reaction of the hydroxyl or 

formyl group (aldehyde) via an electron acceptor [41, 42]), aldo-keto reductases (that catalyze 

redox transformations; substrates of the family include glucose, steroids, glycosylation end-

products, and lipid peroxidation products [43]), NADPH:quinone reductases (that catalyze the 

two electron reduction of quinones and a wide range of other organic compounds [44]), and 

hydrolytic enzymes (alternatively referred to as hydrolases, they split different groups of 

biomolecules such as esters, peptides, and glycosides breaking them down into their simplest 

units [45, 46]).  

2.2. Phase II metabolism 

Phase II metabolism (conjugation, addition of functional groups) links a relatively large 

endogenous polar group to diverse types of compounds, generally creating water-soluble 

products with increased molecular weight which can be excreted in bile or urine [5]. Phase II 

metabolism includes sulfation, glucuronidation, glycosidation, methylation, acetylation, 

condensation, and amino acid-, glutathione-, and fatty acid-conjugation. The resulted 

metabolites are typically of reduced membrane permeability, consequently active transport is 

required for their eventual excretion. Most conjugation reactions are cytosolic with the 

exception of glucuronidation which takes place in the lumen of the ER. In most cases 

conjugation reactions terminate the biological activity of drugs. However, reactive conjugated 

metabolites have also been reported (e.g. many glucuronide conjugates of opioids, steroid 

sulfates, morphine-6-glucuronide, or conjugates of midazolam) [47-50]. Phase II metabolism 

can follow the unmasking of a polar functional group by phase I DMEs. Nevertheless, numerous 

compounds (e.g. bilirubin, steroids, or paracetamol) can be directly conjugated by phase II 

DMEs, without a preceding phase I reaction [51, 52]. The catalytic rates of phase II DMEs are 

generally significantly higher than the rates of CYPs, if phase II is preceded by such a phase I 

catalysis, the rate limiting step is usually the oxidation reaction [47, 53].   

2.2.1. Sulfation 

Sulfation is one of the major conjugating pathways responsible for the detoxification and 

subsequent elimination of xenobiotics and endogenous small molecules [54]. Sulfation is also 

important in the biosynthesis of steroid hormones and in modulating signaling pathways 

involving thyroid hormones, steroids, and sterols [55-57]. Sulfation (or sulfoconjugation) 

primarily involves phenol substrates, but can also occur for alcohols, amines, and thiols [18]. 

Sulfation reactions are catalyzed by sulfotransferases, two large groups of sulfotransferases 
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have been identified: membrane-bound enzymes involved in the metabolism of endogenous 

peptides, proteins, glycosaminoglycans, and lipids, and the cytosolic sulfotransferase enzymes 

(SULTs). SULTs are a supergene family catalyzing the transfer of the sulfonate (SO3
-) group from 

the co-factor 3′-Phosphoadenosine 5′-Phosphosulfate (PAPS) to a hydroxyl or amino group of 

substrates [58-60]. The cofactor PAPS is synthesized in a two-step reaction from inorganic 

sulfate and ATP by PAPS synthetases enzymes. Human cytosolic SULTs are divided into 4 

families (SULT1, SULT2, SULT4, and SULT6), they include 13 known enzymes [60]. Expression of 

the different SULT enzymes in human occurs almost in every organ and are most commonly 

present in liver, gut, breast, lung, adrenal glands, kidney, blood cells, brain, and placenta [5].  

SULTs are promiscuous enzymes with only some degree of substrate selectivity [61, 62]. 

The major isoforms involved in drug metabolism are SULT1A1, SULT1A3/4 (the SULT1A3 and 

SULT1A4 genes arose from a gene duplication event, yet despite the slight sequence variations, 

they encode identical proteins), SULT1B1, SULT1E1, and SULT2A1.  

The isoform SULT1A1 (also known as the thermostable phenol sulfotransferase) has the 

broadest substrate specificity within the SULT superfamily, and it displays an extensive tissue 

distribution [57]. It accounts for over 50 % of the total SULT protein content in the liver, it is 

also physiologically expressed in the kidneys, small intestine, and the lungs [63]. It catalyzes 

both endogenous and xenobiotic phenolic molecules (e.g. estradiol or isoflavones) with high 

affinity [64]. A large number of drugs approved by the United States Food and Drug 

Administration (FDA) were predicted as substrates of SULT1A1 by an in silico study [65], with 

experimentally validated examples like paracetamol, levodopa, opioid drugs, or fulvestrant [58, 

66, 67]. Additionally, SULT1A1 catalyzes the metabolism of numerous environmental mutagens 

and carcinogens which, as a result, can be either detoxified or in some cases even activated 

[68].  

 

Figure A.3: Crystal structure of SULT1A1 (PDB 1LS6) in the presence of PAP (white sticks) and 
p-Nitrophenol (green sticks). 
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SULT1A3 (or SULT1A3/4) is encoded by both the SULT1A3 and SULT1A4 genes [69].  It possesses 

a unique glutamate residue (E146) which together with another carboxylic-group-containing 

residue (D86) ensures a high selectivity for catecholamines (monoamines that have a catechol 

(benzene with two neighboring hydroxyl side groups) and a side-chain amine), assumingly by 

forming a salt bridge with the nitrogen on the catecholamine side chain. Catecholamines that 

are substrates to SULT1A3 include dopamine, serotonin, adrenaline, and noradrenaline [70]. In 

adults, SULT1A3 is a major extrahepatic (situated outside the liver) enzyme, with especially high 

expression in the gastrointestinal tract [71], having a direct effect on the oral bioavailability of 

some drugs [61, 63].  

SULT1B1 and SULT1A1 show almost identical substrate specificity profiles with SULT1B1 

having considerably lower catalytic affinity in most cases [57]. Nevertheless, thyroid hormones 

are primarily sulfonated by SULT1B1 [72, 73]. It is the most expressed sulfotransferase in the 

gastrointestinal tract, and it can also directly affect the bioavailability of some drugs [61, 74].  

SULT1E1, also known as estrogen sulfotransferase, has a unique role in hormone 

homeostasis and biosynthesis as it sulfonates both estrogens and iodothyronines (iodinated 

derivatives of thyronine). It has a very high selectivity and affinity for estrogens, like 

17β-estradiol. It is the most abundant SULT isoform in the lungs, however it is only expressed 

at relatively low levels in the liver and small intestine [63]. The sulfoconjugation of estrogens 

inhibits their interaction with the estrogen receptor and so it modulates the biological function 

of these hormones [75].  

SULT2A1 is widely expressed in human tissues. It is the second most abundant 

sulfotransferase in the liver after SULT1A1. However, its expression levels are considerably 

lower in other tissues like the kidney, the lungs, and the small intestine [57]. SULT2A1 catalyzes 

the sulfoconjugation at hydroxyl groups of bile acids and different steroids. Sulfonation by 

SULT2A1 is the primary pathway in bile acid elimination in humans which takes place in the liver 

[76]. Sulfated steroids are circulating precursors for the biosynthesis of receptor-active 

hormones such as 17β-estradiol, testosterone, and dihydrotestosterone. Together with the 

biosynthetic enzymes, desulfation by steroid sulfatases and transport of the steroid sulfates (in 

and out of the cell) by active transporters are responsible for delicately maintaining the tissue 

levels of active steroid hormones [55, 57]. 

2.2.2. Glucuronidation 

The primary sugar conjugation route in humans is glucuronidation (conjugation with 

α-D-glucuronic acid) although conjugation with glucose, xylose, and ribose are also possible 

(e.g. in insects, conjugation with glucose is more prevalent than with glucuronic acid, it is also 

of importance in plants, and can also be found in mammals, however only to a limited extent) 

[18]. Apart from sulfonation, glucuronidation is the other major phase II reaction type in 

humans. Uridine 5’-diphosphate-glucuronosyltransferases (UGTs), that catalyze the 

conjugation of glucuronic acid to a nucleophilic substrate to form glucuronides (by a second 

order nucleophilic substitution reaction [77]), are one of the major classes of conjugative 

enzymes involved in phase II drug metabolic reactions [47]. Most human UGTs are 
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physiologically highly expressed in the liver, the primary site of xenobiotics metabolism, but are 

also present in other tissues like the intestine, the kidneys, the stomach, and the lungs [78]. 

The broad occurrence of glucuronidation (present in all tissues of the mammalian body) is 

probably due to the cofactor (or cosubstrate) involved in the catalytic reaction. The high energy 

donor uridine-diphosphate glucuronic acid (UDPGA) is part of intermediary metabolism 

(reactions concerned with the storage and generation of metabolic energy, required for the 

biosynthesis of low-molecular weight compounds and energy storage compounds [79]) and is 

closely related to glycogen synthesis. The formation of glucuronide metabolites is 

quantitatively the most important form of conjugation for drugs as well as endogenous 

compounds, and concerns alcohols, phenols, hydroxylamines, carboxylic acids, amines, 

sulfonamides, and thiols. [18]. Numerous nucleophiles are capable of being glucuronidated, the 

corresponding reactions are divided into four types (O-glucuronides, N-glucuronides, S-

glucuronides, and C-glucuronides). 

In humans there are 19 genes encoding UGT enzymes that are classified into two 

families and three subfamilies, namely UGT1A, UGT2A, and UGT2B. More recent studies have 

also focused on other UGT families, UGT3 and UGT8, that opposed to the members of the 

families UGT1 and UGT2, utilize different UDP-sugar cofactors. UGT1 and UGT2 members 

primarily use UDP-glucuronic acid in glycosidation reactions whereas UGT3 family members 

use UDP-glucose, UDP-xylose, and UDP-N-acetylglucosamine, and UGT8 uses exclusively UDP-

galactose. The term UGT traditionally only covered UDP-glucuronosyltransferases (the families 

UGT1 and UGT2, catalyzing the conjugation of glucuronic acid [80]), however it is often used to 

describe all UDP-glycosyltransferases (UGT1, UGT2, UGT3, and UGT8, expressing 22 

isoenzymes in humans [81]). Members of the UGT1 and UGT2 play an important role in 

pharmacology and toxicology, also contributing to interindividual differences in drug response 

and cancer risk. These UGTs are physiologically highly expressed in organs of detoxification, 

whereas UGT3 and UGT8 conjugate relatively few pharmacological agents, their contributions 

to drug metabolism appear to be relatively minor [81].  

UGTs are localized within the ER lumen, anchored to the membrane. UGT location 

results in a latency of their enzymatic activity, and require specific transporters for both the 

cofactor and the conjugation products [82]. Glucuronides generated by UGTs leave the lumen 

and appear in the cytosol for being pumped into the bile or into the blood by ABC transporters 

of the plasma membrane [83].  

UGTs metabolize a wide range of compounds and they have overlapping substrate 

specificity. In terms of drug metabolism, the clinically most important hepatic UGTs are 

UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 [77]. 

The isoenzyme UGT1A1 is of particular importance considering its exclusive role in the 

glucuronidation, and therefore the detoxification of the endogenous heme breakdown by-

product, bilirubin [84, 85]. Both substrates and inhibitors of UGT1A1 exhibit a large variety in 

their sizes and nature. It is physiologically expressed in numerous tissues including the liver, 

intestine, colon, biliary tissue, and stomach [86]. Unconjugated hyperbilirubinemias such as 
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Gilbert’s syndrome and Crigler-Najjar syndromes have been associated with UGT1A1 

polymorphisms [87]. Additionally, impaired UGT1A1 enzymatic activity was shown to be related 

to the toxicity of several drugs  [88] (e.g. irinotecan (used to treat colon cancer and small cell 

lung cancer) [89], lamotrigine (used to treat epilepsy and stabilize mood in bipolar disorder) 

[90], raloxifene (used to prevent and treat osteoporosis in postmenopausal women and those 

on glucocorticoids), or protease inhibitors [91]).  

 

Figure A.4: A homology model (Locuson and Tracy, 2007) of the human UGT1A1 in complex 
with UDPGA (white sticks). 

Several UGT1 isoforms have activity toward steroids. UGT1A1 glucuronidates catechol 

estrogens,  UGT1A3 glucuronidates catechol estrogens and the carboxyl group of lithocholic 

acid (a bile acid that acts as a detergent to solubilize fats for absorption). UGT1A4 has activity 

toward the hydroxyl group of several steroids and is the only UGT1A isoform to glucuronidate 

androsterone [92].  

The UGT1A6 isoform catalyzes the glucuronidation of several small planar phenols and 

primary aromatic amines. It is expressed in the liver and in several extrahepatic tissues. UGT1A9 

is abundantly expressed in the liver and kidney, and metabolizes endogenous estrogen and 

thyroid hormones as well as a variety of therapeutic drugs including entacapone (used in 

combination with other medications for the treatment of Parkinson's disease), edaravone (used 

to treat stroke and amyotrophic lateral sclerosis), and dapagliflozin (used to treat type 2 

diabetes, certain kinds of heart failure, and chronic kidney disease) [93-96].  

UGT2B7 is expressed predominantly in the kidney, liver, and gastrointestinal tract [78]. 

Among its substrates there are commonly prescribed drugs like the antiretroviral agent 

zidovudine (AZT), the opioid analgesic morphine [97], and the anticancer agent tamoxifen [98]. 

UGT2B7 plays an important role in the deactivation of steroids, arachidonic acid, 

prostaglandins, and leukotrienes [99]. 
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2.2.3. Other phase II reactions 

Methylation (conjugation with a methyl group, -CH3) mostly concerns endogenous compounds, 

nevertheless some drugs may also be methylated by methyltransferases in the lungs, adrenals, 

liver, skin, pineal gland, or the kidney. Among substrates for the transfer of a methyl group, 

there are noradrenaline (catalyzed by Phenylethanolamine N-methyltransferase), histamine 

(by Imidazole N-methyltransferase), catechols (by Catechol O-methyltransferase), or thiols (by 

S-Methyltransferase). S-adenosylmethionine (SAM), produced from L-methionine and ATP by 

the enzyme L-methionine adenosyltransferase, is the necessary cofactor for methyl 

conjugation. Methylation is an exception from other conjugation reactions as it produces less 

polar products hindering the excretion of drugs [18].  

Acetylation (conjugation with an acetyl group, -COCH3) primarily takes place in the liver, 

more specifically in its Kupffer cells, catalyzed by the enzyme N-acetyltransferase. The reaction 

introduces an acetyl group on a target compound via the replacement of active hydrogen to 

form an acetoxy derivative. Acetylation is commonly found for aromatic amines, sulfonamides, 

and sulfanilamides. In the case of xenobiotics, acetylation of both nitrogen centers within the 

amino groups of arylamines and arylhydrazines as well as oxygen centers of arylhydroxylamines 

have been reported [100]. The reaction requires the cofactor acetyl-CoA. The cofactor can 

either originate from the glycolysis pathway or from the direct interaction between acetate and 

coenzyme A (a coenzyme, with an important role in the synthesis and oxidation of fatty acids, 

and the oxidation of pyruvate in the citric acid cycle). Acetyl metabolic products of sulfonamides 

(acetylsulfonamides) are more hydrophobic than the corresponding parent drugs and are of 

particular interest due to their renal toxicity [18]. 

Amino acid conjugation is a special form of N-acylation (conjugation with an acyl group, 

R-C=O). The most common amino acids involved in amino acid conjugation are glycine, 

glutamine, ornithine, arginine, and taurine. The enzymes of amino acid conjugation reside in 

the mitochondria. Amino acid conjugation is the predominant route of metabolism of salicylic 

acid, with salicyluric acid (its glycine conjugate) accounting for 75% of aspirin’s excretion in 

urine. Also, xenobiotics containing a carboxylic acid group (-COOH) are commonly used as 

drugs, herbicides, insecticides, and food preservatives, and their metabolism occurs principally 

via conjugation with either glucuronic acid or an amino acid, most commonly glycine [101]. 

Glutathione conjugation is an efficient reaction type for the removal of potentially toxic 

electrophilic compounds (chemical species that form bonds with nucleophiles by accepting an 

electron pair). The reaction occurs as a nucleophilic attack by reduced glutathione on nonpolar 

compounds that contain an electrophilic carbon, nitrogen, or sulphur atom . Phase I reactions 

can generate strong electrophiles which can then react with glutathione (an antioxidant) to 

generally produce non-toxic conjugates. Their substrates include halogenonitrobenzenes, 

arene oxides, quinones, and α,β-unsaturated carbonyls [102]. Such reactions are catalyzed by 

the enzymes glutathione-S-transferases, mostly within the cytosol of liver, kidney, and gut 

tissues. The glutathione metabolites can either be directly excreted to the bile or the urine, or 

more often they can be further metabolized [18].   
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Fatty acid conjugation (mostly including stearic and palmitic acid) has also been 

observed for some drugs. Condensation reactions (where two molecules are combined to form 

a single molecule) have been identified for amines and aldehydes and they do not require 

enzymatic catalysis. However, little is known about these reactions and their involvement in 

drug metabolism. 

3. Drug transporters 

Cells must closely monitor and control their intracellular contents to survive and maintain 

proper function. Transporters present embedded in the plasma membrane of cells mediate the 

uptake of nutrients form the extracellular space and the elimination of toxic waste from the 

cytosol. Transporters have long been identified for endogenous compounds such as glucose, 

amino acids, nucleosides, water-soluble hormones, or neurotransmitters. Xenobiotics are 

foreign to the given living organisms and hence are not essential for physiological functions. 

Nevertheless, they can modulate or even damage such activities and living organisms 

developed processes to eliminate them [103, 104]. Drug elimination orchestrated by DMEs and 

drug transporters plays an important role in pharmacokinetics, which comprises drug 

liberation, absorption, distribution, metabolism, and excretion. Drug transporters have been 

identified to influence the drug disposition and be involved in drug-drug interactions (DDI) of a 

large number of drugs and drug candidates [105, 106]. Studies in the last two decades have 

identified various clinically important drug transporters (e.g. P-glycoprotein (P-gp/ABCB1), 

breast cancer resistance protein (BCRP/ABCG2), members of the multidrug resistance-

associated protein subfamily (MRP/ABCC), organic anion transporter (OAT): OAT1, OAT3, 

organic cation transporter (OCT): OCT2, or the organic anion transporting polypeptide (OATP): 

OATP1B1 and OATP1B3). The International Transporter Consortium (comprised of scientists 

from academia, industry, and regulatory agencies around the world) has repeatedly published 

whitepapers to emphasize the significance of the in vitro and in vivo evaluation of the clinically 

relevant effects on drug disposition and DDI of the most important drug transporters [107-112]. 

Accordingly, drug agencies worldwide (e.g. the European Medicines Agency and the United 

States Food and Drug Administration) recommend testing for possible substrate or inhibitor 

status of drug transporters over the course of drug development [113, 114]. Mechanistically, 

most drug transporters can be classified as either solute carrier (SLC) transporter or ATP-

binding cassette (ABC) transporter [115]. 

3.1.  Solute carrier transporters 

SLC transporters utilize an electrochemical potential difference, or an ion-gradient generated 

by primary active transporters for transporting their substrates across biological membranes 

[116]. The SLC superfamily includes more than 450 transport proteins that are classified in 65 

families based on sequence identity. They are physiologically expressed in various key tissues 

such as the kidney, liver, intestine, and brain. They play crucial roles in maintaining body 

homeostasis by carrying a large variety of substrates across cellular membranes. Most SLC 

transporters are influx transporters. Among their substrates there are sugars, amino acids, 

vitamins, nucleotides, metals, inorganic ions, organic anions, oligopeptides, and drugs. 
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Members of this superfamily can be found both in the membrane of almost every organelle 

throughout the cell, and the plasma membrane (approximately 60 % of SLC proteins with 

known localizations are at the cell surface on the plasma membrane) [117]. Instead of directly 

using the energy of ATP hydrolysis (like active transporters), members of the SLC superfamily 

are either passive facilitative transporters (acting as ‘gatekeepers’, the compounds move down 

their gradients) or secondary active transporters (coupling the passage of two or more 

substances, one of which goes down its electrochemical gradient providing the free energy 

required for the translocation of the other substance(s)) [118, 119]. Secondary active 

transporters can be symporters (their substrates cross the membrane in the same direction) or 

antiporters (the substrates cross in opposite directions). SLC proteins also form the system by 

which many drugs are thought to cross the plasma membrane and gain access to the different 

media and so effecting drug pharmacokinetics. A large variety of SLC transporters have been 

proven to be involved in drug transport, including the SLCO subfamily (OATPs), the SLC22A 

subfamily (OATs, OCTs), the SLC15A subfamily (peptide transporters, PEPTs), and the SLC47A 

subfamily (multidrug and toxin extrusion, MATEs), also supporting the hypothesis that most 

drug uptake occurs through transporters rather than by simple diffusion across the lipid bilayer 

[117]. OCTs generally transport organic cations, OATPs large and fairly hydrophobic organic 

anions, OATs smaller and more hydrophilic organic anions. PEPTs are responsible for the uptake 

of dipeptides, tripeptides, and peptide-like drugs, MATEs for the efflux of organic cations [116]. 

Among these, the SLC22 and SLCO (former SLC21) families are the best understood in terms of 

pharmacokinetics [120]. Some members of the SLC superfamily are direct target of FDA 

approved drugs, most of which belong to the SLC5, SLC6, SLC12, and SLC22 families [121].  

3.1.1. Organic anion-transporting polypeptides 

OATPs are encoded by the SLCO (former SLC21) genes expressing 11 known transporters. OATP 

substrates mostly include amphipathic organic compounds with higher molecular weights 

(>350Da). OATPs transport certain endogenous compounds such as bile acids, thyroid 

hormones, prostaglandins, or steroids, steroid conjugates as well as a number of xenobiotics 

like statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, 

antibiotics, antihistaminics, and anticancer drugs [116]. Interestingly, often the uptake by 

OATPs is coupled to cooperated efflux by ABC transporters like MRPs, ABCG2/BCRP, P-

gp/ABCB1. Additionally, many of the OATP substrates are metabolized by phase I and phase II 

DMEs in the liver. This cooperative regulation is called the ‘drug transporter-metabolism 

interplay (or alliance)’ [122, 123]. Such an interplay also exists in other tissues like the kidney 

and the intestine. To date the energy-coupling transport mechanisms of human OATPs remain 

poorly understood, it seems to be pH dependent and electroneutral.  

3.1.2. Organic cation transporters 

OCTs are encoded by the SLC22 genes. They exhibit extensively overlapping substrate 

selectivity, their substrates include endogenous organic cations (with widely differing 

molecular structures), cationic drugs, and toxins [124]. OCTs are involved in the intestinal 

absorption, hepatic uptake, and renal excretion of hydrophilic drugs. An important example of 
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drug uptake by hepatocytes mediated by OCTs is of the drug used to treat type 2 diabetes, 

metformin [125]. They also influence the distribution of endogenous compounds such as 

thiamine, L-carnitine, and some neurotransmitters (like serotonin, dopamine, and 

norepinephrine) [126].  

3.1.3. Organic anion transporters 

OATs are a family of multispecific transporters also encoded by the SLC22 gene family 

(approximately half of the SLC22 genes encode OATs) that expresses 10 OAT proteins [127]. 

They are of particular interest because of their role in the transport of common drugs 

(antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, 

aristolochic acid), and nutrients (vitamins, flavonoids) [128]. They can be found at most barrier 

epithelia of the body (e.g. endothelium) demonstrating their roles in the regulation of the 

transcellular movement of many small organic anionic compounds across the epithelial barriers 

and between different body fluid compartments [116]. Even though generally they are capable 

of bidirectional substrate transport, most of them are considered as influx transporters. 

3.1.4. Peptide transporters 

PEPTs, members of the proton-coupled oligopeptide transporter family, are encoded by the 

SLC15 genes. Dipeptides, tripeptides, and peptide-like drugs are actively transported by a 

process which is coupled to the movement of protons down an electrochemical proton 

gradient as was earlier discovered by brush border membranes vesicles studies [129, 130]. As 

the transport of PEPT substrates is coupled to proton movement (PEPTs are proton-driven 

symporters, the H+ gradient is maintained via the Na+/H+ exchanger and/or ATP-driven H+-

pump), they belong to the class of secondary active transporters. Dietary proteins introduced 

to the human body undergo a series of degradative steps, at the end of which they are broken 

down into free amino acids or small peptides. To reach the circulation, they are taken up by 

intestinal epithelia cells. The uptake of protein digestion products to the small intestine is 

primarily in the form of small peptides, mediated by PEPTs [131]. Additionally, PEPTs expressed 

in the kidney are responsible for the conservation of protein digestion products, and in the 

brain, for the homeostasis of neuropeptides. They can transport almost all dipeptides, 

tripeptides, and peptide-like drugs of very different physicochemical characteristics, molecular 

weight, charge, and polarity [116]. PEPTs have also been proven to be responsible for the 

absorption and disposition of a number of pharmacologically important agents including some 

aminocephalosporins, angiotensin-converting enzyme inhibitors, some β-lactam antibiotics, or 

antiviral prodrugs [132].  

3.1.5. Multidrug and toxin extrusion 

MATE transporters are encoded by the SLC47A gene family. They are an exception within the 

SLC family as they function as efflux transporters [133], MATEs are responsible for the efflux of 

organic cations from cells. The free energy necessary for their transport is ensured by the 

oppositely directed proton gradient ([H+]in<[H+]out, MATEs are electroneutral proton-driven 

antiporters), also MATEs belong to the class of secondary active transporters [116]. They are 

predominantly expressed in the proximal tubule epithelial cells in the kidney and the liver 
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hepatocyte cells, contributing to the excretion of cationic endogenous substances and 

xenobiotics. Clinically used drugs have also been identified as substrates to MATEs, e.g. 

metformin (the main first-line medication for the treatment of type 2 diabetes [134]) and 

cimetidine (a histamine H2 receptor antagonist that inhibits stomach acid production) [135].  

3.2. ATP-binding cassette transporters 

The ATP-binding cassette (ABC) transporter superfamily genes represent the largest family of 

transmembrane proteins. In addition to SLC transporters, they are the other major drug 

transporter type. ABC transporters bind ATP and harvest the energy of ATP hydrolysis in order 

to selectively translocate a variety of substrates (including sugars, amino acids, metal ions, 

peptides, proteins, hydrophobic compounds, and their metabolites) across membranes. ABC 

transporters are integral membrane proteins and in humans they can be predominantly found 

in the plasma membrane, but they are also present in the intracellular membranes of the ER, 

peroxisome, and mitochondria.  

Members of the ABC transporter superfamily are classified based on the sequence and 

organization of their ATP-binding domains, also referred to as nucleotide-binding domains 

(NBDs) [136]. Over 40 ABC transporters have been identified in humans which are divided into 

7 subfamilies (ABCA to ABCG). At least 11 members (including ABCB1/P-gp, ABCCs/MRPs, 

ABCG2/BCRP) have been proven to be involved in the development of multidrug resistance 

(MDR). Such transporters are physiologically expressed in various tissues such as the liver, 

intestine, kidney, and brain where they influence the absorption, distribution, and excretion of 

drugs. ABC transporters are also involved in various cellular processes such as the maintenance 

of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid 

trafficking [116]. Functional ABC transporters (functioning either as monomers or dimers) 

generally contain two NBDs and two transmembrane domains (TMDs). The NBDs contain 

characteristic motifs necessary for ATP-binding and hydrolysis, such as the Walker A, Walker B, 

and the signature motif (‘LSSGQ’) and other conserved regions like the  A-loop, H-loop, D-loop, 

and the Q-loop. The TMDs account for the substrate specificity of the different transporters. 

The NBD motions resulting from the binding and hydrolysis of the ATPs are coupled to TMD 

motions via the coupling helices, the structure of which are conserved among the different 

transporters.  

ABC transporters are mostly unidirectional under physiological conditions and in 

eukaryotes they primarily function as exporters (translocating substrates from the cytoplasm 

to the extracellular space, or to the ER, mitochondria, or peroxisome) whereas in bacteria they 

mostly import essential compounds (like sugars, vitamins, metal ions) into the cell [136]. The 

TMDs alternate between inward- and outward-facing conformations, that way ensuring the 

unidirectional active transport of their substrates. The exact mechanisms of ABC efflux 

transporter-mediated substrate translocation are not fully understood, several different 

models have been proposed. Binding of a substrate to the TMDs; binding of two ATPs and 

coordinating Mg2+ ions to the NBDs; dimerization of the NBDs; conformational transition 

between the inward-facing and outward-facing TMD configurations; ATP-hydrolysis; 
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phosphate, ADP, and transport substrate release; and NBD dissociation are all elementary steps 

of the transport cycle, however, the exact details and order of these steps can be transporter 

dependent and remain partially unclear [137]. Among the ABC protein superfamily, ABCB1/P-

gp, ABCG2/BCRP and members of the ABCC subfamily are known to be important drug and 

drug metabolite transporters [138]. 

 

Figure A.5: Cryo-EM structures of ABC transporters in the substrate-bound inward-facing 
state. A) ABCB1/P-gp (PDB 7A69) and B) ABCG2/BCRP (PDB 6HCO). 

3.2.1. ABCA transporters 

There are 12 known functional transporters belonging to the ABCA subfamily in humans, all 

ABCA proteins are full transporters (they function as monomers containing 2 NBDs and 2 

TMDs). Many of them have been identified to be involved in the transport of a variety of 

physiologic lipid or lipid-related compounds [139], they play an important role in cholesterol 

homeostasis. ABCA members show a broad tissue specificity. Multiple members of the ABCA 

subfamily have been linked to monogenic recessive disorders recently, ABCA1 (Tangier disease, 

significantly reduced levels of high-density lipoprotein (HDL) in the blood), ABCA3 (neonatal 

surfactant deficiency, a lung disorder), ABCA4 (Stargardt disease, an eye disease that happens 

when fatty material builds up on the macula), ABCA12 (harlequin ichthyosis, a severe disorder 

that affects the skin), and ABCA5 (congenital generalized hypertrichosis terminalis) [140]. Some 

members are also involved in more complex diseases like atherosclerosis (ABCA1), pediatric 

interstitial lung diseases (ABCA3), age-related macular degeneration (ABCA4), and Alzheimer 

disease (ABCA1, ABCA2, ABCA7, and ABCA5) [116].  
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3.2.2. ABCB transporters 

The ABCB subfamily contains both half transporters (containing 1 TMD and 1 NBD, functioning 

as homo- or hetero-dimers) and full transporters. There are 11 known functional transporters 

belonging to the ABCB subfamily. ABCB1, also known as P-Glycoprotein (P-gp) or multidrug 

resistance protein (MDR1), is the first human ABC transporter cloned and characterized 

through its ability to promote a multidrug phenotype to tumor cells [136]. ABCB1 has a broad 

substrate spectrum and is physiologically widely expressed, it mediates drug transport in 

various tissues like the intestine, the liver, and the brain (especially at the blood-brain barrier). 

ABCB1 exports various hydrophobic compounds including therapeutic drugs, alkaloids, 

flavonoids, and other hydrophobic natural toxic compounds. Among the drugs that are 

substrates to ABCB1 there are chemotherapeutic drugs, HIV protease inhibitors, 

immunosuppressive agents, antiarrhythmics, calcium channel blockers, analgesics, 

antihistamines, antibiotics, natural products, fluorescent dyes, and pesticides [116].  

3.2.3. ABCC transporters 

The ABCC subfamily contains 12 known transporters, all of which are full transporters. They 

exhibit a divers functional spectrum including ion transport, cell surface receptor, and toxin 

secretion activities [136]. With one exception (the pseudogene ABCC13) ABCC genes code 

transporters that are termed multidrug resistance-associated proteins (MRPs), they play an 

important role in MDR development [141]. The ABCC transporters are divided into short or long 

structure subgroups. The long ABCC family members, ABCC1, 2, 3, 6, and 10 contain an 

additional N-terminal TMD0 domain followed by an L0 linker segment connected to the 

transmembrane region [142]. Several ABCC transporters are linked to genetic diseases such as 

ABCC2 to Dubin-Johnson syndrome and ABCC7 to cystic fibrosis [116]. Among the ABCC 

members, ABCC1 (MRP1) is considered to be of the highest clinical importance with respect to 

drug resistance in cancer, a major obstacle to successful chemotherapy. ABCC1 typically 

exports structurally diverse amphipathic organic anions, most of which are conjugated with, 

glutathione, glucuronide, or sulfate (generally metabolites of phase II reactions). ABCC2 is 

expressed at major physiological barriers, such as the canalicular membrane of liver cells, and 

always localizes in the apical membranes. It transports a variety of amphiphilic anions, and it 

also displays a preference for phase II conjugates [143]. ABCC3 is a broad specificity organic 

anion transporter, it is involved in the efflux of organic anions including monovalent bile acids. 

Its drug substrate spectrum considerably overlaps with other transporters including ABCC1 and 

ABCC2. ABCC4 is physiologically widely expressed in most tissues including the lung, kidney, 

bladder, gallbladder, small intestine, and tonsil, and most abundantly in the prostate. Its 

substrates include antiviral, antibiotic, cardiovascular, and endogenous molecules [116]. ABCC4 

and ABCC5 are both organic anion transporters, they have the outstanding ability to transport 

nucleotides and nucleotide analogs [144]. ABCC6 is primarily localized in the basolateral plasma 

membrane of hepatocytes in the liver and in proximal tubules of the kidneys [145], mutation in 

the ABCC6 gene is responsible for pseudoxanthoma elasticum (a disease that causes 

mineralization of elastic fibers) [146]. ABCC7 functions as an ATP-gated chloride channel and is 

not believed to mediate active transport, however it shares the conserved domain architecture 
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characteristic of the ABC superfamily [147]. ABCC11 is a cyclic nucleotide efflux pump that is 

able to confer resistance to nucleoside-based agents, it is expressed in axons of neurons, in the 

human central and peripheral nervous systems and mediates the efflux of neuromodulatory 

steroids. The functional characteristics of ABCC12 remain unclear [116, 148].  

3.2.4. ABCD transporters 

The ABCD subfamily contains four genes that encode four half transporters. All members are 

located in peroxisomes. Members of the ABCD subfamily have distinct but overlapping 

substrate specificities for different acyl-CoA esters. They play a role in the regulation of very 

long chain fatty acid transport [116, 136].  

3.2.5. ABCE and ABCF transporters 

The ABCE and ABCF subfamilies contain genes that have ATP-binding domains that are clearly 

derived from ABC transporters but have no TMDs and are not known to be involved in any 

membrane transport functions [136].  

3.2.6. ABCG transporters 

There are 6 half transporters belonging to the ABCG subfamily. They are all ‘reversed’ 

compared to other ABC transporters, they have their NBDs at their N-terminus while the TMDs 

at the C-terminus [136]. They either form homodimers (ABCG1, ABCG2, and ABCG4) or an 

obligate heterodimer (ABCG5 and ABCG8). ABCG1, ABCG4, ABCG5, and ABCG8 are involved in 

the ATP-dependent translocation of steroids and lipids, playing a significant role in the efflux 

transport of cholesterol. In addition to ABCB1/P-gp and ABCC1/MRP1, ABCG2/BCRP has been 

implicated to be a major efflux transporter responsible for multidrug resistance in cancer cells. 

ABCG2, also known as breast cancer resistance protein (BCRP) and mitoxantrone resistance-

associated protein (MXR), was originally discovered in a multidrug-resistant breast cancer cell 

line where it was found to confer resistance to chemotherapeutic agents such as mitoxantrone 

and topotecan. Like ABCB1 and ABCC1, ABCG2 possesses a very broad substrate and inhibitor 

specificity that is different from, but substantially overlaps with that of ABCB1 or ABCC1 [149]. 

ABCG2 is a key player in preventing the absorption of toxic compounds from the gut; increasing 

their hepatobiliary clearance, and it also plays an essential protective role at different tissue 

barriers like the maternal-fetus barrier, the blood-brain barrier (BBB), and the blood-testis 

barrier [150]. High ABCG2 expression has been found especially in the placenta and intestine, 

but also in the brain endothelium, prostate, testes, ovaries, liver, adrenal gland, uterus, and 

central nervous system (CNS) [151, 152]. Among its substrates there are physiological 

compounds like estrone-3-sulfate, 17β-estradiol, 17-β-d-glucuronide, or uric acid. Drugs 

identified as ABCG2 substrates include chemotherapeutics (e.g. mitoxantrone, camptothecin 

derivates, flavopiridol, and methotrexate), some fluorescent compounds (e.g. the fluorescent 

dye Hoechst 33342), conjugated or unconjugated organic anions. Further drug substrates 

include prazosin (an antihypertensive), glyburide (an antidiabetic medication), cimetidine (a 

histamine H2 receptor antagonist that inhibits stomach acid production), sulfasalazine (used to 

treat inflammatory bowel disease), and rosuvastatin (used to prevent cardiovascular disease) 

[149]. ABCG2 also transports many phase II metabolites such as sulfate, glutathione, or 
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glucuronide conjugates. In general, sulfated conjugates seem to be better ABCG2 substrates 

than glutathione and glucuronide conjugates [116]. A variety of chemical toxicants have also 

been shown to be transported by ABCG2 [153]. 

4. Drug-drug interactions 

Pharmacokinetic drug-drug interactions (DDIs) occur when a drug alters the disposition 

(absorption, distribution, elimination) of a co-administered agent. Such interactions may 

provoke the increase or the decrease of plasma drug concentrations. The mechanism of DDIs 

involve contributors to drug metabolism, namely DMEs and drug transporters, and also orphan 

nuclear receptors that regulate the expression of enzymes and transporters at the 

transcriptional level. Increase in the intracellular drug concentration can be the result of the 

inhibition of DMEs and drug transporters (a quick effect (24-28h) obstructing the metabolism 

and excretion of the drug), whereas the decrease of drug concentrations can be the result of 

the activation of orphan nuclear receptors by inducers that lead to the increase in the 

expression of DMEs and drug transporters (a more slowly effect (7-10 days) leading to faster 

deactivation and elimination of the drug) [154]. Such interactions should be avoided in case the 

drug combination decreases the clinical activity or increases the probability of adverse drug 

effects.  

Induction or inhibition of CYP enzymes is a major mechanism that underlies DDI. CYP 

enzymes can be transcriptionally activated through receptor-dependent mechanisms and CYP 

inhibition is a principal mechanism for metabolism-based DDI [155]. Induction of CYP1 genes 

occurs by the aryl hydrocarbon receptor (AhR) mechanism, additionally, three distinct orphan 

receptors that belong to the nuclear receptor/steroid receptor superfamily have also been 

identified to induce CYP1 transcription. AhR transactivates human CYP1A1, CYP1A2, and 

CYP1B1, as well as some phase II metabolizing enzymes. After its ligand activation, AhR 

translocates from the cytosol to the nucleus, where it forms a complex that docks onto genes 

containing the xenobiotic response element (XRE) and transactivates them (e.g. CYP1A1) [155, 

156]. AhR ligands include polycyclic aromatic hydrocarbons (PAHs), halogenated aromatic 

hydrocarbons (HAHs), and some clinical drugs, caffeine, and eicosanoids [157]. CYP enzyme 

inhibition usually occurs as competition with another drug for the same catalytic binding site. 

For example, desipramine (a tricyclic antidepressant) metabolism by CYP2D6 is strongly 

inhibited by binding of fluoxetine (an antidepressant of the selective serotonin reuptake 

inhibitor class) to the same isoenzyme [158]. Inhibition, however, may also be non-competitive 

when the compound binds to a site other than the catalytic active site (allosteric inhibition). 

Enzyme inhibition can be either reversible or irreversible. Inhibition of CYPs can lead to the 

toxicity (by impaired clearance of drugs) or lack of efficiency (in case of prodrugs) of a given 

drug [159]. As an example, tyrosine kinase inhibitors (TKIs), a class of anticancer agents, whose 

chemical structures as well as their metabolism and general pharmacokinetic characteristics 

are rather variable, are often involved in DDIs as many of them are substrates and/or act as 

inhibitors of different CYP isoenzymes [160]. Another well-known example is ketoconazole (an 

antifungal medicine) inhibition of terfenadine metabolism (an antihistamine, withdrawn from 
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markets worldwide due to its clinical consequences like cardiac arrhythmias) catalyzed by 

CYP3A, leading to a 35-fold increase in drug exposure measured by area under the plasma 

concentration versus time curve (AUC) [161].  

There are more examples of inhibitors than enhancers of sulfonation. Modulators of 

SULT enzymes include natural products ingested as part of the human diet as well as 

environmental chemicals and drugs. Most inhibitors of SULTs are hydroxylated compounds 

with the potential to be substrates, however the mechanism of inhibition is not always 

competitive. Example of potent SULT inhibitors include flavonoids and also several therapeutic 

drugs, mainly non-steroidal anti-inflammatory drugs (NSAIDs) that have been shown to inhibit 

sulfotransferases and therefore they contribute to DDI [162].  

Pharmacokinetic DDI studies, that have been conducted for drugs cleared by 

glucuronidation, have shown that changes in drug exposure are typically less than two-fold 

(AUC of plasma concentration over time) compared to what is observed in the absence of a 

given UGT inhibitor [22, 163]. An example is valproate (used to treat epilepsy and bipolar 

disorder and prevent migraine headaches) coadministration which increases lorazepam (used 

to treat anxiety disorders, trouble sleeping, severe agitation, active seizures, alcohol 

withdrawal, and chemotherapy-induced nausea and vomiting) plasma concentration by 20 % 

[164]. Evidence of toxicity as a result of inhibition of UGTs is rare, an exception is lamotrigine 

(used to treat epilepsy and stabilize mood in bipolar disorder) which if coadministrated with 

valproic acid, increases the risk of rash [22].  

The other important mechanism underlying DDIs is the induction or inhibition of drug 

transporters that mediate the cellular uptake and efflux of xenobiotics, especially in the small 

intestine, the liver, and the kidney, where transporter-mediated DDI can significantly alter the 

pharmacokinetics and clinical effects of drugs [165]. Such DDI occur when translocation of a 

drug by one or more of the drug transporters is influenced by a second drug via inhibition or 

induction. The intestine has high physiological expression of ABCB1 and ABCG2, which limits 

the bioavailability of orally administrated substrates. Coadministration of drugs with ABCB1 or 

ABCG2 inhibitors results in higher bioavailability of substrate drugs, resulting in an enhanced 

activity or toxicity. Opposed to this, coadministration of ABCB1 or ABCG2 inducers reduces the 

bioavailability of substrate drugs leading to therapeutic failure. Hepatocytes of the liver highly 

express uptake transporters (e.g. OATP1B1, OATP1B3, OATP2B1, and OCT1) that mediate the 

uptake of substrate drugs into hepatocytes for consequent metabolism by DMEs as part of drug 

elimination. At the same time, as a following step of drug elimination, efflux transporters (e.g. 

ABCB1, ABCG, ABCC2, and SLC47A1) at the canalicular membrane of hepatocytes excrete drugs 

and their metabolites into the bile. In the proximal tubular cells of the kidney, uptake of cationic 

drugs from blood is mediated by SLC22A2 located in the basolateral membrane while their 

subsequent efflux into urine is mediated by SLC47A1 and SLC47A2 located in the luminal 

membrane. The inhibition of such drug transporters results in reduced renal clearance of 

substrate drugs [116].  
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Digoxin (used to treat various heart conditions) is one of the most extensively 

investigated compounds involved in ABCB1-mediated DDIs. Its metabolism in humans is 

negligible, hence alteration in ABCB1 activity (due to expressional or functional modulation of 

the transporter) has a direct impact on digoxin pharmacokinetics, ABCB1 mediates its renal and 

biliary secretion [166]. For example, orally administered pretreatment with the antibiotic 

rifampin before digoxin results in considerably reduced digoxin plasma concentrations. When 

the same pretreatment was applied intravenously, the activity of digoxin AUC was reduced 

much less. These results demonstrated that induced ABCB1 activity in the small intestine (in 

the duodenum, 3.5-fold increase in the ABCB1 expression) increases the presystemic digoxin 

extraction [167]. Interestingly, depending on its concentration, rifampin may also act as an 

inhibitor of ABCB1. Shortly after drug administration, high local rifampin concentrations in the 

gut could also inhibit ABCB1-mediated digoxin uptake, increasing its oral bioavailability [165]. 

An example for ABCG2-mediated DDIs is the coadministration of the ABCG2 inhibitor GF120918 

molecule with topotecan (a chemotherapeutic agent which is substrate to ABCG2), resulting in 

a considerably increased oral bioavailability of topotecan [168].  

An example of uptake-transporter-involved DDIs are statins (which are lipid-lowering 3-

hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, i.e. cholesterol-lowering drugs). 

Hepatocellular uptake eliminates statins from portal veinous blood and systemic circulation, 

thereby decreasing their plasma concentrations and minimizing the risk of myotoxic damage 

(the risk of myopathy occurrence increases with statin plasma concentrations). Also, 

hepatocellular statin uptake is a prerequisite for their subsequent pharmaceutical activity 

which is the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the 

hepatocytes. Statin uptake inhibition increases the risk of myopathy and decreases their 

therapeutic efficacy. For example, gemfibrozil (also used to treat abnormal blood lipid levels) 

and its major metabolite (gemfibrozil-1-O-b-glucuronide) are both inhibitors of multiple 

members of the SLCO1B subfamily. Concomitant oral administration of gemfibrozil e.g. with 

pravastatin or rosuvastatin resulted in an increase of their AUC [169, 170].  

5. Multidrug resistance 

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, 

i.e. nearly one in six deaths [171]. Even though there are several different methods of cancer 

treatments, including radiation therapy, surgery, immunotherapy, endocrine therapy, and gene 

therapy, chemotherapy still remains the most common method of cancer healing. Resistance 

of tumor cells to chemotherapeutic agents is a great challenge, multidrug resistance (MDR) is 

responsible for over 90 % of deaths in cancer patients receiving traditional chemotherapeutics 

or novel targeted drugs. The mechanisms of MDR include elevated drug metabolism by DMEs, 

enhanced drug efflux by drug transporters, increased DNA repair capacity, and genetic events 

such as gene mutations, amplifications, and epigenetic alterations [172].  

Several studies have proven that exposure to anticancer agents can induce the 

expression of gene products protecting cells, including DMEs that catalyze phase I and phase II 

drug metabolism. CYP isoenzymes CYP1A6, CYP1A2, CYP1B1, CYP2C9, CYP2B6, CYP2C19, 
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CYP3A4/5, and CYP2D6 are essential for phase I drug metabolism and detoxification [172]. The 

overexpression of CYP1B1, which contributes to the metabolism of mitoxantrone, flutamide, 

docetaxel, and paclitaxel [173], of CYP2A6, which is involved in the metabolism of several 

anticancer agents, including ifosfamide, cyclophosphamide, aflatoxin, and fluorouracil, as well 

as of other CYP isoforms has been reported in different tumor tissues [174]. Enhanced 

expression of phase II DMEs including UGTs and SULTs in cancer cells may also contribute to 

their MDR phenotype by inactivating substrate drugs [173]. The search for selective phase II 

DME inhibitors has become part of the strategy in overcoming cancer MDR as demonstrated 

e.g. for the isoenzyme UGT1A4 [175].  

The activity of drug transporters, especially the efflux ABC transporters, can significantly 

decrease drug bioavailability, intracellular drug concentrations, and drug transition through the 

blood-brain barrier (BBB). Chemotherapeutic drug penetration can be drastically reduced to 

the specific sites, e.g. in brain tumor treatment where in the case of ABCB1 or ABCG2 

overexpression (the physiological function of which includes brain protection from potentially 

damaging compounds), anticancer agents are generally incapable of passing through the BBB. 

In most cases, higher drug concentrations are necessary to overcome the restriction posed by 

the efflux transporters, however, higher drug concentrations can easily lead to systemic 

toxicity. ABCB1, ABCG2, and members of the ABCC subfamily can eliminate a structurally and 

functionally wide variety of anticancer agents from cells to the extracellular space. Such 

compounds include e.g. epipodophyllotoxins, anthracyclines, vinca alkaloids, bisantrene, 

colchicine, taxanes, imatinib, saquinavir, camptothecins, thiopurines, actinomycin D, 

methotrexate, and mitoxantrone [172]. Notably, overexpression of ABCB1 has been observed 

in approximately half of all human cancers, existing both as a response to or independently 

from treatment with anticancer agents.  

6. Pharmacogenetics and pharmacogenomics 

The field of pharmacogenetics and pharmacogenomics researches the relationship between 

genotype (such as polymorphism and genetic mutations), gene expression profiles (the level of 

physiological expression of the different genes), and phenotype in terms of inter-individual 

variability in drug response or toxicity. Pharmacogenetics is identified as the study of variability 

in drug response due to heredity, in relation to genes determining drug metabolism, whereas 

pharmacogenomics is a broader term encompassing all genes in the genome that may 

determine drug response involving complex multigene patterns within the genome. The 

distinction however, is arbitrary and the two terms can be used interchangeably [176]. 

Pharmacogenetics and pharmacogenomics are key factors to the success of personalized 

medicine, i.e. to find the best treatment based on the individual genetic and biological profile 

of a patient. Inter-individual variability in drug disposition is a major cause of drug treatment 

inefficiency and adverse effects. Genetic polymorphisms effecting actors involved in the 

mediation of drug pharmacokinetics such as DMEs and drug transporters have a great influence 

on drug disposition. Genetic polymorphisms are alterations in the individual genomes that 

remain constant throughout a person’s lifetime. Genetic mutations on the other hand are 
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acquired changes in the genome that occur only in certain cells. Such genetic variations effect 

drug metabolism and transport, and collectively can contribute to the variability in drug 

pharmacokinetic and pharmacodynamic processes [177].  

Many hepatically cleared drugs are first metabolized by the CYP enzymes, mainly by the 

members of the CYP1, CYP2, and CYP3 families. Genes encoding CYP enzymes are highly 

variable with significantly different allele distributions between populations. Evidence of the 

clinical impact especially of the isoenzymes CYP2C9, CYP2C19, and CYP2D6 on substrate drug 

metabolism has been reported. Functional changes of the different variant alleles can range 

from no function to increased functions, poor metabolizers to ultrarapid metabolizers, the 

major variability in CYP activity is due to single nucleotide polymorphisms (SNPs) in the CYP 

gene locus [178]. CYPC2C9 is one of the most abundant CYP in human liver that metabolizes 

more than 100 clinical drugs (antibiotics, anticancer agents, anticoagulants), 85 allelic CYP2C9 

variants have been identified to date (2022 August, https://www.pharmvar.org/gene/CYP2C9) 

[29]. For example, an R144C SNP (CYP2C9*2, 430C>T) is found in Caucasians at a frequency of 

10-15 % resulting in a decreased enzymatic activity [179], whereas a complete loss of function 

with no enzymatic activity can be observed for the allele CYP2C9*6, a 273frameshift, found 

only in African Americans [180]. To date, 39 allelic variants have been identified for the 

isoenzyme CYP2C19. For example, CYP2C19*2 (681G>A, splice defect)  is its most common loss-

of-function allele, with an allele frequency of 29-35% in Asians. CYP2D6 is the most polymorphic 

CYP gene, to date, 163 allelic variants have been identified. An example for increased enzymatic 

activity can be found as a result of gene duplication (two or more copies of the same gene 

sequence, e.g. CYP2D6*1xN, an ultrarapid metabolizer), whereas a splice defect (CYP2D6*4, 

1847G>A) is the most frequent null allele in Caucasians at a frequency of 20-25 % in the 

population [181].  

Genetic evolution has created a broad family of cytosolic SULTs that modify a large 

variety of xenobiotic substrates by sulfoconjugation, members of the SULT superfamily have 

extremely broad substrate specificities and as a consequence, corresponding genetic 

alterations may affect drug metabolic enzyme functions influencing individual responses to 

drug treatments, in terms of therapeutic efficiency or adverse effects. An example of SNP which 

occurs at frequencies of 31 to 36 % (per chromosome) in Caucasian people is G638A 

(SULT1A1*2), which translates to an R213H conversation (spatially located distant from the 

cofactor- and substrate-binding site) in SULT1A1, drastically lowering its enzymatic activity and 

thermal stability [182]. Another frequent SULT1A1 SNP results in the amino acid substitution 

M223V (SULT1A1*3) and is well represented in African Americans also reducing its enzymatic 

activity, however, to a smaller extent than in the case of SULT1A1*2 [60].  

A considerable number of prevalent, functional polymorphisms have been identified in 

several UGT genes as determinants of cancer risk or response to chemotherapy [183]. In terms 

of drug metabolism, the clinically most important hepatic UGTs are UGT1A1, UGT1A3, UGT1A4, 

UGT1A6, UGT1A9, and UGT2B7 [77]. Rare mutations in the UGT1A1 gene (point mutations, 

deletions, and insertions) have been described associated with two severe forms of the 
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unconjugated hyperbilirubinemia syndromes (Crigler–Najjar type I and II disorders), however, 

only a few of these were found in the general population at high frequencies (>1 %) to be 

classified as polymorphisms. Wild type UGT1A1 has 6 TA repeats in its regulatory promoter 

TATA box and UGT1A1 promoter activity progressively decreases with the number of TA 

dinucleotide repeats (decrease in the rate of transcription initiation of the UGT1A1 gene). The 

most common variant allele (0-3%, 2-3%, and 16-19% in the Asian, Caucasian, and African 

populations, respectively) that has 7 TA repeats (UGT1A1*28) is a low activity allele and is 

associated with the mild form of the inherited unconjugated hyperbilirubinemia syndrome 

(Gilbert’s syndrome, found in approximately 6–12% of the population) [184, 185]. Studies 

showed that mutations in the UGT1A1 gene, especially homozygosity for the UGT1A1*28 allele, 

are responsible for Gilbert’s syndrome. Patients affected by Gilbert’s syndrome also display 

lower glucuronidation rates for a number of therapeutic drugs [186]. 

Genetic alterations affecting drug transporters also have a great influence on drug 

disposition and therefore also on the inter-individual variability in drug response or toxicity. Re-

sequencing of various human ABC transporter and SLC transporter genes has revealed a 

number of naturally-occurring allelic variants, many of which appear to affect the functional 

activity of the encoded protein in vivo. The most common allelic variant of ABCB1 is the wild-

type transporter (ABCB1*1). Another common allele is ABCB1*2 which contains three SNPs 

simultaneously, C1236T in exon 12, G2677T in exon 21, and C3435T in exon 26. C1236T and 

C3435T are synonymous/silent polymorphisms (i.e., not causing a change in the amino acid), 

yet the polymorphisms were associated with changes in pharmacokinetics of a number of 

drugs, most probably due to the effects on folding by the usage of a rare codon. Opposed to 

this, the G2677T polymorphism causes the amino acid conversion A893S. In vitro experiments 

revealed higher vincristine (a chemotherapy drug  belonging to vinca alkaloids) transport rates 

for the A893T variant than in the case of the wild-type transporter [187, 188]. The SNP C3435T 

together with the formerly mentioned G2677T and C1236T is also frequent, however its exact 

impact on drug pharmacokinetics remains unclear.  

Today, 36 genetic variants in the human ABCG2 are associated with a drug phenotype 

in literature and are therefore annotated by PharmGKB [189], its most extensively studied 

variants are C421A in exon 5 leading to the amino acid exchange Q141K (located in the Walker 

A motif) as well as G34A in exon 2, leading to the amino acid conversion V12M. Several in vitro 

and in vivo studies demonstrated that Q141K results in a reduced global ACBG2 protein 

expression while other studies also reported reduced ATPase and corresponding reduced 

transport activity [187, 190, 191]. The V12M amino acid exchange is located in a flexible tail 

close to the N-terminus. Currently available experimental structures lack the first 30 residues, 

therefore the structural impact of such a substitution on protein folding is not completely 

understood. However, cell experiments have indicated that it could potentially disrupt the 

localization and insertion of ABCG2 into the plasma membrane [192]. Two additional naturally 

occurring variants, T434M and S476P, which are located in the TM helices, abolish the transport 

activity of ABCG2 [193, 194].  
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7. In silico modeling of drug metabolism and transport 

The outcome of administrated drugs is highly influenced by DMEs and drug transporters, they 

are of primary interest over the course of drug discovery and development. A wide variety of 

experimental technologies have been developed to provide insights into the fate of drugs and 

drug candidates, however, due to the high costs of such experimental studies, an increasing 

number of computational approaches have been involved in the prediction of the metabolic 

outcome of drug candidates. Screening campaigns of large numbers of chemical compounds 

are widely used in order to identify a small number of promising therapeutic candidates with 

good ADME-Tox profiles. In silico studies have both addressed the mechanisms of DMEs and 

drug transporters and their interactions with small molecules. Drug interactions with DMEs and 

drug transporters are of great clinical interest, modulation of their activities may lead to 

inefficacy or toxicity. At the same time, DMEs and drug transporters also determine the ADME-

Tox properties and bioavailability of drug candidates. The prediction of such interactions can 

help to reduce drug candidate failure at an early drug development stage. Various approaches 

have been applied to achieve such predictions in silico, the use of computational tools can lower 

the need for animal testing, and reduces the costs associated with drug development. 

Structure-based approaches as molecular dynamics and molecular docking simulations have 

become powerful tools to address conformational flexibility of proteins and their interactions 

with small compounds, meanwhile ligand-based approaches such as structure-activity 

relationship (SAR) models have also been created to identify possible substrates and inhibitors 

of DMEs and drug transporters. Statistical models predicting interactions of ligands with 

proteins can integrate information on the ligands and/or the protein and their interactions. 

7.1. Structure-based methods  

7.1.1. Functional dynamics of DMEs and drug transporters, interactions with ligands 

The increasing number of experimental 3D structures of the different CYP isoenzymes (mostly 

determined through X-ray crystallography)  have largely contributed to the understanding of 

the structural basis of ligand binding. The resolved CYP structures have revealed a considerable 

flexibility, in particular around their active site. Ligand-induced conformational changes have 

also been described [195, 196]. To further examine the structural flexibility of the CYP enzymes, 

molecular dynamics (MD) simulations have been employed both in the presence and in the 

absence of bound ligands. MD is a computational approach which is based on the numerical 

integration of Newton’s equations of motion (computing the interaction forces acting on each 

atom and then propagating the velocities and positions of the atoms at each simulation step) 

and can be used to generate successive configurations of a given system as a function of time, 

starting from an initial conformation which is generally an experimental structure or a 

(homology) model [197]. MD simulations can be employed with various purposes. 

Conformational exploration can be useful before molecular docking simulations to consider 

flexibility of the protein, or the effects of either point mutations or the presence of a bound 

ligand on the dynamical behavior can be elucidated. Additionally, the stability of different 

docking positions can be further evaluated with the help of MD simulations. Answers related 
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to the binding free energy, interactions between the enzyme and its substrates or inhibitors, 

active-site residues, and some key distances such as e.g. in the case of CYP enzymes, the 

distance between the heme iron and the substrate reacting group, can be addressed [198]. MD 

simulations have primarily focused on the isoenzymes CYP2C9, CYP2C19, CYP2D6, CYP3A4, but 

have also included e.g. CYP1A1, CYP1B1, CYP1A2, CYP2A6, CYP2B1, or CYP2B6. The effects of 

SNPs have been broadly tested in the different isoforms.  

Banu et al. have demonstrated the effect of two alleles of CYP2C9 (R144C and I359L) on 

its catalytic activity using MD simulations, namely the reduction in size of the substrate entry 

access channel which leads to reduced metabolic activity of the enzyme [199]. Another study 

by Sano et al. has also investigated the mechanism of the decreased catalytic activity of CYP2C9 

polymorphic variants, they identified alterations in the fluctuations (flexibility) of structural 

regions e.g. important for substrate binding which may destabilize the enzyme-substrate 

complex and reduces the enzymatic activity [200].  

Substitutions in some residues distant from the catalytic site can also influence 

enzymatic activity as was demonstrated in CYP2C9 polymorphic variants by Lertkiatmongkol et 

al. They found that mutations that are located outside the binding pocket can induce pocket 

conformational changes following allosteric regulation [201] and such allosteric effects were 

also detected in other isoforms like CYP1A2 [202] and CYP2B4 [203]. Zhang et al. studied the 

effects of a peripherical mutation in CYP1A2 (F186L) with the help of MD simulations and found 

that in response to the mutation, the overall structural fold was maintained, however, the 

flexibility of the enzyme increased and the substrate access channel closed [202]. The reduced 

enzymatic activity of another allele of CYP2C9 (L90P) was investigated using MD simulations by 

Zhou et al., a rearrangement in the backbone configuration of residues at the substrate entry 

was identified as the dominant reason for the catalytic activity reduction of this specific CYP2C9 

allele [204]. Louet et al. also addressed the reduced catalytic activity of an allelic variant of 

CYP2C9 (CYP2C9*30, A477T). They performed MD simulations on both the wild type and the 

allelic variant in the presence of heme and with or without bound substrate. They observed 

increased rigidity of the key substrate recognition sites as well as decreased channel access of 

the substrates [32].  

Isvorana et al. investigated the role of amino acid substitutions in the CYP2C subfamily, 

and used different in silico tools to reveal the molecular mechanisms related to CYP2C 

polymorphisms. The functional effects of missense mutations (with dramatically altered drug 

metabolism) were analyzed using different online tools predicting the potential consequences 

of amino acid substitutions on the protein structure and/or function. They identified steric 

clashes, local rigidity alterations, and hydrogen-bonding/salt-bridge network perturbations 

among other effects as consequences of the substitutions that can lead to altered drug 

metabolism [27]. 

For the isoenzyme CYP2C19, Cui et al. have investigated the mechanism of mutants of 

experimental interest (A161P and P227L) and the corresponding reduced enzymatic activities, 

and found that the overall protein topologies were maintained, yet the effect of conformational 
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changes got manifested at more distant regions through the propagation of favorable 

interactions [205]. MD simulations were also used to study the effects of different genetic 

polymorphisms of the isoenzyme CYP2D6 by Fukuyoshi et al., they have also identified amino 

acid mutations having an effect on distant structural regions which are part of the active site 

access channel, accounting for the reduced enzymatic activity [206]. For the isoform CYP2A6, 

Yadav et al. performed MD simulations on four allelic variants and have also observed that non-

synonymous SNPs in CYP2A6 did not induce global changes in the physiochemical properties of 

the enzyme, however, they caused local-trivial changes that are very crucial for the metabolic 

activity [207]. Similarly, the effect of point mutations on the enzyme dynamics of other isoforms 

has also been addressed, MD simulations to determine effects of the amino acid mutations 

have been performed for CYP1A2, CYP17A1, CYP19A1, CYP2A6, CYP2B4, and CYP2B6 [202, 208-

212]. 

In addition to the effect of point mutations, MDs have also been employed to identify 

differences between the mechanisms of various isoenzymes. Skopalik et al. have investigated 

the differences in flexibility of the isoenzymes CYP3A4, CYP2C9, and CYP2A6, and have revealed 

that increased flexibility correlates with higher substrate promiscuity. Among the three 

isoforms, CYP2A6 has the narrowest substrate range and is the most rigid whereas CYP3A4 is 

the most promiscuous known CYP and is the most flexible [213]. Mustafa et al. have 

demonstrated that the small sequence and structural differences between the two highly 

similar isoforms, CYP2C9 and CYP2C19, that both have key roles in drug metabolism, alters the 

interactions and orientations of the enzymes in the ER membrane bilayer and so affects the 

substrate access tunnels, accounting for their differing substrate specificities [214]. Cui et al. 

have also focused on the differences within the CYP2C family, dynamics of its members bound 

to a shared substrate (diclofenac) revealed that sequence divergence at the active site residues 

causes heterogeneous variations in its secondary structures and affects the shape and chemical 

properties of the substrate-binding site [215].  

A broader comparative study including CYP1A1, CYP1A2, CYP2A6, CYP2A13, CYP2B6, 

and CYP3A4 was performed investigating the regioselectivity of CYPs toward an abundantly 

present tobacco carcinogen [216]. Additionally, inhibitor selectivity can also be elucidated with 

the help of MD simulations as was shown by Wright et al. for clobetasol against CYP3A5 versus 

the structurally very similar CYP3A4 isoenzyme [217]. Fischer et al. used MD simulations to 

study the conservation and functionality of a superficial allosteric site, that was previously 

identified in the prokaryotic CYP101A1 and is involved in the regulation of ligand access to its 

buried binding pocket in the nine most relevant mammalian CYPs. They revealed that several 

mammalian enzymes of the CYP2 family could possess such an allosteric site [218]. A 

comprehensive review on the molecular modeling of CYP polymorphism using structure-based 

in silico tools was published by Martiny and Miteva [29]. 

Similarly to CYP enzymes, MD simulations have been also performed for phase II DMEs 

to better understand their mechanisms. Cook et al. have proposed a restricted substrate access 

mechanism explaining SULT selectivity using MD simulations. They suggested that the 
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substrate-binding pockets of SULT1A1 and SULT2A1 open and close in response to the binding 

of nucleotide with the active-site cap (a structural region controlling access to the active site) 

either excluding or admitting large substrates. They showed that access of a large substrate 

(fulvestrant) to the acceptor-binding pocket is restricted by cofactor (PAPS) binding, whereas 

access to small substrates is not affected. They hypothesized that at saturating PAPS levels, the 

concentration of the open enzyme form decreases to a minimum and as a consequence its 

affinity towards large substrates is weakened while its affinity towards small acceptors are not 

influenced [65]. In a different study, Cook et al. have also proposed a mechanism for the 

positive-synergy of a large group of SULT1A1 substrates that induce enzymatic activity. There 

are SULT1A1 substrates the affinities of which dramatically increase with saturating nucleotide 

levels. According to their model, such substrates induce a ‘sandwich-like’ residue-organization 

around the substrate phenolic moiety which stabilize the substrate nucleophilic hydroxyl in a 

reactive position [219].  

The inhibitory mechanism of a potent, highly specific SULT1A1 inhibitor (mefenamic 

acid which is an NSAID), was investigated using MD simulations by Wang et al. and ligand-

binding residues were identified [220]. Furthermore, Isvoran et al. performed MD simulations 

on the wild type and the allelic variants of SULT1A1, SULT1A1*2 (R213H) and SULT1A1*3 

(M223V), to investigate the effects of amino acid substitutions on the enzyme dynamics in its 

apo and holo states. In particular, they identified increased flexibility at the loop regions 

surrounding the substrate-binding site [221]. 

Besides SULT1A1, SULT1E1 has also been the subject of studies including MD 

simulations. Rakers et al. have used MD simulations to investigate enzyme flexibility and sample 

protein conformations of the isoenzyme SULT1E1 before applying ensemble docking. They 

have observed large flexibility, especially at the lip region (the first loop of the three forming 

the gate to the active site) of the enzyme, which can significantly modulate the shape of the 

active site and therefore influence binding events. Furthermore, they identified a lysine residue 

(K85) on the lip region to be an essential element for regulating substrate access and selectivity. 

The inward flip of this residue causes blockage of the active site entry, which constrains ligand 

binding to smaller molecules  [222].  

In contrast to SULTs, less simulations have been performed on the UGT superfamily, 

primarily due to the lack of experimental structures available for human UGTs that would 

contain the substrate-binding domain. However, multiple studies have constructed homology 

models to promote the understanding of the enzymatic activity and its inhibition [223-225]. 

Nair et al. built a homology model of the human UGT2B7 enzyme based on a plant homolog 

crystal structure (UGT85H2 of Medicago truncatula) and performed MD simulations for the 

wild-type and two mutant forms (R259A and R259L) in the presence of either UDP-glucuronic 

acid or UDP-glucose, to identify key interactions with the different cofactors and investigate 

the differences in cofactor binding accounting for its selectivity towards UDP-glucuronic acid. 

They proposed that residues of the substrate-binding domain contribute to UDP-sugar binding, 

and that such residues confer UDP-sugar selectivity, in particular the residue R259 [226]. For 
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the isoenzymes UGT1A8 and UGT1A9, Fujiwara et al. built homology models based on a 

bacterial homolog (TDP-epi-vancosaminyltransferase of Amycolatopsis orientalis) and 

performed MD simulations at different temperatures (310 K and 360 K) to analyze the 

dynamical changes of UGT1A9 and UGT1A8. Human UGT1A9 is uniquely stable against heat 

treatment and they identified critical residues responsible for its thermal stability [227]. Subedi 

et al. have constructed a homology model for UGT1A1 based on a bacterial homolog crystal 

structure (Yijc of Bacillus subtilis) and used MD simulations to test the stability and 

trustworthiness of the homology model together with the docking results of cortisone and 

prednisone in the enzyme [228].  

Running all-atom classical MD simulations on drug transporters may be unfeasible for 

biologically relevant time scales in the presence of explicit solvent and phospholipid 

membranes. Nevertheless, MD has been applied to assess stability of homology models as was 

in the case of the human SLC47A1 efflux transporter. Zhang et al. built a homology model of 

the human SLC47A1 (MATE1) transporter based on a bacterial transporter homolog crystal 

structure (NorM of Vibrio cholerae), and confirmed the stability of their model using MD 

simulation [229]. Tsigelny et al. modeled the structure of SLC22A6 (OAT1) based on the 

template of the bacterial glycerol-3-phosphate transporter structure (of Escherichia coli) and 

investigated its dynamics in a lipid bilayer [230, 231]. Adla et al. have built a homology model 

of the human SLCO1A2 (OATP1A2) transporter and tested predicted binding mode stabilities 

of various synthetic compounds, and identified key interacting transporter residues [232]. 

Similarly, Gebauer et al. built homology models of SLC22A1 (OCT1) and SLC22A2 (OCT2) based 

on a plant homolog crystal structure (sugar transport protein 10 of Arabidopsis thaliana), and 

used MD simulations to investigate the stability of docking modes of fenoterol enantiomers 

[233]. 

Given their outstanding importance in the mediation of drug disposition, many studies 

applying MD simulations have focused on ABCB1 and ABCG2. Before the appearance of high-

resolution experimental structures of human ABC transporters embedded in lipid bilayer, 

thanks to the breakthrough advances in cryogenic electron microscopy, homology models were 

built for P-gp in various studies and such models were validated by using MD simulations [234-

238]. A similar study was also published for ABCG2 [239].  

Ever since, more reliable initial structures have been available for MD simulations and 

different studies have generated conformational diversity for molecular docking simulations 

and have investigated the drug transporter efflux mechanisms. Lagares et al. demonstrated 

with the help of MD simulations, that the presence of active and inactive compounds bound to 

ABCB1 influence the conformational distribution and dynamics of the nucleotide-binding 

domains, active compound-binding induced higher flexibility [240]. Xing et al. used atomistic 

MD simulations in explicit membrane and solvent environment to explore the effects of 

substrate and inhibitor binding on the conformational dynamics of ABCB1, and found that in 

the presence of substrates, the nucleotide-binding domains were closer and better aligned, 

suggesting that substrate binding may promote ATP hydrolysis, whereas inhibitors stabilized 
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them in a much more separated configuration, possibly impairing ATP-hydrolysis [241]. Zhang 

et al., working on the mouse P-gp structure, demonstrated that three drug molecules is the 

maximum that can simultaneously bind in the ABCB1 cavity [242]. 

To overcome the time limitation of classical MD simulations, enhanced MD simulations 

such as targeted MD, accelerated MD, and coarse-grained MD simulations (modeling where 

molecules are not represented by individual atoms, but by ‘pseudo-atoms’ approximating 

groups of atoms) have also been performed on ABCB1. Wang et al. have investigated the 

transport of an ABCB1 substrate (doxorubicin) [243] and later compared it to the transport of 

an inhibitor (verapamil) by the human ABCB1 using targeted MD simulations and identified the 

driving forces responsible for the translocation and concluded that they are identical for 

substrates and inhibitors, however, the residues involved are different [244].  

Zhang et al. also used targeted MD simulations, to simulate the conformational 

rearrangements starting from the inward- to outward-facing states, using a homology-model 

for the inward-facing state, and identified both translational and rotational movements 

between the nucleotide-binding domains during the conformational transition [245]. Random 

accelerated MD combined with classical MD was performed on ABCB1 by Zhang et al. to 

simulate the efflux process of drugs and was complemented with metadynamics simulations 

(applied to estimate the free energy of a system, where ergodicity is hindered by larger energy 

barriers in most cases) to determine corresponding interaction free energies, the study used 

the mouse P-gp structure for the simulations [246].  

Using coarse-grained MD simulations, Domicevica et al. examined protein-lipid 

interactions in a membrane mimicking the composition of brain epithelial cells [247], whereas 

Barreto-Ojeda et al. identified lipid pathways for ABCB1 in the inward-facing conformation in 

bilayers with different PC/PE lipid ratios [248]. Behmard et al. used steered dynamics 

simulations, introducing an imaginary external force to the small molecule to drive it through 

the transporter, combined with umbrella sampling, and analyzed interactions between the 

transporter and its substrate drugs. They hypothesized that van der Waals interactions are the 

main driving force in hindering the efflux of drugs in ABCB1 [249]. 

Several MD simulations have also been performed for ABCG2. Vesga et al. used MD to 

validate the docking poses of sixteen tetrahydroquinoline/4,5‐dihydroisoxazole derivatives to 

develop new selective and potent inhibitors of ABCG2 through evaluating their stability [250]. 

Zhang et al. analyzed the stability of and provided information on the molecular interactions 

between regorafenib and the ABCG2 substrate binding cavity (cavity 1) using the pose from 

induced-fit docking simulation [251].  

Long-timescale MD was performed complementing the experimental identification of a 

selective, porphyrin derivative inhibitor of ABCG2 capable of overcoming multidrug resistance 

in vitro, to describe interactions between the inhibitor and the transporter [252]. Ibrahim et al. 

identified eight promising high affinity ABCG2 inhibitors by screening molecules in the 

eMolecules, ChEMBL, and ChEBI databases, combining molecular docking and MD simulations 
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[253]. In a different study, they investigated the binding affinities of 181 drug candidates in 

clinical-trial or investigational stages to identify potential ABCG2 inhibitors, similarly combining 

molecular docking and MD simulations followed by molecular mechanics-generalized Born 

surface area (MM-GBSA) binding energy calculations, and identified three promising inhibitor 

candidates [254]. Again in a different study, they screened compounds in the Naturally 

Occurring Plant-based Anticancer Compound-Activity-Target (NPACT) database containing 

1574 compounds and applied the same methodology as before [255]. The interactions and 

stability of different 2,4-disubstituted pyridopyrimidine derivatives were investigated using 

molecular docking and MD simulations in the study of Tadayon et al., they recommended 

further investigation of two promising compounds as ABCG2 inhibitors [256]. Wang et al. 

reported that a RAF kinase inhibitor effectively antagonizes ABCG2-mediated MDR in vitro, and 

their docking and MD simulations revealed that it binds to the substrate-binding cavity (cavity 

1) [257].  

In addition to testing the stability of the binding of different compounds for which 

classical MD can be a powerful tool, enhanced MD simulations are useful to simulate 

transporter events on larger timescales. Nagy et al. combined targeted MD and metadynamics 

simulations to simulate the translocation of a small substrate molecule of ABCG2, uric acid. 

They proposed the existence of drug binding cavities other than the central binding site, and 

observed an accelerated transport mechanism in the presence of membrane cholesterol [258]. 

Many of the previously discussed studies included MD simulations in combination with 

molecular docking. Molecular docking aims to predict possible ligand orientations with respect 

to an acceptor molecule. This is achieved by generating multiple protein-ligand complex 

configurations, using different search algorithms, and corresponding scoring by different 

scoring functions to energetically rank such complexes. MD can be performed both before 

molecular docking in order to generate a conformational ensemble and account for the 

flexibility of the protein, and after the docking to evaluate the stability of a given binding mode, 

identify statistically relevant interactions, and evaluate the dynamical behavior of the protein-

ligand complex. Examples of such combinational studies include the identification of potential 

substrates or inhibitors of DMEs [222, 228, 259-262] and drug transporters [233, 250, 253-256].  

7.1.2. QM/MM modeling of drug metabolism 

The prediction of the intrinsic reactivity of the different functional groups of substrates requires 

more detailed descriptions. QM/MM (quantum mechanics/molecular mechanics) simulations 

combine ab initio quantum calculations in the proximity of a chemical process (at the active 

site region) and classical molecular mechanics at more distant regions that estimates dynamics 

on an atomic level [263]. QM/MM can be used to deduce reactivity coupled to the metabolism 

of drugs, however only at an extremely high computational cost [264]. As a consequence, 

QM/MM cannot be used for the filtering of large datasets, but it can be a powerful tool for the 

evaluation of the metabolism in terms of the reaction mechanism and corresponding activation 

energy of a given substrate molecule.  
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Several comprehensive reviews have been published on the application of QM/MM in 

the modeling of CYP enzyme drug metabolism [265-271]. Furthermore, in case of the CYP 

enzymes, two classes of inhibitors are known, type I binders that behave like ‘normal protein 

ligands’, and type II binders that bind directly to the iron-ion in the heme group through a semi-

covalent bond. Such interactions are better described at the quantum level, and have been 

modeled in multiple studies [272-274].  

For SULT1A1, Ma et al. investigated the metabolic mechanism of hydroxylated 

bromodiphenyl ethers and identified proton abstraction and sulfation steps during the reaction 

[275]. Besides the high computational costs, the major limitation of applying QM/MM is the 

requirement of an accurate 3D starting structure of the enzyme-ligand complex. No QM/MM 

studies have been performed to date on the human UGT superfamily, most probably due to 

the lack of available experimental structures of human UGTs that would contain the substrate-

binding domain.  

7.2. Ligand-based methods 

7.2.1. Quantitative structure-activity relationship and machine learning models 

In silico models can be used to predict small molecule interactions with DMEs and drug 

transporters. Predictions based on the properties of the ligands, widely used for DMEs and ABC 

transporters, make use of molecular descriptors (or variables) which are mathematical 

representations of different properties of the molecule. They quantify their topological, 

geometrical, physical, and chemical information such as the molecular weight, the number of 

different functional groups, or logP (which is a quantitative representation of the lipophilicity, 

and its value is obtained by measuring the partitioning of the molecule between an aqueous 

phase and a lipophilic phase which consists usually of water/n-octanol).  

The descriptors can be classified as one-dimensional (1D, calculated from the molecular 

formula of the molecule, e.g. the number of different atoms, the molecular weight), two-

dimensional (2D, calculated from the 2D chemical structure of the molecule, e.g. number of 

benzene-rings, number of H-bond donors), or three-dimensional (3D, representing structural 

information derived from the 3D conformation of the molecule, e.g. the solvent accessible 

surface, polar and nonpolar surface area) [276]. Such descriptors can be used to perform 

similarity searches in great molecular libraries, to identify candidate molecules which have 

similar physical/chemical properties to known active compounds based on the values of the 

different descriptors [277]. Molecular structures can also be described with the help of 

molecular fingerprints converting them to bit strings (vectors). The use of fingerprints facilitates 

the fast identification of structural similarities which is useful as similar structures may show 

similar biological activities [278].  

By virtual screening in general, simple models are used enabling fast calculations at 

stages where high number of candidate molecules needs to be analyzed, whereas more 

complex models are employed at more advanced stages during drug development, requiring 

more time-consuming calculations and at the same time having higher prediction accuracy. 

Statistical models in general require a dataset of a large number of compounds with known 
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activity in order to create high accuracy, robust models. The structural diversity within the 

dataset determines the applicability domain of a given model [279].  

Quantitative structure-activity relationship (QSAR) models have been developed to 

predict biological activity both towards DMEs and drug transporters. Models can be classified 

into two categories, regression or classification. Regression is the estimation of a continuous 

quantity (such as IC50 values or Ki) while classification is the prediction of discrete class labels 

(such as different classes of inhibitor potency) based on independent variables [280]. There are 

several statistical methods that are used in the construction of such models. Multiple linear 

regression (MLR) presumes  a linear relationship between a scalar response and the 

independent variables, and the models make use of a linear predictor function the unknown 

parameters of which need to be estimated. MLR models have been built for different CYP 

isoforms, e.g. CYP1A2 [281, 282], CYP2D6 [283], CYP2C9 [284], or CYP3A4 [285]. Similar 

simplistic models based on MLR, predicting inhibitor/binding affinity or substrate uptake rate 

also exist for drug transporters, e.g. ABCB1 [286-288] or ABCG2 [289]. A more robust method 

is partial least squares (PLS) regression, which at first reduces the number of predictors by 

extracting a set of components that describe maximum correlation between the estimated 

quantity and the independent variables, then similarly to MLR, performs least-squares 

regression by minimizing the sum of the squares of the residual errors between prediction and 

observation. PLS models have been built for CYP isoenzymes [281, 282, 285, 290-292], for SULT 

and UGT isoforms [293], and drug transporters [294-297].  

More complex machine learning approaches such as random forest (RF) or the more 

robust support vector machine (SVM), and even neural networks have been employed in the 

construction of prediction models. RF has been an appealing choice for its simplicity. 

Additionally, in some studies, the authors have also made use of the clear interpretation of its 

generated models thank to the easy determination of individual feature importance. RF is built 

on a large number of decision trees where each tree splits the data at several branches based 

on random subsets of features and makes its own prediction. The final prediction of the forest 

is obtained after aggregating the individual results by taking their average (in case of regression) 

or the majority vote (in case of classification) of the predictions.  

Plonka et al. made use of RF classification to train models on large datasets to identify 

inhibitors of different CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) [298]. RF 

models have also been applied to predict site of metabolism (SOM) of different enzymes. 

Information on SOM is useful in drug development, if an active metabolite has improved 

pharmacological, pharmacokinetic and toxicological profiles compared to the parent drug, it 

can be conveniently used as a lead or even advanced to the clinic whereas if a metabolite is 

unwanted, the SOM information can guide the structure modification to a direction that will 

deactivate or eliminate the unstable sites in order to avoid undesirable biotransformations 

[299]. An example of RF used for the prediction of SOM of CYP enzymes is the work of Sicho et 

al. who developed models for the prediction of global and isoform-specific regioselectivity of 

CYP3A4, CYP2D6, and CYP2C9 [300]. For the prediction of UGT-mediated metabolism, 
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Mazzolari et al. trained RF models to further classify UGT substrates whether the 

glucuronidation reaction occurs on an oxygen or on a nitrogen atom [301].  

The prediction of interactions between ligands and drug transporters has also been 

addressed with RF models. Schwaha et al. built RF models among others to distinguish between 

ABCB1 substrate and non-substrate molecules and concluded that on the dataset they used, 

RF was the most suitable classification method (outperforming binary QSAR [302] and SVM) 

[303]. Poongavanam et al. used the combination of different machine learning techniques, 

among which RF, to build models for the prediction of ABCB1 substrates and inhibitors using a 

set of fingerprints representing the presence or absence of various functional groups [304]. 

Ohashi et al. developed a simplified in vitro screening method to evaluate ABCB1 substrates, 

and complemented it by building regression models to predict the ABCB1 mediated efflux, and 

three-class classification models to predict ABCB1 substrate potential (low/medium/high), both 

using RF machine learning. They also found that on their dataset, RF outperformed other 

machine learning techniques, SVM, neural networks, k-nearest neighbors, and AdaBoost in the 

classification and regression [305].  

For ABCG2, Ghosh et al. developed a multi-QSAR approach using different methods 

based on structural fingerprints, in order to identify ABCG2 inhibitors and gain insight into the 

different important structural fingerprints modulating ABCG2 inhibition [306]. RF produced the 

best model out of the four machine learning approaches they used, gradient boosting, RF, SVM, 

and k-nearest neighbors. They concluded that among others, the presence of the nitro group 

at the para position of a substituted benzene ring is beneficial for ABCG2 inhibition, and also 

that  the presence of an aromatic nitrogen attached to another nitrogen atom in a ring followed 

by branching is advantageous to design ABCG2 inhibitors with enhanced potency.  

Support vector machine (SVM) is another supervised learning algorithm (it uses a 

labeled training data) that can be used for both classification and regression. In classification, 

SVM maximizes the width of gap separating the different classes in a given feature space and 

the use of different kernel functions enables both linear and non-linear classifications. Many of 

the previously discussed studies constructed models with both RF and SVM, as well as various 

other machine learning approaches. SVM have been long and broadly employed to build 

prediction models to identify substrates and inhibitors of different CYP isoforms [307-313]. For 

phase II DMEs, ML prediction models are not so widespread. For the classification of substrates 

and non-substrates of 12 human UGT isoforms, Sorich et al. developed and compared different 

ML approaches, partial least squares discriminant analysis, Bayesian regularized artificial neural 

network, and SVM based on 2D molecular descriptors and concluded that in their study, SVM 

outperformed the other two methodologies [314].  

SVM has also been applied to drug transporters. The previously discussed study of 

Poongavanam et al. combined different ML approaches, a wrapper subset evaluator, RF, k-

nearest neighbors, and SVM for the prediction of ABCB1 substrates based on fingerprints 

representing the presence or absence of various functional groups [304]. Leong et al. focused 

on the inhibitors of ABCB1, they predicted EC50 values in silico by combining pharmacophore 
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models and subsequent SVM regression [315]. Eric et al. used SVM and artificial neural 

networks to build prediction models of ABCB1 and ABCG2 substrates and inhibitors, and also 

highlighted similarities and distinctions of the molecular basis for transport and inhibition [316].  

Montanari et al. addressed a similar question focusing on inhibitors of ABCB1 and ABCG2, they 

built models to predict inhibitors of both drug transporters and identify selective inhibitors 

based on fingerprints, MACCS keys, and 2D molecular descriptors [317]. They compared model 

performance using different ML tools including k-nearest neighbors, RF, and SVM. They found 

that on the carefully cleared dataset they used for the classification as either selective ABCB1, 

ABCG2, or common inhibitor, or non-inhibitor resulted in mediocre results, most probably due 

to the small number of molecules in the dataset. They also built models to interpret similarities 

and differences of known ABCB1 and ABCG2 inhibitors, with only two descriptors (number of 

hydrophobic atoms and number of aromatic atoms, combined in a single decision tree) they 

managed to separate ABCB1 inhibitors from ABCG2 inhibitors with a relatively good accuracy 

(>80 %).  

Further studies using SVM for the prediction of ABCG2 substrates and inhibitors include 

the work of Zhong et al who combined a genetic algorithm for  the feature selection, a 

conjugate gradient method for parameter optimization, and SVM for the training of ABCG2 

substrate prediction models [318]. Similarly, for the prediction of ABCG2 substrates Hazai et al. 

built an SVM model using molecular descriptors [319]. Jiang et al. compared the performance 

of seven ML approaches for the prediction of ABCG2 inhibitors, and concluded that on their 

dataset SVM, deep neural networks, and extreme gradient boosting outperformed other 

approaches, and SVM yielded the best predictions [320]. Ding et al. estimated inhibitor IC50 

values using a combined pharmacophore ensemble and SVM regression [321]. ABCG2 inhibitor 

classification models using several ML approaches including SVM, k-nearest neighbor, and 

neural networks were built by Belekar et al., they observed that SVM performed the best [322]. 

Other more complex ML approaches have also been employed as detailed for some of 

the studies discussed earlier, e.g. artificial neural networks [305, 314, 316, 320, 322]. The 

limitation of all in silico prediction models remains, however, the lack of a large amount of high 

quality, comparable experimental data. In most cases, the experimentally measured activities 

originate from different studies under different conditions, and it remains a challenging task to 

predict inhibitor or substrate activity with high accuracy using ligand-based in silico approaches. 

7.3. Integrated structure-based and machine learning modeling  

7.3.1. Prediction of DME ligands 

In case the structure of the target protein is known, ligand-based techniques can be 

complemented with structural information to improve the quality of ligand-binding predictions. 

In 2013, the host laboratory trained the first machine learning classification models that 

integrated ligand- and structure-based information for the prediction of DME inhibition in the 

case of different SULT isoforms. The first models were trained by Martiny et al. on the SULT 

isoforms 1A1, 1A3, and 1E1 [323], directly followed by the models of Cook et al. for the isoforms 

1A1 and 2A1 [324]. Martiny et al. explored protein flexibility using MD simulations and 
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subsequent docking to predict ligand binding affinities. They combined the predicted binding 

affinities with ligand-based information (extended connectivity fingerprints) in the training of 

different machine learning models for the prediction of SULT inhibition. Cook et al. also 

performed MD simulations complemented with docking, and based on experimental results 

correlated to the docking energies, a binding cutoff value of the docking score was determined 

to differentiate between ligands and inactive compounds.  

For the sulfotransferase SULT1E1, an SVM model was trained by Rakers et al. for the 

prediction of substrates and inhibitors, they also combined ligand- and structure-based 

information [222]. MD simulations were performed to account for the important flexibility of 

the enzyme, which was followed by ensemble docking simulations, and finally by 

pharmacophore extraction which represented characteristic states of inhibition and 

sulfonation. Their prediction was based on hit identification via pharmacophore screening and 

further evaluation by SVM modeling to classify hits as substrates, inhibitors, or substrates with 

inhibitory potency at increasing concentrations. 

In the host laboratory Martiny et al. created integrated models for a phase I DME, the 

isoenzyme CYP2D6 [36]. Protein conformational variability was accounted for by performing 

MD simulations, and docking simulations were performed. They used the predicted binding 

affinities together with extended connectivity fingerprints to train SVM, RF, and Naive Bayes 

classifier machine learning models. Recently, Goldwaser et al. created prediction models for 

the inhibition of the isoenzyme CYP2C9 [262]. Similarly, MD simulations were performed 

followed by ensemble docking, and the binding energies together with ligand-based 

physicochemical descriptors were combined in machine learning modeling. Their study was 

complemented with experimental validation of predicted inhibitors.  

Huang et al. created models for the prediction of CYP-mediated site of metabolism by 

integrating flexible docking and reactivity calculations with machine learning algorithms [325]. 

They focused on the isoenzymes CYP1A2 and CYP2A6 and trained their models on known 

substrates. Further examples on the combination of ligand- and structure-based computational 

modeling for different CYP isoforms for the improvements in the prediction accuracy of DDIs 

can be found in the recent review by Kato [280].  

7.3.2. Prediction of ABC transporter ligands 

The integration of the two types of modeling, structure- and ligand-based, has also gained more 

importance recently in the prediction of ABC transporter ligands.  Examples include the work 

of Esposito et al. who combined machine learning and MD to predict ABCB1 substrates [326]. 

They calculated MD fingerprints containing information from short MD simulations of the 

molecules in different environments (in solvent, in membrane, and in the ABCB1 substrate-

binding pocket), and used them as descriptors for the training of machine learning models. 

Another study by Mahmud et al. included virtual screening based on molecular docking, and 

used QSAR (with PLS regression) to model the predicted binding affinities. The authors 

identified two compounds with outstanding docking scores, the stability of which were further 

validated by using MD simulations [327].  
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High resolution transporter structures embedded in lipid bilayers are crucial for 

accurate structure-based modeling. As discussed in the previous chapter dedicated to 

structure-based modeling, several computational studies have been performed on the analysis 

of ABC transporters and their interactions with ligands using recently published cryo-EM 

protein structures. More examples on  either ligand-based or structure-based modeling for ABC 

transporter-ligand interactions are given in the reviews of Demel et al. [328] and Montanari et 

al. [329]. In the future it is expected that, similarly to DMEs, a more complex understanding and 

more accurate predictions of transporter-ligand interactions will be achieved with the help of 

novel integrated structure- and ligand-based studies.   
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B. Computational Modeling Tools 

Computational modeling of proteins and their interactions with ligands is of increasing 

importance in drug discovery and development. Fast ways are necessary for early-stage drug 

discovery to search large ligand databases with drug-like properties that could have an activity 

against a target protein. Both ligand-based methods that are based on already known ligands, 

as well as structure-based methods in case the structure of the target protein (or a similar one) 

is known, can be used to identify substrates or inhibitors. Structure-based approaches include 

docking simulations that can be employed to find binding sites and poses quickly, and atomistic 

simulations such as molecular dynamics that can be performed to refine complexes and extract 

more accurate binding affinities.  

1. Structure-based modeling of proteins 

1.1. Interatomic energies, atomistic Force Fields 

In silico modeling of the structures and dynamics of proteins requires a model of interatomic 

interactions. Force fields are used to define the potential energy as a function of atomic 

coordinates. The force fields used in protein studies are generally semiempirical, and 

interatomic interactions are treated with a classical mechanics approximation. The most 

commonly used software packages (NAMD, CHARMM, GROMACS, and AMBER) use the 

following terms in the force field definition: 

𝑈(𝒓1, 𝒓2, … , 𝒓𝑁) = The semi-empirical potential energy function  

∑
𝑘𝑙
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∑
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𝑎𝑖,𝑗

𝑟𝑖,𝑗
12 −

𝑏𝑖,𝑗

𝑟𝑖,𝑗
6 )𝑖,𝑗 + Van der Waals interactions 

∑
332𝑞𝑖𝑞𝑗

𝜀𝑟𝑖;𝑗
𝑖,𝑗  Electrostatic interactions   (B.1) 

where r refers to atomic coordinates, l to bond lengths, θ to bond angles, φ to dihedral angles, 

rij to interatomic distances, q to atomic charges. The superscript 0 indicates constants known 

from experiments, the different k’s represent force constants, aij is the Lennard-Jones (LJ) 

repulsion coefficient, bij  the LJ attraction coefficient, and ε the effective dielectric constant. 

The factor 332 arises from the conversion to obtain energy in kcal/mol given that distances are 

expressed in Ångströms, and charges as multiples of the charge on a proton. 
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Figure B.1: Energy terms in the semi-empirical potential energy function. 

Bond stretching energies arise from the stretching or compression of covalent bonds using a 

quadratic approximation, similar to ideal springs, relating the instantaneous bond length to its 

equilibrium, which is the most probable bond length, in terms of potential energy. 

Bond-angle energies are similar, this term presumes that each bond angle has a most 

probable equilibrium state and deviations from it result in an increase in the potential energy, 

similar to an angular spring. Importantly, bond stretching is energetically more expensive than 

bond-angle bending, which is expressed in the corresponding force constants: kl >> kθ. 

Torsional-angle energies introduce small energy barriers between states differing in 

torsional degrees of freedom. Different dihedral configurations (of the backbone) account for 

the largest conformational variability between different stable states of a given protein. 

Sidechains can also adapt different dihedral configurations accounting for the fine adaptation 

to their environment. In general, multiple prominent torsional states are possible with 

corresponding minima, and the corresponding energy term is expressed with a periodic 

(cosine) function. The so far discussed bonded terms were the first to be used to describe 

intramolecular potential energies. 

More complicated conformational properties can be described by introducing non-

bonded energy terms. Such terms describe the interactions between atoms that are not 

covalently bonded and are separated by at least three (or in some cases four) covalent bonds 

in between them.  

Two neutral atoms exhibit weak attraction from a distance (a so-called dispersion force) 

as a consequence of the dipoles that arise in their electron clouds due to the distortion caused 

by the presence of another atom. This attraction is short-ranged and decreases as 1/𝑟𝑖𝑗
6  with 

increasing interatomic distances. Two neutral atoms also exhibit a repulsion, which is even 

shorter-ranged than the attraction,  1/𝑟𝑖𝑗
12, arising from the Pauli exclusion principle to avoid 

the overlap of electron clouds and steric clashes. The balance of attraction and repulsion results 

in a stable separation of the two atoms, a stable non-covalent interaction. This is referred to as 

the van der Waals, Lennard-Jones (LJ), or 6-12 potential. The parameters aij and bij are specific 

to the atom types engaging in the interaction. More accurate functional forms also exist, but 

due to its simplicity, the 6-12 LJ potential is widely used in most semi-empirical biomolecule 

force fields. 
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Finally, between atoms that are polar or (partially) charged, an additional Coulomb 

interaction arise. Coulomb’s principle describes that two like charges repel each other whereas 

opposite charges attract each other, and that the absolute value of the electric potential is 

proportional to the product of the magnitudes of the two charges and inversely proportional 

to the distance separating them. The dielectric constant captures the weakening effect of 

polarizable media where the given medium shields the two charges from  each other. Polar 

atom, unlike charged atoms, have partial charges which are estimated from quantum 

mechanical modeling of small molecules. Hydrogen bonds are generally not explicitly present 

in the potential energy formula, but are simplistically captured by electrostatic attraction 

between the partial charges on the atoms forming the given hydrogen bond [330]. 

Solvent interactions can be handled either explicitly, which treats waters and solvent 

ions as individual molecules, or implicitly, treating solvent as a homogenous continuum. Explicit 

solvent modeling is more accurate, however, it requires considerably more computing power.  

1.2. Conformational sampling and molecular simulations 

Molecular simulations can be used in order to predict energetically favorable, (most populated) 

stable states, and understand dynamic processes of biomolecules. Such states correspond to 

low free energies, which requires on the one hand low enthalpy and on the other hand high 

entropy, following the equitation:  

𝐺 = 𝐻 − 𝑇𝑆  (B.2) 

where G is the free energy, H the enthalpy (related to the potential energy), T the temperature, 

and S the entropy.  

1.2.1. Energy minimization 

The goal of energy minimization is to identify conformations of low potential energy by 

exploring the closest local minimum. Using a potential energy function (similar to what is 

defined in Equation (B.1), local minima are described by having their first derivative, the 

gradient vector as null, and their second derivative, the Hessian matrix as positive semidefinite. 

Various methods have been developed to follow gradients downhill on mathematical surfaces, 

such as steepest descent, conjugate-gradient, or Newton-Raphson, to eventually arrive at a 

local minimum. The main limitations of energy minimization are that it reveals no dynamics, it 

cannot cross energy barriers as it only moves downhill and as a consequence the identified 

minimum is likely to be only a local minimum, and it only minimizes potential energy, not free 

energy, which may correspond to an improbable, unpopulated state.  
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Figure B.2: Schematic view of energy minimization. 

1.2.2. Molecular dynamics 

To provide a proper description of the conformational population, free energies need to be 

estimated so that a combination of low energy and high entropy can be ensured. Molecular 

dynamics (MD) simulations solve Newton’s equations of motion iteratively thereby creating a 

time-dependent conformational trajectory. MD is capable of crossing energy barriers and 

reaching states with lower free energy while it also provides dynamical (time evolution) 

information. For each atom, Newton’s equation of motion can be applied, which states that the 

acting force on a given body (in case its mass is constant) is equal to the mass of the body 

multiplied by the acceleration of its center of mass (i.e. the second derivative of its position 

function): 

𝒇𝑖 = 𝑚𝑖
𝑑2𝒓𝑖

𝑑𝑡2 = −𝛻𝒓𝑖
𝑈  (B.3) 

where fi is the force acting on atom i, mi is its mass, ri its position function, and U the potential 

energy function. The acting force on the given atom is given by the negative gradient of the 

potential energy function with respect to the three components (xyz) of the atom’s position 

vector, the negative sign demonstrates that the acting force points towards lower potentials 

and the atom accelerate in that direction. In computers, the differential equations in Equation 

B.3 are solved numerically, the equations are expressed in terms of finite differences, and 

integrating over previous time steps determines the new state of the system. MD simulations 

are deterministic, however, they exhibit chaotic behaviors, i.e. small perturbations in the initial 

conditions are amplified exponentially and can lead to vastly different, unpredictable behavior 

[331]. To obtain unique solutions of the differential equations, initial and boundary conditions 

need to be defined. Then, to calculate new positions, velocities, and accelerations knowing 

previous states, different numerical integrations, such as the widely applied algorithms in MD 

simulations: the Verlet or the leapfrog algorithms, can be used.  
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The Verlet algorithm relies on the Taylor series expansion of the position vector r(t) to 

determine the state after a timestep, at t+Δt. As initial conditions, the Verlet algorithm takes 

two successive position vectors. The expression of the position vector at time steps t-Δt and 

t+Δt using the Taylor series expansion around r(t) are the following: 

𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)(∆𝑡)2 + ⋯  ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠  (B.4) 

𝒓(𝑡 − ∆𝑡) = 𝒓(𝑡) − 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)(∆𝑡)2 − ⋯  ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠   (B.5) 

where r(t) is the instantaneous position vector, v(t) the velocity, a(t) the acceleration, and Δt 

the integration time step. The sum of the Equations B.4 and B.5, truncated at their third order 

terms (i.e. the precision of the equation is till the third order), results in the Verlet equation for 

the updated position vector: 

𝒓(𝑡 + ∆𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − ∆𝑡) + (∆𝑡)2𝒂(𝑡)  (B.6) 

The velocities can be evaluated at each time step by taking the difference of Equations B.4 and 

B.5, which results in the velocity formula: 

𝒗(𝑡) =
𝒓(𝑡+∆𝑡)−𝒓(𝑡−∆𝑡)

2∆𝑡
  (B.7) 

The leapfrog algorithm calculates velocities at half-time steps: v(t±Δt). The leapfrog algorithm 

takes a position vector and a set of velocities for each atom as initial conditions. The initial 

velocities can be randomly drawn according to the Maxwell-Boltzmann velocity distribution:  

𝑝(𝑣𝑖,𝑥) = √
𝑚𝑖

2𝜋𝑅𝑇
𝑒𝑥𝑝 (

𝑚𝑖𝑣𝑖,𝑥
2

2𝑅𝑇
)  (B.8) 

for each component x,y, and z, where p(vi,x) is the probability of the velocity x-component of 

the velocity vector vi for atom i, mi is its mass, T the temperature of the simulation, and R the 

universal gas constant. The velocity at t+Δt is defined presuming a uniformly accelerated 

motion (constant force) during Δt/2: 

𝒗(𝑡 + ∆𝑡 2⁄ ) = 𝒗(𝑡) + 𝒂(𝑡) ∆𝑡 2⁄   (B.9) 

The position at the next step is defined presuming a uniform motion (resultant force equals 

zero) during Δt: 

𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡 + ∆𝑡 2⁄ )∆𝑡  (B.10) 

Boundary conditions are usually handled through the use of identical replicas of the simulation 

box around the central box, forming a grid, for the calculation of interactions at the edges 

(periodic boundary conditions). To maintain concentrations and conserve the total number of 

molecules, molecules leaving the simulation box are assumed to reenter at the opposite side. 

All numerical integration methods require the use of a sufficiently small integration time step 

(Δt) in order to ensure that errors due to their assumptions/approximations remain negligible. 

Such a time step needs to be shorter than the system’s fastest motions, for proteins these are 

the bond vibrations, a typical time-step used in classical MD is 1-2 fs.  
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1.2.3. Normal mode analysis 

Normal mode analysis (NMA) can be efficiently used for identifying and describing the slowest 

intrinsic motions of macromolecules, which in nature, generally correspond well to collective 

functional movements. NMA has become one of the standards to study the dynamics of 

macromolecules. NMA relies on the harmonic approximation of the potential energy function 

around a given local minimum. The calculation of all-atomic normal modes in a given forcefield 

includes the following three steps: 

• Potential energy minimization to reach an equilibrium state (a local minimum) 

• Calculation of the Hessian matrix (matrix of second derivatives of the potential 

energy with respect to the mass-weighted atomic coordinates) 

• Diagonalization of the Hessian matrix 

 

Figure B.3: Schematic representation of the harmonic approximation of the potential energy 
surface (blue) by NMA (red). 

NMA is usually performed in vacuum, the potential energy thus is a function of 3N coordinates, 

N being the number of atoms in the system. The potential energy can be expanded in a Taylor 

series around a local minimum. The multivariable Taylor expansion is expressed as: 

𝑈(𝒓) ≅ 𝑈(𝒓0) + 𝜵𝑈(𝒓0)𝑇(𝒓 − 𝒓0) +
1

2
(𝒓 − 𝒓0)𝑇𝑯0(𝒓 − 𝒓0) + ⋯ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑. 𝑡𝑒𝑟𝑚𝑠

 (B.11) 

where U(r) is the potential energy function, r is 3N dimensional position vector, H the Hessian 

matrix, and the superscripts 0 correspond to the equilibrium state. The gradient in an energy 

minimum is equal to the null vector. If the reference 𝑈0 = 0 is taken as reference state and 

terms higher than the quadratic are neglected, the approximation of the potential energy 

function becomes quadratic: 

𝑈(𝒓) ≅
1

2
(𝒓 − 𝒓0)𝑇𝑯0(𝒓 − 𝒓0) =

1

2
∑ ∑

𝜕2𝑈(𝒓)

𝜕𝒓𝑖𝜕𝒓𝑗
|

𝒓0

(𝒓𝑖 − 𝒓𝑖
0)(𝒓𝑗 − 𝒓𝑗

0)𝒓𝑗𝒓𝑖
  (B.12) 
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The first derivative of the potential energy function with respect to r is expressed as: 

𝛻𝑈(𝒓) = 𝑯0(𝒓 − 𝒓0)  (B.13) 

Using Newton’s equation of motion, the following formula is obtained: 

−𝛻𝑈(𝒓) = −𝑯0(𝒓 − 𝒓0) = 𝑴
𝑑2𝒓(𝑡)

𝑑𝑡2   (B.14) 

where M is the mass matrix, containing atomic masses in its diagonal. Introducing mass-

weighted coordinates, 𝒒𝑖 = √𝑚𝑖𝒓𝑖, where ri is the position vector and mi the mass of atom i, 

𝒒 = √𝑴𝒓, and the mass-weighted Hessian, 𝑲0 = √𝑴
−1

𝑯0√𝑴
−1

, Equation B.14 can be 

simplified (using the notation �̈� for the second derivative with respect to time): 

𝑴�̈� = −𝑯0𝒓         (B.15) 
�̈� = −𝑴−1𝑯0𝒓        (B.16) 

√𝑴�̈� = −√𝑴𝑴−1𝑯0𝒓 = −√𝑴√𝑴
−𝟏

√𝑴
−𝟏

𝑯0𝒓 = −√𝑴
−𝟏

𝑯0𝒓  (B.17) 

√𝑴�̈� = −√𝑴
−𝟏

𝑯0√𝑴
−𝟏

√𝑴𝒓      (B.18) 
�̈� = −𝑲0𝒒         (B.19) 

The set of 3N coupled differential equations can be easier solved after coordinate 

transformation to a set of 3N decoupled differential equations. The Hessian matrix and the 

mass-weighted Hessian matrix are both symmetric which is a sufficient condition to be 

diagonalizable. The decoupling of the differential equations is ensured through the coordinate 

transformation by an orthonormal matrix T for which 𝑻𝑇𝑻 = 𝑻𝑻𝑇 = 𝟏, furthermore it is 

required that T diagonalizes the mass-weighted Hessian (K0) so that each differential equation 

becomes decoupled from all others, the matrix D0 should be diagonal and is defined as 𝑫0 =

𝑻−1𝑲0𝑻 . Then, the column vectors of T form a basis consisting of eigenvectors of K0, whereas 

the diagonal matrix D0 has the corresponding eigenvalues as its diagonal elements. Equation 

B.15 can be rewritten after transformation to the space spanned by the eigenvectors of K0, 

using the substitution 𝒒 = 𝑻𝒚 and  �̈� = 𝑻�̈� (as T is time-independent) and thus �̈� = 𝑻−𝟏�̈�: 

𝑻−1�̈� = −𝑻−1𝑲0𝒒 = −𝑻−1𝑲0𝑻𝑻−𝟏𝒒  (B.20) 
�̈� = −𝑫0𝒚      (B.21) 

and thus in the space of the eigenvectors of K0, the 3N differential equations become 

decoupled. Each differential equation has the form of an ideal harmonic oscillator �̈�𝑖 =

−𝐷0,𝑖𝑖𝑦𝑖 = −𝜆𝑖𝑦𝑖, where λi is the ith eigenvalue of K0. The solution to such differential equation 

has the form: 𝑦𝑖(𝑡) = 𝑦𝑖
0 + 𝐶𝑖cos (𝜔𝑖𝑡 + 𝜑𝑖), with 𝜔𝑖 ≔ √𝜆𝑖, which is the vibrational 

frequency (in an energy minimum the Hessian is positive semidefinite, all of its eigenvalues are 

nonnegative), Ci is the magnitude of the oscillation, 𝑦𝑖
0 represents the equilibrium state and φi 

an arbitrary phase factor. The solutions can be transformed back into the Cartesian-space by 

using 𝒒 = 𝑻𝒚 and accounting for the initial condition: 

𝒒(𝑡) = 𝒒0 + ∑ 𝒂𝑖𝐶𝑖(𝜔𝑖𝑡 + 𝜑𝑖)
3𝑁
𝑖=1   (B.22) 
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where ai is the ith eigenvector of K0 (i.e. the ith column vector of the matrix T) and  ωi the 

square-root of the ith eigenvalue of K0. They can be calculated by solving the eigenvalue 

equation: 𝑲0𝒂𝑖 = 𝜆𝑖𝒂𝑖. The physical interpretation of ai gives the direction of the vibration 

with respect to the equilibrium state, whereas ωi the corresponding vibrational frequency. All 

3N eigenvectors {ai} are orthonormal, hence the name normal modes, thus they are linearly 

independent, and they form a new complete basis set for the molecule, enabling the expression 

of molecule conformations in form of normal mode coordinates. The quadratic approximation 

of the molecular dynamics can be described as 3N independent vibrations around the 

equilibrium state, each along a given normal mode with a corresponding frequency. There are 

six zero eigenvalues of K0, associated with rigid-body translations and rotations, which do not 

influence the potential energy. Given the normal modes are of unit length, the actual 

vibrational magnitude depends on the temperature, and is proportional to 1 𝜔𝑖⁄  the square 

fluctuation to 1 𝜔𝑖
2⁄ , the lowest-frequency modes make the largest contribution to the overall 

motion. The harmonic approximation to the square fluctuation of atomic vibrations is given by 

the formula: 

〈|∆𝒒𝑖|
2〉 = 𝑘𝐵𝑇 ∑

|𝒂𝑖,𝑗|
2

𝜔𝑖
2

3𝑁−6
𝑗=1   (B.23) 

where kB is the Boltzmann constant, T the absolute temperature, N the number of atoms, and 

ai,j consists of the xyz components of the jth normal mode of nonzero eigenvalue corresponding 

to atom i. 

1.3. Analyzing conformational ensembles 

Given a set of conformations (e.g. trajectories generated by molecular dynamics simulation), 

different measures can be calculated in order to extract statistically relevant information. 

Measures like the root mean square deviation and the radius of gyration provides information 

per conformation, and their variation can be evaluated within the ensemble, whereas root 

mean square fluctuation provides atomistic statistics that already incorporate all the 

conformations in the ensemble. 

1.3.1. Root Mean Square Deviation (RMSD) 

Given a conformation in the 3D space, a reference structure is required to compute RMSD. It 

measures the square root of the average Euclidean squared-distances between all matching 

atom pairs for the given conformation and the reference structure. Its value is dependent on 

rigid-body transformations (translation and rotation), generally the RMSD denotes its 

minimum. An optimal overlap is achieved between two conformations if the corresponding 

RMSD is minimized with respect to relative translation and rotation movements. RMSD is given 

by the formula: 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ ‖𝒓𝑖 − 𝒓𝑖

0‖
2𝑁

𝑖=1   (B.24) 

where N is the number of matching atom pairs considered for the RMSD calculation, 𝒓𝑖 denotes 

the xyz coordinates of atom i in the given conformation, and 𝒓𝑖
0  the xyz coordinates of the 
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same atom in the reference structure. To obtain statistical information within a conformational 

ensemble, the distribution of the RMSD calculated for the conformations with respect to the 

same reference can be evaluated. Furthermore, if the ensemble is time dependent (a 

conformational trajectory),its time evolution 𝑅𝑀𝑆𝐷(𝒓(𝑡)) can also be monitored. 

1.3.2. Radius of gyration (Rgyr) 

The calculation of the Rgyr does not require a reference structure it is entirely defined by a given 

conformation. It provides information about the overall compactness of a given conformation, 

about the distribution of atoms with respect to the center of mass. A low Rgyr value indicates 

that the atoms in the given conformation are close to their center of mass, whereas a high Rgyr 

value indicates the opposite, that the atoms are far from their center of mass. Mathematically, 

the Rgyr measures the square root of the mass-weighted average Euclidean squared-distances 

between the individual atoms and the center of mass. The Rgyr is given by the formula: 

𝑅𝑔𝑦𝑟 = √
1

∑ 𝑚𝑖
𝑁
𝑖=1

∑ 𝑚𝑖‖𝒓𝑖 − 𝒓𝐶𝑀‖2𝑁
𝑖=1   (B.25) 

where N is the number of atoms in the conformation, 𝒓𝑖 denotes the xyz coordinates and mi 

the mass of atom i; and 𝒓𝐶𝑀 the xyz coordinates of the center of mass which is defined by the 

formula: 

𝒓𝐶𝑀 =
1

∑ 𝑚𝑖
𝑁
𝑖=1

∑ 𝑚𝑖𝒓𝑖
𝑁
𝑖=1   (B.26) 

Similarly to RMSD, in case of a conformational ensemble, the distribution of the Rgyr can be 

analyzed, and in case the ensemble is time-dependent, its time evolution 𝑅𝑔𝑦𝑟(𝒓(𝑡)) can also 

be monitored to e.g. identify larger conformational transitions or follow convergence. 

1.3.3. Root Mean Square Fluctuation (RMSF) 

The calculation of atomic fluctuations already incorporates statistical evaluation. Generally, 

internal fluctuations are of interest. Global fluctuations originating from translational and 

rotational movements of the molecule can be eliminated during a preceding superposition step 

by minimizing the RMSD of all conformations with respect to a given reference structure. The 

RMSF provides information about the flexibility of a given atom among a set of conformations. 

Mathematically the RMSF of a given atom measures the square root of the average squared 

Euclidean distances between its instantaneous positions and its average position over the 

conformational ensemble. The RMSF of a given atom is defined by the formula: 

𝑅𝑀𝑆𝐹𝑖 = √
1

𝐸
∑ ‖𝒓𝑖,𝑠 − 𝒓𝑖,𝑎𝑣𝑔‖

2𝐸
𝑠=1   (B.27) 

where E is the number of conformations in the ensemble, 𝒓𝑖,𝑠 denotes the xyz coordinates of 

atom i in the sample conformation s, and 𝒓𝑖,𝑎𝑣𝑔 the xyz coordinates of the average position of 

atom i in the conformational ensemble. The average position of atom i is defined by the 

formula: 

𝒓𝑖,𝑎𝑣𝑔 =
1

𝐸
∑ 𝒓𝑖,𝑠

𝐸
𝑠=1   (B.28) 
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Typically, the RMSF of alpha carbon atoms are calculated to identify rigid protein regions (small 

RMSF values) and regions of high flexibility (high RMSF values). 

1.3.4. Principal Component Analysis (PCA) 

Principal Component Analysis is a broadly used algorithm in many different fields, it is used to 

reduce dimensionality of the data in order to increase interpretability while still preserving as 

much information possible. For conformational ensembles, the aim can be formulated as to 

decrease the dimensionality from the full detail description of all degrees of freedom, down to 

a small number of reduced coordinates that still capture the essential features encoded in the 

ensemble. This is achieved by an orthogonal linear coordinate transformation from the original 

Cartesian space to a space spanned by a set of uncorrelated collective variables (the principal 

components, PCs) that are ranked according to the corresponding variation described by the 

given PC. Similarly to RMSF calculations, PCA is usually preceded by a superposition step to 

filter out translational and rotational movements. 

 

Figure B.4: Principal Components of a two-dimensional distribution. The characteristics of the 
distribution can be well described by using only PC1.  

The underlying mathematics of PCA can be formulated as follows. The observation matrix is 

given, containing all the sample conformation coordinates as column vectors 

𝑹 = [𝒓1| … |𝒓𝐸]  (B.29) 

where E is the number of conformations in the ensemble, and 𝒓𝑠, 𝑠 = 1 … 𝐸 are the Cartesian 

coordinates of a given sample conformation s. A linear function defined by the unit vector p1 

generate projections of the sample conformations: 

𝒑1
𝑇𝑹 = [𝒑1

𝑇𝒓1 … 𝒑1
𝑇𝒓𝐸]  (B.30) 
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The corresponding estimated variance is: 

𝑉𝑎𝑟(𝒑1
𝑇𝑹) =

1

𝐸 − 1
∑(𝒑1

𝑇𝒓𝑠 − 𝒑1
𝑇𝒓𝑎𝑣𝑔)

2
𝐸

𝑠=1

 

𝑉𝑎𝑟(𝒑1
𝑇𝑹) =

1

𝐸 − 1
∑[𝒑1

𝑇(𝒓𝑠 − 𝒓𝑎𝑣𝑔)]
2

𝐸

𝑠=1

=
1

𝐸 − 1
∑ 𝒑1

𝑇(𝒓𝑠 − 𝒓𝑎𝑣𝑔) ∙ 𝒑1
𝑇(𝒓𝑠 − 𝒓𝑎𝑣𝑔)

𝐸

𝑠=1

 

𝑉𝑎𝑟(𝒑1
𝑇𝑹) =

1

𝐸 − 1
∑ 𝒑1

𝑇(𝒓𝑠 − 𝒓𝑎𝑣𝑔) ×

𝐸

𝑠=1

(𝒓𝑠 − 𝒓𝑎𝑣𝑔)
𝑇

𝒑1 

𝑉𝑎𝑟(𝒑1
𝑇𝑹) = 𝒑1

𝑇 [
1

𝐸 − 1
∑(𝒓𝑠 − 𝒓𝑎𝑣𝑔) ×

𝐸

𝑠=1

(𝒓𝑠 − 𝒓𝑎𝑣𝑔)
𝑇

] 𝒑1 

𝑉𝑎𝑟(𝒑1
𝑇𝑹) = 𝒑1

𝑇𝑺𝒑1 (B.31) 

where 𝒓𝑎𝑣𝑔 denotes the average conformation over the ensemble, and S the estimated 

covariance matrix of the original Cartesian variables and is given by the formula: 

𝑺 =
1

𝐸−1
∑ (𝒓𝑠 − 𝒓𝑎𝑣𝑔) ×𝐸

𝑠=1 (𝒓𝑠 − 𝒓𝑎𝑣𝑔)
𝑇

  (B.32) 

The problem of finding the first PC can be formulated as identifying the unit vector 𝒑1 that 

maximizes the variance of the corresponding projections: 

𝑎𝑟𝑔𝑚𝑎𝑥
𝒑1

𝒑1
𝑇𝑺𝒑1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒑1

𝑇𝒑1 = 1  (B.33) 

The constrained maximization problem can be expressed with the help of a Lagrangian: 

𝐿(𝒑1, 𝜆) ∶= 𝑓(𝒑1) − 𝜆𝑔(𝒑1), where 𝑓(𝒑1) = 𝒑1
𝑇𝑺𝒑1 is the target function and 𝑔(𝒑1) =

𝒑1
𝑇𝒑1 − 1 the constraint function with the corresponding Lagrange multiplier λ arising from the 

constraint 𝒑1
𝑇𝒑1 = 1. Finding a stationary point of the Lagrangian function 𝐿(𝒑1, 𝜆) is a 

necessary condition to find the maximum of the target function with the given constraints. The 

Lagrange function has the form: 

𝐿(𝒑1, 𝜆) = 𝒑1
𝑇𝑺𝒑1 − 𝜆(𝒑1

𝑇𝒑1 − 1 )  (B.34) 

In a stationary point of the Lagrange function its gradient is zero: 𝛁𝐿(𝒑1
∗ , 𝜆∗) = 𝟎. Then the 

partial derivative with respect to the vector p1 is: 

𝜕𝐿(𝒑1
∗ ,𝜆∗)

𝜕𝒑1
= 2𝑺𝒑1 − 2𝜆𝒑1 = 𝟎  (B.35) 

which becomes the following eigenvector equation: 

𝑺𝒑1 = 𝜆𝒑1  (B.36) 

where 𝒑1 is an eigenvector of the estimated covariance matrix S, and λ is the corresponding 

eigenvalue. In order to maximize the target function: 

𝑓(𝒑1) = 𝒑1
𝑇𝑺𝒑1 = 𝒑1

𝑇𝜆𝒑1 = 𝜆𝒑1
𝑇𝒑1 = 𝜆  (B.37) 
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the largest eigenvalue must be chosen (λ1), its value directly equals to the maximal variance, 

and the corresponding eigenvector p1 is the first PC of the ensemble R.  

Selecting the second PC maximizes the variance of the projections by p2: 

𝑎𝑟𝑔𝑚𝑎𝑥 
𝒑2

𝒑2
𝑇𝑺𝒑2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒑2

𝑇𝒑2 = 1 𝑎𝑛𝑑 𝒑1
𝑇𝒑2 = 0   (B.38) 

which means that in addition to the previous maximization, an additional constraint is added 

i.e. the projections by p2 must be uncorrelated from the projections by p1. The Lagrangian 

becomes: 

𝐿(𝒑2, 𝜆2) = 𝒑2
𝑇𝑺𝒑2 − 𝜆𝟐(𝒑2

𝑇𝒑2 − 1 ) − 𝜑𝒑1
𝑇𝒑2  (B.39) 

and its partial derivative with respect to p2: 

𝜕𝐿(𝒑2
∗ , 𝜆2

∗ )

𝜕𝒑1
= 2𝑺𝒑2 − 2𝜆2𝒑2 − 𝜑𝒑1 = 

2𝒑1
𝑇𝑺𝒑2 − 2𝜆2𝒑1

𝑇𝒑1 − 𝜑𝒑1
𝑇𝒑1 = 

2𝒑2
𝑇𝑺𝒑1 − 2𝜆2𝒑1

𝑇𝒑1 − 𝜑𝒑1
𝑇𝒑1 = 

2𝒑2
𝑇𝜆1𝒑1 − 2𝜆2𝒑1

𝑇𝒑1 − 𝜑𝒑1
𝑇𝒑1 = 

2𝜆1𝒑2
𝑇𝒑1 − 2𝜆2𝒑1

𝑇𝒑1 − 𝜑𝒑1
𝑇𝒑1 = 

𝜑𝒑1
𝑇𝒑1 = 𝜑 = 𝟎 (B.40) 

This means that 𝜑 must equal to zero, and as a consequence: 

2𝑺𝒑2 − 2𝜆2𝒑2 = 𝟎 
𝑺𝒑2 = 𝜆2𝒑2 (B.41) 

hence the second PC is another eigenvector of the estimated covariance matrix S with a 

corresponding eigenvalue 𝜆2. To maximize the target function 𝒑2
𝑇𝑺𝒑2 = 𝜆2, the second largest 

eigenvalue must be chosen. This process can be repeated to obtain 3N principal components, 

3N being the dimension of the original coordinate space (the 3D Descartes coordinates of the 

N atoms). The 3N orthonormal eigenvectors of the estimated covariance matrix S form the set 

of PCs, they are ranked by the corresponding eigenvalues that directly equal to the variance 

along the given PC. In most cases, a low number of PCs can efficiently describe the 

characteristics encoded in the ensemble R. The calculation of PCs can be achieved by the 

diagonalization of the estimated covariance matrix to obtain its eigenvectors and 

corresponding eigenvalues (more details are given about the diagonalization in the section on 

Normal Mode Analysis). Typically, only a subset of atoms is included in the PC calculations, e.g. 

backbone atoms or alpha carbons. 

1.3.5. Quasiharmonic Mode Analysis  

A closely related tool to PCA is quasiharmonic mode analysis. However, while PCA attempts to 

decompose system fluctuations into independent (pairwise linearly uncorrelated) motional 

modes, quasiharmonic analysis aims at analyzing a conformational trajectory by assuming an 
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underlying effective harmonic model. Nevertheless, the mathematics behind the two analysis 

tools are very similar. The motivation for quasiharmonic mode analysis is to connect simulation 

trajectories (e.g. from molecular dynamics) to normal modes. 

In analogy with diagonalizing the estimated covariance matrix (S) to obtain the PCs, in 

quasiharmonic mode analysis the mass-weighted estimated covariance is diagonalized: 

√𝑴𝑺√𝑴. Similarly to normal modes, where the potential energy is harmonically 

approximated, quasiharmonic analysis supposes that atomic fluctuations result from an 

underlying harmonic potential: 

�̃�(𝒓) =
1

2
(𝒓 − �̃�0)𝑇�̃�0(𝒓 − �̃�0)  (B.42) 

where �̃�0 is an effective Hessian matrix and �̃�0 an effective equilibrium. The covariance 

matrix given by the normal mode analysis is defined as: 

𝛴 =
2

𝑘𝐵𝑇
𝑯0

−1  (B.43) 

where Σ = 〈(𝑟 − 𝑟0) × (𝑟 − 𝑟0)〉 is the covariance matrix of the Cartesian variables, kB the 

Boltzmann constant, T the absolute temperature, and 𝑯0
−1 the inverse of the Hessian matrix at 

a given energy minimum. To match the dynamics described by the trajectory to normal modes 

around a given minimum, quasiharmonic analysis approximates the equilibrium state as the 

average conformation over the trajectory, �̃�0 = 〈𝒓〉, and estimates an effective Hessian matrix 

by:  

�̃�0 = 𝑘𝐵𝑇𝑺−1  (B.44) 

where S is the estimated covariance matrix from the trajectory. Similarly to normal modes, to 

obtain the quasiharmonic modes, the mass-weighted effective Hessian matrix, �̃�0 =

√𝑴
−1

�̃�0√𝑴
−1

= 𝑘𝐵𝑇√𝑴
−1

𝑺−1√𝑴
−1

 needs to be diagonalized. Given an invertible matrix, 

the eigenvectors of the matrix are identical to the eigenvectors of its inverse matrix, and the 

corresponding eigenvalues of the inverse matrix are the inverse of the eigenvalues of the 

original matrix. Therefore, instead of �̃�0 the mass-weighted estimated covariance matrix, 

√𝑴𝑺√𝑴 can be diagonalized, and its eigenvectors form the set of quasiharmonic modes, and 

the matching quasiharmonic frequencies are given by the formula: 

𝜔𝑖 = √
𝑘𝐵𝑇

𝜆𝑖
, 𝑖 = 1 … 3𝑁  (B.45) 

Similarly to PCA, a preceding superposition step is required to eliminate translational and 

rotational movements, and this will manifest in six quasizero frequencies. Furthermore, if 

geometrical constraints are present (e.g. on bond lengths), additional quasizero frequencies 

appear. Importantly, to properly match quasiharmonic modes and frequencies to normal 

modes, all atoms must be present in the calculations.  
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1.4. Modeling protein-ligand interactions 

1.4.1. Molecular docking simulations 

If the target protein structure is known (either resolved experimentally or modeled e.g. by 

homology), docking methods can be efficiently used to find binding sites and poses for ligands, 

and predict binding affinities. Docking on the one hand is computationally fast compared to 

atomistic simulations (e.g. molecular dynamics), however it is also less accurate as it 

approximates true physical energies with simplified energetics and solvation while performing 

a limited conformational search, mostly treating the receptor proteins as rigid. Due to its 

effectiveness, however, molecular docking is one of the most frequently used methods in 

structure-based drug design.  

Molecular docking can be defined as an optimization problem where docking seeks to 

identify the best orientation of a ligand with respect to a receptor (in terms of free energy of 

the complex), taking into account the flexibility of the ligand (and possibly some residue 

sidechains of the receptor). The docking simulation evaluates rigid body transformations such 

as translations and rotations and internal changes including torsion angle rotations. Docking 

simulations require a search algorithm and a scoring function. 

Search algorithms 

An exhaustive search, in theory, would evaluate all possible conformations and respective 

orientations between the receptor and the ligand, however, it is computationally unfeasible. 

Docking algorithms can be classified as systematic, or stochastic (or even deterministic e.g. 

molecular dynamics).  

Systematic search algorithms try to explore all the degrees of freedom in a molecule 

represented by the rotations of the bonds and angles and size of increments which is both 

computationally expensive and slow [332]. To avoid combinatorial explosion, the search can be 

done by building the ligand from different fragments: choosing a fragment as anchor, followed 

by sequential addition of combinations of the remaining fragments (e.g. the DOCK [333] or 

FlexX [334] software) [335, 336]. 

Stochastic search is randomized, it is based on making random changes to the ligand 

which are evaluated with a predefined probability function. The two major methods used in 

stochastic search are Monte Carlo (MC) and genetic algorithms (GA). MC starts from a random 

initial ligand configuration within the active site, scoring is done via a predefined scoring 

function. Small changes are made, and a new configuration is generated, which is always 

accepted if it outscores the previous configuration, otherwise it is only accepted with a 

probability according to e.g. the Boltzmann-based Metropolis criterion: 

𝑝𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑥𝑘+1
=

𝑝(𝑥𝑘+1)

𝑝(𝑥𝑘)
= 𝑒𝑥𝑝 {−

𝑈(𝑥𝑘+1)−𝑈(𝑥𝑘)

𝑅𝑇
}.  (B.46) 

The algorithm continues until the desired number of configurations is reached. MC is more 

robust in finding a global minimum than energy minimization as it can overcome energy 

barriers with a certain probability (MC is used in e.g. the MCDOCK [337], Vina [338],  and ICM 
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[339] software). GA are based on the principle of biological evolution; the method is analogous 

to gene recombination and mutation in producing next generations. State variables, such as 

parameters describing translation, rotation, and the conformation of the ligand with respect to 

the receptor correspond to a gene in the algorithm and are grouped to form a chromosome. A 

GA population consisting of N sets is evaluated, individual chromosomes are scored based on 

a scoring function (the receptor-ligand complexes can be built from the state variables encoded 

in the chromosomes). Then, random pairs of the chromosomes are combined (mated), and 

new chromosomes are produced through reproduction (identical copy), crossovers (random 

exchange between the chromosome pair) and random mutations (perturbations introduced to 

the chromosome). Chromosomes of the new generation are then also evaluated, and a 

selection is made following some probabilistic selection rule (GA is used in e.g. the AutoDock 

[340] and GOLD [341] software). 

Scoring functions 

Docking algorithms generate different receptor-ligand configurations (different poses of the 

ligand within the binding site). The evaluation and ranking of such configurations are done using 

scoring functions. They are used for the identification of favorable binding modes, the 

prediction of binding affinity, and for virtual screening. Generally, such mathematical functions 

approximate the binding free-energy. Assuming thermodynamic equilibrium conditions for the 

protein-ligand complex formation, the binding free-energy is related to the binding constant 

(Ki) according to: ∆𝐺0 = −𝑅𝑇𝑙𝑛𝐾𝑎, where 𝐾𝑎 =
𝑘𝑜𝑛

𝑘𝑜𝑓𝑓
, the ratio of the on-rate and of-rate 

constants [342]. Enthalpic and entropic contributions are both important, the following terms 

can be considered for the approximation of the binding free-energy: 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐺𝑠𝑜𝑙𝑣 + ∆𝐺𝑐𝑜𝑛𝑓 + ∆𝐺𝑖𝑛𝑡 + ∆𝐺𝑟𝑜𝑡 + ∆𝐺𝑟𝑖𝑔𝑖𝑑 𝑏𝑜𝑑 𝑚𝑜𝑣 + ∆𝐺𝑣𝑖𝑏  (B.47) 

where ∆Gbind is the binding free-energy, ∆Gsolv the free-energy difference in interactions 

with the solvent due to ligand binding, ∆Gconf the effect of conformational changes in the 

receptor and the ligand, ∆Gint the contributions of receptor-ligand interactions, ∆Grot the effect 

of freezing rotatable bonds (entropic contribution), ∆Grigid bod mov the loss of degrees of freedom 

of rigid-body movements upon the association of two bodies to form a complex, and finally 

∆Gvib the effect of changes in vibrational modes. Scoring functions use assumptions and 

simplifications to estimate the majority of the various terms [332]. There are three major 

classes of scoring functions, forcefield-based, empirical, and knowledge-based. 

Forcefield-based scoring functions take the sum of the different potentials defined by a 

given forcefield (see Equation B.1 for general forcefield terms, e.g. the software AutoDock is 

based on the AMBER forcefield). Solvation is often handled using an implicit solvent medium; 

however, entropy is mostly not considered. Empirical scoring functions (which still may contain 

some force-field based terms) incorporate several (simplistic) energy terms, e.g. ionic 

interaction, hydrogen bonds, lipophilic contacts etc., the weighting of which in the overall score 

is based on experimental observations and are deduced from known receptor-ligand 

complexes (can be derived from regression models using experimentally determined binding 
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energies and resolved complex structures). Empirical scoring functions can be evaluated much 

faster than forcefield-based scoring functions making them an appealing choice (e.g. the Vina 

software uses empirical scoring). Knowledge-based scoring relies on statistical observations of 

ligand-receptor contacts extracted from experimentally resolved complexes (e.g. the 

DrugScore [342] software uses knowledge-based scoring). Knowledge-based scoring focuses 

on structural evaluation., prioritizing ligand configurations that are similar to existing 

experimental observations. Such scoring functions use pairwise atomic potentials. Assuming 

that experimental complexes represent the optimum placement of the ligand atoms relative to 

the receptor atoms constrained by covalent bonds, a large number of complexes can be 

evaluated to derive statistical potentials between protein and ligand atom-types. 

1.4.2. Enrichment plots 

To evaluate the capability of a docking algorithm using a given target protein structure of 

accurately modeling in vitro experiments, enrichment plots (a.k.a. Receiver Operator 

Characteristic (ROC) curve) can be created based on a dataset with known activity. A set of 

active and inactive (or decoy) molecules against a target are collected so that they occupy 

similar chemical spaces. The assumption is that active ligands have a lower energy score (have 

higher binding affinity) than inactive or decoy compounds. Enrichment plots demonstrate the 

trade-off between sensitivity and specificity, i.e. show the true positive rate (sensitivity, the 

ratio between the correctly predicted hits and all hits in the dataset, (𝑃𝑇 𝑃⁄ )) as the function 

of the false positive rate (1 − specificity, the ratio between the incorrectly predicted hits and 

all the negatives in the dataset, (𝑃𝐹 𝑁⁄ )) evaluating different activity thresholds for the 

prediction classification. For each threshold, the true positive and false positive rates can be 

calculated, and a data point can be included in the enrichment curve.  

 

Figure B.5: Enrichment plots of some classifiers. TPR is the true positive rate (sensitivity), FPR is 
the false positive rate (1-specificity) 
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Docking results that give curves closer to the top-left corner indicate better performance, a 

random classifier is expected to give points lying along the diagonal. The overall performance 

can be described by a single parameter, the area under the curve (AUC) of the enrichment 

curve, which translates to the probability that a randomly chosen active compound is ranked 

higher than a randomly chosen inactive compound based on their docking score. However, a 

classifier with high AUC can sometimes score worse in a specific region of the enrichment curve 

than another classifier with lower AUC (their corresponding enrichment curves can intersect). 

The use of decoys instead of known inactive compounds necessitates to rather focus on the 

initial rise of the enrichment curve (the partial area under the curve (pAUC) allows to 

concentrate at a specific region of the curve and is usually calculated at early false positive rate 

values) [343].  

A similar type of enrichment curves can be created given the compounds are ranked 

from best to worst docking scores. Starting from the best ranked compound, one-by-one 

adding compounds to a sample according to their ranking, the ratio of active compounds within 

the sample can be plotted as a function of the proportion of the sample size with respect to 

the total dataset size.  

2. Machine learning modeling 

Machine learning (ML) is a type of artificial intelligence (AI), ML algorithms can train models 

capable of predicting variables using some training data. Algorithms can be classified as 

supervised, unsupervised, or reinforcement learning. In supervised learning the training data is 

provided with desired outputs, the goal of the algorithms is to learn a general rule mapping the 

input variables to the output variable(s). Opposed to that, no labels are fed for the training data 

in unsupervised learning, the algorithm itself needs to find structures within the input data (e.g. 

the problem of conformational clustering). Reinforcement learning defines a clear goal and a 

prescribed set of rules for accomplishing that goal, by introducing positive rewards and 

negative punishments for different actions. 

With the help of supervised learning, binary/multi-class classification (dividing data into 

two or more categories) or regression modeling (predicting continuous values) tasks can be 

addressed. Within the scope of the PhD thesis, two widely used supervised ML algorithms, 

random forest and support vector machines are discussed in more details for the binary 

classification of active and inactive compounds. 

2.1. Random forest  

Random forest (RF) is one of the most frequently used supervised ML algorithms because of its 

simplicity end easy interpretability. RF uses ensemble learning which combines many weak 

classifiers to provide an overall robust prediction of high accuracy and to avoid overfitting to 

the training data. RF consists of many decision trees, each is trained using only a subset of the 

original training dataset, and the output of RF models given an input is determined by majority 

vote of the individual decision trees (for classification, or by taking their average for regression 

problems).  
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The decision tree algorithm itself is a supervised ML technique that uses a set of rules 

for classification (or regression). Decision trees use recursive partitioning of the data into 

subsets. The graphical interpretation of a decision tree is a flowchart-like structure with if-else 

conditions. The tree consists of a root node, internal nodes, and leaf nodes. Starting from the 

root node, after branching at nodes according to different if conditions, the decision is reached 

in one of the leaf nodes of the tree.  

 

Figure B.6: Schematic flow-chart of the Random Forest algorithm. 

Algorithms constructing decision trees rely on the concept of impurity to describe data 

heterogeneity with respect to the different features at a given node containing training data 

points possibly from different classes. The calculation of impurity of the different features at a 

given node helps to identify the feature to be used for the most efficient splitting of the data. 

Impurity functions have their maximum if the data points have a uniform distribution among 

the different classes, i.e. in practical terms each class is represented by the same number of 

training data points at the given node, and have their minimum if only training data points 

belonging to one single class are present. Entropy and Gini-index are widely-used impurity 

measures: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 𝑙𝑜𝑔(𝑝𝑖)
𝑛
𝑖=1   (B.48) 

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1   (B.49) 

where n is the number of classes in the classification problem, and pi denotes the estimated 

probability (relative frequency) of class i at a given node. Splitting according to a given feature 

has an impurity measure equal to the weighted sum of its child node impurities (the total Gini 

index of a split), where the weights are equal to the relative frequencies of each feature value 

at the node. The procedure of building a complete decision tree starts from the root node and 

consists of evaluating impurity measures for the different features at each node and selecting 
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the feature to use for data splitting that has the minimum impurity (maximum information 

gain). A node is considered as a leaf if its impurity reached its minimum (zero entropy or Gini 

index, subset is homogenous, all training data points belong to the same class).  

RF performs data sampling by random replacement. Each decision tree receives a 

different dataset which has the same size as the original training dataset, however due to 

random replacements, some data points are missing whereas for others there will be duplicates 

(the so-called bootstrapped data). Furthermore, feature sampling can be done by using only a 

random subset of all features to build each decision tree. Alternatively, a different random 

subset of all features can be used at each potential splitting during the building of the different 

trees, increasing the degree of randomness in the algorithm to ensure that the resulting trees 

are different enough.  

Hyperparameters of the RF algorithm include the number of decision trees in the forest 

and the number of features considered by each tree or at each splitting. Problems related to 

imbalanced training data (i.e. the number of data points is different for the different classes), 

can be addressed at the level of data sampling to tune the ratio between the classes in the 

bootstrapped training data sets provided to the trees.  

RF also enables the determination of the individual feature importance in the 

classification. A frequently used feature importance form is the Gini importance, which is 

defined as the total decrease in node impurity measured by the Gini index weighted by the 

probability of reaching that node per tree, and averaged over all trees. The Gini importance is 

given by the formula: 

𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑋𝑚) =
1

𝑁𝑇
∑  ∑ 𝑝(𝑡)∆𝑖(𝑠𝑡, 𝑡)𝑡∈𝑇:𝑣(𝑠)𝑡=𝑋𝑚𝑇   (B.50) 

where NT is the number of trees, t denotes nodes within T where Xm is used for splitting the 

data, p(t) is the probability of reaching node t within the tree T (estimated by the proportion 

of training samples reaching node t in tree T), and v(st) is the feature used in the split of st. In 

the above equation 𝑝(𝑡)∆𝑖(𝑠𝑡, 𝑡) is the weighted impurity decrease, the weighted difference 

between the impurity of the given node and the weighted-sum of impurities of its child nodes; 

in case the Gini index is used for impurity measures, it results in the Gini importance. 

2.2. Support-vector machine 

Support-vector machine (SVM) is another very popular set of supervised ML algorithms used 

for classification and regression problems. In classification, SVM sorts data into two (or more) 

classes with the help of a hyperplane separating the different classes in some space. A 

hyperplane in a space ℝ𝑛 has a dimension of n-1, and has the form: 𝑥𝑛 = 𝛼𝑛−1𝑥𝑛−1 +

𝛼𝑛−2𝑥𝑛−2 + ⋯ + 𝛼1𝑥1 + 𝑏 ,or alternatively expressed: 

𝒘 ∙ 𝒙 + 𝑏 = 0  (B.51) 

where 𝒘 = (𝛼1, 𝛼2, … , 𝛼𝑛−2, 𝛼𝑛−1, −1) and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛), and b is some 

constant. The rule of binary classification for classes separated by a given hyperplane in some 

space can be written for a data point si as: 
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ℎ(𝒔𝑖) = {
+1 𝑖𝑓   𝒘 ∙ 𝒔𝑖 + 𝑏 ≥ 0
−1 𝑖𝑓   𝒘 ∙ 𝒔𝑖 + 𝑏 < 0

  (B.52) 

 

Figure B.7: SVM classification, the two classes are presented in green (-1) and blue (+1), the 
support vectors are shown with a dark orange contour. 

The aim of SVM is to find the optimal hyperplane in some space which best separates the 

different classes. The metrics used in the hyperplane optimization problem is called the 

geometric margin (in case of perfect linear separation, it is the size of a buffer zone around the 

hyperplane where no training data points are present), which is the smallest distance among 

the training data points from the given hyperplane. The hyperplane optimization problem can 

be formulated as finding the hyperplane (described by a w normal vector and a constant b) for 

which the geometric margin is maximum, i.e. given a training dataset 𝐷 = {(𝒔𝒊, 𝑦𝑖)|𝒔𝒊 ∈

ℝ𝑛, 𝑦𝑖 ∈ {−1,1}}
𝑖=1

𝑚
, 

(𝒘, 𝑏)𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘,𝑏

( 𝑚𝑖𝑛
𝑖=1…𝑚

𝑦𝑖

‖𝒘‖
(𝒘 ∙ 𝒔𝑖 + 𝑏))  (B.53) 

where the training set consists of data points 1…m, and each datapoint si has a corresponding 

label yi. On the training dataset, correctly classified datapoints will always have 𝑦𝑖ℎ(𝒔𝒊) > 0 

(both label and prediction are +1, or both are -1). 

Scaling a normal vector does not change the defined hyperplane, the problem can be 

reformulated by scaling w so that 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) = 1 for the closes training data point to the 

form: 

(𝒘, 𝑏)𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒘,𝑏

1

‖𝒘‖
    𝑠. 𝑡.    𝑓𝑖 = 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) ≥ 1, ∀𝑖  (B.54) 
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which is identical to the convex quadratic minimization problem: 

(𝒘, 𝑏)𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒘,𝑏

1

2
‖𝒘‖2    𝑠. 𝑡.   𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) ≥ 1, 𝑖 = 1 … 𝑚  (B.55) 

The above equations do not tolerate outliers in the training dataset while optimizing the 

hyperplane separating the two classes (given the condition  𝑓𝑖 = 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) ≥ 1, ∀𝑖, hard 

margin case) and does not work with non-perfectly linearly separable data. To overcome this 

hard constraint, the optimization problem can be adjusted by introducing slack variables (ζi). 

The slack variables can be considered as penalizing terms introduced upon the separation by a 

given plane and margin, data points which are correctly predicted and lie outside the margin 

have a penalty term of 0, data points which are predicted correctly but lie within the margin 

will have a penalty term between 0 and 1, and data points which are wrongly predicted will 

have penalty terms larger than 1, 

𝜁𝑖 ∶= {
0,                                         𝑖𝑓 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) ≥ 1

1 − 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏), 𝑖𝑓 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) < 1
  (B.56) 

The optimization problem becomes: 

(𝒘, 𝑏)𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒘,𝑏,𝜻

1

2
‖𝒘‖2 + 𝐶 ∑ 𝜁𝑖

𝑚

𝑖=1

    𝑠. 𝑡.   𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) ≥ 1 − 𝜁𝑖  𝑎𝑛𝑑 𝜁𝑖 ≥ 0, 

𝑖 = 1 … 𝑚  (B.57) 

where ζ contains the non-negative slack variables (𝜁1, … , 𝜁𝑚), and C is the so-called 

regularization parameter, which determines the degree of tolerance towards misclassification 

(C close to zero means there is almost no penalty for misclassification, C approaching positive 

infinite will not tolerate misclassification). In geometrical terms, the smaller the regularization 

parameter, the wider the margin separating the different classes at the cost of higher 

misclassification on the training set. 

The constrained optimization can be expressed with the help of a Lagrangian function 

𝐿(𝒘, 𝑏, 𝜻, 𝝀, 𝝁) ∶= 𝑓(𝒘, 𝑏, 𝜻) − 𝝀𝑇𝒈(𝒘, 𝑏, 𝜻) − 𝝁𝑇𝒉(𝒘, 𝑏, 𝜻) = 0, where 𝑓(𝒘, 𝑏, 𝜻) =
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜁𝑖

𝑚
𝑖=1  is the function to be optimized, and 𝒈𝒊(𝒘, 𝑏, 𝜻) = 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) − 1 +

𝜁𝑖 , 𝑖 = 1 … 𝑚 arising from the constraints 𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) ≥ 1 − 𝜁𝑖  and 𝒉𝑖(𝒘, 𝑏, 𝜻) = 𝜁𝑖 , 𝑖 =

1 … 𝑚 arising from the constraints 𝜁𝑖 ≥ 0, are the Lagrangian constraint functions with 

corresponding non-negative Lagrangian weights (𝜆𝑖𝑎𝑛𝑑 𝜇𝑖, 𝑖 = 1 … 𝑚). The Lagrangian 

becomes: 

𝐿(𝒘, 𝑏, 𝜻, 𝝀, 𝝁) ∶=
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜁𝑖

𝑚
𝑖=1 − ∑ 𝜆𝑖(𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) − 1 + 𝜁𝑖) − ∑ 𝜇𝑖𝜁𝑖

𝑚
𝑖=1

𝑚
𝑖=1

 (B.58) 

and to find the local minimum of the target function 𝑓(𝒘, 𝑏, 𝜻) with respect to the constraints 

imposed by 𝒈(𝒘, 𝑏, 𝜻) and 𝒉(𝒘, 𝑏, 𝜻), a stationary point of the Lagrangian has to be identified. 

At a given stationary point (𝒘∗, 𝑏∗, 𝜻∗, 𝝀∗, 𝝁∗), the gradient equals to zero, i.e. 

∇𝐿(𝒘∗, 𝑏∗, 𝜻∗, 𝝀∗, 𝝁∗) = 𝟎. The following are true at a stationary point of the Lagrangian: 
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𝜕𝐿(𝒘∗,𝑏∗,𝜻∗,𝝀∗,𝝁∗)

𝜕𝒘
= 𝒘 − ∑ 𝜆𝑖

𝑚
𝑖=1 𝑦𝑖𝒔𝑖 = 𝟎  (B.59) 

𝜕𝐿(𝒘∗,𝑏∗,𝜻∗,𝝀∗,𝝁∗)

𝜕𝑏
= − ∑ 𝜆𝑖

𝑚
𝑖=1 𝑦𝑖 = 0  (B.60) 

𝜕𝐿(𝒘∗,𝑏∗,𝜻∗,𝝀∗,𝝁∗)

𝜕𝜁𝑖
= 𝐶 − 𝜆𝑖 − 𝜇𝑖 = 0, 𝑖 = 1 … 𝑚  (B.61) 

and the following terms can be substituted in the original Lagrangian: 

𝒘 = ∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖𝒔𝑖  (B.62) 

∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖 = 0  (B.63) 

𝜇𝑖 = 𝐶 − 𝜆𝑖  (B.64) 

and we obtain the so-called dual Lagrangian: 

𝐿𝑑 =
1

2
∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒔𝑖𝒔𝑗

𝑚
𝑗=1

𝑚
𝑖=1 − 𝐶 ∑ 𝜁𝑖

𝑚
𝑖=1 − ∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒔𝑖𝒔𝑗

𝑚
𝑗=1

𝑚
𝑖=1 + ∑ 𝜆𝑖

𝑚
𝑖=1 − ∑ 𝜆𝑖𝜁𝑖

𝑚
𝑖=1 −

𝐶 ∑ 𝜁𝑖
𝑚
𝑖=1 + ∑ 𝜆𝑖𝜁𝑖

𝑚
𝑖=1   (B.65) 

and after simplification: 

𝐿𝑑(𝝀) = ∑ 𝜆𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒔𝑖𝒔𝑗

𝑚
𝑗=1

𝑚
𝑖=1   (B.66) 

such that ∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖 = 0, and as 𝜇𝑖 = 𝐶 − 𝜆𝑖 (for the non-negative Lagrange multipliers 

𝜆𝑖𝑎𝑛𝑑 𝜇𝑖 , 𝑖 = 1 … 𝑚), the following constraints also applies: 0 ≤ 𝜆𝑖 ≤ 𝐶, 𝑖 = 1 … 𝑚. Instead 

of solving the original minimization problem:  

𝑚𝑖𝑛
𝒘,𝑏,𝜻

𝑓(𝒘, 𝑏, 𝜻)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑖(𝒘, 𝑏, 𝜻) ≥ 0 𝑎𝑛𝑑 ℎ𝑖(𝒘, 𝑏, 𝜻) ≥ 0, 𝑖 = 1 … 𝑚  (B.67) 

the Wolfe dual problem of maximization can be solved to obtain the same optimum (according 

to the Kuhn-Tucker theorem): 

𝑚𝑎𝑥
𝝀

𝐿𝑑(𝝀)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖 = 0  𝑎𝑛𝑑  0 ≤ 𝜆𝑖 ≤ 𝐶,   𝑖 = 1 … 𝑚  (B.68) 

which has the final formula: 

𝑚𝑎𝑥
𝝀

∑ 𝜆𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒔𝑖

𝑇𝒔𝑗
𝑚
𝑗=1

𝑚
𝑖=1  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝜆𝑖

𝑚
𝑖=1 𝑦𝑖 = 0  𝑎𝑛𝑑  0 ≤ 𝜆𝑖 ≤ 𝐶,   𝑖 =

1 … 𝑚  (B.69) 

Support vectors are the training data points for which 𝑦𝑖(𝒘 ∙ 𝒔∗ + 𝑏) − 1 = 0, data points that 

lie on the separating margin. Using the retrieved optimal Lagrangian multipliers, the optimal 

plane is given by 𝒘 = ∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖𝒔𝑖 and knowing that 𝑦𝑖

2 = 1, ∀𝑖, the constant can be 

determined by 𝑏 = 𝑦𝑖 − 𝒘 ∙ 𝒔∗, for any s* support vector. 

The introduction of slack variables enables to work on non-perfectly linearly separable 

data (mostly due to noise). However, SVM can also often be efficiently used for problems where 

the data cannot be linearly separated in a given space due to the non-linearity present in the 

characteristics of the data. By applying the so-called kernel trick, SVM can be used as a 
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nonlinear classifier. By transforming the original data to higher dimensions using a kernel 

function, the linearly non-separable classes may become linearly separable in the new feature-

space. In the linear optimization problem using the dual Lagrangian, the optimization only 

requires the scalar products between the input samples: 𝒔𝑖
𝑇𝒔𝑗. SVM is powerful for separating 

data classes in higher dimension spaces due to this property, the individual vector projections 

are not required, only the scalar product of the different input samples in the higher dimension 

space needs to be assessed. A kernel function takes two points in the original space and returns 

their scalar product in the higher dimension space. Some of the most frequently used kernel 

functions include: 

𝑘𝑝𝑜𝑙(𝒔𝑖 , 𝒔𝑗) = (𝒔𝑖
𝑇𝒔𝑗 + 𝑟)

𝑑
, the Polynomial kernel (with r=d=0 it is the linear case) 

𝑘𝑅𝐵𝐹(𝒔𝑖, 𝒔𝑗) = 𝑒
−

1

2𝜎2‖𝒔𝑖−𝒔𝑗‖
2

, the Gaussian radial basis kernel (also called RBF for radial basis 

function) 

A given kernel function is related to the transformation Φ(𝒙), such that 𝑘(𝒔𝑖 , 𝒔𝑗) =

Φ(𝒔𝒊) ∙ Φ(𝒔𝒋). The hyper plane separating the classes and its corresponding normal-vector is 

also defined in the transformed space: 𝒘 = ∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖Φ(𝒔𝒊). By the classification of new data 

the scalar product is also computed using the kernel function, without the projection of the 

data point in the higher dimension space: 𝒘𝑇𝒙 = ∑ 𝜆𝑖
𝑚
𝑖=1 𝑦𝑖𝑘(𝒔𝑖, 𝒙). At the optimum (where 

𝜆𝑖(𝑦𝑖(𝒘 ∙ 𝒔𝑖 + 𝑏) − 1 + 𝜁𝑖) = 0, ∀𝑖), all 𝜆𝑖 equal to zero for datapoints that are not support 

vectors (they do not lie on the separating margin).In other words, only support vectors can have 

corresponding non-zero Lagrange multipliers. Therefore, once the model is trained, SVM only 

requires a minimal number of operations for the binary classification.  

The binary classification of SVM can be extended to multiclass problems by breaking 

down the multiclass problem into multiple binary classifications. Such approaches include one-

versus-all or one-versus-one type of classifiers. 

2.3. Assessment of classification models 

The quality of prediction models can be evaluated on the training dataset. However, an external 

evaluation gives a better estimate of the classification quality for new data points. For the 

external validation of a prediction model, a set of datapoints with known labels can be used 

that are not present in the training of the given model. 

2.3.1. Out-of-bag error 

Thanks to the bootstrapping used by random forest training, not all datapoints are used for the 

growing of the different trees. Each tree will have a set of out-of-bag samples from the training 

data that were not used by the given tree for the training. For each data point in the training 

set, a classification prediction can be done by majority vote of the trees which did not use the 

given data point in their training and the overall quality of the random forest model can be 

evaluated based on the predictions for the training data points. 
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2.3.2. Cross validation 

Cross validation is a more general way that can be used to evaluate prediction models (e.g. 

both for RF and SVM). Over several iterations, it uses different portions of the training data to 

train and test a model. A single round of cross validation involves the partitioning of the training 

data into two complementary subsets, training a model based on the first subset and evaluating 

the model on the second subset so that the samples used in the evaluation are not part of the 

training process. Most methods include multiple rounds of cross validation to reduce variability 

originating from the partitioning, the results of the different rounds are then combined to 

estimate the overall predictive performance.  

One such algorithm is k-fold cross validation where the original training data is randomly 

partitioned into k equal sized subsamples. For each iteration, one of the k subsamples is kept 

for validation and the other k-1 sets are used to train the model. Altogether k rounds of 

iterations are done, one for each subsample used as the validation set. The different results 

can be averaged then to obtain a single estimation. 

2.3.3. Model validation measures 

Given a set of data points for which both the label and the predicted class is known, 

different measures can be calculated to assess the predictive performance of the binary 

classification model. The data points can be divided into four groups based on their predicted 

and actual labels: 

TP  true positives that have a positive label and were correctly predicted as a hit 

TN  true negatives that have a negative label and were correctly predicted as a miss 

FP  false positives that have a negative label but were incorrectly predicted as a hit 

FN  false negatives that have a positive label but were incorrectly predicted as a miss 

Sensitivity 

The sensitivity describes the proportion of the correctly identified hits with respect to all the 

actual hits, in other words, how good the model is in finding hits among the data. It is given by 

the formula: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (B.70) 

Specificity 

Similarly, the specificity describes the proportion of the correctly identified misses with respect 

to all the actual misses, and in other words, how good the model is in finding misses among the 

data. It is given by the formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (B.71) 

  



Introduction Computational Modeling Tools 

77 

Accuracy 

To obtain an overall assessment of the model, accuracy can be calculated. The accuracy 

describes the proportion of correctly identified labels among all the data points, either by 

correctly finding a hit or a miss. It is given by the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (B.72) 

Balanced Accuracy 

In case the dataset is not well balanced (i.e. the classes are not equally represented), accuracy 

can be misleading. Instead, the Balanced Accuracy (BA) can be calculated which is defined as 

the mean of the Sensitivity and Specificity: 

𝐵𝐴 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
  (B.73) 

Matthews Correlation Coefficient 

Another effective solution to overcome class imbalance issues in the evaluation of binary 

classification is the Matthews Correlation Coefficient (MCC), which ranges between -1 (worst 

performance) and +1 (best performance), and is given by the formula:  

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁 − 𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
  (B.74) 

 





 

 

II. Objectives 

 

 

„Az iránytű pontosan megmutatja, merre van észak. Azonban mit sem tud a mocsarakról és a szakadékokról.  

Ha pedig az ember elsüllyed vagy lezuhan, mi értelme volt, hogy tudta, merre van észak?” 

“The compass shows you exactly which way is north. However, it knows nothing about swamps and ravines.  

And if you sink or fall, what was the point of knowing which way is north?” 

Náray Tamás 
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Figure.1: Flowchart of the objective: creation of machine learning models combining structure- 
and ligand-based information for the identification of substrates and inhibitors of drug 

metabolizing enzymes and drug transporters. 

Drug elimination through metabolism and excretion is a complex process that is governed by 

several metabolizing enzymes and membrane transporters as discussed in the Introduction. 

Interactions with DMEs and drug transporters are of great importance for safety treatments. 

The ADME-Tox profile of substrate drugs is influenced by such enzymes and transporters, 

whereas the modulation of their activities also influences the pharmacokinetics of other 

xenobiotic and endogenous compounds, and can evoke severe adverse drug reactions. One of 

the major reasons for drug candidate failure concerns problems related to their 

pharmacokinetics and pharmacodynamics discovered during clinical trials. In silico prediction 

of such interactions can help reduce the rate of drug candidate failure at an early drug 

development stage thereby also reducing associated costs, and can help decreasing the 

number of animal tests.  

Studies on drug metabolism have predominantly prioritized phase I DMEs, in particular 

cytochrome P450 (CYP) due to their involvement in toxic events. However, phase II DMEs also 

play an essential role in drug metabolism and are critical for drug administration safety and the 

prediction of xenobiotics toxicity. Therefore, in my PhD work I have focused on two major phase 

II DMEs, namely the sulfotransferase SULT1A1 and the UDP glucuronosyl transferase UGT1A1, 

as well as on an essential drug efflux transporter, the breast cancer resistance protein 

(ABCG2/BCRP).  

The first step towards understanding the complex mechanisms of the different ligand-

protein interactions is through revealing the dynamical behavior of the given protein and 

elucidating its functional movements. The molecular mechanisms guiding the recognition of 

the diverse substrates and inhibitors of SULT1A1 are related to the conformational flexibility of 

the enzyme which needs to be elucidated. Little is known about the dynamic behavior of the 
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coordination between the cofactor- and the substrate-binding domains of UGT1A1 related to 

the catalyzed enzymatic reaction. Similarly, very little structural information is available for 

ABCG2 about the large conformational transitions that are the driving forces for the substrate 

translocation of the transporter. Therefore, the primary goal of the current PhD work has been 

to decipher the functional movements encoded in the above-listed proteins with the help of 

different simulation approaches. Furthermore, my objective has been to identify the effects of 

ligand binding on the dynamics and the functional collective movements of the different 

proteins.  

Using the conformational ensembles generated by the different simulation approaches 

and the dynamic information extracted from them, the second main objective of my PhD work 

has been to elucidate the interactions of known active compounds, substrates and inhibitors, 

with the target proteins, and investigate their binding affinities and binding modes within the 

substrate binding cavities. Both SULT1A1 and UGT1A1 possess a wide ligand specificity range 

and for future predictions of inhibition, it is crucial to unravel the molecular mechanisms 

accounting for their promiscuity. In addition, ABCG2 must guide its substrates along a path to 

reach the extracellular space, and I aimed at identifying the mechanism underlying the 

substrate translocation, and reveal substrate interactions in the second substrate-binding 

cavity.  

Ultimately, the final objective of my thesis work has been to build in silico predictive 

classification models capable of distinguishing between active and inactive compounds by 

integrating protein structure-based and machine learning methodologies. In the framework of 

the present thesis the construction and application of such models is demonstrated for the 

enzyme UGT1A1. 

 





 

 

 

III. Results 

 

 

„Te jól tudod, a költő sose lódit: az igazat mondd, ne csak a valódit, 

a fényt, amelytől világlik agyunk, hisz egymás nélkül sötétben vagyunk.” 

“You know this well: the poet never lies, The real is not enough; through its disguise 

Tell us the truth which fills the mind with light, Because, without each other, all is night.” 

József Attila (translated by Vernon Watkins) 
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A. SULT1A1 

Sulfation is one of the major conjugating pathways responsible for the detoxification and 

subsequent elimination of xenobiotic and endogenous small molecules. Cytosolic sulfation 

reactions are catalyzed by sulfotransferases (SULTs), the expression of the different SULT 

enzymes occurs almost in every organ in humans. The isoform SULT1A1 (also known as the 

thermostable phenol sulfotransferase) has the broadest substrate specificity within the SULT 

superfamily, and it displays an extensive tissue distribution.  

The following chapter on the substrate binding mechanism of SULT1A1 investigates the 

functional movements of the enzyme in its monomer form bound to the enzymatically active 

cofactor (PAPS) and its interactions with a set of known SULT1A1 ligands.  

Different simulation approaches are used to thoroughly explore the conformational 

states of the enzyme, with special emphasis on the substrate-binding pocket and the gate that 

governs the access to the catalytic site formed by three mobile loop regions. Classical MD and 

an enhanced MD simulation tool, which incorporates collective movements described by low 

frequency normal modes (Molecular Dynamics with excited Normal Modes), are performed to 

compare their corresponding capacity to explore large functional changes in the enzyme and 

to generate conformational ensembles with large diversity for consequent ensemble docking 

simulations.  

The binding modes of the numerous ligands are evaluated in the conformations of the 

two ensembles generated by classical and enhanced MD simulations to identify binding modes 

and corresponding protein conformations that form favorable complexes. The affinity of the 

generated conformations towards different sized ligands is further tested with a 

comprehensive comparison of the binding of a medium sized and a large substrate, estradiol 

and fulvestrant. The stability of the predicted binding modes is investigated using classical MD 

simulations on the complexes. The ultimate goal of selecting a smaller set of diverse enzyme 

conformations that can accommodate the structurally very different ligands with high affinity 

is to use information on protein-ligand interactions for activity prediction of drugs, drug 

candidate molecules, and other xenobiotics. 
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Abstract 

Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the 

sulfoconjugation from the co-factor 3′-Phosphoadenosine 5′-Phosphosulfate (PAPS) to a 

substrate. It has been previously suggested that a considerable shift of SULT structure caused 

by PAPS binding could control the capability of SULT to bind large substrates. We employed 

molecular dynamics (MD) simulations and the recently developed approach of MD with excited 

Normal Modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse 

substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational 

space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. 

The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on 

substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on 

binding of the substrates estradiol and fulvestrant demonstrated that large conformational 

changes of the PAPS-bound SULT1A1 could occur independently on the co-factor movements 

that could be sufficient to accommodate large substrates as fulvestrant. Such structural 

displacements detected by the MDeNM simulations in the presence of the co-factor suggest 

that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the 

utility of including MDeNM in protein-ligand interactions studies where major rearrangements 

are expected. 
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1. Introduction 

Drug metabolizing enzymes (DMEs) play a key role in the metabolism of endogenous molecules 

and the detoxification of xenobiotics and drugs (Sun and Scott, 2010, Testa et al., 2012, 

Shimada, 2006). Phase I metabolism includes hydrolysis, reduction, and oxidation reactions, 

while Phase II comprises mainly glucuronidation, sulfation, methylation, and glutathione 

conjugation reactions (Pratt and Taylor, 1990). Sulfotransferases (SULTs) and UDP-

glucuronosyltransferases are responsible for most of the Phase II reactions in the body, with 

the conjugation of approximately 40 % of all drugs (Tibbs et al., 2015). SULTs catalyze the 

sulfoconjugation from the co-factor 3′-Phosphoadenosine 5′-Phosphosulfate (PAPS) to a 

substrate hydroxyl or amino group (Dong et al., 2012, Gamage et al., 2006, Bojarova and 

Williams, 2008, Chapman et al., 2004). DMEs are highly promiscuous, and the relations of their 

structural plasticity and substrate promiscuity have been widely studied (Tibbs et al., 2015, 

Martiny et al., 2013, Allali-Hassani et al., 2007, Sun and Scott, 2010, Louet et al., 2018, Martiny 

and Miteva, 2013, Dong et al., 2012, Gamage et al., 2005, Guengerich et al., 2019, Srejber et 

al., 2018, Martiny et al., 2015). SULTs show a broad substrate range, metabolizing a wide variety 

of endogenous compounds like steroids and polysaccharide chains, and participating in the 

bioactivation of a number of xenobiotics and drugs (Gamage et al., 2006).  

 

Figure A.1: Crystal structure of SULT1A1*1, PDB ID: 4GRA. PAP of 4GRA was replaced by PAPS 
which was retrieved from the structure of SULT1E1 (PDB ID: 1HY3 containing PAPS) and 

inserted on the same position as that of the nucleotide in 4GRA; it is shown in sticks. 

The molecular bases of substrate specificity, selectivity, and inhibition across different SULT 

isoforms, have been previously addressed (Dajani et al., 1998, Lee et al., 2003, Wang et al., 

2017, Cook et al., 2016, Cook et al., 2015a, Cook et al., 2013b, Cook et al., 2013a, Zhu et al., 

2019, Martiny et al., 2013, Rakers et al., 2016, Allali-Hassani et al., 2007). These specificities 

have proven to be complex as relationships between SULTs pocket characteristics and 

substrate shape have shown not to be direct, since pocket shape and size have the potential to 
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fluctuate upon substrate binding (Cook et al., 2015a). Structural displacements can alter the 

substrate-binding profiles, thus guide enzyme-substrate interactions. It has been demonstrated 

that the binding of PAPS causes a considerable shift in the PAPS binding domain of SULT, moving 

a strongly conserved 30-residue active site “Cap”, which covers both the nucleotide co-factor 

and the substrate-binding site, towards “closure” (Figure A.1). This large movement, called 

“gating”, was suggested to participate in an isomerization equilibrium rate controlling the 

potential of SULT to bind larger substrates (Cook et al., 2013a, Zhu et al., 2019, Cook et al., 

2015a, Wang et al., 2016). However, sulfonation data for SULT2A1/raloxifene strikingly 

revealed that the enzyme was still capable of turnover (Cook et al., 2012) with approximately 

5% of SULT2A1 remaining in its open state even at saturating levels of PAPS (Cook et al., 2013a, 

Tibbs et al., 2015). These data demonstrate that the gating mechanism may not be dependent 

only on the co-factor binding and that the mechanism of substrate recognition and selectivity 

should be further elucidated. 

Molecular Dynamics (MD) simulations (Mortier et al., 2015) and more recent Normal 

Mode Analysis approaches (Moroy et al., 2015, Pantaleao et al., 2018) have become major 

techniques in the arsenal of tools developed to investigate the mode of action of bioactive 

molecules. A recent approach called MDeNM (Molecular Dynamics with excited Normal 

Modes) has recently been developed using low-frequency normal mode directions in MD 

simulations (Costa et al., 2015). This approach considers many different linear combinations of 

NM vectors, each used in an independent MD simulation in which the corresponding collective 

motion is kinetically excited. Therefore, a wide variety of large movements can be promoted 

straightforwardly, which would be costly by standard MD simulations. So far MDeNM has been 

used successfully to study large functional movements in several biological systems (Fagnen et 

al., 2020, Gomes et al., 2020, Dudas et al., 2020, Dudas et al., 2021). 

In this study, we focused on SULT1A1 (Gamage et al., 2003), which is the most abundant 

SULT in the human liver. The SULT1A1 enzyme is widely distributed throughout the body, with 

a high abundance in organs such as the liver, lung, platelets, kidney, and gastrointestinal tissues 

(Hempel et al., 2007). Human SULT1A1 exhibits a broad substrate range with specificity for 

small phenolic compounds, including the drugs acetaminophen and minoxidil, and pro-

carcinogens such as N-hydroxy-aromatic and heterocyclicaryl amines (Gamage et al., 2006). To 

elucidate the gating mechanism guiding the recognition of diverse substrates, in this work, we 

employed the recently developed original approach of MDeNM (Costa et al., 2015) to explore 

an extended conformational space of the PAPS-bound SULT1A1 (SULT1A1/PAPS), which has not 

been achieved up to now by using classical MD simulations (Cook et al., 2016, Cook et al., 

2015a, Cook et al., 2013b, Cook et al., 2013a, Zhu et al., 2019). The investigation of the 

generated ensembles combined with the docking of 132 SULT1A1 substrates and inhibitors 

shed new light on the substrate recognition and inhibitor binding mechanisms. The performed 

MD and MDeNM simulations of SULT1A1/PAPS as well as MD and docking simulations with the 

substrates estradiol and fulvestrant, previously suggested to undergo different binding 

mechanisms (Cook et al., 2013a), demonstrated that large conformational changes of the PAPS-
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bound SULT1A1 can occur. Such conformational changes could be sufficient to accommodate 

large substrates, e.g. fulvestrant, independently of the co-factor movements. Indeed, such 

structural displacements were successfully detected by the MDeNM simulations and suggest 

that a wider range of drugs could be recognized by PAPS-bound SULT1A1. 

2. Results and Discussion 

MDeNM simulations enable an extended sampling of the conformational space by running 

multiple short MD simulations during which motions described by a subset of low-frequency 

Normal Modes are kinetically excited (Costa et al., 2015). Thus, MDeNM simulations of 

SULT1A1/PAPS would allow detecting “open”-like conformations of SULT1A1, previously 

generated by MD simulations performed in the absence of its bound co-factor PAP(S) (Wang et 

al., 2017, Cook et al., 2013b, Zhu et al., 2019, Cook et al., 2013a). PAPS was included in the co-

factor binding site of SULT1A1 (see Materials and Methods for details) and maintained bound 

to SULT1A1 in all our simulations, since it was demonstrated that the co-factor is required for 

the correct folding of the substrate-binding site. Previous crystal structures of co-factor-free 

SULT have shown significant unfolding of the key loop L3 (FIGURE A.1) covering the co-factor 

and substrate binding sites (Allali-Hassani et al., 2007). Here, the conformational sampling of 

SULT1A1/PAPS was performed by running: i) three 200 ns long MD simulations with different 

initial velocity distributions and ii) the previously developed efficient simulation method, 

MDeNM (Costa et al., 2015) - with 240 replicas - that combines Normal Mode Analysis (NMA) 

and Molecular Dynamics. MDeNM performs several simultaneous MD simulations during which 

motions along different randomized linear combinations of the most relevant low-frequency 

normal modes are promoted in the form of a velocity increment. The starting crystallographic 

coordinates for SULT1A1*1 were taken from the Protein Data Bank (Berman et al., 2000), PDB 

ID 4GRA (Cook et al., 2013a), containing the co-factor PAP. We replaced PAP with PAPS required 

for the sulfonation catalytic activity of SULT1A1. No substrates/inhibitors were included in the 

MD and MDeNM simulations to avoid possible ligand-induced biases of the SULT1A1/PAPS 

structure. The total simulation time was 600 ns for the MD and 48 ns for the MDeNM 

simulations (see the Methods for details). 
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Figure A.2: The Root Mean Square Deviation (RMSD) with respect to the crystal structure PDB 
ID: 4GRA of the MD (in orange) and MDeNM (in purple) generated structures of SULT1A in the 

presence of the PAPS. A. calculated on the binding pocket heavy atoms (the residues of the 
binding pocket are given in the Supporting Information and B. on the backbone of the whole 
protein; C. Root Mean Square Fluctuation (RMSF) of Cα  atoms per amino acid residue (AA) in 

the MD (orange) and MDeNM (purple) conformational ensembles. 

2.1. Structural analysis of the MD and MDeNM generated conformational ensembles 

In order to identify similarities and differences in the conformational ensembles generated by 

the MD and MDeNM simulations, the Root Mean Square Deviation (RMSD) of the binding 

pocket (its residues are listed in the SI) was calculated with respect to the crystal structure 

(FIGURE A.2A). The MD conformations distribution covers an RMSD range between 0.75 Å and 

1.75 Å with a clear peak around 1.2 Å with respect to the binding pocket of the starting crystal 

structure. The MDeNM conformations distribution of the binding pocket is more dispersed, 

even reaching conformations with a binding pocket deviating up to 2.25 Å from the crystal 

structure. Particularly, the region corresponding to RMSD values above 1.45 Å is more 

populated by MDeNM. The RMSD distribution of the whole protein backbone, calculated for 

the MDeNM conformations, showed a peak closer to the starting structure than that of the 

conformations generated by MD (FIGURE A.2B). However, the MDeNM simulations also 

generated conformations that deviate more from the crystal structure than those observed by 

MD, up to 1.5 Å. Larger deviations in the case of our MDeNM simulations originate from 

significant global movements of the protein. Larger deviations hence imply a more exhaustive 
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conformational sampling, especially for the binding pocket. Our results suggest that MDeNM 

performed a more exhaustive conformational sampling of the SULT1A1 binding pocket while 

maintaining the protein’s overall structure closer to the starting structure. 

The Root Mean Square Fluctuation (RMSF) of the Cα atoms was calculated to identify 

flexible protein regions of functional importance (FIGURE A.2C). Significant differences are 

visible at the gate (formed by loops L1, L2, and L3) of the binding pocket of SULT1A1 between 

conformational ensembles generated by the two methods. MDeNM particularly magnifies 

motions related to L1 (residues 83-91) and L3 (residues 241-255) and moderately related to L2 

(residues 141-158). The fluctuation amplitude of the residues P87 and E246 at the tip of L1 and 

L3, respectively, is double in the case of MDeNM, indicating that MDeNM explores the gating 

motions to a greater extent. The Cap L3 has been suggested to play a key role in the gating 

mechanism of SULT1A1 (Cook et al., 2013a) and SULT2A1 (Cook et al., 2012, Zhu et al., 2019), 

fluctuating between a closed and an open isomer depending on the nucleotide-binding. L1 (also 

known as the “Lip” (Cook et al., 2015b)) demonstrates a larger fluctuation than L3 by both MD 

and MDeNM, implying its involvement in the gating mechanism. Obviously, here the presence 

of PAPS stabilizes L3, which is known to be completely unfolded in the absence of bound co-

factor (Allali-Hassani et al., 2007). Although the RMSF of both MD and MDeNM demonstrates 

the flexibility of L1, L2 and L3, larger movements of L1 and L3 are observed by the MDeNM 

simulations than by the MD.  

The Cα atoms of residues P87, V148, and F247 representing each loop at their tip were 

selected to follow the relative motions and the gating mechanism of the three loops at the 

entrance to the binding pocket. Two distances, namely d(L1,L2) and d(L1,L3), were monitored 

corresponding to the distances d(P87Cα,V148Cα) and d(P87Cα,F247Cα) (see FIGURE A.1). The 

distribution of all generated conformations along these two distances can be seen in Fig. 3.  
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Figure A.3: (A) Distribution of the d(L1,L2) and d(L1,L3) distances corresponding to the MD 
generated conformations; (B) Distribution corresponding to the MDeNM generated 

conformations; (C) Corresponding normalized distribution densities for the MD conformations 
and (D) for the MDeNM conformations. The available crystal structures (denoted by blue ‘x’-

es) are plotted into the maps of (C) and (D); The location of the crystal structure (4GRA.pdb) is 
shown in yellow ‘x’. 

Conformations reached by MD (FIGURE A.3A) exhibit a strong positive correlation (the 

correlation being 0.86) between d(L1,L2) and d(L1,L3), restricting thus the opening of the gate 

to occur along both distances at the same time. Interestingly, there are two dense regions in 

the MD conformations distribution, one lying close to the initial conformation (4GRA.pdb) 

denoted by yellow ‘x’, and another one corresponding to a more closed state. MD did not 

explore conformations having d(L1,L3) greater than 11.5 Å. The MDeNM distribution (FIGURE 

A.3B) is more widely spread and less restricted by the d(L1,L2) and d(L1,L3) correlation (the 

correlation being 0.40). MDeNM reaches conformations with the d(L1,L3) distance 3 Å beyond 

MD, up to 14.5 Å, corresponding to more widely open conformations, whereas MD maps 

densely populated tightly closed states. Both MD and MDeNM covered and reached far beyond 

the gate positions of L1, L2, and L3 - both in the closing and the opening directions - of 

experimentally available conformations (the apo-forms of SULT1A1*1 and SULT1A1*2 without 
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bound ligand PDB IDs 4GRA and 3U3J, respectively; the holo-forms of SULT1A1*2 with bound 

ligand PDB IDs: 1LS6, 2D06, 3U3M, 3U3O, 3U3R, 3U3K; and two ancestral variant b9 PDB IDs: 

3QVU, 3QVV) (see FIGURE A.3C and D), which exhibit a very conserved overall structure with 

slight differences in their gate opening, the RMSD difference calculated on the Cα-s of the 

whole protein between any two experimental structures being less than 0.51 Å. The observed 

correlation between d(L1,L2) and d(L1,L3) in addition to the high RMSF values at L1, and visual 

inspection further confirmed the significant movements of L1 by the opening-closing of the 

gate, underlining the functional importance of L1 by SULT1A1 as proposed in the work of Rakers 

et al. for SULT 1E1 (Rakers et al., 2016). 

2.2. Ensemble docking of SULT1A1 substrates and inhibitors 

The docking of 132 previously known substrates or inhibitors (collected in our previous work 

(Martiny et al., 2013) and (Paitz and Bowden, 2013, Cook et al., 2012)) was performed into the 

binding pocket of the conformations collected by MD and MDeNM to gain insight into the 

mechanism of SULT1A1-ligand interactions.  

 

Figure A.4: (A) The lowest binding energy (BE) per ligand resulting from the docking of the set 
of 132 known ligands to the ensemble of representative structures after clustering of 

SULT1A1/PAPS obtained from the MD (denoted by orange squares) and MDeNM (denoted by 
purple stars) simulations. (B) Differences between the best BEs retained for the MD and 

MDeNM conformations; for the better visualization, only differences larger than 0.5 kcal/mol 
are indicated. 

First, both the MD and MDeNM generated conformations were clustered based on their 

binding pocket (see the list of residues in SI) to obtain a smaller, representative set of 

conformations to be used for the docking of all the ligands (see Methods for details). We 

performed docking on 94 MD and 86 MDeNM centroid SULT1A1/PAPS conformations. For each 

docking simulation, the best Binding Energy (BE) was retained. As different ligands can be 
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accommodated in different binding pocket arrangements, for each ligand the best BE over the 

set of conformations have been taken; the results are plotted in FIGURE A.4A. Many ligands 

expressed similar docking behavior into the MD and MDeNM set of conformations, the average 

of the BEs over all the ligands being -9.33 kcal/mol and -9.49 kcal/mol, while the worst BE being 

-6.4 kcal/mol and -6.6 kcal/mol for MD and MDeNM, respectively. For some ligands, however, 

considerable differences were observed (see FIGURE A.4B). Most of these compounds (17 out 

of the 21) showing a difference greater than 0.5 kcal/mol) showed a more favorable BE when 

docked to the MDeNM set of conformations, demonstrating the benefit of including the 

MDeNM simulations in addition to MD. We compared the predicted and experimental binding 

energies reported in the literature for several SULT1A1 ligands (see in SI Table S1 and Figure 

S1). Predicted binding energies (BE) were calculated by averaging the best scored Autodock 

Vina energies in the best 10 MD conformations and in the best 10 MDeNM conformations. The 

comparison between the experimental free binding energies and the scores calculated with 

Autodock Vina can be only qualitative, yet a correlation with a correlation coefficient R2 of 0.56 

was obtained. Interestingly, the Vina scores distinguished between the low-affinity substrate 

p-nitrophenol with experimental BE of -5.76 kcal/mol (Lu et al., 2009) and the other higher 

affinity ligands. 

To characterize the binding poses of the substrates, a criterion of having their acceptor 

hydroxyl or primary amino functional group in the vicinity of the sulfate group of the co-factor 

PAPS and the catalytic residue H108 was imposed. Docking positions and the corresponding BE 

of substrates with the d(O,S) or d(N,S) distance greater than 5 Å were rejected, and the best BE 

satisfying the distance criterion was taken (see in SI Figure S2). For 22 out of the 26 compounds 

showing a difference greater than 0.5 kcal/mol with the applied distance criterion, docking into 

the MDeNM conformations outperformed the MD ones. The assessment of ligands for which 

there was a significant difference between MD and MDeNM (greater than 1 kcal/mol) revealed 

that most of the compounds for which MDeNM performed better were of big size, occupying 

a large volume in the binding pocket, and their poses corresponding to the best BE were 

accommodated within widely open SULT1A1/PAPS conformations. These conformations were 

either not generated or poorly populated by the MD simulations (see in SI Figure S3).  

2.3. Implication of substrate binding and SULT1A1 flexibility for gating mechanism 

elucidation  

To further investigate the gating mechanism and substrate recognition of SULT1A1, we 

additionally analyzed the docking of two estrogens, the substrates 17β-estradiol (E2) and 

fulvestrant, previously suggested to be accommodated via different mechanisms depending on 

the co-factor induced isomerization (Cook et al., 2013a). E2 is a smaller, medium-sized 

substrate of SULT1A1 that contains a phenolic-hydroxyl group at the C3, and a hydroxyl group 

at the 17β position.  Fulvestrant is an estrogen analogue, a larger substrate of SULT1A1, with 

an additional 15-atom long functional sidechain at the C7 position. E2 and fulvestrant were 

both docked into 6000 structures generated by MD and 6000 other structures generated by 

MDeNM (they were taken every 100 ps during MD and after every second relaxation phase in 
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MDeNM, respectively). The docking poses of both E2 and fulvestrant were considered 

acceptable on a given enzyme conformation if the BE was lower than -5 kcal/mol (more 

favorable binding energy) and the distance between the PAPS sulfate and the ligand’s 

nucleophilic hydroxyl oxygen was less than 5 Å. Although it has been shown that the formation 

of fulvestrant-3-sulfate/estradiol-3-sulfate is preferable, it is also possible that low levels of 

fulvestrant-17-sulfate/estradiol-17-sulfate are produced (Edavana et al., 2011). The 

distribution of conformations capable of accommodating E2 and fulvestrant, along the formerly 

defined distances d(L1,L2) and d(L1,L3), is shown in FIGURE A.5.  

 

Figure A.5: Distribution within the space defined by d(L1,L2) and d(L1,L3) distances for (A) the 
MD generated structures, (B) MD structures capable of accommodating competent E2 

orientations, (C) MD structures capable of accommodating competent fulvestrant 
orientations; (D) the MDeNM generated structures, (E) MDeNM structures capable of 

accommodating competent E2 orientations, and (F) MDeNM structures capable of 
accommodating competent fulvestrant orientations. Conformations showing a BE stronger 

than -5 kcal/mol are indicated in black points and those showing a BE stronger than -10 
kcal/mol are indicated in blue ‘x’-es on parts B, C, E, and F. The initial crystal structure 

(4GRA.pdb) is shown in yellow ‘x’. 

MD and MDeNM conformations were capable of accommodating E2, regardless of their 

openness (FIGURE A.5B and E), which agrees with previous kinetic and binding studies showing 

that E2 can bind to open and closed conformations of SULT1A1 (Cook et al., 2013b). The 

analysis of the conformations showing the strongest BEs (having a BE to estradiol lower than -

10 kcal/mol; denoted by blue ‘x’) further indicates that the extremely closed state is mostly 

unfavorable even for estradiol binding. This is in line with the fact that E2 is a medium-size 

substrate of SULT1A1. Fulvestrant showed, even more, an obvious preference towards open 
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conformations. Similarly to MD, as mentioned above, the opening along d(L1,L2) and d(L1,L3) 

is restricted by the high correlation between them; hence opening along both distances is 

required for fulvestrant to dock (FIGURE A.5C). MDeNM results reveal, however, that the 

opening along d(L1,L3) rather than d(L1,L2) is essential for fulvestrant (FIGURE A.5F). Analysis of 

the best docking results of fulvestrant (having a BE lower than -10 kcal/mol; denoted by blue 

‘x’) further confirmed that only conformations with a great d(L1,L3) distance are favorable for 

fulvestrant docking. MDeNM simulations were capable of generating widely open 

conformations accessible for fulvestrant, 3 Å along d(L1,L3) beyond MD conformations. Both 

MD and MDeNM results confirm that, open conformations are still available for big ligands to 

bind even with the co-factor bound.  

 

Figure A.6: Free Energy Landscapes (FELs) in the space defined by the distances d(L1,L2) and 
d(L1,L3) of (A) the MD generated structures, (B) MD structures capable of accommodating 

competent E2 orientations, (C) MD structures capable of accommodating competent 
fulvestrant orientations; (D) the MDeNM generated structures, (E) MDeNM structures capable 

of accommodating competent E2 orientations, and (F) MDeNM structures capable of 
accommodating competent fulvestrant orientations. The initial crystal structure (4GRA.pdb) is 

denoted by yellow ‘+’. 
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Figure A.7: A favorable docking position of E2 in an MDeNM generated conformation  
(in white) superposed to the crystal structure of SULT1A1*2 co-crystalized with E2  

(PDB 2D06 in cyan). 

The distribution of conformations shown in FIGURE A.5 were also transformed in Free Energy 

Landscapes (FEL) according to Equation A.1 (see Materials and Methods) and are shown in 

FIGURE A.6. Interestingly, most of the conformations capable of accommodating competent E2 

and fulvestrant are of low free energies. An example of a favorable position of E2 docked into 

an MDeNM generated conformation (FIGURE A.7) illustrates the excellent superposition to the 

bioactive conformation of E2 in the structure of SULT1A1*2 co-crystallized with E2. FIGURE A.8 

shows competent docking positions of fulvestrant in three MD and three MDeNM generated 

conformations. Their comparison with the crystal structure of apo SULT1A1*1 (PDB ID 4GRA) 

demonstrates the utility of using MDeNM simulations, suggesting a larger opening of the pore 

than observed by the MD simulations and facilitating thus the accommodation of large 

substrates as fulvestrant. 

 

Figure A.8: Favorable docking positions of fulvestrant in A. three MD and B. three MDeNM 
generated conformations. The apo crystal structure of SULT1A1*1 (4GRA.pdb) is shown in 

salmon for reference. 
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Further MD simulations were performed for SULT1A1/PAPS bound to a substrate. The best-

docked structures for the two substrates E2 and fulvestrant, having the best docking scores and 

competent positions, were chosen as starting structures for the additional MD simulations. Two 

docked positions of E2 were chosen, one in an MD - and one in an MDeNM - generated 

conformations (shown in FIGURE A.7). For the fulvestrant, three and three starting positions 

were chosen out of the MD- and MDeNM - generated conformations, respectively (shown in 

FIGURE A.8). In 7 out of the 8 MD simulations, the substrate remained in a stable position 

keeping a distance between the hydroxyl group of the ligand and the sulfate group of PAPS 

within 5 Å. The unstable fulvestrant-bound complex, starting from an MDeNM conformation, 

had a significantly different initial substrate orientation compared to the co-crystallized 

structure of E2 (see in SI Figure S4F model 2). The binding energies of the two substrates and 

SULT1A1/PAPS calculated with Autodock Vina scoring function for the complexes’ structures 

before, and after the 100 ns MD simulations are shown in SI Table S2. It is seen that after all 

MD simulations with a bound substrate, the predicted binding energies for E2 and fulvestrant 

(SI Table S2) are closer to the experimental ones (SI Table S1) as compared to the energies 

calculated after docking only (SI Table S2). 

To compare the MD simulations with and without bound substrates, the FELs were 

calculated with respect to the distances d(L1,L2) and d(L1,L3) (see FIGURE A.6 and SI Figure S4). 

The energetically most stable states of the MD simulations with a bound substrate correspond 

in all cases to conformations that are more open than the crystal structure 4GRA.pdb, both for 

E2 and fulvestrant. Interestingly, both MD and, to a greater extent, MDeNM were able to 

generate open conformations starting from the apo-state (without a bound ligand) (FIGURE A.6), 

corresponding to these energetically stable MD states in the presence of a bound substrate. 

Except for the one unstable MD simulation in the presence of fulvestrant as discussed above, 

both MD simulations with estradiol, and the other five MD simulations with fulvestrant show 

the induced further opening of the loops in the presence of a bound substrate. 

These results are in agreement with previous indications that SULT undergoes a large 

opening to accommodate very large SULT substrates such as fulvestrant, 4-hydroxytamoxifen, 

or raloxifene (Cook et al., 2013a, Daniels and Kadlubar, 2013, Falany et al., 2006). However, we 

should note that the above discussed open SULT1A1/PAPS structures were generated in the 

presence of PAPS in our case. Thus, our simulations do not entirely support the assumption 

that recognition of large substrates is dependent on a co-factor isomerization as proposed in 

(Cook et al., 2013a, Zhu et al., 2019). Furthermore, allosteric binding was previously proposed 

to occur for some inhibitors in one part of the large cavity, assuring the substrates' access close 

to the co-factor (Coughtrie and Johnston, 2001). Previous studies suggested that inhibitors like 

catechins (naturally occurring flavonols) (Coughtrie and Johnston, 2001) or epigallocatechin 

gallate (EGCG) (Cook et al., 2015a) might inhibit SULT1A1 allosterically close to that cavity. 

Detailed analysis of our MDeNM results on the flexibility of this large cavity area – constituted 

by the active site and the pore (also called the catechin-binding site (Cook et al., 2016)), 

sometimes accommodating a second inhibitor molecule (e.g.  p-Nitrophenol, see PDB ID 1LS6 
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(Gamage et al., 2003)) – showed that some L1 and L3 conformations (e.g. seen in FIGURE A.8B) 

ensure sufficient opening of the pore to accommodate large inhibitors like EGCG, and thus such 

binding into the pore (Cook et al., 2016, Cook et al., 2015a) might not be considered as 

allosteric. 

3. Conclusion 

In this study, we employed MD simulations and the recently developed MDeNM approach to 

elucidate the molecular mechanisms guiding the recognition of diverse substrates and 

inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-

bound SULT1A1, which has not been achieved by using classical MD. Our simulations and 

analyses on the binding of the substrates estradiol and fulvestrant demonstrated that large 

conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-

factor movements. We argue that the flexibility of SULT1A1 ensured by loops L1, L2, and L3 in 

the presence of the co-factor is extremely high and may be sufficient for significant structural 

displacements for large ligands, substrates, or inhibitors. Such mechanisms can ensure the 

substrate recognition and the SULT specificity for various ligands larger than expected, as 

exemplified here with fulvestrant. Altogether, our observations shed new light on the complex 

mechanisms of substrate specificity and inhibition of SULT, which play a key role in the 

xenobiotics and Phase II drug metabolism (Testa et al., 2012, Bojarova and Williams, 2008).  In 

this direction, the results obtained using the MDeNM simulations were valuable and 

highlighted the utility of including MDeNM in protein-ligand interactions studies where major 

rearrangements are expected. 

4. Materials and Methods 

4.1. Protein structures preparation  

Some studies indicate that the SULTs are half-site reactive enzymes, and when the nucleotide 

is bound at only one subunit of the SULT dimer, the “Cap” of that subunit will spend most of its 

time in the “closed” conformation (Wang et al., 2016). Although the dimer interface is adjacent 

both to the PAPS binding domain and the active site “Cap” of the SULTs in some X-ray structures 

(e.g. PDB ID 2D06 , SULT1A1 co-crystallized with PAP and E2), suggesting that the interaction 

between the two subunits may play a role in the enzyme activity, SULT monomers retain their 

activity in vitro (Cook et al., 2015a). Furthermore, in other X-ray structures, a different dimer 

binding site is observed (e.g. PDB ID 2Z5F, SULT1B1 co-crystallized with PAP).  Previously, 

identical behaviors were observed when simulations were performed with monomers or 

dimers constructed using the canonical interface (Cook et al., 2013a). Here, all simulations were 

performed using monomer structures. 

Several crystal structures of SULT1A1 are available in the Protein Data Bank 

(www.rcsb.org). The only available structure of SULT1A1*1 containing R213 and M223 without 

bound ligand was selected, PDB ID: 4GRA (Cook et al., 2013a). The co-factor PAP present in the 

4GRA structure was replaced by PAPS. The PAPS structure was taken of SULT1E1 (PDB ID: 1HY3 

(Pedersen et al., 2002)) and superposed to PAP in 4GRA.pdb by overlapping their common 
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heavy atoms; the differing sulfate group of PAPS did not cause any steric clashes with the 

protein. The pKa values of the protein titratable groups were calculated with PROPKA 

(Sondergaard et al., 2011), and the protonation states were assigned at pH 7.0. PAPS 

parameters were determined by using the CHARMM General Force Field 2.2.0 (CGenFF) 

(Vanommeslaeghe et al., 2010). The partial charges of PAPS were optimized using quantum 

molecular geometry optimization simulation (QM Gaussian optimization, ESP charge 

routine(Frisch et al., 2016)) with the b3lyp DFT exchange correlation functional using the 6-

311+g(d,p) basis set. 

A rectangular box of TIP3 water molecules with 14 Å in all directions from the protein 

surface (82 Å x 82 Å x 82 Å) was generated with CHARMM-GUI (Jo et al., 2008, Lee et al., 2016), 

and the NaCl concentration was set to 0.15 M, randomly placing the ions in the unit cell. The 

solvated system was energy minimized with progressively decreasing harmonic restraints 

applied to atomic positions: steepest descent (SD) was first used where the harmonic force 

constant was decreased every 100 steps adopting the values 50, 10, 1, and 0.1 kcal/mol/Å2. The 

system was further minimized without harmonic restraints by performing successive cycles of 

SD and Adopted Basis Newton-Raphson (ABNR) minimizations till a tolerance of RMS energy 

gradient of 0.01 kcal/mol/Å was reached. The minimization was performed with CHARMM 

(Brooks et al., 2009) using the additive all-atom CHARMM force field C36m (Huang and 

MacKerell, 2013). The system was then heated and equilibrated at 300 K for 100 ps in an NVT 

ensemble followed by a 5 ns NPT run at 1 atm pressure. The equilibration was performed with 

NAMD (Phillips et al., 2020) using the additive all-atom CHARMM force field C36m(Huang and 

MacKerell, 2013). For constant temperature control Langevin dynamics was used with a 

damping coefficient of 1 ps-1. The constant pressure was achieved by using Nose-Hoover 

method with a piston oscillation period of 50 fs, and a piston oscillation decay time of 25 fs. 

The integration time step was set to 2 fs. For the energy calculations, the dielectric constant 

was set to 1. The particle mesh Ewald (PME) method was used to calculate the electrostatic 

interactions with a grid spacing of 1 Å or less having the order of 6. The real space summation 

was truncated at 12.0 Å, and the width of Gaussian distribution was set to 0.34 Å-1. Van der 

Waals interactions were reduced to zero by ‘switch’ truncation operating between 10.0 and 

12.0 Å. 

4.2. MD simulations 

MD simulations were carried out with NAMD (Phillips et al., 2020) using the all-atom CHARMM 

force field C36m (Huang and MacKerell, 2013). Three parallel 200 ns long MD simulations were 

performed for SULT1A1/PAPS without bound ligand starting from the equilibrated structure, 

with random velocities assigned according to the Maxwell-Boltzmann distribution at 300 K. A 

time step of 2 fs was used, with the coordinates saved every 10 ps. The parameters for the 200 

ns runs were identical to those used for the previously described NPT equilibration of 5 ns. 

Additional 8 MD simulations of 100 ns were performed for SULT1A1/PAPS in the presence of a 

bound substrate (E2 and fulvestrant) starting from different substrate positions. The 
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parameters of E2 and fulvestrant were determined by CGenFF. The same MD protocol was then 

applied as detailed above for SULT1A1/PAPS without bound substrate. 

4.3. MDeNM simulations 

MDeNM simulations and analyses were performed with CHARMM (Brooks et al., 2009) using 

the all-atom CHARMM force field C36m (Huang and MacKerell, 2013). Starting from the same 

equilibrated SULT1A1 structure in solution as for the MD simulations, the MDeNM approach 

was used to map its conformational surface(Costa et al., 2015) thoroughly. The equilibrated 

structure was first energy minimized to calculate the normal modes. For energy minimization, 

we first used the steepest descent (SD) method with harmonic restraining potentials applied to 

atomic positions whose force constant were decreased from 10, 1, 0.1, and 0 kcal/mol/Å2 every 

500 steps. It was followed by the Adopted Basis Newton-Raphson minimization to reach an 

RMS energy gradient of 10-5 kcal/mol/Å. The normal modes of the energy minimized structure 

were calculated using the VIBRAN module of CHARMM (Woodcock et al., 2008). For the 

MDeNM calculations, the three low-frequency normal modes contributing the most to the 

highest RMSF of atomic displacements were taken. 

Then, random linear combinations of these modes were generated such that the RMSDs 

between 1 Å displaced structures along these combined NM directions were greater than 0.3 

Å. This provided the directions for unbiased coverage of the large-scale conformational space 

of the protein. In total, 240 different directions were created. For each of them, MD simulations 

were performed within which the motion described by the combined NM vector was kinetically 

promoted; this was achieved by adding to the current MD velocities an additional velocity in 

the direction of the NM combined vector corresponding to an overall 2 K increase of the 

system’s temperature. As the excitation energy rapidly dissipates in less than 1 ps, a series of 

50 consecutive excitations were achieved after every 4 ps of the MD simulation to allow the 

system to evolve and relax. Thus, the total MDeNM simulation time was 240 x 50 x 4ps = 48ns. 

The other MD parameters were the same as the given ones in the previous paragraph on “MD 

simulations”. 

4.4. Clustering 

The Quality Threshold (QT) algorithm (Heyer et al., 1999) as implemented in VMD (Humphrey 

et al., 1996) was applied to perform conformational clustering of the MD generated 

conformations. A distance function defined as the RMSD difference calculated for the heavy 

atoms of the binding pocket (see in SI for its definition) was used with the maximum cluster 

diameter set to 1.1 Å. The centers of the 94 most populated clusters containing 85 % of all the 

conformations were then used to dock known substrates and inhibitors of SULT1A1. In the case 

of the MDeNM generated conformations, the population of clusters is biased due to the 

common starting structure for each replica and the applied RMSD filtering upon the generation 

of the excitation directions. A pseudo-uniform selection from all the MDeNM generated 

conformations was applied with a spacing of 1.1 Å in the RMSD space defined by residues within 

the binding pocket to create a representative set. A total of 86 structures were retrieved and 

used for the docking of known substrates and inhibitors of SULT1A1. 
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4.5. Docking 

Docking experiments were performed with AutoDock Vina 1.1.2 (Trott and Olson, 2010) that 

employs gradient-based conformational docking and an empirical scoring function predicting 

the protein-ligand binding energy in kcal/mol. A list of 132 known substrates and inhibitors of 

SULT1A1 were taken, collected in our previous work (Martiny et al., 2013) and (Paitz and 

Bowden, 2013, Cook et al., 2012). The protein conformations selected for docking were pre-

processed with AutoDockTools (Morris et al., 2009), the solvent was removed, non-polar 

hydrogens were merged, and Gasteiger charges were assigned. The ligands were prepared for 

the docking using AutoDockTools. A grid box of 24 Å x 24 Å x 24 Å was centered on the binding 

pocket with a spacing of 1 Å. The grid center was set to x = 27.050 Å; y = 17.520 Å; z = 17.653 

Å with respect to the crystal structure 4GRA.pdb. The maximum number of binding modes was 

set to 20, the exhaustiveness of the global search to 10, the maximum energy difference 

between the retained best and worst binding modes to 15 kcal/mol. During the docking, the 

ligands and the binding site residues K106 and F247 observed to change their side-chain 

conformations easily during the MD and MDeNM simulations were handled flexibly; the rest of 

the protein and the co-factor were kept rigid. 

4.6. Free Energy Landscape (FEL) analysis  

FELs of conformations corresponding to the different MD and MDeNM simulations were 

calculated within the plane defined by the distances d(L1,L2) and d(L1,L3). The most populated 

state was used as a reference for calculating free energy differences. The free energy difference 

(ΔGα) of a given state α was determined by considering the probability of the occurrence of the 

two states P(qα) and Pmax(q) given by the equation: 

∆𝐺𝛼 = −𝑘𝐵𝑇𝑙𝑛 [
𝑃(𝑞𝛼)

𝑃𝑚𝑎𝑥(𝑞)
]  (A.1) 

where kB is the Boltzmann constant, T is the temperature of the simulation, P(qα) is an estimate 

of the probability density function obtained from the bi-dimensional histogram of the 

conformations distribution in the plane of d(L1,L2) and d(L1,L3) during the simulation. Pmax(q) 

is the probability of the most populated state. 
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B. UGT1A1 

The primary sugar conjugation route in humans is glucuronidation (conjugation with 

α-D-glucuronic acid). Besides sulfonation, glucuronidation is the other major phase II reaction 

type in humans, the reaction is catalyzed by uridine 5’-diphosphate-glucuronosyltransferases 

(UGTs). The formation of glucuronide metabolites is quantitatively the most important form of 

conjugation for drugs as well as endogenous compounds. The isoenzyme UGT1A1 is of 

particular importance considering its broad substrate specificity and exclusive role in the 

glucuronidation, and therefore the detoxification of the endogenous heme breakdown by-

product, bilirubin. 

The following chapter on the prediction of UDP-glucuronosyltransferase inhibition 

introduces the combination of ligand- and structure-based information to train machine 

learning classification models. In 2013, the host laboratory was the first to integrate ligand- and 

structure-based information for the prediction of DME inhibition. The first models were trained 

by Martiny et al. on the SULT isoforms 1A1, 1A3, and 1E1, and at the same time by Cook et al. 

for the isoforms 1A1 and 2A1. As part of my PhD work, the first machine learning prediction 

models of UGT inhibition are presented next.  

The flexibility of the cofactor-bound (UDP-glucuronic acid) UGT1A1 is addressed by 

performing classical MD simulations on a homology model of the human enzyme. The 

generated conformational ensemble is used for ensemble docking simulations after 

conformational clustering. An original selection of the most important UGT1A1 conformations 

and ligand-based descriptors in terms of their ability to discriminate between actives and 

decoys is performed. The predicted binding affinities are combined with the selected ligand-

based descriptors and classification models are trained on active and decoy compounds using 

different supervised machine learning classification approaches. Hyper-parameter 

optimization of the models is performed including the determination of the most relevant 

descriptors to be used. The optimized models are implemented in the DrugME software 

developed in our lab (the author of the thesis is co-author of the DrugME software under 

Inserm license) that can be helpful for the prediction of drug-drug interactions of new drug 

candidates. 
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Abstract 

UDP-glucuronosyltransferases (UGTs) are responsible for 35% of the phase II drug metabolism. 

In this study, we focused on UGT1A1, which is a key UGT isoform. Strong inhibition of UGT1A1 

may trigger adverse drug/herb-drug interactions, or result in disorders of endobiotic 

metabolism. Most of the current machine learning methods predicting inhibition of drug 

metabolizing enzymes neglect protein structure and dynamics, both being essential for the 

recognition of various substrates and inhibitors. We performed molecular dynamics 

simulations on a homology model of the human UGT1A1 structure containing both the 

cofactor- (UDP-glucuronic acid) and the substrate-binding domains to explore UGT 

conformational changes. Then, we created models for the prediction of UGT1A1 inhibitors by 

integrating information on UGT1A1 structure and dynamics, interactions with diverse ligands, 

and machine learning. These models can be helpful for further prediction of drug-drug 

interactions of drug candidates and safety treatments. 

 

Keywords: UDP-glucuronosyltransferase, UGT, drug metabolizing enzymes, machine learning, 

molecular dynamics  
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1. Introduction 

Drug metabolizing enzymes (DMEs) are involved in the metabolism of endogenous molecules, 

xenobiotics, and drugs (Testa et al., 2012). They play a key role in the detoxification of 

organisms by modifying toxic substances and drugs to facilitate their elimination (Rowland et 

al., 2013, Grant, 1991). In some cases, the metabolites are more toxic, thereby inducing severe 

side effects and adverse drug reactions (Shimada, 2006), or their inhibition can lead to drug–

drug interactions (DDI) (Prueksaritanont et al., 2013). While phase I drug metabolism (or 

functionalization) involves mainly oxidation-reduction reactions, phase II metabolism (or 

conjugation) reactions catalyze the covalent addition of polar groups like sulfate, glutathione, 

glucuronic acid, or others to a broad range of substrates (Testa et al., 2012, Almazroo et al., 

2017). Numerous compounds (e.g. bilirubin, steroids, paracetamol, etc.) are conjugated 

directly by phase II enzymes without a preceding phase I reaction (Testa et al., 2012, Kaivosaari 

et al., 2011). Although conjugation reactions generally create water-soluble and inactive 

metabolites, reactive conjugated metabolites have also been reported (Osborne et al., 1992, 

Bauer et al., 1995, Shimada, 2006).  

 

Figure B.1: Homology model of the human UGT1A1 (Locuson et al.) bound to the cofactor 
UDPGA containing both the cofactor-binding (in white) and the substrate-binding (in cyan) 

domains. The cofactor and key enzymatic residues are in licorice representation. 

Uridine-Diphosphate (UDP)-glucuronosyl transferase (UGT) metabolism accounts for up to 

35 % of all phase II DME reactions (Testa et al., 2012). UGT is a superfamily of phase II DMEs 

catalyzing the covalent addition of glucuronic acid to a wide range of substrates (Oda et al., 

2015, Rowland et al., 2013) in the lumen of the endoplasmic reticulum (Meech and Mackenzie, 

1997). Most human UGTs are physiologically highly expressed in the liver but are also present 

in other tissues like the intestine, the kidneys, the stomach, and the lungs (Ohno and Nakajin, 

2009). Based on evolutionary divergence, mammalian UGTs can be divided into two families, 

UGT1 and UGT2. Human enzymes belonging to the UGT1 family all share an identical C-terminal 

domain which is responsible for the binding of the cofactor uridine-diphosphate glucuronic acid 

(UDPGA) and contains a Rossmann fold motif; and a characteristic N-terminal domain, 

containing highly variable regions, which is responsible for the substrate binding and accounts 
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for the selectivity of the different isoenzymes (FIGURE B.1) (Miners and Mackenzie, 1991, Tukey 

and Strassburg, 2000, Ritter et al., 1992). UGTs exhibit distinct but overlapping substrate 

specificity, and multiple UGT isoforms can be co-expressed in a given tissue (Court, 2005). The 

isoenzyme UGT1A1 is of particular importance accounting for 15 % of all UGT drug metabolism 

(Williams et al., 2004). It also plays an exclusive role in glucuronidation and, therefore, the 

detoxification of the endogenous heme breakdown by-product, bilirubin (Bosma, 2003).  

Strong UGT1A1 inhibition may trigger adverse drug/herb-drug interactions, or can 

result in metabolic disorders of the endobiotic metabolism (Lv et al., 2019, Li et al., 2019, Liu et 

al., 2019). Numerous drugs, including virus protease inhibitors, tyrosine kinase inhibitors, and 

antifungal agents, have been reported to induce unconjugated hyperbilirubinemia or increase 

the concentration of cytotoxic agents through UGT1A1 inhibition in clinic (Steventon, 2020, Lv 

et al., 2019, Goon et al., 2016). Therefore, the European Medicines Agency (EMA) and the 

United States Food and Drug Administration (FDA) recommend testing for possible UGT1A1 

inhibitor status over the course of drug development (Lv et al., 2019, Prueksaritanont et al., 

2013) to avoid possible DDI.  

Here, we focus on the prediction of inhibitors of UGT1A1. The prediction of DMEs 

inhibition is a challenging task (Kato, 2020) due to their promiscuous nature. Thus, it is 

important to consider protein structure and dynamics of DMEs, both being essential for the 

recognition of the various substrates and inhibitors. Structural information is also important to 

understand the molecular mechanism of the UGT catalyzed glucuronidation and its inhibition 

in all their complexity. Up to now, no experimental structures of the UGT1 family have been 

resolved. There are two crystal structures available only for the cofactor-binding domain of 

UGT2B7 (Miley et al., 2007) and UGT2B15 (Zhang et al., 2020). Multiple homology models of 

the human UGT1A1 have been published using the former structure together with plant and 

bacterial homologs (Locuson and Tracy, 2007, Li and Wu, 2007, Laakkonen and Finel, 2010). 

We have exploited such information to build prediction models of UGT inhibition using 

structure-based, and machine learning (ML) approaches. Previously, we have developed similar 

models to predict the inhibition of cytochrome P450 (Martiny et al., 2015, Goldwaser et al., 

2022) and phase II sulfotransferases (Martiny et al., 2013). Machine learning approaches have 

become fundamental in all stages of drug discovery and development (Mao et al., 2021, 

Carracedo-Reboredo et al., 2021). During the last decade, several ML models have been 

developed to predict the site of metabolism for UGT-catalyzed reactions (Hwang et al., 2020, 

Peng et al., 2014, Cai et al., 2019, Sorich et al., 2008, Sorich et al., 2004). To the best of our 

knowledge, no predictive models have been reported to date for UGT inhibition. 

In the present study, we integrated structural and ligand-based information in different 

machine learning approaches to generate predictive models of UGT inhibition. We ran 

molecular dynamics simulations on the human UGT1A1 structure containing both the cofactor- 

and the substrate-binding domains to consider conformational changes in its active site, critical 

for the accommodation of the diverse substrates and inhibitors, and performed docking 

simulations with a collection of experimentally validated UGT1A1 ligands to gain information 



Results  UGT1A1 

110 

on enzyme-inhibitor interactions. We performed a rational selection of ligand-based 

descriptors and successfully trained ML models for the prediction of UGT1A1 inhibitors with 

around 90 % accuracy. 

2. Results and Discussion 

Our study combines structure-based modeling and machine learning to build models for 

predicting UGT1A1 inhibition. The workflow is shown in FIGURE B.2. For the dataset preparation, 

we collected known ligands of UGT1A1, inhibitors and substrates, from the ChEMBL, DrugBank, 

and PubChem databases. We performed curation of the collected compounds (see Method 

Details) and finally, 89 actives (listed in the Supplemental Information (SI) and 450 decoys were 

retained for docking and ML datasets. Approximately 5 times more decoys than actives were 

used due to the lack of experimentally validated inactive molecules in the dataset. The training 

and external test sets were constructed by randomly dividing both the final actives and decoys, 

according to a ratio of 70 % and 30 %, respectively. 

 

Figure B.2: Workflow of the models’ development including datasets preparation, UGT1A1 
homology modeling, molecular dynamics simulations, docking-scoring and machine learning 

to train different models for the prediction of UGT1A1 inhibitors. 

We performed MD simulations of UGT1A1 to address its conformational flexibility and the large 

substrate spectrum of the enzyme. The homology model of UGT1A1 with the bound cofactor 

UDPGA built by Locuson et al. (Locuson and Tracy, 2007) was used as a starting structure for 

our MD simulations. Selected MD conformations were used for a subsequent ensemble docking 

step with the active UGT1A1 ligands. Finally, ML models were created to predict molecules 

inhibiting UGT1A1, incorporating interactions with six UGT1A1 conformations selected after 

the ensemble docking. 
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2.1. Molecular dynamics simulations 

To address the degree of structural flexibility and the conformational adaptation of the binding 

pocket in light of the structural variety of the active compounds, we performed three 100-ns 

long MD simulations in the presence of the cofactor. Root Mean Square Deviation (RMSD) was 

calculated over time with respect to the starting structure to monitor conformational evolution 

(FIGURE B.3A).  

 

Figure B.3: Monitored parameters during the three 100-ns long MD simulations. (A) Root 
Mean Square Deviation (RMSD) of the backbone atoms with respect to the starting structure. 

(B) Radius of gyration (Rgyr). (C) the volume of the substrate binding pocket. 
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All three runs quickly diverted from the initial conformation reaching relatively high differences 

(up to 9 Å). The radius of gyration was calculated to examine further the behavior of the enzyme 

dynamics (FIGURE B.3B). Alteration in the radius of gyration generally corresponds to the overall 

changes in compactness. For the first MD run, we observed variations as high as 2.5 Å, which, 

together with a visual inspection of the trajectory, revealed larger interdomain opening-closing 

motions (dissociation/approaching of the domain tips). To further investigate the underlying 

conformational changes, especially focusing on the catalytically important pocket regions, we 

monitored the variations in the substrate-binding pocket volume (FIGURE B.3C, for its definition, 

see the list of residues in SI. In some conformations, its volume reached 1.5 to 2 times the size 

of the starting structure. The large variations in the substrate-binding pocket volume and the 

opening towards the lumen can facilitate access to the catalytic site and accommodate the 

diverse substrates. RMSD-based clustering of the MD trajectories enabled the extraction of 57 

enzyme conformations with diverse binding pockets (see Method Details). 

2.2. Ensemble docking and MD-derived structures best retrieving the UGT1A1 binders 

In order to select the protein conformations best distinguishing between active and inactive 

compounds, we performed virtual screening of the active and decoy molecules of the training 

set using docking-scoring with AutoDock Vina (Trott and Olson, 2010) into the 57 centroid 

conformations of UGT1A1. Enrichment curves representing the percentage of actives retrieved 

at a percentage of screened actives and decoys were calculated by retaining the best score of 

interaction energies (IE) computed by docking-scoring for each compound in each protein 

conformation. The area under the receiver operating characteristic curve (AUC) revealed six 

best UGT1A1 conformations (see SI Figure S1): MD6, MD7, MD47, MD52, MD53, and MD54. 

The computed IE scores for these six UGT1A1 conformations were then used as protein-ligand 

interactions-based descriptors for the ML modeling. 

 

Figure B.4: The orientations of key enzymatic residues in the homologous plant flavonoid 3-O-
glycosyltransferase (in green) and the six UGT1A1 conformations used in the ML models 
(cofactor-binding domains in white, substrate-binding domains in cyan). Residue labels 

belonging to the UGT1A1 conformations are underlined while labels corresponding to the 
plant homologue are not. 
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Interestingly, we found that even though there is a large flexibility of the substrate binding-

pocket, in these six conformations, key residues for the catalytic reaction remained less flexible, 

and kept their orientation within the binding pocket. A key element of the enzymatic reaction 

of UGT1A1 is the deprotonation of the substrate by residue H39 for a nucleophilic attack (Li 

and Wu, 2007, Miley et al., 2007, Patana et al., 2008). This histidine, together with other 

catalytic residues, S38 and F153 (Offen et al., 2006), kept their backbone part rigid while their 

sidechains showed rotational flexibility, which enables some degree of freedom to adapt to the 

binding of the different ligands while maintaining the necessary catalytic configuration (FIGURE 

B.4). The position and orientation of these catalytic residues are very similar to what is found 

in the plant flavonoid 3-O-glycosyltransferase VvGT1 (PDB ID: 2C9Z) (Offen et al., 2006), where 

the corresponding residues are H20, S18, and F121, respectively. Other regions, especially loop 

segments at the entrance and the edge of the substrate-binding pocket, show considerable 

fluctuation among the 6 conformations, including residues 34-39, 99-109, 175-210, and 307-

316 (FIGURE B.5). The flexibility of these loops also promotes the admission and the 

accommodation of the diverse ligands and further emphasizes the importance of considering 

enzyme dynamics in docking experiments, and therefore, in enzyme inhibition prediction 

studies.  

 

Figure B.5: Flexible loop regions of the six MD conformations of UGT1A1 at the entrance and 
the edge of the substrate-binding pocket, residues 34-39 (in red), 99-109 (in blue), 175-210 (in 
green), and 307-316 (in purple). The cofactor-binding domain is in white, the substrate-binding 

domain in cyan, the cofactor is in licorice representation. 

2.3. Descriptor calculation and machine learning modeling 

Then, we developed classification ML models for the prediction of UGT1A1 inhibitors. 

Physicochemical molecular descriptors of the training set’s molecules were calculated using the 

MOE software . Initially, we calculated 354 2D and 3D MOE descriptors. Highly correlated 

descriptors with an absolute value of the Pearson correlation coefficient greater than or equal 
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to 0.85 and descriptors with near null variance were removed. This selection resulted in a total 

of 162 descriptors. The IE scores of the compounds of the training set calculated for the six 

selected UGT1A1 conformations were added as structure-based descriptors accounting for the 

protein-ligand interactions. To avoid overfitting and decrease the calculation time, we selected 

the best descriptors based on their relative importance in predicting the interaction with 

UGT1A1.  

The selection comprised of building a number of Random Forest (RF) models on the 

training dataset and selecting the subset of descriptors with the highest Gini importance 

(Kantardzic, 2019). The Gini impurity index is a measure of the probability of incorrectly 

classifying a randomly selected element in a dataset. Thus, we performed 1000 RF runs with 

the 162 MOE and 6 IE descriptors with the default values of ntree, mtry, and sampsize (SI Table 

S1) to calculate the mean importance of the 168 descriptors, according to the diminution of 

the Gini criterion (see Method Details and SI Figure S2). The first 25 descriptors (including 4 IEs) 

were most important for the model performance (see SI Table S2). Then, the importance 

decreased slowly, and we decided to consider all the descriptors showing an importance 

greater than 0.5, including thus a total of 56 MOE and the 6 IEs.  

The most important descriptors are related to polarity, lipophilicity, and charges. 

Principal component analysis (PCA) was performed on the 56 best MOE descriptors, and the 

training and the external test sets are shown in the subspace spanned by the first two PCs in 

FIGURE B.6. Overall, the training and test sets’ compounds covered similar chemical space. Thus, 

our models are applicable within a domain given by the “soft” drug-like filter thresholds (see 

Method Details). Interestingly, even though our negative dataset contains decoys instead of 

real non-inhibitors, FIGURE B.6C shows that an important part of the actives is in different 

chemical space. 
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Figure B.6: Chemical space of the training and external test sets as described by the principal 
component analysis (PCA). The first two components, Dim 1 and Dim 2, and their 

representation in % of the total variance are indicated. A) PCA of the actives of training vs. test 
sets. B) PCA of the decoys of training vs. test sets. C) PCA of all actives vs. decoys. 

2.4. Performance of the ML models in predicting binders of UGT1A1 

Firstly, we created initial RF and Support Vector Machine (SVM) models using only MOE 

descriptors without parameter optimization. These preliminary RF and SVM models showed 

unsatisfactory performance (shown in SI Tables S3 and S4), in particular in terms of sensitivity 

(between 50% and 67% on the cross-validation (CV). Taking into account that our non-inhibitor 

molecules are decoys, the sensitivity performance is the most reliable assessment evaluation. 
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Due to the strong imbalance in our dataset between the number of active molecules and 

decoys, the optimization of hyper parameters (see SI Figure S3 and Method Details), including 

sample size and weight for RF and SVM, respectively, is critical to build robust predictive 

models. 

Next, we built RF and SVM models: i) with the 168 descriptors, including 6 IEs; ii) with 

the best 62 descriptors, including 6 IEs, by optimizing the hyper parameters (see in Method 

Details and SI Figure S3 and Table S1). Cross-validation was applied for the RF and SVM 

modeling. The performances of the best RF and SVM models created and applied on the 

training and external validation test sets are summarized in TABLE B.1 and TABLE B.2, 

respectively. The area under the receiver operating characteristic curve (AUC), balanced 

accuracy (BA), sensitivity, specificity and Matthew’s correlation coefficient were calculated. The 

AUC and BA values showed that all the RF and SVM models have excellent predictive powers 

for the discrimination of the UGT1A1 active molecules. The RF model with ‘56 MOE + 6 IE’ 

descriptors showed better sensitivity on the cross-validation compared to the sensitivity of the 

‘162 MOE + 6 IE’ model. 

Table B.1: Performances of the optimized RF models with MOE and IE descriptors on the 
training set (cross-validation CV) and the external validation test set. 

Descriptors Dataset AUC % BA % Sensitivity % Specificity % MCC % 

56 MOE + 6 IE 
Internal CV 91.2 91.3 91.1 91.4 74.5 

External 93.7 93.7 92.6 94.8 81.8 

162 MOE + 6 IE 
Internal CV 90.6 90.2 88.0 92.4 74.1 

External 94.4 94.4 92.6 96.3 85.3 

 

Table B.2: Performances of the optimized SVM models with MOE and IE descriptors on the 
training set (cross-validation CV) and the external validation test set. 

Descriptors Dataset AUC % BA % Sensitivity % Specificity % MCC % 

56 MOE + 6 IE 
Internal CV 91.3 91.0 90.2 91.8 74.3 

External 90.7 90.7 88.9 92.5 74.5 

162 MOE + 6 IE 
Internal CV 90.2 88.9 88.1 89.7 68.7 

External 92.6 92.6 92.6 92.5 77.1 

 

Similarly, the SVM models showed excellent performance, and the SVM model with ‘56 MOE + 

6 IE’ descriptors showed improved sensitivity and MCC on the cross-validation compared to 

those of the ‘162 MOE + 6 IE’ model. Thus, our rational selection of the best 62 descriptors 

using the Gini index slightly improves the performance of the predictive models by diminishing 

the noise of the less discriminating descriptors; moreover, it also decreases the computational 

prediction time. The performance on the external test set was excellent, slightly better than 

the internal CV performance. Although the diversity was ensured between the molecules of the 
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training and the external test sets with a maximal chemical similarity of 0.80, the better 

performance on the external dataset may be due to the random choice of the molecules for 

the external set. Some over-performances on external datasets have also been observed in 

other ML modeling studies (Green et al., 2021, Goldwaser et al., 2022). 

2.5. Binding positions of UGT1A1 ligands 

Various small and bulky compounds are known to be metabolized by UGT1A1. The predicted 

binding positions of three different substrates of UGT1A1 as docked into the MD47 structure 

are shown in FIGURE B.7. Bilirubin was present in our training set. Quercetin and raloxifene, 

being in the external test sets, were successfully predicted to be binders of UGT1A1 by the two 

RF and the two SVM models, ‘56 MOE + 6 IE’ and ‘162 MOE + 6 IE’. The poses were selected 

based on the best predicted IEs among the six different UGT1A1 MD conformations. The top 

scored poses of quercetin (IE = -8.0 kcal/mol), raloxifene (IE = -10.2 kcal/mol), and bilirubin (IE 

= -10.0 kcal/mol) are shown in FIGURE B.7.  

Interestingly, the binding pose of quercetin corresponds to that of the crystal structure 

of quercetin bound to the plant flavonoid 3-O-glycosyltransferase VvGT1 (PDB IDs 2C9Z) (Offen 

et al., 2006). Based on the docking pose, we predicted that the binding of quercetin to UGT1A1 

involves hydrogen bonds with H39 and S38, and aromatic interactions with F153, as in the 

crystal structure 2C9Z (H20, S18, F121). Similarly, raloxifene (its 6-O-glucuronidation site) (Guo 

et al., 2022) is in hydrogen bonding with H39 and S38 and in aromatic interactions with F153 in 

UGT1A1.  

In the predicted pose of bilirubin, the two carboxylic groups that should be metabolized 

are in hydrogen bonding with the cofactor sugar group and the catalytic H39, respectively. The 

(-CH2-)2 side chain of the first propionic group is in hydrophobic contact with F153. The second 

propionic group is in an intramolecular hydrogen bonding, as in the solution structure of 

bilirubin (Nogales and Lightner, 1995), and similarly to bilirubin bound to other proteins (e.g. 

see in PDB structures IDs: 4I3D , 2VUE). V109 stabilizes the pyrrole group, and the two pyrroline 

cycles are stabilized by L175 and F181, and by P194 and F217, respectively. The docking pose 

of bilirubin suggests that it adopts a conformation similar to its structure in solution (Nogales 

and Lightner, 1995). 
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Figure B.7: Docking conformations of three substrates of UGT1A1 docked into MD47 (in 
cartoon, cofactor-binding domain in white, substrate-binding domain in cyan); UDPGA and key 

residues are shown in cyan sticks.  A) The top scored pose of quercetin is shown in salmon 
stick. UDP and quercetin of the PDB structure of the homologous plant flavonoid 3-O-

glycosyltransferase  (2C9Z) are shown in yellow sticks.  B) The top scored pose of raloxifene (in 
salmon stick). C) The top scored pose of bilirubin (in salmon stick). 

To further investigate the predicted binding modes of raloxifene, bilirubin, and quercetin, 

additional 50-ns long MD simulations were performed starting from the docking complexes 

shown in FIGURE B.7. In the case of raloxifene, its 6-O-glucuronidation site remained in close 

contact with the catalytic S38, its benzothiophene part maintained a stable contact with F153 

while its piperidine tail displayed more flexibility. At the beginning of the dynamics the 

piperidine tail of raloxifene tightly covered the cofactor whereas with time, it lifted slightly in 

direction of a sub-pocket of Q107, P194, F181 and F217 (see SI Figure S4A). Bilirubin also 

remained in the vicinity of F153 throughout the simulation maintaining their hydrophobic 

contacts. One of the carboxylic groups kept its orientation towards the sugar ring of the 

cofactor even though their distance slightly increased. Bilirubin also showed a similar 

movement towards this sub-pocket being in contacts with F181 and F217. Interestingly, the 
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above discussed configuration of bilirubin within the substrate-binding pocket, similar to what 

was observed in solution and bound to other proteins, was preserved throughout the entire 

simulation despite the large flexibility capability of bilirubin (see SI Figure S4B). Quercetin 

stayed in a stable position during the first 15 ns, primarily stabilized by the aromatic interactions 

with F153, after which it started shifting into the same sub-pocket of F181 and F217, distancing 

itself from the catalytic site (see SI Figure S4C).  

3. Conclusions 

In this study, we integrated structure-based modeling and machine learning techniques to build 

the first prediction models of UGT1A1 inhibition. We performed molecular dynamics 

simulations of the enzyme in the presence of the cofactor to gain insight into the structural 

variability of the catalytic site. We observed large conformational variability, which is crucial for 

accommodating the diverse substrates and inhibitors. RMSD-based clustering of the MD 

trajectories enabled us to extract a set of diverse enzyme conformations. Ensemble docking of 

experimentally validated active compounds and decoys identified 6 enzyme conformations that 

can efficiently differentiate between active and non-active compounds.  

We found that while loop regions in the substrate-binding cavity exhibit large flexibility, 

the catalytically essential residues maintain their relative positions among the identified 

conformations. The docking of quercetin suggested that its catalytic pose within the substrate-

binding pocket matches that experimentally found for the plant flavonoid 3-O-

glycosyltransferase VvGT1 but quercetin moved a lot during the MD simulations. Bilirubin was 

stabilized by a hydrogen bond of one of its carboxylic groups that should be metabolized with 

the cofactor sugar group and hydrophobic contacts with F153.  

We found that the contacts of the glucuronidation site of raloxifene with the catalytic 

residue S38, as well as its hydrophobic contacts with F153, remained stable during the 

simulations. The MD simulations with bound substrates suggested an additional sub-pocket in 

the area of F181 and F217 that could also be important for the wide substrate recognition and 

binding. Finally, we created ML models using RF and SVM techniques, integrating a rational 

selection of ligand-based descriptors together with information on the enzyme-ligand 

interactions.  

The excellent performance of around 90 % accuracy and sensitivity obtained with the 

selected 56 MOE and 6 IE descriptors suggests that our models can be employed to identify 

new UGT1A1 inhibitors. To the best of our knowledge, the ML models reported here are the 

first for predicting UGT inhibition. They can be helpful for further prediction of drug-drug 

interactions of new drug candidates and safety treatments while also providing structural 

information on the enzyme-ligand interactions. 
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4. STAR Methods 

4.1. Key Resources Table 

Table B.3 

 
REAGENT or RESOURCE 

 

 
SOURCE 

 

 
IDENTIFIER 

 

Deposited data 

ChEMBL database 
ChEMBL Database - EMBL-
EBI  

https://www.ebi.ac.uk  

DrugBank database 
OMx Personal Health 
Analytic 

https://go.drugbank.com 

PubChem database 
National Center for 
Biotechnology Information 

https://pubchem.ncbi.nlm.nih
.gov 

Maybridge® HitFinder™ 

chemical library 
ThermoFisher Sci. http://www.maybridge.com 

Software and algorithms 

CHARMM 
Chemistry at HARvard 
Macromolecular 
Mechanics  

https://www.charmm.org 

CHARMM-GUI Lehigh University  
https://www.charmm-
gui.org/ 

NAMD 
Scalable Molecular 
Dynamics, University of 
Illinois 

https://www.ks.uiuc.edu/Res
earch/namd/ 

VMD v.1.3.9 
Visual Molecular 
Dynamics, University of 
Illinois 

http://www.ks.uiuc.edu  
 

PropKa On-line 
Alessandro Pedretti & 
Giulio Vistoli 

https://www.ddl.unimi.it  
 

AutoDockTools v.1.5.6 
The Scripps Research 
Institute, CCSB 

https://autodock.scripps.edu/ 

AutoDock Vina 1.1.2 
The Scripps Research 
Institute, CCSB 

https://vina.scripps.edu/ 

Pipeline Pilot - BIOVIA - 
Dassault Systèmes®, v.20.1 

Discngine 
https://www.3ds.com › 
 

CORINA Classic v.4.3 Molecular Networks  
www.mn-am.com 
 

MOE  
Chemical Computing 
Group 

https://www.chemcomp.com 

FAF-Drugs4 server RPBS platform 
https://fafdrugs4.rpbs.univ-
paris-diderot.fr/ 

R software v.3.5 
The R Project for Statistical 
Computing 

https://www.r-project.org 
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4.2. Detailed Methods 

4.2.1. Protein structure preparation 

The homology model of Locuson et al. (Locuson and Tracy, 2007) of the human UGT1A1 bound 

to the cofactor UDPGA was used as starting structure. UDPGA parameters were determined 

using CHARMM General Force Field (CGenFF) 2.5 (Vanommeslaeghe et al., 2010). The pKa 

values of the protein titratable groups were calculated with PROPKA (Sondergaard et al., 2011), 

and the protonation states were assigned at pH 7.0. The structure was solvated by CHARMM-

GUI (Jo et al., 2008, Lee et al., 2016), and placed in a rectangular water box of TIP3 water 

molecules extending 15 Å in all directions from the protein surface (120 Å x 120 Å x 120 Å); the 

NaCl concentration was set to 0.15 M. The system was energy minimized using the steepest 

descent (SD) algorithm with harmonic restraints applied to the heavy atoms decreasing every 

100 steps and adapting the values 50, 10, 1, and 0.1 kcal/mol/Å2. Further minimization was 

performed without harmonic restraints in the form of successive cycles of SD and Adopted Basis 

Newton-Raphson (ABNR) minimizations until an RMS energy gradient tolerance of 0.01 

kcal/mol/Å was met. Energy minimization was performed with CHARMM using the additive all-

atom CHARMM force field C36m (Huang and MacKerell, 2013).  

4.2.2. Molecular dynamics simulations 

The system was equilibrated at 300 K for 100 ps in an NVT, then for 5 ns in an NpT ensemble at 

1 atm pressure. Equilibration was performed with NAMD (Phillips et al., 2020) with the same 

force field, C36m. Langevin dynamics was used with a damping coefficient of 1 ps-1 for the 

constant temperature control. The Nose-Hoover method was used for the constant pressure 

control, with a piston oscillation period of 50 ps and a piston oscillation decay of 25 fs. The 

integration time step was 1 fs. The dielectric constant was set to 1 for energy evaluation. The 

particle mesh Ewald (PME) method was used to calculate electrostatic interactions with a grid 

spacing of 1 Å or less, having the order of 6. The real space summation was truncated at 12.0 

Å, and the width of the Gaussian distribution was set to 0.34 Å-1. Van der Waals interactions 

were reduced to zero by ‘switch’ truncation operating between 10.0 and 12.0 Å. 

MD production runs were performed with NAMD. Three parallel 100-ns long MD 

simulations were run for the cofactor-bound UGT1A1 starting from the equilibrated 

conformation, with different random initial velocity distributions according to the Maxwell-

Boltzmann distribution at 300 K. The integration time step was 2 fs; other parameters were 

identical to the 5 ns NpT equilibration run. The coordinates were saved every 5 ps, generating 

a total of 60 000 conformations.  

Additional 50-ns long MD simulations were performed of the cofactor-bound UGT1A1 

in the presence of different substrates, bilirubin, quercetin, and raloxifene, starting from the 

complexes retrieved from the docking simulations. The parameters of the substrates were 

determined by CGenFF 2.5. The same MD protocol was then applied as detailed above for the 

cofactor-bound UGT1A1 without bound substrate. 
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4.2.3. Clustering of the protein conformations 

The Quality Threshold (QT) algorithm (Heyer et al., 1999), as implemented in VMD (Humphrey 

et al., 1996), was used to perform conformational clustering of the MD generated 

conformations. A distance function defined as the RMSD difference, calculated for the heavy 

atoms of the substrate-binding pocket, was used for clustering with a minimal distance of 1.5 

Å. The centroid conformations of the 57 most populated clusters (numbered by the rank of 

population, i.e. the most populated cluster has the centroid conformation called MD1) covering 

90 % of all the generated conformations were used in the subsequent docking simulations. 

4.2.4. Dataset preparation 

We collected 113 known ligands of UGT1A1, inhibitors and substrates, from the ChEMBL 

(ebi.ac.uk/chembl), DrugBank (go.drugbank.com), and PubChem (pubchem.ncbi.nlm.nih.gov) 

databases. Substrates were also included as they could cause concentration-dependent 

enzyme inhibition, a commonly observed phenomenon for metabolic enzymes (Wu, 2011). 

Among the collected 113 actives, 10 compounds had activity between 20 μM and 50 μM, and 

only 4 compounds had activity above 50 μM. To increase the applicability domain of our 

models, we thus decided to retain the compounds with activity below 50 μM (IC50). The four 

compounds showing very low activity (>50 μM) were not included into the dataset.  

Decoys (putatively inactive molecules) for docking and ML model validation were taken 

from the diverse chemical compound collection Maybridge® HitFinder™ (maybridge.com), 

prepared as detailed in (Martiny et al., 2013). In order to build predictive models with 

applicability that covers drug-like molecules while maintaining chemical diversity, for all actives 

and decoys, we performed: i) filtering using the FAF-Drugs4 server (Lagorce et al., 2017) and an 

in-house developed ‘soft’ drug-like filter (molecular weight ≤ 1000 Da, number of H-bond 

donors ≤ 8, number of H-bond acceptors ≤ 12, number of rotatable bonds ≤ 20, logP between 

-7 and 10, and number of heteroatoms ≤ 15) without removing toxic/reactive/PAINS (Pan Assay 

Interference) compounds; ii) diversity clustering using FCFP_4 with a Tanimoto similarity 

criterion of 0.8 as implemented in Pipeline Pilot v.20.1 . The 3D structures of the compounds 

were generated using CORINA Classic v.4.3 , and the compounds were protonated at pH 7.0 

using the FAF-Drugs4 server. 

4.2.5. Ensemble docking 

We performed docking simulations of the final dataset compounds into the centroid protein 

conformations of the 57 most populated clusters using the software AutoDock Vina 1.1.2 (Trott 

and Olson, 2010), which employs gradient-based conformational docking and an empirical 

scoring function predicting protein-ligand interaction energy (IE, in kcal/mol). The protein 

conformations and the ligands were pre-processed with AutoDockTools (Morris et al., 2009), 

the solvent molecules were removed, non-polar hydrogens were merged, and Gasteiger 

charges were assigned. A grid box of 24 Å x 20 Å x 22 Å was used with 1 Å spacing in the 

substrate-binding cavity. The maximum number of binding modes was set to 10, and the 

exhaustiveness of the global search to 8. The protein was kept rigid while the ligands were 

handled flexibly. 
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4.2.6. Machine learning classification modeling 

Random forest (RF) classification (Breiman, 2001) was performed using the Random Forest R 

library (Liaw and Wiener, 2002) of the statistical software package R. Multiple decision trees 

were built with bootstrap samples from the training data. A small subset of descriptors was 

randomly selected to make decisions at each tree node to introduce diversity between the 

trees of the RF. The classification was obtained by taking the results of all the trees through a 

majority vote. To find the optimal size of the forest, ‘ntree’ (number of trees), and the optimal 

number of descriptors, ’mtry’ (number of selected descriptors), for each model, we ran RF 

calculations performing an exhaustive nested-loop search of the ntree (128-1024) and mtry (5-

50) parameters. As the dataset is imbalanced, the parameter ’sampsize’ (numbers of actives 

and decoys) was also optimized. We selected the combinations of ntree, mtry, and sampsize 

parameters for each model that yielded the best internal balanced accuracy (BA) while 

retaining the lowest acceptable ntree (see SI Table S1 and Figure S3). Five-fold cross-validation 

(CV) procedure was repeated ten times. 

Support vector machine (SVM) approaches are based on the minimization principle 

from statistical learning theory and place data into hyperspaces through different kernel 

functions for its separation into datasets for classification or regression modeling (Cortes and 

Vapnik, 1995). For the nonlinearly separable cases, the kernel function allows SVM to transfer 

the data points into a higher-dimensional space where linear separation is possible. To build 

classification models, we also used the SVM algorithms implemented in the R package with the 

Caret library (Kuhn, 2008). The descriptors were centered around a mean of 0 and scaled to 

have a variance of 1. The radial basis function kernel (SVM-Rad) was used. The ‘cost’ parameter 

was optimized in the range of 20 to 218 through a five-fold cross-validation procedure that was 

repeated ten times. The best combinations of the hyperparameter cost, scaling function 

gamma (optimized in the range of 2-14 to 20), and ‘weight’ are shown in SI Table S1 and Figure 

S3). 

4.2.7. Assessment of the quality of the models  

Different statistical quantities were evaluated to assess the predictive ability of the models. 

Sensitivity, or the true positive rate, is the fraction of true positives among all positively 

classified instances (Equation B.1), specificity is the true negative rate (Equation B.2), and 

balanced accuracy (BA) is an overall performance estimator used in the case of imbalanced 

datasets (Equation B.3). The area under the receiver operating characteristic curve (AUC) was 

also calculated. The AUC ranges from 0 to 1. Values of 0.8 or greater generally indicate good to 

excellent performance of a predictive model. The Matthew’s correlation coefficient (MCC, 

Equation B.4) was calculated to measure the quality of binary classifications according to the 

following formulas: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (B.1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (B.2) 
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𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (B.3) 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁 − 𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
 (B.4) 

where TP and TN are the true positive and true negative, and FP and FN the false 

positive and false negative instances, respectively.  

Limitations of Study 

Our predictive models were developed based on a homology model of the human UGT1A1 

structure containing the cofactor- and the substrate-binding domains. A future X-ray structure 

of the human UGT1A1 containing the two domains would be helpful to improve the 

performance of the models for the prediction of UGT1A1 inhibitors. 
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C. ABCG2 

Drug transporters influence the disposition of a large number of drugs and drug candidates and 

are involved in drug-drug interactions (DDI). ATP-binding cassette (ABC) transporters harvest 

the energy of ATP hydrolysis in order to selectively translocate a variety of substrates across 

membranes. They are physiologically expressed in various tissues where they influence the 

absorption, distribution, and excretion of drugs. In particular, ABCG2 is a key player in 

preventing the absorption of toxic compounds from the gut, and it also plays an essential 

protective role at different tissue barriers like the maternal-fetus barrier, the blood-brain 

barrier, and the blood-testis barrier. ABCG2 transports a wide variety of drugs and also many 

phase II metabolites such as sulfate or glucuronide conjugates. The exact mechanisms of the 

ABC transporter-mediated substrate translocation are not fully understood. 

The following chapter on the ABCG2 transport mechanism investigates the 

conformational transitions underlying its transport cycle and the substrate-transporter 

interactions along the translocation pathway. The timescale of a complete ABCG2 transport 

cycle falls in the range of a fraction of seconds or beyond, classical MD simulations fall short of 

providing a full atomic description of such cooperative events due to their time limitation.  

As part of my PhD work, I have developed an enhanced MD simulation tool (kinetically 

excited targeted MD) and applied it to the two extreme conformational states of ABCG2 to 

elucidate possible conformational transition pathways. The translocation of the substrate is 

closely monitored, its interactions with transporter residues along its path are investigated. Its 

behavior is addressed in the second binding cavity about which little is known due to the lack 

of experimental structures. The different transport stages are further analyzed using classical 

MD and normal mode analysis.   

In the near future, the generated transient conformations and predicted binding 

affinities towards them will serve as the basis for the creation of machine learning prediction 

models of ABCG2 substrates and inhibitors. The models will incorporate information on ligand-

transporter interactions along the translocation pathway, and will be created in an attempt to 

overcome multidrug resistance and predict possible ABCG2-involved drug-drug interactions. 
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Abstract 

ABCG2/BCRP is an ABC transporter that plays an important role in tissue protection by 

exporting endogenous substrates and xenobiotics. ABCG2 is of major interest due to its 

involvement in multidrug resistance (MDR), and understanding its complex efflux mechanism 

is essential to preventing MDR and drug-drug interactions (DDI). ABCG2 export is characterized 

by two major conformational transitions between inward- and outward-facing states, the 

structures of which have been resolved. Yet, the entire transport cycle has not been 

characterized to date. Our study bridges the gap between the two extreme conformations by 

studying connecting pathways. We developed an innovative approach to enhance molecular 

dynamics simulations, ‘kinetically excited targeted molecular dynamics’, and successfully 

simulated the transitions between inward- and outward-facing states in both directions and 

the transport of the endogenous substrate estrone 3-sulfate. We discovered an additional 

pocket between the two substrate-binding cavities and found that the presence of the 

substrate in the first cavity is essential to couple the movements between the nucleotide-

binding and transmembrane domains. Our study shed new light on the complex efflux 

mechanism, and we provided transition pathways that can help to identify novel substrates and 

inhibitors of ABCG2 and probe new drug candidates for MDR and DDI. 

Keywords: ABC transporters, BCRP, ABCG2, efflux mechanism, molecular dynamics simulations, 

drug-drug interactions  
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1. Introduction 

ATP-binding cassette (ABC) transporters are molecular machineries that harvest energy from 

ATP hydrolysis to translocate substrates across membranes selectively (Thomas and Tampe, 

2020). Some members of the ABCB, ABCC, and ABCG subfamilies are involved in drug transport 

and are responsible for unidirectional drug efflux. They are of major interest due to their 

involvement in the multidrug resistance (MDR) phenotype of tumor cells as well as the 

controlling of drug pharmacokinetics at several critical body interfaces, considering their 

physiological expression in cells like endothelial brain cells and enterocytes (Chapy et al., 2016, 

Cisternino et al., 2004). Furthermore, inhibition of ABC transporters and drug metabolizing 

enzymes (Sun and Scott, 2010, Martiny et al., 2015, Goldwaser et al., 2022) can lead to drug-

drug interactions (DDI) and influence drug efficacy and safety (Brozik et al., 2011).  

Human ABCG2, also known as BCRP (Breast Cancer Resistance Protein),  belongs to the 

G-subfamily of ABC transporters and is physiologically expressed in tissue barriers like the 

blood-brain barrier (Fetsch et al., 2006, Robey et al., 2009, Thomas and Tampe, 2020, 

Maliepaard et al., 2001, Chapy et al., 2016). It plays an important role in tissue protection by 

selectively exporting numerous endogenous substrates and a broad variety of xenobiotics to 

extracellular spaces like the blood lumen at the blood-brain barrier (Suzuki et al., 2003, Imai et 

al., 2003, Mao and Unadkat, 2015). Similar to P-glycoprotein (ABCB1) and MRPs (ABCCs), 

ABCG2 has also been identified as a contributor to MDR in tumor cells (Diestra et al., 2002, 

Gillet and Gottesman, 2011, Gottesman et al., 2002, Mo and Zhang, 2012). ABCG2 can strongly 

influence the pharmacokinetic profile of a wide range of drugs due to its substrate poly-

specificity. Interestingly, ABCG2 substrates comprise a broad spectrum of anticancer agents, 

sulfate and glucuronide conjugates of sterols and drugs that are common products of 

mammalian Phase II metabolism (Mo and Zhang, 2012). Therefore, drug agencies worldwide 

(e.g. the European Medicines Agency and the United States Food and Drug Administration) 

recommended testing for possible ABCG2 substrate or inhibitor status over the course of drug 

development (Toyoda et al., 2019, Hillgren et al., 2013, Prueksaritanont et al., 2013). It is crucial 

to understand the molecular mechanism of the underlying ABCG2 substrate export in all its 

complexity to better predict and prevent ABCG2-involved drug pharmacokinetic variability. 

Conformational changes are driving forces for the substrate efflux in ABC transporters 

(Manolaridis et al., 2018, Oldham et al., 2008, Jones and George, 2004). Over recent years, 

thanks to breakthrough advances in single-particle cryogenic electron microscopy (cryo-EM), 

several transporter structures have been resolved at a nearly atomic resolution under different 

conditions (Taylor et al., 2017, Jackson et al., 2018, Manolaridis et al., 2018, Orlando and Liao, 

2020, Kowal et al., 2021, Yu et al., 2021). These recent studies have identified two distinct 

conformational clusters of ABCG2, the transporter in the inward facing state (IFS) and the 

outward facing state (OFS). During the transport cycle, ABCG2 is thought to cycle between 

these two states (Orlando and Liao, 2020). ABCG2 functions as a homodimer, with each 

monomer consisting of a nucleotide-binding domain (NBD) and an integral transmembrane 

domain (TMD) (FIGURE C.1). NBDs contain highly conserved motifs shared among ABC 
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transporters and can bind two ATP molecules and coordinating Mg2+ ions at their dimer 

interface. TMDs are involved in substrate recognition by forming two substrate-binding cavities 

(FIGURE C.1A). Substrates have access to cavity 1 from both the cytosol and the lipid bilayer. As 

opposed to cavity 1, cavity 2 faces the extracellular space, and the two cavities are separated 

by the so-called leucine gate (also referred to as the leucine plug) (Manolaridis et al., 2018).  

 

Figure C.1: Experimental ABCG2 structure in (A) the E1S substrate-bound IFS (PDB 6HCO) and 
(B) the ATP-Mg2+-bound OFS (PDB 6HBU). The loop regions modelled here are shown for 

clarity. The rotational symmetry axis of the homodimer is indicated by a dashed line. Each 
monomer consists of a TMD and an NBD (e.g. TMD in light orange and NBD in light blue of one 
monomer). Conserved motifs within the NBDs are marked with letters (A-loop, Q-loop, D-loop, 
and H-loop). The “coupling helix” (CpH) of one monomer is highlighted in red, the different TM 
helices are highlighted in different colors. The linker segments connecting the individual NBDs 

and TMDs are in pale yellow. The ATPs, the substrate, the leucine gate, and the glycosyl 
groups are in licorice, the Mg2+ ions in sphere representations. Signature sequence, P-loop and 

Walker B motif are also colored orange, purple, and tan, respectively. 

To date, neither experimental structures with a substrate bound to cavity 2, nor transient 

structures along the translocation pathway and the transport cycle have been resolved. 

Therefore, the transporter’s dynamics, playing a key role in the complex mechanism of drug 

efflux, needs to be elucidated. In silico approaches, in particular Molecular Dynamics (MD) 

simulations, are powerful tools in the exploration of related mechanisms (Mortier et al., 2015, 

Salinas et al., 2021, Ghode et al., 2020, Danilowicz et al., 2017). Yet, classical MD simulations 

fall short of providing a full atomic description of cooperative events at time scales beyond 

microseconds, let alone the timeframe of the transport cycle, for multi-domain systems. 

Although Nagy et al. investigated key interactions along the uric acid substrate-translocation 

pathway and its regulation by cholesterol with the help of metadynamics simulations (Nagy et 
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al., 2021), the entire ABCG2 transport cycle has not been thoroughly understood, and the 

dynamical behavior of the different transport stages has not been characterized to date.  

To better understand the molecular mechanism of substrate export in all its complexity, 

here we explore the ABCG2 transition pathways of the transport cycle. Our study bridges the 

gap between the different transport states by employing an innovative simulation approach, 

starting from available experimental structures. We developed an enhanced MD simulation 

methodology to trace possible pathways between two terminal structures, termed ‘kinetically 

excited targeted Molecular Dynamics’, and successfully simulated transitions between the IFS 

and the OFS in both directions, along with the translocation of the physiological estrone 3-

sulfate (E1S) substrate. Furthermore, we characterized the dynamical behavior of ABCG2 in the 

different transport stages. 

2. Results and Discussion 

2.1. Structural models and kinetically excited targeted MD 

We performed simulations starting from cryo-EM structures (Manolaridis et al., 2018) of the 

human homodimer of ABCG2 in its IFS and OFS (see Materials and Methods for details). The 

structure of ABCG2 contains highly conserved motifs shared among ABC transporters at their 

NBDs, such as the P-loop (Walker A motif), the Walker B motif, the signature sequence 

(‘VSGGERKR’), and the A- and H-loops primarily responsible for ATP binding and hydrolysis, as 

well as the Q- and the D-loops responsible for NBD dimer formation or interdomain 

communication (Khunweeraphong and Kuchler, 2021). Two ATP molecules and coordinating 

Mg2+ ions have been found to bind symmetrically at the catalytic interface formed by the two 

NBDs, each between the P-loop of one monomer and the signature sequence of the other 

(Manolaridis et al., 2018). In the IFS, the two NBD monomers are partially separated, yet some 

contacts are maintained at the cytosolic tip of the transporter. The degree of NBD separation 

varies between the available experimental structures, from fully-inward open (e.g. nucleotide-

free estrone 3-sulfate (E1S) transporter (Manolaridis et al., 2018)) to more, but not completely 

closed states (e.g. E1S or topotecan bound transporter in the presence of ATP (Yu et al., 2021)). 

The TMD pair forms the slit-like hydrophobic cavity 1, where the physiological E1S substrate 

and various inhibitors have been proven to bind (Orlando and Liao, 2020, Yu et al., 2021, 

Jackson et al., 2018, Kowal et al., 2021, Manolaridis et al., 2018). In contrast, in the OFS, cavity 

1 is completely collapsed, and the NBDs form a tightly closed interface (FIGURE C.1B). 

We chose to model the unresolved flexible intracellular loop regions in the NBDs and 

include them in our simulations since they are likely to affect the substrate entry and may 

possess a similar gating function to analogous regions in bacterial transporters (Bi et al., 2018, 

Caffalette et al., 2019, Chen et al., 2020) (e.g. the loop region between the first and second 

NBD β-strands, residues 49-57). Similarly, we included the model of the linker segment, 

connecting individual NBDs to TMDs, as residues in this region have been shown to play a 

unique role in coupling ATP hydrolysis to substrate efflux, and the related conformational 

changes of the transporter (Macalou et al., 2016). Multiple systems were constructed from the 

experimental IFS and OFS structures: an apo IFS, a substrate-bound IFS, and a substrate and 
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ATP-Mg2+-bound IFS transporter; and an ATP-Mg2+-bound OFS, an ADP-bound OFS, and an OFS 

transporter with no nucleotide bound (see Materials and Methods and SI Table S1 for details).  

The structures were inserted into a lipid bilayer composed of dimiristoyl-

phosphatidylcholine (DMPC) with 20% cholesterol (CHOL); the latter has been suggested to 

play a role in the transport regulation of ABCG2 (Ferreira et al., 2017, Telbisz et al., 2007, Nagy 

et al., 2021). We performed classical MD simulations and Normal Mode Analysis (NMA) on all 

the above systems. 

Moreover, we developed an innovative method, kinetically excited targeted MD 

(ketMD) that traces possible pathways between two terminal structures, that we applied here 

to simulate conformational transitions between the IFS and the OFS. Our concept relies on the 

method developed by Costa et al., Molecular Dynamics with excited Normal Modes (MDeNM) 

(Costa et al., 2015) designed to enhance protein conformational exploration. In MDeNM, 

collective motions of the protein described by different combinations of low frequency normal 

modes are kinetically activated during MD simulations. This enables the coupling of fast and 

slow degrees of freedom. Recently, we have successfully employed MDeNM to study large 

functional movements in several biological systems (Dudas et al., 2020, Dudas et al., 2021a) 

including the gating mechanism of substrate recognition in the sulfotransferase SULT1A1 

(Dudas et al., 2021b).  

As in the case of ABCG2 the target conformation is specified, the excitation vector was 

chosen to point towards the target structure instead of being a combination of normal modes, 

similar to targeted MD (tMD) simulations. However, unlike tMD, where the potential energy 

function is biased and the protein is guided by steering forces at each simulation step, ketMD 

relies on kinetic excitations.  

At the first step of each excitation cycle, the velocity components pointing from the 

instantaneous conformation to the target structure are increased, allowing the crossing of 

larger energy barriers. This excitation step is followed by a relaxation period where no external 

perturbation is applied, the system can evolve, and the injected kinetic energy dissipates. After 

each excitation cycle, the excitation direction vector is updated to point to the target structure 

from the current conformation. In total, 40 consecutive excitation cycles were performed per 

system (see Materials and Methods for a detailed description). 

2.2. Conformational transitions during the ABCG2 transport cycle 

The transport cycle of ABCG2 includes two large conformational transitions. Firstly, transition 

1, when the IFS transforms into the OFS while the substrate passes from cavity 1 to cavity 2 

(from where it is then released to the extracellular space). Secondly, transition 2, when the OFS 

returns to the initial IFS. The timescale of a complete transport cycle of ABCG2 falls in a range 

of fraction of seconds or beyond (the initial transport rate of a substrate is 0.1 molecules per 

ABCG2 dimer per second in the study of Yu et al.) (Szollosi et al., 2018, Yu et al., 2021), a 

timeframe that currently cannot be simulated by classical MD. With the help of ketMD, here 

we present all-atom simulations of transitions 1 and 2 of the membrane-embedded ABCG2. 
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Transition 1 was simulated starting from the IFS with bound E1S substrate (an endogenic 

steroid) and ATP-Mg2+, transition 2 from the OFS without bound substrates and in the presence 

of ATP-Mg2+, ADP or in the absence of bound nucleotides. 

 

Figure C.2 Evolution of the openness at the catalytic ATP-binding site upon (A) transition 1 
(yellow pentagons) and (B) transition 2 (purple pentagons) of the ketMD simulations, 

represented by the distance between the Cα atoms of residues S88 of one monomer and E190 
of the other. Free Energy Landscapes (FELs) of the MD-generated conformations starting from 
the E1S- and ATP-Mg2+bound IFS and the nucleotide-free OFS are included as references. The 

initial conformations are indicated as stars, available experimental structures are marked with 
orange pentagons. (C) The catalytic ATP-binding site and the monitored distance shown in the 
IFS state. The following experimental structures, which fall in the IFS region, are shown but not 
labelled in panels A and B : PDB  5NJ3, 6ETI, 6FEQ, 6FFC, 6HCO, 6HIJ, 6VXH, 6VXI, 6VXJ, 7NEQ, 

7NEZ, 7NFD, 7OJH. 

2.3. Role of the NBDs 

Upon the transition from the IFS to the OFS (transition 1), the two NBDs form a tightly packed 

dimer. The resulting interface establishes the two catalytic ATP-binding sites between the P-

loop (residues 80-88) of one monomer and the signature sequence (‘VSGGERKR’, residues 186-

193) of the other (Manolaridis et al., 2018). The formation of the two catalytic ATP-binding sites 

upon the transition of the NBDs can be monitored by the evolution of the distances between 

the residues at the edges of the P-loop of one monomer and the signature sequence of the 

other, symmetrically two distances, each corresponding to one of the two ATP-binding sites, 

namely d(88CA,190’CA) and d(190CA,88’CA) (FIGURE C.2C).  

These distances gradually decrease during the ketMD simulation from the initial 30.6 Å 

and 28.3 Å to less than 17 Å (FIGURE C.2A). For reference, the distance is around 14 Å in the 

E211Q mutant ATP-Mg2+-bound OFS target structure (PDB ID: 6HBU). This distance averages 

15.4 Å across the three 100-ns-long MD runs starting from the wild-type, ATP-Mg2+-bound OFS, 

with values greater than 19 Å present in the trajectories (FIGURE C.2A,B, Free Energy Landscape 

(FEL) of the MD generated conformations calculated based on Equation C.1 in Materials and 

Methods) suggesting that during the ketMD simulation of transition 1, the catalytic ATP-binding 
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sites were successfully formed between the P-loop and the signature sequence similarly to 

what can be observed in the reference OFS MD simulations.  

The backbone RMSD (root mean square deviation) of the NBD dimer with respect to the 

target experimental OFS structure was also monitored during the ketMD simulation to follow 

the closure of the whole NBD region (SI Figure S1A). The initial RMSD of 7.2 Å gradually 

decreased to 2 Å during the 40 excitation cycles. As reference, the same RMSD among the 

classical MD generated OFS conformations is on average 1.8 Å with a standard deviation of 0.23 

Å (SI Figure S1C). Based on these results and visual inspection of the generated conformations 

(FIGURE C.3A,B, FIGURE C.4A,B; SI Video S1 and Figure S1A,C), we conclude that a full NBDs 

transition was successfully achieved together with the catalytic ATP-binding site formation 

during the ketMD simulation of transition 1.  

 

Figure C.3: The nucleotide binding site in (A) the OFS cryo-EM structure (PDB 6HBU) and (B) at 
the end of the ketMD simulation of transition 1. P-loop is highlighted in purple, the signature 

sequence in orange, and the Walker B motif in tan. The ATP is in licorice, the Mg2+ ion in 
sphere representation. 
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Figure C.4: Conformational transitions during the ketMD simulations. (A) The experimental 
structure (PDB 6HCO) with the modelled missing loops and the added two ATP-Mg2+ that was 
used (after equilibration) as starting structure for the ketMD simulation of transition 1,  (B) the 
final simulated conformation of transition 1, (C) the experimental structure (PDB 6HBU) with 

the modelled missing loops that was used (after equilibration) as starting structure for the 
ketMD simulations of transition 2 (either with bound ATP-Mg2+, ADP, or no bound 

nucleotides), (D) the final simulated conformation of transition 1 (in the absence of bound 
nucleotides). The ATPs are in licorice, the Mg2+ ions in sphere representation. The rotational 

symmetry axis of the homodimer is indicated by dashed lines. 

In the opposite direction, upon the transition from the OFS to the IFS (transition 2), the strong 

interactions stabilizing the NBD dimer must be broken to obtain the partially separated NBDs, 

characteristic of the IFS. Some of the strongest interactions exist between the P-loop and D-

loop (P81/T82-D217), the P-loop and the signature sequence (T82-R193), and the Q-loop and 

the signature sequence (D127-R191). The interaction energy between the 2 NBDs is 

approximately -320 kcal/mol for the MD equilibrated OFS (in the absence of the nucleotides) 

and -150 kcal/mol for the IFS conformation. Upon the partial separation of the NBDs during the 

ketMD simulations, we observe a continuous weakening of the interactions (less negative 

interaction energy), reaching the reference of -150 kcal/mol after the 25th excitation cycle.  

Simultaneously, the distances d(88CA,190’CA) and d(190CA,88’CA) gradually increase 

from the initial 17 Å and 14.9 Å to over 28 Å (FIGURE C.2B), which demonstrates the dissociation 

of the catalytic ATP-binding sites. The backbone RMSD of the NBD dimer with respect to the 

target experimental IFS structure (PDB 6HCO) gradually decreased from the initial 7.2 Å to 1.3 

Å during the ketMD simulation (SI Figure S1B). The same RMSD has a mean of 1.7 Å with a 

standard deviation of 0.27 Å among the classical MD generated IFS conformations (SI Figure 

S1D). Visual inspection of the ketMD generated conformations together with the analyses 

above clearly confirmed that the NBDs got partially separated and a complete NBDs transition 

occurred (FIGURE C.4C,D, SI Video S1 and Figure S1B,D). 

To analyze the effect of the presence of ATP, ADP, or the absence of nucleotides on the 

dissociation of the catalytic ATP-binding sites, we also performed ketMD simulations of 

transition 2 in the presence of ATP or ADP. During equilibration, the distance between the P-

loop and the signature sequence was preserved in the presence of ATP, while it increased 
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slightly in the presence of ADP and without nucleotides. Detaching the NBDs at the ATP-binding 

site was more easily achieved in the absence of nucleotides, and most difficult in the presence 

of ATP (SI Figure S2). 

2.4. Collapse and recovery of the substrate binding cavities 

Experimental data suggest that during the transition from the IFS to the OFS, cavity 1 

completely collapses while the previously occluded cavity 2 opens (Manolaridis et al., 2018, 

Goebel et al., 2021, Taylor et al., 2017, Jackson et al., 2018). Once the transporter is reset to its 

IFS, cavity 1 becomes accessible again. The collapse of cavity 1 occurs as a result of the 2 

“coupling helices” (CpH, residues 451-462, corresponding to the C-terminal part of TM2, 

highlighted in red in FIGURE C.1) approaching the 2-fold symmetry axis (Manolaridis et al., 2018).  

 

Figure C.5: Changes in the substrate-binding cavities represented by the radius of gyration 
(Rgyr) of the helical structures bordering the cavities. (A) The collapse of cavity 1 and the 

opening of cavity 2 during the ketMD simulation of transition 1 denoted by yellow pentagons 
and (B) the recovery of cavity 1 and the deflation of cavity 2 during the ketMD simulation of 
transition 2 denoted by purple pentagons. The initial conformations are indicated as stars. 

Free Energy Landscapes (FELs) of the classical MD generated conformations starting from the 
E1S- and ATP-Mg2+-bound IFS and the nucleotide-free OFS are included as reference in panels A 
and B, available experimental structures are marked with orange pentagons for reference. The 

regions determining the Rgyr of cavity 1 (highlighted in red, corresponding to the x-axis of 
panels A and B) and cavity 2 (highlighted in blue, corresponding to the y-axis of panels A and 

B) are shown (C) in the IFS experimental structure (PDB 6HCO, open cavity 1 and deflated 
cavity 2) and (D) in the OFS experimental structure (PDB 6HBU, collapsed cavity 1 and widely 
open cavity 2). The following experimental structures, which fall in the IFS region, are shown 

but not labelled in panels A and B: PDB  5NJ3, 6ETI, 6FEQ, 6FFC, 6HCO, 6HIJ, 6VXF, 6VXI, 6VXJ, 
7NEQ, 7NEZ, 7NFD, 7OJH. 

To assess the changes of the substrate binding cavities during the conformational transitions, 

the radius of gyration (Rgyr) of the helical segments bordering the cavities was calculated. Parts 

of TM3, TM3’, TM5, and TM5’ (residues 436-446, 436’-446’, 536-547, and 536’-547’) for cavity 

1, and the upper part of TM3 and TM3’ (residues 420-425 and 420’-425’) together with the 

short helical structure within the long loop region connecting TM5 and TM6 (residues 610-617 

and 610’-617’) for cavity 2 were included for the Rgyr calculations (FIGURE C.5). The Rgyr 
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corresponding to cavity 1 is equal to 10.8 Å in the IFS experimental structure (PDB 6HCO), 

versus 8.9 Å in the OFS structure (PDB 6HBU) where cavity 1 is completely collapsed. When 

simulating transition 1 with ketMD starting from the IFS, the Rgyr corresponding to cavity 1 was 

reduced to values under 9.3 Å (FIGURE C.5A).  For reference, the same Rgyr has an average of 

9.17 Å with a standard deviation of 0.13 Å among the classical MD generated OFS 

conformations (the heat-maps in FIGURE C.5A,B correspond to the classical MD simulations). By 

the end of the ketMD simulation of transition 1, cavity 1 is collapsed and the phenyl rings of 

residues F439 and F439’, initially stacked against the ring system of E1S (Manolaridis et al., 

2018), have moved as close as 3.3 Å from each other, leaving no space for substrates. In the 

opposite direction starting from the OFS, the Rgyr corresponding to cavity 1 increased to as great 

as 11 Å (FIGURE C.5B), while cavity 1 became exposed and accessible from the cytosol. The 

average of the Rgyr among the reference classical MD generated IFS conformations is 10.9 Å, 

the standard deviation is 0.2 Å.  

The Rgyr corresponding to cavity 2 is equal to 10.3 Å in the IFS, while 13.2 Å in the OFS 

reference experimental structure (PDB 6HCO and 6HBU respectively). Starting from the IFS, 

during the ketMD simulation of transition 1 as cavity 2 became more exposed to the 

extracellular space, it also became more voluminous with Rgyr values reaching 13.3 Å (FIGURE 

C.5A); while during the simulation of transition 2 starting from the OFS, cavity 2 approached a 

more deflated state with Rgyr values decreasing to around 11 Å. The variations in cavity 2 volume 

predominantly originate from the rearrangements of the loop regions connecting TM5 and 

TM6 and the inflating-deflating motions of the cavity are coupled to the conformational 

transitions between the IFS and the OFS. An additional binding site was proposed by an in silico 

docking study, delimited by TM1, TM2, TM3, and TM4 and formed primarily by residues Q398, 

S440, S443, R482, and L539’ (Laszlo et al., 2016). Such a site was preserved throughout our 

ketMD and subsequent classical MD simulations, although E1S did not approach it during its 

translocation in our simulations as it is located more peripherally than cavities 1 and 2, and the 

leucine gate. That site encompasses residue P480 as well as R482, which was suggested to play 

an important role in substrate transport (Ozvegy et al., 2002) and ATP hydrolysis but not in 

substrate binding (Ejendal et al., 2006).  

2.5. Substrate translocation 

In addition to other substrates and inhibitors (SI Table S2), there are currently two E1S-bound 

experimental ABCG2 structures (PDB ID 6HCO and 7OJ8). In both cases, the substrate is bound 

to cavity 1. Experimental structures with a substrate bound to cavity 2, or transient structures 

along the translocation pathway have not been resolved. With the ketMD run starting from the 

IFS, it was possible to simulate the translocation of E1S from cavity 1 to the extracellular space 

through the leucine gate and cavity 2. In addition to the excitation applied to the transporter, 

the substrate motion was also kinetically promoted during our ketMD simulation. The velocity 

components of its atoms pointing towards the extracellular space, perpendicular to the 

membrane surface, were repeatedly increased, each time followed by a 5 ps relaxation. 

Subsequently, we performed 10-ns classical MD simulations starting from the ketMD generated 
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transient conformations along the translocation pathway, to gain insight into the substrate-

transporter interactions.  

Initially, E1S was bound to cavity 1, stabilized mainly by the ‘sandwich-like’ stacking 

interactions of F439 and F439’. In our ketMD starting conformation, a hydrogen bond formed 

between N436 and the sulfate group of E1S further stabilizes the substrate in cavity 1, although 

this interaction is non-existent in 7OJ8. The substrate remained bound to cavity 1 until the 7th 

excitation cycle. Key binding residues may be substrate-dependent, except for F439 which is 

essential for engaging in the transport, as demonstrated by Gose et al. (Gose et al., 2020). The 

efflux of small molecules investigated in their study was affected by mutation at position F439, 

but not at N436. However, the latter mutation has been reported to abolish the transport of 

E1S, a bulky compound (Manolaridis et al., 2018). 

 

Figure C.6: The pocket-like formation observed during the substrate translocation after leaving 
cavity 1 but before reaching cavity 2, located between the F439 valve (in red) and the leucine 

gate (in blue). Residues forming strong interactions with the substrate are labelled and are 
shown in cyan licorice representation. 

During the 8th excitation cycle, E1S escaped from the ’sandwich-like‘ trap of the two F439 

residues and moved towards cavity 2. As soon as the substrate left, F439 and F439’ came into 

close contact, creating a valve-like construction, similar to what is observed in the OFS cryo-EM 

structure (PDB 6HBU). Any kind of return movement towards the cytosol is prevented with this 

valve closed. In our ketMD simulation this was followed by a relatively stable period during 

which the substrate was trapped between cavities 1 and 2, with movements to cavity 2 still 

blocked by the closed leucine gate. The stabilizing interactions on the side of this pocket-like 

formation, located between cavities 1 and 2, involve residues F431, F432, T435, N436, V546, 

and M549 of the two monomers (FIGURE C.6 and SI Figure S3). Interestingly, Krapf et al. have 

also proposed F431, F432, and T435 to interact with quinazolines inhibiting ABCG2 (Krapf et al., 

2018). Our substrate did not move further until the 18th excitation cycle even though the 

conformational transition continued and the ’coupling helices‘ moved closer together. This 
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demonstrates that passing through the leucine gate that necessitates the separation of the 

leucine residues of the two monomers requires energy. We argue that the conformational 

transition from the IFS to the OFS alone cannot induce leucine gate opening and substrate 

passage, as previously suggested for the E211Q mutant by Manolaridis et al. (Manolaridis et al., 

2018). Our findings are consistent with the observations of Nagy et al., who determined a free 

energy barrier associated with the substrate passing the leucine gate between 7-13 kcal/mol 

for uric acid, investigated by metadynamics simulations (Nagy et al., 2021).  

Once the leucine residues were separated, the substrate was able to slip between them. 

Here, we identified extensive interactions between E1S and the leucine gate, especially L554 

and L554’. In addition, strong interactions were formed with Q424, Q424’, F431’, S552’, and 

F578’. The substrate must first escape the grip of the leucine residues and their surroundings 

to reach cavity 2. In our simulation, we observed this during the 23rd excitation cycle. In the 

L554A mutant transporter, possibly reduced attractive interactions may explain its (two-fold) 

higher transport activity than wild-type ABCG2, as reported in the study of Manolaridis et al. 

(Manolaridis et al., 2018). The sulfate group of E1S was the last to leave the gate region in our 

ketMD simulation.  

 

Figure C.7: Substrate behavior in cavity 2. (A) Different substrate positions in cavity 2 observed 
during the classical MD simulations starting from the ketMD-generated transient 

conformations, from the crossing of the leucine gate to the leaving of the cavity. Residues 
forming strong interactions with the substrate are labelled and are shown in licorice 

representation. (B) The fluctuation of the external loop regions corresponding to the substrate 
positions in panel A. 

The substrate behavior in cavity 2 is very different from what can be observed either in cavity 

1 or between cavities 1 and 2. Before arriving at cavity 2, the substrate was tightly bound and 

closely surrounded by transporter residues. In contrast, the substrate was loosely bound here 

as it explored the cavity volume, making close contacts with residues at its boundary. These 

contacts involved S420, C592, Y605, and A606 of both monomers and K616 of one of the 

monomers (FIGURE C.7 and SI Figure S4). The substrate’s further kinetic excitation resulted in 

its complete detachment from the transporter into the extracellular space. 
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Recently multiple IFS structures have been resolved with bound nucleotides, thus we 

also performed ketMD simulation of transition 1 starting from the structure PDB 7OJ8 (Yu et 

al., 2021) (ATP-bound ABCG2 in the presence of E1S in cavity 1). The comparison of the P-loop 

regions (SI Figure S5) showed almost no difference between the ATP binding between the PDB 

7OJ8 structure and the model we constructed using the IFS structure (PDB 6HCO) with the 

nucleotide taken from the OFS structure (PDB 6HBU). The NBDs feature a semi-closed dimer in 

the starting structure (PDB 7OJ8). After some opening during the equilibration, during the 

ketMD simulation a tightly packed NBD dimer was reached, the catalytic ATP-binding sites were 

formed (the backbone RMSD of the NBD dimer with respect to the target OFS structure (PDB 

6HBU) was decreased from 3.2 Å to 1.7 Å). E1S left the grip of the residues F439 and F439’ 

sooner (after the 3rd excitation cycle) and also its crossing through the leucine gate occurred 

earlier in the ketMD simulations (after the 12th excitation cycle), compared to the ketMD 

simulation starting from the more open IFS structure (PDB 6HCO), while cavity 1 collapsed and 

cavity 2 became more exposed to the extracellular space (the backbone RMSD of the TMD 

dimer with respect to the target OFS structure was reduced from 3.4 Å to 1.7 Å). The ketMD 

simulation starting from PDB 7OJ8 further supports the existence of a stable pocket-like 

formation between cavities 1 and 2 (SI Figure S6) where E1S was trapped for 9 consecutive 

excitation cycles. 

2.6. Effect of substrate and nucleotide binding 

We analyzed the different stages of the transport cycle by performing classical MD simulations 

and NMA. We built IFS systems in their apo-form, with bound E1S, and bound E1S and ATP-Mg2+ 

together; the OFS systems were constructed with bound ATP-Mg2+, ADP, and without 

nucleotides (for their construction see Materials and Methods and SI Table S1). For all of these 

systems after equilibration, we first performed a 100-ns classical MD simulation. FIGURE C.8 

shows the MD frames in the subspace of NBDs and TMDs difference vectors. Conformations 

were first overlapped to the mean-conformation of the IFS and the OFS experimental structures 

(PDB 6HCO and 6HBU respectively) and were then projected to the NBD and TMD difference 

vectors, pointing from the OFS to the IFS structure. After overlapping the OFS and the IFS 

structures, the difference vector points for each Cα atom from its 3D coordinates in the OFS to 

its position in the IFS structure. The so obtained difference vector of 3N elements (N is the 

number of Cα atoms of the system, each having xyz coordinates) was then used to project 

conformational differences from the mean experimental structure. 
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Figure C.8: The classical MD generated conformations projected in the subspace of the NBDs’ 
and TMDs’ difference vectors. The difference vector, after overlapping the IFS (PDB 6HCO) and 
the OFS (PDB 6HBU) experimental structures, points for each Cα atom from its 3D coordinates 
in the OFS to its position in the IFS structure. The NBDs and TMDs difference vectors were used 
for the projection of the conformational differences from the mean experimental structure (of 
PDB 6HCO and 6HBU) in the case of (A) the apo IFS, (B) the substrate-bound IFS, and (C) the 
substrate- and ATP-Mg2+-bound IFS transporter, (D) the ATP-Mg2+-bound OFS, (E) the ADP-
bound OFS, and (F) the nucleotide-free OFS ABCG2 BCRP. Available experimental structures 

are marked with orange pentagons. The following experimental structures, which fall in the IFS 
region, are shown but not labelled: PDB  5NJ3, 6ETI, 6FEQ, 6VXI, 6VXJ, 7NEQ, 7NEZ, 7NFD.   

We found that the presence of the substrate in cavity 1 is essential to couple the movements 

between the NBDs and the TMDs. In the absence of a bound substrate and nucleotides (apo-

form), the TMDs approach a neutral configuration while the NBDs stay far apart (FIGURE C.8A). 

Further analyses revealed that cavity 2 opens while cavity 1 starts collapsing in the absence of 

a substrate in cavity 1, approaching the state of the apo-closed experimental structure (PDB 

6VXF, nucleotide-free apo state), where the arrangement of the TM helices more closely 

resembles that seen in the outward facing ATP bound state, whereas the lack of NBD 

dimerization more closely resembles that of the inward facing state (Orlando and Liao, 2020) 

(SI Figure S7A). In contrast, the substrate-bound IFS showed coupled motions between the 

NBDs and TMDs (FIGURE C.8B). In the presence of the substrate in cavity 1, we did not observe 

larger changes in the state of cavities 1 and 2 (SI Figure S7B,C), the addition of the nucleotides 

did not induce the onset of a clear transition to the OFS on the simulated time scale (FIGURE 

C.8C). We hypothesize that the binding order of substrate and nucleotides related to their 

physiological concentrations could play a role during the transport cycle, although the time-
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scale and the character of our simulations do not allow us to draw further conclusions in this 

regard.  

In all the MD simulations starting from the OFS, no conformations moved further away 

in the direction opposite to the IFS (FIGURE C.8D,E,F). Moreover, the conformations rapidly 

drifted in the direction of the IFS, independent of the bound nucleotide. We interpret this as a 

consequence of removing the E211Q mutation which is present in the only OFS cryo-EM 

structures available (6HBU and 6HZM). This mutation can generate a more tightly packed NBD 

dimer-interface than what might exist in the case of the wild-type transporter (see position of 

E211 in FIGURE C.3). As a result, it may also generate or stabilize a TMD configuration that is 

more extremely open to the extracellular space. In all our OFS MD simulations, d(88,190’) 

exhibited a stable state at around 17 Å (this distance is 13.9 Å in the E211Q mutant OFS cryo-

EM structure, 6HBU, SI Figure S8D,E,F). The Rgyr corresponding to cavity 2 slightly decreased 

(closing of cavity 2) while the Rgyr corresponding to cavity 1 slightly increased (opening of cavity 

1) or remained unchanged during the nucleotide-bound OFS MD simulations (SI Figure S7A,B, 

for cavity 2 the average of ATP-bound OFS is 12.28 Å, ADP-bound OFS is 12.2 Å versus the 

experimental OFS of 13.2 Å , and for cavity 1 the average of ATP-bound OFS is 9.0 Å, ADP-bound 

OFS is 9.18 Å versus the experimental OFS of 8.9 Å). This suggests that the most stable states 

during the nucleotide-bound OFS classical MD simulations were somewhat less extreme than 

the experimental OFS structure (PDB 6HBU).  

Interestingly, in the case of the ATP-Mg2+-bound transporter, a steady state was present 

where one of the ATP-binding site distance d(88,190’) was around 20 Å (SI Figure S8D). Similar 

distances exist in the ATP-bound IFS structures in the presence of E1S and topotecan (an 

exogenous substrate), which are 20.3 Å and 20.5 Å, respectively (PDB ID 7OJI and 7OJ8) (Yu et 

al., 2021). It is unclear whether physiologically the ATP-bound OFS is a state with high 

probability (as the ATPs might be hydrolyzed upon the translocation of the substrate). Our 

results and the available experimental structures suggest that the sole presence of the ATPs 

may determine the openness of the NBD dimer.  

Furthermore, we argue that contrary to cavity 1, cavity 2 is never fully collapsed, at any 

stages of the transport cycle even though experiments suggest that it can get occluded 

(Manolaridis et al., 2018, Goebel et al., 2021, Taylor et al., 2017, Jackson et al., 2018). Its volume 

shows inflating-deflating variations between the IFS and OFS states, predominantly due to the 

rearrangements of the loop regions connecting TM5 and TM6. However, cavity 2 is more 

voluminous than cavity 1 even in its deflated state. The restraining region in cavity 2 is the 

passage between the upper tips of TM3 and TM3’ (residues 420-425). However, this opening 

shows a high overlap of a large fluctuation between the IFS and the OFS (SI Figure S9, the 

average is 7.3 Å and 6.2 Å, the standard deviation is 1.41 Å and 1.39 Å for the IFS and OFS free 

MD simulations respectively). Moreover, our ketMD and subsequent free MD simulations 

showed that in the presence of E1S at this region, the minimum distance between TM3 and 

TM3’ can decrease to below 7 Å. This demonstrates that E1S, which is a bulky compound could 

pass through this passage and be present in cavity 2, even in the OFS. It also shows a sufficiently 
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large space for the substrate in cavity 2 throughout the entire transport cycle.  This may allow 

simultaneous substrate binding in cavities 1 and 2, resulting in an accelerated export 

mechanism. 

Prior to our ketMD simulations, we also performed Normal Mode Analysis (NMA) of all 

the IFS and OFS systems and calculated the fluctuations of the previously discussed distances 

at 300 K, according to Equation C.2 (see Materials and Methods), which we derived from the 

classical formula of harmonic approximation to the amplitudes of atomic vibrations (Levy and 

Karplus, 1979, Levy et al., 1982). We found that the fluctuations of d(88,190’) and d(190,88’) 

are both significantly damped in the OFS systems compared to the IFS (SI Figure S10). Visual 

inspection of the corresponding NMs also revealed that such fluctuations correspond to global 

transition-like motions in the IFS systems whereas they are local motions of higher frequencies 

in the OFS systems. Based on the harmonic approximation of NMs, we conclude that it is 

energetically costly to start transition 2 to return to the initial IFS, which may require the energy 

released upon ATP hydrolysis, supporting the suggestion for the mechanism by Manolaridis et 

al. (Manolaridis et al., 2018). 

3. Materials and Methods 

3.1. Transporter structure preparation 

All simulations were performed using the human homodimer ABCG2. Cryo-EM structures from 

the Protein Data Bank were taken as starting coordinates, entry 6HCO (Manolaridis et al., 2018) 

(IFS, E1S-bound) and 7OJ8 (IFS, ATP- and E1S-bound) for the IFSs, and 6HBU (Manolaridis et al., 

2018) (OFS, ATP-Mg2+-bound) for the OFSs. The different structural elements of ABCG2 are 

presented in SI Table S3. The structures PDB 6HCO and 6HBU were solved with the E211Q 

mutation, which in this study was reverted to the wild type using CHARMM-GUI (Jo et al., 2008). 

The human-specific 5D3 antibody (Fab) molecules were removed from the structure. The 

missing loop regions in the NBDs (residues 47-60, 302-327, 355-371) were modelled using the 

DaReUS-Loop web server (Karami et al., 2019), and the missing C-terminal S655 was built from 

the internal coordinate table of CHARMM (Brooks et al., 2009). The first 34 missing N-terminal 

residues were neglected in all our simulations. Disulfide bridges were set between C592 and 

C608 in each subunit, and between C603 residues linking the two subunits. The PPM web server 

(Lomize et al., 2012) was used to determine the orientation of the transporter within the 

membrane. The pKa values of the protein titratable groups were calculated with PROPKA 

(Sondergaard et al., 2011), and protonation states were assigned at pH 7.0 outside, and pH 4.0 

inside the membrane. The parameters of the substrate E1S molecule were determined using 

the CHARMM General Force Field (CGenFF) 2.5 (Vanommeslaeghe et al., 2010). 

Multiple systems were constructed starting from the experimental IFS and OFS 

structures. Using PDB 6HCO an apo IFS (by removing E1S from cavity 1), a single substrate-

bound IFS, and a substrate- and ATP-Mg2+-bound IFS transporter (by taking the ATP-Mg2+ 

positions after overlapping the backbone residues 80-94 of 6HCO on 6HBU (RMSD of 0.6 Å), SI 

Figure S11). An additional ATP-Mg2+-bound IFS transporter was constructed using PDB 7OJ8. 

Furthermore, using the structure PDB 6HBU an ATP-Mg2+-bound OFS, an ADP-bound OFS (by 
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cleaving away the γ-phosphates of the ATPs in silico and removing the Mg2+ ions), and an OFS 

transporter with no nucleotides bound (by removing both the ATPs and the Mg2+ ions, see SI 

Table S1 for details).  

The PPM-oriented structures were inserted into a lipid bilayer composed of 

dimiristoylphosphatidylcholine (DMPC) with 20% cholesterol (CHOL) following the work of 

Ferreira et al. (Ferreira et al., 2017) and the TIP3-solvated systems were generated by 

CHARMM-GUI. The NaCl concentration was set to 0.15 M.  

Each system was energy minimized by alternating 250 steps Steepest Descent (SD) and 

250 steps of Adopted Basis Newton-Raphson (ABNR) minimization, 10 times each. This was 

followed by 10000 Conjugate Gradient (CONJ) steps. The minimization steps were performed 

with CHARMM (Brooks et al., 2009) using the all-atom additive CHARMM C36m (Huang et al., 

2017) force field (FF), with harmonic constraints applied to the backbone (10 kcal/mol/Å2) and 

the side chain (5 kcal/mol/Å2) heavy atoms. 

The systems were then equilibrated at 300 K with progressively decreasing harmonic 

restraining force constants (every 100 ps) by adopting the values 10, 5, 2.5, 1, 0.5, 0.1 

kcal/mol/Å2 for the backbone heavy atoms and 5, 2.5, 1.25, 0.5, 0.25, 0.05 kcal/mol/Å2 for the 

side chain heavy atoms in an NVT ensemble. The pressure was set to 1 atm and the integration 

time step to 1 fs. Finally, a 5 ns NPT equilibration run was performed at 300 K, 1 atm, with an 

integration time step of 2 fs. Equilibration runs were performed with NAMD (Phillips et al., 

2020) using the C36m FF. Langevin dynamics was used for constant temperature control with 

a damping coefficient of 1 ps-1. Constant pressure was achieved using the Nose-Hoover method 

with a piston oscillation period of 50 fs and a piston oscillation decay time of 25 fs. For energy 

calculations, the dielectric constant was set to 1. The Particle Mesh Ewald (PME) method was 

used to calculate electrostatic interactions with a grid spacing of 1 Å or less having the order of 

6. The real-space summation was truncated at 12.0 Å, and the width of Gaussian distribution 

was set to 0.34 Å-1. Van der Waals interactions were reduced to zero by ‘switch’ truncation 

operating between 10.0 and 12.0 Å. 

3.2. Molecular Dynamics simulations 

Three, 100-ns-long classical Molecular Dynamics (MD) simulations with different initial velocity 

distributions were carried out on the systems that were also used in our ketMD simulations 

(the substrate- and ATP-Mg2+-bound IFS based on PDB 6HCO  and the OFS with no bound 

nucleotide based on 6HBU), using the same initial conformations as ketMD in order to compare 

the conformational space exploration of MD to the ketMD simulations. A single 100-ns-long 

MD simulation was carried out for the other four IFS and OFS systems listed previously. NAMD 

was used for all of these runs with the C36m FF. The integration time step was 2 fs, and the 

coordinates were saved every 10 ps. The same parameters were used as for the 5 ns NPT 

equilibration runs described above. Further 10 ns classical MD simulations were carried out 

starting from the transient conformations along transitions 1 and 2, generated by the ketMD 

simulations to identify transporter-substrate interactions along the translocation pathway. The 

systems with the transient conformations were first de-excited by releasing the excess kinetic 
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energy introduced along the excitation target direction for 10 ps before starting the classical 

MD simulations. This was achieved by applying a harmonic restraint potential along the target 

direction, allowing the fast dissipation of the excitation energy. The applied harmonic force 

constant was 1000 kcal/mol/Å2.  

3.3. Normal Mode Analysis 

Normal Mode Analysis (NMA) of each system was performed using the same C36m FF, starting 

from the equilibrated conformations. The lipid and solvent molecules were first removed. The 

potential energy of the transporter with the bound ligands was then energy minimized using 

the SD method with decreasing harmonic restraining potentials applied to the heavy atoms. 

The harmonic restraining force constants were decreased every 500 steps adopting the values 

10, 1, 0.1, and 0 kcal/mol/Å2. ABNR minimization followed until an RMS energy gradient of 10-

6 kcal/mol/Å was reached. The normal modes of the energy minimized structures were 

calculated using the iterative Mixed-Basis Diagonalization (DIMB) routine (Mouawad and 

Perahia, 1993, Perahia and Mouawad, 1995) of the VIBRAN module in CHARMM.  

3.4. Kinetically excited targeted MD 

We implemented a method, kinetically excited targeted MD (ketMD), to simulate the 

conformational transitions between the IFS and the OFS. Our concept relies on the MDeNM 

method (Costa et al., 2015), designed to enhance the conformational exploration of proteins. 

Similar to MDeNM, ketMD is based on kinetic excitations. In each excitation cycle, the velocity 

components pointing from the instantaneous conformation to the target are increased at the 

first step of the MD simulation. Then, the injected kinetic energy dissipates during a relaxation 

period while no external perturbation is introduced, and the system progresses. The kinetic 

excitation corresponded to an overall temperature rise of 2 K in the systems (as was suggested 

by Kaynak et al. (Kaynak et al., 2022) for MDeNM). As the excitation kinetic energy dissipates 

rapidly (in less than 1 ps (Costa et al., 2015, Floquet et al., 2015)), 40 consecutive excitation 

cycles were performed, each containing a 5 ps relaxation MD simulation. Thus, the total ketMD 

simulation time was 40 x 5 ps = 200 ps per system. We performed ketMD simulations with 

excitation applied also to the substrate, starting from the substrate-bound IFS. The velocity 

components of the substrate, perpendicular to the membrane surface pointing to the 

extracellular space, were also increased at the first step of the MD simulations in each 

excitation cycle, corresponding to an additional 0.5 K temperature rise of the given system. 

3.5. Free Energy Landscape (FEL) calculations 

FELs of the MD-generated conformations were calculated within the subspace of 

d(88,190’) vs. d(190,88’) and the Rgyr corresponding to cavities 1 and 2. The most populated 

state was used as a reference for calculating free energy differences. The free energy difference 

(ΔGα) of a given state α was determined by considering the probability of the occurrence of the 

states P(qα) and Pmax(q) given by the equation: 

∆𝐺𝛼 = −𝑘𝐵𝑇𝑙𝑛 [
𝑃(𝑞𝛼)

𝑃𝑚𝑎𝑥(𝑞)
]  (C.1) 



Results  ABCG2 

148 

where kB is the Boltzmann constant, T is the temperature of the simulation, P(qα) is an estimate 

of the probability density function obtained from the bi-dimensional histogram of the 

conformational distribution, and Pmax(q) is the probability of the most populated state. The free 

energy differences should be considered here as entropic quantities reflecting the populations 

in terms of energy. 

3.6. Distance RMSF in NMs 

The harmonic approximation to the amplitudes of inter-atomic distance vibration contributions 

by the different NMs at a given temperature was calculated by evaluating the equation: 

〈∆𝒅𝑝,𝑞,𝑖
2 〉 =

𝑘𝐵𝑇

𝜔𝑖
2 ‖

𝒆𝑞,𝑖

√𝑚𝑞
−

𝒆𝑝,𝑖

√𝑚𝑝
‖

2

  (C.2) 

where d(p,q,i) is the instantaneous distance vector between atom p and q in the ith NM, kB the 

Boltzmann constant, T the absolute temperature of the system, ωi the frequency of the ith NM, 

e(p,i) and e(q,i) the mass-weighted displacement vectors of atom p and q in in the ith NM, and mp 

and mq the mass of atoms p and q, respectively. 

3.7. Interaction Energies 

The interaction energy (Eint) between two groups of atoms was calculated as a sum of pairwise 

non-bonded electrostatic and van der Waals energies. For the energy calculations CHARMM 

was used with a distance dielectric constant of 2. The interactions were calculated by 

considering the atoms of the substrate and a given transporter residue. The energy values 

reported are statistical averages of the given Eint calculated among the conformations retrieved 

from the free MD simulations. 

4. Conclusions 

In this study, we developed and employed an innovative enhanced MD simulation approach, 

termed ketMD (kinetically excited targeted Molecular Dynamics), which uses kinetic excitation 

to promote protein movements corresponding to large conformational changes towards a 

specified target structure, without biasing the potential energy function. With the help of 

ketMD, we successfully simulated the conformational transitions of the ABCG2 transport cycle, 

and revealed the complex molecular mechanism of the physiological E1S substrate 

translocation. We observed a valve-like function of residues that initially engage in stacking 

interactions against the substrate in cavity 1 (F439 and F439’). We found that they prevent 

backwards movements of the substrate towards the cytosol once it escapes their grasp and 

moves towards the leucine gate. We also identified a pocket-like construction between this 

valve and the leucine gate, where the substrate is stabilized before it moves to cavity 2. 

Furthermore, using MD simulations and NMA of the different transport stages, we have 

shown that the presence of the substrate in cavity 1 is essential to couple the movements 

between the NBDs and the TMDs. Additionally, we observed that cavity 2 was never completely 

collapsed, at any stages of the transport cycle. Therefore, we hypothesize that simultaneous 

substrate binding in cavity 1 and 2 may occur, which could result in an accelerated export 

mechanism. 
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Finally, the harmonic approximation of the ABCG2 dynamics by NMA revealed that low 

frequency global transition-like motions exist in the IFS but were absent in our calculations for 

the OFS transporter, where partial transition-like movements are present but are more 

localized and of higher frequencies. Accordingly, our results further support previous 

assumptions that transition 2, starting from the OFS transporter, is energetically costly and 

ABCG2 requires the energy released upon ATP hydrolysis to return to its initial IFS. 

Our observations shed new light on the complex molecular mechanism of the ABCG2 

transport, and the results highlighted the utility of including enhanced in silico sampling 

techniques, such as ketMD, in transporter studies. In the future, the provided transition 

pathways can help to identify novel ABCG2 substrates and inhibitors, and probe new drug 

candidates for MDR and DDI. 
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IV. Conclusions and Perspectives 

 

 

„Ah vége, vége! Vagy ki tudja? Diák marad az ember, amíg él, 

Leckéjét a sírig tanulja: Nehezebbet folyvást a réginél!” 

“Oh, finally it’s over. Or is it? You’re a student for as long as you live, 

Learning lessons till the very end: one harder than the one before.”  

Reviczky Gyula  
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Drug metabolizing enzymes and transporters are important mediators in a variety of biological 

processes related to the action and safety of drugs. Drug elimination through metabolism and 

excretion is a complex process as was demonstrated in the previous chapters and is governed 

by drug metabolizing enzymes and drug transporters. The prediction of the fate of 

administrated drugs in the human body remains a challenging task that has long relied on 

expensive animal studies also raising concerns of ethical aspects and reliability. Therefore, an 

increasing number of computational approaches have been involved in order to efficiently 

predict the metabolic outcome of drugs and new drug candidates. Several studies have created 

prediction models using ligand-based or structure-based information, and in 2013, the host 

laboratory trained the first machine learning classification models that integrated ligand- and 

structure-based information for the prediction of the inhibition of different SULT isoforms, and 

later for CYP enzymes. Understanding the collective functional movements of the proteins and 

their interactions with small ligands is a crucial step in extracting structure-based information 

for such prediction models.  

In my PhD work, I have focused on two essential phase II DMEs, SULT1A1 and UGT1A1, 

as well as on the drug efflux transporter ABCG2. My research addressed both the dynamics of 

the different proteins and their interactions with small molecules. This also included 

methodological developments, such as an enhanced molecular dynamics simulation tool and 

different prediction tools through the integration of structure-based and machine learning 

modeling. 

Classical MD simulations and MD in combination with Normal Modes (MDeNM) were 

performed on SULT1A1 in order to elucidate the molecular mechanisms guiding the recognition 

of diverse substrates and inhibitors by the enzyme. MDeNM, being a multi-replica protocol 

designed to enhance conformational exploration in a subspace defined by a set of low-

frequency NMs, allowed the exploration of an extended conformational space of the cofactor-

bound SULT1A1, inaccessible by classical MD on the simulated timescale. Then I performed 

docking of the substrate molecules, estradiol and fulvestrant, on the generated enzyme 

conformational ensemble, and the results of the docking and subsequent classical MD 

simulations on the complexes demonstrated that large conformational changes of SULT1A1 

could occur even in the presence of the cofactor, and that more widely open conformations 

can accommodate a large substrate like fulvestrant with higher affinity. The conformational 

exploration revealed that the loops L1, L2, and L3 exhibit an extremely high flexibility in the 

presence of the cofactor and the results of the docking simulations of a set of known substrates 

and inhibitors suggested that such significant structural adaptations may be sufficient to 

accommodate large ligands. Previously it was suggested that PAPS binding restricts the access 

for larger substrates to SULT1A1. However, the results presented in the thesis demonstrated 

that large conformational changes of SULT1A1 could occur even in the presence of the cofactor 

and SULT1A1 can accommodate large ligands independently of the cofactor movements. 

Altogether, my work shed new light on the complex mechanisms of substrate specificity and 

inhibition of SULT1A1, and has highlighted the utility of including MDeNM in protein-ligand 
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interactions studies where major rearrangements are expected. The generated conformations 

can be efficiently used to train in silico prediction models with even higher accuracy for larger 

molecules. 

Structure-based modeling and ligand-based information were integrated to build the 

first machine learning prediction models of UGT1A1 inhibition. In my PhD work, I performed 

molecular dynamics simulations of the enzyme starting from a human homology model in the 

presence of the cofactor to explore the structural variability of the catalytic site, and observed 

significant flexibility, important for the accommodation of the diverse ligands. RMSD-based 

clustering of the generated conformational ensemble enabled me to extract a set of diverse 

representative enzyme conformations. They were used in docking simulations of a set of known 

substrates and inhibitors together with decoys, which helped to identify six conformations that 

can efficiently differentiate between actives and decoys. The loop regions in the substrate-

binding cavity of these enzyme conformations exhibited highly different configurations, 

nevertheless the catalytically essential residues displayed conserved relative positions and a 

sub-pocket close to the catalytic site was detected that may be important for the wide 

substrate recognition. Machine learning models were then created using Random Forest and 

Support Vector Machine algorithms which integrated a rational selection of ligand-based 

descriptors together with information on enzyme-ligand interactions. The trained models 

showed excellent performance and were implemented in the DrugME software. DrugME can 

be efficiently used to identify new UGT1A1 inhibitors and can be helpful for the prediction of 

drug-drug interactions of new drug candidates and safety treatments while they also provide 

structural information on enzyme-ligand interactions. 

In the part of my PhD work focusing on ABCG2, I have developed an innovative 

enhanced MD simulation technique, termed ketMD (kinetically excited targeted Molecular 

Dynamics) which uses kinetic excitation to promote protein movements corresponding to large 

conformational changes towards a specified target structure, without biasing the potential 

energy function. I employed ketMD to simulate the ABCG2 transport cycle together with the 

translocation of the physiological substrate, estrone 3-sulfate. With the help of ketMD, I 

successfully simulated the conformational transitions between the two extreme states of 

ABCG2 and revealed the complex molecular mechanism of the E1S substrate translocation. I 

observed a valve-like function of two phenylalanine residues (F439 and F439’) in cavity 1 that 

initially engage in stacking interactions against the substrate. The closure of the valve prevented 

backwards movements of the substrate towards the cytosol, and I identified crucial interactions 

along the translocation pathway. Classical MD simulations and Normal Mode Analysis revealed 

that the presence of the substrate in cavity 1 is necessary to couple the movements of the 

transmembrane domain to the nucleotide-binding domain. I also observed that cavity 2 was 

never completely collapsed, at any stages of the transport cycle which might enable 

simultaneous substrate binding in cavities 1 and 2 and accelerate the export rate of the 

transporter. The work on ABCG2 shed new light on the complex molecular mechanism of its 

transport and highlighted the utility of including enhanced in silico sampling techniques, such 
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as ketMD, in transporter studies. In the near future, the generated conformations along the 

transition pathway will be used to develop new machine learning models for the prediction of 

ABCG2 inhibitors and substrates in order to probe new drug candidates for multi-drug 

resistance and predict drug-drug interactions. 

During the three years of my PhD work I had the great chance to deepen my knowledge 

in the biology of drug metabolism, elimination, and drug-drug interactions and also in the 

application and development of new in silico approaches to study the enzymes and 

transporters that govern these complex processes. The observations and results of the work 

presented in the thesis contribute to the better understanding of the molecular mechanisms 

of phase II metabolizing enzymes and ABC transporters, and their interactions with ligands. In 

particular, the DrugME software that now incorporates the developed predictive models 

integrating structure-based and machine learning modeling will greatly contribute to the future 

predictions of drug-drug interactions. 



 

 

 

V. References 

 

 

„Most, mikor ugyanúgy, mint mindig, 

legfőbb ideje, hogy.”  

“Now, it is the same as ever. 

It’s high time that…” 

Tandori Dezső  
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VI. Appendix 

 

 

„Az utolsó csepp nem tehet róla, hogy éppen ő az utolsó csepp,  

hiszen amúgy semmiben sem különbözik az előző cseppektől.” 

“The last drop cannot be blamed for being the last, 

it differs not from the rest.” 

Mérő László 
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H. Substantial summary in English 

Title: Molecular mechanisms of phase II metabolizing enzymes and ABC transporters, and their 

interactions with small molecules modeled through structure-based and machine learning 

methods 

Key words: drug metabolizing enzymes, SULT, UGT, ABC transporters, BCRP, ABCG2, efflux 

mechanism, conformational exploration, molecular dynamics, normal modes, docking, machine 

learning 

1. Introduction 

Drug discovery and development are expensive and slow processes. A major challenge 

associated with the identification of promising drug candidates is to find a good balance 

between the required efficacy, selectivity, and affinity against their intended therapeutic target 

while at the same time showing appropriate absorption, distribution, metabolism, excretion, 

and low toxicity (ADME-Tox) properties. The complex process of drug elimination is governed 

by drug metabolizing enzymes (DMEs) and drug transporters. Xenobiotics and endogenous 

compounds that should be eliminated from the human body can undergo phase I and/or phase 

II metabolism and then be excreted by efflux transporters, DMEs and efflux transporters 

modulate the intracellular bioavailability and pharmacokinetics of drugs and other xenobiotics. 

Furthermore, the inhibition of DMEs and drug transporters, possibly involved in drug-drug 

interactions, can directly increase intracellular toxicity while the formation of reactive or toxic 

metabolites are also a safety liability. 

1.1. Phase I drug metabolism 

Phase I metabolism (functionalization) primarily includes oxidation. Phase I DMEs aim to 

unmask a polar functional group on their substrates. In case the phase I metabolite is 

hydrophilic enough it may get directly eliminated. Otherwise, a consecutive conjugation 

reaction step can be catalyzed by phase II DMEs. The most important phase I DMEs belong to 

the cytochrome P450 superfamily that is capable of catalyzing the oxidative biotransformation 

of most drugs and other lipophilic xenobiotics.  

1.2. Phase II drug metabolism 

Phase II metabolism (conjugation) links a relatively large endogenous polar group to diverse 

types of compounds, generally creating water-soluble products with increased molecular 

weight which can be excreted in bile or urine. Sulfation and glucuronidation are two major 

phase II reactions. The resulting metabolites are typically of reduced membrane permeability, 

consequently their excretion is coupled to active drug transporters. In most cases conjugation 

reactions terminate the biological activity of drugs. However, reactive conjugated metabolites 

have also been reported. Phase II metabolism can follow the unmasking of a polar functional 

group by phase I DMEs, however, numerous compounds can be directly conjugated without a 

preceding phase I reaction.  
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Xenobiotic sulfation reactions are catalyzed by the cytosolic sulfotransferase enzymes 

(SULTs) that transfer the sulfonate group from the cofactor 3′-Phosphoadenosine 5′-

Phosphosulfate (PAPS) to a hydroxyl or amino group of their substrates. The major enzyme 

responsible for xenobiotic sulfonation is the widely expressed SULT1A1.  

The primary sugar conjugation route in humans is glucuronidation which is catalyzed by 

uridine 5’-diphosphate-glucuronosyltransferases (UGTs) that transfer the glucuronic acid from 

the cofactor uridine-diphosphate glucuronic acid to nucleophilic substrates. The isoenzyme 

UGT1A1 is of particular importance, given its exclusive role in the glucuronidation, and 

therefore the detoxification of the endogenous heme breakdown byproduct bilirubin together 

with the glucuronidation of a number of xenobiotics and drugs of clinical interest.  

1.3. Drug transporters 

Transporters present embedded in the plasma membrane of cells mediate the uptake of 

endobiotic and xenobiotic molecules from the extracellular space and the elimination of toxic 

waste from the cytosol. Drug transporters have been identified to influence drug disposition 

and be involved in drug-drug interactions (DDI) of a large number of drugs and drug candidates 

as well as to contribute to the multidrug-resistance phenotype of tumor cells. Mechanistically, 

most drug transporters can be classified as either solute carrier (SLC) transporter or ATP-

binding cassette (ABC) transporter. Most SLC transporters are influx transporters, among their 

substrates there are sugars, amino acids, vitamins, nucleotides, metals, inorganic ions, organic 

anions, oligopeptides, and drugs. SLC transporters are either passive facilitative transporters or 

secondary active transporters. As opposed to that, ABC transporters bind ATP and harvest the 

energy of ATP hydrolysis in order to selectively translocate a variety of substrates across 

membranes. The ABC transporter superfamily represents the largest family of transmembrane 

proteins and in eukaryotes they primarily function as exporters. ABCB1, ABCG2, and members 

of the ABCC subfamily have been proven to be involved in the development of multidrug 

resistance and drug-drug interactions. In particular, ABCG2 (BCRP) is a key player in preventing 

the absorption of toxic compounds from the gut, and it also plays an essential protective role 

at different tissue barriers like the maternal-fetus barrier, the blood-brain barrier (BBB), and 

the blood-testis barrier. ABCG2 transports a wide variety of drugs and also many phase II 

metabolites such as sulfate or glucuronide conjugates. The exact mechanisms of the ABC 

transporter-mediated substrate translocation are not fully understood. 

2. Methods 

Computational modeling of proteins and their interactions with ligands is of increasing 

importance in drug discovery and development. Both ligand-based methods that are based on 

already known ligands, as well as structure-based methods in case the structure of the target 

protein (or a similar one) is known, can be used to identify substrates or inhibitors. In silico 

modeling of the structures and dynamics of proteins requires a model of interatomic 

interactions. Different force fields are used to define the potential energy as a function of 

atomic coordinates. Most commonly used semi-empirical forcefields include bonded terms for 

bond stretching, bond bending, and bond torsion, and nonbonded terms for van der Waals and 
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electrostatic interactions. Energy minimization aims to reach conformations of low potential 

energy by identifying the local minimum closest to the starting structure.  

However, to provide a proper description of the conformational population, free 

energies need to be estimated so that a combination of low energy and high entropy can be 

ensured. Molecular dynamics simulations solve Newton’s equations of motion iteratively 

thereby creating a time-dependent conformational trajectory. As opposed to energy 

minimization, molecular dynamics is capable of crossing energy barriers and reaching states 

with lower free energy. Several simulation tools aim to overcome the time limitations of 

classical all-atomic molecular dynamics, such as metadynamics, conformational flooding, 

accelerated MD, or targeted MD. Another way is to use coarse-grained models rather than 

including full atomistic details.  

Normal mode analysis can be efficiently used for identifying and describing the slowest 

intrinsic motions of macromolecules, which in nature, generally correspond well to collective 

functional movements. Normal mode analysis relies on the harmonic approximation of the 

potential energy function around a given local minimum.  

In the modeling of protein-ligand interactions, molecular docking simulations can be 

efficiently used to identify binding sites and poses for ligands, and predict binding affinities. 

Docking simulations approximate true physical energies with simplified energetics and 

solvation, they generate and rank protein-ligand configurations by using different search 

algorithms and scoring functions.  

Given a training data set of compounds with known activity, ligand- and structure-based 

features can be used to train machine learning prediction models for classification (or 

regression). Random forest and support-vector machine are widely used examples of 

supervised machine learning algorithms, they can be efficiently used to distinguish between 

active and inactive compounds of a given target protein. 

3. Objectives 

One of the major reasons for drug candidate failure is due to problems related to 

pharmacokinetics/pharmacodynamics during clinical trials. In silico prediction of interactions 

with DMEs and drug transporters that govern the pharmacokinetics of xenobiotics can help 

reduce the rate of drug candidate failure at an early drug development stage, also reducing 

associated costs and can help decrease the number of animal tests. In my PhD work I have 

focused on two phase II DMEs, SULT1A1 and UGT1A1, as well as on an essential drug efflux 

transporter, ABCG2. 

The objective of my PhD work has been to decipher the functional movements encoded 

in the above listed proteins with the help of different simulation approaches, to identify the 

effects of ligand binding on their dynamics and functional collective movements, and ultimately 

to create in silico predictive machine learning models capable of distinguishing between 

inhibitors and inactive compounds with respect to the target proteins. 
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4. Results 

4.1. Substrate binding mechanism of SULT1A1 

It has been previously suggested that a considerable shift of SULT structure caused by PAPS 

binding could control the capability of SULT to bind large substrates. In order to elucidate 

molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1, 

molecular dynamics (MD) simulations and the recently developed approach of MD with excited 

normal modes (MDeNM) were performed in the presence of the cofactor (PAPS). MDeNM 

simulations enable an extended sampling of the conformational space by running multiple 

short MD simulations during which motions described by a subset of low-frequency Normal 

Modes are kinetically excited. Root mean square deviation analysis calculated on the binding 

pocket and the whole protein revealed that MDeNM performed a more exhaustive 

conformational sampling of the SULT1A1 binding pocket than the classical MD simulations 

while maintaining the protein’s overall structure closer to the initial crystal structure. Root 

mean square fluctuation analysis of the Cα atoms revealed that MDeNM particularly magnified 

motions related to the loops L1 and L3, and moderately related to L2, the three loops forming 

the gate to the binding pocket. Fluctuations at the tips of the loops L1 and L3  are double in the 

case of MDeNM compared to classical MD simulations, indicating that MDeNM explores the 

gating motions to a greater extent. L1 exhibited a larger fluctuation than L3 by both MD and 

MDeNM, implying its involvement in the gating mechanism as was earlier proposed. Analysis 

of the gate opening revealed that MDeNM reached considerably more widely open 

conformations whereas MD mapped densely populated tightly closed states.  

To gain insight into the mechanism of SULT1A1-ligand interactions, the docking of 132 

known substrates or inhibitors was performed into the binding pocket of the centroid 

conformations collected by MD and MDeNM after clustering. Many ligands expressed similar 

docking behavior into the MD and MDeNM set of conformations in terms of interaction energy 

(IE), for some ligands, however, considerable differences were observed. Most of these 

compounds showed a more favorable IE when docked to the MDeNM set of conformations, 

demonstrating the benefit of including the MDeNM simulations in addition to MD. In particular, 

the assessment of ligands for which there was a significant difference between MD and 

MDeNM revealed that most of the compounds for which MDeNM performed better were of 

big size, occupying a large volume in the binding pocket, and their poses corresponding to the 

best IE were accommodated within widely open enzyme conformations that were poorly 

populated or even not accessible by classical MD simulations.  

Two substrates of different sizes were used in additional docking simulations to further 

investigate the gating mechanism and substrate recognition of SULT1A1. The substrate 17β-

estradiol (E2) is a smaller, medium-sized substrate while fulvestrant, an estrogen analogue, is a 

larger substrate of SULT1A1, with an additional 15-atom long functional sidechain, both 

substrates were docked into 6000 conformations reached by MD and 6000 other 

conformations generated by MDeNM. MD and MDeNM conformations were capable of 

accommodating E2, regardless of their openness which agrees with previous kinetic and 
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binding studies showing that E2 can bind to open and closed conformations of the enzyme. 

Fulvestrant showed an obvious preference toward open conformations. The most favorable 

docking positions of E2 and fulvestrant were further analyzed and were found to be stable by 

consecutive classical MD simulations starting from the enzyme-cofactor-substrate complexes. 

MD simulations in the presence of estradiol and fulvestrant showed the induced further 

opening of the loops in the presence of the bound substrate. Both MD and MDeNM results 

confirmed that open conformations are available for big ligands (such as fulvestrant, 4-

hydroxytamoxifen, or raloxifene) to bind even in the presence of the bound cofactor. Thus, our 

results proposed a new mechanism for large substrate recognition without implicating a 

movement of the cofactor to trigger large-substrate binding. 

4.2. Prediction of UDP-glucuronosyltransferase inhibition 

Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in 

disorders of the endobiotic metabolism. In order to address the degree of structural flexibility 

and the conformational adaptation of its binding pocket in light of the structural variety of the 

diverse active compounds, molecular dynamics simulations were performed starting from a 

human homology model in the presence of the cofactor (UDPGA). Root mean square deviation 

analysis demonstrated that all three MD runs quickly diverted from the initial conformation 

reaching relatively high differences. Larger interdomain opening-closing motions were revealed 

by the radius of gyration analysis and visual inspection of the trajectories. The substrate-binding 

pocket volume itself was found to significantly vary during the simulations, in some 

conformations the volume reached 1.5 to 2 times the size of the starting structure. The large 

variations in the substrate-binding pocket volume and the opening towards the lumen can 

facilitate access to the catalytic site and accommodate the diverse substrates. 

Known ligands of UGT1A1, substrates and inhibitors, were collected to be used for 

docking and to build training and external test datasets for machine learning modeling. 

Ensemble docking of the active and decoy molecules of the training set was performed on the 

centroid conformations collected by MD after clustering to identify protein conformations best 

distinguishing between active and inactive compounds. Using the best retained IE for each 

compound, enrichment curves were calculated for each protein centroid protein conformation, 

six of which were kept for the machine learning modeling and the corresponding IE docking 

scores were used as protein-ligand interactions-based descriptors. The identified protein 

conformations exhibited large flexibility at their substrate-binding pockets, key residues for the 

catalytic reaction remained less flexible, and kept their orientation within the binding pocket.  

Physicochemical molecular descriptors of the active compounds and decoys were 

calculated, and highly correlated descriptors together with descriptors of near null variance 

were removed, and the six IE scores retrieved from the docking simulations were included as 

structure-based descriptors accounting for the protein-ligand interactions. A reduction in the 

number of descriptors was performed based on their relative importance in order to avoid 

overfitting after training a number of random forest models on the training dataset and 

selecting the subset of descriptors with the highest Gini importance. A total of 56 ligand-based 
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descriptors and the 6 IE were kept for further model building, the most important descriptors 

were related to polarity, lipophilicity, and charges. Random forest (RF) and support vector 

machine (SVM) algorithms were used to create optimized prediction models integrating ligand- 

and structure-based information, optimizing the corresponding model hyper parameters. The 

RF and SVM models showed excellent predictive powers for the discrimination of the UGT1A1 

active molecules with an accuracy and sensitivity of around 90 %. These are the first machine 

learning models created for the prediction of UGT1A1 inhibition, they can be helpful for the 

prediction of drug-drug interactions of novel drug candidates while also providing structural 

information on enzyme-ligand interactions. 

4.3. ABCG2 transport mechanism 

ABCG2 is of major interest due to its involvement in multidrug resistance (MDR), and 

understanding its complex efflux mechanism is essential to preventing MDR and drug-drug 

interactions (DDI). ABCG2 export is characterized by two major conformational transitions 

between inward- and outward-facing states (IFS and OFS), the structures of which have been 

resolved. Yet, the entire transport cycle has not been characterized to date. In order to 

elucidate the transport mechanism of ABCG2 and its behavior in the different transport stages, 

different simulations were performed starting from available cryo-EM structures in its IFS and 

OFS. In the IFS, the two nucleotide-binding domain (NBD) monomers are partially separated 

while in the OFS they form a tightly-packed dimer establishing the two nucleotide-binding sites. 

The transmembrane domain (TMD) pair forms the slit-like hydrophobic cavity 1, where 

physiological substrates and various inhibitors have been proven to bind, and cavity 2 which 

faces the extracellular space. Cavity 1 is collapsed in the OFS, the two cavities are separated by 

a leucine gate.  

First, the missing intracellular loop regions within the NBDs were modeled since they 

are likely to affect the substrate entry and may possess a gating function. Similarly, the linker 

segment was also modeled connecting the individual NBDs and TMDs. Multiple systems were 

constructed from the experimental IFS and OFS structures in the presence or absence of a 

physiological substrate (estrone 3-sulfate, E1S) and nucleotides (ATPs or ADPs) to mimic the 

different transport stages:  

• Apo IFS 

• E1S-bound IFS 

• E1S- and ATP-Mg2+-bound IFS 

• ATP-Mg2+-bound OFS 

• ADP-bound OFS 

• Nucleotide-free OFS 

Molecular dynamics (MD) simulations embedded in a lipid bilayer and normal mode analysis 

(NMA) were performed on the above six systems. The timescale of a complete transport cycle 

of ABCG2 falls in a range of a fraction of seconds or beyond, a timeframe that currently cannot 

be simulated by classical MD. Therefore, I developed an enhanced MD simulation tool, 
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kinetically excited targeted MD (ketMD) that traces possible pathways between two terminal 

structures, and I applied it to ABCG2 to simulate conformational transitions between its IFS and 

OFS. Similarly to targeted MD (tMD), the excitation vector was chosen to point towards the 

target structure, however, unlike tMD, where the potential energy function is biased and the 

protein is guided by steering forces at each simulation step, ketMD relies on kinetic excitations. 

At the first step of each excitation cycle, the velocity components pointing from the 

instantaneous conformation to the target structure are increased, allowing the crossing of 

larger energy barriers. This excitation step is followed by a relaxation period where no external 

perturbation is applied, the system can evolve, and the injected kinetic energy dissipates. After 

each excitation cycle, the excitation direction vector is updated to point from the instantaneous 

conformation to the target structure.  

Transition 1 (IFS to OFS) was simulated starting from the E1S- and ATP-Mg2+-bound IFS, 

whereas transition 2 (OFS to IFS) from the OFS without bound substrates and in the presence 

of ATP-Mg2+, ADP, or in the absence of bound nucleotides. Root mean square deviation analysis, 

the monitoring of a catalytic distance-pair, and visual inspection confirmed that a full NBD 

dimerization was successfully achieved together with the catalytic ATP-binding site formation 

during the ketMD simulation of transition 1, whereas in the opposite direction, the NBDs got 

partially separated and a complete NBDs transition occurred during the ketMD simulations. 

During transition 2, detaching the NBDs at the ATP-binding site was more easily achieved in the 

absence of nucleotides, and most difficult in the presence of ATP.  

Radius of gyration analysis of the helical segments bordering the two cavities was 

performed to investigate their state during the simulations. By the end of the ketMD simulation 

of transition 1, cavity 1 was collapsed (identically to the OFS structure) while in the opposite 

direction, starting from a collapsed cavity 1, it became exposed again and accessible from the 

cytosol. Opposed to this, during the ketMD simulation of transition 1, cavity 2 became more 

exposed to the extracellular space and also more voluminous, while during the simulation of 

transition 2, starting from the OFS, cavity 2 approached a more deflated state.  

Experimental structures with a substrate bound to cavity 2, or transient structures along 

the translocation pathway have not been resolved. With the ketMD run starting from the IFS, 

it was possible to simulate the translocation of E1S from cavity 1 to the extracellular space 

through the leucine gate and cavity 2. In addition to the excitation applied to the transporter, 

the substrate motion was also kinetically promoted towards the extracellular space. The 

substrate was initially bound in cavity 1 stabilized mainly by the ‘sandwich-like’ stacking 

interactions of F439 and F439′. As soon as the substrate escaped from the ’sandwich-like‘ trap 

of the two F439 residues and moved towards cavity 2, F439 and F439′ came into close contact, 

creating a valve-like construction, similar to what is observed in the OFS cryo-EM structure. Any 

kind of return movement towards the cytosol was prevented with this valve closed and I 

identified a pocket-like formation between cavities 1 and 2, where the substrate was trapped 

as movements to cavity 2 still remained blocked by the closed leucine gate. Several residues at 

the edge of this site stabilized the position of the substrate, it only moved away from the pocket 
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once the residues of the leucine gate were separated. The substrate behavior in cavity 2 was 

very different from what was observed either in cavity 1 or between cavities 1 and 2. Before 

arriving at cavity 2, the substrate was tightly bound and closely surrounded by transporter 

residues. In contrast, the substrate was loosely bound here as it explored the cavity volume, 

making close contacts with residues at its boundary. The substrate’s further kinetic excitation 

resulted in its complete detachment from the transporter into the extracellular space.  

The classical MD simulations and normal mode analysis of the different transport stages 

revealed that the presence of the substrate in cavity 1 is essential to couple the movements 

between the NBDs and the TMDs. In the absence of a bound substrate and nucleotides (apo-

form), the TMDs approached a neutral configuration, cavity 2 opened while cavity 1 started 

collapsing, while the NBDs stayed far apart. Contrary to cavity 1, cavity 2 was never fully 

collapsed, at any stages of the transport cycle (during the ketMD and classical MD simulations) 

even though experiments suggest that it can get occluded. Its volume shows inflating-deflating 

variations between the IFS and OFS states, however, cavity 2 is more voluminous than cavity 1 

even in its deflated state. The ketMD and subsequent classical MD simulations demonstrated 

that E1S, which is a bulky compound, could be present in cavity 2, even in the OFS and they also 

showed a sufficiently large space for the substrate in cavity 2 throughout the entire transport 

cycle. This may allow simultaneous substrate binding in cavities 1 and 2, resulting in an 

accelerated export mechanism. 

The harmonic approximation of normal modes revealed that transition-like motions are 

present in the IFS corresponding to low frequencies, whereas they are damped and are local 

motions of higher frequencies in the OFS systems. This suggests that it is energetically costly to 

start transition 2 to return to the initial IFS, which may require the energy released upon ATP 

hydrolysis. 

5. Conclusions 

The prediction of the fate of administrated drugs in the human body remains a challenging task 

that has long relied on expensive animal studies also raising concerns about ethical aspects and 

reliability. Therefore, an increasing number of computational approaches have been involved 

in order to efficiently predict the metabolic outcome of drugs and new drug candidates. Several 

studies have created prediction models using ligand-based or structure-based information, and 

in 2013, the host laboratory trained the first machine learning classification models that 

integrated ligand- and structure-based information for the prediction of the inhibition of 

different SULT isoforms, and later for CYP enzymes. Understanding the collective functional 

movements of the proteins and their interactions with small ligands is a crucial step in 

extracting structure-based information for such prediction models.  

In my PhD work, I have focused on two essential phase II DMEs, SULT1A1 and UGT1A1, 

as well as on the drug efflux transporter ABCG2. My research addressed both the dynamics of 

the different proteins and their interactions with small molecules. This also included 

methodological developments, such as an enhanced molecular dynamics simulation tool and 
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different prediction tools through the integration of structure-based and machine learning 

modeling. 

Previously it was suggested that PAPS binding restricts the access for larger substrates 

to SULT1A1. Classical MD simulations and MD in combination with NMs (MDeNM) were 

performed in order to elucidate the molecular mechanisms guiding the recognition of diverse 

substrates and inhibitors by SULT1A1 in the presence of the cofactor, which was followed by 

docking simulations of known ligands. The results of the docking and subsequent classical 

molecular dynamics simulations on the complexes demonstrated that large conformational 

changes of SULT1A1 could occur even in the presence of the cofactor, and that more widely 

open conformations can accommodate a large substrate like fulvestrant with higher affinity. In 

addition to L3, the L1 loop region at the entrance to the catalytic site exhibited an extremely 

high flexibility which underlined their functional importance in the gating mechanism of 

SULT1A1. Altogether, my work shed new light on the complex mechanisms of substrate 

specificity and inhibition of SULT1A1, and has highlighted the utility of including MDeNM in 

protein-ligand interactions studies where major rearrangements are expected. The generated 

conformations can be efficiently used to train in silico prediction models with even higher 

accuracy for larger molecules. 

Structure-based modeling and ligand-based information were integrated to build the 

first machine learning prediction models of UGT1A1 inhibition. In my PhD work, I performed 

molecular dynamics simulations of the enzyme starting from a human homology model in the 

presence of the cofactor to explore the structural variability of the catalytic site, and observed 

significant flexibility, important for the accommodation of the diverse ligands. This was 

followed by conformational clustering. A set of known ligands, substrates and inhibitors, were 

collected and ensemble docking was performed to identify conformations that can efficiently 

differentiate between actives and decoys. Ligand-based descriptors were calculated. Finally, a 

reasonable selection of ligand-based descriptors together with the interaction energies 

retrieved from the docking were used to train the first machine learning models for the 

prediction of UGT1A1 inhibition. The trained models showed excellent performance and were 

implemented in the DrugME software. DrugME can be efficiently used to identify new UGT1A1 

inhibitors and can be helpful for the prediction of drug-drug interactions of new drug 

candidates while they also provide structural information on enzyme-ligand interactions. 

I have developed an innovative enhanced MD simulation technique, termed ketMD 

(kinetically excited targeted Molecular Dynamics) to simulate the ABCG2 transport cycle 

together with the translocation of the physiological substrate, estrone 3-sulfate. With the help 

of ketMD, I successfully simulated the conformational transitions between the two extreme 

states of ABCG2 and revealed the complex molecular mechanism of the E1S substrate 

translocation. I observed a valve-like function of two phenylalanine residues (F439 and F439’) 

in cavity 1 that initially engage in stacking interactions against the substrate. Classical MD 

simulations and Normal Mode Analysis revealed that the presence of the substrate in cavity 1 

is necessary to couple the movements of the transmembrane domain to the nucleotide-binding 
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domain. I also observed that cavity 2 was never completely collapsed, at any stages of the 

transport cycle which might enable simultaneous substrate binding in cavities 1 and 2 and 

accelerate the export rate of the transporter. The work on ABCG2 shed new light on the 

complex molecular mechanism of its transport and highlighted the utility of including enhanced 

in silico sampling techniques, such as ketMD, in transporter studies. In the near future, the 

generated conformations along the transition pathway will be used to develop new machine 

learning models for the prediction of ABCG2 inhibitors and substrates in order to probe new 

drug candidates for multi-drug resistance and predict drug-drug interactions. 

During the three years of my PhD work I had the great chance to deepen my knowledge 

in the biology of drug metabolism, elimination, and drug-drug interactions and also in the 

application and development of new in silico approaches to study the enzymes and 

transporters that govern these complex processes. The observations and results of the work 

presented in the thesis contribute to a better understanding of the molecular mechanisms of 

phase II metabolizing enzymes and ABC transporters, and their interactions with ligands. In 

particular, the DrugME software that now incorporates the developed predictive models 

integrating structure-based and machine learning modeling will greatly contribute to the future 

predictions of drug-drug interactions. 
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I. Résumé substantiel en français 

Titre : Mécanismes moléculaires des enzymes de métabolisme de phase II et des transporteurs 

ABC, et leurs interactions avec de petites molécules modélisées par des méthodes structurales 

et d'apprentissage automatique 

Mots clés : enzymes métabolisant des médicaments, SULT, UGT, transporteurs ABC, BCRP, 

ABCG2, mécanisme d'efflux, exploration conformationnelle, dynamique moléculaire, modes 

normaux, arrimage moléculaire, apprentissage automatique  

1. Introduction 

La découverte et le développement de médicaments sont des processus coûteux et lents. Un 

défi majeur associé à l'identification de candidats médicaments prometteurs est de trouver un 

bon équilibre entre l'efficacité, la sélectivité et l'affinité requises contre la cible thérapeutique 

visée, tout en présentant des propriétés appropriées d'absorption, de distribution, de 

métabolisme, d'excrétion et de toxicité (ADME-Tox). Le processus complexe d'élimination des 

médicaments est régi par les enzymes de métabolisation des médicaments (DME) et les 

transporteurs de médicaments. Les xénobiotiques et les composés endogènes qui doivent être 

éliminés du corps humain peuvent subir un métabolisme de phase I et/ou de phase II, puis être 

excrétés par des transporteurs d'efflux. Les DME et les transporteurs d'efflux modulent la 

biodisponibilité intracellulaire et la pharmacocinétique des médicaments et autres 

xénobiotiques. En outre, l'inhibition des DME et des transporteurs de médicaments, qui 

peuvent être impliqués dans des interactions médicamenteuses, peut augmenter directement 

la toxicité intracellulaire, tandis que la formation de métabolites réactifs ou toxiques constitue 

également un risque pour la sécurité. 

1.1. Métabolisme de phase I des médicaments 

Le métabolisme de phase I (fonctionnalisation) comprend principalement l'oxydation. Les DME 

de phase I visent à démasquer un groupe fonctionnel polaire sur leurs substrats. Si le 

métabolite de phase I est suffisamment hydrophile, il peut être directement éliminé. Sinon, une 

étape consécutive de réaction de conjugaison peut être catalysée par les DME de phase II. Les 

DME de phase I les plus importants appartiennent à la superfamille des cytochromes P450 qui 

sont capables de catalyser la biotransformation oxydative de la plupart des médicaments et 

autres xénobiotiques lipophiles.  

1.2. Métabolisme de phase II des médicaments 

Le métabolisme de phase II (conjugaison) lie un groupe polaire endogène relativement grand à 

divers types de composés, créant généralement des produits hydrosolubles de poids 

moléculaire accru qui peuvent être excrétés dans la bile ou l'urine. La sulfonation et la 

glucuronidation sont deux réactions majeures de la phase II. Les métabolites obtenus ont 

généralement une perméabilité membranaire réduite, et leur excrétion est donc couplée à des 

transporteurs de médicaments actifs. Dans la plupart des cas, les réactions de conjugaison 

mettent fin à l'activité biologique des médicaments. Cependant, des métabolites conjugués 

réactifs ont également été signalés. Le métabolisme de phase II peut suivre le démasquage d'un 
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groupe fonctionnel polaire par les DME de phase I, cependant, de nombreux composés peuvent 

être directement conjugués sans réaction de phase I préalable.  

Les réactions de sulfatation des xénobiotiques sont catalysées par les enzymes 

sulfotransférases cytosoliques (SULT) qui transfèrent le groupe sulfonate du cofacteur 3′-

Phosphoadénosine 5′-Phosphosulfate (PAPS) à un groupe hydroxyle ou amino de leurs 

substrats. La principale enzyme responsable de la sulfonation des xénobiotiques est la 

SULT1A1, largement exprimée dans le corps humain.  

La principale voie de conjugaison des sucres chez l'homme est la glucuronidation, 

catalysée par les uridine 5' diphosphate glucuronosyltransférases (UGT) qui transfèrent l'acide 

glucuronique du cofacteur acide uridine-diphosphate glucuronique aux substrats nucléophiles. 

L'isoenzyme UGT1A1 est particulièrement importante, étant donné son rôle exclusif dans la 

glucuronidation, et donc la détoxification de la bilirubine, sous-produit endogène de la 

dégradation de l'hème, ainsi que dans la glucuronidation d'un certain nombre de xénobiotiques 

et de médicaments d'intérêt clinique.  

1.3. Transporteurs de médicaments 

Les transporteurs présents dans la membrane plasmique des cellules médient l'absorption des 

molécules endobiotiques et xénobiotiques de l'espace extracellulaire et l'élimination des 

produits toxiques du cytosol. Les transporteurs de médicaments ont été identifiés comme 

influençant la disposition des médicaments et étant impliqués dans les interactions 

médicamenteuses (DDI) d'un grand nombre de médicaments et de candidats médicaments, 

ainsi que comme contribuant au phénotype de multirésistance des cellules tumorales. D'un 

point de vue mécanique, la plupart des transporteurs de médicaments peuvent être classés 

comme transporteurs de soluté (SLC) ou transporteurs ABC (ATP-binding cassette). La plupart 

des transporteurs SLC sont des transporteurs d'influx, parmi leurs substrats on trouve des 

sucres, des acides aminés, des vitamines, des nucléotides, des métaux, des ions inorganiques, 

des anions organiques, des oligopeptides et des médicaments. Les transporteurs SLC sont soit 

des transporteurs passifs facilitateurs, soit des transporteurs actifs secondaires. En revanche, 

les transporteurs ABC se lient à l'ATP et récupèrent l'énergie de l'hydrolyse de l'ATP afin de 

transloquer sélectivement divers substrats à travers les membranes. La superfamille des 

transporteurs ABC représente la plus grande famille de protéines transmembranaires et, chez 

les eucaryotes, ils fonctionnent principalement comme exportateurs. Il a été prouvé que 

ABCB1, ABCG2 et les membres de la sous-famille ABCC sont impliqués dans le développement 

de la multirésistance et des interactions médicamenteuses. En particulier, ABCG2 (BCRP) est 

un acteur clé dans la prévention de l'absorption de composés toxiques à partir de l'intestin, et 

il joue également un rôle protecteur essentiel au niveau de différentes barrières tissulaires 

comme la barrière mère-fœtus, la barrière hémato-encéphalique (BHE) et la barrière sang-

testicule. ABCG2 transporte une grande variété de médicaments ainsi que de nombreux 

métabolites de phase II tels que les sulfates ou les glucurones. 
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2. Méthodes 

La modélisation informatique des protéines et de leurs interactions avec les ligands revêt une 

importance croissante dans la découverte et le développement de médicaments. Les méthodes 

basées sur des ligands déjà connus, ainsi que les méthodes basées sur la structure dans le cas 

où la structure de la protéine cible (ou une protéine similaire) est connue, peuvent être utilisées 

pour identifier des substrats ou des inhibiteurs. La modélisation in silico des structures et de la 

dynamique des protéines nécessite un modèle d'interactions interatomiques. Différents 

champs de force sont utilisés pour définir l'énergie potentielle en fonction des coordonnées 

atomiques. Les champs de force semi-empiriques les plus couramment utilisés comprennent 

des termes liés pour l'étirement, la flexion et la torsion des liaisons, et des termes non liés pour 

les interactions de van der Waals et électrostatiques. La minimisation de l'énergie vise à 

atteindre des conformations à faible énergie potentielle en identifiant le minimum local le plus 

proche de la structure de départ.  

Cependant, pour fournir une description correcte de la population conformationnelle, 

les énergies libres doivent être estimées de manière à garantir une combinaison d'énergie 

faible et d'entropie élevée. Les simulations de dynamique moléculaire (MD) résolvent les 

équations du mouvement de Newton de manière itérative, créant ainsi une trajectoire 

conformationnelle dépendant du temps. Contrairement à la minimisation de l'énergie, la 

dynamique moléculaire est capable de franchir des barrières énergétiques et d'atteindre des 

états ayant une énergie libre plus faible. Plusieurs outils de simulation visent à surmonter les 

limites temporelles de la dynamique moléculaire classique tout-atomique, comme la 

métadynamique, l'inondation conformationnelle, la MD accélérée ou la MD ciblée. Une autre 

solution consiste à utiliser des modèles coarse-grained plutôt que d'inclure tous les détails 

atomistiques.  

L'analyse de modes normaux peut être utilisée efficacement pour identifier et décrire 

les mouvements intrinsèques les plus lents des macromolécules, qui, dans la nature, 

correspondent généralement bien aux mouvements fonctionnels collectifs. L'analyse de modes 

normaux repose sur l'approximation harmonique de la fonction d'énergie potentielle autour 

d'un minimum local.  

Dans la modélisation des interactions protéine-ligand, les simulations d’arrimage 

moléculaire peuvent être utilisées efficacement pour identifier les sites de liaison et les poses 

des ligands, et prédire les affinités de liaison. Les simulations d’arrimage s'approchent des 

énergies physiques réelles avec une énergétique et une solvatation simplifiées, elles génèrent 

et classent les configurations protéine-ligand en utilisant différents algorithmes de recherche 

et fonctions de notation.  

À partir d'un ensemble de données d'entraînement de composés dont l'activité est 

connue, les caractéristiques basées sur les ligands et la structure peuvent être utilisées pour 

entraîner des modèles de prédiction par apprentissage automatique pour la classification (ou 

la régression). La forêt aléatoire (random forest, RF) et la machine à vecteur de support 
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(support-vector machine, SVM) sont des exemples largement utilisés d'algorithmes 

d'apprentissage automatique supervisés, et ils peuvent être utilisés efficacement pour 

distinguer les composés actifs et inactifs d'une protéine cible donnée. 

3. Objectifs 

L'une des principales raisons de l'échec d'un candidat médicament est due à des problèmes liés 

à la pharmacocinétique/pharmacodynamique pendant les essais cliniques. La prédiction in 

silico des interactions avec les DME et les transporteurs de médicaments qui régissent la 

pharmacocinétique des xénobiotiques peut contribuer à réduire le taux d'échec des candidats 

médicaments à un stade précoce de leur développement, ainsi que les coûts associés et le 

nombre de tests sur les animaux. Dans mon travail de doctorat, je me suis concentré sur deux 

DME de phase II, SULT1A1 et UGT1A1, ainsi que sur un transporteur d'efflux de médicaments 

essentiel, ABCG2. 

L'objectif de mon travail de doctorat était de déchiffrer les mouvements fonctionnels 

codés dans les protéines susmentionnées à l'aide de différentes approches de simulation, 

d'identifier les effets de la liaison du ligand sur leur dynamique et leurs mouvements collectifs 

fonctionnels, et finalement de créer des modèles d'apprentissage automatique prédictifs in 

silico capables de distinguer les inhibiteurs des composés inactifs par rapport aux protéines 

cibles. 

4. Résultats 

4.1. Mécanisme de liaison des substrats de SULT1A1 

Il a été suggéré précédemment qu'un déplacement considérable de la structure de la SULT, 

causé par la liaison du cofacteur PAPS, pourrait contrôler la capacité de la SULT à lier des 

substrats de grande taille. Afin d'élucider les mécanismes moléculaires guidant la 

reconnaissance de divers substrats et inhibiteurs par SULT1A1, des simulations de dynamique 

moléculaire (MD) et l'approche récemment développée de ‘MD with excited Normal Modes’ 

(MDeNM) ont été réalisées en présence du cofacteur. Les simulations MDeNM permettent un 

échantillonnage étendu de l'espace conformationnel en réalisant plusieurs simulations MD 

courtes au cours desquelles les mouvements décrits par un sous-ensemble de modes normaux 

de basse fréquence sont cinétiquement excités. L'analyse de ‘root mean square deviation’ 

(RMSD) calculé sur la poche de liaison et la protéine entière a révélé que MDeNM a effectué 

un échantillonnage conformationnel plus exhaustif de la poche de liaison de SULT1A1 que les 

simulations MD classiques tout en maintenant la structure globale de la protéine plus proche 

de la structure cristalline initiale. L'analyse des ‘root mean square fluctuation’ des atomes Cα a 

révélé que MDeNM a particulièrement amplifié les mouvements liés aux boucles L1 et L3, et 

modérément ceux de L2, les trois boucles formant la porte de la poche de liaison. Les 

fluctuations aux extrémités des boucles L1 et L3 sont deux fois plus grande dans le cas de 

MDeNM que celles des simulations MD classiques, ce qui indique que MDeNM explore 

davantage les mouvements de la porte. L1 a présenté une plus grande fluctuation que L3 à la 

fois par MD et MDeNM, ce qui implique son rôle dans le mécanisme de gating comme cela a 
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été proposé précédemment. L'analyse de l'ouverture de la porte a révélé que MDeNM a atteint 

des conformations beaucoup plus largement ouvertes, alors que MD a cartographié des états 

fermés très peuplés.  

Pour mieux comprendre le mécanisme des interactions entre SULT1A1 et les ligands, 

l'arrimage de 132 substrats ou inhibiteurs connus a été effectué dans la poche de liaison des 

conformations centroïdes recueillies par MD et MDeNM après regroupement. De nombreux 

ligands ont exprimé un comportement d'arrimage similaire dans l'ensemble des conformations 

recueillies par MD et MDeNM en termes d'énergie d'interaction (IE), pour certains ligands, 

cependant, des différences considérables ont été observées. La plupart de ces composés ont 

montré une énergie d'interaction plus favorable lorsqu'ils ont été amarrés à l'ensemble des 

conformations MDeNM, ce qui démontre l'avantage d'inclure les simulations MDeNM en plus 

des MD. En particulier, l'évaluation des ligands pour lesquels il y avait une différence 

significative entre MD et MDeNM a révélé que la plupart des composés pour lesquels MDeNM 

était plus performant étaient de grande taille, occupant un grand volume dans la poche de 

liaison, et que leurs poses correspondant au meilleur IE étaient logées dans des conformations 

enzymatiques largement ouvertes qui étaient peu peuplées ou même non accessibles par les 

simulations MD classiques.  

Deux substrats de taille différente ont été utilisés dans des simulations d’arrimage 

supplémentaires afin d'étudier plus en détail le mécanisme de porte et la reconnaissance du 

substrat de SULT1A1. Le substrat 17β-estradiol (E2) est un substrat plus petit et de taille 

moyenne tandis que le fulvestrant, un analogue d'œstrogène, est un substrat plus grand de 

SULT1A1, avec une chaîne latérale fonctionnelle supplémentaire de 15 atomes de long. Les 

deux substrats ont été arrimés dans 6000 conformations générées par MD et 6000 autres 

conformations générées par MDeNM. Les conformations MD et MDeNM étaient capables 

d'accueillir l'E2, indépendamment de leur ouverture, ce qui concorde avec les études 

cinétiques et de liaison précédentes montrant que l'E2 peut se lier à des conformations 

ouvertes et fermées de l'enzyme. Le fulvestrant a montré une préférence évidente pour les 

conformations ouvertes. Les positions d'arrimage les plus favorables de l'E2 et du fulvestrant 

ont été analysées plus en détail et se sont révélées stables par des simulations MD classiques 

consécutives à partir des complexes enzyme-cofacteur-substrat. Les simulations MD en 

présence d'estradiol et de fulvestrant ont montré l'ouverture supplémentaire induite des 

boucles en présence du substrat lié. Les résultats des simulations MD et MDeNM ont confirmé 

que des conformations ouvertes sont disponibles pour les gros ligands (tels que le fulvestrant, 

le 4-hydroxytamoxifène ou le raloxifène) pour se lier même en présence du cofacteur lié. Ainsi, 

nos résultats ont proposé un nouveau mécanisme pour la reconnaissance des grands substrats 

sans impliquer un mouvement du cofacteur pour déclencher la liaison des grands substrats. 

4.2. Prévision de l'inhibition de l'UDP-glucuronosyltransférase 

Une forte inhibition de l'UGT1A1 peut déclencher des interactions médicamenteuses 

indésirables ou entraîner des troubles du métabolisme endobiotique. Afin d'étudier le degré 

de flexibilité structurelle et l'adaptation conformationnelle de sa poche de liaison à la lumière 
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de la variété structurale des divers composés actifs, des simulations de dynamique moléculaire 

ont été réalisées à partir d'un modèle d'homologie humaine en présence du cofacteur 

(UDPGA). L'analyse de ‘root mean square deviation’ a montré que les trois simulations de 

dynamique moléculaire ont rapidement dévié de la conformation initiale, atteignant des 

différences relativement élevées. Des mouvements d'ouverture-fermeture inter domaines plus 

importants ont été révélés par l'analyse du rayon de giration et l'inspection visuelle des 

trajectoires. Le volume de la poche de liaison au substrat varie de manière significative au cours 

des simulations. Dans certaines conformations, le volume atteint 1,5 à 2 fois la taille de la 

structure de départ. Les grandes variations du volume de la poche de liaison au substrat et 

l'ouverture vers le lumen peuvent faciliter l'accès au site catalytique et accueillir les divers 

substrats. 

Des ligands connus de l'UGT1A1, substrats et inhibiteurs, ont été rassemblés pour être 

utilisés pour l’arrimage et construire des ensembles de données d'entraînement et de test 

externe pour la modélisation par apprentissage automatique. L’arrimage d'ensemble des 

molécules actives et des molécules leurres de l'ensemble d'entraînement a été réalisé sur les 

conformations centroïdes recueillies par MD après regroupement pour identifier les 

conformations de la protéine qui distinguent le mieux les composés actifs et inactifs. En utilisant 

la meilleure IE retenue pour chaque composé, des courbes d'enrichissement ont été calculées 

pour chaque conformation protéique centroïde, dont six ont été conservées pour la 

modélisation par apprentissage automatique et les scores d'accostage IE correspondants ont 

été utilisés comme descripteurs basés sur les interactions protéine-ligand. Les conformations 

protéiques identifiées présentaient une grande flexibilité au niveau de leurs poches de liaison 

au substrat, les résidus clés pour la réaction catalytique restaient moins flexibles, et 

conservaient leur orientation à l'intérieur de la poche de liaison.  

Les descripteurs moléculaires physico-chimiques des composés actifs et des leurres ont 

été calculés, et les descripteurs fortement corrélés ainsi que les descripteurs dont la variance 

est proche de zéro ont été supprimés. Les six scores IE obtenus à partir des simulations 

d’arrimage ont été inclus en tant que descripteurs basés sur la structure représentant les 

interactions protéine-ligand. Une réduction du nombre de descripteurs a été effectuée sur la 

base de leur importance relative afin d'éviter un ajustement excessif après l'entraînement d'un 

certain nombre de modèles de forêt aléatoire sur l'ensemble de données d'entraînement et la 

sélection du sous-ensemble de descripteurs ayant la plus grande importance de Gini. Un total 

de 56 descripteurs basés sur le ligand et les 6 IE ont été conservés pour la construction de 

modèle, les descripteurs les plus importants étant liés à la polarité, à la lipophilie et aux charges. 

Les algorithmes random forest (RF) et support-vector machine (SVM) ont été utilisés pour créer 

des modèles de prédiction optimisés intégrant les informations basées sur les ligands et la 

structure, en optimisant les hyper paramètres correspondants du modèle. Les modèles RF et 

SVM ont montré d'excellents pouvoirs prédictifs pour la discrimination des molécules actives 

de l'UGT1A1 avec une précision et une sensibilité d'environ 90 %. Ce sont les premiers modèles 

d'apprentissage automatique créés pour la prédiction de l'inhibition de l'UGT1A1. Ils peuvent 
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être utiles pour la prédiction des interactions médicamenteuses de nouveaux candidats 

médicaments tout en fournissant également des informations structurales sur les interactions 

enzyme-ligand. 

4.3. Mécanisme de transport ABCG2 

ABCG2 est d'un intérêt majeur en raison de son implication dans la multirésistance aux 

médicaments (MDR), et la compréhension de son mécanisme d'efflux complexe est essentielle 

pour prévenir la MDR et les interactions médicament-médicament (DDI). L'exportation 

d'ABCG2 est caractérisée par deux transitions conformationnelles majeures entre les états 

orientés vers l'intérieur et vers l'extérieur (IFS et OFS), dont les structures ont été résolues. 

Pourtant, l'ensemble du cycle de transport n'a pas été caractérisé à ce jour. Afin d'élucider le 

mécanisme de transport d'ABCG2 et son comportement dans les différentes étapes du 

transport, différentes simulations ont été réalisées à partir des structures cryo-EM disponibles 

correspondant aux deux états, son IFS et son OFS. Dans l'IFS, les deux monomères du domaine 

de liaison aux nucléotides (NBD) sont partiellement séparés alors que dans l'OFS, ils forment 

un dimère serré établissant les deux sites de liaison aux nucléotides. La paire de domaines 

transmembranaires (TMD) forme la cavité hydrophobe 1 en forme de fente, où il a été prouvé 

que les substrats physiologiques et divers inhibiteurs se lient, et la cavité 2 qui fait face à 

l'espace extracellulaire. La cavité 1 est repliée dans l'OFS, les deux cavités sont séparées par 

une porte en leucine.  

Tout d'abord, les régions de boucle intracellulaire manquantes dans les NBD ont été 

modélisées car elles sont susceptibles d'affecter l'entrée de substrat et peuvent posséder une 

fonction de porte. De même, le segment de liaison a également été modélisé, reliant les NBD 

individuels et les TMD. Des systèmes multiples ont été construits à partir des structures 

expérimentales IFS et OFS en présence ou en l'absence d'un substrat physiologique (estrone 3-

sulfate, E1S) et de nucléotides (ATPs ou ADPs) pour imiter les différentes étapes du transport :  

• Apo IFS 

• IFS lié à E1S 

• IFS lié à E1S et ATP-Mg2+ 

• OFS lié à l'ATP-Mg2+ 

• OFS lié à l'ADP 

• OFS sans nucléotide 

Des simulations de dynamique moléculaire (MD) intégrées dans une bicouche lipidique et une 

analyse en mode normal (NMA) ont été réalisées sur les six systèmes ci-dessus. L'échelle de 

temps d'un cycle de transport complet d'ABCG2 est de l'ordre de la fraction de seconde ou plus, 

un délai qui ne peut actuellement pas être simulé par la MD classique. J'ai donc développé un 

outil de simulation MD amélioré, la ‘kinetically excited targeted MD’ (ketMD), qui trace les 

chemins possibles entre deux structures terminales ; il a été appliqué à l'ABCG2 pour simuler 

les transitions conformationnelles entre les états IFS et OFS. De la même manière que pour la 

MD ciblée (tMD), le vecteur d'excitation a été choisi pour pointer vers la structure cible, 
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cependant, contrairement à la tMD, où la fonction d'énergie potentielle est biaisée et où la 

protéine est guidée par des forces directrices à chaque étape de la simulation, la ketMD repose 

sur des excitations cinétiques. Lors de la première étape de chaque cycle d'excitation, les 

composantes de vitesse pointant de la conformation instantanée vers la structure cible sont 

augmentées, permettant le franchissement de barrières énergétiques plus importantes. Cette 

étape d'excitation est suivie d'une période de relaxation pendant laquelle aucune perturbation 

externe n'est appliquée, le système peut évoluer et l'énergie cinétique injectée peut se dissiper. 

Après chaque cycle d'excitation, le vecteur de direction de l'excitation est mis à jour pour 

pointer de la conformation instantanée vers la structure cible. 

La transition 1 (IFS vers OFS) a été simulée à partir de l'IFS lié à E1S et à ATP-Mg2+, tandis 

que la transition 2 (OFS vers IFS) à partir de l'OFS sans substrats liés et en présence d'ATP-Mg2+, 

d'ADP, ou en l'absence de nucléotides liés. L'analyse de ‘root mean square deviation’, le suivi 

d'une paire de distances catalytiques et l'inspection visuelle ont confirmé qu'une dimérisation 

complète des NBD a été réalisée avec succès en même temps que la formation du site de liaison 

ATP catalytique pendant la simulation ketMD de la transition 1, alors que dans la direction 

opposée, les NBD se sont partiellement séparés et une transition complète des NBD s'est 

produite pendant les simulations ketMD. Au cours de la transition 2, le détachement des NBDs 

au niveau du site de liaison à l'ATP était plus facile à réaliser en l'absence de nucléotides, et plus 

difficile en présence d'ATP.  

Une analyse du rayon de giration des segments hélicoïdaux bordant les deux cavités a 

été réalisée pour étudier leur état au cours des simulations. A la fin de la simulation ketMD de 

la transition 1, la cavité 1 était effondrée (identique à la structure OFS) alors qu'en sens inverse, 

à partir d'une cavité 1 effondrée, elle redevenait exposée et accessible depuis le cytosol. À 

l'opposé, pendant la simulation de la transition 1 par la ketMD, la cavité 2 est devenue plus 

exposée à l'espace extracellulaire et également plus volumineuse, tandis que pendant la 

simulation de la transition 2, en partant de l'OFS, la cavité 2 s'est rapprochée d'un état plus 

dégonflé.  

Des structures expérimentales avec un substrat lié à la cavité 2, ou des structures 

transitoires le long de la voie de translocation n'ont pas été résolues. Avec l'exécution de la 

ketMD à partir de l'IFS, il a été possible de simuler la translocation de E1S de la cavité 1 vers 

l'espace extracellulaire à travers la porte de la leucine et la cavité 2. En plus de l'excitation 

appliquée au transporteur, le mouvement du substrat a également été cinétiquement promu 

vers l'espace extracellulaire. Le substrat était initialement lié à la cavité 1, stabilisé 

principalement par les interactions d'empilement " en sandwich " de F439 et F439′. Dès que le 

substrat s'est échappé du piège 'sandwich' des deux résidus F439 et s'est déplacé vers la cavité 

2, F439 et F439′ sont entrés en contact étroit, créant une construction en forme de valve, 

similaire à ce qui est observé dans la structure cryo-EM de OFS. Tout type de mouvement de 

retour vers le cytosol était empêché avec cette valve fermée et j'ai identifié une formation de 

type poche entre les cavités 1 et 2, où le substrat était piégé car les mouvements vers la cavité 

2 restaient encore bloqués par la porte leucine fermée. Plusieurs résidus au bord de ce site ont 
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stabilisé la position du substrat, il ne s'est éloigné de la poche qu'une fois les résidus de la porte 

leucine séparée. Le comportement du substrat dans la cavité 2 était très différent de celui 

observé dans la cavité 1 ou entre les cavités 1 et 2. Avant d'arriver à la cavité 2, le substrat était 

étroitement lié et entouré de près par les résidus du transporteur. En revanche, le substrat 

était faiblement lié ici alors qu'il explorait le volume de la cavité, établissant des contacts étroits 

avec les résidus à sa limite. L'excitation cinétique supplémentaire du substrat a entraîné son 

détachement complet du transporteur dans l'espace extracellulaire. 

Les simulations MD classiques et l'analyse en mode normal des différentes étapes de 

transport ont révélé que la présence du substrat dans la cavité 1 est essentielle pour coupler 

les mouvements entre les NBDs et les TMDs. En l'absence d'un substrat et de nucléotides liés 

(forme apo), les TMDs se rapprochent d'une configuration neutre, la cavité 2 s'ouvre alors que 

la cavité 1 commence à s'effondrer, tandis que les NBDs restent éloignés les uns des autres. 

Contrairement à la cavité 1, la cavité 2 ne s'est jamais complètement effondrée, quelle que soit 

l'étape du cycle de transport (pendant les simulations MD classique et ketMD), même si les 

expériences suggèrent qu'elle peut s'occlure. Son volume présente des variations de 

gonflement et de dégonflement entre les états IFS et OFS, mais la cavité 2 est plus volumineuse 

que la cavité 1, même dans son état dégonflé. Les simulations ketMD et les simulations MD 

classiques ultérieures ont démontré que E1S, qui est un composé volumineux, pouvait être 

présent dans la cavité 2, même dans l'état OFS, et elles ont également montré un espace 

suffisamment grand pour le substrat dans la cavité 2 pendant tout le cycle de transport. Cela 

peut permettre la fixation simultanée du substrat dans les cavités 1 et 2, entraînant un 

mécanisme d'exportation accéléré. 

L'approximation harmonique des modes normaux a révélé que des mouvements de 

type transition sont présents dans le système IFS correspondant à de basses fréquences, alors 

qu'ils sont amortis et sont des mouvements locaux de fréquences plus élevées dans les 

systèmes OFS. Cela suggère qu'il est énergétiquement coûteux d'amorcer la transition 2 pour 

revenir à l'IFS initial, ce qui peut nécessiter l'énergie libérée lors de l'hydrolyse de l'ATP. 

5. Conclusions 

La prédiction du devenir des médicaments administrés dans le corps humain reste une tâche 

difficile qui s'est longtemps appuyée sur des études coûteuses sur les animaux, ce qui soulève 

également des problèmes d'éthique et de fiabilité. C'est pourquoi un nombre croissant 

d'approches informatiques ont été utilisées afin de prédire efficacement le résultat 

métabolique des médicaments et des nouveaux candidats médicaments. Plusieurs études ont 

créé des modèles de prédiction utilisant des informations basées sur le ligand ou la structure. 

En 2013, le laboratoire hôte a formé les premiers modèles de classification par apprentissage 

automatique intégrant des informations basées sur le ligand et la structure pour la prédiction 

de l'inhibition de différentes isoformes de SULT, puis des enzymes CYP. La compréhension des 

mouvements fonctionnels collectifs des protéines et de leurs interactions avec de petits ligands 

est une étape cruciale pour extraire des informations basées sur la structure pour de tels 

modèles de prédiction.  
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Dans mon travail de doctorat, je me suis concentré sur deux DME essentielles de la 

phase II, SULT1A1 et UGT1A1, ainsi que sur le transporteur d'efflux de médicaments ABCG2. 

Mes recherches ont porté à la fois sur la dynamique des différentes protéines et sur leurs 

interactions avec de petites molécules. Elles comprenaient également des développements 

méthodologiques, tels qu'un outil de simulation de dynamique moléculaire amélioré et 

différents outils de prédiction par l'intégration de la modélisation basée sur la structure et 

l'apprentissage automatique. 

Auparavant, il avait été suggéré que la liaison de la PAPS limitait l'accès de substrats plus 

importants à la SULT1A1. Des simulations MD classiques et ‘MD with excited Normal Modes’ 

(MDeNM) ont été réalisées afin d'élucider les mécanismes moléculaires guidant la 

reconnaissance de divers substrats et inhibiteurs par SULT1A1 en présence du cofacteur, ce qui 

a été suivi par des simulations d’arrimage de ligands connus. Les résultats d’arrimage et des 

simulations classiques de dynamique moléculaire qui ont suivi sur les complexes ont démontré 

que d'importants changements de conformation de la SULT1A1 pouvaient se produire même 

en présence du cofacteur, et que des conformations plus largement ouvertes peuvent accueillir 

un grand substrat comme le fulvestrant avec une plus grande affinité. En plus de L3, la région 

de la boucle L1 à l'entrée du site catalytique présentait une flexibilité extrêmement élevée qui 

soulignait son importance fonctionnelle dans le mécanisme de déclenchement de la SULT1A1. 

Dans l'ensemble, mon travail a jeté une nouvelle lumière sur les mécanismes complexes de la 

spécificité du substrat et de l'inhibition de la SULT1A1, et a souligné l'utilité d'inclure MDeNM 

dans les études d'interactions protéine-ligand où des réarrangements majeurs sont attendus. 

Les conformations générées peuvent être utilisées efficacement pour entraîner des modèles 

de prédiction in silico avec une précision encore plus élevée pour les molécules plus grandes. 

La modélisation basée sur la structure et les informations basées sur le ligand ont été 

intégrées pour construire les premiers modèles de prédiction par apprentissage automatique 

de l'inhibition de l'UGT1A1. Dans le cadre de mon travail de doctorat, j'ai réalisé des simulations 

de dynamique moléculaire de l'enzyme à partir d'un modèle d'homologie humain en présence 

du cofacteur afin d'explorer la variabilité structurale du site catalytique, et j'ai observé une 

flexibilité significative, importante pour l'accommodation des divers ligands. Cette étude a été 

suivie d'un regroupement conformationnel. Un ensemble de ligands connus, substrats et 

inhibiteurs, a été collecté et un arrimage d'ensemble a été réalisé pour identifier les 

conformations qui peuvent efficacement différencier les actifs des leurres. Des descripteurs 

basés sur les ligands ont été calculés. Enfin, une sélection raisonnable de descripteurs basés sur 

les ligands, ainsi que les énergies d'interaction obtenues à partir d’arrimage, ont été utilisées 

pour entraîner les premiers modèles d'apprentissage automatique pour la prédiction de 

l'inhibition de l'UGT1A1. Les modèles formés ont montré d'excellentes performances et ont été 

mis en œuvre dans le logiciel DrugME. DrugME peut être utilisé efficacement pour identifier de 

nouveaux inhibiteurs de l'UGT1A1 et peut être utile pour la prédiction des interactions 

médicamenteuses de nouveaux candidats médicaments, tout en fournissant également des 

informations structurales sur les interactions enzyme-ligand. 
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J'ai développé une technique de simulation MD améliorée et innovante, appelée ketMD 

(kinetically excited targeted Molecular Dynamics) pour simuler le cycle de transport de l'ABCG2 

ainsi que la translocation du substrat physiologique, le 3-sulfate d'estrone. À l'aide de ketMD, 

j'ai réussi à simuler les transitions conformationnelles entre les deux états extrêmes de l'ABCG2 

et j'ai révélé le mécanisme moléculaire complexe de la translocation du substrat E1S. J'ai 

observé une fonction de valve de deux résidus de phénylalanine (F439 et F439') dans la cavité 

1 qui s'engagent initialement dans des interactions d'empilement contre le substrat. Les 

simulations MD classiques et l'analyse des modes normaux ont révélé que la présence du 

substrat dans la cavité 1 est nécessaire pour coupler les mouvements du domaine 

transmembranaire au domaine de liaison aux nucléotides. J'ai également observé que la cavité 

2 n'était jamais complètement effondrée, à n'importe quel stade du cycle de transport, ce qui 

pourrait permettre la fixation simultanée du substrat dans les cavités 1 et 2 et accélérer le taux 

d'exportation du transporteur. Le travail sur ABCG2 a jeté une nouvelle lumière sur le 

mécanisme moléculaire complexe de son transport et a mis en évidence l'utilité d'inclure des 

techniques d'échantillonnage in silico améliorées, telles que la ketMD, dans les études sur les 

transporteurs. Dans un avenir proche, les conformations générées le long de la voie de 

transition seront utilisées pour développer de nouveaux modèles d'apprentissage automatique 

pour la prédiction des inhibiteurs et des substrats d'ABCG2, afin de sonder de nouveaux 

candidats médicaments pour la multirésistance et de prédire les interactions 

médicamenteuses. 

Au cours des trois années de mon travail de doctorat, j'ai eu la grande chance 

d'approfondir mes connaissances en biologie sur le métabolisme des médicaments, de leur 

élimination et de leurs interactions, ainsi que dans l'application et le développement de 

nouvelles approches in silico pour étudier les enzymes et les transporteurs qui régissent ces 

processus complexes. Les observations et les résultats des travaux présentés dans la thèse 

contribuent à une meilleure compréhension des mécanismes moléculaires des enzymes du 

métabolisme de phase II et des transporteurs ABC, et de leurs interactions avec des ligands. En 

particulier, le logiciel DrugME qui incorpore maintenant les modèles prédictifs développés 

intégrant la modélisation basée sur la structure et l'apprentissage automatique contribuera 

grandement aux futures prédictions des interactions médicamenteuses. 
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J. Supporting Information – SULT1A1 
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Balint Dudas1,2,#, Daniel Toth3,#, David Perahia2, Arnaud B. Nicot4, Erika Balog3,*, Maria. A. 
Miteva1,* 
 
1Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS - University of Paris, Pharmacy Faculty of Paris, 
France 
2Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 
UMR 8113, CNRS, Gif-sur-Yvette, France 
3Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary 
4Inserm, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 
1064, ITUN, F-44000 Nantes, France 
 
#1st coauthors 
*corresponding authors: maria.mitev@inserm.fr, balog.erika@med.semmelweis-univ.hu  
 

Published in Scientific Reports on 2021 Jun 23 
doi: 10.1038/s41598-021-92480-w 

 
 

 

Figure S1. Predicted and experimental binding energy correlation for SULT1A1 ligands. Predicted 
binding energies (BE) were calculated by averaging over the best scored Autodock Vina 

energies obtained for the best 10 MD conformations and the best 10 MDeNM conformations. 
The experimental binding energies (BE) were taken or calculated using ligand affinity constants 

as reported in the literature (see SI Table S1). 
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Figure S2. A. The best retained BE for each of the 132 known ligands over the MD (denoted by 
orange squares) and MDeNM (denoted by purple stars) conformational ensemble and B. the 
differences between the best BEs retained by MD and MDeNM conformations with the 5 Å 

distance criterion applied to the substrates. For the better visualization, only differences larger 
than 0.5 kcal/mol are indicated. 

 

 

Figure S3. Distribution in the plane defined by d(L1,L2) vs. d(L1,L3) distances of all the MD 
generated structures (black dots) and the MDeNM structures (blue ‘x’-es) that can 

accommodate competent orientations of bigger ligands with BEs inaccessible for any MD 
generated conformation. The location of the crystal structure (4GRA.pdb) is shown in yellow 

‘x’. 
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Figure S4. Free Energy Landscapes (FELs) of the complexes substrate-SULT1A1/PAPS in the 
space defined by the distances d(L1,L2) and d(L1,L3) of the 100 ns long MD simulations 

starting from an estradiol-bound MD (A) and MDeNM (B) conformations; and from 
fulvestrant-bound MD (C, E, G) and MDeNM (D, F, H) conformations. All starting complexes 

were taken after the docking with AutoDock Vina. The crystal structure (4GRA.pdb) is denoted 
by yellow ‘+’. The starting conformation for the MD simulations is denoted by a violet circle. 
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Table S1. Predicted and experimental binding energies for SULT1A1 ligands. Predicted binding 
energies were calculated by averaging over the best scored Autodock Vina energies obtained 
for the best 10 MD conformations and the best 10 MDeNM conformations. The experimental 
binding energies were taken or calculated using ligand affinity constants as reported in the 

literature. 

Compound 
Predicted Binding Energy 

(kcal/mol) 
Experimental Binding Energy 

(kcal/mol) 
REF 

apomorphine -9.9 -13.0 1 

ethinyl estradiol -10.6 -12.0 2 

p-nitrophenol -6.7 -5.8 3 

4-hydroxytamoxifen -8.6 -8.3 4 

17β-estradiol (E2) -10.4 -10.0 1 

fulvestrant -10.2 -7.9 5 

 

1. Thomas, N. L., and Coughtrie, M. W. (2003) Sulfation of apomorphine by human sulfotransferases. Evidence 

of a major role for the polymorphic phenol sulfotransferase, SULT1A1. Xenobiotica 33, 1139–1148 

2. Rohn, K. J., Cook, I. T., Leyh, T. S., Kadlubar, S. A., and Falany, C. N. (2012) Potent inhibition of human 

sulfotransferase 1A1 by 17 - ethinylestradiol. Role of 3 -phosphoadenosine 5 -phosphosulfate binding and 

structural rearrangements in regulating inhibition and activity. Drug. Metab. Dispos. 40, 1588–1595 

3. Lu-Yi Lu, Han-Ping Chiang, Wei-Ti Chen, and Yuh-Shyong Yang Dimerization Is Responsible for the Structural 

Stability of Human Sulfotransferase 1A1. DRUG METABOLISM AND DISPOSITION. 37:1083–1088, 2009 

4. Ting Wang, Ian Cook, and Thomas S. Leyh , 3′-Phosphoadenosine 5′-Phosphosulfate Allosterically Regulates 
Sulfotransferase Turnover, Biochemistry 2014, 53, 6893−6900 

5. Cook, I., Wang, T., Almo, S. C., Kim, J., Falany, C. N., and Leyh, T. S. (2013) The gate that governs 

sulfotransferase selectivity. Biochemistry 52, 415–424 

 

Table S2. Binding energies (BE) of SULT1A1 substrates calculated with Autodock Vina scoring 
function before and after MD simulations of 100 ns starting from 8 different substrate-

SULT1A1/PAPS structures obtained by docking. 

Substrate 
Starting SULT1A1/PAPS 

Conformation taken from 
Complex 

No. 
BE (before MD) 

[kcal/mol] 
BE (after MD) 

[kcal/mol] 

E2 
MD 1 -11.0 -10.8 

MDeNM 1 -11.4 -10.4 

 

 

Fulvestrant 

 

MD 
1 -10.7 -8.8 

2 -10.6 -9.0 

3 -9.9 -8.5 

 

MDeNM 
1 -11.1 -8.1 

2 -10.1 -7.6 

3 -10.0 -9.4 

List of residues forming the binding pocket: 
I21, F24, T45, Y46, P47, F81, F84, K85, A86, I89, K106, T107, H108, F142, A146, K147, V148, 
H149, Y169, Y240, T241, T242, V243, P244, Q245, E246, F247, M248, D249, H250, F255  
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Figure S1. Enrichment curves representing the percentage of actives retrieved at a percentage 
of the screened compounds including actives and decoys calculated by retaining the best 

docking score for each compound in each protein conformation. The six UGT1A1 MD 
conformations showing the best enrichment are presented. 100 % refers to all screened 

compounds including all actives and decoys.  

List of residues to define the volume of the substrate-binding pocket of UGT1A1: 
V109, Y113, D151, P152, F153, L172, H173, A174, F181, E182, F190, S191, Y192, V193, P194, 
F217, S218, F221, D246, S249 

mailto:maria.mitev@inserm.fr
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Table S1. Parameters of the optimized best RF and SVM models.  

 

# p is the total number of variables; Var is the variance of the training dataset. 

 

 

 

Figure S2. Mean importance inferred from the random forest modeling of the 168 molecular 
descriptors used to train models for UGT1A1 prediction. Green stars denote the interaction 

energy descriptors of the six MD conformations. 

  

Parameters Default value 56 MOE + 6 IE 162 MOE + 6 IE 

RF ntree 500 256 256 

RF mtry √𝑝 15 29 

RF sample size 

(actives / decoys) 

total number of 

molecules in each 

class 

53 / 48 58 / 58 

SVM cost 1 24 25 

SVM gamma 1/(p x Var) 2-8 2-10 

SVM weight 

(actives / decoys) 
0.5/0.5 0.91 / 0.09 0.96 / 0.04 
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Table S2. Mean importance inferred from the random forest modeling of the best 21 
physicochemical descriptors and 6 IEs (Interaction Energies) discriminating between inhibitors 

of UGT1A1 and decoys.  

Categories 
Importance 

rank 
Descriptor name Description Importance 

MOE 2D molecular descriptors 

Polarity and 
charges 

1 h_pavgQ average total charge 4.70 

2 wienerPol Wiener polarity number 3.56 

4 h_pKa pKa 2.94 

5 PEOE_VSA-6 
vdW surface area for atoms 

having charge  < -0.30 
2.94 

9 PEOE_PC- total negative partial charge 2.09 

15 h_pstates 
fractional number of protonation 

states 
1.43 

18 a_donacc 
number of hydrogen bond 

donors and acceptors 
1.278 

22 PEOE_VSA_POS 
positive van der Waals surface 

area 
1.10 

Lipophilicity 

7 SlogP_VSA0 
sum of vdW area for atoms 

contributing to SlogP <= -0.4 
2.37 

10 GCUT_SLOGP_3 
GCUT descriptor using atomic 

contribution to SlogP 
1.99 

     

Atom types 
and bonds 

8 a_nN number of nitrogen atoms 2.13 

12 a_ICM 
atom information content 

(element distribution) 
1.89 

13 weinerPath 
Wiener path number: half the 
sum of all the distance matrix 

entries 
1.75 

16 chi1_C carbon connectivity index 1.34 

20 chiral number of chiral centers 1.23 

23 b_rotR fraction of rotatable bonds 1.08 

Molar 
refractivity 11 GCUT_SMR_1 

GCUT descriptors using atomic 
contribution to molar refractivity 

1.97 

 
MOE 3D molecular descriptors 

 

Polar volume 

3 vsurf_Wp2 polar volume 3.23 

14 vsurf_D8 hydrophobic volume 1.56 

25 vsurf_Wp3 polar volume 1.04 

Potential 
energy 

6 AM1_Eele 
electronic energy (kcal/mol) 
calculated using the AM1 

Hamiltonian 
2.62 

Interaction 
energies (IE) 

17 IE_MD52 IE of the MD52 structure 1.33 

19 IE_MD6 IE of the MD6 structure 1.27 

21 IE_MD54 IE of the MD54 structure 1.18 

24 IE_MD47 IE of the MD47 structure 1.06 
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40 IE_MD53 IE of the MD53 structure 0.74 

55 IE_MD7 IE of the MD7 structure 0.58 

 

# The GCUT descriptors are calculated from the eigenvalues of a modified graph distance 
adjacency matrix. (e.g., the diagonal takes atomic contribution to SlogP or molar refractivity. 

 

 

Table S3. Performances of the non-optimized RF models with MOE descriptors on the internal 
set (cross-validation CV) and external validation test set.  

Descriptors Data set BA % Sensitivity % Specificity % MCC % 

56 MOE 
Internal CV 82.0 65.0 99.0 74.3 

External 88.9 77.8 1.0 86.3 

162 MOE 
Internal CV 80.2 61.1 99.2 72.2 

External 84.8 70.4 99.3 78.9 

 

 

Table S4. Performances of the non-optimized SVM models with MOE descriptors on the 
internal set (cross-validation CV) and external validation set.  

Descriptors Data set BA % Sensitivity % Specificity % MCC % 

56 MOE 
Internal CV 83.1 67.4 98.8 75.1 

External 88.9 77.8 1.0 86.3 

162 MOE 

Internal CV 75.2 50.6 99.8 66.7 

External 83.3 66.7 1.0 79.0 
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Figure S3. Scheme of the optimization performed to obtain the parameters of the best RF and 
SVM models. 
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Figure S4. Binding positions of three substrates of UGT1A1 in MD47. The cofactor-binding 
domain and UDPGA are shown in white, the substrate-binding domain and docked substrates 

before MD simulations are in cyan. Key residues after 50-ns MD simulations are shown in 
salmon sticks. A) The binding position of raloxifene after 50-ns MD (in violet stick). B) The 

binding position of bilirubin after 50-ns MD (in violet stick). C) The binding position of quercetin 
after 50-ns MD (in violet stick).   
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ChEMBL IDs of the actives of the training set 

CHEMBL108829, CHEMBL121626, CHEMBL14126, CHEMBL14130, CHEMBL16217, 

CHEMBL163, CHEMBL1908020, CHEMBL1908073, CHEMBL1922235, CHEMBL194014, 

CHEMBL1951575, CHEMBL281202, CHEMBL294009, CHEMBL325372, CHEMBL3527504, 

CHEMBL3527578, CHEMBL3527579, CHEMBL42710, CHEMBL4483026, CHEMBL4526403, 

CHEMBL46740, CHEMBL501680, CHEMBL51628, CHEMBL55814, CHEMBL63323, 

CHEMBL1064, CHEMBL1164729, CHEMBL117, CHEMBL1272, CHEMBL1289926, CHEMBL129, 

CHEMBL1401508, CHEMBL1487, CHEMBL157101, CHEMBL1624, CHEMBL1743300, 

CHEMBL191, CHEMBL1946170, CHEMBL226345, CHEMBL2364638, CHEMBL255863, 

CHEMBL374975, CHEMBL3813873, CHEMBL4066936, CHEMBL429, CHEMBL435298, 

CHEMBL44793, CHEMBL457, CHEMBL475251, CHEMBL477772, CHEMBL502835, CHEMBL553, 

CHEMBL80, CHEMBL1329, CHEMBL3222137, CHEMBL3527329, CHEMBL487805, 

CHEMBL55415, CHEMBL691, CHEMBL370963, CHEMBL2403238, CHEMBL10359050 

 

ChEMBL IDs of the actives of the test set 

CHEMBL1096146, CHEMBL1412489, CHEMBL1477, CHEMBL152295, CHEMBL154, 

CHEMBL186179, CHEMBL25308, CHEMBL254316, CHEMBL277346, CHEMBL289277, 

CHEMBL298398, CHEMBL307145, CHEMBL3187723, CHEMBL32749, CHEMBL338604, 

CHEMBL4229237, CHEMBL50, CHEMBL71851, CHEMBL723, CHEMBL73930, CHEMBL76398, 

CHEMBL81, CHEMBL8145, CHEMBL837, CHEMBL898, CHEMBL9352, CHEMBL956 
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State Name of System 
Ligands Initial 

PDB ID 
Details on System Assembly 

E1S ATP-Mg2+ ADP 

IFS 

apo IFS       

6HCO 

E1S removed from cavity 1 

E1S bound IFS ✓       

E1S & ATP-Mg2+ bound IFS * ✓ ✓   
ATP-Mg2+ positions taken 
from 6HBU after overlapping 
on residues 80-94 

OFS 

ATP-Mg2+ bound OFS   ✓   

6HBU 

  

ADP bound OFS     ✓ 
ATP γ-phosphates cleaved, 
Mg2+ ions removed 

nucleotide-free OFS       ATPs and Mg2+ ions removed 

 

Table S1: Details on the different systems used in the MD simulations and NMA.  
(*) An E1S and ATP-Mg2+-bound IFS was also constructed using the structure PDB 7OJ8. 

  

mailto:maria.mitev@inserm.fr
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Figure S1: Root Mean Square Deviation (RMSD) from experimental reference structures. 
Evolution of the backbone RMSD during the ketMD simulation (A) of transition 1 and (B) of 
transition 2 with respect to their corresponding experimental target structures (PDB 6HBU 

(OFS) for transition 1 and PDB 6HCO (IFS) for transition 2); RMSD calculated on the NBD dimer 
is in olive, on the TMD dimer in red, and on the whole transporter in blue. RMSD distribution of 
the three 100-ns-long classical MD generated conformations, calculated on the NBD dimer for 

(C) the OFS and (D) the IFS, calculated on the TMD dimer for the (E) OFS and (F) the IFS, and 
calculated on the whole transporter for the (G) OFS and the (H) IFS MD conformations. RMSD 

with respect to PDB 6HCO (IFS) is in light gray, with respect to PDB 6HBU (OFS) in orange.  
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Figure S2: The evolution of the distances corresponding to the two catalytic ATP-binding sites, 
symmetrically between the P-loop of one monomer and the signature sequence of the other, 

represented by the distance (A) between the Cα atoms of residues S88 and E190’ and (B) 
between the Cα atoms of residues E190 and S88’ during the ketMD simulations of transition 2. 
The ketMD simulation in the presence of ATP-Mg2+ is shown in olive, in the presence of ADP in 

red, and in the absence of bound nucleotides in blue. The protein initial conformation of all 
three cases correspond to the experimental structure PDB 6HBU. 

  



Appendix Supporting Information – ABCG2 

213 

PDB Ligand* Nucleotide State Reference 

5NJ3 - - IFS [1] 

6HIJ MZ29 (I) - IFS 

[2] 
6FFC MZ29 (I) - IFS 

6FEQ FKo143 (I) - IFS 

6ETI MZ29 (I) - IFS 

6HCO estrone 3-sulfate (S) - IFS 

[3] 6HBU - ATP-Mg2+ OFS 

6HZM - ATP-Mg2+ OFS 

6VXF - - IFS/OFS** 

[4] 
6VXJ SN38 (S) - IFS 

6VXI mitoxantrone (S) - IFS 

6VXH imatinib (S) - IFS 

7NFD mitoxantrone (S) - IFS 

[5] 7NEZ topotecan (S) - IFS 

7NEQ tariquidar (S) - IFS 

7OJI topotecan (S) ATP IFS/OFS*** 

[6] 7OJH topotecan (S) ATP IFS 

7OJ8 estrone 3-sulfate (S) ATP IFS/OFS*** 

 

Table S2: Available ABCG2 experimental structures.  
(*) S = substrate, I = inhibitor 

(**) ‘apo-closed state’, the arrangement of TM helices more closely resembles that seen in the 
outward facing ATP bound state, whereas the lack of NBD dimerization more closely resembles 

that of the inward facing state [4] 
(***) ‘turnover-2 state’, semi-closed NBDs and an almost fully occluded substrate cavity [6] 

 

1. Taylor, N.M.I., et al. (2017) Structure of the human multidrug transporter ABCG2. Nature. 546:504-509. 
2. Jackson, S.M., et al. (2018) Structural basis of small-molecule inhibition of human multidrug transporter 
ABCG2. Nat Struct Mol Biol. 25:333-340. 
3. Manolaridis, I., et al. (2018) Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and 
substrate-bound states. Nature. 563:426-430. 
4. Orlando, B.J. and M. Liao (2020) ABCG2 transports anticancer drugs via a closed-to-open switch. Nat 
Commun. 11:2264. 
5. Kowal, J., et al. (2021) Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2. J Mol 
Biol. 433:166980. 
6. Yu, Q., et al. (2021) Structures of ABCG2 under turnover conditions reveal a key step in the drug transport 
mechanism. Nat Commun. 12:4376.  
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Figure S3: Interaction Energy between the residues of the transporter and the E1S substrate 
when trapped in the pocket-like formation between the F439 valve and the leucine plug, based 

on the classical MD simulations starting from the ketMD generated transient conformations 
for (A) one monomer and (B) the other. 

 

 

 

Figure S4: Interaction Energy between the residues of the transporter and the E1S substrate in 
cavity 2, based on the classical MD simulations starting from the ketMD generated transient 

conformations for (A) one monomer and (B) the other. 
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Figure S5: The superposition of residues 80-94 of the PDB 7OJ8 structure (in light blue) with 
bound ATP and the model (in yellow) that was constructed using the IFS structure (PDB 6HCO) 

with the nucleotide from the OFS structure (PDB 6HBU). The ATPs are in licorice 
representation. 

 

 

Figure S6: Interaction Energy between the residues of the transporter and the E1S substrate 
when trapped in the pocket-like formation between the F439 valve and the leucine plug for (A) 

one monomer and (B) the other. The interaction energies are based on the classical MD 
simulations that were performed starting from the transient conformations of the ketMD 

simulation using the initial structure PDB 7OJ8.   
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Figure S7: Changes in the substrate-binding cavities represented by the radius of gyration (Rgyr) 
of the helical structures bordering the cavities during classical MD simulations. Conformations 
of  (A) the apo IFS, (B) the substrate-bound IFS, and (C) the substrate- and ATP-Mg2+-bound IFS 
transporter, and (D) the ATP-Mg2+-bound OFS, (E) the ADP-bound OFS, and (F) the nucleotide-
free OFS simulations. Available experimental structures are marked with orange pentagons. 

 

Figure S8: The openness at the catalytic ATP-binding site of the MD generated conformations, 
represented by the distance between the CA atoms of residues S88 of one monomer and E190 
of the other. Simulations on (A) the apo IFS, (B) the substrate bound IFS, and (C) the substrate 

and ATP-Mg2+ bound IFS transporter, (D) the ATP-Mg2+ bound OFS, (E) the ADP bound OFS, 
and (F) the nucleotide-free OFS ABCG2. Available experimental structures are marked with 

orange pentagons. 
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Figure S9: The tightest part of cavity 2 after passing through the leucine gate. (A) The 
population distribution of the minimum distance between the upper tip of TM3 (residues 420-
425) and TM3’ (residues 420’-425’) heavy atoms. The distribution of the IFS is shown in blue, 
and the OFS classical MD simulations in orange. (B) The regions at the upper tips of TM3 and 

TM3’ which were used to calculate the minimum distance in panel A.  
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Figure S10: Amplitudes of NM contributions to the fluctuations of the distances between the 
CA atoms of residues S88 of one monomer and E190 of the other at 300 K, in the case of (A) 

the apo IFS, (B) the substrate-bound IFS, and (C) the substrate- and ATP-Mg2+-bound IFS 
transporter, (D) the ATP-Mg2+-bound OFS, (E) the ADP-bound OFS, and (F) the nucleotide-free 

OFS ABCG2. 

 

Figure S11: The superposition of residues 80-94 of the IFS (6HCO, blue) and the OFS structure 
(6HBU, green). The ATP is in licorice, the Mg2+ ion in sphere representation.  
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Domain Region Residue(s) 

NBD 

A-loop F52 

P-loop (Walker A) 80-88 

Q-loop Q126 

Signature sequence 186-193 

Walker B 206-211 

D-loop L216, D217 

H-loop H243 

TMD 

Elbow helix (TM1a) 373-391 

TM1b 393-413 

TM2 421-448 

CpH 451-461 

TM3 466-496 

TM4 503-528 

TM5a 535-552 

TM5b 565-571 

TM5c 573-585 

TM6a 610-617 

TM6b 623-650 

 

Table S3: Structural elements of ABCG2.



 

 

 


